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ACL2 provides a systems programming capability that allows one to write code that uses and extends
ACL2 inside of ACL2. However, for soundness reasons, ACL2 bars the unrestricted use of certain
kinds of programming constructs, like destructive updates, higher-order functions, eval, and arbitrary
macros. We devised a methodology for writing code in Common Lisp that allows one to access
ACL2, ACL2s, and Common Lisp functionality in a unified way. We arrived at this methodology
in the process of developing the ACL2 Sedan (ACL2s) and using it as a key component in formal-
methods-enabled projects relating to gamified verification, education, proof checking, interfacing
with external theorem provers and security. The methodology includes a library for performing ACL2
queries from Common Lisp, as well as guidelines and utilities that help address common needs.
We call this methodology “ACL2s systems programming,” to distinguish it from ACL2 systems
programming. We show how our methodology makes it possible to easily develop tools that interface
with ACL2 and ACL2s, and describe our experience using it in our research.

1 Introduction

Since its inception, users of ACL2 [12, 13, 11, 15] have developed many tools that extend ACL2 or
use ACL2 as an integral component. Extensions include improved termination analysis [18], the use of
external solvers [16, 17, 28, 24, 26], support for bit-blasting proofs [16, 17, 31] and automatic coun-
terexample generation [5]. Systems that are built on top of ACL2 include ACL2r [10] and the ACL2
Sedan (ACL2s) [9]. An underlying philosophy that seems to have guided the development of these tools
is that as much of their functionality as possible should be implemented in ACL2, using ACL2’s systems
programming support. The ACL2 developers and the community have developed capabilities to support
the development of tools using this philosophy, including make-event, trust tags and the “hacking”
books [8]. In this paper, we advocate for a different philosophy, which we call “ACL2s systems pro-
gramming,” that prioritizes the seamless integration of ACL2 and Common Lisp code. By jettisoning the
requirement that as much of a tool’s code be written inside of “core ACL2”—that is, without installing
trust tags or dropping out of ACL2’s REPL—one can write code that uses functionality that ACL2 limits
or does not support, like higher-order functions, destructive operations, and external libraries. The cost
of doing so is the loss of guarantees and checking that ACL2 provides for code written in ACL2. In some
applications these guarantees are worth the cost of heeding ACL2’s limits on functionality, but we have
found ourselves developing tools where the use of the ACL2 systems programming approach leads to
brittle code that is hard to write, understand, modify and update.

Motivated by our experience, we have developed a library that provides an easy-to-use interface (the
“ACL2s interface”) for performing ACL2 queries and gathering their results from “raw Lisp”—that is,
from a Common Lisp process that has ACL2 loaded. This library provides additional functionality that is
nontrivial to implement, such as the ability to capture all ACL2 printed output. Based on our experiences
using this library, we have also developed a set of guidelines and general advice around how best to write
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Common Lisp code that communicates with ACL2 via our library. By using our library and adhering to
our guidelines, programmers can write “systems ACL2s” code that uses the full feature set of Common
Lisp and also interacts with ACL2, while clearly denoting which code is directly interacting with the
theorem prover. We note that we call our methodology “ACL2s systems programming” not because it is
limited to use with the ACL2 Sedan system, but rather to help disambiguate our work from the existing
ACL2 systems programming utilities and because the methodology was developed in the context of
building tools based on ACL2s.

To understand how the ability to write Common Lisp that calls ACL2 is useful, let us consider some
tasks that a tool using ACL2 might need to perform:

• Domain-Specific Language Support: Consider developing a domain-specific language that in-
cludes verification capabilities provided by ACL2. A first step is to define a parser, which can be
done in ACL2, but architecting a parser in such a way that it is able to provide high-quality error
messages is difficult and tedious. By directly using Common Lisp, one can use existing parsing
libraries like ESRAP [1] to take care of the details of error handling while also greatly simplify-
ing the process of writing a parser. To use these libraries, one may be required to make use of
Common Lisp features that ACL2 does not support, for example the condition system, CLOS, or
higher-order functions. There is no reason why one could not write similar libraries in ACL2,
but to our knowledge no such libraries exist yet. Alternatively, one can interface with an external
system, like Xtext [4], that manages parsing and error messages and provides support for devel-
oping tools that run in browsers. ACL2s systems programming can be used to run sophisticated
validation checks in Xtext and for verifying code written in the DSL.

• Generating and Running ACL2 Queries: Some queries are difficult to generate using ACL2
code. For example, accessing the user’s current package using ACL2 requires having access to
the state stobj. This means that any function that might need to know the user’s current pack-
age must take in state. This means that the function’s callers must also take in state, and its
callers’ callers, and so on. Thus, giving an existing function access to state so that it can de-
termine the user’s current package might require significant changes to several other functions. If
you do need access to state to build a query, you cannot implement the query-building using
macros. Instead, you must use functions like make-event to build and execute the query. Using
make-event introduces more considerations, as there are limitations on what forms may appear
inside of make-event calls, as well as limitations on where make-event calls can be placed.
Additionally, one might find themselves nesting make-events when building large queries using
smaller queries, making the code more difficult to debug and harder to generate useful error mes-
sages for. Building a system using make-event, like the defdata functionality inside ACL2s [6],
can be worth it for the guarantees that ACL2 provides for core ACL2 code. However, when one
does not intend to reason about the code that is generating ACL2 queries, the complexity that
comes with writing such code in core ACL2 may outweigh the benefits of writing core ACL2.

• Handling Requests from a Web Client: There are two approaches to enabling ACL2 to handle
requests from a web client: either use another programming language to handle the details of
receiving and responding to network requests and have that language communicate with an ACL2
subprocess, or have ACL2 directly handle networking. The latter could be done by using a library
like Hunchentoot [2] (which has a systems ACL2 wrapper). The ACL2 Bridge [7] is an example
of an ACL2 system that takes the latter approach. The former has also been done before—see
the ACL2 Sedan Eclipse plugin [9], which runs an ACL2 subprocess inside of a Java process.
However, building a robust system that can reliably communicate with an ACL2 subprocess takes
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significant engineering effort—Dillinger et al. developed the ACL2 hacking community books [8]
during their work, since they needed to be able to redefine built-in ACL2 functions to ensure they
could accurately classify and manage ACL2’s output. To get the ACL2 Sedan working, they also
needed to develop a Lisp parser inside of Java, as well as an enhanced history tracking system for
ACL2.

As a concrete example, consider a current project that uses the ACL2 Sedan’s (ACL2s’) counterex-
ample generation [5] and data definition [6] functionality to generate members of data types that are
requested by another (unverified) system. For this project, it is convenient to communicate with the other
system over TCP sockets using JSON encoding, so we want to use Common Lisp libraries for doing so.
Further, we would like to use the Common Lisp condition system to gracefully handle errors that the
Common Lisp networking library might emit. We need to be able to generate certain kinds of code that
would be difficult to generate given ACL2’s limits on macros. Having access to the Common Lisp Ob-
ject System would make it easier to write certain parts of the system in a more easily extensible fashion.
Due to all of these considerations, it would take a significant amount of effort to develop this project
inside of ACL2, and indeed doing so would require us to trust some raw Lisp code at some point for
interacting with TCP sockets. Since the ACL2s portion of the project is going to be composed with an
unverified system and we thus cannot reason about the composite, the consistent logical story that ACL2
can provide is not useful in this application and trying to shoehorn the functionality we need in ACL2
leads to brittle code that is hard to write, understand, modify and update.

The primary contribution of this paper is a description of the design and implementation of an in-
terface that allows for convenient calls from Common Lisp into ACL2. We also provide a discussion
of a programming methodology that we have developed around the use of this interface, and its use in
several applications. The interface code is freely available online at https://gitlab.com/acl2s/
external-tool-support/interface. We primarily use SBCL-hosted ACL2 builds, and therefore
we have high confidence in the interface code’s support for such systems. The interface code certifies
successfully on CCL-hosted ACL2 builds and appears to work correctly, but we have not performed
enough testing to be confident in its behavior on such systems. We are more than happy to implement
support for ACL2 running on other Common Lisp implementations upon request.

The remainder of this paper is organized as follows. We discuss the three functions at the core of the
ACL2s interface in Section 2. We provide a specification for these functions in Section 3. We describe
our experience using systems ACL2s and the interface in various applications in Section 4. Related work
is discussed in Section 5 and we end with conclusions and acknowledgments in Section 6.

2 The ACL2s Interface

In our description of the ACL2s interface, we assume that the reader is familiar with the concepts of
ACL2 function signatures, multiple-value returns, single-threaded objects (stobjs), and IO channels. The
ACL2 XDOC documentation system provides explanations of each of these topics; the reader is highly
encouraged to refer to XDOC to review any topics they may be unfamiliar with. Below, we refer to
XDOC topics using with the syntax (X:foo) to refer to the topic “foo.”

ACL2 is designed in such a way that function definitions inside of the ACL2 logic result in Common
Lisp function definitions. That is, one can define a function in the ACL2 REPL, exit out into raw Lisp,
and call that function from raw Lisp. We make extensive use of this functionality in tools developed
using the ACL2s systems programming methodology. However, some functions (especially those that
deal with stobjs) will either raise an error when called from raw Lisp or behave incorrectly. This is a
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;; this package imports only Common Lisp symbols

(in-package "ACL2S-INTERFACE-INTERNAL")

(defun acl2s-query-simple (q)

(acl2::ld `((acl2::mv-let (erp val acl2::state)

,q

(acl2::assign result (list erp val)))))

(acl2::@ result))

Figure 1: The definition of a simplified version of acl2s-query

safety measure—the ACL2 REPL takes care of several details (like setting readtables, handling function
guards, and ensuring that stobjs are updated correctly) that differentiate ACL2 evaluation from Common
Lisp evaluation. It is possible to work around these restrictions, but doing so can be difficult and error-
prone, hence, for when ACL2 behavior is needed, we developed an interface function that uses ACL2’s
built-in interface for evaluating forms (ld). Running ACL2 code through ld has the advantages just
described, but comes with with a performance cost.

We provide three raw-Lisp functions for interfacing with ACL2: acl2s-compute, acl2s-query,
and acl2s-event. acl2s-compute is the simplest of the three, and it supports evaluating expressions
that return a single value and do not make use of stobjs. acl2s-query supports evaluating expressions
that return an error triple (X:programming-with-state), and is intended for queries that do not involve
calls to ACL2 event functions (X:events). acl2s-event supports evaluating expressions that return an
error triple, and is intended for queries that result in calls to ACL2 event functions. All three of these
functions are implemented by making a call to ld with appropriate arguments. ld does not return the
results of the evaluated expressions, so we also insert code that extracts the result of the given expression
evaluation and stores it for access after ld finishes.

The interface exposes three functions partially due to the way it evolved over time. acl2s-compute
was designed to be a lightweight function that only operates on non-multiple-value terms, acl2s-query
was designed to operate on multiple-value terms that do not generate ACL2 events and acl2s-event
was designed to evaluate terms that contain ACL2 event functions and where the return value outside of
the error flag is considered unimportant.

Implementation

To better understand the implementation of the ACL2s interface, let us consider a simplified definition
of acl2s-query, acl2s-query-simple, shown in Figure 1. This function is missing much of the
functionality of acl2s-query—for example, it does not have any output control features and is missing
some error handling. However, it highlights the general structure of the ACL2s interface functions, so
we review it first.

acl2s-query-simple, like acl2s-query, is designed to evaluate ACL2 expressions that return
ACL2 error triples and do not generate ACL2 events. As previously stated, ld does not return the result
of evaluating the ACL2 expressions it is given. Thus, we must construct an ACL2 expression to run
inside ld that allows us to capture both the error flag (erp) and the returned value (val) from the error
triple that the given ACL2 expression evaluates to. For this purpose, we use the mv-let form. Note that,
since we are in a package that does not import ACL2 symbols like state, we must explicitly specify that
we are binding to the ACL2 package’s state variable, not to a new state variable. If we forget to specify
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the package for that symbol, ACL2 will produce a helpful error message when acl2s-query-simple
is called, informing us that the stobj state appears in a position where an “ordinary object” is expected.
We note that neither acl2s-query-simple nor acl2s-query currently perform any checking to ensure
that the provided expression does not modify the world—this is a topic of future work.

Once we have evaluated the given expression and bound the constituents of the error triple it returned
to variables, we just need to store erp and val somewhere that we will be able to access after ld finishes
executing. We choose to save the values in the global-table of ACL2’s state. After the call to ld
has completed, we use ACL2’s @ command to access the value we inserted into the global-table.

Note that this approach to capturing the return value(s) of an ACL2 expression requires that the user
know the output arity of the expression that they are evaluating. In the context of ACL2s systems pro-
gramming, we typically are either dealing with functions that return a single value or functions that return
an error triple, so acl2s-compute, acl2s-query, and acl2s-event are sufficient. When dealing with
arbitrary ACL2 functions, one may need to interact with functions that have a variety of multiple-value
signatures, possibly containing user-defined stobjs. In this context, it may be impractical to define a
new interface function for each return signature that one wants to support. There do exist alternate ways
of evaluating ACL2 expressions and capturing their output that—like trans-eval—operate on expres-
sions of arbitrary output arity. Such methods that we have tried impose additional restrictions on the
kinds of expressions that can be evaluated—for example, trans-eval does not fully support evaluating
make-event expressions when invoked from raw Lisp. Another potentially useful function is ev, which
make-event uses internally to evaluate ACL2 forms. We decided against using ev, as it is an internal
ACL2 function (it does not have an XDOC topic, and it is marked as untouchable) and thus we cannot
depend on its interface being stable. Additionally, ev is a lower-level function with a more complex set
of preconditions that it imposes on its inputs than ld, meaning that our interface functions would need
to implement some of the checks that ld performs for us, introducing more room for error.

To provide an interface that allows a user to evaluate an arbitrary-output-arity ACL2 form, one might
consider trying to determine the output arity of the form before evaluating it, and then generating the
appropriate mv-let form for the form’s output arity. However, it is difficult to statically determine the
output arity of an ACL2 expression (as one might do to generate the appropriate mv binding form),
since the number of values returned may depend on which branches are taken for conditionals in the
expression.

Now, let us take a look at a more complete definition of acl2s-query, shown in Figure 2. This
definition is considerably more complex, as in addition to the core acl2s-query-simple functionality
it handles output control (both capturing and disabling output). We discuss output control in more depth
later, but first we explain some of the other functions that are used in acl2s-query:

• get-prover-step-limit accesses ACL2’s defaults table to determine if the user has set a step
limit, and if not will return the default ACL2 step limit.

• +COMMAND-RESULT-VAR+ is a constant holding the symbol that we are storing the result of com-
mand evaluation in.

• ld-options calls ld with the given set of keyword arguments inside of with-suppression.
with-suppression is an ACL2 macro that is used inside of lp (ACL2’s REPL function) to
disable many kinds of warnings and errors that the underlying Common Lisp implementation may
emit; without this, one may experience package lock errors and redefinition warnings among other
diagnostics when working with innocuous core ACL2 code.

• last-result calls gets the value of the entry named +COMMAND-RESULT-VAR+ in ACL2’s globals
table by calling f-get-global.
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(in-package "ACL2S-INTERFACE-INTERNAL")

(defun acl2s-query (q &rest args &key quiet capture-output

(prover-step-limit (get-prover-step-limit)) &allow-other-keys)

(let ((turned-quiet-mode-on (and quiet (not *quiet-mode-state*))))

(when turned-quiet-mode-on (quiet-mode-on))

(get-captured-output) ;; clear captured output

(let ((state acl2::*the-live-state*))

(ld-options `((acl2::with-prover-step-limit
,prover-step-limit

(acl2::mv-let

(erp val acl2::state)

,q

(acl2::assign ,+COMMAND-RESULT-VAR+ (list erp val)))))

(append (remove-props args '(:quiet :capture-output

:prover-step-limit

:standard-co :proofs-co

:ld-error-action))

`(:standard-co ',(calculate-standard-co args state)

:proofs-co ',(calculate-proofs-co args state)

:ld-error-action :error)

(when *quiet-mode-state* LD-QUIET-FLAGS)))

(cleanup-streams)

(when turned-quiet-mode-on (quiet-mode-off))

(last-result))))

Figure 2: The full definition of acl2s-query

• remove-props removes plist entries with the given set of names from a plist. This is necessary to
avoid passing any keyword arguments that ld does not know how to handle to ld.

Output Control

Control of ACL2’s output is difficult to achieve—there are several options that can be provided to disable
most output (setting standard-co and proofs-co, changing the inhibit-output-list, enabling
gag-mode), and until recently some output (in particular, comment window output) was impossible
to disable without raw Lisp (for reference, see ACL2 commit 709d5a55). To this end, the interface
contains an enabled-by-default feature that overwrites comment-window-co, an ACL2 function that is
called to get the output channel for comment-window (X:cw) output. By creating our own channels and
choosing which one to return as the comment-window output channel based on settings that the user
provides, we can disable, capture, or pass-through any comment window output from ACL2. The ability
to capture ACL2 output is particularly useful when making ACL2 queries that may print out information
that is not accessible through return values, for example the contents of error messages. We can use the
standard-co and proofs-co ld-specials to capture or disable that input using our own channels as
well.

An ACL2 channel is simply a symbol with particular properties set in its property-list. The names
of these properties are stored in the ACL2 values *open-output-channel-type-key* and *open-
-output-channel-key*. The first property is associated with the IO type of the channel, which for the
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(in-package "ACL2S-INTERFACE-INTERNAL")

(defvar *saved-verbosity-level* acl2s::(acl2s-defaults :get verbosity-level))

(add-quiet-mode-on-hook :acl2s-verbosity-level

(lambda ()

(setf *saved-verbosity-level* acl2s::(acl2s-defaults :get verbosity-level))

'acl2s::((acl2s-defaults :set verbosity-level 0))))

(add-quiet-mode-off-hook :acl2s-verbosity-level

(lambda ()

`((acl2s::acl2s-defaults :set acl2s::verbosity-level ,*saved-verbosity-level*))))

Figure 3: Setting up the interface to call book-specific code when enabling or disabling quiet-mode

purposes of printed output is always going to be :character. The second property is associated with a
Common Lisp stream that backs the channel. Our interface code creates channels directly, by generating
symbols and setting the appropriate property-list properties, rather than using ACL2’s built-in interface
for creating output channels. This is because ACL2’s interface for creating channels does not allow the
user to specify a backing stream for a channel. An alternative approach might be to use ACL2’s interface
for creating channels, and then overwrite the created channel’s backing stream property with our own
stream, but this approach seemed just as likely to cause problems as creating channels directly.

Output can be disabled by redirecting output to a channel backed by an empty broadcast stream. Any
output written to such a stream is simply dropped. Capturing output is done by using a channel backed by
a string-output stream. In situations where we want to capture output and also print it as normal, we can
output to our own channel backed by a stream that broadcasts to both our string-output stream and the
backing stream for the channel that the original comment-window-co function returns. As of right now,
we create and garbage-collect (cleanup-streams in the definition of acl2s-query) these broadcast
streams every time our implementation of comment-window-co is called, but to improve performance
we may cache such streams and intelligently clear the cache when any relevant settings change.

Users of our interface can control whether output should be disabled or not either by providing
the :quiet keyword argument to any of the three interface functions or by calling quiet-mode-on or
quiet-mode-off. When quiet-mode is on, we prevent as much output as possible from being printed
by ACL2. Independently of quiet-mode, users can control whether output is captured by either using the
:capture-output keyword argument or by calling the capture-output-on or capture-output-off
functions. The captured output is cleared at the beginning of calls to the three interface functions, so
the user is responsible for saving captured output after each call if they wish to persist it. Calling
get-captured-output will return a string corresponding to the output produced by the last ACL2
interface call, but will also clear that output from the stream.

To improve performance, it is useful to disable as much ACL2 output as possible, as even writing to
an empty stream carries a performance penalty. Some ACL2 books may provide their own interfaces for
turning on or off their output, so we provide an interface by which users can specify which ACL2 queries
to execute when turning on quiet-mode or turning it off. We use this interface in our ACL2s-specific
code that is provided alongside the ACL2s-agnostic code, a subset of which is shown in Figure 3. This
code creates a global variable to save the value of the setting at the moment that quiet-mode is turned on,
so that it can be reset to this value when quiet-mode is turned off. Hooks are registered with names so
that they can be removed or redefined later as needed.

acl2s-compute (Figure 4) is defined similarly to acl2s-query. A mv-let inside of the call to ld
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(in-package "ACL2S-INTERFACE-INTERNAL")

(defun acl2s-compute (c &rest args &key quiet capture-output

&allow-other-keys)

(let ((turned-quiet-mode-on (and quiet (not *quiet-mode-state*))))

(when turned-quiet-mode-on (quiet-mode-on))

(get-captured-output) ;; clear captured output

(let ((state acl2::*the-live-state*))

(acl2::mv-let (erp val state)

(ld-options `((acl2::assign ,+COMMAND-RESULT-VAR+ ,c))

(append (remove-prop args :quiet :capture-output :ld-error-action)

`(:standard-co ',(calculate-standard-co args state)

:proofs-co ',(calculate-proofs-co args state)

:ld-error-action :error)

(when *quiet-mode-state* LD-QUIET-FLAGS)))

(if (equal val :eof)

(save-result `(list nil (@ ,+COMMAND-RESULT-VAR+)))

(save-result `(list t nil))))

(cleanup-streams)

(when turned-quiet-mode-on (quiet-mode-off))

(last-result))))

Figure 4: The full definition of acl2s-compute

is not necessary, since acl2s-compute is designed to evaluate queries that only return a single value.
Errors during evaluation are detected by capturing the output of ld, which is an error triple. Based on
whether ld reports that it was able to successfully evaluate all of the forms it was given (in this case, it
returns :eof in the value position of its error triple), acl2s-compute either sets the global table entry
named +COMMAND-RESULT-VAR+ with a value indicating that no error occurred and including the value
produced by the evaluation of the given query, or a value indicating that an error occurred.

As stated previously, functions defined in ACL2 can often be run directly from raw Lisp, especially
if they do not involve stobjs. So, under what circumstances would one want to use acl2s-compute? It
provides a few major benefits over directly calling a function:

• A higher level of safety—ld will typically check that any arguments in a function call satisfy that
function’s guards (if any), while running the function directly from raw Lisp will not.

• Better error handling—ld will give an error if your function call is not a valid ACL2 term for any
reason, for example if you try to use an unbound variable in the call.

• Output handling functionality—our interface, plus ld, provide greater control over the output that
the call to the function may attempt to print.

• raw Lisp restrictions—Certain functions, e.g., those that contain a call to acl2-unwind-protect,
will signal an error when they are run outside of the ACL2 loop.

acl2s-event (Figure 5) is defined similarly to acl2s-query. Unlike both acl2s-compute and
acl2s-query, the return value(s) of the provided expression is not captured. Instead, acl2s-event
returns the erp component of the ld call, which the caller of acl2s-event can use to determine if their
expression was admitted by ACL2. For the sake of consistency, a length-2 list is returned, where the
second element is always nil.
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(in-package "ACL2S-INTERFACE-INTERNAL")

(defun acl2s-event (e &rest args &key quiet capture-output

(prover-step-limit (get-prover-step-limit))

&allow-other-keys)

(let ((turned-quiet-mode-on (and quiet (not *quiet-mode-state*))))

(when turned-quiet-mode-on (quiet-mode-on))

(get-captured-output) ;; clear captured output

(let ((state acl2::*the-live-state*))

(acl2::mv-let (erp val state)

(ld-options `((acl2::with-prover-step-limit
,prover-step-limit

,e))

(append (remove-props args '(:quiet :capture-output :prover-step-limit

:ld-error-action))

`(:standard-co ',(calculate-standard-co args state)

:proofs-co ',(calculate-proofs-co args state)

:ld-error-action :error)

(when *quiet-mode-state* LD-QUIET-FLAGS)))

(progn

(setf erp (not (equal val :eof)))

(cleanup-streams)

(when turned-quiet-mode-on (quiet-mode-off))

(list erp nil))))))

Figure 5: The full definition of acl2s-event

Guidelines for Use

As we have built and used the interface, we have developed a set of guidelines that help avoid common
bugs when using the interface.

• Operate in a separate package - Though we do not want to reason about the code we are writing,
we still would like to avoid accidentally overwriting any of ACL2’s internals. For this reason, it is
safest to operate in a package outside of ACL2 or any other package defined in ACL2. Note that
when operating in a separate package, one must be careful when constructing queries that contain
symbols in the ACL2 package. To reduce the burden of explicitly stating that each symbol is in
the ACL2 package, one can use extended package prefix syntax (if supported by your Lisp) to
explicitly set the package for all symbols in a quoted S-expression, or import symbols from the
ACL2 package as necessary.

• Be aware of ACL2’s modified readtable - ACL2 modifies the readtable of the Lisp that is hosting
it. The most commonly problematic modification is the limitations that ACL2 places on the #.
read-time evaluation macro. To use certain libraries, you may need to temporarily restore the host’s
original readtable *host-readtable* before loading them.

• Use acl2s-query for non-world-modifying queries, and acl2s-event for world-modifying
queries - Though this is not currently enforced, we want to enforce it in the future, and at a
minimum this provides useful documentation as to whether the author intended for a particular
query to change ACL2’s logical world.
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3 Specification

Here, we provide a specification for the core functionality of the three ACL2s interface functions. We first
provide some definitions, before going over the specifications for the acl2s-compute, acl2s-query
and acl2s-event functions. We then review additional error handling cases.

This specification does not describe our output handling functionality, which is intended to have no
effect on the evaluation of ACL2 forms other than to either suppress or capture any printed output.

Definitions

• An ACL2 uterm is a non-circular S-expression x such that the ACL2 REPL’s translation of x
satisfies the ACL2 predicate termp. This roughly corresponds to the notion of a syntactically
valid ACL2 form.

• The output signature set sig(x) of an ACL2 uterm x is a set S containing lists of length 1 or greater
(output signatures), where:

– (nil) ∈ S iff there exist conditions under which x evaluates to a single non-stobj value.
– ( j) ∈ S iff there exist conditions under which x evaluates to a single value which is exactly

the stobj j.
– (r1 r2 · · · rn) ∈ S iff there exist conditions under which x evaluates to a multiple value of

arity n (v1 v2 · · · vn) such that for all i, ri is nil iff vi is a non-stobj value and ri is j if vi

is exactly the stobj j.

This is inspired by the output specification of a constrained ACL2 function’s signature (X:signature).
Note that, unlike ACL2 functions, ACL2 terms are not required to have a single output signature.
An arbitrary ACL2 term may contain conditionals where each branch of the conditional evalu-
ates to a different output signature: for example, the ACL2 uterm (if (boundp-global foo
state) (@ foo) (mv 1 2 state)) has the output signature set {(nil),(nil nil state)}
and the value that the term evaluates to may either be single value or an error triple depending on
whether state has a bound global foo.

• The error triple is the output signature (nil nil state). This output signature is commonly
encountered when using ACL2 functions that need to modify state, including all of the ACL2 event
functions, so we provide special support for it over arbitrary multiple-value output signatures.

• A term x such that sig(x) contains the error triple is considered to have encountered a soft error
during evaluation when it evaluates to an error triple such that the value in the first position of the
error triple is t. This is consistent with the behavior of (er soft ...) (X:er).

Specification for acl2s-compute

acl2s-compute takes a single argument x, which is expected to be an ACL2 uterm such that sig(x) =
{(nil)}. That is, x is expected to be a form that always evaluates to a single non-stobj value.

The return value of acl2s-compute called on x is defined as follows:

• if x evaluates to multiple values or to a single value that is a stobj, acl2s-compute returns (list
t nil).

• if the evaluation of x results in a hard error, acl2s-compute returns (list t nil).

https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____SIGNATURE
https://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____ER
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• if x evaluates to a single value v that is not a stobj and no hard error occurred during evaluation,
acl2s-compute returns (list nil v).

Note that the evaluation of x can only result in a soft error if x evaluates to an error triple, which is a
multiple-value object. In this case, the result of acl2s-compute is specified by the first case above.

Specification for acl2s-query

acl2s-query takes a single argument x, which is expected to be an ACL2 uterm such that sig(x) =
{(nil nil state)}. The evaluation of x is expected to result in no calls to any ACL2 event functions.

The return value of acl2s-query called on x is defined as follows:

• if x evaluates to a single value or a non-error-triple multiple-value, acl2s-query returns (list
t nil).

• if the evaluation of x results in either a soft or hard error, acl2s-query returns (list t nil).

• if x evaluates to an error triple (nil v state) and no hard error occurred during evaluation,
acl2s-query returns (list nil v).

Specification for acl2s-event

acl2s-event takes a single argument x, which is expected to be an ACL2 uterm such that sig(x) =
{(nil nil state)}.

The return value of acl2s-event called on x is defined as follows:

• if x evaluates to a single value or a non-error-triple multiple-value, acl2s-event returns (list
t nil).

• if the evaluation of x results in either a soft or hard error, acl2s-event returns (list t nil).

• if x evaluates to an error triple (nil v state) and no hard error occurred during evaluation,
acl2s-event returns (list nil nil).

If evaluating x led to a hard or soft error, ACL2’s world is “reverted” to its value prior to the evaluation
attempt. By “revert,” we mean ACL2’s notion of reverting (as referred to in e.g. the ld-error-action
XDOC topic), which is subtle as some values may not be reverted. acl2s-event’s behavior is consistent
with ACL2’s notion of reversion.

Error Handling

• If acl2s-compute, acl2s-query or acl2s-event are called with an argument that is not an
ACL2 uterm, each will return '(t nil). Practically, our implementations of these functions
delegate the responsibility of determining whether the term that the user provided is “valid” to ld.

• If acl2s-query is called on an ACL2 uterm that adds, removes, or modifies ACL2 events, then
we do not make any claims as to whether or not the ACL2 world will be modified.

When an ACL2s interface function reports that evaluation resulted in an error, it may be difficult
to determine the exact error that occurred. This is because ACL2 does not make error causes easily
accessible through return values. In a pinch, one can use the output capture functionality of the ACL2s
interface and some text parsing to attempt to identify the causes of errors.
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4 Applications

We have used the ACL2s Systems Programming interface in several applications. Our experience in
doing so has helped inform the design and functionality of the interface. We briefly discuss several of
these applications below.

Building a Theorem Prover

The ACL2s interface was first used at scale in Northeastern’s CS4820 Computer Aided Reasoning course.
In this course, students build a first-order theorem prover in systems ACL2s over the course of the
semester. Being able to easily call ACL2s from Common Lisp is useful throughout the process of build-
ing a theorem prover:

• One can verify that propositional simplification works correctly on a test suite by asking ACL2 to
prove that the original statements are propositionally equivalent to the simplified statements.

• It is possible to support first-order atomic formulae that include terms that allow the use of ACL2s
functions. Such terms and formulae can be validated by checking that the arity and types of
arguments are consistent with the underlying ACL2s functions. Terms can also be simplified if
they involve functions all of whose arguments are constants.

• Students and instructors use ACL2s’ data type enumeration facilities to automatically generate
terms, formulae and other types for testing purposes, after defining an appropriate defdata data
type.

Meanwhile, the fact that the students are writing their theorem prover in systems ACL2s means
that they have access to general Common Lisp functionality that would not be available even if using
writing program-mode core ACL2s functions, including higher-order functions, external libraries, the
powerful Common Lisp loop macro, full Common Lisp argument handling (e.g. keyword and optional
arguments) and CLOS (the Common Lisp Object System). Performance is an important consideration
for the students when developing certain parts of their theorem provers, and systems ACL2s allows the
students to both use familiar data structures like hash tables as well as destructive operations on those
data structures to write efficient code without needing to learn how to program using stobjs. When using
systems ACL2s, students are still free to write whatever code they would like to reason about in core
ACL2s and easily call it from their systems ACL2s code. This flexibility allows students to decide how
they would like to partition their system between systems and core ACL2s code.

Invariant Discovery Games

Another area of research interest for the authors is the gamification of loop invariant discovery. In our
first work in this area [33], we show that it is possible to develop a game that allows programmers without
formal methods expertise to assist an automated tool in discovering loop invariants for the verification of
imperative programs, while displaying to the players the code that was being reasoned about. Prior work
had focused on games that did not display code to players for a variety of reasons, including requirements
for code confidentiality, concern about high cognitive load for players, and a desire to support players
without programming expertise. The games that we developed (IDG and IDG-T) did not directly use the
ACL2s interface, but did use a similar style of interaction with ACL2 on the backend. We developed a
wrapper around ACL2 consisting of a large set of ACL2 macros and some Python code that allowed us
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to interact with ACL2 from a browser application. The end result is a system such that ACL2 is hidden
completely from the end-user.

As the ACL2s interface matured, we began to write more of our invariant discovery game code in
systems ACL2s. This is highlighted by our later preprint [32] that discusses an improved version of the
backend used in IDG and IDG-T. This new backend is described in a theorem-prover-agnostic manner,
but relies on the existence of an interface that allows one to send the theorem prover a verification
condition and receive back either a counterexample showing that the verification condition does not
hold, a message indicating a proof was successful, or a message indicating that no counterexample could
be found but the verification condition also could not be proved. This interface is easily implemented
using ACL2s and the ACL2s interface.

Autograding

We have used the interface to develop autograders for Northeastern’s Logic and Computation course,
where students learn how to reason about computation alongside ACL2s. Combining ACL2s’ property-
based testing functionality with the interface allows us to quickly develop executables that use external
libraries to, for example, output JSON for ingestion by a learning management system’s (LMS)’s auto-
grader functionality. In this way, we can provide students with low-latency feedback on their submis-
sions, in many cases providing them with concrete examples that highlight how their function definitions
do not fully satisfy the specification we provided them with.

Proof Checker

We have developed a more complex autograder—a proof checker—for equational reasoning proofs writ-
ten in a format appropriate for an introductory course like Logic and Computation. This system interfaces
with several external tools when it processes input, and as such contains a significant amount of raw Lisp
I/O code that would be difficult to reason about. The proof checker also makes liberal use of Common
Lisp’s condition system to pass information about errors across multiple levels of functions, attaching
information useful for localizing the source text responsible for the error along the way. Writing an anal-
ogous system using core ACL2 would require that every function, even those that are intended to simply
pass errors through, be aware of which functions it calls may return errors, so it can pass them through.
Adding an error to a function in such a system may therefore require changes to several other functions,
since they must now either explicitly handle that error or explicitly pass it through. The condition system
provides some additional functionality that may be difficult or impossible to emulate in core ACL2, like
restarts that allow top-level functions to control how to handle errors in deeply nested functions.

Fuzzing

The authors have been involved in work regarding the use of ACL2s’ data definition and counterexample
generation facilities to fuzz complicated protocols that may have many relationships within and between
messages. We developed a proof-of-concept fuzzer for the PTaaS (path tracing as a service) service that
was included in DARPA’s CGC (Cyber Grand Challenge) competition. The fuzzer was implemented
in systems ACL2s using the ACL2s interface, and communicated with a test harness that monitored
and managed the PTaaS process as it was being fuzzed. In this application, we mainly made direct
calls from Common Lisp to the ACL2s enumerators for the messages we wanted to generate, though
there were a few calls (e.g. to set the ACL2s RNG seed) that needed to be made through the interface
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functions. The performance requirements of this application meant that it would likely be necessary for
the systems ACL2s code to directly communicate with the harness (e.g. over a TCP socket), which was
straightforward given the usocket Quicklisp library [3].

As part of the fuzzing work, we developed a library for managing pools of ACL2s processes and
communicating with them over TCP using a simple protocol. By using TCP sockets to communicate with
the ACL2s processes, our library has the flexibility to support systems that distribute ACL2s processes
over a number of computers connected to the same network, not just systems that run multiple ACL2s
processes on a single machine.

Z3 Interface

Another benefit of using the ACL2s interface is that it allows one to use ACL2 in conjunction with ad-
ditional external tools. We have developed an interface that allows one to interact with the Z3 SMT
solver from Common Lisp (and thus also from systems ACL2s code). The syntax of queries was inten-
tionally chosen to mirror the syntax of ACL2s interface queries. Thus, when students in the Logic and
Computation course used the Z3 interface to develop simple Sudoku solvers, they could adapt much of
the knowledge they had already developed from using the ACL2s interface previously. This ability to
provide similar or identical interfaces for various solver backends is powerful, and is something that we
believe is much easier to do using systems ACL2s rather than core or systems ACL2.

We note that our Z3 interface differs from Peng et al.’s Smtlink interface [24] [26] insofar as our
interface does not seek to translate ACL2 expressions into Z3 formulae. Instead, our interface allows a
user to directly generate Z3 assertions and ask Z3 for models that satisfy the assertions. Since the user
must write the code to generate Z3 assertions themself, our interface does not provide the ability that
Smtlink does to add a hint to ACL2 and get SMT-generated proofs or counterexamples without extra
work. On the other hand, our Z3 interface is able to support many more Z3 features than Smtlink does,
including custom Z3 sorts, regular expressions, optimization, function and array values, quantifiers, sets,
and more.

5 Related Work

ACL2’s core depends on “raw Lisp,” since it needs to bootstrap itself inside of a Common Lisp environ-
ment. ACL2 also provides “raw Lisp” functionality that can be accessed through the use of trust tags or
by simply exiting the ACL2 REPL. Our work is built on top of this “raw Lisp” functionality.

The ACL2 Sedan programming environment [9] and the ACL2 Bridge [7] are two projects that allow
ACL2 to interoperate with another programming language. The ACL2 Sedan makes several modifica-
tions to the ACL2 REPL that allow it to extract more information about the result of an evaluation, and
operates by running an ACL2 subprocess inside of the host Java program, hooking the subprocess’ stan-
dard input and output streams up to input and output streams that the host Java program controls. The
ACL2 Bridge presents the ACL2 REPL over either a UNIX or a TCP socket, with support for format-
ting results of a request as either S-expressions or as JSON objects. Both systems make use of trust
tags, as they both need to perform potentially unsound operations to function properly (the ACL2 Sedan
overwrites some built-in ACL2 functions so that it can extract more information from ACL2; the ACL2
Bridge contains a significant amount of “raw Lisp” code for interacting with sockets and redirecting
ACL2’s output). The methodology described in this paper does not directly provide interoperation with
programming languages running outside of ACL2’s host Lisp, but it is useful when developing a system
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that does need to perform such interoperation.
Other theorem provers, proof assistants, and SAT/SMT solvers provide external APIs that allow

users programmatic control over the underlying software. As examples, Z3 provides core C and C++
interfaces [22] and Isabelle provides a Scala interface [34].

6 Conclusion

In this paper, we presented the ACL2s systems programming methodology and the ACL2s interface
functions at its core. We described our experiences using the ACL2s systems programming methodology
in several research projects. We hope that the ACL2s interface library will be useful to others who
develop tools using ACL2 and ACL2s as key components.
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