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Proving the correctness of programs written for multiplegassors is a challenging problem, due in
no small part to the weaker memory guarantees afforded bymadern architectures. In particular,
the existence of store buffers means that the programmeraclkmger assume that writes to different
locations become visible to all processors in the same oktlmwever, all practical architectures do
provide a collection of weaker guarantees about memoryistemsy across processors, which enable
the programmer to write provably correct programs in spite lack of full sequential consistency.
In this work, we present a mechanization in the ACL2 theoremwgr of an axiomatic weak memory
model (introduced by Alglave et al_[2]). In the process, wevide a new proof of an established
theorem involving these axioms.

1 Introduction

Analysis of sequential programs is a well-understood @nobfor which a variety of proof techniques
and methodologies exist.|[5] Many of these techniques cadapted to a multiprocessor setting if we
assumesequential consisten€$C) - i.e., that for any concurrent execution of the progrdmare exists an
interleaving of the memory events that is consistent witlh lboe program order and the communication
dependencies between processes.|[6, 8] However, seduwamtiistency turns out to be a much stronger
requirement than is practically necessary. Moreover, dufé inherently high runtime and resource
penalties of SC, designers of multiprocessor architestare motivated to relax this constraint in order
to achieve better performance.

To understand why a lack of sequential consistency impac@syprogrammers, consider the fol-
lowing example. Suppose our architecture consists of a rumbprocessor®’,...,P, and a shared
memoryM. Assume that when a processor issues a write to memory, titatisimmediately visible to
all other processors.

Consider the program execution represented in Figlre 1.h Remcessor assigns the value 1 to
memory locationx or y, and reads the value at the other location into a registessufex andy are
both initially equal to 0.) Now, we ask the question: what @re possible values of registerg and
r, after running this program? It is easy to see that 1, r; = 1 is one possible final state, obtained
by a scheduler that alternates betwégrand P,. We can also obtaing = 0, ry = 1 by runningPy’s
program to the end, and then subsequently runRirggprogram to the end. Likewise, it is also possible
to obtainrg = 1, r; = 0. These are the only possible final states, because thislistian) architecture
is sequentially consistent; every processor completedgtes its first instruction before continuing to
the second.

Now, consider the following modification of this architeiu Each of the processolsis equipped
with astore buffer B WhenR issues a write, instead of propagating the write directlshared memory,
the write is initially sent to buffeB;. That write will eventually hit memory, although we have no
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Figure 1: A multiprocessor program execution. The finalestgt= 0, r; = 0 is prohibited by sequential
consistency, but is possible on an architecture with stofiets.

guarantee of when that will happen (unless the programnsertm an explicit memory fence). K
wishes to read a value from memory, it first checks its owredboiffer to see if it has issued any pending
writes to that memory location. If it has, it uses that valoierwise, it obtains the value from memory.

If we run the same program on this architecture, it is easgéatisat the final statey=0,r; =0 is
obtainable if neither processor’s store buffer is flushefdigethe reads are performed; both processors
issue a write, but those writes are not globally visible ytilme each process issues its read, and hence
both processors read the “old” valuesxandy. This is a clear violation of sequential consistency. There
is no way to linearly order the instructions of the two pragsaas atomic memory events and obtain this
final state; nevertheless, this behavior is possible onatfulsitecture. This odd behavior isn’t merely a
theoretical possibility; it is actually observable on x8@chines.

In spite of the fact that we do not generally have sequenbiasistency, most weaker memory models
do uphold a set of guarantees which, though they are not@sysas sequential consistency, do prohibit
certain behaviors. These guarantees vary greatly from modweodel [3,/4] 7] 9, 10], and the variety
and abundance of these models suggests the need for a meredemework for weak memory. Such
a framework ought to be both general enough to capture thargés of all modern architectures, and
strong enough to enforce meaningful constraints that anergally upheld. One such framework is
introduced in Alglave et al. [2], and in this paper we presenimechanization in ACL2. Furthermore,
we present a new proof of an established theorem about gntefvork, and we discuss the mechanized
proof.

A brief notational remark: throughout this paper, given katien R, we will let R™ denote the
irreflexive transitive closure dR. Given two relation®R andQ, we letR; Q denote the sequencing Bf
andQ, i.e.

xR;—Q>yiﬁ. dp, X 2 p%y.

2 Background: An Axiomatic Framework for Weak Memory

The execution of a sequential program results in a lineanesszp of events (usually reads or writes
from/to a location in memory). The event order derived frdms sequence is called tipgogram order
The program order is a total order on all events, and fromdfder we can reason in a straightforward
way about the possible final states that can result from afrtimegprogram by considering all possible
event orderings and demonstrating that they all produceaddiate in a particular configuration.

With concurrent programs, however, the situation is morapliwated. Generally speaking, an exe-
cution on a concurrent machine is not simply a sequence oitevath a global program order. Events
that occur on different processors are not necessarily acetbfe, because a write issued by one proces-
sor may not be visible to any other processors for some tiragpfte being immediately visible to the
process that executed it). Therefore, in order to specifgtarequirements for our weaker memory
guarantees, we need a weakened definition of a program exechat retains enough structure to be
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amenable to subsequent constraints and analyses. In thisnseve describe a compelling axiomatic
framework for weak memory [2], which includes both a moreaggahnotion of execution for multiple
processors and a parameterized set of requirements thagistto characterize all modern multiproces-
sor architectures.

2.1 Concurrent Executions
We begin with two definitions.

Definition. An event @s an object which consists of a unique identifiéfe), a procesproc(e), a type
type(e) which identifiese as being either a read or a write, an addeddr(e) equal to the address in
memory thak reads from or writes to, and a valuel(e) equal to the value read or written by

Definition. An executionis a tupleE = (E, po, co, rf) whereE is a collection of events, angb, co, and
rf are all relations of£ satisfying:

e po is a total order on events, when restricted to a single psoces
e co is a total order on writes, when restricted to a single addres

e rf is a relation from writes to reads such that for all rendsE, there exists a unique write € E
such thaw " r (we also require thatal(w) = val(r)).

The relationpo is undefined on events belonging to different processeslil@wise, co is undefined on
any pair of events that are not writes to the same address.

The relationpo is our concurrent version of program order; it is a total onuet on all events, but
only on those belonging to the same processor. The “cohererter”co is a total order on writes to
the same location in memory. This order corresponds to duition that the writes to each individual
location hit memory in a particular sequential order. Thadrérom relationrf captures the dependency

between writes and reads/;iw means { takes its value from the write.” @ It is a surjective relation
with a one-sided inverse functiorf ..

The purpose oto andrf is to capture interprocess dependencies between eventsiogcat the
same locationro captures dependencies between two writes arising from thlaitive visibility with
respect to time, and captures the dependency of reads on the writes they takeviiiee from. How-
ever, it is also intuitively possible to have a write “depénd a read. Ifw,w are writes and is a read

f H H H ‘ ), H
such thatv 2 r andw <% w, then there is a sense in whiah‘comes after’r, because takes its value
from an earlier write. Therefore, we have another relatidmich we refer to as the “from-read” relation.

Definition. LetE = (EE,po,co,rf) be an execution. The “from-read” relatiénis defined as
fr=rf % co,

i.e.r s wif there exists a writav’ such thaw’ s r andw <% w, (Note that this is equivalent to stating
thatrf 1(r) S w.)

1The reader may be wondering why we choose to wvi&g»r rather tharr r—f>w - the latter certainly seems more sensible

when read aloud (“r read-from w”). The reason is that thedfioa of the arrow is meant to represent a dependency betiueen
events, with the arrow pointing toward the dependent (ffavent. This will enable us to state our weak memory reguients
as assertions of the acyclicity of various combinationsefe and other relations.



132 Mechanizing Weak Memory

P P P Mo
r/w r/w r/w Wiz —— " - —>ry
Pe Pe Pe o 4o T
A
r/w r/w r/w w2l =1
po po po co
e
r/w r/w r/w W3— - ———— >I31
po po po co
s
(a) The per-process view. (b) The per-location view.

Figure 2: Two views of memory events. In figure (b), solid fireeco, dashed lines ardf, and dotted
lines arefr. Forpo, co andfr, not all arrows are pictured, @ andco are transitively closed.

Our three relationsf, co, andfr will be sufficient to specify certain communication depemzies
regarding reads and writes to the same location. We ablea¥ia three into a single relation.

Definition. LetE = (E,po,co,rf) be an execution. The relati@om is defined as

com = coUrfufr,

. com _ . co rf fr
|.e.x———>y|fx——>y,x——>y,orx——»y.

Thepo andcom relations represent two distinct types of dependenciesdmt eventspo captures
per-procesglependencies, armbm relation captureper-locationdependencies. The existence of these
two relations suggests two distinct views of our event graphe first is the per-process view, where
we organize all the events by the process they belong to,istrttiém in program order (see Figliré 2a).
The second is the per-location view, where we organize taets\by the memory location at which they
occur, and list each write event in coherence order (sea&Rfifor an example of what this might look
like for a particular locatioMg).

2.2 Sequential Consistency and SC-Per-Location

In the previous section, we presented a generalization eointition of a sequential execution to an
arbitrary number of processors. Whereas a sequential gxedas a single relation, the program order
(which is a total order on all events), a concurrent exeautionsists of two: its per-process program
orderpo, and the communication dependency relaiom. In our framework, the usual definition of
sequential consistency![6] is that there exists a compiatfdhe relationpoUcom which is a total order
on all events. An equivalent way to state this is that theticeigpo U com is acyclic, and so we have the
following definition:



Benjamin Selfridge 133

Definition. An executionE = (E, po, co,rf) is sequentially consistefSC) if
acyclic(poUcom),

i.e. the union of th@po andcom relations is acyclic.

As we have already discussed, sequential consistency dbksld in general for modern multiprocessor
architectures. However, if we restrict the program onoleto events at the same location, then we get a
new, weaker property. As it happens, this property holdslfilanodern architectures.

To this end, we define another relatiqrgl, which is the restriction opo to events that occur at the
same location.

Definition. LetE = (E, po,co,rf) be an execution. The relatigrol is defined as

pol ={(xy) € Ex E | x23yandaddr(x) = addr(y)},

i.e. xp—°|>y if xﬂy andx andy have the same address.

We are now in a position to reproduce the definition for a waakleversion of sequential consis-
tency for concurrent executions (originally givenlin [2Phich we refer to as sequential consistency per
location.

Definition. An executionE = (E, po, co, rf) is sequentially consistent per locati¢8C-Per-Location)
if

acyclic(polucom),
i.e. the union of the@ol andcom relations is acyclic.

The intuition behind this definition is that if we restrictrselves to examining one memory location,
the system appears to be sequentially consistent. Thddityof program order and the communication
relationsco, rf andfr guarantee the existence of a sequential execution of thesgsethat produces the
same behavior (fothis memory location) as the concurrent one. However, this danacessarily be
generalized to multiple memory locations; the sequent@iong of events for one location may conflict
(i.e. create a cycle) with the sequential ordering for amotbcation.

2.3 The full set of requirements

SC-Per-Location is one of the four requirements of this gark. It is the only requirement described
solely in terms of executions; the other three are defineeimg of a particular architecture. This
requires a formal definition of an architecture.

Definition. An architectureis a functione’ which maps executions = (E, po, co, rf) to tuples

(ppo,fence, prop)

such that for all executiorns,
e ppoC po
e fence is some relation on events

e prop is some relation on the writes &f (not necessarily to the same location)
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Here, the relatiorppo (“preserved program order”) refers to some subset of thgrpro order that
relates events which aren't allowed to be reordered in aoutixm, fence refers to pairs of events which
are separated by a fence, amep (“propagation order”) refers to additional constraintsynd those
specified byco) on the order in which events get propagated to memory.

This definition formulates the notion of an architecture ggtaof further restrictions on executions.
Depending on how we define the ordexso, fence, andprop on an execution, our model will satisfy
different memory constraints, because our constraintsl@fiaed in terms of these relations. The set of
all possible architectures that can be specified from thiméwork corresponds to all the different ways
we can define these relations in terms of a given execution.

The full set of weak memory requirements is as follows. k#&te an architecture. Then for any
executionE = (E, po, co, rf), we require

(SC-Per-Location) acyclic(polUcourfUfr)
(No Thin Air)  acyclic(hb)
(Observation) irreflexive(fre; prop;hb®)
(Propagation) acyclic(coUprop)

where
hb = ppoUfenceurfe,
rfe = {(xy) | x>y and proc(x) # proc(y)},
and

fre = {(xy) | x>y and proc(x) # proc(y)},
andhb® is the reflexive transitive closure ab.

SC-Per-Location was described above; the other threerssgants are discussed thoroughlylih [2],
and are best understood in the context of the various exanpptevided in that work. We present the
full framework here for completeness, but our investigaiito these properties was limited to SC-Per-
Location.

2.4 SC-Per-Location: an alternate definition

The definition we have for SC-Per-Location makes intuitigase - it corresponds directly to the classic
definition of sequential consistency. However, as it tunms this definition is equivalent to a seemingly
weaker property (originally introduced ini[1]), which wepreduce below.

Definition. An executionE = (I, po, co, rf) satisfies the propert$C-Per-Location-2f

| +
VX y e R, x25y = —(y<2x)
i.e. no two events be related lpyl in one direction andom™ in the other direction.

This alternate definition captures the intuition that if arere precedes another event in program
order, it cannot have a communication dependency (or a segue dependencies) on the latter event.
Clearly, the existence of such a dependency would createla itypol Ucom, and so it is easy to see
that SC-Per-Location implies SC-Per-Location-2. As ihtout, this definition of SC-Per-Location-2 is
actually equivalent to the one given in Secfion 2.2; this firasproved in Alglavel[l] and we give a new
proof of this result in the next section.

Now, as it turns out, theom™ relation can be written as the union of the five relationso, fr, co; rf,
andfr; rf. We state this as a theorem, and provide a sketch of the proof.
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Figure 3: The five patterns prohibited by SC-Per-Location-2

Theorem 2.1. Let E= (E, po, co, rf) be an execution. Then we have

com™ = comU(co; rf) U (fr; rf).
Proof. Suppose we have a path- p1 — --- — px — Y, Where— abbreviates—%. We proceed by
induction onk. If k=0, we havex>2y, and we are done.
Now, suppos& > 1 and assume inductively that the theorem holds for the altshpaths. We have

X— Pr—> - — Pk — Y.

Now, the pathp; — --- — pkx — Yy is a shorter path, and hence by our induction hypothesis, ave h
com co;rf fr;rf o rf fr .
p1—>Y, p1——Y, or pp——Yy. Furthermore, we have— p;, X— p1, or x— pz1. If we consider
all these cases (many of which are vacuous due to the factehaf andfr all relate events of specific
co;rf frrf

types), it is easy to demonstrate thaf_sy, x y, Or X y. O

From this theorem, we can clearly see that an executiorfisatiSC-Per-Location-2 if and only if
it does not contain any of the patterns in Figule 3. We wilimgttely prove that SC-Per-Location is
equivalent to SC-Per-Location-2, which guarantees thgtke of any kind inpol Ucom, no matter how
big the cycle is, will imply the existence of a “mini”-cycld one of these five variants.

2.5 An equivalence theorem

Before we state and prove the equivalence theorem (origipedved in [1], but proved here in a some-
what more straightforward manner), we first establish twgpde lemmas.

Lemma 2.2. The relationcom™ is irreflexive.
Proof. Supposex“>™x. By Theoreni2lL, we have three cases.
Case 1x=D% x. This is impossibleco is irreflexive by definition (it is an irreflexive total ordegnd

rf andfr are both trivially irreflexive because they only relate dseof different types.
Case 2x " x This is impossibleco; rf relates writes to reads, and hence is irreflexive.
Case 3 xmx. Then there exists an evenwith x>z x; this in turn implies the existence of

an eventy with yr—f>x, vz, andz"% x. By the uniqueness of writes for tmé relation, we must have
y = z thereforey =%y, which is impossible sinceo is irreflexive. O



136 Mechanizing Weak Memory

Upon examination of Figule 2b, it is intuitively clear thatyawo events in this picture either on the
same “level”, or there is a path from one to the other. Thigéxisely what Lemma 2.3 says.

Lemma 2.3. Let E= (E, po,co, rf) be an execution, and letyxe E with addr(x) = addr(y). Then one
of the following holds:

com™
1. x—y

2. xand y are both writes, and=xy
3. xand y are both reads, and *(x) = rf ~*(y)

com™
4, y——X.

Proof. We have four cases, correspondingxtandy each being either reads or writes; however, the
symmetry of the read-write cases reduces the number to. thredl three cases, the theorem reduces to
the totality ofco.

Case 1xis a write,y is a write. Then by totality ofo, eitherx=>y, y<%x, orx =y.

Case 2 x is a write,y is a read. Then by totality ofo, either x> rffl(y), X = rffl(y), or

rf‘l(y) 25 x. In the first casex%y; in the secondxr—f>y; and in the thirdyi>x.

Case 3xis a readyis aread. Then by totality afo, eitherrf ~*(x) <% rf ~*(y), rf 1(x) = rf }(y), or

(f1(y) <% rf~1(x). In the first casex—""s y: in the second, we are done; and in the thjrd""sx. [

Theorem 2.4. Let E be an execution. Then E satisfies SC-Per-Location ibahdif E satisfies SC-Per-
Location-2.

Proof. Itis clear that SC-Per-Location implies SC-Per-Locatin-

We prove the other direction by contrapositive. Supposé”8ELocation does not hold; that is, there
exists a cycle ipolUcom. Clearly any such cycle is also a cyclegolUcom™ (sincecom C com™).
We proceed by induction on the length of this cycle, notingaly that the length cannot be 1 (because
we know thatpol andcom are both irreflexive).

. ol comt comt _ pol
If the cycle has length two, we must either hav®> p X or X p2% x, because both of
these relations are by themselves acyclic. In either cageSC-Per-Location-2 condition is clearly
violated byx and p.
Suppose the cycle has length three or more, i.e.

m om

X—=>P1—=>pP2—> =X

where— abbreviates the union ol andcom™. Also, inductively assume that the existence of a shorter

cycle implies that SC-Per-Location-2 does not hold. Asstimaex 2™ p; 2% p, or x 2% p, ™ .

because otherwise it is clear by transitivity @fm™ and pol that we can obtain a shorter cycte—
p2 — --- — X, and so by our inductive hypothesis SC-Per-Location-2ohsld. Then we have several

cases, based on Leminal2.3.

Case 1 =™ p,. Then we have the shorter cyoté®™s p, — --- — x, and so by our inductive

hypothesis, SC-Per-Location-2 does not hold.
Case 2 x and p; are writes wherex = p,. Then clearlyx = p, — --- — x is a shorter cycle, so by
our inductive hypothesis, SC-Per-Location-2 does not.hold
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Case 3ax andp, are reads wheref “1(x) = rf~%(py), andx ™ p1 *°% p,. Then it is straightfor-
ward to show thap, ™5 py, giving pr * p, <™ py, which violates SC-Per-Location-2.
Case 3b x andp, are reads Whech_l(X) = rf_l(pg), andxp—°|> p1 % p2. Then it is straightfor-

com™

ward to show thap; %x, giving xp—°|> p1 —— X, which violates SC-Per-Location-2.

Case 4a pr 2™ x, andx 2™ p; 2% p,. Then clearlyp, 2™ py, giving pr 225 po <™ py, which
violates SC-Per-Location-2.

Case 4b p, 2™ x, andx 22 p; 2™ by, Then clearlyp; 2™ x, giving X225 p; ™5 x, which
violates SC-Per-Location-2.

By Lemmd2.B there are no other possibilities. Thereforenbyétion, if SC-Per-Location does not
hold then SC-Per-Location-2 does not hold, and the proafnspete. O

We believe this proof is new. Its direct use of an inductivguanent and a “totality” lemma (Lemma
[2.3) forcom™ both distinguishes it from the originall[1], and makes itschnization in ACL2 much
easier. One of ACL2’s big strengths is its ability to provedrems inductively, and by understanding an
inductive hand proof of this theorem, we were able to make\tbe2 proof much more straightforward.

3 ACL2 Mechanization

In this section we present our ACL2 mechanization of the &aork and proofs presented above. We
make extensive use of thiefun-sk construct; our definitions of the relatiops, co, rf, andfr, as well

as various combinations of these relations, are introduwsttddefun-sk in order to make the concepts

as general as possible; instead of defining them in terms péeific data structure (like a graph), we
define them as completely general relations which satisfy thie properties we require.

For clarity, we have chosen to present the ACL2 mechanizétia separate section from the preced-
ing one. We have also opted to reproduce most of the defisjtiblrorems, and even a few key lemmas
in order to give the reader a fuller understanding of howelideas were mechanized. The interested
reader might gain some insight into reading the ACL2 codefadly, but is encouraged to skim through
it if necessary.

3.1 Mechanization of Concurrent Executions

We formalize the concepts of evenps, co, andrf as constrained functions that satisfy the requirements
given in the previous section.

(encapsulate
(((writep *) => *)
((readp *) => *)

((addr *) => x)
((proc *) => x)

((po * %) => x)
((rf * %) => %)
((co * %) => %)



138 Mechanizing Weak Memory

((rf-inv-fn *) => %))

; ... constraints omitted

)

The required properties of these functions are guarantgedd fumber of exported theorems, such as
totality of po on events in the same process, totalitycofon writes to the same location, and the one-
sided invertibility ofrf (this last property implicitly make use ef’s inverse functioncf-inv-£n).

We define the functiotir in terms ofco andrf using ACL2'sdefun-sk construct:

(defun-sk fr (x z)
(exists y
(and (rf y x) (coy 2))))

We define the ACL2 analogues of sequenced relatonst andfr; rf similarly:

(defun-sk co->rf (x z)
(exists y
(and (co x y) (rf y 2))))
(defun-sk fr->rf (x z)
(exists y
(and (fr x y) (rf y 2))))

We define the functionsom andpol as expected:

(defun com (x y)
(or (co x y)
(rf x y)
(fr x y)))
(defun pol (x y)
(and (po x y)
(equal (addr x) (addr y))))

The transitive closure ofom is defined in terms of the existence of a path:

(defun com-pathp (path x y)
(cond ((endp path) (com x y))
(t (and (com x (car path))
(com-pathp (cdr path) (car path) y)))))
(defun-sk com+ (x y)
(exists path (com-pathp path x y)))

The variablepath represents the elements between (and not includirag)dy. We prove that we can
rewrite com+ according to Theorein 2.1:

(defthm rewrite-com+
(equal (com+ x y)
(or (com x y)
(co->rf x y)
(fr->rf x y))))

We prove thatom+ is irreflexive, corresponding to LemraR.2:
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(defthm com+-irreflexive
(not (com+ x x)))

And we prove a theorem about the “totality” eém+, corresponding to Lemnia 2.3:

(defthm com+-totality
(implies (and (or (readp x) (writep x))

(or (readp y) (writep y))

(equal (addr x) (addr y))

(not (com+ x y))

(not (and (writep x)
(writep y)
(equal x y)))

(not (and (readp x)
(readp y)
(equal (rf-inv-fn x) (rf-inv-fn y)))))

(com+ y x)))

The majority of these theorems were proven by ACL2 with nashather than the occasional instan-
tiation of witness functions and the selective enablirggdiing of functions and theorems.

3.2 Mechanization of both definitions of SC-Per-Location

In order to define SC-Per-Location in ACL2, we need to defimertbtion of a “cycle” in the union of
pol andcom. We first define the union of these two relations:

(defun pol-com (x y)
(or (pol x y)
(com x y)))

Then we define the notion of a pathpnl-com:

(defun pol-com-pathp (path x y)
(cond ((endp path) (pol-com x y))
(t (and (pol-com x (car path))
(pol-com-pathp (cdr path) (car path) y)))))

If pathisnil, this definition reduces t@pol-com x y). Now, we can define a cycle gpl-com as

(defun pol-com-cyclep (cycle x)
(pol-com-pathp cycle x x))

SC-Per-Location states that there does not exist a cyglelincom. This can be stated as
(Vx,cycle) (not (pol-com-cyclep cycle x))

We can thus define SC-Per-Location in ACL2 as

(defun-sk sc-per-location-1 ()
(forall (x cycle)
(not (pol-com-cyclep cycle x))))

SC-Per-Location-2 can be easily defined as
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(defun-sk sc-per-location-2 ()
(forall (x y)
(implies (pol x y)
(not (com+ y x)))))

3.3 Mechanization of the equivalence proof, Part 1

As before, the easy part of the equivalence proof is the ta&t ¢sc-per-location-1) implies
(sc-per-location-2). The first step involved proving an unquantified version eftteorem, where
we assumépol x y) and(com+ y x), and consider the three cases afforded-&yrite-com+:

(defthm pol-com-cycle
(implies (and (pol x y)
(com y x))
(pol-com-cyclep (list y) x)))
(defthm pol-co->rf-cycle
(implies (and (pol x y)
(co->rf y x))
(pol-com-cyclep (list y (co->rf-witness y x)) x)))
(defthm pol-fr->rf-cycle
(implies (and (pol x y)
(fr->rf y x))
(pol-com-cyclep (list y (fr->rf-witness y x)) x)))

Then we addsc-per-location-1 back into these theorems witinstance hints:

(defthm pol-com-not-sc-per-location-1
(implies (and (sc-per-location-1)
(pol x y))
(not (com y x)))
:hints (("Goal"
:use ((:instance sc-per-location-1l-necc
(x x)
(potential-cycle (1list y)))))))
(defthm pol-co->rf-not-sc-per-location-1
(implies (and (sc-per-location-1)
(pol x y))
(not (co->rf y x)))
:hints (("Goal"
:use ((:instance sc-per-location-1l-necc
(x %)
(potential-cycle (list y (co->rf-witness y x))))))))
(defthm pol-fr->rf-not-sc-per-location-1
(implies (and (sc-per-location-1)
(pol x y))
(not (fr->rf y x)))
thints (("Goal"
:use ((:instance sc-per-location-1-necc
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(x %)
(potential-cycle (list y (fr->rf-witness y x))))))))

Finally, we state the fully quantified version of the theorevhich ACL2 proves immediately:
(defthm sc-per-location-1-implies-2
(implies (sc-per-location-1)
(sc-per-location-2)))

3.4 Mechanization of the equivalence proof, Part 2

The proof that(sc-per-location-2) implies (sc-per-location-1) was broken down into 4 steps:

1. Prove that any 2-cycle ipol-com+ violatessc-per-location-2, and that if there is a cycle of

length 3 or greater ipol-com+, wherepol-com+ is the union ofpol andcom+, then there is a
smaller cycle inpol-com+, and

2. Usethe theorem in step 1 to define a functigsl, lapse-cycle, which takes a cycle ipol-com+
and produces a paiix y) such that(pol x y) and(com+ y x)

3. Combine steps 1 and 2 to show that if we have a cycledb-com (i.e. a violation of
sc-per-location-1), we have a paikx y) which violatessc-per-location-2
Step 1 is summarized by two theorems, one that states thgtl@scin pol-com+ violate
sc-per-location-2, and one that takes cycles longer than 2 and produces a soyalle.
(defthm cycle-2
(implies (and (pol-com+-cyclep cycle x)
(endp (cdr cycle))
(not (and (pol x (car cycle))
(com+ (car cycle) x))))
(and (pol (car cycle) x)
(com+ x (car cycle)))))
(defthm collapse-cycle-thm
(implies (and (not (pol-com+-cyclep (list pl) x))
(not (pol-com+-cyclep (list* p2 rst) x))
(not (pol-com+-cyclep rst x))
(not (pol-com+-cyclep (list p2) p1)))
(not (pol-com+-cyclep (list* pl p2 rst) x))
hints (("Goal"
:cases ((com+ x p2)
(and (writep x)
(writep p2)
(equal x p2))
(and (readp x)
(readp p2)
(equal (rf-inv-fn x) (rf-inv-fn p2)))
(com+ p2 x)))))

Notice that the case split corresponds exactly to Theor&pjust as in the written proof.

For Step 2, we define the functiarpllapse-cycle to shorten the cycle according to the previ-
ous theorem. Theollapse-cycle function satisfies the property that if it is given a violatiof
sc-per-location-1, it produces a violation a§c-per-location-2:
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(defun collapse-cycle (cycle x)
(let* ((p1 (car cycle))
(p2 (cadr cycle))
(rst (cddr cycle)))
(cond ((endp cycle) (mv nil x))
((endp (cdr cycle))
(if (pol x (car cycle))
(mv x (car cycle))
(mv (car cycle) x)))
((pol-com+-cyclep (list* p2 rst) x)
(collapse-cycle (list* p2 rst) x))
((pol-comt+-cyclep rst x)
(collapse-cycle rst x))
((pol-com+-cyclep (list p2) pl)
(collapse-cycle (list p2) pl))
(t (collapse-cycle (list pl) x)))))
(defthm collapse-cycle-pol-com+
(implies (pol-com+-cyclep cycle x)
(mv-let (new-x new-y)
(collapse-cycle cycle x)
(and (pol new-x new-y)
(com+ new-y new-x)))))

For Step 3, we first add in the quantifier fat-per-location-2:
(defthm sc-per-location-1-implies-2-unquantified
(implies (sc-per-location-2)
(not (pol-com-cyclep cycle a)))
thints (("Goal"
:use ((:instance sc-per-location-2-necc
(x (mv-let (new-x new-y)
(collapse-cycle cycle a)
(declare (ignore new-y))
new-x))
(y (mv-let (new-x new-y)
(collapse-cycle cycle a)
(declare (ignore new-x))

new-y)))))))

The result follows immediately:
(defthm sc-per-location-2-implies-1
(implies (sc-per-location-2)
(sc-per-location-1)))

3.5 Mechanizing the other requirements

The other requirements of this framework were also meckdriz ACL2, using constrained functions to
represenppo, fence, andprop, and withrfe, fre, andhb defined in terms of these constrained functions.
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The concepts of No Thin Air, Observation, and Propagatiorewdefined as follows:

(defun-sk no-thin-air ()
(forall (x potential-cycle)
(not (hb-cyclep potential-cycle x))))
(defun-sk observation ()
(forall x
(not (fre->prop->hb* x x))))
(defun-sk propagation ()
(forall (x cycle)
(not (co-prop-cyclep cycle x))))

We did not investigate these requirements to the extentaanalyzed SC-Per-Location. We reproduce
their definitions here for completeness.

4 Conclusions

In this work, we presented an ACL2 mechanization of a gerfesimework for weak memory, as well
as a novel proof of an established result for this framewWf&.hope to incorporate this framework into
our ongoing research into how a theorem prover like ACL2 canged to verify correctness properties
of real-world concurrent programs. Our most immediaterfituork consists of applying these concepts
(actually, a simplification of these concepts) to proofs amudti-processor x86 model, but this work
suggests the possibility of applying a general weak mentampéwork to other models as well.

This work was supported by NSF. We gratefully acknowledgenttany helpful comments and dis-
cussions provided by Jade Alglave and Matt Kaufmann.
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