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VWSIM is a circuit simulator for rapid, single-flux, quantum (RSFQ) circuits. The simulator is
designed to model and simulate primitive-circuit devices such as capacitors, inductors, Josephson
Junctions, and can be extended to simulate other circuit families, such as CMOS. Circuit models
can be provided in the native VWSIM netlist format or as SPICE-compatible netlists, which are
flattened and transformed into symbolic equations that can be manipulated and simulated. Written in
the ACL2 logic, VWSIM provides logical guarantees about each of the circuit models it simulates.
Note, our matrix solving and evaluation routines use Common Lisp floating-point numbers, and work
is ongoing to admit these models into ACL2. We currently use VWSIM to help us design self-timed,
RSFQ-based circuits. Our eventual goal is to prove properties of RSFQ circuit models. The ACL2-
based definition of the VWSIM simulator offers a path for specifying and verifying RSFQ circuit
models.

1 Introduction

We have defined the VWSIM circuit simulator with simulation models for resistors, capacitors, induc-
tors, transmission lines, mutual inductance, Josephson Junctions (JJs), and VWSIM includes voltage,
current, and phase sources. VWSIM can simulate an entire circuit model either in the voltage or phase
domain. With our use of ACL2 [7] to implement the VWSIM electrical-circuit simulator, VWSIM en-
joys mathematical properties not available in other simulation systems: termination, logical consistency,
and a formal semantics for reasoning about circuit models.

The VWSIM system was authored using the ACL2 formal logic; thus the entire simulator imple-
mentation can be thought of as a mathematical function that animates circuit models. Given suitable
input stimulus, VWSIM can produce voltage, current, and phase records. Developing tools using ACL2
provides a number of benefits. Each ACL2 function, when defined, must be proven to terminate and
proven to access reachable data only; thus, all ACL2 programs are known to terminate, without memory-
reference errors.

From an ACL2 perspective, the main contribution of this work is the definition of a tool for rapid,
single-flux, quantum (RSFQ) circuit development; the definition and guard verification of a SPICE-
like simulator; and the push it has provided to include IEEE-compatible, floating-point numbers and
associated functions within the ACL2 core. Our presentation will touch on these points.

The VWSIM system accepts SPICE-compatible [16] circuit models so that it can read existing circuit
descriptions. VWSIM also accepts input in its native Lisp format; this format provides ACL2-specific
mechanisms for specifying input circuit models, stimulus, and requirements that can be checked during
simulation. VWSIM provides various primitives for specifying stimulus input; this language allows a
user to create input waveforms by referencing existing generators or by user-provided stimulus functions.
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When our effort began, we identified properties we hoped RSFQ modeling and analysis would pro-
vide. We realized that available simulators for RSFQ circuits were all void of some properties we desired.
These shortcoming did not impede our use of public-available simulators, but no simulator combined all
of the properties we felt were important for investigating RSFQ circuit models thoroughly and accurately.
Note, we have and continue to use JoSIM [4, 6]; the JoSIM simulator provides us with inspiration, and
we strive to make our system as good as JoSIM in areas where JoSIM shines while providing capabilities
not available in any available circuit simulator. Some of our goals for VWSIM include:

1. ACCURATE: We wrote VWSIM with clarity and simplicity in mind.

2. RELIABLE: VWSIM is proven to terminate without memory-access errors.

3. FLEXIBLE: VWSIM offers a general-purpose stimulus language.

4. INTEGRAL: VWSIM supports voltage and phase-based simulation.1

5. TIMING: Fixed and variable time-step simulations are available.

6. ACCESSIBLE: All code is freely available; runs on multiple systems.

7. INTEROPERABLE: Use of VWSIM can be scripted with ACL2 or other tools.

8. CAN BE PAUSED: Any simulation may be paused, saved, and later re-started.

9. EXTENSIBLE: VWSIM can be extended with additional components and stimulus.

10. ANNOTATION: VWSIM models can be annotated with physical parameters.

11. PROMPT: VWSIM can be used interactively; signal traces are memory resident.

12. FORMAL: The VWSIM is written in a mathematical modeling language.

13. INTROSPECTIVE: VWSIM source code has been analyzed with the ACL2 system.

14. ANALYSIS: VWSIM code and circuit models can be analyzed symbolically by ACL2.

VWSIM is written in a manner that allows a user to inspect and confirm the veracity of its internals.
When a circuit is analyzed by VWSIM, a set of equations is produced through an analysis of the input
model; these equations are produced using the Modified Nodal Analysis (MNA) method [3]. This ab-
stract model is instantiated and evaluated each simulation cycle so that circuit models are sensitive to
simulation node and branch values, time-varying external stimulus, and even time-varying component
values.

An unusual feature of VWSIM is that its definition has been analyzed by the ACL2 theorem proving
system. During the development of VWSIM, hundreds of guard theorems were proven to assure that
VWSIM operates reliably; our guard specifications and proofs help assure that our data structures remain
well-formed. This ability was an important component of our development process as it allowed us to
confirm properties of functions used in VWSIM operation. In addition, it is even possible to analyze the
behavior of VWSIM with respect to user-supplied model input; we have not explored the capability with
respect to VWSIM models, but we have performed such work [1, 13] on other projects.

Below is a very simple, RC circuit schematic. This circuit is composed of three elements; a voltage
source, a resistor, and a capacitor. Lines (wires) in a schematic are given names, such as vs1, vc1, and
gnd as shown in our upcoming example. But every actual wire in a superconducting (SC) circuit behaves
and stores energy like an inductor. Thus, we have to distinguish equipotential nodes and inductive wires.

1Phase is a concept widely used in superconducting systems; phase is proportional to the time integral of voltage. Phase
is a potential. The current through an inductor is proportional to the phase across the inductor divided by its inductance. The
current through a JJ is proportional to the sine function of the phase across it. Phase is specified in units of radians.
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Figure 1: An RC circuit with a 1-Ohm resistor, R1, and a 1-Farad capacitor, C1.

We represent the schematic diagram above in our native netlist format as shown below. The name
of this netlist is *rc-netlist* and it contains one module, rc-module. This module contains no
external connections, as indicated by the nil in its second line. This module contains three components:
a voltage source, a 1-ohm resistor, and a 1-farad capacitor. The first field in the component statements
are occurrence names; they must be disjoint. The second field specifies the type of components; in this
netlist there is a voltage source (v), a resistor (r), and a capacitor (c). The third field specifies the nodes to
which each component is connected. The fourth field contains names to reference the current that passes
through the individual components. The final (fifth) field specifies the value(s) for each component.

(defconst *rc-netlist*

’((rc-module

nil

; Name type connections branch value

((v1 v (vs1 gnd) (i-v1) ((if ($time$< ’1/5) ’0 ’1)))

(r1 r (vs1 vc1) (i-r1) (’1))

(c1 c (vc1 gnd) (i-c1) (’1))))))

The voltage source, v1, is specified to provide zero volts until the time advances to 1/5 second. The
voltage source v1 has an annotation that describes its specified behavior: while simulation time is less
than one 1/5 second, the voltage it produces is zero; once the time reaches one 1/5 of a second, the
voltage source produces a one-volt output for the rest of the simulation.

As shown below, one may check whether a netlist is well-formed using the NETLIST-SYNTAX-OKP

and NETLIST-ARITY-OKP predicates. The vwsim form specifies a simulation starting at time 0, proceed-
ing with a 1/5-second simulation time step until two seconds of simulation has been completed using a
voltage-style simulation. The results of the RC-circuit simulation are just below. This capacitor-charge
simulation shows voltage vc1 approaching one volt.

(netlist-syntax-okp *rc-netlist*)

(netlist-arity-okp *rc-netlist*)

(vwsim *rc-netlist*

:time-step 1/5

:time-stop 2

:sim-type voltage)
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(($TIME$ 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80)

($HN$ 0.00 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20)

(I-V1 0.00 -0.91 -0.74 -0.61 -0.50 -0.41 -0.33 -0.27 -0.22 -0.18)

(I-C1 0.00 0.91 0.74 0.61 0.50 0.41 0.33 0.27 0.22 0.18)

(GND 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00)

(VS1 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00)

(VC1 0.00 0.09 0.26 0.39 0.50 0.59 0.67 0.73 0.78 0.82))

VWSIM uses floating-point numbers, but ACL2 provides only rational arithmetic natively. We note
that there is an ongoing effort to modify ACL2 so it can use floating-point numbers to approximate
ACL2’s native rational-number arithmetic by appealing to contemporary, (IEEE-compatible [5]) floating-
point implementations; we discuss this more in Section 6.

The rest of this paper provides our usage model and outlines the process of converting a list of
components, along with their interconnections, into a model that we can simulate by repeatedly solving
for x in the matrix equation Ax = b. We describe how we create a symbolic form of the Ax = b equation
that we instantiate repeatedly solving for a new value of x each time step. We describe how the simulation
values are stored so that further processing can be performed after, or even during, simulation. In fact,
analyzing the state of the simulator during its operation allows VWSIM to modify simulation input as
a function of previous simulation states. We conclude with a comparison of VWSIM to JoSIM, which
served as an inspiration of our work.

2 Background

Circuit simulation has a long history. SPICE [16] was defined in the 1970s to provide circuit simulation;
SPICE and is derivatives have been used broadly in circuit simulation for fifty years. Other simulators,
such as WRspice [15] and PSCAN2 [11] are also used for superconducting circuit simulation. Certainly,
there are many other simulators, but we do not survey them here.

We began the development of our simulator for several reasons: to improve our understanding of the
mathematics of JJ-based circuits, our failure to understand what existing simulators were doing, a lack of
a way to program existing simulators to carry out collections of simulations, the lack of a way to alter a
simulation after it is started, the lack of an interactive means to control the simulation process, the lack of
a programmed method for inspecting results, and the lack of a formal semantics for JJ-based circuits. As
we have developed our simulator, we have learned that specifying the interconnections of components
does not provide an adequate model for the behavior of in JJ circuits. For instance, transformers are
modeled by coupling two inductors, and JJs have a non-linear behavior, where tracking the phases, as
well as the voltages and currents, is critical for performing accurate simulations.

The design of our simulator was strongly influenced by JoSIM [6] – a simulator designed for sim-
ulating circuits containing Josephson Junctions.2 Initially, we conducted our study of superconducting
circuits using JoSIM as a simulation engine for circuit model we created using the Electric CAD sys-
tem [12]. The development of our simulator has progressed to the point where we use it in all instances
except when simulating large circuits because JoSIM executes several times faster that VWSIM.

During our use of JoSIM, we encountered several JoSIM simulation results we could not explain nor
understand – and, in most of these instances, we eventually submitted a bug report. In one instance, we
were misled for nearly a month before we were able to distill our confusion down to a model so small

2We had several very helpful communications with Joey Delport, the JoSIM author.
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that we could compare our by-hand simulation with JoSIM results. Eventually, we decided that the best
way we could really understand how an electric circuit simulator for JJs operates was to develop our own
simulator. We did not make this decision lightly. The development of VWSIM has consumed more than
a person-year of effort.

3 How VWSIM Operates

VWSIM accepts a hierarchical circuit description as a list of circuit modules, which it then flattens
into a list of primitive devices with no module (subcircuit) references. The flat netlist is checked for
consistency, making sure that there are no undefined references or unrecognized components. With a
valid, flat netlist, VWSIM attempts to build a matrix equation that represents a symbolic set of relations;
these relations include components (e.g., a specific resistor) and sources (e.g., some time-varying current
source), where their specific values are to be instantiated during simulation. If the resulting matrix, A, is
well-formed (i.e., not singular) and the sources, in b, are suitable, then VWSIM prepares to solve for x in
matrix equation Ax = b by instantiating the symbolic expressions in A and b with the current simulation
values. The solution vector, x, represents the next-time values for the simulation variables for a time-
step value specified by the user – this process is repeated until simulation time is exhausted. VWSIM
records the voltages and/or phases of all wires (nodes) as well as the currents through all components
except resistors and JJs. The currents through resistors and JJs can be calculated after the simulation, if
requested. A VWSIM user can then process the simulation history, either by inspection, by analysis with
an ACL2 program, or by visualizing some projection of the recorded information. Later, we describe
this process in more detail.

Given a textual description of a circuit, VWSIM will process it (see Figure 2):

1. Convert input file, if in SPICE-format, into S-expressions.

2. Transform S-expressions into list of circuit module references and simulation control statements.

3. Convert module references into a hierarchical netlist representation.

4. Flatten and sort hierarchical netlist into a list of primitive device references.

5. Create a symbolic version of the model; i.e., create the symbolic Ax = b matrix using the modified
nodal approach (MNA) [3] procedure.

6. Given a time step size (or using an automatically selected time step size), solve for x in Ax = b.
Use these new x values to extend the simulation, and repeat this process until the end of simulation
time.

7. Finally, process and/or save the time-value results produced by the simulation; for instance, print
results into a file of circuit-node values or check the simulation results for specific relationships.

Our effort involved the initial development of a simple, but slow simulator that we used to make
sure that our approach was sound. We represented arrays as lists of lists. We used rational numbers
for time and simulation state variables. We kept the relations in a symbolic form so we could read
the equations produced by the MNA method. This approach allowed us to understand the operation
of this kind of simulator thoroughly, but the execution performance was abysmal. The MNA method
produces a matrix that is related to the size of the circuit, where two or three equations are needed for
each component; transformers and delay lines require additional equations. Solving for x in Ax = b is
cubic in the dimension of x. After simulating circuits with a few tens of components, we were waiting
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Figure 2: VWSIM flowchart

for results that never appeared. This is not surprising considering we were using linear lists to represent
our arrays; we started this way because it was simple.

We then began an incremental replacement of our list-based data structures for A with a sparse matrix.
This change also caused a complete update of our solving code so it could operate correctly on data
represented in a sparse matrix. In turn, each of these changes required increasingly difficult guard proofs.
In fact, these guard proofs continue as we attempt to prove the guards of a sparse matrix solving code
that is coded with ACL2’s second-order LOOP$ FOR iteration constructs. We further discuss our sparse-
matrix solver later in our paper.

4 Using the VWSIM Simulator

This section explains how to run the simulator, presents the data structures used to compute and store the
simulation state, and demonstrates the programmatic capability of VWSIM.

4.1 Running the simulator

The simulator is invoked by running the vwsim function. VWSIM requires the user to provide a SPICE
(.cir) circuit description file, VWSIM-style circuit netlist or a LISP file with a previous VWSIM simula-
tion state. The rest of the arguments are optional with default values. The optional arguments enable the
user to perform a voltage- or phase-mode simulation, produce symbolic equations (Ax = b) that can be
inspected, save or resume a simulation, and filter and present simulation output. The function signature
and formal parameters are detailed below.

(vwsim <input>

:sim-type <sim-type>

:equations <equations>

:spice-print <spice-print>

:global-nodes <global-nodes>

:time-step <time-step>
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:time-stop <time-stop>

:time-start <time-start>

:output-file <output-file>

:concat-char <concat-char>

:save-sim <save-sim>

:save-sim-shortp <save-sim-shortp>

:load-sim <load-sim>

:save-var <save-var>

:return-records <return-records>

)

where

• input: a Lisp-style VWSIM netlist or string with a filename.

• sim-type: simulation mode; select voltage or phase.

• equations: if non-NIL, return symbolic simulation equations instead of a numerical simulation.

• spice-print: whether the output file should contain only the values requested in the SPICE file.

• global-nodes: list of globally-defined nodes (wires) in the circuit.

• time-step: simulation time step in seconds as a rational number.

• time-stop: simulation stop time in seconds as a rational number.

• time-start: simulation start time in seconds as a rational number.

• output-file: if provided, the filename to write the requested SPICE simulation values.

• concat-char: SPICE hierarchical circuit concatenation character for PRINT statements.

• save-sim: if provided, the filename to save the simulation state for resuming later.

• save-sim-shortp: if provided, save/write single-precision simulation values.

• load-sim: if non-NIL, input is a “.lisp” file providing a previous state and simulation is resumed.

• save-var: ASSIGN variable name to save simulation results.

• return-records: return specific (voltage, current, phase) simulation records.

4.2 VWSIM simulation state

VWSIM calculates, manipulates, and stores the simulation state using five STOBJs (single-threaded
objects): ABR, ST-VALS, DZ, RTIME, and REC.

• The ABR STOBJ contains 31 fields, which store most of the simulation state. The first few fields
are the symbolic A and b matrices that are evaluated and used to solve for the unknown volt-
ages, currents, and/or phases of the circuit. The rest of the fields contain simulator configuration
information.

• The ST-VALS STOBJ contains a single array that stores the results of evaluating every symbolic
expression in the sparse A matrix and in the b vector stored in the ABR STOBJ.
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• The DZ STOBJ is used by the linear system solver, which stores a sparse representation of the
numerical A matrix and the b vector.

• The RTIME STOBJ contains two lists: the exact (rational) simulation times and the (rational) sim-
ulation time steps.

• The REC STOBJ contains a single array where all simulation variables and their values are stored
for each time step.

When the first four steps of the process (section 3) are completed, the function simulate completes
the initialization of the fields in ABR, ST-VALS, DZ, and REC fields and then begins the transient analysis
of the circuit provided.

(simulate Abr st-vals dz rtime rec)

The simulate function proceeds by first instantiating the symbolic equation representing the circuit
model; this is discussed in the next subsection. After the Ax = b equation has been instantiated, VWSIM
then attempts to solve this equation numerically, see subsection 4.4.

4.3 Symbolic Terms and Their Evaluation

As discussed earlier, VWSIM maintains a symbolic version of the equations of each simulation it is
asked to process. On each simulation step, VWSIM instantiates each variable with present simulation
values so as to calculate the next simulation state. Each symbolic expression is evaluated given bindings
for the equation variables.

The vw-eval function is an evaluator for the symbolic expressions that are created when the input
model is analyzed. vw-eval provides semantics for a number of real-valued functions, such as addition
(f+), sine (f-sin), and exponentiation (f-exp). ACL2 avoids offering definitions for sin(x) where x
is a real valued number. Our primitive definitions of real-valued functions appeal to Common Lisp’s
implementations for these functions.

4.4 The Ax = b Solver

We wrote a series of linear equation solvers to solve Ax = b. The reason we wrote a series of them was
to get a solver that was fast enough for sparse matrices that are, say, 2000 x 2000. We are, of course,
aware that there are many extraordinarily fast linear equation solvers. We wrote one in ACL2 because
ultimately we wish to prove it correct. We also experimented with several ACL2(p) implementations to
take advantage of parallelism but have so far had more success with sequential implementations.

Our current solver is a Gaussian elimination solver. There are many variations on the basic Gaussian
elimination method, but we started with a particularly simple one as follows. First, augment each row of
A with the corresponding entry from b to represent an entire equation. Second, use the first row to cancel
out the leading coefficient of each subsequent row by scalar multiplication and addition. Then recur on
the remaining rows, all of which have a leading zero. Provided a solution exists, this reduces the set of
equations to triangular form without changing the solution. Then use back substitution to compute the
solution, starting at the bottom-most row and working up.

Our current solver is just an optimization of this basic method. It uses a STOBJ to store A, x, and b
as arrays. An important optimization when dealing with floating-point data is to permute the rows so as
to select as the “pivot” row one whose leading non-zero coefficient has the largest absolute value.

We do not augment A with b but instead put A into triangular form and then compute from it a
program that says how to solve for x given any b. The program, stored as an ACL2 list in the STOBJ,



Hunt, Ramanathan, and Moore 69

is just a list of instructions recording the row indices and coefficients used in the operations of the back
substitution. This allows us to do most of the work just once and then use the triangular form repeatedly
for the different b’s generated by the simulator.

Since our matrices are sparse, we mirror A with a matrix, Z, that records how many zeros are between
the current non-zero value of A and the next non-zero value in the current row. This allows us to skip
over typically long gaps when canceling.

We are currently verifying the guards of this ACL2 solver. The most difficult part has been proving
that the graph encoded in evolving A matrix remains acyclic as we permute its rows. Knowing that A is
cycle free is necessary to prove the termination of most array update functions.

4.5 Optimizing the simulator

The first version of VWSIM was very slow. In fact, it was barely able to manage small circuit descrip-
tions. In order to handle increasingly larger circuit descriptions, several optimizations were implemented
to reduce the time and memory consumption of a simulation.

Sparse Matrix Representation of Symbolic Equations: when circuit descriptions are converted to
the equation Ax = b, the A matrix is usually very sparse. In order to leverage this property, the simulator
only stores the non-zero entries in each row of the A matrix. The A matrix is an array, where each entry
(row) is an association list of pairs with a column index and a value. For example, ’((0 . 1) (5 .

2)) is row with a value of 1 in column 0, 2 in column 5, and 0 in all other columns. This matrix storage
format reduces the amount of memory required drastically, while also decreasing the access and update
times for each entry in the A matrix.

Using STOBJs to store the simulation state: Single-threaded objects, STOBJs, enable VWSIM to
persistently store the simulation state, which allows for saving and resuming simulations, filtering and
analyzing results, and more. Additionally, STOBJs provide support for arrays in ACL2. VWSIM makes
extensive use of arrays to enjoy constant-time access and storage. The A matrix, b vector, the simulation
output, and symbolic term evaluation results are all stored in arrays. This makes accessing and updating
the simulation state faster than linked-list-style structures.

Symbolic subterm evaluation: to perform a simulation, all unique symbolic entries (terms) in the
A and b matrices are gathered. From these symbolic terms, a list of all of their unique subterms is gen-
erated. For example, the unique subterms of the term ’(f* (f- ’4 y) (f- ’4 y)) are Y, ’4, (F-

’4 Y), and (F* (F- ’4 Y) (F- ’4 Y)). The list of all subterms are ordered so that each term’s
subterms are before it. This enables efficient evaluation of all unique terms in one sweep, and no term is
evaluated more than once. The results are stored in the array field of the ST-VALS STOBJ. Hence, when
the symbolic A and b matrices are being evaluated, each entry’s evaluated value is quickly accessed from
the array.

Fast, sparse-matrix solver: The first version of VWSIM used a rational-arithmetic-based solver
that did not leverage the sparsity of circuit simulation matrices. This led to our effort to develop a faster
solver that would be capable of handling larger A matrix sizes. This work has already been mentioned
previously in Section 4.4.

Floating-point approximation: The native ACL2 rational arithmetic provides arbitrary precision at
the cost of performance. As the lengths of simulations increase, the number of operations performed
on the rational values increases. Since the precision of rational numbers is unbounded, the numera-
tors and denominators continue growing, which increases memory usage and decreases performance.
Additionally, VWSIM makes use of several approximation techniques (trapezoidal integration method),
irrational numbers (π , e), and transcendental functions (sin(x), ex), for which the use of arbitrary preci-



70 VWSIM: A Circuit Simulator

sion is superfluous. Thus, VWSIM makes use of double-precision, floating-point arithmetic to exploit
hardware-support for fast floating-point operations.

4.6 Floating-point Simulations

A VWSIM simulation uses and produces floating-point numbers. Due to the lack of support for floating-
point arithmetic in ACL2, we employ a trick to ensure that the simulator can still be defined in ACL2.
We define a recognizer, nump. In the ACL2 logic, nump is equivalent to rationalp; however, in raw
lisp, a double-precision floating-point number is recognized as a valid nump.

(defun nump (x)

(declare (xargs :guard t))

(and (acl2-numberp x)

(zerop (imagpart x))))

(defthm nump-is-rationalp

(equal (nump x) (rationalp x)))

VWSIM uses exact, rational numbers for the time and the time-step values. We note that these time
values are artifacts of our simulator; real circuits do not have time values and VWSIM does not permit
irrational time values. VWSIM takes special care to use and store the simulation time and time-step
values precisely as rational numbers. This ensures that any time-sensitive events, such as input sources
that provide stimulus at specific times, occur exactly when intended.

5 An Example Circuit Simulation and Analysis

For RSFQ circuits, the active element is the Josephson Junction (JJ). Energy for JJ operation is provided
by a bias current; typically, JJs are biased to about 70% of the current required to cause their unique,
non-linear firing operation. We present a basic Josephson-style D-latch, discuss its operation, and show
how we represent and simulate this circuit when using VWSIM.

A basic RSFQ circuit element is the D-latch, which is the state-holding device[8] shown in Fig. 3.
Our example is a two-junction interferometer with two stable states: one with little-to-no current circu-
lating and one with current circulating in the J1 – L – J2 loop. Because of the superconducting nature of
these circuits, such a current will circulate indefinitely. The circulating current is caused by the insertion
of a certain amount of flux into the loop [9]. The magnitude of the fluxon is quantized, and this physical
quantity is known to 15 significant decimal digits!

The states are switched by SFQ volt-time V(t) pulses (or equivalently, current-inductance I(t) pulses).
Information is transferred with picosecond pulses generated by the firing of Josephson Junctions, which,
when provided with sufficient bias current, create fluxons (the quanta of magnetic flux similar to photons
for light). Fluxons are created by JJs becoming resistive for time sufficient to circumscribe the flux
quantum, and they distribute themselves through super-conducting circuits obeying the laws of physics.

RSFQ primitive circuit elements must be ready to receive input at any time. Our example latch circuit
includes JJ J3 which discards pulses if our latch already contains a fluxon whose current is circulating
through its J1–L–J2 loop. A pulse on input C will cause J3 to fire and subsequently causes J2 to fire,
which results in the circulating current to escape through the OUT terminal (assuming that a suitable
load is connected to its output). If a pulse presents itself to input C when the J1–L–J2 loop is empty, then
it will be discarded and no output pulse will appear.
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Figure 3: The D flip-flop is a simple RSFQ “logic” element. The input JJ, J3, rejects input pulses when
data (current) is circulating in the J1 –L– J2 loop; otherwise, such an input causes J1 to fire, which then
causes some current to be captured. When a current is circulating, a pulse on input C will cause J2 to
fire, creating a current on terminal OUT .

The current through the quantizing inductor, L, provides the clearest indication that the latch has
captured a fluxon. Such a current will continue to circulate in the J1–L–J2 loop until it is encouraged to
escape by input C by causing J2 to fire, which stops the current passing through J2 to stop and for the
circulating circuit to be diverted toward the output.

The VWSIM simulator accepts a textual form of circuits like the one shown in Figure 3. When given
a valid textual description, VWSIM processes it into a model that can be simulated, and then records
node voltages or phases and component currents for later processing or display. VWSIM provides the
capability to write the user-requested voltage, current, or phase outputs to a file. Figure 4 provides the
plot of a VWSIM simulation of the D latch.

Once the simulation is completed, the VWSIM simulation state and output are stored persistently in
STOBJs available to the interactive ACL2 loop. Since the simulation output is stored, users can perform
a wide range of analyses on the simulated circuit. Consider the waveforms shown in the first plot of
Figure 4. These voltage waveforms demonstrate what we expect as the input and output of the circuit,
but they conceal whether the devices inside the D latch are working as intended. As mentioned earlier, if
a D latch is functioning properly it is expected to have the following properties:

• J1 fires when the latch is empty and a D signal is provided, which causes a circulating current in
the J1–L–J2 loop;

• J2 fires when the latch is full and a clock signal is provided, which drains the circulating current;

• J3 fires to reject extra pulses when the latch is full; and

• J4 fires to reject a C request when the latch is empty.

Each of these properties can be confirmed with the help of a timing diagram. The second plot in Figure 4
shows a timing diagram that was produced using VWSIM output. This timing diagram indicates that
each JJ in the D latch fires correctly to either empty or fill the latch.

During the development of VWSIM, we have used the simulator to perform many of these types of
analyses. The results are informing the decisions we make to define primitives and abstractions that will
be used for the verification of RSFQ circuit models.
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Figure 4: The first plot is a transient analysis for our simple D latch; it begins with a simulation artifact.
The calculation of signal derivatives during the first few simulation steps is not defined mathematically,
and thus the apparent initial pulses are simulation noise. Note the colors: yellow is the output signal,
latch input data (D) is blue, and the read-and-output clock signal (C) is red. The diagram begins with a
clock, and no yellow output (Out) signal pulse is produced. The first blue input (D) fills the storage loop;
this is followed by a red pulse which causes the latch to emit a yellow pulse that also empties the latch.
Reading our latch is destructive, removing any saved state if present. Later we see two blue pulses (with
the first one appearing at about 55 pico seconds); even though there are two consecutive blue (D) input
pulses, when a read (C) signal is provided, only one output pulse is produced. The second plot is a timing
diagram of the same simulation produced from the VWSIM output. The blue line depicts when the latch
is empty or full. The “X” markers indicate when each of the JJs fired. The diagram shows that J1’s blue
firing fills the latch when empty, J2’s red firing drains the latch when full, J3’s green firing rejects extra
(D) fill requests, and J4’s gray firing rejects extra (C) read requests.
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6 Future Work

The development of VWSIM may have spawned more ACL2 development work than the core effort
itself. To achieve useful simulation performance, we permitted the storage and use of floating-point
numbers. In addition, our matrix-solve code is based on the ACL2 LOOP$ construct for which we have
little experience; guard proofs for the loop-with-loop, matrix manipulation code is complex and there
isn’t any available library support.

With respect to performance, VWSIM is much slower than JoSIM. We have attempted to address
this, but some issues are deeper than even the definition of the ACL2 system – they have to do with
Lisp systems on which ACL2 is implemented. It is difficult to arrange for double-precision (64-bit),
floating-point numbers to be used without them being boxed by the underlying Lisp systems on which
ACL2 operates. The primary Lisp systems we use are Clozure Common Lisp (originally named Coral
Common Lisp) (CCL [2]) and Steel Bank Common Lisp (SBCL [10]). On 64-bit systems, these two
Lisp systems use part of 64-bit words (4 bits on CCL and 1 bit on SBCL) to indicate a (partial) data
type. Because double-precision, floating-point numbers are defined to use 64 bits, additional storage
must be allocated to indicate that a floating-point number is being referenced. Providing thorough type
declarations helps, but much of this boxing activity occurs deep within host Lisp systems and beyond an
ACL2 user’s ability to control.

The ACL2 system authors (Kaufmann and Moore) are investigating the addition of double-precision,
floating-point numbers as first-class ACL2 data objects. Such floating-point numbers will be forbidden to
appear in a list, but they will be allowed to be stored/retrieved from STOBJs where such objects have been
declared to be floating-point numbers. Further declarations will likely be needed when passing/returning
floating-point numbers as arguments/return-values to/from ACL2 functions. When using floating-point
numbers in LET and LET* expressions, additional declarations will be required. Any initial inclusion of
floating-point numbers into ACL2 will require careful declaration and will not, initially, include much,
if anything, in the way of semantics. For instance, negating the value of a floating-point number may be
known to produce the negative of the original value, but the associativity of addition for three floating-
point values will not be a theorem because there are many examples where it is not valid.

With respect to performance-oriented operations we can control, we can improve the performance
of symbolic expression evaluator: currently we have eliminated duplicated evaluation, but we do not
perform lazy evaluation of “if” expressions. We can improve the access speed of the simulation values
we store and retrieve.

We want to develop a means to specify and perform symbolic verification of RSFQ-based circuits.
We have experience in developing a hardware-description language that has been used to validate the
FM9001 microprocessor [1] and has also been used commercially [14]. The cost of simulation in the
number of circuit elements grows with the cube of the model size. Any such specification and verification
system for RSFQ logic will need some kind of abstract way to specify RSFQ circuit behaviors. Presently,
the VWSIM simulation operates at the level of circuit components (e.g., inductors, JJs), and the level of
detail is too great to allow simulation of even medium-sized systems. We have been thinking about
abstractions for RSFQ circuit models like timing diagrams in Figure 4.

7 Conclusion

We have defined the VWSIM, circuit simulator. Our approach involves solving repeatedly for x in matrix
equation Ax = b. When the A matrix does not change, we do not need to re-factor A, but we can use
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the triangularization of A from an earlier time step. To provide support for transcendental functions, we
have used an ACL2 trick to appeal to floating-point functions such as sine and exponentiation; special
provisions have been made so we may use floating-point numbers in ACL2. VWSIM stops when the
simulated time reaches it end time. Results are stored for each time step; VWSIM users are free to
further process the results.

We continue to work with the authors of ACL2 to encourage them to include floating-point numbers
as a native ACL2 data type. This work is ongoing, and coding the matrix-solve algorithm with the
ACL2 LOOP$ macro as opposed to recursive functions appears to provide better performance. We note,
however, that the guard conditions for nested LOOP$ statements can be quite complex and libraries to aid
with the definition of functions including LOOP$ references are still under development.

Being able to use ACL2 to script the use of the VWSIM simulator is a great asset. For now, we have
been using the same stimulus functions provided by JoSIM, but we are exploring the generation of sim-
ulation stimulus from higher-level specification. And, instead of graphing the output of our simulations,
we are exploring the use of functions that recognize valid outputs. Thus, we are trying to automate the
generation of stimulus and the recognition of valid output.

The development of VWSIM was very helpful in clarifying our understanding of the modeling and
simulation of Josephson Junction electrical-circuit models. This understanding led us to find several
bugs in the JoSIM simulation system; having an executable (JoSIM) specification was a great aid. Had
we developed VWSIM in C, we’re confident that we would still be debugging its operation. During
the development of VWSIM, we often compared VWSIM results to those produced by JoSIM. As we
discovered discrepancies, we studied harder so we could identify what code needed updating; this study
improved our understanding of JJ-based circuits, which will be instrumental in our work to verify RSFQ
circuits models.
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