Stateman: Using Metafunctions to Manage Large Terms
Representing Machine States

J Strother Moore

Department of Computer Science
The University of Texas at Austin

*
moore@cs.utexas.edu

When ACL2 is used to model the operational semantics of coimgpmachines, machine states are
typically represented by terms recording the contents efstiate components. When models are
realistic and are stepped through thousands of machinestblese terms can grow quite large and
the cost of simplifying them on each step grows. In this papedescribe an ACL2 book that uses
HIDE and metafunctions to facilitate the management of largeseepresenting such states. Be-
cause the metafunctions for each state component updateokely responsible for creating state
expressions (i.e., “writing”) and the metafunctions focleatate component accessor are solely re-
sponsible for extracting values (i.e., “reading”) from kigtate expressions, they can maintain their
own normal form, us@IDE to prevent other parts of ACL2 from inspecting them, and useshhg

to uniquely represent state expressions. The last featakesnt possible to memoize the meta-
functions, which can improve proof performance in some rirecimodels. This paper describes
a general-purpose ACL2 book modeling a byte-addressed myesnpporting “mixed” reads and
writes. By “mixed” we mean that reads need not corresponadiiress or number of bytes) with
writes. Verified metafunctions simplify such “read-overit@” expressions while hiding the poten-
tially large state expression. A key utility is a functioratldetermines an upper bound on the value
of a symbolic arithmetic expression, which plays a role isoteing writes to addresses given by
symbolic expressions. We also report on a preliminary expent with the book, which involves the
production of states containing several million functiatis

1 Background

ACL2 [3,12] is frequently used to model computing machinesoperational semantics. It is not difficult
to configure the ACL2 theorem prover so that it can use theitiefis of the machine semantics and a few
well-chosen rewrite rules to step through code sequenpésps tests, induct on loops, etc. Examples
of these methods being used to prove functional correctfassde under formal operational semantics
may be found in numerous publications [6] 7] 10, 1]. Such ®fimistate terms can grow quite large
when many steps are composed. The question addressed:hieogvisan we exploit ACL2’s rewriter
to symbolically execute formalized code while preventirigpin slowing down as state expressions get
large?

This paper describes the Stateman book for managing larges teepresenting machine states in
ACL2 models of computing machines. “Stateman” stands ftatésmanagement.” This is a work in
progress and this paper has many brief descriptions ofdetRuture Work .

The idealistic dream is that a user wishing to model some-agitfessed computing machine and
do code proofs or run the Codewalker H)ohight build the operational semantics on top of the state

*This work was partially supported by ForrestHunt, Inc.
1Codewalker extracts ACL2 functions from machine code gittenformal operational semantics of the ISA and is sim-

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2%01 © J'S. Moore

- ; This work is licensed under the
EPTCS 192, 2015, pp. 93=109, d0i:10.4204/EPTCS.192.8 Creative Commoris Attribution License.

http://dx.doi.org/10.4204/EPTCS.192.8
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

94 Stateman

provided by Stateman and thereby inherit the state manageaswhniqgues here described. But machine
models are very idiosyncratic. Users may actually need stgdeheir own states and merely exploit the
basic techniques described here. Thus, this paper foclaal/man the design decisions in our work. As
usual, readers are welcome, indeed encouraged, to readatieendn book itself and use it as the basis
of their own versions.

We start with a brief description of our generic state, thenpresent the highlights of our state
management technigues, provide some examples, discussdefails, and present some preliminary
performance measures.

2 The Generic State

The %ook provides a generic single-threaded obgitthenceforthst), providing three fields. See :DOC
stobj

(defstobj st
(I :type unsigned-byte :initially 0) ; program counter
(S8 :initially nil) ; status
(M :type (array (unsigned-byte 8) (*m-size*)) ; memory
:initially O
:resizable nil
)
:inline t
:renaming
((UPDATE-I 1D
(UPDATE-S 1S)
(UPDATE-MI IMI)
(M-LENGTH ML)))

The primitive accessors afe S, andMI, and the primitive updaters até, 'S, and !MIE TheI and
S fields were originally intended for the machine’s instranticounter and status flag, and provides
a byte addressed memory of 8-bit bytes. The person usindpdiols to model the state of a computing
machine need not use tlieands fields for their implied purposes. The modeler might, fortanse,
choose to store all state information including the indtamccounter and various status bits in the byte
addressed memory and ignore thands fields altogether.

Byte-addresses are integers starting at 0. The byte-addteaemory is of fixed sizem-sizex,
which is currently only5312. This constant is a holdover from the earliest use of the statl Future
Work) will be generalized in future work. Indeed, the whole depahent would have been easier were
there no upper bound on memory size. Imposing an upper bauoed certain issues to be dealt with —

ilar to the HOL decompilation work by Magnus Myreeh[8, 9]. eSte README file in the Community Book directory
projects/codewalker/. The version of Codewalker used here is still experimental.

2When we say “See :DOE’ we mean see the documentation topim the ACL2 documentation, which may be found by
visiting the ACL2 home page[4], clicking on The User’s Mals¢hen clicking on the ACL2+Books Manuahd typingx into
the “Jump to” box.

3The third field of the single-threaded object is namiieahd is an array, but only the elements can be accessed orethang
with MI and !MI.

J S. Moore 95

issues that are necessarily raised in any realistic modhel mfagnitude of that upper bound is practically
irrelevant from the research perspective.

The Stateman book us#§ and ! MI only to provide support for two more general utiliti@sand 'R,
for reading and writing an arbitrary number of bytes. We dbthimk of MI and !MI as “visible” to the
user of Stateman.

It is best to think of the generic state as providing the felig functionality:

expression value

(I st) instruction counter of statst

(S st) status flag of statst

(Ran s natural number obtained by readindpytes starting
at address in the memory of statst

(1T v sb) new state obtained from stadeby setting
the instruction counter te

(1S v sb) new state obtained from stageby setting the status
flag tov

('R a n v sD new state obtained by writingbytes of natural
numberv into the memory obt starting at address

R and 'R use the “Little Endian” convention. For example,R a n v s writes the less signifi-
cant bytes oW to the lower addresses, with the least significant byte evrito addresa and all other
bytes written to larger addresseg.ufure Work) We would like to support either Little or Big Endian
conventions.

Nests of! I, IS, and 'R applications are callestate expressiongr state termsecause they denote
machine states. Any term whose top function symbal,is, or R applied to a state expression is
called aread-over-writeexpression. Any term whose top function symbol i5 !S, or 'R applied to
a state expression is callednaite-over-write expression. Of course, write-over-write expressions are
themselves state expressions.

Our concern here is simplifying read-over-write and woter-write expressions in support of code
proofs and code walks. These issues are straightforwardhaged with rewrite rules. For example, the
read over write expressiofR 24 8 (!R 40 8 v st)) can be simplified tdR 24 8 st). But as state
expressions grow large — and they can grow very large wheg dode sequences are involved — two
problems crop up.

First, the rewriter tends to re-simplify parts of stated theve already been simplified. Second, the
traditional rewrite rules for handling byte-addressed mgninvolve backchaining to establish that byte
sequences do not overlap. For example, the rewrite rultsgplace(R a n ('R b k v sp) by (R a
n st have the hypothese@atp a), (natp b), (natp n), (natp k), and either(< (+ a n) b) or
(< (+ b kK a. Theinequalities can get very expensive whemmdb are large arithmetic expressions.
Furthermorea and b typically become large arithmetic expressions when theedmging explored is
doing indexed addressing (as in array access) and long eggeisces are involved in the computation
of the indices. Every read-over-write and write-over-e/mxpression raises such averlap question.
Furthermore, a read of a deeply nested state expressiaalypiaises an overlap question for each write
in the nest. For speed we must answer overlap questionswitbsorting to heavy-duty arithmetic.

96

Stateman

3 Highlights of Key Design Decisions

Some of the key decisions in the design of Stateman are listddriefly elaborated below. In the next
section, where we give examples, we discuss the implicatibsome of these decisions.

Manage read-over-write and write-over-write expressionsexclusively with metafunctions
Stateman defines a metafunction for eachLp§, R, 'I, 'S, and !R. These metafunctions are
namedneta-I, meta-3, etc. Like all metafunctions, they take terms as input amdtypossibly
different terms as outpE]t.The metafunctions for and !'R are extended metafunctions and thus
additionally take the metafunction context and ACL2 statarguments. These two metafunctions
only use the type-alist in the metafunction context and igagre the ACL2 state. However, the
biggest problem faced by these functions is the read-oviée-wverlap questions: “is one address
less than another?”, given only the syntactic expressiepsesenting the two addresses. This
motivates the next item.

Implement a syntactic interval inference mechanism Imagine a function that when given an
arithmetic/logical term, can infer an upper bound. Thisugedifferent functionality than nor-
mally found in ACL2. ACL2 can be configured to answer questitke “Is a less than 16?” but
here we want a utility for answering “What numbenigess than?” This functionality is especially
important in codewalking unknown code. Suppose the codei@stipn usesr as an index into
some array at locatiobhase What part of the state is changed if the code writebaset a? If
you know enough about the code to know the bound on the arcaycguld undertake to prove
thata is in bounds and thus conclude that only the array is affdayetie write. But if you do not
know much about the code, you need an inference mechanisedtad a bound oa. Stateman
provides a verified interval inference mechanism namathi which is discussed in more detail
in Sectior{ 5.

Implement syntactic means of deciding some inequalitiesGiven Ainni, it is possible to im-
plement the extended metafunctimata-< that takes an inequality and the metafunction context
and decides many inequalities a f3), by computing intervals foor and8 and comparing their
endpoints, e.qg., if the upper boundafis below the lower bound @8, then the inequality is true.
This can save backchaining into linear arithmetic on lariferaetic/logical expressions.

Implement syntactic means of simplifying someM0D expressions In machine arithmetic, ex-
pressions of the forrfM0OD a °’n) frequently arise, where is some natural number. Some ex-
pressions of this sort can be simplified by syntactic meavengihe ability to infer bounds oa.
See Sectiohl6.

Use syntactic means to decide overlap questionSuppose the type-alist tells us that the 32-bit
word at address 8, i.e(R 8 4 st) is less than 16. Then a quick syntactic scan of the address
expression(+ 3200 (x 8 (R 8 4 st))) reveals that the value lies in the interval [3200, 3320]
and so reading, say, 3 bytes from that address might touchddrngss in the interval [3200, 3322].

Insist that all byte counts be quoted constantsThis facilitates the interval analysis mentioned
above. We do not regard it as a restriction given Statematésded application for code analysis.
In most ISAs the number of bytes to be manipulated by an iostm is explicitly given in the
instruction or else is fixed by the instruction or the ardttitee.

4Metafunctions traffic in fully translated terms but the exdes in this paper generally show untranslated terms faf-rea

ability.

J S. Moore 97

e Do not put nested ! R-expressions into address order We leave the most recent writes at the
top of the state expression under the assumption that progoale tends to read from addresses
recently written.

e Eliminate perfectly shadowed writes When !R, with addressa and byte counn, is applied
to a state expression already containing an applicatiorRokith addressa with byte countn,
Stateman eliminates the inner (earlier) one. Similar amrsitions apply to nestetl and !S
calls. This reduces the size of the final state expressio.SBateman does not try to eliminate
partially shadowed writes. We explain below.

e Usehons rather than cons to create state expressionsThis means that if the same state ex-
pression is created along different paths of a code proofadk,vino additional space is allocated;
furthermore, hons facilitates the use of memoization.

e HIDE the state expressions produced by the metafunctionsThis ensures that no rewrite rule
touches them. For example, if a machine model mentions aessipn like

(1R 324V
('R84 (+ (R84 st 4
(11 123
(1S NIL st))))

as would happen if it set the status flagMtL, the instruction pointer ta23, incremented the
word at address 8 by 4 and wrotgo the word at address 32, then the inside-out rewriting of
ACL2 would invoke the metafunctions fass, then!I, and then!R (twice) and ripple &lIDE out

so the final term would be as exactly as above but with a sigi& around it at the top level. It
would never be further simplified except by these metafoneti

e HIDE some values extracted by reads from hidden states to avoid +&@mplifying them: This

is a controversial decision and is still quite unsettldeut(re Work) The issue is that over long
codewalks (involving thousands of instructions) the egpi@ns built up as values in the memory
can be huge. By embedding extracted valugsIibE expressions, they are not re-simplified. The
downside is that it can be impossible to decide simple testswrse one does not know much
about the hidden expressions. A compromise would be to heW1IDES several levels down
in the extracted expressions, leaving the top few functionimls available. At the moment, all
extracted values are hidden except constants and ca&lslbiis means that the metafunctions here
must remove SOMBIDES from values before storing them into memory.

e Prove guards and well-formedness guarantees of the metafations: ACL2 users should be
well aware of the efficiency advantages of verifying the gsawn functions used in heavy-duty
computations. A less familiar topic, though, is discussethé new feature documented in :DOC
well-formedness-guarantee. It has long been the case tiah & metafunction is applied the
theorem prover checks that the result is a well-formed tésmunning the functiortermp on the
output and the current ACL2 world. This hidden cost of meatafions goes all the way back to the
origin of ACL2 in 1989. However, when the output of a metatimt is huge, the well-formedness
check can be expensive, and the basic supposition in then®atwork is that state expressions
are huge. A new feature of ACL2 Version 7.2 makes it possibkkip the well-formedness check
by proving that the metafunction always returnstarmp. We have found that providing such
well-formedness guarantees is worthwhile in Stateman]&je®/e give some data on this below.

98 Stateman

4 Examples

We illustrate these ideas with a few examples. The readernotige two odd aspects to our examples.
The first is that most addresses illustrated are quoted aatisst The second is that when non-constant
expressions occur as addresses the only variable invabwdaind it always occurs in a primitive state
accessor likgR a n st. We do not believe these are serious constraints if Statesnased for code
analysis: Typical code, especially binary machine codierseto fixed addresses or offsets from other
addresses (as in array indexing and stack slots relativeate stack or frame pointer in a register); “vari-
ables” are just the contents of memory locations at sucheadds. HowevelF(ture Work) it would

not be difficult to support variable symbols provided thete@hestablished natural number bounds on
their values.

Examples (1)—(7) below are extracted verbatim from a sedemthat started in a fresh ACL2 with
the inclusion of the Stateman book. Because this is a workdgrpss, we keep the version number as
part of the book name right now. This log started by includirgteman22.1isp which is included in
the supplemental material. The supplemental materialiatdodessimple-examples.lsp, a file (not
a book) showing the actual input forms for these and some ettemples in this paper. We hope those
forms can help the user who wishes to extend Stateman’sidmadity.

ACL2 !'>(meta-!I >(!'I ’123 st)) ;(1)
(HIDE (!'I ’123 ST))

ACL2 !'>(meta-!'R ('R ’0 ’4 (R ’16 ’4 st) (HIDE ('I ’123 ST))) ;(2)
nil state)

(HIDE ('R ’0 ’4 (R ’16 ’4 ST) (!'I ’123 ST))) ; (st)

ACL2 !'>(meta-I ’(I (HIDE ('R ’0 ’4 (R ’16 ’4 st) (!'I ’123 ST))))) ;(3)

1123

ACL2 !>(meta-R (R ’0 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!'I ’123 ST)))) ;(4)
nil state)
(R ’16 ’4 ST)

ACL2 !>(meta-R (R ’2 ’2 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!'I ’123 ST)))) ;(5)
nil state)
(HIDE (ASH (R ’16 ’4 ST) ’-16))

ACL2 !>(meta-R (R ’8 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!'I ’123 ST)))) ;(6)
nil state)
(R ’8 ’4 ST)

ACL2 !'>(meta-R ’(R ’2 ’4 (HIDE ('R ’0 ’4 (R ’16 ’4 st) (!'I ’123 ST)))) ;(7)
nil state)
(HIDE (BINARY-+ (ASH (R ’4 ’2 ST) ’16)
(ASH (R ’16 ’4 ST) ’-16)))

JS. Moore 99

In example (1) we call the metafunction fof on the term(!I ’123 st), just as the rewriter does
when it encounters aI-term. The result is a hidden state. Notice that metafunstipaffic in fully
translated terms.

In example (2) we call the metafunction fok on the ! R-term that writes the 4-byte value ¢k ° 16
>4 ST) to location0 in the previously produced (now hidden) state. Note thantleéafunction for'R
takes two additional arguments, the metafunction contaxhis casenil, and the ACL2 state object,
sincemeta-!R is an extended metafunction. Again, nothing significantiesg except the new state is
hidden. Henceforth in this narrative we will refer to thetstproduced by (2) ast'.

In example (3) we use the metafunction foto extract the instruction counter sf.

In example (4) we use the metafunction foio read (4 bytes of) the contents of address &inThe
result is exactly what was written in (2) because it was 4sidag.

In example (5) we read the last two bytes of that previouskter quantity, that is, we read 2 bytes
starting at address 2 8. Two things are noteworthy. One is that it is reported as thgté quantity that
was written in (2), shifted down by 16 bits. The second is thiathidden — the “controversial” decision.

In example (6) we read from an address above any affectecebyrite inst'. The result is whatever
was there in the original stagt.

In example (7) we read 4 bytes starting at addresss?.ifThis is a “mixed” read in the sense that the
result involves the last two bytes from what was written atrads 0 and the bytes that were at locations
4 and 5 of the original statst. It is expressed as a sum, with the latter bytes shifted upmirgt is
(controversially) hidden.

It is important to realize that all of these transformati@me carried out by verified metafunctions
without involving rewrite rules, linear arithmetic, or @hheavy-duty theorem proving. Consequently,
these transformations are very fast.

Since thel ands slots are unaffected by writes to memory and do not invohdresises or overlap
issues our examples below focusirand ! R-terms.

Henceforth, we will display untranslated terms for bothu@nd output and will not exhibit the calls
of the relevant metafunction. Instead, the reader shouliénstand that the notatiorr“—- 3” means
that a is transformed tq3 by the metafunction appropriate for the top function symdmiotr. Since
bothmeta-R andmeta-!R take a metafunction context we make clear in the surroundémgative what
the context is. This only involves describing the goverrisgumptions (as encoded in the type-alist).
Finally, instead of writing something liked* = (IF hyp B a)” we will generally write ‘a =1 "
and describe the side conditiogpgenerated by the metafunction in the accompanying nagraitecall
that before such aa is replaced by3 the rewriter must establighy p.

Given a metafunction context in which the type-alist is gmwte can thus recap lines (1)—(7) above
with:

('I 123 st) ;(1)

—
(HIDE (!TI 123 st))

('R0 4 (R 16 4 st) (HIDE (!I 123 sb))) ;(2)
==
(HIDE ('R 0 4 (R 16 4 st) (!'I 123 sbt)))

(I (HIDE ('R 0 4 (R 16 4 st) (!I 123 sb))) ;(3)
==

100 Stateman

123

(RO 4 (HIDE ('R 0 4 (R 16 4 st) (!I 123 sb)))) ;(4)
—

(R 16 4 sb)

(R 22 (HIDE ('R 0 4 (R 16 4 st) (!I 123 sb))) ;(5)
—

(HIDE (ASH (R 16 4 st) -16))

(R84 (HIDE ('R 0 4 (R 16 4 st) (!I 123 sb)))) ;(6)
—

(R 8 4 sb)

(R24 (HIDE ('R0 4 (R 16 4 st) (!I 123 st)))) ;(7)
—

(HIDE (+ (ASH (R 4 2 st) 16)
(ASH (R 16 4 st) -16)))

Relatively little work is done on simplifying writes, asidiem looking for shadowed writes to be
deleted. For example, one might wonder at the simple

('R 8 4 v sb ;(8)
==
(HIDE ('R 8 4 v sb)

sincev might be too big to fit in 4 bytes. But instead of truncatingn write we do so on read:

(R 8 4 (HIDE (IR 8 4 v sD)) :(9)
-
(HIDE (MOD (IFIX V) 4294967296))

Now let the metafunction context encode the assumption(haté 4 st) is less than 16. In the
example below, we treaiR 16 4 st) as an index into a QuadWord array (8-byte per entry) based at
address 3200.

(R (+ 3200 (* 8 (R 16 4 sB))) 8 ;(10)
(HIDE ('R 3600 4 v ('R 8 4 w st))))
:}T

(R (+ 3200 (x 8 (R 16 4 sb))) 8 sb)

('R (+ 3200 (x 8 (R 16 4 st))) 8 u ;(11)
(HIDE (!R 3600 4 V
('lR8 4w
('R (+ 3200 (x 8 (R 16 4 st))) 8 X
sH))))

J S. Moore 101

—
(HIDE ('R (+ 3200 (*x 8 (R 16 4 st))) 8 u
('R 3600 4 V
('R 8 4 w sb)))

The “t” on the transformation in (10) indicates that a sidadition was generated. That side condition
is (<= (R 16 4 st) 15), and it must be established before the replacement is matblEhing such
side conditions should be trivial since they are extractethfthe type-alist in the metafunction context.
Given that condition, we see that the 8-byte read-+at3200 (x 8 (R 16 4 st))) may only touch
bytes in the interval [3200, 3327]. We discuss this intearadlysis further below. But because of it, the
metafunction can determine that neither of the two writeh@hidden state of (10) is relevant since the
4 bytes starting at 3600 are above the target interval ande$Isyarting at 8 are below it.

Interestingly, no side condition is necessary on transétion (11). If (R 16 4 st) is sufficiently
large the new write af+ 3200 (x 8 (R 16 4 st))) mightshadow out the write at 3600, but that does
not matter because the new write is added at the top of thessipn (chronologically after the write at
3600), so the answer above is correct. And, regardless oh#gmitude of(R 16 4 st), the new write
shadows out the earlier one at the exact same address aratltbewrite can be dropped.

Our final example is contrived to show a mixed read that spameral chronologically separated
writes. The empty metafunction context is sufficient fosthkample. We will ultimately read 8 bytes
starting at address 3. But consider the writes that createelbvant memory. The write of 4 bytes\of
at address 2 is partially shadowed by the write of 4 bytes affaddress 0. The writes at 14 and 19 are
irrelevant because we only need bytes 3 through 10. The fitstdf our answer is the high order byte
of uwritten at address 3. The next two bytes are the two high drgess ofv at addresses 4 and 5. Then
we get 3 bytes from the originak at addresses 6, 7, and 8, and finally we get the two low ordesbyt
from w at addresses 9 and 10. We then assemble these 8 bytes usititjléhEndian notation and put
the final sum into ACL2’s term order.

(R 38 :(12)
(HIDE
('R 14 5 X
('R0 4 u
(IR 19 8y
(lR9 2w

('R 24 vVvsH)N)
E
(HIDE (+ (ASH (R 6 3 st) 24)
(+ (MOD (ASH (IFIX u) -24) 256)
(+ (ASH (MOD (IFIX w) 65536) 48)
(ASH (MOD (ASH (IFIX V) -16) 65536) 8)))))

(Future Work) We are dissatisfied with the normal form of expressions tiegdhe results of mixed
reads. To be more precise, we do not have enough experietité yet to know whether it is sufficient
for our purposes. The current implementation UBEBX to convert terms to integer form as required
by basic rules for.SH (if syntactic analysis cannot establish that the term restamn integer), use40D

to truncate unneeded higher order bits, and usaisto shift bits into the right locations. The question
however is this: Suppose such an expression is written toraamelocation and then one must read a
few bytes from it. The current metafunctions prodwusgi/M0OD-terms that could be further simplified.

102 Stateman

But given the controversial decision BHaDE the complicated results of reads, that simplification sthoul
be done insideeta-R.

Stateman does not produce normalized states for at leasesons. First, it does not put writes
into address order. Second it does not eliminate partialsks. Why bother to eliminate partially
shadowed material if one can read out the answers if and wéestied? This consideration is especially
relevant since resolving a partial shadow generally makestate syntacticalllarger, e.g., to resolve
the shadowing of the write at 2 above one would replate 2 4 v st) by the larger term(!R 4 2
(ASH (IFIX v -16)) sb). Itis not clear this is an improvement. Furthermore, we suspartial
shadowing is fairly rare compared to “perfect shadowing’evehthen bytes starting at addressare
repeatedly reused for differentbyte values.

(Future Work) But the lack of normalization raises the question of debeimy state equality. State-
man does not support state equality at the moment. But theipk® support it by a metafunction that
announces the equality of two states formed by differeniaeces of writes to the same initial state by
checking that every read of every byte written to eitherespsbduces the same expression.

5 Ainni: Abstract Interpreter for Natural Number Intervals

Perhaps the most important idea to come out of this work s fdre development and verification of
an ACL2 function that takes the quotation of a term togethién & type-alist and attempts to determine
a closed natural number interval containing the value otdéhm. This function is calledinni, which
stands forAbstract Interpreter for Natural Number Intervalsiinni can be thought of as a “type-
inference” mechanism for a class of ACL2 arithmetic exgorss except the “types” it deals with are
intervals over the naturals.

Ainni explores terms composed of constants, the statend the function symbols, -, *, R, HIDE,
MOD, ASH, LOGAND, LOGIOR, andLOGXORE (Future Work) This set of function symbols was determined
by seeing what functions were introduced by the codewalk péréicularly large and challenging test
program: an implementation of DES. Essentiallynni should support all of the basic functions used
in the semantics of the ALU operations of the machine beimp&ized. We therefore anticipate that
the list here will have to grow.

Ainni recursively descends through the term “evaluating” thements of function calls — only in
this case that means computing intervals for them — and tpplyiag bounders (see the discussion of
“bounders” in :DOCtau-system) corresponding to the function symbols to obtain an intereatain-
ing all possible values of the function call. At the bottonhigh in this case are calls @f Ainni uses
the type-alist to try to find bounds on reads that are tightan tthe syntactically apparentO(R a n
st) < 28" 1. (Future Work) It is here, at the “bottom” of the recursion, that we could adpport for
variable symbols or unknown function symbols.

For example, consider the quotation of the term

(+ 288 (x 8 (LOGAND 31 (ASH (R 4520 8 st) -3)))).

In the absence of any contextual informatiaanni returns the natural number interval [288,536]. The
reasoning is straightforward: we know th@ 4520 8 st) is a natural in the interval [0,62— 1]. The
tau-bounder fonsH tells us that shifting it right 3 reduces that to [§12 1], and then the tau-bounder
for LOGAND tells us that bitwise conjoining it witB1 shrinks the interval to [0,31]. Multiplying bg
makes the interval [0, 248], and adding8 makes it [288, 536].

5Several of these symbols are macros that expand into céilsmcfion symbols thatinni actually recognizes.

J S. Moore 103

By default(R 4520 8 st) is known to lie in [0,84— 1], but the type-alist might restrict it to a smaller
interval. For example, it might assert th@ 4520 8 st) < 24, in which caselinni determines that
the term above lies in the interval [288,304].

In addition to returning the intervalinni also returns a flag indicating whether the term was one
thatAinni could confine to a bounded natural interval and a list of hyps¢s that must be true for its
interval to be correct. These hypotheses have two sourfesssumptions extracted from the context
and (i) Ainni’s inherent assumptions (such as a built-in assumptiomihabmputed value is nega@e
which might translate to the hypothedisot (< x y)) ifthe termis(- x y)).

Finally, Ainni is verified to be correct. That is, the certification of Stad@nmvolves a proof of the
formal version of:

Let x be the quotation of an ACL2 term ata be a type-alist. Leflg, (h; ... hy) and
[lo, hi] be the flag, hypotheses, and the interval returnediayni onx andta. Then if flg
is true:

e (hy ... hy is alist of quotations of terms,

e |o andhi are natural numbers such that< hi, and

o if (& hy a) =Tforeach I<i <Kk, thenlo < (& x a < hi, where&’ is an evaluator
that recognizes the function symbols handledibyni.

Ainni is used inmeta-R to handle the overlap questions that arise. In additios, lised imeta-<
to decide some inequalities andriata-M0OD to simplify someMOD expressions.

FurthermoreAinni is fast. For example, in the codewalk of the DES algorithng particular index
expression is a nest of 382 function calls containing evag/af the function symbols known foinni.
Just for fun, here is the expression, printed “almost flaitifaut much prettyprinting):

(LOGIOR

(LOGAND 32 (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840
(R 4520 8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520
8 ST)) -3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST))
-5) (ASH (MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH
(MOD (ASH (R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST))
15) (ASH (MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD
(ASH (R 4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8
ST) -3) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+
4376 (x 8 (R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2))

(ASH (MOD (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840 (R 4520
8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520 8 ST))
-3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST)) -5) (ASH
(MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH (MOD (ASH
(R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST)) 15) (ASH
(MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD (ASH (R
4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8 ST) -3)
2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+ 4376 (x 8
(R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2) 32) -1)

(ASH (MOD (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840 (R 4520
8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520 8 ST))
-3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST)) -5) (ASH
(MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH (MOD (ASH
(R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST)) 15) (ASH
(MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD (ASH (R
4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8 ST) -3)
2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+ 4376 (x 8
(R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2) 2) 4))

While the first argument of theOGIOR is easy to bound the second and third are problemadien i
bounds the.0GIOR to [0,63] in less than one hundredth of a second on a MacBookaptop with a 2.6
GHz Intel Core i7 processor.

By the way, the second argument of tt@I0R above actually lies in [0,15] and the third in [0,16].
But proving those two bounds with, sarithmetic-5/top, takes about 33 seconds each, without
Ainni andmeta-<. But the main point is thatinni infersa correct bound.

5We anticipate that any ISA employing Stateman’s byte-askiré memory would use twos-complement arithmetic.

104 Stateman

6 Syntactic Simplification of MOD Expressions

Machine arithmetic introduces mam@D expressions in which the second argument is constant.-State
man provides the extended metafunctierta-M0D that implements the following rules, wheirej, and

k are natural constants. The function also uses a concepti¢alyntactic integer” realized by a function
which takes the quotation of a term and determines whethgroibviously integer valued. For exam-
ple, a sum expression is a syntactic integer provided theargoments are syntactic integers, &8H
expression is a syntactic integer provided the first argunsg@nd aLOGAND expression is a syntactic
integer regardless of the shape of the arguments. In thebelew,x, X, ...,x; must be syntactic integer
expressions.

e (MOD X 0) =X

e (MOD i k) can be computed if both arguments are constants

e (MOD (MOD z j) k) =(MOD z j),if j <k

e (MOD (MOD X j) k) =(MOD x K, if kdivides |

e (MOD (Raist kK=(aisb,if256 <k

e (MOD (+ X1 ... (MOD X) ... Xj) K) =(MOD (+ X1 ... X ... Xj) k), if kdivides]
e (MOD x k) =, if Ainni claims the upper bound afis belowk

The last rule is not only applied to the argumenmeta-MOD but also to the output of the second-
to-last rule.

Some of these rules are built inderithmetic-5/top but in the interests of speed, Stateman does
not exportarithmetic-5/top and does much arithmetic simplification in its metafuncdion

7 Some Details of Meta-R and Meta-!R

The most complicated of the metafunctions msea-R andmeta-!R, which use all of the functionality
described above. The former is actually more complicatad the latter because the former deals with
mixed read-over-write. We briefly discuss some design s$oethese two functions, starting with the
simpler,meta-!R, but we urge the interested reader to inspect the code int#tergan book.

Since a successful application eéta-!R will transform ('R a ’n v (HIDE st')) into (HIDE
('R a ’n v st)), we must be careful not to fire the metafunction too soon: mfribe subterms will
be rewritten again! Thuseta-!R checks whethea or v contain terms that might still be rewritten, e.g.,
embeddedFs, unexpandedAMBDA applications, or read-over-writes that have not yet besalved. If
such subterms are found, the metafunction does not firel&Rda ’n v (HIDE st')) continues to be
subject to rewriting.

If we decide to fire, we remove &IIDES in a andv; remember they are probably arithmetic/logical
expressions formed by the semantics of an instruction tipgran data extracted from memory and thus
(controversially) hidden. When we remoH&DES we actually compute the depth of the deeplESiE
first and then copy only that far into the term so as to avoidagying a honsed term.

Then we dive througlst’ looking for a perfect shadow of a write toof n bytes. This is actually a
little more complicated than just looking for a deefeéR a n ...) because the addresses may not be
fully normalized. By usingiinni we can identify some non-identical addresses that are seraign
equivalent in the current context. As we dive throwgthlooking for a shadowed assignment we also
compute its depth, so we can come back and delete it withaotieiuinterval analysis.

J S. Moore 105

Moving on tometa-R, the main complication is mixed read-over-write. The quesis, given(R a
'n ('R b ’k v sb), does part of the answer lie withinor not? Ainni can be used to handle many
general overlap questions but we prefer not toAiseni if simpler techniques apply. For example, if both
a andb are constants we can just skip over thisor extract the appropriate bytes from{(remember
n andk are constants). But more generally, we ask whethandb are offsets from some common
address, e.ga might be (+ 8 sp) andb might be(+ 16 sp) wherespis some expression denoting,
say, the stack pointer. While neither address is constartanestill determine whether readimgoytes
from a takes us into the region written, by doing arithmetic on thie tonstant offsetss(and 16 in this
example) and the constamsandk. When no common reference address can be found, weinss .
Space does not permit further description of mixed read-avite and we urge the reader to see the
Stateman code.

Furthermore, space does not permit discussion of the pssoies. But correctness, guards, and
well-formedness guarantees are all proved. Probably trst mieresting and difficult proofs concerned
mixed read-over-write and the validity of removing a deeplyied perfectly shadowed writgithout
being able to determine whether intervening writes alsdehat, i.e., how do you justify transforming

('lRanwy
('R b kw
('Ranw sb))

to

('Ranwy
('R bk wsbh)

without knowing the relations betweenn, b andk? The formalization of the general result we need is
an inductively proved.0CAL lemma, namedEMMA3 in stateman22.lisp, establishing the correctness
of a function that deletes a perfectly shadowed write at aitrary depth.LEMMAS is used in the proof
of META-!R-CORRECT.

8 Memoization

We have experimented with memoization of the metafunctiotmeduced by Stateman. Memoization is
theoretically useful in code proofs because the same syodiate might be produced on different paths
through the code. In addition, the contents of the same agesemight be read multiple times from the
same state. On the other hand, memoization imposes an adeahe is thus not always worthwhile.

Memoization hits most often if all of the arguments are hdnsgher than consed. For example, if
f is memoized and one has typétl > (a . b)) at the top-level, then the value #fon that cons pair
is stored in the hash table fér But if one then typesf (cons ’a ’b)) the memoized answer is not
found andf is recomputed. In Common Lisp terms, the argument mugQleot EQUAL. All of the state
expressions produced by our metafunctions are honsed asduthquely represented. But this alone
will not make (memoize ’meta-R), for example, particularly useful.

First, memoization cannot be applied to an extended methfumbecause one of the arguments is the
ACL2 (live) state. Smeta-R, which takestate as an argument (because it is a requirement of extended
metafunctions) but which ignoresate, is defined in terms of a wrappetemoizable-meta-R which
does not takestate and which takes only the type-alist from the metafunctiontert, not the whole
context.

106 Stateman

Second, the term argumentméta-R is of the form(R a ’n (HIDE st')) and typically came from
simplifying someR-term in the model. Th€HIDE st') is honsed because it was produced by one of our
metafunctions. But the rest of the term is not. Sohwes-copy it before calling the wrapper. These
hons-copys are not as expensive as they may seem because the (ve)yskatgs and values extracted
from them are already honsed.

Third, we must similarlyhons-copy the type-alist.

Thus,

(defun meta-R (x mfc state)
(declare (xargs :stobjs (state)
:guard (pseudo-termp x))
(ignore state))
(memoizable-meta-R (hons-copy x)
(hons-copy (mfc-type-alist mfc))))

Experiments have indicated that it is not worthwhile menmgzneta-I, meta-S, meta-!I Or
meta-!S: they are too simple. We have settled on:

(memoize ’memoizable-meta-r)
(memoize ’memoizable-meta-!r)
(memoize ’memoizable-meta-mod)
(memoize ’memoizable-meta-<)

While Ainni is an obvious candidate for memoization, the functions abnulude all ofAinni’s
callers so it is not worthwhile.

Finally, when a metafunction fires — even a metafunction \itlvell-formedness guarantee — the
output is put intoquote normal formby which we mean all ACL2 primitives applied to constants are
evaluated to constants. That (€£0NS ’1 °’2) is not in quote normal form, but(1 . 2) is. This re-
duction to quote normal form is done by applying the emptysttiiion to the term with the ACL2 utility
sublis-varl. We have found it worthwhile to memoize this function, butyomhen the substitution is
empty and the form being normalized is hidden (and thus fmghane produced by our metafunctions
and thus honsed).

(memoize ’sublis-varil
:condition ’(and (null alist)
(consp form)
(eq (car form) ’HIDE)))

(Future Work) More experimentation must be done before we are comfartatth these decisions.
In addition, it might be practical to make well-formednessuigantees ensure quote normal form.

9 Preliminary Performance Results

We have tested Stateman on only one very stressful examupleghR/ put the setup for this example
(which is not provided here) is as follows: Using the statevigted by Stateman, we defined an ISA
for a register machine that provides conventional butsgealarithmetic/logical functionality, addressing

J S. Moore 107

modes, and control flow. We then implemented a compiler frasuteset of ACL2 into this ISA. After
allocating declared arrays, constants, etc., the commles the rest of the memory to provide a call stack
whose stack and frame pointers are among the earlier addréBse compiler then compiles a system of
ACL2 functions and a main program as though it were running stack machine, e.g(LOGAND X V)

is compiled by compiling andy so as to leave two items on the stack, and then laying downck bio
code to pop those two items into temporary registers, apglzaGAND instruction to those registers, and
push the result. Addressing modes are used whenever ossibiinimize the number of instructions
needed. We then compiled an ACL2 implementation of the D@Sr'ﬂhmE] The result is a code block
of 15,361 instructions. We then ran an experimental versfddodewalker on this code.

Using Codewalker and the state management techniquestdmbtrere, ACL2 explores the code
above and generates both clock and semantic functions fSEDE

The largest symbolic state in the decompilation of the DEf@r@thm represents one path through
the 5,280 instructions in the decryption loop. The statdaios 2,158,895 function calls consisting of
one call of!'I and!S each and 58 calls ofR to distinct locations. That state expression also contains
459,848 calls of and 1,698,987 calls of arithmetic/logical functions sush,aand*, LOGAND, LOGIOR,
LOGXOR, ASH, andMOD. The values written are often very large. The largest vakpeession written is
given by a term involving 147,233 function applications, 38l of which are calls at and the rest are
calls of arithmetic/logical functions.

We would like to be able to compare the performance of theeotirversion of Stateman to older
techniques (in which rewrite rules alone are used to caatimé symbolic states) but Codewalker is
unable to complete the exploration of our implementatiodD&S using those older techniques. The
time it takes to symbolically execute successive instomgtincreases alarmingly, sometimes apparently
exponentially (depending on the instruction being exatuss the state sizes increase. Of course, one
might address that with better rewrite rules, metafunsti@tc., but that was the origin of the Stateman
project.

However, we can provide some timing statistics on differamsions of Stateman. The times shown
are times taken to generate the clock and semantics fusaifosur DES implementation on a MacBook
Pro laptop with a 2.6 GHz Intel Core i7 processor with 16 GB&31 MHZ DDR3 memory. Times are
as measured byime$ and reported as “realtime” on a otherwise unloaded machine.

Roughly put, guard verification saved 33 seconds, well-fainess guarantees saved 337 more sec-
onds, honsing as opposed to consing the metafunction asisaeed 124 more seconds even though no
memoization was employed, and memoizing then saved 119 secmnds. Of particular interest is that
well-formedness guarantees were an order of magnitude effargtive than guard verification and that

“Warren Hunt provided the definitions of the ISA and the DE®atgm in ACL2.

8As of this writing the Codewalker exploration of DES does petform its standard “projection” (the transformation of
functions that describe the entire state to functions teatdbe the contents of specific state components) becalis2 dets
a stack overflow trying to handle states of such large szetufe Work) Clearly, additional work is necessary on Codewalker
and/or ACL?2 itself to handle the terms being produced byestan.

108

Stateman

honsing even without memoization was a win (presumably imeéess time was spent in allocation).

10

without guard verification, well-formedness guarantees88 $econds
honsing or memoization

with guard verification but without well-formedness 955 @mits
guarantees, honsing, or memoization

with guard verification and well-formedness guarantees,8 sgtonds
but without honsing or memoization

with guard verification, well-formedness guarantees, 4Pbrds
and honsing, but without memoization

with guard verification, well-formedness guarantees, Zosds
honsing, and the memoization described

Acknowledgments

| especially thank Warren Hunt for his invaluable help dgrihe development of this software. Warren
developed the definitions and proved many of the basic rewules forI, S, R, !'I, !'S, and!R, as well
as an ACL2 implementation of DES and the formal semanticshi@lSA to which the stack machine
compiles. | thank Matt Kaufmann, who gave me some stratagjica on lemma development to prove
the correctness of one of the metafunctions as well as hia estraordinary efforts to maintain ACL2
while | pursue topics such as this one. Finally, the revievedithis paper improved it significantly and |
am grateful for their careful and constructive criticism.

References

[1]

(2]
(3]
[4]
[5]

[6]

S. Goel, WA. Hunt & M. Kaufmann (2014): Simulation and Formal Verification of x86

Machine-Code Programs that make System Calldn K. Claessen & V. Kuncak, editors: FM-

CAD’14: Proceedings of the 14th Conference on Formal Methad Computer-Aided Design,

http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD ¥é4zedings/final.pdf, EPFL, Switzerland, pp. 91—
98, doi10.1109/FMCAD.2014.6987600.

M. Kaufmann, P. Manolios & J S. Moore, editors (200@omputer-Aided Reasoning: ACL2 Case Studies
Kluwer Academic Press, Boston, MA.

M. Kaufmann, P. Manolios & J S. Moore (2000Fomputer-Aided Reasoning: An Approad¢tiuwer Aca-
demic Press, Boston, MA., daD.1007/978-1-4615-4449-4.

M. Kaufmann & J S. Moore (2014)The ACL2 Home Pagdn: http: //www. cs. utexas. edu/users/
moore/acl2/, Dept. of Computer Sciences, University of Texas at Austin.

M. Kaufmann & J S. Moore (2015)Well-Formedness Guarantees for ACL2 Metafunctions andisgla
Processorsin: (submitted for publication)

H. Liu & J S. Moore (2004).Java Program Verification via a JVM Deep Embedding in ACL2K. Slind,
A. Bunker & G. Gopalakrishnan, editorst 7th International Conference on Theorem Proving in Higher

http://dx.doi.org/10.1109/FMCAD.2014.6987600
http://dx.doi.org/10.1007/978-1-4615-4449-4
http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

JS.

[7]

(8]
[9]

[10]

Moore 109

Order Logics: TPHOLs 20Q4 ecture Notes in Computer Scien8223, Springer, pp. 184—200, dob..
1007/978-3-540-30142-4_14,

J S. Moore & M. Martinez (2009):A Mechanically Checked Proof of the Correctness of the Boyer
Moore Fast String Searching Algorithiin: Engineering Methods and Tools for Software Safety and Se-
curity (Proceedings of the Martoberdorf Summer School,80S Press, pp. 267-284, dui:.. 3233/
978-1-58603-976-9-267.

Magnus O. Myreen (2009)Formal verification of machine-code program#$h.D. thesis, University of
Cambridge.

Magnus O. Myreen, Konrad Slind & Michael J. C. Gordon (2DIDecompilation into Logic Improvedn:
Formal Methods in Computer-Aided Design (FMCAD), 20pg. 78-81.

E. Toibazarov (2013)An ACL2 Proof of the Correctness of the Preprocessing for @awaof the Boyer-
Moore Fast String Searching AlgorithnHonors Thesis, Computer Science Dept., University of $exta
Austin. Seenttp://www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf.

http://dx.doi.org/10.1007/978-3-540-30142-4_14
http://dx.doi.org/10.1007/978-3-540-30142-4_14
http://dx.doi.org/10.3233/978-1-58603-976-9-267
http://dx.doi.org/10.3233/978-1-58603-976-9-267
http://www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf

	1 Background
	2 The Generic State
	3 Highlights of Key Design Decisions
	4 Examples
	5 Ainni: Abstract Interpreter for Natural Number Intervals
	6 Syntactic Simplification of MOD Expressions
	7 Some Details of Meta-R and Meta-!R
	8 Memoization
	9 Preliminary Performance Results
	10 Acknowledgments

