
G. Passmore, R. Gamboa (Eds.): ACL2 Workshop 2020

EPTCS 327, 2020, pp. 47–60, doi:10.4204/EPTCS.327.4

c© Rob Sumners

This work is licensed under the

Creative Commons Attribution License.

Computing and Proving Well-founded Orderings through

Finite Abstractions

Rob Sumners

Centaur Technology

rsumners@centtech.com

A common technique for checking properties of complex state machines is to build a finite abstraction

then check the property on the abstract system — where a passing check on the abstract system is

only transferred to the original system if the abstraction is proven to be representative. This approach

does require the derivation or definition of the finite abstraction, but can avoid the need for complex

invariant definition. For our work in checking progress of memory transactions in microprocessors,

we need to prove that transactions in complex state machines always make progress to completion.

As a part of this effort, we developed a process for computing a finite abstract graph of the target

state machine along with annotations on whether certain measures decrease or not on arcs in the

abstract graph. We then iteratively divide the abstract graph by splitting into strongly connected

components and then building a measure for every node in the abstract graph which is ensured to

be reducing on every transition of the original system guaranteeing progress. For finite state target

systems (e.g. hardware designs), we present approaches for extracting the abstract graph efficiently

using incremental SAT through GL and then the application of our process to check for progress. We

present an implementation of the Bakery algorithm as an example application.

1 Introduction

In order to admit a recursive function to ACL2, the user must prove that the function terminates by

showing that a function of the inputs exists which returns an ordinal (recognized by o-p) and which

strictly decreases (by o<) on every recursive call of the function. The epsilon-0 ordinals recognized by

o-p and ordered by o< are axiomatized in this way to be well-founded in ACL2. Our goal in this work is

to present a new way to prove that certain relations are well-founded. Referring to Figure 1 and given a

relation (r x y), we produce a measure function (m x) and proofs of the properties m-is-an-ordinal

and m-is-o<-when-r. This entails that the given relation r is well-founded.

(encapsulate (((r * *) => *) ((m *) => *))

...

(defthm m-is-an-ordinal (o-p (m x)))

(defthm m-is-o<-when-r (implies (r x y) (o< (m y) (m x)))))

(defchoose choose-r (y) (x) (r x y))

(defun seq-r (x) ;; any sequence of objects related by R must terminate

(declare (xargs :measure (m x)))

(if (r x (choose-r x)) (seq-r (choose-r x)) x))

Figure 1: Proving a relation is well-founded

In order to admit recursive functions, ACL2 has built-in heuristics for guessing appropriate measures

and attempts to prove them. These heuristics often work for functions with common recursive patterns

http://dx.doi.org/10.4204/EPTCS.327.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/


48 Computing and Proving Well-founded Orderings through Finite Abstractions

with user specification of measures covering the remaining cases. The theorem prover ACL2s [1] (the

sedan) has a built-in procedure which builds so-called Calling Context Graphs (or CCGs) [7] and checks

that there are no infinite paths through the CCG such that some measure doesn’t decrease infinitely often

while never increasing. The CCG checker in ACL2s significantly increases the number of functions

which can be admitted without user specification of measures. Our work shares some similarities at a

high level to the work on CCGs in ACL2s but the approach and target applications are quite different —

we will cover these differences in greater detail in Section 7.

Our primary focus is proving well-founded relations (r x y) derived from software and hardware

systems comprised of interacting state machines. In particular, for the work presented in this paper, we

focus on systems defined as the composition of finite state machines. We present a procedure in this

paper which takes the definition of (r x y), a finite domain specification for x and y and a mapping

from the concrete finite domain for x and y to an abstract domain. The procedure leverages existing

bit-blasting tools in ACL2 to construct the abstraction of r, builds an abstract measure descriptor, and

then translates this back to a proven measure on the concrete domain. In Section 2, we cover a version

of the Bakery algorithm which will be the primary example for this paper. In Section 3, we present an

overview of the procedure for generating and proving the needed measures and in Sections 4, 5, 6, we

go into the details of the steps of the procedure along with demonstration via application to the example.

We conclude the paper in Section 7 with a discussion of related work and future considerations.

2 Example: Bakery Algorithm

We will use a finite version of the Bakery algorithm as an example application throughout this paper. The

Bakery algorithm was developed by Lamport [5] as a solution to mutual exclusion with the additional

assurance that every task would eventually gain access to its exclusive section. The Bakery algorithm

has also been a focus of previous ACL2 proof efforts [9, 10].

The Bakery algorithm operates by allowing each process that wants exclusive access to first choose a

number to get its position in line and then later compares the number against the numbers chosen by the

other processes to determine who should have access to the exclusive section. The Bakery algorithm def-

inition we will use for presenting this work is defined in Figure 2 where the macros (tr+ ..) and (sh+

..) are shorthand for functions which update the specified fields of the bake-tr-p and bake-sh-p

data structures.

The function (bake-tr-next a sh) takes a local bakery transaction state “a” and a shared state

“sh” and updates the local bakery state. The function (bake-sh-next sh a) takes the same “sh” and

“a” and produces the updated shared state (a single variable sh.max storing the next position in line).

The function (bake-tr-blok a b) defines a blocking relation which denotes when one bakery process

“a” is blocked by another bakery process “b”.

Each task will start in program location 0 in which it starts its a.choosing phase. During the

a.choosing phase, the task will grab the current shared max variable sh.max and then set its own

position a.pos to be 1 more than sh.max — possibly wrapping around to a position of 0. If we do wrap

the position around to 0, then the local Bakery process will cycle through the other Bakery processes that

are completing to allow them to flush out before proceeding. After this check, the process will perform

an atomic compare-and-update at program location (or a.loc) 6 to the shared sh.max variable and ends

its a.choosing phase.

After the a.choosing phase, the process at a.loc 7 will enter another loop to check if it can proceed

to the critical section. In locations 8, 9, and 10, the process checks if the current process we are checking



Rob Sumners 49

(at index a.loop) is either still choosing a position in line or is ahead of us in line (with ties broken

by checks on the order of process indexes at location 10). Finally, after the process enters and exits the

critical section at location 13, the process will decrement the a.runs outer loop count and either branch

back to location 0 or complete and set a.done at location 17.

(define bake-tr-next ((a bake-tr-p) (sh bake-sh-p))

(b* (((bake-tr a) a) ((bake-sh sh) sh))

(case a.loc

(0 (tr+ a :loc 1

:choosing t))

(1 (tr+ a :loc 2

:temp sh.max))

(2 (tr+ a :loc 3

:pos (ctr-1+ a.temp) ;; can wrap to 0

:loop (loop-start)))

(3 (tr+ a :loc 4)) ;; possibly blocked here

(4 (tr+ a :loc 5

:loop (1- a.loop)))

(5 (tr+ a :loc (if (= a.loop 0) 6 3)

:pos-valid (= a.loop 0)))

(6 (tr+ a :loc 7)) ;; update shared variable

(7 (tr+ a :loc 8

:choosing nil

:loop (loop-start)))

(8 (tr+ a :loc 9)) ;; possibly blocked here

(9 (tr+ a :loc 10)) ;; possibly blocked here

(10 (tr+ a :loc 11)) ;; possibly blocked here

(11 (tr+ a :loc 12

:loop (1- a.loop)))

(12 (tr+ a :loc (if (= a.loop 0) 13 8)))

(13 (tr+ a :loc 14 ;; critical section

:pos-valid nil))

(14 (tr+ a :loc 15

:runs (1- a.runs)))

(15 (tr+ a :loc (if (= a.runs 0) 16 0)))

(t (tr+ a :loc 17 ;; process is done

:done t)))))

(define bake-sh-next ((sh bake-sh-p) (a bake-tr-p))

(b* (((bake-tr a) a) ((bake-sh sh) sh))

(case a.loc

(6 (if (not (ctr-> sh.max a.temp)) ;; careful on wrap to 0

(sh+ sh :max a.pos)

sh))

(t sh))))

(define bake-tr-blok ((a bake-tr-p) (b bake-tr-p))

(b* (((bake-tr a) a) ((bake-tr b) b))

(and (= a.loop b.ndx)

(case a.loc

(3 (and (= a.pos 0) b.pos-valid))

(8 (and (not (= b.pos 0)) b.choosing))

(9 (and b.pos-valid (< b.pos a.pos)))

(10 (and b.pos-valid (= b.pos a.pos)

(< b.ndx a.ndx)))))))

Figure 2: Bakery Process Definitions

Our goal is to prove that a system comprised of some number of bakery processes updating asyn-

chronously will eventually reach a state where all bakery processes are done. This is codified by admit-

ting the function (bake-run st) defined in Figure 3. The bake-run function takes a state st consisting



50 Computing and Proving Well-founded Orderings through Finite Abstractions

of a list st.trs of transaction states (one for each bakery process) and a shared variable state st.sh. The

function checks if all bakery processes are done (i.e. (bake-all-done st.trs)) and simply returns

if so. Otherwise, the function chooses a process which is ready and updates the state for that process

along with the shared state and recurs. The function (choose-ready st.trs st.sh oracle) is con-

strained (via encapsulate) to return an index for a bakery process state which is not done and is not

blocked by any other process state (via bake-tr-blok). Given the function choose-ready is con-

strained to represent any legal input selection, then bake-run represents all legal bakery runs and its

termination ensures that all runs end with all bakery processes done. We note that this does not prove the

Bakery algorithm ensures mutual exclusion and it does not prove that the Bakery algorithm avoids live-

lock or starvation — these issues were covered in [10] but require more complex specifications involving

infinite runs which are not closed-form in ACL2. The work presented in this paper to generate proven

measures for well-founded relations has been applied to the more complete proof framework presented

in [10].

(define bake-run (st orcl)

(b* (((bake-st st) st))

(if (bake-all-done st.trs)

st

(b* ((n (choose-ready st.trs st.sh orcl))

(a (nth n st.trs))

(trs (update-nth n (bake-tr-next a st.sh) st.trs))

(sh (bake-sh-next st.sh a)))

(bake-run (make-bake-st :trs trs :sh sh) (next-oracle orcl))))))

Figure 3: Bakery System Run Function

3 Overview

Our goal is to define bake-run and admit it by proving its termination. In support of this goal, we

need to prove that two relations are well-founded orderings. First, we need to build a measure showing

that on updates with bake-tr-next, each bakery process makes progress to a done state. The other

measure we need to define and prove is a little more subtle. The function choose-ready must return

a process index with a state which is not done and is not blocked. In the case of a deadlock between

some number of process states (a cycle of the bake-tr-blok relation), choosing an unblocked process

may not be possible. We need to build a measure showing that no blocking cycles exist between states;

this measure will allow us to define a function which always finds an unblocked process state. In each

of these cases, we begin with a relation (r x y) that we want to show is well-founded requiring the

definition of a measure (m x) which preserves the properties m-is-an-ordinal and m-is-o<-when-r

from Figure 1.

A standard ACL2 proof that these relations are well-founded would not only require defining a de-

creasing measure (m x), but in addition and invariably, invariant properties of the reachable process

states. In order to prove these invariants, the user will need to strengthen the invariant definitions to be

inductive. For complex systems, the definition of inductive invariants can be prohibitively expensive.

In addition, inductive invariant definitions are fragile and require maintenance when system definition

changes. The same is also true of defining measures for proving well-founded relations in complex sys-

tems — these measure definitions can also be extensive and brittle to changes in system definition. Our

goal is to build a procedure which allows the generation of inductive invariants as well as decreasing



Rob Sumners 51

1. Bakery algorithm definition :

• file: bakery.lisp

– Defines the types and functions for the Bakery algorithm process states.

– Defines GL shape specifiers and theorems to connect GL shapes to the types.

2. Building abstract models with GL and Incremental SAT :

• file: gl-fin-set.lisp

– Defines function for computing possible values for a term with finite variable bindings.

– Uses GL functions to translate the term to CNF formula.

– Uses IPASIR (Incremental SAT) to efficiently find a number of values resulting from

the given term.

• file: gen-models.lisp

– Defines reachable abstract graph builders using the functions from gl-fin-set.lisp.

– Defines functions to tag these graphs with which orderings decrease along the arcs.

3. Building measure descriptors from abstract models :

• file: cycle-check.lisp

– Defines graph algorithms for processing an abstract graph with ordering tags which

produces either a cycle in the graph for a failing case or a measure descriptor in a passing

case.

• file: bake-models.lisp

– Calls abstract model generation from gen-models.lisp to build abstract models for

the Bakery example.

– Calls graph algorithms from cycle-check.lisp to build measure descriptors for the

Bakery example.

4. Building proven measures from measure descriptors :

• file: wfo-thry.lisp

– Builds a theory relating properties of the abstract model and generated measure descrip-

tor to proving a measure.

– Uses theory of natural number lists and lists of natural lists defined in

bounded-ords.lisp.

• file: bake-proofs.lisp

– Instantiates theory from wfo-thry.lisp with abstract models and measure descriptors

from bake-models to build proofs of the needed measures.

– Also proves some auxiliary properties needed for Bakery proof.

5. Admitting bake-run using proven measures :

• file: top.lisp

– Uses proven measures from bake-proofs.lisp to define choose-ready and build a

measure to admit bake-run

Figure 4: Overview of the Procedure



52 Computing and Proving Well-founded Orderings through Finite Abstractions

measures which prove our target relations to be well-founded. Computing invariant and measure defi-

nitions not only has the benefits of requiring less human definition and tracking design change, but can

also provide more direct debug output from failed attempts. We provide an overview of the steps in our

procedure (as well as pointers to where these steps are defined in the supporting materials) in Figure 4.

We cover each of these steps in greater detail in the remaining sections of the paper as well as covering

their application to our Bakery algorithm example.

4 Building Models with GL and Incremental SAT

The tool GL [12] is an extension to ACL2 (primarily an untrusted clause processor) which targets proving

theorems on finite domains by translating the theorems to boolean formulas using symbolic simulation

and then checking the boolean formulas through BDDs or SAT with boolean AIG transformations and

simplifications. There are different ways to direct GL to translate a term to a boolean formula, but the

most basic form is to take a hyp term and concl term along with a shape specification g-bindings

for the free variables in the hyp and concl terms. GL uses the shape specification to provide a symbolic

value for the free variables and then symbolically evaluates the concl and checks if the resulting boolean

formula is valid. If the boolean check passes, then GL checks that the hyp implies the constraints specified

by the shape specification. The first step in our procedure uses the setup for GL but instead of proving that

a term is always true, we will instead compute the set of values that a term can return under evaluation

with variable bindings consistent with g-bindings.

We define the function (compute-finite-values trm hyp g-b num) which takes terms trm

and hyp, shape specification g-b, and natural number num and attempts to return (up-to num) values

from the set of possible values for trm under the assumption of hyp with free variables consistent with

g-b. The function compute-finite-values will also return a boolean is-total which is true if the

list of values returned is the entire set of possible values. We use the GL symbolic evaluation functions

to provide a translation from terms (with shape-specifications) to boolean CNF formula and then iterate

through the set of possible boolean values discovered using incremental SAT via the IPASIR library [11].

The resulting boolean valuations from repeated IPASIR tests are then translated back to ACL2 objects

and returned.

This inner IPASIR Incremental SAT loop begins with installation of the CNF formula (from the GL

translation) into the IPASIR clause database. The literals in the CNF formula corresponding to the output

of trm are also recorded. Then, within each iteration of the loop, we first call IPASIR to find a satisfying

assignment. If it is unsatisfiable then there are no more values and we return. Otherwise, we retrieve

the boolean values for the trm literals from IPASIR and add this boolean valuation to our accumulated

return set. We then add the negation of the equality of the trm literals to the retrieved boolean values as a

new clause in the IPASIR database and iterate through the loop. We terminate the loop by either reaching

an unsatisfiable IPASIR instance or exceeding the user-specified maximum number num of values. The

chief benefit of using incremental SAT is the amortization of the translation and installation of the CNF

formula along with (and more importantly) the incremental benefits of any learned clauses that the SAT

solver determines through each iteration of this loop. 1

Using the compute-finite-values function, we construct an abstract graph from the concrete

1We note that independent of the work presented in this paper, a new revision of GL, named FGL, was added to ACL2 and

integrates incremental SAT in addition to other features. In particular, FGL makes it much easier and direct to define exploration

functions like compute-finite-values using rewrite rules, but we decided to present the approach in GL given that GL is

more familiar to the ACL2 community at the time of the writing of this paper.



Rob Sumners 53

(define bake-rank-map ((a bake-tr-p))

(b* (((bake-tr a) a))

‘((:loc ,a.loc)

(:done ,a.done)

(:loop=0 ,(equal a.loop 0))

(:runs=0 ,(equal a.runs 0))

(:inv ,(and (>= a.loop 0)

(>= a.runs 0))))))

(defconsts (*bake-rank-reach* state)

(comp-map-reach :init-hyp ‘t

:init-trm ‘(bake-rank-map (bake-tr-init n r))

:step-hyp ‘(and (equal (bake-rank-map a) ,*src-var*)

(not (bake-tr-done a)))

:step-trm ‘(bake-rank-map (bake-tr-next a sh))))

Figure 5: Bakery state mapping and reachable graph construction

system definition. The function (comp-map-reach init-hyp init-trm step-hyp step-trm) in

gen-models.lisp builds the reachable graph beginning with the set of values from init-trm and

iteratively reached by steps in step-trm. Returning to the Bakery example, Figure 5 defines the mapping

(bake-rank-map a) taking a bakery process state and returning the state information needed to build a

measure of progress to a done state — or, intuitively, the mapping bake-rank-map includes enough state

information to ensure a bakery process makes progress to a done state. This includes the current location

a.loc, whether or not we are done a.done, whether or not the inner loop or outer loop variables have

counted down to 0, and then a predicate ensuring that the a.loop and a.runs counters are natural. This

last :inv predicate field is actually an inductive invariant attached to the abstract state and we include it

in the abstract state to effectively prove and use this inductive invariant during the building of the abstract

graph and later, when we add ordering information to the graph.

The comp-map-reach function in Figure 5 builds the abstract reachable graph by setting up calls

to compute-finite-values. It first calls compute-finite-values to return the set of values for

(bake-rank-map (bake-tr-init n r)) where n is defined to be an index for the process state and

r defines the number of runs or number of iterations of the outer bake-tr-next loop. The func-

tion comp-map-reach builds a shape specification based on the variables in the terms and then com-

putes the initial states. The function comp-map-reach will then iterate by computing the values for

the step term (bake-rank-map (bake-tr-next a sh)) at each node with the hypothesis (equal

(bake-rank-map a) ,*src-var*) — during each step, the special variable *src-var* is bound to

the value of the current node in the reachable graph exploration (i.e. a reached result of bake-rank-map).

The result of comp-map-reach is a graph defined as an alist where each pair in the alist associates a

node to a list of nodes which form the directed arcs — the nodes are the results of bake-rank-map for

reachable bakery process states. The nodes in the *bake-rank-reach* graph are included in Figure 6.

There are 21 nodes consisting of 1 node per location and 2 nodes for locations 5, 12, and 15. The extra

nodes for these locations is due to a split based on whether a.loop is equal to 0 in locations 5 and 12

and whether a.runs is equal to 0 in location 15.

The reachable abstract graph for bake-rank-map is not sufficient to build a measure of progress to

a done state — there are 3 backward arcs at locations 5, 12, and 15. We could solve this by adding the

full values for a.loop and a.runs to bake-rank-map but this would dramatically increase the number

of nodes in the resulting abstract graph and is clearly not viable in general. The better approach is to

tag arcs in the abstract graph with whether or not certain measures strictly decrease or possibly increase.

This ordering information is defined by the function (bake-rank-ord a o) and added via the function



54 Computing and Proving Well-founded Orderings through Finite Abstractions

ACL2 !>(strip-cars *bake-rank-reach*)

(((:LOC 0) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 1) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 2) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 3) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 4) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 5) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 5) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 6) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 7) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 8) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 9) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 10) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 11) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 12) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T))

((:LOC 12) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 13) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 14) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 15) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T))

((:LOC 15) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 T) (:INV T))

((:LOC 16) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 T) (:INV T))

((:LOC 17) (:DONE T) (:LOOP=0 T) (:RUNS=0 T) (:INV T)))

Figure 6: Nodes in reachable abstract graph from comp-map-reach

(define bake-rank-ord ((a bake-tr-p) (o ord-p))

(b* (((bake-tr a) a))

(cond ((eq o ’runs) (nfix a.runs))

((eq o ’loop) (nfix a.loop))

(t 0))))

(defconsts (*bake-rank-ord-graph* state)

(comp-map-order :reach *bake-rank-reach*

:ordr-hyp ‘(and (equal (bake-rank-map a) ,*src-var*)

(equal (bake-rank-map b) ,*dst-var*)

(equal (bake-tr-next a sh) b))

:ordr-trms (make-ordr-trms *bake-rank-ords*

’bake-rank-ord ’a ’b)))

Figure 7: Bakery component measures and ordering tag construction



Rob Sumners 55

comp-map-order in Figure 7. The function bake-rank-ord takes a bakery state and symbol identify-

ing a component measure and returns the measure value (natural values in this case but in general can be

a list of natural numbers). The function comp-map-order takes the reachable abstract graph and com-

putes (using compute-finite-values) tags for each arc in the reachable graph encoding whether the

specified component measure is either strictly-decreasing, not-increasing, or possibly-increasing along

that arc. The runs measure strictly decreases on the arcs from the node at location 14 to the nodes at

location 15 and is non-increasing on all arcs. The loop measure strictly decreases on arcs 4 to 5 and from

11 to 12, increases on arcs 2 to 3 and 7 to 8 and is non-increasing on all other arcs. This tagged reachable

graph is used in the next section to compute a measure descriptor covering the concrete relation used to

build the graph — in this case, the next-state bakery function bake-tr-next.

5 Building Measures with SCC decomposition

In the previous section, we used GL and IPASIR to construct abstract reachable graphs with arcs tagged

based on which component measures decreased or increased. The next step in our procedure is to use

an algorithm based on the decomposition of strongly connected components (SCCs) to build an object

describing how to build a full measure across the concrete relation represented by the abstract graph.

The algorithm consists of two alternating phases operating on subgraphs of the original graph (starting

with the original graph itself) and produces a mapping of the nodes in the graph to a measure descriptor

which is a list comprised of symbols (representing a component measure) or natural numbers.

• if the current subgraph is an SCC:

1. search for a component measure which never increases and decreases at least once.

2. if no such component measure is found, then find the minimal non-decreasing cycle and fail.

3. otherwise, remove the component measure’s decreasing arcs from the graph and recur.

4. cons the component measure onto the measure descriptors from the recursive calls.

• otherwise:

1. partition the graph into SCCs using a standard algorithm.

2. recursively build measure descriptors for each of the SCCs.

3. build the directed acyclic graph of SCCs and enumerate the SCCs in the graph.

4. cons the enumeration of each SCC onto the measure descriptors from the recursive calls.

Returning to the Bakery algorithm example, the resulting alist associating abstract graph nodes to

measure descriptors produced by this algorithm is given in Figure 8. The measure descriptors follow the

control flow through the locations of the bakery process state. The outer loop forms an SCC with the runs

component measure breaking the arc from location 14 to 15. Within the outer loop, the inner loops form

SCCs with the loop component measure decreasing to break the SCCs further. The measure descriptor

that results allows us to build a measure showing that the relation (and (equal y (bake-tr-next

x sh)) (not (bake-tr-done x))) is well-founded. In the next section, we cover the theory and

its instantiation which allows the transfer of these measure descriptor results into actual proofs of well-

founded relations.



56 Computing and Proving Well-founded Orderings through Finite Abstractions

;; (<abstract node -- reachable bake-rank-map>) . (<measure-descriptor>)

;; ---------------------------------------------------------------------

((((:LOC 0) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 11 0))

(((:LOC 1) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 10 0))

(((:LOC 2) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 9 0))

(((:LOC 3) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 8 LOOP 2 0))

(((:LOC 4) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 8 LOOP 1 0))

(((:LOC 5) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 8 LOOP 3 0))

(((:LOC 5) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 7 0))

(((:LOC 6) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 6 0))

(((:LOC 7) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 5 0))

(((:LOC 8) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 4 LOOP 4 0))

(((:LOC 9) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 4 LOOP 3 0))

(((:LOC 10) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 4 LOOP 2 0))

(((:LOC 11) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 4 LOOP 1 0))

(((:LOC 12) (:DONE NIL) (:LOOP=0 NIL) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 4 LOOP 5 0))

(((:LOC 12) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 3 0))

(((:LOC 13) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 2 0))

(((:LOC 14) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 1 0))

(((:LOC 15) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 NIL) (:INV T)) . (4 RUNS 12 0))

(((:LOC 15) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 T) (:INV T)) . (3 0))

(((:LOC 16) (:DONE NIL) (:LOOP=0 T) (:RUNS=0 T) (:INV T)) . (2 0))

(((:LOC 17) (:DONE T) (:LOOP=0 T) (:RUNS=0 T) (:INV T)) . (1 0)))

Figure 8: Result of computing measure descriptors for bake-rank-map

(encapsulate

(((test-rel-p * *) => *)

((test-map-e *) => *)

((test-map-o * *) => *)

((test-o-bnd) => *)

((test-a-dom) => *)

((test-nexts *) => *)

((test-chk-ord-arc * * *) => *))

... <local defuns> ...

(def-valid-wf-corr-assumption test) ;; macro generating assumptions with "test-" prefix

)

(def-valid-wf-corr-conclusion test) ;; macro generating derivations with "test-" prefix

Figure 9: “Theory” for proving generated measures

6 Proving the Generated Measures and Wrapping Up

In the book wfo-thry.lisp from the supporting materials, a “theory” is developed connecting the

successful computation of a measure descriptor from the abstract graph to the definition of a measure

proving that the concrete relation is well-founded. The structure of this book is essentially the definition

of two macros — one macro codifies the assumptions made of a set of definitions and a second macro

generates the conclusions and results derived from these assumptions. Each macro takes a name prefix

parameter which is prepended to all of the definition and theorem names generated in the macro. 2

The end of the wfo-thry book concludes with the forms in Figure 9. The function (rel-p x y) is

the relation we want to prove is well-founded. The function (map-e x) is essentially equivalent to

the bake-rank-map function from our example and (map-o x o) is the bake-rank-ord function.

The constant (a-dom) is the set of nodes in the abstract graph (as in Figure 6) and (nexts x) is a

2It is worth noting that this would be better carried out with functional instantiation in ACL2, but due to technical issues,

that has not worked in all cases — we are working on rectifying this.



Rob Sumners 57

function taking a node in (a-dom) and returning a list of successor nodes pulled from the abstract graph.

The function (chk-ord-arc x y o) takes two nodes in the abstract graph x and y and a component

measure name o and returns either :<< if the measure is strictly-decreasing, t if it is non-increasing, and

nil if it is possibly-increasing.

(defthm map-e-member-nexts

(implies (rel-p x y)

(in-p (map-e y) (nexts (map-e x)))))

(defthm map-o-decrement-strict

(implies (and (rel-p x y)

(equal (chk-ord-arc (map-e x) (map-e y) o) :<<))

(bnl< (map-o y o) (map-o x o) (o-bnd))))

(defthm map-o-decrement-non-strict

(implies (and (rel-p x y)

(equal (chk-ord-arc (map-e x) (map-e y) o) t))

(bnl<= (map-o y o) (map-o x o) (o-bnd))))

Figure 10: Assumptions for proving generated measures

The main theorems assumed about these functions are provided in Figure 10. These assumed prop-

erties provide the correlation between (rel-p x y) and the abstract graph defined by (nexts x) with

the tagging of component measure ordering on the arcs defined by chk-ord-arc. The relation (bnl<

m n o) is defined in the book bounded-ords.lisp and orders lists of naturals m and n of length o as

the lexicographic product of the naturals in the list in order. The bounded-ords book defines functions

and relations for building and ordering lists of naturals (of the same length) and lists of natural lists (po-

tentially differing lengths). These are recognized as bnlp and bnllp and ordered with bnl< and bnll<

respectively. As an aside, we note that in the supporting books for the paper, we use bplp instead of

bnlp where bplp is the same as bnlp but requires the last natural in the list to not be 0. The reason to

use bplp is to allow a list of all 0s to be used as a bottom element in certain constructions. We use bnl

and bnll throughout the paper for clarity.

There are also conversion functions bnl->o and bnll->o for converting bnls and bnlls to ACL2

ordinals preserving the well-founded ordering o< on ACL2 ordinals. We use the bounded ordinals from

bounded-ords instead of ACL2 ordinals because these bounded ordinals are closed under lexicographic

product while ACL2 ordinals are not. This allows us to build constructions using these bounded ordinals

that would be far more difficult (and in some cases, not even possible) with ACL2 ordinals.

(defthm msr-is-o-p (o-p (msr x m)))

(defthm relp-well-founded

(implies (and (valid-omap m)

(rel-p x y))

(o< (msr y m) (msr x m)))

(defthm mk-bnl-is-bnlp

(implies (valid-omap m)

(bnlp (mk-bnl x m) (bnl-bnd m)))

(defthm mk-bnl-transfers-rel-p-bnl<

(implies (and (valid-omap m)

(rel-p x y))

(bnl< (mk-bnl y m) (mk-bnl x m) (bnl-bnd m)))

Figure 11: Derivations for proving generated measures



58 Computing and Proving Well-founded Orderings through Finite Abstractions

Given the assumptions from Figure 10 (and some additional typing assumptions), we generate a mea-

sure function (msr x m) which takes an ACL2 object x and a measure descriptor mapping produced

from the SCC decomposition (as in Figure 8 and termed an omap) and produces an ACL2 ordinal. If

the mapping m satisfies the generated check (valid-omap m), then the (msr x m) returns a strictly de-

creasing ordinal which shows that (rel-p x y) is well-founded. The key derived properties generated

from the instantiation of this theory are provided in Figure 11. In addition to generating the definition of

a measure function returning ACL2 ordinals, we also generate a definition producing a bounded ordinal

bnlp and related properties. The intent is to use the mk-bnl function when one wants to use the gen-

erated ordinal in a composition to build larger ordinals — even potentially using the procedure in this

paper hierarchically where the component measure at one level is a proven generated measure at a lower

level in the hierarchy.

Returning to the Bakery example, the book bake-proofs includes the generated abstract graphs and

measure descriptor mappings (or omaps) from bake-models and sets up instantiations of the “theory”

from the wfo-thry book. The result is the generated measures for proving our target two relations

are well-founded: the relation defined by the step function bake-tr-next and the blocking relation

bake-tr-blok. In the book top.lisp, we use these results to reach our goal of defining and admitting

the bake-run function from Figure 3. We use the generated measure function bank-rank-mk-bnl to

define the function (bake-rank-bnll l sh) which conses the bnls for each bakery process state in

the list l and returns a bnll. The measure we use for admitting (bake-run st orcl) is the conversion

of the resulting bnll to ACL2 ordinals:

(bnll->o (len (bake-st->trs st))

(bake-rank-bnll (bake-st->trs st)

(bake-st->sh st))

(bake-rank-bnl-bnd))

Additionally, as we noted earlier in Section 2, we need the generated measure for proving

bake-tr-blok is well-founded in order to define choose-ready correctly. In particular,

(choose-ready l sh o) is a constrained function which ensures that if there is a bakery state which

is not done in l, then (choose-ready l sh o) will return the index of a state which is not done and

not blocked. The local witness in the encapsulation for choose-ready is:

(local (defun choose-ready (l sh o)

(find-unblok (find-undone l) l sh)))

Where (find-undone l) returns an index in l for a bakery process which is not done (if one exists)

and the function (find-unblok n l sh) takes an index n and finds an index which is not blocked in

l. The function find-unblok is (essentially) defined as:

(define find-unblok ((n natp) (l bake-tr-lst-p) (sh bake-sh-p))

(if (bake-blok (nth n l) l)

(find-unblok (pick-blok (nth n l) l) l sh)

n))

Where (bake-blok a l) returns true if any state in l blocks a and (pick-blok a l) finds an

index in l for a bakery state which blocks a (and thus if (bake-blok a l) then (bake-tr-blok a

(nth (pick-blok a l) l))). The measure used to admit find-unblok is defined using the gener-

ated measure bake-nlock-msr for proving the bake-tr-blok relation is well-founded.



Rob Sumners 59

An additional important property of (find-unblok n l sh) is that it either returns n (if (nth n

l) is not blocked) or it returns an index for a process state which is blocking another state. We prove

separately that no process in a done state can block another process and thus, if the state at index n passed

to find-unblok is not in a done state, then the state at the index returned by find-unblok is also not

in a done state.

7 Related Work and Future Work

The analysis of abstract reachable graphs with ordering tags is similar in some ways to analysis of

automata on infinite words [4], but our search for a measure construction is not the same as language

emptiness or other checks typically considered for infinite word or tree automata. As we mentioned in

Section 1, our work does share similarity to the work on CCGs in ACL2s in that both build and analyze

graphs with the goal of showing that no “bad” infinite paths exist through the graph — but the focus and

approach of each work is significantly different. CCG termination analysis in ACL2s is used to determine

if a user-specified function always terminates. A significant component of the CCG analysis is unwinding

and transforming CCGs (and CCMs) until one can no longer find bad paths and thus ensure termination.

The problem that CCG analysis attempts to tackle is intrinsically more difficult than the problems we

target. We attempt to prove a given relation is well-founded and rely on mapping function definitions

to build a closed model sufficient to then find a proven measure. Our procedure aggressively builds

the model as specified by the mapping functions and proceeds assuming it is sufficient without further

refinement – the user or outside heuristics are responsible for any further refinements. The AProVE

program analysis tool [2] provides mechanisms for automatically checking program termination. The

approach taken in AProVE is to translate the source program into a term rewriting system and apply a

variety of analysis engines from direct analysis of the term rewriting to translation into checks for SAT

or SMT. Similar to CCG analysis in ACL2s, the primary difference between AProVE and our work is

an issue of focus. The contexts we target benefit from the assumption of mapping functions and (in

the case of this paper) finite-state systems which can be processed by GL. This allows us to build the

tagged abstract reachable graph directly with less reliance on having sufficient rewrite rules and term-

level analysis and heuristics.

There are many ways to extend the work presented. We would like to add an interface into SMTLINK

[8] for either building the abstract graphs and/or the addition of ordering tags to the arcs in the graphs.

SMTLINK is more limited than GL in what ACL2 definitions it can support, but SMTLINK would be a

nice option to have in the cases where the definitions were viable for SMTLINK. While we assumed the

definition of mapping functions and component measures for the sake of this paper, it is not difficult

to write heuristics to generate candidate mappings and measures either from datatype specifications in

the source definition or from static analysis results. Further, the results and steps in the process can be

analyzed to determine which refinements to apply to the mapping and component measures in an “outer

loop” to our procedure. From our limited experience, this is best addressed with guidance from the

domain of application and the types of relations and systems that the user wants to analyze.



60 Computing and Proving Well-founded Orderings through Finite Abstractions

References

[1] P. Dillinger, P. Manolios, D. Vroon & J.S. Moore (2007): ACL2s: The ACL2 sedan. Electronic Notes in

Theoretical Computer Science - ENTCS 174, doi:10.1016/j.entcs.2006.09.018.

[2] J. Giesl, C. Aschermann, M. Brockschmidt & et al. (2017): Analyzing Program Termination and Complexity

Automatically with AProVE. Journal of Automated Reasoning 58, doi:10.1007/s10817-016-9388-y.

[3] M. Kaufmann, P. Manolios & J.S. Moore (2000): Computer-Aided Reasoning: An Approach. Kluwer Aca-

demic, doi:10.1109/32.588534.

[4] O. Kupferman (2018): Automata Theory and Model Checking. Handbook of Model Checking (2018),

doi:10.1007/978-3-319-10575-8_4.

[5] L. Lamport (1974): A new solution of Dijkstras concurrent programming problem. Communications of the

ACM 17(8), doi:10.1145/3335772.3335782.

[6] P. Manolios, K. Namjoshi & R. Sumners (1999): Linking model-checking and theorem-proving with well-

founded bisimulations. Proceedings of the 11th International Conference on Computer-Aided Verification

(CAV 1999) 1633, doi:10.1007/3-540-48683-6_32.

[7] P. Manolios & D. Vroon (2006): Termination Analysis with Calling Context Graphs. Proceedings of the 18th

International Conference on Computer-Aided Verification (CAV 2006), doi:10.1007/11817963_36.

[8] Y. Peng & M. Greenstreet (2018): Smtlink 2.0. Proceedings of 15th International Workshop on the ACL2

Theorem Prover and Its Applications (ACL2 2018), doi:10.4204/EPTCS.280.11.

[9] S. Ray & R. Sumners (2013): Specification and Verification of Concurrent Programs Through Refinements.

Journal of Automated Reasoning 51(3), doi:10.1007/s10817-012-9258-1.

[10] R. Sumners (2017): Proof Reduction of Fair Stuttering Refinement of Asynchronous Systems and Applica-

tions. Proceedings of 14th International Workshop on the ACL2 Theorem Prover and Its Applications (ACL2

2017), doi:10.4204/EPTCS.249.6.

[11] S. Swords (2018): Incremental SAT Library Integration Using Abstract Stobjs. Proceedings of 15th Inter-

national Workshop on the ACL2 Theorem Prover and Its Applications (ACL2 2018), doi:10.4204/EPTCS.

280.4.

[12] S. Swords & J. Davis (2011): Bit-Blasting ACL2 Theorems. Proceedings of 10th International Workshop on

the ACL2 Theorem Prover and Its Applications (ACL2 2011), doi:10.4204/EPTCS.70.7.

http://dx.doi.org/10.1016/j.entcs.2006.09.018
http://dx.doi.org/10.1007/s10817-016-9388-y
http://dx.doi.org/10.1109/32.588534
http://dx.doi.org/10.1007/978-3-319-10575-8_4
http://dx.doi.org/10.1145/3335772.3335782
http://dx.doi.org/10.1007/3-540-48683-6_32
http://dx.doi.org/10.1007/11817963_36
http://dx.doi.org/10.4204/EPTCS.280.11
http://dx.doi.org/10.1007/s10817-012-9258-1
http://dx.doi.org/10.4204/EPTCS.249.6
http://dx.doi.org/10.4204/EPTCS.280.4
http://dx.doi.org/10.4204/EPTCS.280.4
http://dx.doi.org/10.4204/EPTCS.70.7

	1 Introduction
	2 Example: Bakery Algorithm
	3 Overview
	4 Building Models with GL and Incremental SAT
	5 Building Measures with SCC decomposition
	6 Proving the Generated Measures and Wrapping Up
	7 Related Work and Future Work

