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We describe an ACL2 program that implements the Hebrew calendar and the formal verification of

several of its properties, including the critical result that the algorithm that determines the placement

of the new year ensures that the length of every year belongs to a small set of admissible values.

These properties have been accepted for many centuries without the benefit of explicit proof, in spite

of subtleties in the underlying arguments. For the sake of accessibility to a broad audience, the

program is coded in Restricted Algorithmic C (RAC), a simple language consisting of the most basic

constructs of C, for which an automatic translator to the ACL2 logic has been implemented. While

RAC is primarily intended for modeling arithmetic hardware designs, this novel application provides

a relatively simple illustration of the language and the translator.

1 Introduction

Lunisolar calendars are complicated by the definitional requirements of tracking both the moon’s orbit

about the earth and that of the earth about the sun. The first of these objectives is achieved by the same

scheme that underlies a pure lunar calendar: the year is partitioned into months that are designed to

coincide as closely as possible with the cycle of phases of the moon, which is delimited by successive

lunar conjunctions. A conjunction occurs when the moon lies on the plane perpendicular to that of the

earth’s orbit that passes through the earth and the sun, and therefore, the earth lies on the dark side of

the moon. The duration of this cycle is subject to significant variation (owing mainly to variation in the

earth’s angular velocity with respect to the sun), but its mean value, known as the synodic month, has

been estimated to be 29.53059 days. Since the mean period of revolution of the earth, known as the

tropical year, is 365.2422 days, the second objective requires that the average number of months in a

year be close to the ratio 365.2422/29.53059 ≈ 12.36827. This is effected by interleaving 13-month

leap years with 12-month common years at an appropriate frequency.

The lunisolar nature of the Hebrew calendar is dictated by (a) the Biblical ritual of sanctifying the new

moon at the beginning of each month and (b) traditional agriculture components of various Jewish holi-

days, which require alignment with the seasons. In ancient times, both requirements were implemented

dynamically through empirical observation: the beginning of a month was declared upon sighting of the

new moon, and an extra month was inserted into the year as required to ensure that Passover, the “Festi-

val of spring”, would occur during the barley season. Such information was traditionally spread through

the diaspora by messenger. This process ultimately proved impractical in the face of Roman persecution

and was replaced by a fixed calendar based on astronomical calculations.

The fixed Hebrew calendar was instituted in 359 C.E. (Hebrew year 4119) and continued to evolve

through the 9th century. It remains in widespread use today by the world’s Jewish population, mainly

for the purpose of tracking holidays and yahrzeits (death anniversaries). The calendar’s design, which

remains poorly understood even by those who regularly rely on it, is the subject of this note. A separate

exposition, focusing on the history of the calendar and some of the underlying astronomy, is available

at www.russinoff.com/calendar/calendar.pdf. Here we shall describe an ACL2 program that

defines the calendar and enables the formal verification of several of its critical properties, including the
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critical result that the algorithm that determines the placement of the new year ensures that the length of

every year belongs to a small set of admissible values. These properties have been accepted for many

centuries without the benefit of explicit proof, in spite of subtleties in the underlying arguments.

The program is hand-coded in Restricted Algorithmic C (RAC)[6, 7], a simple language intended

primarily for the modeling and formal verification of arithmetic hardware designs. RAC consists of

the most basic constructs of C augmented by the C++ register class templates of Algorithmic C[2],

which provide the bit manipulation primitives of a hardware description language. Various restrictions

on the language are designed to promote a functional programming paradigm, thereby facilitating its

automatic translation to the logic of ACL2. While this calendar program does not utilize the special-

ized features of RAC, our objective is an executable model that is easily understood and accessible

to a broad audience beyond the ACL2 community. This novel application also provides a relatively

simple illustration of the language and the translator. The proof script resides in the ACL2 directory

books/workshops/2022/russinoff-calendar/. The RAC program and its ACL2 translation reside

in the files calendar.cpp and calendar.lisp; the proof script is in proof.lisp.

2 Approximating Lunar Conjunctions

For the purpose of calendrical calculations, a Hebrew day begins at 6 PM in Jerusalem and the time

of day is measured in hours and parts, where an hour comprises 1080 parts. For example, 4 hours, 0

parts, which we denote as 4:0, is 10 PM and 18:270 is 15 minutes after noon. The days of the week

are numbered, beginning at 6 PM on Saturday. We shall adhere to the usual abuse of notation in using

English names to refer to Hebrew days, e.g., “Monday” is understood to refer to the second day of the

week, which is actually the 24-hour period that begins at 6 PM on Sunday.
The modern Hebrew calendar inherits a number of elements from those of the Babylonians and

Greeks. One is a remarkably accurate estimate of the synodic month as 29 days, 12 hours, and 793 parts,
approximately 29.53059 days, which we shall denote as L . Another is the Metonic cycle, which is based
on the observation that the ratio of the tropical year to the synodic month is closely approximated by the

ratio 235
19
≈ 12.36842. This gives rise to a 19-year cycle consisting of 12 common years and 7 leap years,

with a total of 12 ·12+7 ·13 = 235 months and an average of 235/19 months/year. Thus, by convention,
a Hebrew year y is a leap year if y mod 19 ∈ {0,3,6,8,11,14,17}. These definitions are formalized by
the RAC predicates

bool leap(uint year) {

uint m = year % 19;

return m == 0 || m == 3 || m == 6 || m == 8 ||

m == 11 || m == 14 || m == 17;

}

and

bool common(uint year) {return !leap(year);}

and the function

uint monthsInYear(uint year) {return leap(year) ? 13 : 12;}

each of which takes a positive integer argument.

The 12 months of a common year are Tishri, Cheshvan, Kislev, Tevat, Shevat, Adar, Nisan, Iyar,

Sivan, Tammuz, Av, and Elul. In view of the length of the synodic month, the calendar months are

tentatively set to alternate between 30 and 29 days, beginning with the 30-day month of Tishri. Since

the resulting average length is a slight underestimate, the extra month of a leap year is assigned 30 days.
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This is designated as an additional month of Adar, named Adar I and inserted before the 29-day Adar,

which becomes Adar II. This scheme (which will be refined in Section 3), would result in common and

leap years of lengths 6×29+6×30 = 354 and and 354+30 = 384, respectively.

The next step in the design of the calendar is an estimate of the time of the lunar conjunction that

marks the beginning of each month. This estimate is called a molad (from the root of the Hebrew word

for “birth”), with plural moladot. The molad of a year will be understood to be the molad of Tishri of

that year. For this purpose, the molad of the year 2 is taken to be precisely 14 hours (8 AM) on a Friday.

According to tradition, this occurred on the sixth day of creation, which is assumed to have taken place

during the final week of the year 1. As the story goes, apparently based on the long-held erroneous belief

that the crescent moon becomes visible 6 hours after the conjunction, the new-born Adam witnessed the

first new moon at 2 PM on that day. The actual origin of Molad Adam is unknown, having been obscured

by the mythology, but evidence suggests [8] that it was computed by rounding a value derived from tables

recorded by Ptolemy in the 2nd century C.E.
As a convenient point of reference, the (imaginary) molad of the year 1 is computed by subtracting

12 ·L from Molad Adam, resulting in 5:204 on the second day of the week. This is known as Molad
Beharad, a transliteration of the Hebrew ,בהרד! which is derived from the conventional assignment of
numerical values to letters ב!) = 2, ה! = 5, ר! = 200, ד! = 4). We find that our analysis is facilitated by
introducing an absolute calendar, which may be considered as having a single year with a single month
of infinite length. Since Beharad falls on the second day of the week, it is natural to set the first day of
this calendar to the preceding day, so that the day of the week of an absolute date is computed by

uint dayOfWeek(uint day) {return day % 7;}

The program defines the type

struct Moment {uint day; uint hour; uint part;};

to encode a duration of d days, h hours, and p parts. Following C syntax, we shall represent such a
duration as {d,h, p}, e.g., L = {29,12,793}.1 This is encoded as

const Moment Lunation = {29, 12, 793};

The same struct type and informal notation may represent a moment in time, using the absolute date
for d. Thus, Molad Beharad is B = {2,5,204}, or

const Moment Beharad = {2, 5, 204};

The RAC translator converts these structures to alists and makes use of the access and setting functions
AG and AS, e.g.,

(DEFUND LUNATION NIL (AS ’PART 793 (AS ’HOUR 12 (AS ’DAY 29 NIL))))

the value of which is ((DAY . 29) (HOUR . 12) (PART . 793)).

The addition of these objects and multiplication by a positive integer are defined in the natural way.

Thus, Molad Adam is

B+12 ·L = {356,14,0}.

These computations are formalized by the RAC functions

Moment addTime(Moment x, Moment y) {

Moment sum;

uint sumParts = x.part + y.part;

sum.part = sumParts % 1080;

uint sumHours = x.hour + y.hour + sumParts/1080;

sum.hour = sumHours % 24;

sum.day = x.day + y.day + sumHours/24;

return sum;

}

1This convention relies on context to distinguish such an object from a set of three elements.
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and

Moment mulTime(uint m, Moment x) {

Moment prod;

uint prodParts = m * x.part;

prod.part = prodParts % 1080;

uint prodHours = m * x.hour + prodParts/1080;

prod.hour = prodHours % 24;

prod.day = m * x.day + prodHours/24;

return prod;

}

Thus,

Moment molad(uint year) {

// Compute the total number of months in all preceding years,

// multiply by the lunation period, and add the product to Beharad:

uint priorMonths = 0;

for (uint y=1; y<year; y++) {

priorMonths += monthsInYear(y);

}

return addTime(Beharad, mulTime(priorMonths, Lunation));

}

For example, the molad of the year of the 17th ACL2 Workshop is computed as

molad(5782) = addTime(Beharad,mulTime(71489,Lunation))

= {2111469,5,497}.

Note that a RAC for loop generates an auxiliary recursive ACL2 function, which in the case of the
function molad computes the total number of months that occur between two given years:

(DEFUND MOLAD-LOOP-0 (Y YEAR PRIORMONTHS)

(DECLARE (XARGS :MEASURE (NFIX (- YEAR Y))))

(IF (AND (INTEGERP Y)

(INTEGERP YEAR)

(< Y YEAR))

(LET ((PRIORMONTHS (+ PRIORMONTHS (MONTHSINYEAR Y))))

(MOLAD-LOOP-0 (+ Y 1) YEAR PRIORMONTHS))

PRIORMONTHS))

(DEFUND MOLAD (YEAR)

(LET* ((PRIORMONTHS 0)

(PRIORMONTHS (MOLAD-LOOP-0 1 YEAR PRIORMONTHS)))

(ADDTIME (BEHARAD)

(MULTIME PRIORMONTHS (LUNATION)))))

Establishing the properties of such functions naturally involves induction. In this case, the following
decomposition theorem is derived directly from the definition, with no hints:

(defthmd molad-loop-decomp

(implies (and (natp prior) (posp y) (posp k) (posp year) (<= y k) (<= k year))

(equal (molad-loop-0 y year prior)

(molad-loop-0 k year (molad-loop-0 y k prior)))))

Instantiation of the above result with y← 1, year← y+ 1, k← y, and prior← 0 yields the following
recurrence formula:
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(defthmd molad-next

(implies (posp year)

(equal (molad (1+ year))

(addtime (molad year)

(multime (monthsinyear year) (lunation))))))

This formula significantly improves efficiency in computing a long sequence of moladot, as discussed in

Section 5.

3 Determining the New Year

Rosh Hashanah, the Jewish new year, is traditionally celebrated during the first two days of Tishri, but we

shall use the term to refer to Tishri 1. A naive objective is to arrange for the molad of each year to occur

on Rosh Hashanah. This is not generally possible, however, with month and year lengths as tentatively

specified in Section 2. For example, the molad of a common year is separated from that of the following

year by an interval of 12 ·L = {354,8,817}. Consequently, depending on the time of day of the first of

these moladot, the absolute dates on which they occur may differ by either 354 or 355. Similarly, since

13 ·L = {383,21,589}, the absolute dates of the moladot that begin and end a leap year may differ by

either 383 or 384. All four of these year lengths may be accommodated by allowing the lengths of two

specific months, Cheshvan and Kislev, to vary between 29 and 30, as displayed in Figure 1. Thus, if the

length of a common year is computed (from the absolute dates of the bounding moladot) to be 355, then

the lengths of Cheshvan and Kislev are both set to 30. Similarly, if the length of a leap year is found

to be 383, then both months are assigned 29 days. The first case is called a complete common year, the

second is a defective leap year, and a year of length 354 or 384 is said to be regular.
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Figure 1: Months of the year
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However, as the calendar evolved between the 4th and 9th centuries, a variety of constraints were

imposed, resulting in the possible delay of Rosh Hashanah by up to two days beyond the date of the

molad. This led to additional variation in the length of a year. We shall demonstrate, however, that these

postponements, or dechiyot, effectively ensure that the resulting length of a common year is always 353,

354, or 355, and that of a leap year is always 383, 384, or 385. Consequently, the month lengths listed

in Figure 1 remain in force, but now with the understanding that either a common year or a leap year

may be defective (353 or 383), regular (354 or 384), or complete (355 or 385). The four dechiyot are

traditionally listed in the following order:

First Dechiyah: If the molad of Tishri occurs at or after noon, then Rosh Hashanah is postponed to the

next day.

The rationale for this postponement is far from clear. A common explanation is that the rule is

intended to ensure that the new moon is visible in the sky at the beginning of Rosh Hashanah. This is

consistent with the belief mentioned earlier in connection with Molad Adam, but is unrealistic since the

moon rarely appears within 24 hours on either side of the molad. An alternative reason is suggested by

Landau [4]: this delay guarantees that the molad of every month always occurs before the end of the first

day of the month. (Demonstration of this property requires some computation; see Section 5.)
Whatever the motivation for this dechiyah, its simplest implementation is to replace the molad with

the moment that occurs 6 hours later, which we shall call the delayed molad, represented by the RAC
function

Moment dmolad(uint year) {

Moment sixHours = {0, 6, 0};

return addTime(molad(year), sixHours);

}

This modification effectively bypasses the 1st dechiyah. That is, we begin with the assumption that

Tishri 1 is tentatively scheduled for the day of the delayed molad and replace the usual statements of the

remaining dechiyot with reformulations expressed in terms of the delayed molad.2

Second Dechiyah: If the delayed molad occurs on a Wednesday, Friday, or Sunday, then Rosh Hashanah

is postponed to the next day.

The reasons most commonly cited for the prohibition of these three days involve other holidays later

in the month of Tishri. If Rosh Hashanah were to fall on a Wednesday or Friday, then Yom Kippur, Tishri

10, would occur on a Friday or Sunday, and hence would be adjacent to Shabbat (Saturday), with the

untenable result of successive days of restricted activities. If Rosh Hashanah were to fall on a Sunday,

then Hoshanah Rabbah, the 21st day of Tishri, would occur on Shabbat. This must be avoided because the

ritual observance of this holiday (including the beating of willow branches against the floor, symbolizing

the elimination of sin) constitutes work of the sort that is prohibited on Shabbat.

If the 2nd dechiyah were applied in isolation, then some years would have inadmissible lengths. The

remaining two dechiyot are designed to circumvent this result. The 3rd addresses the case of a common

year and the 4th the case of a leap year. (The proof of correctness is deferred to Section 5.)

Third Dechihah: If the delayed molad of a common year occurs on a Tuesday at or later than 15:204,

then Rosh Hashanah is delayed to the following Thursday.

Fourth Dechihah: If the delayed molad following a leap year occurs on a Monday at or later than

21:589, then Rosh Hashanah is delayed to the next day.

2The decision to follow this path, which I considered when I first encountered the list of dechiyot, became easier when I

learned from Bromberg[1] that the same revision was proposed three centuries ago by K. F. Gauss.
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A trivial consequence of this procedure is that Rosh Hashanah cannot occur on a Wednesday, Friday,

or Sunday. Note also that at most one of the 2nd, 3rd, and 4th dechiyot can apply to any delayed molad.

The 3rd advances Rosh Hashanah by two days, and each of the others by one. Furthermore, if the date

of the molad is different from that of the delayed molad, then the latter must occur before midnight and

neither the 3rd nor the 4th applies. Thus, Rosh Hashanah is delayed at most two days from the day of the

true molad.

These computations are formalized as follows:

uint roshHashanah(uint year) {

Moment dm = dmolad(year);

uint day = dm.day;

uint dw = dayOfWeek(day);

if (dw == 1 || dw == 4 || dw == 6) {

// 2nd dechiyah

day++;

}

else if (dw == 3 && !earlier(dm, 15, 204) && !leap(year)) {

// 3rd dechiyah

day = day + 2;

}

else if (dw == 2 && !earlier(dm, 21, 589) && leap(year-1)) {

// 4th dechiyah

day++;

}

return day;

}

uint yearLength(uint year) {

return roshHashanah(year+1) - roshHashanah(year);

}

4 Conversion Between Calendars

In order to establish confidence in the program, we define procedures that convert between Hebrew and

Gregorian dates, which may be checked against established sources. A date of either sort is represented

as an object of type

struct Date {uint day; uint month; int year;};

Here the months of a Gregorian year or a common Hebrew year are encoded in order as the integers
1, . . . ,12, and the extra month of a Hebrew leap year, Adar I, is encoded as 13, although it occurs between
months 5 (Shevat) and 6 (Adar II). Under this encoding, the molad of any month is readily derived from
the molad of the year:

Moment monthlyMolad(uint month, uint year) {

uint priorMonths;

if (leap(year) && month >= 6) {

priorMonths = month == 13 ? 5 : month;

}

else {

priorMonths = month - 1;

}

return addTime(molad(year), mulTime(priorMonths, Lunation));

}
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The length of a given month is determined by the length of the year in which it occurs:

uint monthLength(uint month, uint yearLen) {

uint monLen;

switch(month) {

case 2: monLen = yearLen == 355 || yearLen == 385 ? 30 : 29; break;

case 3: monLen = yearLen == 353 || yearLen == 383 ? 29 : 30; break;

default: monLen = month % 2 == 0 ? 29 : 30;

}

return monLen;

}

The absolute date corresponding to a given Hebrew date is computed by the function h2a as the sum

of three integers:

(1) The absolute date of the last day of the preceding year, computed as roshHashanah(year - 1);

(2) The number of days of the year that precede the month in which the date occurs, computed by

summing the values of the function monthLength applied to the preceding months (which requires

separate computations for common and leap years);

(3) The day of the month.

Thus, we have the following definition:

uint h2a(Date date) {

// Compute number of days of date.year that precede date.month:

uint priorDays = 0;

for (uint m=1; m<date.month && (m<6 || date.month!=13); m++) {

priorDays+= monthLength(m, yearLength(date.year));

}

if (leap(date.year) && date.month >= 6 && date.month != 13) {

priorDays += 30;

}

// Add to that the absolute date of the last day of the preceding

// year and the day of the month:

return roshHashanah(date.year) - 1 + priorDays + date.day;

}

The inverse conversion a2h is defined by a similar sequence of computations.

The conversion between absolute and Gregorian dates is simpler, since every common year has 365

days and every leap year 366, independent of any other consideration. Thus, the absolute date corre-

sponding to a given Gregorian date is easily computed once the Gregorian date of absolute day 1 is

established as September 6, -3760. This is derived from the established correspondence between mod-

ern Hebrew and Gregorian dates. (Note that in the absence of a Gregorian year 0, the year -3760 is

conventionally identified as 3761 B.C.E.)

Conversion between the Hebrew and Gregorian calendars is then performed by way of an interme-

diate computation of an absolute date. Successful conversion between the author’s known Hebrew and

Gregorian birthdays is seen as compelling evidence of program correctness.
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5 Properties of the Calendar

The benefit of translation to ACL2 is the opportunity for formal verification of interesting program prop-

erties. The proofs presented in this section are formalized in the ACL2 script proof.lisp. Among

these results is the critical property that the length of every year, as determined by the prescribed post-

ponements of Rosh Hashanah from the day of the molad, is one of the admissible values that are ac-

commodated by the allowed variations in the lengths of the months. This fact is not even mentioned

by Maimonides in his seminal work of 1187, Sanctification of the New Month [5], which includes a

definitive specification of the dechiyot. Various authors [3, 4] have explained the 3rd and 4th dechiyot

by describing situations in which they preclude an inadmissible year length, but these explanations fall

short of a comprehensive proof.

We shall present two separate proofs of the following result:

(defthm legal-year-lengths

(implies (posp year)

(member (yearlength year)

(if1 (leap year)

’(383 384 385)

’(353 354 355)))))

The strategy of the first proof is to minimize the requirement of mathematical reasoning through compu-

tation:

PROOF #1: We shall identify an integer m such that the length of any year y is the same as that of

y+m. The proof is then completed by directly computing the length of each y ∈ [1,m].

Note that the duration of a Metonic cycle is

235 ·L = 235 · (((29 ·24)+12) ·1080+793) = 179876755 parts

and a week consists of 7 · 24 · 1080 = 181440 parts. We seek the smallest number n of cycles that

comprise an integral number of weeks, i.e., the minimal n such that 179876755n is divisible by 181440.

Consideration of the prime factorizations 181440 = 26 ·34 ·5 ·7 and 179876755 = 5 ·47 ·131 ·5843 leads

to the solution

n = 26 ·34 ·7 = 36288.

Let m = 19n = 689472 and ỹ = y+m. We shall show that the years y and ỹ have the same length.

Let y′ = y+ 1 and ỹ′ = ỹ+ 1. Let M = {d,h, p}, M̃ = {d̃, h̃, p̃}, M ′ = {d′,h′, p′}, and M̃ ′ =
{d̃′, h̃′, p̃′} be the delayed moladot of y, ỹ, y′, and ỹ′, respectively. By inspection of the function roshHa-

shanah, the number of days of delay from d to Rosh Hashanah of year y is determined by three parame-

ters: (1) the position of y in the Metonic cycle, y mod 19; (2) the day of the week of M , d mod 7; and (3)

the time of day of M , h:p. The length of y, therefore, is determined by y mod 19, y′ mod 19, d mod 7,

d′ mod 7, h:p, h′:p′, and d′−d.

We shall show that the following conditions hold:

(1) y mod 19 = ỹ mod 19;

(2) d mod 7 = d̃ mod 7;

(3) h:p = h̃:p̃;

(4) d̃−d = 251827457, a constant independent of y.
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Since y is arbitrary, it will then follow that the same relations hold between y′ and ỹ′: y′ mod 19 =
ỹ′ mod 19, d′ mod 7 = d̃′ mod 7, h′:p′ = h̃′:p̃′, and d̃′− d′ = 251827457 = d̃ − d. The last equation

implies

d′−d = d′−d+(d̃′−d′)− (d̃−d) = d̃′− d̃,

and according to the observation of the preceding paragraph, we may conclude that y and ỹ have the same

length.

The first condition holds trivially:

ỹ mod 19 = (y+19n) mod 19 = y mod 19.

To establish (2), (3), and (4), note that the difference between M̃ and M is

1080(24(d̃−d)+ (h̃−h))+ (p̃−p) = 25920(d̃−d)+1080(h̃−h)+ (p̃−p) parts.

Since M̃ and M are separated by n 19-year cycles, this difference may be equated with

179876755n = 6527367685440 = 25920 ·251827457 parts.

Thus,

25920(d̃−d−251827457)+1080(h̃−h)+ (p̃−p) = 0.

Since

|1080(h̃−h)+ (p̃− p)|< 1080 ·23+1080 = 25920,

we have 1080(h̃− h)+ (p̃− p) = 0, which implies h̃ = h and p̃ = p, i.e., (3) is satisfied. Furthermore,

d̃−d = 251827457 = 35975351 ·7, which implies (2) and (4) .

As we have observed, it follows that the length of y is the same as that of ỹ = y+m. The proof is

completed by checking the length of each y, 1≤ y≤m = 689472. ✷

The computation of the length of each y in the interval [1,m] may be done simply by executing the

ACL2 translation of the function yearLength. However, for each y, this entails y−1 calls of the function

MOLAD-LOOP-0 to compute the molad of y, and another y calls to compute that of y+1, with a total of

m

∑
y=1

(2y−1) = m2 = 475371638784.

On a well-equipped MacBook Pro, the computation runs in approximately 8 hours. Our implementation

of the proof, therefore, uses a more efficient algorithm, based on the recurrence formula molad-next of

Section 2. This provides a linear-time recursive computation of the m year lengths, resulting in a reduced

run time of 4 seconds.

Thus, in spite of its stated strategy, each of several steps of Proof #1 requires significant effort. Our

second proof is shorter, more enlightening, and surveyable. It involves a detailed case analysis, but as

seen in the proof script, the case structure need not be explicitly supplied to the prover, which discovers

it without assistance.

PROOF #2: Once again, let M = {d,h, p} and M ′ = {d′,h′, p′} be the delayed moladot of years y

and y+1, respectively. Our objective is to show that the length of y, as determined by d′−d and the 2nd,

3rd, and 4th dechiyot, is one of the specified values.
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Suppose first that y is a common year. Then

M
′ = M +12 ·L = M +{354,8,876}.

If h:p < 15:204, then d′ = d + 354 and the length of y is admissible unless the 3rd dechiyah applies to

either M or M ′ and none applies to the other. But the 3rd does not apply to M , and if it applies to M ′,

then d′ is a Tuesday and since 354 = 50 ·7+4, d is a Friday and therefore subject to the 2nd.

We may assume, therefore, that h:p ≥ 15:204, which implies d′ = d +355 = d +50 ·7+5 and h′:p′

< 8:876. Thus, neither the 3rd nor the 4th applies to M ′. It follows that the length of y is admissible

unless the 2nd applies to M ′ and none applies to M . But if d′ is a Wednesday or Friday, then d is a

Friday or Sunday and the 2nd applies; if d′ is a Sunday, the d is a Tuesday and the 3rd applies.

Now suppose y is a leap year. Then

M
′ = M +13 ·L = M +{353,21,589}.

If h:p ≥ 2:491, then d′ = d +384 and once again, the length of y is admissible unless the 3rd applies to

either M or M ′ and none applies to the other. But since y is a leap year, the 3rd does not apply to M . If

it applies to M ′, then d′ is a Tuesday, and since 384 = 54 ·7+6, d is a Wednesday and the 2nd applies to

M .

Thus, we may assume h:p < 2:491, which implies d′ = d +383 = d +54 ·7+5 and h′:p′ ≥ 21:589.

Since neither the 3rd nor 4th applies to M , the length of y is admissible unless the 2nd applies to M and

none applies to M ′. But if d is a Friday or Sunday, then d′ is a Wednesday or Friday and the 2nd applies

to M ′, and if d is a Wednesday, then d′ is a Monday and the 4th applies. ✷

Another well known property of interest pertains to the keviyah, or character of a year, which com-

prises the length of the year and the day of the week on which it begins. Clearly, these parameters

together determine the day of the week corresponding to every date within the year. Although there are

4 possible starting days and 6 year lengths, only 14 of the 4×6 = 24 possible combinations are realized.

This was noted by Maimonides without explanation.

If the New Year’s Day of a year, whether ordinary [common] or embolismic [a leap year],

falls on a Tuesday, that year will always have regular months; if the New Year’s day of a year,

whether ordinary or embolismic, falls on a Saturday or Monday, it will never have regular

months; if, however, it falls on a Thursday, we have to distinguish between the ordinary and

the embolismic year; if it is an ordinary year, it can never have defective months, according

to this system of calculation; if it is an embolismic year, it can never have regular months,

according to this same system [5, Chapter VIII].

His observation may be formalized as follows:

(defthm keviyot

(implies (posp y)

(let ((dw (dayofweek (roshhashanah y)))

(len (yearlength y)))

(or (and (= dw 3) ;y begins on Tuesday

(member len ’(354 384)))

(and (member dw ’(0 2)) ;Saturday or a Monday

(member len ’(353 355 383 385)))

(and (= dw 5) ;Thursday

(member len ’(354 355 383 385)))))))
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PROOF: Of the 10 disallowed combinations, 9 are readily eliminated by the observation that Rosh

Hashanah of y+ 1 cannot occur on Sunday, Wednesday, or Friday. For example, if year y begins on

Thursday, then its length cannot be either 353 or 384, since this would imply that y+1 begins on Sunday

or Wednesday.

The single remaining case is a year of length 385 that begins on a Tuesday. In this case, since 385

is divisible by 7, the following Rosh Hashanah must also be a Tuesday. Using the same notation as in

the preceding proofs, recall that if the day d of the molad M of y is the preceding Monday, then d′ is

either d + 383 (Saturday) or d + 384 (Sunday), and according to the dechiyot, Rosh Hashanah of y+ 1

is Monday at the latest. Therefore, d must be Tuesday and d′ is either d + 383 (Sunday) or d + 384

(Monday), and in the latter case, the time of M ′ must be earlier than 21:589. In either case, Rosh

Hashanah is Monday. ✷

Our final result is a proof of Landau’s claim (mentioned in Section 3) pertaining to the possible

motivation for the 1st dechiyah: the molad of every month occurs before the end of the first day of the

month. The proof is simple, but involves extensive computation.

(defun firstofmonth (month year)

(as ’day 1 (as ’month month (as ’year year ()))))

(defthm landau-thm

(implies (and (posp year)

(posp month)

(<= month (monthsinyear year)))

(<= (ag ’day (monthlymolad month year))

(h2a (firstofmonth month year)))))

PROOF: Each admissible year length is handled separately. For each month of a year of a given

length, we compute the number of days elapsed from Tishri 1 to the first of the month (based on the

month lengths determined by the year length) and the time elapsed between the molad of Tishri and that

of the month (i.e., the appropriate multiple of L ). In the cases 355, 384, and 385, the claim follows from

the fact that the molad of Tishri occurs before noon on Tishri 1.

The same computation is inconclusive in the cases 353, 354, and 383, but in those cases, we succeed

by using instead the corresponding constraint on the molad of the following year. For example, for a year

of length 354, since the molad of the following year occurs before noon on Tishri 1 and the molad of the

year of interest is earlier by an interval 12 ·L = {354,8,876}, it follows that the earlier molad occurs

before 7:204 on Tishri 1. This improved bound is sufficient to establish the claim. ✷
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