
EPTCS 406

Proceedings of the

21st International Conference on

Quantum Physics and Logic

Buenos Aires, Argentina, July 15-19, 2024

Edited by: Alejandro Dı́az-Caro and Vladimir Zamdzhiev

Published: 12th August 2024

DOI: 10.4204/EPTCS.406

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Alejandro Díaz-Caro and Vladimir Zamdzhiev

A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits 1

Matthew Amy, Neil J. Ross and Scott Wesley

Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits . 44

Andrew N. Glaudell, Neil J. Ross, John van de Wetering and Lia Yeh

Procedurally Optimised ZX-Diagram Cutting for Efficient T-Decomposition in Classical Simulation 63

Matthew Sutcliffe and Aleks Kissinger

Scalable Spider Nests (...Or How to Graphically Grok Transversal Non-Clifford Gates) 79

Aleks Kissinger and John van de Wetering

Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware 96

Korbinian Staudacher, Ludwig Schmid, Johannes Zeiher, Robert Wille and Dieter Kranzlmüller

Pauli Flow on Open Graphs with Unknown Measurement Labels . 117

Piotr Mitosek

A Graphical #SAT Algorithm for Formulae with Small Clause Density . 137

Tuomas Laakkonen, Konstantinos Meichanetzidis and John van de Wetering

Quantum Algorithms for Compositional Text Processing . 162

Tuomas Laakkonen, Konstantinos Meichanetzidis and Bob Coecke

Density Matrices for Metaphor Understanding . 197

Jay Owers, Ekaterina Shutova and Martha Lewis

A. Dı́az-Caro and V. Zamdzhiev (Eds.):

Quantum Physics and Logic 2024 (QPL 2024)

EPTCS 406, 2024, pp. ii–iii, doi:10.4204/EPTCS.406.0

© A. Dı́az-Caro & V. Zamdzhiev

This work is licensed under the

Creative Commons Attribution License.

Preface

Alejandro Dı́az-Caro

Universidad Nacional de Quilmes. DCyT. Bernal, Buenos Aires, Argentina

Universidad de Buenos Aires. FCEyN. DC. Buenos Aires, Argentina

CONICET-Universidad de Buenos Aires. ICC. Buenos Aires, Argentina

alejandro@diaz-caro.info

Vladimir Zamdzhiev

Université Paris-Saclay, CNRS, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles, 91190, Gif-sur-Yvette, France

vladimir.zamdzhiev@inria.fr

This volume contains the proceedings of the 21st International Conference on Quantum Physics

and Logic (QPL 2024). The conference was held from 15 to 19 July 2024, at Instituto de Ciencias

de la Computación in Buenos Aires, Argentina, co-organized by Universidad Nacional de Quilmes and

Universidad de Buenos Aires.

Quantum Physics and Logic is a series of conferences that brings together academic and industry

researchers working on the mathematical foundations of quantum computation, quantum physics, and

related areas. The main focus is on the use of algebraic and categorical structures, formal languages,

type systems, semantic methods, and other mathematical and computer science techniques applicable

to the study of physical systems, physical processes, and their composition. Work applying quantum-

inspired techniques and structures to other fields (such as linguistics, artificial intelligence, and causality)

is also welcome.

The QPL 2024 conference solicited four kinds of submissions: proceedings submissions, non-pro-

ceedings submissions, poster submissions, and programming tool submissions.

Proceedings submissions were papers required to provide sufficient evidence of results of genuine

interest. Authors of accepted proceedings submissions were given the opportunity to present their work

during a talk at the conference, and these papers were included in the proceedings of QPL 2024. No other

types of submissions were considered for inclusion in the proceedings. Non-proceedings submissions

consisted of a three-page summary, together with a link to a separate published paper or preprint. Authors

of accepted non-proceedings submissions were invited to present their work in the form of a talk during

the conference. Poster submissions consisted of a three-page abstract of (partial) results or work in

progress, and authors of accepted poster submissions were invited to present their work during the poster

session. Programming tool submissions consisted of three-page descriptions of programming tools or

frameworks. Authors of accepted programming tool submissions were given the opportunity to present

their software during a dedicated “Tool Session”.

These proceedings contain 9 contributed papers selected for publication by the Program Committee.

Papers submitted to QPL undergo a review process managed by members of the Program Committee

(PC). The vast majority of submissions received at least three reviews. The selection of accepted pa-

pers was done through the EasyChair conference management system, following consideration of the

submitted reviews and, where necessary, discussion among the PC members. The review process was

single-blind: the identity of the authors was revealed to the reviewers, but not vice versa. PC members

could invite external experts to serve as subreviewers and participate in discussions of the submissions

they reviewed.

http://dx.doi.org/10.4204/EPTCS.406.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. Dı́az-Caro & V. Zamdzhiev iii

A total of 135 submissions (excluding withdrawals and retractions) were considered for review by the

PC. QPL 2024 had 59 accepted submissions in the non-proceedings track and 9 accepted submissions in

the proceedings track. Most of the talks were presented during parallel sessions, but a selection of talks

was presented during plenary sessions in the mornings. The program also included a poster session with

30 accepted posters, and one session dedicated to showcasing the accepted programming tool submission.

There was also an industry session where industrial sponsors of QPL 2024 were given the opportunity to

present their companies. The industry session consisted of three talks—one by Quantinuum, one by the

Technology Innovation Institute, and one by Quandela, all of them platinum sponsors.

The QPL 2024 conference featured an award for Best Student Paper. Papers eligible for the award

were those in which all the authors were students at the time of submission. The PC decided to award the

Best Student Paper award for QPL 2024 to Nicolas Heurtel (Quandela, Université Paris-Saclay, CNRS,

ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles) for his paper “A complete graphical language

for linear optical circuits with finite-photon-number sources and detectors”.

The official website of the conference is https://qpl2024.dc.uba.ar, and it contains a lot of

relevant information about QPL 2024.

The Program Committee consisted of 50 members: Barbara Amaral, Pablo Arrighi, Miriam Back-

ens, Rui Soares Barbosa, Alessandro Bisio, Titouan Carette, Ulysse Chabaud, Giulio Chiribella, Bob

Coecke, Alejandro Dı́az-Caro (co-chair), Ross Duncan, Pierre-Emmanuel Emeriau, Stefano Gogioso,

Amar Hadzihasanovic, Chris Heunen, Matty Hoban, Federico Holik, Dominic Horsman, Emmanuel Je-

andel, Martti Karvonen, Kohei Kishida, Aleks Kissinger, Ravi Kunjwal, Martha Lewis, Shane Mansfield,

Simon Martiel, Mio Murao, Ognyan Oreshkov, Anna Pearson, Simon Perdrix, Robert Rand, Neil Ross,

Mehrnoosh Sadrzadeh, Ana Belén Sainz, Carlo Maria Scandolo, John Selby, Peter Selinger, Sonja Smets,

Pawel Sobocinski, Isar Stubbe, Benoı̂t Valiron, John van de Wetering, Augustin Vanrietvelde, V. Vilasini,

Renaud Vilmart, Juliana Kaizer Vizzotto, Quanlong Wang, Alexander Wilce, Vladimir Zamdzhiev (co-

chair), and Margherita Zorzi.

The Organising Committee consisted of four members: Guido Bellomo, Alejandro Dı́az-Caro (chair),

Santiago Figueira, and Federico Holik.

The QPL Steering Committee consisted of Bob Coecke, Ana Belén Sainz, and Peter Selinger.

We wish to thank all the members of the PC for their work in selecting the program of QPL 2024.

We also thank all external subreviewers for their help and the authors for their submissions to QPL 2024.

Thanks are also due to Ana Belén Sainz for making a few decisions on papers for which the PC co-chairs

were not available. We are grateful to the EPTCS team for their help in preparing the proceedings of

the conference. We also thank the members of the Organising Committee for their help in setting up the

conference and the collaborators Martı́n Bosyk and Octavio Malherbe. We thank the student helpers who

volunteered to assist us: Carlos Miguel Soto, Malena Ivnisky, Marcos Lammers, Nicolás Ciancaglini,

Nicolás Alberto Monzón, Rafael Romero, and Santiago Cifuentes. Finally, we thank the QPL Steering

Committee for their support and all the people who have contributed to the success of QPL 2024.

QPL 2024 received financial support from Quantinuum, the Technology Innovation Institute, and

Quandela, as well as grants RD315 from CONICET and UBACyT-RC-12-2024 from Universidad de

Buenos Aires.

July 2024,

Alejandro Dı́az-Caro and Vladimir Zamdzhiev

https://qpl2024.dc.uba.ar

A. Dı́az-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 1–43, doi:10.4204/EPTCS.406.1

© M. Amy, N. J. Ross & S. Wesley
This work is licensed under the
Creative Commons Attribution License.

A Sound and Complete Equational Theory for 3-Qubit
Toffoli-Hadamard Circuits

Matthew Amy
Simon Fraser University

Burnaby, Canada
matt amy@sfu.ca

Neil J. Ross
Dalhousie University

Halifax, Canada
neil.jr.ross@dal.ca

Scott Wesley
Dalhousie University

Halifax, Canada
scott.wesley@dal.ca

We give a sound and complete equational theory for 3-qubit quantum circuits over the Toffoli-
Hadamard gate set {X ,CX ,CCX ,H}. That is, we introduce a collection of true equations among
Toffoli-Hadamard circuits on three qubits that is sufficient to derive any other true equation between
such circuits. To obtain this equational theory, we first consider circuits over the Toffoli-K gate set
{X ,CX ,CCX ,K}, where K = H⊗H. The Toffoli-Hadamard and Toffoli-K gate sets appear similar,
but they are crucially different on exactly three qubits. Indeed, in this case, the former generates
an infinite group of operators, while the latter generates the finite group of automorphisms of the
well-known E8 lattice. We take advantage of this fact, and of the theory of automorphism groups of
lattices, to obtain a sound and complete collection of equations for Toffoli-K circuits. We then extend
this equational theory to one for Toffoli-Hadamard circuits by leveraging prior work of Li et al. on
Toffoli-Hadamard operators.

1 Introduction

The Toffoli-Hadamard gate set is obtained by extending the classical reversible gate set {X ,CX ,CCX}
with the Hadamard gate H. The addition of the Hadamard gate promotes the gate set {X ,CX ,CCX} from
one that is universal for classical reversible computation to one that is universal for quantum computation
[1, 23]. Because the Hadamard gate can introduce phases of (−1) and produce superpositions, one can
think of the addition of the Hadamard gate as a simple way to augment classical reversible computation
with these typically quantum features. In turn, this motivates the study of Toffoli-Hadamard circuits
[1, 4, 3, 10, 18, 23, 25, 26].

In recent years, an important effort has been made to understand quantum circuits equationally. If G
is a set of quantum gates, an equational theory for G is given by a set of equations (or relations) among
the circuits over G. The equational theory is sound if it only equates circuits that correspond to the same
operator, and complete if it always equates circuits that correspond to the same operator. Equational
theories can be used to optimize and verify quantum circuits in practice, but, more fundamentally, they
can illuminate the mathematical structure underlying the gate set G. Sound and complete equational
theories have been found for several important gate sets [2, 7, 8, 11, 19, 22].

In this paper, we give a sound and complete equational theory for 3-qubit Toffoli-Hadamard circuits.
A presentation for the group of Toffoli-Hadamard operators was given in [18], but the presentation uses
1-, 2-, and 4-level operators as generators. While these operators can be represented by Toffoli-Hadamard
circuits, this leads to an unnatural presentation, from the perspective of quantum circuits. What is more,
the presentation of [18] contains over 2000 relations, even when restricted to 3-qubit operators. Many
of these relations can be presented concisely as relation schemas in the language of operators, but these
relations need to be expanded to be stated in the language of circuits. In contrast, our presentation
contains only 65 relations, most of which are natural from the perspective of quantum circuits.

http://dx.doi.org/10.4204/EPTCS.406.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

To obtain our presentation, we first consider circuits over the Toffoli-K gate set {X ,CX ,CCX ,K},
where K = H⊗H. The Toffoli-Hadamard and Toffoli-K gate sets appear similar, but they are crucially
different on exactly three qubits. Indeed, in this case, the former generates an infinite group of operators,
while the latter generates the finite group of automorphisms of the well-known E8 lattice. The corre-
spondence between 3-qubit Toffoli-K circuits and the automorphisms of the E8 lattice was previously
known (see [14, 21]). We take advantage of this correspondence, and of the theory of automorphism
groups of lattices, to obtain a sound and complete collection of equations for Toffoli-K circuits. The
automorphism group of the E8 lattice admits a finite Coxeter presentation, which enjoys many geometric
and combinatorial properties, and we use Tietze transformations to turn the Coxeter presentation of the
group of Toffoli-K operators into a concise circuit presentation. We then extend this equational theory
to one for Toffoli-Hadamard circuits by building upon [18]. Our paper therefore regards the group of
3-qubit Toffoli-Hadamard circuits as an extension of the automorphism group of the E8 lattice in order
to elucidate its underlying mathematical structure.

The paper is organized as follows. In Section 2, we define three groups of interest. In Section 3, we
recall prior results on finite group presentations and we review Tietze transformations. In Section 4, we
use the theory of Coxeter groups to obtain a presentation for the group of 3-qubit Toffoli-K circuits using
a minimal number of generators. We moreover show that every operator in this group can be represented
by a circuit of Toffoli-count at most 120. In Sections 5 and 6, the results of Li et al. [18] are used to
extend this presentation to a presentation for 3-qubit circuits over the gate set {X ,CX ,CCX ,K,CCZ}, and
then to one for 3-qubit Toffoli-Hadamard circuits. Our approach relies on a large number of derivations
and intricate rewriting proofs, which we relegate to several appendices and a supplement [5].

2 Three Groups and Their Generators

Let Z denote the ring of integers. The half-integers Z+1/2 are defined as Z+1/2 = {a+1/2 | a ∈ Z}
and the ring of dyadic fractions D is defined as D= Z[1/2] = {a/2k | a ∈ Z and k ∈N}. Equivalently, D
is the smallest subring of Q that contains both Z and 1/2. The E8 lattice Γ8 is the following collection
of 8-dimensional vectors,

Γ8 =
{

x ∈ Z8∪ (Z+1/2)8 ∣∣ ∑xi ≡ 0 (mod 2)
}
.

In other words, Γ8 consists of the vectors in R8 whose components sum to an even integer and are
either all integers or all half-integers. The E8 lattice is well-studied because it enjoys many remarkable
properties [12]; in particular, it provides the densest sphere packing in dimension 8 [24].

We now introduce the three groups that will be the focus of this paper. Let R be a ring. For each
n ∈ N, let GL(n,R) denote the general linear group over R in dimension n and let O(n,R) denote the
orthogonal group over R in dimension n. Define W (E8) to be the subgroup of O(8,D) consisting of
the elements of O(8,D) that fix the E8 lattice. Define TofH(n) to be the subgroup of O(2n,Z[1/

√
2])

consisting of matrices M/
√

2k, where M is an integer matrix and k ∈ N. We will be interested in the
groups W (E8), O(8,D), and TofH(3). Note that we have W (E8)≤ O(8,D)≤ TofH(3).

The above three groups are generated by well-known quantum gates. Let I denote the 2×2 identity
matrix and⊗ denote the Kronecker tensor product. Given a dimension 2 matrix M, define M0 =M⊗I⊗I,
M1 = I⊗M⊗ I, and M2 = I⊗ I⊗M. That is, M j applies operator M to the j-th qubit. Furthermore,
define CM j,k to be the operator that sends each standard basis state |x0x1x2⟩ to (Mk)

x j |x0x1x2⟩. That is,
CM j,k applies operator M to the k-th qubit whenever the j-th qubit is in the basis state |1⟩. Likewise,
define CCM j,k to be the operator that sends each standard basis state |x0x1x2⟩ to (Ml)

x jxk |x0x1x2⟩ for

M. Amy, N. J. Ross & S. Wesley 3

l ∈ {1,2,3} \ { j,k}. That is, CCM j,k applies operator M to the l-th qubit whenever the j-th and k-th
qubits are both in the basis state |1⟩. The operators CM j,k and CCM j,k denote the usual controlled-M
gate and doubly-controlled-M gate, respectively. Now recall the Pauli X , Pauli Z, Hadamard, and K
matrices,

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, H =

1√
2

[
1 1
1 −1

]
, and K j,k = H j ◦Hk,

where (◦) denotes matrix multiplication. Then CCX j,k denotes the Toffoli gate. Note that the matrices of
the form X j, K j,k, CX j,k, CCX j,k, and CCZ j,k belong to O(8,D). It is known that {X j,CX j,k,CCX j,k,K j,k}
is a generating set for W (E8) [12]. Similarly it is known that {X j,CX j,k,CCX j,k,K j,k,CCZ j,k} and
{X j,CX j,k,CCX j,k,H j} are generating sets for O(8,D) and TofH(3), respectively [3]1.

3 Presentations and Tietze Transformations

We now recall key results from combinatorial group theory. In particular, we discuss monoid presenta-
tions, as well as Tietze transformations, which will play an important role in the rest of the paper.

3.1 Presentations

Let Σ be an alphabet (i.e., a set of symbols). Then Σ∗ is the free monoid on Σ. The elements of Σ∗ are
the words over Σ, the monoid operation is string concatenation, which we denote by (·), and the identity
element in Σ∗ is the empty word, which we denote by ε .

If G is a monoid and Q is a quotient of G, then we write πQ : G↠Q to denote the canonical projection
of G onto Q. Given a subset R of Σ∗×Σ∗, we write Q = ⟨Σ | R⟩ to denote the largest quotient of G = Σ∗

such that πQ(q) = πQ(r) for all (q,r) ∈ R. If M ∼= ⟨Σ | R⟩, then we say that ⟨Σ | R⟩ is a presentation of
M and write q≈R for each (q,r) ∈ R. The elements of Σ are called generators and the elements of R are
called relations. If, for each x ∈ Σ, there exists a w ∈ Σ∗ such that πQ(x ·w) = πQ(ε), then M is a group
and ⟨Σ | R⟩ is a monoid presentation for the group M. In either case, if Σ and R are finite, then ⟨Σ | R⟩ is a
finite presentation. We distinguish between the presentations ⟨Σ | R⟩ and ⟨Σ | R′⟩ whenever R ̸= R′, even
if R and R′ generate the same quotient.

Certain aspects of presentations can be conveniently expressed in the language of string rewriting.
Let Σ be an alphabet and R ⊆ Σ∗×Σ∗. Fix some u ∈ Σ∗ and v ∈ Σ∗. If there exists some (q,r) ∈ R and
s, t ∈ Σ∗ such that u = s ·q · t and v = s · r · t, then we write,

u R−→ v.

If either u R−→ v or u R←− v, then we write u R↔ v. We say that u rewrites to v, denoted u∼R v, if either u = v
or there exists a finite sequence,

u R↔ w1
R↔ w2

R↔ ·· · R↔ wn
R↔ v.

That is, (∼R) is the symmetric, transitive and reflexive closure of R−→. Importantly, πQ(u) = πQ(v) in
Q = ⟨Σ,R⟩ if and only if u ∼R v [9, Ch. 7]. That is, two words u and v represent the same element in
G if and only if the relations in R suffice to rewrite u into v. In this sense, the relations in R define a
complete equational theory for the monoid Q with respect to the generators Σ. For further information
on presentations and on rewriting, the reader is encouraged to consult [17] and [9], respectively.

1The generator CCZ j,k is necessary to apply these results to the ancilla-free three-qubit case.

4 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

3.2 Tietze Transformations

The transformations, which we state formally below, allow one to add a generator, remove a generator,
add a relation, and remove a relation. Let Σ be an alphabet, R⊆ Σ∗×Σ∗, and G = ⟨Σ | R⟩ be a monoid.

– Gen(+). Let x be a symbol. If x ̸∈ Σ and w ∈ Σ∗, then G∼= ⟨Σ∪{x} | R∪{x≈ w}⟩.

– Gen(−). Let x ∈ Σ, x≈R w, Π = Σ\{x}, and Q = R\{x≈ w}. If Q⊆Π∗×Π∗, then G∼= ⟨Π |Q⟩.

– Rel(+). If q∼R r, then G∼= ⟨Σ | R∪{q≈ r}⟩.

– Rel(−). Let q≈R r and Q = R\{q≈ r}. If q∼Q r, then G∼= ⟨Σ | Q⟩.

The Gen(+) rule states that one can add a generator if one also adds a relation defining it in terms of
the other generators. The Gen(−) rule states that a generator can be removed if it is defined in terms of
the other generators, and does not appear in any of the other relations. The Rel(+) rule states that if a
relation can be derived from the existing ones, then it can be added to the set of relations. Finally, the
Rel(−) rule conversely states that if a relation can be derived from other relations in the presentation, it
is redundant and can be removed.

Tietze transformations are sound and complete for the isomorphism of finite monoid presentations.
That is, two presentations ⟨Σ | R⟩ and ⟨Π | Q⟩ specify the same monoid if and only if ⟨Σ | R⟩ can be
obtained from ⟨Π | Q⟩ through a finite sequence of Tietze transformations [15, Section 1].

The goal of this paper is to find presentations for groups of quantum operators in which each gener-
ator corresponds to a specific quantum gate. More explicitly, given a group G, a generating set Σ, and
a semantic interpretation [[·]]Σ : Σ→ G, our goal is to find a set of relations R ⊆ Σ∗×Σ∗ such that [[·]]
induces an isomorphism between ⟨Σ | R⟩ and G. In what follows, we start from a known presentation
⟨Π | Q⟩ over different generators Π with a semantic interpretation [[·]]Π : Π→ G, and obtain ⟨Σ | R⟩ via
a sequence of Tietze transformations. As these Tietze transformations act on the abstract group ⟨Π | Q⟩,
one must ensure that the transformations respect the intended interpretation [[·]]Σ of the new generators
in Σ, as discussed further in Appendix A.

4 From Coxeter to Circuit Presentations of W (E8)

A Coxeter group is a group G which admits a group presentation of the form ⟨r1, . . . ,rn | (r jrk)
N j,k ≈ ε⟩,

where N is an n×n matrix over N∪{∞} such that N j, j = 1 and N j,k > 1 for all j ̸= k [16]. The matrix
N is known as the Coxeter matrix of G. Note that since πG(r j · r j) = ε for each r j, then every Coxeter
presentation is automatically a monoid presentation for a group. Coxeter groups are an abstraction of
reflection groups and, in particular, for every finite Coxeter group G, there is a faithful group representa-
tion G→O(n) that maps each r j to a reflection in Rn [16]. Recall that a Householder transformation is a
reflection about the hyperplane normal to some vector α ∈Rn defined by v 7→ v−2 ⟨v,α⟩⟨α,α⟩α [16]. If r is the
reflection about the hyperplane normal to α ∈Rn and M ∈O(n), then M ◦ r ◦M−1 is the reflection about
the hyperplane normal to Mα [16, Prop. 1.2]. As a special case, v and −v define the same reflection.

The goal of this section is to construct a presentation for the Weyl group of the E8 lattice in terms of
Toffoli-K gates. Recall that the Weyl group for any lattice L⊆Rn is the finite reflection group generated
by reflections about the roots of L (see [16, Sec. 2.9]). That is, given a root system Φ for L, the group
W (L) is generated by {rα : α ∈ Φ} where rα is the reflection through the hyperplane normal to α .
Consequently, W (E8) is a Coxeter group. A root system and the corresponding Coxeter matrix for
W (E8) are given in Figure 1.

M. Amy, N. J. Ross & S. Wesley 5

1 0 0 0 0 0 0 −1/2
−1 1 0 0 0 0 0 −1/2
0 −1 1 0 0 0 0 −1/2
0 0 −1 1 0 0 0 −1/2
0 0 0 −1 1 0 0 −1/2
0 0 0 0 −1 1 1 −1/2
0 0 0 0 0 −1 1 −1/2
0 0 0 0 0 0 0 −1/2

(a) E8 Root System.

1 3 2 2 2 2 2 2
3 1 3 2 2 2 2 2
2 3 1 3 2 2 2 2
2 2 3 1 3 2 2 2
2 2 2 3 1 3 3 2
2 2 2 2 3 1 2 2
2 2 2 2 3 2 1 3
2 2 2 2 2 2 3 1

(b) W (E8) Coxeter Matrix.

Figure 1: The root system and Coxeter matrix for W (E8). Note that the root system consists of 8 vectors
and are presented as the columns of an 8×8 matrix.

⟨ΣE8 | RE8⟩ ⟨ΣE8∪ΣD | RE8∪RD(E8)⟩ ⟨ΣE8∪ΣD | RE8∪RD(E8)∪RE8(D)⟩

⟨ΣE8∪ΣD | RE8∪RD(E8)∪RE8(D)∪RD⟩

⟨ΣD | RD⟩ ⟨ΣE8∪ΣD | RE8(D)∪RD⟩ ⟨ΣE8∪ΣD | RE8∪RE8(D)∪RD⟩

Gen(+)

∼=

Rel(+)

Rel(+)

Rel(−)

Gen(−) Rel(−)

Figure 2: A diagrammatic summary of the Tietze transformations used to obtain a presentation for
W (E8). Note that in this diagram ΣE8 denotes the Coxeter generators, ΣD denotes the dyadic Toffoli-
Hadamard gates, RD(E8) expresses the ΣD in terms of ΣE8, and RE8(D) expresses ΣE8 in terms of ΣD.

To obtain a presentation in terms of Toffoli-K gates, we begin with the Coxeter presentation of
W (E8). The desired presentation is then obtained through a sequence of Tietze transformations. First,
the Gen(+) rule is used to introduce the dyadic Toffoli-K gates with their intended semantics. Second,
the Rel(+) rule is used to rewrite the Coxeter generators in terms of Toffoli-K gates (call these relations
RE8(D)). Third, the Rel(+) rule is used to introduce well-known relations satisfied by the Toffoli-K gates
(see, e.g., [18, 19]). Given these new relations, the Rel(−) rule is used to eliminate all defining relations
for the Toffoli-K gates. In a similar fashion, the Rel(−) rule is also used to eliminate the Coxeter relations
of W (E8). At this point, the Coxeter generators only appear in RE8(D), and can be eliminated using the
Gen(−) rule. What remains is a presentation of W (E8) in terms of Toffoli-K gates. All steps of this proof
are summarized in Figure 2.

Each step of this proof requires numerous applications of the corresponding Tietze transformation.
To establish that each Gen(+) and Rel(+) transformation holds, an equation of 8× 8 matrices must be
validated. To establish that each Rel(−) transformation holds, a derivational proof must be validated. In
both cases, the proof obligation is computational in nature. The validity of our Tietze transformations
have been machine-verified by the software package TIETZE2.

2Available at: https://github.com/meamy/tietze.

https://github.com/meamy/tietze

6 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

4.1 Introducing the Toffoli-K Gates
The generators of W (E8) can be written as follows.

r1 = X0 ◦X1 ◦CCX0,1 ◦X1 ◦X0 r2 = X0 ◦CX2,1 ◦CCX0,1 ◦CX2,1 ◦X0

r3 = X0 ◦CCX0,1 ◦X0 r4 =CX0,1 ◦CX0,2 ◦CCX1,2 ◦CX0,2 ◦CX0,1

r5 = X1 ◦CCX0,1 ◦X1 r6 =CX2,1 ◦CCX0,1 ◦CX2,1

r7 =CZ0,1 ◦CX2,1 ◦CCX0,1 ◦CX2,1 ◦CZ0,1 r8 = K1,2 ◦X1 ◦X2 ◦CZ0,2 ◦CCX1,2 ◦CZ0,2 ◦X2 ◦X1 ◦K1,2

These equations can be derived from the geometry of R8. First, note that CCX0,1 is a reflection about the
hyperplane normal to |b̂⟩= |1⟩⊗|1⟩⊗|−⟩ where |±⟩= (|0⟩±|1⟩)/

√
2. Then for each generator r j with

normal vector |b j⟩, it suffices to find an element M ∈W (E8) such that M |b̂⟩ = |b j⟩. The corresponding
circuit would be M ◦CCX1,2 ◦M−1. As an example of this technique, consider the Coxeter generator
r3 defined by the normal vector |b3⟩ = |0⟩⊗ |1⟩⊗ |−⟩. Since (X0) |b̂⟩ = |b3⟩ with X0 self-inverse, then
r3 = X0 ◦CCX0,1 ◦X0. The remaining cases are established in Appendix C.

Next, the Toffoli-K gates are introduced. For simplicity of presentation, we first introduce the swap
matrices σ j,k =CX j,k ◦CXk, j ◦CX j,k where σ j,k permutes the j-th qubit with the k-th qubit. Recall that
the Toffoli-K gates correspond to the following matrices3:

ΣD :=
{

X j,CXk,l ,CCX j,k,Z j,CZ j,k,K j, j+1,σ j,k | j,k, l ∈ {0,1,2}, j < k, j ̸= l ̸= k
}
.

It turns out that all Toffoli-K gates are generated by X0, CX1,0, CCX1,2, and K1,2. To derive these primitive
gates, it helps to first derive several diagonal matrices over (±1). These are then used to derive the CCX0,1
and X0 gates. From this, the swap matrices can be derived, after which, it is relatively straightforward
to construct the X0, K1,2, and CX0,1 gates. This yields four words wX , wK , wCX , and wCCX , such that
[[wX]]

∗
E8 = X0, [[wCX]]

∗
E8 =CX1,0, [[wCCX]]

∗
E8 =CCX1,2, and [[wK]]

∗
E8 = K1,2, as outlined in Appendix D.

The remaining Toffoli-K gates are derived in terms of K1,2, CCX1,2, X0, and CX0,1. To simplify this
process, we note that once a gate has been derived, it may then be used to derive other gates. This is
analogous to how the generator X0 appears in the defining relation for CX0,1. Given a set of defining
relations, if the dependencies between the generators defined by the relations form an acyclic digraph,
then the defining relations arise from a valid sequence of Gen(+) transformations (see Appendix B.2).
Likewise, the derived generators can be eliminated by a valid sequence of Tietze transformation. The
defining relations for the remaining 19 gates are found in Appendix B.2. Since the dependencies among
these generators are acyclic, then they must arise from 19 valid applications of the Gen(+) rules. Let
RD(E8) denote all 23 relations. Then W (E8)∼= ⟨ΣE8∪ΣD | RE8∪RD(E8)⟩.

4.2 Deriving the W (E8) Coxeter Generators

Recall the circuit definitions for the W (E8) generators from Section 4.1. Let RE8(D) denote the set of
corresponding relations. For example, the relation corresponding to r3 is r3≈X0 ·CCX0,1 ·X0. Since these
relations hold by definition, then they may be introduced via 8 applications of Rel(+) and consequently
W (E8)∼= ⟨ΣE8∪ΣD | RE8∪RD(E8)∪RE8(D)⟩.

4.3 Elimination of the Coxeter Generators

In this section, the relations in RE8 and RD(E8) are eliminated. To do this, some additional (ΣD)-relations
are required. For the remainder of this section, let M(x0,x1,...,xk) denote a gate M applied to the qubits x0

3For simplicity, we assume that all K gates are applied to adjacent qubits. This is sufficient, since K0,2 = K0,1 ◦K1,2.

M. Amy, N. J. Ross & S. Wesley 7

r1 · r1 → X0 ·X1 ·CCX0,1 ·X1 ·X0 · r1

→ X0 ·X1 ·CCX0,1 ·X1 ·X0 ·X0 ·X1 ·CCX0,1 ·X1 ·X0

→ X0 ·X1 ·CCX0,1 ·X1 ·X1 ·CCX0,1 ·X1 ·X0

→ X0 ·X1 ·CCX0,1 ·CCX0,1 ·X1 ·X0

→ X0 ·X1 ·X1 ·X0

→ X0 ·X0

→ ε

(a) Deriving ε from r1 · r1.

CX0,1 ·X1 → σ0,1 ·CX1,0 ·σ0,1 ·X1

→ σ0,1 ·CX1,0 ·σ0,1 ·σ0,1 ·X0σ0,1

→ σ0,1 ·CX1,0 ·X0 ·σ0,1

→ σ0,1 ·X0·CX1,0σ0,1

→ σ0,1 ·X0 ·σ0,1 ·σ0,1 ·CX1,0 ·σ0,1

→ X1 ·σ0,1 ·CX1,0 ·σ0,1

→ X1 ·CX0,1

(b) Deriving X1 ·CX0,1 from CX0,1 ·X1.

Figure 3: Examples of derivations proofs which appear in the proof that W (E8)∼= ⟨ΣD | R0⟩.

through to xk. For example, if M is a doubly-controlled X gate, then M(1,2,0) would correspond to CCX1,2.
Using this notation, we introduce the following families of relations, denoted RD.

– Bifunctoriality. MS ·NT = NT ·MS, for all MS,NT ∈ ΣD with S∩T =∅.

– Symmetry. σi, j ·MS ·σi, j = Mσi, j(S), for all MS ∈ ΣD and integers 0≤ i < j ≤ 3.

– Order. M ·M = ε , for all M ∈ ΣD.

– Commutators. MS ·NT = NT ·w, for all MS,NT ∈ ΣD with S∩T ̸=∅ and w ∈ (ΣD)
∗ minimal.

The relation σ1,2 ≈ CZ1,2 ·K1,2 ·CZ1,2 ·K1,2 ·CZ1,2 ·K1,2 from [7] is also included for simplicity. From
these relations, all elements of RD(E8) and RE8 can be derived. Since all elements of ΣE8 are self-inverse,
then it suffices to consider only the upper half of the Coxeter matrix for W (E8). As an example, consider
the relation r1 · r1 ≈ ε in RE8. The proof proceeds as in Figure 3a. Then ε can be derived from r1 · r1
using the relations in RD. Similar methods can be used to eliminate the remaining (RE8)-relations. All
derivations, for both RD(E8) and RE8 can be found in the supplement to this paper [5].
Theorem 4.1. W (E8)∼= ⟨ΣD | RD⟩

It follows immediately from Theorem 4.1 that given any circuit C over ΣD, there exists a minimal
word w over the alphabet {r1,r2, . . . ,r8} such [[C]]∗D = [[w]]∗E8. Then by the decompositions of Section 4.1,
there exists a circuit C′ over ΣD such that [[w]]∗E8 = [[C′]]∗D such that C′ contains exactly |w| Toffoli gates.
By [16, Thm. 1.8], every minimal word in W (E8) has length at most n, where n is the cardinality of the
positive root system associated with W (E8). By [16], the positive root system associated with W (E8) has
cardinality 120. Therefore, C′ contains at most 120 Toffoli gates. This provides an upper-bound on the
Toffoli count for circuits over ΣD, which can be thought of as a measure of computational complexity for
these three-qubit circuits.
Corollary 4.2. If C∈Σ∗D, then there exists C′ ∈ΣD with Toffoli count at most 120 such that [[C]]∗D = [[C′]]∗D.

4.4 A Reduced Set of Relations for W (E8)

The relations RD from Section 4.3 are far from minimal. For example, the family of commutator relations
contains all relations of the form CX j,k ·Xk ≈Xk ·CX j,k. However, given all symmetry relations, it suffices
to include only CX1,0 ·X0 ≈ X0 ·CX1,0. The remaining commutator relations can be derived, as illustrated
in Figure 3b. Furthermore, many of the relations in RD do not appear in any derivations of the supplement.
For example, the relation CX2,0 ·X0 ≈ X0 ·CX2,0 does not appear, and therefore Theorem 4.1 holds with
respect to the relation set RD \{CX2,0 ·X0 ≈ X0 ·CX2,0}. Using both techniques, a new relation set R0 is
obtained, as illustrated in Figure 4. All derivations can be found in the supplement to this paper [5].
Corollary 4.3. W (E8)∼= ⟨ΣD | R0⟩

8 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

CZ0,1 ≈ K1,2 ·CX0,1 ·K1,2 (1)

X1 ≈ CX0,1 ·X0 ·CX0,1 ·X0 (2)

Z0 ≈ CZ0,1 ·CX0,1 ·CZ0,1 ·CX0,1 (3)

Z1 ≈ K1,2 ·X1 ·K1,2 (4)

CX2,0 ≈ X1 ·CCX1,2 ·X1 ·CCX1,2 (5)

CX2,1 ≈ CX2,0 ·CX0,1 ·CX2,0 ·CX0,1 (6)

CX1,2 ≈ K1,2 ·CX2,1 ·K1,2 (7)

σ1,2 ≈ CX1,2 ·CX2,1 ·CX1,2 (8)

CX0,2 ≈ σ1,2 ·CX0,1 ·σ1,2 (9)

σ0,2 ≈ CX0,2 ·CX2,0 ·CX0,2 (10)

K0,1 ≈ σ0,2 ·K1,2 ·σ0,2 (11)

CX1,0 ≈ K0,1 ·CX0,1 ·K0,1 (12)

σ0,1 ≈ CX0,1 ·CX1,0 ·CX0,1 (13)

CCX0,2 ≈ σ0,1 ·CCX1,2 ·σ0,1 (14)

X2 ≈ σ0,2 ·X0 ·σ0,2 (15)

Z2 ≈ σ0,2 ·Z0 ·σ0,2 (16)

CCX0,1 ≈ K1,2 ·CCX0,2 ·K1,2 (17)

CZ0,2 ≈ σ1,2 ·CZ0,1 ·σ1,2 (18)

CZ1,2 ≈ σ0,1 ·CZ0,2 ·σ0,1 (19)

σ1,2 ≈ CZ1,2 ·K1,2 ·CZ1,2 ·K1,2 ·CZ1,2 ·K1,2 (20)

X0 ·X0 ≈ ε (21)

CX0,1 ·CX0,1 ≈ ε (22)

K1,2 ·K1,2 ≈ ε (23)

CCX1,2 ·CCX1,2 ≈ ε (24)

K0,1 ·K0,1 ≈ ε (25)

CX1,2 ·X0 ≈ X0 ·CX1,2 (26)

X0 ·K1,2 ≈ K1,2 ·X0 (27)

X1 ≈ σ0,1 ·X0 ·σ0,1 (28)

CX2,0 ≈ σ0,2 ·CX0,2 ·σ0,2 (29)

CX1,2 ≈ σ0,1 ·CX0,2 ·σ0,1 (30)

CX2,1 ≈ σ0,1 ·CX2,0 ·σ0,1 (31)

CCX0,1 ≈ σ0,2 ·CCX1,2 ·σ0,2 (32)

CCX0,1 ≈ σ1,2 ·CCX0,2 ·σ0,2 (33)

Z1 ≈ σ0,1 ·Z0 ·σ0,1 (34)

K0,1 ≈ σ0,1 ·K0,1 ·σ0,1 (35)

CCX1,2 ·CX1,0 ≈ CX1,0 ·CCX1,2 (36)

X0 ·CCX1,2 ≈ CCX1,2 ·X0 (37)

X0 ·CX1,0 ≈ CX1,0 ·X0 (38)

K0,1 ·K1,2 ≈ K1,2 ·K0,1 (39)

CZ0,1 ·CZ1,2 ≈ CZ1,2 ·CZ0,1 (40)

K0,1 ·Z0 ≈ X0 ·K0,1 (41)

X0 ·CCX0,1 ≈ CCX0,1 ·CX1,2 ·X0 (42)

CX0,1 ·CZ1,2 ≈ CZ1,2 ·CZ0,2 ·CX0,1 (43)

CX1,2 ·CCX1,2 ≈ CCX1,2 ·CX1,0 ·CX1,2 (44)

CCX1,2 ·CX0,1 ≈ CX0,1 ·CCX0,2 ·CCX1,2 ·CCX0,2 (45)

CCX0,1 ·CCX0,2 ≈ CCX0,2 ·CCX0,1 ·CCX0,2 ·CCX0,1 (46)

Figure 4: Relations for W (E8), denoted R0.

4.5 A Minimal Generating Set for W (E8)

Define Σ0 = {X0,CX0,1,CCX1,2,K1,2}. From Section 4.1, it is clear that Σ0 generates W (E8). In fact,
Σ0 is minimal in the sense that every proper subset of Σ0 generates a proper subgroup of W (E8). In
other words, no proper subset of Σ0 generates W (E8). To show that Σ0 is a minimal generating set for
W (E8), it suffices to show that for every maximal proper subset Σ′ of Σ0, there exists some 8×8 dyadic
matrix M such that M commutes with the elements of Σ′ but does not commute with the elements of Σ0.
Intuitively, the subgroup generated by Σ′ commutes with M, whereas the subgroup generated by Σ0 does
not commute with M. This claim is proven in Appendix E, and the matrices are constructed.
Theorem 4.4. Σ0 is a minimal generating set for W (E8).

5 Extending to a Presentation of O(8,D)

Li et al. [18] introduced a presentation for O(8,D) using m-level operators. Let n > 0, I be the n× n
identity matrix, and [m] = {0,1, . . . ,m− 1}. Then given an m×m matrix M with m < n, and a strictly
increasing sequence (a0, . . . ,am−1) over [m], define M[a0,...,am−1] to be the n×n matrix such that:

1. For each pair of elements (j,k) over [m], the component (a j,ak) of M[a0,...,am−1] is equal to the
component (a j,ak) of M;

2. For each pair of elements (j,k) over [n]\{a0,a1, . . . ,am}, the component (j,k) of M[a0,a1,...,am−1] is
equal to the component (a j,ak) of I.

M. Amy, N. J. Ross & S. Wesley 9

X [a,b]
2 ≈ ε (47)

(−1)[a]
2 ≈ ε (48)

K[a,b,c,d]
2 ≈ ε (49)

X [a,b] ·X [c,d] ≈ X [c,d] ·X [a,b] (50)

X [a,b] · (−1)[c] ≈ (−1)[c] ·X [a,b] (51)

X [a,b] ·K[c,d,e, f] ≈ K[c,d,e, f] ·X [a,b] (52)

(−1)[a] ·K[b,c,d,e] ≈ K[b,c,d,e] · (−1)[a] (53)

(−1)[a] · (−1)[b] ≈ (−1)[b] · (−1)[a] (54)

K[a,b,c,d] ·K[e, f ,g,h] ≈ K[e, f ,g,h] ·K[a,b,c,d] (55)

X [a,c] ·X [a,b] ≈ X [c,b] ·X [a,c] (56)

X [b,c] ·X [a,b] ≈ X [a,c] ·X [b,c] (57)

X [a,b] · (−1)[a] ≈ (−1)[b] ·X [a,b] (58)

X [a,e] ·K[a,b,c,d] ≈ K[e,b,c,d] ·X [a,e] (59)

X [b,e] ·K[a,b,c,d] ≈ K[a,e,c,d] ·X [b,e] (60)

X [c,e] ·K[a,b,c,d] ≈ K[a,b,e,d] ·X [c,e] (61)

X [d,e] ·K[a,b,c,d] ≈ K[a,b,c,e] ·X [d,e] (62)

X [a,b] ·K[a,b,c,d] ≈ K[a,b,c,d] ·X [a,b] · (−1)[b] · (−1)[d] (63)

X [b,c] ·K[a,b,c,d] ≈ (−1)[a] ·K[a,b,c,d] · (−1)[a] ·K[a,b,c,d] · (−1)[a] (64)

X [c,d] ·K[a,b,c,d] ≈ K[a,b,c,d] ·X [b,d] (65)

K[a,b,c,d] ·K[b,d,e, f] ≈ K[b,d,e, f] ·K[a,b,c,d] (66)

(−1)[a] · (−1)[e] ·X [a,e] ·ρa,b,c,d,e, f ,g,h ≈ ρa,b,c,d,e, f ,g,h ·X [a,e] · (−1)[e] · (−1)[a] (67)

Figure 5: The relations in Rn from [18], for all valid choices of a,b,c,d,e, f ,g,h ∈ Z. We write
ρa,b,c,d,e, f ,g,h for the substring K[e, f ,g,h] ·K[a,b,c,d] ·X [d,e] ·K[a,b,c,d] ·K[e, f ,g,h].

We say that M[a0,...,am−1] is an m-level operator of type M. When n = 8 for example, CCX0,1 = X [6,7],
CCZ0,1 = (−1)[7], and K[4,5,6,7] is a controlled K-gate. Define the following for n > 3.

Gn =
{
(−1)[a],X [a,b],K[a,b,c,d] | a,b,c,d ∈ Z and 0≤ a < b < c < d < n

}
It was shown in [18] that O(n,D)∼= ⟨Gn |Rn⟩, where Rn is given in Figure 5. The goal of this section is
to construct a sequence of Tietze transformations, starting from ⟨G8 |R8⟩, such that the generators and
relations describing the subgroup W (E8) are replaced by ΣD and R0, respectively. This process follows
similarly to Section 4. However, one should note that |R8|= 2113 (see Appendix F.1). Inspection of Rn
reveals that many of these relations are either definitional, or obtained through permutations of indices.
For this reason, Rn is partially reduced before carrying out the aforementioned Tietze transformations.
First, the permutations are eliminated via a sequence of Rel(−) transformations to obtain R1

n . Next,
some redundant commutator relations are eliminated via a sequence of Rel(−) transformations to obtain
R2

n . Finally, the derived generators are eliminated to obtain R3
n . All proofs can be found in Appendix F.

5.1 Permutation Groups and Reindexing

Let [n] = {0,1, . . . ,n−1} and S(n) denote the group of permutations on [n]. For j,k ∈ [n], let τ j,k denote
the permutation that swaps j and k. For example, τ0,1(0) = 1, τ0,1(1) = 0, and τ0,1(2) = 2. The group
S(n) is a finite reflection group generated by the transpositions {τ j, j+1 | j ∈ [n]} (see [16]). The braiding
relations, which state that τ j, j+1 ◦τ j+1, j+2 ◦τ j, j+1 = τ j+1, j+2 ◦τ j, j+1 ◦τ j+1, j+2 for all j ∈ [n−2], together
with the order relations are sound and complete for S(n) (see [17]). The standard representation of S(n)
as a reflection group sends each τ j,k to X[j,k]. This means that every two-level operator of type X can be
decomposed into sequence of transpositions. Intuitively, each X[j,k] acts by permuting the standard basis
vectors | j⟩ and |k⟩, which can be achieved through a sequence of transpositions of basis vectors. Clearly,
S(8) ↪→W (E8)≤ O(8,D).

Many relations in Rn are related via permutation of indices. The formal application of σ to a word
over Gn is defined inductively as follows.

σ(ε) = ε σ(X [a,b] ·w) = X [σ(a),σ(b)] ·σ(w)

σ((−1)[a] ·w) = (−1)[σ(a)] ·σ(w) σ(K[a,b,c,d] ·w) = K[σ(a),σ(b),σ(c),σ(d)] ·σ(w)

10 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

Note that σ(w) may yield m-level operators with invalid indices. For example, τ1,2(X [1,2]) yields X [2,1],
which is not a valid two-level operator since 2 > 1. The permutation σ is a valid reindexing for w if all
symbols in σ(w) are well-formed multi-level operators. If σ is valid for v and w, then σ is valid for v ·w.
Conversely, if σ is valid for w, then σ is valid for all subwords in w. Consider, for example, the word
w = K[2,3,4,5] ·K[3,5,6,7] which appears on the left-hand side of an instance of Relation (55). Let σ ∈ S(8)
be the cyclic permutation 7 7→ 5 7→ 3 7→ 1 7→ 6 7→ 4 7→ 2 7→ 0 7→ 7. Then σ is a valid reindexing for w
since σ(w) = K[0,1,2,5] ·K[1,3,4,5]. In Appendix F.2, we show that all valid reindexings are derivable using
only the relations in Rσ = {Relations (47), (51), (52), (56), (57), (58), (59), (60), (61) and (62)}.

5.2 Selecting Representative Relations for O(n,D)

As a consequence of Section 5.1, many relations in Rn can be replaced by representative instances. For
example, let r denote instance (−1)[6] · (−1)[7] ≈ (−1)[7] · (−1)[6] of Relation (54). Clearly σ = τ0,6 ◦τ1,7
is a valid reindexing for r, where σ(r) is (−1)[0] · (−1)[1] ≈ (−1)[1] · (−1)[0] Then by Appendix F.2, it is
possible to derive σ(r) from r using Rn \{σ(r)}. Then ⟨Gn |Rn⟩ ∼= ⟨Gn |Rn \{σ(r)}⟩ by Rel(−).

This process can be repeated, until all instances of Relation (54) have been eliminated, except for
the representative relation r. In a similar fashion, Relations (48), (49), (53), (55), (63), (64), (65), (66)
and (67) can be eliminated, since these relations do not appear in Rσ . Then O(n,D)∼= ⟨Gn |R1

n⟩ where
R1

n is the set of representative relations (see Appendix F.3).

5.3 Selecting Representative Generators for O(n,D)

Define the new generator set,

G 1
n =

{
X [a,b], | a,b,∈ Z and 0≤ a < b < n

}
∪
{

K[0,1,2,3]
}
∪
{
(−1)[0]

}
.

Many of the generators in Gn are redundant in the sense that they may be constructed using only the
generators in G 1

n . This is because S(n) ↪→G 1
n , with G 1

n \Gn consisting of valid indexings of either K[0,1,2,3]

or (−1)[0]. Furthermore, these reindexings follow from relations in R1
n . As an example, consider the

instance X [0,7] ·(−1)[0] ≈ (−1)[7] ·X [0,7] of Relation (58). Using the order relation for X [0,7], the following
derivation holds.

(−1)[7] ← (−1)[7] ·X [0,7]
2 ← X [0,7] · (−1)[0] ·X [0,7]

Similarly, the original relation can be obtained from this new relation using the order relation for X [0,7].
Then through a Rel(+) transformation followed by a Rel(−) transformation, the commutator relation
X [0,7] ·(−1)[0]≈ (−1)[7] ·X [0,7] can be replaced by the definitional relation (−1)[7] = X [0,7] ·(−1)[0] ·X [0,7].
This process can be repeated for all instances of Relation (58).

To derive the four-level operators of type K, it suffices to note that the following family of relations
are valid with respect to [[·]]∗O.

K[a,b,c,d] ≈ X [0,a] ·X [1,b] ·X [2,c] ·X [3,d] ·K[0,1,2,3] ·X [3,d] ·X [2,c] ·X [1,b] ·X [0,a]

The cases where {a,b,c,d} ∩ {0,1,2,3} ≠ ∅ can be handled using the techniques of Appendix F.2.
These relations are introduced using a sequence of Rel(+) relations to obtain a new relation set R. In
this relation set, all multi-level operators of type (−1) and K are defined in terms of (−1)[0] and K[0,1,2,3],
respectively. As outlined in Appendix B.2, these defining relations can be used to eliminate all generators
in G 1

n \R0
n via a finite sequence of Tietze transformations.

M. Amy, N. J. Ross & S. Wesley 11

X [a,a+1]
2 ≈ ε (68)

(−1)[0]
2 ≈ ε (69)

K[0,1,2,3]
2 ≈ ε (70)

X [b,b+1] · (−1)[0] ≈ (−1)[0] ·X [b,b+1] (71)

X [c,c+1] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [c,c+1] (72)

(−1)[4] ·K[0,1,2,3] ≈ K[0,1,2,3] · (−1)[4] (73)

(−1)[0] · (−1)[4] ≈ (−1)[4] · (−1)[0] (74)

K[0,1,2,3] ·K[4,5,6,7] ≈ K[4,5,6,7] ·K[0,1,2,3] (75)

X [a,a+1] ·X [a,a+2] ≈ X [a+1,a+2] ·X [a,a+1] (76)

X [a+1,b] ·X [a,a+1] ≈ X [a,b] ·X [a+1,b] (77)

X [0,1] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [0,1] · (−1)[1] · (−1)[3] (78)

X [1,2] ·K[0,1,2,3] ≈ (−1)[0] ·K[0,1,2,3] · (−1)[0] ·K[0,1,2,3] · (−1)[0] (79)

X [2,3] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [1,3] (80)

K[0,1,2,3] ·K[1,3,4,5] ≈ K[1,3,4,5] ·K[0,1,2,3] (81)

(−1)[0] · (−1)[4] ·X [0,4] ·ρ ≈ ρ ·X [0,4] · (−1)[4] · (−1)[0] (82)

Figure 6: The reduced relations in R3
n , for all valid choices of a,b,c ∈ Z where b > 0 and c > 3. We

write ρ for the substring K[4,5,6,7] ·K[0,1,2,3] ·X [3,4] ·K[0,1,2,3] ·K[4,5,6,7].

The elimination process works as follows. Let M ∈ G 1
n \ Gn. Then M appears in some defining

relation M ≈ w. If M appears in some relation r ∈ R, then every instance of M will be replaced by w. For
example, Relation (54) will be replaced by the following relation.

(−1)[0] ·X [0,5] · (−1)[0] ·X [0,5] ≈ X [0,5] · (−1)[0] ·X [0,5] · (−1)[0]

We introduce the following abbreviations for simplicity of presentation.

(−1)[c] = X [0,c] · (−1)[0] ·X [0,c] K[0,1,2,d] = X [3,d] ·K[0,1,2,3] ·X [3,d] K[0,1,c,d] = X [2,c] ·K[0,1,2,d] ·X [2,c]

K[0,b,c,d] = X [1,b] ·K[0,1,c,d] ·X [1,b] K[a,b,c,d] = X [0,a] ·K[0,b,c,d] ·X [0,a]

Denote this new set of relations R2
n . Then O(n,D)∼= ⟨G 1

n |R2
n⟩.

5.4 Eliminating Redundant Relations

It will now shown that many relations in R2
n are redundant. First, the braiding relations and order

relations are used according to Appendix F.2 to eliminate all other relations over the two-level operators
of type X . This reduced relation set is then used to show that all instances of Relations (51) and (52) can
be derived using transpositions in place of swaps. Finally, it is shown that the relations Relations (59),
(60), (61) and (62) are entirely redundant. All derivations can be found in Appendix F.4. This new set of
relations is denoted R3

n , and can be found in Figure 6. Then via a sequence of Rel(−) transformations,
the following presentation is obtained.

Theorem 5.1. O(n,D)∼= ⟨G 1
n |R3

n⟩.

5.5 Introducing the W (E8) Generators

It this section, the circuit generators and relations for W (E8) are introduced. Since CCX1,2 = X [6,7], then
without loss of generality, every instance of X [6,7] in R3

8 can be replaced by CCX1,2. Next, the generators
X0 and CX0,1 are introduced. This yields the following relations.

(rX) : X0 ≈ X [0,4] ·X [1,5] ·X [2,6] ·X [3,7] (rCX) : CX0,1 ≈ X [2,6] ·X [3,7]

It turns out that the K1,2 gate decomposes into a word over X0 and K[0,1,2,3]. This is because K[0,1,2,3] is a
K1,2 gate which is applied when qubit 0 is in state |1⟩, and X0 ◦K[0,1,2,3] ◦X0 is a K1,2 gate which is applied

12 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

(−1)[0]
2 ≈ ε (83)

K[0,1,2,3]
2 ≈ ε (84)

X [1,2] · (−1)[0] ≈ (−1)[0] ·X [1,2] (85)

X [2,3] · (−1)[0] ≈ (−1)[0] ·X [2,3] (86)

X [3,4] · (−1)[0] ≈ (−1)[0] ·X [3,4] (87)

X [4,5] · (−1)[0] ≈ (−1)[0] ·X [4,5] (88)

X [5,6] · (−1)[0] ≈ (−1)[0] ·X [5,6] (89)

X [6,7] · (−1)[0] ≈ (−1)[0] ·X [6,7] (90)

X [4,5] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [4,5] (91)

X [5,6] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [5,6] (92)

X [6,7] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [6,7] (93)

(−1)[4] ·K[0,1,2,3] ≈ K[0,1,2,3] · (−1)[4] (94)

(−1)[0] · (−1)[4] ≈ (−1)[4] · (−1)[0] (95)

K[0,1,2,3] ·K[4,5,6,7] ≈ K[4,5,6,7] ·K[0,1,2,3] (96)

X [0,1] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [0,1] · (−1)[1] · (−1)[3] (97)

X [1,2] ·K[0,1,2,3] ≈ (−1)[0] ·K[0,1,2,3] · (−1)[0] ·K[0,1,2,3] · (−1)[0] (98)

X [2,3] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [1,3] (99)

K[0,1,2,3] ·K[1,3,4,5] ≈ K[1,3,4,5] ·K[0,1,2,3] (100)

(−1)[0] · (−1)[4] ·X [0,4] ·ρ ≈ ρ ·X [0,4] · (−1)[4] · (−1)[0] (101)

Figure 7: The relations in R4
8 , sufficient to extend from W (E8) to O(8,D).

when qubit 0 is in state |0⟩. Together, these two words compose to a K1,2 gate without any controls. This
yields the following relation.

(rK) : K1,2 ≈ K[4,5,6,7] ·X0 ·K[4,5,6,7] ·X0

The relations rX , rCX , and rK can be validated with respect to [[·]]O. These relations do not depend on
one-another, so the generators in Σ0 may be introduced via a sequence of Gen(+) transformations, as
outlined in Appendix B.2. Likewise, the derived generators in ΣD \Σ0 may be introduced via a sequence
of Gen(+) transformations, as outlined in Appendix B.2. Finally, the relations in R0 may be introduced,
since Section 4.1 established the validity of these relations in W (E8), which is a subgroup of O(8,D).
This sequence of transformations yields O(8,D)∼=

〈
G 1

8 ∪ΣD |R3
8 ∪R0∪{rX ,rCX ,rK}

〉
.

5.6 Eliminating the Multi-Level Operators
Using the generators in ΣD and the relations in R0, it is possible to eliminate all two-level operators of
type X . As a first step, it must be shown that the two-level operators can be decomposed into circuits
over ΣD. This follows from the fact that ΣD generates W (E8), and S(n) ↪→W (E8).

X [0,1] = X0 ◦X1 ◦CCX0,1 ◦X1 ◦X0 X [1,2] = X0 ◦CCX0,1 ◦CCX0,2 ◦CCX0,1 ◦X0

X [2,3] = X0 ◦CCX0,1 ◦X0 X [3,4] = X0 ◦X2 ◦CCX0,1 ◦X0 ◦CCX1,2 ◦CCX0,2 ◦CCX1,2 ◦X0 ◦CCX0,1 ◦X2 ◦X0

X [4,5] = X1 ◦CCX0,1 ◦X1 X [5,6] =CCX0,1 ◦CCX0,2 ◦CCX0,1

These relations can be validated with respect to [[·]]O, and consequently introduced via a sequence of
Gen(+) operations. These definitional relations can then be used to eliminate the two-level operators of
type X , as outlined in Appendix B.2.

In this new presentation, then relations Relations (47), (56) and (57) are replaced by relations over
ΣD. Since R0 is complete for W (E8), then these relations can be derived from R0. Consequently, these
relations can be eliminated with a sequence of Rel(−) transformations. This yields a new set of relations,
denoted R4

8 , which can be found in Figure 7. For simplicity of presentation, we used X [0,1] through to
X [6,7] as abbreviations for the circuits given above. Furthermore, we take CCZ = (−1)[7] to be a generator
with (−1)[0] an alias for X0 ·X1 ·CCZ ·X1 ·X0. Then define Σ1 = ΣD∪{K[0,1,2,3],CCZ} and R1 = R0∪R4

8 ,
where K[0,1,2,3] corresponds to a negatively controlled K gate.

Theorem 5.2. O(8,D)∼= ⟨Σ1 | R1⟩.

M. Amy, N. J. Ross & S. Wesley 13

H2 ·X0 ≈ X0 ·H2 (102)

H2 ·CX0,1 ≈ CX0,1 ·H2 (103)

H2 ·CCX1,2 ≈ K0,1 ·K1,2 ·CCZ ·K1,2 ·K0,1 ·H2 (104)

H2 ·CCZ ≈ CCX0,1 ·H2 (105)

H2 ·K1,2 ≈ K1,2 ·H2 (106)

H2 ·K[0,1,2,3] ≈ K[0,1,2,3] ·H2 (107)

H2 ·H2 ≈ ε (108)

Figure 8: Additional relations for TofH(3).

5.7 A Minimal Generating Set for O(8,D)
It turns out that CCZ and K[0,1,2,3] can be defined in terms of one-another, given that generators in ΣD.
The decompositions are as follows.

CCZ = K1,2 ◦CZ1,2 ◦X0 ◦K[0,1,2,3] ◦X0 ◦CZ1,2 ◦K[0,1,2,3] ◦X [5,6] K[0,1,2,3] = (K1,2 ◦CCZ)3 ◦X [5,6]

Given this observation, it seems natural to eliminate the K[0,1,2,3], given that it is not a common generator
in quantum computation. However, the set ΣD ∪{CCZ} is minimal, whereas the set ΣD ∪{K[0,1,2,3]} is
not. In other words, choosing the generator K[0,1,2,3] enables a smaller generating set, whereas choosing
the generator CCZ allows for more conventional circuit decompositions. For this reason, we choose to
keep both K[0,1,2,3] and CCZ in our presentation. The minimality of these generating sets are proven in
Appendix E, using the same techniques as in Section 4.5.

Theorem 5.3. The following generating sets are minimal for O(8,D).

1. ΣK =
{

X0,CX0,1,CCX1,2,K[0,1,2,3]
}

.

2. ΣZ = {X0,CX0,1,CCX1,2,K1,2,CCZ}

6 Extending to the 3-Qubit Toffoli-Hadamard Circuits

We now give a presentation of TofH(3), by leveraging the presentation of O(8,D) found in Section 5.
The argument in this section closely follows [18, Section 5]. From [3], it is known that TofH(3) is
obtained by adding the generator H2 to O(8,D). Let Σ2 = Σ1 ∪{H2} and R2 extend the set R1 with all
relations found in Figure 8. Using the relations in Figure 8, the generator H2 can be moved from the
left-hand side to the right-hand side of any word over Σ1. Since H2 is self-inverse, this is sufficient to
decide equality in TofH(3).

The proof proceeds as follows. In Lemma 6.1, it is shown that H2 commutes with every word in over
Σ1 using only the relations in R2. This is used in Lemma 6.2, to show that every word over Σ2 can be
rewritten as a word over Σ1, followed by at most one H2 gate. Since R1 ⊆ R2 is a complete equational
theory for O(8,D) with every element of TofH(3) of the form described in Lemma 6.2, it follows that R2
is a complete equational theory for TofH(3) (see Theorem 6.3).

Lemma 6.1. If w ∈ Σ∗1, then there exists a w′ ∈ Σ∗1 such that H2 ·w ∼R2 w′ ·H2.

Proof. The proof follows by induction on |w|.

– Base Case. If |w|= 0, then H2 ·w = w ·H2. Then H2 ·w ∼R2 w ·H2 by the transitivity of (∼R2).

– Inductive Case. Assume that for some k ∈ N, if |w| = k, then there exists a w′ ∈ Σ∗1 such that
H2 ·w ∼R2 w′ ·H2.

14 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

– Inductive Step. Assume that |w|= k+1. Then there exists a u ∈ Σ∗1 and x ∈ Σ1 such that x ·u = w.
It follows by one of Relations (102), (103), (104), (105), (106) and (107), that there exits a u′ ∈ Σ∗1
such that H2 ·w ∼R2 u′ ·H2 · u. Since |u| = k, then by the inductive hypothesis, there exists a
w′ ∈ Σ∗1 such that H2 ·u ∼R2 w′ ·H2. Then u′ ·H2 ·u ∼R2 u′ ·w′ ·H2. Then H2 ·u ∼R2 u′ ·w′ ·H2 by
the transitivity of (∼R2), and the inductive case holds.

Then by the principle of induction, there exists a w′ ∈ Σ∗1 such that H2 ·w ∼R2 w′ ·H2.

Lemma 6.2. If w ∈ Σ∗2, then there exists some w′ ∈ Σ∗1 and ℓ ∈ {0,1} such that w ∼R2 w′ ·Hℓ
2 .

Proof. Let f : Σ∗2→ N map each word w ∈ Σ∗2 to the number of H2 symbols in w. The proof follows by
induction on f (w).

– Base Case. If f (w) = 0, then w ∈ Σ∗1. Then w ∼R2 w ·H0
2 by the reflexivity of (∼R2)

– Inductive Hypothesis. Assume that for some k ∈ N, if f (w) = k, then there exists some w′ ∈ Σ∗1
and ℓ ∈ {0,1} such that w ∼R2 w′ ·Hℓ

2 .

– Inductive Step. Assume that f (w) = k + 1. Then there exists w1 ∈ Σ∗2 and w2 ∈ Σ∗1 such that
w = w1 ·H2 ·w2 with f (w1) = f (w)−1. Then by Lemma 6.1, w ∼R2 w1 ·w′2 ·H2 for some w′2 ∈ Σ∗1.
Then f (w1 ·w′2) = f (w1) = f (w)−1. By the inductive hypothesis, there exists some w3 ∈ Σ∗1 and
ℓ ∈ {0,1} such that w1 ·w′2 ∼R2 w3 ·Hℓ

2 . Then w ∼R2 w3 ·Hℓ+1
2 . If ℓ= 0, then w ∼R2 w3 ·H2 and

we are done. Otherwise, if ℓ= 1, then w ∼R2 w3 by Relation (108). In either case, there exists an
ℓ′ ∈ {0,1} such that w ∼R2 w3 ·Hℓ′

2 and the inductive step holds.

Then by the principle of induction, there exists some w′ ∈ Σ∗1 and ℓ ∈ {0,1} such that w ∼R2 w′ ·Hℓ
2 .

Theorem 6.3. For all w1,w2 ∈ Σ∗2, [[w1]]
∗
H = [[w2]]

∗
H if and only if w1 ∼R2 w2.

Proof. It follows by matrix multiplication that the relations in Figure 8 are sound. It remains to be
shown that the relations in Figure 8 are complete. Let w1 ∈ Σ∗2 and w2 ∈ Σ∗2 such that [[w1]]

∗
H = [[w2]]

∗
H .

By Lemma 6.2, there exists ℓ1, ℓ2 ∈ {0,1} and w′1,w
′
2 ∈ Σ∗1 such that w1 ∼R2 w′1 ·H

ℓ1
2 and w2 ∼R2 w′2 ·H

ℓ2
2 .

Since [[w1]]
∗
H ∈ O(8,D) ∼= ⟨Σ1,R1⟩ with R1 ⊆ R2, then w′1 ·H

ℓ1
2 ∼R2 w′2 ·H

ℓ1
2 . Assume for the intent of

contradiction that ℓ1 ̸= ℓ2. Then [[w′1]]
∗
H = [[w′2]]

∗
H ◦ [[H2]]H . Then [[w′2]]

∗
H ◦ [[H2]]

∗
H ∈ O(8,D). However,

[[w′2]]
∗
H ◦ [[H2]]H has a denominator of the form 1/(2k

√
2), and therefore [[w′2]]

∗
H ◦ [[H2]]H ̸∈ O(8,D). By

contradiction, ℓ1 = ℓ2. Since ℓ1 = ℓ2, then w1 ∼R2 w2 by the transitivity and symmetry of (∼R2). Since
w1 and w2 were arbitrary, then the relations in Figure 8 are complete.

7 Conclusion

We used the geometry of W (E8) to obtain a circuit presentation for the 3-qubit Toffoli-K circuits, and
then leveraged [18] to obtain a finite presentation of 3-qubit Toffoli-Hadamard circuits. Our presentation
contains 65 relations, compared to the 2113 relations of [18]. There are several directions for future work.
We hope to simplify our presentation by further reducing the number of relations. In addition, we plan to
explore the structural properties of the group of 3-qubit Toffoli-Hadamard circuits and of its subgroups.
In particular, it is known that the group O(8,D) is generated by reflections, but it is not known whether
this group can be presented as an (infinite) Coexeter group. From an applied perspective, we also hope
to explore applications of these presentations to circuit optimization and equivalence checking.

M. Amy, N. J. Ross & S. Wesley 15

References
[1] Dorit Aharonov (2003): A simple proof that Toffoli and Hadamard are quantum universal. arXiv:quant-

ph/0301040.
[2] Matthew Amy, Jianxin Chen & Neil J. Ross (2018): A Finite Presentation of CNOT-Dihedral Operators.

EPTCS 266, pp. 84–97, doi:10.4204/eptcs.266.5.
[3] Matthew Amy, Andrew Glaudell & Neil Ross (2020): Number-Theoretic Characterizations of Some Re-

stricted Clifford+T Circuits. Quantum 4, p. 252, doi:10.22331/q-2020-04-06-252.
[4] Matthew Amy, Andrew N. Glaudell, Sarah Meng Li & Neil J. Ross (2023): Improved Synthesis of Toffoli-

Hadamard Circuits. In: Reversible Computation, Springer-Verlag, pp. 169–209, doi:10.1007/978-3-031-
38100-3 12.

[5] Matthew Amy, Neil J. Ross & Scott Wesley (2024): Supplement: A Sound and Complete Equational Theory
for 3-Qubit Toffoli-Hadamard Circuits. Available as an ancillary file from the arXiv page of this paper.

[6] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press,
doi:10.1017/CBO9781139172752.

[7] Xiaoning Bian & Peter Selinger (2023): Generators and relations for 2-qubit Clifford+T operators. EPTCS
394, pp. 13–28, doi:10.4204/eptcs.394.2.

[8] Xiaoning Bian & Peter Selinger (2023): Generators and relations for 3-qubit Clifford+CS operators. EPTCS
384, pp. 114–126, doi:10.4204/eptcs.384.7.

[9] Ronald V. Book & Friedrich Otto (1993): String-Rewriting Systems. Springer, doi:10.1007/978-1-4613-
9771-7.

[10] Maria Luisa Dalla Chiara, Antonio Ledda, Giuseppe Sergioli & Roberto Giuntini (2013): The Toffoli-
Hadamard gate system: an algebraic approach. Journal of Philosophical Logic 42, pp. 467–481,
doi:10.1007/s10992-013-9271-9.

[11] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix & Benoı̂t Valiron
(2023): A Complete Equational Theory for Quantum Circuits. In: LiCS, IEEE, pp. 1–13,
doi:10.1109/LICS56636.2023.10175801.

[12] J. H. Conway & N. J. A. Sloane (1987): Sphere-Packings, Lattices, and Groups. Springer-Verlag,
doi:10.1007/978-1-4757-6568-7.

[13] Jörg Endrullis, Herman Geuvers, Jakob Grue Simonsen & Hans Zantema (2011): Levels of undecidability in
rewriting. Information and Computation 209(2), pp. 227–245, doi:10.1016/j.ic.2010.09.003.

[14] Adam P. Goucher (2020): Minimalistic Quantum Computation. https://cp4space.hatsya.com/2020

/05/10/minimalistic-quantum-computation/. Accessed: 2023-11-26.
[15] Simon Henry & Samuel Mimram (2022): Tietze Equivalences as Weak Equivalences. Applied Categorical

Structures 30(3), pp. 453–483, doi:10.1007/s10485-021-09662-w.
[16] James E. Humphreys (1990): Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced

Mathematics, Cambridge University Press, doi:10.1017/CBO9780511623646.
[17] D. L. Johnson (1990): Presentations of Groups. Cambridge University Press,

doi:10.1017/CBO9781139168410.
[18] Sarah Meng Li, Neil J. Ross & Peter Selinger (2021): Generators and Relations for the Group On(Z[1/2]).

EPTCS 343, pp. 210–264, doi:10.4204/eptcs.343.11.
[19] Justin Makary, Neil J. Ross & Peter Selinger (2021): Generators and Relations for Real Stabilizer Operators.

EPTCS 343, p. 14–36, doi:10.4204/eptcs.343.2.
[20] Leonardo de Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: TACAS, Springer-Verlag,

pp. 337–340, doi:10.5555/1792734.1792766.
[21] Michel Planat (2011): Clifford group dipoles and the enactment of Weyl/Coxeter group W (E8) by entangling

gates. Gen. Math. Notes 2(1), pp. 96–113, doi:10.22331/q-2020-04-06-252.

https://arxiv.org/abs/quant-ph/0301040
https://arxiv.org/abs/quant-ph/0301040
https://doi.org/10.4204/eptcs.266.5
https://doi.org/10.22331/q-2020-04-06-252
https://doi.org/10.1007/978-3-031-38100-3_12
https://doi.org/10.1007/978-3-031-38100-3_12
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.4204/eptcs.394.2
https://doi.org/10.4204/eptcs.384.7
https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1007/978-1-4613-9771-7
https://doi.org/10.1007/s10992-013-9271-9
https://doi.org/10.1109/LICS56636.2023.10175801
https://doi.org/10.1007/978-1-4757-6568-7
https://doi.org/10.1016/j.ic.2010.09.003
https://cp4space.hatsya.com/2020/05/10/minimalistic-quantum-computation/
https://cp4space.hatsya.com/2020/05/10/minimalistic-quantum-computation/
https://doi.org/10.1007/s10485-021-09662-w
https://doi.org/10.1017/CBO9780511623646
https://doi.org/10.1017/CBO9781139168410
https://doi.org/10.4204/eptcs.343.11
https://doi.org/10.4204/eptcs.343.2
https://doi.org/10.5555/1792734.1792766
https://doi.org/10.22331/q-2020-04-06-252

16 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

[22] Peter Selinger (2015): Generators and Relations for n-Qubit Clifford Operators. LMCS 11(2:10), pp. 1–17,
doi:10.2168/LMCS-11(2:10)2015.

[23] Yaoyun Shi (2003): Both Toffoli and controlled-NOT need little help to do universal quantum computing.
Quantum Info. Comput. 3(1), pp. 84–92, doi:10.5555/2011508.2011515.

[24] Maryna S. Viazovska (2017): The sphere packing problem in dimension 8. Annals of Mathematics 185(3),
pp. 991–1015, doi:10.4007/annals.2017.185.3.7.

[25] Renaud Vilmart (2019): A ZX-calculus with triangles for Toffoli-Hadamard, Clifford+T , and beyond. EPTCS
287, pp. 313–344, doi:10.4204/eptcs.287.18.

[26] Renaud Vilmart (2023): Completeness of sum-over-paths for Toffoli-Hadamard and the dyadic fragments
of quantum computation. In: CSL, LIPIcs 252, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp.
36:1–36:17, doi:10.4230/LIPIcs.CSL.2023.36.

https://doi.org/10.2168/LMCS-11(2:10)2015
https://doi.org/10.5555/2011508.2011515
https://doi.org/10.4007/annals.2017.185.3.7
https://doi.org/10.4204/eptcs.287.18
https://doi.org/10.4230/LIPIcs.CSL.2023.36

M. Amy, N. J. Ross & S. Wesley 17

A Semantic Tietze Transformations

This section recalls what it means for a function to induce a monoid homomorphism. This is then used to
prove the soundness and completeness of Tietze transformations with respect to semantic interpretations.
The majority of this section is dedicated to proving that all induced homomorphisms are isomorphisms,
and in the case of Gen(+), the extension is unique. The uniqueness of this extension is necessary to
prove that each generator in ΣD has the intended matrix semantics.

A.1 Induced Monoid Homomorphisms

Let Σ be an alphabet and M a monoid. For each function f : Σ→M, define the function f ∗ : Σ∗→M such
that f ∗(x1 ·x2 · · ·xn) = 1M ◦ f (x1)◦ f (x2)◦· · ·◦ f (xn) for all x1 ·x2 · · ·xn ∈ Σ∗. It can then be shown that f ∗

is the unique monoid homomorphism such that f ∗(x) = f (x) for all x ∈ Σ [17]. Given a set of relations
R⊆ Σ∗×Σ∗, it can then be asked whether f induces a monoid homomorphism between G = ⟨Σ | R⟩ and
M. This question is answered by the following theorem.

Theorem A.1 ([9]). Let M and G = ⟨Σ | R⟩ be monoids with f : Σ→ M. There there exists a unique
monoid homomorphism ϕ : G→M such that f ∗ = ϕ ◦πG if and only if f ∗(q) = f ∗(r) for all q≈R r. In
this case, Im(ϕ) = ⟨ϕ(πG(Σ))⟩.

Theorem A.1 characterizes when f induces a monoid homomorphism, and how to construct this in-
duced homomorphism ϕ . It can then be asked how the construction of ϕ interacts with the introduction
or elimination of generators. As outlined by the following theorems, the elimination of generators corre-
sponds to certain restrictions of ϕ , whereas the introduction of generators corresponds to certain unique
extensions of ϕ .

Lemma A.2. Let Σ be an alphabet, x ∈ Σ, Σ′ = Σ\{x}, and D = {x≈ w} for some w ∈ (Σ′)∗. If q ∈ Σ∗,
then there exists a q′ ∈ (Σ′)∗ such that q∼D q′.

Proof. Let f : Σ∗→ N count the x symbols in a word. Then the proof follows by induction on f (q).

– Base Case. If f (q) = 0, then q ∈ (Σ′)∗.

– Inductive Hypothesis. Assume that for some k ∈N, if f (q) = k, then there exists some q′ ∈ (Σ′)∗

such that q∼D q′.

– Inductive Step. Assume f (q) = k + 1. Since f (q) > 1, then there exists some u,v ∈ Σ∗ such
that q = u · x · v. Since k+ 1 = f (q) = f (u · x · v) = f (u)+ f (x)+ f (v) = f (u)+ f (v)+ 1, then
k = f (u)+ f (v). Since x≈D w, then q∼D u ·w · v with f (u ·w · v) = f (u)+ f (v) = k. Then by the
inductive hypothesis, there exists some q′ ∈ (Σ′)∗ such that u ·w · v∼D q′. Then q∼ q′.

By the principle of induction, there exists some q′ ∈ (Σ′)∗ such that q∼D q′.

Theorem A.3. Let M and G = ⟨Σ | R⟩ be monoids with f : Σ→M, and H = ⟨Σ∪{x} | R∪{x≈ w}⟩ be
a monoid for some x ̸∈ Σ and w ∈ Σ∗. Define g : Σ∪{x} →M such that g|Σ = f and g : x 7→ f ∗(w). If f
induces a monoid homomorphism from G to M, then g is the unique extension of f to induce a monoid
homomorphism from H to M. Furthermore, if f induces an injection (resp. surjection) from G to M, then
g induces an injection (resp. surjection) from H to M.

Proof. Let Π = Σ∪{x} and Q = R∪{x≈ w}. Assume that f induces a homomorphism from G to M.

18 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

– (Induced Hom). Let q≈Q r. Then either q≈R r or (q,r) = (x,w). First, assume that q≈R r. Then
f ∗(q) = f ∗(r) by Theorem A.1. Then g∗(q) = (g|Σ)∗(q) = f ∗(q) = f ∗(r) = (g|Σ)∗(r) = g∗(r).
Next, assume that (q,r) = (x,w). Then g∗(x) = g(x) = f ∗(w) = (g|Σ)∗(w) = g∗(w). In either case
g∗(q) = g∗(r). Since q ≈R r was arbitrary, then g∗(q) = g∗(r) for all q ≈R r. Then g induce a
monoid homomorphism from H to M by Theorem A.1.

– (Uniqueness). Assume that k : Σ∪{x} →M is an extension of f which induces a monoid homo-
morphism. Since k induces a monoid homomorphism and x ≈Q w, then k∗(x) = k∗(w) by Theo-
rem A.1. Then k(x) = k∗(x) = k∗(w) = (k|Σ)∗(w) = f ∗(w) = g(x) by construction of g. Moreover,
since k|Σ = f = g|Σ, then k = g. Since k was arbitrary, then g is unique.

– (Injectivity). Let f induce ϕ and g induce ρ . Assume that ϕ is injective. Let q,r ∈ Π∗ such that
ρ(πH(q)) = ρ(πH(r)). Since x≈Q w, then by Lemma A.2 there exists q′,r′ ∈ Σ∗ such that q∼Q q′

and r ∼Q r′. Then πH(q) = πH(q′) and πH(r) = πH(r′). Then ρ(πH(q′)) = ρ(πH(r′)). Then
g∗(q′) = g∗(r′). Since q′,r′ ∈ Σ∗, then f ∗(q′) = f ∗(r′). Then ϕ(πG(q′)) = ϕ(πG(r′)). Since ϕ is
injective, then πG(q′) = πG(r′). Then q′ ∼R r′. Since R⊆Q, then q′ ∼Q r′. Then πH(q′) = πH(r′).
Then πH(q) = πH(r). Since q and r were arbitrary, then ρ is injective.

– (Surjectivity). Let f induce ϕ and g induce ρ . Assume that ϕ is surjective. Since ϕ(πG(y)) =
f ∗(y) = g∗(y) = ρ(πH(y)) for each y ∈ Σ, then ϕ(πG(Σ)) ⊆ Im(ρ). Since ϕ is surjective, then
H = Im(ϕ) = ⟨ϕ(πG(Σ))⟩ ≤ Im(ρ)≤ H and ρ is surjective.

Therefore, g is the unique extension of f to induce a monoid homomorphism from H to M, with g
inducing an injection (resp. surjection) whenever f induces an injection (resp. surjection).

Theorem A.4. Let M and G= ⟨Σ | R⟩ be monoids with f : Σ→M and H = ⟨Π |Q⟩ where Π= Σ\{x} for
some x∈Σ and Q=R\{x≈w} for some x≈R w. If Q⊆Π∗×Π∗ and f induces a monoid homomorphism
from G to M, then f |Π induces a monoid homomorphism from H to M. Furthermore, if f induces an
injection (resp. surjection) from G to M, then f |Π induces an injection (resp. surjection) from H to M.

Proof. Assume that f induces a homomorphism from G to M.

– (Induced Hom). Since f induces a monoid homomorphism, then f ∗(q) = f ∗(r) for all q ≈R r
by Theorem A.1. Since Q ⊆ R and Q ⊆ Π∗×Π∗, then f |∗

Π
(q) = f ∗(q) = f ∗(r) = f |∗

Π
(r) for all

q≈Q r. Then f |Π induces a monoid homomorphism from H to M by Theorem A.1.

– (Injectivity). Let f induce ϕ and f |Π induce ρ . Assume that ϕ is injective. Let q,r ∈Π∗ such that
ρ(πH(q)) = ρ(πH(r)). Then f |∗

Π
(q) = f |∗

Π
(r). Then f ∗(q) = f ∗(r). Then ϕ(πG(q)) = ϕ(πG(r)).

Since ϕ is an injective, then πG(q) = πG(r). Then q ∼R r. Since Q = R\{x ≈ w}, Q ⊆ Π∗×Π∗,
and q,r ∈Π∗, then q∼Q r. Then πH(q) = πH(r). Since q and r were arbitrary, then ρ is injective.

– (Surjectivity). Let f induce ϕ and f |Π induce ρ . Assume that ϕ is surjective. Since ϕ(πG(y)) =
f ∗(y) = f |∗

Π
(y) = ρ(π(y)) ∈ Im(ρ) for each y ∈ Π, then ϕ(πG(Π)) ⊆ Im(ρ). Since x ≈R w, then

πG(x)= πG(w), and consequently ϕ(πG(x))=ϕ(πG(w))= f ∗(w)= f |∗
Π
(w)= ρ(πH(w))∈ Im(ρ).

Then ϕ(πG(Σ)) ⊆ Im(ρ). Since ϕ is surjective, then H = Im(ϕ)⟨ϕ(πG(Σ)) ≤ Im(ρ) ≤ H and ρ

is surjective.

Therefore, f |Π induces a monoid homomorphism from H to M with f |Π inducing an injection (resp.
surjection) whenever f induces an injection (resp. surjection).

M. Amy, N. J. Ross & S. Wesley 19

A.2 Semantic Interpretations and Relations

Let G= ⟨Σ | R⟩ be a monoid presentation with an interpretation [[·]]G : Σ 7→H. The Rel(+) transformation
states that if r ∈ Σ∗ and q ∈ Σ∗ with r ∼R q, then ⟨Σ | R⟩ ∼= ⟨Σ | R∪{r}⟩. In practice, deriving q from r
can be challenging, and on a theoretical level, this is known to be undecidable [13]. However, it is rarely
the case that one would try to prove r∼R q without some intuition that πG(r) = πG(q). In the case of this
paper, this intuition comes from knowledge about operators in O(8,D). For example, if M ◦N = A ◦B,
then for any complete set of relations R, it must be the case that M ·N ∼R A ·B. More generally, if
[[r]]∗

Σ
= [[q]]∗

Σ
with [[·]]∗

Σ
inducing an injection, then r ∼R q. This claim is established by the following

theorem, and used freely throughout the paper to simplify derivations.

Definition A.5 (Valid Semantic Interpretation). A semantic interpretation [[·]]Σ : G→H for a presentation
G = ⟨Σ | R⟩ is valid if [[q]]∗

Σ
= [[r]]∗

Σ
for all r ≈R q.

Theorem A.6. Let G = ⟨Σ | R⟩ be a presentation with a valid semantic interpretation [[·]]G : Σ 7→ H. If
[[·]]G is injective and [[q]]∗

Σ
= [[r]]∗

Σ
, then q∼R r.

Proof. Since [[·]]Σ is valid, then by Theorem A.1, [[·]]Σ induces a monoid homomorphism ϕ : G→H such
that [[·]]∗

Σ
= ϕ ◦πG. Assume that [[q]]∗

Σ
= [[r]]∗

Σ
. Then ϕ(πG(q)) = [[q]]∗

Σ
= [[r]]∗

Σ
= ϕ(πG(r)). Since ϕ is

injective, then πG(q) = πG(r). Then q∼R r.

A.3 Semantics and Generator Introduction

In the previous section, it was assumed that [[·]]Σ inducted an injection. This is a reasonable assumption.
For example, if G = ⟨Σ | R⟩ is a presentation for H, then there exists an isomorphism G∼= H from which
[[·]]Σ can be extracted.

This can become problematic when trying to translate a known presentation to a desired generator set.
Assume that ⟨Π | Q⟩ is a known presentation with a semantic interpretation [[·]]Π : Π→ H, from with a
presentation ⟨Σ | R⟩ is derivable via a sequence of Tietze transformations. One would hope that after each
Tietze transformation, the semantic interpretation continues to induce an injection, so that Theorem A.6
continues to hold. Furthermore, one would hope that after all of the Tietze transformations, [[·]]Σ is a
valid semantic interpretation.

It will be shown that under reasonable assumptions, all Tietze transformations satisfy these assump-
tions. The first concern is answered by Theorem A.3 and Theorem A.4, which state that after each
Gen(+) or Gen(−) transformation, [[·]]Π continues to induce a monoid homomorphism (resp. injection,
surjection, isomorphism). The only time injectivity might fail is after a new generator is added. In
Gen(+), the symbol x ∈ Σ becomes an alias for w ∈Π∗. Then it suffices to check that [[x]]Σ = [[w]]∗

Π
.

20 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

X1 CZ0,1

Z1 CX2,0 CX2,1 CX1,2 CZ0,2 Z0

CX1,0 K0,1 σ0,2 CX0,2 σ1,2 CZ1,2 Z2

σ0,1 CCX0,2 CCX0,1 X2

Figure 9: The derived generator graph for the defining relations in R0.

B From Derivations to Tietze Transformations

This section describes higher-level structures to reason about Tietze transformations. It is proven that
each structure corresponds to a valid sequence of Tietze transformations, and is therefore sound for the
isomorphism of finite monoid presentations. The structures described in this section are used throughout
Section 4 and Section 5.

B.1 Digraphs and Termination

This section reviews the basics of directed graphs. A directed graph is a tuple (V,E) such that V ⊆ E×E.
A vertex v is a child of u if (u,v) ∈ E. A vertex v is a parent of u if (v,u) ∈ E. A path in (V,E) is some
sequence (u0,u1, . . . ,un) over V such that (uk−1,uk) ∈ E for all k ∈ {1,2, . . . ,n}. A directed graph (V,E)
is acyclic if u0 ̸= un for all paths (u0,u1, . . . ,un) in (V,E).

Lemma B.1 ([6, Sect. 2.2]). If a digraph (V,E) is finite and acyclic, then for every vertex v ∈ V , there
exists some path of length n ending (resp. starting) at v such that every path ending (resp. starting) at v
has length at most n. In particular, there exists a vertex v ∈V such that v has no children (resp. parents)
in (V,E).

Note that the original statement of Lemma B.1 concerned the termination of abstract rewriting sys-
tems (which can be modelled using paths through digraphs). In the proofs that follow, this intuition is
useful to keep in mind. Indeed, Lemma B.1 is used to argue that certain rewriting procedures terminate,
though the rewriting systems are never stated explicitly for simplicity.

B.2 Derived Generators and Tietze Transformations

In Section 4.1, it was claimed that 19 of the generators in ΣD could be introduced freely, because their
defining relations formed an acyclic dependency graph. Later, in Appendix E, the same argument was
used to remove these 19 generators from the generating set for W (E8). Similar arguments appear through-
out Section 5. The goal of this section is to establish both directions rigorously. First, formal definitions
are given for defining relations and derived generator graphs (i.e., the graph of dependencies between the
relations). Then, Theorem B.6 and Theorem B.11 are established to justify the claims of Section 4.1 and
Section 4.5 respectively. Finally, it is shown that these theorems apply to the generators in Section 4.

M. Amy, N. J. Ross & S. Wesley 21

Definition B.2 (Defining Relations). Let Σ be an alphabet. A Σ-defining relation for x ∈ Σ is a relation
of the form x ≈ w where w ∈ Σ∗. A family of Σ-defining relations for Π ⊆ Σ is a set {rx | x ∈ Π} such
that for each x ∈Π, rx is a Σ-defining relation for x.

Definition B.3 (Derived Generator Graph). Let D be a family of Σ-defining relations for Π ⊆ Σ. The
derived generator graph for D is the digraph ΓD(D) := (Π,E) such that (x,y) ∈ E if and only if there
exists w,w′ ∈ Σ∗ such that x≈ w · y ·w′ is a relation in D.

The proofs of Theorem B.6 and Theorem B.11 both rely heavily on derived generator graphs. Intu-
itively, a generator can be introduced (resp. eliminated) if it has no dependencies (resp. dependants) in
the derived generator graph. It is always possible to find such a generator, provided the graph is acyclic.
However, once a generator has been removed from the defining relations, it is important that the new
derived generator graph is also acyclic. In fact, the new derived generator graph is always a subgraph of
the previous derived generator graph, as outlined in Lemma B.4.

Lemma B.4. If D is a family of Σ-defining relations and D′ ⊆ D, then ΓD(D′) is a subgraph of ΓD(D).

Proof. If D is a family of Σ-defining relations for Π, then there exists Π′ ⊆ Π such that D′ is a family
of Σ-defining relations for Π′. Then ΓD(D) = (Π,E) and ΓD(D′) = (Π′,E ′) for some E ⊆ Π×Π and
E ′ ⊆ Π′×Π. Let (x,y) ∈ E ′, Then there exists some w,w′ ∈ Σ∗ such that x ≈D′ w · y ·w′. Since D′ ⊆ D,
then x ≈D w · y · y′. Then (x,y) ∈ E. Since (x,y) was arbitrary, then E ′ ⊆ E. Since Π′ ⊆ Π and E ′ ⊆ E,
then ΓD(D′) is a subgraph of ΓD(D).

B.2.1 Introduction of Derived Generators

The goal of this section is to prove Theorem B.6. First, Lemma B.5 is introduced to prove that every finite
set of defining relations with an acyclic graph must contain at least one defining relation x ≈ w whose
right-hand side consists only of primitive generators. Since w is consists only of primitive generators,
then it may be introduced by a Gen(+) transformation. The proof then follows by induction on the
number of defining relations, as outlined below.

Lemma B.5. If D is a family of Σ-defining relations for Π with Π finite and ΓD(D) acyclic, then there
exists a relation x≈ w in D such that w ∈ (Σ\Π)∗.

Proof. Since Π is finite and ΓD(D) is acyclic, the by Lemma B.1, there exists some vertex x ∈ Π such
that x has no children in ΓD(D). Let x ≈D w be the Σ-defining relation for x in D with n = |w|. Let
k ∈ [n]. Assume for the intent of contradiction that wk ∈Π. Then there exists some w′,w′′ ∈ Σ∗ such that
w = w′ ·wk ·w′′. Then wk is a child of x by definition. However, x has no children by assumption. Then
wk ̸∈Π by contradiction. Since k was arbitrary, then w ∈ (Σ\Π)∗.

Theorem B.6. Let Σ ⊆ Σ̂ be an alphabet with Π = Σ̂ \ Σ finite and R ⊆ Σ∗ × Σ∗. If D is a family
of Σ̂-defining relations for Π with ΓD(D) acyclic, then there exists a length |Π| sequence of Gen(+)
transformations between ⟨Σ | R⟩ and ⟨Σ̂ | R∪D⟩.

Proof. The proof follows by induction on |Π|.

– Base Case. Assume that |Π| = 0. Then |D| = 0 and ⟨Σ | R⟩ = ⟨Σ′ | R∪D⟩. Then there exists a
length 0 sequence of Gen(+) transformations between ⟨Σ | R⟩ and ⟨Σ̂ | R∪D⟩.

– Inductive Hypothesis. Assume that for some k ∈ N, if |Π| = k and ΠD(D) is acyclic, then there
exists a length k sequence of Gen(+) transformations between ⟨Σ | R⟩ and ⟨Σ̂ | R∪D⟩.

22 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

– Inductive Step. Assume that |Π| = k + 1 and ΓD(D) is acylic. Since Π is finite and ΓD(D) is
acyclic, then by Lemma B.5 there exists a Σ̂-defining relation x ≈ w in D. Let Λ = Σ∪{x} and
Q = R∪{x ≈ w}. Then D\{rx} is a family of Σ̂-defining relations for Π\{x} and Q⊆ Λ∗×Λ∗.
Since ΓD(D\{rx}) is a subgraph of ΓD(D) by Lemma B.4 with ΓD(D) acyclic, then ΓD(D\{rx})
is also acyclic. Since |Π \ {x}| = |Π| − 1 = k and ΓD(D \ {rx}) is acyclic, then by the inductive
hypothesis, there exists a length k sequence of Gen(+) transformations from ⟨Λ |Q⟩ to ⟨Σ̂ | R∪D⟩.
Furthermore, ⟨Σ | R⟩ ∼= ⟨Λ | Q⟩ by Gen(+). Then there exists a length k+1 sequence of Gen(+)
transformations between ⟨Σ | D⟩ and ⟨Σ̂ | R∪D⟩.

By the principle of induction, there exists a length |Π| sequence of Gen(+) transformations between
⟨Σ | D⟩ and ⟨Σ′ | R∪D⟩.

B.2.2 Tietze Transformations to Exchange Relations

The goal of this section is to introduce a technique necessary to prove that derived generators can be
eliminated via finite sequences of Tietze transformations. Using the Tietze transformations discussed so
far, it is possible to remove and introduce redundant relation. In practice, one often wishes to replace a
relation q ≈ w with a relation q′ ≈ w′, where neither q ≈ w nor q′ ≈ w′ is redundant without the other
relation. The following lemma gives a sufficient condition for when q≈w can be exchanged with q′≈w′,
and provides an upper bound on the number of Tietze transformations required to carry out the exchange.

Lemma B.7. Let G= ⟨Σ |R⟩ be a presentation with q≈w in R and Q=R\{q≈w}. If there exists q′ ∈Σ∗

and w′ ∈ Σ∗ such that q∼Q q′ and w∼Q w′, then there exists a finite sequence of Tietze transformations
between G and ⟨Σ | Q∪{q′ ≈ w′}⟩ of length between 1 and 2.

Proof. Let S = R∪{q′ ≈ w′} and T = Q∪{q′ ≈ w′}. If q′ ≈R w′, then ⟨Σ | R⟩= ⟨Σ | S⟩. Assume instead
that q ̸≈R w. Since Q ⊆ R, then q ∼R q′ and w ∼R w′. Then q′ ∼R q by the symmetry of (∼R). Since
q′ ∼R q, q ∼R w, and w ∼R w′, then q′ ∼R w′ by transitivity. Then ⟨Σ | R⟩ ∼= ⟨Σ | S⟩ by a single Rel(+)
transformation. In either case, there exists a sequence of Tietze transformations between ⟨Σ | R⟩ and
⟨Σ | S⟩ of length at most one. Since Q ⊆ T , then q ∼T q′ and w ∼T w′. Then w′ ∼T w by the symmetry
of (∼T). Since q ∼T q′, q′ ∼T w′, and w′ ∼T w, then q ∼T w by the transitivity of (∼S). Since S ̸= T ,
then ⟨Σ | S⟩ ∼= ⟨Σ | T ⟩ by a single Rel(+) transformation. In conclusion, there exists a sequence of Tietze
transformations between ⟨Σ | R⟩ and ⟨Σ | S⟩ of length at between 1 and 2.

B.2.3 Elimination of Derived Generators

The goal of this section is to prove Theorem B.11. The first step in this proof is to show that the set
of relations can be replaced by Q∪D where Q is a set of relations over the primitive generators and
D is the set of defining relations. This follows by induction in Lemma B.9, where Lemma B.8 is used
to find new relations of the form, and then Lemma B.7 is used to exchange the relations. The second
step in this proof is to show that the derived generators can be eliminated through a finite sequence of
Tietze transformations. This follows by induction in Theorem B.11, where Lemma B.10 is used to find
a derived generator upon which non other derived generator depends. Such a generator is necessarily
redundant, and may be eliminated via a Rel(−) transformation.

Lemma B.8. Let Σ\ Σ̂ be an alphabet with Π = Σ̂\Σ. If D is a family of Σ̂-defining relations for Π with
ΓD(D) acyclic, then for each w ∈ Σ∗, there exists some w′ ∈ (Σ′)∗ such that w∼D w′.

Proof. The proof follows by induction on the size of Π.

M. Amy, N. J. Ross & S. Wesley 23

– Base Case. Assume that |Π| = 0 and w ∈ Σ̂∗. Then Π = ∅ and w ∈ Σ∗. Since w ∼D w by the
symmetry of (∼D), then there exists some w′ ∈ Σ∗ such that w∼D w′.

– Inductive Hypothesis. Assume that for some k ∈N, if |Π|= k, ΓD(D) is acyclic, and w∈ Σ̂∗, then
there exists some w′ ∈ Σ∗ such that w∼D w′.

– Inductive Step. Assume that |Π| = k + 1 and ΓD(D) is acyclic. Since Π is finite and ΓD(D)
is acyclic, then by Lemma B.10, there exists a Σ̂-defining relation x ≈ q in D such that D \ {rx}
is a family of (Σ̂ \ {x})-defining relations for Π \ {x}. Then by Lemma A.2, there exists some
w′ ∈ (Σ̂\{x})∗ such that w∼D w′. Since ΓD(D\{rx}) is a subgraph of ΓD(D) by Lemma B.4 with
ΓD(D) acyclic, then ΓD(D \ {rx}) is also acyclic. Then D \ {rx} is a family of (Σ̂ \ {x})-defining
relations for Π\{x} with ΓD(D) acyclic and w′ ∈ (Σ̂\{x})∗. Since |Π\{x}| = |Π|−1 = k, then
by the inductive hypothesis, there exists some w′′ ∈ Σ∗ such that w′ ∼D′ w′′. Since D′ ⊆ D, then
w′ ∼D w′′. Since ∼D is transitive, then w∼D w′′. Then there exists a w′′ ∈ Σ∗ such that w∼D w′′.

Since ΓD(D) is acyclic, then by the principle of induction, there exists a w′ ∈ Σ∗ such that w∼D w′.

Lemma B.9. Let Σ ⊆ Σ̂ be an alphabet with Π = Σ̂ \Σ and R ⊆ Σ̂∗× Σ̂∗ finite. If D ⊆ R is a family of
Σ̂-defining relations for Π with ΓD(D) acyclic, then there exists a Q ⊆ Σ∗×Σ∗ with |Q| ≤ |R \D| and
a finite sequence of Tietze transformations between ⟨Σ̂ | R⟩ and ⟨Σ̂ | Q∪D⟩ of length between k and 2k
where k = |R|− |R∩ (Σ∗×Σ∗)|− |D|.

Proof. Let S = R∩ (Σ∗×Σ∗) and S = R\ (S⊔D). Then R = S⊔D⊔S. The proof follows by induction
on |S| in this decomposition.

– Base Case. Assume that R decomposes into S⊔D⊔ S with |S| = 0. Then ⟨Σ̂ | R⟩ = ⟨Σ̂ | S∪D⟩.
Then there exists a length 0 sequence of Tietze transformations between ⟨Σ̂ | R⟩ and ⟨Σ̂ | S∪D⟩.
Clearly |S|= |R\D|.

– Inductive Hypothesis. Assume that for some k ∈ N, if R decomposes as S⊔D⊔ S with |S| = k,
then there exists some Q ⊆ Σ∗×Σ∗ with |Q| ≤ |R \D| and a sequence of Tietze transformations
between ⟨Σ̂ | R⟩ and ⟨Σ̂ | Q∪D⟩ of length at most 2k.

– Inductive Step. Assume that R decomposes into S⊔D⊔ S with |S| = k + 1. Let q ≈ w in S.
Then by Lemma B.8, there exists q′ ∈ Σ∗ and r′ ∈ Σ∗ such that q ∼D q′ and r ∼D r′. Then by
Lemma B.7, there exists a finite sequence of Tietze transformations between ⟨Σ̂ | R⟩ and ⟨Σ̂ | R′⟩
of length between 1 and 2, where R′ = R∪{q′ ≈ w′}\{q≈ w}. Then R′ decomposes as S′⊔D⊔S′

where S′ = S∪{q′ ≈ r′} and S′ = S \ {q ≈ r}. Since q ≈S r, then |S′| = |S| − 1 = k. Then the
inductive hypothesis holds, and there exists some Q⊆ Σ∗×Σ∗ with |Q| ≤ |R′ \D| and a sequence
of Tietze transformations between ⟨Σ̂ | R′⟩ and ⟨Σ̂ | Q∪D⟩ of length between k and 2k. Then there
exists a sequence of Tietze transformations between ⟨Σ̂ | R⟩ and ⟨Σ̂ |Q∪D⟩ of length between k+1
and 2(k+1). Since |S′| ≤ |S| and |S′|= |S|, then |Q| ≤ |S′|+ |S′| ≤ |S|+ |S|= |R\D|.

By the principle of induction, there exists a Q ⊆ Σ∗×Σ∗ with |Q| ≤ |R \D| and a sequence of Tietze
transformations between ⟨Σ̂ | R⟩ and ⟨Σ̂ | Q∪D⟩ of length between |S| and 2|S|.

Lemma B.10. If D is a family of Σ-defining relations for Π with Π finite and ΓD(D) acyclic, then there
exists a relation x≈ w in D such that D\{x≈ w} is a family of (Σ\{x})-defining relations for Π\{x}.

Proof. Since Π is finite and ΓD(D) is acyclic, then by Lemma B.1, there exists some vertex x ∈ Π such
that x has no parents in ΓD(D). Since x is a vertex in ΓD(D), then there exists a Σ-defining relation x≈ w
in D. Let D′ = D\{x≈ w}. Let y≈ q be a Σ-defining relation in D′ with n = |q|. Let k ∈ [n]. Assume for

24 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

the intent of contradiction that qk = x. Then there exists some q′,q′′ ∈ Σ∗ such that q = q′ ·x ·q′′. Then x is
a child of y by definition. However, x has no parents by assumption. Then qk ̸= x by contradiction. Since
k was arbitrary, then q ∈ (Σ\{x})∗. Since y ≈ q was arbitrary, then D′ is a family of (Σ\{x})-defining
relations for Π\{x}.

Theorem B.11. Let Σ′ ⊆ Σ be an alphabet with Π = Σ \ Σ′ finite and R ⊆ Σ∗× Σ∗ finite. If D ⊆ R
is a family of defining relations for Π with ΓD(D) acyclic, then there exists a Q ⊆ (Σ′)∗× (Σ′)∗ with
|Q| ≤ |R \D| and a sequence of Tietze transformations between ⟨Σ | R⟩ and ⟨Σ′ | Q⟩ of length between
n+ k and 2n+ k where n = |R|− |R∩ ((Σ′)∗× (Σ′)∗)|− |D| and k = |Π|.

Proof. By Lemma B.9, there exists a Q ⊆ (Σ′)∗× (Σ′)∗ with |Q| ≤ |R \D| and a sequence of Tietze
transformations between ⟨Σ | R⟩ and ⟨Σ | Q∪D⟩ of length between n and 2n. The proof follows by
induction on |Π|.

– Base Case. If |Π| = 0, then |D| = 0. Then ⟨Σ | Q∪D⟩ = ⟨Σ′ | Q⟩. Then there exists a length 0
sequence of Tietze transformations between ⟨Σ | Q∪D⟩ and ⟨Σ′ | Q⟩.

– Inductive Case. Assume that for some k ∈ N, if |Π|= k and ΠD(D) is acyclic, then there exists a
length k sequence of Tietze transformations between ⟨Σ | Q∪D⟩ and ⟨Σ′ | Q⟩.

– Inductive Step. Assume that |Π| = k+ 1 and ΓD(D) is acyclic. Since Π is finite and ΓD(D) is
acyclic, then by Lemma B.1 there exists some vertex x ∈ Π such that x has no parents in ΓD(D).
Define Λ = Σ\{x} and D′ = D\{rx}. Let y≈D′ w and assume for the intent of contradiction that
w ̸∈ Λ∗. Then there exists w′,w′′ ∈ Σ∗ such that w = w′ · x ·w′′. Then x is a child of y in ΓD(D).
However, x has no parents by assumption. Then w ∈ Λ∗ by contradiction. Since y ≈D′ w was
arbitrary, then D′ ⊆ Λ∗×Λ∗. Then Q∪D′ ⊆ Λ∗×Λ∗. It follows that ⟨Σ | Q∪D⟩ ∼= ⟨Λ | Q∪D′⟩
by Gen(−). Furthermore, D′ is a family of defining relations for Π\{x}. Since |Π\{x}|= k and
ΓD(D′) is acyclic by Lemma B.4, then there exists a length k sequence of Tietze transformations
between ⟨Λ | Q∪D′⟩ and ⟨Σ′ | Q⟩ by the inductive hypothesis. Then there exists a length k+ 1
sequence of Tietze transformations between ⟨Σ | R⟩ and ⟨Σ′ | Q⟩.

Then by the principle of induction, there exists a length k sequence of Tietze transformations between
⟨Σ | Q∪D⟩ and ⟨Σ′ | Q⟩. Then there exists a sequence of Tietze transformations between ⟨Σ | R⟩ and
⟨Σ′ | Q⟩ of length between n+ k and 2n+ k.

B.2.4 The Derived Generator Graph for W (E8)

The derived generators for W (E8) are Π := ΣD \{X0,CX0,1,CCX1,2,K1,2}. The defining relations D⊆ R0
for Π⊆ ΣD are given by Relation (1) through to Relation (19) in Figure 4. An illustration of the derived
generator graph ΓD(D) can be found in Figure 9. Since this graph is acyclic, then Theorem B.6 and
Theorem B.11 apply. The derived generator graphs for O(n,D) have paths of length at most one, and are
therefore trivially acyclic.

B.3 Derivational Proofs and Tietze Transformation

Assume that G ∼= ⟨Σ | R⟩ with semantic interpretation [[·]]G. During proofs based on Tietze transforma-
tions, it is often necessary to find a sequence of Rel(−) and Rel(+) transformations between ⟨Σ | R⟩ and
⟨Σ |Q⟩. For example, this case arises in Section 4, where R = RE8∪RD(E8) and Q = RE8(D)∪RD. If [[·]]G
induces an isomorphism and every relation w≈Q w′ satisfies [[w]]∗ = [[w′]], then using Theorem A.6 there
exists a sequence of Tietze transformations between ⟨Σ | R⟩ and ⟨Σ | R⟩. Eliminating the relations in R

M. Amy, N. J. Ross & S. Wesley 25

requires more care. For example, if r ∈ R is not derivable from (R∪Q)\{r}, then ⟨Σ | R∪Q⟩ is a proper
quotient of ⟨Σ |Q⟩. Instead, it must be shown that for each w≈R w′, it follows that w∼Q w′. One way to
approach this problem is to first derive some auxiliary relations A from Q, and then use Q∪A to derive
R. However, transforming these derivations into a sequence of Tietze transformations is often tedious,
and not well-aligned with the process of proof discovery. On the other hand, if the derivations are not
transformed into a valid sequence of Tietze transformations, then it is possible to obtain invalid proofs,
such as those with cyclic derivations (see Example B.16).

This section formalizes the ad-hoc proof technique described above,and identifies sufficient condi-
tions for when such a family of derivations induces a valid sequence of Tietze transformations between
⟨Σ | R⟩ and ⟨Σ | Q⟩. In the following definitions, L(Σ) = N× (Σ∗×Σ∗) will represent a set of indexed
relations over Σ. For example, let (n,(w,w′))∈ L(Σ). The index n in (n,(w,w′)) indicates that (n,(w,w′))
is a derived relation, and allows for multiple derivations of the same relation. More concretely, if n = 3,
w = a ·b, and w′ = x · y · z, then (n,(w,w′)) is the third derivation that yields a ·b≈ x · y · z.

Definition B.12 (Derivational Proof). A derivational proof in ⟨Σ | R⟩ is a subset P⊆ L(Σ)× (L(Σ)∪R)∗

which satisfies the following conditions.

– Indexed. For all (ℓ,d) ∈ P and (ℓ′,d′) ∈ P distinct, ℓ ̸= ℓ′.

– Well-founded. For all (ℓ,d) ∈ P and k ∈ {1,2, . . . , |d|}, either dk ∈ R or dk ∈ L(Σ) and there exists
some d′ ∈ (L(Σ)∪R)∗ such that (dk,d′) ∈ P.

– Valid. For all (ℓ,d) ∈ P with (n,(w,w′)) = ℓ and m = |d|, there exists some v ∈ (Σ∗)m+1 such that

v1 = w, vm+1 = w′, and for all k ∈ [m] either dk ∈ R and vk
dk−→ vk+1 or (n′,r) = dk and vk

r−→ vk+1.

A set Q⊆ Σ∗×Σ∗ is entailed by P, written P |= Q, if Q⊆ R∪{r | ((n,r),d) ∈ P}.

Definition B.13 (Proof Substitution). Let P be a proof in ⟨Σ | R⟩. If (ℓ,d) ∈ P, d ∈ (L(Σ)∪R)∗, and
P′ = (P \ {(ℓ,d)})∪{(ℓ,d′)} is a proof for ⟨Σ | R⟩, then we say that P′ is a substitution of P by d′ at ℓ,
written P[ℓ 7→ d′].

Definition B.14 (Derivation Graph). Let P be a proof in ⟨Σ | R⟩. The derivation graph for P is the
digraph ΓD(P) = (V,E) such that V = {ℓ | (ℓ,d) ∈ P} and (ℓ,ℓ′) ∈ E if and only if there exists (ℓ,d) ∈ P
and k ∈ {1,2, . . . , |d|} such that dk = ℓ′.

Example B.15 (Derivations and Substitutions). Consider G= ⟨x,y | x2≈ ε,y2≈ ε⟩. It is not hard to show
x ·y ·x ·y2 ·x ·y ·x∼ ε . However, it helps to first prove that x ·y2 ·x∼ ε . This can be written as a derivation
proof. There will be two derivations, with labels ℓ= (0,(x · y2 · x,ε)) and ℓ′ = (0,(x · y · x · y2 · x · y · x,ε))
respectively. Associated with ℓ and ℓ′ are two derivations d and d′, defined as follows. Let r = (x2,ε)
and r′ = (y2,ε).

(d) : x · y · y · x r′−→ x · x r−→ ε

(d′) : x · y · x · y · y · x · y · x ℓ−→ x · y · y · x ℓ−→ ε

These pieces can be assembled into a derivational proof P = {(ℓ,d),(ℓ′,d′)}. This proof is indexed,
since ℓ and ℓ′ each appear exactly once as labels. This proof is well-formed, since r, r′, d, and d′ are
all in-scope. The proof is valid, since each step of each derivation follows. Of course, it is possible to
expand out d′ using the steps of d. This yields a new derivation d′′ defined as follows.

(d′′) : x · y · x · y · y · x · y · x r′−→ x · y · x · x · y · x r−→ x · y · y · x r′−→ x · x r−→ ε

26 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

This new derivational proof corresponds to the substitution P[ℓ′ 7→ d′′]. In this new proof, the derivation
of ℓ′ no longer relies on the lemma ℓ. Later in this section, lemma eliminating substitutions will be used
to extract Tietze transformations from derivational proofs with acyclic derivation graphs.

Example B.16 (Cyclic Derivations). Consider G = ⟨x,y | x2 ≈ ε,y2 ≈ ε⟩. It is not hard to show that
G∼= Z2 ⋆Z2, where (⋆) denotes the free product of groups. It follows that G is non-abelian. In particular,
πG(x ·y) ̸= πG(y ·x). Now, consider the proof P = {((0,(x ·y,y ·x)),d),((0,(x ·y3,y ·x ·y)),d′)}, where d
and d′ are defined as follows. Let r = (y2,ε), ℓ= (0,(x · y,y · x)) and ℓ′ = (0,(x · y3,y · x · y2)).

(d) : x · y r←− x · y3 ℓ′−→ y · x · y2 r−→ y · x

(d′) : x · y3 ℓ−→ y · x · y2

This proof is indexed, well-formed, and valid. However, these derivations suggest that x · y ∼ y · x. The
problem in this proof is that d depends on d′ and d′ depends on d. In other words, the proof is self-
referential. It will be shown later in this section that if ΓD(P) is acyclic, then P is not self-referential.
This motivates the requirement that ΓD(P) is acyclic throughout the rest of this section.

B.3.1 Substitutions and Derivation Graphs

This section relates derivational proofs and substitutions to the derivation graphs they induce. When
a derivation (ℓ,d) depends on a derivation (ℓ′,d′), we say that ℓ′ is a lemma for ℓ. In Lemma B.17,
lemma-free derivations are characterized by their vertices in a derivation graph. Similarly, Lemma B.18
characterizes lemma-free proofs in terms of their derivation graphs. As expected, Lemma B.19 shows
that if a substitution only eliminates the use of lemmas, such as in Example B.15, then the resulting
derivation graph is a subgraph of the original graph. To this end, Lemma B.20 provides sufficient condi-
tions for a valid substitution. Together, these four lemmas give a graph-theoretic characterization of the
lemma substitution in Example B.15.

Lemma B.17. Let P be a proof for ⟨Σ | R⟩. If (ℓ,d) ∈ P and ℓ has no children in ΓD(P), then d ∈ R∗.

Proof. Let k ∈ {1,2, . . . , |d|}. Assume for the intent of contradiction that dk ̸∈ R∗. Then (ℓ,dk) is an edge
in ΓD(P). However, ℓ has no children in ΓD(P). Then dk ∈ R. Since k was arbitrary, then d ∈ R∗.

Lemma B.18. If P is a proof for ⟨Σ | R⟩, then ΓD(P) is edgeless if and only if d ∈ R∗ for all (ℓ,d) ∈ P.

Proof. Let ΓD(P) = (V,E). Consider the contrapositive statement. Then there exists an (ℓ,ℓ′) ∈ E. This
is true if and only if there exists a (ℓ,d) ∈ P and k ∈ {1,2, . . . , |d|} such that dk = ℓ′. This is true if and
only if there exists an (ℓ,d) ∈ P such that d ̸∈ R∗.

Lemma B.19. Let P be a proof for ⟨Σ | R⟩ and (V,E) = ΓD(P). If (ℓ,d)∈ P and there exists some d′ ∈ R∗

such that P′=P[l 7→ d′] is also a proof for ⟨Σ |R⟩, then ΓD(P′)= (V,Eℓ) where Eℓ= {(ℓ′, ℓ′′)∈E | ℓ ̸= ℓ′}.

Proof. Let ΓD(P′) = (V ′,E ′).

– Vertices (⊆). Let ℓ′ ∈ V ′. Then there exists some δ ∈ (L(Σ)∪R)∗ such that (ℓ′,δ) ∈ P′. Then
either (ℓ′,δ) ∈ P or (ℓ′,δ) = (ℓ,d′). If (ℓ′,δ) ∈ P, then ℓ ∈V . If (ℓ′,δ) = (ℓ,d′), then ℓ′ ∈V since
(ℓ,d) ∈ P. In either case ℓ′ ∈V . Since ℓ′ was arbitrary, then V ′ ⊆V .

– Vertices (⊇). Let ℓ′ ∈ V . Then there exists some δ ∈ (L(Σ)∪R)∗ such that (ℓ′,δ) ∈ P. Then
either ℓ′ = ℓ or ℓ′ ̸= ℓ. If ℓ′ = ℓ, then ℓ′ ∈ V ′ since (ℓ′,d′) ∈ P′. If ℓ′ ̸= ℓ, then ℓ′ ∈ V ′ since
(ℓ′,δ) ∈ P\{(ℓ,d)}. In either case, ℓ′ ∈V , Since ℓ′ was arbitrary, then V ′ ⊆V .

M. Amy, N. J. Ross & S. Wesley 27

– Edges (⊆). Let (ℓ′, ℓ′′) ∈ E ′. Then there exists some δ ∈ (L(Σ)∪R)∗ and k ∈ {1,2, . . . , |δ |} such
that (ℓ′,δ) ∈ P′ and δk = ℓ′′. Then δ ̸∈ R∗. Consequently, δ ̸= d′. Then ℓ ̸= ℓ′, since P′ is indexed.
Then (ℓ′,δ) ∈ P. Consequently, (ℓ′, ℓ′′) ∈ E. Since ℓ′ ̸= ℓ, then (ℓ′, ℓ′′) ∈ Eℓ. Since (ℓ′, ℓ′′) was
arbitrary, then E ′ ⊆ Eℓ.

– Edges (⊇). Assume that (ℓ′, ℓ′′) ∈ Eℓ. Then ℓ′ ̸= ℓ and (ℓ′, ℓ′′) ∈ E. Then there exists some δ ∈
(L(Σ)∪R)∗ and k ∈ {1,2, . . . , |δ |} such that (ℓ′,δ) ∈ P and δk = v. Since ℓ′ ̸= ℓ, then (ℓ′,δ) ∈ P′.
Then (ℓ′, ℓ′′) ∈ E ′. Since (ℓ′, ℓ′′) was arbitrary, then Eℓ ⊆ E ′.

Then ΓD(P′) = (V,Eℓ).

Lemma B.20. Let P be a proof for ⟨Σ | R⟩ and V = {ℓ | (ℓ,d) ∈ P}. If (ℓ,d) ∈ P, d′ ∈ (V ∪R)∗, and
(ℓ,d′) is valid, then P[ℓ 7→ d′] is a proof for ⟨Σ | R⟩.

Proof. Let P′ = [ℓ 7→ d′]. It must be shown that P′ is indexed, well-formed, and valid.

– Indexed. Let (ℓ′,δ)∈ P′ and (ℓ′′,δ ′)∈ P′ distinct. Without loss of generality, assume ℓ′ ̸= ℓ. Then
(ℓ′,δ) ∈ P. Now, these are two cases to consider, depending on whether ℓ′′ = ℓ. If ℓ′′ = ℓ, then
(ℓ′′,d)∈ P and ℓ′ ̸= ℓ′′ since P is indexed. If ℓ′′ ̸= ℓ, then (ℓ′′,δ ′)∈ P and ℓ′ ̸= ℓ′′ since P is indexed.
In either case ℓ′ ̸= ℓ′. Since (ℓ′,δ) and (ℓ′′,δ ′) were arbitrary, then P′ is indexed.

– Well-formed. Let (ℓ′,δ) ∈ P′. There are two cases to consider, depending on whether ℓ′ = ℓ.

– If ℓ′ = ℓ, then δ = d′, since P′ is indexed. Then δ ∈ (V ∪R)∗. Then for all k ∈ {1,2, . . . , |δ |},
either δk ∈ R or δk ∈ V . If δk ∈ V and δk = ℓ, then (δk,d′) ∈ P′. If δk ∈ V and δk ̸= ℓ, then
there exists some δ ′ ∈ (L(Σ)∪R)∗ such that (dk,δ

′) ∈ P. Since δk ̸= ℓ, then (δk,δ
′) ∈ P′. In

either case, if δk ∈V , then there exists some δ ′ ∈ (L(Σ)∪R)∗ such that (dk,d′′) ∈ P′ Since k
was arbitrary, then (ℓ′,δ) is well-formed.

– If ℓ′ ̸= ℓ, then (ℓ′,δ) ∈ P. Let k ∈ {1,2, . . . , |δ |}. Since P is well-formed, then either δk ∈ R
or there exists some δ ′ ∈ (L(Σ)∪R)∗ such that (δk,δ

′) ∈ P. There are two cases to consider,
depending on whether δk = ℓ. If δk = ℓ, then (ℓ,d′) ∈ P′. If δk ̸= ℓ, then (δk,δ

′) ∈ P′. In
either case, there exists some δ ′ ∈ (L(Σ)∪R)∗ such that (δk,δ

′) ∈ P′. Since k was arbitrary,
then (ℓ′,δ) is well-formed.

In either case, (ℓ′,δ) is well-formed. Since (ℓ′,δ) was arbitrary, then P′ is well-formed.

– Valid. Let (ℓ′,δ) ∈ P′. Now these are two cases to consider, depending on whether ℓ′ = ℓ. If
ℓ′ = ℓ, then δ = d′ since P′ is indexed, and consequently δ is valid by assumption. If ℓ′ ̸= ℓ, then
(ℓ′,δ) ∈ P and δ is valid by the validity of P. In either case, (ℓ′,δ) is valid. Since (ℓ′,δ) was
arbitrary, then P′ is valid.

Then P′ is a proof for ⟨Σ | R⟩.

B.3.2 From Derivational Proofs to Tietze Transformations

Let ⟨Σ | R⟩ be a monoid presentation. The goal of this section is to prove Theorem B.25, which states
that acyclic derivational proofs are sound for the isomorphism of finite monoid presentations. The
completeness of acyclic derivational proofs follows immediately from the fact that every statement of
the form w ∼R w′ corresponds to at least one finite derivation. The proof proceeds as follows. First,
Lemma B.21 shows that the lemma substitutions outlined in Example B.15 preserve the structure of
derivational proofs. This is used in Lemma B.22 to show that if a derivation (ℓ,d) in a proof P depends
on a lemma (ℓ′,d′) which follows directly from R, then d can be rewritten so that all dependencies on ℓ′

28 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

are removed without introducing any new dependencies. This is used repeated in Lemma B.23 to show
that any derivation (ℓ,d) which depends only on lemmas which follow directly from R, can be rewrit-
ten to also follow directly from R. This is extended in Lemma B.24 to show that any finite and acyclic
derivational proof P can be written into a proof P′ such that every derivation depends only on R. Then
each derivation in P′ follows from (∼R), and Theorem B.25 follows immediately by induction.

Lemma B.21. Let P be a proof for ⟨Σ | R⟩. If (ℓ,d) and (ℓ′,d′) are derivations in P and there exists
δ ,δ ′ ∈ (L(Σ)∪R)∗ such that d = δ · ℓ′ ·δ ′, then P[ℓ 7→ δ ·d′ ·δ ′] is a proof for ⟨Σ | R⟩.

Proof. Let LP = {ℓ | (ℓ,d) ∈ P}, d′′ = δ · d′ · δ ′, and (x,(q,r)) = ℓ. Since δ ,d′,δ ′ ∈ (Lp ∪R)∗, then

d′′ ∈ (Lp∪R)∗. Since P is valid, then there exists v ∈ (Σ∗)n+1 such that v1 = q, vn+1 = r, and vk
dk−→ vk+1

for all k ∈ [n], where n = |d|. Let m = |δ |. Since P is valid and vm
ℓ′−→ vm+1, then there exists some

u ∈ (Σ∗)s+1 such that u1 = vm, us+1 = vm+1, and uk
d′k−→ uk+1 for all k ∈ [s], where s = |d′|. Define

v′ = (v1, . . . ,vm,u1, . . . ,us,vm+1, . . . ,vn). Let k ∈ {1,2, . . . , |d′′|}. There are five cases to consider.

– If k < m, then v′k = vk, v′k+1 = vk+1, and d′′k = δk = dk. Then v′k
d′′k−→ v′k+1.

– If k = m, then v′k = vm, v′k+1 = u1 = vm+1, and d′′k = δk. Then v′k
d′′k−→ v′k+1.

– If m < k < m+ s, then v′k = uk−m, v′k+1 = uk−m+1, and d′′k = d′k−m. Then v′k
d′′k−→ v′k+1.

– If k = m+ s, then v′k = us, v′k+1 = vm+1 = us+1, and d′′k = d′s. Then v′k
d′′k−→ v′k+1.

– If k > m+ s, then v′k = uk−s, v′k+1 = uk+1−s, and d′′k = δ ′k−m−s. Then v′k
d′′k−→ v′k+1.

In each case, v′k
d′′k−→ v′k+1. Since k was arbitrary, then (ℓ,d′′) is valid. Then P[ℓ 7→ d′′] is a proof by

Lemma B.20.

Lemma B.22. Let P be a proof for ⟨Σ | R⟩. If (ℓ,ℓ′) is a maximal path rooted at ℓ in ΓD(P), then there
exists a d̂ ∈ (L(Σ)∪R)∗ such that P′ = P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩ and ℓ has one less child in ΓD(P′).

Proof. Let f : (L(Σ)∪R)∗→ N count the number of occurrences of ℓ′ in a derivation. Given a proof Q
for ⟨Σ | R⟩, let CQ : L(Σ)→P(L) map each ℓ ∈ L(Σ) to its children in ΓD(Q). Since (ℓ,ℓ′) is a maximal
path, then ℓ′ has no children in ΓD(P). The proof follows by induction on the number of occurrences of
ℓ′ in the derivation.

– Base Case. Let d̂ ∈ (L(Σ)∪R)∗ with P′ = P[ℓ 7→ d̂] a proof for ⟨Σ | R⟩ and CP(ℓ) =CP′(ℓ)∪{ℓ′}.
Assume that f (d̂) = 0. Then d̂ j ̸= ℓ′ for all k ∈ [n], where n = |d̂|. Then (ℓ,ℓ′) ̸∈ ΓD(P′). Then
ℓ′ ̸∈CP′(ℓ). Then CP′(ℓ) =CP(ℓ)\{ℓ′}. Since ℓ′ ∈CP(ℓ), then |CP′(ℓ)|= |CP(ℓ)|−1.

– Inductive Hypothesis. Let d′ ∈ (L(Σ)∪R)∗ such that P′ = P[ℓ 7→ d′] a proof for ⟨Σ | R⟩ and
CP(ℓ) =CP′(ℓ)∪{ℓ′}. Assume that for some k ∈N, if f (d′) = k, then exists a d̂ ∈ (L(Σ)∪R)∗ such
that P′′ = P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩ and |CP′′(ℓ)|= |CP(ℓ)|−1.

– Inductive Step. Under the conditions of the inductive hypothesis, assume that f (d′) = k+1. Then
there exists some δ ,δ ′ ∈ (L(Σ)∪R)∗ such that d′ = δ · ℓ′ · δ ′. Since ℓ′ is a vertex in ΓD(P), then
there exists some d′′ ∈ (L(Σ)∪R)∗ such that (ℓ,d′′) ∈ P. Define d̂ = δ ·d′′ ·δ ′. By Lemma B.21,
P′′=P[l 7→ d̂] is a proof for ⟨Σ |R⟩. Let ℓ′′ ∈CP(ℓ)\{ℓ′}. Then there exists some k∈ {1,2, . . . , |δ |}
such that dk = ℓ′′. Since ℓ′′ ̸= ℓ, then without loss of generality k ≤ |δ | and d̂k = δk = ℓ′′. Then
ℓ′′ ∈CP′′(ℓ). Since ℓ′′ was arbitrary, then CP(ℓ)\{ℓ′} ⊆CP′′(ℓ). Next, let ℓ′′ ∈CP′′(ℓ). Then there

M. Amy, N. J. Ross & S. Wesley 29

exists some k ∈ {1,2, . . . , |d̂|} such that d̂k = ℓ′′. Since d ∈ (R∗), then without loss of generality
k ≤ |δ | and δk = ĥk = ℓ′′. Then ℓ′′ ∈ CP(ℓ). Since ℓ′′ was arbitrary, then CP′′(ℓ) ⊆ CP(ℓ). Then
CP(ℓ) = CP′′(ℓ)∪{ℓ′}. Since k+ 1 = f (d′) = f (δ)+ 1+ f (δ ′), then f (d̂) = f (δ)+ f (δ ′) = k.
Then by the inductive hypothesis, there exists some d̂′ ∈ (L(Σ)∪R)∗ such that Q = P′[ℓ 7→ d̂′] is a
proof for ⟨Σ | R⟩ and |CQ(ℓ)|= |CP′(ℓ)|−1 = |CP(ℓ)|−1. Since Q = P[ℓ 7→ d̂′] by definition, then
the inductive step holds.

It follows by definition that d ∈ (L(Σ)∪R)∗ and P = P[ℓ 7→ d]. Then by the principle of induction, there
exists a d̂ ∈ (L(Σ)∪R)∗ such that P′ = P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩ and |CP′′(ℓ)|= |CP(ℓ)|−1.

Lemma B.23. Let P be a proof for ⟨Σ | R⟩. If (ℓ,d) ∈ P and all paths rooted at ℓ in ΓD(P) have length
at most one, then there exists a d̂ ∈ R∗ such that P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩.

Proof. Let ΓD(P) = (V,E). Since |V | = |P| and all paths rooted at ℓ have length at most one, then the
number of paths rooted at ℓ in ΓD(P) is finite. The proof follows by induction on the number of paths
rooted at ℓ in ΓD(P).

– Base Case. Assume that ΓD(P) has zero paths rooted at ℓ. Then d ∈ R∗ by Lemma B.17. Then
P = P[l 7→ d] with d ∈ R∗.

– Inductive Hypothesis. Assume that for some k ∈ N, if ΓD(P) has k paths rooted at ℓ, then there
exists a d̂ ∈ R∗ such that P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩.

– Inductive Step. Assume that ΓD(P) has k + 1 paths rooted at ℓ. Then there exists at least one
path rooted at ℓ in ΓD(P). Since all paths rooted at ℓ in ΓD(P) have length one, then there exists
some path (ℓ,ℓ′) in ΓD(P) such that ℓ′ has no children in ΓD(P). Then by Lemma B.22, there
exists some d′ ∈ (L(Σ)∪R)∗ such that P′ = P[ℓ 7→ d′] is a proof for ⟨Σ | R⟩ and ℓ has k children in
ΓD(P′). Since all paths rooted at ℓ have length one, then ΓD(P′) has k paths rooted at ℓ. Then by
the inductive hypothesis, then there exists a d̂ ∈ R∗ such that P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩. Then
the inductive step holds.

Then by the principle of induction, there exists a d̂ ∈ R∗ such that P[ℓ 7→ d̂] is a proof for ⟨Σ | R⟩.

Lemma B.24. Let P be a finite proof for ⟨Σ | R′⟩ with R′ ⊆ R⊆ Σ∗×Σ∗. If P |= R and ΓD(P) is acyclic,
then there exists a proof P′ for ⟨Σ | R′⟩ such that |P′|= |P|, P′ |= R, and d ∈ (R′)∗ for all (ℓ,d) ∈ P′.

Proof. Let f : L(Σ)×(L(Σ)∪R′)∗→N count the number of vertices with children in the derivation graph
of a proof. Since ΓD(P) has |P| vertices, then f (P)≤ |P|. Since P is finite, then f (P) is also finite. The
proof follows by induction on f (P).

– Base Case. Assume that f (P) = 0. Then there are no edges in ΓD(P). Then by Lemma B.18,
d ∈ (R′)∗ for all (ℓ,d) ∈ P.

– Inductive Hypothesis Let Q be a proof for ⟨Σ | R′⟩. Assume that for some k ∈N, if f (Q) = k with
P |= R and ΓD(Q) is acyclic, then there exists a proof P′ for ⟨Σ | R⟩ such that |P′| = |Q|, P′ |= R,
and d ∈ (R′)∗ for all (ℓ,d) ∈ P′.

– Inductive Step. Let Q be a proof for ⟨Σ | R′⟩. Assume that f (Q) = k+1 with Q |= R and ΓD(Q)
acyclic. Since f (Q)> 0, then there exists at least one edge (ℓ,ℓ′) in ΓD(Q). By Lemma B.1, there
exists some path (ℓ0, . . . , ℓn) in ΓD(Q) such that ℓ0 = ℓ every path rooted at ℓ has length at most
n. Since (ℓ,ℓ′) is a path of length one in ΓD(Q) rooted at ℓ, then n ≥ 1. Assume for the intent
of contradiction that there exists a path of length at least 2 rooted at ℓn−1. Then there exists a

30 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

path (ℓn−1,x,y) in ΓD(Q). Then (ℓ0, . . . , ℓn−1,x,y) is a path of length n+ 1 in ΓD(Q) rooted at ℓ.
However, all paths rooted at ℓ have length at most n. Therefore, all paths rooted at ℓn−1 have length
at most one. Since ℓn−1 is a vertex in ΓD(Q), then there exists some d ∈ (L(Σ)∪R′)∗ such that
(ℓn−1,d) ∈ Q. Then by Lemma B.23, there exists some d′ ∈ (R′)∗ such that P′ = Q[ℓn−1 7→ d′] is
a proof for ⟨Σ | R′⟩. Let (zn−1,rn−1) = ℓn−1. Since Q |= R with respect to ⟨Σ | R′⟩, it follows that
R⊆ R′∪{r | ((m,r),d) ∈ P}. Then,

R⊆ R′∪{r | ((z,r),d) ∈ P\{ℓn−1,d)}∪{rn−1} ⊆ R′∪{r | ((m,r),d) ∈ P′}.

Then P′ |= R with respect to ⟨Σ | R′⟩. By Lemma B.19, ΓD(P′) is also a subgraph of ΓD(Q) with
f (P′) = f (Q)− 1 = k. Since ΓD(P′) is a subgraph of ΓD(Q) with ΓD(Q) acyclic, then ΓD(P′)
is also acyclic. Then by the inductive hypothesis, there exists a proof P′′ for ⟨Σ | R⟩ such that
|P′′|= |P′|, P′′ |= R, and d ∈ (R′)∗ for all (ℓ,d) ∈ P′′. Then |P′′|= (|Q|−1)+1 = |Q|, since Q is
indexed. Then the inductive step holds.

Then by the principle of induction, there exists a proof P′ for ⟨Σ | R⟩ such that |P′| = |P|, P′ |= R, and
d ∈ (R′)∗ for all (ℓ,d) ∈ P.

Theorem B.25. Let P be a finite proof for ⟨Σ | R′⟩ with R′ ⊆ R⊆ Σ∗×Σ∗. If P |= R and ΓD(P) is acyclic,
then there exists a length |R\R′| sequence of Rel(+) transformations between ⟨Σ | R′⟩ and ⟨Σ | R⟩.

Proof. By Lemma B.24, there exists a proof P′ for ⟨Σ | R′⟩ with P′ |= R and d ∈ (R′)∗ for all (ℓ,d) ∈ P.
The proof follows by induction on |R\R′|.

– Base Case. If |R\R′|= 0, then R⊆ R′ ⊆ R. Then R = R′ and ⟨Σ | R⟩= ⟨Σ | R′⟩. Then there exists
a length zero sequence of Rel(+) transformations between ⟨Σ | R′⟩ and ⟨Σ | R⟩.

– Inductive Hypothesis. Let P′ be a proof with respect to ⟨Σ | Q⟩ with Q⊆ R and P′ |= R. Assume
that for some k ∈N, if |R\R′|= k, then there exists a length k sequence of Rel(+) transformations
between ⟨Σ | Q⟩ and ⟨Σ | R⟩.

– Inductive Step. Under the conditions of the inductive hypothesis, assume that |R \R′| = k+ 1.
Then there exists some r ∈ R\R′, say (w,w′) = r. Since P′ |= R and r ̸∈ R′, then there exists some
x ∈ N and d ∈ (L(Σ)∪R′)∗ such that ((x,r),d) ∈ P′. Since d ∈ (R′)∗, then w∼R′ w′ by validity of
P′. Let Q = R′∪{r}. Then ⟨Σ | R′⟩ ∼= ⟨Σ | Q⟩ by Rel(+). Since R′ ⊆ Q and P′ |= R with respect to
⟨Σ | R′⟩, then

R⊆ R′∪{r | ((n,r),d) ∈ P′} ⊆ Q∪{r | ((n,r),d) ∈ P′}.

Then P′ |= R with respect to ⟨Σ | Q⟩. Since r ∈ R\R′, then |R\Q|= |R\R′|−1 = k. Then by the
inductive hypothesis, there exists a length k sequence of Rel(+) transformations between ⟨Σ | Q⟩
and ⟨Σ | R⟩. Then there exists a length k+1 sequence of Rel(+) transformations between ⟨Σ | R′⟩
and ⟨Σ | R⟩. Then the inductive step holds.

Then by the principle of induction, there exists a length |R \R′| sequence of Rel(+) transformations
between ⟨Σ | R′⟩ and ⟨Σ | R⟩.

M. Amy, N. J. Ross & S. Wesley 31

C Circuit Decompositions of Coxeter Generators

In Section 4.1, the Coxeter generator r3 was decomposed into a circuit over ΣD. In this section, the
remaining 7 Coxeter generators are decomposed into circuits over ΣD. Scalar multiples of the normal
vectors are used freely. Recall that CCX0,1 is a reflection about the normal vector |b̂⟩= |1⟩⊗ |1⟩⊗ |−⟩.
Similarly, CX1,2 is a reflection about the normal vector |b⟩= |−⟩⊗ |1⟩⊗ |1⟩.

r1. This generator is defined by the normal vector |b1⟩ = |0⟩⊗ |0⟩⊗ |−⟩. Since (X0 ◦X1) |b̂⟩ = |b1⟩
with (X0 ◦X1)

−1 = X1 ◦X0, then r1 = X0 ◦X1 ◦CCX0,1 ◦X1 ◦X0.

r2. This generator is defined by the normal vector |b2⟩= |0⟩⊗ (|1⟩⊗ |0⟩− |0⟩⊗ |1⟩)/
√

2. Since |b2⟩
and −|b2⟩ define the same hyperplane, then −|b2⟩ also defines the same generator. Recall that r3
is a reflection about the normal vector |b3⟩ = |0⟩⊗ |1⟩⊗ |−⟩. Then (CX2,1) |b3⟩ = −|b2⟩. Since
CX2,1 is self-inverse, then r2 =CX2,1 ◦ r3 ◦CX2,1. Since r3 = X0 ◦CCX0,1 ◦X0 with X0 and CX2,1
commuting, then r2 = X0 ◦CX2,1 ◦CCX0,1 ◦CX2,1 ◦X0.

r4. This generator is defined by the normal vector |b4⟩= (|0⟩⊗ |1⟩⊗ |1⟩− |1⟩⊗ |0⟩⊗ |0⟩)/
√

2. Since
|b⟩ = (|0⟩⊗ |1⟩⊗ |1⟩− |1⟩⊗ |1⟩⊗ |1⟩)/

√
2, then (CX0,1 ◦CX0,2) |b⟩ = |b4⟩. Furthermore, since

(CX0,1 ◦CX0,2)
−1 =CX0,2 ◦CX0,1, then r4 =CX0,1 ◦CX0,2 ◦CCX1,2 ◦CX0,2 ◦CX0,1.

r5. This generator is defined by the normal vector |b5⟩ = |1⟩⊗ |0⟩⊗ |−⟩. Since (X1) |b̂⟩ = |b5⟩ with
X1 self-inverse, then r5 = X1 ◦CCX0,1 ◦X1.

r6. This generator is defined by the normal vector |b6⟩ = |1⟩ ⊗ (|0⟩⊗ |1⟩− |1⟩⊗ |0⟩)/
√

2. Since
(CX2,1) |b̂⟩= |b6⟩ with CX2,1 self-inverse, then r6 =CX2,1 ◦CCX0,1 ◦CX2,1.

r7. This generator is defined by the normal vector |b7⟩= |1⟩⊗ (|0⟩⊗ |1⟩+ |1⟩⊗ |0⟩)/
√

2. Recall that
r6 is a reflection about the normal vector |b6⟩ = |1⟩⊗ (|0⟩⊗ |1⟩− |1⟩⊗ |0⟩)/

√
2. It follows that

(CZ0,1) |b6⟩ = |b7⟩. Since CZ0,1 is self-inverse, then r7 = CZ0,1 ◦ r6 ◦CZ0,1. Furthermore, since
r6 =CX2,1 ◦CCX0,1 ◦CX2,1, then r7 =CZ0,1 ◦CX2,1 ◦CCX0,1 ◦CX2,1 ◦CZ0,1.

r8. The generator is defined by the normal vector |b8⟩ = |+⟩⊗ |+⟩⊗ |+⟩. First, define the operator
M = K1,2 ◦X1 ◦X2 ◦CZ0,2. Clearly, M−1 =CZ0,2 ◦X2 ◦X1 ◦K1,2. Furthermore,

M |b⟩= (K1,2 ◦X1 ◦X2)(|+⟩⊗ |1⟩⊗ |1⟩) = K1,2 (|+⟩⊗ |0⟩⊗ |0⟩) = |b8⟩ .

Therefore, r8 = K1,2 ◦X1 ◦X2 ◦CZ0,2 ◦CCX1,2 ◦CZ0,2 ◦X2 ◦X1 ◦K1,2.

This establishes all decompositions of the ΣE8 in terms of ΣD.

32 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

D Constructing the Generators for W (E8)

The section walks through the construction of X0, CX0,1, CCX1,2, and K1,2 using the Coxeter generators
for W (E8). As suggested in Section 4.1, this construction begins by deriving several diagonal matrices
over (±1).

w1 = r6 · r7 w2 = r6 · r5 ·w1 · r5 · r6 w3 = r5 · r4 ·w2 · r4 · r5

w4 = r4 · r3 ·w3 · r3 · r4 w5 = r3 · r2 ·w4 · r2 · r3 w6 = r2 · r1 ·w5 · r1 · r2

For example, [[w1]]
∗
E8 =CZ0,1 ◦CZ0,2. It is then possible to derive CCX0,1 and X2.

w7 = r7 · r8 · r6 ·w6 ·w4 ·w2 · r8 ·w6 ·w4 ·w2 · r6 · r8 · r7 w8 = r1 · r3 · r5 ·w7

Then [[w7]]
∗
E8 =CCX0,1 and [[w8]]

∗
E8 = X2. Using CCX0,1, it is then possible to derive K1,2.

w9 = r6 ·w7 ·w1 ·w7 · r6 w10 = r2 · r6 ·w5 ·w3 ·w2 · r8 ·w9 · r8 ·w5 ·w3 ·w2 ·w9

Then [[w9]]
∗
E8 is a diagonal matrix over (±1) and [[w10]]

∗
E8 = K1,2. Next, the permutations are derived.

w11 = w10 · r4 ·w8 · r4 ·w10 ·w8 w12 = r2 · r6 w13 = w11 ·w12 ·w11

It can be validated that [[w11]]
∗
E8 = σ1,2, [[w12]]

∗
E8 = σ0,1, and [[w13]]

∗
E8 = σ0,2. As an immediate conse-

quence, [[w13 ·w7 ·w13]]
∗
E8 =CCX1,2 and [[w13 ·w8 ·w13]]

∗
E8 = X0. Then by three applications of Gen(+),

the generators K1,2, CCX1,2, and X0 are introduced, alongside the following relations.

K1,2 ≈ w10 CCX1,2 ≈ w13 ·w7 ·w13 X0 ≈ w13 ·w8 ·w13

Next, define w14 = w12 ·X0 ·w10 ·X0 ·w12. It can be validated directly that [[w14]]
∗
E8 = CX0,1. Then by

application of Gen(+), the generator CX0,1 is introduced, alongside the relation CX0,1 ≈ w14.

M. Amy, N. J. Ross & S. Wesley 33

E Establishing the Minimality of W (E8) and O(8,D) Generators

This section establishes the minimality of certain generating sets for W (E8) and O(8,D). First, a general
result about minimal generating sets is established. This result is then applied to the generating sets of
interest, to prove their minimality.

E.1 Two Results on Minimal Generating Sets

Theorem E.1. Let G be a group with Σ′ ⊆ Σ⊆ G. If there exists a g ∈ G such that g commutes with the
elements of Σ′ and g does not commute with the elements of Σ, then ⟨Σ′⟩ is a proper subgroup of ⟨Σ⟩.

Proof. Assume that g∈G, g commutes with every element of Σ′, and ⟨Σ′⟩= ⟨Σ⟩. It follows by induction
on the length of an element in ⟨Σ′⟩, that g commutes with every element in ⟨Σ′⟩. As a base case, if h∈ ⟨Σ′⟩
corresponds to a word of length 0, then h is the identity and g◦h = g = h◦g. As an inductive hypothesis,
assume that for some n ∈N, if h1,h2, . . . ,hn ∈ Σ′ and h = h1 ◦h2 ◦ · · ·◦hn, then g◦h = h◦g. To show that
the inductive step holds, let h1,h2, . . . ,hn,hn+1 ∈ Σ′ and h= h1◦h2◦· · ·hn+1. By the inductive hypothesis,
g◦h′ = h′ ◦g where h′ = h1 ◦h2 ◦ · · · ◦hn. Then g◦h = g◦h′ ◦hn+1 = h′ ◦g◦hn+1 = h′ ◦hn+1 ◦g = h◦g.
Then the inductive step holds, and g commutes with every element of ⟨Σ′⟩. In particular, g commutes
with Σ. By the contrapositive, if g does not commute with Σ, then ⟨Σ′⟩ ≠ ⟨Σ⟩. However, ⟨Σ′⟩ ≤ ⟨Σ⟩ since
Σ′ ⊆ Σ. Therefore, ⟨Σ′⟩ is a proper subgroup of ⟨Σ⟩.

Lemma E.2. Let G be a group with Σ⊆ G. If for every maximal proper subset Σ′ of Σ, ⟨Σ′⟩ is a proper
subgroup of ⟨Σ⟩, then Σ is a minimal generating set for ⟨Σ⟩.

Proof. Let Σ′ be a proper subset of Σ. Then there exists some maximal proper subset Π of Σ such that
Σ′ ⊆Π⊆ Σ. Then ⟨Σ′⟩ ≤ ⟨Π⟩ ≤ ⟨Σ⟩. Since Π is maximal, then by assumption, ⟨Π⟩ is a proper subgroup
of ⟨Σ⟩. Consequently, ⟨Σ′⟩ is a proper subgroup of ⟨Σ⟩. Since Σ′ was arbitrary, then Σ is a minimal
generating set for ⟨Σ⟩.

E.2 Minimality for W (E8)

It must be shown that for every maximal proper subset Σ′ of Σ0, there exists some 8× 8 dyadic matrix
M such that M commutes with Σ′ but does not commute with Σ0. The first three cases can be solved by
inspection. In fact, these matrices follow from well-known circuit relations.

1. Z2 commutes with {X0,CX0,1,CCX1,2} but does not commute with K1,2.

2. H2 commutes with {X0,CX0,1,K1,2} but does not commute with CCX1,2.

3. X0 commutes with {X0,CCX1,2,K1,2} but does not commute with CX0,1.

The final case is less obvious, but can be reduced to solving a linear integer program. Assume that there
exists such a matrix M. Since M is dyadic, then there exists some integer matrix N and integer k such
that M = N/2k. Clearly, M and N commute with the same matrices. Then M is characterized by the
following four equations.

X0 ◦N ̸= N ◦X0 CX0,1 ◦N = N ◦CX0,1 CCX1,2 ◦N = N ◦CCX1,2 K1,2 ◦N = N ◦K1,2

Without loss of generality, K1,2 can be replaced by its integral scalar multiple 2 ·K1,2. Then the entries
of N can be thought of as 64 integer variables, with each equation yielding 64 linear constraints. Using

34 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

Z3 [20] as a solver, the following solution is obtained.

N0,0 =

4 2 2 0
2 1 1 0
2 1 1 0
0 0 0 0

 N0,1 = N1,0 = N1,1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 N =

[
N0,0 M0,1
N1,0 M1,1

]

This establishes Theorem 4.4.

E.3 Minimality of ΣK for O(8,D)

First, it will be shown that ΣK is a minimal generating set for O(8,D). To see that ΣK generates O(8,D)
simply note that ΣK ∪{K1,2} generates O(8,D) with K1,2 = K[0,1,2,3] ◦X0 ◦K[0,1,2,3] ◦X0. It remains to be
shown that for every maximal proper subset Σ′ of ΣK , there exists some 8×8 dyadic matrix M such that
M commutes with Σ′ but does not commute with ΣK . The first three cases are also solved by inspection,
using well-known circuit relations.

1. Z2 commutes with {X0,CX0,1,CCX1,2} but does not commute with K[0,1,2,3].

2. H2 commutes with
{

X0,CX0,1,K[0,1,2,3]
}

but does not commute with CCX1,2.

3. X2 ◦CZ0,2 ◦X2 commutes with
{

CX0,1,CCX1,2,K[0,1,2,3]
}

but does not commute with X0.
Using Z3 as in the W (E8), it is then possible to find an integer matrix L such that L commutes with{

X0,CCX1,2,K[0,1,2,3]
}

but does not commute with CX0,1. The solution is as follows.

L0 =

1 2 2 0
2 0 −1 0
2 −1 0 0
0 0 0 −3

 L1 =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 L =

[
L0 L1
L1 L0

]

This establishes the first claim of Theorem 5.3.

E.4 Minimality of ΣZ for O(8,D)

The proof the ΣZ is minimal proves more challenging. However, the minimality of ΣK can be used
to simplify this argument significantly. Clearly, ΣD = ΣZ \ {CCZ} does not generate O(8,D), since
⟨ΣD⟩=W (E8)< O(8,D). Three of the remaining four cases can be solved by inspection.

1. Recall N from Appendix E.2. By construction, this matrix commutes with {CX0,1,CCX1,2,K1,2}
and does not commute with X0. Furthermore, CCZ ◦N = N ◦CCZ, since the 8-th row and 8-th
column of N contain only zeros.

2. σ1,2 commutes with {X0,CCX1,2,K1,2,CCZ} but does not commute with CX0,1.

3. Z2 commutes with {X0,CX0,1,CCX1,2,CCZ} but does not commute with K1,2.
The case of CCX1,2 requires more care. There is no obvious operation which commutes with all gener-
ators except for CCX1,2. Furthermore, Z3 fails to find an solution to the corresponding integer program.
Instead, consider the automorphism f : M 7→H2 ◦M ◦H2 of O(8,D). Since f fixes {X0,CX0,1,K1,2,} and
maps CCZ to CCX0,1, then f induces an isomorphism between the subgroups ⟨X0,CX0,1,K1,2,CCZ⟩ and
⟨X0,CX0,1,K1,2,CCX0,1⟩ of O(8,D). Since X0,CX0,1, K1,2,,CCX0,1 ∈W (E8) with W (E8) finite, then

|⟨X0,CX0,1,K1,2,CCZ⟩|= |⟨X0,CX0,1,K1,2,CCX1,2⟩| ≤ |W (E8)|< ∞.

Since O(8,D) is an infinite group, then ⟨X0,CX0,1,K1,2,CCZ⟩ < O(8,D). This establishes the second
claim of Theorem 5.3.

M. Amy, N. J. Ross & S. Wesley 35

F Proof Details for a Presentation of O(8,D)

In Section 5, many informal claims were made about the relations in Gn, and the derivations that are
possible using these relations. This section restates each claim as a lemma or theorem, provides a proof
for each claim, and then explains how these claims establish the lemmas and theorems in Section 5.

F.1 Counting the Relations in Rn

This section validates the claim that G8 contains 2039 relations. We say that two relations (q,r) ∈ G8 and
(q′,r′)∈ G8 are distinct if q ̸= q′ or r ̸= r′. This means, for example, that the relations K[0,1,2,3] ·K[4,5,6,7]≈
K[4,5,6,7] ·K[4,5,6,7] and K[4,5,6,7] ·K[0,1,2,3] ≈ K[0,1,2,3] ·K[4,5,6,7] are distinct The techniques used in this
section can be generalized to count the number of relations in Gn.

First, consider the relations whose parameters are linearly ordered. If a relation schema r has m lin-
early ordered parameters, then each choice of m distinct numbers in [n] corresponds to a unique instance
of r. It follows that a relation schema with m linearly ordered parameters corresponds to

(n
m

)
unique re-

lations. For each choice of m, we compute
(8

m

)
and count the number of relations with m linearly ordered

parameters.

– If m = 1, then there are
(8

1

)
= 8 instances. The only relation with a single parameter is Rela-

tion (48). Then this case contributes 8 relations.

– If m = 2, then there are
(8

2

)
= 28 instances. The only relations with two parameters, all linearly

ordered, are Relations (47) and (58). Then this case contributes 56 relations.

– If m = 3, then there are
(8

3

)
= 56 instances. The only relations with three parameters, all linearly

ordered, are Relations (56) and (57). Then this case contributes 102 relations.

– If m= 4, then there are
(8

4

)
= 70 instances. The relations Relations (49), (63), (64) and (65) all have

exactly four parameters, which are all linearly ordered. Then this case contributes 280 relations.

– If m= 5, then there are
(8

5

)
= 56 instances. The relations Relations (59), (60), (61) and (62) all have

exactly five parameters, which are all linearly ordered. This this case contributes 224 relations.

– If m= 6, then there are
(8

6

)
= 28 instances. The only relation with a six parameters is Relation (66).

Then this case contributes 28 relations.

– If m = 8, then there are
(8

8

)
= 1 instances. The only relation with eight parameters is Relation (67).

Then this case contributes 1 relations.

In total, the relation schemata with linearly ordered parameters contribute 699 instances.
The remaining six schemata induce a partial order on the parameters. For example, in Relation (55),

the term K[a,b,c,d] ·K[e, f ,g,h] indicates that a < b < c < d and e < f < g < h. However, the choices of
(a,b,c,d) are independent from the choices of (e, f ,g,h), except that all choices must be distinct. In this
example, there are

(n
4

)
ways to select the four indices in the first order. Then n−m indices remain, from

which there are
(n−4

4

)
choices. In general, for two independent linear orders with m and k parameters

respectively, there will be
(n

m

)
·
(n−m

k

)
choices. The six schemata are described below.

– In Relation (54), m = 1 and k = 1, resulting in
(8

1

)
·
(7

1

)
= 56 choices.

– In Relation (51), m = 1 and k = 2, resulting in
(8

1

)
·
(7

2

)
= 168 choices.

– In Relation (53), m = 1 and k = 4, resulting in
(8

1

)
·
(7

4

)
= 280 choices.

– In Relation (50), m = 2 and k = 2, resulting in
(8

2

)
·
(6

2

)
= 420 choices.

36 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

– In Relation (52), m = 2 and k = 4, resulting in
(8

2

)
·
(6

4

)
= 420 choices.

– In Relation (55), m = 4 and k = 4, resulting in
(8

4

)
·
(4

4

)
= 70 choices

In total, the relations partially ordered parameters contribute 1414 instances. Then |R8|= 2113.

F.2 Correctness of Relation Reindexing

This section justifies the reindexing of relations via permutations. First, recall that every permutation on
[n] can be represented by a permutation of the basis vectors in R8, with τa,b corresponding to X [a,b]. The
intuition is that every σ can be represented by a word w over generators of type X , and that conjugation
by w corresponds to formal reindexing when σ is valid.

First, a subset RB
n of Rn is identified, for which all of the order and braiding relations for generators of

type X hold. Consequently, RB
n is complete for words over generators of type X . Then RB

n is extended to
a subset Rσ

n of Rn for which all formal reindexings are derivable. The result is proven first, for individual
generators, and then extended to entire words.

F.2.1 Deriving the Braiding Relations

First, define the set of relations,

Rτ
n =

{
X [a,a+1]

2 ≈ ε | a ∈ Z
}
∪
{

X [a,a+1] ·X [a,b] ≈ X [a+1,b] ·X [a,a+1] | a,b ∈ Z with a+1 < b
}
.

This set is sufficient to decompose all swaps into transpositions, as proven in Lemma F.1. Of interest in
this section is the following extension of Rτ

n ,

RB
n = Rτ

n ∪
{

X [a+1,a+2] ·X [a,a+1] ≈ X [a,a+2] ·X [a+1,a+2] | a ∈ Z
}
.

The relations in RB
n entail the braiding and order relations for S(n), as shown in Lemma F.2, and are

therefore complete for equality of words over generators of type X . Of important note is that RB
n ⊆Rn.

Lemma F.1. Let R be a set of relations over Gn which contains all well-formed relations in Rτ
n . If v is a

word over two-level operators of type X, then there exists a word u over transpositions such that v∼R u.

Proof. Consider a valid two-level operator X [a,b]. The proof follows by induction on b−a > 0.

– Base Case. If b−a = 1, then X [a,b] = X [a,a+1].

– Inductive Hypothesis. Assume that for some k ∈ N>0, if b−a = k, then there exists a word w
– Inductive Step. Assume that b− a = k + 1. Since k > 0, then a + 1 ̸= b, and the following

derivation holds.
X [a,b]← X [a,a+1]

2 ·X [a,b]→ X [a,a+1] ·X [a+1,b] ·X [a,a+1]

Since b− (a+1) = k, then by the inductive hypothesis, there exists a word w over transpositions
such that X [a+1,b] ∼R w. Then X [a,b] ∼R X [a,a+1] ·w ·X [a,a+1]. Since X [a,a+1] ·w ·X [a,a+1] is a word
over transpositions, then the inductive hypothesis holds.

Then for each symbol M in w, there exists a decomposition of M into transpositions. Then by Ap-
pendix B.2, there exists a word v over transpositions such that w∼R v.

Lemma F.2. Let R be a set of relations over Gn which contains all well-formed relations in RB
n . If v and

w are words over two-level operators of type X and [[v]]∗O = [[w]]∗O, then v∼Rσ
w.

M. Amy, N. J. Ross & S. Wesley 37

Proof. Since v and w are words over two-level operators of type X with Rτ
n ⊆RB

n , then by Lemma F.1
there exists words v̂ and ŵ over transpositions such that v̂ ∼ ŵ. Then v̂ and ŵ are words in the braid
representation of S(n). If R contains all order and braiding relations for the transpositions in Gn, then R
is complete for words over the transpositions in Gn. Let a ∈ [n−2]. Then the following derivation holds
using the relations in RB

n .

X [a,a+1] ·X [a+1,a+2] ·X [a,a+1]← X [a,a+1]
2 ·X [a,a+2]→ X [a,a+2]← X [a,a+2] ·X [a+1,a+2]

2← X [a+1,a+2] ·X [a,a+1] ·X [a+1,a+2]

Then X [a,a+1] ·X [a+1,a+2] ·X [a,a+1] ∼R X [a+1,a+2] ·X [a,a+1] ·X [a+1,a+2]. Since a was arbitrary, then R is
complete for S(n). Since v ∼R v̂ and w ∼R ŵ, then [[v]]∗O = [[v̂]]∗O and [[w]]∗O = [[ŵ]]∗O. Then [[v̂]]∗O = [[ŵ]]∗O.
Then v̂∼R ŵ by the completeness of R. Then v∼R w by the transitivity of (∼R).

F.2.2 Formal Inverses for Self-Inverse Generators

For each w = w1 ·w2 · · ·wn over Gn, define w = wn · · ·w2 ·w1. Since each element in Gn is self-inverse,
then [[w]]∗O is the inverse of [[w]]∗O in O(8,D). One can prove that given a complete set of relations, both
u · u and u · u always derive to ε . For the purposes of this proof, only the case for X-type generators is
necessary.

Lemma F.3. Let R be a set of relations over Gn which contains all well-formed relations in the set below.

{
X [a,a+1]

2 ≈ ε | a ∈ Z
}
∪
{

X [a,a+1] ·X [a,b] ≈ X [a+1,b] ·X [a,a+1] | a,b ∈ Z
}
∪
{

X [a+1,a+2] ·X [a,a+1] ≈ X [a,a+@] ·X [a+1,a+2] | a ∈ Z
}

If u is a word over two-level operators of type X, then u · u ∼R ε and u · u ∼R ε . Furthermore, if v is a
word over two-level operators of type X and u∼R v, then u∼R v.

Proof. Since [[·]]∗O maps each generator in Gn to a self-inverse matrix, then [[u]]∗O is the inverse to [[u]]∗O.
Then [[u ·u]]∗O = [[ε]]∗O = [[u ·u]]∗O. Since u is a word over two-level operators of type X , then u ·u∼R ε and
u ·u ∼R ε by Lemma F.2. Now assume that v is a word over two-level operators of type X with u ∼R v.
Then [[u]]∗O = [[v]]∗O. Since u is the inverse to u and v is the inverse to v, then [[u]]∗O = [[v]]∗O. Then u ∼R v
by Lemma F.2.

F.2.3 Permuting the Indices in Multi-Level Operators

Theorem F.4. If σ ∈ S(n) is a valid reindexing for a two-level operator M of type X, then there exists a
word v over the two-level operators of type X, such that [[v]]∗O = [[σ]]S and σ(M)∼Rσ

v ·M · v.

Proof. Since M is a two-level operator of type X , then there exists an increasing sequence (a,b) over [n]
such that M = X [a,b]. Let σ1 ◦σ2 ◦ · · · ◦σm be the decomposition of σ into a sequence of transpositions.
Then define v = [[σ1]]S · [[σ2]]S · · · [[σm]]S. Clearly v is a word over two-level operators of type X satisfying
[[v]]∗O = [[σ]]S. Furthermore, [[σ(M)]]∗O = [[τσ(a),σ(b)]]S = [[σ · τa,b ·σ−1]]∗S = [[v ·M · v]]∗O. Since σ(M) and
v ·M · v are words over two-level operators of type X , then σ(M)∼Rσ

v ·M · v by Lemma F.2.

Theorem F.5. If σ ∈ S(n) and M is a one-level operator of type (−1), then there exists a word v of
transpositions, such that [[v]]∗O = [[σ]]S and σ(M)∼Rσ

v ·M · v.

Proof. Since M is a one-level operator of type (−1), then there exists an a ∈ [a] such that M = (−1)[a].
Let v Let σ1 ◦σ2 ◦ · · · ◦σm be the decomposition of σ into a sequence of transpositions. Then define
v = [[σ1]]S · [[σ2]]S · · · [[σm]]S. It follows by induction on m that σ(M)∼Rσ

v ·M · v.

38 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

– Base Case. Assume that m = 0. Then v = v = ε and σ(M) = M. Then σ(M)∼Rσ
v ·M · v by the

reflexivity of (∼Rσ
).

– Inductive Hypothesis. Assume that for some k ∈ N, if m = k, then σ(M)∼Rσ
v ·M · v.

– Inductive Step. Assume that m = k+ 1 and define u = [[σ1]]S · [[σ2]]S · · · [[σk]]S. Then by the in-
ductive hypothesis σ(M) ∼Rσ

u ·σm(M) · u. Since σm is a transposition, then there exists some
j ∈ [n−1] such that σm = τ j, j+1. Furthermore, [[σm]]S = X [j, j+1]. If j = a, then σm(M) = (−1)[a+1]
then the following derivation holds using only Relations (47) and (58).

(−1)[a+1]← (−1)[a+1] ·X [j, j+1]
2← X [j, j+1] · (−1)[a] ·X [j+1]

The case when j+1 = a follows symmetrically. When j ̸= a and j+1 ̸= a, then σm(M) = M and
the following derivation holds using only Relations (47) and (51).

(−1)[a]← (−1)[a] ·X [j, j+1]
2← X [j, j+1] · (−1)[a] ·X [j+1]

In either case, σm(M)∼Rσ
[[σm]]S ·M · [[σm]]S. Then σm(M)∼Rσ

u ·σm(M) ·u∼Rσ
v ·M ·v and the

inductive step is established.

Then by the principle of induction, σ(M)∼Rσ
v ·M · v. Clearly [[v]]∗O = [[σ]]S.

Lemma F.6. For each four-level operator M of type K, there exists a valid reindexing σ for M and a
word v over two-level operators of type X, such that [[v]]∗O = [[σ]]S and K[0,1,2,3] ∼Rσ

v ·M · v.

Proof. Since M is a four-level operator of type K, then there exists an increasing sequence (a0,a1,a2,a3)
over [n] such that M = (−1)[a0,a1,a2,a3]. Since (a0,a1,a3,a4) is increasing, then k ≤ ak for k ∈ [4]. Then
for each k ∈ [4], define σk to be τk,ak if k ̸= ak, or identity otherwise. Then the following equations hold.

σ0(M) = (−1)[0,a1 ,a2 ,a3]
σ1(σ0(M)) = (−1)[0,1,a2 ,a3]

σ2(σ1(σ0(M))) = (−1)[0,1,2,a3]
σ3(σ2(σ1(σ0(M)))) = (−1)[0,1,2,3]

Let v = [[σ3]]S · [[σ2]]S · [[σ1]]S · [[σ0]]S. Then the following derivations hold by Relations (47), (59), (60),
(61) and (62). We assume that each σk is not the identity, else the derivation is trivial.

σ0(M)← X [0,a0]
2 ·K[0,a1 ,a2 ,a3]

→ X [0,a0]
·K[a0 ,a1,a2 ,a3]

·X [0,a0]

σ1(σ0(M))← X [1,a1]
2 ·K[0,1,a2 ,a3]

→ X [1,a1]
·K[0,a1 ,a2 ,a3]

·X [1,a1]
= X [1,a1]

·σ0(M) ·X [1,a1]

σ2(σ1(σ0(M)))← X [2,a2]
2 ·K[0,1,2,a3]

→ X [2,a2]
·K[0,1,a2 ,a3]

·X [2,a2]
= X [2,a2]

·σ1(σ0(M)) ·X [2,a2]

σ3(σ2(σ1(σ0(M))))← X [3,a3]
2 ·K[0,1,2,3]→ X [3,a3]

·K[0,1,2,a3]
·X [3,a3]

= X [3,a3]
·σ1(σ0(M)) ·X [3,a3]

It follows that σ(M)∼Rσ
v ·M · v where σ = σ3 ·σ2 ·σ1 ·σ0. Clearly [[v]]∗O = [[σ]]S.

Lemma F.7. Let M = K[0,1,2,3] be a four-level operator of dimension n. For any increasing sequence
(a0,a1,a2,a3) over [n], there exists a valid reindexing σ for M and a word v over two-level operators of
type X, such that σ(M) = K[a0,a1,a2,a3], [[v]]

∗
O = [[σ]]S, and K[a0,a1,a2,a3] ∼Rσ

v ·M · v.

Proof. Since (a0,a1,a3,a4) is increasing, then k ≤ ak for k ∈ [4]. Then for each k ∈ [4], define σk to be
τk,ak if k ̸= ak, or identity otherwise. Then the following equations hold.

σ3(M) = (−1)[0,1,2,a3]
σ2(σ3(M)) = (−1)[0,1,a2,a3]

σ1(σ2(σ3(M))) = (−1)[0,a1 ,a2,a3]
σ0(σ1(σ2(σ3(M)))) = (−1)[a0 ,a2 ,a3 ,a4]

M. Amy, N. J. Ross & S. Wesley 39

Let v = [[σ0]]S · [[σ1]]S · [[σ2]]S · [[σ3]]S. Then the following derivations hold by Relations (47), (59), (60),
(61) and (62). We assume that each σk is not the identity, else the derivation is trivial.

σ3(M)← K[0,1,2,3] ·X [3,a3]
2← X [3,a3]

·K[0,1,2,a3]
·X [3,a3]

σ2(σ3(M))← K[0,1,a2 ,a3]
·X [2,a2]

2← X [2,a2]
·K[0,1,2,a3]

·X [2,a2]
= X [2,a2]

·σ3(M) ·X [2,a2]

σ1(σ2(σ3(M)))← K[0,a1 ,a2 ,a3]
·X [1,a1]

2← X [1,a1]
·K[0,1,a2 ,a3]

·X [1,a1]
= X [1,a1]

·σ2(σ3(M)) ·X [1,a1]

σ0(σ1(σ2(σ3(M))))← K[a0 ,a1 ,a2 ,a3]
·X [0,a0]

2← X [0,a0]
·K[0,a1 ,a2 ,a3]

·X [0,a0]
= X [0,a0]

·σ1(σ2(σ3(M))) ·X [0,a0]

It follows that σ(M)∼Rσ
v ·M · v where σ = σ0 ·σ1 ·σ2 ·σ3. Clearly [[v]]∗O = [[σ]]S.

Lemma F.8. If σ ∈ S(n) is a valid reindexing for a four-level operator M of type K and σ(M) = M, then
there exists a word v over the two-level operators of type X, such that [[v]]∗O = [[σ]]S and M ∼Rσ

v ·M · v.

Proof. Since M is a four-level operator of type K, then there exists an increasing sequence (a,b,c,d)
over [n] such that M = (−1)[a,b,c,d]. Since σ(M) = M, then σ fixes {a,b,c,d}. Then σ restricts to
a permutation on [n] \ {a,b,c,d}. Decompose this restriction of σ into a sequence of transpositions
σ1 ◦σ2 ◦ · · · ◦σm on [n]\{a,b,c,d}. Since σ fixes {a,b,c,d}, then σ = σ1 ◦σ2 ◦ · · · ◦σm when viewing
each σ j as a permutation on [n]. Define v = [[σ1]]S · [[σ2]]S · · · [[σm]]S. It follows by induction on m that
M ∼Rσ

v ·M · v.

– Base Case. If m = 0, then v = v = ε . Then M ∼Rσ
v ·M · v by the reflexivity of (∼Rσ

).

– Inductive Hypothesis. Assume that for some k ∈ N, if m = k, then M ∼Rσ
v ·M · v.

– Inductive Step. Assume that m = k+1 and define u = [[σ1]]S · [[σ2]]S · · · [[σk]]S. Then by the induc-
tive hypothesis M ∼Rσ

u ·M · u. Since σm is a transposition of elements in [n] \ {a,b,c,d}, then
there exists some j, l ∈ [n] \ {a,b,c,d} such that σm = τ j,l . Furthermore, [[σm]]S = X [j,l]. Since
j, l ̸∈ {a,b,c,d}, then the following derivation holds by Relations (47) and (52).

K[a,b,c,d]← X2
[j,k] ·K[a,b,c,d]→ X [j,l] ·K[a,b,c,d] ·X [j,l]

Then M ∼Rσ
[[σm]]S ·M · [[σm]]S. Then M ∼Rσ

u ·M ·u∼Rσ
v ·M · v.

Then by the principle of induction, M ∼Rσ
v ·M · v. Clearly [[v]]∗O = [[σ]]S.

Theorem F.9. If σ ∈ S(n) is a valid reindexing for a four-level operator M of type K, then there exists a
word v over the two-level operators of type X, such that [[v]]∗O = [[σ]]S and σ(M)∼Rσ

v ·M · v.

Proof. Since M is a four-level operator of type K, then there exists an increasing sequence (a0,a1,a2,a3)
over [n] such that M = (−1)[a0,a1,a2,a3]. By Lemma F.6, there exists a word u over two-level operators of
type X , and a permutation σ1 such that σ1(M) = (−1)[0,1,2,3], [[σ1]]S = [[u]]∗S, and σ1(M) ∼Rσ

u ·M · u.
By Lemma F.7, there exists a word v over two-level operators of type X , and a permutation σ2 such
that σ2(σ1(M)) = (−1)[σ(a),σ(b),σ(b),σ(c)] = σ(M), [[σ2]]S = [[v]]∗S, and σ2(σ1(M))∼Rσ

v ·σ1(M) ·v. Then
define σ3 =σ ◦σ

−1
1 ◦σ

−1
2 . Then σ3(σ(ak))=σ(σ−1

1 (σ−1
2 (σ(ak))))=σ(σ−1

1 (k))=σ(ak) for all k∈ [4].
Then σ3 is a valid reindexing for M with σ3(σ2(σ1(M))) = M. By Lemma F.8, there exists a word
w over two-level operators of type X , such that [[σ3]]S = [[w]]∗S and σ(M) ∼Rσ

w · σ2(σ1(M)) ·w. It
follows that σ(M) ∼Rσ

w ·σ2(σ1(M))w ∼Rσ
w · u ·σ1(M) ·w ·u ∼Rσ

w · u · v ·M ·w ·u · v. Moreover,
[[w ·u · v]]∗O = [[w]]∗O ◦ [[u]]∗O ◦ [[v]] = [[σ3]]S ◦ [[σ2]]S ◦ [[σ1]]S = [[σ]]S.

40 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

F.2.4 Permuting the Indices in Relations Over Multi-Level Operators

Theorem F.10. For each σ ∈ S(n), there exits a set of words Lσ with the following properties.

1. If v1 ∈ Lσ and v2 ∈ Lσ , then v1 ∼Rσ
v2.

2. If σ is a valid reindexing for w, then there exists a v ∈ Lσ such that σ(w)∼Gσ
v ·w · v.

Proof. Let Lσ be the set of all words v over the two-level operators of type X , such that [[v]]∗O = [[σ]]S. Let
v1 ∈ Lσ and v2 ∈ Lσ . Then [[v1]]

∗
O = [[σ]]S = [[v2]]

∗
O. Then v1 ∼Gσ

v2. Since v1 and v2 were arbitrary, then
Property (1) holds. Now assume that σ is a valid reindexing for w. Property (2) follows by induction on
the length of w.

– Base Case. If |w| = 0, then σ(w) = w. Let σ1 ◦ σ2 ◦ · · · ◦ σm be a decomposition of σ into
transpositions. Define v = [[σ1]]S · [[σ2]]S · · · [[σm]]. Then [[v]]∗O = [[σ−1]]S since v is the inverse to v.
Since v ·w · v, then σ(w)∼Rσ

v ·w · v by Lemma F.3.

– Inductive Hypothesis. Assume that for some k ∈N, if |w|= k, then there exists a v∈ Lσ such that
σ(w)∼Gσ

v ·w · v.

– Inductive Step. Assume that |w| = k + 1. Then there exists some word ŵ over Gn and some
M ∈ Gn such that w = ŵ ·M with |ŵ| = k. Clearly, M is either of type X , type (−1), or type K.
In any case, there exists a word v over the two-level operators of type X such that [[v]]∗O = [[σ]]S
and σ(M) ∼Rσ

v ·M · v. Then v ∈ Lσ . By the inductive hypothesis, there exists a u ∈ Lσ such
that σ(ŵ) ∼Rσ

u · ŵ · u. Since u ∈ Lσ and v ∈ Lσ , then u ∼Rσ
v by Property (1). Furthermore

v · v∼Rσ
ε by Lemma F.3. Then v ·u∼Rσ

v · v∼Rσ
ε . Since σ(w) = σ(ŵ) ·σ(M), then it follows

σ(w)∼Rσ
v · ŵ · v ·σ(M)∼Rσ

v · ŵ · v ·u ·M ·u∼Rσ
v · ŵ ·M ·u∼Rσ

u ·w ·u and the inductive step
is established.

Then by the principle of induction, Property (2) holds.

Corollary F.11. Let v and w be words over Gn. If σ is a valid reindexing for u and w, then σ(w) is
derivable from σ(u) using Rσ ∪{u≈ w}.

Proof. Let Q=Rσ ∪{u≈w}. By Theorem F.10, there exists words v1 and v2 over two-level operators of
type X , such that v1∼Q v2, σ(u)∼Q v1 ·u ·v1 and σ(w)∼Q v2 ·w ·v2. Since v1∼Q v2, then [[v1]]

∗
O = [[v2]]

∗
O.

Then [[v1]]
∗
O = [[v2]]

∗
O. Since v1 and v2 are words over two-level operators of type X , then v1 ∼Q v2 by

Lemma F.2. Then the following derivation holds over Q.

σ(u)→ v1 ·u · v1→ v2 ·u · v1→ v2 ·w · v1→ v2 ·w · v2→ σ(w)

Then σ(w) is derivable from σ(w) using Q.

F.3 The Set of Representative Relations

In Section 5.2, a set of representative relations were selected from Rn. These relations are illustrated
in Figure 10. In some sense, the choice of representative relations were arbitrary, since all choices
are equivalent up to permutation. However, preference was given to the parameters [0], [4], [0,1,2,3],
[4,5,6,7], since these correspond well to controlled qubit operators.

M. Amy, N. J. Ross & S. Wesley 41

X [a,b]
2 ≈ ε (109)

(−1)[0]
2 ≈ ε (110)

K[0,1,2,3]
2 ≈ ε (111)

X [a,b] ·X [c,d] ≈ X [c,d] ·X [a,b] (112)

X [a,b] · (−1)[c] ≈ (−1)[c] ·X [a,b] (113)

X [a,b] ·K[c,d,e, f] ≈ K[c,d,e, f] ·X [a,b] (114)

(−1)[4] ·K[0,1,2,3] ≈ K[0,1,2,3] · (−1)[4] (115)

(−1)[0] · (−1)[4] ≈ (−1)[4] · (−1)[0] (116)

K[0,1,2,3] ·K[4,5,6,7] ≈ K[4,5,6,7] ·K[0,1,2,3] (117)

X [a,a+2] ·X [a,a+1] ≈ X [a+1,a+2] ·X [a,a+2] (118)

X [a+1,a+2] ·X [a,a+1] ≈ X [a,a+2] ·X [a+1,a+2] (119)

X [a,b] · (−1)[a] ≈ (−1)[b] ·X [a,b] (120)

X [a,e] ·K[a,b,c,d] ≈ K[e,b,c,d] ·X [a,e] (121)

X [b,e] ·K[a,b,c,d] ≈ K[a,e,c,d] ·X [b,e] (122)

X [c,e] ·K[a,b,c,d] ≈ K[a,b,e,d] ·X [c,e] (123)

X [d,e] ·K[a,b,c,d] ≈ K[a,b,c,e] ·X [d,e] (124)

X [0,1] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [0,1] · (−1)[1] · (−1)[3] (125)

X [1,2] ·K[0,1,2,3] ≈ (−1)[0] ·K[0,1,2,3] · (−1)[0] ·K[0,1,2,3] · (−1)[0] (126)

X [2,3] ·K[0,1,2,3] ≈ K[0,1,2,3] ·X [1,3] (127)

K[0,1,2,3] ·K[1,3,4,5] ≈ K[1,3,4,5] ·K[0,1,2,3] (128)

(−1)[0] · (−1)[4] ·X [0,4] ·ρ ≈ ρ ·X [0,4] · (−1)[4] · (−1)[0] (129)

Figure 10: The representative relations in R1
n , for all valid choices of a,b,c,d,e, f ∈ Z. We write ρ for

the substring K[4,5,6,7] ·K[0,1,2,3] ·X [3,4] ·K[0,1,2,3] ·K[4,5,6,7] ·X [0,4].

F.4 Proving the Redundant Relations are Derivable

This section makes use of the braiding relations and the inverse relations, to derive several bifunctoriality
and commutator relations. Each proof follows the same structure. First, the special case is proven
where all generators of type (−1) or K have consecutive indices starting from 0. In all other cases,
there is a generator of type (−1) or K conjugated by a permutation. The braiding relations are used to
obtain a convenient decomposition for each permutation. The commutativity and bifunctoriality follow
immediately from these decompositions.

Lemma F.12. If (0,a,b) is an increasing sequence over [n], then X [a,b] · (−1)[0] ∼R3
n
(−1)[0] ·X [a,b].

Proof. Let σ = τa,b. Since 3 < a < b, then there exists a decomposition τc1,c1+1 ◦ τc2,c2+1 ◦ · · ·τcm,cm+1 of
σ into transpositions such that 0 < ck for all k ∈ [n]. Define u = X [c1,c1+1] ·X [c2,c2+1] · · ·X [cm,cm+1]. Then
[[X [a,b]]]

∗
O = [[σ]]S = [[u]]∗O. Then X [a,b] ∼R3

n
u by Lemma F.2. The proof follows by induction on m.

– Base Case. If |u|= 0, then u · (−1)[0] = (−1)[0] ·u. Then u · (−1)[0] ∼R3
n
(−1)[0] ·u by reflexivity.

– Inductive Hypothesis. Assume that for some k ∈ N, if |u|= k, then u · (−1)[0] ∼R3
n
(−1)[0] ·u.

– Inductive Step. Assume that m = k + 1. Define v = X [c1,c1+1] ·X [c2,c2+1] · · ·X [ck,ck+1]. Then by
definition u = v ·X [cm,cm+1]. Since cm > 0, then u · (−1)[0] ∼R3

n
v · (−1)[0] ·X [cm,cm+1] by the rela-

tion X [cm,cm+1] · (−1)[0] ≈R3
n
(−1)[0] ·X [cm,cm+1]. Furthermore, since |v| = k, then by the inductive

hypothesis v · (−1)[0] ∼R3
n
(−1)[0] · v. Then v · (−1)[0] ·X [cm,cm+1] ∼R3

n
(−1)[0] · u. Then by the

transitivity of (∼R3
n
), u · (−1)[0] ∼R3

n
(−1)[0] ·u and the inductive step is established.

Then u · (−1)[0] ∼R3
n
(−1)[0] · u by the principle of induction. Since X [a,b] · (−1)[0] ∼R3

n
u · (−1)[0] and

(−1)[0] ·u∼R3
n
(−1)[0] ·X [a,b], then X [a,b] · (−1)[0] ∼R3

n
(−1)[0] ·X [a,b] by the transitivity of (∼R3

n
).

Theorem F.13. All instances of Relation (51) are derivable from R3
n .

Proof. Let {a,b,c} ∈ [n]. Define σ ∈ S(n) such that σ is τk,ck if c > 0, or identity otherwise. Likewise,
define u to be X [0,c] if c > 0, or ε otherwise. Clearly τa,b ◦σ = σ ◦ τσ(a),σ(b). Then,

[[X [a,b] ·u]]∗O = [[τa,b ◦σ]]S = [[σ ◦ τσ(a),σ(b)]]S = [[u ·X [σ(a),σ(b)]]]
∗
O.

42 A Sound and Complete Equational Theory for 3-Qubit Toffoli-Hadamard Circuits

Then X [a,b] · u ∼R3
n

u ·X [σ(a),σ(b)] by Lemma F.2. Likewise, X [σ(a),σ(b)] · u ∼R3
n

u ·X [a,b] by Lemma F.3.
Since {a,b,c} are distinct, then σ(a)> 0 and σ(b)> 0. Then X [σa,σb] · (−1)[0] ∼R3

n
(−1)[0] ·X [σa,σb] by

Lemma F.12. Then the following derivation holds.

X [a,b] ·u · (−1)[0] ·u∼R3
n

u ·X [σ(a),σ(b)] · (−1)[0] ·u∼R3
n

u · (−1)[0] ·X [σ(a),σ(b)] ·u∼R3
n

u · (−1)[0] ·u ·X [a,b]

Since {a,b,c} were arbitrary, then all instances of Relation (51) are derivable from R3
n .

Lemma F.14. If (3,a,b) is an increasing sequence over [n], then X [a,b] ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·X [a,b].

Proof. Let σ = τa,b. Since 3 < a < b, then there exists a decomposition τc1,c1+1 ◦ τc2,c2+1 ◦ · · ·τcm,cm+1 of
σ into transpositions such that 3 < ck for all k ∈ [n]. Define u = X [c1,c1+1] ·X [c2,c2+1] · · ·X [cm,cm+1]. Then
[[X [a,b]]]

∗
O = [[σ]]S = [[u]]∗O. Then X [a,b] ∼R3

n
u by Lemma F.2. The proof follows by induction on m.

– Base Case. If |u|= 0, then u ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·u by reflexivity.

– Inductive Hypothesis. Assume that for some k ∈ N, if |u|= k, then u ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·u.

– Inductive Step. Assume that m = k + 1. Define v = X [c1,c1+1] ·X [c2,c2+1] · · ·X [ck,ck+1]. Then by
definition u = v · X [cm,cm+1]. Since cm > 3, then u ·K[0,1,2,3] ∼R3

n
v ·K[0,1,2,3] · X [cm,cm+1] by the

relation X [cm,cm+1] ·K[0,1,2,3]≈R3
n

K[0,1,2,3] ·X [cm,cm+1]. Since |v|= k, then by the inductive hypothesis
v ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] · v. Then v ·K[0,1,2,3] ·X [cm,cm+1] ∼R3

n
K[0,1,2,3] ·u. Then by the transitivity

of (∼R3
n
), u ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] ·u and the inductive step is established.

Then u ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·u by the principle of induction. Since X [a,b] ·K[0,1,2,3] ∼R3
n

u ·K[0,1,2,3] and
K[0,1,2,3] ·u∼R3

n
K[0,1,2,3] ·X [a,b], then X [a,b] ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] ·X [a,b] by the transitivity of (∼R3

n
).

Theorem F.15. All instances of Relation (52) are derivable from R3
n .

Proof. Let (c0,c1,c2,c3) an increasing sequence over [n]. Since (c0,c1,c2,c3) is increasing, then k ≤ ck
for k ∈ [4]. Then for each k ∈ [4], define σk to be τk,ck if k ̸= ck, or identity otherwise, and define
σ = σ0 ◦σ1 ◦σ2 ◦σ3. Likewise, for each k ∈ [4], define uk to be X [k,ck] if k ̸= ck, or ε otherwise, and let
u = u0 ·u1 ·u2 ·u3. Clearly τa,b ◦σ = σ ◦ τσ(a),σ(b). Then,

[[X [a,b] ·u]]∗O = [[τa,b ◦σ]]S = [[σ ◦ τσ(a),σ(b)]]S = [[u ·X [σ(a),σ(b)]]]
∗
O.

Then X [a,b] · u ∼R3
n

u ·X [σ(a),σ(b)] by Lemma F.2. Likewise, X [σ(a),σ(b)] · u ∼R3
n

u ·X [a,b] by Lemma F.3.
Since a,b ̸∈ {c0,c1,c2,c3}, then σ(a)> 3 and σ(b)> 3. Then X [σa,σb] ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] ·X [σa,σb]

by Lemma F.14. Then the following derivation holds.

X [a,b] ·u ·K[0,1,2,3] ·u∼R3
n

u ·X [σ(a),σ(b)] ·K[0,1,2,3] ·u∼R3
n

u ·K[0,1,2,3] ·X [σ(a),σ(b)] ·u∼R3
n

u ·K[0,1,2,3] ·u ·X [a,b]

Since {a,b,c0,c1,c2,c3} were arbitrary, then all instances of Relation (52) are derivable from R3
n .

Lemma F.16. Let (c0,a,c1,c2,c3) be an increasing sequence over [n]. For each k ∈ [4], define σk to be
τk,ck if k ̸= ck, or identity otherwise. If σ = σ0 ·σ1 ·σ2 ·σ3 and ρ = τ0,a ·σ1 ·σ2 ·σ3, then there exists an
α ∈ S(n) such that τc0,a ◦σ = ρ ◦α with α fixing [4].

Proof. By definition, ρ(0) = a = τc0,a(σ(0)), ρ(1) = c1 = τc0,a(σ(0)), ρ(1) = c2 = τc0,a(σ(0)), and
ρ(2) = c2 = τc0,a(σ(0)). Since S(n) is a group, then there exists an α ∈ S(n) such that τc0,a ◦σ = ρ ◦α .
Assume that there exists a k∈ [4] such that α(k) ̸= k. Then (τc0,a◦σ)(α(k)) ̸=(τc0,a◦σ)(k)= ρ(k). Then
by contradiction, α fixes [4]. Then α decomposes into a sequence of transpositions over [n]\ [4].

M. Amy, N. J. Ross & S. Wesley 43

Lemma F.17. Let w = X [a0,b0] ·X [a1,b1] · · ·X [am,bm] such that ak > 3 and bk > 3 for all k ∈ [m+ 1]. Then
w ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] ·w.

Proof. Let proof follows by induction on |w|.
– Base Case. If |w|= 0, then w = ε and w ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] ·w by the transitivity of (∼R3

n
).

– Inductive Hypothesis. Assume that for some k ∈ N, if |w|= k, then w ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·w
– Inductive Step. Assume that |w| = k + 1. Define v = X [a0,b0] ·X [a1,b1] · · ·X [ak,bk]. Then by def-

inition w = v ·X [am,bm]. Since am > 3 and bm > 3, then X [am,bm] ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·X [am,bm]

by Lemma F.14. As a result, w ·K[0,1,2,3] ∼R3
n

v ·K[0,1,2,3] ·X [am,bm]. Then by the inductive hy-
pothesis, v ·K[0,1,2,3] ∼R3

n
K[0,1,2,3] · v. As a result, v ·K[0,1,2,3] · X [am,bm] ∼R3

n
K[0,1,2,3] ·w. Then

w ·K[0,1,2,3] ∼ K[0,1,2,3] ·w by the transitivity of (∼R3
n
) and the inductive step is established.

Then by the principle of induction, w ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·w.

Theorem F.18. All instances of Relations (59), (60), (61) and (62) are derivable from R3
n .

Proof. Let be (c0,a,c1,c2,c3) an increasing sequence. For each k ∈ [4], define σk to be τk,ck if k ̸= ck,
or identity otherwise. Then define σ = σ0 ◦σ1 ◦σ2 ◦σ3 and ρ = τ0,a ·σ1 ·σ2 ·σ3. By Lemma F.16,
there exists a sequence of transpositions α = α0 ◦α1 ◦ · · ·αm such that τc0,a ◦σ = ρ ◦α . Then define
w = [[α0]]S · [[α1]]S · · · [[αm]]S. Next, for each k ∈ [4], define uk to be X [k,ck] if k ̸= ck, or ε otherwise.
Then define u = u0 · u1 · u2 · u3, v = X [c0,a] · u1 · u2 · u3, and w = [[α0]]S · [[α1]]S · · · [[αm]]S. It follows that
[[u]]∗O = [[τc0,a ◦σ]]S = [[ρ ◦α]]S = [[v ·w]]. Since u, v, and w are words over two-level operators of type X ,
then X [c0,a] ·u∼R3

n
v ·w. Likewise, by Lemma F.3, u ·X [c0,a] ∼R3

n
w ·v. Then X [c0,a] ·u acts by conjugation

on K[0,1,2,3] as follows.

X [c0 ,a] ·u ·K[0,1,2,3] ·u ·X [c0,1] ∼R3
n

v ·w ·K[0,1,2,3]u ·X [c0 ,1] ∼R3
n

v ·w ·K[0,1,2,3] ·w · v

Then by Lemma F.17, w ·K[0,1,2,3] ∼R3
n

K[0,1,2,3] ·w. Furthermore, w ·w ∼R3
n

ε Lemma F.3. Then w acts
by conjugation on K[0,1,2,3] as follows.

w ·K[0,1,2,3] ·w∼R3
n

K[0,1,2,3] ·w ·w∼R3
n

K[0,1,2,3]

Since X [c0,a]
2 ∼R3

n
ε by Lemma F.2, then the following derivation also holds.

X [c0,a] ·u ·K[0,1,2,3] ·u∼R3
n

X [c0,a] ·u ·K[0,1,2,3] ·u ·X [c0,1]
2 ∼R3

n
v ·w ·K[0,1,2,3] ·w · v ·X [c0 ,1] ∼R3

n
v ·K[0,1,2,3] · v ·X [c0 ,1]

Since {a,b,c0,c1,c2,c3} were all arbitrary, then all instances of Relation (59) holds. The cases of Rela-
tions (60), (61) and (62) follow symmetrically.

A. Dı́az-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 44–62, doi:10.4204/EPTCS.406.2

© A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh
This work is licensed under the
Creative Commons Attribution License.

Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

Andrew N. Glaudell
Photonic Inc.

andrewglaudell@gmail.com

Neil J. Ross
Dalhousie University

neil.jr.ross@dal.ca

John van de Wetering
University of Amsterdam

john@vdwetering.name

Lia Yeh
University of Oxford

lia.yeh@cs.ox.ac.uk

It is known that the matrices that can be exactly represented by a multiqubit circuit over the Tof-
foli+Hadamard, Clifford+T , or, more generally, Clifford-cyclotomic gate set are precisely the unitary
matrices with entries in the ring Z[1/2,ζk], where k is a positive integer that depends on the gate set
and ζk is a primitive 2k-th root of unity. In the present paper, we establish an analogous correspon-
dence for qutrits. We define the multiqutrit Clifford-cyclotomic gate set of degree 3k by extending the
classical qutrit gates X , CX , and CCX with the Hadamard gate H and the Tk gate Tk = diag(1,ωk,ω

2
k),

where ωk is a primitive 3k-th root of unity. This gate set is equivalent to the qutrit Toffoli+Hadamard
gate set when k = 1, and to the qutrit Clifford+Tk gate set when k > 1. We then prove that a 3n ×3n

unitary matrix U can be represented by an n-qutrit circuit over the Clifford-cyclotomic gate set of
degree 3k if and only if the entries of U lie in the ring Z[1/3,ωk].

1 Introduction

1.1 Background

In quantum computing, synthesis refers to the process of converting a representation of a unitary into a
quantum circuit. In exact synthesis the unitary is typically given as a matrix, and the goal is to produce
a circuit that implements the matrix exactly. This is in contrast to approximate synthesis, where the
circuit is only required to implement the given matrix up to some prescribed error budget.

A solution to an exact synthesis problem for a gate set G sometimes characterizes the unitary matri-
ces that can be exactly represented by a circuit over G . For instance, the matrices with entries in the ring
Z[1/2] of dyadic rationals corresponds precisely to the unitary matrices that can be represented using the
Toffoli gate and the tensor product H ⊗H of the Hadamard gate with itself [4]. Similarly, Clifford+T
circuits correspond to unitary matrices with entries in Z[1/2,e2πi/8] [12]. More generally, it was re-
cently shown that multiqubit circuits over the Clifford-cyclotomic gate set of degree k, which extends the
Clifford gate set with a z-rotation by angle 2π/2k, correspond to unitary matrices with entries the ring
Z[1/2,e2πi/2k

] [2].
In this paper, we consider the exact synthesis problem for qutrits. Like for qubits, fault-tolerant

universal quantum computation has been theoretically devised for qutrits through magic state distilla-
tion [5, 9, 24] or gauge fixing of colour codes [30]. In recent years, qudit operations have been demon-
strated on many experimental platforms [17, 20, 31, 33], with error rates competitive to qubit opera-
tions [26, 10]. Qutrit exact synthesis problems, however, have received less attention than their qubit
counterparts and only a few results exist: a normal form for single-qutrit Clifford+T unitaries [13, 25], a
proof that all classically reversible functions on trits can be implemented using Clifford+T circuits [32],
and an exact synthesis result for single-qutrit Clifford+R unitaries [19].

http://dx.doi.org/10.4204/EPTCS.406.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 45

Let k be a positive integer and let ωk ∈ C be the primitive 3k-th root of unity ωk = e2πi/3k
. For

simplicity, we write ω for ω1. The single-qutrit Pauli X gate, Pauli Z gate, phase gate S, and Hadamard
gate H are defined below.

X =

 · · 1
1 · ·
· 1 ·

 Z =

1 · ·
· ω ·
· · ω2

 S =

1 · ·
· 1 ·
· · ω

 H =
−ω2
√
−3

1 1 1
1 ω ω2

1 ω2 ω

The two-qutrit controlled-X gate CX is the permutation matrix whose action on the computational basis
is defined by |i⟩ | j⟩ 7→ |i⟩ |i+ j⟩, with addition performed modulo 3. The three-qutrit doubly-controlled-
X gate CCX (or Toffoli gate) is similarly defined by |i⟩ | j⟩ |k⟩ 7→ |i⟩ | j⟩ |k+ i j⟩. The gate set {H,S,CX}
is the Clifford gate set. Now define the single-qutrit Tk gate

Tk =

1 · ·
· ωk ·
· · ω2

k

 .
When k = 2, Tk is the qutrit T gate [16].

The Clifford-cyclotomic gate set of degree 3k is the gate set Gk = {X ,CX ,CCX ,H,Tk}. When k = 1,
we have T1 = Z = HXH†, so that the Clifford-cyclotomic gate set of degree 3 is equivalent to the qutrit
Toffoli+Hadamard gate set [27]. As we will show below, when k ≥ 2, the gate set Gk is equivalent (up to
a single ancillary qutrit) to the Clifford+Tk gate set {H,S,CX ,Tk}. In particular, the Clifford-cyclotomic
gate set of degree 9 is equivalent to the well-known qutrit Clifford+T gate set [13, 14, 25, 32]. Because
T 3

k+1 = Tk, the Clifford-cyclotomic gate sets form a hierarchy of universal gate sets whose first level is
given by the Toffoli+Hadamard gate set, whose second level is given by the Clifford+T gate set, and
whose subsequent levels are given by finer and finer extensions of the Clifford gate set.

Now consider the ring Z[1/3,ωk], which can be defined as the smallest unital subring of C containing
1/3 and ωk. Since −ω2/

√
−3 = ω2(1−ω)/3, the entries of X , CX , CCX , H, and Tk lie in Z[1/3,ωk].

Hence, any n-qutrit circuit over Gk must represent a unitary matrix with entries in Z[1/3,ωk]. The purpose
of this paper is to show that the converse implication is also true.

1.2 Contributions

We show that a 3n × 3n unitary matrix U can be exactly represented by an n-qutrit circuit over the
Clifford-cyclotomic gate set of degree 3k if and only if the entries of U belong to the ring Z[1/3,ωk].
Furthermore, we show that no more than k+1 ancillae are required for this purpose.

We therefore solve the exact synthesis problem for multiqutrit Toffoli+Hadamard circuits, multiqutrit
Clifford+T circuits, and, more generally, multiqutrit Clifford-cyclotomic circuits. To the best of our
knowledge, this is the first time that a multiqudit exact synthesis result is established for any prime
d > 2.

A similar hierarchy of Clifford-cyclotomic gate sets exists for qubits, and the correspondence be-
tween Clifford-cyclotomic circuits and matrices with entries in rings of algebraic integers also holds in
that case [2]. Following [2], we prove our result inductively. We first show that circuits over G1 corre-
spond to unitary matrices over Z[1/3,ω] by reasoning as in [4, 12, 15]. This serves as the base case of
our induction. Then, we use properties of the ring extension Z[1/3,ωk]⊆ Z[1/3,ωk+1] and the theory of
catalytic embeddings [1] to establish the inductive step.

46 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

1.3 Contents

The paper is organized as follows. We discuss the necessary number-theoretic prerequisites in Section 2.
In Section 3, we introduce a convenient generating set for the group Un(Z[1/3,ω]) of n-dimensional
unitary matrices with entries in the ring Z[1/3,ω], and in Section 4 we show that the elements of this
generating set can be represented by Clifford-cyclotomic circuits of degree 3 (explicit circuit decomposi-
tions are given in Appendix A). We introduce catalytic embeddings in Section 5. We leverage the results
of the previous sections in Section 6 to prove our main result. We comment on the complexity of the
produced circuits in Section 7 and we conclude in Section 8.

Disclaimer: After the present work was completed, it was brought to our attention that related results
were independently established in [18].

2 Rings and Groups

In this section, we discuss the rings and groups which will be important in the rest of the paper. In what
follows, when u, u′, and v are elements of a ring R, we write u ≡v u′ if u is congruent to u′ modulo v, i.e.,
if u−u′ = rv for some r ∈ R.

2.1 The Ring Z[ωk]

Definition 2.1. Let k ≥ 1. The primitive 3k-th root of unity ωk ∈ C is defined as ωk = e2πi/3k
.

We have, for k > 1, ω3
k = ωk−1, ω3k

k = 1, ω
†
k = ω

3k−1
k , and ω0

k +ω1
k + . . .+ω

3k−1
k = 0. As mentioned

in Section 1, we often write ω for ω1.

Definition 2.2. Let k ≥ 1. The ring Z[ωk] of cyclotomic integers of degree 3k is the smallest subring of
C that contains ωk.

The ring Z[ωk] can be defined in a variety of ways [29]. It will be useful for our purposes to note that
Z[ω] = {a+bω | a,b ∈ Z}, and that, for k ≥ 2,

Z[ωk] = {a+bωk + cω
2
k | a,b,c ∈ Z[ωk−1]}.

Furthermore, the expression of an element of Z[ωk] as a linear combination of elements of Z[ωk−1] is
unique. The ring Z[ωk] is closed under complex conjugation and, for k ≥ 2, we have Z[ωk−1]⊆ Z[ωk].

2.2 Properties of Z[ω]

We now record some useful properties of Z[ω]. If u = a+bω ∈ Z[ω], then

u†u = (a+bω)(a+bω
2) = a2 +ab(ω +ω

2)+b2 = a2 −ab+b2. (1)

In particular, if u ∈ Z[ω], then u†u is a nonnegative integer, since the Euclidean norm of a complex
number is always nonnegative.

Definition 2.3. We define λ ∈ Z[ω] as λ = 1−ω .

By Equation (1), we have λ †λ = 3. Similarly, we have λ 2 = 1−2ω+ω2 =−3ω , so that 3=−λ 2ω2.
Hence, 3 ≡λ 0.

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 47

Proposition 2.4. We have

• Z[ω]/(3)∼= {0,1,2,ω,2ω,1+ω,1+2ω,2+ω,2+2ω} ∼= Z/(3)+ωZ/(3) and

• Z[ω]/(λ)∼= {0,1,2} ∼= Z/(3).

Proof. The first item follows from the fact that 3 ≡3 0. The second item follows from the fact that 3 ≡λ 0
and the fact that ω ≡λ 1.

Proposition 2.5. If u ∈ Z[ω], then u†u ≡λ 0 or u†u ≡λ 1.

Proof. Let u = a+bω ∈ Z[ω]. By Proposition 2.4, Z[ω]/(λ)∼= Z/(3). By Equation (1),

u†u = a2 −ab+b2 ≡λ a2 +2ab+b2 = (a+b)2.

Hence u†u is a square modulo λ and therefore cannot be congruent to 2, since 0 and 1 are the only
squares in Z/(3).

Proposition 2.6. If u ∈ Z[ω], then u ̸≡λ 0 if and only if u ≡3 ±ωx for some x ∈ {0,1,2}.

Proof. The table below lists the elements of Z[ω]/(3) as given by Proposition 2.4, together with their
residues modulo λ .

Z[ω]/(3) Z[ω]/(λ)

0 0
1 1
2 2
ω 1
2ω 2

1+ω 2
1+2ω 0
2+ω 0

2+2ω 1

The statement then follows by inspection of the table, using the fact that 1+ω = −ω2 ≡3 −ω2 and
2 ≡3 −1.

2.3 Denominators

Definition 2.7. Let k ≥ 1. The ring Z[1/3,ωk] is defined as Z[1/3,ωk] = {u/3ℓ | u ∈ Z[ωk] and ℓ ∈ N}.

Because the elements of Z[ωk] can be expressed as linear combinations of elements of Z[ωk−1], the
elements of Z[1/3,ωk] can similarly be expressed as linear combinations of elements of Z[1/3,ωk−1]. In
particular, for k ≥ 2, every element u of Z[1/3,ωk] can be uniquely written as u = a+ bωk + cω2

k with
a,b,c ∈ Z[1/3,ωk−1].

The ring Z[1/3,ωk] is the localization of Z[ωk] by the powers of 3. Alternatively, Z[1/3,ωk] can
be thought of as the localization of Z[ωk] by the powers of λ . Indeed, since 3 = −ω2λ 2, we have
3−ℓ = (−ω2λ 2)−ℓ = (−ω)ℓ(λ)−2ℓ. As a result, any element of Z[1/3,ωk] can be written as u/λ ℓ for
some u ∈ Z[ωk] and some ℓ ∈ N. We leverage this fact to define, in the usual way (see [4, 12, 15]), the
notions of λ -denominator exponent and least λ -denominator exponent.

48 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

Definition 2.8. Any nonnegative integer ℓ such that v ∈ Z[1/3,ωk] can be written as v = u/λ ℓ with
u ∈ Z[ωk] is λ -denominator exponent of v. The smallest such ℓ is the least λ -denominator exponent
of v and is denoted lde(v).

The notions of denominator exponent and least denominator exponent extend to matrices (and there-
fore to vectors) with entries in Z[1/3,ωk]: an integer ℓ is a λ -denominator exponent of a matrix M if it
is a λ -denominator exponent of all of the entries of M; the smallest such ℓ is the least λ -denominator
exponent of M.

2.4 The Group Un(Z[1/3,ωk])

Definition 2.9. We write Un(Z[1/3,ωk]) for the group of n-dimensional unitary matrices with entries in
Z[1/3,ωk] and U(Z[1/3,ωk]) for the collection of all unitary matrices with entries in Z[1/3,ωk].

3 Generators for Un(Z[1/3,ω])

Following [4, 12, 15, 23], we use m-level matrices to define a subset of Un(Z[1/3,ω]) which we will
show to be a generating set.
Definition 3.1. The matrices (−1), (ω), X , and H are defined as follows:

(−1) =
[
−1
]
, (ω) =

[
ω
]
, X =

[
0 1
1 0

]
, and H =

−ω2

λ

1 1 1
1 ω ω2

1 ω2 ω

 .
Definition 3.2. Let M be an m×m matrix, let m ≤ n, and let 0 ≤ x1 < .. . < xm ≤ n− 1. The m-level
matrix M[x1,...,xm] is the n×n matrix whose entries are given as follows

M[x1,...,xm]i, j =

{
Mi′, j′ if i = xi′ and j = x j′ ,

Ii, j otherwise.

For example, for n = 4, we have

(ω)[1] =

1 · · ·
· ω · ·
· · 1 ·
· · · 1

 and H[0,2,3] =
−ω2

λ

1 · 1 1
· λ/(−ω2) · ·
1 · ω ω2

1 · ω2 ω

 .
When applied to a vector |u⟩, the matrix (ω)[1] acts as (ω) on the entry of index 1 and the matrix H[0,2,3]
acts as H on the entries of index 0, 2, and 3.
Definition 3.3. We write Sn for the subset of Un(Z[1/3,ω]) defined as

Sn = {(−1)[x],(ω)[x],X[x,y],H[x,y,z] | 0 ≤ x < y < z ≤ n−1}.

Lemma 3.4. Let u0,u1,u2 ∈ Z[ω] be such that u0 ̸≡λ 0, u1 ̸≡λ 0, and u2 ̸≡λ 0. Then there exists
x0,x1,x2 ∈ {0,1,2} and y0,y1,y2 ∈ {0,1} such that

H(ω)x0
[0](ω)x1

[1](ω)x2
[2](−1)y0

[0](−1)y1
[1](−1)y2

[2]

u0
u1
u2

=

u′0
u′1
u′2

for some u′0,u

′
1,u

′
2 ∈ Z[ω] such that u′0 ≡λ 0, u′1 ≡λ 0, and u′2 ≡λ 0.

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 49

Proof. Let j ∈ {0,1,2}. Since u j ̸≡λ 0, we have, by Proposition 2.6, u j ≡3 (−1)w j(ω)z j . Hence, setting
y j =−w j and x j =−z j, we get (ω)x j(−1)y j u j ≡3 1. Therefore,

(ω)x0
[0](ω)x1

[1](ω)x2
[2](−1)y0

[0](−1)y1
[1](−1)y2

[2]

u0
u1
u2

=

v0
v1
v2

for some v0,v1,v2 ∈ Z[ω] such that v0 ≡3 v1 ≡3 v2 ≡3 1. The result then follows by computation, since
v0 + v1 + v2 ≡3 v0 +ωv1 +ω2v2 ≡3 v0 +ω2v1 +ωv2 ≡3 0.

Lemma 3.5. Let |u⟩ ∈ Z[1/3,ω]n be a unit vector. If lde |u⟩= 0, then |u⟩=±ωx | j⟩ for some 0 ≤ x ≤ 2
and some 0 ≤ j ≤ n−1.

Proof. Let |u⟩ ∈ Z[1/3,ω]n. Since lde |u⟩ = 0, we have |u⟩ ∈ Z[ω]n. Since |u⟩ is a unit vector, we also
have

1 = ⟨u|u⟩= ∑u†
ju j

with u j ∈ Z[ω]. Because each u†
ju j is a nonnegative integer, there must be exactly one j for which

u†
ju j = 1, while u†

j′u j′ = 0 for all j′ ̸= j. If u†
ju j = 1 then a2

j −a jb j +b2
j = 1, and this equation can only

be true if a =±1 and b = 0, a = 0 and b =±1, or a = b =±1. In the first case, |u⟩=±| j⟩, in the second
case, |u⟩=±ω | j⟩, and in the third case, |u⟩=±ω2 | j⟩,

Lemma 3.6. Let |u⟩ ∈ Z[1/3,ω]n be a unit vector. If lde |u⟩> 0, then there exists G0, . . . ,Gq ∈ Sn such
that lde(Gq · · ·G0 |u⟩)< lde |u⟩.

Proof. Write |u⟩ as |v⟩/λ ℓ, with ℓ = lde |u⟩. Since ⟨u|u⟩ = 1 and λ †λ = 3, we get 3ℓ = ⟨v|v⟩ = ∑v†
jv j.

Hence, ∑v†
jv j ≡λ 0. By Proposition 2.5, v†

jv j is either 0 or 1 modulo λ , and by Proposition 2.4,
Z[ω]/(λ) ∼= Z/(3). Thus, the number of v j such that v j ̸≡λ 0 must be a multiple of 3. Hence, we
can group the entries of |v⟩ into triples and apply Lemma 3.4 to each such triple. This maps |u⟩ to some
|u⟩′ of lower least denominator exponent.

Lemma 3.7. Let |u⟩ ∈Z[1/3,ω]n be a unit vector and let 0≤ j ≤ n−1. Then there exists G0, . . . ,Gq ∈Sn

such that Gq · · ·G0 |u⟩= | j⟩.

Proof. By induction on lde |u⟩. If lde(|u⟩) = 0, then, by Lemma 3.5, |u⟩=±ωxe j′ for some 0≤ j′ ≤ n−1
and some 0 ≤ x ≤ 2. We can therefore reduce |u⟩ to | j⟩ by applying (−1)[j′], (ω)[j′], and X[j, j′] or X[j′, j],
as needed. If lde |u⟩> 0, then, by Lemma 3.6, there exists Gp, . . . ,G0 ∈Sn such that lde(Gp · · ·G0 |u⟩)<
lde(|u⟩). We can then conclude by applying the induction hypothesis to Gp · · ·G0 |u⟩.

Proposition 3.8. Let U be an n×n matrix. Then U ∈ Un(Z[1/3,ω]) if and only if U can be written as a
product of elements of Sn.

Proof. The right-to-left direction is immediate. For the left-to-right direction, consider the matrix U† ∈
Un(Z[1/3,ω]). Iteratively applying Lemma 3.7 to the columns of U† yields a sequence G0, . . . ,Gq of
elements of Sn such that

G0G1 · · ·GqU† = I,

and we can therefore write U as U = G0G1 · · ·Gq.

50 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

4 Exact Synthesis of Toffoli+Hadamard Circuits

Let G be a set of quantum gates. A unitary matrix U can be represented by a circuit over G if there
exists a circuit C over G such that, for any state |u⟩, we have C |u⟩=U |u⟩. The circuit may use ancillary
qutrits, but these must start and end the computation in the same state. If that state can be arbitrary, the
ancillary qutrits are said to be borrowed; if that state is required to be |0⟩, the ancillary qutrits are said
to be fresh. Unless otherwise specified, ancillae are assumed to be fresh. Note that if a matrix can be
represented by a circuit using m borrowed ancillae, then it can also be represented by a circuit using m
fresh ancillae.

Recall from Section 1 that the Clifford-cyclotomic gate set Gk is defined as Gk = {X ,CX ,CCX ,H,Tk}.
In Appendix A we prove that G1 is equivalent to the Toffoli+Hadamard gate set, up to two borrowed
ancillae and that, when k ≥ 2, Gk is equivalent to the Clifford+Tk gate set {H,S,CX ,Tk}, up to a single
borrowed ancilla. The next proposition shows that all of the elements of S3n can be represented by a
circuit over G1 using no more than 2 borrowed ancillae. The proof of the proposition can be found in
Appendix A.
Proposition 4.1. If U ∈ S3n , then U can be represented by a circuit over G1 using at most 2 borrowed
ancillae.

Using Proposition 4.1 we are now in a position to define an exact synthesis algorithm for multiqutrit
Toffoli+Hadamard circuits.
Theorem 4.2. If U ∈ U3n(Z[1/3,ω1]), then U can be represented by an n-qutrit circuit over G1 using at
most 2 ancillae.

Proof. By Proposition 3.8, S3n generates U3n(Z[1/3,ω1]). Hence, it is sufficient to show that the ele-
ments of S3n can be represented by an n-qutrit circuit over G1. This follows from Proposition 4.1, since
if 2 borrowed ancillae suffice to construct a circuit for U , then 2 fresh ancillae are also sufficient for this
purpose.

5 Catalytic Embeddings

Definition 5.1. Let U and V be collections of unitaries. An m-dimensional catalytic embedding of U
into V is a pair (φ , |c⟩) of a function φ : U → V and a vector |c⟩ ∈Cm such that if U ∈U has dimension
n then φ(U) ∈ V has dimension nm and

φ(U)(|u⟩⊗ |c⟩) = (U |u⟩)⊗|c⟩

for every |u⟩ ∈ Cn. The vector |c⟩ is the catalyst of the catalytic embedding (φ , |c⟩). We sometimes
express the fact that (φ , |c⟩) is a catalytic embedding of U into V by writing (φ , |c⟩) : U → V .
Definition 5.2. Let (φ , |c⟩) : U → V and (φ ′, |c⟩′) : V → W be catalytic embeddings of dimension
m and m′, respectively. The concatenation of (φ , |c⟩) and (φ ′, |c⟩′) is the m′m-dimensional catalytic
embedding (φ ′, |c⟩′)◦ (φ , |c⟩) defined by (φ ′, |c⟩′)◦ (φ , |c⟩) = (φ ′ ◦φ , |c⟩⊗ |c⟩′).

The concatenation of catalytic embeddings is associative and the catalytic embedding (1U , [1]) :
U → U acts as an identity for concatenation.
Definition 5.3. Let k ≥ 2. We define Ωk and |ck⟩ as

Ωk =

 · · ωk−1
1 · ·
· 1 ·

 and |ck⟩=
1
λ

 1
ω

−1
k

ω
−2
k

 .

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 51

The matrix Ωk is unitary and the vector |ck⟩ is an eigenvector of Ωk for eigenvalue ωk. Indeed, since
ωk−1 = ω3

k , we have

Ωk |ck⟩=
1
λ

 · · ωk−1
1 · ·
· 1 ·

 1
ω

−1
k

ω
−2
k

=
1
λ

 ωk
1

ω
−1
k

=
ωk

λ

 1
ω

−1
k

ω
−2
k

= ωk |ck⟩ . (2)

Now recall from Section 2.3 that, for k ≥ 2, every u ∈ Z[1/3,ωk] can be written uniquely as a linear
combination of the form u = a+ bωk + cω2

k , where a,b,c ∈ Z[1/3,ωk−1]. Therefore, every matrix U
over Z[1/3,ωk] can be uniquely written as U = A+Bωk +Cω2

k , where A, B, and C are matrices over
Z[1/3,ωk−1]. We use this fact below to define a function U(Z[1/3,ωk])→ U(Z[1/3,ωk−1]).

Proposition 5.4. Let k ≥ 2. The assignment

A+Bωk +Cω
2
k 7−→ A⊗ I +B⊗Ωk +C⊗Ω

2
k

defines a function φk : U(Z[1/3,ωk])→ U(Z[1/3,ωk−1]).

Proof. Let U ∈ U(Z[1/3,ωk]) and write U as U = A+Bωk +Cω2
k for some matrices A, B, and C over

Z[1/3,ωk−1]. Now let U ′ = A⊗ I +B⊗Ωk +C ⊗Ω2
k . It is clear that U ′ is a matrix with entries in

Z[1/3,ωk−1]. We now show that U ′ is unitary. Since U is unitary and since U = A+Bωk +Cω2
k , we can

express the equation U†U = I in terms of A, B, and C. Using ω
†
k = ω

†
k−1ω2

k , this yields

(A†A+B†B+C†C)+(A†B+B†C+C†Aω
†
k−1)ωk +(A†C+B†Aω

†
k−1 +C†Bω

†
k−1)ω

2
k = I.

Hence, A†A+B†B+C†C = I and A†B+B†C+C†Aω
†
k−1 = A†C+B†Aω

†
k−1 +C†Bω

†
k−1 = 0. Now note

that Ω
†
k = ω

†
k−1Ω2

k , so that U ′†U ′ is equal to

(A†A+B†B+C†C)⊗ I +(A†B+B†C+C†Aω
†
k−1)⊗Ωk +(A†C+B†Aω

†
k−1 +C†Bω

†
k−1)⊗Ω

2
k .

Hence, U ′†U ′ = I. Reasoning analogously shows that U ′U ′† = I, so that U ′ is indeed unitary.

Proposition 5.5. Let k ≥ 2. The pair (φk, |ck⟩) is a 3-dimensional catalytic embedding of U(Z[1/3,ωk])
into U(Z[1/3,ωk−1]).

Proof. By Proposition 5.4, φk : U(Z[1/3,ωk])→ U(Z[1/3,ωk−1]) is a function and, by construction, if
U ∈ U(Z[1/3,ωk]) has dimension n, then φk(U) has dimension 3n. Moreover, if |u⟩ ∈ Cn, then

φk(U)(|u⟩⊗ |ck⟩) = (A⊗ I +B⊗Ωk +C⊗Ω
2
k)(|u⟩⊗ |ck⟩)

= A⊗ I(|u⟩⊗ |ck⟩)+B⊗Ωk(|u⟩⊗ |ck⟩)+C⊗Ω
2
k(|u⟩⊗ |ck⟩)

= A |u⟩⊗ I |ck⟩+B |u⟩⊗Ωk |ck⟩+C |u⟩⊗Ω
2
k |ck⟩

= A |u⟩⊗ |ck⟩+B |u⟩⊗ωk |ck⟩+C |u⟩⊗ω
2
k |ck⟩

= A |u⟩⊗ |ck⟩+ωkB |u⟩⊗ |ck⟩+ω
2
k C |u⟩⊗ |ck⟩

= (A |u⟩+ωkB |u⟩+ω
2
k C |u⟩)⊗|ck⟩

= (U |u⟩)⊗|ck⟩ .

Hence, (φk, |ck⟩) is a catalytic embedding.

52 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

Remark 5.6. The catalytic embedding constructed in Proposition 5.4 and Proposition 5.5 takes advantage
of the fact that the matrix Ωk and the algebraic number ωk have many properties in common. Importantly,
the polynomial x3 −ωk−1 is both the characteristic polynomial of Ωk and the minimal polynomial of ωk
over the ring Z[1/3,ωk−1]. This construction generalizes to many other rings of interest (see [1]).
Corollary 5.7. Let k ≥ 2. There is a 3k−1-dimensional catalytic embedding (φ , |c⟩) : U(Z[1/3,ωk])→
U(Z[1/3,ω]).

Proof. Applying Proposition 5.5 repeatedly yields a sequence of catalytic embeddings

U(Z[1/3,ωk])
(φk,|ck⟩)−−−−→ ·· · (φ3,|c3⟩)−−−−→ U(Z[1/3,ω2])

(φ2,|c2⟩)−−−−→ U(Z[1/3,ω]).

Concatenating the catalytic embeddings in this sequence yields the desired result.

Note that the catalyst |c⟩ in the catalytic embedding (φ , |c⟩) of Corollary 5.7 is the product state
|c⟩= |c2⟩⊗ · · ·⊗ |ck⟩.

6 Exact Synthesis of Clifford-Cyclotomic Circuits

We can now prove our main result, which will follow straightforwardly from the results of Sections 3, 4
and 5.
Proposition 6.1. Let k ≥ 2. If U ∈ U3n(Z[1/3,ωk]), then U can be represented by an n-qutrit circuit
over Gk using at most k+1 ancillae.

Proof. Let U ∈ U3n(Z[1/3,ωk]) and let (φ , |c⟩) be the catalytic embedding constructed in Corollary 5.7,
with |c⟩= |c2⟩⊗· · ·⊗ |ck⟩. We then have φ(U) ∈ U3n+k−1(Z[1/3,ω]), so that, by Theorem 4.2, φ(U) can
be represented by an (n+k−1)-qutrit circuit C over G1 using at most 2 fresh ancillae. By Definition 5.1,
the action of φ(U) on an input of the form |u⟩⊗ |c2⟩⊗ · · ·⊗ |ck⟩ can be depicted as below (where the
ancillary qutrits used in C, if any, are omitted).

|u⟩

C

U |u⟩

|ck⟩ |ck⟩
...

...

|c2⟩ |c2⟩

But, for 2 ≤ ℓ ≤ k, we have |cℓ⟩ = T †
ℓ H |0⟩ and T †

ℓ = (T †
k)

3k−ℓ
. Hence, we can construct the following

circuit over Gk.

D

|u⟩

C

U |u⟩

|0⟩ H T †
k Tk H |0⟩

...
...

|0⟩ H T †
2 T2 H |0⟩

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 53

Since all of the ancillae in D (including the ancillae potentially present in C) start and end the computation
in the |0⟩ state, then D is a circuit over Gk which represents U and uses at most k+1 (fresh) ancillae, as
desired.

Remark 6.2. The circuit constructed in Proposition 6.1 actually use k−1 fresh ancillae and no more than
2 borrowed ancillae. For brevity, we simply stated the proposition in terms of fresh ancillae. One can
amend the constructions in Appendix A to reduce the total ancilla-count from k+ 1 to k, at the cost of
requiring all ancillae to be fresh.

Theorem 6.3. Let k ≥ 1 and let U be a 3n × 3n unitary matrix. Then U can be represented by an n-
qutrit circuit over Gk if and only if U ∈ U3n(Z[1/3,ωk]). Moreover, k+ 1 ancillae are always sufficient
to construct a circuit for U.

Proof. The left-to-right direction is a consequence of the fact that the entries of the elements of Gk lie in
the ring Z[1/3,ωk]. The right-to-left direction is given by Theorem 4.2 and Proposition 6.1.

7 Circuit Complexity

The proof of Theorem 6.3 is constructive: it provides an algorithm to construct a circuit for a given
matrix. In this section, we briefly discuss the complexity of the resulting circuit, reasoning as in [3, 12].
We start by considering Proposition 3.8 before turning to Theorem 6.3.

Lemma 7.1. Let U ∈ Um(Z[1/3,ω]) and let ℓ= lde(U). The algorithm of Proposition 3.8 expresses U
as a product of O(2mℓ) elements of Sm in the worst case.

Proof. Consider the first column of U . In the worst case, its least denominator exponent is ℓ. To reduce
this least denominator exponent by one requires O(m) operations. Hence, reducing the first column of U
completely requires O(ℓm) operations in the worst case. The reduction of the first column may increase
the least denominator exponent of the second column from ℓ to 2ℓ, since each entry of the second column
may be affected by up to ℓ 3-level matrices in the course of this first reduction. Once the first column
has been reduced, the second column may still have m−1 nonzero entries. Reducing the second column
will hence require O(2ℓ(m−1)) operations in the worst case. In general, reducing the j-th column will
require O(2 j−1ℓ(m− j)) operations in the worst case so that the overall reduction of U requires at most

O

(
n−1

∑
i=0

2iℓ(m− i)

)

operations. Simplifying the resulting sum yields a total of O(2mℓ) operations.

Theorem 7.2. Let U ∈ U3n(Z[1/3,ωk]) and let ℓ= lde(U). The algorithm of Theorem 6.3 represents U
as a circuit of O((n+ k)23n+k−1

ℓ) gates in the worst case.

Proof. The algorithm of Theorem 6.3 uses the catalytic embedding (φ , |c⟩) of Corollary 5.7 to construct
a matrix φ(U) over Z[1/3,ω]. The dimension of φ(U) is 3n+k−1 and its least denominator exponent
is no more than ℓ. Hence, by Lemma 7.1, the algorithm of Proposition 3.8 will express φ(U) as a
product of no more than O(23n+k−1

ℓ) elements of S3n+k−1 . It follows from the circuit constructions given
in Appendix A, that each element of S3n+k−1 can be represented by a circuit consisting of O(n+k) gates.
Hence, the circuit produced by Theorem 6.3 consists of no more than O((n+ k)23n+k−1

ℓ) gates.

54 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

8 Conclusion

We showed that the matrices that can be exactly represented by an n-qutrit circuit over the Clifford-
cyclotomic gate set of degree 3k are precisely the elements of U3n(Z[1/3,ωk]). Moreover, we showed
that no more than k+1 ancillae are required to construct a circuit for an element of U3n(Z[1/3,ωk]).

Our proof contains an algorithm for synthesizing a circuit over Gk, given a matrix in U3n(Z[1/3,ωk]).
However, the circuits constructed in this way are very large and their optimization is a promising direction
for future research. It would be interesting to reduce the gate-complexity of the circuits produced by
Theorem 6.3. The techniques employed in [3, 22] for the synthesis of multiqubit Toffoli+Hadamard and
Clifford+T circuits are likely to apply in the qutrit context as well. Similarly, it would also be interesting
to reduce the number of ancillae used by the algorithm. As Appendix A shows, some of the ancillae can
be removed by choosing a slightly different gate set, but the bulk of the ancillae come from the use of
catalytic embeddings, so a different synthesis technique may be required for more significant savings.
Along this line of inquiry, it would be interesting to characterize the matrices that can be represented by
ancilla-free circuits. Such characterizations exist for qubit matrices [4, 12], but are likely to be different
for qutrits [32].

Finally, a natural generalization of this work would be to consider higher-dimensional qudits. How-
ever, preliminary research suggests that the techniques used here and in [2] might not adapt straightfor-
wardly to primes larger than 3. While it stands to reason that some version of our results should continue
to hold for larger prime dimensions, proving this to be the case might require new ideas.

Acknowledgements

The authors would like to thank Sarah Meng Li, Ewan Murphy, and the anonymous reviewers of 21st
International Conference on Quantum Physics and Logic (QPL 2024) for insightful comments on an
earlier version of this paper. LY is funded by a Google PhD Fellowship. The circuit diagrams in the
proof of Proposition 6.1 were typeset using Quantikz [21].

References

[1] Matthew Amy, Matthew Crawford, Andrew N. Glaudell, Melissa L. Macasieb, Samuel S. Mendelson &
Neil J. Ross (2023): Catalytic embeddings of quantum circuits. Preprint available from arXiv:2305.07720.

[2] Matthew Amy, Andrew N. Glaudell, Shaun Kelso, William Maxwell, Samuel S. Mendelson & Neil J. Ross
(2023): Exact Synthesis of Multiqubit Clifford-Cyclotomic Circuits. Preprint available from arXiv:2311.0

7741.

[3] Matthew Amy, Andrew N. Glaudell, Sarah Meng Li & Neil J. Ross (2023): Improved Synthesis of Toffoli-
Hadamard Circuits. In Martin Kutrib & Uwe Meyer, editors: Reversible Computation, Springer Nature
Switzerland, Cham, pp. 169–209, doi:10.1007/978-3-031-38100-3 12. Also available from arXiv:2305.1

1305.

[4] Matthew Amy, Andrew N. Glaudell & Neil J. Ross (2020): Number-theoretic characterizations of some
restricted Clifford+T circuits. Quantum 4, p. 252, doi:10.22331/q-2020-04-06-252. Also available from
arXiv:1908.06076.

[5] Hussain Anwar, Earl T Campbell & Dan E Browne (2012): Qutrit magic state distillation. New Journal of
Physics 14(6), p. 063006, doi:10.1088/1367-2630/14/6/063006. Also available from arXiv:1202.2326.

[6] Alex Bocharov (2016): A Note on Optimality of Quantum Circuits over Metaplectic Basis. Quantum Infor-
mation and Computation 18, doi:10.26421/QIC18.1-2-1. Also available from arXiv:1606.02315.

http://arxiv.org/abs/2305.07720
http://arxiv.org/abs/2311.07741
http://arxiv.org/abs/2311.07741
https://doi.org/10.1007/978-3-031-38100-3_12
http://arxiv.org/abs/2305.11305
http://arxiv.org/abs/2305.11305
https://doi.org/10.22331/q-2020-04-06-252
http://arxiv.org/abs/1908.06076
https://doi.org/10.1088/1367-2630/14/6/063006
http://arxiv.org/abs/1202.2326
https://doi.org/10.26421/QIC18.1-2-1
http://arxiv.org/abs/1606.02315

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 55

[7] Alex Bocharov, Shawn Cui, Martin Roetteler & Krysta Svore (2016): Improved Quantum Ternary Arith-
metics. Quantum Information and Computation 16, pp. 862–884, doi:10.26421/QIC16.9-10-8. Also available
from arXiv:1512.03824.

[8] Alex Bocharov, Martin Roetteler & Krysta M. Svore (2017): Factoring with qutrits: Shor’s
algorithm on ternary and metaplectic quantum architectures. Phys. Rev. A 96, p. 012306,
doi:10.1103/PhysRevA.96.012306. Also available from arXiv:1605.02756.

[9] Earl T. Campbell, Hussain Anwar & Dan E. Browne (2012): Magic-State Distillation in All Prime Dimen-
sions Using Quantum Reed-Muller Codes. Phys. Rev. X 2, p. 041021, doi:10.1103/PhysRevX.2.041021.
Also available from arXiv:1205.3104.

[10] Yulin Chi, Jieshan Huang, Zhanchuan Zhang, Jun Mao, Zinan Zhou, Xiaojiong Chen, Chonghao Zhai, Juem-
ing Bao, Tianxiang Dai, Huihong Yuan, Ming Zhang, Daoxin Dai, Bo Tang, Yan Yang, Zhihua Li, Yun-
hong Ding, Leif K. Oxenløwe, Mark G. Thompson, Jeremy L. O’Brien, Yan Li, Qihuang Gong & Jianwei
Wang (2022): A programmable qudit-based quantum processor. Nature Communications 13(1), p. 1166,
doi:10.1038/s41467-022-28767-x.

[11] Shawn X. Cui & Zhenghan Wang (2015): Universal quantum computation with metaplectic anyons. Journal
of Mathematical Physics 56(3), p. 032202, doi:10.1063/1.4914941. Also available from arXiv:1405.7778.

[12] Brett Giles & Peter Selinger (2013): Exact synthesis of multiqubit Clifford+T circuits. Physical Review A
87(3), p. 032332, doi:10.1103/PhysRevA.87.032332. Also available from arXiv:1212.0506.

[13] Andrew N. Glaudell, Neil J. Ross & Jacob M. Taylor (2019): Canonical forms for single-qutrit Clifford+T
operators. Annals of Physics 406, pp. 54–70, doi:10.1016/j.aop.2019.04.001. Also available from arXiv:

1803.05047.
[14] Andrew N. Glaudell, Neil J. Ross, John van de Wetering & Lia Yeh (2022): Qutrit Metaplectic Gates Are a

Subset of Clifford+T . In François Le Gall & Tomoyuki Morimae, editors: 17th Conference on the Theory of
Quantum Computation, Communication and Cryptography (TQC 2022), Leibniz International Proceedings
in Informatics (LIPIcs) 232, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp.
12:1–12:15, doi:10.4230/LIPIcs.TQC.2022.12. Also available from arXiv:2202.09235.

[15] Seth Evenson Murray Greylyn (2014): Generators and relations for the group U4(Z[1/
√

2, i]). Master’s
thesis, Dalhousie University. Available from arXiv:1408.6204.

[16] Mark Howard & Jiri Vala (2012): Qudit versions of the qubit π/8 gate. Phys. Rev. A 86, p. 022316,
doi:10.1103/PhysRevA.86.022316. Also available from arXiv:1206.1598.

[17] Pavel Hrmo, Benjamin Wilhelm, Lukas Gerster, Martin W. van Mourik, Marcus Huber, Rainer Blatt, Philipp
Schindler, Thomas Monz & Martin Ringbauer (2023): Native qudit entanglement in a trapped ion quantum
processor. Nature Communications 14(1), p. 2242, doi:10.1038/s41467-023-37375-2. Also available from
arXiv:2206.04104.

[18] Amolak Ratan Kalra, Manimugdha Saikia, Dinesh Valluri, Sam Winnick & Jon Yard (2024): Multi-qutrit
exact synthesis. Preprint available from arXiv:2405.08147.

[19] Amolak Ratan Kalra, Dinesh Valluri & Michele Mosca (2024): Synthesis and Arithmetic of Single Qutrit
Circuits. Preprint available from arXiv:2311.08696.

[20] Valentin Kasper, Daniel González-Cuadra, Apoorva Hegde, Andy Xia, Alexandre Dauphin, Felix Huber,
Eberhard Tiemann, Maciej Lewenstein, Fred Jendrzejewski & Philipp Hauke (2021): Universal quantum
computation and quantum error correction with ultracold atomic mixtures. Quantum Science and Technology
7(1), p. 015008, doi:10.1088/2058-9565/ac2d39. Also available from arXiv:2010.15923.

[21] Alastair Kay (2018): Tutorial on the quantikz package. Preprint available from arXiv:1809.03842.
[22] Vadym Kliuchnikov (2013): Synthesis of unitaries with Clifford+T circuits. Preprint available from arXiv:

1306.3200.
[23] Michael A. Nielsen & Isaac L. Chuang (2000): Quantum Computation and Quantum Informa-

tion. Cambridge Series on Information and the Natural Sciences, Cambridge University Press,
doi:10.1017/CBO9780511976667.

https://doi.org/10.26421/QIC16.9-10-8
http://arxiv.org/abs/1512.03824
https://doi.org/10.1103/PhysRevA.96.012306
http://arxiv.org/abs/1605.02756
https://doi.org/10.1103/PhysRevX.2.041021
http://arxiv.org/abs/1205.3104
https://doi.org/10.1038/s41467-022-28767-x
https://doi.org/10.1063/1.4914941
http://arxiv.org/abs/1405.7778
https://doi.org/10.1103/PhysRevA.87.032332
http://arxiv.org/abs/1212.0506
https://doi.org/10.1016/j.aop.2019.04.001
http://arxiv.org/abs/1803.05047
http://arxiv.org/abs/1803.05047
https://doi.org/10.4230/LIPIcs.TQC.2022.12
http://arxiv.org/abs/2202.09235
http://arxiv.org/abs/1408.6204
https://doi.org/10.1103/PhysRevA.86.022316
http://arxiv.org/abs/1206.1598
https://doi.org/10.1038/s41467-023-37375-2
http://arxiv.org/abs/2206.04104
http://arxiv.org/abs/2405.08147
http://arxiv.org/abs/2311.08696
https://doi.org/10.1088/2058-9565/ac2d39
http://arxiv.org/abs/2010.15923
http://arxiv.org/abs/1809.03842
http://arxiv.org/abs/1306.3200
http://arxiv.org/abs/1306.3200
https://doi.org/10.1017/CBO9780511976667

56 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

[24] Shiroman Prakash (2020): Magic state distillation with the ternary Golay code. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Sciences 476(2241), p. 20200187,
doi:10.1098/rspa.2020.0187. Also available from arXiv:2003.02717.

[25] Shiroman Prakash, Akalank Jain, Bhakti Kapur & Shubangi Seth (2018): Normal form for single-
qutrit Clifford+T operators and synthesis of single-qutrit gates. Physical Review A 98, p. 032304,
doi:10.1103/PhysRevA.98.032304. Available from arXiv:1803.05047.

[26] Martin Ringbauer, Thomas R. Bromley, Marco Cianciaruso, Ludovico Lami, W. Y. Sarah Lau, Gerardo
Adesso, Andrew G. White, Alessandro Fedrizzi & Marco Piani (2018): Certification and Quantification of
Multilevel Quantum Coherence. Phys. Rev. X 8, p. 041007, doi:10.1103/PhysRevX.8.041007. Also available
from arXiv:1707.05282.

[27] Patrick Roy, John van de Wetering & Lia Yeh (2023): The Qudit ZH-Calculus: Generalised Tof-
foli+Hadamard and Universality. Electronic Proceedings in Theoretical Computer Science 384, pp. 142–
170, doi:10.4204/eptcs.384.9. Also available from arXiv:2307.10095.

[28] Peter Selinger (2016): Reversible k-valued logic circuits are finitely generated for odd k. Available from
arXiv:1604.01646.

[29] L. C. Washington (1982): Introduction to Cyclotomic Fields. Springer New York, NY, doi:10.1007/978-1-
4612-1934-7.

[30] Fern H. E. Watson, Earl T. Campbell, Hussain Anwar & Dan E. Browne (2015): Qudit color codes and gauge
color codes in all spatial dimensions. Phys. Rev. A 92, p. 022312, doi:10.1103/PhysRevA.92.022312. Also
available from arXiv:1503.08800.

[31] Jordi R. Weggemans, Alexander Urech, Alexander Rausch, Robert Spreeuw, Richard Boucherie, Florian
Schreck, Kareljan Schoutens, Jiřı́ Minář & Florian Speelman (2022): Solving correlation clustering with
QAOA and a Rydberg qudit system: a full-stack approach. Quantum 6, p. 687, doi:10.22331/q-2022-04-13-
687. Also available from arXiv:2106.11672v3.

[32] Lia Yeh & John van de Wetering (2022): Constructing all qutrit controlled Clifford+T gates in Clifford+T .
In Claudio Antares Mezzina & Krzysztof Podlaski, editors: Reversible Computation, Springer International
Publishing, Cham, pp. 28–50, doi:10.1007/978-3-031-09005-9 3. Also available from arXiv:2204.00552.

[33] M. A. Yurtalan, J. Shi, M. Kononenko, A. Lupascu & S. Ashhab (2020): Implementation
of a Walsh-Hadamard Gate in a Superconducting Qutrit. Phys. Rev. Lett. 125, p. 180504,
doi:10.1103/PhysRevLett.125.180504. Also available from arXiv:2003.04879.

[34] Wei Zi, Qian Li & Xiaoming Sun (2023): Optimal Synthesis of Multi-Controlled Qudit Gates. In: 2023 60th
ACM/IEEE Design Automation Conference (DAC), pp. 1–6, doi:10.1109/DAC56929.2023.10247925. Also
available from arXiv:2303.12979.

https://doi.org/10.1098/rspa.2020.0187
http://arxiv.org/abs/2003.02717
https://doi.org/10.1103/PhysRevA.98.032304
http://arxiv.org/abs/1803.05047
https://doi.org/10.1103/PhysRevX.8.041007
http://arxiv.org/abs/1707.05282
https://doi.org/10.4204/eptcs.384.9
http://arxiv.org/abs/2307.10095
http://arxiv.org/abs/1604.01646
https://doi.org/10.1007/978-1-4612-1934-7
https://doi.org/10.1007/978-1-4612-1934-7
https://doi.org/10.1103/PhysRevA.92.022312
http://arxiv.org/abs/1503.08800
https://doi.org/10.22331/q-2022-04-13-687
https://doi.org/10.22331/q-2022-04-13-687
http://arxiv.org/abs/2106.11672v3
https://doi.org/10.1007/978-3-031-09005-9_3
http://arxiv.org/abs/2204.00552
https://doi.org/10.1103/PhysRevLett.125.180504
http://arxiv.org/abs/2003.04879
https://doi.org/10.1109/DAC56929.2023.10247925
http://arxiv.org/abs/2303.12979

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 57

A Circuit Constructions

In this appendix, we show that the Clifford-cyclotomic gate set Gk is equivalent to the Clifford+Tk gate
set when k ≥ 2, we give a construction of the CX gate over the {X ,CCX ,H} gate set, and we provide a
proof of Proposition 4.1. In addition, we show that the matrices (−1)[x], (ωk)[x], X[x1,x2], and H[x1,x2,x3] can
be represented by circuits over the Gk gate set using at most k borrowed ancillae. The constructions in
this appendix are exact (i.e., not up to a global or relative phase). Implementations of our constructions,
for a fixed number of controls, are available at https://github.com/lia-approves/qutrit-Cli
fford-cyclotomic.

A.1 Gate Set Equivalences

Recall from Section 1 that the qutrit Toffoli (or CCX) gate acts on computational basis states as

|x,y,z⟩ 7→ |x,y,z+ xy⟩ ,

where the arithmetic operations are performed modulo 3. In higher prime dimension d, the Toffoli gate
is defined similarly, except that the arithmetic operations are performed modulo d. The Toffoli gate can
be represented in the qupit ZH-calculus [27] as below.

X

↔
Λ

Λ (3)

In Equation (3), Λ denotes the following type of control: if U is a unitary and |c⟩ and |t⟩ are computational
basis states, then Λ(U) |c⟩ |t⟩= |c⟩⊗ (Uc |t⟩). In particular, Λ(X) is the CX gate and Λ(Λ(X)) = Λ(CX)
is the CCX gate.

We now recall the definition of the |0⟩-controlled X gate, which applies an X gate to its target if and
only if its control is in the state |0⟩ [27].
Definition A.1. Let d be a prime. The qudit |0⟩-controlled X gate acts on computational basis states as

|c, t⟩ 7→

{
|c, t +1⟩ if c = 0, and
|c, t⟩ otherwise,

where arithmetic is performed modulo d.
Remarkably, when d is a prime greater than 2, the X gate and the |0⟩-controlled X gate suffices to

generate all of the d-ary classical reversible gates [27]. Moreover, as was shown in [28, 32], when d = 3,
no ancillary qutrits are needed for this purpose. In contrast, there is no collection of reversible one and
two-qubit gates that suffices to generate all of the binary reversible gates.
Theorem A.2 ([32], Theorem 2). Any ternary classical reversible function f : {0,1,2}n →{0,1,2}n can
be represented by an ancilla-free circuit of X and |0⟩-controlled X gates.

Here, we only need multiply-controlled Toffoli gates, which can be built with a gate count linear in
the number of controls, as in [27, 34]. The constructions of [27, 34] use no more borrowed ancillae than
there are controls. They can be made into ancilla-free constructions by building Toffoli gates with n/2
controls using at most n/2 borrowed ancillae. Following [32], one can then combine six of these Toffoli
gates with n/2 controls to construct a Toffoli gate with n−1 controls, and then combine 3 of these Toffoli
gates with n−1 controls to add the final control.

We now show that the CX gate can be represented by a circuit over {X ,CCX ,H}.

https://github.com/lia-approves/qutrit-Clifford-cyclotomic
https://github.com/lia-approves/qutrit-Clifford-cyclotomic

58 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

Lemma A.3. The gate sets {X ,CX ,CCX ,H} and {X ,CCX ,H} are equivalent up to a single borrowed
ancilla.

Proof. The circuit below represents the CX gate using a single borrowed ancilla.

Λ

Λ

X2

Λ

X

= Λ

Λ

X2

X2 H2 X X2 H2 X

Proposition A.4. Let C|0⟩X denote the qutrit |0⟩-controlled X gate. Then the gate sets {X ,CCX ,H} and
{X ,C|0⟩X ,H} are equivalent up to a single borrowed ancilla.

Proof. The gates X and CCX are ternary classical reversible functions. Hence, by Theorem A.2, they
can both be represented by a circuit over {X ,C|0⟩X ,H}. Thus, every matrix that can be represented by a
circuit over {X ,CCX ,H} can be represented by a circuit over {X ,C|0⟩X ,H}. Conversely, we have

Λ

ΛΛ

X

X

Λ

X†

¬0

X

= H2 Λ

Λ

X

H2

x

y

z

y+x

z+x(y+x)

y -y

z+x2

x

y (4)

where x,y,z ∈ {0,1,2} are input qutrit computational basis states and the basis state on a wire is updated
whenever it is changed by the circuit. The ¬0 on the left-hand side of Equation (4) indicates that the X
gate is applied when the control is not in the state |0⟩. To see that Equation (4) holds, note that x2 = 1
for x ̸= 0 so that z+ x2 is indeed the desired state. Moreover, we have

¬0

X

0

X† X
= (5)

Therefore, multiplying the inverse of the circuit on the right-hand side of Equation (4) by an X gate yields
a representation of the C|0⟩X over the gate {X ,CCX ,H} by Lemma A.3. Hence, every matrix that can
be represented by a circuit over {X ,C|0⟩X ,H} can be represented by a circuit over {X ,CCX ,H} using a
single borrowed ancilla.

Remark A.5. The construction in Proposition A.4 can be explained (and, in fact, was found) using the
qupit ZH-calculus [27]. In the qupit ZH-calculus, we have

¬0

X
↔ ...

d-1
0

X† X
= (6)

where the d − 1 label indicates there are d − 1 number of wires in parallel. We then get the following
construction of the |¬0⟩-controlled X gate:

= ...

d-1
= (7)

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 59

The post-selected circuit in Equation (7) can be made deterministic by adding a CX† gate for uncompu-
tation, which yields a construction requiring a fresh ancilla:

= ...

d-1
= (8)

The construction is then modified in order to work with a borrowed ancilla, which yields the circuit in
Equation (4).

By Lemma A.3 and Proposition A.4, the gate set G1 is equivalent (up to a borrowed ancilla) to
the gate set consisting of the X gate, the |0⟩-controlled X gate, and the Hadamard gate. Hence, by
Theorem A.2, any ternary classical reversible function can be represented by a circuit over G1 using at
most one borrowed ancilla.

We now show that, when k ≥ 2, the Clifford-cyclotomic gate set of degree 3k is equivalent, up to a
borrowed ancilla, to the Clifford+Tk gate set. We take advantage of some constructions from [8] (see, in
particular, Figure 6 in [8]).
Lemma A.6. We have:

0

X
=

X2

H3T2

Λ

X

S X

H T2

Λ

XT2

Λ

X

Lemma A.7. We have:

S
=

Λ

X X2H2X

X2

T2
8

Λ

XT2
8

Λ

XT2
8

repeat 2 times

Proposition A.8. When k ≥ 2, the Clifford-cyclotomic gate set Gk is equivalent to the Clifford+Tk gate
set up to a single borrowed ancilla.

Proof. Recall that Gk = {X ,CX ,CCX ,H,Tk} and that Clifford+Tk = {H,S,CX ,Tk}. To prove the propo-
sition, we therefore need to show that the S gate can be represented by a circuit over Gk and that the
X and CCX gates can be represented by Clifford+Tk circuits. That the S gate can be represented by a
circuit over Gk follows from Lemma A.7 and the fact that T2 = T 3k−2

k . That the X can be represented by a
Clifford+Tk circuit simply follows from the fact that X = H†T 3

2 H. That the CCX gate can be represented
by a Clifford+Tk circuit follows from Lemma A.6 and Theorem A.2.

The propositions above show that there is some flexibility in the definition of Clifford-cyclotomic
gate sets and, in particular, that the gate set {X ,CX ,CCX ,H,Tk} is by no means minimal.

A.2 Circuit Representations for the Elements of S3n

We now provide explicit constructions for the elements of S3n . We focus on the matrices in S3n where,
writing each computational basis state on n qutrits as n trits, the levels are chosen to be those with the
greatest value (taking the last qutrit to have the least significant trit). Indeed, these constructions can
then be adapted to arbitrary levels by conjugating them by ternary classical reversible circuits using
Theorem A.2 and Proposition A.4.

By Theorem A.2 and Proposition A.4, the multiply-controlled X gate can be expressed as a circuit
over G1 using a single borrowed ancilla. We can therefore express the multiply-controlled Z gate as well,
since Z† = HXH†.

60 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

Lemma A.9. We have:

2 =

H X H†Z†

2

...

2

2

...

From this and the fact that (ω)[2] = S when acting on a single qutrit, we can construct the 1-level
matrix (ω)[x] using a single borrowed ancilla.

Lemma A.10. We have:

=
X[0,2] Z† X[0,2] Z†

2 2S =
ωI
2

2

...

2

...

2

...
2

2
...

The next two lemmas let us construct the 1-level matrix (−1)[x]. When acting on a single qutrit, this
is the (−1)[2] = diag(1,1,−1) gate. This gate is also known as the metaplectic gate [6, 8, 11] and in
earlier work, we referred to this gate as the R gate [14].

Lemma A.11. We have:

2

−ωH

...

2

=

H†2

2

S2

...

2

H†2

2

S2

...

2

H†2

2

S2

...

2

H†2

2

S2

...

2

H H† H†2

2

S2

...

2

H†2

2

S2

...

2

Lemma A.12. We have:

2

−I

==
(−1)[2] 2

−ωH

2

X[1,2]

2

−ωH

2

...

2

...

2

...

2

...
2

2
...

We can now synthesize the 3-level matrix H[x1,x2,x3] matrix over G1. To do this, apply Lemma A.11 as
well as the appropriate controlled global phase correction: a product of 1-level ω[x] matrices and (−1)[x]
matrices.

Lemma A.13. We have:

2

H

...

2

= 2

(-1)[2]

...

2

2

S2

...

2

2

2

−ωH

...

2

2

A. N. Glaudell, N. J. Ross, J. van de Wetering & L. Yeh 61

We have now constructed all of the required 1-, 2-, and 3-level matrices (up to a permutation). We
can therefore prove Proposition 4.1, which we restate below, making the ancilla requirements explicit.
Proposition. If U ∈ S3n , then U can be represented by a circuit over G1 using at most 2 borrowed
ancillae. Explicitly,

• (−1)[x] requires 2 borrowed ancillae,

• (ω)[x] requires 1 borrowed ancillae,

• X[x1,x2] requires 1 borrowed ancilla, and

• H[x1,x2,x3] requires 1 borrowed ancillae.

Proof. This follows from Lemmas A.3, A.10, A.12 and A.13, Proposition A.4, and Theorem A.2.

The number of ancillae required to represent the elements of S3n is, to a certain extent, an artifact of
the choice of gate set. For example, including the |0⟩-controlled X gate to the gate set would lower the
ancilla-count for some of the elements of S3n .

The proposition above shows that the matrices that can be represented by a multiqutrit circuit over the
Clifford+(−1)[2] gate set (also known as the Clifford+R or the metaplectic gate set) are a subset of those
representable by a circuit over G1. At the time of writing, we do not know whether this inclusion is strict,
although the conjecture in [7] that not all ternary classical reversible gates can be exactly represented
over the Clifford+(−1)[2] gate set lends credence to this idea.

If a matrix can be represented by a circuit over Gk, it can also be represented by a circuit over Gk+1.
It therefore follows from the proposition above that all of the elements of S3n can be represented by a
circuit over G2. We close this appendix by showing that the 1-level matrix (ω2)[x] can be represented
by a circuit over G2 and by providing further generalizations of the above constructions. This paves the
way for a direct proof of exact synthesis for Clifford+T circuits (rather than the more indirect one using
catalytic embeddings, as in Theorem 6.3). Over G2, the ancilla requirements are lowered, since the |0⟩-
controlled X gate can be represented by an ancilla-free circuit by Lemma A.6. To construct (ω2)[x], we
first build a modification of (ω)[x] which differs by a controlled global phase of ω2.
Lemma A.14. We have:

ω2S†

=

T2
† X H2 X2 H†2 X2 T2 X2

2

2
...

2

2
...

2

2
...

We note that unlike the construction in Lemma A.10 which required one (additional) borrowed an-
cilla, this construction requires no (additional) borrowed ancillae. By combining the construction of
Lemma A.14 and that of Lemma A.13, we can therefore represent H[x1,x2,x3] without ancillae. Similarly,
by combining the construction of Lemma A.14 and that of Lemma A.12, we can represent (−1)[x] using
a single borrowed ancillae. Finally, (ω2)[x] can be constructed as in the next lemma using 2 borrowed
ancillae.
Lemma A.15. We have:

ω2I

=
2

2
...

ω2S†

2

2
...

S

2

2
...

62 Exact Synthesis of Multiqutrit Clifford-Cyclotomic Circuits

Proposition A.16. The 1-, 2-, and 3-level matrices (−1)[x], (ω2)[x], X[x1,x2], and H[x1,x2,x3] can be repre-
sented by a circuit over G2 using at most 2 borrowed ancillae. Explicitly,

• (−1)[x] requires 1 borrowed ancilla,

• (ω2)[x] requires 2 borrowed ancillae,

• X[x1,x2] requires 0 borrowed ancillae, and

• H[x1,x2,x3] requires 0 borrowed ancillae.

Proof. This follows from Lemmas A.6, A.12, A.13, A.14 and A.15 and Theorem A.2.

We can generalize the above construction to Clifford-cyclotomic gate sets of higher degree.

Proposition A.17. Let k ≥ 1. The 1-level matrix (ωk)[x] can be represented by a circuit over Gk using k
borrowed ancillae.

Proof. First, we build the multiply-controlled M gate, where M = diag(1,ωk,ω
†
k).

T †
k

=
2

H2

2

H†2Tk

2

...

2

...

2

2

...

M

(9)

Then, we can build the multiply-controlled one-qutrit gate ωk(ωk−1)
†
[2] = ωkdiag(1,1,ω†

k−1).

X

=
2

M

2

M

2

...

2

...

2

2

...

ωk(ωk−1)
†
[2] H2 X† X H†2 X†

(10)

Finally, we can combine this with the multiply-controlled one-qutrit gate (ωk−1)[2] = diag(1,1,ωk−1) to
get (ωk)[2...2].

2

ωkI

==
(ωk)[2] 2

ωk(ωk−1)
†
[2]

2

(ωk−1)[2]

2

...

2

...

2

...
2

2
...

(11)

Since a single borrowed ancilla suffices to build (ω) and 2 borrowed ancillae suffice to build (ω2), the
above equation shows that k ancillae suffice to build (ωk).

A. Díaz-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 63–78, doi:10.4204/EPTCS.406.3

© M. Sutcliffe & A. Kissinger
This work is licensed under the
Creative Commons Attribution License.

Procedurally Optimised ZX-Diagram Cutting for Efficient
T-Decomposition in Classical Simulation

Matthew Sutcliffe
Department of Computer Science

University of Oxford
Oxford, UK

matthew.sutcliffe@cs.ox.ac.uk

Aleks Kissinger
Department of Computer Science

University of Oxford
Oxford, UK

aleks.kissinger@cs.ox.ac.uk

A quantum circuit may be strongly classically simulated with the aid of ZX-calculus by decompos-
ing its t T-gates into a sum of 2αt classically computable stabiliser terms. In this paper, we introduce
a general procedure to find an optimal pattern of vertex cuts in a ZX-diagram to maximise its T-
count reduction at the cost of the fewest cuts. Rather than reducing a Clifford+T diagram based on a
fixed routine of decomposing its T-gates directly (as is the conventional approach), we focus instead
on taking advantage of certain patterns and structures common to such circuits to, in effect, design
by automatic procedure an arrangement of spider decompositions that is optimised for the partic-
ular circuit. In short, this works by assigning weights to vertices based on how many T-like gates
they are blocking from fusing/cancelling and then appropriately propagating these weights through
any neighbours which are then blocking weighted vertices from fusing, and so on. Ultimately, this
then provides a set of weightings on relevant nodes, which can then each be cut, starting from the
highest weighted down. While this is a heuristic approach, we show that, for circuits small enough
to verify, this method achieves the most optimal set of cuts possible 71% of the time. Further-
more, there is no upper bound for the efficiency achieved by this method, allowing, in principle,
an effective decomposition efficiency α → 0 for highly structured circuits. Even applied to ran-
dom pseudo-structured circuits (produced from CNOTs, phase gates, and Toffolis), we record the
number of stabiliser terms required to reduce all T-gates, via our method as compared to that of the
more conventional T-decomposition approaches (namely [19], with α ≈ 0.47), and show consistent
improvements of orders of magnitude, with an effective efficiency 0.1 ≲ α ≲ 0.2.

1 Introduction

Present-day quantum hardware is very limited, with few qubits and much noise [25]. Consequently,
there are many classical techniques that are often employed to better optimise quantum circuits and/or to
verify the behaviour of quantum hardware and software. A particularly useful tool for facilitating this is
ZX-calculus [11, 30, 1, 12, 20], which allows quantum circuits to be expressed and simplified graphically
with the use of known rewriting rules. This has been utilised for various problems in the field, including
notably optimisation [14, 13, 2, 5, 15, 23, 24] and classical simulation [19, 21, 31, 9, 10, 8, 22]. On the
latter problem, for instance, wherein one wishes to compute the probabilities of particular measurement
outcomes of a quantum circuit, ZX-calculus can be utilised to re-express a large ‘Clifford+T’ circuit
(which is notoriously inefficient to simulate classically) as a sum of ‘Clifford’ circuits (which are efficient
to classically simulate) [19].

Re-expressing a Clifford+T circuit as sum of Clifford circuits in this way relies upon known decom-
positions of sets of costly ‘T-gates’ into cheap ‘Clifford’ terms. There are many such decompositions
that have been discovered [7, 6, 19, 21], of varying efficiencies, and the conventional strategies [19],
perhaps unsurprisingly, tend to opt for the most efficient (i.e. those which translate a set of T-gates into

http://dx.doi.org/10.4204/EPTCS.406.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

64 Procedurally Optimised ZX-diagram Cutting

the fewest number of Clifford terms). However, the apparent efficiencies of these decompositions can
be misleading. In fact, it has been noted that applying apparently less efficient decompositions in cer-
tain circumstances can result in more efficient results overall (that is, fewer Clifford terms in exchange
for removing all T-gates of a circuit) [9]. Knowing when this can be applicable on local scales is often
fairly straightforward. However, what is seldom considered is how appropriate applications of these less
efficient decompositions can be found when looking on broader scales.

Specifically, in this paper, we demonstrate how drastic improvements to the overall efficiency can
be attained by applying such decompositions to inconspicuous gates in a circuit with no obvious or
immediate local benefit for doing so. We then present a means by which one can procedurally analyse
a given circuit to determine where these optimal gates for decomposition are. We do this based on a
heuristic of weighing vertices due to their immediate local benefit of applying such a decomposition,
and then propagating these weights through their neighbours as appropriate. Lastly, we showcase the
effectiveness of our method by comparing its overall efficiency at fully decomposing various Clifford+T
circuits, of various numbers of T-gates, against the more traditional methods [19].

2 Background

2.1 ZX-calculus

A very useful notation with which to express quantum circuits is that provided by ZX-calculus [11, 30, 1],
wherein all operations are expressed as spiders (phase rotations) about either the Z-axis or X-axis of the
Bloch sphere, connected via edges (or wires). Circuits expressed in this notation are known as ZX-
diagrams and, by convention, Z-spiders are green and X-spiders red - in either case with the angle of
rotation written within (or left blank if zero), as follows:

α ...
... := |0...0⟩⟨0...0|+ eiα |1...1⟩⟨1...1|

α ...
... := |+...+⟩⟨+...+|+ eiα |−...−⟩⟨−...−|

In addition to these two types of spiders, for convenience the Hadamard gate is often also included
explicitly, as a yellow box, though this too may be decomposed (via the Euler decomposition) into spiders
as such:

≡ π

2
π

2
π

2e−i π

4 ≡

As shown here, an edge containing a Hadamard (referred to, unsurprisingly, as a Hadamard edge)
may alternatively be expressed as a dashed blue line.

From these basic components, any quantum circuit may be expressed as a ZX-diagram. Indeed,
completeness for the Clifford gateset is achieved provided phases of nπ

2 are allowed (where n∈Z). (Note
also that, as phases correspond to rotations, they are all of modulo 2π .) To extend the completeness to
the Clifford+T gateset (including T-gates and Toffoli gates), the resolution must be expanded to support
phases of nπ

4 .

M. Sutcliffe & A. Kissinger 65

2.2 ZX-diagram rewriting

The major benefit of ZX-calculus is that it contains a set of well-defined rewriting rules which outline
how certain structures within ZX-diagrams may be equivalently written in simpler forms - allowing a
circuit to be simplified while maintaining its behaviour. In particular, the fundamental rewrite rules are
as outlined in figure 1.

α
...

...
=

β ...
...

... α +β
...

...

α ... = α ...

= (−1)aα

aπ

...

aπ

aπ
eiaα

α ...
aπ =

aπ

...

aπ

aπ

eiaα

√
2
(n−1)α ...

aπ

=
√

2
=

=

Figure 1: A set of the basic rewriting rules of ZX-calculus [19], where Greek letters denote arbitrary real
variables, [0,2π), and Latin letters denote arbitrary boolean variables, {0,1}. Note that the rules still
apply if all the spider colours are inverted. These rules are known, in column-major order, as (a) spider
fusion, (b) colour change, (c) π-commutation, (d) bialgebra, (e) state copy (where n is the number of
output edges), (f) identity removal, (g) Hadamard cancellation.

From these basic rules, one may derive a number of more complex rules. In particular, local comple-
mentation and pivoting, outlined in figure 2, prove to be extremely useful in reducing ZX-diagrams. A
more thorough collection of derived rules may be found in [30].

± π

2
... =

α2 α3

α1 αn

· · ·· · ·

· · ·· · ·

...
α2∓ π

2 α3∓ π

2

α1∓ π

2 αn∓ π

2

· · ·· · ·

· · ·· · ·

e±i π

4
√

2
(n−1)(n−2)

2

kπ
... =

α1

· · ·

jπ

αn

· · ·

γ1

· · ·

γl

· · ·
β1

· · ·

βm

· · ·

...

...

(−1) jk
√

2
E

...
α1 + kπ

· · ·

αn + kπ

· · ·

γ1 + jπ

· · ·

γl + jπ

· · ·β1 +(j+ k+1)π

· · ·

βm +(j+ k+1)π

· · ·

...

...

Figure 2: Two important derived ZX-calculus rewrite rules [19], namely (top) local complementation
and (bottom) pivoting. Here, E = (n−1)m+(l−1)m+(n−1)(l−1).

A particular subset of ZX-diagrams are those with no open input or output wires. These are known
as scalar diagrams, and the rules above are sufficient to reduce such diagrams, of the Clifford gateset, to

66 Procedurally Optimised ZX-diagram Cutting

complex scalars, making use of the following scalar relations:

α = 1+ eiα aπ =
√

2eiaαα

2.3 Classical simulation

To verify the behaviour of complex quantum algorithms, especially when present-day quantum hardware
is insufficient to run them, one may turn to classical simulation. There are two classes of this - namely
strong simulation and weak simulation. For the purposes in this paper, we will focus on the former,
wherein the aim is to determine the probability of a specific measurement outcome. In short, this may
be done with ZX-calculus by ‘plugging’ the inputs and outputs with spiders corresponding to the desired
states and measurements to produce a scalar ZX-diagram, which may then be fully reduced to a simple
complex scalar value. This result will represent its amplitude, A, and thus relates to its probability, |A|2.

Notably, Cliford diagrams (those restricted to phases of nπ

2) are very efficient to simulate classically.
This manifests itself in ZX-calculus in that such diagrams, given no open inputs or outputs, may be fully
reduced to a scalar via the rewriting rules highlighted above. Clifford+T diagrams, on the other hand,
are notoriously inefficient to simulate classically. While the rewriting rules may remove a number of
T-gates from a ZX-diagram, it is generally unable to remove them all, meaning such diagrams are unable
to fully reduce to a scalar. To deduce the scalar amplitude in such cases then, one must make use of
decompositions to translate the Clifford+T diagram into a sum of efficiently-reducible Clifford diagrams.
The inefficiency lies in the fact that the number of such summand Clifford terms one attains in place of
a Clifford+T diagram scales exponentially with the number of T-gates. This is typically quantified with
a parameter α which represents the efficiency of the precise decomposition(s) used, given it translates a
Clifford+T diagram of t T-gates into a sum of 2αt Clifford terms. So, smaller values of α describe more
efficient decompositions.

For instance, the decomposition presented by Bravyi, Smith, and Smolin [7], and expressed in ZX-
calculus terms by Kissinger and van de Wetering [19], allows sets of 6 T-gates to be replaced with a sum
of 7 Clifford terms, according to figure 3. As such, this “BSS” decomposition scales as 7t/6 ≈ 20.468t ,
hence α ≈ 0.468. The current state of the art T-decompositions, meanwhile, achieve α ≈ 0.396 [26].

π

4
π

4
π

4
π

4
π

4
π

4
eiπ/4

− π

2

= 2eiπ/4 −1+
√

2
4

π π π π π π
+1−

√
2

4 −2
√

2i π

2
π

2
π

2
π

2
π

2
π

2 −2i

π

π

2
π

2
π

2
π

2
π

2
π

2

+8
√

2i
π

+8
√

2i
π

Figure 3: The BSS decomposition [7], relating a set of 6 T-gates to a sum of 7 Clifford terms, expressed
in ZX-diagrams as per [19].

As outlined in [19], after every decomposition, some further reduction in T-count may be facilitated
by Clifford simplification via the rewriting rules, such that the 2αt actually represents an upper-bound
estimate of the number of terms ultimately produced. Moreover, in their work they essentially select

M. Sutcliffe & A. Kissinger 67

groups of 6 T-gates for decomposition arbitrarily, without regard for whether certain groupings may
be more likely to allow further simplification after decomposition. Lastly, while their method relies
primarily on the BSS decomposition, when the number of T-gates remaining in any graph falls below 6,
they fall back on other known decompositions.

3 Method

3.1 Graph cutting

While Clifford+T diagrams are typically reduced via such T-gate decompositions as that of Bravyi,
Smith, and Smolin, highlighted above, paying close attention to the structures inherent in a given ZX-
diagram can reveal that blindly decomposing T-gates in an essentially random order is not necessarily
optimal. In fact, decomposing conveniently positioned Clifford spiders - even with an apparently less
efficient decomposition - can actually produce more efficient results.

From the definitions of Z- and X- spiders in section 2.1, one can infer the basic relation:

α
...

... ≈ ...
... +

π ...
...

π

ππ
eiα

Note that the equality here is up to some global scalar factor (neglected for brevity). This acts
as a very simple decomposition for any arbitrary spider. Herein, the act of applying this particular
decomposition will be referred to as ‘cutting’ the graph, as structurally it behaves like physically slicing
a vertex from its edges. Superficially, this may not seem particularly useful as, applied to T-gates, this
doubles the number of terms for each one (hence has a very poor efficiency of α = 1). However, by
cutting appropriate spiders (not necessarily even T-like spiders), this can allow some T-gates to cancel,
along both paths of the decomposition.

Specifically, consider a subgraph consisting of two T-like spiders sandwiched between a CNOT.
Cutting one end of the CNOT (the side opposite the T-gates) will produce two terms, like so:

π

4
π

4
π

4
π

4

≈ +

π π

π

4
π

4

π

An observant reader may notice that both of these terms, after a little simplification via the rewriting
rules, may fuse their T-gates into a Clifford. The left-hand term, for instance, simplifies as follows:

π

4
π

4

=
π

4
π

4

=
π

4
π

4

=
π

2

The right-hand term simplifies similarly, except utilising π-commutation in place of identity removal:

π π

π

4
π

4

=π =

π π

π

4 π
π

4

π π

π

4 π− π

4

π π

π

π π

π

e
iπ
4 = e

iπ
4 = e

iπ
4

Consequently, via a cut of a Clifford spider the T-count has been reduced by 2. This gives a de-
composition efficiency of α = 0.5. Moreover, if the green end of the CNOT had itself taken a T-like
phase, then that too would have been removed (specifically, converted into a scalar factor directly by the
decomposition). In that case, one would have observed a better efficiency of α = 1/3.

68 Procedurally Optimised ZX-diagram Cutting

3.2 CNOT-grouping

One may further recognise that it is possible for any number of these T-CNOT-T arrangements to be
aligned such that their respective CNOTs may fuse. In such cases, each pair of T-like spiders may fuse to
a Clifford as above, though still just requiring one vertex cut overall. As a simple example, the following
shows how two sets might be grouped and reduced in this way:

π

4
π

4

π

4
π

4

π

4
π

4

π

4
π

4

= π

4
π

4

π

4
π

4

≈ π

4
π

4

π

4
π

4

π π

+
π

π

π

2

π

2

= π

π

π π

+...= e
iπ
2

Here, the T-count has been reduced by 4, still at the expense of just one vertex cut (hence 2 Clifford
terms). This corresponds to α = 0.25. It should be clear from this point that this reasoning could be
extended ad infinitum, with arbitrarily many T-CNOT-T subgraphs being fusible and hence arbitrarily
many T-gates being reducible to Clifford at the expense of just one cut, giving α → 0.

A similar concept to this was recognised in [9] (albeit notated in a different fashion), wherein, for
a single decomposition utilising π-commutations, T-count reductions of up to 286 were found on SAT
counting [4, 3] ZX-diagrams (giving α ≈ 0.0035). However, this work utilised a very simple heuristic
amounting to prioritising decompositions of T-gates with the maximum number of immediately relevant
connections. Perhaps surprisingly, however, this naïve heuristic seldom produces the most efficient solu-
tions and indeed can often be extremely suboptimal. Moreover, their approach to recognising instances
where these cuts are applicable is essentially limited to those where the decomposition is to be applied to
a T-like spider, rather than any arbitrarily-phased spider as per the means outlined above. And lastly, by
acting on ZX-diagrams after they have undergone full Clifford simplification, their approach risks losing
much of the graph’s structure and thus missing relevant patterns.

3.3 Cutting in tiered structures

Just as a CNOT may be the only thing standing in the way of two or more T-like spiders from fusing, so
too may a CNOT be the only obstacle preventing some T-CNOT-T sandwiches from grouping. Consider,
as a prime example, the structured circuit that follows, where the Z-spiders here have been labelled for
easy reference:

π

4
π

4
π

4
π

4
π

4
π

4
π

4
π

4

1 3 5 7 10 12 14 16

2

4

6

8

9

11

13

15

Immediately, one might recognise 7 T-CNOT-T sandwiches, centred on vertices #2, #4, #6, #9, #11,
#13, and #15, respectively. Notably, however, there is some clashing here, in that - for example - the

M. Sutcliffe & A. Kissinger 69

sandwich centred on #2 and that centred on #4 are mutually exclusive, as they a share one of their T-
gates. Indeed, there are a number of possible ways of reducing this circuit via the means outlined so far
in this paper.

For example, cutting vertices #4, #9, and #13 would allow 6 T-gates to reduce to Clifford. Alterna-
tively, cutting #2, #6, #11, and #15 would reduce all 8 T-gates, at the cost of 4 cuts (hence α = 0.5).
But, the best solution here would be to firstly cut vertex #8 - even though this doesn’t immediately allow
any T-gates to reduce - as this then allows vertices #2, #6, #11, and #15 to fuse into one. Cutting this
newly fused vertex then would allow all 8 T-gates to reduce. So, this solution would reduce the T-count
entirely (all 8 T-gates) at the cost of just 2 cuts (hence α = 0.25). And of course, this reasoning could
be extended for higher tiers, where the optimal initial cuts are two, three, or more, steps away from any
T-gates.

Similarly, there may be instances where multiple CNOTs are directly blocking some set of T-gates
from fusing. In such cases, the likelihood that the cutting all of those CNOTs would be worthwhile to
reduce the T-gates they block will be determined by the ratio of the CNOTs to T-gates involved, as well
as whether some of those CNOTs are considered worthwhile cuts in their own right, with regard to any
other T-gates that they alone may be blocking. We can call such groups of spiders ‘spousal’, with respect
to the children spiders they are collectively blocking from reducing.

Evidently, therefore, selecting which vertices to cut, and indeed in which order, is a very intricate
task (though the former is more important as suboptimality in the latter can be corrected for via a slight
modification and parametric analysis, as detailed in appendix A). Naïvely tackling this problem via
an exhaustive, brute force, approach would require checking the reduction achieved by every possible
combination of vertex cuts. This is obviously infeasible for large-scale graphs, as the time complexity
scales exponentially with the number of vertices. Consequently, a heuristic approach is desired. On this
note, as we have shown, simply prioritising vertices which are directly blocking the most number of
T-like pairs from fusing is not generally optimal. Rather, it is preferential to look at the whole picture
and determine the optimal cuts on higher tiers.

3.4 Optimised cutting procedure

The solution we propose is a procedure based on assigning weights to vertices, determined by how many
T-like gates they are preventing from fusing to Clifford, and then propagating these weights through any
neighbours which are then preventing weighted vertices from fusing, and so on up the tiers. Particular
care is given to balance the weightings appropriately, especially in places where multiple ‘spousal’ cuts
are required to facilitate a fusion of their children.

Note that we may label the weight of a vertex (i.e. spider) v, for a particular tier t, as wt
v, such that,

for instance, w2
12 refers to the weight of vertex #12 with respect to tier #2. Given this, the procedure steps

are as follows:

1. Partially simplify the circuit such that any instances of spider fusion are applied (so no like-
coloured spiders remain directly connected via a solid edge) and any π-phase spiders are pushed
to one side or into CNOTs via the π-commutation and fusion rules. Then, let t = 0 and assign an
initial weight of 0 to every spider (i.e. let w0

v = 0 ∀v).

2. For any pair of T-like spiders that are separated by k (that is, one or more) CNOTs, add 2/k to
the weights of the opposite ends of each of those CNOTs. (For any given CNOT, take care not to
count a particular T-spider more than once.) Now, for instance, any CNOT that is preventing 2 T-
spiders from fusing to Clifford will have a corresponding weight of 2, and any CNOT preventing,

70 Procedurally Optimised ZX-diagram Cutting

collectively, 4 T-spiders from reducing to Cliffords will have a corresponding weighting of 4, etc.
Similarly, if, for instance, 3 CNOTs are collectively blocking a single pair of T-spiders from fusing,
then each will have a weighting of 2/3.

3. Increment t← t+1. Then, similar to step 2, for any weighted vertex v of the previous tier (i.e. any
v for which wt−1

v ≥ 0) that is separated from fusing with another weighted vertex of any lower tier
(i.e. any v for which wu

v ≥ 0 for any u < t) by k (that is, one or more) CNOTs, add γ(wt−1
v)/k to

the weight of the opposite ends of each of those CNOTs. Here, the γ function normalises a given
weighting to the range [0,1], such that (crudely speaking) 0 roughly means “very unlikely to be a
worthwhile cut” and 1 “very likely to be a worthwhile cut”: γ(w) := min(w

2 ,1).

4. Repeat step 3 until no new changes are made (that is, until no weightings, wt
v, are found for any

v, given the current t). At this point, one will be left with weightings for every vertex, for every
tier (wt

v ∀v, t). From this, one can trivially extract the relevant data, namely, for every vertex v,
its maximum weight wt

v (for any t) and, respectively, the maximum t for which the vertex has a
weight (i.e. largest t for which wt

v ≥ 0). One may label the maximum weight of a vertex, Wv, and
its maximum tier for which it has a non-zero weight, Tv.

5. Among the vertices with the largest recorded T , namely Tmax, select the one with the greatest max
weight Wv (i.e. select vertex V s.t. WV ≥Wv ∀v s.t. Tv = TV = Tmax). (Note that for this step only,
we may temporarily add 1 to the weight of any vertex of a T-like phase.) If this weight is below
2 (hence γ(WV)≤ 1, implying the cut would not likely be worthwhile), then search instead among
the vertices of the lower tier (i.e. for which Tv = Tmax−1), until an appropriate vertex is found for
which WV ≥ 2. This is the vertex which the heuristic has concluded is likely an optimal choice to
cut. As such, cut this vertex (i.e. decompose it into two branches as per section 3.1).

6. Partially simplify each branch, without compromising the graph structure. Specifically, push
any new π-phase spiders to one side, and/or into CNOTs, via repeated applications of the π-
commutation rule (and fusion), and thereafter apply the fusion rule until no like-coloured spiders
remain connected via a solid edge. Moreover, when fusing weighted spiders, update their com-
bined weight accordingly as the sum of their respective max weights (i.e. in fusing vertex B into
vertex A, the former is removed along with its recorded weightings and tier data and the latter is
updated as WA ←WA +WB). Similarly, the max tier of the newly fused vertex takes that of the
larger of the two fused vertices (i.e. TA←max(TA,TB)). Moreover, recalculate the weightings on
any vertices whose children have been altered by this partial simplification.

7. Repeat steps 5 and 6 until no further cuts are made (or the number of T-spiders ≤ 2). If any T-
like spiders remain, then these may be decomposed via a typical T-decomposition (e.g. the BSS
decomposition outlined in section 2.3).

Applying this procedure to a Clifford+T ZX-diagram will result in a set of Clifford ZX-diagrams
whose sum equals the original. For scalar diagrams (those with no open input or output wires), each
summand will simply be a scalar term, and thus the overall sum will be likewise [19].

Python code, based on the PyZX package [16, 17], that implements this procedure may be found at
https://github.com/mjsutcliffe99/ProcOptCut [28], and a step-by-step illustrative example of
this procedure in action is shown therein.

https://github.com/mjsutcliffe99/ProcOptCut

M. Sutcliffe & A. Kissinger 71

4 Results

4.1 Complexity and efficiency

The exact runtime complexity of the procedure is difficult to discern as it depends on the density of the
graph (i.e. typical number of neighbours the vertices have) and its number of ‘tiers’, Tmax, (which is
heuristically determined). Very reasonably, one could assume Tmax ≪ V (for a non-trivial number of
vertices, V), and so a crude upper-bound (taking, very unrealistically, maximal density) may be given by
O(V 2). Even this gross over-estimate of the runtime complexity shows that, compared to the number of
stabiliser terms produced (2αt for t T-gates and some α < 1), the procedure’s runtime is negligible, so
that any improvements it offers to the number of the stabiliser terms can be taken as is.

To test the effectiveness of the proposed method, we explored how often - for circuits small enough
to verify - it was able to find the most optimal set of vertex cuts, rather than simply an optimal set.
Specifically, we considered many random, non-trivially structured (see appendix B) ZX-diagrams of 16
internal Z-spiders or fewer and measured the number of stabiliser terms required to remove all T-spiders
via the method outlined in section 3.4. In each case, we also tested every possible combination of vertex
cuts on the internal Z-spiders (applying the reasoning of appendix A to correct for any suboptimal cut
ordering). Thus, we could determine with certainty the most optimal set of vertex cuts (on Z-spiders) and
correspondingly the number of stabiliser terms produced (or, by extension, the effective α) and compare
this, in each case, to the result achieved by our method. In this way, we observed that our method found
the most optimal set of cuts possible (on Z-spiders) 71% of the time. Even so, in every case in which the
method failed to find the most optimal solution, it still invariably found a very good solution with an α

usually only marginally above that of the best. It is worth noting, however, that we cannot be certain that
this would translate to a similar success rate for much larger circuits (i.e. those too big to verify by brute
force), where greater levels of structure (and indeed chaos) are possible. As such, to extend our analysis
we compared our method also to that of the more typical approach of T-decompositions a la [19], of
which we outline our results ahead.

4.2 Experimental measurements for random circuits

Applying the procedure outlined in section 3.4 to a Clifford+T ZX-diagram will produce an exact result
(e.g. for computing the probability amplitude of a Clifford+T diagram for classical simulation). How-
ever, in benchmarking the efficiency of the method, one is more interested in the number of stabiliser
terms the original diagram is decomposed to, rather than the precise value of the sum of these terms.
With this in mind, one can run a ‘blind’ version of the procedure to compute an (upper-bound) estimate
of the number of resulting terms in linear time. As well as not providing the final numerical result, this
blind version of the procedure also misses out on inter-step ZX-calculus simplifications, and hence typi-
cally overestimates the number of resulting terms (and thus is an upper-bound estimate). The appropriate
modifications for this version of the procedure are outlined and justified in appendix C.

Similarly, one can likewise calculate an upper-bound estimate of the number of terms produced after
fully decomposing a Clifford+T diagram via the BSS-based approach of [19]. This is much more simple
to do as the BSS decomposition efficiency is known in advance, namely α ≈ 0.468. Thus, an estimate of
the number of resulting terms this method achieves for a given diagram of T-count t is given by 20.468t ,
which can be computed trivially in constant time. As before, this does not account for the inter-step
ZX-calculus simplifications and hence is an approximate upper-bound estimate.

For various randomly generated ZX-diagrams (constructed from CNOTs, nπ

4 phase gates, and Tof-

72 Procedurally Optimised ZX-diagram Cutting

folis as per appendix B), we measured the number of stabiliser terms required to remove all T-spiders
via the approach of Kissinger and van de Wetering [19] versus the method we propose in section 3.4.
For computationally feasible T-counts (those computable within a few minutes), we can compute these
exactly with both methods, and for larger (computationally infeasible) T-counts, we instead rely on the
upper-bound estimations outlined above. For each of these measurements, we can also infer the overall
effective decomposition efficiency, α , by simply taking α = 1

t log2 n, where t is the initial T-count of the
circuit (after full Clifford simplification) and n is the number of stabiliser terms to which it is reduced.
The results are illustrated in figure 4. (Note that the initial T-counts are all taken as that achieved after
full Clifford simplification.)

(a) Number of stabiliser terms versus T-count (b) Effective efficiency α versus T-count

Figure 4: (a) The number of stabiliser terms, n, produced after decomposing all t T-gates, and correspond-
ingly (b) the effective overall decomposition efficiency α (given by α = 1

t log2 n) for numerous randomly
generated (see appendix B) pseudo-structured Clifford+T circuits of various T-counts. In each case, we
measure experimentally the exact results, as well as approximate upper-bound estimations, achieved by
both the conventional (“BSS”) method of [19] and the procedural approach (“proc”) presented in this
paper.

We observe that our procedural method, applied to circuits of this type, is very effective at minimis-
ing the number of resulting stabiliser terms, compared to relying predominantly on naïve applications of
the BSS decomposition. The exact effectiveness of our method can vary quite substantially from circuit
to circuit, depending on how much structure they embed. The direct BSS approach, meanwhile, tends
to be a lot more consistent, though can also vary somewhat depending on how much inter-step simplifi-
cation it is able to undertake. Regardless, the procedural method very consistently shows magnitudes of
improvement on these circuits, allowing above even double the T-counts to be computed within the same
time frame.

This is reflected too in the effective α measurements, where, for circuits of this type, our method
offers typically 0.1 ≲ α ≲ 0.2 for such pseudo-structured circuits. The results are less remarkable on
trivially small T-counts as such small circuits have little room for much structure of which to take advan-
tage. Evidently, therefore, this method is, as intended, very well optimised for decomposing Clifford+T
circuits that exhibit some structure, enabling such circuits of much larger T-counts to be computed within
reasonable time frames.

For full context, it is worth remembering two points when considering these results. Firstly, the
random circuits generated for these experiments were those with some inherent localised structural ele-
ments. And secondly, while the runtime of the relevant steps of the procedure, after each decomposition,

M. Sutcliffe & A. Kissinger 73

is very quick, it does nevertheless contribute time to each term that is not present in the BSS method, so
that the difference in numbers of terms produced by the two methods does not translate 1-to-1 to a dif-
ference in runtime. In other words, computing n terms via the procedural method may be a little slower
than computing n terms via the BSS method (although this difference will not be more than some small
factor, so that the improvement offered by the reduced number of terms still vastly outweighs this offset).

All of the above experiments may be repeated from the corresponding Jupyter notebook, hosted on
Github [28].

5 Conclusion

We demonstrated how a procedure could be designed to analyse the structure of any given Clifford+T
quantum circuit in order to determine an optimised set of vertex cuts to efficiently decompose it to a
sum of (classically computable) Clifford terms. This is contrary to the more conventional approach
[19], which applies decompositions essentially arbitrarily, without such regard to the specific structures
involved.

Specifically, we show that our method is very effective at finding optimal sets of vertex cuts, with a
71% success rate at finding the most optimal set when applied to random small semi-structured circuits.
We further show that our method is very efficient at decomposing even larger such circuits, consistently
outperforming the more conventional approach [19] by orders of magnitude, with regard to the number
of resulting terms (and by extension the runtime). What this means in practise is that our method could
allow for classical simulation, within a reasonable time frame, of Clifford+T circuits of more than double
the T-count as could be achieved with the conventional methods. This is hugely relevant to verifying the
behaviour of quantum software and hardware for present-day NISQ (noisy intermediate-scale quantum)
devices [25].

While already very effective, there are many ways in which the method outlined in this paper could
be improved - many stemming from the rigid scope with which it applies and propagates weights. After
all, T-gate fusion facilitated by cutting a CNOT is just one way in which the T-count of a circuit may be
reduced. It would be worth considering also the potential of cuts to remove T-gates by pushing them into
the scalar factor (e.g. via the state copy rule) or to partition small segments from the graph. The method
ought also to consider simplification and weight propagation laterally, rather than solely through the
lens of ‘tiers’. Indeed, the ‘partial simplification’ strategy we utilise (to simplify while maintaining the
structure) does not take into account some vital steps in the normal ‘full reduce’ [16] function (namely
pivoting - i.e. on CNOTs - and local complementation). We suspect this is largely the reason we didn’t
observe an even higher success rate in verifying how often the method was able to find the best solutions
on small circuits. Moreover, a more robust analysis could determine appropriate weightings without
the need for the circuit to be expressed in a very rigid graph-like form, such that further simplification
between steps could be enabled and, for instance, Toffolis could be expressed as phase gadgets (so that
we are not restricted due to the arbitrary choice of which way around to decompose each Toffoli’s control
qubits). And lastly, of course, one could consider cuts on X-spiders as well as just Z-spiders (this might
be particularly relevant if there are many Hadamards involved, resulting in many X-spiders of T-like
phase).

There are also a number of ways in which this concept, more broadly, could be improved, such as
developing newer and better heuristics - perhaps even different heuristics for different types of circuit
(e.g. dense circuits, or those with many Toffolis, etc.). Nevertheless, we demonstrate very clearly how
analysing the circuit structure and applying decompositions discriminately can offer vastly more efficient

74 Procedurally Optimised ZX-diagram Cutting

results than simply decomposing the T-spiders directly with a decomposition that has a better immediate
efficiency.

References

[1] Miriam Backens, Simon Perdrix & Quanlong Wang (2017): A Simplified Stabilizer ZX-calculus. Electronic
Proceedings in Theoretical Computer Science 236, p. 1–20, doi:10.4204/eptcs.236.1.

[2] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and Effective Techniques for T-Count
Reduction via Spider Nest Identities. In Steven T. Flammia, editor: 15th Conference on the Theory of
Quantum Computation, Communication and Cryptography (TQC 2020), Leibniz International Proceedings
in Informatics (LIPIcs) 158, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp.
11:1–11:23, doi:10.4230/LIPIcs.TQC.2020.11.

[3] Niel de Beaudrap, Aleks Kissinger & Konstantinos Meichanetzidis (2021): Tensor Network Rewriting Strate-
gies for Satisfiability and Counting. Electronic Proceedings in Theoretical Computer Science 340, p. 46–59,
doi:10.4204/eptcs.340.3.

[4] Lucas Berent, Lukas Burgholzer & Robert Wille (2022): Towards a SAT Encoding for Quantum Circuits: A
Journey From Classical Circuits to Clifford Circuits and Beyond. doi:10.48550/arXiv.2203.00698.

[5] Agustín Borgna, Simon Perdrix & Benoît Valiron (2021): Hybrid quantum-classical circuit simplification
with the ZX-calculus. In Hakjoo Oh, editor: Programming Languages and Systems, Springer International
Publishing, Cham, pp. 121–139, doi:10.1007/978-3-030-89051-3_8.

[6] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset & Mark Howard (2019): Simu-
lation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, p. 181, doi:10.22331/q-2019-
09-02-181.

[7] Sergey Bravyi, Graeme Smith & John A. Smolin (2016): Trading classical and quantum computational
resources. Physical Review X 6(2), p. 021043, doi:10.1103/PhysRevX.6.021043.

[8] Tristan Cam & Simon Martiel (2023): Speeding up quantum circuits simulation using ZX-Calculus. arXiv
preprint arXiv:2305.02669.

[9] Julien Codsi (2022): Cutting-Edge Graphical Stabiliser Decompositions for Classical Simulation of Quan-
tum Circuits. Master’s thesis, University of Oxford. Available at https://www.cs.ox.ac.uk/people/
aleks.kissinger/theses/codsi-thesis.pdf.

[10] Julien Codsi & John van de Wetering (2022): Classically Simulating Quantum Supremacy IQP Circuits
trough a Random Graph Approach. arXiv preprint arXiv:2212.08609.

[11] Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagram-
matics. New Journal of Physics 13, p. 043016, doi:10.1088/1367-2630/13/4/043016.

[12] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes. Cambridge University Press,
doi:10.1017/9781316219317.

[13] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons & Seyon Sivarajah (2020): Phase Gadget
Synthesis for Shallow Circuits. In Bob Coecke & Matthew Leifer, editors: Proceedings 16th International
Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019,
Electronic Proceedings in Theoretical Computer Science 318, Open Publishing Association, pp. 213–228,
doi:10.4204/EPTCS.318.13.

[14] Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020): Graph-theoretic Simplifica-
tion of Quantum Circuits with the ZX-calculus. Quantum 4, p. 279, doi:10.22331/q-2020-06-04-279.

[15] Stefano Gogioso & Richie Yeung (2023): Annealing Optimisation of Mixed ZX Phase Circuits. In Ste-
fano Gogioso & Matty Hoban, editors: Proceedings 19th International Conference on Quantum Physics and
Logic, Wolfson College, Oxford, UK, 27 June - 1 July 2022, Electronic Proceedings in Theoretical Computer
Science 394, Open Publishing Association, pp. 415–431, doi:10.4204/EPTCS.394.20.

https://doi.org/10.4204/eptcs.236.1
https://doi.org/10.4230/LIPIcs.TQC.2020.11
https://doi.org/10.4204/eptcs.340.3
https://doi.org/10.48550/arXiv.2203.00698
https://doi.org/10.1007/978-3-030-89051-3_8
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.22331/q-2019-09-02-181
https://doi.org/10.1103/PhysRevX.6.021043
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/codsi-thesis.pdf
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1017/9781316219317
https://doi.org/10.4204/EPTCS.318.13
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.4204/EPTCS.394.20

M. Sutcliffe & A. Kissinger 75

[16] Aleks Kissinger & John van de Wetering: PyZX. Available at https://github.com/Quantomatic/pyzx.

[17] Aleks Kissinger & John van de Wetering (2020): PyZX: Large Scale Automated Diagrammatic Reasoning.
In Bob Coecke & Matthew Leifer, editors: Proceedings 16th International Conference on Quantum Physics
and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019, Electronic Proceedings in Theoretical
Computer Science 318, Open Publishing Association, pp. 229–241, doi:10.4204/EPTCS.318.14.

[18] Aleks Kissinger & John van de Wetering (2020): Reducing the number of non-Clifford gates in quantum
circuits. Physical Review A 102(2), doi:10.1103/physreva.102.022406.

[19] Aleks Kissinger & John van de Wetering (2022): Simulating quantum circuits with ZX-calculus reduced sta-
biliser decompositions. Quantum Science and Technology 7(4), p. 044001, doi:10.1088/2058-9565/ac5d20.

[20] Aleks Kissinger & John van de Wetering (2023): Picturing Quantum Software [Preprint].

[21] Aleks Kissinger, John van de Wetering & Renaud Vilmart (2022): Classical Simulation of Quantum Cir-
cuits with Partial and Graphical Stabiliser Decompositions. In François Le Gall & Tomoyuki Morimae,
editors: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC
2022), Leibniz International Proceedings in Informatics (LIPIcs) 232, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, pp. 5:1–5:13, doi:10.4230/LIPIcs.TQC.2022.5.

[22] Mark Koch, Richie Yeung & Quanlong Wang (2023): Speedy Contraction of ZX Diagrams with Triangles
via Stabiliser Decompositions. arXiv preprint arXiv:2307.01803.

[23] Tommy McElvanney & Miriam Backens (2023): Flow-preserving ZX-calculus Rewrite Rules for Optimisa-
tion and Obfuscation. In Shane Mansfield, Benoit Valîron & Vladimir Zamdzhiev, editors: Proceedings of
the Twentieth International Conference on Quantum Physics and Logic, Paris, France, 17-21st July 2023,
Electronic Proceedings in Theoretical Computer Science 384, Open Publishing Association, pp. 203–219,
doi:10.4204/EPTCS.384.12.

[24] Maximilian Nägele & Florian Marquardt (2023): Optimizing ZX-Diagrams with Deep Reinforcement Learn-
ing. arXiv preprint arXiv:2311.18588.

[25] John Preskill (2018): Quantum Computing in the NISQ era and beyond. Quantum 2, p. 79, doi:10.22331/q-
2018-08-06-79.

[26] Hammam Qassim, Hakop Pashayan & David Gosset (2021): Improved upper bounds on the stabilizer rank
of magic states. Quantum 5, p. 606, doi:10.22331/q-2021-12-20-606.

[27] Matthew Sutcliffe: ParamZX. Available at https://github.com/mjsutcliffe99/ParamZX.

[28] Matthew Sutcliffe: ProcOptCut. Available at https://github.com/mjsutcliffe99/ProcOptCut.

[29] Matthew Sutcliffe & Aleks Kissinger (2024): Fast classical simulation of quantum circuits via parametric
rewriting in the ZX-calculus [Preprint].

[30] John van de Wetering (2020): ZX-calculus for the working quantum computer scientist.
doi:10.48550/arXiv.2012.13966.

[31] Robert Wille, Lukas Burgholzer, Stefan Hillmich, Thomas Grurl, Alexander Ploier & Tom Peham (2022):
The Basis of Design Tools for Quantum Computing: Arrays, Decision Diagrams, Tensor Networks, and ZX-
Calculus. In: Proceedings of the 59th ACM/IEEE Design Automation Conference, DAC ’22, Association
for Computing Machinery, New York, NY, USA, p. 1367–1370, doi:10.1145/3489517.3530627.

A Cut order correction

It was shown in section 3.3 that determining the order in which to cut the vertices is apparently at least as
important as determining which vertices to cut. In the example showcased there, it seemed necessary for
the optimal solution to cut vertex #8 first, such that vertices #2, #6, #11, and #15 could then be fused and
cut as one. It would appear that recognising the same vertices to cut but applying a different cut ordering
(specifically cutting vertex #8 last) would achieve the same ends at the cost of 5 cuts rather than 2 (and

https://github.com/Quantomatic/pyzx
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.1103/physreva.102.022406
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.4204/EPTCS.384.12
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2021-12-20-606
https://github.com/mjsutcliffe99/ParamZX
https://github.com/mjsutcliffe99/ProcOptCut
https://doi.org/10.48550/arXiv.2012.13966
https://doi.org/10.1145/3489517.3530627

76 Procedurally Optimised ZX-diagram Cutting

hence a much less efficient 32 stabiliser terms rather than 4). However, with slight alteration (using the
modified PyZX package of [27]) to denote the cuts parametrically, followed by some simple parametric
analysis, a suboptimal cut ordering can effectively be corrected to its more optimal arrangement at a
negligible cost to the runtime.

Firstly, one can parameterise the cutting decomposition of section 3.1 like so:

α
...

... ≈ ...
... +

π ...
...

π

ππ
eiα ≡

aπ ...
...

aπ

aπaπ
eiαa

1
∑

a=0

Now consider again the circuit shown in section 3.3, and imagine cutting first vertices #2, #6, #11,
and #15. Writing this in the parameterised form - needing only one parameterised graph (rather than 16
evaluated graphs) - leads to the following, after only some trivial spider fusion:

π

4 aπ

(a+b)π

π

4
π

4 bπ

(b+ c)π

π

4
π

4 cπ

(c+d)π

π

4
π

4 dπ
π

4

aπ dπ

{0,1}
∑

a,b,c,d

Cutting lastly vertex #8 results in the following:

π

4 aπ

(a+b+ e)π

π

4
π

4 bπ

(b+ c+ e)π

π

4
π

4 cπ

(c+d + e)π

π

4
π

4 dπ
π

4

aπ dπ

{0,1}
∑

a,b,c,d,e

eπ eπ

Here we have a graph in 5 parameters (a,b,c,d,e), containing 3 free nodes (legless spiders). As the
parameters are boolean, it necessarily follows that each of these free nodes can be replaced with a scalar
factor of 0 or 2, such as follows:

(a+b+ e)π =
2 if a⊕b⊕ e = 0

0 if a⊕b⊕ e = 1

{
Moreover, for any combination of parameter values that results in a scalar factor of 0 in one or more

of these free nodes, one can ignore the entire corresponding graph (as the whole graph then becomes
0). In other words, one is only interested in the sets of parameter values which result in non-zero scalar
factors for all free nodes. So, given the equation above, the leftmost free node must equal 2 and thus
a⊕b⊕ e = 0. Rearranging this for, say, a gives: a = b⊕ e. And now, every instance of a throughout the
parameterised graph can be substituted out for b⊕ e, thus reducing the number of parameters from 5 to
4. Repeating this reasoning for the remaining two free nodes finds that b = c⊕e and c = d⊕e, resulting
in all parameters being reduced to some combination of d and e.

Consequently, while only needing to reason on one graph, the number of parameters has been reduced
from the 5 attained via a suboptimal cut ordering to the most optimal 2. Indeed, this graph is now
equivalent to what would have been attained if the more optimal cut ordering had been adopted (namely

M. Sutcliffe & A. Kissinger 77

cutting vertex #8 first and then fusing the remaining 4 before cutting them as one). Having effectively
corrected suboptimal cut ordering, one can then expand the parameterised graph out into its (in this case
4) distinct evaluated graphs and proceed with simplification as in section 3.

Note, however, that the procedure outlined in section 3.4 prioritises higher tiers so that the cut order-
ing is already optimised and thus this parametric reasoning should not generally be necessary. Neverthe-
less, it might prove beneficial to the procedure in extreme cases, and indeed is applicable in other cutting
techniques (such as the brute-force verifications of section 4.1).

B Generating random pseudo-structured circuits

The procedure presented in this paper, by design, works best on circuits that are highly structured. This
raised an interesting problem when benchmarking, as testing on wholly random circuits would not prop-
erly showcase its effectiveness and, conversely, demonstrating only ideal example cases would not yield
particularly informative results as such circuits could be made arbitrarily ideal, sending α → 0. Conse-
quently, for the benchmarking experiments, we generated random circuits in such a way as to include
some localised structural elements, so as to avoid trivial (unstructured) cases, while also not simply
designing “best case” circuits on which to experiment.

Specifically, for the main benchmarking tests (figure 4), we generated circuits from random combina-
tions of randomly placed T-CNOT-T sandwiches, Toffoli gates, CNOTs, and phase gates. We varied the
number of such instances of these components in order to vary the T-counts of the circuits. Meanwhile,
the circuits for the initial, small-scale verification experiments (section 4.1) were generated likewise,
minus the Toffoli gates (as even one or two of these produce circuits too large to verify). Note that
in randomly placing multi-qubit gates, each of its qubits may be placed randomly among the circuit’s
qubits, and note also that we express Toffoli gates in ZX-diagram form as follows:

7π

4
π

4
7π

4

π

4

π

4

π

4

7π

4

⊕
≡

This approach ensures we create appropriately random circuits of non-trivial local structure, akin to
that of section 3.3 or the composed-Toffolis circuits seen in [18].

C Estimating efficiency

Following the procedure of section 3.4 will result in a list of scalar terms whose sum gives the overall
scalar value corresponding to the original Clifford+T circuit. However, for the purposes of benchmarking
the effectiveness of the procedure, it is not important what that scalar value is, but rather how many scalar
terms were produced (and hence the total runtime). With this in mind, one can determine an approximate
upper-bound estimate of the number of terms that would be produced, in linear time, without having to
compute all such terms.

This can be done by parameterising the branches of each cut into a single parametric graph (rather
than two sets of distinct enumerated graphs), akin to [29] (and utilising the corresponding modified
PyZX package of [27]). As such, every cut can be recorded parametrically on a single graph, without the
need to append a list of distinct graphs, similar to the figures shown in appendix A. By continuing the
procedure on this parametric graph, one will ultimately arrive at a final Clifford graph of n parameters
(given n cuts), which represents 2n distinct graphs whose sum is the solution. Thus, the number of terms

78 Procedurally Optimised ZX-diagram Cutting

will be known to be 2n. This is, however, an upper-bound estimate as the parameterisation of the cuts
can prevent much inter-step simplification that could be facilitated with exact numerical phases.

A. Díaz-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 79–95, doi:10.4204/EPTCS.406.4

© A. Kissinger & J. van de Wetering
This work is licensed under the
Creative Commons Attribution License.

Scalable Spider Nests (...Or How to Graphically Grok
Transversal Non-Clifford Gates)

Aleks Kissinger
University of Oxford

aleks.kissinger@ox.ac.uk

John van de Wetering
University of Amsterdam

john@vdwetering.name

This is the second in a series of “graphical grokking” papers in which we study how stabiliser codes
can be understood using the ZX-calculus. In this paper we show that certain complex rules involving
ZX-diagrams, called spider nest identities, can be captured succinctly using the scalable ZX-calculus,
and all such identities can be proved inductively from a single new rule using the Clifford ZX-calculus.
This can be combined with the ZX picture of CSS codes, developed in the first “grokking” paper,
to give a simple characterisation of the set of all transversal diagonal gates at the third level of the
Clifford hierarchy implementable in an arbitrary CSS code.

The ZX-calculus [12, 13] is a useful tool for expressing and reasoning about quantum computations. It
represents computations, such as quantum circuits or measurement patterns, as certain labelled open
graphs called ZX-diagrams, subject to a collection of rewrite rules that can be used to transform and
simplify diagrams. While the literature tends to talk about “the” ZX-calculus, there are actually several
calculi of increasing power. One of the simpler versions is what we will call here the Clifford ZX-calculus,
which is complete for Clifford ZX-diagrams, i.e. diagrams whose phase parameters are restricted to
integer multiples of π/2 [3]. These give a natural generalisation of Clifford circuits, and the Clifford ZX-
calculus admits many efficient algorithms, e.g. for reducing Clifford diagrams to normal form, equality
checking, and computing arbitrary measurement amplitudes. In some sense, it is the graphical counterpart
to stabiliser theory (see e.g. [3, 6]), so it gives a natural setting for studying quantum error correction [18].

However, the Clifford ZX-calculus, unlike some of its more powerful counterparts [23, 17] is known
to be incomplete for ZX-diagrams whose phases are not all multiples of π/2. An interesting family of
equations that are not provable in the Clifford ZX-calculus are the spider-nest identities, where elaborate
configurations of phase gadgets can collectively cancel out with each other [4]. For example, connecting
a π/4 phase gadget to all 24 −1 = 15 non-empty subsets of 4 qubits is equal to the identity:

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4

π

4
π

4

π

4

π

4

π

4 = (1)

While this might seem like a very specific and complicated rule, such identities have already been used
to great effect for T-gate optimisation, originally in the language of phase polynomials [16, 2] and later
explicitly as ZX-diagram rules [4].

The starting point for this paper is the observation that all spider-nest identities can be succinctly
characterised using certain boolean matrices called triorthogonal matrices, i.e. those where the Hamming

http://dx.doi.org/10.4204/EPTCS.406.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

80 Scalable spider nests

weight of the product of any ℓ ≤ 3 columns is zero modulo 2ℓ. Triorthogonal matrices have been
used extensively in the study of transversal gates for quantum error-correcting codes and magic state
distillation [8, 7, 22]. This connection is not really new, and could probably best be described as folklore,
as it really just explicitly connects the dots between two important results in the literature: the equivalence
between T-count optimisation and Reed-Muller decoding [2] and the equivalence between triorthogonal
matrices and certain Reed-Muller codewords [22].

We show that the equivalence between spider nest identities and triorthogonal matrices can be made
explicit and fully graphical, with the help of the scalable ZX-calculus [11]. This extension to ZX notation
enables one to work with entire registers of qubits at once to represent arbitrary connectivity between
components using boolean biadjacency matrices. Notably, all spider nest equations take a simple form,
for some triorthogonal matrix M:

π

4

M
= (2)

We show that we only have to assume one further rule, a variant of Eq. (1), beyond the standard
Clifford ZX-calculus in order to prove all identities of the form of Eq. (2) (cf. Theorem 3.4). This in turn
gives us a complete calculus for CNOT+T circuits (cf. Corollary 3.6).

The graphical form for spider-nest identities (2) is particularly handy when used in the context of error
correcting codes. As shown in the first “graphical grokking” paper [18], the encoding map of a CSS code
can be represented as a ZX-diagram in a certain normal form. By “pushing” maps through the encoder,
one can compute the effect of a physical map on the logical qubits or vice-versa. Of particular importance
for fault-tolerant computation are those logical maps that can be implemented by a transversal operation
on the physical qubits, which in the setting we will consider are operations implemented by a tensor
product of single-qubit unitaries. Codes with rich sets of transversal logical gates are interesting both
for supporting computation on their own encoded qubits and as part of magic state distillation protocols,
used to boost (non-universal) fault-tolerant computation in other codes to universality [20].

Many characterisations of transversal gates exist in the literature for specific classes of gates and/or
codes [8, 7, 10, 25, 27]. The one we give here is essentially equivalent to the one given in [28] concerning
diagonal gates in the Clifford hierarchy, although we will focus on just the third level of the Clifford
hierarchy for the sake of simplicity. Namely, for a fixed CSS code, we give a complete classification for
the set of transversal gates whose logical action is in D3, the diagonal unitaries on the third level of the
Clifford hierarchy (Theorem 4.1). While we focus on D3, the method we show translates straightforwardly
to Dℓ, the diagonal unitaries of the ℓth level of the Clifford hierarchy, and phase gadgets with a π/2ℓ−1

phase, as we will remark in the conclusion. A notable feature of our characterisation is not so much
the result itself, but the proof technique, which demonstrates the interplay between the CSS code and
the triorthogonal structure that needs to be present in it. Both of these can be treated uniformly using
scalable notation, and the graphical rules allow one to easily see (and hopefully grok) how the stabiliser
and non-stabiliser aspects of the computation interact.

A. Kissinger & J. van de Wetering 81

1 Preliminaries

The basic building blocks of ZX-diagrams are spiders, which come in two varieties, Z spiders and X
spiders, defined respectively relative to the eigenbases of the Pauli Z and Pauli X operators.

Zn
m[α] := m

{

... α ...

}
n = |0⟩⊗n⟨0|⊗m + eiα |1⟩⊗n⟨1|⊗m

Xn
m[α] := m

{

... α ...

}
n = |+⟩⊗n⟨+|⊗m + eiα |−⟩⊗n⟨−|⊗m

(3)

where ⟨ψ|⊗m and |ψ⟩⊗n are the m- and n-fold tensor products of bras and kets, respectively, and we take
the convention that (...)⊗0 = 1. The parameter α is called the phase of a spider. If we omit the phase, it
is assumed to be 0. In addition to spiders, we allow identity wires, swaps, cups, and caps in ZX-diagrams,
which are defined as follows:

:= ∑
i
|i⟩⟨i| := ∑

i j
|i j⟩⟨ ji| := ∑

i
|ii⟩ := ∑

i
⟨ii|

If all of the angles in a ZX-diagram are integer multiples of π/2, it is called a Clifford ZX-diagram. If
not, it is called a non-Clifford ZX-diagram. There is a direct translation from Clifford+phase circuits to
ZX-diagrams, where the resulting diagram is Clifford if and only if the circuit contains no non-Clifford
phase gates.

ZX-diagrams have the useful property that they are invariant under arbitrary deformations and swap-
ping input/output wires of spiders. This property is sometimes referred to as only connectivity matters. In
addition to this “meta-rule”, the Clifford ZX-calculus consists of the 7 rules shown in Figure 1. Notably,
this set of rules is complete for Clifford ZX-diagrams. That is, if two Clifford ZX-diagrams describe the
same linear map, one can transform one into the other using the Clifford ZX-calculus. For the Clifford
ZX-calculus, this transformation is furthermore efficient. Note that we presented here the rules only up
to non-zero scalar factor (denoted by ∝). Scalars will not play an important role in this paper.

In addition to encodings of basic gates, a useful unitary ZX-diagram is a phase gadget, which applies
a relative phase of α to all of the computational basis states whose bitstring has parity 1 [19]:

α

... ... :: |x1 . . .xn⟩ 7→ eiα·x1⊕...⊕xn |x1 . . .xn⟩

Phase gadgets with arbitrary angles applied to arbitrary subsets of qubits form a spanning set for all
diagonal unitaries. By restricting phases to integer multiples of π/2r−1, we obtain a spanning set for all
diagonal unitaries on the r-th level of the Clifford hierarchy [15]. For example, we can represent CCZ,
on the 3rd level of the Clifford hierarchy as a collection of π/4 phase gadgets:

CCZ =

π

4
π

4
π

4

π

4

- π

4

- π

4 - π

4

=

π

4- π

4- π

4- π

4
π

4
π

4
π

4

(4)

82 Scalable spider nests

β
... ...

α
=...α+β

(sssppp)
−α∝

π

... ...

π(πππ)

... = ...

(cccccc)

(iiiddd)
= =

(hhhhhh)(sssccc)
∝

...α α ...

∝

(eeeuuu)
π

2
π

2
π

2

α

π

...

π

...

...

Figure 1: The Clifford ZX-calculus: spider fusion (sssppp), colour change (cccccc), π-copy (πππ), strong comple-
mentarity (sssccc), identity (iiiddd), H-cancellation (hhhhhh), and Euler decomposition of H (eeeuuu). Thanks to (cccccc),
all rules hold with their colours reversed.

Note that we have here fused all the Z-spiders on the qubit wires together to write this circuit with
multiple phase gadgets more compactly. Each individual gadget corresponds to a term in the associated
phase polynomial φ : Bn → R, which represents the relative phases of basis elements as R-linear combi-
nations of parity functions. For example, CCZ can be represented as: CCZ|x1x2x3⟩= ei·φ |x1x2x3⟩ where
φ(x1,x2,x3) =

π

4 x1 +
π

4 x2 +
π

4 x3 − π

4 x1 ⊕ x2 − π

4 x2 ⊕ x3 − π

4 x1 ⊕ x3 +
π

4 x1 ⊕ x2 ⊕ x3.
It is also worth noting that phase gadgets applied to the same set of qubits “fuse” in the sense that

their angles add together, as a consequence of the rules in Figure 1:

α

... ... =

β α+β
... ... (5)

This is called the gadget fusion rule [19].

1.1 Spider nests and triorthogonal matrices

When non-Clifford angles are assumed to be arbitrary free parameters, we are unlikely to find non-trivial
equations between collections of phase gadgets beyond those already provable using the Clifford ZX-
calculus (cf. [29]). However, if we assume that the non-Clifford angles take specific values, especially
values of the form π/2r for some integer r > 1, more equations hold than just those provable by the
Clifford ZX-calculus [2]. An important class of such rules are the spider nest identities [4]. These are
certain configurations of non-Clifford phase gadgets whose overall action is the identity, up to a global
phase.

To understand the collection of all such rules, we should get some structural understanding of what
is actually happening. Consider first a single phase gadget and how it acts on the computational basis:
|x1 . . .xn⟩ 7→ eiα·x1⊕...⊕xn |x1 . . .xn⟩. This action is totally determined by a phase polynomial φ : Fk

2 → R
here given by φ (⃗x) = α

⊕
j x j. There are two useful bases for expressing phase polynomials: the XOR

basis and the monomial basis. The XOR basis represents φ as a real linear combination of functions of
the form f (⃗x) =

⊕
i∈S xi, where S ⊆ {1, . . . ,n}. The monomial, or “AND” basis consists of functions of

the form g(⃗x) = Πi∈Sxi for some subset S ⊆ {1, . . . ,n}.
We can transform from the basis of XOR functions into the basis of AND functions by using the fact

that x⊕ y = x+ y−2x · y. From this, we can derive the n variable version:

x1 ⊕·· ·⊕ xn = ∑
S⊆[n]

(−2)|S|−1
∏
i∈S

xi. (6)

A. Kissinger & J. van de Wetering 83

Transforming functions between these two bases is known as the Boolean Fourier transform.
Using Eq. (6) we can rewrite an R-linear combination of XORs into a linear combination of mono-

mials. Note that the prefactor (−2)|S|−1 of each term grows as the degree of the monomial increases. In
particular, if the coefficient of x1 ⊕ . . .⊕ xn is some integer multiple of π/4, applying the inverse Fourier
transform will result in linear terms whose coefficients are integer multiples of π/4, quadratic terms with
multiples of π/2, cubic terms with multiples of π , and all terms of degree 4 or more being multiples of
2π , which will vanish:

ei π

4 x1⊕···⊕xn = exp

(
i

(
π

4 ∑
j

x j −
π

2 ∑
i< j

xix j +π ∑
i< j<k

xix jxk −2π · · ·

))
(7)

Hence, each phase gadget corresponds to a collection of T gates (the linear terms), CS gates (quadratic
terms) and CCZ terms (cubic terms). A collection of phase gadgets then corresponds to adding together
their respective T , CS and CCZ gates. We then see that a collection of phase gadgets implements the
identity precisely when all these T , CS and CCZ gates cancel each other out. This happens when each
single variable xi occurs 0 mod 8 times (T 8 = I), each pair of variables occurs 0 mod 4 times (CS4 = I),
and each triple occurs 0 mod 2 times (CCZ2 = I).

We can formalise the cancellation property as follows. Represent a collection of π/4 phase gadgets
as a set of bit strings y⃗1, . . . , y⃗m, where yl

i = 1 means the l-th phase gadget is connected to the i-th wire.
Then for the compositions of all M phase gadgets to form an identity they need to satisfy:

∀i : ∑
l

yl
i = 0 (mod 8) ∀i < j : ∑

l
yl

iy
l
j = 0 (mod 4) ∀i < j < k : ∑

l
yl

iy
l
jy

l
k = 0 (mod 2)

Writing these y⃗l as the rows of a binary matrix, these conditions specify precisely what it means for the
matrix to be triorthogonal, namely that each column, product of pairs of columns and product of triples
of columns needs to have a Hamming weight that is a multiple of respectively 8, 4 and 2 [22].

Example 1.1. The collection of phase gadgets in the LHS of equation (1) corresponds to the following
triorthogonal matrix, whose rows are all the non-zero length 4 bit strings:

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

T

(8)

If we instead require the weaker condition that each of these properties holds just modulo 2, then we
get the notion of a semi-triorthogonal matrix. In that case, we can abbreviate the 3 conditions into one,
where we no longer require i, j,k to be distinct:

∀i, j,k : ∑
l

yl
iy

l
jy

l
k = 0 (mod 2) (9)

These describe collections of phase gadgets that are equal to a Clifford, instead of exactly equal to
the identity. This is because instead of ∑l yl

i = 0 (mod 8), so that each qubit i has a multiple of 8 T gates
that cancel out, we just have ∑l yl

i = 0 (mod 2), so that we can pair up all the T gates on the qubit i, to
combine them as T 2 = S, which is Clifford. Similarly, the equation ∑l yl

iy
l
j = 0 (mod 2) means that we

can pair up all the CS gates on qubits i and j to produce CS2 = CZ, which is also Clifford. We get the
same for the CCZ gates, which pair up into an identity: CCZ2 = I.

We summarise the above discussion in the following theorem.

84 Scalable spider nests

Theorem 1.2. Let M be a boolean matrix with n columns and k rows and define the unitary UM as the
circuit consisting of k π

4 phase gadgets, where the connectivity of the jth gadget is described by the jth
row of M. Then UM is Clifford if and only if M is semi-triorthogonal and UM is the identity if and only if
M is triorthogonal.

Remark 1.3. Several inequivalent definitions of the term “triorthogonal” appear in the literature. It is
commonly used to describe the weaker condition (9), or an even weaker condition that only requires
products of pairs and triples of distinct rows to have even Hamming weight. The stronger condition we
call triorthogonal is also sometimes called 3-even [27]. Our terminology matches e.g. [20], with the
slight difference that we impose conditions on the columns of a matrix rather than the rows, as it will
make some calculations simpler.

There is clearly a close relationship between the graphical concept of spider nest identities and the
(non-graphical) concepts of triorthogonal matrices and low-degree polynomials. To make this formal, it
will be useful to have a bridge between the graphical notation and matrices, which thankfully is provided
by the scalable ZX-calculus.

1.2 The scalable ZX-calculus

While plain ZX-diagrams are convenient for doing many concrete calculations, it will be convenient
when discussing quantum error correcting codes and transversal gates to adopt the scalable ZX nota-
tion [11]. This notation enables us to compactly represent operations on registers of many qubits, while
still maintaining much of the flavour of calculations with standard ZX-diagrams.

We represent a register of qubits as a single thick wire and the product of n (unconnected) copies of a
Z or X spider as a bold spider:

:=n

... n :=......

...
...

...
...

α

α

...
...

...

...

...

α :=......

...
...

...
...

α

α

...
...

...

...

...
α

In [11], the authors allowed bold spiders to be labelled by lists of phases α⃗ ∈ Rn, enabling each copy to
have a different phase. For our purposes, we won’t need this extra generality, so a bold spider labelled
by α ∈ R corresponds to n spiders all with phase α . The authors of [11] also introduced explicit maps
called dividers and gathers for splitting a register of m+n qubits into two registers of m and n qubits and
vice-versa. For our purposes, we will leave these maps implicit. The most important new generator is
the “arrow”, which allows us to represent arbitrary connectivity from m Z-spiders to n X-spiders using
an n×m biadjacency matrix A ∈ Fn×m

2 :

A
:=

...

... ...A

... (10)

Taking the convention that A j
i represents the entry in the i-th column and j-th row of the matrix A, we

have in Eq. (10) that A j
i = 1 if and only if the i-th Z-spider on the left is connected to the j-th X-spider

on the right. Concretely, Eq. (10) corresponds, up to scalar factors, to a linear map that acts as A on
computational basis vectors:

A
:: |⃗b⟩ 7→ |A⃗b⟩

A. Kissinger & J. van de Wetering 85

Note that we treat the bitstring b⃗ as a column vector for the purposes of matrix multiplication.
Spiders and arrows satisfy several rules that will prove useful. First, we have two “copy” laws relating

arrows to Z/X spiders:

A
=

A

A
A

=

A

A (11)

Second, we can express block diagonal matrices in terms of spiders:

(
A
B

)
=

A

B
(A B)

=

A

B

(
A B
C D

)
=

A

B

C

D

(12)

2 Inductive construction of spider nest identities

We can now use the scalable notation to relate spider nest identities to certain families of triorthogonal
matrices. The first thing to note is that for any boolean matrix M, we can write the associated n-qubit
diagonal unitary UM from Theorem 1.2, composed of a π/4 phase gadget for each of the k rows of M, as
follows:

DM =

π

4

M
n

k
(13)

M has n columns corresponding to the n qubits of DM and k rows, corresponding to k phase gadgets.
The i-th row of M then says which qubits are connected to the i-th phase gadget. Hence, a matrix M is
triorthogonal if and only if DM = I. We write here DM instead of UM to refer to the specific diagram in
Eq. (13).

Notably, this gives us an infinite family of graphical equations, of the form DM = I for all triorthogonal
matrices M. In fact, this is precisely the set of all spider nest identities, which we justified by the concrete
calculations involving the inverse Fourier transform in Section 1.1. We know by completeness of the
Clifford+T ZX-calculus [17] that all of these equations are provable by an extended version of the ZX-
calculus. However, from those rules, it is very difficult to see how one could directly reduce a diagram
DM to I for some fixed M, and whether that reduction could be done efficiently (i.e. without expanding to
a large normal form before reducing back down). Hence, it is interesting to ask just how much we need
to add to the simple Clifford rules in Figure 1 in order to prove the entire family of spider nest identities
directly. Toward that goal, we will now inductively construct a family of maps that will enable us to
generate all the π/4 spider nest identities.

Definition 2.1. The spider-nest maps sn : 1 → n are constructed inductively as follows:

sn :=

sn-1

sn-1

s0 := π

4
n n-1 (14)

86 Scalable spider nests

Intuitively, this inductive definition results in a phase gadget connecting the single input wire to every
subset of the output wires. For example:

s1 =

s0

s0
= π

4

π

4(14)
(14)
(sssppp)

s2 =

s1

s1
=

π

4

π

4

π

4 = π

4
π

4

π

4

π

4

(14)
π

4

where the last step follows from applying the strong complementarity rule (sssccc) to the marked spider pair,
and then applying spider fusion (sssppp) as much as possible.

We now formalise this intuitive explanation of sn using scalable notation. Let Bn be the n×2n matrix
whose 2n rows consist of all n-bitstrings. That is, the matrix defined inductively as follows:

B0 = () Bn =

(
Bn−1 0⃗
Bn−1 1⃗

)
where 0⃗ and 1⃗ are respectively the column vectors of all 0’s and all 1’s. For example, we have:

B1 =

(
0
1

)
B2 =

0 0
1 0
0 1
1 1

 (15)

Theorem 2.2. For all n, we have:

sn =
1⃗ Bn

π

4

(16)

Proof. First, note that:

Bn
=

Bn−1

0⃗

Bn−1

1⃗

= =

Bn−1

1⃗

Bn−1

Bn−1

1⃗

=

Bn−1

Bn−1

1⃗

(10) (11)
(sssppp)
(iiiddd)

(17)

Using this equation and the scalable rules, we can prove (16) from (14) by induction on n:

sn =

sn-1

sn-1

n-1
(14)

=
(ind)

n-1

1⃗ Bn−1
π

4

1⃗ Bn−1
π

4
=

(11)
n-1

1⃗
π

4

π

4

Bn−1

1⃗

1⃗

=
(sssppp)

n-1

1⃗
π

4

π

4

Bn−1

1⃗1⃗
=

(17) 1⃗ Bn
π

4

n

A. Kissinger & J. van de Wetering 87

Here in the last step we gathered together the wires connecting to the X-spiders. This works because the
matrix arrows with 1⃗ are just a single Z-spider fully-connected to identity X-spiders on the right. These
fuse with the surrounding Z- and X-spiders to produce the right result.

If we connect this sn generator to an X-spider on the left, we obtain the following:

sn =
1⃗ Bn

π

41⃗T 1⃗T

sn =
111 Bn

π

4

=

where 111 is the matrix where every entry is 1. We will see in the next section how this map lets us generate
all of the spider nest identities.

3 Proving all spider nest identities

In this section, we will show that, by adding just one rule to the Clifford ZX-calculus, we can prove all
spider nest equations. We call this one extra equation the S4-rule:

s4 = (18)

We will show this is sound, but we will first need some more definitions. In particular, we will start by
passing to an alternative characterisation for (semi-)triorthogonal matrices, in terms of polynomials of
low degree. This result seems to be well-known, and appears in various guises in the literature, e.g. when
applying Reed-Muller codes to T-count minimisation or magic state distillation. The version we give here
is a variation on one given by Nezami and Haah [22].
Definition 3.1. For a boolean matrix M with n columns, its indicator polynomial PM ∈ F2[x1, . . . ,xn]
sends a bitstring (b1, . . . ,bn) to 1 if and only if that bitstring appears as a row in M an odd number of
times.
Theorem 3.2. A matrix M with n columns is semi-triorthogonal if and only if its indicator polynomial
PM is of degree at most n−4.

The proof is straightforward, but relies on some basic facts about Reed-Muller codes. We give these
and the proof of Theorem 3.2 in Appendix A.

We can now show that S4 is indeed sound. First, note that it is equivalent up to the standard Clifford
rules to the following rule:

s4

= (19)

Here the left-hand side consists of 24 = 16 phase gadgets, which are all connected to the first qubit,
and have all possible connections to the bottom four qubits. Its connectivity matrix is hence M =
(⃗1 B4). A bitstring x1x2x3x4x5 hence appears as a row in M iff x1 = 1. Its indicator polynomial is then
P(x1,x2,x3,x4,x5) = x1. This is a degree 1 polynomial on 5 variables, and hence satisfies the condition of
Theorem 3.2, so that M is semi-triorthogonal. We can also manually verify that M is in fact triorthogonal,
so that Eq. (19) is indeed correct.

Returning to the S4 rule, we see that, thanks to the inductive definition of sn, not only does s4 separate,
but so do all sn for n ≥ 4.

88 Scalable spider nests

Lemma 3.3. For n ≥ 4, the Clifford ZX-calculus augmented with the S4 rule implies:

sn
n

=
n

(20)

Proof. By induction on n. The base case n = 4 is (18). For n > 4, unfold sn using (14) and apply the
induction hypothesis.

We see then that if we include sn for n ≥ 4 in a circuit, that we obtain:

sn

...

=111 Bn
π

4

k

n
=

...

...

...

...... =

...
...

(21)

The lefthand-side above consists of the set of all phase gadgets that are connected to the first k wires
and all combinations of the last n wires. Writing these phase gadgets as the rows of a matrix, this is
M = (111 Bn). The indicator polynomial of this matrix P satisfies the condition that P(x1, . . . ,xn+k) = 1
if and only if x j = 1 for j ∈ {1, . . . ,k}. Hence, it is the monomial P = x1 . . .xk. By permuting wires, we
can obtain any monomial on m = k+n variables, and as long as the degree k ≤ m−4, then equation (21)
is satisfied. Hence, in particular, if M is a boolean matrix with m columns and no duplicate rows whose
indicator polynomial is of degree at most m−4, then the Clifford rules together with the S4 rule proves:

π

4

M
= (22)

Theorem 3.4. The Clifford ZX-calculus, plus the S4 rule (18) are diagonally complete for Clifford+T
ZX-diagrams. That is, for any boolean matrices M,N, if [[DM]] = [[DN]], the DM can be transformed into
DN using only the rules in Figure 1 and S4.

Proof. Proving DM = DN is equivalent to proving DMD†
N = I. First note that D†

N is equal to DN up to a
Clifford diagram, as π

4 phase gadgets and −π

4 phase gadgets differ by a Clifford. The circuit for DMD†
N

consists of a combination of phase gadgets, which can be combined into a single matrix describing the
connectivity of the gadgets. Duplicate rows can always be cancelled by applying the gadget fusion rule
(5). Hence, to prove completeness it suffices to prove that when [[DM]] = [[I]] we can rewrite DM into I.
Concretely, DM = I is true if and only if M is triorthogonal. Let PM be its indicator polynomial, which
will have degree at most n− 4 for n the number of qubits (Theorem 3.2). Let N1, . . . ,Nk be matrices
whose indicator monomials are P1, . . . ,Pk for PM = ∑ j Pj. Since these all have degree ≤ n− 4, we can
show using Eq. (22) that:

π

4

M
=

π

4

M

π

4

N1

...
π

4

Nk
=

π

4

L :=

M
N1
...

Nk

(22) (12)
(sssppp)

Then, the indicator polynomial of L is PM +∑ j Pj = 0. Hence, every row in L appears an even number of
times. Using gadget-fusion, we can therefore reduce all angles to integer multiples of π/2. We can then
apply Clifford-completeness to reduce to the identity.

A. Kissinger & J. van de Wetering 89

Remark 3.5. Note that while S4 makes the ZX-calculus diagonally complete for Clifford+T ZX-diagrams,
this rule set is not complete for all Clifford+T diagrams. To see this, one can check that S4 is sound for the
[[−]]♯ interpretation given in [24] and hence cannot derive e.g. the supplementarity law for non-Clifford
angles.1

One way to think of the Clifford+S4 ZX-calculus is as the ZX analogue of the equational presen-
tation for CNOT-Dihedral circuits of Amy et al [1]. Indeed we can get the following as a corollary of
Theorem 3.4.

Corollary 3.6. The Clifford rules plus S4 are complete for CNOT+T circuits.

Proof. For CNOT+T circuits U,V where [[U]] = [[V]], it suffices to show that U†V can be rewritten to
the identity. Using just Clifford rules, it is possible to rewrite any CNOT+T circuit into a layer of phase
gadgets DM followed by a CNOT circuit C. Since [[U†V]] = I, it must be the case the [[DM]] = [[C]] = I.
Hence, we can use the completeness of phase-free ZX to rewrite C into I and Theorem 3.4 to rewrite DM

into I.

A Clifford+T circuit can be written as a composition of CNOT, T and Hadamard gates. Hence, the
results above apply to those Clifford+T circuits without Hadamards. For any circuit with Hadamards,
we can “split it up” at those points and reason about the CNOT+T circuits separately. This technique is
used for instance when doing T -count optimisation [4, 16, 26], where the circuit is either split up on the
Hadamards, or the Hadamards are made into CZ gates by the use of an ancilla and measurement [16].
Note that there do seem to be Clifford+T circuit rewrite rules that specifically involve Hadamard gates [14]
that seem likely to not be provable just using Clifford rules and spider-nest identities.

Remark 3.7. Theorem 3.4 and Corollary 3.6 should be compared to the results in [5, 21]. There they
show that assuming the 15 T gate spider-nest Eq. (1) they can prove the family of spider nests consisting
of a single high-degree phase gadget combined with many phase gadgets of degree 3 and lower. However,
they only use these rules for circuit optimisation and do not discuss completeness.

4 Characterisation of transversal D3 gates for CSS codes

We can use our representation of spider-nest identities in the scalable ZX-calculus to prove a charac-
terisation of CSS codes with transversal diagonal logical operations in the third level of the Clifford
hierarchy.

A CSS code is a stabiliser code that has a generating set of stabilisers consisting of pure X stabilisers
and pure Z stabilisers (i.e. that are respectively tensor products of I and X , or I and Z). Its logical X (resp.
Z) operators also purely consist of X (resp. Z) operators. The Z stabilisers and logical operators are in
fact completely determined by the X stabilisers and logical operators (up to choice of generator), and
hence we only have to specify the “X part” of the CSS code.

We can hence fully specify a [[n,k,d]] CSS code—i.e. one that has n physical qubits, k logical qubits,
and is distance d— by fixing k+ r ≤ n linearly independent vectors in Fn

2 corresponding to k logical
X operators and r X stabilisers. Here a 1 at position i in the vector denotes an X on the ith qubit [18].
Letting L and S be the matrices that have these vectors as their columns (L standing for “logical” and
S for “stabiliser”), the vectors corresponding to the remaining n− k− r Z checks can be recovered by
fixing a basis for span(cols(L)∪ cols(S))⊥. Following [18], we can write the encoder for a CSS code as

1The authors wish to thank Richie Yeung for pointing this out.

90 Scalable spider nests

a phase-free ZX-diagram. If we choose to write it in Z-X normal form, the encoder consists of a row
of Z-spiders at the input and a row of X-spiders at the output. For each logical operator, an input wire
connects to a Z-spider, which then connects to X-spiders on the output corresponding to the support of
the operator. For each X stabiliser, an additional Z-spider with no inputs connects to output X-spiders,
according to the support of the operator. While this is a bit unwieldy to say in words, the encoder can be
written in terms of the matrices L and S straightforwardly as follows:

L

S

Indeed this corresponds to the linear map that sends basis vectors |⃗b⟩ ∈ (C2)⊗k of the logical space to
their associated codewords ∑c⃗ |L⃗b+ S⃗c⟩ ∈ (C2)⊗n.

Note that diagonal unitaries of the form DP correspond to transversal applications of powers of T
gates if and only if the rows of P each have Hamming weight 1 (as T gates are phase gadgets connected
to just a single qubit). With this, we are now ready to state our characterisation result.

Theorem 4.1. A CSS code with X-logical operators and X-stabilisers L and S admits a transversal
implementation of a gate D†

H ∈ D3 if and only if there exists a matrix P whose rows have Hamming
weight 1 such that the matrix

M =

(
H 0
PL PS

)
is triorthogonal.

Proof. First, we will apply the scalable ZX rules to graphically decompose the block form of M:

PL

π

4

PS
π

4

M
=

H

=

π

4

000 L

π

4

S

P

H

π

4

For E the encoder associated with the CSS code (L,S), the code implements D†
H if and only if for some

P we have DPEDH = E. We begin by “pushing” DP through the encoder:

L

S

P

π

4

=
L

S

P

π

4

=
L

S

π

4

S

L

P

H

π

4

H

π

4

H

π

4

M

If M is triorthogonal, the part marked M in the diagram above will vanish and we are left with the encoder
E. If it is not triorthogonal, then DM ̸= I. Since DM is diagonal, it follows that DM|+ . . .+⟩ ̸= |+ . . .+⟩,
so DPEDH |+ . . .+⟩ ̸= E|+ . . .+⟩. Hence, DPEDH ̸= E.

A. Kissinger & J. van de Wetering 91

Remark 4.2. For simplicity, in Theorem 4.1 we took the meaning of “transversal” to be “consisting
of single-qubit operations”. However, there is a more general notion of transversality that classifies
operations e.g. between two or more copies of a code. For instance, if a CSS code is the tensor product of
two identical CSS codes, then implementing pairwise CNOT gates between the corresponding qubits of
the two codes will implement a logical transversal CNOT. This kind of operation is still called transversal
because each CNOT gate only involves a single qubit in each copy of the code, i.e. in each code block.
If our code actually consists of b distinct code blocks, we can accomodate this more general notion of
transversality by replacing the condition that the rows of P have Hamming weight 1 by a condition that
P can be factored across code blocks as P = (P1 P2 · · · Pb) where each of the Pi has rows of hamming
weight at most 1.

Note if we take P = I (corresponding to a single T gate on each physical qubit), then from any
triorthogonal matrix of the form:

M =

(
H 0
L S

)
we can read off a CSS code (L,S) with a transversal implementation of D†

H . Many notable CSS codes
with transversal gates can be seen as instances of this construction. For the examples below we write
RM(k,n) for the Reed-Muller code space of polynomials on n variables of degree at most k.
Example 4.3. The degree-1 monomial x1 ∈ RM(1,5) gives the following triorthogonal matrix:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

T

The matrices (L,S) on the right define a [[15,1,3]] quantum Reed-Muller code. Reading H from the
top-left, we see that it has a transversal implementation of T †. This property is used as the basis of the
original 15-to-1 magic state distillation protocol given by Bravyi and Kitaev [8].
Example 4.4. The constant polynomial 1 ∈ RM(0,4) gives us a triorthogonal matrix whose columns are
all the 4-bitstrings. If we partition the matrix as follows:

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

T

then (L,S) defines the X-logical operators and X-stabiliers of an [[8,3,2]] colour code, dubbed the “small-
est interesting colour code” [9]. In the upper left, we see the phase gadgets of a CCZ gate as in equation (4),
hence this code admits a transversal CCZ† = CCZ.

While Theorem 4.1 gives a complete characterisation for the transversal gates in a CSS code, it is not
obvious from the statement whether it can be used to efficiently find such gates. However, following a
technique similar to [28], this is in fact possible. In fact, there are three related problems: (1) for fixed
logical H find transversal gates P, (2) for fixed P find H, and (3) compute a generating set of all logical
gates and their associated transversal implementations. All three of these problems can be posed as a
system of linear equations over Z8, which as noted in [28], can be solved in polynomial time using the
Howell normal form of a matrix over a ring. We sketch this procedure in Appendix B.

92 Scalable spider nests

5 Conclusion

We have shown that spider-nest identities can be captured directly in terms of their associated triorthogonal
matrices using the scalable ZX-calculus. Combining this fact with the graphical encoders for CSS codes
introduced in [18] gives us a succinct and easy to digest characterisation for the set of transversal logical
gates in D3 supported by a CSS code. The results we have shown here can be straightforwardly extended
up the diagonal Clifford hierarchy, from D3 to Dℓ. To do this, we can generalise the inductive family sn

in Definition 2.1 to s(ℓ)n , whose base case s(ℓ)0 has a π/2ℓ−1 phase. Then the analogue to the S4 equation is
that s(ℓ)ℓ+1 separates. Interestingly, if we assume this equation for any fixed ℓ, it automatically follows for
any ℓ′ ≤ ℓ. The rest of the proof goes through by noting that Theorem 3.2 generalises from triorthogonal
to ℓ-orthogonal matrices and degree n− ℓ−1 polynomials. Hence, we can prove all spider nest identities
up the ℓ-th level of the Clifford hierarchy just by adding one rule. However, it seems that proving spider
nests at all levels of the Clifford hierarchy still requires infinitely many rules. Note that this argument
also holds for D2, so that we also characterise all the transversal diagonal Clifford unitaries. The proofs
then don’t require any additional spider-nest identity since the calculus is already complete for Cliffords.

Natural next steps are looking at non-diagonal transversal gates or non-CSS stabiliser codes. The
story for diagonal gates in general stabiliser codes is relatively straightforward, given any stabiliser
encoder can be decomposed into a CSS part and a diagonal part (cf. [28], Appendix C). There seems
to be a nice graphical story there as well, relating to normal forms of Clifford ZX-diagrams, but we
leave this, along with further explorations of the graphical structure of non-CSS codes, as future work. It
also remains an open question whether Clifford+S4 (or Clifford+Sℓ) rules can be extended naturally to a
complete set of equations for the appropriate class of ZX-diagrams. While other complete axiomatisations
exist, constructing the rules this way could provide new insights into working effectively with quantum
computations at higher levels of the Clifford hierarchy.

References

[1] Matthew Amy, Jianxin Chen & Neil J. Ross (2018): A Finite Presentation of CNOT-Dihedral Operators. In
Bob Coecke & Aleks Kissinger, editors: Proceedings 14th International Conference on Quantum Physics and
Logic, Nijmegen, The Netherlands, 3-7 July 2017, Electronic Proceedings in Theoretical Computer Science
266, Open Publishing Association, pp. 84–97, doi:10.4204/EPTCS.266.5.

[2] Matthew Amy & Michele Mosca (2019): T-count optimization and Reed-Muller codes. Transactions
on Information Theory, doi:10.1109/TIT.2019.2906374. Available at https://ieeexplore.ieee.org/
document/8672175.

[3] Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of
Physics 16(9), p. 093021, doi:10.1088/1367-2630/16/9/093021.

[4] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and Effective Techniques for T-Count
Reduction via Spider Nest Identities. In Steven T. Flammia, editor: 15th Conference on the Theory of
Quantum Computation, Communication and Cryptography (TQC 2020), Leibniz International Proceedings
in Informatics (LIPIcs) 158, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp.
11:1–11:23, doi:10.4230/LIPIcs.TQC.2020.11.

[5] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Techniques to Reduce π/4-Parity-Phase Circuits,
Motivated by the ZX Calculus. In Bob Coecke & Matthew Leifer, editors: Proceedings 16th International
Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June 2019,
Electronic Proceedings in Theoretical Computer Science 318, Open Publishing Association, pp. 131–149,
doi:10.4204/EPTCS.318.9.

https://doi.org/10.4204/EPTCS.266.5
https://doi.org/10.1109/TIT.2019.2906374
https://ieeexplore.ieee.org/document/8672175
https://ieeexplore.ieee.org/document/8672175
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.4230/LIPIcs.TQC.2020.11
https://doi.org/10.4204/EPTCS.318.9

A. Kissinger & J. van de Wetering 93

[6] Coen Borghans (2019): ZX-calculus and quantum stabilizer theory. Master’s thesis, Radboud University.

[7] Sergey Bravyi & Jeongwan Haah (2012): Magic-state distillation with low overhead. Physical Review A
86(5), p. 052329, doi:10.1103/PhysRevA.86.052329.

[8] Sergey Bravyi & Alexei Kitaev (2005): Universal quantum computation with ideal Clifford gates and noisy
ancillas. Physical Review A 71(2), p. 022316, doi:10.1103/PhysRevA.71.022316.

[9] Earl Campbell: The smallest interesting colour code. https://earltcampbell.com/2016/09/26/
the-smallest-interesting-colour-code/.

[10] Earl T Campbell & Mark Howard (2017): Unified framework for magic state distillation and multiqubit gate
synthesis with reduced resource cost. Physical Review A 95(2), p. 022316, doi:10.1103/PhysRevA.95.022316.

[11] Titouan Carette, Dominic Horsman & Simon Perdrix (2019): SZX-Calculus: Scalable Graphical Quantum
Reasoning. In Peter Rossmanith, Pinar Heggernes & Joost-Pieter Katoen, editors: 44th International Sympo-
sium on Mathematical Foundations of Computer Science (MFCS 2019), Leibniz International Proceedings in
Informatics (LIPIcs) 138, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, pp. 55:1–
55:15, doi:10.4230/LIPIcs.MFCS.2019.55. Available at http://drops.dagstuhl.de/opus/volltexte/
2019/10999.

[12] Bob Coecke & Ross Duncan (2008): Interacting quantum observables. In: Proceedings of the 37th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,
doi:10.1007/978-3-540-70583-3_25.

[13] Bob Coecke & Ross Duncan (2011): Interacting quantum observables: categorical algebra and diagrammat-
ics. New Journal of Physics 13, p. 043016, doi:10.1088/1367-2630/13/4/043016.

[14] Bob Coecke & Quanlong Wang (2018): ZX-rules for 2-qubit Clifford+ T quantum circuits. In: International
Conference on Reversible Computation, Springer, pp. 144–161, doi:10.1007/978-3-319-99498-7_10.

[15] Shawn X. Cui, Daniel Gottesman & Anirudh Krishna (2017): Diagonal gates in the Clifford hierarchy.
Physical Review A 95(1), p. 012329, doi:10.1103/PhysRevA.95.012329.

[16] Luke E Heyfron & Earl T Campbell (2018): An efficient quantum compiler that reduces T count. Quantum
Science and Technology 4(015004), doi:10.1088/2058-9565/aad604.

[17] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2020): Completeness of the ZX-Calculus. Logical
Methods in Computer Science, doi:10.23638/LMCS-16(2:11)2020.

[18] Aleks Kissinger (2022): Phase-free ZX diagrams are CSS codes (... or how to graphically grok the surface
code). arXiv preprint arXiv:2204.14038, doi:10.48550/arXiv.2204.14038.

[19] Aleks Kissinger & John van de Wetering (2020): Reducing the number of non-Clifford gates in quantum
circuits. Physical Review A 102, p. 022406, doi:10.1103/PhysRevA.102.022406.

[20] Daniel Litinski (2019): A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery.
Quantum 3, p. 128, doi:10.22331/q-2019-03-05-128.

[21] Anthony Munson, Bob Coecke & Quanlong Wang (2021): AND-gates in ZX-calculus: Spider Nest Identities
and QBC-completeness. In Benoît Valiron, Shane Mansfield, Pablo Arrighi & Prakash Panangaden, editors:
Proceedings 17th International Conference on Quantum Physics and Logic, Paris, France, June 2 - 6, 2020,
Electronic Proceedings in Theoretical Computer Science 340, Open Publishing Association, pp. 230–255,
doi:10.4204/EPTCS.340.12.

[22] Sepehr Nezami & Jeongwan Haah (2022): Classification of small triorthogonal codes. Physical Review A
106(1), p. 012437, doi:10.1103/PhysRevA.106.012437.

[23] Kang Feng Ng & Quanlong Wang (2017): A universal completion of the ZX-calculus. Preprint,
doi:10.48550/arXiv.1706.09877. arXiv:1706.09877.

[24] Simon Perdrix & Quanlong Wang (2016): Supplementarity is Necessary for Quantum Diagram Rea-
soning. In: 41st International Symposium on Mathematical Foundations of Computer Science (MFCS
2016), Leibniz International Proceedings in Informatics (LIPIcs) 58, Krakow, Poland, pp. 76:1–76:14,
doi:10.4230/LIPIcs.MFCS.2016.76.

https://doi.org/10.1103/PhysRevA.86.052329
https://doi.org/10.1103/PhysRevA.71.022316
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://earltcampbell.com/2016/09/26/the-smallest-interesting-colour-code/
https://doi.org/10.1103/PhysRevA.95.022316
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
http://drops.dagstuhl.de/opus/volltexte/2019/10999
http://drops.dagstuhl.de/opus/volltexte/2019/10999
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1007/978-3-319-99498-7_10
https://doi.org/10.1103/PhysRevA.95.012329
https://doi.org/10.1088/2058-9565/aad604
https://doi.org/10.23638/LMCS-16(2:11)2020
https://doi.org/10.48550/arXiv.2204.14038
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.22331/q-2019-03-05-128
https://doi.org/10.4204/EPTCS.340.12
https://doi.org/10.1103/PhysRevA.106.012437
https://doi.org/10.48550/arXiv.1706.09877
https://arxiv.org/abs/1706.09877
https://doi.org/10.4230/LIPIcs.MFCS.2016.76

94 Scalable spider nests

[25] Narayanan Rengaswamy, Robert Calderbank, Michael Newman & Henry D Pfister (2020): On optimality
of CSS codes for transversal T. IEEE Journal on Selected Areas in Information Theory 1(2), pp. 499–514,
doi:10.1109/JSAIT.2020.3012914.

[26] Francisco JR Ruiz, Tuomas Laakkonen, Johannes Bausch, Matej Balog, Mohammadamin Barekatain, Fran-
cisco JH Heras, Alexander Novikov, Nathan Fitzpatrick, Bernardino Romera-Paredes, John van de We-
tering et al. (2024): Quantum Circuit Optimization with AlphaTensor. arXiv preprint arXiv:2402.14396,
doi:10.48550/arXiv.2402.14396.

[27] Christophe Vuillot & Nikolas P Breuckmann (2022): Quantum pin codes. IEEE Transactions on Information
Theory 68(9), pp. 5955–5974, doi:10.1109/TIT.2022.3170846.

[28] Mark A Webster, Armanda O Quintavalle & Stephen D Bartlett (2023): Transversal diagonal logical operators
for stabiliser codes. New Journal of Physics 25(10), p. 103018, doi:10.1088/1367-2630/acfc5f.

[29] John van de Wetering, Richie Yeung, Tuomas Laakkonen & Aleks Kissinger (2024): Optimal compilation of
parametrised quantum circuits. arXiv preprint arXiv:2401.12877, doi:10.48550/arXiv.2401.12877.

A Indicator polynomials for triorthogonal matrices

Since it is possible to represent arbitrary functions as polynomials, we can think of a polynomial P in n
variables as a vector [P] in F2n

2 where [P]⃗b = P(⃗b). By restricting to polynomials of a fixed degree r, we
obtain certain subspaces called Reed-Muller codes.

Definition A.1. The Reed-Muller code RM(r,m) is the linear subspace of F2m

2 consisting of vectors of
the form [P] for some polynomial P ∈ F2[x1, . . . ,xm] of degree ≤ r.

A classic property of Reed-Muller codes is their orthocomplements are also Reed-Muller codes. This
fact will help establish a correspondence with triorthogonal matrices.

Theorem A.2. For any r < m, RM(r,m)⊥ = RM(m− r−1,m).

Proof. First, we note that if a polynomial P of m variables has degree < m, then ∑⃗b P(⃗b) = 0 (mod 2).
This is easy to check for monomials, as any monomial of degree < m must omit some variable x j, hence

∑
b⃗

P(⃗b) = ∑
b⃗,b j=0

P(⃗b)+ ∑
b⃗,b j=1

P(⃗b) = 0 (mod 2)

The result holds for all polynomials by F2-linearity of the map [P] 7→ ∑⃗b P(⃗b) (mod 2). Now, for any
polynomial P of degree at most r and Q of degree at most m− r−1, PQ has degree at most m−1. Hence
[P] · [Q] = ∑⃗b PQ(⃗b) = 0 (mod 2). This implies RM(m− r−1,m)⊆ RM(r,m)⊥. Since RM(r,m) has the
monomials as its basis, dim(RM(r,m)) = ∑

r
d=0
(m

d

)
. By manipulating binomial coefficients, we can see

that:
dim(RM(r,m))+dim(RM(m− r−1,m))

=
r

∑
d=0

(
m
d

)
+

m−r−1

∑
d=0

(
m
d

)
=

r

∑
d=0

(
m
d

)
+

m

∑
d=r+1

(
m
d

)
= 2m = dim(F2m

2)

so RM(m− r−1,m) = RM(r,m)⊥.

This enables us to show that semi-triorthogonal matrices are closely related to Reed-Muller codes.
We give a proof here similar to the one given for unital triorthogonal spaces by Nezami and Haah [22].

Theorem A.3. A matrix M with n columns is semi-triorthogonal if and only if its indicator polynomial
PM is of degree at most n−4.

https://doi.org/10.1109/JSAIT.2020.3012914
https://doi.org/10.48550/arXiv.2402.14396
https://doi.org/10.1109/TIT.2022.3170846
https://doi.org/10.1088/1367-2630/acfc5f
https://doi.org/10.48550/arXiv.2401.12877

A. Kissinger & J. van de Wetering 95

Proof. Let M′ be a matrix obtained from M by removing all repeated pairs of rows. M is semi-
triorthogonal if and only if M′ is, and both matrices have the same indicator polynomial. Hence, we
can assume without loss of generality that M has no repeated rows.

Now, let M have indicator polynomial P = PM. Then Q = x jP is a polynomial with the property that
Q(⃗b) = 1 if and only if b j = 1 and P(⃗b) = 1, hence ∑⃗b Q(⃗b) is equal to the Hamming weight of the j-th
column of M. This also works for products of columns: for R = xix jxkP, ∑⃗b R(⃗b) is equal to the Hamming
weight of the element-wise product of the i, j and k-th rows. Noting that ∑⃗b R(⃗b) (mod 2) = [xix jxk] · [P],
where · is the dot-product of vectors in F2n

2 , we see that [P] must be orthogonal to all degree-3 monomials
[xix jxk]. Since the latter span RM(3,n), P ∈ RM(3,n)⊥, so by Theorem A.2 P ∈ RM(n−4,n).

B Computing transversal logical operations efficiently

Following a technique similar to [28], we will show that for fixed (L,S) defining a CSS code, we can
efficiently calculate matrices H and P making:

M =

(
H 0
PL PS

)
triorthogonal.

To see this, first note that we can span the space of all logical operators D†
H using phase gadgets

of degree at most 3, as larger phase gadgets can always be decomposed using spider nest identities [1].
Hence, we can replace H with QK, where Q is a matrix whose rows all have Hamming weight 1, and K
has O(k3) rows consisting of all bitstrings of Hamming weight ≤ 3. Thus M becomes:

M =

(
QK 0
PL PS

)
Since the order of rows in M is not relevant, the only function of P and Q is to fix the multiplicity of

rows in the matrix:

N =

(
K 0
L S

)
Suppose N is an m×n matrix. Form a new matrix N̂ over Z8 whose columns are labelled by the rows of
N and whose rows are labelled by all sets of at most 3 columns of N. Then let:

N̂S,i =

{
2|S|−1 if ∀ j ∈ S.Ni, j = 1
0 otherwise

In other words, the i-th column of M corresponds to the inverse Fourier transform of the j-th row of
N. Our goal is to find multiplicities for the rows of N such that the sum of the inverse Fourier transform
of each phase gadget adds to 0 (mod 8) on all sets of 1, 2, or 3 qubits. In other words, we should find a
multiplicity vector m⃗ ∈ Zm

8 such that N̂m⃗ = 000.
Given a multiplicity vector m⃗, we can make N into a triorthogonal matrix M by repacing each row

i with m⃗i copies of that row. The set of all multiplicity vectors making N into a triorthogonal matrix is
therefore the kernel of N̂.

As noted in [28], we can find a generating set for the kernel of a Z8 matrix in polynomial time using
its Howell normal form. Similarly, we can fix multiplicities of the upper or lower half of the matrix and
obtain an associated inhomogeneous system of equations, which can also be solved in polynomial time.

A. Díaz-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 96–116, doi:10.4204/EPTCS.406.5

© K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller
This work is licensed under the
Creative Commons Attribution License.

Multi-controlled Phase Gate Synthesis with ZX-calculus
applied to Neutral Atom Hardware

Korbinian Staudacher1∗ Ludwig Schmid2 Johannes Zeiher3,4,5

Robert Wille2,6 Dieter Kranzlmüller1,7

∗Korbinian.Staudacher@nm.ifi.lmu.de
1MNM-Team, Ludwig-Maximilians-Universität München, 80538 Munich, Germany

2Chair for Design Automation, Technical University of Munich, 80333 Munich, Germany
3Fakultät für Physik, Ludwig-Maximilians-Universität München, 80799 Munich, Germany

4Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
5Munich Center for Quantum Science and Technology (MCQST), 80799 Munich, Germany

6Software Competence Center Hagenberg GmbH (SCCH), 4232 Hagenberg im Mühlkreis, Austria
7Leibniz Supercomputing Centre (LRZ), 85748 Garching, Germany

Quantum circuit synthesis describes the process of converting arbitrary unitary operations into a gate
sequence of a fixed universal gate set, usually defined by the operations native to a given hardware
platform. Most current synthesis algorithms are designed to synthesize towards a set of single-qubit
rotations and an additional entangling two-qubit gate, such as CX, CZ, or the Mølmer–Sørensen gate.
However, with the emergence of neutral atom-based hardware and their native support for gates with
more than two qubits, synthesis approaches tailored to these new gate sets become necessary. In this
work, we present an approach to synthesize (multi-) controlled phase gates using ZX-calculus. By
representing quantum circuits as graph-like ZX-diagrams, one can utilize the distinct graph structure
of diagonal gates to identify multi-controlled phase gates inherently present in some quantum circuits
even if none were explicitly defined in the original circuit. We evaluate the approach on a wide
range of benchmark circuits and compare them to the standard Qiskit synthesis regarding its circuit
execution time for neutral atom-based hardware with native support of multi-controlled gates. Our
results show possible advantages for current state-of-the-art hardware and represent the first exact
synthesis algorithm supporting arbitrary-sized multi-controlled phase gates.

1 Introduction

Compiling and optimizing quantum algorithms towards hardware-specific constraints is indispensable
to efficiently use currently available noisy quantum hardware with limited gate fidelities and coherence
times. An important step of the compilation process is quantum circuit synthesis, converting arbitrary
unitary operations to gate sequences natively supported by the hardware. State-of-the-art synthesis algo-
rithms, such as [25,47], are often focused on a superconducting hardware setting and synthesize towards
singular two-qubit gates, e.g., CX, and single-qubit gates. Such synthesis algorithms are less preferable
for other hardware architectures, for instance, when gates acting on three or more qubits can be executed
natively without decomposition, resulting in a reduced execution cost.
In this work, we propose an approach to synthesize quantum circuits towards single qubit gates and
arbitrary-sized multi-controlled phase gates CnP(ϕ). To this end, we make use of the representation of a
quantum circuit as a graph-like ZX-diagram where we can use powerful rewrite rules of the ZX-calculus
to simplify diagrammatic structures [15]. This approach has shown to be a useful tool for tasks like
hardware-agnostic circuit optimization or equivalence checking [23, 39, 49]. We show that CnP(ϕ) have
a distinct representation in graph-like ZX-diagrams as a combination of so-called phase gadgets, which
occur naturally in the diagrams when using a simplification strategy proposed in [23]. By modifying an

http://dx.doi.org/10.4204/EPTCS.406.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 97

existing extraction algorithm from [4] to translate graph-like diagrams back to quantum circuits, we can
specifically optimize towards extracting phase gadget combinations corresponding to CnP(ϕ) gates.
The benefit and potential of the resulting approach are shown by synthesizing gate functionality for the
recently emerging neutral atoms platforms [17, 20, 32, 41–44]. Besides dynamic connectivity with atom
rearrangements [7, 8, 46] and favorable properties regarding scalability and large-scale control [6, 8, 19,
35,38], this technology offers native support for multi-controlled gates such as CnP, and CZn [12,14,16,
21, 22, 34]. We integrate our extraction scheme into a full gate synthesis and optimization process and
compare total execution times on hardware against Qiskit synthesis routines, considering current state-
of-the-art parameters. Our results show promising advantages in the form of reduced execution times on
different benchmark circuits.
The paper is structured as follows: In the first part, we give a basic introduction to ZX-calculus, including
graph-like ZX-diagram simplification, and show how multi-controlled phase gates can be identified and
extracted from the diagrams. In the second part, we focus on the application of the proposed approach to
neutral-atom-specific gate synthesis and discuss its effect on the execution time.

2 Related work

So far, algorithms supporting the synthesis of gates acting on more than two qubits are mostly centered
around the generation of Toffoli gates. Ref. [18] introduces a synthesis algorithm for classical logic re-
versible functions using multi-control Toffoli gates and there exist algorithms for synthesizing towards
universal Toffoli gate sets [3], even with optimal numbers of Toffoli gates [33]. The synthesis of multi-
controlled phase gates is less studied. Ref. [57] proposes an optimal synthesis algorithm, but restricted to
diagonal unitaries as an input. For universal circuits, a recent framework for neutral atom systems [37] is
able to synthesize circuits with CCZ gates. However, the synthesis process is based on non-exact numer-
ical optimization procedures and does not consider more than three-qubit gates or arbitrary rotations.

3 Preliminaries

In this section we introduce the ZX-calculus fundamentals and describe how graph-like diagrams can be
simplified and extracted to quantum circuits, which represents the basis of our synthesis approach. We
only give a brief overview of ZX-calculus, for a more detailed introduction we refer to [13, 15, 56].

3.1 ZX-calculus

ZX-calculus is a diagrammatic language for reasoning about linear maps in quantum computing where
nodes (spiders) and edges (wires) form an undirected graph called ZX-diagram. There are two types
of spiders: The green Z-spiders and the red X-spiders. Spiders can be parametrized with an angle
α ∈ [0,2π) and correspond to two-dimensional matrices in Hilbert space:

α
...

... α
...

...
:= |0⟩⊗m⟨0|⊗n

+eiα |1⟩⊗m⟨1|⊗n
:= |+⟩⊗m⟨+|⊗n

+eiα |−⟩⊗m⟨−|⊗nm n m n :=
(

1 0
0 1

)
:= 1√

2

(
1 1
1 −1

)

Spiders can have any number of ingoing and outgoing wires and we can compose two diagrams either
horizontally by joining the outputs of one diagram with the inputs of the other (denoted by ◦), or vertically
by placing them side by side (denoted by ⊗). This corresponds to the known dot and tensor product in
Hilbert space. For convenience, we distinguish between two types of wires: Normal wires, representing

98 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

H

H

Rz(−γ)

Rz(−δ)

H

H

X

X H + H

X

X

H

H

|0⟩
|0⟩

γ

δ

π

π

π

π

γ +π

δ +π

π

π

Figure 1: Translation of a two-qubit Grover search into a graph like ZX-diagram. Gates are replaced by
their ZX-calculus counterpart and the diagram is made graph-like by repeated application of (f) and (h).

the identity, and Hadamard wires, representing the Hadamard matrix. Wires entering the diagram from
the left are called input wires, with the adjacent spiders defined as inputs I, and wires exiting to the right
are called output wires, with adjacent spiders defined as outputs O. We refer to the set of spiders v ∈ I∪O
as boundary spiders and the complementary set of spiders v ∈ V \ (I ∪O) as the interior spiders. The
complements of the inputs and the outputs are defined as I = V \ I and O = V \O respectively. We can
write any quantum circuit as ZX-diagram by replacing gates with equivalent diagrams and use rules from
ZX-calculus to modify them without changing the linear map. For instance, the following rules hold:

=
...

α

β...
...

...
...

... α +β
... α

. . .

. . .

. . .

. . .

= α

(f) (h)

The fusion rule (f) allows to merge spiders of the same color together if they are connected by at least
one normal wire and (h) allows to change the colors of spiders by flipping normal and Hadamard wires.
All rules hold in both directions and are also valid with interchanged colors, so we can also split up
spiders with (f). There exists a complete graphical rule set for transforming ZX-diagrams [53].

3.1.1 Graph-like diagrams

In this work, we consider the class of graph-like ZX-diagrams as introduced in [15], which allow us to
represent any quantum computation as a graph of parametrized green Z-spiders and Hadamard wires.
In those diagrams we represent Hadamard wires between spiders as dashed blue line instead of the
yellow box for easier visualization. One can transform any ZX-diagram into an equivalent graph-like
ZX-diagram by repeatedly applying standard ZX-rules [15] (c.f. Figure 1). This formalism provides
a link between quantum computing and graph theory since the entire computation is captured by the
underlying graph spanned by Hadamard wires, combined with phases of Z-spiders. Moreover, graph-
like diagrams can be directly interpreted as measurement patterns in the model of measurement-based
quantum computing (MBQC) [4, 10].

3.1.2 Diagram simplification

We can rewrite graph-like diagrams into equivalent simplified versions (i.e., decreasing the number of
spiders or wires), by using graph-theoretic rewrite rules as shown in [15]:

Local complementation Given an undirected graph G, local complementation on a vertex v (written
G ⋆ v) consists of flipping the edges between the neighbors of v. That is, after local complementation,
every pair of neighbors of v is connected iff it was not connected before. In graph-like ZX-diagrams, we
can use a rewrite rule based on local complementation (lc) to eliminate spiders with a phase of ±π

2 :

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 99

=

αn

αn−1

± π

2

α2

α1
αn ∓ π

2

αn−1 ∓ π

2α2 ∓ π

2

α1 ∓ π

2

. . .
.

. . .

. . .

. . .

.

.

(lc)

Pivoting A Pivot G∧ uv consists of three local complementations (G ⋆ u ⋆ v ⋆ u) applied on a pair of
neighboring vertices u,v. We can use a similar rewrite rule (p) in graph-like ZX-diagrams to eliminate
pairs of spiders with phase 0 or π:

=
γn

γ1kπjπ

β1

βn
αn

α1 . . .

. . .

. . .

.

. . .

...
... γ ′n

γ ′1

β ′
1

β ′
n

α ′
n

α ′
1

. . .

. . .

. . .

.

. . .

...
...

...

...
β ′

i = βi +(j+ k+1)π
α ′

i = αi + kπ

γ ′i = γi + jπ

(p)

By repeatedly applying those rules one can eliminate all interior spiders with phase ±π

2 and every pair
of interior spiders with phase 0 or π [15].

Phase gadgets One can further simplify ZX-diagrams with a slightly modified version of the pivot rule
if we allow one spider of a pair to have a non-Clifford phase σ [23]. The non-Clifford spider does not
get removed but is transformed into a so called phase gadget:

=
γn

γ1
σjπ

β1

βn

αn

α1
...

...
γ ′n

γ ′1

β ′
1

β ′
n

α ′
n

α ′
1 ...
...

...

(−1) jσ

(p)

...

β ′
i = βi +(j+ k+1)π

α ′
i = αi + kπ

γ ′i = γi + jπ

.

.

. . .

. . .
. . .

. . .
.

In graph-like ZX-diagrams a phase gadget consists of a “top” spider exclusively connected to a phaseless
“root” spider connected to other spiders. Simplifying graph-like diagrams with all three rules, we obtain
a diagram where spiders either have a non-Clifford phase, are part of a phase gadget or a boundary.

3.1.3 Gflow in graph-like diagrams

Gflow is a graph-theoretic property for measurement patterns defined on labeled open graphs (G, I,O,λ),
where G = (V,E) is an undirected graph with vertices V and edges E, I ⊆V , O ⊆V are the set of inputs
resp. outputs, and λ is a labeling function assigning each vertex a measurement plane of the Bloch sphere
in {XY,XZ,Y Z} [11]. A labeled open graph has gflow if there exists a map g : O → P(I) and a partial
order ≺ over V , s.t. for all v ∈ O:

• If w ∈ g(v) and v ̸= w, then v ≺ w.

• If w ∈ Odd(g(v)) and v ̸= w, then v ≺ w.

• If λ (v) = XY , then v /∈ g(v) and v ∈ Odd(g(v)).

• If λ (v) = XZ, then v ∈ g(v) and v ∈ Odd(g(v)).

100 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

• If λ (v) = Y Z, then v ∈ g(v) and v /∈ Odd(g(v)).
In graph-like diagrams, we interpret the underlying graph as a labeled open graph with phase gadgets
corresponding to Y Z measurements1 and other spiders corresponding to XY measurements [4]. Since the
initial graph-like diagrams obtained from quantum circuits (as in Figure 1) have gflow [15] and all above
rules preserve gflow [4], the simplified diagrams have gflow as well.

3.1.4 Circuit extraction

Extracting quantum circuits back from graph-like ZX-diagrams where the circuit has only as many qubits
as there are outputs/inputs, is so far only possible in polynomial time if the underlying graph has some
kind of flow [4, 48]. Here, we give a brief overview of the extraction algorithm for graph-like ZX-
diagrams with gflow as described in [4]. The algorithm extracts a quantum circuit from a ZX-diagram by
taking suitable parts of the diagram and creating their equivalent representation as a quantum gate within
the circuit at the corresponding position. These parts are then removed from the diagram, extracting one
gate at a time, until only the inputs and outputs of the diagram remain. During the process, a set of
green Z-spiders called the frontier separates the extracted part of the diagram from the unextracted part.
Phases of frontier spiders can be directly extracted as Rz gates, and Hadamard wires between frontier
spiders as CZ gates. Furthermore, Hadamard wires where a frontier spider w is exclusively connected to
a non-frontier spider v can be extracted as Hadamard gates with v replacing w in the frontier:

3π

2

π

2

π

4

3π

4

π

8
3π

2

π

2

3π

4

H Rz(
π

8)

Rz(
π

4)=

If every spider in the frontier has at least two non-frontier neighbors we can add wires of a frontier spider
to the wires of another one by placing a CX gate on the extracted circuit. If all neighbors are measured in
the XY plane, gflow ensures that there exists a combination of additions so that there remains a frontier
spider with only a single neighbor. We can obtain such a combination by applying Gaussian elimination
on the biadjacency matrix between the frontier vertices and their neighbors. Otherwise, if there are YZ-
measured neighbors, we can transform them into XY measurements by applying a pivot on the neighbor
and a connected frontier spider:

3π

2

π

2

3π

4

3π

2

π

2

3π

4
= +

+3π

2

π

2

3π

4
= +

3π

2

π

2

=

3π

4

H H H

By repeating these procedures, we can transform the entire diagram into a quantum circuit.

4 Extracting controlled phase gates from graph-like ZX-diagrams

The process of transforming quantum circuits to graph-like ZX-diagrams, simplifying them, and re-
extracting circuits can already be seen as an implicit synthesis algorithm to the gate set {Rz,H,CZ,CX}.

1The root spider is labeled as Y Z measurement, while the top spider corresponds to a measurement effect which is omitted
from the underlying graph.

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 101

Given the requirements of neutral atom platforms, it may be desirable to incorporate two- and multi-
controlled phase gates of arbitrary rotations into this gate set. We first show how such gates are repre-
sented in graph-like ZX-diagrams, then how we incorporate this finding into the extraction algorithm.

4.1 Graph-like representation of controlled phase gates

The (multi-) controlled phase gate is a diagonal gate, meaning all non-zero entries of its corresponding
matrix in the Z-basis are on its diagonal. Such gates can be represented as a semi-Boolean function
f : {0,1}n → C which assigns a complex number to each basis state. Ref. [26] shows, that any semi-
Boolean function f (b) = ab with ab ∈ C and b ∈ Bn can be expressed in ZX-calculus as follows:

αc

c

. . .

. . .

. . .
c ∈ Bn with

ci = if ci = 1, and

ci = if ci = 0
αc =

−1
2n−1 ∑b∈Bn f (b)χ(b,c) (1)

The part in the dashed box is repeated for every Boolean vector c in Bn and the grey box decomposes into
n subdiagrams either connecting the corresponding lower and upper wire with a normal wire if the i-th
element of the Boolean vector is 1, or disconnecting them if it is 0. Further, the phase αc can be obtained
by the formula on the right, where χ(b,c) = (−1)b·c corresponds to a parity function with · being the
inner product: If b and c overlap in an odd number of elements it returns -1, else 1. This rule yields a
combination of phase gadgets, and when applying the color change rule on the middle red spider, we
obtain the same graph structures as introduced in the previous section. To model an n-controlled phase
gate CnP(ϕ) as a semi-Boolean function, we take α as an all-zero vector of length 2n except for its last
entry being ϕ . Following Equation (1), one can transform the function to a ZX-diagram which has 2n−1
phase gadgets split up into

(k
n

)
phase gadgets for k ∈ {1, . . .n}. For instance, the two and three-qubit-

controlled phase gates have the following representation:

α

α

−α

.= 2α (2)

α

α

α

−α

.=
4α

−α−αα

(3)

For arbitrary-sized multi-controlled phase gates, this generalizes to the following theorem:
Theorem 1 (Multi-controlled phase gates). Let

(S
k

)
denote the set of all k-combinations of a set S and

PG(α,N) denote a phase gadget with phase α connected to neighbors N which are empty Z-spiders. A
n-qubit controlled phase gate CnP(ϕ) is equivalent to a graph-like ZX-diagram with outputs O, |O|= n
having a phase of α and phase gadgets2

n

∏
k=2

∏
s∈(O

k)

PG((−1)k+1
α,s), α =

ϕ

2n−1

Proof. A graphical proof is given by the ZX representation of the diagonal gate and the corresponding
proof in [26], a combinatorial proof can be found in [2]. We give an alternative combinatorial proof
in Appendix B.

2Note, that the product notation here corresponds to the composition ◦ of ZX-diagrams.

102 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

4.2 Adaption of the extraction algorithm

We adapt the algorithm described in 3.1.4 by including an additional CnP gate extraction step between
CZ and Rz extraction. For that, we carry out a pattern match on the phase gadgets which are exclusively
connected to the outputs, i.e., the frontier. If we find a graph structure as described in Theorem 1 for n
frontier spiders, we take the phase of the gadget which is connected to all n spiders as the desired phase α

if n is odd, or −α if n is even, and adjust the phases of all other gadgets using the following two rewrites:

β

α

...
α

α

...=

... ... Rz(β −α)

(4)
=

β

α

α

...

±α

α

α

...

β ∓α

(5)

With Equation (4), we extract the unwanted part of an output phase as Rz gate, and with Equation (5), we
split up phase gadgets into a part with the desired phase and another gadget so that the sum of the phases
yields the original one. Both rewrites are sound in ZX-calculus: The first corresponds to an application
of the fusion rule as mentioned in Section 3 and the second is a reversed version of the gadget fusion rule
as shown in [23, Section D]. With adjusted phases, we extract the entire graph structure by removing it
from the diagram and placing a CnP(ϕ) gate with ϕ = α ·2n−1 on the circuit.
We can extend this procedure by also allowing the extraction of graph structures where some phase
gadgets required for a CnP extraction are missing in the diagram. Consider the following example,
where we are initially missing two 2-ary phase gadgets with −π

4 to complete a C2P(π) structure:

π
π

4

π

4

π

4 =

− π

4
π

4

π

4

π

4

π

4

− π

4
π

4

=

− π

4
π

4 − π

4
π

4
π

4
π

4

(6)

By adding pairs of phase gadgets with opposite phases corresponding to the identity, we complete the
required graph structure to extract the gate. Some inserted gadgets then remain in the diagram and are
extracted later. If we always take the gadget with the most neighbors, complete the diagram to match a
CnP gate, and extract it, every phase gadget will get extracted as part of a CnP gate at some point and we
can entirely omit Y Z spider eliminations via pivoting.

4.2.1 Preservation of gflow

For a complete translation of graph-like diagrams into quantum circuits, it is essential that all operations
preserve gflow on the diagram. The rewrites of Equations 3-7 essentially reduce to deletions and inser-
tions of phase gadgets, i.e., Y Z measurements, connected to only outputs. Since the original extraction
algorithm preserves gflow and it has been shown in [4, Lemma 3.4.] that the deletion of arbitrary Y Z
measurements preserves gflow, the same remains to be shown for the insertion case:

Lemma 1 (Insertion of Y Z measurements on outputs). Let (g,≺) be a gflow for (G, I,O,λ) and let W ⊆
O. Then (G′, I,O,λ ′), where G′ = (V ′,E ′) with V ′ =V ∪{x}, λ ′(x) = Y Z and E ′ = E ∪{(x,w)|w ∈W}
has a gflow.

Proof. We provide the detailed proof in Appendix A.

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 103

4.2.2 Time complexity

The time complexity of the proposed approach in terms of elementary graph operations depends on
whether we allow additional insertions of phase gadgets or not. Let k denote the number of spiders in a
diagram and n the number of outputs:

• If we do not allow additional insertions of phase gadgets, we have approximately the same runtime
as the original algorithm, namely O(n2k2 + k3) which is summed from the runtime for Gaussian
elimination O(n2k), pivoting Y Z measurements O(k2) and k steps in total [4]. Additionally, for our
approach, we have to split at most k phase gadgets at each step, which adds another O(nk) term to
the elementary graph operations. Yet, this term gets absorbed by the complexity of the Gaussian
elimination.

• If we allow phase gadget insertions to complete the graph structures corresponding to a CnP gate,
the complexity essentially becomes O(2n+1k). This is because, in the worst case, we would com-
plete structures where there is only a single phase gadget connected to all n outputs, and we need
to add 2 · 2n − n− 2 additional gadgets. We want to emphasize that this worst-case complexity is
unlikely to occur in practice. Yet, for larger circuits, it may be useful to limit the size of extractable
CnP gates to a constant.

5 Neutral Atom Circuit Synthesis

In the following, we want to apply the proposed extraction scheme to circuit synthesis for neutral atom
(NA)-based hardware due to their native support of CnP gates. Therefore, we briefly introduce the hard-
ware capabilities [44], embed our proposed scheme into a complete synthesis procedure, and evaluate
the effect of the CnP extraction regarding the circuit execution time in comparison to Qiskits internal
synthesis algorithm.

5.1 Neutral Atom Background

For NA-based quantum computers, qubit registers are realized by placing single atoms in optical dipole
traps created by laser beams, referred to as optical lattices or optical tweezers. While arbitrary atom
arrangements are possible, we assume a rectangular grid as illustrated in Figure 2. The qubit states
can be encoded in long-lived internal atomic states such as hyperfine or nuclear spin states. Commonly
employed atomic species include alkali or alkaline-earth(-like) atoms such as Rb and Sr, which provide
suitable internal states with long coherence times. Gates are realized with specific laser pulses on the
atoms using uniform global beams, with the possibility of addressing a whole register or individual
qubits [17,27]. Multi-qubit gates are based on the long-range interaction between close-by atoms excited
to high-lying Rydberg states [16, 21, 28, 32, 34, 41, 42]. There exist different protocols to realize both
single- and multi-qubit gates, and the preferred implementation depends on many parameters such as
the chosen atom species, the respective qubit encoding, and the experimental setup. In this work, we
focus on individually addressable CnP(ϕ) gates between neighboring atoms as a generalization of the
often implemented CZ gate, which can be realized by tuning the accumulated phase during the Rydberg
interaction to an arbitrary angle ϕ instead of π [28]. This might even result in improved gate times
and fidelity due to the shorter time of the atom spent in the Rydberg state [16]. Regarding single-qubit
gates, we assume a scheme between fast, individually addressable AC Stark shift beams, realizing local
Rz rotations and slow, globally addressing microwave pulses performing a rotation about an axis in the

104 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

(a) (b) (c)

(d)

Figure 2: Illustration of the neutral atom gate capabilities and the process of synthesizing and scheduling
quantum circuits to the hardware. (a) Native (multi-) controlled phase gates (CnP(ϕ)), here shown for
three qubits. (b) Global single-qubit rotations in the XY-plane. (c) Individually addressable Z-rotations
(Rz(γ)). (d) Synthesis to alternating single- and multi-qubit layers: First, the synthesis of multi-qubit
gates to CnP gates. Second, the synthesis and scheduling of single-qubit gates into global XY-rotations
and individually addressable Z-rotations according to the transversal decomposition of [36].

XY-plane for all qubits simultaneously. In particular, we assume the following gate definitions, where
single-qubit gates are equivalent to the ones from [36] with GR as global XY-rotations applied to all
n qubits, and Ŷ being the Pauli-Y matrix:

CnP(ϕ)≡ diag(1, . . . ,1, eiϕ), Rz(γ
±)≡ diag(e−iγ±/2,e−iγ±/2), GR(θmax)≡ exp

(
−i

θ

2

n

∑
i=1

Ŷi

)
(7)

In this setting, sets of arbitrary but simultaneous single-qubit gates on different qubits can be converted
into two global illuminations interleaved with single-qubit Z-rotations. On unused qubits, the two com-
plementary global rotations cancel out, effectively applying an identity operation. To convert single-qubit
gates to this setting, we consider the transversal decomposition scheme introduced in [36] which is op-
timal in terms of global pulse time. An illustration of the gate capabilities and how to synthesize the
respective single- and multi-qubit gates is shown in Figure 2.

5.2 Related Work

Recently, there has been a fast development of NA-specific compilation methods [5, 9, 30, 36, 37, 45,
51, 52, 54, 55] focusing almost exclusively on the mapping and scheduling tasks within the compila-
tion. The only exceptions are [36], proposing the single-qubit synthesis also used in this work, and the
Geyser framework [37] using numerical optimization to introduce additional CCZ gates. Nevertheless,
both neglect the capability of NAs to natively execute controlled gates with arbitrary phases and, further-
more, the ability to directly execute multi-controlled gates for more than one control qubit. Although
convenient, this neglects potentially shorter or simpler circuits using these specific capabilities of NAs.
Therefore, in the following, we evaluate five different synthesis schemes to compare the commonly used
naive synthesis algorithms with an NA-specific synthesis employing the ZX-approach of Section 4.2.

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 105

5.3 Evaluation Setup

The total gate synthesis process consists of the two steps illustrated in Figure 2: First, the synthesis
of the multi-qubit gates into CnP gates and arbitrary single-qubit rotations, and second, the synthesis
and scheduling of single-qubit gates into the alternating global vs. local scheme, resulting in the fully
synthesized circuit containing only gates from the native gate set of Equation (7). For the first step, we
consider the following five schemes:

1. Qiskit-default: Circuits are converted into the Qiskit-supported native gate set of {U3,CZ} using
the internal transpile function and setting the optimization level to three. This approach uses
Qiskit internal schemes to decompose gates with more than two-qubit gates.

2. No-decomp: The Qiskit decomposition introduces a large overhead that can be bypassed for NAs.
For better comparison, we propose this scheme which synthesizes to {U3,CnZ} by replacing all
(multi-) controlled gates by their CnZ} equivalent and using the Qiskit-default approach for the
single qubit gates.

3. ZX-default: The circuit is converted into a graph-like ZX diagram, and the default extraction
algorithm of PyZX [24] is used to recreate a circuit.

4. ZX-no-insert: Similar to the default but the extraction scheme from Section 4.2 is used to synthe-
size CnP gates.

5. ZX-with-insert: In addition to ZX-no-insert, we allow the insertion of additional phase gadgets,
resulting in possibly more and larger phase gate extractions.

Since the ZX extraction sometimes produces redundant gates, we additionally apply a basic gate cancel-
lation algorithm afterwards. In the second step, the transverse decomposition according to [36] is used
to synthesize the single qubit gates. In this scheme, θmax ≡ maxi θi is defined as the maximum of the first
Euler angle θi of any single qubit rotation in this layer. According to the discussion in [36], the total gate
execution time scales linearly in this angle with the maximal duration at θmax = π .
As for many single-qubit gates the actual moment of execution is not unique, it can be added to different
layers. We thus use an additional greedy optimization step, not performed in [36], to check the possible
positions of the single-qubit gates and assign them such as to minimize the overall θmax. In particular, a
gate with Euler angle θ is preferably assigned to a layer with θmax > θ , allowing the gate to be executed
without increasing the gate time. As evaluation metrics, we compute both simple gate counts and the
total circuit execution time T by scheduling the gates according to the illustration in Figure 2. We sum
individual gate times, where we assume the gate execution time increases linearly with the rotation angle
as follows:

T =
d

∑
i=0

|maxγ(Rz(γ), i)|
π

100ns + ∑
GR(θmax)

|θmax|
π

100µs + ∑
C1P(ϕ)

|ϕ|
π

100ns + ∑
CnP(ϕ),n>1

|ϕ|
π

400ns (8)

Here d denotes circuit depth, meaning we assume full parallel execution of the Rz if possible by taking
the maximum angle of each layer. Multi-qubit gates are assumed to be executed in a sequential way. The
gate times are 0.1µs for the Rz [46] and the CP(ϕ = π) gate [31]. For all higher-weight controlled phase
gates C≥2P we assume 0.4µs for ϕ = π . The dominating factor for circuit execution time are the slow
global illuminations GR with 100µs [46]. Therefore, our main aim to use the scheme of Section 4.2 is to
lower the number of global GR gates and, in this way, reduce to overall execution time.
For a comprehensive and rigorous evaluation, we chose circuits from three different benchmark collec-
tions, with their descriptions available online: QASM-Bench(small) [29] and MQT-Bench [40] contain

106 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

Table 1: Averaged reduction of execution time T relative to Qiskit-default. Negative percentages indicate
an increased execution time.

Circuits Qiskit No-decomp ZX-default ZX-no-insert ZX-with-insert

QASM-Bench [29] 1 35 0% 8% 2% 14% 26%
MQT-Bench [40] 2 11 0% 0% −44% −16% 26%
Feynman-Bench [1] 3 26 0% 63% −23% −16% 40%

1 https://github.com/pnnl/QASMBench 2 https://www.cda.cit.tum.de/mqtbench/ 3 https://github.com/meamy/feynman

various low-level benchmark circuits of different sizes and types with common quantum subroutines
and algorithms. Additionally, we also consider the Feynman-Bench [1] collection. Created for formal
methods, it contains different arithmetic circuits usually based on Toffoli gates.
The code used for the evaluations is available with an MIT license at Zenodo [50] allowing reproducibil-
ity and possible usage or integration into other compilation projects.

5.4 Results & Discussion

The five compilation schemes are evaluated on gate count and execution time T [ms] of the synthesized
circuits, together with the algorithm runtime r[s]. We first discuss time reduction averaged over all
circuits, summarized in Table 1, then, we highlight six examples shown in Table 2, which have been
selected to best illustrate different cases within the dataset. The full dataset with all raw data is available at
Zenodo [50]. On the QASM-Bench collection (1), the ZX-with-insert approach results in an average 26%
reduction of execution time compared to the Qiskit internal synthesis improving 23 of the 35 circuits.
Similar numbers result for the MQT-Bench (2) circuits with 26% reduction of execution time, improving
7 out of 11 circuits. For the Feynman benchmarks (3), results are mixed: While our scheme achieves
a 40% reduction compared to Qiskit, improving 24 of 26 circuits, the No-decomp scheme has an even
higher average reduction of execution time with 63%.
Considering the above part of Table 2 one can see how the synthesis approach described in this work is
capable of successfully synthesizing CnP gates. Since No-decomp just replaces multi-controlled gates by
their CnZ} equivalent, the corresponding column indicates the number of multi-controlled gates present
in the original circuit. In comparison, one can then see that while No-insert only resynthesizes a few of
the original gates, With-insert synthesizes more multi-qubit gates and is often able to create even higher-
dimensioned controlled gates. This higher-controlled gate synthesis appears very dominantly in dense
circuits such as qnn_10, corresponding to a quantum neural network circuit, but also in circuits that are
natively built on controlled phase gates such as HHL.
Due to the controlled gates, the proposed approach is capable of effectively reducing the number of slow
global GR gates in comparison to the regular ZX extraction scheme and Qiskit, which are not capable
of synthesizing multi-controlled gates. Generally, a lower number of GR gates also results in a shorter
circuit execution time with some exceptions, such as the hhl_n7, where the ZX synthesis has a longer
execution time than the No-decomp scheme, although the number of absolute GR pulses is lower. This
is likely due to an increased pulse time of the individual GR gates.
The ZX approaches do not perform well on circuits that already contain close to optimal multi-controlled
gates, for instance on circuits of the Feynman benchmark. Here, the approaches extract gates in a less
efficient way, resulting in a gate and time overhead. In such cases, replacing multi-controlled gates
without changing circuit structure as in the No-decomp scheme is the best option. This can also be seen
when comparing the number of GR gates for the two adder circuits to the No-decomp scheme, where

https://github.com/pnnl/QASMBench
https://www.cda.cit.tum.de/mqtbench/
https://github.com/meamy/feynman

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 107

Table 2: Evaluation results for six benchmarks, selected to illustrate both good and poor performance.
Numbers after the names indicate the corresponding benchmark collection. The first table shows gate
counts corresponding to the native gate set of Equation (7). The second table contains the total execution
time T [ms] and the synthesis algorithm runtime r[s] on a consumer notebook.

ZX Qiskit Own alternative
Default No-insert With-insert Default No-decomp

G
R

C
P

G
R

C
P

C
2P

G
R

C
P

C
2P

C
3P

C
4P

C
5P

G
R

C
P

G
R

C
P

C
2P

hhl_n7 (1) 448 296 362 241 - 306 207 42 29 6 - 356 196 356 196 -
qft_10 (2) 90 140 36 75 - 14 62 14 - - - 44 105 44 105 -
qnn_10 (2) 106 334 62 199 - 28 159 48 26 8 1 76 188 76 188 -
gf2^7_mult (3) 214 956 134 447 19 14 22 114 - - - 194 300 18 6 49
rc_adder_6 (3) 76 100 84 95 - 62 91 4 - - - 86 93 28 27 11
qcla_adder_10 (3) 128 331 138 462 1 24 153 121 - - - 74 233 18 29 34

ZX Qiskit Own alternative
Default No-insert With-insert Default No-decomp

T r T r T r T r T r

hhl_n7 (1) 11.07 0.085 8.71 0.156 7.70 0.239 5.45 0.122 5.45 0.277
qft_10 (2) 2.16 0.036 0.91 0.029 0.35 0.039 0.89 0.043 0.89 0.103
qnn_10 (2) 3.12 0.031 1.53 0.108 0.74 0.214 3.06 0.117 3.06 0.151
gf2^7_mult (3) 5.84 0.218 3.31 1.286 0.40 3.421 4.20 0.083 0.47 0.041
rc_adder_6 (3) 1.89 0.030 2.04 0.049 1.56 0.052 1.67 0.033 0.71 0.041
qcla_adder_10 (3) 3.26 1.326 3.48 0.448 0.66 2.063 1.63 0.073 0.47 0.078

the ZX approaches are not capable of reconstructing a similar efficient circuit structure. Since all ZX
strategies yield inefficient circuits, it may be that in such cases the ZX-diagram simplification creates too
complex graph structures.
Regarding algorithmic runtime, ZX performs similarly to the Qiskit internal synthesis. Note, however,
the significant increase in runtime for qcla_adder and gf2^t_mult for the With-insert synthesis. This is
likely the overhead due to the insertion of additional phase gadgets, resulting in worst-case exponential
runtime as discussed in Section 4.2.2.

6 Conclusion

In this work we introduced a novel approach to synthesize quantum circuits to the universal gate set
{H,Rz,CnP}. As a key contribution, our approach is able to efficiently identify structures in graph-like
ZX-diagrams that correspond to multi-controlled phase gates and extract them to quantum circuits. This
allows the synthesis of such gates even if they were not present in the original circuit. Together with exist-
ing simplification strategies for ZX-diagrams, our approach can be used to synthesize arbitrary quantum
circuits towards neutral atom architectures. Here, our synthesis often trades slow global pulse rotations
for fast multi-controlled qubit gates and we are thus able to reduce execution time significantly for many
common circuits. Further, this could also help hardware developers to evaluate whether increasing the
number of qubits supported by multi-controlled phase gates is beneficial for certain problems in terms

108 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

of execution time and fidelity. In cases where the circuit already consists of optimized multi-controlled
gates, such as circuits based on arithmetic functions, the synthesis may result in less efficient quantum
circuits. This is likely due to overly complex graph structures resulting from ZX-diagram simplification.
We leave it as a topic for further research whether in those cases more sophisticated strategies allow
exploiting the phase gadget structures for multi-controlled phase gates synthesis without increasing the
underlying graph structure complexity. Possible approaches include advanced heuristics applying the
proposed scheme only to cases where it is likely to improve the circuit structure. We also want to men-
tion that a similar synthesis approach could be done without ZX-calculus using the Pauli Dependency
DAG representation of quantum circuits [48]. It has been shown that the diagram simplification rules
from Section 3.1.2 are equivalent to reordering Pauli terms in a Pauli Dependency DAG and by identi-
fying patterns of individual Pauli-Z terms similar to Theorem 1 we can then synthesize CnP gates. As
future work, it would be interesting to see how these two versions compare.

Acknowledgments

This work is partially supported by the German Federal Ministry of Education and Research (BMBF)
under the funding program Quantum Technologies - From Basic Research to Market under contract
number 13N16070.
The authors acknowledge funding from the Munich Quantum Valley initiative (K3, K5), which is sup-
ported by the Bavarian state government with funds from the Hightech Agenda Bayern Plus.
J.Z. acknowledges funding by the Max Planck Society (MPG), the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence Strategy EXC-2111-39081486, and
acknowledges support from the German Federal Ministry of Education and Research (BMBF) through
the program “Quantum technologies - from basic research to market” (SNAQC, Grant No. 13N16265).
L.S. and R.W. acknowledge funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (Grant Agreement No. 101001318).
The authors would like to thank Nathalia Nottingham for providing an implementation of the transversal
layer decomposition and Miriam Backens for helpful discussions.

References

[1] Matthew Amy (2019): Towards Large-scale Functional Verification of Universal Quantum Circuits. Elec-
tronic Proceedings in Theoretical Computer Science 287, pp. 1–21, doi:10.4204/EPTCS.287.1.

[2] Matthew Amy, Parsiad Azimzadeh & Michele Mosca (2018): On the controlled-NOT complexity of
controlled-NOT–phase circuits. Quantum Science and Technology 4(1), p. 015002, doi:10.1088/2058-
9565/aad8ca. Available at https://dx.doi.org/10.1088/2058-9565/aad8ca.

[3] Matthew Amy, Andrew N. Glaudell, Sarah Meng Li & Neil J. Ross (2023): Improved Synthesis of Toffoli-
Hadamard Circuits, pp. 169–209. doi:10.1007/978-3-031-38100-3_12. arXiv:2305.11305.

[4] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021):
There and back again: A circuit extraction tale. Quantum 5, p. 421, doi:10.22331/q-2021-03-25-421. Avail-
able at http://arxiv.org/abs/2003.01664. ArXiv:2003.01664 [quant-ph].

[5] Jonathan M. Baker, Andrew Litteken, Casey Duckering, Henry Hoffmann, Hannes Bernien & Frederic T.
Chong (2021): Exploiting Long-Distance Interactions and Tolerating Atom Loss in Neutral Atom Quantum
Architectures, pp. 818–831. doi:10.1109/ISCA52012.2021.00069.

https://doi.org/10.4204/EPTCS.287.1
https://doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1088/2058-9565/aad8ca
https://dx.doi.org/10.1088/2058-9565/aad8ca
https://doi.org/10.1007/978-3-031-38100-3_12
https://arxiv.org/abs/2305.11305
https://doi.org/10.22331/q-2021-03-25-421
http://arxiv.org/abs/2003.01664
https://doi.org/10.1109/ISCA52012.2021.00069

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 109

[6] Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye & Antoine Browaeys (2016): An
Atom-by-Atom Assembler of Defect-Free Arbitrary Two-Dimensional Atomic Arrays. Science 354(6315), pp.
1021–1023, doi:10.1126/science.aah3778.

[7] Dolev Bluvstein, Simon J. Evered, Alexandra A. Geim, Sophie H. Li, Hengyun Zhou, Tom Manovitz, Sepehr
Ebadi, Madelyn Cain, Marcin Kalinowski, Dominik Hangleiter, J. Pablo Bonilla Ataides, Nishad Maskara,
Iris Cong, Xun Gao, Pedro Sales Rodriguez, Thomas Karolyshyn, Giulia Semeghini, Michael J. Gullans,
Markus Greiner, Vladan Vuletić & Mikhail D. Lukin (2023): Logical Quantum Processor Based on Recon-
figurable Atom Arrays. Nature, pp. 1–3, doi:10.1038/s41586-023-06927-3.

[8] Dolev Bluvstein, Harry Levine, Giulia Semeghini, Tout T. Wang, Sepehr Ebadi, Marcin Kalinowski, Alexan-
der Keesling, Nishad Maskara, Hannes Pichler, Markus Greiner, Vladan Vuletić & Mikhail D. Lukin (2022):
A Quantum Processor Based on Coherent Transport of Entangled Atom Arrays. Nature 604(7906), pp. 451–
456, doi:10.1038/s41586-022-04592-6.

[9] Sebastian Brandhofer, Ilia Polian & Hans Peter Büchler (2021): Optimal Mapping for Near-Term Quantum
Architectures Based on Rydberg Atoms. In: 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD), pp. 1–7, doi:10.1109/ICCAD51958.2021.9643490.

[10] Hans J Briegel, David E Browne, Wolfgang Dür, Robert Raussendorf & Maarten Van den Nest (2009):
Measurement-based quantum computation. Nature Physics 5(1), pp. 19–26, doi:10.1038/nphys1157.

[11] Daniel E Browne, Elham Kashefi, Mehdi Mhalla & Simon Perdrix (2007): Generalized flow and determin-
ism in measurement-based quantum computation. New Journal of Physics 9(8), p. 250, doi:10.1088/1367-
2630/9/8/250. Available at https://dx.doi.org/10.1088/1367-2630/9/8/250.

[12] Alec Cao, William J. Eckner, Theodor Lukin Yelin, Aaron W. Young, Sven Jandura, Lingfeng Yan, Kyungtae
Kim, Guido Pupillo, Jun Ye, Nelson Darkwah Oppong & Adam M. Kaufman (2024): Multi-qubit gates and
’Schrödinger cat’ states in an optical clock. arXiv:2402.16289.

[13] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes. Cambridge University Press,
doi:10.1017/9781316219317.

[14] Clemens Dlaska, Kilian Ender, Glen Bigan Mbeng, Andreas Kruckenhauser, Wolfgang Lechner & Rick van
Bijnen (2022): Quantum Optimization via Four-Body Rydberg Gates. Physical Review Letters 128(12), p.
120503, doi:10.1103/PhysRevLett.128.120503.

[15] Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020): Graph-theoretic Simpli-
fication of Quantum Circuits with the ZX-calculus. Quantum 4, p. 279, doi:10.22331/q-2020-06-04-279.
Available at https://quantum-journal.org/papers/q-2020-06-04-279/. Publisher: Verein zur
Förderung des Open Access Publizierens in den Quantenwissenschaften.

[16] Simon J. Evered, Dolev Bluvstein, Marcin Kalinowski, Sepehr Ebadi, Tom Manovitz, Hengyun Zhou,
Sophie H. Li, Alexandra A. Geim, Tout T. Wang, Nishad Maskara, Harry Levine, Giulia Semeghini,
Markus Greiner, Vladan Vuletić & Mikhail D. Lukin (2023): High-Fidelity Parallel Entangling Gates on
a Neutral-Atom Quantum Computer. Nature 622(7982), pp. 268–272, doi:10.1038/s41586-023-06481-y.
arXiv:2304.05420.

[17] T. M. Graham, Y. Song, J. Scott, C. Poole, L. Phuttitarn, K. Jooya, P. Eichler, X. Jiang, A. Marra, B. Grinke-
meyer, M. Kwon, M. Ebert, J. Cherek, M. T. Lichtman, M. Gillette, J. Gilbert, D. Bowman, T. Ballance,
C. Campbell, E. D. Dahl, O. Crawford, N. S. Blunt, B. Rogers, T. Noel & M. Saffman (2022): Multi-Qubit
Entanglement and Algorithms on a Neutral-Atom Quantum Computer. Nature 604(7906), pp. 457–462,
doi:10.1038/s41586-022-04603-6.

[18] Daniel Große, Robert Wille, Gerhard W Dueck & Rolf Drechsler (2009): Exact multiple-control Toffoli
network synthesis with SAT techniques. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 28(5), pp. 703–715, doi:10.1109/TCAD.2009.2017215.

[19] Flavien Gyger, Maximilian Ammenwerth, Renhao Tao, Hendrik Timme, Stepan Snigirev, Immanuel
Bloch & Johannes Zeiher (2024): Continuous Operation of Large-Scale Atom Arrays in Optical Lattices.
arXiv:2402.04994.

https://doi.org/10.1126/science.aah3778
https://doi.org/10.1038/s41586-023-06927-3
https://doi.org/10.1038/s41586-022-04592-6
https://doi.org/10.1109/ICCAD51958.2021.9643490
https://doi.org/10.1038/nphys1157
https://doi.org/10.1088/1367-2630/9/8/250
https://doi.org/10.1088/1367-2630/9/8/250
https://dx.doi.org/10.1088/1367-2630/9/8/250
https://arxiv.org/abs/2402.16289
https://doi.org/10.1017/9781316219317
https://doi.org/10.1103/PhysRevLett.128.120503
https://doi.org/10.22331/q-2020-06-04-279
https://quantum-journal.org/papers/q-2020-06-04-279/
https://doi.org/10.1038/s41586-023-06481-y
https://arxiv.org/abs/2304.05420
https://doi.org/10.1038/s41586-022-04603-6
https://doi.org/10.1109/TCAD.2009.2017215
https://arxiv.org/abs/2402.04994

110 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

[20] Loïc Henriet, Lucas Beguin, Adrien Signoles, Thierry Lahaye, Antoine Browaeys, Georges-Olivier Reymond
& Christophe Jurczak (2020): Quantum Computing with Neutral Atoms. Quantum 4, p. 327, doi:10.22331/q-
2020-09-21-327.

[21] L. Isenhower, M. Saffman & K. Mølmer (2011): Multibit CkNOT Quantum Gates via Rydberg Blockade.
Quantum Information Processing 10(6), p. 755, doi:10.1007/s11128-011-0292-4.

[22] Sven Jandura & Guido Pupillo (2022): Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms. Quan-
tum 6, p. 712, doi:10.22331/q-2022-05-13-712.

[23] Aleks Kissinger & John van de Wetering (2020): Reducing the Number of Non-Clifford Gates in Quantum
Circuits. Physical Review A 102(2), p. 022406, doi:10.1103/PhysRevA.102.022406.

[24] Aleks Kissinger & John van de Wetering (2020): PyZX: Large Scale Automated Diagrammatic Reasoning
318, pp. 229–241. doi:10.4204/EPTCS.318.14.

[25] Vadym Kliuchnikov, Dmitri Maslov & Michele Mosca (2013): Fast and efficient exact synthesis of single-
qubit unitaries generated by clifford and T gates. Quantum Information & Computation 13(7-8), pp. 607–630,
doi:10.5555/2535649.2535653.

[26] Stach Kuijpers, John van de Wetering & Aleks Kissinger: Graphical fourier theory and the cost of quantum
addition. Available at https://doi.org/10.48550/arXiv.1904.07551.

[27] Harry Levine, Dolev Bluvstein, Alexander Keesling, Tout T. Wang, Sepehr Ebadi, Giulia Semegh-
ini, Ahmed Omran, Markus Greiner, Vladan Vuletić & Mikhail D. Lukin (2022): Dispersive Opti-
cal Systems for Scalable Raman Driving of Hyperfine Qubits. Physical Review A 105(3), p. 032618,
doi:10.1103/PhysRevA.105.032618.

[28] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes
Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler & Mikhail D. Lukin (2019): Parallel Implemen-
tation of High-Fidelity Multiqubit Gates with Neutral Atoms. Physical Review Letters 123(17), p. 170503,
doi:10.1103/PhysRevLett.123.170503.

[29] Ang Li, Samuel Stein, Sriram Krishnamoorthy & James Ang (2022): QASMBench: A Low-level QASM
Benchmark Suite for NISQ Evaluation and Simulation, doi:10.48550/arXiv.2005.13018. arXiv:2005.13018.

[30] Yongshang Li, Yu Zhang, Mingyu Chen, Xiangyang Li & Peng Xu (2023): Timing-Aware Qubit Mapping
and Gate Scheduling Adapted to Neutral Atom Quantum Computing. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, pp. 1–1, doi:10.1109/TCAD.2023.3261244.

[31] Ivaylo S. Madjarov, Jacob P. Covey, Adam L. Shaw, Joonhee Choi, Anant Kale, Alexandre Cooper, Hannes
Pichler, Vladimir Schkolnik, Jason R. Williams & Manuel Endres (2020): High-Fidelity Entanglement and
Detection of Alkaline-Earth Rydberg Atoms. Nature Physics 16(8), pp. 857–861, doi:10.1038/s41567-020-
0903-z.

[32] M Morgado & S Whitlock (2021): Quantum simulation and computing with Rydberg-interacting
qubits. AVS Quantum Science 3(2), doi:10.1116/5.0036562. arXiv:https://pubs.aip.org/avs/aqs/article-
pdf/doi/10.1116/5.0036562/19739152/023501_1_online.pdf.

[33] Priyanka Mukhopadhyay (2024): Synthesizing Toffoli-optimal quantum circuits for arbitrary multi-qubit uni-
taries. arXiv preprint arXiv:2401.08950. Available at https://doi.org/10.48550/arXiv.2401.08950.

[34] M. Müller, I. Lesanovsky, H. Weimer, H. P. Büchler & P. Zoller (2009): Mesoscopic Rydberg Gate
Based on Electromagnetically Induced Transparency. Physical Review Letters 102(17), p. 170502,
doi:10.1103/PhysRevLett.102.170502.

[35] M. A. Norcia, H. Kim, W. B. Cairncross, M. Stone, A. Ryou, M. Jaffe, M. O. Brown, K. Barnes, P. Battaglino,
A. Brown, K. Cassella, C.-A. Chen, R. Coxe, D. Crow, J. Epstein, C. Griger, E. Halperin, F. Hummel,
A. M. W. Jones, J. M. Kindem, J. King, K. Kotru, J. Lauigan, M. Li, M. Lu, E. Megidish, J. Marjanovic,
M. McDonald, T. Mittiga, J. A. Muniz, S. Narayanaswami, C. Nishiguchi, T. Paule, K. A. Pawlak, L. S. Peng,
K. L. Pudenz, A. Smull, D. Stack, M. Urbanek, R. J. M. van de Veerdonk, Z. Vendeiro, L. Wadleigh, T. Wilka-
son, T.-Y. Wu, X. Xie, E. Zalys-Geller, X. Zhang & B. J. Bloom (2024): Iterative Assembly of $ˆ{171}$Yb
Atom Arrays in Cavity-Enhanced Optical Lattices, doi:10.48550/arXiv.2401.16177. arXiv:2401.16177.

https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.22331/q-2020-09-21-327
https://doi.org/10.1007/s11128-011-0292-4
https://doi.org/10.22331/q-2022-05-13-712
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.5555/2535649.2535653
https://doi.org/10.48550/arXiv.1904.07551
https://doi.org/10.1103/PhysRevA.105.032618
https://doi.org/10.1103/PhysRevLett.123.170503
https://doi.org/10.48550/arXiv.2005.13018
https://arxiv.org/abs/2005.13018
https://doi.org/10.1109/TCAD.2023.3261244
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1038/s41567-020-0903-z
https://doi.org/10.1116/5.0036562
https://arxiv.org/abs/https://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0036562/19739152/023501_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/avs/aqs/article-pdf/doi/10.1116/5.0036562/19739152/023501_1_online.pdf
https://doi.org/10.48550/arXiv.2401.08950
https://doi.org/10.1103/PhysRevLett.102.170502
https://doi.org/10.48550/arXiv.2401.16177
https://arxiv.org/abs/2401.16177

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 111

[36] Natalia Nottingham, Michael A. Perlin, Ryan White, Hannes Bernien, Frederic T. Chong & Jonathan M.
Baker (2023): Decomposing and Routing Quantum Circuits Under Constraints for Neutral Atom Architec-
tures, doi:10.48550/arXiv.2307.14996. arXiv:2307.14996.

[37] Tirthak Patel, Daniel Silver & Devesh Tiwari (2022): Geyser: A Compilation Framework for Quantum
Computing with Neutral Atoms. In: Proceedings of the 49th Annual International Symposium on Com-
puter Architecture, ISCA ’22, Association for Computing Machinery, New York, NY, USA, pp. 383–395,
doi:10.1145/3470496.3527428.

[38] Lars Pause, Lukas Sturm, Marcel Mittenbühler, Stephan Amann, Tilman Preuschoff, Dominik Schäffner,
Malte Schlosser & Gerhard Birkl (2023): Supercharged Two-Dimensional Tweezer Array with More than
1000 Atomic Qubits, doi:10.48550/arXiv.2310.09191. arXiv:2310.09191.

[39] Tom Peham, Lukas Burgholzer & Robert Wille (2022): Equivalence checking of quantum circuits with the
ZX-calculus. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12(3), pp. 662–675,
doi:10.1109/JETCAS.2022.3202204.

[40] Nils Quetschlich, Lukas Burgholzer & Robert Wille (2023): MQT Bench: Benchmarking Software and De-
sign Automation Tools for Quantum Computing. Quantum 7, p. 1062, doi:10.22331/q-2023-07-20-1062.

[41] M Saffman (2016): Quantum computing with atomic qubits and Rydberg interactions: progress and chal-
lenges. Journal of Physics B: Atomic, Molecular and Optical Physics 49(20), p. 202001, doi:10.1088/0953-
4075/49/20/202001. Available at https://dx.doi.org/10.1088/0953-4075/49/20/202001.

[42] M. Saffman, T. G. Walker & K. Mølmer (2010): Quantum Information with Rydberg Atoms. Reviews of
Modern Physics 82(3), pp. 2313–2363, doi:10.1103/RevModPhys.82.2313.

[43] Mark Saffman (2019): Quantum Computing with Neutral Atoms. National Science Review 6(1), pp. 24–25,
doi:10.1093/nsr/nwy088.

[44] Ludwig Schmid, David F Locher, Manuel Rispler, Sebastian Blatt, Johannes Zeiher, Markus Müller & Robert
Wille (2024): Computational capabilities and compiler development for neutral atom quantum proces-
sors—connecting tool developers and hardware experts. Quantum Science and Technology 9(3), p. 033001,
doi:10.1088/2058-9565/ad33ac. Available at https://dx.doi.org/10.1088/2058-9565/ad33ac.

[45] Ludwig Schmid, Sunghye Park, Seokhyeong Kang & Robert Wille (2023): Hybrid Circuit Mapping:
Leveraging the Full Spectrum of Computational Capabilities of Neutral Atom Quantum Computers,
doi:10.48550/arXiv.2311.14164. arXiv:2311.14164.

[46] Adam L. Shaw, Ran Finkelstein, Richard Bing-Shiun Tsai, Pascal Scholl, Tai Hyun Yoon, Joonhee Choi &
Manuel Endres (2024): Multi-Ensemble Metrology by Programming Local Rotations with Atom Movements.
Nature Physics, pp. 1–7, doi:10.1038/s41567-023-02323-w.

[47] VV Shende, SS Bullock & IL Markov (2006): Synthesis of quantum-logic circuits. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 25(6), pp. 1000–1010,
doi:10.1109/TCAD.2005.855930.

[48] Will Simmons (2021): Relating Measurement Patterns to Circuits via Pauli Flow. Electronic Proceedings in
Theoretical Computer Science 343, p. 50–101, doi:10.4204/eptcs.343.4.

[49] Korbinian Staudacher, Tobias Guggemos, Sophia Grundner-Culemann & Wolfgang Gehrke (2023): Reduc-
ing 2-QuBit Gate Count for ZX-Calculus based Quantum Circuit Optimization. Electronic Proceedings in
Theoretical Computer Science 394, pp. 29–45, doi:10.4204/EPTCS.394.3.

[50] Korbinian Staudacher, Ludwig Schmid, Johannes Zeiher, Robert Wille & Dieter Kranzlmüller (2024): Multi-
Controlled Phase Gate Synthesis with ZX- Calculus, doi:10.5281/zenodo.10730427.

[51] Daniel Bochen Tan, Dolev Bluvstein, Mikhail D. Lukin & Jason Cong (2024): Compiling Quantum Circuits
for Dynamically Field-Programmable Neutral Atoms Array Processors. Quantum 8, p. 1281, doi:10.22331/q-
2024-03-14-1281.

[52] Daniel Bochen Tan, Shuohao Ping & Jason Cong (2024): Depth-Optimal Addressing of 2D Qubit Array with
1D Controls Based on Exact Binary Matrix Factorization. arXiv:2401.13807.

https://doi.org/10.48550/arXiv.2307.14996
https://arxiv.org/abs/2307.14996
https://doi.org/10.1145/3470496.3527428
https://doi.org/10.48550/arXiv.2310.09191
https://arxiv.org/abs/2310.09191
https://doi.org/10.1109/JETCAS.2022.3202204
https://doi.org/10.22331/q-2023-07-20-1062
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://dx.doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1093/nsr/nwy088
https://doi.org/10.1088/2058-9565/ad33ac
https://dx.doi.org/10.1088/2058-9565/ad33ac
https://doi.org/10.48550/arXiv.2311.14164
https://arxiv.org/abs/2311.14164
https://doi.org/10.1038/s41567-023-02323-w
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.4204/eptcs.343.4
https://doi.org/10.4204/EPTCS.394.3
https://doi.org/10.5281/zenodo.10730427
https://doi.org/10.22331/q-2024-03-14-1281
https://doi.org/10.22331/q-2024-03-14-1281
https://arxiv.org/abs/2401.13807

112 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

[53] Renaud Vilmart (2019): A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Mechanics,
pp. 1–10. doi:10.1109/LICS.2019.8785765.

[54] Hanrui Wang, Pengyu Liu, Bochen Tan, Yilian Liu, Jiaqi Gu, David Z. Pan, Jason Cong, Umut
Acar & Song Han (2023): FPQA-C: A Compilation Framework for Field Programmable Qubit Array,
doi:10.48550/arXiv.2311.15123. arXiv:2311.15123.

[55] Hanrui Wang, Bochen Tan, Pengyu Liu, Yilian Liu, Jiaqi Gu, Jason Cong & Song Han (2023): Q-Pilot:
Field Programmable Quantum Array Compilation with Flying Ancillas, doi:10.48550/arXiv.2311.16190.
arXiv:2311.16190.

[56] John van de Wetering (2020): ZX-calculus for the working quantum computer scientist. arXiv preprint
arXiv:2012.13966. Available at https://doi.org/10.48550/arXiv.2012.13966.

[57] Shihao Zhang, Junda Wu & Lvzhou Li (2023): Characterization, synthesis, and optimization of quan-
tum circuits over multiple-control Z-rotation gates: A systematic study. Phys. Rev. A 108, p. 022603,
doi:10.1103/PhysRevA.108.022603. Available at https://link.aps.org/doi/10.1103/PhysRevA.
108.022603.

https://doi.org/10.1109/LICS.2019.8785765
https://doi.org/10.48550/arXiv.2311.15123
https://arxiv.org/abs/2311.15123
https://doi.org/10.48550/arXiv.2311.16190
https://arxiv.org/abs/2311.16190
https://doi.org/10.48550/arXiv.2012.13966
https://doi.org/10.1103/PhysRevA.108.022603
https://link.aps.org/doi/10.1103/PhysRevA.108.022603
https://link.aps.org/doi/10.1103/PhysRevA.108.022603

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 113

A Gadget insertion

Inserting Y Z measurements on the outputs preserves gflow:

Corollary 1. Let (g,≺) be a gflow for (G, I,O,λ) and let W ⊆ O. Then (G′, I,O,λ ′), where G′ =
(V ′,E ′) with V ′ =V ∪{x}, λ ′(x) = Y Z and E ′ = E ∪{(x,w)|w ∈W} has a gflow (g′,≺′) with following
properties:

• g′(x) = {x},

• ∀v ∈V : g′(v) = g(v),

• ≺′ is the transitive closure of ≺ ∪{(x,v)|v ∈ O}∪{(v,x)|v ∈V\O}.

Proof. The only new correction set in g′ is g′(x) = {x}, for all other vertices, it is the same as in g.
Therefore, all conditions except (g2) are trivially satisfied. For (g2), we need to distinguish two cases
for the new vertex x and vertices v ∈V\{x}:

• x ∈ Odd(g(v)): By definition, x is the last element in the partial order ≺′ of all non-outputs, thus
(g2) holds.

• v ∈ Odd(g(x)): x ≺ v holds, because g(x) = {x} and Odd({x}) only contains outputs which we
chose to be after x in the partial order.

Note that x /∈ Odd(g(x)) by definition.

B Alternative proof of Theorem 1

Figure 3: Illustration of the possible combinations and their contribution in Equation (12) for n = 3. For
each possible value of l = 0, . . . ,3 the combinations for the possible k ≤ n and j ≤ l are illustrated as
three-circle circles, and their contribution to the sum is computed. The final row shows that the sums of
the contributions fulfill the condition of Lemma 2.

This section provides an alternative, combinatorial proof of Theorem 1 instead of using the graphical
approach discussed in the main part of the work. The overarching idea is to find a closed formula for the
unitary defined by the ZX illustration by summing the corresponding phase contributions and showing
that this corresponds to diag(1,1, . . . ,eiα) for an arbitrary number of qubits n.

114 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

To find a closed formula for Theorem 1 consider the definition of a single phase gadget and its corre-
sponding unitary action on the n-qubit basis states according to [23]:

α

...

U |x1, . . . , xn⟩= eiα(x1
⊕

...
⊕

xn) |x1, . . . , xn⟩ , (9)

where the binary xi ∈ {0,1}, i = 1, . . . , n label the basis states and ⊕ is the binary sum modulo two,
i.e. XOR. Note that all phase gadgets of Theorem 1 can be written in such a way, summing only the xi

connected by Hadamard wires to the phase. The single qubit phases give an additional contribution of
eiα x j |x1, . . . , xn⟩ for each applied qubit j, corresponding to a single-qubit phase gadget.
As the binary sum does not depend on the order of the xi but only on their value, we introduce the
following notation, where we assume that l entries in the sum are non-zero, resulting in a non-zero-sum
whenever l is odd:

x1 ⊕ . . . ⊕ xn =
(−1)l+1 +1

2
= mod2(l) =

{
1 , l is odd
0 , l is even

. (10)

Considering again Equation (2) one can see that there are two contributions to the total accumulated
phase. First, for each qubit, a single-qubit phase α is added. Second, for each possible combination of
length k of all the xi, there is a phase gadget with phase (−1)k+1 α . For the C1P(2α) gate, this reduces
to a single k = 2 phase gadget of phase −α . For the C2P(4α) gate, on the other hand, there are

(3
2

)
= 3

phase gadgets of size k = 2 and angle −α and a single (
(3

3

)
= 1) k = 3 gadget with angle α . In general,

for a n qubit gate, there are
(n

k

)
combinations for phase gadgets of size k = 1, . . . , n. A combination

contributes to the total phase if the number l of non-zero entries in the direct sum of Equation (9) is odd,
resulting in an additional phase ±α . Otherwise, the combination does not contribute to the phase. To
express the number of possible combinations depending on l, the

(n
k

)
combinations for a length k can

also be expressed as choosing j variables from the l one-valued variables and choosing k− j variables
from the n− l zero-valued variables and summing over all possible j:(

n
k

)
=

k

∑
j=0

(
l
j

)(
n− l
k− j

)
. (11)

This relation is known as the Vandermonde identity. An illustration of the possible combinations depend-
ing on k and l is shown in Figure 3 for the simple case n = 3.
Multiplying the unitaries of all these phase gadgets corresponds to summing the accumulated phases with
the appropriate sign, converting the problem of Theorem 1 into a summation of the appropriate phases
with a corresponding sign. For the total structure to represent a multi-controlled phase gate, the phases
have to vanish for all possible basis states |x1, . . . , xn⟩ except for |1, . . . 1⟩ where they have to sum to
2n−1α .
Based on these considerations, an equivalent statement of Theorem 1 can be formulated, dropping the
illustrations of the ZX-calculus and formulating the multi-controlled phase gate extraction as a purely
combinatorial problem, focusing on the accumulated phase. Theorem 1 then directly follows from this
Lemma based on the considerations above and using eiα·0 = 1.

K. Staudacher, L. Schmid, J. Zeiher, R. Wille, D. Kranzlmüller 115

Lemma 2 (Multi-controlled phase gate). For n binary variables x1 . . . xn of which l is non-zero, summing
the modulo two sum over all possible combinations of length k with sign (−1)k+1, it holds:

n

∑
k=1

(−1)k+1
min(k,l)

∑
j=0

(
l
j

)(
n− l
k− j

)
mod2(j) =

{
2n−1 , if n=l
0 , else

. (12)

Where the min(k, l) results from the fact that the number of ones in the current combination j cannot be
larger than the length k of the combination, nor the total number of ones l available.

Proof. The proof is two-fold. First, the n = l case is shown explicitly, while the case n ̸= l is shown by
induction in both variables n and l. Also, note that

min(k,l)

∑
j=0

(
l
j

)(
n− l
k− j

)
=

k

∑
j=0

(
l
j

)(
n− l
k− j

)
=

l

∑
j=0

(
l
j

)(
n− l
k− j

)
(13)

as for k > l the first binomial coefficient vanishes in all additional cases, and for l > k the second, as
k− j < 0 in these cases. This also becomes clear from the illustration in Figure 3 where the vanishing
combinations are either non-existent or only contain zero entries. These identities are used multiple times
in the following proof.

Case n = l:

If n = l all variables are one and, therefore, min(k, l) = k. Furthermore, the second binomial coefficient
is non-zero only in the j = k case, where it equals 1. This results in

n

∑
k=1

(−1)k+1
(

n
k

)
(−1)k+1 +1

2
=

1
2

[
n

∑
k=1

(
n
k

)
(−1)k+1 +

n

∑
k=1

(
n
k

)]
=

1
2
[1+2n −1] = 2n−1 ,

using the regular and the alternating binomial sum, directly showing the first part of Lemma 2.

Case n ̸= l:

Proving Equation (12) for arbitrary n and l < n is done by induction. Therefore, showing the term to be
zero for l = 0 and arbitrary n as the base case and then performing the induction step both in n and in l.
Base case l = 0, n: In this case the second sum reduces to the j = 0 case, trivially giving zero, indepen-
detly for all n. In other words, as all variables are zero, the sum in Equation (9) always gives zero.
Induction step n → n+ 1: Inserting this step into Equation (9) and using the recurrence relation of the
binomial coefficient

(n+1
k

)
=
(n

k−1

)
+
(n

k

)
and the abbreviation ξ := mod2(j) one gets

n+1

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n− l

k− j−1

)
ξ +(−1)n +

n

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n− l
k− j

)
ξ︸ ︷︷ ︸

=0 (Base case)

+

�������������

(−1)n
l

∑
j=0

(
l
j

)(
n− l

n+1− j

)
ξ

=
n

∑
k=0

(−1)k
l

∑
j=0

(
l
j

)(
n− l
k− j

)
(−1) j +1

2
=

n

∑
k=0

(−1)k+1
k

∑
j=0

(
l
j

)(
n− l
k− j

)
(−1) j+1 +1−2

2

116 Multi-controlled Phase Gate Synthesis with ZX-calculus applied to Neutral Atom Hardware

= (−1)1
(

l
0

)(
0− l
0−0

)
−2
2︸ ︷︷ ︸

k=0 case

+
n

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n− l
k− j

)
ξ︸ ︷︷ ︸

=0 (Base case)

+
n

∑
k=0

(−1)k+1
k

∑
j=0

(
l
j

)(
n− l
k− j

)
︸ ︷︷ ︸

Vandermonde

= 1+0−1 = 0 ,

writing the n+ 1 term separately to recover the base case. The term in the second line vanishes due to
the lower part of the binomial coefficient always being larger than the top part. Going to the third line,
an index shift in k is performed, and then using Equation (13) with an additional reinserted (−1) factor
to recover the original form of ξ . Separating the k = 0 case and the additional introduced −2 term, the
base case can be inserted again, resulting in zero after using again the Vandermonde identity and the
alternating binomial sum. In a similar fashion, also the induction step in l can be shown.
Induction step l → l + 1: With the base case for arbitrary n and the corresponding induction step in n,
one can, in the following, assume the base case to be true for arbitrary n, in particular for n′ = n− 1.
Performing the induction step in l → l +1 and again using the recurrence relation, one gets

n

∑
k=1

(−1)k+1
l+1

∑
j=0

(
l +1

j

)(
n− (l +1)

k− j

)
ξ

=
n

∑
k=1

(−1)k+1
l+1

∑
j=0

(
l

j−1

)(
n′− l
k− j

)
ξ +

n′

∑
k=1

(−1)k+1
l

∑
j=0

(
l
j

)(
n′− l
k− j

)
ξ︸ ︷︷ ︸

=0 (Base case for n′)

+

���������������n

∑
k=1

(−1)k+1
(

l
l +1

)(
n′− l

k− l −1

)
︸ ︷︷ ︸

j=l+1 case

+

�������������
(−1)n+1

l

∑
j=0

(
l
j

)(
n′− l
n− j

)
ξ︸ ︷︷ ︸

k=n case

=
n

∑
k=1

(−1)k+1
l

∑
j=−1

(
l
j

)(
n′− l

k− j−1

)
(−1) j +1

2

=
n′

∑
k=0

(−1)k
l

∑
j=0

(
l
j

)(
n′− l
k− j

)
(−1) j+1 +1

2

= 0 ,

with the base case for n′ used in the second line and the additional terms vanishing because either the
first or the second binomial coefficient is zero. In the following two lines, first, an index shift in j is
performed, and then, secondly, in k. The result is the same formula as in the previous calculation, just
for n′ and therefore, also vanishes.
This concludes the induction step in l, concluding also the n ̸= l case of Equation (12) and therefore
proving Lemma 2.

A. Dı́az-Caro and V. Zamdzhiev (Eds.):

Quantum Physics and Logic 2024 (QPL 2024)

EPTCS 406, 2024, pp. 117–136, doi:10.4204/EPTCS.406.6

Pauli Flow on Open Graphs with Unknown Measurement

Labels

Piotr Mitosek
School of Computer Science, University of Birmingham

pbm148@student.bham.ac.uk

One-way quantum computation, or measurement-based quantum computation, is a universal model of

quantum computation alternative to the circuit model. The computation progresses by measurements

of a pre-prepared resource state together with corrections of undesired outcomes via applications of

Pauli gates to yet unmeasured qubits. The fundamental question of this model is determining whether

computation can be implemented deterministically. Pauli flow is one of the most general structures

guaranteeing determinism. It is also essential for polynomial time ancilla-free circuit extraction. It

is known how to efficiently determine the existence of Pauli flow given an open graph together with

a measurement labelling (a choice of measurements to be performed).

In this work, we focus on the problem of deciding the existence of Pauli flow for a given open

graph when the measurement labelling is unknown. We show that this problem is in RP by providing

a random polynomial time algorithm. To do it, we extend previous algebraic interpretations of Pauli

flow, by showing that, in the case of - and / measurements only, flow existence corresponds to the

right-invertibility of a matrix derived from the adjacency matrix. We also use this interpretation to

show that the number of output qubits can always be reduced to match the number of input qubits

while preserving the existence of flow.

1 Introduction

One-way quantum computation, or measurement-based quantum computation (MBQC), is a quantum

computation model alternative to the circuit model, yet at least as powerful [30, 31, 32]. The computation

is performed entirely by a series of measurements on a pre-prepared resource state. MBQC is expected to

become critical for quantum communication applications. For instance, MBQC is used in blind quantum

computation [4], a quantum protocol allowing a client to outsource part of the computation to a server

without compromising the client’s privacy. However, the quantum measurements are random by their

nature, which means that in each step two different outcomes may be obtained, where only one is the

desired outcome. Therefore, it is the fundamental problem of MBQC to determine whether the desired

computation can be performed deterministically.

A structure essential for deterministic MBQC is flow defined on a labelled open graph – a graph state

with designated input and output qubits together with a choice of measurements for non-outputs. The

computation is performed by a series of measurements of non-outputs in one of six settings: planar -. ,

-/ , and ./ measurements and Pauli - , . , and / measurements. After each measurement, a correction

might be applied which is intended to fix a potential undesired outcome, bringing the open graph into

a state equivalent to one that would be reached if a desired outcome was observed. The corrections are

performed by applying Pauli gates to yet unmeasured qubits. One of the notions of determinism for

such computation corresponds to the existence of flow structure in the labelled open graph. There are

many different types of flow, ranging from the causal flow [8], through generalized flow [5], all the way

to the Pauli flow [5] and its extended variant [27]. Every causal flow is also a generalized flow. Every

http://dx.doi.org/10.4204/EPTCS.406.6

118 Pauli Flow on Open Graphs with Unknown Measurement Labels

generalized flow is also a Pauli flow. However, the reverses are not true, thus making Pauli flow the most

universal.

The flow is also crucial when working with ZX calculus [7, 37], a graphical calculus for quantum

computation, where the notions of flow correspond to the most general subclasses of diagrams for which

a polynomial time ancilla-free circuit extraction algorithm exists [2, 34]. While diagrams from graphical

calculi are easier to work with than circuits, they are not a notion of computation understood by quantum

computers. For that, a corresponding circuit must be found, however, circuit extraction in general is #P-

hard [11]. In [13], circuits are optimized by translating them to ZX, simplifying diagrams, and translating

them back to circuits. Other versions of this approach have appeared since for example in [35]. There,

diagram transformations necessarily must preserve flow, which was a subject of for instance [23, 24].

While the existence of different flow variants can be efficiently determined for a given labelled open

graph [10, 9, 26, 2, 34], many questions remain open. For instance, what are other properties of labelled

open graphs with flow? Previous works looking at the necessary properties the graph must satisfy to

contain flow include [25, 22, 34]. We contribute to the general picture of what flow is and which graphs

exhibit it.

Results overview In this work, we show that given an (unlabelled) open graph it is possible to efficiently

determine whether there exists a choice of measurements resulting in flow. In particular, we show the

following problem is in RP, meaning that there exists a random polynomial-time algorithm solving it.

FlowSearch

Input: An open graph (�, �,$).

Output:)AD4 if there exists a measurement labelling _ such that the labelled open graph

(�, �,$,_) exhibits Pauli flow, and �0;B4 otherwise.

To show that, we adapt the algebraic interpretation of flow from [25]. In that paper, the authors relate

the existence of generalised flow for -. planar measurements only to the existence of the right inverse of

a particular matrix satisfying additional requirements. We relate Pauli flow in the case of only - and /

measurement to just right invertibility. Then, we use the algebraic interpretation to reduce FlowSearch

to MaxRank, a problem about maximizing the rank of a matrix whose entries can contain variables. Our

approach is limited to finding labelling consisting of Pauli - and / measurements. The corresponding

measurement scheme is Clifford. Thus, the current algorithm may not be ideal for searching more

complex labels which make the corresponding labelled open graph have Pauli flow. However, as we will

prove, the graph having Pauli flow for some measurement labels also has flow for labels consisting of only

Pauli - and / measurements. In other words, if a graph does not have flow for some label consisting of

just - and / measurements then it cannot have flow for any label. Therefore, our approach is sufficient

to solve FlowSearch.

Further, we use the algebraic interpretation of flow to explore the conditions on the sets of inputs and

outputs necessary to have flow. In particular, we prove that if a labelled open graph has Pauli flow, then

some outputs can be removed and the resulting open graph will still have Pauli flow for some measurement

labelling.

Structure In section 2, we present the background. Section 3 is the main part of the paper. There,

we formally describe our results and prove them. Finally, in section 4, we discuss the conclusions and

possible further work. We include some technical proofs and additional examples in the appendices.

P. Mitosek 119

2 Background

In this section, we first look at the general concept of measurement-based quantum computation, where

we define Pauli flow. Next, we explain computational complexity definitions critical in our proofs.

2.1 Measurement-Based Quantum Computation

As outlined earlier, we focus on the version of MBQC where measurements are performed on open graphs

and the allowed measurements are single-qubit: Pauli measurements or planar measurements from -. ,

./ , or -/ planes. The description of the computation is given in the form of measurement patterns. The

labelled open graphs can be viewed as runnable measurement patterns without corrections [2].

Definition 2.1 (Open Graph). An open graph is a triple (�, �,$) consisting of:

• an undirected graph � = (+, �),

• a set of inputs � ⊆ + ,

• a set of outputs $ ⊆ + .

We define the sets of non-inputs � :=+ \ �, non-outputs$:=+ \$ and internal vertices � :=+ \ (�∪$) =

� ∩$.

An odd neighbourhood of a set of vertices � is denoted $33 (�) and consists of all vertices

neighbouring an odd number of elements of �: $33 (�) := {E ∈ + | #{0 ∈ � | E0 ∈ �} is odd}.

Definition 2.2. A measurement labelling for an open graph (�, �,$) is any function _ sending non-

outputs $ to labels {-,. , /, -/, -.,. /}, satisfying _(E) ∈ {-, -.,. } for all E ∈ � \$. A labelled open

graph is a quadruple (�, �,$,_) where (�, �,$) is an open graph and _ is a measurement labelling.

An open graph is prepared by entangling input qubits, corresponding to the vertices in �, with

qubits prepared in |+〉 corresponding to the vertices in �, by applying �/ gate between pair of qubits

corresponding to each edge in the graph. Since the �/ gates commute, the order of �/ applications

does not matter. When the set of inputs is empty, the notion of an open graph collapses to the graph state.

Next, qubits corresponding to the elements of $ are measured according to the measurement labelling.

See figure 1 for an example.

The computation given in the form of the measurement pattern depends on the outcomes of the

measurements. After each measurement, an undesired outcome may occur and it must be corrected. The

corrections are performed by applying Pauli - and / gates to the yet unmeasured qubits. The result of

a chosen measurement outcome, together with corrections, is called a branch. There are many different

notions of determinism [5, 25]. The one we focus on is the strong, uniform, and stepwise determinism –

all branches of the computation are equal up to a global phase, for any choice of measurement angles, and

the intermediate patterns after performing a subset of measurements also have these properties [5, 25, 2].

The measurement pattern is strongly, uniformly, and stepwise deterministic when the corresponding

labelled open graph has Pauli flow [5]. We define the notion of Pauli flow (based on [34]).

Definition 2.3 (Pauli flow). A Pauli flow for a labelled open graph (�, �,$,_) is a pair (2,≺) where 2 is

a function $→P(�) and ≺ is a strict partial order on $, such that for all D ∈ $:

(P1) ∀E ∈ 2(D).D ≠ E∧_(E) ∉ {-,. } ⇒ D ≺ E

(P2) ∀E ∈ $33 (2(D)).D ≠ E∧_(E) ∉ {., /} ⇒ D ≺ E

(P3) ∀E ∈ $.¬(D ≺ E) ∧D ≠ E∧_(E) = . ⇒ (E ∈ 2(D) ⇔ E ∈ $33 (2(D)))

(P4) _(D) = -. ⇒ D ∉ 2(D) ∧D ∈ $33 (2(D))

(P5) _(D) = -/⇒ D ∈ 2(D) ∧D ∈ $33 (2(D))

120 Pauli Flow on Open Graphs with Unknown Measurement Labels

�

�

�

�

�

�

�

�

(a) A labelled open graph with two inputs and

three outputs. All non-outputs are - labelled.

�

�

�

�

�

�

�

�

(b) The labelled open graph from 1a, but with

vertex � labelled / .

Figure 1: Examples of labelled open graphs. Outputs are denoted by empty circles, - labelled non-

outputs by filled circles and inputs by a square. The / labelled vertices are denoted with grey diamonds

and edges including them are dashed and grey.

(P6) _(D) = ./⇒ D ∈ 2(D) ∧D ∉$33 (2(D))

(P7) _(D) = -⇒ D ∈ $33 (2(D))

(P8) _(D) = /⇒ D ∈ 2(D)

(P9) _(D) = . ⇒ (D ∈ 2(D) ⊕ D ∈ $33 (2(D))), where ⊕ stands for XOR.

We call 2 the correction function and sets 2(E) for E ∈ $ are called the correction sets.

Example 2.4. Consider open graphs from figure 1. The graph from 1a does not have Pauli flow. On the

other hand, the graph from 1b has Pauli flow. For instance, taking � ≺ � and � ≺ � with the following

correction function result in the flow:

2(�) = {�,�}, $33 (2(�)) = {�, �,�,�}, 2(�) = {�}, $33 (2(�)) = {�, �},

2(�) = {�}, $33 (2(�)) = {�,�}, 2(�) = {�}, $33 (2(�)) = {�, �,�,�},

2(�) = {�}, $33 (2(�)) = {�}.

In MBQC, the meaning of the Pauli flow is as follows. The prepared open graph state is measured

according to the partial order. When a measurement of a vertex D results in an undesired outcome, then

the measurement error can be fixed by applying the - gate to all vertices in 2(D). The flow guarantees

that each correction is physically possible and that every error can be corrected independently of the

outcomes of the previous measurements. In other words, the MBQC becomes deterministic. For a

detailed explanation, see [34].

2.2 Computational Complexity

We assume familiarity with standard complexity terminology. We are mainly concerned about the

random polynomial time class RP, where randomness is permitted with one-sided bounded error:

Definition 2.5. The class of RP consists of problems � solvable by a non-deterministic Turing Machine

" that given input 0 proceeds as follows:

• if 0 is a “NO” instance, then " always rejects 0,

• if 0 is a “YES” instance, then " accepts 0 on at least half of its computation paths.

P. Mitosek 121

For a problem in RP there exists a polytime algorithm with random number generator access that

for “NO” instances always returns “NO” and for “YES” instances it returns “YES” with probability at

least 1
2 and otherwise it returns “NO”. This last case is the error of the computation and happens with

the probability smaller than 1
2 . By running the algorithm multiple times it is possible to reduce the error

probability – 50 runs results in error probability below 1
250 which is sufficient for all practical applications.

The following is the essential problem in our work. The definition is adapted from [6] (in contrast,

we do not require the input matrix to be square).

MaxRank

Fixed: A commutative ring ', and subsets �, (⊆ ' of entries and solutions.

Input: Natural numbers <,=, C, A and < ×= matrix " with entries from � ∪ {G1, . . . , GC }.

Output:)AD4 if rank" (01, . . . , 0C) ≥ A for some 01 . . . 0C ∈ (
C , and �0;B4 otherwise.

" (01, . . . , 0C) stands for the matrix with substituted variables G1 ↦→ 01, . . . , GC ↦→ 0C . We skip the

specification of <,=, C, as these numbers are explicit from the input matrix. Thus, we will write instances

of MaxRank as pairs (",A) of the matrix and the desired minimal rank under some valuation.

In [6], it is shown that when ' is a finite field and each variable occurs at most once, the problem is

in RP. We extend their approach to show that the problem is in RP also when each variable appears in

at most one row or one column. For that, we need the notion of multi-affine polynomials (adapted from

[6]). In general, the MaxRank problem with ' being a finite field is NP-complete [6].

Definition 2.6. A multivariable polynomial is multi-affine when each variable has a degree at most one.

By extending the proof [6, Theorem 28], we get the following version. Here, the entries of the matrix

are allowed to be given by multi-affine expressions over � ∪ {G1, . . . , GC }, not just elements of the set.

Theorem 2.7. The following version of MaxRank is in RP:

• ' = � = (= FB is a finite field,

• each variable appears in at most one row or at most one column1,

• the entries are given by (polynomially long) multi-affine expressions over � ∪ {G1, . . . , GC }.

We prove the above theorem in the appendix A, where we also give an example and talk about other

known results for MaxRank and similar problems.

3 Finding labelling resulting in Pauli flow

We start by formally defining theorems capturing our results. We show that given an open graph (�, �,$),

there exists a random polytime algorithm deciding the existence of measurement labelling _ such that the

labelled open graph (�, �,$,_) has Pauli flow, i.e we show that FlowSearch defined in the introduction

is in RP.

Theorem 3.1. FlowSearch is in RP.

Example 3.2. Consider the open graph from figure 1, ignoring the labelling. When considered as an

instance of FlowSearch, the answer is)AD4, because the labelling from figure 1b results in Pauli flow.

To show the above theorem, we expand on the known [25] correspondence between flow and certain

algebraic properties of various matrices. We also show that given an open graph with more outputs

than inputs, it is always possible to reduce the number of outputs to match the number of inputs, while

preserving the flow.

1That is if a variable appears in entries at positions (01, 11), (02, 12), (03, 13), . . . , then either 01 = 02 = 03 = . . . or

11 = 12 = 13 =

122 Pauli Flow on Open Graphs with Unknown Measurement Labels

Theorem 3.3. Suppose (�, �,$,_) has Pauli flow and |$ | > |� |. Then there exists a subset $′ ⊆ $ such

that |$′ | = |� | and a labelling _′ such that (�, �,$′,_′) has Pauli flow.

Labelled open graphs with Pauli flow and equal numbers of inputs and outputs have multiple elegant

properties. Firstly, they correspond to a circuit without ancillas and hence a unitary. Further, the graph

and flow can be “reversed” ([25, Theorem 3.4] for generalized flow theorem). Next, there is a unique

correction function in the focussed Pauli flow. In the case of - and / labels only, the existence of

such a correction function corresponds to the invertibility of what we call the flow matrix, rather than

just right-invertibility. Finding the inverse can be implemented with faster algorithms than Gaussian

elimination. Thus, it is useful to transform labeled open graphs with more outputs than inputs in order to

equalise both sizes.

The remainder of this section are the proofs of the theorems 3.1 and 3.3. The first proof is divided

into three subsections. In the first one, we do preliminary simplifications of the FlowSearch problem.

The second subsection presents an algebraic interpretation of the Pauli flow, by giving a correspondence

between Pauli flow and matrix invertibility. Finally, in the third subsection, we show how FlowSearch

instances can be transformed into MaxRank instances, and that those instances can be solved by a random

polytime algorithm. The proof of theorem 3.3 is presented in the final subsection.

3.1 Reducing measurement options

We start by reducing the number of possible options for the measurement basis to just Pauli measurements.

Theorem 3.4. Suppose that a labelled open graph (�, �,$,_) has Pauli flow. Then, there exists _′ : $→

{-,. , /} such that (�, �,$,_′) has Pauli flow.

Proof. We start by fixing a Pauli flow (2,≺) on (�, �,$,_). The conditions for a planar measurement -.

combine the requirements for the two Pauli measurements - and . . Hence, swapping -. measurements

to - preserves (2,≺) as the Pauli flow. Similarly, we can swap -/ to - and ./ to / . �

There can be many different Pauli flows for a single labelled open graph. However, there exists a

special type of Pauli flow known as the focussed Pauli flow. The following definition is based on [34,

Definition 4.3].

Definition 3.5 (Focussed Pauli flow). The Pauli flow (2,≺) is focussed when for all E ∈ $ the following

hold:

(F1) ∀F ∈ ($ \ {E}) ∩ 2(E)._(F) ∈ {-., -,. }

(F2) ∀F ∈ ($ \ {E}) ∩$33 (2(E))._(F) ∈ {-/,. /,. , /}

(F3) ∀F ∈ ($ \ {E})._(F) = . ⇒ (F ∈ 2(E) ⇔ F ∈ $33 (2(E)))

Example 3.6. Consider the Pauli flow from the example 2.4 – it is not focussed as $33 (2(�)) contains

- labelled vertices � and �. Changing 2(�) to {�,�} results in $33 (2(�)) = ∅ and the flow becomes

focussed.

Importantly, the existence of flow is equivalent to the existence of focussed Pauli flow, as captured by

the following theorem [34, Lemma 4.6]:

Theorem 3.7 ([34, Lemma 4.6]). For any open labelled graph, if a Pauli flow exists then there also exists

a focussed Pauli flow.

P. Mitosek 123

In the case of only Pauli measurements, the conditions from the focussed flow mean that the corrector

sets can only consist of - and. measured vertices and the corrected vertex, while the odd neighbourhoods

of the corrector sets can only consist of the / and . measured vertices and the corrected vertex.

It is easier to search for the focussed Pauli flow, as the notion of the focussed flow in the case of Pauli

bases does not require partial order as captured below. The proof follows from [34, Lemma B.11].

Lemma 3.8. If (2,≺) is a focussed Pauli flow for a labelled open graph (�, �,$,_) with only Pauli

measurements, then so is (2,∅).

Further, we can improve theorem 3.4 to only look for - and / labelling, getting rid of the .

measurements:

Theorem 3.9. Suppose that a labelled open graph (�, �,$,_) has Pauli flow. Then, there exists _′ : $→

{-, /} such that (�, �,$,_′) has Pauli flow.

Proof. Let (�, �,$,_) have Pauli flow. By theorem 3.4, there is _1 : $→{-,. , /} such that (�, �,$,_1)

has Pauli flow. By theorem 3.7 and lemma 3.8, (�, �,$,_1) has some focussed Pauli flow (2,∅). If there

is no D with _1(D) = . , the thesis follows. Otherwise, consider such D. Define _2 : $ → {-,. , /} as

follows. _2(E) = _1 (E) for E ≠ D. By (P9), D ∈ ?(D) ⊕ D ∈ $33 (?(D)). If D ∈ ?(D), we set _2(D) = / and

when D ∈ $33 (?(D)), we set _2(D) = - . Then (�, �,$,_2) has Pauli flow (2,≺), where 2 is the same

correction function as for (�, �,$,_1) and ≺ is given by E ≺ D for all E ∈ $ \ {D}, i.e. D is the last vertex

in this order. We verify (2,≺) indeed is the Pauli flow. Conditions (P4), (P5), (P6) hold automatically.

Similarly, (P7), (P8), (P9) hold for vertices other than D. The choice for the new label of D is done by

using (P9) for the old flow, thus ensuring that 2 works for correction of D with new label. Hence, only

(P1), (P2) and (P3) remain. By construction, D is last in the order, hence if D ∈ 2(E) or D ∈$33 (2(E)), the

necessary order condition is guaranteed to hold. When E ∈ 2(D) or E ∈$33 (2(D)), then the _2 (E) = _1(E)

ensures that no new order requirement appears. Similarly, ∅ order worked for other pairs of vertices.

Thus, (P1), (P2) and (P3) all hold. By focussing the flow and relabelling one vertex labelled with . at a

time, we can get rid of all . measured vertices, ending the proof. �

Thanks to the above lemmata, instead of looking for _ resulting in Pauli flow (2,≺), we can just look

for _ into Pauli measurements resulting in a focussed Pauli flow (2,∅).

Finally, we can omit cases with � ∩$ ≠ ∅, by reducing those to have � ∩$ = ∅.

Theorem 3.10. Let (�, �,$,_) be a labelled open graph. Then (�, �,$,_) has Pauli flow if and only if

(�′, � \$,$ \ �,_) does, where �′ is � with vertices in � ∩$ removed.

Proof. Suppose E ∈ �∩$. A correction function 2 in Pauli flow has codomain P(�) and E ∈ � so E cannot

be used in any correction set. Further, as E ∈$, E is not measured and so 2(E) is undefined and the partial

order does not operate on E. Therefore E does not impact any of the nine flow conditions in any way. �

Combining the above simplifications, we can restrict FlowSearch problem to cases (�, �,$) with

� ∩$ = ∅, where we are looking for _ : $→ {-, /} such that (�, �,$,_) has focussed Pauli flow.

Since the removal of /-measured vertices preserves Pauli flow (which we mention later), it is also

possible to view the above problem as follows: given (�, �,$), is there an induced open subgraph with

the same set of inputs and outputs, that has Pauli flow with only - labels?

124 Pauli Flow on Open Graphs with Unknown Measurement Labels

3.2 Algebraic interpretation of flow

Unless specified otherwise, from now on, we only consider (�, �,$) with �∩$ = ∅. The key construction

used to translate the FlowSearch problem into a linear algebra problem is the reduced adjacency matrix

[25] (note, that in that paper the word induced is used in place of reduced).

Definition 3.11. Let (�, �,$) be an open graph. We define the adjacency matrix �� over F2 as a

|+ | × |+ | matrix with (��)D,E = 1 when DE ∈ � and 0 otherwise. The reduced adjacency matrix �� |
$

�

is the |$ | × |� | minor of the adjacency matrix of �. The minor is obtained by removing the outputs’ rows

and the inputs’ columns.

The key property of the reduced adjacency matrix linking it to the Pauli flow is right-invertibility. In

[25], a version lining -. measurements only to the right-invertibility was established. Subsequently, this

theorem was extended by Miriam Backens to work for both - and -. measurements:

Theorem 3.12. Let G = (�, �,$,_) be a labelled open graph with _(E) ∈ {-, -. } for all E ∈ $. Then G

has focussed Pauli flow if and only if there exists a directed graph � = (+, ��) satisfying the following

two properties:

• Let � ′
�
= {(D, E) ∈ �� | _(D) = -. }, then the subgraph �′ = (+, � ′

�
) is acyclic,

• �� |
$

�
·�� |

�

$
= �3

$
, where �� |

�

$
is the � ×$ minor of �� obtained by removing inputs’ rows and

outputs’ columns.

Further, the columns of �� |
�

$
encode the correction sets of the vertices in $.

The proof has not yet been published [28]. Note, that in the case of - measurements only, the graph

�′ in the theorem 3.12 is empty and hence it is automatically acyclic. Hence, the condition simplifies to

just the existence of the right inverse.

Corollary 3.13. Let G = (�, �,$,_) be a labelled open graph with _(E) = - for all E ∈ $. Then G has

focussed Pauli flow if and only if �� |
$

�
is right-invertible over F2. Further, the columns of a potential

right inverse of �� |
$

�
encode the correction sets of the vertices in $.

See figure 2a for an example of using corollary 3.13 and figure B.1 in appendix B for an example of

using theorem 3.12.

The / labelled vertices can be removed and introduced without affecting flow existence, as captured

by the following lemmata. In these, � [�] stands for the subgraph of � induced by vertices in �.

Lemma 3.14 (Removal of / measured vertex [34, Lemma D.6]). Let (�, �,$,_) be a labelled open

graph with Pauli flow and with _(E) = / for some E ∈ $. Then E can be removed without affecting flow

existence. In other words, (� [+ \ {E}], �,$,_ |
$\{E}

) has Pauli flow.

Lemma 3.15 (Introduction of / measured vertex [23, Proposition 4.1]). Let (�, �,$,_) have Pauli flow.

Then a new / measured vertex E ∉ + can be added to �, with any edges from E, without affecting flow

existence. In other words, any labelled open graph (�′, �,$,_′) has Pauli flow, where:

+ (�′) =+ ∪ {E} �′[+] = � _′ |+\$ = _ _′ (E) = /

The proof for the removal appears in [34, Lemma D.6], and is a reformulation of [2, Lemma 4.7].

Now, we extend the corollary 3.13 to also capture / measurements, by considering a slightly different

matrix that we call the flow matrix.

P. Mitosek 125

Definition 3.16 (Flow matrix). Let G = (�, �,$,_) be a labelled open graph with _(E) ∈ {-, /} for all

E ∈ $. Let �38B2 be � with / labelled vertices disconnected from the rest of the graph. We define

the flow matrix "G as the sum of the reduced adjacency matrix ��38B2
|$
�

and matrix that has 1 at the

intersections of E row and E column for all E with _(E) = / , and 0 otherwise.

Theorem 3.17. Let G = (�, �,$,_) be a labelled open graph with _(E) ∈ {-, /} for all E ∈ $. Then G

has focussed Pauli flow if and only if "G is right-invertible over F2.

Proof. Let �38B2 be as in the definition 3.16. Let �- = (+-, �-) be � (equivalently �38B2) with

/-labelled vertices removed from the rest of the graph. Then, the following facts are equivalent:

1. G has focussed Pauli flow,

2. G- := (�-, �,$,_-) has focussed Pauli flow, where _- = _ |{
E∈$ |_(E)=-

} ,
3. ��-

|
+-\$

+-\�
is right-invertible,

4. "G- is right-invertible,

5. "G38B2 is right-invertible, where G38B2 = (�38B2 , �,$,_),

6. "G is right-invertible.

(1⇔ 2) : follows from lemmata 3.14 and 3.15 – the / labelled vertices can be removed and introduced

without affecting flow existence; the existences of Pauli flow and focussed Pauli flow are equivalent by

theorem 3.7.

(2⇔ 3) : follows from corollary 3.13, as in �- there are no / labelled vertices.

(3⇔ 4) : the notions of reduced adjacency matrix and flow matrix agree in the case of only -

measurements, thus ��-
|
+-\$

+-\�
= "G-.

(4⇔ 5) : if there are no / labelled vertices in �38B2 , then �38B2 = �- and matrices from 4 and 5

are equal. Otherwise, let E ∈ $ be any vertex with _(E) = / . In the flow matrix "G38B2 , the E row and

the E column are 0 everywhere except for the intersection, as E is disconnected from other vertices by

assumption. The intersection of the E row and the E column contains 1 by the construction of the flow

matrix. Thus, "G38B2 is right-invertible if and only if its minor obtained by removing the E row and the E

column is right-invertible. Performance of such removals for all / labelled vertices results in "G-, and

thus "G38B2 is right-invertible if and only if "G- is.

(5⇔ 6) : by construction of flow matrix, "G38B2 = "G and the equivalence follows.

Thus, 1⇔ 6, as required. �

The above theorem will be essential in the next subsection. See figure 2b for an example.

3.3 Reduction to MaxRank

Finally, we can transform FlowSearch into a special case of MaxRank problem.

Definition 3.18. Let (�, �,$) be any open graph, i.e. an input for FlowSearch. We define the variable

flow matrix " ′
�,�,$

as a matrix obtained as follows. (As a reminder � :=+ \ {� ∪$}.)

1. Start with the reduced adjacency matrix �� |
$

�
.

2. For each E ∈ �, multiply the E row by a variable GE and the E column by a variable HE.

3. For each E ∈ �, set the intersection of the E row and the E column to (1+ GE) (1+ HE).

For an example, consider figure 2c.

126 Pauli Flow on Open Graphs with Unknown Measurement Labels

©«

I J K L M N

G 1 1 0 0 0 0 G

H 1 1 1 0 0 0 H

I 0 0 0 0 1 1 I

J 0 0 0 0 1 1 J

K 0 0 0 1 0 0 K

I J K L M N

ª®®®®®¬
(a) The reduced adjacency matrix

of the graph in 1a. This matrix is

not right-invertible, so there is no

Pauli flow.

©«

I J K L M N

G 1 0 0 0 0 0 G

H 1 0 1 0 0 0 H

I 0 0 0 0 1 1 I

J 0 1 0 0 0 0 J

K 0 0 0 1 0 0 K

I J K L M N

ª®®®®®¬
(b) The flow matrix of the graph in

1b. This matrix is right-invertible,

so there is Pauli flow. It differs

from the matrix in 2a in vertex �.

©«

I J K L M N

G H� H� 0 0 0 0 G

H H� H� H� 0 0 0 H

I I� 0 0 0 G� G� I

J 0 I� 0 0 G� G� J

K 0 0 I� G� 0 0 K

I J K L M N

ª®®®®®¬
(c) The variable flow matrix of the open

graph in 1 (ignoring the labellings). IE
is a shorthand for (1+ GE) (1+ HE) where

E ∈ {�,�,�}.

Figure 2: Examples of the matrix interpretations of flows for labelled open graphs from 1

Theorem 3.19. The answer to the (�, �,$) instance of FlowSearch is)AD4 if and only if there exists a

valuation to {0,1} of all variables in " ′
�,�,$

resulting in a right-invertible matrix, i.e. when the answer

to the instance of MaxRank given by the pair (" ′
�,�,$

, |$ |) is “YES”.

Proof. By theorem 3.9, we can consider only _ with codomain {-, /} and by theorem 3.10, we can can

assume � ∩$ = ∅.

(⇒): let _ : $→ {-, /} be a measurement labelling for which (�, �,$,_) has focussed Pauli flow.

For E ∈ �, send GE and HE to 1 when _(E) = - and to 0 when _(E) = / . Then, under this valuation,

" ′
�,�,$

evaluates to "(�,�,$,_) which is right-invertible by theorem 3.17.

(⇐): let f be a valuation sending variables in " ′
�,�,$

to {0,1} for which " ′
�,�,$

is right-invertible.

Suppose f (GE) = 0 ≠ 1 = f (HE) for some E ∈ �. Under f, the E row in " ′
�,�,$

equals 0 everywhere, and

the matrix cannot be right-invertible as it does not have maximal row rank, contradiction. Now, suppose

f (GE) = 1 ≠ 0 = f (HE) for some E ∈ �. Under f, the E column in " ′
�,�,$

equals 0 everywhere. Changing

f (HE) to 1 could change the entries of the E column, otherwise leaving the matrix unchanged. Thus,

such a change cannot lower the row rank and " ′
�,�,$

would stay right-invertible. Hence, there exists

a valuation f′ resulting in right-invertible matrix with f′(GE) = f′(HE) for all E ∈ �. Now, we define

_ : $→ {-, /} as follows. For 8 ∈ �: _(8) = - . For E ∈ �, set _(E) = - when f′(GE) = f′(HE) = 1 and

(E) = / when f′(GE) = f′(HE) = 0. Then, "(�,�,$,) equals " ′
�,�,$

under f′. Thus, "(�,�,$,_) is

right-invertible and by theorem 3.17, (�, �,$,_) has focussed Pauli flow, ending the proof. �

Two variables GE and HE for each E ∈ � might seem unnecessary. Multiplying both the row and the

column by GE and setting the intersection to 1 + GE would also work. The problem is that then each

variable no longer appears in one column or row only, and theorem 2.7 would not work.

Theorem 3.1 (Repeated). FlowSearch is in RP.

Proof. By theorem 3.19, answering (�, �,$) instance of FlowSearch is equivalent to answering instance

of MaxRank given by (" ′
�,�,$

, |$ |) over the field F2. The entries of " ′
�,�,$

are all multi-affine – they

are either 0, 1, a variable, a product of two different variables or (GE +1) (HE +1) for some E ∈ �. Hence,

such matrix instances satisfy all conditions of theorem 2.7, and the problem is in RP. �

An analogous procedure can also determine whether a partial labelling _ : $ ↩→ {-, /} can be

extended to a full labelling with flow. To do so, rather than using MaxRank on " ′
�,�,$

, we can consider

P. Mitosek 127

it on " ′
�,�,$

with some variables evaluated to 1 or 0 depending on _. It means, that the problem of

finding _ such that (�, �,$,_) has Pauli flow is also solvable in random polynomial time, as captured by

the following corollary with initial _ = ∅.

Corollary 3.20. Given an open graph (�, �,$) and a partial measurement labelling _ with codomain

{-, /}, it is in RP to check if _ can be extended to a full labelling _′ such that (�, �,$,_′) has Pauli flow.

The pseudocodes of the algorithms arising from the above theorems and theorem 2.7 can be found in

the appendix C. In the appendix D, we discuss the complexity and the possible implementation.

3.4 Inputs and outputs

Here, we show that given a labelled open graph with Pauli flow, it is always possible to reduce the

number of outputs to match the number of inputs while preserving the existence of Pauli flow for some

measurement labelling.

Theorem 3.3 (Repeated). Suppose (�, �,$,_) has Pauli flow and |$ | > |� |. Then there exists a subset

$′ ⊆ $ such that |$′ | = |� | and a labelling _′ such that (�, �,$′,_′) has Pauli flow.

Proof. Let " = "(�,�,$,_) be the flow matrix of (�, �,$,_) with Pauli flow and with |$ | > |� |. By

theorem 3.17, " is right-invertible. Hence, " has |$ | × |$ | invertible minor. Let � be the set of vertices

corresponding to the columns that are not in such minor. Suppose that > ∈ � ∩$. The output > can

be removed from the graph without breaking the flow existence – " without > column still contains an

invertible square minor of maximal size. By lemma 3.15, we can equivalently change > to be / labelled

without breaking flow existence. Now, assume that � ∩$ = ∅. In the flow matrix, the column and row

of E with _(E) = / are 0 except for the intersection. Therefore, the E column must be included in the

maximal invertible minor and thus E ∉ �. Hence, � is a subset of the set of - labelled vertices. Let

E ∈ �. We can remove E from the graph, keeping the flow existence: removal of E column does not impact

right-invertibility, and removal of E row cannot break right-invertibility either – other rows would remain

linearly independent. By lemma 3.15, E can be reintroduced with the same neighbours as previously, but

with _(E) = / . The same change can be applied to all vertices in �. Thus, if |$ | > |� | it is always possible

to decrease the number of outputs or - measured vertices. As the second does not affect |$ | > |� |, by

repeating this process, eventually the number of outputs must decrease and match |� |. �

For examples, see figure E.1 in the appendix E. The procedure used in the proof above can be

efficiently implemented by utilizing the basis-finding algorithm i.e. Gaussian elimination. The basis-

finding procedure has another usage. In the case of - labelling only, suppose that we are given $ but not

�. We can then find � with |� | = |$ | resulting in flow, or determine that no flow exists for any set of inputs.

Lemma 3.21. Let � be a graph and $ ⊆ + . Let _ : $→ {-}. Then either (�, �,$,_) does not have

Pauli flow for any �, or (�, �,$,_) has Pauli flow for some � with |� | = |$ |.

Proof. Consider (�,∅,$,_). Suppose that it does not have Pauli flow. Then, the reduced adjacency

matrix of (�,∅,$) is not right-invertible. Changing inputs to a different set than ∅ corresponds to

the removal of columns but not rows from the reduced adjacency matrix – it cannot make the matrix

right-invertible. Hence there is no � for which (�, �,$,_) has Pauli flow. Conversely, if (�,∅,$,_) has

Pauli flow, then we can choose |$ | × |$ | minor from the reduced adjacency matrix. The columns that

are not chosen can be removed without breaking the flow, i.e. the corresponding vertices can be changed

to be inputs. Note, that some output could be changed to also be an input. This process always turns

|+ | − |$ | = |$ | vertices into inputs, which ends the proof. �

128 Pauli Flow on Open Graphs with Unknown Measurement Labels

Finally, again in the case of - labelling only, suppose that we are given inputs. Can we find a minimal

(smallest) set of outputs resulting in Pauli flow? The answer is yes.

Lemma 3.22. Let � be a graph and � ⊆ + . Let _(E) = - for E ∈ + . Then a minimal $ resulting in

(�, �,$,_ |
$
) having Pauli flow can be efficiently found.

Proof. Let "∅ be the reduced adjacency matrix of (�, �,∅,_). Let � be a set of rows forming the basis

of the space given by all rows. Let � be the set of vertices whose rows are not in �. Then $ = � is

the required minimal set – clearly (�, �,$,_ |
$
) has Pauli flow – in its reduced adjacency matrix "$

the rows are linearly independent, so the matrix is right-invertible. Also, $ is minimal – any smaller set

$′ of outputs cannot result in a right-invertible reduced adjacency matrix, as such matrix would have

more rows than "$, and all of its rows would be from "∅. But "$ has the maximal number of linearly

independent rows, as those rows form a basis of the space spanned by the rows of "∅. Note, that some

inputs could be changed to also be outputs. �

4 Conclusions and further work

We have shown that given an open graph it is in RP to determine whether there exists a measurement

labelling for which the open graph has Pauli flow. In other words, there is a random polynomial time

algorithm deciding whether an open graph state can be used for any type of deterministic computation.

To obtain this result, we developed an algebraic interpretation of flow for the case with two Pauli

measurements - and / , and then performed a reduction to a known problem from computational

complexity. We have also shown that the algebraic interpretation can be useful when looking for the

necessary properties that a set of inputs or outputs must satisfy. In particular, we showed that it is always

possible to reduce the number of outputs to match the number of inputs when it is allowed to change some

measurement labels to / . Our results contribute to the general picture of what the Pauli flow structure is

and which open graphs can exhibit it.

Sometimes a graph state can be prepared, but it might be difficult to check if such a state can be useful

in MBQC. A possible approach can be checking other states in orbit [1]. Our result can be interpreted

as answering whether an open graph can be used in any form of quantum computation, or to give some

conditions on such computation that are necessary to achieve deterministic labelled open graphs.

The remainder is a discussion of possible future work.

Polynomial time When showing that some problem, FlowSearch in our case, is in RP, it is natural to

ask whether a problem is also in P. It would be interesting to modify reduction to MaxRank to obtain

instances for which polynomial time algorithms exist, like the instances in [18].

Other measurements The main trick we have used to show FlowSearch ∈ RP, was the restriction of

possible measurements to Pauli - and / measurements for which we developed algebraic interpretation.

A similar interpretation of -. planar measurements is known [25] and may be extended to allow Pauli /

measurements, but the structure is harder to work with due to the partial order requirements. Extending

our results to also work for -. and / measurements is an interesting direction for further research –

- and / measurements result in the Clifford fragment which can be classically simulated [15], while

-. planar measurements are sufficient for universality even on cluster states [21]. It would also be

interesting to check if our approach can be used to minimise the number of vertices that need to be /

measured to have flow. The main problem with adapting the presented methods to finding labels with

P. Mitosek 129

planar measurements is the order. Without verifying the order (ignoring conditions (P1), (P2), (P3)), a

reduction to the MaxRank problem should still be possible. However, order changes everything. There

might be a flow where a particular vertex has a label - or / . Yet, measuring such vertex in any plane can

break the flow.

Altering the set of edges Another problem that can be interpreted as MaxRank instance is finding

how to change the set of edges to get an open graph with flow. For instance, when all non-outputs are -

labelled, we can put a new variable in the place of 0 entries corresponding to the lack of an edge between

vertices. An interesting question would be to determine how many edges must be added to get flow or

how many must be removed. If such a problem is tractable, it could have practical usage, where given

an open graph state one could say how far the state is from one allowing deterministic computation. The

number of edges that need to be flipped corresponds to the number of �/ gates that must be applied.

Circuit extraction Our results also connect to the ZX calculus, where Pauli flow is a necessary condition

for efficient circuit extraction [34]. It would be interesting to expand on this connection, for instance, by

attempting the classification of small open graphs, that, when contained in ZX diagram, are guaranteed

to break flow, and thus should be avoided in any form of optimization utilizing ZX. Another connection

could be circuit extraction from phase-free ZH – - and / measurements are sufficient for universality

in MBQC on hypergraph states [36]. There, the errors can be multi-qubit byproducts and their fixing is

done by switching measurement bases. Our method of checking the existence of measurement labelling

resulting in Pauli flow could be helpful when looking for measurements that can be swapped without

removing the property of determinism (i.e. Pauli flow) in the subparts without any hyperedges.

Acknowledgement

I thank Miriam Backens, Tommy McElvanney, and Korbinian Staudacher for helpful discussions. Special

thanks go to my supervisor Miriam Backens, for sharing theorem 3.12 with me. I also thank anonymous

reviewers for their useful comments.

References

[1] Jeremy C. Adcock, Sam Morley-Short, Axel Dahlberg & Joshua W. Silverstone (2020): Mapping

Graph State Orbits under Local Complementation. Quantum 4, p. 305, doi:10.22331/q-2020-08-07-305.

arXiv:1910.03969.

[2] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021):

There and Back Again: A Circuit Extraction Tale. Quantum 5, p. 421, doi:10.22331/q-2021-03-25-421.

arXiv:2003.01664.

[3] Magali Bardet, Maxime Bros, Daniel Cabarcas, Philippe Gaborit, Ray Perlner, Daniel Smith-Tone, Jean-

Pierre Tillich & Javier Verbel (2020): Improvements of Algebraic Attacks for Solving the Rank Decoding

and MinRank Problems. In Shiho Moriai & Huaxiong Wang, editors: Advances in Cryptology – ASI-

ACRYPT 2020, Lecture Notes in Computer Science, Springer International Publishing, Cham, pp. 507–536,

doi:10.1007/978-3-030-64837-4 17.

[4] Anne Broadbent, Joseph Fitzsimons & Elham Kashefi (2009): Universal Blind Quantum Computa-

tion. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526,

doi:10.1109/FOCS.2009.36.

https://doi.org/10.22331/q-2020-08-07-305
https://arxiv.org/abs/1910.03969
https://doi.org/10.22331/q-2021-03-25-421
https://arxiv.org/abs/2003.01664
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1109/FOCS.2009.36

130 Pauli Flow on Open Graphs with Unknown Measurement Labels

[5] Daniel E. Browne, Elham Kashefi, Mehdi Mhalla & Simon Perdrix (2007): Generalized Flow and

Determinism in Measurement-Based Quantum Computation. New Journal of Physics 9(8), p. 250,

doi:10.1088/1367-2630/9/8/250.

[6] Jonathan F. Buss, Gudmund S. Frandsen & Jeffrey O. Shallit (1999): The Computational Complexity

of Some Problems of Linear Algebra. Journal of Computer and System Sciences 58(3), pp. 572–596,

doi:10.1006/jcss.1998.1608.

[7] Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagram-

matics. New Journal of Physics 13(4), p. 043016, doi:10.1088/1367-2630/13/4/043016. arXiv:0906.4725.

[8] Vincent Danos & Elham Kashefi (2006): Determinism in the One-Way Model. Physical Review A 74(5), p.

052310, doi:10.1103/PhysRevA.74.052310.

[9] Niel de Beaudrap (2007): A Complete Algorithm to Find Flows in the One-Way Measurement Model,

doi:10.48550/arXiv.quant-ph/0603072. arXiv:quant-ph/0603072.

[10] Niel de Beaudrap (2008): Finding Flows in the One-Way Measurement Model. Physical Review A 77(2), p.

022328, doi:10.1103/PhysRevA.77.022328.

[11] Niel de Beaudrap, Aleks Kissinger & John van de Wetering (2022): Circuit Extraction for ZX-Diagrams Can

Be #P-Hard. In: 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022),

LIPIcs 229, pp. 119:1–119:19, doi:10.4230/LIPIcs.ICALP.2022.119.

[12] Richard A. Demillo & Richard J. Lipton (1978): A Probabilistic Remark on Algebraic Program Testing.

Information Processing Letters 7(4), pp. 193–195, doi:10.1016/0020-0190(78)90067-4.

[13] Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020): Graph-Theoretic Simpli-

fication of Quantum Circuits with the ZX-calculus. Quantum 4, p. 279, doi:10.22331/q-2020-06-04-279.

arXiv:1902.03178.

[14] Sergey B. Gashkov & Igor S. Sergeev (2013): Complexity of Computation in Finite Fields. Journal of

Mathematical Sciences 191(5), pp. 661–685, doi:10.1007/s10958-013-1350-5.

[15] Daniel Gottesman (1998): The Heisenberg Representation of Quantum Computers,

doi:10.48550/arXiv.quant-ph/9807006. arXiv:quant-ph/9807006.

[16] Nicholas J. A. Harvey, David R. Karger & Sergey Yekhanin (2006): The Complexity of Matrix Completion.

In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm - SODA ’06, ACM

Press, Miami, Florida, pp. 1103–1111, doi:10.1145/1109557.1109679.

[17] Matt Hostetter (2020): Galois: A performant NumPy extension for Galois fields.

https://github.com/mhostetter/galois. (accessed February 2024).

[18] Gábor Ivanyos, Marek Karpinski & Nitin Saxena (2010): Deterministic Polynomial Time Algorithms for

Matrix Completion Problems. SIAM Journal on Computing, doi:10.1137/090781231.

[19] Frank Luebeck (2021): Conway Polynomials for Finite Fields.

https://www.math.rwth-aachen.de/∼Frank.Luebeck/data/ConwayPol/index.html. (accessed February

2024).

[20] Meena Mahajan & Jayalal M. N. Sarma (2010): On the Complexity of Matrix Rank and Rigidity. Theory of

Computing Systems 46(1), pp. 9–26, doi:10.1007/s00224-008-9136-8.

[21] Atul Mantri, Tommaso F. Demarie & Joseph F. Fitzsimons (2017): Universality of Quantum Computation

with Cluster States and (X, Y)-Plane Measurements. Scientific Reports 7(1), p. 42861, doi:10.1038/srep42861.

[22] Damian Markham & Elham Kashefi (2014): Entanglement,Flow and Classical Simulatability in Measurement

Based Quantum Computation. In Franck van Breugel, Elham Kashefi, Catuscia Palamidessi & Jan Rutten,

editors: Horizons of the Mind. A Tribute to Prakash Panangaden: Essays Dedicated to Prakash Panangaden

on the Occasion of His 60th Birthday, Lecture Notes in Computer Science, Springer International Publishing,

Cham, pp. 427–453, doi:10.1007/978-3-319-06880-0 22.

https://doi.org/10.1088/1367-2630/9/8/250
https://doi.org/10.1006/jcss.1998.1608
https://doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0906.4725
https://doi.org/10.1103/PhysRevA.74.052310
https://doi.org/10.48550/arXiv.quant-ph/0603072
https://arxiv.org/abs/quant-ph/0603072
https://doi.org/10.1103/PhysRevA.77.022328
https://doi.org/10.4230/LIPIcs.ICALP.2022.119
https://doi.org/10.1016/0020-0190(78)90067-4
https://doi.org/10.22331/q-2020-06-04-279
https://arxiv.org/abs/1902.03178
https://doi.org/10.1007/s10958-013-1350-5
https://doi.org/10.48550/arXiv.quant-ph/9807006
https://arxiv.org/abs/quant-ph/9807006
https://doi.org/10.1145/1109557.1109679
https://github.com/mhostetter/galois
https://doi.org/10.1137/090781231
https://www.math.rwth-aachen.de/~Frank.Luebeck/data/ConwayPol/index.html
https://doi.org/10.1007/s00224-008-9136-8
https://doi.org/10.1038/srep42861
https://doi.org/10.1007/978-3-319-06880-0_22

P. Mitosek 131

[23] Tommy McElvanney & Miriam Backens (2023): Complete Flow-Preserving Rewrite Rules for MBQC Pat-

terns with Pauli Measurements. Electronic Proceedings in Theoretical Computer Science 394, pp. 66–82,

doi:10.4204/EPTCS.394.5.

[24] Tommy McElvanney & Miriam Backens (2023): Flow-Preserving ZX-calculus Rewrite Rules for Opti-

misation and Obfuscation. Electronic Proceedings in Theoretical Computer Science 384, pp. 203–219,

doi:10.4204/EPTCS.384.12. arXiv:2304.08166.

[25] Mehdi Mhalla, Mio Murao, Simon Perdrix, Masato Someya & Peter S. Turner (2014): Which Graph States Are

Useful for Quantum Information Processing? In Dave Bacon, Miguel Martin-Delgado & Martin Roetteler,

editors: Theory of Quantum Computation, Communication, and Cryptography, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 174–187, doi:10.1007/978-3-642-54429-3 12.

[26] Mehdi Mhalla & Simon Perdrix (2008): Finding Optimal Flows Efficiently. In Luca Aceto, Ivan Damgård,

Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz, editors: Automata,

Languages and Programming, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 857–868,

doi:10.1007/978-3-540-70575-8 70.

[27] Mehdi Mhalla, Simon Perdrix & Luc Sanselme (2022): Characterising Determinism in MBQCs Involving

Pauli Measurements, doi:10.48550/arXiv.2207.09368. arXiv:2207.09368.

[28] Piotr Mitosek & Miriam Backens: Unpublished Upcoming Paper.

[29] Øystein Ore (1921): Über Höhere Kongruenzen. Norsk Matematisk Forenings Skrifter, Grøndahl.

[30] Robert Raussendorf & Hans J. Briegel (2001): A One-Way Quantum Computer. Physical Review Letters

86(22), pp. 5188–5191, doi:10.1103/PhysRevLett.86.5188.

[31] Robert Raussendorf, Daniel E. Browne & Hans J. Briegel (2002): The One-Way Quantum Computer

- a Non-Network Model of Quantum Computation. Journal of Modern Optics 49(8), pp. 1299–1306,

doi:10.1080/09500340110107487. arXiv:quant-ph/0108118.

[32] Robert Raussendorf, Daniel E. Browne & Hans J. Briegel (2003): Measurement-BasedQuantum Computation

on Cluster States. Physical Review A 68(2), p. 022312, doi:10.1103/PhysRevA.68.022312.

[33] Jacob T. Schwartz (1980): Fast Probabilistic Algorithms for Verification of Polynomial Identities. Journal of

the ACM 27(4), pp. 701–717, doi:10.1145/322217.322225.

[34] Will Simmons (2021): Relating Measurement Patterns to Circuits via Pauli Flow. Electronic Proceedings in

Theoretical Computer Science 343, pp. 50–101, doi:10.4204/EPTCS.343.4. arXiv:2109.05654.

[35] Korbinian Staudacher, Tobias Guggemos, Sophia Grundner-Culemann & Wolfgang Gehrke (2023): Reduc-

ing 2-QuBit Gate Count for ZX-Calculus Based Quantum Circuit Optimization. EPTCS 394, pp. 29–45,

doi:10.4204/EPTCS.394.3.

[36] Yuki Takeuchi, Tomoyuki Morimae & Masahito Hayashi (2019): Quantum Computational Universal-

ity of Hypergraph States with Pauli-X and Z Basis Measurements. Scientific Reports 9(1), p. 13585,

doi:10.1038/s41598-019-49968-3.

[37] John van de Wetering (2020): ZX-calculus for the Working Quantum Computer Scientist,

doi:10.48550/arXiv.2012.13966. arXiv:2012.13966.

[38] Richard Zippel (1979): Probabilistic Algorithms for Sparse Polynomials. In Edward W. Ng, editor: Symbolic

and Algebraic Computation, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 216–226,

doi:10.1007/3-540-09519-5 73.

A More about MaxRank

In order to prove theorem 2.7, we need the following lemma.

Lemma A.1. A multi-affine polynomial is 0 over a finite field FB if and only if it is 0 over FB: for any

: ∈ Z+.

https://doi.org/10.4204/EPTCS.394.5
https://doi.org/10.4204/EPTCS.384.12
https://arxiv.org/abs/2304.08166
https://doi.org/10.1007/978-3-642-54429-3_12
https://doi.org/10.1007/978-3-540-70575-8_70
https://doi.org/10.48550/arXiv.2207.09368
https://arxiv.org/abs/2207.09368
https://doi.org/10.1103/PhysRevLett.86.5188
https://doi.org/10.1080/09500340110107487
https://arxiv.org/abs/quant-ph/0108118
https://doi.org/10.1103/PhysRevA.68.022312
https://doi.org/10.1145/322217.322225
https://doi.org/10.4204/EPTCS.343.4
https://arxiv.org/abs/2109.05654
https://doi.org/10.4204/EPTCS.394.3
https://doi.org/10.1038/s41598-019-49968-3
https://doi.org/10.48550/arXiv.2012.13966
https://arxiv.org/abs/2012.13966
https://doi.org/10.1007/3-540-09519-5_73

132 Pauli Flow on Open Graphs with Unknown Measurement Labels

Proof. This follows from [6, Lemma 25 and Corollary 26]. �

Because of the above, instead of testing whether a multi-affine polynomial is 0 over FB, we can test

whether it is 0 over some large field extension. In particular, the extension can be taken sufficiently large

to ensure that the Schwartz-Zippel lemma [29, 33, 12, 38] applies (adapted to FB: only):

Theorem A.2. Let % ∈ FB: [G1, . . . , G=] be a non-zero polynomial of total degree 3 over FB: . Let

01, . . . , 0= ∈ FB: be chosen at random uniformly. Then:

Pr[%(01, . . . , 0=) = 0] ≤
3

B:
.

We can now prove theorem 2.7.

Proof of theorem 2.7. Let ",A be a matrix and an integer forming an input to MaxRank satisfying the

conditions from the theorem statement. If A > min(<,=) or A < 0, the answer is “NO” and can be returned

immediately, so assume 0 ≤ A ≤ min(<,=). Consider any A × A minor " ′ of " . We show det" ′ is

multi-affine: consider any variable G in " ′. Then, G appears in at most one row or one column of " ′. By

performing Laplace expansion on " ′ in such row (column), we find that det" ′ is a sum of determinants

of (A −1) × (A −1) minors of " ′ that do not contain G multiplied by elements of the row (column) used

for the expansion that itself may contain G only in degree 1 due to multi-affinity assumption about matrix

entries. Therefore, G appears in degree at most 1 in det" ′ and the same for all other variables of det" ′,

so the determinant is multi-affine. Therefore, the method from [6, Theorem 28] applies. We present a

modified version for clarity.

Consider the following procedure. Let ? ≤ 1
2 be the desired error probability. It is sufficient to

consider ? = 1
2 , but we present also how to achieve arbitrarily small error probability. Given ",A, ?, let :

be such that FB: has at least C
?

elements, i.e. : =
⌈
logB

C
?

⌉
. Let 01, . . . , 0C be a randomly chosen valuation

of G1, . . . , GC from FB: . Let A0 = rank" (01, . . . , 0C), which can be found by Gaussian elimination i.e. in

polynomial time. The computations over finite field are possible in time polynomial in log2 B and : [14].

Return “YES” if and only if A0 ≥ A. We show, that the following procedure shows RP containment.

Suppose, that the actual answer to the instance is “YES”. Then, under some valuation, " has rank at

least A. Under such valuation, " must have A ×A reversible minor. Let " ′ be such minor. By the previous

part, det" ′ is multi-affine. Let 3 be the total degree of det" ′. Then, 3 ≤ C again by multi-affinity. By

lemma A.1, " ′ is 0 over FB if and only if it is 0 over FB: . Combining everything with the Schwartz-Zippel

theorem A.2, we get that:

Pr[det" ′(01, . . . , 0C) =F
B:

0] ≤
3

B:
≤

C

B:
≤

C

C/?
= ?

The same holds for all A × A minors of " that are invertible under some valuation. Hence, with error

probability at most ?, a random valuation from FB: results in a non-root of some A×A minor’s determinant

of " in which case rank of the minor under such valuation is A and so rank" is at least A, i.e. the procedure

above would find A0 ≥ A and return “YES”. Hence, the procedure described above returns the correct

answer with probability at least 1− ? ≥ 1
2 .

Now suppose, that the answer to the instance is “NO”. Then, all A × A minors of " must have

determinants equal 0 over FB. By multi-affinity, they are also equal 0 over FB: . Hence, a random

valuation 01, . . . , 0C always results in rank" (01, . . . , 0C) ≤ :. Hence, the procedure described above

returns “NO” with probability 1, ending the proof of containment in RP. �

P. Mitosek 133

Example A.3. Consider the following matrix over F2:

" =

©«

G1 0 1 0

0 G2G3 0 0

1 0 G1 0

G1 G2 G3 0

ª®®®¬
Setting G1 = 0 and G2, G3 = 1 results in " having rank 3. However, there is no valuation resulting

in the matrix having rank 4, as the fourth column contains 0s only. Hence, the answer to instances

(",1), (",2), (",3) of MaxRank is “YES”, but the answer to (",4) is “NO”.

Some closely related problems also defined in [6] include MinRank, Sing, and NonSing. MinRank

takes the same inputs as MaxRank and asks whether a rank ≤ A can be achieved. Sing and NonSing take

a square matrix and ask whether the matrix can be made singular and non-singular respectively.

In general, these problems are hard or sometimes unsolvable. For instance, MinRank is undecidable

when ' = Z, � = (= {0,1} [6]. The problems are very natural and often appear when working on any

linear algebra problems. Sing is useful in cryptography due to its hardness (for example, see [3]). It is

also interesting from a complexity perspective (for example, see [20]).

We only work with MaxRank over finite fields (in fact, later we only consider F2:). A variant where

each variable can appear at most once is in P. A slightly more general version where a variable can

appear in at most one row or one column but an unlimited number of times is also in P [18]. Note, that

this result is not stronger than the presented theorem 2.7, as the entries of the matrix there cannot include

products of variables. When each variable can appear at most twice in the matrix, but not necessarily in

one row or one column, the problem already becomes NP-complete [16].

B Reduced adjacency matrix invertibility for - and -. measurements

' in -.

(in -.

+

) in -.

,

* in -

(a) A labelled open graph with two inputs and

two outputs containing Pauli flow. Vertex *

is - labelled and all other non-outputs are -.

labelled.

'

(

+

)

,

*

(b) A directed graph � for the labelled open

graph from B.1a, obtained from theorem 3.12.

It contains a cycle. The corresponding �′

contains only one edge)* and is acyclic.

Figure B.1: An example of a labelled open graph with both - and -. measurements and explanation of

theorem 3.12 acting on it.

134 Pauli Flow on Open Graphs with Unknown Measurement Labels

©«

Z [\]

X 0 1 1 0 X

Y 0 1 0 1 Y

Z 0 1 0 0 Z

[1 0 0 0 [

Z [\]

ª®®®¬

(c) Reduced adjacency matrix of the labelled

open graph from B.1a.

©
«

X Y Z [

Z 0 0 0 1 Z

[0 0 1 0 [

\ 1 0 1 0 \

] 0 1 1 0]

X Y Z [

ª®®®
¬

(d) The inverse of matrix in B.1c, i.e. the

matrix �� |
�

$
where � is as in B.1b.

Figure B.1 (continued): An example of a labelled open graph with both - and -. measurements and

explanation of theorem 3.12 acting on it.

C Pseudocode for algorithms

In the pseudocode below, we do not explicitly construct an instance of matrix used for MaxRank problem,

as, in practice, it might be difficult to explicitly construct a matrix with variables that can be substituted

with values from large field extensions of F2. Instead, we only construct the matrix under some valuation.

Checks if a partial -, / labelling can be extended so that (�, �,$,_) has Pauli flow. The error

probability must be bounded above by ?.

1: procedure FlowSearchAux(�, �,$,_, ?)

2: "← �� |
$

�
⊲ Construction of reduced adjacency matrix

3: +0AB← ∅ ⊲ Initialize set of variables

4: for E ∈ � ⊲ Detecting unlabelled vertices

5: if _(E) is defined

6: if _(E) == / ⊲ Updating the row and the column of / labelled

vertex
7: multiply E row of " by 0

8: multiply E column of " by 0

9: set the intersection of E row and E column of " to 1

10: else

11: +0AB←+0AB∪ {GE , HE}

12: :←
⌈
log2

|+0AB |
?

⌉
⊲ Minimal : such that F2: has at least

|+0AB |
?

ele-

ments and the error probability is below ?.
13: Randomly sample f : +0AB→ F2:

14: for E ∈ � ⊲ Construction of " ′
�,�,$

under valuation f, com-

putations are done in F2:

15: multiply E row of " by f (GE)

16: multiply E column of " by f (HE)

17: set the intersection of E row and E column to (f (GE) +1) (f (HE) +1)

18: Gaussian eliminate "

19: return (rowrank" == |$ |)

Main algorithm, returns)AD4 if (�, �,$,_) has Pauli flow for some _. The error probability must

P. Mitosek 135

be bounded above by ?.

20: procedure FlowSearch(�, �,$, ?)

21: return FlowSearchAux(�, �,$,∅, ?)

Finds _ such that (�, �,$,_) has Pauli flow. Initially, checks whether any such _ exists, up to error

probability ?.

22: procedure FindLabelling(�, �,$, ?)

23: if not FlowSearch(�, �,$, ?)

24: return “NO _ EXISTS”

25: _← ∅ ⊲ Initialization of _

26: for E ∈ �

27: _(E) ← - ⊲ Inputs must be - labelled

28: for E ∈ �

29: 2>= 5 8A<E← �0;B4

30: 2DAA4=CE ← - ⊲ Initially attempt - label

31: while not 2>= 5 8A<E ⊲ Alternate - and / labels until one works

32: _(E) ← 2DAA4=CE
33: if FlowSearchAux(�, �,$,_, ?) ⊲ Note, that the error probability could be increased

at the cost of possibly more tries being required.
34: 2>= 5 8A<E ←)AD4

35: else

36: if 2DAA4=CE == -

37: 2DAA4=CE ← /

38: else

39: 2DAA4=CE ← -

40: return _

D Complexity of algorithms

The most memory-expensive part of the algorithms is the creation of " ′
�,�,$

under some valuation

from F2: where : depends on the desired error probability ? and the size of the input graph. Since

: =

⌈
log2

|+0AB |
?

⌉
and |+0AB | ≤ 2 · |�|, we get that : ∈ $

(
log2

|� |
?

)
. The elements of such fields can be

represented using $ (:) long vectors over F2 with the time complexity of basic arithmetic operations on

such field bounded above by $ (:2) [14]. Therefore, the memory requirement can be bounded above by

$
(
|$ | × |� | × log2

|� |
?

)
∈ $

(
=2 log2

=
?

)
where = = |+ |. The most time-expensive part of the algorithms

are the Gaussian eliminations. Each Gaussian elimination requires $
(
=3
)

basic operations in F2: . Thus,

a (not very efficient) upper bound for the time complexity is $
(
=3 log2

2
=
?

)
for the decision variant and

expected $
(
=4 log2

2
=
?

)
for the actual finding of the labelling resulting in a Pauli flow. Many programming

languages offer packages for efficient computation in finite fields. For instance, in Python one can use

Galois package [17] which works very well for F2: with : such that the precomputed Conway polynomial

[19] is known, for example, all 1 ≤ : ≤ 91. Such values of : are sufficient for all reasonable computations,

as the error can be dropped below 1
250 . At that point, it is more likely for a random cosmic beam to corrupt

the computation than to get an error due to the probabilistic nature of the algorithms.

136 Pauli Flow on Open Graphs with Unknown Measurement Labels

E Figure for reducing the number of outputs

�

�

�

�

�

�

�

�

(a) The open graph from 1b with flow matrix

from 2b. Columns given by vertices �, �, � ,

� and � form the basis. Thus, the output �

can be removed (equivalently: changed to be

/ labelled).

�

�

�

�

�

�

�

�

(b) An example of a labelled open graph with

Pauli flow in which no output can be imme-

diately changed to be / measured. However,

changing � to be / measured makes it possi-

ble to also change output� to be / measured.

©«

I J K L M N

G 1 1 0 0 0 0 G

H 1 1 1 0 0 0 H

I 0 0 0 0 1 1 I

J 0 0 0 0 1 0 J

K 0 0 0 1 0 0 K

I J K L M N

ª®®®®®¬

(c) Flow matrix of the open graph in E.1b.

Columns given by vertices �, � , �, �, �

form the basis. Thus, the vertex � can be

changed to be / labelled.

©«

I J K L M N

G 1 0 0 0 0 0 G

H 1 0 1 0 0 0 H

I 0 0 0 0 1 1 I

J 0 1 0 0 0 0 J

K 0 0 0 1 0 0 K

I J K L M N

ª®®®®®¬

(d) The flow matrix after switching vertex �

from E.1b to be / labelled. Columns given by

vertices �, �, � , �, � form a basis, so output

� can be removed (changed to be / labelled).

Figure E.1: Examples of labelled open graphs with more outputs than inputs, and how the number of

outputs can be reduced to match the number of inputs.

A. Dı́az-Caro and V. Zamdzhiev (Eds.):

Quantum Physics and Logic 2024 (QPL 2024)

EPTCS 406, 2024, pp. 137–152, doi:10.4204/EPTCS.406.7

© T. Laakkonen, K. Meichanetzidis & J. van de Wetering

This work is licensed under the

Creative Commons Attribution License.

A Graphical #SAT Algorithm for Formulae with Small

Clause Density

Tuomas Laakkonen1,a, Konstantinos Meichanetzidis1,b, John van de Wetering 2,c

1 Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, United Kingdom
2 Informatics Institute, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
a,b {tuomas.laakkonen, k.mei}@quantinuum.com, c john@vdwetering.name

We study the counting version of the Boolean satisfiability problem #SAT using the ZH-calculus, a

graphical language originally introduced to reason about quantum circuits. Using this, we generalize

#SAT to a weighted variant we call #SAT±, which is complete for the class GapP. We show there

is an efficient linear-time reduction from #SAT to #2SAT±, unlike previous reductions from #SAT

to #2SAT which blow up the size of the formula by a polynomial factor. Our main conceptual

contribution is that introducing weights to #SAT allows for more efficient translations, and we use

this to remove the dependence on clause width k in this case. We observe that DPLL-style algorithms

for #2SAT can be adapted to #2SAT± directly and hence the best-known upper bounds for #2SAT

apply. Applying an upper bound for #2SAT in terms of variables gives us upper bounds for #SAT in

terms of clauses and variables that are better than O∗(2n) for small clause densities of m
n
< 2.25, and

improve on previous average-case and worst-case bounds for k≥ 6 and k≥ 4, respectively. Applying

a similar bound in terms of clauses produces a bound of O∗(1.1740L) in terms of the length of the

formula. These are, to our knowledge, the first non-trivial upper bounds for #SAT that is independent

of clause size, and in terms of formula length, respectively. Based on a result of Kutzkov, we find

an improved bound on #3SAT for 1.2577 < m
n
≤ 7

3
. Finally, we use this technique to find an upper

bound on the complexity of calculating amplitudes of quantum circuits in terms of the total number

of gates. Our results demonstrate that graphical reasoning can lead to new algorithmic insights, even

outside the domain of quantum computing that the calculus was intended for.

1 Introduction

A graphical calculus is a language consisting of diagrams that can be transformed according to specific

graphical rewrite rules. Usually these diagrams correspond to some underlying mathematical object that

would be hard to reason about directly—like a matrix, tensor, relation or some combinatorial object—

and the rewrite rules preserve the semantics of this interpretation. There are for instance graphical calculi

for linear algebra [9, 11, 13, 57], for studying concurrency [10, 12], and for finite-state automata [41].

Most relevant for this paper are the graphical calculi developed for studying quantum computing.

The ZX-calculus [15, 16] can represent arbitrary linear maps between any number of qubits, and has

different versions of rewrite rules that are complete (meaning the rules can prove any true equality) for

various relevant fragments of quantum computing [2, 29, 31, 47]. It has seen use in a variety of areas

like optimizing quantum computations [5, 6, 21, 30, 32], more effectively classically simulating quantum

computations [33, 34], and several others like [14, 26, 45]; see [54] for a review.

There are a number of variations on the ZX-calculus that include different or additional genera-

tors [28, 48, 53]. The one we will use is the ZH-calculus [3, 4]. The ZH-calculus has turned out to be

useful in a variety of areas [22,49,50], but in particular it has been shown to naturally encode Boolean sat-

isfiability and counting problems [19]. We will build on this representation to show that this perspective

leads to better algorithms for formulae that have a low number of clauses.

http://dx.doi.org/10.4204/EPTCS.406.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

138 A Graphical #SAT Algorithm for Formulae with Small Clause Density

The Boolean satisfiability problem (SAT) is to determine whether a given Boolean formula has a

satisfying assignment of variables, and is a canonical example of an NP-complete problem. Worst-case

upper bounds for solving SAT instances can be phrased in terms of some relevant parameters for a

Boolean formula f : {0,1}n → {0,1} in conjunctive normal form: its number of variables n, the maxi-

mum clause size k, the number of clauses m, the clause density δ := m
n

, the number of literals L, and the

maximal number of clauses a variable participates in. For instance, for fixed k, there are bounds O∗(cn
k)

where ck < 2 [20]. Yamamoto [56] showed that SAT can be solved in O∗(20.3033m) time (independent

of k) . This hence implies a better than O∗(2n) runtime for clause densities δ < 3.297, regardless of

k. While for large k and large δ all known bounds converge to O∗(2n), for small k and arbitrary δ or

vice-versa, better bounds are possible.

In this paper we will study the problem #SAT, which asks how many solutions a Boolean formula

has. Hence, this is not a decision problem, but a counting problem. It is complete for the complexity class

#P, which is the ‘counting version’ of NP. #SAT is believed to be a significantly harder problem than

SAT. For instance, the entire polynomial hierarchy is contained in P#SAT [44]. As it is #P-complete, it has

applications in a variety of areas. For instance, tensor-network contraction (when suitably formalized) is

in #P [17]. #SAT also has applications in the field of artificial intelligence, where it is usually referred

to as model counting [7, Chapter 20]. Note that while for SAT the problem only becomes hard for k≥ 3,

for #SAT, the problem is already hard for k = 2, as #2SAT is #P-complete [46]. In fact, previously

in [37], we used the ZH-calculus to provide a proof of this and other reductions between related counting

problems. In this work, we make use of similar techniques in a different direction to give improved upper

bounds for #SAT.

We can phrase the known upper bounds to #SAT in terms of n, k, m and δ , although for #SAT much

less is known. Similarly to SAT, good bounds are known for small k — O∗(1.2377n) for k = 2 [51], and

O∗(1.6423n) for k = 3 [35]. There are also bounds known for arbitrary (but fixed) k in the worst-case

setting [20] and the average-case setting [55]. Unlike SAT, bounds in terms of m are not known for #SAT

independent of k, but only for k = 2, O∗(1.1740m) [52], and k = 3, O∗(1.4142m) [58].

In this paper we establish, to the best of our knowledge, the first algorithm for #SAT that is better than

brute-force for low clause density, independent of the clause size k. Specifically, we prove the following

theorem:

Theorem 1. Given a CNF formula φ : {0,1}n → {0,1}, we can count the number of satisfying assign-

ments

#(φ) = #{~x ∈ {0,1}n |φ(~x) = 1}

in time O∗(1.2377n+m≥3), where m≥3 is the number of clauses of width at least three. In particular, for

clause density δ < 2.2503, this gives a better than O∗(2n) bound, independent of maximal clause size k.

The worst-case bound for our algorithm improves the best-known bound for a variety of different

parameters. We summarize this in Tables 1 and 2. Note that these tables also contain our results based

on a more fine-grained analysis of #3SAT that is presented in Section 4.2, as well as a bound on #SAT

in terms of literals L that is presented in Section 4.1. Furthermore, assuming the strong exponential time

hypothesis, our results indicate that the ‘hardest’ density of #SAT must be some δ > 2.2503. As far as

we aware this is the first known bound on where the hardest clause density of #SAT lies.

While the bound of Theorem 1 is only effective at low densities, this is sufficient for many real-world

use cases – in particular, for the unweighted #SAT instances from the Model Counting Competition

2020 [24], we found that we improve on the previous best worst-case bound for 88% of instances, and

the average-case bound for 45% of instances, assuming the constant factors of both algorithms are equal

(we take k to be the 90th percentile of clause widths to avoid few large clauses biasing the result in our

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 139

Problem Previous Best New Bound Relevant Region Algorithm

#kSAT for k > 3 O∗(cn
k), ck→ 2 [20] O∗(1.2377n+m) δ < 2.2503 (as k→ ∞) [51]

#kSAT for k > 3 O∗(cn
k), ck→ 2 [20] O∗(1.1740L) L

n
< 4.3209 (as k→ ∞) [52]

#3SAT O∗(1.6423n) [35] O∗(1.6350n) 1.2577 < δ ≤ 7
3

[51] [35]

Table 1: The different bounds obtained in this paper, along with the corresponding best previous bounds,

and the underlying algorithm on which they are based. The given relevant regions are the intervals of

formula parameters where our bounds are valid and improve on the previous bound.

Improvement on k 2 3 4 5 6 7 8 9

Average-Case δ – – – – – < 0.968 < 1.106 < 1.207

Worst-Case δ – < 2.333∗ < 2.077 < 2.170 < 2.212 < 2.231 < 2.241 < 2.246

Table 2: The maximum densities δ at which our upper bound improves on other bounds, as dependent

on k. We include average [55] and worst-case bounds [20], both of which converge to δ = 2.2503 as k

increases. Entries marked with ‘–’ are where our bound is always worse. The entry marked ‘∗’ uses the

alternate bound presented in Section 4.2 and only improves on the previous best when also δ > 1.2577.

favor). However, it is important to note that practical #SAT solvers perform much better than predicted

by any of these upper bounds.

Our results are based on two observations. The first observation is that the standard CDP (Counting

Davis-Putnam) algorithm [8] for solving #SAT can actually solve a more general problem that we dub

#SAT±. In this problem, variables xi are labeled by a φi = ±1 phase that determines whether a solution

to f should be added or subtracted to the total, as determined by ∏~x φ xi

i . The second observation is that

we can translate an arbitrary #SAT instance into a #2SAT± instance. This removes the dependence on

maximal clause size k from our problem, and means we can use the known upper bounds to #2SAT that

apply directly to the problem #2SAT± as well.

We found this last observation by writing a #SAT instance as a ZH-diagram as described by de

Beaudrap et al. [19]. We extend their methods by relaxing the conditions on the types of diagrams we

consider, which shows that ZH-diagrams also naturally represent #SAT± instances. The translation from

a #SAT instance into a #2SAT± instance then follows from a known rewrite rule of the related ZX∆-

calculus [48]. We also find that #SAT± is in fact complete for the complexity class GapP [23], which is

#P closed under negation.

In Section 2 we recall the definition of the ZH-calculus, how to encode #SAT instances as ZH-

diagrams, and how the CDP algorithm for solving #SAT works. Then in Section 3 we present our main

results: we show how to interpret CDP graphically inside the ZH-calculus, and we find a graphical re-

duction from #SAT to #2SAT±. We end with a complexity analysis of combining this reduction with the

CDP algorithm, modified to work for #2SAT±. In Section 4 we study some variations on our algorithm:

Section 4.1 presents a new bound of O∗(1.1740L) for #SAT that is in terms of number of literals; Sec-

tion 4.2 gives a modified algorithm for #3SAT that is better for certain densities; and Section 4.3 presents

the problem of #SAT where variables are labeled by arbitrary complex numbers, which we conjecture

might be helpful for future improvements. In particular, in Appendix B we apply this technique to cal-

culating amplitudes of quantum circuits, and show an upper bound in terms of the number of gates. We

140 A Graphical #SAT Algorithm for Formulae with Small Clause Density

end with some concluding remarks in Section 5.

2 Preliminaries

We say that a Boolean formula φ : Bn→ B is in conjunctive normal form if we have

φ(x1, . . . ,xn) =
m
∧

i=1

(ci1∨ ci2∨ ·· ·∨ ciki
) (1)

where each ci j is xl or ¬xl for some l. We say that φ has n variables, m clauses, maximum clause width

k = maxi{ki}, density δ = m
n

and number of literals L = ∑i ki.

2.1 The ZH-calculus

We use the ZH-calculus, a graphical language designed for reasoning about quantum computations [3].

Here we only recall the definition of the generators; see [54, Section 8] for a more detailed overview.

The calculus is defined by rewrites on ZH-diagram, which are composed of two generators, called the

Z-spider and the H-box. These are given by

...

σ1
σ2

σn

= δσ1σ2...σn
=

{

1 σ1 = σ2 = · · ·= σn

0 otherwise

a ...

σ1
σ2

σn

= 1+(a−1)δ1σ1σ2...σn
=

{

a 1 = σ1 = σ2 = · · ·= σn

1 otherwise

(2)

along with their interpretation as tensors. Each H-box is labeled by a constant a ∈ C, with unlabeled H-

boxes corresponding to a = −1. Diagrams composed from these can be interpreted as tensor networks:

see [39, Section 4.1] for an introduction. In particular, parallel composition of generators corresponds

to composing the tensors via tensor product, and connecting wires between generators corresponds to

contracting the shared index. The tensors are symmetric over their indices, which implies that only

connectivity matters – diagrams with the same topology represent the same tensor network.

We also have the following derived generators, defined as

α ...
α= ...

1
2

α ...
...

= eiα (3)

where the first is an extension of the Z-spider with α ∈ C a phase, and the second is the X-spider. In

this work, we consider any ZH-diagram to represent its underlying tensor network - hence, if there are n

open wires, this represents a tensor with n indices. In particular, if there are no open wires we call this a

scalar diagram, since this represents a scalar.

The ZH-calculus is equipped with a set of rewrite rules, which are shown in Appendix A. They

are sound with respect to the tensor representation of ZH-diagrams, and also complete: for any pair of

diagrams with identical tensor representations, there is a proof that they are equal using these rules.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 141

2.2 #SAT instances as ZH-diagrams

In previous work, de Beaudrap et al. [19] gave a translation from #SAT instances into ZH-diagrams,

which we adopt here. In particular, a CNF Boolean formula φ is mapped into a ZH-diagram by translating

clauses to zero-labeled H-boxes, variables to Z-spiders and negation to X-spiders:

. . .
Variables ⇐⇒

0

. . .
Clauses ⇐⇒

π π
πNegation ⇐⇒ (4)

These are combined by connecting the variables to the clauses that they occur in. For unnegated literals,

they are connected with a wire. For negated literals, they are connected via an X-spider. This yields the

following

#(φ) =

0 0

G

ππ π π.
. . .

. . .
.

(5)

where G defines the connections. The scalar value of this diagram is exactly equal to the number of

satisfying assignments to φ . This can be simplified by canceling all adjacent X-spiders, leaving an X-

spider connected between a variable and a clause if and only if that variable is contained in that clause

unnegated. For example, for φ(x1,x2,x3,x4) = (¬x1∨¬x2∨¬x3)∧ (x2∨ x3)∧ (¬x1∨ x3)∧ (x3∨ x4), we

have:
0 0 0

π
π

π#(φ) =

x1 x2 x3 x4

0

π π (6)

Therefore, a diagram derived this way has m H-boxes, n Z-spiders, at most L X-spiders, and the maximum

clause size k corresponds to the maximum degree of any H-box. Note that a complete graphical calculus

for SAT was introduced recently in [27]. However, the semantics of their diagrams directly correspond

to a matrix of True or False values, and hence cannot represent #SAT instances directly. In this sense

it is similar to the modified ZH-diagrams of [19] where they set 2 = 1 and consider diagrams over the

Boolean semi-ring.

2.3 The CDP algorithm for #SAT

The Counting David-Putnam (CDP) algorithm is an algorithm for solving #SAT that was first introduced

in 1999 [8], as an extension of the DPLL algorithm [18] for SAT solving. It is effectively an optimized

depth-first search over all possible assignments of variables in a Boolean formula. The algorithm is based

on the following two rules:

1. Unit Propagation: The following rewrite holds for any clauses Ai and Bi not containing some

literal x:

x∧ (A1∨ x)∧ ·· ·∧ (An∨ x)∧ (B1∨¬x)∧ ·· ·∧ (Bm∨¬x) = B1∧ ·· ·∧Bm (7)

2. Variable Branching: For any variable x appearing in a formula f , the number of satisfying assign-

ments of f is the sum of the numbers of satisfying assignments for

f1 = f ∧ x and f2 = f ∧¬x (8)

142 A Graphical #SAT Algorithm for Formulae with Small Clause Density

Algorithm 1: The CDP [8] algorithm for solving #SAT.

Input: A CNF formula f with n variables and m clauses.

Output: The value of #{~x ∈ {0,1}n | f (~x) = 1}.
1 if f contains the clauses x and ¬x for some variable x then

2 return 0

3 end

4 if f has no clauses remaining then

5 return 2n

6 end

7 Apply unit propagation to f until it is no longer possible.

8 Pick a variable x that occurs in f and generate f1 = f ∧ x and f2 = f ∧¬x.

9 return CDP(f1)+CDP(f2)

since in each such assignment, either x or ¬x.

The CDP algorithm, given in Algorithm 1, applies these two rules recursively until either a contra-

diction occurs and so the formula is unsatisfiable, or the formula has no clauses remaining, in which case

the number of satisfying assignments is 2n. Clearly, at each recursive step, the formulas to be considered

have fewer variables than at the previous steps, so this procedure terminates.

This works better in practice than naively checking every assignment because unit propagation can

eliminate many variables, thus removing whole branches from the computation tree. Additionally, the

substitution of the assignment into the formula is done incrementally via unit propagation, rather than

repeated for every assignment.

3 Results

3.1 Interpreting CDP diagrammatically

To interpret CDP diagrammatically we will first see how the two rules apply to the ZH-diagrams for

#SAT instances detailed in Section 2.2. The proofs of these lemmas and all the following results are

postponed to Appendix E.

Lemma 1. The following diagrammatic equivalent to the unit propagation rule holds (without loss of

generality, we assume the literal to be propagated is not negated):

0

π π

π

0

0

0

0

...

...
...

...

...
... =

0

0

...

...
...

...

...
... (9)

It can be read as follows - on the left-hand side, the zero H-box with one leg is the clause with a single

non-negated literal x, the H-boxes on the left represent the clauses Bi∨¬x while the H-boxes on the right

represent the clauses Ai∨ x. On the right-hand side, we see that the clauses Bi remain, while the clauses

Ai ∨ x have been removed entirely. Because the variable x is now no longer mentioned, the Z-spider

representing it is also removed.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 143

Lemma 2. The following diagrammatic equivalent to the variable branching rule holds:

π

π

0

0

0

0

...

...
...

...

...
...

0

π π

π

0

0

0

0

...

...
...

...

...
...

0

π

π

0

0

0

0

...

...
...

...

...
...= +

On the left-hand side, we have a variable connected to arbitrary clauses, whereas on the right-hand side

we have two terms, each with a clause of one literal introduced onto the variable.

Modifications of the CDP algorithm are used extensively in practice, with some of the best solvers

like sharpSAT [43] and Cachet [42] making use of this technique. All the best-known theoretical upper

bounds on runtime are based on careful analysis of this algorithm. Note that we left the choice of variable

to branch on unspecified - choosing this wisely is crucial to obtaining good runtimes, as we will see in

the next section.

3.2 Reduction from #SAT to #2SAT±

Valiant [46] showed that #2SAT is #P-complete, which implies that there is a polynomial-time Turing

reduction from #SAT to #2SAT. Since good upper bounds are known for #2SAT, reducing #SAT to

#2SAT is one strategy to obtain better than brute-force bounds that are independent of k. However,

the polynomial-time reduction guaranteed by #P-completeness maps instances with n variables and m

clauses to instances with O(nm) variables, which destroys any advantage we could have gained from

faster #2SAT algorithms. Instead we present the following linear-time reduction to a weighted variant of

#SAT:

Lemma 3. The following diagrammatic equivalence holds:

0 =
0

0

π

π
π

...
... (10)

This directly generalizes the BW axiom of the ∆ZX-calculus [48].

This lemma allows us to remove clauses with degree greater than two, at the cost of introducing

extra Z-spiders. If we applied this to every clause in a #SAT diagram with n variables and m clauses, we

would have a diagram with n+m spiders and furthermore, with the exception of π-phases on m of these

spiders, this diagram would represent a #2SAT instance. Therefore, we will relax our definition of #SAT

to permit π-phases appearing on the Z-spiders (i.e. on the variables). Note that we have the following

π

. . .

. . .

kπ

. . .

. . .

kπ

π

. . .

. . .

kπ π kπ =
(21)
=

SFZ=

. . .

. . .

kπ ·
1

−1

if k = 0

if k = 1
(11)

which implies that these diagrams are the same as #SAT instances, but the sign is flipped whenever a

variable corresponding to a Z-spider with a π-phase is assigned to be true. The overall sign of the diagram

for a particular assignment of variables is given by the parity of the assignment of such variables. We

can extend the #SAT problem as follows to handle this natively.

144 A Graphical #SAT Algorithm for Formulae with Small Clause Density

Definition 1. The problem #SAT± is defined as follows. Given a CNF formula f (x1, . . . ,xn) with n

variables and m clauses, and a set N ⊆ {1, . . . ,n}, compute the quantity

#SAT±(f ,N) = ∑
~x∈Bn

even N-parity

f (~x) − ∑
~x∈Bn

odd N-parity

f (~x) (12)

where a vector~x ∈ B
n has even or odd N-parity if

⊕

i∈N xi = 0 or 1, respectively.

Theorem 2. #SAT± is GapP-complete

Since #SAT± is in GapP, which is strictly harder than #P (for instance, GapP is the closure of #P

under subtraction [23]), it may seem that an upper bound for this problem is guaranteed to be worse.

However, this is not the case, as the following diagrammatic arguments show that the DPLL algorithm

can be easily adapted to handle the sign change as Algorithm 2.

Lemma 4. The following diagrammatic equivalent to the variable branching rule holds for variables

with π-phases:

π

π

π

0

0

0

0

...

...
...

...

...
...

0

π π

π

0

0

0

0

...

...
...

...

...
...

0

π

π

0

0

0

0

...

...
...

...

...
...= − (13)

Lemma 5. The following diagrammatic equivalent to the unit propagation rule holds for variables with

π-phases:

π

0

π π

π

0

0

0

0

...

...
...

...

...
... =

0

0

...

...
...

...

...
... π

0 π

π

0

0

0

0

...

...
...

...

...
... =

0

0

...

...
...

...

...
...− +

(14)

With a smart choice of the variables to branch on, the worst-case runtime of Algorithm 2 can be

bounded in exactly the same way as the regular CDP algorithm and its variants. This is because the

bounds we consider here (e.g [25, 35, 51, 52]) are obtained from two principles:

• Exploiting the fact that the conjunction of unrelated #SAT instances combine multiplicatively.

Diagrammatically, this corresponds to the parallel composition of scalar diagrams being defined

as scalar multiplication. This remains true for the case when phases are present on Z-spiders.

• By analyzing which classes of sub-formulas can occur in any instance, and how they are affected

by the unit propagation and branching rules. Diagrammatically, this corresponds to a case analysis

on the possible subgraphs of the diagram, ignoring scalar factors. Since unit propagation and

branching are unaffected (except for scalar factors) by the presence of phases on the Z-spiders (see

Lemmas 4 and 5), this also applies directly in this case.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 145

Algorithm 2: The CDP± algorithm solving #SAT±.

Input: A CNF formula f with n variables and m clauses, and a set of variables N ⊆ {1, . . . ,n}.
Output: The value of #SAT±(f ,N).

1 if f contains an empty clause then

2 return 0

3 else if f has no clauses then

4 return 2n

5 else

6 Pick i ∈ {1, . . . ,n} according to some strategy.

7 f1← Unit-Propagate(f ∧¬xi)
8 f2← Unit-Propagate(f ∧ xi)
9 if i ∈ N then

10 return CDP±(f1,N)−CDP±(f2,N)
11 else

12 return CDP±(f1,N)+CDP±(f2,N)
13 end

14 end

Algorithm 3: The CDP→2
± algorithm for #SAT.

Input: A CNF formula f with n variables and m clauses.

Output: The value of #SAT(f).
1 Generate f ′ by applying Lemma 3 to every clause in f of width at least three.

2 Set N to be all the variables labeled with π-phases.

3 return CDP±(f ′,N)

In particular, these bounds do not depend on the specific scalar factors of each diagram, or the way

that separate diagrams generated by branching are recombined. This means that the O∗(1.2377variables)
bound of Wahlström [51] can be adapted directly. By applying Lemma 3 to any #SAT diagram and then

applying CDP± to the resulting diagram directly, we can evaluate #SAT instances in time O∗(1.2377n+m)
= O∗(20.3068n+0.3068m), which is certainly better than the bound given by decomposing into a sum of

diagrams. We will refer to this method, given in Algorithm 3, as CDP→2
± .

Theorem 3 (Restatement of Theorem 1). Given a CNF formula f : {0,1}n → {0,1}, we can count the

number of satisfying assignments #{~x ∈ {0,1}n | f (~x) = 1} in time O∗(1.2377n+m≥3), where m≥3 is the

number of clauses of width at least three.

Proof. Apply the algorithm CDP→2
± to f using Wahlström’s [51] O∗(1.2377variables) algorithm for solving

#2SAT. Then m≥3 new (negative) variables will be created by applying Lemma 3, so the overall runtime

is given by O∗(1.2377n+m≥3).

It remains to ask, when is CDP→2
± actually useful? First, note that if only positive variables are

picked for branching, the action of CDP± on a translated #SAT diagram is exactly the same as the action

of regular CDP on the original diagram. Therefore, we would only expect gains when decomposing

some of the negative variables (i.e clauses), and thus it is natural to suspect that this bound will only be

useful for instances with few clauses.

146 A Graphical #SAT Algorithm for Formulae with Small Clause Density

3.3 Complexity analysis

For instances with a fixed maximum density δmax, and assuming the worst-case of m≥3 = m, we have

that m≤ nδmax, and so the runtime of CDP→2
± is bounded by O∗(20.3068(1+δmax)n). Firstly, we can see that

this is better than the naive O∗(2n) whenever δmax < 2.2503. Since this is independent of k, it means that

for any δmax < 2.2503 and sufficiently large k, this beats both the worst-case bound of Dubois [20] and

the average-case bound of Williams [55].

Concretely, CDP→2
± is better than the average-case bounds of Williams [55] whenever δmax < 1.217

and k ≥ 6, and better than the worst-case bounds of Dubois [20] whenever k ≥ 3 and δmax < 1.858. The

exact bounds for each k are given in Table 2. Clearly, CDP→2
± offers no improvement on #2SAT, but it

is also not directly applicable to #3SAT - when δ < 1.6, the O∗(1.4142m) bound of Zhou et al [58] is

sharper, and when δ ≥ 1.6 the O∗(1.6423n) bound of Kutzkov [35] is sharper.

For SAT, it has been shown that there is a phase transition in the satisfiability of a random formula

as δ passes some threshold. Instances with densities near this threshold are known to be hard to solve,

and it is known that this threshold scales exponentially with k [1]. However, no bound is known for the

equivalent ‘hardest’ density in #SAT. Assuming SETH, our result indicates that the ‘hardest’ density of

#SAT must be some δ > 2.2503, since otherwise #SAT (and hence SAT) could be solved in time better

than O∗(2n).

3.4 A non-diagrammatic argument for CDP→2
±

While we originally found this reduction and algorithm using the ZH-calculus and prefer its diagram-

matic presentation, in Appendix C we present a self-contained argument for the reduction from #SAT to

#2SAT± without any diagrams that may be more intuitive to readers unfamiliar with graphical calculi.

4 Variations on the main result

4.1 Bounding #SAT in terms of literals

Note that CDP→2
± maps a #SAT instance of m clauses to a #2SAT instance of at most L clauses (with

negative variables), where L is the number of literals in the original instance. Therefore, applying the

upper bound of O∗(1.1740m) on #2SAT found by Wang and Gu [52], we can bound the runtime of

CDP→2
± in terms of literals as O∗(1.1740L). This implies a better than O∗(2n) runtime whenever the

average degree d̂ = L
n

of variables in an instance satisfies d̂ < 4.3209, or the maximal number of clauses

d a variable participates in is d ≤ 4. As far as we are aware this is the first bound of this type for #SAT

with unrestricted clause width, but similar bounds are known for SAT - e.g the O∗(1.0646L) of Peng and

Xiao [40]. If k is small, then better bounds for #SAT follow trivially from bounds in terms of m - e.g for

k = 2, m≤ L
2
, so [52] implies O∗(1.0835L).

4.2 An algorithm for low-density #3SAT instances

In the previous section, we noted that CDP→2
± can’t beat existing bounds for #3SAT on its own. This is

because we have to assume that m = m≥3 in the worst-case. However, we can use a technique introduced

by Kutzkov [35] to take advantage of the extra structure afforded by #3SAT and introduce extra branching

steps which allow us to assume that m≥3 < m.

Assume we have some #3SAT instance f . Every time we branch on a variable x that occurs in d

3-clauses in f , in both branches at least d 3-clauses are eliminated (since each clause will be totally

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 147

Algorithm 4: The algorithm CDP3→2
± for solving #3SAT.

Input: A CNF formula f with n variables and m clauses.

Output: The value of #SAT(f).
1 if δ3 >

2
3

then

2 Pick x in f with maximal 3-degree.

3 f1← Unit-Propagate(f ∧¬xi)
4 f2← Unit-Propagate(f ∧ xi)

5 return CDP3→2
± (f1)+CDP3→2

± (f2)

6 else

7 return CDP→2
± (f)

8 end

removed in one branch and become a 2-clause in the other). If we know that the density of 3-clauses

in f is δ3, then the average number of 3-clauses a variable is connected to (its average 3-degree) is 3δ3.

Therefore, whenever d− 1 < 3δ3 ≤ d, there must exist a variable with 3-degree at least d, and so by

branching on the variable with the highest 3-degree, we remove at least d 3-clauses.

Following Kutzkov [35], suppose x is the number of variables needed to reduce δ3 to at most d−1
3

by

repeatedly branching on the variable with the highest 3-degree. Then we need

d

3
n−dx≤

d−1

3
(n− x) (15)

thus x ≤ n
2d+1

, so in the limit of large n, we have x = n
2d+1

in the worst case, and n− n
2d+1

variables

remain unassigned. Therefore, the number of variables we need to branch on to reduce δ3 to at most 2
3

is:

n2/3 = n−n
d

∏
i=3

(

1−
1

2i+1

)

(16)

Since m≥3 = δ3n, after performing this branching on n2/3 variables, we will have 2n2/3 instances, each

with m≥3 ≤
2
3
(n−n2/3), so these can be evaluated with CDP→2

± . This strategy, formalized as Algorithm

4, therefore has an overall time bound of:

O∗(2n2/3)O∗(1.2377(n−n2/3)+m≥3)≤ O∗(2n2/3 1.2377(n−n2/3)(1+
2
3
)) = O∗(20.5128n+0.4872n2/3) (17)

In order to calculate the running-time bound for a given maximum δ3, we can plug d = ⌈3δ3⌉ into

Equation (16) to calculate n2/3 as a fraction of n. For example, if δ3 <
5
3

then d = 5 and n2/3 = 0.3074n,

yielding a time of

O∗(2(0.5128+0.4872·0.3074)n) = O∗(1.5829n).

Suppose then that δ = δ3 (i.e the worst-case), then this bound is better than the bound of Zhou [58]

whenever δ > 1.2577 (i.e d ≥ 4 but not d = 3, comparing the O∗(1.5463n) complexity for d = 4 to

Zhou’s O∗(1.4142m) to find the exact cutoff point) and the O∗(1.6423n) bound of Kutzkov [35] whenever

δ ≤ 7
3

(i.e for d ≤ 7), yielding complexities of O∗(1.5463n) (d = 4) to O∗(1.6350n) (d = 7) respectively.

It is possible this bound could be extended to a yield an improved bound on general #3SAT using a case

analysis similar to Kutzkov’s, but this is quite complicated so we postpone exploring this to future work.

148 A Graphical #SAT Algorithm for Formulae with Small Clause Density

4.3 Solving #SAT with arbitrary phases

While allowing π-phases on variables has allowed us to find a simple reduction from #SAT to #2SAT±
which can be solved with CDP±, the CDP algorithm easily extends to arbitrary phases in the same way.

Indeed let us define a generalization of the #SAT problem, #SATA - this is exactly the weighted model

counting problem where the weights are restricted to A .

Definition 2. The problem #SATA for A ⊆C\{0} is defined as follows. Given a CNF formula f (x1, . . .)
with n variables and m clauses and a vector A ∈A

n, compute the quantity:

#SATA (f ,A) = ∑
~x∈Bn

(

n

∏
i=1

A
xi

i

)

f (~x) (18)

It is easy to see then that #SAT = #SAT{1}, and #SAT± = #SAT{1,−1}: let A j = −1 if j ∈ N and

A j = 1 otherwise. A straightforward adaptation of the CDP algorithm can solve #SATA ; see Algorithm 5.

The complex numbers in A on the variables of an instance can be easily represented in the ZH-

calculus, by generalizing Eq. (3). The variable branching and unit propagation rules then generalize from

Eq. (22). The advantage of working with #SATA is that by expanding A , we are afforded additional

rewriting rules on the corresponding ZH-diagrams. Moving from {1} to {1,−1} allowed us to rewrite

arbitrary arity zero-labeled H-boxes into arity two H-boxes. Further expanding this to { k
2
| k ∈ Z} allows

us the following rule, removing (up to a scalar) any variables that only occur once in a formula:

α 0
... = α 0

... α + i ln(2)
...2=π

α 0
... = α 0

... α− i ln(2)
...=ππ π

(19)

This is a limited form of pure-literal elimination, a rewrite rule that is usually only valid in SAT and not

#SAT. Applying this simplification to the formula recursively (after unit propagation in the CDP algo-

rithm, i.e between lines 7 and 8 of Algorithm 1), we may assume that every variable has degree at least

two. This would allow improvement on early bounds such as [20], while being much simpler. There-

fore, an interesting avenue for further research would be investigating how this approach of weighting

variables could be used to simplify #SAT instances or find upper bounds on runtime. Another example

is given in Appendix B where we show how this leads to an algorithm for simulating quantum circuits

with runtime in terms of the total number of gates.

5 Conclusion

In this paper, we used the ZH-calculus to study the #SAT problem and produced an upper bound which

does not depend on the clause width k. We believe bounds of this kind were previously only known for the

decision variant SAT [56]. The bound is less than O∗(2n) whenever the clause density δ = n
m

is smaller

than 2.2503, suggesting that the ‘hardest’ density of #SAT problems must be some δ > 2.2503, assuming

the strong exponential time hypothesis. We found these bounds by rephrasing the #SAT problem in

terms of ZH-diagrams, and generalizing known rewrite rules to give a reduction from #SAT to #2SAT±,

a weighted variant of #SAT that can be solved with Wahlström’s [51] variant of the CDP algorithm [8].

Using a more involved analysis and algorithm we also improved on the upper bound for #3SAT for

1.2577 < δ < 7
3
. In addition, using a result of Wang and Gu [52], we produced an explicit bound of

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 149

Algorithm 5: The CDPA algorithm for solving #SATA .

Input: A CNF formula f with n variables and m clauses, and A ∈A
n.

Output: The value of #SATA (f ,A).
1 if f contains an empty clause then

2 return 0

3 else if f has no clauses then

4 return 2n

5 else

6 Pick i ∈ {1, . . . ,n} according to some strategy.

7 f1← Unit-Propagate(f ∧¬xi)
8 f2← Unit-Propagate(f ∧ xi)
9 return CDPA (f1,A)+AiCDPA (f2,A)

10 end

O∗(1.1740L) for #SAT in terms of the number of literals L, to our knowledge the first such non-trivial

bound for #SAT. A summary of all the bounds obtained in this paper is presented in Table 1. We suggest

extending this technique of reducing #SAT to weighted #SAT as an avenue of future research.

Our results show that graphical calculi can lead to concrete algorithmic improvements in areas where

significant research has already been done, even when originally intended for a different domain like

quantum computing. An interesting question then is in which other domains we can make improvements

by framing the problem using graphical reasoning.

Acknowledgments

We thank Matty Hoban and the anonymous QPL reviewers for helpful feedback. The majority of this

work was done while TL was a student at the University of Oxford, and the main result is also presented

in an MSc thesis [36]. JvdW acknowledges funding from the European Union’s Horizon 2020 research

and innovation programme under the Marie Skłodowska-Curie grant agreement No 101018390.

References

[1] Dimitris Achlioptas, Assaf Naor & Yuval Peres (2005): Rigorous Location of Phase Transitions in Hard

Optimization Problems. Nature 435(7043), pp. 759–764, doi:10.1038/nature03602.

[2] Miriam Backens (2014): The ZX-calculus is complete for stabilizer quantum mechanics. New Journal of

Physics 16(9), p. 093021, doi:10.1088/1367-2630/16/9/093021.

[3] Miriam Backens & Aleks Kissinger (2019): ZH: A Complete Graphical Calculus for Quantum Computations

Involving Classical Non-linearity. Electronic Proceedings in Theoretical Computer Science 287, pp. 23–42,

doi:10.4204/EPTCS.287.2. arXiv:1805.02175.

[4] Miriam Backens, Aleks Kissinger, Hector Miller-Bakewell, John van de Wetering & Sal Wolffs (2021):

Completeness of the ZH-calculus, doi:10.48550/arXiv.2103.06610. arXiv:2103.06610.

[5] Miriam Backens, Hector Miller-Bakewell, Giovanni de Felice, Leo Lobski & John van de Wetering (2021):

There and back again: A circuit extraction tale. Quantum 5, p. 421, doi:10.22331/q-2021-03-25-421.

[6] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Techniques to Reduce π/4-Parity-Phase Cir-

cuits, Motivated by the ZX Calculus. In Bob Coecke & Matthew Leifer, editors: Proceedings 16th Inter-

national Conference on Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14 June

https://doi.org/10.1038/nature03602
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.4204/EPTCS.287.2
https://arxiv.org/abs/1805.02175
https://doi.org/10.48550/arXiv.2103.06610
https://arxiv.org/abs/2103.06610
https://doi.org/10.22331/q-2021-03-25-421

150 A Graphical #SAT Algorithm for Formulae with Small Clause Density

2019, Electronic Proceedings in Theoretical Computer Science 318, Open Publishing Association, pp. 131–

149, doi:10.4204/EPTCS.318.9.

[7] A. Biere, M. Heule & H. van Maaren (2009): Handbook of Satisfiability. IOS Press, Incorporated,

doi:10.3233/FAIA336.

[8] E. Birnbaum & E. L. Lozinskii (1999): The Good Old Davis-Putnam Procedure Helps Counting Models.

Journal of Artificial Intelligence Research 10, pp. 457–477, doi:10.1613/jair.601. arXiv:1106.0218.

[9] Guillaume Boisseau & Robin Piedeleu (2022): Graphical Piecewise-Linear Algebra. In Patricia Bouyer &

Lutz Schröder, editors: Foundations of Software Science and Computation Structures, Springer International

Publishing, Cham, pp. 101–119, doi:10.1007/978-3-030-99253-8 6.

[10] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński & Fabio Zanasi (2019): Diagrammatic

Algebra: From Linear to Concurrent Systems. Proc. ACM Program. Lang. 3(POPL), doi:10.1145/3290338.

[11] Filippo Bonchi, Robin Piedeleu, Pawel Sobociński & Fabio Zanasi (2019): Graphical Affine Alge-

bra. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–12,

doi:10.1109/LICS.2019.8785877.

[12] Filippo Bonchi, Paweł Sobociński & Fabio Zanasi (2014): A Categorical Semantics of Signal Flow Graphs.

In Paolo Baldan & Daniele Gorla, editors: CONCUR 2014 – Concurrency Theory, Springer Berlin Heidel-

berg, Berlin, Heidelberg, pp. 435–450, doi:10.1007/978-3-662-44584-6 30.

[13] Filippo Bonchi, Paweł Sobociński & Fabio Zanasi (2017): Interacting Hopf Algebras. Journal of Pure and

Applied Algebra 221(1), pp. 144–184, doi:10.1016/j.jpaa.2016.06.002.

[14] Enrique Cervero Martı́n, Kirill Plekhanov & Michael Lubasch (2022): Barren plateaus in quantum tensor

network optimization. doi:10.48550/arXiv.2209.00292. arXiv:2209.00292.

[15] Bob Coecke & Ross Duncan (2008): Interacting quantum observables. In: Proceedings of the 37th Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science,

doi:10.1007/978-3-540-70583-3 25.

[16] Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and Diagram-

matics. New Journal of Physics 13(4), p. 043016, doi:10.1088/1367-2630/13/4/043016. arXiv:0906.4725.

[17] Carsten Damm, Markus Holzer & Pierre McKenzie (2002): The Complexity of Tensor Calculus. Computa-

tional Complexity 11(1/2), pp. 54–89, doi:10.1007/s00037-000-0170-4.

[18] Martin Davis, George Logemann & Donald Loveland (1962): A Machine Program for Theorem-Proving.

Communications of the ACM 5(7), pp. 394–397, doi:10.1145/368273.368557.

[19] Niel de Beaudrap, Aleks Kissinger & Konstantinos Meichanetzidis (2021): Tensor Network Rewriting Strate-

gies for Satisfiability and Counting. Electronic Proceedings in Theoretical Computer Science 340, pp. 46–59,

doi:10.4204/EPTCS.340.3. arXiv:2004.06455.

[20] Olivier Dubois (1991): Counting the Number of Solutions for Instances of Satisfiability. Theoretical Com-

puter Science 81(1), pp. 49–64, doi:10.1016/0304-3975(91)90315-S.

[21] Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020): Graph-theoretic Simplifica-

tion of Quantum Circuits with the ZX-calculus. Quantum 4, p. 279, doi:10.22331/q-2020-06-04-279.

[22] Richard D. P. East, Pierre Martin-Dussaud & John van de Wetering (2021): Spin-networks in the ZX-calculus.

doi:10.48550/arXiv.2111.03114. arXiv:2111.03114.

[23] Stephen A Fenner, Lance J Fortnow & Stuart A Kurtz (1994): Gap-Definable Counting Classes. Journal of

Computer and System Sciences 48(1), pp. 116–148, doi:10.1016/S0022-0000(05)80024-8.

[24] Johannes K. Fichte, Markus Hecher & Florim Hamiti (2020): The Model Counting Competition 2020,

doi:10.48550/arXiv.2012.01323. arXiv:2012.01323.

[25] Martin Fürer & Shiva Prasad Kasiviswanathan (2007): Algorithms for Counting 2-Sat Solutions and Col-

orings with Applications. In Ming-Yang Kao & Xiang-Yang Li, editors: Algorithmic Aspects in Infor-

mation and Management, Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 47–57,

doi:10.1007/978-3-540-72870-2 5.

https://doi.org/10.4204/EPTCS.318.9
https://doi.org/10.3233/FAIA336
https://doi.org/10.1613/jair.601
https://arxiv.org/abs/1106.0218
https://doi.org/10.1007/978-3-030-99253-8_6
https://doi.org/10.1145/3290338
https://doi.org/10.1109/LICS.2019.8785877
https://doi.org/10.1007/978-3-662-44584-6_30
https://doi.org/10.1016/j.jpaa.2016.06.002
https://doi.org/10.48550/arXiv.2209.00292
https://arxiv.org/abs/2209.00292
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0906.4725
https://doi.org/10.1007/s00037-000-0170-4
https://doi.org/10.1145/368273.368557
https://doi.org/10.4204/EPTCS.340.3
https://arxiv.org/abs/2004.06455
https://doi.org/10.1016/0304-3975(91)90315-S
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.48550/arXiv.2111.03114
https://arxiv.org/abs/2111.03114
https://doi.org/10.1016/S0022-0000(05)80024-8
https://doi.org/10.48550/arXiv.2012.01323
https://arxiv.org/abs/2012.01323
https://doi.org/10.1007/978-3-540-72870-2_5

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 151

[26] Craig Gidney & Austin G. Fowler (2019): Efficient magic state factories with a catalyzed |CCZ〉 to 2|T 〉
transformation. Quantum 3, p. 135, doi:10.22331/q-2019-04-30-135.

[27] Tao Gu, Robin Piedeleu & Fabio Zanasi (2022): A Complete Diagrammatic Calculus for Boolean Satisfia-

bility. doi:10.48550/arXiv.2211.12629. arXiv:2211.12629.

[28] Amar Hadzihasanovic (2015): A diagrammatic axiomatisation for qubit entanglement. In: 2015 30th Annual

ACM/IEEE Symposium on Logic in Computer Science, IEEE, pp. 573–584, doi:10.1109/LICS.2015.59.

[29] Amar Hadzihasanovic, Kang Feng Ng & Quanlong Wang (2018): Two Complete Axiomatisations of Pure-

state Qubit Quantum Computing. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in

Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 502–511, doi:10.1145/3209108.3209128.

[30] Michael Hanks, Marta P. Estarellas, William J. Munro & Kae Nemoto (2020): Effective Com-

pression of Quantum Braided Circuits Aided by ZX-Calculus. Physical Review X 10, p. 041030,

doi:10.1103/PhysRevX.10.041030.

[31] Emmanuel Jeandel, Simon Perdrix & Renaud Vilmart (2018): A Complete Axiomatisation of the ZX-Calculus

for Clifford+T Quantum Mechanics. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic

in Computer Science, LICS ’18, ACM, New York, NY, USA, pp. 559–568, doi:10.1145/3209108.3209131.

[32] Aleks Kissinger & John van de Wetering (2020): Reducing the number of non-Clifford gates in quantum

circuits. Physical Review A 102, p. 022406, doi:10.1103/PhysRevA.102.022406.

[33] Aleks Kissinger & John van de Wetering (2022): Simulating quantum circuits with ZX-calculus reduced sta-

biliser decompositions. Quantum Science and Technology 7(4), p. 044001, doi:10.1088/2058-9565/ac5d20.

[34] Aleks Kissinger, John van de Wetering & Renaud Vilmart (2022): Classical Simulation of Quantum Cir-

cuits with Partial and Graphical Stabiliser Decompositions. In François Le Gall & Tomoyuki Morimae,

editors: 17th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC

2022), Leibniz International Proceedings in Informatics (LIPIcs) 232, Schloss Dagstuhl – Leibniz-Zentrum

für Informatik, Dagstuhl, Germany, pp. 5:1–5:13, doi:10.4230/LIPIcs.TQC.2022.5.

[35] Konstantin Kutzkov (2007): New Upper Bound for the #3-SAT Problem. Information Processing Letters

105(1), pp. 1–5, doi:10.1016/j.ipl.2007.06.017.

[36] Tuomas Laakkonen (2022): Graphical Stabilizer Decompositions For Count-

ing Problems. Master’s thesis, University of Oxford. Available at

https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/laakkonen-thesis.pdf.

[37] Tuomas Laakkonen, Konstantinos Meichanetzidis & John van de Wetering (2023): Picturing Counting Re-

ductions with the ZH-Calculus. Electronic Proceedings in Theoretical Computer Science 384, p. 89–113,

doi:10.4204/eptcs.384.6.

[38] Kang Feng Ng & Quanlong Wang (2018): Completeness of the ZX-calculus for Pure Qubit Clifford+T Quan-

tum Mechanics, doi:10.48550/arXiv.1801.07993. arXiv:1801.07993.

[39] Román Orús (2014): A practical introduction to tensor networks: Matrix product states and projected entan-

gled pair states. Annals of Physics 349, pp. 117–158, doi:10.1016/j.aop.2014.06.013.

[40] Junqiang Peng & Mingyu Xiao (2021): Further Improvements for SAT in Terms of Formula Length,

doi:10.48550/arXiv.2105.06131. arXiv:2105.06131.

[41] Robin Piedeleu & Fabio Zanasi (2021): A String Diagrammatic Axiomatisation of Finite-State Automata.

In Stefan Kiefer & Christine Tasson, editors: Foundations of Software Science and Computation Structures,

Springer International Publishing, Cham, pp. 469–489, doi:10.1007/978-3-030-71995-1 24.

[42] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz & Toniann Pitassi (2004): Combining Component

Caching and Clause Learning for Effective Model Counting. In: SAT 2004 - The Seventh International

Conference on Theory and Applications of Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada,

Online Proceedings.

https://doi.org/10.22331/q-2019-04-30-135
https://doi.org/10.48550/arXiv.2211.12629
https://arxiv.org/abs/2211.12629
https://doi.org/10.1109/LICS.2015.59
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1103/PhysRevX.10.041030
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1103/PhysRevA.102.022406
https://doi.org/10.1088/2058-9565/ac5d20
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.1016/j.ipl.2007.06.017
https://www.cs.ox.ac.uk/people/aleks.kissinger/theses/laakkonen-thesis.pdf
https://doi.org/10.4204/eptcs.384.6
https://doi.org/10.48550/arXiv.1801.07993
https://arxiv.org/abs/1801.07993
https://doi.org/10.1016/j.aop.2014.06.013
https://doi.org/10.48550/arXiv.2105.06131
https://arxiv.org/abs/2105.06131
https://doi.org/10.1007/978-3-030-71995-1_24

152 A Graphical #SAT Algorithm for Formulae with Small Clause Density

[43] Marc Thurley (2006): sharpSAT – Counting Models with Advanced Component Caching and Implicit BCP.

In Armin Biere & Carla P. Gomes, editors: Theory and Applications of Satisfiability Testing - SAT 2006,

Lecture Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 424–429, doi:10.1007/11814948 38.

[44] Seinosuke Toda (1991): PP Is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing

20(5), pp. 865–877, doi:10.1137/0220053.

[45] Alex Townsend-Teague & Konstantinos Meichanetzidis (2021): Classifying Complexity with the

ZX-Calculus: Jones Polynomials and Potts Partition Functions. doi:10.48550/arXiv.2103.06914.

arXiv:2103.06914.

[46] Leslie G. Valiant (1979): The Complexity of Enumeration and Reliability Problems. SIAM Journal on Com-

puting 8(3), pp. 410–421, doi:10.1137/0208032.

[47] Renaud Vilmart (2019): A Near-Minimal Axiomatisation of ZX-Calculus for Pure Qubit Quantum Me-

chanics. In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 1–10,

doi:10.1109/LICS.2019.8785765.

[48] Renaud Vilmart (2019): A ZX-Calculus with Triangles for Toffoli-Hadamard, Clifford+T, and Beyond.

Electronic Proceedings in Theoretical Computer Science 287, pp. 313–344, doi:10.4204/EPTCS.287.18.

arXiv:1804.03084.

[49] Renaud Vilmart (2021): Quantum Multiple-Valued Decision Diagrams in Graphical Calculi. In Filippo

Bonchi & Simon J. Puglisi, editors: 46th International Symposium on Mathematical Foundations of Com-

puter Science (MFCS 2021), Leibniz International Proceedings in Informatics (LIPIcs) 202, Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 89:1–89:15, doi:10.4230/LIPIcs.MFCS.2021.89.

[50] Renaud Vilmart (2021): The Structure of Sum-over-Paths, Its Consequences, and Completeness for Clifford.

In Stefan Kiefer & Christine Tasson, editors: Foundations of Software Science and Computation Structures,

Springer International Publishing, Cham, pp. 531–550, doi:10.1007/978-3-030-71995-1 27.

[51] Magnus Wahlström (2008): A Tighter Bound for Counting Max-Weight Solutions to 2SAT Instances. In Mar-

tin Grohe & Rolf Niedermeier, editors: Parameterized and Exact Computation, Lecture Notes in Computer

Science, Springer, Berlin, Heidelberg, pp. 202–213, doi:10.1007/978-3-540-79723-4 19.

[52] Honglin Wang & Wenxiang Gu (2013): The Worst Case Minimized Upper Bound in #2-SAT. In Wei Lu,

Guoqiang Cai, Weibin Liu & Weiwei Xing, editors: Proceedings of the 2012 International Conference on In-

formation Technology and Software Engineering, Lecture Notes in Electrical Engineering, Springer, Berlin,

Heidelberg, pp. 675–682, doi:10.1007/978-3-642-34522-7 72.

[53] Quanlong Wang (2021): An Algebraic Axiomatisation of ZX-calculus. In Benoı̂t Valiron, Shane Mans-

field, Pablo Arrighi & Prakash Panangaden, editors: Proceedings 17th International Conference on Quantum

Physics and Logic, Paris, France, June 2 - 6, 2020, Electronic Proceedings in Theoretical Computer Science

340, Open Publishing Association, pp. 303–332, doi:10.4204/EPTCS.340.16.

[54] John van de Wetering (2020): ZX-calculus for the working quantum computer scientist.

doi:10.48550/arXiv.2012.13966. arXiv:2012.13966.

[55] Ryan Williams (2004): On Computing K-CNF Formula Properties. In Enrico Giunchiglia & Armando

Tacchella, editors: Theory and Applications of Satisfiability Testing, Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, pp. 330–340, doi:10.1007/978-3-540-24605-3 25.

[56] Masaki Yamamoto (2005): An Improved O(1.234m̂)-Time Deterministic Algorithm for SAT. In Xiaotie Deng

& Ding-Zhu Du, editors: Algorithms and Computation, Lecture Notes in Computer Science, Springer, Berlin,

Heidelberg, pp. 644–653, doi:10.1007/11602613 65.

[57] Fabio Zanasi (2015): Interacting Hopf Algebras: the theory of linear systems. Ph.D. thesis, Ecole Normale

Superieure de Lyon, doi:10.48550/arXiv.1805.03032. Available at https://arxiv.org/abs/1805.03032.

[58] Junping Zhou, Minghao Yin & Chunguang Zhou (2010): New Worst-Case Upper Bound for #2-SAT

and #3-SAT with the Number of Clauses as the Parameter. In: Proceedings of the Twenty-Fourth

AAAI Conference on Artificial Intelligence, AAAI’10, AAAI Press, Atlanta, Georgia, pp. 217–222,

doi:10.48550/arXiv.1006.1537.

https://doi.org/10.1007/11814948_38
https://doi.org/10.1137/0220053
https://doi.org/10.48550/arXiv.2103.06914
https://arxiv.org/abs/2103.06914
https://doi.org/10.1137/0208032
https://doi.org/10.1109/LICS.2019.8785765
https://doi.org/10.4204/EPTCS.287.18
https://arxiv.org/abs/1804.03084
https://doi.org/10.4230/LIPIcs.MFCS.2021.89
https://doi.org/10.1007/978-3-030-71995-1_27
https://doi.org/10.1007/978-3-540-79723-4_19
https://doi.org/10.1007/978-3-642-34522-7_72
https://doi.org/10.4204/EPTCS.340.16
https://doi.org/10.48550/arXiv.2012.13966
https://arxiv.org/abs/2012.13966
https://doi.org/10.1007/978-3-540-24605-3_25
https://doi.org/10.1007/11602613_65
https://doi.org/10.48550/arXiv.1805.03032
https://arxiv.org/abs/1805.03032
https://doi.org/10.48550/arXiv.1006.1537

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 153

A Rewriting Rules

The ZH-calculus [3] has the following rewriting rules:

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
=

. . .

. . .
a

. . .

. . .

. . .

. . .
a

. . .

. . .
=

= =

. . .

. . .

. . .

. . .

. . .

. . .

= =

=

2

2

=
a b a+b

2

2

π

1

=

. . .

. . .

=π π =
π

a a
a

=

a b
ab

(SFZ)

(BAZ) (BAH)

(SFH)

(IZ)

(IH) (U) (M)

(A) (O) (I)

We will also used some derived rules. In particular, we have that

0
A
= 1

π

SFH=

π

1
U
=

π

=

π

BAH=

π

SFZ=

π

BAZ=

π

IZ=

π

=

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

(20)

and also that:

...
BAZ=

...

π
... =

...

1
2 ...

1
2

IZ=
...

2−n−1

IH=
...

2−n

=

...2−nBAH=
IZ=

...2−n =
...

π

π

(21)

154 A Graphical #SAT Algorithm for Formulae with Small Clause Density

Finally, we recall the presentation of the Z-spider as a sum over basis states:

α

. . .

. . .

. . .

. . .

. . .

. . .

+=
π π

ππ
eiα

(22)

B Upper Bounds on Quantum Circuit Simulation

Extending the ideas from Section 4.3, we can produce an upper bound on the time required to exactly

compute the amplitude of a quantum computation. This task is naturally represented in terms of tensor

networks [39], which can be presented in terms of a graphical calculus, see [54, page 6] for an example

in the ZX-calculus. Note that while this task is easily shown to be #P-hard, it is not obviously in #P and

so it is hard to relate directly to #SAT. By relaxing our definition of #SAT to #SATC, we can do this

translation more straightforwardly, but still apply existing knowledge about #SAT.

Specifically, given a quantum circuit C with n qubits and G gates representing a unitary U over the

CZ, Hadamard, and Z-phase gate set, the quantity 〈+|U |+〉 can be represented by the following ZH-

diagram:

〈+|U |+〉 = 2−n
...

...C (23)

Where the portion marked C is assembled from the following components

H ⇔ 2−1/2

⇔

Zα ⇔ α

(24)

by placing them according to their connections in the quantum circuit. However, we can translate these

to #2SATC diagrams, up to scalar factors, by applying the following rewrite:

SFH= 1
2

9
= 0 π π π 0

π

0

π

= 0 π π π 0
π

0

(19)
= 0 π π− i ln(2) π 0

(25)

To map 〈+|U |+〉 into this form, we apply this translation and then spider fusion wherever possible. This

leaves a #2SATC diagram and a scalar factor. Therefore, to compute the value of 〈+|U |+〉, we can

compute the model count of the corresponding #2SATC instance by CDPC and multiply it by the scalar

factor. Since Hadamard gates and CZ gates each add two clauses, and Z-phase gates add no clauses, we

have m ≤ 2G. Hence, by applying the O∗(1.1740m) bound for #2SAT by Wang and Gu [52], we can

calculate 〈+|U |+〉 in time O∗(1.3783G). This is better than statevector simulation whenever G≤ 2.16n.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 155

It is also possible to work with circuits that contain CkZ gates directly, since we have the following

translation, as before:

⇔
...

...
...

...

=
...

0

0

0

π

π

π

π− i ln(2) (26)

Then each gate adds at most k + 1 clauses to the #2SAT instance, leading to an overall runtime of

O∗(1.1740(k+1)G). For instance, for k = 2 this is O∗(1.6181G), which is substantially better than the

corresponding runtime given by decomposing CCZ gates into single- and two-qubit gates (which would

be O∗(6.8552G), as each CCZ would require twelve clauses). It may be possible to give better bounds

by analyzing the spider fusion that occurs in this translation and applying bounds for #2SAT in terms of

variables rather than clauses, but we postpone this to future work.

C A Non-diagrammatic Argument for CDP→2
±

Suppose we have a function φ : Bn→ B given by

φ(x1, . . . ,xn) =
m
∧

i=1

(ci1∨ ci2∨ ·· ·∨ ciki
)

then we can define φ ′ : Bn+m→ {−1,0,1} given by:

φ ′(x1, . . . ,xn,y1 . . . ,ym) = (−1)∑i yi

[

m
∧

i=1

ki
∧

j=1

(¬ci j ∨¬yi)

]

= (−1)∑i yi

[

m
∧

i=1

¬

(

yi∧
ki
∨

j=1

ci j

)]

Lifting Boolean logic to integer arithmetic, we have that

φ ′(x1, . . . ,xn,y1 . . . ,ym) = (−1)∑i yi

m

∏
i=1

(

1− yi

[

ki
∨

j=1

ci j

])

= (−1)∑i yi ∑
S⊆[1,m]

∏
i∈S

(−yi)

[

ki
∨

j=1

ci j

]

= ∑
S⊆[1,m]

(−1)|S|+∑i yi

[

∧

i∈S

yi

]

∏
i∈S

[

ki
∨

j=1

ci j

]

= ∑
S⊆[1,m]

(−1)∑i/∈S yi

[

∧

i∈S

yi

]

∏
i∈S

[

ki
∨

j=1

ci j

]

and summing over all possibilities for yi,

∑
y1,...,ym∈B

φ ′(x1, . . . ,xn,y1 . . . ,ym) = ∑
S⊆[1,m]

∏
i∈S

[

ki
∨

j=1

ci j

]

∑
y1,...,ym∈B

(−1)∑i/∈S yi

[

∧

i∈S

yi

]

= ∑
S⊆[1,m]

∏
i∈S

[

ki
∨

j=1

ci j

]

·

{

1 |S|= m

0 |S|< m
=

[

m
∧

i=1

ki
∨

j=1

ci j

]

= φ(x1, . . . ,xn)

therefore, to compute #(φ), it is sufficient to sum over all values of φ ′:

#(φ) = ∑
x1,...,xn∈B

φ(x1, . . . ,xn) = ∑
x1,...,xn,y1,...,ym∈B

φ ′(x1, . . . ,xn,y1, . . . ,ym)

156 A Graphical #SAT Algorithm for Formulae with Small Clause Density

Finally, we can see that

#(φ) = ∑
x1,...,xn,y1,...,ym∈B

(−1)∑i yi

[

m
∧

i=1

ki
∧

j=1

(¬ci j ∨¬yi)

]

= ∑
x1,...,xn,y1,...,ym∈B

∑i yi even

[

m
∧

i=1

ki
∧

j=1

(¬ci j ∨¬yi)

]

− ∑
x1,...,xn,y1,...,ym∈B

∑i yi odd

[

m
∧

i=1

ki
∧

j=1

(¬ci j ∨¬yi)

]

= #SAT±

(

m
∧

i=1

ki
∧

j=1

(¬ci j ∨¬yi),{y1, . . . ,ym}

)

by definition, and thus this defines a reduction from #SAT to #2SAT± which can be computed using

Algorithm 2.

The argument that Wahlström’s bound [51] can be applied to Algorithm 2 is the same as in Section

3.2: since the structure of the algorithm remains the same (regardless of scalar factors, unit propagation

and branching still generate the same structures), and because unrelated instances combine multiplica-

tively in that

#SAT±(f1(x1, . . . ,xn)∧ f2(y1, . . . ,ym),N1∪N2) = #SAT±(f1(x1, . . . ,xn),N1)#SAT±(f2(y1, . . . ,ym),N2)

then the bound doesn’t distinguish between Algorithm 1 and 2, so it applies directly.

D Additional Lemmas

Lemma 6. The following diagrammatic equivalence holds:

π

π
π

... =
0

0

... (27)

Proof. This follows from Lemma 2.28 in [4] and Equation (20).

Lemma 7. The following diagram equivalence holds:

π

π

0

0
π 0 π =π

2

(28)

This is translated from a quantum circuit identity of Ng and Wang [38] and is a generalization of the

rules HT and BW from the ∆ZXπ -calculus [48], a system for describing tensor networks that is closely

related to ZH-calculus.

Proof. This can be verified by concrete calculation of the matrices.

Lemma 8. The following diagram equivalence holds:

π π0 π π0 = (29)

Proof. This can be verified by concrete calculation of the matrices.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 157

Lemma 9. The following diagram equivalence holds for all n≥ 0:

π

π

0

0
π 0 π =π

2
...n

...n (30)

Proof. We proceed by induction on n. For the case of n = 0:

π π 0 π =
2

π π 0 π

2

= π π 0 π

0

π π 0 π

0

=

π π 0 π

0
BAH=

π π 0 π
SFH= 0

SF
= π π 0 ππ 0π

8
= π

2

2

2

2

=
IZ=

(31)

For the case of n = k+1, assuming the result holds for k:

...
...

SFH=

1
2

π

π

0

0
π 0 ππ

... π

π

0

0

π 0 ππ

2

π

π

0

0
π

...

π 0

0 ππ

2

π

π

0

0
π

...

π 0

0 ππ

2
SFZ=

8
=

7
=

π

π

0

0
π 0 ππ

... π

π

0

0

0 ππ

2

SFZ= π

(32)

158 A Graphical #SAT Algorithm for Formulae with Small Clause Density

E Proofs of Theorems

Lemma 1. The following diagrammatic equivalent to the unit propagation rule holds (without loss of

generality, we assume the literal to be propagated is not negated):

0

π π

π

0

0

0

0

...

...
...

...

...
... =

0

0

...

...
...

...

...
... (9)

It can be read as follows - on the left-hand side, the zero H-box with one leg is the clause with a single

non-negated literal x, the H-boxes on the left represent the clauses Bi∨¬x while the H-boxes on the right

represent the clauses Ai∨ x. On the right-hand side, we see that the clauses Bi remain, while the clauses

Ai ∨ x have been removed entirely. Because the variable x is now no longer mentioned, the Z-spider

representing it is also removed.

Proof. First, note that

0
...

...
SFH=

0

...
BAH=

0

...
SFZ=

01
2

1
2

...=

0
...π 0

...
=

0
...

IZ= 0
...SFH=

1
2

1
2

(33)

and so we have that

0

π π

π

0

0

0

0

...

...
...

...

...
...

π π

π

0

0

0

0

...

...
...

...

...
...

(20)
=

0

0

0

0

...

...
...

...

...
...

π

π

(33)
=

0

0

...

...
...

...

...
...

(21)
=

(34)

which completes the proof.

Lemma 2. The following diagrammatic equivalent to the variable branching rule holds:

π

π

0

0

0

0

...

...
...

...

...
...

0

π π

π

0

0

0

0

...

...
...

...

...
...

0

π

π

0

0

0

0

...

...
...

...

...
...= +

On the left-hand side, we have a variable connected to arbitrary clauses, whereas on the right-hand side

we have two terms, each with a clause of one literal introduced onto the variable.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 159

Proof. This follows from writing the Z-spider as a sum

π π++
SF
=

(22)
=

0 π0+
(20)
=

(35)

and applying the SFZ rule to the central spider:

π

π

0

0

0

0

...

...
...

...

...
...

0

π π

π

0

0

0

0

...

...
...

...

...
...

0

π

π

0

0

0

0

...

...
...

...

...
...= +

π

π

0

0

0

0

...

...
...

...

...
...

SFZ= (36)

Lemma 3. The following diagrammatic equivalence holds:

0 =
0

0

π

π
π

...
... (10)

This directly generalizes the BW axiom of the ∆ZX-calculus [48].

Proof. We can see the following

0
SFH=

...
...

1
2

0
(20)
=

...

1
2

9
=

...
π

π

0

0
π π 0 π

BAZ=
...

π

π

0

0
π π 0

(33)
=

...
π

π

0

0
π π

BAZ=
...

π

π

0

0
π

SFZ=
...

π

π

0

0
π

which completes the proof.

Theorem 2. #SAT± is GapP-complete

Proof. Suppose there is a problem M in GapP, then the aim is to compute gapM = #M−#M where #M

(#M) is the number of accepting (rejecting) paths of a non-deterministic Turing machine M. Clearly #M

and #M are both in #P. Because the Cook-Levin reduction from NP to SAT is parsimonious, #SAT is

#P-complete, and there exist CNF formulae fM and fM such that #SAT(fM) = #M and #SAT(fM) = #M.

Define the following formula:

fM−M =

(

mM
∧

i=1

Ci
M ∨ z

)

∧

(

nM
∧

j=1

¬x
j
M ∨¬z

)

∧

(

mM
∧

i=1

Ci
M
∨¬z

)

∧

(

nM
∧

j=1

¬x
j

M
∨ z

)

160 A Graphical #SAT Algorithm for Formulae with Small Clause Density

where Ci
M (Ci

M
) and x

j
M (x

j

M
) are the clauses and variables of fM (fM) respectively, and z is a fresh variable.

When z is false, fM−M reduces to

fM−M ∧¬z =

(

mM
∧

i=1

Ci
M

)

∧

(

nM
∧

j=1

¬x
j

M

)

= fM ∧

(

nM
∧

j=1

¬x
j

M

)

which has exactly #SAT(fM) = #M satisfying solutions, and likewise with z true, we have

fM−M ∧ z = fM ∧

(

nM
∧

j=1

¬x
j
M

)

which has exactly #SAT(fM) = #M satisfying solutions. Finally let N = {z}, then an assignment of

fM−M has odd or even N-parity exactly when z is true or false respectively. Therefore,

#SAT±(fM−M ,N) = ∑
~x∈Bn

even N-parity

fM−M(~x)−∑
~x∈Bn

odd N-parity

fM−M(~x) = #SAT(fM−M ∧¬z)−#SAT(fM−M ∧ z)

= #SAT(fM)−#SAT(fM) = #M−#M = gapM

so there is a polynomial-time counting reduction from GapP to #SAT±, and it must be GapP-hard.

Furthermore, let f , N be an instance of #SAT± with variables xi, then clearly we have that

#SAT±(f ,N) =∑
~x∈Bn

even N-parity

f (~x)−∑
~x∈Bn

odd N-parity

f (~x) = #SAT

(

f ∧¬

(

⊕

i∈N

xi

))

−#SAT

(

f ∧

(

⊕

i∈N

xi

))

since g = 1 ⇐⇒ g and g = 0 ⇐⇒ ¬g, so ¬(
⊕

i∈N xi) is the same as asserting even N-parity (and

likewise odd N-parity). But GapP is the closure of #P under subtraction, so #SAT±(f ,N) is in GapP.

Thus it follows that #SAT± is GapP-complete.

Lemma 4. The following diagrammatic equivalent to the variable branching rule holds for variables

with π-phases:

π

π

π

0

0

0

0

...

...
...

...

...
...

0

π π

π

0

0

0

0

...

...
...

...

...
...

0

π

π

0

0

0

0

...

...
...

...

...
...= − (13)

Proof. This follows from the sum

π π
−= (37)

together with the proof of Lemma 2.

T. Laakkonen, K. Meichanetzidis & J. van de Wetering 161

Lemma 5. The following diagrammatic equivalent to the unit propagation rule holds for variables with

π-phases:

π

0

π π

π

0

0

0

0

...

...
...

...

...
... =

0

0

...

...
...

...

...
... π

0 π

π

0

0

0

0

...

...
...

...

...
... =

0

0

...

...
...

...

...
...− +

(14)

Proof. This follows from the identities

π
...

...=
...

BAZ=
...

BAH=

π π
... π

...=
π ...

BAZ= π
π

...= −

(38)

together with the proof of Lemma 1.

A. Dı́az-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 162–196, doi:10.4204/EPTCS.406.8

© T. Laakkonen, K. Meichanetzidis, B. Coecke
This work is licensed under the
Creative Commons Attribution License.

Quantum Algorithms for Compositional Text Processing

Tuomas Laakkonen, Konstantinos Meichanetzidis, Bob Coecke
Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, United Kingdom

{tuomas.laakkonen, k.mei, bob.coecke}@quantinuum.com

Quantum computing and AI have found a fruitful intersection in the field of natural language pro-
cessing. We focus on the recently proposed DisCoCirc framework for natural language, and propose
a quantum adaptation, QDisCoCirc. This is motivated by a compositional approach to rendering AI
interpretable: the behavior of the whole can be understood in terms of the behavior of parts, and the
way they are put together.

For the model-native primitive operation of text similarity, we derive quantum algorithms for
fault-tolerant quantum computers to solve the task of question-answering within QDisCoCirc, and
show that this is BQP-hard; note that we do not consider the complexity of question-answering in
other natural language processing models. Assuming widely-held conjectures, implementing the
proposed model classically would require super-polynomial resources. Therefore, it could provide a
meaningful demonstration of the power of practical quantum processors.

The model construction builds on previous work in compositional quantum natural language
processing. Word embeddings are encoded as parameterized quantum circuits, and compositionality
here means that the quantum circuits compose according to the linguistic structure of the text. We
outline a method for evaluating the model on near-term quantum processors, and elsewhere we report
on a recent implementation of this on quantum hardware.

In addition, we adapt a quantum algorithm for the closest vector problem to obtain a Grover-
like speedup in the fault-tolerant regime for our model. This provides an unconditional quadratic
speedup over any classical algorithm in certain circumstances, which we will verify empirically in
future work.

1 Introduction

Artificial intelligence permeates a wide range of areas of activity, from academia to industrial applica-
tions, with natural language processing (NLP) standing center stage. In parallel, quantum computing has
seen a surge in development, and practical quantum processors are reaching scales where small-scale
quantum algorithms are becoming feasible. The merging of these two fields has given rise to the young
area of research on quantum natural language processing (QNLP). Here we focus on the ‘first wave’ of
QNLP, starting around 2016 [14, 28, 37, 40, 54], although there are also other approaches [51, 52]. One
important feature that distinguishes that first wave from other work, and from the broad field of quantum
machine learning [6, 21, 46], is that it provides a path towards explainability and interpretability.

Despite all of the impressive advancements of contemporary artificial intelligence – which is synony-
mous with machine learning methods – these advancements have been achieved by training black-box
deep-learning models on large amounts of data. In order to arrive at general applicability and high per-
formance, what is often compromised by such setups, at least in terms of model architecture, is exactly
explainability and interpretability. When things go wrong unexpectedly, you typically don’t know why.
Therefore, several attempts have been put forward recently to render black-box deep-learning models
more explainable and interpretable. For example, methods for post-hoc mechanistic interpretability have
recently formed an active area of research [9]. Conversely, first-wave QNLP made use of an earlier

http://dx.doi.org/10.4204/EPTCS.406.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Laakkonen, K. Meichanetzidis, B. Coecke 163

quantum-inspired model for language [11, 16] that had been crafted precisely with the features of ex-
plainability and interpretability in mind. These features were achieved through compositionality.

For us, compositionality means that the behavior of the whole can be understood in terms of the
behavior of parts, and the way they are put together [13]. In the case of language this includes linguis-
tic meaning as well as linguistic structure such as grammar and coreference. An early compositional
framework for natural language that combined linguistic meaning and linguistic structure was DisCo-
Cat [16, 24, 29, 44]. Somewhat surprisingly, this was enabled by the foundational research program
of categorical quantum mechanics [1, 15]: DisCoCat emerged from the observation that the category-
theoretic structure of categorical quantum mechanics perfectly matched Lambek’s model of linguistic
structure in terms of pregroups [31, 32]. In this way, linguistic structure mediates how word-meanings
interact in order to form phrase- and sentence-meanings – see [11, 14] for more details. Just as it is the
case in categorical quantum mechanics, sentences in DisCoCat take the form of diagrams:

John does not like Mary
nr s jl σ σr j jl σ σr j nl nn

“John does not like Mary”

where the boxes capture word-meanings and the wires represent the grammatical interactions between
those word-meanings, yielding the meaning of the sentence as a whole. The fact that DisCoCat essen-
tially was derived from a quantum mechanical formalism, enabled one to use it to easily craft quantum
NLP models, which we will refer to as QDisCoCat [14, 39, 54]. This was the foundation of the ‘first
wave’ of QNLP.

QDisCoCat models have been implemented on quantum hardware for the task of sentence classifi-
cation [28, 37, 40], but they have some shortcomings. Firstly, QDisCoCat diagrams have to be converted
into quantum circuits in order to fit them on a quantum computer, and consequently, quantum algorithms
derived from them require post-selection – no lower bounds are known for the post-selection probability,
so these algorithms may require exponential time in the worst case.1 A related issue is that the reliance
of DisCoCat on ‘categorial grammars’ [30,31], which cannot natively represent texts larger than individ-
ual sentences. Both problems are addressed in the DisCoCirc framework [12, 49], where sentences are
represented by circuits, and these circuits can be further composed to represent texts. We call these text
circuits. This bypasses the need for conversion of diagrams into circuits, making post-selection unnec-
essary. Besides these, DisCoCirc enjoys a number other advantages that are discussed in [49], and has
been studied within a wide variety of contexts [19, 43].

In this work, we propose QDisCoCirc, an adaptation of DisCoCirc which provides efficient quantum
algorithms for several NLP tasks within the model. In particular, in Section 4 we show that there exists
an NLP task, namely question-answering, which is BQP-hard to solve within the QDisCoCirc frame-
work. Therefore, evaluating this model can provide a demonstration of the power of practical quantum
processors, as simulating the model classically would require super-polynomial resources (assuming
widely-held hardness conjectures). Furthermore, this would be less abstract compared to experiments
such as those based on random circuit sampling [2, 18], which are convincing demonstrations of quan-
tum hardware, but do not attempt to solve a widely applicable task. Importantly, we do not claim that the

1Sample-efficient sentence-level QNLP models can be constructed [25], but they are not compositional in the above sense.

164 Quantum Algorithms for Compositional Text Processing

underlying NLP task of question-answering cannot be solved efficiently with a classical machine, only
that the QDisCoCirc model in particular would be hard to evaluate in this case.

We believe that QDisCoCirc models are worth considering because of the interpretability and ex-
plainability they afford. However, other concrete implementations of the DisCoCirc framework could
also be proposed – for example, based on classical neural networks – and in any quantum model, it
is necessary to justify why it should be preferred over a classical model, given the extreme difficulty
of constructing quantum devices. We argue that a quantum model is most natural for this framework.
DisCoCirc, via DisCoCat, is ultimately derived from pregroup grammars [32], where the composition
of spaces is their tensor product. This has been argued as essential to fully capture the semantics of
language [16, 24]. In fact, we have the following result:
Proposition (Informal, [17, Theorem 2.1] & [15, Theorem 5.49]). If a model has the same abstract
structure as pregroup grammars, composition of spaces must be analogous to the tensor product.

This can be made precise in several ways, as discussed in [15, 17]. This fixes the compositional
structure of our model, but leaves the underlying Hilbert space undefined. As is customary in machine
learning, we take this to be numerical vectors with the usual dot product, and in this case these models
become tensor networks. Since large general tensor networks are not feasible to evaluate, both for quan-
tum and classical devices, we must pick a subset which can be efficiently evaluated. We choose to base
our model on quantum circuits, which represent the largest such subset currently known [7].

Finally, in Section 5 we give an algorithm that achieves for QDisCoCirc a Grover-like quadratic
speedup over any classical algorithm for tasks such as text similarity, under certain technical assump-
tions about the dataset which can be verified empirically. This algorithm improves over the equivalent
algorithm for QDisCoCat [54], which considers a technological regime where fault-tolerant scalable
quantum computers and large quantum random access memories (QRAM) are available, while this is
unlikely to be feasible in the near term. In contrast, our algorithm uses exponentially fewer bits of
QRAM. Additionally, in Section 3 we present algorithms that do not use a QRAM, but are quadratically
slower than the algorithm given in Section 5. They require much fewer quantum resources, and so are
practical to implement on near-term machines. In Section 3, we show how text circuits can be mapped
into parameterized quantum circuits to realize these algorithms.

2 DisCoCirc

In the DisCoCirc framework, texts are the result of the composition of sentences, analogously to how
sentences are compositions of words. Texts are represented by text circuits, which are read top to bottom.
Boxes represent processes, and every box has input wires and output wires. In such circuits, only connec-
tivity matters and so the information flow is explicit in the circuit. A circuit is composed of generators,
or atomic processes, each of which has a linguistic interpretation – see [35] for more information. Text
circuits are composed of the following set of generators, which we call states, effects, boxes, and frames:

S
B

. . .

. . .

. . .

. . .

. . .

. . .

F

. . .

. . .

. . .

States Boxes Frames

E

Effects

T. Laakkonen, K. Meichanetzidis, B. Coecke 165

Generators can be composed – sequential composition of processes can be done by connecting the output
wires of one process with the input wires of another process, and parallel composition is performed by
placing boxes side by side. An effect is to be understood as a ‘test’, or the inverse, of a state. Applying
an effect to a state, by joining all of their wires, results in a circuit with no open wires, which we call a
scalar.

In this approach to modeling text as circuits, nouns are ‘first class citizens’, and are represented as
states. The idea is that noun states are carried along wires, and so all wires here carry the same type, the
noun type. Boxes are processes that transform states. Examples of these are adjectives or intransitive and
transitive verbs, that act on nouns and pairs of nouns respectively. In general, generators with compatible
shapes can be serially composed:

Alice

eats

“Alice eats.”

Alice

hates

“Alice hates Bob.”

Bob large

red

= large red

We also have some special generators – the identity, the swap, and the discard effect:

Identity Swap

D

Discard

These interact with each other in a well-behaved way [15], so that only connectivity matters – we can
bend and move wires freely so that equality of circuits is considered up to connectivity between inputs
and outputs of generators. We consider any circuit to be state, effect, box, or frame if it has a compatible
pattern of input and output wires. Additionally, we associate each generator with an inverse, which when
composed serially yields the identity. Inverses for composite circuits are constructed by mirroring the
whole circuit vertically and replacing every individual generator with its inverse.

Frames are super-maps that transform boxes, for example, intensifiers that act on adjectives, adverbs
that act on verbs, or conjunctions that act on phrases:

and

eats drinks

Alice cake Alice coffee

Alice cake coffee

“Alice eats cake and drinks coffee”

runs

quickly

Alice

“Alice runs quickly”

fast

very

Alice

“Alice is very fast”

166 Quantum Algorithms for Compositional Text Processing

Note that not all wires may occur in all the holes in each frame. In this case, the interior wires can be
labeled with exterior wires to which they correspond (note that this need not be a single wire). Frames
can also be serially composed:

runs

around

Alice

quickly

“Alice quickly runs around”

runs

quickly

Alice

but

walks

slowly

“Alice runs quickly but walks slowly”

The composition of the generators of text circuits is not free; not every composition is allowed – for
instance, wires may not pass through frames. Compositions are restricted in the sense that text circuit
are the output of a text-to-circuit parser [35], which for this work we assume as given – the parser
generates parse trees for each sentence that are converted to text circuits, and the wires corresponding to
common nouns are connected using coreference resolution so that generators concerning the same nouns
throughout the text act on the same wires in the circuit. Arbitrary text circuits are local, as the number of
input and output wires of every box is upper bounded by a constant that is independent of the text size.
Furthermore, we assume that text circuits derived from a text via the parser are acyclic.

2.1 Native NLP Tasks

The range of NLP tasks is wide and diverse. Here, we consider tasks that are native to DisCoCirc. That
is, we formulate simple NLP tasks using the compositional structure of the model. The key idea is that
text circuits constructed by the parser pipeline are states which carry the information of the text. Then
this information is retrieved by constructing appropriate tests in terms of effects. In general, the effects
are constructed as (inverses of) text circuits themselves. The primitive operation that we will use to define
NLP tasks is that of similarity, or overlap, which is tested by serially composing effects onto states. In
this way, we can represent each task as a single, scalar, text circuit.

First we consider the text-level analogue of sentence similarity as presented in the DisCoCat frame-
work [54], ie text similarity. Suppose T1 and T2 are text circuits defining states obtained from the parser,
defined on the wires generated by same set of nouns N. We form a scalar text circuit corresponding to

T. Laakkonen, K. Meichanetzidis, B. Coecke 167

their similarity by serially composing one with the inverse of the other. For example:

T1

T−1
2

. . .

. . .

Alice−1

and

eats drinks

Alice cake coffee

cake−1

hates−1

coffee−1

loves−1

“Alice eats cake and drinks coffee.”

“Alice loves coffee. Alice hates cake.”

In the case that the circuits are not defined on the same set of nouns, we can still compute the similarity.
Suppose T1 and T2 be defined on the sets of nouns N1 and N2. Let U1,U2, . . . ,U|N2\N1| be the noun states
present in T2 but not T1, and similarly V1,V2, . . . ,V|N1\N2| be the noun states present in T1 but not T2. By
parallel composing T1 with Ui and T2 with Vi, we form two text circuits that are defined on the same
wires. For example:

U1 U|N2\N1|
. . .

V −1
1

V −1
|N1\N2|

. . .

T1

. . .

T−1
2

. . .

. . .

. . .

Alice−1

and

eats drinks

Alice cake coffee

cake−1 pizza−1

hates−1

coffee−1

loves−1

pizza

“Alice eats cake and drinks coffee.”

“Alice loves pizza. Alice hates cake.”

While this task compares the whole of both texts, we can extract more specific information about a text
by only comparing against a subset of the nouns that we wish to know about. We call this task question
answering. In this task, we want to ask a question about a subset of the nouns in the text. To do this, we
formulate the question as a statement (for example, ‘Is Alice home?’ becomes ‘Alice is home.’) and then
we compute the similarity of the text with the inverse of the question in the same way as above, except

168 Quantum Algorithms for Compositional Text Processing

that we discard the noun wires in the text that are not in the subset used by the question. For example:

D

T

. . .

Q−1

. . .

. . .
D

Alice home work

left

went

to

is−1

home−1Alice−1 D

“Alice left home. Alice went to work.”

“Is Alice home?”

In the case of questions which have several different possible answers, we formulate such a question
statement and thus text circuit for each possible answer. For example, ‘Is Alice home?’ becomes a pair
of question statements ‘Alice is home.’ and ‘Alice is not home.’ Then we compare the scalar text circuits
formed in each case to determine the answer to the question.

In Section 6, we show a collection of other model-native NLP tasks that enjoy a natural representation
as text circuits. In general, DisCoCirc itself does not prescribe a particular semantics for any of these
tasks (for instance, we leave the way that scalar circuits are computed or compared unspecified) — it
provides a method for constructing the text circuits representing the input texts, as well as an intuitive
framework for designing circuits corresponding to a particular task. Moreover, once an implementation
of the model is decided, the word-embeddings that form the boxes will be derived to solve a specific task.
The aim of DisCoCirc is only to incorporate linguistic structure into the model, so it is not imperative
that these task-circuits are defined rigorously (for example, as a statement of discourse representation
theory), but rather that they are ‘intuitively correct’ so that the imparted structure is helpful in practice.
In the next section, we will construct a specific implementation of DisCoCirc that fills in these details.

3 QDisCoCirc Models

To construct a concrete DisCoCirc model that performs a model-native NLP task for any potential text
and task, we apply a structure-preserving map to the corresponding text circuit. This is achieved by
defining a map that is applied to every generator individually, in a way that respects the relations defined
on the generators. As discussed in the introduction, a natural choice of space in which such circuits may
exist is tensor networks. As tensor networks are hard to evaluate in general, we propose QDisCoCirc, a
family of models based on quantum circuits, which are a restricted family of tensor networks, and can
be efficiently evaluated on a quantum computer.

In QDisCoCirc, text circuits are translated to quantum circuits with postselections by replacing each
generator with a quantum operation or state and each wire with some fixed number of qubits. Further-

T. Laakkonen, K. Meichanetzidis, B. Coecke 169

more, the inverses of generators are given by their adjoints. The generators are mapped as follows:

S

B

. . .

. . .

States

Boxes

E

Effects

|Ψ⟩

Quantum States

⟨Ψ|

Post-selections

U

. . .

. . .

Unitaries

D

Discard Discard

. . .

. . .

. . .

. . .

F

. . .

. . .

. . .

Frames

. . .

. . .

. . .

. . .

S

. . .

. . .

. . .

Supermaps

↔

↔
↔

↔

↕

The specific form of supermaps obtained via this mapping will be discussed shortly. We identify post-
selected quantum circuit diagrams with the density matrices they represent (which are not normalized
in general); thus, scalar text circuits are indeed transformed to scalars representing the probability of
successfully post-selecting the given circuit.

To solve the model-native tasks defined above using this model, we observe that all the scalar text
circuits for the tasks take the form of A serially composed with B−1 for some circuits A and B (this is
true also for the tasks presented in Section 6). This corresponds to a text similarity operation. Through
the quantum semantic functor, this operation maps to quantum state overlap. According to the Born rule,
these result to expressions of the form F(Ψ,Φ) = |⟨Ψ | Φ⟩|2 for some quantum states Ψ and Φ in the
pure case, and in the general case F(ρ,σ) = tr(ρσ) for density matrices ρ and σ .

However, in the case that both ρ and σ are mixed, this does not satisfy the properties we would expect
from a similarity operation, such as F(ρ,ρ)= 1 and F(ρ,σ)< 1 if ρ ̸=σ . There are a few quantities [33]
such as the Uhlmann-Josza fidelity tr

(√√
ρσ

√
ρ
)2 which do satisfy these properties for mixed states,

but unfortunately they cannot be computed efficiently using a quantum computer. Therefore, we will
ensure text circuits obtained from the parser pipeline are translated to pure quantum states, so that for the
tasks defined previously, at most one of the states representing A and B is mixed.

Since the parser does not generate discards, we just need to make sure none of the generators are
mapped to mixed operations. This is trivially true for states, effects, and boxes, but frames are more
problematic. Since states map to quantum states and boxes to unitaries, frames become maps between
unitaries – supermaps – by analogy. However, some frames in text circuits may contain more wires for
one of their arguments than are input and output to the frame – this arises in many cases, for instance
in reflexive structures. Furthermore, general quantum supermaps can be written as pairs of unitaries
conjugating their arguments, along with a side channel consisting of some auxiliary qubits. In either case,
we cannot use auxiliary qubits or wires because these would then be subsequently discarded, making
the state mixed. Therefore, we instead constrain define our mapping from text circuits such that these
situations do not occur, see Appendix A for details.

170 Quantum Algorithms for Compositional Text Processing

3.1 Solving Model-Native Tasks

After decomposing the frames in a text circuit, the resulting QDisCoCirc quantum circuit will contain
only quantum states and unitaries labeled with the words from which they originated. For each task,
we assume we are given these states and unitaries as quantum circuits, which we call quantum word
embeddings, such that the circuits defined for the task are evaluated as expected. We will consider in
future work how to pick word embeddings such that this is the case. In particular, for text-similarity
tasks, that the degree of semantic similarity between the two texts is indicated by F(ρ,σ) = tr(ρσ). We
can solve tasks based on this primitive using the swap test [10]:
Theorem 1. The text-similarity primitive of QDisCoCirc models between two text circuits A and B can
be approximated to precision ε in polynomial time on a quantum computer. In particular, given ε > 0
and ρ , σ the quantum states derived from A and B respectively, the quantity tr(ρσ) can be determined
to precision ε with failure probability δ by a quantum circuit of size

O

(
(|A|+ |B|) log(1

δ
)

ε2

)
where |A| and |B| are the number of elementary quantum gates comprising ρ and σ .

Proof. We construct a quantum circuit based on the swap test [10, Figure 1]. This gives a circuit of size
O(|A|+ |B|) for which the first qubit has measurement probability 1

2 +
tr(ρσ)

2 . By a Hoeffding bound,
O(log(1

δ
)ε−2) samples of this circuit suffice to estimate tr(ρσ) to precision ε with failure probability

δ .

To solve the question-answering task in the QDisCoCirc model, we are given a text T and a set
of questions Qi and wish to find the Qi which maximizes tr(ρT ,ρQi). We can do this by evaluating
tr(ρT ,ρQi) for each i using the method above, and then taking the maximum of these. We show below
that this also runs in polynomial time on a quantum computer. To compare this algorithm to classical
algorithms, it is important to consider the scaling of ε carefully. The best-known classical method to
calculate tr(ρσ) would at least require performing statevector simulation of the quantum circuit. In this
case, we would expect a total time of at least O((|A|+ |B|)Nn polylog(ε−1)) and memory requirement of
O(Nn log(ε−1)), where log(N) is the number of qubits per wire, and n is the number of wires in the text
circuits – this is an exponentially worse dependency on N and n.

On the other hand, the scaling in terms of ε is much better in the classical case. For instance, consider
question answering. If the number of nouns referenced in the question is constant c, then only c log(N)
qubits will not be discarded. In this case, if the quantum states corresponding to the questions are suffi-
ciently uniformly distributed then ε = O(N−c) should suffice to resolve the maximum similarity, by an
argument of Wiebe et al [53], which gives exponentially better dependence in n. However, considering
the case of full text-text similarity with no discarding, the quantities tr(ρσ) may grow as small as N−n

in general, and so if small relative error is needed, ε = O(N−n) may be required, which makes the com-
plexity at least as bad as the classical algorithm. Therefore, for any given dataset and word embeddings,
it would be important to analyze the scaling of ε in terms of N and n, either analytically or empirically.

4 Hardness for Question Answering

We will now consider the problem of question answering in the QDisCoCirc framework more formally.
In particular, we will show that for the appropriate choices of texts and word embeddings, question

T. Laakkonen, K. Meichanetzidis, B. Coecke 171

Embeddings
Texts

Worst-Case Average-Case Typical

Worst-Case BQP-hard (Thm.3) BQP-hard (Thm.6) Empirical only
Average-Case BQP-hard (Thm.4) Unknown Empirical only

Typical Testable (Thm.5) Unknown Empirical only

Table 1: The hardness results shown in this paper. The embeddings axis refers to the choice of word
embeddings V , whereas the texts axis refers to the choice of context T and questions {Qi}. ‘Average-
case’ hardness refers to a ‘natural’ distribution - for embeddings this is the Haar distribution, whereas
for texts we define a distribution. ‘Typical’ hardness refers to texts and embeddings taken from actual
human-generated data. Since typical texts are always bounded by definition, only empirical evidence can
be given for hardness in this case.

answering is BQP-hard, and that there is an efficient quantum algorithm to solve it. Note these results
only apply to question answering strictly as specified by the QDisCoCirc framework, not as a general
NLP task. We call this task QDISCOCIRC-QA to emphasize the distinction. Proofs for the theorems in
this section are given in Appendix B.

Definition 1. The problem QDISCOCIRC-QA is defined as follows: given a set of word embeddings V ,
a context text T , and a set of k question texts {Qi}, determine any j such that∣∣∣∣tr(ρT (ρQ j ⊗ I)

)
−max

i
tr(ρT (ρQi ⊗ I))

∣∣∣∣< ε

where ρT = UT |0⟩⟨0|U†
T , ρQi = UQi |0⟩⟨0|U†

Qi
, and UT ,UQi are the QDisCoCirc text circuits generated

from T and Qi respectively over V .

Theorem 2. QDISCOCIRC-QA can be solved on a quantum computer in time

O

(
k log

(k
δ

)
|V |w(|T |+maxi |Qi|)

ε2

)

with precision ε and failure probability δ , where |V |w is the maximum number of elementary gates of
any word embedding in V , and |T |, |Qi| are the number of elementary gates in UT and UQi respectively.

Note that if the separation between the values tr(ρT (ρQi ⊗ I)) is smaller than ε , then the formulation
of QDISCOCIRC-QA does not guarantee that the ‘correct’ answer (in the sense of maximum similarity)
will be returned. We assume that word embeddings exist such that ε need not be too small, as discussed
in Section 3. Now we tackle the hardness results in the first column of Table 1 - that is, we will show
that for some sets of word embeddings V it is possible to construct context texts T and questions {Qi}
for which QDISCOCIRC-QA is BQP-hard.

Theorem 3. Suppose that a set of word embeddings V satisfies the following:

1. The operations of V use one qubit for each input wire,

2. V contains arbitrarily many proper nouns,

3. V contains at least two adjectives that generate a dense subset of SU(2),

4. V contains at least one transitive verb that is entangling

then for any fixed ε < 1
7 , QDISCOCIRC-QA is BQP-hard.

172 Quantum Algorithms for Compositional Text Processing

Supposing that we have word embeddings with enough nouns (and thus enough qubits) to perform
the reduction in the previous theorem, the particular unitaries in the word embeddings aren’t important
– Haar-random word embeddings suffice with high probability. This shows that QDISCOCIRC-QA is
hard in the average-case over word embeddings.
Theorem 4. Given a set of word embeddings V , suppose that operations in V are independent Haar-
random unitaries. Then conditions three and four of Theorem 3 are almost surely satisfied for all word
embeddings containing at least two adjectives and one transitive verb.

Moreover, suppose we are given a set of word embeddings (for instance, that can solve a particular
task), then we give a method to test if QDISCOCIRC-QA is hard in this case.
Theorem 5. Given a specific set of word embeddings V it is possible to check numerically that the
conditions of Theorem 3 are satisfied.

To show average-case hardness of QDISCOCIRC-QA in terms of texts (second column in Table 1),
we will first define a distribution over QDisCoCirc circuits of a given size, and then adapt Theorem 3
to show that we can draw polynomially sized texts T , {Qi} from this distribution and construct a set of
word embeddings V such that solving the corresponding question answering instance is BQP-hard. Note
that this distribution is not particularly representative of human-generated texts.
Definition 2. For every size k, we define a distribution Dk of text circuits with k unique states:

• There are no frames, and there are Ω(kγ) boxes with high probability for some γ > 4.

• The label of each box is drawn independently from a distribution of words that obey Heap’s law
and Zipf’s law exactly.

• The number of inputs to each box is drawn independently from a distribution A such that P(A = 2)
is nonzero and each input to a box is selected uniformly randomly from all possible wires.

We are now ready to show the reduction. However, to make this work we need the number of words
that only occur once in a given text (hapax legomena) to be bounded below by a polynomial in the total
size of the text. Clearly, this cannot hold for all sizes for any finite vocabulary. For typically-sized texts,
this assumption is justified statistically by Heap’s law and Zipf’s law [34, 45] — it has been shown that
for large corpora, roughly half of the vocabulary are hapax legomena, and hence their number scales like
∝ Nk for some k ≈ 0.5 [3]. However, since we are considering the limit of arbitrarily-sized texts which
do not exist in practice (all human texts are bounded), we require that this behavior can be extrapolated.
Theorem 6. There exists a polynomial f (m,n), such that given an oracle to solve QDISCOCIRC-QA
instances with arbitrary word embeddings and text circuits drawn from D f (m,n), we can perform arbitrary
quantum computations with m 2-local gates on n qubits with high probability in polynomial time. That is,
QDISCOCIRC-QA for worst-case word embeddings is average-case BQP-hard over texts drawn from
D f (m,n).

Since QDISCOCIRC-QA is BQP-hard, we expect that it is not easy to solve with a classical com-
puter, and that quantum algorithms to solve this ought to provide super-polynomial speedups. Therefore,
supposing that (a) there exists a set of word embeddings for which a QDisCoCirc model is accurate on
a dataset of interest, (b) the resulting quantum circuits are not easy to simulate classically (in the sense
of Theorem 5), (c) a quantum device exists with sufficient fidelity to provide meaningful results, and
(d) the precision ε required is not too high (in the sense of Section 3.1), then it would be possible to
perform an experiment on a quantum device which is hard to simulate classically but solves a task of in-
terest. However, it is important to note that for many datasets this task can be solved classically by other
means (notwithstanding the arguments presented in favor of QDisCoCirc in Section 1), so this would not
constitute a demonstration of quantum advantage over every classical algorithm.

T. Laakkonen, K. Meichanetzidis, B. Coecke 173

5 Further Quadratic Speedups

In this section, we present a quantum algorithm for obtaining polynomial speedups for the task of text
question answering that we presented in Sections 3 and 4. Specifically, our results are obtained by
adapting and improving on the approach of the work of Zeng and Coecke [54]. These algorithms provide
a quadratic improvement over the simpler swap test algorithm, as well as being quadratically faster than
any classical algorithm for solving the same task. While they require a QRAM [23], it is used to store
exponentially fewer bits as compared to [54].

Basheer et al [5] give a quantum algorithm for accelerating the k-nearest neighbors problem as fol-
lows. Given the vectors v0 ∈CN and {v1, . . . ,vk}⊂CN such that ||vi||= 1 and quantum amplitude encod-
ing oracles V |0⟩= |v0⟩ and W |i⟩|0⟩= |i⟩|vi⟩ with gate complexities TV and TW , then there is a quantum
algorithm to find i = argmax j≥1 |⟨v0 | v j⟩| with error at most ε and fixed positive success probability

in time Õ
(√

kε−1(TV +TW + log2 N)
)

. The algorithm takes quantum states, encodes the fidelity via a
partial swap test, then digitizes this with the quantum analog-to-digital conversion algorithm of Mitarai
et al [41] before finding the minimum via Dürr-Høyer search [22]. In the case that V (|0⟩⟨0|) = ρ0 and
W (|i⟩⟨i|⊗ |0⟩⟨0|) = |i⟩⟨i|⊗ρi are actually operators preparing mixed states, then the quantity calculated
will be i = argmax j≥1 tr(ρ0ρi).

5.1 Application to DisCoCirc

Since DisCoCirc is based on a circuit architecture, it is natural to work with the word embeddings de-
scribed as quantum circuits, and construct the amplitude encoding of texts directly as quantum circuits.
We will apply the nearest-neighbor algorithm to the following task: given a text T0 and a set of texts Ti for
k ≥ i> 0, find i such that T0 and Ti are the most similar, and thus that maximizes tr(ρ0ρi), where ρi is the
density matrix corresponding to the QDisCoCirc circuit for Ti. This extends both the question-answering
and text-similarity tasks given in Section 3.

Unlike the previous section where we assumed that the boxes in QDisCoCirc were arbitrary unitaries,
we now suppose that each box with d wires is a particular instance of a parameterized quantum circuit
ansatz. Let us define the following hyperparameters: (a) each noun wire is mapped to a set of qubits with
Hilbert space dimension N, (b) each QDisCoCirc circuit considered has at most w unitaries and n noun
wires total, (c) each unitary in the quantum circuit acts on at most d wires, (d) there are V different word
embeddings given, (e) the number of gates in the ansatz for d wires of dimension N scales as Ag(N,d),
(f) the number of parameters in the ansatz for d wires of dimension N scales as Ap(N,d), and (g) each
parameter for the ansatz is stored with P bits of precision.

To solve this task, we can straightforwardly apply the quantum k-nearest neighbors algorithm dis-
cussed above, with V (|0⟩⟨0|)= ρ0 and W (|i⟩⟨i|⊗|0⟩⟨0|)= |i⟩⟨i|⊗ρi. Clearly, V is given by the quantum
circuit preparing ρ0, however for W we need a significantly more complicated circuit. This is explicitly
constructed in Appendix C, and requires the following QRAM oracles:

• Parami j|k⟩|0⟩= |k⟩|φi jk⟩ where φi jk is a P-bit fixed-precision binary encoding of the jth parameter
for the ansatz of the ith unitary in the circuit preparing ρk,

• Widthi|k⟩|0⟩= |k⟩|Wik⟩ where Wik is a binary encoding of the width of the ith unitary in the circuit
preparing ρk,

• Indexi j|k⟩|0⟩ = |k⟩|Ii jk⟩ where Ii jk is an encoding of the position of the jth argument to unitary i
in the circuit preparing ρk. Note that the encoding is not a mapping from zero-indexed position to
binary, but it is of size O(log(w)) – see Appendix C.

174 Quantum Algorithms for Compositional Text Processing

Each of these oracles can be implemented using a series of calls (one for each bit) to bucket-brigade
QRAMs of size k. Therefore, O(kw(PAp(N,d)+ log(d)+d log(w))) bits of QRAM is required in total,
each taking time O(log(k)) to query.

If we assume that Ap(N,d) = O(poly(log(N),d)) (this is true for any of the widely-used ansatze
defined by Sim et al [47], for example), that w = O(poly(n)) (which is justified by Heap’s law), and
that P and d are fixed, then this is O(k poly(n, log(N))) bits total. By comparison, adapting the strategy
employed in [54] to QDisCoCirc would require at most O(kNn) bits total, so our approach provides a
significant saving.

The oracle for W is constructed by alternating layers of multiplexers, which bring the qubits for each
unitary to the top of the circuit, and parameterized ansatze to implement each unitary. Each of these load
parameters from QRAM to specify their behavior. The overall construction is as follows:

...

M
U
X
1

In
d
e
x

...

...

...

...

...
A
n
s
a
t
z
1

In
d
e
x

M
U
X
2

In
d
e
x

A
n
s
a
t
z
2

In
d
e
x

M
U
X
m

In
d
e
x

A
n
s
a
t
z
m

In
d
e
x

. . .

. . .

. . .

...

...

...

...

...

...

Index

W
=

M
U
X
†1

In
d
e
x

M
U
X
†2

In
d
e
x

M
U
X
†m

In
d
e
x|i⟩

|ψ⟩

Using this, we derive the following result:

Theorem 7. Given a text T0 and a set of texts Ti for k ≥ i> 0, we can find i that maximizes tr(ρ0ρi), with
error at most ε , in time

Õ

(√
k

ε
(wd log(k)(n log(N)+PAg(N,d))+ log2(N))

)

on a quantum computer with a constant success probability, where ρi is the density matrix corresponding
to the QDisCoCirc quantum circuit for Ti.

Proof. We apply the quantum k-nearest neighbor algorithm of Basheer et al [5] with V and W defined
above. These can be implemented with O(Ag(N,d)) and O(wd log(k)(n log(N)+PAg(N,d))) gates re-
spectively, see Appendix C for details. We require controlled versions of these, but this only increases
the gate count by a constant factor.

Comparing this to the naive swap test-based algorithm for solving the question-answering task de-
fined in Section 4, it is clear that this method achieves a quadratic speedup both in k and ε , up to extra
logarithmic factors needed to construct the oracles. Comparing against a classical algorithm, note that
for any given ε , this algorithm is better than any classical algorithm, which clearly must be at least O(k),
and so for large values of k we would expect to see a speedup as compared to any classical algorithm to
solve the same task. However, as discussed in Section 3, the classical algorithm scales much better in
terms of ε , namely O(log(1

ε
)) vs O(ε−1), and so the same concerns about the dependence on N and n

apply here. Additionally for this algorithm, for a given dataset, it is necessary to analyze the scaling of
ε in terms of k – for instance, if ε = o(k−

1
2) is required, then there would be no quadratic speedup in k

compared to the classical algorithm.

T. Laakkonen, K. Meichanetzidis, B. Coecke 175

6 Other Model-Native Tasks

In the previous sections, we have considered only the fundamental primitive of text-similarity, and its
local version that we call question-answering. However, we can also propose some simple model-native
text processing tasks regarding ‘character development’. All tasks we introduce here have a natural
representation as text circuits in the DisCoCirc framework.

To do so, we introduce two new generators: the cap and cup. The cap semantically represents a joint
state of two nouns which are unspecified but identical. Likewise, the cup is the corresponding effect that
tests for this situation.

CupCap Bell
Measurement

Bell State

⊕
|0⟩ |+⟩ ⊕

⟨0| ⟨+|
↔ ↔

Their translations into QDisCoCirc are naturally defined as the Bell state and measurement respectively.
These generators are both self-inverse, and obey certain relations along with the identity and swap gen-
erators to ensure that they are well-behaved [15] - in particular, to maintain the property that only con-
nectivity of the diagram matters.

We can use these to construct several tasks. For example, measuring a ‘character arc’ — comparing
the similarity of a noun state wire before and after it has been acted on by a text, either with itself or
between a pair of nouns. We can also form a diagrammatic trace using caps, cups, and identity wires,
which we can use to measure a similar quantity in a way that is independent of the initial noun state (i.e.
how much any noun changes if it was taking that particular role in the text). Let T be a text and N1 and
N2 be two nouns present in it, then we can form the following text circuits:

T

D

. . .

D N−1
1

T

D

. . .

D N−1
1 N−1

2

N1 N1 N2

T

D

. . .

D

T

D

. . .

D

Does N1 stay the same?
(regardless of initialization)

Does N1 stay the same?
Does N1 become N2?

(and vice versa)

Does N2 become N1?
(regardless of initialization)

T

D

. . .

D

N1 N2

T

D

. . .

D

Do N1 and N2 end up identical?

If N1 and N2 are identical
do they stay identical?

N1

D

Further, we can have combinations of the above, by applying noun effects and traces in the same
circuit. This is to be understood as testing for properties in conjunction. From this, we see the motivation

176 Quantum Algorithms for Compositional Text Processing

for including cups, caps, and inverses in our framework – it allows us to represent more intuitively some
natural classes of tasks as a single text circuit. Additionally, while the results in Sections 4 and 5 are
tailored to the sentence-similarity and question-answering tasks, we would expect that similar theorems
hold for all the tasks defined here as well.

7 Discussion and Future Work

In this paper we focused on the DisCoCirc framework because of its explainability and interpretability
in compositional terms. For the primitive task of question-answering within the QDisCoCirc model, we
showed BQP-hardness. Further, we adapted known quantum algorithms to achieve for QDisCoCirc a
Grover-like quadratic speedup over any classical algorithm for tasks such as text similarity, under certain
technical conditions.

Recalling that the way in which we constructed QDisCoCirc is by applying a map from text circuits
to quantum circuits, other variants of this mapping could be explored in the future. For example, there
are families of quantum circuits that are classically efficiently simulable, such as those constructed from
nearest-neighbor match-gates [27], which have been used successfully to numerically optimize large
quantum circuits [38] and could be used as ‘warm start’ initializations for QDisCoCirc models. Viewing
quantum circuits as special cases of tensor networks, we can also consider models based on tensor net-
works (although they would be costly to compute). This would constitute compositional tensor-network
machine learning, which is an emerging subfield in machine learning [26, 48].

Overall, our approach can be viewed as providing sparse structural priors to NLP models, potentially
aiding generalization performance or allowing more efficient training. Such an approach could also
provide a structure that may guide how mechanistic interpretability methods can be applied [36]. Most
importantly, we prioritized transparent model-building, with performance and broad applicability as a
secondary target.

The results here are presented in a way compatible with the parser introduced by Liu, Shaikh, Rodatz,
Yeung, and Coecke [35], which mechanically transforms a subset of English text into DisCoCirc text
circuits. Given a different parser, the definition of the mapping from text circuits to quantum circuits
might need modification. However, the results of Section 4 and 5 regarding quantum algorithms would
still be applicable. These results concern fault-tolerant quantum computers (either via deep quantum
circuits, or by the assumption of quantum random access memories).

Focusing on more near-term hardware, and given access to a parser and state-of-the-art near-term
quantum processors [4], allows us to perform heuristic explorations based on the algorithm in Section
3.1. In a separate paper [20], we report on performing tasks such as question-answering within the noisy
intermediate-scale quantum regime. We train the quantum word embeddings that encode the semantics
of texts in-task, as was done in previous work with DisCoCat [37, 40]. However, it is also promising to
experiment with training these in a task-agnostic way.

Furthermore, QDisCoCirc allows us to put to the test the principle of compositionality with respect
to training, i.e. to quantify to what extent a compositional model aids generalization to larger instances
after being trained on instances up to a certain size. This setup is motivated by the possibility that a com-
positional approach to quantum machine learning with parameterized circuits bypasses the fundamental
problem posed by barren plateaus [42]. Our results in [20] are very promising in this respect.

Acknowledgments We thank Matty Hoban for discussions on complexity theory, Harry Buhrman,
Richie Yeung, Luuk Coopmans and Ilyas Khan for comments on the manuscript, the QDisCoCirc team

T. Laakkonen, K. Meichanetzidis, B. Coecke 177

(Saskia Bruhn, Tiffany Duneau, Gabriel Matos, Anna Pearson, and Katerina Saiti) for helpful discussions
refining the model, and the parser-pipeline team (Jonathon Liu, Razin Shaikh, and Benjamin Rodatz) for
answering all of our questions.

References

[1] S. Abramsky & B. Coecke (2004): A categorical semantics of quantum protocols. In: Proceedings of the 19th
Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 415–425, doi:10.48550/arXiv.quant-
ph/0402130. arXiv:quant-ph/0402130.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas,
Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro,
Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig
Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hart-
mann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang
Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov,
Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R.
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mu-
tus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov,
John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J.
Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villa-
longa, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven & John M. Martinis (2019):
Quantum Supremacy Using a Programmable Superconducting Processor. Nature 574(7779), pp. 505–510,
doi:10.1038/s41586-019-1666-5.

[3] R Harald Baayen (2001): Word frequency distributions. 18, Springer Science & Business Media,
doi:10.1007/978-94-010-0844-0.

[4] Charles H. Baldwin, Karl Mayer, Natalie C. Brown, Ciarán Ryan-Anderson & David Hayes (2022): Re-
examining the quantum volume test: Ideal distributions, compiler optimizations, confidence intervals, and
scalable resource estimations. Quantum 6, p. 707, doi:10.22331/q-2022-05-09-707.

[5] Afrad Basheer, A. Afham & Sandeep K. Goyal (2021): Quantum k-nearest neighbors algorithm,
doi:10.48550/arXiv.2003.09187. arXiv:2003.09187.

[6] Marcello Benedetti, Erika Lloyd, Stefan Sack & Mattia Fiorentini (2019): Parameterized quantum cir-
cuits as machine learning models. Quantum Science and Technology 4(4), p. 043001, doi:10.1088/2058-
9565/ab4eb5.

[7] Ethan Bernstein & Umesh Vazirani (1997): Quantum Complexity Theory. SIAM Journal on Computing
26(5), pp. 1411–1473, doi:10.1145/167088.167097.

[8] Adam Bouland & Tudor Giurgica-Tiron (2021): Efficient Universal Quantum Compilation: An Inverse-free
Solovay-Kitaev Algorithm, doi:10.48550/arXiv.2112.02040. arXiv:2112.02040.

[9] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Conerly, Nick Turner,
Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu, Shauna Kravec, Nicholas Schiefer,
Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex Tamkin, Karina Nguyen, Brayden McLean,
Josiah E Burke, Tristan Hume, Shan Carter, Tom Henighan & Christopher Olah (2023): Towards Monose-
manticity: Decomposing Language Models With Dictionary Learning. Transformer Circuits Thread. https:
//transformer-circuits.pub/2023/monosemantic-features/index.html.

[10] H. Buhrman, R. Cleve, J. Watrous & R. De Wolf (2001): Quantum fingerprinting. Physical Review Letters
87(16), p. 167902, doi:10.1103/PhysRevLett.87.167902.

[11] S. Clark, B. Coecke, E. Grefenstette, S. Pulman & M. Sadrzadeh (2014): A quantum teleportation inspired
algorithm produces sentence meaning from word meaning and grammatical structure. Malaysian Journal of
Mathematical Sciences 8, pp. 15–25, doi:10.48550/arXiv.1305.0556. ArXiv:1305.0556.

https://doi.org/10.48550/arXiv.quant-ph/0402130
https://doi.org/10.48550/arXiv.quant-ph/0402130
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1007/978-94-010-0844-0
https://doi.org/10.22331/q-2022-05-09-707
https://doi.org/10.48550/arXiv.2003.09187
https://arxiv.org/abs/2003.09187
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1145/167088.167097
https://doi.org/10.48550/arXiv.2112.02040
https://arxiv.org/abs/2112.02040
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://transformer-circuits.pub/2023/monosemantic-features/index.html
https://doi.org/10.1103/PhysRevLett.87.167902
https://doi.org/10.48550/arXiv.1305.0556

178 Quantum Algorithms for Compositional Text Processing

[12] B. Coecke (2019): The mathematics of text structure, doi:10.48550/arXiv.1904.03478. ArXiv:1904.03478.
[13] B. Coecke (2021): Compositionality as we see it, everywhere around us. arXiv preprint arXiv:2110.05327,

doi:10.48550/arXiv.2110.05327.
[14] B. Coecke, G. de Felice, K. Meichanetzidis & A. Toumi (2020): Foundations for Near-Term Quantum Natu-

ral Language Processing, doi:10.48550/arXiv.2012.03755. ArXiv preprint arXiv:2012.03755.
[15] B. Coecke & A. Kissinger (2017): Picturing Quantum Processes. A First Course in Quantum Theory and

Diagrammatic Reasoning. Cambridge University Press, doi:10.1017/9781316219317.
[16] B. Coecke, M. Sadrzadeh & S. Clark (2010): Mathematical foundations for a compositional distributional

model of meaning. In J. van Benthem, M. Moortgat & W. Buszkowski, editors: A Festschrift for Jim Lambek,
Linguistic Analysis 36, pp. 345–384, doi:10.48550/arXiv.1003.4394. Arxiv:1003.4394.

[17] Bob Coecke, Fabrizio Genovese, Stefano Gogioso, Dan Marsden & Robin Piedeleu (2018): Uniqueness of
Composition in Quantum Theory and Linguistics. Electronic Proceedings in Theoretical Computer Science
266, pp. 249–257, doi:10.4204/eptcs.266.17.

[18] Matthew DeCross, Reza Haghshenas, Minzhao Liu, Yuri Alexeev, Charles H. Baldwin, John P. Bartolotta,
Matthew Bohn, Eli Chertkov, Jonhas Colina, Davide DelVento, Joan M. Dreiling, Cameron Foltz, John P.
Gaebler, Thomas M. Gatterman, Christopher N. Gilbreth, Johnnie Gray, Dan Gresh, Nathan Hewitt, Ross B.
Hutson, Jacob Johansen, Dominic Lucchetti, Danylo Lykov, Ivaylo S. Madjarov, Karl Mayer, Michael
Mills, Pradeep Niroula, Enrico Rinaldi, Peter E. Siegfried, Bruce G. Tiemann, Curtis Volin, James Walker,
Ruslan Shaydulin, Marco Pistoia, Steven. A. Moses, David Hayes, Brian Neyenhuis, Russell P. Stutz &
Michael Foss-Feig (2024): The computational power of random quantum circuits in arbitrary geometries,
doi:10.48550/arXiv.2406.02501. arXiv:2406.02501.

[19] Tiffany Duneau (2021): Solving Logical Puzzles in DisCoCirc. Journal of Cognitive Science 22(3), pp.
355 – 389. Available at https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125423576&
partnerID=40&md5=4c6db945056372334795ff799ea0f56f. Type: Article.

[20] Tiffany Duneau, Saskia Bruhn, Gabriel Matos, Tuomas Laakkonen, Katerina Saiti, Anna Pearson, Konstanti-
nos Meichanetzidis & Bob Coecke: Scalable and interpretable quantum natural language processing: an
implementation on trapped ions. In preparation.

[21] Vedran Dunjko & Hans J Briegel (2018): Machine learning & artificial intelligence in the quantum domain:
a review of recent progress. Reports on Progress in Physics 81(7), doi:10.1088/1361-6633/aab406. Available
at https://dx.doi.org/10.1088/1361-6633/aab406.

[22] Christoph Durr & Peter Hoyer (1999): A Quantum Algorithm for Finding the Minimum,
doi:10.48550/arXiv.quant-ph/9607014. arXiv:quant-ph/9607014.

[23] V. Giovannetti, S. Lloyd & L. Maccone (2008): Quantum random access memory. Physical review letters
100(16), p. 160501, doi:10.1103/PhysRevLett.100.160501.

[24] E. Grefenstette & M. Sadrzadeh (2011): Experimental Support for a Categorical Compositional Distribu-
tional Model of Meaning. In: The 2014 Conference on Empirical Methods on Natural Language Processing.,
pp. 1394–1404, doi:10.48550/arXiv.1106.4058. ArXiv:1106.4058.

[25] Carys Harvey, Richie Yeung & Konstantinos Meichanetzidis (2023): Sequence Processing with Quantum
Tensor Networks, doi:10.48550/arXiv.2308.07865. arXiv:2308.07865.

[26] William Huggins, Piyush Patil, Bradley Mitchell, K Birgitta Whaley & E Miles Stoudenmire (2019): To-
wards quantum machine learning with tensor networks. Quantum Science and Technology 4(2), p. 024001,
doi:10.1088/2058-9565/aaea94.

[27] Richard Jozsa & Akimasa Miyake (2008): Matchgates and classical simulation of quantum circuits. Pro-
ceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 464(2100), p. 3089–3106,
doi:10.1098/rspa.2008.0189.

[28] D. Kartsaklis, I. Fan, R. Yeung, A. Pearson, R. Lorenz, A. Toumi, G. de Felice, K. Meichanetzidis, S. Clark
& B. Coecke (2021): lambeq: An Efficient High-Level Python Library for Quantum NLP. arXiv preprint
arXiv:2110.04236, doi:10.48550/arXiv.2110.04236.

https://doi.org/10.48550/arXiv.1904.03478
https://doi.org/10.48550/arXiv.2110.05327
https://doi.org/10.48550/arXiv.2012.03755
https://doi.org/10.1017/9781316219317
https://doi.org/10.48550/arXiv.1003.4394
https://doi.org/10.4204/eptcs.266.17
https://doi.org/10.48550/arXiv.2406.02501
https://arxiv.org/abs/2406.02501
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125423576&partnerID=40&md5=4c6db945056372334795ff799ea0f56f
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85125423576&partnerID=40&md5=4c6db945056372334795ff799ea0f56f
https://doi.org/10.1088/1361-6633/aab406
https://dx.doi.org/10.1088/1361-6633/aab406
https://doi.org/10.48550/arXiv.quant-ph/9607014
https://arxiv.org/abs/quant-ph/9607014
https://doi.org/10.1103/PhysRevLett.100.160501
https://doi.org/10.48550/arXiv.1106.4058
https://doi.org/10.48550/arXiv.2308.07865
https://arxiv.org/abs/2308.07865
https://doi.org/10.1088/2058-9565/aaea94
https://doi.org/10.1098/rspa.2008.0189
https://doi.org/10.48550/arXiv.2110.04236

T. Laakkonen, K. Meichanetzidis, B. Coecke 179

[29] D. Kartsaklis & M. Sadrzadeh (2013): Prior disambiguation of word tensors for constructing Sentence vec-
tors. In: The 2013 Conference on Empirical Methods on Natural Language Processing., ACL, pp. 1590–1601.
https://aclanthology.org/D13-1166/.

[30] J. Lambek (1958): The mathematics of sentence structure. American Mathematics Monthly 65,
doi:10.1080/00029890.1958.11989160.

[31] J. Lambek (1999): Type grammar revisited. Logical Aspects of Computational Linguistics 1582,
doi:10.1007/3-540-48975-4 1.

[32] J. Lambek (2008): From Word to Sentence. Polimetrica, Milan. ISBN: 8876991174. https://www.math.
mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf.

[33] Yeong-Cherng Liang, Yu-Hao Yeh, Paulo E M F Mendonça, Run Yan Teh, Margaret D Reid & Peter D
Drummond (2019): Quantum fidelity measures for mixed states. Reports on Progress in Physics 82(7), p.
076001, doi:10.1088/1361-6633/ab1ca4.

[34] Henry Lin & Max Tegmark (2017): Critical Behavior in Physics and Probabilistic Formal Languages. En-
tropy 19(7), p. 299, doi:10.3390/e19070299.

[35] Jonathon Liu, Razin A. Shaikh, Benjamin Rodatz, Richie Yeung & Bob Coecke (2023): A Pipeline For
Discourse Circuits From CCG, doi:10.48550/arXiv.2311.17892. arXiv:2311.17892.

[36] Ziming Liu, Eric Gan & Max Tegmark (2023): Seeing is Believing: Brain-Inspired Modular Training for
Mechanistic Interpretability, doi:10.48550/arXiv.2305.08746. arXiv:2305.08746.

[37] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis & Bob Coecke (2023): QNLP
in Practice: Running Compositional Models of Meaning on a Quantum Computer. Journal of Artificial
Intelligence Research 76, p. 1305–1342, doi:10.1613/jair.1.14329.

[38] Gabriel Matos, Chris N. Self, Zlatko Papić, Konstantinos Meichanetzidis & Henrik Dreyer (2023): Charac-
terization of variational quantum algorithms using free fermions. Quantum 7, p. 966, doi:10.22331/q-2023-
03-30-966.

[39] Konstantinos Meichanetzidis, Stefano Gogioso, Giovanni de Felice, Nicolò Chiappori, Alexis Toumi & Bob
Coecke (2021): Quantum Natural Language Processing on Near-Term Quantum Computers. Electronic
Proceedings in Theoretical Computer Science 340, p. 213–229, doi:10.4204/eptcs.340.11.

[40] Konstantinos Meichanetzidis, Alexis Toumi, Giovanni de Felice & Bob Coecke (2023): Grammar-aware
sentence classification on quantum computers. Quantum Machine Intelligence 5(1), doi:10.1007/s42484-
023-00097-1.

[41] Kosuke Mitarai, Masahiro Kitagawa & Keisuke Fujii (2019): Quantum analog-digital conversion. Phys.
Rev. A 99, p. 012301, doi:10.1103/PhysRevA.99.012301. Available at https://link.aps.org/doi/10.
1103/PhysRevA.99.012301.

[42] Michael Ragone, Bojko N. Bakalov, Frédéric Sauvage, Alexander F. Kemper, Carlos Ortiz Marrero, Martin
Larocca & M. Cerezo (2023): A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits,
doi:10.48550/arXiv.2309.09342. arXiv:2309.09342.

[43] Benjamin Rodatz, Razin A. Shaikh & Lia Yeh (2021): Conversational Negation using Worldly Context in
Compositional Distributional Semantics, doi:10.48550/arXiv.2105.05748. arXiv:2105.05748.

[44] M. Sadrzadeh, S. Clark & B. Coecke (2013): The Frobenius anatomy of word meanings I: subject and
object relative pronouns. Journal of Logic and Computation 23, pp. 1293–1317, doi:10.1093/logcom/ext044.
ArXiv:1404.5278.

[45] Yukie Sano, Hideki Takayasu & Misako Takayasu (2012): Zipf’s Law and Heaps’ Law Can Predict the Size
of Potential Words. Progress of Theoretical Physics Supplement 194, p. 202–209, doi:10.1143/ptps.194.202.

[46] Maria Schuld, Ilya Sinayskiy & Francesco Petruccione (2014): An introduction to quantum machine learning.
Contemporary Physics 56(2), p. 172–185, doi:10.1080/00107514.2014.964942.

https://aclanthology.org/D13-1166/
https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1007/3-540-48975-4_1
https://www.math.mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf
https://www.math.mcgill.ca/barr/lambek/pdffiles/2008lambek.pdf
https://doi.org/10.1088/1361-6633/ab1ca4
https://doi.org/10.3390/e19070299
https://doi.org/10.48550/arXiv.2311.17892
https://arxiv.org/abs/2311.17892
https://doi.org/10.48550/arXiv.2305.08746
https://arxiv.org/abs/2305.08746
https://doi.org/10.1613/jair.1.14329
https://doi.org/10.22331/q-2023-03-30-966
https://doi.org/10.22331/q-2023-03-30-966
https://doi.org/10.4204/eptcs.340.11
https://doi.org/10.1007/s42484-023-00097-1
https://doi.org/10.1007/s42484-023-00097-1
https://doi.org/10.1103/PhysRevA.99.012301
https://link.aps.org/doi/10.1103/PhysRevA.99.012301
https://link.aps.org/doi/10.1103/PhysRevA.99.012301
https://doi.org/10.48550/arXiv.2309.09342
https://arxiv.org/abs/2309.09342
https://doi.org/10.48550/arXiv.2105.05748
https://arxiv.org/abs/2105.05748
https://doi.org/10.1093/logcom/ext044
https://doi.org/10.1143/ptps.194.202
https://doi.org/10.1080/00107514.2014.964942

180 Quantum Algorithms for Compositional Text Processing

[47] Sukin Sim, Peter D. Johnson & Alán Aspuru-Guzik (2019): Expressibility and Entangling Capability of Pa-
rameterized Quantum Circuits for Hybrid Quantum-Classical Algorithms. Advanced Quantum Technologies
2(12), doi:10.1002/qute.201900070.

[48] Andrei Tomut, Saeed S. Jahromi, Sukhbinder Singh, Faysal Ishtiaq, Cesar Muñoz, Prabdeep Singh Ba-
jaj, Ali Elborady, Gianni del Bimbo, Mehrazin Alizadeh, David Montero, Pablo Martin-Ramiro, Muham-
mad Ibrahim, Oussama Tahiri Alaoui, John Malcolm, Samuel Mugel & Roman Orus (2024): Com-
pactifAI: Extreme Compression of Large Language Models using Quantum-Inspired Tensor Networks,
doi:10.48550/arXiv.2401.14109. arXiv:2401.14109.

[49] V. Wang-Mascianica, J. Liu & B. Coecke (2023): Distilling Text into Circuits. arXiv preprint
arXiv:2301.10595, doi:10.48550/arXiv.2301.10595.

[50] Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M. Rush, Bart van Merriënboer, Armand Joulin
& Tomas Mikolov (2015): Towards AI-Complete Question Answering: A Set of Prerequisite Toy Tasks,
doi:10.48550/arXiv.1502.05698. arXiv:1502.05698.

[51] Dominic Widdows, Willie Aboumrad, Dohun Kim, Sayonee Ray & Jonathan Mei (2024): Natural Lan-
guage, AI, and Quantum Computing in 2024: Research Ingredients and Directions in QNLP. arXiv preprint
arXiv:2403.19758, doi:10.48550/arXiv.2403.19758.

[52] Dominic Widdows, Aaranya Alexander, Daiwei Zhu, Chase Zimmerman & Arunava Majumder (2024):
Near-term advances in quantum natural language processing. Annals of Mathematics and Artificial In-
telligence, doi:10.1007/s10472-024-09940-y.

[53] N. Wiebe, A. Kapoor & K. M. Svore (2015): Quantum nearest-neighbour algorithms for machine learning.
Quantum Information and Computation 15, pp. 318–358, doi:10.26421/QIC15.3-4-7.

[54] William Zeng & Bob Coecke (2016): Quantum Algorithms for Compositional Natural Language Processing.
Electronic Proceedings in Theoretical Computer Science 221, p. 67–75, doi:10.4204/eptcs.221.8.

[55] Jun Zhang, Jiri Vala, Shankar Sastry & K. Birgitta Whaley (2003): Exact Two-Qubit Universal Quantum
Circuit. Physical Review Letters 91(2), doi:10.1103/physrevlett.91.027903.

https://doi.org/10.1002/qute.201900070
https://doi.org/10.48550/arXiv.2401.14109
https://arxiv.org/abs/2401.14109
https://doi.org/10.48550/arXiv.2301.10595
https://doi.org/10.48550/arXiv.1502.05698
https://arxiv.org/abs/1502.05698
https://doi.org/10.48550/arXiv.2403.19758
https://doi.org/10.1007/s10472-024-09940-y
https://doi.org/10.26421/QIC15.3-4-7
https://doi.org/10.4204/eptcs.221.8
https://doi.org/10.1103/physrevlett.91.027903

T. Laakkonen, K. Meichanetzidis, B. Coecke 181

A Decomposing Frames

Our semantic functor maps states, effects, and boxes to pure quantum operations trivially. However,
frames, which are mapped to quantum supermaps, in general, need some special treatment. Some frames
in text circuits may contain more wires for one of their arguments than are input and output to the frame
– this arises in many cases, for instance in reflexive structures. We cannot represent these extra wires as
auxiliary qubits because these would then be subsequently discarded, making the state mixed. In general,
quantum supermaps can be written as pairs of unitaries conjugating their arguments, along with a side
channel consisting of some auxiliary qubits. However, this conflicts with our no-ancilla requirement.

Therefore, we will instead constrain our representation of frames as follows:
• We lay the frame out vertically, with unitaries before the first argument, between every argument,

and after the last argument.

• For every wire in each argument, we map it to one of the wires of the unitary: if that wire corre-
sponds to an unused noun wire that is input to the frame, we map it to that wire. Otherwise, we
map it to any unused noun wire. If there are none, then we delete the wire.

• After this mapping, we substitute the argument between the unitaries of the frame, and any unused
wires are connected directly between the unitaries of the frame to serve as side-channels.

In order to resolve which wires correspond to which nouns (and thus where to assign each wire of the
frame arguments), we rely on coindexing information provided by the parser, which within sentences
is provided by finding the grammatical ’head’ of each phrase, and between sentences is provided by
a coreference tool [35]. To minimize the number of wires that are deleted, we perform this mapping
for each argument independently, not respecting the wire assignments in previous arguments. This may
create boxes that are ungrammatical, but we assign them unitaries in the same way as other boxes, so this
is not an issue.

and

eats drinks

Alice cake coffee

Alice cake Alice coffee

and1

Alice cake coffee

Alice cake *

eats

drinks

and2
Alice * coffee

and3

Alice * coffee

Alice cake *

“Alice eats cake and drinks coffee”

himself

hates

John

John John

“John hates himself”

himself1

John

John

hates

himself2

John

This illustrates two examples of the sandwich construction. In each, the wires inside the unitaries making
up the frame are labeled with which nouns they are representing, and wires that are being used as side
channels are labeled with ‘*’. In the first example, we see that swaps may be introduced to map wires
to the correct locations. This is an artifact of the notation and does not appear in the compiled quantum
circuits. In the second example we see a wire being deleted since there are no unused wires to assign it
to, and in the process this creates an ungrammatical box for ‘hates’, since it is a transitive verb.

182 Quantum Algorithms for Compositional Text Processing

B Proofs of Theorems

Theorem 2. QDISCOCIRC-QA can be solved on a quantum computer in time

O

(
k log

(k
δ

)
|V |w(|T |+maxi |Qi|)

ε2

)

with failure probability δ , where |V |w is the maximum size of any word embedding in V .

Proof. To calculate each
p j = tr

(
ρT (ρQ j ⊗ I)

)
we produce a circuit using the swap test where the probability of measuring a zero on the first qubit is
1
2 +

p j
2 . Let µ j,n be the estimate of p j after n shots. By Hoeffding’s inequality,

P(|µ j,n − p j| ≥ ε
′)≤ 2exp

(
−nε ′2

2

)
thus if we take n = 2

ε ′2 log(2k
δ
), then we have

P

(
k∧

j=1

|µ j,n − p j| ≤ ε
′
)

≥
(

1− δ

k

)k

≥ 1−δ

by Bernoulli’s inequality. Note that if |µ j,n − p j| ≤ ε ′ for all j, then |maxi µn,i −maxi pi| ≤ ε ′, and
hence if j = argmaxi µn,i then |p j −maxi pi| ≤ 2ε ′. Therefore, if ε ′ = ε

2 , then this j correctly solves the
QDISCOCIRC-QA instance with probability 1− δ . For each j, each shot of the swap test circuit takes
O((|T |+ |Q j|)|V |w) time since UT and UQ j contain O(|T ||V |w) and O(|Q j||V |w) gates respectively, and
the width of UQ j must be at most 2|Q j||V |w. Therefore, we have an overall time complexity of:

O

(
∑

i
(|T |+ |Qi|)|V |wn

)
= O

(
k log

(k
δ

)
|V |w(|T |+maxi |Qi|)

ε2

)

Definition 3 (APPROX-QCIRCUIT-PROB). Suppose we are given a quantum circuit C on n qubits with
m 2-local gates, where C is taken from a uniform family such that m is polynomial in n, along with the
promise that either

• measuring the first qubit C|0⟩ has probability at least 2
3 , or

• measuring the first qubit C|0⟩ has probability at most 1
3 .

Then the APPROX-QCIRCUIT-PROB problem is to distinguish between these two cases. This is BQP-
hard.

Theorem 3. Suppose that a set of word embeddings V satisfies the following:

1. The operations of V use one qubit for each input wire,

2. V contains arbitrarily many proper nouns,

3. V contains at least two adjectives that generate a dense subset of SU(2),

T. Laakkonen, K. Meichanetzidis, B. Coecke 183

4. V contains at least one transitive verb that is entangling

then for any fixed ε < 1
7 , QDISCOCIRC-QA is BQP-hard.

Proof. Let U1 and U2 be the adjectives defined by condition three, and U3 be the transitive verb identified
by condition four. Then, by the inverse-free Solovay-Kitaev algorithm [8], any single-qubit unitary U can
be approximated to precision ε ′ by a sequence of U1 and U2 operations of length O(log8.62(1

ε ′)). From
a result of Zhang et al [55], any entangling gate combined with arbitrary single-qubit gates can be used
to implement any two-qubit gate exactly in a constant number of gates (where the constant depends only
on the definition of the entangling gate). Hence, any two-qubit gate can also be approximated arbitrarily
well by O(log8.62(1

ε ′)) applications of U1, U2, and U3.
Now we can reduce from the APPROX-QCIRCUIT-PROB problem to QDISCOCIRC-QA, by con-

structing a QDisCoCirc circuit corresponding to the given circuit C. First, assign each qubit a proper
noun Ni with corresponding unitary UNi in V . To each noun apply the unitary U†

Ni
. Each U†

Ni
is approxi-

mated as defined above. Then, for each gate in C, we approximate it as discussed above and apply it to
the corresponding wires. This yields a QDisCoCirc circuit UT which approximates the original circuit C.

From this, we can generate T as follows: for each gate in the circuit, we generate a sentence. If the
gate acts on a single qubit i, we write “{Ni} is {Uk}.” where Uk is the adjective corresponding to the
gate. If the gate acts on two qubits i and j, we write “{Ni} {U3} {N j}.” To produce Q1 and Q2, we first
assemble quantum circuits UQ1 =U†

N1
UN1 and UQ2 =UXU†

N1
UN1 where UX is an approximation of the X

gate, and U†
N1

is also approximated as above. Then Q1 and Q2 can be generated in the same way as T .
Let ε ′≥ 1

42 be such that ε ′+ε < 1
6 , and let PU(i) be the probability of measuring |i⟩ on the first qubit of

U |0⟩. Suppose we solve the QDISCOCIRC-QA instance associated with V , T , {Q1,Q2} to precision ε .
Note that since UQ1 |0⟩ ≈ |0⟩, tr(ρT (ρQ1 ⊗ I))≈ PUT (0). Likewise, since UQ2 |0⟩ ≈ |1⟩, tr(ρT (ρQ2 ⊗ I))≈
PUT (1). As UT ≈C, if we find j = 1, then we can conclude that PC(0)>PC(1)= 1−PC(0) =⇒ PC(0)> 1

2
up to some error ε +ε ′ < 1

6 . However, in the definition of APPROX-QCIRCUIT-PROB, we are guaranteed
that PC(0) > 2

3 or PC(0) < 1
3 , which are separated from 1

2 by 1
6 , so by checking whether j = 1 or j = 2,

we can distinguish between these cases. Therefore, QDISCOCIRC-QA is BQP-hard.

Theorem 4. Given a set of word embeddings V , suppose that operations in V are independent Haar-
random unitaries. Then conditions three and four of Theorem 3 are almost surely satisfied for all word
embeddings containing at least two adjectives and one transitive verb.

Proof. Let U1 and U2 be the adjectives defined by condition three of Theorem 1, and U3 be the transitive
verb identified by condition four. Consider U3 as a point in SU(4). If U3 is not entangling it is either sep-
arable or locally equivalent to the SWAP gate. The spaces formed in both of these cases are isomorphic
to SU(2)× SU(2) which is a 9-dimensional subspace of the 15-dimensional SU(4). Hence condition
four is satisfied almost everywhere in SU(4). Therefore, for Haar random U3 it is almost surely satisfied.

Consider arbitrary U1 and U2. If U1 and U2 are non-commuting elements of infinite order in SU(2),
then they generate a dense subset of SU(2). This is because the only closed positive-dimension Lie
subgroup of SU(2) is itself, so it must be equal to the closure of the group generated by U1 and U2.
Consider U1 and U2 as a point in SU(2)×SU(2). Since elements of SU(2) can also be characterized as
rotations of the Bloch sphere, then commuting elements correspond to rotations around the same axis.
Thus the subspace of commuting U1 and U2 is isomorphic to SU(2)× S. Likewise, elements of finite
order in SU(2) correspond to rotations about any axis by a rational multiple of π , and the subspace is
isomorphic to S2 ×Q, which has measure zero. Thus almost everywhere in SU(2)× SU(2), U1 and U2
generate a dense subset of SU(2). Hence, for Haar random U1 and U2, this is almost surely the case.

184 Quantum Algorithms for Compositional Text Processing

Theorem 5. Given a specific set of word embeddings V it is possible to check numerically that the
conditions of Theorem 3 are satisfied.

Proof. Let U1 and U2 be the adjectives defined by condition three of Theorem 3, and U3 be the transitive
verb identified by condition four. Consider the state |U3⟩ obtained via the Choi-Jamiołkowski isomor-
phism. If we compute the reduced density matrix ρ̂ = tr2

(
|U3⟩⟨U†

3 |
)

(where the partial trace is taken
over both qubits corresponding to the second qubit of U3), then this is pure (i.e has rank one) if and only
if U3 is separable. Therefore, we can check that U3 is entangling by performing this test on both U3 and
U3 ·SWAP (to check that it is not locally equivalent to a SWAP).

To check that U1 and U2 generate a dense subset of SU(2), first check that they do not commute. We
wish to check that the closure of the subgroup generated by U1 and U2 is SU(2) itself. The only infinite
closed nonabelian proper subgroup of SU(2) is isomorphic to S⋊φ C2 (where φ0(x) = x, φ1(x) = −x).
In this subgroup for all x and y, x2 and y2 commute, so to rule out this case it suffices to find a non-
commuting pair. This can be done numerically by generating elements of the group by taking products
and checking randomly until an example is found.

The only finite closed nonabelian subgroups of SU(2) are the binary dicylic groups, and three groups
of order 24, 48 (the single-qubit Cliffords), and 120, by the ADE classification. The binary dicylic groups
are subgroups of S⋊φ C2, so we have already ruled these out. Therefore, it remains to check that the order
of the group generated by U1 and U2 is more than 120. This can be done numerically by testing products
of group elements until 121 unique elements are generated.

Theorem 6. There exists a polynomial f (m,n), such that given an oracle to solve QDISCOCIRC-QA
instances with arbitrary word embeddings and text circuits drawn from D f (m,n), we can perform arbitrary
quantum computations with m 2-local gates on n qubits with high probability in polynomial time. That
is, QDISCOCIRC-QA for worst-case word embeddings is average-case BQP-hard over texts.

Proof. We will reduce from the problem APPROX-QCIRCUIT-PROB. We are given an arbitrary quantum
circuit on n qubits with m two-qubit gates given by arbitrary unitaries, and we assume that any single-
qubit gates is combined into an adjacent two-qubit gate – the only time this is not possible is when a qubit
is unentangled, so it can be disregarded (if it is the measurement qubit, we can calculate the outcome
immediately, and if it is not, it doesn’t affect the outcome).

Suppose that we have sampled a large random text circuit from Dk for some k ≫ n. We wish to
calculate how many boxes are required so that there exists a subsequence which matches the given circuit.
By match, we mean that each gate has a corresponding box in the circuit with a unique label, operating
on the same wires as the gate. Let Ni be the gap between gates i and the previous gate (or that start of the
circuit) – that is, the number of boxes between them in the circuit that are not part of the subsequence.
Because all boxes in the circuit are chosen in an identical random manner, P(Ni ≥ q) = (1− pi)

q where
pi is the probability of any particular box being correct for gate i. Since inputs to boxes are chosen
uniformly, we have that all the pi = p are identical.

Therefore, we can bound the probability that the total sequence length required is at least some
constant q:

P

(
∑

i
Ni ≥ q

)
≤ 1−P

(∧
i

Ni <
q
m

)
= 1−

(
1−P

(
Ni ≥

q
m

))m
= 1− (1− (1− p)

q
m)m

≤ 1− (1−m(1− p)
q
m) = m(1− p)

q
m ≤ me−

pq
m

T. Laakkonen, K. Meichanetzidis, B. Coecke 185

The second line follows from Bernoulli’s inequality. Thus letting q = m
p (log(m) + 1), we have that

P(∑i Ni ≥ q)≤ 1
e . We have

p = P(A = 2) ·P(hapax) · 2
k(k−1)

where P(hapax) is the probability that any particular box has a unique label, since 2
k(k−1) is the probability

of selecting any particular pair of wires uniformly, assuming that k > n. According to Heap’s law, the
number of distinct words in a text grows like

√
w where w is the total number of words. Furthermore

from Zipf’s law, a constant proportion of distinct words occur only once (hapax legomena), usually about
half for large corpora. By assumption, this law holds exactly for circuits drawn from Dk, so this implies
that

P(hapax)≤ c1
√

kγ

kγ
=

c1√
kγ

and p ≥ c2

k2+ γ

2

for some constants c1,c2 > 0, since we assume w ≥ c3kγ for some c3. Therefore, we can set q ≤
1
c2

m(log(m)+ 1)k2+ γ

2 , but we also require c3kγ ≥ q to ensure the number of boxes required is less than
the total in the text. This can be enforced by setting:

c3kγ ≥ 1
c2

m(log(m)+1)k2+ γ

2 =⇒ k ≥
(

1
c2c3

m(log(m)+1)
) 2

γ−4

Finally, in order to make sure k ≥ n, we can set k = f (m,n) = max(n,⌈(cm(log(m)+1))
2

γ−4 ⌉) for some
c> 0.

The protocol to solve APPROX-QCIRCUIT-PROB is as follows: we are given a circuit C on n qubits
with m two-qubit gates (single-qubit gates are eliminated as before). Sample a text circuit from Dk with
k as given above. With probability at least 1− e−1, there exists a subsequence of boxes in the circuit
that matches C′. We construct a set of word embeddings for the circuit by setting each word that does
not appear in the subsequence to be the identity, and every word that is part of the subsequence to be
the unitary of the corresponding gate in the circuit. Each state is assigned to the |0⟩ quantum state. This
defines the text circuit and embeddings for the context text T . Similarly, we can obtain the questions
Q1 and Q2 by drawing from D1, setting all boxes to the identity, and assigning the state to |0⟩ and |1⟩
respectively.

In the same way as in Theorem 3, solving this instance of QDISCOCIRC-QA with ε < 1
7 is sufficient

to solve the corresponding APPROX-QCIRCUIT-PROB instance. f (m,n) as given above grows polyno-
mially if γ > 4, and the construction of the word embeddings is done in polynomial time. Since this
procedure has fixed positive success probability, it can be amplified to any high success probability with
logarithmically many iterations.

C Oracle Construction

As a warmup, we will start by constructing oracles for a different task called bAbI1, first proposed in [50].
In the DisCoCirc model of the bAbI1 task, we have a context text from which we extract information by
asking a series of yes/no questions. An example context text is:

John goes to the bedroom.
Mary walks to the hallway.
John goes back to the bathroom.

186 Quantum Algorithms for Compositional Text Processing

And the task then is to answer a question about the state of the world. For example: “Where is
John?”. In DisCoCirc, we do this by stating a potential answer to the question as an affirmative: “John
is in the bathroom.” Then we measure which potential answer (“John is in the bathroom”, “John is in the
hallway”, etc) has the highest overlap with the context text, discarding the nouns that do not occur in the
answer. Graphically, this means we wish to find the maximum of the following circuits:

Text

. . .

Is In†

Text

Is In†

. . .

Text

Is In†

. . .

We can phrase this as a instance of the closest vector problem by noting that this is equivalent to finding
Pi which maximizes the following probability. The set {P1,P2 · · ·Pi · · ·} is any set of permutations such
that Pj brings the jth input to the top.

Text

. . .

Is In†

Pi

To view this as a closest vector problem, we divide the problem along the dotted line, letting the upper
portion be the variable set of states ρi and the lower portion be ρ0 = |v0⟩⟨v0|. Since ρ0 is pure, we can
apply the quantum closest vector algorithm of Basheer et al [5] to find i = argmax j≥1 F(ρ j,ρ0). For this
task the oracles V and W are given by the following circuits:

Is InV |0⟩ = W |i⟩|0⟩ = Text
...

...
P

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|i⟩

Here, P is a 1-to-n multiplexer, it maps each wire to the top output (leaving the rest undefined)
depending on the control register |i⟩. There are several ways of constructing this operation. For instance,
we can do a CSWAP controlled on every possible bitstring of the control register |i⟩= |i1i2 · · · ib⟩. Here,

T. Laakkonen, K. Meichanetzidis, B. Coecke 187

the CSWAPs are swapping nouns, so they can be realized with O(logN) CSWAPs acting on qubits. This
looks like the following circuit:

P

...
...

...
...

|i1⟩

|ib⟩

...
...

|i1⟩

|ib⟩
×

×

×

×

×

×

. . .

. . .
=

The gate complexity of this is O(n log(N) log(n)) since we have to put a CX gate with O(log(n)) controls
on each of O(n log(N)) qubits, and swaps the noun at the index with the top noun, leaving the rest
unchanged. However, we can do better by leaving the other nouns in an unspecified order using a binary
search method - first, we swap the first and second half of the nouns depending on the first bit of the index,
then the first and second quarter depending on the second bit of the index, and so on, until the last bit
controls whether we swap the top two nouns. This requires n

(1
2 +

1
4 +

1
8 + · · ·

)
O(log(N)) = O(n log(N))

singly-controlled Toffolis, so has an overall gate complexity of O(n log(N)). For example, the circuit on
eight words looks like the following:

P

|i1⟩

|i3⟩
|i2⟩

|i1⟩

|i3⟩
|i2⟩

×

×

×

×

×

×

×

×

×

×
×

×

×
×

=

P can be constructed recursively as:

P
...

...

...
...

|i1⟩

|ib⟩

...
...

|i1⟩

|ib⟩
×

×
×

×

=

...
...

|i2⟩ |i2⟩

...
...P. . .

. . .

P

|i1⟩

=

|i1⟩
×
×

...
...

Therefore, the oracles are given as follows in pseudocode:

188 Quantum Algorithms for Compositional Text Processing

fn V(n1 , n2) {
I s I n (n1 , n2) ;

}

fn NounCSWAP(c t r l , n1 , n2) {
f o r q i n 0 . . l o g (N) {

i f c t r l {
SWAP(n1 [q] , n2 [q]) ;

}
}

}

fn P (i , nouns) {
i f nouns . l e n () == 1 {

r e t u r n ;
} e l s e i f nouns . l e n () == 2 {

NounCSWAP(i [0] , nouns [0] , nouns [1])
} e l s e {

c o n s t m = nouns . l e n () / 2 ;

f o r j i n 0 . .m {
NounCSWAP(i [0] , nouns [j] , nouns [m + j]) ;

}

P (i [1 . .] , nouns [. . m]) ;
}

}

fn W(i , n1 , n2) {
l e t a n c i l l a s = I n i t A n c i l l a s (l o g (N) * (n − 2)) ;
l e t nouns = [n1 , n2 , . . a n c i l l a s] ;
Text (nouns) ;
P (i , nouns) ;
D i s c a r d (a n c i l l a s) ;

}
The gate complexity of the W oracle is thus O(wA(N,d)+n log(N)), and for the V oracle it is

O(A(N,2)) = O(A(N,d)). It is reasonable to make the assumption that A(N,d) = O(d log(N)). For
example, this is the case if we are using standard ansatze like those from Sim et al [47]. In the closest
vector algorithm for this task, we have M =O(n). Therefore, for a fixed success probability and precision
ε for calculating fidelity, the overall gate complexity of the algorithm is:

O
(√

n
ε

(wd +n+ log(N)) log(N)

)
≤ O

(√
nwd log2(N)

ε

)
The inequality here follows from n = O(w). Furthermore, the number of ancilla used by the oracles is at
most O(n log(N)).

T. Laakkonen, K. Meichanetzidis, B. Coecke 189

C.1 The Text-Text Similarity Task

The text-text similarity task involves finding a text that is most similar to a target text, by maximizing the
overlap between the states representing the two texts. This is a versatile primitive that can be used both
for full text-text similarity and for some variants of question answering. As discussed in Section 5, we
can use the closest vector algorithm to solve this problem. Pictorially, we want to find i such that

T†
0

Ti

. . .

is maximized. For this task the oracles V and W are given by:

• V |0⟩= |T0⟩
• W |i⟩= |Ti⟩

Clearly, we have V = UT0 which is the direct translation of the text circuit into a quantum circuit via
QDisCoCirc. However, for W , we need a significantly more complicated circuit. Let us define the
following parameters:

• Each noun wire has dimension N,

• Each text circuit considered has at most w unitaries and n noun wires total,

• Each unitary in the text circuit acts on at most d wires,

• There are V words in the vocabulary,

• The number of gates in the ansatz for d wires of dimension N scales as Ag(N,d),

• The number of parameters in the ansatz for d wires of dimension N scales as Ap(N,d),

• Each parameter for the ansatz is stored with P bits of precision,

• We consider M possible texts, so that i ≤ M.

We will construct the circuit for W by interleaving layers of two operations. One operation is a
parameterized partial permutation, which permutes some of its inputs according to information stored in
a QRAM. The second is a parameterized ansatz, which applies an ansatz of a given size to a set of qubits
with the parameterized angles of the ansatz stored in a QRAM. By combining these two operations, we
can reconstruct a text circuit by loading from QRAM the parameters and argument locations for each
unitary.

We assume access to the following QRAM oracles:

• Parami j|k⟩|0⟩= |k⟩|φi jk⟩ where φi jk is a P-bit fixed-precision binary encoding of the jth parameter
for the ansatz of the ith unitary in Tk,

• Widthi|k⟩|0⟩= |k⟩|Wik⟩ where Wik is a binary encoding of the width of the ith unitary in Tk,

• Indexi j|k⟩|0⟩ = |k⟩|Ii jk⟩ where Ii jk is an encoding of the position of the jth argument to unitary i
in Tk. Note that the encoding here is not a straightforward mapping from zero-indexed position to
binary, and we will elaborate more later.

190 Quantum Algorithms for Compositional Text Processing

Each of these oracles can be implemented using a series of calls (one for each bit) to bucket-brigade
QRAMS of size M [23]. In pseudocode, each of these lookups is as follows:

fn QRAMLookup(d i c t , q idx , c idx , o u t) {
c o n s t ORACLES: [[U n i t a r y]] ;
l e t s i z e = o u t . l e n () ;
f o r i i n 0 . . s i z e {

ORACLES[d i c t] [c i d x * s i z e + i] (qidx , o u t [i]) ;
}

}
where dict specifies the chosen oracle, qidx the quantum index |k⟩ and cidx the classical index (i.e i j
or i).

For the parameterized ansatz, we can construct a circuit out of some building blocks:

• Firstly, we have a parameterized controlled rotation gate, which implements a controlled-Z rotation
based on an angle specified in auxiliary qubits.

• For a given ansatz of a specific size, we can implement a parameterized controlled circuit by re-
placing all gates except for parameterized rotations with their controlled versions. For the param-
eterized rotations, we then load the parameters from QRAM and implement each rotation using a
parameterized controlled rotation circuit.

• This gives a parameterized ansatz of a specific width. To cover all possible widths, first we can load
the width from QRAM, and perform the parameterized controlled ansatz of all possible widths,
controlled on the width loaded from QRAM. This gives a general parameterized ansatz.

For the parameterized controlled rotation gate, we have:

fn PCRz (c t r l , ang le , q) {
c o n s t MAX PREC;
f o r i i n 0 . . =MAX PREC {

CCRz(p i / (2 ˆ i) , a n g l e [i] , c t r l , q) ;
}

}
which is diagrammatically:

...

Z Rz(
π

2k)S

. . .=...

Rz

A
ngle ...

...

. . .

. . .

This has a gate complexity of O(P).
Then for a specific realization of an ansatz of a given width, we can convert it to a parameterized

controlled ansatz as follows. Here angle base refers to the location in QRAM of the parameters for
this ansatz, text idx is the quantum register specifying the text index, and angle is a ancilla register
for storing a parameter.

fn PCAnsatz (a n s a t z , c t r l , t e x t i d x , a n g l e b a s e , ang le , qs) {
f o r g a t e i n a n s a t z {

T. Laakkonen, K. Meichanetzidis, B. Coecke 191

match g a t e {
CX(a , b) => CCX(c t r l , qs [a] , qs [b]) ,
RzParam (idx , a) => {

QRAMLookup(
ANGLES, t e x t i d x , a n g l e b a s e + idx , a n g l e

) ;
PCRz (c t r l , ang le , qs [a]) ;
QRAMLookup(

ANGLES, t e x t i d x , a n g l e b a s e + idx , a n g l e
) ;

} ,
RzFixed (p , a) => CRz (p , c t r l , qs [a]) ,
H(a) => CH(c t r l , qs [a])

}
}

}
For example, for an ansatz of width one (parameterized Euler rotations), corresponding to d = 1,N = 2,
we have:

H Rz

A
ngle

...
...

H

⊕

⊕

Param
j1

...

⊕

⊕

Param
j1

...

|0⟩

|0⟩
...

...

...
...

|0⟩

|0⟩

Ansatz1
j

Index

=

Rz

A
ngle

⊕

⊕

Param
j2

⊕

⊕

Param
j2

H Rz

A
ngle

H

⊕

⊕

Param
j3

⊕

⊕

Param
j3

And for a one-layer of ansatz 9 from Sim et al. [47] of width four (i.e for d = 4 and N = 2 or d = 2 and
N = 4) [47], we have the following:

H H
H H
H H Rz

A
ngle

Rz

A
ngle

Rz

A
ngle

...

Rz

A
ngle

...

H
H
H

HH H

⊕

⊕

Param
j1

...

⊕

⊕

Param
j1

⊕

⊕

Param
j2

⊕

⊕

Param
j2

⊕

⊕

Param
j3

⊕

⊕

Param
j3

⊕

⊕

Param
j4

...

⊕

⊕

Param
j4

|0⟩

|0⟩
...

...

...
...

|0⟩

|0⟩

A
nsatz

4j

Index

=

This has a gate complexity of O(Ag(N,d)+P log(M)Ap(N,d)). These ansatze of differing widths can be
combined into one parameterized ansatz that controls all of these based on a width loaded from QRAM.
We wish to do the following operation

fn PAnsatz (width , t e x t i d x , a n g l e b a s e , ang le , qs) {
c o n s t MAX WIDTH;
c o n s t ANSATZE = [

192 Quantum Algorithms for Compositional Text Processing

A n s a t z G a t e s (w) f o r w i n 1 . . =MAX WIDTH
] ;

QRAMLookup(WIDTHS, t e x t i d x , i , w id th) ;
f o r w i n 1 . . =MAX WIDTH {

l e t c t r l = w == wid th ;
PCAnsatz (ANSATZE[w] , c t r l , t e x t i d x , a n g l e b a s e , ang le , qs)
uncompute c t r l ;

}
QRAMLookup(WIDTHS, t e x t i d x , i , w id th) ;

}
which is represented diagrammatically as:

...
...

...
...

|0⟩

|0⟩

A
nsatz

j

Index

|0⟩

|0⟩
= ...

...

...
...

|0⟩

|0⟩

|0⟩

|0⟩

⊕

⊕

W
idth

j
⊕

⊕

W
idth

j

A
nsatz dj

Index

Ansatz1
j

Index

...
...

...
... . . .

. . .

. . .

A
nsatz d−

1
j

Index

...
...

...
...

However, compiling this circuit naively results in a gate complexity of

O(d log(d) · (Ag(N,d)+P log(M)Ap(N,d)))

since each parameterized ansatz has O(log(d)) controls that must be combined. By making use of the
unary iteration method, we can compile this more efficiently with gate complexity of O(d(Ag(N,d)+
P log(M)Ap(N,d))). Given a series of unitaries U0···0 to U1···1 which we want to apply conditionally given
an index register of size log(d), this technique synthesizes a circuit using singly-controlled versions of
Ui··· j with only O(d) gates. It is based on the following recurrences:

U0···0 U0···1 U1···1

· · ·

· · ·
...

... =
· · ·

U1···0 U1···1

· · ·
...

...
· · ·

⊕

U0···0 U0···1

· · ·

· · ·
⊕· · · · · ·

U0···0 U0···1 U1···1

· · ·

· · ·

...
...

· · ·

· · ·

U1···0 U1···1

· · ·
...

...
· · ·

⊕ · · ·
=

U0···0 U0···1

· · ·

· · ·
· · ·⊕ ⊕ ⊕|0⟩

T. Laakkonen, K. Meichanetzidis, B. Coecke 193

This second equation is applied until only single controls on each Ui··· j remain. In pseudocode, this
process is given by:

fn U n a r y I t e r a t i o n (c t r l s , a n c i l l a s , f unc) {
X(c t r l s [0]) ;
C U n a r y I t e r a t i o n (c t r l s [1 . .] , 0 , c t r l s [0] , a n c i l l a s , f unc) ;
X(c t r l s [0]) ;
C U n a r y I t e r a t i o n (c t r l s [1 . .] , 1 , c t r l s [0] , a n c i l l a s , f unc) ;

}

fn C U n a r y I t e r a t i o n (c t r l s , base , prev , a n c i l l a s , f unc) {
i f c t r l s . l e n () > 0 {

X(c t r l s [0]) ;
l e t f r e s h = a n c i l l a s [0] ;

CCX(prev , c t r l s [0] , f r e s h) ;
C U n a r y I t e r a t i o n (

c t r l s [1 . .] , 2* base + 0 , f r e s h , a n c i l l a s [1 . .] , f unc
) ;

CX(prev , f r e s h) ;
C U n a r y I t e r a t i o n (

c t r l s [1 . .] , 2* base + 1 , f r e s h , a n c i l l a s [1 . .] , f unc
) ;

CCX(prev , c t r l s [0] , f r e s h) ;
D i s c a r d (f r e s h) ;

} e l s e {
f unc (base , p r ev) ;

}
}
Applying this to create a parameterized ansatz, we have the following pseudocode:

fn PAnsatz (width , t e x t i d x , a n g l e b a s e , ang le , a n c i l l a s , qs) {
c o n s t MAX WIDTH;
c o n s t ANSATZE = [

A n s a t z G a t e s (w) f o r w i n 1 . . =MAX WIDTH
] ;

QRAMLookup(WIDTHS, t e x t i d x , i , w id th) ;
U n a r y I t e r a t i o n (width , a n c i l l a s , | idx , c t r l | {

i f i d x > 0 && i d x <= MAX WIDTH {
PCAnsatz (

ANSATZE[i d x] , c t r l , t e x t i d x , a n g l e b a s e , ang le , qs
) ;

}
}) ;
QRAMLookup(WIDTHS, t e x t i d x , i , w id th) ;

}

194 Quantum Algorithms for Compositional Text Processing

For the case that MAX WIDTH = 4 and hence log(d) = 2, this can be represented diagrammatically as
follows (although note that we use a more optimized form of unary iteration on two index qubits).

...
...

...
...

|0⟩

|0⟩

A
nsatz

j

Index

|0⟩
|0⟩

= ...
...

...
...

|0⟩

|0⟩

|0⟩
|0⟩

⊕
⊕

W
idth

j

⊕
⊕

W
idth

j

⊕ ⊕ ⊕⊕ ⊕|0⟩ |0⟩ ⊕

A
nsatz 4j

Index

A
nsatz 3j

Index

Ansatz1
j

Index

A
nsatz 2j

Index

⊕ ⊕

Note that in this setup, the index 0 . . .0 is mapped to an ansatz with width one, and in general x in
binary maps to the ansatz with width x+ 1. Note that if we wish to apply the identity operator, we
can apply an ansatz of width one with all angles set to zero. This has an overall gate complexity of
O(d(Ag(N,d)+P log(M)Ap(N,d))).

For the parameterized partial permutation, we can reuse the multiplexer given before to implement
each bit of the partial permutation. This puts a bit of our choice at the top of the multiplexer and leaves
the rest permuted. By stacking d of these together, we can specify which qubits should form the top d
qubits that the ansatz is applied too. We can calculate the required indices by propagating the desired
index forward through all previous changes to calculate the actual index required at each step. Noting
that each swap in the multiplexer is actually a swap of noun wires (which consist of multiple qubits), we
can represent the multiplexer in pseudocode as:

fn NounCSWAP(c t r l , n1 , n2) {
c o n s t N;

f o r q i n 0 . . l o g (N) {
CSWAP(c t r l , n1 [q] , n2 [q]) ;

}
}

fn P (idx , nouns) {
i f nouns . l e n () == 1 {

r e t u r n ;
} e l s e i f nouns . l e n () == 2 {

NounCSWAP(i d x [0] , nouns [0] , nouns [1])
} e l s e {

c o n s t mf = f l o o r (nouns . l e n () / 2) ;
c o n s t mc = c e i l (nouns . l e n () / 2) ;

f o r j i n 0 . . mf {
NounCSWAP(i [0] , nouns [j] , nouns [mc + j]) ;

T. Laakkonen, K. Meichanetzidis, B. Coecke 195

}

P (i d x [1 . .] , nouns [. . mc]) ;
}

}
This has a gate complexity of O(n log(N)). From this the parameterized partial permutation can be
constructed as

fn NounMux (i , idx , t e x t i d x , nouns) {
c o n s t MAX ARITY ;

f o r j i n 0 . . MAX ARITY {
QRAMLookup(INDICES , t e x t i d x , i * MAX ARITY + j , i d x) ;
P (idx , nouns [j . .]) ;
QRAMLookup(INDICES , t e x t i d x , i * MAX ARITY + j , i d x) ;

}
}
and diagrammatically, this looks as follows:

...
...

...
...

|0⟩

|0⟩
M

U
X

j

Index

...
...

...
...

...
...

|0⟩

|0⟩

⊕

⊕

Index
j1

...
...

P

⊕

⊕

Index
j1

⊕

⊕

Index
jk

P

⊕

⊕

Index
jk

. . .

. . .

. . .

...

...

...

...

=

. . .

k

This has an overall gate complexity of O(d(n log(N)+ log(n) log(M))).
Finally, by layering these two parts, we can construct the oracle. In this way, we first move the wires

for each unitary to the top of the circuit, apply an ansatz (which applies the given unitary), and apply the
inverse of the permutation. Then we repeat until no unitaries are remaining. In pseudocode, we have

fn O r a c l e (t e x t i d x , nouns) {
c o n s t MAX PARAMS;
c o n s t MAX WORDS;
c o n s t MAX WIDTH;
c o n s t MAX NOUNS;
c o n s t MAX PREC;

l e t i d x = I n i t A n c i l l a s (MAX NOUNS. log2 ()) ;
l e t a n g l e = I n i t A n c i l l a s (MAX PREC) ;
l e t w id th = I n i t A n c i l l a s (MAX WIDTH. log2 ()) ;
l e t u i a n c i l l a s = I n i t A n c i l l a s (MAX WIDTH. log2 ()) ;
f o r i i n 0 . .MAX WORDS {

196 Quantum Algorithms for Compositional Text Processing

NounMux (i , idx , t e x t i d x , nouns) ;

PAnsatz (
width , t e x t i d x , i * MAX PARAMS,
ang le , u i a n c i l l a s , nouns [. . MAX ARITY]

) ;

NounMux ’ (i , idx , t e x t i d x , nouns) ;
}
D i s c a r d (i d x) ;
D i s c a r d (a n g l e) ;
D i s c a r d (wid th) ;
D i s c a r d (u i a n c i l l a s) ;

}
and diagrammatically this looks like:

...

M
U

X
1

Index

...

...

...

...

...

A
nsatz1

Index

M
U

X
2

Index

A
nsatz2

Index

M
U

X
m

Index

A
nsatzm

Index

. . .

. . .

. . .

...

...

...

...

...

...

Index

W

=

M
U

X
†1

Index

M
U

X
†2

Index

M
U

X
†m

Index|i⟩

|ψ⟩

This has an overall gate complexity of

O(wd(n log(N)+ log(n) log(M)+Ag(N,d)+P log(M)Ap(N,d)))

which can be simplified to:
O(wd log(M)(n log(N)+PAg(N,d)))

A. Dı́az-Caro and V. Zamdzhiev (Eds.):
Quantum Physics and Logic 2024 (QPL 2024)
EPTCS 406, 2024, pp. 197–215, doi:10.4204/EPTCS.406.9

© J. Owers, E. Shutova, M.Lewis
This work is licensed under the
Creative Commons Attribution License.

Density Matrices for Metaphor Understanding

Jay Owers
SEMT, University of Bristol

Bristol, UK
jo16726@bristol.ac.uk

Ekaterina Shutova
ILLC, FNWI

University of Amsterdam
Amsterdam,

The Netherlands
e.shutova@uva.nl

Martha Lewis
SEMT, University of Bristol

Bristol, UK
Santa Fe Institute

Santa Fe, NM, USA
martha.lewis@bristol.ac.uk

In physics, density matrices are used to represent mixed states, i.e. probabilistic mixtures of pure
states. This concept was used to model lexical ambiguity in [31]. In this paper, we consider metaphor
as a type of lexical ambiguity, and examine whether metaphorical meaning can be effectively mod-
elled using mixtures of word senses. We find that modelling metaphor is significantly more difficult
than other kinds of lexical ambiguity, but that our best-performing density matrix method outper-
forms simple baselines as well as some neural language models.

1 Introduction

The use of vectors to model word meaning forms the basis of all modern approaches to modelling lan-
guage. The idea behind this approach is called distributional semantics – using the distributions of words
in text to build vectors that encode word meanings. When we have built vectors for words, say we have
|cat⟩, |kitten⟩, and |orthodontist⟩, the hope is that words that have similar meanings will be close together
in the vector space, and that words that have dissimilar meanings are further apart, where we measure
distance between words as the inner product of the normalised vectors, or equivalently as the cosine
similarity, i.e., the cosine of the angle between the vectors. So, for example, we should have that:

⟨cat|kitten⟩> ⟨cat|orthodontist⟩

However, representing words as vectors has some clear disadvantages. Firstly, words can have more
than one meaning, and a naı̈ve approach to building word vectors will try to pack all those meanings into
one vector—ending up with a representation somewhere in the middle. Secondly, as well as representing
word meanings we also wish to represent phrases, sentences, and paragraphs of text. However, simply
representing words as vectors does not give us an obvious way of composing word vectors to produce
phrase or sentence vectors.

There have been a number of approaches to representing ambiguity for word vectors. The task of
discriminating different senses of a given word (word sense discrimination or WSD), is often framed as
a classification task: given a sentence with a particular word, identify the sense of that word from its
context [20, 36, 29]. An alternative task is to identify the sense of every word in a sentence. WSD can
become a complex task, since each word must be disambiguated with respect to each other word in the
sentence. One approach is simply to disambiguate word meanings in advance, and learn different vectors
for different senses of a word. However, given that any word may have multiple meanings, this approach
could generate a large number of possible meaning combinations that need to be disambiguated. Instead,
we would like to be able to compose words together, and for a sentence to be disambiguated in the
process of composition.

http://dx.doi.org/10.4204/EPTCS.406.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

198 Density Matrices for Metaphor

A key manifestation of ambiguity in language is the use of metaphor. Metaphor is pervasive in
speech, with some estimates showing that we use metaphors on average every 3 sentences. As such,
language models need to be able to deal with metaphor when it occurs. Many metaphorical uses are
what is known as ‘conventional’ metaphor. This means that the metaphor has become entrenched in
language, and can therefore be seen as a case of lexical ambiguity. For example, the most basic use
of the word bright is as applied to colour. However, we often use this word to mean ‘intelligent’, as
in bright student. This meaning of the word was created metaphorically from the original meaning of
‘colourful’, but has now become conventionalised in language.

The field of compositional distributional semantics [3, 10, 27] looks at systematic ways to compose
word vectors together that are guided by our knowledge of grammatical composition. This paper works
within the framework proposed by [10], which has fundamental links to quantum theory. Within [10],
the structure of a sentence, together with the meanings of the words in the sentence, can be viewed as
a tensor network creating the meaning of the sentence as a whole. This is further developed and indeed
implemented on quantum computers in [23].

In the current work, we look at the ability of density matrices to represent the ambiguity repre-
sented by conventional metaphor. [31] show how density matrices and completely positive maps can
be integrated with the compositional distributional semantics proposed by [10], and these methods are
extended in [24]. The methods developed by [31] and applied in [24] are very successful, beating state
of the art language models. We investigate whether density matrix methods are as effective in modelling
conventional metaphor as they are in standard cases of lexical ambiguity.

In this paper, we firstly (section 2) give an overview of how density matrices have been used in NLP
to model lexical entailment and semantics and syntactic ambiguity. In section 3 we review the quantum-
inspired approach to NLP originally proposed by [10] which extends distributional semantics models to
include composition, including how density matrices can be used in this compositional framework, and
in section 4 how density matrices can be built automatically from text. We introduce a new dataset to
test how well our implementations are able to model metaphor (Section 5), and finally, report results on
this new dataset (Section 6), finding that metaphor interpretation is a difficult task for all models tested,
although some density matrix methods perform above baseline.

2 Related Work: Density Matrices in Natural Language Processing

Two key uses of density matrices in NLP are 1) to model hyponymy and ambiguity, and 2) to model
lexical ambiguity. We summarize research in these areas.

Density Matrices for Lexical Entailment Vectors are not well suited for representing hyponymy (is-
a) relations between words. However, since density matrices can be ordered using a variant of the
Löwner ordering [40], they are a candidate for representing these relations. This was investigated in
[35], where density matrices were used to model hyponymy between words and phrases. This work
models the strength of a hyponymy relation between two words as a function of the KL-divergence
between the two matrices of the words. This measure has the nice property that hyponymy relationships
between individual words lift to an entailment relationship between the two sentences. For example,
given that clarify is a hyponym of explain and rule is a hyponym of process, we would expect that the
phrase clarify rule entails explain process. In similar work, [2] model the relationship of hyponymy as
the Löwner order between two matrices. The Löwner order states that A ⩽ B iff 0 ⩽ B−A. [2] provide
a measure of graded hyponymy between two matrices which again lifts to entailment at the sentence

J. Owers, E. Shutova, M.Lewis 199

level. [21] proposes a method for building density matrices using information from WordNet together
with off-the shelf word vectors such as word2vec or GloVe. Density matrices for words can be composed
to form density matrices for phrases and sentences by a variety of operators such as addition, pointwise
multiplication, or more complex operators, such as BMult/Phaser [8, 21, 31] and KMult/Fuzz [8, 21].
These representations and composition operators work well on a simple entailment task from [17].

The use of density matrices to model logical and conversational entailment is developed further in
[22, 34, 38], who develop a notion of negation for density matrices. [34, 38] extend these ideas to
include the notion of conversational negation [18]. This can be thought of as modelling the acceptability
of a sentence such as ‘That’s not a dog, it’s a wolf’ vs ‘That’s not a dog, it’s a rainbow’. If we view
negation as purely logical, then these sentences should be viewed as equally acceptable. In contrast,
conversational negation provides a set of alternatives. [34, 38] model this by narrowing the subspace
spanned by the logical negation to give a set of relevant alternatives. They furthermore provide alternative
models of negation that utilize the Moore-Penrose pseudo-inverse of a matrix. In [13], the monotonicity
of composition operators with respect to the Löwner order is investigated.

Another approach to building density matrices for entailment was developed by [5]. In this work,
the authors model language as a set of sequences S from a given vocabulary, together with a probability
distribution over this set. They form the free vector space over the set of sequences S, and then form
a rank-1 density operator which encodes the probability distribution over sequences that models the
language. Reduced density operators may be formed by tracing out over particular subspaces, and they
show that in doing so, the hierarchy of subsequences is encoded by the Löwner order over these density
matrices. This means that they can, for example, encode the fact that black cats are a subclass of cats -
something that is not done by the approach outlined in [35] or [2].

Density Matrices for Ambiguity Using density matrices to model ambiguity in natural language is
very natural. Density matrices were introduced in quantum physics to encode the notion of a mixed
state: the case where the state of a system is not known. In this case, the system is encoded by taking
a mixture of the possible states that it could be in. In the case of language, if we consider a word on
its own, it may have multiple senses, and without context we cannot tell what the meaning of the word
is. For example, table on its own can mean a piece of furniture, a structure for storing data, the act of
presenting a topic, and so on. If we can store multiple different senses of a word in one representation,
this can help to represent language.

One of the first uses of density matrices to represent ambiguity in text was [4]. This work aims
to build representations of words that can encode multiple different kinds of word usage within one
representation. For example, consider the word table. This word is semantically ambiguous: table means
something different in ‘Your dinner is on the table’ vs. ‘The data is in the table’. It is also syntactically
ambiguous, since we can use it as a verb: ‘table a motion’. The standard way of building word vectors
forms a superposition of all these senses. [4] firstly build a space that takes into account the grammatical
role of words, as encoded by dependency relations. They then form density matrices for individual
words, based on the grammatical relations that word can participate in. The representations they learn
are effective at the word level, but they do not give any methods for composing words together. [12]
also use density matrix representations to model syntactic ambiguity. They show to to model alternative
syntactic structures within one whole, and show how word representations can be composed.

[31] provide a thorough and elegant theoretical grounding that describes how to use the categorical
compositional methods of [10] with density matrix representations of words. This will be described fully
in subsequent sections. The main idea behind this is that words are represented as probabilistic mixtures

200 Density Matrices for Metaphor

of their senses, and that when words are composed to make phrases, the phrase should disambiguate
the meaning of the ambiguous word. The amount of ambiguity in a word can be represented as von
Neumann entropy. [31] carry out corpus-based experiments, and show that the von Neumann entropy of
word representations reduces in composition, indicating that the words have been disambiguated.

[24] extend the work of [31] to provide a means of building density matrices automatically from
large scale text corpora. We describe this method in detail later in the paper. [24] test their density
matrix representations on a range of datasets designed to test the ability of compositional models to
disambiguate word meanings. Their representations outperform compositional baselines as well as state
of the art large neural models.

3 Categorical Compositional Distributional Semantics

We work in the framework of categorical compositional distributional semantics [10]. In brief, words
are represented as vectors inhabiting vector spaces that match their grammatical type. Setting a vector
space N to be the noun type, and another space S to be the sentence type, we model nouns as vectors,
adjectives as linear maps ad j : N → N and verbs as multilinear maps from copies of N to S.

3.1 Pregroup Grammars

In order to describe grammatical structure we use Lambek’s pregroup grammars [19]. A pregroup (P,≤
, ·,1,(−)l,(−)r) is a partially ordered monoid (P,≤, ·,1) where each element p ∈ P has a left adjoint pl

and a right adjoint pr, such that the following inequalities hold:

pl · p ≤ 1 ≤ p · pl and p · pr ≤ 1 ≤ pr · p (1)

We think of the elements of a pregroup as linguistic types. Concretely, we will use an alphabet B =
{n,s}. We use the type s to denote a declarative sentence and n to denote a noun. A transitive verb can
then be denoted nrsnl . If a string of words and their types reduces to the type s, the sentence is judged
grammatical. The sentence Junpa loves cats is typed n (nrsnl) n, and can be reduced to s as follows:

n (nrsnl) n ≤ 1 · snln ≤ 1 · s ·1 ≤ s

3.2 Compositional Distributional Models

We interpret a pregroup grammar as a compact closed category, a structure shared by the category of
finite dimensional Hilbert spaces. We briefly describe here the structure of a compact closed category,
but for more details, please see [10, 32] and the introduction to relevant category theory given in [9].

Distributional vector space models live in the category FHilb of finite dimensional real Hilbert spaces
and linear maps. FHilb is compact closed. Each object V is its own dual and the left and right unit and
counit morphisms coincide. Given a fixed basis {|vi⟩}i of V , the unit η and counit ε are defined as:

η : R→V ⊗V :: 1 7→ ∑
i
|vi⟩⊗ |vi⟩ ε : V ⊗V → R :: ∑

i j
ci j |vi⟩⊗ |v j⟩ 7→ ∑

i
cii

3.3 Grammatical Reductions in Vector Spaces

Following [32], reductions of the pregroup grammar are mapped into the category FHilb of finite dimen-
sional Hilbert spaces and linear maps using a strong monoidal functor Q which preserves the compact

J. Owers, E. Shutova, M.Lewis 201

closed structure:
Q : Preg → FHilb

We map noun and sentence types to appropriate finite dimensional vector spaces Q(n) = N Q(s) = S, and
concatenation in Preg is mapped to the tensor product in FHilb. Each type reduction α in the pregroup
is mapped to a linear map in FHilb. Given a grammatical reduction α : p1, p2, ...pn → s and word vectors
|wi⟩ with types pi, a vector representation of the sentence w1w2...wn is given by:

|w1w2...wn⟩= Q(α)(|w1⟩⊗ |w2⟩⊗ ...⊗|wn⟩)

We use the inner product to compare meanings of sentences by computing the cosine distance between
sentence vectors. So, if sentence s has vector representation |s⟩ and sentence s′ has representation |s′⟩,
their degree of synonymy is given by:

⟨s|s′⟩√
⟨s|s⟩⟨s′|s′⟩

3.4 Density Matrices in Categorical Compositional Distributional Semantics

Categorical compositional distributional semantics was extended in [31] to model nouns as density ma-
trices in N ⊗N and adjective and verbs as completely positive maps.

In distributional models of meaning, density matrices have been used in a variety of ways. We
consider the meaning of a word w to be given by a collection of unit vectors {|wi⟩}i. Each |wi⟩ is
weighted by pi ∈ [0,1], such that ∑i pi = 1. Then the density operator:

JwK = ∑
i

pi |wi⟩⟨wi|

represents the word w. In [31], the vectors {|wi⟩}i are interpreted as senses of a given word, and we will
use this interpretation later in the paper. In [2, 1, 21], the vectors {|wi⟩}i are interpreted as exemplars of
a concept, and in [4] the {|wi⟩}i are interpreted as instances of use of a word.

3.5 The CPM Construction

Applying Selinger’s CPM construction [37] to FHilb produces a new compact closed category in which
the states are positive operators. This construction has previously been used in a linguistic setting in [16,
31, 1, 2, 21]. Throughout this section C denotes an arbitrary †-compact closed category.
Definition 1 (Completely positive morphism [37]) A C -morphism ϕ : A∗⊗A → B∗⊗B is said to be
completely positive if there exists C ∈ Ob(C) and k ∈ C (C ⊗A,B), such that ϕ can be written in the
form:

(k∗⊗ k)◦ (1A∗ ⊗ηC ⊗1A)

Identity morphisms are completely positive, and completely positive morphisms are closed under com-
position in C , leading to the following:
Definition 2 (CPM(C) [37]) If C is a †-compact closed category then CPM(C) is a category with the
same objects as C and its morphisms are the completely positive morphisms.
The †-compact structure required for interpreting language in our setting lifts to CPM(C):
Theorem 1 (Compact Closure [37]) CPM(C) is also a †-compact closed category. There is a functor:

E : C → CPM(C)

k 7→ k∗⊗ k

This functor preserves the †-compact closed structure, and is faithful “up to a global phase”.

202 Density Matrices for Metaphor

3.5.1 Sentence Meaning in the category CPM(FHilb)

In the vector space model of distributional models of meaning the movement from syntax to semantics
was achieved via a strong monoidal functor Q : Preg → FHilb. Language can be assigned semantics
in CPM(FHilb) in an entirely analogous way via a strong monoidal functor:

S : Preg → CPM(FHilb)

If w1,w2...wn is a string of words with corresponding grammatical types ti in PregB. and the type
reduction is given by t1, ...tn

r−→ x for some x ∈ Ob(PregB, where JwiK is the meaning of word wi

in CPM(FHilb), i.e. a density matrix ρi. Then the meaning of w1w2...wn is given by:

Jw1w2...wnK = S(r)(Jw1K⊗ ...⊗ JwnK)

We render semantic similarity of representations as the generalised inner product, i.e. Tr(Jw1K†Jw2K),
as do [31]. This notion of semantic similarity is modulated by the extent of the ambiguity of a repre-
sentation. If a representation is maximally ambiguous, that is, Jw1K = I/n, then the similarity of Jw1K
with itself is only 1/n. We choose to interpret this as reflecting the fact that the meaning of of w1 is
undetermined without further context, and hence that the two instances of w1 being compared could in
fact have different senses. On the other hand, if Jw1K is pure, then self-similarity is 1, as expected.

We now go on to describe how density matrices can be learnt directly from text corpora, and com-
posed to form sentence representations. We will assess these representations in a setting requiring
metaphor interpretation.

We now have all the ingredients to derive sentence meanings in CPM(FHilb).

Example 1 We firstly show that the results from FHilb lift to CPM(FHilb). Let the noun space N be
a real Hilbert space with basis vectors given by {|ni⟩}i, where for some i, |ni⟩ = |shoulders⟩ Let the
sentence space be another space S with basis {|si⟩}i. The verb |slouch⟩ is given by:

|slouch⟩= ∑
pq

Cpq |np⟩⊗ |sq⟩

The density matrix for the noun shoulders is in fact a pure state given by:

JshouldersK = |ni⟩⟨ni|

and similarly, JslouchK in CPM(FHilb) is:

JslouchK = ∑
pqtu

CpqCtu |np⟩⟨nt |⊗ |sq⟩⟨su|

The meaning of the composite sentence is simply (εN ⊗ 1S) applied to (JshouldersK⊗ JslouchK). This
corresponds to:

Jshoulders slouchK = ϕ(JshouldersK⊗ JslouchK)
= ∑

qu
CiqCiu |sq⟩⟨su|

This is a pure state corresponding to the vector ∑qCiq |sq⟩.
We can also deal with mixed states.

J. Owers, E. Shutova, M.Lewis 203

Example 2 Let the noun space N be a real Hilbert space with basis vectors given by {|ni⟩}i. Consider
two senses of the word shoulder meaning 1) a part of your body and 2) the edge of a road. Let:

|shoulderbody⟩= ∑
i

ai |ni⟩ , |shoulderroad⟩= ∑
i

bi |ni⟩

and with the sentence space S, consider the word slump with the senses slouch and decline we define:

|slumpslouch⟩= ∑
pqr

Cpqr |np⟩⊗ |sq⟩

|slumpdecline⟩= ∑
pqr

Dpqr |np⟩⊗ |sq⟩

We set:

JshoulderK =
1
2
(|shoulderbody⟩⟨shoulderbody|+ |shoulderroad⟩⟨shoulderroad|)

JslumpK =
1
2
(|slumpslouch⟩⟨slumpslouch|+ |slumpdecline⟩⟨slumpdecline|)

Then, the meaning of the sentence:
s = Shoulders slump

is given by:
JsK = (εN ⊗1S ⊗ εN)(JshouldersK⊗ JslumpK

In the example above, we have a two word sentence where each word has two interpretations. There
are therefore 4 possible assignments of senses to the words. However, only one assignment of words
makes sense in context. The aim is for the correct senses of each word to be picked out in composition.

4 Methods

4.1 Learning Density Matrices from Text

[24] introduce a method for learning density matrices from text called Multi-sense Word2DM. This is an
extension of the word2vec skipgram with negative sampling (SGNS) [25] to density matrices. word2vec
learns vectors for words by running through a large corpus of text and updating word vectors according
to the following objective function with regard to model parameters θ :

J(θ) = logσ(⟨vt |vc⟩)+
K

∑
k=1

logσ(−⟨vt |vk⟩) (2)

where vt is the embedding of target word, vc is the embedding of the context word, v1,v2, ...,vK are the
embeddings of K negative samples, and σ is the logistic function. Maximising equation 2 adjusts the
embeddings of words occurring in the same context to be more similar and adjusts the embeddings of
words that don’t occur together to be less similar. Multi-sense Word2DM is a modification of SGNS for
density matrices. Instead of learning one vector per word, multiple sense embeddings are learnt and then
combined together to form a density matrix. Each sense of a word has its own n-dimensional embedding.
A density matrix can be expressed in terms of the sense embeddings as

A = BB† =
m

∑
i=1

|bi⟩⟨bi| (3)

204 Density Matrices for Metaphor

where |b1⟩ , ..., |bm⟩ are the columns of B corresponding to different senses. Each word is also associated
with a single vector vw, which represents it as a context word. The following objective function is
maximised:

J(θ) = logσ(⟨bt |ct⟩)+
K

∑
k=1

logσ(−⟨bt |vwk⟩) (4)

where |ct⟩ is the sum of context vectors for all words surrounding the target word and |bt⟩ is the the
embedding for the relevant sense of the target word. We select |bt⟩ by finding the column of Bt most
similar to |ct⟩ (measured by cosine similarity). Multi-sense Word2DM explicitly models ambiguity by
letting the columns of the intermediary matrix represent the different senses of a word. During training
the column closest to the context embedding is selected as the relevant sense embedding and only this
column is updated.

4.2 Composition Methods

The methods used by [24] to build density matrices only build matrices that inhabit a single space W ⊗
W , rather than the larger spaces needed for verbs and adjectives. Because of this, [24] use a set of
composition methods that can be seen as ‘lifting’ a given word representation to the type needed for
composition. These are based on methods in [21, 8], and we will use these in section 6. We view
relational words such as adjectives or verbs as maps that takes nouns as arguments. The composition
methods are as follows, using the example of an adjective modifying a noun:

• Add: Jad jK+ JnounK

• Mult: Jad jK⊙ JnounK

• Fuzz: ∑i pi Pi JnounKPi, where ∑i pi Pi is the spectral decomposition of Jad jK

• Phaser: Jad jK1/2JnounKJad jK1/2

More complex phrases are combined according to their parse. So, a transitive sentence modified with
an adjective is composed as (subj(verb(adj obj))). Composing e.g. the sentence Junpa likes stripy cats
would consist of the following steps:

Jstripy catsK = f (JstripyK,JcatsK) (5)

Jlikes stripy catsK = f (JlikesK,Jstripy catsK) (6)

JJunpa likes stripy catsK = f (JJunpaK,Jlikes stripy catsK) (7)

where the composer f can be substituted by any of the composition methods listed above.

5 Implementation

5.1 Datasets and Tasks

We build a novel dataset to test disambiguation in a metaphorical context. The basic structure of the
dataset is as follows. Given a target sentence that uses a metaphorical word, we minimally alter the
target sentence to provide an apt literal paraphrase and an inapt paraphrase of the sentence. We attempt
to replace only the single metaphorically used word, although this is not always possible.

J. Owers, E. Shutova, M.Lewis 205

Example

• Target sentence: He showered her with presents

• Apt paraphrase: He gave her presents

• Inapt paraphrase: He sprinkled her with presents

The expectation is that the apt paraphrase is semantically closer to the target sentence than the inapt sen-
tence is. So, given representations JtargetK, JaptK, JinaptK, Tr(JtargetK†JaptK)> Tr(JtargetK†JinaptK).

We use the metaphorical sentences and their literal paraphrases from [28], and generate inapt para-
phrases as follows. Each target sentence includes one metaphorically used verb. We use WordNet [26] to
determine the most commonly used sense of the verb. WordNet is a resource listing words, their differ-
ent senses (called ‘synsets’), synonyms within each synset, and hyponym, hypernym and other relations
between words. The synsets are listed in order of frequency, so that the first synset is the most commonly
used sense of a word. We expect that the most commonly used sense of a word will be a literal sense,
and that taking a synonym from this sense will form an inapt paraphrase, as in the example above. We
manually inspect each candidate inapt paraphrase, and if the paraphrase is not inapt, we generate a new
paraphrase by looking at synonyms of the hypernym of the metaphorically used word. We generated
inapt paraphrases for a total of 171 metaphorical sentences.

We then simplified the sentences to consist of just subject-verb (SV), verb-object (VO) or subject-
verb-object (SVO) fragments, and subsequently padded these fragments with pronouns and determiners
to generate simplified versions of the full sentences. This usually just involved a shortening of the
sentence. We test our models on two versions of the dataset. The dataset in the format of SV/VO/SVO
fragments we call the short-form dataset, and the dataset with full but simplifed sentences we call the
long-form dataset.

Simplification Procedure

• Original sentence: He wasted his inheritance on his insincere friends.

• VO format: waste inheritance

• Simplified sentence: She wasted her inheritance

Human Annotation We solicited annotations from humans as follows. We gave them triples of target
sentence, apt paraphrase, and inapt paraphrase. The apt and inapt paraphrases were presented in a random
order: sometimes the apt was presented first, and sometimes the inapt. Participants were asked to state
which was the best paraphrase of the target sentence, and then to rate the similarity of each paraphrase to
the target sentence. All participants were asked to annotate all 171 triples, resulting in 10 annotations per
triple. Triples were presented in a random order for each participant. Mean inter-annotator agreement,
calculated using Spearman’s rho over all pairs of annotators, was 0.589, which is a reasonable level.
Examples of the annotation task are shown in figures 1 and 2

Model Task We evaluate a range of density matrix models, neural models, and baselines on this dis-
ambiguation task. The evaluation runs as follows. For each triple of sentences, we generate vectors or
density matrices for each sentence. We then compute the similarity of the sentence representations using
either cosine similarity (for vectors) or the generalized inner product (for density matrices. We assess the
extent to which models agree with the mean of the human judgements using Spearman’s rho.

206 Density Matrices for Metaphor

Figure 1: Participants are asked to choose which of paraphrase 1 or 2 is the best.

Figure 2: Participants are asked to rate the similarity of each paraphrase to the target sentence

5.2 Models

We use the density matrices computed in [24]. We test 4 variants of Multi-sense Word2DM (ms-
Word2DM). One parameter varies the number of senses computed for each matrix, either 5 or 10, and
one varies the means by which the closest sense is chosen for updating, choosing the closest via cosine
similarity (c) or by Euclidean distance (d).[24] also propose two other key ways of generating density
matrices. One, called Context2DM, extends the methods proposed in [31, 36]. Firstly, a set of word
vectors is trained with the gensim implementation1 of Word2Vec on the combined ukWaC+Wackypedia
corpus. For each target word, the set of words whose context they appear in is collected. The vectors
of these context words are clustered using hierarchical agglomerative clustering to between 2 and 10
clusters. The centroids of each of these clusters are taken to form the sense vectors for the target word,
and subsequently these sense vectors are combined into a density matrix.

The second alternative method, Bert2DM uses BERT [14] to generate sense vectors. BERT is a
Transformer-based architecture [39] which produces contextual embeddings, meaning that the vector
produced for each word is dependent on the context of the sentence. A small corpus is fed through
BERT. Vectors for each word are extracted, and dimensionality reduction applied (either PCA or SVD).
Vectors for each word are then combined to form density matrices.

We compare performance with two neural sentence encoders, SBERT [33] and InferSent [11]. Both
of these models are explicitly trained to predict when one sentence can be inferred from another. Since
synonymy is a simple kind of entailment relation, these sentence encoders should perform well.

We compare with two baseline models, word2vec [25] and GloVe [30]. These are two methods
for producing static word vectors with the key property that semantically similar words should be close
together in the vector space.

1https://radimrehurek.com/gensim/models/word2vec

J. Owers, E. Shutova, M.Lewis 207

6 Experiments and Results

For each model described in the previous section, we generate sentence embeddings for triples in the
dataset. For the density matrix methods, we apply the composition methods outlined in 4.2, that is,
Add, Mult, Fuzz, and Phaser. For neural methods, we simple take the sentence embeddings produced
by the models. For the static word vector baselines, we apply Add and Mult. We also use a baseline
‘composition’ method of simply taking the verb as sentence representation (Verb only)

We compute sim(JtargetK,JaptK) and sim(JtargetK,JinaptK), where sim is cosine similarity for vec-
tors and generalized inner product for density matrices. We compare the similarity scores generated
by the models to the similarity scores generated by humans and compute the correlation between these
scores using Spearman’s rho. Spearman’s rho ranges between -1 and 1, with 1 indicating that scores are
perfectly correlated and -1 indicating that they are perfectly anti-correlated.

For each model tested, there were a number of occurrences of words in the dataset that were not
in the lexicon of the trained model. Where this occurred, the sentence pairs containing these words
were removed from the tests for the given model. The error occurred more frequently with the long-
form dataset due to words not being in their lemmatised form. For Context2DM and BERT2DM with
the long-form dataset, the results were deemed unreliable and not included due to having only 8 usable
sentence pairs. Table 6 in the Appendix shows the number of sentence pairs used in the tests, out of the
total of 342 sentence pairs, as a result of these errors being removed.

6.1 Results

Results are shown in tables 1, 2 and 3. Table 1 shows firstly that the neural sentence encoders (left hand
table) were not able to correctly interpret the metaphorically used word in context, with correlation close
to 0, i.e. indicating chance level. Secondly, on the right hand side, we see that in the compositional
settings (Add and Mult), static word vectors also perform poorly, although very slightly better than the
sentence encoders. For the Verb-only setting, we see a stronger negative correlation, i.e., similarity
ratings are more consistently in the wrong direction. This is expected, as the verb alone does not provide
the context necessary for disambiguation of the metaphor, and we would expect that the most common
sense of a word would dominate the learnt representations.

SBERT short -0.0317
long -0.0146

Infersent1 short 0.0085
long -0.0027

Infersent2 short 0.0113
long -0.0411

Verb Add Mult
Word2Vec short -0.2719 -0.0536 -0.1092

long -0.0010 -0.0642
GloVe short -0.1529 -0.0272 0.0738

long 0.0236 0.0579

-0.3 -0.2 -0.1 0 0.04 0.08 0.12

Table 1: Spearman’s rho for sentence encoders and vector baselines. Note that all sentence encoders
performed poorly, while Glove with mult performed better.

In Table 2, we see a similar pattern. The verb-only baseline produces similarity ratings that are
negatively correlated with those of humans. In general, the BERT2DM and Context2DM models produce

208 Density Matrices for Metaphor

slightly stronger results. The highest correlation is produced by Multi-sense Word2DM with 10 senses,
using Euclidean distance to choose which sense to update, and using Mult as the composition operator.
Overall, correlation is low. Table 3 gives performance of the density matrix models when using Fuzz or
Phaser as the composition operator. When applying Fuzz and Phaser, there is a choice of whether to use
the verb as the operator or the noun as the operator. The linguistically motivated choice is to use the verb
as the operator. However, as seen in table 3, using the noun as the operator produces a better correlation
with human judgements. We speculate that when using the verb as operator, the most common sense
of the verb dominates the composition. In the case of a metaphorical verb, we require that the noun
modifies the meaning of the verb to obtain the correct interpretation.

Verb Add Mult
ms-Word2DM-c5 short -0.2062 -0.0587 0.0201

long 0.0373 -0.0764
ms-Word2DM-c10 short -0.2094 -0.0552 -0.0365

long 0.0450 -0.0577
ms-Word2DM-d5 short -0.2519 -0.0999 -0.0204

long 0.0136 0.0385
ms-Word2DM-d10 short -0.2102 -0.0784 -0.0609

long 0.0432 0.1061
Word2DM short -0.1772 -0.1063 -0.0004

long -0.0057 0.0263
bert2dm-pca-cls short 0.0120 0.0749 0.0262
bert2dm-svd-cls short -0.0296 0.0172 0.0698
context2dm short 0.0240 0.0483 0.0885

-0.3 -0.2 -0.1 0 0.04 0.08 0.12

Table 2: Spearman’s rho for density matrix models with simple composition. Most models with verb-
only composition had negative correlation. ms-Word2DM-d10 with mult-long had the best performance.

All models except for BERT2DM-svd-cls and Context2DM consistently show an increase in rho after
composition, supporting the idea that interpretation of metaphor is easier when provided with context.

6.2 Analysis

To understand more about which sentences were being scored correctly, we examined the responses of
ms-word2dm-d10. Each instance of a metaphorical sentence and its two paraphrases was marked correct
if the apt paraphrase scored higher on cosine similarity than the inapt paraphrase, and incorrect if the
inapt paraphrase scored highest. These results were then compiled for different composition methods
and compared with the verb baseline. The number of instances correct and incorrect with verb and
composition are shown in figure 3. We see that overall, the majority of similarity judgements are incorrect
for verb-only models and for compositional models (yellow bar). We also see that for many models, both
the verb-only and the compositional models are correct (light green bar). For Fuzz and Phaser, models
where the verb is the operator showed fewer instances where the result changes after composition. This
means that in more cases, the result remained either correct or incorrect according to the result of the

J. Owers, E. Shutova, M.Lewis 209

Fuzz verb Fuzz noun Phaser verb Phaser noun
ms-Word2DM-c5 -0.1732 0.0378 -0.0251 0.0148
ms-Word2DM-c10 -0.1681 -0.0146 -0.0949 -0.0160
ms-Word2DM-d5 -0.1783 0.0576 -0.1132 0.0121
ms-Word2DM-d10 -0.1997 0.0402 -0.1552 -0.0125
Word2DM -0.1042 -0.0008 -0.1311 -0.0029
bert2dm-pca-cls 0.0217 0.0274 0.0337 0.0186
bert2dm-svd-cls -0.0280 0.0377 -0.0451 0.0358
context2dm 0.0177 0.0448 -0.0088 0.0350

-0.3 -0.2 -0.1 0 0.04 0.08 0.12

Table 3: Spearman’s rho for density matrix models with Fuzz and Phaser composition on the short-form
dataset. Verb operator models generally had poor performance while noun operator models, especially
with Fuzz, performed better.

Figure 3: Analysis of which sentences were scored correctly by ms-Word2DM-d10. Note that verb
operator models scored a lot of sentences the same as the verb, meaning composition had little effect.

210 Density Matrices for Metaphor

verb alone. In contrast, the noun operator models had more instances where the verb-only model was
incorrect and the composition was correct (dark green bar). This also indicates that the result is being
heavily influenced by the operator matrix. Finally, there are a lot of instances where the verb-only model
produces the correct answer but this is ‘undone’ by the composition (red bar). For Add and Mult, the
long-form sentences showed a greater proportion of the correct sentences using the verb that became
incorrect after composition, suggesting that the extra words in the long sentences may be distracting
from the relevant information.

To analyse how each composition method affects the modelled ambiguity, we calculated the von
Neumann entropy of each of the sentences for each composition method including the verb baseline, as
shown in tables 4 and 5. The relative difference in entropy between the verb and the sentence embedding
indicates the model’s change in ambiguity upon composition of the sentence. This is shown by the colour
of the cells, red meaning an increase in entropy and blue meaning a decrease. The entropy results are
consistent with the results for the similarity task; Phaser resulted in a greater reduction in entropy than
Fuzz, and also produced stronger Spearman correlation. BERT2DM-svd-cls mult-short also had a high
rho and a strong reduction in entropy.

Verb Add Mult
ms-Word2DM-c5 short 1.1464 1.9298 1.6927

long 1.1464 1.7579 1.8508
ms-Word2DM-c10 short 1.3230 2.2118 1.6821

long 1.3230 1.9797 1.9587
ms-Word2DM-d5 short 1.0590 1.9834 1.4786

long 1.0590 1.7171 1.6482
ms-Word2DM-d10 short 1.4508 2.1462 1.6160

long 1.4508 2.0085 1.8854
Word2DM short 0.1799 1.5876 0.9849

long 0.1799 1.0555 0.4431
bert2dm-pca-cls short 0.4647 1.0575 0.4467
bert2dm-svd-cls short 0.2346 0.4943 0.0339
context2dm short 0.2877 0.4546 0.3097

0.01 0.05 0.22 1 2.15 4.64 10

Table 4: Mean von Neumann entropy produced by density matrix models with simple composition.
Colour indicates the relative change in entropy with composition. Bert2dm-svd-cls with mult is the only
model to significantly decrease entropy.

7 Discussion and Conclusions

Interpreting metaphor correctly is an essential part of language understanding. Previous work showed
that density matrix approaches to modelling language meaning could effectively capture ambiguity. The
aim of this paper was to test whether these representations could capture ambiguity in the case of con-
ventional metaphor. We built a new dataset to test our models, and tested a range of density matrix word

J. Owers, E. Shutova, M.Lewis 211

Verb Fuzz verb Fuzz noun Phaser verb Phaser noun
ms-Word2DM-c5 1.1464 0.6781 0.6731 0.3661 0.3550
ms-Word2DM-c10 1.3230 0.8769 0.9141 0.4971 0.4860
ms-Word2DM-d5 1.0590 0.7257 0.6873 0.3046 0.2798
ms-Word2DM-d10 1.4508 0.8580 0.8412 0.4034 0.3918
Word2DM 0.1799 0.2896 0.2519 0.0511 0.0413
bert2dm-pca-cls 0.4647 0.3001 0.3182 0.1245 0.1269
bert2dm-svd-cls 0.2346 0.0444 0.0546 0.0103 0.0103
context2dm 0.2877 0.0912 0.0389 0.0041 0.0041

0.01 0.05 0.22 1 2.15 4.64 10

Table 5: Mean von Neumann entropy produced by density matrix models with Fuzz and Phaser on short-
form dataset. Colour indicates the relative change in entropy with composition. Note that Phaser caused
a greater entropy reduction than Fuzz.

representations and composition methods, as well as neural sentence encoders. All models found this
dataset extremely difficult. However, we do see some insights into how metaphor can be interpreted.
Firstly, in almost all compositional methods, we see an increase in performance over a simple verb-only
baseline. We also see some increases in performance over simple vector-based models. We find that
using the non-metaphorical nouns as operators rather than the metaphorical verbs gives improved per-
formance, indicating that perhaps we need to view the metaphorically used words as being updated by
their context. We also see that in the case of Fuzz and Phaser composition, the composition reduces the
entropy of representations, as previously seen in [31, 24]

Further Work We have tested our dataset on SBERT and InferSent, however, recently, a wide range
of language models have become available, and we plan to test those models on this difficult dataset.
The work we have presented in this paper relates only to conventional metaphor, which can be seen
fairly straightforwardly as a case of lexical ambiguity. Work is ongoing to extend these methods to
novel metaphor, where new meanings must be created on-the-fly. Another line of enquiry is to link the
interpretation of density matrices as modelling ambiguity with the interpretation as modelling hyponymy.
The categorisation theory of metaphor proposed in [15] argues that in noun-noun metaphors (e.g. ‘My
lawyer is a shark’), an ad-hoc class (e.g. ‘vicious things’) is created that abstracts both the metaphor and
its target. We can therefore use the entailment interpretation of density matrices to discover these ad-hoc
classes by finding something like a greatest lower bound for downward entailment – with the caveat that
such bounds are not always unique for density matrices. There is potential to integrate these methods with
the DiscoCirc formalism [7], in which a sense of narrative is included, and the level of modelling is at the
full text rather than sentence level. Finally, implementing quantum-inspired models using real quantum
computers is a burgeoning new line of research [23] and our methods have already been investigated in
simulation in [6]. Pushing these ideas further will be an important step in this process.

212 Density Matrices for Metaphor

References

[1] Esma Balkır, Mehrnoosh Sadrzadeh & Bob Coecke (2016): Distributional Sentence Entailment Using Den-
sity Matrices. In Mohammad T. Hajiaghayi & Mohammad R. Mousavi, editors: Topics in Theoretical
Computer Science, Lecture Notes in Computer Science 9541, Springer, Cham, pp. 1–22. Available at
https://doi.org/10.1007/978-3-319-28678-5_1.

[2] Dea Bankova, Bob Coecke, Martha Lewis & Dan Marsden (2019): Graded Hyponymy for Compositional
Distributional Semantics. Journal of Language Modelling 6(2), p. 225, doi:10.15398/jlm.v6i2.230. Available
at http://jlm.ipipan.waw.pl/index.php/JLM/article/view/230.

[3] Marco Baroni & Roberto Zamparelli (2010): Nouns are Vectors, Adjectives are Matrices: Representing
Adjective-Noun Constructions in Semantic Space. In: Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, Association for Computational Linguistics, pp. 1183–1193. Avail-
able at https://dl.acm.org/doi/abs/10.5555/1870658.1870773.

[4] William Blacoe, Elham Kashefi & Mirella Lapata (2013): A Quantum-Theoretic Approach to Distributional
Semantics. In: Proceedings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Association for Computational Linguistics,
Atlanta, Georgia, pp. 847–857. Available at https://aclanthology.org/N13-1105.

[5] Tai-Danae Bradley & Yiannis Vlassopoulos (2021): Language Modeling with Reduced Densities. Composi-
tionality 3, p. 4. Available at https://doi.org/10.32408/compositionality-3-4.

[6] Saskia Bruhn (2021): Density Matrix Methods in Quantum Natural Language Processing. Ph.D. thesis,
Master’s thesis, Universität Osnabrück, 2022. doi: 10.48693/111.

[7] Bob Coecke (2021): The mathematics of text structure. Joachim Lambek: The Interplay of Mathematics,
Logic, and Linguistics, pp. 181–217. Available at https://doi.org/10.48550/arXiv.1904.03478.

[8] Bob Coecke & Konstantinos Meichanetzidis (2020): Meaning Updating of Density Matrices. Journal of
Applied Logics 2631(5), p. 745. Available at https://doi.org/10.48550/arXiv.2001.00862.

[9] Bob Coecke & Éric Oliver Paquette (2011): Categories for the practising physicist. In: New Structures for
Physics, Springer, pp. 173–286. Available at https://doi.org/10.1007/978-3-642-12821-9_3.

[10] Bob Coecke, Mehrnoosh Sadrzadeh & Stephen J Clark (2010): Mathematical Foundations for a Compo-
sitional Distributional Model of Meaning. Linguistic Analysis 36(1), pp. 345–384. Available at https:
//doi.org/10.48550/arXiv.1003.4394.

[11] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c Barrault & Antoine Bordes (2017): Supervised
Learning of Universal Sentence Representations from Natural Language Inference Data. In: Proceed-
ings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp. 670–680,
doi:10.18653/v1/D17-1070.

[12] Adriana D. Correia, Michael Moortgat & Henk T. C. Stoof (2020): Density Matrices with Metric for Deriva-
tional Ambiguity, doi:10.48550/arXiv.1908.07347. Available at http://arxiv.org/abs/1908.07347.

[13] Gemma De las Cuevas, Andreas Klingler, Martha Lewis & Tim Netzer (2020): Cats Climb Entails Mammals
Move: Preserving Hyponymy in Compositional Distributional Semantics. arXiv:2005.14134 [cs, math].
Available at https://doi.org/10.48550/arXiv.2005.14134.

[14] Jacob Devlin, Ming-Wei Chang, Kenton Lee & Kristina Toutanova (2019): BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding. In Jill Burstein, Christy Doran & Thamar Solorio,
editors: Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Association for
Computational Linguistics, Minneapolis, Minnesota, pp. 4171–4186, doi:10.18653/v1/N19-1423. Available
at https://aclanthology.org/N19-1423.

[15] Sam Glucksberg & Boaz Keysar (1990): Understanding metaphorical comparisons: Beyond similarity. Psy-
chological review 97(1), p. 3. Available at https://doi.org/10.1037/0033-295X.97.1.3.

https://doi.org/10.1007/978-3-319-28678-5_1
https://doi.org/10.15398/jlm.v6i2.230
http://jlm.ipipan.waw.pl/index.php/JLM/article/view/230
https://dl.acm.org/doi/abs/10.5555/1870658.1870773
https://aclanthology.org/N13-1105
https://doi.org/10.32408/compositionality-3-4
https://doi.org/10.48550/arXiv.1904.03478
https://doi.org/10.48550/arXiv.2001.00862
https://doi.org/10.1007/978-3-642-12821-9_3
https://doi.org/10.48550/arXiv.1003.4394
https://doi.org/10.48550/arXiv.1003.4394
https://doi.org/10.18653/v1/D17-1070
https://doi.org/10.48550/arXiv.1908.07347
http://arxiv.org/abs/1908.07347
https://doi.org/10.48550/arXiv.2005.14134
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://doi.org/10.1037/0033-295X.97.1.3

J. Owers, E. Shutova, M.Lewis 213

[16] Dimitri Kartsaklis (2015): Compositional Distributional Semantics with Compact Closed Categories and
Frobenius Algebras. Ph.D. thesis, University of Oxford. Available at https://arxiv.org/abs/1505.
00138.

[17] Dimitri Kartsaklis, Matthew Purver & Mehrnoosh Sadrzadeh (2016): Verb Phrase Ellipsis using Frobenius
Algebras in Categorical Compositional Distributional Semantics. In: DSALT Workshop, European Summer
School on Logic, Language and Information, pp. 1–2. Available at https://www.eecs.qmul.ac.uk/
~mpurver/papers/kartsaklis-et-al16dsalt.pdf.

[18] Germán Kruszewski, Denis Paperno, Raffaella Bernardi & Marco Baroni (2016): There Is No Logical
Negation Here, But There Are Alternatives: Modeling Conversational Negation with Distributional Se-
mantics. Computational Linguistics 42(4), pp. 637–660, doi:10.1162/COLI a 00262. Available at https:
//aclanthology.org/J16-4003.

[19] Joachim Lambek (1997): Type Grammar Revisited. In Alain Lecomte, François Lamarche & Guy Perrier,
editors: Logical Aspects of Computational Linguistics, Second International Conference, LACL ’97, Nancy,
France, September 22-24, 1997, Selected Papers, Lecture Notes in Computer Science 1582, Springer, pp.
1–27. Available at https://doi.org/10.1007/3-540-48975-4_1.

[20] Michael Lesk (1986): Automatic sense disambiguation using machine readable dictionaries: how to tell
a pine cone from an ice cream cone. In: Proceedings of the 5th annual international conference on Sys-
tems documentation, SIGDOC ’86, Association for Computing Machinery, New York, NY, USA, pp. 24–26,
doi:10.1145/318723.318728. Available at https://dl.acm.org/doi/10.1145/318723.318728.

[21] Martha Lewis (2019): Compositional Hyponymy with Positive Operators. In: Proceedings of the International
Conference on Recent Advances in Natural Language Processing (RANLP 2019), INCOMA Ltd., Varna,
Bulgaria, pp. 638–647, doi:10.26615/978-954-452-056-4 075. Available at https://www.aclweb.org/
anthology/R19-1075.

[22] Martha Lewis (2020): Towards Logical Negation for Compositional Distributional Semantics. IfCoLog
Journal of Applied Logics 7(5), pp. 771–794. Available at https://doi.org/10.48550/arXiv.2005.
04929.

[23] Robin Lorenz, Anna Pearson, Konstantinos Meichanetzidis, Dimitri Kartsaklis & Bob Coecke (2023): QNLP
in practice: Running compositional models of meaning on a quantum computer. Journal of Artificial Intelli-
gence Research 76, pp. 1305–1342, doi:10.1613/jair.1.14329.

[24] Francois Meyer & Martha Lewis (2020): Modelling Lexical Ambiguity with Density Matrices. In: Proceed-
ings of the 24th Conference on Computational Natural Language Learning, Association for Computational
Linguistics, Online, pp. 276–290, doi:10.18653/v1/2020.conll-1.21. Available at https://www.aclweb.
org/anthology/2020.conll-1.21.

[25] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado & Jeff Dean (2013): Distributed representations
of words and phrases and their compositionality. Advances in neural information processing systems 26.
Available at https://doi.org/10.48550/arXiv.1310.4546.

[26] George A. Miller (1995): WordNet: A Lexical Database for English. Communinications of the ACM 38(11),
pp. 39–41. Available at http://doi.acm.org/10.1145/219717.219748.

[27] Jeff Mitchell & Mirella Lapata (2010): Composition in Distributional Models of Semantics. Cog-
nitive Science 34(8), pp. 1388–1429, doi:10.1111/j.1551-6709.2010.01106.x. Available at https://

onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01106.x.

[28] Saif Mohammad, Ekaterina Shutova & Peter Turney (2016): Metaphor as a medium for emotion: An empiri-
cal study. In: Proceedings of the Fifth Joint Conference on Lexical and Computational Semantics, pp. 23–33,
doi:10.18653/v1/S16-2003.

[29] Roberto Navigli (2009): Word sense disambiguation: A survey. ACM computing surveys (CSUR) 41(2), pp.
1–69. Available at https://doi.org/10.1145/1459352.1459355.

https://arxiv.org/abs/1505.00138
https://arxiv.org/abs/1505.00138
https://www.eecs.qmul.ac.uk/~mpurver/papers/kartsaklis-et-al16dsalt.pdf
https://www.eecs.qmul.ac.uk/~mpurver/papers/kartsaklis-et-al16dsalt.pdf
https://doi.org/10.1162/COLI_a_00262
https://aclanthology.org/J16-4003
https://aclanthology.org/J16-4003
https://doi.org/10.1007/3-540-48975-4_1
https://doi.org/10.1145/318723.318728
https://dl.acm.org/doi/10.1145/318723.318728
https://doi.org/10.26615/978-954-452-056-4_075
https://www.aclweb.org/anthology/R19-1075
https://www.aclweb.org/anthology/R19-1075
https://doi.org/10.48550/arXiv.2005.04929
https://doi.org/10.48550/arXiv.2005.04929
https://doi.org/10.1613/jair.1.14329
https://doi.org/10.18653/v1/2020.conll-1.21
https://www.aclweb.org/anthology/2020.conll-1.21
https://www.aclweb.org/anthology/2020.conll-1.21
https://doi.org/10.48550/arXiv.1310.4546
http://doi.acm.org/10.1145/219717.219748
https://doi.org/10.1111/j.1551-6709.2010.01106.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01106.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1551-6709.2010.01106.x
https://doi.org/10.18653/v1/S16-2003
https://doi.org/10.1145/1459352.1459355

214 Density Matrices for Metaphor

[30] Jeffrey Pennington, Richard Socher & Christopher D Manning (2014): Glove: Global vectors for word
representation. In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532–1543, doi:10.3115/v1/D14-1162.

[31] Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke & Mehrnoosh Sadrzadeh (2015): Open System Categorical
Quantum Semantics in Natural Language Processing. In Lawrence S. Moss & Pawel Soboci’nski, editors:
6th Conference on Algebra and Coalgebra in Computer Science, CALCO 2015, June 24-26, 2015, Nijmegen,
The Netherlands, LIPIcs 35, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, pp. 270–289. Available at
https://doi.org/10.4230/LIPIcs.CALCO.2015.270.

[32] Anne Preller & Mehrnoosh Sadrzadeh (2011): Bell States and Negative Sentences in the Distributed Model of
Meaning. Electronic Notes in Theoretical Computer Science 270(2), pp. 141 – 153. Available at https://
doi.org/10.1016/j.entcs.2011.01.028. Proceedings of the 6th International Workshop on Quantum
Physics and Logic (QPL 2009).

[33] Nils Reimers & Iryna Gurevych (2019): Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pp. 3982–
3992, doi:10.18653/v1/D19-1410.

[34] Benjamin Rodatz, Razin Shaikh & Lia Yeh (2021): Conversational Negation Using Worldly Context in Com-
positional Distributional Semantics. In: Proceedings of the 2021 Workshop on Semantic Spaces at the In-
tersection of NLP, Physics, and Cognitive Science (SemSpace), Association for Computational Linguistics,
Groningen, The Netherlands, pp. 53–65. Available at https://doi.org/10.48550/arXiv.2105.05748.

[35] Mehrnoosh Sadrzadeh, Dimitri Kartsaklis & Esma Balkır (2018): Sentence Entailment in Compositional
Distributional Semantics. Annals of Mathematics and Artificial Intelligence 82(4), pp. 189–218. Available
at https://doi.org/10.1007/s10472-017-9570-x.

[36] Hinrich Schütze (1998): Automatic Word Sense Discrimination. Comput. Linguist. 24(1), pp. 97–123. Avail-
able at https://dl.acm.org/doi/10.5555/972719.972724.

[37] Peter Selinger (2007): Dagger Compact Closed Categories and Completely Positive Maps: (Extended Ab-
stract). Electronic Notes in Theoretical Computer Science 170, pp. 139 – 163. Available at https:
//doi.org/10.1016/j.entcs.2006.12.018. Proceedings of the 3rd International Workshop on Quan-
tum Programming Languages (QPL 2005).

[38] Razin A. Shaikh, Lia Yeh, Benjamin Rodatz & Bob Coecke (2022): Composing Conversational Negation.
Electronic Proceedings in Theoretical Computer Science 372, p. 352–367. Available at http://dx.doi.
org/10.4204/EPTCS.372.25.

[39] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser
& Illia Polosukhin (2017): Attention is all you need. Advances in neural information processing systems 30.
Available at https://doi.org/10.48550/arXiv.1706.03762.

[40] John van de Wetering (2017): Ordering information on distributions. arXiv:1701.06924.

A Numbers of Sentence Pairs

https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.4230/LIPIcs.CALCO.2015.270
https://doi.org/10.1016/j.entcs.2011.01.028
https://doi.org/10.1016/j.entcs.2011.01.028
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.48550/arXiv.2105.05748
https://doi.org/10.1007/s10472-017-9570-x
https://dl.acm.org/doi/10.5555/972719.972724
https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1016/j.entcs.2006.12.018
http://dx.doi.org/10.4204/EPTCS.372.25
http://dx.doi.org/10.4204/EPTCS.372.25
https://doi.org/10.48550/arXiv.1706.03762
https://arxiv.org/abs/1701.06924

J. Owers, E. Shutova, M.Lewis 215

Cosine Similarity Von Neumann Entropy
GloVe verb-only 331

short-form 269
long-form 63

Word2Vec verb-only 331
short-form 269
long-form 63

BERT2DM models verb-only 300 336
short-form 204 252
long-form 8 10

Context2DM verb-only 310 338
short-form 212 256
long-form 8 10

Word2DM models verb-only 332 342
short-form 335 342
long-form 172 220

Table 6: Number of sentence pairs used in each test after removing out-of-vocabulary words. SBERT
and Infersent covered all words.

	Introduction
	Three Groups and Their Generators
	Presentations and Tietze Transformations
	Presentations
	Tietze Transformations

	From Coxeter to Circuit Presentations of W(E8)
	Introducing the Toffoli-K Gates
	Deriving the W(E8) Coxeter Generators
	Elimination of the Coxeter Generators
	A Reduced Set of Relations for W(E8)
	A Minimal Generating Set for W(E8)

	Extending to a Presentation of O(8,D)
	Permutation Groups and Reindexing
	Selecting Representative Relations for O(n,D)
	Selecting Representative Generators for O(n,D)
	Eliminating Redundant Relations
	Introducing the W(E8) Generators
	Eliminating the Multi-Level Operators
	A Minimal Generating Set for O(8,D)

	Extending to the 3-Qubit Toffoli-Hadamard Circuits
	Conclusion
	Semantic Tietze Transformations
	Induced Monoid Homomorphisms
	Semantic Interpretations and Relations
	Semantics and Generator Introduction

	From Derivations to Tietze Transformations
	Digraphs and Termination
	Derived Generators and Tietze Transformations
	Introduction of Derived Generators
	Tietze Transformations to Exchange Relations
	Elimination of Derived Generators
	The Derived Generator Graph for W(E8)

	Derivational Proofs and Tietze Transformation
	Substitutions and Derivation Graphs
	From Derivational Proofs to Tietze Transformations

	Circuit Decompositions of Coxeter Generators
	Constructing the Generators for W(E8
	Establishing the Minimality of W(E8) and O(8,D) Generators
	Two Results on Minimal Generating Sets
	Minimality for W(E8)
	Minimality of Sigma(K) for O(8,D)
	Minimality of Sigma(Z) for O(8,D)

	Proof Details for a Presentation of O(u,D)
	Counting the Relations in R(n)
	Correctness of Relation Reindexing
	Deriving the Braiding Relations
	Formal Inverses for Self-Inverse Generators
	Permuting the Indices in Multi-Level Operators
	Permuting the Indices in Relations Over Multi-Level Operators

	The Set of Representative Relations
	Proving the Redundant Relations are Derivable

	Introduction
	Background
	Contributions
	Contents

	Rings and Groups
	The Ring Z[ωk]
	Properties of Z[ω]
	Denominators
	The Group Un(Z[ζk,1/3]

	Generators for Un(Z[zeta,1/3]
	Exact Synthesis of Toffoli+Hadamard Circuits
	Catalytic Embeddings
	Exact Synthesis of Clifford-Cyclotomic Circuits
	Circuit Complexity
	Conclusion
	Circuit Constructions
	Gate Set Equivalences
	Circuit Representations for the Elements of G3n

	Introduction
	Background
	ZX-calculus
	ZX-diagram rewriting
	Classical simulation

	Method
	Graph cutting
	CNOT-grouping
	Cutting in tiered structures
	Optimised cutting procedure

	Results
	Complexity and efficiency
	Experimental measurements for random circuits

	Conclusion
	Cut order correction
	Generating random pseudo-structured circuits
	Estimating efficiency
	Preliminaries
	Spider nests and triorthogonal matrices
	The scalable ZX-calculus

	Inductive construction of spider nest identities
	Proving all spider nest identities
	Characterisation of transversal D_3 gates for CSS codes
	Conclusion
	Indicator polynomials for triorthogonal matrices
	Computing transversal logical operations efficiently
	Introduction
	Related work
	Preliminaries
	ZX-calculus
	Graph-like diagrams
	Diagram simplification
	Gflow in graph-like diagrams
	Circuit extraction

	Extracting controlled phase gates from graph-like ZX-diagrams
	Graph-like representation of controlled phase gates
	Adaption of the extraction algorithm
	Preservation of gflow
	Time complexity

	Neutral Atom Circuit Synthesis
	Neutral Atom Background
	Related Work
	Evaluation Setup
	Results & Discussion

	Conclusion
	Gadget insertion
	Alternative proof of theo:mcp-gates
	Introduction
	Background
	Measurement-Based Quantum Computation
	Computational Complexity

	Finding labelling resulting in Pauli flow
	Reducing measurement options
	Algebraic interpretation of flow
	Reduction to MaxRank
	Inputs and outputs

	Conclusions and further work
	Bibliography
	More about MaxRank
	Reduced adjacency matrix invertibility for X and XY measurements
	Pseudocode for algorithms
	Complexity of algorithms
	Figure for reducing the number of outputs

	Introduction
	Preliminaries
	The ZH-calculus
	#SAT instances as ZH-diagrams
	The CDP algorithm for #SAT

	Results
	Interpreting CDP diagrammatically
	Reduction from #SAT to #2SAT
	Complexity analysis
	A non-diagrammatic argument for CDP2

	Variations on the main result
	Bounding #SAT in terms of literals
	An algorithm for low-density #3SAT instances
	Solving #SAT with arbitrary phases

	Conclusion
	Rewriting Rules
	Upper Bounds on Quantum Circuit Simulation
	A Non-diagrammatic Argument for CDP2
	Additional Lemmas
	Proofs of Theorems
	Introduction
	DisCoCirc
	Native NLP Tasks

	QDisCoCirc Models
	Solving Model-Native Tasks

	Hardness for Question Answering
	Further Quadratic Speedups
	Application to DisCoCirc

	Other Model-Native Tasks
	Discussion and Future Work
	Decomposing Frames
	Proofs of Theorems
	Oracle Construction
	The Text-Text Similarity Task

	Introduction
	Related Work: Density Matrices in Natural Language Processing
	Categorical Compositional Distributional Semantics
	Pregroup Grammars
	Compositional Distributional Models
	Grammatical Reductions in Vector Spaces
	Density Matrices in Categorical Compositional Distributional Semantics
	The CPM Construction
	Sentence Meaning in the category CPM(FHilb)

	Methods
	Learning Density Matrices from Text
	Composition Methods

	Implementation
	Datasets and Tasks
	Models

	Experiments and Results
	Results
	Analysis

	Discussion and Conclusions
	Numbers of Sentence Pairs

