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Deadlock detection is a challenging issue in the analysisdmsign of on-chip networks. We have
designed an algorithm to detect deadlocks automaticatiyichip networks with wormhole switch-
ing. The algorithm has been specified and proven correct ih2ACTo enable a top-down proof
methodology, some parts of the algorithm have been left plamented. For these parts, the ACL2
specification contains constrained functions introducih defun-sk. We used single-threaded ob-
jects to represent the data structures used by the algoritithis paper, we present details on the
proof of correctness of the algorithm. The process of forveaification was crucial to get the algo-
rithm flawless. Our ultimate objective is to have an efficiexecutable, and formally proven correct
implementation of the algorithm running in ACL2.

1 Introduction

Deadlock verification in wormhole networks has been andaté research area for many years. In 1995,
Duato proposed a necessary and sufficient condition forldeladreedom of wormhole networks][2].
His condition was difficult to understand for many of his meand required a complex mathematical
proof. In 2010, Taktak et al. were the first to define a polyraraigorithm which can detect deadlocks
in wormhole networks automatically//[4]. In the same year,farenally proved a necessary and suffi-
cient condition of our own [7]. The process of formally pnogicorrectness of this condition helped us
recognize a subtle discrepancy in Duato’s theorem [6]. éddeue to this discrepancy we could prove
that deciding deadlock-freedom in wormhole networks idNé&€omplete, thereby showing Taktak’s
algorithm had flaws as well.

We have also created an algorithm of our own. The algorithendeen implemented in C and has
achieved good experimental results [5]. Due to the intiesaof deadlock-related theorems in wormhole
networks, we wanted a formal proof of correctness to ineeas confidence. To this end, we formalized
the algorithm in ACLB.

Our ultimate objective is to have a formally proven corread @xecutable algorithm in ACL2. We
want to be able to run this algorithm efficiently on large natks. To achieve this, we use single-thread
objects (stobjs)]1]. For now, we have proven correspacificationof the algorithm. This means that
some details have been left unimplemented. The ACL2 velisioot yet executable. These parts have
been replaced bgonstrained functionsvhose specification is introduced withdafun-sk event [3].
This enables a top-down proving approach.

In this paper we provide some details on the formalizatiothefalgorithm in the ACL2 logic and
the proof of correctness. Due to space limitation, we witlprovide much information on the algorithm
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itself, but focus on the formalized proof of correctness: fRore information, we refer td [5]. Formaliz-
ing the algorithm in ACL2 has been of great benefit to us. Thsige of the algorithm with which we
started had flaws in it, which were detected during the psoégheorem proving.

In Section 2 we shortly introduce wormhole networks and tekd. We explain the basic idea of
our algorithm in Sectiohl3. Sectiéh 4 contains details omfalizing the algorithm in ACL2. In Sectidd 5
we provide details on the proof of correctness. We conclodgeictior 6.

2 Wormhole networks

In wormhole networks, messages are decomposed into dasecafiedflits. A flit constitutes the atomic
object that is transferred between any two channels. Tipithere is a header flit followed by a sequel
of data flits. The end of a packet is marked by a tail flit. For@iaity, we do not distinguish between
data flits and the tail flit. We refer to all of them as the taihl{the header flit contains information on
the destination of the message. The header flit advanceg tiderspecified route, while the tail follows
in a pipe-line fashion. When the header flit is blocked, ai$ ftif the message are blocked. A channel
can only store flits belonging to at most one message. Thexefail flits block header flits of other
messages.

In [[7/] we have proven a necessary and sufficient conditiordéadlock-free routing in wormhole
networks. This proof has been formalized in ACL2. We shoatliglress this condition. In wormhole
networks, messages occupy paths of channels in the net&quth that can be occupied by a message
destined ford will be called ad-path As flits in the tail follow the header flit, blockage of a magsa
depends solely on the header flit. The central idea of theitonds that a header flit must always have
anescape An escape is a next hop supplied by the routing functionHerdestination of the message.
The escape must be available, i.e., not occupied by othensior
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Figure 1: Wormhole configurations

Consider the first configuration in Figuré 1. Three messagespy three paths of channels. For
each path, the head of the path cannot escape as the routictgpfudoes not supply next hops that are
not included in the set of paths. There exists a set of pattiowuti an escape, which corresponds to the
existence of a deadlock. In the second configuration, thedrdht of messagd is supplied two possible
next hops for its destination. As one of them is not includethe set of paths, the header flit can move
towards this escape and resolve the deadlock. The set ohopsthas an escape and is therefore not a
deadlock. Our condition states that:

A wormhole network is deadlock-free if and only if for any paise disjoint set ofl-paths there exists
an escape.

Checking this condition is co-NP-complete [7]. Our aldamitis polynomial, but may return a false
deadlock. It returns a set of paths without an escape if thasts such a set or returngf there exists
no such set. The set of paths is however not necessarily ipaidisjoint.



Freek Verbeek and Julien Schmaltz 105

3 Algorithm

The basic objective of our algorithm is to mark each chanAgékr termination of the algorithm, either
all channels are marked to be immune for deadlock, or a deladkn be constructed from those channels
that have not been marked immune for deadlock. We use tteiol) markings:

0 The channel is unmarked.

1 The channel has been visited, but a definite mark has not getdetermined.

2 The channel is immune for deadlock, i.e., no flit in the chaoaa be permanently blocked.
3 There exists a destinatiahsuch that a header flit destined fibcan be permanently blocked.

4 No header flit can be permanently blocked, but for some dagtimd a tail flit can be permanently
blocked.

After termination, all channels are marked eitBgeB, or 4. If all channels are marke?| then the network
is deadlock-free. A2-marked channel is always immune for deadlock. If channaleteen marked
either3 or 4, a deadlock can be constructed3#Anarked channed can be filled with a header flit destined
for d. A 4-marked channet can be filled with tail flits.

The algorithm obtains these markings by checking for ea@mnmélc and for each destinatiod
the possible next hops. If for some destinatibthere is no next hop marke?] then a header flit with
destinationd can be permanently blocked, as all next hops can be perntadmtked. The channel is
marked3. If for channelc for all destinations there existszamarked neighbor, then channetannot
be marked. If in this case there existsdpath leading t@-marked channeh, this path can be filled
with talil flits. As in channeh a header flit can be permanently blocked, the tail flits in clehda can be
permanently blocked. Channelis marked4. Otherwise the channel is mark@das it is immune for
deadlock.

Consider the network in Figufé 2. In the network, messagasrgéed in the processing nodes
to n, move from channel to channel. Nodégsandd; are the only possible destinations. Figlke 2 also
shows the routing function. The graph representation oh#teork is the input of the algorithm. An
edge(cp,Cy) is labelledd if a message in channej destined fod is routed towards; .
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Figure 2: Example network, routing and graph

Destinationgly andd; are sinks. They can never be blocked. Changgls;, ands, are marked with
2 as they are immune for deadlock. Chanagels marked3, as for destinatiomly all neighbors are not
marked2. Similarly, channek; is marked3. Lastly, channety is marked4. For all destinations, there
is 2-marked neighbor, but there exists a path leading twhich is marked.

There exists exactly one possible deadlock-configuratthiannelscy andc; are filled with a worm
with destinationd; and channek; is filled with a header flit destined fady. The deadlock can be
obtained by filling3-marked channels with header flits afvainarked channels with tail flits.
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4 Formalization in ACL2

First, we define the data structure in which the graph is dtoree graph consists of verticegl(...,C—

1, with C the number of channels in the network. With each chanrelist of neighbors is associated,
representing the possible next hops a message in chaaeal take. The labels on the edges represent
the destinations which cause a message to be routed towsrdseighbors. For example, the graph
in Figure[3 represents a network where a message in chantest be routed towards chanrizfor
destinationdy and to channet for destinationsly andd .

<

a

dd; c

Figure 3: Routing represented in a graph

In ACL2, we store this data structure in a st@ljaph. Function(neighbors c d graph) takes
as parameters a chanmela destinatiord, and the stobgraph and returns a list of neighbors. For sake
of clarity, we will not mention this stobj any further.

The algorithms needs to store markings. These are storedtobpnarks. For each channel, we
store a marking between 0 and 4, a list €sgsf destinations on edges leadingZenarked neighbors
(escapes) and a list dep$ of destinations on edges not leadin@tmarked neighbors. All channels are
initially unmarked.

(defstobj marks
(marks :type (array (integer 0 4) (C))
:initially 0)
(escs :type (array list (C)) :initially nil)
(deps :type (array list (C)) :initially nil)

ACL?2 introduces functions to access this stobj. For exaiplebtain the marking of channel we can
use:

(marksi c marks)

Formalizing the algorithm in ACL2 was a straightforward exge in LISP. For now, we have left
some parts of the algorithm unimplemented. Because of Weswere able to prove correctness of
the algorithm, regardless of how these parts are implerde#i&so, this approach enabled a top-down
proving approach, as we could first prove correctness ofifogithm as a whole without getting stranded
in the details. An example is that at some point the algoritharks a channet with 4 if there exists
a path that satisfies some properties. The path must be sedlerby a message destined for some
destinatiord (i.e., it must be al-path), start irc, end in a channede that is not marke@, and destination
d must have been added by the algorithm to dep<ut not to esas.). An efficient decision procedure
for the existence of such a path is an algorithm of its own. ¢ point, we do not want to bother
ourselves with this, as itis only a small part of the algamtiWe therefore replace this decision procedure
with an unimplemented specification, introduced hjedun-sk construct:

(defun-sk ex-d-path-to-not2(c marks)
(exists (p 4)
(let ((start (car p))
(end (car (last p))))
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(and (d-pathp p d)
(equal start c)
(not (equal (marksi end marks) 2)
(member-equal d (depi end marks))
(not (member-equal d (esci end marks)))
)))))
Functiond-pathp is a recognizer for paths that can be established by thengfuinction for destination
d.
The algorithm calls functioex-d-path-to-not2. At a later stage, an implementation can be made
and proven correct with respect to this specification.

5 Proving correctness

The proof of correctness consists of two parts: if the athorireturnst there is no set of paths without
an escape and if the algorithm returiisl there is a set of paths without an escape. In this paper, we
give details on the second part of the proof, i.e., we showftben the markings a set of paths without
an escape can be constructed.

5.1 Informal proof of correctness

Proof. If the algorithm marks a chann8lor 4, it is possible to create a set of paths without an escape.
This proof formalizes the intuition in Figuté 2: a deadloslcieated from alB- and4-marked channels.
1. Take the set of patH3s4 obtained by taking — after termination — for e&&marked channet the
singleton pathc] and for eack-marked channel a path leading t@-anarked channel.
2. Each3-marked channet in the set of path$§ls4 has a destinatiod that is a member of deps)
and not of esdg), since channels are mark8anly if depgc) ¢ escgc).

3. Since, if some destination leads2anarked neighbors it is added to eGns destinationd does
not lead to neighbors markexl

4. Since destinatiod does not lead t@-marked neighbors, it leads to channels mar&ed 4 only.

5. Since the set of patli$z4 contains alB- and4-marked channels and since chanmleas destination
d which leads ta3- and4-marked channels only, channels not an escape for this set of paths
(i.e., all its neighbors for destinatiahare included in the set of paths). ThBsnarked channels
are no escapes.

6. As for all4-marked channels there exists a path leading3arearked channel, these are no escape
either.

7. Since none of the channels in the set of pathsis an escape, the set of paths has no escape.

8. The algorithm returns true if and only if after terminatithere exists at least o3 or 4-marked
channel. Thus it returns true if there exists a non-emptpfpaths without an escape.
O

5.2 Formal proof of correctness

We provide some details on formalizing the informal proofe Wil not consider all steps, but focus on
some of the interesting aspects.
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5.2.1 Step 1: constructing a witness

In this step we need to construct a witnéss, of which we are going to prove that it is a set of paths
without an escape. In Step 1, itis implicitly assumed thatfb4-marked channels there actually exists
a path leading to 8marked channel. We first express this assumption usiefan-sk construct.

(defun-sk ex-d-path-to-3(c marks)
(exists (p 4)
(and (d-pathp p 4)
(equal (car p) c)
(equal (marksi (car (last p)) marks) 3))))

For some destinatiod there exists a@-path p starting in the given channeland ending in &-marked
channel.
Now we build the witness, i.e., a set of paths, using the winetroduced by th@efun-sk:

(defun witness-set-of-paths (n marks)
(declare (xargs :non-executable t))
(cond
((zp n) nil)
((equal (marksi (1- n) marks) 3)
(cons (list (1- n))
(witness-set-of-paths (1- n) marks)))
((equal (marksi (1- n) marks) 4)
(cons
(car (ex-d-path-to-3-witness (1- n) marks))
(witness-set-of-paths (1- n) marks)))
(t
(witness-set-of-paths (1- n) marks))))

For eact8-marked channel a singleton pathist c) is created. For eachmarked channel, the witness
introduced by thelefun-sk construct is used. Here we run into a problemrks is a stobj storing the
markings. However, a defun-sk cannot declare parametds stobjs. If we would add the declaration

(declare (xargs :stobjs (marks)))

to functionwitness-set-of-paths, as we ordinarily would want to do, ACL2 produces an errot ¢ha
single-threaded object, namelyrks, is being used where an ordinary object is expected. Outisplu
was to omit this declaration, meaning thairks is not considered a stobj, but can be any ordinary
object. However, this means that we cannot use the standeedsor functiomarksi to access the stobj
marks, asmarks IS not declared to be the stabprks. If we declare the function to be non-executable,
this problem is solved. We have a function generating a w#ni¢ is however not executable.

Now we need to prove that after termination, for edaharked channel there exists a path leading to
a3-marked channel, i.e., we need to establish {kat-d-path-to-3 ¢ marks) holds for all4-marked
channels. This is an inductive invariant. We express the invariant:

(defun invariant-4marks (n marks)
(declare (xargs :non-executable t))
(cond

((zp n) t)
((equal (marksi (1- n) marks) 4)
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(and (ex-d-path-to-3mark (1- n) marks)
(invariant-4marks(1- n) marks)))

(t

(invariant-4marks (1- n) marks))))

We need to prove that each line of code of the algorithm pvesehis invariant under some assumptions.
As an example, the following theorem expresses that makictgannel preserves the invariant:

(defthm mark2-preserves-invariant-4marks
(let ((marks-after (update-marksi c 2 marks))
(implies (and (invariant-4marks n marks)
(not (equal (marksi c marks) 3)))
(invariant-4marks n marks-after)))))

If a channelc is marked2 and it was not marke@, the invariant is preserved. This holds, since the
witnessrt before setting th@-mark is also a witness after setting the mark. For each limede of the
algorithm, a theorem similar to this has been proven. We aésml to prove that initially the invariant
holds:

(defthm forall-unmarked-implies-invariant-4marks
(implies (forall-unmarked n marks)
(invariant-4marks n marks)))

Functionforall-clear expresses that all markings are clear, i.e., they are &lb€etThe proof of this
theorem is trivial, as there are demarked channels.

5.2.2 Step 2: more invariants

Step 2 is basically just an invariant.

(defun invariant-3marks (n marks)
(cond
((zp n) t)
((equal (marksi (1- n) marks) 3)
(and (not (subsetp (depi (1- n) marks)
(esci (1- n) marks)))
(invariant-3marks (1- n) marks)))
(t
(invariant-3marks (1- n) marks))))

For each3-marked channet, there exists a destination in dépsthat is not in esgg). The proof
proceeds similar to the proof of the invariant used in Stepdr. each line of code of the algorithm, a
theorem is proven that the line preserves the invariant.

The same methodology applies to Steps 3 and 4 of the inforroaf.pThis introduces more invari-
ants on each marking.

5.2.3 Step 5: correctness of witness

At this point, we have established correctness of the iamési and proven them inductive. Now we
use the invariants to prove theorems on the constructeasgtr-or example, we prove in step 5 that a
3-marked channel is not an escape for the set of gagas
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(defthm r-marked-3-->no-escape-for-witness
(let ((d (find-member-not-in (depi c marks)
(esci ¢ marks))))
(implies
(and (equal (marksi ¢ marks) 3)
(invariant-3marks C marks)
): invariants
(subsetp
(neighbors ¢ d)
(union-of (witness-set-of-paths C marks))))))
Functionfind-member-not-in takes two lists and returns an element from the first list ihaot in
the second. We use it to find the destinattbthat is in depéc) but not in esc&). Assuming all the
invariants needed to prove this theorem, we prove that thefseeighbors ofc for destinationd is a
subset of the union of the set of paffigs. It is therefore not an escape for this set of paths.
The proof of Step 6 is done in a similar fashion. Step 7 follyslefinition.

5.2.4 Step 8: final theorem

(defthm algo-returns-nil-->deadlock
(let ((marks-after-termination (mv-nth 1 (algorithm marks)))
(p-witness (witness-set-of-paths C marks-after-termination))
(d-witness (witness-set-of-dests C marks-after-termination))
(1-witness (len p-witness))))
(implies (and (forall-clear C marks)
(equal (mv-nth O (algorithm marks)) nil))
(and (> l-witness 0)
(set-of-paths-witnessp l-witness p-witness d-witness))))

Figure 4: Final theorem

The final theorem that we prove in this paper states that ilatgorithm returnsail, there exists a
set of paths without an escape.
We first define a recognizer for such sets of paths:
(defun set-of-paths-witnessp (n paths dests)
(if (zp n)
(and (endp paths) (endp dests))
(let ((p (nth (1- n) paths))
(d (nth (1- n) dests))
(and (subsetp (neighbors (car(last p)) d4)
(union-of paths))
(d-pathp p d)
(set-of-paths-witnessp (1- n) paths dests)
)))))
The function takes as input a list of paths and a list of thein$ons for which these paths are estab-
lished. Also, it takes as input the number of paths. It chéfdks eachd-path p the neighbors of the last
channel (where the head of the worm is located) cannot eshepmths.
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Figure[4 gives the final theorem. The algorithm returns aimnaltie with as first value a booledn
which ist if and only if there is no deadlock. The second value is thbjstarks after termination. We
have a function generating the witness for the destinatibtise paths, similar to the function generating
the witness for the paths themselves (see Step 1). If igigdlimarkings are clear, all inductive invariants
can be proven and theorems such as the theorem in Step 5 capllesldo prove correctness of the
witnesses. We also prove that the witness is non-empty.

6 Conclusion

We have formally proven correctness of an algorithm whictects deadlocks in wormhole networks.
The process of theorem proving has been crucial for us toligleadetails right.

The entire proof consists of 7263 lines of ACL2 code. A great pf this consists of proving that
each line of the algorithm preserves each of the invariaAtsving correctness of the invariants was a
relatively easy process. The theorem to be proved is simdah time: there is an invariant which holds
initially, and it must hold — under some assumptions — afteicating one line of code. The trick is to
find these assumptions, but these can be figured out from tpatoaf ACL2.

The use ofdefun-sk allowed us to leave some parts of the algorithm unimplenteatel replace
them with a specification of what the code should do. Thisaahbus to start with a global proof before
stranding into details. As we could proceed with the proa#,amuld first see whether the specification
was correct before making an implementation. If the spetifia was insufficient to finish the proof, we
could simply change the specification and did not have toplment some part of the algorithm.

The algorithm is not yet executable, as some parts have lefeanimplemented. Future work
consists of implementing these parts efficiently and pWirem correct with respect to the specification
that is currently used. Once the algorithm is executable care compare the performance to our C
implementation. Our ultimate objective is to have a fullynfally verified and efficiently executable
implementation in ACL2.
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