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Interactive theorem proving requires a lot of human guidance. Proving a property involves (1) fig-
uring out why it holds, then (2) coaxing the theorem prover into believing it. Both steps can take a
long time. We explain how to use GL, a framework for proving finite ACL2 theorems with BDD- or
SAT-based reasoning. This approach makes it unnecessary to deeply understand why a property is
true, and automates the process of admitting it as a theorem. We use GL at Centaur Technology to
verify execution units for x86 integer, MMX, SSE, and floating-point arithmetic.

1 Introduction

In hardware verification you often want to show that some circuit implements its specification. Many
of these problems are in the scope of fully automatic decision procedures like SAT solvers. When these
tools can be used, there are good reasons to prefer them over The Method [12] of traditional, interactive
theorem proving. For instance, these tools can:

• Reduce the level of human understanding needed in the initial process of developing the proof;

• Provide clear counterexamples, whereas failed ACL2 proofs can often be difficult to debug; and

• Ease the maintenance of the proof, since after the design changes they can often find updated
proofs without help.

GL [20] is a framework for proving finite ACL2 theorems—those which, at least in principle, could
be established by exhaustive testing—by bit-blasting with a Binary Decision Diagram (BDD) package
or a SAT solver. These approaches have much higher capacity than exhaustive testing. We are using
GL heavily at Centaur Technology [17, 11, 10]. So far, we have used it to verify RTL implementations
of floating-point addition, multiplication, and conversion operations, as well as hundreds of bitwise and
arithmetic operations on scalar and packed integers.

This paper is an introduction to GL and a practical guide for using it to prove ACL2 theorems. For a
comprehensive treatment of the implementation of GL, see Swords’ dissertation [20]. Additional details
about particular commands can be found in the online documentation with :doc gl.

GL is the successor of Boyer and Hunt’s [5] G system (Section 8), and its name stands for G in the
Logic. The G system was written as a raw Lisp extension of the ACL2 kernel, so using it meant trusting
this additional code. In contrast, GL is implemented as ACL2 books and its proof procedure is formally
verified by ACL2, so the only code we have to trust besides ACL2 is the ACL2(h) extension that provides
hash-consing and memoization [4]. Like the G system, GL can prove theorems about ordinary ACL2
definitions; you are not restricted to some small subset of the language.

How does GL work? You can probably imagine writing a bit-based encoding of ACL2 objects. For
instance, you might represent an integer with some structure that contains a 2’s-complement list of bits.
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GL uses an encoding like this, except that Boolean expressions take the place of the bits. We call these
structures symbolic objects (Section 2.1).

GL provides a way to effectively compute with symbolic objects; e.g., it can “add” two integers
whose bits are expressions, producing a new symbolic object that represents their sum. GL can perform
similar computations for most ACL2 primitives. Building on this capability, it can symbolically execute
terms (Section 2.2). The result of a symbolic execution is a new symbolic object that captures all the
possible values the result could take.

Symbolic execution can be used as a proof procedure (Section 2.3). To prove a theorem, we first
symbolically execute its goal formula, then show the resulting symbolic object cannot represent nil. GL
provides a def-gl-thm command that makes it easy to prove theorems with this approach (Section 3).
It handles all the details of working with symbolic objects, and only needs to be told how to represent
the variables in the formula.

Like any automatic procedure, GL has a certain capacity. But when these limits are reached, you
may be able to increase its capacity by:

• Optimizing its symbolic execution strategy to use more efficient definitions (Section 4),

• Decomposing difficult problems into easier subgoals using an automatic tool (Section 5), or

• Using a SAT backend (Section 6) that outperforms BDDs on some problems.

There are also some good tools and techniques for debugging failed proofs (Section 7).

1.1 Example: Counting Bits

Let’s use GL to prove a theorem. The following C code, from Anderson’s Bit Twiddling Hacks [2] page,
is a fast way to count how many bits are set in a 32-bit integer.

v = v - ((v >> 1) & 0x55555555);

v = (v & 0x33333333) + ((v >> 2) & 0x33333333);

c = ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24;

We can model this in ACL2 as follows. It turns out that using arbitrary-precision addition and
subtraction does not affect the result, but we must take care to use a 32-bit multiply to match the C
code.

(defun 32* (x y)

(logand (* x y) (1- (expt 2 32))))

(defun fast-logcount-32 (v)

(let* ((v (- v (logand (ash v -1) #x55555555)))

(v (+ (logand v #x33333333) (logand (ash v -2) #x33333333))))

(ash (32* (logand (+ v (ash v -4)) #xF0F0F0F) #x1010101) -24)))

We can then use GL to prove fast-logcount-32 computes the same result as ACL2’s built-in
logcount function for all unsigned 32-bit inputs.

(def-gl-thm fast-logcount-32-correct

:hyp (unsigned-byte-p 32 x)

:concl (equal (fast-logcount-32 x)

(logcount x))

:g-bindings ‘((x ,(g-int 0 1 33))))
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The :g-bindings form is the only help GL needs from the user. It tells GL how to construct
a symbolic object that can represent every value for x that satisfies the hypothesis (we explain what it
means in later sections). No arithmetic books or lemmas are required—we actually don’t even know why
this algorithm works. The proof completes in 0.09 seconds and results in the following ACL2 theorem.

(defthm fast-logcount-32-correct

(implies (unsigned-byte-p 32 x)

(equal (fast-logcount-32 x)

(logcount x)))

:hints ((gl-hint ...)))

Why not just use exhaustive testing? We wrote a fixnum-optimized exhaustive-testing function that
can cover the 232 cases in 143 seconds. This is slower than GL but still seems reasonable. On the
other hand, exhaustive testing is clearly incapable of scaling to the 64-bit and 128-bit versions of this
algorithm, whereas GL completes the proofs in 0.18 and 0.58 seconds, respectively.

Like exhaustive testing, GL can generate counterexamples to non-theorems. At first, we didn’t realize
we needed to use a 32-bit multiply in fast-logcount-32, and we just used an arbitrary-precision
multiply instead. The function still worked for test cases like 0, 1, #b111, and #b10111, but when we
tried to prove its correctness, GL showed us three counterexamples, #x80000000, #xFFFFFFFF, and
#x9448C263. By default, GL generates a first counterexample by setting bits to 0 wherever possible, a
second by setting bits to 1, and a third with random bit settings.

1.2 Example: UTF-8 Decoding

Davis [8] used exhaustive testing to prove lemmas toward the correctness of UTF-8 processing func-
tions. The most difficult proof carried out this way was a well-formedness and inversion property for
four-byte UTF-8 sequences, which involved checking 232 cases. Davis’ proof takes 67 seconds on our
computer. It involves four testing functions and five lemmas about them; all of this is straightforward
but mundane. The testing functions are guard-verified and optimized with mbe and type declarations for
better performance.

We used GL to prove the same property. The proof (included in the supporting materials) completes
in 0.17 seconds and requires no testing functions or supporting lemmas.

1.3 Getting GL

GL is included in ACL2 4.3, and the development version is available from the ACL2 Books reposi-
tory, http://acl2-books.googlecode.com/. Note that using GL requires ACL2(h), which is best
supported on 64-bit Clozure Common Lisp. BDD operations can be memory intensive, so we recom-
mend using a computer with at least 8 GB of memory. Instructions for building GL can be found in
centaur/README, and it can be loaded with

(include-book "centaur/gl/gl" :dir :system).

2 GL Basics

At its heart, GL works by manipulating Boolean expressions. There are many ways to represent Boolean
expressions. GL currently supports a hons-based BDD package [4] and also has support for using a
hons-based And-Inverter Graph (AIG) representation with an external SAT solver.

http://acl2-books.googlecode.com/
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For any particular proof, the user can choose to work in BDD mode (the default) or AIG mode. Each
representation has strengths and weaknesses, and the choice of representation can significantly impact
performance. We give some advice about choosing proof modes in Section 6.

The GL user does not need to know how BDDs and AIGs are represented; in this paper we just adopt
a conventional mathematical syntax to describe Boolean expressions, e.g., true, false, A∧B, ¬C, etc.

2.1 Symbolic Objects

GL groups Boolean expressions into symbolic objects. Much like a Boolean expression can be evaluated
to obtain a Boolean value, a symbolic object can be evaluated to produce an ACL2 object. There are
several kinds of symbolic objects, but numbers are a good start. GL represents symbolic, signed integers
as

(:g-number lsb-bits),

where lsb-bits is a list of Boolean expressions that represent the two’s complement bits of the number.
The bits are in lsb-first order, and the last, most significant bit is the sign bit. For instance, if p is the
following :g-number,

p = (:g-number (true false A∧B false)),

then p represents a 4-bit, signed integer whose value is either 1 or 5, depending on the value of A∧B.
GL uses another kind of symbolic object to represent ACL2 Booleans. In particular,

(:g-boolean . val)

represents t or nil depending on the Boolean expression val. For example,

(:g-boolean . ¬(A∧B))

is a symbolic object whose value is t when p has value 1, and nil when p has value 5.
GL has a few other kinds of symbolic objects that are also tagged with keywords, such as :g-var

and :g-apply. But an ACL2 object that does not have any of these special keywords within it is also
considered to be a symbolic object, and just represents itself. Furthermore, a cons of two symbolic
objects represents the cons of the two objects they represent. For instance,

(1 . (:g-boolean . A∧B))

represents either (1 . t) or (1 . nil). Together, these conventions allow GL to avoid lots of tagging
as symbolic objects are manipulated.

One last kind of symbolic object we will mention represents an if-then-else among other symbolic
objects. Its syntax is

(:g-ite test then . else),

where test, then, and else are themselves symbolic objects. The value of a :g-ite is either the value of
then or of else, depending on the value of test. For example,

(:g-ite (:g-boolean . A)
(:g-number (B A false))
. #\C)

represents either 2, 3, or the character C.
GL doesn’t have a special symbolic object format for ACL2 objects other than numbers and Bool-

eans. But it is still possible to create symbolic objects that take any finite range of values among ACL2
objects, by using a nesting of :g-ites where the tests are :g-booleans.
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2.2 Computing with Symbolic Objects

Once we have a representation for symbolic objects, we can perform symbolic executions on those
objects. For instance, recall the symbolic number p which can have value 1 or 5,

p = (:g-number (true false A∧B false)).

We might symbolically add 1 to p to obtain a new symbolic number, say q,

q = (:g-number (false true A∧B false)),

which represents either 2 or 6. Suppose r is another symbolic number,

r = (:g-number (A false true false)),

which represents either 4 or 5. We might add q and r to obtain s,

s = (:g-number (A true ¬(A∧B) A∧B false)),

whose value can be 6, 7, or 11. Why can’t s be 10 if q can be 6 and r can be 4? This combination isn’t
possible because q and r involve the same expression, A. The only way for r to be 4 is for A to be false,
but then q must be 2.

The underlying algorithm GL uses for symbolic additions is just a ripple-carry addition on the Bool-
ean expressions making up the bits of the two numbers. Performing a symbolic addition, then, means
constructing new BDDs or AIGs, depending on which mode is being used.

GL has built-in support for symbolically executing most ACL2 primitives. Generally, this is done
by cases on the types of the symbolic objects being passed in as arguments. For instance, if we want to
symbolically execute consp on s, then we are asking whether a :g-number may ever represent a cons,
so the answer is simply nil. Similarly, if we ever try to add a :g-boolean to a :g-number, by the
ACL2 axioms the :g-boolean is simply treated as 0.

Beyond these primitives, GL provides what is essentially a McCarthy-style interpreter [14] for sym-
bolically executing terms. By default, it expands function definitions until it reaches primitives, with
some special handling for if. For better performance, its interpretation scheme can be customized with
more efficient definitions and other optimizations, as described in Section 4.

2.3 Proving Theorems by Symbolic Execution

To see how symbolic execution can be used to prove theorems, let’s return to the bit-counting example,
where our goal was to prove

(implies (unsigned-byte-p 32 x)

(equal (fast-logcount-32 x)

(logcount x))).

The basic idea is to first symbolically execute the above formula, and then check whether it can ever
evaluate to nil. But to do this symbolic execution, we need some symbolic object to represent x.

We want our symbolic execution to cover all the cases necessary for proving the theorem, namely all
x for which the hypothesis (unsigned-byte-p 32 x) holds. In other words, the symbolic object we
choose needs to be able to represent any integer from 0 to 232−1.
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Many symbolic objects cover this range. As notation, let b0,b1, . . . represent independent Boolean
variables in our Boolean expression representation. Then, one suitable object is:

(:g-number (b0 b1 . . . b31 b32)).

Why does this have 33 variables? The final bit, b32, represents the sign, so this object covers the integers
from −232 to 232−1. We could instead use a 34-bit integer, or a 35-bit integer, or some esoteric creation
involving :g-ite forms. But perhaps the best object to use would be:

xbest = (:g-number (b0 b1 . . . b31 false)),

since it covers exactly the desired range using the simplest possible Boolean expressions.
Suppose we choose xbest to stand for x. We can now symbolically execute the goal formula on that

object.
What does this involve? First, (unsigned-byte-p 32 x) produces the symbolic result t, since

it is always true of the possible values of xbest. It would have been equally valid for this to produce
(:g-boolean . true), but GL prefers to produce constants when possible.

Next, the (fast-logcount-32 x) and (logcount x) forms each yield :g-number objects whose
bits are Boolean expressions in the variables b0, . . . ,b31. For example, the least significant bit will be an
expression representing the XOR of all these variables.

Finally, we symbolically execute equal on these two results. This compares the Boolean expressions
for their bits to determine if they are equivalent, and produces a symbolic object representing the answer.

So far we have basically ignored the differences between using BDDs and AIGs as our Boolean
expression representation. But here, the two approaches produce very different answers:

• Since BDDs are canonical, the expressions for the bits of the two numbers are syntactically equal,
and the result from equal is simply t.

• With AIGs, the expressions for the bits are semantically equivalent but not syntactically equal. The
result is therefore (:g-boolean . φ), where φ is a large Boolean expression in the variables
b0, . . . ,b31. The fact that φ always evaluates to true is not obvious just from its syntax.

At this point we have completed the symbolic execution of our goal formula, obtaining either t in
BDD mode, or this :g-boolean object in AIG mode. Recall that to prove theorems using symbolic
execution, the idea is to symbolically execute the goal formula and then check whether its symbolic
result can represent nil. If we are using BDDs, it is obvious that t cannot represent nil. With AIGs,
we simply ask a SAT solver whether φ can evaluate to false, and find that it cannot. This completes the
proof.

GL automates this proof strategy, taking care of many of the details relating to creating symbolic
objects, ensuring that they cover all the possible cases, and ensuring that nil cannot be represented by
the symbolic result. When GL is asked to prove a non-theorem, it can generate counterexamples by
finding assignments to the Boolean variables that cause the result to become nil.

3 Using DEF-GL-THM

The def-gl-thm command is the main interface for using GL to prove theorems. Here is the command
we used in the bit-counting example.
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(def-gl-thm fast-logcount-32-correct

:hyp (unsigned-byte-p 32 x)

:concl (equal (fast-logcount-32 x)

(logcount x))

:g-bindings ‘((x ,(g-int 0 1 33))))

Unlike an ordinary defthm command, def-gl-thm takes separate hypothesis and conclusion terms
(its :hyp and :concl arguments). This separation allows GL to use the hypothesis to limit the scope of
the symbolic execution it will perform. The user must also provide GL with :g-bindings that describe
the symbolic objects to use for each free variable in the theorem (Section 3.1).

What are these bindings? In the fast-logcount-32-correct theorem, we used a convenient
function, g-int, to construct the :g-bindings. Expanding this away, here are the actual bindings:

((x (:g-number (0 1 2 . . . 32)))).

The :g-bindings argument uses a slight modification of the symbolic object format where the Boolean
expressions are replaced by distinct natural numbers, each representing a Boolean variable. In this case,
our binding for x stands for the following symbolic object:

xinit = (:g-number (b0 b1 . . . b31 b32)).

Note that xinit is not the same object as xbest from Section 2.3—its sign bit is b32 instead of false, so xinit

can represent any 33-bit signed integer whereas xbest only represents 32-bit unsigned values. In fact, the
:g-bindings syntax does not even allow us to describe objects like xbest, which has the constant false
instead of a variable as one of its bits.

There is a good reason for this restriction. One of the steps in our proof strategy is to prove coverage:
we need to show the symbolic objects we are starting out with have a sufficient range of values to cover
all cases for which the hypothesis holds (Section 3.2). The restricted syntax permitted by :g-bindings

ensures that the range of values represented by each symbolic object is easy to determine. Because of
this, coverage proofs are usually automatic.

Despite these restrictions, GL will still end up using xbest to carry out the symbolic execution. GL op-
timizes the original symbolic objects inferred from the :g-bindings by using the hypothesis to reduce
the space of objects that are represented. In BDD mode this optimization uses BDD parametrization [1],
which restricts the symbolic objects so they cover exactly the inputs recognized by the hypothesis. In
AIG mode we use a lighter-weight transformation that replaces variables with constants when the hy-
pothesis sufficiently restricts them. In this example, either optimization transforms xinit into xbest.

3.1 Writing G-Bindings Forms

In a typical def-gl-thm command, the :g-bindings should have an entry for every free variable in
the theorem. Here is an example that shows some typical bindings.

:g-bindings ’((flag (:g-boolean . 0))

(a-bus (:g-number (1 3 5 7 9)))

(b-bus (:g-number (2 4 6 8 10)))

(mode (:g-ite (:g-boolean . 11) exact . fast))

(opcode #b0010100))
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These bindings allow flag to take an arbitrary Boolean value, a-bus and b-bus any five-bit signed
integer values, mode either the symbol exact or fast, and opcode only the value 20.1

Within :g-boolean and :g-number forms, natural number indices take the places of Boolean ex-
pressions. The indices used throughout all of the bindings must be distinct, and represent free, indepen-
dent Boolean variables. In BDD mode these indices have additional meaning: they specify the BDD
variable ordering, with smaller indices coming first in the order. This ordering can greatly affect perfor-
mance. In AIG mode the choice of indices has no particular bearing on efficiency.

How do you choose a good BDD ordering? It is often good to interleave the bits of data buses that are
going to be combined in some way. It is also typically a good idea to put any important control signals
such as opcodes and mode settings before the data buses.

Often the same :g-bindings can be used throughout several theorems, either verbatim or with only
small changes. In practice, we almost always generate the :g-bindings forms by calling functions or
macros. One convenient function is

(g-int start by n),

which generates a :g-number form with n bits, using indices that start at start and increment by by.
This is particularly useful for interleaving the bits of numbers, as we did for the a-bus and b-bus

bindings above:
(g-int 1 2 5)→ (:g-number (1 3 5 7 9))

(g-int 2 2 5)→ (:g-number (2 4 6 8 10)).

3.2 Proving Coverage

There are really two parts to any GL theorem. First, we need to symbolically execute the goal formula
and ensure it cannot evaluate to nil. But in addition to this, we must ensure that the objects we use
to represent the variables of the theorem cover all the cases that satisfy the hypothesis. This part of the
proof is called the coverage obligation.

For fast-logcount-32-correct, the coverage obligation is to show that our binding for x is able
to represent every integer from 0 to 232− 1. This is true of xinit, and the coverage proof goes through
automatically.

But suppose we forget that :g-numbers use a signed representation, and attempt to prove fast-log-
count-32-correct using the following (incorrect) g-bindings.

:g-bindings ‘((x ,(g-int 0 1 32)))

This looks like a 32-bit integer, but because of the sign bit it does not cover the intended unsigned range.
If we submit the def-gl-thm command with these bindings, the symbolic execution part of the proof is
still successful. But this execution has only really shown the goal holds for 31-bit unsigned integers, so
def-gl-thm prints the message

ERROR: Coverage proof appears to have failed.

1Note that since #b0010100 is not within a :g-boolean or :g-number form, it is not the index of a Boolean variable.
Instead, like the symbols exact and fast, it is just an ordinary ACL2 constant that stands for itself, i.e., 20.
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and leaves us with a failed subgoal,

(implies (and (integerp x)

(<= 0 x)

(< x 4294967296))

(< x 2147483648)).

This goal is clearly not provable: we are trying to show x must be less than 231 (from our :g-bindings)
whenever it is less than 232 (from the hypothesis).

Usually when the :g-bindings are correct, the coverage proof will be automatic, so if you see that
a coverage proof has failed, the first thing to do is check whether your bindings are really sufficient.

On the other hand, proving coverage is undecidable in principle, so sometimes GL will fail to prove
coverage even though the bindings are appropriate. For these cases, there are some keyword arguments
to def-gl-thm that may help coverage proofs succeed.

First, as a practical matter, GL does the symbolic execution part of the proof before trying to prove
coverage. This can get in the way of debugging coverage proofs when the symbolic execution takes a
long time. You can use :test-side-goals t to have GL skip the symbolic execution and go straight
to the coverage proof. Of course, no defthm is produced when this option is used.

By default, our coverage proof strategy uses a restricted set of rules and ignores the current theory. It
heuristically expands functions in the hypothesis and throws away terms that seem irrelevant. When this
strategy fails, it is usually for one of two reasons.

1. The heuristics expand too many terms and overwhelm ACL2. GL tries to avoid this by throwing
away irrelevant terms, but sometimes this approach is insufficient. It may be helpful to disable the
expansion of functions that are not important for proving coverage. The :do-not-expand argument
allows you to list functions that should not be expanded.

2. The heuristics throw away a necessary hypothesis, leading to unprovable goals. GL’s coverage
proof strategy tries to show that the binding for each variable is sufficient, one variable at a time. During
this process it throws away hypotheses that do not mention the variable, but in some cases this can be
inappropriate. For instance, suppose the following is a coverage goal for b:

(implies (and (natp a)

(natp b)

(< a (expt 2 15))

(< b a))

(< b (expt 2 15)).

Here, throwing away the terms that don’t mention b will cause the proof to fail. A good way to avoid
this problem is to separate type and size hypotheses from more complicated assumptions that are not
important for proving coverage, along these lines:

(def-gl-thm my-theorem

:hyp (and (type-assms-1 x)

(type-assms-2 y)

(type-assms-3 z)

(complicated-non-type-assms x y z))

:concl ...

:g-bindings ...

:do-not-expand ’(complicated-non-type-assms)).



Sol Swords and Jared Davis 93

For more control, you can also use the :cov-theory-add argument to enable additional rules during
the coverage proof, e.g., :cov-theory-add ’(type-rule1 type-rule2).

4 Optimizing Symbolic Execution

The scope of theorems GL can handle is directly impacted by its symbolic execution performance. It is
actually quite easy to customize the way certain terms are interpreted, and this can sometimes provide
important speedups.

GL’s symbolic interpreter operates much like a basic Lisp interpreter. To symbolically interpret a
function call, GL first eagerly interprets its arguments to obtain symbolic objects for the actuals. Then
GL symbolically executes the function in one of three ways:

• As a special case, if the actuals evaluate to concrete objects, then GL may be able to stop symbol-
ically executing and just call the actual ACL2 function on these arguments (Section 4.3).

• For primitive ACL2 functions like +, consp, equal, and for some defined functions like logand
and ash where performance is important, GL uses hand-written functions called symbolic coun-
terparts that can operate on symbolic objects. The advanced GL user can write new symbolic
counterparts (Section 4.4) to speed up symbolic execution.

• Otherwise, GL looks up the definition of the function, and recursively interprets its body in a new
environment binding the formals to the symbolic actuals. The way a function is written can impact
its symbolic execution performance (Section 4.1). It is easy to instruct GL to use more efficient
definitions for particular functions (Section 4.2).

GL symbolically executes functions strictly according to the ACL2 logic and does not consider
guards. An important consequence is that when mbe is used, GL’s interpreter follows the :logic defini-
tion instead of the :exec definition, since it might be unsound to use the :exec version of a definition
without establishing the guard is met. Also, while GL can symbolically simulate functions that take user-
defined stobjs or even the ACL2 state, it does not operate on “real” stobjs; instead, it uses the logical
definitions of the relevant stobj operations, which do not provide the performance benefits of destructive
operations. Non-executable functions cannot be symbolically executed.

4.1 Avoiding Redundant Recursion

Here are two ways to write a list-filtering function.

(defun filter1 (x)

(cond ((atom x)

nil)

((element-okp (car x)) ;; keep it

(cons (car x) (filter1 (cdr x))))

(t ;; skip it

(filter1 (cdr x)))))

This definition can be inefficient for symbolic execution. Suppose we are symbolically executing
filter1, and the element-okp check has produced a symbolic object that can take both nil and non-
nil values. Then, we proceed by symbolically executing both the keep- and skip-branches, and construct



94 Bit-Blasting ACL2 Theorems

a :g-ite form for the result. Since we have to evaluate the recursive call twice, this execution becomes
exponential in the length of x.

We can avoid this blow-up by consolidating the recursive calls, as follows.

(defun filter2 (x)

(if (atom x)

nil

(let ((rest (filter2 (cdr x))))

(if (element-okp (car x))

(cons (car x) rest)

rest))))

This is not a novel observation; Reeber [16] suggests the same sort of optimization for unrolling
recursive functions in SULFA.

Of course, filter1 is probably slightly better for concrete execution since it has a tail call in at least
some cases. If we do not want to change the definition of filter1, we can simply tell GL to use the
filter2 definition instead, as described in the next section. We currently do not try to automatically
apply this kind of optimization, though we may explore this in future work.

4.2 Preferred Definitions

To instruct GL to symbolically execute filter2 in place of filter1, we can do the following:

(defthm filter1-for-gl

(equal (filter1 x) (filter2 x))

:rule-classes nil)

(gl::set-preferred-def filter1 filter1-for-gl)

The gl::set-preferred-def form extends a table that GL consults when expanding a function’s
definition. Each entry in the table pairs a function name with the name of a theorem. The theorem must
state that a call of the function is unconditionally equal to some other term. When GL encounters a call
of a function in this table, it replaces the call with the right-hand side of the theorem, which is justified
by the theorem. So after the above event, GL will replace calls of filter1 with filter2.

As another example of a preferred definition, GL automatically optimizes the definition of evenp,
which ACL2 defines as follows:

(evenp x)= (integerp (* x (/ 2))).

This definition is basically unworkable since GL provides little support for rational numbers. However,
GL has an efficient, built-in implementation of logbitp. So to permit the efficient execution of evenp,
GL proves the following identity and uses it as evenp’s preferred definition.

(defthm evenp-is-logbitp

(equal (evenp x)

(or (not (acl2-numberp x))

(and (integerp x)

(equal (logbitp 0 x) nil)))))
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4.3 Executability on Concrete Terms

Suppose GL is symbolically executing a function call. If the arguments to the function are all concrete
objects (i.e., symbolic objects that represent a single value), then in some cases the interpreter can stop
symbolically executing and just run the ACL2 function on these arguments. In some cases, this can
provide a critical performance boost.

To actually call these functions, GL essentially uses a case statement along the following lines.

(case fn

(cons (cons (first args) (second args)))

(reverse (reverse (first args)))

(member (member (first args) (second args)))

...)

Such a case statement is naturally limited to calling a fixed set of functions. To allow GL to concretely
execute additional functions, you can use def-gl-clause-processor, a special macro that defines
a new version of the GL symbolic interpreter and clause processor. GL automatically uses the most
recently defined interpreter and clause processor. For instance, here is the syntax for extending GL so
that it can execute md5sum and sets::mergesort:

(def-gl-clause-processor my-cp ’(md5sum sets::mergesort)).

4.4 Full-Custom Symbolic Counterparts

The advanced GL user can write custom symbolic counterparts to get better performance. This is some-
what involved. Generally, such a function operates by cases on what kinds of symbolic objects it has
been given. Most of these cases are easy; for instance, the symbolic counterpart for consp just returns
nil when given a :g-boolean or :g-number. But in other cases the operation can require combin-
ing the Boolean expressions making up the arguments in some way, e.g., the symbolic counterpart for
binary-* implements a simple binary multiplier.

Once the counterpart has been defined, it must be proven sound with respect to the semantics of ACL2
and the symbolic object format. This is an ordinary ACL2 proof effort that requires some understanding
of GL’s implementation.

The most sophisticated symbolic counterpart we have written is an AIG to BDD conversion algo-
rithm [19]. This function serves as a symbolic counterpart for AIG evaluation, and at Centaur it is
the basis for the “implementation side” of our hardware correctness theorems. This algorithm and its
correctness proof are publicly available; see centaur/aig/g-aig-eval.

5 Case-Splitting

BDD performance can sometimes be improved by breaking a problem into subcases. The standard
example is floating-point addition [6, 1], which benefits from separating the problem into cases based
on the difference between the two inputs’ exponents. For each exponent difference, the two mantissas
are aligned differently before being added together, so a different BDD order is necessary to interleave
their bits at the right offset. Without case splitting, a single BDD ordering has to be used for the whole
problem; no matter what ordering we choose, the mantissas will be poorly interleaved for some exponent
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differences, causing severe performance problems. Separating the cases allows the appropriate order to
be used for each difference.

GL provides a def-gl-param-thm command that supports this technique. This command splits the
goal formula into several subgoals and attempts to prove each of them using the def-gl-thm approach,
so for each subgoal there is a symbolic execution step and coverage proof. To show the subgoals suffice
to prove the goal formula, it also does another def-gl-thm-style proof that establishes that any inputs
satisfying the hypothesis are covered by some case.

Here is how we might split the proof for fast-logcount-32 into five subgoals. One goal handles
the case where the most significant bit is 1. The other four goals assume the most significant bit is 0,
and separately handle the cases where the lower two bits are 0, 1, 2, or 3. Each case has a different
symbolic binding for x, giving the BDD variable order. Of course, splitting into cases and varying the
BDD ordering is unnecessary for this theorem, but it illustrates how the def-gl-param-thm command
works.

(def-gl-param-thm fast-logcount-32-correct-alt

:hyp (unsigned-byte-p 32 x)

:concl (equal (fast-logcount-32 x)

(logcount x))

:param-bindings

‘((((msb 1) (low nil)) ((x ,(g-int 32 -1 33))))

(((msb 0) (low 0)) ((x ,(g-int 0 1 33))))

(((msb 0) (low 1)) ((x ,(g-int 5 1 33))))

(((msb 0) (low 2)) ((x ,(g-int 0 2 33))))

(((msb 0) (low 3)) ((x ,(g-int 3 1 33)))))

:param-hyp (and (equal msb (ash x -31))

(or (equal msb 1)

(equal (logand x 3) low)))

:cov-bindings ‘((x ,(g-int 0 1 33))))

We specify the five subgoals to consider using two new variables, msb and low. Here, msb will
determine the most significant bit of x; low will determine the two least significant bits of x, but only
when msb is 0.

The :param-bindings argument describes the five subgoals by assigning different values to msb

and low. It also gives the g-bindings to use in each case. We use different bindings for x for each
subgoal to show how it is done.

The :param-hyp argument describes the relationship between msb, low, and x that will be assumed
in each subgoal. In the symbolic execution performed for each subgoal, the :param-hyp is used to
reduce the space of objects represented by the symbolic binding for x. For example, in the subgoal
where msb= 1, this process will assign true to x[31]. The :param-hyp will also be assumed to hold for
the coverage proof for each case.

How do we know the case-split is complete? One final proof is needed to show that whenever the
hypothesis holds for some x, then at least one of the settings of msb and low satisfies the :param-hyp

for this x. That is:
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(implies (unsigned-byte-p 32 x)

(or (let ((msb 1) (low nil))

(and (equal msb (ash x -31))

(or (equal msb 1)

(equal (logand x 3) low))))

(let ((msb 0) (low 0)) ...)

(let ((msb 0) (low 1)) ...)

(let ((msb 0) (low 2)) ...)

(let ((msb 0) (low 3)) ...)))

This proof is also done in the def-gl-thm style, so we need we need one last set of symbolic
bindings, which is provided by the :cov-bindings argument.

6 AIG Mode

GL can optionally use And-Inverter Graphs (AIGs) to represent Boolean expressions instead of BDDs.
You can choose the mode on a per-proof basis by running (gl-bdd-mode) or (gl-aig-mode), which
generate defattach events.

Unlike BDDs, AIGs are non-canonical, and this affects performance in fundamental ways. AIGs are
generally much cheaper to construct than BDDs, but to determine whether AIGs are equivalent we have
to invoke a SAT solver, whereas with BDDs we just need to use a pointer-equality check.

Using an external SAT solver raises questions of trust. For most verification work in industry it is
probably sufficient to just trust the solver. But Matt Kaufmann has developed and reflectively verified
an ACL2 function that efficiently checks a resolution proof that is produced by the SAT solver. GL can
use this proof-checking capability to avoid trusting the SAT solver. This approach is not novel: Weber
and Amjad [21] have developed an LCF-style integration of SAT in several HOL theorem provers, and
Darbari, et al [7] have a reflectively verified SAT certificate checker in Coq.

Recording and checking resolution proofs imposes significant overhead, but is still practical in many
cases. We measured this overhead on a collection of AIG-mode GL theorems about Centaur’s MMX/SSE
module. These theorems take 10 minutes without proof recording. With proof-recording enabled, our
SAT solver uses a less-efficient CNF generation algorithm and SAT solving grows to 25 minutes; an
additional 6 minutes are needed to check the recorded proofs.

The SAT solver we have been using, an integration of MiniSAT with an AIG package, is not yet
released, so AIG mode is not usable “out of the box.” As future work, we would like to make it easier
to plug in other SAT solvers. Versions of MiniSAT, PicoSAT, and ZChaff can also produce resolution
proofs, so this is mainly an interfacing issue.

A convenient feature of AIGs is that you do not have to come up with a good variable ordering. This
is especially beneficial if it avoids the need to case-split. On the other hand, BDDs provide especially
nice counterexamples, whereas SAT produces just one, essentially random counterexample.

Performance-wise, AIGs are better for some problems and BDDs for others. Many operations com-
bine bits from data buses in a regular, orderly way; in these cases, there is often a good BDD ordering and
BDDs may be faster than SAT. But when the operations are less regular, when no good BDD ordering
is apparent, or when case-splitting seems necessary to get good BDD performance, SAT may do better.
For many of our proofs, SAT works well enough that we haven’t tried to find a good BDD ordering.
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7 Debugging Failures

A GL proof attempt can fail in several ways. In the “best” case, the conjecture is disproved and GL
can produce counterexamples to help diagnose the problem. However, sometimes symbolic execution
simply runs forever (Section 7.1). In other cases, a symbolic execution may produce an indeterminate
result (Section 7.2), giving an example of inputs for which the symbolic execution failed. Finally, GL
can run out of memory or spend too much time in garbage collection (Section 7.3). We have developed
some tools and techniques for debugging these problems.

7.1 Performance Problems

Any bit-blasting tool has capacity limitations. However, you may also run into cases where GL is per-
forming poorly due to preventable issues. When GL seems to be running forever, it can be helpful to
trace the symbolic interpreter to see which functions are causing the problem. To trace the symbolic
interpreter, run

(gl::trace-gl-interp :show-values t).

Here, at each call of the symbolic interpreter, the term being interpreted and the variable bindings are
shown, but since symbolic objects may be too large to print, any bindings that are not concrete are hidden.
You can also get a trace with no variable bindings using :show-values nil. It may also be helpful to
simply interrupt the computation and look at the Lisp backtrace, after executing

(set-debugger-enable t).

In many cases, performance problems are due to BDDs growing too large. This is likely the case if the
interpreter appears to get stuck (not printing any more trace output) and the backtrace contains a lot of
functions with names beginning in q-, which is the convention for BDD operators. In some cases, these
performance problems may be solved by choosing a more efficient BDD order. But note that certain
operations like multiplication are exponentially hard. If you run into these limits, you may need to
refactor or decompose your problem into simpler sub-problems (Section 5).

There is one kind of BDD performance problem with a special solution. Suppose GL is asked to
prove (equal spec impl) when this does not actually hold. Sometimes the symbolic objects for spec
and impl can be created, but the BDD representing their equality is too large to fit in memory. The
goal may then be restated with always-equal instead of equal as the final comparison. Logically,
always-equal is just equal. But always-equal has a custom symbolic counterpart that returns t

when its arguments are equivalent, or else produces a symbolic object that captures just one counterex-
ample and is indeterminate in all other cases.

Another possible problem is that the symbolic interpreter never gets stuck, but keeps opening up more
and more functions. These problems might be due to redundant recursion (see Section 4.1), which may
be avoided by providing a more efficient preferred definition (Section 4.2) for the function. The symbolic
interpreter might also be inefficiently interpreting function calls on concrete arguments, in which case a
def-gl-clause-processor call may be used to allow GL to execute the functions directly (Section
4.3).

7.2 Indeterminate Results

Occasionally, GL will abort a proof and print a message saying it found indeterminate results. In this
case, the examples printed are likely not to be true counterexamples, and examining them may not be
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particularly useful.
One likely reason for such a failure is that some of GL’s built-in symbolic counterparts have limita-

tions. For example, most arithmetic primitives will not perform symbolic computations on non-integer
numbers. When “bad” inputs are provided, instead of producing a new :g-number object, these func-
tions will produce a :g-apply object, which is a type of symbolic object that represents a function call.
A :g-apply object cannot be syntactically analyzed in the way other symbolic objects can, so most
symbolic counterparts, given a :g-apply object, will simply create another one wrapping its arguments.

To diagnose indeterminate results, it is helpful to know when the first :g-apply object was created.
If you run

(gl::break-on-g-apply),

then when a :g-apply object is constructed, the function and symbolic arguments will be printed and
an interrupt will occur, allowing you to inspect the backtrace. For example, the following form produces
an indeterminate result.

(def-gl-thm integer-half

:hyp (and (unsigned-byte-p 4 x)

(not (logbitp 0 x)))

:concl (equal (* 1/2 x)

(ash x -1))

:g-bindings ‘((x ,(g-int 0 1 5))))

After running (gl::break-on-g-apply), running the above form enters a break after printing

(g-apply BINARY-* (1/2 (:G-NUMBER (NIL # # # NIL)))

to signify that a :g-apply form was created after trying to multiply some symbolic integer by 1
2 .

Another likely reason is that there is a typo in your theorem. When a variable is omitted from
the :g-bindings form, a warning is printed and the missing variable is assigned a :g-var object. A
:g-var can represent any ACL2 object, without restriction. Symbolic counterparts typically produce
:g-apply objects when called on :g-var arguments, and this can easily lead to indeterminate results.

7.3 Memory Problems

Memory management can play a significant role in symbolic execution performance. In some cases
GL may use too much memory, leading to swapping and slow performance. In other cases, garbage
collection may run too frequently or may not reclaim much space. We have several recommendations for
managing memory in large-scale GL proofs. Some of these suggestions are specific to Clozure Common
Lisp.

1. Load the centaur/misc/memory-mgmt-raw book and use the set-max-mem command to indi-
cate how large you would like the Lisp heap to be. For instance,

(set-max-mem (* 8 (expt 2 30)))

says to allocate 8 GB of memory. To avoid swapping, you should use somewhat less than your available
physical memory. This book disables ephemeral garbage collection and configures the garbage collector
to run only when the threshold set above is exceeded, which can boost performance.

2. Optimize hash-consing performance. GL’s representations of BDDs and AIGs use hons for
structure-sharing. The hons-summary command can be used at any time to see how many honses are
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currently in use, and hash-consing performance can be improved by pre-allocating space for these honses
with hons-resize. See the :doc topics for these commands for more information.

3. Be aware of (and control) hash-consing and memoization overhead. Symbolic execution can use a
lot of hash conses and can populate the memoization tables for various functions. The memory used for
these purposes is not automatically freed during garbage collection, so it may sometimes be necessary
to manually reclaim it. A useful function is (maybe-wash-memory n), which frees this memory and
triggers a garbage collection only when the amount of free memory is below some threshold n. A good
choice for n might be 20% of the set-max-mem threshold. It can be useful to call maybe-wash-memory
between proofs, or between the cases of parametrized theorems; see :doc def-gl-param-thm for its
:run-before-cases argument.

8 Related Work

GL is most closely related to Boyer and Hunt’s [5] G system, which was used for earlier proofs about
Centaur’s floating-point unit. G used a symbolic object format similar to GL’s, but only supported BDDs.
It also included a compiler that could produce “generalized” versions of functions, similar to symbolic
counterparts. GL actually has such a compiler, but the interpreter is more convenient since no compilation
step is necessary, and the performance difference is insignificant. In experimental comparisons, GL
performed as well or better than G, perhaps due to the change from G’s sign/magnitude number encoding
to GL’s two’s-complement encoding.

The G system was written “outside the logic,” in Common Lisp. It could not be reasoned about by
ACL2, but an experimental connection was developed which allowed ACL2 to trust G to prove theorems.
In contrast, GL is written entirely in ACL2, and its proof procedure is a reflectively-verified clause
processor, which provides a significantly better story of trust. Additionally, GL can be safely configured
and extended by users via preferred definitions and custom symbolic counterparts.

Reeber [15] identified a decidable subset of ACL2 formulas called SULFA and developed a SAT-
based procedure for proving theorems in this subset. Notably, this subset included lists of bits and
recursive functions of bounded depth. The decision procedure for SULFA is not mechanically verified,
but Reeber’s dissertation [16] includes an argument for its correctness. GL addresses a different subset
of ACL2 (e.g., SULFA includes uninterpreted functions, whereas GL includes numbers and arithmetic
primitives), but the goals of both systems are similar.

ACL2 has a built-in BDD algorithm (described in :doc bdd) that, like SULFA, basically deals with
Booleans and lists of Booleans, but not numbers, addition, etc. This algorithm is tightly integrated with
the prover; it can treat provably Boolean terms as variables and can use unconditional rewrite rules to
simplify terms it encounters. The algorithm is written in program mode (outside the ACL2 logic) and
has not been mechanically verified. GL seems to be significantly faster, at least on a simple series of
addition-commutativity theorems.

Fox [9] has implemented a bit-blasting procedure in HOL4 that can use SAT to solve problems
phrased in terms of a particular bit-vector representation. This tool is based on an LCF-style integrations
of proof-producing SAT solvers, so it has a strong soundness story. We would expect there to be some
overhead for any LCF-style solution [21], and GL seems to be considerably faster on the examples in
Fox’s paper; see the supporting materials for details.

Manolios and Srinivasan [13] describe a connection between ACL2 and UCLID to verify that a
pipelined processor implements its instruction set. In this work, ACL2 is used to simplify the correct-
ness theorem for a bit-accurate model of the processor down to a more abstract, term-based goal. This
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goal is then given to UCLID, a decision procedure for a restricted logic of counter arithmetic, lamb-
das, and uninterpreted functions. UCLID then proves the goal much more efficiently than, e.g., ACL2’s
rewriter. This work seems complementary to GL, which deals with bit-level reasoning, i.e., the parts of
the problem that this strategy addresses using ACL2.

Srinivasan [18] additionally described ACL2-SMT, a connection with the Yices SMT solver. The
system attempts to unroll and simplify ACL2 formulas until they can be translated into the input language
of the SMT solver (essentially linear integer arithmetic, array operations, and uninterpreted integer and
Boolean functions). It then calls Yices to discharge the goal, and Yices is trusted. GL addresses a
different subset of ACL2, e.g., GL supports list operations and more arithmetic operations like logand,
but ACL2-SMT has uninterpreted functions and can deal with, e.g., unbounded arithmetic.

Armand, et. al [3] describe work to connect SAT and SMT solvers with Coq. Unlike the ACL2-SMT
work, the connection is carried out in a verified way, with Coq being used to check proof witnesses
generated by the solvers. This connection can be used to prove Coq goals that directly fit into the
supported logic of the SMT solver. GL is somewhat different in that it allows most any ACL2 term to be
handled when its variables range over a finite space.

9 Conclusions

GL provides a convenient and efficient way to solve many finite ACL2 theorems that arise in hardware
verification. It allows properties to be stated in a straightforward manner, scales to large problems, and
provides clear counter-examples for debugging. At Centaur Technology, it plays an important role in the
verification of arithmetic units, and we make frequent improvements to support new uses.

Beyond this paper, we encourage all GL users to see the online documentation, which can be found
under :doc gl after loading the GL library. If you prefer, you can also generate an HTML version of
the documentation; see centaur/README for details. Finally, the documentation for ACL2(h) may be
useful, and can be found at :doc hons-and-memoization.

While we have described the basic idea of symbolic execution and how GL uses it to prove theorems,
Swords’ dissertation [20] contains a much more detailed description of GL’s implementation. It covers
tricky topics like the handling of if statements and the details of BDD parametrization. It also covers
the logical foundations of GL, such as correctness claims for symbolic counterparts, the introduction of
symbolic interpreters, and the definition and verification of the GL clause processor.
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