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Proving the correctness of programs written for multiple processors is a challenging problem, due in
no small part to the weaker memory guarantees afforded by most modern architectures. In particular,
the existence of store buffers means that the programmer canno longer assume that writes to different
locations become visible to all processors in the same order. However, all practical architectures do
provide a collection of weaker guarantees about memory consistency across processors, which enable
the programmer to write provably correct programs in spite of a lack of full sequential consistency.
In this work, we present a mechanization in the ACL2 theorem prover of an axiomatic weak memory
model (introduced by Alglave et al. [2]). In the process, we provide a new proof of an established
theorem involving these axioms.

1 Introduction

Analysis of sequential programs is a well-understood problem for which a variety of proof techniques
and methodologies exist. [5] Many of these techniques can beadapted to a multiprocessor setting if we
assumesequential consistency(SC) - i.e., that for any concurrent execution of the program, there exists an
interleaving of the memory events that is consistent with both the program order and the communication
dependencies between processes. [6, 8] However, sequential consistency turns out to be a much stronger
requirement than is practically necessary. Moreover, due to the inherently high runtime and resource
penalties of SC, designers of multiprocessor architectures are motivated to relax this constraint in order
to achieve better performance.

To understand why a lack of sequential consistency impacts us as programmers, consider the fol-
lowing example. Suppose our architecture consists of a number of processorsP1, . . . ,Pn and a shared
memoryM. Assume that when a processor issues a write to memory, that write is immediately visible to
all other processors.

Consider the program execution represented in Figure 1. Each processor assigns the value 1 to
memory locationx or y, and reads the value at the other location into a register. (Assumex andy are
both initially equal to 0.) Now, we ask the question: what arethe possible values of registersr0 and
r1 after running this program? It is easy to see thatr0 = 1, r1 = 1 is one possible final state, obtained
by a scheduler that alternates betweenP0 andP1. We can also obtainr0 = 0, r1 = 1 by runningP0’s
program to the end, and then subsequently runningP1’s program to the end. Likewise, it is also possible
to obtainr0 = 1, r1 = 0. These are the only possible final states, because this (sketch of an) architecture
is sequentially consistent; every processor completely executes its first instruction before continuing to
the second.

Now, consider the following modification of this architecture. Each of the processorsPi is equipped
with astore buffer Bi. WhenPi issues a write, instead of propagating the write directly toshared memory,
the write is initially sent to bufferBi. That write will eventually hit memory, although we have no
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P0 P1

x← 1 y← 1
r0← y r1← x

Figure 1: A multiprocessor program execution. The final state r0 = 0, r1 = 0 is prohibited by sequential
consistency, but is possible on an architecture with store buffers.

guarantee of when that will happen (unless the programmer inserts an explicit memory fence). IfPi

wishes to read a value from memory, it first checks its own store buffer to see if it has issued any pending
writes to that memory location. If it has, it uses that value;otherwise, it obtains the value from memory.

If we run the same program on this architecture, it is easy to see that the final stater0 = 0, r1 = 0 is
obtainable if neither processor’s store buffer is flushed before the reads are performed; both processors
issue a write, but those writes are not globally visible by the time each process issues its read, and hence
both processors read the “old” values ofx andy. This is a clear violation of sequential consistency. There
is no way to linearly order the instructions of the two programs as atomic memory events and obtain this
final state; nevertheless, this behavior is possible on thisarchitecture. This odd behavior isn’t merely a
theoretical possibility; it is actually observable on x86 machines.

In spite of the fact that we do not generally have sequential consistency, most weaker memory models
do uphold a set of guarantees which, though they are not as strong as sequential consistency, do prohibit
certain behaviors. These guarantees vary greatly from model to model [3, 4, 7, 9, 10], and the variety
and abundance of these models suggests the need for a more generic framework for weak memory. Such
a framework ought to be both general enough to capture the semantics of all modern architectures, and
strong enough to enforce meaningful constraints that are universally upheld. One such framework is
introduced in Alglave et al. [2], and in this paper we presentits mechanization in ACL2. Furthermore,
we present a new proof of an established theorem about this framework, and we discuss the mechanized
proof.

A brief notational remark: throughout this paper, given a relation R, we will let R+ denote the
irreflexive transitive closure ofR. Given two relationsR andQ, we letR;Q denote the sequencing ofR
andQ, i.e.

x
R;Q
−−→ y iff. ∃p, x

R
−→ p

Q
−→ y.

2 Background: An Axiomatic Framework for Weak Memory

The execution of a sequential program results in a linear sequence of events (usually reads or writes
from/to a location in memory). The event order derived from this sequence is called theprogram order.
The program order is a total order on all events, and from thisorder we can reason in a straightforward
way about the possible final states that can result from a run of the program by considering all possible
event orderings and demonstrating that they all produce a final state in a particular configuration.

With concurrent programs, however, the situation is more complicated. Generally speaking, an exe-
cution on a concurrent machine is not simply a sequence of events with a global program order. Events
that occur on different processors are not necessarily comparable, because a write issued by one proces-
sor may not be visible to any other processors for some time (despite being immediately visible to the
process that executed it). Therefore, in order to specify a set of requirements for our weaker memory
guarantees, we need a weakened definition of a program execution that retains enough structure to be
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amenable to subsequent constraints and analyses. In this section, we describe a compelling axiomatic
framework for weak memory [2], which includes both a more general notion of execution for multiple
processors and a parameterized set of requirements that is meant to characterize all modern multiproces-
sor architectures.

2.1 Concurrent Executions

We begin with two definitions.

Definition. An event eis an object which consists of a unique identifierid(e), a processproc(e), a type
type(e) which identifiese as being either a read or a write, an addressaddr(e) equal to the address in
memory thate reads from or writes to, and a valueval(e) equal to the value read or written bye.

Definition. An executionis a tupleE = (E,po,co,rf) whereE is a collection of events, andpo, co, and
rf are all relations onE satisfying:

• po is a total order on events, when restricted to a single process

• co is a total order on writes, when restricted to a single address

• rf is a relation from writes to reads such that for all readsr ∈ E, there exists a unique writew∈ E

such thatw
rf
−→ r (we also require thatval(w) = val(r)).

The relationpo is undefined on events belonging to different processes, andlikewise,co is undefined on
any pair of events that are not writes to the same address.

The relationpo is our concurrent version of program order; it is a total order not on all events, but
only on those belonging to the same processor. The “coherence order”co is a total order on writes to
the same location in memory. This order corresponds to our intuition that the writes to each individual
location hit memory in a particular sequential order. The read-from relationrf captures the dependency

between writes and reads;w
rf
−→ r means “r takes its value from the writew.” 1 It is a surjective relation

with a one-sided inverse function,rf−1.
The purpose ofco and rf is to capture interprocess dependencies between events occurring at the

same location;co captures dependencies between two writes arising from their relative visibility with
respect to time, andrf captures the dependency of reads on the writes they take their value from. How-
ever, it is also intuitively possible to have a write “depend” on a read. Ifw,w′ are writes andr is a read

such thatw′
rf
−→ r andw′

co
−→w, then there is a sense in whichw “comes after”r, becauser takes its value

from an earlier write. Therefore, we have another relation,which we refer to as the “from-read” relation.

Definition. Let E = (E,po,co,rf) be an execution. The “from-read” relationfr is defined as

fr = rf−1;co,

i.e. r
fr
−→w if there exists a writew′ such thatw′

rf
−→ r andw′

co
−→w. (Note that this is equivalent to stating

thatrf−1(r)
co
−→w.)

1The reader may be wondering why we choose to writew
rf
−→ r rather thanr

rf
−→w - the latter certainly seems more sensible

when read aloud (“r read-from w”). The reason is that the direction of the arrow is meant to represent a dependency betweentwo
events, with the arrow pointing toward the dependent (“later”) event. This will enable us to state our weak memory requirements
as assertions of the acyclicity of various combinations of these and other relations.
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Figure 2: Two views of memory events. In figure (b), solid lines areco, dashed lines arerf, and dotted
lines arefr. Forpo, co andfr, not all arrows are pictured, aspo andco are transitively closed.

Our three relationsrf, co, andfr will be sufficient to specify certain communication dependencies
regarding reads and writes to the same location. We abbreviate the three into a single relation.

Definition. Let E = (E,po,co,rf) be an execution. The relationcom is defined as

com = co∪ rf∪ fr,

i.e. x
com
−−→y if x

co
−→y, x

rf
−→y, or x

fr
−→y.

Thepo andcom relations represent two distinct types of dependencies between events;po captures
per-processdependencies, andcom relation capturesper-locationdependencies. The existence of these
two relations suggests two distinct views of our event graph. The first is the per-process view, where
we organize all the events by the process they belong to, and list them in program order (see Figure 2a).
The second is the per-location view, where we organize the events by the memory location at which they
occur, and list each write event in coherence order (see Figure 2b for an example of what this might look
like for a particular locationM0).

2.2 Sequential Consistency and SC-Per-Location

In the previous section, we presented a generalization of the notion of a sequential execution to an
arbitrary number of processors. Whereas a sequential execution has a single relation, the program order
(which is a total order on all events), a concurrent execution consists of two: its per-process program
orderpo, and the communication dependency relationcom. In our framework, the usual definition of
sequential consistency [6] is that there exists a completion of the relationpo∪com which is a total order
on all events. An equivalent way to state this is that the relation po∪com is acyclic, and so we have the
following definition:
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Definition. An executionE = (E,po,co,rf) is sequentially consistent(SC) if

acyclic(po∪com),

i.e. the union of thepo andcom relations is acyclic.

As we have already discussed, sequential consistency does not hold in general for modern multiprocessor
architectures. However, if we restrict the program orderpo to events at the same location, then we get a
new, weaker property. As it happens, this property holds forall modern architectures.

To this end, we define another relation,pol, which is the restriction ofpo to events that occur at the
same location.

Definition. Let E = (E,po,co,rf) be an execution. The relationpol is defined as

pol = {(x,y) ∈ E×E | x
po
−→y andaddr(x) = addr(y)},

i.e. x
pol
−−→y if x

po
−→y andx andy have the same address.

We are now in a position to reproduce the definition for a weakened version of sequential consis-
tency for concurrent executions (originally given in [2]),which we refer to as sequential consistency per
location.

Definition. An executionE = (E,po,co,rf) is sequentially consistent per location(SC-Per-Location)
if

acyclic(pol∪com),

i.e. the union of thepol andcom relations is acyclic.

The intuition behind this definition is that if we restrict ourselves to examining one memory location,
the system appears to be sequentially consistent. The acyclicity of program order and the communication
relationsco, rf andfr guarantee the existence of a sequential execution of these events that produces the
same behavior (forthis memory location) as the concurrent one. However, this cannot necessarily be
generalized to multiple memory locations; the sequential ordering of events for one location may conflict
(i.e. create a cycle) with the sequential ordering for another location.

2.3 The full set of requirements

SC-Per-Location is one of the four requirements of this framework. It is the only requirement described
solely in terms of executions; the other three are defined in terms of a particular architecture. This
requires a formal definition of an architecture.

Definition. An architectureis a functionA which maps executionsE = (E,po,co,rf) to tuples

(ppo, fence,prop)

such that for all executionsE,

• ppo⊆ po

• fence is some relation on events

• prop is some relation on the writes ofE (not necessarily to the same location)
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Here, the relationppo (“preserved program order”) refers to some subset of the program order that
relates events which aren’t allowed to be reordered in an execution,fence refers to pairs of events which
are separated by a fence, andprop (“propagation order”) refers to additional constraints (beyond those
specified byco) on the order in which events get propagated to memory.

This definition formulates the notion of an architecture as aset of further restrictions on executions.
Depending on how we define the ordersppo, fence, andprop on an execution, our model will satisfy
different memory constraints, because our constraints aredefined in terms of these relations. The set of
all possible architectures that can be specified from this framework corresponds to all the different ways
we can define these relations in terms of a given execution.

The full set of weak memory requirements is as follows. LetA be an architecture. Then for any
executionE = (E,po,co,rf), we require

(SC-Per-Location) acyclic(pol∪co∪ rf∪ fr)

(No Thin Air) acyclic(hb)

(Observation) irreflexive(fre;prop;hb∗)

(Propagation) acyclic(co∪prop)

where
hb = ppo∪ fence∪ rfe,

rfe = {(x,y) | x
rf
−→y andproc(x) 6= proc(y)},

and
fre = {(x,y) | x

fr
−→y andproc(x) 6= proc(y)},

andhb∗ is the reflexive transitive closure ofhb.
SC-Per-Location was described above; the other three requirements are discussed thoroughly in [2],

and are best understood in the context of the various examples provided in that work. We present the
full framework here for completeness, but our investigation into these properties was limited to SC-Per-
Location.

2.4 SC-Per-Location: an alternate definition

The definition we have for SC-Per-Location makes intuitive sense - it corresponds directly to the classic
definition of sequential consistency. However, as it turns out, this definition is equivalent to a seemingly
weaker property (originally introduced in [1]), which we reproduce below.

Definition. An executionE = (E,po,co,rf) satisfies the propertySC-Per-Location-2if

∀x,y∈ E, x
pol
−−→y =⇒ ¬(y

com+

−−−→x)

i.e. no two events be related bypol in one direction andcom+ in the other direction.

This alternate definition captures the intuition that if an event precedes another event in program
order, it cannot have a communication dependency (or a sequence of dependencies) on the latter event.
Clearly, the existence of such a dependency would create a cycle in pol∪com, and so it is easy to see
that SC-Per-Location implies SC-Per-Location-2. As it turns out, this definition of SC-Per-Location-2 is
actually equivalent to the one given in Section 2.2; this wasfirst proved in Alglave [1] and we give a new
proof of this result in the next section.

Now, as it turns out, thecom+ relation can be written as the union of the five relationsrf,co, fr,co;rf ,
andfr;rf. We state this as a theorem, and provide a sketch of the proof.
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Figure 3: The five patterns prohibited by SC-Per-Location-2.

Theorem 2.1. Let E= (E,po,co,rf) be an execution. Then we have

com+ = com∪(co;rf)∪ (fr;rf).

Proof. Suppose we have a pathx→ p1→ ··· → pk→ y, where→ abbreviates
com
−−→. We proceed by

induction onk. If k= 0, we havex
com
−−→y, and we are done.

Now, supposek≥ 1 and assume inductively that the theorem holds for the all shorter paths. We have

x→ p1→ ··· → pk→ y.

Now, the pathp1→ ··· → pk→ y is a shorter path, and hence by our induction hypothesis, we have

p1
com
−−→y, p1

co;rf
−−−→y, or p1

fr;rf
−−−→y. Furthermore, we havex

co
−→ p1, x

rf
−→ p1, or x

fr
−→ p1. If we consider

all these cases (many of which are vacuous due to the fact thatco, rf andfr all relate events of specific

types), it is easy to demonstrate thatx
com
−−→y, x

co;rf
−−−→y, or x

fr;rf
−−−→y.

From this theorem, we can clearly see that an execution satisfies SC-Per-Location-2 if and only if
it does not contain any of the patterns in Figure 3. We will ultimately prove that SC-Per-Location is
equivalent to SC-Per-Location-2, which guarantees that a cycle of any kind inpol∪com, no matter how
big the cycle is, will imply the existence of a “mini”-cycle of one of these five variants.

2.5 An equivalence theorem

Before we state and prove the equivalence theorem (originally proved in [1], but proved here in a some-
what more straightforward manner), we first establish two simple lemmas.

Lemma 2.2. The relationcom+ is irreflexive.

Proof. Supposex
com+

−−−→x. By Theorem 2.1, we have three cases.
Case 1: x

com
−−→x. This is impossible;co is irreflexive by definition (it is an irreflexive total order), and

rf andfr are both trivially irreflexive because they only relate events of different types.

Case 2: x
co;rf
−−−→x. This is impossible;co;rf relates writes to reads, and hence is irreflexive.

Case 3: x
fr;rf
−−−→x. Then there exists an eventz with x

fr
−→z

rf
−→x; this in turn implies the existence of

an eventy with y
rf
−→x, y

co
−→z, andz

rf
−→x. By the uniqueness of writes for therf relation, we must have

y= z; thereforey
co
−→y, which is impossible sinceco is irreflexive.
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Upon examination of Figure 2b, it is intuitively clear that any two events in this picture either on the
same “level”, or there is a path from one to the other. This is precisely what Lemma 2.3 says.

Lemma 2.3. Let E= (E,po,co,rf) be an execution, and let x,y∈ E with addr(x) = addr(y). Then one
of the following holds:

1. x
com+

−−−→y

2. x and y are both writes, and x= y

3. x and y are both reads, andrf−1(x) = rf−1(y)

4. y
com+

−−−→x.

Proof. We have four cases, corresponding tox andy each being either reads or writes; however, the
symmetry of the read-write cases reduces the number to three. In all three cases, the theorem reduces to
the totality ofco.

Case 1: x is a write,y is a write. Then by totality ofco, eitherx
co
−→y, y

co
−→x, or x= y.

Case 2: x is a write, y is a read. Then by totality ofco, either x
co
−→rf−1(y), x = rf−1(y), or

rf−1(y)
co
−→x. In the first case,x

co;rf
−−−→y; in the second,x

rf
−→y; and in the third,y

fr
−→x.

Case 3: x is a read,y is a read. Then by totality ofco, eitherrf−1(x)
co
−→rf−1(y), rf−1(x) = rf−1(y), or

rf−1(y)
co
−→rf−1(x). In the first case,x

fr;rf
−−−→y; in the second, we are done; and in the third,y

fr;rf
−−−→x.

Theorem 2.4. Let E be an execution. Then E satisfies SC-Per-Location if andonly if E satisfies SC-Per-
Location-2.

Proof. It is clear that SC-Per-Location implies SC-Per-Location-2.
We prove the other direction by contrapositive. Suppose SC-Per-Location does not hold; that is, there

exists a cycle inpol∪com. Clearly any such cycle is also a cycle inpol∪com+ (sincecom⊆ com+).
We proceed by induction on the length of this cycle, noting trivially that the length cannot be 1 (because
we know thatpol andcom are both irreflexive).

If the cycle has length two, we must either havex
pol
−−→ p

com+

−−−→x or x
com+

−−−→ p
pol
−−→x, because both of

these relations are by themselves acyclic. In either case, the SC-Per-Location-2 condition is clearly
violated byx andp.

Suppose the cycle has length three or more, i.e.

x→ p1→ p2→ ··· → x,

where→ abbreviates the union ofpol andcom+. Also, inductively assume that the existence of a shorter

cycle implies that SC-Per-Location-2 does not hold. Assumethatx
com+

−−−→ p1
pol
−−→ p2 or x

pol
−−→ p1

com+

−−−→ p2,
because otherwise it is clear by transitivity ofcom+ andpol that we can obtain a shorter cyclex→
p2→ ··· → x, and so by our inductive hypothesis SC-Per-Location-2 doesn’t hold. Then we have several
cases, based on Lemma 2.3.

Case 1: x
com+

−−−→ p2. Then we have the shorter cyclex
com+

−−−→ p2→ ··· → x, and so by our inductive
hypothesis, SC-Per-Location-2 does not hold.

Case 2: x and p2 are writes wherex= p2. Then clearlyx= p2→ ··· → x is a shorter cycle, so by
our inductive hypothesis, SC-Per-Location-2 does not hold.
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Case 3a: x andp2 are reads whererf−1(x) = rf−1(p2), andx
com+

−−−→ p1
pol
−−→ p2. Then it is straightfor-

ward to show thatp2
com+

−−−→ p1, giving p1
pol
−−→ p2

com+

−−−→ p1, which violates SC-Per-Location-2.

Case 3b: x andp2 are reads whererf−1(x) = rf−1(p2), andx
pol
−−→ p1

com+

−−−→ p2. Then it is straightfor-

ward to show thatp1
com+

−−−→x, giving x
pol
−−→ p1

com+

−−−→x, which violates SC-Per-Location-2.

Case 4a: p2
com+

−−−→x, andx
com+

−−−→ p1
pol
−−→ p2. Then clearlyp2

com+

−−−→ p1, giving p1
pol
−−→ p2

com+

−−−→ p1, which
violates SC-Per-Location-2.

Case 4b: p2
com+

−−−→x, andx
pol
−−→ p1

com+

−−−→ p2. Then clearlyp1
com+

−−−→x, giving x
pol
−−→ p1

com+

−−−→x, which
violates SC-Per-Location-2.

By Lemma 2.3 there are no other possibilities. Therefore by induction, if SC-Per-Location does not
hold then SC-Per-Location-2 does not hold, and the proof is complete.

We believe this proof is new. Its direct use of an inductive argument and a “totality” lemma (Lemma
2.3) for com+ both distinguishes it from the original [1], and makes its mechanization in ACL2 much
easier. One of ACL2’s big strengths is its ability to prove theorems inductively, and by understanding an
inductive hand proof of this theorem, we were able to make theACL2 proof much more straightforward.

3 ACL2 Mechanization

In this section we present our ACL2 mechanization of the framework and proofs presented above. We
make extensive use of thedefun-sk construct; our definitions of the relationspo, co, rf, andfr, as well
as various combinations of these relations, are introducedwith defun-sk in order to make the concepts
as general as possible; instead of defining them in terms of a specific data structure (like a graph), we
define them as completely general relations which satisfy only the properties we require.

For clarity, we have chosen to present the ACL2 mechanization in a separate section from the preced-
ing one. We have also opted to reproduce most of the definitions, theorems, and even a few key lemmas
in order to give the reader a fuller understanding of how these ideas were mechanized. The interested
reader might gain some insight into reading the ACL2 code carefully, but is encouraged to skim through
it if necessary.

3.1 Mechanization of Concurrent Executions

We formalize the concepts of events,po, co, andrf as constrained functions that satisfy the requirements
given in the previous section.

(encapsulate

(((writep *) => *)

((readp *) => *)

((addr *) => *)

((proc *) => *)

((po * *) => *)

((rf * *) => *)

((co * *) => *)
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((rf-inv-fn *) => *))

; ... constraints omitted

)

The required properties of these functions are guaranteed by a number of exported theorems, such as
totality of po on events in the same process, totality ofco on writes to the same location, and the one-
sided invertibility ofrf (this last property implicitly make use ofrf’s inverse functionrf-inv-fn).

We define the functionfr in terms ofco andrf using ACL2’sdefun-sk construct:

(defun-sk fr (x z)

(exists y

(and (rf y x) (co y z))))

We define the ACL2 analogues of sequenced relationsco;rf andfr;rf similarly:

(defun-sk co->rf (x z)

(exists y

(and (co x y) (rf y z))))

(defun-sk fr->rf (x z)

(exists y

(and (fr x y) (rf y z))))

We define the functionscom andpol as expected:

(defun com (x y)

(or (co x y)

(rf x y)

(fr x y)))

(defun pol (x y)

(and (po x y)

(equal (addr x) (addr y))))

The transitive closure ofcom is defined in terms of the existence of a path:

(defun com-pathp (path x y)

(cond ((endp path) (com x y))

(t (and (com x (car path))

(com-pathp (cdr path) (car path) y)))))

(defun-sk com+ (x y)

(exists path (com-pathp path x y)))

The variablepath represents the elements between (and not including)x andy. We prove that we can
rewritecom+ according to Theorem 2.1:

(defthm rewrite-com+

(equal (com+ x y)

(or (com x y)

(co->rf x y)

(fr->rf x y))))

We prove thatcom+ is irreflexive, corresponding to Lemma 2.2:
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(defthm com+-irreflexive

(not (com+ x x)))

And we prove a theorem about the “totality” ofcom+, corresponding to Lemma 2.3:

(defthm com+-totality

(implies (and (or (readp x) (writep x))

(or (readp y) (writep y))

(equal (addr x) (addr y))

(not (com+ x y))

(not (and (writep x)

(writep y)

(equal x y)))

(not (and (readp x)

(readp y)

(equal (rf-inv-fn x) (rf-inv-fn y)))))

(com+ y x)))

The majority of these theorems were proven by ACL2 with no hints other than the occasional instan-
tiation of witness functions and the selective enabling/disabling of functions and theorems.

3.2 Mechanization of both definitions of SC-Per-Location

In order to define SC-Per-Location in ACL2, we need to define the notion of a “cycle” in the union of
pol andcom. We first define the union of these two relations:

(defun pol-com (x y)

(or (pol x y)

(com x y)))

Then we define the notion of a path inpol-com:

(defun pol-com-pathp (path x y)

(cond ((endp path) (pol-com x y))

(t (and (pol-com x (car path))

(pol-com-pathp (cdr path) (car path) y)))))

If path is nil, this definition reduces to(pol-com x y). Now, we can define a cycle inpol-com as

(defun pol-com-cyclep (cycle x)

(pol-com-pathp cycle x x))

SC-Per-Location states that there does not exist a cycle inpol-com. This can be stated as

(∀x,cycle) (not (pol-com-cyclep cycle x)).

We can thus define SC-Per-Location in ACL2 as

(defun-sk sc-per-location-1 ()

(forall (x cycle)

(not (pol-com-cyclep cycle x))))

SC-Per-Location-2 can be easily defined as
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(defun-sk sc-per-location-2 ()

(forall (x y)

(implies (pol x y)

(not (com+ y x)))))

3.3 Mechanization of the equivalence proof, Part 1

As before, the easy part of the equivalence proof is the fact that (sc-per-location-1) implies
(sc-per-location-2). The first step involved proving an unquantified version of the theorem, where
we assume(pol x y) and(com+ y x), and consider the three cases afforded byrewrite-com+:

(defthm pol-com-cycle

(implies (and (pol x y)

(com y x))

(pol-com-cyclep (list y) x)))

(defthm pol-co->rf-cycle

(implies (and (pol x y)

(co->rf y x))

(pol-com-cyclep (list y (co->rf-witness y x)) x)))

(defthm pol-fr->rf-cycle

(implies (and (pol x y)

(fr->rf y x))

(pol-com-cyclep (list y (fr->rf-witness y x)) x)))

Then we addsc-per-location-1 back into these theorems with:instance hints:

(defthm pol-com-not-sc-per-location-1

(implies (and (sc-per-location-1)

(pol x y))

(not (com y x)))

:hints (("Goal"

:use ((:instance sc-per-location-1-necc

(x x)

(potential-cycle (list y)))))))

(defthm pol-co->rf-not-sc-per-location-1

(implies (and (sc-per-location-1)

(pol x y))

(not (co->rf y x)))

:hints (("Goal"

:use ((:instance sc-per-location-1-necc

(x x)

(potential-cycle (list y (co->rf-witness y x))))))))

(defthm pol-fr->rf-not-sc-per-location-1

(implies (and (sc-per-location-1)

(pol x y))

(not (fr->rf y x)))

:hints (("Goal"

:use ((:instance sc-per-location-1-necc
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(x x)

(potential-cycle (list y (fr->rf-witness y x))))))))

Finally, we state the fully quantified version of the theorem, which ACL2 proves immediately:
(defthm sc-per-location-1-implies-2

(implies (sc-per-location-1)

(sc-per-location-2)))

3.4 Mechanization of the equivalence proof, Part 2

The proof that(sc-per-location-2) implies(sc-per-location-1)was broken down into 4 steps:
1. Prove that any 2-cycle inpol-com+ violatessc-per-location-2, and that if there is a cycle of

length 3 or greater inpol-com+, wherepol-com+ is the union ofpol andcom+, then there is a
smaller cycle inpol-com+, and

2. Use the theorem in step 1 to define a function,collapse-cycle, which takes a cycle inpol-com+
and produces a pair(x y) such that(pol x y) and(com+ y x)

3. Combine steps 1 and 2 to show that if we have a cycle inpol-com (i.e. a violation of
sc-per-location-1), we have a pair(x y) which violatessc-per-location-2

Step 1 is summarized by two theorems, one that states that 2-cycles in pol-com+ violate
sc-per-location-2, and one that takes cycles longer than 2 and produces a smaller cycle.

(defthm cycle-2

(implies (and (pol-com+-cyclep cycle x)

(endp (cdr cycle))

(not (and (pol x (car cycle))

(com+ (car cycle) x))))

(and (pol (car cycle) x)

(com+ x (car cycle)))))

(defthm collapse-cycle-thm

(implies (and (not (pol-com+-cyclep (list p1) x))

(not (pol-com+-cyclep (list* p2 rst) x))

(not (pol-com+-cyclep rst x))

(not (pol-com+-cyclep (list p2) p1)))

(not (pol-com+-cyclep (list* p1 p2 rst) x))

:hints (("Goal"

:cases ((com+ x p2)

(and (writep x)

(writep p2)

(equal x p2))

(and (readp x)

(readp p2)

(equal (rf-inv-fn x) (rf-inv-fn p2)))

(com+ p2 x)))))

Notice that the case split corresponds exactly to Theorem 2.3, just as in the written proof.
For Step 2, we define the functioncollapse-cycle to shorten the cycle according to the previ-

ous theorem. Thecollapse-cycle function satisfies the property that if it is given a violation of
sc-per-location-1, it produces a violation ofsc-per-location-2:
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(defun collapse-cycle (cycle x)

(let* ((p1 (car cycle))

(p2 (cadr cycle))

(rst (cddr cycle)))

(cond ((endp cycle) (mv nil x))

((endp (cdr cycle))

(if (pol x (car cycle))

(mv x (car cycle))

(mv (car cycle) x)))

((pol-com+-cyclep (list* p2 rst) x)

(collapse-cycle (list* p2 rst) x))

((pol-com+-cyclep rst x)

(collapse-cycle rst x))

((pol-com+-cyclep (list p2) p1)

(collapse-cycle (list p2) p1))

(t (collapse-cycle (list p1) x)))))

(defthm collapse-cycle-pol-com+

(implies (pol-com+-cyclep cycle x)

(mv-let (new-x new-y)

(collapse-cycle cycle x)

(and (pol new-x new-y)

(com+ new-y new-x)))))

For Step 3, we first add in the quantifier forsc-per-location-2:

(defthm sc-per-location-1-implies-2-unquantified

(implies (sc-per-location-2)

(not (pol-com-cyclep cycle a)))

:hints (("Goal"

:use ((:instance sc-per-location-2-necc

(x (mv-let (new-x new-y)

(collapse-cycle cycle a)

(declare (ignore new-y))

new-x))

(y (mv-let (new-x new-y)

(collapse-cycle cycle a)

(declare (ignore new-x))

new-y)))))))

The result follows immediately:

(defthm sc-per-location-2-implies-1

(implies (sc-per-location-2)

(sc-per-location-1)))

3.5 Mechanizing the other requirements

The other requirements of this framework were also mechanized in ACL2, using constrained functions to
representppo, fence, andprop, and withrfe, fre, andhb defined in terms of these constrained functions.
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The concepts of No Thin Air, Observation, and Propagation were defined as follows:

(defun-sk no-thin-air ()

(forall (x potential-cycle)

(not (hb-cyclep potential-cycle x))))

(defun-sk observation ()

(forall x

(not (fre->prop->hb* x x))))

(defun-sk propagation ()

(forall (x cycle)

(not (co-prop-cyclep cycle x))))

We did not investigate these requirements to the extent thatwe analyzed SC-Per-Location. We reproduce
their definitions here for completeness.

4 Conclusions

In this work, we presented an ACL2 mechanization of a genericframework for weak memory, as well
as a novel proof of an established result for this framework.We hope to incorporate this framework into
our ongoing research into how a theorem prover like ACL2 can be used to verify correctness properties
of real-world concurrent programs. Our most immediate future work consists of applying these concepts
(actually, a simplification of these concepts) to proofs on amulti-processor x86 model, but this work
suggests the possibility of applying a general weak memory framework to other models as well.

This work was supported by NSF. We gratefully acknowledge the many helpful comments and dis-
cussions provided by Jade Alglave and Matt Kaufmann.
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