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The verification of many algorithms for calculating transdental functions is based on polynomial
approximations to these functions, often Taylor series@gmations. However, computing and
verifying approximations to the arctangent function argy\ehallenging problems, in large part be-
cause the Taylor series converges very slowly to arctarge®7th-degree polynomial is needed to
get three decimal places for arctar®®). Medina proposed a series of polynomials that approdéma
arctangent with far faster convergence—a 7th-degree pahai is all that is needed to get three
decimal places for arctan@b). We present in this paper a proof in ACL2(r) of the comess and
convergence rate of this sequence of polynomials. The psqudrticularly beautiful, in that it uses
many results from real analysis. Some of these necessanysregre proven in prior work, but some
were proven as part of thistert.
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1 Introduction

In this paper, we describe a formalization in ACL2(r) of aypmmial approximation to arctangent. The
obvious approach to approximating a transcendental fomdsito use a general approximation scheme,
such as the Taylor Series. However, the Taylor Series féamgent converges very slowly:

arctanf) = X—- —+——-.- = +1 1
rctang) = x 3t 2, X O

As Equatior[ 1l shows, the denominators are growing at theofa®n), not O(n!) as is the case for the
Taylor series of sine, cosine, ef. Consequently, thethterms in the series decrease much more slowly,
and the convergence rate is disastrous.

The long-term goal of this research project is to formallyd@icthe x86 instructions that compute
trigonometric, logarithmic, and exponential function} [So it is of practical importance to use a poly-
nomial approximation that converges more quickly to amgéam. A recent result of Medina'’s provides
such an approximation [7], and this paper describes a fazaiadn of that result in ACL2(r).

The paper is organized as follows. In Sectidn 2, we descrdve the arctangent function can be
introduced in ACL2(r). Sectionl3 presents a necessary deétbo the basic calculus of polynomials,
including the rules for integrating andffirentiating polynomials. Sectidm 4 deals with Medina’sypol
nomial approximation. Finally, Sectidn 5 presents somelkmling remarks on the use of ACL2(r) for
this project.
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2 The Arctangent in ACL2(r)

2.1 Introducing Arctangent

We begin this discussion by introducing the arctangenttfandnto ACL2(r). From the perspective
of ACL2(r), the exponential functioe® is the most fundamental of the transcendental functionss It
defined as a power series over the complex plane, and thedrgetric functions sine and cosine are
introduced in terms of*. The tangent function itself is introduced as the quotidrsirme and cosine.

ACL2(r) allows the definition of inverse functions, such astangent[[4]. In order to introduce the
inverse function forf(x), it is necessary to prove certain obligations (which cgpoad to constraints in
a hiddenencapsulate):

e f:D — Ris defined on intervaD, and its range is the interv&
e fis 1-to-1 over the domaib.

e fis continuous oveD.

e If ye R, there arex; € D andx; € D such thatf(x;) <y < f(x).

The challenge, then, is to prove that tangent has these niegpan order to introduce its inverse, arct-
angent.

By convention, we chose the relevant domain of tangent te-b¢2X 7/2), and the range of tangent
over this domain is the entire number liRe

Next we show that tangent is 1-to-1 on the domain/@, 7/2). We do this with a little calculus. If we
can show that the derivative of tangent is positive -em/@,7/2), then it must, necessarily, be increasing
over this range. Moreover, if tangent idférentiable on+{x/2,7/2), it must also be continuous on that
range. Thus, the derivative of tangent provides two of trezled proof obligations.

Tangent is defined in ACL2(r) as taf)(= (f(')l(g()) so its derivative follows from the product and quo-
tient rules and the derivatives of sine and cosiné [3, 8].ntlagor complication is proving that cog(is
non-zero forx e (—n/2,7/2). This was actually proven earlier, in part to define thestamtr in ACL2(r)

as (twice) the first positive zero of cosine [2]! It should m#ed that the result of thigtert is that

AE58) _ sin(I(-1)Esin6o)] |
dx Co2(X)
S|n2(x)
co§(x)

+Cosf) —— (2)

cos(x)

(3)

It takes (proving and) using the trigonometric identity’ag+ 1 = se@(x) to reduce this expression to
the familiar tari(x) = se@(X). As mentioned previously, now that the derivative is knpwtrfollows
directly that tangent is continuous on the desired interval

To show that tangent is 1-to-1 on the interval, we use thetffettthe derivative sé¢x) is positive on
(-n/2,7/2). We found it surprising that it was not already proven inL2Q) that a positivef” guarantees
increasingf. We formalized this small result using the Mean Value Theo(®VT). If there arex; and
X2 such thatx; > X, but f(x1) < f(Xx2), then by the MVT there is a point such thatx; < ¢ < X, and
f’(c) = L‘cfxﬂ < 0. Sincef’ is positive, no such point exists, hence no such andx, can be found.

The final proof obligation is that for any € R, we can findx; and x, in (-x/2,7/2) such that
tan(xy) <y <tan(xp). This turned out to be a significant challenge, which wel&tkn parts.

For the first part, supposeQy < 1. Then tan(0x y < tanfr/4), since tan(0¥ O, tanr/4) = 1, and
tangent is an increasing function. So settitag= 0 andx, = /4 will work.
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Before tackling the second part, we find an important lowerngoon tang) wheneverr/4 < x <
n/2. The lower bound is easily found since tan€ sin(x)/ cos(), sine is increasing on [@/2], and
sin@r/4) = 1/ V2, so tany) > 1/(V2cos)) whenr/4 <y < 7/2.

For the second part, suppose tlgat 1. The lower bound on tangent above can be turned into a
range on arctangent as follows. Since 1, it follows that 7( V2y) € (0,1). In turn, this means that
arccosy) € (0,7/2). Actually, since cosine is decreasing op(®), and cost/4) = 1/ V2, arccosy) is
further restricted to{/4, 7/2). So fory > 1, it follows that tan(0x y < tan(arccos(( V2y))), so setting
x1 = 0 andx, = arccos(¥( V2y)) will work.

The third and final part, when< 0, can be derived from the results above by observing th&tyaa:
—tanfy), so it is suficient to find the bound for arctary) and swap signs.

At this point, the proof obligations for inverse function® dulfilled, so we can introduce arctangent
usingdefinv.

2.2 The Derivative of Arctangent

The next step is to define the derivative of arctangent. Thisate of inverse functions was proven
in [3] and is given by

d(i ) 1
dy P

This formula is valid only wherf’ is never infinitesimally small in the range pf

In the previous section, we showed that the derivative afeahis se®(x) = 1/ cog(X). This function
achieves its minimum when cosine achieves its maximum rhadgi i.e., when cog] = +1. Conse-
quently, tan(x) > 1, so it is never infinitesimally small. That means

(4)

ditan(y)) 1 1 1

dy  seé(arctany)) - tarf(arctang)) + 1 - y2+1 ®)

The Fundamental Theorem of Calculus (FTC) was first prove®iGh2(r) in [6], and we recently
redid that proof to make the final statement of the FTC morectlitUsing this result, it follows that

 dx
f T arctanb) — arctanf). (6)
a

This result will play a key role in Sectidg 4.

3 Polynomial Calculus

3.1 The Derivative and Integral of x"

We now turn our attention to the derivative and integral effimctionx". Because this is really a binary
function, of bothx andn, it illustrates the dficulties of working with the non-standard definition of
derivative. For example, a direct way of proving tﬁ%—) =n-x"1is by using induction, invoking the
product rule during the inductive step. The problem is thatrton-standard definition offéérentiability
requires thatsmalle) = w ~n-x"1. This is a non-classical formula, so it cannot be provedgsin
functional instantiation with a pseudo-lambda expresseog., f(x) — (1(x)x").
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That is part of the motivation behind proving in ACL2(r) thlae e-6 definition of derivative is equiv-
alent to the non-standard definition used in ACLZ(f) [1].dad, using the-6 definition of derivative, it
is possible to prove the derivative ®f by induction. However, there are still potential pitfalls.partic-
ular, the key lemma in the inductive step requires the uskegptoduct rule,{xg)’ = f xg' + f’ xg. But
the proof obligations of the functional instantiation undé the theorerﬂ% =(n—1)-x"2, This is part
of the induction hypothesis, but injecting hypotheses prtwof obligations of functional instantiation is
a difficult problem.

So we opted for a slightly more general approach. There avedifferent ways of writingx" in
ACL2(r):

e (exptxn)
e (raise xn)

Theexpt function is identical to its counterpart in ACL2, so it is defd by induction om (which must
be an integer, not necessarily a natural number). fihese function is defined using” = €""®. For
integer exponentn, these two definitions are known to be equal.

The idea, then, is to use the derivativeedf® to find the derivative ok". Previously, we had shown
that the derivative o&* is preciselye* [8]. With the use of the Chain Rul€l[3] and the derivative of
In(x) [8], this means that

d(Xn) _ d(enln(x)) (7)

dx dx
L i
= nXen (8)
_ ol
=n-x )
=nx"L. (10)

However, this derivation makes several hidden assumpti@isieed to be addressed.

The first problem is that the derivative of k)(is only known forx > 0. (While the function Inx) is
defined for all non-zero complex numbers, derivatives in 2QC).are restricted to real-valued functions
of real numbers.) So for positive valuesxgfthis argument does hold, and we proved that

d(x")

X>Oﬁw—n){l_l. (11)

Whenx < 0, €""® isn't even necessarily defined over the reals, e-gl)q = e3"1 = j ¢ R. How-
ever, we can restrictto range over the integers, and thérs defined even for negative Our approach
was to show that wheneveir< 0,

X = i (12)
= g"In(=X) (13)
= g(In(x)-+ix) (14)
— in(x)+ixn (15)
— () gimn (16)

= i (_qyn (17)
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In the last step,1)" can be represented using eitlrar se or expt, sincen is restricted to the integers.
This means that<1)" is equal to 1 whem is even and-1 whenn is odd, and these cases can be
considered separately. At this point, the derivative<btan be reduced to the case whare 0, since

[X| > 0. This shows that

d(x")
dx

That leaves the case when= 0. Again, we restrict ourselves to the case of integebecause it
is possible fore to be infinitessimally close to 0 yet still be negative. Mar@on cannot be negative,
because in that cas@ & undefined. When = 0, x" = 1, so the derivative of" is 0, which is equal to
nx1 =0-x1=0. Note: This uses the fact thatd= 0 according to the axioms of ACL2. When> 0,
0" =0 and|e"| < |¢| for |e] < 1. If n=1, thene” = ¢, and the derivative of" is just 1, and since®= 1,
this is exactly the same as™! = 1-0° = 1. Whenn > 1, for infinitesimale, " ~0=n0"1 =n-0. So
we have shown that

ax")

X=0AneN= - =nx"1. (19)

Combining these results, we have that

X<0ANEZ = =nx"L. (18)

[(X>0)V (Xx<0ANEZ)V(X=0ANEN)] = dg{:) — L (20)

It is interesting that so many hypotheses are needed fordsist, which is taken for granted in calculus.
However, the assumption there is that the result holds ofignnall expressions in the theorem are
defined. This is a powerful assumption that hides hypotheses

Before proceeding, we would like to make the following obation. Many of the theorems require
hypotheses such ass Z. Sincen is not one of the parameters of the functibthat is being functionally
instantiated, these arguments have to be “infected” whamgusinctional instantiation. One of the
traditional approaches is to use a pseudo-lambda term wittndition and a default value, as in the
following:

:functional-instance useful-theorem
(f (lambda (x)
(if (not (integerp n))
0
(expt x n))))

However, since many such functions need to be instantittexinot always obvious how to define the
“unintended domain” cases so that the constraints of altdmbined functions hold. So we found it
more productive to move these hypotheses into the defisitasin the following:

(defun raise-to-int (x n)
(raise (realfix x) (ifix n)))

Then we proved the required theorems about the “fixed” fonsti and only later raised the hypotheses
to the statements as in Equatlon 20.
Once the derivative af” is known, it is a simple matter to invoke the FTC to find the gné of X":

n+1 n+1
b a 21)

b
0 0ANEZ)V (x=0 Mdx= “— 7
[(x>0)V(Xx<0AN€eZ)V (X /\HEN)]:‘L XOX= 1 " nr1
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3.2 The Derivative and Integral of Polynomials

It is now time to extend the results in the previous sectiopdtynomials. The first challenge is to
capture the notion of polynomials in ACL2(r), and we chosade the characterization described in [5].
Polynomials are encoded as lists of fiiéents, with the first cdicient being the constant term, and
subsequent cdicients corresponding to higher powersof For example, the polynomial 8x? is
encoded as the ligt3 0 1). The functioneval-polynomial evaluates a polynomial at a point, and
what we have to show is that its derivative is also a polynamiehat particular function used the
following recursive scheme:

evalpolycongc,resi), X) = c+ x- evalpolyrest x) (22)
It is an easy challenge to define an alternative executioedbas a scheme that usgs
evalpolycongc,resf), x,n) = c- X" + evalpolyrest x,n+ 1) (23)

Once these two functions are proved equivalent, the refsaitsthe previous section can be used directly.
So the first step is to define the list of ¢heients of the derivative of a polynomial. This is easily
done, e.g., as in the following definition:

(defun derivative-polynomial-aux (poly n)
(if (and (real-polynomial-p poly)
(natp n)
(consp poly))
(if (< 0 n)
(cons (x n (car poly))
(derivative-polynomial-aux (cdr poly) (1+ n)))
(derivative-polynomial-aux (cdr poly) (1+ n)))

nil))

The proof that this polynomial is the derivative of the omigli polynomial can proceed by induction.
Recall that one of the complications described in the previsection is the €iculty of pushing the
inductive hypothesis into the proof obligations of a fuonfl instantiation. However, the key lemma
that is required in this case is that-€g)’ (x) = f’(xX) + g’(x). The proof of this lemma is easy enough
that it can be carried out as part of the induction. The trickoi do induction such thdipoly,n,e) —
(cdr(poly),n+1,¢/2).

As before, once the derivative of polynomials is establislieis easy to invoke the FTC in order to
introduce the integral of polynomials. We defined a funcsonilar toderivative-polynomial-aux
that computes the céiecient of the integral.

4 Medina’'s Result

Now that all preliminaries have been dealt with, we can fdizeaMedina’s main result. In order to
make arctangent more tractable, Medina first reduces theidoofh arctangent to [A]. He can do this
by using the following lemmas:

x> 1= arctanf) = g - arctar(%() (24)

X < 0= arctanf) = —arctanfx) (25)
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The proof of Equatiofn 24 follows by proving that the tangehbath sides is equal, and then using the
uniqueness of inverse functions (in the appropriate domdtguation 256 follows even more directly
using the same approach. Incidentally, neither of thesenlesrrequires the given hypothesis.

Now that these lemmas are proved, we can reskitd the rangex € [0,1]. Medina defines the
following sequence of polynomials:

P1(X) = 4—4x° +5x* — 4x° + X8 (26)
Pm(¥) = X (L= %)* Pm-1(X) + (-4)™ p1(X) (27)

The first step is to find a more direct way of writigg,. Form> 2, the polynomial can be written as
follows:

X4m(1 - X)4m +(-4)m
1+x2 '

Pm(X) = (28)
This is not obviously a polynomial, butx? is actually a factor of the numerator. But since the struc-
ture is not clearly that of a polynomial, we introduced thadtons p,, explicitly, instead of using
eval-polynomial.

The proof of Equatiof 28 is quite involved, although it regsionly induction omm and elementary
algebra. The diiculty comes from the necessary algebraic manipulations.

We next focus on the term(1-X) = x— x2 whenx € [0,1]. The derivative of this polynomial is
1-2x, and this is zero wher = 1/2. In prior work, we had proved the Extreme Value Theorem that
says the derivative is zero when the function achieves amaxi or minimum|[[2]. Unfortunately, that
is not the lemma that is required here. Instead, what is reisde show that when the derivative is zero
and some other conditions holthe function is at a maximum. The “other conditions” canyyvaut we
chose to formalize the First-Derivative Test. That is, & therivative is positive for alk < a, zero ata,
and negative for alk > a, then f achieves a maximum at More precisely, the variable is restricted
to range over some intervalcontaininga, not over all reals—although in this case, that would have
been s#icient. Sincex(1- x) achieves a maximum at2, we have thak(1- x) < 1/4 for all x€ [0, 1].
Moreover, sincex(1— x) > 0 whenx € [0, 1], it follows that

4m
XM(1 - x)¥m < (%) . (29)

Now, 1+ X2 > 1, so we have also shown that

XAM(1— x)4m 1\
AN el S el I 30
1+ x2 _(4) (30)
Taking the integral of both sides shows the following:
xt4m(1_t)4m X1 4m
———dt< =| dt 31
= [ @
1 4am
== 32
3) (32)

1 4am
(4 @
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Note that the last step follows only because|[0, 1].
We now return to Equatidn 28, which we reproduce below:

XAM(L— XM 4 (~4)"

Pm(X) = T (34)
This can be rewritten as follows:
X4m 1-— 4m 4)"M
T o+ 2 (@)
-1 rTH—14m
= pm(X) — —( ) . (36)

1+ X2
Notice that the left-hand side is non-negative %ar [0, 1], so the right-hand side must be non-negative
as well. We will use that observation in the next step, but firs take integrals of both sides and use

Inequality[33:
(_1)m+l4m ~ t4m(1_ t)4m

Pm(t) = 1+t2  1+t2 37)
X 1gm X +4m 4m 4m
(-1)™14 _f t4M(1 1) 1
fo Pm(t) — = —dlt= e di<(7 (38)

The next step is to divide the last equation byt Y™ 14™. This can change the direction of the inequality,
but since both terms are positive (as discussed above), digmitade of absolute values is preserved.
This results in the following:

X 5m
Pm(t) 1 ‘ ‘1
- dt| < |= 39
‘fo (-1)ym™1igm  1+t2 7] |4 (39)
Now, we use the derivative of arctangent to integrate therskterm in the integral.
X 5m
Pm(t) 1 1
— dt < |= 40
fo (-1)ym™igm  14t2 7] |4 (40)
_ pm() f 1 1P
- dt| < |= 41
‘f (- 1)m+14m o 1+t2 |7 14 (41)
Pm(t) 1pPm
— < |[—=
‘ f C l)m+14mdt arctang)| < | (42)
All that is left is to define the polynomial approximation:
= [P g 43)
M\~ = o (=1)migm"
The previous results show thiat(x) is a good approximation to arctangent. In particular,
5m
lhm(X) — arctan§)| < ;11 (44)

The 1/4°™ term on the right-hand side shows that the convergence tis gaod.

As before, it is not at all obvious théat,(X) is actually a polynomial. But this does follow because
pm(X) is a polynomial, the other term inside the integral is a tams and the integral of a polynomial is
also a polynomial. It would be more satisfying, however,dgdan expression fog,(X) that is an actual
list of codficients. Medina does derive a closed form iy, and hence fohy,, and we have formalized
that proof in ACL2(r). The details of that proof involve miystedious algebra, so we do not present
them here.
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5 Conclusion

This paper formalized a result of Medina’s which defined aypoimial approximation to arctangent
that converges quickly. The proof made heavy use of results prior work formalizing real analysis,
such as the FTC, the MVT, composition rules for derivatiws, In addition, a handful of results were
missing and were proved as part of thifoet, such as the First Derivative Test.

In some ways, the result is an obvious candidate for ACL28)ppposed to ACL2, since the final
theorem uses the transcendental function arctangent:

5m

lhm(X) — arctang)| < (45)

However, one can envision a way of proving this result in ACh&d this is not unreasonable, since
ACL2 has been used in the past to prove the correctness ofvherdhpproximations of functions that
do not technically exist in ACL2, such as the square root tionc The key step is to start with an
approximation of the given function, and then show that sother (e.g., faster) approximation is also
close.

For instance, instead of using arctangent, we could sténtthve Taylor approximation in Equation 1.
In particular, the polynomial,(x) could be defined as the Taylor approximation of ondef his could
lead to a theorem such as the following:

5m

Ihm(X) = Ta(X)] < 1

y (46)

The problem is that it is not obvious how to compargandT,. Certainly, the theorem will not hold
whenn = m. After all, hy, should converge to arctangent much more quickly thdrMoreover, a recent
discussion in the ACL2 mailing list has brought attentionhi® fact that proving that two fierent series
converge to the same value can be vefficlilt in ACL2. The solution suggested by the experts in the
mailing list is to show that each of the two series convergesotme function, and that the functions the
series converge to are the same. But such a strategy coube watried out in this case, since arctangent
is provably not in ACL2. E.g., arctan(¥n/4 is not a number in ACL2, since it is irrational.

So we believe that it is necessary to have support for the ieadrder to reason about results such
as Inequality 45 and even Inequality] 46, and we are deligtitatienough of real analysis has been
formalized in ACL2(r) that the formalizationfiort was mostly focused on the results specific to the
problem at hand, and (with the exception of the First Deeatest) not on more fundamental results.
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