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SOFT (‘Second-Order Functions and Theorems’) is a tool to mimic second-order functions and the-
orems in the first-order logic of ACL2. Second-order functions are mimicked by first-order functions
that reference explicitly designated uninterpreted functions that mimic function variables. First-order
theorems over these second-order functions mimic second-order theorems universally quantified over
function variables. Instances of second-order functions and theorems are systematically generated
by replacing function variables with functions. SOFT can be used to carry out program refinement
inside ACL2, by constructing a sequence of increasingly stronger second-order predicates over one
or more target functions: the sequence starts with a predicate that specifies requirements for the target
functions, and ends with a predicate that provides executable definitions for the target functions.

1 The SOFT Tool

SOFT (‘Second-Order Functions and Theorems’) is a tool to mimic second-order functions and theo-
rems [4] in the first-order logic of ACL2 [3]. Second-order functions are mimicked by first-order func-
tions that reference explicitly designated uninterpreted functions that mimic function variables. First-
order theorems over these second-order functions mimic second-order theorems universally quantified
over function variables. Instances of second-order functions and theorems are systematically generated
by replacing function variables with functions. Theorem instances are proved automatically, via auto-
matically generated functional instantiations [5].

SOFT does not extend the ACL2 logic. It is an ACL2 library, available in the ACL2 community
books, that provides macros to introduce function variables, second-order functions, second-order theo-
rems, and instances thereof. The macros modify the ACL2 state only by submitting sound and conserva-
tive events; they cannot introduce unsoundness or inconsistency on their own. The main features of the
macros are described and exemplified below; full details are in their documentation and implementation.

1.1 Function Variables

A function variable is introduced as

(defunvar fv (* ... *) => *)

where:

• fv is a symbol, which names the function variable.

• (* ... *) is a list of 1 or more *s, which defines the arity, i.e. type [6], of fv.

This generates the event

(defstub fv (* ... *) => *)

i.e. fv is introduced as an uninterpreted function with the given type. Furthermore, a table event is
generated to record fv in a global table of function variables.

For example,
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(defunvar ?f (*) => *)

(defunvar ?p (*) => *)

(defunvar ?g (* *) => *)

introduce two unary function variables and one binary function variable. Starting function variable names
with ? provides a visual cue for their function variable status, but SOFT does not enforce this naming
convention.

1.2 Second-Order Functions

SOFT supports three kinds of second-order functions: plain second-order functions, choice second-order
functions, and quantifier second-order functions.

1.2.1 Plain Functions

A plain second-order function is introduced as

(defun2 sof (fv1 ... fvn) (v1 ... vm) doc decl ... decl body )

where:

• sof is a symbol, which names the second-order function.

• (fv1 ... fvn) is a non-empty list without duplicates of previously introduced function variables,
whose order is immaterial, which are the function parameters of sof.

• The other items are as in defun: individual variables, optional documentation string, optional
declarations, and defining body.

• FV(body) ∪ FV(measure) ∪ FV(guard) = {fv1, . . . ,fvn}, where:

– measure is the measure expression of sof, or nil if sof is not recursive.
– guard is the guard of sof (t if not given explicitly in the declarations).
– FV(term) is the set of function variables that either occur in term or are function parameters

of second-order functions that occur in term.

I.e. the function parameters of sof are all and only the function variables that sof depends on.1

This generates the event

(defun sof (v1 ... vm) doc decl ... decl body )

i.e. sof is introduced as a first-order function using defun, removing the function variables. Further-
more, a table event is generated to record sof in a global table of second-order functions.

For example,

(defun2 quad[?f] (?f) (x)

(?f (?f (?f (?f x)))))

introduces a non-recursive function to apply its function parameter to its individual parameter four times.
The name quad[?f] conveys the dependency on the function parameter and provides a visual cue for
the implicit presence of the function parameter when the function is applied, e.g. in (quad[?f] x), but
SOFT does not enforce this naming convention.

As another example,

1Thus, defun2 could have been defined to have the same form as defun, i.e. without (fv1 ... fvn). However, the presence
of the functions parameters parallels that of the individual parameters, and the redundancy check may detect user errors.
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(defun2 all[?p] (?p) (l)

(cond ((atom l) (null l))

(t (and (?p (car l)) (all[?p] (cdr l))))))

introduces a recursive predicate (i.e. boolean-valued function) that recognizes nil-terminated lists whose
elements satisfy the predicate parameter.

As a third example,

(defun2 map[?f_?p] (?f ?p) (l)

(declare (xargs :guard (all[?p] l)))

(cond ((endp l) nil)

(t (cons (?f (car l)) (map[?f_?p] (cdr l))))))

introduces a recursive function that homomorphically lifts ?f to operate on nil-terminated lists whose
elements satisfy ?p. The predicate parameter ?p only appears in the guard, not in the body.

As a fourth example,

(defun2 fold[?f_?g] (?f ?g) (bt)

(cond ((atom bt) (?f bt))

(t (?g (fold[?f_?g] (car bt)) (fold[?f_?g] (cdr bt))))))

introduces a generic folding function on values as binary trees.

1.2.2 Choice Functions

A choice second-order function is introduced as

(defchoose2 sof (bv1 ... bvp) (fv1 ... fvn) (v1 ... vm) body key-opts )

where:

• sof is a symbol, which names the second-order function.

• (fv1 ... fvn) are the function parameters, as in defun2.

• The other items are as in defchoose: bound variables, individual variables, constraining body,
and keyed options.

• FV(body) = {fv1, . . . ,fvn}.

This generates the event

(defchoose sof (bv1 ... bvp) (v1 ... vm) body key-opts )

i.e. sof is introduced as a first-order function using defchoose, removing the function variables. Fur-
thermore, a table event is generated to record sof in the same global table where plain second-order
functions are recorded.

For example,

(defchoose2 fixpoint[?f] x (?f) ()

(equal (?f x) x))

introduces a second-order function constrained to return a fixed point of ?f, if any exists.
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1.2.3 Quantifier Functions

A quantifier second-order function is introduced as

(defun-sk2 sof (fv1 ... fvn) (v1 ... vm) body key-opts )

where:

• sof is a symbol, which names the second-order function.

• (fv1 ... fvn) are the function parameters, as in defun2 and defchoose2.

• The other items are as in defun-sk: individual variables, defining body, and keyed options.

• FV(body) ∪ FV(guard) = {fv1, . . . ,fvn}, where guard is the guard of sof (t if not given
explicitly in the :witness-dcls option).

This generates the event

(defun-sk sof (v1 ... vm) body key-opts )

i.e. sof is introduced as a first-order function using defun-sk, removing the function variables. Fur-
thermore, a table event is generated to record sof in the same global table where plain and choice
second-order functions are recorded.

For example,

(defun-sk2 injective[?f] (?f) ()

(forall (x y) (implies (equal (?f x) (?f y)) (equal x y))))

introduces a predicate that recognizes injective functions.

1.3 Instances of Second-Order Functions

An instance of a second-order function is a function introduced as

(defun-inst f (fv1 ... fvn) (sof (fv1’ . f1’) ... (fvm’ . fm’)) key-opts )

where:

• f is a symbol, which names the new function.

• (fv1 ... fvn) are optional function parameters. If present, f is a second-order function; if absent,
f is a first-order function.

• sof is a previously introduced second-order function.

• ((fv1’ . f1’) ... (fvm’ . fm’)) is an instantiation Σ, i.e. an alist whose keys fvi’ are distinct
function variables, whose values fi’ are previously introduced function variables, second-order
functions, or regular first-order functions, and where each fi’ has the same type as fvi’. Each fvi’

is a function parameter of sof. The notation (sof (fv1’ . f1’) ... (fvm’ . fm’)) suggests
the application of sof to the functions fi’; since the function parameters of sof are unordered,
the application is by explicit association, not positional. An instance of a second-order function
is introduced as a named application of the second-order function; SOFT does not support the
application of a second-order function on the fly within a term, as in the application of a first-order
function. Not all the function parameters of sof must be keys in Σ; missing function parameters
are left unchanged.

• key-opts are keyed options, e.g. to override attributes of f that are otherwise derived from sof.
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• If sof is a plain function, FV(Σ(body)) ∪ FV(Σ(measure)) ∪ FV(Σ(guard)) = {fv1, . . . ,fvn},
where body, measure, and guard are the body, measure expression (nil if sof is not recursive),
and guard of sof, and Σ(term) is the result of applying Σ to term (see below).

• If sof is a choice function, FV(Σ(body)) = {fv1, . . . ,fvn}, where body is the body of sof.

• If sof is a quantifier function, FV(Σ(body)) ∪ FV(Σ(guard)) = {fv1, . . . ,fvn}, where body

and guard are the body and guard of sof.

This generates a defun, defchoose, or defun-sk event, depending on whether sof is a plain, choice,
or quantifier function. The event introduces f with body Σ(body), measure Σ(measure) (if sof is
recursive, hence plain), and guard Σ(guard) (if sof is a plain or quantifier function). f is recursive iff
sof is recursive: defun-inst generates the termination proof of f from the termination proof of sof
using the techniques to instantiate second-order theorems described in Section 1.5.

Furthermore, defun-inst generates a table event to record f as the Σ instance of sof in a global
table of instances of second-order functions. If f is second-order, defun-inst also generates a table
event to record f in the global table of second-order functions.

Σ(term) is obtained from term by replacing the keys of Σ in term with their values in Σ. This
involves not only explicit occurrences of such keys in term, but also implicit occurrences as func-
tion parameters of second-order functions occurring in term. For example, if the pair (?f . f) is
in Σ, sof[...?f...] is a second-order function whose function parameters include ?f, and term

is (cons (?f x) (sof[...?f...] y)), then Σ(term) is (cons (f x) (sof[...f...] y)), where
sof[...f...] is the Σ’ instance of sof[...?f...], where Σ’ is the restriction of Σ to the keys that are
function parameters of sof[...?f...]. The table of instances of second-order functions is consulted
to find sof[...f...]. If the instance is not in the table, defun-inst fails: the user must introduce
sof[...f...], via a defun-inst, and then re-try the failed instantiation.

For example, given a function

(defun wrap (x) (list x))

that wraps a value into a singleton list,

(defun-inst quad[wrap]

(quad[?f] (?f . wrap)))

introduces a function that wraps a value four times.
As another example, given a predicate

(defun octetp (x) (and (natp x) (< x 256)))

that recognizes octets,

(defun-inst all[octetp]

(all[?p] (?p . octetp)))

introduces a predicate that recognizes nil-terminated lists of octets.
As a third example,

(defun-inst map[code-char]

(map[?f_?p] (?f . code-char) (?p . octetp)))

introduces a function that translates lists of octets to lists of corresponding characters. The replacement
code-char of ?f induces the replacement octetp of ?p, because the guard of code-char is (equivalent
to) octetp; the name map[code-char] indicates only the replacement of ?f explicitly.

As a fourth example,
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(defun-inst fold[nfix_plus]

(fold[?f_?g] (?f . nfix) (?g . binary-+)))

adds up all the natural numbers in a tree, coercing other values to 0.
As a fifth example, given a function

(defun twice (x) (* 2 (fix x)))

that doubles a value,

(defun-inst fixpoint[twice]

(fixpoint[?f] (?f . twice)))

introduces a function constrained to return the (only) fixed point 0 of twice.
As a sixth example,

(defun-inst injective[quad[?f]] (?f)

(injective[?f] (?f . quad[?f])))

introduces a predicate that recognizes functions whose four-fold application is injective.

1.4 Second-Order Theorems

A second-order theorem is a theorem whose formula depends on function variables, which occur in the
theorem or are function parameters of second-order functions that occur in the theorem. Since function
variables are unconstrained, a second-order theorem is effectively universally quantified over the function
variables that it depends on. It is introduced via standard events like defthm.2

For example,

(defthm len-of-map[?f_?p]

(equal (len (map[?f_?p] l)) (len l)))

shows that the homomorphic lifting of ?f to lists of ?p values preserves the length of the list, for every
function ?f and predicate ?p.

As another example,

(defthm injective[quad[?f]]-when-injective[?f]

(implies (injective[?f]) (injective[quad[?f]]))

:hints

(("Goal" :use

((:instance

injective[?f]-necc

(x (?f (?f (?f (?f (mv-nth 0 (injective[quad[?f]]-witness)))))))

(y (?f (?f (?f (?f (mv-nth 1 (injective[quad[?f]]-witness))))))))

(:instance

injective[?f]-necc

(x (?f (?f (?f (mv-nth 0 (injective[quad[?f]]-witness))))))

(y (?f (?f (?f (mv-nth 1 (injective[quad[?f]]-witness)))))))

(:instance

injective[?f]-necc

2The absence of an explicit quantification over function variables in second-order theorems parallels the absence of an
explicit quantification over individual variables in first-order theorems.
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(x (?f (?f (mv-nth 0 (injective[quad[?f]]-witness)))))

(y (?f (?f (mv-nth 1 (injective[quad[?f]]-witness))))))

(:instance

injective[?f]-necc

(x (?f (mv-nth 0 (injective[quad[?f]]-witness))))

(y (?f (mv-nth 1 (injective[quad[?f]]-witness)))))

(:instance

injective[?f]-necc

(x (mv-nth 0 (injective[quad[?f]]-witness)))

(y (mv-nth 1 (injective[quad[?f]]-witness))))))))

shows that the four-fold application of an injective function is injective.
As a third example, given a function variable

(defunvar ?io (* *) => *)

for an abstract input/output relation, a predicate

(defun-sk2 atom-io[?f_?io] (?f ?io) ()

(forall x (implies (atom x) (?io x (?f x))))

:rewrite :direct)

that recognizes functions ?f that satisfy the input/output relation on atoms, and a predicate

(defun-sk2 consp-io[?g_?io] (?g ?io) ()

(forall (x y1 y2)

(implies (and (consp x) (?io (car x) y1) (?io (cdr x) y2))

(?io x (?g y1 y2))))

:rewrite :direct)

that recognizes functions ?g that satisfy the input/output relation on cons pairs when the arguments are
valid outputs for the car and cdr components,

(defthm fold-io[?f_?g_?io]

(implies (and (atom-io[?f_?io]) (consp-io[?g_?io]))

(?io x (fold[?f_?g] x))))

shows that the generic folding function on binary trees satisfies the input/output relation when its function
parameters satisfy the predicates just introduced.

1.5 Instances of Second-Order Theorems

An instance of a second-order theorem is a theorem introduced as

(defthm-inst thm (sothm (fv1 . f1) ... (fvn . fn)) :rule-classes ...)

where:

• thm is a symbol, which names the new theorem.

• sothm is a previously introduced second-order theorem.

• ((fv1 . f1) ... (fvn . fn)) is an instantiation Σ, where each fvi is a function variable that sothm
depends on. The notation (sothm (fv1 . f1) ... (fvm . fm)) is similar to defun-inst.

• The keyed option :rule-classes ... is as in defthm.
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This generates the event
(defthm thm Σ(formula) :rule-classes ... :instructions proof )

where:
• formula is the formula of sothm.

• proof consists of two commands for the ACL2 proof checker to prove thm using sothm.
The first command of proof is
(:use (:functional-instance sothm (fv1 f1) ... (fvn fn) more-pairs ))

i.e. thm is proved using a functional instance of sothm. The pairs that define the functional instance
include not only the pairs that form Σ (in list notation instead of dotted notation), but also, in more-pairs
above, all the pairs (sof f ) such that sof is a second-order function that occurs in sothm and f is
its replacement in thm (i.e. f is the Σ’ instance of sof, where Σ’ is the restriction of Σ to the function
parameters of sof ). These additional pairs are determined in the same way as when Σ is applied to
formula (see Section 1.3): thus, the result of (:functional-instance ...) above is Σ(formula),
and the main goal of thm is readily proved.

The use of the functional instance reduces the proof of thm to proving that, for each pair, the re-
placing function satisfies all the constraints of the replaced function. Since function variables are uncon-
strained, nothing needs to be proved for the (fvi fi) pairs. For each (sof f ) pair in more-pairs, it
must be proved that f satisfies the constraints on sof. If sof references another second-order function
sof ’ that depends on some fvi, a further pair (sof ’ f ’) goes into more-pairs, where f ’ is the
appropriate instance of sof ’, so that the constraints on sof to be proved are properly instantiated. This
further pair generates further constraints to be proved. To properly instantiate these further constraints,
another pair (sof ’’ f ’’) goes into more-pairs, if sof ’’ is a second-order function referenced by
sof ’ that depends on some fvi, and f ’’ is the appropriate instance of sof ’’. Therefore, more-pairs
includes all the pairs (sof f ) such that sof is a second-order function that is directly or indirectly
referenced by sothm and that depends on some fvi, and f is the appropriate instance of sof.

If sof is a quantifier second-order function, it references a witness function sofw introduced by
defun-sk. The defun-sk that introduces the instance f of sof also introduces a witness function
fw that is effectively an instance of sofw, but is not recorded in the table of instances of second-order
functions because sofw and fw are “internal”. The pair (sofw fw) goes into more-pairs as well.

For each pair (sof f ) in more-pairs, the constraints of sof are: the definition of sof if sof is a
plain function; the constraining axiom of sof if sof is a choice function; the definition of sof and the
rewrite rule of sof if sof is a quantifier function (the rewrite rule of sof is generated by defun-sk;
its default name is sof -necc if the quantifier is universal, sof -suff if the quantifier is existential).
Instantiating these constraints yields the corresponding definitions, constraining axioms, and rewrite
rules of f, by the construction of the instance f of sof.

The second command of proof is
(:repeat (:then (:use facts ) :prove))

where facts includes the names of all the f functions in more-pairs, which are also the names of their
definitions and constraining axioms; facts also includes the names of the rewrite rules for quantifier
functions. This command runs the prover on every proof subgoal, after augmenting each subgoal with
all the facts in facts. This command has worked on all the examples tried so far, but a more honed
approach could be investigated, should some future example fail; since the constraints are satisfied by
construction, this is just an implementation issue.

For example,
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(defthm-inst len-of-map[code-char]

(len-of-map[?f_?p] (?f . code-char) (?p . octetp)))

shows that map[code-char] preserves the length of the list.
As another example, given instances

(defun-inst injective[quad[wrap]] (injective[quad[?f]] (?f . wrap)))

(defun-inst injective[wrap] (injective[?f] (?f . wrap)))

the theorem instance

(defthm-inst injective[quad[wrap]]-when-injective[wrap]

(injective[quad[?f]]-when-injective[?f] (?f . wrap)))

shows that quad[wrap] is injective if wrap is.
An example instance of fold-io[?f_?g_?io] is in Section 2.

1.6 Summary of the Macros

defunvar, defun2, defchoose2, and defun-sk2 are wrappers of existing events that explicate func-
tion variable dependencies and record additional information. They set the stage for defun-inst and
defthm-inst.

defun-inst provides the ability to concisely generate functions, and automatically prove their ter-
mination if recursive, by specifying replacements of function variables.

defthm-inst provides the ability to concisely generate and automatically prove theorems, by spec-
ifying replacements of function variables.

2 Use in Program Refinement

In program refinement [9], a correct-by-construction implementation is derived from a requirements
specification via a sequence of intermediate specifications. Shallow pop-refinement (where ‘pop’ stands
for ‘predicates over programs’) is an approach to program refinement, carried out inside an interac-
tive theorem prover by constructing a sequence of increasingly stronger predicates over one or more
target functions. The sequence starts with a predicate that specifies requirements for the target func-
tions, and ends with a predicate that provides executable definitions for the target functions. Shallow
pop-refinement is a form of pop-refinement [8] in which the programs predicated upon are shallowly
embedded functions of the logic of the theorem prover, instead of deeply embedded programs of a pro-
gramming language as in [8].

SOFT can be used to carry out shallow pop-refinement in ACL2, as explained and exemplified below.
The example derivation is overkill for the simple program obtained, which can be easily written and
proved correct directly. But the purpose of the example is to illustrate techniques that can be used
to derive more complex programs, and how SOFT supports these techniques (which are more directly
supported in higher-order logic). The hints in some of the theorems below distill their proofs into patterns
that should apply to similarly structured derivations, suggesting opportunities for future automation.

2.1 Specifications as Second-Order Predicates

Requirements over n ≥ 1 target functions are specified by introducing function variables fv1, . . . ,fvn
that represent the target functions, and by defining a second-order predicate spec0 over fv1, . . . ,fvn that
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asserts the required properties of the target functions. The possible implementations are all the n-tuples
of executable functions that satisfy the predicate. The task is to find such an n-tuple, thus constructively
proving the predicate, existentially quantified over the function parameters.

For example, given a function

(defun leaf (e bt)

(cond ((atom bt) (equal e bt))

(t (or (leaf e (car bt)) (leaf e (cdr bt))))))

to test whether something is a leaf of a binary tree, a function to extract from a binary tree the leaves that
are natural numbers, in no particular order and possibly with duplicates, can be specified as

(defunvar ?h (*) => *)

(defun-sk io (x y) ; input/output relation

(forall e (iff (member e y) (and (leaf e x) (natp e))))

:rewrite :direct)

(defun-sk2 spec[?h] (?h) ()

(forall x (io x (?h x)))

:rewrite :direct)

The task is to solve spec[?h] for ?h, i.e. to find an executable function h such that the instance spec[h]
of spec[?h] holds.

Properties implied by the requirements are proved as second-order theorems with spec0 as hypothe-
sis, e.g. for validation purposes. Since the function parameters are universally quantified in the theorem,
the properties hold for all the implementations of the specification.

For example, the members of the output of every implementation of spec[?h] are natural numbers:

(defthm natp-of-member-of-output

(implies (and (spec[?h]) (member e (?h x))) (natp e))

:hints (("Goal" :use (spec[?h]-necc (:instance io-necc (y (?h x)))))))

2.2 Refinement as Second-Order Predicate Strengthening

The specification spec0 is stepwise refined by constructing a sequence spec1, . . . ,specm of increasingly
stronger predicates over fv1, . . . ,fvn. Each such predicate embodies a decision that either narrows down
the possible implementations or rephrases their description towards their determination. The correctness
of each step j ∈ {1, . . . ,m} is expressed by the second-order theorem (implies (spec j) (spec j−1)).

The sequence ends with specm asserting that each fvi is equal to some executable function fi:
3

(defun-sk2 def1 (fv1) () (forall x (equal (fv1 x) (f1 x))))

...

(defun-sk2 defn (fvn) () (forall x (equal (fvn x) (fn x))))

(defun2 specm (fv1 ... fvn) () (and (def1) ... (defn)))

The tuple 〈f1, . . . ,fn〉 is the implementation. Chaining the implications of the m step correctness the-
orems yields the second-order theorem (implies (specm) (spec0)). Its Σ instance, where Σ is the
instantiation ((fv1 . f1) ... (fvn . fn)), is essentially Σ((spec0)) (because Σ((specm)) is trivially
true), which asserts that the implementation 〈f1, . . . ,fn〉 satisfies spec0.

More precisely, in the course of the derivation, function variables fvn+1, . . . ,fvn+p may be added
to represent additional target functions fn+1, . . . ,fn+p called by f1, . . . ,fn. This may happen as the task

3The body of each (defun-sk2 defi ...) is a first-order expression of the second-order equality fvi = fi.
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of finding f1, . . . ,fn is progressively reduced to simpler sub-tasks of finding fn+1, . . . ,fn+p. If fvn+k
is added at refinement step j, since spec j−1 does not depend on fvn+k, the universal quantification of
fvn+k over the step correctness theorem (implies (spec j) (spec j−1)) is equivalent to an existential
quantification of fvn+k over the hypothesis (spec j) of the theorem. The complete implementation that
results from the derivation is 〈f1, . . . ,fn,fn+1, . . . ,fn+p〉.

The function variables fvi are placeholders for the target functions in the spec j predicates. Each
fvi remains uninterpreted throughout the derivation; no constraints are attached to it via axioms. Each
spec j is defined, so it does not introduce logical inconsistency. Inconsistent requirements on the target
functions amount to spec0 being always false, not to logical inconsistency. Obtaining an implementation
witnesses the consistency of the requirements.

For example, spec[?h] from Section 2.1 can be refined as follows.

Step 1 Since the target function represented by ?h operates on binary trees, spec[?h] is strengthened
by constraining ?h to be the folding function on binary trees from Section 1.2.1:

(defun-sk2 def-?h-fold[?f_?g] (?h ?f ?g) ()

(forall x (equal (?h x) (fold[?f_?g] x)))

:rewrite :direct)

(defun2 spec1[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (spec[?h])))

(defthm step1 (implies (spec1[?h_?f_?g]) (spec[?h]))

:hints (("Goal" :in-theory ’(spec1[?h_?f_?g]))))

The predicate spec1[?h_?f_?g] adds to spec[?h] the conjunct def-?h-fold[?f_?g]. Thus, the
task of finding a solution for ?h is reduced to the task of finding solutions for ?f and ?g: instantiating
def-?h-fold[?f_?g] with solutions for ?f and ?g yields a solution for ?h, in Step 5 below.

Step 2 The theorem fold-io[?f_?g_?io] from Section 1.4, which shows the correctness of the
folding function (with respect to an input/output relation) under suitable correctness assumptions on the
function parameters, is instantiated with the input/output relation io used in spec[?h]:

(defun-inst atom-io[?f] (?f) (atom-io[?f_?io] (?io . io)))

(defun-inst consp-io[?g] (?g) (consp-io[?g_?io] (?io . io)))

(defthm-inst fold-io[?f_?g] (fold-io[?f_?g_?io] (?io . io)))

Since the conclusion (io x (fold[?f_?g] x)) of fold-io[?f_?g] equals the matrix (io x (?h

x)) of spec[?h] when def-?h-fold[?f_?g] holds, spec1[?h_?f_?g] is strengthened by replacing
the spec[?h] conjunct with the hypotheses of fold-io[?f_?g]:

(defun2 spec2[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (atom-io[?f]) (consp-io[?g])))

(defthm step2 (implies (spec2[?h_?f_?g]) (spec1[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec1[?h_?f_?g] spec2[?h_?f_?g] spec[?h]

def-?h-fold[?f_?g]-necc fold-io[?f_?g]))))

Step 3 The predicate atom-io[?f] specifies requirements on ?f independently from ?g and ?h. An
implementation f can be derived by constructing a sequence of increasingly stronger predicates over ?f,
in the same way in which spec[?h] is being refined stepwise. This is a possible final result:
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(defun f (x) (if (natp x) (list x) nil))

(defun-inst atom-io[f] (atom-io[?f] (?f . f)))

(defthm atom-io[f]! (atom-io[f]))

The predicate spec2[?h_?f_?g] is strengthened by replacing the atom-io[?f] conjunct with one that
constrains ?f to be f:

(defun-sk2 def-?f (?f) () (forall x (equal (?f x) (f x))) :rewrite :direct)

(defun2 spec3[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (def-?f) (consp-io[?g])))

(defthm step3-lemma (implies (def-?f) (atom-io[?f]))

:hints (("Goal" :in-theory ’(atom-io[?f] atom-io[f]-necc

atom-io[f]! def-?f-necc))))

(defthm step3 (implies (spec3[?h_?f_?g]) (spec2[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec2[?h_?f_?g] spec3[?h_?f_?g] step3-lemma))))

Step 4 The predicate consp-io[?g] specifies requirements on ?g independently from ?f and ?h. An
implementation g can be derived by constructing a sequence of increasingly stronger predicates over ?g,
in the same way in which spec[?h] is being refined stepwise. This is a possible final result:

(defun g (y1 y2) (append y1 y2))

(defun-inst consp-io[g] (consp-io[?g] (?g . g)))

(defthm member-of-append ; used to prove CONSP-IO[G]-LEMMA below

(iff (member e (append y1 y2)) (or (member e y1) (member e y2))))

(defthm consp-io[g]-lemma ; used to prove CONSP-IO[G]! below

(implies (and (consp x) (io (car x) y1) (io (cdr x) y2))

(io x (g y1 y2)))

:hints (("Goal" :in-theory (disable io) :expand (io x (append y1 y2)))))

(defthm consp-io[g]! (consp-io[g]) :hints (("Goal" :in-theory (disable g))))

The predicate spec3[?h_?f_?g] is strengthened by replacing the consp-io[?f] conjunct with one
that constrains ?g to be g:

(defun-sk2 def-?g (?g) ()

(forall (y1 y2) (equal (?g y1 y2) (g y1 y2)))

:rewrite :direct)

(defun2 spec4[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (def-?f) (def-?g)))

(defthm step4-lemma (implies (def-?g) (consp-io[?g]))

:hints (("Goal" :in-theory ’(consp-io[?g] consp-io[g]-necc

consp-io[g]! def-?g-necc))))

(defthm step4 (implies (spec4[?h_?f_?g]) (spec3[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec3[?h_?f_?g] spec4[?h_?f_?g] step4-lemma))))

Step 5 Substituting the solutions f and g into fold[?f_?g] yields a solution for ?h:

(defun-inst h (fold[?f_?g] (?f . f) (?g . g)))

(defun-sk2 def-?h (?h) () (forall x (equal (?h x) (h x))) :rewrite :direct)

The conjunct def-?h-fold[?f_?g] of spec4[?h_?f_?g] is replaced with def-?h, which is equiva-
lent to def-?h-fold[?f_?g] given the conjuncts def-?f and def-?g:
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(defun2 spec5[?h_?f_?g] (?h ?f ?g) () (and (def-?h) (def-?f) (def-?g)))

(defthm step5-lemma

(implies (and (def-?f) (def-?g)) (equal (h x) (fold[?f_?g] x)))

:hints (("Goal" :in-theory ’(h fold[?f_?g] def-?f-necc def-?g-necc))))

(defthm step5 (implies (spec5[?h_?f_?g]) (spec4[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec4[?h_?f_?g] spec5[?h_?f_?g]

def-?h-fold[?f_?g] def-?h-necc step5-lemma))))

This concludes the derivation: spec[?h_?f_?g] provides executable solutions for ?h, ?f, and ?g. The
resulting implementation is 〈h,f,g〉. Chaining the implications of the step correctness theorems shows
that these solutions satisfy the requirements specification:

(defthm chain[?h_?f_?g] (implies (spec5[?h_?f_?g]) (spec[?h]))

:hints (("Goal" :in-theory ’(step1 step2 step3 step4 step5))))

More explicitly, instantiating the end-to-end implication shows that h satisfies the requirements specifi-
cation:

(defun-inst def-h (def-?h (?h . h)))

(defun-inst def-f (def-?f (?f . f)))

(defun-inst def-g (def-?g (?g . g)))

(defun-inst spec5[h_f_g] (spec5[?h_?f_?g] (?h . h) (?f . f) (?g . g)))

(defun-inst spec[h] (spec[?h] (?h . h)))

(defthm-inst chain[h_f_g] (chain[?h_?f_?g] (?h . h) (?f . f) (?g . g)))

(defthm spec5[h_f_g]! (spec5[h_f_g])

:hints (("Goal" :in-theory ’(spec5[h_f_g]))))

(defthm spec[h]! (spec[h])

:hints (("Goal" :in-theory ’(chain[h_f_g] spec5[h_f_g]!))))

3 Related Work

The instance-of-defspec tool [14] and the make-generic-theory tool [17] automatically gener-
ate instances of functions and theorems that reference functions constrained via encapsulation [15], by
replacing the constrained functions with functions that satisfy the constraints. The instantiation mecha-
nisms of these tools are similar to the ones of SOFT; constrained functions in these tools parallel function
variables in SOFT. However, in SOFT function variables are unconstrained; constraints on them are ex-
pressed via second-order predicates (typically with quantifiers), and the same function variables can
be used as parameters of different constraining predicates. Unlike SOFT, instance-of-defspec and
make-generic-theory do not handle choice and quantifier functions, and do not generate termination
proofs for recursive function instances. SOFT generates one function or theorem instance at a time,
while instance-of-defspec and make-generic-theory can generate many. These two tools are
more suited to developing and instantiating abstract and parameterized theories; SOFT is more suited to
mimic second-order logic notation.

The :consider hint [19] heuristically generates functional instantiations to help prove given the-
orems. SOFT generates function and theorem instances for given replacements of function variables;
from these replacements, the necessary functional instantiations are generated automatically.

The def-functional-instance tool in the ACL2 community books generates theorem instances
for given replacements of functions. This tool has more general use than SOFT’s defthm-inst, but it
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requires a complete functional instantiation, while defthm-inst only requires replacements for function
variables.

Wrapping existing events to record information for later use (as done by SOFT’s defunvar, defun2,
defchoose2, and defun-sk2) has precedents. For example, the def:un-sk tool [11] is a wrapper of
defun-sk that records information to help prove theorems involving quantifiers. It may be useful to
combine def:un-sk with SOFT’s defun-sk2 wrapper.

There are several tools to generate functions and theorems according to certain patterns, such as
std::deflist in the ACL2 standard library and fty::deflist in the FTY library [23]. These tools
may use SOFT to generate some of the functions and theorems as instances of pre-defined second-order
functions and theorems.

A general-purpose theorem prover like ACL2 can represent a variety of specification and refinement
formalisms, e.g. [1, 2, 12, 13, 18, 20, 22]; derivations can be carried out within the logic. But given the
close ties to Applicative Common Lisp, a natural approach to program refinement in ACL2 is to specify
requirements on one or more target ACL2 functions, and progressively strengthen the requirements until
the functions are executable and performant.

Alternatives to SOFT’s second-order predicates, for specifying requirements on ACL2 functions, in-
clude encapsulate (possibly via the wrappers defspec and defabstraction in the ACL2 community
books), defaxiom, and defchoose. But these are not as suited to program refinement:

• An encapsulate involves exhibiting witnesses to the consistency of the requirements, which
amounts to writing an implementation and proving it correct. But it is the purpose of program
refinement to construct an implementation and its correctness proof.

• A defaxiom obviates witnesses but may introduce logical inconsistency.

• A defchoose obviates witnesses and is logically conservative, but:

– It expresses requirements on single functions, necessitating the combination of multiple tar-
get functions into one.

– It expresses requirements on function results (the bound variables) with respect to function
arguments (the free variables), but not requirements involving different results and different
arguments, such as injectivity, non-interference [10], and other hyperproperties [7].

– It prescribes underspecified but fixed function results. For example, there is no clear refine-
ment relation between the function introduced as (defchoose f (y) (x) (> y x)) and the
function introduced as (defun g (x) (+ x 1)).

In contrast, a second-order predicate can specify any kind of requirements, on multiple functions, main-
taining logical consistency, and doing so without premature witnesses.

In the derivation in Section 2.2, the use and instantiation of the generic folding function on binary
trees is an example of the application of algorithm schemas in program refinement, as in [21] but here
realized via second-order functions and theorems. Second-order functions express algorithm schemas,
and second-order theorems show their correctness under suitable conditions on the function parameters.
Applying a schema adds a constraint that defines a target function to use the schema, and introduces
simpler target functions corresponding to the function parameters, constrained to satisfy the conditions
for the correctness of the schema.

A refinement step from a specification spec j can be performed manually, by writing down spec j+1
and proving (implies (spec j+1) (spec j)). It is sometimes possible to generate spec j+1 from spec j,
along with a proof of (implies (spec j+1) (spec j)), using automated transformation techniques. Au-
tomated transformations may require parameters to be provided and applicability conditions to be proved,
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but should generally save effort and make derivations more robust against changes in requirements spec-
ifications. At Kestrel Institute, we are developing ACL2 libraries of automated transformations for pro-
gram refinement.

4 Future Work

Guards defun-inst could be extended with the option to override the default guard Σ(guard) with a
different guard’, generating the proof obligation (implies guard’ Σ(guard)). This would be useful
in at least two situations.

A first situation is when the function instance has more guard conditions to verify than the second-
order function being instantiated, due to the replacement of a function parameter (which has no guards)
with a function that has guards. Providing a stronger guard to the function instance would enable the
verification of the additional guard conditions. For example, an instance quad[cdr] of quad[?f] from
Section 1.2.1 could be supplied with the guard (true-listp x).

A second situation is when the guard of the second-order function being instantiated includes condi-
tions on function parameters that involve a quantifier, e.g. the condition that the binary operation ?op of
a generic folding function over lists is closed over the type ?p of the list elements. Instantiating ?p with
natp and ?op with binary-+ satisfies the condition, but Σ(guard) still includes a quantifier that makes
the instance of the folding function non-executable. Supplying a guard’ that rephrases Σ(guard) to
omit the satisfied closure condition would solve the problem. As guard obligations on individual param-
eters are relieved when functions are applied to terms in a term, it makes sense to relieve guard obligations
on function parameters when second-order functions are “applied” to functions in defun-inst.

defun-inst could also be extended with the ability to use the instances of the verified guard condi-
tions of the second-order function being instantiated, to help verify the guard conditions of the function
instance. This may completely verify the guards of the instance, when no guard overriding is needed.

Partial Functions SOFT could be extended with a macro defpun2 to introduce partial second-order
functions, mimicked by partial first-order functions introduced via defpun [16]. defun-inst could
be extended to generate not only partial function instances, but also total function instances when the
instantiated :domain or :gdomain restrictions are theorems. Partial second-order functions would be
useful, in particular, to define recursive algorithm schemas whose measures and whose argument updates
in recursive calls are, or depend on, function parameters. An example is a general divide-and-conquer
schema.4

Mutual Recursion SOFT could be extended with a macro mutual-recursion2 to introduce mutu-
ally recursive plain second-order functions (with defun2), mimicked by mutually recursive first-order
functions introduced via mutual-recursion. defun-inst could be extended to generate instances of
mutually recursive second-order functions.

Lambda Expressions defun-inst and defthm-inst could be extended to accept instantiations that
map function variables to lambda expressions, similarly to :functional-instance.

4The folding function from Section 1.2.1 is a divide-and-conquer schema specialized to binary trees.
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Instantiation Transitivity If sof ’ is introduced as the Σ instance of sof, and f is introduced as the
Σ’ instance of sof ’, then f should be the Σ” instance of sof, where Σ” is a suitably defined composition
of Σ and Σ’. Currently defun-inst does not record f as an instance of sof when f is introduced, but
it could be extended to do so. With this extension, injective[quad[wrap]] in Section 1.5 would be
the ((?f . quad[wrap])) instance of injective[?f] in Section 1.2.3.

In a related but different situation, given sof, sof ’, f, Σ, Σ’, and Σ” as above, but with f introduced
as the Σ” instance of sof, and sof ’ introduced as the Σ instance of sof, in either order (i.e. f then
sof ’, or sof ’ then f ), then f should be the Σ’ instance of sof ’. Currently defun-inst does not
record f as an instance of sof ’ when f (after sof ’) or sof ’ (after f ) is introduced, but could be
extended to do so. With this extension, if injective[quad[wrap]] were introduced as the ((?f .

quad[wrap])) instance of injective[?f], and injective[quad[?f]] were introduced as the ((?f
. quad[?f])) instance of injective[?f] as in Section 1.3, then injective[quad[wrap]] would
be the ((?f . wrap)) instance of injective[quad[?f]].

An alternative to these two extensions of defun-inst is to extend SOFT with a macro to claim
that an existing instance of a second-order function is also an instance of another second-order function
according to a given instantiation. The macro would check the claim (by applying the instantiation and
comparing the result with the function) and extend the table of instances of second-order functions if the
check succeeds. In the first scenario above, the macro would be used to claim that f is the Σ” instance of
sof ; in the second scenario above, the macro would be used to claim that f is the Σ’ instance of sof ’.

Function Variable Constraints Currently the only constraints on function variables are their types.
defunvar could be extended to accept richer signatures for function variables, with multiple-value re-
sults and single-threaded arguments and results. defun-inst and defthm-inst would then be extended
to check that instantiations satisfy these additional constraints. A more radical extension would be to at-
tach logical constraints to certain function variables, as in encapsulations.

Automatic Instances As explained in Section 1.3, when an instantiation is applied to a term, the
table of instances of second-order functions is consulted to find replacements for certain second-order
functions, and the application of the instantiation fails if replacements are not found. Thus, all the needed
instances must be introduced before applying the instantiation, e.g. in Section 1.5 the two defun-insts
had to be supplied before the last defthm-inst. SOFT could be extended to generate automatically the
needed instances of second-order functions.

SOFT could also be extended with a macro defthm2 to prove a second-order theorem via defthm

and to record the theorem in a table, along with information about the involved second-order functions.
defun-inst could be extended with the option to generate instances of the second-order theorems that
involve the second-order function being instantiated. defthm2 could include the option to generate
instances of the theorem that correspond to the known instances of the second-order functions that the
theorem involves. These extensions would reduce the use of explicit defthm-insts.

The convention of including function variables in square brackets in the names of second-order func-
tions and theorems, could be exploited to name the automatically generated function and theorem in-
stances, as suggested by the examples throughout the paper.

Other Events SOFT could be extended to provide second-order counterparts of other function and
theorem introduction events, e.g. define, defines, and defrule in the ACL2 community books.
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