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Preface

Rineke Verbrugge

Bernoulli Institute of Mathematics, Computer Science and Artificial Intelligence

University of Groningen

L.C.Verbrugge@rug.nl

The TARK conference (Theoretical Aspects of Rationality and Knowledge) is a conference that aims

to bring together researchers from a wide variety of fields, including computer science, artificial intel-

ligence, game theory, decision theory, philosophy, logic, linguistics, and cognitive science. Its goal is

to further our understanding of interdisciplinary issues involving reasoning about rationality and knowl-

edge.

Previous conferences have been held biennially around the world since 1986, on the initiative of Joe

Halpern (Cornell University). Topics of interest include, but are not limited to, semantic models for

knowledge, belief, awareness and uncertainty, bounded rationality and resource-bounded reasoning,

commonsense epistemic reasoning, epistemic logic, epistemic game theory, knowledge and action, ap-

plications of reasoning about knowledge and other mental states, belief revision, computational social

choice, algorithmic game theory, and foundations of multi-agent systems. Information about TARK,

including conference proceedings, is available at the website http://www.tark.org/

These proceedings contain the papers that have been accepted for presentation at the Nineteenth Con-

ference on Theoretical Aspects of Rationality and Knowledge (TARK 2023), held between June 28 and

June 30, 2023, at the University of Oxford, United Kingdom. The conference website can be found at

https://sites.google.com/view/tark-2023

The conference is enlivened by four invited talks, given by:

• Aviad Heifetz (Open University of Israel)

• Willemien Kets (Utrecht University)

• Jon Kleinberg (Cornell University)

• Anna Mahtani (London School of Economics)

The Programme Committee received 82 regular paper submissions. Of these, 40 were selected for this

volume in a reviewing process during which every paper received three independent expert reviews.

Decisions were often difficult and were based on lively discussions between PC members. Of the 40

accepted papers, 21 will be presented as an oral lecture and 19 as a poster presentation accompanied

by a flash talk. This volume evidences the interdisciplinary nature of research on theoretical aspects of

rationality and knowledge: Several papers are contributions to more than one of the fields listed above,

and all of them have been written to be understood by readers across discipline boundaries.

The members of the Programme Committee for the conference were:

• Christian Bach, University of Liverpool
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• Adam Bjorndahl, Carnegie Mellon University

• Zoé Christoff, University of Groningen

• Hans van Ditmarsch, CNRS, IRIT, University of Toulouse

• Malvin Gattinger, University of Amsterdam

• Sujata Ghosh, ISI Chennai

• Nina Gierasimczuk, Technical University of Copenhagen

• Joe Halpern, Cornell University

• Willemien Kets, Utrecht University

• Louwe Kuijer, University of Liverpool

• Jérôme Lang, LAMSADE, Université Paris-Dauphine

• Silvia Milano, University of Exeter

• Larry Moss, University of Indiana

• Andrés Perea, University of Maastricht

• Gabriella Pigozzi, LAMSADE, Université Paris-Dauphine

• Olivier Roy, University of Bayreuth

• Burkhard Schipper, University of California at Davis

• Paolo Turrini, University of Warwick

• Rineke Verbrugge, University of Groningen (chair)

Many other people assisted with the reviewing process, including: Leyla Ade, Edoardo Baccini, Philippe

Balbiani, Jacques Bara, Fausto Barbero, Gaia Belardinelli, Francesco Berto, Patrick Blackburn, Giacomo

Bonanno, Richard Booth, Martin Caminada, Sourav Chakraborty, Michele Crescenzi, Ramit Das, Adam

Dominiak, Soma Dutta, Peter van Emde Boas, Jie Fan, Peter Fritz, Asta Halkjær From, Satoshi Fukuda,

Paolo Galeazzi, Rustam Galimullin, Avijeet Ghosh, Patrick Girard, Olga Gorelkina, Davide Grossi, Pier-

francesco Guarino, Shreyas Gupta, Jens Ulrik Hansen, Adrian Haret, Aviad Heifetz, Wesley Holliday,

Prosenjit Howlader, Neil Hwang, Stephan Jagau, Dominik Klein, Barteld Kooi, Jan Lastovicka, Dazhu

Li, Grzegorz Lisowski, Shuige Liu, Emiliano Lorini, Maaike Los, Munyque Mittelmann, Niels Mour-

mans, Eric Pacuit, Anantha Padmanabha, Timothy Parker, Mina Young Pedersen, Rafael Peñaloza, Elise

Perrotin, Charlie Pilgrim, Robert Routledge, Ocan Sankur, Katsuhiko Sano, François Schwarzentruber,

Ted Shear, Chenwei Shi, Sonja Smets, Tomasz Steifer, Katrine B. P. Thoft, Paolo Viappiani, Yanjing

Wang, Yı̀ Nicholas Wáng, Nic Wilson, Fabio Massimo Zennaro, Stanislav Zhydkov, Gabriel Ziegler,

Aybüke Özgün.

I would like to thank the members of the Programme Committee and all other reviewers for the time,

professional effort and the expertise that they invested in ensuring the high scientific standards of the

conference and its proceedings and for providing a lot of useful suggestions for further improvements

to the authors. It was an honor and pleasure for me to read your thoughtful reviews and share in the

discussions about the papers. I also thank the authors for their excellent contributions. Moreover, I thank

Rob Glabbeek of EPTCS for bringing this volume to publication and for his kind support to the authors
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and to me as editor.

I want to express my thanks to the organizers of the conference, Mike Wooldridge and Jenny Dollard,

for their dedication in bringing TARK 2023 to life in the beautiful grounds of Worcester College at the

University of Oxford. Special thanks go to the TARK General Chair Joe Halpern who started the confer-

ence series in 1986 and who supported us with his advice in all phases of the conference preparations.

Rineke Verbrugge

Programme chair, TARK 2023

Groningen, The Netherlands

June 20th, 2023
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Epistemic Conditions for Bayesian Equilibrium

Christian W. Bach

EPICENTER & University of Liverpool

cwbach@liverpool.ac.uk

Andrés Perea

EPICENTER & University of Maastricht

a.perea@maastrichtuniversity.nl

Bayesian equilibrium constitutes the prevailing solution concept for games with incomplete informa-

tion. It is known that from an ex-ante perspective Harsanyi’s seminal notion is related both to Nash

equilibrium as well as to canonical correlated equilibrium. We provide an epistemic characterization

of Bayesian equilibrium from an interim perspective by means of common belief in rationality and

a common prior. Since these epistemic conditions also characterize correlated equilibrium in the

special case of complete information, our result substantiates that Bayesian equilibrium forms the

incomplete information analogue to correlated equilibrium – and not to Nash equilibrium – in terms

of reasoning.
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The goal of the paper is to examine distributed knowledge in groups with differently introspective

agents. Three categories of agents are considered: non-introspective, positively introspective, and

fully introspective. When a non-introspective agent knows something, she may fail to know that she

knows it. On the contrary, when a fully introspective agent knows something, she always knows that

she knows it. A fully introspective agent is positively introspective and, when she does not know

something, she also knows that she does not know it. We give two equivalent characterizations of

distributed knowledge: one in terms of knowledge operators and the other in terms of possibility

relations, i.e., binary relations. We show that two different cases emerge. In the first, distributed

knowledge is fully determined by the group member who is sophisticated enough to replicate all the

inferences that anyone else in the group can make. In the second case, no member is sophisticated

enough to replicate what anyone else in the group can infer. As a result, distributed knowledge is

determined by a two-person subgroup who can jointly replicate what others infer. The latter case

depicts a wisdom-of-the-crowd effect, in which the group knows more than what any of its members

could possibly know by having access to all the information available within the group. Finally, we

show that distributed knowledge is not always represented by the intersection of the group members’

possibility relations. Depending on how introspective agents are, distributed knowledge may be

represented by strict refinements of the aforementioned intersection. A full version of the paper is

available at https://arxiv.org/abs/2305.08729
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Incomplete Preferences, Multi-Utility Representations, and

the Axiom of Parity

Harvey Lederman

UT Austin

Department of Philosophy
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This paper studies extensions of incomplete preferences over basic alternatives to preferences over

lotteries on those alternatives. I begin by introducing the normatively and descriptively plausible

axiom of parity, an analog of typical principles of dominance: for an outcome o and a lottery L, if,

for every outcome o′ in the support of L, both o 6� o′ and o′ 6� o, then both L 6≻ o and o 6≻ L. The main

result of the paper shows that, in a natural setting, where incomplete preferences are sensitive to an

underlying space of totally ordered ‘dimensions’, the axiom of parity is incompatible with all natural

ways of extending preferences from basic outcomes to lotteries over them. In particular, the axiom

of parity is inconsistent with the natural principle that, if the outcomes in the support of a lottery only

vary along a single dimension, the decision-maker should be indifferent between the lottery and its

expected value.
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A fundamental question asked in modal logic is whether a given theory is consistent. But consis-

tent with what? A typical way to address this question identifies a choice of background knowledge

axioms (say, S4, D, etc.) and then shows the assumptions codified by the theory in question to be

consistent with those background axioms. But determining the specific choice and division of back-

ground axioms is, at least sometimes, little more than tradition. This paper introduces generic theo-

ries for propositional modal logic to address consistency results in a more robust way. As building

blocks for background knowledge, generic theories provide a standard for categorical determinations

of consistency. We argue that the results and methods of this paper help to elucidate problems in epis-

temology and enjoy sufficient scope and power to have purchase on problems bearing on modalities

in judgement, inference, and decision making.

1 Introduction

Many treatments of epistemological paradoxes in modal logic proceed along the following lines. Begin

with some enumeration of assumptions that are individually plausible but when taken together fail to be

jointly consistent (or at any rate fail to stand to reason in some way). Thereupon proceed to propose

a resolution to the emerging paradox that identifies one or more assumptions that may be comfortably

discarded or weakened and that in the presence of the remaining assumptions circumvents the troubling

inconsistency defining the paradox [11] (cf. Chow [8] and de Vos et al. [16]). Typical among such

assumptions are logical standards expressed in the form of inference rules and axioms pertaining to

knowledge and belief, such as axiom scheme K — that is to say, the distributive axiom scheme of the

form K(ϕ → ψ)→ (Kϕ → Kψ).

The choice of precisely which assumptions to temper can, at times, have an element of arbitrariness

to it, especially when the choice is made from among several independent alternatives underpinning

distinct resolutions in the absence of clear criteria or compelling grounds for distinguishing among them.

In the present paper, we introduce a criterion for addressing this predicament based on the genericity of

what a resolution assumes.

As a standard for knowledge, a theory is generic when its factivity cannot be overturned however

the questions it leaves open are answered and what is known accordingly grows. Generic theories enjoy

various desirable properties which are common in formal epistemology — arbitrary unions of generic

theories, for example, are generic. We present both positive and negative results turning on genericness,

which cast light on the structure of popular logics for belief and knowledge.

The concept of generic theories, as introduced in [4] and [5] for quantified modal logic, emerged

in response to Carlson’s proof [7] of a conjecture due to Reinhardt [13]. Carlson’s proof, despite its

significance, was limited by its dependency on a somewhat arbitrary choice of background knowledge

axioms. Carlson proof, subject to but small changes, is likewise valid for various other sets of background

axioms. The present paper examines generic theories for propositional modal logic. In our concluding
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remarks we discuss the developments of this paper in connection with work done to generalize Carlson’s

consistency result.

The paper is organized as follows. In Section 2 we state preliminaries. In Section 3 we state a propo-

sitional version of the Knower Paradox: a certain theory, consisting of standard background knowledge

axioms plus an axiom intended to be read as “This sentence is known to be false,” is inconsistent. We

discuss a possible resolution to the paradox: weaken the background knowledge axioms in order to ren-

der the theory consistent. In Section 4 we introduce generic and closed generic theories. In Section 5 we

use generic and closed generic theories to state very generalized versions of the consistency result from

Section 3. In Section 6 we state some negative results about genericness and closed genericness. Proofs

of these negative results naturally lead to the construction of exotic models which satisfy certain standard

knowledge axioms while failing certain other standard knowledge axioms. In Section 7 we conclude the

paper with a high-level discussion. In Appendix A we give proofs of some of the claims made in the

above sections.

2 Preliminaries

Throughout, we fix a nonempty set of symbols called propositional atoms and a symbol K which is not

a propositional atom. The following logic is a propositional version of Carlson’s so-called base logic [7]

(cf. [2] and [1]).

Definition 1. The set of formulas is defined recursively as follows:

(i) Every propositional atom is a formula;

(ii) Whenever ϕ and ψ are formulas, so are ¬ϕ , (ϕ ∧ψ), (ϕ ∨ψ), and (ϕ → ψ); and

(iii) Whenever ϕ is formula, so too is K(ϕ).

A formula is said to be basic if it is either a propositional atom or a formula of the form K(ϕ) for some

formula ϕ . A set of formulas is called a theory. ◭

We adopt standard conventions for omitting parentheses. Parentheses omitted from conditional for-

mulas are assumed to be right-nested; thus, for example, we write φ → ψ → ρ for φ → (ψ → ρ), and

similarly for longer chains of implications.

Definition 2. A model is a function mapping each basic formula to a truth value in {True,False}. ◭

Thus, in contrast with classical treatments of semantics for modalities, a model assigns truth values

not only to propositional atoms but also to formulas prefixed with K.

We may define a binary relation |= from models to basic formulas in the usual way — that is, by

stipulating that M |= ϕ just in case M assigns to ϕ the value True. The next definition extends this

relation to all formulas. We adopt the standard convention to write M 6|= ϕ if it is not the case that

M |= ϕ .

Definition 3. Let M be a model. Define formula ϕ to be true in M , M |= ϕ , by recursion on ϕ :

(i) If ϕ is a basic formula, then M |= ϕ if and only if M assigns to ϕ the value True;

(ii) M |= ¬ϕ if and only if M 6|= ϕ ;

(iii) M |= ϕ ∧ψ if and only if both M |= ϕ and M |= ψ ;

(iv) M |= ϕ ∨ψ if and only if either M |= ϕ or M |= ψ ; and

(v) M |= ϕ → ψ if and only if either M 6|= ϕ or M |= ψ .



6 Strengthening Consistency Results in Modal Logic

Given a theory T , we write M |= T just in case M |= ϕ for every ϕ ∈ T . ◭

Entailment and validity are given standard treatment.

Definition 4. A theory T is said to entail a formula ϕ , written T |= ϕ , if for all models M , M |= T

implies M |= ϕ . A formula ϕ is said to be valid, written |= ϕ , if /0 |= ϕ . ◭

Since modal formulas of the form Kϕ are treated like propositional atoms, it follows that if p is a

propositional atom, then Kp∨¬Kp is valid but K(p∨¬p) is not. Routine argument establishes com-

pactness. A useful result is the following corollary of compactness.

Lemma 5. Let T be a theory and ϕ be a formula. Then T |= ϕ if and only if there is a finite sequence of

formulas ϕ1, . . . ,ϕn ∈ T for which |= ϕ1 → ··· → ϕn → ϕ .

Lemma 5 provides a basis for adopting the following proof-theoretic terminology in what follows.

Definition 6. A theory T is said to be consistent if there is a model M for which M |= T . ◭

The following definition captures the familiar notion of closedness under the K operator.

Definition 7. A theory T is closed if
{

Kϕ : ϕ ∈ T
}

⊆ T . ◭

Thus a theory T is closed just in case for every formula ϕ , if ϕ ∈ T , then Kϕ ∈ T .

Definition 8. We adopt the following conventions for naming standard schemas:

V is the theory consisting of all formulas of the form Kϕ such that ϕ is valid (Definition 4).

K is the theory consisting of all formulas of the form K(ϕ → ψ)→ (Kϕ → Kψ).

T is the theory consisting of all formulas of the form Kϕ → ϕ .

KK (sometimes also called 4) is the theory consisting of all formulas of the form Kϕ → KKϕ . ◭

We conclude this section with an observation about necessitation (proved in Appendix A).

Lemma 9. (Simulated Necessitation) Let T be a closed theory. If T includes both V and K, then for

every formula ϕ : if T |= ϕ , then T |= Kϕ .

3 A Formalization of the Knower Paradox

We will use a propositional version of the well-known Knower Paradox [12] to illustrate the ideas of this

paper. The paradox is usually formalized in first-order modal logic, where appeal to Gödel’s Diagonal

Lemma admits construction of the problematic sentence without having to assume it as an axiom. In our

propositional version, we instead assume the problematic sentence axiomatically, allowing us to focus

on the epistemological contents of the paradox without arithmetical distractions.

Theorem 10 (The Knower Paradox). Let p be some propositional atom. Let TKP be the smallest closed

theory which contains:

(i) V, K, and T

(ii) p ↔ K¬p “This sentence is known to be false”

Then the theory TKP is inconsistent. �

Proof. From schema T and axiom (ii), it follows that TKP |= ¬p and therefore TKP |= K¬p by Lemma 9,

whence TKP |= p by axiom (ii). Hence, TKP is inconsistent.
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The next theorem provides one way the theory in Theorem 10 may be weakened in order to restore

consistency (and so constitutes a candidate for resolving the paradox, in the sense of Haack [11] or Chow

[8]).

Theorem 11. Let p be some propositional atom. Inductively, let (T−
KP)0 be the smallest closed theory

which contains:

(i) V and K

(ii) p ↔ K¬p “This sentence is known to be false”

In addition, let T−
KP be the theory which contains:

(a) (T−
KP)0.

(b) T.

Then theory T−
KP is consistent. �

Observe that the Knower Paradox (Theorem 10), so formalized, rests on the assumption that the

knower know its own truthfulness. The key difference between TKP and T−
KP is that, while the schema

Kϕ → ϕ is included in both theories, only TKP includes the schema K(Kϕ → ϕ). Some treatments1 of

the Knower Paradox do not explicitly include K(Kϕ → ϕ) as an assumption at all, instead including

Kϕ → ϕ and using a logic where the rule of necessitation holds—the rule permitting one to conclude

T |= Kϕ from T |= ϕ . In such logics, if T contains the schema Kϕ → ϕ , then trivially T |= Kϕ → ϕ , so

by necessitation, T |= K(Kϕ → ϕ). Thus, K(Kϕ → ϕ) sneaks in implicitly, in such logics.

The logic (Definition 1) studied in this paper does not presume the rule of necessitation. The rule

of necessitation can be simulated in our logic by using Lemma 9, but only if the Lemma’s conditions

are met—which, in the case of T−
KP, they are not, as T−

KP is not closed. Thus, it becomes possible to

weaken knowledge-of-factivity without weakening factivity itself. Theorem 11 shows that doing so

is one possible resolution, in the sense of Haack [11] or Chow [8], to the paradox.2 See [1, 15] for

discussion about the weakening of knowledge-of-factivity. Note that this requires departing from Kripke

semantics, as the rule of necessitation always holds in Kripke semantics.

Rather than prove Theorem 11 directly, we will (in Section 5) prove a pair of more general theorems,

and Theorem 11 is a special case of either one of them. In order to state the more general theorems, we

need to first introduce certain notions of genericity.

4 Generic and Closed Generic Theories

The following definition is a variant of Carlson’s concept of a knowing entity [7].

Definition 12. Let T be a theory, and let S be a set of propositional atoms. Let MT,S be the model defined

by stipulating:

(i) For any propositional atom p: MT,S |= p if and only if p ∈ S; and

(ii) For any formula of the form Kϕ : MT,S |= Kϕ if and only if T |= ϕ . ◭

1See [9, 10] for an exception.
2The same technique has been used to resolve (in Haack’s or Chow’s sense) a version of the surprise exam paradox [1]; to

resolve a version of Fitch’s paradox [2]; and to construct a machine that knows its own code [3]. Aldini et al suggest [1] it

might be possible to simultaneously resolve multiple paradoxes at once by dropping K(Kϕ → ϕ), i.e., the union of multiple

paradoxically inconsistent theories might be consistent when so weakened.
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The model MT,S may be loosely interpreted to be that of an agent who knows exactly the conse-

quences of theory T in a world in which all propositions from S are true. We will see that these models

are useful for establishing consistency results.

The following definition strengthens the notion of consistency.

Definition 13. A theory T is said to be generic (resp. closed generic) if for each set S of propositional

atoms and each theory (resp. closed theory) T ′: if T ′ ⊇ T , then MT ′,S |= T . ◭

A theory T is generic when T is known regardless of contingent facts S and however theoretical

knowledge might grow in conjunction with them. Generic theories are theories that cannot be made false

by the addition of more information.

We catalogue basic properties of genericity.

Proposition 14. Genericity enjoys the following properties:

(1) Unions of generic theories are generic;

(2) Unions of closed generic theories are closed generic;

(3) Every generic theory is closed generic;

(4) V is generic; and

(5) K is generic. �

Proof. Properties (1)–(3) are readily verified.

(4) Let S be a set of propositional atoms and let T ′ ⊇ V. Let ϕ ∈ V, we must show MT ′,S |= ϕ . By

definition of V, ϕ is Kψ for some valid ψ . Since ψ is valid, T ′ |= ψ . Thus MT ′,S |= Kψ , as

desired.

(5) Let S be a set of propositional atoms and let T ′ ⊇ K. Let ϕ ∈ K, we must show MT ′,S |= ϕ . By

definition of K, ϕ is K(ψ → ρ)→ (Kψ →Kρ) for some ψ and ρ . Assume MT ′,S |=K(ψ → ρ) and

MT ′,S |= Kψ . This means T ′ |= ψ → ρ and T ′ |= ψ . By modus ponens, T ′ |= ρ . So MT ′,S |= Kρ ,

as desired.

Lemma 15. The theory V∪K∪KK is closed generic. �

Proof. Let T = V∪K∪KK. Let S be a set of propositional atoms and let T ′ ⊇ T be closed. Let ϕ ∈ T ,

we must show MT ′,S |= ϕ . Consider two cases:

Case 1 ϕ ∈ V∪K. Then MT ′,S |= ϕ because V∪K is generic by Proposition 14, parts (1), (4), and

(5).

Case 2 ϕ ∈ KK. Then ϕ is Kψ → KKψ for some ψ . Assume MT ′,S |= Kψ . This means T ′ |= ψ .

Since T ′ contains V and K and is closed, we may simulate necessitation: Lemma 9 implies

T ′ |= Kψ . Thus MT ′,S |= KKψ , as desired.

Lemma 16. Let T0 be a theory, and let T be the smallest closed theory including theory T0. Suppose

theory T0 is (closed) generic. Then T is (closed) generic. �

Proof. Let S be a set of propositional atoms and let T ′ be a theory (resp. closed theory) such that T ′ ⊇ T .

Let ϕ ∈ T , we must show MT ′,S |= ϕ . Consider two cases:

Case 1 ϕ ∈ T0. Then MT ′,S |= ϕ because T0 is generic (resp. closed generic).
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Case 2 ϕ 6∈ T0. The only other way for ϕ to be in T (besides being in T0) is by way of the closure

of T . So ϕ is Kψ for some ψ ∈ T . Since T ′ ⊇ T and ψ ∈ T , we have T ′ |= ψ , which means

MT ′,S |= Kψ , as desired.

Lemma 17. Suppose T0 is a generic (resp. closed generic) theory. Let T = {ϕ : T0 |= ϕ}. Then T is

generic (resp. closed generic). �

Proof. Let S be an arbitrary set of propositional atoms, and let T ′ be a theory (resp. closed theory) such

that T ′ ⊇ T . We establish that MT ′,S |= T .

For each formula ϕ such that T |= ϕ , let N(ϕ) be the smallest positive integer n for which there is

a sequence ϕ1, . . . ,ϕn, with ϕn = ϕ , such that for each i = 1, . . . ,n, either ϕi ∈ T0 or there exist j,k < i

such that ϕk is ϕ j → ϕi. Such an N(ϕ) exists by the deduction theorem.

We prove by induction on N(ϕ) that for every ϕ such that T0 |= ϕ , MT ′,S |= ϕ .

Basis Step N(ϕ) = 1 can clearly only hold if ϕ ∈ T0. In that case, MT ′,S |= ϕ because T0 is generic

(resp. closed generic).

Inductive Step N(ϕ)> 1. If ϕ ∈ T0, we are done as in the Base Case, but assume not. Let ϕ1, . . . ,ϕn

be a sequence of length n = N(ϕ) with the above properties.

For each i < n, the subsequence ϕ1, . . . ,ϕi is a shorter sequence (with the above proper-

ties) for ϕi, showing N(ϕi)< N(ϕ). Thus by induction, (∗) for each i < n, MT ′,S |= ϕi.

Since ϕ 6∈ T0, there must be j,k < n such that ϕk is ϕ j → ϕn. By ∗, MT ′,S |= ϕ j and

MT ′,S |= ϕk. So MT ′,S |= ϕ j → ϕn. By modus ponens, MT ′,S |= ϕn, as desired.

We conclude this section with a result throwing light on the relationship between generic theories

and normal modal logics. The proof is immediate by combining Lemmas 14, 16, and 17.

Theorem 18. Suppose T0 is a (closed) generic theory. Let T be the normal Kripke closure of T0, i.e., the

smallest closed theory containing T0, V, K, and with the property that T contains φ whenever T |= φ .

Then T is (closed) generic. �

5 Two Generalized Consistency Statements

In what follows, we state two theorems, each generalizing Theorem 11. One might be curious whether

adding KK to the statement of Theorem 11 would make the paradox reappear. Certainly the paradox

as formulated in Theorem 10 does not use KK in its proof. But what if there is some other form of the

Knower’s Paradox that makes use of KK, and what if in fact we only managed to achieve consistency

because we neglected to include KK among the background axioms? We could state a separate version

of Theorem 11 which includes KK and then prove that separate version, with a proof that is extremely

similar to a proof of Theorem 11 itself, but then maybe there’s still some further background axiom that

we are still neglecting, and we would then have to state and prove yet a third version of the theorem. This

process might go on forever, we might never exhaustively think of all the different background axioms

that critics might insist upon.
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Theorem 19. Let p be a propositional atom, and let H be a generic theory. Let (TKP)0 be the smallest

closed theory containing:

(i) H

(ii) p ↔ K¬p “This sentence is known to be false”

In addition, let TKP be the theory containing:

(a) (TKP)0; and

(b) T.

For any set S of propositional atoms, if p 6∈ S then M(TKP)0,S |= TKP. In particular, TKP is consistent. �

We prove Theorem 19 in Appendix A. Observe that since theory V∪K is generic by Proposition 14,

Theorem 11 is a special case of Theorem 19.

Now modify Theorem 11 by replacing V∪K with V∪K∪KK. We could not do that using Theorem

19 unless we first established that V∪K∪KK was generic (in fact, in the next section, we will show that

V∪K∪KK is not generic). We do know that V∪K∪KK is closed generic (Lemma 15), so we would

be done if we had a version of Theorem 19 involving closed generic theories.

Theorem 20. Same as Theorem 19 but with “generic” replaced by “closed generic.” �

A proof similar to the one for Theorem 19 establishes Theorem 20.

6 Negative Results about Genericness

We have established theory V ∪K ∪KK to be closed generic. Are these results preserved if one or

more of the arguments to the union is dropped? For example, is theory V∪KK closed generic? Or the

theory K∪KK? What about the theory KK alone? Similarly, can we strengthen closed genericity of

V∪K∪KK to full genericity? We show each of these questions has one and the same answer: No.

Theorem 21. The theory V∪K∪KK fails to be generic. �

Proof. Let T = V∪K∪KK. Let p be some propositional atom and let T ′ = T ∪{p}. We show that

MT ′, /0 6|= Kp → KKp, whereby MT ′, /0 6|= KK and so MT ′, /0 6|= T , showing T is not generic. Clearly

T ′ |= p, so MT ′, /0 |= Kp. What remains to show is that MT ′, /0 6|= KKp — that is, T ′ 6|= Kp.

To this end, inductively define models N1 and N2 simultaneously by stipulating N1 |= q and N2 6|= q

for each propositional atom q and requiring that N1 and N2 interpret formulas Kϕ in the following way:

N2 |= Kϕ if and only if N2 |= ϕ ; and

N1 |= Kϕ if and only if N2 |= ϕ .

Since N2 6|= p, N1 6|= Kp. Thus, to show that T ′ 6|= Kp, and so conclude the proof, it suffices to show

N1 |= T ′.

Let ϕ ∈ T ′. Consider four cases:

Case 1 ϕ ∈ V. Then ϕ is Kϕ0 for some valid ϕ0. Since ϕ0 is valid, N2 |= ϕ0, so N1 |= Kϕ0.

Case 2 ϕ ∈ K. Then ϕ has the form K(ψ → ρ) → (Kψ → Kρ). Assume N1 |= K(ψ → ρ) and

N1 |= Kψ . Then N2 |= ψ → ρ and N2 |= ψ . By modus ponens, N2 |= ρ . Thus N1 |= Kρ ,

as desired.

Case 3 ϕ ∈ KK. Then ϕ has the form Kψ → KKψ . Assume N1 |= Kψ . Then N2 |= ψ , so

N2 |= Kψ , whence N1 |= KKψ , as desired.
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Case 4 ϕ is p. Then N1 |= ϕ by construction.

Proposition 14 can be used to establish an immediate corollary of Theorem 21.

Corollary 22. The theories V∪KK and K∪KK fail to be generic. �

The following corollary follows from Theorem 21 and Lemma 15.

Corollary 23. Not every closed generic theory is generic. �

Theorem 24. If V∪KK is closed generic, then there is at most one propositional atom.

The preceding theorem, like the one stated next, is proven in Appendix A.

Theorem 25. The theory K∪KK is not closed generic. �

The following corollary follows by Proposition 14.

Corollary 26. The theory KK is not closed generic. �

The proof of Theorem 21 illustrates a technique common to all proofs appearing in Appendix A

for the results stated in this section — each argument proceeds by constructing pathological models.

Investigating negative results about genericness and closed genericness using this technique locates sharp

edges at the boundaries of modal logic: we are led to consider models where common assumptions no

longer hold, such as models where K fails or where V fails.

We have applied the theory of genericity to the Knower Paradox. In the proofs of the following

theorems, we will reverse the direction of application, applying the Knower Paradox to the theory of

genericity, rather than vice versa.

Theorem 27. The theory T is not closed generic. In fact, no superset of T is closed generic. �

Proof. Assume T+ ⊇ T is closed generic. By Lemma 14, H = V∪K∪T+ is closed generic. Let TKP be

as in Theorem 20. By Theorem 20, TKP is consistent. But it is easy to see that TKP is at least as strong as

the theory of the same name from Theorem 10 (the Knower Paradox), which is inconsistent. Absurd.

In particular, S4 is not closed generic (and thus not generic), and the same goes for S5. The following

theorem implies that the same also goes for KD45.

Theorem 28. Let 5 be the schema consisting of all formulas of the form ¬Kφ → K¬Kφ . No superset of

5 is closed generic. �

Proof. Similar to Theorem 27 by reformulating the Knower’s Paradox using 5 instead of T.

7 Discussion

There are different forms of genericity, two of which we have examined above: generic theories and

closed generic theories. These forms are particularly nice because of closure under union (Proposition

14 parts 1–2) and because they are simple enough that we can prove some results about them.

In future work, we intend to use closed generic theories to generalize Carlson’s consistency result

[7] (this is almost already done in [5], but not quite, because the latter paper relies on an axiom called

assigned validity to avoid some tricky nuances, whereas Carlson does not).
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A Proofs

Lemma 9. (Simulated Necessitation) Let T be a closed theory. If T includes both V and K, then for

every formula ϕ : if T |= ϕ , then T |= Kϕ .

Proof of Lemma 9. By Lemma 5, there are ϕ1, . . . ,ϕn ∈ T such that ϕ1 → ··· → ϕn → ϕ is valid. By V,

T |= K(ϕ1 → ··· → ϕn → ϕ).

By repeated applications of K,

T |= K(ϕ1 → ··· → ϕn → ϕ)→ Kϕ1 → ··· → Kϕn → Kϕ .

Since T contains each ϕi, the closure of T ensures T contains each Kϕi. Thus T |= Kϕ .

Theorem 19. Let p be a propositional atom, and let H be a generic theory. Let (TKP)0 be the smallest

closed theory containing:

(i) H

(ii) p ↔ K¬p “This sentence is known to be false”

In addition, let TKP be the theory containing:

(a) (TKP)0; and

(b) T.

For any set S of propositional atoms, if p 6∈ S then M(TKP)0,S |= TKP. In particular, TKP is consistent. �

Proof of Theorem 19. Let ϕ ∈ TKP, we must show M(TKP)0,S |= ϕ . Consider four cases:

Case 1 ϕ ∈ H . Then M(TKP)0,S |= ϕ because (TKP)0 ⊇ H and H is generic.

Case 2 ϕ is p ↔ K¬p. Since p 6∈ S, M(TKP)0,S 6|= p, thus it suffices to show M(TKP)0,S 6|= K(¬p). Let S′

be a set of propositional atoms with p ∈ S′, and let T∞ be the set of all formulas.

We claim MT∞,S′ |= (TKP)0. To see this, let ψ ∈ (TKP)0, we must show MT∞,S′ |= ψ . Three

subcases are to be considered:

Subcase 1 ψ ∈ H . Then MT∞,S′ |= ψ because H is generic and T∞ ⊇ H .

Subcase 2 ψ is p↔K¬p. Since p∈ S′, MT∞,S
′ |= p. And since T∞ contains all formulas, T∞ |=¬p,

thus MT∞,S
′ |= K¬p. So MT∞,S

′ |= ψ .

Subcase 3 ψ is Kρ for some ρ such that ρ ∈ (TKP)0. Since T∞ contains all formulas, T∞ |= ρ , so

MT∞,S
′ |= Kρ .

This shows MT∞,S′ |= (TKP)0. Now since MT∞,S′ |=(TKP)0 and MT∞,S′ |= p, this shows (TKP)0 6|=
¬p. Thus M(TKP)0,S 6|= K(¬p), as desired.
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Case 3 ϕ is Kψ for some ψ such that ψ ∈ (TKP)0. Since (TKP)0 |= ψ , by definition M(TKP)0,S |= Kψ .

Case 4 ϕ ∈ TKP\(TKP)0. Then ϕ is an instance of T, i.e., ϕ is Kψ → ψ for some ψ . Assume

M(TKP)0,S |= Kψ . Then (TKP)0 |= ψ . By Cases 1–3, M(TKP)0,S |= (TKP)0. Thus M(TKP)0,S |= ψ .

Definition 29. Given a formula ϕ , define Knϕ by recursion on n ∈N by K0ϕ = ϕ and Kn+1ϕ = KKnϕ .

◭

Theorem 24. If V∪KK is closed generic, then there is at most one propositional atom.

Proof of Theorem 24. Let T = V∪KK. Assume there exist distinct propositional atoms p and q. Let T ′

be the theory which contains:

• Knϕ for all n ∈N and all ϕ ∈ V.

• Knϕ for all n ∈N and all ϕ ∈ KK.

• Kn(p → q) for all n ∈ N.

• Kn p for all n ∈N.

Clearly T ′ is closed and T ′ ⊇ T . We will show MT ′, /0 6|= Kq → KKq, so MT ′, /0 6|= T , so T is not closed

generic. Since T ′ contains p and p → q, by modus ponens T ′ |= q, so MT ′, /0 |= Kq. It remains only to

show MT ′, /0 6|= KKq, i.e., that T ′ 6|= Kq.

Define models N1 and N2 inductively so that:

• For every propositional atom a, N1 |= a.

• For every propositional atom a, N2 6|= a.

• For every formula ϕ , N2 |= Kϕ iff N2 |= ϕ .

• For every formula ϕ , N1 |= Kϕ iff N2 |= ϕ or ϕ is Kn p for some n ∈ N.

Since q is distinct from p and N2 6|= q, we have N1 6|= Kq. So to show T ′ 6|= Kq (and thus finish the

proof), it suffices to show N1 |= T ′. Let ϕ ∈ T ′.

Case 1: ϕ is Knψ for some n ∈ N and some ψ ∈ V. Then ϕ is Kn+1ψ0 for some valid ψ0. Since ψ0

is valid, N2 |= ψ0, and it follows that N1 |= Kn+1ψ0.

Case 2: ϕ is Knψ for some n ∈ N and some ψ ∈ KK. Then ϕ is Kn(Kρ → KKρ) for some ρ . To

show N1 |= ϕ , it suffices to show N2 |= Kρ → KKρ . Assume N2 |= Kρ , then by definition N2 |= KKρ ,

as desired.

Case 3: ϕ is Kn(p→ q) for some n∈N. Since N2 6|= p, we have N2 |= p→ q, thus N1 |= Kn(p→ q).
Case 4: ϕ is p. Then N1 |= ϕ by definition.

Case 5: ϕ is Kn p for some n > 0. Then N1 |= ϕ by definition.

Proof of Theorem 25. Let T = K∪KK. Let T ′ be the theory consisting of:

• Knϕ for all n ∈N and all ϕ ∈ K.

• Knϕ for all n ∈N and all ϕ ∈ KK.

Clearly T ′ is closed and T ′ ⊇ T . Let p be a propositional atom. We will show MT ′, /0 6|= K(p∨¬p) →
KK(p∨¬p), showing MT ′, /0 6|= T and thus proving T is not closed generic. Clearly T ′ |= p∨¬p, thus

MT ′, /0 |= K(p∨¬p). It remains to show MT ′, /0 6|= KK(p∨¬p), i.e., that T ′ 6|= K(p∨¬p).
Call a formula bad if it is either p∨¬p or is of the form ϕ1 → ··· → ϕn → (p∨¬p). Let N be the

model such that:
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• For every propositional atom a, N |= a.

• For every formula ϕ , N |= Kϕ iff ϕ is not bad.

Since p∨¬p is bad, we have N 6|= K(p∨¬p). Thus to show T ′ 6|= K(p∨¬p) (and thus finish the proof),

it suffices to show N |= T ′. Let ϕ ∈ T ′.

Case 1: ϕ ∈ K. Then ϕ has the form K(ψ → ρ) → Kψ → Kρ . Assume N |= K(ψ → ρ) and

N |= Kψ . Then ψ → ρ is not bad. This implies ρ is not bad, thus N |= Kρ , as desired.

Case 2: ϕ ∈ KK. Then ϕ has the form Kψ → KKψ . Clearly Kψ is not bad, thus N |= KKψ , thus

N |= ϕ .

Case 3: ϕ is of the form K(K(ψ → ρ)→ Kψ → Kρ). Clearly K(ψ → ρ)→ Kψ → Kρ is not bad,

so N |= ϕ .

Case 4: ϕ is of the form K(Kψ → KKψ). Clearly Kψ → KKψ is not bad, so N |= ϕ .

Case 5: ϕ is Knψ for some ψ ∈ K∪KK and some n ≥ 2. Then ϕ has the form KKρ for some ρ .

Clearly Kρ is not bad, thus N |= KKρ .
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Recently, in [3], we studied well-founded games, a natural extension of finite extensive games with
perfect information in which all plays are finite. We extend here, to this class of games, two results
concerned with iterated elimination of weakly dominated strategies, originally established for finite
extensive games.

The first one states that every finite extensive game with perfect information and injective payoff
functions can be reduced by a specific iterated elimination of weakly dominated strategies to a trivial
game containing the unique subgame perfect equilibrium. Our extension of this result to well-founded
games admits transfinite iterated elimination of strategies. It applies to an infinite version of the
centipede game. It also generalizes the original result to a class of finite games that may have several
subgame perfect equilibria.

The second one states that finite zero-sum games with n outcomes can be solved by the maximal
iterated elimination of weakly dominated strategies in n− 1 steps. We generalize this result to a
natural class of well-founded strictly competitive games.

1 Introduction

This paper is concerned with the iterated elimination of weakly dominated strategies (IEWDS) in the
context of natural class of infinite extensive games with perfect information. While simple examples show
that the deletion of weakly dominated strategies may result in removal of a unique Nash equilibrium,
IEWDS has some merit if it results in solving a game. It is for instance used to show that the so-called
“beauty contest” game has exactly one Nash equilibrium (see, e.g., [7, Chapter 5]). Other games can be
solved this way, see, e.g., [11, pages 63, 110-114].

This procedure was also studied in the realm of finite extensive games with perfect information. In
[8] the correspondence between the outcomes given by the iterated elimination of weakly dominated
strategies and backward induction was investigated in the context of binary voting agendas with sequential
voting. More recently, this procedure was studied in [16] in the context of supermodular games.

For arbitrary games two important results were established. The first one states, see [11], that in
such games with injective payoff functions (such games are sometimes called generic) a specific iterated
elimination of weakly dominated strategies (that mimics the backward induction) yields a trivial game
which contains the unique subgame perfect equilibrium. It was noticed in [4] that this result holds for a
slightly more general class of games without relevant ties.1

1All mentioned concepts are explained in Sections 2, 4, and 5. We did not find any precise proofs in the literature. The proof
is briefly sketched in [11, pages 108-109] and summarized in [4, pages 48-49] as follows: “if backward induction deletes action
a at node x, delete all the strategies reaching x and choosing a”. We provided in [2] a detailed proof of the stronger result of [4]
in which we clarified how the backward induction algorithm needs to be modified to achieve the desired outcome.

http://dx.doi.org/10.4204/EPTCS.379.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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The second result, due to [6], is concerned with finite extensive zero-sum games. It states that such
games can be reduced to a trivial game by the ‘maximal’ iterated elimination of weakly dominated
strategies in n−1 steps, where n is the number of outcomes.2

In [3] we studied a natural extension of finite extensive games with perfect information in which one
assumes that all plays are finite. We called these games well-founded games.3 The subject of this paper is
to extend the above two results to well-founded games. In both cases some non-trivial difficulties arise.

1

2

(0,0)
L

(2,0)
R

A

1

(2,0)
C

(0,0)
D

B

Figure 1: An extensive game G and the corresponding strategic game Γ(G)

L R
AC (0,0) (2,0)
AD (0,0) (2,0)
BC (2,0) (2,0)
BD (0,0) (0,0)

Example 1 Consider the extensive game G and the corresponding strategic game Γ(G) given in Figures
1. G has three subgame perfect equilibria which are all payoff equivalent: {(AC,R),(BC,L),(BC,R)}.
We can observe that in Γ(G) no sequence of iterated elimination of weakly dominated strategies results in
a trivial game that contains all the subgame perfect equilibria in G. To see this, first note that the strategies
L and R of player 2 are never weakly dominated irrespective of the elimination done with respect to the
strategies of player 1. Also, note that the strategy BD of player 1 is strictly dominated by BC in Γ(G).
Thus the only possibility of reducing Γ(G) to a trivial game is to eliminate all strategies of player 1 except
BC. But this results in the elimination of (AC,R) which is a subgame perfect equilibrium in G. 2

This might suggest that one should limit oneself to extensive games with a unique subgame perfect
equilibrium. Unfortunately, this restriction does not work either as shown in Example 2. Additional
complication arises when the game has no subgame perfect equilibrium as shown in 3.

1

(0,100)

0

(x,100− x)

x

2

(100,0)

L

(0,0)

R

100

· · · · · ·

Figure 2: A game G with a unique SPE

1

(0,0)

A

(0,1)

B

2

(0,0) (0,1) (0,2) . . .

· · ·

C

Figure 3: A game G with no SPE

Example 2 Consider a ‘trimmed version’ of the ultimatum game from [3] given in Figure 2, in which for
each x ∈ [0,100] the root has a direct descendant x. This game has a unique subgame perfect equilibrium,
namely (100,L). Consider an iterated elimination of weakly dominated strategies. For each strategy
of player 1 the strategies L and R of player 2 yield the same payoff. So these two strategies are never

2An alternative proof given in [17] shows that the result holds for the larger class of strictly competitive games. In [2] we
clarified that the original proof also holds for this class of games.

3In the economic literature such games are sometimes called ‘games with finite horizon’.
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eliminated. Further, strategy 100 of player 1 is never eliminated either, since for any strategy x < 100 we
have p1(x,L) = x < 100 = p1(100,L) and p1(x,R) = x > 0 = p1(100,R). So the joint strategies (100,L)
and (100,R) are never eliminated and they are not payoff equivalent. (In fact, each iterated elimination of
weakly dominated strategies yields the game with the sets of strategies {100} and {L,R}.) 2

Example 3 Consider the well-founded game G given in Figure 3. Clearly G has no subgame perfect
equilibrium. Further, strategies A and B of player 1 yield the same outcome for him, so cannot be
eliminated by any iterated elimination of weakly dominated strategies. Thus any result of such an
elimination contains at least two outcomes, (0,0) and (0,1). So G cannot be reduced to a trivial game. 2

To address these issues, we introduce the concept of an SPE-invariant well-founded game. These
are games in which subgame perfect equilibria exist and moreover in each subgame such equilibria are
payoff equivalent. Then we show that the first result can be extended to such games. In view of the above
examples it looks like the strongest possible generalization of the original result. In particular, it applies to
an infinite version of the well-known centipede game of [15].

This result calls for a careful extension of the iterated elimination of weakly dominated strategies to
infinite games: its stages have to be indexed by ordinals and one has to take into account that the outcome
can be the empty game.

When limited to finite games, our theorem extends the original result. In particular it applies to the
class of extensive games that satisfy the transference of decisionmaker indifference (TDI) condition due
to [10], a class that includes strictly competitive games. We also show that the well-founded games with
finitely many outcomes that satisfy the TDI condition are SPE-invariant. Also when extending the second
result, about strictly competitive games, to well-founded games one has to be careful. The original proof
crucially relies on the fact that finite extensive zero-sum games have a value. Fortunately, as we showed
in [3], well-founded games with finitely many outcomes have a subgame perfect equilibrium, so a fortiori
a Nash equilibrium, which suffices to justify the relevant argument (Lemma 21 in Section 5).

By carefully checking of the crucial steps of the original proof we extend the original result to a class
of well-founded strictly competitive games that includes almost constant games, in which for all but
finitely many leaves the outcome is the same. It remains an open problem whether this result holds for all
strictly competitive games with finitely many outcomes.

IEWDS is one of the early approaches applied to analyze strategies and extensive games. It does
not take into account epistemic reasoning of players in the presence of assumptions such as common
knowledge of rationality. The vast literature on this subject, starting with [5] and [12], led to identification
of several more informative ways of analyzing finite extensive games with imperfect information. We
just mention here two representative references. In [4] Pearce’s notion of extensive form rationalizability
(EFR) was studied and it was shown that for extensive games without relevant ties it coincides with the
IEWDS. A more general notion of common belief in future rationality was studied in [13] that led to
identification of a new iterative elimination procedure called backward dominance.

In our paper IEWDS is defined as a transfinite elimination procedure. A number of papers, starting
with [9], analyzed when such a transfinite elimination of strategies cannot be reduced to an iteration over
ω steps. In our framework it is a simple consequence of the fact that the ranks of the admitted game trees
can be arbitrary ordinals. In particular, an infinite version of the centipede game considered in Example
12 requires more than ω elimination rounds.
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2 Preliminaries

2.1 Strategic games

A strategic game H = (H1, . . .,Hn, p1, . . ., pn) consists of a set of players {1, . . .,n}, where n≥ 1, and for
each player i, a set Hi of strategies along with a payoff function pi : H1×·· ·×Hn→R.

We call each element of H1×·· ·×Hn a joint strategy of players 1, . . .,n, denote the ith element of
s ∈ H1×·· ·×Hn by si, and abbreviate the sequence (s j) j 6=i to s−i. We write (s′i,s−i) to denote the joint
strategy in which player’s i strategy is s′i and each other player’s j strategy is s j. Occasionally we write
(si,s−i) instead of s. Finally, we abbreviate the Cartesian product × j 6=iH j to H−i.

Given a joint strategy s, we denote the sequence (p1(s), . . ., pn(s)) by p(s) and call it an outcome of
the game. We say that H has k outcomes if |{p(s) | s ∈ H1×·· ·×Hn}|= k and call a game trivial if it
has one outcome. If one of the sets Hi is empty, we call the game empty and non-empty otherwise. Unless
explicitly stated, all used strategic games are assumed to be non-empty. We say that two joint strategies s
and t are payoff equivalent if p(s) = p(t).

We call a joint strategy s a Nash equilibrium if ∀i ∈ {1, . . . ,n}∀s′i ∈Hi : pi(si,s−i)≥ pi(s′i,s−i). When
the number of players and their payoff functions are known we can identify the game H with the set of
strategies in it.

By a subgame of a strategic game H we mean a game obtained from H by removing some strategies.
Given a set J of subgames of a strategic game H we define

⋂
J as the subgame of H in which for each

player i his set of strategies is
⋂

J∈J Ji. Also, given two subgames H ′ and H ′′ of a strategic game H we
write H ′⊆H ′′ if for each player i, H ′i ⊆H ′′i .

Consider two strategies si and s′i of player i in a strategic game H. We say that si weakly dominates
s′i (or equivalently, that s′i is weakly dominated by si) in H if ∀s−i ∈ H−i : pi(si,s−i) ≥ pi(s′i,s−i) and
∃s−i ∈ H−i : pi(si,s−i)> pi(s′i,s−i).

In what follows, given a strategic game we consider, possibly transfinite, sequences of sets of strategies.
They are written as (ρα ,α < γ), where α ranges over all ordinals smaller than some ordinal γ . Given two
such sequences ρ := (ρα ,α < γ) and ρ ′ := (ρ ′

α ′ ,α
′ < γ ′), we denote by (ρ,ρ ′) their concatenation (which

is indexed by γ + γ ′), by ρβ the subsequence (ρα ,α < β ) of ρ , and for α < β by ρβ−α the subsequence
such that (ρα ,ρβ−α) = ρβ . Further, we write H→ρ H ′ to denote the fact that the game H ′ is the outcome
of the iterated elimination from the non-empty game H of the sets of strategies that form ρ . In each step
all eliminated strategies are weakly dominated in the current game. As a result H ′ may be empty. The
relation→ρ is defined as follows.

If ρ = (ρ0), that is, if γ = 1, then H→ρ H ′ holds if each strategy in the set ρ0 is weakly dominated in
H and H ′ is the outcome of removing from H all strategies from ρ0. If γ is a successor ordinal > 1, say
γ = δ +1, and H→ρ ′ H ′, H ′→(ρδ ) H ′′, where H ′ is non-empty, and ρ ′ := (ρα ,α < δ ), then H→ρ H ′′.
Finally, if γ is a limit ordinal and for all β < γ , H→ρβ

Hβ , then H→ρ
⋂

β<γ Hβ . In general, the strategic
game H from which we eliminate strategies will be a subgame of a game Γ(G), where G is an extensive
game (to be defined shortly). It will be then convenient to allow in ρ strategies from Γ(G). In the definition
of H→ρ H ′ we then disregard the strategies from ρ that are not from H. In the proofs below we rely on
the following observations about the→ρ relation, the proofs of which we omit.
Note 4

(i) Suppose H→ρ H ′ and H ′→ρ ′ H ′′, where H ′ is non-empty. Then H→(ρ,ρ ′) H ′′.

(ii) Suppose H →ρ H ′, where ρ = (ρα ,α < γ) and γ is a limit ordinal. Suppose further that for a
sequence of ordinals (αδ )δ<ε converging to γ we have H →ρ

α
δ Hαδ for all δ < ε . Then H ′ =⋂

δ<ε Hαδ .
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2.2 Well-founded games

We recall from [3] the definition of a well-founded game. A tree is an acyclic directed connected
graph, written as (V,E), where V is a non-empty set of nodes and E is a possibly empty set of edges.
An extensive game with perfect information (T, turn, p1, . . ., pn) consists of a set of players {1, . . .,n},
where n ≥ 1 along with the following. A game tree, which is a tree T := (V,E) with a turn function
turn : V \Z→{1, . . .,n}, where Z is the set of leaves of T . For each player i a payoff function pi : Z→R,
for each player i. The function turn determines at each non-leaf node which player should move. The
edges of T represent possible moves in the considered game, while for a node v ∈ V \Z the set of its
children C(v) := {w | (v,w) ∈ E} represents possible actions of player turn(v) at v.

We say that an extensive game with perfect information is finite, infinite, or well-founded if, respec-
tively, its game tree is finite, infinite, or well-founded. Recall that a tree is called well-founded if it has no
infinite paths. From now on by an extensive game we mean a well-founded extensive game with perfect
information.

For a node u in T we denote the subtree of T rooted at u by T u. In the proofs we shall often rely on
the concept of a rank of a well-founded tree T , defined inductively as follows, where v is the root of T :

rank(T ) :=

{
0 if T has one node
sup{rank(T u)+1 | u ∈C(v)} otherwise,

where sup(X) denotes the least ordinal larger than all ordinals in the set X .
For an extensive game G := (T, turn, p1, . . ., pn) let Vi := {v ∈V \Z | turn(v) = i}. So Vi is the set of

nodes at which player i moves. A strategy for player i is a function si : Vi→V , such that (v,si(v)) ∈ E for
all v ∈Vi. We denote the set of strategies of player i by Si. Let S = S1×·· ·×Sn. As in the case of the
strategic games we use the ‘−i’ notation, when referring to sequences of strategies or sets of strategies.

Each joint strategy s = (s1, . . .,sn) determines a rooted path play(s) := (v1, . . .,vm) in T defined
inductively as follows. v1 is the root of T and if vk 6∈ Z, then vk+1 := si(vk), where turn(vk) = i. So when
the game tree consists of just one node, v, we have play(s) = v. Informally, given a joint strategy s, we
can view play(s) as the resulting play of the game. For each joint strategy s the rooted path play(s) is
finite since the game tree is assumed to be well-founded. Denote by leaf (s) the last element of play(s).
To simplify the notation we just write everywhere pi(s) instead of pi(leaf (s)).

With each extensive game G := (T, turn, p1, . . ., pn) we associate a strategic game Γ(G) defined as
follows. Γ(G) := (S1, . . .,Sn, p1, . . ., pn), where each Si is the set of strategies of player i in G. In the
degenerate situation when the game tree consists of just one node, each strategy is the empty function,
denoted by /0, and there is only one joint strategy, namely the n-tuple ( /0, . . ., /0) of these functions. In
that case we just stipulate that pi( /0, . . ., /0) = 0 for all players i. All notions introduced in the context
of strategic games can now be reused in the context of an extensive game G simply by referring to the
corresponding strategic form Γ(G). In particular, the notion of a Nash equilibrium is well-defined.

The subgame of an extensive game G := (T, turn, p1, . . ., pn), rooted at the node w and denoted by Gw,
is defined as follows. The set of players is {1, . . .,n}, the game tree is T w. The turn and payoff functions
are the restrictions of the corresponding functions of G to the nodes of T w. We call Gw a direct subgame
of G if w is a child of the root v.

Note that some players may ‘drop out’ in Gw, in the sense that at no node of T w it is their turn to move.
Still, to keep the notation simple, it is convenient to admit in Gw all original players in G.

Each strategy si of player i in G uniquely determines his strategy sw
i in Gw. Given a joint strategy

s = (s1, . . .,sn) of G we denote by sw the joint strategy (sw
1 , . . .,s

w
n ) in Gw. Further, we denote by Sw

i the set
of strategies of player i in the subgame Gw and by Sw the set of joint strategies in this subgame.
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Finally, a joint strategy s of G is called a subgame perfect equilibrium in G if for each node w of T ,
the joint strategy sw of Gw is a Nash equilibrium in the subgame Gw. We denote by SPE(G) the set of
subgame perfect equilibria in G. Finally, we say that a game is SPE-invariant if it has a subgame perfect
equilibrium and in each subgame of it all subgame perfect equilibria are payoff equivalent.

We shall often use the following result.

Theorem 5 ([3]) Every extensive game with finitely many outcomes has a subgame perfect equilibrium.

3 Preliminary lemmas

In this section we present a sequence of lemmas needed to prove our first main result. In the proofs we
often switch between a game and its direct subgames.

Consider an extensive game G := (T, turn, p1, . . ., pn) with the root v and a child w of v. For each
player j to each of his strategy t j in a direct subgame Gw there corresponds a natural set [t j] of his strategies
in the game G defined by [t j] := {s j | t j = sw

j and s j(v) = w if j = turn(v)}. So for a player j, [t j] is the
set of his strategies in G the restriction of which to Gw is t j, with the additional proviso that if j = turn(v),
then each strategy in [t j] selects w at the root v. We call [t j] the lifting of t j to the game G. The following
lemma clarifies the relevance of lifting.

Lemma 6 Consider a direct subgame Gw of G. Suppose that the strategy t j is weakly dominated in Gw.
Then each strategy in [t j] is weakly dominated in G.

Proof. Suppose that t j is weakly dominated in Gw by some strategy u j. Take a strategy v j in [t j]. We
show that v j is weakly dominated in G by the strategy w j in [u j] that coincides with v j on all the nodes
that do not belong to Gw. So w j is obtained from v j by replacing in it vw

j , i.e., t j, by u j. Below s− j denotes
a sequence of strategies in G of the opponents of player j.

Case 1. j = turn(v).
By the choice of u j for all s− j p j(t j,sw

− j) ≤ p j(u j,sw
− j) and for some s− j p j(t j,sw

− j) < p j(u j,sw
− j).

Further, by the definition of [·] we have v j(v) = w, so for all s− j we have p j(v j,s− j) = p j(t j,sw
− j) and

p j(u j,sw
− j) = p j(w j,s− j), so the claim follows.

Case 2. j 6= turn(v).
Let i = turn(v). Take some s− j. If si(v) = w, then p j(v j,s− j) = p j(t j,sw

− j) and p j(w j,s− j) =
p j(u j,sw

− j). Thus p j(v j,s− j) ≤ p j(w j,s− j) by the choice of u j and w j. Further, if si(v) 6= w, then
p j(v j,s− j) = p j(w j,s− j) by the choice of w j.

Choose an arbitrary s− j such that si(v) = w and p j(t j,sw
− j) < p j(u j,sw

− j). By the choice of si we
have p j(v j,s− j) = p j(t j,sw

− j) and p j(w j,s− j) = p j(u j,sw
− j), so p j(v j,s− j)< p j(w j,s− j). Thus the claim

follows. �
We now extend the notation [·] to sets of strategies and sequences of sets strategies. First, given a set

of strategies A in a direct subgame Gw of G we define [A] :=
⋃

s j∈A[s j]. Next, given a sequence ρ of sets
of strategies of players, each set taken from a direct subgame of G, we denote by [ρ] the corresponding
sequence of sets of strategies of players in G obtained by replacing each element A in ρ by [A].

Given a set A of strategies of players in a direct subgame Gw we define the corresponding set of
strategies in the game G by putting 〈A〉= {s j | sw

j ∈ A}. Thus for a set A of strategies in a direct subgame
Gw, the set 〈A〉 differs from [A] in that we do include in the former set strategies s j for which s j(v) 6= w.
Given a set A of strategies of player j in the subgame Gw, we call 〈A〉 an extension of A to the game G.
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Further, given a subgame H of Γ(Gw), we define 〈H〉 as the subgame of Γ(G) in which for each player j
we have 〈H〉 j = 〈H j〉.

In what follows we need a substantially strengthened version of Lemma 6 that relies on the following
concept. Given an extensive game G with a root v, we say that a non-empty subgame J of Γ(G) does not
depend on a direct subgame Gw if for any strategy s j from J any modification of it on the non-leaf nodes
of Gw or on v if turn(v) = j is also in J. Note that in particular Γ(G) does not depend on any of its direct
subgame and that for any non-empty subgame H of a direct subgame Gw of G the subgame 〈H〉 does not
depend on any other direct subgame of G.

Lemma 7 Consider a direct subgame Gw of G, subgames H and H ′ of Γ(Gw) and a set A of strategies in H.
Suppose that H→A H ′ and that the subgame J of Γ(G) does not depend on Gw. Then J∩〈H〉→[A] J∩〈H ′〉.

Proof. Take a strategy v j in [A]. For some strategy t j from A that is weakly dominated in H by some
strategy u j we have v j ∈ [t j]∩ J j. Select a strategy w j in [u j] that coincides with v j on the nodes that do
not belong to Gw. So w j is a modification of v j on the non-leaf nodes of Gw and consequently, by the
assumption about J, it is in J j. Further, w j is in 〈H〉, since u j is from H.

We claim that v j is weakly dominated in J∩〈H〉 by w j. Below s− j denotes a sequence of strategies of
the opponents of player j in the original game G.

Case 1. j = turn(v).
By the choice of u j for all s− j such that sw

− j ∈H− j p j(t j,sw
− j)≤ p j(u j,sw

− j) and for some s− j such that
sw
− j ∈H− j p j(t j,sw

− j)< p j(u j,sw
− j). By the definition of ‘does not depend on’ and the fact that j = turn(v)

we can also assume that the latter s− j is from J− j by stipulating that s− j = t− j for an arbitrary joint
strategy t from J.

Further, by the definition of [·] we have v j(v) = w, so for all s− j such that sw
− j ∈ H− j we have

p j(v j,s− j) = p j(t j,sw
− j) and p j(u j,sw

− j) = p j(w j,s− j). Hence for all s− j p j(v j,s− j) ≤ p j(w j,s− j) and
for some s− j such that s− j ∈ J− j and sw

− j ∈H− j (i.e., for some s− j ∈ (J∩〈H〉)− j) p j(v j,s− j)< p j(w j,s− j).
This establishes the claim.

Case 2. j 6= turn(v).
Let i = turn(v). Take some s− j. If si(v) = w, then p j(v j,s− j) = p j(t j,sw

− j) and p j(w j,s− j) =
p j(u j,sw

− j). Thus p j(v j,s− j) ≤ p j(w j,s− j) by the choice of u j and w j. Further, if si(v) 6= w, then
p j(v j,s− j) = p j(w j,s− j) by the choice of w j. So for all s− j we have p j(v j,s− j)≤ p j(w j,s− j).

Choose an arbitrary s− j such that si(v) = w, sw
− j ∈ H− j, and p j(t j,sw

− j)< p j(u j,sw
− j). Additionally,

we can claim that s− j ∈ J− j by stipulating that s− j = t− j for an arbitrary joint strategy t from J. Then
s− j ∈ (J∩〈H〉)− j.

By the choice of si we have p j(v j,s− j) = p j(t j,sw
− j) and p j(w j,s− j) = p j(u j,sw

− j), so p j(v j,s− j)<
p j(w j,s− j). This establishes the claim for this case. �

We continue with some lemmas concerned with the relation→ρ .

Lemma 8 Consider a direct subgame Gw of G. Suppose that for some sequence ρ of sets of strategies of
players in Gw and a subgame H of Γ(Gw), Γ(Gw)→ρ H. Suppose further that the subgame J of Γ(G)
does not depend on Gw. Then J→[ρ] J∩〈H〉.

Proof. We proceed by transfinite induction on the length γ of ρ = (ρα ,α < γ).

Case 1. γ = 1.
By Lemma 7 J∩〈Γ(Gw)〉 →[ρ0] J∩〈H〉, so the claim holds since 〈Γ(Gw)〉= Γ(G) and J∩Γ(G) = J.



K. R. Apt & S. Simon 23

Case 2. γ is a successor ordinal > 1.
Suppose γ = δ + 1. Then ρ = (ρ ′,ρδ ), where ρ ′ := (ρα ,α < δ ). By definition for some H ′ we

have Γ(Gw)→ρ ′ H ′ and H ′ →ρδ H. By the induction hypothesis J →[ρ ′] J ∩ 〈H ′〉 and by Lemma 7
J∩〈H ′〉 →[ρδ ] J∩〈H〉, so the claim follows by Note 4(i), since [ρ] = ([ρ ′], [ρδ ]).

Case 3. γ is a limit ordinal.
By definition for some games Hβ , where β < γ , we have Γ(Gw)→ρβ

Hβ and H =
⋂

β<γ Hβ , where—

recall—ρβ = (ρα ,α < β ). By the induction hypothesis for all β < γ , we have J→[ρβ ] J∩〈Hβ 〉. So by
definition J→[ρ] J∩〈H〉, since J∩〈H〉=

⋂
β<γ〈J∩Hβ 〉 as 〈H〉=

⋂
β<γ〈Hβ 〉. �

Lemma 9 Consider an extensive game G with the root v. Suppose that (wα ,α < γ) is a sequence of
children of v and that for all α < γ , ρα is a sequence of sets of strategies in the direct subgame Gwα .
Suppose further that for each α < γ Γ(Gwα )→ρα Hwα , where each game Hwα is non-empty. Let ρ be the
concatenation of the sequences (ρα ,α < γ). Then Γ(G)→[ρ] ⋂

α<γ〈Hwα 〉.

By assumption each Hwα is a non-empty subgame of Γ(Gwα ), so each 〈Hwα 〉 is a non-empty subgame
of Γ(G), and consequently

⋂
α<γ〈Hwα 〉 is also a non-empty subgame of Γ(G).

Informally, suppose that for each direct subgame Gwα of G we can reduce the corresponding strategic
game Γ(Gwα ) to a non-empty game Hwα . Then the strategic game Γ(G) can be reduced to a strategic
game the strategies of which are obtained by intersecting for each player the extensions of his strategy
sets in all games Hwα . To establish this lemma we do not assume that (wα ,α < γ) contains all children of
v, which makes it possible to proceed by induction.

Proof. We proceed by transfinite induction on the length γ of ρ .

Case 1. γ = 1. Follows from Lemma 8 with J = Γ(G).

Case 2. γ is a successor ordinal > 1.
Suppose γ = δ +1. By the induction hypothesis Γ(G)→[ρδ ] ⋂

α<δ 〈Hwα 〉, where ρδ is the concatena-
tion of the sequences (ρα ,α < δ ). We also have by assumption Γ(Gwδ )→ρδ Hwδ .

Note that the subgame
⋂

α<δ 〈Hwα 〉 of Γ(G) does not depend on Gwδ , so by Lemma 8 we have that⋂
α<δ 〈Hwα 〉 →[ρδ ]

⋂
α<δ 〈Hwα 〉∩ 〈Hwδ 〉. By Note 4(i) the claim follows.

Case 3. γ is a limit ordinal.
By the induction hypothesis for all β < γ Γ(G)→[ρβ ] ⋂

α<β 〈Hwα 〉, where ρβ is the concatenation
of the sequences (ρα ,α < β ). Then by Note 4(ii) and by definition Γ(G)→[ρ] ⋂

β<γ

⋂
α<β 〈Hwα 〉. But⋂

β<γ

⋂
α<β 〈Hwα 〉=

⋂
α<γ〈Hwα 〉, so the claim follows. �

The next lemma shows that when each subgame Hwα of Γ(Gwα ) is trivial, under some natural
assumptions the subgame

⋂
α<γ〈Hwα 〉 of Γ(G) can then be reduced in one step to a trivial game.

Lemma 10 Consider an extensive game G with the root v. Suppose that

(a) G has a subgame perfect equilibrium and all subgame perfect equilibria of G are payoff equivalent,

(b) for all w ∈C(v), SPE(Gw)⊆Hw, where Hw is a trivial subgame of Γ(Gw).

Then for some set of strategies A we have
⋂

w∈C(v)〈Hw〉→A H ′, where H ′ a trivial game and SPE(G)⊆H ′.
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Proof. Let H :=
⋂

w∈C(v)〈Hw〉. Note that H is a non-empty subgame of Γ(G).
Denote the unique outcome in the game Hw by valw, i.e., for all joint strategies s in Hw we have

p(s) = valw. Then the possible outcomes in H are valw, where w ∈C(v). More precisely, suppose that
i = turn(v). Then if s is a joint strategy in H, then p(s) = valw, where si(v) = w.

Take two strategies t ′i and t ′′i of player i in H with t ′i(v) = w1 and t ′′i (v) = w2 such that valw1
i < valw2

i .
This means that for any joint strategies s−i from H−i we have pi(t ′i ,s−i < pi(t ′′i ,s−i, so t ′i is weakly
dominated in H by t ′′i (actually, even strictly dominated).

By assumption (a) G has a subgame perfect equilibrium, so by Corollary 7 of [3] max{valw
i |w∈C(v)}

exists. Denote it by vali and let W := {w ∈C(v) | valw
i = vali}. So W is the set of children w of v for

which the corresponding value valw
i is maximal. Finally, let A be the set of strategies ti of player i in H

such that ti(v) 6∈W .
By the above observation about t ′i and t ′′i all strategies in A are weakly dominated in H. By removing

them from H we get a game H ′ with the unique payoff vali for player i. To prove that H ′ is trivial consider
two joint strategies s and t in H ′. Suppose that si(v) = w1 and ti(v) = w2. Then w1,w2 ∈W , sw1 ∈ Hw1 ,
tw2 ∈ Hw2 , p(s) = p(sw1), and p(t) = p(tw2).

By Theorem 8 of [3] subgame perfect equilibria u′ and u′′ in G exist such that u′i(v) = w1, (u′)w1 is
a subgame perfect equilibrium in Gw1 , u′′i (v) = w2, and (u′′)w2 is a subgame perfect equilibrium in Gw2 .
Then p(u′) = p((u′)w1) and p(u′′) = p((u′′)w2), so p((u′)w1) = p((u′′)w2) by assumption (a). Further, by
assumption (b) both (u′)w1 ∈Hw1 and (u′′)w2 ∈Hw2 , so since both subgames are trivial, p(sw1) = p((u′)w1)
and p(tw2) = p((u′)w2). Consequently p(s) = p(t), which proves that H ′ is trivial.

To prove that SPE(G)⊆H ′ consider a subgame perfect equilibrium s in G. Take some u ∈C(v). By
assumption (b), su ∈ Hu, so pi(su) = valu

i and, by the definition of 〈·〉, s ∈ H. Suppose that si(v) = w. By
Corollary 7 of [3] valw

i = vali, i.e., si(v) ∈W . This means that si 6∈ A and thus s ∈ H ′. �

4 SPE-invariant games

We can now prove the desired result.

Theorem 11 Consider an SPE-invariant extensive game G. There exists a sequence ρ of strategies of
players in G and a subgame H of Γ(G) such that Γ(G)→ρ H, H is trivial and SPE(G)⊆ H.

Proof. We proceed by induction on the rank of the game tree of G. For game trees of rank 0 all
strategies are empty functions, so Γ(G) is a trivial game with the unique joint strategy ( /0, . . ., /0) and
SPE(G) = {( /0, . . ., /0)}, so the claim holds. Suppose that the rank of the game tree of G is α > 0 and
assume that claim holds for all extensive games with the game trees of rank smaller than α .

Let v be the root of G. Each direct subgame of G is SPE-invariant, so by the induction hypothesis for
all w ∈C(v) there exists a sequence ρw of strategies of players in Gw and a subgame Hw of Γ(Gw) such
that Γ(Gw)→ρw

Hw, Hw is trivial and SPE(Gw)⊆Hw. The claim now follows by Lemmas 9 and 10. �

The following example illustrates the use of this theorem. An extensive game is called generic if each
payoff function is an injective.

Example 12 Recall that the centipede game, introduced in [15] (see also [11, pages 106-108]), is a
two-players extensive game played for an even number of periods. We define it inductively as follows.
The game with 2 periods is depicted in Figure 4. Here and below the argument of each non-leaf is the
player whose turn is to move, and the leaves are followed by players’ payoffs. The moves are denoted by
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v(1)

S1 : (1,0)

S

C1(2)

S2 : (0,2)

S

C2 : (2,1)

C

C

Figure 4: Centipede game with 2 periods

C2t(1)

S2t+1 : (x+1,y)

S

C2t+1(2)

S2t+2 : (x,y+3)

S

C2t+2 : (x+2,y+2)

C

C

Figure 5: From t to t +2 periods

the letters C and S. The game with 2t +2 periods is obtained from the game with 2t periods by replacing
the leaf C2t by the tree depicted in Figure 5.

By the the result of [11, pages 108-109]) each centipede game can be reduced by an iterated elimination
of weakly dominated strategies to a trivial game which contains the unique subgame perfect equilibrium,
with the outcome (1,0). We now show that the same holds for an infinite version of the centipede game
G in which player 2 begins the game by selecting an even number 2t > 0. Subsequently, the centipede
version with 2t periods is played.

Note that G is SPE-invariant. Indeed, G has infinitely many subgame perfect equilibria (one for each
first move of player 2), but each of them yields the outcome (1,0). Moreover, each subgame of G is either
a centipede game with 2t periods for some t > 0, or a subgame of such a game. So each subgame of G is
a finite generic game and thus has a unique subgame perfect equilibrium.

By Theorem 11 we can reduce G by an infinite iterated elimination of weakly dominated strategies
to a trivial game which contains all its subgame perfect equilibria. Note that the strategy elimination
sequence constructed in the proof of this theorem consists of for more than ω steps. 2

For finite extensive games, Theorem 11 extends the original result reported in [11, pages 108-109].
Namely, the authors prove the corresponding result for finite extensive games that are generic. In such
games a unique subgame perfect equilibrium exists, while we only claim that the game is SPE-invariant.

To clarify the relevance of this relaxation let us mention two classes of well-founded extensive games
that are SPE-invariant and that were studied for finite extensive games. Following [4] we say that an
extensive game (T, turn, p1, . . ., pn) is without relevant ties if for all non-leaf nodes u in T the payoff
function pi, where turn(u) = i, is injective on the leaves of T u. This is a more general property than being
generic. The relevant property for finite extensive games is that a game without relevant ties has a unique
subgame perfect equilibrium, see [2] for a straightforward proof. In the case of well-founded games a
direct modification of this proof, that we omit, shows that every extensive game without relevant ties
has at most one subgame perfect equilibrium. Further, if a game is without relevant ties, then so is every
subgame of it, so we conclude that well-founded games without relevant ties are SPE-invariant.

Next, following [10] we say that an extensive game (T, turn, p1, . . ., pn) satisfies the transference of
decisionmaker indifference (TDI) condition if:

∀i ∈ {1, . . . ,n}∀ri, ti ∈ Si ∀s−i ∈ S−i

[pi(leaf (ri,s−i)) = pi(leaf (ti,s−i))→ p(leaf (ri,s−i)) = p(leaf (ti,s−i))].

where Si is the set of strategies of player i. Informally, this condition states that whenever for some player
i, two of his strategies ri and ti are indifferent w.r.t. some joint strategy s−i of the other players then this
indifference extends to all players.

Strategic games that satisfy the TDI condition are of interest because of the main result of [10] which
states that in finite games that satisfy this condition iterated elimination of weakly dominated strategies is
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order independent.4 The authors also give examples of natural games that satisfy this condition. Also
strictly competitive games studied in the next section satisfy this condition.

The following result extends an implicit result of [10] to well-founded games.

Theorem 13 Consider an extensive game G. Suppose that G has finitely many outcomes and G satisfies
the TDI condition. Then G is SPE-invariant.

Proof. We reduce the game G to a finite game H as follows. First, consider the set of all leaves of the
game tree T of G that are the ends of the plays corresponding with a subgame perfect equilibrium. Next,
for each outcome associated with a subgame perfect equilibrium retain in this set just one leaf with this
outcome. By assumption the resulting set L is finite.

Next, order the leaves arbitrarily. Following this ordering remove all leaves with an outcome already
associated with an earlier leaf, but ensuring that the leaves from L are retained. Let M be the resulting set
of leaves. Finally, remove all nodes of T from which no leaf in M can be reached.

The resulting tree corresponds to a finite extensive game H in which all the outcomes possible in G
are present. Further, all the leaves of H are also leaves of G, so H satisfies the TDI condition since G
does. So by Theorem 12 of [2] (that is implicit in [10]) all subgame perfect equilibria of H are payoff
equivalent.

Further, by Theorem 5 G has a subgame perfect equilibrium. Consider two subgame perfect equilibria
s and t in G with the outcomes p(s) and p(t). By construction two subgame perfect equilibria s′ and t ′ in
H exist such that p(s) = p(s′) and p(t) = p(t ′). We conclude that all subgame perfect equilibria of G are
payoff equivalent.

To complete the proof it suffice to note that if an extensive game G satisfies the TDI condition, then
so does every subgame of it. Indeed, consider a subgame Gw of G. Let i = turn(w) and take rw

i , t
w
i ∈ Sw

i
and sw

−i ∈ Sw
−i. Extend these strategies to the strategies ri, ti and s−i in the game G in such a way that w

lies both on play(ri,s−i) and on play(ti,s−i). Then p(rw
i ,s

w
−i) = p(ri,s−i) and p(tw

i ,s
w
−i) = p(ti,s−i), so

the claim follows. �

Corollary 14 The claim of Theorem 11 holds for extensive games with finitely many outcomes that satisfy
the TDI condition.

Conjecture Every extensive game that satisfies the TDI-condition is SPE-invariant.

If the conjecture is true, Theorem 11 holds for all extensive games that satisfy the TDI condition. An
example of a game with infinitely many outcomes that satisfies the TDI condition is the infinite version of
the centipede game from Example 12.

5 Strictly competitive extensive games

In some games, for instance, the infinite version of the centipede game from Example 12, infinite rounds
of elimination of weakly dominated strategies are needed to solve the game. In this section, we focus
on maximal elimination of weakly dominated strategies and identify a subclass of extensive games for
which we can provide a finite bound on the number of elimination steps required to solve the game. The
outcome is our second main result which is a generalization of the following result due to [6] to a class of
well-founded games.

4Alternative proofs of this result were given in [1] and [17].
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Theorem Every finite extensive zero-sum game with n outcomes can be reduced to a trivial game by the
maximal iterated elimination of weakly dominated strategies in n−1 steps.

We first present some auxiliary results. Their proofs follow our detailed exposition in [2] of the proofs
in [6] generalized to strictly competitive games, now appropriately modified to infinite games.

5.1 Preliminary results

We denote by H1 the subgame of H obtained by the elimination of all strategies that are weakly dominated
in H, and put H0 := H and Hk+1 := (Hk)1, where k ≥ 1. Abbreviate the phrase ‘iterated elimination of
weakly dominated strategies’ to IEWDS. If for some k, Hk is a trivial game we say that H can be solved
by the IEWDS.

In infinite strategic games with finitely many outcomes it is possible that all strategies of a player are
weakly dominated as shown in the Example 15. Then by definition, H1 is an empty game. We define a
class of games, called WD-admissible games in which this does not happen.

Example 15 Consider the following infinite zero-sum strategic game with two outcomes:

A B C D . . .
A 0,0 0,0 0,0 0,0 . . .
B 0,0 1,−1 0,0 0,0 . . .
C 0,0 1,−1 1,−1 0,0 . . .
D 0,0 1,−1 1,−1 1,−1 . . .
. . . . . . . . . . . . . . . . . .

This game has a Nash equilibrium, namely (A,A), but each strategy of the row player is weakly
dominated. So after one round of elimination the empty game is reached. 2

Consider a strategic game H. We say that a strategy is undominated if no strategy weakly dominates
it. Next, we say that H is WD-admissible if for all subgames H ′ of it the following holds: each strategy
is undominated or is weakly dominated by an undominated strategy. Intuitively, a strategic game H is
WD-admissible if in every subgame H ′ of it, for every strategy si in H ′ the relation ‘is weakly dominated’
in H ′ has a maximal element above si. The crucial property of WD-admissible games is formalised in the
following lemma whose proof follows directly by induction.

Lemma 16 Let H := (H1, . . .,Hn, p1, . . ., pn) be a WD-admissible strategic game and for k ≥ 1, let
Hk := (Hk

1 , . . .,H
k
n , p1, . . ., pn). Then ∀i ∈ {1, . . .,n} ∀si ∈ Hi ∃ti ∈ Hk

i ∀s−i ∈ Hk
−i : pi(ti,s−i)≥ pi(si,s−i).

A two player strategic game H = (H1,H2, p1, p2) is called strictly competitive if ∀i ∈ {1,2} ∀s,s′ ∈ S :
pi(s)≥ pi(s′) iff p−i(s)≤ p−i(s′). For i ∈ {1,2} we define maxmini(H) := maxsi∈Hi mins−i∈H−i pi(si,s−i).
We allow −∞ and ∞ as minima and maxima, so maxmini(H) always exists. When maxmini(H) is finite
we call any strategy s∗i such that mins−i∈H−i pi(s∗i ,s−i) = maxmini(H) a security strategy for player i in H.

We shall reuse the following auxiliary results from [2].

Note 17 Let H = (H1,H2, p1, p2) be a strictly competitive strategic game. Then

∀i ∈ {1,2} ∀s,s′ ∈ S : pi(s) = pi(s′) iff p−i(s) = p−i(s′).

This simply means that every strictly competitive strategic game satisfies the TDI condition.

Lemma 18 Consider a strictly competitive strategic game H with a Nash equilibrium s. Suppose that for
some i ∈ {1,2}, ti weakly dominates si. Then (ti,s−i) is also a Nash equilibrium.
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Lemma 19 Consider a strictly competitive strategic game H with two outcomes that has a Nash equilib-
rium. Then H1 is a trivial game.

The following result is standard (for the used formulation see, e.g., [14, Theorem 5.11, page 235]).

Theorem 20 Consider a strictly competitive strategic game H.

(i) All Nash equilibria of H yield the same payoff for player i, namely maxmini(H).

(ii) All Nash equilibria of H are of the form (s∗1,s
∗
2) where each s∗i is a security strategy for player i.

By modifying the proof of Corollary 5 from [2] appropriately, we have the following.

Lemma 21 Consider a WD-admissible strictly competitive strategic game H that has a Nash equilibrium.
Then H1 has a Nash equilibrium, as well, and for all i ∈ {1,2}, maxmini(H) = maxmini(H1).

5.2 A bound on IEWDS

We now move on to a discussion of extensive games. We say that an extensive game G is WD-admissible
(respectively, strictly competitive) if Γ(G) is WD-admissible (respectively, strictly competitive). We write
Γk(G) instead of (Γ(G))k, Γi(G) instead of (Γ(G))i, and Γk

i (G) instead of (Γk(G))i. So Γ0(G) = Γ(G).
Further, for a strictly competitive game H = (H1,H2, p1, p2) with finitely many outcomes for each player i
we define the following three sets: pmax

i (H) := maxs∈S pi(s), wini(H) := {si ∈Hi | ∀s−i ∈H−i pi(si,s−i) =
pmax

i (H)} and lose−i(H) = {s−i ∈ H−i | ∃si ∈ Hi pi(si,s−i) = pmax
i (H)}. By the assumption about H,

pmax
i (H) is finite.

We can then prove the following generalization of the crucial Lemma 1 and Theorem 1 from [6],
where the proofs are analogous to that of Lemma 18 and Theorem 19 in [2].

Lemma 22 Let G be a WD-admissible strictly competitive extensive game with finitely many outcomes.
For all i ∈ {1,2} and for all k ≥ 0, if wini(Γ

k(G)) = /0 then lose−i(Γ
k(G))∩Γ

k+2
−i (G) = /0.

Lemma 22 implies that if for all i ∈ {1,2}, wini(Γ
k(G)) = /0 then two further rounds of eliminations

of weakly dominated strategies remove from Γk(G) at least two outcomes.
This allows us to establish the following result. The proof is almost the same as the one given in [2,

Theorem 19] for the finite extensive games. We reproduce it here for the convenience of the reader.

Theorem 23 Let G be a WD-admissible strictly competitive extensive game with at most m outcomes.
Then Γm−1(G) is a trivial game.

Proof. We prove a stronger claim, namely that for all m≥ 1 and k≥ 0 if Γk(G) has at most m outcomes,
then Γk+m−1(G) is a trivial game.

We proceed by induction on m. For m = 1 the claim is trivial. For m = 2 we first note that by
Theorem 5 and Lemma 21 each game Γk(G) has a Nash equilibrium. So the claim follows by Lemma 19.
For m > 2 two cases arise.

Case 1. For some i ∈ {1,2}, wini(Γ
k(G)) 6= /0.

For player i every strategy si ∈ wini(Γ
k(G)) weakly dominates all strategies s′i /∈ wini(Γ

k(G)) and
no strategy in wini(Γ

k(G)) is weakly dominated. So the set of strategies of player i in Γk+1(G) equals
wini(Γ

k(G)) and consequently pmax
i (Γk(G)) is his unique payoff in this game. By Note 17 Γk+1(G), and

hence also Γk+m−1(G), is a trivial game.

Case 2. For all i ∈ {1,2}, wini(Γ
k(G)) = /0.



K. R. Apt & S. Simon 29

Take joint strategies s and t such that p1(s) = pmax
1 (Γk(G)) and p2(t) = pmax

2 (Γk(G)). By Note 17 the
outcomes (p1(s), p2(s)) and (p1(t), p2(t)) are different since m > 1.

We have s2 ∈ lose2(Γ
k(G)) and t1 ∈ lose1(Γ

k(G)). Hence by Lemma 22 for no joint strategy s′ in
Γk+2(G) we have p1(s′) = pmax

1 (Γk(G)) or p2(s′) = pmax
2 (Γk(G)).

So Γ(Gk+2) has at most m−2 outcomes. By the induction hypothesis Γ(Gk+m−1) is a trivial game. �

We now show that Theorem 23 holds for a large class of natural games. Call an extensive game almost
constant if for all but finitely many leaves the outcome is the same. Note that every almost constant game
has finitely many outcomes, but the converse does not hold. Indeed, it suffices to take a game with two
outcomes, each associated with infinitely many leaves. The following general result holds.

Theorem 24 Every almost constant extensive game is WD-admissible.

Proof. We begin with two unrelated observations. Call a function p : A→ B almost constant if for some
b we have p(a) = b for all but finitely many a ∈ A.

Observation 1. Consider two sequences of some elements (v0,v1, . . .) and (w0,w1, . . .) such that v j 6= vk,
v j 6= wk, and w j 6= wk for all j ≥ 0 and k > j, and a function p : {v0,v1, . . .}∪{w0,w1, . . .}→ B such that
p(v j) 6= p(w j) for all j ≥ 0. Then p is not almost constant.
Indeed, otherwise for some k ≥ 0 the function p : {vk,vk+1, . . .}∪{wk,wk+1, . . .}→ B would be constant.

Observation 2. Take an extensive game. For some player i, consider two joint strategies (si,s−i) and
(s′i,s

′
−i). If leaf (si,s−i) = leaf (s′i,s

′
−i) then leaf (si,s−i) = leaf (s′i,s−i).

Indeed, consider any node w in play(si,s−i) such that turn(w) = i. Then by assumption si(w) = s′i(w).
This implies that play(si,s−i) = play(s′i,s−i), which yields the claim.

Now consider an almost constant extensive game G. Take an arbitrary subgame H of Γ(G). Suppose
by contradiction that for some player i there exists an infinite sequence of strategies s0

i ,s
1
i ,s

2
i , . . . such that

for all j ≥ 0, s j+1
i weakly dominates s j

i in H. By definition of weak dominance, for all j ≥ 0 there exists
s j
−i ∈ H−i such that pi(s

j
i ,s

j
−i) < pi(s

j+1
i ,s j

−i). Let for j ≥ 0, v j = leaf (s j
i ,s

j
−i) and w j = leaf (s j+1

i ,s j
−i).

By the above inequalities pi(v j) 6= pi(w j) for all j ≥ 0.
We now argue that v j 6= vk, v j 6= wk, and w j 6= wk for all j ≥ 0 and k > j. First, note that by the

transitivity of the ‘weakly dominates’ relation we have the following.

• pi(s
j
i ,s

j
−i)< pi(s

j+1
i ,s j

−i)≤ pi(sk
i ,s

j
−i),

• pi(s
j
i ,s

j
−i)< pi(s

j+1
i ,s j

−i)≤ pi(sk+1
i ,s j

−i),

• pi(s
j+1
i ,sk

−i)≤ pi(sk
i ,s

k
−i)< pi(sk+1

i ,sk
−i).

This implies in turn, leaf (s j
i ,s

j
−i) 6= leaf (sk

i ,s
j
−i), leaf (s j

i ,s
j
−i) 6= leaf (sk+1

i ,s j
−i), and leaf (s j+1

i ,sk
−i) 6=

leaf (sk+1
i ,sk

−i). So by Observation 2 we have the following.

• v j = leaf (s j
i ,s

j
−i) 6= leaf (sk

i ,s
k
−i) = vk,

• v j = leaf (s j
i ,s

j
−i) 6= leaf (sk+1

i ,sk
−i) = wk,

• w j = leaf (s j+1
i ,s j

−i) 6= leaf (sk+1
i ,sk

−i) = wk.

By Observation 1, pi is not almost constant, which contradicts the assumption that G is almost constant.
By the transitivity of the ‘weakly dominates’ relation we conclude that G is WD-admissible. �

Corollary 25 Let G be an almost constant strictly competitive extensive game with at most m outcomes.
Then Γm−1(G) is a trivial game.
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In an information aggregation game, a set of senders interact with a receiver through a mediator. Each

sender observes the state of the world and communicates a message to the mediator, who recommends

an action to the receiver based on the messages received. The payoff of the senders and of the receiver

depend on both the state of the world and the action selected by the receiver. This setting extends the

celebrated cheap talk model in two aspects: there are many senders (as opposed to just one) and there

is a mediator. From a practical perspective, this setting captures platforms in which strategic experts

advice is aggregated in service of action recommendations to the user. We aim at finding an optimal

mediator/platform that maximizes the users’ welfare given highly resilient incentive compatibility

requirements on the equilibrium selected: we want the platform to be incentive compatible for the

receiver/user when selecting the recommended action, and we want it to be resilient against group

deviations by the senders/experts. We provide highly positive answers to this challenge, manifested

through efficient algorithms.

1 Introduction

Experts’ opinions aggregation platforms are crucial for web monetizing. Indeed, in sites such as Reddit

or Google, comments and reviews are aggregated as an answer to a user query about items observed or

studied by others. We refer to these reviewers as experts. The platform can aggregate these experts’

inputs or filter them when providing a recommendation to the user, which will later lead to a user action.

An ideal platform should maximize the users’ social welfare. In an economic setting, however, the

different experts may have their own preferences. Needless to say, when commenting on a product or a

service, we might not know if the expert prefers the user to buy the product or accept the service, or if

the expert prefers otherwise. This is true even when all experts observe exactly the same characteristics

of a product or service.

Interestingly, while the study of economic platforms is rich [21, 12, 24, 4, 20, 25, 7, 15, 23], there

is no rigorous foundational and algorithmic setting for the study of aggregation and filtering of strategic

experts opinions in service of the platform users. In this paper, we initiate such a study, which we

believe to be essential. This study can be viewed as complementary to work on platform incentives [21],

issues of dishonesty [12], and issues of ranking/filtering [7], by putting these ingredients in a concrete

foundational economic setting dealing with recommendations based on inputs from strategic experts.

The model we offer extends the classical cheap talk model in two fundamental directions. First, by

having several strategic senders (experts) rather than only one; second, by introducing a platform that

acts as a mediator in an information design setting.

Our work is related to the literature on information design that studies optimal information disclosure

policies for informed players. The two leading models of information design are cheap talk [6] and

*The work by Ivan Geffner and Moshe Tennenholtz was supported by funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation programme (grant agreement 740435).
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Bayesian persuasion [10]. The main distinction between these models is the underlying assumption

that, in the Bayesian persuasion model, the sender has commitment power in the way she discloses the

information, while in the cheap talk model she has not.

Bayesian persuasion models emphasize commitment power, and while it may hold in some real-

world situations, it is often considered strong. In addition, in Bayesian persuasion, the informed agent

(the sender) is also the one who designs the information revelation policy. In practice, however, in-

formation revelation can be determined by other external or legal constraints. A commerce platform,

for example, determines what information about a product is revealed to a potential customer based on

information submitted by different suppliers.

In our model there is a finite state space of size n, several informed players (senders), an uninformed

player (the receiver) that determines the outcome of the game by playing a binary action from the set

A := {0,1} (this could represent buying a product or not, passing a law or not, etc.), and a mediator that

acts as a communication device between the senders and the receiver (the mediator can be seen as the

platform used by all parties). The utility of each player is determined by the state and by the action played

by the receiver. The incentives of the senders may not necessarily be aligned (e.g., senders can be a car

seller and a technician that tested the car, two independent parties who studied the monetary value of law,

two suppliers of a product, etc.). The state is drawn from a prior distribution that is commonly known

among players, but only the senders know its realized value. Thus, the senders’ purpose is to reveal

information to the receiver in such a way that the receiver plays the action that benefits them the most.

Since the senders have no commitment power, we are interested in a mediated cheap talk equilibrium,

in which it is never in the interest of the senders to be dishonest, and it is always in the interest of the

receiver to play the action suggested by the protocol.

The most common notions of equilibrium, such as Nash equilibrium, require that each individual

player cannot increase its utility by deviating from the proposed strategy. However, notions of equi-

libria that are resilient to group deviations are currently gaining traction [3, 9, 2], in particular because

of their Web applications. Indeed, on the Internet, it is not only fairly easy to collude, but it is also

relatively simple to create proxy pseudo-identities and defect in a coordinated way (this is known as a

Sybil attack [8]). Nowadays, in Web applications and in distributed systems, resilience against individual

deviations is generally considered insufficient for practical purposes. For instance, blockchain protocols

are required to tolerate coordinated deviations from up to a fraction of their user base. In this work, we

focus on k-resilient equilibria, which are strategies profiles in which no coalition of up to k players can

increase their utility by deviating.

Our main goal in the paper is to characterize, given the incentives of the senders and the receiver,

which maps from states to distributions over actions result from playing k-resilient equilibria. More

precisely, each cheap talk protocol ~σ induces a map M from states to distributions over actions, where

M(ω) is mapped to the distribution over actions resulting from playing ~σ in state ω . Our aim is to

characterize which of these maps (or outcomes, as we call them) can be implemented by a k-resilient

equilibrium, and to efficiently construct a concrete k-resilient equilibrium whenever a given outcome is

implementable. We first show that, if there are more than two senders, even if one of them defects and

misreports the state, a majority of the senders would still report the truth, and thus the mediator will

always be able to compute the correct state. Therefore, if there are at least three senders, outcomes are

implementable by a 1-resilient equilibrium (i.e., a Nash equilibrium) if and only if they are incentive-

compatible for the receiver. That is, an outcome is implementable by a 1-resilient equilibrium if and only

if it improves the utility of the receiver relative to the case where no information is revealed to her. This

result implies that the set of implementable distributions is independent of the utilities of the senders and

only depends on that of the receiver, and thus that the senders have no bargaining power. It is also easy
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to check that this result extends to the case of k-resilient equilibria for k < n/2, where n is the number

of senders. However, we show that if a majority of the players can collude, the set of implementable

outcomes is defined by a system of linear equations that depend both on the utilities of the senders

and the receiver. It may seem at first that computing such characterization may be highly inefficient

since the number of possible coalitions of size at most k ≥ n/2 grows exponentially over the number

of players, and each of these possible coalitions imposes a constraint on the outcome. By contrast,

our main result shows that, if the number of states is m, then the aforementioned linear system can be

written with only m2 inequality constraints, and all such inequalities can be computed in polynomial

time over m and the number of senders n. This means that the best receiver k-resilient equilibrium or the

k-resilient equilibrium that maximizes social welfare can be computed efficiently. We also provide, given

a solution of the system of equations, an efficient way to construct a concrete k-resilient equilibrium that

implements the desired outcome.

Our results so far assume that all senders have full information about the realized state. However,

in some cases it is realistic to assume that senders only have partial information about it and, moreover,

that each sender’s information might be different. We show in Section 6 that our techniques generalize

to this model as long as the senders’s preferences are not influenced by their coalition, a condition that

we call k-separability. This means that, assuming k-separability, we provide a characterization of all

outcomes that are implementable by a k-resilient equilibrium, and an algorithm that construct a concrete

k-resilient equilibrium that implements a desired (implementable) outcome. Both the characterization

and the algorithm are efficient relative to the size of the game’s description.

1.1 Related Work

The literature on information design is too vast to address all the related work. We will therefore mention

some key related papers. Krishna and Morgan [14] consider a setting similar to that considered by

Crawford and Sobel [6], where a real interval represents the set of states and actions. In this setting,

the receiver’s and the senders’ utilities are biased by some factor that affects their incentives and utility.

Similarly to the current paper where the sender is not unique, Krishna and Morgan consider two informed

senders that reveal information sequentially to the receiver. They consider the best receiver equilibrium

and show that, when both senders are biased in the same direction, it is never beneficial to consult both

of them. By contrast, when senders are biased in opposite directions, it is always beneficial to consult

them both.

In another work, Salamanca [22] characterizes the optimal mediation for the sender in a sender-

receiver game. Lipnowski and Ravid [16], and Kamenica and Gentzkow [10] provide a geometric char-

acterization of the best cheap talk equilibrium for the sender under the assumption that the sender’s utility

is state-independent. The geometric characterization of Lipnowski and Ravid is no longer valid for the

case where there are two or more senders.

Kamenika and Gentzkow [11] consider a setting with two senders in a Bayesian persuasion model.

The two senders, as in the standard Bayesian persuasion model (and unlike ours), have commitment

power and they compete over information revelation. The authors characterize the equilibrium outcomes

in this setting.

In many game-theoretical works, mediators are incorporated into strategic settings [5, 18]. Kosenko

[13] also studied the information aggregation problem. However, their model assumed that the mediator

had incentives of its own and selected its policy at the same time as the sender. Monderer and Tennenholtz

[17] studied the use of mediators to enhance the set of situations where coalition deviance is stable. They

show that using mediators in several classes of settings can produce stable behaviors that are resistant
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to coalition deviations. In our setting, the existence of a k-resilient equilibrium is straightforward (e.g.,

playing a constant action). Instead, the strength of our result follows from efficiently characterising the

set of all outcomes that are implementable using k-resilient mediated equilibria.

2 Model

In an information aggregation game Γ = (S,A,Ω, p,u), there is a finite set of possible states Ω =
{ω1, . . . ,ωm}, a commonly known distribution p over Ω, a set of possible actions A = {0,1}, a set

S = {1,2, . . . ,n} of senders, a receiver r, a mediator d, and a utility function u : (S∪{r})×Ω×A −→R

such that u(i,ω ,a) gives the utility of player i when action a is played at state ω . Each information

aggregation game instance is divided into four phases. In the first phase, a state ω is sampled from Ω

following distribution p and this state is disclosed to all senders i ∈ S. During the second phase, each

sender i sends a message mi to the mediator. In the third phase (after receiving a message from each

sender) the mediator must send a message md ∈ A to the receiver, and in the last phase the receiver must

play an action a ∈ A and each player i ∈ S∪{r} receives u(i,ω ,a) utility.

The behavior of each player i and is determined by its strategy σi and the behavior of the mediator

is determined by its strategy σd . A strategy σi for a player i ∈ S can be represented by a (possibly

randomized) function mi : Ω −→ {0,1}∗ such that mi(ω) indicates what message i is sending to the

mediator given state ω ∈ Ω. The strategy σd of the mediator can be represented by a function md :

({0,1}∗)n −→ A that indicates, given the message received from each player, what message it should

send to the receiver. The strategy σr of the receiver can be represented by a function ar : A→ A that

indicates which action it should play given the message received from the mediator.

In summary, a game instance goes as follows:

1. A state ω is sampled from Ω following distribution p, and ω is disclosed to all senders i ∈ S.

2. Each sender i ∈ S sends message mi(ω) to the mediator.

3. The mediator sends message md(m1, . . . ,mn) to the receiver.

4. The receiver plays action ar(md) and each player i ∈ S∪{r} receives u(i,ω ,ar(md)) utility.

Note that, in order to simplify the notation, we use a slight notation overload since mi is both the

message sent by player i and a function that depends on the state. This is because the message sent by i

always depend on the state, even if it is not explicitly written. A similar situation happens with ar.

2.1 Game mechanisms

Given a game Γ = (S,A,Ω, p,u), a mechanism M = (m1,m2, . . . ,mn,md ,ar) uniquely determines a map

oΓ
M : Ω −→ ∆A (where ∆A is the set of probability distributions of A) that maps each state ω to the

distribution of actions obtained by playing Γ when the senders, the mediator and the receiver play the

strategies represented by the components of M. We say that M implements oΓ
M and that oΓ

M is the outcome

of M.

A mechanism M is incentive-compatible if it is not in the interest of the receiver or any of the senders

to deviate from the proposed mechanism (note that the mediator has no incentives). We also say that M

is honest if (a) mi ≡ IdΩ, where IdΩ(ω) = ω for all ω ∈Ω, and (b) ar ≡ IdA. Moreover, we say that M is

truthful if it is both honest and incentive-compatible. Intuitively, a mechanism is truthful if sending the

true state to the mediator is a dominant strategy for the senders and playing the state suggested by the

mediator is a dominant strategy for the receiver.
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Example 1. Consider a game Γ = (S,A,Ω, p,u) where S = {1,2,3}, A = {0,1}, Ω = {ω1, . . . ,ωk}, p is

the uniform distribution over Ω and u : (S∪{r})×Ω×A −→R is an arbitrary utility function. Consider

the truthful mechanism in which senders disclose the true state to the mediator, the mediator chooses the

state ω ∈ Ω sent by the majority of the senders and sends to the receiver the action a that maximizes

u(r,ω ,a), and the receiver plays the action sent by the mediator. It is easy to check that this mechanism

is incentive-compatible: no individual sender can influence the outcome by deviating since the mediator

chooses the state sent by the majority of the senders. Moreover, by construction, this mechanism gives

the receiver the maximum possible utility among all mechanisms.

Our first goal is to characterize the set of possible outcomes that can be implemented by truthful

mechanisms. Note that, because of Myerson’s revelation principle [19], characterizing the set of out-

comes implemented by truthful mechanisms is the same as characterizing the set of outcomes imple-

mented by any incentive-compatible mechanisms (not necessarily truthful):

Proposition 1. Let Γ = (S,A,Ω, p,u) be an information aggregation game. Then, for any incentive-

compatible mechanism M for Γ there exists a truthful mechanism M′ such that M′ implements oΓ
M .

Proof. Given M = (m1,m2, . . . ,mn,md ,a), consider a mechanism M′ = (m′1,m
′
2, . . . ,m

′
n,m

′
d ,a
′) such that

m′i ≡ IdΩ for all i ∈ S, m′a ≡ IdA, and the mediator does the following. After receiving a message ω j from

each sender j, it computes a(md(m1(ω1), ,m2(ω2), . . . ,mn(ωn))) and sends this action to the receiver

(if the message from some player j is inconsistent, the mediator takes ω j to be an arbitrary element of

Ω). By construction, M′ is a truthful mechanism in which the mediator simulates everything the players

would have sent or played with M. It is easy to check that, with M′, for any possible deviation for

player j ∈ S∪{r}, there exists a deviation for j in M that produces the same outcome. Thus, if M is

incentive-compatible, so is M′.

This proposition shows that we can restrict our search to truthful mechanisms. Moreover, the con-

struction used in the proof shows that we can assume without loss of generality that the senders can only

send messages in Ω since sending any other message is equivalent to sending an arbitrary element of Ω.

To simplify future constructions, we’ll use this assumption from now on.

2.2 Resilient equilibria

Traditionally, in the game theory and mechanism design literature, the focus has always been on devising

strategies or mechanisms such that no individual agent is incentivized to deviate. However, in the context

of multi-agent Bayesian persuasion, this approach is not very interesting. The reason is that, if n > 2,

the mediator can always compute the true state by taking the one sent by a majority of the senders (as

seen in Example 1), and thus the mediator can make a suggestion to the receiver as a function of the true

state while individual senders cannot influence the outcome by deviating. In fact, given action a ∈ A,

let Ua := Eω←p[u(r,ω ,a)] be the expected utility of the receiver when playing action a regardless of the

mediator’s suggestion and, given outcome oΓ, let

Ei(o
Γ) := E ω←p,

a←oΓ(ω)
[u(i,ω ,a)]

be the expected utility of player i ∈ S∪{r} with outcome oΓ. The following proposition characterizes

outcomes implementable by truthful mechanisms.

Proposition 2. If Γ = (S,A,Ω, p,u) is an information aggregation game with |S| > 2, an outcome oΓ :

Ω−→ ∆A of Γ is implementable by a truthful mechanism if and only if Er

(

oΓ
)

≥Ua for all a ∈ A.
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Intuitively, proposition 2 states that, if there are at least three senders, the only condition for an

outcome to be implementable by a truthful incentive-compatible mechanism is that the receiver gets a

better expected utility than the one it gets with no information. Before proving it, we need the following

lemma, which will also be useful for later results.

Lemma 1. Let Γ = (S,A,Ω, p,u) be an information aggregation game. An honest mechanism M =
(IdΩ, . . . , IdΩ,md , IdA) for Γ is incentive-compatible for the receiver if and only if Er

(

oΓ
M

)

≥Ua for all

a ∈ A.

Proof. (=⇒) Let M be an honest mechanism for Γ that is incentive-compatible for the receiver. Then, if

Er

(

oΓ
M

)

<Ua for some a ∈ A, the receiver can increase its utility ignoring the mediator’s suggestion and

playing always action a. This would contradict the fact that M is incentive-compatible.

(⇐=) Suppose that Er

(

oΓ
M

)

≥Ua for all a ∈ A. If M is not incentive-compatible, it means that the

receiver can strictly increase its payoff either (a) by playing 1 when the mediator sends 0 and/or (b)

playing 0 when the mediator sends 1. Suppose that (a) is true, then the receiver can strictly increase its

payoff by playing 1 in all scenarios, which would contradict the fact that its expected payoff with M is

greater or equal than U1. The argument for (b) is analogous.

With this we can prove Proposition 2. The mechanism used in the proof is very similar to the one in

Example 1.

Proof of Proposition 2. Let M be a truthful mechanism. Then, by Lemma 1, oΓ
m satisfies that Er

(

oΓ
M

)

≥
Ua for all a ∈ A.

Conversely, suppose that an outcome oΓ satisfies that Er

(

oΓ
M

)

≥Ua for all a ∈ A. Consider a mech-

anism M = (IdΩ, . . . , IdΩ,md , IdA) such that the mediator takes the state ω sent by the majority of the

senders and sends oΓ(ω) to the receiver. By construction, M implements oΓ. Moreover, as in Exam-

ple 1, M is incentive-compatible for the senders since, if n > 2, they cannot influence the outcome by

individual deviations. By Lemma 1 M is also incentive-compatible for the receiver. Thus, M is a truthful

mechanism that implements oΓ.

The construction used in the proof shows how easily we can implement any desired outcome as long

as it is better for the sender than playing a constant action. However, Proposition 2 is only valid under the

assumption that senders cannot collude and deviate in a coordinated way (an assumption that many times

is unrealistic, as pointed out in the introduction). If we remove this assumption, the next best thing is to

devise mechanisms such that all coalitions up to a certain size do not get additional utility by deviating.

We focus mainly on the following notions of equilibrium:

Definition 1 ([1]). Let Γ be any type of game for n players with strategy space A = A1× . . .×An and

functions ui : S−→ R that give the expected utility of player i when players play a given strategy profile.

Then,

• A strategy profile ~σ ∈ A is a k-resilient Nash equilibrium if, for all coalitions K up to k players and

all strategy profiles ~τK for players in K, ui(~σ)≥ ui(~σ−K ,~τK) for some i ∈ K.

• A strategy profile ~σ ∈ A is a strong k-resilient Nash equilibrium if, for all coalitions K up to k

players and all strategy profiles ~τK for players in K, ui(~σ)≥ ui(~σ−K,~τK) for all i ∈ K.

Intuitively, a strategy profile is k-resilient if no coalition of up to k players can deviate in such a way

that all members of the coalition strictly increase their utility, and a strategy profile is strongly k-resilient

if no member of any coalition of up to k players can strictly increase its utility by deviating, even at the

expense of the utility of other members of the coalition. We can construct analogous definitions in the

context of information aggregation:
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Definition 2. Let Γ = (S,A,Ω, p,u) be an information aggregation game. A mechanism M = (m1, . . . ,
mn,md ,ar) for Γ is k-resilient incentive-compatible (resp., strong k-resilient incentive-compatible) if

(a) The receiver cannot increase its utility by deviating from the proposed protocol.

(b) Fixing md and ar beforehand, the strategy profile of the senders determined by M is a k-resilient

Nash equilibrium (resp., strong k-resilient Nash equilibrium).

A mechanism M is k-resilient truthful if it is honest and k-resilient incentive-compatible. Strong

k-resilient truthfulness is defined analogously.

3 Main Results

For the main results of this paper we need the following notation. Given an outcome o : Ω→ ∆A, we

define by o∗ : Ω→ [0,1] the function that maps each state ω to the probability that o(ω) = 0. Note that,

since |A|= 2, o is uniquely determined by o∗. The following theorem gives a high level characterization

of all k-resilient truthful mechanisms (resp., strong k-resilient truthful mechanisms).

Theorem 1. Let Γ = (S,A,Ω, p,u) be an information aggregation game with Ω = {ω1, . . . ,ωm}. Then,

there exists a system E of O(m2) equations over variables x1, . . . ,xm, such that each equation of E is of

the form xi ≤ x j for some i, j ∈ [m], and such that an outcome o of Γ is implementable by a k-resilient

truthful mechanism (resp., strong k-resilient truthful mechanism) if and only if

(a) x1 = o∗(ω1), . . . ,xm = o∗(ωm) is a solution of E.

(b) Er (o)≥Ua for all a ∈ A.

Moreover, the equations of E can be computed in polynomial time over m and the number of senders

n.

Note that condition (b) is identical to the one that appears in Lemma 1. In fact, condition (b) is

the necessary and sufficient condition for a mechanism that implements o to be incentive-compatible

for the receiver, and condition (a) is the necessary and sufficient condition for this mechanism to be k-

resilient incentive-compatible (resp., strong k-resilient incentive-compatible) for the senders. Theorem 1

shows that the set of outcomes implementable by k-resilient truthful mechanisms (resp., strong k-resilient

truthful mechanisms) is precisely the set of solutions of a system of equations over {o∗(ω i)}i∈[m]. This

means that the solution that maximizes any linear function over {o∗(ω i)}i∈[m] can be reduced to an

instance of linear programming. In particular, the best implementable outcome for the receiver or for

each of the senders can be computed efficiently.

Corollary 1. There exists a polynomial time algorithm that computes the outcome that could be imple-

mented by a k-resilient truthful mechanism (resp., strong k-resilient truthful mechanism) that gives the

most utility to the receiver or that gives the most utility to a particular sender.

Our last result states that not only we can characterize the outcomes implementable by truthful mech-

anisms, but that we can also efficiently compute a truthful mechanism that implements a particular out-

come. Before stating this formally, it is important to note that all truthful mechanisms can be encoded

by a single function m∗d from message profiles ~m = (m1, . . . ,mn) to [0,1]. Intuitively, the mechanism md

defined by m∗d is the one that maps (~m) to the distribution such that 0 has probability m∗d(~m) and 1 has

probability 1−m∗d(~m). Moreover, note that the description of a k-resilient truthful mechanism for a game

with m possible states is exponential over k since the mechanism must describe what to do if k players

misreport their state, which means that the mechanism should be defined over at least mk inputs. Clearly,
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no polynomial algorithm over n and m can compute this mechanism just because of the sheer size of the

output. However, given a game Γ and an output o, it is not necessary to compute the whole description of

the resilient truthful mechanism m∗d for Γ that implements o, we only need to be able to compute m∗d(~m)
in polynomial time for each possible message profile ~m. We state this as follows.

Theorem 2. There exists an algorithm π that receives as input the description of an information aggre-

gation game Γ = (S,A,Ω, p,u), an outcome o for Γ implementable by a k-resilient mechanism (resp.,

strong k-resilient mechanism), and a message input ~m for the mediator, and π outputs a value q ∈ [0,1]
such that the function m∗d defined by m∗d(~m) := A(Γ,o,~m) determines a k-resilient truthful mechanism

(resp., strong k-resilient truthful mechanism) for Γ that implements o. Moreover, π runs in polynomial

time over |Ω| and |S|.

The proofs of Theorems 1 and 2 are detailed in Sections 4 and 5 respectively. Intuitively, each coali-

tion imposes a constraint over the space of possible messages that the mediator may receive, implying

that the mediator should suggest action 0 more often for some message inputs than others. These con-

straints induce a partial order over pure inputs (i.e., messages such that all senders report the same state),

which is precisely the order defined by E in Theorem 1. It can be shown that, even though there may be

exponentially many possible coalitions of size at most k, this partial order can be computed in polynomial

time over the number of states and senders.

4 Proof of Theorem 1

In this section we prove Theorem 1. Note that, because of Lemma 1, we only have to show that, given a

game Γ = (S,A,Ω, p,u) with |Ω|= m and |S| = n, there exists a system of equations E as in Theorem 1

such that an outcome o is implementable by an honest mechanism that is k-resilient incentive-compatible

(resp., strong k-resilient) for the senders if and only if (o∗(ω1), . . . ,o∗(ωm)) is a solution of E .

To understand the key idea, let us start with an example in which Ω = {ω1,ω2}, S = {1,2,3,4},
senders 1,2 and 3 prefer action 0 in ω

2, senders 2,3 and 4 prefer action 1 in ω
1, and in which we

are trying to characterize all outcomes that could be implemented by a mechanism that is 2-resilient

incentive-compatible for the senders. If all senders are honest, then the mediator could only receive

inputs (ω1,ω1,ω1,ω1) or (ω2,ω2,ω2,ω2) (where the ith component of an input represents the message

sent by sender i). However, since senders could in principle deviate, the mediator could receive, for

instance, an input of the form (ω1,ω1,ω2,ω2). This input could originate in two ways, either the true

state is ω
1 and senders 3 and 4 are misreporting the state, or the state is ω

2 and senders 1 and 2 are

misreporting. Even though a mechanism is honest, the mediator’s message function md should still be

defined for inputs with different components, and it must actually be done in such a way that players are

not incentivized to misreport.

Let m∗d be the function that maps each message (m1,m2,m3,m4) to the probability that md(m1, . . . ,
m4) = 0. If the honest mechanism determined by m∗d is 2-resilient incentive-compatible for the senders,

the probability of playing 0 should be lower with (ω1,ω1,ω2,ω2) than with (ω2,ω2,ω2,ω2). Other-

wise, in ω
2, senders 1 and 2 can increase their utility by reporting 1 instead of 2. Thus, m∗d must satisfy

that m∗d(ω
1,ω1,ω2,ω2) ≤ m∗d(ω

2,ω2,ω2,ω2). Moreover, m∗d(ω
1,ω1,ω2,ω2) ≥ m∗d(ω

1,ω1,ω1,ω1),
since otherwise, in state ω

1, senders 3 and 4 can increase their utility by reporting 2 instead of 1. These

inequalities together imply that m∗d(ω
1,ω1,ω1,ω1) ≤ m∗2(ω

2,ω2,ω2,ω2), and therefore that o∗(ω1) ≤
o∗(ω2). In fact, we can show that this is the only requirement for o to be implementable by a mechanism

that is k-resilient incentive compatible for the senders. Given o such that o∗(ω1)≤ o∗(ω2), consider an

honest mechanism determined by m∗d , in which m∗d(m1,m2,m3,m4) is defined as follows:
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• If at least three players sent the same message ω , then m∗d(m1,m2,m3,m4) := o∗(ω).

• Otherwise, m∗d(m1,m2,m3,m4) := (o∗(ω1)+o∗(ω2))/2.

We can check that the honest mechanism M determined by m∗d is indeed 2-resilient incentive-compa-

tible for the senders. Clearly, no individual sender would ever want to deviate since it cannot influence

the outcome by itself (still three messages would disclose the true state). Moreover, no pair of senders

can increase their utility by deviating since, in both ω
1 and ω

2, at least one of the senders in the coalition

would get the maximum possible utility by disclosing the true state. This shows that, in this example,

o∗(ω1)≤ o∗(ω2) is the only necessary and sufficient condition for o to be implementable by a mechanism

that is 2-resilient incentive-compatible for the senders.

4.1 Theorem 1, general case

The proof of the general case follows the same lines as the previous example. We show the general-

ization for the case of k-resilient incentive-compatibility, the proof for strong k-resilience is analogous,

with the main differences highlighted in Section 4.2. In the example, note that we could argue that

m∗d(ω
1,ω1,ω2,ω2) should be greater than m∗d(ω

1,ω1, . . . ,ω1) since, otherwise, senders 3 and 4 could

increase their utility in state ω
1 by reporting ω

2 instead of ω
1. More generally, suppose that in some

state ω there exists a subset C of at most k senders such that all senders in C prefer action 1 to action 0.

Then, all k-resilient truthful mechanisms must satisfy that m∗d(ω , . . . ,ω) ≥ m∗d(~m) for all inputs ~m such

that mi = ω for all i 6∈C.

Following this intuition, we make the following definitions. Let Γ = (S,A,Ω, p,u) be an information

aggregation game with Ω = {ω1, . . . ,ωm} and |S| = n. We say that a possible input ~m = (m1, . . . ,mn)
for md is ω-pure if m1 = m2 = . . . = mn = ω (i.e., if all m j are equal to ω). We also say that an input

is pure if it is ω-pure for some ω . Additionally, if ω ∈Ω, we denote by ~ω the ω-pure input (ω , . . . ,ω).
Moreover, given two inputs ~m = (m1, . . . ,mn) and ~m′ = (m′1, . . . ,m

′
n) for md, we say that ~m ≺k ~m

′ if the

subset C of senders such that their input differs in ~m and ~m′ has size at most k, and such that

(a) ~m is ω-pure for some ω and all senders in C strictly prefer action 1 to action 0 in state ω , or

(b) ~m′ is ω-pure for some ω and all senders in C strictly prefer action 0 to action 1 in state ω .

By construction we have the following property of ≺k.

Lemma 2. A honest mechanism is k-resilient incentive-compatible for the senders if and only if

~m≺k ~m
′ =⇒ m∗d(~m)≤m∗d(~m

′)

for all inputs ~m and ~m′.

Note that Lemma 2 completely characterizes the honest mechanisms that are k-resilient incentive-

compatible for the senders. However, this lemma is of little use by itself since mechanisms have an

exponential number of possible inputs. Let ≤k be the partial order between pure states induced by ≺k.

More precisely, we say that two states ω and ω
′ satisfy ω ≤k ω

′ if there exists a sequence of inputs

~m1, . . . ,~mt such that

~ω ≺k ~m
1 ≺k . . .≺k ~m

t ≺k ~ω
′.

For instance, in the example at the beginning of this section, we would have that ω
1 ≤2 ω

2 since

(ω1,ω1,ω1,ω1)≺2 (ω
1,ω1,ω2,ω2)≺2 (ω

2,ω2,ω2,ω2). The following proposition shows that the ≤k

relations completely determine the outcomes implementable by honest mechanisms that are k-resilient

incentive-compatible for the senders.
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Proposition 3. Let Γ = (S,A,Ω, p,u) be an information aggregation game. Then, an outcome o of Γ

is implementable by an honest mechanism that is k-resilient incentive-compatible for the senders if and

only if

ω ≤k ω
′ =⇒ o∗(ω)≤ o∗(ω ′)

for all ω ,ω ′ ∈Ω.

Proof. The fact that any honest mechanism that is k-resilient incentive-compatible for the senders implies

ω ≤k ω
′ =⇒ o∗(ω)≤ o∗(ω ′) follows directly from Lemma 2.

To show the converse, given o satisfying ω ≤k ω
′ =⇒ o∗(ω) ≤ o∗(ω ′), define m∗d as follows. If ~m

is ω-pure for some ω , then m∗d(~m) := o∗(ω). Otherwise, let Ak
≺(~m) be the set of inputs ~m′ such that

~m≺k ~m
′ and Ak

≻(~m) be the set of inputs ~m′ such that ~m′ ≺k ~m. Then,

• If Ak
≺(~m) = /0, then m∗d(~m) := 1.

• Otherwise, if Ak
≻(~m) = /0, then m∗d(~m) := 0.

• Otherwise,

m∗d(~m) :=
min~m′∈Ak

≺(~m){m
∗
d(~m

′)}+max~m′∈Ak
≻(~m){m

∗
d(~m

′)}

2
.

Note that m∗d is well-defined since all elements in Ak
≺(~m) and Ak

≻(~m) are pure, which means that

m∗d(~m
′) is already defined for all these elements. Moreover, the honest mechanism M determined by m∗d

implements o. It remains to show that M is k-resilient incentive-compatible for the senders. By Lemma 2

this reduces to show that ~m ≺k ~m
′ =⇒ m∗d(~m) ≤ m∗d(~m

′) for all inputs ~m and ~m′. To show this, take a

pure input ~ω and another input ~m such that ~ω ≺k ~m. If ~m is ω
′-pure, then ~ω ≺k ~m =⇒ ~ω ≤k ~ω

′ and

thus m∗d(~ω)≤ m∗d(~ω
′). If ~m is not pure and Ak

≺(~m) = /0 we have by construction that m∗d(~m) = 1, which

is greater than m∗d(~ω). Otherwise, for all ω
′ such that ~ω ′ ∈ Ak

≺(~m), we have that ω ≤k ω
′ and thus by

assumption that m∗d(~ω)≤ m∗d(ω
′). Therefore,

min~m′∈Ak
≺(~m){m

∗
d(~m

′)}

2
≥

m∗d(~ω)

2

Moreover, we have that

max~m′∈Ak
≻(~m){m

∗
d(~m

′)}

2
≥

m∗d(~ω)

2

since ~ω ∈ Ak
≻(~m

′). Hence

m∗d(~m)≥m∗d(~ω)

as desired. An analogous argument can be used for the case in which ~m≺k ~ω .

It remains to show that the partial order between the states in Ω defined by ≤k can be computed with

a polynomial algorithm. To do this, note that, by definition, any chain

~ω ≺k ~m
1 ≺k . . .≺k ~m

t ≺k ~ω
′

between two pure inputs ~ω and ~ω ′ must satisfy that either ~m1 or ~m2 are also pure. This implies the

following lemma:
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Lemma 3. Let Γ = (S,A,Ω, p,u) be an information aggregation game with Ω = {ω1, . . . ,ωm}. Let E a

system of equations over x1, . . . ,xm such that equation xi ≤ x j appears in E if and only if ~ω i ≺k ~ω j or if

there exists an input ~m such that ~ω i ≺k ~m≺k ~ω
j. Then, y1, . . . ,ym is a solution of E if and only if

ω
i ≤k ω

j =⇒ yi ≤ y j

for all i, j ∈ [m].

Intuitively, Lemma 3 says that the inequalities obtained from chains of length 2 or 3 span the partial

order over Ω defined by ≤k, and thus that we can take the system of equations E of Theorem 1 to be

the one in the lemma above. Therefore, given two states ω and ω
′, it only remains to show that we can

check in polynomial time if ~ω ≺k ~ω
′ or if there exists a state ~m such that ~ω ≺k ~m ≺k ~ω

′. Checking if

~ω ≺k ~ω
′ is equivalent to checking if k = n and either all senders prefer 1 in ω or all senders prefer 0 in

ω
′. Finding an input ~m such that ~ω ≺k ~m≺k ~ω

′ reduces to finding an input ~m such that

(a) the set Cω of senders such that their message is not ω in ~m has size at most k, and all senders in

Cω strictly prefer 1 to 0 in ω .

(b) the set Cω ′ of senders such that their message is not ω
′ in ~m has size at most k, and all of them

strictly prefer 0 to 1 in ω
′.

The high level idea of the algorithm is that, if ~m satisfies the above properties, all senders i that prefer

0 to 1 in ω must satisfy that mi = ω (otherwise, it breaks property (a)), and all senders i that prefer 1 to

0 in ω
′ must satisfy that mi = ω

′ (otherwise, it breaks property (b)). If there is a sender i that prefers 0 to

1 in ω and 1 to 0 in ω
′ then such an input ~m does not exist, and if there is a sender i that strictly prefers

1 to 0 in ω and 0 to 1 in ω
′, then mi has no constraints. The only remaining restriction is that there can

only be at most k values different than ω and at most k values different than ω
′ (note that this implies

that if 2k < n such an input does not exist). The algorithm goes as follows:

1. Split the set of senders into four subsets X
0,1
0,1 ,X

1,0
0,1 ,X

0,1
1,0 ,X

1,0
1,0 , in which X

i′, j′

i, j is the set of senders

that prefer i to j in ω (resp., strictly prefer if i = 1) and prefer i′ to j′ in ω
′ (resp., strictly prefer if

i′ = 0).

2. If X
1,0
0,1 6= /0 or 2k < n, there is no solution.

3. If |X0,1
0,1 |> k or |X1,0

1,0 |> k, there is no solution.

4. Otherwise, set mi = ω for all i ∈ X
0,1
0,1 , mi = ω

′ for all i ∈ X
1,0
1,0 . Then, set k−|X0,1

0,1 | of the messages

from X
0,1
1,0 to ω and the rest to ω

′. Return ~m.

Proof of Correctness: Because of the previous discussion, if X
1,0
0,1 6= /0 or 2k < n, there is no solution.

If |X0,1
0,1 | ≥ k then, any input ~m that satisfies ~ω ≺k ~m≺k ~ω

′ would require to have at least |X0,1
0,1 | components

equal to ω , which would break property (b). An analogous argument can be used when |X1,0
1,0 | > k. If

none of these conditions hold, then we set all messages from X
0,1
0,1 to ω , all messages from X

1,0
1,0 to ω

′,

and we split the messages sent by senders in X
0,1
1,0 between ω and ω

′ in such a way that no value appears

more than k times. The resulting input satisfies properties (a) and (b).

4.2 Theorem 1, strong k-resilience

The proof of Theorem 1 for strong k-resilience is analogous to the one of k-resilience in the previous

section. The main difference is the definition of ≺k. In this case we say that two inputs ~m and ~m′ satisfy
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~m≺s
k ~m
′ if and only if the subset C of senders such that their input differs in ~m and ~m′ has size at most k,

and such that

(a) ~m is ω-pure for some ω and at least one sender in C strictly prefers action 1 to action 0 in state ω ,

or

(b) ~m′ is ω-pure for some ω and at least one sender in C strictly prefers action 0 to action 1 in state ω .

We have that ~ω ≺s
k
~ω ′ if and only if k = n and at least one sender in ω prefers action 1 to action 0, or

at least one sender in ω
′ prefers action 0 to action 1. Given ω and ω

′, finding if there exists ~m such that

~ω ≺s
k ~m≺

s
k
~ω ′ can be reduced to finding if there exists a partition of the set of senders S into two sets Sω

and Sω ′ such that |Sω | ≤ k and |Sω ′ | ≤ k, and such that at least one sender of Sω prefers action 0 to 1 in

ω
′ and at least one sender of Sω ′ prefers 1 to 0 in ω . This can easily be done in polynomial time.

For future reference, we define ≤s
k in the same way as ≤k except that we use ≺s

k instead of ≺k.

5 Proof of Theorem 2

Most of the tools used to prove Theorem 2 have already appeared in the proof of Theorem 1. We prove

the theorem for k-resilience, the case of strong k-resilience is analogous. Given a game Γ and an outcome

o for Γ, we set m∗d(~ω) := o∗(ω) for each ω ∈Ω. For every other input ~m, we define m∗d(~m) in the same

way as in the proof of Proposition 3. As shown in the proof of Theorem 1, checking if ~m ≺k ~m
′ can be

performed in polynomial time. Thus, m∗d(~m) can also be computed in polynomial time.

6 Extended Model and Generalization of Main Results

An extended information aggregation game is defined in the same way as a standard information aggre-

gation game (see Section 2) except that each sender starts the game with a private signal xi (as opposed

to all senders starting the game with the same input ω), and the utility function u takes as input the sig-

nals from each sender instead of just ω . More precisely, in an extended information aggregation game

Γ = (S,A,X , p,u) there is a set of senders S = {1,2,3, . . . ,n}, a receiver r, a mediator d, a set of actions

A, a set X = X1×X2× . . .×Xn of signals, a probability distribution p over X , and a utility function

u : (S∪{r})×X ×A −→ R. Each game instance proceeds exactly the same way as in a standard infor-

mation aggregation game except that, in phase 1, a signal profile (x1, . . . ,xn) ∈ X is sampled following

distribution p, and each signal xi is disclosed only to sender i. In this context, an outcome o for Γ is just

a function from signal profiles ~x ∈ X to distributions over A, and mechanisms for Γ are determined by

functions m∗d from X to [0,1].
Our aim is to generalize the results from Section 3 to the extended model. However, the main problem

is that, for a fixed signal profile, the preferences of the agents may depend on their coalition. For instance,

consider a game Γ for five players with uniformly distributed binary signals and binary actions such that

the utility of each sender is 1 if the action that the receiver plays is equal to the majority of the signals,

and their utility is 0 otherwise. Suppose that senders have signals (0,0,0,1,1). It is easy to check that

if players 1, 2 and 3 collude, player 1 would prefer action 0 to action 1. However, if players 1, 4 and 5

collude, player 1 would prefer action 1 since in this case it is more likely that the majority of the signals

are 1.

We can avoid the issue above by assuming that the game is k-separable, which is that, for all sig-

nal profiles ~x and all senders i, there exists an action a such that the preference of sender i inside any

coalition K of size at most k is a. Intuitively, an extended information aggregation game is k-separable
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if the preferences of the senders do not depend on the coalition they are in. With this, we can provide

algorithms for the characterization and implementation of k-resilient truthful implementable outcomes

that are efficient relative to the size of the description of the game Γ.

Theorem 3. Let Γ = (S,A,X , p,u) be a k-separable extended information aggregation game such that

the support of signal profiles in distribution p is {(~x)1, . . . ,(~x)m}. Then, there exists a system E of O(m2)
equations over variables x1, . . . ,xm, such that each equation of E is of the form xi ≤ x j for some i, j ∈ [m],
and such that an outcome o of Γ is implementable by a k-resilient truthful mechanism (resp., strong

k-resilient truthful mechanism) if and only if

(a) x1 = o∗((~x)1), . . . ,xm = o∗((~x)m) is a solution of E.

(b) Er (o)≥Ua for all a ∈ A.

Moreover, the equations of E can be computed in polynomial time over m and the number of senders

n.

Note that Theorem 3 states that E can be computed in polynomial time over the size of the support of

signal profiles as opposed to |X |, which may be way larger. There is also a generalization of Theorem 2

in the extended model.

Theorem 4. There exists an algorithm A that receives as input the description of a k-separable extended

information aggregation game Γ = (S,A,Ω, p,u), an outcome o for Γ implementable by a k-resilient

mechanism (resp., strong k-resilient mechanism), and a message input ~m for the mediator, and A outputs

a value q ∈ [0,1] such that the function m∗d defined by m∗d(~m) := A(Γ,o,~m) determines a k-resilient

truthful mechanism (resp., strong k-resilient truthful mechanism) for Γ that implements o. Moreover, A

runs in polynomial time over the size m of the support of signal profiles and |S|.

The proofs of Theorems 3 and 4 are analogous to the ones of Theorems 1 and 2 with the following

difference. Given two inputs ~m and ~m′, we say that ~m ≺k ~m
′ if the subset C of senders such that their

input differs in ~m and ~m′ has size at most k, and such that

(a) ~m is in the support of p and all senders in C strictly prefer action 1 to action 0 given signal profile

~m, or

(b) ~m′ is is in the support of p and all senders in C strictly prefer action 0 to action 1 given signal

profile ~m′.

Intuitively, we replace the notion of pure input by the condition that the input is in the support of p.

Note that the assumption of k-separability is crucial for this definition, since otherwise the preferences of

the players may not be uniquely determined by the signal profile. With this definition, we can construct

analogous statements for Lemmas 2, 3 and Proposition 3, and proceed identically as in the proofs of

Theorems 1 and 2.

7 Conclusion

We provided an efficient characterization of all outcomes implementable by k-resilient and strong k-

resilient truthful mechanisms in information aggregation games. We also gave an efficient construction

of the k-resilient or strong k-resilient mechanism that implements a given implementable outcome. These

techniques generalize to the extended model where senders may receive different signals, as long as the

senders’ preferences are not influenced by their coalition (k-separability). It is still an open problem to

find if the techniques used in this paper generalize to other notions of coalition resilience as, for instance,
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the notion in which the sum of utilities of the members of a coalition cannot increase when defecting, or

if we can get efficient algorithms in the extended model without the k-separability assumption. It is also

an open problem to find if we can get similar results in partially synchronous or asynchronous systems

in which the messages of the senders are delayed arbitrarily.
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Epistemic logics model how agents reason about their beliefs and the beliefs of other agents. Exist-

ing logics typically assume the ability of agents to reason perfectly about propositions of unbounded

modal depth. We present DBEL, an extension of S5 that models agents that can reason about epis-

temic formulas only up to a specific modal depth. To support explicit reasoning about agent depths,

DBEL includes depth atoms Ed
a (agent a has depth exactly d) and Pd

a (agent a has depth at least d).

We provide a sound and complete axiomatization of DBEL.

We extend DBEL to support public announcements for bounded depth agents and show how the

resulting DPAL logic generalizes standard axioms from public announcement logic. We present two

alternate extensions and identify two undesirable properties, amnesia and knowledge leakage, that

these extensions have but DPAL does not. We provide axiomatizations of these logics as well as

complexity results for satisfiability and model checking.

Finally, we use these logics to illustrate how agents with bounded modal depth reason in the clas-

sical muddy children problem, including upper and lower bounds on the depth knowledge necessary

for agents to successfully solve the problem.

1 Introduction

Epistemic logics model how agents reason about their beliefs and the beliefs of other agents. These

logics generally assume the ability of agents to perfectly reason about propositions of unbounded modal

depth, which can be seen as unrealistic in some contexts [7, 19].

To model agents with the ability to reason only to certain preset modal depths, we extend the syntax

of epistemic logic S5 [8] to depth-bounded epistemic logic (DBEL). The DBEL semantics assigns each

agent a depth in each state. For an agent to know a formula ψ in a given state of a model, the assigned

depth of the agent must be at least the modal depth of ψ , i.e. d (ψ). To enable agents to reason about

their own and other agents’ depths, DBEL includes depth atoms Ed
a (agent a has depth exactly d) and

Pd
a (agent a has depth at least d). For example, the formula Ka(P

5
b → Kb p) expresses the fact that, “agent

a knows that whenever agent b is depth at least 5, agent b knows the fact p.” Depth atoms enable agents

to reason about agent depths and their consequences in contexts in which each agent may have complete,

partial, or even no information about agent depths (including its own depth).

We provide a sound and complete axiomatization of DBEL (Section 2), requiring a stronger version

of the LINDENBAUM lemma which ensures each agent can be assigned a depth (proven in Appendix B).

Its satisfiability problem for two or more agents is immediately PSPACE-hard (because DBEL includes

S5 as a syntactic fragment). We provide a depth satisfaction algorithm for DBEL in PSPACE (Section 5),

establishing that the DBEL satisfiability problem is PSPACE-complete for two or more agents.

Public announcement logic (PAL) [9] extends epistemic logic with public announcements. PAL

includes the following public announcement and knowledge axiom (PAK), which characterizes agents’

knowledge after public announcements,

[ϕ ]Kaψ ↔ (ϕ → Ka[ϕ ]ψ). (PAK)

http://dx.doi.org/10.4204/EPTCS.379.7
https://creativecommons.org
https://creativecommons.org/licenses/by-sa/4.0/
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We extend DBEL to include public announcements (Section 3). The resulting depth-bounded public an-

nouncement logic (DPAL) provides a semantics for public announcements in depth-bounded epistemic

logic, including a characterization of how agents reason when public announcements exceed their epis-

temic depth. We prove the soundness of several axioms that generalize (PAK) to DPAL, first in a setting

where each agent has exact knowledge of its own depth, then in the general setting where each agent may

have partial or even no knowledge of its own depth. We provide a sound axiom set for DPAL as well as

an upper bound on the complexity of its model checking problem 1

We also present two alternate semantics that extend DBEL with public announcements (Section 3.3).

The resulting logics verify simpler generalizations of (PAK) in the context of depth-bounded agents,

but each has one of two undesirable properties that we call amnesia and knowledge leakage. Amnesia

causes agents to completely forget about all facts they knew after announcements, whereas knowledge

leakage means shallow agents can infer information from what deeper agents have learned from a public

announcement. DPAL suffers from neither of these two undesirable properties. We provide a sound

and complete axiomatization of the first of the two alternate semantics (Section 4). We also prove the

PSPACE-completeness of its satisfiability problem and show that its model checking problem remains

P-complete (Section 5).

Finally, we use these logics to illustrate how agents with bounded depths reason in the muddy chil-

dren reasoning problem [8]. We prove a lower bound and an upper bound on the structure of knowledge

of depths required for agents to solve this problem (Section 6).

Related work Logical omniscience, wherein agents are capable of deducing any fact deducible from

their knowledge, is a well-known property of most epistemic logics. The ability of agents to reason

about facts to unbounded modal depth is a manifestation of logical omniscience. Logical omniscience

has been viewed as undesirable or unrealistic in many contexts [8] and many attempts have been made

to mitigate or eliminate it [8, 15, 17]. To the best of our knowledge, only Kaneko and Suzuki [11] below

have involved modal depth in the treatment of logical omniscience in epistemic logic.

Kaneko and Suzuki [11] define the logic of shallow depths GLEF , which relies on a set E of chains

of agents (i1, . . . , ik) for which chains of modal operators Ki1 · · ·Kim can appear. A subset F ⊆ E restricts

chains of modal operators along which agents can perform deductions about other agents’ knowledge.

An effect of bounding agents’ depths in DPAL is creating a set of allowable chains of modal opera-

tors ∪a{(a, i1, . . . , ida
), (i1, . . . , ida

) ∈ A da}. Unlike GLEF , the bound on an agent’s depth is not global

in DPAL, it can also be a function of the worlds in the Kripke possible-worlds semantics [8]. In particu-

lar, DPAL, unlike GLEF , enables agents to reason about their own depth, the depth of other agents, and

(recursively) how other agents reason about agent depths. DPAL also includes public announcements,

which to the best of our knowledge has not been implemented in GLEF .

Kline [12] uses GLEF to investigate the 3-agent muddy children problem, specifically by deriving

minimal epistemic structures F that solve the problem. The proof relies on a series of belief sets with

atomic updates called “resolutions,” with the nested length of the chains in F providing epistemic bounds

on the required reasoning. DPAL, in contrast, includes depth atoms and public announcements as first-

class features. We leverage these features to directly prove theorems expressing that for k muddy chil-

dren, (i) (Theorem 6.2) if the problem is solvable by an agent, that agent must have depth at least k− 1

and know that it has depth at least k−1 (this theorem provides a lower bound on the agent depths required

to solve the problem) and (ii) (Theorem 6.1) if an agent has depth at least k−1, knows it, knows another

agent is depth at least k−2, knows that the other agent knows of another agent of depth k−2, etc., then it

1Arthaud and Rinard [3] present a lower bound for this problem, as well as additional results, proofs and content.
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can solve the problem (this theorem provides an upper bound on the agent depths necessary to solve the

problem). Our depth bounds match the depth bounds of Kline [12] for 3 agents (Theorems 3.1 and 3.3

in [12]), though our bounds also provide conditions on recursive knowledge of depths for the agents as

described above.

Dynamic epistemic logic (DEL) [6, 18] introduces more general announcements. Private announce-

ments are conceptually similar to public announcements in DPAL in that they may be perceived by only

some of the agents. In DEL, model updates depend only on the relation between states in the initial

model and the relations in the action model. But in DPAL, model updates must also take into account

the agent depths in the entire connected components of each state (see Definition 3).

Resource-bounded agents in epistemic logics have been explored by Balbiani et. al [5] (limiting

perceptive and inferential steps), Artemov and Kuznets [2] (limiting the computational complexity of

inferences), and Alechina et. al [1] (bounding the size of the set of formulas an agent may believe at the

same time and introducing communication bounds). Alechina et. al [1] also bound the modal depth of

formulas agents may believe, but all agents share the same depth bound and they leave open the question

of whether inferences about agent depth or memory size could be implemented, which DPAL does.

2 Depth-bounded epistemic logic

The modal depth d (ϕ) of a formula ϕ , defined as the largest number of modal operators on a branch of its

syntactic tree, is the determining factor of the complexity of a formula in depth-bounded epistemic logic

(DBEL). Modal operators are the main contributing factor to the complexity of model checking a for-

mula; the recursion depth when checking satisfiability of a formula is equivalent to its modal depth [14];

and bounding modal depth often greatly simplifies the complexity of the satisfiability problem in epis-

temic logics [16]. Humans are believed to reason within limited modal depth [7, 19].

We extend the syntax of classical epistemic logic by assigning to each agent a in a set of agents A a

depth d(a,s) in each possible world s. The language also includes depth atoms Ed
a and Pd

a to respectively

express that agent a has depth exactly d and agent a has depth at least d.

To know a formula ϕ , agents are required to be at least as deep as d (ϕ) and also know that the

formula ϕ is true in the usual possible-worlds semantics sense [8]. We translate the classical modal

operator Ka from multi-agent epistemic logic into the operator K∞
a with the same properties, therefore

K∞
a ϕ can be interpreted as “agent a would know ϕ if a were of infinite depth”. The operator Kaϕ will

now take the meaning described above, i.e. P
d(ϕ)
a ∧K∞

a ϕ .

Definition 1. The language of DPAL is inductively defined as, for all agents a ∈A and depths d ∈ N,

L
∞ := ϕ = p | Ed

a | P
d
a | ¬ϕ | ϕ ∧ϕ | Kaϕ | K∞

a ϕ | [ϕ ]ϕ .

The K∞
a operator is used mainly as a tool in axiomatization proofs, we call L the fragment of our logic

formulas without any K∞
a operators, which will be used in most of our theorems. We further define H ∞

and H to respectively be the syntactic fragments of L ∞ and L without public announcements [ϕ ]ψ .

The modal depth d of a formula in L ∞ is inductively defined as,

d (p) = d
(

Ed
a

)

= d
(

Pd
a

)

= 0 d (¬ϕ) = d (ϕ) d ([ϕ ]ψ) = d (ϕ)+d (ψ)

d (ϕ ∧ψ) = max(d (ϕ),d (ψ)) d (Kaϕ) = 1+d (ϕ) d (K∞
a ϕ) = 1+d (ϕ).

We defer treatment of public announcements [ϕ ]ψ to Section 3. We work in the framework of S5 [8],

assuming each agent’s knowledge relation to be an equivalence relation, unless otherwise specified—

however, our work could be adapted to weaker epistemic logics [8] by removing the appropriate axioms.
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All propositional tautologies p→ p, etc.

Deduction (Kaϕ ∧Ka(ϕ → ψ))→ Kaψ

Truth Kaϕ → ϕ

Positive introspection (Kaϕ ∧P
d(ϕ)+1
a )→ Ka(P

d(ϕ)
a → Kaϕ)

Negative introspection (¬Kaϕ ∧P
d(ϕ)+1
a )→ Ka¬Kaϕ

Depth monotonicity Pd
a → Pd−1

a

Exact depths Pd
a ↔¬(E

0
a ∨ ·· ·∨Ed−1

a )
Unique depth ¬(Ed1

a ∧Ed2
a ) for d1 6= d2

Depth deduction Kaϕ → P
d(ϕ)
a

Modus ponens From ϕ and ϕ → ψ , deduce ψ

Necessitation From ϕ deduce P
d(ϕ)
a → Kaϕ

Table 1: Sound and complete axiomatization for DBEL over H .

Definition 2. A model in DBEL is defined as a tuple M = (S ,∼,V,d) where S is a set of states,

V : S → 2P is the valuation function for atoms and d : A ×S → N is a depth assignment function.

For each agent a, ∼a is an equivalence relation on S modeling which states are seen as equivalent in the

eyes of a. The semantics are inductively defined over H ∞ by,

(M,s) |= p ⇐⇒ p ∈V (s) (M,s) |= Ed
a ⇐⇒ d(a,s) = d (M,s) |= Pd

a ⇐⇒ d(a,s) ≥ d

(M,s) |= ¬ϕ ⇐⇒ (M,s) 6|= ϕ (M,s) |= ϕ ∧ψ ⇐⇒ (M,s) |= ϕ and (M,s) |= ψ

(M,s) |= K∞
a ϕ ⇐⇒ (∀s′, s∼a s′ =⇒ (M,s′) |= ϕ) (M,s) |= Kaϕ ⇐⇒ (M,s) |= P

d(ϕ)
a ∧K∞

a ϕ .

Note that this definition does not require agents to have any (exact or approximate) knowledge of

their own depth. On the other hand, it does not prohibit agents agents from having exact knowledge of

their own depths, for instance we could model each agent carrying out some ‘meta-reasoning’ about its

own depth 2 leading each agent to know its own depth exactly. These models are a subset of the class of

the models we consider, which we study in more detail in Section 3.1.

As DBEL is an extension of S5 up to renaming of the modal operators, one can expect for it to have

a similar axiomatization: one new axiom is needed to axiomatize Ka and three others for depth atoms.

Theorem 2.1. Axiomatization from Table 1 is sound and complete with respect to DBEL over H .

Proof. Rather than directly showing soundness and completeness, we show it is equivalent to the axiom-

atization of Table 3 in Appendix A on the fragment H , which is shown to be sound and complete over

H ∞ in Theorem A.1. We begin by proving any proposition in H that can be shown using Table 1 can

be shown using Table 3 and then that any proof of a formula in H using the axioms in Table 3 can be

shown using those in Table 1.

For the first direction, we prove that the axioms in Table 1 can be proven using those from Table 3.

Most of them are immediate applications of bounded knowledge within the axioms of Table 3, along with

tautologies when necessary. For positive and negative introspection, see equation (6) below in the proof

of the opposite direction of the equivalence. We prove the least evident axiom, the deduction axiom, here

as an example:

Deduction (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ K∞
a ψ (1)

2For instance deducing P
d(ϕ)
a from the fact that it knows ϕ , or deducing ¬Pn

a from the fact that it does not know Kn
a⊤.
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Bounded knowledge in (1) (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ P
d(ψ)
a → Kaψ (2)

Tautology in (2) P
max(d(ϕ),d(ψ))
a → K∞

a ϕ→ K∞
a (ϕ → ψ)→ P

d(ψ)
a → Kaψ (3)

Repeated depth consistency P
max(d(ϕ),d(ψ))
a → (P

d(ϕ)
a ∧P

d(ψ)
a ) (4)

Bounded knowledge and (3) and (4) P
max(d(ϕ),d(ψ))
a → Kaϕ → Ka(ϕ→ ψ)→ Kaψ (5)

Bounded knowledge in (5) Kaϕ→ Ka(ϕ → ψ)→ Kaψ .

In the other direction, we will show by induction over a proof of a valid formula in H using Table 3

that it can be transformed into a proof with the same conclusion, using only axioms from Table 1. The

transformation of a proof in the first axiomatization is as follows,

• If an item of the proof is a propositional tautology, replace all K∞
a ϕ subformulas by P

d(ϕ)
a → Kaϕ ,

clearly the tautology still holds and it is in Table 1.

• If an item is an instance of the bounded knowledge axiom, replace it with the formula

Kaϕ ↔ (P
d(ϕ)
a ∧P

d(ϕ)
a → Kaϕ) which is a consequence of depth deduction and a tautology (and

therefore can be added to the proof with two extra steps).

• If it uses any of the other axioms, replace it with the corresponding axiom (with the same name)

from Table 1.

We now have a sequence that has the same conclusion (since the conclusion is in H ) and only uses

axioms from Table 1. The last thing to show for this to be a proof in this axiomatization is that all

applications of modus ponens and necessitation are still correct within this sequence. To this end, we

show by induction that each step of the sequence is the same as the original proof where every K∞
a ϕ

subformula in each step has been replaced by P
d(ϕ)
a → Kaϕ .

First, note that this is the case for the two first bullet points of our transformation rules above. This

is also true of each axiom in the table after our transformation: a proof similar to the one in equation (1)

will yield the equivalence for deduction, the only remaining non-trivial cases are positive and negative

introspection. For positive introspection, performing the substitution yields,

(P
d(ϕ)
a → Kaϕ)→ P

d(ϕ)+1
a → Ka(P

d(ϕ)
a → Kaϕ). (6)

Through application of a tautology and the depth monotonicity axiom we find it to be equivalent to,

P
d(ϕ)+1
a → Kaϕ → Ka(P

d(ϕ)
a → Kaϕ). Therefore, up to adding steps to the proof and using tautologies,

we can prove the axiom from Table 1 from the axiom in Table 3 after the substitution. The same can be

said of negative introspection through a similar transformation.

Finally, since modus ponens and necessitation also maintain the property of replacing K∞
a ϕ subfor-

mulas in each step by P
d(ϕ)
a → Kaϕ , it is true that the transformed proof is indeed a proof of the same

conclusion in Table 1’s axiomatization.

3 Depth-bounded public announcement logic

We next present how to incorporate depth announcements in DBEL, which are a key challenge in defin-

ing depth-bounded public announcement logic (DPAL). Recall the axiom (PAK) of public announce-

ment logic, [ϕ ]Kaψ ↔ (ϕ → Ka[ϕ ]ψ). For the right-hand side to be true, agent a must be of depth

d([ϕ ]ψ) = d(ϕ)+ d(ψ) according to DBEL. This suggests that an agent must “consume” d (ϕ) of its
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depth every time an announcement ϕ is made, meaning that an agent’s depth behaves like a depth budget

with respect to public announcements.

Moreover, to model that some agents might be too shallow for the announcement ϕ , each possible

world is duplicated in a negative version where the announcement has not taken place and a positive

version where the announcement takes place in the same way as in PAL. Agents who are not deep

enough to perceive the announcement see the negative and positive version of the world as equivalent.

Definition 3. Models in depth-bounded public announcement logic (DPAL) are defined the same way

as in DBEL and the semantics is extended to L ∞ by (M,s) |= [ϕ ]ψ ⇐⇒ ((M,s) |= ϕ =⇒
(M | ϕ ,(1,s)) |= ψ), where we define M | ϕ to be the model (S ′,∼′,V ′,d′), where,

S
′ = ({0}×S )∪{(1,s), s ∈S , (M,s) |= ϕ}

∼′a is the transitive symmetric closure of Ra such that,

(i,s)Ra (i,s
′) ⇐⇒ s∼a s′ for i = 0,1

(1,s)Ra (0,s) ⇐⇒ (M,s) 6|= P
d(ϕ)
a

V ′((i,s)) =V (s) for i = 0,1

d′(a,(0,s)) = d(a,s)

d′(a,(1,s)) =

{

d(a,s) if d(a,s) < d (ϕ)

d(a,s)−d (ϕ) otherwise.
(7)

Since public announcements are no longer unconditionally and universally heard by all agents, we

revisit the axiom (PAK) in DPAL. The determining factor is depth ambiguity: agents that are unsure

about their own depth introduce uncertainty about which agents have perceived the announcement.

3.1 Unambiguous depths setting

A model verifies the unambiguous depths setting whenever each agent knows its own depth exactly:

∀a,s,s′, s∼a s′ =⇒ d(a,s) = d(a,s′). (8)

The proof of the following theorem is given as Proposition C.1 in Appendix C.

Theorem 3.1. For all ϕ ∈L ∞, the following two properties, respectively called knowledge preservation

and traditional announcements, are valid in DPAL in the unambiguous depths setting,

∀ψ ∈L
∞

a , ¬P
d(ϕ)
a → ([ϕ ]Kaψ ↔ (ϕ → Kaψ)) (KP)

∀ψ ∈L
∞
, P

d(ϕ)
a → ([ϕ ]Kaψ ↔ (ϕ → Ka[ϕ ]ψ)) , (TA)

where L ∞
a is the fragment of L ∞ without depth atoms or modal operators for agents other than a.

Discussion Knowledge preservation (KP) means that an agent who is not deep enough to perceive an

announcement ϕ must not change its knowledge of a formula ψ . However, such a property could not

be true of all formulas ψ , for instance if ψ = KaKbp but b is deep enough to perceive ϕ , then the depth

adjustment formula (7) could mean that b’s depth is now 0, making ψ no longer hold. Even when a

is certain about b’s depth, its uncertainty about what the announcement entails could also mean that

formulas such as ¬Kbp could no longer be true if P
d(ϕ)
b and ϕ → p in the model. This demonstrates
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that in depth-bounded logics public announcements must introduce uncertainty: if a is unsure what b has

perceived, it can no longer hold any certainties about what b does not know. This is not the case in PAL

since all agents perceive all announcements. Our treatment of the depth-ambiguous case in Section 3.2

generalizes (KP) to obtain a property (KP’) that holds on all formulas in L ∞.

Traditional announcements (TA) ensures that announcements behave the same as in PAL when the

agent is deep enough for the announcement. The caveats from the discussion of (KP) no longer apply

here, as any Kb operator that appears in ψ will still appear after the same public announcement operator,

meaning that depth variations or knowledge variations are accounted for.

3.2 Ambiguous depths setting

We now abandon the depth unambiguity assumption from equation (8), and explore how properties (KP)

and (TA) generalize to settings without depth unambiguity. We find a condition that ensures that sufficient

knowledge about other agents’ depths is given to a in order to maintain its recursive knowledge about

other agents. The proof to the following theorem is given as Proposition C.2 in Appendix C.

Theorem 3.2. For any ϕ ∈L ∞, let Fϕ : L ∞→L ∞ be inductively defined as,

Fϕ (p) = Fϕ(E
d
a ) = Fϕ(P

d
a ) =⊤ Fϕ(¬ψ) = Fϕ(ψ) Fϕ(ψ ∧ χ) = Fϕ(ψ)∧Fϕ(χ)

Fϕ(Kaψ) = ¬K∞
a (ϕ → P

d(ϕ)
a )∧K∞

a (ϕ →¬P
d(ϕ)
a ∨P

d(ϕ)+d(ψ)
a )∧K∞

a Fϕ(ψ)

Fϕ(K
∞
a ψ) = ¬K∞

a (ϕ → P
d(ϕ)
a )∧K∞

a Fϕ(ψ) Fϕ([ψ1]ψ2) = Fϕ(ψ1)∧Fϕ(ψ2).

For all ϕ ∈L ∞, the following two properties are valid in DPAL,

∀ψ ∈L
∞
, Fϕ (Kaψ) → ([ϕ ]Kaψ ↔ (ϕ→ Kaψ)) (KP’)

∀ψ ∈L
∞
, K∞

a (ϕ→ P
d(ϕ)
a )→ ([ϕ ]Kaψ ↔ (ϕ→ Ka[ϕ ]ψ)) . (TA’)

3.3 Alternate treatments of model updates for public announcements

One question is whether using a definition of public announcements closer to PAL would produce a

version of the above axioms closer to (PAK). Eager depth-bounded public announcement logic (EDPAL)

below unconditionally decrements the depth value of all agents after public announcements.

Definition 4 (EDPAL). EDPAL extends the DBEL semantics to include public announcements by

defining (M,s) |= [ϕ ]ψ ⇐⇒ ((M,s) |= ϕ =⇒ (M | ϕ ,s) |= ψ), where M | ϕ is the model (S ′,∼′,V,d′)
in which S ′ = {s ∈S , (M,s) |= ϕ}, ∼′a is the restriction of ∼a to S ′, d′(a,s) = d(a,s)−d (ϕ), and d

may take values in Z.

EDPAL has a sound and complete axiomatization based on the axiomatization of DBEL (Theo-

rem 4.1), which also allows us to prove the complexity result of Theorem 5.1.

However, another consequence of its definition is that excessive public announcements in EDPAL

can lead an agent to a state in which it cannot reason anymore, as it has consumed its entire depth budget.

Proposition 3.3 (Amnesia). In EDPAL, the formula ¬P
d(ϕ)
a → [ϕ ]¬Kaψ is valid for all ϕ and ψ .

Proof. If (M,s) 6|= ϕ then the implicand is true. If (M,s) |= ϕ ∧¬P
d(ϕ)
a then the depth of a in (M | ϕ ,s)

will be at most −1, meaning that (M | ϕ ,s) 6|= Kaψ for all ψ .
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In particular, for ψ = ⊤ one notices that standard intuitions about knowledge fail in EDPAL. This

property is undesirable: (i) one may expect agents to maintain some knowledge even after public an-

nouncements that they are not deep enough to understand and (ii) deeper agents should be able to con-

tinue to benefit from the state of knowledge of shallower agents even after the shallower agents have

exceeded their depth.

One way to try to remedy this property is to change model updates in EDPAL to make agents

perceive announcements only when they are deep enough to understand them. The resulting asymmetric

depth-bounded public announcement logic (ADPAL) removes depth from an agent’s budget only when it

is deep enough for an announcement, and only updates its equivalence relation in states where it is deep

enough for the announcement.

Definition 5 (ADPAL). ADPAL extends the DBEL semantics to include public announcements by

defining (M,s) |= [ϕ ]ψ ⇐⇒ ((M,s) |= ϕ =⇒ (M | ϕ ,s) |= ψ), where M | ϕ is the model (S ,∼′,V,d′),

s 6∼′a s′ ⇐⇒ s 6∼a s′ or

{

(M,s) |= P
d(ϕ)
a

(M,s) |= ϕ ⇐⇒ (M,s′) 6|= ϕ ,

d′(a,s) =

{

d(a,s) if d(a,s) < d (ϕ)

d(a,s)−d (ϕ) otherwise.

The relations ∼a are only assumed to be reflexive (as opposed to equivalence relations earlier).

Unfortunately, in ADPAL an agent that is too shallow for an announcement could still learn positive

information that was learned by another agent who is deep enough to perceive the announcement. We

call this property knowledge leakage as reflected in the following proposition.

Proposition 3.4 (Knowledge leakage). ADPAL does not verify the→ direction of (KP’).

Proof. Consider three worlds, {0,1,2} and three agents a,b,c. The relations for a and c are identity, the

relation for b is the symmetric reflexive closure of, 0 ∼b 1 ∼b 2. The depth of a is 1 everywhere, b’s

depth is 0,2,0 in each respective state and the depth of c is 2 everywhere. The atom p0 is true only in 0

and 1. Consider ϕ = KcKc p0, it is true in 0 and 1 only, and consider ψ = Kbp0. Kaψ is not true in state

1, however [ϕ ]Kaψ is. Moreover, one can easily check that Fϕ(Kaψ) is true in that state.

The proof provides a practical example of such leakage in ADPAL and we further demonstrate

knowledge leakage in Proposition 6.4 in the muddy children reasoning problem (see Section 6).

Note how each direction of the equivalence in (KP’) expresses (→) that no knowledge leakage occurs

and (←) no amnesia occurs. As shown in Theorem 3.2, DPAL verifies both directions and thus has

neither amnesia nor knowledge leakage. As reflected in the following proposition, although EDPAL has

amnesia, it doesn’t have knowledge leakage and verifies (TA).

Proposition 3.5. [3] EDPAL verifies (TA) and the → direction in (KP) over ψ ∈ L ∞, but not the

converse.

4 Axiomatizations

Theorem 4.1. The axiomatization in Table 2 is sound and complete with respect to EDPAL (Definition 4)

over the fragment L .
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All axioms from Table 1

Atomic permanence [ϕ ]p↔ (ϕ→ p)

Depth adjustment ∀d ∈ Z, [ϕ ]Ed
a ↔

(

ϕ → E
d(ϕ)+d
a

)

Negation announcement [ϕ ]¬ψ ↔ (ϕ →¬[ϕ ]ψ)
Conjunction announcement [ϕ ](ψ ∧ χ)↔ ([ϕ ]ψ ∧ [ϕ ]χ)

Knowledge announcement [ϕ ](P
d(ψ)
a → Kaψ)↔ (ϕ → P

d(ϕ)+d(ψ)
a → Ka[ϕ ]ψ)

Announcement composition [ϕ ][ψ ]χ ↔ ([ϕ ∧ [ϕ ]ψ ]χ)

Modus ponens From ϕ and ϕ → ψ , deduce ψ

Necessitation From ϕ deduce P
d(ϕ)
a → Kaϕ

Table 2: Sound and complete axiomatization of EDPAL over L .

Proof. Similarly to the proof of Proposition 2.1, rather than directly showing soundness and complete-

ness we show it is equivalent to the axiomatization of Table 4, which is shown to be sound and complete

for EDPAL in Theorem A.2 in Appendix A.

In the first direction, all axioms in Table 2 can be shown using those in Table 4 immediately, either

from the proof of Proposition 2.1 or because they are the same. The only difficulty lies in knowledge

announcement, but a proof similar to equation (1) shows it is sound.

The other direction also follows the exact same proof as in Proposition 2.1: the public announcement

axioms are direct translations of the same axioms in Table 4 by replacing the K∞
a ϕ subformulas with

P
d(ϕ)
a → Kaϕ . The proof transformation from Proposition 2.1 therefore still yields a proof of the same

formula in this axiomatization, which proves completeness.

We now present a sound set of axioms for DPAL. The main missing axioms for a sound and complete

axiomatization are knowledge and public announcements, which we explored in the previous section, and

announcement composition. In fact, announcement composition cannot exist in DPAL, since making a

single announcement of depth d1 + d2 can behave very differently from making an announcement of

depth d1 followed by another of depth d2, for instance when an agent’s depth is between d1 and d1 +d2.

Theorem 4.2. Replacing knowledge announcement by (KP’) and (TA’) and depth adjustment by,

∀d ∈N, [ϕ ]Ed
a ↔

(

ϕ →
(

(P
d(ϕ)
a ∧E

d+d(ϕ)
a )∨ (¬P

d(ϕ)
a ∧Ed

a )
))

in Table 2 produces a set of sound axioms with respect to DPAL 3.

Proof. Theorem 3.2 verifies the two axioms (KP’) and (TA’). The proofs for most axioms follows from

Theorem 4.1 and that knowledge is defined the same way in both semantics. In particular, atomic per-

manence and conjunction announcement axioms are proven in Theorem 3.1’s induction for (KP).

We are left to show depth adjustment,

(M,s) |= [ϕ ]Ed
a ⇐⇒ (M,s) |= ϕ =⇒ (M | ϕ ,(1,s)) |= Ed

a

⇐⇒ (M,s) |= ϕ =⇒

{

d(a,s) = d +d (ϕ) if d(a,s) ≥ d (ϕ)

d(a,s) = d if d(a,s) < d (ϕ)

⇐⇒ (M,s) |= ϕ→
(

(P
d(ϕ)
a ∧E

d+d(ϕ)
a )∨ (¬P

d(ϕ)
a ∧Ed

a )
)

.

3One could also easily add axioms for K∞
a modal operators, for instance using those from Table 4 in Appendix A.
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5 Complexity

We first state that adding depth bounds does not change the complexity of S5 and PAL respectively.

Theorem 5.1. The satisfiability problems for DBEL with n ≥ 2 agents and for EDPAL are PSPACE-

complete.

Proof. The lower bound results from PSPACE-completeness of S5n for n≥ 2 [10] and PAL [14], respec-

tive syntactic fragments of DBEL and EDPAL.

For both logics, we begin by translating Kaϕ subformulas into P
d(ϕ)
a ∧K∞

a ϕ , which only increases

formula size at most linearly. Then, in the case of EDPAL, using the same translation as Lemma 9

of [14], we translate formulas with public announcement ϕ into equivalent formulas t(ϕ) without public

announcement such that |t(ϕ)| is at most polynomial in |ϕ | (this is possible because the axiomatization

of K∞
a with relation to public announcements is the same).

We have therefore transformed our formula ϕ into an equivalent formula in the syntactic fragment

without Ka operators or public announcements of polynomial size relative to the initial formula ϕ’s size.

We can then use the ELE-World procedure from Figure 6 of [14] by re-defining types to accommo-

date for depth atoms. As a reminder, we define cl(Γ) for any set of formulas Γ to be the smallest set of

formulas containing Γ and closed by single negation and sub-formulas. We then say that γ ⊆ cl(Γ) is a

type if all of the following are true,

1. ¬ψ ∈ γ if and only if ψ 6∈ γ when ψ is not a negation

2. if ψ ∧ χ ∈ cl(Γ) then ψ ∧ χ ∈ γ if and only if ψ ∈ γ and χ ∈ γ

3. if K∞
a ψ ∈ γ then ψ ∈ γ

4. if Pd
a ∈ γ then ¬Pd′

a 6∈ γ and Ed′

a 6∈ γ for all d′ < d

5. if Ed
a ∈ γ then Ed′

a 6∈ γ for all d′ 6= d and ¬Pd′

a 6∈ γ for d′ < d

6. if ¬Pd
a ∈ γ then there exists d′ < d such that ¬Ed′

a 6∈ γ

7. ¬P0
a 6∈ γ

Clearly, checking that a subset of cl(Γ) is not a type does not increase the space complexity of the

algorithm. Lemma 18 from [14] remains true here, i.e. the procedure ELE-World returns true if and only

if the formula is satisfiable. It is sufficient for this to show that any type has a consistent depth assignment

for all agents, as it is clear that if any of the new rules introduced for depths are violated the formula is

not satisfiable.

If the type contains Ed
a then it contains only one such depth atom per rule 5, the only Pd′

a it contains

are for d′ ≤ d per rule 4, and it does not contain ¬Pd′

a for d′ ≤ d per rule 5, therefore d(a) = d is a

consistent setting. If it does not contain any Ed
a , it may contain a number of inequalities polynomial in

|ϕ |, that admit a solution in N by rule 7. Therefore a possible algorithm is d0 = max{d′, Pd′

a ∈ γ} and

then d(a) = min{d′, d′ ≥ d0, ¬Ed′

a 6∈ γ}. If no Pd
a are in the type, then d0 = min{d′, ¬Pd′

a ∈ γ} and

d(a) = max{d′, d′ ≤ d0,¬Ed′

a 6∈ γ} are a possible choice (this choice will always be greater or equal to

0 because of rules 7 and 6 above). Finally, if there are no depth atoms in the type, the formula is clearly

satisfiable for any choice of d(a).

The model checking problem remains P-complete in DBEL, using the same algorithm as for S5 [8].

For EDPAL and ADPAL, the model checking problem is P-complete, as the same algorithm as PAL

can be used, relying on the fact that model size can only decrease after announcements [13] (the lower
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bounds results from the fact that PAL is a fragment of both). This is however not the case of DPAL,

where model size grows after announcements, potentially exponentially, in fact model checking in DPAL

is NP-hard [3].

Theorem 5.2. The complexity of model checking for finite models in DPAL is in EXPTIME. An upper

bound in time complexity for checking ϕ in M is O(22|ϕ |‖M‖), where ‖M‖ is the sum of the number of

states and number of pairs in each relation of M.

Proof. The model-checking algorithm is the same as the one for public announcement logic [13]: a tree

is built from subformulas ϕ , with splits introduced only for subformulas of the form [ψ ]χ , with ψ to the

left and χ to the right. Treating a node labeled ψ means labeling each state in M with either ψ or ¬ψ .

The tree is treated from bottom-left to the top, always going up first except when a node of the type [ψ ]χ
is found. In that case, since the nodes in the left sub-tree have been treated, we can build M | ψ easily in

time O(‖M‖) from the truth value of ψ and the depth functions of M. Moreover, the size of M | ψ is at

most 4‖M‖.

To see this, consider an equivalence class for ∼a in M of size k, it has exactly k2 connections within

it. The number of states it creates in M | ψ is at most 2k, and the number of connections it creates is at

most 4k2. Each connection being in exactly one connected component means the bound holds.

Therefore we can recurse in the right sub-tree with M | ϕ to check χ in time O(22|χ | × 4‖M‖).
Writing O(‖M‖) ≤ c‖M‖ the time necessary to build M | ϕ , we find that checking [ψ ]χ takes time at

most O((c+22|ψ |+22|χ |+2)‖M‖) = O(22|[ψ ]χ |‖M‖).

6 Muddy children

Consider the well-known muddy children reasoning problem, where n children convene after playing

outside with mud. k≥ 1 of them have mud on their foreheads, but have no way of knowing it. The father,

an external agent, announces that at least one child has mud on their forehead. Then, he repeatedly asks

if any child would like to go wash themselves. After exactly k− 1 repetitions of the father’s question,

all muddy children understand they are muddy and go wash themselves. Readers unfamiliar with the

reasoning problem and its solution are directed to Van Ditmarsch et. al [18]’s treatment using PAL.

Consider the set of states {0,1}n
, where each tuple contains n entries indicating for each child if they

are muddy (1) or not (0). For the sake of simplicity and since it is of depth 0, we assume the father’s

announcement has taken place and therefore define the Kripke structure Mn with states {0,1}n \ {0}n

with the usual definition of the agents’ knowledge relations [8]. We define the DPAL class of muddy

children models to be models M̂n extending Mn with any depth function. We name mi the atom expressing

that child i is muddy.

We number the agents in [|0;n−1|], where the first k are muddy, and focus on the reasoning of one

agent (without loss of generality agent 0) to understand that it is muddy. Recall the definition of the dual

of public announcements, 〈ϕ〉ψ := ¬[ϕ ]¬ψ and define the following series of formulas for i≤ k,

ϕi = 〈¬Ki−1mi−1〉〈¬Ki−2mi−2〉 · · · 〈¬K1m1〉K0m0.

Here ϕk states that if each of the children from k−1 to 1 announce one after the other they don’t know

they are muddy, then child 0 knows that they (child 0) are muddy 4 It is well known this formula is true

for unbounded agents in Mn in PAL (it is also a consequence of Theorem 6.1 below). The following two

4These announcements are a sufficient subset of the full announcements ∧ j=1,...,n¬(K jm j∨K j¬m j) in the usual formulation.
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theorems define a sufficient structure of knowledge of depths for the formula to be true and a necessary

condition on the structure of knowledge of depths for it to be true.

Theorem 6.1 (Upper bound). For all three semantics, K0

(

Pk−1
0 ∧K1(P

k−2
1 ∧ ·· ·Kk−1(P

0
k−1) · · · )

)

→ ϕk is

true in all muddy children models M̂n in the initial state.

Note that this formula directly provides an upper bound on the structure of depths and knowledge

about depths: it shows a sufficient condition on the knowledge of depths for the problem to be solvable

by agent 0. Moreover, the upper bound for one child readily generalizes to a sufficient condition for all

children to understand they are muddy: each muddy child must know they are of depth at least k− 1,

know at least some other muddy child knows they are of depth at least k− 2, and know that that other

child knows some other muddy child knows they are of depth at least k−3, etc.

Proof. For the sake of simplicity and since it does not change the treatment of the problem, we assume

n = k. We show the result for DPAL, as the treatments for EDPAL and ADPAL are similar.

We will show the result by induction over k. Denote sk = (1, . . . ,1) the true state of the world where

all the children are muddy.

For k = 2, we assume K0P1
0 and want to show ¬K1m1∧ [¬K1m1]K0m0. First notice that (M̂2,s2) |=

¬K1m1, simply because it considers the state (1,0) to also be possible. In the state (0,1), child 1 knows

it is muddy. Therefore, the set of states for the successful part of the model update will be (1,(1,1)) and

(1,(1,0)). Moreover, since K0P1
0 , it is deep enough in s2 to not have any links to the unsuccessful part of

the model update, therefore it knows m0.

Consider some k > 2, we denote Si the set of states that are “active” when considering ϕi. More

precisely, we set Si = {0,1}
i×{1}k−i \{0}k

. We will show that after k− i announcements, the remainder

of the problem is equivalent to checking ϕi on the subgraph induced by the states Si. This is evident for

i = k by definition, we now show by descending induction that it is equivalent to checking ϕ2 on S2,

which we have just verified to be true.

Firstly, it is true that (M̂n,sk) |=¬Kk−1mk−1 since child k−1 considers possible the state (1, . . . ,1,0).
The set of states in which Kk−1mk−1 holds is exactly (0, . . . ,0,1). Therefore, the model update will create

a copy of all other states. We then notice that the set of states whose last component is 0 can be ignored

in the rest of the problem: they are not reachable from sk by any sequence of ∼i that does not contain

∼k−1 and the rest of the formula ϕk−1 to be checked does not use any modal operators for agent k− 1

any more. These states will never be reached and can therefore be removed without altering the result of

the rest of the execution.

We are therefore restricting ourselves, after the model update, to the set of states Sk−1 in the positive

part of the model. Note however there are still possibly links between the negative part of the model and

Sk−1 in the positive part of the model. We will show that these links have no effect on the checking of the

rest of the formula, by showing that links for child i find themselves in Sk−1 \Si: therefore, by the time

we query modal operator i, the set of ignored states will contain all states with a link for child i.

For child i < k− 1, the information we have about its depth is K0K1 · · ·KiP
k−1−i
i before the model

update. Therefore, we in particular know it is deep enough for the announcement (which is of depth

1≤ k−1− i) in the set of states in which the i first components might have changed compared to sk but

the last k−1− i are all fixed to 1: this is exactly Si.

We have shown that the recursive check in M | ¬Kk−1mk−1 will take place on a set of states for which

the execution is equivalent to Sk−1 and on which we will have to check the formula ϕk−1. Finally, since

the depths of each agent other than k−1 was at least 1 on Sk−2, they are reduced by 1 and the induction

hypothesis on depths for k−2 is also verified.
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Theorem 6.2 (Lower bound). For DPAL, the formula ϕk→ K0Pk−1
0 is true in all models M̂n.

Proof. We use the notations from the proof of Theorem 6.1 above. Notice first that all of the announce-

ments remain true when they are performed, because ¬K∞
k−1mk−1→¬Kk−1mk−1 and the implicant is true

by the usual lower bound for muddy children (it takes k announcements for any child to know they are

muddy).

Assume by contraposition that d(0,sk) = i < k− 1 or d(0, s̃k) = i < k− 1 initially, where s̃k is the

state (0,1, . . . ,1) of M̂n. After i public announcements, it will be true that ¬K0m0 still, as well as ¬K0¬E0
0

since each public announcement is of depth 1. The former is a consequence of the usual lower bound

for muddy children, and can be derived from the proof in Theorem 6.1 using symmetry between 0 and

k−1− i after the i announcements and monotonicity of knowledge of atoms: if the depths are lower than

they were in the previous proof, there are more states and more links in the updated model and therefore

¬Kk−1−imk−1−i remains true.

Therefore in this model after i announcements, either sk or s̃k sees agent 0 of depth 0 and both

states are still connected by ∼0. This means that for the next announcement, since ¬K0m0 after each

announcement except potentially the last using the same argument as above, we will have the chain of

connections (1,sk)∼
′
0 (0,sk) ∼

′
0 (0,s

′
k) or (1,sk)∼

′
0 (1, s̃k) ∼

′
0 (0, s̃k). This means that by an immediate

induction, after the k− i announcements it is still true that ¬K0m0: this is a contradiction with ϕk.

A stronger lower bound for each child is available [3], with recursive conditions on the depth of all

agents similarly to Theorem 6.1. This formula provides a lower bound on the knowledge of depths of the

agent 0 to be able to solve the problem: it must be depth at least k−1 and know so. By symmetry, this

generalizes to any child or any set of children solving the problem.

Finally, we present propositions that illustrate how amnesia in EDPAL (Proposition 3.3) and knowl-

edge leakage in ADPAL (Proposition 3.4) manifest in the muddy children problem. These propositions

are easily verified by computing explicitly the models after updates.

Proposition 6.3 (Amnesia in EDPAL). Consider the instance of muddy children M3, where child i is

unambiguously of depth 2− i, i.e. d(i, ·) = 2− i. The formula 〈¬K2m2〉〈¬K1m1〉¬K2⊤ is true in EDPAL

but not in DPAL or ADPAL. This means that in EDPAL, after the first two announcements, agent 2 does

not know anything anymore.

Proposition 6.4 (Knowledge leakage in ADPAL). The formula 〈K1¬K2m2〉K1K0m0 is true in ADPAL

but not in DPAL or EDPAL. In ADPAL, agent 1 has deduced the conclusion of agent 0’s reasoning,

despite not being deep enough to perceive the announcement. Moreover, if agent 0 were of depth 1 it

would not be true that 〈K1¬K2m2〉K0m0: agent 0 would not be able to deduce what agent 1 has deduced.

Library Alongside this paper, we publish code for a library for multi-agent epistemic logic model

checking and visualization in Python. It implements depth-unbounded PAL models as well as DPAL,

EDPAL and ADPAL. The code is available in an online repository [4]. The code can also be used to gen-

erate illustrations of model updates in the muddy children reasoning problem [3] under the assumptions

of Theorem 6.1 above.

Conclusion We have shown how S5 and public announcement logic (PAL) can be extended to incor-

porate bounded-depth agents. We have shown completeness results for several of the resulting logics and

explored the relationship between public announcements and knowledge in DPAL, as well as complexity

bounds for these logics. We finally illustrated the behavior of depth-bounded agents in the muddy chil-

dren reasoning problem, where we showed upper and lower bounds on depths (and recursive knowledge

https://gitlab.com/farid-fari/depth-bounded-epistemic-logic
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of depths) necessary and sufficient to solve the problem. These results extend epistemic logics to support

formal reasoning about agents with limited modal depth.
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A Axiomatization proofs

All propositional tautologies p→ p, etc.

Deduction (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ K∞
a ψ

Truth K∞
a ϕ → ϕ

Positive introspection K∞
a ϕ → K∞

a K∞
a ϕ

Negative introspection ¬K∞
a ϕ→ K∞

a ¬K∞
a ϕ

Depth monotonicity Pd
a → Pd−1

a

Exact depths Pd
a ↔¬(E

0
a ∨ ·· ·∨Ed−1

a )
Unique depth ¬(Ed1

a ∧Ed2
a ) for d1 6= d2

Bounded knowledge Kaϕ↔ P
d(ϕ)
a ∧K∞

a ϕ

Modus ponens From ϕ and ϕ→ ψ , deduce ψ

Necessitation From ϕ deduce K∞
a ϕ

Table 3: Sound and complete axiomatization of DBEL over H ∞.

Theorem A.1. Axiomatization from Table 3 is sound and complete with respect to DBEL over H ∞.

Proof. Soundness of all of these axioms is immediate: the definition of K∞
a follows that of S5 and so

do the axioms, those concerning depth atoms are consequences of linear arithmetic, and the bounded

knowledge axiom follows immediately from the definition of Ka in the semantics.

For completeness, first note we can translate any formula ϕ in H ∞ into an equivalent formula t(ϕ)
that does not contain any Pd

a atoms or Ka modal operators using the exact depths and bounded knowledge

axioms (which we know to be sound). Call S5D this fragment of DBEL.

We will use a proof through the LINDENBAUM lemma and the truth lemma, to this end we need to

complete the definition for the canonical model to add a depth function. As a reminder, the proof is as

follows: if ϕ cannot be shown within the axiomatization in Table 1, i.e. 6⊢ ϕ , then we show that 6|= ϕ by

showing there is a state in the canonical model in which it does not hold.

The canonical model Mc is the model whose states are maximally consistent sets Γ of formulas for

our axiomatization and whose states are related by ∼a if the set of formulas a knows is the same in both

states. Its valuation function for atoms V (Γ) is simply the set of axioms in Γ, i.e. Γ∩P .

We restrict Mc to sets Γ that contain at least some Ed
a for each agent a ∈A and by the unique depth

axiom we define d(a,Γ) = max{d, Ed
a ∈ Γ}, since Γ contains exactly one depth to be consistent. This

completes Mc into a DBEL model.

http://www.aiml.net/volumes/volume5/Nguyen.ps
https://doi.org/10.1002/(SICI)1098-111X(199701)12:1<57::AID-INT3>3.0.CO;2-X
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/s10849-008-9067-4
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All propositional tautologies p→ p, etc.

Deduction (K∞
a ϕ ∧K∞

a (ϕ → ψ))→ K∞
a ψ

Truth K∞
a ϕ→ ϕ

Positive introspection K∞
a ϕ→ K∞

a K∞
a ϕ

Negative introspection ¬K∞
a ϕ → K∞

a ¬K∞
a ϕ

Atomic permanence [ϕ ]p↔ ϕ→ p

Depth adjustment ∀d ∈ Z, [ϕ ]Ed
a ↔

(

ϕ → E
d(ϕ)+d
a

)

Negation announcement [ϕ ]¬ψ ↔ (ϕ →¬[ϕ ]ψ)
Conjunction announcement [ϕ ](ψ ∧ χ)↔ ([ϕ ]ψ ∧ [ϕ ]χ)
Knowledge announcement [ϕ ]K∞

a ψ ↔ (ϕ → K∞
a [ϕ ]ψ)

Announcement composition [ϕ ][ψ ]χ ↔ ([ϕ ∧ [ϕ ]ψ ]χ)

Depth monotonicity Pd
a → Pd−1

a

Exact depths Pd
a ↔¬(E

0
a ∨ ·· ·∨Ed−1

a )
Unique depth ¬(Ed1

a ∧Ed2
a ) for d1 6= d2

Bounded knowledge Kaϕ ↔ P
d(ϕ)
a ∧K∞

a ϕ

Modus ponens From ϕ and ϕ → ψ , deduce ψ

Necessitation From ϕ deduce K∞
a ϕ

Table 4: Sound and complete axiomatization of EDPAL.

Since 6⊢ ϕ , the set {¬ϕ} is consistent for our axiomatization. We must now show we can extend this

set into a maximal consistent set of formulas that contains a depth atom Ed
a for each agent a.

However, this stronger requirement is not satisfied by the usual LINDENBAUM lemma, since a con-

sistent set of formulas could be {Pd
a , d ∈ N} (which is not consistent with any Ed

a ). Note however we

only need it to hold for a finite set of formulas (namely {¬ϕ}): Lemma B.1 below proves this version of

the LINDENBAUM lemma, by showing there must exist some Ed
a that is consistent with any finite set for

each a, and then a maximally consistent set can be derived using the traditional LINDENBAUM lemma.

Finally, the truth lemma shows that ϕ ∈ Γ ⇐⇒ (Mc,Γ) |= ϕ by induction on ϕ and is enough to

conclude (since the maximal consistent set containing ¬ϕ will not verify ϕ). Most induction cases are

the same as for S5, the only new symbols left in our formula ϕ are the Ed
a atoms, and the truth lemma is

immediately true for them by definition of the depth function of Mc.

Finally, if |= ϕ , then |= t(ϕ) by the soundness of the axiomatization and definition of the transfor-

mation, then S5D ⊢ t(ϕ) since we have just shown the completeness of this fragment. Finally, this must

mean DBEL ⊢ t(ϕ) and then ⊢ ϕ since the transformations of t can be performed using equivalences in

our axiomatization: we have shown completeness.

Theorem A.2. The axiomatization in Table 4 is sound and complete with respect to EDPAL.

Proof. Soundness of the axioms of DBEL is proven in Theorem A.1. Soundness of all axioms for public

announcement is also a consequence of their definition in PAL with which they share their definition,

except for depth adjustment for which the proof is relatively immediate.

For completeness, we translate any formula ϕ into t(ϕ) by removing public announcements, Ka

modal operators and Pd
a atoms by using the sound axioms from Table 4. The formula t(ϕ) is in the

syntactic fragment S5D, thus we can use completeness shown in Theorem 2.1 to show ⊢ t(ϕ), which

implies ⊢ ϕ within the axiomatization of Table 4 by using the same axioms in the opposite direction.
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B LINDENBAUM lemma with depth assignments

Lemma B.1. For every agent a and finite consistent set of formulas Γ without public announcement, Pd
b

literals or Kb operators for all b, there exists some d ∈N such that Γ∪{Ed
a} is a consistent set.

Proof. Fix agent a. As Γ is a finite set of finite formulas, the set of exact depth atoms for a that appear

in its formulas is included in a finite set F = {E0
a , . . . ,E

D
a } for some D ∈N.

We can add to Γ instances of the unique depth axiom for each pair of integers in [|0;D|] while

maintaining consistency. The set Γ can then be seen as a consistent set of formulas for S5 over the

set of atoms F ∪P , i.e. consistent in the axiomatization of Table 3 without depth axioms or bounded

knowledge (or tautologies involving symbols not in the language of S5). Therefore there is an S5 model

(M,s) that satisfies it by the usual LINDENBAUM lemma and the truth lemma (the canonical model here).

In (M,s), if any of the Ed
a are valued to ⊤, then at most one of them is satisfied (since we added the

unique depth axiom for all pair of depths). If all of the Ed
a are valued to ⊥, then we can introduce a new

atom ED+1
a and set its value to ⊤ in all states of the model. All of the unique depths axioms for D+ 1

and d ≤D can be added to Γ without making it inconsistent.

In both cases, let d0 be the value of the unique Ed0
a valued to ⊤ in this final model. We claim that

{ϕ ,Ed0
a }must be a consistent set. Indeed, a proof of its inconsistency with the axioms from Table 3 must

only involve axioms from S5 and unique depths axioms for the set F , since none of the symbols Pd
a or

Ka are necessary in a proof (they can be replaced by their equivalents with Ed
a and K∞

a without changing

the conclusion) and any occurrence of Ed
a for d > D+ 1 can be replaced by ⊥ while maintaining the

truthfulness and conclusion of the proof.

Therefore, such an inconsistency proof would also hold within S5, which is a contradiction with

soundness since these formulas are verified in a consistent set (the set of true formulas in (M,s)).

C Proofs for Section 3

Proposition C.1. Formulas (KP) and (TA) are valid for DPAL in the unambiguous depths setting.

Proof. To prove (KP), suppose without loss of generality that (M,s) |= ¬P
d(ϕ)
a ∧ϕ . In particular, this

means that in M | ϕ , we have (0,s)∼′a (1,s) and therefore the equivalence class of (1,s) in M | ϕ contains

all (0,s′) whenever s′ ∼a s. Then,

(M,s) |= [ϕ ]Kaψ ⇐⇒ (M,s) |= ϕ =⇒ (M | ϕ ,(1,s)) |= Kaψ

⇐⇒ (M | ϕ ,(1,s)) |= P
d(ψ)
a and ∀s′, j,( j,s′)∼′a (1,s) =⇒ (M | ϕ ,( j,s′)) |= ψ

⇐⇒ (M | ϕ ,(1,s)) |= P
d(ψ)
a and ∀s′ ∼a s,

{

(M | ϕ ,(0,s′)) |= ψ

(M,s′) |= ϕ =⇒ (M | ϕ ,(1,s′)) |= ψ .

(9)

On the other hand,

(M,s) |= Kaψ ⇐⇒ (M,s) |= P
d(ψ)
a and ∀s′,s′ ∼a s =⇒ (M,s′) |= ψ . (10)

We prove by structural induction over ψ ∈Ha the stronger equivalence,

∀s′ ∼a s,

{

(M,s′) |= ψ ⇐⇒ (M | ϕ ,(0,s′)) |= ψ

(M,s′) |= ϕ =⇒ ((M,s′) |= ψ ⇐⇒ (M | ϕ ,(1,s′)) |= ψ) .
(11)
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Given that (M,s) 6|= P
d(ϕ)
a , we have (M | ϕ ,(1,s)) |= P

d(ψ)
a ⇐⇒ (M,s) |= P

d(ψ)
a . Therefore the depth

conditions in equations (9) and (10) are the same and since both sides are true if (M,s) 6|=ϕ , equation (11)

is enough to prove (KP).

For ψ ∈P , it is true because V ′(( j,s′)) =V (s′) for all j and s′ (note that P does not include depth

atoms). For depth atoms about a, it is a consequence of (M,s) |= Ka¬P
d(ϕ)
a by the depth unambiguity

condition (8), which means the depth of a is unchanged in all s′ ∼a s after the model update.

The cases where ψ = ψ1∧ψ2 and ψ = ¬χ are immediate, by the way these operators coincide with

the usual propositional logic definition on both sides of the equivalences.

If ψ = Kaχ and s′ ∼a s, recall that by the depth unambiguity condition (8) we have (M,s′) |= ¬P
d(ϕ)
a .

Therefore, if (M,s′) |= ϕ ,

(M | ϕ ,(1,s′)) |= ψ ⇐⇒ d(a,s′)≥ d (χ) and ∀( j,s′′)∼′a (1,s
′), (M | ϕ ,( j,s′′)) |= χ

⇐⇒ d(a,s′)≥ d (χ) and ∀s′′ ∼a s,

{

(M | ϕ ,(0,s′′)) |= χ

(M,s′′) |= ϕ =⇒ (M | ϕ ,(1,s′′)) |= χ

⇐⇒ d(a,s′)≥ d (χ) and ∀s′′ ∼a s′, (M,s′′) |= χ

⇐⇒ (M,s′) |= ψ ,

where we have used the induction hypothesis (11) for χ once in each direction. The first equivalence in

equation (11) is even easier to verify, by the same technique. The case for ψ = K∞
a χ is directly implied

by this proof, as there are no depth conditions to verify.

To prove public announcements, we will need a stronger induction hypothesis than (11). Write for

any s, 10(s) = s and 1n(s) = (1,1n−1(s)) = (1, . . . ,(1,s)). We posit,

∀n ∈N, ∀ψ1, . . . ,ψn, ∀s
′ ∼a s, (M,s′) |= P

d(ψ1)+···d(ψn)+d(ψ)
a and (M,s′) |= ¬P

d(ϕ)
a =⇒

(M,s′) |= ψ1 and (M | ψ1,(1,s
′)) |= ψ2 and . . . and (M | ψ1 | · · · | ψn−1,1n−1(s

′)) |= ψn =⇒
{

(M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((0,s

′))) |= ψ

(M,s′) |= ϕ =⇒ ((M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s

′))) |= ψ) .

(12)

Note we slightly abuse notation here and some of these states might not exist, the convention is that the

equivalences need only hold when the states exist in the models on both sides. The implicant implies

that the left-hand term always exists.

Taking this for n = 0 is sufficient to conclude on (KP), since both equations (9) and (10) will be false

whenever (M,s) 6|= P
d(ψ)
a .

The cases for atoms, negations and conjunction are clear for the same reasons as they were in equa-

tion (11). The case for depth atoms for a is direct, since the assumption (M,s′) |= P
d(ψ1)+···d(ψn)
a implies

that the depth of a after the ψ1, . . . ,ψn announcements is its initial depth minus the sum of the depths

of all the announcements, and the assumption that it is not deep enough for ϕ means its depth does not

change with the announcement of ϕ .

The case for modal operators Ka relies on the fact that depth atoms are preserved (by the induction

hypothesis for depth atoms) and the relations verify in M | ψ1 | · · · | ψn when these states exist,

(1,(1, . . . (1,s1)))∼
(n)
a (1,(1, . . . (1,s2))) ⇐⇒ s1 ∼a s2,
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by denoting ∼
(k)
a the relation for a in a model after k announcements. And similarly in M |ϕ |ψ1 | · · · |ψn,

(1,(1, . . . ( j,s1)))∼
(n+1)
a (1,(1, . . . (k,s2))) ⇐⇒ ( j,s1)∼

′
a (k,s2) ⇐⇒ s1 ∼a s2.

This also implies the case for K∞
a , since the verification is the same without the depth condition.

Finally, if ψ = [ψ ′]χ , we verify that for s′ ∼a s such that (M,s′) |= ϕ ,

(M | ψ1 | · · · | ψn,1n(s
′)) |= ψ

⇐⇒ (M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ′ =⇒ (M | ψ1 | · · · | ψn | ψ

′
,1n+1(s

′)) |= χ

⇐⇒ (M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ′ =⇒ (M | ϕ | ψ1 | · · · | ψn | ψ

′
,1n+1((1,s

′))) |= χ

⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s
′))) |= ψ ′ =⇒ (M | ϕ | ψ1 | · · · | ψn | ψ

′
,1n+1((1,s

′))) |= χ

⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s
′))) |= ψ (13)

when the latter state exists. Our first use of the induction hypothesis on χ is justified because the left-hand

side of the implication is the n+1 term in the assumptions for the induction hypothesis in equation (12)

(and d (ψ) = d (ψ ′)+d (χ)). The second use of the induction hypothesis on ψ ′ is justified for the same

depth reason and the other assumptions remain the same. Once more the case for (0,s′) is very similar.

For (TA), we assume without loss of generality that (M,s) |= Ka(P
d(ϕ)
a )∧ϕ (using the depth unam-

biguity condition (8)), this means in particular the equivalence class of (1,s) in M | ϕ is {(1,s′), s′ ∼a

s, (M,s′) |= ϕ} since no state equivalent to s by ∼a has a not deep enough for ϕ . Using the same

reasoning as in equation (9), we have,

(M,s) |= [ϕ ]Kaψ ⇐⇒ (M | ϕ ,(1,s)) |= P
d(ψ)
a and ∀s′ ∼a s, (M,s′) |= ϕ =⇒ (M | ϕ ,(1,s′)) |= ψ .

Moreover, we have,

(M,s) |= Ka[ϕ ]ψ ⇐⇒ (M,s) |= P
d(ϕ)+d(ψ)
a and ∀s′ ∼a s, (M,s′) |= ϕ =⇒ (M | ϕ ,(1,s′)) |= ψ . (14)

Since (M,s) |= P
d(ϕ)
a , the depth of a in (M | ϕ ,(1,s)) is its depth in (M,s) minus d (ϕ). This means that

(M | ϕ ,(1,s)) |= P
d(ψ)
a ⇐⇒ (M,s) |= P

d(ϕ)+d(ψ)
a .

Proposition C.2. DPAL verifies (KP’) and (TA’).

Proof. For (KP’), in light of equations (9) and (10), we use the following induction hypothesis,

∀s,a, (M,s) |= K∞
a Fϕ(ψ) =⇒

∀s′ ∼a s,

{

(M | ϕ ,(0,s′)) |= ψ ⇐⇒ (M,s′) |= ψ

(M,s′) |= ϕ =⇒ ((M | ϕ ,(1,s′)) |= ψ ⇐⇒ (M,s′) |= ψ) .
(15)

Assume that (M,s) |= ϕ ∧Fϕ(Kaψ). In particular, (M,s) |= ¬K∞
a (ϕ → P

d(ϕ)
a ). First notice that this

condition allows us to write, (0,s′)∼′a (1,s) ⇐⇒ s′ ∼a s. Indeed, since there exists some s′′ ∼a s where

a is of depth strictly less than d (ϕ) and ϕ holds, we deduce the chain of connections, (1,s)∼′a (1,s
′′)∼′a

(0,s′′)∼′a (0,s
′) for any s′ ∼a s (and the direct implication is immediate).

Moreover, we have assumed (M,s) |= ϕ ∧ (ϕ →¬P
d(ϕ)
a ∨P

d(ϕ)+d(ψ)
a ). In either case of the disjunc-

tion, the depth conditions of equations (9) and (10) become equivalent as they did in the proof of (KP).

Therefore, proving the induction hypothesis (15) is sufficient to conclude (KP’) here.
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The cases for atoms, negations and conjunctions is the same as in the proof of Proposition C.1, as

the induction hypothesis holds because Fϕ(¬ψ) = Fϕ(ψ), Fϕ (ψ1∧ψ2) = Fϕ(ψ1)∧Fϕ(ψ2), and by

commutativity of K∞
a with conjunction.

If ψ = Kbχ for some agent b ∈A , for some fixed s′ ∼a s, we know that (M,s′) |= ¬K∞
b (ϕ → P

d(ϕ)
b )

as well as (M,s′) |= K∞
b Fϕ(χ). Moreover, the condition (M,s′) |= K∞

b (ϕ→¬P
d(ϕ)
b ∨P

d(ϕ)+d(χ)
b ) implies

that the depth of b will be greater or equal to d (χ) in (M | ϕ ,(1,s′)) if and only if it was in (M,s′). If

(M,s′) |= ϕ , by once more using the induction hypothesis (15) for b in s′, we obtain that,

(M | ϕ ,(1,s′)) |= ψ ⇐⇒ d(b,s′)≥ d (χ) and ∀( j,s′′)∼′b (1,s
′), (M | ϕ ,( j,s′′)) |= χ

⇐⇒ d(b,s′)≥ d (χ) and ∀s′′ ∼b s′,

{

(M | ϕ ,(0,s′′)) |= χ

(M,s′′) |= ϕ =⇒ (M | ϕ ,(1,s′′)) |= χ

⇐⇒ d(b,s′)≥ d (χ) and ∀s′′ ∼b s′, (M,s′′) |= χ

⇐⇒ (M,s′) |= ψ .

The case for (0,s′) is the same, since its equivalence class in M | ϕ is the same and the depth condition

is the same. The case for ψ = K∞
b χ is implied by this proof, as there are no depth conditions to verify.

Finally, checking public announcements involves performing the same induction hypothesis strength-

ening as in the proof of (KP) in its equation (12). The new induction hypothesis becomes,

∀s,a, (M,s) |= K∞
a Fϕ(ψ) =⇒

∀n ∈N, ∀ψ1, . . . ,ψn, ∀s
′ ∼a s, (M,s′) |= P

d(ψ1)+···d(ψn)+d(ψ)
a and (M,s′) |= ¬P

d(ϕ)
a =⇒

(M,s′) |= ψ1 and (M | ψ1,(1,s
′)) |= ψ2 and . . . and (M | ψ1 | · · · | ψn−1,1n−1(s

′)) |= ψn =⇒
{

(M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((0,s

′))) |= ψ

(M,s′) |= ϕ =⇒ ((M | ψ1 | · · · | ψn,1n(s
′)) |= ψ ⇐⇒ (M | ϕ | ψ1 | · · · | ψn,1n((1,s

′))) |= ψ) .

Note we slightly abuse notation here and some of these states might not exist, the convention is that the

equivalences need only hold when the states exist in the models on both sides. The implicant implies

that the left-hand term always exists.

Checking atoms, depth atoms, negation and conjunction is the same as in the proof of (KP) once

more. Checking modal operators Ka and K∞
a is similar to the proof of (KP) using induction hypothe-

sis (12), but using the same reasoning as above for induction hypothesis (15): the induction hypothesis

contained in Fϕ tells us that the announcement is not perceived by the agent at each modal operator.

Finally, public announcements follow the exact same proof as they did in (KP) in equation (13), with

the extra information that Fϕ([ψ
′]χ) = Fϕ(ψ

′)∧Fϕ (χ), allowing us to obtain the assumption of the

inductive hypothesis in both inductive hypothesis applications (one for ψ ′ and one for χ).

For (TA’), we assume without loss of generality that (M,s) |= K∞
a (ϕ → P

d(ϕ)
a )∧ϕ , this means in

particular the equivalence class of (1,s) in M |ϕ is {(1,s′), s′ ∼a s, (M,s′) |=ϕ} since no state equivalent

to s by ∼a has a not deep enough for ϕ . Using once more the same re-writings as in equation (14), it is

sufficient to prove that the depth conditions are the same. This is the case because (M,s) |= ϕ , therefore

by the truth axiom, (M,s) |= P
d(ϕ)
a .
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Numerous logics have been developed to reason either about threshold-induced opinion diffusion
in a network, or about similarity-driven network structure evolution, or about both. In this paper,
we first introduce a logic containing different dynamic operators to capture changes that are ‘asyn-
chronous’ (opinion change only, network-link change only) and changes that are ‘synchronous’ (both
at the same time). Second, we show that synchronous operators cannot, in general, be replaced by
asynchronous operators and vice versa. Third, we characterise the class of models on which the
synchronous operator can be reduced to sequences of asynchronous operators.

1 Introduction

There are two main types of change affecting agents connected through a social network. First, the
features of an agent, e.g., their opinions or behavior, can be influenced by its neighbors in the network:
for instance, if one’s entire social circle has adopted an opinion in favor of (or against) vaccines, one is
unlikely to disagree with this opinion. Under this type of social influence, or social conformity pressure,
network-neighbors tend to align their opinions (or any other feature that can change) and therefore be-
come more similar. Second, in addition to changing their own state (opinion, or other feature), agents can
also reshape their social environment by connecting with others. What generally drives the formation
of new links between two agents is their similarity. Both types of changes relate to how similar agents
are: social influence makes network neighbors become more similar while new links make similar agents
become more connected [9, Ch. 4].

In social network analysis, a common way of representing both types of dynamics is to assume that
certain thresholds drive the dynamics. On the one hand, a typical way of representing social influence
is via threshold models [12, 17, 8, 9]: agents adopt a feature when a large enough proportion of their
network neighbors has already adopted it. On the other hand, the formation of new links has been
modelled in a similar way. In probabilistic models, it is usual to assume that agents who are more similar
are more likely to connect than those who are less similar [23, 4]. In deterministic models, this has
been translated by a similarity threshold: two agents get connected as soon as they are similar enough
[18, 20, 19, 21].

Both types of changes have been addressed in logic. Indeed, a number of logical frameworks has
flourished to reason about threshold-based social influence [2, 6, 5, 16, 14], and about threshold-based
link formation [18, 20, 19, 21]. Yet, to the exception of [11, 15, 1], either the two aspects have been
treated separately [22, 18, 20, 19, 21, 10], or the two types of changes have been taken to happen one
after the other [19]. To our knowledge, only [1] provides a logic capturing specifically simultaneous
changes of the network structure and the state of the agents.

In this paper, we introduce a closely related framework that, similarly to [1] combines three dynamic
operators: one corresponding to the change of the network structure only, one corresponding to the
change of the agents feature (opinion/behavior/state) only, and one corresponding to both changes at the
same time, but restricting ourselves to monotonic changes. We then tackle for this monotonic setting an

http://dx.doi.org/10.4204/EPTCS.379.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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open question by [19, 1] in the literature: Can different sequences of dynamic operators be reduced to
one another?

We first introduce the framework in Section 2. We then discuss the (ir)replaceability of the three
dynamic operators in Section 3. We show in particular that our ‘synchronous’ operator cannot always
be replaced by any sequences of other operators (Theorem 2). We also show that, when it can be re-
placed, the sequence of operators replacing it can only be of four specific types (Theorem 3). Finally, we
characterize the class of models on which the synchronous operator can be replaced (Theorem 4).

2 Logic of asynchronous and synchronous network changes

We introduce a logic to reason about asynchronous and synchronous changes in social networks. We
use a propositional language (where atoms are parametrized by our sets of agents and features) extended
with three dynamic operators 4,�,©, to capture, respectively, diffusion update, network update, and
both updates happening simultaneously.
Definition 1 (Syntax L ). Let A be a non-empty finite set of agents, F be a non-empty finite set of
features. Let Φat := {Nab : a,b ∈ A }∪{ fa : f ∈F ,a ∈ A } be the set of atomic formulas. The syntax
L is the following:

ϕ := Nab | fa | ¬ϕ | ϕ ∧ϕ | 4ϕ| �ϕ | ©ϕ

where f ∈F and a,b ∈A .
The connectors ∨,→ and↔ are defined as usual. Nab is read as ‘agent a is an influencer of agent b’;

fa as ‘agent a has feature f ’; 4ϕ as ‘after a diffusion update, ϕ holds’; �ϕ as ‘after a network update,
ϕ holds’;©ϕ as ‘after a synchronous update, ϕ holds’.

We now introduce the models representing who is influencing whom and who has which features,
and our three different types of updates.
Definition 2 (Model M). Let A be a non-empty finite set of agents, F be a non-empty finite set of
features. A model M over A and F is a tuple 〈N ,V ,ω,τ〉, where:

• N ⊆A ×A is a social influence relation;

• V : A −→P(F ) is a valuation function, assigning to each agent a set of adopted features;

• ω,τ ∈Q are two rational numbers such that 0≤ ω ≤ 1 and 0 < τ ≤ 1, interpreted, respectively,
as similarity threshold and influenceability threshold.

We write Cωτ for the class of all models for given values of ω and τ .
We turn to defining the three types of model updates corresponding to our three dynamic operators.

First, after the diffusion (only) update, the set of features each agent adopt is updated. Agents might start
adopting new features if enough of their neighbors had already adopted them before the update. Note that,
while [19, 1] consider updates in which agents might start abandoning previously adopted features, here
we restrict ourselves to the case in which agents are not allowed to start unadopting features, similarly as
in [2].
Definition 3 (Diffusion update - M4). Given a model M = 〈N ,V ,ω,τ〉, the updated model
M4 = 〈N ,V ′,ω,τ〉 is such that for any a,b ∈A and any f ∈F :

f ∈ V ′(a) iff

{
f ∈ V (a), if N(a) = /0
f ∈ V (a) or |N f (a)|

|N(a)| ≥ τ, otherwise

}
where N f (a) := {b ∈ A : (b,a) ∈N and f ∈ V (b)} and N(a) := {b ∈ A : (b,a) ∈N }.
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The diffusion update does not affect the network structure. In contrast, the network update only
affects the connections, not the features adopted by any of the agents. After a network update, new
links may have formed between agents that agree on sufficiently many features. Just as agents could
not unadopt previously adopted features, agents cannot break old connections, which differs for instance
from [15, 19]. In this respect, our network update is a monotonic version of that in [19].

Definition 4 (Network update - M�). Given a model M = 〈N ,V ,ω,τ〉, the updated model
M� = 〈N ′,V ,ω,τ〉 is such that for any a,b ∈A and any f ∈F :

(a,b) ∈N ′ iff (a,b) ∈N or
|(V (a)∩V (b))∪ (F \ (V (a)∪V (b)))|

|F |
≥ ω

Third, the synchronous update affects features and connections at once. Adoption of new features
happens under the same conditions as with the diffusion update, and new links are created under the
same conditions as with the network update.

Definition 5 (Synchronous update - M©). Let M = 〈N ,V ,ω,τ〉, the model resulting from synchronous
update is M© := 〈N ′,V ′,ω,τ〉, where N ′ is as in Definition 4 and V ′ is as in Definition 3.

Now that we have defined the model-updates, we can introduce the semantic clauses for formulas
containing the corresponding operators.

Definition 6 (Satisfaction). For any model M = 〈N ,V ,ω,τ〉 and any formula ϕ ∈L , the truth of ϕ in
M is inductively defined as follows:

M |= fa if and only if f ∈ V (a)

M |= Nab if and only if (a,b) ∈N

M |= ¬ϕ if and only if M 6|= ϕ

M |= ϕ ∧ψ if and only if M |= ϕ and M |= ψ

M |=�ϕ if and only if M� |= ϕ

M |=4ϕ if and only if M4 |= ϕ

M |=©ϕ if and only if M© |= ϕ

where M4 is the updated model as in Definition 3, and M� is the updated model as in Definition 4,
and M© is the updated model as in Definition 5.

As usual, we say that a formula is valid in a class of models if it is true in all models of that class and
valid (tout court) if it is valid in all models.

Observation 1. Let M1 = 〈N1,V1,ω,τ〉 and M2 = 〈N2,V2,ω,τ〉 be two models. The following are
equivalent:

• for all ϕat ∈Φat , M1 |= ϕat iff M2 |= ϕat

• for all ϕ ∈L , M1 |= ϕ iff M2 |= ϕ

• M1 = M2

We introduce the following two abbreviations capturing, respectively, when an agent a has sufficient
pressure to adopt a feature ( f τ

N(a)), and when two agents a and b have sufficient similarity to connect
(simω

ab).

f τ

N(a) :=
∨

{G⊆N⊆A, N 6= /0 : |G||N|≥τ}

(
∧

b∈N

Nba∧
∧

b6∈N

¬Nba∧
∧

b∈G

fb)
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�Nab↔ Nab∨ simω
ab 4Nab↔ Nab ©Nab↔ Nab∨ simω

ab
� fa↔ fa 4 fa↔ fa∨ f τ

N(a) © fa↔ fa∨ f τ

N(a)
�(ϕ ∧ψ)↔�ϕ ∧�ψ 4(ϕ ∧ψ)↔4ϕ ∧4ψ ©(ϕ ∧ψ)↔©ϕ ∧©ψ

�¬ϕ ↔¬�ϕ 4¬ϕ ↔¬4ϕ ©¬ϕ ↔¬©ϕ

From ϕ1↔ ϕ2, infer that ϕ ↔ ϕ[ϕ1/ϕ2], where ϕ[ϕ1/ϕ2] is a formula
obtained by replacing one or more occurrences of ϕ1 with ϕ2

Table 1: Reduction Axioms and derivation rule for the dynamic modalities �,4,©.

simω
ab :=

∨
{E⊆F : |E||F |≥ω}

∧
f∈E

( fa↔ fb)

These abbreviations can then be used to obtain reduction axioms for each of the dynamic modalities
in L , which are shown in Table 1. The reduction axioms for the dynamic operators in L are very similar
to those in other dynamic logics of social network change. Indeed, the reduction axioms for the operator
4 are the same as the those of the dynamic operator [adopt] in [2], with the exception that our logic
captures multiple diffusing features and thus contains reduction axioms for each spreading feature in F .
In this sense, they resemble the reduction axioms in [19] with the difference that in our setting features
cannot be unadopted. Moreover, the reduction axioms for the operator � are similar to those in [19],
with the difference that our framework does not allow for link deletion. The reduction axioms for the
operator© merely reflect the fact that both features and links are affected by a synchronous update.

We will investigate how and when operators can replace one another in the next section. Before
that, by looking at our axioms, we can immediately observe that an operator can replace another when it
precedes specific formulas:

Observation 2. Let M = 〈N ,V ,ω,τ〉 be a model. For all a,b ∈A , for all f ∈F :

• M |=© fa iff M |=4 fa

• if M |=� fa, then M |=© fa

• M |=©Nab iff M |=�Nab

• if M |=4Nab then M |=©Nab

Definition 7 (Logic Lωτ ). Let ω ∈ [0,1] and τ ∈ (0,1] be two rational numbers. The Logic Lωτ consists
of some complete axiomatisation and derivation rules of propositional logic, together with the reduction
axioms and the derivation rule in Table 1.

Theorem 1. Let ω ∈ [0,1] and τ ∈ (0,1] be two rational numbers. For any ϕ ∈L : |=C ωτ ϕ iff `Lωτ ϕ

The proof uses standard techniques and is very similar to that of the related settings in [2, 19, 1]: a
sketch is included in the Appendix.

3 Irreplaceability of synchronous operators

Given that our dynamic formulas are reducible to the static fragment of our language, the question of
comparing the expressivity of fragments of our language excluding one or two of the dynamic operators
is uninteresting. In contrast, what is interesting, as suggested already in [19, 1], is to compare whether
formulas containing some (specific combinations of) dynamic operators could be translated into formulas
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containing other (combinations of) dynamic operators. Another way to put it, closer to the way [19] first
introduces the question, is to ask when different sequences of different model updates result in the same
model.

To be able to investigate the extent to which our dynamic operators are inter-translatable or not (be-
yond the atomic preceding cases mentioned in Observation 2), we first have to introduce some notation
and define the relevant type of expressivity criteria.

Definition 8 (Notation for sequences of operators). Let D = {©,4,�}. For O⊆ D, SO denotes the set
of all non-empty finite sequences of operators in O. We write d1d2...dn for the sequence 〈d1,d2, ...,dn〉
and dn for the sequence consisting of n ∈ N repetitions of d ∈ D. We denote by s j:k the subsequence of
s starting with the j-th element of s and ending with the k-th element of s. Given two sequences s1,s2 of
lengths n,m ∈ N, respectively, we write s1s2 for the sequence of length n+m obtained by prefixing s1 to
s2.

Definition 9 (Equivalence of sequences). Two sequences s1,s2 ∈ SD are equivalent on a model M when
Ms1 = Ms2 , or, equivalently (by Observation 1), when for all ϕ ∈L , M |= s1ϕ if and only if M |= s2ϕ .
Two sequences s1 and s2 are equivalent over a class of models when they are equivalent over all models
in the class. Two sequences are equivalent (tout court) when they are equivalent over the class of all
models.

We start by making some observations about sequences of4 and � operators.

Observation 3. Let a model M = 〈N ,V ,ω,τ〉 be given.

• Any sequence s ∈ S{�} is equivalent to the sequence � on M.

• There exists an n < |A |, such that, for any m > n,4m is equivalent to4n on M.

The first point follows from the fact that the model update in Definition 4 is idempotent, and therefore
M |=�nϕ if and only if M |=�ϕ . A proof of the second point can be found in [2].

We then lift this notion of equivalence between sequences to an existential notion between sets of
sequences, so that we can compare the different dynamic fragments of our language.

Definition 10 (Replaceability of sets). Let S1,S2 ⊆ SD be two sets of sequences. The set S1 is replaceable
with the set S2 in a model M, when, for all sequences s1 ∈ S1, there exists a sequence s2 ∈ S2 that is
equivalent to s1 in M. S1 is replaceable with S2 over a class of model when it is repleaceable with S2 in
all models of the class. S1 is replaceable with S2 (tout court) when it is repleaceble with S2 over the class
of all models.

When comparing our dynamic operators, it is easy to see that S{�} (and therefore any superset of it)
is not replaceable by S{4} and, vice versa, that S{4} (and therefore any superset of it) is not replaceable
by S{�} and similarly for S{�} and S{©}, and S{4} and S{©}, which implies that S{�,4} is not replaceable
with S{©}. The only interesting question is: can we replace our synchronous operator?

Theorem 2. S{©} is not replaceable with S{�,4}.

Proof. We show that there is no sequence in S{4,�} that is equivalent to the sequence© on all models.
Assume, towards a contradiction that there exists a sequence s ∈ S{4,�} equivalent to© in the model M
given in Fig. 1. Let n ∈ N be the length of s. One of two cases must hold:

[Case 1: s starts with 4.] We can rewrite s as 4s2:n. From Fig.1, we know that M 6|= 4Nac,
whereas M |=©Nac and therefore s 6= 4. Note that M is such that any number of successive
triangles reduce to one: for any ϕ , M |=4ϕ iff M |=4s′ϕ for every s′ ∈ S{4}. Since M 6|=4Nac,
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Figure 1: The figure represents the model M, and its model updates M©, M4, M�, M4�, M�4 considered
in Theorem 2. The model M is as follows: A = {a,b,c}, F = { f ,g,h}, ω = τ = 1

2 . For each model,
each agent is represented as a node, and the influence of one agent on another agent is represented as
a directed arrow from the influencing node to the influenced node. Next to each node, all and only the
features in F that an agent possess are reported.

then M 6|=4s′Nac, for every s′ ∈ S{4}. Thus, s 6∈ S{4}. The sequence s must therefore contain at
least one �, and can be rewritten as s1:m�s(m+2):n where s1:m ∈ S{4}, with 1≤ m < n. Given that,
as mentioned above, all triangles can be reduced to one, for all ϕ ∈L , M |= s1:m�s(m+2):nϕ iff
M |=4�s(m+2):nϕ . As illustrated in Figure 1, M 6|=4�Nac. Furthermore, note that M |=4�ϕ

iff M |=4�s′ϕ for all s′ ∈ S{4,�}, i.e., M4� is stable. Hence, M 6|=4�s′Nac for all s′ ∈ S{4,�}.
Thus, in particular: M 6|=4�s(m+2):nNac. Hence, using again the fact that the number of initial
triangles is irrelevant, M 6|= s1:m�s(m+2):nNac which is M 6|= sNac. But M |=©Nac, and hence s is
not equivalent to© in M.

[Case 2: s starts with �.] s is of the kind �s2:n. As illustrated in Fig.1, M 6|= �ga, whereas
M |=©ga. Note that M is such that M |=�ϕ iff M |=�s′ϕ for all s′ ∈ S{�,4}. Hence, M 6|=�s′ga

for all s′ ∈ S{�,4}. Thus, M 6|= �s2:nga which is the same as M 6|= sga. Hence, s is not equivalent
to© in M.

Hence, in both cases, s is not equivalent to © in M. Contradiction. Thus, there is no sequence in
S{4,�} equivalent to©, which implies that S{©} is not replaceable by S{4,�}.

From the proof of Theorem 2, we know that there is no sequence in S{�,4} that is equivalent to©
in the class of all models. However, we will show in Proposition 1 that there are classes of models on
which© does have equivalent sequences in S{4,�}. We first need to introduce the following additional
abbreviations, where we already name ψs the formula that captures the conditions under which © is
equivalent to s.

Definition 11 (Abbreviations ψ4, ψ�, ψ4� and ψ�4n ).

• ψ4 :=
∧

a,b∈A (Nab∨¬simω
ab)

• ψ� :=
∧

a∈A
∧

f∈F( fa∨¬ f τ

N(a))
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• ψ4� :=
∧

a,b∈A (¬Nab→ (simω
ab↔4simω

ab))

• For all n > 0: ψ�4n :=
∧

a∈A
∧

f∈F(¬ fa→ ( f τ

N(a)↔
∨

0≤i≤n−1�4i f τ

N(a)))

We can now show that these formulas indeed define four classes of models in which © has an
equivalent sequence in S{4�}:

Proposition 1. Let M be a model. © is equivalent on M to:

• 4 iff M |= ψ4

• � iff M |= ψ�

• 4� iff M |= ψ4�

• �4n iff M |= ψ�4n , for n > 0

For space reasons, the proof of Proposition 1 is provided in the Appendix.
We can now show that if© has an equivalent sequence in S{4�} on some model, then that sequence

has to be equivalent to one of those in Proposition 1 on that model. To prove this, we need the following
lemmas.

Lemma 1. Let M be a model and s ∈ SD. If s starts with a subsequence of the form 4n for some n > 0
and s is equivalent to© on M, then4n is equivalent to4 on M.

Proof. Consider a sequence s ∈ SD such that s starts with a subsequence of the kind4n, for some n > 0,
and s is equivalent to© on model M = 〈N ,V ,ω,τ〉. Two cases: either n = 1, or n > 1. If n = 1, the
claim is trivially true since 4 is equivalent to itself. Assume now that n > 1. Assume also, towards a
contradiction, that 4n is not equivalent to 4 on M. By Def. 9, it follows that M4 6= M4n . By Obs. 1, it
follows that M4 and M4n must differ on whether they satisfy some atomic proposition. By Def. 3 and
Def. 4, since features can never be abandoned, we know that, for all a ∈A for all f ∈F , if M |=4 fa,
then M |=4s′ fa for all s′ ∈ SD; with a similar reasoning, from Def. 3 and Def. 4, since diffusion updates
do not alter the network structure, we also know that for all a,b ∈A , M |=4Nab iff M |=4nNab. These
observations, together with the fact that M4n and the model M4 must differ on the satisfaction of some
atomic proposition, imply that there are a ∈ A and f ∈F such that M |=4n fa and M 6|=4 fa. From
Obs. 2, we know that, for all a ∈ A for all f ∈F , M |=4 fa iff M |=© fa. Since M 6|=4 fa, we can
infer that M 6|=© fa. At the same time, from the fact that features can never be abandoned, and the fact
that M |=4n fa, it follows that M |= s fa, since 4n is the initial subsequence of s. Therefore, it must be
the case that both M 6|=© fa and that M |= s fa. This contradicts the initial assumption that s and© are
equivalent on M. Therefore, for all n≥ 1,4n must be equivalent to4 on M.

Lemma 2. Let M be a a model and s ∈ S{4,�} \ (S{4}∪S{�}). If s starts with4 and is equivalent to©
on M, then s is equivalent to4� on M.

Proof. Consider any s∈ S{4,�} \ (S{4}∪S{�}), such that s starts with4 and is equivalent to© on some
model M = 〈N ,V ,ω,τ〉. Assume, towards contradiction, that s is not equivalent to 4� on M. By
Lemma 1, we know that if s starts with a sequence of the kind4n, then4n must be equivalent to4 on
M. For this reason, we can restrict ourselves to consider the case in which s starts with the subsequence
4�. Since s is not equivalent to4� on M, by Obs.1, it follows that Ms and M4� must differ on whether
they satisfy some atomic proposition. From Obs. 2, we know that, for all a ∈A for all f ∈F , M |=4 fa

iff M |=© fa. From this and the fact that the network update does not affect the features of the agent,
we know that M |=4� fa iff M |=© fa, for all a ∈A for all f ∈F . This, combined with the fact that
s is equivalent to ©, implies that M |=© fa iff M |= s fa, and hence, that M |=4� fa iff M |= s fa, for
all a ∈ A and f ∈F . Since by Obs.1, we know that Ms and M4� must differ on whether they satisfy
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some atomic proposition, it follows that there are a,b such that either: (i) M 6|= sNab and M |=4�Nab or
(ii) M |= sNab and M 6|=4�Nab. Assume that (i) is the case. If M |=4�Nab, then from the Def. 3 and
Def. 4, it follows that M |=4�s′Nab for all s′ ∈ SD, since links cannot be deleted. This fact, together with
the fact that �4 is a subsequence of s, implies in particular that M |= sNab. This contradicts the fact that
M 6|= sNab. Therefore (ii) must be the case, i.e. M |= sNab and M 6|=4�Nab. By the assumption that s is
equivalent to© it follows that M |=©Nab. Now, by the reduction axioms and the fact that M 6|=4�Nab,
we know that M 6|= Nab and M 6|=4simω

ab. Since M 6|=4simω
ab but M |= sNab, there must m ∈ N smaller

than the length n of the sequence s, such that M |= s1:msimω
ab: in other words, it must be the case that at

some point of the sequence s, the agents a,b have become similar. The fact that M |= s1:msimω
ab holds

implies that there exist at least one f ∈F and a 1 < j≤m such that either M |= s1: j fa and M 6|= s1:i fa for
all i < j, or M |= s1: j fb and M 6|= s1:i fb for all i < j: this simply means that in order to become similar,
at least one among a or b must have acquired at least one new feature that makes them similar at some
point in the update sequence expressed by s. W.l.o.g. consider the case in which it is a that has acquired
a new feature, i.e. that there exist f ∈F and a 1 < j ≤ m such that M |= s1: j fa and M 6|= s1:i fa for all
i < j. From the fact that features are never abandoned, M |= s fa. Since M |= s fa, and, by assumption s is
equivalent to© on M, it follows that M |=© fa. Since, by assumption s starts with4, and it is the case
that M 6|= s1:i fa for all i < j, we know that M 6|=4 fa (triangle is the first operator in s). It follows that
both M |=© fa and M 6|=4 fa are true. By Obs. 2, we know that for all a ∈A for all f ∈F , M |=© fa

iff M |=4 fa. Contradiction. Therefore, there is no sequence s∈ S{4,�} \ (S{4}∪S{�}), such that s starts
with4, is equivalent to© on M, and is not equivalent to4� on M.

Lemma 3. Let M be a model and s ∈ S{4,�} \ (S{4}∪ S{�}). If s starts with � and is equivalent to©
on M, then s is equivalent to a sequence in the set {�4n : n > 0}.

Proof. Let a model M = 〈N ,V ,ω,τ〉 be given. Assume that s ∈ S{4,�} \ (S{4} ∪ S{�}) starts with �
and is equivalent to© on M, and that s is not equivalent to any sequence in the set {�4n : n > 0} on
M. From the fact that any sequence s′ ∈ S{�} is equivalent to the sequence �, it follows that, if s starts
with a subsequence of the kind �n before the first occurrence of a 4, then s is equivalent on M to a
sequence that starts with a single � followed by the subsequence of s starting at the first occurrence of
a 4 and ending with the last operator of s. In other words, it is sufficient to consider the case in which
s starts with a subsequence of the kind �4. From this, and the fact that s ∈ S{4,�} \ (S{4}∪S{�}) and
s 6∈ {�4n : n > 0}, s must be such that at some point of the subsequence of s starting with the third
operator of s, at least another � occurs in it. Furthermore, at least one such �, must be such that s is not
equivalent on M to the sequence s without that �. Otherwise, s would be equivalent to a sequence with
no further elements of the kind � after the initial subsequence �4, and hence would be a sequence in
the set {�4n : n > 0}. From this, it follows that there must be a subsequence s1:m of s, with m≤ n, with
n the length of the sequence s, where the m-th element is a �, such that for some a,b ∈A , M |= s1:mNab,
and for all j < m, M 6|= s1: jNab. Observe that � is a subsequence of s1:m. Therefore, M 6|=�Nab. By the
fact that M |= s1:mNab, and since s1:m is a subsequence of s, and connections between agents cannot be
abandoned by Def. 4, it follows that M |= sNab. By the assumption that s and© are equivalent, it follows
that M |= sNab. By Obs. 2, we know that for all a,b ∈A , M |=©Nab iff M |=�Nab. This contradicts the
previous claim that M 6|=�Nab. Therefore there is no sequence s ∈ S{4,�} \ (S{4}∪S{�}) that starts with
�, is equivalent to© on M, and is not equivalent to any sequence in the set {�4n : n > 0} on M.

We can now combine the above lemmas to prove the following theorem.
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Theorem 3. Let M be a model and s ∈ S{�,4}. If s is equivalent to© on M, then s is equivalent to a
sequence in the set {�,4,4�}∪{�4n : n > 0} on M.

Proof. Consider an arbitrary model M = 〈N ,V ,ω,τ〉, and an arbitrary sequence in s ∈ S{�,4} equiva-
lent to© on M. One of three cases must hold: s ∈ S{�}, s ∈ S{4}, s ∈ S{4,�} \ (S{�}∪S{4}). [Case 1:
s ∈ S{�}.] Since the model update in Def. 4 is idempotent, any sequence s′ ∈ S{�} is equivalent to the
sequence �. This implies that s is equivalent to � on M. [Case 2: s ∈ S{4}.] Then, trivially, s starts with
a subsequence of the form4n for some n > 0. From Lemma 1, we know that s is equivalent to4 on M.
[Case 3: s ∈ S{4,�} \ (S{�}∪ S{4}).] If s starts with a 4, we know by Lemma 2 that s is equivalent to
4� on M. If s starts with a �, by Lemma 3, we know that s is equivalent on M to a sequence in the set
{�,4,4�}∪{�4n : n > 0}. From this, it follows that if s is equivalent to© on some model M, then
s is equivalent on M to a sequence in the set {�,4,4�}∪{�4n : n > 0}.

Using Observation 3, Proposition 1 and Theorem 3, we can now characterise the class of models on
which© can be replaced by S{4,�}.

Theorem 4. © is replaceable by S{4,�} on a model M iff M |= ψ4∨ψ�∨ψ4�∨
∨

0≤n<|A |ψ�4n .

Proof. Consider an arbitrary model M.
[⇒] Assume that© is replaceable with S{4,�} on M: there exists a sequence s ∈ S{4,�} equivalent

to© on M. By Theorem 3, we know that s is equivalent to a sequence s′ ∈ {�,4,4�}∪{�4n : n> 0}.
We distinguish four cases: (i) s is equivalent to4 on M, (ii) s is equivalent to � on M; (iii) s is equivalent
to4� on M; (iv) s is equivalent to a sequence in {�4n : n > 0} on M. Assume that (i). By the first point
in Prop. 1, we know that M |= ψ4. From this, it follows that M |= ψ4∨ψ�∨ψ4�∨

∨
0≤n<|A |ψ�4n for

any n. Assume that (ii) is the case; by the second point in Prop. 1, and the fact that s is equivalent
to � on M, we know that s is equivalent to © on M iff M |= ψ�. From this, it follows that M |=
ψ4∨ψ�∨ψ4�∨

∨
0≤n<|A |ψ�4n for any n. Assume that (iii) is the case; by the third point in Prop. 1,

and the fact that s is equivalent to 4� on M, we know that s is equivalent to © on M iff M |= ψ4�.
From this, it follows that M |= ψ4∨ψ�∨ψ4�∨

∨
0≤n<|A |ψ�4n for any n. Assume that (iv) is the

case, and assume that s is equivalent to a sequence of the kind �4n on M, for arbitrary n > 0. By
Obs. 3, we know that for all sequences �4n with n ≥ |A |, there exist an equivalent sequence �4m

on M such that m < |A |. We therefore consider the case in which n < |A |: in this case, by the fourth
point in Prop. 1, it then follows that s is equivalent to© on M iff M |= ψ�4n . From this, it follows that
M |= ψ4∨ψ�∨ψ4�∨

∨
0≤n<|A |ψ�4n . Since n > 0 was arbitrary, this holds for all n > 0 in N.

[⇐] Assume that M |= ψ4∨ψ�∨ψ4�∨
∨

0≤n<|A |ψ�4n . Therefore, one of the following four cases
must hold: (i) M |=ψ4; (ii) M |=ψ�; (iii) M |=ψ4�; (iv) M |=

∨
0≤n<|A |ψ�4n . (i) Assume that M |=ψ4.

By Prop. 1, we know that this holds iff 4 is equivalent to© on M. In this case, we take s to be 4. (ii)
Assume that M |= ψ�. By Prop. 1, we know that this holds iff � is equivalent to© on M. In this case,
we take s to be �. (iii) Assume that M |= ψ4�. By Prop. 1, we know that this holds iff4� is equivalent
to© on M. In this case, we take s to be4�. (iv) Assume that M |=

∨
0≤n<|A |ψ�4n . Therefore there is

an n < |A |, such that M |= ψ�4n .By Prop. 1, we know that this holds iff �4n is equivalent to© on M.
In this case, we take s to be �4n.

Since in all cases (i)-(iv), we can find a sequence s ∈ S{4,�} equivalent to© on M, we have proven
that, if M |= ψ4∨ψ�∨ψ4�∨

∨
0≤n<|A |ψ�4n ,© is replaceable with S{4,�} on M.
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Informally, Theorem 4 tells us that a sequence s without synchronous operators can replace a syn-
chronous operator only under one of the following circumstances: no agent has social pressure to adopt
new features (s is equivalent to �); no agent is similar to any disconnected agent (s is equivalent to
4); conforming to social pressure preserves similarity with disconnected agents (s is equivalent to4�);
creating new connections with similar agents does not forbid conforming to old social pressures (s is
equivalent to a sequence in {�4n : n > 0}).

Proposition 2. Let M be a model. If M |=
∧

0≤i≤(m−1)©i(ψ4∨ψ�∨ψ4�∨
∨

0≤n<|A |ψ�4n), then©m

is replaceable by S{4,�} on M.

Proof. Assume M |=
∧

0≤i≤(m−1)©i(ψ4∨ψ�∨ψ4�∨
∨

0≤n<|A |ψ�4n). Then, for all i ≥ 0 ≤ (m−1):
M©i |= ψ4∨ψ�∨ψ4�∨

∨
0≤n<|A |ψ�4n , and therefore, by Theorem 4,© is replaceable by S{4,�} on

M©i . Let si be a sequence that replaces© on M©i . Then the sequence s0...si...sm−1 replaces©m on M.

4 Conclusion

We have introduced a logical framework containing dynamic operators to reason about asynchronous as
well as synchronous threshold-induced monotonic changes in social networks. We showed that, in gen-
eral, our synchronous operator cannot be replaced (Theorem 2), and that, on the models on which it can
be replaced, only sequences of four specific types can replace it (Theorem 3). Finally, we characterised
the class of models on which the synchronous operator can be replaced (Theorem 4).

The two most natural continuations of this work would be, first, to characterise the models on which
sequences of (more than one) synchronous operators can be replaced, and, second, to study the replace-
ability of synchronous operators in the non-monotonic frameworks from [19, 1].

Furthermore, it would be interesting to study the replaceability of richer operators studied in epis-
temic/doxastic settings such as [2, 18, 16, 14, 10], for instance the network announcements in [16, 14, 10]
or the message passing updates in [10]. In this direction, we could compare which models different up-
dates can reach, as done in [3, 2]. In particular, it would be interesting to investigate what types of group
knowledge are reachable by different social network dynamic updates.
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Appendix

Proof sketch of Theorem 1

Proof. The proof uses standard methods.
[Soundness] The soundness of the reduction axioms for the dynamic operators4,�,© follows from

the fact that they spell out the model updates in Def. 3, Def. 4 and Def. 5 respectively. The soundness
of the axioms4Nab↔ Nab and � fa↔ fa follows from the fact that the model update M4 does not alter
the connections between agents (Def. 3), and the fact that, respectively, the model update M� does not
alter the features of the agents (Def. 4). The soundness of the axioms4 fa↔ fa∨ f τ

N(a) can be shown as
in [2]: by Def. 5, the soundness of the axiom© fa↔ fa∨ f τ

N(a) is shown in the same way.

As an example, we prove the validity of �Nab↔ Nab∨ simω
ab.

Consider a model M = 〈N ,V ,ω,τ〉. M |= �Nab iff, by Def. 6, M� |= Nab iff, by Def. 4 either
(a,b) ∈N , or |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|

|F | ≥ ω .

This holds iff M |= Nab or |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|
|F | ≥ ω .

We now show that |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|
|F | ≥ ω iff M |= simω

ab.

[⇒] If |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|
|F | ≥ω , there exist a subset E ⊆F , namely the set (V (a)∩V (b))∪

(F \(V (a)∪V (b))) such that for all f ∈ E, M |= fa↔ fb (indeed the set (V (a)∩V (b))∪(F \(V (a)∪
V (b))) contains by definition all and only those features that either both agents have or that both do not
have). This in turn implies that M |=

∨
{E⊆F : |E||F |≥ω}

∧
f∈E( fa↔ fb). Thus, M |= simω

ab.

[⇐] Now, assume that M |= simω
ab. This holds iff M |=

∨
{E⊆F : |E||F |≥ω}

∧
f∈E( fa ↔ fb). This means

that there exist a subset E ⊆F , such that |E||F | ≥ω , and such that for all f ∈E, M |= fa↔ fb, i.e. f ∈V (a)
iff f ∈ V (b). From this, it is clear that E must be a subset of (V (a)∩V (b))∪ (F \ (V (a)∪V (b))).
From this and the fact that |E||F | ≥ ω , we can conclude that |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|

|F | ≥ ω .

We thus proved that |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|
|F | ≥ ω iff M |= simω

ab. From above we know that

M |= �Nab iff M |= fa or |(V (a)∩V (b))∪(F\(V (a)∪V (b)))|
|F | ≥ ω . We can therefore conclude that M |= �Nab

iff M |= fa or M |= simω
ab.

The soundness of the axiom©Nab↔Nab∨simω
ab is proven in the same way. As usual, the soundness

of the distributivity of the dynamic operators over conjunction and the clauses for negation can be proven
by induction on the length of formulas. Finally, validity preservation of the inference rule in Table 1 can
be shown by induction on the structure of ϕ .

[Completeness] Completeness is proven in the standard way by defining a translation from the dy-
namic language into the static fragment of the language, see for instance [7, 13].

https://doi.org/10.18564/jasss.4252
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Proof of Proposition 1

Proof. [First point]
[⇒] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction, that4 is equivalent

to© on M, and that M 6|= ψ4. By the definition of ψ4 in Def. 11, M 6|=
∧

a,b∈A (Nab∨¬simω
ab). Since

M 6|=
∧

a,b∈A (Nab∨¬simω
ab), it follows that there are a,b ∈ A such that M |= ¬Nab∧ simω

ab. From this,
and the reduction axioms for the dynamic modalities © and 4 in Table 1, respectively, it follows that
M |=©Nab and M 6|=4Nab. By Def. 9, this contradicts the initial assumption that4 is equivalent to©
on M.

[⇐] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction, that M |= ψ4, and
that it is not the case that 4 is equivalent to © on M. From the fact that 4 is not equivalent to © on
M, by Obs. 1, it follows that it must be the case that M4 and M© differ on whether they satisfy some
atomic formula. By Obs. 2, we know that: (i) for all a ∈ A , for all f ∈F , M |=© fa iff M |= 4 fa

(a synchronous update and a diffusion update modifies in the same way the features of the agents); (ii)
for all a,b ∈A , if M |=4Nab, then M |=©Nab. From (i) and (ii), and the fact that M4 and M© differ
on whether they satisfy some atomic formula, it must be the case that there are a,b,∈ A such that
M |=©Nab and M 6|=4Nab. By the reduction axioms for the modality 4 in Table 1 and the fact that
M 6|=4Nab, it follows that M 6|= Nab. By the facts that M 6|= Nab and that M |=©Nab, by the reduction
axioms for the modality©, it must be the case that M |= simω

ab. We therefore know that it is both the case
that M 6|= Nab and that M |= simω

ab. Therefore for some a,b ∈ A , it is true that M |= ¬Nab∧ simω
ab, i.e.

M |=
∨

a,b∈A (¬Nab∧ simω
ab), which implies that M 6|=

∧
a,b∈A (Nab∨¬simω

ab). This means that M 6|= ψ4.
This contradicts the initial assumption that M |= ψ4.

[Second point]
[⇒] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction, that, � is equiv-

alent to © on M, and that M 6|= ψ�. From the definition of ψ� in Def. 11, it follows that M 6|=∧
a∈A

∧
f∈F( fa∨¬ f τ

N(a)). Since, M 6|=
∧

a∈A
∧

f∈F( fa∨¬ f τ

N(a)), it follows that there are a ∈ A , and
f ∈F such that M |= ¬ fa∧ f τ

N(a). From this and the reduction axioms for the dynamic modalities ©
and � in Table 1, it follows that M |=© fa and M 6|=� fa. By Def. 9, this contradicts the initial assump-
tion that � is equivalent to© on M .

[⇐] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction that, M |= ψ�, and
that it is not the case that � and© are equivalent on M. From this and Def. 9, we know that M� 6= M©.
By Obs. 1, it follows that it must be the case that M� and M© differ on whether they satisfy some atomic
proposition. By Obs. 2, we know that: (i) for all a,b ∈A , M |=©Nab iff M |=�Nab (a network update
and a synchronous update modifies the network in exactly the same way); (ii) for all a∈A , for all f ∈F ,
if M |=� fa, then M |=© fa. From (i) and (ii) and the fact that M� and M© differ on whether they satisfy
some atomic proposition, it must the case that there are a ∈ A and f ∈ F , such that M |=© fa and
M 6|=� fa. By the fact that M 6|=� fa and the reduction axioms for the � modality in Table 1, it follows
that M 6|= fa. By the fact that M 6|= fa and M |=© fa, by the reduction axioms for the © modality in
Table 1, it follows that it must be the case that M |= f τ

N(a). We therefore know that it is the case that:
M 6|= fa and M |= f τ

N(a). Therefore, there exist a ∈A and f ∈F such that M |= ¬ fa∧ f τ

N(a). From this, it
follows that M |=

∨
a∈A

∨
f∈F (¬ fa∧ f τ

N(a)), and, therefore, M 6|=
∧

a∈A
∧

f∈F ( fa∨¬ f τ

N(a)). This means
that M 6|= ψ�. We have therefore reached a contradiction with the initial assumption that M |= ψ�.

[Third point]
[⇒] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction, that, 4� is equiv-

alent to © on M, and that M 6|= ψ4�. By the definition of ψ4� in Def. 11, we know that M 6|=
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∧
a,b∈A (¬Nab → (simω

ab ↔ 4simω
ab)). From this, it follows that, for some a,b ∈ A , M |= ¬Nab and

M 6|= (simω
ab↔4simω

ab). One of the following two must be the case: (i) M |= simω
ab and M 6|=4simω

ab;
(ii) M 6|= simω

ab and M |=4simω
ab. Assume that (i) is the case: the facts that M |= simω

ab and M 6|=4simω
ab,

together with the fact that M |= ¬Nab and the reduction axioms in Table 1, imply that M |=©Nab and
M 6|=4�Nab. This implies that© is not equivalent to 4� on M, contrary to our initial assumption. It
must therefore be the case that (ii) holds. Assume that (ii) is true, i.e. that M 6|= simω

ab and M |=4simω
ab.

These assumptions, together with the fact that M 6|= Nab and the reduction axioms in Table 1, imply that
M 6|=©Nab and M |= 4�Nab. By Def. 9, this contradicts the initial assumption that © and 4� are
equivalent on M. Since neither (i) nor (ii) are possible, we have established that if© is equivalent 4�
on M, then M |= ψ4�.

[⇐] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction that M |= ψ4�, and
that 4� is not equivalent to© on M. From the fact that 4� is not equivalent to© on M, by Def. 9,
it follows that M4� 6= M©. By Obs. 1, we know that M4� and M© must differ on whether they satisfy
some atomic proposition. By Obs. 2, and by Def. 4 and Def. 5, we know that for all a ∈ A , and all
f ∈ F , M |=© fa iff M |= 4 fa iff M |= 4� fa (informally, this simply mean that, since a network
update does not affect the agent’s features, and a synchronous update and a diffusion update change the
features in the same way, the features of the agents after one synchronous update are the same as those
after one diffusion update followed by a subsequent network update). From this and the fact that M4�

and M© must differ on whether they satisfy some atomic proposition, it follows that one of the following
two cases must hold: (i) there are a,b such that M |=4�Nab, and M 6|=©Nab; (ii) there are a,b such
that M 6|=4�Nab, and M |=©Nab.

Assume that (i) is the case, i.e. there are a,b such that M |= 4�Nab, and M 6|=©Nab; from the
fact that M 6|=©Nab and the reduction axioms for© in Table 1, we know that M 6|= Nab∨ simω

ab, which
implies that M |=¬Nab and M |=¬simω

ab; furthermore, from the fact that M |=4�Nab, and that M 6|= Nab,
we know that M |= 4simω

ab. If we put these together, we know that M |= ¬Nab, M |= ¬simω
ab, and

M |=4simω
ab at the same time: this implies that M |=

∨
a,b∈A (¬Nab ∧¬simω

ab ∧4simω
ab). From this, it

follows that M 6|=
∧

a,b∈A (¬Nab → (simω
ab ↔4simω

ab)): by Def. 11, it follows that M 6|= ψ4�, which
contradicts our initial assumption that M |= ψ4�.

Since (i) is not possible, it must be the case that (ii) holds, i.e. there are a,b such that M 6|=4�Nab,
and M |=©Nab. From the fact that M 6|=4�Nab and the reduction axioms for 4 and �, we know that
M 6|=4simω

ab and M 6|= Nab. From the fact that M |=©Nab and M 6|= Nab, by the reduction axioms for©,
we know that M |= simω

ab. Summarising the facts above, we therefore know that M |= ¬Nab, M |= simω
ab

and M |= ¬4simω
ab: this means that M |=

∨
a,b∈A (¬Nab ∧ simω

ab ∧¬4simω
ab). This implies the fact that

M 6|=
∧

a,b∈A (¬Nab→ (simω
ab↔4simω

ab)). By Def. 11, it follows that M 6|= ψ4�, which contradicts our
initial assumption that M |= ψ4�.

Since neither (i) nor (ii) are possible, we have established that if M |= ψ4�, then© must be equiva-
lent to4� on M.

[Fourth point]
[⇒] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction, that, for some

arbitrary n > 0, �4n is equivalent to© on M and that M 6|= ψ�4n . From the fact that M 6|= ψ�4n , by
Def. 11, it follows that M 6|=

∧
a∈A

∧
f∈F(¬ fa → ( f τ

N(a) ↔
∨

0≤i≤n−1�4i f τ

N(a))). From this, it follows
that there exist a ∈ A and f ∈ F such that M |= ¬ fa and M 6|= ( f τ

N(a) ↔
∨

0≤i≤n−1�4i f τ

N(a)). One
of the following two must hold: (i) M |= f τ

N(a) and M 6|=
∨

0≤i≤n−1�4i f τ

N(a), or (ii) M 6|= f τ

N(a) and
M |=

∨
0≤i≤n−1�4i f τ

N(a).

Assume that (i) is the case and thus that M |= f τ

N(a) and M 6|=
∨

0≤i≤n−1�4i f τ

N(a). Since M |= f τ

N(a),
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by the reduction axiom for ©, we know that M |=© fa. At the same time, since we know that M 6|=∨
0≤i≤n−1�4i f τ

N(a), we know that for all 0 ≤ i ≤ n−1 M 6|= �4i f τ

N(a): this simply means that after a
network update, there is no sequence of diffusion update after which the agent a has social conformity
pressure to adopt feature f . From this and the fact that M 6|= fa, by the reduction axioms of for the
dynamic modalities, we know that M 6|= �4 fa. Therefore, it is both the case that M |=© fa, and M 6|=
�4n fa, which, by Def. 9, contradicts the initial assumption that© is equivalent to �4n on M.

Since (i) is not possible, it must be the case that (ii) holds, i.e. it is the case that M 6|= f τ

N(a) and
M |=

∨
0≤i≤n−1�4i f τ

N(a). From the fact that M 6|= f τ

N(a), and the fact that M 6|= fa, by the reduction
axioms for©, it follows that M 6|=© fa. From the fact that M 6|= f τ

N(a) and M |=
∨

0≤i≤n−1�4i f τ

N(a), it
follows that there is an i ≤ (n−1) such that M |= �4i f τ

N(a) (this means that, after a network update, at
some point of a sequence of further diffusion update, agent a has pressure to adopt feature f ). From this
and the reduction axioms for the dynamic modality 4, it follows that M |= �4i+1 fa. Since i ≤ n−1,
and by the fact that features cannot be abandoned, it follows that M |=�4n fa. Thus, it is both true that
M 6|=© fa, and M |=�4n fa. By Def. 9, this contradicts the initial assumption that �4n is equivalent to
© on M.

Since neither (i) nor (ii) are possible, we have established that if © is equivalent �4n on M, then
M |= ψ�4n .

[⇐] Let a model M = 〈N ,V ,ω,τ〉 be given. Assume, towards a contradiction, that, for some n > 0,
M |= ψ�4n and that© is not equivalent to �4n in M. From the fact that© is not equivalent to �4n

in M, by Def. 9, it follows that M�4n 6= M©. Thus, by Obs. 1, we know that M�4n and M© must
differ on whether they satisfy some atomic proposition. By Obs. 2 and by Def. 4 and Def. 5, we know
that, for all a,b ∈ A , M |=©Nab iff M |= �Nab iff M |= �4nNab. Informally, this follows from the
fact that, since a diffusion update does not affect the agent’s features, and a synchronous update and
a network update change the network structure in the same way, the connections between the agents
after one synchronous update are the same as those obtained after one network update followed by
multiple subsequent diffusion update. From this and the fact that M�4n and M© must differ on whether
they satisfy some atomic proposition, there must exist a ∈ A and f ∈ F , s.t. it is not the case that
M |=�4n fa iff M |=© fa. Therefore, either one of the following cases must hold: (i) M |=�4n fa and
M 6|=© fa, or (ii) M 6|=�4n fa and M |=© fa.

Assume that (i): M |= �4n fa and M 6|=© fa. By the fact M 6|=© fa and the reduction axioms for
©, we know that M 6|= f τ

N(a) and M 6|= fa. From the fact that M |= �4n fa, we know that there exist an
0 ≤ i ≤ n−1 such that M |= �4i f τ

N(a): this simply means that, at some point, after a network-update
and potentially after subsequent diffusion updates, a has pressure to adopt f . From this, it follows that
M |=

∨
0≤i≤n−1�4i f τ

N(a)). Therefore, from the above we know that M |= ¬ fa, M |= ¬ f τ

N(a) and M |=∨
0≤i≤n−1�4i f τ

N(a)). This imply that M |=
∨

a∈A
∨

f∈F (¬ fa∧¬ f τ

N(a)∧
∨

0≤i≤n−1�4i f τ

N(a))). Therefore
M 6|=

∧
a∈A

∧
f∈F(¬ fa → ( f τ

N(a)↔
∨

0≤i≤n−1�4i f τ

N(a))). Thus, by Def. 11, we know that M 6|= ψ�4n ,
which contradicts our initial assumption that M |= ψ�4n .

Since (i) cannot be the case, it must be the case that (ii): M 6|=�4n fa and M |=© fa.
From the fact M 6|=�4n fa, by the reduction axioms for the dynamic modalities, we know two things:

M 6|= fa, and there does not exist 0 ≤ i ≤ n− 1, such that M |= �4i f τ

N(a) (this simply means that at no
point after a network update and subsequent diffusion updates a has pressure to adopt f ; indeed, if this
was the case then a would at some point adopt f , and will never abandon it). From the fact that M 6|= fa

and that M |=© fa, by the reduction axiom for©, we know that M |= f τ

N(a). Summarising the above we
know that: M |= ¬ fa, M |= f τ

N(a) and M |= ¬
∨

0≤i≤n−1�4i f τ

N(a). Thus, M |=
∨

a∈A
∨

f∈F (¬ fa∧ f τ

N(a)∧
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¬
∨

0≤i≤n−1�4i f τ

N(a)). Thus, M 6|=
∧

a∈A
∧

f∈F(¬ fa → ( f τ

N(a) ↔
∨

0≤i≤n−1�4i f τ

N(a))). By Def. 11, it
follows that M 6|= ψ�4n , contrary to the initial assumption that M |= ψ�4n .

Since neither (i) nor (ii) are possible, we have established that if M |= ψ�4n , then© is equivalent to
�4n on M.
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Correspondence theory allows us to create sound and complete axiomatizations for modal logic on

frames with certain properties. For example, if we restrict ourselves to transitive frames we should

add the axiom �ϕ →��ϕ which, among other things, can be interpreted as positive introspection.

One limitation of this technique is that the frame property and the axiom are assumed to hold glob-

ally, i.e., the relation is transitive throughout the frame, and the agent’s knowledge satisfies positive

introspection in every world.

In a modal logic with local properties, we can reason about properties that are not global. So,

for example, transitivity might hold only in certain parts of the model and, as a result, the agent’s

knowledge might satisfy positive introspection in some worlds but not in others. Van Ditmarsch et

al. [9] introduced sound and complete axiomatizations for modal logics with certain local properties.

Unfortunately, those axiomatizations are rather complex. Here, we introduce far simpler axiomatiza-

tions for a wide range of local properties.

1 Introduction

Modal logic is a formalism used throughout computer science, artificial intelligence and philosophy to

represent various concepts including knowledge or belief (epistemic/doxastic logic, e.g., [13, 10, 6]),

time (temporal logic, e.g., [14, 3]), necessity (alethic logic, e.g., [5, 4]), obligation (deontic logic, e.g.,

[1, 12]) and more. The main operator of modal logic is usually denoted �, or, in a multi-agent setting, �a

where a is an agent index. A formula �ϕ can then be read, depending on the context, as “ϕ is known”,

“ϕ is believed”, “ϕ is true in every possible future”, “ϕ is necessarily true” or “ϕ is obligatory”.

The most commonly used kind of semantics for modal logic uses relational models, also known as

Kripke models. Such a model M consists of three parts, M = (W,R,V ), where W is a set of worlds or

states, R is an accessibility relation on those worlds (or, in the multi-agent case, a set of relations), and V

is a valuation that determines on which worlds an atomic formula is true. A formula �ϕ then holds on a

world w1 if ϕ is true on every w2 such that (w1,w2) ∈ R.

Depending on the specific concept being represented, some additional assumptions are typically

made, however. Let us consider two such assumptions as examples. Firstly, in epistemic logic knowledge

is generally assumed to be truthful, represented by the axiom �aϕ → ϕ , which can be read as “if agent a

knows ϕ , then ϕ is true”. Secondly, in alethic logic it is usually assumed that everything that is necessary

is necessarily necessary, represented by the axiom �ϕ →��ϕ .

Each such axiom corresponds, in the precise technical sense of correspondence theory [15, 2], to

a constraint on models. The axiom �aϕ → ϕ corresponds to a’s accessibility relation being reflexive,

¬�⊥ corresponds to the accessibility relation being serial and �ϕ → ��ϕ corresponds to the relation

being transitive.

Some non-standard assumptions can be handled in the same way. Suppose, for example, that agent

b is smarter and more well-informed than agent a, and that, as a result, everything known by a is also

http://dx.doi.org/10.4204/EPTCS.379.9
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known by b. This can be represented by an axiom �aϕ →�bϕ and the corresponding property that the

relation R(b) for agent b is a subset of the relation R(a) for agent a.

One limitation of this approach, to use axioms and their corresponding model conditions, is that the

properties they represent are inherently global. If we assume the axiom �aϕ → ϕ , then a’s accessibility

relation should be reflexive throughout the model. As such, not only is a’s knowledge truthful, that

truthfulness must be common knowledge. Similarly, if we take �aϕ → �bϕ as an axiom then b knows

at least as much as a in every world.

One solution to this issue was introduced in [7, 8, 9] as local properties. A local property is, as the

name implies, a “local” variant of a property such as reflexivity, transitivity, or one relation being a subset

of another. A world w is locally reflexive if w is a successor of itself, it is locally transitive if whenever

w1 is a successor of w and w2 is a successor of w1, w2 is also a successor of w, and b locally knows more

than a in w if {w′ | (w,w′) ∈ R(b)} ⊆ {w′ | (w,w′) ∈ R(a)}. On the syntax side, for a given local property

a special symbol ϑ is then introduced, that holds on a world if and only if that world satisfies the local

property.

The main outcome of [8, 9] was a method to create sound and complete axiomatizations for logic

with any local properties that satisfy a technical condition known as r-persistence. Unfortunately, while

these axiomatizations are indeed sound and complete, they use a relatively complex introduction rule for

local properties (see Section 3 for details). Here, we introduce axiomatizations for many local properties

that instead use an introduction axiom, which is also considerably simpler than the rule from [9]. The

downside of our approach is that it is less general than the one from [9], although it does include all

commonly discussed local properties and we expect that it can be generalized.

The structure of this paper is as follows. First, in Section 2 we introduce the necessary definitions

and some background results. Then, in Section 3, we describe the axiomatizations from [9]. Following

that, in Section 4, we introduce a sound and complete axiomatization for one local property using a case

study. Finally, in Section 5, we discuss axiomatizations for other local properties.

2 Preliminaries

2.1 Modal logic

Before we define the specifics of local properties, it is useful to first define the usual semantics for modal

logic. Let A be a finite set of agents and P a countable set of propositional atoms.

Definition 1. A model M is a triple M = (W,R,V ) where W is a set of worlds, R : A → 2W×W assigns

to each agent an accessibility relation and V : P → 2W is a valuation that assigns to each atom a subset

of W .

We also write wRaw′ for (w,w′) ∈ R(a) and denote the set {w′ | wRaw′} by Ra(w).

A pointed model is a pair M,w where M = (W,R,V ) and w ∈W .

A frame is a pair F = (W,R), where R : A → 2W×W .

Definition 2. The modal formulas are given by the following normal form:

ϕ ::= p | ⊤ | ¬ϕ | (ϕ ∨ϕ) |�aϕ ,

where p ∈ P and a ∈ A .

The operators ∧,→ and ↔ are defined as abbreviations in the usual way. Furthermore, we use ♦a as

an abbreviation for ¬�a¬. When |A |= 1 we omit the index a, writing � and ♦ for �a and ♦a.
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The semantics are as usual.

Definition 3. Let M,w be a pointed model. The satisfaction relation |= is given recursively by

M,w |= p ⇔ w ∈V (p)
M,w |= ¬ϕ ⇔ M,w 6|= ϕ

M,w |= ϕ1 ∨ϕ2 ⇔ M,w |= ϕ1 or M,w |= ϕ2

M,w |=�aϕ ⇔ ∀w′ ∈ Ra(w) : M,w′ |= ϕ

If M,w |= ϕ for every w ∈W , we write M |= ϕ . If M |= ϕ for every M we say that ϕ is valid and write

|= ϕ .

If F = (W,R) is a frame, we say that F,w |= ϕ if (W,R,V ),w |= ϕ for every V .

The usual proof system K is as follows.

Definition 4. The proof system K is given by the following axioms and rules.

T any substitution instance of a validity of propositional logic

K �a(ϕ → ψ)→ (�aϕ →�aψ)
Nec From ψ , infer �aψ

MP From ϕ → ψ and ϕ , infer ψ .

It is well known that K is sound and strongly complete for modal logic. All axiomatizations that we

discuss in this paper extend K.

Finally, we should define bisimulations, as these will become important later.

Definition 5. Let M1 = (W1,R1,V1) and M2 = (W2,R2,V2) be models. A bisimulation is a relation ∼⊆
W1 ×W2 such that the following three properties hold.

Atomic agreement If w1 ∼ w2 then for all p ∈ P , w1 ∈V (p) iff w2 ∈V (p).

Forth If w1 ∼ w2 and (w1,w
′
1) ∈ R1(a), then there is a w′

2 ∈W2 such that (w2,w
′
2) ∈ R2(a) and w′

1 ∼ w′
2.

Back If w1 ∼ w2 and (w2,w
′
2) ∈ R2(a), then there is a w′

1 ∈W1 such that (w1,w
′
1) ∈ R1(a) and w′

1 ∼ w′
2.

Famously, modal logic is the bisimulation-invariant fragment of first-order logic [2]. In particular,

modal logic is invariant under bisimulation, so if w1 ∼ w2 then the two worlds satisfy the same modal

formulas.

2.2 Local properties

Now we can define local properties, and their interaction with modal logic.

Definition 6. Let X be a set of first order variables. A local property is a formula with one free variable

in the first order language given by

Θ ::= (x,y) ∈ R(a) | x = y | ¬Θ | (Θ∨Θ) | ∀xΘ,

where a ∈ A and x,y ∈ X .

We follow [9] in this definition, by allowing only relational predicates, (x,y)∈R(a), and not valuation

predicates x ∈V (p). This restriction is not necessary for our analysis, but it seems harmless, given that

we do not know of any interesting local properties that depend on such valuation predicates. A local

property is a first order formula, so it can be evaluated on models, where we take the set W of worlds to

be the domain of quantification. Furthermore, because we restrict ourselves to relational predicates, the
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valuation does not affect the value of any local property, so we can also evaluate a local property on the

frame underlying a model instead of on the model itself.

We will focus primarily on local properties that are not invariant under bisimulation. This is not

because formulas that are invariant under bisimulation are necessarily uninteresting, but because any

such property is equivalent to a formula of modal logic. Consider, for example, the property of local

seriality, Θser = ∃x(w,x) ∈ R. We have Θser(w) if and only if M,w |= ♦⊤, so if we wish to reason about

local seriality we need not introduce a special symbol ϑser but can instead reason about ♦⊤.

If we wish to reason about a given local property Θ in modal logic, we add an extra symbol ϑ

to the language of modal logic. On a technical level, ϑ can be seen as either a nullary modality or a

designated propositional atom. In order to emphasize its special role, we denote its extension separately

in our notation for models. Specifically, we write M = (W,R,∆,V ), where ∆ ⊆ W and M,w |= ϑ iff

w ∈ ∆. If we look at multiple local properties at a time, each is represented by a different symbol,

i.e., M = (W,R,∆1, · · · ,∆k,V ), with M,w |= ϑi iff w ∈ ∆i. Because ∆ is simply a subset of W , there is

no inherent guarantee that the atom ϑ is in any way related to the property Θ. In order to force this

connection, we look at models that are in harmony.

Definition 7. A model M = (W,R,∆,V ) is in Θ-ϑ -harmony if for every w ∈ W , we have w ∈ ∆ if and

only if Θ(w).

When Θ and ϑ are clear from context we omit reference to them, and simply say that a model is in

harmony. Our goal, and the goal of [8, 9], is to find axiomatizations that are sound and complete for the

class of models that are in harmony.

Finally, we need the notion of a modal formula locally defining a first-order property.

Definition 8. Let ϕ be a schema of modal logic and Θ a local property. The formula ϕ locally defines Θ

if for every frame F = (W,R) and every w ∈W , we have F,w |= ϕ if and only if Θ(w).

Generally, the schema that we will use to locally define a property is the same one that globally

corresponds to that property. So, for example, the property of (local) transitivity is locally defined by

�ψ →��ψ , and (local) reflexivity is locally defined by �ψ → ψ . If ϕ(p1, . . . , pn) is a modal formula

constructed from the propositional atoms p1, . . . , pn then for all modal formulas χ1, . . . ,χn, ϕ(χ1, . . . ,χn)
will denote the modal formula obtained from ϕ(p1, . . . , pn) by respectively replacing the occurrences of

p1, . . . , pn by χ1, . . . ,χn.

3 Axiomatizations using an inference rule

In order for the method from [9] to apply for a local property Θ, we require two things. Firstly, we must

have a schema ϕ that locally defines Θ. Secondly, ϕ should be locally r-persistent. Defining this property

requires a lot of further definitions, so for practical reasons we will not give such a definition here and

instead refer the reader to [11] for details. We will note, however, that the axioms corresponding to the

usual properties (transitivity, reflexivity, etc.) are locally r-persistent.

If these conditions are satisfied, the axiomatizations from [9] work by adding an elimination axiom

and an introduction rule for ϑ to the proof system K. The elimination axiom Eϑ is quite simple.

Eϑ ϑ → ϕ ,

where ϕ is the schema that locally defines Θ. Consider, for example, local Euclidicity, formally given

by ΘEuc = ∀x,y(((w,x) ∈ R(a)∧ (w,y) ∈ R(a))→ (x,y) ∈ R(a)). This property is locally defined by the

schema ♦aψ → �a♦aψ , i.e., negative introspection. Hence the elimination axiom EϑEuc is given by
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ϑEuc → (♦aψ →�a♦aψ). This, of course, is exactly as desired, since it means that in every world where

ϑEuc holds, the agent a is capable of negative introspection.

The introduction rule is more complex, and before we can formally state it we first need to introduce

pseudo-modalities. Let s = x1, · · · ,xn be a (possibly empty) finite sequence of pairs xi = (ai,χi), where

ai ∈ A and χi is a formula of modal logic. The pseudo-modality [s] is then an abbreviation, where [s]ψ
stands for χ1 →�a1

(χ2 →�a2
(χ3 →�a3

(· · ·�an−1
(χn →�an

ψ)).

Let k be the number of different schematic variables in ϕ . Then the introduction rule Iϑ is as follows.

Iϑ from [s]ϕ(p1, · · · , pk), infer [s]ϑ ,

where [s] is a pseudo-modality and p1, · · · , pk are fresh atoms.

Consider again the property ΘEuc. By taking s to be the empty sequence, the rule IϑEuc allows us to in-

fer ϑEuc from ♦a p→�a♦a p. By taking a non-empty sequence s, for example s= (ψ1,b),(ψ2,a),(ψ3,c),
it also allows us to infer

ψ1 →�b(ψ2 →�a(ψ3 →�cϑEuc))

from

ψ1 →�b(ψ2 →�a(ψ3 →�c(♦a p →�a♦a p))),

as long as p does not occur in ψ1,ψ2 and ψ3.

The main result from [9] is that if Θ1, · · · ,Θn are local properties that satisfy the required conditions,

then the proof system K+Eϑ1 + Iϑ1 + · · ·+Eϑn + Iϑn is sound and complete for the class of models

that are in Θi-ϑi-harmony for all 1 ≤ i ≤ n.

4 Case study: transitivity

Here, we introduce alternative axiomatizations for local properties. We use the same elimination axiom,

but instead of an introduction rule we use an introduction axiom. Furthermore, our introduction axiom is

syntactically simpler than the rules from [9]. Our axiomatization is based on the observation that most of

the local properties that seem interesting (including, but not limited to, the examples from [7, 8, 9]) are

not merely not preserved under bisimilarity, but anti-preserved, in the sense that apart from some trivial

exceptions,1 for every M and w such that Θ(w), there are M′,w′ such that w ∼ w′ and ¬Θ(w′).

In this section we use the property of local transitivity to show how we can leverage this anti-

preservation in order to obtain a sound and strongly complete axiomatization. So take

Θtr = ∀x,y(((w,x) ∈ R∧ (x,y) ∈ R)→ (w,y) ∈ R).

Our elimination axiom for ϑtr is the same as that of [9].

Eϑtr ϑtr → (�ψ →��ψ).

Furthermore, it is clear that when the antecedent of the implication in Θtr is not satisfied, Θtr trivially

holds. So if ∀x,y¬((w,x) ∈ R∧ (x,y) ∈ R), then Θtr(w). Unlike Θtr itself, this latter property is invariant

under bisimulation. In fact, it is equivalent to the modal formula ��⊥. The following trivial introduction

axiom is therefore sound.

TIϑtr ��⊥→ ϑtr

1These exceptions apply when a world has no successors. For example, if ∀x¬(w,x) ∈ R, then w ∼ w′ implies that w′ is

locally Euclidean, as well as locally transitive, locally dense, et cetera.
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We will show that Eϑtr and TIϑtr suffice, so K+Eϑtr +TIϑtr is sound and complete for the class of

models that are in Θtr-ϑtr-harmony. For an informal overview of why we do not need any further in-

troduction axioms, note that for every pointed model M,w, if M,w 6|= ��⊥ and Θtr(w) then there is a

bisimilar model M′,w′ such that ¬Θtr(w
′). In particular, the tree unravelling of M will have that property.

We will show that, as a consequence, no introduction axiom χ → ϑtr can be sound unless χ contains

ϑtr (which would make it a rather useless introduction axiom) or χ implies ��⊥ (which would render

the axiom superfluous in the presence of TIϑtr). So suppose towards a contradiction that there is some

modal formula χ such that (i) ϑtr does not occur in χ , (ii) χ does not imply ��⊥ and (iii) χ → ϑtr is

valid on models that are in harmony. Then there is some M,w such that M,w 6|= ��⊥ and M,w |= χ .

Take M′,w′ to be the bisimilar model such that ¬Θtr(w
′). Because χ is a modal formula, it is invariant

under bisimulation. Hence M′,w′ |= χ . Furthermore, because χ does not contain ϑtr , we can choose M′

to be in harmony. Since ¬Θtr(w
′) holds this implies that M′,w′ 6|= ϑtr , which contradicts the soundness

of χ → ϑtr on models in harmony.

From this contradiction, it follows that no axiom χ → ϑtr can be sound unless χ contains the symbol

ϑtr or χ implies ��⊥. This does not fully suffice to prove that K+Eϑtr +TIϑtr is complete for models

in harmony, but it does show why we should not expect to need any further introduction axioms.

In order to turn this informal proof sketch into a full proof, let us first introduce one further auxiliary

definition.

Definition 9. A model M is Θtr-ϑtr-nice if

1. for every w, if M,w |= ϑtr then Θtr(w) and

2. if M,w |=��⊥ then M,w |= ϑtr.

Every model that is in harmony is also nice, but not necessarily vice versa. It is also quite easy

to see that K+Eϑtr +TIϑtr is sound and strongly complete for the class of nice models, since Eϑtr

directly corresponds to the first condition of niceness and TIϑtr corresponds to the second condition.

This completeness can be proven using the standard canonical model construction. We will show that

for every nice model, there is a bisimilar harmonious model.

Definition 10. Let M = (W,R,∆,V ) be a nice model. We define a sequence of models as follows:

• M0 = (W ′,R0,∆
′,V ′) is the tree unravelling of M, i.e.,

– W ′ is the set of finite sequences w′ = (w1, · · · ,wn) such that (i) w j ∈W for all 1 ≤ j ≤ n and

(ii) (w j,w j +1) ∈ R for all 1 ≤ j < n,

– (w′
1,w

′
2) ∈ R0 if and only if w′

1 = (w1, · · · ,wn) and w′
2 = (w1, · · · ,wn,wn+1) for some w1, · · · ,

wn+1 ∈W ,

– (w1, · · · ,wn) ∈ ∆′ if and only if wn ∈ ∆,

– (w1, · · · ,wn) ∈V ′(p) if and only if wn ∈V (p).

• Mi+i = (W ′,Ri+1,∆
′,V ′), where (w′

1,w
′
2) ∈ Ri+1 if and only if

– (w′
1,w

′
2) ∈ Ri or

– w′
1 ∈ ∆′ and there is a w′

3 such that (w′
1,w

′
3) ∈ Ri and (w′

3,w
′
2) ∈ Ri.

• M∞ = (W ′,R∞,∆
′,V ′), where R∞ =

⋃
i∈N Ri.

Because M0 is a tree model, no world is locally transitive (unless none of its successors have a

successor). We then add additional edges to the relation, but only where needed to make every w′ ∈ ∆′

locally transitive. As a consequence, we will be able to show that there is a total bisimulation between

M and M∞, and that M∞ is in harmony.
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Note that all models Mi, for i ∈ N∪{∞} use the same set W ′ of worlds, and that this world was

obtained by taking the tree unravelling of M. As such, every w′ = (w1, · · · ,wn) ∈ W ′ has a unique

original, namely wn, in W .

Lemma 1. Take any x′,y′ ∈W ′ and let x,y ∈W be the originals of x′ and y′, respectively. If (x′,y′) ∈ Ri

for some i ∈ N∪{∞}, then (x,y) ∈ R.

Proof. By induction on i. As base case, suppose that i = 0. Then the lemma follows immediately from

the fact that M0 is the tree unravelling of M. Suppose then, as induction hypothesis, that i ∈N>0 and that

the lemma holds for all i′ < i.

Take any (x′,y′) ∈ Ri. If already (x′,y′) ∈ Ri−1, then by the induction hypothesis we have (x,y) ∈ R,

as was to be shown.

If (x′,y′) ∈ Ri \Ri−1, then the arrow must have been added in stage i, meaning that x′ ∈ ∆′ and there

is some z′ such that (x′,z′) ∈ Ri−1 and (z′,y′) ∈ Ri−1. Then, by the induction hypothesis, (x,z) ∈ R and

(z,y) ∈ R, where z is the original of z′. Furthermore, because M0 is the tree unravelling of M, and all Mi

use the same set ∆′, it follows from x′ ∈ ∆′ that x ∈ ∆.

From the fact that M is nice, it then follows that Θtr(w), so w is locally transitive. Because (x,z) ∈ R

and (z,y)∈ R, we then have (x,y) ∈ R, as was to be shown. This completes the induction step for i ∈N>0.

Finally, if (x′,y′) ∈ R∞, then (x′,y′) ∈ R j for some j ∈ N, and therefore (x,y) ∈ R.

Now, we can take the important step of showing bisimilarity.

Lemma 2. Let ∼⊆W ×W ′ be the relation such that x ∼ y′ if and only if x is the original of y′. Then ∼
is a bisimulation between M and Mi, for every i ∈ N∪{∞}.

Proof. We show that ∼ satisfies the three conditions of bisimulation. Take any w1 ∈W and w′
1 ∈W ′ such

that w1 ∼ w′
1.

Atoms Because M0 is the tree unraveling of M, and Mi and M′ only differ from M0 by the addition of

edges, we have w1 ∈V (p) iff w′
1 ∈V ′(p).

Forth Take any w2 such that (w1,w2)∈R. As M0 is the tree unraveling of M, there is some w′
2 ∈W ′ such

that (w′
1,w

′
2)∈ R0 and w2 is the original of w′

2 (and therefore w2 ∼w′
2). Furthermore, (w′

1,w
′
2)∈ R0

implies (w′
1,w

′
2) ∈ Ri for every i ∈ N∪{∞}.

Back Take any w′
2 such that (w′

1,w
′
2) ∈ Ri for some i ∈N∪{∞}. Then by the preceding lemma we have

(w1,w2) ∈ R, where w2 is the original of w′
2. Hence we also have w2 ∼ w′

2.

Left to show is that M∞ is Θtr-ϑtr-harmonious.

Lemma 3. If x′ ∈ ∆′, (x′,y′) ∈ R∞ and (y′,z′) ∈ R∞ then (x′,z′) ∈ R∞.

Proof. If (x′,y′) ∈ R∞ and (y′,z′) ∈ R∞, then there is some i ∈ N such that (x′,y′) ∈ Ri and (y′,z′) ∈ Ri.

As x′ ∈ ∆′, this implies that (x′,z′) ∈ Ri+1, and therefore (x′,z′) ∈ R∞.

Lemma 4. If x′ 6∈ ∆′, then there are y′,z′ such that (x′,y′) ∈ R∞ and (y′,z′) ∈ R∞ while (x′,z′) 6∈ R∞.

Proof. From x′ 6∈ ∆′ it follows that x 6∈ ∆. Because M is nice, this implies that there are y,z such that

(x,y) ∈ R and (y,z) ∈ R. Then there are y′,z′ ∈W ′ such that (x′,y′) ∈ R0 and (y′,z′) ∈ R0. As M0 is a tree

model, we have (x′,z′) 6∈ R0. Furthermore, because x′ 6∈ ∆′, no edge from x′ to z′ is added in any model

Mi. Hence (x′,z′) 6∈ R∞.
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Corollary 1. The model M′ = M∞ is Θtr-ϑtr-harmonious.

It now follows quite easily that K+Eϑtr +TIϑtr is sound and complete.

Corollary 2. The axiomatization K+Eϑtr +TIϑtr is sound and strongly complete for the class of models

that are Θtr-ϑtr-harmonious.

Proof. The axiomatization is sound and strongly complete for Θtr-ϑtr-nice models. Furthermore, every

nice model M can be transformed into a bisimilar model M∞ that is in harmony. It follows that the

axiomatization is sound and strongly complete for harmonious models.

5 Axioms for local properties

Many other local properties can be given a simple axiomatization in a way similar to local transitivity.

Here, we consider local reflexivity, Euclidicity, symmetry, superset, density and functionality. This

includes all of the examples from [9]. Note that each of these properties requires the existence of one

or more edges. In the case of reflexivity this requirement is unconditional; in order for w to be locally

reflexive there must be an edge (w,w) ∈ R. For the other properties, the requirement for the edge to exist

is conditional on the existence of one or more other edges. For example, local Euclidicity requires that if

(w1,w2) ∈ R and (w1,w3) ∈ R then (w2,w3) ∈ R, while local symmetry requires that if (w1,w2) ∈ R then

(w2,w1) ∈ R. It is important to note that for each of these properties it is an edge between two specific

worlds that needs to exist. In the example of local Euclidicity, there must be an edge from the world w2

to the world w3. Any other edge, even if it is from w2 to a world that is bisimilar to w3, does not suffice.

An introduction axiom takes the form χ → ϑ , where χ is a modal formula that does not contain ϑ .

In order for this axiom to be sound for the models where Θ and ϑ are in harmony, it therefore has to be

the case that whenever χ is true, either (i) the condition under which the local property Θ requires an

edge to exist is false or (ii) the specific edge(s) required by Θ do exist.

There is no modal formula that implies the existence of any specific edge, so χ cannot guarantee

that option (ii) is the case.2 There are modal formulas that imply the nonexistence of a particular edge,

however. For example, if �⊥ is true in w1 then there are no edges that start in w1 and therefore, in

particular, it is not the case that (w1,w2) ∈ R and (w1,w3) ∈ R. For most local properties, it is therefore

possible for χ to guarantee that condition (i) holds, and therefore for the introduction axiom to be sound,

if we take χ = �⊥ or χ = ��⊥. The unconditional nature of reflexivity makes it an exception in this

regard, χ → ϑref is sound only if χ is unsatisfiable.

Of course the above reasoning only tells us when an introduction axiom of this form is sound, com-

pleteness remains to be shown. As in the preceding section, showing completeness is done by proving

that every nice model can be transformed into a bisimilar harmonious one.

Let us now consider each of the aforementioned local properties in some more detail. Local re-

flexivity, given by Θref = (w,w) ∈ R, has an even simpler axiomatization than local transitivity. The

elimination axiom is as one would expect, Eϑref is ϑref → (�ϕ → ϕ). But unlike ϑtr, we do not require

any introduction axiom for ϑref . This is because, unlike any of the other properties that we consider here,

Θref does not contain an implication of which the antecedent can be false. As a result, there is no modal

formula ϕ such that M,w |= ϕ trivially implies that Θref (w).
Nice models with respect to Θref and ϑref are therefore simply the ones where Θref (w) holds for all

w ∈ ∆. As in the case of transitivity, we can then unravel any nice model M into a tree model M0, and

2There are modal formulas, such as ♦⊤, that guarantee the existence of an edge, but these formulas don’t guarantee the

existence of a specific edge.
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then modify that tree model into a bisimilar model that is in harmony. It follows that K+Eϑref is sound

and strongly complete for the class of models that are in Θref -ϑref -harmony.

Local Euclidity, symmetry and density are given by

ΘEuc = ∀x,y(((w,x) ∈ R∧ (w,y) ∈ R)→ (x,y) ∈ R),

Θsym = ∀x((w,x) ∈ R → (x,w) ∈ R)

and

Θdense = ∀x∃y((w,x) ∈ R → ((w,y) ∈ R)∧ (y,x) ∈ R),

respectively. The elimination axioms for these properties are as one would expect:

EϑEuc ϑEuc → (♦ϕ →�♦ϕ)
Eϑsym ϑsym → (ϕ →�♦ϕ)
Eϑdense ϑdense → (♦ϕ → ♦♦ϕ)

For each of these properties, the antecedent of the implication is trivially false when there is no x such that

(w,x) ∈ R. Hence the trivial introduction axioms are simply �⊥→ ϑEuc, �⊥→ ϑsym and �⊥→ ϑdense.

Completeness is shown as before, by turning nice models into tree models and then those tree models into

harmonious models. It follows that K+EϑEuc +TIϑEuc is sound and strongly complete for models that

are in ΘEuc-ϑEuc-harmony, K+Eϑsym +TIϑsym is sound and complete for models in Θsym-ϑsym-harmony

and K+Eϑdense +TIϑdense is sound and complete for models in Θdense-ϑdense-harmony.

The local property of R(a) being a superset of R(b) is given by Θsup(a,b) = ∀x((w,x)∈R(b)→ (w,x)∈
R(a)). Recall that this property can be read as b knowing at least as much as a. The elimination axiom

Eϑsup(a,b) is therefore, unsurprisingly, ϑsup(a,b) → (�aϕ → �bϕ). The antecedent of Θsup(a,b) is false

when there is no x such that (w,x) ∈ R(b), so when M,w |= �b⊥. The introduction axiom TIϑsup(a,b)

is therefore �b⊥ → ϑsup(a,b). The presence of the different agents a and b does not interfere in our

procedure of unraveling M and turning that unraveling into a harmonious model, so K+Eϑsup(a,b) +
TIϑsup(a,b) is sound and complete for models in Θsup(a,b)-ϑsup(a,b)-harmony.

Finally, let us consider local functionality, Θfunc = ∀x,y((R(w,x)∧R(w,y))→ x= y). The elimination

axiom Eϑfunc is ϑfunc → ((♦ϕ ∧♦ψ)→ ♦(ϕ ∧ψ)), and the trivial elimination axiom TIϑfunc by �⊥→
ϑfunc. As with the other properties we can then unravel any nice model M into a tree model M0, and turn

M0 into a harmonious model M∞. The only difference is that in this case it does not suffice to merely add

edges in order to obtain Mi+1 from Mi. Instead, for every world w′ 6∈ ∆′, if there is only one x′ such that

(w′,x′) ∈ Ri then we need to create a copy of the sub-tree rooted in x′, the root of which we will call x′′.

Then we add this tree to Mi+1, as well as an edge (w,x′′) ∈ Ri+1. The result of this procedure will be a

harmonious model M∞ such that M∞,w
′ is bisimilar to M,w. It follows that K+Eϑfunc +TIϑfunc is sound

and complete for models in Θfunc-ϑfunc-harmony.

In summary, we have the following elimination and introduction axioms.

Property Elimination axiom Introduction axiom

Θtr ϑtr → (�ϕ →��ϕ) ��⊥→ ϑtr

Θref ϑref → (�ϕ → ϕ) -

ΘEuc ϑEuc → (♦ϕ →�♦ϕ) �⊥→ ϑEuc

Θsym ϑsym → (ϕ →�♦ϕ) �⊥→ ϑsym

Θsup(a,b) ϑsup(a,b) → (�aϕ →�bϕ) �b⊥→ ϑsup(a,b)

Θdense ϑdense → (♦ϕ → ♦♦ϕ) �⊥→ ϑdense

Θfunc ϑfunc → ((♦ϕ ∧♦ψ)→ ♦(ϕ ∧ψ)) �⊥→ ϑfunc
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Unfortunately, while this method does yield simple and elegant axiomatizations for these local prop-

erties, it is not as general as the method from [9]. For one thing, we do not have a general technique

that allows for the automatic generation of axiomatizations for large classes of local properties. Further-

more, unlike [9] adding the axioms for multiple local properties does not necessarily yield a sound and

complete axiomatization for the class of models that are in harmony for each property.

For example, K+EϑEuc +TIϑEuc +Eϑref is not sound and complete for the models that are in both

ΘEuc-ϑEuc and Θref -ϑref -harmony. This is because if ΘEuc(w1) and (w1,w2) ∈ R then we also have

Θref (w2). Hence we would need the additional introduction axiom IϑEucϑref , namely ϑEuc → �ϑref .

With that additional axiom, we can once again use the same construction to turn every nice model into a

harmonious model, so K+EϑEuc +TIϑEuc +Eϑref + IϑEucϑref is sound and complete for the models in

ΘEuc-ϑEuc and Θref -ϑref -harmony.

Such additional axioms are not always needed. For example, K+Eϑtr +TIϑtr +Eϑref is sound and

complete for the models in Θtr-ϑtr and Θref -ϑref -harmony. Furthermore, where needed the extra axioms

seems relatively easy to find. Yet we do not currently have a systematic way of determining whether an

additional axiom is required and, if so, which axiom.

6 Conclusion

We have presented an alternative way to create axiomatizations for local properties. In contrast to the

existing axiomatizations from [9], our approach uses introduction axioms, as opposed to introduction

rules. Furthermore, our axioms are simpler and, in our opinion, more elegant than the rules from [9].

The price we pay for this simplicity is that we do not, as of yet, have a general way to create ax-

iomatizations for further local properties, or for combinations of multiple local properties. Given the

extremely strong similarities between the completeness proofs for the axiomatizations that we consid-

ered, we expect that some kind of generalization is possible, but we have not found it yet.

As such, the main direction for further work would be to find such generalizations.
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Awareness structures by Fagin and Halpern (1988) (FH) feature a syntactic awareness correspon-
dence and accessibility relations modeling implicit knowledge. They are a flexible model of un-
awareness, and best interpreted from a outside modeler’s perspective. Unawareness structures by
Heifetz, Meier, and Schipper (2006, 2008) (HMS) model awareness by a lattice of state-spaces and
explicit knowledge via a possibility correspondence. They can be interpreted as providing the sub-
jective views of agents. Open questions include (1) how implicit knowledge can be defined in HMS
structures, and (2) in which way FH structures can be extended to model the agents’ subjective views.
In this paper, we address (1) by showing how to derive implicit knowledge from explicit knowledge
in HMS models. We also introduce a variant of HMS models that instead of explicit knowledge, takes
implicit knowledge and awareness as primitives. Further, we address (2) by introducing a category
of FH models that are modally equivalent relative to sublanguages and can be interpreted as agents’
subjective views depending on their awareness. These constructions allow us to show an equivalence
between HMS and FH models. As a corollary, we obtain soundness and completeness of HMS mod-
els with respect to the Logic of Propositional Awareness, based on a language featuring both implicit
and explicit knowledge.

Keywords: Unawareness, awareness, implicit knowledge, explicit knowledge.

JEL-Classifications: D83, C70.

1 Introduction

Models of unawareness are of interest in various disciplines, most notably in computer science, eco-
nomics, game theory, decision theory, and philosophy. The seminal contribution in computer science
and philosophy are awareness structures by Fagin and Halpern (1988) (henceforth, FH models) who
extended Kripke structures with a syntactic awareness correspondence in order to feature notions of
implicit knowledge, explicit knowledge, and awareness. In economics, Heifetz, Meier, and Schipper
(2006, 2008) introduced unawareness structures (henceforth, HMS models) that consist of a lattice of
state spaces featuring a notion of explicit knowledge and awareness. Like Kripke structures, HMS mod-
els can be constructed canonically and three different sound and complete axiomatizations have been
presented (Halpern and Rêgo, 2008, Heifetz, Meier, and Schipper, 2008).1 There have already been a

*Dedicated to Joe Halpern on the occasion of his 70th birthday. A complete version of the paper with proofs of the results is
available from https://faculty.econ.ucdavis.edu/faculty/schipper/implicit.pdf. We thank three anonymous
reviewers, Hans van Ditmarsch, participants in the CSLI Workshop 2022, Stanford University, and the 2022 Zoom Mini-
Workshop on Epistemic Logic with Unawareness for helpful comments. Gaia gratefully acknowledges funding from the Carls-
berg Foundation. Burkhard gratefully acknowledges financial support via ARO Contract W911NF2210282.

1For other approaches and an overview, see Schipper (2015).

http://dx.doi.org/10.4204/EPTCS.379.10
https://faculty.econ.ucdavis.edu/faculty/schipper/implicit.pdf
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number of applications to game theory, decision theory, mechanism design and contracting, financial
markets, electoral campaigning, conflict resolution, social network formation, business strategy and en-
trepreneurship etc.

The different modeling approaches may be seen as reflecting the different foci of the fields. HMS
models in economics are very much motivated by game theory and its applications. The main underlying
idea is that explicit rational reasoning of players is what drives their behavior. Hence, the model features
only explicit knowledge (without the detour via implicit knowledge) and awareness, and it can be in-
terpreted as encompassing the subjective views of players. Moreover, the syntax-free frame lends itself
seamlessly to the existing body of work in decision theory and game theory. The focus on behavioral
implications also explains why the model is built on strong properties of knowledge such as (positive)
introspection and factivity: this allows for the identification of the behavioral implications of unaware-
ness per se without confounding it with mistakes in information processing. Somewhat differently, FH
models were motivated more generally by the study of the logical non-omniscience problem in computer
science and philosophy (see e.g., Hintikka, 1975, Levesque, 1984, Lakemeyer, 1986, Stalnaker, 1991).
They represent awareness via syntactic awareness correspondences, which for each agent assigns a set
of formulas to each state. This approach to awareness modeling offers a great deal of flexibility, because
the set of formulas an agent is aware of may be arbitrary, thereby allowing potentially for the repre-
sentation of different notions of awareness.2 However, because their semantics is not syntax-free, their
applications to decision or game theory require more effort. This is because in decision theory and game
theory and applications thereof, the primitives are typically not described syntactically. Moreover, FH
models are best interpreted as a tool used by an outside modeler (like a systems designer of a multi-agent
distributed system) for two reasons: First, the primitive notion of knowledge is implicit knowledge while
explicit knowledge is derived from implicit knowledge and awareness. Implicit knowledge is not nec-
essarily something that the agent herself can consciously reason about. Second, we cannot think of FH
models as models that the agents themselves use for analyzing their epistemic universe unless they are
aware of everything.3 This becomes relevant in interactive settings when we are interested in the play-
ers’ interactive perceptions of the epistemic universe. Despite the differences in modeling approaches,
Halpern and Rêgo (2008) and Belardinelli and Rendsvig (2022) formalize in which ways HMS models
are equivalent to FH models in terms of explicit knowledge and awareness. However, as the discussion
above makes clear, there remain open questions: First, can implicit knowledge be captured also in HMS
models and how would this notion of implicit knowledge be related to implicit knowledge in FH models?
Second, can we extend FH models so as to interpret them from the agents’ subjective point of views?
These questions will be answered in this paper.

By showing how to derive implicit knowledge from explicit knowledge in HMS models, we provide
a way to understand implicit knowledge in terms of explicit knowledge. We are aware of only a few other
approaches deriving implicit knowledge from explicit knowledge. Using neighborhood models without
a notion of awareness, Velázquez-Quesada (2013) takes explicit knowledge as the primitive and then
derives implicit knowledge as closure of logical consequences of explicit knowledge. Implicit knowledge
is then understood as knowledge that the agent ideally could deduce from her explicit knowledge. Lorini
(2020) takes an agent’s belief base as explicit knowledge and derives implicit knowledge as what is
deducible from an agent’s belief base and common background information. While we find these two
notions of implicit knowledge easy to interpret, it is not the notion of implicit knowledge that is captured

2See Fagin and Halpern (1988, pp. 54-55) and Fagin et al. (1995, Chapter 9.5) for discussions.
3The view of the systems designer is expressed eloquently by Fagin, Halpern, and Vardi (1986): “The notion of knowledge is external. A

process cannot answer questions based on its knowledge with respect to this notion of knowledge. Rather, this is a notion meant to be used by
the system designer reasoning about the system. ... (I)t does seem to capture the type of intuitive reasoning that goes on by system designers.”
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by propositionally determined FH models, namely models where an agent is aware of a formula if and
only if she is aware of all atomic formula that appear in it. We also introduce a variant of HMS models
in which we take the notion of implicit knowledge and a semantic awareness function as the primitive
and then derive explicit knowledge. This shows that in HMS models, implicit and explicit knowledge
are “interdefinable”, at least in the sense that taking any of the two as primitive is sufficient to recover
the other, so one may choose either one as primitive.

We are also interested in an extension of FH models that allows us to interpret them as subjective
views of agents. Starting from an FH model, we show how to form a category of FH models with FH
models as objects and surjective bounded morphisms as morphisms. Each category of FH models is
literally a category of FH models that are modally equivalent relative to sublanguages formed by taking
subsets of atomic formulae. The category of FH models forms a complete lattice ordered by subset
inclusion on sets of atomic formulae or ordered by surjective bounded morphisms or ordered by modal
equivalence relative to sublanguages. Each FH model in the lattice can be interpreted as the subjective
model of an agent with that awareness level given by the subset of atomic formulae for which the FH
model is defined. The construction now suggests transformations between FH and HMS models. The
transformation from FH to HMS models relies on a transformation of each FH category into an implicit
knowledge-based HMS model mentioned above. This implicit knowledge-based HMS model can be
complemented with explicit knowledge and thus yields a HMS model. The transformation from HMS to
FH models simply relies on pruning away the subjective spaces, only maintaining the upmost space in
the lattice, as well as deriving the syntactic awareness correspondences from possibility correspondences
and the lattice of spaces in HMS models. For each model class, its transformation into a model of the
other class satisfy the same formulas from a language for explicit, implicit knowledge, and awareness.
It shows how the model classes and implicit knowledge notions relate to each other. As a corollary of
soundness and completeness of the Logic of Propositional Awareness w.r.t. the class of FH models,
the results allow us to derive soundness and completeness for the class of HMS models with implicit
knowledge, complementing earlier axiomatizations of HMS models that made use of explicit knowledge
(and awareness) only (Halpern and Rêgo, 2008, Heifetz, Meier, and Schipper, 2008).

2 HMS Models

HMS models are multi-agent models for awareness originally proposed by Heifetz, Meier, and Schipper
(2006, 2008). For lack of space, we refer the reader for explanations and intuitions to that papers.
Throughout the paper, we let At be a non-empty set of atomic formulas.

Definition 1 A HMS model M= 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Πi)i∈I,v〉 for At consists of

• a non-empty set of individuals I,

• a non-empty collection of non-empty disjoint state spaces {SΦ}Φ⊆At indexed by subsets of atomic
formulae Φ ⊆ At. Note that {SΦ}Φ⊆At forms a complete lattice by subset inclusion on the set of
atomic formulae Φ⊆ At. Denote the set of all states in spaces of the lattice by Ω :=

⋃
Φ⊆At SΦ.

• Projections (rΦ
Ψ
)Ψ⊆Φ⊆At such that, for any Φ,Ψ ⊆ At with Ψ ⊆ Φ, rΦ

Ψ
: SΦ −→ SΨ is surjective,

for any Φ⊆ At, rΦ
Φ

is the identity on SΦ, and for any Φ,Ψ,ϒ⊆ At, ϒ⊆Ψ⊆Φ, rΦ
ϒ
= rΨ

ϒ
◦ rΦ

Ψ
. For

any Φ ⊆ At and D ⊆ SΦ, denote by D↑ :=
⋃

Φ⊆Ψ⊆At(r
Ψ
Φ
)−1(D). An event E ⊆ Ω is defined by a

Φ ⊆ At and a subset D ⊆ SΦ such that E := D↑. We call SΦ the base-space of the event E and D
the base of the event E. We denote by Σ the set of events.
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• A possibility correspondence Πi : Ω−→ 2Ω \{ /0} for each individual i ∈ I.

• A valuation function v : At−→ Σ.

Not every subset of the union of spaces is an event. Intuitively, D↑ collects all the “extensions of
descriptions in D to at least as expressive vocabularies" (Heifetz, Meier, and Schipper, 2006). Events
are well defined by the above definition except for the case of vacuous events. Since the empty set is a
subset of any space, we have as many vacuous events as there are state-spaces. These vacuous events are
distinguished by their base-space, so we denote them by /0SΦ for Φ⊆At. At a first glance, the existence of
many vacuous events may be puzzling. Note that vacuous events essentially represent contradictions, i.e.,
propositions that cannot hold at any state. Contradictions are formed with atomic formulae. Thus, they
can be more or less complicated depending on the expressiveness of the underlying language describing
states and hence are represented by different vacuous events.

We define Boolean operations on events. Negation of events is defined as follows: Let E be an event
with base D and base-space SΦ. Then ¬E := (SΦ \D)↑. Conjunction of events is defined by intersection
of events. Disjunction of events is defined by the DeMorgan Law using negation and conjunction as just
defined. Note that in HMS models we typically have E ∪¬E $ Ω unless the base-space of E is S /0, the
meet of the lattice of spaces. Also, disjunction of two events is typically a proper subset of the union of
these events unless both events have the same base-space, since it is just the union of the events in spaces
in which both events are “expressible”.

The following notation will be convenient: Sometimes we denote by Sω the state-space that contains
state ω . For any D ⊆ SΦ, we denote by DSΨ

the projection of D to SΨ for Ψ ⊆ Φ ⊆ At. We simplify
notation further and let for any D⊆ SΦ and Ψ⊆Φ⊆ At, DΨ be the projection of D to SΨ. Similarly, for
any D⊆ SΨ, we denote by DΦ the “elaboration” of D in the space SΦ with Ψ⊆Φ, i.e., DΦ := (rΦ

Ψ
)−1(D).

The same applies to states, i.e., ωΨ is the projection of ω ∈ SΦ to SΨ with Ψ⊆Φ. Finally, for any event
E ∈ Σ, we denote by S(E) the base-space of E. We say that an event E is expressible in SΦ if S(E)� SΦ.

As usual in epistemic structures used in game theory and economics, information is modeled by a
possibility correspondence instead of an accessibility relation. In HMS models, having mappings rather
than relations adds extra convenience in that we can easily compose projections with possibility corre-
spondences and vice versa. It is precisely the projective structure that makes HMS models tractable in
applications and lets us analyze phenomena across “awareness levels” {SΦ}Φ⊆At. Since the motivation
for HMS models in game theory and economics is to isolate the behavioral implications of unawareness
from other factors like mistakes in information processing etc., we require the possibility correspon-
dences satisfy strong properties analogous to S5.4

Assumption 1 For any individual i ∈ I, we require that the possibility correspondence Πi satisfies

Confinement: If ω ∈ SΦ, then Πi(ω)⊆ SΨ for some Ψ⊆Φ.

Generalized Reflexivity: ω ∈Π
↑
i (ω) for every ω ∈Ω.5

Stationarity: ω ′ ∈Πi(ω) implies Πi(ω
′) = Πi(ω).

Projections Preserve Ignorance: If ω ∈ SΦ and Ψ⊆Φ, then Π
↑
i (ω)⊆Π

↑
i (ωΨ).

Projections Preserve Knowledge: If ϒ⊆Ψ⊆Φ, ω ∈ SΦ and Πi(ω)⊆ SΨ then (Πi(ω))
ϒ
=Πi(ωϒ).

4Again, for lack of space we refer to Heifetz, Meier, and Schipper (2006, 2008) for discussions of these properties. Generalizations are
considered by Heifetz, Meier, and Schipper (2013a), Halpern and Rêgo (2008), Board, Chung, and Schipper (2011), and Galanis (2011, 2013).

5Here and in what follows, we abuse notation slightly and write Π
↑
i (ω) for (Πi(ω))↑.
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Sometimes we denote by SΠi(ω) the state-space S for which Πi(ω) ⊆ S. We refer to Heifetz, Meier,
and Schipper (2006, 2008) for discussions of these properties.

Given the possibility correspondence, the knowledge operator is defined as usual

Definition 2 For every individual i ∈ I, the knowledge operator on events is defined by, for every event
E ∈ Σ, Ki(E) := {ω ∈ Ω : Πi(ω) ⊆ E} if there exists a state ω ∈ Ω such that Πi(ω) ⊆ E, and by
Ki(E) = /0S(E) otherwise.

Definition 3 For every individual i ∈ I, the awareness operator on events is defined by, for every event
E ∈ Σ, Ai(E) := {ω ∈ Ω : SΠi(ω) � S(E)} if there exists a state ω ∈ Ω such that SΠi(ω) � S(E), and by
Ai(E) = /0S(E) otherwise. The unawareness operator is defined by Ui(E) := ¬Ai(E).

We read Ki(E) as “individual i knows the event E” and Ai(E) as “individual i is aware of event E”.

Lemma 1 (Heifetz, Meier, and Schipper, 2006) For every individual i ∈ I and event E ∈ Σ, both Ki(E)
and Ai(E) are S(E)-based events.

Proposition 1 (Heifetz, Meier, and Schipper, 2006) For every individual i∈ I, the knowledge operator
Ki satisfies the following properties: For every E,F ∈ Σ and {En}n ⊆ Σ,

(i) Necessitation: Ki(Ω) = Ω,

(ii) Conjunction: Ki (
⋂

n En) =
⋂

n Ki (En),

(iii) Truth: Ki(E)⊆ E,

(iv) Positive Introspection: Ki(E)⊆ KiKi(E),

(v) Monotonicity: E ⊆ F implies Ki(E)⊆ Ki(F).

(vi) Weak Negative Introspection I: ¬Ki(E)∩¬Ki¬Ki(E)⊆ ¬Ki¬Ki¬Ki(E).

Proposition 2 (Heifetz, Meier, and Schipper, 2006) For every individual i∈ I, the following properties
of knowledge and awareness obtain: For every E ∈ Σ and {En}n ⊆ Σ,

1. KU Introspection: KiUi(E) = /0S(E),

2. AU Introspection: Ui(E) =UiUi(E)

3. Weak Necessitation: Ai(E) = Ki(S(E)↑),

4. Plausibility: Ai(E) = Ki(E)∪Ki¬Ki(E),

5. Strong Plausibility: Ui(E) =
⋂

∞
n=1 (¬Ki)

n (E),

6. Weak Negative Introspection II: ¬Ki(E)∩Ai¬Ki(E) = Ki¬Ki(E),

7. Symmetry: Ai(E) = Ai(¬E),

8. A-Conjunction:
⋂

n Ai (En) = Ai (
⋂

n En),

9. AK-Self Reflection: Ai(E) = AiKi(E),

10. AA-Self Reflection: Ai(E) = AiAi(E),

11. A-Introspection: Ai(E) = KiAi(E).

The following lemma turns out to be very useful but has not been proved in the literature. (For the
proof, see the full version of the paper.)

Lemma 2 For every individual i∈ I and any ϒ⊆Ψ⊆Φ⊆At, if ω ∈ SΦ and Πi(ω)⊆ Sϒ, then Πi(ωΨ)=
Πi(ω).
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3 From Explicit to Implicit

In this section, we introduce the implicit possibility correspondence Λi as derived from Πi. We then
define implicit knowledge as based on Λi and show that it satisfies standard S5 properties as well as
properties of Fagin and Halpern (1988) that are jointly satisfied by implicit knowledge, explicit knowl-
edge, and awareness.

From now on we call for any individual i ∈ I, Πi the explicit possibility correspondence, Πi(ω)
explicit possibility set at ω , and Ki(E) the event that i explicitly knows E.

Definition 4 Given the explicit possibility correspondence Πi of individual i ∈ I, let the implicit possi-
bility correspondence Λi : Ω−→ 2Ω satisfy

Reflexivity: For any ω ∈Ω, ω ∈ Λi(ω).

Stationarity: ω ′ ∈ Λi(ω) implies Λi(ω
′) = Λi(ω).

Projections Preserve Implicit Knowledge: For any Φ⊆ At, if ω ∈ SΦ, then Λi(ω)Ψ = Λi(ωΨ) for
all Ψ⊆Φ.

Explicit Measurability: ω ′ ∈ Λi(ω) implies Πi(ω
′) = Πi(ω).

Implicit Measurability: ω ′ ∈Πi(ω) implies Λi(ω
′) = Λi(ω)SΠi(ω)

.

Given an HMS model M = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Πi)i∈I,v〉 and a collection of implicit possibility

correspondences (Λi)i∈I satisfying the above properties, we call M= 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Πi)i∈I,

(Λi)i∈I,v〉 a complemented HMS model.

A complemented HMS model is a HMS model complemented with implicit possibility correspon-
dences for each individual. In the following, we discuss and derive some properties of the implicit
possibility correspondence. It also demonstrates ways in which the implicit possibility correspondence
is consistent with the explicit possibility correspondence.

Reflexivity and Stationarity are standard and imply that {Λi(ω)}ω∈SΦ
forms a partition of SΦ for

every Φ⊆ At. It is straightforward to see that they also imply a strengthening of Confinement (Assump-
tion 1): The implicit possibility set at a state must be a subset of the state’s space. That is, both the state
and the implicit possibility set are described using the same language. More formally:

Lemma 3 (Strong Confinement) For any individual i ∈ I, Φ⊆ At, and ω ∈ SΦ, Λi(ω)⊆ SΦ.

Projections Preserve Implicit Knowledge is analogous to Projections Preserve Knowledge satisfied
by Πi. The absence of Projections Preserve (Implicit) Ignorance from the above list of imposed properties
may look puzzling at the first glance. Yet, as we show below it is implied by Strong Confinement and
Projections Preserve Implicit Knowledge.

Lemma 4 (Projections Preserve Implicit Ignorance) For any individual i ∈ I, if Λi satisfies Strong
Confinement and Projections Preserve Implicit Knowledge, then Λi satisfies Projections Preserve Im-
plicit Ignorance. That is, for all Φ⊆ At, if ω ∈ SΦ, then Λ

↑
i (ω)⊆ Λ

↑
i (ωΨ) for all Ψ⊆Φ.

Explicit Measurability says that explicit knowledge is measurable with respect to implicit knowledge.
That is, the agent always implicitly knows her explicit knowledge. The converse, Implicit Measurability,
is more subtle because of awareness. An individual may not explicitly know her implicit knowledge
because she might be unaware of some events. However, the individual always explicitly knows her
implicit knowledge modulo awareness. That is, she might implicitly know more at a higher awareness
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Figure 1: Examples of Implicit Knowledge in Unawareness Structures

level than what she knows at her awareness level (like in the structure to the right in Figure 1) but at her
awareness level, her implicit knowledge equals her explicit knowledge. The following lemma formalizes
the last conclusion. The proof uses all properties of Πi and Λi except Projections Preserve Knowledge of
both Λi and Πi and Projections Preserve Ignorance of Πi.

Lemma 5 For any individual i ∈ I, if ω ′ ∈Πi(ω), then Λi(ω
′) = Πi(ω

′).

Lemma 6 (Coherence) For any individual i ∈ I, ω ∈Ω, Λi(ω)SΠi(ω)
= Πi(ω).

Figure 1 illustrates with two examples of how implicit knowledge can be “fitted” to explicit knowl-
edge. Consider first the HMS model to the left. There are four spaces indexed by subsets of atomic
formulae. Anticipating the semantics of HMS models introduced later, we describe and call states by
their atomic formulae. The explicit possibility correspondence of the individual is indicated by the solid
blue ovals and arrows. For instance, at state pq she considers possible state p. That is, she is unaware of
q and knows p. Similarly, at state ¬pq she is unaware of q and knows ¬p. Her implicit possibility cor-
respondence is given by the red dashed ovals. Note that in this complemented HMS model she does not
implicitly know more than she does explicitly. Contrast this with the HMS model to the right. There, she
implicitly knows q for instance at state pq (because her implicit possibility set at pq is {pq}) although
she is not aware of q (because her explicit possibility set at pq is on S{p}). and hence does not explicitly
know q. The figures demonstrate that the implicit possibility correspondence may be consistent with the
explicit possibility correspondence in two different ways. It may model implicit knowledge that is finer
than the explicit knowledge (like in the figure to the right) or implicit knowledge that is as coarse as the
explicit knowledge but not coarser (like in the figure to the left). Note that a version of the models in
Figure 1 in which only {pq, p¬q} is in a red dashed oval while ¬pq and ¬p¬q are in distinct circles in
Spq is ruled out by Projections Preserve Implicit Knowledge.

Given implicit possibility correspondences, we proceed with the definition of the implicit knowledge
operators.
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Definition 5 For any individual i ∈ I, the implicit knowledge operator on events E ∈ Σ is

Li(E) := {ω ∈Ω : Λi(ω)⊆ E}

if there exists a state ω ∈Ω such that Λi(ω)⊆ E and by Li(E) = /0S(E) otherwise.

The next observation follows immediately from the properties of the implicit possibility correspon-
dence and the proof of Lemma 1 in Heifetz, Meier, and Schipper (2006).

Lemma 7 For any individual i ∈ I and event E ∈ Σ, Li(E) is an S(E)-based event.

Implicit knowledge satisfies all properties of “partitional” knowledge.

Proposition 3 For any individual i ∈ I, Li satisfies for any E,F ∈ Σ and {En}n ⊆ Σ,

(i) Necessitation: For Φ⊆ At, Li(S
↑
Φ
) = S↑

Φ
,

(ii) Conjunction: Li (
⋂

n En) =
⋂

n Li(En),

(iii) Monotonicity: E ⊆ F implies Li(E)⊆ Li(F),

(iv) Truth: Li(E)⊆ E,

(v) Positive Introspection: Li(E)⊆ LiLi(E),

(vi) Negative Introspection: ¬Li(E)⊆ Li¬Li(E).

We observe that as in Fagin and Halpern (1988), explicit knowledge of an event equals implicit
knowledge and awareness of that event.

Proposition 4 For any i ∈ I and event E ∈ Σ,

1. Ki(E) = Li(E)∩Ai(E),

2. Ui(E) = Li(Ui(E)),

3. Ai(E) = Li(Ai(E)),

4. AiLi(E) = Ai(E).

Properties 2. and 3. above mean that the individual implicitly knows her unawareness. This is in
contrast to explicit knowledge since by KU introspection an individual can never explicitly know that she
is unaware of an event. Property 4 says that an individual is aware of her implicit knowledge of an event
if and only she is aware of the event. That is, the moment she can reason about an event, she can also
reason about her implicit knowledge of the event. This is analogous to AK-Self-Reflection of explicit
knowledge.

4 From Implicit to Explicit

In the previous section, we showed how implicit knowledge can be derived from explicit knowledge. In
this section, we go the other direction. We can devise a version of HMS model that features possibility
correspondences capturing implicit knowledge and (non-syntactic) awareness functions as primitives,
and then derive the possibility correspondence capturing explicit knowledge.

Definition 6 An implicit knowledge-based HMS model M∗= 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,(αi)i∈I,

v〉 consists of

• a non-empty set of individuals I,
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• a nonempty collection of nonempty disjoint state spaces {SΦ}Φ⊆At (as in Definition 1),

• projections (rΦ
Ψ
)Ψ⊆Φ⊆At (as in Definition 1),

• an implicit possibility correspondence Λ∗i : Ω−→ 2Ω \{ /0}, for all i ∈ I,

• an awareness function αi : Ω−→ {SΦ}Φ⊆At, for all i ∈ I,

• a valuation function v : At−→ Σ.

Like HMS models, implicit knowledge-based HMS models feature a projective lattice of state-
spaces. However, instead of the explicit possibility correspondence, we now take the implicit possibility
correspondences as a primitive. As before, we are interested in strong properties of knowledge associated
with S5 because (1) these properties have been used for explicit knowledge in applications, and (2) we
will require explicit knowledge to be consistent with implicit knowledge. As such, we are interested how
the rich structure of S5 translates into properties of a derived explicit possibility correspondence. To that
end, we require:

Assumption 2 For each individual i ∈ I, the implicit possibility correspondence Λ∗i satisfies Reflexivity,
Stationarity, and Projections Preserve Implicit Knowledge.

These properties were also satisfied by implicit possibility correspondences in the previous section.6

The second primitive of implicit knowledge-based HMS models is the awareness function αi for
every individual i ∈ I. We impose the following properties on αi:

Assumption 3 For each individual i ∈ I, the awareness function αi : Ω−→ {SΦ}Φ⊆At satisfies

O. Lack of Conception: If ω ∈ SΦ, then αi(ω)� SΦ.

I. Awareness Measurability: If ω ′ ∈ Λ∗i (ω), then αi(ω
′) = αi(ω).

II. If ω ∈ SΦ and SΨ � αi(ω), then αi(ωΨ) = SΨ.

III. If ω ∈ SΦ and αi(ω)� SΨ � SΦ, then αi(ωΨ) = αi(ω).

IV. If ω ∈ SΦ and Ψ⊆Φ, then αi(ω)� αi(ωΨ).

When αi(ω) ∈ S for some S ∈ {SΦ}Φ⊆At, we call S the awareness level of i at ω .

Property O. models one feature of Confinement of HMS models (see Assumption 1). Note that Con-
finement in HMS models has two features: First, it requires that the possibility set at a state is a subset of
exactly one space. Second, it says that this space must be weakly less expressive than the space contain-
ing the state. Only this second last feature is captured by property O. The idea is that an individual may
have lack of conception. Property I. is a measurability condition. Awareness is measurable with respect
to implicit knowledge. The implication is that an agent implicitly knows her own awareness. Properties
II. to IV. are consistency properties of awareness across the lattice. Projections preserve awareness as
long as it is still expressible in the spaces. While property II. preserves awareness for corresponding
states in spaces less expressive than the awareness level at a state, property III. preserves awareness for
corresponding states in spaces more expressive than the awareness level at that state.

Definition 7 Given an implicit knowledge-based HMS model M∗ = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,

(αi)i∈I,v〉, define the explicit possibility correspondence Π∗i : Ω −→ 2Ω by, for all ω ∈ Ω and Φ ⊆
At, Π∗i (ωΦ) := Λ∗i (ω)αi(ωΦ). We call M

∗
= 〈I,{SΦ}Φ⊆At,(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,(Π

∗
i )i∈I,(αi)i∈I,v〉 the

complemented implicit knowledge-based HMS model.

6Note again that Reflexivity and Stationarity implies Strong Confinement. In more general settings without Reflexivity or Stationarity, at
least Strong Confinement would have to be imposed in Λ∗i for every i ∈ I.
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The defining condition for the explicit possibility correspondence in implicit knowledge-based HMS
models is a slight strengthening of Coherence derived from the explicit and implicit measurability in
Lemma 6. Here we take it as the primitive to connect explicit knowledge to implicit knowledge.

The following observations are immediate:
Lemma 8 For all ω ∈Ω,

A. Π∗i (ω) = Λ∗i (ω)αi(ω),

B. Π∗i (ωΦ) = Λ∗i (ω)Φ for all Φ⊆ At with SΦ � αi(ω),

C. Π∗i (ωΦ) = Λ∗i (ω)αi(ω) for all Φ⊆ At with Sω � SΦ � αi(ω).
The following lemma records properties of the derived explicit possibility correspondence. It shows

that it satisfies the properties of the explicit possibility correspondence of HMS models.

Lemma 9 For any individual i ∈ I, if αi satisfies O., I., II., III., and IV., then Π∗i satisfies Confinement,
Generalised Reflexivity, Stationarity, Projections Preserve Ignorance, Projections Preserve Knowledge.

We conclude that the derived explicit possibility correspondence Π∗i is a possibility correspondence
as in Heifetz, Meier, and Schipper (2006, 2008), i.e., satisfies Assumption 1. To show that the connection
between the derived explicit possibility correspondence and the implicit possibility correspondence is as
in the complemented HMS model of the prior section, we note the following lemma.

Lemma 10 For any individual i ∈ I, Λ∗i and Π∗i jointly satisfy explicit and implicit measurability.

The above lemmata imply the following:

Corollary 1 For any implicit knowledge-based HMS model M∗ = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,

(αi)i∈I,v〉 with derived explicit possibility correspondences (Π∗i )i∈I we have that M= 〈I,{SΦ}Φ⊆At,
(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,(Π

∗
i )i∈I,v〉 is a complemented HMS model and M= 〈I,{SΦ}Φ⊆At,(rΦ

Ψ
)Ψ⊆Φ⊆At,

(Π∗i )i∈I,v〉 is a HMS model.

The awareness function can be directly used to define an awareness operator on events.

Definition 8 For each individual i∈ I, define an awareness operator on events by for all E ∈ Σ, A∗i (E) :=
{ω ∈Ω : αi(ω)� S(E)} if there is a state ω ∈Ω such that αi(ω)� S(E) and by A∗i (E) = /0S(E) otherwise.

Similarly, for each individual i∈ I, we can use the possibility correspondence Λ∗i to define an implicit
knowledge operator L∗i as in Definition 5. Finally, let Ki be the explicit knowledge operator and Ai be the
awareness operator defined from the derived explicit possibility correspondence Π∗i as in Definitions 2
and 3, respectively.

The following proposition shows that awareness defined with the awareness function is equivalent to
awareness defined with the derived explicit possibility correspondence. It also shows that explicit knowl-
edge defined from the derived explicit possibility correspondence is equivalent to implicit knowledge and
awareness.

Proposition 5 For every i ∈ I and any event E ∈ Σ,

1. A∗i (E) = Ai(E) 2. Ki(E) = L∗i (E)∩A∗i (E)

The last two sections show an interdefinability of explicit and implicit knowledge in HMS models. Im-
plicit knowledge can be defined in terms of explicit knowledge and vice versa. We can use either the
explicit possibility correspondences as primitive or the implicit possibility correspondence together with
the awareness function. Implicit knowledge-based HMS models are arguably closer to FH models than
HMS models. We will use them to build a bridge between HMS and FH models.
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5 Category of FH Models

In this section, we introduce FH models and bounded morphisms, a notion of structure preserving maps
between FH models, and use these to form a category with FH models as objects and bounded morphisms
as morphisms.

The semantics of FH models is not syntax-free since each agent’s awareness function assigns to
each state a set of formulae. Thus, we first introduce the formal language featuring implicit knowledge,
awareness, and explicit knowledge. With i ∈ I and p ∈ At, define the language LAt by

ϕ ::=> | p | ¬ϕ | ϕ ∧ψ | `iϕ | aiϕ | kiϕ

Let At(ϕ) := {p ∈ At : p is a subformula of ϕ}, for any ϕ ∈ LAt, be the set of atomic formulae
that are contained in ϕ , and let LΦ := {ϕ ∈ LAt : At(ϕ) ⊆ Φ} be the sublanguage of LAt built on
propositions p in Φ⊆ At.

The formula `iϕ reads “agent i implicitly knows ϕ", aiϕ reads “i is aware of ϕ", and kiϕ reads “i
explicitly knows ϕ". Fagin and Halpern (1988) define explicit knowledge as the conjunction of implicit
knowledge and awareness, namely kiϕ = aiϕ ∧ `iϕ , for ϕ ∈LAt.

Definition 9 For any Φ⊆ At, a FH model KΦ = 〈I,WΦ,(RΦ,i)i∈I,(AΦ,i)i∈I,VΦ〉 for Φ consists of

• a non-empty set of individuals I,

• a non-empty set of states WΦ,

• an accessibility relation RΦ,i ⊆WΦ×WΦ, for all i ∈ I,

• an awareness function AΦ,i : WΦ −→ 2LΦ , for all i ∈ I, assigning to each state w ∈WΦ a set of
formulas AΦ,i(w)⊆LΦ. The set AΦ,i(w) is called the awareness set of i at w.

• a valuation function VΦ : Φ−→ 2WΦ .

Assumption 4 We require that the FH model KΦ is propositionally determined, i.e., for every i ∈ I, the
awareness functions satisfy

Awareness is Generated by Primitive Propositions: For all ϕ ∈LΦ, ϕ ∈AΦ,i(w) if and only if for
all p ∈ At(ϕ), p ∈AΦ,i(w).

Agents Know What They Are Aware of: (w, t) ∈ RΦ,i implies AΦ,i(w) = AΦ,i(t).

We also require that the FH model KΦ is partitional, that is, RΦ,i is an equivalence relation, i.e., satisfies
reflexivity, transitivity, and Euclideaness.

Throughout the paper, we focus on partitional and propositionally determined FH models because these
models capture the notion of awareness and knowledge used in most applications so far and it is also the
notion of awareness used in HMS models. We are interested in how this rich structure maps between FH
models as well as between FH and HMS models.

Definition 10 For any Ψ ⊆ Φ ⊆ At and FH models KΦ = 〈I,WΦ,(RΦ,i)i∈I,(AΦ,i)i∈I,VΦ〉 and KΨ =
〈I,WΨ,(RΨ,i)i∈I,(AΨ,i)i∈I,VΨ〉, the mapping f Φ

Ψ
: KΦ −→ KΨ is a surjective bounded morphism if for

every i ∈ I and w ∈WΦ

• Surjectivity: f Φ
Ψ

: WΦ −→WΨ is a surjection,

• Atomic harmony: for every p ∈Ψ, w ∈VΦ(p) if and only if f Φ
Ψ
(w) ∈VΨ(p),

• Awareness consistency: AΦ,i(w)∩LΨ = AΨ,i( f Φ
Ψ
(w))
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• Homomorphism: f Φ
Ψ

is a homomorphism w.r.t. RΦ,i, i.e., if (w, t) ∈ RΦ,i, then ( f Φ
Ψ
(w), f Φ

Ψ
(t)) ∈

RΨ,i,

• Back: if ( f Φ
Ψ
(w), t ′) ∈ RΨ,i, then there is a state t ∈WΦ such that f Φ

Ψ
(t) = t ′ and (w, t) ∈ RΦ,i.

This is the standard notion of bounded morphism (also called p-morphism) (see for instance, Black-
burn, de Rijke, and Venema, 2001, pp. 59–62) except for the additional property of Awareness Consis-
tency. In our context, the bounded morphism literally bounds the language over which FH models are
defined. We can now consider collections of FH models and bounded morphisms between them:

Definition 11 Given the FH model KAt, the category of FH models C (KAt) = 〈(KΦ)Φ⊆At,( f Φ
Ψ
)Ψ⊆Φ⊆At〉

consists of

• a collection of FH models KΦ, one for each Φ⊆ At,

• for any Φ,Ψ⊆ At with Ψ⊆Φ, there is one surjective bounded morphism f Φ
Ψ

, such that

– for any Φ⊆ At, f Φ
Φ

is the identity,

– for any ϒ,Φ,Ψ⊆ At with ϒ⊆Ψ⊆Φ, f Φ
ϒ
= f Ψ

ϒ
◦ f Φ

Ψ
.

Our terminology is not arbitrary. The category of FH models is indeed a category in the sense of
category theory. It has an initial object, the most expressive FH model KAt, as well as a terminal object,
the FH model K /0.

Since the category of FH models is defined with bounded morphisms, it suggests that all FH models
in the category are in some sense epistemically equivalent. Indeed, we interpret each category of FH
models literally as the category of FH models that vary with the language but are otherwise modally
equivalent. That is, for any Ψ⊆Φ⊆At, modal satisfaction for KΨ is as for KΦ w.r.t. formulae in LΨ (see
Lemma 11 below). We interpret this as follows: When a modeler represents a context with a FH model
KAt, an agent i at state w∈WAt can be thought of representing it with the FH model KAt(AAt,i(w)). And this
agent i considers it possible at w that at t with ( fAtAt(AAt,i(w))

(w), t) ∈ RAt(AAt,i(w)),i agent j represents the
situation with the FH model KAt(AAt, j(t)), etc. These models can all be seen as equivalent except for the
language of which they are defined. With this construction, we do not just endow agents with a formal
language to reason about their context but we also allow them to analyze their context with semantic
devices like logicians do. This is relevant because in many multi-agent contexts of game theory, the
analysis proceeds using semantic devices like state spaces etc. rather than at the level of syntax. For
instance, in a principal-agent problem, the principal may want to use a FH model augmented by actions
and utility functions to analyze optimal contract design realizing that the (unaware) agent may also use a
less expressive but otherwise equivalent FH model to analyze how to optimally interact with the principal.

To make the equivalence between models in the category of FH models precise, we need to introduce
the semantics of FH models.

Definition 12 For any Φ⊆At, FH model KΦ = 〈I,WΦ,(RΦ,i)i∈I,(AΦ,i)i∈I,VΦ〉, and ω ∈WΦ, satisfaction
of formulae in LΦ is given by the following clauses:

KΦ,w > for all w ∈WΦ; KΦ,w  ϕ ∧ψ iff KΦ,w  ϕ and KΦ,w  ψ;
KΦ,w  p iff w ∈VΦ(p); KΦ,w  aiϕ iff ϕ ∈AΦ,i(w);
KΦ,w  ¬ϕ iff KΦ,w 6 ϕ; KΦ,w  `iϕ iff KΦ, t  ϕ for all (w, t) ∈ RΦ,i.

From this semantics and the syntactic definition kiϕ := `iϕ ∧aiϕ , it follows that KΦ,w  kiϕ if and
only if for all t s.t. (w, t) ∈ RΦ,i, KΦ, t  ϕ and ϕ ∈AΦ,i(w).

The category of FH models forms a complete lattice induced by set inclusion on sets of atomic
formulae with the initial object being the join of the lattice and the terminal object being the meet of the
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lattice. We now show that it gives rise to a complete lattice when ordered using the (directed) bounded
morphism or, epistemically more relevant, when ordered by modal equivalence relative to sublanguages.

Proposition 6 Given a category of FH models, 〈(KΦ)Φ⊆At,( f Φ
Ψ
)Ψ⊆Φ⊆At〉, modal equivalence relative to

sublanguages forms a complete lattice of FH models in the category as follows: For any nonempty set of
subsets of atomic formulae F ⊆ 2At,

(i) K⋃
Φ∈F Φ is modally equivalent to KΨ w.r.t. LΨ for every Ψ∈F , i.e., for any w∈W⋃

Φ∈F Φ, ϕ ∈LΨ,

K⋃
Φ∈F Φ,w  ϕ iff KΨ, f

⋃
Φ∈F Φ

Ψ
(w)  ϕ , and

(ii) K⋂
Φ∈F Φ is modally equivalent to KΨ w.r.t. L⋂

Φ∈F for every Ψ ∈F , i.e., for any w ∈WΨ, ϕ ∈
L⋂

Φ∈F Φ, KΨ,w  ϕ iff K⋂
Φ∈F Φ, f Ψ⋂

Φ∈F Φ
(w)  ϕ .

The proof of the proposition uses of the following lemma:

Lemma 11 For any Ψ,Φ ⊆ At with Ψ ⊆ Φ, all w ∈WΦ, and all ϕ ∈ LΨ, KΦ,w  ϕ if and only if
KΨ, f Φ

Ψ
(w)  ϕ.

Note that for a collection of FH models {KΨ}Ψ∈F , the “join” and “meet” FH models are K⋃
Φ∈F Φ

and K⋂
Φ∈F Φ, respectively. So for any collection of FH models, Proposition 6 shows modal equivalence

between any FH model in the collection and its join and meet models, respectively.
Our notion of bounded morphism is inspired by bisimulation of FH models introduced by van Dit-

marsch et al. (2018). Clearly, the surjective bounded morphism is a bisimulation. Here we discuss some
differences and similarities. While bisimulation more generally is a relation between models without a
particular direction, the bounded morphism has a natural direction from the more expressive FH model
to the less expressive FH model. Further, it is a function on WΦ. That is, it maps every state in WΦ

to a state in WΨ with Ψ ⊆ Φ. Moreover, surjectivity is a property that is straightforward to define for
functions. Finally, bounded morphisms easily compose and almost naturally lead to the notion of cate-
gory of FH models although we do not really make much use here of the machinery of category theory.
For all these reasons, we use the notion of bounded morphism. Van Ditmarsch et al. (2018) introduced
two notions of bisimulation for FH models, standard bisimulation and awareness bisimulation. Like our
bounded morphism, both of their notions of bisimulation also depend on a subset of atomic formulae
for FH models. The clauses Atomic harmony, Awareness consistency, Homomorphism, and Back have
counterparts in their notions of bisimulations. Our notion of bounded morphism is closer to what they
call standard bisimulation because our Homomorphism and Back clauses do not involve the awareness
function. Although van Ditmarsch et al. (2018, p. 63) mention the projective lattice structure of Heifetz,
Meier, and Schipper (2006, 2008) as a motivation for their notion of awareness bisimulation, we be-
lieve it is particularly useful for their notion of speculative knowledge. Their notions of bisimulations
do not require surjectivity although when considering maximal bisimulations, they must be surjective
since they yield quotient models. Compositions of maximal bisimulation commute like we require our
bounded morphism to do in the category of FH models but bisimulations that are not maximal do not
necessarily commute. Moreover, maximal bisimulations yield necessarily contractions that eliminate re-
dundancies. We are unsure whether it is necessarily a natural property when we interpret categories of
FH models as collections of subjective views of agents. An agent may not realize or may not be bothered
by redundancies and use an FH model with redundancies to analyze her situation. That is, differences in
awareness and redundancies are orthogonal to each other and reduction in awareness does not necessitate
elimination of redundancies.
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6 Transformations

6.1 From FH Models to HMS Models

We can use the tools of the prior sections to define a transformation of a FH model into a HMS model.
The transformation works as follows: For any FH model KAt for At, consider the category of FM models
〈(KΦ)Φ⊆At,( f Φ

Ψ
)Ψ⊆Φ⊆At〉. This category is transformed into an implicit knowledge-based HMS model.

We then derive the explicit possibility correspondences and add them to the implicit knowledge-based
HMS model, obtaining a complemented implicit knowledge-based HMS model. In the next step, we
erase the awareness functions and get a complemented HMS model. The core step is to transform a
category of FH models into an implicit knowledge-based HMS model. This is defined next.

Definition 13 For any category of FH models C (KAt) = 〈(KΦ)Φ⊆At,( f Φ
Ψ
)Ψ⊆Φ⊆At〉, the T -transform of

C (KAt) is the implicit knowledge-based HMS model T (C (KAt)) = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,

(αi)i∈I,v〉 defined by:

• SΦ =WΦ for all Φ⊆ At, where WΦ is the state space of the FH model KΦ of the category C (KAt).
Denote Ω =

⋃
Φ⊆A SΦ.

• rΦ
Ψ
= f Φ

Ψ
for any Φ,Ψ ⊆ At with Ψ ⊆ Φ, where f Φ

Ψ
is the surjective bounded morphism of the

category C (KAt).

• Λ∗i : Ω−→ 2Ω such that Φ⊆ At and w ∈ SΦ, w′ ∈ Λ∗i (w) if and only if (w,w′) ∈ RΦ,i, for any i ∈ I,

• αi : Ω−→{SΦ}Φ⊆At such that for all Ψ⊆At and w∈ SΨ, αi(w) = Sϒ if and only if At(AΨ,i(w)) =
ϒ, for any i ∈ I,

• v(p) =
⋃

Φ⊆AtVΦ(p), for any p ∈ At.

The T -transform indeed transforms any category of FH models into an implicit knowledge-based
HMS model.

Proposition 7 For any category of FH models C (KAt), the T -transform T (C (KAt)) is an implicit
knowledge-based HMS model.

We have all ingredients to define the transformation of FH models into complemented HMS models.

Definition 14 For any FH model KAt, the HMS transform HMS(KAt) = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,

(Λ∗i )i∈I,(Π
∗
i )i∈I,v〉 is defined by the following steps:

1. Form the category of FH models C (KAt) (Definition 11).

2. Apply the T -transform to C (KAt) to obtain the implicit knowledge-based HMS model T (C (KAt))=
〈I,{SΦ}Φ⊆At,(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,(αi)i∈I,v〉 (Defin. 13).

3. Form the complemented implicit knowledge-based HMS model T (C (KAt)) = 〈I,{SΦ}Φ⊆At,
(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,(Π

∗
i )i∈I,(αi)i∈I,v〉 by deriving the explicit possibility correspondences (Π∗i )i∈I

(Definition 7).

4. Erase the awareness functions (αi)i∈I from the complemented implicit knowledge-based HMS
model T (C (KAt)) to obtain the complemented HMS model 〈I,{SΦ}Φ⊆At,(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,

(Π∗i )i∈I,v〉.

Corollary 2 For any FH model KAt, its HMS(KAt) is a complemented HMS model.
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6.2 From HMS Models to FH Models

To transform a complemented HMS model into a FH model we simply need to consider the upmost
space of the lattice of spaces of the HMS model, copy the domain, define accessibility relations from
implicit possibility correspondences, and the valuation function, and, for every state ω ∈ SAt , construct
the awareness set at ω by collecting all the formulas that contain the atoms defined in the space where
Πi(ω) lies.

Definition 15 For any complemented HMS model M = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Λi)i∈I,(Πi)i∈I,v〉,

the FH-transform FH(M) = 〈I,WAt,(RAt,i)i∈I,(AAt,i)i∈I,VAt〉 is defined by

• WAt = SAt,

• RAt,i ⊆WAt×WAt is such that (ω,ω ′) ∈ RAt,i if and only if ω ′ ∈ Λi(ω), for all i ∈ I,

• AAt,i : WAt −→ 2LAt is such that AAt,i(ω) = LΦ for Φ⊆ At with Πi(ω)⊆ SΦ, for all i ∈ I,

• VAt : At−→ 2WAt is such that VAt(p) = v(p)∩SAt, for every p ∈ At.

The FH transform indeed transforms any complemented HMS model into a FH model.

Proposition 8 For every complemented HMS model M, FH(M) is a FH model for At.

6.3 Equivalence of HMS and FH Models

Before we can prove an equivalence of HMS and FH models, we need to introduce the semantics of
complemented HMS models.

Definition 16 Let M = 〈I,{SΦ}Φ⊆At,(rΦ
Ψ
)Ψ⊆Φ⊆At,(Λi)i∈I,(Πi)i∈I,v〉 be a complemented HMS model

and let ω ∈Ω. Satisfaction of LAt formulas in M is given by M,ω �> for all ω ∈Ω;

M,ω � p iff ω ∈ v(p); M,ω � aiϕ iff SΠi(ω) � S([ϕ]);
M,ω � ¬ϕ iff ω ∈ ¬[ϕ]; M,ω � `iϕ iff Λi(ω)⊆ [ϕ];
M,ω � ϕ ∧ψ iff ω ∈ [ϕ]∩ [ψ]; M,ω � kiϕ iff Πi(ω)⊆ [ϕ];

where [ϕ] := {ω ′ ∈Ω : M,ω ′ � ϕ} for all ϕ ∈LAt.

In HMS models, formulae may have undefined truth value since formulae may not be even defined
in every state. The same happens in FH models of a category of FH models. For instance, the truth value
of p is not defined for all FH models KΦ with Φ 63 p. We will return to this issue later when we prove
soundness and completeness.

Recall that for all p ∈ At,v(p) is an event, so [p] is an event in Σ. Negation and intersection of events
are events. By Lemmata 1 and 7, explicit knowledge, awareness, and implicit knowledge of events are
also events, respectively. Thus, for every ϕ ∈LAt, [ϕ] is an event.

Proposition 4 shows that in complemented HMS models, Ki(E) = Li(E)∩Ai(E), for any event E ∈ Σ,
so the semantics of LAt provided above immediately implies that:

Proposition 9 For any complemented HMS model M, ω ∈ Ω, ϕ ∈LAt, and Ψ ⊆ At with At(ϕ) ⊆ Ψ,
M,ωΨ � kiϕ ↔ (`iϕ ∧aiϕ).

An FH model and its HMS transform satisfy the same formulas in the language LAt with implicit
knowledge, explicit knowledge, and awareness as long as these formulas are defined at the corresponding
states of the HMS transform.
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Proposition 10 For any FH model KAt and its HMS transform HMS(KAt), for all w ∈WAt, ϕ ∈LAt,
and Φ⊆ At with At(ϕ)⊆Φ, KAt,w  ϕ if and only if HMS(KAt),wΦ � ϕ.

We now show that any complemented HMS model and its FH transform satisfy the same formulas
from the language LAt with implicit knowledge, explicit knowledge, and awareness.

Proposition 11 For any complemented HMS model M and its FH transform FH(M), for all ϕ ∈LAt

and all ω ∈ SAt , M,ω � ϕ if and only if FH(M),ω  ϕ.

7 Implicit Knowledge-based HMS Models and FH Models

In this section, we focus on the relationship between implicit knowledge-based HMS and FH models.
This relationship is even simpler than between HMS and FH models since implicit knowledge-based
HMS models are arguably already closer to FH models. This is due to taking implicit knowledge and the
awareness functions as primitives.

7.1 From FH Models to Implicit Knowledge-based HMS Models

We can define a version of HMS transformation that is “truncated” after the T -transformation. It just
keeps the first two steps of the HMS transformation.

Definition 17 For any FH model KAt, the truncated HMS transform HMS∗(KAt) = 〈I,{SΦ}Φ⊆At,
(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λ

∗
i )i∈I,(α

∗
i )i∈I,v〉 is defined the first two steps of the HMS transform.

From Proposition 7 follows now immediately:

Corollary 3 For any FH model KAt, the truncated HMS-transform HMS∗(KAt) is an implicit knowledge-
based HMS model.

7.2 From Implicit Knowledge-based HMS Models to FH Models

Definition 18 For any implicit knowledge-based HMS model M
∗
= 〈I,{SΦ}Φ⊆At,(rΦ

Ψ
)Ψ⊆Φ⊆At,(Λi)i∈I,

(αi)i∈I,v〉, the FH∗-transform FH∗(M
∗
) = 〈I,WAt,(RAt,i)i∈I,(AAt,i)i∈I,VAt〉 is defined like the FH trans-

form except that the clause for the awareness correspondence is replaced by for any i ∈ I,

• AAt,i : WAt −→ 2LAt is such that AAt,i(ω) = LΦ for Φ⊆ At with αi(ω) = SΦ.

The FH∗ transform indeed transforms any implicit knowledge-based HMS model into a FH model.

Proposition 12 For every implicit knowledge-based HMS model M
∗
, FH∗(M

∗
) is a FH model for At.

7.3 Equivalence of Implicit Knowledge-based HMS and FH Models

Definition 19 Satisfaction of LAt formulas in an implicit knowledge-based HMS model M∗ is given like
for complemented HMS models except that we have M∗,ω � aiϕ if and only if αi(ω)� S([ϕ]).

An FH model and its truncated HMS transform satisfy the same formulas in the language LAt with
implicit knowledge, explicit knowledge, and awareness with the provision that these formulas are defined
at the corresponding states of the implicit knowledge-based HMS transform. This follows directly from
the proof of Proposition 10.



Gaia Belardinelli & Burkhard C. Schipper 109

Corollary 4 For any FH model KAt and its HMS transform HMS(KAt), for all w ∈WAt, ϕ ∈LAt, and
Φ⊆ At with At(ϕ)⊆Φ, KAt,w  ϕ if and only if HMS(KAt),wΦ � ϕ.

Any implicit knowledge-based HMS model and its FH∗ transform satisfy the same formulas from
the language LAt with implicit knowledge, explicit knowledge, and awareness.

Proposition 13 For any implicit knowledge-based HMS model M∗ and its FH∗ transform FH∗(M∗), for
all ϕ ∈LAt and all ω ∈ SAt , M∗,ω � ϕ if and only if FH∗(M∗),ω  ϕ.

8 Logic of Propositional Awareness

In the penultimate section, we explore the implications of the prior sections for axiomatizations of both
the category of FH models and the complemented HMS models. In particular, we show that the Logic
of Propositional Awareness is sound and complete with respect to the class of complemented HMS
models. This is the first axiomatization of HMS models that feature also the notion of implicit knowledge.
Previous axiomatizations of HMS models (Heifetz, Meier, and Schipper, 2008, Halpern and Rêgo, 2008)
were confined to explicit knowledge and awareness only. We also show that the Logic of Propositional
Awareness is sound and complete with respect to the class of implicit knowledge-based HMS models.
This is the first axiomatization of implicit knowledge-based HMS models. Finally, it is also sound and
complete with respect to the class of categories of FH models.

Definition 20 The logic LPA is the smallest set of LAt formulas that contains the axioms and is closed
under the inference rules as follows: All substitution instances of propositional logic, including >
(`iϕ ∧ (`iϕ → `iψ))→ `iψ

kiϕ ↔ (`iϕ ∧aiϕ)
ai(ϕ ∧ψ)↔ (aiϕ ∧aiψ)
ai¬ϕ ↔ aiϕ

aik jϕ ↔ aiϕ

aia jϕ ↔ aiϕ

ai` jϕ ↔ aiϕ

aiϕ → `iaiϕ

¬aiϕ → `i¬aiϕ

From ϕ and ϕ → ψ , infer ψ

From ϕ infer `iϕ

`iϕ → ϕ

`iϕ → `i`iϕ

¬`iϕ → `i¬`iϕ

Recall that in a Kripke model or FH model, a formula is valid if it is true in every state. However, a
formula ϕ ∈LAt may not even be defined at states of the FH model KΨ with At(ϕ) * Ψ. Similarly, as
we remarked earlier when introducing the semantics for HMS models, a formula may not be defined in
every state of a HMS model. We say that ϕ is defined in state ω in the complemented HMS model M
if ω ∈

⋂
p∈At(ϕ)(v(p)∪¬v(p)) (and analogously for implicit knowledge-based HMS models). Similarly,

we say that ϕ is defined in the FH model KΨ if At(ϕ)⊆Ψ.
Now we say that a formula ϕ is valid in the complemented HMS model M if M,ω � ϕ for all ω in

which ϕ is defined (and analogously for the implicit knowledge-based HMS model). Similarly, we say
that ϕ is valid in the category of FH models C (KΨ) if KΨ,w  ϕ for all w ∈WΨ for all KΨ in C (KAt) for
which ϕ is defined. A formula is valid in a class of complemented HMS models M if it is valid in every
complemented HMS model of the class (and analogously for the class of implicit knowledge-based HMS
models). A formula is valid in a class of categories of FH models C if it is valid in every category of FH
models of the class.

A proof in an axiom system consists of a sequence of formulae, where each formula in the sequence
is either an axiom in the axiom system or follows from the prior formula in the sequence by an application
of an inference rule of the axiom system. A proof of a formula ϕ is a proof where the last formula of
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the sequence is ϕ . A formula ϕ is provable in an axiom system, if there is a proof of ϕ in the axiom
system. An axiom system is sound for the language LAt w.r.t. a class of complemented HMS models M
if every formula in LAt that is provable in the axiom system is valid in every complemented HMS model
of the class M (and analogously for the class of implicit knowledge-based HMS models). Similarly, an
axiom system is sound for the language LAt w.r.t. a class of categories of FH models C if every formula
in LAt that is provable in the axiom system is valid in every category of FH models of the class C. An
axiom system is complete for the language LAt w.r.t. a class of complemented HMS models M if every
formula in LAt that is valid in M is provable in the axiom system (and analogously for the class of
implicit knowledge-based HMS models). Similarly, an axiom system is complete for the language LAt

w.r.t. a class of categories of FH models C if every formula in LAt that is valid in C is provable in the
axiom system.

Corollary 5 LPA is sound and complete w.r.t.

1. the class of categories of FH models,

2. the class of complemented HMS models,

3. the class of implicit knowledge-based HMS models.

Fagin and Halpern (1988), Halpern (2001), and Halpern and Rêgo (2008) claim that LPA is sound
and complete w.r.t. the class of FH models. The proof of 1. now follows from invariance of modal satis-
faction relative to sublanguages between FH models in each category of FH models, i.e., Proposition 6.
The proof of 2. follows from Propositions 10 and 11. The proof of 3. follows from Corollary 4 and
Proposition 13.

9 Discussion

The constructions also allowed us to consider the relation between FH models and HMS models, not just
with respect to explicit knowledge and awareness as in the prior literature but also with respect to implicit
knowledge. We show modal equivalence between FH and HMS models by transforming one model into
another. Each model and its transform satisfy the same formulae from a language of implicit, explicit
knowledge and awareness. This equivalence is used to show that the Logic of Propositional Awareness is
sound and complete for the class of HMS models. Compared to the prior literature, this axiomatization
is now for a language that also features implicit knowledge.

The relations between various models of awareness in the literature are depicted in Figure 2. Beside
FH models of Fagin and Halpern (1988) and HMS models of Heifetz, Meier, and Schipper (2006, 2008),
we consider generalized standard models by Modica and Rustichini (1999), information structures with
unawareness by Li (2009), object-based unawareness models by Board and Chung (2021), and Kripke
lattices by Belardinelli and Rendsvig (2022). Equivalences hold for various languages also shown in the
figure. We indicate the implicit, explicit, and awareness modality by superscripts L, K, and A, respec-
tively. Some structures like Modica and Rustichini (1999) and Li (2009) feature just a single agent. We
indicate this with the subscript “1” for single agent and “n” for multiple agents. For instance, L L,K,A

n

is the language featuring multiple agents, implicit knowledge, explicit knowledge, and awareness. The
equivalence between Board and Chung (2021) is shown only at the level of semantics, i.e., at the level
of events. The relation between Modica and Rustichini (1999) and Heifetz, Meier, and Schipper (2008)
indicates that latter axiomatization can be seen as a multi-agent version of former. All shown relations
pertain to rich structures featuring partitional knowledge and awareness generated by primitive proposi-
tions.



Gaia Belardinelli & Burkhard C. Schipper 111

Figure 2: Relations between Approaches to Awareness

Recently, Schipper (2022) extended HMS models to awareness of unawareness by introducing quan-
tified events. It would be straightforward to complement his structure with implicit knowledge as defined
in the current work. Agents could then reason about the existence of their implicit knowledge that they
are not aware of. Such reasoning bears some similarity to the notion of speculative knowledge in van
Ditmarsch et al. (2018). Awareness-of-unawareness structures with implicit knowledge would also allow
for a better comparison to awareness structures with quantification of formulae for modeling reasoning
about knowledge of unawareness (Halpern and Rêgo, 2009, 2012), object-based unawareness (Board
and Chung, 2021), and quantified neighborhood structures with awareness (Sillari, 2008).
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Epistemic logics of intensional groups lift the assumption that membership in a group of agents is

common knowledge. Instead of being represented directly as a set of agents, intensional groups

are represented by a property that may change its extension from world to world. Several authors

have considered versions of the intensional group framework where group-specifying properties are

articulated using structured terms of a language, such as the language of Boolean algebras or of

description logic. In this paper we formulate a general semantic framework for epistemic logics

of structured intensional groups, develop the basic theory leading to completeness-via-canonicity

results, and show that several frameworks presented in the literature correspond to special cases of

the general framework.

1 Introduction

One of the usual assumptions of multi-agent epistemic logic is that groups of agents are given extension-

ally as sets of agents. Membership in an extensional group is common knowledge among all agents and

change in membership implies change of identity of an extensional group. This is not how we usually

think of groups, however. We are commonly reasoning about groups in various contexts without knowing

their extensions—we might routinely refer to groups such as “bot accounts”, “democrats”, or “correct

processes”—and we do not settle for reducing such groups to their extensions either, as clearly they can

change across the state space of a system, or possible states of the world. To reason about groups in a

more realistic way is made possible by groups being given to us intensionally by a common property.

In their seminal work [5, 6], Grove and Halpern introduced an elegant generalization of multi-agent

epistemic logic where labels denoting (sets of) agents are replaced by abstract names whose extensions

can vary from world to world. Their language contains two types of modalities, equipped with a rela-

tional Kripke-style semantics: Enϕ means that every agent in the current extension of n knows that ϕ

(“everyone named n knows”), and Snϕ means that some agent in the current extension of n knows that

ϕ (“someone named n knows”). In the intensional setting, Sn is in general not definable using disjunc-

tion and other epistemic operators. Grove and Halpern also consider a natural extension of their basic

framework where names are replaced by formulas expressing structured group-defining concepts.

Motivated mainly by applications such as dynamic networks of processes, a framework where the

agent set can vary not only across models, but also from state to state, have been developed in a form

of term-modal logic TML. Introduced by [4], TML builds upon first order logic, indexing modalities by

terms that can be quantified over. TML is conveniently expressive but undecidable in general, and the

attention therefore turns to identify some decidable fragments ([16, 17] (see [19] for more references

relevant for epistemic logic). Epistemic logic with names of [6] was seminal in some sense to the devel-

opment of TML, and can be seen as its simple decidable fragment. Another closely related language is

that of implicitly quantified modal logic, studied in [15].

*Work of both authors on this paper was supported by the grant no. 22-23022L CELIA of the Czech Science Foundation.
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To model non-rigididity of group names, Kooi [10] introduces dynamic term-modal logic with as-

signment modalities. Wang and Seligman [20] adopt a minimalist approach of using the basic assignment

modalities with a quantifier-free term modal logic to obtain an easy-to-handle fragment of the logic in

[10], expressing various de re/de dicto distinctions in reading higher-order knowledge1.

Grove and Halpern’s work is enjoying a recent resurgence of interest in the epistemic logic com-

munity. [2] identifies a monotone neighborhood-style semantics for Grove and Halpern’s language and,

building directly on the Sn and En modalities, considers expansions with non-rigid versions of common

and distributed knowledge. Distributed or common knowledge for intensional group names has also

been studied by [12, 13]. A monotone neighborhood perspective has recently been adopted by [3] and

applied to a logic containing the somebody-knows modality of [1]. Humml and Schröder [9] generalize

Grove and Halpern’s approach to structured names represented by formulas defining group membership,

including e.g. formulas of the description logic ALC. Their abstract-group epistemic logic (AGEL) con-

tains a common knowledge modality as the only modality and, unlike in [2, 6], their group names are

rigid.

In this paper, following [2, 6, 15] to various extent, we adopt the perspective that both “everyone

labeled a knows” and “someone labeled a knows” form a minimal epistemic language for group knowl-

edge, that groups are understood intensionally, and that labels reflect their structured nature. We use

languages built on top of classical propositional language containing modalities [a] and 〈a] indexed by

elements of an algebra of a given signature of interest. As our main contribution, we set up a general

framework for epistemic logics for structured groups in terms of relational semantics involving an alge-

bra of group labels that index (sets of) relations in each world (Section 2), we show how some existing

versions of frame semantics of closely related logics can be modelled in such a way, and then generalize

relational frames in terms of two-sorted algebras involving propositions and groups, develop an algebraic

duality and prove completeness of the minimal logic (Subsection 2.1). We show that the semantics can

be seen as an interesting version of monotone neighborhood frame semantics (Subsection 2.2). In the

remaining part of the paper we discuss several examples of algebraic signatures giving rise to interesting

and useful variants of group structure (Section 3).

2 Frame semantics for structured groups

Definition 1 (Relational frame). Let Σ be an algebraic similarity type. A Σ-algebra is any structure of

the form X= (X ,{oX | o∈ Σ}), where each oX is an n-ary operator on X for some n. A relational Σ-frame

is F = (W,R,G), where W 6= /0 (“worlds”); R ⊆ 2W×W (“agent relations”); and G is a Σ-algebra with

universe G ⊆ (2R)W (“group intensions”).

In a relational Σ-frame, the set of available agents is represented by a set of accessibility relations R.

Functions f ∈ G map possible worlds w ∈ W to sets f (w) ⊆ R corresponding to sets of agents. These

functions can be seen as intensions of properties of agents: the intension f of a given property determines

for each world w the extension f (w) of the property at w, representing the set of agents that possess the

given property in w. Crucially, properties may change their extensions from world to world.

Remark 1. We note that a relational Σ-frame can be seen as a Σ-algebra over a subset of a direct product

of a family of Kripke frames. In particular, G ⊆ ∏w∈W (W,Qw) where Qw ⊆ R; every F then gives rise to

G(F) = (G,{oG(F) | o ∈ Σ}). Conversely, every G = (G,{oG | o ∈ Σ}) where G ⊆ ∏w∈W (W,Qw) such

that Qw ⊆ R fo all w ∈W gives rise to a relational Σ-frame.

1Both ours and theirs formalisms implement term-indexed modalities in a two-sorted language, they are however languages

with different expressive power—one algebraic, the other first-order—a precise comparison being a subject of future work.
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Definition 2 (Language). Let Pr,Gr be denumerable sets of propositional variables and group variables

respectivelly. For each Σ, the Σ-language is two-sorted, consisting of group Σ-terms and Σ-formulas. The

set of Σ-terms T mΣ, and the set of Σ-formulas FmΣ, are defined by the following grammars:

T mΣ : α := a ∈ Gr | o(α1, . . . ,αn) FmΣ : ϕ := p ∈ Pr | ¬ϕ | ϕ ∧ϕ | [α]ϕ | 〈α]ϕ .

Σ-terms represent structured intensional groups where the structure is articulated using the operators

of Σ (number of examples follow). Formulas [α]ϕ read as “Everyone in the group (given by) α believes

that ϕ” and 〈α]ϕ read as “Someone in the group (given by) α believes that ϕ”. We assume the standard

definitions of Boolean operators (⊤,⊥,∨,→,↔), and we define 〈α〉ϕ := ¬[α]¬ϕ , [α〉ϕ := ¬〈α]¬ϕ .

Definition 3 (Complex algebra). The complex algebra of F is F+ = (F,G,[]+,〈]+) where F is the

Boolean algebra of (all) subsets of W and []+, 〈]+ are functions of the type 2W ×G → 2W such that for

a ∈ G and P ⊆W:

[a]+P = {w | ∀r ∈ a(w) : r(w)⊆ P} 〈a]+P = {w | ∃r ∈ a(w) : r(w)⊆ P}

(where r(w) = {u | (w,u) ∈ r}).

Definition 4 (Relational model). A model based on a Σ-frame F= (W,R,G) (Σ-model) is M= (F,JK),
where JK (the “interpretation function”) is a homomorphism from T mΣ ∪FmΣ to F+2, that is,

• JαK ∈ G where Jo(α1, . . . ,αn)K = oG(Jα1K, . . . ,JαnK);

• JϕK⊆W where

J¬ϕK =W \ JϕK Jϕ ∧ψK = JϕK∩ JψK J[α]ϕK = [JαK]+JϕK J〈α]ϕK = 〈JαK]+JϕK.

A formula ϕ is valid in a model M iff JϕKM = WM, and valid in a class of frames iff it is valid in each

model based on a frame in the given class. If K is a class of frames, then Log(K) is the set of formulas

valid in all frames in K.

Example 1. Consider a relational frame for epistemic logic with names [2]. Let N (“names”), A

(“agents”) and W (“worlds”) be three non-empty sets. A relational frame is (W,A,N,Q,µ), where

Q : A → 2W×W and µ : N → (W → 2A). It is easy to see that each relational frame gives rise to a re-

lational /0-frame where R = {Qi | i ∈ A} and G = {µ#(n) | n ∈ N}, where µ#(n)(w) = {Qi | i ∈ µ(n)(w)}.

Conversely, every relational /0-frame can be seen as a relational frame where A = R, Q is the identity

function on A, N = G and µ(a)(w) = a(w) for all a ∈ G.

Example 2. Grove and Halpern [6] consider a version of their framework where groups are referred to

by means of formulas of a Boolean language. A simplified version of this framework can be presented as

an extension of the relational frames of the previous example. In these frames we require that N is a term

algebra over terms in the signature ΣBA = { ,̄∧,∨}, and that µ satisfies the following conditions (we use

n,m as variables ranging over ΣBA-term to highlight the relation to Grove and Halpern’s framework):

µ(n̄,w) =W \µ(n,w) µ(n∧m,w) = µ(n,w)∩µ(m,w) µ(n∨m,w) = µ(n,w)∪µ(m,w) .

It is easy to see that every relational frame of this kind (Boolean relational frame) gives rise to a relational

ΣBA-frame where R and G are defined as in the previous example. Conversely, every relational ΣBA-

model gives rise to a Boolean relational model: A = R, Q is the identity function on A, N is the term

algebra over ΣBA-terms and µ(n) = JnK. The semantic clauses displayed above then follow from the

assumption that the interpretation function JK is a homomorphism.

2Being a homomorphism, J·K is determined by the values it assigns to variables.
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Example 3. In their recent work [9] on logic with common knowledge of abstract groups AGEL, Humml

and Schröder consider a rigid common knowledge operator for groups with membership defined by

formulas. Technically, the common knowledge modality is labeled by formulas in an agent language

LAg built over a fixed set Ag of agents, defining groups of agents by semantical means of an agent model

A. A formula Cα φ reads as φ is commonly known among agents satisfying α . The language is interpreted

over AGEL frames of the form (W,A,∼) where W is a set of worlds, and ∼ is a set of agent epistemic

indistinguishability relations. In the sense of this paper, their agent language LAg determines a signature

Σ, and the complex algebra A of the agent model A, i.e. the algebra on group propositions {JαKA ⊆ Ag |
α ∈LAg}, is a Σ-algebra. As the agent language conservatively extends classical propositional logic, this

algebra carries a boolean structure. It gives rise to a Σ-relational frame where R =∼ and the Σ-algebra G

is determined by A on the universe consisting of assignments g : W → 2R, with g(w) = {∼JαKA
|α ∈LAg}

for each w ∈W , where ∼JαKA
is the union of relations of agents satisfying α .

Remark 2. Our framework covers also semantics of modal logics with operations on accessibility re-

lations. A prominent example are models for (test-free) Propositional Dynamic Logic. A relational

PDL-model corresponds to a relational ΣKA-model, where ΣKA = {·,+, ∗,1,0} is the signature of Kleene

algebra, such that R is the set of all relations on a set of worlds W and the functions in G are constant

and their values are singletons. In particular, G is the algebra of constant functions f ∈ (2R)W such that

f (w) is a singleton (therefore we may identify f with the r such that f (w) = {r}) and f · g is relational

composition of f and g, f +g is the union of f and g, f ∗ is the reflexive transitive closure of f , 1 is the

identity relation, and 0 is the empty relation.

Definition 5 (Logic). Let Σ be an algebraic signature. An epistemic logic with structured intensional

groups over Σ (or simply a Σ-logic) is any set L ⊆ FmΣ such that (for all α ∈ T mΣ)

1. L contains all substitution instances of classical tautologies and is closed under Modus Ponens;

2. L contains all formulas of the form (K)[α](ϕ → ψ)→ ([α]ϕ → [α]ψ) and is closed under the

Necessitation rule (Nec)
ϕ

[α]ϕ
;

3. L contains all formulas of the form ¬[α]⊥→ 〈α]⊤ and 〈α]ϕ ∧ [α]ψ → 〈α](ϕ ∧ψ)3.

2.1 Algebraic duality

In this section we introduce specific two-sorted algebras that generalize relational Σ-frames. In a sense

to be specified below, completeness results for classes of relational Σ-frames correspond to specific

representation results for these two-sorted algebras.

Definition 6 (Frame). Let Σ be an algebraic similarity type. A Σ-frame is A = (F,G,[],〈]), where

F = (X ,∧,∨,¬,⊤,⊥) is a Boolean algebra; G = (A,{oG | o ∈ Σ}) is a Σ-type algebra; and [] and 〈]

are functions of the type F×G → F such that

[a]⊤=⊤ (1)

[a](x∧ y) = [a]x∧ [a]y (2)

¬[a]⊥≤ 〈a]⊤ (3)

〈a]x∧ [a]y ≤ 〈a](x∧ y) (4)

3It is easy to show that every Σ-logic contains all formulas of the form [α]⊤↔⊤ and [α](ϕ ∧ψ)↔ ([α]ϕ ∧[α]ψ), and

that it is closed under the rule
ϕ ∧ψ1 ∧ . . .∧ψn → χ

〈ϕ]∧[α]ψ1 ∧ . . .∧[α]ψn → 〈α]χ
.
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A Σ-frame is a two-sorted algebra bringing together a Boolean algebra of “propositions” with a Σ-

algebra of “groups”. The modal operators [] and 〈], resembling scalar multiplication in modules, take

pairs consisting of a group and a proposition to a proposition. Formulas in FmΣ-can be seen as terms of

the type corresponding to Σ-frames. In fact, we can define the following notion of an evaluation, leading

to a natural definition of the equational theory of a class of Σ-frames.

Definition 7 (Equational theory). An evaluation on a Σ-frame is any homomorphism T mΣ ∪Fmσ →
A, that is, any function e such that e(o(ϕ1, . . . ,ϕn)) = oF(e(ϕ1), . . . ,e(ϕn)) for all Boolean opera-

tors o; e(o(α1, . . . ,αn)) = oG(e(ϕ1), . . . ,e(ϕn)) for all Σ-operators o; and e([α]ϕ) = [e(α)]e(ϕ) and

e(〈α]ϕ) = 〈e(α)]e(ϕ). A Σ-formula equation is an expression of the form ϕ ≈ ψ where ϕ ,ψ ∈ FmΣ.

An equation ϕ ≈ ψ is valid in A iff e(ϕ) = e(ψ) for all evaluations e on F. The equational theory of

a class F of Σ-frames is the set of all Σ-formula equations that are valid in all frames in F, denoted as

Eq(F).4.

Remark 3. Dynamic algebras [11, 18], the algebraic counterparts of relational models for Propositional

Dynamic Logic, are related to Σ-frames. A dynamic algebra is a pair (F,G,[]), where F is a Boolean

algebra, G is a Kleene algebra, and [] : G × F → F satisfying our axioms (1–2) and further set of

equations and quasi-equations. Therefore, dynamic algebras can be seen as a class of 〈]-free reducts of

ΣKA-frames.

Definition 8 (Ultrafilter frame). Let A = (F,G,[],〈]) be a Σ-frame. The ultrafilter frame of A is

A+ = (Uf(F),R+,G+) where Uf(F) is the set of all ultrafilters on F (we define x̂ = {u ∈ Uf(F) | x ∈ u});

• R+ = {ra,x | x ∈ F & a ∈ G}, where ra,x : w 7→
⋂
{ŷ | [a]y ∈ w}∩ x̂ ;

• G+ = {G(a) | a ∈ G} ⊆ (2R+)Uf(F) such that ∀u ∈ Uf(F), G(a)(u) = {ra,x | 〈a]x ∈ u}
(we will often write G(a,u) instead of G(a)(u));

• G+ = (G+,{o+ | o ∈ OΣ}) where o+(G(a1), . . . ,G(an))(u) = G(o(a1, . . . ,an))(u).

Definition 9 (Morphisms of Σ-frames). LetA1,A2 be two Σ-frames. A (Σ-frame) morphism is a function

f : A1 → A2 such that

(m1) f is a homomorphism from F1 to F2;

(m2) f is a homomorphism from G1 to G2;

(m3) f ([a]1x) = [ f (a)]2 f (x);

(m4) f (〈a]1x) = 〈 f (a)]2 f (x).

A quasi-embedding of A1 into A2 is a morphism f : A1 → A2 such that f (x) = f (y) → x = y for

all x,y in F1. An embedding of A1 into A2 is a quasi-embedding where f (a) = f (b) → a = b for all

a,b in G1. A quasi-isomorphism is a surjective quasi-embedding and an isomorphism is a surjective

embedding. The canonical embedding algebra of A is (A+)
+ and the ultrafilter extension of F is (F+)+.

The canonical morphism is a function f :A→ (A+)
+ with f (x) = x̂ for x ∈ F and f (a) = G(a) for a ∈G.

Lemma 1. The canonical morphism is a quasi-embedding.

For each signature Σ, Lemma 1 can be used to prove completeness of the basic Σ-logic with respect

to all relational Σ-frames. In order to show this, we point out a useful example of a Σ-frame.

Example 4. Let L be a Σ-logic. Let ≡L be a binary relation on FmΣ such that ϕ ≡L ψ iff ϕ ↔ ψ ∈ L. Let

[ϕ ]L be the equivalence class of ϕ under ≡L. It can be shown that ≡L is a congruence on FmΣ. Hence, we

obtain the Boolean algebra FL of equivalence classes [ϕ ]L, where oFL

([ϕ1]L, . . . , [ϕn]L) = [o(ϕ1, . . . ,ϕn)]L

4We note that it would make sense also to consider Σ-group equations as expressions of the form α ≈ β where α,β ∈ T mΣ,

and define the group-equational theory of a class of frames, but we will not pursue this topic here.
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for all Boolean operators o. We define GL as the term algebra over T mΣ. Moreover, let []L and 〈]L be

functions of the type FL ×GL → FL such that [α]L[ϕ ]L = [[α]ϕ ]L and 〈α]L[ϕ ]L = [〈α]ϕ ]L (note that

these functions are well defined since ≡L is a congruence). Let us define the basic canonical L-frame as

BL = (FL,GL,[]L,〈]L). It is clear that ϕ ∈ L iff ϕ ≈⊤ is valid in BL.

Theorem 1 (Completeness). For all Σ, the smallest Σ-logic is the set of Σ-formulas valid in all relational

Σ-models.

Proof. Fix a Σ and take the smallest Σ-logic L. Soundness is easily checked. To show completeness, take

the relational Σ-frame (BL)+ (the canonical relational L-frame). Lemma 1 entails that if ϕ /∈ L, then ϕ is

not valid in (BL)+. (Define a model where JϕK = [̂ϕ ]L and JαK = α . Lemma 1 implies that JK is indeed

an interpretation function. Since ϕ ↔⊤ 6∈ L, we have JϕK 6= J⊤K by the Prime Filter Theorem, and so ϕ

is not valid in (BL)+.)

2.2 Neighborhood semantics

The modalities 〈 ] and [ ] are monotone modalities of the ∃∀ and ∀∀ type and can therefore be studied

in terms of monotone neighborhood semantics, if we understand sets {r(w) | r ∈ a(w)} as so called

core neighborhood sets [7, 14]. Relational Σ-frames generalize relational frames for epistemic logic

with names [2, 6] (Example 1), which are categorialy equivalent to monotone neighborhood frames with

neighborhood sets indexed by the set of names. Not surprisingly, a closely related connection arises

between relational Σ-frames of this paper and monotone neighborhood frames where neighborhoods

are indexed with algebraic terms. This will allow us to adapt and apply the well understood model

theory of monotone neighborhood frames (for which we mainly refer to [7, 8, 14]) to study, among

others, algebraic duality or modal definability on a convenient level of abstraction. A similar perspective

has recently been adopted also by [3] on a logic containing a somebody-knows modality, previously

studied by [1]. Neither of the approaches in [7, 3] however includes both ∃∀ and ∀∀ types of modalities,

and therefore similar modifications of the general theory as those adopted in [2] are necessary, and the

algebraic structure underlying the labelling of groups needs to be captured additionally.

Definition 10 (Neighborhood frames). A neighborhood Σ-frame F is a tuple (W,G,{νa}a∈G) where W

is a set of states, G is a Σ-algebra, and for each a ∈ G, νa : W → 22W

is a neighborhood function that

assigns to each state w a set of sets of states5.

Definition 11 (Semantics in neighborhood models). The complex algebra F+ of a neighborhood Σ-

frame F is given as the expansion of the boolean algebra of subsets of W by

[a]+P = {w | ∀X ∈ νa(w) : X ⊆ P} 〈a]+P = {w | ∃X ∈ νa(w) : X ⊆ P}.

An interpretation function JK is a homomorphism from T mΣ ∪FmΣ to F+, i.e.

J[α]ϕK = {w | ∀X ∈ νJαK(w) X ⊆ JϕK} J〈α]ϕK = {w | ∃X ∈ νJαK(w) X ⊆ JϕK}

Definition 12 (Neighborhood frame morphisms). Neighborhood Σ-frame morphisms are pairs of maps

(g : G → G′, f : W →W ′), where g is a homomorphism of Σ-algebras, satisfying

(there) X ∈ νa(w)⇒ f [X ] ∈ ν ′
g(a)( f (w)) (back) Y ∈ ν ′

g(a)( f (w))⇒∃X( f [X ] = Y & X ∈ νa(w))

5For the minimal Σ-logic, we do not require any additional (algebraic) properties from the assignment ν : G → [W,22W

].
They might however become desirable in the examples that follow, and we will treat them as additional properties defining

particular classes of frames (modally definable or not).



M. Bı́lková & I. Sedlár 119

Monotonicity of the modalities is built into the semantical definition rather than into the frame defi-

nition. As such, it corresponds to core neighborhood frames from [7], and the morphisms resemble core

bounded morphisms of monotone neighborhood frames from [7, Definition 4.6], additionally involving

the algebraic homomorphism g : G → G′ which can be interpreted as allowing to “rename” the groups

along frame morphisms in a structured way. Understanding frame validity as F,w  ϕ if and only if

w ∈ JϕK for each interpretation JK on F, we can prove that morphisms preserve frame validity:

Lemma 2 (Preservation of validity). Let ( f ,g) : (W1,G1,{νa}a∈G1
)→ (W2,G2,{νa}a∈G2

) be a neigh-

borhood Σ-frame morphism from F1 to F2. Then for each formula ϕ and each w ∈W,

F1,w  ϕ ⇒ F2, f (w)  ϕ .

A proof-sketch can be found in the Appendix A.2. For the sake of interest we also spell out in

Appendix A.3 what bisimulations of neighborhood Σ-frames look like.

For a relational Σ-frame F = (W,R,G), we can define the corresponding neighborhood Σ-frame

Fn = (W,G,{νn
a }a∈G) putting νn

a (w) = {r(w) | r ∈ a(w)}. Conversely, for a neighborhood Σ-frame F=
(W,G,{νa}a∈G) we define the corresponding relational Σ-frame Fr = (W,Rr,G) by ar(w) = {r | r(w) ∈
νa(w)}, Rr =

⋃
a∈G,w∈W ar(w). We then obtain the following:

Theorem 2 (Categorial equivalence). The categories of relational Σ-frames and neighborhood Σ-

frames are equivalent.

Given the completeness of the basic Σ-logic with respect to relational Σ-frames (Theorem 1), com-

pleteness with respect to all neighborhood Σ-frames follows6 With the complex algebra/ultrafilter frame

construction at hand, we can describe the algebraic duality, and obtain a definability theorem character-

izing modally definable classes of neighborhood Σ-frames (cf. Theorem 2 of [2]).

3 Special cases

To illustrate some interesting special cases of the general framework discussed above, we introduce, in

each case, a class of relational frames that captures some natural kind of structure imposed on intensional

groups, provide an algebraic generalization of relational frames, and show that the respective classes of

relational frames and their algebraic generalizations determine the same logic.

3.1 Unions and join-semilattices

One of the simplest forms of structure imposed on groups of agents corresponds to taking unions of

sets of agents. On the intensional perspective, taking unions corresponds to an operation on intensional

groups that, for each world w, gives the union of the extensions of the given intensional groups in w. It is

then natural to impose a semilattice structure on the set of intensional groups, where the neutral element

is an “inconsistent” intensional group that has an empty extension in each world. This case is also easily

handled in the technical sense, and so we will discuss it as an introductory example.

Nevertheless, even this simple case has an interesting feature: the ultrafilter frame construction does

not in general lead to a relational frame of the right kind. This may be surprising given the fact that

unions are well-behaved in the extensional framework. This feature is discussed at the end of the section.

Definition 13 (JS-frame). Let ΣSL = {+,0} be the join-semilattice signature. A relational join-semi-

lattice frame (relational js-frame) is a relational ΣSL-frame where 0G(w) = /0 and ( f +G g)(w) = f (w)∪
g(w). A join-semilattice frame (js-frame) is a ΣSL-frame where G is a join semilattice and

6It is also possible to define a canonical neighborhood Σ-frame directly, following similar pattern as in Definition 8.
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[0]x =⊤ (5)

〈0]x =⊥ (6)

[a+b]x = [a]x∧ [b]x (7)

〈a+b]x = 〈a]x∨ 〈b]x (8)

The class of (relational) js-frames will be denoted as FSL (rFSL).

Definition 14 (JS-logic). The join-semilattice logic LSL is the smallest ΣSL-logic that contains all for-

mulas of the following forms:

⊤→ [0]ϕ (a5)

〈0]ϕ →⊥ (a6)

[α +β]ϕ ↔ [α]ϕ ∧ [β]ϕ (a7)

〈α +β]ϕ ↔ 〈α]ϕ ∨ 〈β]ϕ (a8)

Theorem 3. (1) ϕ ∈ LSL iff (2) ϕ ∈ Log(rFSL) iff (3) (⊤≈ ϕ) ∈ Eq(FSL).

Proof sketch. (1) implies (2) since the LSL axioms are valid in all relational js-frames. The fact that (2)

implies (3) is established by showing that for each js-frame there is an equivalent relational js-frame. We

cannot use the ultrafilter frame construction (Def. 8) for failure of canonicity7 . However, a variant of the

construction where 0 and + are defined exactly as in relational js-frames will do. That (3) implies (1) is

established by contraposition, using a variant of the basic canonical L-frame of Example 4. Details are

given in Appendix A.5.

3.2 Meta-belief and right-unital magmas

Information about meta-beliefs (“i believes that j believes that p”) is crucial to many multi-agent scenar-

ios. The notion of meta-belief is often lifted to extensional groups of agents (sets). “Group I believes

that group J believes that p” means that every agent in I believes that every agent in J believes that p. It

is interesting to note that, if agents are seen as accessibility relations, the notion of meta-belief induces

structure on sets of agents. In particular, every agent in I believes that every agent in J believes that p, iff

every world accessible via I◦J = {r◦q | r ∈ I & q∈ J} satisfies p. If the “environment” agent E = {idW}
is also included, we obtain a monoid structure. It is interesting to look at the notion of meta-belief, and

the structure it induces, in the context of intensional groups.

Example 5. Adam (A ) is reviewing a paper for a journal, double-blind. Adam knows the researchers

active in the particular area very well, and so he knows that either Bonnie (B) or Carrie (C ) is the author

or they are co-authoring the paper together. He knows that the authors of the paper, whoever they are,

believe that the proof of a particular statement in the paper is correct (p), although Adam believes it is

incorrect (¬p). In reality, Bonnie and Carrie co-authored the paper and the proof is correct.

The scenario is represented by the relational model in Figure 1, with the actual world underlined.

Adam’s meta-beliefs concerning the authors of the paper are represented by the result of composing his

relation with relations that “behave like” a relation corresponding to an author of the paper in any world

accessible for Adam from the actual world. In particular, from the world ({C },¬p), representing the

situation where only Carrie is the author and the proof is incorrect, only the C -arrow is followed, and

similarly for the world ({B},¬p) and the B arrow. This makes sense: beliefs of people who are not

authors in the given world are disregarded. In the world ({B,C },¬p), one could follow either B or C ,

but the difference is not reflected by the accessibility arrows leading from that world.

7Axiom a8 〈α+β]ϕ ↔ 〈α]ϕ∨〈β]ϕ does not correspond to the condition ( f +G g)(w)= f (w)∪g(w), but to the following

one: ∀w (∀r ∈ (a+ b)(w) ∃s ∈ a(w)∪ b(w) (s(w) ⊆ r(w)))∧∀w (∀s ∈ a(w)∪ b(w) ∃r ∈ (a+ b)(w) (r(w) ⊆ s(w))). While

the first conjunct is valid on an ultrafilter frame, the second one is not (unless we deal with an ultrafilter frame of a complete

algebra). For the ΣSL-neighborhood frames, a8 corresponds to the property: ∀w(νa+b(w)
↑ = νa(w)

↑∪νb(w)
↑).
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{C }, p {B},¬p {B}, p

{C },¬p {B,C }, p {B,C },¬p

A

AA

B,C

B,C

C

C C

B,CB

B

B

Figure 1: A relational model corresponding to Example 5.

Let W be a set and let R ⊆ (2W )W . Let f ∈ (2R)W be an intensional group. A variant of f is a relation

r ∈ (2W )W such that, for each w ∈W , if f (w) 6= /0, then there is q ∈ f (w) such that r(w) = q(w), and if

f (w) = /0, then r(w) = /0. We denote the set of all variants of f as f †.

Intuitively, a variant of an intensional group f is a relation that “behaves like” some relation in f (w)
whenever f (w) is non-empty (not necessarily the same relation!) and which is “blind” in w where f (w)
is empty.

Definition 15 (Intensional composition). Let R be a set of binary relations on a set W . We define the

operation ⊗ : (2R)W × (2R)W → (2R)W point-wise by ( f ⊗g)(w) = f (w)◦g†.

It can be shown that the structure on the set of intensional groups induced by intensional composition

is rather weak. For instance, the natural candidate for the unit element, the function 1 that maps each

w to {idW} is the right unit, but not the left unit: ( f ⊗ 1)(w) = f (w) ◦ 1† = f (w) ◦ {idW} = f (w), but

in general (1⊗ f )(w) = 1(w) ◦ f † = f † 6= f (w). (We note that in general f † 6= f (w) since we can have

r ∈ f (w) and r(v) 6= /0 for some v 6= w such that f (v) = /0.)

A right-unital magma (rum) is an algebra (M, ·,1) where · is a binary operation on M and 1 ∈ M such

that x ·1 = x for all x ∈ M.

Definition 16 (Rum-frame). Let ΣM = {·,1} be the monoid signature. A relational right-unital-magma

frame (a relational rum-frame) is a relational ΣM-frame such that 1G(w) = {idW} and (g ·G h)(w) =
(g⊗h)(w). A rum-frame is a ΣM-frame where G is a right-unital-magma and

[1]x = x (9)

〈1]x = x (10)

[a ·b]x = [a][b]x (11)

〈a ·b]x = 〈a]([b〉⊥∨ 〈b]x) (12)

The class of (relational) rum-frames will be denoted as FRUM (rFRUM, respectively).

Definition 17 (Rum-logic). The right-unital-magma logic LRUM is the smallest ΣM-logic that contains

all formulas of the following forms:

[1]ϕ ↔ ϕ (13)

〈1]ϕ ↔ ϕ (14)

[α ·β]ϕ ↔ [α][β]ϕ (15)

〈α ·β]ϕ ↔ 〈α]([β〉⊥∨ 〈β]ϕ) (16)

Remark 4. We note that a simpler variant of (15) for 〈], namely, 〈α · β]ϕ ↔ 〈α]〈β]ϕ is not valid.

In particular, the left-to-right implication has the following counterexample. Let JαK(w) = {r} and let

r(w) = {u,v}; moreover, let us assume that Jβ K(u) = {q}, Jβ K(v) = /0, q(u) = {u} = JpK. It is easily

checked that Jα ·β K(w) = {{(w,u)}}, and so w |= 〈α ·β]p. However, w 6|= 〈α]〈β]p, since this would

require Jβ K(v) to be non-empty. On the other hand, (16) is valid since worlds v accessible via α where

Jβ K(v) = /0 are taken care of by the extra disjunct [β〉⊥.

Theorem 4. ϕ ∈ LRUM iff ϕ ∈ Log(rFRUM) iff (⊤≈ ϕ) ∈ Eq(FRUM).
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3.3 Closure semilattices and distributed knowledge

In the extensional setting, ϕ is distributed knowledge in a group iff it is satisfied in every world accessi-

ble using the intersection of the relations in the group. If all relations are reflexive, then ϕ is distributed

knowledge iff there is a non-empty subset of the given group such that ϕ is satisfied in all worlds acces-

sible using the intersection. On the relations-as-agents perspective, the intersection of each non-empty

subset of a set of relations-agents gives rise to a new relation-agent. Hence, forming intersections of non-

empty subsets of a group X transforms the group of relations-agents into a new group X ′. Interestingly,

distributed knowledge in X then corresponds to the “somebody knows” operator applied to X ′. Hence,

distributed knowledge induces structure on groups of agents even in the extensional setting. We will look

at the structure induced by distributed knowledge in the intensional setting.

Definition 18 (CSL-frame). Let ΣCSL = {+,0, ∩} where {+,0} is the join-semilattice signature and ∩ is

a unary operator. A relational closure semilattice frame (relational cs-frame) is a relational ΣCSL-frame

where all r ∈ R are reflexive and 0G(w) = /0, ( f +G g)(w) = f (w)∪g(w), and

f∩
G

(w) = {r ∈ R | r(w) =
⋂

ri∈X

ri(w) for some /0 6= X ⊆ f (w)}

8 A closure semilattice frame (cs-frame) is a ΣCSL-frame where G is a join semilattice with partial order

defined as usual (a ≤ b iff a+b = b), ∩ is a closure operator on G, the join-semilattice axioms (5–8) are

satisfied as well as 0∩ = 0, and

[a]x ≤ x (17)

〈a∩]x∧ 〈a∩]y ≤ 〈a∩](x∧ y) (18)

[a∩]x = [a]x (19)

〈a∩]x ≤ 〈a]⊤ (20)

The class of (relational) cs-frames is denoted as FCS (rFCS).

Definition 19 (CS-logic). The closure semilattice logic LCS is the smallest ΣCSL-logic that extends LSL

and contains all formulas of the following forms:

[α]ϕ → ϕ (21)

〈α∩
]ϕ ∧ 〈α∩

]ψ → 〈α∩
](ϕ ∧ψ) (22)

〈α]ϕ → 〈α∩
]ϕ (23)

[α∩
]ϕ ↔ [α]ϕ (24)

〈α∩
]ϕ → 〈α]⊤ (25)

〈α∩∩
]ϕ → 〈α∩

]ϕ (26)

and closed under the rule
〈α]ϕ → 〈β]ϕ

〈α∩]ϕ → 〈β∩]ϕ
.

Theorem 5. ϕ ∈ LCS iff ϕ ∈ Log(rFCS) iff (⊤≈ ϕ) ∈ Eq(FCS).

4 Further work

With a reasonable notion of composition of intensional groups, we may use the standard fixpoint con-

struction to introduce common knowledge into our framework. We intend to study the extension with

common knowledge in the immediate future. An additional topic for future work is the exploration of

variants of the notion of intensional composition. In particular, we are curious if there is a variant giving

rise to a monoid structure on intensional groups.

8We assume that r ∈ R in the frame is closed under this operation.
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A Appendix

A.1 Proof of Lemma 1

Proof. It is a standard observation that f embeds any Boolean algebra F into the power set algebra over

Uf(F). This takes care of (m1) and the injectivity condition. (m2) holds by definition.

(m3) is established as follows (we write [] instead of []+). The inclusion f ([a]x)⊆ [G(a)]x̂ means

that if [a]x ∈ u and r ∈ G(a,u) for some u, then r(u) ⊆ x̂. This holds by the definition of G(a). The

converse inclusion [G(a)]x̂ ⊆ f ([a]x) is established by contraposition. Assume that u /∈ f ([a]x), that

is, [a]x /∈ u for some a and x. Using (1–2), we can show that v0 = {y | [a]y ∈ u} is a filter on F such

that x /∈ v0. Hence, v0 extends to an ultrafilter v such that x /∈ v. Take the relation ra,⊤, where ⊤ := x∨¬x

for some x ∈ F. By (2–3), [a]x /∈ u implies 〈a]⊤ ∈ u, and so ra,⊤ ∈ G(a,u). Moreover, ra,⊤(u,v) by the

construction of v. This means that u /∈ [G(a)]x̂.

(m4) is established as follows. The inclusion f (〈a]x)⊆ 〈G(a)]x̂ means that if 〈a]x ∈ u for some u,

then there is r ∈ G(a,u) such that r(u) ⊆ x̂. Fix such a,x and u, and consider the relation ra,x. It is clear

that ra,x ∈ G(a,u) and ra,x(u) ⊆ x̂. The converse inclusion 〈G(a)]x̂ ⊆ f (〈a]x) is established as follows.

Let us assume that 〈G(a)]x̂, i.e. there is r ∈ G(a,u) such that r(u)⊆ x̂. This means that r = ra,z for some

z such that 〈a]z ∈ u, and r(u) =
⋂
{ŷ | [a]y ∈ u}∩ ẑ. This entails that

{z}∪{y | [a]y ∈ u} ⊆ w =⇒ x ∈ w

for all w ∈ Uf(F). Hence, x is in the filter generated by {z}∪{y | [a]y ∈ u}. By the properties of filters

generated by (non-empty) subsets of a lattice, there is a finite {y1, . . . ,yn} ⊆ {y | [a]y ∈ u} such that

z∧ y1 ∧ . . .∧ yn ≤ x. This means that

〈a]z∧ [a]y1 ∧ . . .∧ [a]yn ≤ 〈a]x,

using (2) and (4). Consequently, 〈a]x ∈ u as we wanted to show.

A.2 Proof of Lemma 2 (Preservation of validity for neighborhood frame morphisms)

Proof. To show for each formula ϕ and each w ∈ W , (F1,w  ϕ ⇒ F2, f (w)  ϕ), it is enough to

show that, once we fix valuations on the respective frames so that (i) for each a ∈ Gr, g(JaK1) = JaK2,

and (ii) for each p ∈ Pr, w ∈ JpK1 iff f (w) ∈ JpK2, we obtain for each ϕ

w ∈ JϕK1 ⇔ f (w) ∈ JϕK2.

This is easily proven by a routine induction on the complexity of a given formula.

A.3 Bisimulations of neighborhood frames

To see what a natural notion of bisimulation is for neighborhood Σ-models, compared to that of mod-

els for epistemic logic with names described in [2, Definition 6], we need to incorporate the algebraic

component. For a binary relation B, let X B Y iff ∀x ∈ X∃y ∈Y xBy and ∀y ∈ Y∃x ∈ X xBy.

Definition 20 (Bisimulations). Let (W1,ν
1,G1,JK1) and (W2,ν

2,G2,JK2) be neighborhood Σ-models.

A pair (∼=,B), with ∼=⊆ G1 ×G2 being a congruence relation, and B ⊆ W1 ×W2, is a bisimulation of

neighborhood Σ-models, if

∀a ∈ Gr JaK1
∼= JaK2 and ∀p ∈ Pr (w1Bw2 ⇒ (w1 ∈ JpK1 ⇔ w2 ∈ JpK2))
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(w1Bw2 ∧a1
∼= a2)⇒ (∀X ∈ ν1

a1
(w1)∃Y ∈ ν2

a2
(w2) X B Y )∧ (∀Y ∈ ν2

a2
(w2)∃X ∈ ν1

a1
(w1) X B Y )

As expected, bisimilarity implies modal equivalence for the language of the basic Σ-logic, and the

converse holds for image-finite models (where every core neighborhood set is a finite set of finite sets).

Graphs of neighborhood Σ-frame morphisms are prominent examples of bisimulations, and functional

bisimulations correspond to graphs of neighborhood Σ-frame morphisms.

A.4 Proof of Theorem 2 (Categorial equivalence)

Proof. For a relational Σ-frame F= (W,R,G), we define the corresponding neighborhood Σ-frame Fn =
(W,G,{νn

a }a∈G) as follows:

νn
a (w) = {r(w) | r ∈ a(w)}.

Conversely, for a neighborhood Σ-frame F= (W,G,{νa}a∈G) we define the corresponding Σ-frame Fr =
(W,Rr,G) as follows:

ar(w) = {r | r(w) ∈ νa(w)}, Rr =
⋃

a∈G,w∈W

ar(w).

It is easy to see that νn
a (w) = {r(w) | r ∈ ar(w)}= νa(w) and ar(w) = {r | r(w) ∈ νn

a (w)}= a(w). How-

ever, going there-and-back on a relational frame, we do not recover the same R, as we can in principle

recover only those relations r in R that are in some a(w), but we also include relations who agree with r

on w. Still the resulting frame ends up to be isomorphic to the original one in terms of frame morphisms,

which is what matters.

For the morphism part, we use the fact that the corresponding frames are defined over the same set

W and Σ-algebra G, and therefore we use the same underlying map in both directions. First, we observe

that morphisms of relational Σ-frames (which can be read of the Definition 9 of morphisms of Σ-frames)

can equivalently be understood as pairs of maps (g : G → G′, f : W →W ′), where g is a homomorphism

of Σ-algebras, satisfying:

(there) ∀r ∈ a(w) ∃r′ ∈ g(a)( f (w)) ( f [r(w)] = r′( f (w))),

(back) ∀r′ ∈ g(a)( f (w)) ∃r ∈ a(w) ( f [r(w)] = r′( f (w))).

It is not hard to see now that the two notions of morphisms are equivalent, when applied to the translated

frames respectively.

A.5 Proof of Theorem 3 (Completeness of semilattice logic)

Proof. If ϕ ∈ LSL, then ϕ ∈ Log(rFSL). It is sufficient to show that (a5–a8) are valid on relational js-

frames. This is easily shown using the definition of js-frames. For instance, w |= [0]ϕ iff ∀r ∈ J0K(w) :

r(w)⊆ JϕK. However, since J0K(w) = /0, this is trivially satisfied for all w. As another example, note that

w |= 〈α+β]ϕ iff there is r ∈ Jα+β K(w) such that r(w)⊆ JϕK. However, Jα+β K(w)= JαK(w)∪Jβ K(w)
and so the previous statement is equivalent to ∃r ∈ JαK(w) : r(w) ⊆ JϕK or ∃r ∈ Jβ K(w) : r(w) ⊆ JϕK
which is equivalent to w |= 〈α]ϕ ∨ 〈β]ϕ .

ϕ ∈ Log(rFSL) implies (⊤ ≈ ϕ) ∈ Eq(FSL). We reason by contraposition. Fix a js-frame A =
(F,G,[],〈]) and an evaluation function e such that e(ϕ) 6= e(⊤) for some ϕ ∈ FmΣ. We define the

relational ΣSL-frame F = (Uf(F),R,H) where R = (2Uf(F))Uf(F) and H = (H,0H,+H) is specified as

follows: H = {H(α) | α ∈ T mΣSL
} where H(α) ∈ (2R)Uf(F) such that

• H(a)(u) = {re(a),e(ϕ) | e(〈a]ϕ) ∈ u};9

9Recall the definition of ra,x in Def. 8: ra,x(u) =
⋂
{ŷ | [a]y ∈ u}∩ x̂.
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• H(0)(u) = 0H(u) = /0; and

• H(α +β )(u) = (H(α)+H H(β ))(u) = H(α)(u)∪H(β )(u).

It is clear that F is a relational js-frame. We define V : T m∪Fm → 2Uf(F) ∪H by V (χ) = ê(χ) and

V (α) = H(α). We show that V is an interpretation function on F. V is a Boolean homomorphism by

the properties of ultrafilters and it is a Σ-homomorphism from T m to H by the definition of H(α). (For

instance, V (α + β )(u) = H(α + β )(u) = H(α)(u)∪H(β )(u) = (V (α)+H V (β ))(u) for all u; hence,

V (α +β ) = (V (α)+H V (β ).) It remains to show the leftmost equalities in the following (recall that we

write H(γ ,w) instead of H(γ)(w)):

(i) V ([γ]χ) = [V (γ)]V (χ) = {w | ∀r ∈ H(γ ,w) : r(w)⊆ ê(χ)}; and

(ii) V (〈γ]χ) = 〈V (γ)]V (χ) = {w | ∃r ∈ H(γ ,w) : r(w)⊆ ê(χ)}.

We show both by induction on the complexity of γ . (i) The base case γ ∈Gr is established similarly as the

corresponding case in the proof of Lemma 1, since H(γ) is in this case defined as G(γ) in the ultrafilter

frame. The case γ = 0 is established as follows: w ∈ V ([0]χ) iff e([0]χ) ∈ w iff [e(0)]e(χ) ∈ w iff

[0]e(χ) ∈ w iff (using axiom 5) ⊤∈ w iff ∀r ∈ /0 : r(w)⊆ ê(χ) (both are true for all w) iff ∀r ∈ H(0,w) :

r(w) ⊆V (χ) iff w ∈ [V (0)]V (χ). The case γ = α +β is established as follows: w ∈V ([α +β]χ) iff

w ∈ e([α +β]χ) iff w ∈ [e(α)+ e(β )]e(χ) iff (using axiom 7) w ∈ [e(α)]e(χ) and w ∈ [e(β )]e(χ)

iff w ∈ V ([α]χ) and w ∈ V ([β]χ) iff (by the induction hypothesis) ∀r ∈ H(α ,w) : r(w) ⊆ ê(χ) and

∀r ∈ H(β ,w) : r(w)⊆ ê(χ) iff ∀r ∈H(α ,w)∪H(β ,w) : r(w)⊆V (χ) iff ∀r ∈ H(α+β ,w) : r(w)⊆V (χ)
iff w ∈ [V (α +β )]V (χ). Part (ii) is established similarly, using axiom (6) in the case γ = 0 and axiom

(8) in the case γ = α +β .

Now since e(ϕ) 6= e(⊤), there is u ∈ Uf(F) such that e(ϕ) ∈ u and e(⊤) /∈ u by the Prime Filter

Theorem. Hence, V (ϕ) 6=V (⊤) and so ϕ is not valid in the relational js-model (F,V ).

(⊤ ≈ ϕ) ∈ Eq(FSL) implies ϕ ∈ LSL. We define the canonical LSL-frame as follows.10 Let ≡ be a

binary relation on formulas defined as ≡L (for L = LSL) in Example 4, and let ≡Tm be a binary relation

on T m such that α ≡Tm β iff [α]ϕ ↔ [β]ϕ ∈ LSL and 〈α]ϕ ↔ 〈β]ϕ ∈ LSL for all ϕ ∈ Fm. Let

[ϕ ] be the equivalence class of ϕ under ≡ and let [α ] be the equivalence class of α under ≡Tm. It can

be shown that ≡ is a congruence on Fm (the usual argument) and ≡Tm is a congruence on T m. The

latter is established using the “reduction axioms” for the semilattice operators: if [α]ϕ ↔ [β]ϕ ∈ LSL

for all ϕ , then [α + γ]ϕ ↔ [β + γ] ∈ LSL since [α + γ]ϕ ↔ [α]ϕ ∧ [γ]ϕ ∈ LSL using (a7), and so

[α+γ]ϕ ↔ [β]ϕ∧[γ]ϕ ∈ LSL by the assumption which means that [α+γ]ϕ ↔ [β +γ]ϕ ∈ LSL using

(a7) again. Hence, we obtain the Boolean algebra F of equivalence classes [ϕ ], where oF([ϕ1], . . . , [ϕn]) =
[o(ϕ1, . . . ,ϕn)] for all Boolean operators o, and the join-semilattice G of equivalence classes [α ], where

oG([α1], . . . , [αn]) = [o(α1, . . . ,αn)] for all o ∈ {0,+}. (The fact that G is a join-semilattice is easily

shown using the reduction axioms: for instance, [α +α ] = [α ] since [α +α]ϕ ≡ [α]ϕ and 〈α +α]ϕ ≡
〈α]ϕ which means that β ∈ [α +α ] iff β ∈ [α ]ϕ . Moreover, let [] and 〈] be functions of the type

F×G → F such that

[[α ]][ϕ ] = [[α]ϕ ] and 〈[α ]][ϕ ] = [〈α]ϕ ]

(note that these functions are well defined since ≡ and ≡Tm are both congruences). The canonical

LSL-frame is CLSL = (F,G,[],〈]). It is clear that ϕ ∈ LSL iff ϕ ≈ ⊤ is valid in CLSL (Prime Filter

Theorem). Hence, if ϕ /∈ LSL, then there is a js-frame that invalidates ⊤≈ ϕ , establishing our claim by

contraposition.

10The definition of the canonical LSL-frame resembles the definition of the basic canonical L-frame from Example 4. How-

ever, we cannot use BLSL here since the group algebra GLSL in BLSL is not a join-semilattice – it is the term algebra. Hence,

we have to define a suitable LSL-congruence on the term algebra and prove that it gives rise to a join-semilattice.
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A.6 Proof of Theorem 4 (Completeness of right-unital magma logic)

Proof. ϕ ∈ LRUM implies ϕ ∈ Log(rFRUM). It is sufficient to check that the extra axioms (13–16)

of LRUM are valid in all relational rum-frames. The validity of (13–14) is clear. To show that (15) is

valid, we reason as follows: w 6|= [α][β]ϕ iff there are r ∈ JαK(w), u ∈ r(w) and q ∈ Jβ K(u) such that

q(u) 6⊆ JϕK iff11 there are r ∈ JαK(w), u ∈W and q′ ∈ Jβ K† such that r(w,u) and q′(u) 6⊆ JϕK iff there is

s ∈ Jα ·β K(w) such that s(w) 6⊆ JϕK iff w 6|= [α ·β]ϕ . To show that (16) is valid, we reason as follows:

w |= 〈α ·β]ϕ iff there is r ∈ JαK(w) ◦ Jβ K† such that r(w) ⊆ JϕK iff there are q ∈ JαK(w) and s ∈ Jβ K†

such that (q ◦ s)(w) ⊆ JϕK iff there are q ∈ JαK(w) and s ∈ Jβ K† such that s(q(w)) ⊆ JϕK iff there is

q ∈ JαK(w) such that for all u ∈ q(w), if Jβ K(u) 6= /0, then there is t ∈ Jβ K(u) such that t(u) ⊆ JϕK iff

u |= 〈α]([β〉⊥∨ 〈β]ϕ).

ϕ ∈ Log(rFRUM) implies (⊤ ≈ ϕ) ∈ Eq(FRUM). We reason by contraposition. Fix a rum-frame

A = (F,G,[],〈]) and an evaluation function e such that e(ϕ) 6= e(⊤) for some ϕ ∈ FmΣM
. We define

the relational ΣM-frame F = (Uf(F),R,H) where R = (2Uf(F))Uf(F) and H = (H,1H, ·H) is specified as

follows: H = {H(α) | α ∈ T mΣM
} where H(α) ∈ (2R)Uf(F) such that

• H(a)(u) = {re(a),e(ϕ) | e(〈a]ϕ) ∈ u};

• H(1)(u) = 1H(u) = {idUf(F)}; and

• H(α ·β )(u) = (H(α) ·H H(β ))(u) = (H(α)⊗H(β )(u) = H(α)(u)◦H(β )†.

It is clear that F is a relational rum-frame. We define V : T m∪Fm → 2Uf(F) ∪H by V (χ) = ê(χ) and

V (α) = H(α). We show that V is an interpretation function on F. V is a Boolean homomorphism by

the properties of ultrafilters and it is a ΣM-homomorphism from T m to H by the definition of H(α).
(For instance, V (α · β )(u) = H(α · β )(u) = H(α)(u)⊗H(β )† = (V (α) ·H V (β ))(u) for all u; hence,

V (α ·β ) = (V (α) ·H V (β ).) It remains to establish the leftmost equalities in the following:

(i) V ([γ]χ) = [V (γ)]V (χ) = {w | ∀r ∈ H(γ ,w) : r(w)⊆ ê(χ)}; and

(ii) V (〈γ]χ) = 〈V (γ)]V (χ) = {w | ∃r ∈ H(γ ,w) : r(w)⊆ ê(χ)}.

We show both by induction on the complexity of γ . (i) The base case γ ∈ Gr is established similarly as

the corresponding case in the proof of Lemma 1, since H(γ) is in this case defined as G(γ) in the ultrafil-

ter frame. The case γ = 1 is established as follows: w ∈V ([1]χ) iff e([1]χ) ∈ w iff [e(1)]e(χ) ∈ w iff

[1]e(χ)∈w iff (using axiom 9) e(χ)∈w iff ∀r ∈H(1,w) : r(w)⊆ ê(χ) iff ∀r ∈H(1,w) : r(w)⊆V (χ) iff

w ∈ [V (1)]V (χ). The case γ = α ·β is established as follows: w ∈V ([α ·β]χ) iff [e(α) · e(β )]e(χ) ∈
w iff (using axiom 11) [e(α)][e(β )]e(χ) ∈ w iff w ∈ V ([α][β]χ) iff (by induction hypothesis ap-

plied to α) ∀r ∈ H(α ,w)∀u(r(w,u) → u ∈ V ([β]χ)) iff (by induction hypothesis applied to β ) ∀r ∈
H(α ,w)∀u(r(w,u) → (∀q ∈ H(β ,u) : q(u) ⊆ V (χ))) iff ∀r,q(r ∈ H(α ,w) & q ∈ H(β )† → q(r(w)) ⊆
V (χ)) iff ∀r,q(r ∈ H(α ,w) & q ∈ H(β )† → (r◦q)(w)⊆V (χ)) iff ∀s ∈ H(α ,w)◦H(β )† : s(w)⊆V (χ)
iff ∀s ∈H(α ·β ,w) : s(w)⊆V (χ) iff w ∈ [H(α ·β )]V (χ) iff w ∈ [V (α ·β )]V (χ). Part (ii) is established

similarly, using axiom (10) in the case γ = 1 and axiom (12) in the case γ = α ·β .

(⊤≈ ϕ) ∈ Eq(FRUM) implies ϕ ∈ LRUM. We define the canonical LRUM-frame CLM similarly as

we defined CLSL in the third part of the proof of Theorem 3, but we use LRUM instead of LSL, of course.

We have to show in our specific setting that (i) ≡Tm is a congruence and that (ii) G is a right-unital

magma. (i) is established using axioms (15–16). To establish (ii), we need to show that [1] is the right

11Left to right: define q′ so that q′(u) = q(u) and q′(v) for v 6= u is fixed in an arbitrary way so that q′ ∈ JβK† (this can always

be done). Right to left: If q′ ∈ JβK† and q′(u) 6= /0, then by definition there has to be q ∈ JβK(u) such that q(u) = q′(u).
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unit with respect to ⊗G: to see this, it is sufficient to observe that [α · 1]ϕ ≡ [α][1]ϕ ≡ [α]ϕ and

〈α ·1]ϕ ≡ 〈α]([1〉⊥∨ 〈1]ϕ)≡ 〈α]ϕ . Hence, α ≡Tm α ·1.

As before, the Prime Filter Theorem entails that ϕ ∈ LRUM iff ϕ ≈⊤ is valid in CLRUM. Hence, if ϕ /∈
LRUM, then there is a rum-frame that invalidates ⊤≈ ϕ , establishing our claim by contraposition.

A.7 Proof of Theorem 5 (Completeness of closure semilattice logic)

Proof. ϕ ∈ LCS implies ϕ ∈ Log(rFCS). Validity of axioms (21–26) in relational cs-models is easily

checked. The rule
〈α]ϕ → 〈β]ϕ

〈α∩]ϕ → 〈β∩]ϕ
preserves validity: Assume there is a counterexample to the con-

clusion of the rule (we may assume φ = p is atomic). Assume w |= 〈α∩]p and w 6|= 〈β∩]p. Then

w 6|= 〈β]p. We want to show that there is |=′ such that w |=′ 〈α]p and w 6|=′ 〈β]p. We know that α

cannot be 0 since 0∩ = 0. If α = γ∩ then we are done (|=′ is |=). Then there is a non-empty X ⊆ JαK(w)

such that
⋂

r∈X r(x) ⊆ JpK (W.l.o.g. we consider X to be a minimal nonempty such set). Now define for

each a ∈ Gr the relation ra =
⋂
{r ∈ X | r ∈ JaK(w)} and define JaK′(w) = JaK(w)∪{ra} in case ra 6= /0,

and JaK′(w) = JaK(w)} otherwise. The interpretations JγK′ of complex γ are computed as usual. We can

then prove by induction on α ,β that w |=′ 〈α]p while w 6|=′ 〈β]p.

ϕ ∈ Log(rFCS) implies (⊤ ≈ ϕ) ∈ Eq(FCS). We reason by contraposition. Fix a cs-frame A =
(F,G,[],〈]) and an evaluation function e such that e(ϕ) 6= e(⊤) for some ϕ ∈ FmΣM

. Let Γ be the

smallest set that contains ϕ and ⊤, is closed under taking subformulas, and

• [α]χ ∈ Γ iff 〈α]χ ∈ Γ

• [α +β]χ ∈ Γ only if [α]χ ∈ Γ and [β]χ ∈ Γ

• 〈α +β]χ ∈ Γ only if 〈α](¬〈β]⊤∨ 〈β]χ) ∈ Γ

• [α∩]χ ∈ Γ only if [α]χ ∈ Γ

• 〈α∩]χ ∈ Γ only if 〈α]⊤ ∈ Γ

It is easily seen that Γ is always finite. For x ∈ F and a ∈ G such that x = e(χ) and a = e(α) for some

[α]χ ∈ Γ, we define

rΓ
a,x : w 7→

⋂
{ê(ψ) | [α]ϕ ∈ Γ & e([α]χ) ∈ w}∩ x̂ .

For other pairs of x,a we define rΓ
a,x : w 7→ /0.

We define the relational frame FΓ = (Uf(F),R,H) as before, but this time H = (H,0H,+H, ∩
H

) is

specified using the relations rΓ
a,x as follows:

• H(a)(u) = {rΓ
e(a),e(ϕ) | e(〈a]ϕ) ∈ u};

• H(0)(u) = 0H(u) = /0;

• H(α +β )(u) = (H(α)+H H(β ))(u) = H(α)(u)∪H(β )(u); and

• H(α∩)(u) = H(α)∩
H

(u) = {r ∈ R | r(u) =
⋂

q∈X q(w) for some non-empty X ⊆ H(u)}.

It is clear that F is a relational cs-frame. We define V : T m∪Fm → 2Uf(F) ∪H by V (χ) = ê(χ) and

V (α) = H(α). We show that V is an interpretation function on F. V is a Boolean homomorphism by the

properties of ultrafilters and it is a Σ-homomorphism from T m to H by the definition of H(α). We would

like to establish the leftmost equalities in the following:
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(i) If [γ]χ ∈ Γ, then V ([γ]χ) = [V (γ)]V (χ) = {w | ∀r ∈ H(γ ,w) : r(w)⊆ ê(χ)}; and

(ii) if [γ]χ ∈ Γ, then V (〈γ]χ) = 〈V (γ)]V (χ) = {w | ∃r ∈ H(γ ,w) : r(w)⊆ ê(χ)}.

(i) can be show easily by induction on the complexity of γ . However, similarly to the extensional case,

only the ⊇ inclusion of (ii) can be shown to hold for FΓ. Here we can use the standard technique of

splitting to transform FΓ into a correct relational cs-frame (see the extended version of [2]). We omit the

details.

(⊤≈ ϕ) ∈ Eq(FCS) implies ϕ ∈ LCS. We define the canonical LCS-frame CLCS similarly as we de-

fined CLSL in the third part of the proof of Theorem 3, but we use LCS instead of LSL, of course. We have

to show in our specific setting that (i) ≡Tm is a congruence and that (ii) G is a closure semilattice. Both

items are checked using the corresponding closure axioms, and the rule (to show that ∩ is a monotonic

operator on the ≡Tm-quotient algebra).
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In earlier work, we introduced the framework of language-based decisions, the core idea of which

was to modify Savage’s classical decision-theoretic framework [6] by taking actions to be descrip-

tions in some language, rather than functions from states to outcomes, as they are defined classically.

Actions had the form “if ψ then do(ϕ)”, where ψ and ϕ were formulas in some underlying language,

specifying what effects would be brought about under what circumstances. The earlier work allowed

only one-step actions. But, in practice, plans are typically composed of a sequence of steps. Here,

we extend the earlier framework to sequential actions, making it much more broadly applicable. Our

technical contribution is a representation theorem in the classical spirit: agents whose preferences

over actions satisfy certain constraints can be modeled as if they are expected utility maximizers. As

in the earlier work, due to the language-based specification of the actions, the representation theorem

requires a construction not only of the probability and utility functions representing the agent’s be-

liefs and preferences, but also the state and outcomes spaces over which these are defined, as well as

a “selection function” which intuitively captures how agents disambiguate coarse descriptions. The

(unbounded) depth of action sequencing adds substantial interest (and complexity!) to the proof.

1 Background and motivation

In earlier work, we introduced the framework of language-based decisions [2], the core idea of which

was to modify Savage’s classical decision-theoretic framework [6] by taking actions to be descriptions

in some language, rather than functions from states to outcomes, as they are defined classically. Actions

had the form “if ϕ then do(ψ)”, where ϕ and ψ were formulas in some underlying language, specifying

what effects would be brought about under what circumstances.1 For example, a statement like “If

there is a budget surplus then do(MW = 15) else no-op” would be an action in this framework, where

MW = 15 represents the minimum wage being $15, and no-op is the action of doing nothing. The effect

of the action do(MW = 15) is to bring about a state where the minimum wage is $15. But this does not

completely specify the state. (Do businesses close? Is there more automation so jobs are lost? Are no

jobs lost and more people move into the state?)

In this context, we proved a representation theorem in the classical spirit: agents whose preferences

over actions satisfy certain constraints can be modeled as if they are expected utility maximizers. This

requires constructing not only probability and utility functions (as is done classically), but also the state

and outcome spaces on which these functions are defined, and a selection function that describes which

state will result from an underspecified action like do(MW = 15). In this construction the state and out-

come spaces coincide; intuitively, this is because the tests that determine whether an action is performed

(“If ϕ then...”) and the actions themselves (“do(ψ)”) are described using the same language.

1This work in turn extended previous work by Blume, Easley, and Halpern [3] in which the tests in actions, but not the

effects of actions, were specified in a formal language.

http://dx.doi.org/10.4204/EPTCS.379.12
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The earlier work allowed only one-step actions. But, in practice, plans are typically composed of a

sequence of steps, and we must choose among such plans: Do I prefer to walk to the cafe and then call

my friend if the cafe is open, or would it be better to call my friend first, then walk to the cafe and call

them back if it’s closed? Should I ring the doorbell once, or ring it once and then a second time if no one

replies to the first? Here, we extend the earlier framework to sequential actions, making it much more

broadly applicable.

At a technical level, a decision-theoretic framework in which the state and outcome spaces coincide is

the perfect setting in which to implement sequential actions, since—given that the actions are understood

as functions—we have an immediate and natural way to “put them in sequence”, namely, by composing

the corresponding functions.

Our contribution in this paper is, first, to lay the mathematical groundwork for reasoning about

sequential, language-based actions (Section 2), and second, to prove a representation theorem analogous

to earlier such results (Section 3): roughly speaking, agents whose preferences over sequential actions

satisfy certain axioms can be understood as if their preferences are derived by maximizing the expected

value of a suitable utility function. Proving this result is substantially harder in the present setting, owing

to the more complex nature of sequential actions (including but not limited to the fact that we allow

sequential nesting to be arbitrarily deep). The reader is thus forewarned that the main result depends on

a fairly lengthy, multi-stage proof.

2 Sequential language-based actions

The framework presented in this section is an expansion of that developed in [2]. We begin with the

same simple, formal language: let Φ denote a finite set of primitive propositions, and L the propositional

language consisting of all Boolean combinations of these primitives. A basic model (over L) is a tuple

M = (Ω, [[·]]M) where Ω is a nonempty set of states and [[·]]M : Φ → 2Ω is a valuation function. This

valuation is recursively extended to all formulas in L in the usual way, so that intuitively, each formula

ϕ is “interpreted” as the “event” [[ϕ ]]M ⊆ Ω. We sometimes drop the subscript when the model is clear

from context, and write ω |= ϕ rather than ω ∈ [[ϕ ]]. We say that ϕ is satisfiable in M if [[ϕ ]]M 6= /0 and

that ϕ is valid in M if [[ϕ ]]M = Ω; we write |= ϕ to indicate that ϕ is valid in all basic models.

Given a finite set of formulas F ⊆ L, the set of (sequential) actions (over F), denoted by AF , is

defined recursively as follows:

(1) for each ϕ ∈ F , do(ϕ) is an action (called a primitive action);

(2) no-op is an action (this is short for “no operation”; intuitively, it is a “do nothing” action);

(3) for all ψ ∈ L and α ,β ∈AF , not both no-op, if ψ then α else β is an action;

(4) for all α ,β ∈AF , not both no-op, α ;β is an action (intuitively, this is the action “do α and then do

β”).

In [2], actions were defined only by clauses (1) and (3). The idea of “sequencing” actions is of course

not new; the semicolon notation is standard in programming languages.

It will also be useful for our main result to have a notion of the depth of an action, which intuitively

should capture how deeply nested the sequencing is. We do so by induction. The only depth-0 action is

no-op. A depth-1 action is either (1) no-op; (2) a primitive action do(ϕ); or (3) an action of the form if

ψ then α else β , where α and β are depth-1 actions. Now suppose that we have defined depth-k actions

for k ≥ 1; a depth-(k+ 1) action is either (1) a depth-k action; (2) an action of the form if ψ then α

else β , where α and β are depth-(k+1) actions; or (3) an action of the form α ;β , where α is a depth-k1
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action, β is a depth-k2 action, and k1 + k2 ≤ k+ 1. Note that we have defined depth in such a way that

the depth-k actions include all the depth-k′ actions for k′ < k, and so that if...then constructions do not

increase depth—only sequencing does.

As in [2], given a basic model M = (Ω, [[·]]M), we want do(ϕ) to correspond to a function from Ω to Ω

whose range is contained in [[ϕ ]]M. For this reason we restrict our attention to basic models in which each

ϕ ∈ F is satisfiable, so that [[ϕ ]]M 6= /0; call such models F-rich. Moreover, in order for do(ϕ) to pick out

a function, we need some additional structure that determines, for each ω ∈ Ω, which state in [[ϕ ]]M the

function corresponding to do(ϕ) should actually map to. This is accomplished using a selection function

sel : Ω×F → Ω satisfying sel(ω ,ϕ) ∈ [[ϕ ]]M.

The intuition for selection functions is discussed in greater detail in [2]. Briefly: do(ϕ) says that

ϕ should be made true, but there may be many ways of making ϕ true (i.e., many states one could

transition to in which ϕ is true); sel picks out which of these ϕ-states to actually move to. In this way we

can think of sel as serving to “disambiguate” the meaning of the primitive actions, which are inherently

underspecified.

Note that selection functions are formally identical to the mechanism introduced by Stalnaker [9]

to interpret counterfactual conditionals. In our context, we can think of a selection function as another

component of an agent’s model of the world, to be constructed in the representation theorem: in addition

to a probability measure (to represent their beliefs) and a utility function (to capture their preferences),

we will also need a selection function (to specify how they interpret actions).

A selection model (over F) is an F-rich basic model M together with a selection function sel :

Ω×F → Ω satisfying sel(ω ,ϕ) ∈ [[ϕ ]]M. Given a selection model (M,sel) over F , we define the inter-

pretation of do(ϕ) to be the function [[do(ϕ)]]M,sel : Ω → Ω given by:

[[do(ϕ)]]M,sel(ω) = sel(ω ,ϕ).

This interpretation can then be extended to all sequential actions in AF in the obvious way:

[[if ψ then α else β ]]M,sel(ω) =

{

[[α ]]M,sel(ω) if ω ∈ [[ψ ]]

[[β ]]M,sel(ω) if ω /∈ [[ψ ]],

and

[[α ;β ]]M,sel = [[β ]]M,sel ◦ [[α ]]M,sel.

3 Representation

Let � be a binary relation on AF , where we understand α � β as saying that α is “at least as good as”

β from the agent’s subjective perspective. Intuitively, such a binary relation is meant to be reasonably

“accessible” to observers, “revealed” by how an agent chooses between binary options. As usual, we

define α ≻ β as an abbreviation of α � β and β 6� α , and α ∼ β as an abbreviation of α � β and β � α ;

intuitively, these relations represent “strict preference” and “indifference”, respectively.

We assume that � is a preference order, so is complete (i.e., for all acts α ,β ∈ AF , either α � β

or β � α) and transitive. Note that completeness immediately gives reflexivity as well. While there are

good philosophical reasons to consider incomplete relations (see [4] and the references therein), for the

purposes of this paper we adopt the assumption of completeness in order to simplify the (already quite

involved) representation result.
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A language-based SEU (Subjective Expected Utility) representation for a relation � on AF is a

selection model (M,sel) together with a probability measure Pr on Ω and a utility function u : Ω → R

such that, for all α ,β ∈AF ,

α � β ⇔ ∑
ω∈Ω

Pr(ω) ·u([[α ]]M,sel(ω))≥ ∑
ω∈Ω

Pr(ω) ·u([[β ]]M,sel(ω)). (1)

Our goal is to show that such a representation exists if the preference order satisfies one key axiom,

discussed below.

3.1 Canonical maps and canonical actions

For each a ⊆ Φ, let

ϕa =
∧

p∈a

p∧
∧

q/∈a

¬q,

so ϕa settles the truth values of each primitive propositions in the language L: it says that p is true iff it

belongs to a. An atom is a formula of the form ϕa.2 Since we are working with a classical propositional

logic, it follows that for all formulas ϕ ∈ L and atoms ϕa, the truth of ϕ is determined by ϕa: either

|= ϕa → ϕ , or |= ϕa →¬ϕ . In the framework of [2], it followed that every action could be identified with

a function from atoms to elements of F , since atoms determine whether the tests in an action hold. In

our context, however, things are not so simple: actions can be put in sequence, so even though an atom

may tell us which tests at the “first layer” hold, so to speak, it may not be enough to tell us which later

tests hold. For example, in an action like “if p then do(r) else do(r′); if q then do(¬r)”, the atom that

currently holds determines whether p holds, but tells us nothing about whether q will hold when we get

around to doing the second action in the sequence.

To deal with this, we need an outcome space that is richer than just F (i.e., richer than the set of

all primitive actions); roughly speaking, we will instead identify actions with functions from atoms to

“canonical” ways of describing the sequential structure of actions. We now make this precise.

Suppose that |2Φ| = N, so there are N atoms; call them a1, . . . ,aN . For each subset A of atoms, let

ϕA =
∨

a∈A ϕa. A basic fact of propositional logic is that for every formula ϕ , there is a unique set A of

atoms such that ϕ is logically equivalent to ϕA. Let F̃ = {ϕA : (∃ϕ ∈ F)(|= ϕA ↔ ϕ)}.

We want to associate with each action α of depth k a canonical action γα of depth k that is, intuitively,

equivalent to α . The canonical action γα makes explicit how α acts in a state characterized by an atom

a. We define γα by induction on the structure of α . It is useful in the construction to simultaneously

define the canonical map cα associated with α , a function from atoms to actions such that, for all atoms

a, cα(a) has the form no-op, do(ϕA), or do(ϕA);γβ for some set A of atoms and action β . Intuitively, cα

defines how α acts in a state characterized by an atom a. For example, if α is if a then do(ϕA) else β ,

then cα(a) = do(ϕA).

If α = no-op, then γno-op = no-op and cno-op is the constant function such that cno-op(a) = no-op for

all atoms a. If α is a depth-1 action other than no-op, then we define cα by induction on structure:

cdo(ϕ)(a) = do(ϕA), where A is the unique subset of atoms such that |= ϕA ↔ ϕ

cif ψ then α else β (a) =

{

cα(a) if |= ϕa → ψ

cβ (a) if |= ϕa →¬ψ.

2Not to be confused with atomic propositions, which is another common name for primitive propositions.
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The action γα is the depth-1 action defined as follows:

γα = if ϕa1
then cα(a1) else (if ϕa2

then cα(a2) else (· · · (if ϕaN−1
then cα(aN−1) else cα(aN))· · · ))

if at least one of cα(aN−1) or cα(aN) is not no-op. If both are no-op, then if ϕaN−1
then cα(aN−1) else

cα(aN) is not an action according to our definitions; in this case, we take

γα = if ϕa1
then cα(a1) else (if ϕa2

then cα(a2) else (· · · (if ϕam
then cα(am) else no-op)),

where m is the least index such that cα(am) 6= no-op. (If cα(am) = no-op for all m, then γα = no-op.)

If α is a depth-(k+1) action other than no-op, then we again define cα by induction on structure:

cif ψ then α else β (a) =

{

cα(a) if |= ϕa → ψ

cβ (a) if |= ϕa →¬ψ

cα ;β (a) =











cβ (a) if cα(a) = no-op

do(ϕA);γβ if cα(a) = do(ϕA)

do(ϕA);γβ ′ ;β if cα(a) = do(ϕA);γβ ′ .

The canonical action γα is defined as above for the depth-1 case.

We take CAk to be the set of canonical actions of depth k, and CMk to be the set of canonical maps

that correspond to some depth-k action. Finally, let CAk,− consist of all depth k-actions of the form

no-op, do(ϕA), or do(ϕA);γβ , where β is a depth (k−1)-action. Note that if α is a depth-k action and a

is an atom, then cα(a) ∈ CAk,−. Observe that since the set of atoms is finite, as is F̃ , it follows that for

all k, CMk, CAk, and CAk,− are also finite. This will be crucial in our representation proof.

3.2 Cancellation

As in [2, 3], the key axiom in our representation theorem is what is known as a cancellation axiom,

although the details differ due to the nature of our actions. Simple versions of the cancellation axiom go

back to [5, 7]; our version, like those used in [2, 3], has more structure. See [3] for further discussion of

the axiom.

The axiom uses multisets. Recall that a multiset, intuitively, is a set that allows for multiple instances

of each of its elements. Thus two multisets are equal just in case they contain the same elements with

the same multiplicities. We use “double curly brackets” to denote multisets, so for instance {{a,b,b}} is

a multiset, and it is distinct from {{a,a,b}}: both have three elements, but the mulitiplicity of a and b

differ. With that background, we can state the axiom:

(Canc) Let α1, . . . ,αn,β1, . . . ,βn ∈AF , and suppose that for each a ⊆ Φ we have

{{cα1
(a), . . . ,cαn

(a)}} = {{cβ1
(a), . . . ,cβn

(a)}}.

Then, if for all i < n we have αi � βi, it follows that βn � αn.

Intuitively, this says that if we get the same outcomes (counting multiplicity) using the canonical maps

for α1, . . . ,αn as for β1, . . . ,βn in each state, then we should view the collections {{α1, . . . ,αn}} and

{{β1, . . . ,βn}} as being “equally good”, so if αi is at least as good as βi for i = 1, . . . ,n− 1, then, to

balance things out, βn should be at least as good as αn. How intuitive this is depends on how intuitive

one finds the association α 7→ cα defined above; if the map cα really does capture “everything decision-

theoretically relevant” about the action α , then cancellation does seem reasonable.
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In particular, it is not hard to show that whenever α and β are such that γα = γβ (which of course

is equivalent to cα = cβ ), cancellation implies that α ∼ β . In other words, any information about α and

β that is lost in the transformation to canonical actions is also forced to be irrelevant to decisionmaking.

This means that (Canc) entails, among other things, that agents do not distinguish between logically

equivalent formulas (since, e.g., when |= ϕ ↔ ϕ ′, it’s easy to see that γdo(ϕ) = γdo(ϕ ′)).

3.3 Construction

Theorem 1. If � is a preference order on AF satisfying (Canc), then there is a language-based subjective

expected utility representation of �.

Proof. As in [2], we begin by following the proof in [3, Theorem 2], which says that if a preference order

on a set of acts mapping a finite state space to a finite outcome space satsifies the cancellation axiom, then

it has a state-dependent representation. “State-dependent” here means that the utility function constructed

depends jointly on both states and outcomes, in a sense made precise below. To apply this theorem in

our setting, we first fix k and take CMk to be the set of acts. With this viewpoint, the state space is the set

of atoms and the outcome space is CAk,−; as we observed, both are finite.

The relation � on AF induces a relation �k on CMk defined in the natural way:

cα �k cβ ⇔ α � β .

As noted, (Canc) implies that α ∼ α ′ whenever cα = cα ′ , from which it follows that �k is well-defined.

To apply Theorem 2 in [3], it must also be the case that �k is a preference order and satisfies cancellation,

which is immediate from the definition of �k and the fact that � is a preference order and satisfies

cancellation. It therefore follows that �k has a state-dependent representation; that is, there exists a

real-valued utility function vk defined on state-outcome pairs such that, for all depth-k actions α and β ,

cα �k cβ iff ∑N
i=1 vk(ai,cα (ai))≥ ∑N

i=1 vk(ai,cβ (ai)).a (2)

It follows from our definitions that for all depth-k actions α and β ,

α � β iff ∑N
i=1 vk(ai,cα(ai))≥ ∑N

i=1 vk(ai,cβ (ai)).

As we observed, we needed to restrict to depth-k actions here in order to ensure that the outcome space

is finite, which is necessary to apply Theorem 2 in [3].

Our next goal is to define a selection model M = (Ωk, [[·]]M ,sel), a probability Prk on Ωk, and a utility

function uk on Ωk such that, for all actions α and β of depth k,

α � β iff ∑
ω∈Ωk

Prk(ω)uk([[α ]]M,sel(ω))≥ ∑
ω∈Ωk

Prk(ω)uk([[β ]]M,sec(ω)). (3)

Eventually, we will construct a single (state and outcome) space Ω∗, a probability Pr∗ on Ω∗, and a utility

u∗ on Ω∗ that we will use to provide a single representation theorem for all actions, without the restriction

to depth k, but we seem to need to construct the separate spaces first.

As a first step to defining Ωk, define a labeled k-tree to be a balanced tree of depth k whose root is

labeled by an atom such that each non-leaf node has exactly N children, labeled a1, . . . ,aN , respectively.

An ordered labeled k-tree (k-olt) is a labeled k-tree where, associated with each non-leaf node, there is a

total order on its children. We assume that in different labeled k-trees, the nodes come from the same set,

and corresponding nodes have the same label, so there is a unique labeled k-tree and k-olts differ only in
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the total order associated with each non-leaf node and the label of the root. Let T k consist of all k-olts.

For k′ ≥ k, a (k′)-olt sk′ extends (or is an extension of ) a k-olt sk if sk is the prefix of sk′ of depth k; we

call sk the projection of sk′ onto depth k.

The intuition behind a k-olt is the following: the atom associated with the root r describes what is

true before an action is taken. For each non-leaf node t, the total order associated with t on the children

of t describes the selection function at t (with children lower in the order considered “closer”). For

example, suppose that there are two primitive propositions, p and q. Then there are four atoms. If we

take the action do(ϕ) starting at r, we want to “move” to the “closest” child of r satisfying ϕ , which is

the child lowest in the ordering associated with r. For example, suppose that the total order on the atoms

associated with r is ¬p∧q < ¬p∧¬q < p∧¬q < p∧q. Then if we take the action do(p∨q) starting at

r, we move to the child labeled with the atom ¬p∧q; if we instead do do(p∨¬q), we move to the child

labeled ¬p∧¬q; and if instead we do if q then do(p∨ q) else do(p∨¬q), which of these two children

we move to depends on whether q is true at the atom labeling r. For an action do(p∨q);do(p∨¬q), we

move further down the tree. The first action, do(p∨ q), takes us to the child t of r labeled ¬p∧ q. We

then take the action do(p∨¬q) from there, which gets us to a child of t. Which one we get to depends

on the ordering of the children of t associated with t.

It turns out that our states must be even richer than this; they must in addition include a k-progress

function g that maps each node t in a k-olt sk to a descendant of t in sk. We give the intuition behind

progress functions shortly. We take Ωk to consist of all pairs (sk,g), where sk ∈ T k and g is a k-progress

function and for each primitive proposition p ∈ Φ, we define

[[p]] = {(sk,g) : p ∈ a, where a labels g(r) and r is the root of sk}.

We now want to associate with each depth-k action α a function fα : Ωk → Ωk; intuitively, this is the

transition on states that we want to be induced by the selection function. To begin, we define fα only on

states of the form (sk, id), where id is the identity function. We take fα(s
k, id) = (sk,gα ,sk), where gα ,sk is

defined formally below. Intuitively, if t is a node at depth k′ of sk, then gα ,sk(t) describes the final state if

the action α were to (possibly counterfactually) end up at the node t after running for k′ steps, and then

continued running.

Given a k-olt sk whose root r is labeled a and an action α of depth at most k, we define gα ,sk(t) by

induction on the depth of α . For the base case, we take gno-op,sk = id. Now suppose inductively that α

has depth m and we have defined gα ′,sk for all actions α ′ of depth m−1. There are three cases to consider.

(1) If cα(a) = no-op, then gα ,sk = id. (2) If cα(a) = do(ϕA), then gα ,sk(r) is the “closest” (i.e., minimal)

child t ′ of r among those labelled by an atom in A, according to the total order labeling r; gα ,sk(t) = t

for all nodes t 6= r. (3) If cα(a) = do(ϕA);γβ (which means β is an action of depth at most m−1), then

gα ,sk(r) = gβ ,sk,t′ (t ′), where t ′ = gdo(ϕA),sk(r) and sk,t ′ is the (k−1)-subolt of sk rooted at t ′. The intuition

here is that gα ,sk(r) is supposed to output the descendent of r that is reached by doing α ; the fact that

cα(a) = do(ϕA);γβ tells us that the way α works (in a state where a holds) is by first making ϕA true,

and then following up with β . This means we must first move to the “closest” child of r where ϕA holds,

which is t ′, and subsequently moving to whichever descendant of t ′ that β directs us to (which is defined,

by the inductive hypothesis). Finally, if t 6= r, let t ′′ be the first step on the (unique) path from r to t

and let sk,t ′′ be the (k−1)-subolt of sk rooted at t ′′. Then gα ,sk(t) = gβ ,sk,t′′ (t) (where, once again, this is

defined by the inductive hypothesis). This essentially forces us to “follow” the unique path from r to t,

and then continue from that point by doing whatever the remaining part of the action α demands. It is

clear from this definition that if the root of sk is labeled by a, then gα ,sk = gcα (a),sk .

We now extend fα to states of the form (sk,gβ ,sk) by setting fα(s
k,gβ ,sk ) = fβ ;α (s

k, id). Intuitively,



138 Sequential Language-based Decisions

the state (sk,gβ ,sk ) is a state where β has “already happened” (i.e., it’s the state we would arrive at by

doing β in (sk, id)) so doing α in this state should be the same as doing first β then α in (sk, id).

Observe that a k-progress function gα ,sk not only tells us the node that α would reach if it started

at the root of sk, but also gives a great deal of counterfactual information about which nodes would be

reached starting from anywhere in sk. This is in the same spirit as subgame-perfect equilibrium [8],

which can depend on what happens at states that are never actually reached in the course of play, but

could have been reached if play had gone differently. Like this game-theoretic notion, our representation

theorem requires a kind of counterfactual information.

In light of (2), to prove (3), it suffices to define our selection function sel so that [[α ]]M,sel = fα , and

find Prk and uk such that for all actions α of depth k,

N

∑
i=1

vk(ai,cα(ai)) = ∑
(sk,g)∈Ωk

Prk(sk,g)uk( fα(s
k,g)). (4)

Our definition of fα is set up to make defining the right selection function straightforward: we simply

set sel((sk,g),ϕ) = fdo(ϕA)(s
k,g), where A is the unique set of atoms such that |= ϕA ↔ ϕ . It is then easy

to check that [[α ]]M,sel = fα .

Define Prk(sk,g) = 0 if g 6= id, and Prk(sk, id) = 1/|T k| for all sk ∈ T k. Given this, to establish (4), it

suffices to define uk such that for all actions α of depth k,

|T k|
N

∑
i=1

vk(ai,cα(ai)) = ∑
sk∈T k

uk( fα(s
k, id)). (5)

Given an atom a, let T k
a consist of all k-olts whose root is labeled by a. By definition of fα , to prove

(5), it suffices to prove, for each atom a ∈ {a1, . . . ,aN} and all actions α of depth k, that

|T k|vk(a,cα (a)) = ∑
sk∈T k

a

uk(sk,gα ,sk) = ∑
sk∈T k

a

uk(sk,gcα (a),sk), (6)

where the second equality follows from the fact, observed above, that gα ,sk = gcα (a),sk whenever sk ∈ T k
a .

Since vk is given, for each depth-k action cα(a), the left-hand side of (6) is just a number. Replace

each term uk(sk,gcα (a),sk) for sk ∈ T k
a by the variable xsk,g

cα (a),sk
. This gives us a system of linear equations,

one for each action cα(a), with variables xsk,g, where the coefficient of xsk,g in the equation corresponding

to action α is either 1 or 0, depending on whether gα ,sk = g. We want to show that this system has a

solution.

We can describe the relevant equations as the product MX = U of matrices, where M is a matrix

whose entries are either 0 or 1, and X is a vector of variables (namely, the variables xsk,g). The matrix M

has one row corresponding to each action in CAk,− (since, for all actions α of depth k, cα(a) ∈CAk,−),

and one column corresponding to each state (sk,g) with sk ∈ T k
a . The entry in M in the row corresponding

to the action γα and the column corresponding to (sk,g) is 1 if gγa,sk = g (i.e., if fα(s
k, id) = (sk,gα ,sk) =

(sk,g)) and 0 otherwise. A basic result of linear algebra tells us that this system has a solution if the rows

of the matrix M (viewed as vectors) are independent. We now show that this is the case.

Let rα be the row of M indexed by action α ∈ CAk,−. Suppose that a linear combination of rows is

0; that is, ∑α dα rα = 0, for some scalars dα . The idea is to put a partial order ❂ on CAk,− and show by

induction on ❂ that for all α ∈CAk, the coefficient dα = 0.
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We define ❂ as follows. We take no-op to be the minimal element of ❂. For actions α = doϕA;γβ

and α ′ = do(ϕA′);γβ ′ (where we take γβ to be no-op if α = do(ϕA) and similarly for γβ ′ ), α ❂ α ′ iff

either (1) A ) A′, (2) A = A′, β 6= no-op, and β ′ = no-op, or (3) A = A′, cβ (a)❂ cβ ′(a) for all atoms a.

We show that dα = 0 by induction assuming that dα ′ = 0 for all actions α ′ ∈CAk,− such that α ❂ α ′.

For the base case, α = no-op. Consider the k-progress function gk
no-op such that gk

no-op(t) = t for all nodes

t in a k-olt. Note that gno-op(s
k, id) = gk

no-op for all k-olts sk. It is easy to see that if β has the form do(ϕA)

or do(ϕA);γβ ′ , then for all k-olts sk, gβ ,sk 6= gk
no-op (since for the root r of sk, gβ ,sk (r) 6= r). Thus, the entry

of rno-op corresponding to the column (sk,gk
no-op) is 1, while the entry of dβ for β 6= no-op corresponding

to this column is 0. It follows that dno-op = 0.

For the general case, suppose that we have an arbitrary action α 6= no-op in CAk,− and dα ′ = 0

for all α ′ ∈ CAk such that α ❂ α ′. We now define a k-olt sk,α ∈ T k
a such that if gα ′,sk,α = gα ,sk,α and

α 6= α ′, then α ❂ α ′, so dα ′ = 0 by the induction hypothesis. Once we show this, it follows that dα = 0

(since otherwise the entry in ∑α ′ dα ′rα ′ corresponding to gα ,sk,α would be nonzero). We construct sk,α by

induction on the depth of α . If α has depth 1 and is not no-op, it must be of the form do(ϕA) for some

set A of atoms. Suppose that b ∈ A. Let the total order at the root of sk,α be such that the final elements

in the order are the elements in A, and b is the first of these. For example, if A = {b,c,d}, we could

consider an order where the final three elements are b, c, and d (or b, d, and c). Note that if r is the root

of sk,α , then gα ,sk,α (r) is the child tb of r labeled b. Now consider an action α ′ of the form do(ϕA′);β (β

may be no-op). If A′ contains an element not in A, then gα ,sk,α (r) 6= tb (because there will be an atom in

A′ that is greater than b in the total order at r). If A′ ⊂ A, then α ≻ α ′, as desired. And if A = A′ and

α 6= α ′, then α ′ = ϕA;γβ and β 6= no-op, so it is easy to see that gα ′,sk,α (r) 6= tb = gα ,sk,α (r).

Suppose that m > 1 and we have constructed sk,β for all actions β ∈CAk,− of depth less than m. We

now show how to construct sk,α for actions α ∈ CAk,− of depth m that are not of depth m− 1 . This

means that α must have the form do(ϕA);β . We construct the total order at r as above, and at the subtree

of sk,α whose root is the child of r labeled a, we use the same orderings as in sk−1,cβ (a), which by the

induction hypothesis we have already determined. It now follows easily from the induction hypothesis

that if gα ′,sk,α = gα ,sk,α′ and α 6= α ′, then α ❂ α ′. This completes the argument for (6).

The argument above gives us a representation theorem for each k that works for actions of depth k.

However, we are interested in a single representation theorem that works for all actions of all depths

simultaneously. The first step is to make the state-dependent utility functions v1,v2, . . . that we began

with (one utility function for each k in the argument above) v-compatible, in the sense that if α is a

depth-k action and k′ > k, then vk(a,cα (a)) = vk′(a,cα (a)). That is, we want to construct a sequence

(v1,v2,v3, . . .) of v-compatible utility functions, each of which satisfies (2). We proceed as follows.

We can assume without loss of generality that each utility function has range in [0,1], by applying

an affine transformation. (Doing this would not affect (2).) For each utility function vk let vki, for i ≤ k,

be the restriction of vk to actions of depth i. Thus, vkk = vk. Now consider the sequence v11,v21,v31, . . .
It must have a convergent subsequence, say vm1,1,vm2,1,vm3,1, . . .. Say it converges to w1. Now consider

the subsequence vm2,2,vm3,2, . . .. (We omit vm1,2, since we may have m2 = 1, in which case vm1,2 is not

defined.) It too has a convergent subsequence. Say it converges to w2. Continuing this process, for

each k, we can find a convergent subsequence, which is a subsequence of the sequence we found for

k− 1. It is easy to check that the limits w1,w2,w3, . . . of these convergent subsequences satisfy (2) and

are v-compatible (since, in general, vki is v-compatible with vk j for i, j ≤ k). For the remainder of this

discussion, we assume without loss of generality that the utility functions in the sequence v1,v2, . . . are

v-compatible.

Note that it follows easily from our definition that probability measures in the sequence Pr1,Pr2, . . .
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are Pr-compatible in the following sense: If k′ > k, (sk, id) ∈ Ωk, and Ek′(sk, id) consists of all the pairs

(tk′ , id) such that sk is the projection of tk′ onto depth k, then Prk(sk, id) = Prk′(Ek′(sk, id)). We will also

want a third type of compatibility among the utility functions. To make this precise, define a k′-progress

function g to be k-bounded for k < k′ if for all nodes t of depth ≤ k, we have that g(t) has depth ≤ k, and

if the depth of t is greater than k, then (t) = t. Note that if α is a depth-k action, then gα ,sk′ is k-bounded.

If k′ > k and g is a k-bounded k′-progress function, then g has an obvious projection to a k-progress

function. We want the utility functions in the sequence u1,u2, . . . that satisfies (4) to be u-compatible

in the following sense: if g′ is a k′-progress function that is k-bounded, g is the projection of g′ to a k-

progress function, and sk is the projection of tk′ onto depth k, then uk(sk,g) = uk′(tk′ ,g′). We can assume

without loss of generality that the utility functions in the sequence u1,u2, . . . , are u-compatible. For given

a sequence u1,u2, . . ., define the sequence w1,w2, . . . as follows. Let w1 = u1. Suppose that we have

defined w1, . . . ,wk. If the (k + 1)-progress function g′ is k-bounded, define wk+1(tk+1,g′) = wk(sk,g),
where sk is the projection of tk+1 onto depth k and g is the projection of g′ to a k-progress function; if g

is not k-bounded, define wk+1(tk+1,g′) = uk+1(tk+1,g′). Clearly the sequence w1,w2, . . . is u-compatible.

Moreover, it is easy to check that (Prk,wk) satisfies (4).

We are now ready to define a single state space. Define an ∞-olt just like a k-olt, except that now the

tree is unbounded, rather than having depth k. Let Ω∞ consist of all pairs (s∞,g), where s∞ is an ∞-olt and

g is a k-bounded progress function for some k. This will be our state space. Define E∞(sk, id) by obvious

analogy to Ek′(sk, id): it consists of all the pairs (t∞, id) such that t∞ extends sk. Then, by Carathéodory’s

extension theorem [1] there is a measure Pr∞ on the smallest σ -algebra extending the algebra generated

by the sets E∞(sk, id) which agrees with Prk for all k (i.e., Prk(sk, id) = 1/|T k|= Pr∞(E∞(sk, id)). Let u∞

be defined by taking u∞(s∞,g) = uk(sk,gk) if g is k-bounded and sk is the unique k-olt that s∞ extends. It

is easy to check that this is well-defined (note that if g is k-bounded then g is k′-bounded for k′ > k, so

there is something to check here). Finally, it is easy to check that for a depth-k action α , we have that the

expected utility of α is

∑
(sk,g)∈Ωk

Pr∞(E∞(sk, id))u∞(sk,gα ,sk) = ∑
a

vk(a,cα (a)),

giving us the desired result.

4 Conclusion and Future Work

We have extended the results of [2] to allow for actions that are composed of sequences of steps, and

proved a representation theorem in this setting. More precisely, we have shown that when an agent’s

language-based preferences satisfy a suitably formulated cancellation axiom, they are acting as if they

are an expected utility maximizer with respect to some background state space Ω, a probability and utility

over Ω, and a selection function on Ω that serves to “disambiguate” the results of actions described in

the language. Allowing for (possibly unbounded) sequences of steps made the proof significantly more

complicated.

In [2], we also considered axioms regarding the preference order � that restricted properties of the

selection function in ways that are standard in the literature on counterfactual conditions (e.g., being

centered, so that sel(ω ,ϕ) = ω whenever ω |= ϕ). Although we have not checked details yet, we believe

it will be straightforward to provide axioms that similarly restrict the selection function in our setting,

and to extend the representation theorem appropriately.
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We also believe it is of interest in some contexts to consider more complex sequential actions, such

as “do ϕ until ψ”. This opens the door for potentially non-terminating actions, which of course will add

further complexity to the analysis.

Finally, and perhaps most urgently, while the cancellation axiom is quite amazing in the power it has,

it is not particularly intuitive. As shown in [3], more intuitive axioms can be derived from cancellation,

such as transitivity of the relation � or the classic principle of independence of irrelevant alternatives

(see [6]). In order to bring the technical results of this project more in line with everyday intuitions about

preference, it would be very beneficial to “factor” the cancellation axiom into weaker, but easier to intuit,

components. This is the subject of ongoing research.
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We provide a semantic characterization of AGM belief contraction based on frames consisting of a

Kripke belief relation and a Stalnaker-Lewis selection function. The central idea is as follows. Let

K be the initial belief set and K ÷φ be the contraction of K by the formula φ ; then ψ ∈ K ÷φ if and

only if, at the actual state, the agent believes ψ and believes that if ¬φ is (were) the case then ψ is

(would be) the case.

1 Introduction

Belief contraction is the operation of removing from the set K of initial beliefs a particular belief φ . One

reason for doing so is, for example, the discovery that some previously trusted evidence supporting φ

was faulty. For instance, a prosecutor might form the belief that the defendant is guilty on the basis of

his confession; if the prosecutor later discovers that the confession was extorted, she might abandon the

belief of guilt, that is, become open minded about whether the defendant is guilty or not. In their seminal

contribution to belief change, Alchourrón, Gärdenfors and Makinson ([1]) defined the notion of ”rational

and minimal” contraction by means of a set of eight properties, known as the AGM axioms or postulates.

They did so within a syntactic approach where the initial belief set K is a consistent and deductively

closed set of propositional formulas and the result of removing φ from K is a new set of propositional

formulas, denoted by K ÷φ .

We provide a new characterization of AGM belief contraction based on a so-far-unnoticed connec-

tion between the notion of belief contraction and the Stalnaker-Lewis theory of conditionals ([34, 21]).

Stalnaker introduced the notion of a selection function f taking as input a possible world w and a set

of worlds E (representing a proposition) and giving as output a world w′ = f (w,E) ∈ E , interpreted as

the closest E-world to w (an E-world is a world that belongs to E). Lewis generalized this by allowing

f (w,E) to be a set of worlds. In the Stalnaker-Lewis theory the (indicative or subjunctive) conditional ”if

φ is (were) the case then ψ is (would be) the case”, denoted by φ > ψ , is declared to be true at a world w

if and only if ψ is true at all the worlds in f (w,‖φ‖) (‖φ‖ denotes the set of worlds at which φ is true).

We consider semantic frames consisting of a Kripke belief relation on a set of states S, representing

the agent’s initial beliefs, and a Stalnaker-Lewis selection function on S× 2S representing conditionals.

Adding a valuation to such a frame yields a model. Given a model, we define the initial belief set K as

the set of formulas that the agent believes at the actual state and K ÷φ (the contraction of K by φ ) as the

set of formulas that the agent believes initially and also on the supposition that ¬φ : ψ ∈ K ÷ φ if and

only if, at the actual state, the agent (1) believes ψ and (2) believes the conditional ¬φ > ψ . We show

that, when the selection function satisfies some natural properties, the contraction operation so defined

captures precisely the set of AGM belief contraction functions.
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2 AGM contraction functions

Let At be a countable set of atomic formulas. We denote by Φ0 the set of Boolean formulas constructed

from At as follows: At⊂ Φ0 and if φ ,ψ ∈ Φ0 then ¬φ and φ ∨ψ belong to Φ0. Define φ → ψ , φ ∧ψ ,

and φ ↔ ψ in terms of ¬ and ∨ in the usual way.

Given a subset K of Φ0, its deductive closure Cn(K) ⊆ Φ0 is defined as follows: ψ ∈ Cn(K) if and

only if there exist φ1, ...,φn ∈ K (with n ≥ 0) such that (φ1 ∧ ...∧φn)→ ψ is a tautology. A set K ⊆ Φ0

is consistent if Cn(K) 6= Φ0; it is deductively closed if K = Cn(K). Given a set K ⊆ Φ0 and a formula

φ ∈ Φ0, the expansion of K by φ , denoted by K +φ , is defined as follows: K +φ =Cn(K ∪{φ}).
Let K ⊆ Φ0 be a consistent and deductively closed set representing the agent’s initial beliefs and

let Ψ ⊆ Φ0 be a set of formulas representing possible candidates for withdrawal. A belief contraction

function (based on K and Ψ) is a function ÷Ψ : Ψ → 2Φ0 (where 2Φ0 denotes the set of subsets of Φ0)

that associates with every formula φ ∈ Ψ a set K ÷Ψ φ ⊆ Φ0 (interpreted as the result of removing φ

from K). If Ψ 6= Φ0 then ÷Ψ is called a partial contraction function, while if Ψ = Φ0 then ÷Φ0
is called

a full-domain contraction function; in this case we simplify the notation and omit the subscript Φ0.

Definition 1. Let ÷Ψ : Ψ → 2Φ0 be a partial contraction function and ÷′ : Φ0 → 2Φ0 a full-domain

contraction function (both of them based on K). We say that ÷′ is an extension of ÷Ψ if, for every φ ∈ Ψ,

K ÷′ φ = K ÷Ψ φ .

A full-domain contraction function is called an AGM contraction function if it satisfies the following

properties, known as the AGM postulates:

(K−1) [Closure] K ÷φ =Cn(K ÷φ).
(K−2) [Inclusion] K ÷φ ⊆ K.

(K−3) [Vacuity] If φ /∈ K then K ⊆ K ÷φ .

(K−4) [Success] If φ is not a tautology, then φ /∈ K ÷φ .

(K−5) [Recovery] If φ ∈ K then K ⊆ (K ÷φ)+φ .

(K−6) [Extensionality] If φ ↔ ψ is a tautology, then K ÷φ = K ÷ψ .

(K−7) [Conjunctive overlap] (K ÷φ)∩ (K÷ψ)⊆ K ÷ (φ ∧ψ).
(K−8) [Conjunctive inclusion] If φ /∈ K ÷ (φ ∧ψ), then K ÷ (φ ∧ψ)⊆ K ÷φ .

(K−1) requires the result of contracting K by φ to be a deductively closed set.

(K−2) requires the contraction of K by φ not to contain any beliefs that were not in K.

(K−3) requires that if φ is not in the initial belief set, then every belief in K should also be present in

K ÷φ (thus, by (K−2) and (K−3), if φ /∈ K then the contraction of K by φ coincides with K).

(K−4) requires that φ not be contained in K ÷ φ , unless φ is a tautology (in which case, by (K−1), it

must be in K ÷φ ).

(K−5) is a conservativity requirement: when φ ∈ K, contracting by φ and then expanding the resulting

set K ÷ φ by φ should involve no loss of beliefs relative to K (the converse inclusion (K ÷ φ)+ φ ⊆ K

follows from (K−2) and the hypothesis that K =Cn(K)).

(K−6) says that logically equivalent formulas should lead to the same result in terms of contraction.

By (K−7), if a formula χ ∈ K is neither removed in the contraction of K by φ nor in the contraction of

K by ψ , then χ should not be removed in the contraction of K by the conjunction φ ∧ψ .

(K−8), on the other hand, requires that if φ is removed when we contract by φ ∧ψ , then every formula

that survives the contraction of K by φ ∧ψ survives also when K is contracted by φ alone.

For an extensive discussion of the above postulates see [11, 17, 6].
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The notion of AGM belief contraction has been given alternative characterizations. One characteriza-

tion is in terms of a binary relation 6 of ”epistemic entrenchment” on K, with the interpretation of φ 6 ψ

as ”φ is either less entrenched than, or as entrenched as, ψ”. Gärdenfors ([11, Theorem 4.30, p. 96])

shows that if the relation 6 satisfies five properties and a contraction function is defined by ‘ψ ∈ K÷φ if

and only if ψ ∈ K and either φ is a tautology or φ < (φ ∨ψ)’, then such contraction function is an AGM

contraction function and, conversely, if an AGM contraction function is used to define the relation 6 by

‘φ 6 ψ if and only if either φ /∈ K ÷ (φ ∧ψ) or φ ∧ψ is a tautology’ then such relation satisfies those

five properties. Another characterization makes use of the set W of possible worlds, where a possible

world is defined as a maximally consistent set of formulas in Φ0; within this approach, contraction has

been characterized either in terms of systems of spheres ([13, 21]) or in terms of a plausibility relation

on W or in terms of propositional selection functions (see [6, Chapter 4]).

In this paper we provide an alternative characterization in terms of Stalnaker-Lewis conditionals.

3 An alternative semantic characterization of AGM contraction

Given a binary relation R ⊆ S×S on a set S, for every s ∈ S we define R(s) = {x ∈ S : (s,x) ∈ R}.

Definition 2. A pointed frame is a quadruple 〈S,s@,B, f 〉 where

1. S is a set of states; subsets of S are called events.

2. s@ ∈ S is a distinguished element of S interpreted as the actual state.

3. B ⊆ S×S is a binary belief relation on S which is serial: ∀s ∈ S, B(s) 6=∅.

4. f : B(s@)×2S \∅→ 2S is a Stalnaker-Lewis selection function1 that associates with every state-

event pair (s,E) (with s ∈ B(s@) and ∅ 6= E ⊆ S) a set of states f (s,E)⊆ S such that,

(a) (a.1) f (s,E) 6=∅ and (a.2) (Success) f (s,E)⊆ E,

(b) (Weak Centering) if s ∈ E then s ∈ f (s,E),

(c) (Doxastic Priority 1) if B(s@)∩E 6=∅ then f (s,E)⊆ B(s@)∩E,

(d) (Intersection) f (s,E)∩F ⊆ f (s,E ∩F),

(e) (Doxastic Priority 2) Let BEF = {s ∈ B(s@) : f (s,E)∩F 6=∅}. If BEF 6=∅ then

(e.1) if s ∈ BEF then f (s,E ∩F)⊆ f (s,E)∩F,

(e.2) if s /∈ BEF then f (s,E ∩F)⊆ f (ŝ,E ∩F) for some ŝ ∈ BEF .

The set B(s) is the set of states that the agent considers possible at state s, so that B(s@) is the set

of doxastic possibilities at the actual state s@ and represents the agent’s initial beliefs. f (s,E) is the set

of states that the agent considers closest, or most similar, to state s conditional on event E .

(4.a) of Definition 2 requires f (s,E) to be non-empty and, furthermore, that every state in f (s,E) be an

E-state.

(4.b) postulates that if s is an E-state then it belongs to f (s,E), that is, s itself is one of the E-states that

are closest to s.

By (4.c) if there exists an E-state among those initially considered possible (B(s@)∩E 6= ∅), then, for

every s ∈ B(s@), the closest E-states to s must belong to B(s@)∩E .

By (4.d), the closest E-states to s that are also F-states must belong to the set of closest (E ∩F)-states to

1Note that, for the purpose of this paper, the domain of f can be taken to be B(s@)×2S \∅ rather than S×2S \∅. However,

it can easily be extended to S×2S \∅ as follows: first, fix an arbitrary function g : S \B(s@)→ B(s@) and then define, for

every s ∈ S\B(s@) and every ∅ 6= E ⊆ S, f (s,E) = f (g(s),E).
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s.

(4.e) can be viewed as an extension of (4.c): it says that if, among the states initially considered possible,

there is at least one state, call it s, that satisfies the property that among its closest E-states there is at

least one that is also an F-state, then (1) the closest (E ∩F)-states to s must belong to the intersection

f (s,E)∩F and (2) for any other state that does not satisfy the property, the closest (E ∩F)-states to it

are contained in the set of closest (E ∩F)-states to some state that does satisfy the property.

Adding a valuation to a pointed frame yields a model. Thus a model is a tuple 〈S,s@,B, f ,V 〉 where

〈S,s@,B, f 〉 is a pointed frame and V : At→ 2S is a valuation that assigns to every atomic formula p∈ At

the set of states where p is true. Given a model 〈S,s@,B, f ,V 〉 define truth of a Boolean formula φ ∈ Φ0

at a state s ∈ S, denoted by s |= φ , in the usual way:

Definition 3. Truth of a formula at a state is defined as follows:

1. if p ∈ At then s |= p if and only if s ∈V (p),

2. s |= ¬φ if and only if s 6|= φ ,

3. s |= φ ∨ψ if and only if s |= φ or s |= ψ (or both),

We denote by ‖φ‖ the truth set of φ : ‖φ‖ = {s ∈ S : s |= φ}.

Fix a model M = 〈S,s@,B, f ,V 〉 and let K = {φ ∈ Φ0 : B(s@) ⊆ ‖φ‖} (to simplify the notation,

we omit the subscript denoting the model and thus write K rather than KM); thus a Boolean formula

φ belongs to K if and only if at the actual state s@ the agent believes φ . It is shown in the Appendix

(Lemma 1) that the set K ⊆ Φ0 so defined is deductively closed and consistent. Next, for every φ ∈ Φ0

such that ‖¬φ‖ 6=∅, define K ÷φ ⊆ Φ0 as follows:

ψ ∈ K ÷φ if and only if (1)B(s@)⊆ ‖ψ‖, and

(2)∀s ∈ B(s@), f (s,‖¬φ‖) ⊆ ‖ψ‖.
(1)

In (2) below we rewrite (1) in an extended language containing a belief operator and a conditional oper-

ator, thus making the interpretation more transparent: ψ ∈ K÷φ if and only if, at the actual state s@, the

agent believes ψ initially as well as on the supposition that ¬φ .2.

Since, in general, not every φ ∈ Φ0 is such that ‖¬φ‖ 6=∅, this definition gives rise to a partial belief

contraction function. The next proposition says that this partial contraction function can be extended to

a full-domain AGM contraction function; conversely, given a full-domain AGM contraction function

based on a consistent and deductively closed set K, there exists a model M = 〈S,s@,B, f ,V 〉 such that

K = {φ ∈ Φ0 : B(s@)⊆ ‖φ‖} and, for every φ ∈ Φ0 such that ‖¬φ‖ 6=∅, K ÷φ satisfies (1). Thus the

proposed semantics provides an alternative characterization of AGM belief contraction. The proof of the

following proposition is given in the Appendix.

Proposition 1.

(A) Given a model 〈S,s@,B, f ,V 〉 let K = {φ ∈ Φ0 : B(s@) ⊆ ‖φ‖} and, for every φ ∈ Φ0 such

that ‖¬φ‖ 6= ∅, let K ÷ φ be defined by (1). Then K is consistent and deductively closed and

the (partial) belief contraction function so defined can be extended to a full-domain AGM belief

contraction function.

(B) Let K ⊂ Φ0 be consistent and deductively closed and let ÷ : Φ0 → 2Φ0 be an AGM belief contrac-

tion function. Then there exists a model 〈S,s@,B, f ,V 〉 such that K = {φ ∈ Φ0 : B(s@) ⊆ ‖φ‖}
and, for every φ ∈ Φ0 such that ‖¬φ‖ 6=∅, K ÷φ satisfies (1).

2We take “believing ψ on the supposition that ¬φ” to mean “believing that if ¬φ is (were) the case then ψ is (would be) the

case”.
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The proposed semantics becomes more transparent if we extend the language by introducing two

modal operators: a unimodal belief operator B, corresponding to the belief relation B, and a bimodal

conditional operator >, corresponding to the selection function f . Recall that Φ0 is the set of Boolean

(or factual) formulas. Let Φ1 be the modal language constructed as follows.

• Φ0 ⊂ Φ1,

• if φ ,ψ ∈ Φ0 then φ > ψ ∈ Φ1,

• all the Boolean combinations of formulas in Φ1.

Thus, for the purpose of this paper, the conditional φ > ψ (interpreted as the indicative or subjunctive

conditional ”if φ is (were) the case then ψ is (would be) the case”) is defined only for Boolean formulas.

Finally, let Φ be the modal language constructed as follows:

• Φ1 ⊂ Φ,

• if φ ∈ Φ1 then Bφ ∈ Φ,

• all the Boolean combinations of formulas in Φ.

Thus formulas in Φ are either Boolean or formulas of the form φ > ψ , with φ and ψ Boolean, or of the

form Bφ where φ is either Boolean or of the form ψ > χ with ψ and χ Boolean, or a Boolean combina-

tion of such formulas. We can now extend the definition of truth of a formula at a state (Definition 3) to

the set Φ as follows:

Definition 4. If φ ∈ Φ0 then s |= φ according to the rules of Definition 3. Furthermore,

• s |= (φ > ψ) (with φ ,ψ ∈ Φ0) if and only if either ‖φ‖ =∅, or ‖φ‖ 6=∅ and f (s,‖φ‖) ⊆ ‖ψ‖,

• s |= Bφ if and only if B(s)⊆ ‖φ‖.

Then we can re-write the definition of K÷φ given in (1) in terms of the modal operators B and > as

follows:

ψ ∈ K ÷φ if and only if φ ,ψ ∈ Φ0 and s@ |= Bψ ∧B(¬φ > ψ) . (2)

Thus, in the statement of Proposition 1, K = {φ ∈ Φ0 : B(s@) ⊆ ‖φ‖} can be replaced by K = {φ ∈
Φ0 : s@ |= Bφ} and reference to (1) can be replaced by reference to (2). Note that only a fragment of

the extended language is used in the characterization result of Proposition 1. In particular, nesting of

conditionals and beliefs is disallowed. The study of whether the extended language can be used to obtain

generalizations of AGM-style belief change that go beyond merely Boolean expressions is a topic left

for future research.

4 Related literature

There is a vast literature that deals with AGM belief contraction (for a survey see, for example, [5, 6]).

Because of space limitations we will only focus on a few issues.

The recovery postulate (AGM axiom (K − 5)) appears to be a natural way of capturing a “mini-

mal” way of suspending belief in φ , but has been subject to extensive scrutiny (see [25, 9, 14, 19, 22,

28, 15, 16]). In Makinson’s terminology ([25]), contraction operations that do not satisfy the recovery

postulates are called withdrawals. Alternative types of withdrawal operators have been studied in the lit-

erature: contraction without recovery ([4]), semi-contraction ([7]), severe withdrawal ([32]), systematic

withdrawal ([26]), mild contraction ([20]). If one interprets belief contraction as a form of actual belief

change (in response to some input), then perhaps the recovery postulate is open to scrutiny. However, in
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the interpretation of belief contraction proposed in this paper, the recovery postulate is entirely natural.

Indeed, if ψ belongs to the contraction of K by φ then ψ is believed both initially and on the supposition

that ¬φ ; if this supposition is removed then one naturally falls back to the initial beliefs K.

There have been attempts in the literature to establish a link between notions of AGM belief change

and Stalnaker-Lewis conditionals. Within the context of AGM belief revision this was done by [10], who

considered the language that we called Φ1, which includes conditionals of the form φ > ψ . Gäerdenfors

introduced the following postulate (where K ∗φ denotes the revised belief set in response to information

φ ): (φ > ψ) ∈ K if and only if ψ ∈ K∗φ . This postulate was taken to be an expression of the so-called

Ransey test.3 Gäerdenfors showed that this postulate can be satisfied only in cases where the revision

operation is trivial; in other words, there cannot be interesting revision theories based on conditionals if

one requires that the conditionals themselves be incorporated in the initial belief set. Several attempts

have been made to circumvent Gäerdenfors’ “triviality result”. Different routes have been taken: weak-

ening or re-interpretating the theorem ([22, 24, 23, 30, 31], generalizing from belief revision functions

to belief change systems (consisting of a set of epistemic states, an assignment of a belief set to each

epistemic state and a transition function function that determines how the epistemic state changes as a

result of learning new information: [8]), considering an alternative semantics, namely Moss and Parikh’s

epistemic logic of subsets logic ([27]), and augmenting it with conditionals ([12]), and, in the context

of iterated belief contraction, defining the notion of ”contractional” in the context of belief states ( [33]:

if Ψ denotes a belief state and [β |α ] is interpreted as “belief in β even in the absence of α”, then the

contractional is defined as Ψ |= [β |α ] if and only if Ψ÷α |= β ). None of the approaches described above

coincides with the framework considered in this paper.

5 Conclusion

We proposed a semantic characterization of AGM belief contraction in terms of a semantics consisting of

a Kripke belief relation B (with associated modal operator B) and a Stalnaker-Lewis selection function

f (with associated conditional bimodal operator >). The proposed semantics can also be used to char-

acterize AGM belief revision (see [2]). Indeed all three operations: belief expansion, belief contraction

and belief revision, can be captured within this framework. Letting s@ denote the actual state, we have:

1. Expansion: ψ ∈ K +φ if and only if s@ |= ¬B¬φ ∧B(φ → ψ),

2. Contraction: ψ ∈ K ÷φ if and only if s@ |= Bψ ∧B(¬φ > ψ),

3. Revision: ψ ∈ K ∗φ if and only if s@ |= B(φ > ψ).

There are several issues that can be studied within this framework and are left for future work, for

example, whether the extended modal language can provide a way to generalize AGM-style belief change

and whether the proposed framework can accommodate iterated belief contraction/revision.

A Appendix

In this Appendix we prove Proposition 1. In order to make the proof entirely self-contained we include

the proofs of known auxiliary results (e.g. the lemmas).4

3The expression ”Ramsey Test” refers to the following passage from [29, p. 247]: ”If two people are arguing ”If p will q?”

and are both in doubt as to p, they are adding p hypothetically to their stock of knowledge and arguing on that basis about q”.
4Which can be found, for example, in [11, 17].
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Lemma 1. Fix a model M = 〈S,s@,B, f ,V 〉 and let K = {φ ∈Φ0 : B(s@)⊆‖φ‖}. Then K is deductively

closed and consistent.

Proof. First we show that K is deductively closed, that is, K =Cn(K). If ψ ∈ K then ψ ∈Cn(K), because

ψ → ψ is a tautology; thus K ⊆ Cn(K). To show that Cn(K) ⊆ K, let ψ ∈ Cn(K), that is, there exist

φ1, ...,φn ∈ K (n ≥ 0) such that (φ1 ∧ ...∧φn)→ ψ is a tautology. Since ‖φ1 ∧ ...∧φn‖= ‖φ1‖∩ ...∩‖φn‖
and, for all i = 1, ...,n, φi ∈ K (that is, B(s@) ⊆ ‖φi‖), it follows that B(s@) ⊆ ‖φ1 ∧ ...∧ φn‖. Since

(φ1∧ ...∧φn)→ ψ is a tautology, ‖(φ1∧ ...∧φn)→ ψ‖= S, that is, ‖φ1∧ ...∧φn‖ ⊆ ‖ψ‖. Thus B(s@)⊆
‖ψ‖, that is, ψ ∈ K. Next we show that Cn(K) 6= Φ0, that is, K is consistent. Let p ∈ At be an atomic

formula. Then ‖p ∧¬p‖ = ∅. By seriality of B, B(s@) 6= ∅ so that B(s@) * ‖p∧¬p‖, that is,

(p∧¬p) /∈ K and hence, since K =Cn(K), (p∧¬p) /∈Cn(K).

Proof of Part (A) of Proposition 1.

Fix a model 〈S,s@,B, f ,V 〉 and let K = {φ ∈ Φ0 : B(s@) ⊆ ‖φ‖} and, for every φ ∈ Φ0 such that

‖¬φ‖ 6=∅, let K ÷φ be defined as follows ((A1) below reproduces (1) above):

ψ ∈ K ÷φ if and only if (1)B(s@)⊆ ‖ψ‖, (that is, ψ ∈ K) and

(2)∀s ∈ B(s@), f (s,‖¬φ‖) ⊆ ‖ψ‖.
(A1)

Let ‘÷′’ be following extension to Φ0 of the operator ‘÷’ defined in (A1):

K ÷′ φ =

{

K ÷φ if ‖¬φ‖ 6=∅
K ∩Cn(¬φ) if ‖¬φ‖=∅.

(A2)

We want to show that the contraction operator defined in (A2) satisfies the AGM axioms.

(K−1) We need to show that, for every φ ∈ Φ0, K÷′ φ =Cn(K ÷′ φ). If ‖¬φ‖=∅ then this is true by

construction, since K is deductively closed and the intersection of deductively closed sets is deductively

closed. Assume, therefore, that ‖¬φ‖ 6=∅, so that K ÷′ φ = K ÷φ . Note first that, by (A1), letting

Ψ¬φ = {ψ ∈ Φ0 : f (s,‖¬φ‖) ⊆ ‖ψ‖,∀s ∈ B(s@)} , (A3)

K ÷ φ = K ∩Ψ¬φ . Since the intersection of two deductively closed sets is deductively closed and K

is deductively closed, it suffices to show that Ψ¬φ is deductively closed, that is, Ψ¬φ = Cn(Ψ¬φ ). The

inclusion Ψ¬φ ⊆ Cn(Ψ¬φ ) follows from the fact that, for every χ ∈ Ψ¬φ , χ → χ is a tautology. Next

we show that Cn(Ψ¬φ ) ⊆ Ψ¬φ . Since ‖¬φ‖ 6= ∅, f (s,‖¬φ‖) is defined for every s ∈ B(s@). Fix

an arbitrary ψ ∈ Cn(Ψ¬φ ); then there exist φ1, ...,φn ∈ Ψ¬φ (n ≥ 0) such that (φ1 ∧ ...∧ φn) → ψ is a

tautology, so that ‖(φ1 ∧ ...∧ φn)→ ψ‖ = S, that is, ‖φ1 ∧ ...∧ φn‖ ⊆ ‖ψ‖. Fix an arbitrary s ∈ B(s@)
and an arbitrary i= 1, ...,n. Then, since φi ∈Ψ¬φ , f (s,‖¬φ‖)⊆‖φi‖. Hence f (s,‖¬φ‖)⊆‖φ1∧ ...∧φn‖.

Since ‖(φ1 ∧ ...∧φn)‖ ⊆ ‖ψ‖ it follows that f (s,‖¬φ‖) ⊆ ‖ψ‖, that is, ψ ∈ Ψ¬φ .

(K−2) We need to show that K ÷′ φ ⊆ K. If ‖¬φ‖=∅ then K ÷′ φ = K ∩Cn(¬φ)⊆ K. If ‖¬φ‖ 6=∅
then K ÷′ φ = K ÷φ = K ∩Ψ¬φ ⊆ K.

(K−3) We need to show that if φ /∈K then K ⊆ K÷′φ . Assume that φ /∈ K, that is, B(s@)∩‖¬φ‖ 6=∅.

Then ‖¬φ‖ 6= ∅ and thus K ÷′ φ = K ÷ φ . Fix an arbitrary ψ ∈ K, that is, B(s@) ⊆ ‖ψ‖. We need to

show that, ∀s ∈B(s@), f (s,‖¬φ‖)⊆ ‖ψ‖. Since B(s@)∩‖¬φ‖ 6=∅, by 4(c) of Definition 2, for every

s ∈ B(s@), f (s,‖¬φ‖) ⊆ B(s@)∩‖¬φ‖ and thus, since B(s@)⊆ ‖ψ‖, f (s,‖¬φ‖) ⊆ ‖ψ‖.
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(K−4) We need to show that if φ is not a tautology then φ /∈ K÷′ φ . Suppose that φ is not a tautology,

so that φ /∈ Cn(¬φ). If ‖¬φ‖ = ∅ then K ÷′ φ = K ∩Cn(¬φ) and thus φ /∈ K ÷′ φ . Next, suppose that

‖¬φ‖ 6=∅ so that K ÷′ φ = K ÷φ . Since K ÷φ = K ∩Ψ¬φ (where Ψ¬φ is given by (A3)) it is sufficient

to show that φ /∈ Ψ¬φ , that is, f (s,‖¬φ‖) 6⊆ ‖φ‖, for some s ∈ B(s@). This follows from the fact that,

by 4(a) of Definition 2, for every s ∈ B(s@), f (s,‖¬φ‖) ⊆ ‖¬φ‖.

(K−5) We need to show that if φ ∈ K then K ⊆ (K ÷′ φ) + φ = Cn(K ÷′ φ ∪ {φ}). Assume that

φ ∈ K and fix an arbitrary ψ ∈ K. Then (φ → ψ) ∈ K. If ‖¬φ‖ = ∅ then K ÷′ φ = K ∩Cn(¬φ).
Since ¬φ ∈ Cn(¬φ), φ → ψ ∈ Cn(¬φ) and thus φ → ψ ∈ K ÷′ φ , from which it follows (since, by

(K −1), K ÷′ φ is deductively closed) that ψ ∈Cn(K ÷′ φ ∪{φ}). Suppose now that ‖¬φ‖ 6= ∅ so that

K ÷′ φ = K ÷φ = K ∩Ψ¬φ (where Ψ¬φ is given by (A3)). By 4(a) of Definition 2, for every s ∈ B(s@),
f (s,‖¬φ‖) ⊆ ‖¬φ‖ and thus f (s,‖¬φ‖) ⊆ ‖φ → ψ‖ = ‖¬φ‖∪‖ψ‖. Hence (recall that (φ → ψ) ∈ K)

(φ → ψ) ∈ K ÷φ so that ψ ∈Cn(K ÷φ ∪{φ}).

(K−6) We need to show that if φ ↔ ψ is a tautology then K ÷′ φ = K ÷′ ψ . Assume that φ ↔ ψ is

a tautology. Then Cn(¬φ) = Cn(¬ψ) and ‖¬φ‖ = ‖¬ψ‖. Thus ‖¬φ‖ = ∅ if and only if ‖¬ψ‖ = ∅,

in which case K ÷′ φ = K ∩Cn(¬φ) = K ∩Cn(¬ψ) = K ÷′ ψ . Furthermore, ‖¬φ‖ 6= ∅ if and only

if ‖¬ψ‖ 6= ∅, in which case {χ ∈ Φ0 : f (s,‖¬φ‖) ⊆ ‖χ‖,∀s ∈ B(s@)} = {χ ∈ Φ0 : f (s,‖¬ψ‖) ⊆
‖χ‖,∀s ∈ B(s@)}, from which it follows that K ÷φ = K ÷ψ .

(K−7) We have to show that (K ÷′ φ)∩ (K ÷′ ψ)⊆ K ÷′ (φ ∧ψ). We need to consider several cases.

Case 1: ‖¬φ‖ = ‖¬ψ‖ = ∅ so that ‖¬φ‖ ∪ ‖¬ψ‖ = ‖¬φ ∨¬ψ‖ = ‖¬(φ ∧ ψ)‖ = ∅. In this case

K ÷′ φ = K ∩Cn(¬φ), K ÷′ ψ = K ∩Cn(¬ψ) and K ÷′ (φ ∧ψ) = K ∩Cn(¬(φ ∧ψ)). Since Cn(¬φ)∩
Cn(¬ψ)⊆Cn(¬φ ∨¬ψ) =Cn(¬(φ ∧ψ)) it follows that (K ÷′ φ)∩ (K ÷′ ψ)⊆ K ÷′ (φ ∧ψ).

Case 2: ‖¬φ‖ = ∅ and ‖¬ψ‖ 6= ∅, so that ‖¬(φ ∧ψ)‖ = ‖¬φ ∨¬ψ‖ = ‖¬φ‖∪‖¬ψ‖ = ‖¬ψ‖ 6= ∅.

In this case K ÷′ φ = K ∩Cn(¬φ), K ÷′ ψ = K ÷ψ = K ∩{χ ∈ Φ0 : f (s,‖¬ψ‖) ⊆ ‖χ‖,∀s ∈ B(s@)}
and K ÷′ (φ ∧ψ) = K ÷ (φ ∧ψ) = K ∩{χ ∈ Φ0 : f (s,‖¬(φ ∧ψ)‖)⊆ ‖χ‖,∀s ∈ B(s@)}. Since ‖¬(φ ∧
ψ)‖ = ‖¬ψ‖, f (s,‖¬(φ ∧ψ)‖) = f (s,‖¬ψ‖) and thus K ÷ (φ ∧ ψ) = K ÷ψ . Hence the inclusion

(K ÷′ φ)∩ (K ÷ψ)⊆ K ÷ (φ ∧ψ) reduces to (K ÷′ φ)∩ (K ÷ψ)⊆ K ÷ψ , which is trivially true.

Case 3: ‖¬φ‖ 6= ∅ and ‖¬ψ‖ = ∅, so that ‖¬φ ∨¬ψ‖= ‖¬φ‖∪‖¬ψ‖ = ‖¬φ‖ 6= ∅. In this case, by

an argument similar to the one used in Case 2, K÷′ (φ ∧ψ) = K÷ (φ ∧ψ) = K÷φ = K÷′ φ , so that the

inclusion (K ÷′ φ)∩ (K ÷′ ψ)⊆ K ÷′ (φ ∧ψ) reduces to (K ÷φ)∩ (K ÷′ ψ)⊆ K ÷φ , which is trivially

true.

Case 4: ‖¬φ‖ 6=∅ and ‖¬ψ‖ 6=∅, so that ‖¬(φ ∧ψ)‖= ‖¬φ ∨¬ψ‖= ‖¬φ‖∪‖¬ψ‖ 6=∅. In this case

K ÷′ φ = K ÷ φ = K ∩{χ ∈ Φ0 : f (s,‖¬φ‖) ⊆ ‖χ‖,∀s ∈ B(s@)}, K ÷′ ψ = K ÷ψ = K ∩{χ ∈ Φ0 :

f (s,‖¬ψ‖) ⊆ ‖χ‖,∀s ∈ B(s@)} and K ÷′ (φ ∧ψ) = K ÷ (φ ∧ψ) = K ∩{χ ∈ Φ0 : f (s,‖¬(φ ∧ψ)‖)⊆
‖χ‖,∀s ∈B(s@)}. Fix an arbitrary χ ∈ (K÷φ)∩ (K÷ψ) (thus, in particular, χ ∈ K). We need to show

that χ ∈ K ÷ (φ ∧ψ), that is, that, ∀s ∈ B(s@), f (s,‖¬(φ ∧ψ)‖)⊆ ‖χ‖. Since χ ∈ (K ÷φ)∩ (K ÷ψ),

f (s,‖¬φ‖) ⊆ ‖χ‖ and f (s,‖¬ψ‖) ⊆ ‖χ‖. (A4)

By Property 4(a) of Definition 2, f (s,‖¬(φ ∧ψ)‖)⊆ ‖¬(φ ∧ψ)‖= ‖¬φ‖∪‖¬ψ‖. It follows from this

that

f (s,‖¬(φ ∧ψ)‖) = ( f (s,‖¬(φ ∧ψ)‖)∩‖¬φ‖)∪ ( f (s,‖¬(φ ∧ψ)‖)∩‖¬ψ‖) . (A5)
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By Property 4(d) of Definition 2 (with E = ‖¬φ‖∪‖¬ψ‖= ‖¬(φ ∧ψ)‖ and F = ‖¬φ‖)

f (s,‖¬(φ ∧ψ)‖)∩‖¬φ‖⊆ f (s,‖¬φ‖). (A6)

A second application of Property 4(d) of Definition 2 (with E = ‖¬φ‖∪‖¬ψ‖ = ‖¬(φ ∧ψ)‖ and, this

time, with F = ‖¬ψ‖) gives

f (s,‖¬(φ ∧ψ)‖)∩‖¬ψ‖⊆ f (s,‖¬ψ‖). (A7)

It follows from (A5), (A6), (A7) that f (s,‖¬(φ ∧ψ)‖ ⊆ ( f (s,‖¬φ‖)∪ f (s,‖¬ψ‖)) and thus, by (A4),

f (s,‖¬(φ ∧ψ)‖)⊆ ‖χ‖.

(K−8) We need to show that if φ /∈ K ÷′ (φ ∧ ψ) then K ÷′ (φ ∧ ψ) ⊆ K ÷′ φ . Assume that φ /∈
K ÷′ (φ ∧ψ).
Suppose first that ‖¬φ‖ = ∅, that is, ‖φ‖ = S. Then B(s@) ⊆ ‖φ‖ and thus φ ∈ K. If ‖¬(φ ∧ψ)‖ =
‖¬φ‖∪‖¬ψ‖ 6= ∅ then K ÷′ (φ ∧ψ) = K ÷ (φ ∧ψ) = K ∩{χ ∈ Φ0 : f (s,‖¬φ‖∪‖¬ψ‖) ⊆ ‖χ‖,∀s ∈
B(s@)} and, since ‖φ‖ = S, for all s ∈ B(s@) we have that f (s,‖¬φ‖∪‖¬ψ‖) ⊆ ‖φ‖, implying that

φ ∈ K ÷ (φ ∧ψ), contradicting our assumption. Thus the case where ‖¬φ‖=∅ and ‖¬φ‖∪‖¬ψ‖ 6=∅
is ruled out and we are left with only two cases to consider.

Case 1: ‖¬φ‖ ∪ ‖¬ψ‖ = ∅ so that ‖¬φ‖ = ∅. In this case K ÷′ (φ ∧ψ) = K ∩Cn(¬(φ ∧ψ)) and

K ÷′ φ = K ∩Cn(¬φ). Fix an arbitrary χ ∈ K ÷′ (φ ∧ψ). Then χ ∈ K and χ ∈Cn(¬(φ ∧ψ)). We need

to show that χ ∈ K÷′φ , that is, that χ ∈Cn(¬φ). Since χ ∈Cn(¬(φ ∧ψ)), ¬(φ ∧ψ)→ χ is a tautology.

Thus, since ¬φ →¬(φ ∧ψ) is also a tautology, ¬φ → χ is a tautology and thus χ ∈Cn(¬φ).

Case 2: ‖¬φ‖ 6= ∅ and thus ‖¬(φ ∧ψ)‖ = ‖¬φ‖∪ ‖¬ψ‖ 6= ∅. Then K ÷′ (φ ∧ψ) = K ÷ (φ ∧ψ) =
K∩{χ ∈Φ0 : f (s,‖¬φ‖∪‖¬ψ‖)⊆‖χ‖,∀s∈B(s@)} and K÷′φ =K÷φ =K∩{χ ∈Φ0 : f (s,‖¬φ‖)⊆
‖χ‖,∀s ∈ B(s@)}. Recall the assumption that φ /∈ K ÷ (φ ∧ψ). Then two sub-cases are possible.

Case 2.1: φ /∈ K, that is, B(s@)∩‖¬φ‖ 6=∅. Then, by 4(c) of Definition 2,

∀s ∈ B(s@), f (s,‖¬φ‖) ⊆ B(s@)∩‖¬φ‖ ⊆ B(s@). (A8)

Fix an arbitrary χ ∈ K ÷ (φ ∧ψ). Then χ ∈ K, that is, B(s@) ⊆ ‖χ‖ and thus, by (A8), ∀s ∈ B(s@),
f (s,‖¬φ‖) ⊆ ‖χ‖ so that χ ∈ K ÷φ .

Case 2.2: φ ∈K and B¬φ¬ψ 6=∅, where B¬φ¬ψ = {s∈B(s@) : f (s,‖¬φ‖∪‖¬ψ‖)∩‖¬φ‖ 6=∅}.5 Then,

by 4(e.1) of Definition 2 (with E = ‖¬φ‖∪‖¬ψ‖ and F = ‖¬φ‖)

∀s ∈ B¬φ¬ψ , f (s,‖¬φ‖) ⊆ f (s,‖¬φ‖∪‖¬ψ‖) ∩ ‖¬φ‖ (A9)

and, by 4(e.2) of Definition 2 (again, with E = ‖¬φ‖∪‖¬ψ‖ and F = ‖¬φ‖),

∀s ∈ B(s@), f (s,‖¬φ‖) ⊆ f (s′,‖¬φ‖) for some s′ ∈ B¬φ¬ψ . (A10)

Fix an arbitrary χ ∈ K÷(φ ∧ψ). Then, χ ∈ K and (recall that ‖¬(φ ∧ψ)‖= ‖¬φ‖∪‖¬ψ‖) f (s,‖¬φ‖∪
‖¬ψ‖) ⊆ ‖χ‖, ∀s ∈ B(s@); it follows from this, (A9) and (A10) that, ∀s ∈ B(s@), f (s,‖¬φ‖) ⊆ ‖χ‖.

Thus χ ∈ K ÷φ .

Before we proceed to the proof of Part (B) of Proposition 1, we establish the following lemma.

5Note that the case where φ ∈ K and B¬φ¬ψ = ∅ is ruled out by our initial assumption that φ /∈ K ÷ (φ ∧ψ). In fact,

B¬φ¬ψ =∅ means that, ∀s∈B(s@), f (s,‖¬φ‖∪‖¬ψ‖)∩‖¬φ‖=∅, that is, f (s,‖¬φ‖∪‖¬ψ‖)⊆‖φ‖, which, in conjunction

with the hypothesis that φ ∈ K, yields φ ∈ K ÷ (φ ∧ψ).
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Lemma 2. Let A ⊆ Φ0 be such that A =Cn(A). Then, ∀α ∈ Φ0, ‖Cn(A∪{α})‖= ‖A‖∩‖α‖.

Proof. Since A is deductively closed, ∀β ∈ Φ0,

β ∈Cn(A∪{α}) if and only if (α → β ) ∈ A. (A12)

First we show that ‖A‖∩‖α‖ ⊆ ‖Cn(A∪{α})‖. Fix an arbitrary s ∈ ‖A‖∩‖α‖; we need to show that

s ∈ ‖Cn(A∪{α})‖, that is, that ∀β ∈ Cn(A∪{α}) , β ∈ s. Since s ∈ ‖α‖, α ∈ s. Fix an arbitrary

β ∈Cn(A∪{α}); then, by (A12), (α → β ) ∈ A; thus, since s ∈ ‖A‖, (α → β ) ∈ s. Hence, since both α

and α → β belong to s and s is deductively closed, β ∈ s.

Next we show that ‖Cn(A∪{α})‖⊆‖A‖∩‖α‖. Let s∈ ‖Cn(A∪{α})‖. Then, since α ∈Cn(A∪{α}),
α ∈ s, that is, s∈‖α‖. It remains to show that s∈ ‖A‖, that is, that, for every β ∈A, β ∈ s. Fix an arbitrary

β ∈ A; then, since A is deductively closed, (α → β ) ∈ A. Thus, by (A12), β ∈ Cn(A∪{α}) and thus,

since s ∈ ‖Cn(A∪{α})‖, β ∈ s.

Proof of Part (B) of Proposition 1.

We need to show that if K ⊂ Φ0 is consistent and deductively closed and ÷ : Φ0 → 2Φ0 is an AGM

belief contraction function based on K, then there exists a model 〈S,s@,B, f ,V 〉 such that K = {φ ∈ Φ0 :

B(s@) ⊆ ‖φ‖} and, for all φ ,ψ ∈ Φ0, ψ ∈ K ÷ φ if and only if (A1) is satisfied. Define the following

model 〈S,s@,B, f ,V 〉:

1. S is the set of maximally consistent sets of formulas in Φ0.

2. The valuation V : At → S is defined by V (p) = {s ∈ S : p ∈ s}, so that, for every φ ∈ Φ0, ‖φ‖ =
{s ∈ S : φ ∈ s}. If Ψ ⊆ Φ0, define ‖Ψ‖= {s ∈ S : ∀φ ∈ Ψ,φ ∈ s}.

3. Choose an arbitrary s@ ∈ S and define B(s@) = ‖K‖.

4. Let E = {E ⊆ S : ∅ 6= E = ‖φ‖ for some φ ∈ Φ0}. Define f : B(s@)×E → 2S as follows:

∀s ∈ B(s@), f (s,‖φ‖) = ‖K ÷¬φ‖ ∩ ‖φ‖. (A11)

Remark 1. If φ is a tautology then ¬φ is a contradiction and thus (since, by hypothesis, K is consistent)

¬φ /∈ K. It follows from (K − 2) and (K − 3) that K ÷¬φ = K. Furthermore, since φ is a tautology

and K is deductively closed, φ ∈ K, that is ‖K‖ ⊆ ‖φ‖ so that ‖K‖ ∩ ‖φ‖ = ‖K‖. Hence, by (A11),

∀s ∈ B(s@), f (s,‖φ‖) = ‖K‖. On the other hand, if ¬φ is a tautology then ‖φ‖=∅ and thus ‖φ‖ /∈ E ,

that is, ‖φ‖ is not in the domain of f .

First we show that the selection function defined in (A11) satisfies Properties 4(a)-4(e) of Definition

2. In view of Remark 1, we can restrict attention to contingent formulas, that is, to formulas φ such that

neither φ nor ¬φ is a tautology. Denote by Φcont ⊆ Φ0 the set of contingent formulas.

Recall that S is the set of maximally consistent sets of formulas in Φ0 and, for A ⊆ Φ0, ‖A‖ = {s ∈ S :

χ ∈ s, ∀χ ∈ A}.

Property 4(a) We need to show that if φ ∈ Φcont then ‖K ÷¬φ‖ ∩ ‖φ‖ ⊆ ‖φ‖, which is obviously

true, and ‖K ÷¬φ‖ ∩ ‖φ‖ 6= ∅. Since φ ∈ Φcont , ‖φ‖ 6= ∅ and, by (K − 4), ¬φ /∈ K ÷¬φ . By (K − 1)

K÷¬φ =Cn(K÷¬φ) and thus ¬φ /∈Cn(K÷¬φ), that is, K÷¬φ is consistent and hence ‖K÷¬φ‖ 6=∅.

Property 4(b) Fix an arbitrary s ∈ B(s@) and an arbitrary φ ∈ Φcont . We need to show that if s ∈ ‖φ‖
then s ∈ f (s,‖φ‖) = ‖K ÷¬φ‖ ∩ ‖φ‖. By construction, B(s@) = ‖K‖; thus, s ∈ ‖K‖. By (K − 2),

K ÷¬φ ⊆ K so that ‖K‖ ⊆ ‖K ÷¬φ‖. Hence s ∈ ‖K ÷¬φ‖. Thus if s ∈ ‖φ‖ then s ∈ ‖K ÷¬φ‖∩‖φ‖.
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Property 4(c) We need to show that if B(s@)∩‖φ‖ 6=∅ then (since B(s@) = ‖K‖ and, ∀s ∈ B(s@),
f (s,‖φ‖) = ‖K ÷¬φ‖ ∩ ‖φ‖) ‖K ÷¬φ‖ ∩ ‖φ‖ ⊆ ‖K‖∩‖φ‖. If ‖K‖∩‖φ‖ 6=∅ then ¬φ /∈ K and thus,

by (K −3), K ⊆ K ÷¬φ , so that ‖K ÷¬φ‖ ⊆ ‖K‖ and thus ‖K ÷¬φ‖ ∩ ‖φ‖ ⊆ ‖K‖∩‖φ‖.

Property 4(d) We need to show that if φ ∈ Φcont and ψ ∈ Φ0, then ∀s ∈ B(s@), f (s,‖φ‖) ∩ ‖ψ‖ ⊆
f (s,‖φ‖∩‖ψ‖), that is, using (A11) and the fact that ‖φ‖∩‖ψ‖= ‖φ ∧ψ‖,

‖K ÷¬φ‖ ∩ ‖φ‖ ∩ ‖ψ‖ ⊆ ‖K ÷¬(φ ∧ψ)‖ ∩ ‖φ ∧ψ‖ (A13)

By (K −7), ∀α ,β ∈ Φ0, (K ÷α)∩ (K ÷β )⊆ K ÷ (α ∧β ). Thus applying (K −7) to α = ¬(φ ∧ψ) and

β = φ → ψ we get

K ÷¬(φ ∧ψ) ∩ K ÷ (φ → ψ) ⊆ K ÷ (¬(φ ∧ψ)∧ (φ → ψ)) (A14)

Since ¬(φ ∧ψ)∧(φ →ψ) is logically equivalent to ¬φ , by (K−6) K÷(¬(φ ∧ψ)∧ (φ → ψ))=K÷¬φ .

Thus, by (A14)

K ÷¬(φ ∧ψ) ∩ K ÷ (φ → ψ) ⊆ K ÷¬φ . (A15)

Next we show that

Cn(K ÷¬(φ ∧ψ) ∪ {φ ∧ψ}) ⊆ Cn(K ÷¬φ ∪ {φ ∧ψ}) . (A16)

Fix an arbitrary χ ∈Cn(K ÷¬(φ ∧ψ) ∪ {φ ∧ψ}). Then, since, by (K−1), K÷¬(φ ∧ψ) is deductively

closed,

((φ ∧ψ)→ χ) ∈ K ÷¬(φ ∧ψ). (A17)

By (K −2), K ÷¬(φ ∧ψ)⊆ K and thus, by (A17),

((φ ∧ψ)→ χ) ∈ K. (A18)

Next we show that

((φ ∧ψ)→ χ) ∈ K ÷ (φ → ψ). (A19)

If (φ → ψ) /∈ K then, by (K − 3), K ⊆ K ÷ (φ → ψ) and thus (A19) follows from (A18). If (φ →
ψ) ∈ K then, by (K − 5), K ⊆ Cn(K ÷ (φ → ψ) ∪ {φ → ψ}) so that, by (A18), ((φ ∧ψ)→ χ) ∈
Cn(K ÷ (φ → ψ)∪{φ → ψ}), that is (since, by (K − 1), K ÷ (φ → ψ) s deductively closed) (φ →
ψ) → ((φ ∧ψ)→ χ) ∈ K ÷ (φ → ψ). Since (φ → ψ) → ((φ ∧ψ)→ χ) is logically equivalent to

((φ → ψ)∧ (φ ∧ψ)) → χ , which, in turn is logically equivalent to (φ ∧ψ)) → χ , (A19) is satisfied.

It follows from (A18), (A19) and (A15) that
(

(φ ∧ψ)→ χ
)

∈ K ÷¬φ , that is, that χ ∈ Cn
(

K ÷¬φ ∪
{φ ∧ψ}

)

, thus establishing (A16). From (A16) we get that

‖Cn(K ÷¬φ ∪ {φ ∧ψ})‖ ⊆ ‖Cn(K ÷¬(φ ∧ψ) ∪ {φ ∧ψ})‖ (A20)

By Lemma 2 (with A = K ÷¬φ and α = φ ∧ψ), ‖Cn(K ÷¬φ ∪ {φ ∧ψ})‖ = ‖K ÷¬φ‖ ∩ ‖φ ∧ψ‖
which in turn (since =‖φ ∧ψ‖ = ‖φ‖∩ ‖ψ‖) is equal to ‖K ÷¬φ‖∩ ‖φ‖∩ ‖ψ‖. By Lemma 2 again

(with A = K÷¬(φ ∧ψ) and α = φ ∧ψ), ‖Cn(K÷¬(φ ∧ψ) ∪ {φ ∧ψ})‖= ‖K÷¬(φ ∧ψ)‖ ∩ ‖ψ ∧ψ‖.

Hence (A13) follows from (A20).
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Property 4(e) Since, by (A11), ∀s,s′ ∈ B(s@), f (s,‖φ‖) = f (s′,‖φ‖) = ‖K ÷¬φ‖ ∩ ‖φ‖, it is suffi-

cient to show that if ‖K÷¬φ‖ ∩ ‖φ‖ ∩ ‖ψ‖ 6=∅ then ‖K÷¬(φ ∧ψ)‖ ∩ ‖φ ∧ψ‖ ⊆ ‖K÷¬φ‖ ∩ ‖φ‖ ∩
‖ψ‖. Assume that ‖K ÷¬φ‖ ∩ ‖φ‖ ∩ ‖ψ‖= ‖K ÷¬φ‖ ∩ ‖φ ∧ψ‖ 6=∅. Then

¬(φ ∧ψ) /∈ K ÷¬φ . (A21)

Since ¬φ is logically equivalent to ¬(φ ∧ψ)∧¬φ , by (K −6)

K ÷¬φ = K ÷ (¬(φ ∧ψ)∧¬φ) . (A22)

Thus, by (A21) and (A22),

¬(φ ∧ψ) /∈ K ÷ (¬(φ ∧ψ)∧¬φ) . (A23)

By (K−8), ∀α ,β ∈ Φ0, if α /∈ K÷ (α ∧β ) then K÷ (α ∧β )⊆ K÷α . Thus, by (A23) and (K−8) (with

α = ¬(φ ∧ψ) and β = ¬φ ), K ÷ (¬φ ∧¬(φ ∧ψ))⊆ K ÷¬(φ ∧ψ). It follows from this and (A22) that

K ÷¬φ ⊆ K ÷¬(φ ∧ψ) and thus

‖K ÷¬(φ ∧ψ)‖ ⊆ ‖K ÷¬φ‖. (A24)

Intersecting both sides of (A24) with ‖φ ∧ψ‖= ‖φ‖∩‖ψ‖ we get ‖K ÷¬(φ ∧ψ)‖∩‖φ ∧ψ‖ ⊆ ‖K ÷
¬φ‖∩‖φ‖∩‖ψ‖, as desired.

To complete the proof of Part (B) of Proposition 1 we need to show that

ψ ∈ K ÷φ if and only if (1)B(s@)⊆ ‖ψ‖, and

(2)∀s ∈ B(s@), f (s,‖¬φ‖) ⊆ ‖ψ‖.

By (A11), ∀s ∈ B(s@) = ‖K‖, f (s,‖¬φ‖) = ‖K ÷φ‖∩‖¬φ‖. Thus we have to show that

ψ ∈ K ÷φ if and only if ‖K‖ ⊆ ‖ψ‖ and ‖K ÷φ‖∩‖¬φ‖ ⊆ ‖ψ‖. (A25)

First we establish a lemma.

Lemma 3. ∀φ ∈ Φ0,

(i) if A ⊆ Φ0 is such that A =Cn(A), then A =Cn(A∪{φ}) ∩ Cn(A∪{¬φ})

(ii) K ÷φ = K ∩Cn(K ÷φ ∪{¬φ})

Proof. (i) Let A ⊆ Φ0 be such that A = Cn(A). Since A ⊆ Cn(A∪{φ}) and A ⊆ Cn(A∪{¬φ}), A ⊆
Cn(A∪{φ}) ∩ Cn(A∪{¬φ}). Conversely, suppose that χ ∈Cn(A∪{φ}) ∩ Cn(A∪{¬φ}). Then both

φ → χ and ¬φ → χ belong to A and thus so does their conjunction. Since (φ → χ)∧ (¬φ → χ) is

logically equivalent to χ it follows that χ ∈ A.

(ii) We need to consider two cases.

Case 1: φ ∈ K. Then, by (K − 5), K ⊆ Cn(K ÷φ ∪{φ}). By (K − 2), K ÷ φ ⊆ K, so that Cn
(

K ÷ φ ∪
{φ}

)

⊆Cn
(

K ∪{φ}
)

=Cn(K) = K (by hypothesis, K is deductively closed). Thus

K =Cn(K ÷φ ∪{φ}) (A26)

By Part (i) (with A = K ÷φ , which, by (K −1), is deductively closed),

K ÷φ =Cn(K ÷φ ∪{φ}) ∩ Cn(K ÷φ ∪{¬φ}) (A27)
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Thus, by (A26) and (A27), K ÷φ = K ∩Cn(K ÷φ ∪{¬φ}).
Case 2: φ /∈ K. Then, by (K −2) and (K −3),

K ÷φ = K (A28)

By Part (i) (with A = K)

K =Cn(K ∪{φ})∩Cn(K ∪{¬φ}) (A29)

From (A29) we get that K ∩Cn(K ∪{¬φ}) = Cn(K ∪{φ})∩Cn(K ∪{¬φ}) = K. Thus, by (A28),

K ÷φ = K ∩Cn(K ∪{¬φ}), from which, by using (A28) again to replace the second instance of K with

K ÷φ , we get K ÷φ = K ∩Cn(K ÷φ ∪{¬φ})

Now we are ready to prove (A25), namely that

ψ ∈ K ÷φ if and only if ‖K‖ ⊆ ‖ψ‖, and ‖Cn(K ÷φ ∪{¬φ})‖ ⊆ ‖ψ‖.

Let ψ ∈ K ÷φ . By (ii) of Lemma 3, K ÷φ = K ∩Cn(K ÷φ ∪{¬φ}); thus ψ ∈ K, that is, ‖K‖ ⊆ ‖ψ‖,

and ψ ∈Cn(K ÷φ ∪{¬φ}), that is, ‖Cn(K ∪{¬φ})‖ ⊆ ‖ψ‖. Conversely, suppose that ‖K‖ ⊆ ‖ψ‖ and

‖Cn(K ÷φ ∪{¬φ})‖⊆‖ψ‖, that is, ψ ∈K ∩Cn(K ÷φ ∪{¬φ}). Then, by (ii) of Lemma 3, ψ ∈K÷φ .

�
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jam, Lawrence Moss & Can Başkent, editors: Rohit Parikh on Logic, Language and Society, Springer Verlag,

pp. 259–277, doi:10.1007/978-3-319-47843-2.

[13] Adam Grove (1988): Two modellings for theory change. Journal of Philosophical Logic 17, pp. 157–170,

doi:10.1007/BF00247909.

[14] Sven Ove Hansson (1991): Belief contraction without recovery. Studia Logica 50(2), pp. 251–260, doi:10.

1007/BF00370186.

[15] Sven Ove Hansson (1996): Hidden structures of belief. In Andre Fuhrmann & Hans Rott, editors: Logic,

Actions and Information, de Gruyter, pp. 79–100. Available at https://www.degruyter.com/document/

isbn/9783110868890/html?lang=en.

[16] Sven Ove Hansson (1999): Recovery and epistemic residue. Journal of Logic, Language and Information 8,

pp. 421–428, doi:10.1023/A:1008316915066.

[17] Sven Ove Hansson (1999): A textbook of belief dynamics: Theory change and database updating. Springer

Dordrecht, Dordrecht, doi:10.1007/978-94-007-0814-3.
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Any kind of dynamics in dynamic epistemic logic can be represented as an action model. Right?

Wrong! In this contribution we prove that the update expressivity of communication patterns is

incomparable to that of action models. Action models, as update mechanisms, were proposed by

Baltag, Moss, and Solecki in 1998 and have remained the nearly universally accepted update mecha-

nism in dynamic epistemic logics since then. Alternatives, such as arrow updates that were proposed

by Kooi and Renne in 2011, have update equivalent action models. More recently, the picture is

shifting. Communication patterns are update mechanisms originally proposed in some form or other

by Ågotnes and Wang in 2017 (as resolving distributed knowledge), by Baltag and Smets in 2020 (as

reading events), and by Velázquez, Castañeda, and Rosenblueth in 2021 (as communication patterns).

All these logics have the same expressivity as the base logic of distributed knowledge. However, their

update expressivity, the relation between pointed epistemic models induced by such an update, was

conjectured to be different from that of action model logic. Indeed, we show that action model logic

and communication pattern logic are incomparable in update expressivity. We also show that, given

a history-based semantics and when restricted to (static) interpreted systems, action model logic is

(strictly) more update expressive than communication pattern logic. Our results are relevant for dis-

tributed computing wherein oblivious models involve arbitrary iteration of communication patterns.

1 Introduction

It is well known that the expressivity of public announcement logic is the same as that of epistemic logic

[15]. This is proved by way of a reduction system showing that every public announcement formula is

equivalent to one without public announcement modalities. Similarly, the expressivity of the logic of dis-

tributed knowledge with public announcements is the same as that of the logic of distributed knowledge

[1]. Again, this is shown by a reduction. A reduction also exists for the logic of distributed knowledge

with action models [2]; see [18, Fig. 5 and Th. 15] and the reduction axiom called AD in [18, Fig. 9].

Distributed knowledge can also be extended with dynamic modalities for communication patterns,

an update mechanism proposed in [17]. The resulting communication pattern logic is as expressive as

the logic of distributed knowledge: we can reduce formulas with dynamic modalities to formulas without

[6]. This logic is a slight generalization of logics with similar modalities also showing this by reduction

[1, 3]. A detailed comparison to these other proposals is found in [6].

We conclude that the logic of communication patterns and distributed knowledge has the same ex-

pressivity as the logic of action models and distributed knowledge, because they both reduce to the logic

of distributed knowledge. A different matter, however, is so-called update expressivity [10, 12, 7].

http://dx.doi.org/10.4204/EPTCS.379.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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We will compare the update expressivity of communication pattern logic and action model logic.

Communication patterns, like action models, are (induce) updates transforming pointed epistemic mod-

els into other pointed epistemic models. Is there for each communication pattern an action model defining

the same update, and vice versa? Communication patterns can always be executed, but action models

cannot always be executed, for example a truthful public announcement of p requires p to be true in

some world. We can therefore expect a trivial difference in update expressivity. It becomes non-trivial

if we also consider union of relations, such as non-deterministic choice between the announcement of p

and the announcement of ¬p.

This is an overview of the structure of our contribution. Sect. 2 recalls communication pattern logic,

action model logic, and update expressivity. In Sect. 3 we show that for each communication pattern

there is an update equivalent action model when executed on epistemic models that are interpreted sys-

tems. However, the resulting model may not be an interpreted system. In Sect. 4 we then show that

communication pattern logic and action model logic are indeed incomparable in update expressivity on

the class of epistemic models. Finally, in Sect. 5 we propose a history-based semantics for communica-

tion pattern logic for which the class of interpreted systems is, after all, closed under updates, and we

show that for each iterated communication pattern there is then an update equivalent action model.

2 Communication pattern logic and action model logic

2.1 Language

Given are a finite set of agents A and a set of propositional variables P ⊆ P′×A, where P′ is a countable

set. For B ⊆ A and Q ⊆ P, Q∩ (P′×B) is denoted QB (where Qa is Q{a}), and (p,a) ∈ P is denoted pa.

The set Pa consists of the local variables of agent a. In this work we consider the following languages.

Definition 1 (Language) Given A and P, the language L ×◦ is defined by BNF (where pa ∈ P, B ⊆ A):

ϕ := pa | ¬ϕ | ϕ ∧ϕ | DBϕ | [RRR,R]ϕ | [UUU ,e]ϕ

where (RRR,R) and (UUU ,e) are structures defined below, with R ∈RRR and e in the domain of UUU. Furthermore,

L ◦ is the language without [UUU ,e]ϕ , L × without [RRR,R]ϕ , and L − without either.

Epistemic formula DBϕ is read as ‘the agents in B have distributed knowledge of ϕ’. We write Kaϕ for

D{a}ϕ , for ‘agent a knows ϕ’. Dynamic formula [RRR,R]ϕ means ‘after execution of communication graph

R from communication pattern RRR, ϕ is true’, and [UUU ,e]ϕ means ‘after execution of action e from action

model UUU , ϕ is true’. Dynamic modalities will be interpreted as updates of epistemic models.

By notational abbreviation we define [UUU ]ϕ :=
∧

e∈E [UUU ,e]ϕ and [RRR]ϕ :=
∧

R∈RRR[RRR,R]ϕ . The modal

depth of a formula ϕ ∈ L ◦× is inductively defined as: md(pa) = 0, md(¬ϕ) = md(ϕ), md(ϕ ∧ψ) =
max{md(ϕ),md(ψ)}, md(DBϕ) := md(ϕ)+1, md([RRR,R]ϕ) := md(ϕ), md([UUU ,e]ϕ) = md(UUU)+md(ϕ),
where md(UUU) = max{md(pre( f )) | f ∈ E}. In md(UUU), the formulas pre( f ) are defined below.

If P is finite and Q ⊆ P, description δQ (of valuation Q) is defined as
∧

pa∈Q pa∧
∧

pa∈P\Q¬pa. If P is

infinite and Q ⊆ Q′ ⊂ P are finite subsets of P, description δQ,Q′ is defined as
∧

pa∈Q pa ∧
∧

pa∈Q′\Q¬pa.

2.2 Structures

Definition 2 (Epistemic model) An epistemic model M is a triple (W,∼,L), where for all a ∈ A, ∼a

is an equivalence relation on the domain W (also denoted D(M)) consisting of states (or worlds), and
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where L : W → P(P) is the valuation (function). For
⋂

a∈B ∼a we write ∼B, and for {w′ ∈W | w′ ∼a w}
we write [w]a. We further require epistemic models to be local: for all a ∈ A and v,w ∈W, v ∼a w implies

L(v)a = L(w)a; if for all a,v,w also L(v)a = L(w)a implies v ∼a w, it is a (static) interpreted system.

An epistemic model encodes uncertainty among the agents about the value of other agents’ local variables

and about the knowledge of other agents.

Definition 3 (Communication pattern) A communication graph R is a reflexive binary relation on the

set of agents A, that is, R ∈ P(A×A) and such that for all a ∈ A, (a,a) ∈ R. A communication pattern

RRR is a set of communication graphs, that is, RRR ⊆ P(A×A).

Expression (a,b) ∈ R means that the message sent by a is received by b. For (a,b) ∈ R we write aRb.

We let Rb := {a ∈ A | aRb}, RB :=
⋃

b∈B Rb, and R′B ≡ RB if R′a = Ra for all a ∈ B. The identity

relation I is {(a,a) | a ∈ A}. The universal relation U is A×A. A communication graph is a reflexive

relation, because we assume that an agent always receives her own message. But not every other agent

may receive the message. We could alternatively have defined a communication pattern as a structure

with equivalence relations ∼a for each agent, namely by defining that R ∼a R′ iff Ra = R′a, as in [17].

Definition 4 (Action model) An action model UUU = (E,∼,pre) consists of a domain E of actions, an

accessibility function ∼ : A → P(E ×E), where each ∼a is an equivalence relation, and a precondition

function pre : E → L −.

An action model [2] is a structure like an epistemic model but with a precondition function, associating a

formula with each state. The restriction to language L − for preconditions excuses us from explanations

involving mutual recursion.

For all the above structures X we also consider pointed and multi-pointed versions that are pairs

(X ,x) with x ∈ X (or x ∈ D(X)) resp. (X ,Y ) with Y ⊆ X (Y ⊆ D(X)), so we have pointed epistemic

models (M,w), multi-pointed action models (UUU ,T ), etcetera.

Communication patterns are fairly novel in dynamic epistemic logic. We note that similar structures

or modalities were proposed in [1] (resolving distributed knowledge), in [3] (reading events), and in

[17] (communication patterns). The communication patterns in [17] have preconditions, just as action

models. The reading events in [3] and resolution in [1] are communication patterns without uncertainty

over the reception of messages. Then again, communication patterns permit less uncertainty than the

arbitrary reading events in [3]. These differences are discussed in [6]. Examples are given in Sect. 3.

One can update an epistemic model with a communication pattern and one can also update an epis-

temic model with an action model. The updated epistemic model encodes how the knowledge has

changed after agents have informed each other according to the update.

Given an epistemic model M = (W,∼,L) and a communication pattern RRR, the updated epistemic

model M⊙RRR = (Ẇ ,∼̇, L̇) (the update of M with RRR) is defined as:

Ẇ = W ×RRR

(w,R)∼̇a(w
′,R′) iff w ∼Ra w′ and Ra = R′a

L̇(w,R) = L(w)

The relation ∼̇a is the intersection ∼Ra of the relations of all agents from which a received messages.

Given an epistemic model M = (W,∼,L) and an action model UUU = (E,∼,pre), the updated epistemic

model M⊗UUU = (W×,∼×,L×) is defined as:

W× = {(v, f ) | v ∈W, f ∈ E, and M,v |= pre( f )}
(v, f ) ∼×

a (v′, f ′) iff v ∼a v′ and f ∼a f ′

L×(v, f ) = L(v)
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The satisfaction relation |= to determine M,v |= pre( f ) is defined below, by mutual recursion.

In order to compare the information content of epistemic models we need the notions of (collective)

bisimulation and bounded (collective) bisimulation (n-bisimulation) [5, 16].

Definition 5 (Collective bisimulation) A relation Z between the domains of epistemic models M =
(W,∼,L) and M′ = (W ′,∼′,L′) is a (collective) bisimulation, notation Z : M↔M′, if for all (w,w′) ∈ Z:

• atoms: for all pa ∈ P, pa ∈ L(w) iff pa ∈ L′(w′);

• forth: for all nonempty B ⊆ A and for all v ∈W, if w ∼B v then there is v′ ∈W ′ such that (v,v′)∈ Z

and w′ ∼B v′;

• back: for all nonempty B⊆A and for all v′ ∈W ′, if w′ ∼B v′ then there is v∈W such that (v,v′)∈ Z

and w ∼B v.

We additionally define a collective bisimulation bounded by n, as a set of relations Z0 ⊇ Z1 · · · ⊇ Zn of

i-bisimulations for 0 ≤ i ≤ n. Relation Z0 merely satisfies atoms, and for all (w,w′) ∈ Zn+1:

• atoms: for all pa ∈ P, pa ∈ L(w) iff pa ∈ L′(w′);

• forth-(n+1): for all nonempty B ⊆ A and for all v ∈W, if w ∼B v then there is v′ ∈W ′ such that

(v,v′) ∈ Zn and w′ ∼B v′.

• back-(n+1): for all nonempty B ⊆ A and for all v′ ∈W ′, if w′ ∼B v′ then there is v ∈W such that

(v,v′) ∈ Zn and w ∼B v.

If there is a bisimulation Z between M and M′ we write M↔M′, and if there is one containing (w,w′) we

write (M,w)↔(M′,w′). We then say that M and M′, respectively (M,w) and (M′,w′), are bisimilar. If Z

is bounded by n we write (M,w)↔n(M′,w′) and we say that (M,w) and (M′,w′) are n-bisimilar.

Bounded bisimulations are used to compare models (M,w) and (M′,w′) up to a depth n from the

respective points w and w′. Collective n-bisimilarity implies that both models satisfy the same L −

formulas of modal depth at most n, as a minor variation of the standard result in [5].

To compare dynamic modalities we define updates and update expressivity.

Definition 6 (Update, update expressivity) An update (or update relation) is a binary relation X on a

class of pointed epistemic models. Given updates X and Y , X is update equivalent to Y , if for all pointed

epistemic models (M,w) the update of (M,w) with X is collectively bisimilar to the update of (M,w) with

Y . Update modalities [X ] and [Y ] are update equivalent, if X and Y are update equivalent. (For more

refined notions see [7].)

A language L is at least as update expressive as L ′ if for every update modality [X ] of L ′ there

is an update modality [Y ] of L such that X is update equivalent to Y . Language L is equally update

expressive as L ′ (or ‘as update expressive as’), if L is at least as update expressive as L ′ and L ′ is at

least as update expressive as L . Language L is (strictly) more update expressive than L ′, if L is at

least as update expressive as L ′ and L ′ is not at least as update expressive as L . Languages L and

L ′ are incomparable in update expressivity if if L is not at least as update expressive as L ′ and L ′ is

not at least as update expressive as L .

2.3 Semantics

Definition 7 (Semantics on epistemic models) Given M = (W,∼,L) and w ∈ W, the satisfaction rela-

tion |= is defined by induction on ϕ ∈L ×◦ (where p ∈ P, a ∈ A, B ⊆ A, (RRR,R) a pointed communication
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pattern and (UUU ,e) a pointed action model).

M,w |= pa iff pa ∈ L(w)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ψ iff M,w |= ϕ and M,w |= ψ
M,w |= DBϕ iff M,v |= ϕ for all v ∼B w

M,w |= [RRR,R]ϕ iff M⊙RRR,(w,R) |= ϕ
M,w |= [UUU ,e]ϕ iff M,w |= pre(e) implies M⊗UUU,(w,e) |= ϕ

Formula ϕ is valid on M iff for all w ∈W, M,w |= ϕ; formula ϕ is valid iff for all (M,w), M,w |= ϕ .

The (required) locality of epistemic models causes distributed knowledge to have slightly different

properties in our semantics. In the standard semantics of distributed knowledge DBϕ ↔ ϕ is invalid for

any B ⊆ A. Whereas in our semantics DAϕ ↔ ϕ is valid although DBϕ ↔ ϕ for B ⊂ A remains invalid.

A complete axiomatization of the validities of L ◦ (communication pattern logic), reducing the dy-

namics, is given in [6] (similar to [1, 3]). A complete axiomatization of the validities of L × (action

model logic), reducing the dynamics, is given in [2]. The language L ×◦ is not of independent interest.

3 Induced action models for interpreted systems

In this section, let P be finite. From each communication pattern we will construct an induced action

model. We will show that communication patterns are update equivalent to induced action models when

executed in an interpreted system. However, the update of an interpreted system with a communication

pattern may not be an interpreted system, and the update of an epistemic model that is not an interpreted

system with a communication pattern may not have the same update effect as its induced action model,

of which we will give an example.

Definition 8 (Action model induced by a communication pattern) Given a communication pattern RRR,

define induced action model UUU(RRR) = (E,∼,pre) as follows (where R,R′ ∈RRR, Q,Q′ ⊆ P, a ∈ A).

E = RRR×P(P)
(R,Q)∼a (R

′,Q′) iff Ra = R′a and QRa = Q′
R′a

pre(R,Q) = δQ

Informally, this says that two actions are indistinguishable for an agent if the agent receives messages

from the same agents (Ra = R′a) and if the messages it receives from those agents are the same (QRa =
Q′

R′a). As RRR and P are finite, UUU(RRR) has a finite domain, so that modality [UUU(RRR)] is in L ×. The size of the

action model UUU(RRR) is |RRR×P(P)|= |RRR| ·2|P|. Therefore, UUU(RRR) is exponentially larger than RRR.

Proposition 9 Let an interpreted system M and RRR be given. Then M⊙RRR is bisimilar to M⊗UUU(RRR).

Proof Let M = (W,∼,L). Define the following relation Z between (the domains of) M ⊙RRR and M ⊗
UUU(RRR): Z : (w,R) 7→ (w,(R,L(w))). We show that Z defines a bisimulation.

Let ((w,R),(w,R,L(w)) ∈ Z.

atoms: Straightforwardly, L̇(w,R) = L(w) = L×(w,(R,L(w))).
forth: Assume (w,R)∼̇B(v,S). We claim that (v,(S,L(v))) is the required witness to show forth.

Obviously ((v,S),(v,(S,L(v))) ∈ Z. We also have:

(w,R)∼̇B(v,S) ⇔
for all a ∈ B, (w,R)∼̇a(v,S) ⇔ by definition of ∼̇a
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M : w1

w2

pa

pa

b

M⊙ByzByzByz : (w1, I) (w1,R
ab)

(w2, I) (w2,R
ab)

pa pa

pa pa

a

b

a

UUU(ByzByzByz) : (I, pa) (Rab, pa)

(I, pa) (Rab, pa)

a

b

a

M⊗UUU(ByzByzByz) : (w1,(I, pa)) (w1,(R
ab, pa))

(w2,(I, pa)) (w2,(R
ab, pa))

pa pa

pa pa

a

b

a

Figure 1: Communication pattern and action model for Byzantine Generals

for all a ∈ B, w ∼Ra v and Ra = Sa ⇔ (*)

for all a ∈ B, w ∼a v, Ra = Sa, and L(w)Ra = L(v)Sa ⇔
for all a ∈ B, w ∼a v and (R,L(w))∼a (S,L(v)) ⇔
for all a ∈ B, (w,(R,L(w)))∼×

a (v,(S,L(v))) ⇔
(w,(R,L(w))) ∼×

B (v,(S,L(v))).

(*): As M is an interpreted system, for all agents b ∈ Ra, w ∼b v iff L(w)b = L(v)b, in other words:

w ∼Ra v iff L(w)Ra = L(v)Sa. As in particular a ∈ Ra, w ∼a v on the right-hand side of the equation also

follows from L(w)Ra = L(v)Sa.

back: Similar to forth. �

Example 10 (Byzantine generals) Byzantine attack [13, 9] is a communication pattern given in [17].

Let A = {a,b} and P = {pa}. Generals a and b wish to schedule an attack, where b desires to learn

whether a wants to ‘attack at dawn’ (pa) or ‘attack at noon’ (¬pa). General a now sends her decision to

general b in a message that may fail to arrive. This fits the communication pattern RRR = {I,Rab} where

Rab = I∪{(a,b)}, which models that a is uncertain whether her message has been received by b. In this

instantiation of Byzantine generals, general b has no local variable.

The communication pattern ByzByzByz = {I,Rab} where Rab = I ∪{(a,b)}. We have that Ia = Raba = {a}
whereas Ib = {b} and Rabb = {a,b} (see also [17, Figure 1] and [6, Example 7]).

Fig. 1 depicts the initial epistemic model M wherein agent b is uncertain about the value of a variable

pa of agent a, the updated model M⊙ByzByzByz, the action modelUUU(ByzByzByz), and updated model M⊗UUU(ByzByzByz). The

states in epistemic models are also labelled with valuations, where pa stands for {pa} and pa stands for

/0. Model M is an interpreted system in the vacuous sense that if agent b were to have local variables we

could assume their value to be the same in both states. In UUU(ByzByzByz), the precondition of actions (I,{pa})
and (Rab,{pa}) is pa, and that of actions (I, /0) and (Rab, /0) is ¬pa. (In the figure, for visual consistency,

these actions are written as (I, pa), (R
ab, pa), (I, pa), and (Rab, pa).) Model M ⊗UUU(ByzByzByz) is bisimilar, as

required, to M⊙ByzByzByz and even isomorphic.

When model M is an interpreted system, M ⊙RRR may not be an interpreted system, as, in a way,

M ⊙ByzByzByz in Example 10. If agent b were to have local variables, their value would be the same in w1

and in w2 and thus also in the four worlds of the updated model. But now agent b has three equivalence

classes. It is therefore no longer an interpreted system.
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SqSqSq : 00

01 10

11

a

a

b

b

SqSqSq⊙ ISISIS : 00 00 00

01

01

01

10

10

10

11 11 11

a
b a

a

b

a

b

b

a

b

a b

SqSqSq⊙ ISISIS⊙ ISISIS :

00

11

01 10

• • • • • • • • •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• • • • • • • • •

a

a

b

b

Figure 2: Iterated immediate snapshot for two agents a,b. In world 10 local variable pa is true and pb

is false (a slightly simpler depiction than pa pb), etcetera. In SqSqSq⊙ ISISIS and SqSqSq⊙ ISISIS⊙ ISISIS it is implicit which

communication graph is executed, and in SqSqSq⊙ ISISIS⊙ ISISIS valuations are only indicated schematically.

Example 11 (Iterated Immediate Snapshot) Consider the model SqSqSq where a knows the truth about pa

and b knows the truth about pb. This is the interpreted system for two agents each having a single

variable. We recall the immediate snapshot (ISISIS) [11] for two agents {a,b}, defined as {Rab,Rba,U},

where Rab = I ∪{(a,b)} and Rba = I ∪{(b,a)}. These three communication graphs, as points of ISISIS, are

commonly denoted as schedules consisting of concurrency classes a.b, b.a, and ab, respectively. Fig. 2

shows the models SqSqSq, SqSqSq⊙ ISISIS, and SqSqSq⊙ ISISIS⊙ ISISIS. Lemma 12 below shows that iteration of ISISIS preserves

circularity, as in the figure.

It follows from Prop. 9 that SqSqSq⊙ISISIS is bisimilar to SqSqSq⊗UUU(ISISIS). However, (SqSqSq⊗UUU(ISISIS))⊗UUU(ISISIS) is not

bisimilar to (SqSqSq⊙ ISISIS)⊙ ISISIS and these models therefore satisfy different formulas in comparable worlds.

In view of Prop. 9 it is sufficient to show that (SqSqSq⊙ ISISIS)⊗UUU(ISISIS) is not bisimilar to (SqSqSq⊙ ISISIS)⊙ ISISIS.

Consider the fragment

(11,Rba) (11,U) (11,Rab)
a b

of model SqSqSq⊙ ISISIS. This is the top row in Fig. 2. In the model SqSqSq⊙ ISISIS⊙ ISISIS this becomes

(11,Rba,Rba) (11,Rba,U) (11,Rba,Rab) (11,U,Rab) (11,U,U) (11,U,Rba) (11,Rab,Rba) (11,Rab,U) (11,Rab,Rab)
a b a b a b a b

Let us now, instead, calculate SqSqSq⊙ ISISIS⊗UUU(ISISIS). Instead of (11,Rba,Rba)—a—(11,Rba,U), we obtain

(11,Rba,(Rba,11))—a—(11,Rba,(U,11)). Apart from this edge and other expected edges as above, we

now obtain additional edges as below (where we also assume transitivity).

(11,Rba,Rba) (11,Rba,U) (11,Rba,Rab) (11,U,Rab) (11,U,U) (11,U,Rba) (11,Rab,Rba) (11,Rab,U) (11,Rab,Rab)
a b a b a b a b

a

a b

b

For example, (11,Rba,(U,11)) ∼a (11,U,(U,11)), because by the semantics of action model execu-

tion, (11,Rba) ∼a (11,U) in SqSqSq⊙ ISISIS and (U,11) ∼a (U,11) in UUU(ISISIS). Similarly, (11,Rba,(Rba,11)) ∼a

(11,U,(U,11)), because (11,Rba) ∼a (11,U) in SqSqSq⊙ ISISIS and (Rba,11) ∼a (U,11) in UUU(ISISIS), where the

latter holds because Rbaa =Ua (namely {a,b}) and 11Rbaa = 11Ua (namely 11{ab}, which is 11).

Intuitively, in SqSqSq⊙ISISIS⊙ISISIS the agents learn in the second round whether the communication succeeded

in the previous, first, round. But in SqSqSq⊙ ISISIS⊗UUU(ISISIS) they do not learn this in the second round.
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It is easy to see that SqSqSq⊙ ISISIS⊙ ISISIS is not bisimilar to SqSqSq⊙ ISISIS⊗UUU(ISISIS) wherein we can reach states

in the model with a different valuation in fewer steps. There are then distinguishing formulas, e.g.,

SqSqSq⊙ ISISIS⊙ ISISIS,(11,U,Rba) 6|= K̂aK̂b¬pa, whereas SqSqSq⊙ ISISIS⊗UUU(ISISIS),(11,U,(Rba,11)) |= K̂aK̂b¬pa.

On squares and circles A circular ab-chain is an epistemic model consisting of an even number of

worlds 0, . . . ,2n− 1, where n ∈ N with n ≥ 2, and such that for all i ≤ n, 2i ∼a 2i+ 1 and 2i ∼b 2i− 1

(modulo 2n).

Lemma 12 Define SqSqSq⊙ISISIS0 := SqSqSq and SqSqSq⊙ISISISn+1 := (SqSqSq⊙ISISISn)⊙ISISIS. For all n ∈N, SqSqSq⊙ISISISn is a circular

ab-chain.

Proof We prove this by induction.

Model SqSqSq is a (minimal) circular ab-chain.

Assuming that SqSqSq⊙ ISISISn is a circular ab-chain, take any world w in that chain and let neighbouring

worlds w′,w′′ be such that w′ ∼a w and w ∼b w′′ (where w,w′,w′′ have arbitrary valuation). We now

execute ISISIS once more. Consider the new worlds (w,Rab),(w,U),(w,Rba). Then:

• (w′,Rab)∼a (w,R
ab) because Raba = Raba (= {a}) and w′ ∼a w. No other world than (w′,Rab) is

indistinguishable for a from (w,Rab). If R 6= Rab then Ra 6= Raba so (w′,R) 6∼a (w,R
ab). If v 6= w,w′

then v 6∼a w so (v,Rab) 6∼a (w,R
ab).

• (w,Rba) ∼b (w
′′,Rba) because Rbab = Rbab (= {b}) and w ∼b w′′. Similarly to the previous case

this is the unique indistinguishable other world in the updated model.

• (w,Rab) ∼b (w,U) because Rabb = Ub (= {a,b}) and w ∼ab w. No other world than (w,U) is

indistinguishable for b from (w,Rab). We note that Rbab 6= Rabb and Rbab 6= Ub, so (w,Rab) 6∼b

(w,Rba) and (w,U) 6∼b (w,R
ba). If v 6= w then v 6∼ab w so (w,Rab) 6∼b (v,R

ab) and (w,U) 6∼b (v,U).

• (w,Rba)∼a (w,U) because Rbaa =Ua (= {a,b}) and w ∼ab w. Similarly to the previous case this

is the unique indistinguishable other world in the updated model.

�

This result is not surprising. In the corresponding representation as simplicial complexes, an ap-

plication of ISISIS is a so-called subdivision [11]. A circular ab-chain corresponds to a circular graph (1-

dimensional complex) with alternating a and b nodes, such that each edge a—b gets replaced by three

edges a—b—a—b at each iteration of ISISIS (and duplicated nodes keeps their old labels).

4 Communication patterns and action models are incomparable

Proposition 13 Communication pattern logic is not at least as update expressive as action model logic.

Proof We can prove this in different ways, which seems instructive.

First, in a public announcement, the environment may reveal something that cannot be revealed by

the agents individually or jointly, such as the announcement whether pa ∨ pb in a model where a knows

whether pa and b knows whether pb.

pa pb pa pb

pa pb pa pb

a

a

b b pa∨pb?
⇒

pa pb pa pb

pa pb pa pb
a

b
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Second, agents may choose to reveal some but not all of their local variables, such as, if a knows

whether pa and whether qa, a informing b of the truth about pa but not about qa.

paqa paqa

paqa paqa

b

b

b b pa?
⇒

paqa paqa

paqa paqa

b b

Third, there are action models that produce more uncertainty than any communication pattern. Here

we should note that although the composition of two action models is again an action model (there-

fore, for all UUU ,UUU ′ there is a UUU ′′, namely the composition of UUU and UUU ′, such that [UUU ][UUU ′]ϕ ↔ [UUU ′′]ϕ),

sequentially executing two communication patterns is typically not the same as executing a single com-

munication pattern (it is not the case that for all RRR,RRR′ there is a RRR′′ such that [RRR][RRR′]ϕ ↔ [RRR′′]ϕ). For

example, consider the models SqSqSq and SqSqSq⊙ ISISIS⊙ ISISIS (Example 11). The domain of model SqSqSq consists of

four worlds and that of SqSqSq⊙ ISISIS⊙ ISISIS consists of 36 worlds; it is nine times larger (and it is bisimulation

minimal). Now there are only four different communication patterns for two agents (namely I, Rba, Rab,

and U ). So the maximum size of a model resulting from updating SqSqSq with a communication pattern is 16.

Therefore there is no such communication pattern. In other words, there is no RRR such that SqSqSq⊙ ISISIS⊙ ISISIS

is bisimilar to SqSqSq⊙RRR which implies that there is no RRR that has the same update effect as updating twice

with ISISIS.

However, there is an action model UUU such that SqSqSq⊙ ISISIS⊙ ISISIS is bisimilar to SqSqSq⊗UUU : its domain is the

domain of SqSqSq⊙ ISISIS⊙ ISISIS; its relations for a and b are the relations for a and b on the model SqSqSq⊙ ISISIS⊙ ISISIS,

and its preconditions are such that the precondition of a world (i j,R,R′) in the domain of SqSqSq⊙ ISISIS⊙ ISISIS is

the description δi j of the valuation i j. It is straightforward to see that SqSqSq⊙ ISISIS⊙ ISISIS is even isomorphic to

SqSqSq⊗UUU .

We conclude that there is no communication pattern that is update equivalent to this action model UUU .

Therefore, communication pattern logic is not at least as update expressive as action model logic. �

We continue by showing that action model logic is not at least as update expressive as communication

pattern logic. If multi-pointed action models had not been allowed, a trivial way to show that, would

have been to observe that single-pointed action models unlike communication patterns may not always

be executable. Although true, that is not of interest. We prove this in a more meaningful way in the

following Prop. 14. Its proof assumes towards a contradiction that an action model UUU exists that is

update equivalent to the communication pattern ISISIS, where we identify UUU with the multi-pointed action

model (UUU ,D(UUU)). We then compare the updates ISISIS and UUU in epistemic model SqSqSq⊙ ISISISn for n exceeding

a function of the modal depth of any precondition of UUU , and derive a contradiction. It may assist the

reader to know that Ex. 11 above replays this proof for UUU =UUU(ISISIS) of which the action preconditions are

booleans, such that md(UUU) = 0 and we can choose n = 1.

Proposition 14 Action model logic is not at least as update expressive as communication pattern logic.

Proof Suppose towards a contradiction that communication pattern ISISIS is update equivalent to an action

model UUU = (E,∼,pre).
What do we know about UUU? As ISISIS is always executable, we may assume that the disjunction ψ of

all preconditions of actions e in the domain E of UUU is the triviality. Otherwise, given some model with

M,w |= ¬ψ , we could update with ISISIS but not with UUU . Similarly, for any action e in the domain E of UUU ,

there must be f ∈ E such that e ∼a f and pre(e) = pre( f ) (and for agent b there must be a g ∈ E such
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that g ∼b f and pre(g) = pre( f )). Otherwise, consider a model (M,w) that can only be updated with

(UUU ,e) (for which M,w |= pre(e)). It can be updated with (ISISIS,U) and also with (ISISIS,Rba) resulting in states

(w,U) and (w,Rba) satisfying different properties, as (w,U)∼a (w,R
ba) (because Ua = Rba = {a,b}), so

that one or the other but not both can be bisimilar to (w,e). Therefore, UUU must be a refinement of ISISIS seen

as a structure Rab—b—U—a—Rba. Its actions can therefore be assumed to have shape (R,ϕ) where R

is one of Rab,U,Rba and where ϕ ∈ L × is the precondition of that action, that is, pre(R,ϕ) = ϕ .1

The modality [UUU ] is an operator in the language L × and |E| is finite, so that md(UUU)=max{md(pre(e)) |
e ∈ E} is defined. Choose n ∈ N with n > log3 2(md(UUU)+ 1) and consider SqSqSq⊙ ISISISn, schematically de-

picted as:

SqSqSq⊙ ISISISn: 00 00

01

01

10

10

11 11•

(11,Un)

a

a

b

b

and concretely its three-action fragment:

(∗) : (11,Un−1Rba) (11,Un) (11,Un−1Rab)
a b

where world (11,Un) of (∗) is the same as the depicted world (11,Un) of SqSqSq⊙ ISISISn.

We can now justify the bound n > log3 2(md(UUU)+1). We need in the proof that the three worlds of

(∗) satisfy the same actions of UUU , and we guarantee that because they are bounded collectively bisimilar

for an appropriate bound. Given (11,Un), the bound should exceed the modal depth of any possible pre-

condition of any action in UUU . That explains md(UUU). Plus one, as we need this to hold for the surrounding

worlds too. That explains md(UUU)+ 1. Twice that, 2 · (md(UUU)+ 1), is the required length of one side

of the squarish model SqSqSq⊙ ISISISn with therefore 8 · (md(UUU)+ 1) worlds. Starting with four worlds, every

iteration of ISISIS multiplies the number of worlds by 3. So we therefore want to iterate ISISIS by some n such

that 4 ·3n > 8 · (md(UUU)+1), that is, n > log3 2(md(UUU)+1).

Consider SqSqSq⊙ ISISISn ⊗UUU . Recalling what is known about UUU , there must be an e ∈ E such that SqSqSq⊙
ISISISn,(11,Un) |= pre(e). Also, there must be f ,g ∈E with e∼a f and f ∼b g and pre(e) = pre( f ) = pre(e).
Let pre(e) be θ . These actions e, f ,g therefore have shape (Rab,θ), (U,θ), (Rba,θ) respectively.

As n > log3 2(md(UUU)+1), the three worlds in (∗) are bounded collectively bisimilar:

(SqSqSq⊙ ISISISn
,(11,Un−1

,Rba))↔md(UUU)+1(SqSqSq⊙ ISISISn
,(11,Un))↔md(UUU)+1(SqSqSq⊙ ISISISn

,(11,Un−1
,Rab))

As md(θ)≤md(UUU), all three worlds in (∗) satisfy θ , so actions e, f ,g can be executed in all these worlds.

The model SqSqSq⊙ ISISISn ⊗UUU therefore contains the submodel

1By refinement we mean that Rab can be seen as an equivalence class {(Rab,ϕ) | (Rab,ϕ) ∈D(UUU)}, and similarly for U and

Rba, where two such equivalence classes are indistinguishable for a if there are (R,ϕ),(R′
,ϕ ′) such that (R,ϕ)∼a (R

′
,ϕ ′), and

similarly for b.
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(·,(Rba,θ)) (·,(U,θ)) (·,(Rab,θ)) (·,(Rab,θ)) (·,(U,θ)) (·,(Rba,θ)) (·,(Rba,θ)) (·,(U,θ)) (·,(Rab,θ))
a b a b a b a b

a

a b

b

wherein only some additional pairs for ∼a and ∼b are shown, and where from those shown we merely jus-

tify one as an example: for the leftmost and the middle worlds, we have that (11,Un−1,Rba,(Rba,θ))∼a

(11,Un,(U,θ)), because by the semantics of action model execution, (11,Un−1,Rba) ∼a (11,Un) in

SqSqSq ⊙ ISISISn and (Rba,θ) ∼a (U,θ) in UUU(ISISIS). Furthermore (unlike in Example 11), worlds (. . . ,(R,θ))
shown, may be indistinguishable for a or b from worlds (. . . ,(R,ξ )) not shown, for actions (R,ξ ) with

ξ non-equivalent to θ .

Consequently, SqSqSq⊙ ISISISn ⊗UUU is not a circular ab-chain like SqSqSq⊙ ISISISn+1 that locally looks like:

(·,Rba) (·,U) (·,Rab) (·,Rab) (·,U) (·,Rba) (·,Rba) (·,U) (·,Rab)
a b a b a b a b

Now the assumption of update equivalence implies that SqSqSq⊙ ISISISn+1 is collectively bisimilar to SqSqSq⊙
ISISISn⊗UUU . The supposed bisimulation relation Z linking SqSqSq⊙ISISISn+1 and SqSqSq⊙ISISISn⊗UUU should therefore such

that Z : (w,σ ,R) 7→ (w,σ ,(R,pre(e)) for all w ∈W , σ ∈ ISISISn, and e ∈ E with SqSqSq⊙ISISISn,(w,σ) |= pre(e), in

particular the three worlds in (∗) and the e, f ,g above with preconditions θ . On the other hand, clearly,

a pair of worlds in this relation cannot be bisimilar, as the additional a-links and b-links allow shorter

paths to a 01-world. Differently said, as bounded bisimilarity implies the same truth value for formulas

of at most that modal depth, the worlds in such a pair satisfy different formulas. (See Ex. 11 for n = 1.)

This contradicts our assumption that UUU is update equivalent to ISISIS and thus concludes the proof. �

Prop. 14 holds for any countable set of local variables P. In the proof of Prop. 14 we only need two:

P = {pa, pb}. When P is countably infinite there is a shorter proof of Prop. 14, given below.

Proof Let P be countably infinite. Suppose towards a contradiction that there is an action model UUU

with [UUU ] (or [UUU ,e]) in the logical language (so that the domain of UUU is necessarily finite) that is update

equivalent to ByzByzByz. As UUU is finite and P is countably infinite, there exists a qa ∈ P not occurring in any of

the preconditions of the actions in the domain of UUU . Now consider epistemic model M′′ as in Example 10

but with qa true in w1 and false in w2 and with pa true in both worlds. When executing UUU in M′′, the

update M′′⊗UUU will never get the required asymmetry of M′′⊙ByzByzByz, because any action (point) e that is

executable in w1 is also executable in w2, as for any p ∈ P\{qa}, p ∈ L(w1) iff p ∈ L(w2). In particular

we therefore will have that (w1, I, . . . ) ∼b (w2, I, . . . ) iff (w1,R
ab, . . . ) ∼b (w2,R

ab, . . . ). (An argument

involving ∼a and ∼b similar to the one in the proof of Prop. 14 is omitted for brevity.)

More simply said, if we were to execute UUU(ByzByzByz) of Example 10 in that model M′′, the following

model would result (as pa is true in w1 and w2, the alternatives with precondition ¬pa never execute):

M′′ : (w1)

(w2)

paqa

paqa

b

M′′⊙UUU(ByzByzByz) : (w1,(I, pa)) (w1,(R
ab, pa))

(w2,(I, pa)) (w2,(R
ab, pa))

paqa paqa

paqa paqa

a

b

a

b

�

Corollary 15 Communication pattern logic and action model logic are incomparable in update expres-

sivity.
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5 Communication patterns for history-based structures

Example 11 demonstrated that interpreted systems are not closed under update with communication pat-

terns. We therefore could not obtain a result for update expressivity for the class of interpreted systems.

In this section we show that this is after all possible if we adjust the structures in which we execute

updates and simultaneously adjust the definition of the update. In order to store the sequence of past

events we generalize our epistemic models to history-based epistemic models [4, 8]. Simultaneously, we

change the semantics of the update with a communication pattern namely by having this depend on the

number of previous updates that already took place, what is known as the number of previous rounds

in an oblivious protocol arbitrarily often executing that communication pattern. The change consists in

recording the information of previous rounds in designated history variables, that store the view for each

agent on all previous rounds. These variables are also local.

Example 16 When updating epistemic model (SqSqSq,11) with communication pattern (ISISIS,Rab), we record

that Raba = {a} and Rabb = {a,b} in the resulting world (11,Rab) by indexing these sets with the names

of the agents, so as {a}a and {a,b}b, that we write as aa and abb. These are local variables. Then, when

updating (SqSqSq⊙ ISISIS,(11,Rab)) with (ISISIS,Rba), we record the entire history so far for a and b, where a but

not b also receives b’s history of the previous round, as ((a,ab).ab)a for agent a and (ab.b)b for agent b.

We explain the first. As a receives information from b, and by default from itself, Rbaa = {a,b}, writ-

ten as ab, is preceded by the list ({a},{a,b}) containing Raba = {a} and Rabb = {a,b} of the previous

round, which is written as (a,ab). The expression (a,ab).ab is the view of agent a on the history, which

is a tree. This view is indexed with the name a of the agent, such that ((a,ab).ab)a is a local variable for

agent a, wherein the views of a and of b in the previous round are lexicographically ordered.

And so on for every next round. Such history variables are designated local variables, initially false.

We adapt the semantics of update ⊙ by making history variables for a given round of communication

true after the update representing that round. We name this semantics ⊙̇.

• in (SqSqSq,11), variables pa and pb are true and all others false;

• in (SqSqSq⊙̇ISISIS,(11,Rab)), variables pa, pb,aa,abb are true and all others false;

• in (SqSqSq⊙̇ISISIS⊙̇ISISIS,(11,Rab,Rba)), variables pa, pb,aa,abb,((a,ab).ab)a ,(ab.b)b are true and . . .

The ⊙̇ semantics is then closed for the class of interpreted systems. We proceed with formalities.

Definition 17 (View, history variable) Let a communication pattern RRR be given. A history is a member

σ ∈RRR∗ (a finite sequence of communication graphs in RRR). The view of a ∈ A on history σ is defined as:

viewa(ε) := /0 viewa(σ .R) := viewRa(σ).Ra

where viewRa(σ) is the ordered list of views viewb(σ) for b ∈ Ra. The set of history variables is ΣΣΣ :=
{(viewa(σ))a | σ a history,a ∈ A}. Also, Σn := {(viewa(σ))a ∈ΣΣΣ | |σ |= n,a ∈ A}, and Σ<n =

⋃
m<n Σm.

The view of agent a on history σ defines a tree with root Ra where R is the last element of σ . A history

variable for a is nothing but the view of a of a history σ , subscripted with a, denoting a local variable.

The set of views is known as the full-information protocol [14]. We now model the arbitrary iteration of

a communication pattern in an epistemic model, while keeping track of the previous rounds by way of

history variables. The definition is for agents A and variables P∪ΣΣΣ (and not, as before, for A and P).

Definition 18 (History epistemic model) Given an epistemic model M = (W,∼,L), a communication

pattern RRR, and n ∈ N, a history epistemic model M⊙̇RRRn is defined as follows. For n = 0, M⊙̇RRR0 = M.

For n ≥ 0, given M⊙̇RRRn = (W ×RRRn,∼,L), we define M⊙̇RRRn+1 := (W ×RRRn+1,∼′,L′)2 such that:

2Allowing slight abuse of the notation RRRn.
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• (w,σ .R)∼′
a (w

′,σ ′.R′) iff (w,σ)∼Ra (w
′,σ ′) and Ra = R′a;

• L′(w,σ .R) := L(w,σ)∪{(viewb(σ .R))b | b ∈ A}.

The domain of M⊙̇RRRn is W ×RRRn, so that domain elements have shape (w,σ). As M⊙̇RRR0 = M, all history

variables in M⊙̇RRR0 are false. This means that no round of communication has taken place.

The difference between the ⊙̇ update and the ⊙ update is therefore only in the labeling of local

variables: we now require a countably infinite set of local history variables such that in each round for

each agent the entire history is again recorded by making such a variable true. We will see that this

guarantees that interpreted systems are closed under update.

Given the ⊙̇ update, the history-based semantics is now as expected, and unlike the previous seman-

tics it has the property that the update of an interpreted system remains an interpreted system.

Definition 19 (History-based semantics) Given M⊙̇RRRn = (W ×RRRn,∼,L) and (w,σ) ∈W, define satis-

faction relation |= by induction on ϕ ∈L (where p∈ P, a∈ A, B ⊆A, RRR a communication pattern, R∈RRR,

σ ∈RRRn, and τ ∈RRR∗ — that is, τ is an arbitrary history).

M⊙̇RRRn,(w,σ) |= pa iff pa ∈ L(w)
M⊙̇RRRn,(w,σ) |= (viewa(τ))a iff (viewa(τ))a ∈ L(w,σ)
M⊙̇RRRn,(w,σ) |= ¬ϕ iff M⊙̇RRRn,(w,σ) 6|= ϕ
M⊙̇RRRn,(w,σ) |= ϕ ∧ψ iff M⊙̇RRRn,(w,σ) |= ϕ and M⊙̇RRRn,(w,σ) |= ψ
M⊙̇RRRn,(w,σ) |= DBϕ iff M⊙̇RRRn,(v,τ) |= ϕ for all (v,τ) ∼B (w,σ)
M⊙̇RRRn,(w,σ) |= [RRR,R]ϕ iff M⊙̇RRRn+1,(w,σ .R) |= ϕ

Proposition 20 Let interpreted system M and RRR be given. Then M⊙̇RRRn is an interpreted system.

Proof Let M⊙̇RRRn = (W ×RRRn,∼,L). We are required to show that (w,σ) ∼a (w′,σ ′) iff L(w,σ)a =
L(w′,σ ′)a.

For n = 0 this is because M is an interpreted system.

Let us now assume M⊙̇RRRn is an interpreted system and consider M⊙̇RRRn+1, and R,R′ ∈ RRR. We then

have that (where |σ |= |σ ′|= n):

(w,σ .R)∼a (w
′,σ ′.R′)

⇔ by definition of ∼a

Ra = R′a and (w,σ)∼Ra (w
′,σ ′)

⇔
Ra = R′a, and for all b ∈ Ra : (w,σ)∼b (w

′,σ ′)
⇔ inductive hypothesis

Ra = R′a, and for all b ∈ Ra : L(w,σ)b = L(w′,σ ′)b

⇔ (∗)
L(w,σ .R)a = L(w′,σ ′.R′)a

(∗): By definition, we have that L(w,σ .R) = L(w,σ)∪{(viewb(σ .R))b | b ∈ A}. Therefore, for agent

a, we have that L(w,σ .R)a = L(w,σ)a ∪ {(viewa(σ .R))a}. As a ∈ Ra, we may assume by induction

that L(w,σ)a = L(w′,σ ′)a. It therefore remains to show that (viewa(σ .R))a = (viewa(σ
′.R′))a. By the

definition of view, this is equivalent to requiring that Ra = R′a, and that (viewb(σ))b = (viewb(σ
′))b

for all b ∈ Ra. The latter is given above. Concerning the former: from the inductive assumption

that L(w,σ)b = L(w′,σ ′)b for all b ∈ Ra and the definition of view for these agents b it follows that

(viewb(σ))b = (viewb(σ
′))b for all b ∈ Ra. �
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In order to compare the update expressivity of action models and communication patterns in this

semantics, we must also change Def. 8 of induced action model UUU(RRR). There are now infinitely many

local variables, so that the description of a valuation is no longer a formula but an infinite conjunction.

However, for every round of communication a description of the valuation of a finite subset is sufficient.

Definition 21 (Induced action model for round n) The induced action model UUUn(RRR) = (E,∼,pre) for

round n of iterated execution of RRR is defined as follows, where R,R′ ∈RRR, Q,Q′ ⊆ P∪Σ<n, and a ∈ A:

E = RRR×P(P∪Σ<n)
(R,Q)∼a (R

′,Q′) iff Ra = R′a and QRa = Q′
R′a

pre(R,Q) = δQ,P∪Σ<n

Although P∪ΣΣΣ infinite, P∪Σ<n is finite. Note thatUUU(RRR) isUUU1(RRR), where δQ is now δQ,P, as Σ<1 =Σ0 = /0.

We recall the definition of δQ,P∪Σ<n from Sect. 2.1. From Prop. 20 and Prop. 9 we directly obtain:

Proposition 22 Let interpreted system M and communication pattern RRR be given. Then M⊙̇RRRn is bisim-

ilar to M⊗UUU1(RRR)⊗·· ·⊗UUUn(RRR).

By abbreviation inductively define (RRR0,ε) := ε and (RRRn+1,σ .R) := (RRRn,σ).(RRR,R), where σ ∈ RRRn.

Recalling the definition of [RRR]ϕ as
∧

R∈RRR[RRR,R]ϕ , we let [RRRn]ϕ stand for
∧

σ∈RRRn [RRRn,σ ]ϕ . Just as [RRRn]ϕ is

equivalent to [RRR]nϕ , [RRR,σ ]ϕ is equivalent to [RRR,R1] . . . [RRR,Rn]ϕ , where σ = R1 . . .Rn.

In the ⊙ semantics, the answer to the question whether a communication pattern (RRR,R) is update

equivalent to an action model (UUU(RRR),T ) where T = {(R,Q) | Q ⊆ P}, on the class of epistemic models,

was ‘no’ (Example 11). This now becomes the question whether in the history-based ⊙̇ semantics an

iterated communication pattern (RRRn,σ) is update equivalent to a multi-pointed action model on the class

of interpreted systems with empty histories. The answer to that is ‘yes’. However, communication

pattern modalities occurring in a formula may not be interpreted in the empty history. For example,

given [RRR,R](pa → DB[RRR,R
′]pb), subformula [RRR,R′]pb will be interpreted in some world (w,R), not in

some world (w,ε). We want it equivalent to some formula of shape [RRR,RR′]ψ . We therefore show that

any formula ϕ ∈ L ◦ is equivalent to one wherein all subformulas [RRRn,σ ]ψ have that ψ ∈ L − (without

dynamic modalities). All dynamic modalities are then interpreted in an empty history epistemic model.

Define the iterated update normal form (IUNF), the language L ◦
iunf

(with members ϕ) by BNF as:

ϕ := pa | ¬ϕ | ϕ ∧ϕ | DBϕ | [RRRn,σ ]ψ
ψ := pa | ¬ψ | ψ ∧ψ | DBψ

Lemma 23 Every formula in L ◦ is equivalent to one in L ◦
iunf

, in iterated update normal form.

Proof We define a translation t : L ◦ → L ◦
iunf

. We prove by induction that any ϕ is equivalent to t(ϕ).
All clauses are trivial, and the one for the dynamic modality has a subinduction. The subinduction uses

the reduction axioms for communication patterns found in [6].

t([RRR,R]pa) := [RRR,R]pa

t([RRR,R](ϕ ∧ψ)) := t([RRR,R]ϕ)∧ t([RRR,R]ψ)
t([RRR,R]¬ϕ) := ¬t([RRR,R]ϕ)
t([RRR,R]DBϕ) :=

∧
R′B≡RB DRBt([RRR,R′]ϕ)

t([RRR,R][RRR′,R′]ϕ) := t([RRR,R]t([RRR′,R′]ϕ))
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In particular, we have that

t([RRR,R](ϕ ∨ψ)) = t([RRR,R]¬(¬ϕ ∧¬ψ)) = ¬t([RRR,R](¬ϕ ∧¬ψ)) =
¬(t([RRR,R]¬ϕ)∧ t([RRR,R]¬ψ)) = ¬(¬t([RRR,R]ϕ)∧¬t([RRR,R]ψ)) = t([RRR,R]ϕ)∨ t([RRR,R]ψ)

We recall that notation R′B ≡ RB was defined in Sect. 2.2. Further proof details are omitted. �

Proposition 24 Action model logic is at least as update expressive as communication pattern logic on

the class of interpreted systems, in the history-based semantics.

Proof Let an interpreted system M and a communication pattern RRR be given. Then M⊙̇RRRn is bisimilar

to M ⊗UUU1(RRR)⊗·· ·⊗UUUn(RRR) (Prop. 22). Consider the action model UUU that is the composition of UUU1(RRR),
. . . , UUUn(RRR), where we note that, unlike communication patterns, action models are indeed closed under

composition (see [2] for the definition of action model composition).

Let us now consider what action model some (RRRn,σ) is update equivalent to. We can assume that

modalities [RRRn,σ ] are only interpreted in M, a history epistemic model for an empty history (Lemma 23).

Iterated communication pattern RRRn is clearly update equivalent to UUU . It is almost worded as such in

Prop. 24. Also, any (RRRn,σ) is update equivalent to (UUU ,T ), where, if σ = R1R2 . . .Rn,

T = {(R1
,Q1)(R2

,Q2) . . . (Rn
,Qn) | Q1 ⊆ P,Q2 ⊆ Σ1

, . . . ,Qn ⊆ Σn−1}.

Details are omitted. Note that P∪Σ1∪ . . .Σn−1 = P∪Σ<n, the set of all atoms considered at round n. �

It is easy to see that Prop. 13 still holds for the history-based semantics. Therefore:

Corollary 25 Action model logic is more update expressive than communication pattern logic on the

class of interpreted systems, in the history-based semantics.

This story on history-based semantics could just as well have been told for sequences RRR1, . . . ,RRRn of

possibly different communication patterns, instead of for n iterations of a given communication pattern

RRR. We would then get models M⊙̇RRR1⊙̇ . . . ⊙̇RRRn instead of models M⊙̇RRRn, and we would get induced

action models M ⊗UUU1(RRR1)⊗·· ·⊗UUUn(RRRn), etcetera. However, in distributed computing it is common to

consider arbitrary iteration of the same communication pattern (the mentioned oblivious model).

Although in such a generalization we can continue to view histories as sequences of communication

graphs, it is important to realize that the same communication graph can then be the point of a different

communication pattern, which may give their execution a different meaning. For example, recall Rabb =
{a,b}∪ I. Given Rab ∈ ISISIS, agent b is uncertain whether a has received his message. But given Rab ∈
{Rab}, the singleton communication pattern, agent b knows that agent a has not received his message.

6 Conclusions and further research

We have shown that action model logic and communication pattern logic are incomparable in update

expressivity on epistemic models, and that action model logic is more update expressive than commu-

nication pattern logic on interpreted systems. It seems promising to investigate communication patterns

further, also on epistemic models that are not local (clearly, incomparability does not depend on that).

Induced action models are exponentially larger than communication patterns. Communication patterns

intuitively specify system dynamics that abstracts from message content. Results in temporal epistemics

on synchronous and asynchronous computation should carry over to dynamic epistemics.



172 Comparing the Update Expressivity of Communication Patterns and Action Models

Acknowledgements We thank the TARK reviewers for their comments. This work was partially sup-

ported by Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), project

grants IN108720 and IN108723. Diego A. Velázquez is the recipient of a fellowship from CONACyT.

References
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Hierarchies of conditional beliefs (Battigalli and Siniscalchi 1999) play a central role for the epis-
temic analysis of solution concepts in sequential games. They are practically modelled by type
structures, which allow the analyst to represent the players’ hierarchies without specifying an infinite
sequence of conditional beliefs. Here, we study type structures that satisfy a “richness” property,
called completeness. This property is defined on the type structure alone, without explicit reference
to hierarchies of beliefs or other type structures. We provide sufficient conditions under which a
complete type structure represents all hierarchies of conditional beliefs. In particular, we present an
extension of the main result in Friedenberg (2010) to type structures with conditional beliefs.

Keywords: Conditional Probability Systems, Hierarchies of Conditional Beliefs, Type Struc-
tures, Completeness, Terminality.

1 Introduction

Hierarchies of conditional beliefs (Battigalli and Siniscalchi 1999) play a central role for the epistemic
analysis of solution concepts in sequential games. Conditional beliefs generalize ordinary probabilistic
beliefs in that every player is endowed with a collection of conditioning events, and forms conditional
beliefs given each hypothesis in a way that updating is satisfied whenever possible. Such a collection
of measures is called conditional probability system (CPS, hereafter). A player’s first-order conditional
beliefs are described by a CPS over the space of primitive uncertainty; her second-order conditional
beliefs are described by a CPS over the spaces of primitive uncertainty and of the co-players’ first-order
conditional beliefs; and so on.

Battigalli and Siniscalchi (1999) show that hierarchies of CPSs can be practically represented by
conditional type structures, i.e., compact models which mimic Harsanyi’s representation of hierarchies
of probabilistic beliefs. Namely, for each agent there is a set of types. Each type is associated with a
CPS over the set of primitive uncertainty and the set of the co-players’ types. Such structure induces a(n
infinite) hierarchy of CPSs for each type.

Here, we study conditional type structures that satisfy a “richness” property, called completeness.
This property—which plays a crucial role for epistemic foundations1 of some solution concepts—is
defined on the type structure alone, without explicit reference to hierarchies of CPSs or other type struc-
tures. Loosely speaking, a type structure is complete if it induces all possible conditional beliefs about
types.

We ask: When does a complete type structure represent all hierarchies of conditional beliefs? The
main result of the paper (Theorem 1) can be briefly summarized as follows. Suppose that a (conditional)
type structure is complete. Then:

1See Dekel and Siniscalchi (2015) for a survey.
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(i) if the structure is Souslin, then it is finitely terminal, i.e., it induces all finite order conditional
beliefs;

(ii) if the structure is compact and continuous, then it is terminal, i.e., it induces all hierarchies of
conditional beliefs.

Precise definitions are given in the main text. Here we point out that Theorem 1 is an extension of
the main result in Friedenberg (2010) to conditional type structures. Specifically, Friedenberg studies
complete type structures with beliefs represented by ordinary probabilities; her main result shows that (i)
and (ii) are sufficient conditions for finite terminality and terminality, respectively. Friedenberg (2010,
Section 5) leaves open the question whether her result still holds when beliefs are represented by CPSs:
our result provides an affirmative answer.

To prove the main result of the paper (Theorem 1), we adopt an approach that is different from
the one in Friedenberg (2010). Specifically, we provide a construction—based on the set-up in Heifetz
(1993)—of the canonical space of hierarchies of CPSs which allows us to characterize the notion of
(finite) terminality in a convenient way (Proposition 2). With this, the crucial step of the proof relies on
Lemma 3, an “extension” result for CPSs whose proof makes use of a selection argument. The details
are spelled out in the paper.2

2 Preliminaries

A measurable space is a pair (X ,ΣX), where X is a set and ΣX is a σ -algebra, the elements of which are
called events. Throughout this paper, when it is clear from the context which σ -algebra on X we are
considering, we suppress reference to ΣX and simply write X to denote a measurable space. Furthermore,
given a function f : X → Y and a family FY of subsets of Y , we let

f−1 (FY ) :=
{

E ⊆ X : ∃F ∈FY ,E = f−1 (F)
}

.

So, if Y is a measurable space, then f−1 (ΣY ) is the σ -algebra on X generated by f .
We write ∆(X) for the set of probability measures on ΣX . Fix measurable spaces X and Y . Given

a measurable function f : X → Y , we let L f : ∆(X) → ∆(Y ) denote the pushforward-measure map
induced by f ; that is, for each µ ∈ ∆(X), L f (µ) is the image measure of µ under f , and is defined by
L f (µ)(E) := µ

(
f−1 (E)

)
for every E ∈ ΣY .

If X is a topological space, we keep using ΣX to denote the Borel σ -algebra on X . All the topological
spaces considered in this paper are assumed to be metrizable. We consider any product, finite or count-
able, of metrizable spaces as a metrizable space with the product topology. Moreover, we endow each
subset of a metrizable space with the subspace topology. A Souslin (resp. Lusin) space is a topological
space that is the image of a complete, separable metric space under a continuous surjection (resp. bijec-
tion). Clearly, a Lusin space is also Souslin. Examples of Souslin (resp. Lusin) spaces include analytic
(resp. Borel) subsets of a complete separable metric space. In particular, a Polish space (i.e., a topologi-
cal space which is homeomorphic to a complete, separable metric space) is a Lusin space. Furthermore,
if X is a Lusin space, then (X ,ΣX) is a standard Borel space, i.e., there is a Polish space Y such that
(X ,ΣX) is isomorphic to (Y,ΣY ). If X is a Souslin space, then (X ,ΣX) is an analytic measurable space,
i.e., there is a Polish space Y and an analytic subset A⊆Y such that (X ,ΣX) is isomorphic to (A,ΣA); see
Cohn (2013, Chapter 8).

For a metrizable space X , the set ∆(X) of (Borel) probability measures is endowed with the topology
of weak convergence. With this topology, ∆(X) becomes a metrizable space.

2The paper can be found at https://arxiv.org/abs/2305.08940.
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3 Conditional probability systems

We represent the players’ beliefs as conditional probability systems (cf. Rényi 1955). Fix a measurable
space (X ,ΣX). A family of conditioning events of X is a non-empty family B ⊆ ΣX that does not
include the empty set. A possible interpretation is that an individual is uncertain about the realization
of the “state” x ∈ X , and B represents a family of observable events or “relevant hypotheses.” If X is a
metrizable space, then each conditioning event B ∈B is a Borel subset of X . In this case, we say that B
is clopen if each element B ∈B is both closed and open. For instance, B is clopen if X is a (finite) set
endowed with the discrete topology; if B ={X}, then B is trivially clopen.

Definition 1 Let (X ,ΣX) be a measurable space and B ⊆ ΣX be a family of conditioning events. A con-
ditional probability system (CPS) on (X ,ΣX ,B) is an array of probability measures µ := (µ (·|B))B∈B
such that:
(i) for all B ∈B, µ (B|B) = 1;
(ii) for all A ∈ ΣX and B,C ∈B, if A⊆ B⊆C then µ (A|B)µ (B|C) = µ (A|C).

Definition 1 says that a CPS µ is an element of the set ∆(X)B, i.e., µ is a function from B to ∆(X).3

We write µ (·|B) to stress the interpretation as a conditional probability given event B ∈B. Condition
(ii) is the chain rule of conditional probabilities and it can be written as follows: if A⊆ B⊆C, then

µ (B|C)> 0⇒ µ (A|B) = µ (A|C)

µ (B|C)
.

We let ∆B (X) denote the set of CPSs on (X ,ΣX ,B). The following result (whose proof can be found
in Appendix A) records some topological properties of ∆B (X) when X is a metrizable space and B is
countable.4

Lemma 1 Fix a metrizable space X and a countable family B ⊆ ΣX of conditioning events.
(i) The space ∆B (X) is metrizable.
(ii) If X is Souslin or Lusin, so is ∆B (X).
(iii) Suppose that B is clopen. Then ∆B (X) is compact if and only if X is compact.

Note that if X is a Polish space, then ∆B (X) may fail to be Polish. But, by Lemma 1.(ii), ∆B (X) is
a Lusin space. We can conclude that ∆B (X) is a Polish space provided that B is clopen (cf. Battigalli
and Siniscalchi 1999, Lemma 1).

Fix measurable spaces (X ,ΣX) and (Y,ΣY ), and families BX ⊆ ΣX and BY ⊆ ΣY of conditioning
events. Suppose that f : X → Y is a measurable function such that

f−1 (BY ) = BX .

The function L f : ∆BX (X)→ ∆BY (Y ) defined by

L f (µ)(E|B) := µ
(

f−1 (E) | f−1 (B)
)

,

where E ∈ ΣY and B∈BY , is the pushforward-CPS map induced by f . Note that, for any µ ∈ ∆BX (X),
we can write L f (µ) as

L f (µ) =
(
L f
(
µ
(
·| f−1 (B)

)))
B∈BY

,

3For every pair of sets X and Y , we let Y X denote the set of functions with domain X and codomain Y .
4Lemma 1 is a generalization of analogous results (for the case when X is Polish) in Battigalli and Siniscalchi (1999, Lemma

1).



176 Complete Conditional Type Structures

where L f : ∆(X)→ ∆(Y ) is the pushforward-measure map induced by f .
We record some basic results on the pushforward-CPS map that will be used extensively throughout

the paper. In particular, Lemma 2.(i) ensures that L f is well-defined and justifies the terminology: if
µ ∈ ∆BX (X), then L f (µ) is a CPS on (Y,ΣY ,BY ).

Lemma 2 Fix measurable spaces (X ,ΣX) and (Y,ΣY ), and families BX ⊆ΣX and BY ⊆ΣY of condition-
ing events. Suppose that f : X → Y is a measurable function such that f−1 (BY ) = BX . The following
statements hold.
(i) The map L f : ∆BX (X)→ ∆BY (Y ) is well-defined.
(ii) Suppose that BX and BY are countable, X is a metrizable space and Y is a Souslin space. If f is
Borel measurable (resp. continuous), then L f is Borel measurable (resp. continuous).

A special case of image CPS induced by a function is of particular interest—namely, the marginaliza-
tion of a CPS on a product space. Consider measurable spaces X and Y , and denote by πX the coordinate
projection from X×Y onto X . Fix a family B ⊆ ΣX of conditioning events, and define BX×Y as

BX×Y := (πX)
−1 (B) = {C ⊆ X×Y : ∃B ∈B,C = B×Y} , (3.1)

that is, BX×Y is the set of all cylinders B×Y with B ∈B. The function L πX : ∆BX×Y (X×Y )→ ∆B (X)
defined by

L πX (µ) := (LπX (µ (·|B)))B∈B

is called marginal-CPS map, and L πX (µ) is called the marginal on X of µ ∈ ∆BX×Y (X×Y ).

4 Type structures and hierarchies of conditional beliefs

Throughout, we fix a two-player set I;5 given a player i ∈ I, we let j denote the other player in I. We
assume that both players share a common measurable space (S,ΣS), called space of primitive uncer-
tainty. For each i ∈ I, there is a family Bi ⊆ ΣS of conditioning events. One interpretation (which is
borrowed from Battigalli and De Vito 2021) is the following: S is a product set, viz. S := ×i∈ISi, and
each element s := (si)i∈I is an objective description of players’ behavior in a game with complete in-
formation and without chance moves—technically, (si)i∈I is a strategy profile. Each player is uncertain
about the “true” behavior s ∈ S, including his own. If the game has sequential moves, then each Bi is a
collection of observable events; that is, each B∈Bi is the set of strategy profiles inducing an information
set of player i. Other interpretations of S and (Bi)i∈I are also possible; a more thorough discussion can
be found in Battigalli and Siniscalchi (1999, pp. 191-192). The results in this paper do not hinge on a
specific interpretation.

From now on, we maintain the following technical assumptions on S and (Bi)i∈I:

• S is a Souslin space, and

• Bi ⊆ ΣS is countable for every i ∈ I.

Following Battigalli and Siniscalchi (1999), we adopt the following notational convention.

Convention 1. Given a product space X×Y and a family B⊆ ΣX of conditioning events of X , the family
of conditioning events of X ×Y is BX×Y as defined in (3.1). Accordingly, we let ∆B (X×Y ) denote the
set of CPSs on (X×Y,ΣX×Y ,BX×Y ).

5The assumption of a two-player set is merely for notational convenience. The analysis can be equivalently carried out with
any finite set I with cardinality greater than two.
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4.1 Type structures

We use the framework of type structures (or “type spaces”) to model players’ hierarchies of conditional
beliefs. We adopt the following definition of type structure (cf. Battigalli and Siniscalchi 1999).

Definition 2 An
(
S,(Bi)i∈I

)
-based type structure is a tuple

T :=
(
S,(Bi,Ti,βi)i∈I

)
such that, for every i ∈ I,
(i) the type set Ti is a metrizable space;
(ii) the belief map βi : Ti→ ∆Bi (S×Tj) is Borel measurable.

Each element of Ti, viz. ti, is called (player i’s) type.

Definition 2 says that, for any i ∈ I, Ti represents the set of player i’s possible “ways to think.” Each
type ti ∈ Ti is associated with a CPS on the set of primitive uncertainty as well as on the possible “ways
to think” (types) of player j. Each conditioning event for βi (ti) has the form B×Tj with B ∈Bi.

If Bi={S} for every player i∈ I, then each set ∆Bi (S×Tj) can be naturally identified with ∆(S×Tj).
In this case, Definition 2 coincides essentially with the definition in Friedenberg (2010),6 and we say that
T is an ordinary type structure. Moreover, we will sometimes refer to type structures via Definition 2
as conditional type structures.

Definition 3 An
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
is

(i) Souslin (resp. Lusin, compact) if, for every i ∈ I, the type set Ti is a Souslin (resp. Lusin, compact)
space;7

(ii) continuous if, for every i ∈ I, the belief map βi is continuous.

Next, we introduce the notion of completeness for a type structure.

Definition 4 An
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
is complete if, for every i ∈ I,

the belief map βi is surjective.

In words, completeness says that, for each player i, and for each conditional belief µ ∈ ∆Bi (S×Tj)
that player i can hold, there is a type of player i which induces that belief. Thus, it is a “richness”
requirement which may not be satisfied by some type structures. For instance, suppose that S is not a
singleton. Then a type structure where the type set of some player has finite cardinality is not complete.

A type structure provides an implicit representation of the hierarchies of beliefs. To address the ques-
tion whether a complete type structure represents all hierarchies of beliefs, we need to formally clarify
how type structures generate a collection of hierarchies of beliefs for each player. This is illustrated in
the following section.

4.2 The canonical space of hierarchies

In this section we first offer a construction of the set of all hierarchies of conditional beliefs satisfying a
coherence condition. Loosely speaking, coherence means that lower-order beliefs are the marginals of

6The only difference is that S is assumed to be a Polish space in Friedenberg (2010). Such difference is immaterial for the
remainder of the analysis.

7In Friedenberg (2010), a(n ordinary) type structure is called analytic if each type set is an analytic subset of a Polish
space—hence, a metrizable Souslin (sub)space. We adopt the definition of Souslin type structure because we can extend our
analysis (as we do in the Supplementary Appendix of the paper) without assuming metrizability of the topological spaces.
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higher-order beliefs. The construction—which is based on the set-up in Heifetz (1993)—shows that this
set of hierarchies identifies in a natural way a type structure, which we call it “canonical.” Next, we show
how each profile of types in a type structure can be associated with an element of the constructed set of
hierarchies. This part is standard (cf. Heifetz and Samet 1998).

4.2.1 From hierarchies to types

To construct the set of hierarchies of conditional beliefs, we define recursively, for each player, two se-
quences of sets as well as a sequence of conditioning events. The first sequence, (Θn

i )n≥0, represents
player i’s (n+1)-order domain of uncertainty, for each n ≥ 0. The second sequence, (Hn

i )n≥1, consists
of player i’s n-tuples of coherent conditional beliefs over these space. The notion of coherence, for-
mally defined below, says that, conditional on any relevant hypothesis, beliefs at different order do not
contradict one another.

Formally, for each player i ∈ I, let

Θ
0
i : = S,

B0
i : = Bi,

H1
i : = ∆

B0
i
(
Θ

0
i
)

.

The set Θ0
i is player i’s 1-order (primitive) domain of uncertainty, and a first-order belief, viz. µ1

i , is an
element of the set H1

i .
For n ≥ 1, assume that (Θm

i )m=0,...,n−1, (Bm
i )m=0,...,n−1 and (Hm

i )m=1,...,n have been defined for each
player i ∈ I. Then, for each i ∈ I, let

Θ
n
i := Θ

0
i ×Hn

j .

That is, Θn
i is player i’s (n+1)-order domain of uncertainty: it consists of the space of primitive un-

certainty and what player j 6= i believes about the space of primitive uncertainty, what player j believes
about what player i believes about the space of primitive uncertainty,..., and so on, up to level n. For each
i ∈ I and n ≥ 1, let π

n,n+1
i : Hn+1

i → Hn
i and ρ

n−1,n
i : Θn

i → Θ
n−1
i denote the coordinate projections. By

construction, these maps satisfy the following property:

∀i ∈ I,∀n≥ 2,ρn−1,n
i =

(
Id

Θ0
i
,πn−1,n

j

)
,

where Id
Θ0

i
is the identity on Θ0

i .
To define players’ conditional beliefs on the (n+1)-th order domain of uncertainty, for each player

i ∈ I, let

Bn
i : =

(
ρ

n−1,n
i

)−1 (
Bn−1

i

)
=

{
C ⊆Θ

n
i : ∃B ∈Bn−1

i ,C =
(

ρ
n−1,n
i

)−1
(B)
}

,

Hn+1
i : =

{((
µ

1
i , ...,µ

n
i
)
,µn+1

i

)
∈ Hn

i ×∆
Bn

i (Θn
i ) : L

ρ
n−1,n
i

(
µ

n+1
i

)
= µ

n
i

}
.

Specifically, Bn
i represents the set of relevant hypotheses upon which player i’s (n+1)-th order condi-

tional beliefs are defined. That is, µ
n+1
i ∈ ∆Bn

i (Θn
i ) is player i’s (n+1)-th order CPS with µ

n+1
i (·|B) ∈

∆(Θn
i ), B ∈Bn

i . Recursively, it can be checked that, for all n≥ 1,

Bn
i =

{
C ⊆Θ

n
i : ∃B ∈Bi,C = B×Hn

j
}

,
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i.e., Bn
i is a set of cylinders in Θn

i generated by Bi. If Bi is clopen, then every B ∈Bn
i is clopen in Θn

i ,
since each coordinate projection ρ

n−1,n
i is a continuous function. By definition of each Θn

i , we write,
according to Convention 1,

∆
Bn

i (Θn
i ) = ∆

Bi (Θn
i ) .

The set Hn+1
i is the set of player i’s (n+1)-tuples of CPSs on Θ0

i , Θ1
i ,..., Θn

i . The condition on µ
n+1
i

in the definition of Hn+1
i is the coherence condition mentioned above. Given the recursive construction

of the sets, CPSs µ
n+1
i and µn

i both specify a (countable) array of conditional beliefs on the domain of
uncertainty Θ

n−1
i , and those beliefs cannot be contradictory. Formally, for all B ∈Bn−1

i and for every
event E ⊆Θ

n−1
i ,

µ
n+1
i

((
ρ

n−1,n
i

)−1
(E)
∣∣∣∣(ρ

n−1,n
i

)−1
(B)
)
= µ

n
i (E|B) .

That is, the conditional belief µ
n+1
i (·|(ρn−1,n

i )−1 (B)) must assign to event
(

ρ
n−1,n
i

)−1
(E) the same

number as µn
i (·|B) assigns to event E.

Remark 1 For each i ∈ I and n ≥ 1, the set Hn+1
i is a closed subset of Hn

i ×∆Bi (Θn
i ). So Hn+1

i is a
Souslin (resp. Lusin) space provided S is a Souslin (resp. Lusin) space. If Bi is clopen for each i ∈ I,
then Hn+1

i is compact if and only if S is compact.

In the limit, for each i ∈ I, let

Hi :=
{(

µ
1
i ,µ

2
i , ...

)
∈ ×∞

n=0∆
Bi (Θn

i ) : ∀n≥ 1,
(
µ

1
i , ...,µ

n
i
)
∈ Hn

i

}
,

Θi := S×H j.

Remark 2 The set Hi is a closed subset of×∞
n=0∆Bi (Θn

i ). So Hi is a Souslin (resp. Lusin) space provided
S is a Souslin (resp. Lusin) space. If Bi is clopen for each i ∈ I, then Hi is compact if and only if S is
compact.

The following result corresponds to Proposition 2 in Battigalli and Siniscalchi (1999).

Proposition 1 For each i ∈ I, the spaces Hi and ∆Bi (S×H j) are homeomorphic.

The set H :=×i∈IHi is the set of all pairs of collectively coherent hierarchies of conditional beliefs;
that is, H is the set of pairs of coherent hierarchies satisfying common full belief of coherence.8

The homeomorphisms in Proposition 1 are “canonical” in the following sense: every coherent hier-
archy

(
µ1

i ,µ
2
i , ...

)
of player i is associated with a unique CPS µi on the space of primitive uncertainty

and the coherent hierarchies of the co-player, i.e., S×H j. Then, for all n ≥ 0, the marginal of µi on
player i’s (n+1)-order domain of uncertainty, viz. Θn

i , is precisely what it should be, namely µ
n+1
i . A

formal definition of such homeomorphisms is not needed for the statements and proofs of the results in
this paper. Instead, we will make use of the following implication of Proposition 1: we can define an(
S,(Bi)i∈I

)
-based type structure T c :=

(
S,(Bi,T c

i ,β
c
i )i∈I

)
by letting, for each i ∈ I,

T c
i := Hi,

8An event E is fully believed under a CPS (µ (·|B))B∈B if µ (E|B) = 1 for every B ∈B. The notion of “common full belief
of coherence” is made explicit in the alternative construction of the canonical space à la Battigalli and Siniscalchi (1999). A
note on terminology: in Battigalli and Siniscalchi (1999) the expression “certainty” is used in place of “full belief.”
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and β c
i : T c

i → ∆Bi

(
S×T c

j

)
is the “canonical” homeomorphism. Following the terminology in the

literature, we call T c the canonical type structure.9

Remark 3 Structure T c is Souslin, continuous and complete. If S is Lusin, then T c is Lusin. If Bi is
clopen for each i ∈ I, then T c is a compact type structure if and only if S is a compact space.

4.2.2 From types to hierarchies

The next step is to consider the relationship between the set of hierarchies constructed in the previous
section and any other type structure. In so doing, we specify how types generate (collectively) coherent
hierarchies of conditional beliefs. As we did in the previous section, given a set X , we let IdX denote the
identity map.

Fix an
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
. We construct a natural (Borel) mea-

surable map, called hierarchy map, which unfolds the higher-order beliefs of each player i ∈ I. This
map assigns to each ti ∈ Ti a hierarchy of beliefs in Hi.

For each i ∈ I, let h0
−i : Θ0

i ×Tj→ Θ0
i be the projection map (recall that Θ0

i := S for each i ∈ I). The
“first-order map” for each player i, viz. h1

i : Ti→ H1
i , is defined by

h1
i (ti) := L h0

−i
(βi (ti)) .

In words, h1
i (ti) is the marginal on S of CPS βi (ti). Measurability of each map h1

i holds by Lemma 2 and
measurability of belief maps.

With this, for each i ∈ I, let h1
−i : Θ0

i ×Tj → Θ0
i ×H1

j = Θ1
i be the map defined as h1

−i :=
(

IdS,h1
j

)
;

i.e., for each pair (s, t j) ∈ Θ0
i × Tj, the expression h1

−i (s, t j) =
(

s,h1
j (t j)

)
∈ Θ1

i describes the profile s

and the first-order beliefs for type t j ∈ Tj. Standard arguments show that, for each i ∈ I, the map h1
−i is

measurable; furthermore, it can be checked that h1
−i satisfies

h0
−i = ρ

0,1
i ◦h1

−i and B
Θ0

i×Tj
=
(
h1
−i
)−1 (

B1
i
)

.

Recursively, we define the “(n+1)th-orders” maps. For n ≥ 1, assume that measurable maps hn
i :

Ti→ Hn
i have been defined for each player i ∈ I. Moreover, for each i ∈ I, assume that hn

−i : Θ0
i ×Tj →

Θ0
i ×Hn

j = Θn
i is the unique measurable function, defined as hn

−i :=
(

IdS,hn
j

)
, which satisfies

B
Θ0

i×Tj
=
(
hn
−i
)−1

(Bn
i ) (4.1)

and
hn−1
−i = ρ

n−1,n
i ◦hn

−i. (4.2)

Fix a player i ∈ I. Note that, since (4.1) holds, L hn
−i

: ∆Bi (S×Tj)→ ∆Bn
i (Θn

i ) is a well-defined measur-
able map by Lemma 2. With this, define hn+1

i : Ti→ Hn
i ×∆Bn

i (Θn
i ) by

hn+1
i (ti) :=

(
hn

i (ti) ,L hn
−i
(βi (ti))

)
.

Using the same arguments as above, it is easily verified that the map hn+1
i is measurable. By (4.2), it

follows that:
9There are differences, in terms of technical assumptions, between our construction of T c and the one in Battigalli and

Siniscalchi (1999). Actually, our construction is a generalization of theirs since we allow for weaker conditions on (i) the
family of conditioning events, and (ii) the topological property of the primitive uncertainty space S.
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Remark 4 hn+1
i (Ti)⊆ Hn+1

i for each i ∈ I.

It is easily seen that, for each ti ∈ Ti,

hn+1
i (ti) =

(
L h0

−i
(βi (ti)) , ...,L hn−1

−i
(βi (ti)) ,L hn

−i
(βi (ti))

)
.

Finally, for each i ∈ I, the map hi : Ti→×∞
n=0∆Bi

(
S×Hn

j

)
is defined by

hi (ti) :=
(
L hn

−i
(βi (ti))

)
n≥0

.

Thus, hi (ti) is the hierarchy generated by type ti ∈ Ti. Each type generates a (collectively) coherent
hierarchy of beliefs, i.e., hi (Ti)⊆ Hi.

Remark 5 For each i ∈ I, the map hi : Ti→ Hi is well-defined and Borel measurable. Furthermore, if
T is continuous, then, for each i ∈ I, the map hi is continuous.

5 Terminal type structures

The following definitions are extensions to conditional type structures of the definitions put forward by
Friedenberg (2010, Section 2) for ordinary type structures.

Definition 5 An
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
is finitely terminal if, for each

type structure T ∗ :=
(
S,(Bi,T ∗i ,β

∗
i )i∈I

)
, each type t∗i ∈ T ∗i and each n ∈ N, there is a type ti ∈ Ti such

that h∗,ni (t∗i ) = hn
i (ti).

Definition 6 An
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
is terminal if, for each type

structure T ∗ :=
(
S,(Bi,T ∗i ,β

∗
i )i∈I

)
and each type t∗i ∈ T ∗i , there is a type ti ∈ Ti such that h∗i (t

∗
i ) = hi (ti).

Definition 5 says that T is finitely terminal if, for every type t∗i that occurs in some structure T ∗ and
every n ∈ N, there exists a type ti in T whose hierarchy agrees with the hierarchy generated by t∗i up to
level n. Definition 6 says that T is terminal if, for every type t∗i that occurs in some structure T ∗, there
exists a type ti in T which generates the same hierarchy as t∗i .

The notion of terminality in Definition 6 can be equivalently expressed as follows: T is terminal if,
for every structure T ∗, there exists a hierarchy morphism from T ∗ to T , i.e., a map that preserves
the hierarchies of beliefs. Here we show that (a) Definition 5 is equivalent to the requirement that a type
structure generates all finite-order beliefs consistent with coherence and common full belief of coher-
ence; and (b) Definition 6 is equivalent to the requirement that a type structure generates all collectively
coherent hierarchies of beliefs.

Remark 6 An
(
S,(Bi)i∈I

)
-based type structure T is finitely terminal if and only if, for each

(
S,(Bi)i∈I

)
-

based type structure T ∗, each player i ∈ I and each n ∈ N,

h∗,ni (T ∗i )⊆ hn
i (Ti) .

An
(
S,(Bi)i∈I

)
-based type structure T is terminal if and only if, for each

(
S,(Bi)i∈I

)
-based type struc-

ture T ∗, and for each player i ∈ I,
h∗i (T

∗
i )⊆ hi (Ti) .
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The following result establishes the relationship between any (finitely) terminal type structure and
the canonical space of hierarchies.

Proposition 2 Fix an
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
.

(i) T is finitely terminal if and only if hn
i (Ti) = Hn

i for each i ∈ I and each n ∈ N.
(ii) T is terminal if and only if hi (Ti) = Hi for each i ∈ I.

Proposition 2 provides a characterization of (finite) terminality which turns out to be useful for the
proof of the main result. It is basically a version of Result 2.1 (and Proposition B1.(ii)) in Friedenberg
(2010).

6 Main result

The main result of this paper is the following theorem.

Theorem 1 Fix an
(
S,(Bi)i∈I

)
-based type structure T :=

(
S,(Bi,Ti,βi)i∈I

)
.

(i) If T is Souslin and complete, then T is finitely terminal.
(ii) If T is complete, compact and continuous, then T is terminal.

If Bi={S} for every i ∈ I, then Theorem 1 corresponds to Theorem 3.1 in Friedenberg (2010). The
proof of Theorem 1 relies on the following result, whose proof makes use of Von Neumann Selection
Theorem.

Lemma 3 Fix Souslin spaces X, Y and Z, and a countable family B ⊆ ΣX of conditioning events. Let
f1 : Y → Z be Borel measurable, and define f2 : X×Y → X×Z as f2 := (IdX , f1). Then:
(i) f2 is Borel measurable, and the map L f2 : ∆B (X×Y )→ ∆B (X×Z) is well-defined;
(ii) if f1 is surjective, then L f2 is surjective.

The proof of part (i) of Theorem 1 is by induction on n ∈N. The proof of the base step does not rely
on the hypothesis that T is Souslin. Lemma 3 is used only in the inductive (and crucial) step. The proof
of part (ii) of Theorem 1 uses the same arguments as in Friedenberg (2010).

Some comments on Theorem 1 are in order. First, complete type structures that are finitely terminal
can be easily constructed. A simple example—which uses the ideas in Brandenburger et al. (2008,
proof of Proposition 7.2)—is the following. For each i ∈ I, let Ti be the Baire space, i.e., the (non-
compact) Polish space NN. Every Souslin space is the image of NN under a continuous function.10 Since
∆Bi (S×Tj) is a Souslin space by Lemma 1, there exists a continuous surjection βi : Ti→ ∆Bi (S×Tj).
These maps give us a Souslin and complete type structure T that is finitely terminal, but not necessarily
terminal. A more complex example of a(n ordinary) complete, finitely terminal type structure which is
not terminal can be found in Friedenberg and Keisler (2021, Section 6).

Second, we point out that complete, compact and continuous type structures may not exist. This is
so because the structural hypothesis on the families of conditioning events Bi (i ∈ I) are quite weak—
each element of Bi is a Borel subset of S. To elaborate, suppose that T is complete and compact.
Completeness yields βi (Ti) = ∆Bi (S×Tj) for each player i∈ I. If T were continuous, then compactness
of Ti would imply compactness of ∆Bi (S×Tj) as well, because the continuous image of a compact set
is compact. But, in general, ∆Bi (S×Tj) is not a compact space, even if the underlying space S× Tj

10It is well-known that every non-empty Polish space is the image of NN under a continuous function. Using this result, it
is easy to check—by inspection of definitions—that an analogous conclusion also holds for Souslin spaces (cf. Cohn 2003,
Corollary 8.2.8).
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is compact (cf. Lemma 1).11 In other words, unless each family Bi (i ∈ I) satisfies some specific
assumptions, there is no guarantee that a complete, compact and continuous type structure exists—in
particular, complete and continuous structures may fail the compactness requirement.12 If this is the case,
Theorem 1.(ii) still holds, but vacuously because the antecedent of the conditional is false. An immediate
implication of this fact is that the completeness test—as formalized by completeness, compactness and
continuity—cannot be applied.

With this in mind, suppose now that each family Bi (i ∈ I) is clopen. If S is a compact space,
then complete, compact and continuous type structures do exist. The canonical structure is a prominent
example, but there are also complete, compact and continuous structures which can be distinct from the
canonical one. For instance, one can take each Ti to be the Cantor space {0,1}N, a compact metrizable
space. Lemma 1.(iii) yields that each ∆Bi (S×Tj) is compact metrizable, so there exists a continuous
surjection βi : Ti→ ∆Bi (S×Tj) (Aliprantis and Border 2006, Theorem 3.60). The resulting structure T
is complete, compact and continuous, hence terminal.

Finally, note that if each Bi is clopen, then compactness of S is a necessary condition for the existence
of a complete, compact and continuous structure T . Indeed, continuity and surjectivity of the belief maps
entail that each set ∆Bi (S×Tj) is compact; by Lemma 1.(iii) and Tychonoff’s theorem, S is a compact
space.
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This work extends Halpern and Pearl’s causal models for actual causality to a possible world se-

mantics environment. Using this framework we introduce a logic of actual causality with modal

operators, which allows for reasoning about causality in scenarios involving multiple possibilities,

temporality, knowledge and uncertainty. We illustrate this with a number of examples, and conclude

by discussing some future directions for research.

1 Introduction

Causality is crucial in human reasoning and knowledge. Defining and formalizing causality has been a

significant area of research in philosophy and formal methods [12, 21, 24, 11]. In recent years, with the

rise of machine learning and AI, there has been growing interest in formalizing causal reasoning. One

of the key areas of AI research is designing algorithms capable of comprehending causal information

and performing causal reasoning [5, 29, 30]. Causal reasoning can be instrumental in formally modeling

notions such as responsibility, blame, harm, and explanation, which are important aspects in designing

ethical and responsible AI systems [3].

In this article we focus on the kind of causality known as ”actual causality” (a.k.a. token causality)

[10, 20, 19, 31]. Actual causality refers to the causality of a specific event which has actually happened

(e.g. ”John died because Alice shot him”) rather than general causes (e.g. ”smoking causes cancer”).

Several formal approaches have been used for modelling actual causality [24, 25, 13, 14]. One of the

most prominent formalizations of actual causation was developed by Halpern and Pearl [28, 17, 18]. This

model describes dependencies between endogenous variables and exogenous variables using structural

equations. Based on causal models Halpern and Pearl have given three different definitions of actual

causality known as original, updated and modified definitions [17, 18, 15] of actual causality using

counterfactual reasoning. The formal language developed to describe actual causality in this model is

used to define several notions like normality, blame, accountability and responsibility. This model has

been used in several applications in law [27], database theory [26], model checking [8, 9, 4], and AI

[22, 11, 3].

Notions like knowledge, temporality, possibility, normality (or typicality) and uncertainty play im-

portant role in causal reasoning and related applications. In the past, attempts have been made to incorpo-

rate some of these notions into the causal models of Halpern and Pearl. In [4], Beer et.al. define causality

in linear temporal logic to explain counterexamples. This line of research has been carried forward in

model checking and program verification [1, 23]. The Halpern and Pearl formalism has also been ex-

tended to define causality in frameworks such as transition systems and Hennessy-Milner logic [6, 7, 1].
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In [2], Barbero et.al. define causality with epistemic operators. However, to the best of our knowledge

a general Kripke model for actual causality based on Halpern and Pearl framework has not been studied

yet.

In this work, we develop the notion of causal Kripke models and introduce a modal language for

causal reasoning with uncertainty, temporality, possibility, and epistemic knowledge. We show that our

model can formalize notions like sufficient causality, blame, responsibility, normality, and explanations.

Our framework provides a more natural definition of sufficient causality [16, Section 2.6] by considering

nearby contexts, which Halpern’s causal model does not support (c.f. 5.1). The developed causal Kripke

models offer a straightforward way to describe nearby contexts and define sufficient causality as intended

by Halpern. In order to stay as close as possible to Halpern’s original framework, where formally only

atomic events can be causes, we utilize a hybrid language not only contains modalities but also names

for the possible worlds.

The structure of the paper is as follows. In Section 2, we provide preliminaries on causal models and

logic of causality. In Section 3, we give several examples to motivate the development of causal Kripke

semantics. In Section 4, we define causal Kripke models, and develop a modal logic of actual causality

to reason about them. We generalize the Halpern-Pearl definitions of actual causality to this framework

and provide a sound and complete axiomatization of the modal logic of actual causality. In Section 5,

we model the examples discussed in Section 3 using our framework and also show how this model can

be used to provide an intuitive definition of sufficient causality. Finally, in Section 6 we conclude and

provide some directions for future research.

2 Preliminaries

2.1 Causal models

In this section we briefly recall key concepts and ideas of the standard logic of causal reasoning as

presented in [16]. A causal model describes the world in terms of variables which take values over

certain sets. The variables and their ranges are given by a signature S = (U ,V ,R) where U is a finite

set of exogenous variables (i.e., variables whose value is independent of other variables in the model), V ,

which is disjoint with U , is a finite set of endogenous variables (i.e., variables whose value is determined

by other variables in the model), and R(X) for any X ∈U ∪V , is the (finite) range of X . These variables

may have dependencies between them described by structural equations defined as follows.

Definition 2.1. A causal model is a pair (S ,F ), where S = (U ,V ,R) is the model’s signature and

F = ( fVi
|Vi ∈ V ) assigns to each endogenous variable Vi a map such that

fVi
: R(U ∪V −{Vi})→R(Vi).

Definition 2.2. For any variables V ∈ V and X ∈ U ∪V , we say ”X is a direct cause, or a parent, of

V ” if there exist x,x′ ∈R(X) and z ∈R(U ∪V −{X ,V}) such that fV (z,x) 6= fV (z,x
′). A causal model

is said to be recursive if it contains no cyclic dependencies.

Definition 2.3. For a causal model M = (S ,F ), a context t assigns every variable U ∈U a value in

R(U). A causal setting is a pair (M, t), where M is a causal model and t is a context for it.

In recursive models, as there are no cyclic dependencies the values of all endogenous variables are

determined by the context. Throughout this paper we only consider recursive causal models.

Definition 2.4. Let M = (S ,F ) be some causal model and Y ⊆ V be a set of endogenous variables.

Let Y be the injective listing of the variables of Y . Let Y = y be an assignment such that yi ∈R(Yi) for
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every Yi ∈ Y . The causal model obtained from intervention setting values of variables of Y to y is given

by MY←y = (S ,FY←y) , where FY←y is obtained by replacing for every variable Yi ∈ Y , the structural

equation fYi
with Yi = yi.

Here, we consider the exogenous variables as given. Thus, we do not allow interventions on them.

2.2 Basic language for describing causality

The basic language, LC, for describing causality is an extension of propositional logic where primitive

events are of the form X = x, where X ∈ V is an endogenous variable and x ∈R(X). Given the signature

S = (U ,V ,R), the formulas φ ∈ LC are defined by the following recursion:

α ::= X = x | ¬α | α ∧α where, X ∈ V , x ∈R(X)
φ ::= X = x | ¬φ | φ ∧φ | [Y ← y]α where,Y ← y is an intervention

For any causal setting (M, t) and formula φ ∈ LC, the satisfaction relation (M, t)  φ is defined as

follows. For any formula X = x, (M, t) X = x if the value of endogenous variable X is set to x in context

t. Satisfaction for the Boolean connectives is defined in a standard manner. Satisfaction of intervention

formulas is defined as follows: for any event α , (M, t)  [Y ← y]α iff (MY←y, t)  α . This language is

used by Halpern and Pearl to provide three different definitions of causality referred as original , updated

and modified definitions of causality [16, Section 2.2] (for details see Appendix A.1).

3 Motivation for possible world semantics of causal models

The basic language for causal reasoning described above uses propositional logic as the language of

events and for reasoning with causal formulas. However, we are interested in describing causal reason-

ing in scenarios that involve notions like possibility, knowledge or belief, temporality, uncertainty and

accessibility. Here we provide several such examples.

Example 3.1 (Umbrella). Alice is going on a trip to London. She thinks that it may rain when she is

there. Thus, she decides to take her umbrella with her for the trip. In this example, the possibility of

raining in London in the future seems to be the cause for Alice taking her umbrella with her.

Example 3.2 (Chess). In a chess game, if knight and the king are only pieces that can move but every

king move leads to king getting in check, then the player is forced to move the knight. Suppose that the

king can not move to a certain square because it is covered by a bishop. Then it seems reasonable that

the fact that bishop covers this square to be a cause for player being forced to move the knight. This

example shows that reasoning with causality naturally involves considering possibilities.

Example 3.3 (Police). Suppose John is a criminal who is currently absconding. Inspectors Alice and

Bob are trying to catch John. John is currently in Amsterdam. He has a train ticket to Brussels. Thus,

his (only) options are to stay in Amsterdam or to take the train to Brussels. Bob decides to go to Brussels

to catch John in case he takes the train. John learns this information and decides to stay in Amsterdam

where Alice catches him. In this case, John’s belief of Bob’s presence in Brussels leads to him staying in

Amsterdam. It seems reasonable that this should be part of the cause of John getting caught, even though

he was caught by Alice in Amsterdam. This shows that the knowledge of the agents is crucially involved

in causal reasoning.

Example 3.4 (Robot). Consider a scenario in which a robot is being commanded by a scientific team.

Upon receiving command c, the robot completes task t or malfunctions. In this case the possibility of
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causing malfunction may become the cause of not sending command c. i.e. , causal reasoning involves

scenarios in which the dependencies between different events may be ”indeterministic” or ”underdeter-

mined”. Halpern considers such scenarios in [16, Section 2.5], using the notion of probabilities over

causal models. However, in certain cases qualitative reasoning in terms of possibilities may be more

appropriate.

Example 3.5 (Navigation). Suppose Alice is trying to reach village A. She reaches a marker which

indicates that she is at location B, C or D. She does not know in which of these locations she is at.

However, she knows that A is to the east of all of these locations. Thus, she decides to go east. Suppose

Alice was actually at point B. The fact that A is to the east of locations C and D is still part of Alice’s

considerations and seems to be part of the cause for her going east.

These examples highlight that notions such as possibility, knowledge and uncertainty play an impor-

tant role in causal reasoning. Possible world semantics, formally described by Kripke models, are the

natural logical framework for modeling such notions. In the next section we develop a framework for

causal reasoning, based on Kripke frames, which allows for modeling such scenarios in a clear, intuitive

and efficient way.

4 Possible world semantics for causal reasoning

In this section, we define the causal Kripke model, introduce the modal language for causality and give

the corresponding three HP definitions of causality in causal Kripke models. In our framework, we allow

the same variable to possibly take different values in different worlds. Moreover, the structural equations

treat the same endogenous variable separately for each different possible world.

Definition 4.1. A causal Kripke model is a tuple K = (S ,W,R,F ), where W is a finite set of possible

worlds, R ⊆W ×W is an accessibility relation, and S = (U ,V ,R) is the signature such that U and

V are the disjoint sets of exogenous and endogenous variables, and R is a function assigning each

Γ ∈ U ∪V and a world w ∈W a set of possible values that Γ can take at w, and F = ( f(Xi,w j) | Xi ∈
V ,w j ∈W ) assigns to each endogenous variable Xi and each world w j a map such that

f(Xi,w j) : R((U ∪V )×W)−{(Xi,w j)})→R(Xi,w j).

For any causal Kripke model K = (S ,W,R,F ) we refer to S as its signature. For any variable Γ and

world w we use (Γ,w) to denote the restriction of variable Γ to the world w. That is, (Γ,w) is a variable

which takes a value c iff the propositional variable Γ takes the value c at the world w. For any Γ ∈ U

(resp. Γ ∈ V ) and any world w ∈W , we say (Γ,w) is an exogenous (resp. endogenous) variable. Note

that we allow the same endogenous variable to have different structural equations associated with it in

different worlds.

Definition 4.2. A context over a causal Kripke model K = (S ,W,R,F ) is a function t such that for

any w ∈W , and U ∈U , assigns a value in R(U,w). A causal Kripke setting is a pair (K , t), where K

is a causal Kripke model and t is a context for it.

Definition 4.3. For any variables X ∈ V , and Γ ∈U ∪V , and any w,w′ ∈W, we say ”(X ,w) is a direct

cause, or a parent, of (Γ,w′)” if there exist γ ,γ ′ ∈R(Γ,w′), and z ∈R((U ∪V )×W −{(Γ,w′)}) such

that f(X ,w)(z,γ) 6= f(X ,w)(z,γ
′). A causal Kripke model is said to be recursive if it contains no cyclic

dependencies.

In recursive models, as there are no cyclic dependencies the values of all endogenous variables at all the

worlds are completely determined by the context. If V only contains binary variables (i.e. the variable
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which take values either 0 or 1), then for any context t, and any world w, we use t(w) to denote the set

of endogenous variables set to value 1 at w by t. In this paper, we only consider recursive causal Kripke

models.

Definition 4.4. Given a causal Kripke model K = (S ,W,R,F ), as assignment over K is a function

on some subset Y ⊆ V ×W such that, for every Y = (X ,w) ∈ Y , it assigns some value in R(X ,w).

Definition 4.5. Let K = (S ,W,R,F ) be some causal Kripke model and Y be a finite subset of V ×W.

Let Y be an injective (possibly empty) listing of all the variables in Y . Let Y = y be an assignment such

that for any Yi ∈ Y , yi ∈R(Yi). The causal Kripke model obtained from intervention setting values of

variables of Y to y is given by KY←y = (S ,W,R,FY←y) , where FY←y is obtained by replacing for every

variable Yi ∈ Y , the structural equation fYi
with Yi = yi.

4.1 Modal logic language for describing causality

In this section we define the formal logical framework we introduce for describing causality. Since we

want to talk about variables whose values depend on the possible world of a Kripke model, our language

will be hybrid in character, augmenting the standard language (as presented e.g. in Section 2.2) not only

with modal operators but also with a countable set of names, denoted with W . In principle each model

M comes with an assignment from W to points of M, however in practice we will often conflate names

with elements of Kripke models. The reason we require a countable number of names, even though the

models are always finite, is because there is no bound on the size of the models. We will denote the

language with LM(W ). We often omit W and write LM when W is clear from the context. S is a given

signature, and all X ,Y,x,y come from S . In what follows we will consistently use Y to denote a variable

parametrized with a name for a world (i.e. Y = (X ,w)). It is important to notice that in our language

interventions involve only such variables. Any event α and formula φ of the language LM is defined by

the following recursion.

α ::= X = x | (X ,w) = x | ¬α | α ∧α |�α where, X ∈ V ,w ∈W

φ ::= X = x | (X ,w) = x | ¬φ | φ ∧φ |�φ | [Y ← y]α where,Y ← y is an intervention

In particular, the language LM has two types of atomic propositions, using variables of the form X and

of the form (X ,w). The second, the hybrid aspect of our language, provides global information regarding

the Kripke model. For any causal Kripke setting (K , t) with K = (S ,W,R,F ), any causal formula φ ,

and any world w ∈W , we define satisfaction relation  in the following way. For any primitive event

X = x (resp. (X ,w′) = x), (K , t,w)  X = x (resp. (K , t,w)  (X ,w′) = x) iff the value of X is set to be

x at w (resp. at w′) by the context t. Note that the satisfaction of (X ,w′) = x is independent of the world

it is evaluated at. The satisfaction relation for Boolean connectives is defined by standard recursion. For

the � operator,

(K , t,w) �α iff for allw′, wRw′ implies (K , t,w′)  α .

Let Y ⊆ V ×W be a set of endogenous variables. Satisfaction of intervention formulas is defined as

for any event α , (K , t,w)  [Y ← y]α iff (K[Y←y], t,w)  α . Satisfaction for Boolean combinations of

causal formulas is defined in a standard manner. For the � operator,

(K , t,w) �φ iff for allw′, wRw′ implies (K , t,w′)  φ .

We now extend the HP definition(s) of causality to the setting of causal Kripke models.

Definition 4.6. Let α be any event. For Y ⊆ V ×W,Y = y is an actual cause of α in a causal Kripke

setting (K , t) at a world w if the following conditions hold.
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AC1. (K , t,w)  α and for every w j ∈W , (K , t,w j)  (Xi,w j) = yi j, for every (Xi,w j) = yi j ∈ Y = y.

AC2a. There exists a partition of V ×W into two disjoint subsets Z and N with Y ⊆ Z and settings y′ and

n of variables in Y and N, such that

(K , t,w)  [Y ← y′,N← n]¬α .

AC2bo. Let z∗ be the unique setting of the variables in Z such that (K , t,w)  Z = z∗. If (K , t,w′)  X =
z∗, for every (X ,w′) = z∗ ∈ Z = z∗, then for all subsets Z

′
of Z \Y we have

(K , t,w)  [Y ← y,N← n,Z
′
← z′∗]α . 1

AC3. Y is a minimal set of variables that satisfy AC1 and AC2.

We say that Y = y is an actual cause of α in a causal Kripke setting (K , t) at a world w by updated

definition iff AC1, AC2a, AC3 hold and AC2bo is replaced by the following condition.

AC2bu. Let z∗ be the unique setting of the variables in Z such that (K , t,w) Z = z∗. If (K , t,w′) X =
z∗, for every (X ,w′) = z∗ ∈ Z = z∗, then for all subsets Z

′
of Z \Y and N

′
of N we have

(K , t,w)  [Y ← y,N
′
← n,Z

′
← z′∗]α .

We say that Y = y is an actual cause of α in a causal Kripke setting (K , t) at a world w by modified

definition iff AC1, AC3 hold and AC2 is replaced by the following condition.

AC2am. If there exists a set of variables N ⊆ V ×W, and a setting y′ of the variables in Y such that if n∗

is such that (K , t,w′)  X = n∗, for every (X ,w′) = n∗ ∈ N = n∗, then

(K , t,w)  [Y ← y′,N← n∗]¬α .

We will refer to these definitions as original, updated, and modified definitions henceforth. Example

B.1 shows that these definitions do not in general coincide. Theorem B.3 which relates these definitions

in causal models can be generalized to causal Kripke models in a straightforward manner (see Theorem,

B.5).

For any set of variables Y ⊆ V ×W , we use causeo(Y = y,α) (resp. causeu(Y = y,α), causem(Y =
y,α)) as an abbreviation for stating Y = y is a cause of α by the original (resp. updated, modified)

definition. We write (K , t,w)  causeo(Y = y,α) (resp. (K , t,w)  causeu(Y = y,α), (K , t,w) 
causem(Y = y,α) ) as an abbreviation for stating Y = y is a cause of α in causal Kripke setting (K , t)
at a world w by the original (resp. updated, modified) definition. Moreover, For x = o,u,m, we write

(K , t,w)�causex(Y = y,α) if for all w′ such that wRw′, (K , t,w′) causex(Y = y,α) and (K , t,w)
♦causex(Y = y,α) if there exists w′ such that wRw′ and (K , t,w′)  causex(Y = y,α).

4.2 Axiomatization

In [16], Halpern provides a sound and complete axiomatization for the logic of causality. This ax-

iomatization can be extended to the modal logic of causality by adding the following axioms to the

axiomatization in [16, Section 5.4]:

• All substitution instances of axioms of basic modal logic K.

• Necessitation rule: from φ infer �φ

• ♦-axiom : [Y ← y]♦φ ⇔ ♦[Y ← y]φ and �-axiom : [Y ← y]�φ ⇔�[Y ← y]φ

• G-axiom: ([Y ← y](X ,w) = x)⇒�([Y ← y](X ,w) = x)

1Here we use the abuse of notation that if Z
′
⊆ Z and Z = z∗, then z′∗ in Z

′
← z′∗ refers to the restriction of z∗ to Z

′
.
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Notice that, similar to the axiomatization in [16, Section 5.4], the schemes ♦-axiom, �-axiom, and

G-axiom include empty interventions. When importing the axioms from [16, Section 5.4] axiom scheme

C5 involves only variables of the form (X ,w). For the axiom schemes C1-4 and C6, the axioms involve

atoms both of the form X = x and of the form (X ,w) = x. Notice also that G-axiom is similar to axioms

in Hybrid modal logic.

Since the language in [16] is finite (modulo classical tautologies), weak and strong completeness

coincide. However our language is countable (given that W is countable). Since there is no upper bound

on the size of the models, we cannot hope to have strong completeness w.r.t. finite models. However the

axioms presented in this section are sound and weakly complete. In Appendix C we provide the proofs

of soundness and weak completeness w.r.t. the modal logic of causality.

5 Examples and applications

In this section, we analyze the examples discussed in Section 3 using causal Kripke models. For any

endogenous variable X , and any world w, we use Eq(X ,w) to denote the structural equation for X at w.

Throughout this section, we use U to denote exogenous variables only.

Example 5.1 (Umbrella). Let S be the signature with endogenous variables p, q, and r standing for

‘it rains in London’ and ‘Alice adds umbrella to the luggage’ and ‘Alice is in London’. Let w0 be the

current world and w1,w2,w3 be the future possible worlds considered by Alice. Let W = {w0,w1,w2,w3}
and R = {(w0,w1),(w0,w2),(w0,w3)}. Let U = (U1,U2) ∈ {0,1}

2 be such that (p,w) = (U1,w) and

(r,w) = (U2,w) for any w ∈W . Let Eq(q,w) = ♦(p∧ r) for all w, i.e., Alice puts her umbrella in her

luggage if she thinks it is possible that in the future she will be in London and it rains there.

Let t be a context such that U is set to be (0,0),(0,1), (1,0) and (1,1) at the worlds w0,w1,w2 and

w3 respectively. We have t(w0) = {q}, t(w1) = {r}, t(w2) = {p}, t(w3) = {p,r}. Here, (p,w3) = 1 and

(r,w3) = 1 are both causes of q = 1 at w0 by all three definitions.

We show that (p,w3) = 1 is a cause by the original and updated definitions. The proof for (r,w3) = 1

is analogous. Indeed, as (K , t,w3)  (p,w3) = 1, (K , t,w3)  (r,w3) = 1 and (K , t,w0)  q, AC1 is

satisfied. Let Z = {(r,w3),(p,w3)} and N = ∅, Y = {(p,w3)}, and y′ = 0. Then from the structural

equation as no world related to w0 satisfies p∧ r under this intervention, we have

(K , t,w0)  [Y ← 0]¬(q = 1) and (K , t,w0)  [Y ← 1,Z′← z∗]q = 1.

where Z′ = (r,w3), z∗ = (1,1) as described by the context. Thus, AC2 is satisfied and AC3 is trivial as

we are considering a single variable. The updated definition in this case is equivalent to the original

definition as N = /0. The modified definition is satisfied for the same setting y′ = 0 and N = {(r,w3)}.
Thus, the fact that it rains in the world w3 is a cause of Alice carrying her umbrella by all three definitions.

Now consider a slight variation of the above example in which we are sure Alice will be in the

London and do not include r as a variable in our analysis. In this case, the structural equation for q is

given by q =♦p. Note that, in this new model, we can argue in the way similar to the above example that

any world w′ accessible from w0, (p,w′) = 1 would be a part of the cause of Alice carrying her umbrella

at w0 by all three definitions. This can be interpreted as the fact that ’Alice considers the possibility of

a future world in which it rains in London and she will be in London’ is a part of cause of her adding

umbrella to luggage.

In general, for any event α and endogenous variable X we say that ”the possibility of X = x” is a

cause of α at w iff
∧
{(X ,w′) = x | wRw′&(K , t,w′)  X = x} is a cause of α at w by the modified

definition. Here, we use the modified definition because as mentioned by Halpern [16, Example 2.3.1],
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the conjunction being a cause by modified definition can in fact be interpreted as a cause being disjunc-

tive, i.e. , the disjunction of the conjuncts can be interpreted as the cause of the event. Hence under this

interpretation the existence of some w′ which is accessible from w0 and where X = x is a cause of α

here. This can be interpreted as ”the possibility of X = x” being a cause of α . Thus, in the variation of

the example discussed in the above paragraph, we can say that the possibility of the world where it rains

in London is a cause of Alice adding umbrella to her luggage.

Example 5.2 (stalemate). Let S be the signature with endogenous variables p, q and r standing for ‘The

king is in check’, ‘The king and the knight are the only pieces that can move in the current position’ and

‘The player is forced to move the knight’. Let w0 be the current position. Let w1 and w2 be the positions

obtained from the (only) available moves by the king. Let W = {w0,w1,w2} and R= {(w0,w1),(w0,w2)}.
Let U = (U1,U2) ∈ {0,1}

2 be such that (p,w) = (U1,w) and (q,w) = (U2,w) for any w ∈W . Let

Eq(r,w) = ¬p∧ q∧�p at any w, i.e., the player is forced to move the knight if the king and the knight

are the only pieces that can move, the king is not in check, and the king’s every available move leads to

the king being in check.

Let t be a context such that U is set to be (0,1),(1,1), and (1,0) at the worlds w0, w1, and w2

respectively. We have t(w0) = {q,r}, t(w1) = {p,q}, t(w2) = {p}. In the same way as in the last

example, we can show that (p,w0) = 0, (q,w0) = 1, (p,w1) = 1 and (p,w2) = 1 are all the causes of

r = 1 at w0 by all three definitions. This can intuitively be seen as the certainty of the king ending up in a

check regardless of the king move (while not currently being in check) is a part of cause of being forced

to move the knight.

In general, for any variable X , and any event α we say that the certainty of X = x is a cause of α at

w iff (X ,w′) = x is a cause of α at w for all wRw′ by the modified definition.

Example 5.3 (Police). Let S be the signature with endogenous variables p, q, r, and s standing for

‘Inspector Bob is in Brussels’, ‘Inspector Alice is in Amsterdam’, ‘John takes the train’, and ‘John is

caught in Amsterdam’. Let w0 be the current world and w1,w2 be the possible future worlds considered

by John. Let W = {w0,w1,w2} and R = {(w0,w1),(w0,w2)}.

Let U ∈ {0,1}2 be such that (p,w) = (U1,w) and (q,w) = (U2,w) for any w ∈W. Let Eq(r,w0) =
¬�p and Eq(r,w1) = Eq(r,w2) = 1. i.e. , John takes the train if there is a possible future scenario in

which inspector Bob is not in Brussels (John considers future scenarios when he takes the train). Let

Eq(s,w0) = q∧¬r (John gets caught in Amsterdam if Alice is there and he does not take the train) and

Eq(s,w1) = Eq(s,w2) = 0 (John considers future scenarios in which he is not caught).

Let t be a context such that U is set to be (1,1) at all the worlds. We have t(w0) = {p,q,s} and

t(w1) = t(w2) = {p,q,r}. It is easy to check that (p,w1) = 1 and (p,w2) = 1 are both causes of s = 1 at

w0 by all three definitions. Thus, the fact that Bob is present in Brussels in all possible worlds considered

by John is a cause of John getting caught in Amsterdam. If we assume that John knows Bob is in Brussels

iff he is actually in Brussels, then we can say that Bob’s presence in Brussels is a cause of John getting

caught in Amsterdam.

Here we have assumed that John’s knowledge of Bob’s presence in Brussels is the same as Bob being

actually present in Brussels. However, this need not be the case always. Now consider a slightly more

complicated version of the same story in which we have another endogenous variable o standing for

‘John lost his ticket’. Suppose John does not take the train if he loses the ticket or he knows inspector

Bob is in Brussels. i.e. ,Eq(r,w0) = ¬(�p∨o). Other structural equations remain the same. Let t
′

be a

context that sets variables p, q to the same values as t at all the worlds and sets o to be 1 at w0. In this

case (p,w1) = 1, (p,w2) = 1 and (o,w0) = 1 are all the causes of s = 1 at w0 by all three definitions.

Now consider slightly different context t
′′

such that p is set to be true at worlds w0 and w1, q at worlds
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w0, w1, and w2 and o at world w0. In this case, we again have r = 0 and s = 1 at w0. However, only

(o,w0) = 1 is a cause for s = 1 at w0 by all three definitions. Now suppose that Bob actually did go to

Brussels, however John does not know this information and thinks that there is a possibility that Bob

may not be in Brussels. The only reason he does not take the train is that he lost the ticket. Thus, Bob

being present in Brussels is not a cause of John getting caught in Amsterdam in this case. This shows

that the knowledge John has about the presence of Bob in Brussels (and not just presence itself) is an

important part of causal reasoning.

Example 5.4 (Robot). Let S be the signature with endogenous variables p, q and r standing for ‘The

command c is sent by the scientific team’, ‘The task t is completed by the robot’ and ‘The robot malfunc-

tions’. Let w0 be the current world, the world in which the scientific team is reasoning. Let w1 and w2 be

the possible worlds considered by the team. Let W = {w0,w1,w2} and R = {(w0,w1),(w0,w2)}.

Suppose Eq(q,w1)=�p, Eq(r,w1)= 0, Eq(r,w2)=�p, Eq(q,w2)= 0, and Eq(q,w0)=Eq(r,w0)=
0, where � is the diamond operator corresponding to the relation R−1, i.e., there are two possible sce-

narios. In one scenario sending command c leads to the completion of task t and no malfunctioning,

while in the other it leads to the malfunctioning of the robot and task t is not completed.

Let U ∈ {0,1} be such that (p,wi) = (U,wi). Let t be a context such that U is set to be 1 in all the

worlds. We have t(w0) = {p}, t(w1) = {p,q}, t(w2) = {p,r}. It is easy to see that (p,w0) = 1 is the

cause of r = 1 at w2 but not at w1 (it is not even true at w1) by all three definitions. Suppose the scientific

team believes that if sending command can possibly cause malfunctioning then command shouldn’t be

sent. Then as (K , t,w0)♦cause((p,w0) = 1,r = 1) ( for all three definitions), the team will decide not

to send the command. On the other hand, if the team believes that the command should be sent if it can

possibly cause the completion of the task, then it must be sent as (K , t,w0)♦cause((p,w0) = 1,q= 1),
i.e. sending signal can cause completion of task t.

Example 5.5 (Navigation). Let S be the signature with endogenous variables px, q and r standing for

‘The current location of Alice is x’ for x = B,C,D, ‘Point A is to the east of Alice’s current location’

and ‘Alice moves to the east’. Alice does not know if she is at point B, C or D. Let w1, w2 and w3 be

possible worlds and U ∈ {0,1}4 be such that (pB,w) = (U1,w), (pC,w) = (U2,w), (pD,w) = (U3,w) and

(q,w) = (U4,w) for any w ∈W.

Let t be a context such that U is set to be (1,0,0,1), (0,1,0,1), and (0,0,1,1) at worlds w1, w2 and

w3. We have t(w1) = {pB,q,r}, t(w2) = {pC,q,r}, and t(w3) = {pD,q,r}. Worlds w1, w2 and w3 here

represent the possible scenarios considered by Alice. With the current available knowledge these worlds

are indistinguishable from each other for Alice. This can be represented by R =W ×W. At any world w

Eq(r,w) = �q, i.e. Alice moves to the East iff she knows point A is to the East of her current location.

Here, in the world w1 in which Alice is at B (the real situation), (q,w1) = 1, (q,w2) = 1 and (q,w3) = 1

are all causes of (r,w1) = 1 by all three definitions. Thus, the fact that A is to the East of point C or point

D is also a cause of Alice moving to East even if she is not present there.

These examples show that causal Kripke models can be used to model several different scenarios

involving causality interacting with notions like possibility, knowledge and uncertainty.

5.1 Sufficient causality

Halpern discusses the notion of sufficient causality in [16] to model the fact that people’s reasoning about

causality depends on how sensitive the causality ascription is to changes in various other factors. “The

key intuition behind the definition of sufficient causality is that not only does X = x suffice to bring about

φ in the actual context, but it also brings it about in other “nearby” contexts. Since the framework does
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not provide a metric on contexts, there is no obvious way to define nearby context. Thus, in the formal

definition below, I start by considering all contexts.”[16, Section 2.6] Sufficient causality is thus defined

in [16] using Definition A.2.

We can use the framework of causal Kripke models to define sufficient causality for a causal setting

(M,u) in terms of nearby contexts instead of all the contexts (as suggested by Halpern) in the following

way. We consider the causal Kripke model K = (S ,W,R,F ), where S is the signature of M, W is the

set of all the possible contexts on M, and F is the set of structural equations such that for any structural

equation for the endogenous variable X , Eq(X ,w) is the same as the structural equation for X in M and

the relation R ⊆W ×W is such that uRu′ iff context u′ is nearby u. Let t be the setting of exogenous

variables so that for any possible world the endogenous variables are set by the context identifying that

world. Let X = x be as in Definition A.2 and let Y = X×W . For any Y = (X ,u), Y = y iff X is set to be x

by the context u. Let Y ← y is intervention setting X to x in all the possible contexts. In this structure we

can describe sufficient causality in terms of nearby contexts by replacing the clause SC3 in the Definition

A.2 by the condition

uRu′ =⇒ (K , t,u′) |= [Y ← y]α or equivalently (K , t,u) |=�[Y ← y]α .

We call this property SC3-local as we only require that the intervention [Y ← y] makes α true in nearby

(not all) contexts.

In this Section, we have mainly only considered the causal Kripke model with only one relation which

is the ”nearby” relation. However, we can also consider causal Kripke models with multiple relations in

which we have a nearby relation N on the worlds in addition to the other accessibility relations denoting

relationships between world like time, indistingushibility, etc. The definition of sufficient causality dis-

cussed above can naturally be extended to this setting allowing us to describe the sufficient causality in

the setting of causal Kripke models. Here, we do not go into details of this generalization but we believe

this would be an interesting direction for future research.

6 Conclusions and future directions

In this paper, we have developed a possible world semantics for reasoning about actual causality. We

develop a modal language and logic to formally reason in this framework. This language is used to

generalize the HP definitions of actual causality for this framework. We provide a sound and complete

axiomatization of the modal logic of causality developed, and give a number of examples to illustrate

how our model can be used to reason about causality. Finally, we show that our framework allows us to

define the intended notion of sufficient causality in a straightforward and more intuitive manner.

This work can be extended in several directions. First, results regarding the relationship of the HP

definitions with but-for causality [16, Proposition 2.2.2], and transitivity of cause [16, Section 2.4], can

be generalized to our modal setting. Secondly, we can allow for interventions on the relation R in causal

Kripke models. Indeed, in many scenarios intuitively the cause for some event is accessibility to some

possible world. Allowing interventions on R would allow us to model such scenarios. Finally, similar

to sufficient causality, other notions related to actual causality like normality (or typicality) and graded

causation can be described in more nuanced and possibly multiple ways using the causal modal language.
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AC2bu. If z∗ is such that (M, t)  Z = z∗, then for all subsets Z
′
of Z \X and W ′ of W we have

(M, t) p [X ← x,W
′
← w,Z

′
← z∗]α .

We say that X = x is an actual cause of α in a causal setting (M, t) by modified definition iff AC1, AC3

hold and AC2 is replaced by the following condition.

AC2am. If there exists a set of variables W ⊆ V , and a setting x′ of variable in X such that if (M, t) 
W = w∗, then

(M, t) p [X ← x′,W ← w∗]¬α .

The following theorem describes relationship between these three definitions of causality.

Definition A.2 ([16], Definition 2.6.1). X = x is a sufficient cause of α in the causal setting (M,u) if the

following conditions hold:

SC1. (M,u) |= X = x and (M,u) |= α .

SC2. Some conjunct of X = x is part of a cause of α in (M,u). More precisely, there exists a conjunct

X = x of X = x and another (possibly empty) conjunction Y = y such that X = x∧Y = y is a cause

of α in (M,u); i.e. , AC1, AC2, and AC3 hold for (possibly empty) conjunction Y = y such that

X = x∧Y = y

SC3. (M,u′) |= [X ← x]α for all contexts u′.

• X is the minimal set satisfying above properties.

B Relationship between three HP definitions of causality

In [16] Halpern gives examples to show that the three HP definitions do not coincide with each other.

Here we give one example to show that the modified definition may not coincide with the original and

updated definition in the causal Kripke model. Similar example can be given to show that original and

updated definition do not coincide.

Example B.1 (stalemate detailed). We consider the following variation of the example 5.2. Let S be

signature with endogenous variables p1 and p2 instead of p (keeping the other endogenous variables

unchanged) standing for ’The king is in check by the opponent’s queen’ and ’The king is in check by the

opponent’s king’. Let U = (U1,U2,U3) ∈ {0,1}
3 be such that (p1,w) = (U1,w), (p2,w) = (U2,w), and

(q,w) = (U3,w) for any w ∈W. Let the structural equation for r at w0 be given by r = ¬(p1∨ p2)∧q∧
�(p1∨ p2). i.e. , the player is forced to move the knoight if if the only pieces that can move are the king

and the knight, ther king is not in check and every possible king move leads to king being in the check by

the king or the queen (We assume there are no other pieces on the board) of the opponenet . Let t be a

context such that U is set to be (0,0,1),(1,1,1), and (0,1,0) at the worlds w0, w1, and w2 respectively.

We have t(w0) = {r}, t(w1) = {p1, p2,q}, t(w2) = {p2}. In the same way as the last example we can

show that (p1,w0) = 0, (p2,w0) = 0,(q,w0) = 1, (p1,w1) = 1, (p2,w1) = 1 and (p2,w2) = 1 are all the

causes of r = 1 at w0 by the original and updated definition. However, in the case of modified definition,

neither (p1,w1) = 1 nor (p2,w1) = 1 is the causes but (p1,w1) = 1∧ (p2,w1) = 1 is a cause of r = 1 at

w0. To see this notice that for any choice of N we will always have

(K , t,w0)  [(p1,w1)← x′,N← n∗]r = 1.

for any choice of x′. Thus, (p1,w1) = 1 is not cause of r = 1 at w0 by modified definition. Similar

argument holds for (p2,w1) = 1. However, (p1,w1) = 1∧ (p2,w1) = 1 is a cause is showed by setting

N = /0 and x′= (0,0). Thus, three definitions of causality need not always match in causal Kripke models.
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The following theorem describes relationship between the three HP definitions in the causal models.

Definition B.2 ([16], Section 2.2). For any event α , any variable X, and any world w, X = x is a part of

cause of α by original (resp. updated, modified) definition of causality if it is a conjunct in the cause of

α by original (resp. updated, modified) definition.

Theorem B.3 ([16], Theorem 2.2.3). If X = x is a part of cause of α in (M,u) according to

1. the modified HP definition then X = x is a part of cause of α in (M,u) according to the original

HP definition .

2. the modified HP definition then X = x is a part of cause of α in (M,u) according to the updated

HP definition.

3. the updated HP definition then X = x is a part of cause of α in (M,u) according to the original

HP definition.

Now, we generalize this result to our framework of causal Kripke models.

Definition B.4. For any event α , any variable X, and any world w′, (X ,w) = x is a part of cause of α

by original (resp. updated, modified) definition of causality if it is a conjunct in the cause of α at w′ by

original (resp. updated, modified) definition.

Theorem B.5. If (X ,w) = x is a part of cause of φ in (K , t) at w′ according to

1. the modified HP definition then (X ,w) = x is a part of cause of α in (K , t) at w′ according to the

original HP definition.

2. the modified HP definition then (X ,w) = x is a part of cause of α in (K , t) at w′ according to the

updated HP definition.

3. the updated HP definition then (X ,w) = x is a part of cause of α in (K , t) at w′ according to the

original HP definition.

Proof. For item 1, let (X ,w) = x be a part of cause of α in (K , t) at a world w′ according to the

modified HP definition, so that there is a cause Y = y such that (X ,w) = x is one of its conjuncts. Then

there must exist a value x′ ∈R(Y ) and a set N ⊆ V ×W \Y , such that if (K , t,w) ⊢ X = n∗ for every

(X ,w) = n∗ ∈ N = n∗, then (K , t,w′) ⊢ [Y ← y,N← n∗]¬α . Moreover Y is minimal.

We will show that (X ,w) = x is a cause of α . If Y = {(X ,w)}, then the original HP definition is

satisfied by (N,n∗,x′) given by the condition AC2am. If |Y | > 1, then without loss of generality let

Y = ((X1,w1),(X2,w2), · · · ,(Xn,wn)) and (X ,w) = (X1,w1). For any vector Y , we use Y−1 to denote all

components of Y except the first.

We will show that (X1,w1) is a cause of α in (K , t) at w′ according to the original definition. Since

Y = y is a cause of α in (K , t) at w′ according to the modified definition, by AC1 (K , t,w1) ⊢ X1 = x1

and (K , t,w′) ⊢ α . Let N
′
= (Y−1,N), n∗

′
= (y′−1,n

∗), y′ = y′1, where y′ is as given by the modified

definition. It is easy to see that (K , t,w′) ⊢ [(X1,w1)← x′1,Y−1← y−1,N← n∗]¬α satisfying condition

AC2a. Since (X1,w1) is single variable, AC3 holds trivially. Thus, to complete the proof of (a) we need to

show that AC2bo holds. Suppose AC2bo does not hold. Then there exists a subset Z′⊆V ×W \(Y−1∪N)
of variables and value z∗ such that (i) for each Z ∈ Z′, (K , t,w) ⊢ Z = z∗ and (ii) (K , t,w′) ⊢ [(X1,w1)←
x1,Y−1 ← y−1,N ← n∗,Z′ ← z∗]¬α . But then Y = y is not a cause of α according to the modified

definition. Indeed, AC2am is satisfied for T
′
= Y−1 by setting N = ((X1,w1),N,Z′) and n∗ = (x1,n∗,z∗)

and t ′ = y′−1 violating AC3 for Y = y. i.e. , Y = y is not a minimal cause by the modified definition as

the conjunct obtained by removing (X1,w1) = x1 from it is still a cause by the modified definition. This

is a contradiction. Therefore, AC2bo is valid.
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For item 2, the proof is similar in spirit. In addition to 1, we need to show that if Y ′ ⊆ Y−1, N ′ ⊆ N,

and Z′ ⊆ Z, then

(K , t,w) ⊢ [(X ,w1)← x1,Y−1← y−1,N
′← n∗′,Z′← z∗′φ ]

If X ′ = /0, then the condition holds since (X ,w) = x is a cause of φ according to the original definition by

item 1. In case this condition does not hold for some non-empty Y ′ ⊆ Y−1, then Y = y does not satisfy

the minimimality condition AC3 of the modified HP definition (in causal Kripke models).

For item 3, the proof is same as item 1, upto the point where we have to prove AC2o. Suppose there

exists Z′ ⊆ Z such that

(K , t,w) ⊢ [(X ,w1)← x1,Y−1← y−1,N
′← n∗′,Z′← z∗′¬φ ]

then Y−1← y−1 satisfies AC2a and AC2bu. Thus, Y = y does not satisfy the minimimality condition AC3

for the updated definition. Hence proved.

C Soundness and completeness

In this section we provide the proof of soundness and (weak) completeness of the axiomatization given

in Section 4.2. The proof is a modification of the proof provided in [16] to include the modal operators.

Proof. Showing that the axiomatization is sound is routine. It is straightforward to verify that all the

axioms except G-axiom are valid and that modus ponens and necessitation preserve validity. For the

G-axiom, note that the truth of the formula (X ,w) = x is independent of the world w′ at which it is

evaluated. Thus, if it is true at some world, then it is true at all the worlds, in particular true at all the

world related to w.

To prove that the axiomatization is weakly complete, we show contrapositively that if 0 ψ then

there exists a model satisfying ¬ψ . As usual, starting with a consistent formula ϕ we obtain a maximal

consistent set Σ containing all axioms such that ϕ ∈ Σ, is closed under ∧ and consequence, and enjoys

the disjunction property (see also the proof of Theorem 5.4.1 in [16, Section 5.5]).

Before moving to the details of the proof, we provide a high-level presentation of the argument, to

help the reader follow: Given a consistent set of formulas, we can extract the formulas that do not contain

modalities. Treating the variables (X ,w) and (X ,w) (where w 6= w′) as simply distinct variables, this set

can be seen as a consistent set of formulas for the standard logic of causality presented in [16], because

the axioms in Section 4.2 strictly extend the axioms of the logic in [16]. Then, by the completeness

presented in [16], we get a set of structural equations, which readily provides a set of structural equations

over a Kripke model with the empty relation (where (X ,w) and (X ,w′) are now interpreted as the same

variable at different points in the Kripke model). By the soundness of the axioms in Section 4.2, the set of

non-modal formulas at each such state is consistent. These consistent sets guarantee that the “canonical”

model we construct has enough points to interpret all the names that appear in our finite set of formulas.

The proof then follows a standard filtration argument to show in the usual way the truth lemma for modal

formulas.

Let ϕ be such that 0 ¬ϕ . Let us define Wϕ := {w ∈ W | w appears in ϕ} and Sϕ := {ψ ,�ψ |
ψ is a subformula of ϕ}. Now let Σ be a maximal consistent set of formulas of L(Wϕ ) that contains

ϕ . Given axiom C6 in [16, Section 5.4] and ♦-axiom and �-axiom, we can assume without loss of gen-

erality that all formulas are generated from [Y ← y]X = x and [Y ← y](X ,w) = x using the connectives

♦,�,∧,∨ and ¬. Notice that Σ “decides” the value of variables (X ,w) for every w ∈Wϕ (that is to say,

(X ,w) = x ∈ Σ for some x ∈ for some x ∈R(X ,w)). Consider the set B = {[Y ← y](X ,w) = x ∈ L(Wϕ) |
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[Y ← y](X ,w) = x ∈ Σ}. By the completeness in [16, Section 5.5], it follows that there exists a system

of structural equations satisfying the non-modal formulas of Σ. Using this system we can define a causal

Kripke model with domain Wϕ , and empty Kripke relation. By the soundness of this system it follows

that for every w ∈Wϕ the set Σw := {[Y ← y]X = x | [Y ← y](X ,w) = x ∈ Σ}∪B (the set Σw includes the

) is consistent and hence can be extended to an maximal consistent set Σ′w.

Let S = Sϕ ∪{[Y ← y](X ,w) = x, [Y ← y]X = x ∈ L(Wϕ)}. Notice that S is finite. Define an equiva-

lence relation on maximal consistent sets extending B of L(Wϕ ), T1 ∼ T2 if and only if T1∩ S = T2∩ S.

Given that S is finite, there exist finite many equivalence classes. Let W be the set of equivalence classes,

and let R ⊆W×W be defined as C1RC2 if and only if there exists T1 ∈C1 and T2 ∈ C2, such that for

all ψ ∈ T2, ♦ψ ∈ T1. Define a name assignment i such that i(w) = [Σ′w] for w ∈Wϕ , and arbitrarily oth-

erwise. Finally define the structural equations, depending only on variables of Wϕ , exactly as defined in

[16, Section 5.4]. In particular the equations are independent of variables in W \Wϕ , and f(X ,w)(y) = x,

if and only if [Y ← y]X = x ∈ T for any T ∈ i(w) (given that [Y ← y]X = x ∈ S, this is well defined).

We claim that t, [T ]  ψ if and only if ψ ∈ T , for every ψ ∈ S, and maximal consistent set T .

The proof proceeds via induction on the complexity of the formulas. For formulas of the form

[Y ← y]X = x, [Y ← y](X ,w) = x, and for logical connectives the proof is verbatim the same as that of

[16, Section 5.4].

Finally, let’s show this for the case when ψ is ♦σ .

First, let’s assume that t, [T ]  ♦σ . Then there exists C ∈W such that [T ]RC and t,C  σ . By

induction hypothesis σ ∈ T ′, for every T ′ ∈ C. Since σ ∈ S, by the definition of R, it follows that

♦σ ∈ T .

For the converse direction, assume that ♦σ ∈ T . Notice preliminarily, that since ♦⊤∧�p⇒ ♦p is

a theorem of classical normal modal logic, then (♦⊤∧�([Y ← y](X ,w) = x))⇒ ♦[Y ← y](X ,w) = x is

provable in our system. From the G-axiom, this implies that also

(♦⊤∧ ([Y ← y](X ,w) = x))⇒ ♦[Y ← y](X ,w) = x (1)

is provable. Consider the set ZT = {τ ∈ L(Wϕ) | ♦τ /∈ T}. Clearly ZT is an ideal of the free Boolean

algebra of the logic. Given that B ⊆ T and ♦σ ∈ T , it follows that ♦⊤ ∈ T , and by (1) it follows that

♦B⊆ T and so B∩ZT =∅. Hence there exists a maximal consistent set T ′, extending B∩{σ} such that

T ′∩ZT =∅. By definition [T ]R[T ′], and hence t, [T ]  ♦σ , as required.

The proof, that the model is recursive, follows again the proof of [16, Section 5.4], using the fact that

our Kripke frame is finite.
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Multi-agent influence diagrams (MAIDs) are a popular game-theoretic model based on Bayesian

networks. In some settings, MAIDs offer significant advantages over extensive-form game represen-

tations. Previous work on MAIDs has assumed that agents employ behavioural policies, which set

independent conditional probability distributions over actions for each of their decisions. In settings

with imperfect recall, however, a Nash equilibrium in behavioural policies may not exist. We over-

come this by showing how to solve MAIDs with forgetful and absent-minded agents using mixed

policies and two types of correlated equilibrium. We also analyse the computational complexity of

key decision problems in MAIDs, and explore tractable cases. Finally, we describe applications of

MAIDs to Markov games and team situations, where imperfect recall is often unavoidable.

1 Introduction

Multi-agent influence diagrams (MAIDs) are a graphical representation for dynamic non-cooperative

games, which can be more compact and expressive than extensive-form games (EFGs) [25]. Like

Bayesian networks (BNs), MAIDs use a directed acyclic graph (DAG) to represent conditional prob-

abilistic dependencies between random variables, but they also specify decision and utility variables for

each agent. Each agent selects a behavioural policy – independent conditional probability distributions

(CPDs) over actions for each of their decision variables – to maximise their expected utility. A MAID’s

mechanised graph extends this DAG by explicitly representing each variable’s distribution and showing

which other variables’ distributions matter to an agent optimising a particular decision rule [18, 25, 10].

MAIDs, and their causal variants [18], have been used in the design of safe and fair AI systems

[14, 1, 15, 16, 7], to explore reasoning patterns and deception [40, 48], and to identify agents from

data [22]. However, to date, agents in MAIDs are usually assumed to have perfect (or, at least, ‘suffi-

cient’) recall [25]. This assumption is often unreasonable. For example, MAIDs must allow imperfect

recall to handle bounded rationality, teams with imperfect communication [13], or memoryless poli-

cies in Markov games. However, forgetfulness (of previous observations) or absent-mindedness (about

whether previous decisions have even been made) can prevent the existence of a Nash Equilibrium (NE)

in behavioural policies. To overcome this, one can consider other solution concepts, such as mixed or

correlated equilibria.

In this work, we focus on imperfect recall in MAIDs. Imperfect recall has already been extensively

studied in EFGs [41, 26, 49], but a MAID’s mechanised graph makes graphically explicit the semantic

difference between behavioural and mixed policies (hidden in EFGs) and readily identifies forgetful

or absent-minded agents (or teams). Our insights inspire two definitions of correlated equilibrium in

MAIDs. The first follows from the normal-form game definition [2]. The second, based on von Stengel

http://dx.doi.org/10.4204/EPTCS.379.17
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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and Forges’ extensive-form correlated equilibrium [47], is more natural for dynamic settings, can yield

greater social welfare, and is easier to compute. Again, mechanised graphs clearly depict the assumptions

made in both. Next, we examine MAIDs from a computational complexity perspective by studying the

decision problems of finding a best response, checking whether a policy profile is an NE, and checking

whether each type of NE exists. These provide an insight into what makes particular instances hard, when

computations can be made tractable, and rigorously identify which problems are suitable for analysis as

MAIDs. Our results also apply to refinements of MAIDs, such as causal games [18]. We assume

familiarity with EFGs [31], BNs [24], and the complexity classes P, NP, and PP [38]. Proof sketches are

provided, but details are deferred to the appendices.

Related Work. There is a rich literature on influence diagrams [23] and imperfect recall has been

studied in single-agent influence diagrams [33, 34, 29, 6, 35] as well as in EFGs [3, 21, 26, 41, 49].

However, to our knowledge, we are the first to focus on imperfect recall in influence diagrams with

multiple agents.

A full policy profile in a MAID induces a BN, so many of our results inherit from that setting, where

the decision problem variant of marginal inference is, in general, PP-complete [30]. However, we care

about the cases we encounter in practice, not just the worst case. Marginal inference in a BN can be

performed in time exponential in the treewidth of the underlying graph [24], which entails a poly-time

algorithm when the treewidth is small. Similarly, we will see that tractable results for computations in

MAIDs can be found when problems are restricted to certain settings. We also sometimes reduce from

partial order games [50], which can be interpreted as MAIDs without chance nodes, with deterministic

decision rules, and where each agent has a single utility node as a child of all the decision nodes.

2 The Model

We use capital letters V for random variables, lowercase letters v for their instantiations, and bold letters

VVV and vvv, respectively, for sets of variables and their instantiations. We let dom(V ) denote the (finite,

non-singleton) domain of V (for ease, we take this to be binary unless stated otherwise) and dom(VVV ) :=

×V∈VVV dom(V ). Parents and children of V in a graph are denoted by PaV and ChV , respectively (with paV

and chV their instantiations) and ∆(X) denotes the set of all probability distributions over a set X .

Example 1. An autonomous taxi decides whether to offer Alice a discount (T ) depending on whether

its journey count exceeds a quota (Q). Alice decides whether to accept a journey (A) depending on the

price. The taxi wants to maximise profit, but if its journey count is less than the quota and Alice rejects it,

the taxi pays a penalty (the municipality uses this mechanism to prevent a proliferation of unnecessary

taxis). Alice’s utility is a function of her decision and the price offered by the taxi.

Figure 1a shows a MAID for this example. Chance variables (moves by nature), decision variables,

and utility variables are represented by white circles, squares, and diamonds, respectively. Full edges

leading into chance and utility nodes represent probabilistic dependence, as in a BN. Dotted edges lead-

ing into decision nodes identify information available to the agent when a decision D is made, so paD,

the values of PaD, represents the decision context for D. In EFGs, imperfect information is represented

using explicitly labelled information sets. In MAIDs, we can infer that Alice is unaware of the value of

Q when making her decision by the lack of edge Q→ A. A parameterisation defines the CPDs for the

chance and utility variables, whereas CPDs of decision nodes are chosen by the agents playing the game.

Definition 1 ([25]). A multi-agent influence diagram (MAID) is a structure M = (G ,θθθ ). G = (N,VVV ,E)
specifies a set of agents N = {1, . . . ,n} and a DAG (VVV ,E), where VVV is partitioned into chance variables
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Q T A

UT UA

Bernoulli(0.5)

UT = T ·A−J(1−A)
UA = A · (3−T )

(a)

Q T A

ΘQ ΠT ΠA

UT UAΘUT ΘUA

(b)

Figure 1: A MAID (a) and its mechanised graph (b) for Example 1, which is a perfect recall and imper-

fect, but sufficient, information game.

XXX, decision variables DDD =
⋃

i∈N DDDi, and utility variables UUU =
⋃

i∈N UUU i. The parameters θθθ = {θV}V∈VVV\DDD

define the CPDs Pr(V | PaV ) for each non-decision variable such that for any setting of the decision

variables’ CPDs, the resulting joint distribution over VVV is Markov compatible with the DAG, i.e., Pr(vvv) =

∏V∈VVV Pr(v | paV ).

Given a MAID, a decision rule πD for D∈DDD is a CPD πD(D | PaD). A partial (behavioural) policy

profile πDDD′ is a set of decision rules for each D∈DDD′⊆DDD, whereas π−DDD′ is the set of decision rules for each

D∈DDD\DDD′. A (behavioural) policy πππ i refers to πππDDDiii , and a (full) policy profile πππ =(πππ1, . . . ,πππn) is a tuple

of policies, where πππ−i := (πππ1, . . . ,πππ i−1,πππ i+1, . . . ,πππn). A decision rule is pure if πD(d | paD) ∈ {0,1},
which holds for a policy (profile) if it holds for all decision rules in the policy (profile). For clarity, we

use an overhead dot to mark this determinism, e.g., π̇D, π̇ππ
i, or π̇ππ .

By combining πππ with the partial distribution Pr over the chance and utility variables, we obtain a

joint distribution:

Prπππ(xxx,ddd,uuu) := ∏V∈VVV\DDD Pr(v | paV ) ·∏D∈DDD πD(d | paD)

A full policy profile πππ therefore induces a BN with DAG given by the MAID’s graph. Agent i’s expected

utility EU i(πππ) for a given policy profile πππ is defined as the expected sum of their utility variables:

EU i(πππ) := ∑U∈UUU i ∑u∈dom(U) Prπππ(U = u) ·u

Utility variables have deterministic CPDs, so can be interpreted as functions U : dom(PaU)→ R to

show their functional dependence on their parents (e.g., Figure 1a). An NE is defined in the usual way.

Definition 2 ([25]). A (behavioural) policy profile πππ is a Nash equilibrium (NE) (in behavioural poli-

cies) if for every agent i∈N and every alternative (behavioural) policy ϖϖϖ i: EU i(πππ−i,πππ i)≥EU i(πππ−i,ϖϖϖ i)

Collectively, the decision rules of decision variables and the CPDs of chance or utility nodes are

known as mechanisms. A mechanism MV for V is strategically relevant to a decision rule for D if the

choice of the CPD at MV can affect the optimal choice of this decision rule. Koller and Milch [25] define

an associated sound and complete graphical criterion for strategic relevance, sss-reachability, based on

d-separation which can be checked in O(|VVV |+ |E|) time [43] (see Appendix A for formal definitions).

A MAID’s regular graph G captures the probabilistic dependencies between object-level variables

in the game’s environment, but its mechanised graph mG is an enhanced representation which adds an

explicit representation of the strategically relevant dependencies between agents’ decision rules and the

game’s parameterisation (see [18] for details). Each object-level variable V ∈VVV has a mechanism parent

MV representing the distribution governing V : each decision D has a new decision rule parent ΠD =MD

and each non-decision V has a new parameter parent ΘV =MV , whose values parameterise the CPDs.

Agents select a decision rule πD (i.e., the value of a decision rule variable ΠD) based on both the

parameterisation of the game (i.e., the values of the parameter variables) and the selection of the other
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decision rules πππ−D – these dependencies are captured by the edges from other mechanisms into decision

rule nodes. s-reachability determines which of these edges are necessary, so MV →ΠD exists if and only

if ΠD strategically relies on MV . The mechanised graph for Example 1 (in Figure 1b) shows that ΠT

strategically relies on ΘUT and ΠA, whereas ΠA only strategically relies on ΘUA . In contrast to a MAID’s

regular graph G , which is a DAG, there may exist cycles between mechanisms (e.g., Figure 3a).

For convenience, we denote the set of agent i’s behavioural policies as PPPi := dom(ΠΠΠi), with sets of

pure policies denoted as ṖPP
i
and (pure) policy profiles denoted by PPP (ṖPP).

2.1 Concise Representations

A concise representation of MAIDs is needed for three reasons. First, real numbers may obscure the true

complexity of the problems [5], so we assume that all probability parameters are given by a fraction of

two integers, both expressed in finite binary notation. This is realistic since the probabilities are normally

either assessed by domain experts or estimated by a learning algorithm and means that all CPDs can be

read in poly-time. Second, even with binary variables, a joint distribution across VVV requires 2|VVV |− 1

parameters. A MAID or BN’s graphical Markov factorisation reduces this to ∑V∈VVV 2|PaV |, but this can

still be exponential in |VVV |. Therefore, it is standard [45, 42, 28, 24] to assume that the maximum in-

degree in the graph is much less than |VVV | (or constant), so that the size of the CPDs are polynomial in

|VVV |. This means that the total representation of our MAID (including all CPDs) is polynomial in our

chosen complexity parameter |VVV |. Finally, as in BNs, our complexity results are strongly affected by

the DAG’s treewidth. The treewidth of a DAG measures its resemblance to a tree and is given by the

number of vertices in the largest clique of the corresponding triangulated moral graph minus one [4].

3 Imperfect Recall in MAIDs

Agents may possess different degrees of information about the state of a game. A game has perfect

recall if each agent remembers all their past decisions and observations, and it has perfect information

if each agent is aware of every agent’s past decisions and observations.

Definition 3 ([25]). Agent i in a MAID M is said to have perfect recall if there exists a total ordering

D1 ≺ ·· · ≺Dm over DDDi such that (PaD j
∪D j)⊆ PaDk

for any 1≤ j < k≤m. M is a perfect recall game

if all agents in M have perfect recall. M is a perfect information game if there exists such an ordering

over DDD.

A MAID with perfect information (recall) can be transformed into an EFG with perfect information

(recall), and vice versa [17]. Hence, these information conditions also guarantee the existence of an NE

in pure (behavioural) policies in the MAID ([26] gives the equivalent results in EFGs). However, the

mechanised representation of a MAID enables weaker criteria to be defined – sufficient information

and sufficient recall. Later, in Proposition 3, we will see that these criteria preserve the NE existence

results of perfect information and perfect recall games, respectively.

Definition 4. Agent i in a MAID M has sufficient recall [36] if the subgraph of the mechanised graph

mG restricted to just agent i’s decision rule nodes ΠΠΠDDDi is acyclic. M is a sufficient recall game if all

agents in M have sufficient recall. M is a sufficient information game if the subgraph of mG restricted

to contain only and all decision rule nodes ΠΠΠDDD is acyclic.1

1Note that since previous work on influence diagrams has not modelled absent-mindedness (see our Definition 5 in Sec-

tion 3.1), this definition implicitly assumes each mechanism variable has a single child.
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Figure 2: The EFG (a) and the mechanised graphs for an absent-minded driver choosing behavioural (b)

or mixed (c) policies.

3.1 Forgetfulness and Absent-Mindedness

Previous work on MAIDs has assumed perfect or sufficient recall. We now begin the contributions of this

paper by distinguishing between two types of imperfect recall in MAIDs. Forgetfulness applies when

an agent forgets an observation or the outcome of one of their previous decisions. Absent-mindedness

applies when an agent cannot even remember whether they have previously made a decision. To make

this distinction, we leverage the following insight: mechanism nodes represent the CPDs governing

object-level variables. Every edge between a mechanism and object-level node represents an independent

draw from the mechanism’s distribution. We now provide formal definitions.

Definition 5. Agent i has imperfect recall in a MAID M if for every total ordering D1 ≺ ·· · ≺ Dm over

DDDi there exists some j < k such that (PaD j
∪D j) 6⊆ PaDk

(i.e., if agent i does not have perfect recall).

Agent i is forgetful if such a D j and Dk have distinct decision rules and is absent-minded if in M ’s

mechanised graph, a decision rule node has more than one outgoing edge to a decision node.

To motivate our definition of absent-mindedness in MAIDs, we revisit Piccione and Rubinstein’s

absent-minded driver game [41] (its EFG is in Figure 2a). A driver on a highway may take one of

two exits. Taking the first, second, or no exit yields a payoff of 0, 4, or 1, respectively. Adopting

Aumann [3]’s modified multi-selves approach (i.e., that the driver should only be able to control her

current action, not her future actions), the driver does not know which junction she is facing, so she

must have the same decision rule at both junctions. We make absent-mindedness explicit with a shared

decision rule node ΠD for D1 and D2 in the mechanised graph (Figure 2b) (note this is consistent with

our mechanised graph definition). ΠD’s two outgoing edges now represent two independent draws from

the same distribution. For Di and D j to share a decision rule, it is necessary that dom(Di) = dom(D j)
and dom(PaDi

) = dom(PaD j
). Note that perfect recall implies that for any two decisions belonging to the

same agent, one’s set of parents is a strict superset of the other’s, so their decision rules have a different

type signature, which rules out absent-mindedness.

In the following examples, used just to explain this paper’s concepts, Alice and Bob play variations

of matching pennies with the usual payoffs given according to the final state of their two coins (where

a/b and ā/b̄ represent heads and tails, respectively). Example 2 illustrates a consequence of Bob being

forgetful – meaning he cannot remember the outcome of his previous decision. In Example 3, Bob is

absent-minded – he cannot remember whether he has made a decision at all.

Example 2 (Figures 3a-3c). Bob is told he must submit a move in advance (B1) and then confirm it on

game day (B2). If his moves agree, payoffs correspond with normal matching pennies, but if his moves

disagree, he must forfeit and always loses (these payoffs are shown in Figure 3c). Bob is forgetful, so on

game day he cannot remember his advance choice (i.e., the edge B1→ B2 is missing in Figure 3a).
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Figure 3: The mechanised graphs for forgetful Bob (Example 2) using (a) behavioural or (b) mixed

policies, with normal-form in (c). (d) The mechanised graph for absent-minded Bob (Example 3) using

a behavioural policy, with EFG and normal-form representations in (e) and (f).

Example 3 (Figures 3d-3f). In a new game, the pennies start heads up, and Bob decides whether or not

to turn the coin over (B1). He is absent-minded, so when he sees heads he cannot remember whether he

has already made his move, and he decides again (B2). If he turns the coin having previously chosen to

keep heads, Bob gets a −2 penalty and Alice a +2 bonus. In all other cases, the payoffs correspond with

normal matching pennies (payoffs are shown at the leaves of the EFG in Figure 3e).

Observe that the MAID’s regular graph (just the object-level variables) is identical for both Figures 3a

and 3d with the missing B1→ B2 edge implying imperfect recall. The difference between forgetfulness

and absent-mindedness is only revealed by the mechanised graph. Forgetful Bob has two independent

decision rules ΠB1
and ΠB2

for B1 and B2. Absent-minded Bob only has one shared decision rule ΠB.

Examples 2 and 3 demonstrate that both types of imperfect recall can mean an NE in behavioural

policies may not exist, even in zero-sum two agent MAIDs with binary decisions. The normal-form

games (in Figures 3c and 3f) show that neither contains an NE in pure policies. It is also easy to prove

non-existence in behavioural policies (see Appendix B). This arises due to the grand best response func-

tion being non-convex valued, which violates a condition of Kakutani’s fixed point theorem.

Proposition 1. Both forgetfulness and absent-mindedness can prevent the existence of an NE in be-

havioural policies.

4 Solution Concepts for MAIDs under Imperfect Recall

To overcome the fact that a behavioural policy NE may not exist in imperfect recall MAIDs, one can

use mixed or correlated policies. These ensure that the grand best response function always satisfies the
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conditions of Kakutani’s fixed point theorem, so an equilibrium always exists. We show how the as-

sumptions behind mixed policies, behavioural mixtures, and correlated equilibria (well-studied in EFGs

[21, 47], but unexplored in MAIDs) are made graphically explicit in mechanised graphs.

4.1 Mixed Policies and Behavioural Mixtures

Behavioural policies allow agents to randomise independently at every decision node. By contrast, a

mixed policy µ i ∈ ∆(ṖPP
i
) is a distribution over pure policies. It allows an agent to coordinate their choice

of decision rules at different decisions by randomising once at the game’s outset and then committing

to the assigned pure policy. More generally, behavioural mixtures in ∆(PPPi) are distributions over all

behavioural policies. They allow agents to randomise both at the outset of the game and before each

decision. The outcome of the first randomisation determines the distributions for the others.

A behavioural mixture changes the specification of the game because it can require correlation be-

tween different decision rules. At the object-level, a behavioural mixture for agent i requires a new (cor-

relation) decision variable Ci with PaCi = ∅, ChCi = DDDi, and dom(Ci) = PPPi (the set of all behavioural

policies). The decision rules for each Di become conditional on Ci, so each value of Ci determines a

behavioural policy. This explains why Ci and still every D ∈ DDDi are decision nodes – the agent chooses

the CPDs for both. Even in the mixed policy case, where each Di depends deterministically on Ci, the

agent chooses the dependence independently from choosing the distribution over Ci. In the mechanised

graph (see Figure 2c), Ci gets an associated mechanism variable ΠCi for the distribution Ci is drawing

from (its mechanism parents are again determined by s-reachability).

In EFGs, the mechanism by which agents decide on their decision rules is not explicitly shown.

Mechanised graphs, however, show clearly when an agent chooses to randomise. Behavioural and mixed

policies are the limiting cases of behavioural mixtures: the former where the distribution over PPPi is deter-

ministic; the latter where the decision rules ΠΠΠDDDi are deterministic. The difference between forgetful Bob

in Example 2 using a behavioural or mixed policy is shown in Figures 3a and 3b. For Bob’s behavioural

policy, CB and ΠCB are omitted as the decision rules ΠB1
and ΠB2

are independent. This leaves a normal

mechanised graph. Whereas, if Bob uses a mixed policy, he only randomises once from ΠCB at the start

of the game to select a pure policy at CB. This fixes deterministic decision rules at Π̇B1
and Π̇B2

.

Proposition 2. Given a MAID M with any partial profile πππ−i for agents −i, then if agent i is not absent-

minded, for any behavioural policy πππ i there exists a pure policy π̇ππ i which yields a payoff at least as

high against πππ−i. On the other hand, if agent i is absent-minded in M across a pair of decisions with

descendants in UUU i, then there exists a parameterisation of M and a behavioural policy πππ i which yields

a payoff strictly higher than any payoff achievable by a pure policy.

Proposition 2 says that a non-absent-minded agent cannot achieve more expected utility by using a

behavioural rather than a pure (or mixed) policy, but an absent-minded agent often can. Consider Figure

2c, where dom(CD) = ṖPP
D

, the set of all the driver’s pure policies. ΠCD represents the distribution over

dom(CD), so D1 and D2 must both be e or both be c. Therefore, EUD ≤ 1 under any mixed policy.

Whereas, under the behavioural policy π1
D(e) =

1
3
, EUD = 4

3
. This highlights an important difference

between absent-mindedness and forgetfulness. Under perfect recall, every mixed policy has an equivalent

behavioural policy, in the sense of inducing the same distribution over outcomes against every opposing

policy profile [18]. Under forgetfulness, whilst a mixed policy might not have an equivalent behavioural

policy, a behavioural policy always has an equivalent mixed policy [26], so there must exist a pure policy

which performs just as well. On the other hand, under absent-mindedness, neither mixed nor behavioural

policies are guaranteed to have an equivalent of the other type, so there can be a behavioural policy which

outperforms every mixed policy against a given policy profile.
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We introduce mixed policies (and behavioural mixtures) to MAIDs to allow more generality in mod-

elling when agents randomise and to guarantee an NE. However, a mixed policy can require exponen-

tially more parameters O(22|VVV |) than a behavioural policy O(2|VVV |) to define. Moreover, single agents

are often more naturally modelled as randomising once they meet decision points [26] (this changes for

team situations described in Section 6). It is therefore important to know when existence of each type of

NE is guaranteed. The sufficient recall result was proved by [18], which we adapt to get the sufficient

information result (in Appendix B). The mixed policies result follows directly from Nash’s theorem [37].

Proposition 3. A MAID with sufficient information always has an NE in pure policies, a MAID with

sufficient recall always has an NE in behavioural policies, and every MAID has an NE in mixed policies.

Since both sufficient recall and sufficient information (Definition 4) can be checked in poly-time2,

they expand the class of games that have simple NEs beyond those identifiable using an EFG. For exam-

ple, we can check in poly-time that the MAID in Figure 1a is an imperfect, but sufficient, information

game, and hence know that there must exist an NE in pure policies.

4.2 Correlated Equilibria

We have just shown how mechanised graphs can explicitly represent the assumption behind mixed poli-

cies: a single agent uses a source of randomness to correlate their decision rules. We now do the same

for when multiple agents can use the same source of randomness, so the choice of pure policy made by

each agent may be correlated. An equilibrium in such a game is called a correlated equilibrium (CE) [2],

which is a distribution κ over the set of all pure policy profiles, i.e., κ ∈ ∆(ṖPP). A mediator samples π̇ππ
according to κ , then recommends to each agent i the pure policy π̇ππ i. The distribution κ is a CE if no

agent, given their information, has an incentive to unilaterally deviate from their recommended policy π̇ππ i.

Definition 6. In a MAID, κ ∈ ∆(ṖPP) is a correlated equilibrium (CE) if and only if ∀i, ∀π̇ππ i, ϖ̇ϖϖ
i
∈ ṖPP

i
:

∑
π̇ππ−i∈ṖPP

−i

κ(π̇ππ i, π̇ππ−i)EU i(π̇ππ i, π̇ππ−i)≥ ∑
π̇ππ−i∈ṖPP

−i

κ(π̇ππ i, π̇ππ−i)EU i(π̇ππ−i, ϖ̇ϖϖ
i
)

We illustrate how MAIDs and their mechanised graphs make explicit the assumptions used for a CE

using a costless-signal variation of Spence’s job market game [46].

Example 4. Alice is hardworking or lazy (X) with equal probability. She applies for a job with Bob by

deciding which costless signal (A) to send. Bob can distinguish between the signals, but does not know

Alice’s true temperament. He decides whether to offer the job (B) to Alice. The utility functions for Alice

and Bob are UA = (6−2X) ·B and UB = 6+(10X −6) ·B, respectively.

The mechanised graph for the original game’s MAID is shown in Figure 4c. The cycle between ΠA

and ΠB reveals that each agent’s decision rule strategically relies on the other agent’s decision rule.3

Therefore, the MAID has insufficient information and no proper subgames, making it difficult to solve.

To find the CE of this game, a trusted mediator is added using a correlation variable C with PaC =∅,

ChC = DDD, and dom(C) = ṖPP. In the mechanised graph, C’s associated mechanism variable KC represents

the distribution κ ∈ ∆(ṖPP) that the mediator draws a pure policy profile according to. This time, since

2The mechanised graph is constructed using s-reachability, which uses the poly-time graphical criterion d-separation [43].
3That Bob strategically relies on Alice’s decision rule might be less obvious than the fact that Alice strategically relies on

Bob’s decision rule. The dependency occurs because since Bob can observe A, this unblocks an active path ΠA→ A← X→UB

in the independent mechanised graph, so ΠA is s-reachable from ΠB.
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babā bab̄ā b̄abā b̄ab̄ā
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Figure 4: The sub-figures (a) and (b) give the expected payoff for each agent under each pure policy pro-

file and the parameterisation of the distribution κ , respectively. The mechanised graph for Example 4’s

original MAID is shown in (c), and the mechanised graphs for when a trusted mediator gives public or

private recommendations to find a CE are shown in (d) and (e), respectively. The blue edges are added

to the graph in (e) for a MAID-CE’s staggered recommendations.

KC is fixed as κ at the game outset instead of being chosen by any agent, C acts as a chance variable (in

contrast to the correlation decision variable introduced for mixed policies and behavioural mixtures).

There is a well-known difference between public and private recommendations. If public, every pay-

off in the convex hull of the set of NE payoffs can be attained by a CE; however, if the recommendations

are private, then the payoffs to each agent in a CE can lie outside this convex hull (e.g., Aumann’s game

of chicken [2]). This distinction is made explicit in the MAID’s graph. If the recommendations are

public, then the full outcome of C (the pure policy profile chosen by the mediator) is known by every

agent (shown by the dotted edges between C and both A and B in Figure 4d). If the recommendations

are private, then each agent only observes their decision rules (action recommendations) in C’s outcome,

i.e., all recommendations given to other players are hidden (at CA and CB in Figure 4e). In this latter

case, the agent infers, using Bayes’ rule, a posterior over the pure policy profile that was chosen (and

also which action was recommended to the other agent(s)). If κ is a CE, then each agent picks for their

decision D’s decision rule the mediator’s recommendation, i.e., π̇D where c = π̇ππ . The set of variables DDD

remain as decisions because agents are free to deviate from their recommendation and pick any CPDs as

decision rules for their decisions.

This mediator’s distribution κ ∈ ∆(ṖPP) can be parameterised according to that in Figure 4b. Note that

bab̄ā denotes the pure policy profile where Bob offers the job (b) to Alice if she selects a and Bob does

not offer the job (b̄) if Alice selects ā. Using the expected payoff for Alice and Bob under each pure
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policy profile (Figure 4a), Definition 6’s incentive constraints define 24 inequalities that must be satisfied

by the CE distribution. After some algebra, we find that α1 =α2 =α3 = β1 = β2 = β3 = γ1 = γ2 = γ3 = 0;

α4,β4,γ4,δ4 ≥ 0; α4−2β4+3γ4 ≥ 0, and 3β4−2γ4 +δ4 ≥ 0. Any CE, therefore, has Bob never offering

a job to Alice because they play the pure policy b̄ab̄ā with probability 1, i.e., Bob’s decision rule has

πB(B = b̄ | A = a) = πB(B = b̄ | A = ā) = 1. The remaining constraints require Alice not to give any

incentive for Bob to offer her a job by making the conditional probability of Alice being hardworking too

high relative to the conditional probability of her being lazy when he receives the signal a or ā. These

constraints find that every CE will result in EUA = 0 and EUB = 6. This is unsurprising because, in

a signaling game with costless signals, every CE will be a ‘pooling equilibrium’ [8] (an equilibrium in

which Alice chooses the same action regardless of their temperament).

Whilst the CE is among the best-known solution concepts for normal-form games, and is efficiently

computable in that setting (e.g., via linear programming [19]), there can be an exponential number of

pure policies (so an exponential number of incentive constraints) in EFGs and even in bounded treewidth

MAIDs. It is therefore currently unknown if a CE can be found in an EFG or MAID in poly-time.

Motivated by these tractability concerns, Von Stengel and Forges proposed an extensive-form correlated

equilibrium (EFCE) [47]. Along similar lines, we define a MAID correlated equilibrium.

Instead of revealing the entire recommendation π̇ππ i to each agent i immediately, we let the mediator

stagger their recommendations. This is made visible in the mechanised graph by adding the blue edges

in Figure 4e. Importantly, if an agent deviates from any recommendation, then the mediator will cease

giving further recommendations to that agent (but will still give recommendations to all other agents).

Thus, the incentive constraints are now tied to the threat of the mediator withholding future information.

Definition 7. Given a distribution κ ∈ ∆(ṖPP), consider the MAID with an additional correlation variable

C with PaC =∅, ChC = {CD}D∈DDD, and ChCD
= {D} for each D. Let a pure policy profile π̇ππ be selected

at C according to κ . Then, when each decision context paD is reached, agent i receives a recommended

move d ∈ dom(D) specified by π̇ππD ∈ π̇ππ (CD hides all other recommendations π̇ππ−D ∈ π̇ππ). A MAID corre-

lated equilibrium (MAID-CE) is an NE of this game in which no agent has an incentive to deviate from

their recommendations.

The localised recommendations in a MAID-CE pose weaker incentive constraints compared to a

CE, so the set of MAID-CE outcomes is larger. As such, MAID-CEs can lead to Pareto-improvements

over the CEs (and NEs) in a game. We now give one such MAID-CE. The mediator chooses a signal

s with equal probability for type X = x, i.e., Pr(cA = a | X = x) = Pr(cA = ā | X = x) = 0.5. Bob is

recommended to offer Alice a job (b) when Alice’s action matches s and to reject otherwise (b̄). If X = x̄,

then the recommendation to Alice is arbitrary and is independent of the signal s, which is only shown

to hardworking Alice. Because the mediator only gives Alice her recommendation once her decision

context PaA is set, lazy Alice cannot know s. Therefore, in any situation, lazy Alice’s action will match

s with probability 1
2
. Consequently, when Bob is called to play (i.e., the decision context PaB is set), and

Alice’s action matches s, Alice is twice as likely to be hardworking than lazy (so EUB = 20
3

for offering

Alice a job rather than EUB = 6 for rejecting her). If instead, Alice’s action does not match s, then he

knows with certainty that Alice is lazy, so his best response is to reject. Overall, Alice’s expected payoff

in this MAID-CE is 3.5, and Bob’s is 6.5 (higher than 0 and 6, respectively, for all CEs).

A MAID-CE can be computed in poly-time if the treewidth is bounded, via a reduction to a linear

program. We follow Huang et al [20]’s method because the information sets in an EFG are in bijection

with the decision contexts in a MAID, but relax beyond their conditions as MAIDs only require sufficient

(rather than perfect) recall [20]. Any distribution over pure policies induced by an NE can be represented

using a distribution κ , and hence any mixed NE (or equivalent behavioural NE) is also a CE and MAID-

CE. As every MAID has an NE in (mixed) policies, every MAID must also have a CE and a MAID-CE.
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Proposition 4. A MAID-CE in bounded treewidth MAIDs with sufficient recall can be found in poly-time.

5 Complexity Results in MAIDs

We now give some complexity results in MAIDs. Our first follows from the known result in normal-form

games [9]. Any normal-form game N can be reduced to a MAID where each agent has one utility node

(which copies the payoffs in N ) and one decision node. The domains of the decision variables are the

set of each agent’s pure strategies in N . Edges are added from every D ∈ DDD to every U ∈UUU .

Proposition 5. In a MAID, finding an NE in mixed policies is PPAD-hard.

Problem Input Question

IS-BEST-RESPONSE M , i, πππ−i, q ∈Q Is there some π̂ππ i
such that EU i(π̂ππ i,πππ−i)> q?

IS-NASH M , πππ Is πππ a (behavioural) NE of M ?

NON-EMPTINESS: M Does M have a (behavioural) NE?

Table 1: Three decision problems in MAIDs with behavioural policies.

In the following results, we focus on the complexity of the decision problems in Table 1.

Proposition 6. IS-BEST-RESPONSE is NPPP-complete, NP-complete when restricted to MAIDs with

graphs of bounded treewidth, and PP-complete if both |DDDi| and the in-degrees of DDDi are bounded.

Proof sketch. IS-BEST-RESPONSE is in NPPP because given π̂ππ i
, we can verify that EU i(π̂ππ i,πππ−i)> q in

poly-time using a PP oracle for inference in a BN [30]. With bounded treewidth, verification can be done

in poly-time. The final setting is in PP by analogy with Kwisthout’s PARAMETER TUNING [27]. For

the general case’s hardness, we can reduce from E-MAJSAT as in [39], where MAP-nodes are replaced

by agent i’s decision nodes; for bounded treewidth, we can reduce from MAXSAT as in [12]; and for

the final case, IS-BEST-RESPONSE with |DDDi|= 0 is the same as inference in a BN.

Proposition 6 suggests IS-BEST-RESPONSE is, in general, only tractable if inference is easy and |DDDi|
is bounded by a constant. Proposition 7 then explains the decision problem’s name.

Proposition 7. If the in-degrees of DDDi are bounded and IS-BEST-RESPONSE can be solved in poly-time,

then a best response policy for agent i to a partial profile πππ−i can be found in polynomial time.

Proposition 8. IS-NASH is coNPPP-complete, and coNP-complete when restricted to MAIDs with graphs

of bounded treewidth. The general problem remains coNPPP-hard in sufficient information MAIDs. In

MAIDs without chance variables, the problem remains coNP-hard.

Proof sketch. For membership, we can check that πππ is not an NE by guessing an agent i and check-

ing if πππ iii ∈ πππ is a best response in poly-time using a PP-oracle (this is unnecessary if the graph has

bounded treewidth). Hardness comes from the single-agent setting where it is the complement of IS-

BEST-RESPONSE. In MAIDs without chance variables, we reduce from partial order games [50].

Proposition 3 shows when NON-EMPTINESS is vacuous. However, in an insufficient recall MAID,

NON-EMPTINESS is, in general, intractable even without chance variables.

Proposition 9. NON-EMPTINESS is NEXPTIME-hard and becomes NEXPTIME-complete if we restrict

to MAIDs without chance variables.
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Figure 5: Mechanised graphs for a CE with (a) public and (b) private recommendations, where the blue

edges are added for a MAID-CE; (c) a Markov game;(d) a team setting with imperfect communication.

Proof sketch. For hardness, we can reduce from partial order games. Without chance variables, we can

determine NON-EMPTINESS using a similar algorithm to that in [50]. It exploits the setting’s determin-

ism: payoffs are poly-time computable and the number of policy profiles is reduced to O(2|VVV |).

Proposition 10. In a MAID with sufficient information, if the in-degrees of DDD are bounded and IS-BEST-

RESPONSE can be solved in poly-time, then a pure NE can be found in poly-time.

This result suggests an NE can be found efficiently in certain MAIDs, but even in games without

sufficient information, NEs can be found more efficiently in a MAID than in an EFG. The mechanised

graph dependencies reveal more ‘subgames’ – parts of the MAID that can be solved independently from

the rest – to which dynamic programming can be applied [25, 17]. As finding an NE in both EFGs and

MAIDs depends significantly on the game’s size, this can empirically lead to large compute savings [25].

6 Applications and Conclusion

We introduced forgetfulness and absent-mindedness as properties of individual agents (due to imper-

fect memory). However, imperfect recall also commonly arises in team situations; each team consists

of several agents targeting a common goal with imperfect communication. Forgetfulness or absent-

mindedness occurs when an agent does not know their teammates’ actions (or observations) or whether

they have acted at all. Mechanised graphs represent these situations where teams often employ a mix

of randomisation strategies (e.g., Figure 5b). For mixed policies, the random seed is chosen at the start,

before the agents set out following their distinct policies. For behavioural policies, agents pick a new

random seed at every decision point. Behavioural mixtures correspond to randomising at both stages.

Another application of imperfect recall in MAIDs is to Markov (or ‘stochastic’) games [44], in

which the agents move between different states over time (e.g., Figure 5a). At each time step t, each

agent i selects an action Ai
t , and the game probabilistically transitions to a new state St+1, depending on

the previous state St and the actions selected, and each agent receives a payoff Ri
t . Each St+1 and Ri

t

has parents {St ,A
1
t , . . . ,A

n
t } and must be identically distributed for all t, again represented using shared

mechanism variables. Often, the agent must learn a memoryless, stationary policy π i : S→ ∆(Ai), where

S is the set of states and ∆(Ai) the set of probability distributions over agent i’s actions. Hence, the agents

are absent-minded (every decision Ai
t+1 of agent i shares the same decision rule) and use behavioural

policies (since the action selected in each state is independently stochastic). In light of Proposition 1,
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it is therefore natural to ask whether a Markov game may not have an NE in memoryless stationary

policies. It is known that infinite-horizon Markov games might not (for a counterexample see [11]).

Although infinite games lie outside of the scope of this paper, it is nonetheless insightful to note that this

possible non-existence is due to absent-mindedness: if agents can choose a different decision rule at each

time step, a behavioural NE is guaranteed [32].

We have shown how to handle imperfect recall in MAIDs by overcoming the potential lack of NEs

in behavioural policies using mixed and correlated equilibria. EFGs leave many assumptions about how

agents play games hidden, but mechanised graphs make explicit the assumptions behind imperfect recall

(both forgetfulness and absent-mindedness), mixed policies, and two types of correlated equilibria. Our

complexity results highlight the importance of restricting the use of MAIDs to those with a limited

number of decision variables and bounded treewidth. Finally, our applications to Markov games and

team situations show that imperfect recall broadens the scope of what can be modelled using MAIDs.
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node D. Given a MAID with D ∈ DDDi and V 6= D ∈ DDD, the mechanism MV for V is strategically relevant

to ΠD if there exist two joint distributions over VVV parameterised by mechanisms m and m
′ respectively

such that:

• πD ∈ argmaxϖD∈dom(ΠD) EU i((ϖD,πππ−D) |m)

• m differs from m
′ only at MV ,
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with πD on all paD such that Pr(paD |m
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The first two conditions say: if the decision rule πD is optimal for the MAID parameterisation (i.e.,

the setting of all mechanism variables) m, and ΠD does not strategically rely on MV , then πD must also be

optimal for any other parameterisation m
′ that differs from m only at MV . The third condition deals with

sub-optimal decision rules in response to zero-probability decision contexts (i.e., non-credible threats).

Koller and Milch [25] also derive a graphical criterion for strategic relevance, called s-reachability,

which is sound (if MV is strategically-relevant to ΠD, then MV is s-reachable from ΠD) and complete (if

MV is s-reachable from ΠD, then there is some parameterisation m of the MAID and some policy profile

π such that MV is strategically-relevant to ΠD). This uses the independent mechanised graph m⊥G ,

which contains a separate mechanism parent for each variable in the original MAID graph, but no edges

between the mechanism variables.

Definition 9 ([25]). MV is s-reachable from ΠD if MV 6⊥m⊥G UUU i∩DescD | D,PaD.

s-reachability determines which inter-mechanism edges are present in the MAID’s mechanised graph;

MV →ΠD exists in the mechanised graph if and only if ΠD strategically relies on MV .
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Figure 6: (a) shows the four subdiagrams (three of which are ‘proper’) of the MAID in Figure 1a and (b)

shows the corresponding EFG in which none of the MAID’s proper subgames can be recognised.

We now briefly introduce subgames (see [18]) for more details) because they simplify the presen-

tation of some of our proofs in Appendix B. Subgames in EFGs represent parts of the game that can

be solved independently from the rest. In MAIDs, they fulfil the same purpose: they identify parts of

the game that can be solved independently (and allow a subgame-perfect equilibrium refinement to be

defined). Subgames in MAIDs are found by exploiting s-reachability to find the graphs underlying the

subgames, called sub-diagrams. To then find the subgames for each subdiagram, the parameterisation of

the remaining variables is updated to be consistent with the original game and graph structure.

Importantly, because MAIDs explicitly represent conditional independencies between variables, we

can often find more subgames in a MAID than in a corresponding EFG. This is the case for Example 1’s

MAID (shown in Figure 1a) with the four subdiagrams (three proper) in Figure 6a. Each subdiagram has

a set of associated subgames, one for each instantiation of the variables outside of the subdiagram. None

of the proper MAID subgames can be recognised as subgames in the corresponding EFG (in Figure 6b).

Definition 10. Given a MAID M = (G ,θθθ ), with G = (N,VVV ,E), the subgraph (VVV ′,E ′) of G , along with

the set of agents N ′ ⊆ N possessing decision variables in that subgraph, is known as a subdiagram

G ′ = (N ′,VVV ′,E ′) if:

• VVV ′ contains every variable Z such that MZ is s-reachable from some ΠD with D ∈VVV ′,

• VVV ′ contains, for all X ,Y ∈VVV ′, every variable that lies on a directed path X 99K Y in G .
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A subgame of M is a new MAID M ′ = (G ′,θθθ ′) where G ′ is a subdiagram of G and θθθ ′ is defined by

Pr′(vvv′;θθθ ′) := Pr(vvv′ | zzz;θθθ ), where zzz is some instantiation of the variables ZZZ =VVV \VVV ′′′. A subgame is feasible

if there exists a policy profile πππ where Prπππ(zzz)> 0.

The first condition on VVV ′ ensures that for any decision variable D in the subdiagram, any variable

whose mechanism may impact the optimal decision rule for D is also included in the graph. The second

condition says that additional variables may also be included in the subdiagram as long as mediators are

included too. This ensures that the CPDs for all the variables in the subgame remain consistent.

B Proofs

Proposition 1. Both forgetfulness and absent-mindedness can prevent the existence of an NE in be-

havioural policies.

Proof. Example 2 (Figures 3a-3c) and Example 3 (Figures 3d-3f) are counterexamples for each case.

Proof for Example 2 (forgetfulness): The normal-form game showing the payoffs for each agent is

shown in Figure 3c. First, observe that there are no NE in pure policies. Now, suppose that there does

exist an NE in behavioural policies. If Alice always plays a or always ā – i.e., πA(a) = 1 or πA(a) = 0 –

then Bob’s best response is always b̄1b̄2 or always b1b2, respectively. However, this does not form an NE.

So, Alice must select a stochastic decision rule πA and be indifferent (by the principle of indifference)

between a and ā.

Letting ΠB1
and ΠB2

be parameterised by p,q ∈ [0,1] where πB1
(b1) = p and πB2

(b2) = q, we obtain

two constraints on p and q. On the one hand, by virtue of Alice’s indifference, Bob’s behavioural policy

πππB must result in πB(¬b1,¬b2) = πB(b1,b2), and so: (1− p)(1−q) = pq =⇒ p+q = 1. On the other

hand, Bob receives utility −1 if his policy πππB results in any outcome with B1 = ¬b1 and B2 = b2, or B1 =
b1 and B2 = ¬b2, whatever the choice of πππA. Therefore, we must have that πB(¬b1,b2)+πB(b1,¬b2)<
πB(b1,b2)+π2(¬b1,¬b2) and thus, by substituting in the result that p+ q = 1: (1− p)q+ p(1− q) <
pq+(1− p)(1− q) =⇒ (2p− 1)2 < 0.. This contradiction implies that the MAID for Example 2 has

no NE in behavioural policies.

To further understand this example, let us again write Bob’s policy as a tuple (p,q), and suppose

πA(a) = 0.5. Then, either pure policy (1,1) and (0,0) is a best response for Bob with EUB = 0. But,

consider the convex combination of these best responses 0.5 · (1,1)+0.5 · (0,0) = (0.5,0.5). Under this

policy, each of the eight outcomes in the payoff matrix is equally likely and so Bob’s expected payoff

drops to (−1−1−1+1+1−1−1−1)/8 =−0.5. Since a convex combination of best responses is no

longer a best response, Bob’s best response function is not convex-valued, and so nor is the grand best

response function. The conditions of Kakutani’s fixed point theorem are not satisfied, which explains

why a Nash equilibrium need not exist.

Proof for Example 3 (absent-mindedness): First, observe from the normal-form game in Figure 3f

that there is no NE in pure policies in this game. Next, suppose there exists a NE in behavioural policies

and let ΠB be parameterised by p ∈ [0,1], where πB(b) = p for p ∈ [0,1]. Alice’s payoff only depends

on her policy πA when Bob plays bb or b̄b̄, for which Alice has pure best responses. This implies that,

at an NE, p2 = (1− p)2 =⇒ p = 0.5. Therefore, Alice’s policy is irrelevant and EUB =−1 (EUB = 0)

if he does (doesn’t) forfeit, which happens with probability 0.5. Therefore, Bob’s policy is dominated

by his pure policies, with worst-case payoff EUB = −1. This contradicts the assumption of an NE in

behavioural policies.
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Explanation: If πA(a) = 0.5, then p = 0 and p′ = 1 are both best responses for Bob with EUB = 0.

However, the convex combination 0.5p + 0.5p′ gives expected payoff to Bob EUB = 0.25 · 1+ 0.25 ·
(−1)+0.5 · (−10) =−5 and is therefore not a best response. Again this is due to the fact that under be-

havioural policies, in situations of imperfect recall, a convex combination of pure policies can introduce

outcomes that could not occur under either pure policy. Under a mixed combination of pure policies,

Alice will always follow one or the other, and so no new outcomes are introduced. However, under a

behavioural combination, two independent absent-minded draws from the same distribution over actions

can come out differently, introducing new potential outcomes—in this case forfeit.

Proposition 2. Given a MAID M with any partial profile πππ−i for agents −i, then if agent i is not absent-

minded, for any behavioural policy πππ i there exists a pure policy π̇ππ i which yields a payoff at least as

high against πππ−i. On the other hand, if agent i is absent-minded in M across a pair of decisions with

descendants in UUU i, then there exists a parameterisation of M and a behavioural policy πππ i which yields

a payoff strictly higher than any payoff achievable by a pure policy.

Proof. Let πππ i be a behavioural policy and begin with any decision node D ∈ DDDi with decision rule

πD ∈ πππ i. Now π i
D(d | paD) is the probability of choosing d ∈ dom(D) at D when PaD = paD according

to πππ i. Since agent i is not absent-minded, the expected payoff for agent i can be written EU i(πππ i,πππ−i) =

∑d∈dom(D) π i(d | paD)λd +ν , where each coefficent λd and ν are independent of π i
D(d | paD). Consider

the action d̂ ∈ dom(D) which achieves the highest λd (i.e., contributes most the expected utility) Setting

π i
D(d̂ | paD) = 1 therefore yields a payoff at least as high. The first claim therefore follows by repeating

this argument for every D ∈ DDDi.

For the converse claim, agent i is absent-minded, which means that at least two of agent i’s decision

nodes must draw from an identical distribution. Without loss of generality, call these Dl and Dm. Recall

that for this to be the case, dom(Dl) = dom(Dm) and dom(PaDl
) = dom(PaDm

). Now consider an out-

come of the game v̂vv ∈ dom(VVV ) where paDl
= paDm

, but dl 6= dm. Since Dl and Dm have descendants in

UUU i, Parameterise the MAID M such that EU i = 1 if and only if VVV = v̂vv. For all other game outcomes

vvv 6= v̂vv, let EU i = 0. The claim follows since the outcome v̂vv cannot be instantiated by any pure policy for

agent i, but can be instantiated by any behavioural policy for agent i that has a (shared) decision rule for

Dl and Dm that assigns a positive probability to both actions dl and dm.

Proposition 3. A MAID with sufficient information always has an NE in pure policies, a MAID with

sufficient recall always has an NE in behavioural policies, and every MAID has an NE in mixed policies.

Proof. The mixed policies case follows from Nash’s theorem since all the finite number of random

variables in a MAID have finite domains [37]. Hammond et al. proved the case with sufficient recall [18].

We now consider the sufficient information case where we show that a NE in pure policies must exist.

Begin with an arbitrary policy profile across all decision nodes in the original MAID, M . Decision rules

associated with each D ∈ DDD can be optimised by iterating backwards through a subdiagram ordering

G1 ≺ ·· · ≺ Gm of M ’s subdiagrams such that G j ≺ Gk implies that G j is not a subdiagram of Gk. When

M is a sufficient information game, this means that Gm contains just one decision node for some agent

i ∈ N, and, for each subdiagram G j where 1 ≤ j < m, G j−1 contains at most one additional decision

variable. Several subdiagrams can have the same set of decisions, DDDk, so we choose a single subdiagram

Gk (one with the fewest nodes VVV ′) for each DDDk and discard the others. Each subdiagram in this ordering

has an associated subgame for each setting of the nodes which have a child in VVV ′.

When considering each subgame Mm− j for Gm− j, the decision rules for all decision nodes in proper

subgames of Mm− j will have already been optimised and fixed in previous iterations, so these are now
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chance nodes in Mm− j. In addition, the decision node Dm− j in Mm− j does not strategically rely on any

of the decision nodes outside of Mm− j. Therefore, this step is localised to computing only the optimal

decision rule for Dm− j. Since this is a single-agent single-decision optimisation, we know that there

must exist a pure decision rule best response. In the case of a tie, pick one arbitrarily. After repeating

this optimisation process for all subgames in the MAID, we know that every decision node must have a

pure decision rule, so we have found a NE in pure policies, as required.

Proposition 4. A MAID-CE in bounded treewidth MAIDs with sufficient recall can be found in poly-time.

Proof sketch. We follow Huang and von Stengel’s method for this result [20]. Our result comes from

the observation that if there is sufficient recall in a MAID, then: (i) the set of decision contexts of every

decision node in the MAID is in bijection with the set of all information sets in a corresponding EFG;

and (ii) sufficient recall is sufficient for the ordering of decision contexts analogous to Huang and von

Stengel’s ordering of information sets.

Lemma 1. If IS-BEST-RESPONSE can be solved in poly-time, then agent i’s expected utility under a

best response to a partial policy profile πππ−i in a MAID can be found in poly-time.

Proof. This follows immediately from using binary search over agent i’s policies and uses the fact that

we are restricting parameters in the MAID to be rational numbers.

Proposition 7. If the in-degrees of DDDi are bounded and IS-BEST-RESPONSE can be solved in poly-time,

then a best response policy for agent i to a partial policy profile πππ−i can be found in poly-time.

Proof. Begin by constructing the MAID M (πππ−i) by replacing decision nodes DDD\DDD−i as chance nodes

with CPDs given by πππ−i. Next, use Lemma 1 to compute agent i’s expected utility under a best response

policy in M (πππ−i) and use this value as q. Take each of agent i’s decision variables D ∈ DDDi and build

a new MAID M (πππ−i,πD) for every possible decision rule of D (i.e., replace D as a chance node with

CPD πD). The fact that the in-degrees of agent i’s decision nodes are bounded, bounds the number of

these MAIDs. For each induced MAID, we can then use a poly-time algorithm for IS-BEST-RESPONSE

to determine any decision rule πD that makes up the best response policy for agent i.

Proposition 10. In a MAID with sufficient information, if the in-degrees of DDD are bounded and IS-BEST-

RESPONSE can be solved in poly-time, then a pure NE can be found in poly-time.

Proof. First, note that we can check whether a MAID is a sufficient information game in poly-time

using s-reachability, a graphical criterion based on d-separation [43]. We can then follow the construc-

tive procedure given for the proof of Proposition 3. Given Proposition 7, each optimisation step must

take poly-time and since the in-degrees of all decision nodes are bounded by a constant, the number of

subgames is also bounded by a constant. Therefore, the entire procedure takes poly-time.
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For over 25 years, common belief has been widely viewed as necessary for joint behavior. But this
is not quite correct. We show by example that what can naturally be thought of as joint behavior
can occur without common belief. We then present two variants of common belief that can lead
to joint behavior, even without standard common belief ever being achieved, and show that one of
them, action-stamped common belief, is in a sense necessary and sufficient for joint behavior. These
observations are significant because, as is well known, common belief is quite difficult to achieve in
practice, whereas these variants are more easily achievable.

1 Introduction

The past few years have seen an uptick of interest in studying cooperative AI, that is, AI systems that are
designed to be effective at cooperating. Indeed, a number of influential researchers recently argued that
“[w]e need to build a science of cooperative AI . . . progress towards socially valuable AI will be stunted
unless we put the problem of cooperation at the centre of our research” [6].

One type of cooperative behavior is joint behavior, that is, collaboration scenarios where the success
of the joint action is dependent on all agents doing their parts; one agent deviating can cause the efforts
of others to be ineffective. The notion of joint behavior has been studied (in much detail) under various
names such as “acting together”, “teamwork”, “collaborative plans”, and “shared plans”, and highly
influential models of it were developed (see, e.g., [2, 4, 10, 11, 15, 24]). Efforts were also made to
engineer some of these theories into real-world joint planning systems [23, 20]. Examples of the types of
scenarios these works considered include drivers in a caravan, where if any agent deviates it might lead
the entire caravan to get derailed, and a company of military helicopters, where deviation on the part of
some agents can lead to the remaining agents being stranded or put in unnecessarily high-risk scenarios.

All the earlier work agrees on the importance of beliefs for this type of cooperation. In particular,
because each agent would do her part only if she believed that all of the other agents would do their part
as well, there is a widespread claim that common belief (often called mutual belief ) of how the agents
would behave was necessary. That is, not only did everyone have to believe all of the agents would act
as desired, but everyone had to believe everyone believed it, and everyone had to believe that everyone
believed everyone believed it, etc. This, they argued, followed from the fact that everyone acts only if
they believe everyone else will. (See, e.g., [2, 4, 10, 11, 15, 24] for examples of this claim.)

As we show in this paper, this conclusion is not quite right. We do not need common belief for joint
behavior; weaker variants suffice. Indeed, we provide a variant of common belief that we call action-
stamped common belief that we show is, in a sense, necessary and sufficient for joint behavior. The key
insight is that agents do not have to act simultaneously for there to be joint behavior. If agent 2 acts after
agent 1, agent 1 does not have to believe, when he acts, that agent 2 currently believes that all agents will
carry out their part of the joint behavior. Indeed, at the point that agent 1 acts, agent 2 might not even
be aware of the joint action. It suffices that agent 2 believes at the point that she carries out her part

http://dx.doi.org/10.4204/EPTCS.379.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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of the joint behavior that all the other agents will believe at the points where they are carrying out their
parts of the joint behavior . . . that everyone will act as desired at the appropriate time. If actions must
occur simultaneously, then common belief is necessary [9]; the fact that we do not require simultaneous
actions is what allows us to consider weaker variants of common belief.

Why does this matter? Common belief may be hard to obtain (see [9]); it may be possible to obtain
action-stamped common belief in circumstances where common belief cannot be obtained. Thus, if
we assume that we need common belief for joint behavior, we may end up mistakenly giving up on
cooperative behavior when it is in fact quite feasible.

The rest of the paper is organized as follows. In the next section, we provide the background for the
formal (Kripke-structure based) framework that we use throughout the paper. In Section 3, we give our
first example showing that agents can have joint behavior without common belief, and define a variant
of common belief that we call time-stamped common belief which enables it to happen. In Section 4,
we give a modified version of the example where time-stamped common belief does not suffice for joint
behavior, but action-stamped common belief, which is yet more general, does. In general, the group of
agents involved in a joint behavior need not be static; it may change over time. For example, we would
like to view the firefighters at the scene of a fire as acting jointly, but this group might change over time as
additional firefighters arrive and some firefighters leave. In Section 5, we show how action-stamped (and
time-stamped) common belief can be extended to deal with the group of agents changing over time. In
Section 6, we go into more detail regarding the significance of these results. In Section 7, we show that
there is a sense in which action-stamped common belief is necessary and sufficient for joint behavior.
Finally, in Section 8, we conclude.

2 Background

To make our claims precise, we need to be able to talk formally about beliefs and time. To do so, we
draw on standard ideas from modal logics and the runs-and-systems framework of Fagin et al. [9].

Our models have the form M = (R,Φ,π,B1, . . . ,Bn). R is a system, which, by definition, is a set
of runs, each of which describes a way the system might develop over time. Given a run r ∈ R and
a time n ∈ N≥0 (for simplicity, we assume that time ranges over the natural numbers), we call (r,n) a
point in the model; that is, it describes a point in time in one way the system might develop. Φ is the
set of variables. In general, we will denote variables in Φ with uppercase letters (e.g., P) and values of
those variables with lowercase ones (e.g., p). π is an interpretation that maps each point in the model
and each variable P ∈ Φ to a value, denoting the value of P at that point. (Thus, the analogue of a
primitive proposition for us is a formula of the form P = p: variable P takes on value p.) Finally, for
each agent i, there is a binary relation Bi over the points in the model. Two points (r1,n1) and (r2,n2)
are related by Bi (i.e., (r1,n1),(r2,n2)) ∈Bi) if the two points are indistinguishable to agent i; that is, if,
at the point (r1,n1), agent i cannot tell if the true point is (r1,n1) or (r2,n2). We assume throughout that
the Bi relations satisfy the standard properties of a belief relation: specifically, they are serial (for all
points (r,n), there exists a point (r′,n′) such that ((r,n),(r′,n′)) ∈Bi), Euclidean (if ((r1,n1),(r2,n2))
and ((r1,n1),(r3,n3)) are in Bi, then so is ((r2,n2),(r3,n3))), and transitive. These assumptions ensure
that the standard axioms for belief hold; see [9] for further discussion of these issues.

To talk about these models, we use the language generated by the following context-free grammar:

ϕ := P = p | ¬ψ | ψ1∧ψ2 | Biψ | EGψ |CGψ,

where P is a variable in Φ, p is a possible value of P, and G is a non-empty subset of the agents. The
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intended reading of Biψ is that agent i believes ψ; for EGψ it is that ψ is believed by everyone in the
group G; and for CGψ it is that ψ is common belief among the group G.

We can inductively give semantics to formulas in this language relative to points in the above models.
The propositional operators ¬ and ∧ have the standard propositional semantics. The other operators are
given semantics as follows:

• (M,r,n) � P = p if π((r,n),P) = p,

• (M,r,n) � Biψ if (M,r′,n′) � ψ for all points (r′,n′) such that ((r,n),(r′,n′)) ∈Bi,

• (M,r,n) � EGψ if (M,r,n) � Biψ for all i ∈ G

• (M,r,n) �CGψ if (M,r,n) � Ek
Gψ for all k ≥ 1, where E1

Gψ := EGψ and Ek+1
G ψ := EG(Ek

Gψ).

There are a number of axioms that are valid in these models. Since they are not relevant for the points
we want to make here, we refer the reader to [9] for a discussion of them.

3 Time-Stamped Common Belief

We now give our first example showing that joint behavior does not require common belief. We do
not define joint behavior here; indeed, as we said, there are a number of competing definitions in the
literature [15, 4, 10, 11]. But we hope the reader will agree that, however we define it, the example gives
an instance of it.

General Y and her forces are standing on the top of a hill. Below them in the valley, the
enemy is encamped. General Y knows that her forces are not strong enough to defeat the
enemy on their own. She also knows that General Z and his troops, though knowing nothing
of the encamped enemy, will arrive on the hill the next day at noon on the way back from
a training exercise. Unfortunately though, General Y and her troops must move on before
then. Thankfully, all generals are trained for how to deal with this situation. Just as her
training recommends, General Y sets up traps that will delay the enemy’s retreat, and leaves
one soldier behind to inform General Z of the traps upon his arrival. At 11:30 the next
morning, General Y receives a (false) message informing her that General Z and his troops
have been captured, and thus (incorrectly) surmises that the enemy will live to fight another
day. What in fact happens is that General Z’s troops arrive at noon and attack the enemy, the
enemy attempts to retreat and is stopped by General Y ’s traps, and the enemy is successfully
defeated.

Clearly, Generals Y and Z jointly defeated the enemy. Yet they never achieved common belief of
what they were doing. Before noon, General Z didn’t even think that the enemy was there, and from
11:30 on, General Y thought that General Z would never arrive. It follows that there was no point at
which they could have had common belief. So what is going on here?

What this example suggests is that there are times when a type of time-stamped common belief (cf.,
[9, 12]) suffices to enable joint behavior. Intuitively, on the first day, General Y believed that at noon
on the second day General Z would act, attacking the enemy. Similarly, at noon on the second day,
General Z believed that General Y had acted the day before, setting up the necessary traps. They also
hold higher-order beliefs; for example, at the time she set the traps, general Y believed that at noon the
next day general Z would believe that she had set the traps, otherwise she wouldn’t have wasted the
resources to set them, and so on. Much as in the usual case of common belief, these nested beliefs extend
to arbitrary depths. What sets this example apart from those considered by earlier work is that, whereas
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in the earlier work agents needed to believe others would act as desired at the same point, here the agents
need to believe only that others will act as desired at the points where they’re supposed to act for the
joint behavior. This suggests that time-stamped common belief can suffice for joint behavior.

We can capture this type of time-stamped common belief formally with the following additions to the
logic and semantic models above. Syntactically, we add two more operators to the language, Et

Gψ and
Ct

Gψ , where G is a set of agents. We then add to the semantic model a function t that maps each agent
and run to a non-negative integer. The intended reading of these is “each agent i ∈G believes at the time
t(i,r) that ψ” and “it is time-stamped-by-t common belief among the agents in G that ψ”, respectively.
We give semantics to these operators as follows:

• (M,r,n) � Et
Gψ if (M,r, t(i,r)) � Biψ for all i ∈ G

• (M,r,n) �Ct
Gψ if (M,r,n) � Et,k

G ψ for all k ≥ 1, where Et,1
G ψ := Et

Gψ and Et,k+1
G ψ := Et

G(E
t,k
G ψ).

These definitions are clearly very similar to the (standard) definitions given above for EGψ and CGψ ,
except that the beliefs of each agent i ∈ G in run r is considered at the time t(i,r). It follows from the
semantic definitions that Et

Gψ and Ct
Gψ hold at either all points in a run or none of them.

In the example above, this notion of time-stamped common belief is achieved if we take t(Y,r) to be
the time in run r that Y laid the traps (which may be different times in different runs) and take t(Z,r) to
be the time that Z arrived in run r (which was noon in the actual run, but again, may be different times
in different runs), provided that it is (time-stamped) common belief that both Y and Z will follow their
training. That is, when Y lays the traps, Y must believe that Z will believe when he arrives that Y laid the
traps, Z will believe when he arrives that Y believed when she laid the traps that he would believe when
he arrived that Y laid the traps, and so on. The key point here is that time-stamped common belief can
sometimes suffice for achieving cooperative behavior, even without standard common knowledge.

Our notion of time-stamped common belief is a generalization of (and was inspired by) Halpern and
Moses’ notion of (time-T ) time-stamped common knowledge. Roughly speaking, for them, time-T time-
stamped common knowledge of φ holds among the agents in a group G if every agent i in G knows φ at
time T on her clock, all agents in G know at time T on their clock that all agents in G know φ at time
T on their clock, and so on (where T is a fixed, specific time). If it is common knowledge that clocks
are synchronized, then time-stamped common knowledge reduces to common knowledge. If we take
t(i,r) to be the time in run r that i’s clock reads time T (and assume that it is commonly believed that
each agent’s clock reads time T at some point in every run), then their notion of time-stamped common
knowledge becomes a special case of our time-stamped common belief. But note that with time-stamped
common belief, we have the flexibility of referring to different times for different agents, and the time
does not have to be a clock reading; it can be, for example, the time that an event like laying traps occurs.

4 Action-Stamped Common Belief

There is an even more general variant of common belief that can suffice for joint behavior. What really
mattered in the previous example is that everyone had the requisite beliefs at the times that they were
acting. But there need not necessarily be only one such point per agent per run; an agent might act
multiple times as part of the plan, as the following modified version of the story illustrates:

General Y and her forces arrive to the south of the town where the enemy forces are en-
camped. General Y knows that her forces are not strong enough to defeat the enemy on their
own. She also knows that General Z and his troops are expected to arrive to the north of
the city some time in the near future, though she and her troops must move on before then.
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The swiftly-coursing river prevents the enemy from escaping to the east. But unfortunately,
they can still escape inland to the west. Thankfully, all generals are trained for how to deal
with this situation as well. Just as her training recommends, General Y sets up traps that
will delay the enemy’s southward retreat and then, as she heads inland, also sets up traps to
the west, finally leaving one soldier behind to go north and inform General Z of the traps
upon his arrival. The next morning, General Y receives a (false) message informing her that
General Z and his troops have been captured, and thus (incorrectly) surmises that the enemy
will live to fight another day. What in fact happens is that General Z’s troops arrive later
that day and are informed by the remaining soldier that, not too long ago, General Y ’s troops
set traps to the south and west. They attack the enemy, the enemy attempts to retreat and is
stopped by General Y ’s traps, and the enemy is successfully defeated.

Again, Generals Y and Z jointly and collaboratively defeated the enemy, but time-stamped common
belief doesn’t suffice for this version of the story, because we cannot specify a single time for General
Y ’s actions. Instead, what really matters is that when they are acting as part of a joint plan they hold
the requisite (common) beliefs. The joint plan need not be known upfront; General Z does not know
what he will need to do to achieve the common goal until he arrives at the scene. To capture this new
requirement, we define a notion of action-stamped common belief.

We begin by adding a special Boolean variable ACT INGi,G for any group G and agent i ∈ G. This
variable is true (i.e., takes value 1, as opposed to 0) at a point (r,n) if the agent i is acting towards the
group plan of G at (r,n) and false otherwise. So for the generals, ACT INGY,G = 1 would be true when
she lays the traps, ACT INGZ,G = 1 would be true at the point when he attacks, and they’d both be false
otherwise (where G = {Y,Z}). We often write ACT INGi,G and ¬ACT INGi,G instead of ACT INGi,G = 1
and ACT INGi,G = 0, and similarly for other Boolean variables. By using ACT INGi,G, we can abstract
away from what actions are performed; we just care that some action is performed by agent i towards the
group plan, without worrying about what that action is.

As in the case of time-stamped common belief, we add two modal operators to the language (in
addition to the variables ACT INGi,G). Let G be a set of agents. Ea

Gψ then expresses that, for each agent
i ∈ G, whenever ACT INGi,G holds (it may hold several times in a run, or never), i believes ψ . Ca

Gψ then
defines the corresponding notion of common belief for the points at which agents act at part of the group.

We give semantics to these modal operators as follows:

• (M,r,n) � Ea
Gψ if for all n′ and all i ∈ G such that (M,r,n′) � ACT INGi,G = 1, it is also the case

that (M,r,n′) � Biψ .

• (M,r,n) �Ca
Gψ if (M,r,n) � Ea,k

G ψ for all k≥ 1, where Ea,1
G ψ := Ea

Gψ and Ea,k+1
G ψ := Ea

G(E
a,k
G ψ).

Returning to the example, although the agents do not have time-stamped common belief at all the
points when they act, they do have action-stamped common belief. General Z acted believing that Gen-
eral Y had acted as expected, and also believing that General Y acted believing that he would act as
expected, and so on.

It is easy to see that time-stamped common belief can be viewed as a special case of action-stamped
common belief: Given a time-stamping function t, we simply take ACT INGi,G to be true at those points
(r,n) such that t(i,r) holds.

It is worth noting that, in both this and the previous section, the agents having a protocol in advance
for how to deal with the situation is not really necessary for them to succeed. In the examples, consider a
scenario where generals are in fact not trained for how to handle the situation, but instead General Y has
the brilliant idea to lay traps and send a messenger to meet General Z upon arrival. As long as message
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delivery is reliable, action-stamped common belief can be achieved and they can successfully defeat the
enemy.

5 Joint Behaviors Among Changing Groups

In practice, the members of groups change over time. For example, a group of firefighters may work
together to safely clear a burning building, but (thankfully!) they don’t need to wait until all the fire-
fighters are on the scene, or even until it is known which firefighters are coming, in order for the first
firefighters to begin. Instead, structures and guidelines allow the set of firefighters who are on the scene
to act cooperatively, even without each firefighter knowing who else will show up.

The formalisms of the two previous sections assumed a fixed group G, so cannot capture this kind of
scenario. But the changes necessary to do so are not complicated. Rather than considering (some variant
of) common belief with respect to a fixed set G of agents, we consider it with respect to an indexical
set S, one whose interpretation depends on the point. More precisely, an indexical set S is a function
from points to sets of agents; intuitively, S(r,n) denotes the members of the indexical group S at the point
(r,n). We assume that a model is extended so as to provide the interpretation of S as a function.

Our semantics for action-stamped common belief with indexical sets are now a straightforward gen-
eralization of the semantics for rigid (non-indexical) sets:

• (M,r,n) � Ea
S ψ if for all n′ and all i ∈ S(r,n′) such that (M,r,n′) � ACT INGi,S, it is also the case

that (M,r,n′) � Biψ .

• (M,r,n) �Ca
Sψ if (M,r,n) � Ea,k

S ψ for all k≥ 1, where Ea,1
S ψ := Ea

S ψ and Ea,k+1
S ψ := Ea

G(E
a,k
S ψ).

The only change here is that in the semantics of Ea
S , we need to check the agents in S(r,n) for each point.

Of course, we can also allow indexical sets in time-stamped common belief in essentially the same
way. Whereas in the semantics of Et

Gψ , we required that (M,r,n) � Et
Gψ if, for all i ∈ G, (M,r, t(i,r)) �

Biψ , now we require that (M,r,n) � Et
Sψ if, for all agents i, if i ∈ S(r, t(i,r)), then (M,r, t(i,r)) � Biψ .

We care about what agent i believes at (M,r, t(i,r)) only if i is actually in group S at the point (r, t(i,r)).

6 Significance

In Sections 3-5 we showed that action-stamped common belief can suffice to enable joint behavior,
whereas the prior work on the topic had assumed common belief was necessary. Why does this matter?
We argue that it is important for two reasons: 1) misunderstanding the type of belief necessary can lead
to mis-evaluation of cooperative capabilities, and 2) requiring common belief can unnecessarily make
cooperation impossible in scenarios where it is in fact possible and could be quite beneficial.

As part of the recent push for more research on cooperative AI, some have argued that we should
“construct more unified theory and vocabulary related to problems of cooperation” [7]. One important
step in this program is (in our opinion) formalizing the requirements for various types of cooperation,
including joint behavior. This, in turn, requires understanding the level and type of (common) belief
needed for joint behavior. As our examples have shown, full-blown common belief is not necessary;
weaker variants that are often easier to achieve can suffice. Relatedly, there has been a push to develop
methods for evaluating the cooperative capabilities of agents, as a way of developing targets and guide-
posts for the community [5]. Again, this will require understanding (among other things) what type of
beliefs are necessary for cooperation. Incorrect assumptions about the types of beliefs necessary can lead
to incorrect conclusions about the feasibility of cooperation. For example, if an evaluation system takes
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as given the assumption that it is impossible for agents that cannot achieve common belief to behave co-
operatively, it may in fact lead to effective cooperative agents being scored badly, leading to misdirected
research.

A second reason that it is important to clarify the types of beliefs necessary for joint behavior is
that misunderstanding them can lead to systems unnecessarily aborting important cooperative tasks. As
is well known, achieving true common knowledge can be remarkably difficult in real-world systems,
often requiring either a communication system that guarantees truly synchronous delivery or guaranteed
bounded delivery time together with truly synchronized clocks [9]. Action-stamped common belief can
sometimes be achieved when common belief cannot. To demonstrate the importance of this, we consider
an example from the domain of urban search and rescue, a domain where 1) the use of multi-agent
systems consisting of humans and AI agents has long been considered and advocated for, 2) the types of
teamwork necessary can be complex, and 3) there is some evidence of potential adoption, having been
used, for example, at a small scale in the aftermath of September 11th [3, 14, 13, 16, 19, 22]. Though
the example we give is a simple, stylized case, the domain is sufficiently complex that we would expect
these types of issues to arise in practice if systems were deployed at scale.

Example 1. An earthquake occurs, causing a large building to collapse. The nearest search and rescue
team arrives on scene, and the incident commander has to decide how to proceed. The team has deter-
mined that the structure is stable and will not collapse, and so is safe to enter. However, attempting to
exit the building may disrupt the structure and cause harm. The incident commander determines that
there are two reasonable options:

1. Wait a week for a heavy piece of machinery that will certainly be able to safely lift the roof of the
collapsed building on its own and allow rescuers safe access to the building.

2. A team can enter the building and restabilize parts of the roof. The restabilization would not be
enough to make it safe to exit—in fact, it would require adjusting the structure in ways that would
make an attempt to exit even more risky—but it would allow a more easily accessible robotic system
to safely remove the roof piece by piece, allowing the rescuers and anyone trapped inside to safely
escape.

The incident commander decides it is best not to wait, and so takes the second, joint-behavior-based
approach. He sends the team of rescuers in to begin the necessary process, and tells them the full plan
and that he expects it will be 2-3 hours before the robot arrives on scene. The group enters the wreckage
and secures it in the necessary ways, as planned. But it turns out that the earthquake affected many
buildings, so the robot is in high demand. It ends up taking close to 8 hours for the robot to arrive on
scene. When the robot arrives, the incident commander enters the relevant information in the robot’s
system—namely, the full plan and that the restabilization has been carried out—so the robot can carry
out its part of the specified cooperative plan.

If the robot’s model of joint behavior requires common belief, a problem will arise. At no point is
there ever common belief of the joint behavior. Before the robot arrives, the robot certainly has no belief
about the joint behavior. And when the robot arrives, it must consider the possibility that, because of the
delay, the rescuers have given up hope of the robot arriving and concluded that they may have to wait
a full week until the larger piece of machinery is available. Even if this isn’t actually the case, because
the robot considers it possible, common belief will not be achieved. So if the robot assumes that joint
behavior requires common belief, it will determine that the joint behavior cannot be carried out. Thus,
everyone will have to wait a week for the heavier machinery, risking the lives of anyone trapped inside.

If, on the other hand, the robot’s theory of joint behavior is based on action-stamped common belief,
the task will be properly and safely carried out as soon as the robot arrives: When the rescuers perform
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their part, they believe that the robot will arrive soon and perform its part of the task. Similarly, when
the robot arrives and the incident commander enters the relevant information, the robot believes that the
rescuers held those beliefs when acting (and therefore performed the required adjustments). The rescuers
believed that the robot would hold these beliefs when it arrived, the robot believed they would, and so on.
The fact that the robot arrived later than expected and the rescuers may have started to have uncertainty
about the plan doesn’t affect the requisite beliefs because all that matters are the beliefs of the agents at
the points where they act.

This example highlights the value of getting the types of beliefs necessary right; getting the theory
right, and basing it on action-stamped common belief instead of standard common-belief, can enable
cooperation in a range of important scenarios where standard common belief is impossible or difficult to
achieve, whereas action-stamped common belief may be easily attainable.

7 On the Necessity and Sufficiency of Action-Stamped Common Belief for
Joint Behavior

We’ve argued in this paper that the prior work was incorrect in asserting that common belief was neces-
sary for joint behavior, and shown by example that action-stamped common belief can suffice. We now
argue that an even stronger statement is true: there is a sense in which action-stamped common belief
is necessary and sufficient for joint behavior. We say “in a sense” here, because much depends on the
conception of joint behavior being considered. So what we do in this section is give a property that we
would argue is one that we would want to hold of joint behavior, and then show that action-stamped
common belief is necessary and sufficient for this property to hold.

What does it take to go from a collection of individual behaviors to a joint behavior? The following
example may help illuminate some of the relevant issues.

Jasper and Horace are both crooks, though neither is an evil genius by any stretch of the
imagination. They both independently decide to rob the Great Bank of London on exactly
the same day. As it turns out, neither of them did a good job preparing, and they each knew
about only half of the bank’s security systems, and so made plans to bypass only that half.
By sheer dumb luck, between them they know about all the bank’s security systems. So
when each bypasses the part that they know about (at roughly the same time), the bank’s
security systems go down. They each make it in, steal a small fortune, and escape, none the
wiser as to the other’s behavior or that their plan was doomed to fail on its own.

Is Jasper and Horace robbing the bank an instance of joint behavior? We think not. One critical
component that distinguishes this from a joint behavior is the beliefs of the agents. Joint behaviors are
collective actions where people do their part because they believe that everyone else will do their part as
well. Here, Jasper and Horace have no inkling that the other will help disable the system.

We now want to capture these intuitions more formally. We start by adding another special Boolean
variable SHOULD_ACTi,S for each agent i and indexical group S, specifying the points in each run where
agent i is supposed to act towards the plan of group S. We then add a special formula χS to the language:1

• (M,r,n) � χS if for all n′ and all agents i ∈ S(r,n′), (M,r,n′) � SHOULD_ACTi,S→ ACT INGi,S

1As long as the set of agents is finite (which we implicitly assume it is), we can express χS in a language that includes a
standard modal operator �, where �ϕ is true at a point (r,n) iff ϕ is true at all points (r,n′) in the run. For ease of exposition,
we do not introduce the richer modal logic here.
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The formula χS is thus true at a point (r,n) if, at all points in run r, each agent i in the indexical group S
plays its part in the group plan whenever it is supposed to.

If we think of ACT INGi,S as “i is taking part in the joint behavior of the group S”, then the property
JBS (for “Joint Behavior, group S”) that we now specify essentially says that to have truly joint behavior,
each agent in S must believe when she acts that all of the members of the (indexical) group S will do
what they’re supposed to; if they don’t all have that belief, then it’s not really joint behavior. Formally,
JBS is a property of an indexical group S in a model M:

[JBS:] For all points (r,n) and agents i ∈ S(r,n), (M,r,n) � ACT INGi,S→ BiχS.

Requiring JBS for joint behavior makes action-stamped common belief of χS necessary for joint
behavior.

Theorem 7.1. If JBS holds in a model M, then (M,r,n) �Ca
S χS for all points (r,n).

Proof. We begin by defining a notion of a-reachability: A point (r′,n′) is S-a-reachable from (r,n) in k
steps if there exists a sequence (r0,n0), . . . ,(rk,nk) of points such that (r0,n0) = (r,n), (rk,nk) = (r′,n′),
and for all 0≤ l < k, there exists a point (rl,n′l) and an agent i∈ S(rl,n′l) such that (M,rl,n′l)�ACT INGi,S

and ((rl,n′l),(rl+1,nl+1)) ∈Bi.
By the semantics of Ca

S , Ca
S χS holds at (r,n) iff χS holds at every point (r′,n′) that is S-a-reachable

from (r,n) in 1 or more steps. Consider any such point (r′,n′). Then, by the definition of reachability,
there exists some point (r′′,n′′) and some agent i ∈ S(r′′,n′′) such that (M,r′′,n′′) � ACT INGi,S and
((r′′,n′′),(r′,n′)) ∈Bi. Because (M,r′′,n′′) � ACT INGi,S, we get by JBS that (M,r′′,n′′) � BiχS. Then
by the semantics of Bi and the fact that ((r′′,n′′),(r′,n′)) ∈Bi we get that (M,r′,n′) � χS. But (r′,n′)
was an arbitrary point S-a-reachable from (r,n) in 1 or more steps, so χS holds at all such points, and we
have that (M,r,n) �Ca

S χS. But (r,n) was also arbitrary, so Ca
S χS holds at all points.

The converse to Theorem 7.1 also holds; that is, action-stamped common belief of χS suffices for
JBS to hold. Put another way, action-stamped common belief is exactly the ingredient that we need to
meet the belief requirements of the property that we used to characterize joint behavior.

Theorem 7.2. If (M,r,n) �Ca
S χS for all points (r,n), then JBS holds in M.

Proof. Consider an arbitrary point (r,n) and agent i ∈ S(r,n) such that (M,r,n) � ACT INGi,S. By as-
sumption, (M,r,n) �Ca

S χS. So, by the semantics of Ca
S , it follows that (M,r,n) � Ea

S χS. In turn, it follows
from the semantics of Ea

S that (M,r,n) � BiχS (because (M,r,n) � ACT INGi,S). But r, n, and i were
arbitrary, so we have that (M,r,n) � ACT INGi,S→ BiχS for all such points and agents. Thus, JBS holds
in M.

The astute reader will have noticed that the proofs of Theorem 7.1 and 7.2 did not depend in any way
on χS. The formula χS in these theorems can be replaced by an arbitrary formula ϕ . In other words, if all
the agents in S believe ϕ at the point when they act, then ϕ is action-stamped common belief, and if ϕ is
action-stamped common belief, then all agents in S must believe ϕ at the point when they act. Formally,
the proofs of Theorem 7.1 and 7.2 also show the following:

Theorem 7.3. If (M,r,n) � ACT INGi,S→ Biϕ for all points (r,n) and agents i ∈ S(r,n), then (M,r,n) �
Ca

Sϕ for all points (r,n).

Theorem 7.4. If (M,r,n) � Ca
Sϕ for all points (r,n), then (M,r,n) � ACT INGi,S → Biϕ for all points

(r,n) and agents i ∈ S(r,n).
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8 Conclusion and Future Work

We have argued here that, contrary to what was suggested in earlier work, common belief is not necessary
for joint behavior. We have presented a new notion, action-stamped common belief, and shown that it is,
in a sense, necessary and sufficient for joint behavior, and can be achieved in scenarios where standard
common belief cannot. This is important because modelling the conditions needed for joint behavior
correctly can enable cooperation in important scenarios, such as search and rescue, where it might not
otherwise be possible. We chose to use the term joint behavior in this paper because it sounded to our ears
like it most accurately captured the notion we were considering; no doubt to some readers other terms will
sound like a better fit. As we showed in Section 7, action-stamped common belief characterizes scenarios
where individuals do their part only if they believe others will do the same, whatever terminology we
use.

We suspect that, for some readers, the idea that action-stamped common belief is sufficient for joint
behavior will seem obvious. In a certain sense, we agree; in retrospect, it does feel like the obviously
correct notion for joint behaviors. That said, while action-stamped common belief seems quite natural,
it does not seem to have been studied in any prior literature.

With that in mind, it is worth briefly discussing the connection between the ideas in this paper and
some of the prior work that has been done. First, note that action-stamped common belief is in some ways
the natural variant of common belief for extensive-form games. Because an agent i’s information sets are
usually specified only at nodes at which agent i moves, it is possible to reason about agent i’s beliefs only
at points where agent i acts. This makes it all the more surprising that action-stamped common belief
has not been formalized and studied in its own right; in some sense, it captures what epistemic game
theorists have been implicitly considering in the case of extensive-form games.

In this paper, we have considered the types of beliefs necessary for joint behavior, but that may not be
the only factor involved (nor do we claim it is; we are just focused in this paper on the belief component).
For example, in much of the literature, intent is taken to play an important role in various cooperative
behaviors. Dunin-Keplicz and Verbrugge [8] proposed a three-part notion of “collective commitment”,
with the levels of belief (e.g., no one believes, everyone believes, it is common belief) held at each of the
three parts leading to various types of collective commitment. Their work is in some ways orthogonal
to ours; it can be thought of as considering various types of cooperative behaviors that can occur, while
ours just focuses on one particularly strict form, joint behavior. One way of interpreting our work in
the context of theirs is as saying that the top level of belief to consider for cooperation should in fact be
action-stamped common belief.

Blomberg [1] gives an insightful argument that common belief (and variants thereof) of intentions
is not necessary for a joint intentional act. Roughly speaking, an agent may (incorrectly) believe that
other agents do not share his intent, as long as what he believes they intend would still lead them to
act in the manner conducive to his goals. We find his counterexample and arguments compelling. But
this is perfectly consistent with our results. Theorems 7.1 and 7.2 show that action-stamped common
belief (or in the case of simultaneous acts, standard common belief) that agents will do the necessary
acts is required for joint behaviors. We place no requirements on what agents have to believe about other
agents’ intentions. Put a different way, Blomberg makes a compelling case that, when characterizing
joint behavior, it is a mistake to instantiate the ϕ in Theorems 7.3 and 7.4 with formulas about shared
intents. That is to say, it is not a necessary property of cooperative behavior that agents act only if they
are sure others are acting with the same purpose.

Ludwig [17, 18] also presents an argument that common belief is not necessary for joint (intentional)
action. Putting aside the question of whether his argument is correct, it is not relevant to our consid-
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erations here as it relies on a much broader notion of cooperative behavior than the joint behaviors we
consider in this paper (though he calls it “joint action”). That is, we certainly agree with his conclusion
that for some types of cooperative behavior agents don’t need to be sure that others will do their part and
so don’t need common belief, but for the types of cooperative behaviors we consider in this paper we
have shown in Theorem 7.3 that (action-stamped) common belief is in fact necessary.

Lastly, Roy and Schwenkenbecher [21] consider a novel notion of belief that they call “pooled knowl-
edge”, which is related to distributed knowledge, and argue that it is both weaker than common knowl-
edge and sufficient for shared intentions. The basic idea behind the argument is that if agents are ra-
tional, then pooled knowledge would induce some agent to act as a coordinator to guide the behavior
of the group. It’s certainly an interesting proposal, and one that deserves further study. From the per-
spective of this paper, it would be interesting to try to formally analyze under what conditions pooled
knowledge/belief would lead to action-stamped common knowledge/belief.

The present work suggests two areas that are ripe for future work. The first is to more fully explore
the logical aspects of action-stamped common belief. Can a sound and complete axiomatization be
provided? What is the complexity of the model-checking and validity problems for a language involving
action-stamped common knowledge? How can we practically engineer systems that rely on action-
stamped common belief? The second area we think worth exploring is that of understanding better what
levels of group knowledge are required for other aspects of joint behavior and other types of cooperation.
We focused on one aspect, revealing a nuanced but important error in earlier thinking. We think that there
may well be other aspects of cooperation that are worth digging into in this fine-grained way. Given the
importance of cooperative AI, we hope that others will join us in exploring these questions.
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We explore presumptive reasoning in the paraconsistent case. Specifically, we provide semantics for
non-trivial reasoning with presumptive arguments with contradictory assumptions or conclusions.
We adapt the case models proposed by Verheij [25, 26] and define the paraconsistent analogues of
the three types of validity defined therein: coherent, presumptively valid, and conclusive ones. To
formalise the reasoning, we define case models that use BD4, an expansion of the Belnap–Dunn
logic with the Baaz Delta operator. We also show how to recover presumptive reasoning in the
original, classical context from our paraconsistent version of case models. Finally, we construct
a two-layered logic over BD4 and biG (an expansion of Gödel logic with a coimplication � or 4)
and obtain a faithful translation of presumptive arguments into formulas.

1 Introduction

When arguing for a given statement, it can happen that a person uses contradictory assumptions. From the
classical standpoint, every statement trivially follows from a contradiction. This, however, is counter-
intuitive as an agent may not be willing to accept a completely arbitrary statement just because their
premises contain a contradiction.

In general, an argument from φ to χ (written formally as 〈φ ,χ〉) can be either deductive (when φ en-
tails χ) or presumptive (otherwise). I.e., to verify the correctness of a deductive argument, it suffices
to utilise purely logical means while establishing the correctness (acceptability) of a presumptive one
requires an extra-logical framework. Thus, from the classical standpoint, every argument from a contra-
dictory premise is deductive. Hence, if one wants to formalise non-trivial presumptive reasoning from
contradictory premises, one has to use a paraconsistent logic, i.e., a logic where the explosion principle
p,¬p |= q is not valid.

Dung’s argumentative semantics vs case models An influential approach to the formalisation of ar-
gumentation focuses on argument attack [11]. The main idea is to represent the argumentative framework
as a directed graph where A →B is interpreted as ‘argument A attacks B’ (here, arguments are treated
as unified statements, and premises and conclusions are not singled out). Then, A is acceptable if it
responds to every attack (or, formally, if A →B for every B s.t. B→A ). An argument’s correctness
depends on the argumentation semantics choice.

However, the connection of Dung’s approach to standard logical semantics may not be straightfor-
ward. In addition, the support of arguments is abstracted. Both issues have been addressed in several
ways (cf., e.g. [9, 5, 14, 21]). One such alternative to Dung’s approach was proposed in [25] and further
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developed in [26]. In these works, the interpretation of presumptive arguments was given by means of
case models: sets of classically incompatible satisfiable propositional formulas called ‘cases’ (whence
the name) with a preference relation defined thereon. An argument in this framework has the following
form: A = 〈φ ,χ〉. Here, φ is the premise, χ is the conclusion, and, in addition, A presents a case —
φ ∧χ . Three kinds of acceptable arguments were studied: coherent (both the premise and the conclusion
are supported by at least one case), presumptively valid (both the premise and conclusion are supported
by the most preferred case), and conclusive (the conclusion is supported by all cases that support the
premise). Furthermore, a representation of case models in terms of sample spaces with probability
measures was devised and a correspondence between different arguments and probabilities of the cor-
responding events was provided. An important distinction between case models and Dung’s semantics
is that the validities in the former are defined via the entailment in the classical logic. Thus, one can
produce a non-classical counterpart to case models by changing the underlying entailment relation.

Non-trivial contradictory arguments In both approaches discussed above, it is assumed that the ac-
ceptable arguments are not self-contradictory. Namely, if φ is an argument in Dung’s framework, it
should be classically satisfiable, and if 〈χ,ψ〉 is an argument over a case model, then both χ and ψ

must be classically satisfiable. This restriction is easy to explain in Dung’s approach: indeed, we can
claim that a contradictory argument attacks itself. In the case model setting, however, it makes sense to
consider contradictory arguments and cases under the following interpretation.

Every ‘case’ in the model can be thought of as a source that gives some information regarding a given
set of statements. Accordingly, the preference relation on cases shows which sources are trusted more
or less. In this interpretation, it is clear that even if a source is trusted, it can provide a contradictory
response to a question (e.g., a police officer testifying in court can first claim that they were unarmed
while on patrol and then say ‘when I saw the suspect, I immediately drew my pistol out of the holster’)
or fail to provide any information at all.

Let us now introduce the running example to illustrate the contexts that we aim to formalise.
Running example, part 1 (Witnessing a robbery). An investigator reads a report by a police officer who
questioned several witnesses on a bank robbery. The relevant information is whether the perpetrator had
a limp (l), whether they had a big bag for the robbed valuables (b), and whether they used the lift or the
staircase (s) to leave the office. The report contains the following testimonies.

• c1 tells that the perpetrator indeed had a limp but cannot say anything about how they left the
office; moreover, c1 tells that the robber put all the loot in the pockets.

• c2 tells nothing about whether the perpetrator was limping and mentions that the perpetrator had a
big shoulder bag; unfortunately, c2 is confused: they claim that they saw the robber using the lift
but are also saying that ‘the lift has been out of order for half a year’.

• c3 testifies that the robber had a limp but walked down the stairs; c3’s account is also contradictory:
they describe the bag as ‘huge’ but then say that the robber put it into the pocket.

All witnesses gave non-classical (incomplete or contradictory) responses, whence we cannot straightfor-
wardly represent them in the case models, nor in Dung’s framework. An investigator, however, needs to
draw conclusions from the accounts at hand. E.g., they might want to know how the perpetrator in fact
left the building and for that, they need to know whether the perpetrator had a limp.

Plan of the paper In this paper, we adapt the case models presented in [25, 26] to the presumptive
reasoning with possibly contradictory statements. To this end, we will use BD4 — the expansion of
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the Belnap–Dunn logic [1, 12, 4] with a Baaz 4 operator (cf. [2] for the original presentation of 4 in
the context of fuzzy logics) originating from [24]. We define the analogues of coherent, presumptively
valid, and conclusive arguments and show their relations to one another. Finally, we are going to provide
a logical representation of all these arguments.

The remainder of the paper is structured as follows. In Section 2, we present the syntax and semantics
of BD4. Then, in Section 3, we develop the BD4 case models. In Section 4, we present a logic
that formalises reasoning in BD4 models and construct a faithful translation of arguments to formulas.
Finally, in Section 5, we summarise the results and provide a plan for future research.

2 Logical preliminaries

The language of LBD4 and its 4-free fragment LBD are defined via the following grammar (Prop is
a fixed countable set of propositional variables).

LBD4 3 φ := p ∈ Prop | ¬φ | (φ ∧φ) | (φ ∨φ) | 4φ

There are several semantics for BD and its expansions (cf. [20] for the examples). One of the simplest
is a truth-table semantics from [4]. There, a formula can have one of the following four values corre-
sponding to the available information regarding a statement φ . T stands for ‘there is only information in
support of φ ’; F for ‘there is only information denying φ ’; N for ‘there is information neither in support
nor in denial of φ ’; B for ‘there is information both in support and denial of φ ’. We also use frame
semantics (cf., e.g., [8, 16, 7]) as it is more convenient for the logical representation of case models.

Definition 1 (Truth-table semantics of BD4). A 4-valuation is a map v4 : Prop→ {T,B,N,F} that is
extended to complex formulas using the following definitions.

¬
T F
B B
N N
F T

4
T T
B T
N F
F F

∧ T B N F
T T B N F
B B B F F
N N F N F
F F F F F

∨ T B N F
T T T T T
B T B T B
N T T N N
F T B N F

Definition 2 (Frame semantics for BD4). Let φ ,φ ′ ∈LBD4. For a model M= 〈W,v+,v−〉with v+,v− :
Prop→ 2W , we define notions of w �+ φ and w �− φ for w ∈W as follows.

w �+ p iff w ∈ v+(p) w �− p iff w ∈ v−(p)
w �+ ¬φ iff w �− φ w �− ¬φ iff w �+ φ

w �+ φ ∧φ ′ iff w �+ φ and w �+ φ ′ w �− φ ∧φ ′ iff w�− φ or w �− φ ′

w �+ φ ∨φ ′ iff w �+ φ or w �+ φ ′ w �− φ ∨φ ′ iff w �− φ and w �− φ ′

w �+ 4φ iff w �+ φ w �− 4φ iff w 2+ φ

We define the positive and negative interpretations of φ as follows: |φ |+ = {w ∈W | w �+ φ}; |φ |− =
{w ∈W | w �− φ}.

We say that a sequent φ ` χ is satisfied on M (denoted, M |= [φ ` χ]) iff |φ |+⊆ |χ|+ and |χ|−⊆ |φ |−.
φ ` χ is valid iff it is satisfied on every model. In this case, we say that φ entails χ and write φ |=BD4 χ .

Let us make several quick observations regarding BD4. First, the semantical conditions of ¬, ∧, and
∨ coincide with those from the classical logic. On the other hand, it is more intuitive to interpret w `+ φ

as ‘w gives evidence for (confirms) φ ’ and w `− φ as ‘w gives evidence against (denies) φ ’. Thus, w
confirms φ ∧φ ′ when both conjuncts are confirmed by w and w denies φ ∧φ ′ when at least one conjunct
is denied.
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The difference is that in BD4 the truth and falsity of a formula are independent. Thus, in contrast
to the classical logic, neither p∧¬p ` q nor p ` q∨¬q is valid. Second, the addition of 4 (read ‘it is
true that’) to BD makes it weakly functionally complete (cf. [19] for further details). This allows us to
represent every testimony a source can give regarding φ (i.e., confirm φ , contradict itself regarding φ ,
say nothing about φ or deny φ ) as follows:

t(φ) :=4φ ∧¬4¬φ b(φ) :=4φ ∧4¬φ n(φ) := ¬4φ ∧¬4¬φ f(φ) := ¬4φ ∧4¬φ

Note that v4(x(φ))=T if v4(φ)=X; and v4(x(φ))=F otherwise (with x∈{t,b,n, f} and X∈{T,B,N,F}).
Furthermore, it is possible to define ⊥ and > s.t. |>|+ =W , |>|− =∅, |⊥|+ =∅, |⊥|− =W as follows:
> :=4p∨¬4p; ⊥ := ¬>. 4 also allows for the internalisation of entailment: for x,x′ ∈ {t,b,n, f}, the
formula below is valid iff φ |=BD4 χ .

φ V χ :=
∨

x≤4 x′
(x(φ)∧x′(χ)) (f≤4 b,n≤4 t; b 6≤4 n; n 6≤4 b)

The following property will be useful in showing how classical case models can be simulated in BD4.

Proposition 1. Let φ ∈ LBD4 be s.t. every occurrence of every variable p in φ is in the scope of 4.
Then for every BD4 model M and w ∈M, exactly one of the following holds: w �+ φ and w 2− φ , or
w 2+ φ and w �− φ .

Proof. Observe that φ is constructed from the formulas of the form4χ using ¬, ∧, and ∨. We can now
proceed by induction on φ . The basis case is simple. From Definition 2, we see that |4χ|+ =W \|4χ|−,
whence, indeed, either w �+ 4χ and w 2− 4χ or w 2+ 4χ and w �− 4χ . The cases of φ = ψ ∨ψ ′,
φ = ψ ∧ψ ′, and φ = ¬ψ can be shown by straightforward application of the induction hypothesis.

3 BD4 case models

In this section, we introduce the BD4 case models. To make the presentation clearer, let us first recall
the case models from [25, 26] and types of arguments over them that we will henceforth call classical
case models and classical arguments since they use the classical logic as background.

Definition 3 (Classical case models). A classical case model is a tuple CCPL = 〈C,�〉 s.t. C is a finite set
of pairwise incompatible classically satisfiable formulas and � is a total preorder on C.

The strict preorder associated with � is interpreted as a preference relation on the set of cases. I.e.,
φ ≺ φ ′ means that the agent prefers φ ′ to φ (or trusts in φ ′ more than in φ ).

Definition 4 (Classical arguments and their types). An argument is a tuple 〈φ ,φ ′〉 of classical propo-
sitional formulas. The case is the statement φ ∧ φ ′, while a premise (conclusion) is any formula χ s.t.
φ |=CPL χ (φ ′ |=CPL χ). We say that the argument is presumptive iff φ 6|=CPL φ ′.

An argument 〈φ ,χ〉 over a classical case model CCPL = 〈C,�〉 is

• classically coherent iff there is ψ ∈ C s.t. ψ |=CPL φ ∧χ;

• classically conclusive iff it is classically coherent and it holds ψ |=CPL φ ∧ χ for every ψ ∈ C s.t.
ψ |=CPL φ ;

• classically presumptively valid iff it is classically coherent and there is ψ ∈ C s.t. ψ |=CPL φ ∧ψ

and ψ � ψ ′ for every ψ ′ s.t. ψ ′ |=CPL φ .
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Let us now present BD4 case models and the counterparts to the coherent, conclusive, and presump-
tively valid arguments.

Definition 5 (BD4 case models). A BD4 case model is a tuple CBD4 = 〈C,�〉 with C being a finite
set of LBD4 formulas s.t. for any φ ,φ ′ ∈ C, it holds that φ 6|=BD4 ⊥ and φ ∧φ ′ |=BD4 ⊥, and � a total
preorder on C.

Definition 6 (Arguments). An argument is a tuple 〈φ ,φ ′〉 with φ ,φ ′ ∈LBD4. The case is the statement
φ ∧ φ ′, while a premise (conclusion) is any formula χ s.t. φ |=BD4 χ (φ ′ |=BD4 χ). We say that the
argument is presumptive iff φ 6|=BD4 φ ′.

We can interpret ψ ∈ C as witnesses’ testimonies. A testimony might be contradictory or omit informa-
tion relevant to the case. Thus, given an argument 〈φ ,χ〉, it makes sense to differentiate between three
kinds of conclusions.

1. Given φ , χ is claimed to be true but nothing is said whether it is also non-false.

2. Given φ , χ is claimed to be non-false but nothing is said about whether it is true as well.

3. Given φ , χ is claimed to be true and non-false.

Let us now recall part 1 of the running example and build a case model.
Running example, part 2 (Witnessing a robbery, formalisation). The investigator in part 1 can build the
following case model C (we omit the ordering for now):

C= {t(l)∧n(s)∧ f(b)︸ ︷︷ ︸
c1

,n(l)∧b(s)∧ t(b)︸ ︷︷ ︸
c2

, t(l)∧ t(s)∧b(b)︸ ︷︷ ︸
c3

}

Using part 2 of the running example, we define the counterparts to coherent and conclusive arguments
from [25, 26].

Definition 7 (Coherent arguments). Let C= 〈C,�〉. 〈φ ,χ〉 is

• negatively coherent (denoted C |= φ 7→− χ) over C iff there is ψ ∈ C s.t. χ |=BD4 φ ∧¬4¬χ;

• positively coherent (denoted C |= φ 7→+ χ) over C iff there is ψ ∈ C s.t. χ |=BD4 φ ∧4χ;

• strongly coherent (denoted C |= φ 7→± χ) over C iff there is ψ ∈ C s.t. χ |=BD4 φ ∧ t(χ).

Definition 8 (Conclusive arguments). Let C= 〈C,�〉. 〈φ ,χ〉 is

• negatively conclusive over C (denoted C |=φ⇒− χ) iff it is negatively coherent and it holds that if
χ |=BD4φ , then ψ |=BD4φ∧¬4¬χ for any ψ ∈ C;

• positively conclusive over C (denoted C |=φ⇒+ χ) iff it is positively coherent and it holds that if
ψ |=BD4φ , then ψ |=BD4φ∧4χ for any ψ ∈ C;

• strongly conclusive over C (denoted C |=φ⇒± χ) iff it is strongly coherent, and it holds that if
ψ |=BD4 φ , then ψ |=BD4 φ ∧ t(χ) for any ψ ∈ C.

Remark 1. Let us provide an intuitive explanation of coherent and conclusive arguments. We begin with
coherent arguments:

• for an argument to be negatively coherent, there has to be a case that supports the premise and does
not contradict the conclusion;

• for an argument to be positively coherent, there has to be a case that supports the premise and also
supports the conclusion;
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• for an argument to be strongly coherent, there has to be a case that supports the premise, does not
contradict the conclusion, and supports it.

Conclusive arguments can be construed as follows:

• for an argument to be negatively conclusive, no case satisfying the premise should contradict the
conclusion of a argument;

• for an argument to be positively conclusive, all cases satisfying the premises of an argument should
support its conclusion.

Observe that the arguments that are both positively and negatively conclusive are strongly conclusive as
well. On the other hand, 〈φ ,χ〉 can be both positively and negatively coherent but not strongly coherent
if there is no case c s.t. c |=BD4 t(χ).
Remark 2 (BD4 and classical arguments). Note that while there is no classical case model over which
both A = 〈φ ,χ〉 and B = 〈φ ,¬χ〉 are classically conclusive (albeit, they can be presumptively valid),
it is possible that they are both positively conclusive (negatively conclusive) if c |=BD4 b(χ) (resp.,
c |=BD4 n(χ)) for every c ∈ C. Still, there is no BD4 case model over which A and B are strongly
conclusive.

In addition, it is clear that no argument of the form 〈φ ,¬φ〉 is classically coherent since φ ∧¬φ is
classically unsatisfiable. On the other hand, 〈s,¬s〉 is positively coherent (by c2) in the model from the
part 2 of the running example.

Finally, it is easy to see that every coherent deductive classical argument 〈φ ,χ〉 (i.e., the one where
φ |=CPL χ) is also classically conclusive. In the case of BD4 arguments, only the weaker statement
holds: if φ |=BD4 χ and 〈φ ,χ〉 is positively coherent, then it is positively conclusive as well. E.g.,
p∧¬p∧ q |=BD4 p∧¬p but t(p∧¬p) always has value F, whence 〈p∧¬p∧ q, p∧¬p〉 can never be
negatively or strongly coherent (and thus, negatively or strongly conclusive).

Let us now define the BD4 counterparts of presumptively valid arguments.

Definition 9 (Presumptively valid arguments). An argument A = 〈φ ,χ〉 is:

• positively presumptively valid (denoted C |= φ + χ) iff there is ψ ∈ C s.t. ψ |=BD4 φ ∧4χ and
ψ � ψ ′ for any ψ ′ s.t. ψ ′ |= φ ;

• negatively presumptively valid (denoted C |= φ − χ) iff there is ψ ∈ C s.t. ψ |=BD4 φ ∧¬4¬χ

and ψ � ψ ′ for any ψ ′ s.t. ψ ′ |= φ ;

• strongly presumptively valid (denoted C |= φ ± χ) iff there is ψ ∈ C s.t. ψ |=BD4 φ ∧ t(χ) and
ψ � ψ ′ for any ψ ′ s.t. ψ ′ |= φ .

Convention 1. We will further call ψ the witnessing case for A .
Remark 3. We can now explain presumptively valid arguments similarly to how we interpreted coherent
and conclusive ones.

• An argument is negatively coherent when there is the most preferred case that supports its premise
and does not contradict the conclusion.

• An argument is positively coherent when there is the most preferred case that supports both its
premise and conclusion.

Running example, part 3 (Witnessing a robbery, preferences). We return to the model in part 2. The
investigator now wants to find out how the robber escaped from the office. It is clear that neither 〈>,s〉
nor 〈>,¬s〉 is strongly conclusive. On the other hand, nobody explicitly denied that the robber was
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φ 7→+ χ ⊇
⊇

φ  + χ ⊇
⊇

φ ⇒+ χ
⊇

φ 7→± χ ⊇ φ  ± χ ⊇ φ ⇒± χ

φ 7→− χ ⊇
⊇

φ  − χ ⊇
⊇

φ ⇒− χ

⊇

Figure 1: Conclusive (⇒), presumptively valid ( ), and coherent (7→) arguments with same statements.

limping, whence 〈>, l〉 is negatively conclusive. The investigator thinks that it is reasonable to take l to
be true. Unfortunately, even assuming l, neither 〈l,s〉 nor 〈l,¬s〉 is conclusive.

The investigator rereads the accounts of c1, c2, and c3 and notices that c3 was the only one to follow
the robber out of the office. On the other hand, c1 hid under the table and was sitting there during the
robbery. Thus, the preference is given as c1 ≺ c2 ≺ c3. Hence, 〈l,s〉 is strongly presumptively valid.
Remark 4. It is important to note that both following statements are false:

• 〈φ ,χ〉 is negatively coherent (resp., presumptively valid, conclusive) iff 〈φ ,¬χ〉 is positively co-
herent (resp., presumptively valid, conclusive);

• 〈φ ,χ〉 is positively coherent (resp., presumptively valid, conclusive) iff 〈φ ,¬χ〉 is negatively co-
herent (resp., presumptively valid, conclusive).

Indeed, recall part 2 of the running example. 〈>, l〉 is negatively coherent while 〈>,¬l〉 is not positively
coherent. 〈b,¬s〉 is negatively presumptively valid but 〈s,¬b〉 is positively presumptively valid but 〈s,b〉
is not negatively presumptively valid.

The following statement establishes the expected relations between coherent, presumptively valid,
and conclusive arguments and follows immediately from Definitions 7–9.
Proposition 2. The diagram in Fig. 1 depicts the inclusions between different types of arguments.
It is instructive to see that BD4 models allow classical presumptive reasoning if the values of formulas
in the cases are classical. We define a class of BD4 case models ‘simulating’ the classical ones.
Definition 10 (Quasi-classical case models). A BD4 case model C= 〈C,�〉 is called quasi-classical iff
every χ ∈ C is constructed from t(p)’s via applications of ¬, ∧, and ∨.
Proposition 3. Let C be a quasi-classical BD4 case model and . ∈ {7→, ,⇒}. Then C |= φ .+ χ iff
C |= φ .− χ iff C |= φ .± χ .

Proof. We only consider the case of coherent arguments as conclusive and presumptively valid ones
can be tackled similarly. It suffices to prove that positively coherent arguments and negatively coherent
arguments are strongly coherent. Let C be quasi-classical and C |= φ 7→+ χ . Then, there is ψ ∈ C s.t.
ψ |=BD4 φ ∧4χ . But then, from Definition 2 and Proposition 1, it is clear that ψ |=BD4 t(χ). Likewise,
let C |= φ 7→− χ , and, accordingly, ψ |=BD4 φ ∧¬4¬χ . Again, using Definition 2 and Proposition 1,
we have ψ |=BD4 t(χ). The result now follows.

We finish the section by showing how to build a BD4 counterpart of a classical case model that preserves
all arguments.
Definition 11. Let C = 〈C,�〉 be a classical case model s.t. all formulas in C are over {¬,∧,∨}. In
addition, for φ ∈LBD, denote φ t the result of substitution of every variable p occurring in φ with t(p).

The BD4 counterpart of C is CBD4 = 〈CBD4,�BD4〉 with CBD4 = {χ t : χ ∈ C} and χ t �BD4 χ ′t

iff χ �BD χ ′.
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Theorem 1. Let C= 〈C,�〉 be a classical case model s.t. all formulas in C are over {¬,∧,∨}.

1. The BD4 counterpart CBD4 of C is quasi-classical.

2. 〈φ ,χ〉 is coherent (resp., presumptively valid, conclusive) in C iff 〈φ t,χ t〉 is strongly coherent
(resp., strongly presumptively valid, strongly conclusive) in CBD4.

Proof. 1. holds by Definitions 3 and 11. Let us now consider 2. We will only tackle the case of presump-
tively valid arguments since coherent and conclusive ones can be dealt with similarly.

Let C= 〈C,�〉 be a classical case model and 〈φ ,χ〉 presumptively valid on C. Then, there is ψ ∈C s.t.
ψ |=CPL φ ∧χ and ψ �ψ ′ for every ψ ′ ∈C s.t. ψ ′ |=CPL φ . Now observe from Definition 1 that ¬, ∧, and
∨ behave classically on T and F. Thus, it is clear that τ |=CPL τ ′ iff τ t |=BD4 τ ′t for every τ,τ ′ ∈LBD. It
now follows that ψ t |=BD4 φ t∧ t(χ t) and ψ t �BD4 ψ ′t for every ψ ′t |=BD4 φ t, as required. Conversely,
let 〈φ ,χ〉 be not presumptively valid on C. Then, there is no ψ ∈C s.t. ψ |=CPL φ∧χ and ψ �ψ ′ for every
ψ ′ ∈ C s.t. ψ ′ |=CPL φ . Again, from Definition 1, it follows that there is no ψ t s.t. ψ t |=BD4 φ t∧ t(χ t)

and ψ t �BD4 ψ ′t for every ψ ′t |=BD4 φ t.

4 A two-layered logic for case models

Conclusive and presumptively valid arguments on classical case models can be represented in terms
of conditional probabilities [25, 26]. In this section, we provide a representation of BD4 models and
arguments on them in terms of a paraconsistent two-layered logic.

Two-layered logics form a class of formalisms designed to reason about uncertainty: their languages
consist of inner-layer formulas that describe events and outer-layer formulas composed of modal atoms
of the form Mφ (φ being an inner-layer formula and M the modality interpreted as a measure on the set
of events). There are two-layered logics formalising reasoning with classical probabilities [3] and their
paraconsistent counterparts [7] presented in [16].1 Furthermore, there are two-layered logics formalising
paraconsistent reasoning with belief and plausibility functions [7].

These papers usually study quantitative representations of uncertainty. On the other hand, case mod-
els provide a qualitative one via their preference relations. This shows a degree of affinity between
case models and representations of different uncertainty measures by means of total preorders as studied
in [17] (for the case of probabilities) and [28, 27] (belief functions). In [6], two-layered logics formalising
reasoning with the qualitative counterparts of belief functions and probabilities were presented.

In this section, we present a two-layered logic QGBD4 which is a modification of QG from [6]. The
inner layer of MCB4 is BD4, the outer one is biG — an expansion of Gödel logic (cf., e.g., [15]) with
a coimplication � or the Baaz Delta operator 4. To connect the layers, we use B (with Bφ read as ‘the
agent believes in φ ’). Since we do not impose any restrictions on � in case models, we are interpreting
B as a capacity on the set of events W , i.e., via a map µ : 2W → [0,1] which is monotone w.r.t. ⊆ with
µ(W ) = 1 and µ(∅) = 0. The main goal of the paper is to establish a correspondence between case
models and QGBD4 models as well as to show how given an argument 〈φ ,φ ′〉 to construct a QGBD4
formula that is true in the corresponding model iff the argument is (positively, negatively, or strongly)
coherent, conclusive, or presumptively valid.

Let us now recall biG.

1Note that [16] is not the only paraconsistent interpretation of probabilities: alternative approaches can be found. e.g.,
in [18, 13, 10, 23].
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Definition 12. The bi-Gödel algebra [0,1]G = 〈[0,1],0,1,∧G,∨G,→G,�,∼G,4G〉 is defined as follows:
for all a,b ∈ [0,1], ∧G and ∨G are given by a∧G b := min(a,b), a∨G b := max(a,b). The remaining
operations are defined below:

a→G b =

{
1, if a≤ b
b else

a�G b =

{
0, if a≤ b
a else

∼Ga =

{
0, if a > 0
1 else

4Ga =

{
0, if a < 1
1 else

Remark 5. Note that constants > and ⊥ are definable as, respectively, p→ p and p� p, and that4 and
� are interdefinable as follows: 4φ :=>� (>�φ), φ �φ ′ := φ ∧∼4(φ → φ ′).

Definition 13 (Language and semantics of biG). We fix a countable set Prop of propositional variables
and consider the following language.

LbiG 3 φ := p ∈ Prop | ∼φ | (φ ∧φ) | (φ ∨φ) | (φ → φ) | (φ �φ) | 4φ

Let e : Prop→ [0,1]. For the complex formulas, we define e(φ ◦φ ′) = e(φ)◦G e(φ ′).
Finally, let Γ∪{φ} ⊆LbiG. We define: Γ |=biG φ iff ∀e : inf{e(ψ) : ψ ∈ Γ} ≤ e(φ).

Using biG, we can define QGBD4 as follows.

Definition 14. The language of QGBD4 is defined via the following grammar: LQGBD43α := Bφ | α ◦α

(◦ ∈ {∼,∧,∨,→,�,4},φ ∈LBD4). A QGBD4 model is a tuple M = 〈W,v+,v−,µ,e〉 with 〈W,v+,v−〉
being a BD4 model (cf. Definition 2), µ : 2W → [0,1] being a capacity. Semantic conditions of LQGBD4

formulas are as follows: e(Bφ)= µ(|φ |+) for modal atoms; the values of complex formulas are computed
according to Definition 13.

For a given model M , we write M |= α to designate e(α) = 1. For a frame F= 〈W,π〉 on a QGBD4
model M , we say that α ∈ LMCB4 is valid on F (F |= α) iff e(α)= 1 for every e on F. Finally, for
Ψ∪{α} ⊆LQGBD4 , we define the same entailment relation as in Definition 13.

Let us now establish the correspondence results for coherent, conclusive, and presumptively valid
arguments. To do this, we define a class of µ-counterparts for every BD4 model.

Definition 15 (µ-counterparts). Let C = 〈C,�〉 be a BD4 case model and C = {c1, . . . ,cn}. Its µ-
counterpart is a QGBD4-model MC = 〈{w1, . . . ,wn},v+,v−,µ�,e〉 for which the following holds.

1. For every ci ∈ C and every φ , if ci |=BD4 φ (ci |=BD4 ¬φ ), then wi �+ φ (wi �− φ ).

2. For every ci,c j ∈ C, ci � c j iff µ�({wi})≤ µ�({w j}).

3. For every ci ∈ C, µ�({ci})> 0.

Theorem 2. Let C= 〈C,�〉 be a BD4 case model and MC its µ-counterpart. Then the following holds.

1. C |= φ 7→+ φ ′ iff MC |=∼∼B(φ ∧4φ ′).

2. C |= φ 7→− φ ′ iff MC |=∼∼B(φ ∧¬4¬φ ′).

3. C |= φ 7→± φ ′ iff MC |=∼∼B(φ ∧ t(φ ′)).

Proof. We consider 2. Other cases can be proved in the same way. Let C |= φ 7→− φ ′. Then, there is
ci ∈ C s.t. ci |=BD4 φ ∧¬4¬φ ′, whence wi �+ φ ∧¬4¬φ ′ and µ(|φ ∧¬4¬φ ′|+) > 0. Thus, e(B(φ ∧
¬4¬φ ′))> 0 and MC |=∼∼B(φ ∧¬4¬φ ′), as required. Conversely, let C 6|= φ 7→− φ ′. Then, for every
ci ∈ C, ci 6|=BD4 φ ∧¬4¬φ ′, whence there is no wi s.t. wi �+ φ ∧¬4¬φ ′. Hence, |φ ∧¬4¬φ ′|+ = ∅
and µ(|φ ∧¬4¬φ ′|+) = 0. Thus, ∼∼e(B(|φ ∧¬4¬φ ′|+)) = 0, as required.
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Observe from Definitions 8 and 9 that the classes of strongly conclusive (presumptively valid) arguments
on the one hand and both positively and negatively conclusive (presumptively valid) arguments on the
other hand coincide. Thus, it suffices to provide representation for positively and negatively conclusive
(presumptively valid) arguments only.

Theorem 3. Let C= 〈C,�〉 be a BD4 case model and MC its µ-counterpart. Then the following holds.

1. C |= φ ⇒+ φ ′ iff MC |=∼B(φ ∧¬4φ ′)∧∼∼B(φ ∧4φ ′).

2. C |= φ ⇒− φ ′ iff MC |=∼B(φ ∧4¬φ ′)∧∼∼B(φ ∧¬4¬φ ′).

Proof. Again, for the sake of brevity, we consider only 1. We let C |= φ⇒+ φ ′. Then, 〈φ ,φ ′〉 is positively
coherent on C and thus (by Theorem 2), MC |= ∼∼B(φ ∧4φ ′). Furthermore, since ψ |=BD4 φ ∧4φ ′

for every ψ ∈ C s.t. ψ |=BD4 φ , we have that |φ |+∩ (C\ |4φ ′|+) = ∅, whence MC |= ∼B(φ ∧¬4φ ′),
as required. As the converse direction can be proved in the same manner, the result follows.

Theorem 4. Let C= 〈C,�〉 be a BD4 case model and MC its µ-counterpart. Then the following holds.

1. C |= φ  + φ ′ and χ is 〈φ ,φ ′〉’s witnessing case iff

MC |=∼∼B(φ ∧4φ ′)∧4B(χ V (φ ∧4φ ′))∧
∧

χ ′∈C (4B(χ V φ)→4(Bχ ′→ Bχ))

2. C |= φ  − φ ′ and χ is 〈φ ,φ ′〉’s witnessing case iff

MC |=∼∼B(φ ∧¬4¬φ ′)∧4B(χ ′V (φ ∧¬4¬φ ′))∧
∧

χ ′∈C (4B(χ ′V φ)→4(Bχ ′→ Bχ))

Proof. We prove 1. as 2. can be proven in the same manner. Assume that 〈φ ,φ ′〉 is positively pre-
sumptively valid over C and that χ is its witnessing case. Then, 〈φ ,φ ′〉 is positively coherent (whence,
M |= ∼∼B(φ ∧¬4¬φ ′)) and χ |=BD4 φ ∧4φ ′. Thus, |χ|+ ⊆ |φ ∧4φ ′|+ and |χ|− ⊇ |φ ∧4φ ′|−
for every model M , whence M |= 4B(χ V (φ ∧¬4¬φ ′)). Finally, we also have that χ ′ � χ for
every χ ′ ∈ C s.t. χ |=BD4 φ . But this means that for every such χ ′, µ(|χ ′|+) ≤ µ(|χ|+)2 and thus,
M |=4(Bχ ′→ Bχ). Hence, M |=

∧
χ ′∈C (4B(χ ′V φ)→4(Bχ ′→ Bχ)), as required.

For the converse, let 〈φ ,φ ′〉 be not positively presumptively valid argument with χ as the witnessing
case. Then at least one of the following holds: (1) 〈φ ,φ ′〉 is not positively coherent; (2) χ 6|=BD4 φ ∧4φ ′;
(3) there is some χ ′ ∈ C s.t. χ ′ |=BD4 φ but χ ′ � χ . Now, for (1), M 6|= ∼∼B(φ ∧¬4¬φ ′); for (2),
M 6|=4B(χ V (φ ∧4φ ′)); and finally, for (3), M 6|=

∧
χ ′∈C (4B(χ ′V φ)→4(Bχ ′→ Bχ)).

Recall that conclusive and coherent arguments over classical case models were represented by means of
conditional probabilities in [25, 26]. Here, we did not need conditionalisations on capacities as we used
a purely logical representation and could employ→ in order to ‘simulate’ conditionalised measures.

5 Conclusion

In this paper, we provided paraconsistent counterparts to the case models discussed in [25, 26] that use
BD4 as their underlying logic. We showed how to recover classical presumptive reasoning from BD4
case models (Theorem 1). Moreover, we constructed a two-layered logic QGBD4 over BD4 and biG
and used it to establish a representation of arguments with QGBD4 formulas (Theorems 2–4).

The natural next steps would be as follows. First, it is instructive to provide a complete axiomatisation
of QGBD4. Second, while in this paper we used a linear preference relation (as it is traditionally done,

2Recall that since ci∧ c j |=BD4 ⊥ for every ci,c j ∈ C, we have that µ(|ck|+) = µ({wk}) for all ck ∈ C.
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cf., e.g., [22]), one could argue that if an agent cannot choose between two cases c and c′, it does not
mean that they prefer them to the same degree. It is, hence, reasonable to explore case models whose
preference relation is a partial preorder. Finally, we managed to represent preference relations on case
models as capacities on their BD4 counterparts. An expected question to ask is which properties we
have to require from the case model so that its preference relation be represented as a stronger measure:
e.g., a belief function, a plausibility function, or a probability measure.
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In robust decision making under uncertainty, a natural choice is to go with safety (aka security) level
strategies. However, in many important cases, most notably auctions, there is a large multitude of
safety level strategies, thus making the choice unclear. We consider two refined notions:

• a term we call DSL (distinguishable safety level), and is based on the notion of “discrimin”
[7], which uses a pairwise comparison of actions while removing trivial equivalencies. This
captures the fact that when comparing two actions an agent should not care about payoffs in
situations where they lead to identical payoffs.

• The well-known Leximin notion from social choice theory, which we apply for robust decision-
making. In particular, the leximin is always DSL but not vice-versa [7].

We study the relations of these notions to other robust notions, and illustrate the results of their
use in auctions and other settings. Economic design aims to maximize social welfare when facing
self-motivated participants. In online environments, such as the Web, participants’ incentives take
a novel form originating from the lack of clear agent identity—the ability to create Sybil attacks,
i.e., the ability of each participant to act using multiple identities. It is well-known that Sybil attacks
are a major obstacle for welfare-maximization. Our main result proves that when DSL attackers
face uncertainty over the auction’s bids, the celebrated VCG mechanism is welfare-maximizing even
under Sybil attacks. Altogether, our work shows a successful fundamental synergy between robust-
ness under uncertainty, economic design, and agents’ strategic manipulations in online multi-agent
systems.

1 Introduction

Consider an agent who needs to decide on her action in an environment consisting of other agents.
In certain cases there is a uniquely defined optimal action for the agent, but in most cases this “agent
perspective” is an open challenge. Given the above, both AI and economics care about an adequate
modeling of an agent, and its ramifications in a variety of multi agent contexts, for example, on social
welfare.

We consider a notion for agent modeling we term DSL (Distinguishable Safety-Level). The notion
was previously suggested in the context of constraint-satisfaction problems and fuzzy logic, and was
termed “discrimin” [7]. In game theoretic settings, the notion was previously applied [6] as a solution
concept for bargaining in Boolean games [11]. To the best of our knowledge, it was not previously con-
sidered in the context of auctions, voting, and more generally mechanism design, i.e., when considering
the robustness of economic mechanisms’ performance when facing strategic agents.

There are two ways to think of the DSL solution concept, when applied to agent modeling. One is as
a solution concept adapted to capture the behavioral phenomenon of the loss aversion cognitive bias in
agents, particularly when probabilities over nature states are unknown. The other is as a form of robust
strategy choice under uncertainty, that may be required in volatile and unpredictable environments that
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https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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do not admit a stable Bayesian description. We show its usefulness in auctions. In the full version of
this paper, we also study its behavior in other prominent strategic settings, such as voting. In our main
result we consider the celebrated welfare maximizing VCG mechanism in combinatorial auctions setting,
where it is known to fail under false name (aka Sybil) attacks. We show that DSL agents lead to optimal
social welfare.

1.1 Reasoning under Uncertainty

A classic distinction [15] separates reasoning under risk, where the actors are rational and there is a
commonly known distribution about their environment (also known as the stochastic or Bayesian setting),
and reasoning under uncertainty, where the general structure of strategies and outcomes is known, but
there is no probabilistic information about the environment. Moreover, even assumptions regarding
actors’ rationality or behavior characteristics may not be guaranteed . For such cases, a robust or worst-
case approach seems appropriate, and various notions exist to capture it. Ideally, a dominant strategy
solution exists, but this is usually not the case (and indeed it is not the case in all the cases we analyze
in this paper). A minimal robust notion is that of a safety level strategy, which uses a max-min approach
over all possible outcomes given a strategy choice. However, though it yields interesting results in some
cases [2, 20], in many other cases it does not tell us much about what strategy to choose, in particular in
auctions settings, where we derive our most interesting results. As we see, this is because in auctions the
natural safety level is 0 (which happens when the bidder loses the auction), and any strategy that does
not overbid guarantees it. It is thus hard to choose among these strategies without considering a more
refined notion. Existing refined notions are the lexicographic max-min (originally defined in [19]) and
min-max regret [18]. We overview their comparison to the notion of DSL in Section 3 and Appendix A,
respectively.

1.2 VCG, Sybil Attacks, and Welfare

VCG is a well known mechanism which can be applied for combinatorial auctions. VCG has good
qualities such as being dominant strategy incentive compatible and achieving optimal social welfare.
However, under the possibility of false-name attacks [22], it is no longer truthful. Coming up with other
mechanisms does not solve the basic conundrum: In the full information settings, any false-name proof
mechanism performs poorly in terms of welfare [12].

A possible avenue to solving the issue is by limiting the discussed valuation classes. However, an
example in [13] shows that even when all bidders have sub-modular valuations, VCG is no longer dom-
inant strategy incentive-compatible under false-name attacks. Notably though, even with this example,
VCG still arrives at the socially optimal allocation, and in fact as [1] show, this observation is true in
general up to a constant with sub-modular (and near sub-modular) bidders. However, in the full version
of our paper, we show an example where for the XOS valuation class, which extends the sub-modular
class, there is such an attack so that VCG arrives at an arbitrarily sub-optimal allocation. The attack we
describe is enabled by the full information settings. Without full information, the attack is risky for the
attacker, since it could lead to negative utility, as the attacker overbids her true valuation.

A useful approach, that can lead to better welfare guarantees than dominant strategy mechanism
design, is Bayesian mechanism design. Assuming that the bidder distributions are common knowledge,
recent work has shown that selling each item separately leads to good constant approximation welfare
guarantees for XOS [4] and sub-additive [8] valuations. Though the works do not explicitly consider
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Figure 1: Hierarchy for robust decision under uncertainty

false-name attacks, their constructions use the false-name-proof first and second price auctions to auction
items separately, and so their results naturally extend to Bayesian false-name mechanism design.

It is important to note, that many of the above positive results for welfare guarantees under false-name
attack assume some form of risk-aversion; most importantly, that bidders do not overbid, i.e., they choose
only strategies that are individually rational (under any possible nature state). This condition is equivalent
to limiting the strategy space only to safety level strategies (as in this case of combinatorial auctions, the
safety level is 0). In [10] the authors do not make this assumption, but their positive welfare optimality
results are limited as they only consider the homogeneous single-minded case with two items. We thus
believe that it is natural to ask: Under our definition of DSL, which is a strong risk-aversion notion
(compared, e.g., to the safety level strategy), what welfare guarantees can be obtained? Surprisingly, the
answer is optimal, as we show in our main result in Theorem 4.2.

1.3 Our Results

In Section 2 we formally define our solution concept, and apply it to the first-price and discrete first-price
auctions. In Section 3 (with the additional discussion of min-max regret in Appendix A) we describe a
hierarchy of solution concepts and their relations to the solution concept we introduce (DSL), as sum-
marized in Figure 1.

In Section 4, we present our main result. We discuss VCG as a combinatorial auction under false-
name attacks, when bidders may create shill identities to send bids. It is known that VCG is not dominant
strategy truthful in these settings, and previous results were limited in establishing good welfare guaran-
tees for combinatorial auctions generally under false-name attacks. We show that when bidders use DSL
strategies, VCG achieves optimal welfare even under the threat of false-name attacks.

2 DSL: Definition

When defining DSL strategies, we take the perspective of a single agent i facing uncertainty. The agent
has a utility function ui that determines her utility given the state of the world, which is comprised of
her own action ai, others’ actions a−i, and agent i’s type θi. Formally, ui(ai,a−i|θi). We denote by Ai

the set of all agent i’s pure actions, and by ∆(Ai) the set of all agent i’s mixed actions. An action ai

may be from either of these action sets depending on the context. For mixed strategies, ui(ai,a−i|θi) =
Ea∼ai [ui(a,a−i|θi)]. We denote by Θi the set of all agent i’s types.

Definition 2.1. We say that an action ai of agent i is DSL (given a type θi) if for any other action a′i, over
the set of outcomes where agent i’s utility differs between the actions, the minimal utility attained using
ai is at least as good as that attained by a′i. Formally, let

Dθi(ai,a′i) = {a−i s.t. ui(ai,a−i|θi) 6= ui(a′i,a−i|θi)}.



248 DSL Reasoning under Uncertainty

Then, an action ai is pure/mixed DSL if ∀a′i ∈ Ai,1

min
a−i∈Dθi (ai,a′i)

ui(ai,a−i|θi)≥ min
a−i∈Dθi (ai,a′i)

ui(a′i,a−i|θi).
2

We say that a strategy si : Θi→ Ai is pure DSL if it maps any type θi to a corresponding DSL pure
action ai. We say that si : Θi→ ∆(Ai) is mixed DSL if it maps any type θi to a corresponding DSL mixed
action ai.

Notice that in our definition we compare pure strategies only with other pure strategies, i.e., they are
DSL with respect to this strategy set. Mixed strategies are DSL w.r.t. all strategies (mixed and pure).
We use the term “nature state” to mean the actions a−i, which may result from either uncertainty over
others’ types or over their strategic choice: What matters to the agent in the end is what are all of their
possible actions. There is seemingly some loss of generality in that we assume that all possible a−i are
fixed vectors of actions, and not more generally random variables over actions. But, as we show in the
full version of our paper, allowing for the latter loses the usefulness of the DSL notion.

3 Relations to Prominent Game-theoretic Solution Concepts

Note: Missing proofs in this section appear in the full version of our paper. For completeness, we state
the connection of DSL to safety level and what we call Multi-Leximin strategies, although these claims
are already established in the literature characterizing the notion of discrimin (see, e.g., [7]).

3.1 Dominant Strategy

Definition 3.1. A weakly dominant action ai satisfies that for any other action a′i:
(1) For any nature state a−i,

ui(ai,a−i|θi)≥ ui(a′i,a−i|θi),

and (2) there is such nature state a−i so that the above inequality is strict.
A weakly dominant strategy is such that maps types to weakly dominant actions.

The following result is natural:

Lemma 3.2. Every weakly dominant strategy is DSL.

3.2 Safety Level Strategy and Individual Rationality

Safety level strategies in non-cooperative games are such strategies that yield a best possible guarantee of
utility for a player, without the need to reason about the types or strategies chosen by other players. The
example of [2] makes a compelling argument for choosing such strategies: There are games where the
Nash Equilibrium does not guarantee more than the safety level. In such cases, choosing the equilibrium
strategy runs the unnecessary risk of a lower outcome. [21] extends this insight and shows a class
of games where the safety level strategy guarantees a large constant fraction of the Nash equilibrium
outcome, without its involved risks.

1Or, in the mixed case: ∀a′i ∈ ∆(Ai)
2We use the term minimum loosely: When taken over infinite sets that do not have a minimum the definition uses the

infimum.
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Individual rationality is a common requirement in game theory analysis (see, e.g., [17]), that requires
either that an agent does not participate in a game where it gains negative utility, or that it does not choose
a strategy that may yield negative outcomes. We define:

Definition 3.3. A safety level strategy si [2] is a strategy (mixed or pure) of player i such that for
any type θi it chooses an action ai so that for any nature state a−i of the other agents, ui(ai,a−i|θi) ≥
maxa mina−i ui(a,a−i|θi). I.e., the strategy guarantees the safety level L

de f
= maxa′ mina′−i

ui(a′,a′−i|θi).
Individual Rationality of a strategy si of player i satisfies that for any type θi it chooses an action

ai so that for any nature state a−i of the other agents, ui(ai,a−i|θi) ≥ 0. I.e., the strategy guarantees a
non-negative utility for the player.

The two notions are quite similar, as individual rationality can be seen as a minimal safety level
requirement; in auctions they are in fact equivalent to a third notion of no over-bidding, under some
reasonable conditions (the auction does not charge payments from non-winners, and never charges a
winner more than her declared value). We claim:

Proposition 3.4. A DSL strategy is a safety level strategy, but not necessarily vice-versa.

Corollary 3.5. When there is a finite amount of safety level strategies, and a finite amount of nature
states, a DSL strategy is guaranteed to exist.

The corollary is a result of Lemma 3.8 and Lemma 3.9. We prove both during our discussion of the
lexicographic max-min in the next subsection.

3.3 Lexicographic Max-min

A very interesting comparison is with another robust solution notion, the lexicographic max-min (also
commonly known as leximin). The leximin is especially prevalent in the fair allocation literature, see,
e.g., [16]. We consider two possible ways to define it:

Definition 3.6. Leximin - Let Uai be the set of all possible utility outcomes of the action ai by agent
i, ordered from small to large, and let Uai [ j] be the j element of Uai in this ordering. An action ai

lexicographically weakly dominates (LD) another action a′i if minUai > minUa′i , or minUai = minUa′i
and Uai \minUai LDs Ua′i \minUa′i (a recursive definition). We call an action that LDs all other actions
a leximin. A strategy is leximin if it maps all types to leximin actions.

Multi-Leximin - Let Uai be the multiset of all possible utility outcomes of the action ai by agent
i, ordered from small to large. The rest of the definition follows similarly, where importantly in the
recursive definition we remove only one copy of the minimum element at each step.

Note that the (Multi-)leximin notions are only clearly defined when there is a finite amount of nature
states a−i, otherwise the recursive definition of LD may not terminate.

We first note that both definitions give stronger notions than safety level strategies.

Lemma 3.7. (Multi-)leximin is a safety level strategy, but not necessarily vice-versa.

Despite some similarity in the definition with DSL, the notion of leximin does not have a special
relationship with it: neither implies the other. We demonstrate it using the discrete first-price auction in
Example B.7 Appendix B.

The notion of multi-leximin is much more closely related to the DSL notion. In fact, it is a stronger
notion:

Lemma 3.8. Multi-leximin is a DSL strategy, but not necessarily vice-versa.
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Lemma 3.9. When there is a finite amount of safety level strategies, multi-leximin is guaranteed to exist.

An important advantage of the DSL definition is that it naturally extends to settings with continuous
outcomes. It is not clear how to extend the leximin definition to such cases. Thus, one possible way of
thinking about the DSL notion is that it is a somewhat weaker notion of multi-leximin, that can be used
in continuous settings, as well as discrete ones.

4 Main Result: Application to VCG under False-name Attacks

We now move on to present our main result and through it the usefulness of the DSL notion. False-name
attacks by an agent i in a combinatorial auction are where instead of sending one combinatorial bid, the
agent sends multiple combinatorial bids (a vector bi rather than a single bid bi). The agent then gets all
the items allocated to the “agents” (which we call Sybil agents or Sybil bids) 1 ≤ j ≤ |bi|, and pays the
sum of all their payments. Before formally introducing the VCG notations, we note three complexities
that are present in our notations: (1) We consider both the notion of DSL strategies (which has the single
agent perspective vs. nature states) and social welfare (which accounts for n different agents). (2) We
consider welfare for the real n underlying agents of the auction, but since each may use Sybil identities,
the VCG allocations are in terms of the Sybil identities. We allow for both by using sub-indexing. (3)
Similar to the case of the first-price auction, discretization of the bid space is essential to the result (a
counter-example for continuous VCG appears in the full version of our paper. To further simplify the
proof, we also assume that the valuation space is discrete, though this assumption can be removed. We
allow more granularity to the bid space: valuations are on an ε grid, while bids are on an ε

2|M|! grid.

Definition 4.1. Grid(ε) = {εk}k∈N = {0,ε,2ε, . . .}. A combinatorial bid b ∈ B over an item set M is
a function b : P(M)→ Grid( ε

2|M|!) from the power set of all subsets of M to a non-negative bid value. A
combinatorial valuation v is similarly v : P(M)→Grid(ε). With the possibility of Sybil attacks, an agent
i with valuation (type) vi sends a vector of bids (action) bi ∈ B∗ (i.e., any amount of combinatorial bids),
and faces a nature state b−i ∈ B∗.

Let ηi = |bi|,η−i = |b−i| be the number of (Sybil) agents in each vector. An allocation αS(bi,b−i)
maps the bid vectors into a partition of S into subsets. We allow indexing α1, . . . ,αn to mean the union of
items allocated to the Sybil identities of each real agent, as well as sub-indexing αi1 , . . . ,αiηi

to mean the
items allocated to a specific Sybil identity of agent i. We denote SW Obs

α = ∑
n
i=1 ∑

ηi
j=1 bi j(αi j),SW Real

α =

∑
n
i=1 vi(αi) for the observed social welfare of an allocation as specified in the (possibly Sybil) bids, and

the real social welfare of the agents, respectively. We denote truthi = vi for the truthful bid.
The VCG combinatorial auction is the pair of allocation rule

α
M(bi,b−i) = argmax

ãM(bi,b−i)

(SW Obs
ãM(bi,b−i)

),

and the payment rule
pM

i j
(bi,b−i) = SW Obs

αM (bi,b−i)−SW Obs

α
M\aM

i j
(bi,b−i).

Finally, the utility of agent i is ui(bi,b−i|vi) = vi

( ⋃
1≤ j≤ηi

aM
i j
(bi,b−i)

)
−

ηi

∑
j=1

pM
i j
(bi,b−i).

Theorem 4.2. When all bidders play DSL strategies, discrete VCG achieves optimal welfare, even under
the possibility of false-name attacks and with general valuations.
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Proof. Our proof follows the following structure: First, we define overbidding Sybil attacks and show
that they are not DSL. We then define underbidding attacks and show that they are not DSL. For any
of the remaining attacks, which we call exact-bidding (bidding truthfully is also exact-bidding, but not
exclusively so), we show that even though they are not necessarily truthful, they yield maximal welfare.
However, this still does not guarantee that one of the remaining strategies is in fact DSL. For this purpose,
we show that there exists a DSL strategy: being truthful3.

First, we show that if the Sybil bids are overbidding v (in a sense that will be immediately defined),
then, similarly to our proof for the first-price auction (see Appendix B), it is not safety level and thus
not DSL. This requires slightly more care since the bids are combinatorial and there are several Sybil
bids. We say that bi = (bi1 , . . . ,biηi

) is overbidding if there is a set S and an allocation αS(bi) so that
∑

ηi
j=1 bi j(α

S
i j
(bi))> vi(S).

Claim 4.3. Overbidding =⇒ not DSL.

Proof. Let us choose a maximizing allocation αS(bi) for S.
We denote b̄ = max1≤ j≤ηi maxS′⊆M bi j(S

′)+vi(S′) for a number high enough that if some other agent
bids it for any subset of M, both the truthful bid vi or the Sybil attack bi will lose that subset. We
will use it in our construction of nature states. By the overbidding condition, we can take the average
b̃ = vi(S)

2 + 1
2 ∑

ηi
j=1 bi j(a

S
i j
), so that ∑

ηi
j=1 bi j(α

S
i j
)> b̃ > vi(S). Consider a nature state where the false-name

attacker faces exactly one additive bidder b′ that has for any good g ∈M \S, b′(g) = b̄, and for any good
g ∈ S, b′(g) = b̃

|S| . The optimal observed welfare allocation is to allocate all goods in M \ S to b′, and
allocate the set S as in αi(S). The payment of bidder bi must be at least b′(S) = b̃ > vi(S). Therefore, the
attacker has negative utility in this case, while truthfulness is individually rational: i.e., it is not a safety
level strategy and so also not DSL.

We say that bi1 ,biηi
are underbidding if there is a set S so that for any allocation αS de f

= αS(bi) so that
∑

ηi
j=1 bi j(α

S
i j
)< vi(S).

Claim 4.4. Underbidding =⇒ not DSL.

Proof. Let b̃ = 1
2 ∑

ηi
j=1 bi j(α

S
i j
)+ vi(S)

2 , then

ηi

∑
j=1

bi j(α
S
i j
(bi))< b̃ < vi(S).

Let b′ be constructed as in the overbidding case. The allocation αM(bi,b′) allocates no items to the
Sybil bidders of agent i. However, the allocation given agent i bids truthfully αM(truthi,b′), allocates
the set S to her with payment b̃, which yields agent i a positive utility vi(S)− b̃. This yields

min
b−i∈Dvi (bi,truthi)

ui(bi,b−i|vi) = 0.

On the other hand, we claim that since we know DSL strategies are not overbidding, there are no nature
states for which an underbidding Sybil attack gets positive utility while bidding truthfully gets 0 utility.
Assume towards contradiction truthi gets 0 utility. It then either does not win any item, or wins some set

3Another, albeit non-constructive method to show there exists a DSL strategy is by showing the finiteness of undominated
exact-bidding Sybil attacks, and then use Corollary 3.5
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S and pays vi(S) for it. Let S be the set that the Sybil bidders win to gain positive utility. As there is no
overbidding, this set can be won by truthi as well (in the respective maximizing allocation)4. Then,

SW Obs
αM\S(bi,b−i) (No overbidding)

= SW Obs
αM\S(truthi,b−i) (i wins only S)

= SW Obs
αM\S(b−i) (i’s truthful payment)

= SW Obs
αM (b−i)− vi(S) (More bids)

≤ SW Obs
αM (bi,b−i)− vi(S)

So
vi(S)≤ SW Obs

αM(bi,b−i)
−SW Obs

αM\S(bi,b−i)
(1)

Since our choice of S assumes the Sybil bids win exactly it, we have

SW Obs
αM\S(bi,b−i)

+SW Obs
αS(bi)

= SW Obs
αM(bi,b−i)

,

and so, together with Eq. 1,

vi(S)≤ SW Obs
αM(bi,b−i)

−SW Obs
αM\S(bi,b−i)

= SW Obs
αS(bi)

.

Since there is no overbidding, SW Obs
αS(bi)

= vi(S).
We now show that any Sybil bidder j pays vi(S)−∑1≤t 6= j≤ηi bi j(αi j). Since S is allocated to the Sybil

bidders and M \S to others,

SW Obs

α
M\aM

i j
(bi,b−i) =

SW Obs
αM\S(bi,b−i)+SW Obs

α
S\aM

i j
(bi,b−i)

(2)

Then,

pM
i j
= SW Obs

αM (bi,b−i)−SW Obs

α
M\aM

i j
(bi,b−i)

= SW Obs
αM (bi,b−i)−SW Obs

αM\S(bi,b−i)

−SW Obs

α
S\aM

i j
(bi,b−i)

= vi(S)−SW Obs

α
S\aM

i j
(bi,b−i)

= vi(S)−
ηi

∑
j=1

bi j(αi j)

The total payment of agent i is then
ηi

∑
j=1

pM
i j
=

ηi

∑
j=1

vi(S)− ∑
1≤t 6= j≤ηi

bi j(αi j) =

ηi · vi(S)− (ηi−1)
ηi

∑
j=1

bi j(αi j) = vi(S).

4In full generality, truthi may win a set s that has partial intersection with S. The analysis of this case is essentially the
same, and stems from the fact that the alternative value for the items forces zero utility on the truthful agent.
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This concludes that whenever the utility of truthi is 0, then the utility for the Sybil attack is 0 as well.
In any other case, the utility of truthi must be strictly positive, and since the bids are discrete the

minimum over all these cases satisfies

min
b−i∈Dvi (bi,truthi)

ui(truthi,b−i|vi)≥
1

2|M|!
.

Therefore, underbidding is not DSL.

We consider exact-bidding such Sybil bids that have for any set of items S, maxαS(bi) ∑
ηi
j=1 bi j(αi j(S))=

vi(S). These are exactly all the Sybil attacks that are neither overbidding nor underbidding. truthi is also
exact-bidding.

Claim 4.5. Exact-bidding =⇒ optimal welfare.

Proof. Consider an allocation αF
de f
= αM(bi,b−i) attained when all players choose an exact-bidding

attack, vs αT
de f
= αM(truthi, truth−i). We have

SW Real
αT
≤ (Truthful)

SW Obs
αT
≤ (No underbidding)

SW Obs
αF
≤ (No overbidding)

SW Real
αF

In words, since there is no underbidding in the Sybil attack, if we take the set allocated to each agent
i under the allocation that maximizes welfare under truthfulness, there are Sybil bidders i j1 , . . . , i jk with
the same aggregate valuation for it. So, SW Obs

αF
is lower bounded by the optimal truthful welfare. Since

there is also no overbidding, whatever allocation is chosen as αObs
F is at least as good to each agent i as

is declared.

Claim 4.6. truthi is DSL.

Proof. Consider some exact-bidding Sybil attack bi.
Case 1: There is a set S so that ∀1≤ j≤ ηi,bi j(S)< vi(S). Then, by the exact-bidding condition there

must be some allocation αS(bi) (with at least two non-empty allocations αS
i j

) so that maxηi
j=1 bi j(α

S
i j
) <

∑
ηi
j=1 bi j(α

S
i j
) = vi(S). Consider the nature state where there is one bid b′ so that b′(αS

i j
) = vi(α

S
i j
) for

any 1 ≤ j ≤ ηi, and the rest of the sets are defined upward-monotonely: They inherit the largest value
of a subset. With this nature state, the Sybil attack has utility 0. On the other hand, truthi has positive
utility of vi(S)−maxηi

j=1 vi(αi j)> 0. Since truthi is individually rational, it is thus DSL w.r.t. such Sybil
attacks.

Case 2: For every set S, there is such j′ with bi j′ (S) = vi(S). It must hold by the exact-bidding
condition that for any allocation αS(bi), ∑

ηi
j=1 bi j(α

S
i j
) ≤ vi(S) = bi j′ (S). We may assume that VCG

prefers to assign larger bundles when tie-breaking between possible assignments. Then, it must be that
any allocation to the Sybil bidders is given to one Sybil bidder as a whole bundle. It is then weakly better
to send only bi j′ as a single bid instead of bi. Furthermore, it is then weakly better to send truthi, since
truthfulness is dominant for single bid VCG. Since this is true given any nature state, the Sybil attack is
weakly dominated by truthi, which implies truthi is DSL with respect to it.

This covers all the exact-bidding Sybil attacks. DSL strategies with respect to overbidding and
underbidding attacks are implied by the relevant discussion. Overall this covers all Sybil attacks.
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5 Discussion and Future Directions

In the example of the discrete first-price auction in Section 2, as well as in our main result in Section 4, the
DSL solution concept leads to optimal results: truthfulness (or near truthfulness), and optimal revenue or
welfare. In Appendix B we study the first-price auction, and show similar results for its discrete variant.
However, for the classic setting of voting, we show in the full version of this paper that this is not the
case, and that solutions may have various surprising forms.

A robust notion missing from our discussion in Section 3 is min-max regret. We show in Appendix A
it does not imply or is implied by our notion of DSL, and give further characteristics of it. It is also
compared with our notion as part of our discussion of the discrete first-price auction in Appendix B.

In our definition of DSL, we consider only pure nature states. We justify this choice in Appendix C
of the full version, by showing that if we consider mixed nature states as well, then the DSL and safety
level notions become one. In Appendix D of the full version, we show a possible refinement of our notion
of DSL, and demonstrate why it may be useful.

A few immediate open questions follow our work:

• We find that DSL is a stronger notion than safety level. In settings previously studied that proved
performance guarantees for safety level strategies, do DSL strategies exist? Can they yield better
performance guarantees?

• In the case of single-item auctions, our analysis of the discrete first price auction implies that
with DSL bidders, it is possible to achieve optimal welfare and revenue. Does this extend to
combinatorial auctions? If so, does it hold even when the discretization must be polynomially
bound?

• In the presence of partial knowledge or the option to elicitate it (similar to the ideas in [14]), what
would the DSL action be? This is relevant, for example, when agents arrive sequentially, and so
the set of feasible nature states diminishes for later agents.
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A Min-max Regret

Another robust solution notion is the min-max regret [18]. The notion has many uses in voting: [9]
showed it can be used to explain why voters choose to participate in elections, and [15] used it to “re-
solve” the Gibbard-Satterthwaite impossibility theorem (see, e.g., [3]), by showing that plurality voting
(for example) is truthful under this notion. [14] showed how when only partial preferences are known,
voting rules can use this notion to decide a winner, and design good elicitation schemes.

Definition A.1. Regret for an action ai and nature state a−i given a type θi is

Reg(ai,a−i|θi) = max
a′i

u(a′i,a−i|θi)−u(ai,a−i|θi).

Max regret for an action ai given a type θi is

Reg(ai,a−i|θi).

A min-max regret action belongs to

argmin
ai

max
a−i,a′i

u(a′i,a−i|θi)−u(ai,a−i|θi).

In words, the regret of an action ai under nature state a−i is the maximal lost utility u(a′i,a−i|θi)−
u(ai,a−i|θi) of choosing ai instead of a′i, over all possible actions a′i (this regret is non-negative, as there
is always the option of choosing ai itself). Max regret is the maximal such regret over all nature states,
and the min-max regret action is the action ai that has minimal max regret.

Proposition A.2. Dominant strategy =⇒ min-max regret

Proof. Consider a dominant strategy s, fix a type θi, and let a = s(θi). For any a′,a−i, we have that
u(a′,a−i)− u(a,a−i) ≤ 0, i.e., the max regret for a is 0, the minimum possible, and so a is a min-max
regret action. Since this holds for all types, s is a min-max regret strategy.

Example A.3. Min-max regret 6=⇒ safety level
Consider two players, with actions a,b, and A,B respectively. Consider u1(a,A) = u1(a,B) =

0,u1(b,A) = −1,u1(b,B) = 100. The max regret of a for player 1 is 100, and the max regret of b is
1, and so b is the min-max regret strategy, while a is the unique safety level strategy.

B DSL Strategies: Application to the First-price Auction

B.1 The First-price Auction

As an illustrative example, we demonstrate the usage of our solution concept using the first price and
discrete first price single item auctions. Interestingly, we show that in the first-price auction, there are
no DSL strategies. However, moving to a discrete setting, we show that in the discrete first-price auction
[5], there is a unique DSL strategy, which achieves maximal welfare and near maximal revenue.

Definition B.1. An agent i has a value (type) vi for an item. The agent’s bid bi (action) and nature states
b−i are from the same bid space. The auctioneer allocates the item to the highest bidder (either the agent
or nature, tie-breaking towards nature) and if the agent wins it receives vi−bi, and otherwise 0.

First-price auction (FPA): bid space is 0≤ bi ≤ vi.
Discrete first-price auction (DFPA): bid space is bi ∈ {ε · k|ε · k ≤ vi}k∈N .
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Note that we reformulate the auctions to suits our agent perspective formulation. Moreover, we
omit strategies that are not individually rational (in the (discrete) first-price auction, overbidding has
negative utility in some nature states), which is justified by our later discussion in Proposition 3.4. We
also ignore multitude in nature states that does not change the auction outcome. I.e., we only consider
the highest bids by others as the nature state, and not the entire bid vector. For the DFPA, we denote
εnet(vi) = ε ·maxεn≤vi n, i.e., the closest possible bid below the agent’s value of the item.

In the first-price auction, the notion of DSL strategies is not of much help:
Lemma B.2. In the first-price auction, there are no DSL bid strategies.

Proof. First, consider some bid 0 ≤ bi < vi. Compare it with another bid b′i that satisfies bi < b′i < vi.5

Consider a nature state b−i so that bi < b−i < b′i. Then, 0 = ui(bi,b−i|vi) 6= ui(b′i,b−i|vi) = vi−b′i. Thus,

min
b−i∈Dvi (bi,b′i)

ui(bi,b−i|vi) = 0.

On the other hand, for the bid b′i and for some nature state b−i, ui(b′i,b−i) = 0 if and only if b−i ≥ b′i.
In all such cases, it also holds that ui(bi,b−i|vi) = 0. In all other cases, i.e., when b−i < b′i, the utility of
the bidder satisfies ui(b′i,b−i|vi) = vi−b′i. We conclude that

min
b−i∈Dvi (bi,b′i)

ui(b′i,b−i|vi) = vi−b′i

> min
b−i∈Dvi (bi,b′i)

ui(bi,b−i|vi) = 0,

and the bid strategy bi is not DSL.
If bi = vi, then for any nature state b−i, ui(bi,b−i|vi) = 0. For some 0≤ b′i < bi, for any nature state

b−i where its utility is non-zero, we have ui(b′i,b−i|vi) = vi−b′i > 0, and so similarly to before bi = vi is
not DSL.

However, things get more interesting with the DFPA:
Lemma B.3. In the discrete first-price auction:

For types that have εnet(vi) 6= vi, and types with εnet(vi) = vi = 0, bidding εnet(vi) is the unique DSL
bid.

For types with εnet(vi) = vi 6= 0, the unique DSL bid is εnet(vi)− ε .
We first give a proof for the pure DSL case.

Proof. The argument why any other bid strategy is not DSL follows a discretized version of the proof
for Lemma B.2.

Case 1: εnet(vi) 6= vi

Consider some bid with 0 ≤ b′i < εnet(vi). By the same argument as in the first part of the proof
of Lemma B.2, bidding εnet(vi) is DSL w.r.t. b′i. Since there are no bids with εnet(vi) < b′i ≤ vi by the
definition of εnet , we conclude that εnet(vi) is DSL w.r.t. all other bids, i.e., DSL.

Case 2: εnet(vi) = vi = 0
The unique safety level bid is to bid 0, and so by Proposition 3.4 it is also the unique DSL strategy.
Case 3: εnet(vi) = vi 6= 0
Similar to the first case, with the difference that bidding vi always leads to utility 0, and so the DSL

bid bracket is vi− ε .
5Note that the proof is written for the pure DSL case. However, it immediately generalizes to the mixed case, by adapting

“bi < vi” to “has a positive probability to satisfy bi < vi”, etc.
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The following lemma completes the mixed DSL case:

Lemma B.4. In the discrete first-price auction with mixed strategies, following the unique DSL pure
strategy is the unique DSL strategy.

Proof. We show the proof for case 1 where εnet(vi) 6= vi. The other cases are done similarly.
Let si be the stated strategy, vi the valuation (type) and the bid b = si(θi). Let b′ be some other

bid: since b 6= b′, the bracket εnet(vi) has probability p < 1 of being the actualized bid. Consider the
case b−i where another bidder bids εnet(v)− ε , and ties are broken in favor of the other bidder. Then,
ui(b′,b−i|vi) = Eb̃′∼b′ [ui(b̃′,b−i|vi)] = p · (vi − εnet(vi)) + (1− p)1[b̃′ > εnet(vi)] · (vi − b̃′) = p · (vi −
εnet(vi)) + (1− p)1[b̃′ > vi](vi− b̃′) < p · (vi− εnet(vi)) < vi− εnet(vi). In any nature state and actu-
alized outcome over the mixed bid b′, if b does not win the item, then b′ does not win the item, or,
alternatively, it wins it and receives negative utility. So, minb−i∈Dvi (b,b

′) ui(b,b−i|vi) ≥ vi− εnet(vi) >

minb−i∈Dvi (b,b
′) u(b′,b−i|vi), and so by the DSL condition b′ is not DSL (and b is DSL w.r.t. b′).

The simple intuition as to why the discrete first-price auction “works” (to guarantee a DSL strategy)
and the first-price auction does not, is that in the first-price auction there is always a “safer” bid that would
guarantee winning the item in more nature states. In the discrete first-price auction, due to bracketing, the
highest bracket that can have positive utility is that DSL bid. Note that this is “almost” truthful: When
εnet(vi) 6= vi, it is the closest bracket to vi, and it is less than ε away from it. When εnet(vi) = vi (which
should be seen as a rare case, where the value precisely matches the epsilon net), it is not the truthful
bracket, but it is ε close to it. It is also very close to optimal revenue for the auctioneer: If n individually
rational agents participate, the most the auctioneer can get is max1≤i≤n vi. If they play DSL strategies,
she will get at least max1≤i≤n vi− ε .

We note that for the discrete first-price auction, DSL identifies with multi-leximin.

Corollary B.5. The unique DSL strategy of the discrete first-price auction is also the unique multi-
leximin strategy.

Proof. For an agent i with value vi there is a finite amount of safety level strategies, namely all the
strategies with bi ≤ vi, the amount of which is at most d vi

ε
e+1. By Lemma 3.9, there must exist a multi-

leximin strategy. By Lemma 3.8 it is also DSL. Since there is a unique DSL strategy by Lemma B.3, it
must also be the unique multi-leximin.

On the other hand, we now see that min-max regret yields a different solution to the discrete first-
price auction than DSL, i.e., the two notions do not imply each other. [20] previously applied min-max
regret in auction settings, and in particular discussed the DFPA in their Claim 3.1, which we restate
adapted to our notations:

Claim B.6. In the discrete first-price auction, the min-max regret strategy is to bid εnet(
vi
2 ).

Proof. For any bid bi, the maximum regret is either bi itself (in the case when no other bidders show up
and it was possible to bid and pay 0), or vi− (bi + ε) (in the case when another bidder bids bi and the
item goes to her.6 We are thus looking for argminbi

max{bi,vi−bi− ε}, among the εnet feasible bids.

6This is true under worst-case arbitrary tie-breaking. If tie-breaking is uniformly random between bidders of the same
bracket, this is still true as the limiting regret when there are n→ ∞ bidders in the same bracket
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For b′i < εnet(
vi
2 ), the regret is thus at least

Reg(b′i)≥ vi−bi− ε

≥ vi− (εnet(
vi

2
)− ε)− ε = vi− εnet(

vi

2
)

≥max{vi− εnet(
vi

2
)− ε,

vi

2
}

≥max{vi− εnet(
vi

2
)− ε,εnet(

vi

2
)}= Reg(bi).

For b′i > εnet(
vi
2 ), the regret is at least

Reg(b′i)≥ b′i ≥ εnet(
vi

2
)+ ε

≥max{εnet(
vi

2
),

vi

2
}

≥max{εnet(
vi

2
),vi− εnet(

vi

2
)− ε}= Reg(bi).

We conclude that εnet(
vi
2 ) is the min-max regret bid strategy.

Finally, we use the discrete first-price auction to demonstrate the difference between leximin and
DSL strategies.

Example B.7. We demonstrate that leximin is different from DSL using the discrete first-price auction.
Bidding 0 is the leximin action, as its set of outcomes is simply the set of two items U0 = {0,vi}: This is
the leximin since any other bid bi > 0 has Ubi = {0,vi−bi}.
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Arbitrary Public Announcement Logic with Common Knowledge (APALC) is an extension of Public

Announcement Logic with common knowledge modality and quantifiers over announcements. We

show that the satisfiability problem of APALC on S5-models, as well as that of two other related

logics with quantification and common knowledge, is Σ1
1-hard. This implies that neither the validities

nor the satisfiable formulas of APALC are recursively enumerable. Which, in turn, implies that

APALC is not finitely axiomatisable.

1 Introduction

Quantified Public Announcement Logics. Epistemic logic (EL) [21] is one of the better-known for-

malisms for reasoning about knowledge of agents in multi-agent systems. It extends the language of

propositional logic with constructs �aϕ meaning that ‘agent a knows ϕ’. Formulas of EL are interpreted

on epistemic models (or, equivalently, S5-models) that comprise a set of states, equivalence relations for

each agent between states, and a valuation function that specifies in which states propositional variables

are true. However, EL provides only a static description of distribution of knowledge in a system. Exten-

sions of the logic that allow one to reason about how information of individual agents and groups thereof

changes as a result of some epistemic event are generally collectively known as dynamic epistemic logics

(DELs) [10].

The prime example of a DEL and arguably the most well-studied logic in the family is public an-

nouncement logic (PAL) [25]. A public announcement is an event of all agents publicly and simultane-

ously receiving the same piece of information. The language of PAL extends that of EL with formulas

[ψ ]ϕ that are read as ‘after public announcement of ψ , ϕ is true’.

Quantification over various epistemic actions, and in particular over public announcements, has been

explored in the last 15 or so years [9]. Adding quantification over public announcements allows one to

shift the emphasis from the effects of a particular announcement to the question of (non-)existence of an

announcement leading to a desired epistemic goal. In this paper, we focus on the three, perhaps most

well-known, quantified PALs (QPALs). The first of the three is arbitrary PAL (APAL) [6] that extends

the language of PAL with constructs [!]ϕ meaning ‘after any public announcement, ϕ is true’. A formula

with the dual existential quantifier 〈!〉ϕ is read as ‘there is a public announcement, after which ϕ is true’.

Observe that quantifiers of APAL do not specify whether an announcement can be made by any

of the agents, or groups thereof, modelled in a system. Hence, a more ‘agent-centric’ quantified PAL

was proposed. Group announcement logic (GAL) [1] extends the language of PAL with formulas [G]ϕ
meaning ‘after any announcement by agents from group G, ϕ is true’. A formula with the dual of the

universal GAL quantifier is 〈G〉ϕ that is read ‘there is an announcement by agents from group G that

makes ϕ true’.

http://dx.doi.org/10.4204/EPTCS.379.21
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Once we start reasoning about what groups of agents can achieve by making public announcements,

it is only too natural to consider their abilities in a game-theoretic setting. In particular, we may let agents

outside of the group make their own announcements in an attempt to preclude the group from reaching

their epistemic goals. A QPAL with such a competitive flavour to it is called coalition announcement

logic (CAL) [2, 15]. The logic extends PAL with modalities [〈G〉]ϕ that are read as ‘whatever agents

from coalition G announce, there is a counter-announcement by the anti-coalition that makes ϕ true’.

The diamond version 〈[G]〉ϕ is then means that ‘there is an announcement by coalition G, such that

whatever the anti-coalition announces at the same time, they cannot avoid ϕ’. Observe, that compared to

APAL and GAL, modalities of CAL contain double quantification: ∀∃ and ∃∀ correspondingly. As the

name of the logic suggests, modalities of CAL were inspired by coalition logic [24], and they capture

game-theoretic notions of α- and β -effectivity [5].

Some Logical Properties of QPALs. One of the most pressing open problems in the area is the

existence of finitary axiomatisations of QPALs. Both finitary and infinitary axiom systems for APAL

were proposed in [6], but later the finitary version was shown to be unsound [19]. The infinitary axioma-

tisation is, however, sound and complete [7]. As the axiomatisation of GAL [1] is quite similar to that of

APAL, its finitary version is also not sound [13, Footnote 4], and its infinitary version can be shown to

be sound and complete by a modification of the proof from [7]. To the best of our knowledge, there are

no known sound and complete proof systems, finitary or infinitary, for CAL1.

The satisfiability problem for QPALs is known to be undecidable [3]. The result is achieved by a

reduction from the classic tiling problem that consists in answering the question whether a given finite

set of tiles can tile the N×N plane. Since this problem is co-RE-complete [8, 17], or, equivalently,

Π0
1-complete, the reduction amounts to the fact that the satisfiability problem for QPALs is co-RE-hard

(or Π0
1-hard). Note that this result does not rule out the existence of finitary axiomatisations of QPALs.

A prime example of a logic with a co-RE-complete satisfiability problem and a finitary axiomatisation is

first-order logic.

Overview of the paper and our result. In this paper we consider extensions of QPALs with common

knowledge [12], which is a classic variant of group knowledge in multi-agent systems. Its intuitive

meaning is that ‘ϕ is common knowledge among agents in group G if everyone in G knows ϕ , everyone

in G knows that everyone in G knows ϕ and so on ad infinitum’. Semantically, common knowledge

among agents from G corresponds to the reflexive transitive closure of equivalence relations of all agents

from group G. We call extensions of APAL, GAL, and CAL with common knowledge APALC [4],

GALC, and CALC, correspondingly, or QPALCs if we refer to all of them at the same time.

The result we prove in this paper is that the satisfiability problems for QPALCs are Σ1
1-hard. We

do this by showing that the recurring tiling problem, which is known to be Σ1
1-complete [18], can be

reduced to satisfiability of QPALC formulas. Because the satisfiability problems are Σ1
1-hard, it follows

that, in particular, the set of valid QPALC formulas is not recursively enumerable. That, in turn, im-

plies that QPALCs have no finitary axiomatisations. The non-existence of a finitary axiomatisation of

a somewhat related arbitrary arrow update logic [11] with common knowledge was shown in [20] by

the reduction from the non-halting problem. Moreover, the recurring tiling problem was used in [22] to

demonstrate that the satisfiability problem of PAL with iterated announcements and common knowledge

is Σ1
1-complete.

The use of common knowledge is instrumental in our paper, since it allows us to have a ‘tighter’

grid than the ones from [3] and [14]. We deem our result important in at least two ways. First, the

non-existence of finitary axiomatisations of QPALCs is interesting in its own right as it demonstrates

1A complete infinitary axiomatisation with CAL modalities and additional operators was given in [16]
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that presence of common knowledge in QPALCs is a sufficient condition for Σ1
1-hardness. Second,

having both our construction (with common knowledge) and the constructions from [3] and [14] side by

side, allows one to flesh out crucial differences between Σ1
1-hardness and Σ0

1-hardness arguments, and,

hopefully, move closer to tackling the open problem of (non-)existence of finitary axiomatisations of

QPALs.

Outline of the paper. The rest of the paper is organised as follows. In Section 2 we cover the

background on QPALCs. After that, in Section 3, we prove the main claim of this paper, and, finally, we

conclude in Section 4.

2 Quantified Public Announcement Logics with Common Knowledge

Let A be a finite set of agents, and P be a countable set of propositional variables.

Definition 2.1. The languages of arbitrary public announcement logic with common knowledge APALC,

group announcement logic with common knowledge GALC, and coalition announcement logic with com-

mon knowledge CALC are inductively defined as

APALC ∋ ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) |�aϕ | [ϕ ]ϕ |�Gϕ | [!]ϕ

GALC ∋ ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) |�aϕ | [ϕ ]ϕ |�Gϕ | [G]ϕ

CALC ∋ ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) |�aϕ | [ϕ ]ϕ |�Gϕ | [〈G〉]ϕ

where p ∈ P, a ∈ A, and G ⊆ A. Duals are defined as ♦aϕ := ¬�a¬ϕ , 〈ψ〉ϕ := ¬[ψ ]¬ϕ , �Gϕ :=
¬�G¬ϕ , 〈!〉ϕ := ¬[!]¬ϕ , 〈G〉ϕ := ¬[G]¬ϕ and 〈[G]〉ϕ := ¬[〈G〉]¬ϕ .

The fragment of APALC without [!]ϕ is called public announcement logic with common knowledge

PALC; the latter without [ϕ ]ϕ is epistemic logic with common knowledge ELC; PALC and ELC minus

�Gϕ are, correspondingly, public announcement logic PAL and epistemic logic EL. Finally, fragments

of APALC, GALC and CALC without �Gϕ are called arbitrary public announcement logic APAL, group

announcement logic GAL and coalition announcement logic CAL respectively.

Definition 2.2. A model M is a tuple (S,∼,V ), where S is a non-empty set of states, ∼: A→ 2S×S gives an

equivalence relation for each agent, and V : P → 2S is the valuation function. By ∼G we mean reflexive

transitive closure of
⋃

a∈G ∼a. We will denote model M with a distinguished state s as Ms.

We would like to stress that agent relations in our models are equivalence relations (and hence our

models are S5 models). The results of this paper do not generalise to arbitrary agent relations in any

obvious way.

It is assumed that for group announcements, agents know the formulas they announce. In the fol-

lowing, we write PALC
G = {

∧

i∈G�iψi | for all i ∈ G,ψi ∈ PALC} to denote the set of all possible an-

nouncements by agents from group G. We will use ψG to denote arbitrary elements of PALCG.
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Definition 2.3. Let Ms = (S,R,V ) be a model, p ∈ P, G ⊆ A, and ϕ ,ψ ∈ APALC∪GALC∪CALC.

Ms |= p iff s ∈V (p)

Ms |= ¬ϕ iff Ms 6|= ϕ

Ms |= ϕ ∧ψ iff Ms |= ϕ and Ms |= ψ

Ms |=�aϕ iff ∀t ∈ S : s ∼a t implies Mt |= ϕ

Ms |=�Gϕ iff ∀t ∈ S : s ∼G t implies Mt |= ϕ

Ms |= [ψ ]ϕ iff Ms |= ψ implies Mψ
s |= ϕ

Ms |= [!]ϕ iff ∀ψ ∈ PALC : Ms |= [ψ ]ϕ

Ms |= [G]ϕ iff ∀ψG ∈ PALC
G : Ms |= [ψG]ϕ

Ms |= [〈G〉]ϕ iff ∀ψG ∈ PALC
G
,∃χA\G ∈ PALC

A\G : Ms |= ψG implies Ms |= 〈ψG ∧ χA\G〉ϕ

where M
ψ
s = (Sψ ,Rψ ,V ψ) with Sψ = {s ∈ S | Ms |= ψ}, Rψ(a) is the restriction of R(a) to Sψ for all

a ∈ A, and V ψ(p) =V (p)∩Sψ for all p ∈ P.

Observe, that it follows from the definition of the semantics that in the case of the grand coalition A,

Ms |= [A]ϕ if and only if Ms |= [〈A〉]ϕ . For the case of the empty group ∅, we assume that the conjunction

of an empty set of formulas is a tautology.

Remark 1. For APAL, GAL, and CAL, we assume that quantification ranges over a quantifier-free

fragment of the language, i.e. over PAL, which is equally expressive as EL [25]. This is, however,

not as straightforward once we consider ELC and PALC. The latter is strictly more expressive than

ELC [10, Theorem 8.48], and ELC, in its turn, is strictly more expressive than EL, and thus it matters,

expressivity-wise, which quantifer-free fragment of a QPALC the quantification ranges over. These

matters are explored in [4], where also infinitary axiomatisations of APALC and GALC are given. For

our current purposes, though, the difference in the range of quantification does not play a role.

3 The Satisfiability Problem of QPALCs is Σ1
1-hard

We prove the Σ1
1-hardness of the satisfiability problem of QPALCs via a reduction from the recurring

tiling problem [17].

Definition 3.1. Let C be a finite set of colours. A tile is a function τ : {north,south,east,west} → C.

A finite set of tiles T is called an instance of the tiling problem. A solution to an instance of the tiling

problem is a function2 f : N×N→ T such that for all (i, j) ∈ N×N,

f (i, j)(north) = f (i, j+1)(south) and f (i, j)(east) = f (i+1, j)(west).

Definition 3.2. Let T be a finite set of tiles with a designated tile τ∗ ∈ T. The recurring tiling problem

is the problem to determine whether there is a solution to instance T of the tiling problem such that τ∗

appears infinitely often in the first column.

We assume without loss of generality that the designated tile τ∗ occurs only in the first column.

2Throughout the paper we assume that 0 ∈ N.
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3.1 Encoding a Tiling

For our construction we will require five propositional variables — north, south, east, west and centre

— to designate the corresponding sides of tiles. Additionally, we will have designated propositional

variables for each colour in C, and for each tile τi ∈ T there is a propositional variable pi that represents

this tile. Finally, we will use p∗ for the special τ∗.

In our construction, we will represent each tile with (at least) five states: one for each of the four sides

of a tile, and one for the centre. As for agents, we require only three of them for our construction. Agent

s, for square, cannot distinguish states within the same tile. Agent v, for vertical, cannot distinguish

between the northern part of one tile and the southern part of the tile above. Similarly, the horizontal

agent h cannot distinguish between the eastern and western parts of adjacent tiles. See Figure 1 for the

depiction of an intended grid-like model.

{west,c2} {centre}

{north,c1}

{east,c4}

{south,c3}

{south,c1}

v

{north,c3}

v

{east,c2}

h

{west,c4}h

τi

τi

τ j

τk

v

v

v

τk τ j
h h h

τi τk
h h h

v v

τ j τi
h h h

v v

v v

Figure 1: Left: a representation of a single tile τi, where agent s has the universal relation within the

dashed square, relations h and v are equivalences, and reflexive arrows are omitted. Each state is labelled

by a set of propositional variables that are true there. Right: an example of a grid-like model that we

construct in our proof. Each tile τ has a similar structure as presented on the left of the figure.

Let an instance T of the recurring tiling problem be given. We start by construction of formula ΨT

that will be satisfied in a given model if and only if the model is grid-like. We will build up ΨT step-by-

step, defining useful subformulas along the way. Let Position be the following set Position := {north,
south, east, west,centre}.

The first constraint, expressed by formula one colour, is that each state is coloured by exactly one

colour. To ensure that all five parts — north, south, east, west, and centre — are present in a current

square, we state in all parts that in all squares the square agent s has access to all five relevant states.

one colour :=
∨

c∈C



c∧
∧

d∈C\{c}

¬d



 all parts :=�s

∨

q∈Position

q∧
∧

q∈Position

♦sq

The formulas hor and vert state that the relation h only allows us to move between east and west states,

while v only allows movement between north and south states.

hor :=
∧

q∈{north,south,centre}

(q →�hq) vert :=
∧

q∈{east,west,centre}

(q →�vq)
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With one pos we force each state to satisfy exactly one propositional variable from Position, and with

one tile we ensure that all states within the same tile are labelled by the tile proposition.

one pos :=
∨

q∈Position



q∧
∧

q′∈Position\{q}

¬q′



 one tile :=
∨

τi∈T



pi ∧�spi ∧
∧

τ j∈T\{τi}

¬p j





Next, we force each state in a tile to satisfy exactly one atom corresponding to their designated colour:

state col :=
∨

τi∈T



pi →
∧

q∈Position\{centre}

(q → τi(q))



 ,

where τi(q) is the colour of the tile τi on the side q (e.g. τi(south) is the bottom colour of tile τi).

All the formulas considered so far deal with the representation of a single tile. We will use the

following abbreviation:

ψtile := one colour∧all parts∧hor∧ vert∧one pos∧one tile∧ state col

Adjoining tiles are required to have the same colour on the sides facing each other, we simulate this

by requiring that agents h and v consider a current colour in the top and right directions. In such a way

we also ensure that the grid is infinite in the positive quadrant.

adj tiles :=
∧

c∈C

((north∧ c → ♦vsouth∧�vc)∧ (east∧ c → ♦hwest∧�hc))

We are concerned with the reduction from the N×N recurring tiling problem, i.e. our grid will have left

and bottom edges. We force the existence of a tile at position (0,0) with the following formula:

init :=�{h,v,s}(�{v,s}(west→�hwest)∧�{h,s}(south→�vsouth))

For the remaining formulas, it is useful to define two abbreviations. We use �upϕ to denote �s(north→
�v(south → ϕ)), i.e., we first move, by agent s, to the state representing the northern quadrant of the

tile, then we move, by agent v, to southern quadrant of the tile above, where we evaluate ϕ . Similarly,

we use �rightϕ to denote �s(east→�h(west→ ϕ)). The duals ♦up and ♦right are defined as usual.

The next two formulas are used to guarantee that for every tile there are unique tiles, up to PALC-

indistinguishability, above it and to its right.

up :=[!](♦up♦scentre→�up♦scentre)

right :=[!](♦right♦scentre→�right♦scentre)

Additionally, we use the following two formulas to establish a commutative property: going up and then

right results in a state that is PALC-indistinguishable from going right and then up.

right&up := [!](♦right♦up♦scentre→�up�right♦scentre)

up&right := [!](♦up♦right♦scentre→�right�up♦scentre)

Finally, we make sure that any two states that are h or v related and that are in the same position are

parts of indistinguishable tiles.
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no change :=
∧

q,q′∈Position

[!]((q∧♦sq
′)→ (�h(q → ♦sq

′)∧�v(q → ♦sq
′)))

The formula hor states that unless we are in a east or west position, we cannot go to a different position

using h. Similarly, vert states that unless we are in a north or south position we can’t use v to change

position. The formula no change then states that any move by relation h or v that does not change the

position must lead to an indistinguishable tile.

We abbreviate formulas with quantifiers as

ψx&y := up∧ right∧ right&up∧up&right∧no change

In our reduction, we are interested in grids where a special tile appears infinitely often in the first column

of the grid. The following formula requires that the special tile appears only in the leftmost column:

tile left := p∗ →�s(west→�hwest)

All of this completes the necessary requirements for the grid. Now, by adding a common knowledge

modality for all agents, we force all of the aforementioned formulas to hold everywhere in the grid.

ΨT :=�{h,v,s} (ψtile ∧adj tiles∧ init∧ψx&y ∧ tile left)

Observe that ΨT does not say anything about the special tile τ∗ appearing infinitely often in the first

column. The formula merely requires that if there is a special tile, then it should appear in the first

column. We first show that ΨT forces a grid-like model, and only after that will we consider the (in)finite

number of occurrences of the special tile.

Lemma 1. Let T be an instance of the recurring tiling problem. If T can tile N×N, then ΨT is satisfiable.

Proof. Assume that there is a tiling of the N×N plane with a finite set of tiles T. We construct model

M = (S,∼,V ) satisfying ΨT directly from the given tiling. In particular,

• S = N×N×{n,s,e,w,c},

• ∼s= {(i, j, l),(i′ , j′, l′) | i = i′ and j = j′}

• ∼v is the reflexive closure of {(i, j,n),(i, j+1,s)}

• ∼h is the reflexive closure of {(i, j,e),(i+1, j,w)}

• for all τk ∈ T, V (pk) = {(i, j, l) | τk is at (i, j)}

• for all c ∈C, V (c) = {(i, j, l) | τ(l) = c}

• for all l ∈ Position, V (l) = {(i, j, l) | l corresponds to l}

To argue that M(0,0,e) |= ΨT we first notice that due to the fact that T tiles the N×N plane and by the

construction of M, subformulas of ΨT that do not involve arbitrary announcements are straightforwardly

satisfied.

Now, consider the formula up. For every (i, j, l), there is at most one (i′, j′, l′) that is reachable by

taking an s-step to a north state followed by a v-step to a south state, namely (i′, j′, l′) = (i, j + 1,s).
Furthermore, this property is retained in any submodel of M. As a consequence, in any state of any

submodel of M, ♦upχ implies �upχ , for every χ . In particular, it follows that M(i, j,l) |= [!](♦up♦scentre→
�up♦scentre), i.e., M(i, j,l) |= up.

Similar reasoning shows that (i, j, l) satisfies the other conjuncts of ψx&y. Hence M(i, j,l) |= ψtile ∧
adj tiles∧ init∧ψx&y ∧ tile left, for all (i, j, l), and thus M(0,0,e) |= ΨT.
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The more complex part of the reduction is to show that if ΨT is satisfiable, then a tiling exists.

Lemma 2. Let T be an instance of the recurring tiling problem. If ΨT is satisfiable, then T can tile N×N.

Proof. Let M be such that Ms |= ΨT. The model M is partitioned by ∼s, we refer to these partitions as

grid points, and label these points as follows.

• The grid point containing s is labelled (0,0).

• If A and B are grid points, A is labelled (i, j) and there is a north-state in A that is v-indistinguishable

to a south-state in B, then B is labelled (i, j+1).

• If A and B are grid points, A is labelled (i, j) and there is a east-state in A that is h-indistinguishable

to a west-state in B, then B is labelled (i+1, j).

Note that a single grid point might have multiple labels. We say that (i, j) is tiled with τi if there is some

grid point labelled with (i, j) that contains a state where pi holds. We start by noting that because the

main connective of ΨT is �{h,v,s}, the formula holds in every labelled grid point. For every labelled grid

point X and every x ∈ X , we therefore have Mx |= ψtile. So X contains states for every direction, each

labelled with exactly one colour that corresponds to the tile that holds on X . We continue by proving the

following claim.

Claim 1: Let X , A and B be grid points where X is labeled (i, j) while A and B are both labeled

(i, j+ k) by virtue of being k-steps to the north of X . Then A and B are PALC-indistinguishable, in the

sense that for every χ ∈ PALC, if there is an a ∈ A such that Ma |= χ then there is a b ∈ B such Mb |= χ

(and vice versa).

Proof of Claim 1: By induction on k. As base case, let k = 1 and suppose towards a contradiction

that, for some χ ∈ PALC and a ∈ A, Ma |= χ while for every b ∈ B, Mb 6|= χ . Consider then the formula

centre → ♦sχ . Every centre state in A satisfies this formula, while none of the centre states in B do.

Hence, for every state x ∈ X , Mx |= [centre→ ♦sχ ](♦up♦scentre∧¬�up♦scentre). But that contradicts

Mx |= up. From this contradiction, we prove the base case k = 1.

Now, suppose as induction hypothesis that k > 1 and that the claim holds for all k′ < k. Again,

suppose towards a contradiction that Ma |= χ while Mb 6|= χ for all b ∈ B. Let A′ and B′ be grid points

that lie k− 1 steps to the north of X and one step to the south of A and B, respectively. Then for every

a′ ∈ A′ and b′ ∈ B′, Ma′ |= ♦up♦sχ and Mb′ |= ♦up¬♦sχ . By the induction hypothesis, A′ and B′ are

indistinguishable, so Ma′ |= ♦up♦sχ ∧♦up¬♦sχ . But then there are distinguishable grid points one step

to the north of A′, contradicting the induction hypothesis. From this contradiction, we prove the induction

step and thereby the claim.

Similar reasoning shows that any two grid points A,B that are labeled (i+ k, j) by virtue of being k

steps to the right of the same grid point X are indistinguishable. Now, we can prove the next claim.

Claim 2: Let X , A and B be grid points, where X is labelled (i, j), A is labelled (i+1, j+1) by virtue

of being above A′ which is to the right of X , and B is labelled (i+1, j+1) by virtue of being to the right

of B′ which is above B. Then A and B are PALC-indistinguishable.

Proof of claim 2: Suppose towards a contradiction that for some χ ∈ PALC and a ∈ A we have

Ma |= χ , while Mb 6|= χ for all b ∈ B. Then for x ∈ X we have Mx |= [centre→ ♦sχ ](♦right♦up♦scentre∧
♦up♦right¬♦scentre), contradicting Mx |= right&up.

From Claim 1 it follows that any A and B that are labelled (i, j) by virtue of being i steps to the right

and then j steps up from (0,0) are PALC-indistinguishable. Claim 2 then lets us commute the “up” and
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“right” moves. Any path to (i, j) can be obtained from the path that first goes right i steps then up j steps

by a finite sequence of such commutations. Hence any grid points A and B that are labelled (i, j) are

PALC-indistinguishable.

The tile formulas pi, for every τi ∈ T, are PALC-formulas, so there is exactly one tile τi that is

assigned to the grid point (i, j). Furthermore, state col then guarantees that each side of a grid point has

the colour corresponding to the tile, and adj tiles guaranteees that the tile colours match. This shows that

if ΨT is satisfiable, then T can tile N×N.

3.2 Encoding the Recurring Tile

The final formula that is satisfied in a grid model if and only if a given tiling has a tile that occurs

infinitely often in the first column would be

ΨT ∧�{v,s}[�{h,s}¬p∗]¬ΨT.

In other words, the recurring tiling problem can be reduced to the APALC-satisfiability problem, where

the reduction maps the instance (T,τ∗) of the recurring tiling problem to the satisfiability of ΨT ∧
�{v,s}[�{h,s}¬p∗]¬ΨT.

Intuitively, the formula states that if we remove all rows with the special tile, then our model is no

longer a grid. See Figure 2, where on the left we have a grid with the special grey tile τ∗ appearing

infinitely often in the first column (every other tile in the first column is grey). Formula �{h,s}¬p∗ holds

only in those squares of the grid that lie on rows without the special tile. Thus, announcing �{h,s}¬p∗

removes all rows that has the grey tile (see the right part of Figure 2). Since the grey tile appears infinitely

often in the original grid, we have to remove an infinite number of rows after the announcement of

�{h,s}¬p∗, thus ensuring that what is left of the original model is not a grid.

Figure 2: Left: An original grid with a special grey tile τ∗ appearing infinitely often in the first column.

Right: The grid after the public announcement of �{h,s}¬p∗. Crossed-out rows are not preserved after

the announcement.

Theorem 1. Let T be an instance of the tiling problem with a special tile τ∗ ∈T. Set T can tile N×Nwith

τ∗ appearing infinitely often in the first column if and only if ΨT ∧�{v,s}[�{h,s}¬p∗]¬ΨT is satisfiable.

Proof. First, let us can extend the labelling from the proof of Lemma 2 as follows:

• For every q ∈ Position, if A and B are grid points, A is labeled (i, j) and there is a q state in A that

is v or h-indistinguishable from a q state in B, then B is labeled (i, j).
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It follows from no change that this extended labelling retains the property that any two grid points

with the same label are PALC-indistinguishable. Furthermore, from hor and vert it follows that every

grid point that is reachable by h, v and s is now labelled with some coordinates (i, j). Hence we can

identify the {h,v,s}-reachable grid points in any model of ΨT with N×N.

Now, assume that set T cannot tile the N×N plane with a special tile τ ′ ∈ T appearing infinitely often

in the first column. We argue that in this case, ΨT ∧�{v,s}([�{h,s}¬p∗]¬ΨT) is not satisfiable. The first

conjunct is straightforward. If T cannot tile the N×N plane, then, by Lemma 2, ΨT is not satisfiable.

So suppose that T can tile the plane, but only in such a way that τ∗ occurs finitely often. For every

model M(0,0,l) of ΨT, there is then some k ∈ N that is the last row in which p∗ is true. The formula

�{h,s}¬p∗ holds exactly on those rows where p∗ does not hold in the first column. As a result, the update

[�{h,s}¬p∗] does not remove any rows past row k. The grid points N×N>k then still form a grid that is

isomorphic to N×N, and that is tiled. See Figure 3 for a depiction of the situation.

It follows that M(0,k,l) 6|= [�{h,s}¬p∗]¬ΨT, and therefore M(0,0,l) 6|= �{v,s}[�{h,s}¬p∗]¬ΨT. This is

true for every model of ΨT, so ΨT ∧�{v,s}[�{h,s}¬p∗]¬ΨT is not satisfiable.

If, on the other hand, T can tile the plane in such a way that τ∗ occurs infinitely often in the first

column, then there is a model of ΨT where the modality [�{h,s}¬p∗] removes infinitely many rows, and

therefore does not leave any infinite grid. So ΨT ∧�{v,s}[�{h,s}¬p∗]¬ΨT is satisfiable.

Figure 3: Left: An original grid with a special grey tile τ∗ appearing finitely often in the first column.

Right: The grid after the public announcement of �{h,s}¬p∗. Crossed-out rows are not preserved after

the announcement. A full N×N grid that is still available after the announcement is depicted with thick

lines.

In the construction of ΨT and proofs of Lemmas 1 and 2, we used APALC quantifiers [!]. We

can prove the similar results for GALC and CALC quantifers by substituting [!] with [{h,v,s}] and

[〈{h,v,s}〉] correspondingly, and substituting PALC with PALC
{h,v,s}. We get the hardness result from the

Σ1
1-completeness of the recurring tiling problem [18].

Theorem 2. The satisfiability problem of QPALCs is Σ1
1-hard.

The Σ1
1-hardness of the satisfiability problems of QPALCs together with the fact that the class of

Σ1
1 problems is strictly greater than the class of co-RE problems [23, Chapter 4] imply that the sets of

validites of the logics are not RE, which, in turn, implies that QPALCs are not finitely axiomatisable.

Corollary 1. The set of valid formulas of QPALCs is neither RE nor co-RE.

Corollary 2. QPALCs do not have finitary axiomatisations.
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4 Discussion

The existence of finitary axiomatisations of any of APAL, GAL, and CAL is a long-standing open prob-

lem. In this paper, we have showed that the satisfiability problem of the logics extended with common

knowledge modality is Σ1
1-hard, and thus they do not admit of finitary axiomatisations. Table 1 contains

the overview of the known results, including those shown in this paper, and open questions.

APAL GAL CAL APALC GALC CALC

Finitary axiomatisation ? ? ? ✗ (Cor. 2) ✗ (Cor. 2) ✗ (Cor. 2)

Infinitary axiomatisation ✔[6] ✔[1] ? ✔[4] ✔[4] ?

Table 1: Overview of the known results and open problems.

It is important to point out that the use of common knowledge is instrumental in our construction.

Arguments from [14, 3] did not rely on common knowledge to enforce local grid properties globally,

and instead the authors used an agent with the universal relation over the set of states. This approach is

good enough if one wants to demonstrate the existence of a grid-like model. However, if we also require

that the grid satisfies some property, like a special tile occurring infinitely often in the first column, then

the presence of the global agent makes it harder to ensure this. The problem is that such an unrestrained

relation may access other grids within the same model, and thus we may end up in the situation when the

property is satisfied by a set of grids taken together and not by any single grid.

Our construction is ‘tighter’ than those in [14, 3]. In particular, our vertical and horizontal agents

can ‘see’ only one step ahead. This guarantees that we stay within the same grid. In order to force

grid properties globally, we use common knowledge operators that allow us to traverse a given grid-like

model in all directions. It is not yet clear how to have a ‘tight’ grid and still be able to traverse the model

without common knowledge. With this work, apart from showing that QPALCs are Σ1
1-hard, we also

hope to have elucidated the exact obstacle one has to overcome in order to claim the same about QPALs.
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Social distance games have been extensively studied as a coalition formation model where the utilities

of agents in each coalition were captured using a utility function u that took into account distances in

a given social network. In this paper, we consider a non-normalized score-based definition of social

distance games where the utility function u~s depends on a generic scoring vector~s, which may be

customized to match the specifics of each individual application scenario.

As our main technical contribution, we establish the tractability of computing a welfare-maximi-

zing partitioning of the agents into coalitions on tree-like networks, for every score-based function u~s.

We provide more efficient algorithms when dealing with specific choices of u~s or simpler networks,

and also extend all of these results to computing coalitions that are Nash stable or individually ratio-

nal. We view these results as a further strong indication of the usefulness of the proposed score-based

utility function: even on very simple networks, the problem of computing a welfare-maximizing par-

titioning into coalitions remains open for the originally considered canonical function u.

1 Introduction

Coalition formation is a central research direction within the fields of algorithmic game theory and com-

putational social choice. While there are many different scenarios where agents aggregate into coalitions,

a pervasive property of such coalitions is that the participating agents exhibit homophily, meaning that

they prefer to be in coalitions with other agents which are similar to them. It was this observation that

motivated Brânzei and Larson to introduce the notion of social distance games (SDG) as a basic model

capturing the homophilic behavior of agents in a social network [14].

Brânzei and Larson’s SDG model consisted of a graph G = (V,E) representing the social network,

with V being the agents and E representing direct relationships or connections between the agents. To

capture the utility of an agent v in a coalition C ⊆ V , the model considered a single function: u(v,C) =
1
|C| ·∑w∈C\{v}

1
dC(v,w)

where dC(v,w) is the distance between v and w inside C.

Social distance games with the aforementioned utility function u have been the focus of exten-

sive study to date, with a number of research papers specifically targeting algorithmic and complexity-

theoretic aspects of forming coalitions with maximum social welfare [1, 2, 3, 28]. Very recently, Flam-

mini et al. [21, 22] considered a generalization of u via an adaptive real-valued scoring vector which

weights the contributions to an agent’s utility according to the distances of other agents in the coalition,

and studied the price of anarchy and stability for non-negative scoring vectors. However, research to date

has not revealed any polynomially tractable fragments for the problem of computing coalition structures

http://dx.doi.org/10.4204/EPTCS.379.22
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Figure 1: A social network illustrating the difference of maximising social welfare in our model com-

pared to previous SDG models. (1) In Brânzei and Larson’s SDG model, the welfare-maximum outcome

is the grand coalition. (2) A welfare-maximum outcome in the normalized model of Flammini et al.

with a scoring vector of (1,0,0,0) is marked with dashed lines, while the same scoring vector in our

non-normalized model produces the grand coalition. (3) A scoring vector of~s = (1,0,−1) in our model

produces the welfare-maximizing outcome marked with bold lines, with a welfare of 18. (4) A ‘less

welcoming’ scoring vector of~s = (1,−3) leads to the welfare maximizing dash-circled partition with a

welfare of 14 (compared to only 12 for the bold-circled one).

with maximum social welfare (with or without stability-based restrictions on the behavior of individual

agents), except for the trivial cases of complete (bipartite) graphs [14] and trees [35].

Our Contribution. The undisputable appeal of having an adaptive scoring vector—as opposed to using

a single canonical utility function u—lies in the fact that it allows us to capture many different scenarios

with different dynamics of coalition formation. However, it would also be useful for such a model to be

able to assign negative scores to agents at certain (larger) distances in a coalition. For instance, guests

at a gala event may be keen to accept the presence of friends-of-friends (i.e., agents at distance 2) at a

table, while friends-of-friends may be less welcome in private user groups on social networks, and the

presence of complete strangers in some scenarios may even be socially unacceptable.

Here, we propose the study of social distance games with a family of highly generic non-normalized

score-based utility functions. Our aim here is twofold. First of all, these should allow us to better capture

situations where agents at larger distances are unwelcome or even unacceptable for other agents. At

the same time, we also want to obtain algorithms capable of computing welfare-maximizing coalition

structures in such general settings, at least on well-structured networks.

Our model considers a graph G accompanied with an integer-valued, fixed but adaptive scoring

vector ~s which captures how accepting agents are towards other agents based on their pairwise dis-

tance.1 The utility function u~s(v,C) for an agent v in coalition C is then simply defined as u~s(v,C) =

∑w∈C\{v}~s(dC(v,w)); we explicitly remark that, unlike previous models, this is not normalized with re-

spect to the coalition size. As one possible example, a scoring vector of (1,0,−1) could be used in sce-

narios where agents are welcoming towards friends, indifferent to friends-of-friends, slightly unhappy

about friends-of-friends-of-friends (i.e., agents at distance 3), and unwilling to group up with agents who

are at distance greater than 3 in G. A concrete example which also illustrates the differences to previous

SDG models is provided in Figure 1.

While non-normalized scoring functions have not previously been considered for social distance

games, we view them a natural way of modeling agent utilities; in fact, similar ideas have been success-

fully used in models for a variety of other phenomena including, e.g., committee voting [20], resource

allocation [13, 12] and Bayesian network structure learning [24, 36]. Crucially, it is not difficult to ob-

serve that many of the properties originally established by Brânzei and Larson for SDGs also hold for our

non-normalized score-based model with every choice of~s, such as the small-world property [14, 27] and

1Formal definitions are provided in the Preliminaries.
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the property that adding an agent with a close (distant) connection to a coalition positively (negatively)

impacts the utilities of agents [14]. In addition, the proposed model can also directly capture the notion

of enemy aversion with symmetric preferences [4, 34] by setting~s = (1).

Aside from the above, a notable benefit of the proposed model lies on the complexity-theoretic side

of things. Indeed, a natural question that arises in the context of SDG is whether we can compute an

outcome—a partitioning of the agents into coalitions—which maximizes the social welfare (defined as

the sum of the utilities of all agents in the network). This question has been studied in several contexts,

and depending on the setting one may also require the resulting coalitions to be stable under individ-

ual rationality (meaning that agents will not remain in coalitions if they have negative utility) or Nash

stability (meaning that agents may leave to join a different coalition if it would improve their utility).

But in spite of the significant advances in algorithmic aspects of other coalition formation problems in

recent years [9, 10, 16, 23], we lack any efficient algorithm capable of producing such a welfare-optimal

partitioning when using the utility function u even for the simplest types of networks.

To be more precise, when viewed through the refined lens of parameterized complexity [17, 19] that

has recently become a go-to paradigm for such complexity-theoretic analysis, no tractable fragments of

the problem are known. More precisely, the problem of computing a welfare-maximizing outcome under

any of the previously considered models is not even known to admit an XP algorithm when parameterized

by the minimum size of a vertex cover in the social network G—implying a significant gap towards

potential fixed-parameter tractability. This means that the complexity of welfare-maximization under

previous models remains wide open even under the strongest non-trivializing restriction of the network.

As our main technical contribution, we show that non-normalized score-based utility functions do

not suffer from this drawback and can in fact be computed efficiently under fairly mild restrictions on G.

Indeed, as our first algorithmic result we obtain an XP algorithm that computes a welfare-maximizing

partitioning of the agents into coalitions parameterized by the treewidth of G, and we strengthen this

algorithm to also handle additional restrictions on the coalitions in terms of individual rationality or

Nash stability. As with numerous treewidth-based algorithms, we achieve this result via leaf-to-root

dynamic programming along a tree-decomposition. However, the records we keep during the dynamic

program are highly non-trivial and require an advanced branching step to correctly pre-computed the

distances in the stored records. We remark that considering networks of small treewidth is motivated not

only by the fundamental nature of this structural graph measure, but also by the fact that many real-world

networks exhibit bounded treewidth [33].

In the next part of our investigation, we show that when dealing with simple scoring functions or

bounded-degree networks, these results can be improved to fixed-parameter algorithms for welfare-

maximization (including the cases where we require the coalitions to be individually rational or Nash

stable). This is achieved by combining structural insights into the behavior of such coalitions with a

different dynamic programming approach. Furthermore, we also use an entirely different technique

based on quadratic programming to establish the fixed-parameter tractability of all 3 problems under

consideration w.r.t. the minimum size of a vertex cover in G. Finally, we conclude with some interesting

generalizations and special cases of our model and provide some preliminary results in these directions.

2 Preliminaries

We use N to denote the set of natural numbers, i.e., positive integers, and Z for the set of integers.

For i ∈ N, we let [i] = {1, . . . , i} and [i]0 = [i]∪{0}. We assume basic familiarity with graph-theoretic

terminology [18].
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Social Distance Games. A social distance game (SDG) consists of a set N = {1, . . . ,n} of agents, a

simple undirected graph G = (N,E) over the set of agents called a social network, and a non-increasing

scoring vector~s = (s1, . . . ,sδ ) where a) for each a ∈ [δ ], sa ∈ Z and b) for each a ∈ [δ −1], sa+1 ≤ sa.

In some cases, it will be useful to treat~s as a function from N rather than a vector; to this end, we set

~s(a) = sa for each a ≤ δ and~s(a) = −∞ when a > δ . The value “−∞” here represents an inadmissible

outcome, and formally we set −∞+ z =−∞ and −∞ < z for each z ∈ Z.

A coalition is a subset C ⊆ N, and an outcome is a partitioning Π = (C1, . . . ,Cℓ) of N into coalitions;

formally,
⋃ℓ

i=1Ci = N, every Ci ∈ Π is a coalition, and all coalitions in Π are pairwise disjoint. We use Πi

to denote the coalition the agent i ∈ N is part of in the outcome Π. The utility of an agent i ∈ N for a

coalition Πi ∈ Π is

u~s(i,Πi) = ∑
j∈Πi\{i}

~s(distΠi
(i, j)),

where distΠi
(i, j) is the length of a shortest path between i and j in the graph G[Πi], i.e., the subgraph

of G induced on the agents of Πi. We explicitly note that if Πi is a singleton coalition then u~s(i,Πi) = 0.

Moreover, in line with previous work [14] we set distΠi
(i, j) := +∞ if there is no i- j path in G[Πi],

meaning that u~s(i,Πi) =−∞ whenever G[Πi] is not connected.

For brevity, we drop the superscript from u~s whenever the scoring vector~s is clear from the context.

To measure the satisfaction of the agents with a given outcome, we use the well-known notation of social

welfare, which is the total utility of all agents for an outcome Π, that is,

SW~s(Π) = ∑
i∈N

u~s(i,Πi).

Here, too, we drop the superscript specifying the scoring vector whenever it is clear from the context.

We assume that all our agents are selfish, behave strategically, and their aim is to maximize their

utility. To do so, they can perform deviations from the current outcome Π. We say that Π admits an IR-

deviation if there is an agent i∈ N such that u(i,C)< 0; in other words, agent i prefers to be in a singleton

coalition over its current coalition. If no agent admits an IR-deviation, the outcome is called individually

rational (IR). We say that Π admits an NS-deviation if there is an agent i and a coalition C ∈Π∪{ /0} such

that u(i,C∪{i})> u(i,Πi). Π is called Nash stable (NS) if no agent admits an NS-deviation. We remark

that other notions of stability exist in the literature [13, Chapter 15], but Nash stability and individual

rationality are the most basic notions used for stability based on individual choice [29, 38].

Having described all the components in our score-based SDG model, we are now ready to formalize

the three classes of problems considered in this paper. We note that even though these are stated as

decision problems for complexity-theoretic reasons, each of our algorithms for these problems can also

output a suitable outcome as a witness. For an arbitrary fixed scoring vector~s, we define:

~s-SDG-WF

Input: A social network G = (N,E), desired welfare b ∈ N.

Question: Does the distance game given by G and~s admit an outcome with social welfare

at least b?

~s-SDG-WF-IR and~s-SDG-WF-NASH are then defined analogously, but with the additional condi-

tion that the outcome must be individually rational or Nash stable, respectively.

We remark that for each of the three problems, one may assume w.l.o.g. that s1 > 0; otherwise

the trivial outcome consisting of |N| singleton coalitions is both welfare-optimal and stable. Moreover,



276 Maximizing Social Welfare in Score-Based Social Distance Games

without loss of generality we assume G to be connected since an optimal outcome for a disconnected

graph G can be obtained as a union of optimal outcomes in each connected component of G.

The last remark we provide to the definition of our model is that it trivially also supports the well-

known small world property [27] that has been extensively studied on social networks. In their original

work on SDGs, Brânzei and Larson showed that their model exhibits the small world property by estab-

lishing a diameter bound of 14 in each coalition in a so-called core partition [14]. Here, we observe that

for each choice of~s, a welfare-maximizing coalition will always have diameter at most δ .

Parameterized Complexity. The parameterized complexity framework [17, 19] provides the ideal

tools for the fine-grained analysis of computational problems which are NP-hard and hence intractable

from the perspective of classical complexity theory. Within this framework, we analyze the running

times of algorithms not only with respect to the input size n, but also with respect to a numerical pa-

rameter k ∈ N that describes a well-defined structural property of the instance; the central question is

then whether the superpolynomial component of the running time can be confined by a function of this

parameter alone.

The most favorable complexity class in this respect is FPT (short for “fixed-parameter tractable”)

and contains all problems solvable in f (k) · nO(1) time, where f is a computable function. Algorithms

with this running time are called fixed-parameter algorithms. A less favorable, but still positive, outcome

is an algorithm with running time of the form n f (k); problems admitting algorithms with such running

times belong to the class XP.

Structural Parameters. Let G = (V,E) be a graph. A set U ⊆ V is a vertex cover if for every edge

e ∈ E it holds that U ∩ e 6= /0. The vertex cover number of G, denoted vc(G), is the minimum size of a

vertex cover of G. A nice tree-decomposition of G is a pair (T ,β ), where T is a tree rooted at a node

r ∈V (T ), β : V (T )→ 2V is a function assigning each node x of T its bag, and the following conditions

hold:

• for every edge {u,v} ∈ E(G) there is a node x ∈V (T ) such that u,v ∈ β (x),

• for every vertex v ∈V , the set of nodes x with v ∈ β (x) induces a connected subtree of T ,

• |β (r)|= |β (x)| = 0 for every leaf x ∈V (T ), and

• there are only tree kinds of internal nodes in T :

– x is an introduce node if it has exactly one child y such that β (x) = β (y)∪ {v} for some

v /∈ β (y),

– x is a join node if it has exactly two children y and z such that β (x) = β (y) = β (z), or

– x is a forget node if it has exactly one child y such that β (x) = β (y)\{v} for some v ∈ β (y).

The width of a nice tree-decomposition (T ,β ) is maxx∈V (T ) |β (x)| − 1, and the treewidth tw(G) of a

graph G is the minimum width of a nice tree-decomposition of G. Given a nice tree-decomposition and a

node x, we denote by Gx the subgraph induced by the set V x =
⋃

y is a descendant of x β (y), where we suppose

that x is a descendant of itself. It is well-known that optimal nice tree-decompositions can be computed

efficiently [7, 30, 31].

Integer Quadratic Programming. INTEGER QUADRATIC PROGRAMMING (IQP) over d dimensions

can be formalized as the task of computing

max
{

xT Qx | Ax ≤ b, x ≥ 0, x ∈ Z
d
}

, (IQP)
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Figure 2: Social Network from Lemma 2.
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Figure 3: Social Network from Lemma 3.

where Q ∈ Z
d×d , A ∈ Z

m×d, b ∈ Z
m. That is, IQP asks for an integral vector x ∈ Z

d which maximizes

the value of a quadratic form subject to satisfying a set of linear constraints.

Proposition 1 ([32, 39], see also [25]). INTEGER QUADRATIC PROGRAMMING is fixed-parameter

tractable when parameterized by d+‖A‖∞ +‖Q‖∞.

3 Structural Properties of Outcomes

As our first set of contributions, we establish some basic properties of our model and the associated

problems that are studied within this paper. We begin by showcasing that the imposition of individual

rationality or Nash stability as additional constraints on our outcomes does in fact have an impact on

the maximum welfare that can be achieved (and hence it is indeed necessary to consider three distinct

problems). We do not consider this to be obvious at first glance: intuitively, an agent i’s own contribution

to the social welfare can only improve if they perform an IR- or NS-deviation, and the fact that the

distance function distΠi
is symmetric would seem to suggest that this can only increase the total social

welfare.

Lemma 2. There is a scoring vector~s and a social network G such that the single outcome achieving

the maximum social welfare is not individually rational.

Proof. Consider a scoring function~s such that~s = (1,1,−1,−1,−1,−1). Consider the social network G

in Figure 2 formed from a path P on 5 vertices and a clique K on 5 vertices by connecting the endpoints

of P to all vertices of K. Let x be the central agent of P. Let C be the grand coalition in G. The graph can

be viewed as a 6-cycle with K forming one “bold” agent. All vertices on the cycle contribute positively to

the agent’s utility, except for the one that is exactly opposite on the cycle. Hence, u(x,C) = 4−5 =−1,

while utility of all other agents is 8− 1 = 7 in C. This gives total social welfare of 62 for the grand

coalition.

However, if x leaves the coalition to form its own one, their utility will improve from −1 to 0, whereas

the total social welfare drops. Indeed, in C \{x} there are 2 agents with utility 6−2 = 4, 2 agents with

utility 7−1 = 6 and 5 agents with utility 8−0, giving total social welfare of 60. If any y 6= x was to be

excluded from C to form outcome {y},C \{y}, then y joining C improves social welfare, proving that it

was not optimal. Finally, if the outcome consists of several coalitions with the largest one of size 8, then

the welfare is at most 8 ·7+2 ·1 = 56, if the largest size is 7, then we get at most 7 ·6+3 ·2 = 48, for 6

it is 6 ·5+4 ·3 = 42 and for 5 it is 5 ·4+5 ·4 = 40.

Hence the grand coalition C is the only outcome with maximal social welfare, but it is not individually

rational (and therefore not Nash stable), as u(x,C) =−1.

Lemma 3. There is a scoring vector~s and a social network G such that the single individually rational

outcome achieving the maximum social welfare among such outcomes is not Nash stable.
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Proof. Consider again the scoring function ~s = (1,1,−1,−1,−1,−1). Similarly to previous lemma,

consider the social network G in Figure 3 formed from a path P on 5 vertices and a clique K on 4

vertices by connecting the endpoints of P to all vertices of K and adding a agent y only connected

to the central agent of P which we call x. Let C be the coalition containing all vertices of G except

for y. As in the previous lemma, G[C] can be viewed as a 6-cycle with K forming one “bold” agent.

Hence, ux(C) = 4− 4 = 0, while utility of other agents in C is 7− 1 = 6. Trivially uy({y}) = 0, hence

the outcome ({y},C) is individually rational. It has total social welfare of 48. However, it is not Nash

stable, as x wants to deviate to {x,y} giving them utility 1.

However, the outcome ({x,y},C \{x}), which is Nash stable, has total social welfare only 46. Note

that uz(C \ {x}) ≥ 3 for every agent z ∈ C \ {x}, so any outcome ({x,y,z},C \ {x,z}) cannot be Nash

stable. While the total social welfare of the grand coalition is 46, the utility of y is 3 − 6 = −3 in

this coalition, so this outcome is not even individually rational. From the computations in the previous

lemma, it follows, that to attain the social welfare of 48, the largest coalition in the outcome must be of

size at least 7. Moreover, if it is of size exactly 7, then these 7 vertices must be at mutual distance at

most 2. However, there are no 7 vertices in mutual distance at most 2 in G. Hence, in any outcome with

social welfare 48 the largest coalition must be of size at least 8. Agent y has only 3 agents in distance

at most 2 in G. Hence, for y to get a positive utility from some coalition, the coalition must be of size

at most 7, i.e., y cannot be part of the largest coalition in any outcome with social welfare at least 48.

However, for every z ∈ C, z joining the coalition C \ {z} improves the social welfare of the outcome,

proving that it was not optimal.

Hence the outcome ({y},C) is the only individually rational outcome with maximal social welfare,

but it is not Nash stable.

It should be noted that Lemmas 2 and 3 also contrast many other models where outputs maximizing

social welfare are stable for symmetric utilities [11, 6, 15].

As our next two structural results, we prove that on certain SDGs it is possible to bound not only

the diameter but also the size of each coalition in a welfare-maximum outcome. Notably, we establish

such bounds for SDGs on bounded-degree networks and SDGs which have a simple scoring vector on

a tree-like network. While arguably interesting in their own right, these properties will be important for

establishing the fixed-parameter tractability of computing welfare-optimal outcomes in the next section.

Lemma 4. For every scoring vector~s = (s1, . . . ,sδ ), if G is a graph of maximum degree ∆(G) and C is a

coalition of size more than (s1 +1) ·∆(G) · (∆(G)−1)δ−1, then for every i ∈C we have u(i,C)< 0.

Proof. Let i ∈ C. There are at most ∆(G) · (∆(G)− 1)δ−1 agents in distance at most δ from i. Each of

these agents contributes at most s1 to u(i,C). Every other agent contributes at most −1. Hence, if there

are more than (s1 + 1) ·∆(G) · (∆(G)− 1)δ−1 agents in C, then more than s1 ·∆(G) · (∆(G)− 1)δ−1 of

them have a negative contribution to u(i,C) and

u(i,C)< s1 ·∆(G) · (∆(G)−1)δ−1 −1 · s1 ·∆(G) · (∆(G)−1)δ−1 = 0.

Lemma 5. Let~s = (s1, . . . ,sδ ) be such that s2 < 0. If G is a graph of treewidth tw and C is a coalition of

size more than 2(s1 +1) · tw+1, then ∑i∈C u(i,C)< 0.

Proof. Each agent adjacent to i contributes s1 to u(i,C), whereas all the other agents contribute at

most −1. Since a graph of treewidth tw is tw-degenerate, there are |E(G[C])| ≤ |C| · tw pairs of ad-
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jacent agents and
(|C|

2

)

−|E(G[C])| pairs of non-adjacent agents. We have

∑
i∈C

u(i,C) = ∑
i, j∈C;i6= j

~s(dist(i, j))

≤ 2

(

s1 · |E (G[C])|−

((

|C|

2

)

−|E (G[C])|

))

= 2

(

(s1 +1) · |E (G[C])|−

(

|C|

2

))

≤ 2(s1 +1) · |C| · tw−|C|(|C|−1)

= |C|(2(s1 +1) · tw−(|C|−1))

< |C|(2(s1 +1) · tw−(2(s1 +1) · tw+1−1)) = 0.

4 Computing Optimal Outcomes

4.1 Intractability

As our first step towards an understanding of the complexity of computing a welfare-optimal outcome in

an SDG, we establish the NP-hardness of~s-SDG-WF,~s-SDG-WF-IR and~s-SDG-WF-NASH even for

a very simple choice of~s.

Theorem 6. Let~s = (s1) for any s1 > 0. Then~s-SDG-WF,~s-SDG-WF-IR and~s-SDG-WF-NASH are

NP-hard.

Proof Sketch. As our first step, we prove the NP-hardness of the intermediate problem called 3-COLO-

RING TRIANGLE COVERED GRAPH (3CTCG) via an adaptation of a known reduction from NOTALL-

EQUAL-3-SAT [37, Theorem 9.8]:

3-COLORING TRIANGLE COVERED GRAPH (3CTCG)

Input: An undirected graph G = (V,E) with |V | = 3n vertices such that G contains a

collection of n mutually vertex disjoint triangles.

Question: Does G have a 3-coloring?

Next, we reduce 3CTCG to our three problems via a single construction. Let G be an instance of

3CTCG with 3n vertices and T1, . . . ,Tn the corresponding collection of triangles. Let G be a complement

of G, let s1 = s1(~s) and let b = 3ns1 · (n− 1). To establish the NP-hardness of~s-SDG-WF, it suffices

to show that G is a Yes-instance of 3CTCG if and only if G admits an outcome with social welfare at

least b; for the remaining two problems, we additionally show that such an outcome will furthermore be

individually rational and Nash stable.

4.2 An Algorithm for Tree-Like Networks

We complement Theorem 6 by establishing that all three problems under consideration can be solved in

polynomial time on networks of bounded treewidth—in other words, we show that they are XP-tractable

w.r.t. treewidth. We first describe the “baseline” algorithm for solving~s-SDG-WF, and then prove that

this may be adapted to also solve the other two problems by expanding on its records and procedures

(see the appendix).
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Theorem 7. For every fixed scoring vector~s, the~s-SDG-WF,~s-SDG-WF-IR, and~s-SDG-WF-NASH

problems are in XP when parameterized by the treewidth of the social network G.

Proof Sketch. Our algorithm is based on leaf-to-root dynamic programming along a nice tree-decom-

position of the input social network with rather complicated structure. In each node x of the tree-

decomposition, we store a set Rx of partial solutions called records. Each record realizes a single

signature which is a triple (C,S,T ), where

• C is a partition of bag agents into parts of coalitions; there are at most tw+1 different coalitions

intersecting β (x) and, thus, at most twO(tw) possible partitions of β (x).

• S is a function assigning each pair of agents that are part of the same coalition according to C the

shortest intra-coalitional path; recall that for fixed~s, the diameter of every coalition is bounded by

a constant δ and, therefore, there are nO(δ ) = nO(1) possible paths for each pair of agents which

gives us nO(tw2) combinations in total.

• T is a table storing for every coalition P and every possible vector of distances to bag agents

that are in P the number of agents from P that were already forgotten in some node of the tree-

decomposition; the number of possible coalitions is at most tw+1, the number of potential distance

vectors is δ tw+1 = 2O(tw), and there are at most n values for every combination of coalition and

distance vector which leads to at most n2O(tw)
different tables T .

The value of every record is a pair (π,w), where π is a partition of V x such that SW(π) = w and π

witnesses that there is a partition of V x corresponding to the signature of the record, as described above.

We store only one record for every signature – the one with the highest social welfare. Therefore, in

every node x, there are at most n2O(tw)
different records.

Once the computation ends, we check the record in the root node r and based on the value of w,

we return the answer; Yes if w ≥ b and No otherwise. Moreover, as Gr = G, the partition π is also an

outcome admitting social-welfare w.

4.3 Fixed-Parameter Tractability

A natural follow-up question to Theorem 7 is whether one can improve these results to fixed-parameter

algorithms. As our final contribution, we show that this is possible at least when dealing with simple

scoring vectors, or on networks with stronger structural restrictions. To obtain both of these results, we

first show that to obtain fixed-parameter tractability it suffices to have a bound on the size of the largest

coalition in a solution (i.e., a welfare-optimal outcome).

Theorem 8. For every fixed scoring vector~s, the variants of~s-SDG-WF,~s-SDG-WF-IR,~s-SDG-WF-

NASH where we only consider outcomes consisting of coalitions of at most a prescribed size are FPT

parameterized by the treewidth of the network and the maximum coalition size combined.

Proof Sketch. Similar to the previous ones, we design a dynamic programming (DP) on a nice tree de-

composition, albeit the procedure and records are completely different.

Given a subset of agents X ⊆ N, let Π = (π1,π2, . . . ,πℓ) be a partition of a set containing X and some

“anonymous” agents. We use T(Π) to denote a set of graph topologies on π1,π2, . . . ,πℓ given X . That

is, T(Π) = {T(π1), . . . ,T(πℓ)} where T(πi) is some graph on |πi| agents, namely πi ∩X and |πi \X |
“anonymous” agents, for each i ∈ [ℓ]. The maximum coalition size of any welfare maximizing partition

is denoted by sz. Table, M, contains an entry M[x,C,T(Π)] for every node x of the tree decomposition,

each partition C of β (x), and each set of graph topologies T(Π) given β (x) where Π is a partition of
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at most sz · tw agents. An entry of M stores the maximum welfare in Gx under the condition that the

partition into coalitions satisfies the following properties. Recall that for a partition P of agents and an

agent a, we use Pa to denote the coalition agent a is part of in P.

1. C and Π are consistent, i.e., the partition of the bag agents β (x) in Gx is denoted by C and Ca =
Πa ∩β (x) for each agent a ∈ β (x).

2. The coalition of agent a∈β (x) in the graph Gx is Πa.

3. T(Π) is consistent with Gx i.e., the subgraph of Gx induced on the agents in coalition of a is T(Πa),
i.e., Gx[Πa] = T(Πa).

Observe that we do not store Π. We only store the topology of Π which is a graph on at most sz · tw
agents.

We say an entry of M[x,C,T(Π)] is valid if it holds that

1. C and Π are consistent, i.e., Ca = Πa ∩β (x) for each agent a ∈ β (x),

2. Either Ca =Cb, or Ca ∩Cb = /0 for each pair of agents a,b ∈ β (x),

3. T(Π) is consistent with Gx in β (x), i.e., for each pair of agents a,b ∈ β (x) such that Πa = Πb,

there is an edge (a,b) ∈ T(Πa) if and only if (a,b) is an edge in Gx.

Once the table is computed correctly, the solution is given by the value stored in M[r,C,T(Π)]
where C is empty partition and T(Π) is empty. Roughly speaking, the basis corresponds to leaves (whose

bags are empty), and are initialized to store 0. For each entry that is not valid we store −∞. To complete

the proof, it now suffices to describe the computation of the records at each of the three non-trivial types

of nodes in the decomposition and prove correctness.

Similarly to Theorem 7, we design a dynamic programming on a nice tree decomposition, albeit the

procedure and records are completely different.

From Lemma 5 it follows that if s2 < 0 and tw(G) is bounded, then the maximum coalition size of a

welfare maximizing outcome is bounded. Hence, using Theorem 8 we get the following.

Corollary 9. ~s-SDG-WF-NASH, ~s-SDG-WF-IR, and~s-SDG-WF are fixed-parameter tractable pa-

rameterized by the treewidth tw(G) if s2 < 0.

Turning back to general scoring vectors, we recall that Lemma 4 provided a bound on the size of

the coalitions in a welfare-optimal outcome in terms of the maximum degree ∆(G) of the network G.

Applying Theorem 8 again yields:

Corollary 10. ~s-SDG-WF-NASH,~s-SDG-WF-IR, and~s-SDG-WF are fixed-parameter tractable pa-

rameterized by the treewidth tw(G) and the maximum degree ∆(G) of the social network.

As our final contribution, we provide fixed-parameter algorithms for computing welfare-optimal out-

comes that can also deal with networks containing high-degree agents. To do so, we exploit a different

structural parameter than the treewidth—namely the vertex cover number of G (vc(G)). We note that

while the vertex cover number is a significantly more “restrictive” graph parameter than treewidth, it has

found numerous applications in the design of efficient algorithms in coalition formation, including for

other types of coalition games [5, 8, 26].

Theorem 11. ~s-SDG-WF-NASH,~s-SDG-WF-IR, and~s-SDG-WF are fixed-parameter tractable pa-

rameterized by the vertex cover number vc(G) of the social network.
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Proof Sketch. Let k = vc(G) and let U be a vertex cover for G of size k. Observe that in each solution

there are at most k non-singleton coalitions, since G has a vertex cover of size k and each coalition must

be connected. Furthermore, the vertices of G−U can be partitioned into at most 2k groups according

to their neighborhood in the set U . That is, there are nW vertices in G−U such that their neighborhood

is W for some W ⊆U ; denote this set of vertices IW .

We perform exhaustive branching to determine certain information about the structure of the coali-

tions in a solution—notably:

1. which vertices of U belong to each coalition (i.e., we partition the set U ); note that there are at

most kk such partitions, and

2. if there is at least one agent of IW in the coalition or not ; note that there are at most (22k

)k such

assignments of these sets to the coalitions.

We branch over all possible admissible options of the coalitional structure described above possessed

by a hypothetical solution. The total number of branches is upper-bounded by a function of the pa-

rameter value k and thus for the problems to be in FPT it suffices to show that for each branch we

can find a solution (if it exists) by a fixed-parameter subprocedure. To conclude the proof, we show

that a welfare-maximum outcome (which furthermore satisfies the imposed stability constraints) with a

given coalitional structure can be computed by modeling this as an Integer Quadratic Program where

d +‖A‖∞ +‖Q‖∞ are all upper-bounded by a function of k—such a program can be solved in FPT time

using Proposition 1.

The (integer) variables of the program are xC
W , which express the number of vertices from the set IW

in the coalition with C ⊆ U ; thus, we have xC
W ∈ Z and xC

W ≥ 1. Let C be the considered partitioning

of the vertex cover U . We use C ∈ C for the set C ⊆ U in the coalition and C+ for the set C and the

guessed groups having at least one agent in the coalition. We require that the vertices of G−U are also

partitioned in the solution, i.e.,

∑
C∈C

∑
W∈C+

xC
W = nW ∀W ⊆U. (1)

The quadratic objective expresses the welfare of the coalitions in the solution while the linear constraints

ensure the stability of the outcome; for the latter, we rely on the fact that it is sufficient to verify the

stability for a single agent from the group IW in each coalition.

5 Conclusions and Future Research Directions

In this work, we studied social distance games through the lens of an adaptable, non-normalized scoring

vector which can capture the positive as well as negative dynamics of social interactions within coalitions.

The main focus of this work was on welfare maximization, possibly in combination with individual-based

stability notions—individual rationality and Nash stability. It is not surprising that these problems are

intractable for general networks; we complement our model with algorithms that work well in tree-like

environments.

Our work opens up a number of avenues for future research. One can consider other notions of

individual-based stability such as individual stability [13, pp. 360–361][23], or various notions of group-

based stability such as core stability [13, p. 360][14, 34]. Furthermore, our results do not settle the com-

plexity of finding stable solutions (without simultaneous welfare maximization). Therefore, it remains

open if one can find a Nash stable solution for a specific scoring vector. Also, a more complex open
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problem is to characterize those scoring vectors that guarantee the existence of a Nash (or individually)

stable solution.

Finally, we remark that the proposed score-based SDG model can be generalized further, e.g., by

allowing for a broader definition of the scoring vectors. For instance, it is easy to generalize all our

algorithms to scoring vectors which are not monotone in their “positive part”. One could also consider

situations where the presence of an agent that is “far away” does not immediately set the utility of

other agents in the coalition to −∞. One way to model these settings would be to consider “open”

scoring vectors, for which we set~s(a) =~s(δ ) for all a > δ—meaning that distances over δ are all treated

uniformly but not necessarily as unacceptable.

Notice that if~s(δ ) ≥ 0 for an open scoring vector~s, the grand coalition is always a social-welfare

maximizing outcome for all three problems—hence here it is natural to focus on choices of~s with at

least one negative entry. We note that all of our fixed-parameter algorithms immediately carry over

to this setting for arbitrary choices of open scoring vectors~s. The situation becomes more interesting

when considering the small-world property: while the diameter of every welfare-maximizing outcome

can be bounded in the case of Nash stable or individually rational coalitions (as we prove in our final

Theorem 12 below), whether the same holds in the case of merely trying to maximize social welfare

is open and seems to be a non-trivial question. Because of this, Theorem 7 can also be extended to the

~s-SDG-WF-IR and~s-SDG-WF-NASH with open scoring vectors, but it is non-obvious for~s-SDG-WF.

Theorem 12. Let~s = (s1, . . . ,sδ ) be an arbitrary open scoring vector and G be a social network. Every

outcome Π containing a coalition C ∈ Π with diameter exceeding ℓ= 2 ·s1 ·δ can be neither Nash-stable

nor individually rational.

Proof Sketch. Consider a shortest path P in C whose length exceeds ℓ. We identify a set of edge cuts

along P and show that at least one such cut must be near an agent whose utility in C is negative, due to

the presence of a large number of agents that must be distant from the chosen edge cut.
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[5] Vittorio Bilò, Angelo Fanelli, Michele Flammini, Gianpiero Monaco & Luca Moscardelli (2018): Nash

Stable Outcomes in Fractional Hedonic Games: Existence, Efficiency and Computation. Journal of Artificial

Intelligence Research 62, pp. 315–371, doi:10.1613/jair.1.11211.
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Two level credibility-limited revision is a non-prioritized revision operation. When revising by a
two level credibility-limited revision, two levels of credibility and one level of incredibility are con-
sidered. When revising by a sentence at the highest level of credibility, the operator behaves as a
standard revision, if the sentence is at the second level of credibility, then the outcome of the revision
process coincides with a standard contraction by the negation of that sentence. If the sentence is not
credible, then the original belief set remains unchanged. In this paper, we propose a construction for
two level credibility-limited revision operators based on Grove’s systems of spheres and present an
axiomatic characterization for these operators.

1 Introduction

Belief Change (also called Belief Revision) is an area that studies the dynamics of belief. One of the main
goals underlying this area is to model how a rational agent updates her set of beliefs when confronted
with new information. The main model of belief change is the AGM model [1]. In that model, each
belief of an agent is represented by a sentence and the belief state of an agent is represented by a logi-
cally closed set of (belief-representing) sentences. These sets are called belief sets. A change consists in
adding or removing a specific sentence from a belief set to obtain a new belief set. The AGM model con-
siders three kinds of belief change operators, namely expansion, contraction and revision. An expansion
occurs when new information is added to the set of the beliefs of an agent. The expansion of a belief
set K by a sentence α (denoted by K+α) is the logical closure of K∪{α}. A contraction occurs when
information is removed from the set of beliefs of an agent. A revision occurs when new information
is added to the set of the beliefs of an agent while retaining consistency if the new information is itself
consistent. From the three operations, expansion is the only one that can be univocally defined. The
other two operations are characterized by a set of postulates that determine the behaviour of each one of
these functions, establishing conditions or constrains that they must satisfy.
Although the AGM model has acquired the status of standard model of belief change, several researchers
(for an overview see [5, 6]) have pointed out its inadequateness in several contexts and proposed several
extensions and generalizations to that framework. One of the criticisms to the AGM model that appears
in the belief change literature is the total acceptance of the new information, which is characterized by
the success postulate for revision. “The AGM model always accepts the new information. This feature
appears, in general, to be unrealistic, since rational agents, when confronted with information that con-
tradicts previous beliefs, often reject it altogether or accept only parts of it” ([7]). This may happen for
various reasons. For example, the new information may lack on credibility or it may contradict previous
highly entrenched beliefs.
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Models in which the belief change operators considered do not satisfy the success postulate are desig-
nated by non-prioritized belief change operators ([17]). The output of a non-prioritized revision may not
contain the new belief that has motivated that revision.
Two level credibility-limited revision operators (two level CL revision operators for short) are non-
prioritized revision operators that were proposed (independently) in [8] and [3]. When revising by means
of a two level CL revision operator two levels of credibility and one level of incredibility are considered.
When revising by a sentence at the highest level of credibility, the operator behaves as a standard revi-
sion. In this case the new information is incorporated in the agent’s belief set. If the sentence is at the
second level of credibility, then the outcome of the revision process coincides with a standard contraction
by the negation of that sentence. In this case, the new information is not accepted but all the beliefs that
are inconsistent with it are removed. The intuition underlying this behaviour is that, the belief is not
credible enough to be incorporated in the agent’s belief set, but creates some doubt in the agent’s mind
making her remove all the beliefs that are inconsistent with it.
In this paper, we propose a construction for two level CL revision operators based on Grove’s systems of
spheres and present an axiomatic characterization for these operators. The rest of the paper is organized
as follows: In Section 2 we introduce the notations and recall the main background concepts and results
that will be needed throughout this article. In Section 3 we present the two level CL revision operators
and an axiomatic characterization for a class of these operators. In Section 4 we propose a construction
for two level CL revision operators based on Grove’s systems of spheres and present an axiomatic char-
acterization for these operators. In Section 5, we present a brief survey of related works. In Section 6,
we summarize the main contributions of the paper.

2 Background

2.1 Formal Preliminaries

We will assume a propositional language L that contains the usual truth functional connectives: ¬
(negation), ∧ (conjunction), ∨ (disjunction),→ (implication) and↔ (equivalence). We will also use L
to denote the set of all formulas of the language. We shall make use of a consequence operation Cn that
takes sets of sentences to sets of sentences and which satisfies the standard Tarskian properties, namely
inclusion, monotony and iteration. Furthermore, we will assume that Cn satisfies supraclassicality, com-
pactness and deduction. We will sometimes use Cn(α) for Cn({α}), A ` α for α ∈ Cn(A), ` α for
α ∈ Cn( /0), A 6` α for α 6∈ Cn(A), 6` α for α 6∈ Cn( /0). The letters α,β , . . . will be used to denote sen-
tences of L . A,B, . . . shall denote sets of sentences of L . K is reserved to represent a set of sentences
that is closed under logical consequence (i.e. K = Cn(K)) — such a set is called a belief set or theory.
Given a belief set K we will denote Cn(K∪{α}) by K+α . We will use the symbol > to represent
an arbitrary tautology and the symbol ⊥ to represent an arbitrary contradiction. A possible world is a
maximal consistent subset of L . The set of all possible worlds will be denoted by ML . Sets of possible
worlds are called propositions. The set of possible worlds that contain R ⊆L is denoted by ‖R‖, i.e.,
‖R‖ = {M ∈ML : R ⊆ M}. If R is inconsistent, then ‖R‖ = /0. The elements of R are designated by
R−worlds. For any sentence α , ‖α‖ is an abbreviation of ‖Cn({α}‖) and its elements are designated by
α-worlds.
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2.2 AGM Revisions

The operation of revision of a belief set consists of the incorporation of new beliefs in that set. In a
revision process, some previous beliefs may be retracted in order to obtain, as output, a consistent belief
set. The following postulates, which were originally presented in [12, 13, 14], are commonly known as
AGM postulates for revision:1

(?1) K?α =Cn(K?α) (i.e. K?α is a belief set). (Closure)
(?2) α ∈K?α . (Success)
(?3) K?α ⊆K+α . (Inclusion)
(?4) If ¬α 6∈K, then K+α ⊆K?α . (Vacuity)
(?5) If α is consistent, then K?α is consistent. (Consistency)
(?6) If ` α ↔ β , then K?α = K?β . (Extensionality)
(?7) K?α ∩K?β ⊆K?(α ∨β ). (Disjunctive overlap)
(?8) If ¬α 6∈K?(α ∨β ), then K?(α ∨β )⊆K?α . (Disjunctive inclusion)

Definition 1 ([1]). An operator ? for a belief set K is a basic AGM revision if and only if it satisfies
postulates (?1) to (?6). It is an AGM revision if and only if it satisfies postulates (?1) to (?8).

2.3 AGM Contractions

A contraction of a belief set occurs when some beliefs are removed from it (and no new beliefs are
added). The following postulates, which were presented in [1] (following [12, 13]), are commonly
known as AGM postulates for contraction:
(÷1) K÷α =Cn(K÷α) (i.e. K÷α is a belief set). (Closure)
(÷2) K÷α ⊆K. (Inclusion)
(÷3) If α 6∈K, then K⊆K÷α . (Vacuity)
(÷4) If 6` α , then α 6∈K÷α . (Success)
(÷5) K⊆ (K÷α)+α . (Recovery)
(÷6) If ` α ↔ β , then K÷α = K÷β . (Extensionality)
(÷7) K÷α ∩K÷β ⊆K÷ (α ∧β ). (Conjunctive overlap)
(÷8) K÷ (α ∧β )⊆K÷α whenever α 6∈K÷ (α ∧β ). (Conjunctive inclusion)

Definition 2 ([1]). An operator ÷ for a belief set K is a basic AGM contraction if and only if it satisfies
postulates (÷1) to (÷6). It is an AGM contraction if and only if it satisfies postulates (÷1) to (÷8).

There are several contraction operators that are exactly characterized by the postulates (÷1) to (÷8),
namely the (transitively relational) partial meet contractions [1], safe contraction [2, 25], system of
spheres-based contraction [16] and epistemic entrenchment-based contraction [14, 15].

The Levi and Harper identities2 make contraction and revision interchangeable. These identities
allow us to define the revision and the contraction operators in terms of each other. The Levi (respectively
Harper) identity enable the use of contraction (resp. revision) as primitive function and treat revision
(resp. contraction) as defined in terms of contraction (resp. revision).

1These postulates were previously presented in [1] but with slightly different formulations.
2Harper identity: [20] K÷α = (K?¬α)∩K.

Levi identity: [22] K?α = (K÷¬α)+α .
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2.4 Sphere-based Operations of Belief Change

Grove ([16]), inspired by the semantics for counterfactuals ([23]) proposed a structure called system of
spheres to be used for defining revision functions. Figuratively, the distance between a possible world
and the innermost sphere reflects its plausibility towards ‖K‖. The closer a possible world is to ‖K‖, the
more plausible it is.
Definition 3 ([16]). Let K be a belief set. A system of spheres, or spheres’ system, centred on ‖K‖ is a
collection S of subsets of ML , i.e., S⊆P(ML ), that satisfies the following conditions:
(S1) S is totally ordered with respect to set inclusion; that is, if U,V ∈ S, then U ⊆V or V ⊆U.
(S2) ‖K‖ ∈ S, and if U ∈ S, then ‖K‖ ⊆U (‖K‖ is the ⊆-minimum of S).
(S3) ML ∈ S (ML is the largest element of S).
(S4) For every α ∈L , if there is any element in S intersecting ‖α‖ then there is also a smallest element
in S intersecting ‖α‖.

The elements of S are called spheres. For any consistent sentence α ∈L , the smallest sphere in S
intersecting ‖α‖ is denoted by Sα .

Given a system of spheres S centered on ‖K‖ it is possible to define expansion, revision and contrac-
tion operators based on S.
Definition 4 ([16]). Let K be a belief set.

(a) An operation + on K is a system of spheres-based expansion operator if and only if there exists
a system of spheres S centered on ‖K‖ such that for all α it holds that:

K+α =
⋂
(‖K‖∩‖α‖).

(b) An operation ÷ on K is a system of spheres-based contraction operator if and only if there exists
a system of spheres S centered on ‖K‖ such that for all α it holds that:

K÷α =

{ ⋂
((S¬α ∩‖¬α‖)∪‖K‖) if ‖¬α‖ 6= /0

K otherwise

(c) An operation ? on K is a system of spheres-based revision operator if and only if there exists a
system of spheres S centered on ‖K‖ such that for all α it holds that:

K?α =

{ ⋂
(Sα ∩‖α‖) if ‖α‖ 6= /0

L otherwise

It holds that sphere-based revision and contraction operators are characterized, by the (eight) AGM
postulates for revision and contraction, respectively ([16]).

3 Two Level Credibility-limited Revisions

The two level CL revisions are operators of non-prioritized revision. When revising a belief set by a
sentence α , we first need to analyse the degree of credibility of that sentence. When revising by a
sentence that is considered to be at the highest level of credibility, the operator works as a standard
revision operator. If it is considered to be at the second level of credibility, then that sentence is not
incorporated in the revision process but its negation is removed from the original belief set. When
revising by a non-credible sentence, the operator leaves the original belief set unchanged. The following
definition formalizes this concept:
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Definition 5 ([8, 3]). Let K be a belief set, ? be a basic AGM revision operator on K and CH and CL be
subsets of L . Then � is a two level CL revision operator induced by ?, CH and CL if and only if:

K�α =


K?α if α ∈CH

(K?α)∩K if α ∈CL

K if α 6∈ (CL∪CH)

In the previous definition CH ∪CL represent the sentences that are considered to have some degree
of credibility. CH and CL represent respectively the set of sentences that are considered to be at the first
(highest) and at the second level of credibility. Note that if α ∈CL, then K�α = (K?α)∩K. According
to the Harper identity (K?α)∩K coincides with the contraction of K by ¬α .

This construction can be further specified by adding constraints to the structure of the set(s) of cred-
ible sentences. In [19, 9], the following properties for a given set of credible sentences C were proposed:
Credibility of Logical Equivalents: If ` α ↔ β , then α ∈C if and only if β ∈C.3

Single Sentence Closure: If α ∈C, then Cn(α)⊆C.
Element Consistency: If α ∈C, then α 6`⊥.
Credibility lower bounding: If K is consistent, then K⊆C.

Additionally, in [8] the following condition that relates a set of credible sentences C with a revision
function ? was introduced. This condition, designated by condition (C - ?), states that if a sentence α

is not credible, then any possible outcome of revising the belief set K through ? by a credible sentence
contains ¬α . The intuition underlying this property is that if α is not credible then its negation cannot
be removed. Thus its negation should still be in the outcome of the revision by any credible sentence.

If α 6∈C and β ∈C, then ¬α ∈K?β . (C - ?)

3.1 Two level credibility-limited revision postulates

We now recall from [8] some of the postulates proposed to express properties of the two level CL revision
operators. The first postulate was originally proposed in [24], the second in [21], the following three in
[19] and the remaining ones in [8].
(Consistency Preservation) If K is consistent, then K�α is consistent.
(Confirmation) If α ∈K, then K�α = K.
(Strict Improvement) If α ∈K�α and ` α → β , then β ∈K�β .
(Regularity) If β ∈K�α , then β ∈K�β .
(Disjunctive Distribution) If α ∨β ∈K� (α ∨β ), then α ∈K�α or β ∈K�β .
(N-Recovery) K⊆K�α +¬α .
(N-Relative success) If ¬α ∈K�α , then K�α = K.
(N-Persistence) If ¬β ∈K�β , then ¬β ∈K�α .
(N-Success Propagation) If ¬α ∈K�α and ` β → α , then ¬β ∈K�β .
(Weak Relative Success) α ∈K�α or K�α ⊆K.
(Weak Vacuity) If ¬α 6∈K, then K⊆K�α .
(Weak Disjunctive Inclusion) If ¬α 6∈K� (α ∨β ), then K� (α ∨β )+(α ∨β )⊆K�α +α .
(Containment) If K is consistent, then K∩ ((K�α)+α)⊆K�α .

The following observations relate some of the postulates presented above.
3In [19] this property was designated by closure under logical equivalence and was formulated as follows: If ` α↔ β , and

α ∈C, then β ∈C.
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Observation 1 ([8]). Let K be a consistent and logically closed set and � be an operator on K.
(a) If� satisfies closure, consistency preservation, weak relative success and N-Recovery, then it satisfies
N-Relative success.
(b) If � satisfies weak vacuity and inclusion, then it satisfies confirmation.

Observation 2. Let K be a consistent and logically closed set and � be an operator on K.
(a) If � satisfies consistency preservation, closure, vacuity, inclusion, strict improvement, disjunctive
inclusion, disjunctive overlap and N-recovery, then it satisfies regularity.
(b) If � satisfies consistency preservation, closure, vacuity, weak relative success and disjunctive inclu-
sion, then it satisfies disjunctive distribution.
(c) If � satisfies N-recovery and closure, then it satisfies containment.

In the following theorem we recall from [8] an axiomatic characterization for a two level CL revision
operator induced by an AGM revision and sets CH and CL satisfying some given properties.4

Observation 3 ([8]). Let K be a consistent and logically closed set and � be an operator on K. Then
the following conditions are equivalent:

1. � satisfies weak relative success, closure, inclusion, consistency preservation, weak vacuity, ex-
tensionality, strict improvement, N-persistence, N-recovery, disjunctive overlap and weak disjunctive
inclusion.

2. � is a two level CL revision operator induced by an AGM revision operator ? for K and sets
CH ,CL ⊆L such that: CL satisfy credibility of logical equivalents and element consistency, CH ∩CL = /0,
CH satisfies element consistency, credibility lower bounding and single sentence closure and condition
(CH ∪CL - ?) holds.

4 System of Spheres-based Two Level Credibility-limited Revisions

In this section we present the definition of a system of spheres-based two level CL revision operator. We
start by presenting the notion of two level system of spheres, centred on ‖K‖.
Definition 6. Let K be a belief set. A two level system of spheres centred on ‖K‖ is a pair (Si,S) whose
elements are subsets of ML , i.e., S⊆P(ML ) and Si ⊆P(ML ), such that:

(a) S and Si satisfy conditions (S1), (S2) and (S4) of Definition 3;
(b) Si ⊆ S;
(c) If X ∈ Si, then X ⊆ Y for all Y ∈ S\Si.

Intuitively, a two level system of spheres (Si,S), centered on ‖K‖ is a system composed by two
systems of spheres Si and S, both centered on ‖K‖, where Si ⊆ S and in which the condition (S3) of
Definition 3 is relaxed for Si and S, allowing the existence of possible worlds outside the union of all
spheres of Si and of S.5 Conditions (b) and (c) impose that the spheres of Si are the innermost ones (see
Figure 1).

The following observation is a direct consequence of condition (c). It states that all spheres contained
in a given sphere of Si belong to Si.

Observation 4. If Si and S satisfy condition (c) of Definition 6, then it holds that:
If X ∈ S and Y ∈ Si are such that X ⊆ Y , then X ∈ Si.

4Actually, the containment postulate was also included in the list of postulates of the representation theorem presented in
[8], however as Observation 2 illustrates, containment follows from closure and N-recovery.

5Condition (S3) of Definition 3 was also relaxed in [19] when constructing a (modified) system of spheres for credibility-
limited revision operators.
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‖K‖

ML

Si

S

Figure 1: Schematic representation of a two level system of spheres (Si,S), centred on ‖K‖. The dashed circle
establishes the boundary between the spheres of Si and those of S \ Si. Worlds outside the thickest line are not
elements of any sphere of S.

In a system of spheres centered on ‖K‖, the worlds considered most plausible are those that lie in
the innermost sphere (i.e. in ‖K‖), and the closer a possible world is to the center, the more plausible it
is considered to be. Similarly, the worlds lying in the spheres of Si have a higher degree of plausibility
than those in the spheres of S \Si. Intuitively, a two level system of spheres (Si,S), centered on ‖K‖
defines three clusters. The first cluster is formed by the worlds in the spheres of Si. These worlds are
the ones to which a higher degree of plausibility is assigned (relatively to those outside the spheres of
Si). The second cluster is formed by the worlds in the spheres of S\Si, which are assigned some (lower)
degree of plausibility. Finally, the third cluster is formed by the worlds outside the spheres of S, which
are considered to be not plausible.

We are now in conditions to present the definition of a system of spheres-based two level CL revision
operator. The outcome of the revision by means of a system of spheres-based two level CL revision
operator of a belief set K by a sentence α (see Figure 2) is:
- the intersection of the most plausible α-worlds, if these are α-worlds in the cluster of the most plausible
worlds.6

- the intersection of all the worlds contained in the union of the set of K-worlds with the set of the most
plausible α-worlds, if the α-worlds are considered to be plausible, but are not in the cluster of the most
plausible ones.
- K if the α-worlds are not plausible, i.e, in this case the belief set remains unchanged.

Definition 7. Let K be a belief set and (Si,S) be a two level system of spheres centered on ‖K‖. The
system of spheres-based two level CL revision operator induced by (Si,S) is the operator �(Si,S) such
that, for all α:

K�(Si,S) α =


⋂
(Sα ∩‖α‖) if Sα ∈ Si⋂
(‖K‖∪ (Sα ∩‖α‖)) if Sα ∈ S\Si

K if X ∩‖α‖= /0, for all X ∈ S

An operator� on K is a system of spheres-based two level CL revision operator if and only if there exists
a two levels system of spheres (Si,S) centred on ‖K‖ such that K�α = K�(Si,S) α holds for all α .

6Note that being X a set of possible worlds
⋂

X is a belief set.
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‖K‖

‖α‖
ML

Si

S

‖α‖ ML

Si

S

‖K‖

‖α‖
ML

Si

S

‖K‖

Figure 2: Schematic representation of the worlds of the outcome of the system of spheres-based two level CL
revision operator induced by a two level system of spheres (Si,S) centred on ‖K‖ by a sentence α . In the first
case, it holds that Sα ∈ Si and in the second that Sα ∈ S \Si. In the third case, all the α-worlds are outside the
spheres of S.

4.1 Representation theorems

We now present a representation theorem for system of spheres-based two level CL revision operators. It
also relates these operators with the two level CL revision operators induced by AGM revision operators
and sets CH ,CL ⊆L satisfying some given properties. Considering the axiomatic characterization for
the latter, presented in Observation 3, we note that we only need to ensure that the Condition (CH - ?)
holds, to guarantee that the class of these operators coincides with the class of system of spheres-based
two level CL revision operators.

Theorem 1. Let K be a consistent and logically closed set and � be an operator on K. Then the
following conditions are equivalent:

1. � satisfies weak relative success, closure, inclusion, consistency preservation, vacuity, extension-
ality, strict improvement, N-persistence, N-recovery, disjunctive overlap and disjunctive inclusion.

2. � is a system of spheres-based two level CL revision operator.
3. � is a two level CL revision operator induced by an AGM revision operator ? for K and sets

CH ,CL ⊆L such that: CL satisfy credibility of logical equivalents and element consistency, CH ∩CL = /0,
CH satisfies element consistency, credibility lower bounding and single sentence closure and conditions
(CH ∪CL - ?) and (CH - ?) hold.

5 Related Works

In this section we will mention other approaches related with the present paper.
- In [8], the two level CL revision operators were defined in terms of a basic AGM revision operator and
sets CH and CL of credible sentences. Several properties have been proposed for these sets. Postulates
to characterize two level CL revision operators were proposed. Results exposing the relation between
the postulates and the properties of CH and CL were presented. Axiomatic characterizations for several
classes of two level CL revision operators were presented (namely for two level CL revision operators in-
duced by basic AGM revisions and by AGM revisions in which the associated sets of credible sentences
satisfy certain properties).
- In [3], the operators of two CL revision were introduced in terms of basic AGM belief revisions opera-
tors (in that paper these operators are designated by Filtered belief revision). The possibility that an item
of information could still be “taken” seriously, even if it is not accepted as being fully credible (this type
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of information is there called allowable) was discussed. A syntactic analysis of filtered belief revision
was provided.
- In [4], the works presented in [3] and [8] were extended by introducing the notion of partial belief
revision structure, providing a characterization of filtered belief revision in terms of properties of these
structures. There it is considered the notion of rationalizability of a choice structure in terms of a plau-
sibility order and established a correspondence between rationalizability and AGM consistency in terms
of the eight AGM postulates for revision. An interpretation of credibility, allowability and rejection of
information in terms of the degree of implausibility of the information was provided.
- In [19] credibility-limited revision operators were presented. When revising a belief set by a sentence
by means of a credibility-limited revision operator, we need first to analyse whether that sentence is cred-
ible or not. When revising by a credible sentence, the operator works as a basic AGM revision operator,
otherwise it leaves the original belief set unchanged. Two level credibility-limited revisions operators can
be seen as a generalization of credibility-limited revision operators. In fact, in the case that CL = /0 both
types of operators coincide. In [19] several properties were prosed for C (the set of credible sentences)
and this model was developed in terms of possible world models. Representations theorems for different
classes of Credibility-limited revisions operators were presented. The extension of credibility-limited
revision operators to the belief bases setting was studied in [7, 9, 10, 11].

6 Conclusion

The model of credibility-limited revision ([19]) is essentially a generalization of the AGM framework
([1]) of belief revision, which addresses one of the main shortcomings pointed out to that framework,
namely the fact that it assumes that any new information has priority over the original beliefs. In the
model of credibility-limited revisions two classes of sentences are considered. Some sentences —the
so-called credible sentences— are accepted in the process of revision by them, while the remaining
sentences are such that the process of revising by them has no effect at all in the original belief set.

In its turn, the model of two level CL revision ([3, 8]) generalizes credibility-limited revision by
considering an additional class of sentences. A sentence of this class is such that, although a revision by
it does not lead to its acceptance, it causes the removal of its negation from the original belief set.

The present paper offers a semantic approach to the two level CL revision operators. More precisely,
it introduces a class of two-level CL revision operators whose definition is based on a structure called two
level system of spheres, which generalizes the well-known systems of spheres proposed by Grove ([16]).
This semantic definition provides some additional insight on the intuition that underlays the notion of
two-level CL revisions.
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[11] Marco Garapa, Eduardo Fermé, and Maurı́cio D.L. Reis. Credibility-limited base revision: New
classes and their characterizations. Journal of Artificial Intelligence Research, 69:1023 – 1075, 2020.
doi:10.1613/jair.1.12298

[12] Peter Gärdenfors. Conditionals and changes of belief. Acta Philosophica Fennica, 30:381–404, 1978.

[13] Peter Gärdenfors. Rules for rational changes of belief. In Tom Pauli, editor, Philosophical Essays dedicated
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7 Appendix

In this appendix we provide a sketch proof for the main result presented in this paper.

Proof sketch of Theorem 1:
(2) to (1):

Let� be a system of spheres-based two level credibility limited revision operator induced by a two levels
system of spheres (Si,S). We need to prove that � satisfies all the postulates present in statement (1) .

(1) to (2):
Assume that� satisfies all the postulates listed in statement (1) and consider the following constructions
for S and Si:

S ∈ Si iff:
(a) S = ‖K‖;
(b) /0 6= S ⊆ {w : w ∈ ‖K�α‖ , for some α such that‖K�α‖ ⊆ ‖α‖} and ‖K�α‖ ⊆ S for all α such
that S∩‖α‖ 6= /0.

S ∈ S iff:
(a) S = ‖K‖;
(b) /0 6= S ⊆ {w : w ∈ ‖K�α‖ , for some α such that‖K�α‖∩‖α‖ 6= /0}, ‖K�α‖ ⊆ S for all α such
that S∩‖α‖ 6= /0 and if S∩‖α‖= /0 and S 6∈ Si, then ‖K�α‖∩S = ‖K‖.

We need to show that:
1. (Si,S) is a two level system of spheres centred on ‖K‖. To do so, it is necessary to prove that:

i. S and Si satisfy conditions (S1), (S2) and (S4), of Definition 3;

ii. Si ⊆ S;

iii. If X ∈ Si, then X ⊆ Y for all Y ∈ S\Si.

2. If ‖α‖= /0, then K�α = K;
3. For α such that K�α 6` ¬α and S(α) =

⋃{‖K�δ‖ : ‖α‖ ⊆ ‖δ‖}, it holds that:

i. S(α) ∈ S

ii. S(α) = Sα (i.e. S(α) is the minimal sphere that intersects with ‖α‖).
iii.

K�α =


⋂
(Sα ∩‖α‖) if Sα ∈ Si⋂
(‖K‖∪ (Sα ∩‖α‖)) if Sα ∈ S\Si

K if X ∩‖α‖= /0, for all X ∈ S
,

where Sα = S(α).

(1) to (3):
Let � be an operator satisfying the postulates listed in statement (1). Let ? be the operation such that:

http://dx.doi.org/10.1111/j.1755-2567.1997.tb00737.x
http://dx.doi.org/10.1007/978-94-007-7759-0_4
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i. If ¬α 6∈K�α , then K?α = K�α +α;

ii. If ¬α ∈K�α , then K?α =Cn(α).

Furthermore let CH = {α : α ∈K�α} and CL = {α : ¬α 6∈K�α}\CH .
These are the same construction that were used in the corresponding part of Observation 3. Then, re-
garding this proof, it remains only to show that condition (CH - ?) holds.

(3) to (1):
By Observation 3 it only remains to prove that � satisfies vacuity and disjunctive inclusion.
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We argue that behavioral science models of online content-sharing overlook the role of strategic in-

teractions between users. Borrowing from accuracy-nudges studies decision-theoretic models, we

propose a basic game model and explore special cases with idealized parameter settings to identify

refinements necessary to capture real-world online social network behavior. Anticipating those re-

finements, we sketch a strategic analysis of content amplification and draw a connection between

Keynes’ “beauty contest” analogy and recent social-epistemological work on echo chambers. We

conclude on the model’s prospects from analytical and empirical perspectives.

1 Motivations

Online search engines garnered attention from social epistemologists in the early days of the commercial

Internet, when A. Goldman analyzed them as retrieval systems in [5]. Later, T.A. Simpson extended

Goldman’s analysis into a model of surrogate expertise in [21] in direct response to Google Search per-

sonalization algorithms. Recently, epistemologists have turned to online social networks (hereafter OSN),

fulfilling a similar function of online information sources, with even greater personalization. Notably,

T.C. Nguyen [12] provided a much-needed conceptual analysis of OSN epistemic bubbles and echo cham-

bers, and C. O’Connor and J.O. Weatherall [14] proposed that applying network epistemology to OSN

could address limitations of contagion models of online information spread. At the same time, behavioral

scientists have independently addressed the limitations of contagion models by looking at OSN-sharing

through a rational choice lens. Particularly, studies that shaped the field and its public perception have

manifested a Bayesian influence. Widely publicized studies like [23] (a Science cover story: “How lies

spread–On social media, fake news beats the truth”) and [16] (a Nature cover story: “Misinformation–A

prompt to check accuracy cuts online sharing of fake news”) appealed to Bayesian decision theory and

expected utility theory to rationalize OSN content-sharing and interpret diffusion-model data analyses.1

*I wish to thank Erik Mohlin, Jens Ulrik Hansen, Justine Jacot, and Patricia Rich, for their invaluable help at the various

stages of this paper’s development; three anonymous referees, whose comments and suggestions brought about some major

changes and (hopefully) improvements; and Rineke Verbrugge, who reviewed those changes, and suggested further improve-

ments. Any mistakes left are on me.
1“[U]ser characteristics and network structure could not explain the differential diffusion of truth and falsity, we sought

alternative explanations for the differences in their diffusion dynamics. One alternative explanation emerges from information

theory and Bayesian decision theory. Novelty attracts human attention, contributes to productive decision-making, and encour-

ages information sharing because novelty updates our understanding of the world.” [23, p. 1149]. Similarly, “people do care

more about accuracy than other content dimensions but accuracy nonetheless often has little effect on sharing, because (ii) the

social media context focuses [users’] attention on other factors such as the desire to attract and please followers/friends or to

signal one’s group membership. In the language of utility theory, an ‘attentional spotlight’ is shone upon certain terms in the

decider’s utility function, such that only those terms are weighed when making a decision” [16, p. 591]. The framework of [16]

http://dx.doi.org/10.4204/EPTCS.379.24
https://creativecommons.org
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Decision theory best models decisions under uncertainty about the state of nature, but OSN-sharing

outcomes depend on reactions from a community of users. The preferred model for decisions under

uncertainty about other agents’ decisions is game theory, and while the formalisms are inter-translatable,

decision theory is less expressive. As pointed out by J. Harsanyi, the game-to-decision direction loses

in translation the explicit expression of mutual expectations of rationality (via solution concepts [6, 7]).

Compounding this issue, decision-theoretic models from behaviral science studies (such as [23, 16])

were not proposed as translations for games and thus did not explicitly translate mutual expectations

into constraints on decision-makers priors (as per the games-to-decision direction, cf. [8, 6]), leaving

their role almost entirely unanalyzed. Unfortunately, social epistemology offers no ready-made solution.

Nguyen’s analysis is strategic but informal and cannot bear on the data without a formal reconstruction,

while network epistemology does not address strategic expectations formally.

The absence of a strategic analysis of OSN-sharing motivated the approach presented in the remainder

of this paper. Section 2 builds upon behavioral science decision-theoretic models to propose a simplified

game model for OSN-sharing, differentiating between content-based and engagement-based preferences.

Section 3 examines special cases that highlight the model’s salient features and limitations and identifies

extensions necessary to reconstruct real-life OSN users’ behavior. Section 4 extrapolates informally and

proposes that special cases of OSN-sharing elicit strategy selection akin to reasoning in guessing games

and could illuminate content amplification scenarios, including Nguyen’s epistemic bubbles and echo

chambers. We conclude with the analytic prospects of a strategic re-interpretation of extant data, and a

suggestion for the design of new studies.

2 A Game of Like

Behavioral science studies of OSN-sharing often acknowledge the role of strategic interactions between

users but have so far fallen short of factoring in their contribution. Pennycook et al. (2021) is a paradig-

matic example: the authors note that “the desire to attract and please followers/friends or to signal one’s

group membership” [16, p. 591] contributes to content-sharing decisions, but propose a utility func-

tion limited to personal preferences for content having such-and-such characteristics.2 A natural first

step toward a strategic model is thus to introduce the missing terms, then specify a game based on this

completed picture. For simplicity, we can let upi
(·) denote i’s personal utility, expressing how some

content aligns with i’s personal preferences for content having such-and-such characteristics, with the

understanding that this alignment could be further analyzed along multiple dimensions (as in [16], cf. n.

2). To that, we add a term that we denote usi
(·), for the social utility, expressing how reactions to the

content shared—‘likes,’ re-shares, comments, etc.—satisfy i’s preferences for social validation or, more

generally, engagement. Finally, we introduce a parameter, that we denote γ , to represent the relative

weights of i’s personal preferences for content and social preferences for engagement. In the decision-

theoretic model of [16], the only action being ‘sharing,’ actions and content are indiscernible, and the

is implicitly decision-theoretic, as utilities take as argument proxies for individual choices (content shared) rather than strategic

profiles (cf. Section 2).
2“Consider a piece of content x which is defined by k different characteristic dimensions [including] whether the content

is false/misleading F(x), and other k− 1 dimensions [that] are non-accuracy-related (e.g. partisan alignment, humorousness,

etc) defined as C2(x) . . .Ck(x). In our model, the utility [. . . ] from sharing content x is given by: U(x) = −α1βF F(x) +

∑k
i=2 αiβiCi(x) where βF indicates how much they dislike sharing misleading content and β2 . . .βk indicate how much they care

about each of the other dimensions (i.e. β s indicate preferences); while α1 indicates how much the person is paying attention to

accuracy, and α2 . . .αk indicate how much the person is paying attention to each of the other dimensions.” [16, Supplementary

Information: S9-10]
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utility function can range over the content. In a game-theoretic model, the utility function ranges over

strategy profiles, and we must distinguish content from actions.

As a basic model, we consider an n-player repeated game G in strategic form with a set P of play-

ers, where any i ∈ P can, at each round, ‘like’ or ‘share’ content. As simplifications, we assume that

players only share new content at round r = 0, so any ‘share’ action at round r ≥ 1 is a ‘reshare.’

Under this simplification, we can specify a set of (original) content CG = {c1, . . . ,cn} for G, where

ci is the content introduced at r = 0 by agent i. The action set for some player i at some round r is

Ai = {likei(x,y),sharei(x,y) : x ∈CG,y ∈ P}, where y is a player who shared x at some round r′ < r, and

from whom i is re-sharing x. Note that, under our simplifying assumption, at r = 0, there is nothing to

‘like.’ If all actions are visible to all players, no restriction is imposed on x or y. Explicitly: any content

shared by some player at round r can be reshared by any other player at round (r+ 1). This amounts

to a game with perfect information, adequate for demonstrating the strategic standpoint’s fruitfulness

but insufficient to model real-world OSNs (see below). Our earlier discussion of personal and social

preferences yields a utility function, as below.

Ui(·) = γiupi
(·)+ (1− γi)usi

(·) (1)

Intuitively, in the decision-theoretic approach, upi
(c) expresses i’s preferences as a function of the dis-

tance between c and i’s ideal content located in a multi-dimensional space whose dimensions correspond

to i’s criteria of evaluation. In a round of G, the argument of (1) is a strategy profile σ = (σ1, . . .σn)
where σi is player i’s strategy at that round. Following the same intuition, upi

(σ) can be thought of as

a function of the relative distances between i’s ideal content and the ‘community content’ c1, . . . ,cn, or

some weighed sum thereof, representing how close CG is to i’s ideal.3 So construed, and under our sim-

plification, upi
(σ) remains constant after r = 0. Again, this personal preference model is sufficient for

our purposes. Still, in a real-world OSN, overall engagement could indirectly affect upi
(σ) (i may care for

overall visibility, and in a model with incomplete information, visibility would depend on engagement,

see below).

In a decision-theoretic model (e.g., extending that of [16]) usi
(c) would be a function of the (accu-

mulated) engagement from users other than i, with c (when shared by i). In G, usi
(σ) at round r is, in

part, a function of how other players have engaged in r with the content i shared at some r′ > r; and in

part, of the accrued social utility inherited from earlier rounds. The candidate functions for computing

either component are too numerous to review here, and which one applies to particular cases may be

empirically constrained by algorithms. Still, it suffices for our purposes to note that, at some round r,

usi
(σ) does not ‘reset’ i’s social utility; that the contribution of ‘likes’ and (re)shares may vary; and that

evaluations may depend on players’ knowledge.4 For definiteness, we can assume a function usi
(σ) that

ranks higher strategy profiles where content i shared (or reshared) is both liked and reshared rather than

liked or shared (alone)—i.e., a function that takes some weighed sum of ‘likes’ and (re)shares, rather

than an average (or an argmax). This justifies the shorthand “game of like”—as a nod to J. Conway’s

“game of life” [4]—since the preferred social outcome, over repetitions, is like-and-reshare, a strength-

ened form of ‘like’ (“game of share” would be equally justified, but the homage and homophony would

be lost).

3Note that i may be indifferent to others’ strategies, in which case upi
(σ) = upi

(σ ′) whenever i’s strategy σi is the same in

σ and σ ′.
4For a concrete example, Twitter’s ranking algorithm weighs ‘like’ reactions more than re-tweets (reshares) when deter-

mining which content should appear in users’ feeds. A knowledgeable user may prioritize sharing content they believe would

receive ‘likes’ to optimize the chances that other users are exposed to their content later, whether they value engagement as

social validation or as a means to increase content visibility.
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Let us conclude this section with a few words on our model’s (self-imposed) limitations. In real-

world OSN, new content can be introduced at any time, and players have only a partial picture of the

content they can reshare. A more realistic “game of like” would have imperfect information (e.g., as

a model of bounded attention): any content c would be available to a player i to react to at r with a

certain probability, depending on overall engagement with c prior to r. In such a model, i could be aware

of some c, close to i’s ideal content, and care for its visibility (the probability of c being available to

other players) and thus for other players’ engagement with c. Conversely, i might not worry much about

some c, far removed from their ideal, as long as c’s probability of being available to other players would

remain low. Still, a simplified model with perfect information already acknowledges the relevance of

overall interaction by virtue of the argument of γiupi
(·) being a strategy profile, and thus furthers goal of

identifying strategic components of OSN-sharing. Hence, our “game of like” with perfect information is

a proof-of-concept and a foundation for future developments. The next section considers special cases,

varying players’ γ types, to determine which refinements would be necessary to turn the proof-of-concept

model into a model for real-world OSNs.

3 Strategy Selection

Let us begin with the limit case where, for all i ∈ P, γi = 1, denoted Gγ=1 for later reference. We could

distinguish a priori between a variety of subcases, depending on whether players have non-equivocal

prior beliefs about other players’ personal preferences; and/or whether they have non-equivocal prior

beliefs about other players’ γ . However, the differences between those subcases are inconsequential.

To see this, assume an arbitrary player i in Gγ=1 who does have non-equivocal prior beliefs about other

players’ personal preferences for content and γ-type (say, following a round of cheap talk). Ex hypothesis,

at any round r of Gγ=1, for any i ∈ P, Ui(σ)=upi
(σ). Hence, i’s best strategy at round r = 0 is to share

whatever content ci available to them that is closest to their ideal content (according to their dimensions

of evaluation). Beliefs about other players’ preferences and γ type do not affect that choice. Hence, i

would choose the same content without any information about other players. Since the only assumption

we made about i is that γi = 1, this generalizes to any i∈P for Gγ=1 (and yields an equilibrium solution in

the basic model for r = 0 in Gγ=1). Under the assumption that content is only introduced at round r = 0,

the distance between the ‘community content’ and any player i’s ideal content remains constant across

repetitions, whatever their strategy at (r ≥ 1). Relaxing this simplifying assumption is one way to model

how players can attempt to drive community content closer to their preferences by sharing more content

closer to their ideal at any new round (r ≥ 1). But this would not bring the model closer to real-world

OSN, as “spamming” content is only efficient if the content is visible, bringing us back to a version of

the “game of like” with imperfect information. Conversely, a “game of like” without content introduced

at round r > 0, and with (γ = 1)-players only, would be susceptible to manipulations by coalitions of

like-minded players, who would want to see some content promoted. Therefore, relaxing the assumption

that no new content is introduced past r = 0 would not be especially illuminating without an explicit

topological model of content distances and auxiliary assumptions about how variable availability of

content correlates with engagement.

In a second limit case, denoted Gγ=0, all i ∈ P are such that γi = 0. Unlike Gγ=1, player priors about

others can significantly impact the game. To see this, consider the limit subcase where players’ γ type is

common knowledge. Then, Gγ=0 becomes a game of reciprocation-or-retaliation or quid pro quo, where

players either trade reciprocal ‘likes’ and re-shares, or ignore one another, and where content becomes

inconsequential (so that it matters little whether new content can be introduced after r = 0 or not). To see
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this, consider a simple Gγ=0 case with two players i and j, content introduction restricted to r = 0, and

(as a simplification) no marginal utility for ‘liking’ or re-sharing one’s content. Hence, the only utility i

and j can get is from the other player’s liking or re-sharing their content. At r = 0, they share (resp.) ci

and c j. At r = 1, i ( j) can like or re-share c j (ci), or do nothing (for definiteness: repeating their move

from r = 0). If either does nothing at r = 1, the other can retaliate at r = 2 by playing nothing; otherwise,

they can reciprocate and play the remaining action (like, or reshare) they did not play at r = 1. With no

introduction of new content, they can repeat the cycle over ci and c j. If new content is allowed, they can

repeat cycles of three rounds (introduction, like, or re-share, then reciprocation or retaliation) to accrue

utility. The strategy just described turning the “game of like” into a game of reciprocation-or-retaliation,

and resembles the tit-for-tat strategy in the repeated Prisonner’s Dilemma.

As extreme as it is, this case suggests that when (γ = 0)-players have non-equivocal beliefs about

one another’s γ type, the closer the players are to having correct beliefs, the closer Gγ=0 resembles a quid

pro quo game. Assume now a subcase of Gγ=0 where players have equivocal beliefs about γ types—

i.e., do not know that other players are (γ = 0)-players. If they also have equivocal beliefs about other

players’ personal preferences for content, the rational choice (for any i) is a mixed strategy assigning

equal weight to any content i has access to at r = 0 and hope for the best. Lifting the restriction on

content introduction is more consequential than in the Gγ=1 case, as repeated observations of others’

sharing behavior are necessary to infer their personal preferences for content from their actions or their

preferences for engagement. Since, ex hypothesis, no player in Gγ=0 actually cares for content (as long

as they receive engagement), inferences from sharing behavior to personal preferences could result in

‘false consensus’ situations if players gradually amplify a salient type of content, leading to an echo

chamber (in the sense of [12]; cf. Section 4). However, even without lifting the assumption, we can form

a picture of a repeated game with new content by assuming a round of cheap talk prior to r = 0, during

which players can form priors (or update equivocal priors) about other players’ preferences based on

observed behavior. Suppose that some candidate content appears salient for eliciting positive reactions—

say, pictures of cats in precarious positions. Then, upon engaging in Gγ=0, players could anticipate

similar pictures to elicit ‘like’ and ‘share’ reactions, skewing the content shared at r = 0 toward pictures

of cats in precarious positions. Thus, it would appear that a majority of players favor cat pictures. Even

without the introduction of new content, this could lead to cat pictures being increasingly reshared at

every r ≥ 1 without (ex hypothesis) any player selecting their strategy out of personal preference for that

type of content, resulting in a ‘false consensus.’ Again, as with Gγ=1, how engagement could impact

visibility appears more critical than whether or not content may be repeatedly introduced. Subsequently,

the need to accommodate (γ < 1)-players does not require further refinements beyond those suggested by

Gγ=1: imperfect information and an explicit content evaluation and comparison model. The latter would,

in particular, suffice for representing how (γ < 1)-players form (and revise) beliefs about the majority’s

opinion, instrumental in selecting strategies for eliciting engagement.

4 Mutual Expectations and Social Influence

Our remark about the majority’s opinion being of import to (γ < 1)-players may remind the reader of

J.M. Keynes’ “Beauty Contest” analogy for professional investment, quoted below.

[P]rofessional investment may be likened to those newspaper competitions in which the

competitors have to pick out the six prettiest faces from a hundred photographs, the prize

being awarded to the competitor whose choice most nearly corresponds to the average pref-

erences of the competitors as a whole. [. . . ] It is not a case of choosing those [faces] that,
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to the best of one’s judgment, are really the prettiest, nor even those that average opinion

genuinely thinks the prettiest. We have reached the third degree where we devote our in-

telligences to anticipating what average opinion expects the average opinion to be. [9, p.

156]

The parallel is intentional: we propose that Keynes’ “third degree” describes the reasoning of a (γ < 1)-
player selecting a strategy that could elicit (re)share reactions from other (γ < 1)-players who would

want to elicit ‘like’ reactions. More generally, a “game of like” with some proportion of (γ < 1)-players

relates to guessing games, proposed as a generalization of J.M. Keynes’ beauty contest by R. Nagel (first,

in [11]; see [1] for an overview of empirical studies). A formal reconstruction of this suggestion would

require an explicit model of preference distances (already identified as a necessary refinement for our

basic model to capture real-world OSNs), but we can offer an informal sketch.

Asssume the standpoint of a player of type γ = 0, that we will denote γ0, reasoning about other

players of a “game of like.”5 When choosing between multiple options for content to share, when γ0’s

goal is accruing “like” reactions, γ0 is equally well-off: (i) choosing based on their own preferences for

content, or: (ii) choosing based on the majority’s preference (e.g., as inferred following a round of cheap

talk) when preferences agree; and: (iii) possibly worse off, when preferences disagree. In case (iii), γ0

would be better off switching to an option that agrees with the majority’s (displayed) preferences. Thus,

options based on γ0 preferences are weakly dominated by options based on the majority’s preferences (as

inferred by γ0). Consider now how γ0 would approach selecting a strategy for eliciting “share” reactions;

as simplification, assume that γ0 believes that most players are like him and care more for engagement

than for content. Then, γ0 expects that most players would (re-)share content to elicit (at least) ‘like’

reactions. If γ0 assumes that those players are rational, they expect those players to reason to (i–iii)

above. From there, γ0 can conclude that selecting an option based on their own preferences for content

would yield the same payoff as choosing based on the majority’s opinion of the majority’s (displayed)

preferences for content (if in agreement); and possibly a worse payoff (if in disagreement). In the latter

case, γ0 would be better off switching options. Hence, a selection based on the majority’s opinion of the

majority’s (displayed) preferences weakly dominates a selection based on γ0’s preferences for content

alone.

The argument just sketched guesstimates too many important parameters to be general—e.g., the

respective distribution of γ types among the players, the cost of seeking social feedback with contrary-

to-personal preferences for other players that γ0, how γ0 would arrive at estimates for those, etc. However,

it suffices to motivate a comparison between a subclass of “game of like,” Keynes’ beauty contest, and

Nagel’s guessing games. And empirical motivation for this comparison would be the reconstruction of

the real-world OSN behavior colloquially called ‘signal boosting,’ whereby users of an OSN leverage

the influence of public figures (“influencers”) with a larger following base, tagging them in hope to be

re-shared. A well-reported example is a November 13, 2020 Twitter video featuring actor R. Quaid

reading aloud an earlier tweet from then-US president D.J. Trump under a stroboscopic light, with an

over-dramatic voice. Trump (unsurprisingly) reshared Quaid’s video, which then accrued millions of

views from Trump’s followers, reaching beyond Quaid’s following. In fact, we have already encountered

in Section 3 a variant of (involuntary) signal-boosting behavior, as a pathway to amplification (false

consensus) when discussing Gγ=0. This seems grounds enough to suggest that a “game of like” model

of OSN with influencers could contribute to a formal theory of online amplification, echoing Keynes’

5We assume that the agent is a (γ = 0)-player rather than a weaker (γ < 1) to avoid dealing with correlations between

personal preferences for content and preferences for engagement. Otherwise, we would have to factor in the cost of sharing

contrary-to-preference content, which could offset the benefit of engagement.
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motivations for the beauty-contest analogy (speculative asset bubbles).

Another possible contribution that circles back to social epistemology is a possible formal reconstruc-

tion of Nguyen’s conceptual analysis [12]. Nguyen proposes that epistemic bubbles occur when individ-

uals receive limited exposure to information sources challenging their pre-existing beliefs, in contrast

to echo chambers, which emerge when individuals receive extensive exposure to information sources

that align with their pre-existing beliefs. Epistemic bubbles result from combined personal choice and

algorithmic curation, particularly when online platforms tailor content to individual preferences, thereby

restricting the information individuals encounter. In an echo chamber, people reinforce their views and

are shielded from diverse perspectives and alternative information, leading to the exclusion of dissent-

ing opinions. Nguyen notes that epistemic bubbles are easy to burst with the presentation of contrary

evidence, while echo chambers are self-reinforcing, with social interaction actively fostering distrust of

outside sources. Nguyen’s analysis of echo chambers invites a formal reconstruction in a “game of like”

model with imperfect information, bringing it closer to the methodological frameworks of behavioral

science (modulo a game-to-decision translation).

5 Concluding Remarks

We argued in Section 1 that, while OSN-sharing is a strategic interaction, behavioral science models

overlook the contribution of strategic anticipations. We extrapolated from behavioral science decision-

theoretic models a basic game model of OSN-sharing (Section 2) and explored some limit cases to deter-

mine refinements necessary to capture real-world OSN-sharing (Section 3). A connection with Keynes’

Beauty contest (and, more generally, guessing games) allowed us to sketch a strategic analysis of con-

tent amplification in the presence of influencers and users leveraging influence and suggested a direction

for the model’s development (Section 4). Still, a “game of like” model may not contribute to concep-

tual analysis beyond a formal reconstruction of Nguyen’s framework. And Nguyen’s informal analysis

has already done the heavy lifting of rigorously ordering concepts inherited from unsystematic public

discourse, such as “echo chambers” and “filter bubbles” (introduced, resp., in [22] and [15]), whose

previously heterogeneous use had prevented consensus among researchers (see [20]). Rather, the lit-

mus test for a “game of like” model would be a contribution to the critical re-evaluation of empirical

data assessed from a decision-theoretic standpoint; and a suggestion of empirical investigations that a

decision-theoretic standpoint would have neglected. To conclude, we want to suggest that, as incomplete

as it is, our “game of like” model already achieves that.

As for critical re-evaluation, consider the widely-publicized study by Pennycook et al. [16], in which

the intervention condition proceeds from the auxiliary hypothesis that accuracy competes for attention

with social incentives.6 From a strategic standpoint, the authors’ other auxiliary hypothesis—that “peo-

ple do care more about accuracy than other content dimensions” (p. 591)—could characterize common

knowledge of one dimension of users’ preferences. If it does, having “the concept of accuracy more

[. . . ] salient in [one’s] mind” (ibid) could prime engagement-based expectations, rather than shutting

them down; in a game-to-decision translation, a Bayesian decision-maker would then anticipate a bet-

ter prospect of eliciting other users’ reactions conditional on being perceived as accurate (compared to

6“In the control condition of each experiment, participants were shown 24 news headlines (balanced on veracity and parti-

sanship) and asked how likely they would be to share each headline on Facebook. In the treatment condition, participants were

asked to rate the accuracy of a single non-partisan news headline at the outset of the study (ostensibly as part of a pretest for

stimuli for another study). They then went on to complete the same sharing intentions task as in the control condition, but with

the concept of accuracy more likely to be salient in their minds.” [16, p. 591]
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conditional on being perceived as inaccurate). Compare this with the intervention condition from the

more recent study by Ren et al. [18], which socially incentivized both accuracy and engagement.7 As

for the design of new studies, consider the question of whether differences in intervention conditions

between [16] and [18] translate into differences in reasoning about other users’ strategies is an interest-

ing question. A positive answer would partition “accuracy nudges” into two classes (engagement-based

and non-engagement-based). A negative answer would invalidate the auxiliary hypothesis that accuracy

competes with the social dimension. The connection we drew with Nagel’s work on guessing games

suggest an empirical approach to answering this question, with following the methodology of [3], which

established neural correlates of lower- and higher-order “Keynes degree” reasoning in guessing games.
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In previous work ([5, 6]), we develop a question-relative, probabilistic account of belief. On this

account, what someone believes relative to a given question is (i) closed under entailment, (ii) suffi-

ciently probable given their evidence, and (iii) sensitive to the relative probabilities of the answers to

the question. Here we explore the implications of this account for the dynamics of belief. We show

that the principles it validates are much weaker than those of orthodox theories of belief revision

like AGM [1], but still stronger than those valid according to the popular Lockean theory of belief

[4], which equates belief with high subjective probability. We then consider a restricted class of

models, suitable for many but not all applications, and identify some further natural principles valid

on this class. We conclude by arguing that the present framework compares favorably to the rival

probabilistic accounts of belief developed by Leitgeb [13, 14] and Lin and Kelly [17].

1 Probability Structures

We will work with the following simplification of the models in [5]:

Definition 1.1. A probability structure is a tuple 〈S,E ,Q,Pr, t〉 such that:

1. S is a non-empty set (of states),

2. E ⊆ P(S)\{ /0} (the possible bodies of evidence),

3. Q (the question) is a partition of S,

4. Pr (the prior) is a probability distribution over S, and

5. t ∈ [0,1] (the threshold)

Propositions are modeled as subsets of S, where p is true in s if and only if s ∈ p. We say that E ′ ∈ E is

the result of discovering p in E ∈ E just in case E ′ = E ∩ p; this will allow us to talk about how beliefs

evolve in response to changes in one’s evidence.

Which propositions an agent believes is a function of their evidence and is also given by a set of

states, so that an agent with evidence E believes p if and only if B(E)⊆ p. This ensures that their beliefs

are closed under entailment, and thus already marks a departure from popular ‘Lockean’ accounts of

belief [4], according to which one believes a proposition if and only if its probability exceeds a particular

threshold. But it is compatible with the more plausible direction of Lockeanism, namely:

THRESHOLD: You believe p only if p is sufficiently probable given your evidence.

If B(E)⊆ p, then Pr(p|E)≥ t.

We can think of the members of the question Q as its answers; we write [s]Q for the member of Q

containing s. The proposal in [5] then boils down to claiming that s ∈ B(E) if and only if s ∈ E and the

answers to Q that are more probable than [s]Q have total probability less than the threshold t. Writing

PrE for Pr(·|E), this can be formalized as follows:

http://dx.doi.org/10.4204/EPTCS.379.25
https://creativecommons.org
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Definition 1.2. B(E) = {s ∈ E : PrE({s′ : PrE([s
′]Q)> PrE([s]Q)})< t}

This means that one believes as much as possible subject to two constraints: (i) THRESHOLD, and (ii)

that the totality of one’s beliefs corresponds to the conjunction of one’s evidence with a disjunction of

answers to Q that includes any answer at least as probable (given one’s evidence) as any other it includes.

One notable attraction of this proposal is that what one believes corresponds to the discrete analogue of

the highest posterior-density region typically used to define ‘credible intervals’ from probability density

functions in Bayesian statistics. A logically significant feature of the proposal, to which we will return

later, is that it involves not only local probability comparisons between different answers to Q, but also a

global probability comparison between a collection of such answers and the threshold t.

2 Principles and Results

A core idea behind the orthodox AGM [1] theory of belief revision is that belief revisions are trivial

whenever what you learn is compatible with your initial beliefs: you should simply add the discovery to

your beliefs, draw out the logical consequences of these beliefs, and leave everything else unchanged.

Here we will focus on five principles that encode various aspects of this idea. Exploring when and how

these principles can fail will be a useful way of exploring the extent to which our account of belief

requires departing from orthodoxy when it comes to belief dynamics. These principles are:1

♦− If you don’t believe not-p and then discover p, you shouldn’t give up any beliefs.

If B(E)∩ p 6= /0, then B(E ∩ p)⊆ B(E).

♦R If you don’t believe not-p and then discover p, you shouldn’t reverse any of your beliefs (i.e. go

from believing something to believing its negation).

If B(E)∩ p 6= /0, then B(E)∩B(E ∩ p) 6= /0.

�+ If you believe p and then discover p, you shouldn’t form any new beliefs.

If B(E)⊆ p, then B(E)⊆ B(E ∩ p).

�− If you believe p and then discover p, you shouldn’t give up any beliefs.

If B(E)⊆ p, then B(E ∩ p)⊆ B(E)

�R If you believe p and then discover p, you shouldn’t reverse any of your beliefs.

If B(E)⊆ p, then B(E)∩B(E ∩ p) 6= /0.

These principles are not logically independent: the ♦ principles entail the corresponding � principles,

and the + and − principles each entail the corresponding R principles. All of them are valid according

to AGM. By contrast, only �R is valid according to Lockean theories that equate believing a proposition

with assigning it a sufficiently high probability (for some probability threshold less than 1), and it is valid

only if this probability threshold is above
√

5−1
2

≈ .62 (as discussed in [19]).

The present account falls in between these extremes:

Proposition 1. �− and �R are valid on the class of probability structures.

Proposition 2. ♦−, ♦R, and �+ can all fail in probability structures.

1The ♦ indicates that the discovery is compatible with your initial beliefs, while the � indicate that it is something you

initially believe. ♦− is often referred to as ‘preservation’; [19] call �− ‘weak preservation’ and �R ‘very weak preservation’.

If we interpret the non-monotonic consequence relation p |∼ q as saying that B(p) ⊆ q, then ♦− corresponds to ‘rational

monotony’, �+ to ‘cut’, and �− to ‘cautious monotony’ in the standard terminology from [12].
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We will illustrate Proposition 2 with two examples. Consider a much discussed thought experiment:

Flipping for Heads

A coin flipper will flip a fair coin until it lands heads.

A natural model of this case is as follows:

S = {s1,s2, . . .} E = {{si,si+1,si+2, . . .} : si ∈ S}
Q = {{si} : si ∈ S} Pr({si}) = 1

2i

t = .99

Here si is the state in which the coin lands heads on the ith flip, and {si,si+1,si+2, . . .} is your evidence if

you have just observed the coin land tails on the first i−1 flips. The question Q is maximally fine-grained,

and the probabilities match the known objective chances.

In this model, B({si,si+1,si+2, . . .}) = {si,si+1, . . . ,si+6}: you always believe that the coin will land

heads within the next seven flips. ♦− is violated whenever you observe the coin land tails. For example,

let p = {s2,s3, . . .}. Then B(S)∩ p 6= /0, but B(S∩ p) = {s2, . . . ,s8} 6⊆ {s1, . . . ,s7}= B(S). We think this

is exactly the right prediction.

To turn this into a counterexample to �+, we add new body of evidence E ′ = {s1,s2, . . . ,s7} to E .

Intuitively, we can think of this as the evidence you receive if you walk away from the experiment before

the first flip, and are later told that the coin landed heads within the first seven flips. It is easy to verify

that B(E ′) = {s1, . . . ,s6}. So B(S) 6⊆ B(S∩E ′), even though B(S) ⊆ E ′. That this can happen should be

unsurprising in a framework like ours in which agents have ‘inductive’ beliefs that go beyond what is

strictly entailed by their evidence: discovering something that you previously believed only inductively

will strengthen your evidence, putting you in a position to draw further inductive conclusions.

Counterexamples to ♦R are subtler, for reasons we will explain in the next section. But here is one:

Drawing a Card

You are holding a deck of cards, which is either a fair deck consisting of 52 different cards

or a trick deck consisting of 52 Aces of Spades. Your background evidence makes it 90%

likely that the deck is fair. You draw a card at random; it is an Ace of Spades.

Here is a possible model of the example:

S = {F1,F2, . . . ,F52,T} E = {S,{F1}, . . . ,{F51},{F52,T}}
Q = {{F1,F2, . . . ,F52},{T}} Pr({Fi}) = .9

52
≈ .017,Pr({T }) = .1

t = .85

The states Fi are all states in which the deck is fair; they are distinguished only by which card you

will draw, with F52 being the one where you draw the Ace of Spades. State T is the state in which the

deck is the trick deck (and you thus draw an Ace of Spades). Your evidence settles all and only what card

you drew; so when you draw an Ace of Spades, it leaves open both that you did so by chance and that

you did so because it is a trick deck. The question is simply whether the deck is fair. It is easy to see that,

according to this model, you should initially believe only that the deck is fair. Your initial beliefs are thus

compatible with it being fair and you drawing the Ace of Spades by chance. Yet when you discover that

you drew an Ace of Spades, you should reverse your opinion and conclude that you’re holding the trick

deck, since Pr({T}|{F52,T})≈ .1
.1+.017

≈ .855 > t.

Note that, in this model, your discovery is not a disjunction of answers to the question Q. If we

changed the question to a more fine-grained one, so that your discovery was a disjunction of its answers,

then the case would no longer yield a counterexample to ♦R. For example, relative to the question is the

deck fair and will I draw an Ace of Spades – i.e. relative to Q′ = {{F1,F2, . . . ,F51},{F52},{T}} – you
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will initially believe that you won’t draw an Ace of Spades, in which case your subsequent discovery

isn’t compatible with your initial beliefs. And relative to the question is the deck fair and what will I draw

– i.e. relative to the maximally fine-grained Q′′ = {{s} : s ∈ S} – you will initially have no non-trivial

beliefs, and in particular you won’t start out believing that the deck is fair. In the next section, we will

see that this is part of a more general pattern about counterexamples to ♦R.

3 Orthogonality

In the previous section, we saw that some of the surprising belief dynamics in probability structures

depended on discoveries that cross-cut the question. Notice that structures in which this cannot happen,

because every member of E is the union of some subset of Q, satisfy the following constraint:

ORTHOGONALITY:
Pr([s]Q)
Pr([s′]Q)

=
Pr([s]Q|E)
Pr([s′]Q|E) for all s,s′ ∈ E ∈ E s.t. Pr([s′]Q|E)> 0

This says that the only way that getting new evidence can change the relative probability of two answers

to Q is by completely ruling out one of those answers. While we can ensure ORTHOGONALITY by

making the question fine-grained enough to capture all possible discoveries, this isn’t always necessary.

For example, we could fine-grain the states and bodies of evidence in our model of Flipping for Heads

to capture the fact that you discover where on the table the coin lands. The bodies of evidence in such

a fine-grained model will cross-cut the question how many time will the coin be flipped; but, plausibly,

ORTHOGONALITY will still hold for this question, since the added information about where the coin

lands is probabilistically independent from how many times it will be flipped.

ORTHOGONALITY is interesting because it leads to a stronger logic of belief revision. Firstly,

Proposition 3. ♦R is valid on the class of probability structures satisfying ORTHOGONALITY.

Secondly, consider the following principle. It says (roughly) that if you’re sure that, whatever you’re

about to discover, you won’t believe a given proposition afterwards, then you already don’t believe it:

Π− If Π is a partition any member of which you could discover, then there is a p ∈ Π such that you

shouldn’t give up any beliefs upon discovering p.

If Π ⊆ E is a partition of E , then B(E ∩ p)⊆ B(E) for some p ∈ Π.

We then have the following result:

Proposition 4. Π− can fail in probability structures. But it is valid on the class of probability structures

satisfying ORTHOGONALITY.

It is also worth noting that ♦− and �+ can still fail in structures satisfying ORTHOGONALITY. In

particular, ORTHOGONALITY holds in the structures we used in the last section to argue that Flipping

for Heads yields counterexamples to ♦− and �+.

In our view, a good deal of ordinary talk about what people believe is well-modelled by structures

satisfying ORTHOGONALITY. This is because we think that the question Q, to which attributions of belief

are implicitly relativized, typically coincides with the question under discussion in the conversational

context in which those attributions are made. Moreover, when a discovery is salient, it is natural to

consider a question that is sufficiently fine-grained to capture all the aspects of this discovery that are

relevant to its answers. Counterexamples to ORTHOGONALITY (and thus to ♦R and Π−) therefore tend

to be ‘elusive’ in Lewis’s [16] sense: attending to these cases often changes the context in such a way

that they can no longer be described as counterexamples.

That being said, we do not think that ORTHOGONALITY is plausible as a general constraint. This is

because, very often, the only way to ensure ORTHOGONALITY is to adopt a very fine-grained question;
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and, often, such fine-grained questions make overly skeptical predictions about what we can believe.

Consider, for example, the following case:

One Hundred Flips

You will flip a fair coin 100 times and watch how it lands each time.

There are natural contexts in which you can be correctly described as initially believing that the coin will

not land heads more than 90 times. Our theory predicts this for various natural questions, even for very

high thresholds t – for example, the polar question will the coin land heads more than 90 times or the

slightly more fine-grained question how often will the coin lands heads. But neither of these questions

satisfies ORTHOGONALITY. For example, discovering that coin lands tails on the first flip will favor ‘no’

over ‘yes’ for the first question, and ‘51’ over ‘49’ for the second question, without ruling out any of these

answers. In fact, the only natural question that satisfies ORTHOGONALITY is the maximally fine-grained

question what will the exact sequence of heads and tails be. But all answers to this question are equally

likely, and so this question prevents you from having any non-trivial beliefs about what will happen.

We conclude that ORTHOGONALITY should be rejected as a general constraint, even if it will often

hold when we are considering a particular case with a limited range of discoveries. ♦R and Π− are thus

not fully general principles of belief revision; but counterexamples are likely to be difficult to pin down.

ORTHOGONALITY is also a fruitful principle in that it helps to facilitate comparisons between our

framework and other probabilistic theories of belief. Let us now turn to these.

4 Comparisons

In this section, we consider two influential probabilistic accounts from the literature, and compare them

with our own account. The first can be seen as a version of our account with an additional constraint

imposed on probability structures, and validates ♦− but not �+; the second can be seen as defining

belief from probability structures in a related but different way, and validates �+ but not ♦−.

4.1 A Stability Theory

The first theory we want to consider is inspired by Leitgeb’s stability theory of belief [13, 14]. The

guiding idea behind this theory is a probabilistic analogue of ♦− that Leitgeb calls the Humean thesis.

However, despite the ‘stablity’ moniker, the constraints imposed by Leitgeb’s theory are synchronic ones

relating probabilities, partitions, and thresholds at a single time. So both to facilitate comparison with our

framework, and to be (in our view) more faithful to its motivating idea, we will consider a strengthening

of Leitgeb’s theory according to which the requirements it imposes on one’s beliefs prior to a discovery

continue to hold after one has made that discovery. We can then interpret the view as proposing the

following constraint on probability structures:2

STABILITY: For all E ∈ E and X ⊆ Q, if Pr(
⋃

X)≥ t and E ∩⋃
X 6= /0, then Pr(

⋃
X |E)≥ t.

We then have the following results:

Proposition 5. ♦− is valid in probability structures satisfying STABILITY and ORTHOGONALITY. But

�+ can still fail; and ♦− can fail in structures satisfying STABILITY but not ORTHOGONALITY.

2Our STABILITY strengthens Leitgeb’s theory in two ways: first, by identifying the threshold that characterizes the minimal

probability of anything one believes with the threshold in terms of which stability is defined, and, second, by not allowing this

threshold to be different for different possible bodies of evidence. It also departs from his formulation in quantifying over E

rather than {⋃Y : Y ⊆Q}; however, we read him as identifying E with {⋃Y : /0 6=Y ⊆Q}, so this is not a substantive departure.
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This illustrates how a kind of qualitative stability of belief can be secured by a kind of probabilistic

stability (given ORTHOGONALITY), without entailing the full strength of AGM.3

We reject STABILITY because we reject ♦− (even in cases where ORTHOGONALITY holds), and

along with it the informal idea that rational belief should be stable in anything like the way that Leitgeb

claims it should be. STABILITY also places implausible constraints on what agents can believe at a given

time. For example, [11] show, in effect, that in Flipping for Heads STABILITY entails that the only way

to have any non-trivial beliefs about how many times the coin will be flipped is to believe that it will be

flipped only once. (This argument depends only on the symmetries of the example, and doesn’t depend

on whether the coin is fair, biased towards heads, or biased towards tails.) See also [18] and [3].

4.2 The Tracking Theory

Lin and Kelly [17] defend a theory which (for reasons we can’t explain here) they call the ‘tracking

theory’ of belief. This theory can be seen as an alternative way of defining belief in probability structures,

with the parameter t playing a rather different role. Put informally, a state s is compatible with your LK-

beliefs if there is no answer to Q that is more than 1
t

times more likely than [s]Q. Formally:

Definition 4.1. BLK(E) = {s ∈ E : (∀q ∈ Q)(PrE([s]Q)≥ t ×PrE(q))}
In many cases – such as Flipping for Heads – the subject will have similar beliefs according to our

theory and according to Lin and Kelly’s (provided t is chosen judiciously: low values of t for Lin and

Kelly correspond to high values of t for us). However, there are important structural differences between

the theories. In particular, LK-beliefs are sensitive only to local comparisons of probability between

particular answers, while beliefs as we understand them depend also the probabilities of sets of answers.

A consequence of this locality is that, as Lin and Kelly note, their theory validates a reasonably strong

theory of belief revision (assuming ORTHOGONALITY, which they essentially build in):

Proposition 6. �+, �−, �R, ♦R, and Π− are all valid for LK-belief on the class of probability struc-

tures satisfying ORTHOGONALITY.

The major shortcoming of the tracking theory, in our view, is that it fails to entail THRESHOLD.

Consider a case like Drawing a Card, in which one state initially has very low probability (.1) but every

other state has even lower probability (.017). Then relative to a fine-grained question such as is the deck

fair and which card will you draw, you will LK-believe that the deck is a trick deck even for reasonably

low values of t (such as .2). But this belief is only .1 likely on your evidence! And we can, of course,

make the case more extreme by increasing the number of distinct cards in the fair deck; so the believed

proposition can be arbitrarily improbable for any fixed value of t.

One might defend the tracking theory against such cases by insisting that we choose a more coarse-

grained question; while the theory still fails to entail THRESHOLD, this response at least prevents it from

recommending the extreme violations just discussed. However, moving to coarser-grained questions

is often in conflict with ORTHOGONALITY. Moreover, the reasons we gave previously for rejecting

ORTHOGONALITY as a general constraint applies to the tracking theory as well: just like our theory,

the tracking theory will make implausibly skeptical predictions in One Hundred Flips unless combined

with an ORTHOGONALITY-violating question such as how many heads will there be.

Without ORTHOGONALITY, the dynamics of LK-belief are substantially less constrained:

Proposition 7. �+ and �− are valid for LK-belief on the class probability structures. ♦R and Π− can

both fail in such structures.

3Leitgeb [14, chapter 4] describes his theory as compatible with AGM (and thus with �+) since, upon getting new evidence,

one may adopt a different, higher threshold than before. But doing so is in no way required by the demands of stability.
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�+ is then the only principle valid for LK-beliefs but not for beliefs as we understand them.

Moreover, without ORTHOGONALITY, the tracking theory invalidates a new principle that holds for

belief as we understand it (assuming we restrict to probability structures with t > .5). Consider the fol-

lowing variant of Drawing a Card (taken from [8], who also makes parallel observations as an objection

to Levi’s [15] account of belief):

Drawing a Card v.2

You are holding a deck which could be either a ‘fair’ deck of 52 different cards, or one of

52 different ‘trick’ decks that just contain the same card 52 times. Given your background

evidence, the probability that you are holding the fair deck is 1
5
, with the remaining 4

5
dis-

tributed evenly across the 52 trick decks. You are about to draw and turn over one card from

your deck.

Let us assume that Q is which of the 53 possible decks am I holding and t > .25. According to the tracking

theory, you initially believe that you hold the fair deck, but after drawing a card you believe that you are

holding the relevant trick deck. So we have a failure of the following principle, which says (roughly)

that if you’re sure that, whatever you’re about to discover, you’ll believe that a given proposition is false,

then don’t currently believe that the proposition is true:

ΠR If Π is a partition any member of which you could discover, there is a p∈Π such that you shouldn’t

reverse any of your beliefs upon discovering p.

If Π ⊆ E is a partition of E , then B(E)∩B(E∩ p) 6= /0 for some p ∈ Π.

By contrast, if belief requires probability over a threshold greater than .5 (as it does on our account), this

principle cannot fail.4

Overall, then, we see few advantages for the tracking theory over our own. Given ORTHOGONALITY,

which Lin and Kelly essentially build into their formalism, the tracking theory offers a stronger theory

of belief revision. However, the theory violates THRESHOLD, often in dramatic ways. Moreover, to

make reasonable predictions in cases like One Hundred Flips, both theories need to appeal to coarse-

grained questions that conflict with ORTHOGONALITY. Having done so, both theories invalidate many

principles of belief revision, although the details differ slightly (with our theory invalidating �+ and Lin

and Kelly’s invalidating ΠR).

5 Further work

We conclude with three directions for further work. One concerns nonmonotonic consequence, where

p |∼ q is interpreted as B(p)⊆ q. We think that distinguishing one’s evidence from one’s beliefs that go

beyond one’s evidence offers a productive way of thinking about nonmonotonic consequence, and that

the logic resulting from our framework contrasts in interesting ways with the one resulting from Lockean

theories of belief (explored in [9]).

The second direction concerns constraints on E . Consider, for example, the Monty Hall problem, in

which it is crucial that when one gets new evidence about one’s environment, one also gets evidence that

one has gotten such evidence. We argue in [7] that such cases motivate a nestedness requirement on E :

if two possible bodies of evidence are mutually consistent, then one entails the other. This requirement

induce new subtleties in the resulting nonmonotonic logic.

4Failures of ΠR are to be expected for certain notions of belief that are weaker than the one we are operating with here. For

example, your ‘best guess’ about what deck you are holding plausibly does change no matter what card you draw; and arguably

what we ‘believe’ (in ordinary English) often aligns with our best guesses. See [10] and [2] for discussion.
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A third question for future work concerns what happens when probability structures are generalized

by making the relevant question a function of one’s evidence. [5, Appendix C] motivate this generaliza-

tion, in order to vindicate certain judgments about a family of examples discussed in [6]. We hope to

explore these models in future work; one notable feature is that they invalidate �− but still validate ΠR.
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A Proofs

Proposition 1. �− and �R are valid on the class of probability structures.

Proof. Since �− entails �R, it’s sufficient to prove the former. We suppose that B(E) ⊆ p, and show

that B(E ∩ p)⊆ B(E).
Note that if s ∈ B(E), [s]Q ⊆ B(E) ⊆ p. So for any q ∈ Q, if Pr([s]Q|E) ≥ Pr(q|E), then also

Pr([s]Q|E ∩ p) ≥ Pr(q|E ∩ p). Contraposing, this means that if Pr(q|E ∩ p) ≥ Pr([s]Q|E ∩ p) and s ∈
B(E), then Pr(q|E)≥ Pr([s]Q|E), and so q ⊆ B(E).

Moreover, since B(E)⊆ p, Pr(B(E)|E ∩ p)≥ Pr(B(E)|E)≥ t.

Now, note that B(E∩ p) is the minimal X ⊆ E∩ p such that (i) if s∈ X and Pr(q|E∩ p)≥Pr([s]Q|E∩
p) for q ∈ Q, then q ⊆ X , and (ii) Pr(X |E ∩ p) ≥ t. By the above, B(E) satisfies both (i) and (ii); so it

contains the minimal such X as a subset. So B(E ∩ p)⊆ B(E), as required.

Proposition 2. ♦−, ♦R, and �+ can all fail in probability structures.

Proof. Counter-models are given in the main text.

Proposition 3. ♦R is valid in probability structures satisfying ORTHOGONALITY.

Proof. Suppose that B(E)∩ p 6= /0. Let s ∈ B(E)∩ p be such that PrE([s]Q) ≥ PrE([s
′]Q) for any s′ ∈

B(E)∩ p. We will show that, given ORTHOGONALITY, there can be no q ∈ Q such that PrE∩p(q) >
PrE∩p([s]Q). It follows that s ∈ B(E ∩ p), thus establishing B(E)∩B(E ∩ p) 6= /0.

By ORTHOGONALITY, if q ∈ Q and PrE∩p(q) > PrE∩p([s]Q), then either PrE(q) > PrE([s]Q) or else

PrE∩p([s]Q) = 0. But s ∈ E ∩ p, so PrE∩p([s]Q) 6= 0. So suppose PrE(q) > PrE([s]Q). By the way s was

chosen, it follows that q∩ (B(E)∩ p) = /0. But q∩ p 6= /0, since PrE∩p(q) > 0. So q∩B(E) = /0. But

since s ∈ B(E), this contradicts the assumption that PrE(q)> PrE([s]Q).

Proposition 4. Π− can fail in probability structures. But it is valid in probability structures satisfying

ORTHOGONALITY.

Proof. To see that Π− can fail, consider

S = {s1,s2,s3,s4,s5,s6} E = {S,{s1,s3,s5},{s2,s4,s6}}
Q = {{s1,s2},{s3,s4},{s5},{s6}} Pr is uniform

t = .65
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Let p = {s1,s3,s5} and Π = {p,S \ p}. Then B(S∩ p) = {s1,s3,s5} 6⊆ {s1,s2,s3,s4} = B(S) and B(S∩
S\ p) = {s2,s4,s6} 6⊆ B(S).

Now suppose 〈S,E ,Q,Pr, t〉 satisfies ORTHOGONALITY. To show that Π− holds, we suppose that

B(E ∩ pi) 6⊆ B(E) for each pi ∈ Π, and deduce a contradiction.

For each i, let si ∈ B(E ∩ pi) \B(E) be such that PrE∩pi
([si]Q) ≥ PrE∩pi

([s]Q) for every s ∈ B(E ∩
pi) \B(E). Since si ∈ B(E ∩ pi), PrE∩pi

({s : PrE∩pi
([s]Q) ≥ PrE∩pi

([si]Q)} < t. By ORTHOGONALITY,

PrE([s]Q)≥PrE([si]Q) entails that either PrE∩pi
([s]Q)≥PrE∩pi

([si]Q) or PrE∩pi
([s]Q) = 0. So PrE∩pi

({s :

PrE([s]Q)≥ PrE([si]Q)}) = PrE∩pi
({s : PrE∩pi

([s]Q)≥ PrE∩pi
([si]Q)})< t.

Now let k be such that, for every i, PrE([sk]Q) ≥ PrE([si]Q). Then {s : PrE([s]Q) ≥ PrE([sk]Q)} ⊆
{s : PrE([s]Q) ≥ PrE([si]Q)}, and so PrE∩pi

({s : PrE([s]Q) ≥ PrE([sk]Q)}) ≤ PrE∩pi
({s : PrE([s]Q) ≥

PrE([si]Q)})< t for every i. But then by the law of total probability, PrE({s : PrE([s]Q)≥ PrE([sk]Q)})<
t, contradicting the assumption that sk /∈ B(E).

Proposition 5. ♦− is valid in probability structures satisfying STABILITY and ORTHOGONALITY; but

�+ can fail in such structures. Moreover, ♦− can fail in probability structures satisfying STABILITY in

which ORTHOGONALITY fails.

Proof. To see that ♦− holds, note that B(E ∩ p) is the minimal X ⊆ E ∩ p such that (i) if s ∈ X and

Pr(q|E ∩ p) ≥ Pr([s]Q|E ∩ p) for q ∈ Q, then q ⊆ X , and (ii) Pr(X |E ∩ p) ≥ t. Then if B(E)∩ p 6= /0,

Pr(B(E)∩ p|E ∩ p) = Pr(B(E)|E ∩ p)≥ t by STABILITY, so B(E)∩ p meets condition (ii). Moreover, it

meets condition (i) by ORTHOGONALITY. So B(E)∩ p contains the minimal X meeting (i) and (ii) as a

subset. So B(E ∩ p)⊆ B(E)∩ p ⊆ B(E), as required.

To see how �+ can fail, let S= {a,b,c}, E = {S,{a,b}}, Q= {{s} : s∈ S}, Pr({a}) = .9, Pr({b}) =
.09, Pr({c}) = .01, and t = .9001. This structure satisfies STABILITY. �+ fails, since B(S) = {a,b} 6⊆
B({a,b}) = {a}.

To see how ♦− can fail in the absence of ORTHOGONALITY, consider a probability structure in which

Q = {A,B,C}, E = {S,E}, Pr(A) = 1
2
,Pr(B) = 1

4
+ ε ,Pr(C) = 1

4
− ε , PrE(A) = PrE(B) = PrE(C) = 1

3
,

and t = 1
2
+ ε . STABILITY hold, but ♦− fails: B(S)∩E 6= /0, but B(E) = E 6⊆ B(S) = A∪B.

Proposition 6. �+, �−, �R, ♦R, and Π− are valid for LK-belief on the class of probability structures

satisfying ORTHOGONALITY

Proof. For ♦R, see the proof of Proposition 3; For �+ and �− (and hence �R), see the proof of

Proposition 7; for Π−, see [7].

Proposition 7. �+ and �− are valid for LK-Belief on the class of probability structures. ♦R and Π−
can both fail in such structures.

Proof. The failures of ♦R and Π− follow from the failure of ΠR described in the main text.

Suppose that BLK(E)⊆ p. We will show that BLK(E ∩ p) = BLK(E), thus establishing �+ and �−.

Since BLK(E) ⊆ p, we have that if s ∈ BLK(E), then [s]Q ⊆ p. So if s ∈ BLK(E) then
Pr([s]Q|E∩p)

Pr(q|E∩p) ≥
Pr([s]Q|E)

Pr(q|E) for any q∈Q such that Pr(q|E∩ p)> 0. So if s∈BLK(E), then for any q∈Q with Pr(q|E∩ p)>

0,
Pr([s]Q|E∩p)

Pr(q|E∩p) ≥ Pr([s]Q|E)
Pr(q|E) ≥ t. And if Pr(q|E ∩ p) = 0, then trivially Pr([s]Q|E) ≥ t ×Pr(q|E ∩ p). So

s ∈ BLK(E ∩ p).
Moreover, if s /∈ BLK(E), then t > 0 and there is a q ∈ Q such that (i) Pr(q|E)× t > Pr([s]Q|E) and

(ii) q∩BLK(E) 6= /0. Assuming Pr([s]Q|E ∩ p)> 0 then, by the above,
Pr(q|E∩p)

Pr([s]Q|E∩p) ≥
Pr(q|E)

Pr([s]Q|E) >
1
t
. In that
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case s /∈ BLK(E ∩ p). And if Pr([s]Q|E ∩ p)> 0 then also t ×Pr(q|E ∩ p)>×Pr([s]Q|E ∩ p). So in that

case also s /∈ BLK(E ∩ p).
So BLK(E ∩ p) = BLK(E), as required.
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We study the costs and benefits of selling data to a competitor. Although selling all consumers’

data may decrease total firm profits, there exist other selling mechanisms—in which only some con-

sumers’ data is sold—that render both firms better off. We identify the profit-maximizing mechanism,

and show that the benefit to firms comes at a cost to consumers. We then construct Pareto-improving

mechanisms, in which each consumers’ welfare, as well as both firms’ profits, increase. Finally, we

show that consumer opt-in can serve as an instrument to induce firms to choose a Pareto-improving

mechanism over a profit-maximizing one.

1 Introduction

In recent years, it has become common wisdom that data is a dominant source of power. This power is

perhaps most clearly illustrated in markets where an incumbent with access to consumer data competes

with an entrant who does not have such data. As stated in a crisp manner by [25], common wisdom

holds that the incumbent’s key advantage is data superiority: “If you run a market-leading company, you

should never be blindsided by an invader. Locked within your own records is a huge, largely untapped

asset that no attacker can hope to match: what we call the incumbent’s advantage.” The situation is not

uncommon: In our data-driven economy, competing firms often find themselves in asymmetric situations

where one of them has superior or even exclusive access to relevant data.

Such data asymmetry has become a major issue for debate. For example, in a June 2021 press

release, the EU declared that it has opened an antitrust investigation that will “examine whether Google

is distorting competition by restricting access by third parties to user data for advertising purposes on

websites and apps, while reserving such data for its own use,” [13]. One of the issues in such debates is

the question of data sharing: Should the incumbent share its data in order to increase market competition

and consumer welfare? And can the incumbent profitably sell its data to the entrant?

Strategic decisions about the sale of data to competitors appear in the online economy frequently,

although they are not always stated explicitly. For example, when an advertiser buys a sponsored-search

campaign through an ad exchange, the advertiser obtains useful information about a segment of con-

sumers as part of the ad exchange reports. The advertiser might then use this information when bidding

directly for display ads on other platforms, including platforms on which the ad exchange is also a

competitor. The data-holder (e.g., ad exchange) thus faces a strategic decision about which consumer

segments to sell to a competitor, and at what prices. The data-buyer (e.g., advertiser), in turn, must de-

cide whether to pay the price and obtain data about these consumer segments, or whether to enter into

competition without the data on offer.

These strategic considerations raise numerous questions: What are the data-holder’s costs and ben-

efits from selling data to a data-buyer? What are the effects of data sale on consumer welfare? And,

in a regulated market, can data sale be regulated in a way that leads to Pareto-improving transactions,

benefitting consumers as well as firms?

http://dx.doi.org/10.4204/EPTCS.379.26
https://creativecommons.org
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In this paper we study these questions in a paradigmatic model of imperfect competition between

two firms who have asymmetric access to data. We consider the classic Hotelling model of imperfect

competition: There are two firms, each located at a different endpoint of a unit interval, with a unit mass

of consumers distributed across this interval. We model data about a consumer as information about the

consumer’s location on the interval. In the classic model, neither firm has data about any consumer, and

so firms engage in competition via uniform prices that each offers to all consumers. In our variation of

this model, in contrast, one firm is a data-holder who knows the locations of all consumers, whereas the

other firm is a data-buyer who has no such data. The data-holder can use its data advantage in order to

personalize prices to consumers, and can thus sometimes undercut the data-buyer’s uniform price.

In order to study the costs and benefits of data sale to a competitor, we suppose the firms engage in

a data-sharing mechanism. Such a mechanism consists of a segment of consumers whose data the data-

holder shares with the data-buyer, as well as a price the data-buyer pays the data-holder. After engaging

in such a mechanism, the data-buyer will hold location data about all consumers in the shared segment,

allowing that firm to also personalize prices to them.

Within this model, we first show that full data-sharing, in which the data-holder shares all its data with

the data-buyer, is harmful to the firms. We then show that there exist other data-sharing mechanisms—

in which only some consumers’ data is shared—that increase both firms’ profits. In fact, we identify

the mechanism that maximizes total firm profits. This last mechanism, however, increases firm profits

at the expense of consumers. We thus proceed to show that there exist Pareto-improving mechanisms,

in which each consumers’ welfare, as well as both firms’ profits, increase. Finally, we consider the

question of how a regulator can induce firms to utilize a Pareto-improving mechanism rather than a

profit-maximizing one that may harm consumers. We show that consumer opt-in may serve as such an

instrument: If consumers are given the opportunity to opt-in to having their data sold, and if the data-

holder is only permitted to share data about consumers who have opted-in, then in equilibrium the firms

will choose a Pareto-improving mechanism.

Our results are driven by two forces, which we identify as the direct effect and the indirect effect of

data sharing. The direct effect is the following: if the data-holder shares data about a particular consumer,

then the data-buyer can now offer that consumer a personalized rather than the uniform price. This affects

both firms’ equilibrium personalized prices to that consumer, and may thus impact profits and welfare.

The indirect effect of data sharing, on the other hand, is the following: by sharing data about a segment

of consumers, the data-holder changes the set of consumers to whom the data-buyer’s uniform price

applies (since additional consumers will now be offered personalized prices). And since the uniform

price is determined in equilibrium in part by the locations of consumers to whom that price will apply, a

change in the set of consumers may effect a change in the equilibrium uniform price, thereby affecting

profits and welfare. Our results highlight how the interplay between the direct and indirect effects of data

sharing lead to changes in firms’ profits and consumers’ welfare.

In addition to identifying the two effects of data sharing, our analysis generates several general

insights. First, and perhaps surprisingly, selling data to a competitor can be strictly beneficial to both

firms.1 Second, data can be sold in a way that is Pareto improving. And finally, such Pareto-improving

data-sale can be induced by consumer opt-in regulation.

We note that the idea of selling data to a competitor has been advocated in financial markets (see,

for example, [2]). In that context, the possibility of data sale allows a decision maker to choose between

taking investment risks or obtaining direct monetary rewards. The incredibly fast-growing data-economy,

in which some firms hold massive amounts of data about consumers, raises calls to consider such data

1We note that this holds even if data is sold at no cost—see Proposition 2.
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sale in a broader context: Can it lead to increased profits to both data-holders and data-buyers? And can

it benefit all of society, including consumers whose data is exchanged?

Related literature This paper is part of a large and growing literature on data markets (see, e.g.,

the survey of [5]). Work in this area focuses on related but orthogonal questions, such as the effects

of data-sale by a third-party data-provider and of information sharing between competitors. Our paper

bridges these strands by considering data sale to a competitor. To the best of our knowledge, the work

of [2] is the only other paper to study such a scenario, and ours is the first to focus on the effects of such

data sale on firm profits as well as consumer welfare.

The literature on the sale of data by a data provider (e.g., [1, 6, 26, 29, 34] and others) studies how

a third-party data-provider can maximize profits by selling data to a monopolist or to competing firms

who use this data to price discriminate. Within this literature, one paper that is closely related to ours is

that of [12]. [12] consider an information designer who provides consumer information to oligopolists,

and characterize the different market outcomes that can be achieved by the designer. Our paper differs

from this research in that we suppose data is not held by a third-party, but rather by one of the competing

firms. This firm may sell data to its direct competitor, affecting both firms’ respective market positions.

A different but related setting is that of [3], where the consumers are holders of information who may

share it with one or both firms so as to intensify competition. The model and results of [3] bear some

similarity to ours. For example, they also consider a Hotelling model, and show that consumers are better

off whenever those sufficiently closer to one firm than another share their location with that firm, and

those closer to the middle share their location with both firms. Despite the similarities, our paper studies

an orthogonal question, as we assume one of the firms already has data about consumers, and focus on

whether that firm will sell data to its competitor. In contrast to the model of [3], in which each consumer

chooses which firm has access to that consumer’s location, in our model the informed firm strategically

chooses whether or not to share this information. Under consumer opt-in the role of consumers is in

determining whether such sharing could potentially take place, but not in whether it actually takes place.

Finally, while [3] show that, consumers are always better off when they share some of their information,

we show that when firms choose what information to share this may no longer be the case.

Because our work considers the sale of data from one firm to another, it is related to the literature

on information sharing. Although information sharing between firms has been studied in a variety of

settings,2 our paper is most-closely related to that of competitive price discrimination—see, for example,

the surveys of [31] and [14]. One of the main insights from this literature is that when firms have more

data about consumers, competition between them is more intense, leading to lower prices and profits. In

our paper, in contrast, data is sold by one firm to another in such a way as to increase profits.

Two papers that specifically analyze the effects of data sharing within a Hotelling model are [24]

and [7]. [24] study a model in which each of two firms may have data both about consumers’ locations

and about their transportation costs, and consider the eight permutations in which each firm may have

either a dataset about locations, a dataset about transportation costs, both datasets, or neither datasets.

They then analyze the market effects of firms sharing one or both of their (full) datasets with each other,

and provide conditions under which sharing is beneficial to the firms. [7] studies a Hotelling model in

which locations are two-dimensional, and firms hold all data about one dimension, both dimensions, or

neither dimension. He analyzes the various scenarios in terms of firm profits and consumer welfare, with

a particular emphasis on the comparison to the regimes of full privacy (neither firm has any data) and

no privacy (both firms have full data). Interestingly, [7] shows that total firm profits are hump-shaped

2These include oligopolistic competition [11, 28], financial intermediation [27, 23, 15], supply chain management [21, 30],

competition between data brokers [20, 22], and advertising [18].
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in the amount of information they hold; for example, the scenario in which each firm holds data about

a different dimension yields higher profits than both full privacy and no privacy. Our work differs from

both of these papers in that we study the sale of partial data from one firm to another, with an emphasis

on mutually increasing profits.

In terms of modeling, our paper is most closely related to [26] and [17]. [26] consider a one-

dimensional Hotelling model in which consumers’ locations may be known to one, both, or neither

firm. Their concern is not the sale of data from one firm to another, but rather the optimal strategy of a

data broker who sells the data to the firms. They also consider the effects of a consumer-side technology

that allows consumers the ability to protect their privacy. [17] also study a Hotelling model, but suppose

that both firms have some data about consumers. Their main focus is on various forms of mutual data

sharing between the firms.

2 The Model

We focus on a standard Hotelling model, in which a unit mass of consumers is spread over the unit

interval according to an atomless distribution F with continuous, strictly positive density f that has full

support. There are two firms: firm A is located at θA = 0, and firm B is located at θB = 1. Each consumer

chooses at most one firm from which to purchase a good. Consumers derive value v from the good,

but pay two costs: the price, and a linear transportation cost that scales with the distance between the

consumer and the firm providing the good. Thus, a consumer located at θ who buys from firm i at price

pi obtains utility v− pi − t |θ −θi|, where t is the marginal transportation cost. We assume throughout

that the market is covered—namely, that v > 2t—so that all consumers purchase a good even when there

is a monopolist firm. Finally, we also assume for simplicity that firms’ marginal costs are 0, and so their

profit from the sale of a good is equal to the price. These are all standard assumptions in Hotelling games.

The standard setup consists of a two-stage game: First, firms simultaneously set prices; second,

consumers choose a firm and make a purchase. In the simple case where the distribution F of consumers

is uniform the game has a unique subgame perfect equilibrium: firms’ prices are pA = pB = t, consumers

in [0,0.5) buy from A, and consumers in (0.5,1] buy from B (see, e.g., [4]).3

In this paper we will consider a variant of the standard model by supposing that firms may have addi-

tional information about some of the consumers. In particular, we will suppose that, for each consumer,

one or both firms know the location of that consumer on the unit interval. For such consumers, firms will

be able to offer a personalized price—a special offer specifically tailored to that consumer. If a firm does

not know a consumer’s location, however, then it cannot distinguish between that consumer and all other

consumers whose location it does not know. All such consumers are offered the same uniform price.

In our model, firm B is the data-holder and firm A is the data-buyer. Thus, initially, we assume that

firm B knows the locations of all consumers, whereas firm A does not know any consumer’s location.

Given this informational environment, a data-sharing mechanism M = (MB,r) between firms specifies

a subset MB ⊆ [0,1] and a number r ∈ R, with the interpretation that firm B shares with firm A the

locations of consumers in MB, and firm A transfers to firm B a payment r. Two simple examples of

data-sharing mechanisms are one that involves no sharing, M = ( /0,r), and one that involves full sharing,

M = ([0,1],r). Alternatively, firm B may share data about a subset of consumers. For example, under

mechanism ([x,y],r), if consumer θ ∈ [x,y] arrives, both firms will know that consumer’s location. On

the other hand, if consumer θ ∈ [0,1]\ [x,y] arrives, firm B will know that consumer’s location, and firm

A will only be able to deduce that the consumer is not located within [x,y].

3The equilibrium is unique up to the choice of the indifferent consumer located at θ = 0.5.
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In our analysis, we consider the following order of events:

1. Firms engage in a data-sharing mechanism M = (MB,r).

2. Firm A announces uniform price pA.4

3. A consumer arrives, and all firms who know the consumer’s location θ simultaneously offer that

consumer a personalized price, pA(θ) and pB(θ).

4. The consumer chooses a firm from which to buy, and payoffs are realized.

Note that firms share data, and firm A announces its uniform prices, before consumers arrive. After

a consumer arrives to the market, the firms who know the consumer’s specific location simultaneously

offer personalized prices. If firm A offers a consumer a personalized price, this offer subsumes the firm’s

original uniform price. Thus, the uniform price pA will apply only to those consumers who will not

subsequently be offered a personalized price by firm A.

Importantly, when firms set personalized prices, they know the uniform price set by firm A in the

previous stage. This is the standard timing considered in the literature (see, e.g., [33, 10, 9, 26, 8]).5

For any fixed mechanism M, we will consider the pure subgame perfect equilibria of the game that

starts with data-sharing mechanism M. Such equilibria always exists, and consist of a uniform price

for firm A followed by personalized prices for both firms. Once the uniform price is fixed, the equilib-

rium personalized prices for each consumer θ are uniquely fixed. We will be interested in designing

mechanisms M that lead to equilibria with high firm-profits and high consumer-welfare.

One important desideratum of data-sharing mechanisms (with corresponding equilibria) is that they

be individually rational (IR): That the expected utility of each firm with data sharing be at least as high

as without data sharing. A data-sharing mechanism should be IR if we expect firms to participate.

Our main focus will be on mechanisms that are not only IR, but also Pareto-improving: when sharing

takes place, (i) the expected utility of each firm and every consumer be at least as high as without data

sharing, and that (ii) either firm A’s profits, firm B’s profits, or total consumer welfare be strictly higher.

We note that many of our results make no assumptions about the distribution of consumers. In such a

general setting there may be multiple equilibria, even with no data-sharing, each with different uniform

prices. Hence, we will often describe mechanisms as being IR or Pareto-improving relative to a particular

no-sharing equilibrium.

3 No Data-Sharing

We begin by analyzing equilibria under no data-sharing. To this end, define µ(pA) =
1
2
− pA

2t
. If firm A

charges uniform price pA, then the consumer located at µ(pA) is indifferent between purchasing from

firm A at that price and purchasing from firm B at price 0. All consumers located to the left of µ(pA)
will thus strictly prefer purchasing from firm A at price pA than from firm B at any nonnegative price.

In contrast, for every consumer located to the right of µ(pA) there exists a nonnegative price of firm B

such that that consumer will prefer to purchase from B than from A. This is formalized in the following

proposition:

4Note that firm B knows all consumers’ locations, and so personalizes prices to each. It therefore need not post a uniform

price.
5An alternative model that we do not analyze is one in which firms set uniform and personalized prices simultaneously, for

each consumer. [26] show that, in this case, a (pure) equilibrium may fail to exist.
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Proposition 1 Let PA = arg maxp p ·F (µ(pA)). Without data sharing, the set of equilibria consist of any

uniform price pA ∈PA for firm A and corresponding personalized prices pB(θ) =max{0, pA+t(2θ −1)}
for firm B. In the equilibrium with uniform price pA ∈ PA, consumers in [0,µ(pA)) purchase from firm

A, whereas consumers in [µ(pA),1] purchase from B. The equilibrium with pA = max{PA} is strictly

dominant for the firms.

The proof of Proposition 1, and all other propositions, appear in the full version of this paper [19].

Throughout the paper we will illustrate our results with the simple case in which consumers are

uniformly distributed on [0,1]. We note that this is the standard setup in Hotelling games.

Example 1 When consumers are uniformly distributed on [0,1], the set PA = {t/2}. In the unique equi-

librium, then, consumers between 0 and µ(t/2) = 1/4 purchase from A at uniform price pA = t/2,

whereas the rest purchase from B at personalized prices pB(θ) = max{t(2θ −1/2),0}. Total firm profits

are πA = t/8 and

πB =

∫ 1

1/4
t(2θ −1/2)dθ =

9t

16
,

whereas consumer welfare is

CW =

∫ 1

0
max{v−θ t − pA,v− t(1−θ)− pB(θ)}dθ =

∫ 1

0
(v− t/2−θ t)dθ = v− t.

4 The Direct Effect and Full Data-Sharing

In this section we begin our analysis of how data-sharing impacts profits and welfare. Data sharing

has a direct effect and an indirect effect. The direct effect is that if firm A obtains information about a

consumer’s locations via the sharing mechanism, it can now offer that consumer a personalized price.

This affects firm B’s equilibrium personalized price to that consumer, and hence also profits and welfare.

The indirect effect of data sharing is that it may change the set of consumers to whom firm A’s uniform

price applies, since additional consumers will now be offered personalized prices. And since the uniform

price is determined in equilibrium in part by the locations of consumers to whom that price will apply, a

change in the set of consumers may effect a change in the equilibrium uniform price. In this section we

explore the direct effect, and then in Section 5 we explore the indirect effect.

Suppose that, absent data-sharing, firm A’s uniform price is pA. If firm B shares the location θ

of some consumer with A, then the firms compete in personalized prices over that consumer, yielding

equilibrium prices pA(θ) = max{t(1−2θ),0} and pB(θ) = max{t(2θ −1),0}. The direct effect of firm

B sharing the location of a consumer is summarized in Lemma 1:

Lemma 1 Consider mechanism M = ({θ},0) relative to no sharing, and suppose that consumer θ

shows up.

1. If θ ∈ (1/2,1], consumer θ still buys from B, but now at price t(2θ −1). This is a net loss of pA to

firm B and a net gain of pA to the consumer.

2. If θ ∈ [µ(pA),1/2), consumer θ switches to purchasing from A, at price t(1−2θ). This is a loss

of pA + t(2θ −1) to firm B, a gain of t(1−2θ) to firm A, and a gain of pA − t(1−2θ) ≥ 0 to the

consumer. Also, the gain to A is greater than the loss to B if and only if

θ <
1

2

(

µ(pA)+
1

2

)

,

the midpoint of the interval of θ -s in the case under consideration.
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3. If θ ∈ [0,µ(pA)), consumer θ still buys from A, now at personalized price pA(θ) = t(1−2θ)> pA.

Given these direct effects, we now consider full data-sharing, namely, M = ([0,1],r) for some r. Un-

der this mechanism, both firms know the location of every consumer, and so both engage in personalized

pricing. Firm A’s uniform price thus applies to no consumer, and so only the direct effect has any bite.

By Lemma 1, relative to the no-sharing mechanism with price pA, consumers θ ∈ [µ(pA),1] are better

off, whereas consumers θ ∈ [0,µ(pA)) are worse off, under full data-sharing. For the firms, naturally

firm B is better off with no sharing and firm A with full sharing. The effect on total profits, however,

depends on the distribution F . For the case of uniformly distributed consumers, full data-sharing harms

firms:

Example 2 When consumers are uniformly distributed, [32] show that profits are πA = πB = t/4 (see

also [33]). Note that total profits πA + πB are higher under no sharing (t/8+ 9t/16 = 11t/16, by Ex-

ample 1) than under full sharing (t/4 + t/4 = t/2). This implies that no mechanism ([0,1],r) is IR,

regardless of r.

Although full data-sharing decreases total firm profits when consumers are uniformly distributed, there

exist distributions of consumers under which full data-sharing increases profits—for example, this is the

case when a (1− ε)-fraction of consumers are uniformly distributed on the sub-interval [0,1/4], and the

remaining ε on (1/4,1], for some small enough ε > 0.6 However, even then full sharing does not lead to

maximal profits. We now turn to mechanisms that do.

5 The Indirect Effect and Firm-Optimal Data-Sharing

In this section we describe firm-optimal mechanisms, which exploit the indirect effect of data sharing.

By Lemma 1, firm B’s profit from a consumer θ ∈ (1/2,1] is pA + t(2θ −1). If A’s uniform price were

to increase, this would likewise increase B’s profit from consumer θ . Now, recall that, when there is

no sharing, firm A sets its uniform price by choosing pA ∈ PA = arg maxp p ·F (µ(p)). If B were to

share data about consumers in some interval [θ ,µ(pA)], however, then A would offer consumers on this

interval a personalized price. The uniform price would no longer apply to them, but would instead apply

only to consumers [0,θ )∪ (µ(pA),1]. Firm A may then benefit from increasing (decreasing) the uniform

price above (below) pA, at the same time increasing (decreasing) the profits of firm B from consumers

θ ∈ (1/2,1]. This is the indirect effect of data sharing.

Firm B can exploit both the indirect and direct effects of data sharing by sharing data both about

consumers in [θ ,µ(pA)] and about consumers in (µ(pA),1/2]. Note, however, that sharing data about

consumers in (1/2,1] is never beneficial, since it only results in a net loss to firms and has no indirect

effect (by Lemma 1, above).

In general, the firm-optimal mechanism may depend on the distribution of consumers and other prim-

itives of the model. In Proposition 2, however, we show that when v (the consumers’ value for the good)

is sufficiently high, then there is an essentially unique mechanism, with a corresponding equilibrium, that

yield the firms maximal joint profits. The mechanism makes extreme use of the indirect effect of data

sharing: Firm B shares data about consumers [0,1/2], implying that firm A’s uniform price no longer

applies to these consumers, and hence that this price can be almost arbitrarily high. A’s uniform price

does apply to consumers in (1/2,1], for whom it serves as an outside option. However, because these

6Such a consumer distribution does not satisfy our continuity assumption. However, the same result holds also when the

kink at 1/4 is smoothed out.
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consumers will always purchase from B in equilibrium (by Lemma 1, above), the high outside option

allows that firm to extract these consumers’ entire surplus.

Proposition 2 Fix v > 5t
2(1−F(1/2)) . Mechanism M = ([0,1/2],0) with equilibrium uniform price pA =

v− t/2 maximizes joint firm profits and is IR relative to any no-sharing equilibrium. Every other firm-

optimal mechanism is of the form M′ = ([0,1/2],r).

Example 3 When consumers are uniformly distributed, the mechanism described in Proposition 2 is

actually firm-optimal for all v > 2t, as we now show. This mechanism leads to profits πA = t/4 and

πB =
∫ 1

1/2
(v− t(1−θ))dθ =

v

2
−

t

8
>

7t

8
,

where the inequality follows since v > 2t. Thus, total profits are at least 9t/8. In contrast, consider any

mechanism M′ = (MB,r) in which firm A’s uniform price applies to a consumer in [0,1/2], and fix some

uniform price p′A ≤ t. Consumers θ ∈ (1/2,1] buy from B, leading to total profits at most 3t/4 from

these consumers. Consumers θ ∈ [0,1/2] either buy from A at uniform price p′A or at personalized price

t(1−2θ), or from B at personalized price t(2θ −1) or p′A + t(2θ −1) (depending on whether θ ∈ MB).

Total profits are maximized when p′A = t, consumers θ ∈ [0,1/4] buy at A’s personalized price, and the

rest buy from B at price t + t(2θ −1). Profits to A from [0,1/4] and to B from (1/4,1] are each equal to

3t/16. Total profits from M′ are thus bounded above by 3t/4+ 2(3t/16) = 9t/8, which is equal to the

lower bound on profits from ([0,1/2],0).

Remark 1 Proposition 2 provides a sufficient condition under which mechanism M = ([0,1/2],0) is

firm-optimal for some equilibrium (namely, the one with uniform price pA = v− t/2). However, under

this mechanism there are other equilibria, which involve lower uniform prices, and that yield lower firm

profits. In Proposition 6 in the full version of this paper [19] we describe a different mechanism with

r = 0 that, while not firm-optimal, yields both firms strictly higher profits than under no sharing in every

equilibrium.

6 Pareto-Improving Data-Sharing

In Section 5 above we show that firm B can sell data in a way that maximizes joint firm profits, and

hence allows that firm to charge a high price for the data. Such sharing, however, comes at the expense

of consumers. In particular, under the equilibrium of Proposition 2, firms extract the entire surplus of

consumers located in [1/2,1]. In this section we show that there exist other data-sharing mechanisms that

increase firm profits relative to no sharing, while at the same time also increasing consumers’ utilities.

Recall that PA = arg maxp p ·F (µ(pA)), and that, by Proposition 1, the set of equilibria under no

data-sharing consist of uniform prices pA ∈ PA by firm A and respective personalized prices pB(θ) =
max{0, pA + t(2θ −1)} by firm B. Denote by E(pA) the no-sharing equilibrium with uniform price pA.

In the following proposition we show that for each such no-sharing equilibrium there exists a Pareto-

improving mechanism.

Proposition 3 For every pA ∈ PA there exists r such that mechanism M =
([

µ(pA),
1
4
+ µ(pA)

2

]

,r
)

with

uniform price pA is IR and weakly beneficial to every consumer, relative to E(pA). Furthermore, M yields

higher total firm profits than any other mechanism that is weakly beneficial to every consumer relative to

E(pA).
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The mechanism M described in Proposition 3 does not decrease the utility of any consumer. More-

over, by bullet 2 of Lemma 1, that mechanism strictly increases the utilities of a subset of consumers—

namely, those located in
(

µ(pA),
1
4
+ µ(pA)

2

]

.

The main idea underlying the construction for Proposition 3 is that firm B shares data about every

consumer θ that satisfies two conditions: (i) with no sharing, consumer θ prefers to pay B’s personalized

price than A’s uniform price; (ii) sharing consumer θ ’s location leads to a net increase in firm profits.

Note that these consumers are all closer to A than to B, so that the welfare and profit gain is obtained

due to an increase in efficiency. Finally, the construction is such that A’s uniform price under M remains

the same as with no sharing, which guarantees that consumers close to A do not pay a higher price than

under no sharing, but also that firms maximize their joint profits subject to this constraint.

7 Consumer Opt-In

Proposition 3 above shows that there exist mechanisms that are strictly Pareto-improving, increasing firm

profits as well as consumer welfare. However, these mechanisms are not optimal for firms—Proposition 2

identifies a different mechanism as maximizing firm profits, a mechanism that does so at the expense of

consumers. How can a policymaker induce firms to share data in a Pareto-improving manner, rather than

in a profit-maximizing manner? In this section we identify one way in which a policymaker can do this:

by asking each consumer whether or not they agree to have their data shared, and then permitting firms

to share data only about consumers who have agreed.

In order to analyze such consumer opt-in regulation, we first extend the model to include a pre-

liminary opt-in stage. After setting up the model, we present two results. The first, Proposition 4 in

Section 7.2, states that, under consumer opt-in, there is an equilibrium of the extended model wherein

firms choose the Pareto-improving mechanism of Proposition 3. Now, although consumer opt-in can

lead to the choice of the Pareto-improving mechanism, there are other equilibria that do not. However,

in our second result here—Proposition 5 in Section 7.3—we show that the equilibrium of Section 7.2,

where the Pareto-improving mechanism is chosen, is, in a sense, optimal for the consumers.

7.1 The Extended Model

We begin by extending the model of Section 2 with a preliminary stage, in which each consumer simul-

taneously chooses whether or not to opt in to having location data shared. Denote the set of consumers

who opted in as C. Only then do firms engage in a data-sharing mechanism M = (MB,r); however, firms

are restricted to choosing a mechanism for which MB ⊆C. Such mechanisms are feasible for C.

We assume that firms bargain over the choice of mechanism efficiently—that is, they choose a mech-

anism M that maximizes total firm profits, subject to the opt-in constraint. One way to implement such

efficient bargaining is when one of the firms makes the other a take-it-or-leave-it offer by suggesting a

mechanism (MB,r) that is feasible for C. Depending on which firm makes the offer, the chosen price

transfer r will vary to favor the offering firm. Either way, however, firms will choose to offer a mecha-

nism that maximizes joint firm-profits. This assumption is stated formally in Definition 1 below as part

of the solution concept. In addition, as in the previous sections, we assume that, absent data-sharing,

firms play the no-sharing equilibrium E(pA) for some pA ∈ PA.

In this extended model there is an additional, technical complication. We are assuming that firms

choose a mechanism that is feasible for some C. However, since C is generated by the set of consumers

who choose to opt in, it may not be a measurable set. Thus, the firms’ optimization problem may not be
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well-defined at every C. One way to get around this problem is to consider the Nash equilibria of this

extensive-form game (rather than the subgame perfect equilibria). However, this is somewhat unsatisfy-

ing, as such equilibria may be sustained by strange off-equilibrium behavior—namely, the presence of

empty threats. Instead, we will use an equilibrium notion that is weaker than subgame perfect equilib-

rium but nonetheless suffices to eliminate empty threats. The general definition is due to [16]; here we

give a specialized version that applies to our specific game.

For the definition, let L denote the set of subsets of [0,1], and let M (C) denote the set of all mecha-

nisms feasible for C.

Definition 1 A set C∗ ∈ L and functions m : L → M (L) and p : L → IR+ form a threat-free Nash equi-

librium (TFNE) if

1. For every C, mechanism m(C) is feasible for C, and p(C) is an equilibrium uniform price for firm

A under m(C).

2. For every θ ∈ C∗, consumer θ is weakly better off under m(C∗) than under m(C∗ \ {θ}) (with

respective uniform prices p(C∗) and p(C∗ \{θ})).

3. For every θ ∈ [0,1]\C∗, consumer θ is weakly better under m(C∗) than under m(C∗∪{θ}) (with

respective uniform prices p(C∗) and p(C∗∪{θ})).

4. For every θ ∈ [0,1] and C ∈ {C∗ \{θ},C∗ ∪{θ}}, mechanism m(C) with uniform price p(C) is

IR and jointly firm-optimal relative to all mechanisms that are feasible for C (with corresponding

uniform prices).

For comparison, in a Nash equilibrium bullet 4 would be replaced by requiring IR and joint firm-

optimality only for C∗. In a subgame perfect equilibrium, in contrast, bullet 4 would require these for all

sets C. A TFNE is a compromise between the two, requiring IR and joint firm-optimality for C∗ and for

all sets C that differ from C∗ by a single consumer’s unilateral deviation.

7.2 Pareto-Improving Equilibrium

Given the extended model above, we can now state our proposition on the benefit of consumer opt-in.

Proposition 4 For every pA ∈ PA there exists a TFNE (C∗,m, p) of the extended model in which m(C∗)

is the Pareto-improving mechanism M =
([

µ(pA),
1
4
+ µ(pA)

2

]

,r
)

, for some r.

Proposition 4 shows that, when consumers can choose whether or not to opt in to having their data

shared, and firms are allowed to only share the data of consumers who have opted in, then the equilibrium

mechanism is Pareto improving. There are other equilibria that lead to a Pareto-improving mechanism.

In fact, as long as consumers θ ∈ [0,µ(pA)) do not opt in to having their data shared, the mechanism that

maximizes firms’ profits will be Pareto improving.

However, there are also other equilibria in which the chosen mechanism is not Pareto improving.

Consider the following strategies: Consumers [0,1/2] opt in to having their data shared, and firms choose

the firm-optimal mechanism M = ([0,1/2],0) from Proposition 2. If some consumer θ ∈ [0,1/2] does

not opt in, then firms use the mechanism Mθ = ([0,1/2] \ {θ},0). This mechanism is identical to M,

except that consumer θ faces firm A’s uniform price pA = v− t/2 rather than the personalized price

pA(θ) = t(1−2θ). This is no better for consumer θ , and so these strategies form an equilibrium. Why,

then, would consumers choose to collectively opt in as in Proposition 4?
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7.3 Consumer-Optimal Equilibrium

We now show that the equilibrium of Proposition 4 is focal for the consumers. In particular, we show

that it maximizes consumer welfare, relative to all other equilibria that leave no consumer worse off.

Fix some pA ∈ PA, and observe that there always exists a TFNE of the extended game in which no

consumer opts in, and that this leads to consumer utilities as derived from equilibrium E(pA) in mecha-

nism M/0 = ( /0,0). Next, let us consider other opt-in choices for consumers. For a set C and mechanism

M feasible for C, say that M is Pareto-improving for the consumers if the resulting utility of every con-

sumer is weakly higher than under M/0. We now show that consumers’ utilities in the equilibrium of

Proposition 4 are optimal:

Proposition 5 Fix C ⊆ [0,1] and a mechanism M with uniform price qA that is feasible for C and that

is Pareto-improving for the consumers. If M yields strictly higher total utility to the consumers than M∗,

then M will not be chosen by the firms in any TFNE in which consumers C opt in.

That is, if we assume consumers make their opt-in decisions in a way that leads to a weak improve-

ment for each, then they can do no better than the opt-in strategy of Proposition 4.

8 Conclusion

In this paper we analyzed the benefits to a data-holder of selling consumer data to a data-buyer in a

Hotelling model of imperfect competition. We identified the two effects of data sharing, and showed that

the interplay of these effects can lead to Pareto-improving mechanisms that benefit consumers as well

as firms. Finally, we showed that consumer opt-in can induce firms to choose such a Pareto-improving

mechanism.
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We observe some puzzling linguistic data concerning ordinary knowledge ascriptions that embed

an epistemic (im)possibility claim. We conclude that it is untenable to jointly endorse both classical

logic and a pair of intuitively attractive theses: the thesis that knowledge ascriptions are always veridi-

cal and a ‘negative transparency’ thesis that reduces knowledge of a simple negated ‘might’ claim

to an epistemic claim without modal content. We motivate a strategy for answering the trade-off:

preserve veridicality and (generalized) negative transparency, while abandoning the general valid-

ity of contraposition. We survey and criticize various approaches for incorporating veridicality into

domain semantics, a paradigmatic ‘information-sensitive’ framework for capturing negative trans-

parency and, more generally, the non-classical behavior of sentences with epistemic modals. We

then present a novel information-sensitive semantics that successfully executes our favored strategy:

stable acceptance semantics.

1 Introduction

In this paper, we are concerned with the semantics and logic of ordinary knowledge ascriptions that

embed an epistemic (im)possibility claim.

(1) Ann knows that it might be raining.

(2) Ann knows that it can’t be raining.

It is natural to interpret the modals here as having an epistemic flavor. Intuitively, (1) communicates

(perhaps inter alia) that Ann’s knowledge leaves it open that it is raining; (2) communicates (perhaps

inter alia) that Ann’s knowledge rules out that it is raining. In support, notice how jarring the following

sound:

(3) # Ann knows that it might be raining and Ann knows that it isn’t raining.

(4) # Ann knows that it can’t be raining and for all Ann knows, it is raining.

Note that (1) and (2) also provide evidence of the systematic shiftiness of ordinary epistemic modals.

Compare a bare might claim:

(5) It might be raining.

In this case, the modal is most naturally taken to communicate that the knowledge of the speaker

(who need not be Ann) leaves it open that that is raining. As evidence, note the incoherence of the

following so-called (and much discussed) epistemic contradiction (cf. [22],[23]).

(6) # It might be raining and it isn’t raining.
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https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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The first aim of the present paper is to highlight some unusual and subtle logical features that attitude

ascriptions like (1) and (2) plausibly display (§2 and §3), in particular in interaction with bare modal

claims like (5). The second aim is to propose a novel formal semantics that successfully predicts these

features (§5), in contrast to a salient rival theory (§4). The resulting theory is of linguistic, technical, and

philosophical interest. On the linguistic side, we combine novel and known linguistic data to motivate a

new entry in the tradition of ‘information-sensitive’ semantics for ordinary epistemic modals (cf. [21],

[22], [23], [17], [12], [13], [1]), extending a standard ‘state-based’ account with a novel semantics for

knowledge ascriptions. On the technical side, our system displays intriguing and striking non-classical

logical behavior, motivating a fuller technical study of the underlying epistemic logic and its interactions

with modals (cf. [6], [19],[26]). On the philosophical side, our semantics may be viewed as a new de-

velopment in the expressivist tradition for epistemic vocabulary (cf. [24]) that treats assertion conditions

as primary in semantics (cf. [20]).

2 Linguistic Evidence for Transparency and Veridicality

We work with formal language L , intended to formalize the relevant fragment of declarative English. We

use ϕ and ψ for arbitrary formulas. Intuitively, read Kaϕ as ‘Agent a knows that ϕ’ (with a P t1,2, . . . ,nu)
and read ˛ϕ as ‘It might be that ϕ’. We take atoms p and q to be declaratives without logical vocabulary

(we include ˛ in the logical vocabulary). We use $ to denote entailment and ” for logical equivalence,

relative to our intended reading of L . With this in mind, there are reasons to the think that the following

principles are sound, and should be recovered by a formal semantics that aims to honor our intended

reading of L .

Negative Transparency (NTrans): Ka ˛ p” Ka p

K-veridicality (Ver): Kaϕ $ ϕ

As evidence, note that the following bare assertions (easily multiplied) have an air of incoherence.

(7) # Ann knows that Bob can’t be here but, for all she knows, he is. (cf. (3))

(8) # Ann knows that Bob isn’t here but, for all she knows, he might be.

(9) # Bob can’t be here, but Ann mistakenly knows that he might be.

Compare (9) to the benign ‘Bob can’t be here, but Ann mistakenly believes that he might be’. NTrans

predicts that (7) and (8) are contradictory; Ver predicts that (9) is contradictory.

As further evidence, note the difficulty in distinguishing the information communicated by the fol-

lowing in conversation:

(10) # For all Ann knows, Bob is here.

(11) # For all Ann knows, Bob might be here.

(10) and (11) seem to say the same thing: nothing that Ann knows rules out that Bob is here. As-

suming that ‘for all Ann knows, ϕ’ is formalizable as ‘ K ϕ’, NTrans predicts this equivalence, as it

entails (with minimal further assumptions) that  K p is equivalent to  K ˛ p.

Observations of the above sort are not without precedent. Ver is orthodox (though it is notable, as

(9) seems to demonstrate, that Ver is undisturbed by modal content). NTrans is related to Łukasiewicz’

principle (i.e.,  p $  ˛ p), which is in turn related to the much-discussed incoherence of ‘epistemic

contradictions’ (i.e, claims of the form  p^˛p or p^˛ p) [4, 23].

Combining NTrans and Ver with classical logic has untoward effects. To see this, first note a seem-

ingly benign consequence of NTrans and Ver.
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Fact 1. NTrans+Ver entails Epistemic Łukasiewicz (ELuk): Ka p$ ˛ p

Proof. Ka p $
NTrans

Ka ˛ p $
Ver

 ˛ p

There is prima facie evidence that ELuk is an apt principle on our intended reading of L . Consider:

(12) Ann knows that it isn’t raining. So, it can’t be raining.

(13) Ann has conclusively established that it isn’t raining. So, it must not be raining.

(14) # Bob knows that it isn’t snowing, but it might be.

(15) # Bob has conclusively established that it isn’t snowing, but it might be.

(12) seems like unobjectionable ordinary reasoning (to bolster this, the effect seems heightened when

considering the closely related reasoning in (13)). (14) has an air of incoherence (as does the closely

related (15)). ELuk explains both. But combining ELuk with unfettered classical logic has puzzling

results. Consider:

Double Negation (DN):   ϕ ” ϕ

Contraposition (Con): ϕ $ ψ implies  ψ $ ϕ

Fact 2. ELuk+Con+DN entails Uniformity I: ˛p$ Ka p

Proof. ˛p $
DN

  ˛ p $
ELuk`Con

 Ka p.

Fact 3. Uniformity I+Ver entails Uniformity II: Ka ˛ p$ Kb p

Proof. Ka ˛ p $
Ver

˛p $
Uni

 Kb p.

Uniformity I and II seem invalid, egregiously implying that if an agent is aware of but rightly

uncertain about p, every agent is uncertain about p. To see this, note that Uniformity I (with minimal

assumptions) entails: ˛p^˛ p $  Ka p^ Kap. But ‘it might be raining and might not be raining’

predominantly serves to express the speaker’s ignorance about the rain, while ‘Jones doesn’t know that it

is raining and doesn’t know that it isn’t raining’ expresses that Jones is ignorant: it is generally agreed that

˛p either has a solipsistic reading as its default, or something close (e.g.., expression of the information

state of a select group of agents that includes the speaker). Similarly, note that Uniformity II (with

minimal assumptions) entails: K1˛ p^K1 ˛ p$ K2 p^ K2p. But ‘Smith knows it might be raining

and might not be raining’ predominantly serves to express Smith’s ignorance about the rain, while ‘Jones

doesn’t know that it is raining and doesn’t know that it isn’t raining’ predominantly serves to express that

Jones is ignorant.

To bolster this assessment, consider a banal context. Suppose that your dinner partner has a severe

allergy to shellfish. You ask your waiter, Smith, ‘Does the daily soup contain shellfish?’. Smith replies:

(16) It might. The kitchen usually puts shellfish in the soup, but not always. I’ll check with Chef Jones.

She always knows exactly what’s in the soup.

Upon hearing (16), and waiting for Smith to return, one would normally happily accept/say all of:

(17) The soup might have shellfish (that’s why Smith is checking with the kitchen).

(18) Smith knows that the soup might have shellfish.

(19) Unlike Smith, Jones knows whether the soup has shellfish.
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It would be odd to conclude from (17) and (18), per Uniformity, that Jones doesn’t know that the

soup doesn’t have shellfish. For then an uncontentious application of disjunctive syllogism, using (19),

would yield (even before Smith returns): chef Jones knows that the soup has shellfish. Surely one

shouldn’t conclude this given only (16).

The general pattern here is emulated by other epistemic vocabulary. Let’s use ▽ϕ for ‘it is likely

that ϕ’. Then Ka p$ ▽p (and Ka p$ Ka ▽p) is similarly well-supported by prima facie linguistic

evidence, while the contrapositive ▽p$ Ka p does not seem true. Compare:

(20) Ann knows that it isn’t raining. So, it isn’t likely to be raining.

(21) Ann knows that it isn’t raining. So, Ann knows that it isn’t likely to be raining.

(22) It is likely to rain tomorrow, but only our local metereologist Jones knows for sure.

(20) and (21) strike me as good, if redundant, reasoning (easily generalized), while (22) seems per-

fectly intelligible.

One style of response to all this tries to exploit the context-sensitivity of epistemic ‘might’ to preserve

restricted versions of Ver and NTrans without abandoning classical logic. In particular, the strategy

would be to say that NTrans, ELuk, and Uniformity I hold only when the ‘˛’ deployed in Ka ˛ p and

 ˛ p is indexed to the information available to agent a (i.e., the same agent referred to in Ka p). This

is best expressed by enriching the syntax for L , to record the agent each instance of ˛ is indexed to:

Restricted NTrans: Ka ˛a p” Ka p

Restricted ELuk: Ka p$ ˛a p

It may then be claimed that any ill results (e.g. unrestricted Uniformity) leading from Con and DN

are a mere illusion brought on by subtle shifts in context. This strategy should not be dismissed out of

hand. Nevertheless, its execution will not be trivial. Among other complications, it sits uneasily with the

data collected above (for example, our intuitive assessment of claims (12)-(15), in support of ELuk, does

not seem to hinge on taking ‘might’/‘can’t’/‘must’ to be indexed to Ann/Bob’s information specifically)

and risks introducing such loose criteria for contextual shifts that the relevant explanations become bereft

of content.

To bolster the alternative strategy of dropping classical logic (at least when epistemic modals are in

play), note that independent motivation for rejecting Con has been tabled. For example, one might think

that the empirical case for Łukasiewicz’ principle is compelling (cf. [3]) and argue on this basis that Con

must be false (given that ˛p$ p is obviously false). Alternatively, a proposed counterexample to modus

tollens from [25], utilizing ‘likely’, is easily modified to bear against Con. Suppose an urn contains 100

marbles, big and small. Of the big, 10 are blue and 30 are red. Of the small, 50 are blue and 10 are red.

A marble, m, is randomly selected and placed under a cup. Given only this information, (23) sounds like

good reasoning, but (24) does not:

(23) Suppose that m is big. It follows that m is likely to be red.

(24) m isn’t likely to be red. # Thus, m isn’t big.

To see why the second inference in (24) seems incorrect, note that we already know that the marble

isn’t likely to be red, yet accepting that it isn’t big is rash.

The current paper thus pursues the strategy of giving an independently motivated formal semantics

that delivers Ver and NTrans, while invalidating Uniformity (I) and invalidating Con.

We add one last wrinkle to our list of logical desiderata: it seems that NTrans can be generalized (in

ways that bear on our discussion). Consider:
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Generalized Negative Transparency (GeNT): Ka pp^˛qq ” Ka pp^qq
Kapp_ ˛qq ” Kapp_ qq

In both cases, NTrans is a special case (respectively, p “ J and p “ K). For convenience, I as-

sume the above claims are equivalent (they could be deployed individually in our coming argumentation,

however). Note that the linguistic evidence in support of GeNT seems no worse than that for NTrans

(though, unsurprisingly, parsing the relevant sentences requires slightly more effort). Consider:

(25) # Ann knows that it isn’t both raining and a good day for a picnic, but for all she knows it’s both

raining and might be a good day for a picnic.

(26) # Ann knows that either it isn’t raining or must not be a good day for a picnic, but for all she knows

it’s both raining and a good day for a picnic.

(27) Ann knows that it isn’t both raining and a good day for a picnic. So, Ann knows that either it isn’t

raining or it must not be a good day for a picnic.

(25) and (26) sound incoherent; (27) sounds like good reasoning. GeNT explains all this.

3 Strategy

Altogether, our target in the current paper is this:

Goal: Provide an independently motivated formal semantics that validates Ver and GeNT (with

NTrans as a special case), and invalidates Uniformity I.

We proceed as follows. In §4, we consider the domain semantics of [24] and [17], a standard

‘information-sensitive’ semantics for ‘might’ claims (designed to account, in particular, for non-classical

behavior induced by epistemic contradictions). Equipping domain semantics with an account of attitude

ascriptions presented by [24] (following [14] and [6]) delivers NTrans. A natural starting point is thus

to ask if Ver and GeNT can be realized in this setting without fuss. However, ad hoc maneuvers aside,

this system forces a choice between NTrans and Ver. What’s more, even with said ad hoc maneuvers,

the system fails to deliver GeNT.

§5 thus proposes a novel alternative theory, showcasing a related but distinct tradition of information-

sensitive semantics: we propose a formal acceptance semantics (in the ballpark of [21],[20], [12],[13],

[5], [1]) that delivers Ver and GeNT as desired. Our treatment of ˛p is essentially standard for such a

framework; the more novel aspect is our account of Kϕ , and its interaction with ˛p. The guiding idea

is that knowledge ascription reflects the stability of knowledge under available refinements of veridical

information. A notion of inter-subjective ‘available information’ sets the bound on available refinements.

A variation of a classic example (cf. [11, pg. 148]) provides initial motivation (cf. the Schmolmes case

in [10, sect.1]):

Salvaging Operation. Imagine a salvage crew searching for a ship that sank a long time

ago. The mate of the salvage ship works from an old log, but overlooks some pertinent

entries in the log, and concludes that the wreck may be in a certain bay. He confidently says

‘the hulk might be in these waters’. But, as it turns out later, careful examination of the log

shows that the boat must have gone down at least thirty miles further south.

One hesitates to say ‘the mate knew that the ship might be in the bay’ (better to say ‘he merely

believed it might be’), given that his rational acceptance of ‘it might be in the bay’ did not survive the

incorporation of readily available information.
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Our semantics may thus be taken (i) as an abstract version of the defeasibility theory of knowledge (cf.

[16], [2]) and (ii) as a novel implementation of the insight from [11] that the available information bears

on whether a speaker is entitled to an epistemic possibility claim, going beyond the actual knowledge of

the speaker or hearers.

4 Domain Semantics

Domain semantics invites a natural account of knowledge ascription that exhibits NTrans. This contrasts

with the influential descriptivist/factualist school on epistemic modals, according to which ‘it might

be that p’ is taken as synonymous with, roughly, ‘p is not ruled out by what is mutually known, or

easily known, by a relevant group of agents’. Negative transparency seems untenable on the descriptivist

account: that Smith knows that the train isn’t late does not entail that Smith knows anything about what

the mutual knowledge of a certain group rules out (even if the group includes only Smith: she might well

be uncertain what she knows).

An information model I “ xW,Iy is a pair, with W the set of all possible worlds and I an assignment

of an information state Ippq to each atomic sentence of L . We take an information state – generically

denoted i – to just be an intension, i.e., a subset of W . State i is veridical at w when w P i. We evaluate

sentences in L as true (1) or false (0) relative to a possible world w and an information state i: the

valuation function r¨sw,i is as follows.

Definition 1 (Domain Semantics). Given an information model I :

rpsw,i “ 1 iff w P Ippq
r ϕsw,i “ 1 iff rϕsw,i “ 0

rϕ^ψsw,i “ 1 iff rϕsw,i “ 1 and rψsw,i “ 1

r˛ϕsw,i “ 1 iff Du P i: rϕsu,i “ 1

The following notion (following [23]) will be important for our account of attitude ascriptions:

Definition 2 (Acceptance). i, ϕ iff @w P i: rϕsw,i “ 1

If i, ϕ , we say information i accepts or supports sentence ϕ , modeling the idea that having exactly

the information i is sufficient for establishing ϕ , rendering ϕ correctly assertable (putting aside Gricean

considerations, anyway). To get a feel for ,, note that the following sensible properties are readily

verified (though note that, given domain semantics, they do not generalize; cf. §5, [13]):

i, p iff @w P i: w P Ippq
i, p iff @w P i: w R Ippq
i, p^q iff i, p and i, q

i, p_q iff Di1, i2 s.t. i“ i1Y i2 and i1 , p and i2 , q

i, ˛p iff Dw P i: twu , p

i, ˛ p iff @w P i: twu ,  p

As for logical consequence, two notions of entailment are prominent in this framework. First, a

truth-preservation relation ( is straightforwardly defined: ϕ ( ψ holds exactly when rϕsw,i “ 1 im-

plies rψsw,i “ 1 for every w and i in every model I . Second, an acceptance-preservation relation , is

straightforwardly defined: ϕ , ψ holds exactly when i , ϕ implies i , ψ for every i in every model

I . Both consequence relations serve as useful tools for explaining ordinary intuitions about entailment

and contradiction. For example, the domain semanticist utilizes ,, not (, to explain the incoherence of

epistemic contradictions of the form p^˛ p: while p^˛ p is consistent with respect to (, there is no

i such that i, p^♦ p.
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To introduce attitude ascriptions, we transfer an account of belief ascription from [24] to knowledge

ascription. Call this the classical approach. A classical model C supplements an information model with

function k, mapping a world to a non-empty intension kw. The idea is that kw models Smith’s epistemic

state at w as a set of epistemic alternatives (the total informational content of Smith’s knowledge). As an

agent’s knowledge can never rule out the actual world, we stipulate:

C1. @w PW : w P kw

Definition 3 (Classicism). Given classical C , we extend domain semantics with:

rKϕsw,i “ 1 iff kw , ϕ

However, relative to the strategy of §3, classicism is only a partial success.

Fact 4. For classicists, NTrans holds.

Proof. rK ˛ psw,i iff kw, ˛ p iff @u P kw: tuu, p iff @u P kw: u R Ippq iff kw, p iff rK psw,i

Fact 5. For classicists, Ver fails.

Proof. Counter-model: consider C where (i) W “tw1,w2u, (ii) Ippq“ tw2u, (iii) kw1 “W . Let i“tw1u.
So, by (ii) and (iii), rK ˛ psw1 ,i “ 1, as there is a p-world in kw1 . But r˛psw1 ,i “ 0, as there is no p-world

in i.

Of course, a small modification to the semantics secures Ver:

rKϕsw,i “ 1 iff: kw , ϕ and rϕsw,i “ 1.

However, the modified proposal abandons NTrans. For a counter-model, take C where, for some

@ PW , every world in k@ (including @ itself) is a  p-world (assuring k@ , p^ ˛ p and r ps@,i “
1), but there is a p-world in i (so r ˛ ps@,i “ 0). So, given C , rK ps@,i “ 1 and rK ˛ ps@,i “ 0.

However, it is readily checked that the modified proposal yields: i,K ˛ p iff i,K p. So, NTrans

emerges at the level of acceptance, in tandem with Ver. Nevertheless, two problems remain. First, the

modified proposal is, as it stands, markedly ad hoc: adding the clause rϕsw,i “ 1 to the truth condition for

Kϕ raises interpretive questions about the nature of kw and serves purely to assure factivity in the case

of modalized formulas (it is readily checked that Ver holds for ♦-free formulas in the original account

of Kϕ). Second, even more pointedly, the modified proposal does not yield GeNT: in particular, there

exists C and i where i,K pp^qq but i. K pp^˛qq. To see this, let i contain only worlds w1 and w2,

with p only true at w1, and q only true at w2. Thus, i, pp^qq but i. pp^˛qq (as rp^˛qsw1 ,i “ 1).

If we further set kw to be i for every w P i, we get: i, K pp^qq but i. K pp^˛qq.

5 Stable Acceptance Semantics

We now present an information-sensitive semantic theory that achieves the goal of §3. The leading idea

behind this theory is that Smith’s knowledge at w is stable under refinement of her veridical information

at w - or at least refinements that are ‘available’ at w, in a sense to be clarified.

Our system may be seen as a novel implementation of a well-known (alleged) insight that the

truth/aptness of an epistemic possibility claim is sensitive to objective factors that go beyond the ac-

tual knowledge of the speaker or other relevant agents: in particular, it is sensitive to information that has

not been acquired but is (in some sense) available to the relevant agents. Consider two cases from [11].
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Imagine a salvage crew searching for a ship that sank a long time ago. The mate of the

salvage ship works from an old log, makes a mistake in his calculations, and concludes that

the wreck may be in a certain bay. It is possible, he says, that the hulk is in these waters.

No one knows anything to the contrary. But in fact, as it turns out later, it simply was not

possible for the vessel to be in that bay; more careful examination of the log shows that the

boat must have gone down at least thirty miles further south. The mate said something false

when he said, “It is possible that we shall find the treasure here”, but the falsehood did not

arise from what anyone actually knew at the time. [11, pg. 148]

As for the second case:

Consider a person who buys a lottery ticket. At the time he buys his ticket we shall say it is

possible he will win, though probably he will not. As expected, he loses. But retrospectively

it would be absurd to report that it only seemed possible that the man would win. It was

perfectly possible that he would win. To see this clearly, consider a slightly different case,

in which the lottery is not above board; it is rigged so that only the proprietors can win.

Thus, however it may have seemed to the gullible customer, it really was not possible that

he would win. It only seemed so. “Seemed possible” and “was possible” both have work

cut out for them. [11, pg. 148]

This suggests a proposal along the following lines: that whether an epistemic possibility claim is

aptly assertible depends, in context, not only on the information that is already possessed, but that is

available via “practicable investigation” (as Hacking puts it), or depends (as [7] puts it) on the “relevant

way[s] by which members of the relevant community can come to know”, or tracks (as [18, pg. 402] puts

it) a distinction between what the speaker or other relevant agents “easily might know” versus “couldn’t

easily know or have known”. We needn’t commit to any particular elaboration here (cf.[10, sect.1]).

Exactly what to make of the above cases is debatable, as [17, Sects. 10.2.2, 10.4.2] points out. For

our purposes, we need only observe the following. First, one hesitates to say that the mate knew that

they might find the treasure in the bay: as his claim could not be maintained were accessible further

evidence collected, it does not rise to knowledge. Second, it seems reasonable to say that we knew, at the

time, that the person with the fair lottery ticket might win (but probably would not). Our beliefs seemed

sufficiently sensitive to the available information: given the intrinsic limits on predicting a lottery, the

possibility of his winning could not be ruled out even with all accessible evidence on the table.

Two strategies are available to theorists for explaining these observations. First, one could incorpo-

rate objective factors as a constraint on epistemic possibility claims. As [17, Sect. 10.2.2] notes, this has

the cost that it becomes hard to see how the casual ‘might’ claims we make in ordinary life are ever war-

ranted. Alternatively, one could incorporate objective factors as a constraint on knowledge ascriptions

(with an eye to delivering plausible interactions with epistemic modals). As the conditions for asserting

a knowledge claim are plausibly relatively demanding, the analogue of the previous objection has less

force in this case. Our own theory exploits this second approach, citing the precedent and independent

motivation provided by the tradition of defeasibility theories of knowledge, in the spirit of [16] (we leave

more detailed comparisons for elsewhere).

In contrast to domain semantics, we offer a bilateral acceptance semantics: instead of evaluating sen-

tences at world-information pairs and deriving acceptance conditions, sentences are evaluated at just an

information state. Hence, acceptance conditions (and, simultaneously, rejection conditions) are directly

provided. For some independent advantages of working with an acceptance semantics, see [21], [20], [5]

and [1]; for independent drawbacks to domain semantics, see [13].
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A bounded model M supplements an information model with functions k and i, each mapping a

world to an information state (a non-empty intension), respectively denoted kw and iw. We call iw the

worldly information at w, while kw again models the set of epistemic alternatives: the possible worlds

compatible with the agent’s total knowledge state (for simplicity we proceed with a single agent, writing

K instead of K1). We say that intension j refines intension i when jĎ i. We say that i is internally coherent

when i is non-empty and, for every w P i, iw refines i. Intuitively, an internally coherent information state

i is coherent in the following sense: if i leaves it open that the best available information (the ‘worldly

information’) cannot rule out a certain possibility, then i does not itself rule out that possibility. We say

that i is accessible at w exactly when i is both internally coherent and veridical at w, i.e., w P i. We

stipulate, for all w PW , that kw and iw are both accessible at w.

Lemma 1. If i is internally coherent then i“
Ť

wPi iw.

Proof. As iw refines i for all w P i, we have
Ť

wPi iw Ď i. Suppose that w P i. As iw is accessible at w,

w P iw. So, iĎ
Ť

wPi iw.

Definition 4 (Accessible Refinement). Given information state i, let Accpiq be the set of information

states j where (i) j refines i and (ii) j is accessible at w for some w P i. We call the members of Accpiq the

accessible refinements of i.

Note that every j P Accpiq has the property: there exists w P i such that iw Ď jĎ i. Thus, the accessible

refinements of i are bounded by the candidates left open by i for what the worldly information might be.

Definition 5 (Stable Acceptance Semantics). Given bounded M , intension i:

i, p iff @w P i: w P Ippq
i- p iff @w P i: w R Ippq
i, ϕ iff i- ϕ

i- ϕ iff i, ϕ

i, ϕ^ψ iff i, ϕ and i, ψ

i- ϕ^ψ iff Di1, i2 s.t. i“ i1Y i2 and i1 - ϕ and i2 - ψ

i, ˛ϕ iff Dw P i: twu , ϕ

i- ˛ϕ iff @w P i: twu - ϕ

i, Kϕ iff @w P i, @j P Accpkwq: j, ϕ

i- Kϕ iff @w P i, Dj P Accpkwq: j. ϕ

Read i , ϕ as ‘i accepts ϕ’ or ‘i supports ϕ’, and i - ϕ as ‘i rejects ϕ’ or ‘i refutes ϕ’. The most

unusual entry (cf. [21], [13], [1] and §4) is that for Kϕ : according to our semantics, ‘Smith knows that

ϕ’ can be accepted exactly when it is established that every accessible refinement of Smith’s knowledge

state supports ϕ ; ‘Smith knows that ϕ’ can be rejected exactly when it is established that an accessible

refinement of Smith’s knowledge state doesn’t support ϕ .

A couple of technical lemmas will prove useful.

Lemma 2. If i, ϕ and j, ϕ then iY j, ϕ . Likewise, if i- ϕ and j- ϕ then iY j- ϕ .

Proof. This can be established by a routine induction on ϕ , with respect to the following stronger prop-

erty: (i) if a , ϕ and b , ϕ for all a Ď i and b Ď j then aYb , ϕ for all a Ď i and all b Ď j and (ii) if

a- ϕ and b- ϕ for all aĎ i and all bĎ j then aYb- ϕ for all aĎ i and all bĎ j.

Lemma 3. If i is internally coherent, the following are equivalent:

A. @j P Accpiq: j, ϕ
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B. @u P i: iu , ϕ

Proof. As iu P Accpiq for all u P i, the direction from A to B is trivial. For the other direction, consider

j P Accpiq and use a routine induction on the structure of ϕ to show that if iu , ϕ holds for all u P i, then

j, ϕ holds, and if iu - ϕ holds for all u P i, then j- ϕ holds, with Lemma 1 and Lemma 2 being put to

crucial use (the latter for the case of ϕ^ψ).

It follows that our entries for Kϕ have the following convenient reformulation, which we deploy in

coming proofs:

i, Kϕ iff @w P i, @u P kw: iu , ϕ

i- Kϕ iff @w P i, Du P kw: iu . ϕ

Thus, according to our semantics, ‘Smith knows that ϕ’ can be accepted exactly when it is established

that Smith’s knowledge state establishes that the worldly information establishes ϕ ; ‘Smith knows that

ϕ’ can be rejected exactly when it is established that Smith’s knowledge state leaves it open that the

worldly information doesn’t establish ϕ .

This system invites the following notion of logical consequence:

Definition 6 (Coherent Consequence). ϕ ( ψ iff, for every bounded model M , if i is internally coherent

and i, ϕ , then i, ψ .

Definition 7 (Assertoric Equivalence). Sentences ϕ and ψ are assertorically equivalent if

i, ϕ iff i, ψ

for every information state i in every bounded model M .

For example, p^q and q^ p are assertorically equivalent.

Definition 8. A sentence ϕ is ˛-restricted if the only occurrences of ˛ are in the scope of a K operator.

For example,  pp^qq and K ˛ p are ˛-restricted; ˛p and  ˛pp_qq aren’t.

To efficiently demonstrate the key properties of our system, we require some preliminary results,

which are of independent technical interest.

Lemma 4. If ϕ is ˛-restricted then:

(1) i, ϕ iff @w P i: twu , ϕ

(2) i- ϕ iff @w P i: twu - ϕ

Proof. A routine induction.

Lemma 5. If ϕ is ˛-restricted then: i- ˛ϕ iff i- ϕ

Proof. Suppose that i - ˛ϕ . Thus, @w P i: twu - ϕ . Thus, by Lemma 4, i - ϕ . The reasoning can be

reversed.

Theorem 1 (Normal Form). For every sentence ϕ , there exists ně 0 and ˛-restricted sentences α0, α1,

. . . , αn such that for any internally coherent i:

i, ϕ iff i, α0^˛α1^¨¨ ¨^˛αn

Proof. See the appendix.
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Now for the key results.

Fact 6. Generalized Negative Transparency holds: K pp^˛qq)( K pp^qq.

Proof. Suppose that i, K pp^˛qq. So, @w P i, @u P kw: 1u , p and 2u , ˛q, where 1uY2u “ iu.

By Lemma 5: @w P i, @u P kw: 2u , q. So, i, K pp^qq. The reasoning can be reversed.

Fact 7. K-Veridicality holds: Kϕ ( ϕ .

Proof. Assume that i is internally coherent and i,Kϕ . So, @w P i, @u P kw: iu, ϕ . By Theorem 1, there

exists ně 1 and ˛-restricted sentences α0,α1, . . . ,αn such that, @w P i, @u P kw: iu,α0^˛α1^¨¨ ¨^˛αn.

We show that i , α0. Let w P i. Now, as w P kw and iu , α0 for any u P kw, we have iw , α0. So,

by Lemma 4, we have @u P iw: tuu , α0. Thus, as w P iw, we have twu , α0. Generalizing: @w P i:

twu , α0. So, by Lemma 4, i, α0.

We show that i , ˛αk for 1 ď k ď n. Let w P i. Now, for any u P kw, there exists v P iu such that

tvu , αk, as iu , ˛αk. As w P kw, it follows that there exists v P iw such that tvu , αk. Thus, as i is

internally coherent, Dv P i such that tvu , αk. So, i, ˛αk.

Altogether: i, α0^˛α1^¨¨ ¨^˛αn. So, by Theorem 1, i, ϕ .

It is instructive to linger on the broad explanation as to why ˛p is a coherent consequence of K ˛ p.

Suppose that i is internally coherent and supports K ˛ p. Thus, i establishes that Smith’s knowledge state

establishes that the worldly information establishes ˛p. Thus, the candidates for the worldly information

– those i cannot rule out – all contain a p-world. As i is internally coherent, i cannot itself rule out these

worlds. So, i accepts ˛p.

Finally:

Fact 8. Uniformity fails: ˛p * K p.

Proof. Consider any bounded model M where: (i) w1 P Ippq and w2 R Ippq; (ii) iw1 “ kw1 “ tw1u and

iw2 “ kw2 “ tw2u. Set i“ tw1,w2u. Note that i is internally coherent.

By (i), tw1u , p. So, Dw P i: twu , p. So, i, ˛p.

By (i), tw2u - p. Thus, by Lemma 4 and (ii), iw2 - p. Thus, by (ii), @u P kw2 : iu - p. Thus, i/K p.

Thus, Dw P i such that @u P kw: iu - p. Thus, i/ K p. Thus, i. K p.
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i, ϕ iff i, α0^˛α1^ . . .^˛αm

i- ϕ iff i, β0^˛β1^ . . .^˛βn

The case for atom p is trivial, as this sentence is itself ˛-restricted: set m “ n “ 0, α0 “ p and

β0 “ p.

The case for knowledge ascription Kϕ is trivial, as this sentence is itself ˛-restricted: set m“ n“ 0,

α0 “ Kϕ and β0 “ Kϕ .

For the induction hypothesis IH, assume, for arbitrary ϕ and ψ , that there exists m,n,x,y ě 0 and

˛-restricted sentences

α0,α1, . . . ,αm,β0,β1, . . . ,βn,δ0,δ1, . . . ,δx,ε0,ε1, . . . ,εy

such that, for any internally coherent i:

i, ϕ iff i, α0^˛α1^ . . .^˛αm

i- ϕ iff i, β0^˛β1^ . . .^˛βn

i, ψ iff i, δ0^˛δ1^ . . .^˛δx

i- ψ iff i, ε0^˛ε1^ . . .^˛εy

Using the IH, we can prove the following.

i, ϕ iff i- ϕ

iff i, β0^˛β1^ . . .^˛βn

i- ϕ iff i, ϕ

iff i, α0^˛α1^ . . .^˛αm

i, ϕ^ψ iff i, ϕ and i, ψ

iff i, α0^˛α1^ . . .^˛αm and i, δ0^˛δ1^ . . .^˛δx

iff i, pα0^δ0q^˛α1^ . . .^˛αm^˛δ1^ . . .^˛δx

i- ϕ^ψ iff Di1, i2: i“ i1Y i2 and i1 - ϕ and i2 - ψ

iff Di1, i2: i“ i1Y i2 and i1 , β0^˛β1^ . . .^˛βn

and i2 , ε0^˛ε1^ . . .^˛εy

iff i, pβ0_ ε0q^˛pβ0^β1q^ . . .^˛pβ0^βmq
^˛pε0^ ε1q^ . . .^˛pε0^ εxq

i, ˛ϕ iff Dw P i: twu , ϕ

iff Dw P i: twu , α0^˛α1^ . . .^˛αm

iff Dw P i: twu , α0^α1^ . . .^αm

iff i, ˛pα0^α1^ . . .^αmq
iff i, pp_ pq^˛pα0^α1^ . . .^αmq

i- ˛ϕ iff @w P i: twu - ϕ

iff @w P i: twu , β0^˛β1^ . . .^˛βn

iff @w P i: twu , β0^β1^ . . .^βn

iff i, β0^β1^ . . .^βn
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We consider the problem of incentivising desirable behaviours in multi-agent systems by way of
taxation schemes. Our study employs the concurrent games model: in this model, each agent is
primarily motivated to seek the satisfaction of a goal, expressed as a Linear Temporal Logic (LTL)
formula; secondarily, agents seek to minimise costs, where costs are imposed based on the actions
taken by agents in different states of the game. In this setting, we consider an external principal
who can influence agents’ preferences by imposing taxes (additional costs) on the actions chosen
by agents in different states. The principal imposes taxation schemes to motivate agents to choose
a course of action that will lead to the satisfaction of their goal, also expressed as an LTL formula.
However, taxation schemes are limited in their ability to influence agents’ preferences: an agent will
always prefer to satisfy its goal rather than otherwise, no matter what the costs. The fundamental
question that we study is whether the principal can impose a taxation scheme such that, in the re-
sulting game, the principal’s goal is satisfied in at least one or all runs of the game that could arise
by agents choosing to follow game-theoretic equilibrium strategies. We consider two different types
of taxation schemes: in a static scheme, the same tax is imposed on a state-action profile pair in
all circumstances, while in a dynamic scheme, the principal can choose to vary taxes depending on
the circumstances. We investigate the main game-theoretic properties of this model as well as the
computational complexity of the relevant decision problems.

1 Introduction

Rational verification is the problem of establishing which temporal logic properties will be satisfied
by a multi-agent system, under the assumption that agents in the system choose strategies that form a
game-theoretic equilibrium [12, 41, 17]. Thus, rational verification enables us to verify which desirable
and undesirable behaviours could arise in a system through individually rational choices. This article,
however, expands beyond verification and studies methods for incentivising outcomes with favourable
properties while mitigating undesirable consequences. One prominent example is the implementation of
Pigovian taxes, which effectively discourage agents from engaging in activities that generate negative
externalities. These taxes have been extensively explored in various domains, including sustainability
and AI for social good, with applications such as reducing carbon emissions, road congestion, and river
pollution [24, 22, 32].

We take as our starting point the work of [40], who considered the possibility of influencing one-shot
Boolean games by introducing taxation schemes, which impose additional costs onto a game at the level
of individual actions. In the model of preferences considered in [40], agents are primarily motivated to
achieve a goal expressed as a (propositional) logical formula, and only secondarily motivated to minimise
costs. This logical component limits the possibility to influence agent preferences: an agent can never be
motivated by a taxation scheme away from achieving its goal. In related work, Wooldridge et al. defined
the following implementation problem: given a game G and an objective ϒ, expressed as a propositional
logic formula, does there exists a taxation scheme τ that could be imposed upon G such that, in the
resulting game Gτ , the objective ϒ will be satisfied in at least one Nash equilibrium [40].

http://dx.doi.org/10.4204/EPTCS.379.28
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We develop these ideas by applying models of finite-state automata to introduce and motivate the
use of history-dependent incentives in the context of concurrent games [2]. In a concurrent game, play
continues for an infinite number of rounds, where at each round, each agent simultaneously chooses an
action to perform. Preferences in such a multiplayer game are defined by associating with each agent i a
Linear Temporal Logic (LTL) goal γi, which agent i desires to see satisfied. In this work, we also assume
that actions incur costs, and that agents seek to minimise their limit-average costs.

Since, in contrast to the model of [40], play in our games continues for an infinite number of rounds,
we find there are two natural variations of taxation schemes for concurrent games. In a static taxation
scheme, we impose a fixed cost on state-action profiles so that the same state-action profile will always
incur the same tax, no matter when it is performed. In a dynamic taxation scheme, the same state-action
profile may incur different taxes in different circumstances: it is history-dependent. We first show that
dynamic taxation schemes are strictly more powerful than static taxation schemes, making them a more
appropriate model of incentives in the context of concurrent games, characterise the conditions under
which an LTL objective ϒ can be implemented in a game using dynamic taxation schemes, and begin to
investigate the computational complexity of the corresponding decision problems.

2 Preliminaries

Where S is a set, we denote the powerset of S by 2S. We use various propositional languages to express
properties of the systems we consider. In these languages, we will let Φ be a finite and non-empty
vocabulary of Boolean variables, with typical elements p,q, . . .. Where a is a finite word and b is also a
word (either finite or infinite), we denote the word obtained by concatenating a and b by ab. Where a is
a finite word, we denote by aω the infinite repetition of a. Finally, we use R+

n for the set of n-tuples of
non-negative real numbers.

Concurrent Game Arenas: We work with concurrent game structures, which in this work we will refer
to as arenas (to distinguish them from the game structures that we introduce later in this section) [2].
Formally a concurrent game arena is given by a structure

A = (S ,N ,Ac1, . . . ,Acn,T ,C ,L ,s0),

where: S is a finite and non-empty set of arena states; N = {1, . . . ,n} is the set of agents – for
any i ∈N , we let −i = N \ {i} denote the set of all agents excluding i; for each i ∈N , Aci is the
finite and non-empty set of unique actions available to agent i – we let Ac =

⋃
i∈N Aci denote the set

of all actions available to all players in the game and ~Ac = Ac1×·· ·×Acn denote the set of all action
profiles; T : S × Ac1 × ·· · × Acn → S is the state transformer function which prescribes how the
state of the arena is updated for each possible action profile – we refer to a pair (s,~α), consisting of
a state s ∈ S and an action profile ~α ∈ ~Ac as a state-action profile; C : S ×Ac1× ·· · ×Acn → Rn

+

is the cost function – given a state-action profile (s,~α) and an agent i ∈N , we write Ci(s,~α) for the
i-th component of C (s,~α), which corresponds to the cost that agent i incurs when ~α is executed at s;
L : S → 2Φ is a labelling function that specifies which propositional variables are true in each state
s ∈S ; and s0 ∈S is the initial state of the arena. In what follows, it is useful to define for every agent
i ∈N the value c∗i to be the maximum cost that i could incur through the execution of a state-action
profile: c∗i = max{Ci(s,~α) | s ∈S ,~α ∈ ~Ac}.

Runs: Games are played in an arena as follows. The arena begins in its initial state s0, and each agent
i ∈N selects an action αi ∈ Aci to perform; the actions so selected define an action profile, ~α ∈ Ac1×
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· · · ×Acn. The arena then transitions to a new state s1 = T (s0,α1, . . . ,αn). Each agent then selects
another action α ′i ∈ Aci, and the arena again transitions to a new state s2 = T (s1,~α

′). In this way, we

trace out an infinite interleaved sequence of states and action profiles, referred to as a run, ρ : s0
~α0−→

s1
~α1−→ s2

~α2−→ ·· · .
Where ρ is a run and k ∈ N, we write s(ρ,k) to denote the state indexed by k in ρ , so s(ρ,0) is the

first state in ρ , s(ρ,1) is the second, and so on. In the same way, we denote the k-th action profile played
in a run ρ by ~α(ρ,k−1) and to single out an individual agent i’s k-th action, we write αi(ρ,k−1).

Above, we defined the cost function C with respect to individual state-action pairs. In what follows,
we find it useful to lift the cost function from individual state-action pairs to sequences of state-action
pairs and runs. Since runs are infinite, simply taking the sum of costs is not appropriate: instead, we con-
sider the cost of a run to be the average cost incurred by an agent i over the run; more precisely, we define
the average cost incurred by agent i over the first t steps of the run ρ as Ci(ρ,0 : t) = 1

t+1 ∑
t
j=0 Ci(ρ, j)

for t ≥ 1, whereby Ci(ρ, j) we mean Ci(s(ρ, j),~α(ρ, j)). Then, we define the cost incurred by an agent
i over the run ρ , denoted Ci(ρ), as the inferior limit of means: Ci(ρ) = liminft→∞ Ci(ρ,0 : t). It can be
shown that the value Ci(ρ) always converges because the sequence of averages Ci(ρ,0 : t) is Cauchy.

Linear Temporal Logic: We use the language of Linear Temporal Logic (LTL) to express properties of
runs [33, 11]. Formally, the syntax of LTL is defined wrt. a set Φ of Boolean variables by the following
grammar:

ϕ ::=> | p | ¬ϕ | ϕ ∨ϕ | Xϕ | ϕ Uϕ (1)

where p ∈Φ. Other usual logic connectives (“⊥”, “ & ”, “→”, “↔”) are defined in terms of ¬ and ∨ in
the conventional way. Given a set of variables Φ, let LT L(Φ) be the set of LTL formulae over Φ; where
the variable set Φ is clear from the context, we simply write LT L. We interpret formulae of LTL with
respect to pairs (ρ, t), where ρ is a run, and t ∈ N is a temporal index into ρ . Any given LTL formula
may be true at none or multiple time points on a run; for example, a formula Xq will be true at a time
point t ∈N on a run ρ if q is true on a run ρ at time t +1. We will write (ρ, t) |= ϕ to mean that ϕ ∈ LT L
is true at time t ∈ N on run ρ . The rules defining when formulae are true (i.e., the semantics of LTL) are
defined as follows:

(ρ, t) |=>
(ρ, t) |= p iff p ∈L (s(ρ, t)) (where p ∈Φ)
(ρ, t) |= ¬ϕ iff it is not the case that (ρ, t) |= ϕ

(ρ, t) |= ϕ ∨ψ iff (ρ, t) |= ϕ or (ρ, t) |= ψ

(ρ, t) |= Xϕ iff (ρ, t +1) |= ϕ

(ρ, t) |= ϕ Uψ iff for some t ′ ≥ t : (ρ, t ′) |= ψ and
for all t ≤ t ′′ < t ′ : (ρ, t ′′) |= ϕ

We write ρ |= ϕ as a shorthand for (ρ,0) |= ϕ , in which case we say that ρ satisfies ϕ . A formula ϕ

is satisfiable if there is some run satisfying ϕ . Checking satisfiability for LTL formulae is known to be
PSPACE-complete [38], while the synthesis problem for LTL is 2EXPTIME-complete [34]. In addition to
the LTL tense operators X (“in the next state. . . ”) and U (“. . . until . . . ”), we make use of the two derived
operators F (“eventually. . . ”) and G (“always. . . ”), which are defined as follows [11]: Fϕ = > Uϕ and
Gϕ = ¬F¬ϕ .

Strategies: We model strategies for agents as finite-state machines with output. Formally, strategy σi

for agent i ∈ N is given by a structure σi = (Qi,nexti,doi,q0
i ), where Qi is a finite set of machine
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states, nexti : Qi×Ac1×·· ·×Acn→Qi is the machine’s state transformer function, doi : Qi→ Aci is the
machine’s action selection function, and q0

i ∈ Qi is the machine’s initial state. A collection of strategies,
one for each agent i∈N , is a strategy profile: ~σ = (σ1, . . . ,σn). A strategy profile ~σ enacted in an arena
A will generate a unique run, which we denote by ρ(~σ ,A ); the formal definition is standard, and we
will omit it here [17]. Where A is clear from the context, we will simply write ρ(~σ). For each agent
i ∈N , we write Σi for the set of all possible strategies for the agent and Σ = Σ1×·· ·×Σn for the set of
all possible strategy profiles for all players.

For a set of distinct agents A ⊆ N , we write ΣA = ∏i∈A Σi for the set of partial strategy profiles
available to the group A and Σ−A = ∏ j∈N \A Σ j for the set of partial strategy profiles available to the
set of all agents excluding those in A. Where ~σ = (σ1, . . . ,σi, . . . ,σn) is a strategy profile and σ ′i is a
strategy for agent i, we denote the strategy profile obtained by replacing the i-th component of ~σ with σ ′i
by (~σ−i,σ

′
i ). Similarly, given a strategy profile ~σ and a set of agents A ⊆N , we write ~σA = (σi)i∈A to

denote a partial strategy profile for the agents in A and if ~σ ′A ∈ ΣA is another partial strategy profile for A,
we write (~σ−A,~σ

′
A) for the strategy profile obtained by replacing ~σA in ~σ with ~σ ′A.

Games, Utilities, and Preferences: We obtain a concurrent game from an arena A by associating with
each agent i a goal γi, represented as an LTL formula. Formally, a concurrent game G is given by a
structure

G = (S ,N ,Ac1, . . . ,Acn,T ,C ,L ,s0,γ1, . . . ,γn),

where (S ,N ,Ac1, . . . ,Acn,T ,C ,L ,s0) is a concurrent game arena, and γi is the LTL goal of agent
i, for each i ∈N . Runs in a concurrent game G are defined over the game’s arena A , and hence we
use the notations ρ(~σ ,G ) and ρ(~σ ,A ) interchangeably. When the game or arena is clear from the
context, we omit the G and simply write ρ(~σ). Given a strategy profile ~σ , the generated run ρ(~σ)
will satisfy the goals of some agents and not satisfy the goals of others, that is, there will be a set
W (~σ) = {i ∈N : ρ(~σ) |= γi} of winners and a set L(~σ) = N \W (~σ) of losers.

We are now ready to define preferences for agents. Our basic idea is that, as in [40], agents’ prefer-
ences are structured: they first desire to accomplish their goal, and secondarily desire to minimise their
costs. To capture this idea, it is convenient to define preferences via utility functions ui over runs, where
i’s utility for a run ρ is

ui(ρ) =

{
1+ c∗i −Ci(ρ) if ρ |= γi

−Ci(ρ) otherwise.

Defined in this way, if an agent i gets their goal achieved, their utility will lie in the range [1,c∗i +1]
(depending on the cost she incurs), whereas if she does not achieve their goal, then their utility will lie
within [−c∗i ,0]. Preference relations �i over runs are then defined in the obvious way: ρ1 �i ρ2 if and
only if ui(ρ1)≥ ui(ρ2), with indifference relations ∼i and strict preference relations �i defined as usual.

Nash equilibrium: A strategy profile ~σ is a (pure strategy) Nash equilibrium if there is no agent i and
strategy σ ′i such that ρ(~σ−i,σ

′
i )�i ρ(~σ). If such a strategy σ ′i exists for a given agent i, we say that σ ′i is a

beneficial deviation for i from ~σ . Given a game G , let NE(G ) denote its set of Nash equilibria. In general,
Nash equilibria in this model of concurrent games may require agents to play infinite memory strategies
[8], but we do not consider these in this study 1. Where ϕ is an LTL formula, we find it useful to define
NEϕ(G ) to be the set of Nash equilibrium strategy profiles that result in ϕ being satisfied: NEϕ(G ) =
{~σ ∈ NE(G ) | ρ(~σ) |= ϕ}. It is sometimes useful to consider a concurrent game that is modified so that
no costs are incurred in it. We call such a game a cost-free game. Where G is a game, let G 0 denote

1Even in the purely quantitative setting where all agents’ goals are >, it is still possible that some Nash equilibria require
infinite memory [16].
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(a) (b)

Figure 1: (a) Illustration of the lexicographic quantitative and qualitative preferences of agents. (b) A concurrent
game where two robots are situated in a grid world and are programmed to 1) never crash into another robot and
2) to secondarily minimise their limit-average costs. The arrows indicate how a run may be decomposed into a
non-repeating and an infinitely-repeating component.

the game that is the same as G except that the cost function C 0 of G 0 is such that C 0
i (s,~α) = 0 for all

i ∈N , s ∈S , and ~α ∈ ~Ac. Given this, the following is readily established (cf., [17]):

Theorem 1. Given a game G , the problem of checking whether NE(G 0) 6= /0 is 2EXPTIME-complete.

The notion of Nash equilibrium is closely related to the concept of beneficial deviations. Given how
preferences are defined in this study, it will be useful to introduce terminology that captures the potential
deviations that agents may have [19]. Firstly, given a game G , we say that a strategy profile ~σ1 ∈ Σ is
distinguishable from another strategy profile ~σ2 ∈ Σ if ρ(~σ1,G ) 6= ρ(~σ2,G ). Then, for an agent i, a
strategy profile ~σ , and an alternative strategy σ ′i 6= σi, we say that σ ′i is an initial deviation for agent
i from strategy profile ~σ , written ~σ →i (~σ−i,σ

′
i ), if we have i ∈W (~σ)⇒ i ∈W (~σ−i,σ

′
i ) and strategy

profile ~σ is distinguishable from (~σ−i,σ
′
i ).

3 Taxation Schemes

We now introduce a model of incentives for concurrent games. For incentives to work, they clearly must
appeal to an agent’s preferences �i. As we saw above, incentives for our games are defined with respect
to both goals and costs: an agent’s primary desire is to see their goal achieved – the desire to minimise
costs is strictly secondary to this. We will assume that we cannot change agents’ goals: they are assumed
to be fixed and immutable. It follows that any incentives we offer an agent to alter their behaviour must
appeal to the costs incurred by that agent. Our basic model of incentives assumes that we can alter the
cost structure of a game by imposing taxes, which depend on the collective actions that agents choose in
different states. Taxes may increase an agent’s costs, influencing their preferences and rational choices.

Formally, we model static taxation schemes as functions τ : S × ~Ac→Rn
+. A static taxation scheme

τ imposed on a game G = (S ,N ,Ac1, . . . ,Acn,T ,C ,L ,s0,γ1, . . . ,γn) will result in a new game, which
we denote by

G τ = (S ,N ,Ac1, . . . ,Acn,T ,C τ ,L ,s0,γ1, . . . ,γn),

which is the same as G except that the cost function C τ of G τ is defined as C τ(s,~α) =C (s,~α)+τ(s,~α).
Similarly, we write A τ to denote the arena with modified cost function C τ associated with G τ and uτ

i (ρ)
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to denote the utility function of agent i over run ρ with the modified cost function C τ . Given G and a
taxation scheme τ , we write ρ1 �τ

i ρ2 iff uτ
i (ρ1) ≥ uτ

i (ρ2). The indifference relations ∼τ
i and strict

preference relations �τ
i are defined analogously.

The model of static taxation schemes has the advantage of simplicity, but it is naturally limited in
the range of behaviours it can incentivise—particularly with respect to behaviours ϒ expressed as LTL
formulae. To overcome this limitation, we therefore introduce a dynamic model of taxation schemes.
This model essentially allows a designer to impose taxation schemes that can choose to tax the same
action in different amounts, depending on the history of the run to date. A very natural model for dynamic
taxation schemes is to describe them using a finite state machine with output—the same approach that
we used to model strategies for individual agents. Formally, a dynamic taxation scheme T is defined by
a tuple T = (QT ,nextT ,doT ,q0

T ) where QT is a finite set of taxation machine states, nextT : QT ×Ac1×
·· ·×Acn → QT is the transition function of the machine, q0

T ∈ QT is the initial state, and doT : QT →
(S × ~Ac→Rn

+) is the output function of the machine. With this, let T be the set of all dynamic taxation
schemes for a game G . As a run unfolds, we think of the taxation machine being executed alongside the
strategies. At each time step, the machine outputs a static taxation scheme, which is applied at that time
step only, with doT (q0

T ) being the initial taxation scheme imposed.
When we impose dynamic taxation schemes, we no longer have a simple transformation G τ on

games as we did with static taxation schemes τ . Instead, we define the effect of a taxation scheme with
respect to a run ρ . Formally, given a run ρ of a game G , a dynamic taxation scheme T induces an infinite
sequence of static taxation schemes, which we denote by t(ρ,T ). We can think of this sequence as a
function t(ρ,T ) : N→ (S × ~Ac→ Rn

+). We denote the cost of the run ρ in the presence of a dynamic
taxation scheme T by C T (ρ):

C T (ρ) = liminf
u→∞

1
u

u

∑
v=0

C (ρ,v)+ t(ρ,T )(v)(s(ρ,v),~α(ρ,v))︸ ︷︷ ︸
(∗)

The expression (∗) denotes the vector of taxes incurred by the agents as a consequence of performing
the action profile which they chose at time step v on the run ρ . The cost C T

i (ρ) to agent i of the run ρ

under T is then given by the i-th component of C T (ρ).
Example 1. Two robots are situated in a grid world (Figure 1b), where atomic propositions represent
events where a robot picks up an apple (label ai j represents agent i picking up apple j), has delivered
an apple to the basket (label bi represents agent i delivering an apple to the basket), or where the robots
have crashed into each other (label c). Additionally, suppose that both robots are programmed with LTL
goals γ1 = γ2 = G¬c. In this way, the robots are not pre-programmed to perform specific tasks, and it is
therefore the duty of the principal to design taxes that motivate the robots to perform a desired function,
e.g., pick apples and deliver them to the basket quickly. Because the game is initially costless, there is an
infinite number of Nash equilibria that could arise from this scenario and it is by no means obvious that
the robots will choose one in which they perform the desired function. Hence, the principal may attempt
to design a taxation scheme to eliminate those that do not achieve their objective, thus motivating the
robots to collect apples and deliver them to the basket. Clearly, using dynamic taxation schemes affords
the principal more control over how the robots should accomplish this than static taxation schemes.

4 Nash Implementation

We consider the scenario in which a principal, who is external to the game, has a particular goal that
they wish to see satisfied within the game; in a general economic setting, the goal might be intended
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to capture some principle of social welfare, for example. In our setting, the goal is specified as an LTL
formula ϒ, and will typically represent a desirable system/global behaviour. The principal has the power
to influence the game by choosing a taxation scheme and imposing it upon the game. Then, given a
game G and a goal ϒ, our primary question is whether it is possible to design a taxation scheme T such
that, assuming the agents, individually and independently, act rationally (by choosing strategies ~σ that
collectively form a Nash equilibrium in the modified game), the goal ϒ will be satisfied in the run ρ(~σ)
that results from executing the strategies ~σ . In this section, we will explore two ways of interpreting this
problem.

E-Nash Implementation: A goal ϒ is E-Nash implemented by a taxation scheme T in G if there is
a Nash equilibrium strategy profile ~σ of the game G T such that ρ(~σ) |= ϒ. The notion of E-Nash
implementation is thus analogous to the E-Nash concept in rational verification [14, 15]. Observe that, if
the answer to this question is “yes” then this implies that the game G T has at least one Nash equilibrium.
Let us define the set ENI(G ,ϒ) to be the set of taxation schemes T that E-Nash implements ϒ in G :

ENI(G ,ϒ) = {T ∈T | NEϒ(G
T ) 6= /0} .

The obvious decision problem is then as follows:
E-NASH IMPLEMENTATION:
Given: Game G , LTL goal ϒ.
Question: Is it the case that ENI(G ,ϒ) 6= /0?

This decision problem proves to be closely related to the E-NASH problem [14, 15], and the following
result establishes its complexity:
Theorem 2. E-NASH IMPLEMENTATION is 2EXPTIME-complete, even when T is restricted to static
taxation schemes.

Proof. For membership, we can check whether ϒ is satisfied on any Nash equilibrium of the cost-free
concurrent game G 0 obtained from G by effectively removing its cost function using a static taxation
scheme which makes all costs uniform for all agents. This then becomes the E-NASH problem, known
to be 2EXPTIME-complete. The answer will be “yes” iff ϒ is satisfied on some Nash equilibrium of
G 0; and if the answer is “yes”, then observing that NE(G T ) ⊆ NE(G 0) for all taxation schemes T ∈ T
[40], the given LTL goal ϒ can be E-Nash implemented in G . For hardness, we can reduce the problem
of checking whether a cost-free concurrent game G has a Nash equilibrium (Theorem 1). Simply ask
whether ϒ => can be E-Nash implemented in G 0.

For the second part of the result, observe that the reduction above only involves removing the costs
from the game and checking the answer to E-NASH, which can be done using a simple static taxation
scheme. Hardness follows in a similar manner.

A-Nash Implementation: The universal counterpart of E-Nash implementation is A-Nash Implementa-
tion. We say that ϒ is A-Nash implemented by T in G if we have both 1) ϒ is E-Nash implemented by T
in game G ; and 2) NE(G T ) = NEϒ(G

T ). We thus define ANI(G ,ϒ) as follows:

ANI(G ,ϒ) = {T ∈T | NE(G T ) = NEϒ(GT ) 6= /0}

The decision problem is then:
A-NASH IMPLEMENTATION:
Given: Game G , LTL goal ϒ.
Question: Is it the case that ANI(G ,ϒ) 6= /0?
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~Ac : (0,0) ~Ac : (0,0)
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Figure 2: (a): A two-agent concurrent game G with action sets Ac1 = {a,b} and Ac2 = {c,d} and goals γ1 = γ2 =
GFp, where we let ~α1 = (a,c),~α2 = (a,d),~α3 = (b,c),~α4 = (b,d). Cost vectors associated with sets denote that
all action profiles within the set are assigned those costs. (b): A dynamic taxation scheme that could be imposed on
the agents in the game from (a). Labels below the states represent a static taxation scheme that applies a uniform
tax for all agents and all action profiles.

The following result shows that, unlike the case of E-Nash implementation, dynamic taxation schemes
are strictly more powerful than static taxation schemes for A-Nash implementation. It can be verified that
the game in Figure 2a, the taxation scheme in Figure 2b, and the principal’s goal being ϒ = G(p↔ q)
are witnesses to this result (see Appendix for the full proof):

Proposition 1. There exists a game G and an LTL goal ϒ such that ANI(G ,ϒ) 6= /0, but not if T is
restricted to static taxation schemes.

Before proceeding with the A-NASH IMPLEMENTATION problem, we will need to introduce some
additional terminology and concepts, beginning first with deviation graphs, paths, and cycles. A devi-
ation graph is a directed graph Γ = (V ,E), where V ⊆ Σ is a set of nodes which represent strategy
profiles in Σ and E ⊆ {(~σ ,~σ ′) ∈ V ×V | ~σ →i ~σ

′ for some i ∈N } is a set of directed edges between
strategy profiles that represent initial deviations. Additionally, we say that a dynamic taxation scheme
T induces a deviation graph Γ = (V ,E) if for every (~σ ,~σ ′) ∈ V ×V , it holds that ~σ ′ �T

i ~σ for some
i ∈N if and only if (~σ ,~σ ′) ∈ E. In other words, if the edges in a deviation graph precisely capture all
of the beneficial deviations between its nodes under T , then the deviation graph is said to be induced
by T .2 Then, a deviation path is simply any path P = (~σ1, . . . ,~σm) within a deviation graph Γ where
(~σ j,~σ j+1) ∈ E for all j ∈ {1, . . . ,m−1}.

Because the principal is only able to observe the actions taken by the agents and not their strategies
directly, any taxation scheme that changes the cost of some strategy profile ~σ will also change the cost
of all strategy profiles that are indistinguishable from ~σ by the same amount. This naturally suggests
that we modify the concept of a deviation path to take indistinguishability into account. To this end,
we say that a sequence of runs Po = (ρ1,ρ2, . . . ,ρm) is an observed deviation path in a deviation graph
Γ = (V ,E) if there exists an underlying tuple (~σ1,~σ2, . . . ,~σm) such that for all j ∈ {1, . . . ,m}, it holds
that 1) ρ j = ρ(~σ j), and 2) if j < m, then (~σ j,~σ j+1′) ∈ E for some ~σ j+1′ such that ρ(~σ j+1′) = ρ(~σ j+1).
Then, a deviation cycle is a deviation path (~σ1, . . . ,~σm) where ρ(~σ1) = ρ(~σm). A deviation path P =
(~σ1,~σ2, . . . ,~σm) is said to involve an agent i if ~σ j→i ~σ

j+1 for some j ∈ {1, . . . ,m−1} and similarly, an
observed deviation path Po in a deviation graph involves agent i if the analogous property holds for all
of its underlying sets. Given a game G and a set of strategy profiles X , a taxation scheme T eliminates

2This definition implies that a taxation scheme may induce many possible deviation graphs in general, depending on the
nodes selected to be part of the graph.
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X if NE(G T )∩ X = /0. Finally, a set of strategy profiles X is said to be eliminable if there exists a
taxation scheme that eliminates it. With this, we can characterise the conditions under which a finite set
of strategy profiles is eliminable:

Proposition 2. Let G be a game and X ⊂ Σ be a finite set of strategy profiles in G . Then, X is eliminable
if and only if there exists a finite deviation graph Γ = (V ,E) that satisfies the following properties: 1)
For every ~σ ∈ X, there is some ~σ ′ ∈ V such that (~σ ,~σ ′) ∈ E; and 2) Every deviation cycle in Γ involves
at least two agents.

Proof Sketch. The forward direction follows by observing that if all deviation graphs fail to satisfy at
least one of the two properties, then every deviation graph will either fail to eliminate some ~σ ∈ X
if induced, or will not be inducible by any dynamic taxation scheme. The backward direction can be
established by constructing a dynamic taxation scheme T Γ that induces a deviation graph Γ satisfying
the two properties. Using these properties, it follows that T Γ eliminates X .

To conclude our study of dynamic taxation schemes, we present a characterisation of the A-Nash
implementation problem.3

Theorem 3. Let G be a game and ϒ be an LTL formula. Then ANI(G ,ϒ) 6= /0 if and only if the following
conditions hold:

1. ENI(G ,ϒ) 6= /0;

2. NE¬ϒ(G
000) is eliminable.

Proof. For the forward direction, it follows from the definition of the problem that if ENI(G ,ϒ) = /0,
then ANI(G ,ϒ) = /0. Moreover, it is also clear that if NE¬ϒ(G

000) is not eliminable, then it is impossible
to design a (dynamic) taxation scheme such that only good equilibria remain in the game and hence,
ANI(G ,ϒ) = /0.

For the backward direction, suppose that the two conditions hold and let T be a taxation scheme
that only affects the limiting-average costs incurred by agents under strategy profiles in NE¬ϒ(G

000), and
eliminates this set. Such a taxation scheme is guaranteed to exist by the assumption that condition
(2) holds and because it is known that no good equilibrium is indistinguishable from a bad one. Now
consider a static taxation scheme τ such that ci(s,~α) + τi(s,~α) = ĉ for all i ∈ N , (s,~α) ∈ S × ~Ac,
and some ĉ ≥ maxi∈N c∗i . Combining τ with T gives us a taxation scheme T ∗ such that for each state
q ∈ QT ∗ = QT and (s,~α) ∈S × ~Ac, we have doT ∗(q)(s,~α) = doT (q)(s,~α)+ τ(s,~α). Now, because T
eliminates NE¬ϒ(G

000), and NE(G τ) = NE(G 000), it follows that T ∗ eliminates NE¬ϒ(G
000). Finally, note that

because the satisfaction of an LTL formula on a given run is solely dependent on the run’s trace, it follows
that all good equilibria, i.e., strategy profiles in NEϒ(G

000), are distinguishable from all bad equilibria, so
we have NEϒ(G

000)∩NE(G T ∗) 6= /0.

It is straightforward to see that A-NASH IMPLEMENTATION is 2EXPTIME-hard via a simple reduc-
tion from the problem of checking whether a Nash equilibrium exists in a concurrent game – simply ask
if the formula > can be A-Nash implemented in G 000. However, it is an open question whether a match-
ing upper bound exists and we conjecture that it does not. This problem is difficult primarily for two
reasons. Firstly, it is well documented that Nash equilibria may require infinite memory in games with

3Note that, in general, Proposition 2 cannot be directly applied to Theorem 3, because it is assumed that the set to be
eliminated is finite, whereas NE¬ϒ(G

000) is generally infinite. However, this can be reconciled if some restriction is placed on
the agents’ strategies so that Σ is finite, which is the case in many game-theoretic situations of interest, e.g., in games with
memoryless, or even bounded memory, strategies – both used to model bounded rationality.
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lexicographic ω-regular and mean-payoff objectives [8], and the complexity of deciding whether a Nash
equilibrium even exists in games with our model of preferences has yet to be settled [15]. Secondly,
Theorem 3 and Proposition 2 suggest that unless the strategy space is restricted to a finite set, a taxation
scheme that A-Nash implements a formula may require reasoning over an infinite deviation graph, and
hence require infinite memory. Nevertheless, our characterisation under such restrictions provides the
first step towards understanding this problem in the more general setting.

5 Related Work and Conclusions

This work was motivated by [40], and based on that work, presents four main contributions: the introduc-
tion of static and dynamic taxation schemes as an extension to concurrent games expanding the model
in (one-shot) Boolean games [40, 18, 19]; a study of the complexity of some of the most relevant com-
putational decision problems building on previous work in rational verification [14, 17, 15]; evidence
(formal proof) of the strict advantage of dynamic taxation schemes over static ones, which illustrates the
role of not just observability but also memory to a principal’s ability to (dis)incentivise certain outcomes
[13, 20]; and a full characterisation of the eliminability of sets of strategy profiles under dynamic taxation
schemes and the A-Nash implementation problem.

The incentive design problem has been studied in many different settings, and [35] group existing
approaches broadly into those from the economics, control theory, and machine learning communities.
However, more recent works in this area adopt multi-disciplinary methods such as automated mecha-
nism design [30, 27, 37, 3], which typically focus on the problem of constructing incentive-compatible
mechanisms to optimise a particular objective such as social welfare. Other approaches in this area
reduce mechanism design to a program synthesis problem [29] or a satisfiability problem for quantita-
tive strategy logic formulae [25, 28]. The notion of dynamic incentives has also been investigated in
(multi-agent) learning settings [7, 26, 36, 42, 10]. These works focus solely on adaptively modifying
the rewards for quantitative reward-maximising agents. In contrast, our model of agent utilities more
naturally captures fundamental constraints on the principal’s ability to (dis)incentivise certain outcomes
due to the lexicographic nature of agents’ preferences [4].

Another area closely related to incentives is that of norm design [23]. Norms are often modelled as
the encouragement or prohibition of actions that agents may choose to take by a regulatory agent. The
most closely related works in this area are those of [21, 31, 1], who study the problem of synthesising
dynamic norms in different classes of concurrent games to satisfy temporal logic specifications. Whereas
norms in these frameworks have the ability to disable actions at runtime, our model confers only the
power to incentivise behaviours upon the principal. Finally, other studies model norms with violation
penalties, but differ from our work in how incentives, preferences, and strategies are modelled [6, 5, 9].

In summary, a principal’s ability to align self-interested decision-makers’ interests with higher-order
goals presents an important research challenge for promoting cooperation in multi-agent systems. The
present study highlights the challenges associated with incentive design in the presence of constraints on
the kinds of behaviours that can be elicited, makes progress on the theoretical aspects of this endeav-
our through an analysis of taxation schemes, and suggests several avenues for further work. Promising
directions include extensions of the game model to probabilistic/stochastic or learning settings, finding
optimal complexity upper bounds for the A-Nash implementation problems, and consideration of dif-
ferent formal models of incentives. We expect that this and such further investigations will positively
contribute to our ability to develop game-theoretically aware incentives in multi-agent systems.
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6 Supplementary Material

Proposition 1. There exists a game G and an LTL goal ϒ such that ANI(G ,ϒ) 6= /0, but not if T is
restricted to static taxation schemes.

Proof. Consider the concurrent game G in Figure 2a. Intuitively, both agents desire to always eventually
visit either s1 or s2. Suppose that the principal’s objective is ϒ = G(p↔ q), i.e., they would like the
agents to never visit s2 or s3. Firstly, observe that there is no static taxation scheme which can A-Nash
implement ϒ, as any modification to the costs of the game will not eliminate any Nash equilibria where
the agents visit s2 or s3 a finite number of times. This is due to the prefix-independence of costs in
infinite games with limiting-average payoffs [39]. However, the dynamic taxation scheme depicted in
Figure 2b A-Nash implements ϒ. To see this, observe that for any strategy profile that visits s2 or s3 a
finite number of times, there exists a deviation for some agent to ensure that s2 and s3 are never visited.
Such a deviation will result in all agents i ∈ {1,2} satisfying their goals γi and strictly reducing their
average costs from at least c∗i +1 to some value strictly below this. This constitutes a beneficial deviation
and hence, there is no Nash equilibrium under T that does not satisfy ϒ. Moreover, any strategy profile
~σ that leads to the sequence of states s(ρ(~σ),0 :) = (s0s1)

ω is a Nash equilibrium of G T and hence goal
ϒ is A-Nash implemented by T in this game.

Proposition 2. Let G be a game and X ⊂ Σ be a finite set of strategy profiles in G . Then, X is eliminable
if and only if there exists a finite deviation graph Γ = (V ,E) that satisfies the following properties: 1)
For every ~σ ∈ X, there is some ~σ ′ ∈ V such that (~σ ,~σ ′) ∈ E; and 2) Every deviation cycle in Γ involves
at least two agents.

Proof. For the forward direction, suppose that there is no deviation graph Γ satisfying both properties
(1) and (2) in the statement. Then, for all deviation graphs Γ, either for some ~σ ∈ X , there is no ~σ ′ ∈ V
such that (~σ ,~σ ′) ∈ V , or there is some deviation cycle in Γ involving only one agent. Now consider any
deviation graph Γ = (V ,E), where V = X ∪{~σ ′ | ~σ →i ~σ

′ for some ~σ ∈ X and i∈N }. In the first case,
it is clear that any taxation scheme that induces Γ does not eliminate {~σ} and hence X . In the second case,
no taxation scheme can induce the deviation graph Γ. To see why, suppose for contradiction that some
taxation scheme T induces Γ and let i be the agent for which there is a deviation cycle C = {~σ1, . . . ,~σm}
in Γ involving only agent i. Then, we have ~σ1 �T

i ~σ2 �T
i . . .�T

i ~σm and by transitivity of the preference
relation�T

i , we can conclude that ~σ1 �T
i ~σm. However, by definition of a deviation cycle, ~σ1 and ~σm are

indistinguishable, so agent i will always receive the same utility under both ~σ1 and ~σm, no matter what
taxation scheme is imposed on them and hence, we have a contradiction. From this, we can conclude
that every deviation graph that can be induced by a taxation scheme does not eliminate X and hence, X
is not eliminable, proving this part of the statement.

For the backward direction, assume that there is a deviation graph Γ that satisfies both properties.
Under this assumption, we will construct a dynamic taxation scheme T that eliminates X . To assign the
appropriate costs to different strategy profiles, we will make use of the lengths of deviation paths within
Γ. For every i∈N , let `i denote the length of the longest observed deviation path in Γ that involves only
agent i. Additionally, for all ~σ ∈ V , let di(ρ(~σ)) denote the length of the longest observed deviation path
in Γ that starts from ρ(~σ) and involves only i. The difference between these two quantities will serve as
the basis for how much taxation an agent i will incur for any given strategy profile in V . Observe that
because it is assumed that no deviation cycle involves only one agent, both quantities are well-defined
and finite for all agents and strategy profiles. Then, for a deviation graph Γ and a run ρ , let IN(ρ,Γ) be
the set of agents i∈N for which there is some pair of strategy profiles ~σ ,~σ ′ ∈ V such that we have both
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(~σ ,~σ ′) ∈ ED and ρ = ρ(~σ ′). In other words, IN(ρ,Γ) represents the set of agents who have an initial
deviation from some other strategy profile in V to one that generates the run ρ . With this, we would like
to construct a dynamic taxation scheme such that for any strategy profile ~σ , the following criteria are
satisfied:

• CT
i (ρ(~σ))≥ (`i−di(ρ(~σ))) · (c∗i +1) if i ∈ IN(ρ,Γ);

• CT
i (ρ(~σ)) =Ci(ρ(~σ)) otherwise.

Intuitively, the idea is to ensure that for every edge (~σ ,~σ ′) ∈ E, the agent i ∈N for whom ~σ →i ~σ
′

gets taxed by a significantly higher amount for choosing ~σ compared to when they choose ~σ ′. To see
why it is possible to construct such a taxation scheme, first observe that if ρ 6= ρ ′ for any two runs ρ,ρ ′,
then there is some dynamic taxation scheme that can distinguish between the two by simply tracing out
the two runs up to the first point in which they differ and then branching accordingly. From this point
onwards, the dynamic taxation scheme can then output static taxation schemes, which assign different
limiting average costs to the agents according to the above criteria. Extending this approach to a taxation
scheme that distinguishes between all unique runs generated by elements of V , it follows that there is a
dynamic taxation scheme T that satisfies the two criteria. Consequently, for all (~σ ,~σ ′) ∈ E, it follows
that ~σ ′ �T

i ~σ because ρ(~σ) 6= ρ(~σ ′) by definition of the initial deviation relation→i. Moreover, because
it is assumed that no deviation cycle involves only one agent, T gives rise to a strict total ordering �T

i on
the elements of V for each i ∈N . Finally, by property (1), it holds that for every ~σ ∈ X , some agent
has a beneficial deviation from ~σ to another ~σ ′ ∈ V under T and hence, T eliminates X .



R. Verbrugge (Ed.): Theoretical Aspects of
Rationality and Knowledge 2023 (TARK 2023)
EPTCS 379, 2023, pp. 359–378, doi:10.4204/EPTCS.379.29

© S. Khan
This work is licensed under the
Creative Commons Attribution License.

Metatickles and Death in Damascus

Saira Khan
University of California, Irvine

Irvine, California

The prescriptions of our two most prominent strands of decision theory, evidential and causal, differ
in a general class of problems known as Newcomb problems. In these, evidential decision theory
prescribes choosing a dominated act. Attempts have been made at reconciling the two theories by
relying on additional requirements such as ratification ([13]) or “tickles” ([3]). It has been argued
that such attempts have failed ([18]; [23]). More recently, Huttegger ([11]) has developed a version
of deliberative decision theory that reconciles the prescriptions of the evidentialist and causalist. In
this paper, I extend this framework to problems characterised by decision instability, and show that
it cannot deliver a resolute answer under a plausible specification of the tickle. I prove that there
exists a robust method of determining whether the specification of the tickle matters for all two-state,
two-act problems whose payoff tables exhibit some basic mathematical relationships. One upshot is
that we have a principled way of knowing ex-ante whether a reconciliation of evidential and causal
decision theory is plausible for a wide range of decision problems under this framework. Another
upshot is that the tickle approach needs further work to achieve full reconciliation.

1 Introduction

Decision theory offers a normative framework for determining rational choice. Its primary components
are a set of beliefs (probabilities) over states of the world and a set of valuations (utilities) over the
different outcomes of acts in these states of the world. Two prominent forms of decision theory are
the causalist and the evidentialist approaches. Causal decision theory determines rational action by
evaluating what an agent can expect to bring about by her action. Evidential decision theory determines
rational action by evaluating what evidence an agent’s action provides her with.

The theories prescribe different acts as rational under a class of problems known as Newcomb prob-
lems. It is frequently held that the causalist prescription is the correct one ([26]; [6]; [22]; [18]).1 The
characteristic feature of Newcomb problems is that there is a correlation between state and act such that
the choosing of the act is understood to be good evidence for a state of the world. The result is that
evidentialism prescribes choosing an act which is strictly worse in both states of the world. The eviden-
tialist recognises that though the agent cannot causally bring about a different state of the world, they
deny that causality is important for practical rationality ([1]). Rather, the rational act should be based
on its “news value”. That is, an agent ought to prefer a proposition to another just in case she would
rather learn that proposition over the other. In light of criticism of this position, attempts have been made
– notably by Jeffrey ([13]) and Eells ([3]) – to amend evidential decision theory to better accord with
causalist prescriptions.

In this paper, I focus on a version of reconciliation developed by Huttegger ([11]) and show that it
cannot reconcile evidential and causal decision theory without further, questionable assumptions. Hut-
tegger uses an idea due to Eells called the “tickle” defence: that the evidentialist becomes increasingly
confident that the state of the world is not causally dependent on her act as a result of knowledge of her

1Though some, such as [1], [9] and [10] support the evidentialist conclusion.
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beliefs and desires. However, Huttegger employs the deliberative apparatus developed by Skyrms ([23])
and thus overcomes some objections to the original Eellsian approach.2 Section 2 of this paper expounds
the technical differences between causal and evidential decision theory and briefly outlines two decision
problems: the Newcomb problem and Death in Damascus. Section 3 discusses Eells’ approach to resolv-
ing the difference between the evidentialist and causalist prescriptions and details Huttegger’s proposed
amendment using deliberative dynamics. Huttegger’s approach delivers the (commonly considered) cor-
rect answer for the evidentialist in the Newcomb problem.

Section 4 considers the same framework applied to a class of problems characterised by decision
instability. These are where, as soon as the agent leans toward performing one action, the other looks
preferable. In more technical terms: there is no dominant act (no act which is preferred regardless of
the state of the world) and every act is in principle causally unratifiable (after we have chosen the act we
would prefer to have chosen otherwise). In particular, I consider a decision problem known as Death in
Damascus ([6]). When the payoff table is symmetric, the received view is that both naïve evidentialism
and naïve causalism (without any deliberative dynamics) remain silent on which is the correct act to
perform. When it is asymmetric, the evidentialist is decisive whereas the causalist is trapped in a state of
indecision. A more sophisticated (deliberative) causalist may settle upon choosing an act with probability
slightly less than 0.5. In this paper, we see that Huttegger’s framework, when applied to this problem,
cannot straightforwardly reconcile the evidentialist prescription with the prescription of the causalist
(both sophisticated and naïve).

In Section 5, I offer an original analysis of the deliberative framework to explicate why it is irresolute
in the Death in Damascus problem, and prove some general facts about its irresoluteness given a plausible
version of the dynamical process, which I call the shortest-path independence dynamics. I identify the
existence of what I call the plane of indifference in all two-act, two-state decision problems which exhibit
the basic mathematical structure of either Newcomb or Death in Damascus problems. The key insight is
that the specification of the tickle matters only depending on the positioning of this plane of indifference.
In particular, regardless of the precise operation of the tickle during deliberation – shortest-path or not
– the positioning of the plane in the Newcomb problem renders it the case that deliberation will always
lead us to the same conclusion. This is not so in Death in Damascus and reconciliation of evidential and
causal decision theory here requires more questionable assumptions. Section 6 discusses the status of
reconciliation and the importance of the proof of the indifference plane for future work in deliberative
decision theory. Section 7 concludes an offers a view on the status of the Eellsian project.

2 The decision problems

The canonical form of evidential decision theory is attributable to Jeffrey ([13]). Under his framework,
states of the world, acts and outcomes are all propositions of the same kind, forming a Boolean algebra.
Probabilities and desirabilities may be applied to any of these propositions. Call the Boolean closure of
the set of acts, states and outcomes, the decision-relevant propositions. The agent’s conditional expected
utility of an act is calculated from her probabilities and desirabilities for maximally specific decision-
relevant propositions. Formally, the evidential decision theorist prescribes performing the act, A, that
maximises the following conditional expected utility formula, where D denotes desirability, P denotes
probability, and S, the state of the world.

2In particular, the assumption that the agent access to a proposition which fully describes her beliefs and desires. Under
Huttegger’s approach, this is not assumed but rather reached through a process of deliberation.



S. Khan 361

EUevid(A) = ∑
i

D(Si&A)P(Si|A)

There are multiple versions of causal decision theory.3 For simplicity, I present Lewis’ ([18]) account.
Like the traditional decision-theoretic framework of Savage ([21]), states, acts and outcomes are not
propositions of the same Boolean algebra but are separate entities. Probabilities attach to states of the
world, and desirabilities or utilities, to outcomes. Lewis builds on the Savage framework but introduces
dependency hypotheses which determine the appropriate partition of the state space. A dependency
hypothesis is defined as the maximally specific proposition about how outcomes do, and do not, causally
depend on the agent’s present acts. Formally, the causal decision theorist prescribes performing the act,
A, that maximises the following expected utility formula relative to the partition given by the dependency
hypothesis.4

EUcaus(A) = ∑
i

D(Si&A)P(Si)

I now present two decision problems. One which has caused particular worry for the evidentialist,
and one which has caused worry for both theories, though it is more frequently levied against the causalist
([5]). The first, Newcomb’s problem, can be described as follows ([19]). Tomas is in a room with two
boxes, one of which is opaque and one of which is transparent. Under the transparent box lies $1,000.
Under the opaque box, there is either nothing or $1,000,000 and Tomas does not know which. He is
offered the option to take either only the opaque box, or both the transparent one and the opaque one.
The catch is that there is a predictor who, if she predicts Tomas chooses only the opaque box puts
$1,000,000 under it and, if she predicts he chooses both boxes, puts nothing under it. Tomas believes the
predictor is reliable. The payoff table is illustrated Table 1.

Box empty Box not empty
Take opaque box 0 1,000,000
Take both boxes 1,000 1,001,000

Table 1: Newcomb’s Problem

In this decision problem, the causalist recommends taking both boxes, as it can be seen that this act
strictly dominates taking only the opaque box. That is, it has higher expected utility under both states of
the world. The naïve evidentialist, however, recommends taking only the opaque box, as choosing only
the opaque box is good evidence that the predictor put $1,000,000 there. In this decision problem, the
evidentialist seems to prescribe the wrong answer and Tomas loses out on a guaranteed $1,000.

The Death in Damascus problem is as follows ([6]). Death works from an appointment book which
specifies a time and a place. If and only if Tereza happens to be in the time and place when Death is
there, she dies. Suppose Tereza is in Damascus and she accidentally bumps into Death. He tells her that

3Most notably, the subjunctive accounts of Stalnaker ([26]) and Gibbard and Harper ([6]), as well as the non-subjunctive
accounts of Skyrms ([22]) and Lewis ([18]).

4The merit of the evidential approach is that it is partition invariant and it is much less sensitive to the formal specification
of the decision problem. Indeed, it is a more general framework that can be reduced to Savage’s decision theory under correct
specification of the state space. In comparison, in many causal decision theories, the decision problem must be specified in such
a way that each state-act pair is guaranteed to lead to a unique outcome; there is state-act independence; and the desirabilities
of the outcomes are not influenced by the state-act pair which eventuated them. None of these restrictions are required in the
evidential framework. See Eells ([3]) for discussion.
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he is coming for her tomorrow. Her options are either to stay where she is or to flee to Aleppo. The
catch is that Death is a reliable predictor of where she will be, so as soon as Tereza believes it is better
for her to flee, this constitutes good evidence that Death’s appointment for her is in Aleppo and it seems
as though she should stay. Analogously, however, if she decides to stay, this constitutes good evidence
that Death knows that she stays and so she would be better off fleeing. The problem is therefore one
of decision instability. The moment Tereza becomes confident in one option, the other appears more
attractive. Here, I consider an asymmetric problem where the cost of fleeing is 1 util. The payoff table is
given in Table 2, where we assign 10 utils to Tereza’s survival.5

Death in Damascus Death in Aleppo
Stay in Damascus 0 10
Flee to Aleppo 9 -1

Table 2: Asymmetric Death in Damascus Problem

In this decision problem, the naïve evidentialist believes that, as Tereza’s act is good evidence of the
state of the world no matter what she chooses, she ought to stay in Damascus, since she should not pay
the extra 1 util to flee to Aleppo. The causalist, however, believes that staying is irrational as it will put the
agent in a position from which fleeing looks superior. She is therefore in a state of decision instability.
Gibbard and Harper ([6]) argue that this is the correct answer as neither choice is ratifiable. Other
forms of causal decision theory, for example, the deliberative framework of Joyce ([15]) or Arntzenius
([2]), prescribe the mixed act of fleeing with probability 0.474.6 In Skyrms’ and Huttegger’s deliberative
dynamics, the agent only has access to pure acts and is therefore in a state of indecision when deliberation
assigns an act probability of less than 1. In Joyce’s framework, the mixed act is a choice for the agent
should she have access to a random chance device she may use to pick her final, pure act. That is, a
chance device which will determine that she flees with probability 0.474. One might ask whether the
evidentialist should be reconciled with the naïve causalist or deliberative causalist. If we sought similar
instability as the naïve causalist, it will be clear from the analysis which follows that this will not be
achieved: in many cases the deliberative evidentialist is decided. So I ask whether reconciliation with
the Joycean causalist is possible on Huttegger’s model – whether evidential decision theory can prescribe
the mixed act of fleeing with probability 0.474. First, we must explicate the framework.

5While only the asymmetric case is presented in this paper, for completeness, the symmetric case was also analysed. This
exhibits multiple lines of equilibria on the faces of the dynamical cube and therefore constitutes greater instability on the
boundary than the asymmetric case. However, some would deny that indecision in such a circumstance constitutes a flaw in the
theory. See, for example, [7].

6This is derived using Joyce’s ([15]) framework for Murder Lesion applied to Death in Damascus assuming conditional
probabilities P(S2|A2) = P(S1|A1) = 0.99. Under this framework, one’s unconditional probabilities are revised in light of the
expected utility calculation of an act in conjunction with the probabilistic correlation between state and act. More precisely,
let α be a real number, Pt+1(S2) = Pt(S2|EUt(A2) = α) 6= Pt(S2) when α 6= 0, so the probability of a state of the world
is updated based on its probability conditional upon the expected utility of an act. Further, let x and y be real numbers, if
Pt(A2) < 1 and x > y, then Pt(A2|EUt(A2) = x & EUt(∼ A2) = y) > Pt(A2), so the choice probability of an act is updated
based on its expected utility. The iterative process of updating one’s choice probability will continue in this fashion until
Pt(A2) = Pt+1(A2) = Pt(A2|EUt(A2)), so information about its expected utility does not change its choice probability. As in
Skyrms’ ([23]) deliberational framework, this occurs when the expected utility of the two acts are equal.



S. Khan 363

3 A brief history of the metatickle approach and Huttegger’s dynamics

A prominent evidentialist attempt to prescribe the causalist action in the Newcomb problems is at-
tributable to Eells ([3]; [4]). This has been referred to as the “tickle” or “metatickle” defence ([18];
[23]).7 Eells argues that the mistake being made by the naïve evidentialist in the Newcomb problem is
the inference from some underlying common cause of both state and act, to a dependence of the state
on the act. Eells argues that the only way in which the underlying cause could affect an agent’s act is
through the agent’s beliefs and desires since, under our decision theories, these are the entities that de-
termine action.8 This implies that if the agent had full knowledge of his beliefs and desires, knowledge
of the presence or absence of the common cause would be irrelevant to his act.

The intuition is clear with a simple example. Consider a decision problem with the same structure
as the Newcomb problem but is instead a decision about whether or not to smoke cigarettes. Suppose
that there is a genetic cause, C, that results in both lung cancer and a proclivity to enjoy cigarettes but
smoking does not itself result in lung cancer. It is correlated with lung cancer but there is no causal
state-act dependence. Causal decision theory recognises this independence and thus prescribes smoking
insofar as it is enjoyable to the agent. The naïve evidentialist prescribes abstaining as smoking is good
evidence for the presence of the gene which determines lung cancer. The Eellsian evidential decision
theorist, however, believes that the only way the common cause can affect the agent’s acts is through
his beliefs and desires. Let the proposition which describes his beliefs and desires be denoted T for
metatickle. We have:

P(A|T &C) = P(A|T &∼C)

If an agent has full knowledge of her beliefs and desires, P(T ) = 1. So in the presence of the metatickle,

P(A|C) = P(A| ∼C)

By symmetry of probabilistic independence,

P(C|A) = P(C| ∼ A)

Since the cause is not probabilistically dependent on the act in the presence of the metatickle, neither is
the state of the world. This means

P(S|A&T ) = P(S|T )

Eells believed that the proposition T was a proposition available to an agent ([3]; [4]). Conditional
upon T , state and act are independent, and if this is the case, evidential decision theory will make the
correct prescription: to smoke. Knowledge of the beliefs and desires of the kind caused by the common
cause screens off what was previously thought to be evidence about the state of the world: the act. Anal-
ogous reasoning will lead the Eellsian evidential decision theorist to two-box in Newcomb’s problem;

7It is so named for the following thought experiment. Suppose the agent feels a tickle in his left pinkie just in case the
predictor has put $1,000,000 in the opaque box. Then, even though the presence of money depends probabilistically on the
agent’s act, the tickle is sufficient to screen off the relevance of that act to the state of the world – the tickle tells the agent all
he needs to know. A tickle may not always be available but, according to Eells, a “metatickle” is. This is a proposition which
describes the agent’s beliefs and desires.

8Eells suggests the common cause could not affect an agent’s act by changing his decision rule. In particular “the agent be-
lieves that the causal influence of the common cause is sufficiently insignificant as to be irrelevant to the eventual determination
of which act is correct in light of his beliefs and desires... This is because he believes that the causal influence of whatever is
causally responsible for his rationality – his training, genetic make-up, and so on – will be overwhelming” ([3, 147]).
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the act of two-boxing is irrelevant to the $1,000,000 being there or not, and one should therefore choose
the strictly dominant act.9 The reasoning behind the metatickle approach is diagrammed in Figure 1.

Figure 1: Diagrammatic depiction of Eells’ metatickle defence where the causal connection between act
and state is erroneously drawn on the basis of the common cause

For both Eells and Jeffrey ([12]), it is the agent’s ability to anticipate her own choices that screens off
the evidential import of her acts for states of the world.10 However, unlike Eells, Jeffrey does not make
reference to common causes. For Jeffrey, deliberation is what allows the sophisticated evidentialist to
screen off the correlation between act and state which caused her to disagree with the causalist. He states
“it is my credences and desirabilities at the end of deliberation that correspond to the preferences in the
light of which I act, i.e., it is my final credence and desirability functions [...] not the initial ones [...] that
underlie my choice” ([12, 486]). The idea is that the agent should not choose to maximise news value
as she now sees it, but as she now expects herself to estimate it after having made the decision. This is
known as “ratificationism”. However, Huttegger believes that both Eells and Jeffrey did not adequately
specify how the agent comes to fully know her beliefs and desires and achieve this screening off ([11]).11

To fill this lacuna, he first turns to the deliberational dynamics of Skyrms ([23]).
Skyrms models a deliberational process where, as an agent deliberates about which act to choose,

this is incorporated into her up-to-date probabilities and desirabilities. The agent has some information
at the start of deliberation upon which she can assess expected utility but the deliberation process itself
generates information that causes her to recalculate her expected utility. Suppose we assign probabilities
to acts that represent the agent’s belief that she will choose that particular act at the end of deliberation.
Since states and acts are correlated, act probabilities provide evidence about states of the world which
the agent can use to update her expected utility. Deliberation then pushes the agent in the direction of the
act that has the higher expected utility in his current assessment. In particular, the direction of his choice
probability of choosing both boxes, denoted P(A2), is proportional to the difference in expected utility
so that we have:

dP(A2)
dt

∝ EU(A2)−EU(A1)

And

9See also Reichenbach’s principle of screening off ([20]).
10Indeed, Skyrms ([24, 74]) refers to Jeffrey’s idea as a “hypothetical version of the metatickle defense”.
11See also [18]; [1]; [10]; [14]; [23]; [24] for criticisms of the metatickle approach.
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dP(A2)
dt

=


positive if EU(A2)> EU(A1)
negative if EU(A2)< EU(A1)
0 if EU(A2) = EU(A1)

We will refer to this as the “adaptive dynamics”.12. It is assumed, in both Skyrms’ and Huttegger’s
frameworks, that the adaptive dynamics operates continuously, though others, such as Eells [4] have de-
veloped discontinuous approaches. Since this paper is engaging with Huttegger’s reconciliation project,
I will assume a continuous adaptive dynamics. For Skyrms, the updating of one’s choice probability
continues until such a time as the agent reaches probability 1 of performing a certain act or the agent
reaches a mixed equilibrium where there is no change in her choice probabilities ( dP(A2)

dt = 0). The basic
intuition capturing the metatickle is that, if Tomas leans toward only taking the one box, the probability
of the $1,000,000 being there increases, and so he begins to believe that choosing both boxes is better.
Let S2 denote the presence of the $1,000,000. Formally, as P(A2) approaches 0 or 1, the conditional
probabilities P(S2|A1) and P(S2|A2) approach 1 and 0, respectively. The value of P(A2) where the
expected utility of A2 and the expected utility of A1 are equal is where deliberation stops, and this is
Tomas’ final probability of two-boxing. On Skyrms’ model this does not in fact end in a reconciliation
of evidential and causal decision theory. Supposing Tomas is an evidentialist and begins on the fence, he
ends deliberation most probably one-boxing, but also attaches some positive probability to two-boxing.

To this, Eells ([4]) introduces a model called “continual conditional expected utility maximization”
which embraces Skyrms’ idea that deliberation generates information upon which we should update our
expected utilities but also introduces the notion that agents may face an urgency to act. Thus, depending
on whether one wants to reach a decision quickly, one might eschew the states of indecision that Skyrms
claims the evidentialist stuck in. Eells believes this reconciles the prescriptions of evidential and causal
decision theory on Newcomb’s problem, resulting in two-boxing. However, as Huttegger ([11]) rightly
points out, this is a large deviation from traditional evidential decision theory. Whether an agent rushes
to a decision or procrastinates are features of an agent not well captured by her preferences. Therefore,
the proposed solution arguably fails.

Huttegger takes a different approach to reconciliation in light on Skyrms’ findings. His amendment
to Skyrms’ model is a relaxation of the assumption that as P(A2) approaches 0 or 1, the conditional
probabilities P(S2|A1) and P(S2|A2) approach 1 and 0. That is, conditional probabilities of the states
given acts are not functions of our choice probabilities. Indeed, in the original Eellsian account, there
is nothing over and above one’s informed beliefs and desires upon which the agent’s decision is based;
convergence towards one or the other act is not required for the appropriate screening off. Instead, condi-
tional probabilities change by a separate “independence dynamics” as a function of time, or stages, in the
deliberational process, moving closer to one another over the course of deliberation.13 The independence

12Skyrms also refers to this informally as a dynamical rule which “seeks the good” ([25, 30]). He describes such rules as
“qualitatively Bayesian” in the sense that the dynamical rule should reflect the agent’s knowledge that she is an expected utility
maximiser and the status of her present expected utilities as an expectation of her final utilities. Informally, such rules state that
act probabilities should increase if the act has utility greater than the status quo, and that the probability of all acts with utilities
greater than the status quo should increase. Frequently used dynamical rules that meet these conditions are the replicator
dynamics or Nash dynamics, and the dynamics of Brown and von Neumann ([25]). Formally, dP(A)

dt =
cov(A)−P(A)∑ j cov(A) j

k+∑ j cov(A) j

and dP(A)
dt = cov(A)2−P(A)∑ j cov(A)2

j respectively, where the constant k represents how quickly the agent adjusts her act
probabilities.

13One may argue against deliberation generating such information for the agent. However, for the purpose of my current
analysis, I leave aside these issues. See [11] for a discussion.
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dynamics is formally defined as follows.14

dP(S2|A1)
dt

=

{
positive if P(S2|A1)> P(S2|A2)
negative if P(S2|A1)< P(S2|A2)

Likewise,

dP(S2|A2)
dt

=

{
positive if P(S2|A2)> P(S2|A1)
negative if P(S2|A2)< P(S2|A1)

There are also no reappearances of correlations, so

d[P(S2|A2)−P(S2|A1)]
dt

= 0 if P(S2|A2) = P(S2|A1)

Under this dynamical process, evidential deliberation converges to two-boxing since the choice prob-
ability of two-boxing is governed by the adaptive dynamics when state and act are independent. It is
precisely the introduction of the independence dynamics that brings us to this reconciliation. If the
evidentialist does not believe her act is evidence for a state of the world, she in effect uses the same
probabilities the causalist uses.

Furthermore, while in Skyrms’ work, the end point of deliberation is where the choice probability
of an act is 1 or dP(A2)

dt = 0, this is not the case under Huttegger’s framework.15 Rather, deliberation,
in most cases, will continue until dP(A2)

dt = 0 and the agent reaches state-act independence. I say “in
most cases” since Huttegger does not assume deliberation always leads to full state-act independence.
This is because deliberation can sometimes fail provide all the information we need, for example, if the
agent believes that the predictor in Newcomb’s problem knows more about how he makes decisions than
he knows about himself. If this is so, there are hidden factors influencing his choice which he cannot
access via deliberation. Nonetheless, Huttegger states that situations where agents’ acts are determined
solely on the basis of their desires, beliefs and decision rule are the “most natural setting for decision
theory” ([11, 22]). As such, I will be considering those cases in which the agent’s deliberative process is
sufficient to screen off state-act correlations.

In Huttegger’s framework, the reason that the independence dynamics can continue after the adap-
tive dynamics concludes is because the operation of the independence dynamics is independent of the
adaptive dynamics: it is not a function of the agent’s choice probabilities. It is important to note that, on
this interpretation, the relative strength of the independence and adaptive dynamics becomes relevant to
where the agent ends deliberation. Huttegger’s work finds that the exact specification of the operation
of the independence dynamics relative to the adaptive dynamics does not matter for Eells’ reconciliation
project on Newcomb’s problem. In this paper, I show that it does matter for other decision problems on
which evidential and causal decision theory diverge.

14If P(A1) = 0, then P(S2|A1) is not well defined. Huttegger states this obstacle can be overcome by requiring that dynamics
of P(S2|A1) is continuous with the dynamics for arbitrarily close states that have P(A1)> 0.

15In Skyrms ([23]), that the adaptive dynamics continues until the probability of an act equals 1, and does not exceed 1, is
guaranteed by the fact that this is when deliberation ends. This is not the case under Huttegger’s framework; deliberation does
not end when the probability of an act reaches 1. Therefore, as stated here, it is possible that P(A2) exceeds 1 since the rule
that the change in choice probability is proportional to the difference in expected utility does not ensure that P(A2) remains
within the probability simplex. As such, we stipulate that the adaptive dynamic rules which are permissible under this general
formulation are those which effectively slow as they reach the boundary, therefore remaining within the probability simplex
over the course of deliberation.
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I will not reconstruct Huttegger’s work on Newcomb’s problem here but rather apply his same frame-
work to Death in Damascus. I begin by determining the dynamics on the boundaries and discuss the more
complicated interior dynamics in Sections 5 and 6.

4 Death in Damascus for the deliberative evidentialist

In the language of metatickles, both Tereza’s act of staying or fleeing and Death’s appointment in Dam-
ascus or Aleppo are effects of a common cause; that is, the cognitive architecture of the agent upon which
Death bases his appointment, sometimes referred to as the agent’s “type” ([16]). Thus, conditional on
the metatickle, T , which fully captures Tereza’s beliefs and desires, states and acts are independent, and
knowledge of the beliefs and desires of the kind caused by the common cause screens off the evidence
that her choice provided for Death’s location. Without making reference to common causes, but noting
that deliberation can screen off state-act correlations, Huttegger introduces the independence dynamics,
which, along with the adaptive dynamics describes the changes in an agent’s choice probability over the
course of her deliberation.

Under Huttegger’s framework, P(S2|A2) and P(S2|A1) may vary independently so the deliberational
space is represented in three dimensions; one being P(S2|A1); the other P(S2|A2); and the final being
Tereza’s probability of fleeing, P(A2), all of which change during the deliberative process. The de-
liberational space is depicted in Figure 2. Note that the cube does not represent a phase diagram as the
magnitude of the movement in any particular direction has not been specified. It should rather be thought
of as a qualitative tool by which we may analyse where deliberation leads us.

Figure 2: Deliberative evidentialist reasoning under Huttegger’s framework

Recall the conditional expected utility formulae of evidential decision theory. That is,

EUevid(A1) = D(S1&A1)P(S1|A1)+D(S2&A1)P(S2|A1)

EUevid(A2) = D(S1&A2)P(S1|A2)+D(S2&A2)P(S2|A2)

Given these formulae and the logical fact that P(S1|A1)+P(S2|A1) = 1 and P(S1|A2)+P(S2|A2) =
1 (one or other state of the world must obtain given our act), we may discern the movement of P(A2)
on the faces of the cube by calculating the expected utility of both acts. First, let us address the front
face, indicated in green, where P(S2|A1) = 1. The top edge is where P(S2|A2) = 1. Here we have
EU(A1) = 10 and EU(A2) =−1. Since EU(A2)<EU(A1), by the adaptive dynamics, P(A2) decreases.
Similarly, on the bottom edge of the front face, where P(S2|A2) = 0, EU(A2)< EU(A1).
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It can be verified that all points in between the edges also lead to a final choice probability of P(A2) =
0 on the front face of the cube. This is intuitive as, if P(S2|A1) = 1, Tereza can outsmart Death. That is,
if the probability of Death being in Aleppo given that Tereza stays in Damascus is 1, she should surely
stay in Damascus and not pay the extra 1 util to flee.

Now consider the back face, indicated in yellow, where P(S2|A1) = 0. The top edge is where
P(S2|A2) = 1. Here we have EU(A1) = 0 and EU(A2) = −1. Again P(A2) decreases. However,
on the bottom edge of the back face, the dynamics look different. Here, P(S2|A2) = 0, so EU(A1) = 0
and EU(A2) = 9. Since EU(A2) > EU(A1), P(A2) increases. The exact point at which Tereza prefers
fleeing over staying will be explored in the next section using what I call the plane of indifference.

However, we have not yet considered the operation of the independence dynamics on the left and right
faces, indicated in pink. This leads us to what Huttegger calls the Eells-Jeffrey manifold, represented
by the grey diagonal face in the cube, and consists of all points where P(S2|A2) = P(S2) = P(S2|A1),
in other words, where there is state-act independence. Movement toward the Eells-Jeffrey manifold is
given by the evolving metatickle which screens off states from acts during an agent’s deliberation. If
our metatickle is sufficient to reach full state-act independence, we must determine the movement on the
manifold itself.

Figure 3: Evidentialist reasoning on the Eells-Jeffrey manifold

All areas above the bold blue line move to P(A2) = 0 and all areas below it move to P(A2) = 1 by
the adaptive dynamics. The bold blue line is where P(S2|A2) = P(S2|A1) = 0.45. Here, EU(A1) =
EU(A2) = 4.5 so there is no movement in P(A2) as per our specification of the adaptive dynamics. I
have not yet discussed the dynamical movement in much of the interior of the cube, which is the subject
of the next section, but first it is worth noting the following facts.

Here, we have multiple equilibria represented by the bold blue line. All of these choice probabilities
of P(A2) render the expected utility of staying equal to that of fleeing, despite the fact that the uncondi-
tional probability of Death being in Damascus is 0.45.16 However, this is also the case for the deliberative
causalist. Though the mixed act of fleeing with probability 0.474 is the end point of deliberation, at this
point, all other acts have equal expected utility so all are equally permissible ([15]). Here, one might
inquire what then renders the mixed act the correct answer. The reason is that this is the uniquely ratifi-
able act (should one have the option to execute it using a chance device that represents this probability
distribution). That is, it is the only act where, upon knowledge that one has chosen it, one would not

16It should be noted that such lines of equilibria in general exhibit structural instability. That is, they are sensitive to changes
in the dynamical rule ([25]
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prefer otherwise.17

In Sections 5 and 6, I show that the prescription of the mixed act under Huttegger’s framework hinges
upon two further conditions: (i) the independence dynamics does not take the “shortest path” to state-act
independence, and (ii) the relative strength of the adaptive and independence dynamics must be such that
they reach the Eells-Jeffrey manifold exactly where P(A2) = 0.474. Since these conditions imply that
deliberation must proceed via a very specific route to the precise choice probability, it will not deliver
reconciliation under many plausible specifications of the deliberative process. First, I consider what
happens under one plausible specification of the independence dynamics.

5 Shortest-path independence and the plane of indifference

In this section, I offer an original analysis of the Huttegger’s deliberative framework given a plausible
version of the dynamical process, which I call the shortest-path independence dynamics. I prove the
existence of what I call the plane of indifference which determines why the framework is irresolute in
the case of Death in Damascus and not in Newcomb’s problem. I then show that, under Huttegger’s
framework, this plane of indifference exists in all two-act, two-state decision problems which exhibit
the basic mathematical structure of either Newcomb or decision instability problems. The upshot is that
the precise specification of the independence dynamics matters for reconciliation only depending on the
positioning of this plane of indifference. This provides a principled way of knowing ex-ante whether a
reconciliation of evidential and causal decision theory is plausible for a wide range of decision problems
under this framework.

Informally, the independence dynamics drives the agent’s conditional probabilities toward one an-
other over time, though the exact way in which this occurs is left open in Huttegger’s work. One way the
independence dynamics could operate is by adjusting one starting conditional probability to match the
other. For example, if Tereza’s initial value of P(S2|A2) is 0.99 and her initial value of P(S2|A1) is 0.01,
she adjusts up the value of P(S2|A1) until it also equals 0.99. However, this does not seem particularly
rational. Given the description of the decision problem, both of her initial conditional probabilities reflect
the Death’s reliability in predicting her action, so there appears no reason to count one rather than the
other as more viable for informing her unconditional credence in the state of the world.

A more plausible version of the independence dynamics would be one that concludes at the average
across her two initial conditional probabilities. Since a movement in the direction of the manifold for one
conditional probability then implies an equal movement in the direction of the manifold for the other,
the independence dynamics decrees – absent its interaction with the adaptive dynamics – that Tereza’s
conditional probabilities move in the straight line that captures the shortest path to the manifold. This
is illustrated in Figure 4, which represents a slice through the dynamical cube and the diagonal line
represents the manifold.18

To see what this means for our deliberative process, first we must return to an important feature of the
dynamical cube previously overlooked. In our earlier illustration, the line of equilibria on the manifold
represented a situation where there was no movement prescribed by the adaptive dynamics; any choice
probability of P(A2) was acceptable since all mixtures of acts had equal expected utility. Moving off the

17This is also supported by consideration of the fact that the mixed act would constitute the Nash equilibrium of a normal
form game with Death and Tereza as players. For discussion of the connection between ratifiability in deliberative decision
theory and Nash equilibria in game theory, see [25]; [8]; [17]; and [27].

18Since the analysis is qualitative, this may extend to sufficiently similar independence dynamics, though this has not yet
been considered.
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Figure 4: Shortest path to Eells-Jeffrey manifold

Eells-Jeffrey manifold, we see that this is not only a feature existing at state-act independence but, as I
will show, there exists a whole plane on which the adaptive dynamics prescribes no change in P(A2).
This occurs where the two conditional probabilities of state given act, P(S2|A1) and P(S2|A2) sum to
0.9. The fact that this is a plane of the cube follows from the fact that two axes of the 3-dimensional
space represent these conditional probabilities. The fact that the adaptive dynamics decrees no change in
choice probability on this plane can be seen from the following.

Let P(S2|A1)+P(S2|A2) = 0.9 and note it is true by definition that P(S1|A1) = 1−P(S2|A1) and
P(S1|A2) = 1−P(S2|A2). Then

EU(A1) = 0P(S1|A1)+10P(S2|A1)

= 10P(S2|A1)

And

EU(A2) = 9P(S1|A2)−1P(S2|A2)

= 10P(S2|A1)

Since the expected utility of both acts are equal as defined in terms of P(S2|A1), the adaptive dynam-
ics prescribes no movement on the plane given by P(S2|A1)+P(S2|A2) = 0.9. Figure 5 illustrates what
I call the plane of indifference.

The key feature of this plane is that if one begins deliberation on the plane, since P(A2) does not
change, one simply moves by the independence dynamics toward the line of equilibria and ends deliber-
ation with the same choice probability as she began with. Of utmost interest is what happens when we
begin deliberation either below or above the plane of indifference. It turns out that if Tereza begins at any
point below the plane, where P(S2|A1)+P(S2|A2)< 0.9, Tereza’s deliberation concludes that she should
flee to Aleppo with probability 1. If she begins above the plane, where P(S2|A1) +P(S2|A2) > 0.9,
Tereza concludes she must stay in Damascus, and flee to Aleppo with probability 0.

For example, consider P(S2|A1)+P(S2|A2) = 1. Here, we have a 2-dimensional plane which sits
above the plane of indifference. All initial choice probabilities will lead Tereza to staying. To see
this, note that since we have imposed the constraint P(S2|A2) + P(S2|A1) = 1, and by logical fact,
P(S1|A1)+P(S2|A1) = 1 and P(S1|A2)+P(S2|A2) = 1, our constraint implies P(S1|A2)+P(S1|A1) =
1. Given these formulae, we may calculate our expected utilities. First, consider the top edge of the plane,
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Figure 5: The plane of indifference

where P(S2|A2) = 1. We see that EU(A1) = 0 and EU(A2) = −1. Since EU(A2) < EU(A1), by the
adaptive dynamics, P(A2) must reduce. Similarly, on the bottom edge of the plane where P(S2|A2) = 0,
EU(A2) < EU(A1). Since P(S2|A2)+P(S2|A1) = 1, shortest-path independence dynamics drives her
unconditional probability P(S2) to 0.5. In the middle of the plane on its intersection with the Eells-
Jeffrey manifold, EU(A1) = 5 and EU(A2) = 4 so, again, EU(A2)< EU(A1). As a result, deliberation
moves Tereza toward staying in Damascus until we reach a stable equilibrium point where P(A2) = 0
and P(S2|A2) = P(S2) = P(S2|A1) = 0.5. Analogous reasoning applies when we begin on the other side
of the plane and P(S2|A1)+P(S2|A2)< 0.9.

In what follows, I will prove that the adaptive dynamics is governed by whether we are below or
above the plane of indifference for a general payoff table representing a wide range of decision instability
problems. Let a denote the utility assigned to survival and b the utility assigned to death. Since we
consider an asymmetric payoff table, let c denote the cost of fleeing. Our payoff table represents a
general version of a wide range of asymmetric decision instability problems where a > b and c≤ a−b.
Other problems with a similar structure are the Murder Lesion problem and the Psychopath Button ([5];
[2]; [15]).

S1 S2
A1 b a
A2 a - c b - c

Table 3: Generalised payoff table for asymmetric decision instability problem

The plane of indifference can be defined in terms of the utilities in the payoff table. Recall that the
adaptive dynamics prescribes no movement in P(A2) when EU(A1) = EU(A2). This is when

bP(S1|A1)+aP(S2|A1) = (a− c)P(S1|A2)+(b− c)P(S2|A2)

By substitution and rearranging, we get

P(S2|A1)+P(S2|A2) =
a−b− c

a−b
We must prove that the sum is defined and that it is greater than or equal to 0 and less than or equal

to 2 in order for it to appropriately represent an agent’s conditional probabilities. First, by definition of
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the payoff table a > b, so the denominator is positive and the expression is defined. Second, a−b−c
a−b ≥ 0

entails that the numerator is also positive. Note that since a > b, this will be satisfied as long as c≤ a−b.
Of course, this is true from the definition of the asymmetric decision instability problem. If the cost
of fleeing was greater than the difference between survival and death, we would not be in a case of
asymmetric Death in Damascus as it would never be preferable to flee. Finally, a−b−c

a−b ≤ 2 = a−b−c≤
2(a−b) =−c≤ a−b. This is satisfied by definition of the payoff table again, as c is positive and a > b
so the left hand side is negative whilst the right is positive.

From this equation for the plane of indifference, we can see that as the cost of fleeing increases, the
right hand side of the equation reduces, meaning the plane of indifference will move downwards in the
diagonal space of the dynamical cube. This decreases the area of the cube where Tereza’s deliberation
leads her to flee. In other words, the greater the cost of fleeing, the more sure Tereza must be that Death
is in Damascus than that he is in Aleppo in order that rationality decree she purchases the ticket to flee.19

Now that we have proved the existence of an indifference plane, we can demonstrate how the adaptive
dynamics will operate either side of it in a general setting.

Since a−b is positive (the utility of living exceeds that of dying) we can easily replace our equalities
in the above existence proof with inequalities. The direction of the inequality does not change throughout
the proof. It follows that:

P(S2|A1)+P(S2|A2)>
a−b− c

a−b
⇐⇒ EU(A1)> EU(A2)

P(S2|A1)+P(S2|A2)<
a−b− c

a−b
⇐⇒ EU(A1)< EU(A2)

This means that if the agent begins deliberation above the plane, she will end deliberation with
P(A2) = 0 and if she begins below it, she will end deliberation with P(A2) = 1.

Here, one might ask whether her dynamical deliberation could cross over the plane. In principle, it
could. However, this would be to violate the plausible stipulation we have made that the ideal deliberator
approaches the Eells-Jeffrey manifold via the shortest-path independence dynamics. By definition of
how I have specified the shortest-path dynamics, the path toward the manifold is perpendicular to the
manifold. This can be seen in Figure 4. We can also prove that the indifference plane is perpendicular to
the manifold by showing that the dot product of the normal vectors of both planes is 0. Since the normal
vector of a plane is perpendicular to it, it is sufficient to show that the normal vectors are perpendicular
to each other in order to show that the planes are perpendicular. The plane of indifference is given by
P(S2|A2)+P(S2|A1) = a−b−c

a−b and the Eells-Jeffrey manifold is given by P(S2|A2)−P(S2|A1) = 0. The
normal vectors are therefore A = 〈1,1〉 and B = 〈1,−1〉. The dot product is thus A ·B = 0. The planes
are therefore perpendicular and this will hold for any value of a−b−c

a−b .
It is clear, therefore, that the shortest-path dynamics decrees dynamical adjustments of conditional

probabilities that run parallel to the plane of indifference and do not cross it. Given this feature, one’s
initial starting point entirely determines the ending point of deliberation. This is true of more general
cases than the one considered here, as long as the payoff table bears the same mathematical relationship to
the one presented above, where a > b and c≤ a−b, and raises important questions for the reconciliation
of causal and evidential decision theory for problems of decision instability in Huttegger’s deliberative
framework.

19If c = 0, we are in a symmetric decision instability problem where the plane of indifference intersects the Eells-Jeffrey
manifold at P(S2) = 0.5.
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Now let us consider why this problem does not arise in Newcomb’s problem. In short, the reason is
that the structure of the payoff table renders the plane of indifference parallel to the Eells-Jeffrey mani-
fold. This means that, above or below the plane, shortest-path independence dynamics will necessarily
pass through it to the Eells-Jeffrey manifold where adaptive dynamics dictates that Tomas takes both
boxes. Consider the following generalised payoff table where a > b and c≤ a−b. Other problems with
a similar structure are the Cholesterol problem, Smoking problem, and Solomon’s problem ([22]; [6];
[3]).

S1 S2
A1 b a
A2 b + c a + c

Table 4: Generalised payoff table for Newcomb’s Problem

As above, the plane of indifference is found where EU(A1) = EU(A2). This is when

bP(S1|A1)+aP(S2|A1) = (b+ c)P(S1|A2)+(a+ c)P(S2|A2)

By substituion and rearranging, we get

P(S2|A1)−P(S2|A2) =
c

a−b
We must prove that the difference is defined and that it lies between -1 and 1 inclusive in order for

it to appropriately represent an agent’s conditional probabilities. First, by definition of the payoff table
a > b, so the denominator is positive and the expression is defined. Second, −1≤ c

a−b = b−a≤ c. This
is satisfied by definition of the Newcomb payoff table, since if c was strictly less than b− a, c would
be negative, and there would be no benefit to two-boxing. Finally, c

a−b ≤ 1 = c ≤ a− b. This is again
satisfied by the definition of Newcomb payoffs, since if c were strictly greater than a− b, this would
mean c+b > a and it would therefore always be better to two-box.

Notice here that the relationship that defines the plane is not a sum but a difference. This means
that the plane is parallel to the Eells-Jeffrey manifold. This is easily proved by taking the ratio of the
components of their normal vectors and showing that they are the same. Indeed, they are both 1. This
will hold for any value of c

a−b . It will be illuminating to rewrite the above condition as P(S2|A2) =
P(S2|A1)− c

a−b so we see the indifference plane sits below the manifold. This is illustrated in Figure 6.

Figure 6: The plane of indifference for the Newcomb problem
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The movement decreed by the adaptive dynamics on either side of the plane in the Newcomb problem
is given by examining the following biconditional statements. As before, the proof proceeds straightfor-
wardly from the existence proof replacing the equalities with inequalities without any change in direction,
as the term a−b is positive.

P(S2|A1)> P(S2|A2)+
c

a−b
⇐⇒ EU(A1)> EU(A2)

P(S2|A1)< P(S2|A2)+
c

a−b
⇐⇒ EU(A1)< EU(A2)

We can see from Figure 6 that when P(S2|A1)> P(S2|A2), we are below the Eells-Jeffrey manifold.
So when P(S2|A1) > P(S2|A2)+ c

a−b , we are below the plane of indifference. Here, the biconditional
statements above reveal that the rational act according to our adaptive dynamics is to one-box. By
analogous reasoning, all points above the indifference plane end deliberation in two-boxing. As the
independence dynamics moves the agent towards the Eells-Jeffrey manifold, and the Eells-Jeffrey mani-
fold lies above the indifference plane, the adaptive dynamics decrees that the agent ought to two-box in
Newcomb’s problem, corroborating Huttegger’s conclusion.

As the value of c, the monetary sum under the transparent box, increases, the plane of indifference
shifts downward in diagonal space away from the Eells-Jeffrey manifold. As a result, the region of the
cube where Tomas should rationally one-box reduces. This is intuitive as, by description of the problem,
the agent only receives the value c when he two-boxes, so the greater the value of c, the greater the
incentive to two-box. The denominator a−b captures the difference between the contents of the opaque
box in the two states of the world. If this difference is large, the plane shifts upwards, expanding the
region of points which decree as rational one-boxing. This again is intuitive, as the greater the incentive to
one-box, the less sure the agent need be that the predictor put a there in order for him to rationally choose
it. Note that when c = 0 the plane of indifference is exactly equivalent to the Eells-Jeffrey manifold. It
might be tempting to think that if there is nothing under the transparent box, the agent should one-box,
but this is not the correct answer. Recall that when we have reached state-act independence, Tomas does
not see his act as evidence about the state of the world, so he is rationally indifferent between one-boxing
and two-boxing. The causalist answer is the same, as the payoffs are the same under both states of the
world.

The preceding discussion has shown that it is the plane of indifference which determines rational
action in both decision problems. The crucial difference, however, is that regardless of the exact specifi-
cation of the independence dynamics, the agent’s trajectory of deliberation in Newcomb’s problem may
pass through the indifference plane to the Eells-Jeffrey manifold, since the two are parallel. This means
that where one begins deliberation does not determine where one ends in the same way that it does in
the Death in Damascus problem. Here, if we accept the plausibility of the shortest-path independence
dynamics, movement toward the manifold never crosses the indifference plane, since the independence
path and plane of indifference are parallel to one another. This analysis shows that the relatively straight-
forward reconciliation of causal and evidential deliberation for Newcomb’s problem under Huttegger’s
deliberative framework is not so straightforwardly achieved in problems of decision instability. Much
more would have to be said on the nature of the independence dynamics in order to determine whether
we may cross the plane of indifference and end deliberation with a resolute answer. In the next section,
I turn to these further requirements.
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6 On the possibility of reconciliation

Recall that, under Huttegger’s framework, deliberation ends when the adaptive dynamics prescribes no
further movement and when we reach state-act independence. In this section, I show that this will
only lead to a reconciliation under two very specific conditions: (i) the independence dynamics must
be specified such that it does not take the shortest path to the manifold, and (ii) the adaptive dynamics
and independence dynamics must have a relative speed such that they reach the Eells-Jeffrey manifold at
precisely the point of reconciliation.

As we saw from the previous section, if we take the shortest-path independence dynamics to be
true, whether Tereza begins above or below the plane of indifference determines where she will end
deliberation. The only time, therefore, where she could end deliberation with P(A2) = 0.474 is when she
begins with deliberation with her choice probability at P(A2) = 0.474 and her conditional probabilities
precisely on the plane of indifference (where they sum to 0.9). In this case, shortest-path independence
will move her directly to the line of equilibria without any change in her choice probability. This is a
case where there appears to be no deliberation at all driving her conclusion, and is therefore implausible
as a reconciliation of evidential and causal decision theory via deliberation.

Of course, there may be viable independence dynamics other than shortest-path independence so let
us relax this assumption. However, even if we allow violation of shortest-path independence, it must
be the case that the relative speed of the adaptive and independence dynamics is such that the agent
reaches the Eells-Jeffrey manifold precisely at the point where it intersects the plane of indifference at
P(A2) = 0.474. If Tereza reaches the manifold on the equilibrium line at any point to the left or right of
this, P(A2) 6= 0.474 and dP(A2)

dt = 0 so we do not achieve reconciliation. If Tereza reaches the manifold
at any other point above or below the equilibrium line, the adaptive dynamics leads her to P(A2) = 0 or
1 depending on whether this is above or below the plane of indifference. It is only if the two conditions
I have specified obtain that we may witness trajectories such as those depicted in Figure 7, but the
reconciliation here appears forced.

Figure 7: Diagrammatic portrayal of the deliberative evidentialist reasoning under Huttegger’s frame-
work. The red arrows represent possible trajectories to reconciliation. Both trajectories cross the plane
of indifference where the upper red arrow begins above it and the lower red arrow begins below it.

Again, it is important to recognise that this was not a issue in the case of Newcomb’s problem. Here,
regardless of the specification of the independence dynamics, since the Eells-Jeffrey manifold lies on
the side of the indifference plane where two-boxing is rational, as long as deliberation leads us to state-
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act independence, the framework will always prescribe the correct answer. The relative strength of the
independence and adaptive dynamics may lead Tomas to different points on the line of equilibria where
the Eells-Jeffrey manifold intersects the right face of the cube, but this does not change Tomas’ ultimate
action, as P(A2) = 1. Where he concludes deliberation only determines his beliefs about his winnings.
That is, he believes himself to be more fortunate if he ends deliberation where the probability of the
$1,000,000 being there, P(S2), is high, and less fortunate if he ends deliberation where it is low.

The analysis I have offered in this section therefore represents a principled way to delineate when
the specification of the independence dynamics matters for the reconciliation of evidential and causal
decision theory under Huttegger’s framework. In particular, it depends on whether the plane of indiffer-
ence intersects the Eells-Jeffrey manifold or not. If it does not, implying it lies entirely to one side of the
Eells-Jeffrey manifold, the specification of the independence dynamics does not matter. Any indepen-
dence dynamics that moves the agent in the direction of state-act independence over time will lead to the
same answer. As is shown from the generalised proofs, for any problem representing the mathematical
structure of the generalised Newcomb’s problem, the plane of indifference will not intersect the Eells-
Jeffrey manifold. For any problem representing the mathematical structure of the generalised Death in
Damascus problem, the plane of indifference will be perpendicular to the Eells-Jeffrey manifold, and the
specification of the independence dynamics as well as its strength relative to that of the adaptive dynam-
ics, matters for where the agent concludes deliberation. We therefore have a robust way of determining
ex-ante whether reconciliation of evidential and causal decision theory is plausible for a wide range of
two-state, two-act decision problems under this framework.

Note that what is important is not whether the plane of indifference is perpendicular or parallel to
the Eells-Jeffrey manifold, but whether it intersects the manifold, meaning that the analysis here could in
principle be extended to other decision problems, where the angle of the plane of indifference relative to
the manifold differs, in order to determine whether specification of the independence dynamics matters
in these problems. Furthermore, we would expect the key result – that the relative strength of the adaptive
and independence dynamics matters for reconciliation – to hold in larger (nxn) decision problems, though
this has not as yet been investigated.

7 Conclusion

The prescriptions of evidential and causal decision theory come apart in two general classes of prob-
lems known as Newcomb problems and decision instability problems. Huttegger ([11]) has developed
a framework for evidential deliberation building on Eells’ ([3]) metatickle approach and Skyrms’ ([24])
deliberation dynamics which reconciles the prescriptions of the evidentialist and causalist in Newcomb’s
problem. Since deliberation results in increasing awareness of our beliefs and desires (and these are the
mechanisms by which our action is determined), our acts no longer provide information about the state of
the world. That is, deliberation screens off the state-act correlation which previously caused the eviden-
tialist to choose the dominated act in Newcomb’s problem. Huttegger’s more sophisticated, deliberative
evidentialist agent agrees with the causalist in preferring two-boxing.

In this paper, I have extended Huttegger’s framework to consider an asymmetric case of decision in-
stability: the Death in Damascus problem. I have shown that, in this context, Skyrms’ adaptive dynamics
and Huttegger’s independence dynamics are insufficient to recommend a decisive answer. In Section 5,
I consider a plausible version of the independence dynamics, shortest-path independence, and explore
the particular features of the deliberative process that this independence dynamics decrees in Death in
Damascus. We find that the dynamics decrees different answers for different initial starting points of
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deliberation. I prove the statements made here are applicable to a more general class of problems of
decision instability, as long as the payoff table accords with some simple mathematical relationships. In
particular, I show that there exists what I call a plane of indifference where either act is equally accept-
able, and this plane of indifference entails that where one concludes deliberation depends entirely on
where one begins deliberation. This, however, is not true of the Newcomb case.

There are three upshots to this work. First, whilst application of the Eellsian metatickle to delib-
eration could straightforwardly lead to the correct answer in Newcomb’s problem, this notion is not so
easily extended to problems of decision instability, and the reconciliation requires assumptions that ap-
pear forced. Second, the proof of the plane of indifference for all two-state, two-act problems whose
payoff tables exhibit the basic mathematical relationships in Section 5 provides us with a principled way
of delineating those cases where the specification of the independence dynamics matters for a recon-
ciliation of evidential and causal decision theory within this framework. Specifically, if the plane of
indifference never intersects the Eells-Jeffrey manifold, the specification of the independence dynamics
does not matter for reconciliation. If it does, reconciliation requires additional, and potentially question-
able, assumptions about the exact specification of the adaptive and independence dynamics.

Finally, this work shows that the metatickle approach has so far failed to reconcile evidential and
causal decision theory. Eells’ and Jeffrey’s original ideas were widely criticised for not providing details
of how an agent arrives at knowledge of their own beliefs and desires, involving implicit assumptions,
or idealisations that limit the metatickle approach ([11]; [1]; [10]; [14]; [18]; [23]; [24]). Attempts to
resolve this using the theory of deliberation have shown it does not result in a reconciliation, rather the
evidentialist is left in a state of indecision in Newcomb’s problem ([25]). Eells’ amendment ([4]) to his
original idea then introduced spurious assumptions about other features of the agent, such as her felt
urgency to act, which are marked deviations from traditional evidential decision theory ([11]). In this
paper, I have shown that the most recent attempt to salvage Eells’ idea, owing to Huttegger ([11]) also
fails to deliver a reconciliation of evidential and causal decision theory in problems of decision instability.
Future work on reconciliation would need to pay heed to the fact that our results will depend heavily on
the interaction of the adaptive and independence dynamics, and any attempt at reconciliation would need
to specify their relative strength such that evidential decision theory agrees with causal decision theory
in both Newcomb and decision instability problems.
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The logic of goal-directed knowing how proposed in [5] extends the standard epistemic logic with an

operator of knowing how. The knowing how operator is interpreted as that there exists a strategy such

that the agent knows that the strategy can make sure that ϕ . This paper presents a tableau procedure

for the multi-agent version of the logic of strategically knowing how and shows the soundness and

completeness of this tableau procedure. This paper also shows that the satisfiability problem of the

logic can be decided in PSPACE.

1 Introduction

Epistemic logic proposed by von Wright and Hintikka (see [24, 11]) is a logical formalism for reasoning

about knowledge of agents. It deals with propositional knowledge, that is, the knowledge expressed as

knowing that ϕ is true. In recent years, other patterns of knowledge besides knowing that are attracting

increasing attention in logic community, such as knowing whether [8, 4], knowing who [3], knowing the

value [2, 6], and knowing why [28] (see a survey in [27]). Motivated by different scenarios in philosophy

and AI, reasoning about knowing how assertions are particularly interesting [23].

The discussion about formalizing the notion of knowing how can date back to [16, 17]. Currently,

there are two main approaches of formalizing knowing how. One of them is connecting knowing how

with logics of knowing that and ability (see e.g. [13, 10]). However, the main difficulty of this approach

is that a simple combination of the modalities of knowing that and ability does not seem to capture a

natural understanding of knowing how (see a discussion in [12, 9]). Instead of expressing knowing how

by knowing that and ability modalities, the other approach first adopted in [25] is expressing knowing

how in modal languages with a new modality of knowing how.

Inspired by the idea of automated planning under uncertainty in artificial intelligence, The author of

[25, 26] proposed a logical framework of knowing how which includes a binary modality of knowing

how. In [1], a new semantics for this knowing how modality was given, which is based on an indistin-

guishability relation between plans. It is shown in [1] that the satisfiability problem of this knowing how

logic is NP-complete, but this logic does not include the modality for knowing that.

Inspired by the tradition of coalition logic, the authors of [18, 21] introduced a logic to capture

knowing how of coalitions. A coalition C knows how to achieve ϕ if and only if there is a joint action

a for C such that it is distributed knowledge for C that doing a can make sure that ϕ . Variants of the

basic framework were proposed and discussed. In [20], a logic of knowing how under the assumption of

perfect recall was studied. In [22], a logic of knowing how with the degree of uncertainty was discussed.

In [19], a logic of second-order knowing how was proposed, for the case that one coalition knows what

the joint action of another coalition is. The topic of complexity is not covered in these literatures.

Along with the idea of formalizing knowing how based on planning, the authors of [5] proposed a

single-agent logic of knowing how via strategies. A strategy is a partial function from the set of agents’

belief states into the set of actions. The agent knows how to achieve ϕ if and only if there is a strategy

such that all executions of the strategy will terminate on ϕ-states. Besides strategies, there are other

http://dx.doi.org/10.4204/EPTCS.379.30
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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types of plans, such as simple plans (i.e. a single action), linear plans (i.e. a sequence of actions), and

so on. The authors of [15] proposed a unified logical framework to incorporate logics of knowing how

via different notions of plans. They used a PDL-style programming language to syntactically specify

various types of plans and discussed ten types of knowing how based on ten different notions of plans. It

is shown in [15] that the ten notions of plans lead to the same konwing how logic, but over finite models,

the konwing how logic based on knowledge-based plans requires an extra axiom, which leads to the same

logic as the logic of strategically knowing how.

In [14], a tableau-based decision procedure was proposed for the logic of knowing how via simple

plans. This paper develops the method and presents a tableau procedure for the knowing how logic via

strategies proposed in [5]. Strategically knowing how can not be handled by the original method, since

strategies are much more complicated than simple plans. This paper also shows that the satisfiability

problem of the logic of strategically knowing how is in PSPACE. With other known results, this leads to

the result that the satisfiability problem of the logic of strategically knowing how is PSPACE-complete.

The structure of this paper is as follows: Section 2 recalls the logic of strategically knowing how;

Section 3 presents a tableau procedure for the logic and proves its soundness; Section 4 shows the

completeness of the tableau procedure and proves that the complexity of this logic is PSPACE-complete.

Section 5 concludes with some remarks.

2 The logic of strategically knowing how

This section presents the multi-agent version of the logic of strategically knowing how from [5].

Let P be a set of propositional letters and I be a set of agents where |I| ≥ 2.

Definition 1 (ELKhn Language). The Epistemic Language LELKhn
of Knowing how is defined by the

following BNF where p ∈ P and i ∈ I:

ϕ ::=⊥ | p | ¬ϕ | (ϕ ∧ϕ) | Kiϕ | Khiϕ .

We use ⊤,∨,→ as usual abbreviations. The formula Kiϕ means that the agent i knows that ϕ , and

the formula Khiϕ means that the agent knows how to achieve the goal that ϕ .

Definition 2 (ELKhn Models). A model M is a quintuple 〈W,{∼i| i ∈ I},{Ai | i ∈ I},{Ra | a ∈ Ai, i ∈
I},V 〉 where:

• W is a non-empty set of states,

• ∼i ⊆W ×W is an equivalence relation for each i ∈ I,

• Ai is a set of actions for each i ∈ I,

• Ra ⊆W ×W is a binary relation for each a ∈ A where A =
⋃

i∈I Ai,

• V : W → 2P is a valuation function.

Given s ∈W , we use [s]i to denote the equivalence class of s over ∼i, i.e., [s]i = {t ∈W | s ∼i t}, and

use [W ]i to denote the set of all equivalence classes of states in W over ∼i, namely [W ]i = {[s]i | s ∈W}.

We say that the action a ∈ Ai is executable at s if (s, t) ∈ Ra for some t. We use [s]i
a
−→ [t]i to denote that

there are some s′ ∈ [s]i and some t ′ ∈ [t]i such that (s′, t ′) ∈ Ra.

Definition 3 (Strategies). Given a model M, a uniformly executable strategy (or simply called strat-

egy) for agent i in M is a partial function σ : [W ]i → Ai such that σ([s]i) is executable at all s′ ∈ [s]i.
Particularly, the empty function is also a strategy, the empty strategy.
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We use dom(σ) to denote the domain of σ .

Definition 4 (Executions). Given a strategy σ of agent i in M, a possible execution of σ is a possibly

infinite sequence of equivalence classes δ = [s0]
i[s1]

i · · · such that [sk]
i σ([sk]

i)
−−−−→ [sk+1]

i for all 0 ≤ k < |δ |.
Particularly, [s]i is a possible execution if [s]i 6∈ dom(σ). If the execution ρ is a finite sequence [s0]

i · · · [sk]
i,

we call [sk]
i the end node of ρ . A possible execution of σ is complete if it is infinite or its end node is not

in dom(σ).

Given an i-strategy σ , we use ECE(σ , [s]i) to denote the set of all end nodes of all σ ’s complete

executions starting from [s]i.

Definition 5 (ELKhn Semantics). The satisfaction relation � between a pointed model (M,s) and a

formula ϕ is defined as follows:

M,s � p ⇐⇒ s ∈V (p)
M,s � ¬ϕ ⇐⇒ M,s 2 ϕ

M,s � ϕ ∧ψ ⇐⇒ M,s � ϕ and M,s � ψ

M,s � Kiϕ ⇐⇒ for all s′ : if s∼is
′ then M,s′ � ϕ

M,s � Khiϕ ⇐⇒ there exists a strategy σ for agent i such that

1. all σ ’s complete executions starting from [s]i are finite, and

2.[t]i⊆{s′ ∈W | M,s′ � ϕ} for all [t]i∈ECE(σ , [s]i).

Proposition 6. The following formulas are valid.

(1). Kiϕ → Khiϕ

(2). Khiϕ → KiKhiϕ

(3). ¬Khiϕ → Ki¬Khiϕ

(4). Khiϕ → KhiKiϕ

(5). KhiKhiϕ → Khiϕ

Proof. For (1), it is due to the empty strategy. For (2), (3), and (4), it follows from the semantics. For

(5), see [5].

3 Tableaux

This section presents a tableau procedure for the logic ELKhn and shows the soundness of the tableau

procedure.

Given ϕ , let sub+(ϕ) be the set {ψ ,¬ψ | ψ is a subformula of ϕ}∪{Kiψ ,¬Kiψ | Khiψ is a subfor-

mula of ϕ}.

3.1 Tableau procedure

A tableau is a rooted tree in which each node is labeled with a set of prefixed formulas. A prefixed

formula is a pair 〈σ ,ϕ〉 where the prefix σ is an alternative sequence of natural numbers and agents or

Kh-formulas, such as 〈1i2Khi p3,ϕ〉. The prefixes represent states in models. The agent symbols and

Kh-formulas occurring in σ indicate some epistemic information and action information on the current

state. For example, the prefix 1i2Khi p3 indicates the following informations: there are three states 1, 2,

and 3; 1 ∼i 2; there is an action a such that a is a good plan for 2 � Khi p and (2,3) ∈ Ra.
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Definition 7 (Tableaux). A tableau for ϕ0 is a labeled tree that is defined as follows:

A. Create the root node and label it with 〈0,ϕ0〉;

B. Extend the tree by rules in Table 1.

〈σ ,¬¬ϕ〉
(R¬)

〈σ ,ϕ〉

〈σ ,¬(ϕ1 ∧ϕ2)〉
(R∨)

〈σ ,¬ϕ1〉 〈σ ,¬ϕ1〉 〈σ ,ϕ1〉
〈σ ,¬ϕ2〉 〈σ ,ϕ2〉 〈σ ,¬ϕ2〉

〈σ ,ϕ1 ∧ϕ2〉
(R∧)

〈σ ,ϕ1〉
〈σ ,ϕ2〉

〈σ ,¬Kiϕ〉
(Cut¬K)

〈σ ,¬ϕ〉 | 〈σ ,ϕ〉

〈σ ,Kiϕ〉
(CutK)

〈σ ,ϕ〉

〈σ ,Khiϕ〉
(CutKh)

〈σ ,¬Kiϕ〉 〈σ ,Kiϕ〉

〈σ ,¬Khiϕ〉
(Cut¬Kh)

〈σ ,¬Kiϕ〉

〈σ ,¬Kiϕ〉
(R¬K) n′ is new

〈σ in′,¬ϕ〉

〈σ ,Kiϕ〉
(RK) σ in′ is used

〈σ in′,ϕ〉

〈σ ,Kiϕ〉
(RK4) σ in′ is used

〈σ in′,Kiϕ〉

〈σ ,¬Kiϕ〉
(RK5) σ in′ is used

〈σ in′,¬Kiϕ〉

〈σ ,Khiϕ〉
(RKh4) σ in′ is used

〈σ in′,Khiϕ〉

〈σ ,¬Khiϕ〉
(RKh5) σ in′ is used

〈σ in′,¬Khiϕ〉

〈σ ,Khiϕ〉
〈σ ,¬Kiϕ〉

(RKh) n′ is new
〈σKhiϕn′,Kiϕ〉

〈σ ,¬Khiϕ〉
〈σ ,Khiψ〉
〈σ ,¬Kiψ〉

(R¬Kh) n′ is new
〈σKhiψn′,Kiψ〉
〈σKhiψn′,¬Khiϕ〉

Table 1: Tableau rules

Next, we will give a procedure to construct a tableau (Definition 8 below). In Section 3.2, we will

show that the procedure is sound, and we in Section 4.1 will show that it is complete, and we in Section

4.2 will show that it runs in polynomial space. Before that, we first introduce some auxiliary notations

below.

Let A be a set of actions. We use A+ to denote the set A∪{ε}. Let Γ be a set of formulas. We use

Γ|Ki, Γ|¬Ki and Γ|Khi to respectively denote the set {ϕ ∈ Γ | ϕ is of the form Kiψ}, {ϕ ∈ Γ | ϕ is of the

form ¬Kiψ} and {ϕ ∈ Γ | ϕ is of the form Khiψ}. We say that a formula set Γ is blatantly inconsistent

iff either ϕ ,¬ϕ ∈ Γ for some formula ϕ or ⊥ ∈ Γ.

A labeled tree T is a triple 〈N,E,L〉, where 〈N,E〉 is a rooted tree with the node set N and the edge

set E and L : N ∪E → P(LELKhn
)∪ I∪A+ is a label function such that each node is labeled a formula
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set and each edge is labeled an agent i ∈ I or an action a ∈ A+. A node sequence n1 · · ·nh+1 is a path

in T if (nk,nk+1) ∈ E for all 1 ≤ k ≤ h. If the node sequence n1 · · ·nh+1 is a path in T and the label

L(nk,nk+1) is either i ∈ I or ε for all 1 ≤ k ≤ h, we then say that n1 is an i-ancestor of nh+1.

A tree is called an and-or tree if each non-leaf node is marked as “and” node or “or” node. A subtree

of an and-or tree is called complete if it contains the root node, and each “and” non-leaf node has all its

child nodes, and each “or” non-leaf node has at least one child node.

Now we are ready to give a procedure to construct a tableau. We remark that, strictly speaking, the

tree constructed by the following procedure is not really a tableau. Rather, it is a tree in which the desired

tableau is embedded. Such trees are called pre-tableaux in [7]. Since in the remaining paper, we will

work only on the following procedure and show that the following procedure is sound and complete and

runs in polynomial space, it does not matter what we call it. So, in the remaining paper, we will call the

tree constructed by the following procedure a tableau.

Definition 8 (Tableaux construction). A tableau for ϕ0 is a labeled and-or tree Tϕ0
which is constructed

by the following steps:

(I). Construct a tree consisting of a single node n0 (i.e. the root node), and label the root node the

formula set {ϕ0}.

(II). Repeat until none of (1)-(2) below applies:

(1). Forming a subformula-closed propositional tableau: if n is an unblocked leaf node and L(n)
is not blatantly inconsistent, then mark n as an “or” node and check the first unchecked

formula ϕ ∈ L(n) at n by the following:

(a). If ϕ is of the form ¬¬ψ and ψ is not in L(n), then create a successor node n′ of n, set

L(n′) = L(n)∪{ψ},
L(n,n′) = ε ,

and mark ϕ and all checked formulas at n as “checked” at n′.

(b). If ϕ is of the form ϕ1 ∧ϕ2 and either ϕ1 or ϕ2 is not in L(n), then create a successor

node n′ of n, set

L(n′) = L(n)∪{ϕ1,ϕ2},
L(n,n′) = ε ,

and mark ϕ and all checked formulas at n as “checked” at n′

(c). If ϕ is of the form ¬(ϕ1 ∧ ϕ2) and none of the three sets {¬ϕ1,¬ϕ2}, {¬ϕ1,¬ϕ2},

{¬ϕ1,¬ϕ2} is a subset of L(n), then create three successors n1,n2,n3 of n, set

L(n1) = L(n)∪{¬ϕ1,¬ϕ2},
L(n2) = L(n)∪{¬ϕ1,ϕ2},
L(n3) = L(n)∪{ϕ1,¬ϕ2},
L(n,n1) = L(n,n2) = L(n,n3) = ε ,

and mark ϕ and all checked formulas at n as “checked” at n1,n2,n3

(d). If ϕ is of the form Kiψ and ψ is not in L(n), then create a successor node n′ of n, and set

L(n′) = L(n)∪{ψ},
L(n,n′) = ε ,

and mark ϕ and all checked formulas at n as “checked” at n′
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(e). If ϕ is of the form ¬Kiψ and neither ¬ψ nor ψ is in L(n), then create two successors

n1,n2 of n, set

L(n1) = L(n)∪{¬ψ},
L(n2) = L(n)∪{ψ},
L(n,n1) = L(n,n2) = ε

and mark ϕ and all checked formulas at n as “checked” at n1 and n2

(f). If ϕ is of the form Khiψ and neither ¬Kiψ nor Kiψ is in L(n), then create two successors

n1,n2 of n, set

L(n1) = L(n)∪{¬Kiψ},
L(n2) = L(n)∪{Kiψ},
L(n,n1) = L(n,n2) = ε ,

and mark ϕ and all checked formulas at n as “checked” at n1 and n2.

(g). If ϕ is of the form ¬Khiψ and ¬Kiψ is not in L(n), then create a successor n′ of n, set

L(n′) = L(n)∪{¬Kiψ},
L(n,n′) = ε ,

and mark ϕ and all checked formulas at n as “checked” at n′

(h). if none of (a)-(g) above applies, then mark ϕ as “checked”.

(2). Creating successors for ¬Ki,Khi,¬Khi formulas: if n is an unblocked leaf node, L(n) is

not blatantly inconsistent, and each formula in L(n) is marked as “checked”, then mark (or

re-mark) n as an “and” node and do the following:

(i). For each formula in L(n) of the form ¬Kiψ , if there is no i-ancestor of n′ such that

L(n′) = Σ(n,¬Kiψ), then create a successor n¬Kiψ of n and set

L(n¬Kiψ) = Σ(n,¬Kiψ),
L(n,n¬Kiψ) = i

in which

Σ(n,¬Kiψ) = {¬ψ}∪ (L(n)|Ki)∪ (L(n)|¬Ki)∪ (L(n)|Khi)∪ (L(n)|¬Khi).

(j). For each pair on L(n) of the form (Khiψ ,¬Kiψ), create a successor nKhiψ of n, and set

L(nKhiψ) = {Kiψ},
L(n,nKhiψ) = aKhiψ .

(k). For each triple on L(n) of the form (¬Khiχ ,Khiψ ,¬Kiψ), create a successor n(¬Khiχ ,Khiψ),

and set
L(n(¬Khi χ ,Khiψ)) = {Kiψ ,¬Khiχ},

L(n,n(¬Khi χ ,Khiψ)) = aKhiψ .

Moreover, if there is an ancestor n′ of n(¬Khiχ ,Khiψ) such that L(n′) = L(n(¬Khi χ ,Khiψ)),
then mark n(¬Khi χ ,Khiψ) as blocked, and we say that n(¬Khiχ ,Khiψ) is blocked by n′.

Definition 9. A subtree of a tableau is closed if there is some node n in it such that L(n) is blatantly

inconsistent. Otherwise, it is called open. A tableau is closed iff all its complete subtrees are closed.
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3.2 Soundness

In this subsection, we will show that the procedure of Definition 8 is sound.

Definition 10 (Interpretations). Given a model M and a subtree T ′ = 〈N ′,E ′,L′〉 of the tableau Tϕ0
, let

f be a function from N ′ to W. We say that f is an interpretation of T ′ if and only if M, f (n) � ϕ for all

ϕ ∈ L(n) and all n ∈ N ′.

Lemma 11. If M,s � ϕ0, then there exists an interpretation of some complete subtree of any Tϕ0
.

Proof. Let f0 be the function f0 = {n0 7→ s} which maps the root n0 of Tϕ0
to the state s. It is obvious

that M, f0(n0) � ϕ for all ϕ ∈ L(n0).

Then we only need to show the following statement:

If n is a leaf node of a subtree T , f is an interpretation of T , and n is in the domain

of f , then

(A): for each construction steps (a)-(g), there is an interpretation of T extending

with one child node of n, and

(B): for each construction steps (i)-(k), there is an interpretation of T extending

with all child nodes of n.

For (A), firstly it is obvious for the steps (a)-(c). For the step (d), it follows that ∼i is a reflexive

relation. For the steps (e) and (f), it follows from the fact that a formula is either true or false on a state.

For the step (g), it follows from the fact that ¬Khiψ →¬Kiψ is valid (see Proposition 6).

Next, we will show that (B) holds.

For the step (i), for each n’s child node n¬Kiψ , we know that ¬Kiψ ∈ L(n) and L(n¬Kiψ) = {¬ψ}∪
(L(n)|Ki)∪ (L(n)|¬Ki)∪ (L(n)|Khi)∪ (L(n)|¬Khi). Since f is an interpretation of T including n, it fol-

lows that M, f (n) � ¬Kiψ . Hence, there exists a state t¬Kiψ ∈ [ f (n)]i such that M, t¬Kiψ � ¬ψ . Moreover,

since ∼i is an equivalence relation, (M, t¬Kiψ) satisfies all the Ki-formulas and ¬Ki-formulas that are

true at f (n). Furthermore, by Proposition 6, we have that (M, t¬Kiψ) satisfies all the Khi-formulas and

¬Khi-formulas that are true at f (n). Let f ′ be the f -extension f ∪{n¬Kiψ 7→ t¬Kiψ | n¬Kiψ is a child node

of n}. Therefore, we have that M, f ′(n¬Kiψ) � L(n¬Kiψ).

For the step (j), for each n’s child node nKhiψ , we know that Khiψ ∈ L(n) and L(n¬Kiψ) = {Kiψ}.

Since f is an interpretation of T including n, it follows that M, f (n) � Khiψ . So, by the semantics, there

exist an i-strategy σ and a state tKhiψ ∈ ECE(σ , [ f (n)]i) such that M, tKhiψ �Kiψ . Let f ′ be the f -extension

f ∪{nKhiψ 7→ tKhiψ | nKhiψ is a child node of n}. Therefore, we have that M, f ′(nKhiψ) � L(nKhiψ).
For the step (k), for each n’s child node n(¬Khi χ ,Khiψ), we know that ¬Khiχ ,Khiψ ∈ L(n) and

L(n(¬Khi χ ,Khiψ)) = {Kiψ ,¬Khiχ}. Since f is an interpretation of T including n, it follows that M, f (n) �
¬Khiχ ∧ Khiψ . Due to M, f (n) � Khiψ , it follows by the semantics that there exist an i-strategy

σ such that M, t � Kiψ for all [t]i ∈ ECE(σ , [ f (n)]i). Moreover, it must be the case that there ex-

ists t(¬Khiχ ,Khiψ) such that [t(¬Khiχ ,Khiψ)]
i ∈ ECE(σ , [ f (n)]i) and M, t(¬Khiχ ,Khiψ) � ¬Khiχ . Otherwise,

if M, t � Khiχ for all [t]i ∈ ECE(σ , [ f (n)]i), this implies M, f (n) � KhKhiχ . By Proposition 6, it follows

that M, f (n) � Khiχ , which is contradictory with the fact that M, f (n) � ¬Khiχ . Hence, there exists

t(¬Khiχ ,Khiψ) such that [t(¬Khiχ ,Khiψ)]
i ∈ ECE(σ , [ f (n)]i) and M, t(¬Khiχ ,Khiψ) � ¬Khiχ , which implies that

M, t(¬Khiχ ,Khiψ) �¬Khiχ∧Kiψ . Let f ′ be the f -extension f ∪{n(¬Khi χ ,Khiψ) 7→ t(¬Khiχ ,Khiψ) | n(¬Khi χ ,Khiψ)

is a child node of n}. Therefore, we have that M, f ′(n(¬Khi χ ,Khiψ)) � L(n(¬Khi χ ,Khiψ)).

The soundness below follows from Lemma 11 above.

Theorem 12 (Soundness). If ϕ0 is satisfiable, then Tϕ0
is not closed.
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4 Completeness and complexity

4.1 Completeness

In this subsection, we will show that the procedure of Definition 8 is complete.

Recall that sub+(ϕ) is the set {ψ ,¬ψ |ψ is a subformula of ϕ}∪{Kiψ ,¬Kiψ | Khiψ is a subformula

of ϕ}. From the construction of Tϕ0
, it follows that L(n) ⊆ sub+(ϕ0) for each node n. Moreover, each

formula in L(n) is “inherited” from n’s ancestors, that is, if ψ ∈ L(n) and n′ is an ancestor of n then there

exists ϕ ∈ L(n′) such that ψ ∈ sub+(ϕ).
A path n1 · · ·nh of Tϕ0

is called an ε-path iff L(nk,nk+1) = ε for all 1 ≤ k < h. Particularly, a path

with length 1 is an ε-path. An ε-path n1 · · ·nh is maximal iff there are no such nodes n and n′ that

either nn1 · · ·nh or n1 · · ·nhn′ is an ε-path. Given a path ρ = n1 · · ·nh, we use ini(ρ), end(ρ) and L(ρ) to

respectively denote n1, nh and L(nh). We use ρ
x
−→ ρ ′ to means that ρρ ′ is a path and L(end(ρ), ini(ρ ′)) =

x.

From the construction of Tϕ0
we know that if a node n is blocked then there is a unique node n′ which

blocks n and n itself is a maximal ε-path. Moreover, if ρ is a maximal ε-path and end(ρ) is blocked,

then ρ is a single node, i.e. ρ = n where the node n is blocked.

For each maximal ε-path ρ of Tϕ0
, by the construction, we know that if ρ is not blocked and L(ρ)

is not blatantly inconsistent then each formula in L(ρ) is marked as “checked”. This means that L(ρ)
is closed over sub+-formulas, that is, if ϕ ∈ L(ρ) then either ψ or ∼ ψ is in L(ρ) for all ψ ∈ sub+(ϕ),
where ∼ ψ = χ if ψ = ¬χ , otherwise ∼ ψ = ¬ψ .

Definition 13 (MT ). Let T be a complete subtree of Tϕ0
. The model induced by T , denoted by MT , is

defined as follows:

• W = {ρ | ρ is a maximal ε-path of T , and ρ is not blocked},

• ∼i is the minimal equivalence relation X on W such that {(ρ ,ρ ′) | ρ
i
−→ ρ ′} ⊆ X,

• Ai = {aKhiψ | there exists an edge (n,n′) in T such that L(n,n′) = aKhiψ}.

• for each a ∈ Ai, Ra = {(ρ ,ρ ′) | ρ
a
−→ ρ ′, or ρ

a
−→ ρ ′′ where ρ ′′ is a maximal ε-path blocked by ρ ′}.

• f (ρ) ∈V (p) iff p ∈ L( f (ρ)).

Please note that by the definition Ai, we know that if i 6= j then Ai ∩A j = /0.

The following proposition states that all paths in the same ∼i-closure share the same formulas in the

forms Kiϕ , ¬Kiϕ , Khiϕ , or ¬Khiϕ .

Proposition 14. Let T be a complete and open subtree of Tϕ0
. If ρ1 ∼i ρ2 in MT , then L(ρ1)|x= L(ρ2)|x

where x ∈ {Ki,¬Ki,Khi,¬Khi}.

Proof. Besides ρ1 = ρ2, there are three possible cases: (1) end(ρ1) is an i-ancestor of end(ρ2), or (2)

end(ρ2) is an i-ancestor of end(ρ1), or (3) there is some ρ ∈W such that end(ρ) is an i-ancestor of both

end(ρ1) and end(ρ2).
For (1), firstly we will show that L(ρ1)|x ⊆ L(ρ2)|x. In the construction step (i) all x-formulas are

inherited from the i-ancestor. Moreover, in the steps (a)-(f) all formulas labeled on the parent node are

inherited by each child node. Thus, L(ρ1)|x ⊆ L(ρ2)|x.

Secondly, we will show that L(ρ2)|x ⊆ L(ρ1)|x. Since end(ρ1) is an ancestor of end(ρ2), we know

from the construction that for each formula ψ ∈ L(ρ2) there exists ϕ ∈ L(ρ1) such that ψ ∈ sub+(ϕ).
Moreover, since ρ1 is a non-blocked maximal ε-path and L(ρ1) is not blatantly inconsistent, it follows

that all formulas in L(ρ1) are marked as “checked”. So, L(ρ1) is closed over sub+-formulas. Hence, for
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each x-formula χ ∈ L(ρ2), either χ or ∼ χ is in L(ρ1). If ∼ χ ∈ L(ρ1), since ∼ χ will be inherited to

L(ρ2), it means that L(ρ2) will be blatantly inconsistent, which is contradictory with the fact that T is

open. Therefore, it only can be that χ ∈ L(ρ1). Hence, L(ρ2)|x ⊆ L(ρ1)|x.

For (2), it can be shown by the same process as for (1).

For (3), by (1) we know that L(ρ)|x = L(ρ1)|x and L(ρ)|x = L(ρ2)|x. Thus, L(ρ1)|x = L(ρ2)|x.

Before we show the truth lemma, we need the following auxiliary proposition.

Proposition 15. Let T be a complete subtree of Tϕ0
, σ be an i-strategy in MT , and δ = [ρ1]

i · · · [ρh]
i be

a σ -execution in MT . If ¬Khiχ ∈ L(ρh) and δ is not complete, then there exists some ρ ∈W such that

δ [ρ ]iis a σ -execution and ¬Khiχ ∈ L(ρ).

Proof. Since [ρ1]
i · · · [ρh]

i is not complete, it follows that [ρh]
i ∈ dom(σ). Let σ([ρh]

i) = aKhiψ for some

aKhiψ ∈ Ai. Since σ is a uniformly executable strategy, this means that aKhi
is executable on ρh. By

the definition of MT in Definition 13, we know that there exists a maximal ε-path ρ ′ of T such that

ρh

aKhiψ
−−−→ ρ ′, that is, ρhρ ′ is a path of T and L(end(ρh), ini(ρ ′)) = aKhiψ . Note that such labels can only

be added by the construction step (j) or (k).

From the construction steps (j) and (k), we then have that Khiψ ,¬Kiψ ∈ L(ρh). Since we also

have that ¬Khiχ ∈ L(ρh), by the construction step (k), there is a node n(¬Khi χ ,Khiψ) in Tϕ0
such that

L(n(¬Khi χ ,Khiψ)) = {Kiψ ,¬Khiχ} and L(end(ρh),n(¬Khi χ ,Khiψ)) = aKhiψ .

Since T is a complete subtree of Tϕ0
, it follows that n(¬Khiχ ,Khiψ) is also a node in T . There are two

cases: n(¬Khiχ ,Khiψ) is blocked or not.

If n(¬Khi χ ,Khiψ) is not blocked, let ρ be the maximal ε-path in T that begins with the node n(¬Khiχ ,Khiψ).

By the definition of MT , we know that (ρh,ρ)∈RaKhiψ
. This means that [ρ1]

i · · · [ρh]
i[ρ ]i is a σ -execution.

Moreover, due to ¬Khiχ ∈ L(ini(ρ)), it follows that ¬Khiχ ∈ L(ρ).

If n(¬Khiχ ,Khiψ) is blocked by its some node n′, then n′ is an ancestor of n. So, we have that n′ is a node

in T . Let ρ ′′ be the maximal ε-path that contains n′. Since block nodes are leaf nodes, it follows that

ρ ′′ is not blocked. Thus, ρ ′′ ∈W . By the definition of MT , we have that (ρh,ρ
′′) ∈ RaKhiψ

. This means

that [ρ1]
i · · · [ρh]

i[ρ ′′]i is a σ -execution. Moreover, due to ¬Khiχ ∈ L(n), L(n) = L(n′) and L(n′)⊆ L(ρ),
it follows that ¬Khiχ ∈ L(ρ).

Lemma 16 (Truth lemma). If T is a complete and open subtree of Tϕ0
, then for each ϕ ∈ sub+(ϕ0), we

have that MT ,ρ � ϕ iff ϕ ∈ L(ρ).

Proof. We prove it by induction on ϕ . Since L(ρ) is closed over sub+-formulas, the atomic case and

Boolean cases are straightforward. Next, we will focus on the cases of Kiψ and Khiψ .

For the case Kiψ ∈ L(ρ), given ρ ′ ∈ [ρ ]i, we will show that MT ,ρ ′
� ψ . By Proposition 14, we have

that Kiψ ∈ L(ρ ′). Moreover, since T is open and ρ ′ is not blocked, this means that all formulas in L(ρ ′)
are marked as “checked”. Let ρ ′ = n1 · · ·nh. From the construction, we know that there is some node nk,

where 1 ≤ k ≤ h, such that the first time in ρ ′ the formula Kiψ is marked as “checked”, and this only can

be done by the construction step (d). Thus, we have that ψ ∈ L(nk), and then ψ ∈ L(ρ ′). By IH, we have

that MT ,ρ ′
� ψ .

For the case Kiψ 6∈ L(ρ), since L(ρ) is closed over sub+-formulas, it follows that ¬Kiψ ∈ L(ρ). Let

end(ρ) be the node n. Since ρ is a non-blocked maximal ε-path and T is open, this means that all

formulas in L(n) is marked as “checked”. From the construction, we know that the construction step (i)

will be triggered on n. Thus, either there is an i-ancestor node n′ such that ¬ψ ∈ L(n′) or there is an n’s

i-child node n′′ such that ¬ψ ∈ L(n′′). Since T is a complete subtree of Tϕ0
, it follows that no matter n′
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or n′′ will be included in T . Thus, there is ρ ′ ∈ [ρ ]i such that ¬ψ ∈ L(ρ ′). Since T is open, it follows

that ψ 6∈ L(ρ ′). By IH, we have that MT ,ρ 6� ψ . Hence, MT ,ρ 6� Kiψ .

For the case Khiψ ∈ L(ρ), since L(ρ) is closed over sub+-formulas, it follows that either Kiψ ∈ L(ρ)
or ¬Kiψ ∈ L(ρ).

If Kiψ ∈ L(ρ), by the proof of the Ki-case above, we know that MT ,ρ � Kiψ . By Proposition 6, we

have that MT ,ρ � Khiψ .

If ¬Kiψ ∈ L(ρ), we will show that σ is a good strategy for MT ,ρ � Khiψ where σ is the function

{[ρ ]i 7→ aKhiψ}.

If ρ ′ ∈ [ρ ]i and (ρ ′,ρ ′′) ∈ RaKhiψ
, then either ρ ′

aKhiψ−−−→ ρ ′′, or ρ ′
aKhiψ−−−→ ρ ′′′ where ρ ′′′ is blocked by ρ ′′.

For the first case, it is obvious that ρ ′′ 6∈ [ρ ]i. For the second case, we also have that ρ ′′ 6∈ [ρ ]i. The reason

is that nodes can only be blocked in the construction step (k), so for the second case we have Kiψ ∈ L(ρ ′′′)
and L(ρ ′′′) ⊆ L(ρ ′′). Due to ¬Kiψ ∈ L(ρ) and Proposition 14, Therefore, for the second case we also

have that ρ ′′ 6∈ [ρ ]i. Thus, we have shown that if ρ ′ ∈ [ρ ]i and (ρ ′,ρ ′′) ∈ RaKhiψ
, then ρ ′′ 6∈ [ρ ]i, which

means that [ρ ′]i[ρ ′′]i is a complete σ -execution from [ρ ]i. Hence, to show that MT ,ρ � Khiψ , we only

need to show that for each ρ ′ ∈ [ρ ]i, (1) the action aKhiψ is executable at ρ ′, (which means that σ is a

uniform executable strategy,) and (2) MT ,ρ ′′
� Kiψ for each ρ ′′ with (ρ ′,ρ ′′) ∈ RaKhiψ

.

For (1), due to Khiψ ,¬Kiψ ∈ L(ρ) and Proposition 14, we know that Khiψ ,¬Kiψ ∈ L(ρ ′). Thus, by

the construction step (j), there is a node nKhiψ such that L(nKhiψ)= {Kiψ} and L(end(ρ ′),nKhiψ) = aKhiψ .

Since T is a complete subtree of Tϕ0
, it follows that nKhiψ is a node in T . Let ρ ′′′ be the maximal ε-path

that begins with nKhiψ . We have that ρ ′
aKhiψ−−−→ ρ ′′′, and then (ρ ′,ρ ′′′) ∈ RaKhiψ

. Thus, the action aKhiψ is

executable at ρ ′.

For (2), if (ρ ′,ρ ′′)∈RaKhiψ
, it means that either L(end(ρ ′), ini(ρ ′′)) = aKhiψ or L(end(ρ ′),n′) = aKhiψ

where n′ is blocked by ρ ′′. From the construction, we know that only the steps (j) and (k) can add such

labels. From these steps, we know that Kiψ ∈ L(ini(ρ ′′)) or Kiψ ∈ L(n′). In either case, we have that

Kiψ ∈ L(ρ ′′). By the proof of the Ki-case above, we know that MT ,ρ ′′
� Kiψ .

For the case Khiψ 6∈ L(ρ), assume that MT ,ρ � Khiψ . By the semantics, there is an i-strategy σ

such that all compete σ -executions from [ρ ]i are finite and MT ,ρ ′
� Kiψ for all [ρ ′]i ∈ ECE(σ , [ρ ]i). Due

to Khiψ 6∈ L(ρ), we have that ¬Khiψ ∈ L(ρ). By Proposition 15, we know that there is a complete σ -

execution [ρ ]i · · · [ρ ′]i such that ¬Khiψ ∈ L(ρ ′). By the construction step (g), we know that ¬Kiψ ∈ L(ρ ′).
Due to Khiψ ∈ sub+(ϕ0), it follows that Kiψ ∈ sub+(ϕ0). By proof of the Ki-case above, we have that

MT ,ρ ′
� ¬Kiψ . Contradiction! Thus, MT ,ρ 6� Khiψ .

The completeness below follows from Lemma 16 above.

Theorem 17 (Completeness). If Tϕ0
is not closed, then ϕ0 is satisfiable.

4.2 Complexity

In this section, we will show that the procedure of Definition 8 runs in polynomial space.

Definition 18 (Depth). The depth of a formula, denoted by dep(ϕ), is the depth of nesting of K or Kh

operators, which is defined in Table 2.

The reason that dep(Khiψ) > dep(Kiψ) is that in the construction steps (j) and (k) we need to label

n’s child node with the formula Kiψ for Khiψ ∈ L(n).

Proposition 19. The height of the tableau tree Tϕ0
is bounded by a polynomial function of the size of the

set sub+(ϕ0).
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dep(⊥) = 0

dep(p) = 0

dep(¬ψ) = dep(ψ)
dep(ψ ∧ χ) = max{dep(ψ),dep(χ)}

dep(Kiψ) = dep(ψ)+1

dep(Khiψ) = dep(ψ)+2

Table 2: Depth of formulas

Proof. Let the size of sub+(ϕ0) be m. In the construction of the tableau tree Tϕ0
in Definition 8, each

step of (a)-(k) might add the height of the tree with 1 degree. The steps (a)-(g) can be consecutively

executed at most m times to get a sub+-formula closure.

Now consider a Tϕ0
path that starts from the root node, and we contract it by seeing the consecutive

nodes whose edges are labeled ε as one single node. Let n be a node in this contracted path b.

If the node n’s child node is added by the step (j), then the greatest depth of formulas labeled on the

child node is strictly less than the greatest depth of formulas labeled on n.

If the node n’s child node is added by the step (i), although the greatest depth of formulas labeled on

the child node might be the same as the greatest depth of formulas labeled on n, but, such descendant

nodes with the same greatest depth with n can be consecutively added by the step (i) at most m times to

achieve a node whose Ki ancestor has the same labeled formulas. After that, if a descendant node n′ is

added by the step (i) again, then it must be a K j descendant where i 6= j. Thus, the greatest depth will

be strictly shrunk. If the descendant node n′ is added by the step (k), the greatest depth might still keep

the same with n. However, the step (k) can be executed on one path at most m2 times before it adds a

blocked node.

Hence, there are at most m4 consecutive nodes in b that have the same greatest depth before the

greatest depth becomes strictly less. Therefore, the length of the contracted path b is at most m5, and the

length of the original path is at most m6. It follows that the height of Tϕ0
is bounded by m6.

Lemma 20. There is an algorithm that runs in polynomial space for deciding whether Tϕ0
is closed.

Proof. Let the size of sub+(ϕ0) be m. In the construction step (i), at most m successors are added. In the

step (j), at most m2 successors are added, and in the step (k) at most m3 successors are added. This means

that each node has at most m+m2+m3 child nodes. Therefore, the tableau tree Tϕ0
is an m+m2+m3-ary

tree. By Proposition 19, we know that the height of the tree is bounded by m6.

We can mark the node to check whether the tree is closed. Note that how a node is marked can be

completely determined by its label and how its successors are marked. Once we have determined how a

node is marked, we never have to consider the subtree below that node again. Thus, a depth-first search

of the tree that runs in polynomial space can decide whether the tree is closed [7].

Since the satisfiability problem of epistemic logic with no less than 2 agents is PSPACE-hard (see [7]),

and it is a fragment of ELKhn, it follows that the satisfiability problem of ELKhn is also PSPACE-hard.

Together with Lemma 20, we have the following result.

Theorem 21. The problem of the satisfiability of ELKhn formulas is PSPACE-complete.
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5 Conclusion

This paper presented a tableau procedure for the multi-agent version of the logic of strategically knowing

how. The tableau method presented in this paper is developed from the tableau method for epistemic

logic in [7] and the tableau method for knowing how logic via simple plans [14]. This paper showed the

soundness, the completeness, and the complexity of this tableau procedure. Since the procedure runs in

polynomial space, it follows that the satisfiability problem of the logic of strategically knowing how can

be decided in PSPACE. Moreover, since the knowing how logic based on PDL-style knowledge-based

plans over finite models in [15] is the same as the logic of strategically knowing how, it means that the

satisfiability problem of that logic also can be decided in PSPACE.
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Aristotle’s discussions on modal syllogistic have often been viewed as error-prone and have gar-
nered significant attention in the literature due to historical and philosophical interests. However,
from a contemporary standpoint, they also introduced natural fragments of first-order modal logic,
warranting a comprehensive technical analysis. In this paper, drawing inspiration from the natural
logic program, we propose and examine several variants of modal syllogistic within the epistemic
context, thereby coining the term Epistemic Syllogistic. Specifically, we concentrate on the de re in-
terpretation of epistemic syllogisms containing non-trivial yet natural expressions such as “all things
known to be A are also known to be not B.” We explore the epistemic apodeictic syllogistic and
its extensions, which accommodate more complex terms. Our main contributions include several
axiomatizations of these logics, with completeness proofs that may be of independent interest.

1 Introduction

Although modal logic is regarded as a relatively young field, its origins can be traced back to Aristotle,
who explored syllogistic reasoning patterns that incorporated modalities. However, in contrast to his
utterly successful assertoric syllogistic, Aristotle’s examination of modal syllogisms is often viewed as
error-prone and controversial, thus receiving less attention from logicians. In the literature, a large body
of research on Aristotle’s modal syllogistic primarily centers on the possibility of a coherent interpreta-
tion of his proposed modal systems grounded by his philosophy on necessity and contingency (see, e.g.,
[11, 5, 12]).

We adopt a more liberal view on Aristotle’s modal syllogistic, considering it as a source of inspiration
for formalizing natural reasoning patterns involving modalities, rather than scrutinizing the coherence of
the original systems. Our approach is encouraged by the fruitful research program of natural logic,
which explores “light” logic systems that admit intuitive reasoning patterns in natural languages while
balancing expressivity and computational complexity [1, 8]. In particular, various extensions of the
assertoric syllogistic have been proposed and studied [8].

In this paper, we propose a systematic study on epistemic syllogistic to initiate our technical investi-
gations of (extensions of) modal syllogistic. The choice for the epistemic modality is intentional for its
ubiquitous use in natural languages. Consider the following syllogism:

All C are B Some C is known to be A
Some B is known to be A

Taking the intuitive de re reading, the second premise and the conclusion above can be formalized
as ∃x(Cx∧KAx) and ∃x(Bx∧KAx) respectively in first-order modal logic (FOML).1 It then becomes
apparent that this syllogism is valid under the standard semantics of FOML. One objective of our inves-
tigation into epistemic syllogistic is to explore various natural fragments of FOML following the general
structure of syllogisms.

1The de dicto reading of the second premise would be K(∃x(Cx∧Ax)), which we do not discuss here.

https://dx.doi.org/10.4204/EPTCS.379.31


Li & Wang 393

Aristotle’s original apodeictic syllogistic only allows a single occurrence of a necessity modality at
a particular position in each sentence of assertoric syllogistic. However, from a modern perspective, we
can greatly extend it and express interesting epistemic statements involving multiple agents and nested
knowledge, such as “Everything known to be A by i is also known to be A by j”. Moreover, it is also
interesting to allow nested knowledge such as “Something i knows that j knows to be A is also known to
be B by i”. The general idea is to extend the language of terms but keep the pattern of “Some t is g” and
“All t are g”, as proposed in [10].

In this paper, we begin by presenting preliminaries about assertoric syllogisms in Section 2. We then
proceed to examine the epistemic version of Aristotle’s apodeictic syllogistic in Section 3 and provide a
complete axiomatization. In Section 4, we significantly expand the language of terms in a compositional
manner to allow for nesting of modalities with respect to multiple agents. The completeness of the
proposed proof systems is demonstrated in Section 5. We conclude with a discussion of future work in
the final section.

2 Preliminaries

In this section, we familiarize the readers with the basics of Aristotle’s syllogistic. Let us first consider
the language of Assertoric Syllogistic.

Definition 1 (Language LAS) Given a countable set of predicates U, the language of Assertoric Syllo-
gistic is defined by the following grammar:

ϕ ::= All(t,g) | Some(t,g), t ::= A, g ::= A | ¬A

where A ∈U. For the ease of presentation, we also write ¬All(A,B) := Some(A,¬B), ¬All(A,¬B) :=
Some(A,B), ¬Some(A,B) := All(A,¬B) and ¬Some(A,¬B) := All(A,B).

The semantics for LAS is based on first-order structures.

Definition 2 (Semantics for LAS) A model of LAS is a pair M = (D,ρ) where D is a non-empty domain
and ρ : U →P(D) is an interpretation function. The satisfaction relation is defined as below where the
third column shows the equivalent clauses in the first-order language.

M |=AS All(A,B) ⇐⇒ ρ(A)⊆ ρ(B) M  ∀x(Ax→ Bx)
M |=AS All(A,¬B) ⇐⇒ ρ(A)∩ρ(B) = /0 M  ∀x(Ax→¬Bx)
M |=AS Some(A,B) ⇐⇒ ρ(A)∩ρ(B) 6= /0 M  ∃x(Ax∧Bx)
M |=AS Some(A,¬B) ⇐⇒ ρ(A) 6⊆ ρ(B) M  ∃x(Ax∧¬Bx)

Note that since we wish to generalize the ideas of the syllogistics from the modern perspective,
the interpretation of a predicate can be an empty set, in contrast with the Aristotelian non-emptiness
assumption.

Following the study of Corcoran [3] and Martin [6], we present the following deduction system
SAS. Note that our system is slightly different from that of Corcoran’s and Martin’s, as they are loyal to
Aristotle’s non-emptiness assumption.2

2Cf. [7] for a direct proof system that replaces RAA rule by the explosion rule. Moss’ work is targeted at a stronger
language, which allows complement terms in the antecedent. e.g. All(¬A,¬B).
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All(A,A)
Some(A,B)

Conversion
Some(B,A)

[¬ϕ]
ψ

[¬ϕ]
¬ψ

RAAϕ

All(A,B) All(B,g)
Barbara-Celarent

All(A,g)

Some(A,g)
Existence

Some(A,A)

With a slight modification of Corcoran’s result in Section 4 of [3], it follows that the above system is
sound and complete.

Theorem 3 SAS is sound and strongly complete w.r.t. the semantics.

3 Epistemic Apodeictic Syllogistic

Inspired by apodeictic syllogistic, we introduce the first language of Epistemic Syllogistic.

Definition 4 (Language LEAS) Given a countable set of predicates U, the language of Epistemic Apode-
ictic Syllogistic is generated by the following grammar of formulas (ϕ) and terms (t,g):

ϕ ::= All(t,g) | Some(t,g), t ::= A, g ::= A | ¬A | KA | K¬A

where A ∈U. We collect all the g as the set of (categorical) terms TermEAS(U).

Note that the formulas should be read de re. For example, All(A,K¬B) says “all A are known to be not
B”, expressing the logical form ∀x(Ax→ K¬Bx). Formulas without modalities are called non-modal
formulas.

LEAS is interpreted on first-order Kripke models with a constant domain.

Definition 5 (Models for LEAS) A model for LEAS a tuple M = (W,R,D,ρ). W is the set of possible
worlds, R ⊆W ×W is a reflexive relation, D is the non-empty domain, and ρ : W ×U →P(D) is the
interpretation function. We also write ρw(A) for ρ(w,A).

Note that further frame conditions such as transitivity and Euclidean property do not play a role here
since the syntax does not allow nested modalities, which will be relaxed in the next section.

To ease the presentation of the semantics, we extend the interpretation ρ to any term.

Definition 6 ρ+ : W ×TermES(U)→P(D) is defined as:

ρ
+
w (A) = ρw(A), ρ

+
w (¬A) = D−ρw(A) ρ

+
w (KA) =

⋂
wRv

ρv(A) ρ
+
w (K¬A) =

⋂
wRv

(D−ρv(A))

Definition 7 (Semantics for LEAS) Given a pointed model M ,w, the satisfaction relation is defined as
follows where the third column lists the corresponding first-order modal formulas.

M ,w |=ES All(A,g) ⇐⇒ ρw(A)⊆ ρ+
w (g) M ,w  ∀x(Ax→ g(x))

M ,w |=ES Some(A,g) ⇐⇒ ρw(A)∩ρ+
w (g) 6= /0 M ,w  ∃x(Ax∧g(x))

where we abuse the notation and let g(x) be a modal predicate formula defined as follows:

g(x) = Ax if g = A, g(x) = ¬Ax if g = ¬A
g(x) = KAx if g = KA, g(x) = ¬KAx if g = ¬KA

where K is the modal operator and Ax is an atomic formula.
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We propose the following proof system SEAS:

All(A,A)
[¬ϕ]

ψ

[¬ϕ]
¬ψ

RAA (given non-modal ϕ,ψ)
ϕ

Some(A,Kg)
E-Truth

Some(A,g)

All(A,Kg)
A-Truth

All(A,g)

Some(A,B)
Conversion

Some(B,A)

All(A,B) All(B,g)
Barbara/Celarent

All(A,g)

Some(A,B) All(B,g)
Darii/Ferio

Some(A,g)

All(C,B) Some(C,Kg)
Disamis/Bocardo

Some(B,Kg)

Some(A,g)
Existence 1

Some(A,A)

Some(B,KA)
Existence 2

Some(A,KA)

We say a set of formulas is consistent if it cannot derive a contradiction in system SEAS. Note that
the RAA rule is restricted to non-modal formulas, as formulas with K in LEAS do not have negations
expressible in the language.

Theorem 8 (Completeness) If Σ |=ES ϕ , then Σ `SEAS ϕ .

Due to the lack of space, we only sketch the idea of the (long) proof in Appendix A.

4 Multi-agent Syllogistic with Nested Knowledge

The language LEAS has an asymmetry in the grammar such that the first term is simpler than the second. In
this section, we restore the symmetry of the two terms. Moreover, the terms are now fully compositional
using modalities and negations, thus essentially allowing nested modalities in both � and ♦ shapes, also
in a multi-agent setting. It can be viewed as a modal extension of the language of Syllogistic Logic with
Complement in [7], or a fragment of the language of Aristotelian Modal Logic in [10].

Definition 9 (Language LNES) Given a countable set of predicates U and a set of agents I, the language
LNES is defined by the following grammar:

ϕ ::= All(g,g) | Some(g,g), g ::= A | Kig | ¬g

Where A ∈U and i ∈ I. The set of terms g is denoted as TermNES(U).

As before, we define ¬All(g1,g2) := Some(g1,¬g2) and ¬Some(g1,g2) := All(g1,¬g2). Moreover, let
K̂ig be an abbreviation for ¬Ki¬g. With this powerful language LNES, we can express the following:
“Everything i knows to be A, j also knows” by All(KiA,KjA); “According to i, something known to be B
is possible to be also A” by Some(KiB, K̂iA); “Everything i knows that j knows to be A is also known to
be B by i” by All(KiKjA,KiB).

LNES is also interpreted on first-order Kripke models with a constant domain and multiple relations
(W,{Ri}i∈I,D,ρ). We say the model is a T/S4/S5 model if each Ri is a reflexive/reflexive and transitive
/equivalence relation, respectively. Now we define ρ+, the interpretation function for terms.

Definition 10 ρ+ : W ×TermNES(U)→P(D) is defined recursively as:

ρ
+
w (A) = ρw(A) ρ

+
w (¬g) = D−ρ

+
w (g) ρ

+
w (Kig) =

⋂
wRiv

ρ
+
v (g)
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It is easy to see that ρ+
w (K̂ig) = ρ+

w (¬Ki¬g) =
⋃

wRiv ρ+
v (g).

Definition 11 (Semantics for LNES) The third column is the corresponding FOML formulas.

M ,w |=NES All(g1,g2) ⇐⇒ ρ+
w (g1)⊆ ρ+

w (g2) M ,w  ∀x(g1(x)→ g2(x))
M ,w |=NES Some(g1,g2) ⇐⇒ ρ+

w (g1)∩ρ+
w (g2) 6= /0 M ,w  ∃x(g1(x)∧g2(x))

A simple induction would show the FOML formulas above are indeed equivalent to our LNES formulas.
For x ∈ {T,S4,S5}, we write Σ |=x−NES ϕ if for all x-model such that M ,w |=NES Σ, M ,w |=NES ϕ .

Here is an observation playing an important role in later proofs.

Proposition 12 For any g ∈ TermNES(U), All(g,¬g) and Some(g,g) are both invalid over S5 models
(thus also invalid over T, S4 models).

PROOF [Sketch] First note that Some(g,g) is equivalent to¬All(g,¬g). We just need to show All(g,¬g)
and its negation are both satisfiable for all g. Note that a model with a singleton domain {a} can be
viewed as a Kripke model for propositional modal logic, where a predicate A can be viewed as a propo-
sitional letter: it holds on a world w iff a ∈ ρw(A). Then a term g can be viewed as an equivalent modal
formula. Since there is only one a in the domain, All(g,¬g) is equivalent to ¬g, viewed as a modal
formula, by the semantics. We just need to show each ¬g and g has singleton S5 models. It is easy
to see that each g and ¬g (as modal formula) can be rewritten into an equivalent negative normal form
(NNF) using Ki and K̂i to push the negation to the innermost propositional letter, e.g., ¬Ki¬K j¬KiA can
be rewritten as K̂iK jK̂i¬A. Now it is easy to satisfy such formulas by a Kripke model with a single world
w and the reflexive relations for all Ri: make A true on w iff the NNF of g or ¬g ends up with the literal
A instead of ¬A. Then we can turn this model into a first-order Kripke model by setting ρw(A) = {a} iff
A is true on w.

�
We propose the following proof system TNES:

All(g,g), All(Kig,g), All(g,¬¬g), All(¬¬g,g)

All(g1,g2) All(g2,g3)
Barbara

All(g1,g3)

Some(g1,g2)
Conversion

Some(g2,g1)

Some(g1,g2)
Existence

Some(g1,g1)

All(g,¬g)
Non-emptiness

Some(¬g,¬g)

[ϕ]
ψ

[ϕ]
¬ψ

RAA¬ϕ

` All(g1,g2)
K` All(Kig1,Kig2)

Clearly, All(Kig,g) is the counterpart of the usual T axiom in modal logic. The premise of Non-
emptiness makes sure that nothing is g, since the FOML model has the nonempty domain, it follows
that there is some ¬g. Note that the K-rule is restricted to provable formulas, as in the case of the
monotonicity rule in modal logic. We define S4NES to be TNES +All(Kig,KiKig), and S5NES to be
S4NES +All(¬Kig,Ki¬Kig). It is straightforward to establish soundness if we read the formulas as their
first-order modal counterparts.

Theorem 13 (Soundness) Σ `TNES ϕ implies Σ |=T NES ϕ . Σ `S4NES ϕ implies Σ |=S4NES ϕ . Σ `S5NES ϕ

implies Σ |=S5NES ϕ .

Below are some derived rules and theorems that will play a role in the later proofs.
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Proposition 14 The following are derivable in TNES (and thus in S4NES,S5NES).

Some(g1,g2) All(g2,g3)
Darii

Some(g1,g3)

All(g1,g2) Contrapositive
All(¬g2,¬g1)

All(g,¬g)
NonExistence

All(t,¬g)

`TNES All(g, K̂ig) `TNES All(Kig, K̂ig) `TNES All(Ki¬¬g,Kig) `TNES All(Kig,Ki¬¬g)

PROOF

Darii

All(g2,g3) [All(g3,¬g1)]
Barbara

All(g2,¬g1)
Some(g1,g2)

Conversion
Some(g2,g1)

RAA
Some(g3,g1)

Conversion
Some(g1,g3)

Contrapositive

[Some(¬g2,g1)] All(g1,g2)
Darii

Some(¬g2,g2) All(¬g2,¬g2)
RAA

All(¬g2,¬g1)
Non-Existence

[Some(t,¬¬g)] All(¬¬g,g)
Darii

Some(t,g)
Conversion

Some(g, t)
Existence

Some(g,g) All(g,¬g)
Darii

Some(g,¬g) All(g,g)
RAA

All(t,¬g)

All(g, K̂ig) can be proved based on the T-axiom All(Kig,g) and Contrapositive above. All(Kig, K̂ig)
follows by Barbara.

All(Ki¬¬g,Kig) and All(Kig,Ki¬¬g) can be shown by applying K principle on `TNES All(g,¬¬g)
and `TNES All(¬¬g,g). �

Recall that Σ is inconsistent iff it can derive a contradiction. We can show:

Proposition 15 A set of formulas Σ is inconsistent iff Σ ` Some(g,¬g).

PROOF ⇐: Σ ` All(g,g) since it is an axiom. But by assumption, Σ ` ¬All(g,g) = Some(g,¬g).
⇒: Without loss of generality, assume Σ ` Some(g1,g2),All(g1,¬g2), then by conversion and Darii,
Σ ` Some(g2,¬g2). �

5 Completeness

Now we proceed to prove that TNES is strongly complete w.r.t. reflexive frames. The result can be easily
generalized to show the completeness of S4NES and S5NES w.r.t. their corresponding classes of frames,
to which we will come back at the end of the section.
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The completeness proof is based on the canonical (Kripke) model construction, similar to the case
of modal logic. However, the language LNES is significantly weaker than the full language of FOML,
which introduces some difficulties. In particular, LNES is essentially not closed under subformulas: if
we view our Some(g1,g2) and All(g1,g2) as ∃x(g1(x)∧ g2(x)) and ∀x(g1(x)→ g2(x)), then g1(x) and
g2(x) are not expressible as formulas in LNES. Therefore in constructing the canonical model, we need
to supplement each maximal consistent set ∆ with a proper “maximal consistent set” of terms for each
object, which can be viewed as a description of the object. Inspired by [7], we define some notion of
types to capture such descriptions, which closely resembles the concept of points in [7],3 in the setting
of the orthoposet-based algebraic semantics for a (non-modal) syllogistic logic.4

Moreover, to prove the truth lemma eventually, we need Lemma 23 which asserts that a set of exis-
tential sentences is consistent iff each single one of them is consistent. The lemma is equivalent to the
assertion that in TNES, every existential sentence brings no new universal consequences. The seemingly
obvious statement is actually non-trivial since our system allows RAA and hence does not allow an easy
inductive proof on deduction steps. We leave it to future work for finding an alternative direct proof
system without RAA. For now, we need to construct a simpler canonical model to show Lemma 23 in
the coming subsection, which also leads to the weak completeness of TNES.

5.1 Satisfiability of Existential Formulas and Weak Completeness

Inspired by the notion of point in [7], we first define the types as maximal descriptions of objects using
terms. Obviously, an object must respect the universal formulas, and be either g or not g but not both for
every term g. This will give us some basic properties of types.

Definition 16 (Type) A type X is a subset of TermNES(U) s.t.

• If g1 ∈X and `TNES All(g1,g2), then g2 ∈X . (Respects Provably Barbara)

• For all g ∈ TermNES(U), either g ∈X or ¬g ∈X . (Completeness)

• For all g ∈ TermNES(U), g,¬g are not both in X . (Consistency)

Denote the set of all types by W.

Definition 17 A collection Y of terms is said to be possible if for all g1,g2 ∈ Y , 6`TNES All(g1,¬g2).

Note that all types are possible: If g1,g2 ∈X ∈W satisfies `TNES All(g1,¬g2), then since X respects
provably Barbara, ¬g2 ∈X , contradicting the consistency of X .

Lemma 18 (Witness Lemma for Possible Collection of Terms) If X0 is possible, then there is a type
X ∈W extending it.

PROOF Enumerate all terms in TermNES(U) as s0,s1, . . . . We will construct a series of subsets of
TermNES(U), X0 ⊆X1 ⊆X2 . . . s.t.

• For all t1, t2 ∈Xn, 6`TNES All(t1,¬t2). (Xn is possible)

• Xn+1 is Xn∪{sn+1} or Xn∪{¬sn+1}.

3It is also called a quantum state in [2].
4The completeness of the (non-modal) syllogistic logic in [7] was proved via a representation theorem of orthoposets. Our

proofs below are self-contained and do not rely on the results of orthoposets.
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Now we show that each possible Xn can be extended into a possible Xn+1. Given Xn that is pos-
sible, prove that at least one of sn+1,¬sn+1 can be added to Xn to form Xn+1 that is possible. As-
sume Xn ∪ {sn+1} is not possible, then `TNES All(t,¬t′) for some t, t ′ ∈ X ∪ {sn+1}. We need to
show that 0TNES All(g,¬g′) for all g,g′ ∈X ∪{¬sn+1}. Suppose not, then `TNES All(g,¬g′) for some
g,g′ ∈X ∪{¬sn+1}. Since Xn is possible, at least one of t and t ′ must be sn+1, and at least one of g and
g′ must be ¬sn+1. Furthermore, by Proposition 12 and soundness, 0TNES All(u,¬u). Therefore exactly
one of t and t ′ is sn+1, and exactly one of g and g′ is ¬sn+1. In the following we derive contradictions
from `TNES All(g,¬g′) and `TNES All(t,¬t′) based on four cases.

Let us consider the case when t ′ = sn+1 and g′ = ¬sn+1, thus t,g ∈Xn. By double negation axiom,
`TNES All(g,sn+1) and `TNES All(t,¬sn+1). Then we have `TNES All(t,¬g) by contrapositive and Barbara.
Then it contradicts to the assumption that Xn is possible and we are done. The case when t = sn+1 and
g = ¬sn+1 can be proved similarly using contrapostive and double negation.

Now let us consider the case when t = sn+1 and g′ = ¬sn+1, then we have `TNES All(g,sn+1) and
`TNES All(sn+1,¬t′). By Barbara, we have `TNES All(g,¬t′), contradicting to the assumption that Xn is
possible. Similar for the case when t ′ = sn+1 and g = ¬sn+1.

Consequently, at least one of sn+1,¬sn+1 can be added to Xn to form Xn+1 that is possible.
Let X =

⋃
n∈NXn. Note that each t ∈X has to be added or “readded” at some finite step Xk

thus any two t1, t2 ∈X must be included in some X j. Therefore 6`TNES All(t1,¬t2) since all the Xn are
possible.

Finally, we prove that X is a type. It is complete since one of sn,¬sn is added at some Xn. It is con-
sistent since if t,¬t ∈X , but by axiom double negation we have `TNES All(t,¬¬t), contradicting the fact
that X is possible. Now for provably Barbara: If t1 ∈X and `TNES All(t1, t2), then `TNES All(t1,¬¬t2),
hence ¬t2 6∈X since X is possible. By its completeness, t2 ∈X . �

In the following, we build a canonical model for consistent sets of existential formulas. Note that we
use a fixed set N as the domain and assign a type to each number in N on each world, i.e., a world is
simply a function from natural numbers to types. The accessibility relation is defined as usual in modal
logic.

Definition 19 (Canonical Model for Existential Formulas) The canonical model for existential for-
mulas of TNES is defined as M E = (W E ,{RE

i }i∈I,DE ,ρE), where:

• W E =WN. That is: a world w is a map from N to types.

• w1RE
i w2 iff Kig ∈ w1(n) entails g ∈ w2(n) for all n ∈ N, g ∈ TermNES(U).

• DE = N
• ρE(w,A) = {n | A ∈ w(n)}.

Proposition 20 (Reflexivity) The canonical model for existential formulas of TNES is reflexive.

PROOF For arbitrary g ∈ TermNES(U), w ∈W E , if Kig ∈ w(n), then since `TNES All(Kig,g), and w(n)
respects provably Barbara, g ∈ w(n). Hence wRE

i w. �

To show that the canonical model satisfies the desired existential formulas, the key is to show that
ρE+

(w,g) = {n ∈ N | g ∈ w(n)}. That is: an object has property g if g is in the type it corresponds to.
Similar to the proof of truth lemma in propositional modal logic, we have to prove an existence lemma
for the induction step for Ki. The existence lemma reads: if in w, an object is not known to be g, then w
must see a world where the object is not g.
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Lemma 21 (Existence Lemma) For all w, m ∈ N, t ∈ TermNES(U) s.t. ¬Kit ∈ w(m), there is w′ s.t.
wRE

i w′ and ¬t ∈ w′(m).

PROOF Consider the set Y = {g | Kig ∈ w(m)}∪{¬t}. Prove that it is possible. Towards a contra-
diction, suppose `TNES All(t1,¬t2) for some t1, t2 ∈ {g | Kig ∈ w(m)}∪{¬t}. By K principle we have
`TNES All(Kit1,Ki¬t2). There are three cases to be considered.

Consider the case where Kit1,Kit2 ∈ w(m). By Proposition 14, `TNES All(Ki¬t2, K̂i¬t2) and Barbara,
`TNES All(Kit1,¬Kit2), contradicting the fact that w(m) is possible.

Suppose t1 = t2 = ¬t, by Proposition 14, `TNES All(Ki¬t,Kit) which entails `TNES All(Ki¬t, K̂it) but
this is not possible by soundness, since it is not valid over T-models according to Proposition 12.

If Kit1 ∈ w(m) and t2 = ¬t, then `TNES All(t1,¬¬t) entails `TNES All(Kit1,Kit), which contradicts the
fact that ¬Kit ∈w(m) and w(m) is possible. If Kit2 ∈w(m) and t1 =¬t, it leads to a contradiction as well
since from `TNES All(Kit1,¬Kit2), we have the symmetric `TNES All(Kit2,¬Kit1) by contrapostive.

Consequently 6`TNES All(t1,¬t2) for all t1, t2 ∈ Y . By Lemma 18, Y = {g | Kig ∈ w(m)}∪{¬t} can
be extended to a type. Denote it by Xm. Clearly, by repeating the reasoning in the above first case, for
each n 6= m ∈ N we can find an Xn ∈W such that {g | Kig ∈ w(n)} ∈Xn. Let w′ then be defined by
w′(n) = Xn for each n. Then ¬t ∈ w′(m) and wRE

i w′. �

Lemma 22 (Truth Lemma for Terms) ρE+
(w,g) = {m | g ∈ w(m)} for all g ∈ TermNES(U).

PROOF Apply an induction on terms. The base case is true by definition.
Case 1: For ¬g, ρE+

(w,¬g) = DE−ρE+
(w,g) = DE−{m | g ∈ w(m)}= {m | ¬g ∈ w(m)}. The last

equality holds because types are consistent and complete.
Case 2: For Kig, ρE+

(w,Kig) =
⋂

wRE
i w′ ρ

E+
(w,g) =

⋂
wRE

i w′{m | g ∈ w(m)}, which equals {m |Kig ∈
w(m)} by the following reasoning:
⊇ side is easy to see, since if m ∈ {m | Kig ∈ w(m)} and wRE

i w′, then Kig ∈ w(m) entails g ∈ w′(m)
by definition. Hence m ∈

⋂
wRE

i w′{m | g ∈ w′(m)}.
⊆ side. Assume i ∈

⋂
wRE

i w′{m | g ∈ w′(m)}, then m 6∈
⋃

wRE
i w′{m | g 6∈ w′(m)}, by the complete-

ness and consistency of w(m), i 6∈
⋃

wRE
i w′{m | ¬g ∈ w′(m)}. By Contrapositive of Existence Lemma,

m 6∈ {m | ¬Kig ∈ w(m)}. Consequently, m ∈ {m | Kig ∈ w(m)}. �

Now we can show a set of consistent existential sentences is satisfiable.

Lemma 23 (Sets of Consistent Existential Sentences are Satisfiable) For a set of existential sentence
ΣSome, if 6`TNES ¬ϕSome for all ϕSome ∈ ΣSome, then ΣSome is satisfiable (thus TNES-consistent).

PROOF Enumerate sentences in ΣSome as ϕ0,ϕ1, . . . . For each n, suppose ϕn = Some(g1,g2), we show
that {g1,g2} is possible. First note that since ¬ϕ is an abbreviation, the assumption 6`TNES ¬ϕSome says
6`TNES All(g1,¬g2). By contrapostive, 6`TNES All(g2,¬g1). By Proposition 12, All(g1,¬g1),All(g2,¬g2)
are not valid, thus cannot be proved in TNES by soundness. Therefore {g1,g2} is possible and can be
extended as a type by Lemma 18; call it Xn.

Now we can define a w ∈W E . If ΣSome is infinite, let w(n) = Xn for all n ∈ N; if not, let w(n) = Xn

for n ≤ |ΣSome|, and w(n) = X0 for n > |ΣSome|. Now we can show M E ,w |=NES ΣSome since each
ϕn ∈ Σsome is at least witnessed by n due to our construction of w and Lemma 22. Consistency of Σsome

follows by soundness. �

The weak completeness follows from the above lemma.
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Theorem 24 (Weak Completeness) If |=NES ϕ , then `TNES ϕ .

PROOF By Proposition 12 and the validity of the rule of Existence, we have 6|=NES ϕSome for any exis-
tential sentence ϕSome. Hence it suffices to prove that for all universal sentence ϕAll , if |=NES ϕAll , then
`TNES ϕAll . Which is equivalent to showing if 6`TNES ϕAll , then 6|=NES ϕAll . Hence it suffices to show that
for all existential sentence ϕSome, if 6`TNES ¬ϕSome, then ϕSome is satisfiabe, which follows from Lemma 23
w.r.t. a singleton set. �

5.2 Strong Completeness

Normally, a weak completeness result naturally leads to strong completeness if the logic is compact.
However, even though LNES is indeed compact as it is a fragment of FOML, strong completeness does
not easily follow and requires an argument based on Lemma 23. That is because in syllogistic, formulas
are not closed under conjunction. Consequently, weak completeness does not lead to the satisfiability of
every finite consistent formula set. Now we proceed to give a proof of strong completeness, again by
building a (more complicated) canonical models, but for arbitrary maximal consistent sets.

Again, inspired by the notion of point in [7], we define the ∆-type to describe the sets of maximal
properties an object may exemplify given the maximal consistent set ∆.

Definition 25 (∆-type) Given an MCS ∆, a ∆-type, denoted by X is a subset of TermNES(U) s.t.

• If g1 ∈X and ∆ `TNES All(g1,g2), then g2 ∈X . (Respects Barbara)

• For all g ∈ TermNES(U), either g ∈X or ¬g ∈X . (Completeness)

• For all g ∈ TermNES(U), g,¬g are not both in X . (Consistency)

Denote the set of all ∆-types by W(∆).

Given an existential sentence Some(g1,g2) ∈ ∆, we expect there to be some type X exemplifying
both g1,g2. To show this, we first generalize the notion of a possible set of terms w.r.t. a maximal
consistent set ∆.

Definition 26 Given a maximal consistent set ∆, call a set of terms Y ∆-possible, if for all t1, t2 ∈ Y ,
∆ `TNES Some(t1, t2).

It is easy to see that the ∆-types are ∆-possible based on the fact that ∆ is an MCS. The following lemma is
the counterpart of Lemma 11.2 in [7] in the setting of orthoposet-based algebraic semantics. We present
the following direct proof in our setting.

Lemma 27 (Witness Lemma for ∆-Possible Collection) Each set of terms X0 that is ∆-possible can
be extended to a ∆-type X ∈W(∆).

PROOF Enumerate all terms in TermNES(U)−X0 as {sn}. Construct a series of subsets of TermNES(U)
s.t. X0 ⊆X1 ⊆X2 . . . and:

• Xn is ∆-possible: For all t1, t2 ∈Xn, ∆ `TNES Some(t1, t2).

• Xn+1 = Xn∪{g}, where g = sn or ¬sn.

Now we show by induction that such a sequence can be constructed.
By assumption X0 is ∆-possible.
Given Xn s.t. for all t1, t2 ∈Xn, ∆ `TNES Some(t1, t2), and sn+1, prove that at least one of sn+1,¬sn+1

can be added to Xn to form Xn+1 s.t. it remains ∆-possible. Essentially, we have to show either (1)
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Some(t,sn+1)∈ ∆ for all t ∈Xn and Some(sn+1,sn+1)∈ ∆, or (2) Some(t,¬sn+1)∈ ∆ for all t ∈Xn and
Some(¬sn+1,¬sn+1) ∈ ∆.

We prove that not (1) leads to (2). If (1) is not the case, there are two cases. Case 1: Some(sn+1,sn+1) 6∈
∆. Then All(sn+1,¬sn+1) ∈ ∆ since ∆ is maximal. By derived rule nonexistence, All(g,¬sn+1) ∈ ∆ for
all g ∈ TermNES(U). For each t ∈Xn, Some(t, t) ∈ ∆, hence Some(t,¬sn+1) ∈ ∆ by Darii. For ¬sn+1,
by rule non-emptiness and that All(sn+1,¬sn+1) ∈ ∆, Some(¬sn+1,¬sn+1) ∈ ∆. Hence (2) holds.

Case 2: Suppose Some(t,sn+1) 6∈ ∆ for some t ∈Xn, we need to show that (2) holds. For ¬sn+1,
if Some(¬sn+1,¬sn+1) 6∈ ∆, then All(¬sn+1,sn+1) ∈ ∆. Since Some(t,sn+1) 6∈ ∆, All(t,¬sn+1) ∈ ∆,
then All(t,sn+1) ∈ ∆ by Barbara, but since t ∈Xn, Some(t, t) ∈ ∆. This leads to Some(t,sn+1) ∈ ∆, a
contradiction to the assumption. We still need to show Some(t′,¬sn+1) ∈ ∆ for all t ′ ∈Xn. Assume
towards a contradiction that Some(t′,¬sn+1) 6∈ ∆ for some t ′ ∈ Xn, then All(t′,¬¬sn+1) ∈ ∆. Since
Some(t,sn+1) 6∈ ∆ then All(t,¬sn+1) ∈ ∆. The following deduction shows that ∆ `TNES All(t,¬t′), con-
tradicting Some(t, t′) ∈ ∆, which follows from our induction assumption that Xn is ∆-possible.

All(t,¬sn+1)

All(t′,¬¬sn+1) All(¬¬sn+1,sn+1)
Barbara

All(t′,sn+1) Contrapositive
All(¬sn+1,¬t′)

Barbara
All(t,¬t′)

Consequently, either (1) or (2) holds and at least one of sn+1,¬sn+1 can be added to Xn to form Xn+1
that is ∆-possible.

Let X =
⋃

n∈NXn. Then ∆ `TNES Some(t1, t2) for all t1, t2 ∈X .
Finally, we prove that X is a ∆-type. It is complete since one of sn,¬sn is added at each step, and all

predicates in U are eventually visited. It is consistent since ∆ is consistent, so ∆ 6`TNES Some(t,¬t) for all
t, hence t,¬t can’t both be in X . Finally we show that it respects Barbara: If t1 ∈X and All(t1, t2) ∈ ∆,
then ¬t2 6∈X , otherwise we have Some(t1,¬t2) ∈ ∆, contradicting the consistency of ∆. By complete-
ness, t2 ∈X . �

Now we start to construct a canonical model for TNES, and show that every maximal consistent set is
satisfiable in it. Compared to the previous construction, we now need to take the maximal consistent sets
(MCS) into consideration. A world w is a pair of an MCS ∆ and a map from N to W(∆). By abusing the
notation, as in the previous subsection, we write w(m) for f (m) if w = 〈∆, f 〉.
Definition 28 (Canonical Model for TNES) The canonical model for TNES is defined as

M ∗ = (W ∗,{R∗i }i∈I,D∗,ρ∗)

where:

• W ∗ =
⋃

∆∈MCS{〈∆, f 〉 | f ∈W(∆)N}.

• wR∗i w′ iff Kig ∈ w(m) entails g ∈ w′(m) for all m ∈ N, g ∈ TermNES(U).

• D∗ = N

• ρ∗(〈∆, f 〉,A) = {m ∈ N | A ∈ f (m)} for all A ∈U.

It is not hard to show reflexivity as in the previous subsection.

Lemma 29 (Reflexivity) The canonical model for TNES is reflexive.
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PROOF Take arbitrary g ∈ TermNES(U), w ∈W ∗. Assume ∆ is the maximal consistent set behind w. If
Kig ∈ w(m), then since `TNES All(Kig,g), All(Kig,g) ∈ ∆. Then g ∈ w(m) since w(m) respects Barbara.
Hence wR∗i w. �

Lemma 30 (Existence Lemma) For all w, m ∈ N, t ∈ TermNES(U) s.t. ¬Kit ∈ w(m), there is w′ s.t.
wR∗i w′ and ¬t ∈ w′(m).
PROOF Assume w = 〈∆, f 〉 where ∆ is a maximal consistent set. Consider Σ = {Some(g,¬t) | Kig ∈
w(m)}∪

⋃
n∈N{Some(g1,g2) |Kig1,Kig2 ∈w(n)}, where the second part of the union is to make sure we

can obtain the right types. We show Σ is consistent. Note that Σ is made up of existential sentences only,
thus by Lemma 23, it suffices to prove that 6`TNES ¬ϕ for all ϕ ∈ Σ.

Given ϕ = Some(g,¬t)∈ Σ for some Kig∈w(m), assume for contradiction that `TNES All(g, t). Then
by K principle, `TNES All(Kig,Kit), hence All(Kig,Kit) ∈ ∆ and Kit ∈ f (m) since f (m) respects Barbara,
but ¬Kit ∈ w(m), contradicting consistency of w(m).

Given ϕ =Some(g1,g2)∈Σ for some Kig1,Kig2 ∈w(n), assume for contradiction `TNES All(g1,¬g2).
Again by K principle, `TNES All(Kig1,Ki¬g2). By Proposition 14, we have `TNES All(Ki¬g2, K̂i¬g2) and
`TNES All(K̂i¬g2,¬Kig2). Now by Barbara, we have `TNES All(Kig1,¬Kig2). Then All(Kig1,¬Kig2) ∈ ∆

and hence ¬Kig2 ∈ w(n) since w(n) respects Barbara. This is a contradiction to Kig2 ∈ w(n) and that
w(n) is consistent.

Since Σ is consistent, we can expand Σ to a maximal consistent set ∆′ by a Lindenbaum-like argument.
Observe that for all n 6= m, Kig1,Kig2 ∈ w(n), we have Some(g1,g2) ∈ {Some(g1,g2) | Kig1,Kig2 ∈
w(n)} ⊆ ∆′, hence {g | Kig ∈ w(n)} is ∆′-possible and can be expanded to a ∆′-type by Lemma 27, de-
note it by Xn. Similarly, as {g | Kig ∈ w(m)}∪ {¬t} is possible too, it can be expanded to a ∆′-type,
denote it by Xm. Let h be a function from N to W(∆′) s.t. h(n) = Xn. It is clear that (∆, f )R∗i (∆

′,h) and
¬t ∈ h(m). �

Now we can establish the truth lemma similar to the one in the previous section.
Lemma 31 (Truth Lemma) ρ∗

+
(w,g) = {m ∈ N | g ∈ w(m)} for all g ∈ TermNES(U).

Finally, we can show the strong completeness of TNES.
Theorem 32 (Strong Completeness for TNES) TNES is strongly complete w.r.t. the class of reflexive
frames.
PROOF As usual, we show each consistent Σ for the TNES is satisfiable on a reflexive model.

We first expand Σ to a maximal consistent set ∆, and enumerate the existential sentences in ∆ as
ψ0,ψ1 . . . . For each n, suppose ψn = Some(g1,g2), {g1,g2} is thus it is ∆-possible since Some(g1,g2),
Some(g2,g1), Some(g1,g1), Some(g2,g2) ∈ ∆ by rules of Conversion and Existence. Hence, it can
be extended to a ∆-type Xn in W(∆). Take f : N → W(∆) s.t. f (n) = Xn for all n. Show that
M ∗,〈∆, f 〉 |=NES ∆.

For All(g1,g2) ∈ ∆: Assume n ∈ ρ∗
+

w (g1), then by Truth Lemma g1 ∈ w(n), then since w(n) respects
Barbara, g2 ∈ w(n) hence by truth lemma n ∈ ρ∗

+

w (g2). Consequently M ∗,w |=NES All(g1,g2).
For Some(g1,g2) ∈ ∆: Suppose it is enumerated as ϕn. By construction of w, g1,g2 ∈Xn = w(n).

By truth lemma n ∈ ρ∗
+

∆, f (g1)∩ρ∗
+

∆, f (g2). Consequently M ∗,w |=NES Some(g1,g2). �

It is straightforward to adapt the completeness proof with extra axioms enforcing certain frame con-
ditions in the canonical model.
Theorem 33 S4NES and S5NES are strongly complete w.r.t. the class of reflexive and transitive frames
and the class of frames with equivalence relations respectively.
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6 Conclusions and future work

In this paper, we have taken the initial steps towards developing an epistemic syllogistic framework. We
provided complete axiomatizations with respect to two epistemic syllogistic languages featuring de re
knowledge. The same techniques can be applied to belief instead of knowledge. In fact, for systems
concerning consistent belief over serial models, we only need to replace the counterpart of axiom T
with D: All(Kg, K̂g). Adding counterparts of axioms 4 and 5 will yield a complete system of KD45
belief. So far, the usual axioms can all enforce the canonical frame to adopt the desired structure as
their modal logic counterparts. If we proceed without seriality, an additional rule is required: from
Some(Kg1,K¬g1), infer All(g2,Kg3), to capture the scenario where the current world has no successor.
It is evident that syllogisms can be studied in modal contexts other than the epistemic setting as well.

As for other future work, we will consider the axiomatization problem of the full language of the
so-called Aristotelian Modal Logic [10], and also consider the de dicto readings of the modal operators.
It is also interesting to study the computational properties of these logics. One observation is that, like
the cases of epistemic logics of know-wh [14], these epistemic syllogistic languages that we considered
are one-variable fragments of FOML that are decidable in general. We will also explore the technical
connections to other natural logics extending syllogistics such as [4], and to the bundled fragments of
first-order modal logic where quantifiers and modalities are also packed to appear together [13, 9].
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A Proof Sketch of Theorem 8

PROOF [Sketch] Note that for SEAS, since there are LEAS-formulas that cannot be negated syntactically,
and we cannot equate Σ `SEAS ϕ with that Σ∪{¬ϕ} is a consistent set for SEAS. Therefore we cannot
reduce strong completeness to the satisfiability of any consistent set of formulas.

We leave the full proof for the extended version of this paper and only present a sketch here. Assume
that Σ is consistent, otherwise the conclusion is trivial. Separate Σ into the non-modal part Σ0 and the
modal part ΣK. We consider all possible maximal consistent extension of Σ0 in Assertoric Syllogistic
and denote them by {∆i}i∈I . For each ∆i∪ΣK, we construct a pointed model Mi,wi = (W i,Ri,Di,ρ i),wi

for it.

• W i = {wi,v0,v1}.

• Ri is the reflexive closure of {(wi,v0),(wi,v1)}.

• Di is ∆iSome+ t∆′iSome+, the positive existential sentences of the form Some(A,B) in ∆i and its
disjoint copy.

• ρ i
wi
(X) = {ϕ,ϕ ′ | ϕ = Some(A,B) and All(A,X) ∈ ∆i or All(B,X) ∈ ∆i}. Where ϕ ′ is the copy of

ϕ .

ρ i
v0
(X) = {a ∈ Di | ∆i ` All(C,KX) for some C with a ∈ ρ i

w(C)}∪ {ϕ = Some(B,X) ∈ ∆iSome+ |
∆i ` Some(B,KX)}.
ρ i

v1
(X) = Di − ({a ∈ Di | ∆i ` All(C,K¬X) for some C with a ∈ ρ i

w(C)} ∪ {ϕ ′ ∈ ∆′iSome+ | ϕ =
Some(B,B),∆i ` Some(B,K¬X)}).

The idea for the model is roughly the following: In the new world v0, an object a can have a property
X only if a has property C in the real world and ∆i∪Σ thinks All(C,KX); or ∆i∪Σ thinks Some(B,KX)
and a happens to be Some(B,X). In the new world v1, an object a has every property A unless a has
property C and ∆i∪Σ thinks All(C,K¬X); or ∆i∪Σ thinks Some(B,K¬X) and a happens to be the copy
of Some(B,B). We need a disjoint copy of ∆iSome+ in the domain so that the mere fact that ϕ happens to
have property C does not validate a universal sentence.

These models collectively describe all the possible models for Σ under logical equivalence. There-
fore, it can be shown that if Σ 6`SEAS ϕ , we can always find a ∆i ⊇ Σ0 s.t. Mi,w 6|= ϕ . The collection of
these models are called the canonical model family of Σ. Eventually, we will be able to prove that:

1. All models in the canonical model family satisfy Σ.

2. If ϕ is satisfied by all models in the canonical model family of Σ, then Σ `SEAS ϕ .

https://doi.org/10.1080/01445340.2022.2107382
https://doi.org/10.1007/978-94-007-0050-5
https://doi.org/10.4204/EPTCS.251.38
https://doi.org/10.1007/978-3-319-62864-6_21
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1. is standard practice. To show 2, we prove the converse: if Σ 6`SEAS ϕ then there is one model in
the canonical family that falsify it. As an example, we sketch the proof for case Σ 6`SEAS All(A,KB), the
other cases are similar. Consider

Σ
′ = Σ0∪{ϕ | Kϕ ∈ ΣK}∪{Some(A,¬C) | All(C,KB) ∈ ΣK}

It can be shown to be consistent as a set of assertoric syllogistic. The main idea is that Σ0 ∪{ϕ |
Kϕ ∈ ΣK} is proof theoretic consequence of Σ, hence it is by assumption consistent. And if Σ0 ∪{ϕ |
Kϕ ∈ ΣK} deduces All(A,C) for All(C,KB) ∈ ΣK , then Σ `SEAS All(A,KB), which is a contradiction to
the assumption.

Finally, Σ′ has a maximal consistent extension ∆i. It can be shown that the model Mi,wi for ∆i in the
canonical model falsifies All(A,KB).

After establishing 1 and 2, Completeness thus follows. �
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Binary decision diagrams (BDDs) are widely used to mitigate the state-explosion problem in model
checking. A variation of BDDs are Zero-suppressed Decision Diagrams (ZDDs) which omit variables
that must be false, instead of omitting variables that do not matter.

We use ZDDs to symbolically encode Kripke models used in Dynamic Epistemic Logic, a
framework to reason about knowledge and information dynamics in multi-agent systems. We compare
the memory usage of different ZDD variants for three well-known examples from the literature: the
Muddy Children, the Sum and Product puzzle and the Dining Cryptographers. Our implementation is
based on the existing model checker SMCDEL and the CUDD library.

Our results show that replacing BDDs with the right variant of ZDDs can significantly reduce
memory usage. This suggests that ZDDs are a useful tool for model checking multi-agent systems.

1 Introduction

There are several formal frameworks for reasoning about knowledge in multi-agent systems, and many are
implemented in the form of epistemic model checkers. Here we are concerned with the data structures
used in automated epistemic reasoning. This is a non-issue in theoretical work, where Kripke models
are an elegant mathematical tools. But they are not very efficient: models where agents know little tend
to be the largest. More efficient representations are often based on Binary Decision Diagrams (BDDs),
which use the idea that a representation of a function not depending on p can simply ignore that variable
p. This fits nicely to the models encountered in epistemic scenarios, such as the famous example of the
Muddy Children: If child 2 does not observe whether it is muddy, i.e. whether p2 is true or false, then we
can save memory by omitting p2 in the encoding of the knowledge of child 2. However, which variables
matter may change, and in many examples the claim that “many variables do not matter” only holds in
the initial model. This motivates us to look at Zero-suppressed Decision Diagrams (ZDDs) which use an
asymmetric reduction rule to omit variables that must be false, instead of the symmetric reduction rule
targeting variables that do not matter.

Our informal research question is thus: Is it more memory efficient to have a default assumption
that “anything we do not mention does not matter” or, for example “anything we do not mention must be
false”? Obviously, the answer will depend on many aspects. Here we make the question precise for the
case of Dynamic Epistemic Logic, and consider three well-known examples from the literature.

The article is structured as follows. We discuss related work in the rest of this section, then we provide
the relevant background in Sections 2 and 3. Section 4 describes our experiment design and the formal
models used. We present our results in Section 5 and conclude in Section 6.
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Related work Model checking aims to verify properties of formally specified systems. Standard model
checking methods search through a whole state transition graph and thus suffer from the state explosion
problem: the number of states grows exponentially with the number of components or agents. To tackle
this problem symbolic methods were developed [4]. These reduce the amount of resources needed, by
reasoning about sets instead of individual states. Starting with SMV from [16], most approaches use
Binary Decision Diagrams (BDDs) [2] to encode Boolean functions. Zero-suppressed Decision Diagrams
(ZDDs) are an adaption of BDDs, introduced by Minato [18]. ZDDs naturally fit combinatorial problems
and many comparisons between BDDs and ZDDs have been done. For both an elegant introduction into
the topic of BDDs and many more references we refer to [13]. Symbolic model checking using ZDDs has
not been studied much, partly due to underdeveloped construction methods [19].

Most existing symbolic model checkers use temporal logics such as LTL or CTL. Yet problems
come in many forms and for examples typically described using epistemic operators (e.g. in multi-agent
systems), Dynamic Epistemic Logic (DEL) is an established framework [8]. Also DEL model checking
can be done symbolically [1], by encoding Kripke models as so-called knowledge structures. This lead
to its implementation, SMCDEL, which is extended in this work. Another encoding, sometimes also
called “symbolic models”, is based on mental programs [6]. In concrete applications such as “Hintikka’s
World” these also get encoded as BDDs [5]. To our knowledge no previous work used ZDDs or other
BDD variants for DEL model checking, with the exception of [12] where Algebraic Decision Diagrams
(ADDs) are used for probabilistic DEL.

Here our main research questions is: Can ZDDs be more compact than BDDs when encoding the
Kripke models for classical logic puzzles? We answer this question by adding ZDD functionality to
SMCDEL and then comparing the sizes for three well-known examples from the literature.

2 Theory: Decision Diagrams

Symbolic model checkers, including SMCDEL, rely on efficient representations of Boolean functions.
The most widely used data structure for this are Binary Decision Diagrams (BDDs). In this section
we recall their definition and explain the difference between standard BDDs and ZDDs. How Boolean
functions are then used for model checking DEL will be explained in the next section. Before we get to
decision diagrams we define Boolean formulas and functions.

Definition 1. The Boolean formulas over a set of variables P (also called vocabulary) are given by ϕ ::=
> | p | ¬ϕ | ϕ ∧ϕ where p ∈ P. We define ⊥ := ¬>, ϕ ∨ψ := ¬(¬ϕ ∧¬ψ) and ϕ → ψ := ¬(ϕ ∧¬ψ).

We write � for the usual Boolean semantics using assignments of type P→{0,1}. When P is given
we identify an assignment (also called state) with the set of variables it maps to 1. A Boolean function is
any f : P(P)→{0,1}. For any ϕ we define the Boolean function fϕ(s) := {if s � ϕ then 1 else 0}.

For example, if our vocabulary is P = {p,q,r} and s(p) = 0, s(q) = 1 and s(r) = 0 then we identify s
with {q} and we have s � (¬p∧q)∨ r. In the following we will also just write ϕ for fϕ . Notably, two
different formulas can correspond to the same Boolean function, but not vice versa.

Definition 2. For any ϕ , ψ , and p, let ϕ( p
ψ
) be the result of replacing every occurrence of p in ϕ by ψ .

For any A = {p1, . . . , pn}, let ϕ( A
ψ
) := ψ( p1

ψ
)( p2

ψ
) . . .( pn

ψ
). We use ∀pϕ to denote ϕ

( p
>
)
∧ϕ

( p
⊥
)
. For any

A = {p1, . . . , pn}, let ∀Aϕ := ∀p1∀p2 . . .∀pnϕ .

Decision Diagrams A decision diagram is a rooted directed acyclic graph, used to encode a Boolean
function. Any terminal node (i.e. leaf) is labelled with 0 or 1, corresponding to the result of the function.
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Any internal node n is labelled with a variable and has two outgoing edges to successors denoted by
THEN(n) and ELSE(n) — each representing a possible value for the variable. A path from the root to a
leaf in a decision diagram corresponds to an evaluation of the encoded function. A decision diagram is
called ordered if the variables are encountered in the same order on all its paths.

Example 3. The first (left-most) decision diagram in Figure 1 is a full decision tree for q∧¬r. To evaluate
it at state {p,q} we start at the root and then go along the solid THEN-edge because p is true, then again
along a THEN-edge as q is true and then along the dashed ELSE-edge as r is false. We get 1 as a result,
reflecting the fact that {p,q} � q∧¬r. Similarly we can use the second and third diagram.

p

q q

r r r r

0 1 0 0 0 1 0 0

p

q

r r

01

BDD( f )

q

r

01

ZDDT 0( f )

p

q

01

ZDDT 1( f )

p

q

r r

01

ZDDE0( f )

p

r

01

ZDDE1( f )

p

q

r

0

Figure 1: Seven decision diagrams for f := q∧¬r, assuming vocabulary {p,q,r}.

Binary Decision Diagrams (BDDs) were introduced by [2] and are particularly compact decision
diagrams, obtained using two reduction rules. The first rule identifies isomorphic subgraphs, i.e. we merge
nodes that have the same label and the same children. In Figure 1 we get from the first to the second
diagram. The second rule eliminates redundant nodes. A node is considered redundant if both its THEN-
and ELSE-edge go to the same child. In Figure 1 this gets us from the second to the third diagram.

Zero-suppressed Decision Diagrams (ZDDs) were introduced by [18] and use a different second
rule than BDDs. While in BDDs a node n is eliminated when THEN(n) = ELSE(n), in ZDDs a node is
eliminated when THEN(n) = 0. In Figure 1 this rule gets us from the second to the fourth diagram called
ZDDT 0( f ). The idea is to not ignore the variables that “do not matter” (as p in q∧¬r), but to remove the
nodes of variables that must be false (as r in q∧¬r). To evaluate ZDDT 0( f ) at state {p,q} we again start
at the root and twice follow a solid edge because p and q are true, but then we notice that the solid edge
goes from q to 1, without asking for the remaining variable r. When evaluating a ZDDT 0 such a transition
demands that the variable we “jump over” must be false — hence the name “zero-suppressed”. Indeed r
is false in our state, so we do reach 1. If r would have been true, the result would have been 0.

Generalizing Elimination Rules The elimination rule “remove nodes that have a THEN-edge leading
to 0” can be modified in two obvious ways: instead of THEN- we could consider ELSE-edges, and instead
of 0 we could consider 1. This leads us to three additional elimination rules.

Definition 4. We denote five different node elimination rules as follows. A node n with pairs of children
(THEN(n),ELSE(n)) is eliminated if it matches the left side of the rule, and any edges leading to n are
diverted to the successor s on the right side of the rule.

EQ : (s,s)⇒ s T 0 : (0,s)⇒ s E0 : (s,0)⇒ s
T 1 : (1,s)⇒ s E1 : (s,1)⇒ s
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Here EQ is the rule for BDDs, while T 0 (for “Then 0”) is the traditional ZDD rule. The remaining
three are variations. For example, E0 says that any node with an ELSE-edge to 0 is removed, and any
edge that led to the removed node should be diverted to where the THEN-edge of the removed node led.

In Figure 1 the E0 rule gets us from the second to the sixth diagram ZDDE0( f ). Note that we used
the rule twice: After deleting an r node the q node has an ELSE-branch to 0, so it is also eliminated. All
diagrams encode the same function f , but when evaluating them we must interpret “jumps” differently.

A crucial feature of BDDs and ZDDs is that they are canonical representations: given a fixed variable
order there is a unique BDD and a unique ZDD for each variant. It also becomes clear that for different
Boolean functions a different kind of diagram can be more or less compact.

Definition 5. For any Boolean function f , recall that ¬ f denotes its complement. Let ¬ f denote the result
of complementing all atomic propositions inside f . (For example, ¬(q∧¬r) = ¬q∧ r.) For any decision
diagram d, let flipLeaf(d) be the result of changing the labels of all leaves from 0 to 1 and vice versa;
and let flipEdge(d) be the result of changing the labels of all edges from THEN to ELSE and vice versa.

There is a correspondence between ¬ and flipLeaf, and between ¬ and flipEdge. Moreover, we can
use these operations to relate the four different variants of ZDDs as follows.

Fact 6. For any Boolean function f we have:

DDT 1( f ) = flipLeaf DDT 0(¬ f )
DDE0( f ) = flipEdge DDT 0(

¬ f )
DDE1( f ) = flipEdge flipLeaf DDT 0(¬¬ f )

Example 7. We illustrate Fact 6 using our running example f := q∧¬r with vocabulary {p,q,r}. Figure 2
shows the T 0 decision diagrams mentioned in Fact 6. We see that for example DDT 1( f ) shown in Figure 1
is the same graph as DDT 0(¬ f ) with only the labels of the leaf nodes exchanged. Similarly, DDE1( f ) in
Figure 1 is the same graph as DDT 0(¬¬ f ) with flipped edges and leaves.

ZDDT 0(¬ f )

p

q

r r

10

ZDDT 0(
¬ f )

p

r

01

ZDDT 0(¬¬ f )

p

q

r

1

Figure 2: ZDDs with the same shape as the variants for f := p∧¬q.

Fact 6 is crucial for our implementation, because the CUDD library we use does not support T 1, E0
and E1 explicitly. Hence instead we always work with T 0 diagrams of the negated or flipped functions.

3 Theory: Symbolic Model Checking DEL

Kripke Models We recap the standard syntax and semantics of Public Announcement Logic (PAL), the
most basic version of Dynamic Epistemic Logic (DEL).
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Definition 8. Fix a vocabulary V and a finite set of agents I. The DEL language L (V ) is given by
ϕ ::= p | ¬ϕ | ϕ ∧ϕ | Kiϕ | [ϕ]ϕ where p ∈V , i ∈ I.

As usual, Kiϕ is read as “agent i knows that ϕ”. The formula [ψ]ϕ says that after a public announce-
ment of ψ , ϕ holds. The standard semantics for L (V ) on Kripke models are as follows.

Definition 9. A Kripke model for a set of agents I = {1, . . . ,n} is a tuple M = (W,π,K1, . . . ,Kn), where
W is a set of worlds, π associates with each world a state π(w), and K1, . . . ,Kn are equivalence relations
on W. A pointed Kripke model is a pair (M ,w) consisting of a model and a world w ∈W.

Definition 10. Semantics for L (V ) on pointed Kripke models are given inductively as follows.

• (M ,w) � p iff πM(w)(p) =>.

• (M ,w) � ¬ϕ iff not (M ,w) � ϕ

• (M ,w) � ϕ ∧ψ iff (M ,w) � ϕ and (M ,w) � ψ

• (M ,w) � Kiϕ iff for all w′ ∈W, if wK M
i w′, then (M ,w′) � ϕ .

• (M ,w) � [ψ]ϕ iff (M ,w) � ψ implies (M ψ ,w) � ϕ where M ψ is a new model based on the set
WM ψ

:= {w ∈WM | (M ,w) � ψ} and appropriate restrictions of Ki and π to WM ψ

.

More expressive versions of DEL also include common knowledge and complex epistemic or ontic
actions such as private communication, interception, spying and factual change. Moreover, DEL can
work both with S5 models and with arbitrary Kripke models. All of this is compatible with the symbolic
semantics we recall in the next section, but for our purposes in this article the restricted language above is
sufficient, and we only consider S5 models.

Knowledge Structures While the semantics described above is standard, it has the disadvantage that
models are represented explicitly, i.e. the number of worlds also determines the amount of memory
needed to represent a model. To combat this well-known state-explosion problem we can replace Kripke
models with symbolic knowledge structures. Their main advantage is that knowledge and results of
announcements can be computed via purely Boolean operations, as shown in [1].

Definition 11. Suppose we have n agents. A knowledge structure is a tuple F = (V,θ ,O1, . . . ,On) where
V is a finite set of atomic variables, θ is a Boolean formula over V and for each agent i, Oi ⊆V . The set
V is the vocabulary and the formula θ is the state law of F . The Oi are called observational variables. An
assignment over V that satisfies θ is a state of F . A scene is a pair (F ,s) where s is a state of F .

Example 12. Consider the knowledge structure F := (V = {p,q},θ = p→ q,O1 = {p},O2 = {q}).
The states of F are the three assignments ∅, {q} and {p,q}. Moreover, F has two agents who each
observe one of the propositions: agent 1 knows whether p is true and agent 2 knows whether q is true.

We now give semantics for L (V ) on knowledge structures.

Definition 13. Semantics for L (V ) on scenes are defined as follows.

• (F ,s) � p iff s � p.

• (F ,s) � ¬ϕ iff not (F ,s) � ϕ

• (F ,s) � ϕ ∧ψ iff (F ,s) � ϕ and (F ,s) � ψ

• (F ,s) � Kiϕ iff for all t of F , if s∩Oi = t ∩Oi, then (F , t) � ϕ .

• (F ,s) � [ψ]ϕ iff (F ,s) � ψ implies (F ψ ,s) � ϕ where F ψ := (V,θ ∧‖ψ‖F ,O1, . . . ,On).
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where ‖ · ‖F is defined in parallel in the following definition.

Definition 14. For any knowledge structure F = (V,θ ,O1, . . . ,On) and any formula ϕ we define its local
Boolean translation ‖ϕ‖F as follows.

‖p‖F := p ‖Kiψ‖F := ∀(V \Oi)(θ →‖ψ‖F )
‖¬ψ‖F := ¬‖ψ‖F ‖[ψ]ξ‖F := ‖ψ‖F →‖ξ‖F ψ

‖ψ1∧ψ2‖F := ‖ψ1‖F ∧‖ψ2‖F

where the case for Kiψ quantifies over the variables not observed by agent i, using Boolean quantification
as defined in Definition 2 above.

A main result from [1] based on [21] is that for any finite Kripke model there is an equivalent
knowledge structure and vice versa. This means we can see knowledge structures as just another,
hopefully more memory-efficient, data structure to store a Kripke model. An additional twist is that we
usually store the state law θ not as a formula but only the corresponding Boolean function — which can
be represented using a decision diagram as discussed in Section 2.

4 Methods: Logic Puzzles as Benchmarks

Our leading question is whether ZDDs provide a more compact encoding than BDDs for models encoun-
tered in epistemic model checking. To answer it we will work with three logic puzzles from the literature.
All examples start with an initial model which we encode as a knowledge structure with the state law as a
decision diagram. Then we make updates in the form of public announcements, changing the state law.
We record the size of the decision diagrams for each update step.

As a basis for our implementation and experiments we use SMCDEL, the symbolic model checker for
DEL from [1]. SMCDEL normally uses the BDD library CacBDD [15] which does not support ZDDs.
Hence we also use the library CUDD [20] which does support ZDDs. However, also CUDD does not
support the generalized elimination rules from Definition 4. Therefore we use Fact 6 to simulate the T 1,
E0 and E1 variants. Our new code — now merged into SMCDEL — provides easy ways to create and
update knowledge structures where the state law is represented using any of the four ZDD variants.

An additional detail is that CUDD always uses so-called complement edges to optimize BDDs, but
not for ZDDs. To compare the sizes of ZDDs to BDDs without complement edges we still use CacBDD.
Altogether in our data set we thus record the sizes of six decision diagrams for each state law: the EQ rule
with and without complement edges (called BDD and BDDc) and the four ZDD variants from Definition 4.
We stress that by size of a diagram we mean the node count and not memory in bytes, because the former
is independent of what libraries are used, whereas the latter depends on additional optimisations.

It now remains to choose examples. We picked three well-known logic puzzles from the literature
with different kinds of state laws, such that we also expect the advantage of ZDDs to vary between them.

Muddy Children The Muddy Children are probably the best-known example in epistemic reasoning,
hence we skip the explanation here and refer to the literature starting with [14]. A formalisation of the
puzzle can be found in [8, Section 4.10] and the symbolic encoding in [1, Section 4].

Dining Cryptographers This problem and the protocol to solve it was first presented by [7]:
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“Three cryptographers gather around a table for dinner. The waiter informs them that the
meal has been paid for by someone, who could be one of the cryptographers or the National
Security Agency (NSA). The cryptographers respect each other’s right to make an anonymous
payment, but want to find out whether the NSA paid.”

The solution uses random coin flips under the table, each observed by two neighbouring cryptogra-
phers but not visible to the third one. A formalisation and solution using Kripke models can be
found in [11]. To encode the problem in a knowledge structure we let p0 mean that the NSA paid,
pi for i ∈ {1,2,3} that i paid. Moreover, pk for k ∈ {4,5,6} represents a coin. The initial scenario is
then (V = {p0, . . . , p6},θ =⊗1{p0, p1, p2, p3},O1 = {p1, p4, p5},O2 = {p2, p4, p6},O3 = {p3, p5, p6})
where the state law θ says that exactly one cryptographer or the NSA must have paid. In the solution
then each cryptographer announces the XOR (⊗) of all bits they observe, with the exception that the
payer should invert their publicly announced bit. Formally, we get a sequence of three public announce-
ments [?!(⊗p1, p4, p5)][?!(⊗p2, p4, p6)][?!(⊗p3, p5, p6)] where [?!ψ]ϕ := [!ψ]ϕ ∧ [¬!ψ]ϕ abbreviates
announcing whether. The protocol can be generalised to any odd number n instead of three participants.

Sum and Product The following puzzle was originally introduced in 1969 by H. Freudenthal. The
translation is from [9] where the puzzle is also formalised in DEL:

A says to S and P: I have chosen two integers x,y such that 1 < x < y and x+ y≤ 100. In
a moment, I will inform S only of s = x+ y, and P only of p = xy. These announcements
remain private. You are required to determine the pair (x,y). He acts as said. The following
conversation now takes place: P says: “I do not know it.” — S says: “I knew you didn’t.” —
P says: “I now know it.” — S says: “I now also know it.” — Determine the pair (x, y).

Solving the puzzle using explicit model checking is discussed in [10]. To represent the four variables
and their values in propositional logic we need a binary encoding, using dlog2 Ne propositions for each
variable that take values up to N. For example, to represent x ≤ 100 we use p1, . . . , p7 and encode the
statement x = 5 as p1∧ p2∧ p3∧ p4∧¬p5∧ p6∧¬p7, corresponding to the bit-string 0000101 for 5.

The initial state law for Sum and Product is a big disjunction over all possible pairs of x and y with the
given restrictions, and the observational variables ensure that agents S and P know the values of s and p
respectively. For a detailed definition of the knowledge structure, see [1, Section 5].

The announcements in the dialogue are formalised as follows, combining the first two into one:
First S says KS¬

∨
i+ j≤100 KP(x = i∧ y = j), then P says

∨
i+ j≤100 KP(x = i∧ y = j) and finally S says∨

i+ j≤100 KS(x = i∧ y = j). Solutions to the puzzle are states where these three formulas can be truthfully
announced after each other. A common variation on the problem is to change the upper bound for x+ y.
We use this to turn obtain a scalable benchmark, starting with 65 to ensure there exists at least one answer.

It is well known that ZDDs perform better on sparse sets [3]. In our case, sparsity is the number of
states in the model divided by the total number of possible states for the given vocabulary. Our three
examples vary a lot in their sparsity: Muddy Children’s sparsity is 0.5 on average (going from 0.875 to
0.125, for 3 agents), Dining Cryptographers is fairly sparse from start to finish (0.25 to 0.0625, for 3
agents), and Sum and Product is extremely sparse (e.g. starting with < 1.369 ·10−7 for x+ y≤ 100).

5 Results

For each example we present a selection of results we deem most interesting, showing differences between
BDD and ZDD sizes. The full data set for two examples can be found in the appendix where we also



414 Exploiting Asymmetry in Logic Puzzles: ZDDs for Symbolic Model Checking DEL

include instructions how all of the results can be reproduced.

Muddy children We vary the number of children n from 5 to 40, in steps of 5. We can also vary the
number of muddy children m ≤ n, but mostly report results here where m = n. Given any number of
children, we record the size of the decision diagrams of the state law after the kth announcement, where k
ranges from 0 (no announcements made yet) to m−1 (after which all children know their own state).

As an example, let us fix n = m = 20. Figure 3a shows the size of the decision diagrams after each
announcement. The lines all follow a similar curve, with the largest relative differences in the initial and
final states. Initially the most compact variant is T1 whereas at the end E0 is the most compact. This
matches the asymmetry in the Muddy Children story: at the start the state law is p1∨ . . .∨ pn, hence all
THEN edges lead to 1 and T 1 removes all nodes. In contrast, at the end the state law is p1∧ . . .∧ pn which
means that all ELSE edges lead to 0 and thus E0 eliminates all nodes.

Hence at different stages different variants are more compact. But we want a representation that is
compact throughout the whole process. We thus consider the average size over all announcements, varying
n from 5 to 40. Figure 3b shows the relative size differences, with standard BDDs as 100%. The T 0/E1
and the BDDc/E0/T 1 lines overlap. We see that T 1 and E0 are more compact for small models, but not
better than BDDs with complement edges and this advantage shrinks with a larger number of agents.

We also computed sizes for m < n, i.e. not all children being muddy. In this case the sizes for each
update step stay the same but there are fewer update steps because the last truthful announcement is in
round m−1. As expected this is in favour of the T 1 variant.

0 5 10 15 20

0

50

100

announcements

nu
m

be
ro

fn
od

es

BDD BDDc
T0 T1
E0 E1

(a) Absolute sizes per announcement, for n = 20.

10 20 30 40

−10

0

10

20

30

number of agents n

re
la

tiv
e

di
ff

er
en

ce
(%

)

(b) Relative average sizes.

Figure 3: Results for Muddy Children.

Dining cryptographers For 13 agents we show the sizes after each announcement in Figure 4a. It
becomes clear that there is little difference between the variants, which can be explained by the sparsity
of the model throughout the whole story. Still, the T 0/E0 variants slightly outperform the BDD(c) and
the T 1/E1 variants. This makes sense as most variables saying that agent i paid will be false. For lower
numbers of agents the difference is larger, as visible in Figure 4b where we vary the number of agents
from 3 to 13. Note that T 1 and E1 overlap here, and T 0 provides the best advantage.
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Figure 4: Results for Dining Cryptographers.

Sum and Product In this last example we can vary the upper bound of x+ y from 50 to 350, but not
the number of agents and announcements. Figure 5a shows the sizes averaged over all four stages. We
note that the BDD(c), T 1 and E1 lines all overlap (with insignificant differences), and that T0 and E0
perform the best here. In contrast to the first two examples, this advantage does not disappear for larger
instances of the puzzle, as can be seen in Figure 5b where we show the relative differences. Interestingly,
we see that T 0 and E0 meet up and diverge again wherever the bound for x+ y is a power of 2 (i.e. 64,
128 or 256) which we mark by vertical dashed lines. This is due to the bit-wise encoding where just above
powers of two an additional bit is needed, but it must be false for almost all values.
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Figure 5: Results for Sum and Product.
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6 Conclusion

In all experiments we find a ZDD elimination rule that can reduce the number of nodes compared to BDDs,
with the exception that in the Muddy Children example complement edges provide the same advantage.
This leads us to conclude that ZDDs are a promising tool for DEL model checking. Specifically, if domain
knowledge about the particular model allows one to predict which ZDD variant will be more compact,
ZDDs can outcompete BDDs.

The BDD elimination rule treats true and false atomic propositions symmetrically, whereas ZDD rules
are asymmetric. This means their success depends on asymmetry in the model.

When translating an example from natural language to a formal models we usually try to avoid
redundant variables, which already reduces the number of BDD-eliminable nodes. This is likely the
reason why using ZDDs provides an advantage or, for examples with a sparsity around 0.5 like the Muddy
Children, at least the same performance as BDDs with complement edges.

Specifically for logic puzzles, usually all variables are needed, and models become asymmetric and
sparse as information is revealed and possible answers are ruled out. Our results confirm that sparsity and
the kind of asymmetry prevalent in the model can predict which ZDD variant is most beneficial.

In this article we only considered S5. SMCDEL also provides modules for K and in further experiments
we compared the sizes of ZDDs and BDDs of the state law of belief structures. As an example we used
the famous Sally-Anne false belief task. The results were similar to those here and can be found in [17].

Future work An obvious limitation is that we only compared memory and not computation time. The
size of a decision diagram correlates with the computation time needed to build it. But the step-wise
construction techniques in SMCDEL are slower for ZDDs than for BDDs. For example, to compute
the Sum and Product result we rather convert each state law BDD to ZDDs instead of computing ZDDs
directly. Before a meaningful comparison of computation time can be done, the construction methods for
ZDDs need to be further optimized.

We found some indicators which elimination rule is most compact in which case, but a more general
approach to formalise domain knowledge and use it to make a correct prediction would be a powerful tool.
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stack bench smcdel:bench:sizes-diningcryptographers

stack bench smcdel:bench:sizes-sumandproduct

The last three commands will create .dat files containing the results. On a system with a 4.8 GHz
CPU the last three commands above take approximately 10 seconds, one minute and three hours.

We include the results for Dining Crytographers and Sum and Product here, but omit the (several
pages long) results for the Muddy Children.

Results for Dining Cryptographers
# Note: round -1 indicates the average.

n m round BDD BDDc T0 T1 E0 E1

3 1 0 9 7 9 13 11 13

3 1 1 15 12 10 19 14 19

3 1 2 21 19 12 25 17 25

3 1 -1 11.25 9.5 7.75 14.25 10.5 14.25

5 1 0 13 11 18 26 22 26

5 1 1 25 20 21 38 29 38

5 1 2 41 37 29 54 40 54

5 1 3 64 61 44 77 57 77

5 1 4 98 96 68 111 82 111

5 1 -1 60.25 56.25 45.0 76.5 57.5 76.5

7 1 0 17 15 31 43 37 43

7 1 1 35 28 36 61 48 61

7 1 2 61 55 50 87 67 87

7 1 3 102 97 79 128 100 128

7 1 4 170 166 133 196 157 196

7 1 5 285 282 228 311 254 311

7 1 6 479 477 388 505 415 505

7 1 -1 287.25 280.0 236.25 332.75 269.5 332.75

9 1 0 21 19 48 64 56 64

9 1 1 45 36 55 88 71 88

9 1 2 81 73 75 124 98 124

9 1 3 140 133 118 183 147 183

9 1 4 242 236 202 285 236 285

9 1 5 423 418 359 466 397 466

9 1 6 747 743 645 790 686 790

9 1 7 1326 1323 1156 1369 1199 1369

9 1 8 2352 2350 2052 2395 2096 2395

9 1 -1 1344.25 1332.75 1177.5 1441.0 1246.5 1441.0

11 1 0 25 23 69 89 79 89

11 1 1 55 44 78 119 98 119

11 1 2 101 91 104 165 133 165

11 1 3 178 169 161 242 198 242

11 1 4 314 306 275 378 319 378

11 1 5 561 554 494 625 544 625

11 1 6 1015 1009 906 1079 961 1079

11 1 7 1852 1847 1671 1916 1730 1916

11 1 8 3392 3388 3077 3456 3139 3456

11 1 9 6211 6208 5636 6275 5700 6275

11 1 10 11333 11331 10244 11397 10309 11397

11 1 -1 6259.25 6242.5 5678.75 6435.25 5802.5 6435.25

13 1 0 29 27 94 118 106 118

13 1 1 65 52 105 154 129 154

13 1 2 121 109 137 210 172 210

13 1 3 216 205 208 305 253 305

13 1 4 386 376 352 475 406 475

13 1 5 699 690 633 788 695 788

13 1 6 1283 1275 1171 1372 1240 1372

13 1 7 2378 2371 2190 2467 2265 2467

13 1 8 4432 4426 4106 4521 4186 4521

13 1 9 8277 8272 7687 8366 7771 8366

13 1 10 15449 15445 14341 15538 14428 15538
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13 1 11 28764 28761 26628 28853 26717 28853

13 1 12 53342 53340 49156 53431 49246 53431

13 1 -1 28860.25 28837.25 26702.0 29149.5 26903.5 29149.5

Results for Sum and Product
# Note: round -1 indicates the average.

n round BDD BDDc T0 T1 E0 E1

50 0 5032 5030 3082 5060 2505 5060

50 1 697 696 458 726 288 724

50 2 547 546 361 576 221 574

50 3 1 1 0 31 0 31

50 -1 1569.25 1568.25 975.25 1598.25 753.5 1597.25

64 0 7916 7914 4247 7944 4602 7944

64 1 930 929 614 959 381 957

64 2 760 759 501 789 308 787

64 3 1 1 0 31 0 31

64 -1 2401.75 2400.75 1340.5 2430.75 1322.75 2429.75

75 0 12534 12532 7847 12566 5986 12566

75 1 1274 1273 900 1307 456 1305

75 2 939 938 658 972 335 970

75 3 35 34 27 68 12 66

75 -1 3695.5 3694.25 2358.0 3728.25 1697.25 3726.75

100 0 22438 22436 13514 22471 11279 22471

100 1 2289 2288 1567 2323 870 2321

100 2 1594 1593 1087 1628 596 1626

100 3 36 35 28 70 12 68

100 -1 6589.25 6588.0 4049.0 6623.0 3189.25 6621.5

125 0 33826 33824 18476 33859 19074 33859

125 1 3149 3148 2095 3183 1262 3181

125 2 2101 2100 1383 2135 835 2133

125 3 36 35 28 70 12 68

125 -1 9778.0 9776.75 5495.5 9811.75 5295.75 9810.25

128 0 35315 35313 18823 35348 20401 35348

128 1 3149 3148 2095 3183 1262 3181

128 2 2101 2100 1383 2135 835 2133

128 3 36 35 28 70 12 68

128 -1 10150.25 10149.0 5582.25 10184.0 5627.5 10182.5

150 0 55028 55026 33874 55065 26559 55065

150 1 5147 5146 3526 5185 1938 5183

150 2 3354 3353 2261 3392 1267 3390

150 3 40 39 32 78 12 76

150 -1 15892.25 15891.0 9923.25 15930.0 7444.0 15928.5

175 0 73233 73231 43763 73270 36869 73270

175 1 6753 6752 4635 6791 2549 6789

175 2 4265 4264 2893 4303 1599 4301

175 3 40 39 32 78 12 76

175 -1 21072.75 21071.5 12830.75 21110.5 10257.25 21109.0

200 0 98044 98042 58134 98082 49615 98082

200 1 8498 8497 5929 8537 3096 8535

200 2 5275 5274 3666 5314 1877 5312

200 3 41 40 33 80 12 78

200 -1 27964.5 27963.25 16940.5 28003.25 13650.0 28001.75

225 0 121863 121861 69555 121901 64632 121901

225 1 10103 10102 6910 10142 3827 10140

225 2 6284 6283 4289 6323 2317 6321

225 3 41 40 33 80 12 78

225 -1 34572.75 34571.5 20196.75 34611.5 17697.0 34610.0

250 0 148149 148147 80231 148187 83173 148187

250 1 14131 14130 8991 14170 6071 14168

250 2 8664 8663 5470 8703 3659 8701

250 3 41 40 33 80 12 78

250 -1 42746.25 42745.0 23681.25 42785.0 23228.75 42783.5

256 0 154815 154813 81895 154853 88925 154853
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256 1 14992 14991 9616 15031 6371 15029

256 2 9084 9083 5787 9123 3786 9121

256 3 41 40 33 80 12 78

256 -1 44733.0 44731.75 24332.75 44771.75 24773.5 44770.25

275 0 203227 203225 123011 203269 98715 203269

275 1 18794 18793 12876 18837 7046 18835

275 2 11435 11434 7808 11478 4189 11476

275 3 45 44 37 88 12 86

275 -1 58375.25 58374.0 35933.0 58418.0 27490.5 58416.5

300 0 238864 238862 144850 238906 116069 238906

300 1 21339 21338 14568 21382 8066 21380

300 2 12671 12670 8634 12714 4662 12712

300 3 45 44 37 88 12 86

300 -1 68229.75 68228.5 42022.25 68272.5 32202.25 68271.0

325 0 277256 277254 165770 277298 137410 277298

325 1 24822 24821 16902 24865 9451 24863

325 2 14341 14340 9749 14384 5305 14382

325 3 45 44 37 88 12 86

325 -1 79116.0 79114.75 48114.5 79158.75 38044.5 79157.25

350 0 318340 318338 187632 318382 160813 318382

350 1 29838 29837 19932 29881 11776 29879

350 2 17313 17312 11500 17356 6686 17354

350 3 45 44 37 88 12 86

350 -1 91384.0 91382.75 54775.25 91426.75 44821.75 91425.25
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The dominant theories of rational choice assume logical omniscience. That is, they assume that when

facing a decision problem, an agent can perform all relevant computations and determine the truth

value of all relevant logical/mathematical claims. This assumption is unrealistic when, for example,

we offer bets on remote digits of π or when an agent faces a computationally intractable planning

problem. Furthermore, the assumption of logical omniscience creates contradictions in cases where

the environment can contain descriptions of the agent itself. Importantly, strategic interactions as

studied in game theory are decision problems in which a rational agent is predicted by its environment

(the other players). In this paper, we develop a theory of rational decision making that does not

assume logical omniscience. We consider agents who repeatedly face decision problems (including

ones like betting on digits of π or games against other agents). The main contribution of this paper

is to provide a sensible theory of rationality for such agents. Roughly, we require that a boundedly

rational inductive agent tests each efficiently computable hypothesis infinitely often and follows those

hypotheses that keep their promises of high rewards. We then prove that agents that are rational in this

sense have other desirable properties. For example, they learn to value random and pseudo-random

lotteries at their expected reward. Finally, we consider strategic interactions between different agents

and prove a folk theorem for what strategies bounded rational inductive agents can converge to.

1 Introduction

The dominant theories of rational decision making – in particular Bayesian theories – assume logical

omniscience, i.e., that rational agents can determine the truth value of any relevant logical statement.

In some types of decision problems, this prevents one from deriving any recommendation from these

theories, which is unsatisfactory (Sect. 3). For one, there are problems in which computing an optimal

choice is simply computationally intractable. For example, many planning problems are intractable.

Second, the assumption of logical omniscience creates contradictions (resembling classic paradoxes of

self reference, such as the liar’s paradox) if the environment is allowed to contain references to the agent

itself. These issues arise most naturally when multiple rational agents interact and reason about one

another.

This paper develops a novel theory of boundedly rational inductive agents (BRIAs) that does not

assume logical omniscience and yields sensible recommendations in problems such as the ones described

above. Rather than describing how an agent should deal with an individual decision, the theory considers

how an agent learns to choose on a sequence of different decision problems. We describe the setting in

more detail in Sect. 2.

The core of our theory is a normative rationality criterion for such learning agents. Roughly, the

criterion requires that a boundedly rational inductive agent test each efficiently computable hypothesis

(or more generally each hypothesis in some class) infinitely often and follows hypotheses that keep their

promises of high rewards. We describe the criterion in detail in Sect. 4. Importantly, the criterion can be

satisfied by computationally bounded agents, as we show in Sect. 5.

http://dx.doi.org/10.4204/EPTCS.379.33
https://creativecommons.org
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We demonstrate the appeal of our criterion by showing that it implies desirable and general behavioral

patterns. In Sect. 6, we show that on sequences of decision problems in which one available option

guarantees a payoff of at least l, BRIAs learn to obtain a reward of at least l. Thus, in particular, they

avoid Dutch books (in the limit). We further show that similarly on sequences of decision problems

in which one available option pays off truly or algorithmically randomly with mean µ , BRIAs learn to

obtain a reward of at least µ . Finally, we consider decision problems in which one BRIA plays a strategic

game against another BRIA. We show that BRIAs can converge to any individually rational correlated

strategy profile. BRIAs are thus a promising model for studying ideas such as superrationality (i.e.,

cooperation in the one-shot Prisoner’s Dilemma) [11] (cf. Sect. 8). Related work is discussed in Sect. 8.

Throughout this paper, we describe the key ideas for our proofs in the main text. Detailed proofs are

given in Appendix A.

2 Setting

Informally, we consider an agent who makes decisions in discrete time steps. At each time step she faces

some set of available options to choose from. She selects one of options and receives a reward. She then

faces a new decision problem, and so on.

Formally, let T be some language describing available options. A decision problem DP ∈ Fin(T )
is a finite set of options. A decision problem sequence is a sequence of decision problems DP1,DP2, ...
An agent for DP is a sequence c̄ of ct ∈ DPt . The rewards are numbers r1,r2,r3, ... ∈ [0,1]. Note that in

contrast to the literature on multi-armed bandit problems (Sect. 8) counterfactual rewards are not defined.

It is generally helpful to imagine that (similar to multi-armed bandit problems) at each time t the

agent first sees DPt ; then chooses ct from DPt according to some algorithm that looks at the available

options in DPt and takes past experiences into account; then the environment calculates some reward as

a function of ct ; the agent observes the reward and learns from it. The sequence of decision problems

DPt may in turn be calculated depending on the agent’s choices.

We focus on learning myopically optimal behavior. That is, we want our agent to learn to choose

whatever gives the highest reward for the present decision problem, regardless of what consequences that

has for future decision problems.

3 Computational constraints and paradoxes of self-reference

In this paper, we develop a normative theory of rational learning in this setting. The standard theory for

rational decision making under uncertainty is Bayesian decision theory (BDT) ([24, 12]; for contempo-

rary overviews, see [19, 29]). The main ideas of this paper are motivated by a specific shortcoming of

BDT: the assumption that the agent who is subject to BDT’s recommendations is logically omniscient

and in particular not limited by any computational constraints. We develop a theory that gives rec-

ommendations to computationally bounded agents. In the following, we give two kinds of examples to

illustrate the role of logical omniscience in BDT and motivate our search for an alternative theory.

Mere intractability The first problem is that in most realistic choice problems, it is intractable to

follow BDT. Bayesian updating and Bayes-optimal decision making are only feasible if the environment

is small or highly structured. Even if the agent had a perfectly accurate world model, determining the

optimal choice may require solving computationally hard problems, such as the traveling salesman prob-

lem, planning in 2-player competitive games, etc. Optimal choice may also rely on whether particular

mathematical claims are true, e.g., when assessing the safety of particular cryptographic methods. In all
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these problems, BDT requires the agent to perfectly solve the problem at hand. However, we would like

a theory of rational choice that makes recommendations to realistic, bounded agents who can only solve

such problems approximately.

Consider a decision problem DP = {a1,a2}, where the agent knows that option a1 pays off the value

of the 10100-th digit of the binary representation of π . Option a2 pays off 0.6 with certainty. In our

formalism, r equals the 10100-th digit of the binary representation of π if c = a1 and r = 0.6 if c = 0.6.

All that Bayesian decision theory has to say about this problem is that one should calculate the 10100-th

digit of π; if it is 1, choose a1; otherwise choose a2. Unfortunately, calculating the 10100-th digit of

π is likely intractable.1 Hence, Bayesian decision theory does not have any recommendations for this

problem for realistic reasoners. At the same time, we have the strong normative intuition that – if digits

of π indeed cannot be predicted better than random under computational limitations – it is rational to

take a2. We would like our theory to make sense of that intuition.

We close with a note on what we can expect from a theory about rational decision making under

computational bounds. A naı̈ve hope might be that such a theory could tell us how to optimally use some

amount of compute (say, 10 hours on a particular computer system) to approximately solve any given

problem (cf. our discussion in Sect. 8 of Russell et al.’s [21, 23, 22] work on bounded optimality); or

that it might tell us in practice at what odds to bet on, say, Goldbach’s conjecture with our colleagues.

In this paper, we do not provide such a theory and such a theory cannot exist. We must settle for a more

modest goal. Since our agents face decision problems repeatedly, our rationality requirement will be that

the agent learns to approximately solve these problems optimally in the limit. For example, if digits of π

are pseudo-random in the relevant sense, then a rational agent must converge to betting 50-50 on remote

binary digits of π . But it need not bet 50-50 “out-of-the-box”.

Paradoxes of self-reference, strategic interactions, and counterfactuals A second problem with

BDT and logical omniscience more generally is that it creates inconsistencies if the values of different

available options depend on what the agent chooses. As an example, consider the following decision

problem, which we will call the Simplified Adversarial Offer (SAO) (after a decision problem introduced

by [18]). Imagine that an artificial agent chooses between two available alternatives a0 and a1, where

a0 is known to pay off 1/2 with certainty, and a1 is known to pay off 1 if the agent’s program run on

this decision problem chooses a0, and 0 otherwise. Now assume that the agent chooses deterministically

and optimally given a logically omniscient belief system. Then the agent knows the value of each of the

options. This also means that it knows whether it will select a0 or a1. But given this knowledge, the

agent selects a different option than what the belief system predicts. This is a contradiction. Hence, there

exists no agent that complies with standard BDT in this problem. Compare the example of Oesterheld

and Conitzer [18] and Spencer [28]; also see Demski and Garrabrant ([7], Sect. 2.1) for a discussion of

another, subtler issue that arises from logical omniscience and introspection.

We are particularly interested in problems in which such failure modes apply. SAO is an extreme

and unrealistic example, selected to be simple and illustrative. However, strategic interactions between

different rational agents share the ingredients of this problem: Agent 1 is thinking about what agent 2

is choosing, thereby creating a kind of reference to agent 2 in agent 2’s environment. We might even

imagine that two AI players know each others’ exact source code (cf. [20], Sect. 10.4; [31]; [32]; [3];

[6]; [17]). Further, it may be in agent 2’s interest to prove wrong whatever agent 1 believes about agent

2. For a closely related discussion of issues of bounded rationality and the foundations of game theory,

1Remote digits of π are a canonical example in the literature on bounded rationality and logical uncertainty (see [25], for

an early usage). To the knowledge of the authors it is unknown whether the n-th digit of π can be guessed better than random

in less than O(n) time. For a general, statistical discussion of the randomness of digits of π , see Marsaglia [14].



424 A Theory of Bounded Inductive Rationality

see Binmore [4] and references therein (cf. [20], Ch. 10; [7]).

4 The rationality criterion

4.1 Preliminary definitions

An estimating agent ᾱ is a sequence of choices from the available options αc
t ∈ DPt and estimates

αe
t ∈ [0,1]. Our rationality criterion uses estimating agents. For brevity, we will say agent instead of

estimating agent throughout the rest of this paper. For example, let SAOα ,t be the Simplified Adversarial

Offer for the agent at time t as described in Sect. 3. Then we might like an agent who learns to choose

αc
t = a0 (which pays 1/2 with certainty) and estimate αe

t = 1/2.

A hypothesis h has the same type signature as an estimating agent. When talking about hypotheses,

we will often refer to the values of he
t as promises and to the values of hc

t as recommendations.

Our rationality criterion will be relative to a particular set of hypotheses H. In principle, H could be

any set of hypotheses, e.g., all computable ones, all three-layer neural nets, all 8MB computer programs,

etc. Generally, H should contain any hypothesis (i.e., any hypothesis about how the agent should act)

that the agent is willing to consider, similar to the support of the prior in Bayesian theories of learning,

or the set of experts in the literature on multi-armed bandits with expert advice. Following Garrabrant

et al. [10], we will often let H be the set of functions computable in O(g(t)) time, where g is a non-

decreasing function. We will call these hypotheses efficiently computable (e.c.). Note that not all time

complexity classes can be written as O(g(t)). For example, the set of functions computable in polynomial

time cannot be written in such a way. This simplified set is used to keep notation simple. Our results

generalize to more general computational complexity classes.

4.2 No overestimation

We now describe the first part of our rationality requirement, which is that the estimates should not

be systematically above what the agent actually obtains. The criterion itself is straightforward, but its

significance will only become clear in the context of the hypothesis coverage criterion of the next section.

Definition 1. For T ∈ N, we call LT (ᾱ , r̄) := ∑T
t=1 αe

t − rt the cumulative overestimation of an agent ᾱ

on r̄.

Definition 2. We say that an agent ᾱ for DP, r̄ does not overestimate (on average in the limit) if

LT (ᾱ , r̄)/T ≤ 0 as T → ∞.

In other words, for all ε > 0, there should be a time t such that for all T > t, LT (ᾱ , r̄)/T ≤ ε . Note

that the per-round overestimation of boundedly rational inductive agents as defined below will usually

but need not always converge to 0; it can be negative in the limit.

4.3 Covering hypotheses

We come to our second requirement, which specifies how the agent ᾱ relates to the hypotheses in H.

Definition 3. We say that h̄ outpromises ᾱ or that ᾱ rejects h̄ at time t if he
t > αe

t .

We distinguish two kinds of hypotheses: First, there are hypotheses that promise higher rewards than

ᾱe in only finitely many rounds. For example, this will be the case for hypotheses that ᾱ trusts and

takes into account when choosing and estimating. Also, this could include hypotheses who recommend

an inferior option with an accurate estimate, e.g., hypotheses that recommend “1/3” and promise 1/3 in
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{“1/3”,“2/3”}. For all of these hypotheses, we do not require anything of ᾱ . In particular, ᾱ need not

test these hypotheses. Second, some hypotheses do infinitely often outpromise ᾱe. For these cases, we

will require our boundedly rational inductive agents to have some reason to reject these hypotheses. To

be able to provide such a reason, ᾱ needs to test these hypotheses infinitely often. Testing a hypothesis

requires choosing the hypothesis’ recommended action.

Definition 4. We call a set M ⊆N a test set of ᾱ for h̄ if for all t ∈M, αc
t = hc

t .

For ᾱ to infinitely often reject h̄, these tests must then show that h̄ is not to be trusted (in those rounds

in which they promise a reward that exceeds ᾱe). That is, on these tests, the rewards must be significantly

lower than what the hypothesis promises. We thus introduce another key concept.

Definition 5. Let h̄ be a hypothesis and M ⊆ N be a test set of ᾱ for h̄. We call lT (ᾱ , r̄,M, h̄) :=

∑t∈M≤T
rt −he

t the (empirical) record of h (on M).

Here, M≤T := {t ∈M | t ≤ T} is defined to be the set of elements of M that are at most T .

We now have all the pieces together to state the coverage criterion, which specifies how we want our

agents to relate to the hypotheses under consideration.

Definition 6. Let ᾱ be an agent, h̄ be a hypothesis, and let B be the set of times t at which ᾱ rejects h̄.

We say that ᾱ covers h̄ with test set M if either B is finite or the sequence
(
lT (ᾱ , r̄,M, h̄)

)

T∈B
goes to

negative infinity.

4.4 The boundedly rational inductive agent criterion

We now state the BRIA criterion, the main contribution of this paper.

Definition 7. Let ᾱ be an agent for DP, r̄. Let H = {h1,h2, ...} be a set of hypotheses. We say ᾱ is a

boundedly rational inductive agent (BRIA) for DP, r̄ covering H with test sets M1,M2, ... if ᾱ does not

overestimate and for all i, ᾱ covers hi with test set Mi.

In the following, whenever ᾱ is a BRIA, we will imagine that the test sets are given as a part of ᾱ .

For example, if we say that ᾱ is computable in, say, time polynomial in t, then we will take this to mean

that ᾱ together with a list at time t of tested hypotheses can be computed in polynomial time.

4.5 Examples

Betting on digits of π Consider the decision problem sequence with DPt = {a
π
t ,xt} for all t, where aπ

t

pays off the 2t -th binary digit of π – i.e., rt is the 2t -th digit of π if αc
t = aπ

t – and xt ∈ [0,1] pays off xt .

As usual we assume that the 2t -th binary digits of π are pseudorandom (in a way we will make precise

in Sect. 6) uniformly distributed (as they seem to be, cf. footnote 1). We would then expect boundedly

rational agents to (learn to) choose aπ
t when xt < 1/2 and choose xt when xt > 1/2.

We now consider an agent ᾱ for this decision problem sequence. We will step-by-step impose the

components of the BRIA criterion on ᾱ to demonstrate their meaning and (joint) function in this example.

We start by imposing the no overestimation criterion on ᾱ without any assumptions about hypothesis

coverage – what can we say about ᾱ if we assume that does not overestimate? As noted earlier, the no

overestimation criterion alone is weak and in particular does not constrain choice at all. For instance,

ᾱ might always choose αc
t = aπ

t and alternate estimates of 0 and 1; or it might always choose xt and

estimate xt−1.

We now impose instances of the hypothesis coverage criterion. We start with the hypothesis hx

which always recommends choosing xt and promises a reward of xt . Note that for all we know about the
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decision problem sequence this hypothesis does not give particularly good recommendations. However,

in the context of our theory, hx is useful because it always holds its promises. In particular, hx’s empirical

record on any test set is 0. Hence, if α is to cover hx, then α can only reject hx finitely many times. By

definition, this means that αe
t ≥ xt for all but finitely many t ∈ N. With the no overestimation criterion,

it follows that α on average obtains utilities at least equal to xt . But α’s choices may still not match our

bounded ideal. For example, α may always choose xt .

Next, consider for ε > 0, the hypothesis hε
π that always recommends aπ

t and estimates 1/2− ε .

Whether hε
π holds its promises is a more complicated question. But let us assume that ᾱ covers hε

π

with some test set M, and let us further assume that whether t ∈M is uncorrelated with the 2t -th binary

digit of π , for instance, because predicting the 2t -th binary digit of π better than random cannot be done

using the agent’s computational capabilities. Then hε
π ’s empirical record on M will go to ∞, assuming

that M is infinite – after all, following hε
π ’s recommendations yields a reward of 1/2 on average, exceeding

its promises of 1/2− ε . With the assumption that ᾱ covers hε
π , it follows that for all but finitely many t,

αe
t ≥ 1/2− ε . Now imagine that α not only covers one particular hε

π , but that there exist arbitrarily small

positive ε such that α covers the hypothesis hε
π . Then it follows that in the limit as t→ ∞, αe

t ≥ 1/2.

The above three conditions – no overestimation, coverage of hx and coverage of hε
π for arbitrarily

small ε – jointly imply that ᾱ exhibits the desired behavior. Specifically, we have shown that ᾱ must

estimate at least max{1/2,xt} in the limit. By the no overestimation criterion, ᾱ also has to actually obtain

at least max{1/2,xt} on average. And if ᾱ cannot guess the 2t -th digits of π better than random, then the

only way to achieve max{1/2,xt} on average is to follow with limit frequency 1 the policy of choosing

aπ
t when xt < 1/2 and xt when xt > 1/2.

Adversarial offers Let α be an agent who faces a sequence of instances of SAO. In particular at

time t, the agent faces SAOα ,t = {a0,a1}, where a0 pays off 1/2 with certainty. Intuitively, a1 is evaluated

to 1 if on the present problem α chooses a0 and to 0 otherwise. Note, however, that the former fact is

never relevant to computing rt . So effectively rt = 1/2 if αc
t = a0 and rt = 0 otherwise.

Assume that α does not overestimate and that it covers the hypothesis h which estimates 1/2 and

recommends a0 in every round. Hypothesis h will always have an empirical record of 0 on any test

set M since it holds its promises exactly. Hence, if α is to cover h, it can reject h only finitely many

times. Thus, αe
t ≥ 1/2 in all but finitely many rounds. To satisfy the no overestimation criterion, α must

therefore obtain rewards of at least 1/2 on average in the limit. Since a1 pays off 0 whenever it is taken

by α , it must be αc
t = a0 with limit frequency 1.

5 Computing boundedly rational inductive agents

As described in Sect. 3, the goal of this paper is to formulate a rationality requirement that is not self-

contradictory and that can be satisfied by computationally bounded agents. Therefore, we must show that

one can actually construct BRIAs for given H and that under some assumptions about H, such BRIAs

are computable (within some asymptotic bounds).

Theorem 1. Let H be a computably enumerable set consisting of (O(g(t))-)computable hypotheses.

(Let g ∈ Ω(log).) Then there exists an algorithm that computes a BRIA covering H (in O(g(t)q(t)), for

arbitrarily slow-growing, O(g(t))-computable q with q(t)→ ∞) for any DP, r̄.

We here give a sketch of our construction. For each decision problem, we run a first-price sealed-

bid auction among the hypotheses. The highest-bidding hypothesis determines the agent’s choice and

estimate and is tested in this round. For each hypothesis, we maintain a wealth variable that tracks

the hypothesis’ empirical record. A hypothesis’ bid is bound by its wealth. Thus, when a hypothesis
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outpromises the agent, this implies that the hypothesis’ wealth is low. Upon winning an auction, the

hypothesis pays its promise and gains the reward obtained after following the hypothesis’ recommenda-

tion. We further distribute at each time t allowance to the hypotheses. The overall allowance per round

is finite and goes to zero. The cumulative allowance for each hypothesis goes to ∞ over time. Thus, if a

hypothesis is rejected infinitely often, then this requires the hypothesis to have spent all allowance and

thus for its record among those rejection rounds to go to −∞. Moreover, the cumulative overestimation

is bound by overall allowance distributed and thus per-round overestimation goes to 0.

The next result shows that the BRIAs given by Theorem 1 are optimal in terms of complexity.

Theorem 2. Let α be a BRIA for DP, r̄,H. Assume that there are infinitely many t such that |DPt | ≥ 2

and αe
t < 1. If H is the set of (O(g(t))-)computable hypotheses, then α is not computable (in O(g(t))).

6 Lower bounds on average rewards

Options with payoff guarantees Throughout this section, we will show that BRIAs satisfy many

desiderata that one might have for rational decision makers. We start with a simple result which shows

that if at each time t one of the options can be efficiently shown to have a value of at least Lt , then a

BRIA will come to obtain at least Lt on average.

Theorem 3. Let ᾱ be a BRIA for DP, r̄ and the set of e.c. hypotheses. Let ā be a sequence of terms in T

s.t. for all t ∈ N, it holds that at ∈ DPt and αc
t = at =⇒ rt ≥ Lt for some e.c. sequence L̄. We require

also that the at are efficiently identifiable from the sets DPt . Then in the limit as T → ∞ it holds that

∑T
t=1 rt/T ≥ ∑T

t=1 Lt/T .

The proof idea is simple. Consider the hypothesis that estimates Lt and recommends at if t ∈ S and

promises 0 otherwise. This hypothesis always keeps its promises. Hence, to cover this hypothesis, α can

be outpromised by this hypothesis only finitely many times.

We can interpret Theorem 3 as providing an immunity to money extraction schemes, a widely dis-

cussed rationality condition. If a BRIA can leave with a certain payoff of Lt , it will on average leave with

at least Lt . For example, in SAO of Sect. 3, a BRIA walks away with at least 1/2, which in turn means

that it chooses a0 = “1/2” with frequency 1.

Options with algorithmically random payoffs Theorem 8 only tells us something about truly

random variables. But a key goal of our theory is to also be able to assign expected rewards to algo-

rithmically random sequences, i.e., sequences that are deterministic, but relevantly unpredictable under

computational constraints. We first offer a formal notion of algorithmic randomness.

Definition 8. We say a sequence ȳ is (O(h(t)) boundedly) van Mises–Wald–Church (vMWC) random with

means µ̄ if for every infinite set S⊆N that is decidable (in O(h(t)) time) from available information, we

have that limT→∞ ∑t∈S≤T
yt −µt = 0.

Thus, we call a sequence random if there is no (O(g(t))-)computable way of selecting in advance

members of the sequence whose average differs from the means µ̄ . Definition 8 generalizes the stan-

dard definition of (unbounded) vMWC randomness (e.g. [8], Definition 7.4.1) to non-binary values with

means µ̄ other than 1/2 and computational constraints with outside input (e.g., from DP, which could

contain options containing information such as, “by the way, the trillionth digit of π is 2”). The notion

of vMWC randomness is generally considered quite weak (e.g. [8], Sect. 6.2).

Theorem 4. Let µ̄ be an e.c. sequence on [0,1]. Let α be an O(h(t))-computable BRIA for decision

problem sequence DP with rewards r̄ covering all e.c. hypotheses. Let ā be a sequence of terms in T s.t.

at ∈ DPt for all t ∈ N and the payoffs rt in rounds with αc
t = at are O(h(t))-boundedly vMWC random

with means µ̄ . Then in the limit as T → ∞, it holds that ∑T
t=1 rt/T ≥ ∑T

t=1 µt/T .
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We show an analogous result for Schnorr bounded randomness [26, 1, 33, 30] in Appendix E. Anal-

ogous results for truly random options follow from results for algorithmically random r̄ and the fact that

a sequence of truly random, independent numbers is algorithmically random almost surely. We give a

direct proof in Appendix B.

7 Boundedly rational inductive agents as a foundation for game theory

We first recap basic game-theoretic concepts. A (two-player) game consists of two finite sets of (pure)

strategies A1,A2, one set for each player, and two payoff functions u1,u2 : A1×A2→[0,1]. A correlated

strategy profile is a distribution c ∈ ∆(A1×A2) over A1×A2. We can naturally extend utility functions

to correlated strategy profiles as follows: ui(c) = ∑a∈A1×A2
caui(a). We call a correlated strategy profile

c strictly individually rational if each player’s payoff in c is greater than their pure strategy maximin

payoff, i.e., ui(c)> maxai∈Ai
mina−i∈A−i

ui(ai,a−i).
Now imagine that two BRIAs ᾱ1, ᾱ2 learn to play a game against each other. That is, we consider

BRIAs ᾱ1, ᾱ2 for D̄P
ᾱ1 ,D̄P

ᾱ2 respectively, where D̄P
ᾱi = Ai for i = 1,2 and ri,t = ui(α

c
1,t ,α

c
1,t).

Theorem 5 (Folk theorem). Let Γ be a game. Let H1,H2 be any sets of hypotheses. Let c∈∆(A1×A2) be

strictly individually rational. Then there exists c′ arbitrarily close to c and BRIAs ᾱ1, ᾱ2 covering H1,H2

for decision problem sequences DP
α1 ,DP

α2
with rewards r̄1, r̄2 based on Γ as defined above s.t. the

empirical distribution of (αc
1 ,α

c
2) converges to c′, i.e., for all a ∈ A1×A2, 1/T ∑T

t=11[(α
c
1 ,α

c
2) = a]→ c′a

as T → ∞. Conversely, if α1,α2 are BRIAs for sets of hypotheses H1 and H2 that contain at least the

constant-time deterministic hypotheses, ∑T
t=1 ui(α

c
1,t ,α

c
2,t)/T ≥ maxai

mina−i
ui(ai,a−i) as T → ∞. That

is, in the limit each player receives at least their maximin utility.

Theorem 5 is compelling, because it means BRIAs can learn to cooperate in one-shot games where

rational agents would otherwise fail to cooperate (e.g., contrast fictitious play, or regret learning, both

of which necessarily converge to defecting in the Prisoner’s Dilemma). Note that our BRIA criterion

is myopic, i.e., aimed at maximizing reward in the current round. Thus, even though the BRIAs in the

above setting play repeatedly, the above result is unrelated to the folk theorems for repeated games.

8 Related work

Multi-armed bandit problems Our setting resembles a multi-armed bandit problem with expert advice

(where H is the set of “experts”). The main difference is that we only define rt , the reward actually

obtained by the agent. The literature on multi-armed bandit problems assumes that the problem also

defines the (counterfactual) rewards of untaken options and defines rationality in terms of these rewards.

As discussed in Sect. 3, one of our motivations is to do away with these counterfactuals.

Within the multi-armed bandit literature, the most closely related strand of work is the literature on

adversarial multi-armed bandit problems with expert advice ([2]; [13]). Like this paper, this literature

addresses this problem of bounded rationality by formulating rationality relative to a set of hypotheses

(the eponymous experts). However, its rationality criterion is very different from ours: they require

regret minimization and in particular that cumulative regret is sublinear, a condition sometimes called

Hannan-consistency. As the Simplified Adversarial Offer shows, Hannan-consistency is not achievable

in our setting. However, it does become achievable if we assume that the agent has access to a source

of random noise that is independent from DP (see, e.g, the Exp4 algorithm of [2], Sect. 7). Importantly,

the rationality criterion itself ignores the ability to randomize, i.e., it does not prescribe that the use of

randomization be optimal in any sense.
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We find it implausible to require rational agents to randomize to minimize regret; most importantly,

regret minimization can require minimizing the rewards one actually obtains – see Appendix C.

Decision theory of Newcomb-like problems Problems in which the environment explicitly pre-

dicts the agent have been discussed as Newcomb-like problems by (philosophical) decision theorists

([16]). Most of this literature has focused on discussing relatively simple cases (similar to SAO). In these

cases, BRIAs generally side with what has been called evidential decision theory. For example, by The-

orem 3, BRIAs learn to one-box in Newcomb’s problem. Of course, BRIAs differ structurally from how

a decision theorist would usually conceive of an evidential decision theory-based agent. E.g., BRIAs are

not based on expected utility maximization (though they implement it when feasible; see Appendix B).

We also note that the decision theory literature has, to our knowledge, not produced any formal account

of how to assign the required conditional probabilities in Newcomb-like problems.

Bounded rationality The motivations of the present work as per Sect. 3, especially Sect. 3, coincide

with some of the motivations for the study of bounded rationality. However, other motivations have been

given for the study of bounded rationality as well (see, e.g., [27], Sect. 2). More importantly, since much

of bounded rationality is geared towards explaining or prescribing human (as opposed to AI) behavior, the

characterization and analysis of “computational capacities” often differ from ours (e.g. [5]). For instance,

for most humans dividing 1 by 17 is a challenge, while such calculation are trivial for computers. A

few authors have also explicitly connected the general motivations of bounded rationality with paradoxes

of self reference and game theory as discussed in Sect. 3 ([4], [20, Ch. 10]). Anyway, the literature on

bounded rationality is vast and diverse. Much of it is so different from the present work that a comparison

hardly makes sense. Below we discuss a few approaches in this literature that somewhat resemble ours.

In particular, like the present paper (and Hannan consistency) they specify rationality relative to a given

set of hypotheses (that in turn is defined by computational constraints).

Russell et al.’s bounded optimality Like our approach and the other approaches discussed in this

related work section, Russell et al. define bounded optimality as a criterion relative to a set of (compu-

tationally bounded) hypotheses called agent programs ([21], Sect. 1.4; [23]; [22]). Roughly, an agent

program is boundedly optimal if it is the optimal program from some set of bounded programs. The

main difference between our and Russell et al.’s approach is that we address the problems of Sect. 3 by

developing a theory of learning to make such decisions, while Russell et al. address them by moving the

decision problem one level up, from the agent to the design of the agent (cf. [7], Sect. 2.2 for a discus-

sion of this move). As one consequence, we can design general BRIAs, while it is in general hard to

design boundedly optimal agents. Of course, the feasibility of designing BRIAs comes at the cost of

our agents only behaving reasonably in the limit. Moreover, the designer of boundedly optimal agents

as per Russell et al. may become a subject of the paradoxes of Sect. 3 in problematic ways.

Garrabrant inductors The present is in part inspired by the work of Garrabrant et al. [10], who

address the problem of assigning probabilities under computational constraints and possibilities of self-

reference. As an alternative to the present theory of BRIAs, one could also try to develop a theory of

boundedly rational choice by maximizing expected utility using the Garrabrant inductor’s probability

distributions. Unfortunately, this approach fails for reasons related to the challenge of making counter-

factual claims, as pointed out by Garrabrant [9]. As in the case of Hannan consistency, we can address

this problem using randomization over actions. However, like Garrabrant (ibid.), we do not find it satis-

factory to require randomization (cf. again Appendix C). We conjecture that Garrabrant inductors with

(pseudo-)randomization could be used to construct BRIAs.
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9 Conclusion

We developed BRIA theory as a theory of bounded inductive rationality. We gave results that show the

normative appeal of BRIAs. Furthermore, we demonstrated the theory’s utility by using it to justify Nash

equilibrium play. At the same time, the ideas presented lead to various further research questions, some

of which we have noted above. We here give three more that we find particularly interesting. Can we

modify the BRIA requirement so that it implies coherence properties à la Garrabrant et al. [10]? Do the

frequencies with which BRIAs play the given pure strategies of a game converge to mixed Nash and

correlated equilibria? Can BRIA theory be used to build better real-world systems?
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t = 0. Then if ᾱ covers h̄ with test set M,
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Proof. For all T , we have that

lT (ᾱ , r̄,M, h̄) = ∑
t∈M≤T

rt −he
t = ∑

t∈M≤T−N

rt −he
t + ∑

t∈M≤T∩N

rt −he
t

= ∑
t∈M≤T−N

rt −he
t + ∑

t∈M≤T∩N

rt

≥ ∑
t∈M≤T−N

rt −he
t

= lt(ᾱ , r̄,M−N, h̄).

Thus, if lT (ᾱ , r̄,M, h̄)→−∞ as T →−∞, it must also be lT (ᾱ , r̄,M−N, h̄)→−∞ as T →−∞.

A.2 Proof of Theorem 1

Theorem 1. Let H be a computably enumerable set consisting of (O(g(t))-)computable hypotheses.

(Let g ∈ Ω(log).) Then there exists an algorithm that computes a BRIA covering H (in O(g(t)q(t)), for

arbitrarily slow-growing, O(g(t))-computable q with q(t)→ ∞) for any DP, r̄.

Proof. Our proof is divided into four parts. First, we give the generic construction for a BRIA (1). Then

we show that this is indeed a BRIA by proving that it satisfies the no overestimation criterion (2), as well

as the coverage criterion (3). Finally, we show that under the assumptions stated in the theorem, this

BRIA is computable in the claimed time complexity (4).

1. The construction

First, we need an allowance function A : N×N→ R≥0, which for each time n, specifies a posi-

tive amount A(n, i) given to hypothesis hi’s wealth at time n. The allowance function must satisfy the

following requirements:

• Each hypothesis must get infinite overall allowance, i.e., ∑∞
n=1 A(n, i) = ∞ for all hypotheses hi.

• The overall allowance distributed per round n must go to zero, i.e.,

N

∑
n=1

1

N

∞

∑
i=1

A(n, i) →
N→∞

0. (1)

In particular, the allowance distributed in any particular round must be finite.

An example of such a function is A(n, i) = n−1i−2.

We can finally give the algorithm itself. Initialize the wealth variables as (for example) w0(i)← 0 for

each hypothesis hi ∈H.

At time t, we run a (first-price sealed-bid2) auction for the present decision problem among all hy-

potheses. That is, we determine a winning hypothesis

i∗t ∈ argmax
i∈N

min(he
i,t ,wt(i)) (2)

with arbitrary tie breaking. Intuitively, each hypothesis hi bids he
i,t , except that it is constrained by its

wealth wt(i). The idea is that if hi has performed poorly relative to its promises, then α should not trust

2This format is mainly chosen for its simplicity. We could just as well use a second-price (or third-price, etc.) auction. We

could use even different formats to get somewhat different BRIA-like properties. For instance, with combinatorial auctions,

one could achieve cross-decision optimization.
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hi’s promise for the present problem. Let e∗t ∈ [0,1] be the maximum (wealth-bounded) bid itself. We

then define our agent at time t as αt := (hc
i∗t ,t

,e∗t ).

We update the wealth variables as follows. For all hypotheses i 6= i∗t , we merely give allowance,

i.e., wt+1(i)← wt(i)+A(t, i). For the winning hypothesis i∗t , we update wealth according to wt+1(i
∗
t )←

wt(i
∗
t )+A(t, i∗t )+ rt − e∗t . That is, the highest-bidding hypothesis receives the allowance and the reward

obtained after following its recommendation (rt ), but pays its (wealth-bounded) bid (e∗t ).

2. No overestimation We will show that the cumulative overestimation is bounded by the sum of the

allowance.

For each T , let B+
T be the set of hypotheses whose wealth wt(i) is positive for at least one time

t ∈ {0, ...,T}. Note that all highest-bidding hypotheses in rounds 1....,T are in B+
T for all j. We can then

write the overall wealth of the hypotheses in B+
T at time T as

∑
i∈B+

T

wT (i) = ∑
i∈B+

T

T

∑
n=1

A(n, i)+
T

∑
t=1

rt −αe
t .

That is, the overall wealth at time T is the allowance distributed at times 1, ...,T plus the money earned/lost

by the highest-bidding hypotheses.

Now notice that by the construction above, if a wealth variable wt(i) is non-negative once, it remains

non-negative for all future t. Thus, for all i ∈ B+
T , wT (i) ≥ 0. Second, the last term is the negated

cumulative overestimation of ᾱ . Thus, re-arranging these terms and dividing by T gives us the following

upper bound on the per-round overestimation:

1

T
LT (α , r̄) =

1

T



 ∑
i∈B+

T

T

∑
n=1

A(n, i)− ∑
i∈B+

T

wT (i)



≤
1

T
∑

i∈B+
T

T

∑
n=1

A(n, i)≤
∞

∑
i=1

1

T

T

∑
n=1

A(n, i),

which goes to zero as T → ∞ by our requirement on the function A (line 1).

3. Hypothesis coverage Given a hypothesis hi that strictly outpromises ᾱ infinitely often, we use as

a test Mi, the set of times t at which hi is the winning hypothesis (i.e., the set of times t s.t. i = i∗t ). We

have to show that Mi is infinite, is a valid test set (as per Definition 4), and that it satisfies the justified

rejection requirement in the hypothesis coverage criterion.

A) We show that Mi is infinite. That is, we need to show that infinitely often hi is the highest-bidding

hypothesis in the auction that computes ᾱ. Assume for contradiction that Mi is finite. We will show that

at some point hi’s bidding in the construction of ᾱ will not be constrained anymore by h’s wealth. We

will then find a contradiction with the assumption that hi strictly outpromises α infinitely often.

Consider that for T ′ > T , it is wT ′(i) = wT (i) +∑T ′

t=T+1 A(t, i). That is, from time T to any time

T ′, hypothesis i’s wealth only changes by hi receiving allowance, because i is (by assumption) not the

winning hypothesis i∗t in any round t ≥ T . Because we required ∑∞
n=1 A(n, i) = ∞, we can select a time

T∗ ≥ T such that wT∗(i)≥ 1. Note that again it is also for all t > T∗ the case that wt(i)≥ 1.

We now see that if t ≥ T∗ the wealth constraints is not restrictive. That is, for all such t it is

min(he
i,t ,wt(i)) = he

i,t . But it is infinitely often he
i,t > αe

t . This contradicts the fact that by construction, αt

is equal to the highest wealth-restricted hypothesis.

B) The fact that Mi is a valid test set follows immediately from the construction – α always chooses

the recommendation of the highest-bidding hypothesis.
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C) We come to the justification part of the coverage criterion. Let Bi be the set of rounds in which h̄i

strictly outpromises ᾱ .

At each time t ∈ Bi, by construction wT (i, j) < he
i,t(DPT ). We have that he

i,t(DPT )≤ 1 and

wT (i) =
T

∑
n=1

A(n, i)+ ∑
t∈Mi:t<T

rt −he
i,t .

Hence, from the fact that wT (i)< he
i,t(DPT ) for all T ∈ Bi, it follows that for all T ∈ Bi, it is

∑
t∈Mi :t<T

he
i,t − rt >

T

∑
n=1

A(n, i),

which goes to infinity as T → ∞, as required.

4. Computability and computational complexity It is left to show that if H can be computably enu-

merated and consist only of (O(g(t))-)computable hypotheses, then we can implement the above-

described BRIA for H, DP,r̄ in an algorithm (that runs in O(g(t)q(t)), for arbitrarily slow-growing,

O(g(t))-computable q with q(t)→ ∞).

The main challenge is that the construction as described above performs at any time t, operations for

all (potentially infinitely many) hypotheses. The crucial idea is that for an appropriate choice of A, we

only need to keep track of a finite set of hypotheses, when calculating ᾱ in the first T time steps. Each

hypothesis starts with an initial wealth of 0. Then a hypothesis i can only become relevant at the first

time t at which A(t, i) > 0. At any time t, we call such hypotheses active. Before that time, we do not

need to compute h̄i and do not need to update its wealth. By choosing a function A s.t. (in addition to the

above conditions) A(t, ·) has finite, e.c. support at each time t, we can keep the set of active hypotheses

finite at any given time. (An example of such a function is A(n, i) = n−1i−2 for i < n and A(n, i) = 0

otherwise.) We have thus shown that it is enough to keep track at any given time of only a finite number

of hypotheses.

At any time, we therefore only need to keep track of a finite number of wealth variables, only need

to compute the recommendations and promises of a finite set of hypotheses, and only need to compute a

minimum of a finite set in line 2.

Computability is therefore proven. We proceed to show the claim about computational complexity.

At any time t, let Cmax(t) be the largest constant by which the computational complexity of hypotheses

at time t are bounded relative to g(t). Further, let hb(t) be the set of active hypotheses. Then the

computational cost from simulating all active hypotheses at time t is at most hb(t)Cmax(t)g(t). All of

Cmax(t) and hb(t) must go to ∞ as t→ ∞. However, this can happen arbitrarily slowly, up to the limits of

fast (O(g(t))) computation. Hence, if we let q(t) = hb(t)Cmax(t)g(t), we can let q grow arbitrarily slowly

(again, up to the limits of fast computation).

Finally, we have to verify that all other calculations can be done in O(q(t)g(t)): To determine the

winning hypothesis given everyone’s promises, we have to calculate the maximum of hb(t) ∈ O(q(t))
numbers, which can be done in O(q(t)) time. We also need to conduct the wealth variable updates

themselves, which accounts for O(hb(t)) additions. Again, this is in O(g(t)q(t)). And so on.

A.3 Proof of Theorem 2

Theorem 2. Let α be a BRIA for DP, r̄,H. Assume that there are infinitely many t such that |DPt | ≥ 2

and αe
t < 1. If H is the set of (O(g(t))-)computable hypotheses, then α is not computable (in O(g(t))).
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This is shown by a simple diagonalization argument. If a BRIA α were computable (in O(g(t))),
then consider the hypothesis who in rounds in which |DPt | ≥ 2 and αe

t < 1, promises 1 and recommends

an option other than αc
t ; and promises 0 otherwise. This hypothesis strictly outpromises α infinitely

often, is computable (in O(g(t))) but is never tested .

A.4 Proof of Theorem 3

Theorem 3. Let ᾱ be a BRIA for DP, r̄ and the set of e.c. hypotheses. Let ā be a sequence of terms in T

s.t. for all t ∈ N, it holds that at ∈ DPt and αc
t = at =⇒ rt ≥ Lt for some e.c. sequence L̄. We require

also that the at are efficiently identifiable from the sets DPt . Then in the limit as T → ∞ it holds that

∑T
t=1 rt/T ≥ ∑T

t=1 Lt/T .

Proof. We will show that if the assumptions are satisfied, then for all but finitely many t, we have that

αe
t ≥ Lt . From this and the fact that ᾱ doesn’t overestimate, it then follows that ∑T

t=1 rt/T ≥ ∑T
t=1 Lt/T .

We prove this new claim by proving a contrapositive. In particular, we assume that αe
t < Lt for

infinitely many t and will then show that ᾱ is not a BRIA (using the other assumptions of the theorem).

Consider hypothesis h̄i such that hi,t = (at ,Lt). Because L̄ is e.c. and the ā are efficiently identifiable,

h̄ is e.c. We now show that h̄i is not covered by ᾱ , which shows that ᾱ is not a BRIA. By assumption, h̄i

strictly outpromises ᾱ infinitely often. It is left to show that there is no Mi as specified in the hypothesis

coverage criterion, i.e. no Mi on which h̄i consistently underperforms its promises.

If t ∈Mi, then αc
t = hc

i,t = at and therefore rt ≥ Lt . It follows that for all T ,

lT (ᾱ , r̄,Mi, h̄i) = ∑
t∈Mi :t<T

rt
︸︷︷︸

≥Lt

− he
i,t

︸︷︷︸

=Lt

≥ 0.

Thus, ᾱ violates the coverage criterion for h̄i.

A.5 Proof of Theorem 4

Definition 8. We say a sequence ȳ is (O(h(t)) boundedly) van Mises–Wald–Church (vMWC) random with

means µ̄ if for every infinite set S⊆N that is decidable (in O(h(t)) time) from available information, we

have that limT→∞ ∑t∈S≤T
yt −µt = 0.

Theorem 4. Let µ̄ be an e.c. sequence on [0,1]. Let α be an O(h(t))-computable BRIA for decision

problem sequence DP with rewards r̄ covering all e.c. hypotheses. Let ā be a sequence of terms in T s.t.

at ∈ DPt for all t ∈ N and the payoffs rt in rounds with αc
t = at are O(h(t))-boundedly vMWC random

with means µ̄ . Then in the limit as T → ∞, it holds that ∑T
t=1 rt/T ≥ ∑T

t=1 µt/T .

Proof. We prove the theorem by proving that for all ε > 0, αe
t ≥ µt − ε for all but finitely many t.

As usual, we prove this by proving the following contrapositive: assuming this is not the case, ᾱ is

not a BRIA. To prove this, consider hypothesis h̄a,ε that at each time t promises max(µt − ε ,0) and

recommends at . Since h̄a,ε infinitely often outpromises ᾱ , it must tested infinitely often. Let the test set

be some infinite set M ⊆ N. By Lemma 6, we can assume WLOG that for all t ∈M, he
a,ε = µt − ε .

Now notice that M is by assumption computable in O(h(t)) given the information available at time t.

Now
1

|Mi,≤T |
lT (α , r̄,Mi, h̄i) =

1

|Mi,≤T |
∑

t∈Mi,≤T

rt − (µt − ε) →
w.p. 1

ε as T → ∞,
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where the final step is by the fact that among rounds where αc
t = at , r̄ is vMWC random with means µ̄ .

Hence, h̄a,ε ’s record lT (α , r̄,Mi, h̄i) must be positive in all but finitely many rounds. Thus, ᾱ’s infinitely

many rejections of h̄a,ε violate the coverage criterion.

A.6 Proof of Theorem 5

Lemma 7 (Minimax Theorem [15]). Let (A1,A2,u1,u2) be any game. Then

max
σi∈∆(Ai)

min
a−i∈A−i

ui(σi,σ−i) = min
σ−i∈∆(A−i)

max
ai∈Ai

ui(σi,σ−i).

Theorem 5 (Folk theorem). Let Γ be a game. Let H1,H2 be any sets of hypotheses. Let c∈∆(A1×A2) be

strictly individually rational. Then there exists c′ arbitrarily close to c and BRIAs ᾱ1, ᾱ2 covering H1,H2

for decision problem sequences DP
α1 ,DP

α2
with rewards r̄1, r̄2 based on Γ as defined above s.t. the

empirical distribution of (αc
1 ,α

c
2) converges to c′, i.e., for all a ∈ A1×A2, 1/T ∑T

t=11[(α
c
1 ,α

c
2) = a]→ c′a

as T → ∞. Conversely, if α1,α2 are BRIAs for sets of hypotheses H1 and H2 that contain at least the

constant-time deterministic hypotheses, ∑T
t=1 ui(α

c
1,t ,α

c
2,t)/T ≥ maxai

mina−i
ui(ai,a−i) as T → ∞. That

is, in the limit each player receives at least their maximin utility.

Proof. The latter part (“Conversely,...”) follows directly from Theorem 3. It is left to prove the existence

claim.

We construct the BRIAs as follows. First we fix positive probabilities pc ∈ (0,1) and (pai
)ai∈Ai

for

i= 1,2 (WLOG assume A1 and A2 are disjoint) s.t. pc+∑2
i=1 ∑ai∈Ai

pai
= 1. Further let vi be some number

that is strictly greater than Player i’s maximin value but strictly smaller than pcui(c). By the assumption

that c is strictly individually rational, such a number exists if we make pc large enough. Then let αe
i,t = vi

for all t. Then in each step the BRIAs jointly randomize3 independently from all bidders in H1,H2 as

follows:

• With probability pc both players play according to c by jointly implementing c, e.g., by determin-

istically cycling through the different strategies in the appropriate numbers.Further, αe
i,t = vi. No

hypotheses are tested.

• With probability pai
, Player i plays ai and Player −i plays from argmina−i∈A−i

ui(ai,a−i). Player

−i estimates v−i and does not test any hypothesis. Player i estimates vi and tests every hypothesis

that estimates more than vi.

We now prove that ᾱ1, ᾱ2 thus constructed are BRIAs.

No overestimation:

LT (ᾱi, r̄i)/T =
T

∑
t=1

(αe
i,t − ri,t)/T =

T

∑
t=1

(vi− ri,t)/T ≤ vi−ui(c) as T → ∞.

By construction, vi−ui(c)≤ 0.

Coverage: Let h̄i be a hypothesis that outbids ᾱi infinitely often. Then in particular h̄i outbids in-

finitely often in rounds in which h̄i recommends some ai and αc
i,t = ai. Thus, h̄i has an infinite test set M

on which the hypothesis’ empirical record is

lT (ᾱi, r̄i,M, h̄i) = ∑
t∈M≤T

rt −he
i,t = ∑

t∈M≤T

min
a−i

ui(h
c
i,t ,a−i)−he

i,t ≤ ∑
t∈M≤T

max
ai

min
a−i

ui(ai,a−i)− vi→−∞

as T → ∞. Thus, h̄i is covered.

3We here use true randomization for simplicity. The same can be achieved using algorithmic randomness.
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B Options with random payoffs

The following result shows, roughly, that when choosing between different lotteries whose expected

utilities are efficiently computable, BRIAs converge to choosing the lottery with the highest expected

utility. When other, non-lottery options are available, BRIAs converge to performing at least as well as

the best lottery option.

Theorem 8. Let ᾱ be a BRIA for DP, r̄. Let ā be a sequence of terms in T s.t. at ∈ DPt for all t ∈ N

and the values of rt if αc
t = at are drawn independently from distributions with e.c. means µ̄ . Let the at

be efficiently identifiable from DPt . Then almost surely in the limit as T → ∞, it holds that ∑T
t=1 rr/T ≥

∑T
t=1 µt/T .

The proof idea similar to the proof idea for Theorem 3. It works by considering hypotheses that

recommend at and promise µt − ε and noting that the empirical record of such hypotheses goes to −∞

with probability 0.

Proof. We need only show that with probability 1 for all ε > 0 it holds that for all but finitely many times

t that αe
t ≥ µt − ε . From this and the no overestimation property of ᾱ , the conclusion of the theorem

follow.

Again we prove the following contrapositive: If there is some ε > 0 s.t. with some positive probability

p > 0 we infinitely often have that αe
t < µt − ε , then ᾱ is with positive probability not a BRIA.

Consider the hypothesis h̄a,ε that at each time t promises max(µt − ε ,0) and recommends at . Since

with probability p, h̄a,ε infinitely often outpromises ᾱ , it must in these cases (and therefore with prob-

ability (at least) p) be tested infinitely often. (If not, we ᾱ would in these cases not be a BRIA and we

would be done.) In these cases (i.e., when h̄a,ε is tested infinitely often), let the test set be some infinite

set M ⊆ N. (Note that M may depend on r̄ and inherit its stochasticity. This will not matter for the

following, though.) For simplicity, let M be the empty set if h̄a,ε does not outpromise α infinitely often.

By Lemma 6, we can assume WLOG that for all t ∈M, he
a,ε = µt − ε . Now notice that

1

|Mi,≤T |
lT (α , r̄,Mi, h̄i) =

1

|Mi,≤T |
∑

t∈Mi,≤T

rt −he
a,ε ,t =

1

|Mi,≤T |
∑

t∈Mi,≤T

rt − (µt − ε).

Conditioning on the (probability p) event that h infinitely often outbids and therefore that M is infinite,

it must then with probability 1 be the case that ∑t∈Mi,≤T
rt− (µt − ε) →

w.p. 1
ε as T →∞ by the law of large

numbers. We have thus shown that with positive probability (p) h̄a,ε outpromises ᾱ infinitely often while

h̄a,ε ’s record lT (α , r̄,Mi, h̄i) is positive in all but finitely many rounds. Thus, in this positive-probability

event ᾱ’s infinitely many rejections of h̄a,ε violates the coverage criterion.

C More on randomization and regret

In the literature on multi-armed bandit problems, authors usually consider the goal of regret minimiza-

tion. A natural rationality requirement is for per-round average regret to go to 0. This is sometimes

called Hannan consistency. For any given agent c, the Simplified Adversarial Offer SAOc of Sect. 3

is a problem on which regret is necessarily high. However, if we assume that the agent at time t can

randomize in a way that is independent of how the rewards are assigned by Dt , it can actually be ensured

that per-round regret (relative to any particular hypothesis) goes to 0 (see Sect. 8).
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Arguably the assumption that the agent can independently randomize is almost always satisfied for

artificial agents in practice. For instance, if an agent wanted to randomize independently, then for an

adversary to predict the program’s choices, it would not only need to know the program’s source code.

It would also require (exact) knowledge of the machine state (as used by pseudo-random number gen-

erators); as well as the exact content of any stochastic input such as video streams and hardware/true

random number generators. Independent randomization might not be realistic for humans (to whom

randomization requires some effort), but none of these theories under discussion (the present one, regret

minimization, full Bayesian updating, etc.) are directly applicable to humans, anyway.

Nevertheless, we are conceptually bothered by the assumption of independent randomization. It

seems desirable for a theory of choice to make as few assumptions as possible about the given decision

problems. Moreover, we can imagine situations in which independent randomization is unavailable to a

given agent. It seems odd for a theory of learning to be contingent on the fact that such situations are

(currently) rare or practically insignificant. A detailed discussion of this philosophical concern is beyond

the scope of this paper.

In the rest of this section, we discuss the goal of regret minimization under the assumption that algo-

rithms can randomize independently of D̄. The problems discussed in this section all involve references

to the agent’s choice.

We consider a version of Newcomb’s problem (introduced by [16]; see Sect. 8 for further discussion

and references). In particular, we consider for any chooser c the decision problem NPc = {a1,a2} which

is resolved as follows. First, we let D(a1) = 1/4+P(c = a1)/2. So the value of a1 is proportional to the

probability that c chooses a1. And second, we let D(a2) = D(a1)+P(c = a1)/4.

If we let p = P(c = a1), then the expected reward of c in this decision problem is 1/4 + p/2 +
(1− p)p/4. It is easy to see that this is strictly increasing in p and therefore maximized if c = a1

deterministically. The regret, on the other hand, of c is p2/4, which is also strictly increasing in p on

[0,1] and therefore minimized if c = a2 deterministically. Similarly, the competitive ratio is given by
1/4+3p/4

1/4+p/2+(1−p)p/4
, which is also strictly increasing in p on [0,1] and therefore also minimized if c =

a2 deterministically. Regret and competitive ratio minimization as rationality criteria would therefore

require choosing the policy that minimizes the actual reward obtained in this scenario, only to minimize

the value of actions not taken.

As noted in Sect. 8, it is a controversial among decision theorists what the rational choice in New-

comb’s problem is. However, from the perspective of this paper in this particular version of the problem,

it seems undesirable to require reward minimization. Also, it is easy to construct other (perhaps more

convincing) cases. For example, if a high reward can be obtained by taking some action with a small

probability, then regret minimizers take that action with high probability in a positive-frequency fraction

of the rounds. Or consider a version of Newcomb’s problem in which D(a1) is defined as before, but

D(a2) = D(a1). On such problems, Hannan-consistency is trivially satisfied by any learner, even though

taking a1 with probability 1 is clearly optimal.

D Why an even simpler theory fails and estimates are necessary

A simple mechanism of learning to choose is the law of effect (LoE):

Of several responses made to the same situation, those which are accompanied or closely

followed by satisfaction to the animal will, other things being equal, be more firmly con-

nected with the situation, so that, when it recurs, they will be more likely to recur; those

which are accompanied or closely followed by discomfort to the animal will, other things
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being equal, have their connections with that situation weakened, so that, when it recurs,

they will be less likely to occur. The greater the satisfaction or discomfort, the greater the

strengthening or weakening of the bond.

This notion is implicit in many reinforcement learning algorithms. In (human) psychology it is also

known as operant conditioning.

In situations like ours, where situations generally do not repeat exactly, for the law of effect to be

meaningful, we have to applied on a meta level to general hypotheses or policies for making choices.

So let a policy be a function that maps observations to actions. Then we could phrase this meta LoE as:

if following a particular policy is accompanied with high rewards, then an agent will follow this policy

more often in the future.

The BRIA criterion can be seen as abiding by this meta LoE, as the BRIA criterion requires test-

ing different hypotheses and following the ones that have experimentally proven themselves. Its main

conceptual innovation relative to the meta LoE is the bidding system, i.e., having the agent as well as

hypotheses give estimates for how much utility will be achieved by making a particular choice, and using

these estimates for testing and evaluation. A natural question then is: Are these conceptual additions to

meta LoE necessary to obtain the kind of results we obtain? We here show why the answer is yes.

The biggest problem is quite simple to understand: if we don’t restrict the testing regimen for policies,

then biased testing can justify clearly suboptimal behavior. As an illustrative example, imagine that for

all t, DPt ∈ Fin([0,1]) where rt = αc
t . That is, at each time the agent is offered to choose from some

set of numbers between 0 and 1 and then obtains as a reward the chosen number. The agent tests two

policies: The first simply chooses the maximum number. The second chooses, e.g., the worst option that

is greater than 1/2 if there is one, and the best option otherwise.

Of course, in this situation one would like the agent to learn at some point to follow the max policy.

BRIAs indeed learn this policy (when accompanying the two tested policies with appropriate estimates)

(cf. Theorem 3). But now imagine that the agent tests the max hypothesis primarily in rounds where all

values are at most 1/2 and the other hypothesis primarily in rounds in which there are options greater

than 1/2. Then the max hypothesis could empirically be associated with lower rewards than the max

hypothesis, simply because it is tested in rounds in which the maximum achievable reward is lower.

To avoid this issue we would have to require that the set of decision problems on which hypothesis A

is tested is in all relevant aspects the same as the set of decision problems on which hypothesis B is tested.

Unfortunately, we do not know what the “relevant aspects” are. For instance, in the above problem it

may be sufficient to test the max hypothesis on even time steps and the other hypothesis on odd time

steps. However, there may also be problems where rewards depend on whether the problem is faced in

an even or in an odd time step. More generally, it is easy to show that for each deterministic procedure of

deciding which hypothesis to test, there is a decision process D̄P, r̄ in which which this testing procedure

introduces a relevant bias. In particular, the positive results we have proven in Theorems 3, 4 and 8 seem

out of reach. We conclude that a direct deterministic implementation of meta LoE (without the use of

estimates) is insufficient for constructing a criterion of rational choice.

Besides the estimates-based approach to this problem that we have developed in this paper, a different

(perhaps more obvious) approach to this problem is to test randomly. For this, we assume that we have

a randomization device available to us that is independent of D̄P, r̄. If we then, for example, randomize

uniformly between testing two hypotheses, testing is unbiased in the sense that for any potentially prop-

erty of decision problems, as the number of tests goes to infinity, both hypotheses will be tested on the

same fraction of problems with and without that property. This is essentially the idea behind randomized

controlled trials. We have discussed this idea in Appendix C.
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E Schnorr bounded algorithmic randomness

Definition 9. A martingale is a function d : B∗ → [0,∞) s.t. for all w ∈ B
∗ we have that d(w) =

1/2d(w0) + 1/2d(w1). Let w ∈ B
∞ be an infinite sequence. We say that d succeeds on w if

limsupn→∞ d(w1...wn) = ∞.

Definition 10. We call w ∈ B
ω (O(g(t))-boundedly) Schnorr random if there is no martingale d such

that d succeeds on w and d can be computed (in O(g(t))) given everything revealed by time t.

Theorem 9. Let α be an (O(h(t))-computable) BRIA for DP, r̄ covering all e.c. hypotheses. Let ā be a

sequence of terms in T s.t. at ∈ DPt for all t ∈ N and the values rt in the rounds t with αc
t are (O(h(t))-

boundedly) Schnorr random. Then in the limit as T → ∞, it holds that ∑T
t=1 rt/T ≥ 1/2.

Proof. We conduct a proof by proving the following contrapositive: if the conlusion of the theorem does

not hold, then (rt)t:αc
t =at

is not Schnorr random. Assume that there is ε > 0 s.t. ∑T
t=1 rt/T < 1/2− ε for

infinitely many T . Then by the no overestimation criterion, there must also be an ε > 0 s.t. ∑T
t=1 αe

t /T <
1/2−ε for infinitely many T . Consider the hypothesis ha,ε that always estimates 1/2−ε and recommends

at . Now let Mε be ᾱ’s test for ha,ε . From the fact that ᾱ rejects ha,ε infinitely often, it follows that there

are infinitely many T ∈N such that ∑t∈M≤T
rt − (1/2− ε)< 0.

From this fact, we will now define an (O(h(t))-computable) martingale d that succeeds on the

sequence (rt)t:αc
t =at

. First, define d() = 1. Whenever T is not in M, define d((rt)t<T :αc
t =at

0) =
d((rt)t<T :αc

t =at
) = d((rt)t<T :αc

t =at
1). That is, when T /∈ M, don’t bet on rT . If T ∈ M, then bet some

small, constant fraction δ of the current money that the next bit will be 0. That is, d((rt)t<T :αc
t =at

0) =
(1+δ )d((rt)t<T :αc

t =at
) and d((rt)t<T :αc

t =at
1) = (1−δ )d((rt)t<T :αc

t =at
). Clearly, d thus defined is a mar-

tingale that is computable based on ᾱ ,M.

Now we now know that there are infinitely many T s.t. d((rt)t<T :αc
t =at

)≥ (1+δ )T+εT (1−δ )T . It is

left to show that for small enough δ , (1+δ )T+εT (1−δ )T → ∞ as T → ∞.

First notice that

(1+δ )T+εT (1−δ )T = ((1+δ )(1−δ ))T (1+δ )Tε = (1−δ 2)T (1+δ )Tε =
(
(1−δ 2)(1+δ )ε

)T
.

So we need only show that for small enough but positive δ , (1− δ 2)(1+ δ )ε > 1. The most mechanic

way to do this is to take the derivative at δ = 0 (where the left-hand side is equal to 1) and showing that

it is positive. The derivative is d
dδ (1− δ 2)(1+ δ )ε = (1+ δ )ε(ε − δ (ε + 2)). Inserting δ = 0 yields ε ,

which is positive.
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In this paper we formalise three types of cognitive bias within the framework of belief revision: con-
firmation bias, framing bias, and anchoring bias. We interpret them generally, as restrictions on the
process of iterated revision, and we apply them to three well-known belief revision methods: condi-
tioning, lexicographic revision, and minimal revision. We investigate the reliability of biased belief
revision methods in truth-tracking. We also run computer simulations to assess the performance of
biased belief revision in random scenarios.
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1 Introduction

Cognitive bias is a systematic human thought pattern connected with the distortion of received infor-
mation, that usually leads to deviation from rationality (for a recent analysis see [18]). Such biases are
specific not only to human intelligence, they can be also ascribed to artificial agents, algorithms and
programs. For instance, confirmation bias can be seen as stubbornness against new information which
contradicts the previously adopted view. In some cases such confirmation bias can be implemented into
a system purposefully. Take as an example an authentication algorithm and a malicious user who is try-
ing to break into an email account. Say that the algorithm, before it locks the access, allows only three
attempts to enter the correct password. Hence, the algorithm (temporarily) insists that the user who tries
to connect is the real holder of the credentials, despite the input being inconsistent with that hypothesis.
The algorithm will not revise its ‘belief’ about the user’s identity, until it receives the evidence to the
contrary a specific number of times. Another unorthodox example of a biased artificial agent concerns
anchoring bias, where an agent makes a decision based on a recent, selected piece of information, pos-
sibly ignoring other data. In the context of artificial agents, such situations may occur justifiably when
resources (like time or memory) are limited. As an example consider two computers, A and B, connected
within a network. Computer A attempts to communicate with computer B, but for some reason, computer
A does not receive B’s response within a specified time range and, as a result, erroneously considers B
dead. This inability to communicate leads computer A to change its ‘belief’ about B’s liveness, and,
subsequently, to make decisions based on this distortion.

In this paper we study some dynamic aspects of three types of cognitive bias: confirmation bias, framing
bias, and anchoring bias. We will apply them to three well-known belief revision methods: conditioning,
lexicographic, and minimal revision [19, 17, 5, 4]. We first recall the background of the model of truth-
tracking by belief revision from [7, 1, 2] (related to earlier work in [13, 14], see also [8]), which borrows
from computational learning theory, and identifiability in the limit in particular [9, 11]. We proceed by
investigating the effect of bias on truth-tracking properties of various belief revision policies. Finally, we
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present our computer simulation in which we empirically compare the performance of biased and regular
belief revision in different scenarios. We close with several directions of further work.

1.1 Background: truth-tracking and belief revision

We will now introduce basic notions, following the framework of truth-tracking by belief revision pro-
posed in [2]. Our agents’ uncertainty space will be represented by a so-called epistemic space, S=(S,O),
where S is a non-empty, at most countable set of worlds (or states), and O ⊆P(S) is a set of possible
observations. We will call any subset p of S a proposition, and we will say that a proposition p is true in
s ∈ S if s ∈ p.

Data streams and sequences describe the information an agent receives over time. A data stream is
an infinite sequence of observations ~O = (O0,O1, . . .), where Oi ∈ O , for i ∈ N. A data sequence is a
finite initial segment of a data stream; we will write ~O[n] for the initial segment of ~O of length n, i.e.,
~O0, ~O1, . . . , ~On−1. Given a (finite or infinite) data sequence σ , σn is the n-th element of in σ ; set(σ) is
the set of elements enumerated in σ ; #O(σ) is the frequency of observation O in σ ; let τ be a finite
data sequence, then τ ·σ is the concatenation of τ and σ . A special type of data streams are sound and
complete streams. A data stream ~O is sound with respect to a state s ∈ S if and only if every element in
~O is true in the world s, formally s ∈ ~On, for all n ∈ N. A data stream ~O is complete with respect to a
state s ∈ S if and only if every proposition true in s is in ~O, formally if s ∈O then there is an n ∈N, such
that O = ~On. Sound and complete streams form the most accommodating conditions for learning.

Definition 1.1. Given an epistemic space S= (S,O) and a data sequence σ , a learning method L (also
referred to it as a learner), is a function that takes as an input the epistemic space S and the sequence σ ,
and returns a subset of S, L(S,σ)⊆ S, called a conjecture.

The goal of learning is to identify the actual world, which is a special designated element of the epistemic
space. Given the epistemic space of an agent and the incoming information, which is (to some degree)
trusted, the agent learns facts about the actual world step by step in order to achieve its goal, identifying
the actual world.

Definition 1.2. Let S = (S,O) be an epistemic space, s ∈ S is identified in the limit by L on ~O, iff there
is a k, such that for all n≥ k, L(S, ~O[n]) = {s}; s ∈ S is identified in the limit by L iff s is identified in the
limit by L on every sound and complete data stream for s; S is identified in the limit by L if all s ∈ S are
identified in the limit on by L; Finally, S is identifiable in the limit iff there exists an L that identifies it in
the limit.

To be able to talk about beliefs of our agents (and whether or not they align with the actual world),
we add to the epistemic space a plausibility relation. Given an epistemic space S = (S,O), a prior
plausibility assignment � ⊆ S× S is a total preorder. Such S� = (S,O,�) will be called a plausibility
space (generated from S, for simplicity of our notation we will often refer to such space with B). The
prior plausibility assignment is not fixed—it may be different for different agents, and serves as starting
points of their individual belief revision processes. Plausibility models allow defining beliefs of agents.
For any proposition p, we will say that the agent believes p in S� if p is true in all worlds in min�(S).

Plausibility spaces, and hence also beliefs, change during the belief revision process. We will focus on
three popular belief revision methods that can drive such a learning: conditioning, lexicographic, and
minimal belief revision.
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Definition 1.3 (Revision method). A one-step revision method R1 is a function such that for any plau-
sibility space B = (S,O,�) and any observable proposition p ∈ O returns a new plausibility space
R1(B, p). We define three one-step revision methods:

Conditioning, Cond1, is a one-step revision method that takes as input a plausibility space B =
(S,O,�) and a proposition p ∈ O and returns the restriction of B to p. Formally, Cond(B, p) =
(Sp,O,�p), where Sp = S∩ p and �p =�∩ (Sp×Sp).

Lexicographic revision, Lex1, is a one-step revision method that takes as input a plausibility space
B = (S,O,�) and a proposition p ∈ O and returns a plausibility space Lex(B, p) = (S,O,�′),
such that for all t,w ∈ S, t �′ w if and only if t �p w or t �p̄ w or (t ∈ p and w /∈ p), where
�p =�∩ (p× p), �p̄ =�∩ (p̄× p̄), and p̄ is the complement of p in S.

Minimal revision, Mini1, is a one-step revision method that takes as input a plausibility space
B=(S,O,�) and a proposition p∈O and returns a new plausibility space Mini(B, p)= (S,O,�′)
where for all t,w ∈ S, if t ∈minp and w /∈minp, then t �′ w, otherwise t �′ w if and only if t � w.

An iterated belief revision method R is obtained by iterating the one-step revision method R1: R(B,λ ) =
B if λ is an empty data sequence, and R(B,σ · p) = R1(R(B,σ), p).

Definition 1.4. Let R be an iterated belief revision method, S� a plausibility space, and ~O a stream. A
belief revision based learning method is defined in the following way: L�R (S, ~O[n]) = min�R(S�, ~O[n]).

We will say that the revision method R identifies S in the limit iff there is a � such that L�R identifies S in
the limit. A revision method R is universal on a class C of epistemic spaces if it can identify in the limit
every epistemic space S ∈ C that is identifiable in the limit.

Theorem 1.1 ([2]). The belief revision methods Cond and Lex are universal, while Mini is not.

Learning methods can be compared with respect to their power. We will say that a learner L′ is at least as
powerful as learner L, Lv L′, if every epistemic space S that is identified in the limit by L′, is identified
in the limit by L. We will say that L′ is strictly more powerful than learner L, if Lv L′ and it’s not the case
that L′ v L. Analogously, using definition 1.4, we will apply the same terms to belief revision methods.

In the remainder of this paper we will discuss several ways of introducing cognitive bias into this picture
of iterated belief revision and long-term truth-tracking, together with computer simulation results that
paint a more quantitative picture of the analytical results.

2 Simulating belief revision

Throughout this work we also present the results of computer simulations we run to see how various
(biased) methods compare with respect to their truth-tracking ability. To this end we implemented artifi-
cial belief revision agents (for the biased and unbiased scenarios), which try to identify a selected actual
world on the basis of sound and complete streams. We use the object-oriented programming language
Python. The code can be found in the repository of the project [15], and the structure of the code can be
seen in Figure 1.

The simulation included both custom and random tests. Custom tests were created to check the cor-
rectness of the implemented functions, while random tests were created to investigate the reliability and
the performance of the (biased) belief revision methods. In the implementation all plausibility spaces
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Figure 1: Communication of classes in the implementation

are finite. This choice is governed by the practicality of the implementation. We ran several series of
tests. Each series of tests consisted of 200 tests, while the plausibility spaces consisted of ≈ 5 possible
states and ≈ 12 observables, and the incoming data sequence was longer than the number of observables
(≈ 2−4 more observables). These numbers were hard-coded to ensure computational feasibility of the
experiment. The plausibility spaces we created for the automatic tests were completely random and so
could turn out to be unidentifiable. This is the reason why there were identification failures for the uni-
versal revision methods, even for unbiased cases. After we randomly generated an epistemic space, one
of the states (let us call it s) was randomly designated to be the actual world, and a sound and complete
data stream σ for s was generated. A plausibility preorder over the epistemic was then randomly gener-
ated (generating a plausibility space). We then called on each of the (biased) revision methods and made
them attempt to identify s from σ . As we will also see in the later comparisons, overall the frequencies
of successful identification by unbiased (regular) belief revision methods were very high across experi-
ments: for conditioning between 94% and 98%, for lexicographic revision between 97% and 99%, and
for minimal revision between 77% and 82%.

3 Cognitive bias and belief revision

We will propose abstract accounts of three types of cognitive bias: confirmation bias, framing bias, and
anchoring bias. For each we will describe how an agent revises its belief. We will see how the bias
affects truth-tracking, both theoretically, through a learning-theoretic analysis of (non-)universality, and
practically, in computer simulations.

3.1 Confirmation Bias

Hahn and Harries [10] characterized confirmation bias as a list of four ‘cognitions’, namely: hypothesis-
determined information seeking, failure to pursue falsification strategy in the context of conditional rea-
soning, stubbornness to change of belief once formed, and overconfidence or illusion of validity of our
belief. The first cognition will not concern us, as we don’t focus on agents that actively seek information,



P. Papadamos, N. Gierasimczuk 445

but rather we focus on how passive agents perceive incoming information.

To analyse selective bias, given a space S = (S,O), we could designate a subset of O to be the set
of propositions that are ‘important’ to the agent. We would then allow that they are given a special,
privileged treatment during the revision process. We choose to express this level of importance more
generally with a numerical assignment, which we call the stubbornness function.

Definition 3.1. Given an epistemic space S= (S,O), the stubbornness function is D : P(S)→ N.

The stubbornness function describes the level of an agent’s bias towards a proposition, intuitively the
ones with stubbornness degree higher than 1 can be considered important to the agent. The higher the
stubbornness degree, the more biased the agent is towards the proposition, so the more difficult it is to
change its belief in that proposition—there should be strong evidence against it. For an unbiased agent
the value of the function D for every proposition is 1. An unbiased agent will revise its beliefs instantly
after it receives information inconsistent with its beliefs. An agent that is biased towards a proposition p
and believes p, should receive information ‘¬p’ D(p)-many times in order to react by revising its belief
with ¬p. The agent struggles with falsifying its belief, maintains the illusion of its belief’s validity, by
resisting change.

For each one-step revision method R1 given in Definition 1.3, we will provide a confirmation-biased
version or iterated revision RCB. RCB will take a plausibility space and a sequence of data and output
a new plausibility space. Intuitively, it will attempt to execute the unbiased version of the revision
method, but this will only succeed if the stubbornness degree allows it, i.e., if the data contradicting the
proposition is repeated enough times.

Definition 3.2 (Confirmation-biased revision methods). Let B= (S,O,�) be a plausibility space and let
D be a stubbornness function, σ ∈O∗ be a data sequence1, p ∈O be an observable and R1 is a one-step
revision method. A confirmation-bias belief revision method RCB is defined in the following way:

RCB(B,λ ) = B,

RCB(B,σ · p) =

{
R1(RCB(B,σ), p) if #p(σ)≥ D(p),
RCB(B,σ) otherwise.

where λ is an empty sequence, #p(σ) stands for the number of occurrences of p in σ , and p the comple-
ment of p in S.

We obtain the confirmation-biased conditioning, lexicographic and minimal revision CondCB, LexCB,
MiniCB by substituting R1 in the preceding definition by Cond1,Lex1, and Mini1, respectively.

Truth-tracking under confirmation bias An agent under confirmation bias updates its belief with
respect to the stubbornness degree. Below we see that it is the crucial factor that breaks the universality
of the belief revision methods.

Proposition 3.1. Cond, Lex and, Mini are strictly more powerful than CondCB, LexCB, and MiniCB,
respectively.

1Let Σ be a set, then Σ∗ is a set of all finite sequences of elements from Σ.
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Proof. We will give an example of an epistemic space S = (S,O) that is identified by Cond, but is not
identified by CondCB. Let S = (S,O), where S = {w, t,s,r}, O = {p,q, p̄, q̄} and p = {w, t}, p̄ = {s,r},
q = {w,s}, and q̄ = {t,r}. Clearly, this space is identifiable by regular conditioning method Cond:
take the plausibility order that takes all worlds to be equally plausible. Then, whichever world s ∈ S is
designated as the actual one, a sound a complete data stream for s will, in finite time, enumerate enough
information to for the Cond method to delete all the other worlds, and so the actual world remains as the
only one, and so also the minimal (most plausible) one.

To see that CondCB will not be able to identify this space, let us assume that for all x ∈P(S), D(x) = 2.
We need to show that for any plausibility preorder on S there is a world s ∈ S, and a sound and complete
stream ~O for s, such that CondCB fails to identify s on ~O. Take a preorder � on S, there are two cases,
either (a) there is a unique minimal element s, or (b) there is none. For (a), take a t ∈ S, such that s� t.
There is a sound and complete stream ~O for t, that enumerates each observable true in t exactly once.
While reading that sequence, CondCB will not apply a single update, and so on a sound and complete
sequence for t it will converge to s, which means it fails to identify t. For (b), a similar argument
holds—for all among the minimal equiplausible worlds there will be a sound and complete sequence that
enumerates every piece of data exactly once. On such a stream the update of CondCB will not fire at all,
and so there will be always more than one candidate for the actual world, so CondCB will not converge
to the singleton of the actual world.

It remains to be argued that Cond can identify in the limit everything that CondCB can. Take an epistemic
space S= (S,O), and assume that an s∈ S is identified in the limit by CondCB on a stream ~O (that is sound
and complete for s). That means that there is a k ∈ N, such that for all n ≥ k, L�CondCB

(S, ~O[n]) = {s}.
So, for all t ∈ S such that t 6= s, ~O[n] includes O ∈ O , such that t /∈ O. Hence, L�Cond(S, ~O[k]) = {s}, and,
since Cond only removes worlds, and ~O never enumerates anything false in s, L�Cond(S, ~O[n]) = {s}, for
all n≥ k.

A similar argument works for the LexCB and MiniCB method.

Putting together Theorem 1.1 and Proposition 3.1 we get the following corollary.

Corollary 3.1. CondCB and LexCB are not universal.

Clearly, confirmation bias can be detrimental to truth-tracking. The negative effect of stubbornness in
revision can be uniformly overcome by the use of so-called fat streams, i.e., sound and complete streams
that enumerate every information infinitely many times (which is possible as long as the set O is at
most countable). Fat streams were introduced and studied before in computational learning theory in the
context of memory-limited learners (see, e.g., [6]).

Simulation results We ran a comparative simulation study of confirmation-biased revision and the
regular unbiased revision, following the method described in Section 2. The stubbornness values were
randomly generated for all observables in the epistemic space as integers from 1 to 5. Figure 2 shows the
respective frequencies of truth-tracking success.
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Figure 2: Confirmation-biased belief revision methods against unbiased belief revision methods

3.2 Framing Bias

Framing bias, also known as framing effect [12] refers to the fact that the way information is perceived
(framed) by an agent can affect decision-making. We will introduce the framing function, FR which,
broadly speaking, gives a range of interpretation for an observation, i.e., the incoming information can
be ‘re-framed’ into another information, within the range allowed by FR.

Definition 3.3. Given an epistemic space S= (S,O), the framing function is FR : O →P(S).

Note that the above definition is very general—we do not assume that the agent takes into account
their observational apparatus, and so we allow for the observation to be interpreted as any proposition.
While confirmation bias pertained to frequency of information in a stream, framing bias is related to its
correctness and precision. We can pose a variety of constraints on framing, for instance we could require
that the framed information is in some way related to the original information. In particular, in this paper
we impose that, with the actual information O, the agent perceives X such that X ⊆ O. In this case, i.e,
FR(O) ⊆P(O). This particular kind of framing can be seen as overconfidence bias, since given an
observation with some uncertainty range, the learner sees it as one with a narrower range, i.e., one that
is more certain.

As before, we will formally model the three belief revision methods, conditioning, lexicographic revi-
sion, and minimal revision under the conditions of the bias.

Definition 3.4 (Framing-bias methods). Let B = (S,O,�) be a plausibility space, σ ∈ O∗ a data se-
quence, p ∈ O an observable, FR a framing function, and and R1 is a one-step revision method. We
define a framing-biased method in the following way:

RFR(B,λ ) = B,

RFR(B,σ · p) = R1(RFR(B,σ),x), such that x ∈ FR(p).

We obtain the framing-biased conditioning, lexicographic and minimal revision CondFR, LexFR, MiniFR

by substituting R1 in the preceding definition by Cond1,Lex1 and Mini1, respectively.
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Truth-tracking under framing bias As before, we will now investigate how framing bias affects
truth-tracking capabilities of belief revision methods.

Definition 3.5. Given a stream ~O = (O0,O1, . . .) and a framing function FR, we define a framing of ~O as
FR(~O) = (P0,P1, . . .), where for each i ∈ N, Pi ∈ FR(Oi). We will call FR(~O) static iff for every i, j ∈ N,
with i 6= j, if Oi = O j then Pi = Pj, otherwise FR(~O) is dynamic.

The first observation is that there are limit cases in which framing will not restrict the learning power
of any of the revision methods, for instance when framing is a static identity function, or in more com-
plicated, lucky cases when sound and complete streams are framed into (possibly different) sound and
complete streams. In general however, framing will result in a certain kind of blindness, some worlds
can get overlooked during the revision process. In particular, given an observable O that is true at s,
it might be the case that O will get mapped to a set P, such that s /∈ P, in other words, the agent will
interpret a true observation as a proposition that is false in the actual world. This would be detrimental
to any revision method. Hence, we get the following propositions.

Proposition 3.2. CondFR and LexFR are not universal.

Proposition 3.3. Mini is strictly more powerful than MiniFR.

The dynamic framing allows for fair framing of streams, where the agents observes input ‘erroneously’
for finitely many steps, after which it is presented a full sound and complete stream. This is a notion
analogous to that of fair streams in [2], and the following is a direct consequence of the result therein of
Lex being universal on fair streams.

Proposition 3.4. LexFR is universal on fairly framed streams.

Simulation results As before, we ran a comparative simulation study of confirmation-biased revision
and the regular unbiased revision. As before we generate a sound and complete stream, which then gets
transformed into its framed version, by applying the framing function to each observation independently.
By the restrictions we impose, the framing function outputs always a random subset of the original
proposition, which can be the empty set. Figure 3 shows the respective frequencies of truth-tracking
success.

Figure 3: Framing-biased belief revision methods against unbiased belief revision methods
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3.3 Anchoring Bias

Anchoring bias plays a role in decision-making influenced by the most recently received information,
and it is strongly connected to lack of resources. We make everyday decisions under time pressure.
These decisions are, often unconsciously, influenced by the piece of information received last before the
decision point [16]. Moreover, anchoring bias in real-life scenarios can introduce a level of randomness
in decision making. Consider, as an example, a student who takes part in an exam involving a multiple
choice test. Due to lack of time they have to answer a question without being able to analyse it prop-
erly. While going through possible answers, the student might pick one that reminds them of something
they have seen recently in their notes. As in the previous cases, we will provide a general definition of
anchoring-biased methods. The mechanism will consists of two components, one is that the revision
mechanism will always perform a minimal change, the other one is that in the case the revision step
results in multiple minimal possible words, one of them will be chosen at random and made most plau-
sible overall. In order to phrase this formally, we need several new notions. Given a set S, a preorder
�⊆ (S×S), and x∈ S, we define�↑ x := (�∩(S\{x}×S\{x}))∪{(x,s) | s∈ S\{x}}. Intuitively, this
operation takes an order and outputs a new updated version of it, with x upgraded to be the most plausible
world. Now we will define new versions of one-step revision methods, which include in their first part
the unbiased one-step revision methods and in their second part the upgrade operator. Let B= (S,O,�),
p ∈ O and Lex1(B, p) = (S,O,�′), we define

Lex+1 (B, p) =

{
(S,O,�′) if |min�′S|= 1;
(S,O,�′↑ x), with x ∈ min�′S otherwise.

The upgraded minimal revision, Mini+1 , is defined analogously. It remains to discuss what happens
when conditioning results in several minimal worlds. We propose the following interpretation. Let
B= (S,O,�), p ∈ O and Cond1(B, p) = (S′,O ′,�′), we define

Cond+
1 (B, p) =

{
(S′,O ′,�′) if |min�′S′|= 1;
({x},O ′, /0), with x ∈ min�′S′ otherwise.

Cond+
1 is a very ‘impatient’ method, as long as a singular minimal world is available, it just follows the

usual drill, but if at any stage several worlds are most plausible, it picks one of them and throws away
the rest of the space. This is very radical, but this way we avoid upgrading the order, which would go
against the spirit of conditioning.

Definition 3.6 (Anchoring-biased methods). Let B = (S,O,�), σ ∈ O∗ a data sequence, p ∈ O an
observable. We define the anchoring-biased methods RAB as:

RAB(B,λ ) = B,

RAB(B,σ · p) = R+
1 (RAB(B,σ),min�AB(SAB∩ p)),

where RAB(B,σ) = (SAB,OAB,�AB). We obtain the anchoring-biased conditioning, lexicographic and
minimal revision CondAB, LexAB, MiniAB by substituting R+

1 above by Cond+
1 ,Lex+1 and Mini+1 , respec-

tively.

Unbiased minimal belief revision is in itself, interestingly, a form of anchoring bias. An agent using
minimal belief revision actually uses the most plausible worlds where the incoming information is true
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to update its belief accordingly. When it comes to lexicographic revision, the definition is slightly dif-
ferent, but the behavior of anchoring-biased lexicographic belief revision is the same as that of unbiased
minimal revision. By imposing the extra upgrade condition we make anchoring-biased methods more
‘actionable’, reflecting the fact that anchoring bias often plays a role in quick decision-making. After
each revision step anchoring ensures that there is a candidate for the best possible world, which is ran-
domly selected among the minimal worlds at that stage. This is especially important if resources for
performing revision are limited (in the simulation these cases will be labeled ‘-res’). We will see that this
augmentation positively affects the biased methods, even though in general the anchoring biased belief
revision methods are not universal.

Truth-tracking under anchoring bias Anchoring bias is most prominently connected to lack of re-
sources. For example, when someone needs to make a decision under the pressure of time, anchoring
bias can be used as heuristic. In this section we will show that, even though anchoring bias breaks
universality, it can facilitate faster identification of the actual world.

Example 3.1. Consider the plausibility space B = (S,�), where S = (S,O), S = {w,r,s, t} and s the
actual world. The initial plausibility order is w � t ' s � r, so the agent is indifferent between the
worlds t and s, and the observable propositions are p = {w},q = {r, t,w}, p̄ = {r,s, t} and q̄ = {s}.
Consider also a sound a complete data stream with respect to the actual world, ~O = (p̄, . . . , q̄, . . .). An
agent using anchoring-biased conditioning identifies the actual world in the first piece of information
with probability .5. Of course, with probability .5 the actual world is excluded and so the agent will not
identify it. Assuming that the biased agent identifies the actual world, anchoring-biased conditioning is
faster than conditioning by k−1 steps, where ~Oκ is the first occurrence of q̄ in the data stream ~O. Note
that unbiased minimal revision will identify the world s only after receiving q̄.

The above example points at the following proposition.

Proposition 3.5. CondAB is not universal.

Moreover, since LexAB is a version of Mini, based on Theorem 1.1, we can state the following.

Proposition 3.6. LexAB is not universal.

Even though anchoring-biased lexicographic belief revision is not universal, it can facilitate faster truth
tracking. The argument includes cases wherein the agent is indifferent between more than one most plau-
sible worlds. Recall that an agent which uses anchoring-biased lexicographic revision revises similarly
to one that uses unbiased minimal revision, but if the set of the worlds which considers most plausible is
not a singleton, it selects one of the most plausible worlds with equal probability.

Unbiased minimal revision can be seen as a form of anchoring bias, as an agent that uses minimal belief
revision, minimally updates its belief to be compatible with min�(p). The difference is in the way they
select the most plausible worlds after each update. Anchoring bias minimal revision and unbiased mini-
mal revision will be compared in simulations below, where we investigate if the randomness included in
anchoring-biased minimal revision improves the performance with respect to unbiased minimal revision.

Simulation results We again ran a comparative simulation study of confirmation-biased revision and
the regular unbiased revision, following the method described in Section 2. In the case there was more
than one minimal state at a certain stage of the belief revision process, the anchoring method selected
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one of the minimal states at random to be the conjecture of the learning method. Figure 2 shows the
respective frequencies of truth-tracking success.

Figure 4: Anchoring-biased belief revision against unbiased belief revision

As anchoring bias often shows up in the context of limited resources, we run another experiment, wherein
we included a parameter (a real number between 0 and 100) which decreases each time a revision takes
place, and the process terminates when the resource is depleted. In this particular implementation, each
time a revision is executed the available resource is halved and the agent stops revising when its resources
fall below 1. As we can see in Figure 5 the anchoring ability to select a random world to be the candidate
for the actual world improves the truth-tracking ability, especially in the case of minimal revision.

Figure 5: Anchoring-biased belief revision against unbiased belief revision - limited resources

Finally, let us summarize some general observations about the simulation. Various components of a
plausibility space affect the performance of the methods, both biased and unbiased ones. Specifically,
an increase in the number of states negatively affects the performance of the belief revision methods
(see Figure 6), while an increase in the number of observables decreases the number of non-identifiable
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worlds, which in effect can make unbiased methods fail. More plots with the results can be found on the
project repository [15].

We also saw that, as expected, cognitive-biased belief revision methods perform worse than the unbiased
ones. An exception is the anchoring-biased minimal belief revision method. Additionally, when limited
resources are implemented, anchoring-biased belief revision methods perform better than the unbiased
ones. This is a significant result, as it provides a potential alternative tool for truth-tracking when the
resources are limited, which is usually the case in real life scenarios.

4 Conclusions

Cognitive bias in artificial intelligence is an interesting topic with a bright future, and as such deserves
to be investigated in the context of belief revision and knowledge representation. In this paper we pro-
vided ways to formalize bias in belief-revision and learning. The three kinds of bias we discussed had
completely different character, and employed different components of our belief revision based learners.
We have also shown that bias can be detrimental to learning understood as truth-tracking.

In general, biased methods are by far less reliable than the unbiased ones. While cognitive bias is
generally problematic for truth-tracking, when resources are scarce it can be considered a tool or a
heuristic. Anchoring-biased methods are a good example here, as the tests we conducted showed. This
point can also serve as a rehabilitation of minimal revision, which in general is not a universal learning
method.

When it comes to the simulation, we have found, in line with our expectations, that Cond and Lex identify
the actual world in almost every test. Moreover, in general, the larger the number of observables, the
higher the chances for the agent to identify the actual world. The same holds for the length of the data
sequence, see Figure 6. Biased belief revision methods, are in general less successful than the unbiased
ones—in particular, the information loss in framing can be fatal for truth-tracking by conditioning. On
the other hand, anchoring bias can be used as a heuristic for faster identification.

In our work we model only some types of cognitive bias, the ones more applicable in artificial intelli-
gence. Types mostly related to human emotional decision-making were intentionally excluded, but they
would be a very interesting topic of future work. Moreover, although we investigated how randomness
on the states, observables, and data streams affects truth-tracking, randomness of the environment itself
is not a factor in this model. Assigning some bias to the elements of the tests could potentially give better
insights into truth-tracking. Finally, it would be very interesting to relate our results to the existing work
on resource bounded belief revision in the AGM paradigm, in particular to [20], to look for expressibility
results in the context of dynamic logic of learning theory (DLLT, [3]), and, last but not least, make steps
towards empirical predictions for cognitive science of bias.
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This work builds upon a well-established research tradition on modal logics of awareness. One of its

aims is to export tools and techniques to other areas within modal logic. To this end, we illustrate

a number of significant bridges with abstract argumentation, justification logics, the epistemic logic

of knowing-what and deontic logic, where basic notions and definitional concepts can be expressed

in terms of the awareness operator combined with the ✷ modality. Furthermore, these conceptual

links point to interesting properties of awareness sets beyond those standardly assumed in awareness

logics – i.e. positive and negative introspection. We show that the properties we list are characterised

by corresponding canonical formulas, so as to obtain a series of off-the-shelf axiomatisations for

them. As a second focus, we investigate the general dynamics of this framework by means of event

models. Of specific interest in this context is to know under which conditions, given a model that

satisfies some property, the update with an event model keeps it within the intended class. This is

known as the closure problem in general dynamic epistemic logics. As a main contribution, we prove

a number of closure theorems providing sufficient conditions for the preservation of our properties.

Again, these results enable us to axiomatize our dynamic logics by means of reduction axioms.

1 Introduction

Epistemic logics of awareness [20, 34] are extensions of propositional epistemic logic (EL; [26]) in-

troduced for modelling a form of (explicit) knowledge that lacks closure under logical consequence

(therefore avoiding the logical omniscience problem). The idea is that knowledge requires both lack of

uncertainty (the standard ✷ modality) and awareness, with the latter a unary modality that, semantically,

verifies whether the given formula belongs to a specified world-dependant awareness set. One can deal

with specific awareness properties (e.g., awareness introspection) by specifying not only the properties

of the awareness sets but also their interaction with the accessibility relations. One can also look at dy-

namics of awareness in the dynamic epistemic logic style (DEL; [6, 17, 9, 7]), defining model-changing

actions for representing acts of awareness elicitation or forgetting [11, 38, 15, 21].

The epistemic awareness setting can also be interpreted more generally by abstracting away from

this specific reading (see Section 2). At a general level, one can read the awareness entities as a set O

of generic objects, and the corresponding awareness modality as capturing the notion of “owning some
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abstract object o ∈ O”. By doing so, one can find connections with other modal logics where abstract

objects are used as additional or definitional concepts. For example, other approaches in epistemic and

deontic logic [31, 28, 23, 37] can be seen as instances of a more general awareness-like framework.

From this perspective, model properties connecting the “owning-the-object” operator “O” with ✷ consti-

tute interesting desiderata. This paper defines a number of such properties and characterises them with

formulas of the O-language.

A second aim of this work is to investigate the dynamics of general O-models. We use event models

as in [5] for their power to encode epistemic and factual changes at an extreme level of granularity

[18]. Yet, a drawback of it is the often non-trivial closure problem: guaranteeing that, for a given class

M of models, the product update of an M-model with an event model remains in M. Closure results

clarify the general constraints for the executability of actions, and therefore provide safe guidance for

modelling them. Some closure theorems are available for DEL, establishing sufficient conditions for the

preservation of accessibility relations [3, 7]. However, this issue is relatively underexplored for properties

relating accessibility relations and awareness sets, as the ones mentioned above (with the exception of

[33]). As a central contribution of our work, we prove closure theorems for these properties. As an

important byproduct, this serves to find direct roads to axiomatisation via reduction axioms.

The paper proceeds as follows. Section 2 introduces the general O-framework, illustrating some of its

applications. Crucially, it also lists meaningful model properties (at both the individual and multi-agent

level; Subsection 2.1), providing their syntactic characterizations as well as their complete axiomatisa-

tions as a main result. Section 3 is about the dynamics of O-models, semantically: we introduce event

models and the closure problem, identifying sufficient conditions for the preservation of the discussed

model properties. Section 4 looks at dynamics from the syntactic side, providing sound and complete

axiomatisations for dynamic O-logics. We end with a discussion of our results in Section 5. Sketches of

proofs are to be found in the Appendix.

2 Basic framework

Through this document, let Ag be a finite non-empty set of agents, At be a countable set of propositional

variables, and O be a countable non-empty set of abstract objects. An O-model is just a multi-relational

model together with a function that assigns, to each agent, a set of objects from O at each possible world.

Definition 1 (O-Model) An O-model is a tuple M= (W,R,O,V) where W 6= /0 is a set whose elements

are called possible worlds, R : Ag→℘(W×W) assigns a binary relation on W to each agent i ∈ Ag,

O : (Ag×W)→℘(O) assigns a set of objects to each agent i ∈ Ag at each world w ∈W, and V : At→
℘(W) is an atomic valuation function. Note: Ri abbreviates R(i), and Oi(w) stands for O(i,w). The set

of worlds of a given M is referred to as W[M]; the same convention applies R, O and V. We use infix

notation for each Ri. A pointed O-model is a tuple (M,w) with M an O-model and w ∈W[M]. Finally,

M
O denotes the class of all O-models. ◭

The language for describing O-models is the following.

Definition 2 (Language L) Given Ag, At, and O as above, formulas ϕ of the language L are given by

ϕ ::=⊤ | p | Oi o | ¬ϕ | ϕ ∧ϕ |�iϕ

with p ∈ At, i ∈ Ag and o ∈ O. Other Boolean constants/operators are defined as usual; likewise for

the modal dual ✸iϕ , defined as ¬�i¬ϕ . Formulas of L are interpreted at pointed O-models. The truth-

clauses for the multi-modal fragment of L are the standard ones; for the new formulas,
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M,w |= Oi o iff o ∈ Oi(w).

Global truth of a formula and a set of formulas in a model is defined as usual [12], and denoted M |= ϕ

and M |= Φ, respectively. Likewise for the notion of validity (notation: |= ϕ). ◭

Let us now present some particular interpretations and instantiations of O-models.

Models for general and atomic awareness A model for general awareness [20] is an O-model where

O is the language L itself. In this context, Oi is called the awareness function and it is denoted by Ai;

notationally, the operator Oi is replaced by the awareness operator Ai. A model for atomic awareness

[20, 22] is instead one where the awareness function A returns a set of atoms from At, with agent i aware

of ϕ at a world w if and only if the set of atoms in ϕ is a subset of Ai(w). These structures correspond

to O-models where O is a set of atoms At. Syntactically, M,w |= Ai p iff p ∈ Ai(w), and then one can

define inductively an additional modality Ãi that works over arbitrary formulas:

Ãi⊤ := ⊤,

Ãi p := Ai p,

Ãi A j p := Ãi p.

Ãi¬ϕ := Ãiϕ ,

Ãi(ϕ ∧ψ) := Ãiϕ ∧ Ãiϕ ,

Ãi� jϕ := Ãiϕ ,

ÃiÃ jϕ := Ãiϕ .

In this way, M,w |= Ãiϕ if and only if atm(ϕ)⊆Ai(w), with atm(ϕ) the set of atoms occurring in ϕ .

Models for awareness of arguments One can also conceive O as a set of abstract arguments and O

as a function indicating the set of arguments that each agent is aware of at each world [35], so that

Oia means “agent i is aware of argument a” or “agent i is able to use argument a”. The resulting models

constitute ‘epistemic’ versions of the abstract models of argumentation introduced in [19]. The main idea

behind abstract argumentation is to represent arguments as nodes of a graph, and attacks among them as

arrows of the graph. There, argumentative notions such as argument acceptability are reduced to graph-

theoretical notions, such as stability of a set within a graph. In the modalized (multi-agent) versions, a

possible world is constituted by one such graph plus the specification of which arguments and attacks

each agent is aware of. This enables us to express higher-order uncertainty about awareness of arguments

[35], which is in turn crucial for modelling strategic reasoning in an argumentative environment [36] and

its dynamics [32, 33]. In a similar vein, O-models have been applied to more structured frameworks for

argumentation [13, 14], with O understood as a set of ASPIC+ arguments [30].

Justification logics In the justification logics of [2], justifications are abstract objects which have struc-

ture and operations on them. Formally, the set of justification terms J is built from sets of justification

constants and justification variables by means of the operations of application (‘·’) and sum (‘+’). Thanks

to them, one can define the language LJ as the basic (multi)modal language plus expressions of the form

t:ϕ (with t a term and ϕ a formula), read as “t is a justification for ϕ”. Formulas of this extended lan-

guage are interpreted over justification models, tuples M = (W,R,E,V) where W, R and V are as in a

O-models. The new component, the evidence function E : (J×LJ)→℘(W), provides the set of worlds

E(t,ϕ) in which the term t is relevant/admissible evidence for the formula ϕ . For this to work properly,

E should satisfy both

E(s,ϕ → ψ)∩E(t,ϕ)⊆ E(s·t,ψ) and E(s,ϕ)∪E(t,ϕ)⊆ E(s+ t,ϕ).

Then, (M,w) |= t:ϕ if and only if both w ∈ E(t,ϕ) and ϕ holds in all worlds R-reachable from w.

A justification model can be seen as an O-model in which the codomain of O is a set of pairs of

the form (justification, formula). Indeed, the evidence function can be equivalently defined as E′ : W→
℘(J ×LJ), with (t,ϕ) ∈ E(w) indicating that t is relevant/admissible for ϕ at w. Its constraints become

{(s,ϕ → ψ),(t,ϕ)} ⊆ E(w) ⇒ (s·t,ψ) ∈ E(w) and (s,ϕ) ∈ E(w) ⇒ {(s+ t,ϕ),(t + s,ϕ)} ⊆ E(w)
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and thus a justification model M = (W,R,E,V) can be equivalently stated as M′ = (W,R,E′,V). Finally,

for the language, one can simply define t:ϕ := O(t,ϕ)∧✷ϕ .

Models for knowing-what Plaza’s analysis of the knowing-what-the-value-of-a-constant-is operator

(knowing-what for short; [31]) has played a crucial role in the emerging of a new generation of epistemic

logics [39] that go beyond standard knowing-that modalities. Adding D as a denumerable set of constants

(rigid designators) to the framework, a D-model extends a multi-relational model with a function VD :

(W×D)→ S, assigning a value in S to each object in D at each world in W. Syntactically, the language

extends the standard modal language with expressions of the form Kvid (for i∈Ag and d ∈D), intuitively

read as “agent i knows the value of constant d”. Semantically, this is the case iff d denotes the same object

in all i’s epistemically accessible worlds:

M,w |=v Kvid iff ∀u,u′ ∈W, wRiu and wRiu
′ imply VD(u,d) = VD(u

′,d).

A D-model can be seen as an O-model where O is the set of tuples D×S, and with each possible world

w having a single set O(w). 1 Moreover, these sets should contain exactly one pair (d,s) for each d ∈D.

Finally, using the ‘owning’ operator O, the formula Kvid is definable as Kvid :=✸i O(d,s)→�i O(d,s).

Deontic logic The Kanger-Anderson reductionist approach to deontic logic [28, 1] consists in expressing

the OB operator ‘it is obligatory that’ by means of the alethic modality � plus a new propositional con-

stant. In Kanger’s terms, the propositional constant d has the intuitive meaning ‘all normative demands

are satisfied’ (i.e., the situation is ‘ideal’). The OBϕ operator is defined as ✷(d → ϕ), and Kanger’s

system of deontic logic is obtained by adding, to the modal logic K, the axiom ✸d, which semantically

defines strong seriality: for any world w there is a v s.t. wRv and v is ideal. From our perspective, it is

natural to interpret O as representing the set of normative demands. Interestingly, when O is finite, it is

easy to rewrite d as
∧

o∈O o and capture its intended meaning. Indeed, the following holds:

Remark 1 In the class of O-models with O finite, the formula ✸
∧

o∈O o characterizes strong seriality.�

While the original Kanger-Anderson’s framework cannot handle contrary-to-duty obligations, further

refinements, dating back to [23], allow this. The key idea is to use the ✸ operator to express betterness

as a pre-order among worlds, where ✸ϕ means that ϕ is the case in some world that is at least as good

as the actual. As suggested by [37], it is also natural to encode betterness by syntactic means, i.e. via

an ordering ≺ between formulas, where if ϕ ≺ ψ then ψ logically implies ϕ . Along similar lines, by

regarding our objects as normative demands (desirable properties), one can define a betterness ordering

as, e.g.,
∧

o∈S o ≺
∧

o∈S′ o iff S ( S′, where S,S′ ⊆ O, and therefore
∧

o∈O o is the maximal element.

Remark 2 Under this reading, the formula Oo → �Oo characterizes the fact that R is a betterness

relation: only worlds that are at least as ideal can be seen. Further, ¬Oo → ♦Oo says that all non-

ideal worlds failing some normative demand have access to some world satisfying it. Together with

Oo →�Oo and the axiom ✸✸p →✸p for transitivity, this implies strong seriality. �

2.1 Some useful/important properties of O-models

Depending on the particular interpretation, an O-model may be asked to satisfy requirements connecting

the O-sets with the accessibility relations Ri. This section lists some examples, providing their syntactic

characterisations and discussing the settings in which they might be useful/important.

Individual properties We start with the simplest properties relating accessibility relations with objects:

those whose formulations involve a single agent. These individual properties are summarised in Table 1,

1Alternatively, all Oi-sets are the same at each possible world.
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(W,R,O,V) is s.t. iff, for every w,u ∈W, Characterising schema

Ri preserves Oi wRiu ⇒ Oi(w)⊆ Oi(u) Oi o →�i Oi o

Ri anti-preserves Oi wRiu ⇒ Oi(u)⊆Oi(w) ¬Oi o →�i¬Oi o

Oi is invariant under Ri wRiu ⇒ Oi(w) = Oi(u) (Oi o →�i Oi o)∧ (¬Oi o →�i¬Oi o)

Ri inverts Oi wRiu ⇒ Oi(w)∩Oi(u) = /0 Oi o →�i¬Oi o

Ri anti-inverts Oi wRiu ⇒ Oi(w)∪Oi(u) = O ¬Oi o →�i Oi o

Table 1: Some individual properties.

with a model M satisfying an individual property (e.g., preservation of O) iff it satisfies it for every agent

i ∈ Ag. Preservation and anti-preservation come from awareness logic [20, 25, 34], where they capture

the idea of awareness introspection. Indeed, if Ri preserves (anti-preserves) Oi, then agent i’s awareness

is positively (negatively) introspective: whenever she is (not) aware of something, she knows/believes

so. The invariance property, the conjunction of preservation and anti-preservation, captures perfect/total

awareness introspection. Finally, the inversion properties are mathematical variations of the preservation

properties: they ask for the accessibility relation to invert the ‘opinion’ of a set towards an object. To the

best of our knowledge, none of them has been studied, and yet they can be seen as intuitively appealing in

some contexts. For instance, R inverting O seems appropriate to talk, in the spirit of [1], about normative

violations in a deontic reading of O-models: if an agent has a bad habit, then she would prefer not to

have it. Analogously, R anti-inverting O works well as a formal property for normative demands as those

of [28]: if the agent lacks it, then she prefers to have it.

The following proposition states the definability of the listed individual properties in L.

Proposition 1 Let P be an individual property (left-hand column of Table 1); let Γ(P) be the set of all

instances of the corresponding schema in the right-hand column. For any O-model M, we have that

M satisfies P iff M |= Γ(P). �

Group properties These properties express how the set of objects of one agent ‘affects’/‘influences’ the

set of objects of other agents in the worlds accessible to the first. As it is explained below, the notion

of “a model M satisfying a group property P” should be parametrised to avoid trivialisations (e.g., all

agents are aware of everything). The properties are listed in Table 2, with f : Ag → ℘(Ag) \ { /0} a

possibly partial function whose domain is non-empty. If P is a group property, we say that M f -satisfies

P iff for every i ∈ Dom( f ), M satisfies P for i and f (i). Moreover, we call universal (resp. existential)

group properties those that contain “for all” (resp. “for some”) in their formulation. Regarding their use,

the property of anti-preservation of O for everyone in f (i) was first brought up by [35] in the context

of epistemic logics for abstract argumentation: if the agent is not aware of an argument, she thinks

no one else is. As suggested by [33], this property makes general sense under a de re reading of the

epistemic possibility of attributing someone else a given item. The remaining versions of preservation

and anti-preservation are natural mathematical variations of the first, and it is not difficult to find intuitive

readings for them. For instance, in an awareness context, preservation for all indicates that each agent

i knows/believes that everybody in f (i) is aware of what she is aware of. Analogously, preservation for

some indicates that each agent i knows/believes that at least someone in f (i) is aware of what she is

aware of.
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(W,R,O,V) is s.t. iff, for every w,u ∈W, Characterising schema

Ri preserves O j for all j ∈ f (i)⊆ Ag wRiu ⇒ Oi(w)⊆
⋂

j∈ f (i)O j(u) Oi o →�i

∧
j∈ f (i) O j o

Ri preserves O j for some j ∈ f (i)⊆ Ag wRiu ⇒ Oi(w)⊆
⋃

j∈ f (i)O j(u) Oi o →�i

∨
j∈ f (i) O j o

Ri anti-preserves O j for all j ∈ f (i)⊆ Ag wRiu ⇒
⋃

j∈ f (i)O j(u)⊆Oi(w) ¬Oi o →�i

∧
j∈ f (i)¬O j o

Ri anti-preserves O j for some j ∈ f (i) ⊆ Ag wRiu ⇒
⋂

j∈ f (i)O j(u)⊆Oi(w) ¬Oi o →�i

∨
j∈ f (i)¬O j o

Ri inverts O j for all j ∈ f (i)⊆ Ag wRiu ⇒ Oi(w)∩
⋃

j∈ f (i)O j(u) = /0 Oi o →�i

∧
j∈ f (i)¬O j o

Ri inverts O j for some j ∈ f (i) ⊆ Ag wRiu ⇒ Oi(w)∩
⋂

j∈ f (i)O j(u) = /0 Oi o →�i

∨
j∈ f (i)¬O j o

Ri anti-inverts O j for all j ∈ f (i)⊆ Ag wRiu ⇒ Oi(w)∪
⋂

j∈ f (i)O j(u) = O ¬Oi o →�i

∧
j∈ f (i) O j o

Ri anti-inverts O j for some j ∈ f (i) ⊆ Ag wRiu ⇒ Oi(w)∪
⋃

j∈ f (i)O j(u) = O ¬Oi o →�i

∨
j∈ f (i) O j o

Table 2: Some group properties.

The following proposition justifies the parametrisation of the group properties. In awareness epis-

temic terms, the first bullet says that, when combined with knowledge (or any other factive epistemic

attitude), preservation and anti-preservation together imply that every agent is aware of the same things,

and that this is common knowledge among all agents. This is clearly a trivialisation. The second bullet

shows that knowledge cannot be combined with the universal group version of inversion or anti-inversion.

Proposition 2 Let fgen = {(i,Ag) | i ∈ Ag}, let M be a reflexive O-model.

• If M fgen-satisfies universal preservation or anti-preservation, then all agents have available the

same objects at each pair of worlds w,v ∈W connected by the transitive closure of
⋃

i∈AgRi.

• M fgen-satisfies neither universal inversion nor universal anti-inversion. �

Remark 3 The individual version of (anti-)preservation and (anti-)inversion properties for i ∈ Ag are

the group versions (both universal and existential) for findv = {(i,{i}) | i ∈ Dom( f )}. �

Finally, we can characterise the group properties using L.

Proposition 3 Let f : Ag→℘(Ag) \{ /0} be as described above; let P
f
i be any of the group properties

of the left-hand column of Table 2 (e.g., anti-inversion for i and someone in f (i)) and let ϕ(P f
i ) be its

corresponding schema in the right-hand column. Let Γ(P f ) the set of all instances of ϕ(P f
i ) for all

i ∈ Ag, and let M be an O-model. Then,

M f -satisfies P iff M |= Γ(P f ). �

Finally, here is the definition of the class of O-models satisfying a collection of properties.

Definition 3 (Classes of models) Let ( f1, . . . , fn) be a sequence with fk : Ag → ℘(Ag) \ { /0} being a

function as described above for every 1 ≤ k ≤ n, and let (P1, . . . ,Pn) be a sequence of group properties.

We denote as M( f1-P1, . . . , fn-Pn) the class of all O-models M s.t. for every k, M fk-satisfies Pk. ◭

2.2 Axiom system

Axiomatizing validities over MO (the class of all O-models) is straightforward, as formulas with the

‘owning’ modality Oi can be seen as a particular atoms connected to a dedicated valuation function Oi.

Since the Oi sets have no particular requirements, the modal logic axiomatisation is enough.

When the focus is the class of models satisfying a certain collection of properties, additional work is

needed; for this, Proposition 3 will be useful. Define the notion of local semantic consequence w.r.t. a

given class of models in the standard way [12], denoting it by Φ |=M( f1-P1,..., fn-Pn) ϕ .
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TAUT: All propositional tautologies MP: From ϕ and ϕ → ψ , infer ψ

K: �i(ϕ → ψ)→ (�iϕ →�iψ) NEC: From ϕ infer �iϕ

Table 3: The minimal modal logic K.

Definition 4 (Static logics) The logic K is the smallest set containing all instances of the axiom schemas

of Table 3 that is moreover closed under both inference rules of the same table. The extension of K by

Φ ⊆ L is the smallest set of formulas containing all instances of schemas of Table 3, all formulas in Φ

and it is closed under both inference rules. Let ( f1, . . . , fn) be a sequence of functions Ag →℘(Ag) \
{ /0} as described above, and let (P1, . . . ,Pn) be a sequence of group properties. Then, we denote by

L( f1-P1, . . . , fn-Pn) the extension of K with
⋃

1≤k≤n Γ(P
fk

k ).2 Note that when n = 0, L( f1-P1, . . . , fn-Pn) =
K. ◭

The notions of L( f1-P1, . . . , fn-Pn)-proof and L( f1-P1, . . . , fn-Pn)-deduction from assumption (noted

Φ ⊢L( f1-P1,..., fn-Pn) ϕ), are the standard ones in modal logic (see e.g., [12]).

Theorem 1 (Static completeness) Let ( f1, . . . , fn) be a sequence of functions Ag → ℘(Ag) \ { /0} as

described above, and let (P1, . . . ,Pn) be a sequence of group properties, we have that:

L( f1-P1, . . . , fn-Pn) is sound and strongly complete with respect to M( f1-P1, . . . , fn-Pn). �

3 Dynamics of O-models, semantically

Changes in different modal attitudes (knowledge, beliefs, preferences and so on) have been the main topic

of DEL. The main feature that distinguishes DEL from other approaches for modelling dynamics (e.g.,

propositional dynamic logic [24] or automata theory [27]) is that changes are not represented as (binary)

relations, but rather as operations that modify the underlying semantic structure. Indeed, DEL can be

understood, more broadly, as the study of modal logics of model change [7]. Here we focus on the event

models of [6, 5]: structures that, when ‘applied’ to a relational model (by means of a product update),

produce another relational model. They were initially introduced as a way of modelling non-public acts

of communication, and have since then been widely employed to model other forms of informational and

factual changes [8, 18, 11, 15]. Besides their versatility, they have an important technical advantage: as

proved in [18], any pointed relational model can be turned into any other by means of the product update

with some event model that allows factual change.3 The rest of this section will discuss an extension of

these event models that works for describing dynamics of O-models.

Definition 5 (Event O-Model) An event O-model is a tuple E= (S,T,pre,eff) where S 6= /0 is a finite set

of events, T : Ag→℘(S×S) assigns to each agent a binary relation, pre : S→L assigns a precondition

to each event, and eff : (Ag×{+,−}×S)→℘(O) is a function indicating, for each event, its (positive

and negative) effects on the set of objects available to each agent (write eff(i,±,s) as eff±
i (s) for ± ∈

{+,−}). We assume that, for every s ∈ S and every i ∈ Ag, the sets eff+
i (s) and eff−

i (s) are finite and

disjoint. Note: T(i) abbreviates Ti. The set of events of a given E is referred to as S[E] (and the same

2See propositions 1 and 3 for the meaning of Γ(P f ).
3Slightly more precisely, given pointed models (M,w) and (M′,w′), there is ‘almost always’ an event model such that,

when applied to (M,w), produces a pointed model (M′′,w′′) that is, from the point of view of the language of propositional

dynamic logic [24] (an extension of the basic modal language), indistinguishable from (M′,w′). See [18] for details.
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E f -satisfies iff for every i ∈ Dom( f ), s, t ∈ S[E] is safe for

EMPpres−∀ sTit ⇒ eff+
i (s)⊆

⋂
j∈ f (i) eff

+
j (t) and

⋃
j∈ f (i) eff

−
j (t)⊆ eff−

i (s) preservation for everyone

EMPpres−∃ sTit ⇒ eff+
i (s)⊆

⋃
j∈ f (i) eff

+
j (t) and

⋃
j∈ f (i) eff

−
j (t)⊆ eff−

i (s) preservation for someone

EMPanti−pres−∀ sTit ⇒
⋃

j∈ f (i) eff
+
j (t)⊆ eff+

i (s) and eff−
i (s)⊆

⋂
j∈ f (i) eff

−
j (t) anti-preservation for everyone

EMPanti−pres−∃ sTit ⇒
⋃

j∈ f (i) eff
+
j (t)⊆ eff+

i (s) and eff−
i (s)⊆

⋃
j∈ f (i) eff

−
j (t) anti-preservation for someone

EMPinv−∀ sTit ⇒ eff+
i (s)⊆

⋂
j∈ f (i) eff

−
j (t) and

⋃
j∈ f (i) eff

+
j (t)⊆ eff−

i (s) inversion for everyone

EMPinv−∃ sTit ⇒ eff+
i (s)⊆

⋃
j∈ f (i) eff

−
j (t) and

⋃
j∈ f (i) eff

+
j (t)⊆ eff−

i (s) inversion for someone

EMPanti−inv−∀ sTit ⇒ eff−
i (s)⊆

⋂
j∈ f (i) eff

+
j (t) and

⋃
j∈ f (i) eff

−
j (t)⊆ eff+

i (s) anti-inversion for everyone

EMPanti−inv−∃ sTit ⇒ eff−
i (s)⊆

⋃
j∈ f (i) eff

+
j (t) and

⋃
j∈ f (i) eff

−
j (t)⊆ eff+

i (s) anti-inversion for someone

Table 4: Properties of event O-models.

convention applies for the other components of E). We use infix notation for each Ti. A pointed event

O-model is a tuple (E,s) with E= (S,T,pre,eff) an event O-model and s ∈ S[E]. ◭

The above definition does not include the post-condition function (see, e.g., [15, 16]), as we want to

focus on non-factual changes (i.e., changes on accessibility relations and O-sets, but not on atomic val-

uations). We think, however, that incorporating them does not pose any challenge, since our framework

can in fact be seen as a variation of event models for factual change, where one deals with agent-indexed

predicates instead of purely atomic propositions.

Definition 6 (Product update) Let M = (W,R,O,V) be an O-model and let E = (S,T,pre,eff) be an

event O-model. The product update of M and E produces the model M⊗E= (W′,R′,O′,V′), where:

• W′ := {(w,s) ∈W×S |M,w |= pre(s)}.

• R′
i := {

(
(w,s),(u, t)

)
∈W′×W′ |wRiu & sTit}.

• O′
i(w,s) :=

(
Oi(w)∪ eff+

i (s)
)
\ eff−

i (s).

• V′(p) := {(w,s) ∈W′ | w ∈ V(p)}.

Note: W′ is empty (and thus M⊗E is not defined) when no possible world satisfies any precondition.

Thus, ⊗ is a partial function. When W′ 6= /0, we say that M⊗E is defined. ◭

The closure problem Given a class of O-models M, the closure problem [3, 4] asks to find a class of

event O-models E 6= /0 s.t., M ∈M and E ∈ E imply M⊗E ∈M. This is not trivial for the properties

in Tables 1 and 2: it is clear that executing certain event O-models in certain O-models leads to the loss

of, e.g., individual preservation. This paper focusses on group properties (Remark 3), using EMP(P) for

referring to the event-model property in Table 4 that corresponds to the group property P in Table 2.4

Definition 7 (Classes of event models) Let ( f1, . . . , fn) be a sequence of functions Ag →℘(Ag) \ { /0}
as described above, and let (EMP1, . . . ,EMPn) be a sequence of group properties for event models

(Table 4). We denote as E( f1-EMP1, . . . , fn-EMPn) the class of all event O-models E s.t. for every 1 ≤
k ≤ n, E fk-satisfies EMPk. ◭

With properties of event models defined, here is the main result.

Theorem 2 (Closure for group properties) Let f : Ag →℘(Ag) \ { /0} be as described above. Let M

be an O-model and E an event O-model s.t. M⊗E is defined. For any property P in Table 2, if M

f -satisfies P and E f -satisfies EMP(P), then M⊗E f -satisfies P. �

4For instance, if P is anti-inversion for someone, then EMP(P) = EMP
anti−inversion−∃.
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Example 1 (Different forms of forgetting) Theorem 2 helps to test the compatibility between the model

of a notion/concept and the model of its dynamics: a single action might be modelled by different event

models, and the choice might depend on the specific model requirements. As an example, and in the

awareness context, consider an action through which agent i becomes unaware of the atom p without any-

body else noticing it. In [11], this action corresponds to the event model Pri
p
i = ({•,◦},T,pre,eff) with

Ti = {(•,•),(◦,◦)} and T j = {(•,◦),(◦,◦)} for j 6= i, and with eff−
i (•) = {p} and eff−

j (•) = eff±
j (◦) =

eff±
i (◦) = /0. When Ag= {1,2} and i = 1, the event model can be represented as

• ◦

1

2

1,2

eff−
1 (•) = {p}; eff+

1 (•) = /0

eff±
2 (•) = /0

eff±
1 (◦) = eff±

2 (◦) = /0

This event model does the job when awareness is not required to have special properties.5 However,

it is not appropriate, e.g., when R is required to fgen-anti-preserve O for everyone, for fgen = {(i,Ag) | i∈
Ag} (as in the case of awareness of arguments of [35, 33]). Fortunately, there is another event model that

captures the central intuition of the action (that is, that agent 1 privately looses awareness of p and she is

the only one suffering this loss in the actual event •) while also preserving the property. Indeed, consider

AlPri
p
i = ({•,◦,△},T,pre,eff) with Ti = {(•,△),(△,△),(◦,◦)} and T j = {(•,◦),(△,△),(◦,◦)} for

j 6= i, and with eff−
i (•) = eff−

i (△) = eff−
j (△) = {p} and eff+

i (•) = eff±
j (•) = eff+

i (△) = eff+
j (△) =

eff±
i (◦) = eff±

j (◦) = /0. When Ag = {1,2} and i = 1, the event model is

• ◦△

eff−
1 (•) = {p}; eff+

1 (•) = /0

eff±
2 (•) = /0

1

1,2
1,2

2eff+
1 (△) = eff+

2 (△) = /0

eff−
1 (△) = eff−

2 (△) = {p}
eff±

1 (◦) = eff±
2 (◦) = /0

Just as before, agent 1 drops p (the effect of •), and this change is private, since 2 believes that nothing

happened (◦). Additionally, and due to the nature of universal anti-preservation, 1 thinks that everyone

loses awareness of p as well (the effects of △). Note, moreover, that AlPri
p
i fgen-satisfies EMPanti−inv−∀

(our sufficient condition for the preservation of universal anti-preservation). ◭

4 Dynamics of O-models, syntactically

Here is the language used to describe the effect of product updates.

Definition 8 (Language L(⋆)) Let EO the class of all event O-models, and let ⋆ ⊆ E
O be a non-empty

subclass. The dynamic language L(⋆) is given by

ϕ ::=⊤ | p | Oi o | ¬ϕ | ϕ ∧ϕ |�iϕ | [E,s]ϕ

with p ∈ At, i ∈ Ag, o ∈ O, E ∈ ⋆ and s ∈ S[E]. The truth clause for the new kinds of formulas is:

M,w |= [E,s]ϕ iff M,w |= pre(s) implies M⊗E,(w,s) |= ϕ . ◭

Definition 9 (Dynamic logics) Let L( f1-P1, . . . , fn-Pn) be a static logic of Definition 4. The logic

L!( f1-P1, . . . , fn-Pn) extends L( f1-P1, . . . , fn-Pn) with all axioms and rules of Table 5 that can be written

in L(E( f1-EMP(P1), . . . , fn-EMP(Pn))). ◭

5It even preserves the individual version of invariance (Table 1).
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[E,s]⊤↔⊤ [E,s]¬ϕ ↔ (pre(s)→¬[E,s]ϕ)
[E,s]p ↔ (pre(s)→ p) [E,s](ϕ ∧ψ)↔ ([E,s]ϕ ∧ [E,s]ψ)
[E,s]Oix ↔ (pre(s)→ Oix) for x /∈ eff[E]+i (s)∪ eff[E]−i (s) [E,s]�iϕ ↔ (pre(s)→

∧
sTit

�i[E, t]ϕ)
[E,s]Oix ↔⊤ for x ∈ eff[E]+i (s)
[E,s]Oix ↔¬pre(s) for x ∈ eff[E]−i (s) From ϕ ↔ ψ , infer δ ↔ δ [ϕ/ψ ]

Table 5: Reduction axioms for dynamic modalities. δ [ϕ/ψ ] is the result of substituting one or more

occurrences of ϕ in δ by ψ . Furthermore, it is assumed for simplicity that these substitutions do not

affect the occurrences of formulas inside dynamic modalities, i.e. ([E,s]δ )[ϕ/ψ ] = [E,s](δ [ϕ/ψ ]).

Then, the completeness result.

Theorem 3 (Dynamic completeness) Let ( f1, . . . , fn) be a sequence of functions Ag→℘(Ag)\{ /0} as

described above, and let (P1, . . . ,Pn) be a sequence of group properties. We have that:

L!( f1-P1, . . . , fn-Pn) is sound and strongly complete with respect to M( f1-P1, . . . , fn-Pn). �

5 Conclusion and future work

The paper provides an abstract look at awareness epistemic models, understanding them not as a rep-

resentation of the formulas the agents are aware of, but rather as a more general setting for dealing

with a notion of ‘owning abstract objects’. As discussed in Section 2, several well-know proposals from

different areas can be seen as particular instances of these general type of structures.

When modelling specific phenomena, a general O-structure may be asked to satisfy specific require-

ments. Of particular interest are those that relate O-sets with accessibility relations, and Subsection 2.1

listed some possibilities, together with their characterising formula. Maybe more importantly, these re-

quirements should be preserved by model operations representing dynamics of the modelled phenomena.

Section 3 focussed on model operations defined in terms of event models, introducing classes of the latter

that, under the product update operation, guarantee the preservation of the specified requirements. This

establishes a form of ‘compatibility’ between the represented phenomena and the chosen event models.

Section 4 closed the discussion, obtaining complete axiomatisations via reduction axioms.

There are branches open for further exploration; here are two of them. The first one is to work out

the details of the instantiations of O-models that were sketched in Section 2. The second one is to study

more systematically the trivialisation of awareness (O-sets) for extreme cases of f (e.g., for fgen) so as to

underpin our notion of f -satisfiability.
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Appendix

Theorem 1 Let ( f1, . . . , fn) be a sequence of functions Ag →℘(Ag) \{ /0} as described above, and let

(P1, . . . ,Pn) be a sequence of group properties, we have that:

L( f1-P1, . . . , fn-Pn) is sound and strongly complete with respect to M( f1-P1, . . . , fn-Pn).

Proof. Let L( f1-P1, . . . , fn-Pn) and M( f1-P1, . . . , fn-Pn) be arbitrarily fixed from now on, we drop the

parameters ( f1-P1, . . . , fn-Pn) for readability.

Soundness follows by induction for the length of L-proofs. For the basic step, one needs to show that

every instance of an L-axiom schema is valid in the corresponding class of models. For the inductive

step, it is enough to show that both inference rules preserve M-validity.

As for completeness, the proof follows a canonical model argument. We denote by MCL the class

of all maximally L-consistent sets of formulas. The proofs of the Lindenbaum lemma, as well as the

closure properties of maximally L-consistent sets, are as usual. The L-canonical model is the O-model

ML = (WL,RL,OL,VL) where each component is defined as follows:

WL = MCL,

ΦRL
i ∆ iff {ϕ ∈ L |�iϕ ∈ Φ} ⊆ ∆,

OL
i (Φ) = {x ∈ O | Oix ∈ Φ}, and

VL(p) = {Φ ∈WL | p ∈ Φ}.

The proof of the Truth Lemma (∀ϕ ∈L, ϕ ∈ Φ iff ML,Φ |= ϕ) is by induction on the structure of ϕ .

The only difference w.r.t. the proof of the lemma for basic modal logic is the step where ϕ = Oix, and

this is straightforward. For the right-to-left direction of the case ϕ = �iψ , one needs to show that the

so-called Existence Lemma holds, namely, that if ¬�iδ ∈ Φ(∈WL), then there is a ∆ ∈WL with ΦRL
i ∆

and ¬δ ∈ ∆. The final, crucial part is to show that all group properties are canonical, that is to say, if ϕ f

is an L-axiom schema that defines a group property P, then ML f -satisfies P. We leave details for the

reader.

As a curiosity, note that if O-formulas are considered as special types of atoms (as done, e.g., in [33]),

our logic is not normal in the sense of [12], because the rule of uniform substitution does not preserve

validity in all classes of models. However, this does not affect the completeness argument. �

Theorem 2 Let f : Ag→℘(Ag)\{ /0} be as described above. Let M be an O-model and E an event O-

model s.t. M⊗E is defined. For any property P in Table 2, if M f -satisfies P and E f -satisfies EMP(P),
then M⊗E f -satisfies P.

Proof. For space reasons, we just show that the theorem holds for the first and the last property. The rest

of the cases are left for the reader:

[P= preservation for everyone] Take M and E s.t.

M f -satisfies preservation for everyone (1)

E f-satisfies EMPpres−∀ (2)

We want to show that M⊗E= (W′,R′,V′,O′) f -satisfies preservation for everyone. Let i ∈ Dom( f ) and

(w,s) ∈W′ and suppose that (w,s)R′
i(u, t). This is equivalent by the definition of product update to

wRiu and sTit (3)
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Further, suppose that x∈O′
i(w,s), which is equivalent, by the definition of product update, to x∈

(
Oi(w)∪

eff+
i (s)

)
\eff−

i (s). We continue by cases on the membership of x, showing that x∈
⋂

j∈ f (i)O
′
j(u, t) always

obtains.

Case: x ∈ Oi(w) and x /∈ eff−
i (s). On the one hand, x ∈ Oi(w) implies together with (1) and (3) that

x ∈
⋂

j∈ f (i)O j(u). On the other hand, x /∈ eff−
i (s) implies together with (2) and (3) that x /∈

⋃
j∈ f (i) eff

−
j (t).

Both facts imply by set-theoretic reasoning that x ∈
⋂

j∈ f (i)

(
(O j(u)∪ eff+

j (t))\eff
−
j (t)

)
, which is equiv-

alent to what we wanted to show (by definition of product update).

Case: x ∈ eff+
i (s) and x /∈ eff−

i (s). The latter implies, together with (2) and (3), that x ∈⋂
j∈ f (i) eff

+
j (t) and x /∈

⋃
j∈ f (i) eff

−
j (t), which implies by set-theoretic reasoning that x ∈

⋂
j∈ f (i)

(
(O j(u)∪

eff+
j (t))\ eff

−
j (t)

)
, which is equivalent to what we wanted to show (by definition of product update).

[P= anti-inversion for someone] Take M and E s.t.

M f -satisfies anti-inversion for someone (1)

E f-satisfies EMPanti−inv−∃ (2)

We want to show that M⊗E = (W′,R′,V′,O′) f -satisfies anti-inversion for someone. Let i ∈ Dom( f )
and (w,s) ∈W′ and suppose that (w,s)R′

i(u, t). This is equivalent by the definition of product update to

wRiu and sTit (3).

Further, suppose that x /∈ O′
i(w,s), which is equivalent, by the definition of product update, to x /∈

Oi(w)∪eff+
i (s)\eff

−
i (s). We want to show x∈

⋃
j∈ f (i)O

′
j(u, t), which is equivalent to x∈

⋃
j∈ f (i)(O j(u)∪

eff+
j (t)) \ eff

−
j (t). We continue by cases on x /∈ Oi(w)∪ eff+

i (s) \ eff
−
i (s), showing that the latter claim

always obtains.

Case: x /∈ Oi(w) and x /∈ eff+
i (s). On the one hand, x /∈ Oi(w) implies together with (1) and (3) that

x ∈
⋃

j∈ f (i)O j(u). On the other hand, x /∈ eff+
i (s) implies together with (2) and (3) that x /∈

⋃
j∈ f (i) eff

−
j (t).

Both facts imply by set-theoretic reasoning that x ∈
⋃

j∈ f (i)(O j(u)∪ eff+
j (t))\ eff

−
j (t).

Case: x ∈ eff−
i (s). The latter implies, together with (2) and (3), that x ∈

⋃
j∈ f (i) eff

+
j (t) which implies

that x /∈
⋂

j∈ f (i) eff
−
i (t) (by definition of event O-model, because eff+

k (t)∩ eff−
k (t) = /0 for every k ∈ Ag).

The latter two claims implies by set-theoretical reasoning that x ∈
⋂

j∈ f (i)(O j(u)∪ eff+
j (t))\ eff

−
j (t). �

Theorem 3 Let ( f1, . . . , fn) be a sequence of functions Ag →℘(Ag) \{ /0} as described above, and let

(P1, . . . ,Pn) be a sequence of group properties. We have that:

L!( f1-P1, . . . , fn-Pn) is sound and strongly complete with respect to M( f1-P1, . . . , fn-Pn).

Proof. (Sketched) Let M( f1-P1, . . . , fn-Pn), L(E( f1-EMP(P1), . . . , fn-EMP(Pn))), L
!( f1-P1, . . . , fn-Pn),

and L( f1-P1, . . . , fn-Pn) be arbitrarily fixed from now on. We drop the parameters and denote them by M,

L(E), L!, and L for the sake of readability, but note that the parametrisation of each of the components is

crucial for our argument.

The soundness of L! follows from soundness of its static base L (Theorem 1), the validity of axioms

of Table 5, and the validity-preserving character of the only rule present in the same table. For proving

the latter, i.e., that the application of the rule preserves validity within M, Theorem 2 is necessary. In

more detail, the validity-preservation of the rule is proven by induction on δ , and Theorem 2 is crucial

when we arrive at the step where δ has the shape [E,s]α . Moreover, and in the same inductive step, the

simplification shown in the caption of Table 5 is needed.

We can then prove strong completeness via a reduction argument (see [29, 17, 10, 40]). For doing

so, we use two numeric measures for formulas, the depth of ϕ , noted d(ϕ), and the number of nested

dynamic modalities in ϕ , noted Od(ϕ). More formally:
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• Define d : L(E)→ N as d(p) = 0 for every p ∈ At, d(Oix) = 0 for every x ∈ O, i ∈ Ag, d(⊛ϕ) =
1+d(ϕ) where ⊛ ∈ {¬,�i, [E,s]} and d(ϕ ∧ψ) = 1+max(d(ϕ),d(ψ)).

• Define Od :L(E)→N as Od(p)= 0, d(Oix)= 0 for every x∈O, i∈Ag, Od(¬ϕ)=Od(�iϕ)=
Od(ϕ), Od(ϕ ∧ψ) = max(Od(ϕ),Od(ψ)), and Od([E,s]ϕ) = 1+Od(ϕ).

Now, we define the following function, translating formulas from each dynamic language L(E) to

the its static fragment L:

τ(p) = p τ([E,s]p) = pre(s)→ p

τ(Oix) = Oix τ([E,s]Oix) = pre(s)→ Oix if x /∈ eff[E]+i (s)∪ eff[E]−i (s)
τ([E,s]Oix) =⊤ if x ∈ eff[E]+i (s)
τ([E,s]Oix) = ¬pre(s) if x ∈ eff[E]−i (s)

τ(¬ϕ) = ¬τ(ϕ) τ([E,s]¬ϕ) = pre(s)→¬τ([M,s]ϕ)
τ(ϕ ∧ψ) = τ(ϕ)∧ τ(ψ) τ([E,s](ϕ ∧ψ)) = τ([E,s]ϕ)∧ τ([E,s]ψ)
τ(�iϕ) =�iτ(ϕ) τ([E,s]�iϕ) = pre(s)→

∧
sTit

�iτ([E, t]ϕ)
τ([E,s][F,s]ϕ) = τ([E,s]τ([F,s]ϕ))

The next step is showing that the co-domain of τ is in fact L. This is proven in two phases. First, one

can show that it holds for the special case where O(ϕ)= 1, and this is done by induction on d(ϕ). Then it

can be proven for the general case (and the previous claim is needed). Note that this translation amounts

to what [40] coined as an inside-out reduction because, when dealing with a formula δ with more that

one nested dynamic operator (i.e., with Od(δ ) ≥ 2), we first take care of the innermost occurrence due

to the definition of τ .

Finally, we can establish and prove the key Reduction Lemma, namely, that for every ϕ ∈ L(E):

⊢L! ϕ ↔ τ(ϕ).

This is done through a complex inductive argument. Again, one first needs to prove the claim for the

special case Od(ϕ) = 1 by induction on ϕ . Then, the claim can be proven for the general case. This

second proof requires a double induction, first on d(ϕ) and, we arrive at the step ϕ = [E,s]ψ , we continue

by induction on d(ψ). Note that the validity-preservation character of the rule of Table 5 is strongly

needed for all cases (which in turn requires Theorem 2, as we mentioned). �
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This paper presents a logic-based framework to analyze responsibility, which I refer to as intentional

epistemic act-utilitarian stit theory (IEAUST). To be precise, IEAUST is used to model and syn-

tactically characterize various modes of responsibility, where by ‘modes of responsibility’ I mean

instances of Broersen’s three categories of responsibility (causal, informational, and motivational

responsibility), cast against the background of particular deontic contexts. IEAUST is obtained by

integrating a modal language to express the following components of responsibility on stit models:

agency, epistemic notions, intentionality, and different senses of obligation. With such a language, I

characterize the components of responsibility using particular formulas. Then, adopting a composi-

tional approach—where complex modalities are built out of more basic ones—these characterizations

of the components are used to formalize the aforementioned modes of responsibility.

1 Introduction

The study of responsibility is a complicated matter. The term is used in different ways in different fields,

and it is easy to engage in everyday discussions as to why someone should be considered responsible for

something. Typically, the backdrop of these discussions involves social, legal, moral, or philosophical

problems, each with slightly different meanings for expressions like being responsible for..., being held

responsible for..., or having the responsibility of..., among others. Therefore—to approach such problems

efficiently—there is a demand for clear, taxonomical definitions of responsibility.

For instance, suppose that you are a judge in Texas. You are presiding over a trial where the defendant

is being charged with first-degree murder. The alleged crime is horrible, and the prosecution seeks capital

punishment. The case is as follows: driving her car, the defendant ran over a traffic officer that was

holding a stop-sign at a crossing walk, while school children were crossing the street. The traffic officer

was killed, and some of the children were severely injured. A highly complicated case, the possibility

of a death-penalty sentence means that the life of the defendant is at stake. More than ever, due process

is imperative. As the presiding judge, you must abide by the prevailing definitions of criminal liability

with precision. In other words, there is little to no room for ambiguity in the ruling, and your handling

of the notions associated with responsibility in criminal law should be impeccable.

As this example suggests, a framework with intelligible, realistically applicable definitions of re-

sponsibility is paramount in the field of law. However, responsibility-related problems arise across many

other disciplines—social psychology, philosophy of emotion, legal theory, and ethics, to name a few

[17, 24]. A clear pattern in all these is the intent of issuing standards for when—and to what extent—an

agent should be held responsible for a state of affairs.

This is where Logic lends a hand. The development of expressive logics—to reason about agents’

decisions in situations with moral consequences—involves devising unequivocal representations of com-

ponents of behavior that are highly relevant to systematic responsibility attribution and to systematic

http://dx.doi.org/10.4204/EPTCS.379.36
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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blame-or-praise assignment. To put it plainly, expressive syntactic-and-semantic frameworks help us

analyze responsibility-related problems in a methodical way.1

The main goal of this paper is to present a proposal for a formal theory of responsibility. Such a

proposal relies on (a) a decomposition of responsibility into specific components and (b) a functional

classification of responsibility, where the different categories directly correlate with the components of

the decomposition. As for the decomposition, it is given by the following list:

– Agency: the process by which agents bring about states of affairs in the environment. In other

words, the phenomenon by which agents choose and perform actions, with accompanying mental

states, that change the environment.

– Knowledge and belief: mental states that concern the information available in the environment

and that explain agents’ particular choices of action.

– Intentions: mental states that determine whether an action was done with the purpose of bringing

about its effects.

– Ought-to-do’s: the actions that agents should perform, complying to the codes of a normative

system. Oughts-to-do’s make up contexts that provide a criterion for deciding whether an agent

should be blamed or praised. I refer to these contexts as the deontic contexts of responsibility.

As for the classification, it is a refinement of Broersen’s three categories of responsibility: causal,

informational, and motivational responsibility [4, 9, 14]. I will discuss these categories at length in Sec-

tion 2. On the basis of both the decomposition and the classification, here I introduce a very rich stit logic

to analyze responsibility, which I refer to as intentional epistemic act-utilitarian stit theory (IEAUST).

More precisely, I use IEAUST to model and syntactically characterize various modes of responsibility.

By ‘modes of responsibility’ I mean combinations of sub-categories of the three ones mentioned above,

cast against the background of particular deontic contexts. On the one hand, the sub-categories corre-

spond to the different versions of responsibility that one can consider according to the active and passive

forms of the notion: while the active form involves contributions—in terms of explicitly bringing about

outcomes—the passive form involves omissions—which are interpreted as the processes by which agents

allow that an outcome happens while being able, to some extent, to prevent it. On the other hand, the

deontic context of a mode establishes whether and to what degree the combination of sub-categories

involves either blameworthiness or praiseworthiness.

The logic IEAUST includes a language that expresses agency, epistemic notions, intentionality, and

different senses of obligation. With this language, I characterize the components of responsibility using

particular formulas. Then, adopting a compositional approach—where complex modalities are built out

of more basic ones—I use these characterizations of the components to formalize the aforementioned

modes of responsibility. An outline of the paper is included below.

• Section 2 presents an operational definition for responsibility and addresses the philosophical per-

spective adopted in my study of the notion.

• Section 3 introduces IEAUST and uses this logic to provide stit-theoretic characterizations of dif-

ferent modes of responsibility.

• Section 4 presents Hilbert-style proof systems both for IEAUST and for a technical extension,

addressing the status of their soundness & completeness results.

1Most likely, this is why the logic-based formalization of responsibility has become such an important topic in, for instance,

normative multi-agent systems, responsible autonomous agents, and machine ethics for AI [21, 6]
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2 Categories of Responsibility

To make a start on formally analyzing responsibility, I identify (a) two viewpoints for the philosophical

study of responsibility, (b) three main categories for the viewpoint that I focus on, and (c) two forms in

which the elements of the categories can be interpreted.

As for point (a), the philosophical literature on responsibility usually distinguishes two viewpoints

on the notion [22]: backward-looking responsibility and forward-looking responsibility. By backward-

looking responsibility one refers to the viewpoint according to which an agent is considered to have

produced a state of affairs that has already ensued and lies in the past. This is the viewpoint taken

by a judge when, while trying a murder case, she wants to get to the bottom of things and find out

who is responsible for doing the killing. In contrast, by forward-looking responsibility one refers to the

viewpoint according to which which an agent is expected to comply with the duty of bringing about a

state of affairs in the future. When one thinks of a student that has to write an essay before its due date,

for instance, this is the view that is being used. In other words, the writing and the handing in of the

essay before the deadline are seen as responsibilities of the student.

From here on, I will focus on backward-looking responsibility. I work with the following operational

definition: responsibility is a relation between the agents and the states of affairs of an environment, such

that an agent is responsible for a state of affairs iff the agent’s degree of involvement in the realization

of that state of affairs warrants blame or praise (in light of a given normative system). As for point (b), I

follow [10] and [14] and distinguish three main categories of responsibility, where each category can be

correlated with the components of responsibility that it involves:2

1. Causal responsibility: an agent is causally responsible for a state of affairs iff the agent is the

material author of such a state of affairs. The component that this category involves is agency.

2. Informational responsibility: an agent is informationally responsible for a state of affairs iff the

agent is the material author and it behaved knowingly, or consciously, while bringing about the

state of affairs. The components that this category involves are agency, knowledge, and belief.

3. Motivational responsibility: an agent is motivationally responsible for a state of affairs iff the

agent is the material author and it behaved knowingly and intentionally while bringing about the

state of affairs. The components that this category involves are agency, knowledge, and intentions.

Finally, as for point (c), the two forms of responsibility are the active form and the passive form.

The active form of responsibility concerns contributions, and the passive form of responsibility concerns

omissions.

Now, key elements in my operational definition of responsibility are the notions of blame and praise.

Intuitively, responsibility can be measured by how much blame or how much praise an agent gets for

its participation in bringing about a state of affairs. As mentioned before, ought-to-do’s can provide a

criterion for deciding when agents should be blamed and when agents should be praised. The main idea

is as follows: if agent α ought to have done φ , then having seen to it that φ makes α praiseworthy, while

having refrained from seeing to it that φ makes α blameworthy. For a given φ , then, the degrees of

α’s praiseworthiness/blameworthiness correspond to the possible combinations between (a) an agent’s

ought-to-do’s and (b) the active/passive forms of the three categories of responsibility.

2These categories extend the literature’s common distinction between causal and agentive responsibility [17, 23, 13], and

they were derived by [10] on the basis of his analysis of the modes of mens rea.
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3 A Logic of Responsibility

We are ready to introduce intentional epistemic act-utilitarian stit theory (IEAUST), a stit-theoretic logic

of responsibility. Without further ado, let me address the syntax and semantics of this expressive frame-

work.

3.1 Syntax & Semantics

Definition 3.1 (Syntax of intentional epistemic act-utilitarian stit theory). Given a finite set Ags of agent

names and a countable set of propositions P, the grammar for the formal language LR is given by

φ ::= p | ¬φ | φ ∧φ |�φ | [α ]φ | Kαφ | Iα φ | ⊙αφ | ⊙S
α φ ,

where p ranges over P and α ranges over Ags.

In this language, �ϕ is meant to express the historical necessity of ϕ (♦ϕ abbreviates ¬�¬ϕ); [α ]ϕ
expresses that ‘agent α has seen to it that ϕ’; Kαφ expresses that ‘α knew ϕ’; Iα φ expresses that ‘α

had a present-directed intention toward the realization of ϕ’; ⊙αφ expresses that ‘α objectively ought

to have seen to it that φ ’; and ⊙S
α φ expresses that ‘α subjectively ought to have seen to it that φ .’ As

for the semantics, the structures on which the formulas of LR are evaluated are based on what I call

knowledge-intentions-oughts branching-time frames. Let me first present the formal definition of these

frames and then review the intuitions behind the extensions.

Definition 3.2 (Kiobt-frames & models). A tuple
〈

M,⊏,Ags,Choice,{∼α}α∈Ags ,τ ,Value
〉

is called a

knowledge-intention-oughts branching-time frame (kiobt-frame for short) iff

• M is a non-empty set of moments and ⊏ is a strict partial ordering on M satisfying ‘no backward

branching.’ Each maximal ⊏-chain of moments is called a history, where each history represents

a complete temporal evolution of the world. H denotes the set of all histories, and for each m ∈ M,

Hm := {h ∈ H;m∈ h}. Tuples 〈m,h〉 such that m ∈ M, h ∈ H , and m∈ h, are called indices, and the

set of indices is denoted by I(M ×H). Choice is a function that maps each agent α and moment

m to a partition Choicem
α of Hm, where the cells of such a partition represent α’s available actions

at m. For m ∈ M and h ∈ Hm, we denote the equivalence class of h in Choicem
α by Choicem

α(h).
Choice satisfies two constraints:

(NC) No choice between undivided histories: For all h,h′ ∈ Hm, if m′ ∈ h∩ h′ for some m′ ⊐ m,

then h ∈ L iff h′ ∈ L for every L ∈ Choicem
α .

(IA) Independence of agency: A function s on Ags is called a selection function at m if it assigns to

each α a member of Choicem
α . If we denote by Selectm the set of all selection functions at m,

then we have that for every m ∈ M and s ∈ Selectm,
⋂

α∈Ags s(α) 6= /0 (see [8] for a discussion

of the property).

• For α ∈ Ags, ∼α is the epistemic indistinguishability equivalence relation for agent α , which

satisfies the following constraints:

– (OAC) Own action condition: if 〈m∗,h∗〉 ∼α 〈m,h〉, then 〈m∗,h
′
∗〉 ∼α 〈m,h〉 for every h′∗ ∈

Choicem∗
α (h∗). We refer to this constraint as the ‘own action condition’ because it implies

that agents do not know more than what they perform.

– (Unif−H) Uniformity of historical possibility: if 〈m∗,h∗〉 ∼α 〈m,h〉, then for every h′∗ ∈ Hm∗

there exists h′ ∈ Hm such that 〈m∗,h
′
∗〉 ∼α 〈m,h′〉. Combined with (OAC), this constraint is

meant to capture a notion of uniformity of strategies, where epistemically indistinguishable

indices should have the same available actions for the agent to choose upon.



474 A Logic-Based Analysis of Responsibility

For 〈m,h〉 and α ∈ Ags, the set π�
α [〈m,h〉] := {〈m′

,h′〉;∃h′′ ∈ Hm′s.t.〈m,h〉 ∼α 〈m′
,h′′〉} is known

as α’s ex ante information set.

• τ is a function that assigns to each α ∈ Ags and index 〈m,h〉 a topology τ
〈m,h〉
α on π�

α [〈m,h〉]. This

is the topology of α’s intentionality at 〈m,h〉, where any non-empty open set is interpreted as a

present-directed intention, written ‘p-d intention’ from here on, of α at 〈m,h〉. Additionally, τ

must satisfy the following conditions:

– (CI) Finitary consistency of intention: for every α ∈ Ags and index 〈m,h〉, every non-empty

U,V ∈ τ
〈m,h〉
α are such that U ∩V 6= /0. In other words, every non-empty U ∈ τ

〈m,h〉
α is τ

〈m,h〉
α -

dense.

– (KI) Knowledge of intention: for every α ∈ Ags and index 〈m,h〉, τ
〈m,h〉
α = τ

〈m′
,h′〉

α for every

〈m′
,h′〉 such that π�

α [〈m,h〉] = π�
α [〈m′

,h′〉]. In other words, α has the same topology of p-d

intentions at all indices lying within α’s current ex ante information set.

• Value is a deontic function that assigns to each history h∈ H a real number, representing the utility

of h.

A kiobt-model M , then, results from adding a valuation function V to a kiobt-frame, where V : P →
2I(M×H) assigns to each atomic proposition a set of indices.

For α ∈ Ags, the equivalence relation ∼α is the usual indistinguishability relation, borrowed from

epistemic logic, that represents α’s uncertainty: whatever holds at all epistemically accessible indices is

what an agent knows. As for the function τ , it assigns to each agent the topology of intentions, according

to the ideas presented by [3]. The open sets of any such topology are taken to be p-d intentions for

bringing about circumstances. At each moment, the fact that the non-empty open sets of the topologies

are dense implies that an agent’s intentions are consistent.

Regarding the deontic dimension, the idea is that objective, subjective, and doxastic ought-to-do’s

stem from the optimal actions for an agent: to have seen to it that φ is taken to be an obligation

of an agent at an index iff φ is an effect of all the optimal actions for that agent and index, where

the notion of optimality is based on the deontic value of the histories in those actions—provided by

Value. The semantics for formulas involving the deontic operators require some previous definitions.

For m ∈ M and β ∈ Ags, we define Statem
β =

{

S ⊆ Hm;S =
⋂

α∈Ags−{β} s(α), where s ∈ Selectm
}

. For

α ∈ Ags and m∗ ∈ M, we first define a general ordering ≤ on P(Hm∗) such that for X ,Y ⊆ Hm∗ ,

X ≤ Y iff Value(h) ≤ Value(h′) for every h ∈ X ,h′ ∈ Y . The objective dominance ordering � is de-

fined such that for L,L′ ∈ Choicem∗
α , L � L′ iff for each S ∈ Statem∗

α ,L∩ S ≤ L′ ∩ S. The optimal set of

actions is taken as Optimalm∗
α := {L ∈ Choicem∗

α ; there is no L′ ∈ Choicem∗
α such that L ≺ L′}.

Subjective ought-to-do’s involve a different dominance ordering. To define it, [11] and [1] introduce

the so-called epistemic clusters, which are nothing more than a given action’s epistemic equivalents in

indices that are indistinguishable to the one of evaluation. Formally, we have that for α ∈Ags, m∗,m∈M,

and L ⊆ Hm∗ , L’s epistemic cluster at m is the set [L]mα := {h ∈ Hm;∃h∗ ∈ L s.t. 〈m∗,h∗〉 ∼α 〈m,h〉}. A

subjective dominance ordering �s on Choicem∗
α is then defined by the following rule: for L,L′ ⊆ Hm∗ ,

L �s L′ iff for each m such that m∗ ∼α m, for each S ∈ Statem
α , [L]

m
α ∩ S ≤ [L′]mα ∩ S.3 Just as in the

case of objective ought-to-do’s, this ordering allows us to define a subjectively optimal set of actions

SOptimalm∗
α := {L ∈ Choicem∗

α ; there is no L′ ∈ Choicem∗
α s. t. L ≺s L′}, where I write L ≺s L′ iff L �s L′

and L′ �s L.

3As a convention, I write m ∼α m′ if there exist h ∈ Hm, h′ ∈ Hm′ such that 〈m,h〉 ∼α 〈m′
,h′〉.
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Therefore, kiobt-frames allow us to represent the components of responsibility discussed in the in-

troduction: agency, knowledge, intentions, and ought-to-do’s. More precisely, they allow us to provide

semantics for the modalities of LR:

Definition 3.3 (Evaluation rules for IEAUST). Let M be a finite-choice kiobt-model.4 The semantics on

M for the formulas of LR are recursively defined by the following truth conditions:

M ,〈m,h〉 |= p iff 〈m,h〉 ∈ V (p)
M ,〈m,h〉 |= ¬φ iff M ,〈m,h〉 6|= φ

M ,〈m,h〉 |= φ ∧ψ iff M ,〈m,h〉 |= φ and M ,〈m,h〉 |= ψ

M ,〈m,h〉 |=�φ iff for all h′ ∈ Hm,M ,〈m,h′〉 |= φ

M ,〈m,h〉 |= [α ]φ iff for all h′ ∈ Choicem
α(h),M ,〈m,h′〉 |= φ

M ,〈m,h〉 |= Kαφ iff for all 〈m′
,h′〉 s. t. 〈m,h〉 ∼α 〈m′

,h′〉,
M ,〈m′

,h′〉 |= φ

M ,〈m,h〉 |= Iαφ iff there exists U ∈ τ
〈m,h〉
α s. t. U ⊆ ‖φ‖

M ,〈m,h〉 |=⊙αφ iff for all L ∈ Optimalmα ,M ,〈m,h′〉 |= ϕ

for every h′ ∈ L

M ,〈m,h〉 |=⊙S
α ϕ iff for all L ∈ SOptimalmα ,M ,〈m′

,h′〉 |= ϕ

for every m′ s. t. m ∼α m′ and every h′ ∈ [L]m
′′

α .

where ‖φ‖ refers to the set {〈m,h〉 ∈ I(M×H);M ,〈m,h〉 |= φ}.

3.2 Formalization of Sub-Categories of Responsibility

The logic introduced in the previous subsection allows us to formalize different modes of responsibility

by means of formulas of LR. Before diving into the formulas, let me present an operational definition

for the expression ‘mode of responsibility.’ For α ∈ Ags, index 〈m,h〉, and φ of LR, a mode of α’s

responsibility with respect to φ at 〈m,h〉 is a tuple consisting of three constituents: (1) a set of categories,

taken from Broersen’s three categories of responsibility, that applies to the relation between α and φ at

〈m,h〉, (2) the forms of responsibility—active or passive—that apply to the categories in said set, and (3)

a deontic context, determining whether the forms of the categories are either blameworthy, praiseworthy,

or neutral. As for constituents (1) and (2), observe that the active and passive forms of the three categories

of responsibility lead to sub-categories of the notion. For clarity, first I will introduce the stit-theoretic

characterizations of these sub-categories; afterwards, in Subsection 3.3, these sub-categories will be

discussed against the backdrop of the deontic contexts that will decide their degree of blameworthiness

or praiseworthiness (constituent (3) in a given mode).

A maxim usually endorsed in the philosophical literature on moral responsibility is the principle of

alternate possibilities. According to this principle, “a person is morally responsible for what he has done

only if he could have done otherwise” [15]. Following the example of [17], then, I adopt the intuitions

behind deliberative agency and restrict my view on responsibility to situations where agents can be said

to actually have had a hand in bringing about states of affairs. Therefore, each sub-category of α’s

responsibility with respect to φ at 〈m,h〉 will include a positive condition—concerning the realization of

φ—and a negative condition—concerning the realization of ¬φ . For α ∈ Ags and φ of LR, the main

sub-categories of α’s responsibility with respect to φ are displayed in Table 1.

4Finite-choice bt-models are those for which function Choice is such that Choicem
α is finite for every α ∈ Ags and m ∈ M. I

focus on finite-choice models to simplify the evaluation rules for objective and subjective ought-to-do’s. The reader is referred

to [1] for the evaluation rules in the case of infinite-choice models.
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Category

Form
Active (contributions) Passive (omissions)

Causal [α ]φ ∧♦[α ]¬φ φ ∧♦[α ]¬φ

Informational Kα [α ]φ ∧♦Kα [α ]¬φ
φ ∧Kα¬[α ]¬φ∧
♦Kα [α ]¬φ

Motivational
Kα [α ]φ ∧ Iα [α ]φ∧
♦Kα [α ]¬φ

φ ∧Kα¬[α ]¬φ∧
Iα¬[α ]¬φ ∧♦Kα [α ]¬φ

Table 1: Main sub-categories.

Let me explain and discuss Table 1. Let M be a kiobt-model. For α ∈ Ags and index 〈m,h〉, the

sub-categories of α’s responsibility with respect to φ at 〈m,h〉 are defined as follows:

• α was causal-active responsible for φ at 〈m,h〉 iff at 〈m,h〉 α has seen to it that φ (the positive

condition) and it was possible for α to prevent φ (the negative condition). As such, I refer to state

of affairs φ as a causal contribution of α at 〈m,h〉. α was causal-passive responsible for φ at 〈m,h〉
iff at 〈m,h〉 φ was the case (the positive condition), and α refrained from preventing φ while it was

possible for α to prevent φ (the negative conditions). To clarify, formula φ →¬[α ]¬φ is valid, so

that if φ was the case then α refrained from preventing φ . I refer to ¬φ as a causal omission of α

at 〈m,h〉.

• α was informational-active responsible for φ at 〈m,h〉 iff at 〈m,h〉 α has knowingly seen to it that φ

(the positive condition) and it was possible for α to knowingly prevent φ (the negative condition).

I refer to φ as a conscious contribution of α at 〈m,h〉. α was informational-passive responsible for

φ at 〈m,h〉 iff at 〈m,h〉 φ was the case (the positive condition), and α knowingly refrained from

preventing φ while it was possible for α to knowingly prevent φ (the negative conditions). I refer

to ¬φ as a conscious omission of α at 〈m,h〉.

• α was motivational-active responsible for φ at 〈m,h〉 iff at 〈m,h〉 α has both knowingly and inten-

tionally seen to it that φ (the positive conditions) and it was possible for α to knowingly prevent

φ (the negative condition). I refer to φ as a motivational contribution of α at 〈m,h〉. α was

motivational-passive responsible for φ at 〈m,h〉 iff at 〈m,h〉 φ was the case (the positive condi-

tion), and α both knowingly and intentionally refrained from preventing φ while it was possible

for α to knowingly prevent φ (the negative conditions). I refer to ¬φ as a motivational omission

of α at 〈m,h〉.

The main reason for setting the negative conditions as stated in Table 1 is that it greatly simplifies the

relation between the active and the passive forms of responsibility. That said, it is important to mention

that these negative conditions lead to a policy that I call leniency on blameworthy agents.

Two important observations concerning the relations between these sub-categories are the following:

1. (a) If α was informational-active, resp. informational-passive, responsible for φ at 〈m,h〉, then α

was causal-active, resp. causal-passive, responsible for φ at 〈m,h〉; the converse is not true.

(b) If α was motivational-active, resp. motivational-passive, responsible for φ at 〈m,h〉, then α

was informational-active, resp. informational-passive, responsible for φ at 〈m,h〉; the converse

is not true.

2. For all three categories, the active form of responsibility with respect to φ implies the passive form.
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3.3 Formalization of Modes of Responsibility

In Section 2 I explained that obligations provide the deontic contexts of responsibility, which in turn

determine degrees of praiseworthiness/blameworthiness for instances of the notion. Let M be a kiobt-

model. Take α ∈ Ags, and let φ be a formula of LR. For each index 〈m,h〉, there are 4 main possibilities

for conjunctions of deontic modalities holding at 〈m,h〉, according to whether ∆φ or ¬∆φ is satisfied at

the index, where ∆ ∈
{

⊙α ,⊙
S
α

}

. I refer to any such conjunction as a deontic context for α’s respon-

sibility with respect to φ at 〈m,h〉. Thus, these contexts render 4 main levels of praiseworthiness, resp.

blameworthiness, under the premise that bringing about φ is praiseworthy and refraining from bringing

about φ is blameworthy. I use numbers 1–4 to refer to these levels, so that Level 1 corresponds the highest

level of praiseworthiness, resp. blameworthiness, and Level 4 corresponds to the lowest level.

Level 1: when deontic context ⊙αφ ∧⊙S
α φ holds at 〈m,h〉, which occurs iff at 〈m,h〉 α objectively and

subjectively ought to have seen to it that φ . Level 2: when deontic context ¬⊙α φ ∧⊙S
α φ holds at 〈m,h〉,

which occurs iff at 〈m,h〉 α subjectively ought to have seen to it that φ , but α did not objectively ought to

have seen to it that φ . Level 3: when deontic context ⊙αφ ∧¬⊙S
α φ holds at 〈m,h〉, which occurs iff at

〈m,h〉 α objectively ought to have seen to it that φ , but α did not subjectively ought to have seen to it that

φ . Level 4: when deontic context ¬⊙α φ ∧¬⊙S
α φ holds at 〈m,h〉, where, unless α either objectively

or subjectively ought have seen to it that ¬φ at 〈m,h〉 (which would imply that a deontic context of the

previous levels holds with respect to ¬φ ), neither bringing about φ nor refraining from doing so elicits

any interest in terms of blame-or-praise assignment.

For each of these deontic contexts, the basic modes of α’s active responsibility with respect to φ

at 〈m,h〉 are displayed in Table 2, and the basic modes of α’s passive responsibility are obtained by

substituting the term ’passive’ for ’active’ in such a table.

Deg.

Att.
Praiseworthiness Blameworthiness

LowA

Causal-active for φ X

Infor.-active for φ ✗

Motiv.-active for φ ✗

Causal-active for ¬φ X

Infor.-active for ¬φ ✗

Motiv.-active for ¬φ ✗

MiddleA

Causal-active for φ X

Infor.-active for φ X

Motiv.-active for φ ✗

Causal-active for ¬φ X

Infor.-active for ¬φ X

Motiv.-active for ¬φ ✗

HighA

Causal-active for φ X

Infor.-active for φ X

Motiv.-active for φ X

Causal-active for ¬φ X

Infor.-active for ¬φ X

Motiv.-active for ¬φ X

Table 2: Modes of α’s active responsibility with respect to φ .

4 Axiomatization

This section is devoted to introducing proof systems for IEAUST. More precisely, I present two systems:

• A sound system for IEAUST, for which achieving a completeness result is still an open problem.
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• A sound and complete system for a technical extension of IEAUST that I refer to as bi-valued

IEAUST. Bi-valued IEAUST was devised with the aim of having a completeness result for a logic

that would be reasonably similar to the one presented in Section 3.

As for the first bullet point, a proof system for IEAUST is defined as follows:

Definition 4.1 (Proof system for IEAUST). Let ΛR be the proof system defined by the following axioms

and rules of inference:

• (Axioms) All classical tautologies from propositional logic; the S5 schemata for �, [α ], and Kα ;

the KD schemata for Iα ; and the schemata given in Table 3.

Basic-stit-theory schemata:
�φ → [α]φ (SET )
For distinct α1, . . . ,αm,

∧

1≤k≤m

♦[αi]φi → ♦

(

∧

1≤k≤m

[αi]φi

)

(IA)

Schemata for knowledge:

Kα φ → [α]φ (OAC)
♦Kα φ → Kα♦φ (Uni f −H)

Schemata for objective ought-to-do’s:

⊙α(φ → ψ)→ (⊙α φ →⊙α ψ) (A1)
�φ →⊙αφ (A2)
⊙αφ →�⊙α φ (A3)
⊙αφ →⊙α([α]φ) (A4)
⊙αφ → ♦[α]φ (Oic)

Schemata for subjective ought-to-do’s:

⊙S
α (φ → ψ)→ (⊙S

α φ →⊙S
α ψ) (A5)

⊙S
α φ →⊙S

α (Kα φ) (A6)
Kα�φ →⊙S

α φ (SuN)
⊙S

α φ → ♦Kα φ (s.Oic)
⊙S

α φ → Kα�⊙S
α φ (s.Cl)

⊙S
α φ →¬⊙α ¬φ (ConSO)

Schemata for intentionality:

�Kα φ → Iαφ (InN)
Iα φ →�Kα Iα φ (KI)

Table 3: Axioms for the modalities’ interactions.

• (Rules of inference) Modus Ponens, Substitution, and Necessitation for all modal operators.

For a discussion of all these axioms and schemas, the reader is referred to [1, 18, 3]. An important

result for ΛR, then, is the following proposition, whose proof is relegated to Appendix A.

Proposition 4.2 (Soundness of ΛR). The proof system ΛR is sound with respect to the class of kiobt-

models.

Unfortunately, the question of whether ΛR is complete with respect to the class of kiobt-models is

still an open problem. Now, in the search for a complete proof system for IEAUST, and following a

strategy found in my joint works with Jan Broersen [1, 2], I tried to first prove completeness of ΛR with

respect to a class of more general models, that I refer to as bi-valued kiobt-models (Definition 4.3 below).

This strategy led to the need of dropping one of the schemata in ΛR: (ConSO). More precisely, if Λ′
R is

obtained from ΛR by eliminating (ConSO) in Definition 4.1, then Λ′
R turns out to be sound and complete

with respect to the class of bi-valued kiobt-models. The formal statements are included below.

Definition 4.3 (Bi-valued kiobt-frames & models).
〈

M,⊏,Ags,Choice,{∼α}α∈Ags ,τ ,ValueO ,ValueS

〉

is called a bi-valued kiobt-frame iff

• M,⊏,Ags,Choice, {∼α}α∈Ags, and τ are defined just as in Definition 3.2.

• ValueO and ValueS are functions that independently assign to each history h ∈ H a real number.
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A bi-valued kiobt-model M , then, results from adding a valuation function V to a bi-valued kiobt-frame,

where V : P → 2I(M×H) assigns to each atomic proposition of LR a set of indices (recall that P is the set

of propositions in LR).

The two value functions in bi-valued kiobt-frames allow us to redefine the dominance orderings so

that they are independent from one another, something that proves useful in achieving a completeness

result in the style of [1]. For α ∈Ags and m∈M, two general orderings ≤ and ≤s are first defined on 2Hm :

for X ,Y ⊆ Hm, X ≤Y , resp. X ≤s Y , iff ValueO(h)≤ ValueO(h
′), resp. ValueS (h)≤ ValueS (h′), for

every h ∈X and h′ ∈Y . Then, for α ∈ Ags and m ∈M, an objective dominance ordering � is now defined

on Choicem
α by the rule: L � L′ iff for every S ∈ Statem

α ,L∩S ≤ L′∩S. In turn, for α ∈ Ags and m ∈ M,

a subjective dominance ordering �s is now defined on Choicem
α by the rule: L �s L′ iff for all m′ such

that m ∼α m′ and each S ∈ Statem
α , [L]

m′

α ∩S ≤s [L
′]m

′

α ∩S. With these new notions, the sets Optimalmα and

SOptimalmα are redefined accordingly, and the evaluation rules for the formulas of LR (with respect to

bi-valued kiobt-models) are given just as in Definition 3.3. As mentioned before, I refer to the resulting

logic as bi-valued IEAUST. Bi-valued IEAUST, then, admits the following metalogic result, whose proof

is sketched in Appendix A.

Theorem 4.4 (Soundness & Completeness of Λ′
R). Let Λ′

R be the proof system obtained from ΛR by

eliminating (ConSO) in Definition 4.1. Then Λ′
R is sound and complete with respect to the class of

bi-valued kiobt-models.

5 Conclusion

This paper built a formal theory of responsibility by means of stit-theoretic models and languages that

were designed to explore the interplay between the following components of responsibility: agency,

knowledge, beliefs, intentions, and obligations. Said models were integrated into a framework that is

rich enough to provide logic-based characterizations for different instances of three categories of respon-

sibility: causal, informational, and motivational responsibility.

The developed theory belongs to a relatively recent tradition in the philosophical literature, that seeks

to formalize responsibility allocation by means of models of agency and logic-based languages (see, for

instance, [16], [17], [5], [19], [20], and [7]). Most of these frameworks characterize different forms of re-

sponsibility as combinations of causal agency, knowledge, and the principle of alternate possibilities. The

novelty of the present approach, then, lies in the introduction of intentionality and ought-to-do’s. Such

an introduction gives rise to a taxonomy that distinguishes various kinds of responsibility and blamewor-

thiness/praiseworthiness in a methodical, meticulous way. Interesting directions for future work, then,

involve extending these models with beliefs and rational decision-making, group notions (coalitions,

group knowledge & belief, collective intentionality, collective responsibility), temporal modalities, and

long-term strategies, for instance. As for the technical aspects of the formal theory, an important direc-

tions for future work involve checking whether the logic is decidable, checking for the complexity of its

satisfiability problem, and figuring out its applicability for implementation.5

5Implementing logics of responsibility might prove relevant in the design, formal verification, and explainability of ethical

AI (see, for instance, [12]).
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A Metalogic Results for IEAUST

Appendix A.A Soundness

Proposition A.1 (Soundness of ΛR). The system ΛR (Definition 4) is sound with respect to the class of

kiobt-models.

Proof. The proof of soundness is routine: the validity of the S5 schemata for � and [α ], as well as that of

(SET ) and (IA), is standard from [25]; the validity of the S5 schemata for Kα is standard from epistemic

logic; the validity of schemata (A1)–(A4), as well as that of (Oic), is standard from [18]; the validity of

the KD schemata for Iα , as well as that of (InN), follows from Definitions 3.2 and 3.3; and the validity

of (KI) follows from frame condition (KI); and the validity of schemata (OAC), (Uni f −H), (A5) and

(A6), as well as that of (SuN), (s.Oic), (s.Cl), and (ConSO) can be shown as follows:

To see that M |= (OAC), take 〈m,h〉 such that M ,〈m,h〉 |= Kαϕ . Take h′ ∈ Choicem
α(h). Frame con-

dition (OAC) implies that 〈m,h〉 ∼α 〈m,h′〉. The assumption that M ,〈m,h〉 |= Kαϕ then implies that

M ,〈m,h′〉 |= ϕ . Therefore, for any h′ ∈ Choicem
α(h), M ,〈m,h′〉 |= ϕ , which implies that M ,〈m,h〉 |=

[α ]ϕ .

To see that M |= (Uni f −H), take 〈m,h〉 such that M ,〈m,h〉 |=♦Kαϕ . Let 〈m′
,h′〉 be an index such that

〈m,h〉 ∼α 〈m′
,h′〉. We want to show that M ,〈m′

,h′〉 |= ♦ϕ . The fact that M ,〈m,h〉 |= ♦Kαϕ implies

that there exists h∗ ∈ Hm such that (⋆) M ,〈m,h∗〉 |= Kαϕ . Frame condition (Unif−H) implies that there

exists h′∗ ∈ Hm′ such that 〈m,h∗〉 ∼α 〈m′
,h′∗〉. With (⋆), this last fact implies that M ,〈m′

,h′∗〉 |= ϕ , which

in turn implies that M ,〈m′
,h′〉 |= ♦ϕ . Therefore, M ,〈m,h〉 |= Kα♦ϕ .

To see that M |= (A6), take 〈m,h〉 such that M ,〈m,h〉 |= ⊙S
α ϕ . We want to show that, for every L ∈

Choicem
α such that [L]m

′
6⊆ |Kαϕ |m

′

(for some m′ such that m ∼α m′), there is L′ ∈ Choicem
α such that L ≺s

L′ and, if L′′ = L′ or L′ �s L′′, then [L′′]m
′′

α ⊆ |Kαϕ |m
′′

for every m′′ such that m ∼α m′′. Take L ∈ Choicem
α

such that there exists m′ ∈ M such that m ∼α m′ and [L]m
′
6⊆ |Kαϕ |m

′
. This implies that [L]m

′′′
6⊆ |φ |m

′′′

for

some m′′′ such that m′ ∼α m′′′. Now, transitivity of ∼α implies that m ∼α m′′′. Therefore, the assumption

that M ,〈m,h〉 |= ⊙S
α ϕ implies that there is L′ ∈ Choicem

α such that L ≺s L′ and, if L′′ = L′ or L′ �s L′′,

then [L′′]m
′′

α ⊆ |ϕ |m
′′

for every m′′ such that m ∼α m′′. By definition of epistemic clusters and transitivity
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of ∼α , this last clause implies that if L′′ = L′ or L′ �s L′′ then [L′′]m
′′

α ⊆ |Kαϕ |m
′′

for every m′′ such that

m ∼α m′′. Thus, L′ attests to the fact that M ,〈m,h〉 |=⊙S
α (Kαϕ).

To see that M |= (SuN), take 〈m,h〉 such that M ,〈m,h〉 |= Kα�ϕ . Take L ∈ Choicem
α , and let m′ ∈ M

be such that m ∼α m′ (which means that there exist j ∈ Hm, j′ ∈ Hm′ such that 〈m, j〉 ∼α 〈m′
, j′〉).

Condition (Unif−H) ensures that there exists h′ ∈ Hm′ such that 〈m,h〉 ∼α 〈m′
,h′〉. The assumption that

M ,〈m,h〉 |= Kα�ϕ then implies that M ,〈m′
,h′〉 |=�ϕ . Thus, for any h′′ ∈ [L]m

′

α , the fact that h′′ ∈ Hm′

yields that M ,〈m′
,h′′〉 |= ϕ . Therefore, for all L ∈ Choicem

α and m′ such that m ∼α m′, [L]m
′

α ⊆ |φ |m
′

,

which vacuously implies that M ,〈m,h〉 |=⊙S
α ϕ .

To see that M |= (s.Oic), take 〈m,h〉 such that M ,〈m,h〉 |=⊙S
α ϕ . This implies that there exists L ⊆ Hm

such that [L]m
′′

α ⊆ |φ |m
′′

for every m′′ ∈ M such that m ∼α m′′. Since ∼α is reflexive, [L]mα ⊆ |φ |m. Now,

take h0 ∈ L. Let 〈m′
,h′〉 be an index such that 〈m,h0〉 ∼α 〈m′

,h′〉. From the definition of epistemic

clusters, h′ ∈ [L]m
′

α , so the fact that [L]m
′

α ⊆ |φ |m
′

implies that M ,〈m′
,h′〉 |= ϕ . Therefore, history h0 ∈ Hm

is such that, for every 〈m′
,h′〉 with 〈m,h0〉 ∼α 〈m′

,h′〉, M ,〈m′
,h′〉 |= ϕ . This means that M ,〈m,h0〉 |=

Kαϕ , which implies that M ,〈m,h〉 |= ♦Kαϕ .

To see that M |= (s.Cl), take 〈m∗,h∗〉 such that M ,〈m∗,h∗〉 |=⊙S
α ϕ . Let 〈m, j〉 be such that 〈m∗,h∗〉 ∼α

〈m, j〉. Take h ∈ Hm. We want to show that, for every L ∈ Choicem
α such that [L]m

′
6⊆ |φ |m

′

(for some m′

such that m∼α m′), there is L′ ∈Choicem
α such that L≺s L′ and, if L′′ = L′ or L′ �s L′′, then [L′′]m

′′

α ⊆ |φ |m
′′

for every m′′ such that m ∼α m′′. Take L ∈ Choicem
α such that there exists m′ ∈ M such that m ∼α m′ and

[L]m
′
6⊆ |φ |m

′

. Let NL be an action in Choicem∗
α such that NL ⊆ [L]m∗

α , where we know that such an action

exists in virtue of (Unif−H) and (OAC). Notice that transitivity of ∼α entails that [NL]
o
α = [L]oα for any

moment o, so that [NL]
m′

α 6⊆ |φ |m
′

. Since M ,〈m∗,h∗〉 |= ⊙S
α ϕ , there must exist N ∈ Choicem∗

α such that

NL ≺s N and, if N ′ = N or N �s N ′, then [N ′]m
′′

α ⊆ |φ |m
′′

for every m′′ such that m∗ ∼α m′′. Now, let LN

be an action in Choicem
α such that LN ⊆ [N]mα (which implies that [LN ]

o
α = [N]oα for any moment o). We

claim that L ≺s LN , and show our claim with the following argument: let m′′ ∈ M be such that m ∼α m′′,

and take S ∈ Statem′′

α ; on the one hand, (⋆) [L]m
′′

α ∩S = [NL]
m′′

α ∩S ≤ [N]m
′′

α ∩S = [LN ]
m′′

α ∩S; on the other

hand, we know that there exist a moment m′′′ and a state S0 ∈ Statem′′′

α such that m∗ ∼α m′′′ and such that

[N]m
′′′

α ∩S0 6≤ [NL]
m′′′

α ∩S0; therefore, (⋆⋆) [LN ]
m′′′

α ∩S0 = [N]m
′′′

α ∩S0 6≤ [NL]
m′′′

α ∩S0 = [L]m
′′′

α ∩S0. Together,

(⋆) and (⋆⋆) entail that L ≺s LN , proving our claim. Now, let L′′ ∈ Choicem
α be such that L′′ = LN or

LN �s L′′. If L′′ = LN , then [L′′]m
′′

α = [N]m
′′

α ⊆ |φ |m
′′

for every m′′ such that m ∼α m′′. If LN ≺s L′′,

then an argument similar to the one used to show that our claim was true renders that there is an action

NL′′ ∈ Choicem∗
α such that NL′′ ⊆ [L′′]m∗

α and N �s NL′′ . Thus, [L′′]m
′′

α = [NL′′]m
′′

α ⊆ |φ |m
′′

. With this, we

have shown that M ,〈m,h〉 |= ⊙S
α ϕ for every h ∈ Hm, so that M ,〈m, j〉 |= �⊙S

α ϕ . But 〈m, j〉 was an

arbitrary index such that 〈m∗,h∗〉 ∼α 〈m, j〉. Thus, M ,〈m∗,h∗〉 |= Kα�⊙S
α ϕ .

Let us show that M |= (ConSO). First of all, let us show that, for all L,L′ ∈ Choicem
α , if L �s L′, then

L � L′. Take L,L′ ∈ Choicem
α . If L �s L′, then, for each m′ such that m ∼α m′, Value(h)≤ Value(h′) for

every h ∈ [L]m
′

α ,h′ ∈ [L′]m
′

α . Reflexivity of ∼α implies both that m ∼α m′ and that L ⊆ [L]mα and L′ ⊆ [L′]mα .

Therefore, for all h′′ ∈ L and h′′′ ∈ L′, Value(h′′)≤ Value(h′′′), which implies that L � L′.

Now, let 〈m,h〉 be an index. Assume for a contradiction that (⋆) M ,〈m,h〉 |= ⊙S
α ϕ and that (⋆⋆)

M ,〈m,h〉 |= ⊙α¬ϕ . On the one hand, assumption (⋆) implies that there is L∗ ∈ Choicem
α such that

L∗ ⊆ |φ |m. Thus, assumption (⋆⋆) yields that there is L′
∗ ∈ Choicem

α such that L∗ ≺ L′
∗ and, if N = L′

∗

or L′
∗ � N, then N ⊆ |¬φ |m. In particular, L′

∗ ⊆ |¬φ |m. Assumption (⋆) then implies that there is L′′
∗ ∈

Choicem
α such that L′

∗ ≺s L′′
∗ and, if N = L′′

∗ or L′′
∗ �s N, then N ⊆ [N]mα ⊆ |φ |m. In particular, L′′

∗ ⊆ |φ |m.

On the other hand, by the first observation in the proof, the fact that L′
∗ ≺s L′′

∗ implies that L′
∗ � L′′

∗ , so
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that assumption (⋆⋆) yields that L′′
∗ ⊆ |¬φ |m, which contradicts the previously shown fact that L′′

∗ ⊆ |φ |m.

Thus, M ,〈m,h〉 |=⊙S
α ϕ →¬⊙α ¬ϕ for every index 〈m,h〉, so that ⊙S

α ϕ →¬⊙α ¬ϕ is indeed valid.

It is clear that the rules of inference Modus Ponens, Substitution, and Necessitation for the modal opera-

tors all preserve validity.

Appendix A.B Completeness

As mentioned in the main body of the paper, whether ΛR is complete with respect to the class of kiobt-

models is still an open problem. However, the proof system Λ′
R—obtained from ΛR by eliminating

(ConSO) in Definition 4.1—is sound and complete with respect to the class of bi-valued kiobt-models

(Definition 4.3). Soundness follows from Proposition A.1, and the proof of completeness is obtained by

integrating the proofs of completeness in [1] and [3]. More precisely, the proof of completeness will be

sketched below as a two-step process. First, I introduce a Kripke semantics for bi-valued IEAUST, where

the formulas of LR are evaluated on bi-valued Kripke-kios-models (Definition A.2). Completeness of

ΛR’ with respect to the class of these structures is shown via the well-known technique of canonical

models. Secondly, a truth-preserving correspondence between bi-valued Kripke-kios-models and a sub-

class of bi-valued kiobt-models is used to prove completeness with respect to bi-valued kiobt-models via

completeness with respect to bi-valued Kripke-kios-models.

A Kripke semantics for IEAUST is defined as follows:

Definition A.2 (Bi-valued Kripke-kios-frames & models). A tuple

〈

W,Ags,R�,Choice,{≈α}α∈Ags ,
{

RI
α

}

α∈Ags
,ValueO ,ValueS

〉

is called a bi-valued Kripke-kios-frame iff

• W is a set of possible worlds. R� is an equivalence relation over W . For w ∈ W , the class of w

under R� is denoted by w. Choice is a function that assigns to each α ∈ Ags and �-class w a

partition Choicew
α of w given by an equivalence relation denoted by Rw

α . Choice must satisfy the

following constraint:

– (IA)K For all w ∈W , each function s : Ags → 2w that maps α to a member of Choicew
α is such

that
⋂

α∈Ags s(α) 6= /0 (where the set of all functions s that map α to a member of Choicew
α is

denoted by Selectw).

For α ∈ Ags, w ∈W , and v ∈ w, the class of v in the partition Choicew
α is denoted by Choicew

α(v).

Now, for β ∈Ags and w ∈W , Statew
β :=

{

S ⊆ w;S =
⋂

α∈Ags−{β} s(α), for s ∈ Selectw
}

, where

Selectw denotes the set of all selection functions at w (i.e., functions that assign to each α a

member of Choicew
α ).

• For all α ∈ Ags, ≈α is an (epistemic) equivalence relation on W . The following conditions must

be satisfied:

– (OAC)K For all α ∈ Ags, w ∈W , and v ∈ w, v ≈α u for every u ∈ Choicew
α(v).

– (Unif−H)K For all α ∈ Ags, if v,u ∈W are such that v ≈α u, then for all v′ ∈ v there exists

u′ ∈ u such that v′ ≈α u′.

For α ∈ Ags and w ∈W , α’s ex ante information set at w is defined as π�
α [w] := {v;w ≈α ◦R�v},

which by frame condition (Unif−H)K coincides with the set {v;wR�◦ ≈α v}. To clarify,

(Unif−H)K implies that R�◦ ≈α=≈α ◦R�. Thus, ≈α ◦R� is an equivalence relation such that

π�
α [w] = π�

α [v] for every w,v ∈W such that w ≈α ◦R�v.
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• For α ∈ Ags, RI
α is a serial, transitive, and euclidean relation on W such that RI

α ⊆≈α ◦R� and

such that the following condition is satisfied:

– (Den)K For all v,u ∈W such that v ≈α ◦R�u, there exists z ∈W such that vRI
αz and uRI

αz.

For α ∈ Ags, RI+
α denotes the reflexive closure of RI

α . For w ∈ W , w ↑RI+
α

denotes the set
{

v ∈W ;wRI+
α v

}

.

For w,v ∈ W , I write w ≈α v iff there exist w′ ∈ w and v′ ∈ v such that w′ ≈α v′. For

w,v ∈ W such that w ≈α v and L ∈ Choicew
α , L’s epistemic cluster at v is the set [[L]]vα :=

{u ∈ v; there is o ∈ L such that o ≈α u} .

• ValueO and ValueS are functions that independently assign to each world w ∈W a real number.

These functions are used to define an objective ordering � and a subjective ordering �s of choices.

Formally, for α ∈ Ags and w ∈W , one first defines two general orderings ≤ and ≤s on 2W by the

rules: X ≤Y iff ValueO(w)≤ ValueO(w
′) for all w ∈ X and w′ ∈Y ; and X ≤s Y iff ValueS (w)≤

ValueS (w′) for all w ∈ X and w′ ∈ Y . An objective dominance ordering � is then defined on

Choicew
α by the rule: L� L′ iff L∩S≤L′∩S for every S∈ Statew

α . In turn, a subjective dominance

ordering �s is then defined on Choicew
α by the rule: L �s L′ iff [[L]]vα ∩S ≤s [[L

′]]vα ∩S for every v

such that w ≈α v and every S ∈ Statev
α . I write L ≺ L′ iff L � L′ and L′ � L, and I write L ≺s L′ iff

L �s L′ and L′ �s L, so that Optimalw
α :=

{

L ∈ Choicew
α ; there is no L′ ∈ Choicew

α s. t. L ≺ L′
}

and SOptimalw
α :=

{

L ∈ Choicew
α ; there is no L′ ∈ Choicew

α s. t. L ≺s L′
}

.

A Kripke-kios-model M consists of the tuple that results from adding a valuation function V to a Kripke-

kios-frame, where V : P → 2W assigns to each atomic proposition a set of worlds (recall that P is the set

of propositions in LR).

Kripke-kios-models allow us to evaluate the formulas of LR with semantics that are analogous to the

ones provided for kiobt-models:

Definition A.3 (Evaluation rules on Kripke models). Let M be a Kripke-kios-model, the semantics on

M for the formulas of LKO are defined recursively by the following truth conditions, evaluated at world

w:
M ,w |= p iff w ∈ V (p)
M ,w |= ¬φ iff M ,w 6|= φ

M ,w |= φ ∧ψ iff M ,w |= φ and M ,w |= ψ

M ,w |=�φ iff for each v ∈ w,M ,v |= φ

M ,w |= [α ]φ iff for each v ∈ Choicew
α(w),M ,v |= φ

M ,w |= Kαφ iff for each v s. t. w ≈α v,M ,v |= φ

M ,w |= Iαφ iff there exists x ∈ π�
α [w] s. t. x ↑RI+

α
⊆ |φ |

M ,w |=⊙αϕ iff for all L ∈ Choicew
α s. t. M ,v 6|= ϕ for some v ∈ L, there is

L′ ∈ Choicew
α s. t. L ≺ L′ and, if L′′ = L′ or L′ �s L′′

,

then M ,w′ |= ϕ for every w′ ∈ L′′
α

M ,w |=⊙S
α ϕ iff for all L ∈ Choicew

α s. t. M ,v 6|= ϕ for some w′ s. t. w ≈α w′

and some v ∈ [[L]]w
′

α , there is L′ ∈ Choicew
α s. t. L ≺s L′

and, if L′′ = L′ or L′ �s L′′
, then M ,w′′′ |= ϕ for every w′′

s. t. w ≈α w′′ and every w′′′ ∈ [[L′′]]w
′′

α ,

where I write |φ | to refer to the set {w ∈W ;M ,w |= φ}. Satisfiability, validity on a frame, and general

validity are defined as usual.
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A truth-preserving correspondence between Kripke-kios-models and kiobt-models is shown as fol-

lows:

Definition A.4 (Associated kiobt-frame). Let

F =
〈

W,Ags,R�,Choice,{≈α}α∈Ags ,
{

RI
α

}

α∈Ags
,ValueO ,ValueS

〉

be a bi-valued Kripke-kios-frame.

Then F T :=
〈

MW ,⊏,Ags,Choice,{∼α}α∈Ags ,τ ,ValueO ,ValueS

〉

is called the bi-valued kiobt-

frame associated with F iff

• MW ,⊏,Choice, {∼α}α∈Ags, and τ are defined just as in Definition 11 in [3].

• ValueO and ValueS are defined by the following rules: for hv ∈ H , ValueO(hv) = ValueO(v), and

ValueS (hv) = ValueS (v).

Proposition A.5. Let F be a bi-valued Kripke-kios-frame. Then F T is a bi-valued kiobt-frame, indeed.

Proof. Follows from Proposition 2 in [3] and Definition A.4.

Lemma A.6. Let M be a bi-valued Kripke-kios-model, and let M T be its associated bi-valued kiobt-

model. For all α ∈ Ags, w ∈W, and L,N ∈ Choicew
α , the following conditions hold:

(a) L � N iff LT � NT and L ≺ N iff LT ≺ NT .

(b) L �s N iff LT �s NT and L ≺s N iff LT ≺s NT .

(c) L ∈ Optimalw
α iff LT ∈ Optimalwα .

(d) L ∈ S−Optimalw
α iff LT ∈ S−Optimalwα .

Proof. The reader is referred to the proof of Proposition 4 in https://doi.org/10.48550/arXiv.

1903.10577 for a proof.

Proposition A.7 (Truth-preserving correspondence). Let M be a bi-valued Kripke-kios-model, and let

M T be its associated bi-valued kiobt-model. For all φ of LR and w∈W, M ,w |= φ iff M T
,〈w,hw〉 |= φ .

Proof. We proceed by induction on the complexity of φ . For the base case, the cases of Boolean con-

nectives, and the cases of all modal operators except Iα , the proofs are exactly the same as their analogs’

in Proposition 4 in https://doi.org/10.48550/arXiv.1903.10577. For the case of Iα , the proof

is the same as its analog in Proposition 3 in [3].

Thus, completeness with respect to bi-valued kiobt-models is proved with Propositions A.8 and A.9

below.

Proposition A.8 (Completeness w.r.t. bi-valued Kripke-kios-models). The proof system ΛR’ is complete

with respect to the class of bi-valued Kripke-kios-models.

Proof. Completeness with respect to bi-valued Kripke-kios-models is shown

via canonical models. To be precise, one defines a structure M :=
〈

W Λ′
R ,R�,Choice,{≈α}α∈Ags ,

{

RI
α

}

α∈Ags
ValueO ,ValueS ,V

〉

, where W Λ′
R = {w;w is a Λ′

R-MCS},

where R�,Choice,{≈α}α∈Ags,
{

RI
α

}

α∈Ags
, and V are defined just as in Definition 12 in [3], and

https://doi.org/10.48550/arXiv.1903.10577
https://doi.org/10.48550/arXiv.1903.10577
https://doi.org/10.48550/arXiv.1903.10577
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where ValueO and ValueS are defined as follows: for α ∈ Ags and w ∈ W Λ, one first defines

Σw
α := {[α ]φ ;⊙[α ]φ ∈ w} and Γw

α := {Kα φ ;⊙S [α ]φ ∈ w}. Then, taking Σw =
⋃

α∈Ags Σw
α and

Γw =
⋃

α∈Ags, the deontic functions are given by

ValueO(w) =

{

1 iff Σw ⊆ w,

0 otherwise.

ValueS (w) =

{

1 iff Γw ⊆ w,

0 otherwise.

The canonical structure M is shown to be a bi-valued Kripke-kios-model just as in Proposition 4 in

[3]. Then, the so-called truth lemma is shown by merging Lemma 2 in [3] and Lemma 4 in https://

doi.org/10.48550/arXiv.1903.10577. This renders completeness with respect to bi-valued Kripke-

kios-models.

Proposition A.9 (Completeness w.r.t. bi-valued kiobt-models). The proof system ΛR’ is complete with

respect to the class of bi-valued kiobt-models.

Proof. Let φ be a Λ′
R-consistent formula of LR. Proposition A.8 implies that there exists a bi-valued

Kripke-kios-model M and a world w in its domain such that M ,w |= φ . Proposition A.7 then ensures

that the bi-valued kiobt-model M T associated with M is such that M T
,〈w,hw〉 |= φ .

Therefore, Proposition A.1 and Proposition A.9 imply that the following result, appearing in the main

body of the paper, is true:

Theorem 4.4 (Soundness & Completeness of Λ′
R). Let Λ′

R be the proof system obtained from ΛR by

eliminating (ConSO) in Definition 4.1. Then Λ′
R is sound and complete with respect to the class of

bi-valued kiobt-models.

https://doi.org/10.48550/arXiv.1903.10577
https://doi.org/10.48550/arXiv.1903.10577
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Existing protocols for byzantine fault tolerant distributed systems usually rely on the correct agents’
ability to detect faulty agents and/or to detect the occurrence of some event or action on some correct
agent. In this paper, we provide sufficient conditions that allow an agent to infer the appropriate
beliefs from its history, and a procedure that allows these conditions to be checked in finite time. Our
results thus provide essential stepping stones for developing efficient protocols and proving them
correct.

1 Introduction

At least since the ground-breaking work by Halpern and Moses [9], epistemic logic and interpreted runs
and systems [6] are known as powerful tools for analyzing distributed systems. Distributed systems are
multi-agent systems, where a set of n ≥ 2 agents, each executing some protocol, exchange messages
in order to achieve some common goal. In the interpreted runs and systems framework, the set of all
possible runs R (executions) of the agents in a system determines a set of Kripke models, formed by the
evolution of the global state r(t) in all runs r ∈ I over time t ∈N. Epistemic reasoning has been extended
to fault-tolerant distributed systems right from the beginning, albeit restricted to benign faulty agents,
i.e., agents that may only crash and/or drop messages [17, 18, 5, 9].

Actions performed by the agents when executing their protocol take place when they have accumu-
lated specific epistemic knowledge. According to the pivotal Knowledge of Preconditions Principle [15],
it is universally true that if ϕ is a necessary condition for an agent to take a certain action, then i may act
only if Kiϕ is true. For example, in order for agent i to decide on 0 in a binary fault-tolerant consensus
algorithm [13] (where correct agents must reach a common decision value based on local initial values),
it must know that some process has started with initial value 0, i.e., Kiϕ ≡ Ki(∃ j : x j = 0) holds true.
Showing that agents act without having attained Kiϕ for some necessary knowledge ϕ is hence a very
effective way for proving impossibilities. Conversely, optimal distributed algorithms can be provided by
letting agents act as soon as Kiϕ for all the necessary knowledge has been established. One example
are the crash-resilient unbeatable consensus protocols introduced in [2], which are not just worst-case
optimal, but not even strictly dominated w.r.t. termination time by any other protocol in any execution.

Epistemic reasoning has recently been extended to the analysis of byzantine distributed systems
[11, 10, 21, 8] as well, where agents may not just crash or lose messages, but where they may also
misbehave arbitrarily [13]. Solving a distributed computing problem in such systems is much more
difficult, and tighter constraints (e.g. on the maximum number f of faulty agents) are usually needed.
For example, byzantine consensus can only be solved if n≥ 3 f +1 [13], whereas n > f is sufficient for
agents that may crash only [2].

*Supported by Digital Modeling of Asynchronous Integrated Circuits (P32431-N30).
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When inspecting existing byzantine fault-tolerant protocols, one identifies two basic tasks that usu-
ally need to be solved by every correct agent, in some way or other: (1) detecting faulty agents, and
(2) detecting whether some correct agents are/were in a certain state. We mentioned already a “static”
example for (2), namely, finding out whether some correct agent started with initial value 0 in unbeatable
consensus protocols [2], which is also needed in byzantine-resilient protocols like [23]. For a more dy-
namic example, we note that several existing byzantine fault-tolerant protocols employ the fundamental
consistent broadcasting (CB) primitive, introduced in [22]. In particular, CB is used in fault-tolerant
clock synchronization [22, 24, 20], in byzantine synchronous consensus [23, 4], and (in a slightly ex-
tended form) in the simulation of crash-prone protocols in byzantine settings proposed in [14]. A variant
of CB has been studied epistemically in [8], namely, firing rebels with relay (FRR), which is the problem
of letting all correct agents execute an action FIRE in an all-or-nothing fashion when sufficiently many
agents know of an external START event. It was shown that any correct protocol for implementing FRR
(and, hence, CB) requires detecting whether START has occurred on some correct process.

Regarding an example for (1), we point out that it has been shown by Kuznets et. al. in [11] that it
is impossible to reliably detect whether some process is correct in asynchronous byzantine distributed
systems, due to the possibility of a brain-in-a-vat scenario, whereas it is sometimes possible to detect
that an agent is faulty. And indeed, the ability to (sometimes) reliably diagnose an actually byzantine
faulty agent, using approaches like [1], has enabled the design of fault-detection, isolation and recovery
(FDIR) schemes [19] for high-reliability systems.

In this paper, we will provide sufficient conditions that allow a correct agent i to gain belief about
a fact ϕ encoding (1) resp. (2) that is inherently local at some other correct agent j. Using the belief
modality (also known as defeasible knowledge [16]) Biϕ ≡Ki(correcti→ ϕ) that captures what is known
by agent i if it is correct, and the hope modality Hiϕ ≡ correcti → Biϕ introduced in [11], this can
be succinctly condensed into the following question: Under which conditions and by means of which
techniques can BiH jϕ , which is the belief that i obtains by receiving a message from j that claims
(possibly wrongly) that B jϕ holds, be lifted to Biϕ in asynchronous byzantine systems? The crucial
difference is that correct agent i can infer something about ϕ from the latter, but not from the former.
Note that it has been established in [10, Thm. 15] that Biϕ is indeed necessary for agent i to achieve this.
Detailed contributions: For an asynchronous byzantine system with weak communication assumptions,

(1) we provide an algorithm that allows an agent j to compute its belief about the faultiness of the
agents, based on both directly received obviously faulty messages and on appropriate notifications
from sufficiently many other agents recorded in its local history,

(2) we provide a sufficient condition for agent j to infer, also from its local history, the belief that
some event or action has occurred at a correct agent.

Our conditions are sufficient in the sense that if they hold, then the appropriate belief can be obtained.
Hence, the question about whether our conditions are also necessary might pop up. It is important to note,
however, that the possibility of gaining belief depends heavily on the actual properties of the system. For
example, it will turn out that the condition for (2) can be relaxed when a non-empty set of faulty agents
is available, e.g. obtained via (1). The same is true if the actual system satisfies stronger communication
assumptions. Consequently, we just focus on sufficient conditions for communication assumptions met
by all asynchronous byzantine systems we are aware of.

Paper organization: In Section 2, we briefly introduce the cornerstones of the byzantine modeling
framework of [11, 12] needed for proving our results. Section 3 provides our basic communication as-
sumptions. Section 4 and Section 5 contains our results for detecting faulty agents (1) and the occurrence
of events (2), respectively. Some conclusions and directions of future work are provided in Section 6.
Due to lack of space, additional technical details and all the proofs have been relegated to an appendix.
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2 The Basic Model

Since this paper uses the framework of [11], we restate the core terms and aspects needed for our results.
There is a finite set A = {1, . . . ,n} (for n ≥ 2) of agents, who do not have access to a global

clock and execute a possibly non-deterministic joint protocol. In such a protocol, agents can per-
form actions, e.g., send messages µ ∈ Msgs, and witness events, in particular, message deliveries:
the action of sending a copy (numbered k) of a message µ ∈ Msgs to an agent j ∈ A in a proto-
col is denoted by send( j,µk), whereas a receipt of such a message from i ∈ A is recorded locally as
recv(i,µ). The set of all actions (events) available to an agent i ∈ A is denoted by Actionsi (Eventsi),
subsumed as haps Hapsi := ActionsitEventsi, with Actions :=

⋃
i∈A Actionsi, Events :=

⋃
i∈A Eventsi,

and Haps := ActionstEvents.
The other main player in [11] is the environment ε , which takes care of scheduling haps, failing

agents, and resolving non-deterministic choices in the joint protocol. Since the notation above only
describes the local view of agents, there is also a global syntactic representation of each hap, which is
only available to the environment and contains additional information (regarding the time of a hap, a
distinction whether a hap occurred in a correct or byzantine way, etc.). One distinguishes the sets of
global events GEventsi := GEventsitBEventsit SysEventsi of agent i, for a correct agent (signified by
the horizontal bar), a byzantine faulty agent, or a system event as explained below. Regarding global
actions, one distinguishes correct actions GActionsi and faulty actions fake(i,A 7→ A′), where the agent
actually performs A but claims to have performed A′. Finally, GEvents :=

⊔
i∈A GEventsi, GHaps :=

GEvents tGActions. Generally, horizontal bars signify phenomena that are correct, as contrasted by
those that may be correct or byzantine.

The model is based on discrete time, of arbitrarily fine resolution, with time domain t ∈ T := N =
{0,1, . . .}. All haps taking place after a timestamp t ∈T and no later than t+1 are grouped into a round
denoted t½ and treated as happening simultaneously. In order to prevent agents from inferring the global
time by counting rounds, agents are generally unaware of a round, unless they perceive an event or are
prompted to act by the environment. The latter is accomplished by special system events go(i), which are
complemented by two more system events for faulty agents: sleep(i) and hibernate(i) signify a failure
to activate the agent’s protocol and differ in that the latter does not even wake up the agent. None of the
system events SysEventsi := {go(i),sleep(i),hibernate(i)} is directly observable by agents.

Events and actions that can occur in each round, if enabled by go(i), are determined by the protocols
for agents and the environment, with non-deterministic choices resolved by the adversary that is consid-
ered part of the environment. A run r is a function mapping a point in time t to an n+1 tuple, consisting
of the environment’s history and local histories r(t) = (rε(t),r1(t), . . . ,rn(t)) representing the state of the
whole system (global state) at that time t. The set of all global states is denoted by G . The environ-
ment’s history rε(t) ∈Lε is a sequence of all haps that happened, in contrast to the local histories faith-
fully recorded in the global format. Accordingly, rε(t +1) = X ◦ rε(t) for the set X ⊆ GHaps of all haps
from round t½, where ◦ stands for concatenation. Agent i’s local view of the system after round t½, i.e.,
its share of the global state h = r(t) ∈ G , is recorded in i’s local state ri(t +1) ∈Li, also called i’s local
history, sometimes denoted hi. ri(0) ∈Ωi are the initial local states, with G(0) := ∏i∈A Ωi. If a round
contains neither go(i) nor any event to be recorded in i’s local history, then the history ri(t + 1) = ri(t)
remains unchanged, denying the agent knowledge that the round just passed. Otherwise, the agent per-
forms actions from its protocol Pi (ri (t)) ⊆ 2Actionsi and updates its history ri(t + 1) = X ◦ ri(t), for the
set X ⊆Hapsi of all actions and events perceived by i in round t½. The sets β t

εi
(r), β t

i (r) denote the sets
of events and the set of actions respectively happening in round t½ in global format. For some hap o we
write o ∈ ri(t) if there exists a round t ′ ≤ t, where o was appended to i’s local history. Consequently, the
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local history ri(t) = hi = (hi(|hi|),hi(|hi|−1), . . . ,hi(0)) is the sequence of all haps hi(k) perceived by i
in the k-th round it was active in.

The exact updating procedure is the result of a complex state transition consisting of several phases,
described in detail in Appendix A.2, which are grouped into a transition template τ that yields a tran-
sition relation τPε ,P for any joint and environment protocol P and Pε . The set R of all transitional runs
are all runs that can be generated from some set of initial states G(0) via some transition template τ .

Proving the correctness of a protocol for solving a certain distributed computing problem boils down
to studying the set of runs that can be generated. As liveness properties cannot be ensured on a round-
by-round basis, they are enforced by restricting the allowable set of runs via admissibility conditions
Ψ, which are subsets of the set R of all transitional runs. A context γ = (Pε ,G(0),τ,Ψ) consists of an
environment’s protocol Pε , a set of global initial states G(0), a transition template τ , and an admissibility
condition Ψ. For a joint protocol P, we call χ = (γ,P) an agent context. The set of all χ-consistent
runs is denoted by Rχ that is the set of all transitional runs starting with initial states from G(0) and
transitioning via τPε ,P (both from χ). The set of all agent contexts we denote by E , where E B ⊆ E

consists of all byzantine asynchronous agent contexts, with transition template τB
Pε ,P, and E B f ⊆ E B

consists of all byzantine asynchronous agent contexts, where at most f agents can become faulty, with
transition template τ

B f
Pε ,P.

Epistemics. [11] defines interpreted systems in this framework as Kripke models for multi-agent dis-
tributed environments [6]. The states in such a Kripke model are given by global histories r(t ′) ∈ G for
runs r ∈ Rχ given some agent context χ and timestamps t ′ ∈ T. A valuation function π : Prop→ 2G

determines states where an atomic proposition from Prop is true. This determination is arbitrary except
for a small set of designated atomic propositions: For FEventsi := BEventsit{sleep(i),hibernate(i)},
i ∈A , o ∈ Hapsi, and t ∈ T such that t ≤ t ′,

• correct(i,t) is true at r(t ′) iff no faulty event happened to i by timestamp t, i.e., no event from
FEventsi appears in rε(t),

• correcti is true at r(t ′) iff no faulty event happened to i yet, i.e., no event from FEventsi appears in
rε(t ′),

• f aultyi is true iff ¬correcti is and f aulty(i,t) is true iff ¬correct(i,t) is,
• fake(i,t) (o) is true at r(t ′) iff i has a faulty reason to believe that o ∈ Hapsi occurred in round (t−

1)½, i.e., o ∈ ri(t) because (at least in part) of some O ∈ BEventsi∩β t−1
εi

(r) (see Appendix A.2),
• occurred(i,t)(o) is true at r(t ′) iff i has a correct reason to believe o ∈ Hapsi occurred in round
(t− 1)½, i.e., o ∈ ri(t) because (at least in part) of O ∈ (GEventsi∩β t−1

εi
(r))tβ

t−1
i (r) (see Ap-

pendix A.2),
• occurredi(o) is true at r(t ′) iff at least one of occurred(i,m)(o) for 1≤m≤ t ′ is; also occurred(o) :=∨

i∈A occurredi(o),
• occurredi(o) is true at r(t ′) iff either occurredi(o) is or at least one of fake(i,m) (o) for 1 ≤ m ≤ t ′

is,
• happenedi(a) is true at r(t ′) for action a ∈ Actionsi iff there exists a global action A, where a ∈

local(A) s.t. A ∈ rε(t ′−1) or fake(i,A 7→ A′) ∈ rε(t ′−1),
• fhappenedi(a) is true at r(t ′) for action a ∈ Actionsi iff there exists a global action A, where a ∈

local(A) s.t. fake(i,A 7→ A′) ∈ rε(t ′−1),
• initi(λ0) is true at r(t ′) for initial state λ0 ∈ Ωi (see Appendix A.2) iff ri(0) = λ0. Note that all

agents are still correct in any initial state.
The following terms are used to categorize agent faults caused by the environment’s protocol Pε :

agent i ∈ A is fallible if for any X ∈ Pε (t), X ∪ {fail(i)} ∈ Pε (t); correctable if X ∈ Pε (t) implies
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that X \FEventsi ∈ Pε (t); delayable if X ∈ Pε (t) implies X \GEventsi ∈ Pε (t); gullible if X ∈ Pε (t)
implies that, for any Y ⊆ FEventsi, the set Y t (X \GEventsi) ∈ Pε (t) whenever it is t-coherent (consists
of mutually compatible events only, see Definition A.1). Informally, fallible agents can be branded
byzantine at any time; correctable agents can always be made correct for the round by removing all their
byzantine events; delayable agents can always be forced to skip a round completely (which does not
make them faulty); gullible agents can exhibit any faults in place of correct events. Common types of
faults, e.g., crash or omission failures, can be obtained by restricting allowable sets Y in the definition of
gullible agents.

An interpreted system is a pair I = (Rχ ,π). The following BNF defines the epistemic language
Lg considered throughout this paper, for p ∈ Prop and i ∈A : ϕ ::= p | ¬ϕ | (ϕ ∧ϕ) | Kiϕ | �ϕ (other
Boolean connectives are defined as usual). We also use belief Biϕ := Ki(correcti→ ϕ) and hope Hiϕ :=
correcti → Biϕ as introduced in [11] and axiomatized in [7, 3]. The interpreted systems semantics is
defined as usual with global states r(t) and r′(t ′) indistinguishable for i iff ri(t) = r′i(t

′). Semantics for
temporal operator � we define as (I ,r, t) |=�ϕ iff (∀t ′ ≥ t) (I ,r, t ′) |= ϕ .

3 Basics of Fault-Tolerant Communication

In this section, we introduce some basic notation and assumptions needed for fault-tolerant communi-
cation. Throughout this paper, we consider non-excluding agent contexts where all agents are fallible,
gullible, correctable, and delayable [10], which models asynchronous byzantine distributed systems.

Definition 3.1. For the interpreted system I = (Rχ ,π), formula ϕ from Lg, and agents i, j ∈ A , we
define a set of “trustworthy” messages Msgsi→ j

ϕ ⊆Msgs that an agent i sends to j only if i believes ϕ ,
µ ∈Msgsi→ j

ϕ ⇐⇒
(
(∀r ∈ Rχ)(∀t ∈ N)(∀D ∈ Pi(ri(t))) send( j,µ) ∈ D ⇒ (I ,r, t) |= Biϕ

)
. (1)

Definition 3.2. We call a formula ϕ persistent in the interpreted system I = (Rχ ,π) if, once true, ϕ

never becomes false again:
(∀r ∈ Rχ)(∀t ∈ N)(∀t ′ > t) (I ,r, t) |= ϕ ⇒ (I ,r, t ′) |= ϕ. (2)

Persistent formulas have several useful properties, which are easy to prove:1

Lemma 3.3. For any agent context χ ∈ E B, agent i ∈A , natural number k ∈N, action or event o ∈Haps
and λ0 ∈Ωi, the formulas f aultyi, occurredi(o), occurredi(o) and initi(λ0) are persistent.
Lemma 3.4. If, for an agent context χ , formula ϕ is persistent, so is correcti→ ϕ for any agent i ∈A .
Lemma 3.5. If, for an agent context χ , a formula ϕ is persistent, so is Kiϕ , Biϕ , Hiϕ for any agent i∈A .
Lemma 3.6. If, for an agent context χ , formulas ϕ,ψ are persistent, so is ϕ ∧ψ and ϕ ∨ψ .

The following essential lemma states what an agent i can infer epistemically from receiving a trust-
worthy message referring to a persistent formula ϕ from agent j. As explained in [8, Remark 11], in the
case of j being faulty, agent i need not share its reality with agent j. Consequently, agent i cannot infer
Biϕ just from receiving such a message.
Lemma 3.7. For agent context χ ∈E B, interpreted system I =(Rχ ,π), run r∈Rχ , t ∈N, agents i, j∈A ,
persistent formula ϕ , and trustworthy message µ ∈Msgs j→i

ϕ

recv( j,µ) ∈ ri(t) ⇒ (I ,r, t) |= BiH jϕ. (3)
In systems where not all agents can or want to communicate directly with all other agents, messages

need to travel multiple hops before they reach a desired recipient. We therefore need to generalize
Lemma 3.7 accordingly.

1Most of our proofs have been relegated to the appendix.
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Definition 3.8. We define the set of all finite agent sequences (including the empty sequence ε), with
repetitions allowed, as

AgSeq := {(i1, i2, . . . , ik) | i1, i2, . . . , ik ∈A }. (4)

Definition 3.9. For agent sequence σ ∈ AgSeq and formula ϕ , we define the nested hope Hσ ϕ for ϕ as
Hσ ϕ := Hπ1σ Hπ2σ . . .Hπ|σ |σ ϕ, (5)

where πkσ denotes the application of the kth projection function to σ , and Hεϕ = ϕ .

Note that the nested hope caused by σ = (i1, i2, . . . , ik) goes from the origin ik to i1.

Definition 3.10. For a persistent formula ϕ in agent context χ , run r ∈ Rχ , time t ∈ N and agent i ∈A ,
we define the set of agent sequences that lead to nested hope regarding ϕ at agent i as

R̂ecv
i
ϕ(ri(t)) := {σ ∈ AgSeq | µ ∈Msgs j→i

Hσ ϕ
and σ = ( j)◦σ and recv( j,µ) ∈ ri(t)}, (6)

where ◦ denotes sequence concatenation, i.e., ( j)◦ (i1, . . . , ik) = ( j, i1, . . . , ik). The agent sequences σ ∈
R̂ecv

i
ϕ(ri(t)) will be called hope chains.

With these preparations, we can generalize Lemma 3.7 to arbitrary hope chains as follows:
Corollary 3.11. For agent context χ ∈ E B, interpreted system I = (Rχ ,π), run r ∈ Rχ , t ∈ N, agents
i, j ∈A , and persistent formula ϕ ,

(∀σ ∈ R̂ecv
i
ϕ(ri(t))) (I ,r, t) |= BiHσ ϕ. (7)

The following two lemmas show that, for any hope chain in the set R̂ecv
i
ϕ(ri(t)) that contains a loop

starting and ending in some agent j 6= i in the actual communication chain, i.e., the agent sequence, the
corresponding hope chain where the loop is replaced by a single instance of j exists in R̂ecv

i
ϕ(ri(t)).

Lemma 3.12. For persistent ϕ , χ ∈ E B, I = (Rχ ,π), r ∈ Rχ , t ∈ N, σ̂ ∈ R̂ecv
i
ϕ(ri(t)), σ = (i)◦ σ̂ ,

(∀k ∈ [1, |σ |−1]) (I ,r, t) |=
∧

k′∈[1,k]
correctπk′σ ⇒ (I ,r, t) |= Hπk+1σ◦...◦π|σ |σ ϕ (8)

Lemma 3.13. For persistent formula ϕ , χ ∈ E B, r ∈ Rχ , t ∈N, agent sequence σ = σs ◦ (i)◦σp ∈ AgSeq
where σp 6= ε ,(I ,r, t) |=

∧
j∈σs◦(i)

correct j and σ ∈ R̂ecv
i
ϕ(ri(t))

 ⇒ σp ∈ R̂ecv
i
ϕ(ri(t)) (9)

Since by Lemma 3.13 it is sufficient to consider only hope chains where no agent appears twice, we
define the appropriate subset of the one in Definition 3.10.

Definition 3.14.
Recvi

ϕ(ri(t)) := {σ ∈ R̂ecv
i
ϕ(ri(t)) | (∀k,k′ 6= k ∈ [1, |σ |]) πkσ 6= πk′σ} (10)

Since this refined set is a subset from (6), we immediately get the following result.
Corollary 3.15. For χ ∈ E B, I = (Rχ ,π), r ∈ Rχ , t ∈ N, i, j ∈A , and persistent ϕ ,

(∀σ ∈ Recvi
ϕ(ri(t))) (I ,r, t) |= BiHσ ϕ. (11)

Clearly, Recvi
ϕ(ri(t)) can be easily computed by agent i in finite time (as opposed to R̂ecv

i
ϕ(ri(t))),

which may contain an infinite number of hope chains), by checking its local history for the appropriate
message receptions for all agents involved in some hope chain.

Obviously, if just one agent involved in a hope chain is faulty, the receiving agent i cannot infer
anything meaningful from it. In a byzantine asynchronous agent context χ ∈ E B f , where at most f
agents can become faulty, it thus makes sense to use multiple hope chains leading to i for implementing
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fault-tolerant communication. In order to be effective, though, the agents appearing in different hope
chains must be different.

We overload the set difference operator \ for sets of sequences and sets as follows:
Definition 3.16. Given a set of sequences Σ = {σ1, . . . ,σk}, where σ` = (i`1 , . . . , i`k), and set S =
{ j1, . . . , jm}, let

Σ\S := {σ ∈ Σ | (∀i ∈ 2σ) i /∈ S}. (12)
Definition 3.17. Given a set of sequences Σ = {σ1, . . . ,σk}, we define the set of all sets of disjoint
sequences in Σ, which are disjoint in the sense that no sequence contains an element of another sequence
from the same set, as

Dis jSSΣ := {Σ⊆ Σ | (∀σ ′,σ ′′ 6= σ
′ ∈ Σ)(∀k′ ∈ {1, . . . , |σ ′|}) πk′σ

′ 6∈ σ
′′}. (13)

The following Theorem 3.18 shows that fault-tolerant communication via multiple hope chains is
effective for agent i to obtain Biϕ , provided there are sufficiently many disjoint ones:
Theorem 3.18. For agent context χ ∈ E B f , run r ∈ Rχ , timestamp t ∈N, agent i ∈A , persistent formula
ϕ , and a set of agents F ⊆A who i believes to be faulty,

(∃Σ′ ∈ Dis jSSRecvi
ϕ (ri(t))\F) |Σ′| > f −|F | ⇒ (I ,r, t) |= Biϕ. (14)

Apart from being informed about ϕ via fault-tolerant communication, agent i can of course also
obtain the belief3 Biϕ by observing ϕ directly in its local history, i.e., when ϕ is local at i:
Theorem 3.19. For agent context χ ∈ E B, interpreted system I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈N,
agent i ∈A , local state λ0 ∈Ωi, and action or event o ∈ Hapsi,

o ∈ ri(t) ⇒ (I ,r, t) |= Kioccurredi(o)

λ0 = ri(0) ⇒ (I ,r, t) |= Kiiniti(λ0)
(15)

4 Belief Gain About Faultiness

In this section, we will address the question of how agent i can establish belief about some agent j
being faulty. In line with Theorem 3.18 and Theorem 3.19, there are two ways of achieving this: by
direct observation, namely, receiving an obviously faulty message from j, or by receiving trustworthy
notifications about j’s faultiness from sufficiently many other agents. We start with the former case.
Lemma 4.1 (Directly observing others’ faults). For interpreted system I = (Rχ ,π) with agent context
χ = ((Pε ,G(0),τB

Pε ,P,Ψ),P), run r ∈ Rχ , timestamp t ∈ N and agents i, j ∈ A , if (∃µ ∈ Msgs)(∀h j ∈
L j)(∀D ∈ Pj(h j))send(i,µ) /∈ D ∧ recv( j,µ) ∈ ri(t), then (I ,r, t) |= Bi f aulty j.

Note carefully that the messages that allow direct fault detection in Lemma 4.1 must indeed be ob-
viously faulty, in the sense that they must not occur in any correct run. This is the case for messages that
report some local history of the sending agent that is inconsistent with the local history communicated
earlier, which covers the fault detection requirements in [14], for example. However, messages that could
not occur just in the specific run r ∈ Rχ cannot be used for direct fault detection. We capture this by the
following characterization of directly detectable faults:
Definition 4.2. For some agent context χ = ((Pε ,G(0),τB

Pε ,P,Ψ),P) ∈ E B, agent i and local history hi ∈
Li, the set of agents that i beliefs to be faulty, due to having received an obviously faulty message from
them, is defined as

DirObBelFaultyAg(hi, i) := { j ∈A |(∃µ ∈Msgs)(∀h j ∈L j)(∀D ∈ Pj(h j))

send(i,µ) /∈ D∧ recv( j,µ) ∈ hi}.
(16)

2By slight abuse of notation we write i ∈ σ iff i appears somewhere in the sequence σ .
3Be aware of the following validities: Kiϕ ⇒ Biϕ and Kioccurredi(o) ⇒ Bioccurredi(o) (following directly from the

definition of the belief modality).



494 A Sufficient Condition for Gaining Belief in Byzantine Fault-Tolerant Distributed Systems

Corollary 4.3. For some χ = ((Pε ,G(0),τB
Pε ,P,Ψ),P) ∈ E B, I = (Rχ ,π), r ∈ Rχ , t ∈ N, i ∈A , if

j ∈ DirObBelFaultyAg(ri(t), i) ⇒ (I ,r, t) |= Bi f aulty j. (17)
Turning our attention to the case corresponding to Theorem 3.18, namely, detecting faultiness of

an agent by receiving sufficiently many trustworthy notifications from other agents in an agent context
χ ∈ E B f , it seems obvious to use the following characterization:

B(hi, i) := {` ∈A | (∃Σ ∈ Dis jSSRecvi
f aulty`

(hi)\B(hi,i)) |Σ| > f −|B(hi, i)|}. (18)
Indeed, if there are more than f minus the currently believed faulty agents disjoint hope chains for
f aulty` leading to agent i, it can safely add agent ` to its set of currently believed faulty agents. Unfor-
tunately, however, this definition is cyclic, as B(hi, i) appears in its own definition (with the exact same
parameters): Who an agent believes to be faulty depends on who an agent already believes to be faulty.
We will get rid of this problem by a fixpoint formulation, which can be solved algorithmically.

We start out from direct notifications by a faulty agent, i.e., when an agent j that has somehow
detected its own faultiness (see below) informs agent i about this fact. Note that this is different from
Corollary 4.3, where agent i directly observes j’s misbehavior (i received an obviously faulty message).

We capture this by the following characterization of directly notified faults:

Definition 4.4. For some agent context χ ∈ E B f , agent i ∈A and local state hi ∈Li, we define the set
of agents, who agent i believes to be faulty due having received a direct notification from exactly those
agents, as

DirNotifBelFaultyAg(hi, i) := { j ∈A | ( j) ∈ Recvi
f aulty j

(hi)}. (19)

Lemma 4.5. For some agent context χ = ((Pε ,G(0),τB
Pε ,P,Ψ),P) ∈ E B, I = (Rχ ,π), run r ∈ Rχ , t ∈ N

and agent i ∈A , if
j ∈ DirNotifBelFaultyAg(ri(t), i) ⇒ (I ,r, t) |= Bi f aulty j. (20)

As it is possible for an agent i in an agent context χ ∈ E B f to sometimes also detect its own faultiness
[11], we need to consider this as well. The following function returns true if the agent i observes some
erroneous behavior in its own history hi = (hi(|hi|),hi(|hi|− 1), . . . ,hi(0)) (recall that hi(k) is the set of
all haps agent i perceived in the k-th round it was active in), which implies that i itself is faulty:

Definition 4.6. For any χ ∈ E , agent i ∈A , timestamp t ∈ N, and local history hi = ri(t), let

DirObMeKnowFaulty(ri(t), i) :=


true if (∃a ∈ Actionsi)(∃m ∈ [1, |hi|−1])

(∀D ∈ Pi(πmhi,πm+1hi, . . . ,π|hi|hi)

a /∈ D ∧ a ∈ πm+1hi

false otherwise.

(21)

Corollary 4.7 (Observing one’s own faulty history). For an agent context χ ∈ E B, interpreted system
I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈ N, and agent i ∈A , if

DirObMeKnowFaulty(ri(t), i) = true ⇒ (I ,r, t) |= Ki f aultyi (22)
With these preparations, we are now ready to present a procedure, given in in Algorithm 1, by which

any agent i can compute its belief regarding the faultiness of agents (including itself). Rather than
explicitly constructing the underlying Kripke model, it exploits the a priori knowledge of the sets resp.
the function in Definition 3.1, 4.2, 4.4 resp. 4.6. Note carefully that they can indeed be pre-computed
“offline’ and supplied to the algorithm via the resulting look-up tables. In sharp contrast to constructing
the Kripke model, our procedure is guaranteed to terminate in a bounded number of steps.

We start our correctness proof of Algorithm 1 by showing the following invariant of the set F :
Lemma 4.8. For Algorithm 1 called with parameters (χ,hi, i, f ), where χ ∈ E B f , interpreted system
I = (Rχ ,π), r ∈ Rχ , t ∈N, i ∈A , and hi = ri(t), the following invariant holds for the variable F during
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Algorithm 1 Gain-belief algorithm for faulty agents in agent context χ ∈ E B f for agent i with history hi

1: function BELIEFWHOISFAULTYALGORITHM(χ,hi, i, f )
2: F := DirObBelFaultyAg(hi, i)∪DirNotifBelFaultyAg(hi, i)
3: if DirObMeKnowFaulty(hi, i) = true then
4: F := F ∪{i}
5: repeat
6: FOld := F
7: for all ` ∈A \F do
8: for all Σ ∈ Dis jSSRecvi

f aulty`
(hi)\F do

9: if |Σ|> f −|F | then
10: F := F ∪{`}
11: continue next iteration at line 7
12: until F = FOld
13: return F

its iterations:
(∀r ∈ Rχ)(∀t ∈ N)(∀` ∈ F) (ri(t) = hi) ⇒ (I ,r, t) |= Bi f aulty`. (23)

Corollary 4.9. For agent context χ ∈ E B f , interpreted system I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈N,
and agent i ∈A ,

` ∈ BeliefWhoIsFaultyAlgorithm(χ,ri(t), i, f ) ⇒ (I ,r, t) |= Bi f aulty`. (24)
Since it follows immediately from the definition of E B f that the number of faulty agents in any run

r ∈ Rχ ∈ E B f is at most f , the result of Algorithm 1 respects f as well:
Lemma 4.10. For χ ∈ E B f , r ∈ Rχ , t ∈ N, correct agent i ∈A , and the set F returned by Algorithm 1
BeliefWhoIsFaultyAlgorithm(χ,hi, i, f ), it holds that |F | ≤ f .

The following theorem finally proves that Algorithm 1 terminates after a bounded number of steps,
provided the agent context χ ∈ E B f ensures that agent i’s history is finite at every point in time, meaning
(∀t ∈ N)(∃b ∈ N)(∀t ′ : 0 < t ′ ≤ t) |ri(t ′)|< b.
Theorem 4.11. For agent context χ ∈ E B f , I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈N, and agent i∈A , if
A is finite and i’s history is finite at every point in time, then the call BeliefWhoIsFaultyAlgorithm
(χ,ri(t), i, f ) invoking Algorithm 1 terminates after a bounded number of steps.

5 Belief Gain about Occurrences of Haps

In this section, we turn our attention to a sufficient condition for an agent to establish belief that a
group of reliable agents (a reliable agent will stay forever correct) has obtained belief about the correct
occurrence of some event or action. It follows already from Theorem 3.18 that sufficiently many disjoint
hope chains for ϕ =

∨
G⊆A ,
|G|= k

∧
j∈G

B j�correct j∧ occurred(o), with k+ f ≤ n, are enough for establishing

Biϕ . Theorem 5.1 adds another condition, namely, that among the disjoint hope chains for formula
occurred(o), at least k are non faulty and hence truthfully deliver the information that some correct agent
believes in occurred(o). Note that the two conditions are related but, in general, not identical.
Theorem 5.1. For agent context χ ∈ E B f , interpreted system I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈ N,
action or event o ∈ Haps, agent i ∈A , natural number k ∈ N\{0} s.t. k+ f ≤ n, and set F ⊆A , which
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i believes to be faulty, if
(∃Σ′ ∈ Dis jSSRecvi

occurred(o)
(ri(t))\F) |Σ′| ≥ k+ f −|F | or(

∃Σ′′ ∈ Dis jSS

Recvi ∨
G⊆A ,
|G|= k

∧
j∈G

�correct j∧B joccurred(o)
(ri(t))\F)

|Σ′′| > f −|F |

 (25)

⇒ (I ,r, t) |= Bi
∨

G′ ⊆A ,
|G′|= k

∧
j∈G′

�correct j ∧B joccurred(o). (26)

We conclude this section by noting that the first condition in Theorem 5.1 could be strengthened by
agent i also considering a possible occurrence of occurred(o) in its own history, see Theorem 3.19, in
which case k can be reduced by 1 if none of the hope chains in Σ′ contains i.

6 Conclusions

We provided sufficient conditions for an agent to obtain belief of (1) the faultiness of (other) agents
and (2) of the occurrence of an event or action happening at some correct agent(s). Our conditions
work for any agent context where at most f agents may be byzantine. They do not require the agent to
compute the underlying Kripke model, but can rather be checked locally by the agent in bounded time
just based on its current history. Since protocols for byzantine fault-tolerant distributed systems typically
require an agent to detect (1) and/or (2), our results are important stepping stones for the development of
communication-efficient protocols and for proving them correct.

Acknowledgments. We are grateful to Giorgio Cignarale, Hans van Ditmarsch, Stephan Felber,
Krisztina Fruzsa, Roman Kuznets, Rojo Randrianomentsoa and Hugo Rincon Galeana for many fruitful
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A Additional details for Section 2 (The Basic Model)

A.1 Global haps and faults.

As already mentioned, there is a global version of every Haps that provides additional information that
is only accessible to the environment. Among it is the timestamp t For correct action a ∈ Actionsi,
as initiated by agent i in the local format, the one-to-one function global(i, t,a) gives the global ver-
sion. Timestamps are especially crucial for proper message processing with global(i, t,send( j,µk)) :=
gsend(i, j,µ, id(i, j,µ,k, t)) for some one-to-one function id : A ×A ×Msgs×N×T→N that assigns
each sent message a unique global message identifier (GMI). These GMIs enable the direct linking
of send actions to their corresponding delivery events, most importantly used to ensure that only sent
messages can be delivered (causality).

Unlike correct actions, correct events witnessed by agent i are generated by the environment ε , hence
are already produced in the global format GEventsi. For each correct event E ∈GEventsi, we use a faulty
counterpart fake(i,E) and will make sure that agent i cannot distinguish between the two. An important
type of correct global events is delivery grecv( j, i,µ, id) ∈GEventsi of message µ with GMI id ∈N sent
from agent i to agent j. The GMI must be a part of the global format (especially for ensuring causality)
but cannot be part of the local format because it contains information about the time of sending, which
should not be accessible to agents. The stripping of this information before updating local histories is
achieved by the function local : GHaps −→ Haps converting correct haps from the global into the local
formats for the respective agents in such a way that local reverses global, i.e., local

(
global(i, t,a)

)
:= a,

in particular, local
(
grecv(i, j,µ, id)

)
:= recv( j,µ).

Faulty actions are modeled as byzantine events of the form fake(i,A 7→ A′) where A,A′ ∈GActionsit
{noop} for a special non-action noop in global format. These byzantine events are controlled by the
environment and correspond to an agent violating its protocol by performing the action A, while recording
in its local history that it either performs a′ = local(A′) ∈ Actionsi if A′ ∈ GActionsi or does nothing if
A′ = noop.

A.2 Protocols, state transitions and runs.

The events and actions that occur in each round are determined by protocols (for agents and the envi-
ronment) and non-determinism (adversary). Agent i’s protocol Pi : Li→ 22Actionsi \{∅} provides a range
Pi (ri(t)) of sets of actions based on i’s current local state ri(t) ∈Li at time t in run r, from which the ad-
versary non-deterministically picks one. Similarly the environment provides a range of (correct, byzan-
tine, and system) events via its protocol Pε : T→ 22GEvents \{∅}, which depends on a timestamp t ∈ T but
not on the current state, in order to maintain its impartiality. It is required that all events of round t½ be
mutually compatible at time t, called t-coherent according to Definition A.1. The set of all global states
is denoted by G .

Definition A.1 (Coherent events). Let t ∈ N be a timestamp. A set S ⊂ GEvents of events is called
t-coherent if it satisfies the following conditions:

1. for any fake(i,gsend(i, j,µ, id) 7→ A) ∈ S, the GMI id = id(i, j,µ,k, t) for some k ∈ N;
2. for any i ∈A at most one of go(i), sleep(i), and hibernate(i) is present in S;
3. for any i ∈A and any e ∈ Exti at most one of ext (i,e) and fake(i,ext (i,e)) is present in S;
4. for any grecv(i, j,µ, id1) ∈ S, no event of the form fake(i,grecv(i, j,µ, id2)) belongs to S for any

id2 ∈ N;
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Figure 1: The evolution of states in round t.5 (from timestamp t ∈ N to t +1) inside a run r constructed
according to the transition function τPε ,P. Different communication models require changes to the filter-
ing functions f ilterε and f ilteri.

5. for any fake(i,grecv(i, j,µ, id1)) ∈ S, no event of the form grecv(i, j,µ, id2) belongs to S for any
id2 ∈ N.

Given the joint protocol P := (P1, . . . ,Pn) and the environment’s protocol Pε , we focus on τPε ,P-
transitional runs r that result from following these protocols and are built according to a transition
relation τPε ,P ⊆ G ×G . Each such transitional run begins in some initial global state r(0) ∈ G(0) and
progresses, satisfying (r (t) ,r (t +1)) ∈ τPε ,P for each timestamp t ∈ T.

The transition relation τPε ,P consisting of five consecutive phases is illustrated in Fig. 1 and works as
follows:

In the protocol phase, a range Pε (t) ⊂ 2GEvents of t-coherent sets of events is determined by the
environment’s protocol Pε . Similarly for each i ∈A , a range Pi (ri (t))⊆ 2Actionsi of sets of i’s actions is
determined by the joint protocol P.

In the adversary phase, the adversary non-deterministically chooses a set Xε ∈ Pε (t) and one set
Xi ∈ Pi (ri (t)) for each i ∈A .

In the labeling phase, actions in the sets Xi are translated into the global format: α t
i (r) :=

{global(i, t,a) | a ∈ Xi} ⊆ GActionsi.
In the filtering phase, filter functions remove all unwanted or impossible attempted events from

α t
ε (r) := Xε and actions from α t

i (r). This is done in two stages:
First, f ilterε filters out “illegal” events. This filter will vary depending on the concrete system assump-
tions (in the byzantine asynchronous case, “illegal” constitutes receive events that violate causality). The
resulting set of events to actually occur in round t½ is β t

ε (r) := f ilterε

(
r (t) ,α t

ε (r),α
t
1 (r), . . . ,α

t
n (r)

)
.

The byzantine asynchronous filter (ensuring causality) is denoted by f ilterB
ε (h,Xε ,X1, . . . ,Xn) and the

byzantine asynchronous at-most-f-faulty-agents filter, which both ensures causality and removes all
byzantine events if as a result the total number of faulty agents were to exceed f is denoted by
f ilterB f

ε (h, Xε , X1, . . . , Xn).
Definition A.2. The standard action filter f ilterB

i (X1, . . . ,Xn,Xε) for i ∈A either removes all actions
from Xi when go(i) /∈ Xε or else leaves Xi unchanged.
Second, f ilterB

i for each i returns the sets of actions to be actually performed by agents in round t½, i.e.,
β t

i (r) := f ilterB
i
(
α t

1 (r), . . . ,α
t
n (r),β

t
ε (r)

)
. Note that β t

i (r) ⊆ α t
i (r) ⊆ GActionsi and β t

ε (r) ⊆ α t
ε (r) ⊂

GEvents.
In the updating phase, the events β t

ε (r) and actions β t
i (r) are appended to the global history r(t).

For each i∈A , all non-system events from β t
εi
(r) := β t

ε (r)∩GEventsi and all actions β t
i (r) as perceived
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by the agent are appended in the local form to the local history ri(t). Note the local history may remain
unchanged if no events trigger an update.

Definition A.3 (State update functions). Given a global history h = (hε ,h1, . . . ,hn) ∈ G , a tuple of per-
formed actions/events X = (Xε ,X1, . . . ,Xn) ∈ 2GEvents ×2GActions1 × . . .×2GActionsn , we use the following
abbreviation Xεi = Xε ∩GEventsi for each i ∈A . Agents i’s update function updatei : Li×2GActionsi ×
2GEvents →Li outputs a new local history from Li based on i’s actions Xi and events Xε as follows:

updatei (hi,Xi,Xε) :=

{
hi if σ(Xεi) =∅ and go(i) 6∈ Xε[
σ
(
Xεi tXi

)]
◦hi otherwise

(27)

where σ(X) removes all system events SysEvents from X and afterwards invokes local on the resulting
set. Similarly, the environment’s state update function updateε : Lε ×

(
2GEvents×2GActions1× . . .

×2GActionsn

)
→Lε outputs a new state of the environment based on Xε :

updateε (hε ,X) := (Xε tX1t . . .tXn) : hε (28)
Thus, the global state is modified as follows:

update(h,X) :=
(

updateε (hε ,X) ,update1 (h1,X1,Xε) , . . . ,updaten (hn,Xn,Xε)
)

and (29)

rε (t +1) := updateε

(
rε (t) , β

t
ε (r), β

t
1 (r), . . . , β

t
n (r)

)
(30)

ri (t +1) := updatei
(
ri (t) , β

t
i (r), β

t
ε (r)

)
. (31)

The operations in the phases 2–5 (adversary, labeling, filtering and updating phase) are grouped into
a transition template τ that yields a transition relation τPε ,P for any joint and environment protocol P
and Pε . Particularly, we denote as τB the transition template utilizing f ilterB

ε and f ilterB
i (for all i ∈A ).

B Additional details for Section 3 (Basics of Fault-Tolerant Communica-
tion)

Lemma 3.7. For agent context χ ∈E B, interpreted system I =(Rχ ,π), run r∈Rχ , t ∈N, agents i, j∈A ,
persistent formula ϕ , and trustworthy message µ ∈Msgs j→i

ϕ

recv( j,µ) ∈ ri(t) ⇒ (I ,r, t) |= BiH jϕ. (3)

Proof. 1. µ ∈Msgs j→i
ϕ (by assumption)

2. recv( j,µ) ∈ ri(t) (by assumption)

3. (I ,r, t) 6|= BiH jϕ (by assumption)

4. r̂ ∈ Rχ and t̂ ∈N and r(t)∼i r̂(̂t) and (I , r̂, t̂) |= correcti ∧ ¬H jϕ (from line (3), by sem. of Bi, exist. inst.)

5. (I , r̂, t̂) |= occurredi(recv( j,µ)) (from lines (2), (4), by def. of ∼i, sem. of occurred(), “and”)

6. (a) (I , r̂, t̂) |= fakei (recv( j,µ)) (from line (5), by sem. of occurredi(), fakei ())

(b) (I , r̂, t̂) |= f aultyi (from line (6a), by sem. of fakei ())

(c) contradiction! (from lines (4), (6b), by sem. of “and”)

7. (a) (I , r̂, t̂) |= occurredi(recv( j,µ)) (from line (5), by sem. of occurredi(), occurredi())

(b) (I , r̂, t̂) |= happened j(send(i,µ)) (from line (7a), by def. of f ilterB
ε )

(c) (I , r̂, t̂) |= correcti∧ correct j ∧¬B jϕ (from line (4), by sem. of ¬H j)

(d) i. (I , r̂, t̂) |= fhappened j(send(i,µ)) (from line (7b), by sem. of happenedi(), fhappenedi())

ii. (I , r̂, t̂) |= f aulty j (from line (7(d)i), by sem. of fhappened j())

iii. contradiction! (from lines (7c), (7(d)ii), by sem. of ∧)

(e) i. (I , r̂, t̂) |= occurred j(send(i,µ)) (from line (7b), by sem. of happened j())
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ii. (∀r ∈ Rχ)(∀t ∈ N)(∀D ∈ Pj(r j(t))) send(i,µ) ∈ D⇒ (I ,r, t) |= B jϕ (from line (1), by Defi-

nition 3.1)

iii. (I , r̂, t̂) |= B jϕ (from lines (7(e)i), (7(e)ii), by univ. inst. sem. of occurred j(),⇒, persistence of ϕ and Lemma

3.5)

iv. contradiction! (from lines (7c), (7(e)iii), by sem. of ∧)

Lemma 3.12. For persistent ϕ , χ ∈ E B, I = (Rχ ,π), r ∈ Rχ , t ∈ N, σ̂ ∈ R̂ecv
i
ϕ(ri(t)), σ = (i)◦ σ̂ ,

(∀k ∈ [1, |σ |−1]) (I ,r, t) |=
∧

k′∈[1,k]
correctπk′σ ⇒ (I ,r, t) |= Hπk+1σ◦...◦π|σ |σ ϕ (8)

Proof. by induction over k ∈ [1, |σ |−1].
Ind. hyp: (∀k ∈ [1, |σ |−1]) (I ,r, t) |=

∧
k′∈[1,k]

correctπk′σ ⇒ (I ,r, t) |= Hπk+1σ◦...◦π|σ |σ ϕ

Base case for k = 1: by contradiction.

1. (I ,r, t) 6|= Hπ2σ◦...◦π|σ |σ ϕ (by contr. assumption)

2. (I ,r, t) |= occurredi(recv(π1σ ,µ)) and µ ∈Msgsπ2σ→i
Hπ3σ◦...◦π|σ |σ ϕ

(since σ̂ ∈ R̂ecv
i
ϕ (r(t)), (I ,r, t) |= correcti, by

Definition 3.10)

3. (I ,r, t) |= BiHπ2σ◦...◦π|σ |σ ϕ (from line (2), by Corollary 3.11)

4. (I ,r, t) |= Hπ2σ◦...◦π|σ |σ ϕ (from line (3), since (I ,r, t) |= correcti)

5. contradiction! (from lines (1), (4))

Ind. step k−1→ k (for k ∈ [2, |σ |−1]): by contradiction.

1. σ̂ ∈ R̂ecv
i
ϕ(r(t)) and σ = (i)◦ σ̂ (by contr. assumption)

2. (I ,r, t) |=
∧

k′∈[1,k]
correctπk′σ (by contr. assumption, sem. of⇒)

3. (I ,r, t) 6|= Hπk+1σ◦...◦π|σ |σ ϕ (by contr. assumption)

4. (I ,r, t) |= Hπkσ◦...◦π|σ |σ ϕ (by assumption of the ind. hyp. for k−1)

5. (I ,r, t) |= Bπkσ Hπk+1σ◦...◦π|σ |σ ϕ (from lines (2), (4), by sem. of
∧

, Bπkσ )

6. (I ,r, t) |= Hπk+1σ◦...◦π|σ |σ ϕ (from lines (2), (5), by sem. of Bπkσ ,
∧

, reflexivity of ∼πkσ )

7. contradiction! (from lines (3), (6))

Lemma 3.13. For persistent formula ϕ , χ ∈ E B, r ∈ Rχ , t ∈N, agent sequence σ = σs ◦ (i)◦σp ∈ AgSeq
where σp 6= ε ,(I ,r, t) |=

∧
j∈σs◦(i)

correct j and σ ∈ R̂ecv
i
ϕ(ri(t))

 ⇒ σp ∈ R̂ecv
i
ϕ(ri(t)) (9)

Proof. by contradiction.
1. σp 6= ε (contr. assumption)

2. σs ◦ (i)◦σp ∈ R̂ecv
i
ϕ(ri(t)) (by contr. assumption)

3. (∀ j ∈ σs ◦ (i)) (I ,r, t) |= correct j (by contr. assumption)

4. σp 6∈ R̂ecv
i
ϕ(ri(t)) (by contr. assumption)
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5. (I ,r, t) |= H(i)◦σpϕ (from lines (2), (3), by Lemma 3.12 for k = |σs|+1, since in Lemma 3.12 the hope chain is extended by

singleton sequence (i))

6. (I ,r, t) |= occurredi(o) and
(
(I ,r, t) |= occurredi(o)⇒ H(i)◦σpϕ

)
(from line (5), by [10, Theorem 13], by

exist. inst. for o)

7. o = recv(π1σp,µ) and µ ∈Msgsπ1σp→i
Hπ2σp◦...◦π|σp |σp ϕ

(from lines (1), (6)4, by Definition 3.1, by Definition 3.1, sem. of H,

B)

8. recv(π1σp,µ) ∈ ri(t) (from lines (6), (7), by sem. of occurredi(o))

9. σp ∈ R̂ecv
i
ϕ(ri(t)) (from lines (7), (8), by Definition 3.10)

10. contradiction! (from lines (4), (9))

Theorem 3.18. For agent context χ ∈ E B f , run r ∈ Rχ , timestamp t ∈N, agent i ∈A , persistent formula
ϕ , and a set of agents F ⊆A who i believes to be faulty,

(∃Σ′ ∈ Dis jSSRecvi
ϕ (ri(t))\F) |Σ′| > f −|F | ⇒ (I ,r, t) |= Biϕ. (14)

Proof. 1. (∀k ∈ F) (I ,r, t) |= Bi f aultyk (by assumption)

2. (∃Σ′ ∈ Dis jSSRecvi
ϕ (ri(t))\F) |Σ′| > f −|F | (by assumption)

3. (I ,r, t) 6|= Biϕ (by assumption)

4. Σ ∈ Dis jSSRecvi
ϕ (ri(t))\F (simultaneous with line (5), from line (2) , by exist. inst.)

5. |Σ| > f −|F | (simultaneous with line (4), from line (2), by exist. inst.)

6. (∀σ ′ ∈ Σ) (I ,r, t) |= BiHσ ′ϕ (from line (4), by Corollary 3.15 and Definition 3.17)

7. r̃ ∈ Rχ and t̃ ∈ N and r(t)∼i r̃(̃t) and (I , r̃, t̃) |= correcti∧¬ϕ (from line (3), by sem. of Bi, 6|=, exist. inst.)

8. (∀k ∈ F) (I , r̃, t̃) |= correcti→ f aultyk (from lines (1), (7), by sem. of Bi,⇒, ∧, ∼i, univ. inst.)

9. (∀σ ′ ∈ Σ) (I , r̃, t̃) |= correcti→ Hσ ′ϕ (from lines (6), (7), by definition of ∼i, sem. of Bi,⇒, ∧, univ. inst.)

10. (∀k ∈ F) (I , r̃, t̃) |= f aultyk (from lines (7), (8), by sem. of→, “and”, ∧)

11. (∀σ ′ ∈ Σ) (I , r̃, t̃) |= Hσ ′ϕ (from lines (7), (9), by sem. of→, “and”, ∧)

12. σ ∈ Σ and (∀l ∈ {1, . . . , |σ |}) (I , r̃, t̃) |= correctπlσ ((4), (5), (7), (10), by def. of correctk , f aultyk , f ilter
B f
ε , ∀,

∼i, exist. inst., via pigeonhole argument)

13. (I , r̃, t̃) |= ϕ (from lines (11), (12), by sem. of “and”, ∀,→, H, Definition 3.9, univ. inst. and reflexivity of ∼
j̃
)

14. contradiction! (from lines (7), (13), by sem. of “and”, ∧)

Theorem 3.19. For agent context χ ∈ E B, interpreted system I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈N,
agent i ∈A , local state λ0 ∈Ωi, and action or event o ∈ Hapsi,

o ∈ ri(t) ⇒ (I ,r, t) |= Kioccurredi(o)

λ0 = ri(0) ⇒ (I ,r, t) |= Kiiniti(λ0)
(15)

Proof. Regarding the first line:
1. o ∈ ri(t) (by contr. assumption)

2. (I ,r, t) 6|= Kioccurredi(o) (by contr. assumption)

3. r̃ ∈ Rχ and t̃ ∈ N and r(t)∼i r̃(̃t) and (I , r̃, t̃) 6|= occurredi(o) (from line (2), by sem. of 6|=, Ki, exist. inst.)

4. ri(t) = r̃i(̃t) (from line (3), by sem. of ∼i)

5. o ∈ r̃(̃t) (from lines (1), (4), by sem. of =)

6. (I , r̃, t̃) |= occurredi(o) (from line (5), by sem. of occurredi(o))

4Note that even if the information about H(i)◦σp
ϕ propagated to i via a local edge in the reliable causal cone [10] in σ , this

information must have reached agent i initially via some message if σp 6= ε .
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7. contradiction! (from lines (3), (6))

Regarding the second line:
1. λ0 = ri(0) (by contr. assumption)

2. (I ,r, t) 6|= Kiiniti(λ0) (by contr. assumption)

3. r̃ ∈ Rχ and t̃ ∈ N and r(t)∼i r̃(̃t) and (I , r̃, t̃) 6|= initi(λ0) (from line (2), by sem. of 6|=, Ki, exist. inst.)

4. ri(t) = r̃i(̃t) (from line (3), by sem. of ∼i)

5. λ0 = r̃(0̃) (from lines (1), (4), by sem. of =)

6. (I , r̃, t̃) |= initi(λ0) (from line (5), by sem. of initi(λ0))

7. contradiction! (from lines (3), (6))

C Additional details for Section 4 (Belief Gain About Faultiness)

Lemma 4.1 (Directly observing others’ faults). For interpreted system I = (Rχ ,π) with agent context
χ = ((Pε ,G(0),τB

Pε ,P,Ψ),P), run r ∈ Rχ , timestamp t ∈ N and agents i, j ∈ A , if (∃µ ∈ Msgs)(∀h j ∈
L j)(∀D ∈ Pj(h j))send(i,µ) /∈ D ∧ recv( j,µ) ∈ ri(t), then (I ,r, t) |= Bi f aulty j.

Proof. 1. (∃µ ∈Msgs)(∀h j ∈L j)(∀D ∈ Pj(h j)) send(i,µ) /∈ D (by contr. assumption)

2. recv( j,µ) ∈ ri(t) (by contr. assumption)

3. (I ,r, t) 6|= Bi f aulty j (by contr. assumption)

4. (∀r̃ ∈ Rχ)(∀t̃ ∈ N) (I , r̃, t̃) 6|= occurred j(send(i,µ)) (from line (1), by def. of occurred( j))

5. r̂ ∈ Rχ and t̂ ∈ N and r(t)∼i r̂(̂t) and
(I , r̂, t̂) |= correcti ∧ correct j (from line (3), by sem. of Bi, 6|= and exist. inst.)

6. ri(t) = r̂i(̂t) (from line (5), by def. of ∼i)

7. (I , r̂, t̂) |= correcti (from line (5), by sem. of ∧)

8. (I , r̂, t̂) |= correct j (from line (5), by sem. of ∧)

9. (I ,r, t) |= occurredi(recv( j,µ)) (from line (2), by def. of occurredi())

10. (I , r̂, t̂) |= occurredi(recv( j,µ)) (from line (6), (9), by sem. of =, occurredi())

11. (I , r̂, t̂) |= occurredi(recv( j,µ)) ∨ fakei (recv( j,µ)) (from line (10), by def. of occurredi())

12. (a) (I , r̂, t̂) |= occurredi(recv( j,µ)) (from line (11), by sem. of ∨)

(b) (I , r̂, t̂) |= fhappened j(send(i,µ)) (from lines (4), (12a) by def. of f ilterB
ε )

(c) (I , r̂, t̂) |= f aulty j (from line (12b), by def. of fhappened j())

(d) contradiction! (from lines (8), (12c))

13. (a) (I , r̂, t̂) |= fakei (recv( j,µ)) (from line (11), by sem. of ∨)

(b) (I , r̂, t̂) |= f aultyi (from line (13a), by def. of fakei ())

(c) contradiction! (from lines (7), (13b))

Lemma 4.5. For some agent context χ = ((Pε ,G(0),τB
Pε ,P,Ψ),P) ∈ E B, I = (Rχ ,π), run r ∈ Rχ , t ∈ N

and agent i ∈A , if
j ∈ DirNotifBelFaultyAg(ri(t), i) ⇒ (I ,r, t) |= Bi f aulty j. (20)

Proof. 1. ( j) ∈ Recvi
f aulty j

(ri(t)) (by contr. assumption, Definition 4.4)

2. (I ,r, t) 6|= Bi f aulty j (by contr. assumption, Definition 4.4)

3. r̃ ∈ Rχ and t̃ ∈ N and r(t)∼i r̃(̃t) (from line (2), by sem. of Bi and exist. inst.)

4. (I , r̃, t̃) |= correcti∧ correct j (from line (2), by sem. of Bi and exist. inst.)
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5. µ ∈Msgs j→i
f aulty j

(from line (1), by Definition 3.14 and exist. inst. for µ)

6. recv( j,µ) ∈ ri(t) (from line (1), by Definition 3.14 and exist. inst. for µ)

7. recv( j,µ) ∈ r̃i(̃t) (from lines (3), (6), by def. of ∼i)

8. (I , r̃, t̃) |= occurredi(recv( j,µ)) (from lines (4), (7), by sem. of correcti, ∧)

9. (I , r̃, t̃) |= occurred j(send(i,µ)) (from lines (4), (8), by def. of f ilterB
ε , sem. of correct j and ∧)

10. (I , r̃, t̃) |= B j f aulty j (from lines (5), (9), by Definition 3.1)

11. (I , r̃, t̃) |= f aulty j (from lines (4), (10), by sem. of B j , ∧,→, reflexivity of ∼ j)

12. contradiction! (from lines (4), (11), sem. of ∧)

Lemma 4.8. For Algorithm 1 called with parameters (χ,hi, i, f ), where χ ∈ E B f , interpreted system
I = (Rχ ,π), r ∈ Rχ , t ∈N, i ∈A , and hi = ri(t), the following invariant holds for the variable F during
its iterations:

(∀r ∈ Rχ)(∀t ∈ N)(∀` ∈ F) (ri(t) = hi) ⇒ (I ,r, t) |= Bi f aulty`. (23)

Proof. By induction over the size of set F , l = |F |.
Ind. Hyp.: (∀r ∈ Rχ)(∀t ∈ N)(∀` ∈ F) (ri(t) = hi) ⇒ ((Rχ ,π),r, t) |= Bi f aulty`
Base case for l = |DirObBelFaultyAg(hi, i)∪DirNotifBelFaultyAg(hi, i)|: (by code line 2)

The induction hypothesis follows from Corollary 4.3 and 4.5. If the condition on code line 3 is true, then
the statement additionally follows from Corollary 4.7.
Ind. Step: Suppose the induction hypothesis holds for l = |F |. The only line at which F is modified
in the main loop (starting at line 5) is line 10. From line 8 and 9 in the code we get that there exists a
Σ∈Dis jSSRecvi

f aulty`
(hi)\F s.t. |Σ|> f −|F | before the execution of line 10. Hence the induction hypothesis

still remains satisfied by Theorem 3.18 after line 10 has been executed.

Lemma 4.10. For χ ∈ E B f , r ∈ Rχ , t ∈ N, correct agent i ∈A , and the set F returned by Algorithm 1
BeliefWhoIsFaultyAlgorithm(χ,hi, i, f ), it holds that |F | ≤ f .

Proof. 1. |F |> f (by contr. assumption)

2. F = BeliefWhoIsFaultyAlgorithm(χ,hi, i, f ) (by contr. assumption)

3. χ ∈ E B f and r ∈ Rχ and t ∈ N (by contr. assumption)

4. (I ,r, t) |= correcti (by contr. assumption)

5. (∀` ∈ F) (I ,r, t) |= Bi f aulty` (from lines (2), (3), by Theorem 4.9)

6. #faulty agents in r is at most f (from line (3), by definition of E B f )

7. j ∈ F and (I ,r, t) 6|= f aulty j (from lines (1), (6), by sem. of |...|, >, exist. inst.)

8. (I ,r, t) |= Bi f aulty j (from lines (5), (7), by univ. inst.)

9. (∀r′ ∈ Rχ)(∀t ′ ∈ N) r(t)∼i r′(t ′) ⇒ (I ,r′, t ′) |= correcti→ f aulty j (from line (8), by sem. of Bi)

10. r(t)∼i r(t) (from line (3), by reflexivity of ∼i)

11. (I ,r, t) |= f aulty j (from lines (4), (9), (10), by sem. of⇒,→ univ. inst.)

12. contradiction! (from lines (7), (11))

Theorem 4.11. For agent context χ ∈ E B f , I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈N, and agent i∈A , if
A is finite and i’s history is finite at every point in time, then the call BeliefWhoIsFaultyAlgorithm
(χ,ri(t), i, f ) invoking Algorithm 1 terminates after a bounded number of steps.
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Proof. The fact that variable F in Algorithm 1 is monotonically increasing follows from the code lines
2, 4 and 10 as these are the only lines that modify F . Hence since the set of agents is finite, the outer
loop spanning across lines 5. - 12. cannot run forever, as it is bounded by |A |, since we only add agents
from the set A \F and in the worst case only one new agent is added per iteration. Thus at the latest the
loop must terminate, when finally F =A . If during some iteration F doesn’t change, the loop terminates
early.

The same argument goes for the loop spanning across lines 7. - 11.
Regarding the loop spanning lines 8. - 11., since we assumed that agent i’s local history is bounded

for every local timestamp by some b ∈ N, agent i could at the most have received messages about b
different agent sequences (message chains). Since, by Definition 3.17, Dis jSSRecvi

f aulty`
(hi)\F is a subset

of the power set of Recvi
f aulty`(hi)\F this loop is thus bounded by 2b.

This covers all the loops in the algorithm. Since all of them are bounded, so is the algorithm as a
whole, as it contains no blocking statements.

D Additional details for Section 5 (Belief Gain about Occurrences of Haps)

Theorem 5.1. For agent context χ ∈ E B f , interpreted system I = (Rχ ,π), run r ∈ Rχ , timestamp t ∈ N,
action or event o ∈ Haps, agent i ∈A , natural number k ∈ N\{0} s.t. k+ f ≤ n, and set F ⊆A , which
i believes to be faulty, if

(∃Σ′ ∈ Dis jSSRecvi
occurred(o)

(ri(t))\F) |Σ′| ≥ k+ f −|F | or(
∃Σ′′ ∈ Dis jSS

Recvi ∨
G⊆A ,
|G|= k

∧
j∈G

�correct j∧B joccurred(o)
(ri(t))\F)

|Σ′′| > f −|F |

 (25)

⇒ (I ,r, t) |= Bi
∨

G′ ⊆A ,
|G′|= k

∧
j∈G′

�correct j ∧B joccurred(o). (26)

Proof. The second line of the disjunction follows immediately from Theorem 3.18.
We prove the first line by contradiction.

1. (∃Σ′ ∈ Dis jSSRecvi
occurred(o)

(ri(t))\F) |Σ′| ≥ k+ f −|F | (by contr. assumption)

2. (I ,r, t) 6|= Bi
∨

G′ ⊆A ,
|G′|= k

∧
j∈G′

�correct j ∧B joccurred(o) (by contr. assumption)

3. r̃ ∈ Rχ and t̃ ∈ N and r(t)∼i r̃(̃t) and (I , r̃, t̃) |= correcti ∧
∧

G′ ⊆A ,
|G′|= k

¬
∧

j∈G′
�correct j ∧

B joccurred(o) (from line (2), by sem. of 6|=,
∨

,
∧

, ¬, ¬Bi, exist. inst.)

4. |F | ≤ f (from line (3), by Lemma 4.10)

5. (∀m ∈ F) (I ,r, t) |= Bi f aultym (by assumption)

6. (∀m ∈ F) (I , r̃, t̃) |= f aultym (from lines (3), (5), by sem. of Bi and univ. inst.)

7. Σ ∈ Dis jSSRecvi
occurred(o)

(r̃i (̃t))\F and |Σ| ≥ k+ f −|F | (from lines (1), (3), by sem. of ∼i and exist. inst.)

8. f + k ≤ n (by assumption)

9. (I , r̃, t̃) |=
∨

G′ ⊆A ,
|G′|= k

∧
j∈G′

�correct j (from line (8), by at most f faulty agents in runs of E B f )
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10. Σ\F = Σ and Σ⊆ Σ and |Σ| ≥ k and (∀σ ∈ Σ)(∀ j ∈ {1, . . . , |σ |}) (I , r̃, t̃) |=�correctπ jσ (from lines

(3), (4), (6), (7), (9), by at most f faulty agents in runs of E B f , sem. of ≤, ≥,
∨

,
∧

, exist. inst., using a pigeonhole argument)

11. (∀σ ∈ Σ)(∃µ ∈Msgsπ1σ→i
Hσ occurred(o)

) (I , r̃, t̃) |= occurredi(recv(π1σ ,µ)) (from lines (7), (10), by sem. of ∧,

correcti, occurredi(recv(π1σ ,µ)) and Definition 3.14 and 3.16)

12. (∀σ ∈ Σ)(∃µ ∈ Msgsπ1σ→i
Hσ occurred(o)

) (I , r̃, t̃) |= occurredπ1σ (send(i,µ)) (from lines (10), (11), by sem. of

occurredπ1σ (send(i,µ)), Definition of f ilter
B f
ε )

13. (∀σ ∈ Σ) (I , r̃, t̃) |= Bπ1σ Hπ2σ◦...◦π|σ |σ occurred(o) (from line (12), by Definition 3.1, Lemma 3.3, Corollary 3.15,

sem. of occurred j(send(i,µ)))

14. let G̃ := { j ∈A | σ ∈ Σ and j = π|σ |σ} (exist. inst.)

15. |G̃| ≥ k (from lines (7), (10), by sem. of ⊆, Definition 3.17)

16. let G̃′ ⊆ G̃ and |G̃′|= k (from line (15), by sem. of ⊆, exist. inst.)

17. (∀ j ∈ G̃′) (I , r̃, t̃) |=�correct j (from lines (10), (14), (16))

18. (∀ j ∈ G̃′) (I , r̃, t̃) |= B joccurred(o) (by lines (13), (17), by sem. of H, �, correct j ,→, reflexivity of ∼ j)

19. (I , r̃, t̃) |=
∧

j∈G̃′
�correct j ∧B joccurred(o) (from line (13), by sem. of ∀)

20. contradiction! (from lines (3), (16), by sem. of ∧)
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Unknown unknowns are future relevant contingencies that lack an ex ante description. While there
are numerous retrospective accounts showing that significant gains or losses might have been achieved
or avoided had such contingencies been previously uncovered, getting hold of unknown unknowns
still remains elusive, both in practice and conceptually. Using Formal Concept Analysis (FCA) - a
subfield of lattice theory which is increasingly applied for mining and organizing data - this paper in-
troduces a simple framework to systematically think out of the box and direct the search for unknown
unknowns.

There are only two kinds of campaign plans, good ones and bad ones.

The good ones almost always fail through unforeseen circumstances

that often make the bad ones succeed.

- Napoleon Bonaparte -

1 Introduction

As the recent Covid-19 pandemic reminded us, life is filled with unknown unknowns – i.e. contingencies
one cannot be aware of ex ante, much less fit into standard risk analysis. In addition to a wealth of
examples coming from history and politics, unknown unknowns are now well-documented, and their
importance is acknowledged, in many areas of economics and management such as public policy [23],
business strategy [5, 11], entrepreneurship [12], contracts and the theory of the firm [40], and security
[32].

To be sure, getting hold of such contingencies might allow to achieve significant payoffs or avoid
major losses. Substantial research efforts have thus been expended, and notable advances been made,
in this direction. To get a rigorous conceptual grasp at the notion of unknown unknowns, one may
now draw, notably, from the literatures on Knightian uncertainty (e.g., [4]), undescribable events (e.g.,
[24]), unforeseen contingencies (e.g., [7, 20]), unawareness (e.g., [35, 34]), and surprises [39, 26]. Yet,
for someone who would primarily want to uncover ahead of time the concrete unknown unknowns she
might be facing, the task would remain elusive.

This paper will now seek to meet this demand. Similar endeavors have already been tried, and results
obtained, in areas where unknown unknowns occur frequently: like C-K Theory [17], TRIZ [19], and

*I am grateful to the participants at several seminars for constructive questions and remarks. I also owe special thanks to
Thierry Bréchet, Thierry Burger-Helchem, Michel Desmarais, Soumittra Dutta, Ludovic Dibiaggio, Armand Hatchuel, Emile
Grenier-Robillard, Henry Tulkens, and Benoit Weil for their encouragements, comments or suggestions. Three diligent and
competent reviewers contributed to substantially clarify and improve the initial draft of this paper.
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https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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creativity support systems [13, 44] in innovation management; knowledge spaces [10] in learning; and
elicitation methods [21, 31, 38] in engineering. As it turns out, Formal Concept Analysis (FCA), which
I will be using here, provides an appropriate language, and especially structure, to build a framework
which is both rigorous (it is grounded in lattice theory) and operational (its implementation requires only
spreadsheets).

The suggested scheme is sketched in the following Section 2. It is next developed rigorously and
with more generality in Section 3. A fourth section contains concluding remarks.

2 An informal account

Consider a 3x3 matrix with horizontal coordinates A, B, C, and vertical coordinates α β , γ . For con-
creteness, the former might refer to different objects, items or events and the latter to various attributes,
characteristics, properties or features. Table 1 shows the features respectively held by each specific item:
object A, for instance, possesses attributes α , β .

Objects
Attributes

α β γ

A × ×
B ×
C × ×

Table 1: The existing context

In Formal Concept Analysis (FCA), such a matrix showing relationships between ‘objects’ (items,
events, etc.) and ‘attributes’ (properties, features, etc.) is called a context.

In practice, FCA users would of course face much more complicated types of contexts, with tables
comprising dozens of rows and columns, mitigated relationships between objects and attributes, and
(what is crucial for decision-making) value-weighted properties. But this simple example will suffice to
convey our main points.

The upshot of a discovery, experiment or invention would be the expanded matrix displayed in Table
2. Two new items – D and E – and an extra characteristic δ were found. The initial objects A and B now
bear attributes δ and α respectively, while D possesses properties α and δ , E exhibits features β and γ .
This matrix forms a context as well.

Objects
Attributes

α β γ δ

A × × ×
B × ×
C × ×
D × ×
E × ×

Table 2: The new context
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Back in time, the incremental component of Table 2 – i.e. the rows D, E, column δ and the small x’s
– might have been impossible to describe, much less to anticipate even as random outcomes. They were,
so to speak, unknown unknowns. Altogether, they make the context displayed in Table 3.

Objects
Attributes

α β γ δ

A ×
B ×
C
D × ×
E × ×

Table 3: The discovery context

Let us now see how someone could have a grasp at Table 3 using known knowns only, these known
knowns being the data available from Table 1.

In FCA, the primary mode of organizing the data of a context is through the use of ‘concepts’. A
concept is defined as a list of objects and attributes such that the mentioned objects are precisely the ones
that share the listed attributes, and the mentioned attributes are precisely the ones shared by all the listed
objects. Examples of concepts in Table 3 are the objects B, D with their common attribute α , event E
with features β , γ , items A, D with the shared property δ , and object D with attributes α , δ .

FCA calls an incompletely specified concept, i.e. a list that misses some object and attributes, a
preconcept. The list (B;α) is a preconcept of the concept (B,D;α), for instance. Since its object B
and attribute α could already be seen in the existing context of Table 1, I shall refer to such specific
preconcept as a seed.

Now, the relationship between B and α is captured in Table 4, which is actually the negative picture
of Table 1. This table constitutes a context as well, and it is made only of data from Table 1. Its concepts
– which might be called ‘anti-concepts’, since they are the counterpart of the existing initial concepts –
include (B,C;α), (A;γ) and (B;α ,β ).

Objects
Attributes

α β γ

A Z
B Z Z
C Z

Table 4: The negative existing context

This paper’s main result is that a seed - like (B;α) - will always be the pre-concept of some anti-
concept – namely, here, (B,C;α) or (B;α ,β ). This fact has at least three ramifications.

First, although one cannot say anything about which objects or which attributes will be discovered,
the structure of the existing context bears some implications for the structure among discovered objects
and attributes.1 This opens the door for establishing a systematic procedure to get some grasp at, and
eventually uncover, unknown unknowns:

1I am grateful to an anonymous referee for this observation.
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(i) Build the negative picture of the existing context;
(ii) Examine the preconcepts of each anticoncept;
(iii) If a seed is found, dig into it to uncover some concepts in the unknown unknown.

Second, the latter procedure might be seen as an instance of abduction, a mode of reasoning asso-
ciated with creativity and the generation of ideas [22, 41]. Unlike deduction, which draws the logical
ramifications of previously given assertions, or induction, which infers general laws from the observa-
tion of recurrent facts, abduction looks for the best justification (which is here a concept of the discovery
context) after hitting a singular event (a seed).

Third, as the upcoming section will show, it allows for the deployment of a potentially powerful tool
for data exploration and exploitation - namely, Galois connections.

3 Formal Developments

Let’s now present the mathematics which underlie the scheme outlined above. Subsection 3.1 revisits
the basics of Formal Concept Analysis (FCA). Subsection 3.2 next introduces the notion of ‘revelation
mappings’. Subsection 3.3, finally, develops the systematic procedure for thinking out of the box. The
treatment is meant to be self-contained. Only set-theoretic arguments are used throughout.

3.1 Basic FCA notions

A formal context is referred to as a triplet K = (G,M;R), where G is a set of objects, M a set of attributes
these objects may have, and R is a relation between G and M, i.e. a subset of the Cartesian product
G×M with the interpretation that (g,m) ∈ R, or gRm, if object g has attribute m.

Denote ℘(G) and ℘(M) the respective power sets (or sets of all subsets) of G and M. Set inclusion
⊆ provides a partial order on the elements of these sets.2 The following set-to-set functions IR and ER

defined as

for S ⊆ G, IR(S) = {m ∈M : gRm for all g ∈ S}
for T ⊆ M, ER(T ) = {g ∈ G : gRm for all m ∈ T}

are called the Birkhoff Operators for G and M respectively. For a set of objects S, IR(S) - the intent of S -
gives all the attributes in T which these objects have in common. For a given set of attributes T , ER(T ) -
the extent of T - gives all the objects in S that share these attributes. In the context displayed in Table 1,
IR(A,C) = {β} and ER(α,β ) = {A}.

A well-known property of the Birkhoff Operators is that of duality: knowing IR(·) completely deter-
mines ER(·), and vice-versa, specifying ER(·) also defines IR(·).

A formal concept in the context K = (G,M;R) is now a pair of sets (Q;V ), with Q⊆ G and V ⊆M,
such that IR(Q) =V and ER(V ) = Q. The extent of a concept (Q;V ) is thus Q, while its intent is V .3

2A set Q is a partially ordered set (or poset) if there is a relation ≤ on Q (called a partial order) such that: (i) for q ∈ Q,
q≤ q (reflexivity property); (ii) for q1, q2 ∈Q, q1 ≤ q2 and q2 ≤ q1 implies q1 = q2 (antisymmetry); for q1, q2, q3 ∈Q, q1 ≤ q2
and q2 ≤ q3 implies q1 ≤ q3 (transitivity).

3The way FCA defines a formal concept agrees with the International Standard Organization’s ISO 704 definition: “In a
concept, one distinguishes its ‘intension’ and ‘extension’. The intension of a concept comprises all attributes thought with it,
the extension comprises all objects for which the concept can be predicated. In general, the richer the intension of a concept is,
the lesser is its extension, and vice versa.”



B. Sinclair-Desgagné 511

A preconcept in K, finally, is a pair (P;U), with P⊆ G and U ⊆M, such that P⊆ ER(U) or, equiv-
alently, U ⊆ IR(P). Preconcepts can be ordered as follows [8]: (P;U)v (P′;U ′), meaning that (P;U) is
less extensive than (P′;U ′), if P⊆ P′ and U ⊆U ′.

3.2 Revelation mappings

From now on, K = (G,M;R) will denote the existing context and K+ = (G+,M+;R+) the new context
after the previous unknown unknowns have been revealed.4

Let’s then call revelation mappings the functions Φ :℘(G+)→℘(M+), Ψ :℘(M+)→℘(G+) such
that5

for S+ ⊆ G+, Φ(S+) = IR+(S+) \ ∪
g∈S+

IR(g)

for T+ ⊆ M+, Ψ(T+) = ER+(T+) \ ∪
m∈T+

ER(m)

If one takes a set S ⊆ G of objects from the existing context K, Φ(S) delivers the set of attributes (old
or new) in M+ which are newly associated with these objects. In Table 2, for instance, Φ(B,E) =∅ and
Φ(A) = {δ}. Similarly, for a subset of initial attributes T ⊆M, Ψ(T ) gives all (and only) the initial or
new objects that now possess these attributes. For example, Ψ(γ,δ ) =∅ but Ψ(β ,γ) = {E}.

As for the Birkhoff operators, there is a duality property between Φ(·) and Ψ(·): each one uniquely
characterizes the other. These mappings also hold additional features which are spelled out in the up-
coming propositions.

First, say that a function π : X → Y between two sets X and Y , partially ordered by ≤ and � re-
spectively, is antitone (or order-reversing) if, for p1, p2 ∈ X , p1 ≤ p2 implies π(p2) � π(p1). A first
statement is now at hand.

PROPOSITION 1: The revelation mappings Φ and Ψ are antitone.

PROOF:
First, consider Φ. Take two sets S+1 , S+2 ∈℘(G+) such that S+1 ⊆ S+2 ; we must show that Φ(S+2 ) ⊆

Φ(S+1 ). If m ∈Φ(S+2 ), then m ∈ IR+(S+2 ) so gR+m for all g ∈ S+2 . Since S+1 ⊆ S+2 , we have that gR+m for
all g ∈ S+1 , hence m ∈ IR+(S+1 ). Now, if m /∈M, m /∈ IR(g) for any g ∈ S+1 ; it follows that m ∈ IR+(S+1 )
\ ∪

g∈S+1
IR(g) = Φ(S+1 ). Suppose, alternatively, that m ∈ M. Since m ∈ Φ(S+2 ), it must be the case that

not(gRm) for all g ∈ S+2 , hence not(gRm) as well for all g ∈ S+1 since S+1 ⊆ S+2 ; it follows again that
m ∈ Φ(S+1 ). This shows that Φ(S+2 ) ⊆ Φ(S+1 ). The same line of reasoning works for Ψ (as can be
expected from duality). �

This property of revelation mappings means that, the more objects or attributes one starts with, the
more demanding it is to find new relationships that fit them all. This intuitive result is also instrumental
in deriving other important characteristics of revelation mappings.

A key notion to introduce at this point is that of a Galois connection.6 Let X and Y be two sets

4Power sets, Birkhoff Operators, formal concepts, and preconcepts are similarly defined on their context of reference, be it
K, K+, or any other context.

5Let’s agree that IR(g) =∅ when g /∈ G, and ER(m) =∅ when m /∈M.
6Since at least Ore (1944)’s seminal article [25], Galois connections have been increasingly employed throughout mathe-

matics and computer science. To go beyond the very short primer offered in this paper, the reader may look at [6, 10, 15], and
some of their common references.
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partially ordered by ≤ and � respectively. A (antitone) Galois connection (π,θ) on X and Y is a pair of
functions π : X → Y and θ : Y → X such that the following equivalent properties are satisfied.
(i) For each p ∈ X , p≤ θπ(p) and for each q ∈ Y , q� πθ(q).
(ii) For p ∈ X and q ∈ Y , p≤ θ(q) if and only if q� π(p).

It is well-known that the Birkhoff operators (IR,ER), (IR+ ,ER+) are antitone Galois connections on,
respectively, the power sets ℘(G), ℘(M) and ℘(G+), ℘(M+) ordered by set inclusion (see, e.g., [15],
p. 13-14). In this case, property (i) means that the attributes common to a given set of objects might be
shared by more objects, while the objects that share a given set of attributes might have more attributes
in common. Property (ii), on the other hand, says that some objects are among those sharing a given set
of attributes if and only if these attributes are among those common to these objects.

As it turns out, the pair of revelation mappings (Φ,Ψ) forms a Galois connection.

PROPOSITION 2: The pair of revelation mappings (Φ,Ψ) is a Galois connection on the power sets
℘(G+) and ℘(M+) partially ordered by inclusion.

PROOF:
To see this, take two sets S+ ∈℘(G+) and T+ ∈℘(M+), and notice that

S+ ⊆ Ψ(T+)

if and only if ∀g ∈ S+, ∀m ∈ T+: gR+m and not(gRm)

if and only if ∀m ∈ T+, ∀g ∈ S+: gR+m and not(gRm)

if and only if T+ ⊆ Φ(S+)

�

Proposition 2 underlies a central result. Like any Galois connection ([15], p. 14), (Φ,Ψ) establishes a
relation, noted R+

(Φ,Ψ), between the set of objects G+ and the set of attributes M+. This relation is defined
as

R+
(Φ,Ψ) =

{
(g,m) ∈ G+×M+ | g ∈Ψ(m)

}
=

{
(g,m) ∈ G+×M+ | m ∈Φ(g)

}
We can show that R+

(Φ,Ψ) coincides with R+ \R, the set of all new relationships.

PROPOSITION 3: R+
(Φ,Ψ) = R+ \R .

PROOF: Observe that (g,m)∈ R+
(Φ,Ψ) if and only if gR+m and not(gRm) , if and only if (g,m)∈ R+ \R.

�

3.3 Thinking out of the box

From now on, let R+
(Φ,Ψ) = R+ \R be referred to as R∗. The latter relation defines another formal context,

the discovery context noted K∗ = (G+,M+;R∗), which is the context of the unknown unknowns. Can K∗

be inferred from K, at least partly? We will now see that the answer actually errs on the yes side.
The ordered pair (X ;Y ) with X 6= ∅, Y 6= ∅ is called a seed in K for K∗ if it is a preconcept in K∗

while X ⊆ G and Y ⊆M. As the next statement confirms, the existence of a seed is guaranteed when the
existing context harbors at least one new relationship between the original objects and attributes.
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PROPOSITION 4: If R∗∩ (G×M) 6=∅, then there is at least one seed in K for K∗.

PROOF:
The assumption implies that there is at least one concept (Q;V ) in K∗ such that Q∩G 6= ∅ and

V ∩M 6= ∅. Since Q∩G ⊆ Q = IR∗(V ) ⊆ IR∗(V ∩M) and V ∩M ⊆ V = ER∗(Q) ⊆ ER∗(Q∩G), the pair
(Q∩G;V ∩M) is a preconcept in K∗. �

As suggested in Section 2, looking for seeds might be a reasonable first step to uncover unknown
unknowns. The major reason is that, as we will now demonstrate, it is possible to characterize the
location of seeds.

First, according to the following proposition, a seed must combine objects and attributes which are a
priori unrelated.

PROPOSITION 5: No preconcept (a fortiori concept) in the existing context K can be a seed for the
discovery context K∗.

PROOF:
Let (P;U) be a preconcept in K. By definition, Φ(P) = IR+(P) \ ∪

g∈P
IR(g). But U ⊆ IR(P) =

∩
g∈P

IR(g)⊆ ∪
g∈P

IR(g). It follows that U *Φ(P), hence (P;U) is not a preconcept in K∗. �

This result tells us something about how not to look for novelties. A corollary is that a seed in K for
K∗ must be a pair (P;U), with P⊆G and U ⊆M, such that P∩( ∪

m∈U
ER(m)) =∅ and U∩( ∪

g∈P
IR(g)) =∅.

This suggests working with the negative of the existing context K, noted K = (G,M;R), where the
relation R = G×M \R refers to the reverse relation gRm which holds when object g does not have
attribute m. The next (key, and somewhat surprising) proposition shows that K - which can be obtained
using only the initial data - is the appropriate ‘outbox’ in which mining for unknown unknowns might
begin.

PROPOSITION 6: A seed is a preconcept of the negative existing context K.

PROOF:
Let (P;U) be a seed for K∗. Then U ⊆Φ(P)∩M = M∩ IR+(P)\ ∪

g∈P
IR(g)⊆M \ ∪

g∈P
IR(g)

= ∩
g∈P

(IR(g))c = IR(P). �

Seeds for the discovery context K∗ - which comprises a priori unknown relationships between objects
in G and attributes in M - thus happen to point, not only at concepts in K∗, but also at the concepts of the
negative existing context K. This suggests the procedure already outlined in Section 2:
• Take the negative context K of K;
• Consider a concept in K (i.e. an anti-concept);
• Examine the latter’s preconcepts;
• If one of these preconcepts brings out a new relationship between its objects and attributes, then

a seed has been found which anticipates some concepts in the discovery context K∗.

Whether this scheme can be fruitful in practice remains to be seen. One hurdle could be computa-
tional complexity (see the concluding remarks).
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Interestingly, however, Propositions 5 and 6 suggest that concepts in the negative existing context K
can be constructed using the mappings Φ̃ :℘(G)→℘(M) and Ψ̃ :℘(M)→℘(G) defined as

for S ⊆ G, Φ̃(S) = M \ ∪
g∈S

IR(g)

for T ⊆ M, Ψ̃(T ) = G \ ∪
m∈T

ER(m)

respectively. Comparing the latter expressions with the ones corresponding to the above revelation map-
pings, the functions Φ̃ and Ψ̃ can be seen as approximations for Φ and Ψ. Whether closer approximations
(in a sense to be made precise) can be found, which would then provide a better grasp at unknown un-
knowns, would be a valuable research topic.

4 Concluding remarks

This paper submitted a new framework and approach to handle unknown unknowns. The scheme has
rigorous foundations in lattice theory. It looks widely applicable, furthermore, since it can incorporate
various kinds of data – quantitative and qualitative, objective and subjective, financial and non-financial.
And it seems to be user-friendly, boiling down to using only spreadsheets.

At this stage, in addition to the extensions suggested at the end of the previous section, other ones
could be the following:

First, on a technical note, listing all the concepts of a formal context is generally burdensome.7 Yet,
the search for seeds requires this exercise. Research and development on how to identify concepts in a
given context is very much ongoing. Several algorithms and softwares already exist: many (mentioned
in [37], for instance) are subject to a patent but others – GALICIA and JALABA, for example – can be
freely downloaded. Two promising trends are to take full advantage of negative information (i.e. the
information contained in the negative existing context K), as in [33] or [27], and to assign weights to
attributes, as in [3].

Second, the above derivation made minimal assumptions about the use of a priori knowledge, ignor-
ing issues of landscape and timing, and forbidding the use of probabilities. In practice, however, one
might be able to tap on probabilistic beliefs based on science, predictive models or sound experience,
in order to figure out the plausibility of new relationships between objects and attributes. This endeavor
will enhance the search for seeds, hence the prospecting for unknown-unknowns.
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Binarizing belief aggregation addresses how to rationally aggregate individual probabilistic beliefs

into collective binary beliefs. Similar to the development of judgment aggregation theory, formu-

lating axiomatic requirements, proving impossibility theorems, and identifying exact agenda condi-

tions of impossibility theorems are natural and important research topics in binarizing belief aggre-

gation. Building on our previous research on impossibility theorems, we use an agenda-theoretic

approach to generalize the results and to determine the necessary and sufficient level of logical inter-

connection between the issues in an agenda for the impossibility theorems to arise. We demonstrate

that (1) path-connectedness and even-negatability constitute the exact agenda condition for the oli-

garchy result stating that binarizing belief aggregation satisfying proposition-wise independence and

deductive closure of collective beliefs yields the oligarchies under minor conditions; (2) negation-

connectedness is the condition for the triviality result obtained by adding anonymity to the oligarchy

result; and (3) blockedness is the condition for the impossibility result, which follows by adding

completeness and consistency of collective beliefs. Moreover, we compare these novel findings with

existing agenda-theoretic characterization theorems in judgment aggregation and belief binarization.

1 Introduction

The question of how to rationally aggregate individual beliefs into collective beliefs is important and

ubiquitous in our society. In this regard, there has been abundant literature on collective decision theory,

judgment aggregation, and probabilistic opinion pooling studies. One of the essential features of belief

is that there are different types of beliefs. For example, some beliefs may be represented by traditional

”logical” languages—she believes that it is raining outside—while other types of beliefs might be mod-

eled by ”probability functions”—she believes with 90 percent certainty that it is raining outside. Logical

languages are similar to our natural languages and are therefore efficient for communicating with human

agents, despite the fact that they sometimes suffer from significant information reduction, as in the case

of the Lottery paradox. In contrast, probabilistic beliefs hold a fair amount of information to deal with

uncertain environments, although people usually do not reach that level of precision. Considering these

pros and cons of different types of beliefs, it is not surprising that different types of beliefs may be re-

quired at different stages of belief aggregation procedures depending on situations. If objective chances

of issues in question can be given, it is epistemically preferable to report individual opinions in terms of

degrees of belief. If the conclusion of an epistemic collective decision guides action (e.g., a jury verdict),

it is practically better to report the collective opinion by means of plain logic. Therefore, rational belief
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aggregation should be able to deal with different types of beliefs. One important topic in aggregating

one type of belief into a different type of belief is aggregating probabilistic beliefs into collective binary

beliefs (e.g., [11] [16]). We call this subject matter ”binarizing belief aggregation” [16]. We can ob-

serve these belief aggregation problems in expert panels, the scientific community, and political parties,

whenever individuals’ opinions can be encoded probabilistically, and the group’s beliefs should be more

decisive.

Similar to the development of judgment aggregation theory (e.g., [6] [15]), formulating axiomatic

requirements, proving impossibility theorems, and identifying exact agenda conditions of impossibility

theorems are natural and important research topics in binarizing belief aggregation. Building on our

previous research on impossibility theorems, this paper uses an agenda-theoretic approach to determine

which level of logical interconnection between the issues in an agenda is necessary and sufficient for the

impossibility theorems to arise. Indeed, our previous paper assumed the agenda to be an algebra, which

is the most typical when dealing with probabilistic beliefs. However, in practice, the agenda being an

algebra might be quite demanding because we might not be interested in, for example, the conjunction

of two propositions when making a collective decision on the two propositions. Besides the literature on

judgment aggregation, agenda-theoretic approaches can be found in other fields as well. In probabilistic

opinion pooling, general agendas were investigated to characterize linear pooling (e.g., [2] [3]). In the

belief binarization problem, general agendas were studied to characterize impossibility theorems (e.g.,

[4] [5]).

In this study, we demonstrate that (1) path-connectedness and even-negatability constitute the ex-

act agenda condition for the oligarchy result, which states that binarizing belief aggregation satisfying

proposition-wise independence and deductive closure of collective beliefs yields the oligarchies under

certain conditions; (2) negation-connectedness is the condition for the triviality result obtained by adding

anonymity to the oligarchy result; and (3) blockedness is the condition for the impossibility result, which

follows by adding completeness and consistency of collective beliefs. Moreover, we compare these novel

findings with existing agenda-theoretic characterization theorems in judgment aggregation and belief bi-

narization. All proofs of lemmas and theorems are provided in the full paper.

2 Binarizing Belief Aggregation and the impossibility results

We begin by introducing notations and definitions we will use throughout this paper. Let W be a finite

non-empty set of possible worlds. An agenda A is a non-empty set of subsets of W that is closed

under complement. Let N := {1, ...,n}(n ≥ 2) be the set of individuals. For each i ∈ N, an individual

i’s probabilistic belief Pi is a function extendable to a probability function on the smallest algebra that

includes A . We denote by ~P := (P1, ...,Pn) = (Pi)i∈N a profile of n individuals’ probabilistic beliefs.

Binarizing belief aggregation deals with individuals’ probabilistic beliefs and the group’s binary beliefs.

Binary beliefs are represented by a function Bel : A → {0,1}. Sometimes, we abuse the notation and

denote by Bel the belief set {A ∈ A | Bel(A) = 1}, and BelA is a shorthand for A ∈ Bel or Bel(A) = 1.

A binarizing aggregator (BA) F is a function that takes a profile ~P of n probabilistic beliefs in a given

domain and returns a binary belief F(~P).

Now, let us define the axiomatic requirements on BA that are needed to formulate our impossibility

results. First, we need the following rationality requirements on the domain and codomain of a BA.

• Universal Domain (UD): the domain of F is the set of all profiles ~P of n probabilistic beliefs

• Collective Deductive Closure (CDC)/Consistency (CCS)/Completeness (CCP): for all ~P in the

domain, the resulting collective beliefs F(~P) is deductively closed/consistent/complete, respectively
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Note that a binary belief Bel is deductively closed iff it holds that, if Bel � A(i.e.,
⋂

Bel ⊆ A), then

BelA for all A ∈ A . Moreover, Bel is consistent if Bel 2 /0, and Bel is complete if BelA or BelA for all

A ∈ A where A is the complement of A. Second, we enlist different rationality requirements on BAs

themselves.

• Certainty Preservation (CP)/Zero Preservation (ZP): for all A∈A , if ~P(A)(:=(P1(A), · · · ,Pn(A)))=
(1, ...,1)/~P(A) = (0, ...,0), then F(~P)(A) = 1/F(~P)(A) = 0, respectively, for all ~P in the domain of F .

• Anonymity (AN): F((P
π(i))i∈N) = F((Pi)i∈N) for all ~P in the domain of F and all permutation π

on N.

• Independence (IND): for all A ∈ A , there exists a function GA such that F(~P)(A) = GA(~P(A)) for

all ~P in the domain of F .

• Systematicity (SYS): there exists a function G such that F(~P)(A) = G(~P(A)) for all A ∈ A and for

all ~P in the domain of F .

Our previous paper [16] proved the following theorems under the assumption that A is an algebra

with at least three elements besides the empty set and W, which we call a non-trivial algebra. We aim to

relax this in this study.

1. (The Oligarchy Result) The only BAs satisfying UD, CP, ZP, IND, and CDC are the following

oligarchies: there is a non-empty subset M of N such that

F(~P)(A) =

{

1 if Pi(A) = 1 for all i ∈ M

0 otherwise

for all A ∈ A .

2. (The Triviality Result) The only BAs satisfying UD, CP, ZP, IND, CDC and AN are the oligarchy

with M = N, which we call the trivial rule.

3. (The Impossibility Result) There is no BA satisfying UD, CP, IND, CCP, and CCS.

3 The Agenda Condition for the Oligarchy Result

This section presents and proves our first main result: the agenda condition for the oligarchy result. The

following two agenda conditions have been extensively studied, as they characterize the most famous

impossibility agendas in judgment aggregation.

Definition 1 (Path-connected and Even-negatable Agenda). (1) For any A,B ∈ A , we say that A con-

ditionally entails B (A �
∗ B) if there is a subset Y ⊆ A that is consistent with A and B1 such that

{A}∪Y � B (i.e.,
⋂

({A}∪Y )⊆ B and we write this as A �
∗
Y

B). An agenda A is path-connected (PC)

if A �
∗∗ B for all contingent issues A,B ∈ A , where �

∗∗ is the transitive closure of �∗.

(2) An agenda A is even-negatable (EN) iff there is a minimally inconsistent set Y ⊆ A such that

Y¬Z := (Y \Z )∪{A| A ∈ Z } is consistent for some subset Z ⊆ Y of even size.

Path-connectedness means that every two issues are connected by a path, i.e., a chain of conditional

entailment relations. Regarding conditional entailment relation, let us mention a useful fact. If A �
∗
Y

B,

it also holds that B �
∗
Y

A, and thus if A �
∗∗ B, then B �

∗∗ A. And even-negatability says that a minimally

inconsistent subset of the agenda can be made consistent by negating some even number of its element.

It is well-known that an agenda is even-negatable unless the propositions in the agenda are composed

only with negation and biconditional from some logically independent propositions. Note that these two

conditions are weaker than the agenda being a non-trivial algebra, which is the assumption on the agenda

in [16].

1That is, Y ∪{A} 2 /0 and Y ∪{B} 2 /0
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Lemma 1. Every non-trivial algebra is path-connected and even-negatable.

From now on, we add one more assumption on A that /0 /∈ A (and thereby W /∈ A ).2 Thus, our

agenda A is a complement-closed finite non-empty set of some contingent subsets of the underlying

set W . The following lemma shows that path-connectedness is sufficient to obtain what is called the

contagion lemma.

Lemma 2 (Agenda Condition for the Contagion Lemma). Let A be path-connected. If a BA F with UD

satisfies CDC, CP, and IND, then it satisfies SYS.

This lemma parallels the one in generalized opinion pooling of Dietrich & List (2017a): path-

connectedness characterizes that if generalized OP satisfies CP and IND, then it satisfies SYS. In our

lemma as well, its converse—if A is not path-connected, then there is a BA F on A satisfying CDC, CP,

and IND but not SYS—also holds. The counterexample will be indicated in the proof of Theorem 1.

The following definition and lemma will be needed to prove our succeeding main theorem.

Definition 2 (Non-simple Agenda and Pair-negatable Agenda). (1) An agenda A is non-simple(NS) iff

there is a minimally inconsistent subset Y ⊆ A with |Y | ≥ 3.

(2) An agenda A is pair-negatable iff there is a minimally inconsistent set Y ⊆ A such that Y¬Z is

consistent for some subset Z ⊆ Y with |Z |= 2.

Non-simple agendas can be used as a criterion for determining whether a given agenda has minimal

complexity. Pair-negatable agendas are a special case of even-negatable agendas. The following lemma

shows that a pair-negatable agenda is sufficient to be an even-negatable agenda, and a path-connected

agenda already has a fairly complex structure.

Lemma 3. (1) An agenda A is even-negatable iff A is pair-negatable.

(2) If an agenda A is path-connected, then it is non-simple.

Now we prove that the agenda being path-connected and even-negatable is the sufficient and neces-

sary condition for the oligarchy result.

Theorem 1 (Agenda Condition for the Oligarchy Result). Let |N| ≥ 3. An agenda A is path-connected

and even-negatable iff the only BAs on A satisfying UD, ZP, CP, IND, and CDC are the oligarchies.

The only-if direction of the theorem generalizes the oligarchy result and shows that even if an agenda

satisfies a weaker condition—path-connectedness and even-negatability—than a non-trivial algebra, the

oligarchy result holds. If we examine the proof of the oligarchy result in [16] in detail, we can observe

that the agenda condition was used solely to establish the following two facts:

(Fact 1) if ~a ≤~b and if G(~a) = 1, then G(~b) = 1 where G is a function satisfying F(~P)(A) = G(~P(A)).
(Fact 2) if ~a+~b−~1 ≥~0 and if G(~a) = 1 and G(~b) = 1, then G(~a+~b−~1) = 1.

Therefore, to prove the only-if direction, it is enough to derive (Fact 1) from even-negatability and (Fact

2) from path-connectedness. The agenda conditions are only relevant to (Fact 1) and (Fact 2), and once

we see that they hold then we can apply the proof of the oligarchy result in [16].

Our proof also reveals that if we assume the stronger property of SYS instead of IND, then Lemma

1 is not needed, and non-simplicity (NS) is sufficient to obtain the oligarchy result. This observation

indicates that stronger properties of a BA lead to weaker agenda conditions for achieving the oligarchy

result. To provide additional agenda conditions for the oligarchy result, let us introduce the concept of

monotonicity (MON) for a BA as follows:

2In the following, especially in Theorem 2 and Theorem 3, we will use some results of Nehring & Puppe (2010), where the

agenda consists of contingent issues. To describe our proof more simply, we adopt that assumption.
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(MON) If ~P(A)≤ ~P′(A) and F(~P)(A) = 1, then F(~P′)(A) = 1

where ≤ is applied to each component of two vectors. If we assume MON, we can bypass the need

to prove (Fact 1), thereby eliminating the requirement for the agenda to be even-negatable (EN). This

is because (Fact 1) is already implied by SYS and MON. The following table illustrates the agenda

conditions that are sufficient to achieve the oligarchy result based on different properties of BA:

IND SYS

without MON PC, EN NS, EN

with MON PC NS

It is noteworthy that the agenda condition required for our oligarchy result is the same as the one

for the dictatorship and oligarchy results in judgment aggregation (e.g., [6] [1]). In our proof of the

if-direction, we extend their counterexamples to our domain in a manner that satisfies UD, ZP, CP, IND,

CDC, and CCS: the counterexample for a non-path-connected agenda is a minimal extension satisfying

MON, as we do not exclude even-negatablility; the one for a non-even-negatable agenda is an extension

satisfying not MON but SYS, as we do not exclude path-connectedness. So the proof follows a similar

structure to those in judgment aggregation, but the ways of extension to construct counterexamples are

not trivial—particularly the counterexample for not even-negatable agendas—, and so our proof includes

novel ideas that are needed due to the difference between binary and probabilistic beliefs.

4 The Agenda Condition for the Triviality Result

This section presents and proves our second main result: the agenda condition for the triviality result.

Stronger properties of a BA yield weak agenda conditions. Thus, one might ask whether the agenda

condition for the oligarchy result can be weakened, if we add AN. We will demonstrate that the agendas

that yield the triviality result can be characterized by negation-connectedness, which is also the agenda

condition for an impossibility result of belief binarization methods as shown in [5].

Definition 3 (Negation-connected Agenda). An agenda A is negation-connected (NC) iff for every con-

tingent issue A ∈ A it holds that A �
∗∗ A.

So negation-connectedness means that every issue has a path to its complement. According to Propo-

sition 1 in Dietrich & List (2021), the agenda being negation-connected is equivalent to the agenda being

partitioned into subagendas each of which is path-connected, where a subagenda is a non-empty subset

of the agenda that is closed under complementation.

The following lemma will be needed for the proof of the first part of the succeeding theorem. Part (1)

allows us to consider the stronger condition, namely path-connectedness, than negation-connectedness

to prove the triviality result. Part (2) will be used when the agenda is path-connected and not even-

negatable.

Lemma 4. (1) If the triviality result holds—i.e., the only BA on A satisfying UD, CDC, ZP, CP, IND, and

AN is the trivial one—for any path-connected agenda A , then the same holds for any negation-connected

agenda.

(2) If an agenda A is not even-negatable, then for any minimally inconsistent subset Y ⊆ A and

any even-sized subset Z ⊆ Y it holds that Y¬Z is also minimally inconsistent.

The following lemma will be needed for the proof of the second part of the succeeding theorem. This

lemma looks technical but it is closely related to the notion of median point in the next section. Indeed,

if H0 is the empty set, then
⋂

M is the set of all median points where H0 and M are defined in the

following lemma.
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Lemma 5. Let H0 be the set {A ∈ A | A �
∗∗ A and A �

∗∗ A}. If A is not negation-connected, then there

is a non empty subset M ⊆ A \H0 such that for any minimally inconsistent set Y ⊆ A it holds that

|Y ∩M | ≤ 1. Furthermore, for any minimally inconsistent set Y ⊆ A intersecting H0 it holds that

|Y ∩M |= 0. In addition, for B ∈ A \H0, it holds that B ∈ M iff B /∈ M .

Now let us prove the theorem that negation-connectedness is the sufficient and necessary condition

for the triviality result.

Theorem 2 (Agenda Condition for the Triviality Result). An agenda A is negation-connected iff the

only BA on A satisfying UD, ZP, CP, CDC, IND, and AN is the trivial one.

The only-if direction of the theorem shows that the triviality result holds if the agenda is negation-

connected, which is a generalization of the triviality result. The proof suggests further that, if we assume

SYS, then non-simplicity (NS) becomes the sufficient condition to obtain the triviality result. In this

case, neither EN nor MON is needed, unlike in the case of Theorem 1, as illustrated in the following

table:

IND SYS

with or without MON NC NS

Compared to the case of the oligarchy result, when we add AN, we obtain the triviality result even un-

der a weaker agenda condition: (i) instead of requiring path-connectedness (PC), negation-connectedness

(NC) is sufficient, and (ii) the triviality result holds even when the agenda is not even-negatable (EN). The

difference mentioned in (i) does not play a role in finding the sufficient condition according to Lemma

4. However, the necessary condition is not path-connectedness but negation-connectedness. In cases

where the agenda is PC and EN, we can apply Theorem 1 since the oligarchy satisfying AN is the trivial

one (i.e., the oligarchy with M = N). Thus, we only need to focus on the cases where the agenda is PC

and not EN. When the agenda is assumed to be not EN, we encounter the following difficulty: to show

the triviality result, we used (Fact 1), which could be proved if the agenda was assumed to be EN. Our

strategy here is to prove a weaker claim than (Fact 1):

(Fact 1′′) If G(~a) = 1, then G(~c) = 1 for all~c ≥ |2~a−~1|.
The new claim (Fact 1′′) is weaker than (Fact 1), as it only guarantees that vectors greater than |2~a−~1|
are mapped to 1, rather than all vectors greater than ~a.

One might ask whether we can apply the proof presented in Dietrich & List (2021) to our theorem, or

vice versa. However, there are differences between the two proofs. On the one hand, we cannot use their

proof because, while they deal with probabilistic beliefs, we are dealing with profiles of probabilistic

beliefs: in particular, for negation-connected agendas in our framework, we can only show (Fact 1′′)

instead of (Fact 1). On the other hand, since we have not relied on the assumption that |N| ≥ 2, our proof

can be applied to the context of belief binarization, where |N|= 1, and so we can recover their results.

The if-direction gives a counterexample of the triviality result when an agenda is not negation-

connected, which implies the agenda being not path-connected. The counterexample presented in The-

orem 1 is not applicable in this case because it does not satisfy AN. Moreover, there would be no coun-

terexample if we only assumed an agenda to be not path-connected. This is the reason why we need to

weaken path-connectedness to negation-connectedness, even though they fulfill the same role concerning

the sufficient agenda condition for the triviality result.

Our counterexample for a non-negation-connected agenda is an extension of the belief binarization

rule proposed in Dietrich & List (2021). We extend the rule while maintaining MON, but not minimally,

which differs from the way of the extension in Theorem 1.
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5 The Agenda Condition for the Impossibility Result

Now we will show that the agendas for the impossibility result can be characterized by blocked agendas.

Definition 4 (Blocked Agenda). An agenda A is blocked iff there is an issue A ∈ A such that A �
∗∗ A

and A �
∗∗ A.

So a blocked agenda contains an issue that has a path to its complement. Recall that H0 is defined

by the set {A ∈A | A �
∗∗ A and A �

∗∗ A}. Then A is negation-connected iff H0 =A , and A is blocked

iff H0 6= /0. If A is negation-connected, then it is blocked. The following definition and lemma will be

needed for the succeeding theorem.

Definition 5 (Median Point). Let A be an agenda on the set W of possible worlds. A possible world

m ∈ W is a median point iff for any minimally inconsistent subset Y ⊆ A , it holds that |{A ∈ Y | m ∈
A}| ≤ 1.

So a median point is a possible world that is contained in at most one issue in every minimally

inconsistent set. It is well-known in judgment aggregation that if a median point is guaranteed to exist,

then we can easily construct an anonymous, complete, and consistent judgment aggregator where a

median point is thought of as a default collective judgment unless everybody believes the issue being

true/false at the median point to be false/true [14]. The following lemma states that the agenda not being

blocked is the necessary and sufficient condition for the existence of a median point.

Lemma 6. An agenda A is not blocked iff there is a median point.

Now let us formulate and prove our last theorem.

Theorem 3 (Agenda Condition for the Impossibility Result). An agenda A is blocked iff there is no BA

on A satisfying UD, CP, IND, CCP, and CCS.

Indeed, CCS and CCP together are stronger assumptions than CDC. As a result, we obtain the impos-

sibility result more easily, without assuming AN and non-dictatorship, and with a more relaxed agenda

condition. The proof demonstrates that by adding SYS, the impossibility result still holds even without

CP and even when no agenda condition is assumed—e.g., even when A = {A,A}.

The blocked agenda is also the agenda condition for the impossibility results on judgment aggrega-

tion with AN in [15] and belief binarization in [1]. Our counterexample for non-blocked agenda is an

extension of the counterexample in Dietrich & List (2018). It is an extension that satisfies MON, but not

minimally so. This is the same as the extension in Theorem 2, but different from the one in Theorem

1. Note that the median point m in the proof of this theorem plays the same role as M in the proof of

Theorem 2. The only difference is that m is a possible world and M is a set of issues. This difference

arises from assuming CDC versus assuming CCS and CCP.

6 Discussion

All the results in this paper are stated in Table 1: (1) path-connectedness and even-negatability constitute

the exact agenda condition for the oligarchy result; (2) negation-connectedness is for the triviality result;

and (3) blockedness is for the impossibility result. These new findings can be compared to the existing

characterization theorems in judgment aggregation and belief binarization. Regarding (1), it has the

same agenda condition as (1′) [1] and (3′) [6] in judgment aggregation. For (2), it is similar to (2′′) [5] in

belief binarization, with the difference being the use of ZP instead of CCS for for (2′′). Since applying

our proofs can weaken CCS to ZP, the agenda condition for (2′), which has not been discussed in the
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There is no BA satisfying ... Agenda Condition

(1) UD, ZP, CP and IND + CDC + Non-oligarchy path-connected, even-negatable

(2) UD, ZP, CP and IND + CDC + AN + Non-triviality negation-connected

(3) UD, CP and IND + CCS and CCP blocked

There is no judgment aggregator satisfying ... Agenda Condition

(1′) UD, ZP, CP and IND + CDC + Non-oligarchy path-connected, even-negatable

(2′) UD, ZP, CP and IND + CDC + AN + Non-triviality negation-connected

(3′) UD, CP and IND + CCS and CCP + non-dictatorship path-connected, even-negatable

(4′) UD, CP and IND + CCS and CCP + AN blocked

There is no belief binarization rule satisfying ... Agenda Condition

(2′′) UD, CCS , CP and IND + CDC + Non-triviality negation-connected

(4′′) UD, CCS, CP and IND + CCP blocked

Table 1: Classification of Agenda Conditions for Impossibility Results

literature, is also negation-connected because an anonymous and independent judgment aggregator can

be viewed as a belief binarization function. As for (3), it is similar to (4′) [15] in judgment aggregation

and (4′′) [4] in belief binarization.

Let us mention some further research topics. One might think that the rationality norms for collective

binary beliefs could be weakened since adhering to deductive closure might be too demanding for group

agents. Instead, we could focus on requiring group beliefs to respect consistency or pairwise consis-

tency. By exploring these weaker norms, we can investigate stronger impossibility results. Furthermore,

let us discuss how to obtain possibility results. For this purpose, it is advantageous that binarizing belief

aggregation provides a framework that generalizes the problem of judgment aggregation or belief bina-

rization. As in judgment aggregation, we can employ and study premise-based binarizing belief aggrega-

tion methods. Alternatively, we can combine an individual belief binarization procedure with judgment

aggregation. If we assume that linear or geometric pooling methods are very natural given individual

credences, we can apply belief binarization methods to the pooled group credence. Of course, we can

also come up with new procedures that cannot be reduced to existing methods. Ultimately, we should

keep in mind that binarizing belief aggregation is an epistemic collective decision problem. Therefore,

we should be concerned about which methods accurately track the truth. One natural approach would be

to investigate belief binarization methods that minimize the expected distance from the truth in light of

the group’s pooled credence. In conclusion, binarizing belief aggregation opens a new research area in

which various procedures of belief aggregation, different studies on the relation between credences and

beliefs, and epistemic decision theory can be combined and explored.
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In epistemic logic, a way to deal with knowledge-wh is to interpret them as a kind of mention-some
knowledge (MS-knowledge). But philosophers and linguists have challenged both the sufficiency
and necessity of such an account: some argue that knowledge-wh has, in addition to MS-knowledge,
also a sensitivity to false belief (FS); others argue that knowledge-wh might only imply mention-some
true belief (MS-true belief). In this paper, we offer a logical study for all these different accounts. We
apply the technique of bundled operators, and introduce four different bundled operators - [tBMS]xφ :=
∃x([B]φ ∧φ), [tBMS

FS]
xφ := ∃x([B]φ ∧φ)∧∀x([B]φ → φ), [KMS]xφ := ∃x[K]φ and [KMS

FS]
xφ := ∃x[K]φ ∧

∀x([B]φ → φ) -, which characterize the notions of MS-true belief, MS-true belief with FS, MS-
knowledge and MS-knowledge with FS respectively. We axiomatize the four logics which take the
above operators (as well as [K]) as primitive modalities on the class of S4.2-constant-domain models,
and compare the patterns of reasoning in the obtained logics, in order to show how the four accounts
of knowledge-wh differ from each other, as well as what they have in common.

1 Introduction

In standard epistemic logic, for the most time, we deal with propositional knowledge (or knowledge-
that): that is, an agent knows that φ , where φ is a certain proposition. However, this clearly does not
exhaust our daily use of the notion of “knowledge”. Besides knowledge-that, we also frequently talk
about various kinds of knowledge-wh: for example, I know how to ride a bike, I know who proved the
incompleteness theorems, I know when a certain meeting is held, I know where to buy a certain book, I
know what is the password of my computer, I know why a certain event happens, etc.

Thus, besides standard propositional knowledge, knowledge-wh also seems to be an interesting sub-
ject for epistemic logic to study. There are already a number of logical studies of various kinds of
knowledge-wh (e.g. know whether in [3], know why in [24], know how in [19],[4], [11], [12] and [22],
just to name a few), and a more general framework for logics of knowledge-wh is also proposed in [20].
In this paper, following [20], we will also focus mainly on the general logical structures shared by various
kinds of knowledge-wh.

As suggested in [20] (following the philosophical stance of the so-called “intellectualism” initiated
in [17]), in many cases, knowledge-wh can be interpreted as a kind of mention-some knowledge (MS-
knowledge for short): for example, I know how to prove a theorem, iff there exists some proof such that
I know that this proof is a proof for the theorem; I know where to buy newspapers, iff there exists some
place where I know I can buy newspapers, etc. Then, in such cases, it seems that the logical structure of
knowledge-wh can be formally captured by the first-order modal formula ∃x[K]φ(x).1

1However, as it is also noted in [20], in some other situations, it seems more natural to interpret knowledge-wh in terms of
mention-all, rather than mention-some, knowledge. For example, when I say “I know who came to the meeting yesterday”,

http://dx.doi.org/10.4204/EPTCS.379.40
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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However, while it is quite clear that in many situations, knowledge-wh does involve some kind
of mention-some structure, it is not as clear whether MS-knowledge really is the right account for
knowledge-wh in these situations. In fact, both the sufficiency and necessity of such an account are
challenged.

For example, as it is argued in [5], [14], [7] and [23], knowledge-wh may not only involve mention-
some knowledge, but also involve false belief sensitivity (FS for short). Let’s consider the following
scenario, adapted from one offered in [5], to illustrate this point.

Example 1.1 There are two stores, Newstopia and Paperworld. Newstopia sells newspapers, while
Paperworld sells only stationery. Now, Alice knows that Newstopia sells newspapers, but also believes
erroneously that Paperworld sells newspapers.

In such a scenario, it is natural to judge that that Alice does not know where to buy newspapers (psycho-
logical experiments conducted in [14] also show that such an intuition is shared by many people): even
though she has a MS-knowledge concerning where to buy newspapers, it seems that her false belief that
Paperworld sells newspapers would corrupt her knowledge-where.

Hence, maybe knowledge-wh should be sensitive to false belief: that is, even under an MS-reading,
maybe MS-knowledge should not be characterized by ∃x[K]φ(x) alone, but should rather be characterized
by ∃x[K]φ(x)∧∀x([B]φ(x)→ φ(x)).

On the other hand, the necessity of the MS-knowledge account is also doubted. For example, as it is
argued in [1], it seems that knowledge-wh is subject to a kind of epistemic luck which is not consistent
with propositional knowledge. Let’s consider the following scenario, adapted from one offered in [1], to
illustrate this point.

Example 1.2 Suppose that Bob believes that w is a way to change light bulbs, and w is indeed a reliable
way to do so. His belief is obtained by reading an instruction in a book. However, unknown to him,
all other contents in the book are erroneous, and it is merely due to a very rare print error that the
instruction he read is correct.

In this case, Bob’s true belief that w is a way to change light bulbs is too lucky to be counted as his
knowledge; but nevertheless, it still seems natural to judge that Bob knows how to change light bulbs.

Then, it seems that sometimes a mention-some true belief (MS-true belief for short), i.e. ∃x([B]φ(x)∧
φ(x)), is enough for knowledge-wh. (In philosophical discussions, such a stance is sometimes called
“revisionary intellectualism”, which is first proposed in [2], in contrast to intellectualism.)

Of course, none of the arguments presented above is decisive. But they do reveal an enormous
complexity in the question concerning the nature of knowledge-wh. Hitherto, no consensus concerning
this question is reached in philosophical discussions, and nor will we offer a determinate answer here.
On the contrary, in this paper, we will study all the accounts mentioned above in a formal way.

In order to do so, we apply the technique of “bundled operators”2. The general idea is that we pack a
complex first-order modal formula (e.g. ∃x[K]φ(x)∧∀x([B]φ(x)→ φ(x))) into the semantics of a single
operator, and study the logic which takes such an “bundled operator” as primitive modality. By working
in such languages with limited expressivity, we can focus on the behavior of the epistemic notion in which

it may mean that I know all the people who came to that meeting, which should probably be formalized as, for example,
∀x(φ(x)→ [K]φ(x)) or ∀x([K]φ(x)∨ [K]¬φ(x)). We will not deal with the mention-all reading of knowledge-wh in this paper,
since the behavior of mention-all knowledge is rather different from mention-some knowledge, and it thus seems better to study
it independently elsewhere.

In fact, axiomatization of mention-all knowledge in terms of ∀x([K]φ(x)∨ [K]¬φ(x)) has been studied in [25], an unpublished
undergraduate thesis.

2For a detailed introduction of such an idea, see [20] and [21].
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we are really interested, without being distracted by irrelevant notions which can also be expressed in a
stronger language. Moreover, with the help of bundled operators, we can study the complex notions in a
compact manner.

In this paper, then, we will study the following four different bundled operators:3

[tBMS]xφ(x) := ∃x([B]φ(x)∧φ(x))
[tBMS

FS]
xφ(x) := ∃x([B]φ(x)∧φ(x))∧∀x([B]φ(x)→ φ(x))

[KMS]xφ(x) := ∃x[K]φ(x)
[KMS

FS]
xφ(x) := ∃x[K]φ(x)∧∀x([B]φ(x)→ φ(x)).

We will axiomatize the logics which take these operators plus an operator for propositional knowl-
edge as primitive modalities on the class of S4.2-models, a class of models which characterizes knowl-
edge, belief and their interactions in a reasonable way. Completeness results will also be presented.
Moreover, we will compare the obtained logics, in order to show the differences and commonalities
in the ways we reason about knowledge-wh, propositional knowledge and belief, which are logically
implied by the different accounts of knowledge-wh.

2 First-order S4.2-models

First, we introduce the models we use to characterize knowledge and belief on the semantic level.
Since first-order quantifiers are involved in the notions of MS-knowledge, MS-true belief and FS,

we will use first-order Kripke models as the semantic basis. We fix a set of predicates P . A first-order
Kripke model, then, is defined as follow:4

Definition 2.1 A first-order Kripke model is a 4-tuple M = (W,D,R,ρ), where

• W 6= /0 is the set of epistemically possible worlds of the model;

• D 6= /0 is the domain of the model;

• R ⊆W 2 is the accessibility relation among the possible worlds, which characterizes epistemic
indistinguishability;

• ρ : P×W →℘(D<ω) assigns each n-ary predicate an n-ary relation on each possible world.

(We may abbreviate the term “first-order Kripke model” simply as “model” in the following discussions.)

Note that such a model can be interpreted rather freely on the conceptual level, so that it can char-
acterize various kinds of knowledge-wh. For example, if we want to characterize the knowledge-how
of an agent, then the elements in D can be interpreted as different methods or devices available for
the agent in question, and a predicate P ∈P can be interpreted as a certain goal, while a ∈ ρ(P,w)
reads “at the epistemically possible world w, a is a way to achieve P”. Similarly, if we want to char-
acterize knowledge-where, then the elements in D can be interpreted as different locations accessible
for the agent, while predicates in P are interpreted as properties of these locations. Of course, in a
similar fashion, different models can also be used to characterize knowledge-who, knowledge-when or
knowledge-what.

3The bundled operator [KMS]x is first introduced in [20] (the notation used there is 2x, though); later, further study concerning
its decidability and complexity is presented in [13], and axiomatization in [18]. The result presented in this paper concerning
this operator (namely, the axiomatization on S4.2), however, is new.

On the other hand, [tBMS], [tBMS
FS] and [KMS

FS] are all novel bundled operators that have not yet been studied in literature.
4In this paper, we will not introduce function symbols and constants to our language. Hence, we will also not consider

functions and constants in the following definition.
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Also note that we only consider constant-domain models here: all possible worlds in a model share
the same domain. This is mainly in order to avoid technical and conceptual complexities, and we believe
this is indeed a reasonable (though inevitably idealized) assumption.

Of course, since we use first-order Kripke models to characterize the epistemic states of an agent, the
Kripkean part of such models should also possess certain frame properties.

It is a popular choice to use S5-models to characterize an agent’s knowledge, but we will not use such
models in this paper. This is mainly because we need to deal with both knowledge and belief, as well
as the interactions between them (moreover, in our discussion, the notion of belief should be interpreted
in a rather strong sense, so we would prefer interaction principles like [B]φ → [B][K]φ to hold), and we
must also allow the possibility for false belief, in order for the notion of FS to make any sense at all.
This, however, seems to be a difficult task when knowledge is characterized by S5-models.

Hence, we will use S4.2-models instead - that is, models which are reflexive, transitive and strongly
convergent.5 The formal definition is as follow:

Definition 2.2 A frame (W,R) is strongly convergent, iff for all w ∈W, there is some u ∈W s.t. for all
v ∈W, if wRv, then vRu.

A model based on a reflexive, transitive and strongly convergent frame is called an S4.2-model.

We find such models attractive, because the class of S4.2-models validates the logic of knowledge
S4.2, in which belief can be reasonably defined in terms of knowledge by the definition [B]φ := 〈K〉[K]φ
(as explained in [9], the underlying idea is that, if one knows that she does not know something, then she
would not believe it; and if she does not believe something, then she would know by introspection that
she does not know it). Moreover, the logic for the belief defined in this way is KD45, and we also have
many intuitive interaction principles between knowledge and belief (e.g. [K]φ → [B]φ , [B]φ → [K][B]φ ,
¬[B]φ → [K]¬[B]φ , [B]φ → [B][K]φ ). (It is Lenzen who first proposed S4.2 as a logic for knowledge
in [9] and [10], from a syntatic perspective. Later, Stalnaker also studied S4.2 from a more semantic
perspective in [16].)

Moreover, as it is noted by Stalnaker in [16], in an S4.2-frame (W,R), we can define the following
relation RB, which corresponds to the notion of belief defined in terms of knowledge:

Definition 2.3 Given a frame (W,R), RB ⊆W 2 is the relation which satisfies that for all w,u ∈W, wRBu
iff for all v ∈W s.t. wRv, vRu.

It is not hard to check that if (W,R) is an S4.2-frame, then (W,RB) is KD45. Moreover, after we
formally introduce the languages and their semantics, it will be easy to check that RB corresponds to [B]
in exactly the way R corresponds to [K].

3 Languages and semantics

Now, we introduce the languages for the bundled operators, as well as their exact semantics.
We first fix a set of variables X. Then, for any [Kwh]∈ {[tBMS], [tBMS

FS], [K
MS], [KMS

FS]}, the corresponding
language L ([Kwh]) (and also L≈([Kwh])) is defined as follow:

5Here, we use the notion of strong convergence to define S4.2-models; but elsewhere, when defining S4.2-models, the notion
of weak convergence might be used instead (A frame (W,R) is weakly convergent, iff for all w,v,v′ ∈W s.t. wRv and wRv′,
there is some u ∈W s.t. vRu and v′Ru). Standard modal logic cannot distinguish these two kinds of models (as noted in [16]),
but some of the languages studied in this paper are strong enough to distinguish them.

We choose the stronger notion of convergence here, because it seems more favorable both technically and conceptually. This
is also in accordance with Stalnaker’s note in [16].
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Definition 3.1 L ([Kwh])-formulas are defined recursively as follow:

φ ::= P(y1, ...,yn) | ¬φ | φ ∧φ | [K]φ | [Kwh]
x
φ

where P ∈P , n≥ 0 and x,y1, ...,yn ∈ X.
¬[K]¬φ is denoted as 〈K〉φ ; [B]φ is an abbreviation for 〈K〉[K]φ .
∨,→ and↔ are defined in the usual way.
Moreover, let L≈([Kwh]) be the language obtained by further adding an identity relation ≈ to

L ([Kwh]).6

Corresponding to our definition of the bundled operators, we define the semantics for the above
languages recursively as follow:

Definition 3.2 Given a model M = (W,D,R,ρ), a w ∈W and an assignment σ from X to D:

M ,w,σ � P(x1, ...,xn) ⇐⇒ (σ(x1), ...,σ(xn)) ∈ ρ(P,w)
M ,w,σ � x≈ y ⇐⇒ σ(x) = σ(y)
M ,w,σ � ¬φ ⇐⇒ M ,w,σ 6� φ

M ,w,σ � φ ∧ψ ⇐⇒ M ,w,σ � φ and M ,w,σ � φ

M ,w,σ � [K]φ ⇐⇒ For all v ∈W, if wRv, then M ,v,σ � φ

M ,w,σ � [tBMS]xφ ⇐⇒ There is some a ∈ D, s.t. M ,w,σ [x 7→ a] � [B]φ ∧φ

M ,w,σ � [tBMS
FS]

xφ ⇐⇒ (i) There is some a ∈ D, s.t. M ,w,σ [x 7→ a] � [B]φ ∧φ

(ii) For all b ∈ D, M ,w,σ [x 7→ b] � [B]φ → φ

M ,w,σ � [KMS]xφ ⇐⇒ There is some a ∈ D, s.t. M ,w,σ [x 7→ a] � [K]φ

M ,w,σ � [KMS
FS]

xφ ⇐⇒ (i) There is some a ∈ D, s.t. M ,w,σ [x 7→ a] � [K]φ
(ii) For all b ∈ D, M ,w,σ [x 7→ b] � [B]φ → φ

where σ [x 7→ a] is the assignment which maps x to a, and agrees with σ on any other point.

Note that we need not introduce an independent operator for belief, since [B]φ is already defined by
〈K〉[K]φ in the languages given above. It is also not hard to check that on S4.2-models, the semantics for
[B]φ defined this way is indeed the following one:

M ,w,σ � [B]φ ⇐⇒ For all v ∈W , if wRBv, then M ,v,σ � φ

4 The logics

Then, we introduce the four logics, corresponding to our four accounts of knowledge-wh respectively.
Their axiomatizations are all obtained in a similar fashion: generally speaking, we start from a standard
S4.2 system for [K], and then add axioms and rules to describe the behaviors of the bundled operators.

Below is a list of schemas of axioms and rules that will be used to offer the axiomatizations (in which
the operator [Kwh] should be substituted by [tBMS], [tBMS

FS], [K
MS] or [KMS

FS] in the corresponding logics):7

6In the following discussions, we will be working in the language L ([Kwh]) when we do not specifically mention the
language in which we are working. We will make it clear whenever we switch our working language to L≈([Kwh]).

7Note that when we use the notation φ [y/x] to denote the formula obtained by replacing every free occurrences of x in φ

with y, we also implicitly assume that y is admissible for x in φ : that is, y does not appear in the scope of any operator of the
form [Kwh]

y in φ .
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Axioms
TBtoKwh ([B]φ ∧φ)[y/x]→ [Kwh]

xφ KtoKwh [K]φ [y/x]→ [Kwh]
xφ

KwhtoFS [Kwh]
xφ → ([B]φ → φ)[y/x] BtoBKwh [B]φ [y/x]→ [B][Kwh]

xφ

Rules

KwhtoTB
` ψ0→ [K](ψ1→ ··· [K](ψn→¬([B]φ ∧φ)) · · ·)
` ψ0→ [K](ψ1→ ··· [K](ψn→¬[Kwh]xφ) · · ·)

KwhtoK
` ψ0→ [K](ψ1→ ··· [K](ψn→¬[K]φ) · · ·)
` ψ0→ [K](ψ1→ ··· [K](ψn→¬[Kwh]xφ) · · ·)

FS&BtoKwh
` ψ0→ [K](ψ1→ ··· [K](ψn→ ([B]φ → φ)) · · ·)

` ψ0→ [K](ψ1→ ··· [K](ψn→ ([B]φ [y/x]→ [Kwh]xφ)) · · ·)

FS&KtoKwh
` ψ0→ [K](ψ1→ ··· [K](ψn→ ([B]φ → φ)) · · ·)

` ψ0→ [K](ψ1→ ··· [K](ψn→ ([K]φ [y/x]→ [Kwh]xφ)) · · ·)
(In all the rules above, n can be any natural number, and we require that x /∈

⋃
i≤n FV (ψi))

By using rules like KwhtoTB or FS&KtoKwh, we have sacrificed some intuitiveness for technical
reasons, but the underlying idea is straightforward: for example, KwhtoTB essentially says [Kwh]

xφ →
∃x([B]φ ∧φ), and FS&KtoKwh says ∀x([B]φ → φ)∧ [K]φ [y/x]→ [Kwh]

xφ , in languages where the exis-
tential and universal quantifiers are not available.

With the help of the above axioms and rules, then, we can give the following four logics:

S4.2[tB
MS] S4.2[K]⊕{TBtoKwh,KwhtoTB}

S4.2[tB
MS
FS] S4.2[K]⊕{KwhtoFS,BtoBKwh,KwhtoTB,FS&BtoKwh}

S4.2[K
MS] S4.2[K]⊕{KtoKwh,KwhtoK}

S4.2[K
MS
FS] S4.2[K]⊕{KwhtoFS,BtoBKwh,KwhtoK,FS&KtoKwh}

Moreover, for any [Kwh] ∈ {[tBMS], [tBMS
FS], [K

MS], [KMS
FS]}, when we work in the language L≈([Kwh]),

let S4.2[Kwh]
≈ be the logic defined as follows:

S4.2[Kwh]
≈ S4.2[Kwh]⊕{x≈ x, x≈ y→ (φ [x/z]→ φ [y/z]), x 6≈ y→ [K](x 6≈ y)}

Note that all the logics given here are non-normal, since they are all non-aggregative: that is,
[Kwh]

xφ ∧ [Kwh]
xψ → [Kwh]

x(φ ∧ψ) is not an inner theorem of S4.2[Kwh] (or S4.2[Kwh]
≈ ) for any [Kwh] ∈

{[tBMS], [tBMS
FS],

[KMS], [KMS
FS]} (in fact, in all these logics, [Kwh]

xPx∧ [Kwh]
x¬Px is consistent). Moreover, some of the

logics are even non-monotone, as we will see below.
Then, we show the completeness theorem for these logics.
Since we are now dealing with bundled operators with more complex structures, the strategy to prove

completeness theorems for the case of [KMS] in [20] and [18] cannot be directly applied here (moreover,
axiomatization of the logic of [KMS] on S4.2 has also not yet been studied). Hence, we will develop a new
strategy to prove completeness theorems for all the above logics in a uniform way.

Theorem 4.1 S4.2[Kwh] (as well as S4.2[Kwh]
≈ ) is sound and strongly complete w.r.t. the class of S4.2-

constant-domain models, where [Kwh] ∈ {[tBMS], [tBMS
FS], [K

MS], [KMS
FS]}.

PROOF. We only sketch the general idea of the proof here. A detailed proof for the case of S4.2[K
MS
FS]

can be found in the appendix.
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Generally, we use maximal consistent sets (MCS) of formulas which also contain certain witness
formulas to construct the canonical model. The main difficulty is to ensure at the same time that (i)
every MCS in the model contains all the witness formulas we need, (ii) every formula of the form 〈K〉φ
in an MCS has some accessible MCS containing φ as its witness, and (iii) the canonical model is an
S4.2-constant-domain model.

In order to construct such a model, we use a step-by-step method. We start from a consistent set Γ0,
and extend consistent sets to MCS, add new formula sets as witnesses for formulas of the form 〈K〉φ ,
and add witness formulas to formula sets during the same process. The key is to ensure, at each step
of the construction, that every formula set except Γ0 is finite, and all the information contained in a set
is recorded in its predecessor with a formula of the form 〈K〉φ . This ensures that we can always add
witness formulas to formula sets using rules like KwhtoTB and FS&KtoKwh.

Then, after countably many steps, we obtain a model which satisfies both (i) and (ii), and is also
an S4-constant-domain model. Finally, we add another set of MCSs to the model to make it strongly
convergent, so that we can obtain an S4.2-model. 2

Remark 4.2 The above logics also have some interesting technical aspects.
For example, it is shown in [13] that the language L ([KMS]) cannot distinguish constant-domain and

increasing-domain models in general. However, when we confine the models to S4.2-ones, L ([KMS]) can
distinguish constant-domain and increasing-domain models, and consequently, S4.2[K

MS] is not sound
w.r.t. the class of S4.2-increasing-domain models (e.g. 〈K〉[KMS]xφ → [KMS]x〈K〉φ is an inner theorem of
S4.2[K

MS], but is not valid on S4.2-increasing-domain models). In fact, for all [Kwh]∈{[tBMS], [tBMS
FS], [K

MS],
[KMS

FS]}, S4.2[Kwh] is not sound w.r.t. S4.2-increasing-domain models.
Another interesting fact is that S4.2[tB

MS
FS] and S4.2[K

MS
FS] are able to distinguish S4.2-models (defined

in terms of strong convergence) and models which are reflexive, transitive but only weakly convergent.
The axiom BtoBKwh : [B]φ [y/x]→ [B][Kwh]

xφ does the trick. When [Kwh] = [tBMS] or [KMS], on the other
hand, we also have [B]φ [y/x]→ [B][Kwh]

xφ as an inner theorem of S4.2[Kwh], but in this case, the formula
does not have the power to distinguish strong and weak convergence, and consequently, S4.2[tB

MS] and
S4.2[K

MS] are also sound w.r.t. the class of reflexive, transitive and weakly convergent models.

5 Comparisons

Now, we have the formal ground to compare the different accounts of knowledge-wh.

5.1 Differences

An interesting difference among the different accounts of knowledge-wh concerns the ways these ac-
counts interact with propositional knowledge.

For example, consider positive introspection. Since we take S4.2 to be the underlying logic for propo-
sitional knowledge, which is stronger than S4, it is clear that propositional knowledge satisfies positive in-
trospection: [K]φ→ [K][K]φ is an inner theorem of S4.2[Kwh] for any [Kwh]∈ {[tBMS], [tBMS

FS], [K
MS], [KMS

FS]}.
However, does knowledge-wh also have positive introspection? To put it more formally, is [Kwh]

xφ →
[K][Kwh]

xφ an inner theorem of S4.2[Kwh]? The answer is as follow:

Proposition 5.1 S4.2[K
MS] ` [KMS]xφ → [K][KMS]xφ , but S4.2[Kwh] 6` [Kwh]

xφ → [K][Kwh]
xφ when [Kwh] ∈

{[tBMS], [tBMS
FS], [K

MS
FS]}.
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The underlying reason for the failure of positive introspection in S4.2[tB
MS], S4.2[tB

MS
FS] and S4.2[K

MS
FS]

is similar. Essentially, this is because these accounts may involve true beliefs (the MS-true belief in
[tBMS]xφ or [tBMS

FS]
xφ , or a true belief required by the FS condition in [tBMS

FS]
xφ or [KMS

FS]
xφ ), but positive

introspection requires knowledge rather than mere true belief, while the latter in general does not imply
the former in an S4.2 system.

The following proposition helps us make this point clear on the formal level. Note that in the for-
mulation of (a part of) the following proposition, we will also need the identity relation ≈ and the logic
S4.2[Kwh]

≈ which involves the axioms for ≈.

Proposition 5.2 We have the following identities between logics:

S4.2[tB
MS]⊕ [tBMS]xφ → [K][tBMS]xφ = S4.2[tB

MS]⊕ [B]φ ∧φ → [K]φ

S4.2[tB
MS
FS]⊕ [tBMS

FS]
xφ → [K][tBMS

FS]
xφ = S4.2[tB

MS
FS]⊕ [B]φ ∧φ → [K]φ

S4.2[K
MS
FS]

≈ ⊕ [KMS
FS]

xφ → [K][KMS
FS]

xφ = S4.2[K
MS
FS]

≈ ⊕ x 6≈ y→ ([B]φ ∧φ → [K]φ)

In other words, under our S4.2 setting for propositional knowledge, requiring [tBMS]xφ and [tBMS
FS]

xφ

to satisfy positive introspection is in effect the same as requiring true belief to imply knowledge. The
case for [KMS

FS]
xφ , on the other hand, is a bit more complex: when [KMS

FS]
xφ satisfies positive introspection,

either true belief implies knowledge, or there is at most one element in the domain (in which case the
notion of FS is clearly trivialized).

A similar phenomenon also appears in the case of the formula [Kwh]
xφ → [Kwh]

x[K]φ . Intuitively, the
formula says that knowledge-wh offers the agent a way to obtain propositional knowledge: for exam-
ple, if we interpret [Kwh] in terms of knowledge-how, then the formula says that if an agent knows how
to achieve φ , then she also knows how to make herself know that φ . In fact, Proposition 5.1 and 5.2
still hold after we substitute every occurrences of [K][Kwh]

xφ in these propositions with [Kwh]
x[K]φ , since

[Kwh]
x[K]φ↔ [K][Kwh]

xφ is in fact an inner theorem in S4.2[Kwh] for all [Kwh]∈{[tBMS], [tBMS
FS], [K

MS], [KMS
FS]}.

A more interesting difference among the different accounts of knowledge-wh concerns the mono-
tonicity of knowledge-wh. We say our notion of knowledge-wh is monotone if the following rule is
admissible in the corresponding logic:

MONO
` φ → ψ

` [Kwh]xφ → [Kwh]xψ

The rule says that if ψ follows logically from φ , then if an agent has knowledge-wh of φ , then she
automatically also has knowledge-wh of ψ .

Note that in order for this to hold, we need to assume that the agent we consider is logically omni-
scient; and we have indeed assumed so in our underlying logic for propositional logic, S4.2[K]. However,
even such a logically omniscient agent still may not have a monotone notion of knowledge-wh, when FS
is involved in our account of knowledge-wh.

The propositions below show how FS influences the monotonicity of knowledge-wh. (Note that we
need the identity relation ≈ to formulate Proposition 5.4.)

Proposition 5.3 MONO is admissible in S4.2[tB
MS] and S4.2[K

MS], but inadmissible in S4.2[tB
MS
FS] and S4.2[K

MS
FS].

Proposition 5.4 The following equivalences holds:

S4.2[tB
MS
FS]

≈ ⊕MONO = S4.2[tB
MS
FS]

≈ ⊕ x 6≈ y→ ([B]φ → φ)

S4.2[K
MS
FS]

≈ ⊕MONO = S4.2[K
MS
FS]

≈ ⊕ x 6≈ y→ ([B]φ → φ)
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As we can see, FS corrupts the monotonicity of knowledge-wh. In fact, as it is shown in Proposition
5.4, if we force [tBMS

FS]
xφ and [KMS

FS]
xφ to be monotone, then either the agent can have no false belief at all,

or there is only one element in the domain of the model which characterizes her knowledge and belief -
in both cases, the notion of FS is completely trivialized. In this sense, we may say that FS is incompatible
with the monotonicity of knowledge-wh in quite an essential way: in order to retain the monotonicity of
knowledge-wh, we have to give up FS completely.

5.2 Commonalities

As we have seen, different accounts of knowledge-wh behave rather differently when interacting with
propositional knowledge. However, when interacting with belief, their behaviors are much more similar.

For example, the following proposition shows some inner theorems shared by all the logics presented
above:8

Proposition 5.5 For all [Kwh] ∈ {[tBMS], [tBMS
FS], [K

MS], [KMS
FS]}, the following are S4.2[Kwh]-theorems:

(i) [B]φ [y/x]→ [Kwh]
x[B]φ (ii) ¬[B]φ [y/x]→ [Kwh]

x¬[B]φ
(iii) [B]φ [y/x]→ [B][Kwh]

xφ (iv) [B][Kwh]
xφ ∨ [B]¬[Kwh]

xφ

If we interpret [Kwh]
xφ in terms of knowledge-how, then (i) and (ii) say that if an agent believes / does

not believe that some certain y is a way to achieve φ , then she knows how to make herself believe / not
believe that φ ; (iii) says that if the agent believes that some y is a way to achieve φ , then she also believes
that she knows how to achieve φ ; and (iv) says that an agent is “confident” concerning her own epistemic
state: for any φ , she either believes that she knows how to φ , or believes that she does not knows how to
φ . Note that in S4.2[K], we also have the interaction principles [B]φ → [K][B]φ , ¬[B]φ → [K]¬[B]φ and
[B]φ→ [B][K]φ and [B][K]φ ∨ [B]¬[K]φ between propositional knowledge and belief; hence, we may say
that when interacting with propositional belief (rather than knowledge), our accounts of knowledge-wh
show more aspects that resemble propositional knowledge.

Also note that from (i) and (iii), we can deduce the following two formulas, respectively:
(v) [Kwh]

xφ → [Kwh]
x[B]φ (vi) [Kwh]

xφ → [B][Kwh]
xφ

As we can see, though [Kwh]
xφ → [Kwh]

x[K]φ and [Kwh]
xφ → [K][Kwh]

xφ cannot be deduced in S4.2[Kwh]

when [Kwh]∈ {[tBMS], [tBMS
FS], [K

MS
FS]}, when the operator [K] is relaxed to [B], we obtain (v) and (vi), which

are inner theorems of S4.2[Kwh] for all [Kwh] ∈ {[tBMS], [tBMS
FS], [K

MS], [KMS
FS]}.

Another interesting commonality shared by all our logics (which also has to do with the interaction
between knowledge-wh and belief) concerns what logic of knowledge-wh our agent believes.

In section 5.1, we have already shown some complexities in the reasoning about knowledge-wh: for
example, concerning positive introspection and monotonicity, different accounts yield different behaviors
of knowledge-wh. These complexities, however, only appear when we reason about the knowledge-wh
of an agent from an external perspective; when the agent herself reasons about her own knowledge-wh
from within, all such complexities evaporate.

To put this point more rigidly, we introduce the following notion:

Definition 5.6 For any logic L, let LB = {φ | [B]φ ∈ L}.
Intuitively, for a logic L, LB collects all the formulas which L says that an agent believes. In this

sense, if L characterizes the epistemic states of an agent, then LB characterizes the epistemic logic
believed by this agent.

Then, with the help of this new notation, we can formulate the following theorem:

8Note that (iii) in the proposition below is in fact an axiom in S4.2[tB
MS
FS] and S4.2[K

MS
FS].
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Proposition 5.7 For all [Kwh]∈ {[tBMS], [tBMS
FS], [K

MS], [KMS
FS]}, S4.2[Kwh]

B can be axiomatized by the follow-
ing system:

S5[K] All axioms and rules of an S5 system for [K]
KtoKwh [K]φ [y/x]→ [Kwh]

xφ

KwhtoK
0 ` [K]φ → ψ

` [K]xφ → ψ
(where x /∈ FV (ψ))

It is also not hard to check that this system is equivalent to the system SMLMSK presented in [20], a
system in the language L ([KMS]) which is sound and strongly complete w.r.t. the class of S5-models.

Hence, conceptually, the above theorem says that no matter which account of knowledge-wh we
choose, it makes no difference for our agent: the agent always believes that her knowledge-wh behaves
in exactly the same way as MS-knowledge, and the logic for the underlying propositional knowledge is
as strong as S5. In such a logic, of course knowledge-wh is monotone and satisfies positive introspection;
moreover, it even satisfies negative introspection: ¬[Kwh]

xφ → [K]¬[Kwh]
xφ is in S4.2[Kwh]

B for all [Kwh] ∈
{[tBMS], [tBMS

FS], [K
MS], [KMS

FS]}. On the other hand, all the subtle differences among the different accounts of
knowledge-wh, generated from the gap between mere true belief and knowledge, as well as the peculiar
behavior of the FS condition, are all invisible for the agent in question.

6 Conclusion

In this paper, we studied four bundled operators: [tBMS], [tBMS
FS], [K

MS] and [KMS
FS], which correspond to the

four different accounts of knowledge-wh. We axiomatized the logics which take them (as well as [K])
as primitive modalities on the class of S4.2-constant-domain models, and compared the ways we reason
about knowledge-wh in different logics.

There many potential future works that can be done based on our work.
For example, we can further study the four bundled operators introduced in this paper. We have only

studied their behavior on S4.2-models, which characterize knowledge and belief in a highly idealized
way; our study of the obtained logics is also far from complete. Hence, it seems interesting to study
the logics obtained in this paper in greater detail, or to study the behavior of the bundled operators on
other reasonable models for knowledge and belief (of course, we need not confine ourselves to Kripke
models). This may offer us a deeper understanding of the different accounts of knowledge-wh, and may
eventually help us decide which account is indeed the right one.

Moreover, the kind of step-by-step proof method applied in this paper can be generalized to study
other complex epistemic notion. For example, there are cases where it is better to understand knowledge-
wh in terms of mention-all knowledge, and there are also various competing accounts of these kinds of
knowledge-wh, e.g. the weakly exhaustive reading (first proposed in [8]), the strongly exhaustive reading
(first proposed in [6]), and the intermediately exhaustive reading (first raised, but soon rejected, in [6], and
later proposed again in [15]), which can be formalized as ∀x(φ(x)→ [K]φ(x)), ∀x([K]φ(x)∨ [K]¬φ(x))
and ∀x(φ(x)→ [K]φ(x))∧ ∀x([B]φ(x)→ φ(x)), respectively. Using the technique developed in this
paper, we can easily pack these complex notions into bundled operators, and study their behavior.

Speaking on a more general level, the step-by-step method used in this paper can at least be gen-
eralized to any logic equipped with a set of ordinary modal operators {2a}a∈τ plus a set of bundled
operators of the form �xφ := ∃xα[φ/p]∧∀xβ [φ/p], where α and β are propositional modal formulas
containing only one propositional symbol p, boolean connectives and operators in {2a}a∈τ . Our trick
works no matter how complicated the structures of α and β are, so a great deal of complex first-order
modal notions can be handled in this way.
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A Appendix

In the appendix, we show how to prove theorem 4.1, Proposition 5.2 and Proposition 5.4.
First, we consider theorem 4.1. We only prove the case for S4.2[K

MS
FS], since the other cases can be

proved in a similar way. Moreover, for most of the time, we will be working in the language L ([KMS
FS]),

since our proof can easily be generalized to the case of L≈([KMS
FS]) with the help of some slight modifi-

cations. We will demonstrate how to do so along the proof.
First, we check that the soundness result holds.

Proposition A.1 S4.2[K
MS
FS] is sound w.r.t. the class of S4.2-constant-domain models.

PROOF. We only prove that BtoBKwh is valid on the class of S4.2-constant-domain models, and
FS&KtoKwh preserves validity on such models.

For BtoBKwh:
Let M = (W,R,D,ρ) be a S4.2-model, let w ∈W be arbitrary, and let σ be an arbitrary assignment.

Assume that M ,w,σ � [B]φ [y/x]. Then, for all v ∈W s.t. wRBv, M ,v,σ � φ [y/x].
Then, let v ∈W be arbitrary, and assume that wRBv.
We first show that M ,v,σ � [K]φ [y/x]. This is clear, since for all u ∈W s.t. vRu, it is easy to check

that wRBu, and thus M ,u,σ � φ [y/x].
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Then, we show that for all a ∈ D, M ,v,σ [x 7→ a] � [B]φ → φ . This is also clear: since (W,RB) is
KD45, v is RB-reflexive.

Hence, it is easy to see that M ,v,σ � [KMS
FS]

xφ , and thus M ,w,σ � [B][KMS
FS]

xφ .
For FS&KtoKwh:
Let M = (W,D,R,ρ) be an arbitrary S4.2-model, and assume that ψ0 → [K](ψ1 → ··· [K](ψn →

([B]φ → φ)) · · ·) is valid on M ,w, where n is an arbitrary natural number; and let x be an variable s.t.
x /∈

⋃
i≤n FV (ψi).

Then, let σ be an arbitrary assignment, and suppose (towards a contradiction) that M ,w,σ 6� ψ0→
[K](ψ1 → ··· [K](ψn → ([K]φ [y/x]→ [KMS

FS]
xφ)) · · ·). Then, there is some w0,w1, ...,wn ∈W , s.t. w =

w0Rw1R · · ·Rwn, M ,wi,σ � ψi for all i ≤ n, and M ,wn,σ 6� [K]φ [y/x]→ [KMS
FS]

xφ . By the validity of
ψ0→ [K](ψ1→ ··· [K](ψn→ ([B]φ → φ)) · · ·), and since x /∈

⋃
i≤n FV (ψi), for all a ∈D, M ,wn,σ [x 7→

a] � [B]φ → φ . But then, since M ,wn,σ � [K]φ [y/x], M ,wn,σ [x 7→ σ(y)] � [K]φ , and thus it should
follow that M ,wn,σ � [KMS

FS]
xφ , causing a contradiction. 2

It is also not hard to check that S4.2[K
MS
FS] has the following inner theorems, which will be used in our

completeness proof.
NBKwhtoBNKwh 〈B〉[KMS

FS]
xφ → [B][KMS

FS]
xφ

BKwhtoKwhB [B][KMS
FS]

xφ → [KMS
FS]

x[B]φ

R[K
MS
FS] [KMS

FS]
xφ ↔ [KMS

FS]
yφ [y/x] (where y does not appear in φ )

Now, we are ready to prove the completeness theorem.
As preparation, we first define the language L +([KMS

FS]), which is obtained by adding countably many
new variables to L ([KMS

FS]). We use X+ to denote the set of variables of L +([KMS
FS]).

Then, we use a step-by-step method to prove the completeness theorem. We first define the notion
of a network. Note that when constructing such networks, the states will all be taken from a set of states
{wi | i ∈ ω}, which we fix in advance.

Definition A.2 A network is a triple N = (W,R,ν), where

• {w0} ⊆W ⊆ {wi | i ∈ ω};
• R⊆W 2, and (W,R) forms a tree where w0 is the root;

• ν assigns each element in W a set of L +([KMS
FS])-formulas.

We also define the following two properties for the formula sets in a network:

Definition A.3 (MS-property) An L +([KMS
FS])-formula set ∆ has MS-property, iff for all φ ∈L +([KMS

FS])
and x ∈ X+, if [KMS

FS]
xφ ∈ ∆, then there is some y ∈ X+ s.t. [K]φ [y/x] ∈ ∆.

Definition A.4 (FS-property) An L +([KMS
FS])-formula set ∆ has FS-property, iff for all φ ∈L +([KMS

FS])
and x,y ∈ X+, if ¬[KMS

FS]
xφ , [K]φ [y/x] ∈ ∆, then there is some z ∈ X+ s.t. ([B]φ ∧¬φ)[z/x] ∈ ∆.

Then, we define the notion of coherence and saturation for networks:

Definition A.5 A network N = (W,R,ν) is coherent, iff the following conditions are satisfied:

(i) W is finite;

(ii) For all w ∈W, ν(w) is S4.2[K
MS
FS]-consistent; and for all w ∈W \{w0}, ν(w) is finite;

(iii) For all w,v ∈W s.t. wRv, there is some ψ s.t. ` ψ ↔
∧

ν(v) and 〈K〉ψ ∈ ν(w);

(iv) There are countably many variables in X+ which do not appear in ν(w) for any w ∈W.
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Definition A.6 A network N =(W,R,ν) is saturated, iff for all w∈W and φ ∈L +([KMS
FS]), the following

holds:

(i) ν(w) is a MCS of L +([KMS
FS])-formulas;

(ii) If [K]φ ∈ ν(w), then for all v ∈W s.t. wRv, φ ∈ ν(v);

(iii) If 〈K〉φ ∈ ν(w), then there is some v ∈W s.t. wRv and φ ∈ ν(v);

(iv) ν(w) has the MS-property;

(v) ν(w) has the FS-property.

Then, corresponding to the requirements of saturation, we also introduce the following notion of
defects:

Definition A.7 The possible kinds of defects we may find on a state on a w ∈W in a network N =
(W,R,ν) are as follow:

(d1) φ /∈ ν(w) and ¬φ /∈ ν(w)

(d2) [K]φ ∈ ν(w), but there is some v ∈W s.t. wRv and φ /∈ ν(v)

(d3) 〈K〉φ ∈ ν(w), but there is no v ∈W s.t. wRv and φ ∈ ν(v)

(d4) [KMS
FS]

xφ ∈ ν(w), but there is no y ∈ X+ s.t. [K]φ [y/x] ∈ ν(w)

(d5) ¬[KMS
FS]

xφ , [K]φ [y/x] ∈ ν(w), but there is no z ∈ X+ s.t. ([B]φ ∧¬φ)[z/x] ∈ ν(w)

where w ∈ {wi | i ∈ ω}, φ ∈L +([KMS
FS]) and x ∈ X+.

Then, we prove the repair lemma, which shows how to repair defects in a coherent network, while
maintaining its coherence.

Lemma A.8 (Repair lemma) For any coherent network N = (W,R,ν) and any defect (d) of N , then
there is a coherent network N ′ = (W ′,R′,ν ′) s.t. W ⊆W ′, R⊆ R′, ν(w)⊆ ν ′(w) for all w ∈W, and N ′

does not has (d).

PROOF. Let N = (W,R,ν) be a coherent network, and assume that N has a defect (d) for some
wm ∈W and φ ∈L +([KMS

FS]).
Since (W,R) forms a tree where w0 is the root, there is a unique path w0 = v0Rv1R · · ·Rvn = wm

in N for some n ∈ ω . Then, since N is coherent, for all 1 ≤ i ≤ n, let ψi stand for the formula s.t.
` ψi↔

∧
ν(vi) and 〈K〉ψi ∈ ν(vi−1). Then, it is easy to see that

ν(v0) ` 〈K〉(ψ1∧〈K〉(ψ2∧·· · 〈K〉(ψn−1∧〈K〉ψn) · · ·))

We then consider five cases.

Case 1: (d) is of the kind (d1). That is, φ /∈ ν(vn) and ¬φ /∈ ν(vn). Then, it is easy to check that

ν(v0) ` 〈K〉(ψ1∧〈K〉(ψ2∧·· · 〈K〉(ψn∧φ) · · ·))∨〈K〉(ψ1∧〈K〉(ψ2∧·· · 〈K〉(ψn∧¬φ) · · ·))

Then, at least one of the disjuncts is consistent with ν(v0) = ν(w0). We only consider the case where the
former is consistent with ν(w0), since the other case is similar. In this case, let

ν
′ ={(w,ν(w)) | w 6= vi for all i≤ n}
∪{(vn,ν(vn)∪{φ})}
∪{(vi,ν(vi)∪{〈K〉(ψi+1∧·· · 〈K〉(ψn∧φ) · · ·)}) | i < n}
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and let N ′ = 〈W,R,ν ′〉. It is then easy to check that N ′ is coherent, and does not have the defect (d).

Case 2: (d) is of the kind (d2). That is, [K]φ ∈ ν(vn), but there is some u∈W s.t. vnRu and φ /∈ ν(u).
Since N is coherent, there is some ψu s.t. ` ψu↔

∧
ν(u) and 〈K〉ψu ∈ ν(vn). Hence, it is easy to check

that
ν(v0) ` 〈K〉(ψ1∧〈K〉(ψ2∧·· · 〈K〉(ψn∧〈K〉(ψu∧φ)) · · ·))

Then, let

ν
′ ={(w,ν(w)) | w 6= vi for all i≤ n}
∪{(u,ν(u)∪{φ})}
∪{(vi,ν(vi)∪{〈K〉(ψi+1∧·· · 〈K〉(ψn∧φ) · · ·)}) | i≤ n}

It is easy to check that N ′ = (W,R,ν ′) is still coherent, and does not have the defect (d).

Case 3: (d) is of the kind (d3). That is, 〈K〉φ ∈ ν(vn), but there is no u ∈W s.t. vnRu and φ ∈ ν(u).
Since W is finite, there is some {wi | i ∈ω}\W 6= /0. Then, let wk be the element in {wi | i ∈ω}\W with
the least index number, and let W ′ =W ∪{wk}, R′ = R∪{(vn,wk)}, and ν ′ = ν ∪{(wk,{φ})}. It is easy
to check that N = (W ′,R′,ν ′) is coherent, but does not have (d).

Case 4: (d) is of the kind (d4). That is, [KMS
FS]

xφ ∈ ν(vn), but there is no y∈X+ s.t. [K]φ [y/x]∈ ν(vn).
Then, let y ∈ X+ be a variable that does not appear in ν(w) for any w ∈W , and suppose (towards a
contradiction) that

ν(v0) ` [K](ψ1→ [K](ψ2→ ·· · [K](ψn→¬[K]φ [y/x]) · · ·))

Then, by KwhtoK (and R[K
MS
FS]), we have

ν(v0) ` [K](ψ1→ [K](ψ2→ ··· [K](ψn→¬[KMS
FS]

x
φ) · · ·))

which contradicts the fact that ν(v0) = ν(w0) is consistent. Hence, 〈K〉(ψ1 ∧ 〈K〉(ψ2 ∧ ·· · 〈K〉(ψn ∧
[K]φ [y/x]) · · ·)) is consistent with ν(v0) = ν(w0). Hence, let

ν
′ ={(w,ν(w)) | w 6= vi for all i≤ n}
∪{(vn,ν(vn)∪{[K]φ [y/x]})}
∪{(vi,ν(vi)∪{〈K〉(ψi+1∧·· · 〈K〉(ψn∧ [K]φ [y/x]) · · ·)}) | i < n}

It is easy to check that N ′ = (W,R,ν) is still coherent, and does not have the defect (d).

Case 5: (d) is of the kind (d5). That is, ¬[KMS
FS]

xφ ∈ ν(vn) and [K]φ [y/x] ∈ ν(vn), but there is no
z ∈X+ s.t. ([B]φ ∧¬φ)[z/x] ∈ ν(vn). Then, let z ∈X+ be a variable that does not appear in ν(w) for any
w ∈W , and suppose (towards a contradiction) that

ν(v0) ` [K](ψ1→ [K](ψ2→ ··· [K](ψn→ ([B]φ [z/x]→ φ [z/x])) · · ·))

Then, by FS&KtoKwh (and R[K
MS
FS]), we have

ν(v0) ` [K](ψ1→ [K](ψ2→ ··· [K](ψn→ ([K]φ [y/x]→ [KMS
FS]

x
φ)) · · ·))
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which contradicts the fact that ν(v0) = ν(w0) is consistent. Hence, 〈K〉(ψ1 ∧ 〈K〉(ψ2 ∧ ·· · 〈K〉(ψn ∧
([B]φ ∧¬φ)[z/x]) · · ·)) is consistent with ν(v0) = ν(w0). Hence, let

ν
′ ={(w,ν(w)) | w 6= vi for all i≤ n}
∪{(vn,ν(vn)∪{([B]φ ∧¬φ)[z/x]})}
∪{(vi,ν(vi)∪{〈K〉(ψi+1∧·· · 〈K〉(ψn∧ ([B]φ ∧¬φ)[z/x]) · · ·)}) | i < n}

It is easy to check that N ′ = (W,R,ν) is still coherent, and does not have the defect (d). 2

Then, we can easily show that every coherent network can be extended into a saturated network.

Lemma A.9 For any coherent network N =(W,R,ν), there exists a saturated network N ′=(W ′,R′,ν ′)
s.t. W ⊆W ′, R⊆ R′ and ν(w)⊆ ν ′(w) for all w ∈W.

PROOF. Let N = (W,R,ν) be a coherent network.
It is not hard to see that there are only countably many possible defects. Hence, we can enumerate

them as (d)1, (d)2, (d)3, . . .
Then, we define a countable sequence of networks Ni = (Wi,Ri,νi) (i ∈ ω) recursively as follow:

• N0 = N ;

• Given a coherent network Nk, let (d)m be the defect of Nk with the least index number (note that
according to our definition of coherence, Nk necessarily has defects), and let Nk+1 = (Wk+1,Rk+1,
νk+1) be a coherent network which does not has (d)m, and also satisfies that Wk ⊆Wk+1, Rk ⊆Rk+1,
νk(w)⊆ νk+1(w) for all w ∈Wk. The existence of such a network is guaranteed by lemma A.8.

Then, let N ′ = (W ′,R′,ν ′), where

• W ′ =
⋃

i∈ω Wi;

• R′ =
⋃

i∈ω Ri;

• For all w ∈W , ν ′(w) =
⋃

i≥k νi(w), where k is the least number s.t. w ∈Wk.

It is not hard to see that N ′ is a saturated network s.t. W0 ⊆W , R0 ⊆ R and ν0(w) ⊆ ν(w) for all
w ∈W0. 2

Then, we show how to induce a canonical model from a saturated network.

Definition A.10 Given a saturated network N = (W,R,ν), M c
N = (W c

N ,Rc
N ,Dc

N ,ρc
N ) is the model

induced from N , where

• W c
N = {ν(w) | w ∈W}∪FC,

where FC = {Θ |Θ is a MCS in L +([KMS
FS]),{φ | [B]φ ∈ ν(w0)} ⊆Θ};9

• Dc
N = X+;

• Rc
N satisfies that for all ∆,Θ ∈W c, ∆RcΘ iff for all φ ∈L +([KMS

FS]), if [K]φ ∈ ∆, then φ ∈Θ;

• ρc
N satisfies that for all ∆ ∈W c

N , x̄ ∈ (Dc
N )<ω and P ∈P , x̄ ∈ ρc(P,∆) iff Px̄ ∈ ∆.

We may drop the subscript N when the context is clear.
9FC stands for Final Cluster. In fact, we can show that for all ∆ ∈W c and Θ ∈ FC, ∆RcΘ, which justifies our naming.
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Remark A.11 If we are working in the language L≈([KMS
FS]), then we let Dc

N = {[x] | x ∈ X+}, where
[x] = {y ∈ X+ | x≈ y ∈ ν(w0)}.

We then show that a model induced from a saturated network is indeed S4.2, and also has all the
properties we need.

Lemma A.12 For any saturated network N , M c
N satisfies the following:

(i) M c
N is an S4.2-model;

(ii) For all ∆ ∈W c and 〈K〉φ ∈ ∆, there is some ∆′ ∈W c s.t. ∆Rc∆′ and φ ∈ ∆′;

(iii) For all ∆ ∈W c, ∆ has the MS-property and the FS-property.

PROOF. Let M c
N be an arbitrary model induced from a saturated network N = (W,R,ν).

For item (i): By the definition of Rc and the canonicity of T[K] and 4[K], it is easy to see that M c
N is

reflexive and transitive.
We then show that M c

N is strongly convergent.
Clearly FC 6= /0, since 〈B〉> ∈ ν(w0).
Then, we show that for all ∆ ∈W c and Θ ∈ FC, ∆RcΘ. Let ∆ ∈W c and Θ ∈ FC be arbitrary. We

consider two cases:
Case 1: there is some w ∈W s.t. ∆ = ν(w). Let [K]φ ∈ ν(w) be arbitrary. It is easy to see that

ν(w0)Rcν(w); hence, 〈K〉[K]φ ∈ ν(w0), i.e. [B]φ ∈ ν(w0). Hence, by definition, φ ∈Θ. Thus, ν(w)RcΘ.
Case 2: ∆ ∈ FC. Let [K]φ ∈ ∆ be arbitrary. Then, since ∆ ∈ FC, 〈B〉[K]φ ∈ ν(w0), i.e. [K]〈K〉[K]φ ∈

ν(w0). Then, by T[K], 〈K〉[K]φ ∈ ν(w0), i.e. [B]φ ∈ ν(w0). Hence, φ ∈Θ and thus, ∆RcΘ.
Therefore, M c

N is strongly convergent.

For item (ii): Since N is saturated, we only need prove that for all Θ ∈ FC and 〈K〉φ ∈ Θ, there is
some Θ′ ∈W c s.t. ΘRcΘ′ and φ ∈Θ′.

Let Θ∈FC, 〈K〉φ ∈Θ be arbitrary. Then, since Θ∈FC, 〈B〉〈K〉φ ∈ ν(w0), i.e. [K]〈K〉〈K〉φ ∈ ν(w0).
Hence, by 4[K], [K]〈K〉φ ∈ ν(w0), i.e. 〈B〉φ ∈ ν(w0), and thus, there is some Θ′ ∈ FC s.t. φ ∈Θ′. Then,
as we have already proved, ΘRcΘ′.

For item (iii): Again, since N is saturated, we only need to prove that every Θ ∈ FC has the MS-
property and the FS-property.

Let Θ ∈ FC and φ ∈L +([Kwh]) be arbitrary.
First, assume that [Kwh]

xφ ∈ Θ. Then, 〈B〉[Kwh]
xφ ∈ ν(w0), and thus, by NBKwhtoBNKwh, [B][K]xφ ∈

ν(w0). Then, by BKwhtoKwhB, [K]x[B]φ ∈ ν(w0). Then, since N is saturated, ν(w0) has the MS-
property, and thus there is some y ∈ X+ s.t. [K][B]φ [y/x] ∈ ν(w0). Hence, [B]φ [y/x] ∈ ν(w0), and
thus [B][K]φ [y/x] ∈ ν(w0). Hence, [K]φ [y/x] ∈Θ.

Next, assume that [Kwh]
xφ ∈ Θ. Then, ¬[B][Kwh]

xφ ∈ ν(w0), and thus for all y ∈ X+, ¬[B]φ [y/x] ∈
ν(w0) by BtoBKwh. Hence, for all y ∈ X+, [B]¬[B]φ [y/x] ∈ ν(w0), and thus [B]φ [y/x] /∈Θ. 2

Then, it is routine to prove the truth lemma:

Lemma A.13 For all M c
N induced from a saturated network N , for all ∆ ∈W c and φ ∈L +([KMS

FS]),
M c

N ,∆,σ c � φ ⇐⇒ φ ∈ ∆, where σ c is the assignment s.t. σ c(x) = x for all x ∈ X+.

Remark A.14 If we are working in the language L≈([KMS
FS]), then in the formulation of the above lemma,

we let σ c be the assignment s.t. σ c(x) = [x] for all x ∈ X+.
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Finally, notice that for any S4.2[K
MS
FS]-consistent set Γ of L ([KMS

FS])-formulas Γ0, ({w0}, /0,{(w0,Γ0)})
is a coherent network. Hence, it can be extended into a saturated network N ′, from which we can induce
a canonical model M c

N ′ , such that M c
N ′ ,ν ′(w0),σ

c � Γ0.
Hence, we have the following completeness theorem:

Theorem A.15 S4.2[K
MS
FS] (as well as S4.2[K

MS
FS]

≈ ) is sound and strongly complete w.r.t. the class of S4.2-
constant-domain models.

Then, we consider Proposition 5.2. The cases for [tBMS]xφ and [tBMS
FS]

xφ are relatively easy, since it
is easy to see that x /∈ FV (φ), [tBMS]xφ and [tBMS

FS]
xφ are equivalent to [B]φ ∧φ . Hence, we only prove

the following proposition here:

Proposition A.16 The following equivalence holds:
S4.2[K

MS
FS]

≈ ⊕ [KMS
FS]

xφ → [K][KMS
FS]

xφ = S4.2[K
MS
FS]

≈ ⊕ x 6≈ y→ ([B]φ ∧φ → [K]φ)

PROOF. We first show that x 6≈ y→ ([B]φ ∧φ → [K]φ) can be deduced in S4.2[K
MS
FS]

≈ ⊕ [KMS
FS]

xφ →
[K][KMS

FS]
xφ . It is easy to check that ` φ ∧ x 6≈ y→ [KMS

FS]
z(x ≈ z→ φ [z/x]), where z is a fresh variable.

Then, by positive introspection, ` φ ∧ x 6≈ y→ [K][KMS
FS]

z(x ≈ z→ φ [z/x]), and by KwhtoFS, ` φ ∧ x 6≈
y→ [K]([B](x≈ x→ φ)→ (x≈ x→ φ)). Hence, ` φ ∧x 6≈ y→ [K]([B]φ → φ), and thus ` φ ∧x 6≈ y→
([B]φ → [K]φ). Hence, ` x 6≈ y→ ([B]φ ∧φ → [K]φ).

Then, we show that [KMS
FS]

xφ → [K][KMS
FS]

xφ can be deduced in S4.2[K
MS
FS]

≈ ⊕x 6≈ y→ ([B]φ ∧φ → [K]φ).
Equivalently, we show that [KMS

FS]
xφ ∧ [KMS

FS]
x[K]φ can be deduced. Since ` x 6≈ y→ ([B]φ ∧ φ → [K]φ)

for some fresh y, by KwhtoK, we have ` [Kwh]
y(x 6≈ y)→ ([B]φ ∧ φ → [K]φ). Then, we first show that

` [KMS
FS]

xφ → ([B]φ → [K]φ). On the one hand, it is easy to check that we have ` ¬[KMS
FS]

y(x 6≈ y)→
z ≈ x (where z is a fresh variable), and thus ` [K]φ [z/x]∧¬[KMS

FS]
y(x 6≈ y)→ ([B]φ → [K]φ). Hence,

` [KMS
FS]

xφ ∧¬[KMS
FS]

y(x 6≈ y)→ ([B]φ → [K]φ) by KwhtoK (and R[K
MS
FS]). On the other hand, ` [KMS

FS]
xφ ∧

[KMS
FS]

y(x 6≈ y)→ ([B]φ ∧φ → [K]φ), and thus ` [KMS
FS]

xφ ∧ [KMS
FS]

y(x 6≈ y)→ ([B]φ → [K]φ) by KwhtoFS.
Hence, ` [KMS

FS]
xφ → ([B]φ → [K]φ). Then, by FS&KtoKwh and 4[K], ` [KMS

FS]
xφ → ([K]φ → [KMS

FS]
x[K]φ),

and thus ` [KMS
FS]

xφ → [KMS
FS]

x[K]φ by KwhtoK. 2

Finally, for Proposition 5.4, we only prove the case for [KMS
FS], since the case for [tBMS

FS] is similar. That
is, we prove the following proposition:

Proposition A.17 The following equivalence holds:
S4.2[K

MS
FS]

≈ ⊕MONO = S4.2[K
MS
FS]

≈ ⊕ x 6≈ y→ ([B]φ → φ)

PROOF. We first show that x 6≈ y→ ([B]φ → φ) can be deduced in S4.2[K
MS
FS]

≈ ⊕ MONO. Clearly
` (x ≈ y)∧ (x 6≈ y)→ φ , i.e. ` x ≈ y→ (x 6≈ y→ φ). Then, by MONO, ` [KMS

FS]
y(x ≈ y)→ [KMS

FS]
y(x 6≈

y→ φ). It is also easy to check that ` [KMS
FS]

y(x ≈ y). Hence, ` [KMS
FS]

y(x 6≈ y→ φ). Then, by KwhtoFS,
` [B](x≈ y∨φ)→ (x 6≈ y→ φ). Hence, clearly ` [B]φ → (x 6≈ y→ φ), i.e. ` x 6≈ y→ ([B]φ → φ).

Then, we show that MONO is admissible in S4.2[K
MS
FS]

≈ ⊕ x 6≈ y→ ([B]φ → φ). Since we have x 6≈ y→
([B]φ → φ) for some fresh y, by KwhtoK, [KMS

FS]
y(x 6≈ y)→ ([B]φ → φ). Assume that ` φ → ψ . We first

prove that ` [KMS
FS]

xφ → ([B]ψ → ψ). On the one hand, ` ¬[KMS
FS]

y(x 6≈ y)→ z ≈ x (where z is a fresh
variable), and thus ` [K]φ [z/x]∧¬[KMS

FS]
y(x 6≈ y)→ φ . Then, since ` φ → ψ , ` [K]φ [z/x]∧¬[KMS

FS]
y(x 6≈

y)→ ψ , and thus ` [K]φ [z/x]∧¬[KMS
FS]

y(x 6≈ y)→ ([B]ψ → ψ). Then, by KwhtoK and R[K
MS
FS] ` [KMS

FS]
xφ ∧

¬[KMS
FS]

y(x 6≈ y)→ ([B]ψ → ψ). On the other hand, clearly ` [KMS
FS]

xφ ∧ [KMS
FS]

y(x 6≈ y)→ ([B]ψ → ψ).
Hence, ` [KMS

FS]
xφ → ([B]ψ → ψ). And since ` φ → ψ , we also have ` [K]φ → [K]ψ . Hence, by

FS&KtoKwh, ` [KMS
FS]

xφ ∧ [K]φ → [KMS
FS]

xψ , and thus ` [KMS
FS]

xφ → [KMS
FS]

xψ by KwhtoK. 2
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