
F. Verbeek and J. Schmaltz (Eds.): ACL2 Workshop 2014 (ACL2’14).
EPTCS 152, 2014, pp. 49–59, doi:10.4204/EPTCS.152.4

Polymorphic Types in ACL2

Benjamin Selfridge
University of Texas at Austin

Austin, TX

benself@cs.utexas.edu

Eric Smith
Kestrel Institute
Palo Alto, CA

eric.smith@kestrel.edu

This paper describes a tool suite for the ACL2 programming language which incorporates certain
ideas from the Hindley-Milner paradigm of functional programming (as exemplified in popular lan-
guages like ML and Haskell), including a “typed” style of programming with the ability to define
polymorphic types. These ideas are introduced via macros into the language of ACL2, taking advan-
tage of ACL2’s guard-checking mechanism to perform type checking on both function definitions
and theorems. Finally, we discuss how these macros were usedto implement features of Specware
[1], a software specification and implementation system.

1 Introduction

Specware is “a next-generation environment supporting thedesign, development and automated synthesis
of scalable, correct-by-construction software.” [1] The language of Specware is a high-level program-
ming and specification language used to create program specifications, and to refine them into executable
code.1 One of the selling points of a high-powered system like Specware is its robust type system, which
accommodates sum type definitions, pattern-matching, and polymorphic types.

Figure 1 contains a snippet of Specware code that will be usedas a running example throughout
this work. It includes two type definitions, two function definitions (these are calledops in Specware),
and several theorems. The first type definition listed,SeqInt, represents a list of integers. It consists
of two type cases:SeqNil, representing an empty list, andSeqCons, consisting of a integer/SeqInt
pair. In Specware we call these sum types “coproduct” types,and we will stick to this terminology in the
remainder of this work.

The next type definition,Seq a, is a generalization of theSeqInt type to be polymorphic in the
type of its contents. We can instantiate the type variablea to be any of Specware’s built-in base types,
or any other type we wish to define. We can also define functionson this new type, likeSeqAppend
and SeqRev, and we can state theorems about such functions, likeSeqAppend_Associative and
SeqRev_of_SeqRev.

Polymorphic typing greatly enhances the expressibility ofSpecware, and it is one of many sophis-
ticated language features that ACL2, a first-order untyped programming language and theorem prover,
does not support natively. The goal of this work is to presenta partial implementation of some of these
features in ACL2, which includes a mechanism for defining “typed” ACL2 functions and theorems in
a style that mimics Specware syntax. This work is some of the fruits of a larger effort to use ACL2 as
a back-end prover for Specware. Since Specware emits proof obligations but does not directly verify
them, all the proofs must be translated into an external proof environment and verified independently.
The ACL2 constructs presented in this work were essential inthe translation process, and they also have

1Throughout this paper, we use the term Specware to refer to both the full Specware system, and to Metaslang, the program-
ming language used by Specware.

http://dx.doi.org/10.4204/EPTCS.152.4


50 Polymorphic Types in ACL2

type SeqInt =

| SeqNil

| SeqCons Int * SeqInt

type Seq a =

| SeqNil

| SeqCons a * (Seq a)

op [a] SeqAppend (x:Seq a, y:Seq a) : Seq a =

case x of

| SeqNil -> y

| SeqCons (hd,tl) -> SeqCons (hd, SeqAppend (tl, y))

op [b] SeqRev (x:Seq b) : Seq b =

case x of

| SeqNil -> SeqNil

| SeqCons (hd,tl) -> SeqAppend (SeqRev tl, SeqCons (hd,SeqNil))

theorem SeqAppend_Associative is [a]

fa(x:Seq a,y:Seq a,z:Seq a)

SeqAppend(SeqAppend(x,y),z) = SeqAppend(x,SeqAppend(y,z))

theorem SeqAppend_of_SeqNil_1 is [a]

fa (x:Seq a) SeqAppend(SeqNil,x) = x

theorem SeqAppend_of_SeqNil_2 is [a]

fa (x:Seq a) SeqAppend(x,SeqNil) = x

theorem SeqRev_of_SeqAppend is [a]

fa (x:Seq a,y:Seq a) SeqRev (SeqAppend (x,y)) = SeqAppend (SeqRev y, SeqRev x)

theorem SeqRev_of_SeqRev is [a]

fa (x:Seq a) (SeqRev (SeqRev x)) = x

Figure 1: Our example Specware program.

the potential to be quite useful on their own, independent ofSpecware. Although our work does not ad-
dress type inference, this could be achieved by maintainingan ACL2 table mapping functions to types;
we discuss this more in the conclusion.

The organization of the remainder of this paper is as follows. Sections 2, 3, and 4 describe how
the program in Figure 1 is translated into ACL2 (via the use ofsome new macros), addressing the
coproduct type definitions, function definitions, and theorems respectively. Section 5 concludes the
paper by summarizing what has been accomplished and what remains to be done (type inference).

2 ACL2 “types” and polymorphic type definitions

Before we can begin thinking about defining polymorphic types in ACL2, we must first understand how
to implement types in the first place. ACL2 is an untyped language; in the ACL2 logic, every function



B. Selfridge & E. Smith 51

must accept all types of arguments. However, we can use predicates (functions of arity 1 that return either
T or NIL) to define a type. An example of such a function in ACL2 isintegerp, which returnsT if its
argument is an integer, andNIL otherwise. In this work, we useInt to designate this type, andInt-p
to designate the ACL2 predicate that recognizesInts.2 Throughout this work, we maintain a distinction
between the name of a type,Type, and its recognizer function,Type-p. This enables better automation
of macros that operate on these types; if the user refers to a type Type, the system will automatically
append-p to its name.

In order to implement coproduct types in ACL2, we started with the pre-existing ACL2 bookdefsum.
Thedefsum macro3 uses a combination of guard checking and theorems about the output type of func-
tions (along with many other useful theorems) in order to implement an ad-hoc sum type. It also includes
a pattern-matching mechanism,pm, which is a more sophisticated version of ACL2’scase macro. We
introduced a new macro,defcoproduct, which is defined in terms ofdefsum but also accommodates
polymorphism, and a slightly modified version ofpm, which we namedcase-of in order to more closely
reflect the syntax of Specware. We can define the “concrete” (non-polymorphic) typeSeqInt as follows:

(defcoproduct SeqInt

(SeqNil)

(SeqCons Int SeqInt))

This macro-expands to a simple call todefsum:

(DEFSUM SEQINT

(SEQNIL)

(SEQCONS (INT-P ARG-1) (SEQINT-P ARG-2)))

As we can see, this type is simple enough to have been defined using defsum alone. To define a poly-
morphicSeq data structure, however, we need to usedefcoproduct:

(defcoproduct Seq

:type-vars (a) ;; type variables

(SeqNil) ;; two type cases - SeqNil and SeqCons

(SeqCons a (:inst Seq a)))

This code, although its syntax is obviously ACL2, still resembles the original Specware definition ofSeq.
Thedefcoproduct macro defines a new type,Seq, by introducing two type constructors,SeqCons and
SeqNil. The type is defined using a single type variablea, which is a placeholder for the type ofSeq’s
contents. The:inst tag is necessary to inform the macro that we are using a particular instance of the
Seq type.

Because the logic of ACL2 does not have true polymorphic types (indeed, it does not have a type
system at all), the ACL2 definition ofSeq is not a true type definition, like it is in Specware. Instead,it
serves as a template for creating instantiations ofSeq with a specific type replacing the type variablea.
The above definition actually introduces a macro,Seq-instantiate, which we can use to instantiate
Seq on integers as follows:

(Seq-instantiate int)

This macro-expands (as before) to a call todefsum:

2We define this function as a synonym forintegerp, and likewise, we defineBool-p as a synonym forbooleanp.
3This macro was introduced and first used in Swords and Cook [2]. We added some slight modifications to the original

macro in order to accommodate a bookkeeping mechanism that would enable automatic functional instantiation for polymorphic
theorems.



52 Polymorphic Types in ACL2

(DEFSUM SEQ-INT

(SEQNIL-INT)

(SEQCONS-INT (INT-P ARG-1)

(SEQ-INT-P ARG-2)))

We can see this looks nearly identical to the definition of theconcrete coproduct typeSeqInt above.
(We have deliberately omitted some bookkeeping information from thisdefsum call - this information
will be necessary when we wish to instantiate theorems abouttheSeq type on specific instances, but the
details of this are not important.)

We can also define polymorphic types with more than one type variable, or in terms of previously
defined polymorphic types:

(defcoproduct EitherSeq

:type-vars (a b)

(LeftSeq (:inst Seq a))

(RightSeq (:inst Seq b)))

This defines a new polymorphic type,EitherSeq, parameterized by variablesa andb. We can now
instantiate it with concrete types:

(EitherSeq-instantiate int bool)

The above call expands to

(PROGN (SEQ-INSTANTIATE INT)

(SEQ-INSTANTIATE BOOL)

(DEFSUM EITHERSEQ-INT-BOOL

(LEFTSEQ-INT-BOOL (SEQ-INT-P ARG-1))

(RIGHTSEQ-INT-BOOL (SEQ-BOOL-P ARG-1))))

Notice that beforeEitherSeq is instantiated on integers and booleans, theSeq type must be instantiated
on these two types. This is automatically checked by thedefcoproduct macro, and these instantiations
are collected and included before definingEitherSeq-Int-Bool. It is notable that none of the macros
presented in this paper query the ACL2 world. If some types have already been defined, the preliminary
type instantiations will be dismissed by ACL2 as redundant definitions, and the macro will still succeed.

The polymorphism supported bydefcoproduct is somewhat limited; the macro does not support
mutually recursive datatypes, and all instantiation must happen in one step (i.e., we cannot instantiate the
a variable ofEitherSeq and leaveb as a type variable). However, these are not fundamental limitations,
and could be implemented with more work.

3 Polymorphic functions and theorems

Consider the Specware functionSeqAppend defined in Figure 1. This is the “append” function on
lists, defined for the polymorphic typeSeq. We can translate this definition into ACL2 using our new
defun-typed macro:

(defun-typed SeqAppend

:type-vars (a) ;; type variables

((x (:inst Seq a)) (y (:inst Seq a))) ;; typed argument list

(:inst Seq a) ;; output type

(case-of x ;; function body



B. Selfridge & E. Smith 53

(((:inst SeqNil a)) ;; case 1: SeqNil

y)

(((:inst SeqCons a) hd tl) ;; case 2: SeqCons

((:inst SeqCons a) hd ((:inst SeqAppend a) tl y)))))

The defun-typed macro is a version ofdefun that requires type annotations for all its input values,
as well as a type annotation for its own return value. We supply a list of type variables (which can be
omitted if there are none), a list of the arguments with theirassociated types, an output type, and the
body of the function.

One obvious weakness of this definition is its verbosity. Every time we pattern match on a poly-
morphic type, we must include the:inst keyword in each pattern to indicate which instantiation fora
given constructor we are using. This could, of course, be solved by implementing type inference; for our
immediate task of translating Specware code to ACL2, this was not necessary, but it could be done with
some more work.

In order to use this function, we must first instantiate it:

(SeqAppend-instantiate int)

This macro-expands to

(PROGN (SEQ-INSTANTIATE INT)

(SEQNIL-INSTANTIATE INT)

(SEQCONS-INSTANTIATE INT)

(DEFUN SEQAPPEND-INT (X Y)

(DECLARE (XARGS :GUARD (AND (SEQ-INT-P X) (SEQ-INT-P Y))

:VERIFY-GUARDS NIL))

(IF (MBT (AND (SEQ-INT-P X) (SEQ-INT-P Y)))

(CASE-OF X ((SEQNIL-INT) Y)

((SEQCONS-INT HD TL)

(SEQCONS-INT HD (SEQAPPEND-INT TL Y))))

NIL))

(DEFTHM SEQAPPEND-INT-TYPE

(IMPLIES (AND (SEQ-INT-P X) (SEQ-INT-P Y))

(SEQ-INT-P (SEQAPPEND-INT X Y)))

:RULE-CLASSES (:TYPE-PRESCRIPTION :REWRITE))

(VERIFY-GUARDS SEQAPPEND-INT)

As before, we first instantiate the polymorphicSeq type forints before defining ourSeqAppend-Int
function. TheSEQ-INSTANTIATE, SEQNIL-INSTANTIATE, andSEQCONS-INSTANTIATE are all redun-
dant; they have the exact same definition. Thedefun-typed macro scans its argument list, output type,
and body for the:inst keyword, and calls the associated instantiation macro for each occurrence. This
was a brute-force way to guarantee that all the necessary functions and types will be defined before the
current function definition is submitted. Notice how a combination of ACL2 guards and theorems are
used to ensure thatSeqAppend-Int satisfies all the typing requirements; we require that the guards of
the function calls made in the definition ofSeqAppend-Int are never violated given our assumptions
about the types ofx andy, and we also require that, assuming both input variables areSeq-Ints, the
output of this function is also aSeqInt. Notice how we check the latter first; for recursive definitions, it
is often the case that we need to know the output type of the function before we can verify the guards.

Of course, we can also define polymorphic functions in terms of other, previously defined ones.



54 Polymorphic Types in ACL2

(defun-typed SeqRev

:type-vars (a)

((x (:inst Seq a)))

(:inst Seq a)

(case-of x

(((:inst SeqNil a)) ((:inst SeqNil a)))

(((:inst SeqCons a) hd tl)

((:inst SeqAppend a)

((:inst SeqRev a) tl)

((:inst SeqCons a) hd ((:inst SeqNil a)))))))

If we instantiateSeqRev with the concrete typebool via

(SeqRev-instantiate bool)

this will macro-expand to

(PROGN

(SEQ-INSTANTIATE BOOL)

(SEQAPPEND-INSTANTIATE BOOL)

(SEQCONS-INSTANTIATE BOOL)

(SEQNIL-INSTANTIATE BOOL)

(DEFUN SEQREV-BOOL (X)

(DECLARE (XARGS :GUARD (SEQ-BOOL-P X)

:VERIFY-GUARDS NIL))

(IF (MBT (SEQ-BOOL-P X))

(CASE-OF X ((SEQNIL-BOOL) (SEQNIL-BOOL))

((SEQCONS-BOOL HD TL)

(SEQAPPEND-BOOL (SEQREV-BOOL TL)

(SEQCONS-BOOL HD (SEQNIL-BOOL)))))

NIL))

(DEFTHM SEQREV-BOOL-TYPE

(IMPLIES (SEQ-BOOL-P X)

(SEQ-BOOL-P (SEQREV-BOOL X)))

:RULE-CLASSES (:TYPE-PRESCRIPTION :REWRITE))

(VERIFY-GUARDS SEQREV-BOOL))

Notice that both theSeq type and theSeqAppend function are instantiated forbool before defining
SeqRev-Bool. Of course, it would have sufficed to only invoke(SEQAPPEND-INSTANTIATE BOOL),
but ourdefun-typedmacro is not smart enough to figure that out; everywhere it sees an:inst keyword,
it calls the associated instantiation macro.

We can also state (and prove) theorems about functions involving polymorphic types using our new
macrodefthm-typed. For instance, we can translate theSeqAppend_Associative theorem from the
introduction into ACL2 like so:

(defthm-typed SeqAppend_Associative

:type-vars (a) ;; type variables

((x (:inst Seq a)) ;; type annotations for free variables

(y (:inst Seq a))

(z (:inst Seq a)))



B. Selfridge & E. Smith 55

(equal ;; theorem body

((:inst SeqAppend a) ((:inst SeqAppend a) x y) z)

((:inst SeqAppend a) x ((:inst SeqAppend a) y z))))

This macro-expands to

(PROGN

(ENCAPSULATE (((A-P *) => *))

(LOCAL (DEFUN A-P (X) (DECLARE (IGNORE X)) T))

(DEFTHM A-TYPE (BOOLEANP (A-P X))

:RULE-CLASSES :TYPE-PRESCRIPTION))

(SEQ-INSTANTIATE A)

(SEQAPPEND-INSTANTIATE A)

(DEFUND-TYPED SEQAPPEND_ASSOCIATIVE-A-BODY

((X SEQ-A) (Y SEQ-A) (Z SEQ-A))

BOOL

(EQUAL (SEQAPPEND-A (SEQAPPEND-A X Y) Z)

(SEQAPPEND-A X (SEQAPPEND-A Y Z))))

(DEFTHM SEQAPPEND_ASSOCIATIVE-A

(IMPLIES (AND (SEQ-A-P X)

(SEQ-A-P Y)

(SEQ-A-P Z))

(EQUAL (SEQAPPEND-A (SEQAPPEND-A X Y) Z)

(SEQAPPEND-A X (SEQAPPEND-A Y Z)))))

(DEFMACRO SEQAPPEND_ASSOCIATIVE-INSTANTIATE (A)

;; ... macro definition omitted

)

Thedefthm-typed macro does several things. First, it defines an encapsulatedpredicate,A-P, which
will be used to represent the type variablea. Then, after instantiating all the needed types and func-
tions, we type check the body of the theorem by defining it as a function with output typebool (if the
theorem doesn’t even type check, then we don’t need to botherto try and prove it). Then, it proves
a version ofSeqAppend_Associative where theSeq type has been instantiated on an encapsulated
predicateA-P. In theory, this proves the theorem in general for any type instantiation. Finally, a new
macro,SEQAPPEND_ASSOCIATIVE-INSTANTIATE, is introduced, which allows us to prove this theo-
rem for a specific instantiation of theSeq type. This macro uses functional instantiation (along with
a substantial amount of bookkeeping) to prove the theorem automatically from the original theorem,
SEQAPPEND_ASSOCIATIVE-A. If we instantiate this theorem for integers via

(SeqAppend_Associative-instantiate int)

we get

(PROGN

(SEQ-INSTANTIATE INT)

(SEQAPPEND-INSTANTIATE INT)

(DEFTHM-TYPED

SEQAPPEND_ASSOCIATIVE-INT

((X SEQ-INT) (Y SEQ-INT) (Z SEQ-INT))

(EQUAL (SEQAPPEND-INT (SEQAPPEND-INT X Y) Z)



56 Polymorphic Types in ACL2

(SEQAPPEND-INT X (SEQAPPEND-INT Y Z)))

:HINTS

(("Goal" :DO-NOT-INDUCT T

:IN-THEORY (ENABLE SEQ-INT-FUNCTIONS)

:USE ((:FUNCTIONAL-INSTANCE

SEQAPPEND_ASSOCIATIVE-A (A-P INT-P)

(SEQ-A-P SEQ-INT-P)

(SEQCONS-A-P SEQCONS-INT-P)

(SEQNIL-A-P SEQNIL-INT-P)

(SEQCONS-A SEQCONS-INT)

(SEQNIL-A SEQNIL-INT)

(SEQCONS-A-ARG-2 SEQCONS-INT-ARG-2)

(SEQCONS-A-ARG-1 SEQCONS-INT-ARG-1)

(SEQAPPEND-A SEQAPPEND-INT)))))))

Notice how the theorem is proved using functional instantiation on the more general theorem,
SeqAppend_Associative-A.

We can use the macros described above to implement the entireSpecware program of Figure 1 using
our four new macros,defcoproduct, defun-typed, defthm-typed, andcase-of. The full listing
for the ACL2 version of this program is given in Figure 2.

4 Conclusions

These macros were introduced in an ACL2 book in order to facilitate the translation process from
Specware to ACL2. Instead of having our translator produce the raw ACL2 code, we hide the messy
details of implementing these high-level language features with ACL2 macros, which has the advantage
of both making the translation process easier and making theautomatically generated ACL2 code much
more readable. Thegen-acl2 tool was added to Specware in order to automatically translate Specware
programs into ACL2 code that uses the macros defined here (theACL2 code in Figure 2 was generated
by this tool).

A byproduct of this effort was the ACL2 macros themselves, which are quite useful in their own right,
and suggest the possibility of implementing more of these high-level features in ACL2. Limitations of
the polymorphism presented here include the inability to define mutually recursive polymorphic types,
as well as the lack of partial type instantiation. These macros could be extended in a straightforward way
to include these features.

Type inference could be implemented by maintaining an ACL2 table mapping function names to their
types (essentially, the “typing” theorems exported by thedefun-typedmacro). When the user defines a
new function, the Hindley-Milner algorithm can be used to deduce the necessary input and output types
of the function (assuming all the function calls in the body already exist in the table), and we can export
a theorem capturing this which could be proved in a theory that only includes the typing theorems of
previously defined functions.

We also believe that the techniques used in this paper could be used to introduce “higher-order”
functions; in particular, we can modify our technique of extracting away a type variable by introducing
an encapsulated predicate, to extracting away a function byintroducing an encapsulated function. We
have not thoroughly investigated the viability of this idea, but it seems to us like a fruitful avenue for
further research.



B. Selfridge & E. Smith 57

(in-package "ACL2")

(include-book "~/Desktop/specware-files/code/specware-book")

(set-ignore-ok t)

(set-bogus-defun-hints-ok t)

(defcoproduct SeqInt

(SeqNil)

(SeqCons Int SeqInt))

(defcoproduct Seq

:type-vars (a)

(SeqCons a (:inst Seq a))

(SeqNil))

(defun-typed SeqAppend

:type-vars (a)

((x (:inst Seq a)) (y (:inst Seq a)))

(:inst Seq a)

(case-of x

(((:inst SeqNil a)) y)

(((:inst SeqCons a) hd tl)

((:inst SeqCons a) hd ((:inst SeqAppend a) tl y)))))

(defthm-typed SeqAppend_Associative

:type-vars (a)

((x (:inst Seq a))

(y (:inst Seq a))

(z (:inst Seq a)))

(equal ((:inst SeqAppend a) ((:inst SeqAppend a) x y) z)

((:inst SeqAppend a) x ((:inst SeqAppend a) y z))))

(defthm-typed SeqAppend_of_SeqNil_1

:type-vars (a)

((x (:inst Seq a)))

(equal ((:inst SeqAppend a) ((:inst SeqNil a)) x) x))

(defthm-typed SeqAppend_of_SeqNil_2

:type-vars (a)

((x (:inst Seq a)))

(equal ((:inst SeqAppend a) x ((:inst SeqNil a))) x))



58 Polymorphic Types in ACL2

(defun-typed SeqRev

:type-vars (a)

((x (:inst Seq a)))

(:inst Seq a)

(case-of x

(((:inst SeqNil a)) ((:inst SeqNil a)))

(((:inst SeqCons a) hd tl)

((:inst SeqAppend a)

((:inst SeqRev a) tl)

((:inst SeqCons a) hd ((:inst SeqNil a)))))))

(defthm-typed SeqRev_of_SeqAppend

:type-vars (a)

((x (:inst Seq a))

(y (:inst Seq a)))

(equal ((:inst SeqRev a) ((:inst SeqAppend a) x y))

((:inst SeqAppend a) ((:inst SeqRev a) y)

((:inst SeqRev a) x))))

(defthm-typed SeqRev_of_SeqRev

:type-vars (a)

((x (:inst Seq a)))

(equal ((:inst SeqRev a) ((:inst SeqRev a) x)) x)

:hints (("Goal" :in-theory (enable SeqAppend-a SeqRev-a))))

Figure 2: Our example Specware program, defined in ACL2.



B. Selfridge & E. Smith 59

References

[1] James McDonald & John Anton (2001):SPECWARE - Producing Software Correct by Construction.

[2] Sol Swords & William R. Cook (2006):Soundness of the Simply Typed Lambda Calculus in ACL2. In:
Proceedings of the Sixth International Workshop on the ACL2Theorem Prover and Its Applications, ACL2
’06, ACM, New York, NY, USA, pp. 35–39, doi:10.1145/1217975.1217982.

http://dx.doi.org/10.1145/1217975.1217982

	1 Introduction
	2 ACL2 ``types'' and polymorphic type definitions
	3 Polymorphic functions and theorems
	4 Conclusions

