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When ACL2 is used to model the operational semantics of computing machines, machine states are
typically represented by terms recording the contents of the state components. When models are
realistic and are stepped through thousands of machine cycles, these terms can grow quite large and
the cost of simplifying them on each step grows. In this paperwe describe an ACL2 book that uses
HIDE and metafunctions to facilitate the management of large terms representing such states. Be-
cause the metafunctions for each state component updater are solely responsible for creating state
expressions (i.e., “writing”) and the metafunctions for each state component accessor are solely re-
sponsible for extracting values (i.e., “reading”) from such state expressions, they can maintain their
own normal form, useHIDE to prevent other parts of ACL2 from inspecting them, and use honsing
to uniquely represent state expressions. The last feature makes it possible to memoize the meta-
functions, which can improve proof performance in some machine models. This paper describes
a general-purpose ACL2 book modeling a byte-addressed memory supporting “mixed” reads and
writes. By “mixed” we mean that reads need not correspond (inaddress or number of bytes) with
writes. Verified metafunctions simplify such “read-over-write” expressions while hiding the poten-
tially large state expression. A key utility is a function that determines an upper bound on the value
of a symbolic arithmetic expression, which plays a role in resolving writes to addresses given by
symbolic expressions. We also report on a preliminary experiment with the book, which involves the
production of states containing several million function calls.

1 Background

ACL2 [3, 2] is frequently used to model computing machines via operational semantics. It is not difficult
to configure the ACL2 theorem prover so that it can use the definitions of the machine semantics and a few
well-chosen rewrite rules to step through code sequences, split on tests, induct on loops, etc. Examples
of these methods being used to prove functional correctnessof code under formal operational semantics
may be found in numerous publications [6, 7, 10, 1]. Such symbolic state terms can grow quite large
when many steps are composed. The question addressed here is: how can we exploit ACL2’s rewriter
to symbolically execute formalized code while preventing it from slowing down as state expressions get
large?

This paper describes the Stateman book for managing large terms representing machine states in
ACL2 models of computing machines. “Stateman” stands for “state management.” This is a work in
progress and this paper has many brief descriptions of intendedFuture Work .

The idealistic dream is that a user wishing to model some byte-addressed computing machine and
do code proofs or run the Codewalker tool1 might build the operational semantics on top of the state

∗This work was partially supported by ForrestHunt, Inc.
1Codewalker extracts ACL2 functions from machine code giventhe formal operational semantics of the ISA and is sim-
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provided by Stateman and thereby inherit the state management techniques here described. But machine
models are very idiosyncratic. Users may actually need to design their own states and merely exploit the
basic techniques described here. Thus, this paper focuses mainly on the design decisions in our work. As
usual, readers are welcome, indeed encouraged, to read the Stateman book itself and use it as the basis
of their own versions.

We start with a brief description of our generic state, then we present the highlights of our state
management techniques, provide some examples, discuss a few details, and present some preliminary
performance measures.

2 The Generic State

The book provides a generic single-threaded object,ST (henceforth,st), providing three fields. See :DOC
stobj.2

(defstobj st

(I :type unsigned-byte :initially 0) ; program counter

(S :initially nil) ; status

(M :type (array (unsigned-byte 8) (*m-size*)) ; memory

:initially 0

:resizable nil

)

:inline t

:renaming

((UPDATE-I !I)

(UPDATE-S !S)

(UPDATE-MI !MI)

(M-LENGTH ML)))

The primitive accessors areI, S, andMI, and the primitive updaters are!I, !S, and!MI.3 TheI and
S fields were originally intended for the machine’s instruction counter and status flag, andMI provides
a byte addressed memory of 8-bit bytes. The person using thisbook to model the state of a computing
machine need not use theI andS fields for their implied purposes. The modeler might, for instance,
choose to store all state information including the instruction counter and various status bits in the byte
addressed memory and ignore theI andS fields altogether.

Byte-addresses are integers starting at 0. The byte-addressed memory is of fixed size,*m-size*,
which is currently only5312. This constant is a holdover from the earliest use of the state and (Future
Work ) will be generalized in future work. Indeed, the whole development would have been easier were
there no upper bound on memory size. Imposing an upper bound forced certain issues to be dealt with –

ilar to the HOL decompilation work by Magnus Myreen[8, 9]. See the README file in the Community Book directory
projects/codewalker/. The version of Codewalker used here is still experimental.

2When we say “See :DOCx” we mean see the documentation topicx in the ACL2 documentation, which may be found by
visiting the ACL2 home page[4], clicking on The User’s Manuals, then clicking on the ACL2+Books Manualand typingx into
the “Jump to” box.

3The third field of the single-threaded object is namedM and is an array, but only the elements can be accessed or changed,
with MI and!MI.
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issues that are necessarily raised in any realistic model. The magnitude of that upper bound is practically
irrelevant from the research perspective.

The Stateman book usesMI and!MI only to provide support for two more general utilities,R and!R,
for reading and writing an arbitrary number of bytes. We do not think of MI and!MI as “visible” to the
user of Stateman.

It is best to think of the generic state as providing the following functionality:

expression value
(I st) instruction counter of statest
(S st) status flag of statest
(R a n st) natural number obtained by readingn bytes starting

at addressa in the memory of statest
(!I v st) new state obtained from statest by setting

the instruction counter tov
(!S v st) new state obtained from statest by setting the status

flag tov
(!R a n v st) new state obtained by writingn bytes of natural

numberv into the memory ofst starting at addressa

R and!R use the “Little Endian” convention. For example,(!R a n v st) writes the less signifi-
cant bytes ofv to the lower addresses, with the least significant byte written to addressa and all other
bytes written to larger addresses. (Future Work ) We would like to support either Little or Big Endian
conventions.

Nests of!I, !S, and!R applications are calledstate expressionsor state termsbecause they denote
machine states. Any term whose top function symbol isI, S, or R applied to a state expression is
called aread-over-writeexpression. Any term whose top function symbol is!I, !S, or !R applied to
a state expression is called awrite-over-writeexpression. Of course, write-over-write expressions are
themselves state expressions.

Our concern here is simplifying read-over-write and write-over-write expressions in support of code
proofs and code walks. These issues are straightforwardly managed with rewrite rules. For example, the
read over write expression(R 24 8 (!R 40 8 v st)) can be simplified to(R 24 8 st). But as state
expressions grow large – and they can grow very large when long code sequences are involved – two
problems crop up.

First, the rewriter tends to re-simplify parts of states that have already been simplified. Second, the
traditional rewrite rules for handling byte-addressed memory involve backchaining to establish that byte
sequences do not overlap. For example, the rewrite rules that replace(R a n (!R b k v st)) by (R a
n st) have the hypotheses(natp a), (natp b), (natp n), (natp k), and either(< (+ a n) b) or
(< (+ b k) a). The inequalities can get very expensive whena andb are large arithmetic expressions.
Furthermore,a andb typically become large arithmetic expressions when the code being explored is
doing indexed addressing (as in array access) and long code sequences are involved in the computation
of the indices. Every read-over-write and write-over-write expression raises such anoverlapquestion.
Furthermore, a read of a deeply nested state expression typically raises an overlap question for each write
in the nest. For speed we must answer overlap questions without resorting to heavy-duty arithmetic.



96 Stateman

3 Highlights of Key Design Decisions

Some of the key decisions in the design of Stateman are listedand briefly elaborated below. In the next
section, where we give examples, we discuss the implications of some of these decisions.

• Manage read-over-write and write-over-write expressionsexclusively with metafunctions:
Stateman defines a metafunction for each ofI, S, R, !I, !S, and!R. These metafunctions are
namedmeta-I, meta-S, etc. Like all metafunctions, they take terms as input and yield possibly
different terms as output.4 The metafunctions forR and!R are extended metafunctions and thus
additionally take the metafunction context and ACL2 state as arguments. These two metafunctions
only use the type-alist in the metafunction context and theyignore the ACL2 state. However, the
biggest problem faced by these functions is the read-over-write overlap questions: “is one address
less than another?”, given only the syntactic expressions representing the two addresses. This
motivates the next item.

• Implement a syntactic interval inference mechanism: Imagine a function that when given an
arithmetic/logical term, can infer an upper bound. This is quite different functionality than nor-
mally found in ACL2. ACL2 can be configured to answer questions like “Is α less than 16?” but
here we want a utility for answering “What number isα less than?” This functionality is especially
important in codewalking unknown code. Suppose the code in question usesα as an index into
some array at locationbase. What part of the state is changed if the code writes tobase+α? If
you know enough about the code to know the bound on the array, you could undertake to prove
thatα is in bounds and thus conclude that only the array is affectedby the write. But if you do not
know much about the code, you need an inference mechanism to deduce a bound onα . Stateman
provides a verified interval inference mechanism namedAinni which is discussed in more detail
in Section 5.

• Implement syntactic means of deciding some inequalities: GivenAinni, it is possible to im-
plement the extended metafunctionmeta-< that takes an inequality and the metafunction context
and decides many inequalities,(< α β), by computing intervals forα andβ and comparing their
endpoints, e.g., if the upper bound ofα is below the lower bound ofβ , then the inequality is true.
This can save backchaining into linear arithmetic on large arithmetic/logical expressions.

• Implement syntactic means of simplifying someMOD expressions: In machine arithmetic, ex-
pressions of the form(MOD α ’n) frequently arise, wheren is some natural number. Some ex-
pressions of this sort can be simplified by syntactic means given the ability to infer bounds onα .
See Section 6.

• Use syntactic means to decide overlap questions: Suppose the type-alist tells us that the 32-bit
word at address 8, i.e.,(R 8 4 st) is less than 16. Then a quick syntactic scan of the address
expression(+ 3200 (* 8 (R 8 4 st))) reveals that the value lies in the interval [3200, 3320]
and so reading, say, 3 bytes from that address might touch anyaddress in the interval [3200, 3322].

• Insist that all byte counts be quoted constants: This facilitates the interval analysis mentioned
above. We do not regard it as a restriction given Stateman’s intended application for code analysis.
In most ISAs the number of bytes to be manipulated by an instruction is explicitly given in the
instruction or else is fixed by the instruction or the architecture.

4Metafunctions traffic in fully translated terms but the examples in this paper generally show untranslated terms for read-
ability.
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• Do not put nested!R-expressions into address order: We leave the most recent writes at the
top of the state expression under the assumption that program code tends to read from addresses
recently written.

• Eliminate perfectly shadowed writes: When!R, with addressa and byte countn, is applied
to a state expression already containing an application of!R with addressa with byte countn,
Stateman eliminates the inner (earlier) one. Similar considerations apply to nested!I and!S
calls. This reduces the size of the final state expression. But Stateman does not try to eliminate
partially shadowed writes. We explain below.

• Usehons rather than cons to create state expressions: This means that if the same state ex-
pression is created along different paths of a code proof or walk, no additional space is allocated;
furthermore, hons facilitates the use of memoization.

• HIDE the state expressions produced by the metafunctions: This ensures that no rewrite rule
touches them. For example, if a machine model mentions an expression like

(!R 32 4 v

(!R 8 4 (+ (R 8 4 st) 4)

(!I 123

(!S NIL st))))

as would happen if it set the status flag toNIL, the instruction pointer to123, incremented the
word at address 8 by 4 and wrotev to the word at address 32, then the inside-out rewriting of
ACL2 would invoke the metafunctions for!S, then!I, and then!R (twice) and ripple aHIDE out
so the final term would be as exactly as above but with a singleHIDE around it at the top level. It
would never be further simplified except by these metafunctions.

• HIDE some values extracted by reads from hidden states to avoid re-simplifying them: This
is a controversial decision and is still quite unsettled. (Future Work ) The issue is that over long
codewalks (involving thousands of instructions) the expressions built up as values in the memory
can be huge. By embedding extracted values inHIDE expressions, they are not re-simplified. The
downside is that it can be impossible to decide simple tests because one does not know much
about the hidden expressions. A compromise would be to bury the HIDEs several levels down
in the extracted expressions, leaving the top few function symbols available. At the moment, all
extracted values are hidden except constants and calls ofR. This means that the metafunctions here
must remove someHIDEs from values before storing them into memory.

• Prove guards and well-formedness guarantees of the metafunctions: ACL2 users should be
well aware of the efficiency advantages of verifying the guards on functions used in heavy-duty
computations. A less familiar topic, though, is discussed in the new feature documented in :DOC
well-formedness-guarantee. It has long been the case that when a metafunction is applied the
theorem prover checks that the result is a well-formed term,by running the functiontermp on the
output and the current ACL2 world. This hidden cost of metafunctions goes all the way back to the
origin of ACL2 in 1989. However, when the output of a metafunction is huge, the well-formedness
check can be expensive, and the basic supposition in the Stateman work is that state expressions
are huge. A new feature of ACL2 Version 7.2 makes it possible to skip the well-formedness check
by proving that the metafunction always returns atermp. We have found that providing such
well-formedness guarantees is worthwhile in Stateman. See[5]. We give some data on this below.
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4 Examples

We illustrate these ideas with a few examples. The reader maynotice two odd aspects to our examples.
The first is that most addresses illustrated are quoted constants. The second is that when non-constant
expressions occur as addresses the only variable involved is st and it always occurs in a primitive state
accessor like(R a n st). We do not believe these are serious constraints if Statemanis used for code
analysis: Typical code, especially binary machine code, refers to fixed addresses or offsets from other
addresses (as in array indexing and stack slots relative to some stack or frame pointer in a register); “vari-
ables” are just the contents of memory locations at such addresses. However (Future Work ) it would
not be difficult to support variable symbols provided the context established natural number bounds on
their values.

Examples (1)–(7) below are extracted verbatim from a session log that started in a fresh ACL2 with
the inclusion of the Stateman book. Because this is a work in progress, we keep the version number as
part of the book name right now. This log started by includingstateman22.lisp which is included in
the supplemental material. The supplemental material alsoincludessimple-examples.lsp, a file (not
a book) showing the actual input forms for these and some other examples in this paper. We hope those
forms can help the user who wishes to extend Stateman’s functionality.

ACL2 !>(meta-!I ’(!I ’123 st)) ;(1)
(HIDE (!I ’123 ST))

ACL2 !>(meta-!R ’(!R ’0 ’4 (R ’16 ’4 st) (HIDE (!I ’123 ST))) ;(2)
nil state)

(HIDE (!R ’0 ’4 (R ’16 ’4 ST) (!I ’123 ST))) ;(st′)

ACL2 !>(meta-I ’(I (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST))))) ;(3)
’123

ACL2 !>(meta-R ’(R ’0 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(4)
nil state)

(R ’16 ’4 ST)

ACL2 !>(meta-R ’(R ’2 ’2 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(5)
nil state)

(HIDE (ASH (R ’16 ’4 ST) ’-16))

ACL2 !>(meta-R ’(R ’8 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(6)
nil state)

(R ’8 ’4 ST)

ACL2 !>(meta-R ’(R ’2 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(7)
nil state)

(HIDE (BINARY-+ (ASH (R ’4 ’2 ST) ’16)

(ASH (R ’16 ’4 ST) ’-16)))
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In example (1) we call the metafunction for!I on the term(!I ’123 st), just as the rewriter does
when it encounters a!I-term. The result is a hidden state. Notice that metafunctions traffic in fully
translated terms.

In example (2) we call the metafunction for!R on the!R-term that writes the 4-byte value of(R ’16

’4 ST) to location0 in the previously produced (now hidden) state. Note that themetafunction for!R
takes two additional arguments, the metafunction context,in this casenil, and the ACL2 state object,
sincemeta-!R is an extended metafunction. Again, nothing significant happens except the new state is
hidden. Henceforth in this narrative we will refer to the state produced by (2) asst′.

In example (3) we use the metafunction forI to extract the instruction counter ofst′.
In example (4) we use the metafunction forR to read (4 bytes of) the contents of address 0 inst′. The

result is exactly what was written in (2) because it was 4 bytes long.
In example (5) we read the last two bytes of that previously written quantity, that is, we read 2 bytes

starting at address 2 inst′. Two things are noteworthy. One is that it is reported as the 4-byte quantity that
was written in (2), shifted down by 16 bits. The second is thatit is hidden – the “controversial” decision.

In example (6) we read from an address above any affected by the write inst′. The result is whatever
was there in the original statest.

In example (7) we read 4 bytes starting at address 2 inst′. This is a “mixed” read in the sense that the
result involves the last two bytes from what was written at address 0 and the bytes that were at locations
4 and 5 of the original statest. It is expressed as a sum, with the latter bytes shifted up. Again, it is
(controversially) hidden.

It is important to realize that all of these transformationsare carried out by verified metafunctions
without involving rewrite rules, linear arithmetic, or other heavy-duty theorem proving. Consequently,
these transformations are very fast.

Since theI andS slots are unaffected by writes to memory and do not involve addresses or overlap
issues our examples below focus onR- and!R-terms.

Henceforth, we will display untranslated terms for both input and output and will not exhibit the calls
of the relevant metafunction. Instead, the reader should understand that the notation “α =⇒ β ” means
that α is transformed toβ by the metafunction appropriate for the top function symbolof α . Since
bothmeta-R andmeta-!R take a metafunction context we make clear in the surroundingnarrative what
the context is. This only involves describing the governingassumptions (as encoded in the type-alist).
Finally, instead of writing something like “α =⇒ (IF hyp β α)” we will generally write “α =⇒† β ”
and describe the side conditionhypgenerated by the metafunction in the accompanying narrative. Recall
that before such anα is replaced byβ the rewriter must establishhyp.

Given a metafunction context in which the type-alist is empty, we can thus recap lines (1)–(7) above
with:

(!I 123 st) ;(1)
=⇒

(HIDE (!I 123 st))

(!R 0 4 (R 16 4 st) (HIDE (!I 123 st))) ;(2)
=⇒

(HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))

(I (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(3)
=⇒
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123

(R 0 4 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(4)
=⇒

(R 16 4 st)

(R 2 2 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(5)
=⇒

(HIDE (ASH (R 16 4 st) -16))

(R 8 4 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(6)
=⇒

(R 8 4 st)

(R 2 4 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(7)
=⇒

(HIDE (+ (ASH (R 4 2 st) 16)

(ASH (R 16 4 st) -16)))

Relatively little work is done on simplifying writes, asidefrom looking for shadowed writes to be
deleted. For example, one might wonder at the simple

(!R 8 4 v st) ;(8)
=⇒

(HIDE (!R 8 4 v st))

sincev might be too big to fit in 4 bytes. But instead of truncatingv on write we do so on read:

(R 8 4 (HIDE (!R 8 4 v st))) ;(9)
=⇒

(HIDE (MOD (IFIX v) 4294967296))

Now let the metafunction context encode the assumption that(R 16 4 st) is less than 16. In the
example below, we treat(R 16 4 st) as an index into a QuadWord array (8-byte per entry) based at
address 3200.

(R (+ 3200 (* 8 (R 16 4 st))) 8 ;(10)
(HIDE (!R 3600 4 v (!R 8 4 w st))))

=⇒†

(R (+ 3200 (* 8 (R 16 4 st))) 8 st)

(!R (+ 3200 (* 8 (R 16 4 st))) 8 u ;(11)
(HIDE (!R 3600 4 v

(!R 8 4 w
(!R (+ 3200 (* 8 (R 16 4 st))) 8 x

st)))))



J S. Moore 101

=⇒

(HIDE (!R (+ 3200 (* 8 (R 16 4 st))) 8 u
(!R 3600 4 v

(!R 8 4 w st))))

The “†” on the transformation in (10) indicates that a side condition was generated. That side condition
is (<= (R 16 4 st) 15), and it must be established before the replacement is made. Establishing such
side conditions should be trivial since they are extracted from the type-alist in the metafunction context.
Given that condition, we see that the 8-byte read at(+ 3200 (* 8 (R 16 4 st))) may only touch
bytes in the interval [3200, 3327]. We discuss this intervalanalysis further below. But because of it, the
metafunction can determine that neither of the two writes inthe hidden state of (10) is relevant since the
4 bytes starting at 3600 are above the target interval and 4 bytes starting at 8 are below it.

Interestingly, no side condition is necessary on transformation (11). If(R 16 4 st) is sufficiently
large the new write at(+ 3200 (* 8 (R 16 4 st))) mightshadow out the write at 3600, but that does
not matter because the new write is added at the top of the expression (chronologically after the write at
3600), so the answer above is correct. And, regardless of themagnitude of(R 16 4 st), the new write
shadows out the earlier one at the exact same address and the earlier write can be dropped.

Our final example is contrived to show a mixed read that spans several chronologically separated
writes. The empty metafunction context is sufficient for this example. We will ultimately read 8 bytes
starting at address 3. But consider the writes that create the relevant memory. The write of 4 bytes ofv
at address 2 is partially shadowed by the write of 4 bytes ofu at address 0. The writes at 14 and 19 are
irrelevant because we only need bytes 3 through 10. The first byte of our answer is the high order byte
of u written at address 3. The next two bytes are the two high orderbytes ofv at addresses 4 and 5. Then
we get 3 bytes from the originalst at addresses 6, 7, and 8, and finally we get the two low order bytes
from w at addresses 9 and 10. We then assemble these 8 bytes using theLittle Endian notation and put
the final sum into ACL2’s term order.

(R 3 8 ;(12)
(HIDE

(!R 14 5 x
(!R 0 4 u

(!R 19 8 y
(!R 9 2 w

(!R 2 4 v st)))))))
=⇒

(HIDE (+ (ASH (R 6 3 st) 24)

(+ (MOD (ASH (IFIX u) -24) 256)

(+ (ASH (MOD (IFIX w) 65536) 48)

(ASH (MOD (ASH (IFIX v) -16) 65536) 8)))))

(Future Work ) We are dissatisfied with the normal form of expressions denoting the results of mixed
reads. To be more precise, we do not have enough experience with it yet to know whether it is sufficient
for our purposes. The current implementation usesIFIX to convert terms to integer form as required
by basic rules forASH (if syntactic analysis cannot establish that the term returns an integer), usesMOD
to truncate unneeded higher order bits, and usesASH to shift bits into the right locations. The question
however is this: Suppose such an expression is written to a memory location and then one must read a
few bytes from it. The current metafunctions produceASH/MOD-terms that could be further simplified.
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But given the controversial decision toHIDE the complicated results of reads, that simplification should
be done insidemeta-R.

Stateman does not produce normalized states for at least tworeasons. First, it does not put writes
into address order. Second it does not eliminate partial shadows. Why bother to eliminate partially
shadowed material if one can read out the answers if and when needed? This consideration is especially
relevant since resolving a partial shadow generally makes the state syntacticallylarger, e.g., to resolve
the shadowing of the write at 2 above one would replace(!R 2 4 v st) by the larger term(!R 4 2

(ASH (IFIX v -16)) st). It is not clear this is an improvement. Furthermore, we suspect partial
shadowing is fairly rare compared to “perfect shadowing” where then bytes starting at addressa are
repeatedly reused for differentn byte values.

(Future Work ) But the lack of normalization raises the question of determining state equality. State-
man does not support state equality at the moment. But the plan is to support it by a metafunction that
announces the equality of two states formed by different sequences of writes to the same initial state by
checking that every read of every byte written to either state produces the same expression.

5 Ainni: Abstract Interpreter for Natural Number Intervals

Perhaps the most important idea to come out of this work so faris the development and verification of
an ACL2 function that takes the quotation of a term together with a type-alist and attempts to determine
a closed natural number interval containing the value of theterm. This function is calledAinni, which
stands forAbstract Interpreter for Natural Number Intervals. Ainni can be thought of as a “type-
inference” mechanism for a class of ACL2 arithmetic expressions, except the “types” it deals with are
intervals over the naturals.

Ainni explores terms composed of constants, the statest, and the function symbols+, -, *, R, HIDE,
MOD, ASH, LOGAND, LOGIOR, andLOGXOR.5 (Future Work ) This set of function symbols was determined
by seeing what functions were introduced by the codewalk of aparticularly large and challenging test
program: an implementation of DES. Essentially,Ainni should support all of the basic functions used
in the semantics of the ALU operations of the machine being formalized. We therefore anticipate that
the list here will have to grow.

Ainni recursively descends through the term “evaluating” the arguments of function calls – only in
this case that means computing intervals for them – and then applying bounders (see the discussion of
“bounders” in :DOCtau-system) corresponding to the function symbols to obtain an interval contain-
ing all possible values of the function call. At the bottom, which in this case are calls ofR, Ainni uses
the type-alist to try to find bounds on reads that are tighter than the syntactically apparent 0≤ (R a n
st) ≤ 28n−1. (Future Work ) It is here, at the “bottom” of the recursion, that we could add support for
variable symbols or unknown function symbols.

For example, consider the quotation of the term

(+ 288 (* 8 (LOGAND 31 (ASH (R 4520 8 st) -3)))).

In the absence of any contextual information,Ainni returns the natural number interval [288,536]. The
reasoning is straightforward: we know that(R 4520 8 st) is a natural in the interval [0, 264−1]. The
tau-bounder forASH tells us that shifting it right 3 reduces that to [0, 261−1], and then the tau-bounder
for LOGAND tells us that bitwise conjoining it with31 shrinks the interval to [0,31]. Multiplying by8
makes the interval [0, 248], and adding288 makes it [288, 536].

5Several of these symbols are macros that expand into calls offunction symbols thatAinni actually recognizes.
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By default(R 4520 8 st) is known to lie in [0,264−1], but the type-alist might restrict it to a smaller
interval. For example, it might assert that(R 4520 8 st) < 24, in which caseAinni determines that
the term above lies in the interval [288,304].

In addition to returning the interval,Ainni also returns a flag indicating whether the term was one
thatAinni could confine to a bounded natural interval and a list of hypotheses that must be true for its
interval to be correct. These hypotheses have two sources: (i) assumptions extracted from the context
and (ii)Ainni’s inherent assumptions (such as a built-in assumption thatno computed value is negative6,
which might translate to the hypothesis(not (< x y)) if the term is(- x y)).

Finally, Ainni is verified to be correct. That is, the certification of Stateman involves a proof of the
formal version of:

Let x be the quotation of an ACL2 term andta be a type-alist. Letf lg, (h1 . . . hk) and
[lo, hi] be the flag, hypotheses, and the interval returned byAinni on x andta. Then if f lg
is true:

• (h1 . . . hk) is a list of quotations of terms,
• lo andhi are natural numbers such thatlo ≤ hi, and
• if (E hi a) = T for each 1≤ i ≤ k, thenlo ≤ (E x a) ≤ hi, whereE is an evaluator

that recognizes the function symbols handled byAinni.

Ainni is used inmeta-R to handle the overlap questions that arise. In addition, it is used inmeta-<
to decide some inequalities and inmeta-MOD to simplify someMOD expressions.

Furthermore,Ainni is fast. For example, in the codewalk of the DES algorithm, one particular index
expression is a nest of 382 function calls containing every one of the function symbols known toAinni.
Just for fun, here is the expression, printed “almost flat” (without much prettyprinting):
(LOGIOR

(LOGAND 32 (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840

(R 4520 8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520

8 ST)) -3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST))

-5) (ASH (MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH

(MOD (ASH (R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST))

15) (ASH (MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD

(ASH (R 4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8

ST) -3) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+

4376 (* 8 (R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2))

(ASH (MOD (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840 (R 4520

8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520 8 ST))

-3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST)) -5) (ASH

(MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH (MOD (ASH

(R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST)) 15) (ASH

(MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD (ASH (R

4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8 ST) -3)

2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+ 4376 (* 8

(R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2) 32) -1)

(ASH (MOD (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840 (R 4520

8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520 8 ST))

-3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST)) -5) (ASH

(MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH (MOD (ASH

(R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST)) 15) (ASH

(MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD (ASH (R

4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8 ST) -3)

2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+ 4376 (* 8

(R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2) 2) 4))

While the first argument of theLOGIOR is easy to bound the second and third are problematic.Ainni

bounds theLOGIOR to [0,63] in less than one hundredth of a second on a MacBook Pro laptop with a 2.6
GHz Intel Core i7 processor.

By the way, the second argument of theLOGIOR above actually lies in [0,15] and the third in [0,16].
But proving those two bounds with, say,arithmetic-5/top, takes about 33 seconds each, without
Ainni andmeta-<. But the main point is thatAinni infersa correct bound.

6We anticipate that any ISA employing Stateman’s byte-addressed memory would use twos-complement arithmetic.
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6 Syntactic Simplification of MOD Expressions

Machine arithmetic introduces manyMOD expressions in which the second argument is constant. State-
man provides the extended metafunctionmeta-MOD that implements the following rules, wherei, j, and
k are natural constants. The function also uses a concept called “syntactic integer” realized by a function
which takes the quotation of a term and determines whether itis obviously integer valued. For exam-
ple, a sum expression is a syntactic integer provided the twoarguments are syntactic integers, anASH

expression is a syntactic integer provided the first argument is, and aLOGAND expression is a syntactic
integer regardless of the shape of the arguments. In the rules below,x, x1, . . . ,x j must be syntactic integer
expressions.

• (MOD x 0) = x

• (MOD i k) can be computed if both arguments are constants

• (MOD (MOD z j) k) = (MOD z j), if j ≤ k

• (MOD (MOD x j) k) = (MOD x k), if k divides j

• (MOD (R a i st) k) = (R a i st), if 256i ≤ k

• (MOD (+ x1 . . . (MOD x j) . . . x j) k) = (MOD (+ x1 . . . x . . . x j) k), if k divides j

• (MOD x k) = x, if Ainni claims the upper bound ofx is belowk

The last rule is not only applied to the argument ofmeta-MOD but also to the output of the second-
to-last rule.

Some of these rules are built intoarithmetic-5/top but in the interests of speed, Stateman does
not exportarithmetic-5/top and does much arithmetic simplification in its metafunctions.

7 Some Details of Meta-R and Meta-!R

The most complicated of the metafunctions aremeta-R andmeta-!R, which use all of the functionality
described above. The former is actually more complicated than the latter because the former deals with
mixed read-over-write. We briefly discuss some design issues for these two functions, starting with the
simpler,meta-!R, but we urge the interested reader to inspect the code in the Stateman book.

Since a successful application ofmeta-!R will transform (!R a ’n v (HIDE st′)) into (HIDE

(!R a ’n v st′)), we must be careful not to fire the metafunction too soon: noneof the subterms will
be rewritten again! Thusmeta-!R checks whethera or v contain terms that might still be rewritten, e.g.,
embeddedIFs, unexpandedLAMBDA applications, or read-over-writes that have not yet been resolved. If
such subterms are found, the metafunction does not fire and(!R a ’n v (HIDE st′)) continues to be
subject to rewriting.

If we decide to fire, we remove allHIDES in a andv; remember they are probably arithmetic/logical
expressions formed by the semantics of an instruction operating on data extracted from memory and thus
(controversially) hidden. When we removeHIDEs we actually compute the depth of the deepestHIDE

first and then copy only that far into the term so as to avoid re-copying a honsed term.
Then we dive throughst′ looking for a perfect shadow of a write toa of n bytes. This is actually a

little more complicated than just looking for a deeper(!R a n . . .) because the addresses may not be
fully normalized. By usingAinni we can identify some non-identical addresses that are semantically
equivalent in the current context. As we dive throughst′ looking for a shadowed assignment we also
compute its depth, so we can come back and delete it without further interval analysis.
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Moving on tometa-R, the main complication is mixed read-over-write. The question is, given(R a
’n (!R b ’k v st)), does part of the answer lie withinv or not? Ainni can be used to handle many
general overlap questions but we prefer not to useAinni if simpler techniques apply. For example, if both
a andb are constants we can just skip over this!R or extract the appropriate bytes fromv (remember
n andk are constants). But more generally, we ask whethera and b are offsets from some common
address, e.g.,a might be(+ 8 sp) andb might be(+ 16 sp) wheresp is some expression denoting,
say, the stack pointer. While neither address is constant wecan still determine whether readingn bytes
from a takes us into the region written, by doing arithmetic on the two constant offsets (8 and16 in this
example) and the constantsn andk. When no common reference address can be found, we useAinni.
Space does not permit further description of mixed read-over-write and we urge the reader to see the
Stateman code.

Furthermore, space does not permit discussion of the proof issues. But correctness, guards, and
well-formedness guarantees are all proved. Probably the most interesting and difficult proofs concerned
mixed read-over-write and the validity of removing a deeplyburied perfectly shadowed writewithout
being able to determine whether intervening writes also shadow it, i.e., how do you justify transforming

(!R a n v1

(!R b k w
(!R a n v2 st)))

to

(!R a n v1

(!R b k w st))

without knowing the relations betweena, n, b andk? The formalization of the general result we need is
an inductively provedLOCAL lemma, namedLEMMA3 in stateman22.lisp, establishing the correctness
of a function that deletes a perfectly shadowed write at an arbitrary depth.LEMMA3 is used in the proof
of META-!R-CORRECT.

8 Memoization

We have experimented with memoization of the metafunctionsintroduced by Stateman. Memoization is
theoretically useful in code proofs because the same symbolic state might be produced on different paths
through the code. In addition, the contents of the same addresses might be read multiple times from the
same state. On the other hand, memoization imposes an overhead and is thus not always worthwhile.

Memoization hits most often if all of the arguments are honsed rather than consed. For example, if
f is memoized and one has typed(f ’(a . b)) at the top-level, then the value off on that cons pair
is stored in the hash table forf. But if one then types(f (cons ’a ’b)) the memoized answer is not
found andf is recomputed. In Common Lisp terms, the argument must beEQ notEQUAL. All of the state
expressions produced by our metafunctions are honsed and thus uniquely represented. But this alone
will not make(memoize ’meta-R), for example, particularly useful.

First, memoization cannot be applied to an extended metafunction because one of the arguments is the
ACL2 (live) state. Someta-R, which takesstate as an argument (because it is a requirement of extended
metafunctions) but which ignoresstate, is defined in terms of a wrapper,memoizable-meta-R which
does not takestate and which takes only the type-alist from the metafunction context, not the whole
context.
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Second, the term argument ofmeta-R is of the form(R a ’n (HIDE st′)) and typically came from
simplifying someR-term in the model. The(HIDE st′) is honsed because it was produced by one of our
metafunctions. But the rest of the term is not. So wehons-copy it before calling the wrapper. These
hons-copys are not as expensive as they may seem because the (very large) states and values extracted
from them are already honsed.

Third, we must similarlyhons-copy the type-alist.
Thus,

(defun meta-R (x mfc state)

(declare (xargs :stobjs (state)

:guard (pseudo-termp x))

(ignore state))

(memoizable-meta-R (hons-copy x)

(hons-copy (mfc-type-alist mfc))))

Experiments have indicated that it is not worthwhile memoizing meta-I, meta-S, meta-!I or
meta-!S: they are too simple. We have settled on:

(memoize ’memoizable-meta-r)

(memoize ’memoizable-meta-!r)

(memoize ’memoizable-meta-mod)

(memoize ’memoizable-meta-<)

While Ainni is an obvious candidate for memoization, the functions above include all ofAinni’s
callers so it is not worthwhile.

Finally, when a metafunction fires – even a metafunction witha well-formedness guarantee – the
output is put intoquote normal formby which we mean all ACL2 primitives applied to constants are
evaluated to constants. That is,(CONS ’1 ’2) is not in quote normal form, but’(1 . 2) is. This re-
duction to quote normal form is done by applying the empty substitution to the term with the ACL2 utility
sublis-var1. We have found it worthwhile to memoize this function, but only when the substitution is
empty and the form being normalized is hidden (and thus probably one produced by our metafunctions
and thus honsed).

(memoize ’sublis-var1

:condition ’(and (null alist)

(consp form)

(eq (car form) ’HIDE)))

(Future Work ) More experimentation must be done before we are comfortable with these decisions.
In addition, it might be practical to make well-formedness guarantees ensure quote normal form.

9 Preliminary Performance Results

We have tested Stateman on only one very stressful example. Roughly put the setup for this example
(which is not provided here) is as follows: Using the state provided by Stateman, we defined an ISA
for a register machine that provides conventional but realistic arithmetic/logical functionality, addressing
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modes, and control flow. We then implemented a compiler from asubset of ACL2 into this ISA. After
allocating declared arrays, constants, etc., the compileruses the rest of the memory to provide a call stack
whose stack and frame pointers are among the earlier addresses. The compiler then compiles a system of
ACL2 functions and a main program as though it were running ona stack machine, e.g.,(LOGAND x y)
is compiled by compilingx andy so as to leave two items on the stack, and then laying down a block of
code to pop those two items into temporary registers, apply theLOGAND instruction to those registers, and
push the result. Addressing modes are used whenever possible to minimize the number of instructions
needed. We then compiled an ACL2 implementation of the DES algorithm.7 The result is a code block
of 15,361 instructions. We then ran an experimental versionof Codewalker on this code.

Using Codewalker and the state management techniques described here, ACL2 explores the code
above and generates both clock and semantic functions for DES.8

The largest symbolic state in the decompilation of the DES algorithm represents one path through
the 5,280 instructions in the decryption loop. The state contains 2,158,895 function calls consisting of
one call of!I and!S each and 58 calls of!R to distinct locations. That state expression also contains
459,848 calls ofR and 1,698,987 calls of arithmetic/logical functions such as+, and*, LOGAND, LOGIOR,
LOGXOR, ASH, andMOD. The values written are often very large. The largest value expression written is
given by a term involving 147,233 function applications, 31,361 of which are calls ofR and the rest are
calls of arithmetic/logical functions.

We would like to be able to compare the performance of the current version of Stateman to older
techniques (in which rewrite rules alone are used to canonicalize symbolic states) but Codewalker is
unable to complete the exploration of our implementation ofDES using those older techniques. The
time it takes to symbolically execute successive instructions increases alarmingly, sometimes apparently
exponentially (depending on the instruction being executed) as the state sizes increase. Of course, one
might address that with better rewrite rules, metafunctions, etc., but that was the origin of the Stateman
project.

However, we can provide some timing statistics on differentversions of Stateman. The times shown
are times taken to generate the clock and semantics functions of our DES implementation on a MacBook
Pro laptop with a 2.6 GHz Intel Core i7 processor with 16 GB of 1600 MHZ DDR3 memory. Times are
as measured bytime$ and reported as “realtime” on a otherwise unloaded machine.

Roughly put, guard verification saved 33 seconds, well-formedness guarantees saved 337 more sec-
onds, honsing as opposed to consing the metafunction answers saved 124 more seconds even though no
memoization was employed, and memoizing then saved 119 moreseconds. Of particular interest is that
well-formedness guarantees were an order of magnitude moreeffective than guard verification and that

7Warren Hunt provided the definitions of the ISA and the DES algorithm in ACL2.
8As of this writing the Codewalker exploration of DES does notperform its standard “projection” (the transformation of

functions that describe the entire state to functions that describe the contents of specific state components) because ACL2 gets
a stack overflow trying to handle states of such large size. (Future Work ) Clearly, additional work is necessary on Codewalker
and/or ACL2 itself to handle the terms being produced by Stateman.
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honsing even without memoization was a win (presumably because less time was spent in allocation).

without guard verification, well-formedness guarantees, 988 seconds
honsing or memoization

with guard verification but without well-formedness 955 seconds
guarantees, honsing, or memoization

with guard verification and well-formedness guarantees, 618 seconds
but without honsing or memoization

with guard verification, well-formedness guarantees, 494 seconds
and honsing, but without memoization

with guard verification, well-formedness guarantees, 375 seconds
honsing, and the memoization described
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