
EPTCS 392

Proceedings of the

First Workshop on

Trends in Configurable Systems Analysis

Paris, France, 23rd April 2023

Edited by: Maurice H. ter Beek and Clemens Dubslaff

Published: 31st October 2023

DOI: 10.4204/EPTCS.392

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Maurice H. ter Beek and Clemens Dubslaff

Invited Paper: Configuring Timing Parameters to Ensure Execution-Time Opacity in Timed

Automata . 1

Étienne André, Engel Lefaucheux, Didier Lime, Dylan Marinho and Jun Sun

Spreadsheet-based Configuration of Families of Real-Time Specifications. 27

José Proença, David Pereira, Giann Spilere Nandi, Sina Borrami and Jonas Melchert

Serverless Scheduling Policies based on Cost Analysis . 40

Giuseppe De Palma, Saverio Giallorenzo, Cosimo Laneve, Jacopo Mauro, Matteo Trentin and
Gianluigi Zavattaro

Product Line Management with Graphical MBSE Views . 53

Pascal Krapf, Sébastien Berthier and Nicole Levy

Maurice H. ter Beek and Clemens Dubslaff (Eds.):

Proceedings of the First Workshop on Trends

in Configurable Systems Analysis (TiCSA’23)

EPTCS 392, 2023, pp. ii–iii, doi:10.4204/EPTCS.392.0

This work is dedicated to the public domain.

Preface

Maurice H. ter Beek

Formal Methods and Tools (FMT) lab

Institute of Information Science and Technologies (ISTI)
National Research Council (CNR)

Pisa, Italy

maurice.terbeek@isti.cnr.it

Clemens Dubslaff

Formal System Analysis (FSA) group

Department of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands

c.dubslaff@tue.nl

These post-proceedings contain a selection of papers presented at the First Workshop on Trends in

Configurable Systems Analysis (TiCSA), which took place on 23 April 2023 in Paris, France, as a satellite

event of the 26th European Joint Conferences on Theory And Practice of Software (ETAPS 2023).

TiCSA’s primary goal was to bring together researchers active in the areas of design and analysis of

configurable systems, discuss trends and novel analysis methods, and foster collaboration. Co-locating

the workshop with ETAPS provided an excellent opportunity for exchanging results and experiences on

applying analysis techniques from formal methods and software engineering to configurable systems.

System variants often arise by configuring parameters that have a direct impact on the system’s be-

havior. Most prominently, in feature-oriented system design, features describe optional or incremental

system functionalities whose configuration is simply whether a feature is active or inactive. Since the

configuration space usually suffers from an exponential blowup in the number of configuration param-

eters, such configurable systems require specialized methods for their design and analysis. While there

have been significant advances for the analysis of configurable systems in the last decade, most promi-

nently family-based analysis or feature-based analysis, tackling the exponential blowup, there are still

manifold opportunities that have not yet been considered. These cover specialized algorithms concerning

quantitative and compositional aspects, required to model and analyze cyber-physical systems, as well

as adaptivity and reconfigurations that allow for system adaptations in context-aware system design.

TiCSA is a continuation and extension of the QAVS series, which comprised three workshops with

a focus on quantitative aspects in configurable systems analysis. These workshops had to be unfortu-

nately held online only due to the Covid crisis, and no proceedings were published in the three editions.

Hence, these proceedings can be seen also the first in the workshop series. The first QAVS workshop was

co-located with QONFEST 2020 and comprised six presentations with around 20 attendees. Sven Apel

(Saarland University, Germany) and Axel Legay (UC Louvain, Belgium) were invited to give keynotes.

The second QAVS workshop in 2021 was the first under the umbrella of ETAPS with four presentations

and about 15 attendees. Norbert Siegmund (University of Leipzig, Germany) was the invited speaker.

The third QAVS workshop was co-located with ETAPS 2022 with five presentations and around 15 at-

tendees. Jan Křetı́nský (TU Munich, Germany) provided an invited keynote. The decision to broaden the

scope of the workshop, by considering other trends in configurable systems analysis rather than quan-

titative aspects alone, arose from audience feedback and discussions during the last QAVS workshop at

ETAPS 2022.

TiCSA received six extended abstract submissions, which were accepted for a presentation after

being reviewed for suitability. The workshop was opened by a keynote talk by Étienne André (Sorbonne

Paris North University, France) on Configuring Timing Parameters to Ensure Opacity. Furthermore,

http://dx.doi.org/10.4204/EPTCS.392.0
https://creativecommons.org/publicdomain/zero/1.0/

M.H. ter Beek & C. Dubslaff iii

an inspiration talk by Alfons Laarman (Leiden University, The Netherlands) on LIMDD – A Decision

Diagram for Simulation of Quantum Computing initiated a discussion around quantum configurable

systems and configurable quantum systems, concluding the workshop. We hereby thank Étienne and

Alfons for accepting our invitations and all authors who submitted their work for their contributions.

After the workshop, we received three full papers for publication in these post-proceedings, all of which

were accepted after having been reviewed by no less than four members of the program committee.

We would like to thank the program committee members, listed below, for their careful and swift

reviewing. We are also grateful to the ETAPS workshop chairs, Benedikt Bollig and Stefan Haar (Paris

Saclay University, France), for accepting TiCSA as a satellite event at ETAPS 2023 and to the latter’s

general chairs Fabrice Kordon (Sorbonne University, France) and Laure Petrucci (Sorbonne Paris North

University, France) and their team for the smooth organization and the pleasant interaction concerning

organizational matters. We would also like to take this opportunity to thank EasyChair, which automates

most of the tasks involved in organizing and chairing a workshop. Finally, we thank EPTCS and its

editor-in-chief, Rob van Glabbeek, for agreeing to publish the proceedings of TiCSA 2023.

Program Chairs

Maurice ter Beek (ISTI–CNR, Pisa, Italy)

Clemens Dubslaff (Eindhoven University of Technology, The Netherlands)

Program Committee

Sven Apel (Saarland University, Germany)

Davide Basile (ISTI–CNR, Pisa, Italy)

Philipp Chrszon (German Aerospace Center, Braunschweig, Germany)

Erik de Vink (Eindhoven University of Technology, The Netherlands)

Uli Fahrenberg (LIX, Palaiseau, France)

Sebastian Junges (Radboud University Nijmegen, The Netherlands)

Jan Křetı́nský (Technical University of Munich, Germany)

Axel Legay (UC Louvain, Belgium)

Alberto Lluch Lafuente (Technical University of Denmark)

Tatjana Petrov (University of Kostanz, Germany)

José Proença (CISTER, Polytechnic Institute of Porto, Portugal)

Genaı́na Rodrigues (University of Brası́lia, Brazil)

Christoph Seidl (IT University of Copenhagen, Denmark)

Thomas Thüm (University of Ulm, Germany)

Andrea Vandin (Sant’Anna School of Advanced Studies, Pisa, Italy)

Mahsa Varshosaz (IT University, Copenhagen, Denmark)

Maurice H. ter Beek and Clemens Dubslaff (Eds.):
Proceedings of the First Workshop on Trends
in Configurable Systems Analysis (TiCSA’23)
EPTCS 392, 2023, pp. 1–26, doi:10.4204/EPTCS.392.1

© É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun
This work is licensed under the Creative Commons
Attribution-Share Alike License.

Configuring Timing Parameters to Ensure Execution-Time
Opacity in Timed Automata*

Étienne André
Université Sorbonne Paris Nord, LIPN, CNRS UMR 7030

F-93430 Villetaneuse, France

Engel Lefaucheux
Université de Lorraine, CNRS, Inria, LORIA

F-54000 Nancy, France

Didier Lime
Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004

F-44000 Nantes, France

Dylan Marinho
Université de Lorraine, CNRS, Inria, LORIA

F-54000 Nancy, France

Jun Sun
School of Computing and Information Systems

Singapore Management University

Timing information leakage occurs whenever an attacker successfully deduces confidential internal
information by observing some timed information such as events with timestamps. Timed automata
are an extension of finite-state automata with a set of clocks evolving linearly and that can be tested or
reset, making this formalism able to reason on systems involving concurrency and timing constraints.
In this paper, we summarize a recent line of works using timed automata as the input formalism, in
which we assume that the attacker has access (only) to the system execution time. First, we address
the following execution-time opacity problem: given a timed system modeled by a timed automaton,
given a secret location and a final location, synthesize the execution times from the initial location to
the final location for which one cannot deduce whether the secret location was visited. This means
that for any such execution time, the system is opaque: either the final location is not reachable,
or it is reachable with that execution time for both a run visiting and a run not visiting the secret
location. We also address the full execution-time opacity problem, asking whether the system is
opaque for all execution times; we also study a weak counterpart. Second, we add timing parameters,
which are a way to configure a system: we identify a subclass of parametric timed automata with
some decidability results. In addition, we devise a semi-algorithm for synthesizing timing parameter
valuations guaranteeing that the resulting system is opaque. Third, we report on problems when
the secret has itself an expiration date, thus defining expiring execution-time opacity problems. We
finally show that our method can also apply to program analysis with configurable internal timings.

1 Introduction

Complex timed systems often combine hard real-time constraints with concurrency. Information leakage,
notably through side channels (see, e.g., [23, 31]), can have dramatic consequences on the security of
such systems. Among harmful information leaks, the timing information leakage (see, e.g., [22, 25, 38,
33, 35]) is the ability for an attacker to deduce internal information depending on observable timing
information. In this paper, we focus on timing leakage through the total execution time, i.e., when a
system works as an almost black-box and the ability of the attacker is limited to know the model and
observe the total execution time. We consider here the formalism of timed automata (TAs) [1], which is
a popular extension of finite-state automata with clocks measuring time, i.e., variables evolving linearly

*This work is partially supported by the ANR-NRF French-Singaporean research program ProMiS (ANR-19-CE25-0015 /
2019 ANR NRF 0092) and by ANR BisoUS (ANR-22-CE48-0012).

http://dx.doi.org/10.4204/EPTCS.392.1
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/
https://www.loria.science/ProMiS/

2 Configuring Timing Parameters to Ensure Opacity in Timed Automata

at the same rate. Such clocks can be tested against integer constants in locations (“invariants”) or along
transitions (“guards”), and can be reset to 0 when taking transitions.

Context and related works Franck Cassez proposed in [19] a first definition of timed opacity for
TAs: the system is opaque if an attacker can never deduce whether some sequence of actions (possibly
with timestamps) was performed, by only observing a given set of observable actions together with their
timestamp. It is then proved in [19] that it is undecidable whether a TA is opaque, even for the restricted
class of event-recording automata [2] (a subclass of TAs). This notably relates to the undecidability of
timed language inclusion for TAs [1]. Security problems for TAs are surveyed in [13].

The aforementioned negative result leaves hope only if the definition or the setting is changed, which
was done in three main lines of works. The different studied options were to reduce the expressiveness
of the formalism [36, 37], to constrain the system to evolve in a time-bounded setting [4] or to consider
a weaker attacker, who has access only to the execution time [9, 8], rather than to all observable actions
with their timestamps. We present here a summary of our recent works in this latter setting [9, 8].

Contributions In the setting of TAs, we denote by execution time the time from the system start to the
time a given (final) location is entered. Therefore, given a secret location, a TA is execution-time opaque
(ET-opaque) for an execution time d if there exist at least two runs of duration d from the initial location
to a final location: one visiting the secret location, and another one not visiting the secret location.
In other words, if an attacker measures such an execution time from the initial location to the target
location `f, then this attacker is not able to deduce whether the system visited `priv. Deciding whether at
least one such d exists can be seen as an existential version of ET-opacity (called ∃-ET-opacity).

Then, a TA is fully ET-opaque if it is ET-opaque for all execution times: that is, for each possible
execution time d, either the final location is unreachable, or the final location is reachable for at least
two runs, one visiting the secret location, and another one not visiting it. We define a weak version of
ET-opacity by only requiring that runs visiting the secret location on the way to the final location have a
counterpart of the same duration not visiting the secret location on the way to the final location, but not
necessarily the opposite: the TA is weakly ET-opaque if for each run visiting the secret location, there
exists a run not visiting it with the same duration; the dual does not necessarily hold.

We also consider an expiring version of ET-opacity, where the secret is subject to an expiration
date ∆. That is, we consider that an attack is successful only when the attacker can decide that the secret
location was visited less than ∆ time units before the system completion. Conversely, if the attacker
exhibits an execution time d for which it is certain that the secret location was visited, but this location
was visited strictly more than ∆ time units prior to the system completion, then this attack is useless, and
can be seen as a failed attack. The system is therefore fully expiring ET-opaque if the set of execution
times for which the private location was visited within ∆ time units prior to system completion (referred
as “secret times”) is exactly equal to the set of execution times for which the private location was either
not visited or visited more than ∆ time units prior to system completion (referred as “non-secret times”).
Moreover, it is weakly expiring ET-opaque when the inclusion of the secret times into the non-secret
ones is verified—and not necessarily the dual.

Finally, we study the aforementioned problems for a parametric extension of TAs, i.e., parametric
timed automata (PTAs) [3], where integer constants compared to clocks can be made (rational-valued)
timing parameters, i.e., unknown constants. Interesting problems include emptiness problems, i.e., the
emptiness of the parameter valuations set such that (expiring) ET-opacity holds, and synthesis, i.e., the
synthesis of all parameter valuations such that (expiring) ET-opacity holds.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 3

Table 1: Summary of the results for ET-opacity [9]
∃-ET-opaque weakly ET-opaque fully ET-opaque

Decision TA
√

(Proposition 2)
√

(Proposition 4)
√

(Proposition 3)

p-emptiness
L/U-PTA

√
(Theorem 2) ×(Theorem 6) ×(Theorem 4)

PTA ×(Theorem 1) ×(Theorem 5) ×(Theorem 3)

p-synthesis
L/U-PTA ×(Proposition 5) ×(Corollary 5) ×(Corollary 3)

PTA ×(Corollary 1) ×(Corollary 4) ×(Corollary 2)

Table 2: Summary of the results for exp-ET-opacity [8]
∃-exp-ET-opaque weakly exp-ET-

opaque
fully exp-ET-
opaque

Decision TA
√

(Theorem 9)
√

(Theorem 8)
√

(Theorem 8)

∆-emptiness
TA

?
√

(Corollary 6)
√

(Theorem 11)

∆-computation ?
√

(Theorem 10) ?

∆-p-emptiness
L/U-PTA ? ×(Theorem 12) ×(Theorem 12)

PTA ? ×(Theorem 13) ×(Theorem 13)

∆-p-synthesis
L/U-PTA ? ×(Corollary 7) ×(Theorem 12)

PTA ? ×(Corollary 8) ×(Corollary 8)

About this manuscript This manuscript mainly summarizes results from two recent works, providing
unified notations and concept names for the sake of consistency:

1. defining and studying ET-opacity problems [9] in TAs (Section 3) and PTAs (Section 4); these
notions from [9] are presented differently (including the problem names) in this paper for sake of
consistency; and

2. defining and studying expiring execution-time opacity (exp-ET-opacity) problems [8] in both TAs
and PTAs (Section 5).

In addition, we prove a few original results on weak ET-opacity (that were not addressed in [9] because
we had not yet defined the concept of weak ET-opacity when writing [9]) and on exp-ET-opacity. These
original results are Propositions 2 and 4 and Theorems 5, 6 and 9.

In Tables 1 and 2, we summarize the decidability results recalled in this paper for ET-opacity and
exp-ET-opacity. We denote a problem with a green check if it is decidable, with a red cross if it is
undecidable, and with a yellow question mark if it is open (or not considered in the aforementioned
papers [9, 8]). We emphasize using a bold font the original results of this paper. The p-emptiness (resp.
p-synthesis) problem asks for the synthesis (resp. for the non-existence) of a parameter valuation for
which ET-opacity is enforced. The ∆-p-synthesis (resp. emptiness) problem asks for the synthesis (resp.
for the non-existence) of a parameter valuation and an expiring bound ∆ for which the exp-ET-opacity
is enforced. L/U-PTA denote the lower-bound/upper-bound parametric timed automata [27] subclass of
PTAs. These notions will be formally defined in the paper.

Outline Section 2 recalls the necessary preliminaries, notably (parametric) timed automata. Section 3
defines and reviews execution-time opacity problems in timed automata. Section 4 defines and reviews
execution-time opacity problems in timed automata. Section 5 defines and reviews expiring execution-
time opacity problems in (parametric) timed automata. Section 6 briefly reports on our existing imple-

4 Configuring Timing Parameters to Ensure Opacity in Timed Automata

mentation of some of the problems using the parametric timed model checker IMITATOR [6]. Section 7
concludes the paper and reports on perspectives.

2 Preliminaries

We denote by N,Z,Q≥0,R≥0 the sets of non-negative integers, integers, non-negative rationals and non-
negative reals, respectively.

2.1 Clocks, parameters and constraints

Clocks are real-valued variables that all evolve over time at the same rate. Throughout this paper, we
assume a set X = {x1, . . . ,xH} of clocks. A clock valuation is a function µ : X→ R≥0, assigning a
non-negative value to each clock. We write~0 for the clock valuation assigning 0 to all clocks. Given a
constant d ∈ R≥0, µ +d denotes the valuation s.t. (µ +d)(x) = µ(x)+d, for all x ∈ X.

A (timing) parameter is an unknown rational-valued constant of a model. Throughout this paper, we
assume a set P= {p1, . . . , pM} of parameters. A parameter valuation v is a function v : P→Q≥0.

As often, we choose real-valued clocks and rational-valued parameters, because irrational constants
render reachability undecidable in TAs [30] (see [5] for a survey on the impact of these domains in
(P)TAs).

We assume ./ ∈ {<,≤,=,≥,>}. A constraint C is a conjunction of inequalities over X∪P of the
form x ./ ∑1≤i≤M αi pi + d, with pi ∈ P, and αi,d ∈ Z. Given C, we write µ |= v(C) if the expression
obtained by replacing each x with µ(x) and each p with v(p) in C evaluates to true.

2.2 Timed automata

A TA is a finite-state automaton extended with a finite set of real-valued clocks. We also add to the
standard definition of TAs a special private location, which will be used to define our subsequent opacity
concepts.

Definition 1 (Timed automaton [1]). A TA A is a tuple A = (Σ,L, `0, `priv, `f,X, I,E), where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. `0 ∈ L is the initial location,

4. `priv ∈ L is a special private location,

5. `f ∈ L is the final location,

6. X is a finite set of clocks,

7. I is the invariant, assigning to every ` ∈ L a constraint I(`) over X (called invariant),

8. E is a finite set of edges e = (`,g,a,R, `′) where `,`′ ∈ L are the source and target locations, a ∈ Σ,
R⊆ X is a set of clocks to be reset, and g is a constraint over X (called guard).

Example 1. In Fig. 1, we give an example of a TA with three locations `0, `1 and `2, three edges, three
actions {a,b,c}, and one clock x. `0 is the initial location, `2 is the private location, while `1 is the final
location. `0 has an invariant x≤ 3 and the edge from `0 to `2 has a guard x≥ 1.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 5

`0

`2

`1
x≤ 3

x≤ 2a
x≥ 1

c

b

Figure 1: A TA example

Concrete semantics of timed automata We recall the concrete semantics of a TA using a timed tran-
sition system (TTS) [26].

Definition 2 (Semantics of a TA). Given a TA A = (Σ,L, `0, `priv, `f,X, I,E), the semantics of A is given
by the TTS TA = (S,s0,Σ∪R≥0,→), with

1. S= {(`,µ) ∈ L×RH
≥0 | µ |= I(`)v},

2. s0 = (`0,~0),

3. → consists of the discrete and (continuous) delay transition relations:

(a) discrete transitions: (`,µ)
e7→ (`′,µ ′), if (`,µ),(`′,µ ′) ∈ S, and there exists e =

(`,g,a,R, `′) ∈ E, such that µ ′ = [µ]R, and µ |= v(g).

(b) delay transitions: (`,µ) d7→ (`,µ +d), with d ∈ R≥0, if ∀d′ ∈ [0,d],(`,µ +d′) ∈S.

Moreover we write (`,µ)
(d,e)−→ (`′,µ ′) for a combination of a delay and discrete transition if ∃µ ′′ :

(`,µ)
d7→ (`,µ ′′)

e7→ (`′,µ ′).
Given a TA A with concrete semantics (S,s0,Σ∪R≥0,→), we refer to the states of S as the concrete

states of A . A run of A is an alternating sequence of concrete states of A and pairs of edges and delays
starting from the initial state s0 of the form (`0,µ0),(d0,e0),(`1,µ1), · · · with i= 0,1, . . . , ei ∈E, di ∈R≥0

and (`i,µi)
(di,ei)−→ (`i+1,µi+1).

Definition 3 (Duration of a run). Given a finite run ρ : (`0,µ0),(d0,e0),(`1,µ1), · · · ,(di−1,ei−1),(`n,µn),
the duration of ρ is dur(ρ) = ∑0≤i≤n−1 di. We also say that `n is reachable in time dur(ρ).

Example 2. Consider again the TA A in Fig. 1. Consider the following run ρ of A : (`0,x =
0),(1.4,a),(`2,x = 1.4),(0.4,b),(`1,x = 1.8) Note that we write “x = 1.4” instead of “µ such that
µ(x) = 1.4”. We have dur(ρ) = 1.4+0.4 = 1.8.

2.3 Parametric timed automata

A PTA is a TA extended with a finite set of timing parameters allowing to model unknown constants.

Definition 4 (Parametric timed automaton [3]). A PTA P is a tuple P = (Σ,L, `0, `priv, `f,X,P, I,E),
where:

1. Σ is a finite set of actions;

2. L is a finite set of locations;

3. `0 ∈ L is the initial location;

4. `priv ∈ L is a special private location,

5. `f ∈ L is the final location;

6 Configuring Timing Parameters to Ensure Opacity in Timed Automata

`0

`2

`1
x≤ 3

x≤ p2a
x≥ p1

c

b

Figure 2: A PTA example

6. X is a finite set of clocks;

7. P is a finite set of parameters;

8. I is the invariant, assigning to every ` ∈ L a constraint I(`) over X∪P (called invariant);

9. E is a finite set of edges e = (`,g,a,R, `′) where `,`′ ∈ L are the source and target locations, a ∈ Σ,
R⊆ X is a set of clocks to be reset, and g is a constraint over X∪P (called guard).

Example 3. In Fig. 2, we give an example of a PTA with three locations `0, `1 and `2, three edges, three
actions {a,b,c}, one clock x and two parameters {p1, p2}. `0 is the initial location, `2 is the private
location, while `1 is the final location. `0 has an invariant x ≤ 3 and the edge from `0 to `2 has a guard
x≥ p1.

Definition 5 (Valuation of a PTA). Given a parameter valuation v, we denote by v(P) the non-parametric
structure where all occurrences of a parameter pi have been replaced by v(pi).

Remark 1. We have a direct correspondence between the valuation of a PTA and the definition of a TA
given in Definition 1. TAs were originally defined with integer constants in [1] (as done in Definition 1),
while our definition of PTAs allows rational-valued constants. By assuming a rescaling of the constants
(i.e., by multiplying all constants in a TA by the least common multiple of their denominators), we obtain
an equivalent (integer-valued) TA, as defined in Definition 1. So we assume in the following that v(P)
is a TA.

Example 4. Consider again the PTA in Fig. 2 and let v be such that v(p1) = 1 and v(p2) = 2. Then v(P)
is the TA depicted in Fig. 1.

Lower/upper parametric timed automaton While most decision problems are undecidable for the
general class of PTAs (see [5] for a survey), lower/upper parametric timed automata (L/U-PTAs) [27]
is the most well-known subclass of PTAs with some decidability results: for example, reachability-
emptiness (“the emptiness of the valuations set for which a given location is reachable”), which is unde-
cidable for PTAs [3], becomes decidable for L/U-PTAs [27]. Various other results were studied for this
subclass (e.g., [17, 28, 12]).

Definition 6 (Lower/upper parametric timed automaton [27]). An L/U-PTA is a PTA where the set of
parameters is partitioned into lower-bound parameters and upper-bound parameters, where each upper-
bound (resp. lower-bound) parameter pi must be such that, for every guard or invariant constraint x ./

∑1≤i≤M αi pi +d, we have:

• ./ ∈ {≤,<} implies αi ≥ 0 (resp. αi ≤ 0), and

• ./ ∈ {≥,>} implies αi ≤ 0 (resp. αi ≥ 0).

Example 5. The PTA in Fig. 2 is an L/U-PTA with {p1} as lower-bound parameter set, and {p2} as
upper-bound parameter set.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 7

3 Execution-time opacity problems in timed automata

Throughout this paper, the attacker model is as follows: the attacker knows the TA modeling the system,
and can only observe the execution time between the start of the system and the time it reaches the final
location. The attacker cannot observe actions, nor the values of the clocks, nor whether some locations
are visited. Its goal will be to deduce from its observations whether the private location was visited.

3.1 Defining the execution times

Let us first introduce two key concepts necessary to define our notion of execution-time opacity.
Given a TA A and a run ρ , we say that `priv is visited on the way to `f in ρ if ρ is of the form

(`0,µ0),(d0,e0),(`1,µ1), · · · ,(`m,µm),(dm,em), · · ·(`n,µn)

for some m,n ∈ N such that `m = `priv, `n = `f and ∀0 ≤ i ≤ n− 1, `i 6= `f. We denote by Visitpriv(A)
the set of those runs, and refer to them as private runs. We denote by DVisitpriv(A) the set of all the
durations of these runs.

Conversely, we say that `priv is avoided on the way to `f in ρ if ρ is of the form

(`0,µ0),(d0,e0),(`1,µ1), · · · ,(`n,µn)

with `n = `f and ∀0≤ i < n, `i /∈ {`priv, `f}. We denote the set of those runs by Visitpriv
(A), referring to

them as public runs, and by DVisitpriv
(A) the set of all the durations of these public runs.

Therefore, DVisitpriv(A) (resp. DVisitpriv
(A)) is the set of all the durations of the runs for which

`priv is visited (resp. avoided) on the way to `f.
These concepts can be seen as the set of execution times from the initial location `0 to the final

location `f while visiting (resp. not visiting) a private location `priv. Observe that, from the definition of
the duration of a run (Definition 3), this “execution time” does not include the time spent in `f.

Example 6. Consider again the TA in Fig. 1. We have DVisitpriv(A) = [1,2] and DVisitpriv
(A) = [0,3].

3.2 Defining execution-time opacity

We now introduce formally the concept of “ET-opacity for a set of durations (or execution times) D”:
a system is ET-opaque for execution times D whenever, for any duration in D, it is not possible to
deduce whether the system visited `priv or not. In other words, if an attacker measures an execution time
within D from the initial location to the target location `f, then this attacker is not able to deduce whether
the system visited `priv.
Definition 7 (Execution-time opacity (ET-opacity) for D). Given a TA A and a set of execution times D,
we say that A is execution-time opaque (ET-opaque) for execution times D if D ⊆ (DVisitpriv(A)∩
DVisitpriv

(A)).
In the following, we will be interested in the existence of such an execution time. We say that a TA

is ∃-ET-opaque if it is ET-opaque for a non-empty set of execution times.

Definition 8 (∃-ET-opacity). A TA A is ∃-ET-opaque if (DVisitpriv(A)∩DVisitpriv
(A)) 6= /0.

If one does not have the ability to tune the system (i.e., change internal delays, or add some
Thread.sleep() statements in a program), one may be first interested in knowing whether the sys-
tem is ET-opaque for all execution times. In other words, if a system is fully ET-opaque, for any possible
measured execution time, an attacker is not able to deduce whether `priv was visited or not.

8 Configuring Timing Parameters to Ensure Opacity in Timed Automata

Definition 9 (full ET-opacity). A TA A is fully ET-opaque if DVisitpriv(A) = DVisitpriv
(A).

That is, a system is fully ET-opaque if, for any execution time d, a run of duration d reaches `f after
visiting `priv iff another run of duration d reaches `f without visiting `priv.

Remark 2. This definition is symmetric: a system is not fully ET-opaque iff an attacker can deduce `priv

or ¬`priv. For instance, if there is no run to `f visiting `priv, but still a run to `f (not visiting `priv), a system
is not fully ET-opaque w.r.t. Definition 9.

We finally define weak ET-opacity, not considered in [9], but defined in the specific context of ex-
piring opacity [8]. We therefore reintroduce this definition in the “normal” opacity setting considered in
this section, in the following:

Definition 10 (weak ET-opacity). A TA A is weakly ET-opaque if DVisitpriv(A)⊆ DVisitpriv
(A).

That is, a TA is weakly ET-opaque whenever, for any run reaching the final location after visiting the
private location, there exists another run of the same duration reaching the final location but not visiting
the private location; but the converse does not necessarily hold.

Remark 3. Our notion of weak ET-opacity may still leak some information: on the one hand, if a run
indeed visits the private location, there exists an equivalent run not visiting it, and therefore the system is
ET-opaque; but on the other hand, there may exist execution times for which the attacker can deduce that
the private location was not visited. This remains acceptable in some cases, and this motivates us to define
a weak version of ET-opacity. Also note that the “initial-state opacity” for real-time automata considered
in [36] can also be seen as weak in the sense that their language inclusion is also unidirectional.

Example 7. Consider again the PTA P in Fig. 2 and let v such that v(p1) = 1 while v(p2) = 2
(i.e., the TA in Fig. 1). Recall that DVisitpriv(v(P)) = [1,2] and DVisitpriv

(v(P)) = [0,3]. Hence, it
holds that DVisitpriv(v(P)) ⊆ DVisitpriv

(v(P)) and therefore v(P) is weakly ET-opaque. However,
DVisitpriv(v(P)) 6= DVisitpriv

(v(P)) and therefore v(P) is not fully ET-opaque.
Now consider again the PTA P in Fig. 2 and let v′ such that v′(p1) = 0 while v′(p2) = 3. This time,

DVisitpriv(v′(P)) = DVisitpriv
(v′(P)) = [0,3] and therefore v′(P) is fully ET-opaque.

3.3 Decision and computation problems

3.3.1 Computation problem for ET-opacity

We can now define the ET-opacity t-computation problem, which consists in computing the possible
execution times ensuring ET-opacity.

ET-opacity t-computation problem:
INPUT: A TA A
PROBLEM: Compute the execution times D such that A is ET-opaque for D.

Let us illustrate that this computation problem is certainly not easy. For the TA A in Fig. 3, the
execution times D for which A is ET-opaque is exactly N; that is, only integer times ensure ET-opacity
(as the system can only leave `priv and hence enter `f at an integer time), while non-integer times violate
ET-opacity.

3.3.2 Decision problems

We define the three following decision problems:

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 9

`0

`priv

`f

x = 0

x = 1
x← 0

x = 0

Figure 3: TA for which the set of execution times ensuring ET-opacity is N

∃-ET-opacity decision problem:
INPUT: A TA A
PROBLEM: Is A ∃-ET-opaque?

Full ET-opacity decision problem:
INPUT: A TA A
PROBLEM: Is A fully ET-opaque?

Weak ET-opacity decision problem:
INPUT: A TA A
PROBLEM: Is A weakly ET-opaque?

3.4 Answering the ET-opacity t-computation problem

Proposition 1 (Solvability of the ET-opacity t-computation problem [9, Proposition 5.2]). The ET-
opacity t-computation problem is solvable for TAs.

This positive result can be put in perspective with the negative result of [19] that proves that it is un-
decidable whether a TA (and even the more restricted subclass of event-recording automata (ERAs) [2])
is opaque, in a sense that the attacker can deduce some actions, by looking at observable actions together
with their timing. The difference in our setting is that only the global time is observable, which can be
seen as a single action, occurring once only at the end of the computation. In other words, our attacker
is less powerful than the attacker in [19].

3.5 Checking for ∃-ET-opacity

The following result was not strictly speaking proved in [9], and we provide here an original proof for it.

Proposition 2 (Decidability of the ∃-ET-opacity decision problem). The ∃-ET-opacity decision problem
is decidable in 5EXPTIME for TAs.

Proof. Let A be a TA. Suppose we add a Boolean variable priv to A which is initially false and set to
true on every edge going into the location `priv. This Boolean variable (not strictly part of the TA syntax)
can also be simulated by adding a copy of A instead, and jumping to that copy on edges going into
location `priv.

Then the ∃-ET-opacity decision problem amounts to checking the following parametric TCTL for-
mula [18], with p a parameter:

∃p
(
∃♦=p(`f∧priv)∧∃♦=p(`f∧¬priv)

)

10 Configuring Timing Parameters to Ensure Opacity in Timed Automata

From [18], this can be checked in 5EXPTIME, since the size of the TA it is checked on is at most
twice that of A , and the size of the formula is constant w.r.t. the size of A .

3.6 Checking for full ET-opacity

The following result matches [9, Proposition 5.3] but we provide an original proof, also fixing a com-
plexity issue in [9, Proposition 5.3].

Proposition 3 (Decidability of the full ET-opacity decision problem). The full ET-opacity decision prob-
lem is decidable in 5EXPTIME for TAs.

Proof. As before, we can write a parametric TCTL formula for this problem, with p a parameter:

∀p
(
∃♦=p(`f∧priv)⇔∃♦=p(`f∧¬priv)

)
This formula can be checked in 5EXPTIME [18].

3.7 Checking for weak ET-opacity

The weak notion of ET-opacity had not been defined in [9]. Nevertheless, the proof of Proposition 3 can
be adapted in a very straightforward manner to prove its weak counterpart as follows:

Proposition 4 (Decidability of the weak ET-opacity decision problem). The weak ET-opacity decision
problem is decidable in 5EXPTIME for TAs.

Proof. Let A be a TA. As before, we can write a parametric TCTL formula for this problem, with p a
parameter:

∀p
(
∃♦=p(`f∧priv)⇒∃♦=p(`f∧¬priv)

)
This formula can be checked in 5EXPTIME [18].

4 Execution-time opacity problems in parametric timed automata

We now extend opacity problems to parametric timed automata. We first address the parametric problems
related to ∃-ET-opacity in Section 4.1. The decision problems associated to full ET-opacity and weak
ET-opacity will then be considered in Sections 4.2 and 4.3 respectively.

Following the usual concepts for parametric timed automata, we consider both emptiness and synthe-
sis problems. An emptiness problem aims at deciding whether the set of parameter valuations for which
a given property holds in the valuated TA is empty, while a synthesis problem aims at synthesizing the
set of parameter valuations for which a given property holds in the valuated TA.

4.1 ∃-ET-opacity

4.1.1 Problems

Emptiness problem for ∃-ET-opacity Let us consider the following decision problem, i.e., the prob-
lem of checking the emptiness of the set of parameter valuations guaranteeing ∃-ET-opacity.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 11

∃-ET-opacity p-emptiness problem:
INPUT: A PTA P
PROBLEM: Decide the emptiness of the set of parameter valuations v such that v(P) is ∃-ET-
opaque.

The negation of the ∃-ET-opacity p-emptiness problem consists in deciding whether there exists at
least one parameter valuation for which v(P) is ∃-ET-opaque.

Synthesis problem for ∃-ET-opacity The synthesis counterpart allows for a higher-level problem by
also synthesizing the internal timings guaranteeing ∃-ET-opacity.
∃-ET-opacity p-synthesis problem:
INPUT: A PTA P
PROBLEM: Synthesize the set V of parameter valuations such that v(P) is ∃-ET-opaque, for all
v ∈V .

4.1.2 Undecidability in general

With the rule of thumb that all non-trivial decision problems are undecidable for general PTAs [5],
the following result is not surprising, and follows from the undecidability of reachability-emptiness for
PTAs [3].

Theorem 1 (Undecidability of the ∃-ET-opacity p-emptiness problem [9, Theorem 6.1]). The ∃-ET-
opacity p-emptiness problem is undecidable for general PTAs.

Since the emptiness problem is undecidable, the synthesis problem is immediately unsolvable as
well.

Corollary 1. The ∃-ET-opacity p-synthesis problem is unsolvable for general PTAs.

Nevertheless, in [9] we proposed a procedure solving this problem. While this procedure is not
guaranteed to terminate, its result is correct when termination can be achieved. See [9, Section 8] for
details.

4.1.3 The subclass of L/U-PTAs

Decidability We now show that the ∃-ET-opacity p-emptiness problem is decidable for L/U-PTAs.
Despite early positive results for L/U-PTAs [27, 17], more recent results (notably [28, 11, 12]) mostly
proved undecidable properties of L/U-PTAs, and therefore this positive result is welcome.

Theorem 2 (Decidability of the ∃-ET-opacity p-emptiness problem [9, Theorem 6.2]). The ∃-ET-opacity
p-emptiness problem is decidable for L/U-PTAs.

Intractability of synthesis for lower/upper parametric timed automata Even though the ∃-ET-
opacity p-emptiness problem is decidable for L/U-PTAs (Theorem 2), the synthesis of the parameter
valuations remains intractable in general, as shown in the following Proposition 5. By intractable we
mean more precisely that the solution, if it can be computed, cannot (in general, i.e., for some sufficiently
complex solutions) be represented using any formalism for which the emptiness of the intersection with
equality constraints is decidable. That is, a formalism in which it is decidable to decide “the emptiness
of the valuation set of the computed solution intersected with an equality test between variables” cannot
be used to represent the solution. For example, let us question whether we could represent the solution of

12 Configuring Timing Parameters to Ensure Opacity in Timed Automata

the ∃-ET-opacity p-synthesis problem for L/U-PTAs using the formalism of a finite union of polyhedra:
testing whether a finite union of polyhedra intersected with “equality constraints” (typically p1 = p2) is
empty or not is decidable. The Parma polyhedra library [14] can typically compute the answer to this
question. Therefore, from the following Proposition 5, finite unions of polyhedra cannot be used to rep-
resent the solution of the ∃-ET-opacity p-synthesis problem for L/U-PTAs. As finite unions of polyhedra
are a very common formalism (not to say the de facto standard) to represent the solutions of various
timing parameters synthesis problems, the synthesis is then considered to be infeasible in practice, or
intractable (following the vocabulary used in [28, Theorem 2]).
Proposition 5 (Intractability of the ∃-ET-opacity p-synthesis problem [9, Proposition 6.4]). In case a
solution to the ∃-ET-opacity p-synthesis problem for L/U-PTAs can be computed, this solution may be not
representable using any formalism for which the emptiness of the intersection with equality constraints
is decidable.

4.2 Parametric full ET-opacity

We address here the following decision problem, which asks about the emptiness of the parameter valu-
ation set guaranteeing full ET-opacity. We also define the full ET-opacity p-synthesis problem, this time
synthesizing the timing parameters guaranteeing full ET-opacity.

4.2.1 Problem definitions

Full ET-opacity p-emptiness problem:
INPUT: A PTA P
PROBLEM: Decide the emptiness of the set of parameter valuations v such that v(P) is fully ET-
opaque.

Equivalently, we are interested in deciding whether there exists at least one parameter valuation for
which v(P) is fully ET-opaque.

We also define the full ET-opacity p-synthesis problem, aiming at synthesizing (ideally the entire set
of) parameter valuations v for which v(P) is fully ET-opaque.

Full ET-opacity p-synthesis problem:
INPUT: A PTA P
PROBLEM: Synthesize the set V of parameter valuations such that v(P) is fully ET-opaque, for all
v ∈V .

4.2.2 Undecidability for general PTAs

Considering that Theorem 1 shows the undecidability of the ∃-ET-opacity p-emptiness problem, the
undecidability of the full ET-opacity p-emptiness problem is not surprising, but does not follow immedi-
ately.
Theorem 3 (Undecidability of the full ET-opacity p-emptiness problem [9, Theorem 7.2]). The full
ET-opacity p-emptiness problem is undecidable for general PTAs.

The proof relies on a reduction from the problem of reachability-emptiness in constant time, a result
proved itself undecidable in the same paper [9, Lemma 7.1].

Since the emptiness problem is undecidable, the synthesis problem is immediately unsolvable as
well.
Corollary 2. The full ET-opacity p-synthesis problem is unsolvable for PTAs.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 13

`0

`priv

`f
x≤ p

x≤ 1

Figure 4: No monotonicity for full ET-opacity in L/U-PTAs

4.2.3 Undecidability for lower/upper parametric timed automata

Let us now study the full ET-opacity p-emptiness problem for L/U-PTAs. While it is well-known that
L/U-PTAs enjoy a monotonicity for reachability properties (“enlarging an upper-bound parameter or
decreasing a lower-bound parameter preserves reachability”) [27], we can show in the following example
that this is not the case for full ET-opacity.

Example 8. Consider the PTA in Fig. 4. First assume v such that v(p) = 0.5. Then, v(P) is not fully
ET-opaque: indeed, `f can be reached in 1 time unit by visiting `priv, but not without visiting `priv.

Second, assume v′ such that v′(p) = 1. Then, v′(P) is fully ET-opaque: indeed, `f can be reached
for any duration in [0,1] by runs both visiting and not visiting `priv.

Finally, let us enlarge p further, and assume v′′ such that v′′(p) = 2. Then, v′′(P) becomes again not
fully ET-opaque: indeed, `f can be reached in 2 time units without visiting `priv, but cannot be reached in
2 time units by visiting `priv.

As a side note, remark that this PTA is actually an upper-bound parametric timed automaton (U-
PTA) [17], that is, monotonicity for this problem does not even hold for U-PTAs.

In fact, we show that, while the ∃-ET-opacity p-emptiness problem is decidable for L/U-PTAs (Theo-
rem 2), the full ET-opacity p-emptiness problem becomes undecidable for this same class. This confirms
(after previous works in [17, 28, 11, 12]) that L/U-PTAs stand at the frontier between decidability and
undecidability.

Theorem 4 (Undecidability of the full ET-opacity p-emptiness problem for L/U-PTAs [9, Theorem 7.4]).
The full ET-opacity p-emptiness problem is undecidable for L/U-PTAs.

Since the emptiness problem is undecidable, the synthesis problem is immediately unsolvable as
well.

Corollary 3. The full ET-opacity p-synthesis problem is unsolvable for L/U-PTAs.

Remark 4. Since L/U-PTAs are a subclass of PTAs (put it differently: “any L/U-PTA is a PTA”), the
negative results proved for L/U-PTAs (Theorem 4 and Corollary 3) immediately imply those previously
shown for general PTAs (Theorem 3 and Corollary 2). However, in [9], a smaller number of clocks and
parameters is needed to prove the aforementioned negative results for general PTAs, which justifies the
two versions of the proofs in [9].

4.3 Parametric weak ET-opacity

4.3.1 Problem definitions

Weak ET-opacity p-emptiness problem:
INPUT: A PTA P
PROBLEM: Decide the emptiness of the set of parameter valuations v such that v(P) is weakly
ET-opaque.

14 Configuring Timing Parameters to Ensure Opacity in Timed Automata

`0 `fP`0
′ `pub

`priv `f
′

x = 0 x = 1

x = 1
x = 0 x = 1

Figure 5: Reduction from reachability-emptiness for the proof of Theorem 5

Weak ET-opacity p-synthesis problem:
INPUT: A PTA P
PROBLEM: Synthesize the parameter valuations v such that v(P) is weakly ET-opaque.

4.3.2 Undecidability for general PTAs

We provide below an original result in the context of weak opacity, but partially inspired by the construc-
tion used in the proof of Theorem 3.

Theorem 5 (Undecidability of the weak ET-opacity p-emptiness problem). The weak ET-opacity p-
emptiness problem is undecidable for general PTAs.

Proof. We reduce from the reachability-emptiness problem in bounded time, which is undecidable
from [10, Theorem 3.12]. (This is different from the proof of [9, Theorem 7.2], which reduces from the
reachability-emptiness problem in constant time, which is undecidable according to [9, Lemma 7.1].)

Consider an arbitrary PTA P , with initial location `0 and a final location `f. We add the following
locations and transitions in P to obtain a PTA P ′, as in Fig. 5: (i) a new initial location `0

′, with
outgoing transitions in 0-time (due to their guard x = 0, where x is a new clock not belonging to P , and
never reset in P ′) to `0 and to a new location `priv, (ii) a new location `pub with an incoming transition
from `f guarded by x = 1, and (iii) a new final location `f

′ with incoming transitions from `pub and `priv

both guarded by x = 1.
First, note that, due to the guarded transitions, `f

′ is reachable for any parameter valuation via runs
visiting `priv, (only) for an execution time equal to 1. That is, for all v, DVisitpriv(v(P ′)) = {1}.

We now show that there exists a valuation v such that v(P ′) is weakly ET-opaque (with `priv as
private location, and `f

′ as final location) iff there exists a valuation v such that `f is reachable in v(P)
for an execution time ≤ 1.

⇐ Assume there exists some valuation v such that `f is reachable from `0 in P for an execution
time ≤ 1. Then, due to our construction, `pub is visited on the way to `f

′ in v(P ′) (only) for
the execution time 1. Therefore, DVisitpriv

(v(P ′)) = {1} = DVisitpriv(v(P ′)) and then v(P ′) is
weakly ET-opaque (and also fully ET-opaque, which plays no role here).

⇒ Conversely, if `f is not reachable from `0 in P for any valuation for an execution time ≤ 1, then
no run reaches `f

′ in time 1 without visiting `priv, for any valuation of P ′. Therefore, for any
valuation v, DVisitpriv(v(P ′)) = {1} 6⊆ DVisitpriv

(v(P ′)) = /0. Therefore, there is no valuation v
such that v(P ′) is weakly ET-opaque.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 15

`0 P `f`0
′

`1

`2

`3

`priv`4

`f
′x = 2

p1
l ≤ x≤ p1

u) p2 l≤ x≤ p2 u)

p2 l≤ x≤ p2 u) p1
l ≤ x≤ p1

u)

x = 1
X\{x}← 0

∨
i(pi

l < x≤ pi
u)

x > 2
x← 0

x = 2
x← 0

x = 0

Figure 6: Undecidability of full ET-opacity p-emptiness problem for L/U-PTAs

Therefore, there exists a valuation v such that v(P ′) is weakly ET-opaque iff there exists a valuation v
such that `f is reachable in v(P) for an execution time ≤ 1—which is undecidable from [10, Theo-
rem 3.12]. This concludes the proof.

Since the emptiness problem is undecidable, the synthesis problem is immediately unsolvable as
well.
Corollary 4. The weak ET-opacity p-synthesis problem is unsolvable for general PTAs.

4.3.3 Undecidability for lower/upper parametric timed automata

We provide below another original result in the context of weak opacity, this time for L/U-PTAs, largely
inspired by the proof of Theorem 4, even though our construction needed to be changed.
Theorem 6 (Undecidability of the weak ET-opacity p-emptiness problem for L/U-PTAs). The weak
ET-opacity p-emptiness problem is undecidable for L/U-PTAs.

Proof. Let us recall from [10, Theorem 3.12] that the reachability-emptiness problem is undecidable over
bounded time for PTAs with (at least) 3 clocks and 2 parameters. Assume a PTA P with 3 clocks and
2 parameters, say p1 and p2, and a final location `f. Take 1 as a time bound. From [10, Theorem 3.12],
it is undecidable whether there exists a parameter valuation for which `f is reachable in P in time ≤ 1.

The idea of our proof is that, as in [28, 9], we “split” each of the two parameters used in P into a
lower-bound parameter (p1

l and p2
l) and an upper-bound parameter (p1

u and p2
u). Each constraint of

the form x < pi (resp. x ≤ pi) is replaced with x < pi
u (resp. x ≤ pi

u) while each constraint of the form
x > pi (resp. x≥ pi) is replaced with x > pi

l (resp. x≥ pi
l); x = pi is replaced with pi

l ≤ x≤ pi
u.

The idea is that the PTA P is exactly equivalent to our construction with duplicated parameters
only when p1

l = p1
u and p2

l = p2
u. The crux of the rest of this proof is that we will “rule out” any

parameter valuation not satisfying these equalities, so as to use directly the undecidability result of [10,
Theorem 3.12].

Now, consider the extension of P given in Fig. 6, and let P ′ be this extension. We assume that x is
an extra clock not used in P . The syntax “X\{x}← 0” denotes that all clocks of the original PTA P are
reset—but not the new clock x. The guard on the transition from `0

′ to `4 stands for 2 different transitions
guarded with p1

l < x≤ p1
u, and p2

l < x≤ p2
u, respectively.

Let us first make the following observations:

16 Configuring Timing Parameters to Ensure Opacity in Timed Automata

1. for any parameter valuation, one can take the transition from `0
′ to `priv at time 2 and then to `f

′

in 0-time (i.e., at time 2), i.e., `f
′ is always reachable in time 2 while visiting location `priv; put

differently, {2} ⊆ DVisitpriv(v(P ′)) for any parameter valuation v;

2. the original automaton P can only be entered whenever p1
l ≤ p1

u and p2
l ≤ p2

u; going from `0
′

to `0 takes exactly 1 time unit (due to the x = 1 guard);

3. to reach `f
′ without visiting `priv, a run must go through P and visit `f, and its duration is neces-

sarily 2; put differently, DVisitpriv
(v(P ′))⊆ {2} for any parameter valuation v;

4. from [10, Theorem 3.12], it is undecidable whether there exists a parameter valuation for which
there exists a run reaching `f from `0 in time ≤ 1, i.e., reaching `f from `0

′ in time ≤ 2.

Let us consider the following cases depending on the valuations:

1. for valuations v such that p1
l > p1

u or p2
l > p2

u, then thanks to the transitions from `0
′ to `0, there

is no way to enter the original PTA P (and therefore to reach `f
′ without visiting `priv); hence,

DVisitpriv
(v(P ′)) = /0, and therefore {2} ⊆ DVisitpriv(v(P ′)) 6⊆ DVisitpriv

(v(P ′)), i.e., P ′ is not
weakly ET-opaque for any of these valuations.

2. for valuations v such that p1
l < p1

u or p2
l < p2

u, then the transition from `0
′ to `4 can be taken,

and therefore there exist runs reaching `f
′ after a duration > 2 (for example of duration 3) and

visiting `priv. Since no run can reach `f
′ without visiting `priv for a duration 6= 2, then {3} ⊆

DVisitpriv(v(P ′)) 6⊆ DVisitpriv
(v(P ′)) ⊆ {2} and again P ′ is not weakly ET-opaque for any of

these valuations.

3. for valuations such that p1
l = p1

u and p2
l = p2

u, then the behavior of the modified P (with
duplicate parameters) is exactly the one of the original P . Also, note that the transition from `0

′

to `4 cannot be taken. In contrast, the transition from `0
′ to `priv can still be taken, and therefore

there exists a run of duration 2 visiting `priv and reaching `f
′. Hence, DVisitpriv(v(P ′)) = {2} for

any such valuation v.

• Now, assume there exists such a parameter valuation v for which there exists a run of v(P)
of duration ≤ 1 reaching `f. And, as a consequence, there exists a run of v(P ′) of duration 2
(including the 1 time unit to go from `0

′ to `0) reaching `f
′ without visiting `priv. Hence,

DVisitpriv
(v(P ′)) = {2}. Therefore DVisitpriv

(v(P ′)) = DVisitpriv(v(P ′)) = {2}.
As a consequence, the modified automaton P ′ is weakly ET-opaque (and actually fully ET-
opaque—which plays no role in this proof) for such a parameter valuation.

• Conversely, assume there exists no parameter valuation for which there exists a run of P
of duration ≤ 1 reaching `f. In that case, `f

′ can never be reached without visiting `priv:
DVisitpriv

(v(P ′)) = /0, and therefore {2} ⊆ DVisitpriv(v(P ′)) 6⊆ DVisitpriv
(v(P ′)), i.e.,

v(P ′) is not fully ET-opaque for any such parameter valuation v.

As a consequence, there exists a parameter valuation v′ for which v′(P ′) is weakly ET-opaque iff
there exists a parameter valuation v for which there exists a run in v(P) of duration ≤ 1 reaching `f—
which is undecidable from [10, Theorem 3.12].

Corollary 5. The weak ET-opacity p-synthesis problem is unsolvable for L/U-PTAs.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 17

Table 3: Summary of the definitions for ET-opacity and expiring ET-opacity [9, 8]
Secret runs Non-secret runs

ET-opacity Runs visiting the private location (= pri-
vate runs)

Runs not visiting the private location (=
public runs)

exp-ET-opacity
Runs visiting the private location ≤ ∆

time units before the system completion
(i) Runs not visiting the private location
and
(ii) Runs visiting the private location > ∆

time units before the system completion

The system is if
(resp. expiring)

ET-opaque {secret runs}∩{non-secret runs} 6= /0
weakly ET-opaque {secret runs} ⊆ {non-secret runs}
full ET-opacity {secret runs}= {non-secret runs}

5 Expiring execution-time opacity problems

In [4], the authors consider a time-bounded notion of the opacity of [19], where the attacker has to
disclose the secret before an upper bound, using a partial observability. This can be seen as a secrecy with
an expiration date. The rationale is that retrieving a secret “too late” is useless; this is understandable,
e.g., when the secret depends of the status of the memory; if the cache was overwritten since, then
knowing the secret is probably useless in most situations. In addition, the analysis in [4] is carried over
a time-bounded horizon; this means there are two time bounds in [4]: one for the secret expiration date,
and one for the bounded-time execution of the system.

In this section, we review a recent work of ours [8] in which we incorporate this secret expiration
date into our notion of ET-opacity: we only consider the former notion of time bound from [4] (the
secret expiration date), and lift the assumption regarding the latter (the bounded-time execution of the
system). More precisely, we consider an expiring version of ET-opacity, where the secret is subject to an
expiration date; this can be seen as a combination of both concepts from [9] and [4]. That is, we consider
that an attack is successful only when the attacker can decide that the secret location was entered less than
∆ time units before the system completion. Conversely, if the attacker exhibits an execution time d for
which it is certain that the secret location was visited, but this location was entered strictly more than ∆

time units prior to the system completion, then this attack is useless, and can be seen as a failed attack.
The system is therefore fully exp-ET-opaque if the set of execution times for which the private location
was entered within ∆ time units prior to system completion is exactly equal to the set of execution times
for which the private location was either not visited or entered > ∆ time units prior to system completion.

In addition, when the former (secret) set of execution times is included into the latter (non-secret)
set of times, we say that the system is weakly exp-ET-opaque; this encodes situations when the attacker
might be able to deduce that no secret location was visited, but is not able to confirm that the secret
location was indeed visited.

On the one hand, our attacker model is less powerful than [4], because our attacker has only access
to the execution time (and to the input model); in that sense, our attacker capability is identical to [9]. On
the other hand, we lift the time-bounded horizon analysis from [4], allowing to analyze systems without
any assumption on their execution time; therefore, we only import from [4] the notion of expiring secret.

We summarize in Table 3 our different notions of ET-opacity and expiring ET-opacity; we will define

18 Configuring Timing Parameters to Ensure Opacity in Timed Automata

formally expiring ET-opacity in the following.

5.1 Exp-ET-opacity

Let us first introduce some notions dedicated to expiring ET-opacity (hereafter referred to as exp-ET-
opacity). Let R∞

≥0 = R≥0 ∪{+∞}. Given a TA A and a finite run ρ in TA , the duration between two
states of ρ : s0,(d0,e0),s1, · · · ,sk is durρ(si,s j) =∑i≤m≤ j−1 dm. We also define the duration between two
locations `1 and `2 as the duration durρ(`1, `2) = durρ(si,s j) with ρ : s0,(d0,e0),s1, · · · ,si, · · · ,s j, · · · ,sk
where s j the first occurrence of a state with location `2 and si is the last state of ρ with location `1
before s j. We choose this definition to coincide with the definitions of opacity that we will define in the
following Definition 11. Indeed, we want to make sure that revealing a secret (`1 in this definition) is not
a failure if it is done after a given time. Thus, as soon as the system reaches its final state (`2), we will be
interested in knowing how long the secret has been present, and thus the last time it was entered (si).

Given ∆ ∈ R∞
≥0, we define Visitpriv

≤∆
(A) (resp. Visitpriv

>∆
(A)) as the set of runs ρ ∈ Visitpriv(A) s.t.

durρ(`priv, `f) ≤ ∆ (resp. durρ(`priv, `f) > ∆). We refer to the runs of Visitpriv
≤∆

(A) as secret runs; their
durations are denoted by DVisitpriv

≤∆
(A). Similarly, the durations of the runs of Visitpriv

>∆
(A) are denoted

by DVisitpriv
>∆

(A).
We define below two notions of ET-opacity w.r.t. a time bound ∆. We will compare two sets:

1. the set of execution times for which the private location was entered at most ∆ time units prior to
system completion; and

2. the set of execution times for which either the private location was not visited at all, or it was
last entered more than ∆ time units prior to system completion (which, in our setting, is somehow
similar to not visiting the private location, in the sense that entering it “too early” is considered of
little interest).

If both sets match, the system is fully (≤ ∆)-ET-opaque. If the former is included into the latter, then the
system is weakly (≤ ∆)-ET-opaque.

Definition 11 (Expiring Execution-time opacity). Given a TA A and a bound (i.e., an expiration date for
the secret) ∆ ∈ R∞

≥0 we say that A is fully exp-ET-opaque w.r.t. the expiration date ∆, denoted by fully
(≤ ∆)-ET-opaque, if

DVisitpriv
≤∆

(A) = DVisitpriv
>∆

(A)∪DVisitpriv
(A).

Moreover, A is weakly exp-ET-opaque w.r.t. the expiration date ∆, denoted by weakly (≤ ∆)-ET-
opaque, if

DVisitpriv
≤∆

(A)⊆ DVisitpriv
>∆

(A)∪DVisitpriv
(A).

Finally, A is ∃-ET-opaque w.r.t. the expiration date ∆, denoted by ∃-(≤ ∆)-ET-opaque, if

DVisitpriv
≤∆

(A)∩ (DVisitpriv
>∆

(A)∪DVisitpriv
(A)) 6= /0.

Example 9. Consider again the PTA in Fig. 2; let v be such that v(p1) = 1 and v(p2) = 2.5. Fix ∆ = 1.
We have:

• DVisitpriv
(v(P)) = [0,3]

• DVisitpriv
>∆

(v(P)) = (2,2.5]

• DVisitpriv
≤∆

(v(P)) = [1,2.5]

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 19

Therefore, we say that v(P) is:

• ∃-(≤ 1)-ET-opaque, as [1,2.5]∩
(
(2,2.5]∪ [0,3]

)
6= /0

• weakly (≤ 1)-ET-opaque, as [1,2.5]⊆
(
(2,2.5]∪ [0,3]

)
• not fully (≤ 1)-ET-opaque, as [1,2.5] 6=

(
(2,2.5]∪ [0,3]

)
As noted in Remark 3, despite the weak (≤ 1)-ET-opacity of A , the attacker can deduce some

information about the visit of the private location for some execution times. For example, if a run has a
duration of 3 time units, it cannot be a private run, and therefore the attacker can deduce that the private
location was not visited at all.

5.2 Exp-ET-opacity problems in timed automata

5.2.1 Problem definitions

We define seven different problems in the context of (non-parametric) TAs:
∃-exp-ET-opacity decision problem:
INPUT: A TA A and a bound ∆ ∈ R∞

≥0
PROBLEM: Decide whether A is ∃-(≤ ∆)-ET-opaque.

Full (resp. weak) exp-ET-opacity decision problem:
INPUT: A TA A and a bound ∆ ∈ R∞

≥0
PROBLEM: Decide whether A is fully (resp. weakly) (≤ ∆)-ET-opaque.

Full (resp. weak) exp-ET-opacity ∆-emptiness problem:
INPUT: A TA A
PROBLEM: Decide the emptiness of the set of bounds ∆ such that A is fully (resp. weakly) (≤ ∆)-
ET-opaque.

Full (resp. weak) exp-ET-opacity ∆-computation problem:
INPUT: A TA A
PROBLEM: Compute the maximal set D of bounds such that A is fully (resp. weakly) (≤ ∆)-ET-
opaque for all ∆ ∈D .

Example 10. Consider again the PTA in Fig. 2; let v be such that v(p1) = 1 and v(p2) = 2.5 (as in
Example 9). Let us exemplify some of the problems defined above.

• Given ∆ = 1, the weak exp-ET-opacity decision problem asks whether v(P) is weakly (≤ 1)-ET-
opaque—the answer is “yes” from Example 9.

• The answer to the weak exp-ET-opacity ∆-emptiness problem is therefore “no” because the set of
bounds ∆ such that v(P) is weakly (≤ ∆)-ET-opaque is not empty.

• Finally, the weak exp-ET-opacity ∆-computation problem asks to compute all the corresponding
bounds: in this example, the solution is ∆ ∈ R∞

≥0, i.e., the solution is the set all possible (non-
negative) values for ∆.

Relations with the ET-opacity problems Note that, when considering ∆ = +∞, DVisitpriv
>∆

(A) = /0
and all the execution times of runs visiting `priv are in DVisitpriv

≤∆
(A). Therefore, full (≤ +∞)-ET-opacity

matches the full ET-opacity. We can therefore notice that answering the full exp-ET-opacity decision

20 Configuring Timing Parameters to Ensure Opacity in Timed Automata

problem for ∆ = +∞ is decidable (Proposition 3). However, the emptiness and computation problems
cannot be reduced to full ET-opacity problems from Section 4.1.3.

Conversely, it is possible to answer the full ET-opacity decision problem by checking the full exp-
ET-opacity decision problem with ∆ =+∞. Moreover, the ET-opacity t-computation problem reduces to
the full exp-ET-opacity ∆-computation problem: if +∞ ∈D , we get the answer.

Recall that we summarize our different definitions of (expiring) ET-opacity in Table 3.

5.2.2 Results

In general, the link between the full and weak notions of the three aforementioned problems is not
obvious. However, for a fixed value of ∆, we establish the following theorem.

Theorem 7 ([8, Theorem 1]). The full exp-ET-opacity decision problem reduces to the weak exp-ET-
opacity decision problem.

We can now study the aforementioned problems.

Theorem 8 (Decidability of full (resp. weak) exp-ET-opacity decision problem [8, Theorems 2 and 5]).
The full (resp. weak) exp-ET-opacity decision problem is decidable in NEXPTIME.

Remark 5. In Proposition 3, we established that the full (≤ +∞)-ET-opacity decision problem is in
5EXPTIME. Theorem 8 thus extends our former results in three ways:

1. by including the parameter ∆,

2. by reducing the complexity and

3. by considering as well the weak notion of ET-opacity (considered separately in Proposition 4).

We complete these results from [8] with the following result analog to Proposition 2.

Theorem 9 (Decidability of ∃-exp-ET-opacity decision problem). The ∃-exp-ET-opacity decision prob-
lem is decidable in PSPACE.

Proof. The full (resp. weak) exp-ET-opacity decision problem was solved in [8] by building two non-
deterministic finite automata whose languages represented the secret and the non-secret durations of the
system, respectively. These automata being of exponential size and with a unary language, testing the
equality or inclusion of languages led to the NEXPTIME algorithm quoted in Theorem 8. Similarly, the
∃-exp-ET-opacity decision problem can be decided by testing whether the intersection of the languages
of these automata is empty. This can be done in NLOGSPACE in the size of the automata (classically, by
first building the product between these two automata, and then by checking the reachability of a pair of
final states), hence the PSPACE algorithm.

Theorem 10 (Solvability of weak exp-ET-opacity ∆-computation problem [8, Theorems 3 and 5]). The
weak exp-ET-opacity ∆-computation problem is solvable.

Corollary 6 (Decidability of weak exp-ET-opacity ∆-emptiness problem [8, Corollary 1]). The weak
exp-ET-opacity ∆-emptiness problem is decidable.

In contrast to the weak exp-ET-opacity ∆-computation problem, we only show below that the full
exp-ET-opacity ∆-emptiness problem is decidable; the computation problem remains open.

Theorem 11 (Decidability of the full exp-ET-opacity ∆-emptiness problem [8, Theorems 4 and 5]). The
full exp-ET-opacity ∆-emptiness problem is decidable.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 21

5.3 Exp-ET-opacity in parametric timed automata

We now study exp-ET-opacity problems for PTAs: we will be interested in the synthesis and in the
emptiness of the valuations set ensuring that a system is fully (resp. weakly) exp-ET-opaque.

5.3.1 Definitions

We define the following problems, where we ask for parameter valuations v and for valuations of ∆ s.t.
v(P) is fully (resp. weakly) (≤ ∆)-ET-opaque.

Full (resp. weak) exp-ET-opacity ∆-p-emptiness problem:
INPUT: A PTA P
PROBLEM: Decide whether the set of parameter valuations v and valuations of ∆ such that v(P) is
fully (resp. weakly) (≤ ∆)-ET-opaque is empty

Full (resp. weak) exp-ET-opacity ∆-p-synthesis problem:
INPUT: A PTA P
PROBLEM: Synthesize the set of parameter valuations v and valuations of ∆ such that v(P) is fully
(resp. weakly) (≤ ∆)-ET-opaque

Example 11. Consider again the PTA P in Fig. 2.
For this PTA, the answer to the weak exp-ET-opacity ∆-p-emptiness problem is false, as there exists

such a valuation (e.g., the valuation given in Example 10).
Moreover, we can show that, for all ∆ and v:

• DVisitpriv
(v(P)) = [0,3]

• if v(p1) > 3 or v(p1) > v(p2), it is not possible to reach `f with a run visiting `priv and therefore
DVisitpriv

>∆
(v(P)) = DVisitpriv

≤∆
(v(P)) = /0

• if v(p1)≤ 3 and v(p1)≤ v(p2)

– DVisitpriv
>∆

(v(P)) = (v(p1)+∆,v(p2)]

– DVisitpriv
≤∆

(v(P)) = [v(p1),min(∆+3,v(p2))]

Recall that the full exp-ET-opacity ∆-p-synthesis problem aims at synthesizing the valuations such
that DVisitpriv

≤∆
(v(P)) = DVisitpriv

>∆
(v(P))∪DVisitpriv

(v(P)). The answer to this problem is therefore
the set of valuations of timing parameters and of ∆ s.t.:

v(p1) = 0∧
((

∆≤ 3∧3≤ v(p2)≤ ∆+3
)
∨
(
v(p2)< ∆∧ v(p2) = 3

))
.

5.3.2 Results

The subclass of lower/upper parametric timed automata

Theorem 12 (Undecidability of full (resp. weak) exp-ET-opacity ∆-p-emptiness problem [8, Theo-
rem 6]). The full (resp. weak) exp-ET-opacity ∆-p-emptiness problem is undecidable for L/U-PTAs.

The synthesis problems are therefore immediately unsolvable as well.

Corollary 7 ([8, Corollary 2]). The full (resp. weak) exp-ET-opacity ∆-p-synthesis problem is unsolvable
for L/U-PTAs.

22 Configuring Timing Parameters to Ensure Opacity in Timed Automata

The full class of parametric timed automata The undecidability of the emptiness problems for L/U-
PTAs proved above (Theorem 12) immediately implies undecidability for the larger class of PTAs. How-
ever, as in Remark 4, the full proof (given in [8]) of the result stated below uses less clocks and parameters
than for L/U-PTAs (Theorem 12).

Theorem 13 (Undecidability of full (resp. weak) exp-ET-opacity ∆-p-emptiness problem [8, Theo-
rem 7]). The full (resp. weak) exp-ET-opacity ∆-p-emptiness problem is undecidable for general PTAs.

Again, the synthesis problems are therefore immediately unsolvable as well.

Corollary 8 ([8, Corollary 3]). The full (resp. weak) exp-ET-opacity ∆-p-synthesis problem is unsolvable
for PTAs.

6 Implementation and application to Java programs

A motivation for the works on ET-opacity (described in Sections 3 and 4) is the analysis of programs.
More precisely, we are interested in deciding whether a program, e.g., written in Java, is ET-opaque,
i.e., whether an attacker is incapable of deducing internal behavior by only looking at its execution
time. A second motivation is the configuration of internal timing values from a program, e.g., changing
some internal delays, or tuning some Thread.sleep() statements in the program, so that the program
becomes ET-opaque—justifying notably the results in Section 4.

Semi-algorithm and implementation Despite the negative theoretical results (notably Theorem 1),
we addressed in [9] the ∃-ET-opacity p-synthesis problem for the full class of PTAs. Our method may
not terminate (due to the undecidability) but, if it does, its result is correct. Our workflow [9] can be
summarized as follows.

1. We slightly modify the original PTA (by adding a Boolean flag b and a final synchronization
action);

2. We perform self-composition (i.e., parallel composition with a copy of itself) of this modified PTA,
a method commonly used in security analyses [32, 15];

3. We perform reachability-synthesis (i.e., the synthesis of parameter valuations for which a given
location is reachable) on `f with contradictory values of b.

Reachability-synthesis is implemented in IMITATOR [6], a parametric timed model checker taking
as inputs networks of (extensions of) parametric timed automata, and synthesizing parameter valuations
for which a number of properties (including reachability) hold.

Analysis of Java programs In addition, we are interested in analyzing programs too. In order to apply
our method to the analysis of programs, we need a systematic way of translating a program (e.g., a Java
program) into a PTA. In general, precisely modeling the execution time of a program using models like
TA is highly non-trivial due to complication of hardware pipelining, caching, OS scheduling, etc. The
readers are referred to the rich literature in, e.g., [29, 20]. In [9], we instead make the following simplistic
assumption on execution time of a program statement and focus on solving the parameter synthesis
problem. We assume that the execution time of a program statement other than Thread.sleep(n) is
within a range [0,ε] where ε is a small integer constant (in milliseconds), whereas the execution time of
statement Thread.sleep(n) is within a range [n,n+ ε]. In fact, we choose to keep ε parametric to be
as general as possible, and to not depend on particular architectures.

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 23

Our test subject is a set of benchmark programs from the DARPA Space/Time Analysis for Cyberse-
curity (STAC) program.1 These programs are being released publicly to facilitate researchers to develop
methods and tools for identifying STAC vulnerabilities in the programs. These programs are simple yet
non-trivial, and were built on purpose to highlight vulnerabilities that can be easily missed by existing
security analysis tools. We manually translated these programs to PTAs, following the method described
above, and using a number of assumptions (such as collapsing loops with predefined duration).

In addition, we applied our method to a set of PTAs examples from the literature, notably from [27,
24, 16, 34].

Experiments reported in [9] show that we can decide whether these benchmarks (including the pro-
grams) are fully ET-opaque or ∃-ET-opaque. When adding timing parameters, we additionally answer
the ∃-ET-opacity p-synthesis problem, i.e., we synthesize the parameter valuations v and the associated
execution times D such that v(P) is ET-opaque. Our method allows to exhibit cases when the system can
never be made ET-opaque, including by tuning internal delays, or is always ET-opaque, or is ET-opaque
only for some execution times and internal timing parameters.

To summarize, the following problems can be answered using our framework:

• ∃-ET-opacity decision problem

• full ET-opacity decision problem

• weak ET-opacity decision problem (not considered in our experiments in [9], but can be easily
adapted)

• ∃-ET-opacity p-synthesis problem, but without guarantee of termination, due to the undecidability
of Theorem 1.

However, our procedure cannot in its current form answer neither the full ET-opacity p-synthesis
problem nor the weak ET-opacity p-synthesis problem. The expiring opacity problems in Section 5 were
not addressed either.

7 Conclusion and perspectives

In this paper, we recalled (and proved a few original) results related to the ET-opacity in TAs. Our
notion of ET-opacity consists in considering an attacker model that can only observe the execution time
of the system, i.e., the time from the initial location to a final location. The secret consists in deciding
whether a special private location was visited or not. In contrast to another notion of opacity with a
more powerful attacker able to observe some actions together with their timestamps, which led to the
undecidability of the decision problem for TAs [19], our notion of ET-opacity yields decidability results
for TAs. Parameterizing the problems using timing parameters brings undecidability for PTAs, but the
subclass of L/U-PTAs gives mildly positive results.

When in addition we consider that the secret has an expiration date, similarly to the concepts intro-
duced in [4], we are able to not only decide problems for TAs, but also to synthesize valuations for the
expiration date such that the TA is weakly exp-ET-opaque. However, problems extended with timing
parameters all become undecidable.

Recall that we summarized in Tables 1 and 2 the decidability results recalled in this paper, with a
bold emphasis on the original results of this paper.

1https://github.com/Apogee-Research/STAC/

https://github.com/Apogee-Research/STAC/

24 Configuring Timing Parameters to Ensure Opacity in Timed Automata

We also reported here on an implementation using IMITATOR, which is able to answer non-
parametric problems (∃-ET-opacity decision problem, full ET-opacity decision problem, weak ET-
opacity decision problem), and also answering a parameter synthesis problem (∃-ET-opacity p-synthesis
problem) without guarantee of termination for the latter problem.

Perspectives The main theoretical future work is the open problems in Table 2 (mainly the full exp-
ET-opacity ∆-computation problem): it is unclear whether we can compute the exact set of expiration
dates ∆ for which a TA is fully (≤ ∆)-ET-opaque.

In terms of synthesis, we have so far no procedure able (whenever it terminates) to answer the full
ET-opacity p-synthesis problem or the weak ET-opacity p-synthesis problem. Synthesis procedures to
answer expiring opacity problems (defined in Section 5) for PTAs remain to be designed too. These
procedures cannot be both exact and guaranteed to terminate due to the aforementioned undecidability
results.

Exact analysis of opacity for programs, including a more precise modeling of the cache, is also on
our agenda, following works such as [20, 21].

A different direction is that of control: can we turn a non-opaque system into an opaque system,
by restraining its possible behaviors? A first step with our notion of ET-opacity was presented in [7],
with only an untimed controller. In addition, in [24], Gardey et al. propose several definitions of non-
interference, related to various notions of simulation: they consider not only the verification problem
(“is the system non-interferent?”) but also the (timed) control problem (“synthesize a controller that will
restrict the system in order to enforce non-interference”). Extending our current line works on ET-opacity
to timed controllers remains to be done.

Acknowledgments We are grateful to Clemens Dubslaff and Maurice ter Beek for the opportunity to
give an invited talk at TiCSA 2023, and for useful suggestions on this manuscript.

References

[1] Rajeev Alur & David L. Dill (1994): A theory of timed automata. Theoretical Computer Science 126(2), pp.
183–235, doi:10.1016/0304-3975(94)90010-8.

[2] Rajeev Alur, Limor Fix & Thomas A. Henzinger (1999): Event-Clock Automata: A Determinizable Class of
Timed Automata. Theoretical Computer Science 211(1-2), pp. 253–273, doi:10.1016/S0304-3975(97)00173-
4.

[3] Rajeev Alur, Thomas A. Henzinger & Moshe Y. Vardi (1993): Parametric real-time reasoning. In S. Rao
Kosaraju, David S. Johnson & Alok Aggarwal, editors: STOC, ACM, New York, NY, USA, pp. 592–601,
doi:10.1145/167088.167242.

[4] Ikhlass Ammar, Yamen El Touati, Moez Yeddes & John Mullins (2021): Bounded opacity for timed systems.
Journal of Information Security and Applications 61, pp. 1–13, doi:10.1016/j.jisa.2021.102926.

[5] Étienne André (2019): What’s decidable about parametric timed automata? International Journal on Soft-
ware Tools for Technology Transfer 21(2), pp. 203–219, doi:10.1007/s10009-017-0467-0.

[6] Étienne André (2021): IMITATOR 3: Synthesis of timing parameters beyond decidability. In Rustan
Leino & Alexandra Silva, editors: CAV, Lecture Notes in Computer Science 12759, Springer, pp. 1–14,
doi:10.1007/978-3-030-81685-8_26.

https://doi.org/10.1016/0304-3975(94)90010-8
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1016/S0304-3975(97)00173-4
https://doi.org/10.1145/167088.167242
https://doi.org/10.1016/j.jisa.2021.102926
https://doi.org/10.1007/s10009-017-0467-0
https://doi.org/10.1007/978-3-030-81685-8_26

É. André, E. Lefaucheux, D. Lime, D. Marinho & J. Sun 25

[7] Étienne André, Shapagat Bolat, Engel Lefaucheux & Dylan Marinho (2022): strategFTO: Untimed
control for timed opacity. In Cyrille Artho & Peter Ölveczky, editors: FTSCS, ACM, pp. 27–33,
doi:10.1145/3563822.3568013.

[8] Étienne André, Engel Lefaucheux & Dylan Marinho (2023): Expiring opacity problems in parametric timed
automata. In Yamine Ait-Ameur & Ferhat Khendek, editors: ICECCS. To appear.

[9] Étienne André, Didier Lime, Dylan Marinho & Jun Sun (2022): Guaranteeing timed opacity using paramet-
ric timed model checking. ACM Transactions on Software Engineering and Methodology 31(4), pp. 1–36,
doi:10.1145/3502851.

[10] Étienne André, Didier Lime & Nicolas Markey (2020): Language Preservation Problems in Parametric
Timed Automata. Logical Methods in Computer Science 16(1), doi:10.23638/LMCS-16(1:5)2020. Available
at https://lmcs.episciences.org/6042.

[11] Étienne André, Didier Lime & Mathias Ramparison (2018): TCTL model checking lower/upper-bound para-
metric timed automata without invariants. In David N. Jansen & Pavithra Prabhakar, editors: FORMATS,
Lecture Notes in Computer Science 11022, Springer, pp. 1–17, doi:10.1007/978-3-030-00151-3_3.

[12] Étienne André, Didier Lime & Olivier H. Roux (2022): Reachability and liveness in parametric timed au-
tomata. Logical Methods in Computer Science 18(1), pp. 31:1–31:41, doi:10.46298/lmcs-18(1:31)2022.
Available at https://lmcs.episciences.org/9070/pdf.

[13] Johan Arcile & Étienne André (2023): Timed automata as a formalism for expressing security: A survey on
theory and practice. ACM Computing Surveys 55(6), pp. 1–36, doi:10.1145/3534967.

[14] Roberto Bagnara, Patricia M. Hill & Enea Zaffanella (2008): The Parma Polyhedra Library: Toward a
Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems.
Science of Computer Programming 72(1–2), pp. 3–21, doi:10.1016/j.scico.2007.08.001.

[15] Gilles Barthe, Pedro R. D’Argenio & Tamara Rezk (2011): Secure information flow by self-composition.
Mathematical Structures in Computer Science 21(6), pp. 1207–1252, doi:10.1017/S0960129511000193.

[16] Gilles Benattar, Franck Cassez, Didier Lime & Olivier H. Roux (2015): Control and syn-
thesis of non-interferent timed systems. International Journal of Control 88(2), pp. 217–236,
doi:10.1080/00207179.2014.944356.

[17] Laura Bozzelli & Salvatore La Torre (2009): Decision problems for lower/upper bound parametric timed
automata. Formal Methods in System Design 35(2), pp. 121–151, doi:10.1007/s10703-009-0074-0.

[18] Véronique Bruyère, Emmanuel Dall’Olio & Jean-Francois Raskin (2008): Durations and parametric
model-checking in timed automata. ACM Transactions on Computational Logic 9(2), pp. 12:1–12:23,
doi:10.1145/1342991.1342996.

[19] Franck Cassez (2009): The Dark Side of Timed Opacity. In Jong Hyuk Park, Hsiao-Hwa Chen, Mohammed
Atiquzzaman, Changhoon Lee, Tai-Hoon Kim & Sang-Soo Yeo, editors: ISA, Lecture Notes in Computer
Science 5576, Springer, pp. 21–30, doi:10.1007/978-3-642-02617-1_3.

[20] Franck Cassez & Jean-Luc Béchennec (2013): Timing Analysis of Binary Programs with UPPAAL. In Josep
Carmona, Mihai T. Lazarescu & Marta Pietkiewicz-Koutny, editors: ACSD, IEEE Computer Society, pp.
41–50, doi:10.1109/ACSD.2013.7.

[21] Duc-Hiep Chu, Joxan Jaffar & Rasool Maghareh (2016): Precise Cache Timing Analysis via Symbolic Exe-
cution. In: RTAS, IEEE Computer Society, pp. 293–304, doi:10.1109/RTAS.2016.7461358.

[22] Shuwen Deng, Wenjie Xiong & Jakub Szefer (2018): Cache timing side-channel vulnerability checking with
computation tree logic. In Jakub Szefer, Weidong Shi & Ruby B. Lee, editors: ISCA, ACM, pp. 2:1–2:8,
doi:10.1145/3214292.3214294.

[23] Goran Doychev, Boris Köpf, Laurent Mauborgne & Jan Reineke (2015): CacheAudit: A Tool for the Static
Analysis of Cache Side Channels. ACM Transactions on Information and System Security 18(1), pp. 4:1–
4:32, doi:10.1145/2756550.

https://doi.org/10.1145/3563822.3568013
https://doi.org/10.1145/3502851
https://doi.org/10.23638/LMCS-16(1:5)2020
https://lmcs.episciences.org/6042
https://doi.org/10.1007/978-3-030-00151-3_3
https://doi.org/10.46298/lmcs-18(1:31)2022
https://lmcs.episciences.org/9070/pdf
https://doi.org/10.1145/3534967
https://doi.org/10.1016/j.scico.2007.08.001
https://doi.org/10.1017/S0960129511000193
https://doi.org/10.1080/00207179.2014.944356
https://doi.org/10.1007/s10703-009-0074-0
https://doi.org/10.1145/1342991.1342996
https://doi.org/10.1007/978-3-642-02617-1_3
https://doi.org/10.1109/ACSD.2013.7
https://doi.org/10.1109/RTAS.2016.7461358
https://doi.org/10.1145/3214292.3214294
https://doi.org/10.1145/2756550

26 Configuring Timing Parameters to Ensure Opacity in Timed Automata

[24] Guillaume Gardey, John Mullins & Olivier H. Roux (2007): Non-Interference Control Synthesis for
Security Timed Automata. Electronic Notes in Theoretical Computer Science 180(1), pp. 35–53,
doi:10.1016/j.entcs.2005.05.046.

[25] Shengjian Guo, Meng Wu & Chao Wang (2018): Adversarial symbolic execution for detecting concurrency-
related cache timing leaks. In Gary T. Leavens, Alessandro Garcia & Corina S. Pasareanu, editors:
ESEC/SIGSOFT FSE, ACM, pp. 377–388, doi:10.1145/3236024.3236028.

[26] Thomas A. Henzinger, Zohar Manna & Amir Pnueli (1992): Timed Transition Systems. In J. W. de Bakker,
Cornelis Huizing, Willem P. de Roever & Grzegorz Rozenberg, editors: REX, Lecture Notes in Computer
Science 600, Springer, pp. 226–251, doi:10.1007/BFb0031995.

[27] Thomas Hune, Judi Romijn, Mariëlle Stoelinga & Frits W. Vaandrager (2002): Linear parametric
model checking of timed automata. Journal of Logic and Algebraic Programming 52-53, pp. 183–220,
doi:10.1016/S1567-8326(02)00037-1.

[28] Aleksandra Jovanović, Didier Lime & Olivier H. Roux (2015): Integer Parameter Synthesis for Real-Time
Systems. IEEE Transactions on Software Engineering 41(5), pp. 445–461, doi:10.1109/TSE.2014.2357445.

[29] Mingsong Lv, Wang Yi, Nan Guan & Ge Yu (2010): Combining Abstract Interpretation with Model
Checking for Timing Analysis of Multicore Software. In: RTSS, IEEE Computer Society, pp. 339–349,
doi:10.1109/RTSS.2010.30.

[30] Joseph S. Miller (2000): Decidability and Complexity Results for Timed Automata and Semi-linear Hybrid
Automata. In Nancy A. Lynch & Bruce H. Krogh, editors: HSCC, Lecture Notes in Computer Science 1790,
Springer, pp. 296–309, doi:10.1007/3-540-46430-1_26.

[31] Quoc-Sang Phan, Lucas Bang, Corina S. Pasareanu, Pasquale Malacaria & Tevfik Bultan (2017): Synthesis
of Adaptive Side-Channel Attacks. In: CSF, IEEE Computer Society, pp. 328–342, doi:10.1109/CSF.2017.8.

[32] Tachio Terauchi & Alexander Aiken (2005): Secure Information Flow as a Safety Problem. In Chris Hankin
& Igor Siveroni, editors: Proceedings of the 12th International Symposium on Static Analysis (SAS 2005),
Lecture Notes in Computer Science 3672, Springer, pp. 352–367, doi:10.1007/11547662_24.

[33] Saeid Tizpaz-Niari, Pavol Cerný & Ashutosh Trivedi (2019): Quantitative Mitigation of Timing Side Chan-
nels. In Işil Dillig & Serdar Tasiran, editors: CAV, Part I, Lecture Notes in Computer Science 11561,
Springer, pp. 140–160, doi:10.1007/978-3-030-25540-4_8.

[34] Panagiotis Vasilikos, Flemming Nielson & Hanne Riis Nielson (2018): Secure Information Release in Timed
Automata. In Lujo Bauer & Ralf Küsters, editors: POST, Lecture Notes in Computer Science 10804,
Springer, pp. 28–52, doi:10.1007/978-3-319-89722-6_2.

[35] Panagiotis Vasilikos, Hanne Riis Nielson, Flemming Nielson & Boris Köpf (2019): Timing Leaks and
Coarse-Grained Clocks. In: CSF, IEEE, pp. 32–47, doi:10.1109/CSF.2019.00010.

[36] Lingtai Wang & Naijun Zhan (2018): Decidability of the Initial-State Opacity of Real-Time Automata. In
Cliff B. Jones, Ji Wang & Naijun Zhan, editors: Symposium on Real-Time and Hybrid Systems - Essays
Dedicated to Professor Chaochen Zhou on the Occasion of His 80th Birthday, Lecture Notes in Computer
Science 11180, Springer, pp. 44–60, doi:10.1007/978-3-030-01461-2_3.

[37] Lingtai Wang, Naijun Zhan & Jie An (2018): The Opacity of Real-Time Automata. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 37(11), pp. 2845–2856,
doi:10.1109/TCAD.2018.2857363.

[38] Meng Wu, Shengjian Guo, Patrick Schaumont & Chao Wang (2018): Eliminating timing side-channel
leaks using program repair. In Frank Tip & Eric Bodden, editors: ISSTA, ACM, pp. 15–26,
doi:10.1145/3213846.3213851.

https://doi.org/10.1016/j.entcs.2005.05.046
https://doi.org/10.1145/3236024.3236028
https://doi.org/10.1007/BFb0031995
https://doi.org/10.1016/S1567-8326(02)00037-1
https://doi.org/10.1109/TSE.2014.2357445
https://doi.org/10.1109/RTSS.2010.30
https://doi.org/10.1007/3-540-46430-1_26
https://doi.org/10.1109/CSF.2017.8
https://doi.org/10.1007/11547662_24
https://doi.org/10.1007/978-3-030-25540-4_8
https://doi.org/10.1007/978-3-319-89722-6_2
https://doi.org/10.1109/CSF.2019.00010
https://doi.org/10.1007/978-3-030-01461-2_3
https://doi.org/10.1109/TCAD.2018.2857363
https://doi.org/10.1145/3213846.3213851

Maurice H. ter Beek and Clemens Dubslaff (Eds.):
Proceedings of the First Workshop on Trends
in Configurable Systems Analysis (TiCSA’23)
EPTCS 392, 2023, pp. 27–39, doi:10.4204/EPTCS.392.2

© J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert
This work is licensed under the
Creative Commons Attribution License.

Spreadsheet-based Configuration of Families of Real-Time
Specifications

José Proença
CISTER and University of Porto, Portugal

jose.proenca@fc.up.pt

David Pereira Giann Spilere Nandi
CISTER, Polytechnic Institute of Porto, Portugal

{drp,giann}@isep.ipp.pt

Sina Borrami Jonas Melchert
Alstom

{sina.borrami,jonas.melchert}@alstomgroup.com

1 Introduction

Model checking real-time systems is complex. This particular work was motivated by and developed in
collaboration with an industrial use-case provider: the Alstom railway company, in the context of the
VALU3S European project. In this use-case we formally analyse a motor controller used in signalling
systems: a safety-critical embedded system that reacts to instructions to turn a motor left or right. Given
the criticality of this system and the need to comply to railway standards [11, 12, 13], the motor controller
includes redundancy techniques, and its certification requires formal evidences that given time-bounds
are met.

The implementation of this motor controller has been developed hand-in-hand with the formal spec-
ification of a real-time model in Uppaal [9], with a mutual influence between the two. Full details of this
use-case can be found in our previous work [16]. The level of detail and the amount of non-determinism
in early models quickly led to state-space explosions when analysing properties such as deadlock free-
dom. To cope with the state-space explosion problem, different details could be abstracted away. This
led us to two core challenges: (i) how to efficiently involve both experts in model-checking and experts in
the application domain; and (ii) how to balance trade-offs in the formal specifications between including
enough details to be faithful to the implementation and not too many details to avoid model-checking
more complex requirements.

Our approach involves the creation of many variations of the real-time specification, and using MS
Excel spreadsheets to help keeping the developers engaged and not interacting directly with the model-
checker. The Uppaal specifications are annotated, and a set of companion spreadsheets controls variabil-
ity, i.e., for each variation it configures both how the annotated parts of the Uppaal specification can be
modified and which requirements should be used.

Contributions. This paper presents extensions that provide a better support for variability, introducing
the concept of a feature model [18] within the spreadsheets to validate configurations, and introducing
integer attributes to these feature models. We provide a companion open-source tool—Uppex—that
reads MS Excel spreadsheets and Uppaal models and automatises the feature analysis and the model-
checking processes. The results are validated within the railway use-case, provided by Alstom, already
described in detail in our previous work [16]. We further use a simpler example that the reader can use
to experiment with Uppex.

http://dx.doi.org/10.4204/EPTCS.392.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

28 Spreadsheet-based configuration of Families of Real-Time Specifications

Related work Model-checking complex systems is difficult and often infeasible due to space explosion.
A possible approach to verify properties over networks of automata with a state-space that is too large
to traverse is to use statistical model checking (SMC) [15]. Uppaal Stratego supports SMC [9], and has
shown promising results in the railway domain over a moving block signalling system [3]. Using SMC,
properties are quantified over the probability of occurring, and model-checking involves performing
many runs of the system until the confidence reflects the probability of the property. Uppex provides an
alternative to model-check complex systems, without losing the strength of symbolic model-checking, by
facilitating the process of producing many simplifications, each abstracting over different aspects. This
family of simpler models is automatically model-checked by successive instantiations and invocations
to Uppaal. Although we use the Uppaal model checker, this tool and our methodology can be easily
adapted to other model-checkers such as IMITATOR [1] or mCRL2 [6].

The idea of verifying a family of systems efficiently has been investigated and well received in the
software product line community [8, 6]. The goal of these approaches is to be able to verify a set of
properties in all members of a family of systems. This is often realised by modelling the variability as-
pect together with the behavioural aspect, avoiding the generation of one model for each member. On the
contrary, our approach produces one instance of the model for each member. This creates less dependen-
cies to the choice of the concrete model-checker and allows customising which properties are verified at
each instance, at the cost of performance and number of configurations supported. Furthermore, Uppex
attempts to provide an easy interface between modellers and developers, giving the power to developers
to fine-tune parameters and configurations without being exposed to the model-checker.

Uppex uses a Domain Specific Language to represent feature models, for which many textual and
modelling languages exist [5]. A feature model is here represented as a spreadsheet table, getting inspi-
ration mainly from the UVL language [19], but exploiting the tabular representation to capture the tree
structure of feature diagrams [18].

Several approaches exist to realise variability, i.e., to generate software artefacts from a selection of
features [10]. Popular ones include annotative and compositional approaches [2]. Annotative approaches
mark code blocks that should be removed when some feature is absent at compile time, e.g. using
the C-preprocessor to hide blocks of code using #ifdef directives. Compositional approaches, such as
feature-oriented programming [4], aspect-oriented programming [14], and delta-oriented programming
[17], provide mechanisms to inject blocks of code based on the selected features. Uppex uses annotated
blocks in a compositional way, i.e., they act as hooks marking consecutive lines of the specification
file that can be modified when producing variations. This is aligned with the aspect-oriented approach,
which uses patterns to discover blocks to be adapted (instead of explicit hooks), and with the delta-
oriented approach, which uses the names of structural elements (such as classes, objects, and methods)
as the blocks to be adapted. Our approach is more primitive, in the sense that it is not aware of the
structure of the documents being adapted. This makes it more independent of the target language and
analyser being used in the back-end, at the cost of understanding and reusing the content of the blocks
being replaced. For example, Uppex cannot keep an existing annotated block and add a new line, but can
only replace the full block with a new one.

Organization of the paper. Section 2 provides more details over our motivating railway scenario
prior to our extensions. Section 3 describes how to add variability to Uppaal models with Uppex, using
features an feature models, using a simpler example. Section 4 summarises some lessons learned when
using Uppex, and Section 5 concludes this paper and suggests lines of future work.

J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert 29

Bu�er1 Monitor1 Controller1 Reader1

Bu�er2 Monitor2 Controller2 Reader2

Dashboard

Simulator

Circuit

Simulator

Self-Test Scheduler
Encoder1

Encoder2

Decoder1

Decoder2

Fault Injectorfail fail
fail

warnwarn,upd
do self-test

to

error

warn,upd
warn upd

instruction

warn

instruction

error
signal

report

updupd

error

limit

Figure 1: Architecture of the concurrent components being modelled.

2 Motivation: model-checking a motor controller

The system under study is a motor controller; its detailed component architecture is depicted in Fig. 1.
Overall, the controller receives instructions from a dashboard (to turn left, to turn right, or a heartbeat),
and sends signals to a circuit that triggers the corresponding rotation of an engine. The circuit sends peri-
odic reports to the controller, either informing that the maximum rotation was reached or that a problem
was found. Finally the controller notifies the dashboard whenever an important update or warning exists.

The architecture in Fig. 1 includes other details, explained below.

• The system has redundancy: most components are replicated (e.g., Controller1 and Controller2,
and their consistency is verified by monitors and decoders.

• The environment is modelled by 3 components: the Dashboard Simulator, the Circuit Simulator,
and the Fault Injector; different scenarios can be considered, to analyse the behaviour under well-
and ill-behaved environments.

• The components interact in different ways: using synchronisation barriers (), non-blocking
synchronous sends that lose data when the reader is not ready () or that are guaranteed by the
receiver to be received (), and asynchronous interaction via a shared variable that is written by
the sender and read by the receiver ().

The core behaviour is described by both Controller components, who are responsible to detect errors and
enter a fallback state in such cases, e.g., when the engines take too long or are too fast to reach the end
of a rotation.

Our formal model of this system in Uppaal encodes each component as a state machine, more specifi-
cally a real-time automaton [9]. When model-checking this model many requirements cannot be verified
precisely due to a space explosion. This is because, in many time-points, a very large number of in-
terleavings were possible. E.g., often 8 different components could perform some interaction in any
possible order. Our solution consists in creating many variants of the real-time model, simplifying dif-
ferent aspects of this model, and selecting different requirements to different variants. These variants
include, among others:

• different environments (dashboards, circuits, and fault injectors);

• discarded heartbeat signals, i.e., periodic messages sent from the dashboard to confirm that the
motor is available;

• discarded consistency checks between replicated counter-parts;

30 Spreadsheet-based configuration of Families of Real-Time Specifications

⇒
Uppex

Figure 2: Uppex workflow: updating and verifying models based on configuration tables

• discarded reading from the circuit; and

• discarded part of the controller behaviour (initial tests).

In total, we collected ±35 aspects that could be toggled, called features, and manually selected 14 com-
binations of these features, called configurations. The choice of this combinations was driven by the
requirements, i.e., adapted until each requirement could be verified in a rich-enough set of variants. Note
that some of these features were describing requirements that must be verified, e.g., if deadlock freedom
should be verified. Also note that these features are not meant to be optional features of the implemen-
tation, e.g., we always expect the final system to use heartbeats; however, abstracting it away in some
variations allows the verification of properties that do not rely on heartbeats.

Statistical Model Checking (SMC), also supported by Uppaal and applied in a similar context [3],
is an alternative approach that we avoid. Using SMC one can verify properties with a given level of
certainty, based on many runs of the model. However, it does not provide the same level of certainty of
traditional symbolic model-checking.

Automatisation with spreadsheets and Uppex

We propose to automatise the verification of these variants, initially reported in RSSRail 2022 [16], using
(i) spreadsheets to represent both core parameters and requirements of the system under study, and (ii) a
prototype tool Uppex1 to automatise the creation and verification of variations of the formal specification,
whereas each variation can have a different set of requirements. Formal models are annotated, specified,
and verified using the Uppaal model checker [9]. Uppaal targets real-time systems, using special vari-
ables called clocks that capture the passage of time, and using these clocks to guide the behaviour (with
some syntactic restrictions that make the model-checking problem feasible).

Uppex is an open-source command-line tool developed in Scala that reads both a set of spreadsheets
with configurations in MS Excel and an annotated Real-Time specification in Uppaal. Other back-ends
are future work, e.g. IMITATOR [1]. A typical workflow is depicted in Fig. 2: given a set of configuring
spreadsheets and an annotated Uppaal specification (left), Uppex produces an html report (right) listing
properties that passed, failed, or timed-out for each configuration.

More specifically, Uppex interprets (1) special sheets from a MS Excel file and (2) an annotated
Uppaal file (XML format), briefly described below.

1https://cister-labs.github.io/uppex/

https://cister-labs.github.io/uppex/

J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert 31

Figure 3: Annotated Uppaal specification of a worker (left) and a hammer (middle); this specification is
an XML file with code snippets (c.f. right side) with c-like code that is used by the automata

• Two types of annotated blocks are recognised by Uppex in the Uppaal file: (1) a sequence of
consecutive lines starting with “// @BlockName” until an empty line, such as the “// @Limit”
block on the right of Fig. 3, and (2) an XML element “<BlockName>...</BlockName>”, covering
the text between the tags. Both these annotated blocks have an identifier (the BlockName) and a
consecutive sequence of lines.

• The sheet @Configurations (top-left of Fig. 2) lists valid combinations of features, describing
configuration names in the first column and feature names in the first row.

• Any other sheet starting with @, such as @Timebounds (bottom-left of Fig. 2) describe what code
will be injected in the Uppaal specification, in this case in an annotated block named Timebounds.
The column named Features is used to filter rows based on the selected configuration – in this
case the last two rows have the same identifier (SelfTest), and when the SelfTesting feature is
active the last row will override the previous one. We call these @-annotations.

• Any sheet with a name surrounded by < ·> (e.g. <queries>), is similar to an @-sheet, but targetting
annotated blocks given by XML elements, as explained above. We call these xml-annotations.

We will describe each of these tables and annotations in more detail below, guided by a simpler
example, and extend this approach to further exploit the analyses of features.

3 Feature modelling in Uppex

In this work we extend Uppex to further exploit the feature analysis, introducing data attributes, feature
conditions, and a feature model. These are explained below using a simpler but complete example of
a hammer automaton interacting with a worker automata while hitting nails. This example can be found
together with the tool at https://github.com/cister-labs/uppex/blob/v0.1.3/examples.

3.1 Annotating Uppaal specifications

When developing a family of models with Uppex, the starting point is a parameterised model. In Fig. 3
we present a simple example with 2 timed-automata, where a worker is either Resting or Working. While
working, it uses a hammer to either hit a nail or to place a newNail. The code on the right side is used by
the Uppaal specification; e.g., sessionTime represents the combined time to rest and work by the worker,
set to 100. The other variables, from top to bottom respectively, capture the maximum time to hit a nail
or to add a new one, if the nails should be counted, the number of nails, and if no limit of nails should be
considered. The details of the semantics of timed-automata are out of the scope of this paper; intuitively
each transition can have a guard representing when the transition is active, an action that will act as a

https://github.com/cister-labs/uppex/blob/v0.1.3/examples

32 Spreadsheet-based configuration of Families of Real-Time Specifications

synchronisation barrier with a counterpart action, and an update that updates variables after a transition.
Some special variables represent time and are called clocks; in our example t and session.

3.2 Configuring variants

A configuration is a variation of the Uppaal specification by replacing an annotated block by a new
block with the same name. In our example, the code on the right of Fig. 3 has a @Limits block with 5
lines. Using a companion MS Excel spreadsheet, we can specify configurations that describe how these
annotated blocks can be replaced.

Figure 4: Defining configurations with spreadsheets: selection of features in @Configuration (left),
defining the @Limits annotation (middle), and defining the <queries> annotation (right)

The middle of Fig. 4 presents the @Limits sheet in our hammer example, containing a table of values
that is used to produce the associated @Limits annotation block.

This table is called an @-annotation. In the new block each line is formatted according to the top row
“const $Type $Name = $Value; // $Comment”. Blocks can also refer to XML tags, to replace blocks
delimited by a given tag; e.g. the sheet on the right of Fig. 4 is an xml-annotation that specifies a list of
requirements using Uppaal’s logic that will replace the content of the <queries> XML element.

A configuration is a set of features, defined in the @Configuration table (left of Fig. 4). For exam-
ple, the configuration named SlowLazy includes the features Lazy and Slow. Features can also have an
associated value, e.g., Count is assigned to “4” in configuration NormalCount and to “3” in SlowCount.

The annotation tables (c.f. middle and right of Fig. 4) can have a special column named Features

with boolean expressions over feature names. This is used to filter rows: given a configuration, only
rows with an expression that holds for the corresponding set of feature is considered. Empty expressions
are trivially true. Furthermore, the left-most column acts as an identifier: if more than a row with the
same identifier is selected, the last one with a valid feature expression is used. We chose to use an
overriding interpretation, instead of forcing these feature expressions to be disjoint for entries with the
same identifier, because we found these specifications to be simpler to write and more compact. In this
example selecting the Overworker feature and not Lazy will discard the 2nd row for sessionTime, and
the 3rd will override the 1st. I.e., the variable sessionTime will be set to 200. The value of a feature
can be used in the other cells of a row; e.g., the value of totalNails will be set to 4 when choosing the
configuration NormalCount.

This work extends our previous approach [16] by (i) associating values to features and (ii) using of
expressions over features instead of individual features in the Features column.

J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert 33

Hammer

Worker-e�ort

Lazy Normal Overworker

Hammer-speed

Slow

Nails

Count

InfNails

Figure 5: Example of a feature diagram: its tabular form (left) and its usual representation (right)

3.3 Validating features

Not all combination of features in the @Configuration table should be considered. For example, the
worker should not be both lazy and overworker. Such constraints are compiled in another special table
called @FeatureModel, using a tabular form of feature diagrams [18]. These constraints describe valid
combinations of features but are not related to the Feature columns in the annotation tables. We bor-
rowed some constructs from the textual UVL language for feature models [19], and synthesise UVL
diagrams in Uppex. An example of a feature diagram can be found in Fig. 5: on the left our tabular
representation, and on the right its more traditional visual representation. The table is interpreted as
follows.

• Non-empty rows whose 1st column does not start with # describe the tree structure: the par-
ents on the left and the children on the right. For example, cell C4 (Slow) is the child of B4

(Hammer-speed), which in turn is the child of A4; the latter cell is empty, meaning that it inher-
its the previous value in column A, i.e. A1 (Hammer).

• Rows whose 1st column starts with # describe a constraint:

– #mandatory <siblings> – given a set of features with a common parent (siblings), it states
that these are mandatory whenever the parent is selected;

– #optional <siblings> – states that a set of siblings are optional, even if the parent is se-
lected

– #alternative <siblings> – states that a set of siblings are exclusive and at most one should
be included whenever the parent is selected;

– #or <siblings> – states that at least one out of a set of siblings should be included whenever
the parent is selected;

– #constraint <feature-constraint> – is a boolean formula over features, following the
same syntax as in the Features column (c.f. Section 3.2), that must hold.

Only the #alternate and the #optional constraints are illustrated in Fig. 5, and by default all features
are mandatory. Combining the tree structure and the constraints yields a feature diagram, such as the one
on the right of Fig. 5. Currently Uppex supports feature-constraints over features but not over feature
attributes, which is left as future work. The tree structure also imposes a strong need to include parent
features whenever a child is selected – Uppex exploits this by automatically expanding the selection of
features to all the parents of the selected ones.

34 Spreadsheet-based configuration of Families of Real-Time Specifications

3.4 Workflow using Uppex and Uppaal

So far we described how to specify the input models: (i) the annotated Uppaal specification, (ii) the
tables with possible parameters and requirements, (iii) the table with configurations of features, and (iv)
the table with the feature model. This subsection describes our proposed methodology, i.e., the suggested
workflow with Uppex and Uppaal during the development of a model.

Uppex’s tool is a standalone JAR file uppex.jar, open-source and available at https://github.
com/cister-labs/uppex/releases, that can be executed as a command line tool using java -jar

uppex.jar [options] <mytables.xlsx> . We expect a typical development of a Uppaal+Uppex project
to proceed as follows.

1. Model: Produce a base Uppaal model project.xml, i.e., a network of timed automata that can be
simulated in Uppaal.
Edit: Automata in Uppaal

2. Parameterise: Identify a set of parameters that can be useful to expose to domain experts and
create the associated @-annotations in the companion Excel file project.xlsx; update the Uppaal
model by running Uppex with no arguments, e.g. java -jar uppex.jar project.xlsx .
Edit: Automata in Uppaal & @-annotations in Excel

3. Verify behaviour: Identify a set of requirements, specify them using Uppaal’s CTL, and place
these in the <queries> spreadsheet (c.f. right of Fig. 4); update the Uppaal model as before, or ver-
ify all properties using Uppex using the command java -jar uppex.jar --run project.xlsx .
Edit: <queries>-annotation in Excel

4. Instantiate: Identify variability points and features, populating the annotation tables with a col-
umn Features (c.f. right of Fig. 4); create the @Configurations table to list products, i.e., desired
combinations of features (c.f. left of Fig. 4); transform the working Uppaal file to match any given
configuration (or product) prod by running java -jar uppex.jar -p prod project.xlsx ; the
verification in step (3) can also receive the -p prod option, or simply --runAll to verify all avail-
able products.
Edit: @Configurations & annotations in Excel

5. Verify instances: Identify restrictions over what features can be combined, and specify these in the
special @FeatureModel table (c.f. Fig. 5); Uppex will always validate all features when verifying
or applying a product, but can also be used exclusively for validation by running java -jar

--validate project.xlsx .
Edit: @FeatureModel in Excel

At each of the steps above it is often needed to revisit the previous steps. E.g., after the verifica-
tion step (3) we expect to be needed to revisit the model in steps (1) and (2), to adapt it based on the
verification results.

When a product is applied, a backup of the original version is stored in a folder backups, to prevent
losing parameters by mistake. This resembles a naïve implementation of a version-control system, where
applying a product modifies the working document, while keeping the history of previous versions.

Verifying properties with Uppaal requires the verifyta tool to be available at the command line,
called by Uppex using system calls.2 After verifying all properties of all products with java -jar

uppex.jar --runnAll project.xlsx , the tool presents a summary of annotations and configurations
found, the feature model in plain text using UVL [19], potential errors when validating products, and the

2Uppaal is a commercial tool, but freely available for academic partners.

https://github.com/cister-labs/uppex/releases
https://github.com/cister-labs/uppex/releases

J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert 35

>>> java -jar uppex.jar \
--runAll hammer.xlsx

features
Hammer
optional
Worker-effort
alternative
Lazy
Normal
Overworker

Hammer-speed
mandatory
Slow

Nails
mandatory
Count
optional
InfNails

constraints
!(Lazy && Overworker)

- Products: InfiniteCount,

NormalCount, SlowCount,
SlowLazy, Lazy, Slow, Overwork,
Main

> Reading Uppaal file ’hammer.xml’
---Verifying ’InfiniteCount’---
| Error or time-out after 30s.

Missing 7 properties. Failed on:
| "No deadlocks"

---Verifying ’NormalCount’---
[FAIL] No deadlocks
[FAIL] The worker is always resting
[OK] The hammer can finish a nail
[FAIL] The hammer must complete a nail
...

Figure 6: Output when running Uppex to verify all properties in the hammer project: to the prompt (left)
and to the report.html file (right)

results from verifying each property. Each property is marked as passed, failed, or threw an error (e.g.,
time-out). Furthermore, a report.html file is created that clusters these results in a more useful form.
The textual output and the HTML report of our hammer example can be found in Fig. 6.

4 Discussion

Our tool and methodology was first applied to our industrial use-case provided by the Alstom railway
company on a signalling system, c.f. Section 2. Many of our design decisions were motivated by weekly
discussions between academics and practitioners. Some of the insights gained by this collaboration using
Uppex are summarised below.

• Automata size: The number of automata, locations, and variables easily increased when adding

36 Spreadsheet-based configuration of Families of Real-Time Specifications

more details, reaching the 16 automata in Fig. 1. The high level of detail was appreciated by
Alstom, as well as the use of variability to enable a precise verification of properties without
needing to use statistical model checking approaches.

• Non-determinism: The high number of non-determinism resulting from allowing several actions
to be taken in any order made it more difficult not only to verify, but also to predict the behaviour of
the system. Consequently, a new version of this software is being prepared, with a finer scheduling
control that reduces this non-determinism to a minimum.

• Feature model: The newly added structure to the features in the feature model contributed to a
better understanding and insights of what can be modified in the formal model and how.

• Attributes: The possibility of using values in the @Configurations table facilitated the experimen-
tation with different parameters without having to search through different tables for the values to
update.

• Optimal configurations: The possibility of enriching Uppex to support the search for optimal
configurations was considered, but this raised concerns regarding a possible increase of the learn-
ing curve to use Uppex. Introducing generic goal functions and cost values could compromise the
ease of adoption of Uppex.

• Feature model size: As the feature model grows, the number of valid variants grows exponentially
with the number of features. In Uppex this was not a concern, since it does neither generate all
possible variants nor it attempts to find a variant that obeys some condition. Verifying if a single
configuration is valid is computationally simple (linear on the size of the feature model). There is a
risk of needing to manually add an increasingly large number of configurations to cover a relevant
set of combinations, but we did not encounter this problem in our use-cases.

When compared the Uppex version used in our previous work with Alstom [16], the industrial part-
ners mainly appreciated the possibility of providing numbers in the @Configuration table, avoiding the
need to navigate through several other sheets. The added structure to the features brought from the feature
model also contributed to a better understanding of what the features precisely captured (and resulted in
some restructuring of features). Alstom developers were able to edit a shared Excel spreadsheet to adapt
some configuration parameters, and were able to understand the generated html report, although the ex-
ecution of Uppex with the model-checker was mainly carried by the academic partner. Furthermore, the
usage of feature expressions in the Features column instead of single features also simplified our model,
avoiding some previously added artificial features used to fine-tune the model.

5 Conclusion and future work

This paper reports on our recent attempt to include feature models represented in our configuring-
spreadsheets in an intuitive way for developers, based on feature diagrams with integer attributes, and on
how to exploit these for automatic analysis. This work was developed in collaboration with the Alstom
railway company, within the VALU3S European project on verification and validation methods and tools.

Our experience showed that, on the one hand, it is useful to adapt the formal model and requirements
by using a set of spreadsheets with key parameters. On the other hand it also highlighted that the pivotal
notion of features was not yet fully exploited. This work includes support for feature models with
attributes while preserving the simplicity of our spreadsheet-based interface, and keeping an easy-to-
use solution that can be adopted by practitioners.

J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert 37

Based on the feedback from Alstom, possible ideas for future work include the following.
• Coverage: Currently it is possible to quickly grasp which configurations can validate each of

the properties. However, it is hard to provide insights over how complete is this coverage, i.e.,
how much of the full system is validated for any given property. Counting the number of such
configurations is a simple but not fully satisfactory approach. A better approach would be to
quantify the scope of a configuration, e.g., how many locations can be reached, or which out of a
set of reference reachability properties can be proven.

• Other analysers: We use Uppaal as our underlying model checker, but Uppex is general enough
to be applied to other static analysis tools with little effort. For example, by using IMITATOR [1]
instead we should be able to verify similar properties with a non-commercial tool and search for
optimal parameters, and by using mCRL2 [7] instead we should be able to support the verification
of properties focused on actions rather than states.

• Deployment configurations: The same configurations’ table could be used to guide the customi-
sation of deployment scripts, or other configuration files that can introduce the variability choices
in the concrete software implementations.

Furthermore, we invite anyone in the community to submit suggestions or issues using GitHub’s
issue tracker system, or to contact us for future collaborations.

Acknowledgments

This work was supported by the CISTER Research Unit (UIDP/UIDB/04234/2020), financed by Na-
tional Funds through FCT/MCTES (Portuguese Foundation for Science and Technology) and by project
IBEX (PTDC/CCI-COM/4280/2021) financed by national funds through FCT. It is also a result of the
work developed under projects and Route 25 (ref. TRB/2022/00061 – C645463824-00000063) funded
by the EU/Next Generation, within the Recovery and Resilience Plan (RRP); and project VALU3S (EC-
SEL/0016/2019 – JU grant nr. 876852) financed by national funds through FCT and European funds
through the EU ECSEL JU. The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Austria, Sweden, Spain, Italy, France, Portugal, Ireland, Finland, Slove-
nia, Poland, Netherlands, Turkey – Disclaimer: This document reflects only the author’s view and the
Commission is not responsible for any use that may be made of the information it contains.

References
[1] Étienne André (2021): IMITATOR 3: Synthesis of Timing Parameters Beyond Decidability. In Alexan-

dra Silva & K. Rustan M. Leino, editors: Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I, LNCS 12759, Springer, pp. 552–565,
doi:10.1007/978-3-030-81685-8_26.

[2] Sven Apel, Don S. Batory, Christian Kästner & Gunter Saake (2013): Feature-Oriented Software Product
Lines - Concepts and Implementation. Springer, doi:10.1007/978-3-642-37521-7.

[3] Davide Basile, Maurice H. ter Beek, Alessio Ferrari & Axel Legay (2022): Exploring the ERTMS/ETCS full
moving block specification: an experience with formal methods. Int. J. Softw. Tools Technol. Transf. 24(3),
pp. 351–370, doi:10.1007/s10009-022-00653-3.

[4] Don S. Batory (2005): A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite. In Ralf
Lämmel, João Saraiva & Joost Visser, editors: Generative and Transformational Techniques in Software
Engineering, International Summer School, GTTSE 2005, Braga, Portugal, July 4-8, 2005. Revised Papers,
Lecture Notes in Computer Science 4143, Springer, pp. 3–35, doi:10.1007/11877028_1.

https://doi.org/10.1007/978-3-030-81685-8_26
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/s10009-022-00653-3
https://doi.org/10.1007/11877028_1

38 Spreadsheet-based configuration of Families of Real-Time Specifications

[5] Maurice H. ter Beek, Klaus Schmid & Holger Eichelberger (2019): Textual variability modeling languages:
an overview and considerations. In Carlos Cetina, Oscar Díaz, Laurence Duchien, Marianne Huchard, Rick
Rabiser, Camille Salinesi, Christoph Seidl, Xhevahire Tërnava, Leopoldo Teixeira, Thomas Thüm & Tewfik
Ziadi, editors: Proceedings of the 23rd International Systems and Software Product Line Conference, SPLC
2019, Volume B, Paris, France, September 9-13, 2019, ACM, pp. 82:1–82:7, doi:10.1145/3307630.3342398.

[6] Maurice H. ter Beek, Erik P. de Vink & Tim A. C. Willemse (2017): Family-Based Model Checking with
mCRL2. In Marieke Huisman & Julia Rubin, editors: Fundamental Approaches to Software Engineering -
20th International Conference, FASE 2017, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Lecture Notes in
Computer Science 10202, Springer, pp. 387–405, doi:10.1007/978-3-662-54494-5_23.

[7] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger
Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems
- Improvements in Expressivity and Usability. In Tomás Vojnar & Lijun Zhang, editors: Tools and Algorithms
for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic,
April 6-11, 2019, Proceedings, Part II, LNCS 11428, Springer, pp. 21–39, doi:10.1007/978-3-030-17465-1_-
2.

[8] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay & Jean-François Raskin (2010):
Model checking lots of systems: efficient verification of temporal properties in software product lines. In
Jeff Kramer, Judith Bishop, Premkumar T. Devanbu & Sebastián Uchitel, editors: Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town, South
Africa, 1-8 May 2010, ACM, pp. 335–344, doi:10.1145/1806799.1806850.

[9] Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis & Danny Bøgsted Poulsen (2015):
Uppaal SMC tutorial. International journal on software tools for technology transfer 17, pp. 397–415,
doi:10.1007/s10009-014-0361-y.

[10] Sascha El-Sharkawy, Nozomi Yamagishi-Eichler & Klaus Schmid (2019): Metrics for analyzing variability
and its implementation in software product lines: A systematic literature review. Inf. Softw. Technol. 106,
pp. 1–30, doi:10.1016/j.infsof.2018.08.015.

[11] (2017): Railway Applications. The Specification and Demonstration of Reliability, Availability, Maintain-
ability and Safety (RAMS). Generic RAMS Process. Standard (N), CENELEC.

[12] (2020): Railway applications. Communication, signalling and processing systems - Software for railway
control and protection systems. Standard (N), CENELEC.

[13] (2018): Railway applications. Communication, signalling and processing systems. Safety related electronic
systems for signalling. Standard (N), CENELEC.

[14] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc Loingtier
& John Irwin (1997): Aspect-oriented programming. In: ECOOP’97—Object-Oriented Programming:
11th European Conference Jyväskylä, Finland, June 9–13, 1997 Proceedings 11, Springer, pp. 220–242,
doi:10.1007/BFb0053381.

[15] Axel Legay, Anna Lukina, Louis-Marie Traonouez, Junxing Yang, Scott A. Smolka & Radu Grosu (2019):
Statistical Model Checking. In Bernhard Steffen & Gerhard J. Woeginger, editors: Computing and Software
Science - State of the Art and Perspectives, Lecture Notes in Computer Science 10000, Springer, pp. 478–
504, doi:10.1007/978-3-319-91908-9_23.

[16] José Proença, Sina Borrami, Jorge Sanchez de Nova, David Pereira & Giann Spilere Nandi (2022): Ver-
ification of Multiple Models of a Safety-Critical Motor Controller in Railway Systems. In Simon Collart
Dutilleul, Anne E. Haxthausen & Thierry Lecomte, editors: Reliability, Safety, and Security of Railway
Systems. Modelling, Analysis, Verification, and Certification - 4th International Conference, RSSRail 2022,
Paris, France, June 1-2, 2022, Proceedings, Lecture Notes in Computer Science 13294, Springer, pp. 83–94,
doi:10.1007/978-3-031-05814-1_6.

https://doi.org/10.1145/3307630.3342398
https://doi.org/10.1007/978-3-662-54494-5_23
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1145/1806799.1806850
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1016/j.infsof.2018.08.015
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-319-91908-9_23
https://doi.org/10.1007/978-3-031-05814-1_6

J. Proença, D. Pereira, G.S. Nandi, S. Borrami, and J. Melchert 39

[17] Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani & Nico Tanzarella (2010): Delta-Oriented
Programming of Software Product Lines. In Jan Bosch & Jaejoon Lee, editors: Software Product Lines:
Going Beyond - 14th International Conference, SPLC 2010, Jeju Island, South Korea, September 13-17,
2010. Proceedings, Lecture Notes in Computer Science 6287, Springer, pp. 77–91, doi:10.1007/978-3-642-
15579-6_6.

[18] Pierre-Yves Schobbens, Patrick Heymans & Jean-Christophe Trigaux (2006): Feature Diagrams: A Sur-
vey and a Formal Semantics. In: 14th IEEE International Conference on Requirements Engineering (RE
2006), 11-15 September 2006, Minneapolis/St.Paul, Minnesota, USA, IEEE Computer Society, pp. 136–
145, doi:10.1109/RE.2006.23.

[19] Chico Sundermann, Kevin Feichtinger, Dominik Engelhardt, Rick Rabiser & Thomas Thüm (2021): Yet
another textual variability language?: a community effort towards a unified language. In Mohammad Reza
Mousavi & Pierre-Yves Schobbens, editors: SPLC ’21: 25th ACM International Systems and Software
Product Line Conference, Leicester, United Kingdom, September 6-11, 2021, Volume A, ACM, pp. 136–
147, doi:10.1145/3461001.3471145.

https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1007/978-3-642-15579-6_6
https://doi.org/10.1109/RE.2006.23
https://doi.org/10.1145/3461001.3471145

Maurice H. ter Beek and Clemens Dubslaff (Eds.):
Proceedings of the First Workshop on Trends
in Configurable Systems Analysis (TiCSA’23)
EPTCS 392, 2023, pp. 40–52, doi:10.4204/EPTCS.392.3

© G. De Palma et al.
This work is licensed under the
Creative Commons Attribution License.

Serverless Scheduling Policies based on Cost Analysis

Giuseppe De Palma1, Saverio Giallorenzo1,2, Cosimo Laneve1,
Jacopo Mauro3, Matteo Trentin1,3, Gianluigi Zavattaro1,2

1Università di Bologna, Italy
2Sophia Antipolis, INRIA, France
3University of Southern Denmark

Current proprietary and open-source serverless platforms follow opinionated, hardcoded scheduling
policies to deploy the functions to be executed over the available workers. Such policies may decrease
the performance and the security of the application due to locality issues (e.g., functions executed
by workers far from the databases to be accessed). These limitations are partially overcome by the
adoption of APP, a new platform-agnostic declarative language that allows serverless platforms to
support multiple scheduling logics. Defining the “right” scheduling policy in APP is far from being
a trivial task since it often requires rounds of refinement involving knowledge of the underlying
infrastructure, guesswork, and empirical testing.

In this paper, we start investigating how information derived from static analysis could be
incorporated into APP scheduling function policies to help users select the best-performing workers
at function allocation. We substantiate our proposal by presenting a pipeline able to extract cost
equations from functions’ code, synthesising cost expressions through the usage of off-the-shelf
solvers, and extending APP allocation policies to consider this information.

1 Introduction

Serverless is a cloud-based service that lets users deploy applications as compositions of stateless functions,
with all system administration tasks delegated to the platform. Serverless has two main advantages for
users: it saves them time by handling resource allocation, maintenance, and scaling, and it reduces costs
by charging only for the resources used to perform work since users do not have to pay fur running
idle servers [7]. Several managed serverless offerings are available from popular cloud providers like
Amazon AWS Lambda, Google Cloud Functions, and Microsoft Azure Functions, as well as open-source
alternatives such as OpenWhisk, OpenFaaS, OpenLambda, and Fission. In all cases, the platform manages
the allocation of function executions across available computing resources or workers, by adopting
platform-dependent policies. However, the execution times of the functions are not independent of the
workers since effects like data locality (the latencies to access data depending on the node position) can
increase the run time of functions [6].

We visualise the issue by commenting on the minimal scenario drawn in Figure 1. There, we have
two workers, W1 and W2, located in distinct geographical Zones A and B, respectively. Both workers can
run functions that interact with a database (db) located in Zone A. When the function scheduler — the
Controller — receives a request to execute a function, it must determine which worker to use. To minimise
response time, the function scheduler must take into account the different computational capabilities of
the workers, as well as their current workloads, and, for functions that interact with the database, the time
to access the database. In the example, since W1 is geographically close to db, it can access db with lower
latencies than W2.

APP [3, 2] is a declarative language recently introduced to support the configuration of custom function-
execution scheduling policies. The APP snippet in Figure 1 codifies the (data) locality principle of the

http://dx.doi.org/10.4204/EPTCS.392.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

G. De Palma et al. 41

- db_query:
- workers:

- wrk: W1
- wrk: W2
strategy: best_first

Figure 1: Example of function-execution scheduling problem and APP script.

example. Concretely, in the platform, we associate the functions that access db with a tag, called db_-
query. Then, we include the scheduling rule in the snippet to specify that every function tagged db_query
can run on either W1 or W2, and the strategy to follow when choosing between them is best_first, i.e.,
select the first worker in top-down order of appearance (hence giving priority to the worker W1 if available
and not overloaded).

By featuring customised function scheduling policies, APP allows one to disentangle from platform-
dependent allocation rules. This opens the problem of finding the most appropriate scheduling for
serverless applications. The approach currently adopted by APP is to feature only a few generic well-
established strategies, like the foregoing best_first. The policies are selected manually, when the APP
script is written, based on the developer’s insights on the behaviour of their functions.

In this paper, we propose the adoption of automatic procedures to define function scheduling policies
based on information derived with a static analysis of the functions. Our approach relies on three main
steps: (i) the definition of code analysis techniques for extracting meaningful scheduling information from
function sources; (ii) the evaluation of scheduling information by a(n off-the-shelf) solver that returns cost
expressions; (iii) the extension of APP to support allocation strategies depending on such expressions. In
particular, we discuss the applicability of our approach on a minimal language for programming functions
in serverless applications.

We start in Section 2 by defining our minimal language called miniSL (standing for mini Serverless
Language) which includes constructs for specifying computation flow (via if and for constructs) and
for service invocation (via a call construct). Then, by following [5, 8], we describe in Section 3 how
to exploit a (behavioural) type system to automatically extract a set of equations from function source
codes that define meaningful configuration costs. In Section 3 we also discuss how equations can be fed
to off-the-shelf cost analyser (e.g., PUBS [1] or CoFloCo [4]) to compute cost expressions quantifying
over-approximations of the considered configuration costs. These expressions are then used in Section 4
to define scheduling policies in an extension of APP, dubbed cAPP. Finally, in Section 5 we draw some
concluding remarks.

2 The mini Serverless Language

The mini Serverless Language, shortened into miniSL, is a minimal calculus that we use to define the
functions’ behaviour in serverless computing. In particular, miniSL focuses only on core constructs to
define operations to access services, conditional behaviour with simple guards, and iterations.

Function executions are triggered by events. At triggering time, a function receives a sequence of
invocation parameters: for this reason, we assume a countable set of parameter names, ranged over by

42 Serverless Scheduling Policies based on Cost Analysis

p, p′. We also consider a countable set of counters, ranged over by i, j, used as indexes in iteration
statements. Integer numbers are represented by n; service names are represented by h, g, · · · . The syntax
of miniSL is as follows (we use over-lines to denote sequences, e.g., p1, p2 could be an instance of p):

F ::= (p) => { S }
S ::= ε | call h(E) S | if (G) { S } else { S } | for (i in range(0,E)){ S }
G ::= E | call h(E)
E ::= n | i | p | E ♯ E
♯ ::= + | - | > | == | >= | && | * | /

A function F associates to a sequence of parameters p a statement S which is executed at every
occurrence of the triggering event. Statements include the empty statement ε (which is always omitted
when the statement is not empty); calls to external services by means of the call keyword; the conditional
and iteration statements. The guard of a conditional statement could be either a boolean expression or
a call to an external service which, in this case, is expected to return a boolean value. The language
supports standard expressions in which it is possible to use integer numbers and counters. Notice that, in
our simple language, the iteration statement considers an iteration variable ranging from 0 to the value of
an expression E evaluated when the first iteration starts.

In the rest of the paper, we assume all programs to be well-formed so that all names are correctly used,
i.e., counters are declared before they are used and when we use p, such p is an invocation parameter.
Similarly, for each expression used in the range of an iteration construct, we assume that its evaluation
generates an integer, and for each service invocation call h(E), we assume that h is a correct service
name and E is a sequence of expressions generating correct values to be passed to that service. Calls to
services include serverless invocations, which possibly execute on a different worker of the caller.

We illustrate miniSL by means of three examples. As a first example, consider the code in Listing 1
representing the call of a function that selects a functionality based on the characteristic of the invoker.

1 (isPremiumUser , par) => {
2 if(isPremiumUser) {
3 call PremiumService(par)
4 } else {
5 call BasicService(par)
6 }
7 }

Listing 1: Function with a conditional statement guarded by an expression.

This code may invoke either a PremiumService or a BasicService depending on whether it has been
triggered by a premium user or not. The parameter isPremiumUser is a value indicating whether the
user is a premium member (when the value is true) or not (when the value is false). The other invocation
parameter par must be forwarded to the invoked service. For the purposes of this paper, this example is
relevant because if we want to reduce the latency of this function, the best node to schedule it could be
the one that reduces the latency of the invocation of either the service PremiumService or the service
BasicService, depending on whether isPremiumUser is true or false, respectively.

Consider now the following function where differently from the previous version, it is necessary to
call an external service to decide whether we are serving a premium or a basic user.

G. De Palma et al. 43

1 (username , par) => {
2 if(call IsPremiumUser(username)) {
3 call PremiumService(par)
4 } else {
5 call BasicService(par)
6 }
7 }

Listing 2: Function with a conditional statement guarded by an invocation to external service.

Notice that, in this case, the first parameter carries an attribute of the user (its name) but it does
not indicate (with a boolean value) whether it is a premium user or not. Instead, the necessary boolean
value is returned by the external service IsPremiumUser that checks the username and returns true only
if that username corresponds to that of a premium user. In this case, it is difficult to predict the best
worker to execute such a function, because the branch that will be selected is not known at function
scheduling time. If the user triggering the event is a premium member, the expected execution time of the
function is the sum of the latencies of the service invocations of IsPremiumUser and PremiumService
while, if the user is not a premium member, the expected execution time is the sum of the latencies of
the services IsPremiumUser and BasicService. As an (over-)approximation of the expected delay, we
could consider the worst execution time, i.e., the sum of the latency of the service IsPremiumUser plus
the maximum between the latencies of the services PremiumService and BasicService. At scheduling
time, we could select the best worker as the one giving the best guarantees in the worst case, e.g., the one
with the best over-approximation.

Consider now a function triggering a sequence of map-reduce jobs.
1 (jobs , m, r) => {
2 for(i in range(0, m)) {
3 call Map(jobs , i)
4 for(j in range(0, r)) {
5 call Reduce(jobs , i, j)
6 }
7 }
8 }

Listing 3: Function implementing a map-reduce logic.

The parameter jobs describes a sequence of map-reduce jobs. The number of jobs is indicated by
the parameter m. The “map” phase, which generates m “reduce” subtasks, is implemented by an external
service Map that receives the jobs and the specific index i of the job to be mapped. The “reduce” subtasks
are implemented by an external service Reduce that receives the jobs, the specific index i of the job
under execution, and the specific index j of the “reduce” subtask to be executed — for every i, there are r
such subtasks. In this case, the expected latency of the entire function is given by the sum of m times the
latency of the service Map and of m × r times the latency of the service Reduce. Given that such latency
could be high, a user could be interested to run the function on a worker, only if the expected overall
latency is below a given threshold.

3 The inference of cost expressions

In this section, we formalise how one can extract a cost program from miniSL code. Once extracted, we
can feed this program to off-the-shelf tools, such as [4, 1], to calculate the cost expression of the related
miniSL code.

44 Serverless Scheduling Policies based on Cost Analysis

Cost programs are lists of equations which are terms

f (x) = e+ ∑
i∈0..n

fi(ei) [ϕ]

where variables occurring in the right-hand side and in ϕ are a subset of x and f and fi are (cost) function
symbols. Every function definition has a right-hand side consisting of

• a Presburger arithmetic expression e whose syntax is

e ::= x | q | e+e | e−e | q∗e | max(e1, · · · ,ek)

where x is a variable and q is a positive rational number,

• a number of cost function invocations fi(ei) where ei are Presburger arithmetic expressions,

• the Presburger guard ϕ is a linear conjunctive constraint, i.e., a conjunction of constraints of the
form e1 ≥ e2 or e1 = e2, where both e1 and e2 are Presburger arithmetic expressions.

The intended meaning of an equation f (x) = e+∑i∈0..n fi(ei) [ϕ] is that the cost of f is given by e and
the costs of fi(ei), when the guard ϕ is true. Intuitively, e quantifies the specific cost of one execution of
f without taking into account invocations of either auxiliary functions or recursive calls. Such additional
cost is quantified by ∑i∈0..n fi(ei). The solution of a cost program is an expression, quantifying the cost of
the function symbol in the first equation in the list, which is parametric in the formal parameters of the
function symbol.

For example, the following cost program

f (N,M) = M+ f (N −1,M) [N ≥ 1]
f (N,M) = 0 [N = 0]

defines a function f that is invoked N +1 times and each invocation, excluding the last having cost 0,
costs M. The solution of this cost program is the cost expression N ×M.

Our technique associates cost programs to miniSL functions by parsing the corresponding codes.
In particular, we define a set of (inference) rules that gather fragments of cost programs that are then
combined in a syntax-directed manner. As usual with syntax-directed rules, we use environments Γ, Γ′,
which are maps. In particular,

• Γ takes a service h or a parameter name p and returns a Presburger arithmetics expression, which is
usually a variable. For example, if Γ(h) = X , then X will appear in the cost expressions of miniSL
functions using h and will represent the cost for accessing the service. As regards parameter names
p, Γ(p) represents values which are known at function scheduling time,

• Γ takes counters i and returns the type Int.

When we write Γ+ i : Int, we assume that i does not belong to the domain of Γ. Let C be a sum of cost
of function invocations and let Q be a list of equations. Judgments have the shape

• Γ ⊢ E : e, meaning that the value of the integer expression E in Γ is represented by (the Presburger
arithmetic expression) e,

• Γ ⊢ E : ϕ , meaning that the value of the boolean expression E in Γ is represented by (the Presburger
guard) ϕ ,

• Γ ⊢ S : e ; C ; Q, meaning that the cost of S in the environment Γ is e+C given a list Q of
equations,

G. De Palma et al. 45

• Γ ⊢ F : Q, meaning that the cost of a function F in the environment Γ is the list Q of equations.

We use the notation var(e) to address the set of variables occurring in e, which is extended to tuples
var(e1, · · · ,en) with the standard meaning. Similarly var(∑i∈0..n fi(ei)) is the union of the sets of variables
var(e0), · · · ,var(en).

The inference rules for miniSL are reported in Figure 2. They compute the cost of a program with
respect to the calls to external services (whose cost is recorded in the environment Γ). Therefore, if a
miniSL expression (or statement) has no service invocation, its cost is 0. Notice that in the rule [IF-EXP]
we use the guard [¬ϕ], to model the negation of a linear conjunctive constraint ϕ , even if negation is not
permitted in Presburger arithmetic. Actually, such notation is syntactic sugar defined as follows:

• let ¬ϕ (the negation of a Presburger guard ϕ) be the list of Presburger guards

¬(e ≥ e′) = e′ ≥ e+1
¬(e = e′) = e ≥ e′+1 ; e′ ≥ e+1
¬(e∧e′) = ¬e ; ¬e′

where ; is the list concatenation operator (the list represents a disjunction of Presburger guards),

• let ¬ϕ = ϕ1 ; · · · ; ϕm , where ϕi are Presburger guards, then(
f (x) = e+ ∑

i∈0..n
fi(ei)

)
[¬ϕ]

def
=

{
f (x) = e+ ∑

i∈0..n
fi(ei) [ϕ j] | j ∈ 1..m

}
.

We now comment on the inference rules reported in Figure 2.1

Rule [CALL] manages invocation of services: the cost of call h(E) S is the cost of S plus the cost for
accessing the service h.

Rule [IF-EXP] defines the cost of conditionals when the guard is a Presburger arithmetic expression
that can be evaluated at function scheduling time. We use a corresponding cost function, if ℓ, whose name
is fresh,2 to indicate that the cost of the entire conditional statement is either the cost of the then-branch or
the else-branch, depending on whether the guard is true or false. As discussed above, the use of the guard
¬ϕ generates a list of equations.

Rule [IF-CALL] defines an upper bound of the cost of conditionals when the guard is an invocation to
a service. At scheduling time it is not possible to determine whether the guard is true or false – c.f. the
second example in Section 2. Therefore the cost of a conditional is the maximum between the cost e′+C
of the then-branch and the one e′′+C′ of the else-branch, plus the cost e to access to the service in the
guard. However, considering that the expression max(e+C,e′+C′) is not a valid right-hand side for the
equations in our cost programs, we take as over-approximation the expression max(e,e′)+C+C′.

As regards iterations, according to [FOR], its cost is the invocation of the corresponding function, forℓ,
whose name is fresh (we assume that iterations have pairwise different line-codes). The rule adds the
counter i to Γ (please recall that Γ+ i : Int entails that i /∈ dom(Γ)). In particular, the counter i is the first
formal parameter of forℓ; the other parameters are all the variables in e, in notation var(e) plus those in
the invocations C (minus the i). There are two equations for every iteration: one is the case when i is
out-of-range, hence the cost is 0, the other is when it is in range and the cost is the one of the body plus
the cost of the recursive invocation of forℓ with i increased by 1.

The cost of a miniSL program is defined by [PRG]. This rule defines an equation for the function main
and puts this equation as the first one in the list of equations.

1We omit rules for expressions E since they are straightforward: they simply return E if E is in Presburger arithmetics.
2We assume that conditionals have pairwise different line-codes and ℓ represents the line-code of the if in the source code.

46 Serverless Scheduling Policies based on Cost Analysis

[EPS]

Γ ⊢ ε : 0 ; /0 ; /0

[CALL]

Γ(h) = e Γ ⊢ S : e′ ; C ; Q

Γ ⊢ call h(E) S : e+e′ ; C ; Q
[IF-EXP]

Γ ⊢ E : ϕ Γ ⊢ S : e′ ; C ; Q Γ ⊢ S′ : e′′ ; C′ ; Q′ if ℓ fresh

w = var(e,e′,e′′)∪ var(C,C′) Q′′ =

[
if ℓ(w) = e′+C [ϕ]
if ℓ(w) = e′′+C′ [¬ϕ]

]
Γ ⊢ if (E) { S } else { S′ } : 0 ; if ℓ(w) ; Q, Q

′,Q′′

[IF-CALL]

Γ(h) = e Γ ⊢ S : e′ ; C ; Q Γ ⊢ S′ : e′′ ; C′ ; Q′

Γ ⊢ if (call h(E)) { S } else { S′ } : e+max(e′,e′′) ; C+C′ ; Q, Q′

[FOR]

Γ ⊢ E : e Γ+ i : Int ⊢ S : e′ ; C ; Q w = (var(e,e′)∪ var(C))\ i

forℓ fresh Q′ =

[
forℓ(i,w) = e′+C+ forℓ(i+1,w) [e ≥ i]
forℓ(i, w) = 0 [i ≥ e+1]

]
Γ ⊢ for (i in range(0,E)){ S } : 0 ; forℓ(0, w) ; Q, Q′

[PRG]

Γ ⊢ S : e ; C ; Q w = var(p,e)∪ var(C)
main fresh Q′ = main(w) = e+C []

Γ ⊢ (p) => { S } : Q′, Q

Figure 2: The rules for deriving cost expressions

As an example, in the following, we apply the rules of Figure 2 to the codes in Listings 1, 2 and 3.
Let Γ(isPremiumUser) = u, Γ(PremiumService) = P and Γ(BasicService) = B. For Listing 1 we
obtain the cost program

main(u,P,B) = if 2(u,P,B) []
if 2(u,P,B) = P [u = 1]
if 2(u,P,B) = B [u = 0]

For Listing 2, let Γ(IsPremiumUser) = K. Then the rules of Figure 2 return the single equation

main(K,P,B) = K +max(P,B) []

For 3, when Γ(m) = m, Γ(r) = r, Γ(Map) = M and Γ(Reduce) = R, the cost program is

main(m,r,M,R) = for2(0,m,r,M,R) []
for2(i,m,r,M,R) = M+ for4(0,r,R)+ for2(i+1,m,r,M,R) [m ≥ i]
for2(i,m,r,M,R) = 0 [i ≥ m+1]

for4(j,r,R) = R+ for4(j+1,r,R) [r ≥ j]
for4(j,r,R) = 0 [j ≥ r+1]

The foregoing cost programs can be fed to automatic solvers such as Pubs [1] and CoFloCo [4]. The
evaluation of the cost program for Listing 1 returns max(P,B) because u is unknown. On the contrary, if
u is known, it is possible to obtain a more precise evaluation from the solver: if u = 1 it is possible to

G. De Palma et al. 47

ask the solver to consider main(1,P,B) and the solution will be P, while if u = 0 it is possible to ask the
solver to consider main(0,P,B) and the solution will be B. The evaluation of main(K,P,B) for Listing 2
gives the expression K +max(P,B), which is exactly what is written in the equation. This is reasonable
because, statically, we are not aware of the value returned by the invocation of IsPremiumService. Last,
the evaluation of the cost program for Listing 3 returns the expression m× (M+ r×R).

4 From APP to cAPP

We now discuss the extension of APP that we plan to realise, where function scheduling policies could
depend on the costs associated with the possible execution of the functions on the available workers.

Before discussing the extensions towards cAPP, we briefly introduce the APP syntax and constructs,
reported in Figure 3, as found in its first incarnation by De Palma et al. [3]

The APP Language

An APP script is a collection of tagged scheduling policies. The main, mandatory component of any policy
(identified by a policy_tag) are the workers therein, i.e., a collection of labels that identify on which
workers the scheduler can allocate the function. The assumption is that the environment running APP
establishes a 1-to-1 association so that each worker has a unique, identifying label. A policy, associate to
every function a list of one or more blocks, each including the worker clause to state on which workers
the function can be scheduled and two optional parameters: the scheduling strategy, followed to select
one of the workers of the block, and an invalidate condition, which determines when a worker cannot
host a function. When a selected worker is invalid, the scheduler tries to allocate the function on the rest
of the available workers in the block. If none of the workers of a block is available, then the next block is
tried. The last clause, followup, encompasses a whole policy and defines what to do when no blocks of
the policy managed to allocate the function. When set to fail, the scheduling of the function fails; when
set to default, the scheduling continues by following the (special) default policy.

As far as the strategy is concerned, it allows the following values: platform that applies the
default selection strategy of the serverless platform; random that allocates functions stochastically among
the workers of the block following a uniform distribution; best-first that allocates functions on
workers based on their top-down order of appearance in the block. The options for the invalidate are
instead: overload that invalidates a worker based on the default invalidation control of the platform;
capacity_used that invalidates a worker if it uses more than a given percentage threshold of memory;
max_concurrent_invocations that invalidates a worker if a given number of function invocations are
already currently executed on the worker.

Towards cAPP

Our proposal to extend APP to handle cost-aware scheduling policies entails two major modifications: (i)
extending the APP language to express cost-aware scheduling policies, (ii) implementing a new controller
that selects the correct worker following the cost-aware policies.

As far as (i) is concerned, we discuss at least two relevant ways in which costs can be used. The
first one is a new selection strategy named min_latency. Such a strategy selects, among some available
workers, the one which minimises a given cost expression. The second one is a new invalidation condition
named max_latency. Such a condition invalidates a worker in case the corresponding cost expression is
greater than a given threshold.

48 Serverless Scheduling Policies based on Cost Analysis

policy_tag ∈ Identifiers ∪ {default} worker_label ∈ Identifiers n ∈ N

app ::= tag

tag ::= policy_tag : - block followup?

block ::= workers: [* | - worker_label]
(strategy: [random | platform | best_first])?
(invalidate: [capacity_used : n%

| max_concurrent_invocations: n
| overload])?

followup ::= followup: [default | fail]

Figure 3: The APP syntax.

We dub cAPP the cost-aware extension of APP and illustrate its main features by showing examples of
cAPP scripts that target the functions in Listings 1–3.

- premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

Listing 4: cAPP script for Listings 1 and 2.

- mapReduce :
- workers:

- wrk: W1
- wrk: W2

strategy: random
invalidate:

max_latency: 300

Listing 5: cAPP script for Listing 3.

In Listing 4, we define a cAPP script where we assume to associate the tag premUser to both the
functions at Listing 1 and 2. In the script, we specify to follow the logic min_latency to select among
the two workers, W1 and W2 listed in the workers clause, and prioritises the one for which the solution of
the cost expression is minimal.

To better illustrate the phases of the min_latency strategy, we depict in Figure 4 the flow, from the
deployment of the cAPP script to the scheduling of the functions in Listings 1 and 2. When the cAPP script
is created, the association between the functions code and their cAPP script is specified by tagging the
two functions with //tag:premUser. In this phase, assuming the scheduling policy of the cAPP script
requires the computation of the functions cost, the code of the functions is used to infer the corresponding
cost programs. When the functions are invoked, i.e., at scheduling time, we can compute the solution
of the cost program, given the knowledge of the invocation parameters. For instance, for the function in
Listings 1, it is possible to invoke the solver with either main(1,P,B) or main(0,P,B) depending on the
actual invocation parameter. Figure 4 illustrates this last part with the horizontal “request” lines found at
the bottom. In particular, when we receive a request for the function at Listing 1, we take its cost program
(represented by the intersection point on the left) and its corresponding cAPP policy to implement the
expected scheduling policy. We can implement this behaviour in two steps. First, the solver solves the cost
programs (depicted by the gear); then, we compute the obtained cost expression for each of the possible
workers (in this case, W1 and W2) by instantiating the parameter representing the cost of invocation of the
external services, with an estimation of the latencies from the considered workers. In this case, given
the min_latency strategy, the worker that minimises the latency to contact PremiumService will be
selected. This last step regards the second point (ii) mentioned at the beginning of this section, i.e., the

G. De Palma et al. 49

// tag: premUser
(isPremiumUser , par) => {

...
}

f1 from Listing 1
// tag: premUser
(username , par) => {

...
}

f2 from Listing 2 - premUser:
- workers:

- wrk: W1
- wrk: W2

strategy: min_latency

cAPP script

main(u,P,B) = if 2(u,P,B) []
if 2(u,P,B) = P [u = 1]
if 2(u,P,B) = B [u = 0]

main(K,P,B) = K +max(P,B)[]

Inference of Cost Programs
(cf. Section 3)

Request for f1

W in (W1, W2)
where W.latency(PremiumService)
is minimal

Request for f2

W in (W1 , W2)
where W.latency(IsPremiumUser)
+ max(W.latency(PremiumService),

W.latency(BasicService))
is minimal

Cost Program Solver

D
E

PL
O

Y
M

E
N

T
T

IM
E

SC
H

E
D

U
L

IN
G

T
IM

E

Figure 4: Flow followed, from deployment to scheduling, of the functions at Listings 1 and 2.

modifications we need to perform on the controller to let it execute the newly introduced cost-aware
strategies at scheduling time.

For max_latency, once a worker is selected using a given strategy, its corresponding cost is computed
in order to check whether the selection is invalid (i.e., if we can consider the worker able to execute the
function, given the invalidation constraints of the script). To illustrate this second occurrence, we look
at the cAPP code we wrote for the map-reduce function in Listing 5, and we illustrate it using Figure 5.
As seen above, we start (top-most box) from the deployment phase, where we tag the function (//tag:
mapReduce) and we proceed to compute its cost program, obtaining the associated cost expression. Then,
when we receive a request for that function, we trigger the execution of the cAPP policy, which selects one
of the two workers W1 or W2 at random and checks their validity following the logic shown at the bottom of
Figure 5, i.e., we solve the cost program and then compute the corresponding cost expression by replacing
the parameters m and r with the latency to contact the Map and Reduce services from the selected worker,
and possibly invalidate it if the computed value is greater than 300. In the function’s code, for simplicity,
we abstract away the coordination logic between Map and Reduce (which usually performs a multipoint
scatter-gather behaviour) by offloading it to external services (e.g., a database contacted by the functions).

These new strategy and invalidate parameters added for cAPP interact with the cost-inference
logic presented in Section 3. As shown in Figure 4, the definition of the strategy and invalidate
parameters, as well as the cost inference, happen independently, when the cAPP script is deployed. A
strategy indeed (e.g., min_latency) is not tied to any specific cost expression. For example, the user
can define the premUser policy (see the cAPP script on the right-hand side of Figure 4) before having
deployed any function with that tag. When functions are deployed on the platform (centre and left-hand
side of Figure 4), the cAPP runtime performs the inference of programs’ costs. When instead a request
for the execution of a function reaches the platform, the cAPP use the cost expressions and create the
logic of selection/invalidation down to its runtime form. For instance, in Figure 4, the scheduling of
function f1 compiles the min_latency logic using the reduced form P (the cost of accessing service
PremiumService) since at scheduling time the parameter isPremiumUser (represented by the variable u

50 Serverless Scheduling Policies based on Cost Analysis

1 // tag: mapReduce
2 (jobs , m, r) => {
3 for(i in range(0, m)) {
4 call Map(jobs , i)
5 for(j in range(0, r)) {
6 call Reduce(jobs , i, j)
7 }
8 }
9 }

⇓

main(m,r,M,R) = for2(0,m,r,M,R) []
for2(i,m,r,M,R) = M+ for4(0,r,R)+ for2(i+1,m,r,M,R) [m ≥ i]
for2(i,m,r,M,R) = 0 [i ≥ m+1]

for4(j,r,R) = R+ for4(j+1,r,R) [r ≥ j]
for4(j,r,R) = 0 [j ≥ r+1]⇓

Cost Expression: m*(M + r*R)

⇓
W in (W1, W2)
where m *(W.latency(Map) + r * W.latency(Reduce))
is < 300

Figure 5: The map-reduce function, its cost analysis, and scheduling invalidation logic.

in the related cost equations in Figure 4) is known, which in the example we value to 1 (i.e., the request is
from a premium user). From the reduced cost expression we can obtain the cAPP selection logic on the
right-hand side of Figure 4: select that worker, among the one provided in the cAPP block, that minimises
(is minimal) the latency of interaction with the PremiumService service.

For completeness, we can draw a parallel example for the invalidation parameter by looking at Figure 5.
There, once we have a request for the map-reduce function, we take the cost expression calculated at
deployment time, whose (integer) values represented by m are r are known at scheduling time, and we
compile the invalidate logic, max_latency:300 — for the map-reduce function, the logic declares
invalid any worker whose cost m *(W.latency(Map) + r * W.latency(Reduce)) exceeds the
set 300 threshold.

5 Conclusion

We have presented a proposal for an extension of the APP language, called cAPP, to make function
scheduling cost-aware. Concretely, the extension adds new syntactic fragments to APP so that programmers
can govern the scheduling of functions towards those execution nodes that minimise their calculated
latency (e.g., increasing serverless function performance) and avoids running functions on nodes whose
execution time would exceed a maximal response time defined by the user (e.g., enforcing quality-of-
service constraints). The main technical insights behind the extension include the usage of inference rules
to extract cost equations from the source code of the deployed functions and exploiting dedicated solvers
to compute the cost of executing a function, given its code and input parameters.

Growing our proposal into a usable APP extension is manyfold. The cost inference of Section 2

G. De Palma et al. 51

programs is under active development at the time of writing.3 While the solution of the cost equations can
be done by off-the-shelf tools (e.g.,CoFloCo [4]), another important component to develop is the cAPP
runtime to generate cAPP rules from the cost equations when functions are scheduled and interact with
the workers available in the platform to collect the measures that characterise the costs sustained by the
workers (e.g., the latency endured by a worker when contacting a given service).

Implementing the cAPP runtime and proving the feasibility of cost-aware function scheduling is only
the first move along the way. Indeed, in Section 4 (illustrated in Figure 4) we described a naïve approach
where we solve the cost equations of an invoked function at scheduling time, but this computation step
could delay the scheduling of the function. This challenge calls for further investigation. On the one
hand, we shall investigate if the problem presents itself in practice, i.e., if developers would actually
write functions whose cost equations take too much time for the available engines to solve. On the other
hand, we envision working on models and techniques that can make the problem treatable (e.g., via
heuristics and over-approximations), possibly complementing the former with architectural solutions, like
the inclusion of caching systems that allows us to compute the actual cost of function invocations once
and timeouts paired with sensible default strategies which would keep the system responsive.

Acknowledgement

Research partly supported by the H2020-MSCA-RISE project ID 778233 “Behavioural Application
Program Interfaces (BEHAPI)” and by the SERICS project (PE00000014) under the MUR National
Recovery and Resilience Plan funded by the European Union - NextGenerationEU.

References

[1] Elvira Albert, Puri Arenas, Samir Genaim & Germán Puebla (2008): Automatic Inference of Upper Bounds
for Recurrence Relations in Cost Analysis. In María Alpuente & Germán Vidal, editors: Static Analysis,
15th International Symposium, SAS 2008, Valencia, Spain, July 16-18, 2008. Proceedings, Lecture Notes
in Computer Science 5079, Springer, pp. 221–237, doi:10.1007/978-3-540-69166-2_15. Available at https:
//doi.org/10.1007/978-3-540-69166-2_15.

[2] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro, Matteo Trentin & Gianluigi Zavattaro (2022): A
Declarative Approach to Topology-Aware Serverless Function-Execution Scheduling. In Claudio Agostino
Ardagna, Nimanthi L. Atukorala, Boualem Benatallah, Athman Bouguettaya, Fabio Casati, Carl K. Chang,
Rong N. Chang, Ernesto Damiani, Chirine Ghedira Guegan, Robert Ward, Fatos Xhafa, Xiaofei Xu & Jia
Zhang, editors: IEEE International Conference on Web Services, ICWS 2022, Barcelona, Spain, July 10-16,
2022, IEEE, pp. 337–342, doi:10.1109/ICWS55610.2022.00056.

[3] Giuseppe De Palma, Saverio Giallorenzo, Jacopo Mauro & Gianluigi Zavattaro (2020): Allocation Priority
Policies for Serverless Function-Execution Scheduling Optimisation. In Eleanna Kafeza, Boualem Benatallah,
Fabio Martinelli, Hakim Hacid, Athman Bouguettaya & Hamid Motahari, editors: Service-Oriented Computing -
18th International Conference, ICSOC 2020, Dubai, United Arab Emirates, December 14-17, 2020, Proceedings,
Lecture Notes in Computer Science 12571, Springer, pp. 416–430, doi:10.1007/978-3-030-65310-1_29.

[4] Antonio Flores-Montoya & Reiner Hähnle (2014): Resource Analysis of Complex Programs with Cost Equations.
In Jacques Garrigue, editor: Programming Languages and Systems - 12th Asian Symposium, APLAS 2014,
Singapore, November 17-19, 2014, Proceedings, Lecture Notes in Computer Science 8858, Springer, pp. 275–
295, doi:10.1007/978-3-319-12736-1_15. Available at https://doi.org/10.1007/978-3-319-12736-1_15.

3https://github.com/minosse99/CostCompiler

https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1007/978-3-540-69166-2_15
https://doi.org/10.1109/ICWS55610.2022.00056
https://doi.org/10.1007/978-3-030-65310-1_29
https://doi.org/10.1007/978-3-319-12736-1_15
https://doi.org/10.1007/978-3-319-12736-1_15
https://github.com/minosse99/CostCompiler

52 Serverless Scheduling Policies based on Cost Analysis

[5] Abel Garcia, Cosimo Laneve & Michael Lienhardt (2017): Static analysis of cloud elasticity. Sci. Comput.
Program. 147, pp. 27–53, doi:10.1016/j.scico.2017.03.008. Available at https://doi.org/10.1016/j.scico.
2017.03.008.

[6] Scott Hendrickson, Stephen Sturdevant, Edward Oakes, Tyler Harter, Venkateshwaran Venkataramani, Andrea C.
Arpaci-Dusseau & Remzi H. Arpaci-Dusseau (2016): Serverless Computation with OpenLambda. 41. Available
at https://www.usenix.org/publications/login/winter2016/hendrickson.

[7] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal
Shankar, Joao Menezes Carreira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada Popa, Ion
Stoica & David A. Patterson (2019): Cloud Programming Simplified: A Berkeley View on Serverless Computing.
Technical Report UCB/EECS-2019-3, EECS Department, University of California, Berkeley.

[8] Cosimo Laneve & Claudio Sacerdoti Coen (2021): Analysis of smart contracts balances. Blockchain: Research
and Applications 2(3), p. 100020, doi:https://doi.org/10.1016/j.bcra.2021.100020. Available at https://www.
sciencedirect.com/science/article/pii/S2096720921000154.

https://doi.org/10.1016/j.scico.2017.03.008
https://doi.org/10.1016/j.scico.2017.03.008
https://doi.org/10.1016/j.scico.2017.03.008
https://www.usenix.org/publications/login/winter2016/hendrickson
https://doi.org/https://doi.org/10.1016/j.bcra.2021.100020
https://www.sciencedirect.com/science/article/pii/S2096720921000154
https://www.sciencedirect.com/science/article/pii/S2096720921000154

Maurice H. ter Beek and Clemens Dubslaff (Eds.):
Proceedings of the First Workshop on Trends
in Configurable Systems Analysis (TiCSA’23)
EPTCS 392, 2023, pp. 53–65, doi:10.4204/EPTCS.392.4

© Pascal Krapf & Sébastien Berthier & Nicole Levy
This work is licensed under the
Creative Commons Attribution License.

Product Line Management with Graphical MBSE Views

Pascal Krapf
Syscience

Villebon sur Yvette, France
pascal.krapf@syscience.fr

Sébastien Berthier
Syscience

Villebon sur Yvette, France
sebastien.berthier@syscience.fr

Nicole Levy
CEDRIC-CNAM

Paris, France
nicole.levy@cnam.fr

Abstract : Reducing the cost and delay and improving quality are major issues for product and
software development, especially in the automotive domain. Product line engineering is a well-
known approach to engineer systems with the aim to reduce costs and development time as well
as to improve the product quality. Feature models enable to make logical selection of features and
obtain a filtered set of assets that compose the product. We propose to use a color code in feature
models to make possible decisions visual in the feature tree. The color code is explained and its use
is illustrated. The completeness of the approach is discussed.

Keywords : Configuration, variants, product line, model-based system engineering (MBSE)

1 Introduction

Reducing the cost and delay and improving quality are major issues for product and software devel-
opment. To achieve these challenges, strategies for reuse and standardization of products and software
have been developed. In this way, development and validation of components and software assets are
mutualitized over several projects, which reduces the global cost of the product. Indeed, the number of
individual assets that are required to build complex products like personal cars, aircrafts, trains or indus-
trial facilities can reach several thousands (from ten to several hundred thousand). Moreover only some
of them are present in all products, while the others are associated to particular products. Products can
be differentiated by several characteristics:

• Products may differ in the offered functionalities.

• Products may differ in performance values.

• Products may differ in the non-functional properties.

• Products may differ in the chosen execution platform.
In the automotive domain, a widespread practice is to define from the beginning a Product Line (PL)
approach [22]. It consists in designing a set of defined products embedding physical and software com-
ponents developed from a common set of core assets and having a managed set of variable features
[11].

Developing from the beginning a PL, means to focus on the variability and on the potential differ-
ences between products. The method we applied focuses on the creation of a product line right from the
initial product development stage. The aim is to propose possible variants from the very start, knowing
that some others could be added to later. It’s a very different approach to parameterization. Defining a
parameterized product means concentrating on the common functionalities. The overall architecture is
generally not variable and, as a result, non-functional properties are less variable and less emphasized.

Variant management languages and associated tools have been developed with high expressiveness
to describe product lines [15, 9, 14, 17, 5]. However, up to now, their deployment in the automotive
industry is not effective.

http://dx.doi.org/10.4204/EPTCS.392.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

54 Product Line Management with Graphical MBSE Views

In the automotive industry, dozens of development teams are specialized in various domains of en-
gineering. They all contribute to the definition product variants. They each have specific concerns about
variability and favor processes and tools suited to their specific concern. But at the end of development,
a reduced number of people in the project team has to be able to select the project variants without being
expert in all the engineering domains. Thus, the way the variability is structured has to be understandable
by people outside the specific engineering domain.

This is why powerful specialized tools are of little help when deploying a PL approach on an indus-
trial project in the automotive domain.

Our proposal is to define processes methods and an associated tool with simple and visual interfaces
made intuitive for users not accustomed to software-oriented tools. Even if less powerful for constraints
expression, consistence analysis and solving capabilities than existing ones, such a tool may be better
suited to meet user acceptance in our specific domain.

The first section is the present introduction.
In the second section of this article, we list a set of qualities targeted when configuring a system.
In the third section, we present useful concepts issued from our experience that are frequently used

in industries managing different kinds of product lines.
In the fourth section, we present our approach to build and use PL inspired from FODA’s feature

models [16]. We use for this purpose our existing system engineering modeling platform, which is under
improvement.

In the fifth section, we discuss the possibility to handle any kind of logical constraints in the frame-
work we have defined.

2 Overall strategy and targeted properties

2.1 Parameterized software versus Product Line

The most straightforward way to develop a set of related products is to develop a first product and adapt
this product using tune-able parameters and adding components.

The activity of making a system tune-able can be split into:

• identify the possible adjustable parameters and components associated to variabilities,

• define the values to be selected for the parameters and design specific additional components.

Such strategies have been applied by carmakers and have shown some limitations:

• Trade-offs are driven by the first designed product, which does not mean global optimization for
all products.

• Adding variabilities as add-ons considerably increase the complexity of the product and can in-
crease the risk of malfunction.

• It generally requires deep knowledge of the product to be able to tune the variable parameters,
while companies often want the configuration to be done by non-specialists.

As a consequence, carmakers are preferring the product line approach [24]. A set of defined products
that share a common, managed set of features and are developed from a common set of core assets [11].

Pascal Krapf & Sébastien Berthier & Nicole Levy 55

2.2 Qualities targeted when configuring a system

Following system engineering practices, the first step is to capture needs about the variant configuration
management framework. The need is a framework (process and tool) that has the following characteris-
tics [10]:

• Operability: the number of actions to select a product variant is reduced and available to human
decision, both for the first setup and for later updates,

• Evolutivity: it is possible to add features and parts to the product line and continue to use for-
mer versions. When the product line is enriched, new features are added along with new added
constraints,

• Reusability: parts and groups of parts can be reused with confidence without modification in new
products or new product lines,

• Simplicity: no deep knowledge about the system design is necessary to select a variant. Parame-
terization can be done in a way that is accessible for non-specialists of the domain,

• Modularity: Architects can select coherent subsets of the product line by the selection of sets of
variants,

• Consistency: Compliance with design rules constraining the choice of variants is ensured. These
design rules can be of a norm, regulations or chosen method to be followed.

A product line allows to abstract the construction from the configuration of the reusable components,
to identify reasoning and decisions behind the selection of a configuration. Reasoning means building a
series of relations between causes and consequences while taking into account a set of logical constraints.
A PL management framework is likely to satisfy the former list of characteristics.

3 Field data

3.1 Architectural point of views

Cyber-physical systems are more and more developed using Model based system engineering (MBSE).
In these models, systems and their relations with their environment are described by views corresponding
to different viewpoints. The approach we were using includes the following viewpoints [2]:

• Operational viewpoint, focused on the concern of how the system is operated and interacts with
surrounding systems.

• Functional viewpoint focused on the concern of system functionalities, functional interfaces,
functioning modes and behavior.

• Organic viewpoint focused on the concern of system components, components allocation of func-
tions and requirements and how internal components interact.

These models are used for the product development and are included in the digital twin of the product
[19]. The following paragraphs describe some model elements that are of interest for variant manage-
ment. We empathize that variant management is about selecting components (organic viewpoint), but
with key drivers coming from the other viewpoints.

56 Product Line Management with Graphical MBSE Views

3.2 Operational variability

A use case is a specific situation in which a product could potentially be used. For example personal
cars can be driven on railways, on open roads, in town, on tracks. They can be parked on road, in
garden lane or in a garage, etc. Each use case carries specific requirements the car has to comply with
in order to satisfy the customer. Since all customers do not have the same expectations and use cases,
different variants of cars are commercialized. Level of outfitting, seat comfort, acoustics, dynamism,
speed, smoothness, product durability in specific mission profiles are operational characteristics that can
be in the scope of variant management.

3.3 Functional variability

Customers can choose among a set of functionalities for their personal car. For example, driver assistance
systems, guiding assistance, comfort adaptation, entertainment for passengers, door opening etc. The are
an important source of variability. Some of them induce the presence of specific components like sensors
and actuators, but others can be activated or deactivated by software. End to end functionalities are split
into sub-functions forming functional chains. Each sub-function uses inputs to produce some outputs.
The combination of these functions ensure the overall product functionalities.

3.4 Component variability

3.4.1 Bill of material

In industry, the list of all parts or assets that can be purchased to build a product in a product line must
be managed. This list is called the "Bill Of Material", or BOM. A 150% BOM is a list containing the
parts to be used to produce the whole set of products of the product line. An individual product will
not include all the parts, but only a subset of them: the BOM containing only the parts for an individual
product is called 100% BOM. The BOM is managed as a list in which each standardized part appears
only once (an eventual multiplicity will be managed later as we will see).

A BOM may contain up to several hundreds of individual parts, and a large proportion of these parts
(frequently 10% to 50%) are linked to a variant, as they are not present in all individual products. The
first target of variability management is to select efficiently parts corresponding to a specific product. If
one wants to select individually each part, one would have to know all the components that are required
for each functionality. This choice tends to be impossible for functionalities requiring several hundred
thousand parts. Even for engineers in the appropriate field, this is just impossible.

3.4.2 Asset library

Complex systems are often software intensive, meaning that functions are realized by software. Software
intensive systems are made of a combination of many interacting software components. Thus, the issue
of variant management for physical parts is mirrored in the software domain. Software components are
listed in a software library. Assets also include models, specifications, assembly instructions, procedures,
tools, validation facilities, safety assessments etc. Actually, any asset contributing to the product defi-
nition can be in the scope of variant management. Thus, physical or purchasable parts listed in a BOM
are not enough to define all possibilities to build a product line. It is more flexible and more accurate to
consider an asset library that contains any kind of artifacts.

Pascal Krapf & Sébastien Berthier & Nicole Levy 57

3.4.3 Product breakdown structure

System engineering is the general framework used to develop complex products [1, 3, 2, 4, 20]. A
product is broken down into systems. Each system is broken down into subsystems, and so on until
reaching individual parts that can be subcontracted and purchased from suppliers. Assets are organized
in a tree structure called Product Breakdown Structure (PBS). The PBS contains components that have
an active role in the system functioning (sensors, control unit. . .) as well as components associated
to liabilities (tight box, firewall. . .). Software engineers generally build their software with software
components. The software components library is a part of the PBS. Thus, the PBS gives a structured
view of the assets that constitute the product.

Engineering teams organize the PBS according to the system breakdown. This breakdown often
reflects the organization of the engineering teams and corresponding engineering domains. The manu-
facturing team has interest to organize the PBS according to how the system is assembled. This may
not fit with the engineering team’s organization. The purchasing team may want to structure the PBS
according to possible suppliers. The maintenance team may want to organize the PBS in accordance
with maintenance schedule and process. If several teams like purchasing, manufacturing, maintenance,
use the same PBS then, the structure has to be a compromise between their needs. Companies that try to
manage variants by merging all parts in a single PBS that is managed in an Enterprise Resource Planning
(ERP) tool often create dissatisfaction in every domain team. This may contribute to the high failure rate
of ERP deployment projects [12].

3.5 Feature model

The word “feature” refers to a characteristic or a set of characteristics of the product line. As already
discussed, PBS is not the only model element that is impacted by variant management. Thus, there is no
reason to have a one-to-one correspondence of nodes of the PBS and features. The PBS structure does
not necessarily reflect a selection logic of the components. Requirement satisfaction may involve the
contribution of several different parts located in different branches of the PBS.

General software qualities like cybersecurity, energy consumption efficiency, human machine inter-
faces, etc. often must be managed with variability. The random selection of software components does
not ensure the quality of the final product.

Companies describe the features that are likely to be variant in a feature model. It describes variable
features that can be selected for an individual product within the product line.

Feature Diagrams (FD) are a family of modeling languages used to address the description of prod-
ucts in product lines [23]. FD were first introduced by Kang as part of the FODA (Feature Oriented
Domain Analysis) method back in 1990 [16].

Feature models are generally represented in a tree structure. Each node is a feature that can be
selected. A natural rule is to select a son node only if the father node is already selected. In any
product line, the feature choice is submitted to rules allowing or forbidding some associations. Rules
can result from physics (not enough place), regulation (no such combination of functions), marketing,
etc. For example, cars can have diesel, gasoline, hybrid or electrical engines, but only one among this
list. These features are not independent, and the dependence is only partially represented by the position
in the feature tree. When complex constraints are involved, then it often requires a solver to be able to
determine whether a set of selected features comply with these rules. The problem of deciding if a set of
logical sentences has possible solutions is known to be NP complex [23].

Variable characteristics usually reach the number of several hundreds to several thousand for cars or

58 Product Line Management with Graphical MBSE Views

aircrafts. Thus, it is still difficult to make choices because of the need to be coherent. Furthermore, the
number of possible configurations is still enormous. If 100 nodes can be selected in a feature tree, then
the number of possible different products is equal to 2 to the power of 100. This number of combinations
cannot be managed extensively. A structured methodology with associated tools is needed. The domain
engineer designs the product line in a way to minimize circular or interwoven constraints. The aim is to
make the feature model easily understandable to applications engineers. The PL engineer has to define
a smart structure for the product line, and the application engineer needs deep knowledge of the product
line to select features without losing time with attempts and errors.

3.6 Variation criteria

The PL is described in a model, that contains products assets. Some assets are present in all individual
products. These assets form the invariant backbone of the PL. The other assets are present or absent
depending on the features that are chosen. A variation criterion is a logical formula, that defines the
asset variability. This logical formula is expressed using the features of the feature model. The asset is
present in the product if the formula is evaluated TRUE. In this way, assets can be filtered according to
the feature selection. The completeness and coherency of this association between assets and features
fully relies on the PL design engineer.

4 Framework for variant management

In order to be efficient, companies need a framework of combined and coherent processes, methods and
tools. In this section, we describe the framework we have developed to manage a PL. Our proposal
allows a very broad acceptance of the notion of PL among the multiple actors involved. We have drawn
inspiration from a number of existing proposals [6, 13].

4.1 Processes

The product line strategy relies on the following major processes: Build the PL, configure a product in
the PL and maintain & enrich the PL.

4.1.1 Build the PL

Companies want to have competitive advantages, and to answer more and more customer needs with
individual adaptation. Before designing a system, system engineers have to analyze needs. They examine
the system’s environment and identify interactions, constraints and available resources. The capture of
stakeholder’s needs is the key to system engineering. It is also the first source of variants. Thus, in a PL
process, the outcome is not only a set of elicited needs, but also a variability assessment of the PL. Needs
capture and analysis is combined with the analysis of the PL variability.

Building the PL includes:
• defining a set of assets (components, software, models. . .) that are designed with the target of

addressing a wide range of user needs.

• Building a feature model that describes product features and constraints between them.

• Associating assets to features.
Assets are associated to features with the target of ensuring modularity and enabling evolutivity criteria
mentioned in section 2.

Pascal Krapf & Sébastien Berthier & Nicole Levy 59

4.1.2 Configure a PL

Products to be sold to customers are built as configurations of the product line. The PL contains all assets
describing possible products. When a product engineer selects a product for a customer, he defines
the features of this specific product. Features are selected in the feature model of the product line.
Assets of the specific product are obtained as a consequence of the features. PL assets are filtered
according to chosen features to obtain the asset lists of the specific product. Thus, the specific product
is a configuration of the product line. This process accounts for the reusability criterion mentioned in
section 2.

4.1.3 Maintain & enrich the PL

When engineers have to design a solution for new customer needs or new project requests, they first try
to integrate in their design existing assets from the product line. And this shall be done on the system as a
whole, considering needs that shall be satisfied, and at the component level for component functionalities
and tested qualities. Thus, the design method consists in searching within the existing assets which ones
could be reused as they are, which ones could be reused with only small modifications or additional tests
and which ones could be integrated in the product via the adaptation of some interfaces or the use of
adaptation parts (brackets, connectors, embedding. . .).

New assets are developed only if existing assets do not allow to answer the new elicited needs. And
if so, they are designed in a way to enable their reuse for future products. Each time a new component
is developed, it can be included in the asset library. Asset’s characteristics are standardized and recorded
in the aim of reuse.

The product line also has to be maintained, meaning obsolescence of PL assets is monitored and new
assets are developed in the right schedule to replace the obsolete ones without shortage. This process
accounts for the evolutivity criterion mentioned in section 2.

4.2 Method

The method we present is intended to describe the product line management and configuration for people
who are not necessarily familiar with software development tools. To do so, the steps of the product line
use are made visual with graphical diagrams and simple colors codes.

4.2.1 Association between assets and features

Assets have to be associated to features in order to model the transition from the asset library to the
selected assets constituting a specific product. For each asset, a logical statement defines its presence.
This statement uses logical connectors and features. In that way it is possible to use a feature configura-
tion to filter the asset library and obtain the assets of a specific product. The introduction of the feature
conditions in the description of the behavior of components allows for a configurable behavioral model
of the product line. The granularity of the features and the association to groups of assets in the library
strongly influences the number of operations to be done to configure a product. It has a major impact on
the operability criterion introduced in section 2. To define a product, it will not be necessary to select
individual parts but product features. If features are well structured, then their choice is operable by
humans. As an illustration, a limited set of feature choice is proposed to a customer purchasing a car,
impacting the presence of dozens of components in the product.

60 Product Line Management with Graphical MBSE Views

Figure 1: Representation of the different kinds of choice in the feature model

4.2.2 Constraints expressions in a feature diagram

Each node in the feature tree represents a decision. At each decision step, constraints are limiting the
number of possible choices. In many cases, the constraints concern neighbor nodes. Thus, being able
to display in an intuitive way these constraints is of interest. The color of a node can be used to display
these constraints. In our method we propose to consider tree type of choices that are displayed by a color
code. The color code can be replaced by any other graphical characteristic of the boxes, especially if
accessibility for color-blind users is required.

Optional features are features that can be selected or not without further constraint. Those features are
represented in white boxes as shown in Figure 1. A white box can be selected or discarded independently
of neighbor boxes. If the parent node is selected, then the children selection can be a single child, both
of them or none.

Blue is used as shown in Figure 1 to indicate a mandatory choice: the parent (blue) node has to be
kept and at least one of the boxes below has to be selected. When using this colour code, it was found
more intuitive for non-specialists to have the blue colour on the upper node, where the decision is taken,
rather than on the lower node.

Red is used as shown in Figure 1 to indicate exclusive options: only one of the neighboring red
boxes can be selected. If one is selected, then the neighboring red boxes have to be discarded. The red
color is applied on lower nodes. It is a difference with the blue color and was found more intuitive for
non-specialist users who have to define a product within the PL. Plus, it allows to combine easily red and
blue nodes.

4.2.3 Product configuration

The most natural way to fill a variant tree is top down. One begins with the upper node and goes along
the branches down to the leaves. At each step, the possible choices are defined by the color of the
surrounding boxes. The variant selection process is made visual as displayed in Figure 2 and intuitive to
users that have to do it.

A product configuration is obtained by the selection of a set of features that drive the selection of the
associated assets. The method to obtain such a configuration requires a set of decisions, whether to keep
or not each feature. A feature model is a set of possible decisions, containing also mandatory features. It
is important to have them as they can imply sub-decisions. Our feature model defines variable features
and constraints between them. In a product configuration, some features are selected, and others are
discarded. We use the green color to indicate that a feature is selected, and the gray color to specify that
a feature is discarded from a specific product. Thus, a feature model fully colored with green and gray

Pascal Krapf & Sébastien Berthier & Nicole Levy 61

like the one displayed at the bottom of in Figure 2 is a description of an individual product of the product
line.

Defining a product configuration and verifying at the end if compatibility rules are satisfied is likely
to produce configurations incompatible with the rules. The selection has to be organized in a succession
of decisions. To carry out this selection, the feature model is scanned down from the root to the leaves.
When a node is discarded, then the whole branch below the node is discarded as well. So there cannot be
an alternation of green an gray colors down a branch. Coherency rules are checked at each decision step.
If a decision would lead to inconsistent feature selection, then the corresponding choice is not possible.
Figure 2 illustrates successive decision steps that lead to a configuration.

Feature selection gives a progressive coloring of the feature model with green and gray. The selection
process can be interrupted at any moment. Partially selected feature model can be produced, in which
some parts are selected, some others are discarded and some others are still open options. The color of
the boxes provides a comprehensive way to describe partial configuration and to define rules to continue
the selection process.

4.3 Tool

As the processes to build a new product rely on system engineering, it is natural to use system engineer-
ing tools for PL engineering. Thus, variant management shall be embedded in the system engineering
tool. One key success factor is to make people working in different domain understand each other and
communicate efficiently. Therefore, it is crucial to provide graphical views intended to be intuitive for
non-specialists and so to fulfill the simplicity criterion in section 2. We have developed a private model-
based system engineering tool that is already in use [18, 7, 8, 21]. In a true digital twin perspective
behavioral models can be amended by the feature selection. A model of the feature selection is embed-
ded in the tool. In this perspective, we obtain a model of the product line that describes all the products
in the product line with their individual characteristics and behavior. While graphical views presented
below are available in the tool, the interpretation of constraints stated as logical formulas is still under
development.

5 Discussion

In the former paragraph, we have proposed a description for a feature model. Its semantics is similar to
the one proposed by [23]. As different boxes may carry the same label, it describes a Directed Acyclic
Graph (DAG). In addition, the colors are used to express “require” and “exclude” relations. Let’s take a
closer look at how these constraints are used.

It is clear that the “exclude” relation between neighbor nodes can be directly expressed with the color
code. Let A and B be two features in different branches of a variant model. The sentence “Feature A
excludes Feature B” means that if feature A is selected, then feature B cannot be selected (let us note
that A excludes B is equal to B excludes A). Figure 3 shows how this constraint can be expressed in our
colored box language. Beside the main feature tree, we introduce a new branch labeled “constraints”
with node A and B within red boxes, meaning the user has to make an exclusive choice. If the user
selects the first A node, then through a decision propagation, the other node labeled A is automatically
selected because it has the same label. Node B is automatically discarded because of mutual exclusion
with A.

The sentence “Feature A requires Feature B” means that if feature A is selected, then feature B

62 Product Line Management with Graphical MBSE Views

Figure 2: Representation of successive decisions in the feature model

Pascal Krapf & Sébastien Berthier & Nicole Levy 63

Figure 3: Representation of the constraints A excludes B and A requires B when A and B are in different
branches

Figure 4: Representation of the logical constraints A is NOT(B), C implies (D OR E) and F implies (G
AND H)

is mandatory. Figure 3 shows how this constraint can be expressed in our colored box language. We
introduce a new branch labeled “constraints” with a node labeled B. Below this node, a single node
labeled A is placed. When the user selects A somewhere in the tree, then decision propagation selects
automatically all nodes labeled A. B is automatically selected as a parent of A.

Thus, our graphical language is able to describe the “require” and the “exclude” relations.
Let us express basic logical constraints with this language. Fig. 9 defines a variable B, that cor-

responds to NOT(A), a variable C that corresponds to (D OR E), and a variable F that corresponds to
(G AND H). Since (AND, OR, NOT) is a complete set of connectors in Boolean logic, any Boolean
formula can be expressed by this language. For example a nested constraint ((A AND B) => C) has first
to be written as a normal disjunctive formula. After that, it is possible to express it with the colour code.
Figures 4, gives a general pattern that makes it possible to transform a Boolean expression into a graph
with our color definition. The expressiveness of the defined language is universal as soon as we consider
feature models that are directed graphs rather than trees.

Circular constraints are not allowed and should be detected by the tool. When the product line is well
defined, the selection of an individual product is straightforward. By doing so, the consistency criterion
mentioned in section 2 is based on the decision propagation between nodes. If a choice leads to a dead-
end where any choice left would violate a constraint, then it is necessary to backtrack and undo the last
choice. It can be a future improvement to analyze the structure of constraints and disable any choice
leading to a dead-end.

6 Conclusion

In this paper we have discussed the product line approach as a way to design products that can be con-
figured according to customer needs. The product line approach is suited for the automotive industry.

64 Product Line Management with Graphical MBSE Views

However the large number of actors involved in the definition of product variants and product config-
uration is limiting the use of complex tools. We have therefore defined a framework for product line
management in order to address this issue. The proposed method is based on a color code that makes
possible decisions visual and intuitive for users unfamiliar with variant management. The method has
been illustrated with an example. Our model-based system engineering tool was used to draw the dia-
grams. The completeness of the method was discussed.

The current development of our tool includes an allowed configuration only if logical constraints are
satisfied at each decision step. In that way, a correct product line feature model does not require a solver
to check coherence while configuring a product, as constraints are taken into account at each decision
step. The scaling to larger product lines relies on a well structured feature model, broken down into as
many sub-trees as necessary to keep each graphical view understandable.

We plan to apply our approach of introducing a product line when defining an initial requirement for
a system in an industrial domain, using the platform under development.

Acknowledgment

The authors are grateful to Caroline CABY for her insights and the very fruitful discussions she was
involved in.

References

[1] IEEE Std 1220 (2005 (revision of 1998 standard)): Standard for Application and Management of the Systems
Engineering Process. IEEE Std 1220, doi:10.1109/MC.2006.164.

[2] IEEE 1471 (2000): Recommended Practice for Architectural Description of Software-Intensive Systems.
IEEE 1471, doi:10.1109/IEEESTD.2000.91944.

[3] ISO/IEC/IEEE 15288 (2008): Systems Engineering - System Life Cycle Processes. ISO/IEC/IEEE 15288,
doi:10.1109/IEEESTD.2008.4475828.

[4] EIA 632 (2005): Processes for engineering a system. Electronics Industry Association, doi:10.4271/EIA632.

[5] M. H. ter Beek, K. Schmid & H. Eichelberger (2019): Textual Variability Modeling Languages: An Overview
and Considerations. In: Proceedings of the 23rd International Systems and Software Product Line Confer-
ence - Volume B, SPLC ’19, Association for Computing Machinery, New York, NY, USA, p. 151–157,
doi:10.1145/3307630.3342398.

[6] D. Benavides, A. Ruiz-Cortés, P. Trinidad & S. Segura (2006): A Survey on the Automated Analyses of Fea-
ture Models. In J. C. Riquelme Santos & P. Botella, editors: XI Jornadas de Ingeniería del Software y Bases
de Datos (JISBD, Sitges, Barcelona, Spain, pp. 367–376. Available at https://api.semanticscholar.
org/CorpusID:17186402.

[7] S. Berthier & P. Krapf (2020): Appréhension des risques engendrés par le réchauffement climatique au
moyen de l’outil d’Ingénierie Système « L’Atelier Syscience ». In: Congrès de maîtrise des risques et de
sûreté de fonctionnement, lambda-mu22, 10/11/2020, Le Havre, FRANCE, pp. 1–10. Available at https:
//hal.science/hal-03348084.

[8] S. Berthier, P. Krapf & C. Oukil (2022): Analyse des risques induits par le changement climatique sur
l’outil productif : Apport d’une approche système. In: Congrès Lambda Mu 23 - 23e Congrès de Maîtrise
des Risques et de Sûreté de Fonctionne-ment: Innovations et maîtrise des risques pour un avenir durable,
IMDR (Institut pour la maîtrise des risques), Oct 2022, Paris Saclay, FRANCE, pp. 1–10. Available at
https://hal.science/hal-03966604.

https://doi.org/10.1109/MC.2006.164
https://doi.org/10.1109/IEEESTD.2000.91944
https://doi.org/10.1109/IEEESTD.2008.4475828.
https://doi.org/10.4271/EIA632
https://doi.org/10.1145/3307630.3342398
https://api.semanticscholar.org/CorpusID:17186402
https://api.semanticscholar.org/CorpusID:17186402
https://hal.science/hal-03348084
https://hal.science/hal-03348084
https://hal.science/hal-03966604

Pascal Krapf & Sébastien Berthier & Nicole Levy 65

[9] D. Beuche (2007): Modeling and Building Software Product Lines with pure: : variants. In: Software Prod-
uct Lines, 11th International Conference, SPLC 2007, Kyoto, Japan, September 10-14, 2007, Proceedings.
Second Volume (Workshops), Kindai Kagaku Sha Co. Ltd., Tokyo, Japan, pp. 143–144.

[10] C. Caby (2022): Étude du développement de lignes de produits – Proposition d’une méthode. Master’s thesis,
CNAM, Centre régional associé de Bretagne.

[11] P. Clements & L. Northrop (2001): Software Product Lines: Practices and Patterns. Addison-Wesley Pro-
fessional. 978-0-201-70332-0.

[12] E. Coşkun, B. Gezici, M. Aydos, A.K. Tarhan & V. Garousi (2022): ERP failure: A systematic mapping of
the literature. Data & Knowledge Engineering 142, doi:10.1016/j.datak.2022.102090.

[13] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau & K. Pietroszek (2005): Model-driven software product
lines. In Ralph E. Johnson & Richard P. Gabriel, editors: Companion to the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2005, Oc-
tober 16-20, 2005, San Diego, CA, USA, ACM, pp. 126–127, doi:10.1145/1094855.1094896.

[14] K. Czarnecki & C. H. P. Kim (2005): Cardinality-based feature modeling and constraints: A progress report.
In: International Workshop on Software Factories, ACM San Diego, California, USA, pp. 16–20. Available
at https://api.semanticscholar.org/CorpusID:12376065.

[15] Pure systems GmbH (2007): Variant Management with pure : : variants pure-systems. Available at https:
//api.semanticscholar.org/CorpusID:15988361.

[16] K. Kang, S. Cohen, J. Hess, W. Nowak & S. Peterson (1990): Feature-Oriented Domain Analysis (FODA)
Feasibility Study (Report). Pittsburgh: Software Engineering Institute, Carnegie Mellon University. Available
at http://www.sei.cmu.edu/reports/90tr021.pdf.

[17] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz & S. Apel (2009): FeatureIDE: A
tool framework for feature-oriented software development. In: 2009 IEEE 31st International Conference on
Software Engineering, pp. 611–614, doi:10.1109/ICSE.2009.5070568.

[18] P. Krapf, S. Rakotosolofo & S. Berthier (2018): Utilisation d’un atelier d’ingénierie système pour
l’Identification des risques d’un véhicule connecté. In: Congrès de maîtrise des risques et de sûreté de
fonctionnement, lambdamu21, 16-18/10/2018, Reims, FRANCE, pp. 1–10. Available at https://hal.
archives-ouvertes.fr/hal-02073215.

[19] A.M. Madni, C.C. Madni & S.D. Lucero (2019): Leveraging Digital Twin Technology in Model-Based Sys-
tems Engineering. Systems 7(1), doi:10.3390/systems7010007.

[20] NASA (1995): Systems Engineering Handbook. NASA. SP-610S.
[21] C. Oukil, P. Krapf & S. Berthier (2022): Analyse et évaluation des risques liés à la mise à jour des logiciels de

la voiture autonome. In: Congrès Lambda Mu 23 « Innovations et maîtrise des risques pour un avenir durable
» - 23e Congrès de Maîtrise des Risques et de Sûreté de Fonctionnement, Institut pour la Maîtrise des Risques,
Oct 2022, Paris Saclay, FRANCE, pp. 1–10. Available at https://hal.science/hal-03877941v1.

[22] A. Le Put (2014): L’ingénierie système d’une ligne de produits. Cépadues Editions. ISBN : 9782364931220.
[23] P-Y Schobbens, P. Heymans, J-C Trigaux & Y. Bontemps (2007): Generic Semantics of Feature Diagrams.

Computer Networks 51(2), doi:10.1016/j.comnet.2006.08.008.
[24] L. Wozniak & P. Clements (2015): How automotive engineering is taking product line engineering

to the extreme. In Douglas C. Schmidt, editor: Proceedings of the 19th International Conference
on Software Product Line, SPLC 2015, Nashville, TN, USA, July 20-24, 2015, ACM, pp. 327–336,
doi:10.1145/2791060.2791071.

https://doi.org/10.1016/j.datak.2022.102090
https://doi.org/10.1145/1094855.1094896
https://api.semanticscholar.org/CorpusID:12376065
https://api.semanticscholar.org/CorpusID:15988361
https://api.semanticscholar.org/CorpusID:15988361
http://www.sei.cmu.edu/reports/90tr021.pdf
https://doi.org/10.1109/ICSE.2009.5070568
https://hal.archives-ouvertes.fr/hal-02073215
https://hal.archives-ouvertes.fr/hal-02073215
https://doi.org/10.3390/systems7010007
https://hal.science/hal-03877941v1
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1145/2791060.2791071

	1 Introduction
	2 Preliminaries
	2.1 Clocks, parameters and constraints
	2.2 Timed automata
	2.3 Parametric timed automata

	3 Execution-time opacity problems in timed automata
	3.1 Defining the execution times
	3.2 Defining execution-time opacity
	3.3 Decision and computation problems
	3.3.1 Computation problem for ET-opacity
	3.3.2 Decision problems

	3.4 Answering the ET-opacity t-computation problem
	3.5 Checking for -ET-opacity
	3.6 Checking for full ET-opacity
	3.7 Checking for weak ET-opacity

	4 Execution-time opacity problems in parametric timed automata
	4.1 -ET-opacity
	4.1.1 Problems
	4.1.2 Undecidability in general
	4.1.3 The subclass of L/U-PTAs

	4.2 Parametric full ET-opacity
	4.2.1 Problem definitions
	4.2.2 Undecidability for general PTAs
	4.2.3 Undecidability for lower/upper parametric timed automata

	4.3 Parametric weak ET-opacity
	4.3.1 Problem definitions
	4.3.2 Undecidability for general PTAs
	4.3.3 Undecidability for lower/upper parametric timed automata

	5 Expiring execution-time opacity problems
	5.1 Exp-ET-opacity
	5.2 Exp-ET-opacity problems in timed automata
	5.2.1 Problem definitions
	5.2.2 Results

	5.3 Exp-ET-opacity in parametric timed automata
	5.3.1 Definitions
	5.3.2 Results

	6 Implementation and application to Java programs
	7 Conclusion and perspectives
	1 Introduction
	2 Motivation: model-checking a motor controller
	3 Feature modelling in Uppex
	3.1 Annotating Uppaal specifications
	3.2 Configuring variants
	3.3 Validating features
	3.4 Workflow using Uppex and Uppaal

	4 Discussion
	5 Conclusion and future work
	Introduction
	The mini Serverless Language
	The inference of cost expressions
	From APP to cAPP
	Conclusion
	Introduction
	Overall strategy and targeted properties
	Parameterized software versus Product Line
	Qualities targeted when configuring a system

	Field data
	Architectural point of views
	Operational variability
	Functional variability
	Component variability
	Bill of material
	Asset library
	Product breakdown structure

	Feature model
	Variation criteria

	Framework for variant management
	Processes
	Build the PL
	Configure a PL
	Maintain & enrich the PL

	Method
	Association between assets and features
	Constraints expressions in a feature diagram
	Product configuration

	Tool

	Discussion
	Conclusion

