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The foundational theory of differentiation was developed as part of the original release of ACL2(r).
In work reported at the last ACL2 Workshop, we presented theorems justifying the usual differen-
tiation rules, including the chain rule and the derivative of inverse functions. However, the process
of applying these theorems to formalize the derivative of a particular function is completely manual.
More recently, we developed a macro and supporting functions that can automate this process. This
macro uses the ACL2 table facility to keep track of functions and their derivatives, and it also inter-
acts with the macro that introduces inverse functions in ACL2(r), so that their derivatives can also be
automated. In this paper, we present the implementation of this macro and related functions.

1 Introduction

This paper describes the implementation of an automatic differentiator (AD) [RG11] that can find and
prove the derivative of algebraic expressions in ACL2(r). The tool is accessed through the macros
defderivative and derivative-hyps. We will describe these macros more fully later, but for now,
we introduce them with an example.

Suppose we have defined the function square that computes x · x. The following event determines
the derivative of the function square and proves the associated theorems:

(defderivative square-deriv-local (square x))

The key theorem that the macro defderivative introduces is as follows:

(defthm square-deriv-local

(implies (and (acl2-numberp x)

(acl2-numberp y)

(standardp x)

(i-close x y)

(not (equal x y)))

(i-close (/ (- (square x)

(square y))

(- x y))

(+ (* x 1) (* x 1))))

:hints ...)

The conclusion of this theorem states that the derivative of square is x · 1+ x · 1, which of course sim-
plifies to the expected value of 2x. The macro does not automatically perform such simplifications, but
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the user can easily provide the preferred form for the derivative function1. For example, the function
square-prime can be defined as (* 2 x), and the derivative theorems for it can be proved using the
macro derivative-hyps:

(derivative-hyps square

:close-hints

(("Goal"

:use ((:instance square-deriv-local))

:in-theory (disable square-deriv-local))))

The macro derivative-hyps introduces all the theorems that establish that the function square-prime
is in fact the derivative of square. The keyword arguments allow the user to provide hints for some of the
necessary theorems. In this case, it is necessary to explicitly invoke the theorem square-deriv-local,
which was previously introduced via defderivative.

The rest of this paper describes the implementation of these macros. Section 2 describes some differ-
ences in the theory of differentiation that proved useful in developing the AD macros. In particular, the
proofs of the algebraic composition theorems differ from the ones described in [GC09] to take advantage
of the fact the derivative is known in the current context. Section 3 describes the capabilities and limi-
tations of our AD system. This is followed in Section 4 with a full description of their implementation.
Finally, Section 5 describes future enhancements to these macros.

2 The Revised Story of Differentiation in ACL2(r)

The theory of differentiation that was developed in [Gam00] and [GC09] is strictly foundational. For
one thing, the development is concerned more with differentiability than with derivatives. For example,
the theorem that describes the derivative of sums is stated informally as follows: If f and g are dif-
ferentiable functions, so is f + g. Notice that no mention is made of the derivatives of f , g, or f + g!
Instead, the theorems deal directly with expressions corresponding to the differential of the functions,
e.g., ∆ f (x)/∆x = ( f (x+ ε)− f (x))/ε .

Using principles from non-standard analysis [Rob96, Rob88], these derivatives can be introduced
implicitly by taking standard parts. That is, f ′(x) = ∗(∆ f (x)/∆x). However, this definition only works
when x is standard. It can be generalized using defthm-std, but this process is unsatisfactory because
the relationship between f ′, the expected derivative of the function f , and the standard part of ∆ f/∆x is
obscured. This may explain why previous results included many abstract theorems about differentiable
functions, but few concrete derivatives. For instance, the derivatives of the trigonometric, exponential,
and logarithmic functions had not been proven in ACL2(r) before this project.

A more significant challenge is the use of intervals in the formalization of differentiation. Intervals
were used to define the domain (and sometimes range) of differentiable functions. This corresponds to
typical mathematical statements. For example, one of the hypotheses of the mean-value theorem (MVT)
is that f is continuous over an interval [a,b] and differentiable over (a,b), and a user can select suitable
values of a and b when the theorem is applied manually. But this is harder to do when the theorems are
applied automatically, if for no other reason than the domain of some functions (such as f (x) = 1/x) is
not a simple interval.

1As we write this, we are working on a version of the macro that lets the user provide this function when the macro is
introduced. This will simplify the process described here.
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Consequently, we developed new versions of the differentiability criterion that make explicit use
of the differentiable function f and its derivative f ′. We also redeveloped versions of the composition
theorems, namely

• ( f +g)′(x) = f ′(x)+g′(x).

• ( f ·g)′(x) = f (x)g′(x)+ f ′(x)g(x).

• ( f ◦g)′(x) = f ′(g(x))g′(x).

• ( f−1)′(x) = 1/ f ′( f−1(x)), where f−1 is the (compositional) inverse of f .

These new versions represent the domain (and sometimes range) of f explicit via functions instead of
intervals or some other data structure. The association between the function f , its derivative f ′ and its
domain is kept using a naming convention; i.e., f, f-prime, and f-domain-p.

Using these new formalizations and the associated naming conventions was the key to automating
the application of the algebraic composition rules first formalized in [GC09]. However, the new formal-
ization does have some drawbacks. First, there is no guarantee that the domains used are, or even contain
non-trivial intervals. This means, for example, that the derivative of |x| could be vacuously formalized
on the domain x ∈ {0}. More seriously, however, it prevents the application of the more foundational
theorems established earlier, such as the MVT. We are investigating ways to bridge our current work with
prior results to remedy this issue.

The final, significant challenge is that some of the results obtained previously were proven in contexts
that turned out to be too restrictive. Specifically, important theorems, such as the chain rule, which is
used repeatedly during automatic differentiation, was developed only for real-valued functions. However,
the trigonometric functions in ACL2(r), such as sine and cosine, are defined in terms of the complex
exponential function. For example, sin(x)≡ (eix−e−ix)/2i. So we developed a new formalization of the
chain rule, which works for complex numbers.

3 The Automatic Differentiation Macros

Previously, we discussed how the macros defderivative and derivative-hyps to introduce the
derivative of a function. In this section, we will explore these and other related macros more fully.

The macro derivative-hyps is used to generate automatically the theorems required to show that
the function f-prime is the derivative of f. The theorems and the associated naming conventions are as
follows:

• f-number

(implies (f-domain-p x)

(acl2-numberp (f x)))

• f-standard

(implies (and (standardp x)

(f-domain-p x))

(standardp (f x)))

• f-continuous
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(implies (and (f-domain-p x)

(standardp x)

(f-domain-p y)

(i-close x y))

(i-close (f x) (f y)))

• f-prime-number

(implies (f-domain-p x)

(acl2-numberp (f-prime x)))

• f-prime-standard

(implies (and (standardp x)

(f-domain-p x))

(standardp (f-prime x)))

• f-prime-continuous

(implies (and (f-domain-p x)

(standardp x)

(f-domain-p y)

(i-close x y))

(i-close (f-prime x) (f-prime y)))

• f-close

(implies (and (f-domain-p x)

(standardp x)

(f-domain-p y)

(i-close x y)

(not (equal x y)))

(i-close (/ (- (f x) (f y))

(- x y))

(f-prime x)))

These theorems are precisely the ones that will be used to establish the constraints of encapsulates
that are used to encode the composition theorems. The names of the theorems are important, because the
macros will generate hints with those names.

Similarly, the macro inverse-hyps generates the theorems that establish that the function f-inverse
is the compositional inverse of f.

• f-inverse-in-range

(implies (f-inverse-domain-p x)

(f-domain-p (f-inverse x)))

• f-domain-is-number

(implies (f-domain-p x)

(acl2-numberp x))

• f-inverse-relation
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(implies (f-inverse-domain-p x)

(equal (f (f-inverse x)) x))

• f-d/dx-f-relation
(implies (f-inverse-domain-p x)

(equal (f-inverse-prime x)

(/ (f-prime (f-inverse x)))))

• f-prime-not-zero
(implies (f-domain-p x)

(not (equal (f-prime x) 0)))

• f-preserves-not-close
(implies (and (f-domain-p x)

(f-domain-p y)

(i-limited x)

(not (i-close x y)))

(not (i-close (f x) (f y))))

The theorems generated by this macro are precisely the constraints needed to establish that the dif-
ferentiable function f has an inverse. Note, for example, the last two theorems above. The theorem
f-prime-not-zero ensures that f ′(x) 6= 0 in the domain of f . This is, in fact, one of the hypotheses of the
theorem that states that ( f−1)′(x) = 1/ f ′( f−1(x)), since the expression contains 1/ f ′(. . .).

Both defderivative and derivative-hyps can be used in two different contexts. First, our own
functions and macros use them the generate constraints in various encapsulates. Second, the user can
use these macros to generate the theorems that correspond to these constraints, thus making sure that
(a) the constraints will be satisfied, and (b) the theorems satisfy the naming conventions assumed by the
macros.

One final point is related to the theorems generated by these macros: These have to be proved by
ACL2(r). Many times, the proofs succeed automatically, because the macros are careful to use the
minimal theory required for the proofs to go through, but sometimes ACL2(r) needs a little help. The
macros use keyword arguments to accept hints that will be passed on to the appropriate generated theo-
rems. For example, the keyword argument not-close-hints is used to provide a hint to the theorem
f-preserves-not-close.

The macro defderivative is the main entry point into the automatic differentiator. It takes two
arguments, a prefix used to scope the generated theorem names, and the arithmetic expression that is
to be derived. By “arithmetic expression”, we mean an ACL2 term that is composed only of numbers,
variables, arithmetic operators, and the application of functions with known derivatives or functions that
are defined in terms of arithmetic expressions or as the inverse of functions that have known derivatives
or are defined in terms of arithmetic expressions. In particular, recursive functions are not allowed, nor
are functions that use if or cond.

What defderivative does is first to compute symbolically the derivative of the expression, and then
to generate the lemmas necessary to demonstrate that the derivative computed symbolically is correct.
Note that the lemmas follow the pattern and naming convention defined by derivative-hyps, so the
derivatives of deeply nested expressions can be done automatically.

Finally, the macros def-elem-derivative and def-elem-inverse are used to register functions
with known derivatives or inverses, respectively. For example, the AD system automatically defines the
derivative of f (x) = 1/x with the following event:



66 Implementing an Automatic Differentiator in ACL2

(def-elem-derivative

unary-/

elem-unary-/

(and (acl2-numberp x)

(not (equal x 0)))

(- (/ (* x x))))

The arguments to this macro are (1) the name of the function that has a known derivative (in this case,
unary-/), (2) a prefix used to name all the theorems generated by derivative-hyps, (3) an ACL2
expression for the domain of the function, and (4) an ACL2 expression for the derivative. Note that
def-elem-derivative does not prove any theorems. Rather, it registers in a global database that the
given function has the specified derivative. It is expected that the proofs have been previously generated,
e.g., using derivative-hyps.

Similarly, def-elem-inverse is used to register an inverse function. For example, the following
expression registers the inverse of the function square:

(def-elem-inverse

square-inverse

square-inverse

(square-domain-p x)

(square-inverse-domain-p x)

square)

The arguments are similar to def-elem-derivative, except both the domain and range (or inverse-
domain) need to be specified.

As we mentioned previously, the AD automatically uses def-elem-derivative to register the
derivatives of f (x) = 1/x and f (x) =−x. This explains how subtraction and division are handled, namely
through the chain rule and those two derivative facts. In addition, we have developed several ACL2 books
that establish the derivative of more complex functions, such as ex, lnx, sin(x), sin−1(x), etc. The deriva-
tive of ex was done using first principles, but the others were done using the macros described in this sec-
tion. The relevant books also register the derivatives of these functions using def-elem-derivative.
The derivative facts we have established so far are summarized in Figure 1. We note in passing that the
macros support not just unary functions but binary functions where one argument is held fixed. This
allows us to differentiate the raise function to find the derivatives of xn and ax. The trick of holding an
argument fixed is essentially the same one used in [SG02].

4 Implementing the Macros

The macros derivative-hyps and inverse-hyps simply generate a progn containing several theo-
rems. There is not much to their implementation.

Similarly, def-elem-derivative and def-elem-inverse are nothing more than syntactic sugar
for ACL2’s built-in table facility.

That leaves the definition of defderivative. In a nutshell, this macro works by repeatedly applying
the chain rule to an expression, until each of its subexpressions is either a constant, a variable, a function
with a known derivative, or the inverse of a function. Before describing this macro, we want to make
a minor point. Obviously, defderivative needs access to ACL2’s definition database, so that it can
expand function applications to compute derivatives. However, access to these definitions depends on
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Figure 1: Dependency graph of the functions built into defderivative. Symbols leading into a function
represent how its derivative theorems were proved.

access to ACL2 state, and ACL2 macros have traditionally not allowed access to state. However,
such access is now permitted via make-event2 [KM].

The first thing that defderivative does is translate the term to the derived, so that it does not
contain any macros. Among other things, this replaces terms using + with terms using binary-+. Then,
the resulting expression is differentiated symbolically. During this process, the necessary proofs are
collected and laid out using encapsulate. Many of the proofs are done automatically by instantiating
the relevant composition theorems. The macros know the name of the composition theorems and their
constrained functions, so they can generate the appropriate hints. Note that this process also involves the
symbolic computation of the domain of intermediate functions.

The proofs of these theorems need to be fully automated, since there is no way for the user to give
hints, as the theorems may be associated with arbitrarily deep subterms of the original formula. We try
to guarantee this automation by using only minimal theories, usually only the names of the theorems
generated by derivative-hyps and inverse-hyps. This is one reason why users must conform to
these naming conventions, even when they prove a derivative fact from first principles, as we did for ex.

The last thing that defderivative does is to clean up the expressions generated for the derivative
and domain of the function. This is, perhaps, the biggest weakness of our current implementation. The
clean-up process is simplistic, consisting mainly of converting binary-+ back to +. We have considered
invoking ACL2’s rewriter at this point, if only to perform arithmetic simplification, e.g., to convert (+
(* x 1) (* x 1)) to (+ x x). But we have not found a satisfactory set of rewrite rules, so we are
leaving the sophisticated rewrites to the user.

2What did we do before make-event?
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5 Conclusions

This paper described the implementation of an automatic differentiation (AD) system for ACL2(r). The
implementation brought up several points of interest to the ACL2 community.

First, the idea of using macros to generate theorems according to some pattern is as old as ACL2
(at least). However, the current work shows how different macros can cooperate by keeping information
in the ACL2 state. For example, the macro definv can register information about inverse functions,
which is subsequently used by the macros defderivative.

Second, since ACL2 state is now available to macros, the macros can generate code that depends
on the ACL2 database. For instance, the macros can use the definitions of ACL2 functions to generate
theorems according to some pattern.

Third, our approach demonstrates the care that must be taken when designing libraries intended
for automation. The history of ACL2 and the Boyer-Moore theorem prover includes several examples
of libraries that are carefully designed so that new theorems can be proved almost automatically. The
lemmas in these libraries are chosen carefully so that they work well with ACL2’s heuristics (and vice
versa). But when a macro develops a complex theory from arbitrary ACL2 expressions, it becomes
increasingly likely that some rewrite rules triggered by the ACL2 expression interfere with the proof
plan of the macro. So the macro has to take careful control of the proof execution, especially if hints
are involved to instantiate constrained functions. In our experience, we have improved our chances by
explicitly controlling the active ACL2 theory, and making sure it only has the rewrite rules that we think
are absolutely necessary for the theorems to prove. We tried to use :by hints in these instantiations,
so that the proof plan was completely controlled by the hints. Unfortunately, we ran into too many
cases where lambda expressions created for derivatives did not exactly match the functional instantiation
generated with a :by hint, so we had to switch to regular :use hints instead. So far, the proof plans are
succeeding, but we would prefer to have a more robust mechanism.

Fourth, our solution illustrates how naming conventions can be used to associate facts with functions.
For example, the fact that square is 1-to-1 in its domain can be stored in the theorem square-is-1-to-1

and the domain itself in the function square-domain-p. Such conventions enable macros to generate
appropriate hints. Moreover, maintaining those conventions is easy if the macros themselves generate
the required theorems. Things are more complicated when some of the theorems need to be generated
by hand, e.g., to show the derivative of ex.

Finally, the techniques described in this paper have enabled us to vastly extend the derivative facts
that have been certified with ACL2(r). As part of this project, we demonstrated from first principles that
dex/dx= ex. Then we used the macros that we developed to formalize the derivatives of the trigonometric
functions, and the inverse trigonometric and logarithmic functions.
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