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The problem of integrating multiple overlapping models and data is pervasive in engineering, though

often implicit. We consider this issue of model management in the context of the electrical power

grid as it transitions towards a modern ‘Smart Grid.’ We present a methodology for specifying, man-

aging, and reasoning within multiple models of distributed energy resources (DERs), entities which

produce, consume, or store power, using categorical databases and symmetric monoidal categories.

Considering the problem of distributing power on the grid in the presence of DERs, we show how

to connect a generic problem specification with implementation-specific numerical solvers using the

paradigm of categorical databases.

1 Introduction

The modeling of complex systems, engineered or natural, entails certain generic challenges: the exis-

tence and interaction of multiple models, multiple algorithms, and multiple implementations. This paper

presents a methodology rooted in category theory to manage this complexity, concretized via a model-

driven engineering approach to designing a modern electrical grid, dubbed the ‘Smart Grid.’

The existing grid architecture is characterized by dedicated large-scale, centralized generation and

distributed, downstream consumption. Moving towards an architecture with increased distributed gen-

eration will have a profound impact on how the grid is managed: end users will no longer be dedicated

consumers, but will shift between consuming and producing power. One key to enabling this transi-

tion is the management and modeling of distributed energy resources (DERs), generic devices that can

consume, produce, or store power.

The notion of DER is meant to provide an abstraction or characterization summarizing the essential

properties of a wide array of different energy resources, e.g. photovoltaic systems, batteries, conventional

loads, and so on. The issue is that no uniform abstraction exists. Different stakeholders utilize different

abstractions for different purposes. In addition, these meta-models must evolve as new technologies

emerge.

Coupled with control mechanisms, DERs provide a number of ancillary services to consumers and

grid operators: voltage control, reducing peak loads, demand response, etc. [33, 36]. Aggregations of

heterogeneous DERs provide the abstraction through which such collections participate in the overall

power system and energy markets [11].

There is a large body of work concerned with the use of model transformations in the context of

model management and model-driven engineering, e.g. [29, 43]. A number of approaches utilize cat-

egory theory, recognizing the natural mathematical framework it provides for reasoning about models,

their semantics, and structure-preserving transformations among models [17, 44].

We tackle the problem of specifying, relating, and transforming models using the functorial data

model advocated in [9, 22, 37, 38, 40] as well as its computational implementation in the CQL tool. In

the functorial data model, database schemas are interpreted as finite presentations of categories. Instances

of a database schema correspond to Set-valued functors out of the associated category. Some subtleties
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arise when working with computational data such as strings and integers, though we will not concern

ourselves with these difficulties; see [37] for a thorough treatment.

Structure of this paper: In Section 2, we consider the problem of model specification and transfor-

mation for family of DER schemas and the functors among them. In Section 3, we show that one variant

of a model in this family yields the objects of a symmetric monoidal category with DER aggregation

as monoidal product. In Section 4, we consider the problem of distributing power in a grid where cer-

tain nodes correspond to aggregate collections of DERs, describing a procedure for translating among

numerical solvers using database schemas, functors, and queries.

2 Categorical databases for model management

The family of models we present in this section share a common ancestor, the directed multigraph,

henceforth graph, consisting of two entities, States and Transitions, together with two arrows, Source

and Target, assigning source and target states to transitions:

Transition State

Source

Target

Including identities and composites, this schema forms a category DiGraph. Functors from this category

to Set form a category of instances.

2.1 A basic DER model

In our base model, DERs are viewed as graphs with operational states as nodes and transitions among

those. Each state is assigned a feasible operating region (i.e. power demands / generation). In AC circuits,

power is a complex-valued quantity P+ iQ, where the real part P is referred to as real or active power

and the imaginary part Q as reactive power. For now we restrict our attention to the case where operating

regions are single points.

Our base DER model is described by the schema DERBase

Transition

State

P : Float

Q : Float

Source

Target

consisting of a graph together with two attributes for each state, P,Q : State → Float. Two instances of

DERBase are depicted in Figure 1, showing a typical load (an HVAC, i.e. heating/cooling system) and a

battery.

2.2 Model Translation via Functors

Depending on the analysis to be performed, this basic DER meta-model or schema extends to include

additional information such as state of charge, virtual cost of transitions, location, etc. The functorial

data model offers a robust collection of ways to translate between such models. Some of these models

and the functors relating them are summarized in the following and in Figure 2.

In [6, 34], virtual costs are assigned to transitions representing the willingness/ability of a controllable

DER to perform a certain transition. This leads to a new schema DERCost with an additional attribute for

transitions and obvious inclusion functor to it from the base DER model.
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(a) HVAC
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Q
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(b) Battery

Figure 1: Two types of DERs and their associated demand profiles. With the chosen convention, states

with positive real power P consume power, while states with negative P generate power.

Attaching non-negative rates to transitions on a graph gives a Markov process, summarized by the

schema Markov [32]. For now, we implement these rates as ‘Floats,’ tabling the discussion of constraints

in CQL until Section 4.2. Quantifying variability of generation from renewable sources is a key issue

when modeling DERs. One approach models DERs as Markov processes, giving a stochastic DER model

DERMark.

Over long time scales, the steady state probabilities of such a model can be used to estimate energy

production and other performance indices. In [28], this approach is utilized to evaluate reliability of

small wind farm generation by assigning probabilistic transitions between operative and failed states and

coupling this with a stochastic model of wind variability. This methodology is also applied to small

hydro electric stations in [7]. Stochastic models of solar irradiance are also used to generate synthetic

data for system design [45]. We summarize these stochastic models of weather in the schema Weather.

DERBase

Transition

State

P : Float

Q : Float

=⇒ =⇒

DERCost

Transition

Cost : Float

State

P : Float

Q : Float

DERMark

Transition

Rate : Float

State

P : Float

Q : Float

Markov

Transition

Rate : Float
State

=⇒ =⇒

Weather

Transition

Rate : Float

State

Speed : Float

Figure 2: Multiple model schemas (boxes are objects, dark arrows are morphisms), connected by functors

(the hollow arrows). On the left, DERs with costly transitions share a common underlying base model

with a stochastic DER model. On the right, stochastic DER models and stochastic models of natural

processes are both modeled using Markov processes.

Functors F : M → N between database schemas give rise to adjoint triples of functors ΣF ,∆F ,ΠF

between the associated categories of instances, where ∆F : N−Inst→ M−Inst and ΣF ,ΠF : M−Inst→
N−Inst. These functors are related to “uber-flower” queries Q : M → N. Such a Q can be evaluated (as

in other data models) to give a functor eval(Q) : M−Inst → N−Inst or dually “coevaluated” to give a
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functor coeval(Q) : N−Inst→ M−Inst. Using data migration functors and queries, along with CQL’s

ability to compute colimits of instances, offers a useful way to translate between the data associated to

different models.

The models presented here are connected by inclusion functors, summarized in Figure 2. Even in the

simple setting described here, the use of mappings connecting DER models enables reuse and validation

of said models, while providing an extensible framework for model documentation. Implementing map-

pings between models which utilize the same method, such as Markov processes, enables the reuse of

tools or methods, e.g. steady state solvers. In Section 4.4, we give a more detailed exposition on how

functors between schemas along with their associated adjoint triples and queries can be used to connect

models to tools within the paradigm of categorical databases.

In the next section we give a categorical treatment of DER aggregation, the process of taking col-

lections of DERs and combining them into a single DER. For this we move to the setting of symmetric

monoidal categories and consider demand regions as subsets of the complex plane.

3 Aggregation as a Symmetric Monoidal Product

Aggregation of DERs is the key to unlocking their potential to provide ancillary services such as peak

shaving and voltage control. It is often third-party aggregators who act as intermediaries between utilities

and customers, pooling resources and providing data integration and control strategies via the develop-

ment of distributed energy resource management systems (DERMS) [14].

In this section, we focus on the basic problem of aggregating demand regions and state spaces of

DERs, presenting a symmetric monoidal category DER whose objects are DERs, and where aggregation

serves as the tensor product. This model adds a reflexive property [42], i.e. mandatory self-edges for each

node, to the underlying graphs of the DER models outlined previously. Morphisms in DER correspond

to adjusting the level of granularity of the state space.

Definition 1. A distributed energy resource (DER) D = (S,T,s, t,r,d) consists of a graph s, t : T → S,

together with a function r : S → T , satisfying s ◦ r = t ◦ r = idS, picking out an identity transition from

each state to itself, and a function d : S → 2C assigning to each state σ ∈ S a power demand region

d(σ)⊆ C. For each state σ ∈ S we write 1σ = r(σ) and call 1σ the identity transition of σ .

This definition is summarized by the diagram T S 2C
s t d

r
.

Definition 2. A morphism of DERs φ : D →D ′ consists of a pair of functions (φS,φT ), where φS : S→ S′

and φT : T → T ′, such that for all τ ∈ T , φS(s(τ)) = s′(φT (τ)) and φS(t(τ)) = t ′(φT (τ)), and for all

σ ∈ S, φ(1σ ) = 1φ(σ) and d(σ) ⊆ d′(φS(σ)). Together with these morphisms (and the obvious identity

morphisms and composition law), DERs form a category which we denote DER.

In short, a morphism of DERs is a homomorphism of the underlying graphs that acts as an inclusion

of subsets on the demand regions for each state. Such morphisms can be used to translate between models

of a DER, e.g. by adding more states or by merging states which are indistinguishable in the codomain

model. An example of this is provided in Subsection 3.1.

Demands can be aggregated using Minkowski sums; see [18] for more details as well as [25] for an

application to modeling the flexibility of DERs.

Definition 3. Given two subsets X ,Y ⊆ C, the Minkowski sum of X and Y is the set

X +Y = {x+ y : (x,y) ∈ X ×Y} ⊆ C.

Under this operation, 2C is a commutative monoid with unit {0}.
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Definition 4. The aggregate of two DERs D and D ′ is the DER D ⊗D ′ = (S× S′,T × T ′,s× s′, t ×
t ′,r× r′,d + d′), where d + d′ : S× S′ → 2C is defined by (d + d′)(σ ,σ ′) = d(σ)+ d′(σ ′) ⊆ C for any

(σ ,σ ′) ∈ S×S.

In short, the aggregate of two DERs is the categorical product of the underlying graphs (see [42] or

[35, Proposition 3.3.9]), where each product state is equipped with demand equal to the Minkowski sum

of its factors. Observe that the reflexive property of individual DERs within an aggregate DER enables

independent transitions.

Aggregation extends easily to morphisms by taking Cartesian products of functions, so in this way

we see ⊗ : DER×DER → DER is a bifunctor. In fact, letting I denote the DER with one state σ , a

single transition 1σ , and power demand d(σ) = {0} ⊆C, it is not hard to show that DER is a symmetric

monoidal category with tensor product ⊗ and unit I . As a result, string diagrams can be used to reason

about DERs and aggregation [23, 39].

3.1 Net Demand Quotient

When aggregating DERs, the state space grows rapidly. For operations at the distribution level, all that

is relevant is the net power demand. Thus it is natural to mod out by an equivalence relation whereby

states with identical power demand are identified. The following definition formalizes this notion.

Definition 5. Let D be a DER. Consider the equivalence relation ∼ on the states S of D where σ ∼
σ ′ if and only if d(σ) = d(σ ′). This induces an equivalence relation ≈ on the edges T of D where

τ ≈ τ ′ if and only if s(τ) ∼ s(τ ′) and t(τ) ∼ t(τ ′). We can define the net demand DER D of D by

D = (S/∼,T/≈,s, t,r,d), where s, t,r, and d are defined in the obvious way.

The equivalence relation above gives rise to a DER morphism ( ) : D → D which identifies states

with equal power demand and transitions among them. Composing this morphism with aggregation

applied to a pair of DERs D and D ′ gives a DER D ⊗D ′ which only distinguishes states which differ in

their net power demand.

Q

P

(a) HVAC

Q

P

(b) Battery

Q

P

(c) HVAC-Battery

Figure 3: The demand profile hybrid or aggregate DER consisting of an HVAC system and a battery.

Any path in D will give a set of paths in D traveling among DER states. We can then consider meth-

ods for selecting the ‘best’ or ‘least-costly’ sequence of DER transitions which accomplish some desired

transition in net demand. This allows for dynamic tasking of DERs to accommodate demand fluctua-

tions without requiring distribution level operators to have full knowledge of the details of a collection

of DERs.

DER aggregation is typically done locally/regionally, interfacing with grid operators at the distri-

bution or transmission level where the problem becomes matching generation with consumption while
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maintaining stable operating conditions. We now turn to the basic problem of distributing electricity

through the grid so as to match production and consumption. specification and numerical solution of

basic power flow problems using categorical databases.

4 Power Flow Problems

In this section, we show how to connect models with tools or solvers by describing the specification and

numerical solution of basic power flow problems using categorical databases. This amounts to finding

solutions to a set of non-linear equations, the power flow equations, defined over a network or power

flow graph:

Definition 6. A power flow graph consists of graph s, t : E → N, together with functions g,b : E → R,

assigning a conductance and susceptance to each edge. Nodes in the graph n ∈ N are typically called

buses, while edges e ∈ E are referred to as branches. Conductance and susceptance are the real and

imaginary parts of the complex admittance, a measure of the susceptibility of a branch to admitting

current flow.

The variables of interest are the real and imaginary parts of the complex power P + iQ and the

magnitude and phase of the complex voltage Veiθ , which we regard as partial functions P,Q,V,θ : N →R.

Buses are typed as PQ, PV , or V θ buses according to which pair of variables is regarded as fixed, see

Figure 4. The remaining free variables are determined by solving the power balance equations.

Definition 7. The power balance equations [26] for a power flow graph are the 2|N| equations

Pi =Vi ∑
j

Vj ( gi j cos(θi −θ j)+bi j sin(θi −θ j) )

Qi =Vi ∑
j

Vj ( gi j sin(θi −θ j)−bi j cos(θi −θ j) ) ,

where we write Pi := P(Ni) and gi j := g(Ei j) etc. and each sum is taken over all buses adjacent to i.

We summarize the data needed to specify a power flow problem in a CQL schema in Figure 4,

omitting attributes for simplicity.

PQ Bus

Branch GeneratorBus

PV Bus

source

target

Figure 4: A schema describing a generic power flow problem. A PQ bus represents a typical load, whose

real and reactive power demands are known and fixed, at any moment of time. All PV buses are viewed

as having generators attached, producing constant power at a specific voltage. Slack buses are omitted

for visual clarity.

Due in part to their non-linearity, solving the power flow equations is typically done numerically

either using freely available software, commercial tools, or customized code. Such tools usually require

specific solver parameters and use their own internal data structures.
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4.1 Connecting to a Tool

MATPOWER is a commonly used power systems toolbox, implemented in MATLAB. The MATPOWER

data format specifications are organized into tables in Appendix B of the MATPOWER manual [47]. We

translate these specifications into MATPOWER-specific schemas in CQL. Figure 5 shows the resulting

schemas representing both a power flow problem as well as an associated solver, e.g We characterize an

iterative Newton-Raphson solver in terms of its required parameters such as tolerance, maximum number

of iterations, etc.

Parameters

Algorithm : String

Max_Iterations : Int

Tolerance : Float

Branch

F_BUS :Int

T_BUS : Int

Generator

BUS : Int

PG : Float

VG : Float

Bus

BUS_I : Int

BUS_TYPE : Int

PD : Float

QD : Float

VM : Float

VA : Float

Figure 5: A MATPOWER power flow schema on the left, with solver parameters on the right. For sim-

plicity we only show a few attributes for each entity. Attribute names are based on those in MATPOWER.

Compare Figure 4, which was developed based on a reorganization of the schema on the left.

Encoding the input problem specification, the output solution structure, as well as the solver param-

eters in database schemas enables systematic experimentation, i.e. varying inputs or parameters, while

providing flexible and traceable documentation, i.e. storing just solutions or including the solver settings

used in each run. The input and output features common to all solvers of a given type can be organized

into a generic schema for solvers of that given type.

4.2 Constraints in CQL

CQL allows for the enforcement of constraints in the form of path equations. For example, consider the

chunk of our MATPOWER schema:

Branch
s

//

t

//

F_BUS

��

T_BUS

��

Bus

BUS_I

{{①①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①
①

Int

s.BUS_I= F_BUS

t.BUS_I= T_BUS

The equations on the right enforce the constraint that the indexing of buses via BUS_I is consistent with

the indexing of T_BUS and F_BUS of branches.

4.3 Connecting to DERs

To interface with a standard power flow problem, we place DERs at the relevant nodes of a power flow

graph, treating each such node as a PQ bus. For each such bus we determine average P, Q values from

the DERs at that node, for example by modeling the relevant DERs as Markov chains, as described

in Subsection 2.1, and returning the sum of the expected steady-state P, Q values for each DER. This

process is depicted in Figure 6 and implemented by the authors in a MATPOWER example.

This hybrid setup enables the exploration on the dependence of overall solutions to the power flow

equations on the types and behaviors of DERs, e.g. how stochasticity of distributed generation enters into

overall power distribution. We now turn to the problem of connecting multiple tools or solvers.
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Bus 1

Bus 2

Bus 3Bus 4

P = 2.0
Q = 5.0

5 Batteries

3 HVAC

1 Photovoltaic

Figure 6: Incorporating data from a collection of DERs into a node in a power flow graph. Units and

values of P, Q are arbitrary.

4.4 Connecting Tools

Modeling something as complex as the electrical grid typically involves collaborations among teams who

may utilize a varLy of tools or implementations, even for the same or similar problems. This creates a

need for translation and validation among different solvers. We describe a procedure for accomplishing

this task using techniques from the functorial data model, as presented in Subsection 2.1.

Figure 7 provides diagrams describing how to translate between solvers. Consider two solvers for

some problem, represented by schemas S and S′, e.g. the schema in Figure 5 and a schema for a solver

with a different set of parameters. One can construct a generic solver schema G for the problem, e.g.

that in Figure 4, along with queries Q : S → G and Q′ : S′ → G, specifying which information is shared

among the generic and specific instances. In this case, one should also define an auxiliary schema A for

data which appears in both S and S′ but not in G, as well as functors F : A → S and F ′ : A → S′ inserting

the data of A into both specific solver schemas.

G

S S′

A

Q Q′

F F ′

(a) Transformation between different solver

schemas for the same problem.

G−Inst

S−Inst S′−Inst

A−Inst

coeval(Q′)eval(Q)

∆F ΣF ′

(b) Transformation between instances of dif-

ferent solver schemas.

Figure 7: Diagram depicting the transformation of instances for solver schema S to instances for solver

schema S′. Black arrows are functors; red arrows are queries.

These constructions give rise to functors between the associated categories of instances, as depicted

in Figure 7b. For every instance I of S, we can obtain two instances of S′ by applying these functors.

These can be combined using a suitable colimit in S′−Inst to get a single instance of S′ containing all

possible data from S. Such a construction enables one to translate between the inputs, outputs, and

parameters for the solver represented by S and the corresponding values for the solver represented by S′.
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5 Conclusions and Future Work

This paper provides a window into our efforts to concretize the potential utility of a category theoretic

viewpoint for problems dealing with multiple related models and tools in the context of power systems

engineering. We saw that techniques and tools from categorical databases can readily be applied to

specify and translate among various models, connecting those models to particular analysis tools, as well

as connecting various tools themselves.

Further work is required to extend this category-theoretic modeling paradigm to other engineering

domains as well as within power systems. What is desired is not a modeling framework which captures

the full complexity of the today’s grid, but rather a framework which enables the expedient exploration

and evaluation of various possible future architectures and pathways to those. The need for such a

modeling ecosystem is not unique to power systems.

Of particular relevance for future work in Smart Grid technologies are aspects of control and commu-

nication enabled by new devices such as Smart Meters and increased deployment of phasor measurement

units (PMUs), devices which measure current, voltage, or phase across the grid. Managing this coupling

of an information network with a physical power network presents ample opportunities for applied cate-

gory theorists.

Lastly, further development of tools for specifying and modeling systems using category theory, e.g.

CQL, is essential in terms of engagement with domains. Being able to point practitioners to a system they

can get their hands on and play with goes a long way towards arriving at a useful common understanding.
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