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Preface

This volume contains the proceedings of the 20th International Conference on Quantum Physics and

Logic (QPL 2023). The conference was held from 17 to 21 July 2023 at Institut Henri Poincaré in Paris,

France.

Quantum Physics and Logic is a conference series that brings together academic and industry re-

searchers working on mathematical foundations of quantum computation, quantum physics, and related

areas. The main focus is on the use of algebraic and categorical structures, formal languages, type sys-

tems, semantic methods, as well as other mathematical and computer scientific techniques applicable

to the study of physical systems, physical processes, and their composition. Work applying quantum-

inspired techniques and structures to other fields (such as linguistics, artificial intelligence, and causality)

is also welcome.

The QPL 2023 conference solicited four different kinds of submissions: proceedings submissions,

non-proceedings submissions, poster submissions, and programming tool submissions.

Proceedings submissions were papers that were required to provide sufficient evidence of results of

genuine interest. Authors of accepted proceedings submissions were given the opportunity to present

their work during a talk at the conference and these papers were included in the proceedings of QPL

2023. No other kinds of submissions were considered for inclusion in the proceedings. Non-proceedings

submissions consisted of a three page summary, together with a (link to a) separate published paper or

preprint. Authors of accepted non-proceeding submissions were allowed to present their work in the form

of a talk during the conference. Poster submissions consisted of a three page abstract of (partial) results

or work in progress and authors of accepted poster submissions were invited to present their work during

one of the poster sessions of the conference. Programming tool submissions consisted of three page

descriptions of programming tools or frameworks. Authors of accepted programming tool submissions

were given an opportunity to present their software during a dedicated “Software Session”.

These proceedings contain 14 contributed papers that were selected for publication by the Program

Committee. Papers submitted to QPL undergo a review process that is managed by members of the PC.

The vast majority of submissions received at least three reviews. The selection of accepted papers was

done through the use of the EasyChair conference management system following consideration of the

submitted reviews and following (where necessary) discussion among the PC. The review process was

single-blind: the identity of the authors is revealed to the reviewers, but not vice-versa. PC members

were allowed to invite external experts to serve as subreviewers and to participate in the discussion of

submissions which they were invited to review.

A record 152 submissions (excluding withdrawals and retractions) were considered for review by the

PC. QPL 2023 had 54 accepted submissions in the non-proceedings track and 14 accepted submissions

in the proceedings track. Most of the talks were presented during parallel sessions, but a selection of

talks were presented during plenary sessions in the mornings. The program also had several poster

sessions and one session dedicated to showcasing accepted programming tool submissions. There was

also an industry session where industrial sponsors of QPL 2023 were given an opportunity to present

their companies. The industry session consisted of two talks – one by Quandela (Diamond Sponsor) and

one by Quantinuum (Gold Sponsor).

The QPL 2023 conference featured an award for Best Student Paper. Papers eligible for the award

http://dx.doi.org/10.4204/EPTCS.384.0
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were those where all the authors are students at the time of submission. The PC decided to award the

Best Student Paper award for QPL 2023 to Cole Comfort (Department of Computer Science, University

of Oxford) for his paper “The Algebra for Stabilizer Codes”.

The official website of the conference is https://qpl2023.github.io/ and it contains a lot of relevant

information about QPL 2023.

The Program Committee consisted of 42 members who were: Pablo Arrighi, Miriam Backens,

Jonathan Barrett, Alessandro Bisio, Titouan Carette, Ulysse Chabaud, Giulio Chiribella, Bob Coecke,

Alejandro Dı́az-Caro, Ross Duncan, Pierre-Emmanuel Emeriau, Yuan Feng, Stefano Gogioso, Amar

Hadzihasanovic, Emmanuel Jeandel, Martti Karvonen, Kohei Kishida, Aleks Kissinger, Ravi Kunjwal,

Shane Mansfield (co-chair), Simon Martiel, Konstantinos Meichanetzidis, Mio Murao, Ognyan Ore-

shkov, Prakash Panangaden, Simon Perdrix, Neil Ross, Ana Belén Sainz, Carlo Maria Scandolo, John

Selby, Peter Selinger, Rui Soares Barbosa, Pawel Sobocinski, Isar Stubbe, Benoı̂t Valiron (co-chair), Au-

gustin Vanrietvelde, Renaud Vilmart, Quanlong Wang, John van de Wetering, Alexander Wilce, Ming-

sheng Ying, and Vladimir Zamdzhiev (co-chair).

The Organising Committee consisted of eight members who were: Ulysse Chabaud, Pierre-Emmanuel

Emeriau, Shane Mansfield, Simon Perdrix, Benoı̂t Valiron, Augustin Vanrietvelde, Renaud Vilmart, and

Vladimir Zamdzhiev.

The QPL Steering Committee consisted of Bob Coecke, Prakash Panangaden, and Peter Selinger.

We wish to thank all the members of the PC for their work in selecting the program of QPL 2023.

We also thank all external subreviewers for their help and also the authors for their submissions to

QPL 2023. Thanks also go to Ulysse Chabaud for making a few decisions on papers for which the

PC co-chairs were not available. We are grateful to the EPTCS team for their help in preparing the

proceedings of the conference. We also thank the members of the Organising Committee for their help

in setting up the conference. We also thank the student helpers who volunteered to assist us: Dogukan

Bakircioglu, Marin Costes, Kinnari Dave, Nicolas Heurtel, Paraskevi Kasnetsi, Charlène Laffond, Julien

Lamiroy, Louis Lemonnier, Tianyi Li, Quan Long, Fatima-Zahra Merimi, Octave Mestoudjian, Ramdane

Mouloua, and Sunheang Ty. Thanks also go to the staff of Institut Henri Poincaré who helped us with

the organisation of the conference. Finally, we thank the QPL steering committee for their support and

we thank all people who have contributed to the success of QPL 2023.

QPL 2023 received (financial) support from Quandela (Diamond Sponsor), Quantinuum (Gold Spon-

sor), The University of Chicago (Silver Sponsor), and Inria (Organisational Support and Funding).

August 2023,

Shane Mansfield, Benoı̂t Valiron, and Vladimir Zamdzhiev
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In this work, we present a generic approach to transform CSS codes by building upon their equiv-
alence to phase-free ZX diagrams. Using the ZX calculus, we demonstrate diagrammatic trans-
formations between encoding maps associated with different codes. As a motivating example, we
give explicit transformations between the Steane code and the quantum Reed-Muller code, since by
switching between these two codes, one can obtain a fault-tolerant universal gate set. To this end, we
propose a bidirectional rewrite rule to find a (not necessarily transversal) physical implementation
for any logical ZX diagram in any CSS code.

We then focus on two code transformation techniques: code morphing, a procedure that trans-
forms a code while retaining its fault-tolerant gates, and gauge fixing, where complimentary codes
can be obtained from a common subsystem code (e.g., the Steane and the quantum Reed-Muller
codes from the J15,1,3,3K code). We provide explicit graphical derivations for these techniques
and show how ZX and graphical encoder maps relate several equivalent perspectives on these code
transforming operations.

1 Introduction

Quantum computation has demonstrated its potential in speeding up large-scale computational tasks [3,
68] and revolutionizing multidisciplinary fields such as drug discovery [11], climate prediction [60],
chemistry simulation [47], and the quantum internet [25]. However, in a quantum system, qubits are
sensitive to interference and information becomes degraded [50]. To this end, quantum error correc-
tion [55, 57] and fault tolerance [33, 41] have been developed to achieve large-scale universal quantum
computation [34].

Stabilizer theory [32] is a mathematical framework to describe and analyze properties of quantum
error-correcting codes (QECC). It is based on the concept of stabilizer groups, which are groups of Pauli
operators whose joint +1 eigenspace corresponds to the code space. Stabilizer codes are a specific type
of QECC whose encoder can be efficiently simulated [1, 31]. As a family of stabilizer codes, Calderbank-
Shor-Steane (CSS) codes permit simple code constructions from classical codes [9, 10, 57, 58].

As a language for rigorous diagrammatic reasoning of quantum computation, the ZX calculus con-
sists of ZX diagrams and a set of rewrite rules [16, 66]. It has been used to relate stabilizer theory to
graphical normal forms: notably, efficient axiomatization of the stabilizer fragments for qubits [4, 36, 49],
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2 Graphical CSS Code Transformation Using ZX Calculus

qutrits [61, 65], and prime-dimensional qudits [8]. This has enabled various applications, such as
measurement-based quantum computation [49, 56], quantum circuit optimization [19, 30] and verifi-
cation [46], as well as classical simulation [14, 40]. Beyond these, ZX-calculus has been applied to
verify QECC [23, 26], represent Clifford encoders [38], as well as study various QECC such as tripar-
tite coherent parity check codes [12, 13] and surface codes [27, 28, 29, 54]. Specific to CSS codes,
ZX-calculus has been used to visualize their encoders [39], code maps and code surgeries [22], their
correspondence to affine Lagrangian relations [20], and their constructions in high-dimensional quantum
systems [21].

In this paper, we seek to answer some overarching questions about QECC constructions and fault-
tolerant implementations. We focus on CSS codes and leverage the direct correspondence between
phase-free ZX diagrams and CSS code encoders [39]. Given an arbitrary CSS code, based on its normal
form, we propose a bidirectional rewrite rule to find a (not necessarily transversal) physical implemen-
tation for any logical ZX diagram. Furthermore, we demonstrate diagrammatic transformations between
encoding maps associated with different codes. Here, we focus on two code transformation techniques:
code morphing, a procedure that transforms a code while retaining its fault-tolerant gates [62], and gauge
fixing, where complimentary codes (such as the Steane and the quantum Reed-Muller codes) can be ob-
tained from a common subsystem code [2, 51, 53, 64]. We provide explicit graphical derivations for
these techniques and show how ZX and graphical encoder maps relate several equivalent perspectives on
these code transforming operations.

The rest of this paper is organized as follows. In Sec. 2, we introduce notions and techniques used
to graphically transform different CSS codes using the ZX calculus. In Sec. 3, we generalize the ZX
normal form for CSS stabilizer codes to CSS subsystem codes, and provide generic bidirectional rewrite
rules for any CSS encoder. In Sec. 4, we provide explicit graphical derivations for morphing the Steane
and the quantum Reed-Muller codes. In Sec. 5, we focus on the switching protocol between these two
codes. Through ZX calculus, we provide a graphical interpretation of this protocol as gauge-fixing the
J15,1,3,3K subsystem code, followed by syndrome-determined recovery operations. We conclude with
Sec. 6.

2 Preliminaries

We start with some definitions. The Pauli matrices are 2× 2 unitary operators acting on a single qubit.
Let i be the imaginary unit.

I =
[

1 0
0 1

]
, X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y = iXZ =

[
0 −i
i 0

]
.

Let P1 be the single-qubit Pauli group, P1 =
〈
i,X ,Z

〉
, I,Y ∈ P1.

Definition 2.1. Let U ∈ U(2). In a system over n qubits, 1≤ i≤ n,

Ui = I⊗ . . .⊗ I⊗U⊗ I⊗ . . .⊗ I

denotes U acting on the i-th qubit, and identity on all other qubits.

Let Pn be the n-qubit Pauli group. It consists of all tensor products of single-qubit Pauli operators.

Pn =
〈
i,X1,Z1, . . . ,Xn,Zn

〉
.
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The stabilizer formalism is a mathematical framework to describe and analyze the properties of
certain QECC, called stabilizer codes [32, 33]. Consider n qubits and let m≤ n. A stabilizer group S =〈
S1, . . . ,Sm

〉
is an Abelian subgroup of Pn that does not contain −I. The codespace of the corresponding

stabilizer code, C, is the joint +1 eigenspace of S, i.e.,

C = {|ψ〉 ∈ C2n
; S|ψ〉= |ψ〉,∀S ∈ S}.

The number of encoded qubits in a stabilizer code is k = n−m, where m is the number of independent
stabilizer generators [32]. Moreover, we can define the centralizer of S as

N (S) = {U ∈ Pn; [U,S] = 0,∀S ∈ S}.

One can check thatN (S) is a subgroup of Pn and S ⊂N (S). We remark that the notions of normal-
izer and centralizer coincide for any stabilizer group. In what follows, we will use them interchangeably.
As we will see later, N (S) provides an algebraic structure for the subsystem codes. The code distance,
d, of a stabilizer code is the minimal weight of operators in N (S)/〈iI〉 that is not in S. We summarize
the properties of a stabilizer code with the shorthand Jn,k,dK.

Finally, we introduce some notation for subsets of n-qubit Pauli operators, which will prove useful
for defining CSS codes.

Definition 2.2. Let M be an m× n binary matrix and P ∈ P1/〈iI〉. In the stabilizer formalism, M is
called the stabilizer matrix, and MP defines m P-type stabilizer generators.

MP :=

{
n⊗

j=1

P[M]i j ; 1≤ i≤ m

}
.

CSS codes are QECC whose stabilizers are defined by two orthogonal binary matrices G and H
[9, 57]:

S = 〈GX ,HZ〉, GHᵀ = 0,

Hᵀ is the transpose of H. This means that the stabilizer generators of a CSS code can be divided into two
types: X-type and Z-type. For example, the J7,1,3K Steane code [57] in Fig. 1a is specified by

G = H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1


3×7

. (1)

Accordingly, the X-type and Z-type stabilizers are defined as

SX
1 = X1X3X5X7, SX

2 = X2X3X6X7, SX
3 = X4X5X6X7, SZ

1 = Z1Z3Z5Z7, SZ
2 = Z2Z3Z6Z7, SZ

3 = Z4Z5Z6Z7.

The logical operators X and Z are defined as

X = X1X4X5 and Z = Z1Z4Z5. (2)

In Sec. 2.1, we define CSS subsystem codes. In Sec. 2.2, we define several CSS codes that will be
used in subsequent sections. In Sec. 2.3, we introduce the basics of the ZX calculus and the phase-free
ZX normal forms.
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2.1 CSS Subsystem Codes

Subsystem codes [43, 52] are QECC where some of the logical qubits are not used for information
storage and processing. These logical qubits are called gauge qubits. By fixing gauge qubits to some
specific states, the same subsystem code may exhibit different properties, for instance, having different
sets of transversal gates [7, 44, 45, 51, 67]. This provides a tool to circumvent restrictions on transversal
gates such as the Eastin-Knill theorem [24].

Based on the construction proposed in [52], we describe a subsystem code using the stabilizer for-
malism.

Definition 2.3. Given a stabilizer group S, a gauge group G is a normal subgroup of N (S), such that
S ⊂ G and that G/S contains anticommuting Pauli pairs. In other words, one can write

S =
〈
S1, . . . ,Sm

〉
, G =

〈
S1, . . . ,Sm,gX

1 ,g
Z
1 , . . . ,g

X
r ,g

Z
r
〉
, 1≤ m+ r ≤ n.

(S,G) defines an Jn,k,r,dK subsystem code where n = m+ k+ r. The logical operators are elements of
the quotient group L=N (S)/G.

Under this construction, n physical qubits are used to encode k logical qubits with r gauge qubits.
Alternatively, we can think of the gauge group G as partitioning the code space C into two subsystems:
C =A⊗B. Logical information is encoded in A and L serves as the group of logical operations. Gauge
operators from G act trivially on subsystem A, while operators from L act trivially on subsystem B.
Therefore, two states ρA⊗ρB and ρ ′A⊗ρ ′B are considered equivalent if ρA = ρ ′A, regardless of the
states ρB and ρ ′B. When r = 0, G = S. In that case, an Jn,k,0,dK subsystem code is essentially an
Jn,k,dK stabilizer code.

CSS subsystem codes are subsystem codes whose stabilizer generators can be divided into X-type
and Z-type operators. In what follows, we provide an example to illustrate their construction.

2.2 Some Interesting CSS Codes

We start by defining the stabilizer groups for the J7,1,3K Steane code, the J15,1,3K extended Steane
code [2], and the J15,1,3K quantum Reed-Muller code [42]. They are derived from the family of J2m−
1,1,3K quantum Reed-Muller codes, with a recursive construction of stabilizer matrices [59]. The Steane
code has transversal logical Clifford operators, and the quantum Reed-Muller code has a transversal
logical T gate. Together these operators form a universal set of fault-tolerant gates. In Sec. 5, the
relations between these codes are studied from a diagrammatic perspective.

For brevity, their corresponding stabilizer groups are denoted as Ssteane, Sex, and Sqrm. As per
Def. 2.2, consider three stabilizer matrices F , H, and J. Note that G is defined in Eq. (1). 0 and 1
denote blocks of 0s’ and 1s’ respectively. Their dimensions can be inferred from the context.

F =

[
G 0 G
0 1 1

]
4×15

, H =
[

G 0
]

3×15 ,

J =

 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0 1


3×15

.

Then, the stabilizer groups are defined as

Ssteane =
〈
GX ,GZ〉, Sex =

〈
FX ,FZ,HX ,HZ〉, Sqrm =

〈
FX ,FZ,HZ,JZ〉. (3)
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Geometrically, one can define Ssteane and Sqrm with the aid of Fig. 1. In Fig. 1a, the Steane code
is visualized on a 2D lattice. Since the Steane code is self-dual, every coloured face corresponds to an
X-type and Z-type stabilizer. In Fig. 1b, the quantum Reed-Muller code is visualized on a 3D lattice.
Every coloured face corresponds to a weight-4 Z-type stabilizer. Every coloured cell corresponds to a
weight-8 X-type and Z-type stabilizer respectively. For the Steane code, the logical operators defined in
Eq. (2) correspond to an edge in the triangle. For the quantum Reed-Muller code, the logical X operator
corresponds to a weight-7 triangular face, and the logical Z operator corresponds to a weight-3 edge of
the entire tetrahedron. An example is shown below.

X = X1X2X3X4X5X6X7 and Z = Z1Z4Z5 (4)

Given such representations, the Steane code and the quantum Reed-Muller code are also special cases
of colour codes [5, 6, 44].

1

2

3

45

6

7

(a) The Steane code as a 2D colour code.

1

2

3

45

6

78

9

10

11
12

13

14

15

(b) The quantum Reed-Muller code as a 3D colour code.

Figure 1: Each vertex represents a physical qubit. Each edge serves as an aid to the eye. They do not imply any
physical interactions or inherent structures.

From Eq. (3), the extended Steane code is self-dual, and its encoded state is characterized by the
lemma below. It shows that Sex and Ssteane are equivalent up to some auxiliary state.

Lemma 2.1 ([2]). Any codeword |ψ〉 of the extended Steane code can be decomposed into a codeword
|φ〉 of the Steane code and a fixed state |η〉. That is,

|ψ〉= |φ〉⊗ |η〉,

where |η〉= 1√
2
(|0〉|0〉+ |1〉|1〉), |0〉 and |1〉 are the logical 0 and 1 encoded in the Steane code.

Since the logical information |φ〉 encoded in the Steane code is not entangled with |η〉, to switch
between the Steane code and the extended Steane code, one may simply add or discard the auxiliary
state |η〉. This property will prove useful in Sec. 5.

Next, we define the J15,1,3,3K CSS subsystem code [64]. As per Def. 2.3, let Ssub and G be its
stabilizer group and gauge group respectively.

Ssub =
〈
FX ,FZ,HZ〉, G =

〈
FX ,FZ,HX ,HZ,JZ〉. (5)

Let Lg = G/S and L=N (S)/G. One can verify that

Lg =
〈
HX ,JZ〉, L=

〈
X ,Z

〉
. (6)

Thus, the CSS subsystem code has one logical qubit and three gauge qubits, and they are acted on by L
and Lg respectively. From Sec. 3 onwards, we call operators in Lg as gauge operators.
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Figure 2: These eight equations suffice to derive all other equalities of linear maps on qubits [63]. k ∈ Z2. αi, βi
and γ are real numbers satisfying the trigonometric relations derived in [18]. Each equation still holds when we
replace all spiders with their corresponding spiders of the opposite colour. Whenever there are any two wires with
... between them, the rule holds when replacing this with any number of wires (i.e., 0 or greater).

Moreover, Ssub can be viewed as the stabilizer group of a J15,4,3K CSS code, with logical operators
L′. This code appears in an intermediary step of the gauge fixing process in Sec. 5.

L′ := Lg∪L=
〈
HX ,JZ,X ,Z

〉
. (7)

2.3 ZX Calculus

The qubit ZX-calculus [15, 16, 17, 66] is a quantum graphical calculus for diagrammatic reasoning of
any qubit quantum computation. Every diagram in the calculus is composed of two types of generators:
Z spiders, which sum over the eigenbasis of the Pauli Z operator:

α..
.

..
.m n := |0〉⊗n〈0|⊗m + eiα |1〉⊗n〈1|⊗m, (8)

and X spiders, which sum over the eigenbasis of the Pauli X operator:

α..
.

..
.m n := |+〉⊗n〈+|⊗m + eiα |−〉⊗n〈−|⊗m. (9)

The ZX-calculus is universal [16] in the sense that any linear map from m qubits to n qubits corre-
sponds exactly to a ZX diagram, by the construction of Eqs. (8) and (9) and the composition of linear
maps.

Furthermore, the ZX-calculus is complete [35, 37]: Any equality of linear maps on any number
of qubits derivable in the Hilbert space formalism, is derivable using only a finite set of rules in the
calculus. The smallest complete rule set to date [63] is shown in Fig. 2. Some additional rules, despite
being derivable from this rule set, will be convenient to use in this paper. They are summarized in Fig. 3.

When a spider has phase zero, we omit its phase in the diagram, as shown below. A ZX diagram is
phase-free if all of its spiders have zero phases. For more discussions on phase-free ZX diagrams, we
refer readers to consult [39].

... 0:=
... :=

...
...

...
...

...
...0
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Due to the universality of the ZX calculus, quantum error-correcting code encoders, as linear isome-
tries, can be drawn as ZX diagrams [38]. Moreover, the encoder for a CSS code corresponds exactly to
the phase-free ZX (and XZ) normal form [39].
Definition 2.4. For a CSS stabilizer code defined by S, let

{
SX

i ;1≤ i≤ m
}
⊂ S be the X-type stabilizer

generators and
{

X j;1≤ j ≤ k
}

be the logical X operators, m+ k < n. Its ZX normal form can be found
via the following steps:

(a) For each physical qubit, introduce an X spider.

(b) For each X-type stabilizer generator SX
i and logical operator X j, introduce a Z spider and connect

it to all X spiders where this operator has support.

(c) Give each X spider an output wire.

(d) For each Z spider representing X j, give it an input wire.
As an example, the ZX normal form for the Steane code is drawn in Fig. 4. The XZ normal form can

be constructed based on Z-type stabilizer generators and logical Z operators by inverting the roles of X
and Z spiders in the above procedure. In [39], Kissinger gave an algorithm to rewrite any phase-free ZX
diagram into both the ZX and XZ normal forms, and pointed out that it is sufficient to represent a CSS
code encoder using either one of the forms.

...
... = ...

...

(Hopf)

(Non-destructive measurement [39])

kπ kπ

kπ =
√

2

(π-copy’)

kπ

kπ

(X⊗X⊗ . . .⊗X Measurement) (Z⊗Z⊗ . . .⊗Z Measurement)

...
...

Figure 3: Some other useful rewrite rules, each derivable from the rules in Figure 2. k ∈ Z2. Each equation still
holds when we interchange X and Z spiders.

1

2

3

4
5

6

7
=

1

2

3

4

5

6

7

Figure 4: The Steane code encoder in the ZX normal form.

3 Graphical Construction of CSS Encoders

3.1 ZX Normal Forms for CSS Subsystem Codes

We generalize the ZX normal form for CSS stabilizer codes to CSS subsystem codes as follows.
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Definition 3.1. For an Jn,k,r,dK CSS subsystem code defined by (S,G), let
{

SX
i ;1≤ i≤m

}
be the X-type

stabilizer generators,
{

LX
gt

;1≤ t ≤ r
}

be the X-type gauge operators, and
{

X j;1≤ j ≤ k
}

be the logical
X operators, m+ k+ r < n. Its ZX normal form can be found via the following steps:

(a) For each physical qubit, introduce an X spider.

(b) For each stabilizer generator SX
i , logical operator X j and gauge operator LX

gt
, introduce a Z spider

and connect it to all X spiders where this operator has support.

(c) Give each X spider an output wire.

(d) For each Z spider representing X j, give it an input wire.

(e) For all Z spiders representing LX
gt

, attach to them a joint arbitrary input state (i.e., a density
operator ρ).

Similar to CSS stabilizer codes, CSS subsystem codes also have an equivalent XZ normal form,
which can be found by inverting the role of Z and X in the above procedure.

For n > 3, below we exemplify the ZX normal form for an Jn,1,2,dK CSS subsystem code with
three X-type stabilizers generators

{
SX

1,S
X
2,S

X
3
}

, two X-type gauge operators
{

LX
g1
,LX

g2

}
, and one logical

operator
{

X
}

. For simplicity, we substitute wires connecting Z and X spiders by .... The detailed
connectivities are omitted here, but they should be clear following step (b) in Def. 3.1. This notation will
be used in the remainder of this paper.

1LX
g2

LX
g1

2

3

n

...
SX

2 ...

X̄ ...
SX

1 ...

...

...ρ

SX
3 ...

.

3.2 Pushing through the Encoder

For any Jn,k,dK CSS code, its encoder map E is of the form:

k
{

E
...

...

}
n.

Definition 3.2. Let Xi and Zi be the X and Z operators acting on the i-th logical qubit. Let Xi and Zi be
the physical implementation of Xi and Zi respectively. Diagrammatically, they can be represented as

=EX1 E X1
=EZ1 E Z1

and .
...

...
...

...
...

...
...

...
...

...
...

...

In other words, pushing Xi (or Zi) through E yields Xi (orZi). Using ZX rewrite rules along with the
ZX (or XZ) normal form, we can prove the following lemma.



J. Huang, S. M. Li, L. Yeh, A. Kissinger, M. Mosca, M. Vasmer 9

Lemma 3.1. For any CSS code, all Xi and Zi are implementable by multiple single-qubit Pauli operators.
In other words, all CSS codes have transversal Xi and Zi.

Proof. Consider an arbitrary CSS code. Without loss of generality, represent its encoder E in the ZX
normal form following Def. 2.4. Then proceed by applying the π-copy’ rule on every Xi (the X spider
with a phase π on the left-hand side of the encoder E).

Below we illustrate the proof using the J4,2,2K code as an example.

Example 3.1. For the J4,2,2K code, X1 = X1X2.

1

2

3

4

1̄

2̄ (π-copy’)
=======

(Def. 2.4)
======E

π π

1

2

3

4

1̄

2̄

π
π (fusion)

======

1

2

3

4

1̄

2̄

π

π

E

π

π

E :=X1

π

π

1

2

3

4

1̄

2̄ =: E X1
(fusion)
======

(Def. 2.4)
====== .

Beyond just X or Z spiders, one can push any ZX diagram acting on the logical qubits through the
encoder. Such pushing is bidirectional, and the left-to-right direction is interpreted as finding a physical
implementation for a given logical operator.

Proposition 3.1. Let E be the encoder of a CSS code. For any ZX diagram L on the left-hand side of E,
one can write down a corresponding ZX diagram P on the right-hand side of E, such that EL = PE. In
other words, P is a valid physical implementation of L for that CSS code.

Proof. We proceed as follows. First, unfuse all spiders on the logical qubit wires of L, whenever they
are not phase-free or have more than one external wire:

=α

α...
...

=α

...
external
wires

external
wires

α

...

or
.

For each X (or Z) spider on the logical qubit wire, rewriting E to be in ZX (or XZ) normal form and
applying the strong complementarity (sc) rule yields:

E E=...
......

... E E=...
......

...or
.

On the left-hand side, a phase-free X (or Z) spider acts on the i-th logical qubit; on the right-hand side,
phase-free X (or Z) spiders act on all physical qubits wherever X i (or Zi) has support. Therefore, any
type of L can be pushed through E, resulting in a diagram P which satisfies EL = PE.

In [26], it was proved that a physical implementation P of a logical operator L satisfies L = E†PE.
This is implied by EL = PE as E†E = I.
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4 Graphical Morphing of CSS Codes

One way to transform CSS codes is known as code morphing. It provides a systematic framework to
construct new codes from an existing code while preserving the number of logical qubits in the morphed
code. Here, we present this procedure through the rewrites of the encoder diagram using the ZX calculus.
Let us start by revisiting the code morphing definition in [62].
Definition 4.1. Let S be a stabilizer group and C be its joint +1 eigenspace. C is called the parent code.
Let Q denote the set of physical qubits of C and R ⊆ Q. Then S(R) is a subgroup of S generated by all
stabilizers of S that are fully supported on R. Let C(R) be the joint +1 eigenspace of S(R), and C(R)
is called the child code. Given the parent code encoder EC , concatenate it with the inverse of the child
code encoder E†

C(R). This gives the morphed code C\R.
Fig. 5 provides two equivalent interpretations for the code morphing process. In Fig. 5a, Def. 4.1

is depicted by the circuit diagram. Since EC(R) is an isometry, E†
C(R)EC(R) = I. By construction, the

equation shown in Fig. 5a holds [62]. Moreover, the parameters of C = Jn,k,dK, C(R) = Jn1,k1,d1K, and
C\R = Jn2,k2,d2K are characterized below. Let m,m1,m2 be the number of stabilizer generators for C,
C(R), and C\R respectively. Then

n2 = n−n1 + k1, k2 = k, m2 = (n− k)− (n1− k1) = m−m1, d1,d2 ∈ N.

Fig. 5b provides a concrete example of applying Def. 4.1 to the J7,1,3K Steane code, where S =
{1,2,3,4,5,6,7} and R = {2,3,6,7}. As a result, the J5,1,2K code is morphed from the parent code
along with the J4,2,2K child code. This morphed code inherits a fault-tolerant implementation of the
Clifford group from the J7,1,3K code, which has a transversal implementation of the logical Clifford
operators. This morphing process is represented in the ZX diagram by cutting the edges labelled by 1
and 2 adjacent to the X spider. This is equivalent to concatenating the ZX diagram of E†

J4,2,2K in Fig. 5a.

EC

EC(R)

... ...

...
... E†

C(R)
...

=
EC\R

... ...

...

(a) Code morphing in the circuit diagram

1

2

3

4

5

6

7

(id)
======
(fusion)

1

2

1

2

3

4

5
6

7

EC

1

2

3

4

5

6

7

EC\R

CUT−−−→

1

2

EC\R EC(R)EC(R)

(b) Code morphing of the Steane code in the ZX diagram

Figure 5: Code morphing can be visualized using both circuit and ZX diagrams. In Fig. 5a, code morphing is
viewed as a concatenation of the parent code encoder EC and the inverse of the child code encoder E†

C(R). In
Fig. 5b, the encoder EC of the Steane code is represented in the ZX normal form. As described in Proc. 4.1, by
applying ZX rules (id) and (fusion) in Fig. 2, we can perform code morphing by bipartitioning it into the encoder
EC\R of the morphed code C\R = J5,1,2K, and the encoder EC(R) of the child code C(R) = J4,2,2K.
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Next, we generalize the notion of code morphing and show how ZX calculus could be used to study
these relations between the encoders of different CSS codes. More precisely, we provide an algorithm to
morph a new CSS code from an existing CSS code.

Procedure 4.1. Given a parent code C and a child code C(R) satisfying Def. 4.1, construct the encoder
of C in the ZX normal form. Then the code morphing proceeds as follows:

(a) Unfuse every Z spider which is supported on c qubits within R and f qubits outside R, c 6= 0, f 6= 0.

(b) Add an identity X spider between each pair of Z spiders being unfused in step (a).

(c) Cut the edge between every identity X spider and the Z spiders supported on the f qubits in R.

It follows that the subdiagram containing R corresponds to the ZX normal form of EC(R). It has the
same number of X spiders as R, so n1 = |R|. Suppose that there are h Z spiders being unfused. Then
h must be bounded by the number of Z spiders in the ZX normal form of EC . As each spider unfusion
introduces a logical qubit to C(R), k1 = h. On the other hand, the complement subdiagram contains
n− n1 + k1 X spiders as each edge cut introduces a new X spider into the complement subdiagram. It
also contains k logical qubits as the input edges in the ZX normal form of EC are invariant throughout the
spider-unfusing and edge-cutting process. This gives the ZX normal form for the encoder of the morphed
code C\R = Jn2,k2,d2K, where n2 = n−n1 + k1, k2 = k, d2 ∈ N. As a result, the ZX normal form of EC
is decomposed into the ZX normal forms of EC(R) and EC\R respectively.

As the XZ and ZX normal forms are equivalent for CSS codes, Proc. 4.1 can be carried out for the
XZ normal form by inverting the roles of Z and X at each step.

Here, we exemplify the application of Proc. 4.1 by morphing two simple CSS codes. Unlike Fig. 5b,
Ex. 4.1 chooses a different subset of qubits, R = {4,5,6,7}, to obtain the J6,1,1K morphed code. In
Ex. 4.2, we visualize the J10,1,2K code morphing from the J15,1,3K quantum Reed-Muller code. The
J10,1,2K code is interesting because it inherits a fault-tolerant implementation of the logical T gate from
its parent code, which has a transversal implementation of the logical T gate.

Example 4.1. Let the parent code C be the Steane code and the child code be C(R) = J4,3,1K. By
Proc. 4.1, we obtain the morphed code C\R = J6,1,1K. Note that for C(R), there is one X-type stabilizer
generator and no Z-type stabilizer generator. This means that C(R) cannot detect a single-qubit X error,
so it has a distance of 1. In C\R, the physical qubit labelled 3 is not protected by any X-type stabilizer.
Therefore, C\R is of distance 1.

1

2

3

45

6

7
(id)

======
(fusion)

EC(R)EC\REC

CUT−−−→
1

2

3

45

6

7

1

2

3 1

2

3

45

6

7

1

2

3

EC\R EC(R)

Example 4.2. Let the parent code C be the quantum Reed-Muller and the child code be C(R) = J8,3,2K.
By Proc. 4.1, we obtain the morphed code C\R = J10,1,2K. For brevity, the X spiders representing
physical qubits and the logical qubit wires inputting to the Z spiders are omitted.
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1

2

3

45

6

7

8

9

10

11

12

13

14

15

1

2

3

45

6

7

8

9

10

11

12

13

14

15(id)
======
(fusion)

EC\REC(R)EC

1

2

3

5 Graphical Code Switching of CSS Codes

Another way to transform CSS codes is known as code switching. It is a widely studied technique in
quantum error correction. Codes with complementary fault-tolerant gate sets are switched between each
other to realize a universal set of logical operations. As a case study, we focus on the code switching
protocol between the Steane code and the quantum Reed-Muller code [2, 51, 53]. Since this process is
bidirectional, the reasoning for one direction can be simply adjusted for the opposite direction. Recall in
Lem. 2.1, we showed that the extended Steane code is equivalent to the Steane code up to some auxiliary
state. In what follows, we focus on the backward switching from the quantum Reed-Muller code to the
extended Steane code.

Using the ZX calculus, we provide a graphical interpretation for the backward code switching. More
precisely, it is visualized as gauge-fixing the J15,1,3,3K subsystem code, followed by a sequence of
syndrome-determined recovery operations.

We first characterize the relations between the quantum Reed-Muller code, the extended Steane code,
and the J15,1,3,3K subsystem code. For brevity, we denote these codes as Cqrm, Cex and Csub, and their
respective encoders as Eqrm, Eex, and Esub.

Lemma 5.1. When the three gauge qubits are in the |+++〉 state, Csub is equal to Cex, as shown in
Fig. 6.

Esub

|+〉
|+〉
|+〉 =

{
Gauge qubits

Logical qubit
...

Eex ...

Figure 6: Csub is equivalent to Cex up to a fixed state of gauge qubits.

Proof. According to Def. 2.3, represent Esub in the XZ normal form, with Z-type stabilizer generators
SZ

i , Z-type gauge operators LZ
g j

, and one logical Z operator Z, 1 ≤ i ≤ 7, 1 ≤ j ≤ 3. After applying a
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sequence of rewrite rules, we obtain exactly the XZ normal form for Eex.

1

LZ
g3

LZ
g2

LZ
g1 2

3

7

15

...

SZ
4

...

SZ
2

...
SZ

3
...

Z ...
SZ

1
...

SZ
7

...

SZ
5

...
SZ

6
...

9

10

11

...

...

:= (π-copy)
======

(fusion)
======

|+++〉

1

LZ
g3

LZ
g2

LZ
g1 2

3

7

15

...

SZ
4

...

SZ
2

...
SZ

3
...

Z ...
SZ

1
...

SZ
7

...

SZ
5

...
SZ

6
...

9

10

11

...

...

1

2

3

7

15

...

SZ
4

...

SZ
2

...
SZ

3
...

Z ...
SZ

1
...

SZ
7

...

SZ
5

...
SZ

6
...

9

10

11

...

...

1

2

3

7

15

...

SZ
4

...

SZ
2

...
SZ

3
...

Z ...

SZ
1

...

SZ
7

...

SZ
5

...
SZ

6
...

9

10

11

...

...

.

Alternatively, if one chooses to represent Esub in the ZX normal form, the proof proceeds by applying
the (fusion) rule to the Z spiders and identifying the gauge operators LX

g1
, LX

g2
, LX

g3
of Csub as the stabilizers

SX
5, SX

6, SX
7 of Cex, respectively:

1

LX
g3

LX
g2

LX
g1

2

3

4

5

6

7

14

15

...

SX
4

...

SX
2

...

SX
3

...

X ...

SX
1

...

|+++〉

:=

1

LX
g3

LX
g2

LX
g1

2

3

4

5

6

7

14

15

...

SX
4

...

SX
2

...

SX
3

...

X ...

SX
1

...

(fusion)
======

1

SX
7

SX
6

SX
5 2

3

4

5

6

7

14

15

...

SX
4

...

SX
2

...

SX
3

...

X ...

SX
1

...

.

Corollary 5.1. When the three gauge qubits are in the |000〉 state, Csub is equal to Cqrm.
In [2, 51], code switching is described as a gauge fixing process. Further afield, [64] provides a

generic recipe to gauge-fix a CSS subsystem code. Here, we generalize Lem. 5.1 and describe how to
gauge-fix Csub to Cex using the ZX calculus.
Proposition 5.2. Gauge-fixing Csub in the following steps results in Cex, as shown in Fig. 7.

(a) Measure three X-type gauge operators LX
gi

and obtain the corresponding outcomes k1,k2,k3 ∈ Z2.

(b) When ki = 1, the gauge qubit i has collapsed to the wrong state |−〉. Apply the Z-type recovery
operation LZ

gi
.

2

15

Esub

1

...

3

4

5

6

7

k1π k2π k3π

=

...

2

15

Eex

1

3

7

k1π

k1π

k1π

k1π

k2π

k2π

k2π

k2π

k3π

k3π

k3π

k3π

8

9

10

11
...

...

...
...

Figure 7: Gauge-fixing Csub to Cex in the circuit diagram.
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Proof. By Def. 3.1, construct the ZX normal form of Esub in the blue dashed box of (i). Then the three
gauge operators LX

gi
are measured in step (a). The subsequent equalities follow from Figs. 2 and 3. Next,

we observe that the purple dashed box in (iii) is exactly the encoder of the J15,4,3K stabilizer code. By
Lemma 3.2 in [39], it can be equivalently expressed in the XZ normal form, as in (iv). By Prop. 3.1,
pushing each Z spider with the phase kiπ across EJ15,4,3K results in (v). In step (b), Pauli Z operators are
applied based upon the measurement outcome ki, which corresponds to the recovery operations in the
red dashed box of (v). After that, the gauge qubits of Csub are set to the |+++〉 state. By Lem. 5.1, we
obtain the XZ normal form for Eex, as shown in the orange dashed box of (vi). Therefore, the equation
in Fig. 7 holds.

k1π k3πk2π
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Esub EJ15,4,3K

EJ15,4,3K

(i) (iii)(ii)

(iv) (vi)(v)

EexRecovery operations

We sum up by explaining how to obtain Cex and Cqrm by gauge-fixing Csub. In Prop. 5.2, we showed
that measuring the X-type gauge operators LX

gi
followed by the Z-type recovery operations LZ

gi
is equiva-

lent to adding LX
gi

to the stabilizer group Ssub. This results in the formation of Cex. Analogously, measur-
ing the Z-type gauge operators LZ

gi
followed by the X-type recovery operations LX

gi
is equivalent to adding

LZ
gi

to Ssub. Thus, we obtain Cqrm.
Alternatively, gauge-fixing Csub can be viewed as a way of switching between Cex and Cqrm [2, 53].

As an example, in Fig. 8, we visualize the measurement of LX
g1

:= X1X3X5X7 in order to switch from Cqrm

to Cex. The effect of measuring other X-type gauge operators can be reasoned analogously.
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Figure 8: The switching from Cqrm to Cex provides an alternative interpretation of Prop. 5.2. After measuring LX
g1

,
LZ

g1
is removed from the stabilizer group Sqrm and the recovery operation is performed based on the measurement

syndrome. Note that unrelated X and Z spiders are omitted from the ZX diagrams.

By Def. 3.1, construct the XZ normal form of Eqrm in (i). Then measure LX
g1

and apply a sequence
of rewrite rules to the ZX diagram. In (v), the stabilizer LZ

g1
:= Z2Z3Z10Z11 is removed from the sta-

bilizer group Sqrm. Meanwhile, the recovery operation can be read off from the graphical derivation:
(Z2Z3Z10Z11)

k1 =
(
LZ

g1

)k1 , k1 ∈ Z2.
Overall, ZX visualization provides a deeper understanding of the gauge fixing and code switching

protocols. On top of revealing the relations between different CSS codes’ encoders, it provides a simple
yet rigorous test for various fault-tolerant protocols. Beyond this, it will serve as an intuitive guiding
principle for the implementation of various logical operations.

6 Conclusion

In this paper, we generalize the notions in [39] and describe a normal form for CSS subsystem codes.
Built upon the equivalence between CSS codes and the phase-free ZX diagrams, we provide a bidirec-
tional rewrite rule to establish a correspondence between a logical ZX diagram and its physical imple-
mentation. With these tools in place, we provide a graphical representation of two code transformation
techniques: code morphing, a procedure that transforms a code through unfusing spiders for the stabilizer
generators, and gauge fixing, where different stabilizer codes can be obtained from a common subsystem
code. These explicit graphical derivations show how the ZX calculus and graphical encoder maps relate
several equivalent perspectives on these code transforming operations, allowing potential utilities of ZX
to simplify fault-tolerant protocols and verify their correctness.

Looking ahead, many questions remain. It is still not clear how to present the general code deforma-
tion of CSS codes using phase-free ZX diagrams. Besides, understanding code concatenation through
the lens of ZX calculus may help derive new and better codes. In addition, it would be interesting to look
at other code modification techniques derived from the classical coding theory [48].
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In this paper we develop a graphical calculus to rewrite photonic circuits involving light-
matter interactions and non-linear optical effects. We introduce the infinite ZW calculus,
a graphical language for linear operators on the bosonic Fock space which captures both
linear and non-linear photonic circuits. This calculus is obtained by combining the QPath
calculus, a diagrammatic language for linear optics, and the recently developed qudit ZXW
calculus, a complete axiomatisation of linear maps between qudits. It comes with a “lifting”
theorem allowing to prove equalities between infinite operators by rewriting in the ZXW
calculus. We give a method for representing bosonic and fermionic Hamiltonians in the
infinite ZW calculus. This allows us to derive their exponentials by diagrammatic reasoning.
Examples include phase shifts and beam splitters, as well as non-linear Kerr media and
Jaynes-Cummings light-matter interaction.

1 Introduction

Graphical languages are a powerful tool for understanding, verifying and developing software
for quantum computing. The ZX calculus [12, 18, 50] is a graphical language for qubit quan-
tum computing which is currently used to solve a range of different quantum computing tasks,
including compilation [47], optimization [22, 38], machine learning [48, 54], measurement-based
quantum computing [23, 4], error-correction [37], and also education [16]. It was introduced in
2007 by Coecke and Duncan [13, 14, 15] to model the interaction of complementary observables.
In 2010, Coecke and Kissinger proposed to introduce the W state [24] in the calculus [17] and
showed that rational arithmetic operations had simple graphical representations [19]. Building
on their work, Hadzihasanovic gave the first complete axiomatisation for qubit quantum com-
puting [33], known as the ZW calculus. The completeness of an equational theory is important
as it shows that the language is rich enough to prove all equalities of the underlying linear
maps; therefore, there are ‘no missing rules’. The same techniques were subsequently used to
prove completeness of the ZX calculus [42, 35, 39, 36]. The rewriting power and the ability of
representing sums using W nodes motivated the development of the ZXW calculus, allowing the
first diagrammatic treatment of Hamiltonians and exponentiation [46], as well as integration
and differentiation [54]. A natural generalisation of ZXW to higher dimensions resulted in the
first complete axiomatisation for qudit quantum computing [43].

Graphical languages have only recently been applied to photonic quantum computing. The
ZX calculus is now used to reason about compilation of linear optical circuits, and particularly
its MBQC aspects [56, 21]. It is also used to represent error correction codes for fault-tolerant
quantum computing [5]. These approaches all rely on an encoding of qubits or qubit lattices
on a state of multiple photons. Graphical languages for reasoning about the underlying physics
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of interacting photons have so far been restricted to the study of linear optical processes. The
language of interferometers built from phases and beam splitters is well understood for sin-
gle photons [44, 10, 11]. Different methods can be used to compute the amplitudes of linear
optical circuits with multiple photons [1]. The QPath calculus [21] is a recent graphical ap-
proach to this problem which decomposes circuits into simpler primitive operations. However,
it has a limited rewrite system where diagrams involving multiple photons are split into sums
of terms. Moreover, non-linear optical phenomena appear throughout photonic quantum sci-
ence. Non-linearities are used to construct photon sources by parametric down conversion [32]
or by emission from a 2-level atom in a cavity [49, 55]. They include mixed boson-fermion
systems such as the ones studied in quantum chemistry [27]. They also include non-linear Kerr
media which allow the optical specification of universal quantum gates [3], with recently pro-
posed graphene-based implementations [8]. These non-linear effects rely on different forms of
light-matter interaction. Hence, we need a graphical calculus that could represent interaction
between bosons and fermions.

The semantics of a photonic graphical calculus is based on infinite dimensional Fock space.
However, graphical calculi with infinite dimensional semantics do not have a strong reasoning
system. Even simple equalities, such as the snake equation, are not well-defined. To alleviate
this problem, we truncate the infinite dimensional vector space to finite dimensions for which
we have a complete graphical calculus, i.e. the ZXW calculus. Then we prove a lifting theorem
to show that, under mild conditions, the results derived in this truncated graphical calculus
also hold in infinite dimensional vector space. This idea is similar to that of Gogioso and
Genovese [29, 30, 31] where the transfer theorem from non-standard analysis is used to prove
results about infinite dimensional Hilbert spaces. However, by restricting our attention to states
with finite support and maps preserving this property, our lifting theorem admits a simpler proof
which does not require non-standard analysis.

Our approach of leveraging a finite dimensional calculus has a key advantage over constrain-
ing to solely infinite dimensional formalisms. We can now reason about not only bosons, but also
other finite dimensional systems such as fermions, altogether in the same framework. Hence, we
achieve a unified calculus powerful enough to reason about light-matter interactions.

This paper provides a framework for representing and rewriting quantum optics in the ZXW
calculus. We start by introducing the QPath calculus and the ZXW calculus (Section 2). The
first is a graphical language for linear optics [21], describing the behaviour of bosonic maps in
the category VectN of linear operators on the bosonic Fock space. The second is a complete
axiomatisation J·Kd : ZXWd

∼−→ Vectd of the category of linear maps between qudits [43]. In
Section 3 and Section 4 we present our main contributions: (1) we introduce a more expressive
calculus ZW∞ for the category of linear operators on the Fock space VectN, (2) we give a
truncated interpretation Td : ZW∞ → ZXWd and prove Theorem 4.2 which allows to derive
equalities in ZW∞ by lifting them from ZXWd for ‘big enough’ d, (3) we give an axiomatisation
of ZW∞ for which we prove soundness via the lifting theorem. We end by exploring different
applications of this graphical calculus in the field of non-linear optics (Section 5). We give a
general method for representing quantum optical Hamiltonians in ZW∞, including Kerr media
and Jaynes-Cummings light-matter interaction. Building on [46], we show how to exponentiate
these Hamiltonians using diagrammatic techniques.
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2 Preliminaries

2.1 Fock space

Consider the state space of a single bosonic mode J1K =
⨁︁∞

n=0C. An element in this space is
usually denoted as an infinite sum |a⟩ =

∑︁∞
n=0 an |n⟩. Depending on the chosen boundedness

condition for these sequences, we get different classes of operators acting on J1K. In their work
on the quantum harmonic oscillator, Vicary [52] imposed a strong normalising condition on
sequences, of the form

∑︁
n c

nan < ∞ for any c ∈ C, interpreting
⨁︁

as an infinite biproduct.
The valid maps are those that preserve this normalising condition. They include phases, coherent
states and creation operators. In this paper, we interpret

⨁︁
as an infinite direct sum. The valid

states are sequences with finitely many non-zero terms. This means we do not allow coherent
states in our spaces. The operators that we consider are those that send finite states to finite
states; they form a category VectN.

For a system of n bosonic particles occupying m possible modes, the state space is given by
the Fock space defined as follows.

JmK =
∞⨁︂
n=0

(Cm)⊗̃n ≃ J1K⊗m

where ⊗̃ is the symmetrised tensor product, i.e. the quotient of the tensor product given by
identifying x = x1⊗· · ·⊗xn with y = y1⊗· · ·⊗ yn whenever there is a permutation σ such that
σ(x) = y. The isomorphism JmK ≃ J1K⊗m is given by counting the number of photons occupying
each mode [21, Proposition 3.2]. Let Vect be the symmetric monoidal category of vector spaces
and linear maps with tensor product ⊗. Symmetrised spaces of the form (Cm)⊗̃n are objects of
this category. We define the infinite direct sum

⨁︁∞
n=0An for An ∈ Vect as the set of sequences

(a0, a1, . . . ) with an ∈ An such that an = 0 except for finitely many n. This means we only
allow states |a⟩ =

∑︁k
n=0 an |n⟩ ∈ J1K with a finite number k of particles. We can now build our

base category VectN of linear maps on the Fock space: objects are finite tensor products of
the complex space J1K, morphisms are linear maps f : JmK ≃ (J1K)⊗m → (J1K)⊗k ≃ JkK. Note
that we allow unbounded linear maps as long as their domain and codomain are in the infinite
direct sum. As argued by Vicary [52, Section 6], these are necessary to understand the algebraic
structure of the Fock space.

Note that VectN is not compact closed. In fact, generalising the standard cups and caps
would give a state without a fixed number of particles

∑︁
n |nn⟩ /∈ VectN. VectN admits a dagger

structure only on a subclass of morphisms. Indeed, the valid map ϵ : J1K→ 1, with ϵ |n⟩ = 1 for
all n, gives an invalid state

∑︁∞
n |n⟩ when taking the adjoint. However, the dagger is well-defined

for most morphisms of interest, and these are closed under composition. It is also easy to see
that VectN is enriched in weighted finite sums over the complex numbers. We now consider an
interesting subclass of processes in VectN, the ones that may be performed using linear optics
and creation/annihilation of single particles.

2.2 Bosonic nodes

Bosonic nodes, or split and merge maps, are linear operators on the Fock space exhibiting a
bialgebra structure, equivalent to the binomial bialgebra on polynomials [40, 25]. In categorical
quantum mechanics, they were first studied by Vicary and Fiore [52, 26] who characterised
the map b that copies coherent states of the form |α⟩ =

∑︁
n

αn
√
n!
|n⟩, in the sense that b |α⟩ =
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|α⟩ ⊗ |α⟩. Coherent states are usually defined as eigenvectors of the bosonic creation operator
a† |α⟩ = α |α⟩. They account for Poissonian distributions of photons from coherent light sources
such as lasers [28]. The split map was later studied as an anyonic generalisation of the W algebra
in [34] and as a generator for Feynman diagrams in [45].

The QPath calculus [21] is graphical calculus for linear optics based on the bosonic split and
merge maps. A wire in the QPath calculus corresponds to a bosonic mode and is thus interpreted
as the space J1K with basis given by occupation numbers |n⟩ for n ∈ N. The interpretation of m
wires is obtained using the tensor product JmK ≃ J1K⊗m. The main generator of QPath is the
bosonic split map, defined as follows:

J·K↦−→ |n⟩ ↦→
n∑︂

k=0

(︃
n

k

)︃ 1
2

|k⟩ |n− k⟩

Its adjoint or dagger called merge, is also a generator:

J·K↦−→ |n,m⟩ ↦→
(︃
n + m

n

)︃ 1
2

|n + m⟩

We also have endomorphisms for any r ∈ C:

r
J·K↦−→ Z(r⃗) : |n⟩ ↦→ rn |n⟩

or phase shifts when r = eiθ, then the symmetry, or swap:

J·K↦−→ |n,m⟩ ↦→ |m,n⟩
and, n-photon states and effects:

n J·K↦−→ |n⟩
n J·K↦−→ ⟨n|

All the maps defined above send basis states to finite sums of basis states and are therefore valid
morphisms in VectN. These generators satisfy the axioms of a bialgebra with endomorphisms,
along with additional rules involving occupied photon states [21].

2.3 ZXW calculus

The ZXW calculus is a complete diagrammatic language for qudit quantum computing [43].
Formally, let Vectd be the symmetric monoidal category with objects tensor products of qudits
Cd and morphisms given by linear maps between them. Completeness means that the inter-
pretation J·Kd : ZXWd → Vectd is an isomorphism. We describe the generators of the ZXW
calculus along with their interpretation. Throughout the section, we fix a natural number d and

use the arbitrary complex vectors −→a = (a1, . . . , ad−1) and
−→
b = (b1, . . . , bd−1). Note that here

we made a slight change for the presentation of the qudit ZXW calculus in comparison to the
version of [43]: we use the X spider instead of the Hadamard node as a generator now, so the
definition of the former becomes a rule and the rule for the latter turns into a definition. Also
we removed the (H1) rule of [43] from the rule set since we find it can be derived from other
rules now.

2.3.1 Generators of ZXW

The generators of ZXWd together with their standard interpretation J·Kd are:
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� The Z spider,

mn
...

...−→a
J·Kd↦−→

d−1∑︂
j=0

aj |j⟩⊗m ⟨j|⊗n , where a0 = 1.

� The X spider, with parameter j which can be taken modulo d,

mn
...

...Kj

J·Kd↦−→
∑︂

0≤i1,··· ,im,j1,··· ,jn≤d−1
i1+···+im+j≡j1+···+jn (mod d)

|i1, · · · , im⟩ ⟨j1, · · · , jn| ,

� The W node,

...
J·Kd↦−→ |0 · · · 0⟩ ⟨0|+

d−1∑︂
i=1

(|i0 · · · 00⟩+ · · ·+ |00 · · · 0i⟩) ⟨i|

� The swap,

J·Kd↦−→
d−1∑︂
i,j=0

|ji⟩ ⟨ij| .

2.3.2 Notations

For convenience, we introduce the following notation which will be used throughout the paper:

� The phase depicted by a green circle spider can be defined using the Z box:

:=−→α ei
−→α

where −→α = (α1, · · · , αd−1), ei
−→α = (eiα1 , · · · , eiαd−1), and αi ∈ [0, 2π).

� The cup and cap, i.e. the qudit Bell state and its transpose, are defined as follows:

:= := (S3)

� We use a yellow D box to denote the dualiser, with the given interpretation:

D :=
J·Kd↦−→

d-1∑︂
i=0

|i⟩ ⟨d− i| . (Du)

� It is useful to define the yellow triangle in terms of the W node and green spider:

:=
J·Kd↦−→ Id +

d-1∑︂
i=1

|0⟩ ⟨i| (YT)

Furthermore, some additional notations are presented in Appendix A.1.
We refer to Appendix A.2 for the rules of the calculus.

3 Infinite ZW calculus

We introduce the graphical language ZW∞ for reasoning about linear operators on the Fock
space. By setting d = ∞, we generalise the qudit interpretation of each ZXW generator to
obtain novel maps on the Fock space. Combining this with the QPath calculus, we obtain a
(partial) axiomatisation of linear operators in VectN.
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3.1 Generators

The Z spider may be interpreted as the following operator in VectN:

mn
...

...−→a
J·K↦−→

∞∑︂
i=0

ai |i⟩⊗m ⟨i|⊗n , where n > 0,−→a = (a1, · · · , ak, · · · ), a0 := 1. (4)

Note that we require the number of inputs to be greater than 0. In fact, the unit Z spider∑︁∞
n=0 |n⟩ does not have finite support and is thus not allowed in ZW∞. In particular, we do

not have cups because these are defined in terms of unit Z spiders. However, we do have caps
and counit Z spiders since these map finite states to finite states. Moreover, Z boxes where

n = 0 and
−→
b has a finite support are allowed as generators, that is, for some finite N ∈ N:

m
...

−→
b

J·K↦−→
N∑︂
i=0

ai |i⟩⊗m , where n > 0,−→a = (a1, · · · , aN , 0, · · · ), a0 := 1. (6)

Note that QPath endomorphisms are Z boxes of the form:

r = r
−→
N

where r
−→
N = (r1, r2, · · · , rk, · · · ). The W node is straightforwardly generalised to infinite di-

mensions:
...

J·K↦−→ |0 · · · 0⟩ ⟨0|+
∞∑︂
i=1

(|i0 · · · 0⟩+ · · ·+ |0 · · · 0i⟩) ⟨i|

We also take the dagger of W as a generator. One may check that both maps preserve finite
states. Let us now consider the X spider from the ZXW calculus. Its action on the basis in
ZXWd is given by addition modulo d. We can consider addition in N as a natural generalisation
for the X spider in the Fock space. However, this does not yield a group structure on N and
the Frobenius law fails in infinite dimensions. Moreover, we already have a node that performs
addition of natural numbers, the split map:

J·K↦−→
∞∑︂
n=0

n∑︂
k=0

(︃
n

k

)︃ 1
2

|k, n− k⟩ ⟨n|

We also take merge as a generator of ZW∞. Instead of a Frobenius structure we get a bialgebra
between merge and split. The binomial coefficients in fact ensure that the bialgebra law holds.
However, this also means that the interaction of the split map with Z spiders is a bialgebra only

up to coefficients. We also take the n-particle creation
n

and annihilation
n

as generators
of ZW∞.

3.2 Axioms

The axioms of ZW∞ are obtained by merging the rules of QPath and those of ZXW governing
the Z and W nodes. We only give a partial axiomatisation with the rules that we use in Section 5.
The Z spider satisfies the axioms of a non-unital special Frobenius algebra, an algebraic structure
which characterises bases in infinite dimensional vector spaces [2]. The rules of the W algebra
as well as Axioms (Bsj∞) and (K0∞) are directly lifted from qudit ZXW. Bosonic nodes form
a bialgebra with a semiring of endomorphisms. All the rules of QPath from [21] hold in ZW∞,
here we only give the ones we use. We moreover give a set of interaction rules relating Z, W
and bosonic nodes. Rule (W1∞) shows the behaviour of the W algebra. (bW1) relates the split
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map and W states and replaces the “branching” rule of QPath. The bialgebra law between
bosonic nodes and Z spiders only holds up to factorial coefficients (bZBA). It holds on the nose
if the binomial coefficients are removed from the definition of bosonic nodes. However then,
the bialgebra law between split and merge would fail. We also have a new version of the ZXW
trialgebra law (bTA) with bosonic nodes replacing X spiders, proved in Proposition 4.4.

Non-unital Frobenius algebra

=

−→a

−→
b

−→
ab

...

...

...
...

...
...

...

...
· · · = −→

ab

...
...

...
...
...

... (S1∞)

Rules generalised from qudit ZW

= (BZW∞)

=−→a
−→a

−→a
(Pcy∞)

= −→a +
−→
b

−→a

−→
b

(AD∞)

= (Sym∞)

= (Aso∞)

=
...

...
...

... (WW∞)

Rules from QPath

= (bSym)

= (bAso)

= (bBA)

=

0

(bId)

Interaction rules

√︁−→
N !

√︁−→
N !

1√−→
N !

= (bZBA)

= (bTA)

=
1 1

(bW1)

=
n

n

n (K0∞)

=

n
0 n

(W1∞)

= en
n

(Bsj∞)

where en = (0, . . . , 1⏞ ⏟⏟ ⏞
n

, 0, . . . )
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4 Photonics in ZXW

In this section, we give a method for proving novel equations in ZW∞ by rewriting in the ZXW
calculus. We give a truncated interpretation Td : ZW∞ → ZXWd parametrised by the qudit
dimension d. We prove the lifting theorem: any equality in the Fock space of the form JDK = JD′K
can be proved by showing that there exists some N ∈ N such that Td(D)PN = Td(D′)PN for
any d > N , where PN denotes the projector on the (d−N)-particle sector of the input qudits.
We use this theorem to give diagrammatic proofs of soundness for the axioms of the infinite ZW
calculus.

4.1 Truncation

Truncation consists in giving a finite dimensional description of operators on an infinite-dimen-
sional space. We define this as a mapping Td : ZW∞ → ZXWd. We introduce a useful
component in ZXWd representing the projector on the d-particle sector of a pair of qudits:

:= -
−→
N
d

−→
-1

J·Kd↦−−→
d−1∑︂

a1,a2=0
a1+a2<d

|a1, a2⟩ ⟨a1, a2| (25)

where
−→
N = (1, 2 · · · , d − 1),

−→−1 = (−1, · · · , −1), and each operation is defined elementwise.
We can use this to represent bosonic nodes in ZXW. In fact, the X spider performs addition
of basis states modulo d, and this agrees with standard addition whenever the input is in the
d-particle sector. We can thus model the truncated split map as an X spider with a projector
and Z boxes for the binomial coefficients.
The d-truncation Td : ZW∞ → ZXWd is defined on generators as follows:

1. Z spiders and W nodes are mapped to their qudit versions in ZXWd.

2. The split map has the following truncation:

Td↦−→
1√−→
N !

1√−→
N !

√︁−→
N !

J·Kd↦−−→
d−1∑︂
n=0

n∑︂
k=0

(︃
n

k

)︃ 1
2

|k, n− k⟩ ⟨n| (26)

3. The merge map has the following truncation:

Td↦−→
1√−→
N !

1√−→
N ! √︁−→

N !
J·Kd↦−−→

d−1∑︂
n,m=0n+m<d

(︃
n + m

n

)︃ 1
2

|n + m⟩ ⟨n,m|

(27)

4. Particle creations and annihilations correspond to unit X spiders.

n
Td↦−→ K−n =

Kn n
= Kn

Td↦−→
K−n

(28)

This mapping respects all the axioms of the infinite ZW calculus, except for the bialgebra law
between split and merge maps (bBA). This rule only holds in ZXWd up to a projector which
ensures the total number of particles does not exceed d. That is, in the truncated interpretation
we have:

=
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Starting from the projector on 2 modes, we may construct the d-particle projector on m modes
recursively:

...
...m

...
...= m-1

...

One may show that the following rewrites are valid in ZXWd for any d.

= (PP)

=
...

...
...

...
...

...
...

...

(PZ)

= (PW)

= (PS)

=
Kj Kj

1⃗j

(PK)

where 1⃗j = (1, . . . , 1⏞ ⏟⏟ ⏞
d−j

, 0, . . . , 0)

In fact projectors commute with any map that preserves the number of photons. Using
particle creations and annihilations we may also construct the projector on the n-particle sector
for n < d as follows:

d−n d−n

...
...

...
... :=

n

(34)

4.2 Lifting

We now prove our main result: equalities in the infinite dimensional calculus may be derived by
rewriting in the truncated interpretation. In order to relate the infinite and truncated interpreta-
tions, we use two ingredients. First, the embedding E : Vectd → VectN which views any linear
map between qudits as a map on the Fock space, acting on the first d dimensions of each mode.
Formally, we have E(f) |x1, . . . , xm⟩ = f |x1, . . . , xm⟩ whenever xi < d for i = 1, . . . ,m and
E(f) |x1, . . . , xm⟩ = 0 otherwise, for any linear map f on m qudits. It is easy to show that this
embedding is a faithful monoidal functor. Second, we use the projector on the n-particle sector of
the Fock space, i.e. the linear operator Pn : JmK→ JmK such that Pn |x1, . . . , xm⟩ = |x1, . . . , xm⟩
when

∑︁m
i=1 xi < n and Pn |x1, . . . , xm⟩ = 0 otherwise. The following lemma characterises the

infinite interpretation of a diagram in ZW∞ in terms of the truncations.

Lemma 4.1. For any diagram D ∈ ZW∞ and n ∈ N there is d∗ ∈ N such that, whenever
d > d∗, we have:

JDKPn = E(JTd(D)Kd)Pn

Proof. To prove the statement it is sufficient that, given D and n, we can find a “big enough”
dimension d∗, such that JDK |x1, . . . , xm⟩ = E(JT∗(D)Kd∗) |x1, . . . , xm⟩ whenever

∑︁m
i=1 xi < n.

We prove this by induction over the recursive definition of string diagrams. Indeed, a diagram
in ZW∞ may be viewed as a sequence of layers where, in each layer, a single generator appears
tensored by identities. Therefore, it is sufficient to find d∗ given an n for each generating layer.
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Note first that W nodes preserve the total number of photons, similarly for bosonic nodes, as
well as for Z spiders 1 → 1 and identities. Thus, for layers involving these generators, we can
set d∗ = n. The Z spiders with a > 1 output wires (4) can at most multiply the total number
of photons by a, therefore, we can set d∗ = a · n. Finite sequences, i.e. Z spider states (6) only
contribute a finite number of photons t, so we can set d∗ = n + t in this case. Finally, in case
of a photon preparation we can set d∗ = n + 1. Since the dimension remains finite after each
generator, by induction, we can find a finite d∗ for any D and n.

Note that there are potentially smaller values of d∗ for which the statement above holds, as
well as intermediate dimensions that we can assign to the internal wires of D. Finding optimal
values for these dimensions would allow more efficient classical simulation of photonic circuits
by tensor network contraction.

Theorem 4.2 (Lifting). For any D,D′ : m→ m′ ∈ ZW∞ the following are equivalent:

1. In VectN: t

D
...

...

|

=

t

D′...
...

|

2. For any n ∈ N there is a dimension d∗ such that, for all d > d∗, in ZXWd:

...
...

n

Td(D) =
...

...

n

Td(D′)

Proof. First note that JDK = JD′K if and only if JDKPn = JD′KPn for any n ∈ N. By
Lemma 4.1, this is equivalent to: for any n there is a d∗ such that for all d > d∗ we have
E(JTd(D)Kd)Pn = E(JTd(D′)Kd)Pn. Denoting by P̃n the projector given in Equation (34), we

have that E(
r
Td(D)P̃n

z

d
) = E(

r
Td(D′)P̃n

z

d
) Finally, using faithfulness of the embedding E

and completeness of the ZXW calculus, we obtain Td(D)P̃n = Td(D′)P̃n.

This means in particular that if Td(D) = Td(D′) for any d ∈ N, then JDK = JD′K. However,
the theorem is stronger than this. To prove JDK = JD′K, it is sufficient to show that there exists
N ∈ N such that for any d > N we have:

Td(D)
...

...

N N

= Td(D′)
...

...

N N

This is proved by setting d∗ = n + N given any n, and is still a weaker statement as the
difference between d∗ and n may not be constant. Most of the rules of ZXW are independent of
the dimension d, making it easier to rewrite while preserving this condition.

Remark 4.3. We say that an equation D = D′ holds in ZW∞ whenever JDK = JD′K with the
standard interpretation J·K : ZW∞ → VectN. We say that an equation holds in ZXWd if it
holds in the rewriting system given in Section 2.3, and we indicate the rules used. Whenever
the split or merge map appears in a statement about ZXWd, we use it as syntactic sugar for
its truncation as given in Equations (26) and (27).
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Proposition 4.4. In ZW∞, the following holds:

=

Proof. First, in ZXWd the following holds:

==

1√−→
N !

1√−→
N !

√︁−→
N !

1√−→
N !

1√−→
N !

√︁−→
N !(26)

(S1)

(PZ)

=

1√−→
N !

1√−→
N !

√︁−→
N !

=

1√−→
N !

1√−→
N !

√︁−→
N !√︁−→
N !

(TA) (Pcy)

=
(S1)

Precomposing the equation above by projectors gives an equation of the form Td(D)P̃ d =
Td(D′)P̃ d which holds for any d. Therefore, by Theorem 4.2 we deduce that JDK = JD′K.

We may apply the same reasoning to the remaining axioms of ZW∞.

Theorem 4.5 (Soundness). The axioms of the infinite ZW calculus are sound for the infinite
interpretation J·K : ZW∞ → VectN.

Proof. The axioms for Z spiders and W nodes, as well as (Bsj∞) and (K0∞), are trivially lifted
from ZXW since they all lie in the image of the truncation functor and Td(D) = Td(D′) ∀d ∈
N =⇒ JDK = JD′K. The rules from QPath can be proved with few ZXW rewrites by using
the properties of projectors. The bialgebra axiom for bosonic nodes (bBA) is the hardest one
to prove diagrammatically. The proof, obtained by checking on the basis elements, boils down
to an application of the Vandermonde identity, as shown explicitly in [34, Section 5.3]. Proving
Rule (bW1) diagrammatically requires the definition of projector (25); however, it is easier
to verify by computing the interpretations. Similarly, Rule (W1∞) is proved by considering
the interpretation. Rule (bTA) is proved in Proposition 4.4. Rule (bZBA) is proved similarly
following from the fact that bialgebra between Z and X holds in the truncation.

Even though dualisers and hadamard nodes are not valid maps in the infinite calculus, we
may still use them when rewriting in the truncation, as long as they disappear in the resulting
diagram. An example is given by Lemma B.8, which is used to prove the commutation relations
for bosonic and fermionic operators in the next section.

5 Rewriting Hamiltonians

In this section, we use rewriting in ZXW to prove facts about quantum optical Hamiltonians.
These are defined as sums and products of creation and annihilation operators, and may always
be represented as single ZXW diagrams. We give a range of example applications, from linear
optics and non-linear Kerr media to light-matter interaction. We provide the proof of some
propositions and lemmas of this section in the appendix.
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5.1 Sums and products of ZW∞ diagrams

Controlled diagrams in ZW∞ are defined as follows.

Definition 5.1 (Controlled diagram). For a diagram D, a controlled diagram ˜︁D is

˜︁D...
... such that =

...˜︁D...
...

0

and =˜︁D...
... D

...
...

1

As an example, a controlled diagram of identity is given by:

Proposition 5.2 (Controlled sum of diagrams). Given controlled diagrams ˜︂D1, . . . , ˜︂Dk cor-
responding to diagrams D1, . . . , Dk and complex numbers c1, . . . , ck, a controlled diagram for∑︁

i ciDi is given by

˜︂D1
... ˜︂Dk

...
...˜︂∑︁

i ciDi
... =

c1

ck ...

(35)

where ci = (ci, 0, . . . , 0).

Proposition 5.3 (Controlled product of diagrams). Given controlled diagrams ˜︂D1, . . . , ˜︂Dk cor-
responding to the diagrams D1, . . . , Dk, a controlled diagram for

∏︁
iDi is given by

˜︂D1
... ˜︂Dk

· · ·
...

...˜︂∏︁
i Di

... =
(36)

The above propositions can be verified by plugging in |0⟩ and |1⟩. This allows us to write
sums and products of diagrams by creating controlled sums and products, and then plugging
|1⟩ on the top.

5.2 Creation and annihilation operators

Hamiltonians are usually written in terms of sums and products of creation/annihilation oper-
ators. In order to obtain them as diagrams in ZXW, we need to build the controlled operators.
Controlled diagrams for bosonic creation (a†) and annihilation (a) operators are the following:

=˜︁a† and =˜︁a
One may check that plugging |0⟩ in the control gives the identity in both cases. We can now
give a diagrammatic proof of the commutation relations by rewriting in ZXW.

Proposition 5.4. In ZW∞, aa† = a†a + id, that is:

=

11

(37)

5.3 Linear optics

The circuits in linear optics are built using two main gates: (1) phase shift and (2) beam splitter.
These are often defined by their Hamiltonians. The Hamiltonian of the phase shift is given by
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the number operator HP = αn1̂ = αa†1a1. The phase shift gate is the exponential of this
Hamiltonian, i.e. eiHP .

Proposition 5.5. In ZW∞, the phase shift gate with phase α is given by:

exp

⎛⎝ 1

iα

⎞⎠ = eiN⃗α

The Hamiltonian of the beam splitter is given as HBS = θ
(︂
eiϕa1a

†
2 + e−iϕa†1a2

)︂
for some

parameters ϕ and θ. The exponential is given by:

exp

⎛⎜⎜⎜⎝ eiϕ e-iϕ

1
θ

⎞⎟⎟⎟⎠ =

rN⃗

tN⃗

t∗N⃗

-r∗N⃗

where r = eiϕ sin θ is the reflectivity, t = cos θ is the transmissivity, and ∗ is complex conjugation.

5.4 Non-linear optics with Kerr media

Kerr media are non-linear optical crystals which allow performing entangling operations between
bosonic modes, with applications to photonic quantum computing [3]. Here we study the single
mode Kerr effect, described by a phase shift with a quadratic term, and the cross-Kerr interac-
tion. We give a representation of the latter as a phase gadget which allows for simple rewrite
rules that remove non-linearities from circuits.

The Kerr interaction is given by the Hamiltonian HK = κn1̂
2 = κa†1a1a

†
1a1. We can represent

this Hamiltonian in ZXW and diagonalise it to get:

Proposition 5.6. In ZW∞, the Kerr gate with parameter κ is given by:

exp

⎛⎝ 1
iκ

⎞⎠ = eiκN⃗
2

The cross-Kerr interaction is given by the Hamiltonian HCK = τn1̂n2̂ = τa†1a1a
†
2a2, from

which we can derive the cross-Kerr gate CK(τ) = exp(iτ n̂1n̂2). The cross-Kerr gate with τ = π
may be used to construct the CZ gate on dual-rail qubits [3]. We find that it has a natural
representation in the calculus.

Proposition 5.7. The cross-Kerr gate with parameter κ is given by:

exp

⎛⎜⎝ 1
iτ

⎞⎟⎠ =
e-i

τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

√︁
N⃗ !

√︁
N⃗ !

1√
N⃗ !

Utilizing the rewriting rules of our calculi, we can demonstrate different properties of these
operators. For instance, we can now prove the following proposition related to the composition
of two cross-Kerr operators:

Proposition 5.8. The composition of two cross-Kerr media with parameters τ and µ results in
a cross-Kerr interaction with parameter τ + µ. Specifically, in ZXWd the following equation
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holds:

=
e-i

τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

e-i
µ
2
N2

e-i
µ
2
N2

ei
µ
2
N2

e-i
τ+µ
2

N2

e-i
τ+µ
2

N2
ei

τ+µ
2

N2

5.5 Towards light-matter interaction

So far, we have studied only bosonic creation and annihilation operators. We now introduce
fermionic creation and annihilation. These operators are easily represented in ZW∞ using the W
node. The W algebra was indeed already shown to have an important role in fermionic quantum
computing [41]. We show the anti-commutation relation for these operators and finally, we
represent the Jaynes-Cummings Hamiltonian describing the interaction of bosons and fermions.

Controlled diagrams for the fermionic creation (σ+) and annihilation (σ−) operators are
given by

=˜︂σ+
and =˜︂σ−

Note that the fermionic creation and annihilation operators are only defined on the qubit sub-
space due to the Pauli exclusion principle. These operators acting on the input |n⟩, for n > 2,
result in a zero diagram.

Now, we use the rules of the infinite ZW calculus to prove the anti-commutation relations.

Proposition 5.9. In ZW∞, σ−σ+ + σ+σ− = id, that is:

= (1, 0, · · · )

1

(38)

where the right-hand side is the identity on the qubit subspace.

The Jaynes-Cummings model describes the interaction between a bosonic mode and a 2-level
atom. It is defined by the following Hamiltonian, for some frequency ω:

HJC = ℏω
(︂
a1σ

+
2 + a†1σ

−
2

)︂ 1
ℏω

(39)

The Tavis-Cummings Hamiltonian is a natural generalization of Jaynes-Cummings to a set-
ting in which multiple atoms interact with a bosonic mode:

HTC = ℏ

[︄
ωca

†
1a1 +

ωa

N

(︄
N∑︂

n=1

σ+
n

)︄(︄
N∑︂

n=1

σ−
n

)︄
+ ga†1

N∑︂
n=1

σ−
n + ga1

N∑︂
n=1

σ+
n

]︄
where N is the number of atoms, ωa and ωc are the atomic and cavity resonance frequency, and
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g is the atom-photon coupling strength.

ωa/N

g

g

ω

ℏ

...
...

1

N N...
...
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LOv-Calculus: A Graphical Language for Linear Optical Quantum Circuits. In Stefan Szei-
der, Robert Ganian & Alexandra Silva, editors: 47th International Symposium on Mathematical
Foundations of Computer Science (MFCS 2022), Leibniz International Proceedings in Informatics
(LIPIcs) 241, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, p. 35:1–35:16,
doi:10.4230/LIPIcs.MFCS.2022.35.

[12] Bob Coecke (2023): Basic ZX-calculus for Students and Professionals. arXiv:2303.03163.

[13] Bob Coecke & Ross Duncan (2007): Interacting Quantum Observables. Available at www.cs.ox.ac.
uk/people/bob.coecke/GreenRed.pdf.

[14] Bob Coecke & Ross Duncan (2008): Interacting Quantum Observables. In: Proceedings of the
35th International Colloquium on Automata, Languages and Programming, Part II, ICALP ’08,
Springer-Verlag, Berlin, Heidelberg, pp. 298–310, doi:10.1007/978-3-540-70583-3 25.

[15] Bob Coecke & Ross Duncan (2011): Interacting Quantum Observables: Categorical Algebra and
Diagrammatics. New Journal of Physics 13(4), p. 043016, doi:10.1088/1367-2630/13/4/043016.

[16] Bob Coecke & Stefano Gogioso (2022): Quantum in Pictures. Quantinuum.

[17] Bob Coecke & Aleks Kissinger (2010): The Compositional Structure of Multipartite Quantum En-
tanglement. In: Proceedings of the 37th International Colloquium Conference on Automata, Lan-
guages and Programming: Part II, ICALP’10, Springer-Verlag, Berlin, Heidelberg, pp. 297–308,
doi:10.1007/978-3-642-14162-1 25. arXiv:1002.2540.

[18] Bob Coecke & Aleks Kissinger (2017): Picturing Quantum Processes. Cambridge University Press,
doi:10.1017/9781316219317.

[19] Bob Coecke, Aleks Kissinger, Alex Merry & Shibdas Roy (2011): The GHZ/W-calculus Contains
Rational Arithmetic. In Farid Ablayev, Bob Coecke & Alexander Vasiliev, editors: Proceedings CSR
2010 Workshop on High Productivity Computations, Electronic Proceedings in Theoretical Com-
puter Science 52, Open Publishing Association, Kazan, Russia, pp. 34–48, doi:10.4204/EPTCS.52.4.

[20] Alexander Cowtan, Silas Dilkes, Ross Duncan, Will Simmons & Seyon Sivarajah (2019): Phase
Gadget Synthesis for Shallow Circuits: 16th International Conference on Quantum Physics and
Logic 2019. In Bob Coecke & Matthew Leifer, editors: Proceedings 16th International Conference
on Quantum Physics and Logic, Electronic Proceedings in Theoretical Computer Science 318, Open
Publishing Association, Waterloo, Australia, pp. 213–228, doi:10.4204/EPTCS.318.13.

[21] Giovanni de Felice & Bob Coecke (2022): Quantum Linear Optics via String Diagrams.
arXiv:2204.12985.

[22] Ross Duncan, Aleks Kissinger, Simon Perdrix & John van de Wetering (2020): Graph-Theoretic
Simplification of Quantum Circuits with the ZX-calculus. Quantum 4, p. 279, doi:10.22331/q-2020-
06-04-279.

[23] Ross Duncan & Simon Perdrix (2010): Rewriting Measurement-Based Quantum Computations with
Generalised Flow. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf

https://doi.org/10.1103/PhysRevResearch.5.013188
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.4230/LIPIcs.MFCS.2022.35
https://arxiv.org/abs/2303.03163
www.cs.ox.ac.uk/people/bob.coecke/GreenRed.pdf
www.cs.ox.ac.uk/people/bob.coecke/GreenRed.pdf
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1088/1367-2630/13/4/043016
https://doi.org/10.1007/978-3-642-14162-1_25
https://arxiv.org/abs/1002.2540
https://doi.org/10.1017/9781316219317
https://doi.org/10.4204/EPTCS.52.4
https://doi.org/10.4204/EPTCS.318.13
https://arxiv.org/abs/2204.12985
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.22331/q-2020-06-04-279


36 Light-Matter Interaction in the ZXW Calculus

der Heide & Paul G. Spirakis, editors: Automata, Languages and Programming, Lecture Notes
in Computer Science, Springer, Berlin, Heidelberg, pp. 285–296, doi:10.1007/978-3-642-14162-1 24.
Available at http://personal.strath.ac.uk/ross.duncan/papers/gflow.pdf.

[24] W. Dür, G. Vidal & J. I. Cirac (2000): Three Qubits Can Be Entangled in Two Inequivalent Ways.
Physical Review A 62(6), p. 062314, doi:10.1103/PhysRevA.62.062314.
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Appendix

A Detailing the ZXW calculus

A.1 Additional notations

� A multiplier [6, 9, 7] labelled by m indicates the number of connections between green and
pink nodes:

:=
...mm mm := -m := d-m

(Mu)

� The multipliers interacting together with the Z, X and W nodes play an important role in
the ZXW calculus. For brevity, we use the notations V with interpretation:

-1

1

-2
...

:=V 1
J·K↦−→ |0⟩ ⟨0|+

d-1∑︂
i=1

|i⟩ ⟨−1| (VB)

Furthermore, we introduce the M box that equals to the following diagrams:

V

1
:=M =

-1

1

-2

...

0

1

� The Hadamard box, denoted H , may be constructed from Z, X and W generators, as
in [43, Axiom HD]. We define its inverse, the yellow H† box as follows:

H H HH† := (H†)

A.2 Rules of ZXW

We give a set of rewrite rules that is shown to be complete in [43]. −→a = (a1, . . . , ad−1) and
−→
b = (b1, . . . , bd−1) denote arbitrary complex vectors.

Qudit ZX-part of the rules

=

−→a

−→
b

−→
ab

...

...

...
...

...
...

...

...
· · · = −→

ab

...
...

...
...
...

... (S1)

https://doi.org/10.1038/s41566-022-00979-z
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= = (S2)

←−aD−→a =D (D1)

=D
...d-1 (P1)

··
·· ·
·

·
=

·
−→a ·

·
·
·

(Ept)

0 = (Zer)

= (B2)

=
Kj

Kj

Kj (K0)

=Kj

Kj

Kj...
... (K1)

=−→aKj Kjkj(
−→a )

−→aKj

(K2)

...
...

um,n

Kj

H

...
...Kj

H†

H†

=
H

n m n m (HZ)

where ←−a = (ad−1, . . . , a1),
−→
ab = (a1b1, . . . , ad−1bd−1), and kj(

−→a ) =

(︃
a1−j

ad−j
, . . . ,

ad−1−j

ad−j

)︃
In the definition of kj we take the indices modulo d, that is, aj = a(j mod d).

Qudit ZW-part of the rules

= (BZW)

=−→a
−→a

−→a
(Pcy)

= −→a +
−→
b

−→a

−→
b

(AD)

= (Sym)

= (Aso)

=
...

...
...

... (WW)

Qudit ZXW-part of the rules

= (Bs0)

= TjKj (Bsj)

= (TA)

V

V

V

= (VW)

−−→ad−1=V−→a (ZV)

a1

ad−1

...

-1

1

a2 -2

= −→aV (VA)

...
K1

=

K1

e1

en
... (KZ)

where Tj =

d−1⏟ ⏞⏞ ⏟
(0, . . . , 1⏞ ⏟⏟ ⏞

d−j

, . . . , 0), e1, . . . , en ∈ {1, . . . , d− 1}, −−→ad−1 = (ad−1, ad−1, . . . , ad−1)
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B Proof of lemmas

Lemma B.1. [53] In ZXWd, for any d, we have:

==

n

Kj

· · ·

· · ·

Ki

· · ·

· · ·

Ki+j

· · ·

· · ·

· · ·

· · ·
s

m t

n

Kj

· · ·

· · ·
Ki

· · ·

· · ·
s

m t

=

n+ s

m+ t

Ki+j

· · ·

· · ·

· · ·

· · ·
n+ s

m+ t

· · ·

· · ·

(S4)

Proof. Same as [43, Lemma 13].

Lemma B.2. In ZXWd, for any d, we have:

· · ·

· · ·
=

· · ·

· · ·
D

· · ·

· · ·
=

· · ·

· · ·D
=

· · ·

· · ·

D

· · ·

· · ·
=

· · ·

· · ·
D

· · ·

· · ·
=

· · ·

· · ·
D =

· · ·

· · ·

D

Proof. Same as [43, Lemma 25].

Lemma B.3. [53] In ZXWd, for any d, we have:

D
=

D D
=

DD

D

D
==

D

DD D

D

Proof. Same as [43, Lemma 35].

Lemma B.4. In ZXWd, for any d, we have:

=

Proof.

=
D

D
=

D

=
D

=
(B.2) (B.2)(B.3) (B2)

Lemma B.5. In ZW∞, we have:

=
0



G. de Felice, R. A. Shaikh, B. Poór, L. Yeh, Q. Wang, and B. Coecke 41

Proof. The proof is obtained by lifting [43, Lemma 38].

Lemma B.6. In ZW∞ we have:

k
a⃗ =

k
ak

Proof. Firstly, we show that in ZXWd we have:

a⃗ =

ak
K−k

a⃗

= K−k

a⃗K−k

=
(K0)(S1)

K−kK−k

Then, the proof is acquired by lifting.

Lemma B.7. In ZW∞,

= =

Proof. The statement follows from the lifting theorem as it is a trivial equation in ZXWd.

Lemma B.8. In ZW∞ we have:

=
1 11

=

Proof. The first equation follows from Axioms (K0∞) and (bW1). For the second equation, we
start by truncating and reasoning in ZXWd:

1
=
(S1)

1
=

1

1√−→
N !

1√−→
N !

√︁−→
N !

1√−→
N !

1√−→
N !

√︁−→
N !

(26)

=
1 −→

N !

1√−→
N !

1√−→
N !

1
−→
N !

(S1)

=
1 −→

N !

1√−→
N !

1
−→
N !

(B.4)

(PZ)

1√−→
N !

1 −→
N !

1
−→
N !

1
−→
N !

=
(PP)

=
1 −→

N !

1
−→
N !

1
−→
N !

(S1)

(PZ)
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=
1 √︁−→

N !

1√−→
N !

1√−→
N !

(26)

=

1√−→
N !

1√−→
N !

√︁−→
N !

1 √︁−→
N !

1√−→
N !

1√−→
N !

(S1)

(PZ)

We lift the derivation above using Theorem 4.2 and end by reasoning in ZW∞:

1 √︁−→
N !

1√−→
N !

1√−→
N !

=
1

1√−→
N !

1√−→
N !

(bW1)

=
1

1√−→
N !

1√−→
N !

(B.6)

=
1

(B.6)

=
1 1√−→

N !

(Pcy∞)

Lemma B.9.

1

iα
Td↦−→ K1 (2, · · · , d-1, 0) K−1

iα

Proof.

1

iα
=

1 1(K0)

1
iα

=
1 1iα

=

1√−→
N !

1√−→
N !

√︁−→
N !

1√−→
N !

1√−→
N !

√︁−→
N !

(26)

(28)

K1 K−1
iα

=

1√−→
N !

1√−→
N !

√︁−→
N !

1√−→
N !

1√−→
N !

√︁−→
N !

(1, . . . , 1, 0) (1, . . . , 1, 0)

K1 K−1(PK) iα

=
√︁−→

N !
√︁−→

N !(︂
1
1!
, · · · , 1

(d-2)!
, 0
)︂K1 K−1(K0)

1√−→
N !

K1

1√−→
N !

K−1

iα

=
√︁−→

N ! K1

√︁−→
N !K−1

(︂
1
1!
, · · · , 1

(d-2)!
, 0
)︂(S4) iα

=
(︂√

2!, · · · ,
√︁

(d-1)!, 1
)︂

K1

(︂√
2!, · · · ,

√︁
(d-1)!, 1

)︂
K−1

(︂
1
1!
, · · · , 1

(d-2)!
, 0
)︂(K2) iα
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= K1 (2, · · · , d-1, 0) K−1

(S1) iα

Lemma B.10. In ZXWd,

exp

(︃
K1 (2, · · · , d-1, 0) K−1

iα
)︃

= eiN⃗α

Proof.

eiα

K1 K−1

(︂
eiα, eiα2, · · · , eiα(d-2), eiα(−1)

)︂
= K1 K−1

(︂
eiα2

eiα
, eiα3

eiα
, · · · , eiα(d-1)

eiα
, 1
eiα

)︂K−1 eiαN⃗

= K1 K−1 eiα, eiα2, · · · , eiα(d-2), eiα(d-1) = eiαN⃗

(K2) (S4)

(S2)

Proposition 5.4. In ZW∞, aa† = a†a + id, that is:

=

11

(37)

Proof. First, by rewriting in ZW∞, and then using Lemma B.8 lifted from ZXWd.

1

=

1

(bBA)

=

1

(B.7)

=
(B.8)

1

=

1

(bSym)

(S1∞)

Proposition 5.5. In ZW∞, the phase shift gate with phase α is given by:

exp

⎛⎝ 1

iα

⎞⎠ = eiN⃗α
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Proof. First, we diagonalise the truncation of the Hamiltonian HP using ZXW rewrites:

1

iα
Td↦−→ K1 (2, · · · , d-1, 0) K−1

iα

(See Lemma B.9) Then, we derive the exponential in ZXW:

exp

(︃
K1 (2, · · · , d-1, 0) K−1

iα
)︃

= eiN⃗α

(See Lemma B.10) Lastly, the result is obtained by lifting.

Proposition 5.6. In ZW∞, the Kerr gate with parameter κ is given by:

exp

⎛⎝ 1
iκ

⎞⎠ = eiκN⃗
2

Proof. In ZXWd

11

=

1
iκ 1

iκ(S1)

(K0)

K1 (2, · · · , d-1, 0) K−1 K1 (2, · · · , d-1, 0) K−1 K1 (22, · · · , (d-1)2, 0) K−1==
(B.9) (S4)

1
iκ

1
iκ

Then, one may exponentiate the diagram in the same way as Lemma B.10.

Proposition 5.7. The cross-Kerr gate with parameter κ is given by:

exp

⎛⎜⎝ 1
iτ

⎞⎟⎠ =
e-i

τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

√︁
N⃗ !

√︁
N⃗ !

1√
N⃗ !

Proof. First, we demonstrate the following relation in ZXWd:

1
iτ

1 1

1 1

1 1=

1 1

(Sym)

1
iτ

1
iτ =

(K0)

Based on this form, it becomes evident that the diagram corresponds to the operator iτ n̂1n̂2,
which needs to be exponentiated. We employ the technique described by van de Wetering and
Yeh [51] for constructing diagonal qudit gates using phase gadgets [20, 38]. Firstly, note that

the polynomial equation (x + y)2 = x2 + 2xy + y2 implies that eiτxy = ei
τ
2 ((x+y)2−x2−y2) =

ei
τ
2
(x+y)2e−i τ

2
x2
e−i τ

2
y2 . The same equation holds when considering x and y as operators n̂1
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and n̂2, respectively, given their commutation. Utilizing these calculations, we can express the
truncated cross-Kerr gate as the composition of the number operator on each wire and the
diagram corresponding to ei

τ
2
(x+y)2 . The former is given by Proposition 5.5, while the latter is

represented by the diagram in ZXWd:

ei
τ
2
N2

By composing the diagrams and sliding the projector through the green phases according to
(PZ), we obtain the cross-Kerr operator in ZXWd:

e-i
τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

Lifting this diagram to ZW∞ completes the proof of the proposition.

Proposition 5.8. The composition of two cross-Kerr media with parameters τ and µ results in
a cross-Kerr interaction with parameter τ + µ. Specifically, in ZXWd the following equation
holds:

=
e-i

τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

e-i
µ
2
N2

e-i
µ
2
N2

ei
µ
2
N2

e-i
τ+µ
2

N2

e-i
τ+µ
2

N2
ei

τ+µ
2

N2

Proof. In ZXWd, the following holds:

e-i
τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

e-i
µ
2
N2

e-i
µ
2
N2

ei
µ
2
N2

e-i
τ
2
N2

e-i
τ
2
N2

ei
τ
2
N2

e-i
µ
2
N2

e-i
µ
2
N2

ei
µ
2
N2

(PZ)

=

e-i
τ+µ
2

N2

e-i
τ+µ
2

N2

ei
τ
2
N2

ei
µ
2
N2

(PP)

=
(S1)

e-i
τ+µ
2

N2

e-i
τ+µ
2

N2

ei
τ
2
N2

ei
µ
2
N2

=
(S1)

e-i
τ+µ
2

N2

e-i
τ+µ
2

N2

ei
τ
2
N2

ei
µ
2
N2

=
(B2) e-i

τ+µ
2

N2

e-i
τ+µ
2

N2

ei
τ+µ
2

N2=
(S1)

Proposition 5.9. In ZW∞, σ−σ+ + σ+σ− = id, that is:

= (1, 0, · · · )

1

(38)
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where the right-hand side is the identity on the qubit subspace.

Proof. We reason entirely in ZW∞:

=

1 1
(Sym∞)

=
(BZW∞)

1

=

1
(B.7)

(S1∞)(S1∞)

==
(K0∞)

1

1

1

1

0

(W1∞)

=

1

1
(B.5)

=
(K0∞)

1

(Sym∞)

1

=
(B.8)

= (1, 0, . . . )

(Bsj∞)

(S1∞)
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Given a monoidal probabilistic theory — a symmetric monoidal category C of systems and pro-

cesses, together with a functor V assigning concrete probabilistic models to objects of C — we

construct a locally tomographic probabilistic theory LT(C ,V) — the locally tomographic shadow of

(C ,V) — describing phenomena observable by local agents controlling systems in C , and able to

pool information about joint measurements made on those systems. Some globally distinct states be-

come locally indistinguishable in LT(C ,V), and we restrict the set of processes to those that respect

this indistinguishability. This construction is investigated in some detail for real quantum theory.

1 Introduction

As is well known, complex quantum theory is distinguished from its real counterpart by a property called

tomographic locality or local tomography [4, 10]: states of a bipartite system are entirely determined by

the joint probabilities they assign to measurements performed separately on the two component systems.

That this fails for finite-dimensional real quantum theory is evident on dimensional grounds, but it’s more

instructive to note that if H and K are real Hilbert spaces, the space Ls(H⊗K) of bounded self-adjoint

operators on H⊗K decomposes as Lss ⊕Laa, where Lss := Ls(H)⊗Ls(K) and Laa := La(H)⊗
La(K), with La(H) the space of bounded anti-self adjoint operators on H, and similarly for K. This

is an orthogonal decomposition with respect to the trace inner product. Thus, a density operator ρ on

H⊗K has a unique decomposition ρss+ρaa, with ρss ∈Lss and ρaa ∈Laa. Given effects a ∈Ls(H) and

b ∈ Ls(K), a⊗ b lives in Lss, so Tr((a⊗ b)ρaa) = 0, and thus Tr((a⊗ b)ρ) = Tr((a⊗ b)ρss). In other

words, states with the same Lss component but distinct Laa components are locally indistinguishable.1

This suggests a construction: simply “factor out” the non-locally observable Laa degrees of freedom to

obtain a locally tomographic theory. Here, we not only show that this is feasible, but go much further.

By a monoidal probabilistic theory we mean a pair (C ,V) where C is a symmetric monoidal category

and V : C → Prob is a functor from a symmetric monoidal category C to a suitable category of concrete

probabilistic models, taking monoidal products in C to (non-signaling) composites in Prob. We outline

this framework in Section 2.2 Given a such a theory (C ,V), we construct a new, locally tomographic

theory, LT(C ,V), that describes what the world “looks like” to local agents, at least if one restricts

1In contrast, in CQM, any anti-selfadjoint operator a has the form ib where b is self-adjoint. Hence, if a = ib and a′ = ib′

are anti-self adjoint, a⊗a′ (as an element of Ls(H⊗K)) coincides with −(b⊗b′) ∈ Ls(H)⊗Ls(K). That is: Lss = Laa =
Ls(H⊗K).

2Because this slightly extends the standard GPT framework as described, e.g., in [5], we go into a bit of detail here

http://dx.doi.org/10.4204/EPTCS.384.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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attention to processes that respect local indistinguishability. Taking a cue from Plato, we call this the

locally tomographic shadow of the original theory. This is described in Section 3. In Section 4, we

return to the case of real QM, and show that our construction leads to a non-trivial theory that differs

from both real and complex QM, but still allows for entangled states and effects.

If one lifts the restriction on processes mentioned above, it is still possible to construct a “shadow” theory,

at the price of accepting an additional layer of non-determinism on top of that built into the probabilistic

structure of the original model. This is briefly discussed in the concluding section 5, along with a number

of other directions for further work.

This is a preliminary sketch of a longer work in progress.

2 Generalized Probabilistic Theories

For our purposes, a probabilistic model [3, 5] is pair (V,u) where V is an ordered real vector space and

u is a strictly positive linear functional thereon, referred to as the unit effect of the model. Elements α

of V+ with u(α) = 1 are the (normalized) states of the system. Effects (measurement results) are pos-

itive functionals a on V with a ≤ u; a(α) is the probability of a’s of occurring in state α . Where we

wish to keep track of several models, we label them A, B, etc., writing, e.g., V(A), V∗(A) for the asso-

ciated ordered vector spaces and their duals, and uA, for the unit effects. A process from a probabilistic

model (V(A),uA) to a probabilistic model (V(B),uB) is a positive linear mapping φ : V(A)→V(B) with

uB(φ(α)) ≤ uA(α) for every α ∈ V(A)+

We write Prob for the category of probabilistic models and processes. In the broadest sense, a proba-

bilistic theory is simply a functor V from some category C into Prob.3 C can be understood to consist of

“actual” physical systems and processes, or of any mathematical proxies for these (classical phase spaces,

Hilbert spaces, open regions of spacetime, spin networks, or what-have-you). V attaches probabilistic

apparatus to these systems and processes in such a way as, e.g., to describe the possible experiences of

agents.

In what follows, we denote such a probabilistic theory as a pair (C ,V). We assume that V is injective

on objects, which makes V(C ) a subcategory of Prob. This assumption holds for all of the examples we

wish to consider. Where V is also injective on morphisms, we say that (C ,V) is process tomographic

[7], in which case, we can simply identify C with the corresponding subcategory of Prob. Note that

the latter — more exactly, the probabilistic theory (V(C ), I), where I : V(C ) → Prob is the inclusion

functor — is automatically process tomographic, regardless of whether or not (C ,V) is so.

The example of primary interest here takes C = CPMR, the category of finite-dimensional real Hilbert

spaces with morphisms H → K given by completely positive linear mappings L (H) → L (K). In

contrast to the complex case, there exist linear mappings Ls(H) → Ls(K) that preserve positivity but

not adjoints [9]. We reserve the term positive for those linear mappings that preserve both. Equivalently,

φ : L (H)→L (K) is positive iff φ maps positive operators to positive operators, hence mapping Ls(H)

3Note that such a functor V comes with a designated unit functional uA ∈V(A)∗ for every object A ∈ C with uA ◦V(φ)≤ uB

for all φ ∈ C (A,B).
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to Ls(K), and also maps La(H) to La(K). The probabilistic theory we have in mind when we speak

of real QM is then (CPMR,V) where V(H) = Ls(H), the latter understood as an order unit space with

uH = Tr(·). In contrast to the complex case, the restriction of φ to the self-adjoint part, Ls(H), of L (H)
does not determine φ , so RQM is not process tomographic.

Composite Models A (non-signaling) composite of models V(A) and V(B) is a model V(AB), together

with a pair of bilinear mappings

m : V(A)×V(B)→ V(AB) and π : V(A)∗×V(B)∗ → V(AB)∗

such that (i) ω ◦π is a joint state on A and B for all ω ∈ V(AB), and (ii) π(a,b)m(α ,β ) = a(α)b(β ) for

all a ∈V∗(A),b ∈ V∗(B) and all α ∈V(A), β ∈ V(B).

We think of π(a,b) as representing the joint outcome (a,b) of a pair of experiments performed on A and

B, and m(α ,β ) as the result of preparing states α and β independently on A and B. We refer to π(a,b)
and m(α ,β ) as product effects and states, respectively.

If HA and HB are two complex (finite-dimensional) Hilbert spaces, the obvious choice for a composite

model is V(AB) =V(HA⊗HB) =Ls(HA⊗HB), with π(a,b)(ω) = Tr((a⊗b)ω) and m(α ,β ) = α ⊗β .

If every state ω ∈V(AB) is determined by the joint probabilities ω(π(a,b)), we say that AB is locally to-

mographic. Given arbitrary models V(A), V(B), there are two extremal locally tomographic composites,

obtained by endowing V(A)⊗V(B) with the minimal and maximal tensor cones [5, 12, 14]. The former

is generated by separable states, i.e., convex combinations of product states. The latter consists of all

bilinear forms that are positive on products of effects. We write V(A)⊗minV(B) and V(A)⊗maxV(B)
for V(A)⊗V(B) as ordered by these minimal and maximal cones, respectively. A composite V(AB) is

locally tomographic iff m : V(A)⊗V(B) → V(AB) is a linear isomorphism, and in this case it’s usual

simply to identify the two spaces. One then has

(V(A)⊗minV(B))+ ≤V(AB)+ ≤ (V(A)⊗maxV(B))+.

If A and B are quantum models, the inclusions are proper: (V(A)⊗min V(B))+ contains only separable

states, while (V(A)⊗maxV(B))+ contains states corresponding to non-positive operators [11, 12]. More

generally, V(A)⊗min V(B) allows only separable states, but arbitrarily entangled effects; the maximal

tensor product V(A)⊗maxV(B) allows the reverse. Both tensor products are naturally associative, and

extending straightforwardly to tensor products of more than two factors.

Definition: A monoidal probabilistic theory is a structure (C ,V,m,π) where C is a symmetric monoidal

category, V is a functor C → Prob, and m and π are assignments, to every pair of objects A,B ∈ C , of

bilinear mappings

mA,B : V(A)×V(B)→ V(AB) and πA,B : V∗(A)×V
∗(B)→ V

∗(AB)4

such that

(i) mA,B,πA,B make V(AB) a composite of V(A) and V(B),
(ii) V(I) = R with

mI,A : V(I)×V(A)→ V(A), πI,A : V∗(I)×V
∗(A)→ V

∗(A)

4We will write monoidal products in C juxtapositively, reserving the symbol ⊗ for the tensor product of linear spaces.
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the bilinear mappings uniquely defined by m(1,α) = α and πI,A(1,a) = a, and similarly for

mI,A and πA,I;

(iii) V(σA,B)◦πA,B = πB,A, and similarly mA,B ◦V(σA,B) = mB,A; and

(iv) for all morphisms φ : A → A′ and ψ : B → B′ in C , the diagram

V(A)⊗V(B) V(AB)

V(A′)⊗V(B′) V(A′B′)

V(φ)⊗V(ψ)

π∗
A,B

V(φ⊗ψ)

π∗
A′ ,B′

(1)

commutes.

If α ∈ C (I,A), then by condition (ii), V(α) : R→ V(A) defines an element of V(A), namely V(α)(1).
We make it a standing assumption in what follows that every normalized state in V(A) arises in this way.

Remark: On the left side of (1), V(φ)⊗V(ψ) is the usual tensor product of linear maps, while on the

right, φ ⊗ψ is the monoidal composite of the morphisms φ and ψ in C . An equivalent statement is that,

for all states ω ∈ V(AB) and all effects a′ ∈V∗(A′) and b′ ∈V∗(B′), we have

ω(V(φ)∗(a′),V(ψ)∗(b′)) = V(φ ⊗ψ)(ω)(a′,b′).

More compactly: m and π∗ are natural transformations from the functor V⊗minV to the functor V◦⊗,

and from V ◦⊗ to V⊗max V, respectively. When no confusion seems likely, we will henceforth write

(C ,V) for a monoidal probabilistic theory (C ,V,m,π).

Evidently, RQM, with its standard compositional structure, is an example of such a monoidal probabilis-

tic theory.

All of the foregoing applies to composites of more than two models. One can show that both ⊗min
and ⊗max are both naturally associative. If one has an n-partite composite A = A1 · · ·An, built up re-

cursively so that A = (A1 · · ·An−1)An, then arguing inductively one has canonical positive mappings
⊗

minV(Ai)
m−→ V(A)

π∗
−→⊗

maxV(Ai).

We call a monoidal probabilistic theory (C ,V) locally tomographic iff, for every pair of objects A,B∈C ,

the composite V(AB) is locally tomographic.

As pointed out above, as long as V is injective on objects, as we are assuming here, process-tomography

can be enforced by passing to the probabilistic theory. (V(C ), I) For local tomography, the situation is

not so simple. Still, as we show in the next section, it is possible to construct, from a given probabilistic

theory, a kind of locally tomographic quotient theory.
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3 Locally tomographic Shadows

If a monoidal probabilistic theory (C ,V) is not locally tomographic, one can still ask what the world it

describes would “look like” to agents having access only to local measurements. As a first step, we need

to assume that objects in C can be carved up in a preferred way into local pieces. To ensure this, we

replace C with the its strictification, the category C ∗ having as objects, finite lists ~A = (A1, ...,An) of non-

trivial (non-identity) objects Ai ∈ C , with the understanding that this represents the composite Πn
i=1Ai in

C , but with the indicated monoidal decomposition. Morphisms from ~A = (A1, ...,An) to ~B = (B1, ...,Bk)
are simply be morphisms Πn

i=1Ai → Πk
i=1Bi in C . This is a strict symmetric monoidal category, with

(A1, ...,An)(B1, ...,Bk) = (A1, ...,An,B1, ...,Bk), the empty sequence () serving as the monoidal unit.

There is a (strong, but not strict) monoidal functor Π : C ∗ → C taking ~A = (A1, ...,An) to Π~A := Πn
i=1Ai,

with Π() = IC , and acting as the identity on morphisms. This is not generally injective on objects (for

instance, Π(A,BC) = Π(A,B,C)). Composing Π with V now gives us a probabilistic theory (C ∗,V◦Π)
in which we have the desired canonical decompositions, but in which we’ve lost the desirable injectivity-

on-objects feature. This feature will be recovered when we pass to the locally tomographic shadow,

which we will now construct.

3.1 The shadow of a composite

If AB is a composite of probabilistic models A and B, then a state ω ∈ Ω(AB) of the composite system

determines a joint state ω̃ : V(A)∗×V(B)∗ → [0,1], given by ω̃(a,b) := πA,B(a,b)(ω). This describes

the joint probabilities of measurement outcomes carried out on A and B separately. We may call ω̃ the

local shadow of ω . More generally, suppose that ~A := (A1, ...,An) is a sequence in C ∗ with composite

Π~A := A in C : as we’ve seen, there is a positive linear mapping

π∗
~A

: V(A)→ L
n(V∗(A1), ...,V

∗(An))

taking ω ∈ Ω(A) to the corresponding joint state ω̃ on A1, ...,An — its local shadow — given by

ω̃(a1, ...,an) := π∗
A(ω)(a1, ...,an) = (a1 ⊗·· ·⊗an)(ω)

for all (a1, ...,an) ∈ V∗(A1)×·· ·×V∗(An).

Definition: For ~A = (A1, ...,An)∈C ∗, let Ṽ(~A) be the space
⊗

iV(Ai), ordered by the cone π∗
~A
(V(Π~A)+)

consisting of local shadows of elements of V(Π~A)+, and let ũA = uA1
⊗·· ·⊗uAn

. We call the probabilistic

model (Ṽ(Π~A), ũ~A) the locally tomographic shadow of A = Π~A with respect to the given decomposition

(that is, with respect to ~A).

Going forward, it will be convenient to use the abbreviations LT~A
, or even just LT, for for the mapping

π∗
~A

: V(A)→ Ṽ(~A), whenever context makes it convenient and relatively unambiguous to do so.

We have canonical mappings

π : V∗(A1)×·· ·×V
∗(Ak)→ Ṽ(A1, ...,Ak)

∗, and m : V(A1)×·· ·×V(Ak)→ Ṽ(A1, ...,Ak)
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given by

π(a1, ...,an)(µ) = µ(a1, ...,an) and m(α1, ...,αn)(a1, ...,an) = Πn
i=1ai(αi).

It is straightforward that (Ṽ(A1, ...,An),π,m) is a composite of V(A1), ...,V(An).

For any vector spaces V1, ...,Vk, let L k(V1, ...,Vk) denote the space of k-linear forms on V1 ×·· ·×Vk.

Using the canonical isomorphism L k(V∗
1, ...,V

∗
k) ≃

⊗k
i=1Vi, we can identify Ṽ(A1, ...,Ak), as a vector

space, with with V(A1)⊗·· ·⊗V(Ak), now ordered by a cone Ṽ(A1, ....,An)+ with

(
⊗

min

V(Ai)

)

+

⊆ Ṽ(A1, ...,An)+ ⊆
(
⊗

max

V(Ai)

)

+

.

We also have an injective linear mapping from Ṽ(A1, ...,Ak)≃
⊗

iV(Ai) into V(A1, ...,Ak), extending the

map m taking (α1, ...,αn)∈ ΠiV(Ai) to α1 ⊗·· ·⊗αn ∈V(ΠiAi). However, this mapping is, as a rule, not

positive. This will be illustrated below in the case of real quantum theory. This shows that Ṽ(A1, ...,An)+
is generally larger than the minimal tensor cone. As we’ll also see in the next section, it is generally

strictly smaller than the maximal tensor cone.

Further Notation: In the case of a bipartite system, we will sometimes find it convenient to use the

tensor-like notation V(A)⊠V(B) for Ṽ(A,B). Thus, V(A)⊠V(B) is the vector space V(A)⊗V(B), but

ordered by the cone Ṽ(A,B) generated by local shadows ω̃ of states ω ∈ V(AB).

The following identifies the effect cone of Ṽ(A1, ...,An). We omit the straightforward proof.

Lemma 1: Ṽ(A1, ...,An)
∗
+ ≃ V∗(ΠiAi)+∩ (

⊗
iV

∗(Ai)). In the bipartite case:

(V(A)⊠V(B))∗+ ≃ V(AB)∗∩ (V(A)∗⊗V(B)∗).

3.2 Shadows of Processes

Given a probabilistic theory (C ,V), we would now like to construct a locally tomographic “shadow”

theory by applying the LT construction to the objects of V(C ). In order to do this, we first need to decide

what the morphisms should be in this putative “shadow” theory.

In what follows, A = Π~A and B = Π~B are composite systems, with specified decompositions ~A =
(A1, ...,An) and ~B = (B1, ...,Bk). The proof of the following is routine.

Lemma 2: Let Let Φ : V(A)→ V(B) be a positive linear mapping. The following are equivalent:

(a) Φ maps Ker(LT~A
) into Ker(LT~B).

(b) If ω ,ω ′ ∈ V(A) are locally indistinguishable, so are Φ(ω),Φ(ω ′) in V(B).
(c) There exists a linear mapping φ :

⊗
iV(Ai)→

⊗
j V(B j) such that LT~B ◦Φ = φ ◦LT~A

Definition: With notation as above, call a positive linear mapping Φ : V(A) → V(B) satisfying any,

hence all, of these conditions locally positive (with respect to the specified decompositions). The linear

mapping φ in part (c) is then uniquely determined. We call it the shadow of Φ, writing φ = LT(Φ).
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As an immediate consequence, we have

Lemma 3: If Φ : V(A) → V(B) is locally positive, then φ = LT(Φ) is positive as a mapping from

Ṽ(A1, ...,Am)→ Ṽ(B1, ...,Bn).

Locally positive maps are reasonably abundant, but do exclude some important morphisms in RQM. For

instance, if σ and α are swap and associator morphisms in C , V(σ) is locally positive, but V(α) need

not be.

For another example, if α is a state on A=A1⊗·· ·⊗An, then the corresponding mapping α :R=V(I)→
V(A) given by α(1) = α is trivially locally positive (the kernel of LTI is trivial). On the other hand, there

is generally no guarantee that an effect f : V(A)→ R will be locally positive. Indeed, if ω ,ω ′ ∈ V(A)+
are distinct, there will certainly exist some positive linear functional f with f (ω) 6= f (ω ′), and by re-

scaling if necessary, we can take f to be an effect. If LT(ω) = LT(ω ′), then f is not locally positive.

Thus, the passage from V(A) to LT(V(A)) not only identifies previously distinct states, but also jettisons

some effects.

It follows from part (c) of Lemma 3.3 that if Φ : ΠiAi → Π jB j and Ψ : Π jB j → ΠkCk are locally positive

with shadows φ = LT(Φ) and ψ = LT(Ψ), then Ψ◦Φ is locally positive with shadow ψ ◦φ .

Definition: Let (C ,V) be a probabilistic theory. For objects ~A = (A1, ...,An) and ~B = (B1, ...,Bk) ∈ C ∗,

call a morphism Π~A
f−→ Π~B local iff V( f ) :V(Π~A)→V(Π~B) is locally positive (relative to the preferred

factorizations of A and B). We write Loc(C ,V) for the category having the same objects as C ∗ — finite

lists of non-identity objects in C — but only local morphisms.

By the remarks above, Loc(C ,V) is a monoidal sub-category of C ∗. By construction, the functor V◦Π :

C ∗ → Prob descends to a functor Loc(C ,V)→ Prob. However, because Π is not injective on objects,

neither will V◦Π be. To remedy this, we make the following

Definition: For all objects ~A,~B ∈ C ∗ and local morphisms f : ~A → ~B, let Ṽ(~A) := LT~A(V(Π
~A) and

Ṽ( f ) := LT(V( f )).

Lemma 4: Ṽ is a functor Loc(C ,V)→ Prob, and is injective on objects.

Proof: It is straightforward that Ṽ( f ◦ g) = Ṽ( f ) ◦ Ṽ(g) where f ∈ C ∗(A,B) and g ∈ C ∗(B,C). That

Ṽ is injective on objects follows from the fact that there is a canonical isomorphism between
⊗

V(Ai)
and L k(V(A1)

∗, ...,V(An)
∗); the latter is literally a space of functions on V(A1)

∗×·· ·×V(An)
∗, from

which one can read off the spaces V(A1), ... V(An). As V is injective on objects, these in turn determine

(A1, ...,An). �

Definition: The locally tomographic shadow of a monoidal probabilistic theory (C ,V) is the probabilis-

tic theory LT(C ,V) := (Loc(C ,V),Ṽ).

By construction, LT(V,C ) = (Loc(C ,V),Ṽ) is locally tomographic. We have the following picture:

there are two functors (probabilistic models) associated with Loc(C ,V): one is given by V◦Π, and the

other by Ṽ := LT(V ◦Π), i.e., for each object ~A = (A1, ...,An) in Loc(C ,V), we have a positive linear

mapping LT~A
: V(Π(~A))→ Ṽ(~A). By construction, LT then defines a natural transformation V◦Π ⇒ Ṽ.
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4 The Shadow of Real Quantum Theory

We’ll now consider the case of finite-dimensional real quantum theory in some detail, concentrating on

the bipartite case.

4.1 The LT map

Suppose H and K are two finite-dimensional real Hilbert spaces. In what follows, we identify states with

the corresponding density operators, so that if W is a density operator on H⊗K, LT(W ) is the unique

operator in Ls(H)⊗Ls(K) satisfying Tr(LT(W )a⊗b) = Tr(Wa⊗b) for all a ∈ Ls(H) and b ∈ Ls(K).

As discussed in the Introduction, Ls(H⊗K) has a natural orthogonal direct sum decomposition as

Ls(H⊗K) = (Ls(H)⊗Ls(K))⊕ (La(H)⊗La(K))

Since Ker(LT) contains La(H)⊗La(K) and Ran(LT) equals Ls(H)⊗Ls(H), we have Ker(LT) =
La(H)⊗La(K).

Let Sym : L (H) → Ls(H) be the symmetrization mapping Sym(a) = 1
2
(a+ at). Note that this is the

orthogonal projection on L (H) (with respect to the trace inner product) with range Ls(H). A straight-

forward computation gives us

Lemma 5: LT(W ) = (Sym⊗Sym)(W ) for all W ∈ L (H).

4.2 The locally tomographic cone

Using the notation introduced in Section 3, Ls(H)⊠Ls(H) stands for Ls(H)⊗Ls(H) as ordered by

the locally tomographic cone

(Ls(H)⊠Ls(K))+ := LT(Ls(H⊗H)+).

Let (Ls(H)⊗Ls(K))+ stand for the cone of positive operators belonging to Ls(H)⊗Ls(K). That is,

(Ls(H)⊗Ls(H))+ := (Ls(H)⊗Ls(H))∩Ls(H⊗H)+.

A priori, we have

(Ls(H)⊗min Ls(K)+ ⊆ (Ls(H)⊗Ls(K))+

⊆ (Ls(H)⊠Ls(K))+ ⊆ (Ls(H)⊗max Ls(K))+.

We’ll presently see that if H and K are of dimension two or greater, all four of these inclusions are proper.

If x,y ∈ H, we use the standard operator-theoretic notation x⊙ y (rather than |x〉〈y| as in Dirac notation)

for the operator on H given by (x⊙ y)z = 〈z,y〉x for all z ∈ H. If ‖x‖ = 1, then x⊙ x = Px, the rank-one

projection onto the span of x.
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Example 1: Let H = R2 and let {x,y} be any orthonormal basis. Let z be the real EPR state z =
1√
2
(x⊗ y+ y⊗ x). Direct computation shows that

z⊙ z = 1
2
(Px⊗Py+Py⊗Px+(x⊙ y)⊗ (y⊙ x)+ (y⊙ x)⊗ (x⊙ y))

Now, Sym(x⊙y) = 1
2
(x⊙y+y⊙x) = Sym(y⊙x) =: S where Sx = 1

2
y and Sy= 1

2
x. So W := LT(z⊙z) =

1
2
(Px ⊗Py +Py ⊗Px) + S⊗ S. This is not a positive operator. For instance, if v = x⊗ x− y⊗ y, then

W v =− 1
4
v.

This shows that the embedding V(A ⊠ B) → V(AB) is in general not positive, as mentioned earlier.

Consequently, (Ls ⊗Ls)+ is strictly smaller than (Ls(H)⊠Ls(K))+.

Theorem 1: Let dimH and dimK be 3 or greater. The cone (Ls(H)⊗Ls(K))+ is strictly larger than

the cone (Ls(H)⊗min Ls(K))+, and the cone (Ls(H)⊠Ls(K))+ is strictly smaller than the cone

(Ls(H)⊗max Ls(K))+.

Proof (sketch): To simplify notation a bit, let H=K, and write Ls(H) and La(H) as Ls and La. Lemma

1 tells us that (Ls ⊠Ls)
∗
+ ≃ (Ls ⊗Ls)+. There exist well-known examples of entangled states in Ls ⊗

Ls, namely those arising from unextendible product bases; see [6].5 Hence, (Ls ⊗Ls)∩Ls(H⊗K)+ is

strictly larger than the minimal tensor cone, which contains only unentangled states. Dualizing, we see

that (Ls(H)⊠Ls(K))+ must be strictly smaller than the maximal tensor cone. �

Remark: The geometry of the locally tomographic cone (Ls(H)⊠Ls(K))+ appears to be quite interest-

ing. Although the mapping LT : Ls(H⊗K)→ Ls(H)⊠Ls(K) is in general many-to-one, remarkably,

this is not the case for pure states: as shown by Lemma 17 of [8], any pure state of H⊗K can be distin-

guished from any other state (pure or mixed) by product effects. Thus, if ω is a pure state in Ls(H⊗K),
it is the only state with local shadow LT(ω).6

4.3 Processes

Let Φ : Ls(H⊗K)→ Ls(H⊗K) be a positive linear mapping. For simplicity of notation, let’s write

Ls,s for Ls(H)⊗Ls(K), Ls,s and La,s for La(H)⊗La(K), and so on. We then have an orthogonal

decomposition

Ls(H⊗K) = Ls,s ⊕Ls,a ⊕La,s ⊕La,a,

with respect to which Φ has an operator matrix

[
Φs,s Φs,a

Φa,s Φa,a

]
, where, e.g, Φs,s : Ls,s → Ls,s, Φa,s :

Ls,s → La,a, etc. A straightforward translation of Lemma 2 gives us

Lemma 6: Let Φ be as above. Then Φ is locally positive iff Φs,a = 0, and in this case, LT(Φ) = Φs,s.

This provides another way to see that effects on H⊗K, as processes

Ls(H⊗K)→ Ls(R),

5We thank Giulio Chiribella for drawing our attention to these.
6If ω is an interior point in the cone Ls(H⊗K)+, then the affine space ω +La(H)⊗La(K), whose elements µ all satisfy

Tr(µ(a⊗b)) = Tr(ω(a⊗b)) for all product effects a⊗b, will certainly intersect the boundary of the positive cone. However,

this intersection will not contain pure states, but only points interior to higher-dimensional faces of the cone.
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are generally not locally positive. The following example is particularly noteworthy:

Example 2: Consider the functional ε : L (R2⊗R2) =L (R2)⊗L (R2)→R corresponding to the trace

inner product, i.e., the functional uniquely defined on pure tensors by ε(a⊗b) = Tr(abt). The subspace

La,a ≤ L (R2) is one-dimensional, spanned by the operator J ⊗ J = J, where J(x,y) = (−y,x). Note

that J2 = −1. Hence ε(J) = Tr(JJt) = −Tr(J2) = Tr(1) = 2. Since ε does not vanish on La,a, ε is not

locally positive.

5 Conclusions and questions

At a minimum, LT(RQM) provides us with an interesting “foil” GPT, related to but distinct from both

complex and real finite-dimensional real quantum theory, and from their Jordan-algebraic relatives [2]

(which, like RQM, are not locally tomographic). Among the many questions that suggest themselves

about this theory, and about the LT construction more generally, the following stand out to us as particu-

larly interesting.

Compact Closure Example 2 shows that LT(RQM) does not inherit the usual compact structure from

RQM. Given a monoidal probabilistic theory, theory (C ,V) with C compact closed, when is LT(C ,V)
compact closed?

LT and Complex QM The functor R : CQM → RQM given by restriction of scalars does not preserve

tensor products. It would be of interest to understand the functor LT◦R from CQM to LT(RQM). One

can ask a parallel question about complexification.

The Shadow of InvQM In [2], we constructed a non-locally-tomographic theory we called InvQM, which

contains finite-dimensional real and quaternionic QM as sub-theories, and also a relative of complex QM

in which the composite of two complex quantum systems comes with an extra binary superselection rule.

As we will discuss elsewhere, much of what was done above for RQM generalizes readily to InvQM,

but the resulting theory — like LT(RQM) — remains largely unexplored.

Non-deterministic shadows If local agents Alice and Bob agree that their joint state is ω , this is consistent

with the actual, global state being any element µ ∈ LT−1
A,B(ω). If the (unknown) actual state evolves under

a (global) process φ : V(AB)→ V(CD), the result will be one of the states in φ(LT−1
A,B(ω)). Unless φ

is local, these will not be confined to a single fibre of LTC,D; parties C and D might observe any of

the different states in LTC,D(φ(LT−1
A,B(ω))), giving the impression that φ acts indeterministically. How

ought this uncertainty be quantified? Note that in this situation, the states of AB act as hidden variables

“explaining” this apparent lack of determinism.
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Building on the theory of quantum posets, we introduce a non-commutative version of suplattices,

i.e., complete lattices whose morphisms are supremum-preserving maps, which form a step towards

a new notion of quantum topological spaces. We show that the theory of these ‘quantum suplattices’

resembles the classical theory: the opposite quantum poset of a quantum suplattice is again a quantum

suplattice, and quantum suplattices arise as algebras of a non-commutative version of the monad of

downward-closed subsets of a poset. The existence of this monad is proved by introducing a non-

commutative generalization of monotone relations between quantum posets, which form a compact

closed category. Moreover, we introduce a non-commutative generalization of Galois connections

and we prove that an upper Galois adjoint of a monotone map between quantum suplattices exists

if and only if the map is a morphism of quantum suplattices. Finally, we prove a quantum version

of the Knaster-Tarski fixpoint theorem: the quantum set of fixpoints of a monotone endomap on a

quantum suplattice form a quantum suplattice.

1 Introduction

A poset is called a complete lattice if it has all suprema, or equivalently, if it has all infima. However,

a function between complete lattices that preserves all suprema does not necessarily preserve all infima.

Hence, one can define several categories of complete lattices with different classes of morphisms. For

instance, the class consisting of maps that preserve both all suprema and all infima, or the class of maps

that only preserve all suprema. If we choose this latter class of morphisms, we typically call the objects

of the resulting category Sup suplattices instead of complete lattices.

In this contribution, we introduce a noncommutative version of suplattices, which we call quantum

suplattices. One of the reasons why we are interested in these objects is that they might lead to a notion

of quantum topological spaces that allows for the quantization of topological spaces that are not locally

compact Hausdorff, such as the Scott topology on a dcpo. Any topology of a topological space is in

particular a complete lattice; the usual approach to quantum topological spaces are C*-algebras, which

can be regarded as noncommutative locally compact Hausdorff spaces.

The approach we take is the program of discrete quantization [11]. Here, quantizing some mathe-

matical structure is understood as the operation of finding a noncommutative generalization or version

of the structure. This can be done by internalizing the structure in a suitable category of operator alge-

bras. For discrete quantization, this category is called qRel, which is equivalent to the category of von

Neumann algebras isomorphic to some (possibly infinite) ℓ∞-sum of matrix algebras (such von Neumann

algebras are also called hereditarily atomic) equipped with Weaver’s quantum relations [21]. The cate-

gory qRel shares many properties with Rel. For instance, it is also dagger compact [1, 7, 9] and enriched

over Sup. Since many mathematical structures can be described in terms of the dagger structure and the

Sup-enrichment of Rel, this makes qRel a very suitable tool for quantization. Since hereditarily atomic

von Neumann algebras have a discrete character, they can be regarded as noncommutative sets, which

explains the name ‘discrete quantization’.

http://dx.doi.org/10.4204/EPTCS.384.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Regarding discrete quantization, one could argue that it is a disadvantage that we do not work in full

generality with all von Neumann algebras. However, we see this lack of generality as a feature, not as

a bug: the category of all von Neumann algebras and quantum relations is not compact, whereas qRel

is. This is of huge importance for the theory of quantum suplattices, which relies heavily on qRel being

compact. By definition, any matrix algebra Md(C), which is often used to represent a qudit, is an example

of a hereditarily atomic von Neumann algebra. Since any tensor product of two matrix algebras is a

hereditarily atomic von Neumann algebra, systems of multiple qudits can be represented by hereditarily

atomic von Neumann algebras. Therefore, hereditarily atomic von Neumann algebras are sufficient for

most practical applications in quantum information theory and in quantum computing. Recently, discrete

quantization was applied successfully in the denotational semantics of quantum programming languages

[13].

1.1 Related work

Discrete quantization can be regarded as a special case of quantization via quantum relations, which we

distilled by Weaver [21] from his work with Kuperberg on quantum metric spaces [15]. The category

qRel whose objects are called quantum sets was introduced by Kornell [12], who showed that this cate-

gory is dagger compact. Moreover, in the same reference, he quantized functions by internalizing them

in qRel, and showed showed that resulting category qSet of quantum sets and quantized functions is

symmetric monoidal closed, complete, cocomplete, and dual to the category of hereditarily atomic von

Neumann algebras and normal ∗-homomorphisms. Furthermore, Kornell showed in [11] that qRel is

equivalent to the category of hereditarily atomic von Neumann algebras and Weaver’s quantum relations,

and introduced a logic with equality for qRel.

Quantum posets were already defined by Weaver in [21]. The properties of the category of quantum

posets in the framework of discrete quantum mathematics were investigated in [14] by Kornell, Mislove

and the second author. The same authors proceeded in [13] by quantizing cpos by means of discrete

quantization. Traditionally, cpos are a class of posets that form the essential objects for the denotational

semantics of programming languages. One would expect that the denotational semantics of quantum

programming languages will require quantized cpos. The current state-of-the art quantum programming

language is Proto-Quipper-M, which was introduced by Rios and Selinger [19], subsequently extended

with recursive terms in [16] and then with recursive types in [17] by Mislove, Zamdzhiev and the second

author. In [13], the quantized cpos were successfully used to construct sound and adequate denotational

models for these extensions.

Finally, we mention the quantum graphs [21, Definition 2.6(d)][8], which recently attracted some

attention [2, 20, 22, 18, 5, 6]. Quantum graphs can be described in the framework of discrete quantum

quantization in a similar way as quantum posets. Just like a poset is a special kind of graph, a quantum

poset is a special kind of quantum graph, and many concepts and techniques from quantum graphs carry

over to quantum posets.

1.2 Overview of the paper

We start by giving a recap of quantum sets and quantum posets. Then we introduce monotone relations

between quantum sets. These are of importance, because the ordinary down-set monad on the category

Pos of ordinary posets can be obtained from an adjunction between Pos and the category RelPos of posets

and monotone relations. We proceed by introducing the quantum down-set monad qDwn and explaining

its connection with upper sets and the quantum power set. We then introduce a quantum generalization of
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Galois connections, which we use to define quantum suplattices. We show that qDwn(X ) is a quantum

suplattice for any quantum poset X . Together with the characterization of Galois connections between

quantum posets (cf. Theorem 7.2), these are the only proofs we include, just to give a flavor of how

to work with quantum sets. Furthermore, we sketch why the opposite of a quantum suplattice is also

a quantum suplattice. Finally, we discuss enrichment over Sup and fixpoints of monotone endomaps

between quantum suplattices.

Let us stress that although the quantized theorems we included in the present paper are almost verba-

tim copies of their classical versions, the proof of a quantized theorem is usually much more complicated

than its classical counterpart.

2 Preliminaries

2.1 Quantum sets

The basic reference for this section is [12]. Here, the definition of qRel implicitly makes use of cate-

gorical constructions, which we choose to highlight. In order to do so, we first introduce the category

FdOS whose objects are nonzero finite-dimensional Hilbert spaces. A morphism A : X →Y in FdOS is a

operator space, that is a subspace of the vector space L(X ,Y ) of linear operators X →Y . We define com-

position of A with a morphism B : Y → Z in FdOS as the operator space B ·A := span{ba : a ∈ A,b ∈ B}.

The identity morphism on X is the operator space C1X := {λ1X : λ ∈ C}. Since the space L(X ,Y ) is

actually a finite-dimensional Hilbert space itself via the inner product (a,b) 7→ Tr(a†b), where a† : Y → X

denotes the hermitian adjoint of a ∈ L(X ,Y ), the homset FdOS(X ,Y ) becomes a complete modular or-

tholattice; the order on the homset is explicitly given by A ≤ B if and only if A is a subspace of B. Since

composition in FdOS(X ,Y ) preserves suprema, FdOS is enriched over the category Sup of complete

lattices and suprema-preserving functions; any such category is also called a quantaloid.

Products and coproducts in quantaloids coincide and are also called sums. Any quantaloid Q has

a free sum-completion of Q, which can be described by the quantaloid Matr(Q), whose objects are

Set-indexed families of objects (Xi)i∈I of Q, and whose morphisms R : (Xi)i∈I → (Yj) j∈J are ‘matrices’

whose (i, j)-component R(i, j) is a Q-morphism Xi → Yj. Composition in Mat(Q) is defined by matrix

multiplication: we define S ◦R for S : (Yj) j∈J → (Zk)k∈K by (S ◦R)(i,k) =
∨

j∈J S( j,k) ·R(i, j) for each

i ∈ I and k ∈K, where · denotes the composition of morphisms in Q. The (i, i′)-component of the identity

morphism on an object (Xi)i∈I is the identity morphism of Xi if i = i′, and 0 otherwise. The order on the

homsets of Matr(Q) is defined componentwise. The matrix-construction as the free sum-completion

of quantaloids was introduced in [10], and is a special case of a matrix-construction for more general

bicategories as described in [3].

We now define qRel as the quantaloid Matr(FdOS). Any object X of qRel is called a quantum set;

whose atoms are the Hilbert spaces in X . A quantum set consisting of a single atom is called atomic.

For convenience, we denote the elements of the index set At(X ) of X by the atoms of X themselves,

hence At(X ) can be interpret as the set of atoms of X . Thus, in some sense X is indexed by itself, just

like ordinary sets can be regarded as indexed families indexed by themselves via the identity function.

Since a quantum set X is formally a indexed family, it does not have elements in the usual sense. We

shall use the notation X ∝X to express that X is an atom of X . Thus, we have X ∝X if and only if

X ∈ At(X ). Conversely, to any ordinary set M consisting of finite-dimensional Hilbert spaces we can

associate a unique quantum set QM whose set of atoms At(QM) consists of all Hilbert spaces H in M

such that dim(H) 6= 0.
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Any morphism in qRel is called a binary relation. We emphasize that binary relations between

quantum sets are not binary relations in the usual sense, i.e., subsets of the product of domain and

codomain of the relation. However, binary relations between quantum sets turn out to be generalizations

of binary relations between ordinary sets. Given our convention that the indices in the index set At(X )
of X are chosen to be the atoms of X itself, any binary relation R : X → Y between quantum sets is

an assignment that to each atom X ∝X and each atom Y of Y assigns a subset R(X ,Y ) of L(X ,Y ).
Given another binary relation S : Y → Z , the (X ,Z)-component of the composition S ◦R is given by

(S ◦R)(X ,Z) =
∨

Y ∝Y S(Y,Z) ·R(X ,Y ). The identity morphism on a quantum set X is denoted by IX
and is given by IX (X ,X ′) = C1X if X = X ′ and IX (X ,X ′) = 0 otherwise. The quantaloid structure of

qRel can be described explicitly as follows. For binary relation R,S : X →Y we have R ≤ S if and only

if R(X ,Y ) ≤ S(X ,Y ) for each X ∝X and each Y ∝Y . Equipped with this order, any homset of qRel

becomes a complete lattice. The supremum
∨

i∈I Ri of a collection (Ri : i ∈ I) of relations X → Y is

given by (
∨

i∈I Ri)(X ,Y ) =
∨

i∈I Ri(X ,Y ) for each X ∝X and each Y ∝Y , where the supremum in the

right-hand side is taken in the complete lattice of subspaces of L(X ,Y ).

We can generalize the following set-theoretic notions to the quantum setting:

(1) A quantum set X is empty if At(X ) = /0;

(2) A quantum set X is a subset of a quantum set Y if At(X )⊆ At(Y), in which case we write X ⊆Y .

(3) The cartesian product X ×Y of two quantum sets X and Y is defined by At(X ×Y) = {X ⊗
Y : X ∝X ,Y ∝Y}, where X ⊗Y denotes the usual tensor product of the Hilbert spaces X and Y .

We denote the cartesian product of quantum sets by ×, because it is the noncommutative generalization of

the usual product. However, it is not a categorical product in any of the categories that we will introduce

below. It is not uncommon to use the notation × for a non-categorical product: for instance, it is also

used to denote the monoidal product in the category Rel of sets and binary relations.

To each ordinary set S we can assign a quantum set ‘S whose atoms are one-dimensional Hilbert

spaces that are in a one-to-one correspondence with elements of S. This correspondence can be made

precise as follows. For each s ∈ S, we define Cs := ℓ2({s}) with the convention that Cs 6= Ct if s 6= t.

Then At(‘S) = {Cs : s ∈ S}. Note that ‘(S×T ) is isomorphic to (‘S)× (‘T ) as a quantum set.

It is well known that the category FdHilb of finite-dimensional Hilbert spaces and linear maps is a

dagger compact category, where the dagger of a linear map a is given by taking its Hermitian adjoint a†.

Also qRel is a dagger compact category: for a relation R : X → Y , we define R† : Y → X by

R†(Y,X) = {a† : a ∈ R(X ,Y)} for each X ∝X and each Y ∝Y . The cartesian product × of quan-

tum sets extends to a monoidal product that is defined on morphisms R : X → Y and S : W → Z by

(R× S)(X ⊗W,Y ⊗ Z) = R(X ,Y)⊗ S(W,Z) for each X ⊗W ∝X ×W and each Y ⊗ Z ∝Y ×Z . The

monoidal unit 1 is given by the quantum set consisting of a single one-dimensional atom, typically de-

noted by C.

Let H and K be Hilbert spaces. For each linear operator v ∈ L(H,K), write v∗ ∈ L(K∗,H∗) for

the Banach space adjoint of v, defined by v∗(ϕ) = ϕ ◦ v. For each subspace V ≤ L(H,K), write V ∗ =
{v∗ : v ∈V} ≤ L(K∗,H∗). The dual of a quantum set X is the quantum set X ∗ determined by At(X ∗) =
{X∗ : X ∝X}. The dual of a binary relation R from X to Y is the binary relation R∗ from Y∗ to X ∗

defined by R∗(Y ∗,X∗) = R(X ,Y )∗. In qRel, the associator A, the unitors L and R, the symmetry S, the

unit H and the counit E of the compact structure can be expressed in terms of the associator α , the

unitors λ and ρ , the symmetry σ , and the unit η and counit ε of the compact structure of FdHilb. For

instance, the nonzero components of SXY : X ×Y →Y×X is given by SXY(X ⊗Y,Y ⊗X) =CσXY , and

the nonzero components of EX : X ×X ∗ → 1 are given by EX (X ⊗X∗,C) = CεX .
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The assignment S 7→ ‘S extends to a fully faithful functor ‘(−) : Rel → qRel, which is defined on

ordinary binary relations r : S → T for each s ∈ S and each t ∈ T by (‘r)(Cs,Ct) = L(Cs,Ct) if (s, t) ∈ r,

and (‘r)(Cs,Ct) = 0 otherwise. Since L(Cs,Ct) is one dimensional, it only has two subspaces, whence

‘(−) is indeed fully faithful. Moreover, it preserves the dagger structure, and the inclusion order on

homsets of Rel.

It is easy to verify that a function f : X → Y between ordinary sets is a binary relation such that

f † ◦ f ≥ 1X and f ◦ f † ≤ 1Y , where f † is the opposite relation of f . Hence, a relation F : X →Y between

quantum sets is called a function if it satisfies F† ◦F ≥ IX and F ◦F† ≤ IY . Examples of functions are

the associator, unitors, and symmetry of qRel. Another example of a function is provided by subsets Y
of quantum sets X , for which there is an inclusion function JXY defined for each Y ∝Y and each X ∝X
by JXY (Y,X) = C1Y if Y = X and JXY (Y,X) = 0 otherwise. If it is clear that X is the ambient quantum

set, we often write JY instead of JXY .

Given a binary relation R : X → Y and subsets Z ⊆ X and W ⊆Y , we define the restriction R|Z of

R to Z as the relation R◦ JXZ . The corestriction R|W of R to W is defined as the relation (JY
W
)† ◦R. We

have (R|Z)|
W = (R|W)|Z , which we denote as R|WZ .

The wide subcategory of qRel of functions is denoted by qSet, which is complete, cocomplete and

symmetric monoidal closed with respect to the monoidal product ×. The monoidal unit, associator,

unitors and symmetry are the same as for qRel.

A function F : X →Y is called injective if F† ◦F = IX and surjective if F ◦F† = IY . Any inclusion

function is an injective map. The injective and surjective functions are precisely the respective monomor-

phisms and epimorphisms of qSet. Functions that are both injective and surjective are called bijective,

and are precisely the isomorphisms of qSet. The range of a function F : X → Y is the quantum set

ranF specified by At(ran F) = {Y ∝Y : F(X ,Y ) 6= 0 for some X ∝X}. We have F = JranF ◦ F̄ for some

unique surjective function F̄ : X → ranF , which is defined by F̄(X ,Y ) = F(X ,Y ) for each X ∝X and

each Y ∝ ranF . It follows that F is surjective if and only if ranF = Y .

The functor ‘(−) : Rel → qRel restricts and corestricts to a fully faithful functor ‘(−) : Set → qSet.

Furthermore, if we denote the category of von Neumann algebras and normal ∗-homomorphisms by

WStar, then there is a fully faithful functor ℓ∞ : qSet → WStarop that on objects is defined by X 7→
⊕

X ∝X L(X). The essential image of this functor is the category of hereditarily atomic von Neumann

algebras, i.e., von Neumann algebras that are isomorphic to some (possibly infinite) ℓ∞-sum of matrix

algebras. Also qRel can be shown to equivalent to a category of operator algebras [11], namely the

category of hereditarily atomic von Neumann algebras and Weaver’s quantum relations [21].

2.2 Quantum posets

The basic reference for this section is [14]. Let X be a quantum set. Then we call a binary relation

R : X →X reflexive if IX ≤ R, transitive if R◦R ≤ R, and antisymmetric if R∧R† ≤ IX . A pair (X ,444444444444444444444444444)
consisting of a quantum set X and a reflexive, transitive and antisymmetric relation 444444444444444444444444444 on X is called a

quantum poset. The relation 444444444444444444444444444 is called an order. In order to improve the readability of expressions and

calculations, we sometimes write parentheses around 444444444444444444444444444, so we write (444444444444444444444444444).

Example 2.1. Let X be a quantum set. Then IX is a quantum order on X , which we call the trivial order.

Example 2.2. Let H be the quantum set consisting of a single two-dimensional atom H . A ‘non-classical’

order on H is given by the relation 444444444444444444444444444 on H specified by 444444444444444444444444444(H,H) = C

(

1 0

0 1

)

+C

(

0 1

0 0

)

. Since H

has only one atom H , 444444444444444444444444444 is determined by 444444444444444444444444444(H,H). Thus, (H,444444444444444444444444444) is a quantum poset.
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Let (X ,444444444444444444444444444) be a quantum poset. The relation 444444444444444444444444444† is also an order, and is called the opposite order on

X . We write (X ,444444444444444444444444444)op = (X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<), which is called the opposite quantum poset of (X ,444444444444444444444444444). Often, we just

write X instead of (X ,444444444444444444444444444) and X op instead of (X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<).

Example 2.3. Let (H,444444444444444444444444444) be the quantum poset of the previous example. Then <<<<<<<<<<<<<<<<<<<<<<<<<<< is specified by

<<<<<<<<<<<<<<<<<<<<<<<<<<<(H,H) = C

(

1 0

0 1

)

+C

(

0 0

1 0

)

.

Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets. Then we say that a function F : X → Y is monotone

if F ◦(444444444444444444444444444X )≤ (444444444444444444444444444Y)◦F . Under the composition of functions between quantum sets, quantum posets and

monotone functions form a category, which we call qPos, which is complete, cocomplete and monoidal

closed under the monoidal product that is defined by (X ,444444444444444444444444444X )× (Y,444444444444444444444444444Y) = (X ×Y,444444444444444444444444444X ×444444444444444444444444444Y). The

monoidal unit is given by (1, I1). The components of the associator, unitors and symmetry are the com-

ponents of the respective associator, unitors and symmetry of the underlying quantum sets. We denote

the evaluation morphism of qPos by Eval⊑, and the internal hom by [·, ·]⊑. We call the isomorphisms of

qPos order isomorphisms.

Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets. Then a monotone map F : X → Y is called an order

embedding if (444444444444444444444444444X ) = F† ◦ (444444444444444444444444444Y) ◦F . The surjective order embeddings are precisely the order isomor-

phisms. A subposet of a quantum poset (Y,444444444444444444444444444) consists of a subset X of Y equipped with the order

444444444444444444444444444|XX := J
†
X ◦444444444444444444444444444Y ◦ JX , to which we refer as the induced order on X . It follows that JX : (X ,444444444444444444444444444|XX ) →

(Y,444444444444444444444444444) is an order embedding.

Given a monotone map F : (X ,444444444444444444444444444X )→ (Y,444444444444444444444444444Y) between quantum posets, if we equip ranF ⊆Y with

the relative order, then the unique surjective function F̄ : X → ranF such that F = Jran F ◦ F̄ is monotone.

Hence, every monotone map can be written as the composition of a monotone surjective map and an

order embedding.

If (S,⊑) is an ordinary poset, then (‘S, ‘⊑) is a quantum poset, and vice versa; for example, the

trivial order ⊑ on S corresponds to ‘(⊑) = I‘S, the trivial order on ‘S. Moreover, a monotone map f

between ordinary posets gives rise to a monotone function ‘ f between the associated quantum posets,

and vice versa. It follows that ‘(−) extends to a fully faithful functor Pos → qPos defined on objects by

‘(S,⊑) = (‘S, ‘⊑). If 2 denotes the two-point set {0,1}, we write 2 = ‘2. If we equip 2 with the order ⊑
defined by 0 ⊏ 1, then we write 4444444444444444444444444442 = ‘⊑. Hence, (2,4444444444444444444444444442) = ‘(2,⊑).

Given a quantum set X and a quantum poset (Y,444444444444444444444444444), and given two functions F,G : X → Y , we

define F ⊑Y G if G ≤ (444444444444444444444444444)◦F . This defines an order on qSet(X ,Y) which is the quantum equivalent of

the pointwise order of functions. We sometimes write F ⊑ G instead of F ⊑Y G.

3 Monotone relations

Let (X ,⊑) and (Y,⊑) be posets. A binary relation v : X →Y is called a monotone relation [4] if (x′,y′)∈
v, x′ ⊑ x and y ⊑ y′ implies (x,y) ∈ v. Under the usual composition of binary relations, posets and

monotone relations form a category RelPos, where the identity monotone relation 1(X ,⊑) on the poset

(X ,⊑) is the binary relation ⊒. One can show that there are bijections between monotone relations

X → Y , monotone functions X ×Y op → 2, and monotone functions X → Dwn(Y ), where 2 is the two-

point poset 0,1 ordered by 0 ⊏ 1, and Dwn(Y ) is the poset of down-sets of Y ordered by inclusion. In

fact, the assignment Y 7→ Dwn(Y ) can be made into an endofunctor Dwn on Pos that is a monad, and

whose Kleisli category is isomorphic to RelPos, reflected in the previous remark that a monotone relation

X →Y corresponds to a monotone map X → Dwn(Y ), i.e., a Kleisli map. The importance of this monad

lies in the fact that its Eilenberg-Moore category is precisely the category Sup of suplattices.
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A way to see that Dwn is the underlying endofunctor of a monad is the following. Just like we can

embed Set into Rel, we have an embedding (−)⋄ : Pos → RelPos that is the identify on objects, and that

sends any monotone function f : (X ,⊑)→ (Y,⊑) to the monotone relation f⋄ = {(x,y) : y ⊑ f (x)}.

Moreover, just like the covariant power set functor extends to a functor Rel → Set that is the right

adjoint of the embedding Set → Rel, the assignment X 7→ Dwn(X) extends to a functor RelPos → Pos

that is the right adjoint of (−)⋄. The monad induced by this adjunction is precisely the down-set monad

on Pos. Hence, in order to define quantum suplattices, we will have to find the quantum generalization

of the down-set monad, and in order to find this quantum down-set monad, we have to find a quantum

generalization of monotone relations.

Definition 3.1. Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets. A binary relation V : X → Y is called

a monotone relation (X ,444444444444444444444444444X ) → (Y,444444444444444444444444444Y) if it satisfies one of the following two equivalent conditions

(hence both):

(1) (<<<<<<<<<<<<<<<<<<<<<<<<<<<Y)◦V ≤V and V ◦ (<<<<<<<<<<<<<<<<<<<<<<<<<<<X )≤V .

(2) (<<<<<<<<<<<<<<<<<<<<<<<<<<<Y)◦V =V =V ◦ (<<<<<<<<<<<<<<<<<<<<<<<<<<<X ).

The equivalence of both conditions follows from the reflexivity of orders.

Lemma 3.2. Let V : (X ,444444444444444444444444444X )→ (Y,444444444444444444444444444Y) and W : (Y,444444444444444444444444444Y)→ (Z,444444444444444444444444444Z) be monotone relations between

quantum posets. Then W ◦V : (X ,444444444444444444444444444X )→ (Z,444444444444444444444444444Z) is a monotone relation.

Lemma 3.3. Let (X ,444444444444444444444444444X ) be a quantum poset. Then <<<<<<<<<<<<<<<<<<<<<<<<<<<X : (X ,444444444444444444444444444X )→ (X ,444444444444444444444444444X ) is a monotone relation

such that for each quantum poset (Y,444444444444444444444444444Y) and all monotone relations V : (X ,444444444444444444444444444X ) → (Y,444444444444444444444444444Y) and

W : (Y,444444444444444444444444444Y)→ (X ,444444444444444444444444444X ) we have V ◦ (<<<<<<<<<<<<<<<<<<<<<<<<<<<X ) =V and (<<<<<<<<<<<<<<<<<<<<<<<<<<<X )◦W =W.

It follows from the previous two lemmas that the following definition is sound:

Definition 3.4. We define the category of quantum posets and monotone relations by qRelPos. The

identity monotone relation on a quantum poset (X ,444444444444444444444444444X ) is <<<<<<<<<<<<<<<<<<<<<<<<<<<X , which we often denote by I(X ,444444444444444444444444444).

Lemma 3.5. There is a fully faithful functor ‘(−) : RelPos → qRelPos that sends any poset (S,⊑) to

(‘S, ‘⊑) and any monotone relation v : (S,⊑)→ (T,⊑) to ‘v.

Lemma 3.6. There is a faithful functor (−)⋄ : qPos → qRelPos which is the identity on objects, and

which acts on monotone maps F : (X ,444444444444444444444444444X )→ (Y,444444444444444444444444444Y) by F⋄ := (<<<<<<<<<<<<<<<<<<<<<<<<<<<Y)◦F.

The functor in the previous lemma is an extension of the functor (−)⋄ : Pos → RelPos mentioned

above, in the sense that Pos
‘(−)
−−→ qPos

(−)⋄
−−→ qRelPos equals Pos

(−)⋄
−−→ RelPos

‘(−)
−−→ qRelPos.

Definition 3.7. Let (X ,444444444444444444444444444X ) be a quantum poset. Then we define (X ,444444444444444444444444444X )
∗ to be the quantum poset

(X ∗,444444444444444444444444444∗
X ). Sometimes, we write X ∗ instead of (X ,444444444444444444444444444X )

∗.

Since the operation of taking daggers in dagger compact categories commutes with the operation of

taking duals, we obtain the following lemma:

Lemma 3.8. Let (X ,444444444444444444444444444) be a quantum poset. Then (X ∗)op = (X op)∗.

Theorem 3.9. The category qRelPos is compact closed: for each quantum poset (X ,444444444444444444444444444), the unit

H(X ,444444444444444444444444444) : (1, I1) → (X ,444444444444444444444444444)∗ × (X ,444444444444444444444444444) and the counit E(X ,444444444444444444444444444) : (X ,444444444444444444444444444)× (X ,444444444444444444444444444)∗ → (1, I1) are given by

(<<<<<<<<<<<<<<<<<<<<<<<<<<<∗×<<<<<<<<<<<<<<<<<<<<<<<<<<<) ◦HX and EX ◦ (<<<<<<<<<<<<<<<<<<<<<<<<<<<×<<<<<<<<<<<<<<<<<<<<<<<<<<<∗), respectively, where HX and EX denote the usual unit and counit

of qRel. The associator, unitors and symmetry are obtained by applying the functor (−)⋄ to the usual

associator, unitors and symmetry in qPos.
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4 The quantum down-set monad

In this section, we introduce the quantum down-set monad. Its construction shares similarities with

the construction of the quantum power set in [14]. This construction yields a quantum poset, but the

construction of this order seems to be a bit ad hoc. The framework of monotone relations seems to

be more appropriate for the construction of an ordered object. We will see that the quantum down-set

monad by means of monotone relations is ordered in a natural way. When we apply the monad to a

trivially ordered quantum set, then we obtain the quantum power set of this quantum set.

Definition 4.1. We define the quantum poset qDwn(X ,444444444444444444444444444) of down-sets of a quantum poset (X ,444444444444444444444444444) to

be the internal hom in qPos from (X ,444444444444444444444444444)∗ to (2,4444444444444444444444444442), i.e., qDwn(X ,444444444444444444444444444) := [(X ,444444444444444444444444444)∗,(2,4444444444444444444444444442)]⊑. We

will denote its underlying quantum set by D(X ,444444444444444444444444444). The order on D(X ,444444444444444444444444444) is denoted by ⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆(X ,444444444444444444444444444), so

qDwn(X ,444444444444444444444444444) = (D(X ,444444444444444444444444444),⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆(X ,444444444444444444444444444)).

Note that the order ⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆ on qDwn(X ) is a boldface symbol to distinguish it from the inclusion order ⊆
between ordinary sets. We will prove that the assignment of objects (X ,444444444444444444444444444) 7→ qDwn(X ,444444444444444444444444444) extends to a

monad on qPos by showing that the functor (−)⋄ : qPos→ qRelPos has a right adjoint; the monad is then

induced by this adjunction. The right adjoint also sends objects (X ,444444444444444444444444444) to qDwn(X ,444444444444444444444444444). Nevertheless,

it is useful to make a distinction in the notation between monad and right adjoint, hence we will denote

the right adjoint by qDwn′. The first step of showing the existence of qDwn is the following lemma, for

which we note that we have embeddings 1 → 2 which map ∗ ∈ 1 to either 0 ∈ 2 or 1 ∈ 2. We denote the

respective maps by 0 and 1 as well. As a consequence, we have functions ‘0, ‘1 : 1 → 2.

Lemma 4.2. Let (X ,444444444444444444444444444X ) be a quantum poset. Then the bijection qSet(X ,2)→ qRel(X ,1), F 7→ ‘1†◦F

in [12, Theorem B.8] restricts and corestricts to a bijection

qPos((X ,444444444444444444444444444X ),(2,4444444444444444444444444442))→ qRelPos((X ,444444444444444444444444444X ),(1, I1)).

The counit of the adjunction that yields the ordinary down-set monad is the inverse membership

relation ∋. Lemma 4.2 assures the existence of the quantum equivalent of this counit, which we will

denote with a boldface symbol ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋.

Lemma 4.3. For any quantum poset (X ,444444444444444444444444444) there is a unique monotone relation ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) : qDwn(X ,444444444444444444444444444)→

(X ,444444444444444444444444444) such that ‘1† ◦Eval⊑ = E(X ,444444444444444444444444444) ◦ (∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)× I(X ,444444444444444444444444444)∗).

Theorem 4.4. There is a functor qDwn′ : qRelPos→ qPos whose action on objects is given by (X ,444444444444444444444444444) 7→
D(X ,444444444444444444444444444), and which is right adjoint to the functor (−)⋄ : qPos → qRelPos. The (X ,444444444444444444444444444)-component of

the counit ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋ of this adjunction is the monotone relation constructed in Lemma 4.3. The unit of the

adjunction is denoted by ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}. Its (X ,444444444444444444444444444)-component is an order embedding that is the unique monotone

function (X ,444444444444444444444444444)→D(X ,444444444444444444444444444) such that ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ◦↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}(X ,444444444444444444444444444) = I(X ,444444444444444444444444444).

Definition 4.5. We define the quantum down-set monad qDwn to be the monad induced by the adjunction

(−)⋄ ⊣ qDwn′, so qDwn = qDwn′ ◦ (−)⋄. We denote its multiplication by
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

and its unit by ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}.

Note that the multiplication
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

is a boldfaced version of the usual union
⋃

of ordinary sets.

5 Opposite quantum posets and upper sets

Let X be an ordinary poset. Then the complementation operator provides a bijection between the set

D(X) of down sets of X and the set U(X) of upper sets of X . Both D(X) and U(X) can be extended
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to endofunctors on Pos, for which we have to order the former by inclusion and the latter by contain-

ment. Then, writing Dwn(X) = (D(X),⊆) and Up(X) = (U(X),⊇), the bijection extends to an order

isomorphism Dwn(X)→ Up(X). In the quantum world, we can obtain a similar order isomorphism by

showing that we can also construct a different right adjoint of (−)⋄ in terms of upper sets, which, by the

uniqueness of right adjoints up to natural isomorphism, should be naturally isomorphic to qDwn′. This

natural isomorphism is precisely the operation of taking complements. Before we construct this right

adjoint in terms of upper sets, we first have to extend the operation of taking opposite quantum posets to

an endofunctor on qPos.

Lemma 5.1. There is an endofunctor (−)op : qPos → qPos, defined on objects by (X ,444444444444444444444444444X ) 7→ (X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<X )
and which maps any monotone map F : (X ,444444444444444444444444444X ) → (Y,444444444444444444444444444Y) to the monotone map F : (X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<X ) →
(Y,<<<<<<<<<<<<<<<<<<<<<<<<<<<Y). This functor (−)op is involutory, i.e., (−)opop = 1qPos, hence an isomorphism of categories.

Proposition 5.2. Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets. Then [X op,Yop]⊑ = [X ,Y]
op
⊑ .

Definition 5.3. Let (X ,444444444444444444444444444) be a quantum poset. Then we define the quantum poset of upsets of (X ,R) as

the quantum poset qUp(X ,444444444444444444444444444) := [(X ,444444444444444444444444444)∗,(2,<<<<<<<<<<<<<<<<<<<<<<<<<<<2)]⊑. We denote its underlying quantum set by U(X ,444444444444444444444444444).

The previous proposition yields qUp(X ,444444444444444444444444444) = [X ∗,2op]⊑ = [(X op)∗,2]
op
⊑ = qDwn(X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<)op, whence

U(X ,444444444444444444444444444) = D(X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<). The other right adjoint is obtained by constructing a different counit, namely the

inverse non-membership relation. This is done by taking 2op instead of 2 and ‘0† ◦F instead of ‘1† ◦F in

Lemma 4.2: Then given a quantum poset (X ,444444444444444444444444444), we have that 6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋(X ,444444444444444444444444444) is the unique monotone relation

qUp(X ,444444444444444444444444444)→ (X ,444444444444444444444444444) such that ‘0† ◦Eval⊑ = E(X ,444444444444444444444444444) ◦ (6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋(X ,444444444444444444444444444)× I(X ,444444444444444444444444444)∗).

Theorem 5.4. There is a functor qUp′ : qRelPos → qPos whose action on objects is given by (X ,444444444444444444444444444) 7→
qUp(X ,444444444444444444444444444) that is right adjoint to the functor (−)⋄ : qPos → qRelPos. Its counit is denoted by 6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋, and

its (X ,444444444444444444444444444)-component of the counit is the monotone relation 6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋(X ,444444444444444444444444444).

Definition 5.5. The monad qUp′◦(−)⋄ on qPos is denoted by qUp. Note that its action on objects agrees

with the assignment (X ,444444444444444444444444444) 7→ qUp(X ,444444444444444444444444444).

Corollary 5.6. There is a natural isomorphism C : qDwn′ → qUp′ between functors qRelPos → qPos

that induces a natural isomorphism between the endofunctors qDwn → qUp on qPos that we also denote

by C. In particular, for a quantum poset (X ,444444444444444444444444444), the (X ,444444444444444444444444444)-component of C is an order isomorphism

C(X ,444444444444444444444444444) : qDwn(X ,444444444444444444444444444)→ qUp(X ,444444444444444444444444444) that is natural in (X ,444444444444444444444444444) such that ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ◦C(X ,444444444444444444444444444) = 6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋6∋(X ,444444444444444444444444444).

6 The quantum power set

In [14], the quantum power set monad P was introduced. We sketch how to derive this monad from

the quantum down-set monad. We have a clear categorical embedding qSet → qPos acting on objects

by X 7→ (X , IX ), which is left adjoint to a forgetful functor acting on objects by (X ,444444444444444444444444444) 7→ X . We can

now define the quantum power set P(X ) of a quantum poset X as the quantum set D(X , IX ), which

can be made into a functor by composing D with the embedding of qSet into qPos. By playing with

the composition of adjunctions, we can equip P with the structure of a monad such as in [14]. The

ordered quantum power set qPow(X ) can be obtained as qDwn(X , IX ). We note that P(X ) is also the

underlying quantum set of qUp(X , IX ). The natural isomorphism C from Corollary 5.6 now yields a

bijection C(X ,IX ) : P(X )→P(X ) that is an order isomorphism qPow(X )→ qPow(X )op, and which can

be regarded as the quantum analog of the complement operator on the power set. For simplicity, we write

CX instead of C(X ,IX ).
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7 Galois connections

Definition 7.1. Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets and let F : X → Y and G : Y → X be

functions. If (444444444444444444444444444Y)◦F = G† ◦ (444444444444444444444444444X ), we say that (F,G) forms a Galois connection, or that F is the lower

adjoint of G, or that G is the upper adjoint of F.

This definition is a generalization of the usual definition of a Galois connection between ordinary

posets: the ‘(−) functor maps ordinary Galois connections to Galois connections in the sense of the

definition above. Similarly as in the classical case, the lower adjoint in a Galois connection determines

the upper adjoint and vice versa. The next theorem provides alternative characterizations of Galois

connections, which might look more familiar to the classical case:

Theorem 7.2. Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets and let F : X → Y and G : Y → X be

monotone functions. Then the following statements are equivalent:

(1) F is the lower adjoint of G : Y →X .

(2) F ◦K ⊑Y M ⇐⇒ K ⊑X G◦M for any quantum set Z and functions K : Z →X and M : Z →Y .

(3) We have IX ⊑X G◦F and F ◦G ⊑Y IY .

Proof. We start by showing that (1) implies (2). So assume that F is the lower adjoint of G, so (444444444444444444444444444Y)◦F =
G†◦(444444444444444444444444444X ). Let Z be a quantum set and let K :Z →X and M :Z →Y be functions. Assume F ◦K ⊑Y M.

By definition of ⊑Y , we have M ≤ (444444444444444444444444444Y)◦F ◦K, so M ≤ G† ◦444444444444444444444444444X ◦K, hence G◦M ≤ G◦G† ◦444444444444444444444444444X ◦K ≤
(444444444444444444444444444X )◦K since G is a function. Hence K ⊑X G◦M.

Conversely if K ⊑X G◦M, we have G◦M ≤ (444444444444444444444444444X )◦K by definition of a function, M ≤ G† ◦G◦M ≤
G† ◦444444444444444444444444444X ◦K = (444444444444444444444444444Y)◦F ◦K, so F ◦K ⊑Y M.

We show that (2) implies (3). Since F ⊑Y F , condition (2) yields IX ⊑X G◦F if we choose Z = X ,

K = IX and M = F . Since G ⊑X G, we obtain F ◦G ⊑Y IY by choosing Z = Y , K = G and M = IY .

We proceed by showing that (3) implies (1). Since IX ⊑X G ◦F , we have G ◦F ≤ (444444444444444444444444444X ). Then

F ≤ G† ◦G◦F ≤ G† ◦(444444444444444444444444444X ). By Lemma 5.1, G : Yop →X op is also monotone, so G◦(<<<<<<<<<<<<<<<<<<<<<<<<<<<Y)≤ (<<<<<<<<<<<<<<<<<<<<<<<<<<<X )◦G,

which implies (444444444444444444444444444Y) ◦G† ≤ G† ◦ (444444444444444444444444444X ) after taking daggers. Hence, (444444444444444444444444444Y) ◦F ≤ (444444444444444444444444444Y) ◦G† ◦444444444444444444444444444X ≤
G† ◦ (444444444444444444444444444X ◦444444444444444444444444444X ) = G† ◦ (444444444444444444444444444X ).

Since F ◦G ⊑Y IY , we have IY ≤ (444444444444444444444444444Y)◦F ◦G. Hence, G† ≤ (444444444444444444444444444Y)◦F ◦G◦G† ≤ (444444444444444444444444444Y)◦F . Since F

is monotone, we have F ◦ (444444444444444444444444444X )≤ (444444444444444444444444444Y)◦F , whence G† ◦ (444444444444444444444444444X )≤ (444444444444444444444444444Y)◦F ◦ (444444444444444444444444444X )≤ (444444444444444444444444444Y ◦444444444444444444444444444Y)◦F =
(444444444444444444444444444Y)◦F . We conclude that (444444444444444444444444444Y)◦F = G† ◦ (444444444444444444444444444X ), so F is the lower adjoint of G.

The next example is the quantum version of the statement that the direct image and the preimage of

a function form a Galois connection:

Example 7.3. qPow(F) : qPow(X )→ qPow(Y) is the lower Galois adjoint of qPow(F†) for any function

F : X → Y .

Also the notion of closure operators can be generalized to the quantum setting:

Definition 7.4. Let (X ,444444444444444444444444444) be a quantum poset. Then we call a monotone function C : X →X a closure

operator on X if IX ⊑C and C ◦C =C.

Just as in the classical case, there is a relation between Galois connections and closure operators:

Theorem 7.5. Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum posets and let F : X →Y be a monotone function

that is the lower adjoint of a monotone function G : Y → X . Then C := G ◦F is a closure operator on

X . Conversely, let C be a closure operator on a quantum poset (X ,444444444444444444444444444X ). Let Y = ranC, and let 444444444444444444444444444Y

be the induced order on Y , i.e., 444444444444444444444444444Y = 444444444444444444444444444X |
Y
Y

. Then the unique surjective monotone function C̄ : X → Y
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such that C = JY ◦C̄ is is the lower adjoint of the order embedding JY : Y →X . In particular, we have

C̄ ◦ JY = IY .

The quantum version of the operation A 7→↓ A on a power set Pow(X) is a closure operator:

Example 7.6. Let 444444444444444444444444444 be an order on a quantum set X . Then qPow(<<<<<<<<<<<<<<<<<<<<<<<<<<<) is a closure operator on qPow(X ).
Its range equipped with the relative order equals qDwn(X ,444444444444444444444444444).

8 Quantum suplattices

Classically, a poset X is a complete lattice if its canonical embedding X → Dwn(X), x 7→↓ x into its poset

of down-sets has a lower Galois adjoint. We will use this fact in order to define quantum suplattices.

Definition 8.1. Let (X ,444444444444444444444444444X ) be a quantum poset, and let ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}(X ,444444444444444444444444444X ) : (X ,444444444444444444444444444X ) → qDwn(X ,444444444444444444444444444X ) be

the order embedding of X into the quantum poset of down-sets of X . Then we say that (X ,444444444444444444444444444X ) is a

quantum suplattice if ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}(X ,444444444444444444444444444X ) has a lower adjoint
∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨

(X ,444444444444444444444444444X ) : qDwn(X ,444444444444444444444444444X )→ (X ,444444444444444444444444444X ). Moreover,

if (Y,444444444444444444444444444Y) is another quantum suplattice, then we say that a function K : X →Y is a homomorphism of

quantum suplattices if K ◦
∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨

(X ,444444444444444444444444444X ) =
∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨

(Y ,444444444444444444444444444Y ) ◦D(K). We denote the category of quantum suplattices

and homomorphisms of quantum suplattices by qSup.

We will show that quantum posets of down-sets form the primary examples of quantum suplattices.

In the classical case, this is completely obvious; one just need to observe that a union of down-sets is a

down-set. However, in the quantum case, the proof is nontrivial. We need one crucial lemma.

Lemma 8.2. Let (X ,444444444444444444444444444) be a quantum poset. Then the inverse inclusion order ⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇ on D(X ) is the largest

binary relation T on D(X ) such that (∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444))◦T ≤ (∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)).

Theorem 8.3. Let (X ,444444444444444444444444444) be a quantum poset. Then qDwn(X ,444444444444444444444444444) is a quantum suplattice. More specif-

ically, the lower Galois adjoint
∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨

D(X ,444444444444444444444444444) of the canonical embedding ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}qDwn(X ,444444444444444444444444444) : qDwn(X ,444444444444444444444444444) →

qDwn2(X ,444444444444444444444444444) is given by the (X ,444444444444444444444444444)-component of
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

(X ,444444444444444444444444444) of the multiplication
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

: qDwn2 → qDwn of

the qDwn-monad on qPos.

Proof. For simplicity, we write ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·} instead of ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}qDwn(X ,444444444444444444444444444) and
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

instead of
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

(X ,444444444444444444444444444). Consider the

following two diagrams:

qDwn(X ) qDwn(X )

qDwn2(X ) qDwn(X ) qDwn2(X )

qDwn(X ) (X ,444444444444444444444444444) qDwn(X ) (X ,444444444444444444444444444)

↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}
IqDwn(X )

↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}

∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)

∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ,444444444444444444444444444)

qDwn′(∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)) ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)

The triangle in the left diagram commutes by Theorem 4.4. The square commutes by naturality of ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋
and since qDwn′ equals qDwn on objects. The right diagram commutes since

⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

(X ,444444444444444444444444444) = qDwn(∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)),
so it is the outside of the left diagram. By the universal property of ∋ as the counit of the adjunction

(−)⋄ ⊣ qDwn, the unique monotone function K : qDwn(X )→ qDwn(X ) such that ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ◦K = ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444)

is the identity function on D(X ). Hence, we conclude that
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

◦↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·} = ID(X ). Note that the right-hand

side is not the same as the identity monotone relation IqDwn(X ), which is ⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇, even though D(X ) is the

underlying quantum set of qDwn(X ).
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As a consequence,
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

is an epimorphism in qSet, hence it is surjective, so
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃† = ID(X ). Then,

using the naturality of ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋, we obtain

∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) = ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃†

= ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ◦qDwn′(∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444))◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃†

= ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋(X ,444444444444444444444444444) ◦∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ,444444444444444444444444444) ◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃†

,

which, by Lemma 8.2, implies ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ) ◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃† ≤ (⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇) = IqDwn(X ). Since also IqDwn(X ) = ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋D(X ,444444444444444444444444444) ◦

↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}D(X ,444444444444444444444444444) (cf. Theorem 4.4), we obtain ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ) ◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃† ≤ ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ) ◦↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}. Then, since ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·} is a func-

tion, we find ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ) ◦
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃† ◦ (↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·})† ≤ ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ) ◦↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·} ◦ (↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·})† ≤ ∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋∋qDwn(X ). Again applying Lemma

8.2 yields
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃† ◦ (↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·})† ≤ (⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇), whence (⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆)◦↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·} ◦

⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

≤ (⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆)◦ (⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇⊇)† = (⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆)◦ (⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆)≤ (⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆) = (⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆⊆)◦ ID2(X ),

which expresses that ID2(X ) ≤
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

◦ ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}. It now follows from Theorem 7.2 that
⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃⋃

is the lower Galois

adjoint
∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨∨

qDwn(X ) of ↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}, hence qDwn(X ) is indeed a quantum suplattice.

We can now formulate the quantum versions of two classical theorems on suplattices:

Theorem 8.4. Let (X ,444444444444444444444444444X ) and (Y,444444444444444444444444444Y) be quantum suplattices and let F : X →Y be monotone. Then

F is a homomorphism of quantum suplattices if and only if it has an upper Galois adjoint.

Theorem 8.5. The Eilenberg-Moore category of qDwn is equivalent to qSup.

9 Quantum inflattices

We can define an inflattice to be the opposite of a suplattice. In the quantum world, we follow the same

path to define quantum inflattices:

Definition 9.1. A quantum poset (X ,444444444444444444444444444) is called a quantum inflattice if (X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<) is a quantum suplattice.

Classically, a poset is a suplattice if and only if it is an inflattice. The same is true in the quantum

case. In order to prove this, a first step is showing a different characterization of quantum suplattices,

which is analogue to the observation that any ordinary poset X is a suplattice if and only if the embedding

X → Pow(X), x 7→↓ x has a lower Galois adjoint. The analogue embedding D(X ,444444444444444444444444444) of a quantum poset

(X ,444444444444444444444444444) into qPow(X ) is given by J ◦↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}↓{·}X , where J : qDwn(X ,444444444444444444444444444)→ qPow(X ) is the order embedding

from Example 7.6.

Lemma 9.2. A quantum poset (X ,444444444444444444444444444) is a quantum suplattice if and only if D(X ,444444444444444444444444444) : (X ,444444444444444444444444444)→ qPow(X )
has a lower Galois adjoint F(X ,444444444444444444444444444).

Classically, for any ordinary set X and any subset A ⊆ Pow(X), the intersection
⋂

A of all subsets

in A is given by X \
⋃

A∈A(X \A), so by using the union operator and the complement operator. Since

for any quantum set X its quantum power set qPow(X ) = qDwn(X , IX ) is a quantum suplattice (cf.

Theorem 8.3), and similar to the complementation operator on ordinary power sets, we have an order

isomorphism CX : qPow(X )→ qPow(X )op, we can prove:

Lemma 9.3. The quantum power set qPow(X ) of any quantum set X is a quantum inflattice.

Then, given a quantum suplattice (X ,444444444444444444444444444) with embedding D(X ,444444444444444444444444444) : (X ,444444444444444444444444444) → qPow(X ) that is the

upper adjoint of F , and denoting the lower adjoint of DqPow(X )op : qPow(X )op → qPow(P(X )) by N, we

can show that F ◦N ◦qPow(D(X ,444444444444444444444444444)) is the lower Galois adjoint of D(X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<) : (X ,<<<<<<<<<<<<<<<<<<<<<<<<<<<)→ qPow(X ), proving:

Theorem 9.4. Any quantum suplattice (X ,444444444444444444444444444) is a quantum inflattice.
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10 Enrichment

It was shown in [14] that the pointwise order of functions between quantum sets induces a Pos-enrichment

of qPos. Similarly, in [13] it was shown that the category qCPO of quantum cpos is enriched over the

category CPO of cpos, i.e., posets for which any monotonically increasing sequence has a supremum.

We can enrich qSup over Sup in a similar way. We first have to quantize the supremum of collections of

functions into a quantum suplattice.

Definition 10.1. Let X be a quantum set and (Y,444444444444444444444444444) a quantum poset. Let K be a subset of qSet(X ,Y).
Then a function F : X →Y is called the limit of K, denoted by F = limK if (444444444444444444444444444)◦F =

∧

K∈K(444444444444444444444444444)◦K.

A quantum cpo is a quantum poset (Y,444444444444444444444444444) for which the limit of any countable chain in qSet(X ,Y)
exists for any quantum set X , so the above definition is a generalization of the concept of limits in [14].

Let X be a quantum set and let (Y,444444444444444444444444444) be a quantum poset. Let K ⊆ qSet(X ,Y). If limK exists,

then it is the supremum of K in qSet(X ,Y) ordered by ⊑. The converse does not always hold. If Y is

a quantum suplattice, then limK always exists. We can prove this by first showing the case Y = 2, then

the case Y = qPow(X ), which equals [X ∗,2]⊑, and finally the general case using Lemma 9.2. Moreover,

one can show that limK is a homomorphism of quantum suplattices if X is also a quantum suplattice and

all functions in K are homomorphisms of quantum suplattices. Finally, one can show that composition

with homomorphisms of quantum suplattices preserves the operation of taking limits, yielding:

Theorem 10.2. qSup is enriched over Sup.

11 Fixpoints

Let X be a quantum set and Y a quantum suplattice. Since qSet(X ,Y) is a complete lattice, it follows

from the Knaster-Tarski fixpoint theorem that:

Proposition 11.1. Let F : Y →Y be a monotone map on a quantum suplattice Y . Then for each quantum

set X , the set of all functions K : X →Y such that F ◦K = K is a complete lattice.

Categorically, a generalized fixpoint of an endomorphism f : Y → Y in a given category C can be

defined as a monomorphism m : X →Y for some object X such that f ◦m = m. This leads to:

Definition 11.2. Let (Y,444444444444444444444444444) be a quantum poset, and let F : Y → Y be a monotone function. If the

largest subset X of Y such that F ◦ JX = JX exists, we call it the quantum set of fixpoints of F, denoted

by Fix(F). Similarly, if the largest subset X of Y such that F ◦ JX ⊑ JX exists, we call it the quantum

set of prefixpoints of F, denoted by Pre(F). Finally, if the largest subset X of Y such that F ◦ JX ⊒ JX
exists, we call it the quantum set of postfixpoints of F, denoted by Post(F).

Denoting Q{X} for the quantum subset of Y consisting of the atom X ∝Y , we can show that the

largest subset Post(F) of postfixpoints of a monotone endofunction F on a quantum poset Y exists and is

determined by At(X ) = {X ∝Y : JQ{X} ⊑ F ◦ JQ{X}}. Similarly, one can show that Pre(F) and Fix(F)
exist.

Classically, the postfixpoints P of a monotone map f : Y →Y on a suplattice form a suplattice. This

can be seen by a follows. P = {y ∈ Y : y ≤ f (y)}. Let S ⊆ P, and let x = sup S. Then by monotonicity

of f , we have y ≤ f (y) ≤ f (x) for each y ∈ S, hence x =
∨

S ≤ f (x), showing that P is closed under

suprema, so a suplattice. In a similar way, we can prove:

Proposition 11.3. Given a monotone endofunction F : Y → Y on a quantum suplattice Y , the quantum

set Post(F) of postfixpoints of F is a quantum suplattice with respect to the relative order.
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Applying Theorem 9.4, it is easy to show that Pre(F) also is a quantum suplattice with respect to the

relative order. Finally, we can show that F restricts and corestricts to a monotone function F |
Post(F)
Post(F) and

that Fix(F) = Pre
(

F|
Post(F)
Post(F)

)

from which we conclude:

Theorem 11.4 (Quantum Knaster-Tarski Theorem). Let F : Y →Y be a monotone endomap on a quan-

tum suplattice Y . Then the quantum set Fix(F) of fixpoints of F is a quantum suplattice with respect to

the relative order.

12 The relation between ordinary suplattices and quantum suplattices

Quantum posets are noncommutative generalizations of ordinary posets, since we have a fully faithful

functor ‘(−) : Pos → qPos. This functor restricts and corestricts to a functor CPO → qCPO, hence

also quantum cpos are genuine noncommutative generalizations of ordinary cpos. Remarkably, quantum

suplattices are a not noncommutative generalizations of ordinary suplattices, but only noncommuta-

tive versions of suplattice: the functor ‘(−) : Pos → qPos does not restrict and corestrict to a functor

‘(−) : Sup → qSup. Indeed, if B denotes the four-element Boolean algebra, which is clearly an ordi-

nary suplattice, then ‘B is not a quantum suplattice. In order to see this, we first recall Section 10, in

which it was stated that the limit of any collection of functions with the same domain into a quantum

suplattice always exists. We will give a collection of functions into ‘B that does not have a limit. Write

B = {0,a,b,1}, where a⊥ = b, and denote the order on B by ⊑, so 0 ⊑ a,b ⊑ 1. Let (X ,444444444444444444444444444) = ‘(B,⊑).
Let H denote the atomic quantum set whose single atom H is two-dimensional. One can show that

any function K : H → X is of the form K(H,Cx) = L(H,Cx)rx for each x ∈ B, where r0,ra,rb,r1 are

mutually orthogonal projections on H whose sum equals 1H . Then (444444444444444444444444444 ◦K)(H,Cx) = L(H,Cx)∑y⊑x ry.

So (444444444444444444444444444 ◦K)(H,Cx) is of the form L(H,Cx)sx for some projection sx of H , and clearly s0, sa, sb and s1

mutually commute, because r0, ra, rb, r1 are mutually orthogonal.

Let p and q be two distinct nontrivial noncommuting projections on H . For instance, in the standard

basis of H , let p =

(

1 0

0 0

)

and q = 1
2

(

1 1

1 1

)

. Then p and q are also not orthogonal, whence, pq 6= 0.

However, since p and q are both atomic projections, we have p∧q = 0.

Let F,G : H → X be functions defined as follows. The nonzero components of F are given by

F(H,C0) = L(H,C0)p and F(H,Ca) = L(H,Ca)p⊥, whereas the nonzero components of G are given

by G(H,C0) = L(H,C0)q, G(H,Cb) = L(H,Cb)q
⊥. Then

(444444444444444444444444444◦F)(H,Cx) =

{

L(H,Cx)p, x = 0,b;

L(H,Cx), x = a,1,

(444444444444444444444444444◦G)(H,Cx) =

{

L(H,Cx)q, x = 0,a;

L(H,Cx), x = b,1.

hence

(444444444444444444444444444◦F ∧444444444444444444444444444◦G)(H,Cx) =























0, x = 0

L(H,Ca)q, x = a;

L(H,Cb)p, x = b;

L(H,C1), x = 1.
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Assume that there is a function K : H→X such that 444444444444444444444444444◦R = (444444444444444444444444444◦F)∧ (444444444444444444444444444◦G). Since (444444444444444444444444444◦K)(H,Ca) =
L(H,Ca)q and (444444444444444444444444444◦K)(H,Cb) = L(H,Cb)p, it follows that p and q should commute, which contradicts

our assumptions. We conclude that there is a K ⊆ qSet(H,X ) such that limK does not exists, namely

K= {F,G}. Hence, X cannot be a quantum suplattice, for which all limits should exist.

The main reason why suplattices are not quantum suplattices lies in the fact that the ‘(−) functors do

not commute with P and D. Let S be a set. Then ‘P(S) does not equal P(‘S), but can only be identified

with the subset of one-dimensional atoms of P(‘S). That this subset is proper follows for instance from

the proof of [12, Proposition 9.3], which asserts that (1⊎1)∗(1⊎1), which can be identified with P(‘2),
has uncountably many atoms. The same is true for ‘D(S) if S is a poset: ‘D(S) can only be identified with

the subset of one-dimensional atoms of D(‘S). We plan to investigate whether the quantum power set

monad P is the right Kan extension of ‘(−)◦P : Set → qSet along ‘(−) : Set → qSet, where P denotes

the ordinary power set monad. If this is true, we also expect that the quantum down-set monad qDwn is

the right Kan extension of ‘(−)◦Dwn: Pos → qPos along ‘(−) : Pos → qPos.

It follows from the Sup-enrichment of qSup that the one-dimensional atoms of a quantum suplattice

form an ordinary suplattice. We expect that any ordinary suplattice is the subposet of one-dimensional

atoms of some quantum suplattice.

By extension, if quantum suplattices indeed form the right notion that is needed to generalize topolo-

gies to the noncommutative setting, then it follows that an ordinary topology on an ordinary set is not a

quantum topology, it might only be the classical part of a quantum topology. Moreover, it might be that

there are several different quantum topologies on an ordinary set that have the same ordinary topology

as classical part. If this is indeed the case, it is the question how to interpret this. Perhaps this would

be a quantum feature, in the same spirit as the result of two nonisomorphic graphs that are quantum

isomorphic [2].

13 Future work

The classical Knaster-Tarski Theorem implies the Cantor-Schröder-Bernstein Theorem. We conjecture

that a quantum version of Cantor-Schröder-Bernstein can be derived from the quantum Knaster-Tarski

Theorem.

Conjecture 13.1. Let F : X → Y and G : Y → X be injective functions between quantum sets. Then

there exists a bijection between X and Y .

The biggest potential obstacle is that an atom of the quantum power set of a quantum set X does not

directly correspond to a subset of X , as is the case in the classical case.

A quantum Cantor-Schröder-Bernstein Theorem can be reformulated in terms of operator algebras:

Conjecture 13.2. Given surjective normal unital ∗-homomorphisms ϕ : M → N and ψ : N → M between

hereditarily atomic von Neumann algebras, there must exist a ∗-isomorphism between M and N.

Furthermore, based on the fact that any quantum suplattice is a quantum inflattice, we expect:

Conjecture 13.3. qSup can be equipped with a monoidal product that makes it ∗-autonomous.
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A common approach to quantum circuit transformation is to use the properties of a specific gate set
to create an efficient representation of a given circuit’s unitary, such as a parity matrix or stabiliser
tableau, and then resynthesise an improved circuit, e.g. with fewer gates or respecting connectiv-
ity constraints. Since these methods rely on a restricted gate set, generalisation to arbitrary circuits
usually involves slicing the circuit into pieces that can be resynthesised and working with these sep-
arately. The choices made about what gates should go into each slice can have a major effect on
the performance of the resynthesis. In this paper we propose an alternative approach to generalising
these resynthesis algorithms to general quantum circuits. Instead of cutting the circuit into slices, we
“cut out” the gates we can’t resynthesise leaving holes in our quantum circuit. The result is a second-
order process called a quantum comb, which can be resynthesised directly. We apply this idea to
the RowCol algorithm, which resynthesises CNOT circuits for topologically constrained hardware,
explaining how we were able to extend it to work for quantum combs. We then compare the gener-
alisation of RowCol using our method to the naïve “slice and build” method empirically on a variety
of circuit sizes and hardware topologies. Finally, we outline how quantum combs could be used to
help generalise other resynthesis algorithms.

1 Introduction

Current quantum computers suffer from severe limitations such as high error rates, low numbers of
qubits, and connectivity constraints for multi-qubit operations. Furthermore, without error correction,
the poor fidelity of current gate implementations compounds over the execution of the circuit, so it
advantageous to find the smallest possible circuit to represent an algorithm.

Using the properties of a specific gate set, an efficient representation of a circuit’s unitary can be
resynthesised into an improved circuit. For example, the unitary action of CNOT circuits can be fully
described by the associated F2-linear function over basis vectors on n-qubit space, seen as vectors in Fn

2.
In other words, we can represent the action of a CNOT circuit using a matrix over F2, called its parity
matrix.

Noting that the parity matrix of a single CNOT gate corresponds to an elementary row operation, it is
possible to resynthesise a CNOT circuit from its parity matrix by performing Gauss-Jordan elimination
to reduce the matrix to identity and introducing one CNOT gate for each corresponding row operation.
This method was introduced in [2] and refined in the Patel-Markov-Hayes algorithm [15], which pro-
duces asymptotically optimal gate counts for (unconstrained) CNOT synthesis. Similar ideas involving
the decomposition of symplectic matrices into basic generators have also been applied for synthesising
Clifford circuits from stabiliser tableaux [1, 13, 6, 17].

Some quantum computers, such as some superconducting devices [16], have the additional limitation
of restricted connectivity, meaning 2-qubit gates aren’t allowed between arbitrary pairs of qubits. By
restricting which row operations are possible when reducing a parity matrix to the identity, circuits that
obey specific connectivity constraints can be synthesised from ones that don’t. A variety of techniques

http://dx.doi.org/10.4204/EPTCS.384.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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for introducing these constraints based on Steiner trees [14, 11, 18, 10] and integer programming [3]
have been introduced in recent years.
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⊕
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(a) General Circuit

⊕
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⊕
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(b) Naïve slicing procedure

⊕
⊕ ⊕

⊕

⊕
V

U

(c) Alternative slicing procedure

Figure 1: Possible slicing procedures for a synthesis process that can’t deal with hadamard gates

These synthesis methods provide a way to optimise circuits that mitigates some of the current lim-
itations of NISQ devices. However, they suffer from relying on the properties of a specific gate set.
The conventional generalisation of these methods to arbitrary quantum circuits is to slice the circuit into
pieces that can be synthesised, and treat each of them separately[9]. This isn’t as straightforward as it
might initially sound. Consider for example the circuit in Figure 1a and a CNOT circuit synthesis pro-
cedure. The synthesis procedure can’t deal with the circuit as it currently is due to the gates U and V, so
we need to slice the circuit into sections containing just CNOT gates and synthesise those. As some of
the gates in a quantum circuit can be moved past each other, there isn’t always a unique way to make a
slice. Take the two possible slicing options in Figures 1b and 1c for example. Since the CNOT slices are
treated independently during the synthesis procedure, which sides of the slice certain CNOTs end up on
can affect the size of the new circuit by allowing/preventing simplifications or cancellations.

In this paper we present a new approach to generalising circuit synthesis that doesn’t rely on slicing
the circuit into pieces. Instead we remove the gates that can’t be synthesised, leaving holes in the circuit
and producing what is known as a quantum comb [4, 8]. This quantum comb can be understood as a
new circuit with additional qubits, where these new qubits represent the old qubits at different points in
time. We then explain how extending the functionality of the CNOT synthesis algorithm RowCol to work
quantum combs allows one to route general circuits. Our generalisation is then empirically tested against
the naïve slicing process on a variety of circuit sizes and hardware constraints, finding our method has
increasingly better performance than the slicing one as circuit sizes increase. Finally, we outline how
quantum combs could be used to generalise other circuit synthesis procedures, as well as ways in which
our current algorithm could be further optimised.

This paper has the following structure. Section 2.1 explains how the parity matrix representation of a
CNOT circuit works. Section 2.2 introduces the idea behind CNOT synthesis algorithms, with a focus on
the circuit routing algorithm RowCol. In Section 2.3 we introduce quantum combs, as well as language
specific to this paper that will be helpful in explaining our algorithm. Section 3 explains our extension
to RowCol that allows working with quantum combs. Empirical results comparing our quantum combs
method to the slicing process are presented in Section 4. Finally, Section 5 concludes the paper and
outlines possible future works for using quantum combs to generalise other synthesis procedures.
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2 Preliminaries

2.1 CNOT Circuit as a Parity Matrix

In this paper, we will use the phrases “CNOT circuit” or “CNOT comb” which refer to circuits or quantum
combs entirely made of CNOTS. CNOT stands for “controlled not” and is a quantum gate that acts on
2-qubits: the control c and the t, CNOT(c, t). It acts in such a way that a NOT gate is applied to the
target qubit only if the control qubit is in state |1〉, CNOT|0〉|0〉 = |0〉|0〉 and CNOT|1〉|0〉 = |1〉|1〉.
When we refer to states in this section we mean computational basis states and the behaviour for general
superpositions can be inferred from the linearity of quantum operations. An alternative way of thinking
about about CNOTs is as modulo 2 addition: the target qubit changes state to the sum of the control
and target values modulo 2, CNOT|c〉|t〉 = |c〉|c⊕ t〉. This idea is represented as a circuit diagram in
Figure 2a. A CNOT gate can therefore be written as a list of which qubits are present in the parity
equations of the output states: a representation of this is given by the matrix over F2 in Figure 2b. By
reasoning about CNOT gates in this way we can write an entire CNOT circuit as a list of parity equations,
Figure 3a, then represent that circuit by an invertible element of Fn×n

2 (i.e a parity matrix), Figure 3b.
One way to construct this matrix is by traversing the circuit and applying row operations for each CNOT,
CNOT(c, t) corresponds to R(c, t), where R(c, t) means setting row t the sum of rows c and t modulo 2.
By identifying a set of row operations that reduce a parity matrix to the identity, a CNOT circuit can be
generated: this is the core principle behind the CNOT circuit synthesis algorithms discussed in the next
section.

|x〉
|y〉 ⊕

|x〉
|x⊕ y〉

(a) CNOT gate as modulo 2 addition of basis states

(
1 0
1 1

)
(b) Parity matrix for a CNOT gate

Figure 2: Parity representations of a CNOT gate

|x0〉
|x1〉
|x2〉
|x3〉

⊕

⊕

⊕

|x0⊕ x3〉
|x0⊕ x1⊕ x2⊕ x3〉
|x2⊕ x3〉
|x3〉

⊕
⊕
⊕

(a) CNOT circuit described as parity equations

P =


1 0 0 1
1 1 1 1
0 0 1 1
0 0 0 1


(b) Parity matrix corresponding to circuit in 3a

Figure 3: Parity representation of a CNOT circuit

2.2 CNOT Circuit Synthesis Algorithms

Synthesis algorithms provide a means of reducing the size of CNOT circuits[15], or allow the resynthesis
of circuits under topological constraints[11, 14, 10]. The ability to perform both of these tasks efficiently
is vital for NISQ computing, as it provides a way to best utilise the machines we have available whilst
minimising the consequences of their limitations. These CNOT synthesis methods work by converting
the circuit into a parity matrix, as described in Section 2.1, then identifying which row operations convert
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the matrix back to the identity. This sequence of row operations corresponds to the generated CNOT
circuit.

For some quantum computers, superconducting ones, for example [16], CNOT gates may be re-
stricted to only be possible between nearest neighbour qubits. These computers are said to be topologi-
cally constrained, with graphs representing the allowed CNOTs called the topology, and the problem of
converting a circuit to one that obeys these constraints known as quantum circuit routing. The systematic
introduction of SWAPs into the circuit is one way to overcome this problem[5]. However, in this paper
we will focus on the circuit synthesis approaches to finding a solution, specifically the ones that use par-
ity matrices, as there are other alternative approaches that synthesise from different representations [3].
By restricting the possible row operations when reducing a parity matrix to the identity, circuit synthesis
methods can be also used to produce circuits that obey topological constraints. One of these synthesis
algorithms is known as RowCol, and will be the focus of the rest of this section.

Starting with a CNOT circuit C , and a graph G(V,E) representing connectivity of qubits, RowCol
synthesises a new circuit as follows:

Algorithm 1: RowCol
Input : A circuit C , and topology G(V,E)
Output: A circuit C ′, respecting the topological constraints

1. Generate a new empty circuit C ′ with the same number of qubits as C .

2. Compute the parity matrix P of C .

3. Pick a non-cutting vertex of V of G, and get its corresponding qubit q.

4. Apply elementary row operations, restricted to the edges of G(V,E), to reduce row q and
column q to a unit vector.

5. Remove vertex V from G, and row and column q from P.

6. Go back to Step 2 and repeat until G has no more vertices.

7. Return C ′

Note the column of q is reduced to a unit vector by using row operations to place a 1 on the diagonal,
then adding row q to the other rows to eliminate 1s above and below the diagonal. The row can be made
into a unit vector by solving a system of linear equations for other rows to add back on to row q.

In order to respect connectivity constraints, row operations might not be performed directly, but
via some intermediate operations computed using Steiner trees. While this is an important aspect of
RowCol and related algorithms, we can treat this process essentially as a “black box” for the purposes
of our algorithm. We refer readers to the paper that introduced RowCol [18] or other Steiner-tree based
algorithms [11, 14, 10] for details.

We are now going to step through the RowCol procedure for the matrix in Figure 3b. We start with
qubit 0, meaning we are going to need to eliminate the 0th column, then the 0th row. To eliminate the
column we need to perform R(0,1), and to eliminate the row we need to perform R(3,0). This has then
reduced the 0th column and row to unit vectors, therefore we can ignore these when eliminating the rest
of the matrix.

1 0 0 1
1 1 1 1
0 0 1 1
0 0 0 1

 R1 :=R0+R1


1 0 0 1
0 1 1 0
0 0 1 1
0 0 0 1

 R0 :=R3+R0


1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1


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The column for the 1st qubit is already a unit vector, meaning we can move directly onto the row. To
eliminate this row we need to perform R(2,1) and R(3,1): although a specific order is shown on the
diagram either will work to eliminate the row. As both the column and row are now eliminated, we can
ignore these in the subsequent operations.

1 0 0 0
0 1 1 0
0 0 1 1
0 0 0 1

 R1 :=R2+R1


1 0 0 0
0 1 0 1
0 0 1 1
0 0 0 1

 R1 :=R3+R1


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


The column is already a unit vector again here, meaning we move to the row, which can be eliminated
by R(3,2). This reduces the matrix to the identity meaning the process is over.

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 R2 :=R3+R2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


The sequence of row operations that converted the matrix to the identity are: R(0,1), R(3,0), R(2,1),

R(3,1), R(3,2). This tells us how to construct the resynthesised circuit which is shown in Figure 4.

|x0〉
|x1〉
|x2〉
|x3〉

⊕
⊕ ⊕

⊕
⊕
|x0⊕ x3〉
|x0⊕ x1⊕ x2⊕ x3〉
|x2⊕ x3〉
|x3〉

Figure 4: Circuit generated from the step-by-step RowCol procedure

2.3 Quantum Combs

Here we will introduce the concept of a quantum comb, as well as the language and notation used in
this paper to discuss specific aspects of them. A quantum comb is a generalisation of a quantum channel
that can take other quantum channels as input, rather than states. These can be depicted graphically, as
in Figure 5, as circuits which not only have open wires at the top and bottom, but certain “holes” in the
middle, where other gates can be inserted. The term “comb” comes from the fact that the entire object
should no longer be represented as a box, but as an irregular shape resembling a hair comb, where each
the of “teeth” corresponds to a distinct time step. See e.g. [4] for the formal definition and many such
pictures.

Figure 5: General representation of a quantum comb as quantum circuit with holes
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Rather than defining combs in general, we will focus on combs arising from quantum circuits where
certain single-qubit gates have been removed. The restriction to single-qubit holes is not essential, but it
suffices for our purposes and will make certain aspects of our algorithm simpler. These can be described
as normal quantum circuits with some extra information about time ordering of qubits, subject to some
constraints. To motivate the definition, we will look at an example circuit, consisting of CNOT gates and
several single-qubit gates we wish to remove:

⊕

⊕

⊕U

V

⊕

⊕

⊕

W ⊕⊕

⊕ H

⊕0

1

2

3

0

1

2

3

⊕

⊕

⊕

⊕ (1)

Note that we have labelled the inputs and outputs by the same indices {0,1,2,3}. We call these labels
for the qubits in our original circuit the logical qubits. If we remove the gates U,V,W,H from the circuit,
we obtain something that looks like this:

⊕

⊕

⊕ ⊕

⊕

⊕

⊕⊕

⊕

⊕0

1

2

3

1 4

2 6

4 5 5

7

3

0

6 7 ⊕

⊕

⊕

⊕ (2)

We can break the data represented by the picture above into two parts. First, we can see this as just a
normal quantum circuit C , but now acting on more qubits:

⊕

⊕

⊕ ⊕

⊕

⊕

⊕⊕

⊕

⊕0

1

2

3

1

4

2

6

4

5 5

7

3

0

6

7 ⊕

⊕

⊕

⊕

(3)

Notice how this circuit is over more qubits than just the original logical qubits. The indices above refer
to a qubit at a particular point in time, and hence have a many-to-one relationship with the logical qubits.
We call these the temporal qubits.



E. Murphy & A. Kissinger 81

There is also a binary relation telling us which temporal qubits come directly before others, which
we call the holes. We can represent the holes indicated in (2) as the set H = {(1,4),(2,6),(6,7),(4,5)}.

We can also define what it means to plug single-qubit gates into each of these holes. That is, for any
set G of single-qubit gates and a plugging map p : H → G , we can unambiguously reconstruct a circuit.
For example, we can reconstruct our original circuit using the plugging map

p :: {(1,4) 7→V,(4,5) 7→ H,(2,6) 7→U,(6,7) 7→W}.

To define what it means to be a valid comb, we will formalise the process of plugging in gates, and
require this to result in a well-defined circuit.

Algorithm 2: Comb composition
Input : A pair (C ,H ) of a circuit C on a set of qubits Q = {0, . . . ,n−1} and a binary relation

H ⊆ Q×Q, as well as a plugging function p : H → G
Output: A circuit C ′ or FAIL

For each (q1,q2) ∈H :
1. Re-order non-interacting gates in C such that all gates on qubit q1 appear before gates on

qubit q2. If this is not possible, FAIL.

2. Insert p((q1,q2)) into C directly before the first gate to refer to qubit q2.

3. Remove (q1,q2) from H .

4. Rename q2 7→ q1 in C and H and remove q2 from C .

5. If this renaming produces a hole of the form (q,q) ∈H , then FAIL, otherwise continue to
the next hole.

Return C ′ := C .

Definition 2.1. A pair (C ,H ) is called a comb if Algorithm 2 succeeds for any plugging map p.
Note that this Algorithm 2 can fail if the pair (C ,H ) introduces cyclic dependencies between tempo-

ral qubits. However, when we obtain such pairs by “cutting out” the non-CNOT gates from a circuit, this
algorithm will always succeed. We can formalise this “cutting out” process with the following procedure:

3 Algorithm: CombSynth

Our main algorithm proceeds by decomposing a circuit into a comb consisting of just CNOT gates and
a plugging map for all the additional single-qubit gates. It then resynthesises the comb using a variation
of the RowCol algorithm which preserves the comb structure, then plugs the single-qubit gates back in
to give a fully routed circuit.

The RowCol algorithm works by eliminating qubits one by one. To apply this idea to quantum combs
we need to know what it means to remove one temporal qubit at a time. As temporal qubits represent
sections of the “lifetime” of the original logical qubits, not all of them can exist at the same time. This
means that, although we may write the comb as one large circuit, it is not possible to perform CNOTs
between all the temporal qubits at any given time. This idea needs to be carried forward into the synthesis
by restricting row operations to only be between qubits in the same sections of time.
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Algorithm 3: Comb decomposition
Input : A circuit C ′

Output: A comb (C ,H ) and a plugging map p : H → G .
1. Create an empty comb (C ,H ) where C is an empty circuit with as many qubits as C ′ and

H = {}.
2. Create a mapping t for temporal qubits, where initially t(q) = q for all qubits q ∈ C ′ and

p is the empty map H → G .

3. For each gate g in C′:

• if g is a CNOT on qubits q1 and q2, add g to C on qubits t(q1), t(q2)

• if g is not a CNOT and acting on qubit q, introduce a fresh qubit q′ to C , add (t(q),q′) to
H , set p((t(q),q′)) := g, and let t(q) := q′

4. Return (C ,H ) and p.

For a comb (C ,H ), a temporal qubit q is called available if it does not appear as the first part of a
hole. That is, there exists no q′ such that (q,q′) ∈H . It is extractible if its row and column can be made
into a unit vector using the RowCol algorithm restricted only to row operations between available qubits.

Finally, to track topological constraints, which may be relevant for RowCol, we maintain a connec-
tion between logical and available temporal qubits. For each logical qubit q0, let t(q0) be its associated
available temporal qubit. That is, let t(q0) = q0 if q0 does not appear in any holes, otherwise, let it be
qk for the maximal transitive chain of holes (q0,q1),(q1,q2), . . . ,(qk−1,qk). Therefore, the mapping t
is determined by a collection of holes, meaning as we update H in the algorithm below we are also
updating t.

Our main algorithm, CombSynth, works as follows:

Algorithm 4: CombSynth
Input : A comb (C ,H ) with temporal qubits Q = {0, . . . ,n−1}, topology graph G(V,E)
Output: A comb (C ′,H ′), respecting topological constraints for any plugging p

1. Create a new comb (C ′,H ′) with C ′ initially empty and H ′ = H

2. Compute the parity matrix P of C .

3. Identify an extractible temporal qubit e in comb (C ,H ).

4. Produce a rectangular sub-matrix P′ with columns the same as P and rows labelled by t(q) for
each logical qubit q.

5. Run an iteration of RowCol on row t(e) and column e of P′, with topology G, updating C ′.

6. Update the corresponding rows of P using P′.

7. Remove e from the qubits of C and any hole of the form (e′,e) for some e′ from H .

8. Repeat from Step 3 until no qubits remain in C .

9. Return (C ′,H ′).

Note that if (C ,H ) arose from a circuit by cutting single-qubit gates out, as in Algorithm 3, there
will always be at least one extractible temporal qubit. We simply need to choose one corresponding to
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the latest gate that has been cut out of the circuit.
The core of the RowCol algorithm is used to reduce the row and column of the chosen temporal

qubit to unit vectors. Applying this procedure iteratively, removing the temporal qubits in an allowed
order, and updating the sub-matrix as you go, will reduce the overall parity matrix to the identity whilst
ensuring that no row operations happen between qubits that exist at different points in time. Therefore
we have a procedure for synthesising quantum combs from their parity matrices. This method eliminates
rows and columns of a matrix in the same way as RowCol, and the rows of rectangular sub-matrix P′

always correspond to the same logical qubits, even though we are swapping the temporal qubits in and
out. Hence, our algorithm can be used to route to constrained topologies in the same way as RowCol,
but now it can be done for general unitaries by converting to a quantum comb. Comparisons of our
generalisation of RowCol to a simple slicing procedure are presented in the next section.



0 1 2 3 4 5 6 7
0 0 0 0 1 1 0 1 1
1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 1 1 0 1 0 0 0 0
4 1 1 0 0 1 0 1 0
5 0 0 0 0 0 1 0 0
6 1 1 0 1 0 0 1 0
7 1 1 0 1 1 0 1 1


Generate sub-matrix


0 1 2 3 4 5 6 7

0 0 0 0 1 1 0 1 1
5 0 0 0 0 0 1 0 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0



Figure 6: Generation of sub-matrix from full parity matrix

To illustrate how CombSynth works, we’ll work through an example, showing each of the steps
explicitly, similar to what we did for RowCol. In doing so, we will look at the circuit in (1), which has
a quantum comb shown in (3). We will apply this process without topological constraints as these aren’t
necessary for showing how our generalisation works. The quantum comb is made of 8 temporal qubits,
however, our initial circuit is made of 4 logical ones. This means that only 4 of the 8 temporal qubits
in our quantum comb can exist at any one time, and a 4×8 rectangular matrix will then be used for the
elimination steps. The sub-matrix will initially take the form in Figure 6. Note that the rows are not in
the same order as they were in the larger matrix: this is because they are placed in the position of their
corresponding logical qubit. A table of the elimination steps is presented in Figure 7, which highlights
the row and column that get reduced to unit vectors and lists the row operations needed to do this. The
elimination order of the temporal qubits is 5,7,6,3,4,0,1.

To complete the CombSynth algorithm, the comb generated from the row operations in Figure 7 is
filled with the gates removed from the original circuit. This circuit, shown in Figure 8, is smaller than
the original, though only by 1 gate, but this effect grows as the circuit size increases due to more CNOT
cancellations.

4 Results

We have conducted a series of computational experiments to compare our generalisation of RowCol to a
circuit slicing procedure. For the slicing we have used a naïve algorithm that cuts the circuit where
the gates are found, similar to that shown in Figure 1b. 20 random circuits with CNOT counts of
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Initial sub-matrix Eliminated sub-matrix
Row operations

required for reduction
0 1 2 3 4 5 6 7

0 0 0 0 1 1 0 1 1
5 0 0 0 0 0 1 0 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 0 0 0 1 1 0 1 1
5 0 0 0 0 0 1 0 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0

 N/A


0 1 2 3 4 5 6 7

0 0 0 0 1 1 0 1 1
4 1 1 0 0 1 0 1 0
7 1 1 0 1 1 0 1 1
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 1 0
7 0 0 0 0 0 0 0 1
3 1 1 0 1 0 0 0 0

 R(7,0),R(3,7),
R(4,7),R(0,7)


0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 1 0
6 1 1 0 1 0 0 1 0
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 0 0 0 1 1 0 0 0
6 0 0 0 0 0 0 1 0
3 1 1 0 1 0 0 0 0

 R(6,4),R(3,6)


0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
4 0 0 0 1 1 0 0 0
2 1 0 1 0 0 0 0 0
3 1 1 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(3,4),R(0,3)


0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
4 1 1 0 0 1 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 1 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(0,4)


0 1 2 3 4 5 6 7

0 1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(0,2),R(1,0)


0 1 2 3 4 5 6 7

0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0




0 1 2 3 4 5 6 7
0 1 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
2 0 0 1 0 0 0 0 0
3 0 0 0 1 0 0 0 0

 R(1,2)

Figure 7: Row operations on sub matrices that reduce the parity matrix to the identity
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Figure 8: Circuit generated from the CombSynth procedure in Section 3

4,8,16,32,64,128,256,512 and 1024 were generated, and a set of non-CNOT gates distributed uni-
formly throughout them. The number of non-CNOT gates was set to be proportional to the number of
CNOTs, with the proportionality factor varying from 5% to 50%. The percentages of non-CNOTs in
the table and graphs below are therefore the proportion of non-CNOTs to CNOTs, not the proportion of
non-CNOTs to the total number of gates in the circuit. A range of architectures, popular for conducting
similar computational experiments, was then selected to route our circuits onto. These were the 9-qubit
square grid, 16-qubit square grid, Rigetti 16-qubit Aspen, 16-qubit IBM QX5 and 20-qubit IBM Tokyo.
For each set of experimental parameters we recorded the proportional change in CNOT gates (CNOT
overhead) due to the synthesis algorithms.

(a) (b) (c)

Figure 9: Graphs showing the change in CNOT overhead when increasing the size of the circuit. This
selection of graphs was chosen because it covers a wide range of the parameters of the computational
experiment, however all the graphs still broadly have the same behaviour. They start off with a larger
overhead, fluctuate a bit for the small circuit sizes, then approach some some constant value. With this
approached value being smaller for the comb routing process then the slicing one.

A set of graphs with different parameters for the computational experiment is shown in Figure 9.
These graphs are illustrative of the behaviour of all of the experiments: the overhead is high for small
circuits with the slicing procedure sometimes being better, but as the circuit size increases both overheads
approach a constant value, with the comb algorithm outperforming the slicing one. This is to be expected
as using quantum combs allows for better cancellations than the slicing process, due to each slice being
routed independently. The overheads for the largest circuit sizes, 1024 CNOTs, are shown in Table 1,
giving a comparison of the asymptotic behaviour of each algorithm. It can be seen that larger proportions
of non-CNOT gates reduce the advantage of using the comb algorithm: however it still outperforms the
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slicing method for all architectures and gate proportions tested.

Comb Slice Comb Slice Comb Slice Comb Slice
9q-square -43.1% 80.79% 34.12% 208.7% 91.93% 255.9% 182.1% 306.8%
16q-square 13.11% 344.5% 154.4% 511.1% 263.9% 564.6% 437.0% 606.9%

regetti_
16q_aspen

47.31% 555.4% 231.2% 893.1% 379.6% 1027% 614.9% 1119%

bm_qx5 32.27% 461.9% 197.2% 698.8% 322.4% 783.6% 527.8% 837.7%
ibm_q20_tokyo 33.17% 393.1% 183.6% 481.0% 289.3% 500.2% 440.7% 498.2%

Architectures
5%

Non-CNOT Gates
15%

Non-CNOT Gates
25%

Non-CNOT Gates
50%

Non-CNOT Gates

Table 1: CNOT overhead when routing to different architectures and proportions of non-CNOT gates.
The values above are for the largest circuits tested: 1024 CNOTs

5 Conclusion and Future Work

We have proposed an alternative to slicing the circuit, using quantum combs, for generalising synthesis
algorithms to arbitrary circuits. This idea was then concretely outlined for the case of CNOT synthesis
by developing a generalisation of RowCol that works for quantum combs, and showing this allows the
routing of arbitrary circuits. Finally, through a series of computational experiments, we demonstrated
that for large circuits our quantum comb generalisation of RowCol outperforms the slicing procedure on
a range of architectures and CNOT/non-CNOT proportions. Work has recently been done on improving
the performance of RowCol by allowing the qubits to be permuted by the synthesis algorithm [10],
investigating whether the performance of CombSynth could be improved in a similar way would be
an interesting research direction. Currently, comb synthesis is designed to work with a subroutine that
only works with one qubit (and hence one row/column) at a time, but it would be worth adapting it to
work with synthesis algorithms which operate one more than one row or column at once, like the Patel-
Markov-Hayes algorithm. Along a similar vein, it appears that our algorithm could be generalised to
deal with multi-qubit holes by introducing some extra requirements than certain sets of temporal qubits
should be extracted simultaneously.

Throughout this paper, we compared our quantum comb approach to that of slicing for generalising
synthesis algorithms, however there have been some recent approaches that don’t use slicing to perform
circuit optimisation. These are lazy synthesis [12] and ZX circuit extraction [7], our approach differs
from these as we focused on the utility of the higher order structure quantum combs for quantum com-
pilation. Although a comparative analysis between our approach and these would be an interesting topic
for further research. We focused on using quantum combs to generalise a CNOT synthesis algorithm in
this paper: a natural next step would be to try and apply this idea to other synthesis algorithms such as the
synthesis of Clifford circuits from stabiliser tableaux or CNOT+phase circuits from phase polynomials.
Finally, quantum combs allow for routing of circuits with “black box” operations, where you may not
know what operation will eventually be performed at the time of compilation. This may be useful for
compilation in the context of parameterised circuits such as those used in variational algorithms, or for
classical-quantum algorithms where you want to route around mid-circuit measurements.
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Counting the solutions to Boolean formulae defines the problem #SAT, which is complete for the

complexity class #P. We use the ZH-calculus, a universal and complete graphical language for linear

maps which naturally encodes counting problems in terms of diagrams, to give graphical reductions

from #SAT to several related counting problems. Some of these graphical reductions, like to #2SAT,

are substantially simpler than known reductions via the matrix permanent. Additionally, our approach

allows us to consider the case of counting solutions modulo an integer on equal footing. Finally,

since the ZH-calculus was originally introduced to reason about quantum computing, we show that

the problem of evaluating scalar ZH-diagrams in the fragment corresponding to the Clifford+T gate

set, is in FP#P. Our results show that graphical calculi represent an intuitive and useful framework

for reasoning about counting problems.

Graphical calculi like the ZX-calculus [15,16] are seeing increased usage in reasoning about quantum

computations. While earlier work in this area has mostly focused on representing existing quantum

protocols and quantum algorithms in a graphical way in order to shed light on how these protocols

work [17, 18, 26, 27, 33, 38, 39, 57, 66], recent years have seen the development of entirely new results

that improve upon the existing state-of-the-art. For instance, there are now new results proved with

a graphical calculus in quantum circuit optimization [5, 9, 20, 21, 25, 42], verification [13, 42, 49] and

simulation [14, 43, 44, 48, 61], as well as new protocols in measurement-based quantum computing [4,

11, 41], surface codes [6, 30–32, 37] and other fault-tolerant architectures [51, 58].

These results in quantum computing show that diagrammatic reasoning can lead to new insights and

algorithms that go beyond what is known or what even can be derived using other methods. However,

these graphical languages are in actuality not restricted to just studying quantum computing. In fact,

diagrams, the objects of a graphical calculus, can represent arbitrary tensor networks, which can represent

arbitrary 2n-dimensional tensors and so they can be used for a wide variety of problems. Whereas one

would in general perform tensor contractions in order to compute with tensor networks, a graphical

calculus equips its diagrams with a formal rewrite system, which respects their tensor semantics, and

allows for reasoning in terms of two-dimensional algebra.

In this work, we focus on counting problems which are of both practical and theoretical importance

for a variety of domains, from computing partition functions in statistical mechanics [52], to proba-

bilistic reasoning [56] and planning [10]. The computational complexity of counting problems is of

fundamental interest to computer science [55]. Counting problems also have a natural tensor network

representation [29], and the complexity of computing with tensor networks has been thoroughly stud-

ied [23]. In practice, tensor contraction algorithms for counting problems have been developed, showing

competitive performance against the state of the art [34, 45].

Graphical languages like the ZX-calculus, and its close relative, the ZH-calculus, have been used to

rederive complexity-theoretic results. Townsend-Teague et al. [59] showed that the partition function

of a family of Potts models, related to knot theory and quantum computation, is efficiently computable.

de Beaudrap et al. [24] proved graphically that the decision version of a hard counting problem can be

http://dx.doi.org/10.4204/EPTCS.384.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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solved in polynomial time. These proofs are constructive, in that they introduce algorithms in terms of

rewriting strategies. Even though this line of work recasts known results in a graphical language, such

an approach is arguably more unifying and intuitive, and thus has promising potential for generalization.

Recent work by Laakkonen et al. [48] actually derived a novel complexity-theoretic result in the form

of an improved runtime upper bound for counting problems. To obtain this result, reductions to specific

counting problems were given a fully graphical treatment, to which then a known algorithm could be

applied, after this algorithm was also treated graphically and generalized.

In this work, we continue building on this programme of applying graphical methods to counting.

Specifically, we use the ZH-calculus to rederive various counting reductions that appear in the literature,

providing a unified, and arguably simpler, presentation. Among others, we give reductions from #SAT to

#2SAT, #Planar-SAT and #Monotone-SAT. See Table 1 for an overview. Our direct proof that #2SAT

is #P-complete also allows us to considerably simplify the proof that computing the permanent of an

integer matrix is #P-complete. Our results show that graphical languages can form a useful tool for the

study of counting complexity.

In Section 1 we introduce the basics of counting complexity, the ZH-calculus and how to represent

#SAT in ZH. Then in Section 2 we present our main reductions from #SAT by rewriting ZH-diagrams.

Section 3 considers the converse problem of reducing ZH-diagram evaluation to #SAT. We conclude in

Section 4, but note that we also present some additional reductions and proofs in the appendices.

1 Preliminaries

1.1 Counting reductions

Counting complexity is defined in terms of the complexity classes #P and #MP, which are the ‘counting

analogues’ of NP. The class #P, first defined by Valiant in 1979 [62], is the class of problems which

can be defined as counting the number of accepting paths to a non-deterministic Turing machine (NTM)

which halts in polynomial time, whereas #MP is the class of problems which can be defined as counting,

modulo M, the number of accepting paths to an NTM (that also halts in polynomial time). Note that

the notation
⊕

P is also used to indicate #2P. These complexity classes are clearly related to NP, which

consists of problems that can be defined as deciding whether an NTM has any accepting path.

Famously, the Boolean satisfiability problem SAT is NP-complete [19]. Similarly, there are notions

of #P-completeness and #MP-completeness [62]. A problem A is #P-hard (#MP-hard) if any problem in

#P (#MP) can be solved in polynomial time given an oracle for A (that is, there exists a Cook reduction

from any problem in #P to A ). A problem A is #P-complete (#MP-complete) if it is both #P-hard

(#MP-hard) and is in #P (#MP).

Definition 1. Suppose φ : Bn → B is a Boolean formula in Conjunctive Normal Form (CNF),

φ(x1, . . . ,xn) =
m
∧

i=1

(ci1 ∨ ci2 ∨ ·· ·∨ ciki
) (1)

where ci j = xl or ¬xl for some l, and let #(φ) = |{~x | φ(~x) = 1}|. Each argument to φ is called a variable

and each term ci1 ∧ ·· ·∧ ciki
a clause. Then, we define the following problems:

1. SAT: Decide whether #(φ) > 0,

2. #SAT: Compute the value of #(φ),

3. #MSAT: Compute the value of #M(φ) := #(φ) mod M.
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We additionally define variants, kSAT, #kSAT, #MkSAT, which represent the case where φ is re-

stricted to contain only clauses of size at most k (note that some sources take this to be size exactly k, but

we can recover this from our definition by adding dummy variables to each clause). We also take
⊕

SAT

as alternate notation for #2SAT.

To each formula φ we associate two graphs: the incidence graph is a bipartite graph with one vertex

for each variable and one for each clause, and where a variable vertex is connected to a clause vertex if

it occurs in that clause. The primal graph has one vertex for each variable, which are connected together

if the variables occur together in a clause.

The Cook-Levin theorem [19] shows that kSAT is NP-complete for k ≥ 3, but in fact also shows that

#kSAT is #P-complete and #MkSAT is #MP-complete for any M, as it maps any NTM into a Boolean

formula such that the number of satisfying assignments is exactly equal to the number of accepting paths.

We will consider variants on these problems, and specifically the case where the structure of the formula

φ is restricted in some way. For each of these variants, we will append a prefix to SAT to indicate the

restriction:

• PL: The incidence graph of the formula is planar.

• MON: The formula is monotone - it contains either no negated variables or no unnegated variables.

• BI: The primal graph is bipartite - the variables can be partitioned into two sets such that each

clause contains at most one variable from each set.

1.2 The ZH-calculus

The ZH-calculus is a rigorous graphical language for reasoning about ZH-diagrams in terms of rewrit-

ing [2]. We will give here a short introduction, referring the reader to [69, Section 8] for a more in-depth

explanation.

ZH-diagrams represent tensor networks [54, Section 4.1] composed of the two generators of the

language, the Z-spider and the H-box. The generators and their corresponding tensor interpretations are

...

σ1
σ2

σn

= δσ1σ2...σn
=

{

1 σ1 = σ2 = · · ·= σn

0 otherwise

a ...

σ1
σ2

σn

= 1+(a−1)δ1σ1σ2...σn
=

{

a 1 = σ1 = σ2 = · · ·= σn

1 otherwise

(2)

where the H-box is labeled with a constant a ∈ C, and we assume a = −1 if not given. The tensors

corresponding to the generators are composed according to the tensor product and each wire connecting

two tensors indicates a contraction, i.e. a summation over a common index [69]. We will also use two

derived generators - the Z-spider with a phase, and the X-spider. These are given in terms of the other

generators as:

α ...
α= ...

1
2

α ...
...

= eiα (3)

Note that the tensors are symmetric under permutation of their wires, or indices. This implies that only

the connectivity, or the topology, of the tensor network matters. In particular, we will not distinguish
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indices of generators as inputs and outputs as in [2]. Any ZH-diagram with n open wires therefore

represents a tensor with n indices. In the special case of no open wires this represents a scalar, and we

will call such diagrams scalar diagrams.

The rewriting rules of the ZH-calculus are shown in Appendix A. The rules are sound, i.e. they

respect the tensor semantics, and also complete for complex-valued linear maps, i.e. if two ZH-diagrams

represent the same tensor, then there exists a sequence of rewrites which transforms one diagram to the

other.

1.3 #SAT instances as ZH-diagrams

To embed #SAT instances into ZH-diagrams, we use the translation of de Beaudrap et al. [24] where each

variable becomes a Z-spider, each clause a zero-labeled H-box, and X-spiders are used for negation. In

particular the mapping is as follows

. . .
Variables ⇐⇒ 0

. . .
Clauses ⇐⇒

π π
πNegation ⇐⇒ (4)

and to form #SAT instances, we combine these as

#(φ) =

0 0

G

ππ π π. . .. . .
. . .

. . .
. . .. . .

(5)

where G is a collection of wires and negations, connecting each variable to its corresponding clauses.

Due to cancellation of adjacent X-spiders, an instance has an X-spider between a variable and a clause

if the variable appears unnegated in that clause, and a wire if it appears negated. For example, for the

formula φ(x1,x2,x3) = (x1 ∨¬x2 ∨¬x3)∧ (x2 ∨ x3)∧ (¬x1 ∨¬x2), we have:

0 0 0

π
π

π#(φ) =

x1 x2 x3

(6)

In this representation, a formula that is planar corresponds to a planar ZH-diagram and a monotone one

corresponds to a ZH-diagram where there are no X-spiders or where there is an X-spider between every

H-box and Z-spider. Instances with maximum clause size k correspond to ZH-diagrams where every

H-box has degree at most k.

2 Reductions from #SAT

We will show using the ZH-calculus that the restricted versions of #SAT defined above—planar, mono-

tone or bipartite— are #P- and/or #MP-complete - Table 1 gives an overview of our reductions. All these

results are already known in the literature, as will be discussed in each section, but our main contribution

is to provide a simplifying and unifying viewpoint through the use of the ZH-calculus.
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Result Reduction #kP NP PL- #2SAT MON- BI- 3DEG-

Theorem 1 #SAT → #PL-SAT X X X

Theorem 2 #SAT → #2SAT X X X X

Theorem 3 #SAT → #MON-SAT † X X X

Theorem 6 #SAT → #3DEG-SAT X X X X X X

Table 1: An overview of the main reductions presented in this paper. The two leftmost columns give

each theorem and the corresponding reduction. The middle columns (marked #kP, and NP) are given a

checkmark if the corresponding reduction is valid for that complexity class as well as for #P. A dagger is

written for #kP if there are some additional restrictions placed on k. The rightmost columns (marked PL-,

etc) show what structure each reduction preserves - a checkmark is given if the corresponding reduction

preserves the properties of the given #SAT variant (here #2SAT indicates that the maximum clause size

is two), i.e. the reduction presented in Theorem 2 sends planar instances to planar instances, but does not

send monotone instances to monotone instances. This applies for each complexity class that reduction is

valid for (e.g Theorem 2 also implies a reduction #kPL-SAT → #kPL-2SAT).

2.1 #SAT → #PL-SAT

The first, and most commonly taught, proof that PL-SAT is NP-complete was published in 1982 by

Lichtenstein [50]. This reduction is parsimonious - every satisfying assignment of the original formula

corresponds to one satisfying assignment of the planar formula. Hence, this proves also that #PL-SAT

and #MPL-SAT are complete for #P and #MP. Lichtenstein’s construction uses a large gadget to elim-

inate non-planarity. In the following construction, we derive a similar gadget from first principles, by

building on a famous identity from quantum computing.

Lemma 1. For any φ ∈ #kSAT with n variables and m clauses and k ≥ 3, there is a planar φ ′ ∈ #kSAT

such that #(φ) = #(φ ′). Furthermore, φ ′ has O(n2m2) variables and clauses, and is computable in

O(poly(n,m)) time.

Proof. Any instance φ ∈ #kSAT can be drawn in the plane as a ZH-diagram with some number of

crossing wires. By using the famous identity that a SWAP gate can be written as the composition of 3

CNOTs, we have that [53]:

0

0

=
...

...

. . .

. . .

0

. . .

. . .

0
...

...
(7)

We now need to rewrite the X-spider, which represents a classical XOR function, into CNF for this to

be a valid #SAT instance. Unfortunately, the direct translation via the Tseytin transformation [60] does

not preserve planarity. However, we can instead use the following decomposition of an XOR as NAND

gates, which is planar:

=

...

...

...
...

...

... (8)
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Finally, NAND gates themselves have the following planar Tseytin transformation [60] into CNF:

...

...

... =

...

...

...0

π π

π π

0

0

(9)

Therefore, applying this to φ gives φ ′ with n+12c variables and m+36c clauses where c is the number

of crossings. If the φ is drawn with straight-line wires only, then since there are at most nm wires in the

diagram and each pair can cross at most once, we have c ≤ O(n2m2). As this rewrite introduces only

clauses of size three or less, φ ′ is still a #kSAT instance.

Theorem 1. We have the following:

1. #PL-kSAT and #PL-SAT are #P-complete for any k ≥ 3.

2. #MPL-kSAT and #MPL-SAT are #MP-complete for any M ≥ 2 and k ≥ 3.

3. PL-kSAT and PL-SAT are NP-complete for any k ≥ 3.

Proof.

1. This follows immediately from Lemma 1 since the size of the rewriting does not depend on the

clause size.

2. This also follows from Lemma 1, since #(φ) = #(φ ′) implies #M(φ) = #M(φ ′) for any M.

3. This follows immediately from Lemma 1 since if #(φ) = #(φ ′) implies that φ is satisfiable if and

only if φ ′ is satisfiable.

2.2 #SAT to #2SAT

While it is known that #2SAT is #P-complete [64], the proof by Valiant relies on a chain of reductions

from #SAT to the permanent of an integer matrix, to the permanent of a binary matrix, to counting perfect

matchings in graphs, to counting all matchings in graphs, and then finally to #MON-BI-2SAT. Moreover,

this proof does not generalize to the case of #MP - in fact, proof that
⊕

2SAT is
⊕

P-complete was only

shown 27 years later in 2006 using a completely different method of holographic reductions [65], and

then a reduction for any fixed M was given in 2008 by Faben [28]. In this section we give a simple direct

reduction from #SAT to #2SAT that applies both for #P and #MP.

Lemma 2 [48, Lemma 3.3]. The following equivalence holds:

0 =
0

0

π

π
π

...
... (10)

Lemma 3. For any M = 2r + 1 with r ∈ N and φ ∈ #MSAT with n variables and m clauses, there

is a φ ′ ∈ #M2SAT with O(n+ mr) variables such that #M(φ) = #M(φ ′), and φ ′ can be computed in

O(poly(n,m,r)) time.
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Proof. By evaluating the tensors, we have 0 π 2= and therefore:

0 =
...

...
0π

π 0
π =

...
0π

π 0
−1 ≡ ...

0π

π 0
2r mod 2r +1

...
0π

π 0

M
=

2

2

... r copies
...

0π

π 0

= r copies
π

π

0

0

...

(11)

In this way we can rewrite all of the clauses in φ to form a suitable φ ′.

Lemma 4. For any M > 2 and φ ∈ #MSAT with n variables and m clauses, there is a φ ′ ∈ #M2SAT with

O(n+mM) variables such that #M(φ) = #M(φ ′), and φ ′ can be computed in O(poly(n,m,M)) time.

Proof. By evaluating the tensors, we have 0 π r+ 1=r for all r ∈ C. Therefore:

0 =
...

...
0π

π 0
π =

...
0π

π 0
−1 ≡ ...

0π

π 0
M− 1 mod M

...
0π

π 0
1= π 0 π 0 . . .

M−2 copies

...
0π

π 0

I,U
= π 0 π 0 . . .

M−2 copies

π 0

(12)

In this way we can rewrite all of the clauses in φ to form a suitable φ ′.

Theorem 2. We have the following:

1. #M2SAT is #MP-complete for any M ≥ 2.

2. #2SAT is #P-complete.

Proof.

1. If M = 2, this follows from Lemma 3 with r = 0. If M > 2, then since M is fixed, this follows from

Lemma 4.

2. For any φ ∈ #SAT with n variables, note that 0≤ #(φ)≤ 2n. Hence #(φ) = #2n+1(φ), and so we can

apply Lemma 3 with r = n to generate φ ′ ∈ #2SAT such that #(φ) = #2n+1(φ
′)= #(φ ′) mod 2n+1

in polynomial time, giving a polynomial-time counting reduction from #SAT to #2SAT.

Corollary 1. #MPL-2SAT is #MP-complete for any M ≥ 2, and #PL-2SAT is #P-complete.

Proof. Note that the reductions given in Lemmas 3 and 4 preserve the planarity of the input instance.

Hence this follows by first applying Lemma 1 and then Theorem 2.

Corollary 2. #MBI-2SAT is #MP-complete for any M ≥ 2, and #BI-2SAT is #P-complete.
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Proof. When we apply Lemmas 3 and 4, the #2SAT instance obtained will always be bipartite, so this

follows from Theorem 2. We can see this as the primal graph has vertices in two groups: the set V of

vertices corresponding to variables of the original formula, and the sets Ci of the vertices introduced to

decompose clauses. The subgraph for each Ci is clearly bipartite, so let CA
i and CB

i be the corresponding

partition. Each vertex in V only connects to at most one vertex ci in each Ci, and assume without loss of

generality that ci ∈CA
i . Then the whole graph can be partitioned as V ∪CB

1 ∪ ·· ·∪CB
m and CA

1 ∪ ·· ·∪CA
m,

so it is bipartite.

2.3 #SAT → #MON-SAT

While in the previous section we showed that #2SAT was #P-complete, other proofs [64] of this fact

actually consider the subset #MON-BI-2SAT. In this section we give a reduction from #SAT to #MON-

SAT, allowing us to remove negations from any CNF formula. This shows that our graphical method is

not any less powerful than the reduction via the permanent, and we argue that this chain of reductions

is more intuitive because it allows us to gradually restrict the formulae, rather than jumping straight to a

highly restrictive variant.

Lemma 5. For any r ≥ 0 and φ ∈ #2r SAT with n variables, m clauses, and maximum clause size at

least two, there is a monotone φ ′ ∈ #2r SAT with O(n+ nmr) variables and O(m+ nmr) clauses such

that #2r(φ) = #2r(φ ′). Additionally, φ ′ preserves the maximum clause size of φ , and can be computed in

O(poly(n,m,r)) time.

Proof. By evaluating the tensors, we have 2 = π π0 0 and therefore,

π =
π π0

0
≡ mod 2r

M
= π π0

2 2. . .

π
=

π π0

0
π π

π π0

2r
π π

r copies

=π π π π0

. . .

r copies

π π
π πππ

0 000

π
= 0

. . .

r copies

0 000

(13)

where the first equality follows from the Tseytin transformation of the NOT gate [60]. Thus we can

remove every negation in φ as follows:

π 0
SFZ≡ 0

... r copies

0

00

0

0
...

...
...

... mod 2r (14)

There are at most nm negations in φ , and each can be rewritten with O(r) clauses and variables. Note

that this rewrite introduces only clauses of size two, so the maximum clause size is preserved.

Theorem 3. We have the following:

1. #2r MON-kSAT and #2r MON-SAT are #2r P-complete for any r ≥ 0 and k ≥ 2.

2. #MON-kSAT and #MON-SAT are #P-complete for any k ≥ 2.
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Proof.

1. This follows immediately from Lemma 5. Since the transformation preserves maximum clause

size, this holds for either bounded or unbounded clause size.

2. For any φ ∈ #kSAT with n variables and k ≥ 2, note that 0 ≤ #(φ) ≤ 2n. Hence #(φ) = #2n+1(φ),
and so we can apply Lemma 5 with r = n+ 1 to generate φ ′ ∈ #MON-kSAT such that #(φ) =
#2n+1(φ ′) = #(φ ′) mod 2n+1 in polynomial time, giving a polynomial-time counting reduction

from #kSAT to #MON-kSAT. The same argument also gives a reduction for #MON-SAT.

2.4 Other Reductions

Using similar methods we can also consider other restrictions of #SAT. For example, in Appendix B,

we combine Theorems 1, 2, and 3 with further reductions to show that #MON-BI-PL-3DEG-2SAT,

where 3DEG- indicates each variable participates in at most three clauses, is #P-complete. This case is

interesting because it is as small as possible - if we instead have each variable participate in only two

clauses then this is in P [22]. Indeed most upper bounds on runtime for #2SAT have better special case

for this type of formula [22, 67].

As phase-free ZH-diagrams naturally encode #SAT instances, the ZH-calculus is mostly suited to

treat variations on the #SAT problem. To apply the technique of graphical reasoning to other (counting)

problems, we hence may need to use other graphical calculi. In particular, in Appendix C, we show

how the ZW-calculus [35] is naturally adapted to both the #XSAT problem (of which #1-in-3SAT is a

special case) and the #PERFECT-MATCHINGS problem, and use this shared structure to give graph-

ical reductions showing that both are #P-complete. This complements the recent result of Carette et

al. illustrating with the ZW-calculus that #PLANAR-PERFECT-MATCHINGS is in P [12].

While the reductions given above contribute to simplifying the literature in their own right, we can

also derive other simplifications from them. For example, the original proof by Valiant [62] (and the

simplification by Ben-Dor and Halevi [7]) that computing the permanent of a boolean matrix is #P-

complete relies on a reduction from #3SAT. It would be simpler to reduce from #MON–2SAT, but the

original proof that #MON–2SAT is #P-complete relies on a reduction from the permanent, so this would

be circular.

However, by Theorems 2 and 3 we have #P-completeness for #MON–2SAT independent of the

permanent. This then allows us to give an alternate, simpler proof that computing the permanent of an

integer matrix is #P-complete, which we present in Appendix D. In the original proof of Ben-Dor and

Halevi [7], they construct for a given #3SAT instance a weighted directed graph with two cycles per

variable and a gadget of seven vertices for each clause such that the permanent of the adjacency matrix

of the graph equals the value of the #3SAT instance. As finding a suitable clause gadget was difficult,

they found a suitable one using computer algebra. Our proof adapts theirs, but as we can start from a

#MON–2SAT instance, our graph can be made simpler, only requiring one cycle per variable, and a

symmetric clause gadget of just four vertices. This was found, and can easily be proven correct, by hand.

3 Evaluating Scalar ZH-Diagrams

While we have so far shown that variants of #SAT can be embedded into ZH-diagrams, and thus that the

problem of evaluating an arbitrary scalar ZH-diagram is #P-hard, we haven’t yet answered how much

harder it might be. I.e whether this problem is in #P. In this section we will show that evaluating scalar

ZH-diagrams comprised of a certain fragment of generators is complete for FP#P. FP is the class of
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functions that can be evaluated in polynomial time by a deterministic Turing machine (i.e the function

analog of P), and FP#P is thus the class of functions that can be evaluated in polynomial time by a

deterministic Turing machine with access to an oracle for a #P-complete problem (in our case we will

use #SAT).

In order to consider the problem of evaluating scalar ZH-diagrams formally, we first define the prob-

lem Eval-F which is the task of finding the complex number corresponding to a scalar diagram that exists

in fragment F of a graphical calculus. A fragment is a set of diagrams built from arbitrary combinations

of a fixed subset of generators.

Definition 2. For a given fragment F , the problem Eval-F is defined as follows:

Input A scalar diagram D ∈ F consisting of n generators and wires in total, where any parameters of

the generators of D can be expressed in O(poly(n)) bits.

Output The value D ∈ C.

The runtime of an algorithm for Eval-F is defined in terms of the parameter n.

We will examine two fragments ZHπ/2k ⊇ ZHπ and show that they can be reduced to #SAT. Far from

being purely academic, ZHπ is expressive enough to capture Toffoli-Hadamard quantum circuits, and

ZHπ/2k can additionally capture Clifford+T quantum circuits, both of which are approximately universal

for quantum computation.

Definition 3. ZHπ is the fragment of ZH-calculus given by the following generators:

. . .

. . .
π

. . .

. . .

. . .

. . .
π

. . .

. . . . . .

. . .

(15)

Lemma 6. The following diagram equivalence holds:

0

0

0

0 ππ

π π

π

π

= (16)

This is derived from the Tseytin transformation of the XOR operation [60].

Theorem 4. There is a polynomial-time counting reduction from the problem Eval-ZHπ to #3SAT and

so Eval-ZHπ is in FP#P. Note that Eval-ZHπ is equivalent to the problem #SAT± as defined in [48].

Proof. In order to rewrite a diagram D from ZHπ into #3SAT, we first rewrite all of the non-scalar

H-boxes into zero H-boxes with two legs:

...
SFH=

... =
π

π

0

0
π

... 0 ππ

1
2

=
π

π

0

0
π

... 0π (17)

Where the second equality follows from Lemma A.4 in [48]. Now, we can remove all the X-spiders and

π-phase Z-spiders as follows, to rewrite into a valid #SAT diagram:

1. Any spiders or H-boxes with no legs should be removed from the diagram. Evaluate them by

concrete calculation and multiply their values together to get a scalar multiplier c for the diagram.

If there are no such spiders or H-boxes, set c = 1.
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2. Extract the phases from all π-phase Z-spiders as follows:

π π. . .
. . .. . .

π
= . . .

. . .. . .

π

(18)

3. Unfuse the phase of every X-spider with at least two legs:

aπ
...

...
SF
= aπ (19)

4. For any X-spiders with at least three legs, unfuse them and apply Lemma 6 to each X-spider:

. . .=

. . .

= . . .
(20)

5. Replace X-spiders with one leg as follows:

= 0 π 0 π= (21)

6. Excepting the single Z-spider with a π-phase, use the SFZ rule to fuse Z-spiders wherever possible.

If there are two two-legged zero H-boxes connected together directly, introduce a Z-spider between

them using the IZ rule.

At this point, this diagram follows the form of a #3SAT diagram except for a possible single π-phase

Z-spider. To remove the π-phase Z-spider, we can write the diagram as a sum of two diagrams which

don’t contain this phase:

π = π− = 0 π− 0
...

...
...

...
... (22)

Since these two diagrams are #3SAT diagrams associated with some Boolean functions f1 and f2, the

value of D is then given by D = c(#( f1)−#( f2)).

Note that this method of splitting an instance into positive and negative components is similar to

Bernstein and Vazirani’s proof that BQP ⊆ P#P [8, Theorem 8.2.5]. Now we can move on to considering

larger fragments fairly easily. We will show that by using gadgets to copy certain “magic states” - that

is, one-legged H-boxes with specific labels which we can split as sums - we can introduce phases which

are multiples of π
2k for any fixed k.

Definition 4. ZHπ/2k for k ∈ N is the fragment of ZH-calculus given by the following generators

nπ
2k

. . .

. . .

nπ
2k

. . .

. . . . . .

. . .

(23)

where n ∈ Z.

Lemma 7. The following diagram equivalence holds:

a a2
a

a

= (24)
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Proof. We have that

a a2 = a

a

a

a−1 =
a

a

a

a−1
=

a

a

=

a

a

(25)

where the first equality follows from [46, Lemma 3.2].

Lemma 8. For all k > 0, there is a reduction from Eval-ZHπ/2k to Eval-ZHπ/2k−1 .

Proof. Let D be a diagram in ZHπ/2k . In order to rewrite this into a diagram in ZHπ/2k−1 , we need to

remove all Z-spiders with phases that are odd multiples n of π
2k , since even multiples of π

2k are already

valid for ZHπ/2k−1 . Assume that n = 2m+1, then:

nπ
2k

. . .

. . .
SFZ= mπ

2k−1

. . .

. . .
π
2k = mπ

2k−1

. . .

. . .

exp iπ
2k (26)

Let a = e
iπ

2k , then by applying Lemma 7, fold up all of a-labeled H-boxes into one

a a. . .
= a2a a2

a

. . .
a

. . .

SFH=
a2 a2

1
2

1
2

(27)

and note that a2 = π
2k−1 is in ZHπ/2k−1 . Remove all scalar H-boxes from D and let their product

be c. Finally, we can split the remaining a-labeled H-box, giving D as the sum of two diagrams D1 and

D2 in ZHπ/2k−1 :

a π= + a (28)

so then D = c(D1 +aD2).

Theorem 5. Eval-ZHπ/2k is FP#P-complete for all k ≥ 0.

Proof. By induction on Lemma 8 with the base case k = 0 given by Theorem 4, we have that Eval-ZHπ/2k

is in FP#P. It is clearly FP#P-hard, as ZHπ/2k contains the diagrams representing #SAT instances, and

hence is FP#P-complete.

The fragment ZHπ/22 captures precisely those diagrams that represent postselected Clifford+T quan-

tum circuits. Our results above hence also lead to a proof that PostBQP ⊆ P#P, although note that this is

weaker than Aaronson’s result that PostBQP = PP [1].

4 Conclusion

In this paper we have used the ZH-calculus to simplify and unify the proofs of several known results

in counting complexity. In particular, we examined various variants of #SAT and show that they are

#P-complete, and similarly that the corresponding #MSAT variants are #MP-complete. We for instance

produced a simple direct reduction from #SAT to #2SAT, which considerably simplified existing proofs
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that proceed via a reduction to the matrix permanent. Our results show that graphical calculi like the ZH-

calculus, even though originally meant for the domain of quantum computing, can provide an intuitive

framework for working with counting problems, through their interpretation as tensor networks.

We also briefly examined how other graphical calculi can be used to reason about other counting

problems, especially the ZW-calculus and its connection to counting perfect matchings in graphs. A

natural future direction is to explore which counting problems can be naturally formulated in a graphical

calculus. Finally, we also observed how the original domain of quantum computing can be related to

#SAT via the ZH-calculus, and show that the computational problem of evaluating scalar ZH-diagrams

that represent postselected Clifford+T or Toffoli+Hadamard quantum circuits is in FP#P, and hence can

be efficiently evaluated with an #SAT oracle - evaluating whether this leads to a more efficient method

for simulating quantum circuits is an interesting avenue for future research.
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A Rewriting Rules

The ZH-calculus is equipped with the following set of sound and complete rewriting rules [2]:
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We will also use the following derived rewriting rules [3, Lemmas 2.10-2.24],

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
=

. . .

. . .

. . .

. . .

=
π π

π π π

. . .
= π π. . .(π1) (π2)

(SFX)

(29)

as well as the generalized (M) rule [2, Lemma 2.3]:

=
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(M) (30)
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B #SAT → #MON-BI-PL-3DEG-SAT

The smallest subset of #2SAT that has been considered in the literature is #PL-MON-BI-CUBIC-2SAT,

where CUBIC- indicates that the primal graph of the instance is 3-regular [70]. In this section, we show

that #3DEG-SAT is #P-complete graphically, by relating the zero-labeled H-box with the Fibonacci

numbers. Here, 3DEG- indicates that every variable appears in at most three clauses. Then in Theorem

7 we combine all of our reductions to show #P-completeness for #PL-MON-BI-3DEG-2SAT. This is

slightly less restrictive than #PL-MON-BI-CUBIC-2SAT, but retains the interesting property that the

maximum degree is the lowest possible (if the maximum degree was two, then the problem can be solved

in polynomial time [22]), while avoiding the complicated global construction of the original proof.

We will make use of the following identities concerning the Fibonacci numbers, defined by:

Fn = Fn−1 +Fn−2 F1 = 1 F0 = 0 (31)

Lemma 9. gcd(Fn,Fn−1) = 1 for all n > 1.

Proof. gcd(Fn,Fn−1) = gcd(Fn−1 + Fn−2,Fn−1) = gcd(Fn−2,Fn−1) thus by induction gcd(Fn,Fn−1) =
gcd(F2,F1) = 1.

Lemma 10 [36]. For every M ≥ 1 there exists some 0 < n ≤ M2 such that Fn ≡ 0 mod M.

Lemma 11 [36]. Fn =
⌊

φ n
√

5
+ 1

2

⌋

where φ = 1+
√

5
2

is the golden ratio.

Lemma 12. Suppose that Fn ≡ 0 mod M, then the following rewrite holds:

≡ 0F−1
n−1 0 0. . .

n copies

mod M (32)

Proof. Note that the Fibonacci numbers are defined by

(

Fn+1

Fn

)

=

(

1 1

1 0

)(

Fn

Fn−1

)

=⇒
(

1 1

1 0

)n

=

(

Fn+1 Fn

Fn Fn−1

)

(33)

and so, supposing that Fn ≡ 0 mod M, we have

=0 0 0. . .

n copies

(

1 1

1 0

)n

=

(

Fn +Fn−1 Fn

Fn Fn−1

)

≡
(

Fn−1 0

0 Fn−1

)

= Fn−1 mod M

(34)

but by Lemma 9, Fn−1 is coprime to Fn, so it must be coprime to M and thus invertible.

Lemma 13. Given M and k such that Fk ≡ 0 mod M, for any φ ∈ #MSAT with n variables, m clauses,

and maximum clause size at least two, there is a φ ′ ∈ #MSAT with O(nmk) variables and O(nmk) clauses

such that every variable has degree at most three, and #M(φ) = c ·#M(φ ′) mod M where c is computable

in O(poly(n,m,k)) time. Additionally, φ ′ can be computed in O(poly(n,m,k)) time and preserves the

maximum clause size of φ .
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Proof. For every variable in φ with degree more than three, we can apply the following rewrite by

Lemma 12:

. . .
≡

d wires

0 0 0 . . .. . .. . .

2k copies

d −2 copies

SFZ= . . .

d −2 copies

mod M

IZ= 0 . . .

2k copies

d −2 copies

0 . . . 0 . . .

F6−2d
k−1

F6−2d
k−1

(35)

since d ≤ m, this adds at most O(nmk) clauses and variables. Note that we took H-box sequences of

length 2k (i.e two applications of Lemma 12) in order to preserve any bipartite structure in φ . Thus

φ now has degree at most three. Since these rewrites only add clauses of size two, they preserve the

maximum clause size. The total scalar factor accumulated across all of these rewrites is

c =
n

∏
i=1

{

F
6−2di

k−1 di > 3

1 di ≤ 3
(36)

where di is the degree of variable i, which is clearly computable in polynomial time.

Theorem 6. We have the following:

1. #M3DEG-kSAT and #M3DEG-SAT are #MP-complete for any M ≥ 1 and k ≥ 2.

2. #3DEG-kSAT and #3DEG-SAT are #P-complete for any k ≥ 2.

Proof.

1. By Lemma 10, there exists some k such that Fk ≡ 0 mod M and it is easy to compute. Therefore,

this follows from Lemma 13 since the maximum clause size is preserved.

2. Let ψ ∈ #SAT have n variables, and φ be the golden ratio. Pick k =
⌈

logφ

(

(2n +1)
√

5− 1
2

)⌉

=

O(n), then Fk ≥ 2n+1 by Lemma 11 and #(φ) = #Fk
(φ). Apply Lemma 13 with M =Fk to generate

φ ′ ∈ #3DEG-SAT such that #(φ) = c ·#Fk
(φ ′) mod Fk = c ·#(φ ′) mod Fk for some polynomial-

time computable c. The same argument applies for bounded clause size.

Lemma 14. Given r ≥ 0, for any φ ∈ #2r+12SAT with n variables and m clauses, there is a bipartite

φ ′ ∈ #2r+12SAT with O(nmr) variables and O(nmr) clauses such that #2r+1(φ) = #2r+1(φ
′), which can

be computed in O(poly(n,m,r)) time, and that preserves monotonicity and planarity.

Proof. Note that we have the following rewriting rule

0 =

0

0 0

0

0 0

0

0 0

0

π π0 0π −1 π π0 0ππ π
π
=

−1 π= 0 0π 0 0π π
π
= 0 0π 0 0ππ π π π π π

≡ 0 0 0 0π π π π π π

π π π π π π

0 0 0 0 0 0
. . . . . . . . .

π
=

r copies each

mod 2r +1

r copies each

(37)
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where the last line follows from the proof of Lemma 3. After this is applied to every clause of size

two, every path between two vertices in the incidence graph will have even length (since every edge is

replaced by four edges), and hence the incidence graph is bipartite.

Theorem 7. We have the following:

1. #MON-BI-PL-3DEG-2SAT is #P-complete

2.
⊕

MON-BI-PL-3DEG-2SAT is
⊕

P-complete

Proof. We can reduce from arbitrary #SAT instances to #MON-BI-PL-3DEG-2SAT by applying the

previously given reductions in the following order:

#SAT
1→ #PL-SAT

2→ #PL-2SAT
5→ #MON-PL-2SAT

14→ #MON-BI-PL-2SAT
13→ #MON-BI-PL-3DEG-2SAT

In both cases, we first reduce to #PL-SAT using Lemma 1. Then, we continue differently:

1. Apply Theorem 2 and Theorem 3 to reduce to #MON-PL-2SAT, as these preserve planarity. Then,

given φ with n variables, we apply Lemma 14 with r = n+1 to obtain φ ′ ∈ #MON-BI-PL-2SAT

such that #(φ) = #2r(φ ′) = #(φ ′) mod 2r. Then reduce φ ′ to #MON-BI-PL-3DEG-2SAT using

Theorem 6, since it preserves planarity, monotonicity and bipartite structure.

2. Similarly, given φ ∈ #SAT, apply Lemma 3 with r = 0, Lemma 5 with r = 1, Lemma 14 with

r = 0, and Lemma 13 with M = 2 and k = 3, to obtain φ ′ ∈ #MON-BI-PL-3DEG-2SAT such that

#2(φ) = #2(φ
′).

C #PERFECT-MATCHINGS and the ZW-Calculus

While so far we have worked exclusively with the ZH-calculus, which naturally represents #SAT, we can

use other calculi to attack other problems. In this section, we will use the ZW-calculus to examine the

connection between the problems #XSAT and #PERFECT-MATCHINGS, and sketch an argument that

they are both #P-complete. Like the connection between #SAT and #2SAT given using the ZH-calculus,

with this technique we can circumvent the usual reduction via the permanent.

Definition 5. Let f : Bn → B be a boolean function defined by

f (x) =
m
∧

i=0

φ(ci1, . . . ,ciki
) (38)

where ci j = xk or ¬xk for some k, and φ(~x) = 1 if and only if w(~x) = 1, where w(~x) is the Hamming

weight of ~x. Each φ term defines a clause, and so f (x) = 1 iff every clause has exactly one true literal.

The problem #XSAT is to compute #( f ). When ki = 3 for all i, this is also known as #1-in-3SAT.

Definition 6. The problem #PERFECT-MATCHINGS is as follows: given an undirected simple graph

G, compute the number of perfect matchings of G. That is, the number of independent edge sets of G

that cover each vertex exactly once. We denote this quantity PerfMatch(G).
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The ZW-calculus is a graphical calculus built from two generators, W-spiders and Z-spiders, which

are flexsymmetric [35]. The Z-spider is a close analogue of the Z-spider in ZH-calculus (except with a π

phase), whereas the W-spider represents the W-state:

. . .

. . .

. . .

. . .

= |~0〉〈~0|− |~1〉〈~1| = ∑
u,v

w(uv)=1

|u〉〈v| (39)

These, along with wires, caps, and cups, are combined with tensor product and tensor contraction in the

same way as in the ZH-calculus. Like the ZH-calculus, we will treat diagrams purely as tensor networks

rather than formal objects - hence equality of diagrams is just equality of tensors. This calculus is also

equipped with a set of sound and complete rewrite rules, including the following spider fusion rules,

. . .

. . .

. . .

. . .

. . .

. . .

=
. . .

. . .

. . .

. . .

. . .

. . .

= (40)

as well as others which we omit for brevity as we don’t use them explicitly here. In the same way that

ZH-calculus diagrams naturally represent #SAT instances with Z-spiders and clauses, the ZW-calculus

naturally represents #XSAT instances with the following mapping:

Variable ⇐⇒
. . .

Clause ⇐⇒
. . .

Negation ⇐⇒ (41)

Lemma 15. #XSAT is #P-complete

Proof. We can translate from #2SAT to #XSAT with the following correspondence:

= 0 =
. . .. . .

π = (42)

In the other direction, we can translate #XSAT to #SAT by first expanding every clause of size more than

three as follows:

. . .

= . . .

. . .

. . .

. . .
= (43)

Then, each clause

φ(x,y,z) = (x∧¬y∧¬z)∨ (¬x∧ y∧¬z)∨ (¬x∧¬y∧ z)

φ(x,y) = (x∧¬y)∨ (¬x∧ y)

φ(x) = x

(44)

can be rewritten as a bounded number of CNF clauses.

However, as Carette et al. [12] note, diagrams of the ZW-calculus can also naturally represent in-

stances of #PERFECT-MATCHINGS by taking each vertex of the graph to be a W-spider and edges

of the graph as wires. Therefore, any ZW-diagram containing only W-spiders represents an instance of

#PERFECT-MATCHINGS.

Theorem 8. #PERFECT-MATCHINGS is #P-complete.
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Proof. Suppose we are given an instance f of #XSAT on n variables as a ZW-diagram, then to trans-

form it to an instance of #PERFECT-MATCHINGS we need to remove all Z-spiders, which represent

variables. First split all the variables so they have degree at most three:

= . . .

. . . . . .
(45)

Then we can use the following rewrites to remove all variables with degree two and three:

= =1
2 (46)

We are left with only variables of degree one, some extraneous Z-spiders with degree two, and a constant

factor of 2−c. To complete the reduction to #PERFECT-MATCHINGS it then remains to show we can

get rid of these degree-one variables and the degree-two Z-spiders.

We can remove the Z-spiders by considering the whole diagram modulo 2n+c + 1: since we started

with a #XSAT instance with n variables, we have 0 ≤ #( f )≤ 2n, so the value of the remaining diagram is

at most 2n+c. It is hence sufficient to calculate modulo 2n+c+1 for our resulting diagram. In this setting,

we have

=

(

1 0

0 −1

)

≡
(

1 0

0 2n+c

)

=

(

1 0

0 2

)n+c

= . . .

n+ c copies

(mod 2n+c+1) (47)

since

=

(

1 0

0 2

)

(48)

and hence we are left with a diagram containing only variables of degree one, and no other Z-spiders. To

remove these variables of degree one, note that

= (49)

and thus we can combine all the variables of degree one together:

. . . =
. . .
. . . (50)

Finally, we can remove the last variable by splitting the diagram as a sum of diagrams, neither of which

contain any Z-spiders:

= + (51)

Thus, these two diagrams each represent an instance of #PERFECT-MATCHINGS - let us denote the

graphs of the corresponding instances as G1 and G2. The construction above allows us to obtain G1 and

G2 in polynomial time, and we have

#( f ) = 2−c(PerfMatch(G1)+PerfMatch(G2)) mod 2n+c +1 (52)

hence #PERFECT-MATCHINGS is #P-hard. We can also see that #PERFECT-MATCHINGS ∈
#P, since we can use Equation (46) to rewrite all wires into variables of degree two, and thus trans-

form an instance of #PERFECT-MATCHINGS into an instance of #XSAT. Therefore, #PERFECT-

MATCHINGS is #P-complete.
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D #P-Completeness for the Permanent

The proof by Valiant [62] that the permanent of an integer-valued matrix, Z-Permanent, is #P-complete,

and the simplified proof by Ben-Dor and Halevi [7], both rely on a reduction from #3SAT. This reduc-

tion could be simplified by using #2SAT instead, but this was unfortunately not possible, as the proof

that #2SAT is #P-complete relies itself on a reduction from the permanent. However, since we proved

in Theorem 2 that #2SAT is #P-complete independent of the permanent, we can make use of this to

simplify the reduction for Z-Permanent further. In this section, we detail this reduction, which shows

that Z-Permanent is #P-hard. Our construction and proof is essentially identical to that of Ben-Dor and

Halevi [7], with the exception that we start with an instance of #MON-2SAT, and can hence use simpler

gadgets.

Definition 7. Given a directed edge-weighted graph G with edges E , a cycle-cover of G is a set E ′ ⊆ E

of simple cycles that partition the vertices of G. Note that self-loops are permitted in G. The weight of a

cycle cover is the product of all the weights of the edges in E ′.

Lemma 16. Let G be a directed graph with self-loops and edge weights wi j, and let A be its adjacency

matrix, i.e. Ai j = wi j if i and j are connected or Ai j = 0 otherwise. Then the permanent of A is the sum

of weights of all cycle-covers of G. We denote this number by #(G).

Given this, it is sufficient to reduce #MON-2SAT to the problem of determining the sum of weights

of cycle-covers of a graph. We aim to construct a graph Gφ from a #MON-2SAT instance φ with n

variables and m clauses, in polynomial time, such that #(Gφ ) = f (φ) ·#(φ) for some easily computable

and suitably bounded f (φ). We construct Gφ as follows:

1. For each variable xi in φ , introduce a vertex vi to Gφ .

2. For each clause in φ , introduce a clause gadget of four vertices to Gφ , the structure of which we

will describe momentarily. Two of the vertices of this gadget are designated as the first and second

input respectively.

3. For every variable vertex, add a self-loop si of weight one to Gφ .

4. For every variable vertex vi, add an edge of weight one from vi to an unused input c1 of the first

clause in which v appears. Then add an edge of weight one from c1 to c2, an unused input of the

second clause in which v appears. Continue similarly until all di clauses in which v appears have

been processed, then add an edge of weight one from cdi
to vi. Let these edges be labeled as ci j.

An example of this construction is given below, the loop of edges proceeding from each variable high-

lighted in a different color:

x y z

(x∨ y) (x∨ z) (y∨ z)∧ ∧

C C C

(53)
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The clause gadget is given by the following graph

2 2

−1

C =

where the top-most vertex is the first input, and the bottom-most vertex is the second. Bidirectional edges

represent a pair of edges, one in each direction, with the same weights. Now let Ec be the set of edges in

Gφ that are internal to clause gadgets, and let Er = E \Ec be the rest.

Definition 8. Let a partial cover of Gφ be a subset E ′
r ⊆ Er. A completion of E ′

r is a cycle cover of Gφ

given by E ′
r ∪E ′

c where E ′
c ⊆ Ec. We call the weight of E ′

r the sum of the weights of all completions of

E ′
r.

Let us say that a partial cover E ′
r is induced by a satisfying assignment ~x of φ if, for every variable

xi assigned false in ~x, si ∈ E ′
r and ci j /∈ E ′

r for all 1 ≤ j ≤ di, and for every variable xi assigned true in

~x, ci j ∈ E ′
r for all 1 ≤ j ≤ di and si /∈ E ′

r. We wish to argue that the weight of a partial cover of Gφ is

non-zero if and only if it is induced by a satisfying assignment.

Lemma 17. Let E ′
r be a partial cover of Gφ , then the weight of E ′

r is 4m if E ′
r is induced by a satisfying

assignment, and zero otherwise. Moreover, each such E ′
r is induced by a unique satisfying assignment.

Proof. Suppose E ′
r is induced by a satisfying assignment. Then for each clause gadget, the ingoing and

outgoing edges are included in E ′
r for either one or both inputs (otherwise there is an unsatisfied clause).

The possible completions of E ′
r are as follows for each clause gadget:

2 2
−1

2 2
−1→ 2 2

−1+ = 4

2 2
−1

2 2
−1→ = 4

(54)

The dotted edges represent edges not included in the cycle-cover. Then the total weight of each clause

gadget over the completions is four in either case, so the overall weight of E ′
r is 4m. Now suppose that

E ′
r is not induced by a satisfying assignment. Note that if the number of incoming and outgoing edges

of each clause gadget in E ′
r is not equal, then the weight of E ′

r is zero, as there is no valid completion

of E ′
r (because there can be no such cycle-cover). Therefore, the only remaining case is that there is at

least one clause gadget which has no incoming and outgoing edges, or has one incoming edge and one

outgoing edge on the opposing input (otherwise E ′
r would be induced by a satisfying assignment). In

either case, we can see the total weight of the gadget over the completions is zero:

2 2
−1

2 2
−1→ 2 2

−1+ = 0

2 2
−1

2 2
−1→ 2 2

−1+ = 02 2
−1

2 2
−1++

(55)
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Hence, the weight of E ′
r must also be zero. Note that each E ′

r that is induced by a satisfying assignment

must be induced by a unique assignment, since you can recover the assignment from E ′
r.

Clearly, the sum of weights of all partial covers of Gφ is the same as the sum of weights of all

cycle-covers of Gφ . But by Lemma 17, this is 4m#(φ), so #(φ) = 4−m#(Gφ ), and thus Z-Permanent is

#P-hard, as Gφ can be computed in polynomial time from φ .

It is interesting to note that the constructions of Ben-Dor and Halevi, and Valiant, both make use of

negative-weight edges and have f (φ) = km for some even integer k (12 for Ben-Dor and Halevi, and 45

for Valiant). In order to further simplify the next steps of the reduction to B-Permanent, it would be

desirable to have no negative weights, or k = 1. However, as Valiant points out [62], neither of these is

likely to be possible:

• If k is odd, then #(φ) ≡ #(Gφ ) mod 2, but #(Gφ ) mod 2 is easy to compute [7] (as the parity of

the permanent is equal to the parity of the determinant), so then P =
⊕

P and NP = RP by the

Valiant-Vazirani theorem [63].

• Suppose Gφ is constructed by reduction from 3SAT. If there are no negative-weighted edges, then

the existence of any cycle-cover of Gφ indicates the existence of a satisfying assignment to φ . But

determining if a cycle-cover exists is easy for general directed graphs, so then P = NP.

This last argument does not hold up for our construction, since we start from #MON-2SAT, for which it

is trivial to determine if a satisfying assignment exists (indeed, one always exists by setting every variable

true). However, we can still rule out the possibility of a reduction without negative-weighted edges: it is

known that Z-Permanent with non-negative weights has an FPRAS [40], whereas #MON-2SAT does

not, unless NP = RP [68, Theorem 57].
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We give a presentation by generators and relations of the group of 3-qubit Clifford+CS operators. The

proof roughly consists of two parts: (1) applying the Reidemeister-Schreier theorem recursively to an

earlier result of ours; and (2) the simplification of thousands of relations into 17 relations. Both (1)

and (2) have been formally verified in the proof assistant Agda. The Reidemeister-Schreier theorem

gives a constructive method for computing a presentation of a sub-monoid given a presentation of the

super-monoid. To achieve (2), we devise an almost-normal form for Clifford+CS operators. Along

the way, we also identify several interesting structures within the Clifford+CS group. Specifically,

we identify three different finite subgroups for whose elements we can give unique normal forms.

We show that the 3-qubit Clifford+CS group, which is of course infinite, is the amalgamated product

of these three finite subgroups. This result is analogous to the fact that the 1-qubit Clifford+T group

is an amalgamated product of two finite subgroups.

1 Introduction

Just like Clifford+T circuits, the class of Clifford+CS circuits is universal for quantum computing [2].

Here, CS denotes the controlled-S gate. Amy, Glaudell, and Ross gave a characterization of the group of

n-qubit Clifford+CS operators, showing that, up to a trivial condition on the determinant, a matrix is in

this group if and only if it is unitary and its matrix entries belong to the ring Z[1
2
, i] [2]. As a consequence

of this, or alternatively since the CS gate is representable as a Clifford+T circuit with T -count 3, the

Clifford+CS group is a subgroup of Clifford+T ; see also [3]. Glaudell, Ross, and Taylor gave a normal

form for 2-qubit Clifford+CS circuits [8]. In [9], Haah and Hastings showed how to construct a fault-

tolerant CS-gate via magic state distillation. In [7], Garion and Cross described a CS- and CX -optimal

canonical form for the 2-qubit group generated by the gates {X ,T,CX ,CS}.

This paper is motivated by the problem of optimizing Clifford+CS circuits. Like the T -gate, the CS-

gate is a non-Clifford gate that is relatively expensive to perform in a fault-tolerant regime, requiring a

magic state to be distilled [7]. It therefore makes sense to try to minimize the number of CS-gates. For

example, one of the relations we found,

S†

K

S

K

S
= S† K

S

K S ,

can sometimes be used to reduce the CS-count. Although we do not provide a method for minimizing

the CS-count, we solve the important sub-problem of finding a complete set of relations for 3-qubit

Clifford+CS circuits. This guarantees that any 3-qubit Clifford+CS circuit can be transformed into any

other equivalent Clifford+CS circuit by the repeated application of a finite known set of relations.

Apart from giving a presentation of the group of 3-qubit Clifford+CS circuits by generators and

relations, we also identify several interesting structures within this group along the way. Specifically, we

identify three different finite subgroups for whose elements we can give unique normal forms. We show

that the 3-qubit Clifford+CS group, which is of course infinite, is the amalgamated product of these three

finite subgroups.

http://dx.doi.org/10.4204/EPTCS.384.7
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The paper is organized as follows. In Section 2, we provide the necessary background, including the

definition of the Clifford+CS group. We also recall a presentation of the group of unitary matrices over

the ring Z[1
2
, i] from our earlier work. In Section 3, we state our main result and give an outline of the

proof. In Section 4, we present normal forms for three finite subgroups of the Clifford+CS operators,

as well as an almost-normal form for Clifford+CS operators. In Section 5, we show that the 3-qubit

Clifford+CS group is the amalgamated product of these three finite subgroups. This result is analogous

to the fact that the 1-qubit Clifford+T group is an amalgamated product of two of its finite subgroups. In

Section 6, we give a brief overview of the accompanying Agda code. We conclude the paper with some

ideas for future work in Section 7.

2 Background

2.1 Clifford+CS operators

Consider the following unitary operators:

i, K = e−iπ/4H =
1

1+ i

(

1 1
1 −1

)

, S =
(

1 0
0 i

)

, CZ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



.

Here, i is a scalar, namely the usual complex unit. H is the Hadamard gate, and K is a scaled version

of the Hadamard gate. S is sometimes called the phase gate, and CZ is the controlled-Z gate. When

closed under multiplication, identities, and tensor products, these operators generate the Clifford group

(possibly up to scalars, depending which scalars are included in the Clifford group — for our purposes,

the scalars ±1 and ±i are sufficient).

Every operator U obtained in this way is of size 2n × 2n for some natural number n, and as usual,

we say that U is an operator on n qubits. We write C (n) for the group of n-qubit Clifford operators. It

is well-known that this group is finite for any given n (see, e.g., [12]), and therefore not universal for

quantum computing. We can obtain a universal gate set by adding the controlled phase gate

CS =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 i



.

The resulting operators are called the Clifford+CS operators, and we write CS (n) for the n-qubit Clif-

ford+CS group.

In this paper, we focus on the case n = 3. Our goal is to give a complete presentation of the 3-

qubit Clifford+CS group in terms of generators and relations. To ensure that all of our generators are

8 × 8-matrices, we introduce the following notations: we write CS01 = CS ⊗ I ,CS12 = I ⊗CS ,K0 =
K ⊗ I ⊗ I ,K1 = I ⊗K ⊗ I ,K2 = I ⊗ I ⊗K, and similarly for S0, S1, and S2, where I is the 2× 2 identity

operator. We identify the scalar i with the 8×8-matrix i I. In the notation for controlled gates, we use the

convention that the target is the last index. For example, CX01 is a controlled X -gate with control qubit 0

and target qubit 1. Note that the controlled S- and Z-gates are symmetric, in the sense that CS jk =CSk j

and CZ jk =CZk j, and therefore the order of indices does not matter for them.

We use the following circuit notations for K, S, CZ, and CS, respectively:

K = K , S = S , CZ = , CS = i .
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The CZ gate is usually denoted

Z ,

but since it is symmetric with respect to its two qubits, we prefer the more symmetric notation shown

above. We also use a similar notation for the CS gate, except that we label it with an “i ”.

We number the qubits from top to bottom, and we write the circuits in the same order as matrix

multiplication, i.e., from right to left. For example,

CS01CZ12 =
i

, K0S1 =
K

S =
K

S .

Note that the X -gate and the controlled X -gate are definable as follows:

X = KSSKi, =
K

i i
K

· i.

When we use the X - and controlled X -gates, for example in Figure 2, they are to be understood as

abbreviations for these definitions.

2.2 A presentation of Un(Z[
1
2
, i])

We briefly recall a result from our earlier work [4]. As usual, Z is the ring of integers. Let Z[1
2
, i] be

the smallest subring of the complex numbers containing 1
2

and i. Let Un(Z[
1
2
, i]) be the group of unitary

n×n-matrices with entries in Z[1
2
, i].

In [4], we proved that the following is a presentation of Un(Z[
1
2
, i]) by generators and relations. The

generators are i[ j], X[ j,k], and K[ j,k], where j,k ∈ {0, . . . ,n− 1} and j < k. The relations are shown in

Figure 1. These relations are between words in the generators, and we write ε for the empty word

(corresponding to the identity element of the group). The intended interpretation of the generators is

as 1- and 2-level matrices; specifically, i[ j] is like the identity matrix, except with i in the jth row and

column, and X[ j,k] and K[ j,k] are like identity matrices, except with the entries of X , respectively K, in the

jth and kth rows and columns, like this:

i[ j] =





··· j ···

... I 0 0

j 0 i 0
... 0 0 I



, X[ j,k] =













... j ... k ...

... I 0 0 0 0

j 0 0 0 1 0
... 0 0 I 0 0

k 0 1 0 0 0
... 0 0 0 0 I













, K[ j,k] =













... j ... k ...

... I 0 0 0 0

j 0 1
1+i

0 1
1+i

0
... 0 0 I 0 0

k 0 1
1+i

0 −1
1+i

0
... 0 0 0 0 I













.

Theorem 2.1 ([4]). Let G be the set of one- and two-level matrices i[ j], X[ j,k], and K[ j,k], where j,k ∈
{0, . . . ,n− 1} and j < k. Let ∆ be the set of relations shown in Figure 1. Then (G ,∆) is a presentation

of Un(Z[
1
2
, i]). In other words, the relations in Figure 1 are sound and complete for Un(Z[

1
2
, i]).

2.3 The Reidemeister-Schreier theorem

We will also make use of a result known as the Reidemeister-Schreier theorem for monoids [10, 11, 5].

In a nutshell, if G is a monoid and H is a submonoid of G, the Reidemeister-Schreier theorem, under

suitable assumptions, gives a method for deriving generators and relations for H from generators and

relations for G. Giving a complete account of the Reidemeister-Schreier theorem is beyond the scope of

this paper, but we refer the interested reader to Section 4.2 of [5] for a detailed explanation.
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i4[ j] ∼ ε (1)

X2
[ j,k] ∼ ε (2)

K8
[ j,k] ∼ ε (3)

i[ j]i[k] ∼ i[k]i[ j] (4)

i[ j]X[k,ℓ] ∼ X[k,ℓ]i[ j] (5)

i[ j]K[k,ℓ] ∼ K[k,ℓ]i[ j] (6)

X[ j,k]X[ℓ,m] ∼ X[ℓ,m]X[ j,k] (7)

X[ j,k]K[ℓ,m] ∼ K[ℓ,m]X[ j,k] (8)

K[ j,k]K[ℓ,m] ∼ K[ℓ,m]K[ j,k] (9)

i[k]X[ j,k] ∼ X[ j,k]i[ j] (10)

X[k,ℓ]X[ j,k] ∼ X[ j,k]X[ j,ℓ] (11)

X[ j,ℓ]X[k,ℓ] ∼ X[k,ℓ]X[ j,k] (12)

K[k,ℓ]X[ j,k] ∼ X[ j,k]K[ j,ℓ] (13)

K[ j,ℓ]X[k,ℓ] ∼ X[k,ℓ]K[ j,k] (14)

K[ j,k]i
2
[k] ∼ X[ j,k]K[ j,k] (15)

K[ j,k]i
3
[k] ∼ i[k]K[ j,k]i[k]K[ j,k] (16)

K[ j,k]i[ j]i[k] ∼ i[ j]i[k]K[ j,k] (17)

K2
[ j,k]i[ j]i[k] ∼ ε (18)

K[ j,k]K[ℓ,m]K[ j,ℓ]K[k,m] ∼ K[ j,ℓ]K[k,m]K[ j,k]K[ℓ,m] (19)

Figure 1: A sound and complete set of relations for Un(Z[
1
2
, i]). In each relation, the indices are assumed

to be distinct; moreover, whenever a generator X[a,b] or K[a,b] is mentioned, we assume a < b.

3 A presentation of Clifford+CS operators

In this section, we state our main result and give an outline of the proof. The full proof can be found in

the accompanying Agda code [6].

Theorem 3.1. The 3-qubit Clifford+CS group is presented by (X ,ΓX), where the set of generators is

X = {i,K0,K1,K2,S0,S1,S2,CS01,CS12},

and the set of relations ΓX is shown in Figure 2.

One interesting feature of the axioms in Figure 2 is that the upside-down version of each relation is

also a relation, except for (C15). The upside-down version of (C15) is provable, so we do not require it

as an axiom.

3.1 Proof outline

Our proof follows a similar general outline as the corresponding proof for 2-qubit Clifford+T operators in

[5]. Let G =U8(Z[
1
2
, i]) be the group of unitary 8×8-matrices with entries in Z[1

2
, i]. An exact synthesis

algorithm for G was given by Amy, Glaudell, and Ross [2]. Based on this, we gave a presentation of G

by generators and relations in [4]. It is clear that CS (3) is a subgroup of G, because all of its generators

belong to G. Moreover, by a result of Amy et al. [2], we know that CS (3) is precisely the subgroup of

G consisting of matrices whose determinant is ±1. The only other possible values for the determinant

are ±i, and therefore CS (3) is a subgroup of G of index 2. We can therefore apply the Reidemeister-

Schreier procedure [10, 11] to find generators and relations for CS (3), given the known generators and

relations for G. Applying this procedure yields a complete set of relations for CS (3).
The application of the Reidemeister-Schreier method produces thousands of relations, compared to

the 17 cleaned-up relations in Figure 2. Moreover, these relations are very large. In our code, which
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(a) Relations for n ≥ 0:

i4 = ε (C1)

(b) Relations for n ≥ 1:

K2 = i3 (C2)

S4 = ε (C3)

SKSKSK = i3 (C4)

(c) Relations for n ≥ 2:

i i i i = (C5)

S
i = i

S (C6)

S
i = i

S
(C7)

X
i = i i i

X

S
(C8)

X
i = i i i

X

S
(C9)

S K
i

K
i = i

K
i

K S (C10)

S K
i

K
i = i

K
i

K S
(C11)

(d) Relations for n = 3:

i

i
=

i

i
(C12)

i
=

i
(C13)

i i i i
=

i i i i
(C14)

i i
=

i i i i
(C15)

i
K

i
K

i
K

i
=

i
K

i
K

i
K

i
(C16)

i
K

i i i
K

i
K

i
=

i
K

i i i
K

i
K

i
(C17)

(e) Monoidal relations: the scalar i commutes with everything, and non-overlapping gates commute.

Figure 2: Complete relations for CS (3). Each relation in (b) denotes three relations (one for each qubit),

and each relation in (c) denotes two relations (one for each pair of adjacent qubits).
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actually uses a sequence of multiple applications of the Reidemeister-Schreier theorem passing through

a number of intermediate representations, some of the longest relations involve more than 50,000 gener-

ators. Our main contribution is the simplification of these relations. Due to the sheer magnitude of this

task, we must rely on a computer to expedite the computation. However, we also require the simplifi-

cation process to be trustworthy, as it is very easy in a computer program to accidentally use a relation

that has not yet been proved. To this end, we have formalized Theorem 3.1 and its proof in the proof

assistant Agda. This allows the proof to be verified independently and with a high degree of confidence

in its correctness, despite the magnitude of the proof.

The main idea of the simplification is to use the 17 relations from Figure 2, along with some of their

easy consequences, to rewrite the thousands of relations until they are all eliminated. We define several

rewrite systems for this task. Some of these rewrite systems are confluent and terminating, and others are

just heuristics. All of these rewrite systems are implemented in Agda and the computations are verified

within Agda.

4 Normal forms and an almost-normal form

4.1 Notations

For convenience, we will use the following notations:

=
K

i i
K

· i = K
i i

K · i

Swap01 = = , Swap12 = =

CS02 = i
=

i
, CX20 = =

K

i i

K

· i

CK10 =
K

= i
K

i
K

i
S3 · i, CK20 =

K

=
K

CCZ = =
i i i i

i
, CCX0 = =

K K

· i

CCK′
0 =

K′

=
K

i
K

i

K
i

K

i i
· i2

The first two notations extend to 3-qubit circuits, giving us the definitions of, for example, CX01,

and CX21. The definitions for a Toffoli gate with target on the second, respectively first, qubit are given

by CCX1 = Swap01CCX0 Swap01 and CCX2 = Swap12CCX1 Swap12. The last notation uses a twice-

controlled K′ gate. Here K′ = KS† is a variant of the K-gate that has determinant 1. The reason we are

not using a twice-controlled K-gate is that it has determinant i and is therefore not an element of CS (3).

4.2 Normal forms for finite subgroups of Clifford+CS operators

We will define normal forms and discuss the structure of the following finite subgroups of Clifford+CS

operators. The inclusion relations between these subgroups are visualized in Figure 3.
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PD K0W K0CQD

P CQD K0QD

W CQ QD 〈K0〉

C Q D

Figure 3: The inclusion graph of various finite subgroups of CS (3)

• W , the subgroup of permutation matrices generated by XW = {Swap01,Swap12}.

• Q, the subgroup of permutation matrices generated by XQ = {X0,CX10,CX20,CCX0}.

• C, the subgroup of permutation matrices generated by XC = {X1,CX12,CX21}.

• CQ, the subgroup generated by XC and XQ.

• P, the subgroup of permutation matrices generated by XP = {CX01,CX10,CX12,CX21,CCX0,X0}.

• D, the diagonal subgroup generated by XD = {i,S0,S1,S2,CS01,CS12,CS02,CCZ}.

• PD, the subgroup generated by XP and XD.

• QD, the subgroup generated by XQ and XD.

• CQD, the subgroup generated by XC, XQ and XD.

• K0D the subgroup generated by {K0}∪XD. Note that this group contains Q, so it can also be

denoted by K0QD.

• K0CD, the subgroup generated by {K0}∪XC ∪XD. Since this group contains Q, it can also be

denoted by K0CQD.

• K0W , the subgroup generated by K0 and XW .

Note that P is the group of all permutations of the computational basis vectors; we call its members

“permutation operators”. Q, C, and CQ are subgroups of P. Similarly, D is the group of all diagonal

operators in CS (3). The remaining subgroups play a technical role in our proofs.

Given that all claims about finite groups can be proved by just enumerating the elements, we will

not give proofs of the following claims about finite subgroups of CS (3). Instead, we will illustrate the

proofs with examples. Some of the proofs can be found in the Agda code.

The group W is the group of permutations of 3 qubits.

The generators of Q all commute with each other and are self-inverse. Therefore, each element of

Q can be uniquely written of the form Xa
0 CXb

10CX c
20CCXd

0 , where a,b,c,d ∈ {0,1}. We say that the

subgroup Q has the following normal form:

Q ::= Xa
0 CXb

10CX c
20CCXd

0 , where a,b,c,d ∈ {0,1}. (20)
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We use Q to range over normal forms for Q. More generally, given any group G for which normal forms

are defined, we use G to range over the normal forms of G. The group Q has 24 = 16 distinct normal

forms corresponding to 16 distinct elements.

It is easy to see that Swap12 ∈ C, and therefore also X2 ∈C. The group C has the following normal

form:

C ::= c4c3c2 (21)

where
c2 ∈ {ε ,CX12},
c3 ∈ {ε ,CX21,CX12CX21},
c4 ∈ {Xa

1 Xb
2 | a,b ∈ {0,1}}.

There are 4! = 24 distinct normal forms in C.

The group CQ is a semidirect product of C and Q with Q being normal. A semidirect product structure

means that we have commuting relations of the form qc = cq′, or more precisely, for all q ∈ Q and c ∈C,

there exists a unique q′ ∈ Q such that qc = cq′. Consequently, CQ has the following normal form:

CQ ::= C Q.

The group P contains CQ as a subgroup with 105 cosets. We get the following normal form for P:

P = cCQ, where c ranges over the set V of 105 left coset representatives. (22)

One can easily spot a normal form for D, since all the generators commute with each other, CCZ has

order 2, and all of the other generators have order 4. The normal form is:

D ::= in0 S
n1

0 S
n2

1 S
n3

2 CS
n4

01CS
n5

12CS
n6

02CCZn7 , where n0, . . . ,n6 ∈ {0,1,2,3} and n7 ∈ {0,1}. (23)

The group PD is a semidirect product of P and D, with D being normal. It therefore has the following

normal form:

PD ::= P D. (24)

Since Q is a subgroup of P, it follows that QD is also a semidirect product. It enjoys a similar normal

form as (24), with P replaced by Q.

It is easy to see the that group K0D contains XQ, hence Q is a subgroup of K0D. We have the

following normal form:

K0D ::= e4e3e2e1D Q, (25)

where
e1 ∈ {ε ,CCK′

0,CCK′
0CCK′

0},
e2 ∈ {ε ,CK10, S0CK10},
e3 ∈ {ε ,CK20, S0CK20},
e4 ∈ {ε , K0, S0K0}.

Note that CK10,CK20 and K0 commute with each other but not with CCK′
0.

Notice that each element of XC commutes with K0. For any element of K0CD, for example w =
X1K0CS01K0CCZ, we can commute X1 all the way to the right using the commuting relations and the

semidirect product structure of QD. For example, we get w = K0CS01CS01CS01S0K0CCZCS02CS02X1.

We will use the following normal form for K0CD:

K0CD = (K0D) C = e4e3e2e1D Q C. (26)

Note that this also proves that K0CD is finite, which perhaps wasn’t obvious from its definition.
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K K

=
K K

K K

=
K K

K K′

=
K K′

K K′

=
K K′

K

=
K

K K

=
K K

Figure 4: Some relations used to rewrite words of the form ce4e3e2e1 ce4e3e2e1 . . . ce4e3e2e1.

4.3 An almost-normal form for CS (3)

Consider a Clifford+CS circuit. After replacing the generators K1 and K2 by Swap01 K0 Swap01 and

Swap12 Swap01 K0 Swap01 Swap12, respectively, the circuit can be written as an alternating sequence of

elements of PD and K0:

PDK0 PDK0 . . .PDK0 PD.

By repeatedly converting subcircuits to normal forms of the form (24), (22), and (26), we can rewrite

this circuit as follows:

PDK0 PDK0 . . .PDK0 PD
(24)(22)
→ cCQDK0cCQDK0 . . .cCQDK0cCQD
(26)
→ ce4e3e2e1D Q CcCQDK0 . . .cCQDK0cCQD

(24)(22)
→ ce4e3e2e1cCQDK0 . . .cCQDK0cCQD

repeat
→ ce4e3e2e1 ce4e3e2e1 . . . ce4e3e2e1cCQD.

We can further rewrite the last expression, for example using relations in Figure 4. After this step, we

might get some new gates that are not in V or of the form ei. In this case, we continue with the first arrow

step. We repeat the whole process until there is no further simplification. We call the resulting word an

almost-normal form.

It turns out this almost-normal form is “canonical” enough. It can be used to show that a complete set

of thousands of relations hold by rewriting both sides of each relation to almost-normal form. Moreover,

all rewriting rules used to get an almost-normal form are consequences of the relations in Figure 2. This

shows that the relations in Figure 2 are complete.

5 Clifford+CS is an amalgamated product of three finite groups

Let us first recall the definition of an amalgamated product of two monoids. For category theorists,

this is simply a pushout: Given monoids M1, M2, and H with morphisms H → M1 and H → M2, the
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amalgamated product M1 ∗H M2 is the pushout

H M2

M1 M1 ∗H M2.
p

The amalgamated product of three monoids is defined similarly. Suppose M1, M2, M3, H12, H23, H13

are monoids with morphisms H jk → H j and H jk → Hk for all relevant j and k. Then the amalgamated

product P is the colimit of the following diagram, which generalizes a pushout:

H23

H13 M3

H12 M2

M1 P.

In terms of generators and relations, we have the following situation: Suppose we have three sets of

generators X , Y , and Z, and three monoid presentations M1 = 〈X ∪Y | Γ1〉, M2 = 〈X ∪ Z | Γ2〉, and

M3 = 〈Y ∪Z | Γ3〉. We can take H12 = 〈X〉, H13 = 〈Y 〉 and H23 = 〈Z〉, with the obvious maps. Then the

amalgamated product P has the presentation 〈X ∪Y ∪Z | Γ1 ∪Γ2 ∪Γ3〉.
In cases where P is an infinite monoid or group, it is remarkable when M1, M2, and M3 can be chosen

to be finite. In that case, the slogan “the only relations that hold in P are relations that hold in a finite

submonoid of P” applies.

Using the results of this paper, we can show that CS (3) is an amalgamated product of three finite

groups. We choose the sets of generators as follows:

X = {K0, i},
Y = {X0,X1,X2,CX12,CX21,CX10,CX20,CCX0,S0,S1,S2,CS01,CS12,CS02,CCZ, i},
Z = {Swap01,Swap12}.

One can check that 〈X ∪Y 〉 = K0CQD, 〈X ∪ Z〉 = K0W , and 〈Y ∪ Z〉 = PD. Since X ∪Y , X ∪ Z, and

Y ∪Z each generate a finite subgroup of CS (3), all that is left to show is that each relation of CS (3) is

a consequence of relations in one of these three subgroups.

Before we prove this, we must adjust the relations of Figure 2 to fit the new set of generators X∪Y ∪Z.

This requires two adjustments. First, compared to the set of generators from Theorem 3.1, a number of

new generators have been added, namely X0, X1, X2, CX12, CX21, CX10, CX20, CCX0, CS02, CCZ, Swap01,

and Swap12. For each of these, we must add a defining relation in terms of the old generators. These

relations are as in Section 4.1. Second, the two generators K1 and K2 are no longer used, so where

they appear in the relations, they must now be regarded as abbreviations for the words Swap01 K0 Swap01

and Swap12 Swap01 K0 Swap01 Swap12, respectively. With these adjustments, we still have a sound and

complete presentation of CS (3) using the generators X ∪Y ∪Z.

Now we must show that each of the relations follows from relations that hold in 〈X ∪Y 〉, 〈X ∪ Z〉,
or 〈Y ∪ Z〉. Many of the relations, such as (C1), (C3), (C5)–(C9), and (C12) are already in one of the
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three subgroups, so there is nothing else to show for them. The remaining relations must be proved

individually; here, we give a proof of (C16) as a representative example. We have:

CS12 K1CS12 K1CS01 K1CS01

= CS12 Swap01 K0 Swap01CS12 Swap01 K0 Swap01CS01 Swap01 K0 Swap01CS01 (1)

= Swap01CS02 K0CS02 K0CS01 K0CS01 Swap01 (2)

= Swap01CS01 K0CS01 K0CS02 K0CS02 Swap01 (3)

= CS01 Swap01 K0 Swap01CS01 Swap01 K0 Swap01CS12 Swap01 K0 Swap01CS12 (4)

= CS01 K1CS01 K1CS12 K1CS12 (5)

Here, steps (1) and (5) use the definition of K1, which is at this point merely an abbreviation for

Swap01 K0 Swap01. Steps (2) and (4) uses the relations Swap2
01 = ε and Swap01CS12 Swap01 =CS02 and

Swap01CS01 Swap01 = CS01. All three of these relations come from 〈Y ∪Z〉. Step (3) uses the relation

CS02 K0CS02 K0CS01 K0CS01 =CS01 K0CS01 K0CS02 K0CS02, which comes from 〈X ∪Y 〉. In addition to

(C16), there are a number of other relations to be proved, but they all follow a similar pattern.

As mentioned in the introduction, there is an analogous result for the 1-qubit Clifford+T group,

which is also an infinite group, and which is an amalgamated product of two finite subgroups. In this

case, the finite subgroups are the Clifford group and the subgroup of diagonal and permutation operators,

which is generated by T and X .

6 An overview of the accompanying Agda code

This paper is accompanied by a machine-checkable proof of Theorem 3.1 [6]. It has been formalized in

the proof assistant Agda [1]. The proof assumes only the result of [4], i.e., the soundness and complete-

ness of a certain set of relations for Un(Z[
1
2
, i]). Everything else is proved from first principles, including,

for example, a complete proof of the version of the Reidemeister-Schreier theorem that we used.

Verifying the proof. Readers who are interested in verifying the proof only need to know the following:

The statement of Theorem 3.1 is contained in the file Theorem.agda, and the final step of the proof of

Theorem 3.1 is contained in the file Proof.agda. The reason we separated the statement of the theorem

from its proof is to ensure that the statement assumes as little as possible: in fact, the file Theorem.agda

is almost completely self-contained and only depends on a few definitions concerning generators, words,

indices, and two-level relations. On the other hand, the proof requires a large number of auxiliary files

with definitions, lemmas, tactics, and more. We checked the proof with Agda 2.6.4, and it took about

120 minutes on our laptop.

Reading the proof. For readers who are interested in inspecting our proof, here are some pointers. The

folder Lib contains some general-purpose definitions, such as booleans and natural numbers, and some

definitions and tactics related to monoids and relations. The main parts of the proof are contained in the

folders Step1 – Step8. Each of these steps transforms a set of generators and relations into an equivalent

set of generators and relations, gradually simplifying the relations. The file Gate.agda provides the

definitions for all gates used. The file CosetNF.agda contains definitions related to semidirect products

and normal forms. The final proof witness is contained in the file Proof.agda.
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7 Conclusion and future work

The main result of this paper is a presentation of the group of 3-qubit Clifford+CS operators by just 17

relatively simple relations. We proved this by a combination of a previous result from [4], the Reide-

meister-Schreier method, and an Agda program that simplified several thousand large relations into the

aforementioned 17 simple ones. Doing this simplification by brute force would not have been feasible.

Instead, we proceeded by identifying a number of finite subgroups of the Clifford+CS operators, defining

normal forms for these, and then combining them into carefully chosen rewrite rules. After months of

fine-tuning, these rules eventually reduced the relations to a manageable size.

Unlike our previous work on generators and relations for 2-qubit Clifford+T operators [5], which

used a Pauli rotation decomposition to guide the rewriting, we found that the analog of the Pauli rotation

decomposition, i.e., taking syllables that are conjugates of the CS gate under the action of the Clifford

operators, does not work very well. Instead, we were surprised to find that a more useful decomposition

was to take conjugates of K0 (basically a Hadamard gate) under the action of diagonal and permutation

operators. We may call this the Hadamard decomposition of Clifford+CS. In the process, we learned

many interesting facts about finite subgroups of Clifford+CS. One of these facts is that the 3-qubits

Clifford+CS group is an amalgamated product of three of its finite subgroups. Concretely, this means

that every relation that holds in this group follows from relations that already hold in some finite subgroup

of Clifford+CS.

This work suggests some interesting directions for future work. Many of our results about finite

subgroups of Clifford+CS are valid for n qubits, so one may ask whether our generators and relations

can also be extended to circuits with 4 or more qubits. Currently, the limiting factor is the prohibitive

computational cost of applying the Reidemeister-Schreier method to a set of 2-level relations for 16×16-

matrices and then simplifying a massive set of relations. Perhaps a further study of the finite subgroups

of Clifford+CS will open up an alternative path to this problem. For example, one may ask whether the

n-qubit Clifford+CS group is an amalgamated product for all n. One may further ask the same question

for the n-qubits Clifford+T group or its other subgroups of interest, such as the Clifford+Toffoli group.

The fact that the Hadamard decomposition turned out to be more useful than the analog of the Pauli

rotation decomposition raises the question whether our earlier work on Clifford+T could benefit from

the same insight. By applying these lessons, perhaps one can come up with a simpler complete set of

relations. For example, our Clifford+T axiomatization involved a number of obvious relations and three

“non-obvious” ones. We were never able to resolve the question of whether these non-obvious relations

actually follow from something simpler.

Another intriguing question is whether one can find a unique normal form for 3-qubit Clifford+CS

circuits, like the Matsumoto-Amano normal form for 1-qubit Clifford+T circuits. We currently only have

an “almost-normal” form, but the fact that it efficiently reduced all of our relations is encouraging.
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Vilmart recently gave a complete equational theory for the balanced sum-over-paths over Toffoli-

Hadamard circuits, and by extension Clifford+diag(1,ζ2k) circuits. Their theory is based on the

phase-free ZH-calculus which crucially omits the average rule of the full ZH-calculus, dis-allowing

the local summation of amplitudes. Here we study the question of completeness in unbalanced

path sums which naturally support local summation. We give a concrete syntax for the unbalanced

sum-over-paths and show that, together with symbolic multilinear algebra and the interference rule,

various formulations of the average and ortho rules of the ZH-calculus are sufficient to give complete

equational theories over arbitrary rings and fields.

1 Introduction

The balanced sum-over-paths representation of a linear operator Ψ : C2m → C
2n

introduced in [1] is a

symbolic representation of Ψ over Boolean-valued variables, having the form

Ψ |~x〉= N ∑
~y∈Zk

2

e2πiP(~x,~y) | f (~x,~y)〉 (1)

where P : Zm
2 ×Z

k
2 →R/2π and f : Zm

2 ×Z
k
2 → Z

n
2 are represented by (systems of) polynomials in m+ k

variables. The expression of Equation (1) is interpreted as a sum over the paths a system may take

beginning from some initial configuration ~x. If Ψ is taken as encoding some evolution of a physical

(2k-level) system, the expression Equation (1) coincides roughly with Richard Feynman’s path integral

[7]. As with Feynman’s path integral the sum in Equation (1) is balanced, in that each path — indexed

by the values of ~x and ~y — has the same amplitude N but varies in the phase e2πiP(~x,~y). As standard

operators used in quantum computation can be represented in this form and the representation is closed

over composition and tensor products, typical quantum computational processes admit representations

by balanced path sums.

It was previously shown [1] that with a concrete representation in terms of polynomials, the balanced

sum-over-paths admits a simple equational theory. This equational theory was shown to be relatively

complete, and with a small modification complete [9], for Clifford operators. As the number of superflu-

ous variables yi in the sum, called internal and corresponding to a pair of paths between two end-points,

offers an intuitive notion of complexity of the expression, the equational theory further gives rise to a

natural re-write system which iteratively removes such variables from the sum. This re-write system was

shown to terminate in polynomial time with a unique normal form for Clifford operators [2], and was

further shown to perform well in practice on Clifford+T circuits and channels for verification [1].

Vilmart [10] gave an equational theory for the balanced sum-over-paths over Toffoli and Hadamard

gates and showed its completeness via translation of the phase-free ZH-calculus [11]. The phase-free

http://dx.doi.org/10.4204/EPTCS.384.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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ZH-calculus crucially restricts the ZH-calculus [4] to balanced generators, allowing the direct transla-

tion of its equational theory into balanced sums — while the full ZH-calculus admits an encoding in

the balanced sum-over-paths [8, 9], existing equational theories [4, 5] necessarily make use of unbal-

anced generators and the average rule. It was further shown that this equational theory is complete for

operators over Clifford and Rk := diag(1,ζ2k) gates through an embedding into the Toffoli+Hadamard

fragment. However, their re-writing system lacks the desirable properties of confluence, normal forms,

and a primitive equational theory for Clifford+Rk. Moreover, the question of a complete equational the-

ory for the sum-over-paths over C was left open, as well as the development of a direct analogue of the

full ZH-calculus in the sum-over-paths model.

In this work we address these questions, introducing a concrete representation of the unbalanced

sums-over-paths and give complete equational theories for such sums over rings and fields. We consider

general rings as fault-tolerantly constructible circuits are typically restricted to linear operators over

subrings of C [3]. Inspired by the ZH-calculus, completeness is attained by symbolically re-writing a

sum to a unique normal form explicitly encoding the matrix entries. In essence, our system internalizes

the method of falling back to explicit evaluation in cases where no progress can be made with re-writing

[1]. As a result, the practical applicability of our equational theory is limited — our goals are instead

to provide representations and complete theories for general sums-over-paths so that effective re-writing

systems may be further developed.

The paper is organized as follows. In Section 2 we review the balanced sum-over-paths and its

equational theories. In Section 3 we define a representation of the unbalanced sum-over-paths and give

an equational theory which is complete for arbitrary rings. In Section 4 we give a weaker equational

theory which is not sound over rings, but is shown to be complete over any field.

2 The balanced sum-over-paths

In the path integral viewpoint, the action of a linear operator Ψ : H1 → H2 between Hilbert spaces

H1 and H2 on a state |i〉 of some orthonormal basis {|i〉} of H1 can be described as a sum over some

collection Π of paths, where the path π ∈ Π has amplitude ψ(π) ∈ C and ends in a state | f (π)〉 of an

orthonormal basis of H2:

Ψ |i〉= ∑
π∈Π

ψ(π) | f (π)〉 .

In contrast to the operator representation Ψ |i〉 = ∑ j αi j | j〉, in general there may be many superimposed

paths leading to a particular basis state, their amplitudes adding in these cases and resulting in inter-

ference. Likewise, the sequential composition of two operators is described by composing paths along

their endpoints and multiplying the amplitude along each segment, in essence delaying evaluation of any

interfering paths. This provides flexibility in the evaluation of individual amplitudes, but on the flip side

requires effective means of representing and reasoning about a system of paths to be useful.

In [1] a concrete representation of amplitude-balanced sums over 2n-dimensional Hilbert spaces

was given via multilinear polynomials. An amplitude-balanced sum is one in which every path π with

non-zero amplitude has equal magnitude but may vary in the phase. By restricting to balanced sums,

individual path amplitudes are described by unit-norm complex numbers, whose multiplicative group is

isomorphic to the additive group R/2π . In particular, ψ(π) ≈ e2πiP(π) for some P : Π → R/2π which

has a unique representation as a multilinear polynomial, and if φ(π ′) ≈ e2πiQ(π ′), then ψ(π) · φ(π ′) ≈
e2πi[P(π)+Q(π ′)] — i.e. the phase along a composite path — is uniquely representable in polynomial time.

We review this representation below.
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Definition 2.1 (Balanced sum-over-paths). A balanced path sum is an expression of the form

Ψ |~x〉= N ∑
~y∈Zk

2

e2πiP(~x,~y) | f (~x,~y)〉 ,

where N ∈C and P :Zm
2 ×Z

k
2 →R/2π and f :Zm

2 ×Z
k
2 →Z

n
2 are represented as a multilinear polynomial

and a sequence of n multilinear polynomials in m+ k variables, respectively.

We use |Ψ〉 to denote the sum-over-paths representation of Ψ, or just Ψ when it is clear from the

context that we mean the symbolic expression rather than the linear operator. The variables appearing in

a sum-over-paths expression |Ψ〉 which are not summed over are called free variables. We denote the set

of free variables of Ψ by FV (Ψ) and for the purpose of substitution use the notation |Ψ(x)〉 to identify a

variable which may appear free in |Ψ〉. Specifically, given a sum-over-paths |Ψ(x)〉, |Ψ( f )〉 denotes the

(capture-avoiding) substitution of f for every free occurrence of x in |Ψ〉, of which there may be none.

We say a sum |Ψ〉 is closed if FV (Ψ) = /0, in which case |Ψ〉 corresponds to a vector. As a convention,

we often use variable names xi to denote the free variables of a path sum and yi, zi to denote variables

which are summed, though it should be understood that this is not a rule and sum-over-paths expressions

may contain arbitrary variables in free or summed positions. We further use letters f , g, h to refer to

Boolean-valued functions or symbolic expressions, and uppercase letters P, Q, R to refer to symbolic

expressions in other rings.

By linearity, compatible balanced sums may be sequentially composed through variable substitution:

ΦΨ |~x〉= N ∑
~y∈Zk

2

e2πiP(~x,~y)Φ | f (~x,~y)〉 .

As substitution involves substituting symbolic expressions over Z2 in the phase, a lifting construction [1]

is used to embed polynomial arithmetic over Z2 into polynomials over R (or more generally, any unital

ring R). In particular, we define the lifting · of (Z2,⊕, ·) into (R,+, ·) recursively by

0 = 0R f ·g = f ·g
1 = 1R f ⊕g = f +g− (2 · f ·g).

The tensor product, or parallel composition, can be defined via

(Ψ⊗Φ)(|~x〉⊗ |~y〉) = Ψ |~x〉⊗Φ |~y〉 ,

where the phases of Ψ |~x〉 and Φ |~y〉 are multiplied and their final states are concatenated.

Example 2.2. The gates X and T admit the following representations as balanced sums:

• X |x〉= |1⊕ x〉 and

• T |y〉= ωy |y〉, where ω = e
2πi
8 .

Composing T after X, we can compute the sum-over-paths expression of TX by substituting y in the

expression of T with x⊕1, which lifts to 1⊕ x = 1− x in the exponent of ω :

TX |x〉 = ω1−x |1⊕ x〉

While the paths in a balanced path sum with non-zero amplitude all have the same magnitude N ,

matrices which have entries of different magnitudes can be represented as balanced sums with interfering

paths, as the following example illustrates.
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Example 2.3. The controlled-Hadamard gate

Λ(H) = |0〉 〈0|⊗ I+ |1〉 〈1|⊗H =
1√
2









√
2 0 0 0

0
√

2 0 0

0 0 1 1

0 0 1 −1









when viewed as a collection of unique transitions (i.e. non-interfering) in the computational basis is

necessarily unbalanced. However, the Λ(H) gate may be represented as a balanced sum-over-paths by

using the control bit to cause the intermediate paths to interfere when it is in the 0 state:

Λ(H) |x1x2〉=
1√
2

∑
y∈Z2

ω(1−x1)(2y−1)(−1)x1x2y |x1〉 |(1⊕ x1)x2 ⊕ x1y〉

Note that when x1 = 0 we have 1√
2

∑y∈Z2
ω(2y−1) |0〉 |x2〉 = ω+ω†√

2
|0〉 |x2〉 = |0〉 |x2〉, while when x1 = 1

we have the sum 1√
2

∑y∈Z2
(−1)x2y |1〉 |y〉 which is the representation of |1〉⊗ (H |x2〉).

It has been shown that the balanced sum-over-paths is universal for linear operators over qubit (2n-

dimensional) Hilbert spaces, via a translation from the universal ZH-calculus [9]. Below we give a model

of the universal ZX-calculus [6] which is more natural to specify in the balanced sum-over-paths as the

ZX-calculus is generated by balanced operators, while the H-boxes of the ZH-calculus are unbalanced

when the amplitude is non-unital.

Example 2.4. A simple model of the ZX-calculus via balanced sums can be defined over the universal

generating set consisting of the Z-spider and Hadamard as so:

q
n ... α

... m
y
|~x〉= 1

2n ∑
~y∈Zn

2,z∈Z2

αz(−1)∑n
i=1 yi(xi+z) |zz · · · z〉 J K |x〉 = 1√

2
∑

y∈Z2

(−1)xy |y〉

Note that the sum for the Z-spider forces any path with non-zero amplitude to satisfy z = x1 = x2 = · · ·=
xn, since for any i, ∑yi∈Z2

(−1)yi(xi+z) = 0 whenever z 6= xi, and 2 otherwise. Encodings of an arbitrary

Z-spider using fewer variables are possible, for example 1
2n ∑y,z∈Z2

αz(−1)y(1+∏n
i=1(xi+z+1)) |zz · · · z〉 , but

have size exponential in n.

We use ≡T to denote the equivalence of two path sums up to a theory T defined by a set of (sound)

equations, together with the congruence

|Ψ〉 ≡T |Φ〉 =⇒ N ∑
~y∈Zk

2

e2πiP(~x,~y) |Ψ〉 ≡T N ∑
~y∈Zk

2

e2πiP(~x,~y) |Φ〉

We use ≡e to denote equivalence up to an individual equation e. We say an equational theory T is

complete for a subset C of path sums if whenever |Ψ〉 , |Φ〉 ∈ C ,

Ψ = Φ =⇒ |Ψ〉 ≡T |Φ〉 .

Figure 1 gives the (E), (H), and (ω) rules of the sum-over-paths which define the equational theory

≡Cliff. It was previously shown that ≡Cliff is complete for Clifford path sums [9, 2].
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∑
y∈Z2

|Ψ〉 ≡ 2 |Ψ〉 (E)

∑
x,y∈Z2

(−1)y(x+ f ) |Ψ(x)〉 ≡ 2 |Ψ( f )〉 (H)

∑
y∈Z2

iy(−1)y f |Ψ〉 ≡ ω
√

2(−i) f |Ψ〉 (ω)

Figure 1: A Clifford-complete system of equations for the balanced sum-over-paths, denoted ≡Cliff. In

all rules above y /∈ FV (Ψ) and f is some Boolean expression such that x,y /∈ FV ( f ).

Example 2.5. The following equalities are derivable:

∑
y∈Z2

|Ψ(y)〉 ≡Cliff ∑
y∈Z2

|Ψ(y⊕ f )〉 where f is Boolean and y /∈ FV ( f )

1√
2

∑
y∈Z2

ω(2y−1) |0〉 |x2〉 ≡Cliff |0〉 |x2〉

q
( )⊗m ◦ ... α

... ◦ ( )⊗n
y
|~x〉 ≡Cliff

1

2n+m ∑
y∈Z2,~z∈Zm

2

αy(−1)∑n
i=1 xiy(−1)∑m

j=1 yzi |~z〉

The first equation is the variable change rule from the Clifford-complete equational theory of [9], whose

derivation by the (E) rule was shown in [2]. The second encodes the evaluation of Λ(H) |0〉 |x2〉= |0〉 |x2〉
and follows from a single application of (ω). The third equation models the X -spider of the ZX-calculus

by the color change law [6].

Interference, algebraic varieties, and completeness for Toffoli+Hadamard As noted in [1], (H)

arises as an instance of a general (binary) interference rule,

∑
y∈Z2

(−1)yF |Ψ〉 ≡ 2 |Ψ F=0〉 . (I)

where F is a polynomial over Z2. Viewing F as a proposition on the paths indexed by FV (F), the sum

∑y∈Z2
(−1)yF |Ψ〉 filters out paths satisfying F , while paths which do not satisfy F pass through with dou-

ble amplitude. However, to write the restriction |Ψ F=0〉 as an expression, |Ψ〉= N ∑~y e2πiP(~x,~y) | f (~x,~y)〉
must be expressed as a sum over the solutions of the equation F(~x,~y) = 0. Recall that the algebraic va-

riety V (I) of a polynomial ideal I consists of all points (a1, . . . ,ak) such that f (a1, . . . ,ak) = 0 for every

polynomial f in I. We may hence write the restricted sum as

N ∑
(~x,~y)∈V (I)

e2πiP(~x,~y) | f (~x,~y)〉 ,

where I = 〈F〉. Note that P and f may be canonically written modulo the ideal I using Gröbner bases,

though the resulting re-write system is not an equational theory in the sense we consider here. Instead

we may restrict f to cases which can be solved by substitution. The simplest such cases are when F = 0

which is solved trivially for any point in the variety, and when F = x+g, x /∈ FV (g), which is solved by
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∑
y∈Z2

∑
x∈Z2

(−1)y(x·g+g· f+1) |Ψ(x)〉 ≡ ∑
y∈Z2

(−1)y(g+1) |Ψ(1+ f )〉 (Hgen)

∑
y∈Z2

∑
x∈Z2

(−1)y· f+x·g |Ψ〉 ≡ 2 ∑
y∈Z2

(−1)y( f+g+ f ·g) |Ψ〉 (Hrel)

∑
y∈Z2

∑
x∈Z2

(−1)y |Ψ〉 ≡ 0 |Ψ〉 (Z)

Figure 2: A complete equational theory ≡TH for path sums over Toffoli and Hadamard gates [10]. In all

rules y /∈ FV (Ψ) and f ,g are Boolean expressions such that x,y /∈ FV ( f )∪FV (g)

setting x = g. These two cases result in the (E) and (H) rules. Moreover, both equations are complete

relative to the variety V (I) in that they completely characterize the solutions to f .

In [10] Vilmart gave a complete equational theory for path sums over Toffoli and Hadamard, via

restricted cases of (I). Such sums can be written in the form

Ψ |~x〉= 1√
2k

∑
~y

(−1)P(~x,~y) | f (~x,~y)〉 .

We define ≡TH to be equivalence of balanced sums up to ≡Cliff as well as the additional rules of Figure 2.

As noted in [10], all three new equations arise as particular instances of the binary interference rule. The

(Hgen) rule, which subsumes (H), arises from (I) when F = x ·g+g · f +1, in which case x+g+1∈ 〈F〉
and hence x = g+ 1 is a partial solution to F = 0. Likewise, (Hrel) arises from the intersection of the

varieties f = 0 and g = 0, where since 〈 f ,g〉 = 〈 f +g+ f g〉 over Z2 the two equations to be combined

into a single one without affecting the variety. The (Z) rule arises when F = 1 and hence the variety is

empty.

3 The unbalanced sum-over-paths

While computationally efficient for many problems, balanced sums are unwieldy for reasoning about

vectors and matrices with entries of varying magnitude. Such states often arise in probabilistic quantum

computations and algorithms, such as Grover’s search or Shor’s algorithm. Moreover, canonical forms

for such operators are difficult to define and test for equality, as the following example illustrates.

Example 3.1. Consider the unit vector

|ψ〉= 1
√

1+ p2
(|0〉+ p |1〉)

where p is an odd prime. Any representation of |ψ〉 by a balanced sum with ±1 phases must satisfy

〈0|ψ〉 = 1, 〈1|ψ〉 = p, and hence must consist of at least p + 1 distinct paths. Now let f and g be

Boolean expressions in free variables {yi} with 1 and p satisfying assignments, respectively. Then

1

2
√

1+ p2
∑

x∈Z2

∑
~y∈Zk

2

∑
z∈Z2

(−1)z[(1−x)(1+ f (~y))+x(1+g(~y))] |x〉

is a valid representation of |ψ〉, as is the representation above where f and g are replaced with any other

Boolean expressions with the same number of solutions. By (I), we can re-write this sum over the variety
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generated by the ideal I = 〈(1−x)(1+ f (~y))+x(1+g(~y))〉 as |Ψ〉= ∑(x,~y)∈V (I) |x〉. However, if we take

this as a normal form it is surely not unique, as any other variety with the same number of points for each

x — for instance, any variety W equal up to a permutation of the coordinates of V — gives the same

operator.

In order to allow the natural representation of linear algebraic objects with unbalanced magnitudes,

we now develop a generalization to amplitudes which may be expressed as Boolean powers of elements

taken from some ring R. Recall that integer powers may be defined in any unital ring R as

00 := 1, r0 := 1, rn := r · rn−1.

Our language of sums is comprised of expressions of three types: Boolean expressions used to denote

paths, R-valued expressions, and linear operators over R in the computational basis.

Definition 3.2 (Unbalanced sum-over-paths). An unbalanced sum-over-paths is an expression |Ψ〉 of the

following language

f ::= 0 | 1 | x | f1 · f2 | f1 ⊕ f2 | ¬ f := 1⊕ f

r ::= α ,β ∈ R | r f | r1r2 | r1 + r2

|Ψ〉 ::= ∑
~y

r | f1 · · · fn〉 .

Variables x,y,z, . . . in all types of expressions range over Boolean values Z2 and R is a commutative

ring.

Expressions f , r, and |Ψ〉 are referred to as Boolean, R, and sum-over-paths expressions, respec-

tively. We denote by FV ( f ), FV (r), and FV (Ψ) the free variables appearing in the given expression. As

with balanced sums, variables ~y which are summed over are bound and hence not included in the set of

free variables of an unbalanced sum. An expression is closed if it contains no free variables. Note that

closed unbalanced sums correspond to vectors.

R-expressions in free variables {xi} may be interpreted as a non-standard syntax for the polynomial

ring R[x1, . . . ,xk]/〈x2
1 − x1, . . . ,x

2
k − xk〉 which favours multiplication over addition in terms of computa-

tional efficiency. This allows our representation to coincide with balanced sums when possible, allowing

a balanced representation to be used and manipulated normally, but providing an “escape hatch” in the

form of ring sums. In Section 4 we consider representations where the ring sum is dropped entirely.

In the balanced sum-over-paths it’s generally not obvious how a given matrix A ∈ Mn×m(R) may

be represented directly, hence universality is achieved via the construction of a known universal set of

generators. By contrast, unbalanced sums allow the direct representation of A, as the amplitude function

ψ(~x,~y) = 〈~y|A |~x〉 can be written directly as an R-expression. We first define the notation ~x = ~y as

shorthand for the bitwise equality of~x and~y,

~x =~y := ∏
i

xi ⊕¬yi.

Then we may write A as an unbalanced sum of the following form:

A |~x〉= ∑
~y

α00···0=~x~y
00···0 α00···1=~x~y

00···1 · · ·α11···1=~x~y
11···1 |~y〉

where~x~y denotes the concatenation of~x and~y, and α~x~y is equal to 〈~y|A |~x〉. Intuitively, for a given value

of ~y and ~x, the (exponential-size) R-expression above evaluates to α~x~y = 〈~y|A |~x〉, as the exponent of

every of other α~x′~y′ evaluates to zero. We write out the product explicitly rather than as Π~zα
~z=~x~y
~z so as to

avoid confusion with the use of Π as mathematical syntax and Σ as a syntactical element of path sums.
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Proposition 3.3 (Universality). Any linear operator R2n → R2m

can be expressed as an unbalanced

path sum over R.

Example 3.4. The Λ(H) gate can be expressed as the unbalanced sum

Λ(H) |x1x2〉= ∑
y

0¬x1(x2⊕y)(1/
√

2)x1(−1)x1x2y |x1y〉 .

Example 3.5. While the generalized H-boxes of the ZH-calculus [4] admit an indirect encoding in the

balanced sum-over-paths via Euler angles [9], the ZH-calculus can be directly encoded in the unbalanced

sum-over-paths as below.

q
n ...

... m
y
|~x〉= ∑

~y∈Zn
2

∑
z∈Z2

2−n(−1)∑n
i=1 yi(xi+z) |zz · · · z〉

q
n ... α

... m
y
|~x〉= ∑

~y∈Zn
2

αx1···xny1···ym |~y〉

As is customary, to simplify the notation and proofs we view a linear operator A : Rn → Rm as a

vector A ∈ Rnm via the channel-state duality and define normal forms only on closed sums. Note that

η = ∑y |yy〉 and its adjoint ε |xy〉= 1
2 ∑z(−1)z(x⊕y), i.e. a “cup and cap,” are well-defined over any unital

ring R, hence we can move between the operator and vector view freely.

Definition 3.6 (Normal form). A normal form is a closed, unbalanced sum of the following form:

∑
~x

α00···0=~x
00···0 α00···1=~x

00···1 · · ·α11···1=~x
11···1 |~x〉 (2)

Example 3.7. The Λ(H) gate has the normal form below, with 0’s suppressed:

1√
2
∑
~x

√
2

0000=~x√
2

0101=~x
11010=~x11011=~x11110=~x(−1)1111=~x |~x〉 .

Note that x1 and x2 correspond to the first and second input bits, respectively, while x3 and x4 correspond

to the first and second output.

We remark that normal forms are unique, which is a trivial consequence of the fact that they explicitly

represent vectors in the computational basis by a sequence of 2n amplitudes.

Proposition 3.8. Let Ψ be a vector in R2n

. Then Ψ has a unique normal form.

3.1 Equational theory of unbalanced sums over R

Figure 3 gives an equational theory, denoted ≡R , for unbalanced sums. We separate equations into

three classes: equations on Boolean expressions, R-expressions, and equations involving sums. The

equational theory of Boolean expressions is simply the well-known equational theory of commutative

Boolean rings and is only provided for completeness. The equational theory of R-expressions includes

the axioms of commutative, unital rings on the left, and equations specific to f -powers on the right. The

two rules involving path sums are the usual (H) rule, and the new sum rule (S) which internalizes sums

over variables as sums of R-expressions.

To show completeness, we proceed by first defining a normal form for R-expressions and showing

that every R-expression can be re-written in normal form. This forms the bulk of the proof, as the (S)

rule can be used to force the evaluation of any internal variable by the R-expression sub-language.

Definition 3.9 (R-expression normal form). An R-expression over the variables {xi} is in normal form

if it is of the form

α00···0=~x
00···0 α00···1=~x

00···1 · · ·α11···1=~x
11···1 .
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f ⊕0 ≡ f

f ⊕ f ≡ 0

( f1 ⊕ f2)⊕ f3 ≡ f1 ⊕ ( f2 ⊕ f3)

f1 ⊕ f2 ≡ f2 ⊕ f1

f ·1 ≡ f

f · f ≡ f

( f1 · f2) · f3 ≡ f1 · ( f2 · f3)

f1 · f2 ≡ f2 · f1

f1 · ( f2 ⊕ f3)≡ f1 · f2 ⊕ f1 · f3

(a) Rules for Boolean expressions

(r1 + r2)+ r3 ≡ r1 +(r2 + r3)

r1 + r2 ≡ r2 + r1

r1 +0 ≡ r1

r− r ≡ 0

(r1 · r2) · r3 ≡ r1 · (r2 · r3)

r1 · r2 ≡ r2 · r1

r ·1 ≡ r

r1 · (r2 + r3)≡ r1 · r2 + r1 · r3

r0 ≡ 1 ≡ 1 f

r1 ≡ r ≡ r f r¬ f

r f1⊕ f2 ≡ r f1 + r f2 − (2r) f1· f2

r f1· f2 ≡ (r f1) f2

r
f
1 r

f
2 ≡ (r1r2)

f

r
f
1 r

¬ f
2 ≡ r

f
1 + r

¬ f
2 −1

r
f
1 + r

f
2 ≡ (r1 + r2)

f +0¬ f

(b) Rules for R-expressions.

∑
x,y

(−1)y(x⊕ f ) |Ψ(x)〉 ≡ 2 |Ψ( f )〉 (H)

∑
y

r(y) |Ψ〉 ≡ (r(0)+ r(1)) |Ψ〉 (S)

(c) Rules for sum-over-paths expressions. In-scope variables are not free in any sub-expressions unless explicitly

included in parentheses.

Figure 3: Equational theory ≡R for unbalanced sums over rings R.

Proposition 3.10 (R-expression normalization). An R-expression r can be brought into normal form

over the variables {xi} ⊇ FV (r) using the equations of Figure 3.

A proof of Proposition 3.10 is given in Appendix A. We next turn our attention to normalization

of expressions involving sums. Normalization proceeds by writing the closed sum as a sum over all

basis vectors by equating outputs with fresh variables, then summing along each internal variable and

normalizing the resulting R-expression.

Theorem 3.11. ≡R is complete for unbalanced sums over any commutative ring R.

Proof. Let |Ψ〉= ∑~x r | f1 f2 · · · fn〉 be a closed, unbalanced sum. Then

∑
~x

r | f1 f2 · · · fn〉 ≡ ∑
~x

∑
~y

∑
~z

r(−1)y1(z1⊕ f1)+y2(z2⊕ f2)+···+yn(zn⊕ fn) |z1z2 · · · zn〉 by (H)

≡ ∑
~z

∑
~x

∑
~y

r′(~x,~y) |~z〉

≡ ∑
~z

(r′(00 · · ·0)+ r′(00 · · ·1)+ · · ·+ r′(11 · · ·1)) |~z〉 by (S)

≡ ∑
~z

α00···0=~z
00···0 α00···1=~z

00···1 · · ·α11···1=~z
11···1 |~z〉 by Proposition 3.10
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4 Weakening the sum rule

The equational theory developed in the preceding section is too strong for use in practice. Indeed, re-

writing effectively amounts to explicit evaluation of the sum, e.g.,

∑
x

|Ψ(x)〉= |Ψ(0)〉+ |Ψ(1)〉 ,

together with a set of rules for manipulating certain symbolic expressions over rings. This is made

possible by the highly-expressive sub-language of R-expressions, which allows for the summation of

arbitrary R-expressions and hence the super-powered sum rule. However, sums of R expressions are

difficult to re-write and generally require complete expansion of the expression to a normal form. In

particular, with unrestricted use of the sum rule we are not likely to discover efficient proofs of equality.

To limit the power of the sum rule, in this section we define a fragment of the unbalanced sum-

over-paths which eliminates sums of symbolic amplitudes, and give a complete equational theory over

arbitrary fields.

Definition 4.1 (Multiplicative sum-over-paths). The multiplicative fragment of the unbalanced sum-

over-paths over a field F consists of unbalanced sums of the form

a ::= α ,β ∈ F | a f | a1a2

|Ψ〉 ::= ∑
~y

a | f1 · · · fn〉 .

Boolean expressions f are defined as in the unbalanced sum-over-paths.

We call amplitude expressions of the form a F -expressions. It can be readily observed that as normal

forms live in the multiplicative fragment, the multiplicative fragment is again universal, and is equivalent

to the full unbalanced sum-over-paths up to ≡R .

Figure 4 defines an equational theory, denoted ≡F , for the multiplicative fragment which is defined

and sound when F is a field. Note that the equation a f1⊕ f2 ≡ a f1a f2(a−2) f1· f2 , which coincides with the

lifting of f1 ⊕ f2 to f1 + f2−2 f1 · f2, is not well defined in arbitrary rings. Otherwise, the equational the-

ory coincides with the equational theory of R-expressions with rules for sums of expressions removed.

We omit the equational rules for Boolean expressions as they are the same as those of Figure 3a.

Proposition 4.2 (F -expression normalization). An F -expression a can be brought into normal form

over the variables {xi} ⊇ FV (a) using the equations of Figure 4.

Proof. The proof follows identically to the proof of Proposition 3.10. The one different case of a f1⊕ f2

is handled similar to the corresponding case in Proposition 3.10 by the fact that a f1⊕ f2 ≡ a f1 a f2(a−2) f1· f2

where each of a f1 , a f2 , and (a−2) f1· f2 can be normalized by the inductive hypothesis and the case of a f1· f2 .

The case is then finished by the normalization of products.

The (A) rule, which is a transliteration of the average rule of the ZH-calculus, replaces the (S) rule

of ≡R . Rather than summing “top-down” as in the normalization of the unbalanced sum-over-paths, the

average rule allows amplitudes to only be summed “bottom-up,” i.e. by summing pure elements of F .
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(a1 ·a2) ·a3 ≡ a1 · (a2 ·a3)

a1 ·a2 ≡ a2 ·a1

a ·1 ≡ a

a0 ≡ 1 ≡ 1 f

a1 ≡ a ≡ a f a¬ f

a f1⊕ f2 ≡ a f1 a f2(a−2) f1· f2

a f1· f2 ≡ (a f1) f2

a
f
1a

f
2 ≡ (a1a2)

f

(a) Rules for F -expressions.

∑
x,y

(−1)y(x⊕ f ) |Ψ(x)〉 ≡ 2 |Ψ( f )〉 (H)

∑
y,z

ax
1(y)a

¬x
2 (z) |Ψ(x)〉 ≡ 2∑

y

ax
1(y)a

¬x
2 (y) |Ψ(x)〉 (O)

∑
y

(αyβ¬y) f |Ψ〉 ≡ 2

(

α +β

2

) f

|Ψ〉 (A)

(b) Rules for unbalanced sums in the multiplicative fragment. In-scope variables are not free in sub-expressions

unless explicitly listed in parentheses.

Figure 4: Equational theory ≡F of multiplicative sums over fields F .

In particular, we may think about the normalization of a sum in (almost) normal form over one internal

variable:

∑
~x

∑
y

α
00···00=~xy
00···00 α

00···01=~xy
00···01 · · ·α11···11=~xy

11···11 |~x〉 .

Using the rules of ≡R , we may factor out the y exponents and evaluate the sum over y top-down as

∑
~x

∑
y

α
00···00=~xy
00···00 α

00···01=~xy
00···01 · · ·α11···11=~xy

11···11 |~x〉 ≡R ∑
~x

∑
y

(α00···0=~x
00···00 · · ·α11···1=~x

11···10 )¬y(α00···0=~x
00···01 · · ·α11···1=~x

11···11 )y |~x〉

≡R ∑
~x

(α00···0=~x
00···00 · · ·α11···1=~x

11···10 +α00···0=~x
00···01 · · ·α11···1=~x

11···11 ) |~x〉

Under the more restrictive rules of ≡F , the y exponents must be brought inwards and the amplitudes

summed in pairs:

∑
~x

∑
y

α
00···00=~xy
00···00 α

00···01=~xy
00···01 · · ·α11···11=~xy

11···11 |~x〉 ≡F ∑
~x

∑
y

(α¬y
00···00α

y
00···01)

00···0=~x · · · (α¬y
11···10α

y
11···11)

11···1=~x |~x〉

In order to be able to apply the (A) rule to eliminate y with this factorization, a distinct variable is

needed for each pair, which can be achieved with the (O) rule — a transliteration of the ortho rule of the

ZH-calculus — since every pair’s exponent varies in the polarity of at least one variable:

∑
~x

∑
y

(α¬y
00···00α

y
00···01)

00···0=~x · · · (α¬y
11···10α

y
11···11)

11···1=~x |~x〉

≡F ∑
~x

∑
~y

1

22n−1
(α¬y1

00···00αy1

00···01)
00···0=~x · · · (α¬yn

11···10αyn

11···11)
11···1=~x |~x〉 by (O)

≡F ∑
~x

22n

22n−1

(

α00···00 +α00···01

2

)00···0=~x
· · ·

(

α11···10 +α11···11

2

)11···1=~x
|~x〉 by (A)

≡F ∑
~x

(α00···00 +α00···01)
00···0=~x · · · (α11···10 +α11···11)

11···1=~x |~x〉
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Note that in the final line above, each sum involves concrete values taken from F and hence can be

evaluated explicitly over F .

Theorem 4.3. ≡F is complete for multiplicative sums over any field F .

Proof. Let |Ψ〉 = ∑~x a | f1 f2 · · · fn〉 be a closed, multiplicative sum and note that |Ψ〉 ≡F ∑~x ∑~y a′ |~x〉 by

(H). Then by Proposition 4.2, a′ can be normalized to give

|Ψ〉 ≡F ∑
~x

∑
~y

α
00···0=~x~y
00···0 α

00···1=~x~y
00···1 · · ·α11···1=~x~y

11···1 |~x〉 .

If ~y is empty, then we’re done. Otherwise, we can remove one variable at a time with the (O) and (A)

rules as above until no internal variables are left.

5 Discussion

We have now given a concrete syntax for sum-over-paths expressions with unbalanced amplitudes. We

gave equational theories for rings and fields, and showed that each is complete. While the equational

theories we give here are simplistic and inefficient, our hope is that a complete equational theory will

allow the development of effective, complete re-writing systems.

The equational theories we have developed — particularly ≡F — as well as our normal forms can

be viewed as translations of the ZH-calculus with varying levels of freedom in the expression of Boolean

data. In the ZH-calculus, propagation of Boolean expressions along wires is a semantic property, while

in the sum-over-paths it is syntactic. This allows the (H) rule to take a more general form allowing

the substitution of a variable with an expression, whereas in the ZH-calculus this logic is spread across

several different rules.

As an exercise we could attempt to formulate a more ZH-like sum-over-paths by restricting the

Boolean expression language further, e.g.,

f ::= 0 | 1 | x,y,z, · · · | f1 · f2

a ::= α ∈ R | α f | a1a2

|Ψ〉 ::= ∑
v∈V

a |x1 · · ·xn〉 ,

and reformulate our equational theory for such a language. One natural formulation of the (H) rule

is ∑x,y(−1)xy(−1)y f a(x) |Ψ〉 ≡ 2a( f ) |Ψ〉, which corresponds to a slightly more general version of the

HS1 rule of the ZH-calculus, which would be more accurately translated as ∑x,y(−1)xy(−1)y f αxg |Ψ〉 ≡
2α f g |Ψ〉. With either formulation, a secondary rule is needed to cover propagation of Boolean sums,

corresponding to expressions of the form

∑
x,y

(−1)xy(−1)y f1(−1)y f2 · · · (−1)y fk a(x) |Ψ〉 .

Semantically, this is equivalent to the expression 2a( f1 ⊕ f2⊕·· ·⊕ fk) |Ψ〉, but since the language cannot

express Boolean sums, we must distribute a over the sum in a single step. One natural option to avoid

imposing restrictions on the underlying ring, as we did in this section, is to restrict a to the phase-free

fragment. In particular,

∑
x,y

(−1)xy(−1)y f1 · · · (−1)y fk(−1)xg |Ψ〉 ≡ 2(−1) f1g · · ·(−1) fkg |Ψ〉 ,
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which is equivalent up to (H) to the BA2 rule of the ZH-calculus.

On the one hand, it is unclear what the utility of such an exercise might be, beyond as a symbolic

syntax for ZH diagrams. On the other hand, these investigations shed light on both the similarities and

differences between the graphical and symbolic approach. Notably, the symbolic approach naturally

allows highly expressive languages, and the use of existing theories developed within the framework of

non-categorical algebra and symbolic computation. On the other hand, the use of an expressive symbolic

language naturally makes it more challenging to apply local reasoning than in graphical theories. For

these reasons we hypothesize that the sum-over-paths approach may be more amenable to automated

reasoning, while the graphical approach may be more amenable to interactive reasoning. We leave it for

future work to explore this premise further.
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A Proof of Proposition 3.10

Proposition A.1 (R-expression normalization). An R-expression r can be brought into normal form

over the variables {xi} ⊇ FV (r) using the equations of Figure 3.

Proof. By induction on the structure of an R-expression.

Case: α . By induction on the number of variables m. If m = 0 then α is already in normal form. For

m > 0, let α ≡ α~x=00···0
00···0 · · ·α~x=11···1

11···1 and observe that r can be brought into normal form involving one

additional variable xm+1:

α ≡ α~x=00···0
00···0 · · ·α~x=11···1

11···1

≡ (α~x=00···0
00···0 · · ·α~x=11···1

11···1 )¬xm+1(α~x=00···0
00···0 · · ·α~x=11···1

11···1 )xm+1

≡ (α~x=00···0
00···0 )¬xm+1 · · · (α~x=11···1

11···1 )¬xm+1(α~x=00···0
00···0 )xm+1 · · · (α~x=11···1

11···1 )xm+1

≡ α
(~x=00···0)(xm+1=0)
00···0 · · ·α(~x=11···1)(xm+1=0)

11···1 α
(~x=00···0)(xm+1=1)
00···0 · · ·α(~x=11···1)(xm+1=1)

11···1

≡ α
~xxm+1=00···00
0···00 · · ·α~xxm+1=11···10

11···1 α
~xxm+1=00···01
00···0 · · ·α~xxm+1=11···11

11···1

Case: r1r2. Let r1 ≡ α~x=00···0
00···0 α~x=00···1

00···1 · · ·α~x=11···1
11···1 and r2 ≡ β~x=00···0

00···0 β~x=00···1
00···1 · · ·β~x=11···1

11···1 . Then

r1r2 ≡ α~x=00···0
00···0 · · ·α~x=11···1

11···1 β~x=00···0
00···0 · · ·β~x=11···1

11···1

≡ α~x=00···0
00···0 β~x=00···0

00···0 · · ·α~x=11···1
11···1 β~x=11···1

11···1

≡ (α00···0β00···0)
~x=00···0 · · · (α11···1β11···1)

~x=11···1

Case: r1 + r2. Let r1 be written in normal form as r1 ≡ α~x=00···0
00···0 α~x=00···1

00···1 · · ·α~x=11···1
11···1 and factorize this

as s
¬xm

1 s
xm

2 . Likewise, let r2 ≡ β~x=00···0
00···0 β~x=00···1

00···1 · · ·β~x=11···1
11···1 ≡ t

¬xm

1 t
xm

2 . Then we can observe:

r1 + r2 ≡ s
¬xm

1 s
xm

2 + t
¬xm

1 t
xm

2

≡ s
¬xm

1 + s
xm

2 −1+ t
¬xm

1 + t
xm

2 −1

≡ s
¬xm

1 + s
xm

2 −1+ t
¬xm

1 + t
xm

2 −1

≡ (s1 + t1)
¬xm +0xm +(s2 + t2)

xm +0¬xm −2

≡ (s1 + t1)
¬xm +(s2 + t2)

xm −1+0¬xm +0xm −1

≡ (s1 + t1)
¬xm(s2 + t2)

xm +0¬xm0xm

≡ (s1 + t1)
¬xm(s2 + t2)

xm

Now s1 + t1 and s2 + t2 are R-expressions in m−1 variables, so induction on the number of variables

suffices to finish this case. Note that in the base case m = 0, r1 + r2 is an ordinary ring sum and hence

can be evaluated in R to the normal form α .

https://doi.org/10.4230/LIPIcs.CSL.2023.36
2205.02600
1904.07545
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Case: r f . We proceed by induction on the structure of f . If f = 0 then r f ≡ 1 which can be brought

into normal form by the previous case. If f = 1 then r f ≡ r which is already in normal form. If f = xi

then

rxi ≡ (α~x=00···0
00···0 α~x=00···1

00···1 · · ·α~x=11···1
11···1 )xi

≡ (α~x=00···0
00···0 )xi(α~x=00···1

00···1 )xi · · · (α~x=11···1
11···1 )xi

≡ 1~x=00···0 · · ·1~x=01···1α~x=10···0
10···0 · · ·α~x=11···1

11···1

For the inductive cases, if f = f1 · f2, then

r f1· f2 ≡ (r f1) f2

≡ (α~x=00···0
00···0 α~x=00···1

00···1 · · ·α~x=11···1
11···1 ) f2

≡ (α~x=00···0
00···0 ) f2(α~x=00···1

00···1 ) f2 · · · (α~x=11···1
11···1 ) f2

≡ r00···0r00···1 · · · r11···1

where each r~x is in normal form and the r1r2 case suffices to finish this case.

Finally, if f ≡ f1 ⊕ f2, then r f1⊕ f2 ≡ r f1 + r f2 − (2r) f1· f2 where each term can be brought into normal

form by the inductive hypothesis and the previous case. The r1 + r2 case then completes this case.
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We introduce the qudit ZH-calculus and show how to generalise the phase-free qubit rules to qudits.
We prove that for prime dimensions d, the phase-free qudit ZH-calculus is universal for matrices
over the ring Z[e2πi/d ]. For qubits, there is a strong connection between phase-free ZH-diagrams and
Toffoli+Hadamard circuits, a computationally universal fragment of quantum circuits. We generalise
this connection to qudits, by finding that the two-qudit |0〉-controlled X gate can be used to construct
all classical reversible qudit logic circuits in any odd qudit dimension, which for qubits requires the
three-qubit Toffoli gate. We prove that our construction is asymptotically optimal up to a logarithmic
term. Twenty years after the celebrated result by Shi proving universality of Toffoli+Hadamard for
qubits, we prove that circuits of |0〉-controlled X and Hadamard gates are approximately universal for
qudit quantum computing for any odd prime d, and moreover that phase-free ZH-diagrams correspond
precisely to such circuits allowing postselections.

1 Introduction

For qubits there are essentially three different graphical calculi: ZX, ZW and ZH [9]. Each of these is
suitable for reasoning about different types of structures and quantum gates. The ZX-calculus [10, 11] is
the most well-studied of these, and can naturally reason about the Clifford+Phases gate set (containing
CNOT, Hadamard, S as well as arbitrary Z phase gates) and the useful primitives of phase gadgets and
Pauli gadgets [12, 44]. Its phase-free fragment, where the spiders cannot be labelled by a non-trivial
phase, corresponds to CNOT circuits (together with ancillae and postselection) and can alternatively
be interpreted into a category of linear relations [24]. The ZW-calculus [22, 39] instead can reason
about photonic and fermionic computations [23]. The W-spider helps to easily represent sums of linear
maps [25, 31, 42]. Its phase-free fragment is universal and complete for matrices over Z, and here again
the W-spider is used to sum up numbers.

The calculus we will be interested in here is the ZH-calculus [2, 3]. Its H-box generator allows
for easy representation of gates involving multilinear logic, like the Toffoli or other many-controlled
gates. It can represent hyper-graph states [26], the path-sum formalism [27, 35, 36], quantum binary
decision diagrams [34] and more [15, 16]. Its phase-free fragment represents the Toffoli+Hadamard gate
set and is universal for matrices over Z [3]. The H-box here allows for representing the AND operation
|x〉⊗ |y〉 7→ |x∧ y〉.

The last few years have seen a push towards generalising graphical calculi to work for higher-
dimensional qudits. For ZX there is now work on qutrits [33, 37, 41], the prime-dimensional qudit
stabiliser fragment [6, 30], and the universal algebraic qudit ZX-calculus [38, 40]. For ZW there are several
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different proposals for qudit generalisations [29, 39]. Missing from these proposals is a generalisation for
the ZH-calculus.

In this paper we present for the first time a qudit generalisation of the ZH-calculus. We base this
translation on extending the representation of Boolean logic in the qubit ZH generators of [3] to arithmetic
over Zd . Then the Z- and X-spiders represent respectively the copy x 7→ (x,x) and addition/negation
(x,y) 7→ −d(x+d y), while the H-box represents (up to some Hadamards) the multiplication (x,y) 7→ x ·d y,
where the subscript d denotes an operation modulo d. This correspondence makes it easy to represent
qudit generalisations of Toffoli-like gates.

In order to motivate this connection, we will first study the qudit generalisation of the Toffoli+Hadamard
gate set, which for qubits is known to be computationally universal for quantum circuits [32]. First,
we show that whereas the Toffoli suffices to construct all classical reversible qubit logic circuits, for
odd-dimensional qudits we can do the same with the |0〉-controlled X gate. We find that our construction
for these qudit classical reversible circuits from the |0〉-controlled X gate is asymptotically optimal up to a
logarithmic factor. Second, we show that the gate set consisting of the |0〉-controlled X and Hadamard1

gates is approximately universal for quantum computing in all odd prime dimensions. Third, we find that
phase-free qudit ZH-diagrams represent precisely postselected circuits over this Hadamard+|0〉-controlled
X gate set.

A considerable part of the paper is devoted to proving that the phase-free ZH-calculus for prime-
dimensional qudits is universal for matrices over Z[ω] where ω = e2πi/d is a dth root of unity. While
proving universality for qubit ZH is straightforward, the qudit case brings several difficulties, since
the structure of the matrix of the H-box is a lot more complicated. Our proof involves an encoding of
propositional formulae over Zd into polynomials and a construction of Pascal’s triangle into a matrix.

In Section 2 we present our results regarding classical reversible dit logic and the |0〉-controlled X gate.
Then in Section 3 we introduce the phase-free qudit ZH-calculus and show its connection to the previously
introduced gates. In Section 4 we extend the calculus to allow labels over arbitrary rings and prove its
universality over this ring. Then in Section 5 we tackle the harder problem of proving universality of the
phase-free ZH-calculus.

2 The qudit Toffoli+Hadamard gate set

In this paper, we let d denote the dimension of our qudits, so that a single wire in a (circuit) diagram
corresponds to Cd . Note that many of our results only work if d is an odd prime. We let ω := e2πi/d

denote a dth root of unity. Then the qudit Paulis correspond to Z|a〉= ωa|a〉 and X |a〉= |a+d 1〉, where
we use subscripts on operators like +d to denote operations modulo d. The controlled X gate (CX) then
becomes |x,y〉 7→ |x,x+d y〉. The qudit Hadamard acts as H|x〉= 1√

d ∑y ωx·y|y〉. For qubits, we can write
the action of the Toffoli as |x,y,z〉 7→ |x,y,(x ·2 y)+2 z〉. This definition extends straightforwardly to the
qudit setting, where we just take the multiplication and addition to be modulo d instead of modulo 2.
When allowing zeroed ancillae, i.e. qubits prepared in the |0〉 state, the Toffoli together with the X gate
(which acts as the NOT gate) suffice to construct an arbitrary classical reversible logic circuit. It turns out
however that for certain qudit dimensions, just a two-qudit gate suffices to achieve the analogous result.

1Technically in mathematics a Hadamard matrix is a ±1 matrix of maximum possible determinant, named after Hadamard’s
1893 article on the matter [21]. However, we follow the convention of other qudit graphical calculi to refer to the d-dimensional
Discrete Fourier Transform as the Hadamard [6].
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We define the |0〉-controlled X gate as acting on the computational basis as follows:

|c, t〉 7→

{
|c, t +d 1〉, if c = 0
|c, t〉, else

(1)

i.e. by applying an X gate to the target iff the control is |0〉.
Note that the |0〉-controlled X gate is not Clifford for any prime qudit dimensions except for the qubit

case (for which it is a CNOT gate conjugated by NOTs on the control).

Theorem 2.1. For any odd qudit dimension d, any d-ary classical reversible function f : Zn
d → Zn

d on n
dits can be constructed by a circuit of O(dnn) many |0〉-controlled X gates and O(n) ancillae prepared in
the |0〉 state.

Proposition 2.2. For any qudit dimension d, there exist d-ary classical reversible functions f : Zn
d → Zn

d
that require at least O(ndn/ logn) single-qudit and two-qudit gates to construct, even when allowed Ω(n)
ancillae.

We present the proofs of Theorem 2.1 and Proposition 2.2 in the appendix.
Interestingly, we only need a two-qudit gate—the |0〉-controlled X gate—to construct any d-ary

classical reversible gate (i.e. bijective maps of the form f : Zn
d → Zn

d) with the help of |0〉 ancillae. Hence,
the |0〉-controlled X gate is universal for all classical reversible logic—generalising to all odd d what
the three-qubit Toffoli gate does for d = 2. Hence, it makes sense to consider the generalization of the
qubit Toffoli+H gate set to be the qudit gate set containing |0〉-controlled X and Hadamard, which by
Theorem 2.1 generates all possible qudit generalized Toffoli gates (since they are all classically reversible).

For qubits, adding the Hadamard gate to all the classical reversible gates (which is generated by the
Toffoli gate and zeroed ancillae) suffices for approximately universal quantum computation [32]. By
combining Theorems 2.1 and 2.3 we find that this is in fact true in any prime qudit dimension.

Theorem 2.3. The |0〉-controlled X gate and the H gate form an approximately universal gate set for
qudits of any odd prime dimension. In other words, permitting the help of ancillae, this gate set can
deterministically approximate any qudit computation up to arbitrarily small error.

Proof. The proof below suffices for the case where the qudit dimension d is a prime d > 3. The proof for
the d = 3 case consists of constructing all the Cliffords as follows, and the metaplectic gate (a single-qutrit
non-Clifford gate) which we construct in Appendix B similarly to our construction in Ref. [19, Section 3].

Define the single-qudit gates Q[i] by Q[i]| j〉= ωδi j | j〉 where δi j = 1 iff i = j. In [43] it is shown that
CX, H, and the Q[i] gates are universal for quantum computing for prime d > 3; for d = 3 this generates
the Clifford group. It hence suffices to show that our gate set generates these gates. Clearly, inputting a
zeroed ancilla to the control of the |0〉-controlled X gate yields the X gate. From here, the CX gate is easy
to build from X and |0〉-controlled X gates. We can also exactly synthesize the Q[0] gate deterministically
(up to an irrelevant global phase) with just |0〉-controlled X gates, H gates and a zeroed ancilla:

|1〉
0

Z 〈1|
Q[0] =

|0〉
0

X 〈0|
=

HH†X X†
(2)

Conjugating by X gates then yields all Q[i] gates.

Remark 2.4. Theorem 2.1 and Proposition 2.2 build upon previous work of some of the authors [46],
which showed for qutrits how to explicitly construct any ternary classical reversible gate using O(3n)
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|0〉⊗n-controlled X01 gates2 each with gate count polynomial in n, and that there exist ternary classical
reversible gates requiring at least O(n3n/ logn) gates to construct. In this work, we generalise these results
to any odd qudit dimension d and we additionally find a construction of the |0〉⊗n-controlled X01 gate
using O(n) gates. Combining these results gives us the O(ndn) gate count construction of d-ary classical
reversible gates which is hence near asymptotically optimal in gate count up to a logn factor.

Remark 2.5. A recent preprint [47] appearing after submission of this paper independently discovered a
version of Lemmas A.5 and A.8 for any odd qudit dimension. They additionally provide a separate O(n)
gate count |0〉⊗n-controlled X01 gate construction applicable to any even qudit dimension. By generalisa-
tion of Ref. [46], they independently derived our Proposition 2.2 and a version of our Theorem 2.1 which
uses more types of gates than just the |0〉-controlled X , but which does work for all qudit dimensions.

3 The qudit ZH-Calculus

Now let us introduce the qudit ZH-calculus, which allows for graphical reasoning about qudit Toffoli-like
gates. Diagrams will flow from inputs at the bottom, to outputs on the top (but because our generators will
be flexsymmetric [7, 8] the orientation of diagrams in this paper will not matter much).

As is the case for the qubit ZH-calculus, the qudit ZH-calculus will consist of string diagrams built
out of two types of generators: Z-spiders and H-boxes. We define these as follows:

. . .
n

. . .

m

:=
d−1

∑
i=0
|i〉⊗n〈i|⊗m,

. . .

. . .

n

m

:=
1√
d

∑
i1,...,im, j1,..., jn∈Zd

ω
i1·...·im· j1·...· jn | j1... jn〉〈i1...im|.

This matches the qubit-ZH definitions of [2], except that now the sums go from 0 to d− 1 instead of
from 0 to 1, and we use the dth root of unity ω = e2πi/d instead of −1. Additionally, we have included a
normalization factor of 1/

√
d in the definition of the H-box that will prevent some tedious constants from

appearing everywhere [5, Ap. E]. As a consequence of this choice of normalisation, the 1-input, 1-output
phase-free H-box corresponds exactly to the qudit Hadamard |x〉 7→ 1√

d ∑y ωx·y|y〉. Note that while the
matrix of the qubit H-box consists of just 1’s, with a single entry equal to −1, for qudits the matrix has
a more complicated structure, with different powers of ω appearing throughout the matrix. In the next
section we will also introduce labelled H-boxes, so we will sometimes refer to diagrams containing just
the above generators as phase-free ZH-diagrams, following [3].

Apart from these generators we have the standard structural generators—identity, swap, cup and
cap—needed to make a compact-closed PROP. Note that the qudit Z-spider and H-box satisfy the same
symmetries as their qubit counterparts, meaning we get a flexsymmetric PROP [7, 8]:

=
...

... ...

...

...

...

...

...
= =

...

...
=

...

...
==

...... ... ...

...

...

...

...

...
=

...... ...
=

Remark 3.1. Note that the actual choice of dth root of unity ω = e2πi/d is not important. We can
choose any primitive dth root of unity (i.e. a complex number ω satisfying ωd = 1 while ωk 6= 1 for any
0≤ k < d), and the rest of our results will also go through.

2X01 maps |0〉 and |1〉 to each other and is identity on all other basis states.
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There are a couple of useful derived generators we will need:

:=
. . .

. . .

. . .

. . .

+ := := := (3)

The first of these is the well-known X-spider. The second realizes the Pauli X gate, e.g. the map
X |i〉= |i+d 1〉. The last two generators represent the scalars

√
d and 1/

√
d respectively.

The (derived) generators of the qubit ZH-calculus can be motivated by a correspondence to Boolean
logic [3, Eq. 5]. Similarly, our generators turn out to correspond with arithmetic operations over Zd :

COPY

n

↔

n

+

n

√
d

n−1

n

·

n

↔

n

. . . . . .

. . . . . . . . .. . .
+1 ↔ +↔ − ↔ (4)

Note that here for multiplication we have a sequence of three Hadamard instead of just the one in the
qubit version. This is because for qudits H4 = id, but not H2 = id. Instead we have H2|i〉= |−d i〉. This
map is sometimes called the antipode or dualiser [9], and we will use it throughout the diagrams in this
paper. It turns out to also be equal to a single-input, single-output X-spider.

This interpretation gives a straightforward way to represent the Toffoli and the |0〉-controlled X gate
(writing our diagrams here from left-to-right to match circuit notation):

X

↔
¬0

X
↔ ...

d-1
0

X† X
= (5)

The correctness of the Toffoli construction follows easily from the interpretation given in Eq. (4). For
the other, note that in the first step we use the trick that a gate controlled on some value, followed by
its adjoint, is the same thing as controlling the adjoint on all the other values. Then the correctness of
the ZH-diagram follows from Fermat’s little theorem: for all x ∈ Zd for d prime, xd−1 = 0 if x = 0 and
xd−1 = 1 otherwise. The full diagram hence adds 1 if the control is not 0.

Many of the rules of the qubit ZH-calculus generalise to qudits; see Figure 1. For their soundness we
refer to Appendix C.

The Z-spider fusion rule generalises as expected, but the H-box fusion rule generalizes into something
that allows contraction of odd-length sequences of H-boxes interspersed by Hadamards. For the bialgebra
rules, the Z/X version generalises up to global scalars, while the Z/H bialgebra needs some additional
Hadamards which would cancel in the qubit case (furthermore for (ba1), if (n−1)(m−1)< 0, introduce
−(n−1)(m−1) to the LHS instead). Lastly, we have the generalization of the identity and multiply rules. We

rename the latter cyclic (cy) because what it really captures it the cyclic structure of the group Zd .
Note how the above ruleset neither contains a rule stating that H4 = id, nor an inverted color change

rule. That is because we can derive them from the rules presented above:

= = = = = =
(zs) (ba1) (ba1) (zs) (id) (3) (id)

=
(id)

= (h4)
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n

m

ñ

m̃

=

n+ ñ

m+ m̃

. . .

. . . . . .

. . .

. . .

. . .

..
.

. . .

. . .
. . .

. . .
=

n1

m1

ñ2

m̃2

. . .

. . .

n1 +n2 +n3

m1 +m2 +m3

. . .

. . .

ñ3

m̃3

=

n

m

. . .

. . . (n−1)(m−1)

m

. . .
n

. . .

. . . . . .

. . .

. . .

=

. . .

. . .

. . . . . .

=

d

=. . .d

(zs)

(hs)

(ba1)

(ba2)

(id)

(cy)

Figure 1: Basic rules of the phase-free qudit ZH-calculus. Some additional (derived) rules are presented
in Appendices D and E. The rules hold for all n and m. Here d is the dimension of the qudit.

= = = = = = =

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . . . . . . . .

. . . . . .

(3) (id) (3) (zs) (ba1) (ba1) (zs)
(h)

Note that in both of these proofs, the application of the bialgebra rule (ba1) does not introduce scalars,
as the number of inputs or output of the subdiagram we apply the rule to is always 1. We use the name (h)
for the color change rule to keep in line with the notation of [33, Fig. 1].

Since these derivations hold for arbitrary dimension d, they particularly hold for d = 2. This means
that due to the qubit H-box fusion rule, (h4) actually implies the self-inverseness of Hadamard gates,
making the (hh) rules of Backens et al’s ruleset redundant [3, Tab. 1].

In Appendix D, we also present a generalisation of the ortho rule from the phase-free qubit ZH-
calculus [3]. Hence, we have a prime-dimensional qudit generalisation of all the phase-free qubit
ZH-calculus rewrite rules [3]. While those rules are complete for the qubit phase-free calculus, it is
not clear whether this continues to hold for qudits. We leave this question for future work, for instance
building upon the recent completeness for all qudit dimensions in the ZXW-calculus [29].

3.1 Translating ZH-diagrams to ZX-diagrams

The qudit ZX-calculus is universal, and hence can represent any linear map between qudits [41]. So in
particular, there must be some way to interpret ZH-diagrams into ZX-diagrams. As the only generator
of ZH-diagrams that is different from the ZX-calculus is the H-box, this is the only one we will have to
translate. In fact, we only need to translate the three-legged and one-legged H-box, as the two-legged
H-box is just the Hadamard gate. We can then obtain diagrams for higher-arity H-boxes by unfusing
them into three-legged H-boxes. However, we will also introduce a direct construction for n-legged
H-boxes, which arises from the asymptotically efficient circuit constructions for any multiple-controlled
prime-dimensional qudit Toffoli gate presented in the Appendix.

First, note that there is a close correspondence between an H-box and the qudit CCZ gate, which acts
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like |x,y,z〉 7→ ωx·y·z|x,y,z〉:

Z

↔ (6)

Hence, in particular the three-legged H-box is equal to one copy of the qudit CCZ gate acting on |+++〉:

== = (7)

Since a CCZ gate is just the Toffoli from Eq. (5) with the target qudit conjugated by Hadamards, to
construct an H-box in the ZX-calculus it then suffices to show how to construct the qudit Toffoli in the
ZX-calculus. But by Theorem 2.1 we can construct the Toffoli from the |0〉-controlled X gate, so that it
remains to show how this gate is constructed as a ZX-diagram.

We will write phases on Z-spiders in the ZX-calculus, as vectors ~α of length d-1:

~α..
.

..
. = |0 · · ·0〉〈0 · · ·0| + eiα1||1 · · ·1〉〈1 · · ·1| + ... + eiαd-1 |(d-1) · · ·(d-1)〉〈(d-1) · · ·(d-1)| (8)

Lemma 3.2 ([45]). The prime-dimensional qudit |0〉-controlled X gate can be decomposed into the
Clifford+Phases gate set (decomposing H as phase gates [40, Remark 2.3]), and written as a ZX-diagram:

repeat d times

↔
0

X ~r

~p

~r
· · · (9)

where ~p =
(

ω
−(d−1)

2 ,ω
−(d−1)

2 , ...,ω
−(d−1)

2

)
and~r =

(
ω

1
d ,ω

2
d , ...,ω

d−1
d

)
represents the dth root of Z gate

from Ref. [45].
Theorem 3.3. Any prime-dimensional qudit ZH-diagram composed of m Z spiders and n H-boxes each
with no more than g legs, can be written as a composition of those m Z spiders, and O(ng) of either
|0〉-controlled X , Hadamard or |0〉.

Proof. Up to cups and caps, an H-box with two legs is the Hadamard gate, while an H-box with one leg is
Z|+〉: ~Z=~Z= where ~Z =

(
ω,ω2, ...,ωd-1

)
indicates the Z gate.

Eq (7) shows how to relate the three-legged H-box to the CCZ gate. We can then invoke Theorem 2.1
to build the Toffoli gate from |0〉-controlled X gates, which is related to the CCZ gate by conjugating the
target by Hadamards. Eq. (9) shows how to construct this gate in the ZX-calculus. Any H-box with n > 3
legs can then be built from unfusing to one- to three-legged H-boxes by applying rule (HS).

Note that phase-free Z-spiders are just GHZ states |0...0〉+ |1...1〉+ ...+ |(d-1)...(d-1)〉, up to cups
and caps. Hence, using a typical decomposition of any size qudit GHZ state into a CX circuit on |+0...0〉,

= = = =
... ... ... ... ...

(10)

we can further decompose the Z-spiders in Theorem 3.3 into {|0〉-controlled X,H, |0〉} as |+〉 = H|0〉.
This then gives us a way to write any phase-free ZH diagram as a {|0〉-controlled X,H} circuit where
ancillae and postselections on |0〉 and 〈0| are allowed. By Eq. (5), we can also write any circuit composed
of {|0〉-controlled X,H, |0〉,〈0|} as a phase-free ZH diagram. Therefore, prime-dimensional phase-free
ZH-diagrams correspond to {|0〉-controlled X,H} circuits with ancillae and postselections. This thus
generalizes the same correspondence which holds in the qubit case, between the qubit phase-free ZH-
calculus and the Toffoli+Hadamard gate set.
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4 Universality of ZH over arbitrary rings

We will now work towards proving universality of the qudit ZH-calculus for prime dimensions over the
ring Z[ω]. To do so, it will be helpful to first consider an extended ZH-calculus, where we allow H-boxes
labelled by elements of a ring.

So let R⊃ Z[ω, 1√
d
] be a commutative ring. We now introduce the following additional generators,

labelled H-boxes:

r := r with r =
1√
d

d−1

∑
i=0

ri|i〉
. . .

. . .

. . .

. . .
(11)

Here r is an arbitrary element of R. Note that the unlabeled H-box corresponds to the ω-labelled one. In
writing, we refer to the -scaled (1-ary) r-labeled H-state as H(r) = (1,r,r2, ...,rd−1)T . Keeping in line
with the notation of Backens et al., we call this calculus ZHR [3, Sec. 7].

The basic idea behind the universality proof is to create a big Schur product of simpler matrices.
Recall that the Schur product of two matrices A and B of equal dimension is the entrywise product
(A ?B)i j = Ai jBi j. The Schur product is easily represented in qudit ZH (in the same way as it is for
qubits [3, p. 27]):

φ ψ

. . .. . .

. . .

:=
φ ?ψ

. . .

We can express an arbitrary R-valued matrix M = (mi j) as a Schur-product of r,1-pseudobinary matrices.
These are matrices where every entry of the matrix is either r or 1. Namely, let R ⊆ R be the, necessarily
finite, set of r ∈ R that appear as entries in M. Then for r ∈R, let Mr = (m(r)

i j ) be the matrix such that

m(r)
i j = r if mi j = r, and m(r)

i j = 1 otherwise. Then M =Fr∈RMr is the Schur-product of these pseudobinary
matrices. To prove universality over a ring R it hence suffices to show that the qudit ZH-calculus can
represent arbitrary r,1-pseudobinary matrices for r ∈ R.

In this section we thus introduce the foundational building block of our universality proof: an algorithm
for constructing ZHR-diagrams of r,1-pseudobinary matrices. For this, we perform two intermediary
steps: (1) Describe the location of the ones in a r,1-pseudobinary matrix using a logical formula ϕ , and
(2) convert the formula into a polynomial whose roots are exactly the fulfilling assignments of ϕ .

Since we know how to express addition and multiplication as ZHR-diagrams, turning a polynomial
into a diagram is then rather straight-forward. The following diagrammatic gadgets, together with those
of (4) will prove useful:

|k〉 | j〉 7→ | jk〉= . . . =k

+

+
.
.
.k (12)

Consider a linear map L : (Cd)⊗n → (Cd)⊗m whose matrix is r,1-pseudobinary: for every ~x ∈
{0, ...,d−1}n we have L(|~x〉) = ∑~y∈{0,...,d−1}m λ~x,~y|~y〉 where all λ~x,~y ∈ {r,1}. We can describe the location
of the 1s in that matrix using a logical formula ϕL in n+m free variables such that ϕL(x1, ...,xn,y1, ...,ym)
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is true iff λ|x1...xn〉,|y1...yn〉 = 1:

ϕL(x1, ...,xn,y1, ...,ym) =
∨

i1,...,in, j1,..., jm
∈{0,...,d−1}

λi1 ...in , j1 ... jm=1

n∧
k=1

(xk = ik)∧
m∧
`=1

(y` = j`). (13)

Logical formulae unfortunately do not correspond to something we can easily directly express in ZHR.
However, we can translate these formulae into polynomials, which we can represent in ZHR.

Proposition 4.1. If d is prime, then for every propositional formula ϕ over (Zd ,−,+, ·,=) in n free
variables there exists a polynomial pϕ ∈ (Zd)[X1, ...,Xn] such that pϕ(x1, ...,xn) = 0 ⇐⇒ ϕ(x1, ...,xn).

Proof. Let ϕ be a formula over ({1, ...,d},−,+, ·,=) in n free variables. We describe our polynomial p
inductively. Note that every arithmetic expression in our formula is already a polynomial, since we only
allow addition, negation and multiplication in our signature. Thus, we only have to deal with equality,
negation and disjunction3.

1) When ϕ = (p1(x1, ...,xn) = p2(x1, ...,xn)) for p1, p2 ∈ (Zd)[X1, ...,Xn], set pϕ = p1− p2.

2) When ϕ = ¬ϕ ′, set pϕ = 1− (pϕ ′)
d−1.

3) When ϕ = ϕ1∨ϕ2, set pϕ = pϕ1 · pϕ2 .

The only non-obvious part of the construction is the construction for negation. This step follows from the
fact that for d prime, exponentiating with d−1 in Zd maps 0 to 0 and everything else to 1. Lastly, note
that the construction in 3) makes use of the absence of zero-divisors in fields.

Lemma 4.2. Assume d is prime. Given a polynomial p ∈ (Zd)[X1, ...,Xn] in n variables, we can construct
an n-input 0-output ZHR-diagram that evaluates to 1 on states |b1...bn〉 such that p(b1, ...,bn) = 0, and to
r on all other states.

Proof. First suppose that we had a diagram implementing the map |b1...bn〉 7→ |p(b1, ...,bn)〉. For d
prime, the map x 7→ xd−1 in Zd maps 0 to 0, and everything else to 1. By (12), we know how to realize
this operation as a ZH-diagram. Apply this operation to the output of the diagram implementing the
polynomial, and postselect with the effect H(r)T = (1,r,r2, ...,rd−1). This gives the desired map. So let’s
see how to implement the map |b1...bn〉 7→ |p(b1, ...,bn)〉.

We do this by induction on the number of variables n. If n = 0, then p ∈ Zd is a constant, which
we know how to realize using (12). Now suppose we know how to construct diagrams for polynomials
with n− 1 variables. By definition of polynomial rings we can abuse notation slightly to write p ∈
(Zd [X1, ...,Xn−1])[Xn], e.g. p = ∑

k
i=0 piX i

n for p0, ..., pk ∈ Zd [X1, ...,Xn−1]. By induction, we have ZH-
diagrams realizing p0, ..., pk, which we denote by boxes labeled “p0” through “pk”. Then a diagram for

3We do not need to deal with conjunction, since ¬ and ∨ are functionally complete.
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the desired map can be constructed as follows (using the correspondence to algebraic operations of (4)):

p0 pk

b1 bn−1 bn
. . .

. . .

. . .

. . .

. . .k

. . .· · ·

. . .

p1

. . .

. . .

In light of (13), this means that using a polynomial p ∈ (Zd)[X1, ...,Xm,Y1, ...,Yn] such that
p(x1, ...,xm,y1, ...,yn) = 0 ⇐⇒ ϕ(x1, ...,xm,y1, ...yn), we can use Lemma 4.2 and map-state-duality
to construct arbitrary r,1-pseudobinary linear maps as ZHR-diagrams.

Corollary 4.3. For prime d, every r,1-pseudobinary linear map L : (Cd)⊗n→ (Cd)⊗m has a qudit ZHR-
diagram realizing L.

Proof. Use (13) to construct a formula φ(~x,~y) that is true when 〈~y|L|~x〉= 1 and r otherwise. Then use
Proposition 4.1 to transform φ into a polynomial p that is 0 when φ is true, and finally use Lemma 4.2 to
construct a diagram with n+m inputs that evaluates to 1 when you input |~x〉⊗ |~y〉 with p(~x,~y) = 0 and to
r on other inputs. Bending the last m wires up to be outputs gives a diagram that is exactly equal to L.

We give a worked out example of this entire procedure in Appendix F.

Theorem 4.4. Let R⊃ Z[ω, 1√
d
] be a commutative ring. Then ZHR is universal for matrices over R.

Proof. By Proposition 4.3 we can construct ZHR-diagrams for arbitrary r,1-pseudobinary matrices for
r ∈ R. By taking Schur products of these matrices, any matrix over R can be realised.

5 Universality of the phase-free ZH-calculus

We now set our sights on establishing the universality of the phase-free ZH-calculus, where we are only
allowed ω-labelled (i.e. phase-free) H-boxes, for matrices over the ring Z[ω]. We will use the structure
of the previous proof, reducing the problem to the ability to construct diagrams for r,1-pseudobinary
matrices, where now r ∈ R = Z[ω]. The only obstacle to using this approach is that in the proof of
Lemma 4.2 we require a postselection to the state H(r), which we don’t a priori have access to. To prove
universality of the phase-free ZH-calculus we hence need to show that we can construct diagrams for
states of the form H(r) = (1,r,r2, . . . ,rd−1)T where r = a1 +a2ω + . . .+ad−1ωd−1 ∈ Z[ω].

Backens et al. [3] established the analogous results in the qubit case: that ZH is universal for integer-
valued matrices even without introducing labeled H-boxes as new generators. To show this, they construct
an equivalent to all the integer labelled H-boxes: there is a simple expression with the same linear map
as the H(0)-box, and there is a successor gadget that increments the label of an arbitrary H-box by 1.
Construction of negative integers is done by using a negation gadget. We will follow a similar path.

First, we already have a representation of H(0) = |0〉 (see Eq. (12) and take k = 0). Our immediate
goal is then to construct a successor gadget to increment H-box labels. This will give us H-boxes with
natural numbers as labels. The other possible labelled H-boxes are then straightforward to construct.
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5.1 The qudit successor gadget

A successor gadget S = (si j)0≤i, j<d that increments the label of an H-box by 1 has to satisfy the equation
SH(a) = H(a+1) for any a. Looking at the definition of the qudit H-box, this means the coefficients
si j of S have to satisfy the equations (a+1)i = ∑

d−1
j=0 si ja j. To solve this, we recall the binomial theorem,

which states that (a+1)i = ∑
i
j=0
( i

j

)
a j. Hence, we must have si j =

( i
j

)
, with the convention

( i
j

)
= 0 for

j > i. This means that the matrix S encodes Pascal’s triangle in the form of a lower triangular matrix.
Note that because we already have a representation of H(0), that we can use Lemma 4.2 to construct

a ZH-diagram for any binary matrix: a matrix whose entries are only 0’s and 1’s. Our task then is to
construct a ZH-diagram for S using only binary matrices. We achieve this by constructing each row of S
individually and then multiplexing between them. To see how this works, first consider the linear map
R : Cd→Cd , |i〉 7→ |i〉+ |i+1〉. One readily verifies that the coefficients of R j|0〉 for 0≤ j < d correspond
to the ( j+ 1)th row of Pascal’s triangle. Hence, our desired successor gadget S satisfies the equation
R j|0〉= ST | j〉. Therefore, we need some way to apply a different power of R to different inputs (and then
take the transpose, which is straightforward). To do this we need a multiplexer.

Consider the linear map M : (Cd)d+1→ Cd defined by

|x0...xd−1〉⊗ |c〉 7→

{
|xc〉 x j = 0 for all j 6= c
0 otherwise.

Let |ϕ i〉 = ∑
d−1
j=0 λi j| j〉 be a collection of states for 0 ≤ i < d where for all i the |0〉 coefficient λi0

equals 1. Then for a fixed control value 0≤ c < d we calculate:

M(|ϕ0〉⊗ ...⊗|ϕd−1〉⊗ |c〉) =
d−1

∑
j0=0
· · ·

d−1

∑
jd−1=0

λ0 j0 · · ·λ(d−1) jd−1M(| j0... jd−1〉⊗ |c〉)

= λ00 · · ·λ(d−1)0

d−1

∑
jc=0

λc jc | jc〉 =
d−1

∑
jc=0

λc jc | jc〉 = |ϕc〉.

Hence, M multiplexes between these input states, using |c〉 as a control. As each row of Pascal’s
triangle starts with 1, the states R j|0〉 have the right property. Hence M(R0|0〉⊗ · · ·⊗Rd−1|0〉⊗ |c〉) =
Rc|0〉= ST |c〉. So by combining M and powers of R, and applying some appropriate transposes, we get S.

Both maps R and M are binary, meaning we can realize them as a phase-free ZH-diagram using
Proposition 4.3. We perform this construction for R in Appendix F, while for M we only outline the first
few steps, without actually constructing the diagram, due to its immense size. Using placeholders for M
and R, we get the following diagram for our successor map S:

S := M

R R

. . .

R
: d−1

We can then realize any integer-labeled H-box where the label is non-negative: H(n) = SnH(0). Combin-
ing this with Lemma 4.2 means we can already construct arbitrary N-valued matrices. To get all integer
labeled H-boxes, we construct −1 in the next subsection.
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5.2 Constructing all the labelled H-boxes

To construct more complicated labelled H-boxes we first realise that by taking the Schur product of
two labelled H-boxes H(a) and H(b), we calculate the product of the labels (up to global scalar):
H(a)?H(b) = 1√

d
H(a ·b). Since we already know how to construct H(n) for any n ∈ N, and we have the

phase-free H-box H(ω) we can then also construct H(ωn) for any n ∈ N. The second observation is that
the successor gadget S adds 1 to the label regardless of the label, including non-integers. We can hence
construct SmH(ωn) = H(ωn+m). Iterating these two steps we can then build H(ωd−1n1 +ωd−2n2 +
· · ·+ωnd−1 +nd) where all the n j ∈ N.

Recall that for a dth root of unity ω 6= 1 we have the identity ∑
d−1
j=1 ω j =−1. Hence using the above

procedure we can also construct H(−1) as H(−1) = H(ω +ω2 + · · ·+ωd−1). Combining this with
our construction of H(∑ j n jω

j) for positive n j above, we can then construct any H(∑ j a jω
j) where

a j ∈ Z. For instance, if we want to construct H(n2ω2−n1ω−n0) we do it with the following sequence
of operations:

H(n2) → H(n2ω) → H(−n2ω) → H(−n2ω +n1) → H(−n2ω
2 +n1ω)

→ H(−n2ω
2 +n1ω +n0) → H(n2ω

2−n1ω−n0).

To summarise the whole construction of this section: we started out with the observation that with
Lemma 4.2 we can represent arbitrary polynomials in phase-free ZH, and in this way represent arbitrary
binary matrices (where every entry is either 0 or 1). We then found a way to construct a “successor gadget”
S that increments the label of an H-box, SH(a) = H(a+1), from building blocks that are binary matrices
which we know how to construct. Together with using the Schur product as a multiplication operation for
H-box labels, this then allowed us to create H-boxes with arbitrary labels from Z[ω]. But then we can
appeal to the same construction in Proposition 4.3 and Theorem 4.4 to conclude the following:

Theorem 5.1. The phase-free ZH-calculus for qudits of prime dimension d is universal for matrices over
the ring Z[ω], where ω = e2πi/d is a dth root of unity.

Note that phase-free ZH-diagrams in fact represent a slightly larger fragment, corresponding to
matrices 1√

d
k M where M has entries in Z[ω]. This is because we have global factors of 1√

d
that cannot be

made ‘local’ inside of the matrix. This is analogous to the qubit result for the phase-free ZH-calculus [3,
Section 8.3] and the Toffoli+Hadamard circuit fragment [1].

6 Conclusion

We have introduced a qudit ZH-calculus, and showed how to generalise all the rules of the phase-free
qubit calculus. We have established a universality result both for qudit ZH over an arbitrary ring, as well
as for the phase-free ZH-calculus. We found that phase-free ZH-diagrams correspond to postselected
circuits of Hadamard and |0〉-controlled X gates. We showed that this gate set is approximately universal
for qudit computation, and we found an almost asymptotically optimal strategy for compiling classical
reversible qudit logic to this gate set.

The most immediate question about our qudit ZH-calculus is whether our generalisation of the qubit
phase-free rules remains complete for qudits. It is possible to generalise the unique normal form for
qubits from [3], but it is far from clear how to prove that we can reduce arbitrary diagrams to this normal
form. Another open question is whether our construction in Theorem 2.1 is optimal, or whether it can
be improved by a logarithmic factor. An interesting future direction would be to translate to and from
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the ZXW-calculus [29] to achieve completeness of the qudit ZH-calculus and thereafter improve the
challenging compilation of classical reversible logic in photonic quantum computing [17].
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The first is a permutation cycle of length 3 which maps |00〉 7→ |01〉, |01〉 7→ |10〉, and |10〉 7→ |00〉,
and is identity on all other computational basis states:

Lemma A.1.
0

X†
=

00,
10,
01 0

X† 0

X 0

X
(14)

Proof. Consider the action on a basis state |x,y〉 where x,y ∈ Zd . After the first gate, the state is
|x,y+ xd−1− 1〉. After the second gate, the state is |x+(y+ xd−1− 1)d−1− 1,y+ xd−1− 1〉. After the
third gate, the state is |x+(y+xd−1−1)d−1−1,y+xd−1−

(
x+(y+ xd−1−1)d−1−1

)d−1〉. At this point,
by case distinctions on x and y being 0, 1, or otherwise, we can compute that the bottom output state must
be: 

|0〉, if x = 0 and y = 1
|1〉, if x = 1 and y = 0
|y〉, else

(15)

From here on, the fourth and final gate can be seen to apply when either both x 6= 1 and y = 0, or both
x = 0 and y = 1. Hence the top output state must be:

|0〉, if x = 1 and y = 0
|1〉, if x = 0 and y = 0
|x〉, else

(16)

Upon inspection, the circuit sends |00〉 7→ |01〉, |01〉 7→ |10〉, and |10〉 7→ |00〉, and is identity on all other
computational basis states.

Note that here the |0〉-controlled X† gate can be constructed from the |0〉-controlled X gate, by
repeating that one d−1 times.

Using this, we can build the |0〉- and |1〉-controlled X01 gate, where the X01 gate is a single-qudit
permutation gate that maps |0〉 7→ |1〉, |1〉 7→ |0〉, and is identity on all other computational basis states.

Lemma A.2.

=
0

X01

1

X01

00,
10,
01

00,
10,
01

X†

Λ

X

Λ

(17)

Note that here we have a Λ-controlled gate which for Λ(U) implements |x,y〉 7→ Ux|y〉. In this
particular case, Λ(X)|x,y〉= |x,x+ y〉 is the CX gate, and is Clifford.

Corollary A.3. The X01 gate can be synthesized, by setting the control qudit as an ancilla in the |0〉 state.

We can then build the |0〉-controlled X01 gate.

Lemma A.4.

=
0

X01

X 0

X01

1

X01

X X

X01

repeat d−1
2 times

(18)
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We then utilise the following generalisation to all odd qudit dimensions d, for which the qubit analogue
is in [4, Lemma 7.5] and the qutrit analogue is in [46, Lemma 5]:

Lemma A.5.

0

X01

0 =

X01 X01

ΛX† X

X01

Λ

0 0 0

(19)

where Λ(X01) can be further decomposed into controlling X01 on all odd computational basis states.

Corollary A.6. Any of these controls can be changed to any other computational basis by conjugating by
X’s, or to Λ controls by repeating the construction once for each odd computational basis state control.

Corollary A.7. As we will shortly discuss in Proposition A.9, any permutation can be generated by
2-cycles i.e. permutations exchanging only two elements. For example, the |00〉-controlled X gate can be
obtained by |00〉-controlling each gate in the decomposition:

=X X(d-2)(d-1) X12 X01...X(d-3)(d-2) (20)

In previous work [46], a construction was found that has polynomial Clifford+T gate count to
decompose any tritstring controlled qutrit Toffoli. It was left open whether there was a better construction
with linear gate count. Specifically, whether it was possible to generalise Gidney’s construction (reprinted
from [18]):

(21)

If such a construction did not exist, it would be hard to justify ever using qudit Toffolis as opposed to
qubit Toffolis, as they would be asymptotically more expensive. However, it turns out that there is a qudit
version with an analogous structure.

Lemma A.8. Any odd-dimensional qudit gate controlled on n qudits, admits a decomposition with n−2
borrowed ancillae qudits, with O(n) gate count.



P. Roy, J. van de Wetering & L. Yeh 159

Proof. Any gate U can be controlled on |0〉⊗n with n−2 borrowed ancillae:

0

0

=

0

Λ

0

X−1

0

0

X+1 Λ

X+1

0

Λ

X−1

0

Λ

U−1

0

Λ

X+1

0

Λ

U

0

Λ

0

X+1

0

0

X−1Λ

X−1

0

Λ

X+1

0

Λ

X−1

00

U

0

(22)

This approach is adaptable to arbitrary n. The control qudits can be conjugated by X gates to generalize
this from |0...0〉-controlled, to control on any ditstring. This also applies if any of the control qudits are
other types of controls, for instance Λ-controlled.

As an added note, if it is preferred to construct Λ(U) instead of Λ(|0〉-controlled U), the bottommost
control qudit in the above decomposition can be omitted at the cost of adding one borrowed ancilla.

This lets us immediately apply the following proposition reprinted from Ref. [46] for qutrits, which
holds for arbitrary qudit dimension.

Proposition A.9. Let~a = (a1, ...,an) and~b = (b1, ...,bn) be any two ditstrings of length n. Then we can
exactly implement a unitary which maps the basis states |~a〉 7→ |~b〉 and |~b〉 7→ |~a〉, and is identity on all
other computational basis states, with gate count asymptotically the same as the Toffoli controlled on a
ditstring of length n, which from Lemma A.8 is O(n) for any odd qudit dimension.

Proof. We assume ~a 6=~b, or the permutation 2-cycle (~a,~b) would just be the identity operation on all
inputs. As ~a and~b differ, they must differ by at least one character. Without loss of generality suppose
that an 6= bn. Consider the following circuit:

an−1

Xan,bn

...

a1

Xan−1,bn−1

bn

...

Xa1,b1

=
(
~a,~b
)...

...

Xan−1,bn−1

bn

...

Xa1,b1

1 2 3

(23)

Here the circles denote controls on the value of an a j or b j, which control whether a Xa j,b j operation is
applied (which we take to be the identity if a j = b j). Hence, the gate in Step 2 is a many-controlled Xan,bn

gate, which for odd d we know how to build by Lemma A.8 using O(n) gates. We conjugate this gate, in
Steps 1 and 3, by n−1 gates that are each Clifford equivalent to the |0〉-controlled X01 gate. Hence for
odd d, the above circuit requires O(n) gates to implement.

This circuit indeed implements the (~a,~b) 2-cycle, which we can see by enumerating the possible input
cases.

• When the input is~a: Only steps 2 and 3 fire (as bn 6= an), outputting~b.

• When the input is~b: Steps 1 and 2 fire, outputting~a.
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Observe that when Step 2 does not fire, Steps 1 and 3 always combine to the identity gate. Therefore, we
only need to consider the remaining cases where Step 2 does fire.

• When both Steps 1 and 2 fired: The input had to have been~b.

• When Step 2 fired, but Step 1 didn’t fire: Either the input was ~a, or the last input character was
neither an nor bn in which case the overall operation is the identity.

Therefore, the circuit in Eq. (23) maps~a to~b,~b to~a, and is identity on all other ditstrings.

As any permutation can be written as product of disjoint 2-cycles (this is well known, and explained
in Ref. [46]), we can thus break down any d-ary classical reversible circuit on n dits as a permutation of
length at most dn, which can always be broken down into a product of dn− 1 2-cycles. Thus, we can
apply the following qudit equivalent of the qutrit result in Ref. [46]:

Theorem A.10 (Restatement of Theorem 2.1). For any odd qudit dimension d, any d-ary classical
reversible function f : Zn

d → Zn
d on n dits can be constructed by a circuit of O(dnn) |0〉-controlled X gates

and O(n) ancillae prepared in the |0〉 state.

Proof. We view f as a permutation of size dn. This permutation consists of cycles, each of which can
be decomposed into 2-cycles. This full decomposition requires at most dn−1 2-cycles. Implementing
each of these 2-cycles requires O(n) gate count. Therefore, the asymptotic gate count of the overall
construction is O(dnn).

This is within a log(n) factor of the gate count necessary, by generalizing our proof from Ref. [46] to
the qudit setting:

Proposition A.11 (Restatement of Proposition 2.2). For any qudit dimension d, there exist d-ary classical
reversible functions f : Zd

n→ Zd
n that require at least O(ndn/ logn) single-qudit and two-qudit gates to

construct, even when allowed Ω(n) ancillae.

Proof. Fix any finite gate set consisting of single-qudit and two-qudit gates, and suppose we have O(n)
ancillae. Then taking into account positioning, we have O(n2) possible single-gate circuits (the square
comes from positioning the two-qudit gates). Let’s suppose we can bound this by cn2 for some constant
c. Hence, using N gates from this gate set, we can construct at most (cn2)N = cNn2N different circuits.
There are exactly (dn)! different d-ary classical reversible functions on ditstrings of length n (where
k! denotes the factorial of k). In order to write down every such permutation we must hence have a
number of gates N such that at least cNn2N ≥ (dn)!. Taking the logarithm on both sides and using
log(k!)≥ 1

2 k logk we can rewrite this inequality to N logc+2N logn≥ 1
2 dn ·n logd. Factoring out N gives

N ≥ logd
2

ndn

logc+2logn ≥
logd

6
ndn

logn for n≥ c, which shows that we must have N = O(ndn/ logn).

B Building the qutrit metaplectic gate

This section mostly follows Ref. [19, Section 3] to construct the qutrit metaplectic gate R, a single-qutrit
non-Clifford gate with matrix diag(1,1,−1). However, the key difference is that here we restrict the
allowed gate set to H+|0〉-controlled X instead of qutrit Clifford+T .

In all prime qudit dimensions, adding a single-qudit non-Clifford gate to gates generating the Clifford
group achieves approximately universal quantum computation [20]. This was explicitly proven for qutrits
in Ref. [13, Theorem 2].
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Therefore, explicit construction of the R gate, in addition to the qutrit Clifford gates constructed in the
proof of Theorem 2.3, suffice to show approximately universality of the H+|0〉-controlled X gate set.

We remark that in this section only, we match the definition of the H gate in Ref. [19], which differs
from the definition in the main body of the paper by a global phase of i. In any case, the below construction
exactly synthesizes the R gate with the correct global phase, regardless of the global phase in the definition
of the H gate.

A code implementation of the below is available at https://github.com/lia-approves/qudit-
circuits/blob/main/qupit-Toffoli-Hadamard/ToffH.m.

By [19, Equation 12], where I denotes the single-qutrit identity matrix,

2

−I
= =

R2

−H†

2

−H2

2

−H†
(24)

By [46, Lemma 11], where Z† is the conjugation of the X gate by H,

2

2 =

X02

2

Z† X02

2

Z†

2 2

2

Q[2] =

ωI

(25)

By a modification of [19, Lemma 21] to instead use the gate in Equation (25), leveraging the
decomposition of H into Z and X rotations by [40, Remark 2.3],

2

−H†
=

2

Q[2] H2

2

Q[2] H

2

Q[2] H2

2

Q[2] H3

2

Q[2] H2

2

Q[2] H2
(26)

Finally, we note that for qutrits X12 =−H2, enabling us to substitute the |0〉-controlled X12 gate into
the |0〉-controlled H2 gate in Equation (24) to realise the qutrit metaplectic gate.

C Soundness of qudit ZH rewrite rules

In this appendix, we argue for the soundness of the rewrite rules introduced in Figure 1. The soundness
of the qudit Z-spider fusion rule (zs) is already well known from ZX-literature [6], and similarly for the
identity rule. For the remaining rules, we appeal in parts to the algebraic interpretation of ZH-generators
from Eq. (4), which we will prove along the way.

First, to verify our claim that the H-box indeed corresponds to multiplication, observe that

1√
d

d−1

∑
i=0

d−1

∑
j=0

d−1

∑
k=0

ω
i jkH3|k〉〈i|〈 j|= 1

d

d−1

∑
i=0

d−1

∑
j=0

d−1

∑
k=0

d−1

∑
ν=0

ω
i jk−νk|ν〉〈i|〈 j|=

d−1

∑
i=0

d−1

∑
j=0
|i · j〉〈i|〈 j|

using the identity ∑
d−1
k=0 ∑

d−1
µ=0(ω

µ)k = d, since for any root of unity ζ 6= 1 we have ∑
d−1
k=0 ζ k = 0. Similarly,

we get

H2|i〉= 1
d

d−1

∑
j=0

d−1

∑
k=0

ω
i j+ jk|k〉= 1

d

d−1

∑
k=0
|k〉

d−1

∑
j=0

(ω i+k) j = |−i〉.

https://github.com/lia-approves/qudit-circuits/blob/main/qupit-Toffoli-Hadamard/ToffH.m
https://github.com/lia-approves/qudit-circuits/blob/main/qupit-Toffoli-Hadamard/ToffH.m
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Then, using the identity H4 = id, we get

= =
·
· = · = =

Using flexsymmetry and inductive application of the above identity, we get a generalization of the qubit
H-fusion rule, with fusion happening via H3 instead of H. Only fusion of 1-ary H-boxes is not covered.
For this, however, observe that

HH(ω) =
1
d

d−1

∑
i=0

d−1

∑
j=0

ω
i+ ji| j〉= |−1〉

and thus H3H(ω) = |1〉. Since 1 is the unit of multiplication modulo d, it merges into H-boxes.
To arrive at our H-box contraction rule, we first introduce the following lemma:

Lemma C.1. We can freely transfer a double quantum Fourier transform between the legs of a H-box,
e.g.

=
. . . . . .

. . . . . .

Proof. We have

=
d−1

∑
i=0

d−1

∑
j=0

d−1

∑
k=0

ω
i jk|−k〉〈i|〈 j|=

d−1

∑
i=0

d−1

∑
j=0

d−1

∑
k=0

ω
i jk|k〉〈i|〈 j|=

d−1

∑
i=0

d−1

∑
j=0

d−1

∑
k=0

ω
i jk|k〉〈i|〈− j|= (27)

Using this we then have

=
. . .

. . .
=

. . .

. . .
=

. . . . . .

. . . . . .

(27)

Then we get:

. . .

. . .
. . .

. . .

n1

m1

n2

m2

. . .

. . .

n3

m3

=

. . .

. . .
. . .

. . .

n1

m1

n2

m2

. . .

. . .

n3

m3

=

. . .

. . .

. . .

. . .

n1

m1

n2

m2 . . .

. . .

n3

m3

. . .

. . .

n1 +n2 +n3

m1 +m2 +m3

=
(C.1)(h4)
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To argue soundness of the two bialgebra rules, we adopt the proof strategy of Backens et al [3, Eq. 5],
where they reinterpret the qubit ZH-generators as the boolean operators conjunction (and), negation and
xor. While our generators no longer correspond to boolean operations, recall from Eq. (4) that we can
interpret them as arithmetic operations in Zd .

Proof of Z/X-bialgebra rule (ba1). To see why the X-spider correspond to addition modulo d, we refer to
existing literature on ZX-calculus, for instance [33]. Using this, we then get

. . .

. . .

=

. . .

. . .

= 1√
d

n−1

. . .
+

COPY

. . .

=
+ +

COPY COPY

. . . . . .

. . .

=
√

d
(n−1)(m−1)

. . .

. . .

. . . . . .

1√
d

n−1

(h4)
=−

. . .
+

COPY

. . .
− −

. . .
− −

√
d
(n−1)(m−1)

. . .

. . .

. . . . . .

(h4)
=

Lastly, observe that

==
(3) (3)

=
1√
d

d−1

∑
i=0

d−1

∑
j=0

ζ
i j =
√

d

to see that indeed corresponds to
√

d.

The remaining proofs are straightforward:

Proof of Z/H-bialgebra rule (ba2).

. . .

. . .

=
. . . . . .

= = . . . . . .

. . .

. . .
. . .

. . .

. . .
. . .

(3)
(h4)

(4)
COPY

. . .

·

· ·

COPYCOPY

. . .

. . . . . .

. . . . . .= =
(4) h4

−

− −

=
COPY

. . .

·
. . .

Proof of cyclic rule (cy).

d

. . .
= ..

. d = d =

+

+
d = =d d d ..

.

..
.

(zs) (h) (4) (h)(∗)

Here the step marked (∗) uses the fact that repeating Pauli-X a total of d times in succession is just the
identity. To see our gadget of H-boxes and X-spider really represents Pauli-X, push the two H-boxes from
the input through to the output to get an addition gadget, and observe that H3H(ω) = |1〉.
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D Further Rewrite Rules

In the qubit ZH-calculus of Backens et al., there is one further rewrite rule (the ortho rule) we have not
yet considered in the qudit setting. We make up for that in this appendix. Additionally, we look at two
simpler rules [3, Lem. 2.28, Lem. 5.1] Backens et al. have proven to be equivalent to ortho in the qubit
setting [3, Thm. 8.6], and generalise those as well (though we do not show equivalence).

The ortho rule (o) is the most complicated qubit rule. It essentially states that

∀x0,x1,y : x0y = x1(y+1) ⇐⇒ x0y = 0 = x1(y+1).

This observation is based on “exhausting” all possible values of Z/2Z: No matter what y ∈ Z/2Z we
choose, we have {y,y+1}= Z/2Z. That means either y or y+1 is zero, so one of x0y and x1(y+1) is
always zero. Thus, if x0y = x1(y+1), both products must equal 0.

We can generalise this argument to Z/dZ for arbitrary d:

∀y : {y,y+1, ...,y+d−1}= Z/dZ

and thus

∀x0, ...,xd−1,y : x0y = ...= xd−1(y+d−1) ⇐⇒ ∀i ∈ {0, ...,d−1} : xi(y+ i) = 0.

Expressing this as ZH-diagram (assuming that the Pauli-X inputs are on the left) we get

+
. . .

. . .

. . .

+ = +
. . .

. . .

. . .

+

d−1

For d prime this rule actually becomes slightly stronger, as the absence of zero-divisors tells us:

∀x0, ...,xx−1,y : x0y = ...= xd−1(y+d−1) ⇐⇒ at most one xi 6= 0,

however, this condition does not seem to be easily expressible as a ZH-diagram.
Backens et al.’s Lemma 2.28 of [3] states that

∀x,y : xy = 1 ⇐⇒ x = 1∧ y = 1.

Clearly, this does not hold for d > 2, however for prime d we can generalize it to the following statement:

∀x,y : xy 6= 0 ⇐⇒ x 6= 0∧ y 6= 0

Obviously, this does not hold for d composite, since then Z/dZ admits zero-divisors. Using Eq. (12) we
can realize this as the diagrammatic equation

. . .

= . . . . . .
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where all “. . .” represent (d−1)-fold repetition.
Lastly, Backens et al.’s Lemma 5.1 is a diagrammatic version of the Frobenius identity, which states

that for prime d, we have xd = x for all x ∈ Zd . We have used statements similar to this all throughout this
paper. Diagrammatically, the identity becomes

. . .d =

E Derived Rewrite Rules

In this appendix we derive simple, yet often useful, rewrite rules using the qudit ZH-calculus. If a rule
generalises a known rule for qubit ZH or ZX, we provide references to where the rules were first proven.
In these cases, the proofs are often virtually identical and only need some adjustments regarding the
number of Hadamards.

Note that Lemmas E.3 and E.4 also work with the colors of the spiders inverted. Lemma E.6 also
works with arbitrarily many wires connecting the spiders, similar to (zs). Lemmas E.8 through E.11 are
copy rules resulting from special cases of our bialgebra rules. Following, we derive some rules for Z- and
X-spiders connected via multiple wires, including the Z/X Hopf-rule (Lemma E.12), the qudit version of
complementarity (Lemma E.13), as well as a generalisation of Yeh and van de Wetering’s qutrit special
rule (Lemma E.14). Lastly, we have some rules about scalar cancellation (Lemma E.15 and E.16).

Lemma E.1.

=

Lemma E.2.

=

Lemma E.3.

. . .

. . .

=

. . .

. . .

Lemma E.4.

. . .

. . .

=

. . .

. . .

Lemma E.5.

=
. . . . . .

. . . . . .

Lemma E.6.

n

m

ñ

m̃

=

n+ ñ

m+ m̃

. . .

. . . . . .

. . .

. . .

. . .
(xs)

Lemma E.7.

. . .

. . .
=

. . .

. . .

Lemma E.8.

. . . m

= . . .

m−1

m

Lemma E.9.

m
. . . m

. . .=

m−1

Lemma E.10.
. . .

= . . .

Lemma E.11.
. . .

=
. . .
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Lemma E.12 (Hopf).

= (H)

Lemma E.13.

. . .d =

d

Lemma E.14.

. . .d−1 =

d−2

Lemma E.15.

=

Lemma E.16.

= (d)

Proof of E.1 [3, Lem. 2.11].

= =
(3) (id)

Proof of E.2 [3, Lem. 2.11]. Follows immediately from (h4).

Proof of E.3 [3, Lem. 2.15, Lem. 2.16] and E.4. Follow by alternating application of (h), (3) and then
(h4).

Proof of E.5.

= =
. . . . . .

. . . . . .

. . .

. . .

(h4) (hs)

Proof of E.6 [3, Lem. 2.10].

n

m

ñ

m̃

=

n+ ñ

m+ m̃

. . .

. . .
. . .

. . .

. . .

. . .

n

m

ñ

m̃

. . .

. . .
. . .

. . .

=

n

m

ñ

m̃

. . .

. . .

. . .

. . .

=

n+ ñ

m+ m̃

. . .

. . .

=
(E.1)
(id)

(h4) (zs) (3)

Proof of E.7.
. . .

. . .
=

. . .

. . .
=

. . .

. . .
=

. . .

. . .

(E.3) (E.1) (E.6)

Proofs of E.8 through E.11 [3, Lem. 2.21, Lem. 2.23, Lem. 2.26]. Follow immediately from (ba1) and
(ba2).
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Proof of E.12.

= = = = = =
(E.1) (id) (zs)

(E.6)
(ba1)

(zs)
(E.9) (E.7)

(id)

Note that this proof is very similar to the one given by Feng [28, Eq. 4.3] and the abstract one done using
the dualizer by Duncan and Dunne [14, Thm. 4.6]. Lastly, Booth and Carette considered this Lemma to
be a rewrite rule [6, Eq. 21]

Proof of E.13 [3, Lem 2.30].

. . . = . . . =
. . .

=

. . .

= =
. . .

. . .

= = = =

d d

d d
d d(3) (hs) (ba2)

(h4)
(E.3) (cy) (h)

(3)
(E.10)(3)

Proof of E.14 [6, Eq. 21].

. . .d−1 = . . . = . . . = . . .dd−1 = =

d−2 d−2 d

d−1

d

(zs)
(E.6)

(E.12) (zs)
(E.6)

(E.13) (id)
(E.6)
(E.1)
(h4)

Proof of E.15 [3, Lem. 2.5]. Unchanged from the qubit case via (ba2).

Proof of E.16 [3, Lem. 2.3, Lem 2.4].

= ==
(3) (E.8) (E.15)

Remark E.17. Note that we can also express using just Z- and X-spiders in a slightly more intuitive
way via

= .

The proof of this is slightly more complicated. It is based upon the identity

= = = = = = =
(zs) (h) (3) (id) (E.8) (zs) (3)

(∗)

We then have

= == (∗)
= =

(E.16) (ba1) (zs) (E.16)
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and adding a to both sides yields the desired identity. Furthermore, Booth and Carette [6, Fig 1.] give

=

For this version, we have

= == = =
(id) (zs)

(E.6)
(ba1) (E.8)

(E.16)
(E.6)
(3)

(E.16)

F Building Diagrams

In this appendix, we apply the algorithm outlined in Section 4 to construct a phase-free ZH-diagram for
the operator R we used in Section 5 to construct our successor gadget. We also outline how one would go
about constructing a phaseless ZH-diagram for M, our multiplexer map.

Recall that we defined R|i〉= |i〉+ |i+d 1〉, meaning we have

R =



1 0 · · · 0 1

1
. . . . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 1


.

This means that the formula ϕR describing the locations of the ones in this matrix is

ϕR(x,y) = (y = x)∨ (y = x+d 1).

Following the construction of Proposition 4.1, the polynomial

pR(x,y) = (x− y) · (x+1− y)

has roots whenever ϕR(x,y) is true. To turn this polynomial into a ZH-diagram realizing R, we first realize
the map |x,y〉 7→ |pR(x,y)〉 via the inductive procedure presented in Lemma 4.2 to get

pR(x,y) = x2 + x− xy− yx− y+ y2 = y2 +(−2x−1)y+(x2 + x).

We thus need to start by constructing diagrams for the polynomials p1(x) =−2x−1 and p0(x) = x2 + x
(technically, the proof of Lemma 4.2 starts by constructing diagrams for 0-ary polynomials, e.g. constants
such as −1 and −2. For brevity, we inline this step into the construction of p0 and p1):

p0 :

x

and p1 :

x

+
+
+
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This then leads to the following diagram for pR

x y

+
+
+

Applying |x〉 7→ |xd−1〉, post-selecting with H(0)T and bending up the y-wire then yields a diagram for R.
We could now simplify this diagram into something more manageable. Alternatively, we can observe that
we do not need to follow the construction of |x,y〉 7→ |pR(x,y)〉 given in the proof of Lemma 4.2. Often,
the structure of a polynomial allows a much simpler ad-hoc construction based on the gadgets given in
(12) and (4). In our case, we get

x y

+

”x-y” ”x+1-y”

which is significantly easier to simplify, in particular due to the absence of exponentiator gadgets.
Now, recall our definition of M:

|x0...xd−1〉⊗ |c〉 7→

{
|xc〉 x j = 0 for all j 6= c
0 otherwise.

Here, we get the formula

ϕM(x0, ...,xd−1,c,y) =
d−1∨
i=0

(c = i)∧ (y = xi)∧
d−1∧
j=0
j 6=i

(x j = 0)

 .

To translate ϕM into a polynomial, we first need to apply deMorgan’s law (A∧B = ¬(¬A∨¬B)) to turn
the conjunctions into disjunctions, to get

ϕM(x1, ...,xd−1,c,y) =
d−1∨
i=0

¬

(c 6= i)∨ (y 6= xi)∨
d−1∨
j=0
j 6=i

(x j 6= 0)


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which then translates into the polynomial

pM(x0, ...,xd−1,c,y) =
d−1

∏
i=0

1−

(1− (c− i)d−1
)
·
(

1− (y− xi)
d−1
)
·

d−1

∏
j=0
j 6=i

(
1− xd−1

j

)
d−1 .

We omit the construction of the associated phase-free ZH-diagram, due to the immense size of the resulting
diagram.
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The notion of a Moore-Penrose inverse (M-P inverse) was introduced by Moore in 1920 and redis-

covered by Penrose in 1955. The M-P inverse of a complex matrix is a special type of inverse which

is unique, always exists, and can be computed using singular value decomposition. In a series of

papers in the 1980s, Puystjens and Robinson studied M-P inverses more abstractly in the context of

dagger categories. Despite the fact that dagger categories are now a fundamental notion in categorical

quantum mechanics, the notion of a M-P inverse has not (to our knowledge) been revisited since their

work. One purpose of this paper is, thus, to renew the study of M-P inverses in dagger categories.

Here we introduce the notion of a Moore-Penrose dagger category and provide many examples

including complex matrices, finite Hilbert spaces, dagger groupoids, and inverse categories. We also

introduce generalized versions of singular value decomposition, compact singular value decomposi-

tion, and polar decomposition for maps in a dagger category, and show how, having such a decom-

position is equivalent to having M-P inverses. This allows us to provide precise characterizations of

which maps have M-P inverses in a dagger idempotent complete category, a dagger kernel category

with dagger biproducts (and negatives), and a dagger category with unique square roots.

1 Introduction

The Moore-Penrose inverse of an n×m complex matrix A is an m× n complex matrix A◦ such that:

AA◦A = A, A◦AA◦ = A◦, (AA◦)† = AA◦, and (A◦A)† = A◦A, where † is the conjugate transpose operator.

For any complex matrix, its Moore-Penrose inverse exists, is unique, and can be computed using singular

value decomposition – see Example 2.9. The Moore-Penrose inverse is named after E. H. Moore and

R. Penrose. Moore first described the notion in 1920 in terms of orthogonal projectors [18]. Without

knowing about Moore’s work, in 1955 Penrose described the notion using the identities above [20].

Curious readers can learn more about the fascinating history of the Moore-Penrose inverse and its origin

in [1, 4]. Many useful – and quite recent – applications of the Moore-Penrose inverse in mathematics,

physics, and computer science are described by Baksalary and Trenkler in [1].

The Moore-Penrose inverse can be generalized to other contexts besides complex matrices. For ex-

ample, one may consider the Moore-Penrose inverse of a matrix over an involutive ring. While the

Moore-Penrose inverse may not always exist, for certain involutive rings it is possible to precisely char-

acterize which matrices have Moore-Penrose inverses. One can also consider Moore-Penrose inverses

in involutive semigroups, and in particular in C∗-algebras. It is also possible to define the notion of

Moore-Penrose inverses for bounded linear operators between Hilbert spaces, and to characterize pre-

cisely which have a Moore-Penrose inverse. Following in this direction, one can in fact define the notion

of a Moore-Penrose inverse for maps in dagger categories.

Selinger in [27] introduced the term “dagger category”, based on the use in physics of the symbol †

for conjugate transpose. Dagger categories are simply categories equipped with an involution on maps

*Partially funded by NSERC.
†Financially supported by a JSPS PDF, Award #: P21746 and a ARC DECRA, Award #: DE230100303
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(Def 2.1). In a dagger category, a Moore-Penrose inverse of a map f : A → B is a map in the reverse

direction f ◦ : B → A satisfying the equations above (Def 2.3). The existence and computations of Moore-

Penrose inverses for maps in general dagger categories were studied by Puystjens and Robinson in a

series of papers in the 1980s [21, 22, 23, 24, 25]. Since Puystjens and Robinson’s work, there does

not appear to have been any further development of Moore-Penrose inverses in dagger categories. This,

despite the fact that the theory of dagger categories itself has undergone significant development. Indeed,

in the last decade, dagger categories have become a fundamental component of categorical quantum

mechanics (see Heunen and Vicary’s introductory level book on the subject [15]). Therefore, it makes

perfect sense to revisit Moore-Penrose inverses in the context of dagger categories.

The main objective of this paper is to revisit and renew the study of Moore-Penrose inverses in

dagger categories, in the hope that this will lead to new applications in categorical quantum mechanics

and elsewhere. We shall apply techniques which have been developed since Puystjens and Robinson’s

work, such as dagger idempotent splitting and dagger kernels, to Moore-Penrose inverses. We also in-

troduce and study the natural concept of a Moore-Penrose dagger category, which is a dagger category

where every map has a Moore-Penrose inverse. We provide many examples of Moore-Penrose dagger

categories including well-known ones, such as the category of complex matrices or finite-dimensional

Hilbert spaces, and also various new ones, such as dagger groupoids and inverse categories.

As was mentioned above, singular value decomposition can be used to compute Moore-Penrose

inverses of complex matrices. In Section 4, we introduce a generalized version of singular value de-

composition for maps in a dagger category with dagger biproducts. Then, by using dagger kernels, we

show how having a generalized singular value decomposition is equivalent to having a Moore-Penrose

inverse (Thm 4.9). Another way to compute the Moore-Penrose inverse is by using compact singular

value decomposition: this is often easier to compute than full singular value decomposition. In Section

3, we introduce a generalized version of compact singular value decomposition for maps in any dagger

category and then prove that having a generalized compact singular value decomposition is equivalent

to having a Moore-Penrose inverse when dagger idempotents split (Prop 3.9). Therefore, we obtain a

precise characterization of maps that have a Moore-Penrose inverse in any dagger idempotent complete

category (Thm 3.10). Lastly in Section 5, we give a novel application of Moore-Penrose inverses by

introducing the notion of a Moore-Penrose polar decomposition, which captures precisely polar decom-

position for complex matrices.

Acknowledgements: The authors would like to thank Chris Heunen for useful discussions and sup-

port of this project, as well as thank Ben MacAdam and Cole Comfort for initial discussions on Moore-

Penrose inverses and possible relations to restriction categories. The authors would also like to thank

Masahito Hasegawa and RIMS at Kyoto University for helping fund research visits so that the authors

could work together on this project.

2 Moore-Penrose Inverses

In this section, we discuss Moore-Penrose inverses and some basic properties thereof. In addition,

Moore-Penrose dagger categories are introduced and various examples are provided. To set up notation

and terminology, we begin by quickly reviewing the basics of dagger categories. For a more in-depth

introduction to dagger categories, we refer the reader to [15]. For an arbitrary category X, we denote

objects by capital letters A,B,X ,Y , etc. and maps by lowercase letters f ,g,h, etc. Identity maps are

denoted as 1A : A → A. Composition is written in diagrammatic order, that is, the composition of a map

f : A → B followed by g : B →C is denoted f g : A →C.
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Definition 2.1 [15, Def 2.32] A dagger on a category X is a contravariant functor ( )† : X→ X which

is the identity on objects and involutive. We refer to f † as the adjoint of f . A dagger category is a pair

(X,†) consisting of a category X equipped with a dagger †.

Concretely, a dagger category can be described as a category X where for each map f : A → B, there

is a chosen map of dual type f † : B → A such that 1
†
A = 1A, ( f g)† = g† f †, and ( f †)† = f . Thus, ( )† is a

contravariant functor which is, furthermore, an involution – so the adjoint of the adjoint of f is f itself.

It is important to note that a category X can have multiple different daggers. This means that a dagger on

a category is structure which must be chosen. Examples of dagger categories can be found below. Here

are some special maps in a dagger category:

Definition 2.2 [15, Def 2.34] In a dagger category (X,†):

(i) A map s : A → B is an isometry if ss† = 1A;

(ii) A map r : A → B is a coisometry if r†r = 1B;

(iii) A map u : A → B is a unitary isomorphism if uu† = 1A and u†u = 1B;

(iv) A map q : A → B is a partial isometry if qq†q = q;

(v) A map h : A → A is self-adjoint (or Hermitian) if h† = h;

(vi) A map p : A → A is positive if there exists a map f : A → X such that p = f f †;

(vii) A map e : A → A is a †-idempotent if it self-adjoint and idempotent, that is, e† = e and ee = e.

This allows us to define the main concept of interest for this paper:

Definition 2.3 In a dagger category (X,†), a Moore-Penrose inverse (M-P inverse) of a map f : A → B

is a map f ◦ : B → A such that the following equalities hold:

[MP.1] f f ◦ f = f [MP.2] f ◦ f f ◦ = f ◦ [MP.3] ( f f ◦)† = f f ◦ [MP.4] ( f ◦ f )† = f ◦ f

If f has a M-P inverse, we say that f is Moore-Penrose invertible (M-P invertible). A Moore-Penrose

dagger category is a dagger category such that every map is M-P invertible.

[MP.1] and [MP.2] say that f ◦ is a “regular” inverse of f , while [MP.3] and [MP.4] say that f f ◦

and f ◦ f are self-adjoint. This allows us to interpret f f ◦ as the projection of the domain of f , while f ◦ f

is the projection of the range of f . Examples of Moore-Penrose dagger categories can be found below.

However, before looking at examples, we state some basic results for M-P inverses. Most importantly,

M-P inverses (if they exist) are unique:

Lemma 2.4 In a dagger category (X,†), if a map f : A → B has a M-P inverse f ◦ : B → A, then f ◦ is

the unique map which satisfies [MP.1] to [MP.4].

PROOF: Suppose that for a map f : A → B, there exist maps f ◦ : B → A and f • : B → A which are both

M-P inverses of f . Then we first compute that:

f • f = f • f f ◦ f = ( f • f )†( f ◦ f )† = f †( f •)† f †( f ◦)† = ( f f • f )†( f ◦)† = f †( f ◦)† = ( f ◦ f )† = f ◦ f .

So f • f = f ◦ f and, similarly, we can also compute that f f • = f f ◦. This allows the observation that:

f • = f • f f • = f ◦ f f • = f ◦ f f ◦ = f ◦
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So f ◦ = f • and therefore Moore-Penrose inverses are unique. 2

An important consequence of the above lemma is that, for a dagger category, being Moore-Penrose

is a property rather than a structure. That said, it is important to note that a map can have a M-P inverse

with respect to one dagger structure but fail to have one for another, see Example 2.10. Having a M-P

inverse, has a number of consequences:

Lemma 2.5 In a dagger category (X,†), if f has a M-P inverse f ◦ then:

(i) f ◦ is also M-P invertible where f ◦◦ = f ;

(ii) f † is also M-P invertible where f †◦ = f ◦†;

(iii) f f ◦ and f ◦ f are †-idempotents and M-P invertible where ( f f ◦)◦ = f f ◦ and ( f ◦ f )◦ = f ◦ f ;

(iv) f f † and f † f are M-P invertible where ( f f †)◦ = f †◦ f ◦ and ( f † f )◦ = f ◦ f †◦;

(v) f f ◦ = f †◦ f † and f ◦ f = f † f †◦;

(vi) f = f f † f †◦ = f †◦ f † f ;

(vii) f ◦ = f ◦ f †◦ f † = f † f †◦ f ◦;

(viii) f † = f † f f ◦ = f ◦ f f †;

(ix) If f is self-adjoint, then f ◦ is also self-adjoint (i.e. f ◦† = f ◦) and f ◦ f = f f ◦;

(x) If f ◦ = f †, then f is a partial isometry.

PROOF: These are straightforward to check, so we leave them as an exercise for the reader. 2

It is known that computing M-P inverses of complex matrices can be reduced to computing the M-P

inverses of Hermitian positive semi-definite matrices. The same is true in dagger categories:

Lemma 2.6 In a dagger category (X,†), for any map f : A → B, the following are equivalent:

(i) f is M-P invertible;

(ii) f † f is M-P invertible and f ( f † f )◦ f † f = f ;

(iii) f f † is M-P invertible and f f †( f f †)◦ f = f

Therefore (X,†) is Moore-Penrose if and only if every map f satisfies (ii) or (iii).

PROOF: Lemma 2.5.(iv) and (vii) gives us (i) ⇒ (ii) and (i) ⇒ (iii). Conversely, if f † f (resp. f f †) is

M-P invertible, then ( f † f )◦ f † (resp. f †( f f †)◦) will always satisfy [MP.2], [MP.3], and [MP.4]. The

extra assumption that f ( f † f )◦ f † f = f (resp. f f †( f f †)◦ f = f ) is precisely [MP.1]. So we have that f is

M-P invertible, giving (ii)⇒ (i) and (iii)⇒ (i). 2

In any dagger category, there are some maps that always have M-P inverses:

Lemma 2.7 In a dagger category (X,†):

(i) Identity maps 1A are M-P invertible where 1◦A = 1A;

(ii) If f is an isomorphism, then f is M-P invertible where f ◦ = f -1;

(iii) If f is a partial isometry or a (co)isometry or unitary, then f is M-P invertible where f ◦ = f †;

(iv) If e is a †-idempotent, then e is M-P invertible where e◦ = e;
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(v) If p is a positive map such that there exists a M-P invertible map f such that p = f f †, then p is

M-P invertible where p◦ = f ◦† f ◦, and so p◦ is also positive;

(vi) If p is a positive map and M-P invertible, then for any map f such that p = f f † and pp◦ f = f , f

is also M-P invertible where f ◦ = f † p◦.

PROOF: These are straightforward to check, so we leave them as an exercise for the reader. 2

It is important to note that, in general, Moore-Penrose inverses are not compatible with composition.

Indeed, even if f and g have M-P inverses, f g might not have a M-P inverse and, even if it does, ( f g)◦ is

not necessarily equal to g◦ f ◦. Here are some conditions for when ( f g)◦ = g◦ f ◦ holds:

Lemma 2.8 In a dagger category (X,†), if f : A → B and g : B →C are M-P invertible then:

(i) f g is M-P invertible with ( f g)◦ = g◦ f ◦ if and only if f ◦ f gg◦ and gg◦ f ◦ f are idempotent, and both

f gg◦ f ◦ = f ◦†gg◦ f † and g◦ f ◦ f g = g† f ◦ f g◦†;

(ii) The following conditions1 are equivalent and imply ( f g)◦ = g◦ f ◦:

(a) gg◦ f ◦ f , f gg◦ f ◦ and g◦ f ◦ f g are self-dual;

(b) gg† f ◦ f and f † f gg◦ are self-dual;

(c) f ◦ f gg† f † = gg† f † and gg◦ f † f g = f † f g.

PROOF: These can be checked by lengthy and brute-force calculations. 2

Here are some examples of Moore-Penrose dagger categories, as well as some non-examples but

where we can still fully characterize the M-P invertible maps:

Example 2.9 Let C be the field of complex numbers and let MAT(C) be the category whose objects are

natural numbers n ∈N and where a map A : n → m is an n×m complex matrix. (MAT(C),†) is a dagger

category where † is the conjugate transpose operator, A†(i, j) = A( j, i). Furthermore, (MAT(C),†) is

also a Moore-Penrose dagger category where the M-P inverse of a matrix can be constructed from its

singular value decomposition (SVD). For a n×m C-matrix A, let d1, . . . ,dk be the non-zero singular

values of A, so di ∈ R with di > 0, and k ≤min(n,m). Then there exists a unitary n×n matrix U and a

unitary m×m matrix V such that:

A =U

[

D 0

0 0

]

n×m

V † where D is the diagonal k× k matrix D =







d1 . . . 0
...

. . .
...

0 . . . dk







Then the M-P inverse of A is the m×n matrix A◦ defined as follows:

A◦ =V

[

D-1 0

0 0

]

m×n

U† where D-1 is the diagonal k× k matrix D-1 =







1
d1

. . . 0
...

. . .
...

0 . . .
1
dk







Since M-P inverses are unique, the construction does not depend on the choice of SVD.

1For complex matrices, the conditions of (ii) are equivalent to ( f g)◦ = g◦ f ◦ [5, Sec 1.4 & 1.5]. However, for general dagger

categories it appears that the conditions in (ii) are sufficient – but not necessary – to obtain ( f g)◦ = g◦ f ◦.
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Example 2.10 On the other hand, MAT(C) has another dagger given instead simply by the transpose

operator, AT(i, j) = A( j, i). However, the dagger category (MAT(C),T) is not Moore-Penrose. For

example, the matrix
[

i 1
]

does not have a M-P inverse with respect to the transpose. If it did, one can

obtain the contradiction that i = 0, which we leave as an exercise for the reader.

Example 2.11 Recall that an involutive ring is a ring R equipped with a unary operation ∗, called the

involution, such that (x+ y)∗ = x∗ + y∗, and (xy)∗ = y∗x∗, and x∗∗ = x. Let MAT(R) be the category

of matrices over R, that is, the category whose objects are natural numbers n ∈ N and where a map

A : n → m is an n×m matrix A with coefficients in R. Then (MAT(R),†) is a dagger category where †

is given by the involution transpose operator, that is, A†(i, j) = A( j, i)∗. In general (MAT(R),†) will not

necessarily be Moore-Penrose. However, in certain cases, it is possible to precisely characterize which

R-matrices do have a M-P inverse. For example, if R is an involutive field, then an R-matrix A has a

M-P inverse if and only if rank(AA†) = rank(A) = rank(A†A) [19, Thm 1]. Necessary and sufficient

conditions for when an R-matrix has a M-P inverse have also been described in the case when R is an

integral domain [2], a commutative ring [3], or even a semi-simple artinian ring [17].

Example 2.12 Let HILB be the category of (complex) Hilbert spaces and bounded linear operators

between them. Then (HILB,†) is a dagger category where the dagger is given by the adjoint, that is,

for a bounded linear operator f : H1 → H2, f † : H2 → H1 is the unique bounded linear operator such

that 〈 f (x)|y〉 = 〈x| f †(y)〉 for all x ∈ H1 and y ∈ H2. (HILB,†) is not Moore-Penrose but there is a

characterization of the M-P invertible maps: a bounded linear operator is M-P invertible if and only if

its range is closed [11, Thm 2.4]. Explicitly, for a bounded linear map f : H1 → H2, let Ker( f ) ⊆ H1 be

its kernel and im( f ) ⊆ H2 be its range, and let Ker( f )⊥ and im( f )⊥ be their orthogonal complements.

If im( f ) is closed, then we have that H2 = im( f )⊕ im( f )⊥ and also that f |Ker( f )⊥ : Ker( f )⊥ → im( f )

is a bounded linear isomorphism. Then define the M-P inverse f ◦ : H2 → H1 as f ◦(y) = f−1|Ker( f )⊥(y)

for y ∈ im( f ) and f ◦(y) = 0 for y ∈ im( f )⊥. For more details, see [11, Ex 2.16]. Now let FHILB be

the subcategory of finite dimensional Hilbert spaces. Then (FHILB,†) is also a dagger category and

it is well known that (FHILB,†) ≃ (MAT(C),†). As such, (FHILB,†) is also a Moore-Penrose dagger

category where we this time use SVD on linear operators to construct the M-P inverse. So let H1 be

a Hilbert space of dimension n and H2 a Hilbert space of dimension m. Then for any linear operator

f : H1 → H2, if d1, . . . ,dk ∈ R are the non-zero singular values of f (so k ≤min(n,m)), then there exists

orthonormal bases ui ∈ H1 and v j ∈H2 such that f (x) = ∑
k
i=1 di〈ui|x〉vi for all x ∈H1. Then f ◦ : H2 → H1

is defined as follows f ◦(y) := ∑
k
i=1

1
di
〈vi|y〉ui.

Example 2.13 Any field gives a simple example of a Moore-Penrose dagger category. So let k be a field,

and let •k be the category with one object and whose maps are elements of k, where composition is

given by the multiplication and the identity map is the unit of k. Then (•k,†) is a Moore-Penrose dagger

category where for all x ∈ k, x† = x and x◦ = x-1 if x 6= 0 or x◦ = 0 if x = 0. In fact, a Moore-Penrose

dagger category with only one object is precisely a ∗-regular monoid [8].

Example 2.14 Let REL be the category of sets and relations, that is, the category whose objects are sets

and where a map R : X → Y is a subset R ⊆ X ×Y . (REL,†) is a dagger category where † is given by

the converse relation, that is, (y,x) ∈ R† ⊆ Y ×X if and only if (x,y) ∈ R ⊆ X ×Y . While (REL,†) is

not a Moore-Penrose dagger category, it turns out that the M-P invertible maps are precisely the partial

isometries (which recall by Lemma 2.7.(iii) always have M-P inverses). A partial isometry in (REL,†)
is a difunctional relation [10, Def 1], which is a relation R ⊆ X ×Y which satisfies that if (x,b),(a,b)
and (a,y) ∈ R, then (x,y) ∈ R. It was previously observed that a relation between finite sets has M-P

inverse if and only if it was a difunctional relation/partial isometry – since relations between finite sets
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correspond to Boolean matrices, and Boolean matrices with M-P inverses were fully characterized in

[26, Thm 4.3]. From this, it is not difficult to see that this can be extended to relations between arbitrary

sets. Thus, in (REL,†), R ⊆ X ×Y has a M-P inverse if and only if R is a difunctional relation/partial

isometry, which in this case means that the M-P inverse is the converse relations R◦ = R† ⊆ Y ×X. In

fact, the same is true for allegories. Briefly, an allegory [9, Chap 2] is a dagger category (X,†) which is

poset enriched and has meets, so in particular each homset X(A,B) is a poset with order ≤ and binary

meets ∩, and such that the modular law f g∩ h ≤ ( f ∩ hg†)g holds. Well-known examples of allegories

include (REL,†) and more generally the category of relations of a regular category [9, Sec 2.111]. From

the modular law, it follows that every map f in an allegory (X,†) satisfies f ≤ f f † f [9, Sec 2.112].

Therefore, if f has a M-P inverse, using Lemma 2.5.(vii) and (viii), we easily compute that:

f † = f ◦ f f † ≤ f ◦ f ◦†
f ◦ f f † = f ◦ f ◦† f † = f ◦

f ◦ = f ◦ f ◦†
f † ≤ f ◦ f ◦†

f † f f † = f ◦ f f † = f †
.

So we conclude that f ◦ = f †, and so by Lemma 2.5.(x), f is a partial isometry. Thus, a map f in an

allegory (X,†) has a M-P inverse if and only if f is a partial isometry, which means that its M-P inverse

is its adjoint f ◦ = f †.

Example 2.15 A dagger groupoid is a dagger category (X,†) where every map in X is an isomorphism

(though not necessarily a unitary). Every dagger groupoid (X,†) is a Moore-Penrose dagger category

where f ◦ = f -1. In particular, from any dagger category, we can always construct a dagger groupoid via

its subcategory of isomorphisms. So for any category X, let Xiso be the subcategory of isomorphisms of

X. If (X,†) is a dagger category, then (Xiso,†) is a dagger groupoid since if f is an isomorphism, then

so is f † with inverse f †-1
:= f -1†

. Therefore (Xiso,†) is a Moore-Penrose dagger category.

Example 2.16 An inverse category [6, Sec 2.3.2] is a dagger category (X,†) where f f † f = f for all

maps f and f f †gg† = gg† f f † for all parallel maps f and g. Inverse categories play an important role

in the theory of restriction categories [6], since the subcategory of partial isomorphisms of a restriction

category is an inverse category. Every inverse category (X,†) is a Moore-Penrose dagger category where

the M-P inverse of f is its adjoint f ◦ = f † (since every map in an inverse category is a partial isometry

by definition). So in particular, for any restriction category, its subcategory of partial isomorphisms is

a Moore-Penrose dagger category. As a concrete example, let PINJ be the category of sets and partial

injections, which is the subcategory of partial isomorphisms of the restriction category of sets and partial

functions. Then (PINJ,†) is an inverse category where for a partial injection f : X → Y , f † : Y → X is

defined as f †(y) = x if f (x) = y and is undefined otherwise.

Example 2.17 If (X1,†1) and (X2,†2) are both Moore-Penrose dagger categories, then their product

(X1 ×X2,†1 × †2) is also a Moore-Penrose dagger category. In particular, we can combine Example

2.13 and Example 2.16. So if (X,†) is an inverse category and k is a field, let Xk be the category whose

objects are those of X but whose maps are pairs ( f ,x) consisting of a map f in X and an element x ∈ k,

so we may think of x as adding a weight or a cost to f . Then (Xk,†) is a Moore-Penrose dagger category

where ( f ,x)† = ( f †,x) and ( f ,x)◦ = ( f †,x◦).

3 Compact Singular Value Decomposition

In Example 2.9, we explained how to construct the M-P inverse of a complex matrix using SVD. How-

ever, there is an alternative way to construct the M-P inverse using compact singular value decomposition



178 Moore-Penrose Dagger Categories

(CSVD). This decomposition tells us that for any n×m complex matrix, A, again with singular values

d1, . . . ,dk and associated diagonal matrix D, there exists an n× k matrix R and an m× k matrix S such

that A = RDS† and R†R = S†S = Ik. The decomposition allows one to construct the M-P inverse as

A◦ := SD−1R†. In dagger categorical terms, R and S are coisometries, and D is an isomorphism2. Thus,

generalized CSVD in an arbitrary dagger category is a factorization into a coisometry, followed by an

isomorphism, followed by an isometry. We shall discuss the generalization of CSVD for dagger cate-

gories before discussing SVD because generalizing SVD requires dagger biproducts and dagger kernels,

while generalizing CSVD can be explained without introducing further structure.

This generalized CSVD not only provides a simple way of computing M-P inverses, but is also

directly related to the splitting of dagger idempotents, an important dagger category concept that was

introduced by Selinger in [28]. Generalized CSVD allows us to precisely characterize the M-P invertible

maps in dagger categories which are dagger idempotent complete. Furthermore, the dagger idempotent

splitting completion leads us to an important reinterpretation of M-P inverses as being actual inverses

between dagger idempotents. As such, we begin this section by discussing the relationship between M-P

inverses and dagger idempotent splitting.

Definition 3.1 [28, Def 3.6] In a dagger category (X,†), a dagger idempotent e : A→A is an idempotent

which is self-adjoint, ee = e = e†. A dagger idempotent is said to †-split if there exists a map r : A → X

such that rr† = e and r†r = 1X (so r is a coisometry). A dagger idempotent complete category is a

dagger category (X,†) such that all †-idempotents †-split.

In Lemma 2.5.(iii), we saw that in any dagger category (X,†), if a map f has a M-P inverse, then

f f ◦ and f ◦ f were both †-idempotents. As such, we may ask these †-idempotents to also be †-split:

Definition 3.2 In a dagger category (X,†), a map f is Moore-Penrose split (M-P split) if f has a M-P

inverse f ◦ and the †-idempotents f f ◦ and f ◦ f †-split. A Moore-Penrose category in which all maps are

M-P split is said to be Moore-Penrose complete.

A dagger category which is Moore-Penrose complete is the same thing as a Moore-Penrose category

in which all dagger idempotents split:

Proposition 3.3 A dagger category (X,†) is Moore-Penrose complete if and only if (X,†) is dagger

idempotent complete and Moore-Penrose.

PROOF: The ⇐ direction is immediate by definition. For the ⇒ direction, suppose that (X,†) is Moore-

Penrose complete. By definition, this means every map has a M-P inverse, so (X,†) is indeed Moore-

Penrose. Now let e : A → A be a †-idempotent. By Lemma 2.7.(iv), e is its own M-P inverse, so e◦ = e,

and therefore e◦e = e = ee◦. However, by assumption, e is M-P split, which therefore implies that e is

†-split. So (X,†) is indeed †-idempotent complete. 2

We will now explain how every Moore-Penrose dagger category embeds into a Moore-Penrose com-

plete dagger category. Let us first review how every dagger category embeds into a dagger idempo-

tent complete category via the dagger version of the idempotent splitting completion, also called the

dagger Karoubi envelope [28, Def 3.13]. So for a dagger category (X,†), define the dagger category

(Split†(X),†) whose objects are pairs (A,e) consisting of an object A and a †-idempotent e : A → A

in (X,†), and whose maps f : (A1,e1) → (A2,e2) in are maps f : A1 → A2 in X such that e1 f e2 = f

(or equivalently e1 f = f = f e2). Composition in Split†(X) is defined as in X, while identity maps

2The fact that D is a diagonal matrix of singular values is not relevant to this way of constructing the M-P inverse.
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1(A,e) : (A,e) → (A,e) are defined as 1(A,e) := e. Lastly, the dagger of (Split†(X),†) is defined as in

(X,†), and furthermore (Split†(X),†) is a dagger idempotent complete category [28, Prop 3.12]. There

is also an embedding I : (X,†)→ (Split†(X),†) which is defined on objects as I (A) = (A,1A) and on

maps as I ( f ) = f .

Lemma 3.4 Let (X,†) be a Moore-Penrose dagger category. Then (Split†(X),†) is a Moore-Penrose

complete category.

PROOF: Let f : (A,e) → (B,e′) be a map in (Split†(X),†). Since composition and the dagger of

(Split†(X),†) are the same as in (X,†), it suffices to show that f ◦ : B → A is also a map of type

(B,e′)→ (A,e) in (Split†(X),†). So we must show that e′ f ◦e = f ◦. To do so we use Lemma 2.5.(vii)

and that f † : (A2,e2)→ (A1,e1) is also a map in (Split†(X),†):

e′ f ◦e = e′ f ◦ f †◦ f †e = e′ f ◦ f †◦ f † = e′ f ◦ = e′ f † f †◦ f ◦ = f † f †◦ f ◦ = f ◦

So f ◦ : (B,e′)→ (A,e) is a map in (Split†(X),†). 2

We are now ready to discuss a generalization of CSVD in an arbitrary dagger category, and show that

having a generalized CSVD is equivalent to being M-P split.

Definition 3.5 In a dagger category, a generalized compact singular value decomposition (GCSVD) of

a map f : A→B is a triple (r : A→X ,d : X →Y,s : Y → B), where r is a coisometry, d is an isomorphism,

and s is an isometry, such that f = rds.

Lemma 3.6 In a dagger category (X,†), if the two triples (r1 : A → X1,d1 : X1 →Y1,s1 : Y1 → B) and

(r2 : A → X2,d2 : X2 → Y2,s2 : Y2 → B) are GCSVDs of f : A → B, then there exist unique unitary maps

u : X1 → X2 and v : Y1 →Y2 such that r1u = r2, d1v = ud2, and s1 = vs2.

PROOF: Define u and v as the composites, u := r
†
1r2 and v := s1s

†
2. The necessary identities are checked

via some straightforward diagram chasing. 2

In order to show that having a GCSVD is equivalent to being M-P split, it will be useful to first

observe that maps with M-P inverses in the base dagger category are actual isomorphisms in the dagger

idempotent splitting completion:

Lemma 3.7 A map f : A → B in a dagger category (X,†) has a M-P inverse if and only if there exists †-

idempotents e1 : A → A and e2 : B → B such that f : (A,e1)→ (B,e2) is an isomorphism in (Split†(X),†).
Explicitly:

(i) If f : A → B has a M-P inverse f ◦ : B → A, then f : (A, f f ◦)→ (A, f ◦ f ) is an isomorphism in

(Split†(X),†) with inverse f ◦ : (A, f ◦ f )→ (A, f f ◦);

(ii) If f : (A,e1)→ (B,e2) is an isomorphism in (Split†(X),†) with inverse f ◦ : (B,e2)→ (A,e1), then

f is M-P invertible in (X,†) with M-P inverse f ◦.

PROOF: To start, let us explicitly spell out what it means for f : (A,e1)→ (B,e2) to be an isomorphism

in (Split†(X),†). Firstly, we need that e1 f e2 = f (or equivalently e1 f = f = f e2). Secondly, we also

need a map g : (B,e2)→ (A,e1) in (Split†(X),†), so e2ge1 = g (or equivalently e2g = g = ge1), and such

that f g = 1(A,e1) = e1 and g f = 1(B,e2) = e2.

Suppose that f : A → B has a M-P inverse f ◦ : B → A. By Lemma 2.5.(iii), (A, f f ◦) and (A, f ◦ f ) are

well-defined objects in (Split†(X),†). On the other hand, by [MP.1] and [MP.2], it is easy to check that
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f : (A, f f ◦)→ (A, f ◦ f ) and f ◦ : (A, f ◦ f )→ (A, f f ◦) are well-defined maps in (Split†(X),†). Lastly, by

definition we have that f f ◦ = 1(A, f f ◦) and f ◦ f = 1(A, f ◦ f ). Thus we conclude that f : (A, f f ◦)→ (A, f ◦ f )
is an isomorphism in (Split†(X),†).

Conversely, suppose that f : (A,e1) → (B,e2) is an isomorphism in (Split†(X),†) with inverse f ◦ :

(B,e2) → (A,e1). In particular, this implies that f f ◦ = e2 and f f ◦ = e1. So f f ◦ and f ◦ f are both †-

idempotents, thus [MP.3] and [MP.4] hold. By the assumed properties of maps in (Split†(X),†), we have

that f f ◦ f = e1 f = f and f ◦ f f ◦ = e2 f ◦ = f ◦, and so [MP.1] and [MP.2] hold. Therefore, we conclude

that f is M-P invertible with M-P inverse f ◦. 2

Corollary 3.8 A map f : A → B in a dagger category (X,†) is M-P split if and only if there exists

†-split †-idempotents e1 : A → A and e2 : B → B such that f : (A,e1) → (B,e2) is an isomorphism in

(Split†(X),†).

PROOF: Suppose that f : A → B is M-P split with M-P inverse f ◦ : B → A. By definition f f ◦ and f ◦ f are

†-split †-idempotents and by Lemma 3.7, f : (A, f f ◦)→ (A, f ◦ f ) is an isomorphism in (Split†(X),†).
Conversely, suppose that e1 : A → A and e2 : B → B are †-idempotents that †-split via the coisometry

r : A → X and isometry s : Y → B respectively, and also that f : (A,e1)→ (B,e2) is an isomorphism in

(Split†(X),†) with inverse f ◦ : (B,e2)→ (A,e1). Then by Lemma 3.7, f ◦ is the M-P inverse of f , and

by assumption we also have that f f ◦ = e1 and f ◦ f = e2. So f f ◦ and f ◦ f are †-split, and therefore we

conclude that f is M-P split. 2

We may now state the main result of this section:

Proposition 3.9 In a dagger category (X,†), a map f has a GCSVD if and only if f is M-P split.

PROOF: Suppose that f : A → B has a GCSVD (r : A → X ,d : X → Y,s : Y → B). Define f ◦ := s†d-1r†.

First note that rr† and s†s are †-split †-idempotents, so (A,rr†) and (B,s†s) are well-defined objects in

(Split†(X),†). We then compute that:

rr† f s†s = rr†rdss†s = rds = f

s†s f ◦rr† = s†ss†d-1r†rr† = s†d-1r† = f ◦

So f : (A,rr†) → (B,s†s) and f ◦ : (B,s†s) → (A,rr†) are maps in (Split†(X),†). Furthermore, we can

also compute that:

f f ◦ = rdss†d-1r† = rdd-1r† = rr† = 1(A,rr†)

f ◦ f = s†d-1r†rds = s†d-1ds = s†s = 1(B,s†s)

Therefore, f : (A, f f ◦)→ (A, f ◦ f ) is an isomorphism with inverse f ◦ : (B,s†s)→ (A,rr†). So by Corol-

lary 3.8, f is M-P split with M-P inverse f ◦.

Conversely, suppose that f : A → B is M-P split, where f f ◦ and f ◦ f both †-split via, respectively, the

coisometry r : A → X and isometry s : Y → B. Now define d : X → Y as the composite d := r† f s†. We

then immediately have f = rds. So it remains to show that d is an isomorphism. So define d-1 : Y → X

as the composite d-1 = s† f ◦r. We compute that:

dd-1= r† f s†s f ◦r = r† f f ◦ f f ◦r = r†rr†rr†r = 1X

d-1d= s f ◦rr† f s† = s f ◦ f f ◦ f s† = ss†ss†ss† = 1Y

Therefore, (r : A → X ,d : X →Y,s : Y → B) is a CSVD of f . 2

We can now precisely characterize M-P invertible maps in a dagger idempotent complete category:
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Theorem 3.10 In a dagger idempotent complete category, a map is M-P invertible if and only if it has a

GCSVD.

Corollary 3.11 A dagger category is Moore-Penrose complete if and only if every map has a GCSVD.

Observe that Lemma 3.4 tells us that every Moore-Penrose dagger category embeds into a dagger

category where every map has a GCSVD.

4 Singular Value Decomposition

The objective of this section is to generalize SVD for maps in a dagger category in such a way that we

may compute M-P inverses in the same way that was done in Example 2.9. So generalized SVD can

be described as a special factorization in terms of two unitaries and an isomorphism. However, in order

to describe the middle component as a square matrix with the isomorphism in the top corner and zeroes

everywhere else, we need to work in a setting with dagger biproducts. It is worth mentioning that in [22],

Puystjens and Robinson do discuss how the existence of a M-P inverse for a map with an epic-monic

factorization is essentially equivalent to a factorization via dagger biproducts. Here, we drop the epic-

monic factorization requirement, which allows us to provide a story of how M-P inverses are equivalent

to a dagger biproduct factorization which more closely resembles the generalized version of SVD.

Let us begin by quickly recalling the definition of dagger biproducts. For a refresher on biproducts

and zero objects, we refer the reader to [15, Chap 2]. So for category X that has finite biproducts,

we denote the biproduct as ⊕, the projections as π j : A1 ⊕ . . .⊕An → A j, the injections as ι j : A j →
A1 ⊕ . . .⊕An, the zero object as 0, the sum of maps as f +g, and lastly the zero maps as 0.

Definition 4.1 [15, Def 2.39] A dagger category (X,†) has finite †-biproducts if X has finite biproducts

such that the adjoints of the projections are the injections, that is, π
†
j = ι j.

Using dagger biproducts, we may now introduce generalized SVD:

Definition 4.2 In a dagger category (X,†) with finite †-biproducts, a generalized singular value de-

composition (GSVD) of a map f : A → B is a triple of maps (u : A → X ⊕Z,d : X → Y,v : Y ⊕W → B)
such that u and v are unitary and d is an isomorphism, and such that f = u(d ⊕0)v.

Lemma 4.3 In a dagger category (X,†) with finite †-biproducts, if for a map f : A → B, we have that

(u1 : A → X1 ⊕Z1,d : X1 → Y1,v1 : Y1 ⊕W1 → B) and (u2 : A → X2 ⊕Z2,d : X2 → Y2,v2 : Y2 ⊕W2 → B)
are both GSVDs of f , then there exists unique unitary maps x : X1 → X2, y : Y1 → Y2, z : Z1 → Z2, and

w : W1 →W2 such that u1(x⊕ z) = u2, d1y = xd2, and v1 = (y⊕w)v2.

PROOF: Define x, y, z, and w as the composites x := ι1u
†
1u2π1, y := ι1v1v

†
2π1, z := ι2u

†
1u2π2, and lastly

w := ι2v1v
†
2π2. By straightforward diagram chasing, one can check all the necessary identities. 2

We will explain below why this recaptures precisely SVD for complex matrices. We first observe

that every GSVD induces a GCSVD. Therefore by applying the results of the previous section, having a

GSVD implies that we have a M-P inverse:

Proposition 4.4 In a dagger category (X,†) with †-biproducts, suppose that a map f : A → B has a

GSVD (u : A → X ⊕ Z,d : X → Y,v : Y ⊕W → B). Then (uπ1 : A → X ,d : X → Y,vι1 : Y → B) is a

GCSVD of f , and therefore f is M-P split where f ◦ := v†(d-1 ⊕0)u†.



182 Moore-Penrose Dagger Categories

PROOF: A unitary composed with a (co)isometry is always a (co)isometry. So uπ1 is a coisometry and

ι1v is an isometry. Next, note that the †-biproduct structure gives us that a⊕b = π1aι1+π2aι2. So in our

case, we have that d⊕0 = π1dι1. Therefore, we have that f = uπ1dι1v. So we conclude that (uπ1,d, ι1v)
is a GCSVD of f . Applying Proposition 3.9 we get that f ◦ := v†π1d−1ι1u†, which can alternatively be

written as f ◦ := v†(d-1 ⊕0)u†. 2

Let us explain how GSVD does indeed generalize how SVD is used to compute M-P inverses for

matrices. As explained in [15, Sec 2.2.4], in a dagger category with finite dagger biproducts, a map

F : A1 ⊕ . . .⊕An → B1 ⊕ . . .⊕Bm is uniquely determined by a family of maps fi, j : Ai → B j. Therefore

F can be represented as a n×m matrix where the term in the i-th row and j-th column is fi, j. So if f has

a GSVD (u,d,v), we may expand d ⊕0 as a 2×2 matrix, and therefore write f and f ◦ as:

f = u

[

d 0

0 0

]

v f ◦ = v†

[

d-1 0

0 0

]

u†

which recaptures precisely how M-P inverses were constructed using SVD in Example 2.9. We now wish

to go in the other direction, that is, going from a M-P inverse to a GSVD. To do so, we will need to use

dagger kernels. For a refresher on ordinary kernels, we refer the reader to [15, Sec 2.4.2].

Definition 4.5 [12, Def 2.1] In a dagger category (X,†) with a zero object, a map f : A → B has a

†-kernel if f has a kernel k : ker( f )→ A such that k is an isometry. A dagger kernel category is a dagger

category with a zero object such that every map has a dagger kernel.

In [24], Puystjens and Robinson describe many necessary and sufficient conditions for when a map

that has a kernel has a M-P inverse in a dagger category which is enriched over Abelian groups. However,

dagger kernels are not discussed in [24]. Therefore, one could specialize certain results in [24] for dagger

kernels instead. In this paper, we will show that having a M-P inverse and a dagger kernel is equivalent

to having a GSVD. Also note that, unlike in [24], we do not assume that we are working in a setting with

negatives (i.e. additive inverses). Because of this, the statement does require a modest extra compatibility

condition between the M-P inverse and the dagger kernel.

Proposition 4.6 In a dagger category (X,†) with †-biproducts, a map f has a GSVD if and only if

f is M-P split and f has a †-kernel k : ker( f ) → A and f † has a †-kernel c : ker( f †) → B such that

f f ◦+ k†k = 1A and f ◦ f + c†c = 1B.

PROOF: Suppose that f : A → B has a GSVD (u : A → X ⊕Z,d : X →Y,v : Y ⊕W → B). We have already

explained why f is M-P split in the above lemma. Using the †-biproduct identity that ιiπ j = 0 if i 6= j

and ι jπ j = 1, it is straightforward to check that ι2u† : Z → A is a †-kernel of f and that ι2v : W → B is

a †-kernel of f †. For the extra identities, we first note that f f ◦ = u(1X ⊕ 0)u† and f ◦ f = v†(1Y ⊕ 0)v,

which we can alternatively write as f f ◦ = uπ1ι1u† and f ◦ f = v†π1ι1v. Then using the other †-biproduct

identity that π1ι1 +π2ι2 = 1, it follows that f f ◦+ k†k = 1A and f ◦ f + c†c = 1B as desired.

Conversely, suppose that f is M-P split, and has a †-kernel k : ker( f ) → A and f † has a †-kernel

c : ker( f †) → B such that the two equalities f f ◦ + k†k = 1A and f ◦ f + c†c = 1B also hold. Then by

Prop 3.9, f also has a GCSVD (r : A → X ,d : X → Y,s : Y → B), so, in particular, f = rds and d is an

isomorphism. Then, using matrix notation, define u : A→X⊕ker( f ) and v :Y ⊕ker( f †)→B respectively

as u :=
[

r k†
]

and v :=

[

s

c

]

. We first compute that:

u(d ⊕0)v =
[

r k†
]

[

d 0

0 0

][

s

c

]

=
[

rd 0
]

[

s

c

]

= rds = f
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So f = u(d⊕0)v as desired. We must also show that u and v are unitary. To show that u is unitary, recall

that rr† = f ◦ f and also that since krds = k f = 0, it follows that kr = 0. Therefore we compute:

uu† =
[

r k†
][

r k†
]†

=
[

r k†
]

[

r†

k

]

= rr† + k†k = f f ◦+ k†k = 1A

u†u =

[

r†

k

]

[

r k†
]

=

[

r†r r†k†

kr kk†

]

=

[

1A 0

0 1ker( f )

]

= 1X⊕ker( f )

So u is unitary. Similarly, we can show that v is unitary. So we conclude that (u,d,v) is a GSVD of f . 2

Corollary 4.7 In a dagger category (X,†) with finite †-biproducts and negatives, a map f has a GSVD

if and only if f is M-P split and both f and f † have †-kernels.

PROOF: We need only show that f f ◦+ k†k = 1A and f ◦ f + c†c = 1B. First note that (1A − f f ◦) f = 0

and (1B− f ◦ f ) f † = 0 (the latter of which is by Lemma 2.5.(viii)). So by universal property of the kernel,

there exist unique maps z1 and z2 such that z1k = 1A− f f ◦ and z2c = 1B− f ◦ f . By post-composing by k†

and c† respectively, and also by using that f ◦k† = 0 (which follows from Lemma 2.5.(vii)) and f c† = 0,

we then obtain that z1 = k† and z2 = c†. Therefore, k†k = 1A − f f ◦ and c†c = 1B − f ◦ f , which in turn

implies the desired equalities. 2

Therefore, in a setting with negatives and all dagger kernels, we may state that:

Corollary 4.8 In a dagger kernel category (X,†) with finite †-biproducts and negatives, a map f has a

GSVD if and only if f is M-P split.

Finally, assuming also that we are in a dagger idempotent complete setting, we obtain a precise

characterization of M-P invertible maps in terms of a generalized version of SVD:

Theorem 4.9 In a dagger kernel category (X,†) that is †-idempotent complete and which has finite

†-biproducts and negatives, a map f is M-P invertible if and only if f has a GSVD.

5 Polar Decomposition

It is straightforward to give a generalized version of polar decomposition (PD) in a dagger category,

it is the statement that a map factorizes as a partial isometry followed by a positive map. However,

the statement of PD for bounded linear maps between Hilbert spaces is stronger: it also involves a

requirement on the kernel (or range) of the partial isometry. In [16, Thm 8.3], Higham nicely explains

how M-P inverses can play a role in the PD of complex matrices and can be used to replace that extra

requirement. So recall that for an n×m complex matrix, A, there exists a unique partial isometry U and

unique a positive semi-definite Hermitian matrix H such that A =UH and range(U†) = range(H). The

matrix H is given by the square root of the matrix A†A, so H = (A†A)
1
2 , while the matrix U is constructed

using the M-P inverse of H , so U = AH◦. Furthermore, the condition range(U∗) = range(H) can be

equivalently described in terms of M-P inverses as the equality U†U = HH◦ (where note that U◦ = U†

since U is a partial isometry). Therefore PD of complex matrices can be completely expressed in terms of

M-P inverses. As such in this section, we introduce the notion of a Moore-Penrose polar decomposition

of maps in an arbitrary dagger category, which recaptures precisely PD for complex matrices.

Definition 5.1 In a dagger category (X,†), for a map f : A → B,



184 Moore-Penrose Dagger Categories

(i) A generalized polar decomposition (GPD) of f is a pair of maps (u : A → B,h : B → B) where u is

a partial isometry and h is a positive map such that f = uh;

(ii) A Moore-Penrose polar decomposition (M-P PD) of f is a GPD (u : A → B,h : B → B) of f such

that h is M-P invertible and u†u = hh◦.

We will show that for f to have a M-P PD is equivalent to requiring that f be M-P invertible and f † f

has a square-root. The following definition is a Moore-Penrose version of Selinger’s definition [28, Def

5.13].

Definition 5.2 In a dagger category (X,†), a M-P invertible positive map p : A → A has a Moore-

Penrose square root (M-P square root) if there exists a M-P invertible positive map
√

p : A → A such

that
√

p
√

p = p. A dagger category is said to have (unique) M-P square roots if all M-P invertible

positive maps have a (unique) M-P square root.

Proposition 5.3 In a dagger category (X,†), a map f has a M-P PD if and only if f is M-P invertible

and f † f has a M-P square root.

PROOF: Suppose that (u : A→B,h : B→B) is a M-P PD of a map f : A→B. Since u is a partial isometry,

u is M-P invertible where u◦ = u†. We also have that since h is positive, it is self-dual h† = h, and by

Lemma 2.5.(ix) we have that h◦h = hh◦. Therefore by the assumption that u†u = hh◦, it easily follows

that u†uhh◦ = hh◦u†u. Therefore by Lemma 2.8.(ii), we have that f = uh is M-P invertible whose M-P

inverse is f ◦ = (uh)◦ = h◦u†. By Lemma 2.5.(iv), f † f is a M-P invertible positive map. So it remains to

compute that:

hh = hhh◦h = hu†uh = (uh)†uh = f † f

So hh = f † f , and therefore h is a M-P square root of f † f .

Conversely, suppose that f is M-P invertible and f † f has a M-P square root
√

f † f . So define

h : B→ B as h :=
√

f † f , and define u : A→B as the composite u := f h◦. We then compute the following:

uu†u = f h◦( f h◦)† f h◦ = f h◦h◦ f † f h◦ = f h◦h◦hhh◦ = f h◦hh◦hh◦ = f h◦hh◦ = f h◦ = u

u†u = ( f h◦)† f h◦ = h◦ f † f h◦ = h◦hhh◦ = hh◦hh◦ = hh◦

uh = f h◦h = f h◦hh◦h = f h◦h◦hh = f (hh)◦hh = f ( f † f )◦ f † f = f f ◦ f = f

So u is an isometry, u†u = hh◦, and f = uh. So we conclude that (u,h) is a M-P PD of f . 2

Corollary 5.4 In a dagger category (X,†) with M-P square roots, a map f is M-P invertible if and only

if f has a M-P PD.

Unlike PD which is always unique, M-P PD is not necessarily unique in an arbitrary dagger category.

The reason PD is unique is due to the fact that positive semi-definite Hermitian matrices have unique

square roots. Therefore, if we work in a dagger category where the positive maps do have unique square

roots, then M-P PD is also unique as desired.

Lemma 5.5 In a dagger category (X,†) with unique M-P square roots, M-P PDs are unique.

PROOF: Suppose that (u : A → B,h : B → B) and (v : A → B,k : B → B) are both M-P PDs of a map

f : A → B. By Proposition 5.3, we have that u = f h◦ and v = f k◦, and that h and k are positive maps

such that hh = f † f = kk. By the uniqueness of M-P square roots, this implies that h = k. In turn, this

also implies that u = v. So we conclude that a M-P PD is unique. 2
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6 Conclusion

In this paper, we revisited and added to the story of Moore-Penrose inverses in a dagger category. This

work was motivated in part by wishing to understand how partial isomorphisms (in the restriction cate-

gories sense) generalize to dagger categories: Moore-Penrose inverses seem to provide the appropriate

generalization. However, their theory is more sophisticated and could be better understood. In particular,

although a start has been made here, there is more to be understood about their compositional behaviour

and their relation to dagger idempotents. Moore-Penrose inverses should also be considered in relation to

other dagger structures, such as dagger limits [14], dagger monads [13], and dagger compact closedness

[27]. One should also find other interesting examples of Moore-Penrose dagger categories. We con-

jecture that certain fragments of the ZX-calculus [7] and possibly PROPs with weights on strings will

be Moore-Penrose dagger categories. Finally, as the Moore-Penrose inverse has many practical applica-

tions, it would also be worthwhile generalizing these applications to Moore-Penrose dagger categories.

This may in turn lead to further applications for Moore-Penrose inverses.
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Ambiguities in natural language give rise to probability distributions over interpretations. The distri-
butions are often over multiple ambiguous words at a time; a multiplicity which makes them a suitable
topic for sheaf-theoretic models of quantum contextuality. Previous research showed that different quan-
titative measures of contextuality correlate well with Psycholinguistic research on lexical ambiguities. In
this work, we focus on coreference ambiguities and investigate the Winograd Schema Challenge (WSC),
a test proposed by Levesque in 2011 to evaluate the intelligence of machines. The WSC consists of
a collection of multiple-choice questions that require disambiguating pronouns in sentences structured
according to the Winograd schema, in a way that makes it difficult for machines to determine the correct
referents but remains intuitive for human comprehension. In this study, we propose an approach that
analogously models the Winograd schema as an experiment in quantum physics. However, we argue
that the original Winograd Schema is inherently too simplistic to facilitate contextuality. We introduce
a novel mechanism for generalising the schema, rendering it analogous to a Bell-CHSH measurement
scenario. We report an instance of this generalised schema, complemented by the human judgements
we gathered via a crowdsourcing platform. The resulting model violates the Bell-CHSH inequality by
0.192, thus exhibiting contextuality in a coreference resolution setting.

1 Introduction

The Winograd Schema Challenge (WSC) originated from the ideas of the American computer scientist
Terry Winograd in the 1970s. Winograd was interested in situations where machine understanding could
fall behind human understanding. He constructed hypothetical experiments where humans and machines
would read a given description, and then answer some questions about it. The descriptions would pro-
vide humans with enough context and thus they could answer the questions correctly. However, machine
understanding would fall short, as machines did not learn from the context in the same way as humans
did. An example description is the sentence “The city councilmen refused the demonstrators a permit
because they feared violence.”. The question following it is “Who feared violence?” and the correct
answer is “The city councilmen”. If we change the word “feared” to “advocated”, the question will have
the opposite answer, namely “the demonstrators”. Winograd’s examples were picked up by the Canadian
AI scientist Hector Levesque in 2011. He created a suite of descriptions and questions, proposing them
as a test of machine intelligence - an alternative to the Turing Test [26]. Later, the AI company Nuance
put forwards a cash prize of USD 25,000 for any AI that could solve the challenge with an accuracy close
to humans, 92-96%. No AI system managed to achieve the target, and as a result, the prize was with-
drawn in 2018. It was not until the 2020s that large pre-trained language models, employing transformer
architectures, eventually reached a performance level comparable to human accuracy [24]. Despite these
advancements, the WSC continues to present significant challenges for AI systems lacking extensive data
resources and computational power.

http://dx.doi.org/10.4204/EPTCS.384.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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In previous work, we showed how natural language notions of context can be modelled by the math-
ematics of quantum contextuality [36, 37, 34]. In particular, we modelled anaphoric context in [28].
Inspired by the reliance of the WSC on anaphoric context, we decided to explore whether quantum
contextuality could potentially provide a solution to the challenge.

Our initial examination found that the WSC in its original form lacked the complexity required to be
of interest from a quantum contextuality standpoint. Upon modelling the WSC within the sheaf theoretic
framework, it became evident that the scenario was too simplistic to exhibit contextuality, as the models
derived from it were deterministic.

This motivated us to extend the schema and allow it to be non-deterministic such that it can, in
principle, host contextuality. This was achieved by introducing additional linguistic context, namely,
(1) two special words rather than one and (2) two ambiguous pronouns instead of one. Consequently,
we obtained more observables and more measurement contexts, leading to a scenario that resembles the
Bell-CHSH scenario.

The above outlines the first contribution of this paper. Our second contribution lies in the instantia-
tion of our generalized Winograd Schema and the collection of human judgments via a crowdsourcing
platform. This allowed us to calculate the violation of the Bell-CHSH inequality and thereby establish
the contextuality of our model, which was constructed based on human judgments. We also modelled
the data using the Contextuality-by-Default (CbD) framework of contextuality and calculated a corre-
sponding CbD degree of contextuality. It was found that our probabilistic model exhibited contextuality
in both the Bell-CHSH and CbD models.

2 Contextuality

The origins of contextuality research can be traced back to 1935, with the work of Einstein, Podolsky, and
Rosen (EPR) [15]. In their work, they posited that the quantum mechanical description of physics was
incomplete when two spatially separated parties were permitted to make measurements on an entangled
system. A way of formalising such theories is in terms of hidden variables, which, if known, might fully
determine the outcome that would result from any given measurement. Bell’s theorem [7, 6] in the 1960s
showed that no hidden-variable theory exists for quantum mechanics unless the measurement outcomes
were allowed to be dependent on which other measurements are performed simultaneously. Around the
same time, Kochen and Specker [23] independently demonstrated that there exists a set of measurements
in a 3-dimensional Hilbert space such that a non-contextual hidden-variable theory cannot exist, regard-
less of the state of the system. These two results, collectively known as the Bell-Kochen-Specker theo-
rem, showed that a hidden-variable theory for quantum mechanics must be contextual, providing some
clarity to the debate on a more fundamental theory conforming to certain classical intuitions for quantum
mechanics. The first attempt at experimentally verifying Bell’s inequality was performed by Aspect et
al. [5], with the most recent ones closing all known loopholes in the earlier experiments [18, 20, 32]. Thus
it has been established that quantum physics is vastly different from classical physics – a description of
quantum physics that agrees with our classical intuition must be contextual.

Other than the philosophical implications, contextuality has been shown to possess computational
power through non-classical correlations. Anders and Browne first showed that certain measurements on
GHZ states can be used to lift a linear classical computation into a universal classical computation [4];
Raussendorf later showed that the probability of success of such computation is bounded by the degree
of contextuality [30], as measured by the contextual fraction [2, 1]. Subsequent work by Howard et al.
revealed that contextuality is an essential ingredient for magic state distillation, a process that yields
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specific quantum states known as magic states [21]. The current most promising fault-tolerant quan-
tum computing scheme, the surface code [22], only permits fault-tolerant computation with a subset of
quantum operations which can be efficiently simulated by classical computers. Via state injection, these
magic states can be used with surface code to allow for fully fault-tolerant universal quantum computa-
tion. Thus, one might argue that contextuality carries an intrinsic computational power that is absent in
non-contextual systems.

A variety of frameworks for modelling contextuality have been developed. These including the
sheaf-theoretic framework [2, 3, 1], the Contextuality-by-Default (CbD) framework [11, 14, 12], the
graph-theoretic framework [8], a framework based on simplicial sets [29]. Generally speaking, these
frameworks enable the formalisation of the notion of measurement through the use of various mathemat-
ical structures. Bell’s inequalities, or in general inequalities that witness contextuality, can be derived
systematically within these frameworks. Although we will mainly use the terminology from the sheaf-
theoretic framework to describe our examples, our results are framework-agonistic.

2.1 Sheaf Theoretic Framework

Here, we provide a concise overview of the sheaf-theoretic framework of contextuality proposed by
Abramsky and Brandenburger [2]

A measurement scenario is defined as a triplet 〈X ,M ,O〉, where X refers to a collection of observ-
ables, O is the possible outcomes, and M denotes an abstract simplicial complex composed of subsets
from X .

Every element in X is an observable of the system under consideration. Upon measurement, each
observable yields one of the outcomes contained in O. The characterization of M as an abstract simpli-
cial complex implies a particular structural feature: if a subset C belongs to M , then every subset nested
within C must also be an element of M .

A necessity of contextuality is that one cannot measure all the observables in X simultaneously,
at least not without altering the state of the system. Thus, every framework for contextuality must
provide a description of the compatibility between observables. Within the sheaf-theoretic framework,
each simplex in the simplicial complex M constitutes a subset of observables in X that are measurable
simultaneously, i.e. they are mutually compatible. A measurement context, or simply context, is defined
as a maximal simplex in M , which is not a proper subset of any other simplex in M .

For instance, the measurement scenario in the Bell-CHSH settings is specified by X = {a1,a2,b1,b2};
M =

{
{a1,b1},{a1,b2},{a2,b1},{a2,b2}

}
; O = {0,1}. The simplicial complex M can be geometri-

cally realized as the boundary of a square, where each vertex corresponds to an observable and each edge
represents a context (see Figure 1(a)). Two parties are involved in this scenario: Alice is allowed to mea-
sure either a1 or a2, and Bob is allowed to measure either b1 or b2. The measurements are dichotomic,
i.e. the outcomes are either 0 or 1.

Every subset of observables which is a context in M can be measured jointly. Thus we can define
a (local) joint probability distribution over the observables in the context. Such a joint probability dis-
tribution can either be estimated by performing the measurements in an experiment, or be calculated
according to a theory of the system under consideration. A collection of all such joint probability dis-
tributions is called an empirical model, or simply model, of the system. For instance, using a set of
appropriately chosen measurement bases, the Bell state |Ψ〉=

(
|00〉+ |11〉

)
/
√

2 produces the empirical
model depicted in Figure 1(b). This state exhibits the highest violation of the Bell-CHSH inequality
among all quantum states.

An empirical model is said to be signalling if the marginalised distribution of a set of observables
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(a) •a1

•
b1

• a2

•b2

(b)

(0,0) (0,1) (1,0) (1,1)
(a1,b1) 1/2 0 0 1/2
(a1,b2) 3/8 1/8 1/8 3/8
(a2,b1) 3/8 1/8 1/8 3/8
(a2,b2) 1/8 3/8 3/8 1/8

Figure 1: (a) The simplicial complex M in the Bell-CHSH scenario. Every vertex represents an observ-
able and every edge represents a context. Alice chooses between a1 and a2; Bob chooses between b1 and
b2. The absence of edges between a1 and a2, and between b1 and b2, indicates their incompatibility. (b)
An empirical model of the Bell-CHSH scenario. Each row represents a joint probability distribution over
the observables in the context. For example, the bottom-right entry 1/8 is the probability of observing
a2 = 1 and b2 = 1 when measuring the observables in the context (a2,b2).

differs from one context to another. In contrast, non-signalling implies that the observed probabilities
remain invariant under different contexts, thereby preventing the transmission of information through the
choice of context.

A prevalent misconception is a belief that signalling is contextuality, often based on the incorrect
reasoning that the probabilities in a signalling model are generally context-dependent, leading to the
conclusion that the model is contextual. However, it is essential to recognize a fundamental distinction
between the two concepts: signalling pertains to the observed probabilities, while contextuality relates
to the underlying hidden-variable theories of the model.

The qualitative criterion for contextuality of a model in the sheaf-theoretic framework is based on
Fine’s theorem [17], which states that a model is contextual if and only if there exists a global probability
distribution that is compatible with every local probability distribution in the model.

The quantitative degree of contextuality of a model is measured by the contextual fraction CF [1].
Given an empirical model e, the contextual fraction CF(e) is defined as the minimum λ such that e admits
a convex decomposition1:

e = (1−λ )eNC +λeC, (1)

where eNC is a non-contextual (and non-signalling) empirical model and eC is an empirical model that
may be contextual.

Suppose a given model e is non-contextual, then λ can be set to zero by choosing eNC = e. Otherwise,
λ must be taken to be greater than zero to make the decomposition valid. Therefore, for non-signalling
models, the sheaf-theoretic criterion of contextuality is

CF(e)> 0. (2)

The calculation of CF can be reduced to solving for a linear program, for which numerical solvers are
readily available. The CF of a model has a nice interpretation as the maximum amount of normalised
violation of all possible general Bell’s inequalities [1].

In the case of signalling models, the above decomposition cannot hold because eNC and eC are, by
definition, non-signalling. We could consider allowing eC to be signalling. However, this adjustment
would lead to the misleading conclusion that all signalling models are contextual, assuming we maintain
our interpretation of CF as a measure of contextuality for these models.

1Here, we represent the empirical models as empirical tables. Addition and scalar multiplication are then interpreted as
standard matrix operations, where the empirical tables are treated as matrices.
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2.2 Contextuality by Default

In the setting of Contextuality-by-Default (CbD), there are two important notions: contents, denoted by
qi, which are measurements, or more generally, questions about the system; and contexts, denoted by c j,
which represent the conditions under which the questions are asked, e.g. their ordering. Every qi in a
c j gives rise to a random variable R j

i taking values in {±1}, and representing possible answers and their
probabilities. All random variables in a given context are jointly distributed.

A well-studied class of CbD systems are the cyclic systems [11, 12, 13], where each context has
exactly 2 contents and every content is in exactly 2 contexts. The rank of a cyclic system is the number
of contents, or equivalently, the number of contexts.

A cyclic system of rank n is contextual if and only if CNT1 is positive, where CNT1 is defined as:

CNT1 := sodd
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i j
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)
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are well-defined for all j. Quantities sodd : Rn→ R and ∆ are defined

as follows:
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where p(σ) = ∏
n
i=1 σi (p is the parity function of σ ). The quantity ∆ measures the degree of signalling

in the system. Thus, a non-signalling system has ∆ = 0.
For a rank 4 cyclic system, i.e. the Bell-CHSH scenario, the above inequality reduces to the maximum

violation of the Bell-CHSH inequalities over the choices of the four signs:
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3
〉
±
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R3

3 R3
0
〉
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where the number of minus signs has to be taken odd. Therefore, the CbD criterion of contextuality
coincides with the Bell-CHSH inequalities for the Bell-CHSH scenario.

2.3 Ambiguous words as observables

Ambiguities in natural language have posed a challenge to natural language processing. Lexical ambi-
guity, where a word has multiple meanings, is one of the most common types of ambiguity in natural
language. For instance, the word produce has two possible meanings: to give birth and to make some-
thing.

Without any context, it is not possible to determine which of the two meanings is intended. Another
type of ambiguity is coreference ambiguity, where a word can potentially refer to different entities. For
instance, the pronoun it can refer to the dog or the cat in the sentence The dog chased the cat. It barked..
In this paper, we focus on the latter type of ambiguity.

A method to formalise the notion of contextuality in natural language is by viewing an ambiguous
word as an observable, with its interpretations as possible outcomes. For instance, the word produce has
(at least) two possible interpretations: to give birth and to make something. Measuring the word produce
amounts to selecting one of these interpretations by a reader.

We can assign probabilities to these interpretations based on the frequency of the interpretations in
an experiment where a group of readers is asked to interpret the word produce, or a single reader is asked
to assign a probability to each of the interpretations. The first approach is more costly as it requires a
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large number of readers to be involved in the experiment. However, the latter approach is better suited to
machine learning models since they can be trained to assign probabilities to different interpretations.

This way of treating ambiguous words as observables was first proposed by Wang et al. [36, 37]. The
authors considered subject-verb and verb-object phrases where each word carries at least two possible
interpretations. Measurement contexts were constructed by selecting different pairs of nouns and verbs,
in a way similar to how Alice and Bob select their measurements in the Bell-CHSH scenario. The
probabilities in the results were estimated from a group of crowd workers who were asked to assign a
score to the different interpretations.

3 Winograd Schema Challenge

Commonsense reasoning, the inherent human capacity to logically comprehend the world around us,
has long been a focal point in the field of artificial intelligence, with the aim to cultivate this ability in
machines.

The Winograd Schema Challenge (WSC) emerged as a measure of this commonsense reasoning
capability. The challenge was inspired by Terry Winograd’s seminal paper [38], wherein he contended
that syntax alone falls short in the interpretation of natural language, necessitating commonsense or world
knowledge as well. The challenge presents a collection of sentences, each with an ambiguous pronoun
whose meaning can be clarified via the context. A machine is deemed to have passed the test if it can
disambiguate the pronoun with an accuracy on par with human performance.

The classic example of a Winograd schema, originally constructed by Winograd himself, is the fol-
lowing pair of sentences:

(1) a. The city councilmen refused the demonstrators a permit because they feared violence.
b. The city councilmen refused the demonstrators a permit because they advocated violence.

Note that the two sentences differ only in the words feared and advocated. In both sentences, there is
an ambiguous pronoun they which can either refer to the city councilmen or the demonstrators. In the
first sentence, it can be inferred through commonsense reasoning that the pronoun they refers to the city
councilmen, as it is within our common sense that city councilmen are the ones who tend to prevent
violence in demonstrations. In the second sentence, the pronoun they refers to the demonstrators, as it
is within our common sense (stereotype) that demonstrators tend to advocate violence and that doing so
would lead to the refusal of a permit for a demonstration.

Another classic example of a Winograd schema is the following pair of sentences:

(2) The trophy doesn’t fit into the suitcase because it’s too [small / large].

Here we adopt a compact notation in which the pair of square brackets encloses the two possible word
choices, each leading to a different sentence. This notation will be employed throughout the paper.

In a WSC, the participant is asked to identify the correct interpretation of the ambiguous pronoun.
Success in the test is defined by the participant’s accuracy equalling or approximating human perfor-
mance. The evaluation of responses to a WSC question is straightforward, either the correct referent of
the ambiguous pronoun is identified or not.

In contrast, the Turing Test has been criticised for being too difficult to evaluate. Originated as the
imitation game by Turing [33], the test involves a human judge interrogating a machine via a textual
interface. The conversation between the judge and the machine is unrestricted. If the judge or a panel of
judges cannot distinguish the machine from a human based on the conversation, the machine is deemed
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to have passed the test. However, this unrestricted nature of the Turing Test opens doors to potential
deception. In fact, for a machine to pass the test, it must deceive as machines lack physical bodies. If
questioned about its physical attributes, like height or weight, the machine must lie to successfully pose
as a human. Due to this advantage of the ease of evaluation over the Turing Test, the WSC was proposed
as a replacement for the Turing Test.

Unlike the Turing Test, the WSC is a structured binary-choice test. The major issue with the WSC is
that it is over-constrained - it is unexpectedly difficult to construct examples of it, due to the numerous
requirements that must be satisfied. A valid Winograd schema must satisfy the following requirements:

1. A Winograd Schema comprises a pair of sentences that differ slightly from each other. The first
sentence includes a special word which, when replaced by an alternate word, yields the second
sentence. For instance, in the trophy-suitcase example, small is the special word, and large is its
alternate.

2. The sentences should contain two noun phrases. In the trophy-suitcase example, the trophy and
the suitcase serve as the two noun phrases.

3. A pronoun, which agrees with the two noun phrases in number and gender, must be present in the
sentences. For example, in the trophy-suitcase scenario, the pronoun it aligns with both the trophy
and the suitcase regarding number and gender.

4. The pronoun’s referent should be easily identifiable from a natural reading of the sentence, and the
correct referent should differ between the two sentences.

5. Each sentence in the pair should be fluid and natural to read, to the extent that they could feasibly
appear in regular text sources like news articles or Wikipedia pages.

The outlined requirements ensure the preservation of both linguistic structure and the test’s integrity:

1. The first requirement ensures grammatical consistency across the pair of sentences.

2. The fourth requirement necessitates a change in the correct referent of the pronoun when the
special word is replaced with the alternate. This stipulation indicates that grammatical structure
alone does not determine the correct pronoun referent.

3. The fifth requirement safeguards the authenticity of the language used in the test, ensuring it re-
mains aligned with naturally occurring language.

Crafting valid examples of the Winograd schema is a complex task due to the set restrictions and require-
ments. The challenge of creating such schemas is evidenced by the limited number of examples in the
original Winograd Schema Challenge set, which includes only 285 instances2.

In 2018, the first system achieved a better-than-chance accuracy of 57.1% [16] on the original 285
examples of the WSC. In 2019, a fine-tuned RoBERTa [27] model achieved a human-like accuracy of
90.1% [31]. The WSC has suffered from the same problem that plagued the Turing Test – there are
weaknesses in the test that can be exploited without having to demonstrate the desired human-level
intelligence. Simply put, the WSC has been defeated [24].

It is even more so for the WSC precisely because of its ease of evaluation. Proposals to increase the
difficulty of the WSC, such as requiring the test-taker to select a correct explanation for their answer from
a list of options [39, 19], emerged as potential solutions. However, these suggestions further complicate
the already challenging task of question set construction. An alternative could involve requiring free-
form explanations from the test-taker, though this would likely introduce additional ambiguity and make
the evaluation process more difficult.

2Available at https://cs.nyu.edu/davise/papers/WinogradSchemas/WS.html.

https://cs.nyu.edu/davise/papers/WinogradSchemas/WS.html
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4 Generalised Winograd Schema

In this section, we present our approach for the generalisation of the Winograd Schema, enabling the
potential observation of contextuality. We will first discuss why the original Winograd Schema is in-
sufficiently complex to exhibit contextuality, and then propose a generalised Winograd Schema that is
sophisticated enough to host contextuality.

4.1 Modelling Winograd Schemas as measurement scenarios

To study the contextuality in the Winograd Schema, we model it with a measurement scenario in the
sheaf-theoretic framework. This way of treating ambiguity in language is akin to the way ambiguous
phrases are treated in [36], where an ambiguous word is considered an observable in a measurement
scenario.

However, the same ambiguous word, i.e. the ambiguous pronoun, is shared across the twin pair of
sentences in a Winograd Schema. Thus, if we follow the approach of “words as observables” strictly,
then we will end up with a trivial measurement scenario, where there is only one observable, i.e. the
ambiguous pronoun. Moreover, this naive approach deviates from the spirit of the Winograd Schema,
which is to disambiguate a pronoun by considering the linguistic context. Instead, We argue that there
should be exactly two contexts in the measurement scenario, one for each sentence in the twin pair.
Recall that in the original Winograd Schema, the twin pair of sentences are identical except for the
special word and the alternate word. In a rough sense, the special word and the alternate word provide
the linguistical context for disambiguating the pronoun. This way of defining the measurement contexts
provides a concrete link between context in language and contextuality in quantum mechanics.

Following from the above discussion, we define an observable as a tuple: (pronoun, special word)
or (pronoun, alternate word), to distinguish between the two pronouns in different linguistical contexts.
The possible outcomes of each of the two observables are the candidate referents of the pronoun.

Definition 1 (Winograd Schema scenario) Given a Winograd Schema with two noun phrases A and B;
an ambiguous pronoun p which refers to either A or B; a special word (s) and an alternate word (a), the
corresponding measurement scenario is defined by the data:

• observables X = {(p,s),(p,a)};
• contexts M =

{
{(p,s)},{(p,a)}

}
;

• outcomes O = {A,B}.
We call such a measurement scenario a Winograd Schema scenario, or a WS scenario in short.

With the councilmen-demonstrators example, the measurement scenario would be given by the data:

• observables X = {(they, feared), (they, advocated)};
• contexts M =

{
{(they, feared)}, {(they, advocated)}

}
;

• outcomes O = {city councilmen, demonstrators}.
It becomes apparent that any Winograd Schema scenario is too simplistic to accommodate any contex-
tual model due to the absence of overlapping contexts. One can always construct a compatible global
distribution by taking the product of the local distributions.
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4.2 Generalising the Winograd Schema scenario

Before proceeding to the generalisation of Winograd Schema, we point out an interpretation of the WS
scenario as an analogy to an experiment in quantum physics. Consider an imaginary experimenter, Alice,
who decides whether to measure the pronoun with the special word, or with the alternate word. That is,
Alice chooses between the two observables: (p,s) and (p,a). This is exactly analogous to Alice choosing
between two projection axes in an experiment measuring a spin-1/2 particle.

A natural and obvious way to generalise the WS scenario would be to add one more experimenter,
Bob. This results in the Bell-CHSH scenario, which is well-known to be able to host contextual models.
That amounts to introducing one more pronoun, one more special word and its alternate word, to the
original Winograd Schema. We use the subscript 1 to denote objects relating to the first pronoun and the
subscript 2 to denote objects relating to the second pronoun.

Here we give a set of requirements for the generalised Winograd Schema, in the style of the original
WSC:

1. A generalised schema consists of four slightly differing sentences. The first sentence contains
two special words s1 and s2. Similar to the original Winograd Schema, s1 can be replaced by an
alternate word a1 and s2 can be replaced by an a2. The possibility of replacing special words with
alternate words creates the rest of the four sentences.

2. There are a pair of noun phrases.

3. There are two pronouns in the sentences. The first pronoun refers to one of the noun phrases in the
first pair of noun phrases. The second pronoun refers to either one noun phrase in the second pair
of noun phrases.

4. All four sentences should be natural to read.

In short, a generalised Winograd Schema is two Winograd Schemas put together in a single discourse.

Definition 2 (Generalised Winograd Schema scenario) Given a Generalised Winograd Schema with
two noun phrases A and B; two ambiguous pronouns p1 and p2 can each refers to either A or B; two
special words (s1) and (s2); two alternate words (a1) and (a2), the corresponding measurement scenario
is defined by the data:

• observables X = {(p1,s1),(p1,a1),(p2,s2),(p2,a2)}
• contexts M =

{
{(p1,s1),(p2,s2)},{(p1,s1),(p2,a2)},{(p1,a1),(p2,s2)},{(p1,a1),(p2,a2)}

}
;

• outcomes O = {A,B}.
Such a measurement scenario is called a Generalised Winograd Schema scenario, or a generalised WS
scenario in short.

The generalised WS scenario is isomorphic, i.e. identical upon relabelling, to the Bell-CHSH scenario
shown in Figure 1. It has long been known that the Bell-CHSH scenario can host contextual models [6, 9].
Thus a carefully designed generalised Winograd Schema would be able to demonstrate contextuality.

Here we provide a straightforward example of a generalized Winograd Schema scenario, built upon
the original trophy-suitcase example:

(3) The trophy doesn’t fit into the suitcase because it1 is too [s1 = small / a1 = large]. Nonetheless,
it2 is [s1 = light / a2 = heavy].

The corresponding generalised WS scenario is given by:
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• observables X = {(it1,small),(it1, large),(it2, light),(it2,heavy)}

• contexts M =

{
{(it1,small),(it2, light)},{(it1,small),(it2,heavy)},
{(it1, large),(it2, light)},{(it1, large),(it2,heavy)}

}
;

• outcomes O = {trophy,suitcase}.
Interestingly, it was in the original set of Winograd Schemas (WSC285) that Davis designed a special
example making use of two pronouns:

(4) Sid explained his theory to Mark but he couldn’t [convince / understand] him.

The author deemed this example a “Winograd schema in the broad sense” since using more than one
pronoun violates the requirements of the original Winograd Schema. Yet, this example is not a proper
generalised Winograd Schema defined in this paper, as it only employs one special word and one alternate
word.

Other than the fact that its scenario is too simple, there is another reason why the original Winograd
Schema is not contextual: the intended referent of the pronoun should be obvious to a human reader.
That means an empirical model constructed with judgement data collected from human subjects on the
original Winograd Schema would be deterministic or nearly deterministic. It is known that deterministic
systems are not contextual [10]. On the other extreme, a completely random model is trivially non-
contextual. Intriguingly, it seems that only a system with a moderate level of intelligence, in between
that of humans and that of complete randomness, would have the possibility of being contextual.

There are two directions to where we could take the generalised Winograd Schema: (1) to continue its
mission to be a test of intelligence or commonsense reasoning; (2) to become a well-structured linguistic
setting under which contextual models could be found.

Recent results from large language models have demonstrated human-like accuracies in solving the
Winograd Schema Challenge. The introduction of one more pronoun might increase the difficulty of the
challenge, possibly stipulating advancements in the field of natural language processing. However, it is
our goal to find bridges between natural language and contextuality. Therefore the second direction will
be the focus of this paper.

4.3 An example of the generalised Winograd Schema

As our goal is to uncover contextual models in natural language, we need to gather judgment data from
human participants to build empirical models for generalized Winograd Schema instances. Crucially,
deterministic systems lack contextuality. Therefore, our generalized Winograd Schema examples should
be inherently ambiguous to human readers, unlike the original Winograd Schema where humans can
easily resolve the pronoun.

Due to the requirement of having two almost identical pairs of naturally-sounding sentences, it is a
difficult task to come up with examples of the original Winograd Schema. The extra requirements we put
forward for the generalised Winograd Schema make it even harder to come up with naturally-sounding
examples. Here we report an example of the generalised Winograd Schema3:

(5) A and B belong to the same [cannibalistic / herbivorous]1 species of animal. On a hot afternoon
in the south Sahara, one of them1 was very hungry. They noticed each other when they were
roaming in the field. After a while, one of them2 is no longer [hungry / alive]2.

3It was pointed out by one of the reviewers that the original version of the example contains several incorrect uses of English.
Here we provide the corrected version of the example.



K. I. Lo, et al. 197

Note that we had to violate the requirement of having a single sentence because it is difficult to come up
with a naturally-sounding sentence that contains every ingredient of the generalised Winograd Schema.
We also decided to use the referring phrase one of them instead of the third-person pronoun it to improve
the naturalness of the example.

We used the alphabetic symbols A and B as the two noun phrases as we wanted to make the two
symmetric. That is, any empirical model of the scenario is invariant to the interchanging of A and B.
It turns out that all symmetric models are non-signalling, at least for cyclic scenarios such as that Bell-
CHSH scenario. Dealing with symmetric models carries two disadvantages: (1) it is more difficult to
assert the contextuality of a signalling model; (2) the sheaf-theoretic criterion of contextuality applies to
non-signalling models only. By considering only symmetric models, we thereby avoid the complications
of dealing with non-signalling models.

4.4 Human judgements on the example

We collected human judgments on this example on the crowd-sourcing platform Amazon Mechanical
Turk in the form of a questionnaire. There were four versions of the questionnaire, each corresponding
to one of the four contexts in the generalised WS scenario. The respondents were asked to read the
example and answer a question about the correct referents, A or B, of the two referring phrases one of
them1 and one of them2. A screenshot of the questionnaire is shown in Figure 2.

Instruction: Please read the following short story which contains some ambiguities, then select the
interpretations you think are the most appropriate.

Story: A and B belong to the same ${word1} species of animals. In a hot afternoon in south Sahara,
one of them was very hungry. They notice each other when they were roaming in the field. In a while,
one of them is no longer ${word2}.

Question: The following are 4 different interpretations of the story. Please select the 2 most
appropriate interpretations.

 

 

A was the very hungry ${word1} animal. A is no longer ${word2}.
A was the very hungry ${word1} animal. B is no longer ${word2}.
B was the very hungry ${word1} animal. A is no longer ${word2}.
B was the very hungry ${word1} animal. B is no longer ${word2}.

Please provide your reasoning here.

(optional) Is there any feedback you would like to share with us?

Submit

Figure 2: A screenshot of the template of the questionnaire. The placement holders ${word1} and
${word2} are instantiated with the two special words or the alternate words of the generalised Winograd
Schema. In this example, ${word1} can be either cannibalistic or herbivorous and ${word2} can be
either hungry or alive. Four versions of the questionnaire were created, each corresponding to one of
the four contexts in the generalised WS scenario. Note that the story contains several incorrect uses of
English. Unfortunately, we did not notice these until a reviewer pointed them out, after data collection.

Since each referring phrase can be interpreted in two ways, there are 4 possible combinations of
interpretations, (A, A), (A, B), (B, A), (B, B), of the two referring phrases. The symmetry between A
and B in the example ensures that the combinations (A, A) and (B, B) are equally plausible and (A, B)
and (B, A) are also equally plausible. Therefore we asked the respondents to pick two out of the four
combinations. This design choice also allows the detection of invalid answers, that is, those that do not
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(a) (A, A) (A, B) (B, A) (B, B)
(canni, hungry) 0.402 0.097 0.097 0.402
(canni, alive) 0.044 0.455 0.455 0.044
(herbi, hungry) 0.345 0.154 0.154 0.345
(herbi, alive) 0.344 0.155 0.155 0.344

(b) (A, A) (A, B) (B, A) (B, B)
. . . 1/2 0 0 1/2
. . . 0 1/2 1/2 0
. . . 1/2 0 0 1/2
. . . 1/2 0 0 1/2

Table 1: (a) The empirical model constructed with the 410 human judgments collected from Amazon
Mechanical Turk. The violation of Bell’s inequality of the model is 0.192 ± 0.176. For brevity, the
special word cannibalistic is shortened to canni and the alternate word herbivorous is shortened to herbi.
The model generally resembled the PR model shown in Table (b) on the right.

respect the symmetry between A and B.
A total of 410 responses were collected on Amazon Mechanical Turk separately on two dates: 20th

Oct 2022 and 23rd Nov 2022. Out of the 410 responses, 110 were to the context (cannibalistic, hungry)
and 100 each were to the rest of the three contexts. Out of all the responses, 348 were valid, i.e. their
responses respected the symmetry between A and B. The respondents were each financially rewarded
USD 1.00, regardless of the validity of their responses.

The collected valid data were used to build an estimated probability distribution for each of the
four contexts. The resulting empirical model is shown in Table 1. The model violates the Bell-CHSH
inequality by 0.192 with a standard deviation of 0.176. Since the model is symmetric in the outcomes
by construction, it is non-signalling and thus the measure of contextuality CNT1 in the CbD framework
coincides with the degree of violation [25]. The symmetry in the outcomes also allows the violation to
saturate the bound defined by CF in sheaf-theoretic framework [1], i.e. the following equality is attained

max
{

0,
1
2
violation of Bell-CHSH inequality

}
= CF. (6)

Thus, our model is considered contextual in both the sheaf-theoretic framework and the CbD framework.
To establish the significance of the contextuality result, we conducted bootstrap resampling to es-

timate the spread of the violation to the Bell-CHSH inequality. Simulated datasets were generated by
random sampling with replacement from the original dataset. The resulting distribution of violations
is depicted in Figure 3. Among the resampled datasets, 87% of them exhibited a positive violation,
indicating that our experimental model demonstrates contextuality with a significance level of 87%.

5 Conclusions and Future Work

In this work, we employed the sheaf-theoretic framework for contextuality to model the Winograd
Schema, originally formulated as an ambiguous coreference resolution task. Our findings revealed that
the original Winograd Schema scenario lacked the necessary complexity to exhibit contextuality. To ad-
dress this limitation, we introduced an additional ambiguous pronoun and a new pair of special and alter-
nate words, creating a generalized Winograd Schema reminiscent of the Bell-CHSH scenario. Through
crowdsourcing, we collected human judgments on an example of the generalized Winograd Schema and
observed a contextual empirical model with a significance level of 87

An intriguing direction for future research involves constructing a comprehensive set of examples
based on the proposed generalized Winograd Schema, thereby establishing it as a new challenge in the
field of natural language processing. One potential approach is to leverage state-of-the-art generative
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Figure 3: A normalised histogram of the Bell-CHSH inequality violation for 100,000 bootstrap samples
from the model shown in Table 1. A positive violation, indicative of contextuality, is observed in 87% of
the resampled models. The standard deviation of the distribution is 0.176.

language models such as GPT-4 to systematically generate examples of the schema with minimal human
intervention. Careful prompt engineering would be needed to ensure that the generated examples are of
high quality.

As collecting human judgments is costly and time-consuming, another alternative approach for con-
structing empirical models of the generalized Winograd Schema involves utilizing generative language
models to generate responses to examples. This approach also offers an opportunity to explore the ex-
tent to which the responses generated by language models align with human responses. By comparing
and analysing the correspondence between model-generated responses and human responses, one could
gain insights into the capabilities and limitations of language models in capturing the way human beings
understand language.

This paper presents an approach that consists of deliberately constructing sentences that exhibit con-
textuality. This strategy of “detecting contextuality in natural language” may invite criticism for its
contrived nature.

An alternative approach could involve the application of mathematical frameworks designed for con-
textuality to analyze pre-existing natural language data, moving away from the intentional construction
of examples with distinct features [35]. The aim of this strategy would not be to pursue contextuality
within natural language. Instead, it would focus on developing novel methods for modelling natural
language phenomena from a different perspective.
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In the one-way model of measurement-based quantum computation (MBQC), computation proceeds

via measurements on a resource state. So-called flow conditions ensure that the overall computation

is deterministic in a suitable sense, with Pauli flow being the most general of these. Computations,

represented as measurement patterns, may be rewritten to optimise resource use and for other pur-

poses. Such rewrites need to preserve the existence of flow to ensure the new pattern can still be

implemented deterministically. The majority of existing work in this area has focused on rewrites

that reduce the number of qubits, yet it can be beneficial to increase the number of qubits for certain

kinds of optimisation, as well as for obfuscation.

In this work, we introduce several ZX-calculus rewrite rules that increase the number of qubits

and preserve the existence of Pauli flow. These rules can be used to transform any measurement

pattern into a pattern containing only (general or Pauli) measurements within the XY-plane. We also

give the first flow-preserving rewrite rule that allows measurement angles to be changed arbitrarily,

and use this to prove that the ‘neighbour unfusion’ rule of Staudacher et al. preserves the existence of

Pauli flow. This implies it may be possible to reduce the runtime of their two-qubit-gate optimisation

procedure by removing the need to regularly run the costly gflow-finding algorithm.

1 Introduction

The ZX-calculus is a graphical language for representing and reasoning about quantum computations,

allowing us to conveniently represent and reason about computations in both the quantum circuit model

and the one-way model of measurement based quantum-computation (MBQC), as well as to translate

between the two. The ZX-calculus has various complete sets of rewrite rules, meaning that any two

diagrams representing the same linear map can be transformed into each other entirely graphically [1,

14, 15] and provide tools for uses in optimization [24] [12], obfuscation [7] and other areas of research

in quantum computing.

The one-way model of MBQC involves the implementation of quantum computations by performing

successive adaptive single-qubit measurements on a resource state [21], largely without using any unitary

operations. This contrasts with the more commonly-used circuit model and has applications in server-

client scenarios as well as for certain quantum error-correcting codes.

An MBQC computation is given as a pattern, which specifies the resource state – usually a graph state

– and a sequence of measurements of certain types [11]. As measurements are non-deterministic, future

measurements need to be adapted depending on the outcomes of past measurements to obtain an overall

deterministic computation. Yet not every pattern can be implemented deterministically. Sufficient (and

in some cases necessary) criteria for determinism are given by the different kinds of flow, which define

a partial order on the measured qubits and give instructions for how to adapt the future computation if a

measurement yields the undesired outcome [6, 10] (cf. Section 2.3).

http://dx.doi.org/10.4204/EPTCS.384.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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In addition to the applications mentioned above, the flexible structure of MBQC patterns is also

useful as a theoretical tool. For example, translations between circuits and MBQC patterns have been

used to trade off circuit depth versus qubit number [5] or to reduce the number of T -gates in a Clifford+T

circuit [17]. When translating an MBQC pattern (back) into a circuit, it is important that the pattern still

have flow, as circuit extraction algorithms rely on flow [3, 10, 12, 20].

ZX-calculus diagrams directly corresponding to MBQC-patters are said to be in MBQC-form. Many

of the standard ZX-calculus rewrite rules do not preserve the MBQC-form structure nor the existence

of a flow, which we often want to preserve, thus circuit optimisation using MBQC and the ZX-calculus

relies on proofs that preserve both MBQC-form and flow [3, 12]. Much of the previous work on this has

focused on rewrite rules that maintain or reduce the number of qubits, which find direct application in

T-count optimisation [12]. Nevertheless, it is sometimes desirable to increase the number of qubits in an

MBQC pattern while preserving the existence of flow, such as for more involved optimisation strategies

[23] or for obfuscation.

In this work we introduce several ZX-calculus rewrite rules that preserve the MBQC-form structure

as well as Pauli flow [6], alongside proofs of this preservation. These rules have various applications,

such as being used in obfuscation techniques for blind quantum computation [7]. Notably, we introduce

the first Pauli flow preserving rewrite rule that allows us to change measurement angles arbitrarily, with

all previous rules only allowing for changes that are integer multiples of π
2

. Using this, we prove that the

‘neighbour unfusion’ rule of [24] always preserves the existence of Pauli flow. Additionally, we provide

a sufficient and a necessary condition for neighbour unfusion to preserve the existence of gflow [6], a

more restricted flow condition.

2 Preliminaries

In this section, we give an overview of the ZX-calculus and then use it to introduce measurement-based

quantum computing. We discuss the notion of flow that will be used in this paper and some existing

rewrite rules which preserve the existence of this flow.

2.1 The ZX-calculus

The ZX-calculus is a diagrammatic language for reasoning about quantum computations. We will pro-

vide a short introduction here; for a more thorough overview, see [8, 25].

A ZX-diagram consists of spiders and wires. Diagrams are read from left to right: wires entering a

diagram from the left are inputs while wires exiting the diagram on the right are outputs, like in the quan-

tum circuit model. ZX-diagrams compose in two distinct ways: horizontal composition, which involves

connecting the output wires of one diagram to the input wires of another, and vertical composition (or

the tensor product), which just involves drawing one diagram vertically above the other. The linear map

corresponding to a ZX-diagram D is denoted by JDK.

ZX-diagrams are generated by two families of spiders which may have any number of inputs or

outputs, corresponding to the Z and X bases respectively. Z-spiders are drawn as green dots and X -

spiders as red dots; with m inputs, n outputs, and using (·)⊗k to denote a k-fold tensor power, we have:

t
α...

...

|
= |0〉⊗n 〈0|⊗m + eiα |1〉⊗n 〈1|⊗m

t
α...

...

|
= |+〉⊗n 〈+|⊗m + eiα |−〉⊗n 〈−|⊗m
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α

β

...

...
...

...
= α +β...

... α = α

=

=

π α

...

...

−α

...

...
=

π

π

π

α

...

...
= =

...

...

...
...

...

...

...
...

...

...

Figure 1: A complete set of rewrite rules for the scalar-free stabilizer ZX-calculus. Each rule also holds

with the colours or the directions reversed.

Spiders with exactly one input and output are unitary, in particular J α K= |0〉 〈0|+eiα |1〉 〈1|= Zα

and J α K = |+〉〈+|+ eiα |−〉〈−|= Xα .

Two diagrams D and D′ are said to be equivalent (written D∼= D′) if JDK = zJD′K for some non-zero

complex number z. For the rest of the paper, whenever we write a diagram equality we will mean equality

up to some global scalar in this way. For treatments of the ZX-calculus which do not ignore scalars see

[2] for the stabilizer fragment, [15] for the Clifford+T fragment and [14, 16] for the full ZX-calculus.

The Hadamard gate H = |+〉〈0|+ |−〉〈1| ∼= Z π
2
◦X π

2
◦Z π

2
will be widely used throughout the paper.

It has two common syntactic sugars – a yellow square, or a blue dotted line – with the latter only used

between spiders:

π
2

π
2

π
2= =

The ZX-calculus is equipped with a set of rewrite rules which can be used to transform a ZX-diagram

into another diagram representing the same linear map. The following rules, along with the definition of

, is complete for stabilizer ZX-diagrams: any two stabilizer ZX-diagrams which correspond (up to

non-zero scalar factor) to the same linear map can be rewritten into one another using these rules [1].

2.2 Measurement-based Quantum computation

Measurement-based Quantum computation (MBQC) is a particularly interesting model of quantum com-

putation with no classical analogue. In the one-way model of MBQC, one first constructs a highly en-

tangled resource state that can be independent of the specific computation that one wants to perform

(only depending on the ‘size’ of the computation) by preparing qubits in the |+〉 state and applying

CZ-gates to certain pairs of qubits. The computation then proceeds by performing single qubit measure-

ments in a specified order. MBQC is a universal model for quantum computation – any computation can

be performed by choosing an appropriate resource state and then performing a certain combination of

measurements on said state.

Measurement-based computations are traditionally expressed as measurement patterns, which use

a sequence of commands to describe how the resource state is constructed and how the computation

proceeds [11]. As the resource states are graph states, a graphical representation of MBQC protocols can

be more intuitive; we shall therefore introduce MBQC with ZX-diagrams.

Definition 2.1 ([13]). A graph state diagram is a ZX-diagram where each vertex is a (phase-free) green

spider, each edge connecting spiders has a Hadamard gate on it, and there is a single output wire incident

on each vertex.
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operator 〈+XY,α |i 〈+XZ,α |i 〈+YZ,α |i 〈+X ,0|i 〈+Y,0|i 〈+Z,0|i 〈+X ,π |i 〈+Y,π |i 〈+Z,π |i

diagram −α(i) π
2 α(i) α(i) - π

2 π π
2 π

Table 1: MBQC measurement effects in Dirac notation and their corresponding ZX-diagrams

Definition 2.2. [3, Definition 2.18] A ZX-diagram is in MBQC-form if it consists of a graph state diagram

in which each vertex of the graph may furthermore be connected to an input (in addition to its output),

and a measurement effect instead of its output.

MBQC restricts the allowed single-qubit measurements to three planes of the Bloch sphere: those

spanned by the eigenstates of two Pauli matrices, called the XY, YZ and XZ planes. Each time a qubit u

is measured in a plane λ (u) at an angle α , one may obtain either the desired outcome, denoted 〈+λ(u),α |,
or the undesired outcome 〈−λ(u),α |= 〈+λ(u),α+π |. Measurements where the angle is an integer multiple

of π
2

are Pauli measurements; the corresponding measurement type is denoted by simply X , Y , or Z. The

ZX-diagram corresponding to each (desired) measurement outcome is given in Table 1. The structure of

an MBQC protocol is formalised as follows.

Definition 2.3. A labelled open graph is a tuple Γ = (G, I,O,λ ), where G = (V,E) is a simple undi-

rected graph, I ⊆ V is a set of input vertices, O ⊆ V is a set of output vertices, and λ : V \O →
{X ,Y,Z,XY,XZ,YZ} assigns a measurement plane or Pauli measurement to each non-output vertex.

2.3 Pauli flow

Measurement-based computations are inherently probabilistic because measurements are probabilistic.

Computations can be made deterministic overall (up to Pauli corrections on the outputs) by track-

ing which measurements result in undesired outcomes and then correcting for these by adapting fu-

ture measurements. A sufficient (and in some cases necessary) condition for this to be possible on

a given labelled open graph is Pauli flow. In the following, P(A) denotes the powerset of a set A,

NG(v) = {w ∈V | (v,w) ∈ E} is the set of neighbours of a vertex v in a graph G = (V,E). Furthermore,

OddG (A) = {v ∈V | |NG(v)∩A| ≡ 1 mod 2} is the set of vertices in the graph G = (V,E) which have an

odd number of neighbours in A⊆V ; this is referred to as the odd neighbourhood (in G) of A.

Definition 2.4 ([6, Definition 5]). A labelled open graph (G, I,O,λ ) has Pauli flow if there exists a map

p : V \O→P(V \ I) and a partial order ≺ over V such that for all u ∈V \O,

1. if v ∈ p(u), v 6= u and λ (v) 6∈ {X ,Y}, then u≺ v.

2. if v ∈ OddG(p(u)), v 6= u and λ (v) 6∈ {Y,Z}, then u≺ v.

3. if ¬(u≺ v), u 6= v and λ (v) = Y , then v ∈ p(u)⇐⇒ v ∈ OddG(p(u)).

4. if λ (u) = XY , then u 6∈ p(u) and u ∈ OddG(p(u)).

5. if λ (u) = XZ, then u ∈ p(u) and u ∈ OddG(p(u)).

6. if λ (u) = Y Z, then u ∈ p(u) and u 6∈ OddG(p(u)).

7. if λ (u) = X , then u ∈ OddG(p(u)).

8. if λ (u) = Z, then u ∈ p(u).

9. if λ (u) = Y then either u ∈ p(u) and u 6∈ OddG(p(u)) or u 6∈ p(u) and u ∈OddG(p(u)).
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Here, the partial order is related to time order in which the qubits need to be measured. The set p(u)
denotes qubits that are modified by Pauli-X to compensate for an undesired measurement outcome on u,

OddG(p(u)) denotes the set of vertices that are modified by Pauli-Z.

Pauli flow is a sufficient condition for strong, stepwise and uniform determinism: this means all

branches of the computation should implement the same linear operator up to a phase, any interval of

the computation should be deterministic on its own, and the computation should be deterministic for

all choices of measurement angles that satisfy λ [6, p. 5]. Pauli flow (and related flow conditions)

are particularly interesting from a ZX-calculus perspective as there are polynomial-time algorithms for

extracting circuits from MBQC-form ZX-diagrams with flow [3, 12, 22], while circuit extraction from

general ZX-diagrams is #P-hard [4].

There are certain Pauli flows where the side effects of any correction are particularly limited, these

are called focused and they exist whenever a labelled open graph has Pauli flow.

Definition 2.5 (rephrased from [22, Definition 4.3]). Suppose the labelled open graph (G, I,O,λ ) has a

Pauli flow (p,≺). Define Su =V \ (O∪{u}) for all u ∈V . Then (p,≺) is focused if for all u ∈V \O:

• Any v ∈ Su∩ p(u) satisfies λ (v) ∈ {XY,X ,Y}.

• Any v ∈ Su∩Odd(p(u)) satisfies λ (v) ∈ {XZ,YZ,Y,Z}.

• Any v ∈ Su such that λ (v) = Y satisfies v ∈ p(u) if and only if v ∈ Odd(p(u)).

Lemma 2.6 ([22, Lemma 4.6]). If a labelled open graph has Pauli flow, then it has a focused Pauli flow.

If the codomain of λ in Definition 2.4 is {XY,XZ,YZ}, the flow is called a gflow [6]. Similarly, for

Definition 2.5, the restriction to measurement labels {XY,XZ,YZ} is called a focused gflow [3]. If a

labelled open graph has gflow, then it has a focused gflow [3, Proposition 3.14].

2.4 Existing flow-preserving rewrite rules

The basic ZX-calculus rewrite rules in Figure 1 do not generally preserve even the MBQC-form structure

of a ZX-calculus diagram. Yet there are some more complex derived rewrite rules that are known to pre-

serve both the MBQC-form structure and the existence of a flow. These rules were previously considered

in the context of gflow [12] and extended gflow [3]; the Pauli-flow preservation proofs are due to [22].

The simplest of these rules are Z-deletion and Z-insertion:

Lemma 2.7 ([22, Lemma D.6]). Deleting a Z-measured vertex preserves the existence of Pauli flow.

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ...

...

...

...

...
...

Lemma 2.8 ([18, Proposition 4.1]). Inserting a Z-measured vertex (i.e. the inverse of Z-deletion) also

preserves the existence of Pauli flow.

Other rewrite rules are based around quantum generalisations of two graph-theoretic operations.

Definition 2.9. Let G = (V,E) be a graph and u ∈ V . The local complementation of G about u is

the operation which maps G to G ⋆ u := (V,E
a
{(b,c) | (b,u),(c,u) ∈ E and b 6= c}), where

a
is the

symmetric difference operator given by A
a

B = (A∪B) \ (A∩B). The pivot of G about the edge (u,v)
is the operation mapping G to the graph G∧uv := G⋆u⋆ v⋆u.
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Local complementation keeps the vertices of the graph the same but toggles some edges: for each

pair of neighbours of u, i.e. v,v′ ∈ NG(u), there is an edge connecting v and v′ in G ⋆ u if and only if

there is no edge connecting v and v′ in G. Pivoting is a series of three local complementations about two

neighbouring vertices, and is denoted by G∧uv = G⋆u⋆ v⋆u.

Both local complementation and pivoting give rise to operations on MBQC-form diagrams which

preserve the MBQC form as well as the existence of Pauli flow (after some simple merging of single-

qubit Cliffords into measurement effects, cf. [3, Section 4.2]). We illustrate the operations with examples

as they are difficult to express in ZX-calculus in generality.

Lemma 2.10 ([22, Lemma D.12]). A local complementation about a vertex u preserves the existence of

Pauli flow.

...

u

=
...

− π
2

π
2

π
2

π
2

u

Lemma 2.11 ([22, Lemma D.21]). A pivot about an edge (u,v) preserves the existence of Pauli flow.

=

v

u

u

v

π

π

Observation 2.12. Lemmas 2.10 and 2.11 provide their own inverses: four successive local complemen-

tations about the same vertex or two successive pivots about the same edge leave a diagram invariant.

3 Converting planar measurements to XY-measurements

In the graph-like diagrams [12] used in PyZX, all spiders are green and all edges are Hadamard edges.

‘Phase gadgets’ consist of a degree-1 green spider connected to a phase-free green spider by a Hadamard

edge as in the left-most diagram of (1). When converting graph-like diagrams to MBQC-form, it is

difficult to know whether to interpret phase gadgets as a single YZ-measured vertex (middle diagram) or

as an X -measured vertex connected to a degree-1 XY-measured vertex (right-most diagram):

α

...

α...

α... (1)

The following proposition shows that both interpretations are valid and can be interconverted.

Proposition 3.1. Let (G, I,O,λ ) be a labelled open graph with Pauli flow where G= (V,E), and suppose

there exists x ∈ V with λ (x) = YZ. Then (G′, I,O,λ ′) has Pauli flow, where V ′ = V ∪{x′}, E ′ = E ∪
{{x,x′}}, and λ ′(x) = X, λ ′(x′) = XY, and λ ′(v) = λ (v) otherwise.

Proof. Consider the following sequence of rewrites.
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α...

α...
...= =

α

x
x

x′

x′

x

Here we insert the Z-measured vertex x′ connected only to x, then pivot along the edge (x,x′). Both

Z-insertion and pivoting preserve the existence of Pauli flow, thus our new rewrite rule also preserves the

existence of Pauli flow.

A similar sequence of rewrites allows us to rewrite XZ-measurements in terms of just Y -measurements

and XY-measurements

Proposition 3.2. Let (G, I,O,λ ) be a labelled open graph with Pauli flow where G= (V,E), and suppose

there exists x ∈ V with λ (x) = XZ. Then (G′, I,O,λ ′) has Pauli flow, where V ′ = V ∪{x′}, E ′ = E ∪
{{x,x′}}, and λ ′(x) = Y , λ ′(x′) = XY and λ ′(v) = λ (v) otherwise.

Proof. Consider the following sequence of rewrites.

α...

α...
...= =

x
x

x′

x

x′

π
2

π
2 α

π
2

...

x′

x

π
2

α

=

Here we insert a Z-measured vertex x′ connected to the XZ-measured vertex x, perform local com-

plementation about x′, then pivot along the edge (x,x′). Each of these rewrites preserves the existence of

Pauli flow, thus the resulting pattern has Pauli flow.

Using the two previous propositions, we are able to re-write any XZ- and YZ-planar measurements

into a Pauli measurement plus an XY-measurement. This implies the following.

Proposition 3.3. Let (G, I,O,λ ) be an arbitrary MBQC-form diagram with Pauli flow. Then there exists

an equivalent diagram (G′, I′,O′,λ ′) with Pauli flow where λ ′(v) ∈ {X ,Y,XY} for all v ∈V ′.

Proof. We begin by applying Z-deletion (Lemma 2.7) to all Z-measured vertices, leaving us with only

X , Y , XY , XZ and Y Z vertices. It remains to remove all XZ and Y Z measurements.

By Proposition 3.1, we can convert every Y Z-measured vertex into an X -measured vertex connected

to an XY -measured vertex while preserving the existence of Pauli flow. Then, by Proposition 3.2 we

can convert every XZ-measured vertex into a Y -measured vertex connected to an XY -measured vertex.

We now only have X , Y and XY measured vertices remaining, and each rewrite rule used to get here

preserves the existence of Pauli flow, thus the resulting graph has Pauli flow.

Remark 3.4. Note that Pauli flow is important here: the gflow conditions need not be satisfied if the

newly-introduced Pauli measurements were taken to be arbitrary XY-measurements instead.

For example, the first of the following two diagrams has a gflow (g,≺) with g(a) = {c}, g(b) = {d},
g(x) = {c,d,x} and a,b,x ≺ c,d. The second diagram has Pauli flow by Proposition 3.1, but it does not

have gflow: any flow (p,≺′) on the second diagram must have x ∈ p(x′) to satisfy x′ ∈ Odd(p(x′)), as
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inputs a,b do not appear in correction sets. Similarly, x′ ∈ p(x) as it is the only neighbour. Thus the

gflow conditions would require x≺′ x′ and x′ ≺′ x simultaneously, which is not possible.

α

β

a

b

c

d

γx

α

β

a

b

c

d

γx′

x

4 Subdividing an edge

Research on flow-preserving rewrite rules so far has been geared towards optimization, which usually

involves reducing the number of vertices in a pattern. Yet there are also cases where it is desirable to

introduce new vertices. An example of this is the obfuscation protocol for blind quantum computing

of [7], which used an unpublished rewrite rule proved by one of the authors. We give the proof below.

Proposition 4.1. Let G = (V,E) be a graph with vertices V and edges E. Suppose the labelled open

graph (G, I,O,λ ) has Pauli flow. Pick an edge {v,w} ∈ E and subdivide it twice, i.e. let G′ := (V ′,E ′),
where V ′ :=V ∪{v′,w′} contains two new vertices v′,w′, and

E ′ := (E \{{v,w}})∪{{v,w′},{w′,v′},{v′,w}}.

Then (G′, I,O,λ ′) has Pauli flow, where λ ′(v′) = λ ′(w′) = X and λ ′(u) = λ (u) for all u ∈V \O.

Proof. We may subdivide an edge by inserting two Z-measured vertices as shown in the following dia-

gram, then pivoting about these two Z-measured vertices.

= = =...
...

...
...

...
...

...
...

As inserting Z-measured vertices and pivoting both preserve the existence of Pauli flow, subdividing an

edge also preserves the existence of Pauli flow.

5 Splitting a vertex

Each of the previously mentioned Pauli-flow preserving rewrite rules only changes measurement angles

by integer multiples of π
2

. Here we introduce the first Pauli-flow preserving rewrite rule which allows

us to change measurement angles arbitrarily. To simplify the proof, the proposition requires that all

measurements in the pattern are XY, X or Y ; by Proposition 3.3 this is without loss of generality.

Proposition 5.1. Let G = (V,E) be a graph with vertices V and edges E. Suppose the labelled open

graph (G, I,O,λ ) has Pauli flow and satisfies λ (u) ∈ {XY,X ,Y} for all u ∈ Oc. Pick a vertex a ∈ Oc

such that λ (a) = XY and split it, i.e. let G′ := (V ′,E ′), where V ′ :=V ∪{x,a′} contains two new vertices

x,a′, and choose some (possibly empty) subset W ⊆ N(x) such that

E ′ := (E \{{a,w} | w ∈W})∪{{a′,w} | w ∈W}∪{{a,x},{x,a′}}.

Then (G′, I,O,λ ′) has Pauli flow, where λ ′(x) = X, λ ′(a′) = XY, and λ ′(u) = λ (u) for all u ∈V \O.
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...

...

7→

a

a

x

a′

α

α ′′

α ′

...

NG(a)

W

NG(a)\W

Proof. Let (p,≺) be a focused Pauli flow for (G, I,O,λ ); this exists as the labelled open graph has Pauli

flow. Since all measurements are XY , X or Y , the focusing conditions from Definition 2.5 reduce to:

• For all u ∈V \O, if v ∈ OddG (p(u)) \ (O∪{u}) then λ (v) = Y .

• For all u∈V \O and all v∈V \(O∪{u}) such that λ (v) =Y , we have v∈ p(u)↔ v∈OddG (p(u)).

Now, for all u ∈V \O, define

p′(u) :=























p(u)∪{x,a′} if a ∈ p(u) and |p(u)∩W | ≡ 1 (mod 2)

p(u)∪{a′} if a ∈ p(u) and |p(u)∩W | ≡ 0 (mod 2)

p(u)∪{x} if a /∈ p(u) and |p(u)∩W | ≡ 1 (mod 2)

p(u) if a /∈ p(u) and |p(u)∩W | ≡ 0 (mod 2),

then it is straightforward to check that OddG′ (p′(u)) = OddG (p(u)). For example, in the first case, note

that ∪ can be replaced by ∆ since x,a′ are new vertices that cannot appear in p(u). Thus

OddG′
(

p′(u)
)

= OddG′
(

p(u)∆{x,a′}
)

= OddG′ (p(u))∆OddG′
(

{x,a′}
)

= OddG′ (a)∆

(

∆
w∈p(u)\(W∪{a}∪O)

OddG′ (w)

)

∆

(

∆
w∈(p(u)∩W )\O

OddG′ (w)

)

∆{a,x,a′}∆W

= OddG (a)∆

(

∆
w∈p(u)\(W∪{a}∪O)

OddG (w)

)

∆

(

∆
w∈(p(u)∩W )\O

OddG (w)∆{a,a′}

)

∆{a,a′}

= OddG (p(u)) ,

where the third step uses OddG′ (a)=OddG (a)∆W ∆{x}, and the final step uses |p(u)∩W | ≡ 1 (mod 2).
If a is an input in G, then it remains an input in G′ (the ‘input’ is not a neighbour so cannot be

transferred to a′ during the splitting process). This is without loss of generality: if a′ is desired to be

an input, replace W by NG(a) \W and swap the labels α ′ and α ′′ to get a labelled open graph that is

equivalent to the desired one up to relabelling a↔ a′. Having a be an input is compatible with the

correction set for x in the next step below. If a is not an input, there is actually a choice of whether to

correct x via a or a′; we shall always choose the latter for some slight notational convenience.

Let p′(x) := {a′}, and let p′(a′) := p′(a)∆{x}, resulting in the following odd neighbourhoods:

OddG′
(

p′(x)
)

= OddG′
(

{a′}
)

=W ∪{x} (2)

and

OddG′
(

p′(a′)
)

= OddG′
(

p′(a)
)

∆OddG′ ({x})

= OddG (p(a))∆{a,a′}

= (OddG (p(a))∪{a′})\{a} (3)
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where the final step uses the fact that a ∈ OddG (p(a)) and a′ 6∈OddG (p(a)) (since a′ is not even in G).

Let ≺′ be the transitive closure of

≺∪
{

(w,a′) | w≺ a
}

∪
{

(a′,w) | a≺ w
}

∪
{

(x,w) | w ∈W
}

∪
{

(x,a′)
}

.

This is a partial order since a′ has the same relationships as a (except for being a successor of x) and x

only has successors.

The proof that (p′,≺′) is a Pauli flow for G′ can be found in Appendix A.

We are able to obtain other useful rewrite rules as immediate corollaries of this.

Corollary 5.2. Using Proposition 5.1 with W = /0 and α ′′ = 0, we obtain the following rule used in [7].

α

=

α

This rule can alternatively be derived in a more round-about way from Z-insertion and pivoting, but

we next prove a rule that truly requires vertex splitting.

6 Neighbour unfusion

In [24], a rewrite rule called neighbour unfusion was used to reduce the number of two-qubit gates in

circuits via the ZX-calculus. Using neighbour unfusion allowed for the two-qubit gate count to be greatly

reduced, but introduced a new problem: neighbour unfusion, which introduces two new qubits in each

application, was found to not always preserve gflow. Yet a flow is needed to be able to translate back

to a circuit after the application of the two-qubit gate count reduction algorithm. We now show that

neighbour unfusion preserves the existence of Pauli flow, so circuit re-extraction is always possible.

Corollary 6.1. By applying vertex splitting with |W |= 1, we obtain the following ‘neighbour unfusion’

rule, where α = α ′+α ′′ (the measurement for the right-most vertex is not drawn as it can be measured

in any plane, or even be an output).

=

α ′′α α ′

Staudacher et al. [24] state that, in the case of only XY-measurements, neighbour unfusion empiri-

cally fails to preserve gflow if the two vertices to which neighbour unfusion is applied are extracted to

different qubits in the circuit extraction process. While we have not fully formalised this idea, we give a

condition which guarantees that neighbour unfusion preserves gflow.

Proposition 6.2. Let Γ= (G, I,O,λ ) be a labelled open graph and suppose a,b are two adjacent vertices

in G with λ (a) = λ (b) = XY. Suppose Γ has focused gflow (g,≺) where b ∈ g(a) and for all w ∈
V \{a,b}, w ≺ b =⇒ w ≺ a and a ≺ w =⇒ b ≺ w. Let Γ′ be the labelled open graph after applying

neighbour unfusion to a and b. Then Γ′ has gflow. The same holds with the roles of a and b reversed.

Proof. Consider a labelled open graph which has a focused gflow (g,≺) and contains the subdiagram

α

a b

β
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Assume without loss of generality that b ∈ g(a) and that for all w ∈ V \ {a,b}, w ≺ b implies w ≺ a

and a≺ w implies b≺ w; the other case is symmetric. Neighbour unfusion yields a labelled open graph

Γ′ = (G′, I,O,λ ′) with the following subdiagram, where α ′+α ′′ = α :

α ′′α ′ β

a b
x a′

(4)

We can construct a focused gflow for the new pattern by defining the correction sets as follows:

g′(v) =











































g(v)∪{x,a′} if a ∈ g(v)∧b ∈ g(v)

g(v)∪{a′} if a ∈ g(v)∧b 6∈ g(v)

g(v)∪{x} if a 6∈ g(v)∧b ∈ g(v)

g(b)∪{a′} if v = x

g(a) if v = a′

g(v) otherwise.

This choice leaves invariant the odd neighbourhoods of the correction sets of any original (non-output)

vertices. Furthermore we have

OddG′
(

g′(x)
)

= OddG′
(

g(b)∪{a′}
)

=OddG′
(

g(b)∆{a′}
)

= OddG (g(b))∆{x,b}

since a,a′ /∈ g(b), and

OddG′
(

g′(a′)
)

= OddG′ (g(a)) = OddG (g(a))∆{a,a′}

since b ∈ g(a). Therefore x ∈ OddG′ (g
′(x)) and a′ ∈ OddG′ (g

′(a′)) as desired, and furthermore the cor-

rection sets for the new vertices are focused. Take≺′ to be the transitive closure of≺∪{(a,x),(x,a′),(a′,b)},
then (g′,≺′) is a focused gflow for Γ′: Firstly, the relation ≺′ is a strict partial order. To show that the

gflow conditions are satisfied by (g′,≺′), it suffices to consider that the modified correction sets are

compatible with the new partial order:

• For any v ∈V , we have a′ ∈ g′(v) only if a ∈ g(v). The latter implies v≺ a and thus v≺′ a≺′ a′.

• For any v ∈V , we have x ∈ g′(v) only if b ∈ g(v). The latter implies v≺ b and thus by assumption

v≺ a. Then, as in the previous case, v≺′ a≺′ x.

• If w ∈ g′(x), then either w = a′ or w ∈ g(b). The former is straightforward as x≺′ a′ by definition.

For the latter, we have b≺ w since (g,≺) is a gflow, and thus x≺′ b≺′ w.

• If w ∈ g′(a′), then w ∈ g(a). This implies a≺ w since (g,≺) is a gflow, and furthermore b≺ w by

assumption. Thus, a′ ≺′ b≺′ w.

All of the other gflow conditions are satisfied as (g,≺) is a gflow for Γ.

We will illustrate the neighbour unfusion process with an example that shows some choices of unfu-

sion which do preserve gflow and others which do not.

Example 6.3. Consider the following MBQC-form diagram, which appeared in a different context

in [20].
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γ1

γ2

α β

i1
i2

a b

o1

o2

This has a focused gflow (g,≺) with g(i1) = {a,o2}, g(i2) = {a,b,o2}, g(a) = {b,o2} and g(b) =
{o1,o2} and partial order i1, i2 ≺ a≺ b≺ o1,o2. Then neighbour unfusion along one of the edges (i2,a),
(a,b) or (b,o2) preserves gflow by Proposition 6.2.

On the other hand, the pair (i2,o2) satisfies the condition o2 ∈ g(i2) but satisfies neither w≺ o2 =⇒
w ≺ i2 nor i2 ≺ w =⇒ o2 ≺ w since a and b sit in between the pair in the partial order. Applying

neighbour unfusion to i2 and o2 does not preserve the existence of gflow since the odd neighbourhood

of {o1,o2} would become {i2, i
′
2,b} and thus no vertex can be corrected solely using the outputs in the

resulting diagram. An analogous argument holds for the pair (i2,o1) for which o1 /∈ g(i2).

We now show that, for MBQC-form diagrams with equal numbers of inputs and outputs, the condi-

tion b ∈ g(a) (or instead a ∈ g(b)) is necessary for neighbour unfusion to preserve gflow.

Proposition 6.4. Let Γ = (G, I,O,λ ) be a labelled open graph with |I|= |O| with focused gflow (g,≺).
Suppose a,b are two adjacent vertices in G with λ (a) = λ (b) = XY. Let Γ′ be the labelled open graph

after applying neighbour unfusion to a and b in Γ, and suppose Γ′ has gflow. Then we must have b∈ g(a)
or a ∈ g(b) for the focused gflow on Γ.

Proof. Suppose we have a pattern Γ′ with the subdiagram (4) and assume that Γ′ has a focused gflow

(g′,≺′). Let Γ′′ = (G′′, I,O,λ ′′) be the induced sub-pattern containing only those vertices of G′ that are

either outputs or measured in the XY-plane; this must include all inputs since those cannot be measured

in planes XZ or YZ. This new measurement pattern still contains the subdiagram (4) and it has gflow

[3, Lemma 3.15]. In fact, since (g′,≺′) is focused, it implicitly follows from [3, Proposition 3.14 and

Lemma 3.15] that the gflow of the new pattern is just the restriction of the old gflow function to a smaller

domain, and this is still focused; denote it by (g′′,≺′′).
Now every focused gflow in a pattern with only XY-plane measurements and equal numbers of inputs

and outputs can be reversed in a very strict sense: Let Γ′′′ = (G′′,O, I,λ ′′′) be the reversed pattern with

the roles of inputs and outputs swapped and λ ′′′ mapping all non-outputs to XY. Then there exists a

focused gflow (g′′rev,≺
′′
rev) for Γ′′′ where ≺′′rev is the reverse of ≺′′ and u ∈ g′′rev(v) if and only if v ∈ g′′(u)

[19], cf. also [3, Corollary 2.47].

As x is XY-measured and has two neighbours, to satisfy x ∈ OddG′′ (g
′′(x)) and x ∈ OddG′′ (g

′′
rev(x))

we require the following to hold, where ⊕ is the exclusive-or operator:

(a ∈ g′′(x)∧ x ∈ g′′(x′))⊕ (x′ ∈ g′′(x)∧ x ∈ g′′(a)).

As a′ is also XY-measured and has two neighbours, by the same reasoning we obtain:

(b ∈ g′′(a′)∧ x′ ∈ g′′(x))⊕ (x ∈ g′′(a′)∧a′ ∈ g′′(b)).

Then, as we cannot have both x ∈ g′′(a′) and a′ ∈ g′′(x), we have either that a ∈ g′′(x), x ∈ g′′(a′) and

a′ ∈ g′′(b) or that b∈ g′′(a′), a′ ∈ g′′(x) and x∈ g′′(a) for (g′′,≺′′) to be a gflow for Γ′′. But (g′′,≺′′) is the

restriction of (g′,≺′) to the XY-measured vertices in Γ′. Thus either a ∈ g′(x), x ∈ g′(a′) and a′ ∈ g′(b)
or that b ∈ g′(a′), a′ ∈ g′(x) and x ∈ g′(a).
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Now, consider the following sequence of rewrites corresponding to the inverse of neighbour unfusion:

α ′′α ′ β

a b
x a′

=
α ′ β

a b
xa′

α ′′

=
α ′ β

a b
a′

α ′′

α ′+α ′′ β

a b=

where we first pivot along the edge (x,x′), then apply Z-deletion to x′ and finally apply the phase gadget

identity rule of [17] to add the phase of x′ to that of a. Each of these rules preserves the existence of

gflow, thus the inverse of neighbour unfusion preserves the existence of gflow. Moreover, if x ∈ g′(a),
x′ ∈ g′(x) and b′ ∈ g′(x′), then after applying the inverse of neighbour unfusion we get a focused gflow

(g,≺) for Γ with b∈ g(a) (and similarly if a∈ g′(x), x∈ g′(x′) and x′ ∈ g′(b) we get a focused gflow with

a ∈ g(b)). Therefore, if the measurement pattern after neighbour unfusion has gflow, then the original

pattern has a focused gflow where b is in the correction set of a, or a focused gflow where a is in the

correction set of b.

An analogous argument to the above works if b is an output, in which case the only option is for b to

be in the correction set of a. Therefore the above proposition covers all the cases relevant to Staudacher

et al.’s work on patterns where all measurements are in the XY-plane.

Example 6.5. The following two measurement patterns are related by neighbour unfusion along the edge

between vertices a and b:

α

β

a

b

c

d

α ′

β

a

b

c

d

α ′′

x

a′

In the first pattern, a and b are both inputs and thus cannot appear in correction sets. Hence the pattern

does not have a gflow where a is in the correction set of b or where b is in the correction set of a. Yet it

does have a gflow (g,≺) with g(a) = {c}, g(b) = {d} and a,b≺ c,d.

For the second pattern to have a flow (p,≺′), we require a′ ∈ p(x) and x ∈ p(a′) since both vertices

need to be in the odd neighbourhood of their correction set and inputs cannot appear in correction sets.

This diagram can therefore not have a gflow, as the gflow conditions would require that x ≺′ a′ and

a′ ≺′ x simultaneously, so ≺′ would not be strict. This diagram does have a Pauli flow however, as the

X -measured vertex x does not need to come after a′ in the partial order in the case of Pauli flow. The

Pauli flow satisfies p(a) = {c}, p(b) = {d}, p(x) = {d,a′} and p(a′) = {c,x} with x≺ a,b,a′ ≺ c,d.

The sufficient condition for neighbour unfusion to preserve gflow in Proposition 6.2 and the necessary

condition in Proposition 6.4 do not quite match up: we leave the question of a condition that is both

necessary and sufficient to future work.

7 Conclusion

We have introduced several rewrite rules which preserve the existence of Pauli flow, including the first

flow-preserving rewrite rule which allows us to change phases arbitrarily, rather than just by multiples

of π
2

. An immediate corollary of this rule preserving Pauli flow is that the neighbour unfusion rule of

[24] also preserves Pauli flow, potentially leading to a reduced runtime for their two-qubit gate count

reduction algorithm.
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At present, the circuit extraction algorithm for diagrams with Pauli flow introduces more two-qubit

gates than the corresponding circuit extraction algorithm for diagrams with gflow – future work could

involve using known work on Pauli gadget optimization, such as that of [9], to reduce the number of

two-qubit gates obtained when performing circuit extraction on diagrams with Pauli flow.

Other future work could involve finding an analogous result to the stabiliser completeness proof

of [18] for a more general fragment of the MBQC-form ZX-calculus, using Proposition 5.1 to introduce

phases that are not just integer multiples of π
2

.
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A Splitting a vertex preserves the existence of Pauli flow

The following case distinction forms part of the proof of Proposition 5.1.

Let G′, p′ and ≺′ be defined as in Proposition 5.1. We shall show that (p′,≺′) satisfy the nine

conditions of Pauli flow.

Claim 1: For all u ∈ Oc, if v ∈ p′(u) and u 6= v and λ ′(v) /∈ {X ,Y}, then u≺′ v.

• For original vertices u ∈V \O, v ∈ p′(u) implies v ∈ p(u) or v ∈ {x,a′}. If v ∈ p(u) then

either u≺ v and thus u≺′ v by the definition of≺′ or λ (u) = λ ′(u)∈ {X ,Y}. If v = x then

λ ′(v) = X and thus we don’t need to consider this case. Finally, if v = a′ then a ∈ p(u),
thus u≺ a which gives us u≺′ v = a′ by the definition of ≺′.

• For u = x, the only element of p(x) is a′ and we have x≺′ a′.

• For u = a′, v ∈ p′(a′) implies v ∈ p(a) or v = x. For the latter case, λ ′(x) = X and thus

we do not need to consider this. In the former case, v ∈ p(a) gives us that a ≺ v or

λ (v) = λ ′(v) ∈ {X ,Y} as (p,≺) is a Pauli flow. So either a′ ≺ v by the definition of ≺′

or the property is trivial anyway.

Claim 2: For all u ∈ Oc, if v ∈OddG′ (p′(u)) and u 6= v and λ ′(v) /∈ {Y,Z}, then u≺′ v.

• For original vertices u ∈ V \O, we have defined p′ in such a way that OddG′ (p′(u)) =
OddG (p(u)), thus this property is inherited from (p,≺) being a Pauli flow.

• For u = x, we have OddG′ (p′(x)) =W ∪{x}, and x≺′ w for any w ∈W by the definition

of ≺′.

• For u = a′, v ∈ OddG′ (p′(a′)) and v 6= a′ implies v ∈ OddG (p(a)) by (3). As a′ has the

same successors as a, we get that a′ ≺′ v as desired.

Claim 3: For all u ∈ Oc, if ¬(u≺′ v) and u 6= v and λ ′(v) = Y , then v ∈ p′(u)←→ v ∈ OddG′ (p′(u)).

• For original vertices u ∈ V \O, this is inherited from (p,≺), as the only changes to

correction sets and odd neighbourhoods involve adding or removing x or a′, which are

not Y -measured.

• For u = x, we have p′(x)∪OddG′ (p′(x)) = W ∪{x,a′}. By the definition of the partial

order, x≺ a′ and x≺′ w for all w ∈W , so the claim is trivially true.

https://doi.org/10.4204/EPTCS.343.4
https://www.mnm-team.org/pub/Diplomarbeiten/stau21/PDF-Version/stau21.pdf
https://elib.dlr.de/188470/
https://doi.org/10.48550/ARXIV.2012.13966
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• For u = a′,

λ ′(v) = Y and v ∈ p′(a′) implies v ∈ p(a).

As (p,≺) is a focused Pauli flow, we must have v ∈OddG (p(a)), thus v ∈ OddG′ (p′(a))
and finally v ∈ OddG′ (p′(a′)) by (3).

For the other direction,

λ ′(v) = Y and v ∈ OddG′
(

p′(a′)
)

implies v ∈ OddG (p(a)) .

As (p,≺) is a Pauli flow, v ∈ p(a) thus v ∈ p′(a) and finally v ∈ p′(a′), as desired.

Claim 4: For all u ∈ Oc, if λ ′(u) = XY, then u /∈ p′(u) and u ∈ OddG′ (p(u)).

• If u = a′, then this is true by inspection.

• If u = x, then the claim is true trivially since λ ′(x) 6= XY.

• If u ∈V \O, then this property is inherited from (p,≺).

Claim 5: For all u ∈ Oc, if λ ′(u) = XZ, then u ∈ p′(u) and u ∈ OddG′ (p′(u)).

• This is trivially true as we have no XZ-measured vertices.

Claim 6: For all u ∈ Oc, if λ ′(u) = YZ, then u ∈ p′(u) and u /∈ OddG′ (p′(u)).

• This is trivially true as we have no Y Z-measured vertices.

Claim 7: For all u ∈ Oc, if λ ′(u) = X , then u ∈ OddG′ (p′(u)).

• if u = a′, then this is true trivially since λ ′(a′) 6= X .

• If u = x, then the claim is true by (2).

• If u ∈V \O, then this property is inherited from (p,≺).

Claim 8: For all u ∈ Oc, if λ ′(u) = Z, then u ∈ p′(u).

• This is trivially true as we have no Z-measured vertices.

Claim 9: For all u ∈ Oc, if λ ′(u) = Y , then u ∈ p′(u) and u /∈ OddG (p′(u)), or u /∈ p′(u) and u ∈
OddG (p′(u)).

• This is true trivially for a, x and a′, and inherited for all other vertices.

All nine properties are satisfied, therefore (p′,≺′) is a Pauli flow for G′.
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We present a smorgasbord of results on the stabiliser ZX-calculus for odd prime-dimensional
qudits (i.e. qupits). We derive a simplified rule set that closely resembles the original rules
of qubit ZX-calculus. Using these rules, we demonstrate analogues of the spider-removing
local complementation and pivoting rules. This allows for efficient reduction of diagrams
to the affine with phases normal form. We also demonstrate a reduction to a unique form,
providing an alternative and simpler proof of completeness. Furthermore, we introduce a
different reduction to the graph state with local Cliffords normal form, which leads to a
novel layered decomposition for qupit Clifford unitaries. Additionally, we propose a new
approach to handle scalars formally, closely reflecting their practical usage. Finally, we have
implemented many of these findings in DiZX, a new open-source Python library for qudit
ZX-diagrammatic reasoning.

1 Introduction

A helpful tool to reason about quantum computation is the ZX-calculus [22, 21], a graphi-
cal language which can represent any qubit computation. It has been used, for example, in
measurement-based quantum computing [36, 4, 53], error-correcting codes [34, 37, 29], quan-
tum circuit optimisation [7, 33, 50], classical simulation [51, 19, 52], quantum natural language
processing [20, 54], quantum chemistry [61], and quantum machine learning [67, 74].

All the above results use the qubit ZX-calculus, but recent years have seen a surge of interest
in studying quantum computation using d-dimensional systems, called qudits. Qudit-based
quantum computation has been experimentally realised in a variety of physical systems, such
as ion traps [60, 45], photonic devices [18], and superconducting devices [11, 69, 71, 44, 40].
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On the theory side, there has been work in translating work on qubits to qudits in quantum
algorithms [68], fault-tolerant quantum computing [42, 15], quantum communication [25], and
more [31, 38, 12, 55].

This raises the question of how we can use the ZX-calculus to reason about qudit systems.
There exist several variations of the ZX-calculus that extend it to higher-dimensional qudits.
Many have focused on the specific case of qutrit systems [65, 39, 65, 62], with applications
in quantum computation [70, 63], and complexity theory [62]. Recent papers have focused on
the stabiliser fragment of odd prime dimensional qudits, including Ref. [24] that explores error
correction and detection in this context, and also Ref. [13] mentioned below. Some proposals
capture all finite or infinite dimensions [59, 66, 57, 30], but lack many of the nicer features of the
qubit calculus. Of particular importance to our paper is Ref. [13], which constructs a calculus
for odd prime dimensions while retaining many of these desirable properties and establishing
completeness for the stabiliser fragment. Despite these advancements, practical utilisation of
the rewrites in these calculi has received limited attention, leaving room for further exploration
and development.

To understand the usefulness of rewrite rules, we can take a look at the original qubit
calculus. In qubit ZX, we can distinguish between ‘standard’ rules — spider fusion, identity
removal, state copying, bialgebra, and colour change — and ‘harder’ rules — supplementarity,
Euler angle colour permutation, and the rules dealing with the triangle generator. The standard
rules, with minor modifications, were those originally discovered [21], and they are the most
commonly used in practice. For instance, all the rewrites used in the PyZX compiler [49] can
be proved using just these standard rules [33]. These rules are sufficient to prove completeness
for the stabiliser fragment of the ZX-calculus [1], while the harder rules were developed to prove
completeness for larger fragments. This suggests that carefully studying the qudit stabiliser
fragment could be a fruitful avenue for developing useful qudit ZX rewrite rules.

Recall that the stabiliser fragment corresponds to Clifford computation, which is an efficiently
simulable subset of quantum computation [41] that forms the basis of many quantum protocols,
such as error-correcting codes [48, 47], superdense coding [10], quantum teleportation [9], and
quantum key distribution [8]. Completeness of the qubit stabiliser fragment of ZX was proved
in [1], while for qutrits it was proved in [65]. Recently, completeness was proved for the stabiliser
fragment for any odd-dimensional prime qudit dimension in [13]. The proofs of all these results
work essentially the same way: first, they show that any state diagram can be reduced to a Graph
State with Local Cliffords (GSLC), and then they show that any pair of GSLCs implementing
the same state can be rewritten to a common reduced form.

In this paper, we take this last complete calculus for prime-dimensional qudits [13] as a
starting point, and extend it in several ways:

1. We simplify the rules to a smaller set that has a clearer relation to the original qubit
stabiliser calculus, and for most of which we can prove the necessity.

2. We incorporate a well-tempered axiomatisation for our calculus following the convention
of [27], removing most of the scalars in our rewrite rules, and thus, simplifying our calcu-
lations.

3. We introduce a new approach to handle scalars, formalising the often-used convention of
writing scalar numbers alongside diagrams.

4. We discover the qupit versions of the spider-removing local complementation and pivoting
rules found in [33] and generalised to qutrits in [62]. These rules serve as the foundation
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for optimisation and simulation strategies in the qubit setting [33, 50, 7, 49]. Our findings
demonstrate that these strategies can be adapted to work for prime-dimensional qudits,
thus extending their applicability beyond qubits.

5. Using these rewrite rules, we simplify the original completeness proof of [13] by reducing
the number of case distinctions required.1 Specifically, we demonstrate that these rewrites
reduce diagrams to a normal form that we call the affine with phases (AP) form, which
originally appeared in [32]. Then, given an AP-form diagram, we show how to reduce it
further to a unique form, resulting in completeness.2

6. Additionally, we demonstrate how to rewrite diagrams into a graph-state with local Cliffords
(GSLC) form, which yields a layered decomposition for Clifford unitaries similar to the
one proposed for qubits in [33].

Our findings highlight that qupit stabiliser diagrams share many familiar properties with
their qubit counterparts. Furthermore, many results regarding optimisation and normal forms
extend seamlessly to the odd prime-dimensional qudit setting.

Finally, we have implemented many of these findings in DiZX, a new open-source Python
library for qudit ZX-diagrammatic reasoning based on PyZX [49].3

Related work Subsequent to submission, we were made aware of a related, parallel work,
Ref. [28], which also concerns well-tempered axiomatisations for qudit ZX-calculi.

2 The qupit Clifford ZX-calculus

In this section, we introduce the qudit stabiliser ZX-calculus for odd prime dimensions.
We let p denote an arbitrary odd prime, and Zp = Z/pZ the ring of integers modulo p. Since

p is prime, Zp is a field, implying that every non-zero element in Zp has a multiplicative inverse.
We denote the group of units (i.e. invertible elements) as Z∗

p := Zp \ {0}. We also define the
Legendre symbol, for x ∈ Z∗

p, as follows:
(︃
x

p

)︃
=

{︄
1 if ∃y ∈ Z∗

p s.t. x= y2;
−1 otherwise;

(1)

The Hilbert space of a qupit is H = span{|m⟩ | m ∈ Zp} ∼= Cp. Letting ω := e
i 2π

p be a p-th
primitive root of unity, we can write down the following standard operators Z andX, occasionally
known as the clock and shift operators: Z |m⟩ := ωm |m⟩ and X |m⟩ := |m+1⟩ for any m ∈ Zp.
Notably, ZX = ωXZ.

A Pauli operator is defined as any operator of the form ωkXaZb for k,a,b ∈ Zp. We consider
Pauli operator trivial if it is proportional to the identity. Each Pauli operator has a spectrum
given by {ωk | k ∈ Zp}, and we denote |k :Q⟩ as the eigenvector of a Pauli operator Q associated
with the eigenvalue ωk. It follows from the definition of Z that we can identify |k : Z⟩ = |k⟩.

1In addition to being aesthetically and ergonomically preferable, reducing the number of case distinctions also
makes the proof more easily verifiable. During the preparation of this manuscript, we identified and communicated
several errors and omissions in [13], which were subsequently fixed.

2A similar normal form for qubits was independently found in [53]. It is worth noting that our formulation was
already employed for qubits in the Oxford Quantum Software course prior to the preprint [53] appeared online.

3See https://github.com/jvdwetering/dizx.

https://github.com/jvdwetering/dizx
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The collection of all Pauli operators is denoted P1 and called the Pauli group. For n ∈ N∗,
the generalised Pauli group Pn is defined as ⨂︁n

k=1 P1. Of particular importance to us are
the (generalised) Clifford groups. These groups are defined for each n ∈ N∗ as the (unitary)
normaliser of Pn. In other words, a unitary operator C on H⊗n belongs to the Clifford group
if, for any P ∈ Pn, the conjugation CPC† is also an element of Pn. While every Pauli operator
is Clifford, there exist non-Pauli Clifford operators.

In the case of prime qudit dimensions, the group of Clifford unitaries can be generated by
three gates: the Hadamard gate defined as H := ∑︁

k∈Zp
|k : Z⟩⟨k :X|, the S gate defined as S :=∑︁

k∈Zp
ω2−1k(k−1) |k : Z⟩⟨k : Z|, and the CX gate defined as CX := ∑︁

j,k∈Zp
|j,j+k : Z⟩⟨j,k : Z| [42].

Note that in this context the Hadamard gate is sometimes also just called the Fourier transform.
Stabiliser quantum mechanics is operationally described as a fragment of quantum mechanics

where the allowed operations include initialisations and measurements in the eigenbases of Pauli
operators, as well as unitary operations from the generalised Clifford groups.

2.1 Generators

We define the symmetric monoidal category ZXStab
p as having objects N and morphisms generated

by the following diagrams, for any x,y ∈ Zp and s ∈ C:
x, y

m
... n

... :m→ n
x, y

m
... n

... :m→ n : 1 → 1 : 1 → 1
: 0 → 2 : 2 → 0 : 2 → 2 s : 0 → 0

In addition to the “standard” generators of ZX, we have introduced a new generator represented
by a light-grey bubble with a scalar written inside it, which we refer to as an explicit scalar.
These explicit scalars offer a convenient way to streamline the often cumbersome reasoning
related to scalars that is typically involved in many graphical completeness papers. Note that
the presence of the red X-spider as a generator is in principle unnecessary since the Z-spider
surrounded by Hadamard boxes is equivalent to it. However, our goal is not to provide a minimal
set of generators, but rather a convenient one.

Diagrams in our framework can be composed in two ways: sequentially, by connecting output
wires to input wires, or vertically, by “stacking” diagrams, corresponding to the tensor product
operation which is defined as n⊗m= n+m on objects.

2.2 Interpretation

The interpretation of a ZXStab
p -diagram is defined on objects as JmK :=Cpm , and on the generators

as:
s

x, y

m
... n

...

{
= p

n+m−2
4

∑︂
k∈Zp

ω2−1(xk+yk2) |k : Z⟩⊗n ⟨k : Z|⊗m J K =
∑︂

k∈Zp

|k : Z⟩⟨k : Z|

s
x, y

m
... n

...

{
= p

n+m−2
4

∑︂
k∈Zp

ω2−1(xk+yk2) |−k :X⟩⊗n ⟨k :X|⊗m J K =
∑︂

k∈Zp

|k : Z⟩⟨k :X|

r z
=

∑︂
k∈Zp

|kk : Z⟩
r z

=
∑︂

k∈Zp

⟨kk : Z|
r z

=
∑︂

k,ℓ∈Zp

|k,ℓ : Z⟩⟨ℓ,k : Z|

and J s K = s.



224 The Qupit Stabiliser ZX-travaganza

There are a couple of things we should remark about this interpretation. First, the definition
of the X-spider does not follow the standard convention. It is defined in such a way that it maps
X-eigenstates to their additive inverse (modulo p). This definition is used in order to satisfy
the property of flexsymmetry [16, 17], which allows us to treat diagrams as undirected graphs.
Second, note that the interpretation of phases on the spiders has an additional 2−1 factor which
is necessary for the later stated Euler and Gauss axioms to be sound. This factor is considered
modulo p, so for instance, for p = 5 we have 2−1 ≡ 3. Finally, the spiders are defined with a
global scalar factor of pn+m−2

4 to follow the well-tempered normalisation convention of [27]. This
allows us to present the axioms later on with significantly fewer scalar factors floating around.

While the conventional qudit ZX-calculus represents spiders using a (d−1)-dimensional vec-
tor [59], we employ a different approach by leveraging a useful property of the Clifford group
for prime-dimensional qudits: the phases of its spiders are pm-th roots of unity raised to poly-
nomial functions with a maximum degree of 2 [26]. This property enables us to capture the
essence of Clifford spiders using only two parameters: the coefficients of the linear and square
terms. As a result, we develop a more elegant and intuitive framework for reasoning about
stabiliser maps, requiring only two parameters in any odd-prime dimension. To establish a con-
nection between our convention and the original qudit ZX-calculus, we define a mapping where
a spider with phase parameter (x,y) corresponds to the spider described in [59] with parameter
−→α := (α1, · · · ,αd−1), where αk = ω2−1(xk+yk2).

For any a ∈ Zp, the diagrams
a, 0

and
a, 0

correspond to the single qupit Pauli

Za and Xa gates, respectively. Similarly, the diagrams
a, b

and
a, b

correspond to
Clifford unitaries for any a,b ∈ Zp. As a result, we designate spiders with a phase (a,0) as Pauli
spiders, and spiders with a phase (a,b) as Clifford spiders. Furthermore, spiders with a phase
(0, b) are referred to as purely-Clifford spiders, while spiders with a phase (a,z) where z ̸= 0 are
termed strictly-Clifford spiders. When the parameters of a spider are all zero, i.e. x= y = 0, we
call the spider phase-free and we denote it without label as , and similarly for the X-
spider. Lastly, we designate the phase-free X-spider as the antipode since it implements
the map |k : Z⟩ ↦→ |−k : Z⟩.

Contrary to the qubit case, the qudit Hadamard gate is not self-inverse. Instead, it follows
the property that four successive applications of the Hadamard gate results in the identity, that
is, H4 = I. Therefore, the inverse of the Hadamard gate is given by H3. To maintain the
clarity and simplicity of diagrams, we introduce the shorthand notation - :=
to represent the inverse of the Hadamard box.

2.3 Axioms

We present the axioms of our calculus in Figure 1. In addition to these concrete rules, our
calculus also follows the structural rules of a compact-closed PROP. This property implies
that “only connectivity matters”, allowing us to treat our diagrams as undirected graphs while
preserving their interpretation as linear maps.

These rewrite rules are essentially a simplified version of the complete set of rewrite rules
found in [13]. We can show these rules are equivalent to those found in that paper, by deriving
the missing axioms.
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=
(Special)...p-1

=
(Bigebra)

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

1, 0
=

(Copy)
1, 0

1, 0

a, b

=
(Colour)...

a, b...
...

... =
(M-Elim) ...z

a, b

-z-1a, z-2b

=
(Euler) 0, 1

0, -1

0, 1

Stabiliser axioms Scalar axioms

=
(Zero)

00

=
(One)

1

λ µ λµ=
(Prod)

1, 0

=
(Nul)

0

(︁
b
p

)︁
i
- p-1

2

0, b

=
(Gauss)

√
p

a, 0

c, d

=
(Omega) ω2-3ac

ω2-2a2d

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

{︄
if b= 0

Figure 1: The rewrite rules of the qudit stabiliser ZX-calculus for any odd prime dimension p.
Here a,b,c,d ∈ Zp, z ∈ Z∗

p and λ,µ ∈ C.
(︂

b
p

)︂
is the Legendre symbol, as defined in Equation (1).

The dotted square in One depicts the empty diagram.

Proposition 1. For any z ∈ Z∗
p and a,c,d ∈ Zp, ZXStab

p proves the following axioms from [13]:

=
(Z-Elim)

=
(X-Elim)

=
(Char)

=
(Shear)

=
(Mult)...z

0, z-1

0, z

0, z-1

c, da, 0 a, 0 c + ad, d

0, z-1

ω2-2ac+2-3a2d

a, 0
=

(Copy)
a, 0

a, 0

...p

Note that all the proofs in the paper can be found in the appendices.
We also change the presentation of scalars, but we can rely on the reduction in [13] of the

scalar fragment to the elementary scalar fragment:
Definition 2. An elementary scalar is a diagram A ∈ ZXStab

p [0,0] which is a (possibly empty)
tensor product of diagrams from { λ , s, 0 1, 0 , , , 0, 1 | λ ∈ C,s ∈ Zp}.

Lemma 3. ZXStab
p is complete for elementary scalars. Explicitly, if s : 0 → 0 is an elementary

scalar, then s JsK= .
With these results, we can see that every derivation of [13] is also valid in our calculus, so

that the rules of Figure 1 are complete. For this reason, we freely use the lemmas of [13] in the
rest of this paper.

In deriving Mult and Shear in Proposition 1, as well as in the reduction to AP-form of
Section 3, we make extensive use of the following “strictly-Clifford” state colour-change rules:
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Lemma 4. Strictly-Clifford states can all be represented both using Z- and X-spiders: for any
a ∈ Zp and b ∈ Z∗

p,

=
a, b

-ab-1, b-1

ab-1, -b-1

=
a, b

-ab-1, b-1

-ab-1, -b-1

This lemma gives a qupit version of the well-known qubit ZX rule ∝
± π

2 ∓ π
2

.
On the way to proving this lemma, we also prove the qupit Clifford version of supplementarity,

originally introduced for the qubit case in Ref. [56]:
Lemma 5. For any b ∈ Z∗

p,

=0, b

0, -b
=0, b

0, -b

A generalisation of this rule is known to be necessary, but not sufficient, for the completeness of
the Clifford+T fragment in the qubit case [56, 46].

2.4 A word on scalars

Handling scalars in a graphical language is always a delicate issue. Scalars are essential to guar-
antee the soundness of rewriting rules but can sometimes be seen as a cumbersome bureaucracy
that can be omitted in practice and recovered through a quick normalisation check at the end of
a calculation. As a result, some textbooks prefer to work up to non-zero scalars [23], and in [1],
a first proof of completeness is presented without scalars, which are addressed in a subsequent
article [2]. There is no perfect solution to this situation.

In this paper, we adopt an intermediary approach that can be extended to other graphical
languages: the introduction of grey scalar boxes. This approach bears resemblance to how
the ZH-calculus handles scalars [3], although in the ZH-calculus, the scalar boxes are directly
representable within the calculus itself, requiring no extension as described here. Given any prop
P, the set of scalars P[0,0] forms a commutative monoid [43]. We view P[0,0] as a monoidal
category with a single object, where the ⊗ and ◦ operations are identified. We then consider the
product category P[0,0] × P, which also forms a prop, with arrows represented as pairs (s,f),
where f : n → m is an arrow of P and s is a scalar. Graphically, such a pair is depicted as
a diagram representing f together with a floating grey scalar box containing s. The principal
equations governing the behaviour of scalar boxes are then One and Prod. In P[0,0] × P,
grey boxes and diagrams are treated independently. To achieve the desired axiomatization of
P, we need to quotient the equational theory by the equation s JsK= for all s : 0 → 0. This
can be accomplished by introducing rules that guarantee the desired result for a family of well-
chosen elementary scalars. Then it is enough to show that any diagram 0 → 0 can be reduced
to elementary scalars as we do in Lemma 3.

3 Normal forms

In this section, we show that we can simplify stabiliser diagrams into two distinct normal forms:
the affine with phases (AP) form and the graph state with local Cliffords (GSLC) form. The
AP form can be efficiently transformed into a unique reduced form, offering an alternative proof
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of completeness. On the other hand, the GSLC form is particularly useful for rewriting and
decomposing stabiliser unitaries.

3.1 Graph simplifications

Before reducing the diagrams to our normal forms, we first need to simplify them into a graph-
like form. In this form, the diagrams consist only of Z-spiders and H-edges. To define the qupit
graph-like diagrams, we first define H-boxes as:

:=x
...x

where x ∈ Zp is the weight of the H-box. Unlike the multipliers in [13], H-boxes are undirected,
thus, we can treat diagrams that contain only generators and H-boxes as undirected (weighted)
graphs.
Proposition 6. ZXStab

p proves the following equations:
yx = x

y
= x + y

0 =1 =

- xy

yx = xy-1

Since edges that contain H-boxes are central to the subsequent proofs, we define H-edges,
similarly to the qubit case, as a blue dashed line with the corresponding weight on top:

:=... ... ... ...xx (2)

Definition 7. A ZX-diagram is graph-like when:
1. All spiders are Z-spiders.
2. Z-spiders are only connected via H-edges.
3. There are no self-loops.
4. Every input or output is connected to a Z-spider.
5. Every Z-spider is connected to at most one input or output.
Using standard techniques [33], it is evident that any ZX-diagram can be transformed into a

graph-like form. This transformation involves several steps: performing a colour change on all
X-spiders, fusing all Z-spiders, removing self-loops, and introducing identity elements to ensure
that each input and output is correctly connected to a Z-spider. Once in graph-like form, the
diagram can be represented as an open, weighted graph, where the edge weights are elements of
Zp and each vertex is labelled by a phase (a,b) ∈ Z2

p.
Now that we have a graph-like diagram, we can differentiate between boundary spiders, those

directly connected to an input or output, and interior spiders, those that are only connected to
other spiders. Subsequently, we demonstrate that many of the internal spiders can be removed
from a diagram using similar techniques to the qubit case [33].

The local complementation simplification enables the removal of a strictly-Clifford interior
spider by introducing phases and wires to the spiders it is connected to. This technique is
analogous to the qubit version described in [33].
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Lemma 8 (Local complementation simplification). For any z ∈ Z∗
p and for all a,αi,βi,ei,wi,j ∈

Zp where i, j ∈ {1, . . .k} such that i < j we have:
a, z

e1
e2

ek

α1, β1

α2, β2

αk, βk

w2k

w12
w1k

· · ·

· · ·
· · ·

· · ·

≈
γ1, δ1

γ2, δ2

γk, δk

g2,k
g1,2

g1,k

· · ·

· · ·
· · ·

· · ·

Here γi = αi −eiaz
-1, δi = βi −z-1e2

i , and gi,j = wij −z-1eiej .
We also have an analogue of the pivot rewrite rule. This rule enables us to eliminate con-

nected interior Pauli spiders by introducing additional phases and connections to the spiders
they are connected to.

First, we prove a simplified version of pivoting:
Lemma 9. The following version of pivoting is derivable in ZXStab

p :

=
a, 0 b, 0...

...

...

...
...

... e1

ei

f1

fj

ϵ

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

...

-ϵ-1eifj

-ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1

ω2-3ϵ-1ab

Here ϵ ∈ Z∗
p and all the other variables are allowed arbitrary values.

Then the general version can be derived from that:
Lemma 10 (Pivoting simplification). General pivoting is derivable in ZXStab

p :

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

· · · · · ·
α2, β2

· · ·

e2

f2
g1,k

g1,2 g2,k

=
γ1, δ1

γ2, δ2

γk, δk

· · ·
· · · · · ·

· · ·

ω2-3ϵ-1ab

Here again ϵ ∈ Z∗
p with every other variable on the left-hand side allowed arbitrary values. On

the right-hand side γi = αi − ϵ-1(afi + bei), δi = βi −2ϵ-1eifi, and gi,j = −ϵ-1(eifj +ejfi).

3.2 AP-form

The above results suggest that through the application of local complementation and pivoting,
it is possible to transform any state diagram (a diagram without inputs) into a graph-like
diagram where only Pauli spiders remain internal spiders, and they are exclusively connected to
boundary spiders. This is achieved through a two-step process. Firstly, any internal spider that
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is Clifford is eliminated through local complementation. This ensures that only Pauli spiders
remain internal. Secondly, given that the diagram contains only Pauli internal spiders, any
connected pair of internal spiders can be removed using pivoting. We give a name to this type
of diagram:
Definition 11. We say that a graph-like diagram is in Affine with Phases form (AP-form)
when:

• There are no inputs;
• The internal spiders are Pauli spiders;
• Internal spiders are only connected to boundary spiders.
We refer to this class of diagrams as “Affine with Phases” because they correspond to states

described by an affine subspace of Z basis states, with an additional phase function applied to
the output. This characterisation is supported by the following lemma:
Lemma 12. A general non-zero n-qupit diagram in AP-form is described by the diagram:

a1, 0

α1, β1

α2, β2

αn, βn

ak, 0

e1,1
ek,1

e1,2

e1,n

ek,n

ek,2
...

f1,2

f1,n
f2,n

... (3)

where al,αi,βi,eh,i,fi,j ∈ Zp with l ∈ {1, . . . ,k} and i, j ∈ {1, . . . ,n} such that i < j. The inter-
pretation of this diagram is (up to some non-zero scalar) equal to a state∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩ (4)

where E is the weighted bipartite adjacency matrix of the internal and boundary spiders, a⃗
describes the Pauli phases of the internal spiders, and ϕ is a phase function that describes the
connectivity and phases of the boundary spiders:

E =

⎡⎢⎢⎢⎢⎣
e1,1 · · · e1,n

e2,1 · · · e2,n

...
...

ek,1 · · · ek,n

⎤⎥⎥⎥⎥⎦ , a⃗=

⎡⎢⎢⎣
a1
...
ak

⎤⎥⎥⎦ , ϕ(x⃗) =
∑︂

i,j∈{1,...,n}
i<j

2-3xiαi +2-2x2
iβi −2-3fi,jxixj

Notably, states described by AP-form diagrams correspond to the stabiliser normal forms
described in Ref. [64].

With AP-form diagrams, we can prove a qupit version of the Gottesman-Knill theorem, which
states that we can efficiently sample from the probability distribution of a stabiliser computation.
Let us consider an AP-form diagram represented by (E, b⃗,ϕ). When we measure this state in the
computational basis, we observe that the phase function ϕ has no impact on the measurement
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outcomes, allowing us to disregard it. Hence, we can describe the state as N∑︁
Ex⃗=a⃗ |x⃗⟩, where

N is a normalisation constant. This state represents a uniform superposition of the states |x⃗⟩
that satisfy the equation Ex⃗= a⃗.

To sample from such states, we need to generate solutions to this equation uniformly at
random. Efficiently achieving this involves finding any solution Ex⃗′ = a⃗ and then obtaining a
basis v⃗1, . . . , v⃗ℓ for the linear space {Ex⃗= 0⃗}. We can then return x⃗′ +∑︁ℓ

i biv⃗i, where the bi ∈ Zp

are chosen uniformly at random.
AP-form diagrams also enable us to provide an alternative, more direct proof of the com-

pleteness of ZXStab
p through reduction to a unique normal form. In the context of graphical

calculi, completeness means that the rewrite rules of the calculus can prove any true equation.
In other words, if JAK = JBK, then it is possible to rewrite diagram A into diagram B.
Definition 13. We say that a diagram in AP-form defined by (E,a⃗,ϕ) is in reduced AP-form
if it is either zero, or it is non-zero and satisfies the following conditions:

• E is in reduced row echelon form (RREF), i.e., it is fully reduced using Gaussian elimina-
tion.

• E contains no fully zero rows.
• ϕ only contains free variables from the equation system of E, i.e., variables that do not

correspond to pivot columns in E.

Lemma 14. For any non-zero state |ψ⟩, there is at most one triple (E,a⃗,ϕ) satisfying the
conditions of reduced AP-form such that:

|ψ⟩ ≈
∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩

Therefore, a diagram in reduced AP-form is unique.
Now, our objective is to demonstrate that we can rewrite a ZX-diagram in AP-form in a

manner that transforms its biadjacency matrix E into RREF. Additionally, we need to show
that we can modify the diagram so that the corresponding phase function ϕ only includes
free variables from the equation system Ex⃗ = a⃗. Put simply, we need to prove that we can
perform primitive row operations on a ZX-diagram in AP-form as well as eliminate any phase
or Hadamard edge from a pivot spider.
Lemma 15. We can perform primitive row operations on a ZX-diagram in AP-form, i.e., we can
“add” one inner spider to another. For any k,a,b,ei,fj ∈ Zp where i ∈ 1, . . . ,n and j ∈ 1, . . . ,m:

a, 0

b, 0

e1
e2

en f1
f2

fn

...

≈

a, 0

ka + b, 0

e1
e2

en
ke1+f1

ke2+f2

ken+fn

...

Using this result, we can apply primitive row operations to E in AP-form diagram and hence
reduce it to RREF. Through diagrammatic rewrites, we can show that when E is in RREF, we
can eliminate all the phases and H-edges associated with the non-free variables of E.
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Lemma 16. If an AP-form diagram has its biadjacency matrix E in RREF, we can rewrite the
diagram so that the boundary spiders corresponding to non-free variables of E have zero phases,
and there are no H-edges connecting them to other boundary spiders.

Lemma 17. Any diagram in ZXStab
p can be converted into one in reduced AP-form.

The completeness result follows immediately from the above lemma.
Theorem 18 (Completeness). For any pair of ZX-diagrams A,B ∈ ZXStab

p , if JAK = JBK, we can
provide a sequence of rewrites that transforms A into B.

3.3 GSLC form

The AP-form is advantageous as it can be directly transformed into a unique normal form, and
allows for straightforward classical sampling. However, it may be less suitable for other applica-
tions. For instance, when applying the algorithm described above to a diagram originating from
a Clifford unitary, it becomes challenging to establish a clear relationship between the resulting
simplified diagram and a corresponding quantum circuit.

In this section, we introduce the qupit version of the well-known qubit GSLC-form diagrams.

Definition 19. We say a diagram is in GSLC form (Graph State with Local Cliffords) when it
is graph-like, up to Hadamards on input and output wires, and it has no internal spiders.

The algorithm for reducing a diagram to AP-form may still yield diagrams with internal
spiders, specifically Pauli spiders connected to boundaries. However, we can eliminate these
internal spiders by using a boundary pivot.
Lemma 20. The following boundary pivot rule is derivable in ZXStab

p :

a, 0

b, c

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ ≈

α1, β1

αi, βk

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δl

...
...

...

...
...

... g11

g1l

gk1

gkl

-ϵ-1a, 0

-

-ϵ-1a, 0

b, c

d-1

h1 h1

hk

hk

Here gij := −ϵ−1eifj and hi := −ϵ−1ei. This rule holds for all choices of phases as long as ϵ ̸= 0.
To observe how this rewrite aids in eliminating internal spiders, consider that the spider

with a phase of (b,c) now becomes an internal spider connected to an internal Pauli spider.
Consequently, if c = 0, we can eliminate the pair using standard pivoting. On the other hand,
if c ̸= 0, we can employ a local complementation to remove the (b,c) spider. This alteration
modifies the phase of its sole neighbour, subsequently enabling its removal through another
local complementation.

Lemma 20 can be straightforwardly modified, similar to Lemma 10, to accommodate arbi-
trary connectivity between the internal spider and the boundary. By incorporating additional
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spider unfusions, we can extend the application of Lemma 20 to boundary spiders that are con-
nected to multiple inputs or outputs. It is worth noting that when applying Lemma 20 multiple
times to the same boundary, different powers of the Hadamard gate may appear on the input
or output wire. For instance, applying it twice yields (H3)2 =H2, and another iteration reverts
back to H.

Hence, we can observe that it is indeed possible to eliminate all internal spiders from a
diagram, allowing for an efficient reduction of diagrams to GSLC form. This is particularly
significant for diagrams derived from unitaries, as we can then rewrite them in the following
manner:

H?

H?

H?

...

H?

H?

H?

··
· = ··
·

x

y

z

A

H?

H?

H?

H?

H?

H?

... ... ...

x y

z

a1, b1

a2, b2

an, bn

c1, d1

c2, d2

cn, dn

a1, b1

a2, b2

an, bn

c1, d1

c2, d2

cn, dn

(Fusion)

(Colour)

Here, the boxes labelled with H? represent a possible power of a Hadamard gate acting on the
qupit. By applying spider unfusion and colour change operations, we observe that the diagram
can be decomposed into several layers consisting of Hadamard gates, Z phase gates, CZ gates,
and a middle portion represented by a weighted biadjacency matrix A. This part of the circuit
implements a map of the form |x⃗⟩ ↦→ |Ax⃗⟩, where x⃗ ∈ Zn

p and A is an n×n matrix over Zp.
Since we assume the entire map to be unitary, A must also be invertible. Consequently, such a
‘linear’ qupit map can always be implemented through a series of CX gates, transforming |x,y⟩
to |x,x+y⟩ (the decomposition is achieved via standard Gaussian elimination over Zp). Thus,
we arrive at the following result.
Theorem 21. Any odd-prime-dimensional qudit Clifford unitary can be efficiently decomposed
into a quantum circuit consisting of the following layers:

H—Z—S—CZ—CX—H—CZ—Z—S—H
To the best of our knowledge, such a Clifford normal form for qudits has not been described

before in the existing literature. It is worth noting, though, that this result bears a striking
resemblance to the qubit normal form for Clifford circuits outlined in [33].

4 Conclusion

We presented a simplified version of the qudit ZX-calculus for odd prime dimensions based on the
work in Ref. [13]. This version includes fewer rules and a new scalar gadget to bring the reasoning
about scalars more in line with practice. We also extended the spider-removing versions of local
complementation and pivoting to qupits. This extension enabled us to reduce diagrams efficiently
to AP-form and its unique version, the reduced AP-form. As a result, we obtained a new
completeness proof for the qupit stabiliser fragment, which is more straightforward compared to
previous proofs. Additionally, we discovered a reduction to GSLC form, leading to a novel layered
decomposition of qupit Clifford unitaries. To support these developments, we implemented our
rewrites into DiZX, a port of PyZX that now supports qudit stabiliser diagrams of arbitrary
dimension.
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For future work, it would be interesting to investigate whether our techniques can be applied
to develop a useful circuit optimisation pipeline for qudits. It would also be valuable to identify
specific circuits that would benefit from such optimisation.
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Appendix

A Necessity of the rules

We can demonstrate that most of the non-scalar rules of our axiomatisation are necessary,
meaning that they cannot be derived from the other rules.

Note that the standard approach to showing necessity involves defining an alternative in-
terpretation of the diagrams in which every rewrite rule remains sound, except for the specific
rule being examined for necessity. This approach reveals that the other rules cannot establish
the rule that undermines soundness. Several examples of this approach can be found in the
works of Backens, Perdrix, and Wang [5, 6]. In particular, we may define an interpretation into
projective Hilbert spaces (quotienting by all non-zero scalars), in order to automatically satisfy
all the scalar axioms and focus on the non-scalar axioms. This automatically satisfies all the
scalar axioms, allowing us to focus solely on the non-scalar axioms. Another approach involves
using graph properties that are invariant under all but one rule. In the following discussion, we
rely on the invariants of non-emptiness and connectivity.

We can demonstrate the necessity of all but two of the stabiliser rules:
• At least one of the Fusion rules is necessary, as they are the only rules that allow the

decomposition of a spider with an arbitrary number of legs into spiders with fewer legs. In
other words, these rules are not sound for an interpretation that assigns zero to all spiders
with at least p legs.

• Special is the only axiom that enables the removal of all non-identity generators from
a diagram. This breaks the interpretation where every generator is zero, except for the
identity.

• Colour is necessary. To see this, consider the interpretation into projective Hilbert spaces
where we redefine the X-spiders to swap the sign of the Pauli phase. It can be easily verified
that this new interpretation satisfies all axioms except for Colour.

• Copy is necessary since it is the only axiom that can transform a connected diagram into
a disconnected one.

• Euler is necessary, as shown by a modified interpretation similar to those in Refs. [35, 39].
We propose a conjecture regarding the necessity of M-Elim, as it stands out as the only rule

that establishes a connection between elements in Z∗
p and their multiplicative inverses. Although

we lack a formal proof for this intuition, we believe it to be true.
It is worth noting that despite its centrality in most derivations, there remains one stabiliser

axiom for which we have no knowledge of its necessity, even in the qubit case [6] or in the
setting of graphical linear algebra [73]: Bigebra. We leave this intriguing open problem for the
particularly motivated reader to explore further.

As for the scalar rules, at least one subcase of each is necessary:

https://arxiv.org/abs/1805.03032
https://doi.org/10.22331/q-2021-06-04-466
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• One subcase of Omega is necessary because it is the only rule that allows the introduction
of an ω scalar box, thereby breaking the interpretation where we redefine the ω scalar box.

• Zero is the only rule that relates a diagram without a zero scalar box to one that includes
it. This means that when we interpret the zero scalar box as equal to 1 and set all other
generators to zero, this rule becomes necessary.

• One is necessary as it is the only rule that connects a non-empty diagram to an empty
diagram.

• Prod is necessary because there are complex numbers that cannot be expressed within
the fragment of the language without scalar boxes. This rule is the only one that allows
the multiplication of two such numbers.

• Nul is necessary, following an analogous argument as of Ref. [5].
• In Gauss, the subcase b= 0 is necessary since it is the only rule that allows one to interpret

a diagram to a scalar box with a non-unit modulus. Additionally, at least one subcase
b ̸= 0 is necessary because these are the only rules that introduce a −1 scalar box.

B Qupit Clifford ZX-calculus

B.1 Multipliers

We extend our language by multipliers [13], which are defined as:

x:=x - x:=x - (5)

We can explicitly express multipliers as, for x ∈ Z∗
p,

...xx = ...xx = (6)

The following equations hold for multipliers and are proved in Ref . [13]:
Proposition 22.

= -1

x y = xy z-1 = z

x

y
= x + y

= 1 p = 0

B.2 Recovering the derivations of Ref. [13]

In this appendix, we recover all of the lemmas that were proved in [13]. We do this by proving
that all of the axioms used there are derivable from the simplified set given in section 2 (up to
scalars). We also show that the language is complete for the scalar fragment, which completes
the proof. Since many of these proofs are entirely analogous to their counterparts in Ref. [13],
we omit them and refer to Ref. [13] instead. In order to avoid ambiguity, we refer to the proofs
in the specific version of Ref. [13] cited as Ref. [14].
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=
(Z-Elim)

=
(X-Elim)

=
(Char)...p

=
(Bigebra)

=
(Shear)

=
(Mult)...z

=
(Fusion)

a, b ...
...

c, d ...
...

a+c,
b+d

...

...

...

...

0, z-1

0, z-1

0, z

0, z-1

a, 0
=

(Copy)
a, 0

a, 0

( )⊗z

a, b

=
(Colour)...

a, b...
...

...

( )⊗p

=
(M-Elim)...z

a, b -z-1a, z-2b

( )⊗z-1
c, da, 0 a, 0

c, 0
a, 0

c + ad, d

-2-1, 0
da2, 0

Figure 2: The original rule set of the qupit stabiliser ZX-calculus of [13].

In [13], the calculus was axiomatised using the equations presented in Figure 2.
Comparing with the axioms of this paper (and ignoring scalars for now), the missing axioms

are Z-Elim, X-Elim, Char, Mult, Shear. In addition, the axioms of Fusion and Copy were
made more minimalistic.
Lemma 23. Green 1 → 1 spiders are trivial:

=

Proof.
= ...p-1 = ...p-1 =

(Fusion)(Special) (Special)

Lemma 24. Products of Hadamards are antipodes:

=

Proof. Same as Lemma 37 of Ref. [14].

Lemma 25. Antipodes are self-inverse:

=

Proof.
=

(Special) ...p − 1 =
(Fusion) ...p − 1 =

(Special)

Lemma 26. Hadamards and antipodes commute:

=
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Proof. Same as Lemma 38 of Ref. [14].

Lemma 27. The inverse Hadamard is a product of Hadamards, and admits a “tree” Euler
decomposition:

- = =
0, 10, 1

0, -1

= =

Proof. The first part is the same as Lemma 39 of Ref. [14], and the second part follows using
Euler and Colour. The last two follow from the first equation and Lemma 24.

Lemma 28. The product of the Hadamard and its inverse equals the identity:

- = = -

Proof.
- = = =

(Lem 24)(Lem 27) (Lem 25)

The second equation can be proved similarly.
Lemma 29. Units absorb antipodes:

= =

Proof. Same as Lemma 40 of Ref. [14].

Lemma 30. For any x,y ∈ Zp,
x, yx, y -x, y

=
-x, y

=

Proof.
x, y

=
(Lem 23) x, y

=
(M-Elim) -x, y

x, y

=
(Colour) x, y

=
(Lem 26) x, y

=
-x, y

=
-x, y(Colour)

Lemma 31. The bigebra law holds for multiple legs: for any m,n ∈ N, 2 ≤ n,m,

=...n
...m

...n
...m ,

where in the diagram on the LHS, there are m green and n red spiders, and each green spider
is connected to each red spider by a single wire.

Proof. Follows from straightforward induction (which furthermore is analogous to the qubit
case).

Lemma 32. Using the Copy rule in Figure 1, the Copy rule in Ref. [13] is derivable:

a, 0
=

(Copy)
a, 0

a, 0
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Proof. The following holds for a= 2, · · · ,p. As p mod p= 0, this also proves the a= 0 subcase
of Copy. The a= 1 case is just Copy.

a, 0

...d-a

-1, 0

=
(Fusion)

-1, 0

-1, 0

-1, 0

=
(Lem 31)

1, 0

1, 0

=
(Lem 30)...d-a

...d-a

a, 0

a, 0

=
(Fusion)

=
(Copy)

1, 0

1, 0

1, 0

1, 0

-1, 0

-1, 0

-1, 0

-1, 0

=
(Lem 30)

...d-a

...d-a

...d-a

...d-a

Lemma 33. The Hopf identity is derivable in ZXStab
p :

=

Proof.

= =

==

(Fusion) (Bigebra)

(Lem 29) (Lem 32)

=
(Omega)

Lemma 34. The axiom Char of [13] is derivable:

=...p

Proof.

=...p

...p − 1

= =
(Fusion) (Special) (Lem 33)

We are now ready to prove the completeness of the calculus for elementary scalars.
Lemma 3. ZXStab

p is complete for elementary scalars. Explicitly, if s : 0 → 0 is an elementary
scalar, then s JsK= .

Proof. First, note that we have:

=
(Lem 33)

=
(Omega)

= 1

We can use this rule and the scalar axioms to rewrite every scalar in Definition 2, as well as
the zero scalar 1, 0 , into an explicit scalar. Then, we apply Prod to rewrite this collection
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of explicit scalars into a single one.
Lemma 35. Self-loops on green spiders can be eliminated:

= =
√

p
√

p

We include the colour-swapped version of this rule for completeness, even though it no longer
includes a genuine self-loop.

Proof.

= = = =
(Lem 25) (Fusion) (Lem 33) (Fusion) √

p

(Gauss)

The red version follows form Colour and Lemma 24.
Lemma 36. Green units absorb red rotations and vice-versa:

x, y

=
x, y

=

Proof.
x, y

x, y

= =

x, y

=
(Fusion) (Lem 32) (Omega)

The red version follows form Colour.
Lemma 37. The green co-multiplication copies antipodes:

=

Proof.

==

=

=

= =

(Fusion)

(Fusion)

(Lem 29)

(Lem 29)(Lem 32)

(Bigebra)

Lemma 38. Green Pauli states copy through red rotations and vice-versa:

a, 0 c, d

=
a, 0 c, d

=
a, 0 -a, 0

ω2-3ac+2-2a2d ω2-3ac+2-2a2d

Proof.

a, 0 c, d

=
(Fusion)

a, 0
c, d

=
(Lem 32)

a, 0 c, d

a, 0
=

a, 0

ω2-3ac+2-2a2d(Omega)
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a, 0 c, d

=
(Colour)

- =
(Lem 28) a, 0 c, d

=
a, 0

=
(Colour)

-a, 0

a, 0 c, d
ω2-3ac+2-2a2d ω2-3ac+2-2a2d

Lemma 39. The antipode can be rewritten as a multiplication:

= ...p-1 = -1

Proof. This follows from Special and the definition of the multiplier, Equation (5).

Lemma 40. For any x,y ∈ Zp and m,n ∈ N,

x, y

m
... n

...
x, y

m
... n

...
-x, y

m
... n

...=
-x, y

m
... n

...

Proof.

x, y

m
... n

...
-x, y

m
... n

...= m
... n

...

x, y

= m
... n

...

x, y

m
... n

...

-x, y

==
(Fusion) (Lem 30) (Fusion)(Lem 37)

x, y

m
... n

...
-x, y

m
... n

...=
x, y

m
... n

... =
(Colour) x, y

m
... n

... =
-x, y

m
... n

... =
(Lem 26) (Colour)

Lemma 41. We can derive the Colour rule for both red and green spiders, and also for the
Hadamard inverse:

a, b

=...
a, b...

...
...

-a, b

= ...
a, b ...

...
...

a, b -

-

-

-
=...

-a, b...
...

...
a, b

= ...
a, b-

-

-

-

...
...

...

Proof. This follows from Colour and Lemmas 27 and 40.
Lemma 42. Hadamard gates or their inverses can be pushed through spiders:

a, b

=...
a, b...

...
... =

a, b...
...

-a, b ...

-

-

...

-

-

Proof. This follows from Lemmas 28 and 41.
Lemma 43. Green spiders copy red Pauli phases, and vice-versa: for any x ∈ Zp,

x, 0

x, 0

x, 0

=
x, 0

-x, 0

-x, 0

=
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Proof.

x, 0
==

x, 0x, 0 x, 0

=
x, 0

x, 0

=
(Fusion) (Bigebra) (Lem 37) (Lem 32)

(Fusion)

The second equation follows from Lemmas 28 and 41.

Lemma 44. Parallel multipliers sum: for any x,y ∈ Zp:

...x

...y
= ...x + y

Proof. This is a straightforward consequence of Fusion.

Lemma 45. For any z ∈ Z∗
p,

...z =...z =

Proof.
...z = ...z =

(Lem 32) (Fusion)

The other rule follows from Colour.
Lemma 46. For any x,y ∈ N,

=...x
...y

...x · y

Proof.

...x
...y

...x · y

...x
...y= = ...x

...y

= ...x · y =

(Lem 31) (Lem 37)

(Fusion) (Lem 37)

The second equality follows from Colour.

Lemma 47. For any x ∈ Z∗
p,

...x
...x = ...x

...x=
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Proof.

...x
...x

...x

...x

=
...x

...x
...x =

=
...x

= =

=

=

(Lem 25)

(Lem 37)

(Fusion)

(Fusion) (Lem 31)

(Lem 40)

(Lem 45) (Lem 30)

(Fusion)

(Lem 25)

The second equality follows from Colour.
Lemma 48. Spiders copy invertible multipliers: for any x ∈ Z∗

p,

x

x

x =
(a)

x

-x

-x

=
(b)

Proof.

x

x

x = ...x = ...x = ...x

...x

...x
= =

...x

...x
=

(Eq 5) (Lem 37) (Lem 31)

(Fusion) (Fusion) (Eq 5)

The other equation follows form Colour and the definition of the multiplier, Equation (5).

Lemma 49. The action of multipliers on spiders is given by, for any x ∈ Z∗
p,

a, b ...
...

x

x

x

x

ax, bx2
...

...=
a, b ...

...
x

x

ax, bx2
...

...=
x

x

Proof. This follows from Lemma 48 and M-Elim.

Lemma 50. We can “push” multipliers through spiders as follows, for any a,b ∈ Zp and x ∈ Z∗
p,

a, b

x =
ax, bx2 x

x

...
...

a, b

x =
ax-1, bx-2 x

x

...
...

a, b

x =
ax, bx2 x

x

...
...

a, b

x =
ax-1, bx-2 x

x

...
... (7)
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Proof.

a, b

x =
a, b x

x

=
ax, bx2 x

x

x

(Lem 49)(Lem 47) x

x

...
...

...

a, b

x =
a, b x

x

=
ax, bx2 x

x

x

(Lem 49)(Lem 47) x

x

...
...

...

The other proofs follow from the above equations while using the multiplicative inverse of the
multipliers.

Lemma 51. The product of a multiplier and a Hadamard gate is an H-box:

x = x= x

Proof. This follows from Lemma 28 and the definition of the multiplier, Equation (5).
Proposition 6. ZXStab

p proves the following equations:
yx = x

y
= x + y

0 =1 =

- xy

yx = xy-1

Proof. The bottom two equations follow from the definition of the H-box at Section 3.1 and
Lemma 23. The rest can be proved using Lemmas 28, 42 and 51 and Proposition 22.

Lemma 52. H-boxes multiply with multipliers, for any x,y ∈ Zp,

x y= xy =xy

Proof.

x y = x y xy= xy=
(Lem 51) (Lem 51)(Lem 46)

xy = y x xy= xy=
(Lem 51) (Lem 51)(Lem 46)

Lemma 53. We can “push” H-boxes through spiders as follows, for any a,b ∈ Zp and x ∈ Z∗
p,

a, b

=
ax-1, bx-2

x

-x

-x

...
...

a, b

=
-ax, bx2

x

-x

-x

...
...

Proof. First of all,

a, b

=

ax-1, bx-2

x

-x

-x

a, b

x =
a, b

x

-

-

(Lem 42)(Lem 51)

=
(Lem 50) ax-1, bx-2 x

x(Lem 27)

=
(Lem 39) ax-1, bx-2 x

x(Lem 51)

(Lem 52)-1

-1
=

...
...

...
...

...
...
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The other equation can be proved similarly,

a, b

=
-ax, bx2

x

-x

-x

-a, b

=
(Colour)

x -
-

-(Lem 51)
=

(Lem 28) -a, b

x

(Prop 6)

-1

-1

=
-ax, bx2

x

x

-1

-1

(Lem 50) (Lem 52)

Lemma 54.
x

a, 0 b, 0
= ω-2-3abx

Proof.
-ax, 0 b, 0

= ω-2-3abx

(Omega)

x
a, 0 b, 0

=
(Lem 53)

Lemma 55. Any purely-Clifford states can be represented in both the red and green fragment:
for any x ∈ Z∗

p,

0, -x-2
=
(a)

=
(b)0, 1

0, x2 0, -x-2

0, 1

0, x2

Proof. Firstly, we prove the subcase x= 1 of (a):

=
(Lem 41)

0, -1
-

0, -1

0, -1
=

(Fusion)

0, 1
=

(Lem 32)

0, 1
=

(Lem 27)

0, 1
=

(Fusion)

0, 10, 1

0, -1 0, -1
0, -1 0, -1

so that

0, -1

0, 1
0, 1

=
(Fusion)

=
0, -1

0, -1

= 1

(Omega)

and

=
0, -1 0, 1

0, -10, 1

0, 1

=
0, 1

.

Then the general case for any invertible x follows using lemma 49.
(b) follows once again using Colour.

Lemma 56. The Hadamards admit more standard Euler decompositions (originally shown for
qudit ZX in [66]):

- =
0, 10, 10, 1

0, 1

=
0, 10, 10, 1

0, 1

Proof.

=
(Euler)0, 1 0, 1

0, -1

0, 1

0, 1

0, 1

0, 1

0, 1
=

(Fusion) 0, 10, 10, 1
=

(Lem 55)

We obtain the second derivation, as always, using Colour.
In the next few proofs, we make frequent use of the following fact:

Lemma 57. For any x ∈ Zp, there are a,b ∈ Zp such that x= a2 + b2.
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Proof. This is true in general for any finite field. See [72] for a proof.
Lemma 58. For any z ∈ Z∗

p,

z2 =
0, z2 0, z2

0, z-2
=

0, z2 0, z2

0, z-2

0, 1

Proof. We have

==

0, 1 0, 1

0, 1
=

=
0, 1 0, 1

0, 1

0, 10, 1 0, 1(Lem 25) (Lem 24) (Lem 56)

(Colour)

so that

=
0, 1 0, 1

0, 1
z z= z z=

0, z2 0, z2

0, z-2

0, 1 0, 1(Lem 51) (Lem 50)

and

z2 =
0, z2 0, z2

0, z-2
zz= = z

0, z2 0, z2

0, z-2
z

0, 1 0, 1(Lem 52) (Lem 47)

The second version is obtained using a completely analogous argument.
Lemma 59. For any z ∈ Z∗

p (not just squares),

z =
0, z 0, z

0, -z

Proof. If z is a square, then this result is immediate by the previous lemma. Otherwise, by
Lemma 57, z = a2 + b2 and a,b ∈ Zp are non-zero. Then

z

=
0, z 0, z

0, -z

= a2

b2
=

0, a2 0, a20, a-2

0, b2 0, b20, b-2

=
0, z

0, a-2

0, b-2
0, z

=
0, z

0, -a2

0, -b2

0, z

=
0, z

0, -a2 0, -b2

0, z

0, -1 0, -1 0, -1 0, -1

(Bigebra)

(Fusion)

(Lem 58)

(Fusion)(Lem 55)

(Lem 37)

Lemma 60. Hadamard loops correspond to purely-Clifford operations: for any x ∈ Zp and
z ∈ Z∗

p,
0, 2x

=x
0, 2z

=-z-1
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Proof. The case x= 0 is clear by decomposing the H-box according to Section 3.1. Therefore,
we only need to show that for z ∈ Z∗

p:

z
0, -z

0, z

0, z

=
(Lem 59) 0, -z

0, z

0, z

=
(Lem 40)

(Lem 25) 0, -z 0, 2z

=
(Fusion)

0, -z

0, 2z

=
(Lem 33)

(Fusion)

0, 2z

=
(Omega)

(One)

Under the assumption that the weight is invertible, the red version follows using Colour and
the green version:

0, 2z

=-z-1 = -z-1
0, 2z

=z=
(Colour) (Lem 52)

(Prop 22)

(Colour)

Lemma 5. For any b ∈ Z∗
p,

=0, b

0, -b
=0, b

0, -b

Proof. If b= x2 for some non-zero x ∈ Zp, then

=0, b

0, -b
= 0, x2

0, -x2 0, x-2

0, -x-2

=
(Lem 55) (Fusion)

Otherwise b= s2 + t2 where s, t ∈ Zp are non-zero, and

0, b

0, -b 0, -s2

0, b=
0, -t2

0, s-2

0, b=
0, t-2

=
0, s-2

0, t-2
0, b

=
0, s2

0, t2
0, b

0, -s2

0, -t2

0, s-2

0, t-2

s2

t20, b

=
0, -b 0, -b

= b

0, -b

=
0, -b

=

0, s2

0, t2

0, -s2

0, -t2

(Fusion) (Lem 55)

(Fusion)

(Bigebra)

(Lem 58)

(Lem 36)(Colour)

(Fusion)

(Fusion)

(Lem 23)

(Fusion)

The second equation follows from the first equation and the application of Colour.
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Lemma 4. Strictly-Clifford states can all be represented both using Z- and X-spiders: for any
a ∈ Zp and b ∈ Z∗

p,

=
a, b

-ab-1, b-1

ab-1, -b-1

=
a, b

-ab-1, b-1

-ab-1, -b-1

Proof. Firstly,

=
ab-1, b-1 -a, b

b-1 =
-a, b

0, b-1 0, b-1

0, -b-1

(Lem 53) (Lem 59)

=
a, b

0, b-1 0, b-1

0, -b-1

(Lem 40)

so that
a, b

0, b-1

0, -b-1

=
a, b

0, b-1 0, b-1

0, -b-1
0, -b-1 ab-1, b-1

=
0, -b-1

=
(Fusion)

(Fusion)

ab-1, 0

(Lem 23)

whence

=
a, b

0, b-1 a, b

0, b-1

0, -b-1 0, b-1

=

0, b-1

(Lem 32)

(Lem 5)

=
-ab-1, 0ab-1, 0

-ab-1, b-1

a, b

0, b-1
=

(Lem 25)

(Fusion) a, b

0, b-1

0, -b-1

0, b-1

=
(Fusion)

(Lem 30)

(Fusion)

and, finally,

a, b

=
a, b

0, b-1

0, -b-1
=

0, -b-1

=
-ab-1, -b-1

-ab-1, b-1

-ab-1, b-1

-ab-1, 0

(Fusion)

(Fusion)

(Lem 23)

The change of colour in the scalar, as well as the second derivation, follow using Colour.

Lemma 61. The following states are equivalent:

0, z-10, z

=

Proof.

0, z

=
(Fusion) 0, z

=
(Lem 4) 0, -z-1

0, z-1

=
(Omega) 0, z-1

Lemma 62. X-spiders with arbitrary phases copy Pauli Z-spiders and vice-versa:

c, d

a, 0
≈

ad-c, d
a, 0

a, 0

c, d

a, 0
≈

c-ad, d
-a, 0

-a, 0
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Proof. First of all,

c, d

a, 0
==

a, 0
a, 0

=

c, d

c, d

a, 0

a, 0

c, d

a, 0

a, 0

c, d

=
(Fusion) (Lem 31) (Lem 37)

(Lem 32)

(Fusion)
...

...
...

...
...

Then, we separate the equation into two cases based on whether the Z-spider is Pauli or not.
In case d= 0, the Z-spider is Pauli and therefore:

a, 0

a, 0

c, 0

a, 0

=
a, 0

a, 0

-c, 0

=
-c, 0

a, 0

a, 0

(Lem 38) (Fusion)

ω2-3ac ω2-3ac

Note that if d = 0, then ad− c = −c and so the lemma holds. Otherwise, d ̸= 0 and therefore
d-1 exists, so we can apply the state-change lemma:

≈
a, 0

a, 0

cd-1, -d-1

a, 0

≈
a, 0

a, 0

ad-c, d

=
ad-c, d

a, 0

a, 0

=
a, 0

a, 0

a-cd-1, -d-1

a, 0

a, 0

c, d

a, 0 (Lem 4) (Lem 4) (Fusion)

(Fusion)

(Lem 30)

Note that the phases after the application of the second state-change follow from:

−(a− cd-1)(-d-1)-1, -(-d-1)-1 = −(a− cd-1)(-d), d= ad− c, d

We can prove the second equation of the lemma using Hadamard-boxes as follows:

c, d

a, 0
=

c, d

a, 0
=- -

c, d

a, 0
-

≈
ad-c, d

-

a, 0

a, 0

=
ad-c, d

-

-a, 0

-a, 0

-

-
=

c-ad, d
-a, 0

-a, 0

(Colour) (Lem 28)

(Colour)(Lem 42)

We are now ready to prove that axioms Mult and Shear of [13] are derivable from our
simplified set of axioms:
Proposition 63. For any z ∈ Z∗

p,

=
0, z-1

0, z

0, z-1
z

0, z-1
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Proof. We have

z =
0, z 0, z

0, -z

=
0, z 0, z

0, z-1

=
(Lem 59) (Lem 4)

(Fusion)

0, z

0, z

(Lem 30) 0, z 0, z

0, z-1

so that

z

0, z-1

= z-1 =
0, z-1 0, z-1

0, z

=
0, z-1 0, z-1

0, z(Lem 25)0, z-1

z

0, z-1

=
(Lem 25)

(Lem 50)

(Lem 24)

(Lem 51)

Proposition 64. For any a,c,d ∈ Zp,

=
c, d

a, 0 a, 0 c + ad, d

ω2-2ac+2-3a2d

Proof. We first prove the subcase c= 0 and d ̸= 0:

=
a, 0 0, d a, 0

0, d

=
a, 0

0, -d-1

0, d-1

(Fusion) (Lem 4)

=
-a, 0

-a, -d-1

0, d-1

(Lem 43)

=
-a, 0

-ad, d

(Lem 4)

=
-a, 0

ad, d

(Fusion)0, d-1

ad, -d

0, d-1

ad, -d

(Lem 40)

(Lem 40) (Fusion)

Now, we have

0, d

ad, -d
=

(Fusion) 0, d

ad, 0 0, -d

=
(Lem 4) ad, 0

0, d-1
=

(Omega)

ω-2-2(ad)2d-1
=

(Prod)

ω-2-2a2d

(Lem 61)0, d-1

ad, -d
=

so that
=

a, 0 0, d -a, 0ad, d

ω-2-2a2d

Now, if d= 0,

=
a, 0 c, 0

a, 0

c, 0
=

(Fusion) (Lem 43)

a, 0

c, 0
c, 0

=
(Lem 38)

-a, 0

c, 0
=

ω2-3ac -a, 0c, 0(Fusion)

ω2-3ac

and putting both of these derivations together:

=
(Fusion)a, 0 c, d

a, 0

c, 0 0, d

=
-a, 0

c, 0

0, d

ω2-3ac

=
a, 0

c, 0 0, d

ω2-3ac

=
a, 0c, 0

ad, d

ω2-3ac - 2-2a2d

=
a, 0

ω2-3ac - 2-2a2d

c + ad, d

(Lem 40)

(Fusion)

(Lem 25)



254 The Qupit Stabiliser ZX-travaganza

B.3 Graph-like diagrams

Proposition 65. γ-weighted local Zd-complementation is derivable in ZXStab
p , for any graph

G= (V,E), γ ∈ Zp and u ∈ V ,

G ≈
...

}︄
NG(u)

u

...

G
γ
⋆u

...

...

0, −γG2
1w

0, −γG2
Nw

0, γ

(8)

Proof. Same as Lemma 12 of Ref. [14].

B.3.1 Local complementation simplification

Lemma 8 (Local complementation simplification). For any z ∈ Z∗
p and for all a,αi,βi,ei,wi,j ∈

Zp where i, j ∈ {1, . . .k} such that i < j we have:
a, z

e1
e2

ek

α1, β1

α2, β2

αk, βk

w2k

w12
w1k

· · ·

· · ·
· · ·

· · ·

≈
γ1, δ1

γ2, δ2

γk, δk

g2,k
g1,2

g1,k

· · ·

· · ·
· · ·

· · ·

Here γi = αi −eiaz
-1, δi = βi −z-1e2

i , and gi,j = wij −z-1eiej .
Proof. First, we can prove a simplified version of the lemma without phases of the boundary
spiders and H-edges as follows:

a, z

e1
e2

ek

· · ·· · · · · ·
· · ·

=

a, z

e1
e2

ek

· · ·· · · · · ·
· · ·

(Fusion) (Lem 4)

≈
e1

e2
ek

· · ·· · · · · ·
· · ·

az-1, -z-1

=

az-1, 0

0, -z-1

≈

az-1, 0

e1
e2

ek

0, -z-1e2
1

0, -z-1e2
2

0, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

(Fusion) (Prop 65)
e1

e2
ek

· · ·· · · · · ·
· · ·
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≈

az-1, 0

az-1, 0
az-1, 0

e1
e2

ek
0, -z-1e2

1

0, -z-1e2
2

0, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

=

-e1az-1, 0

-e2az-1, 0
-ekaz-1, 0

0, -z-1e2
1

0, -z-1e2
2

0, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

(Lem 32) (Lem 53)

=

-e1az-1, -z-1e2
1

-e2az-1, -z-1e2
2

-ekaz-1, -z-1e2
k

-z-1e2ek
-z-1e1e2

-z-1e1ek

· · ·

· · ·
· · ·

· · ·

(Fusion)

Then, we can use the previous equation to prove the lemma.

=

a, z

e1

e2

ek

α1, β1

α2, β2

αk, βk

w2k

w12

w1k

· · ·
· · ·

· · ·

· · ·

(Fusion)

a, z

e1 e2
ek

α1, β1

α2, β2

αk, βk

w2k

w12
w1k

· · ·

· · ·
· · ·

· · ·

≈

-e1az-1, -z-1e2
1

-e2az-1, -z-1e2
2

-ekaz-1, -z-1e2
k

α1, β1

α2, β2

αk, βk

w2k

w12

w1k

· · ·

· · ·
· · ·

· · ·

-z-1e2ek
-z-1e1e2

-z-1e1ek

=
(Fusion)

(Prop 6)

α1-e1az-1, β1-z-1e2
1

α2-e2az-1, β2-z-1e2
2

αk-ekaz-1, βk-z-1e2
k

w2k-z-1e2ek
w12-z-1e1e2

w1k-z-1e1ek

· · ·

· · ·
· · ·

· · ·
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B.3.2 Pivoting simplification

Lemma 9. The following version of pivoting is derivable in ZXStab
p :

=
a, 0 b, 0...

...

...

...
...

... e1

ei

f1

fj

ϵ

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

...

-ϵ-1eifj

-ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1

ω2-3ϵ-1ab

Here ϵ ∈ Z∗
p and all the other variables are allowed arbitrary values.

Proof. First, we can prove a simplified version of the equation that omits the phases of bound-
ary spiders as follows,

a, 0 b, 0...
...

...

...
...

... e1

ei

f1

fj

ϵ =
(Fusion) ...

...

...

...
...

... e1

ei

f1

fj

ϵ

a, 0 b, 0

= ...
...

...

......

...
-ϵ-1e1

-ϵ-1ei

f1

fj

-ϵ-1a, 0
b, 0

=
... ...

...

......

...
f1

fj

-ϵ

a, 0

b, 0

-ϵ
-ϵ

e1

ei

(Lem 53) (Lem 53)

(Prop 6)

= ...
...

...

...
...

... f1

fj

-ϵ-1e1

-ϵ-1ei

= ...
...

...

...
...

... f1

fj

-b, 0

-b, 0

ϵ-1a, 0

ϵ-1a, 0

(Lem 31) (Lem 32)

(Fusion)

-ϵ-1a, 0 -b, 0

-ϵ-1e1

-ϵ-1ei

-ϵ-1a, 0 b, 0

=

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

... -f1

-fj

-b, 0

-b, 0

-ϵ-1e1

-ϵ-1ei

-f1

-fj
=

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

... -f1

-fj

-b, 0

-b, 0

-ϵ-1e1

-ϵ-1ei

-f1

-fj

ω2-3ϵ-1ab

-
-

-
-

(Lem 42)(Lem 53)

-ϵ-1a, 0 -b, 0

(Omega)
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=

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

...

-ϵ-1eifj

-ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1

(Prop 6)

ω2-3ϵ-1ab

=

-ϵ-1af1, 0

-ϵ-1afj , 0

...

...

...

-f1

-fj

-f1

-fj

ω2-3ϵ-1ab

-

-

-

-

-ϵ-1be1, 0

-ϵ-1bei, 0

...
...

... ϵ-1e1
ϵ-1e1

ϵ-1ei

ϵ-1ei

(Lem 53)

Then, we can use the previous equation to prove the lemma as follows:

a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

...
e1

ei

f1

fj

ϵ =
(Fusion) a, 0 b, 0

α1, β1

αi, βi

γ1, δ1

γj , δj

...
...

...

...
...

...
e1

ei

f1

fj

ϵ

=

-ϵ-1be1, 0

-ϵ-1bei, 0

-ϵ-1af1, 0

-ϵ-1afj , 0

...
...

...

...
...

... -ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1
-ϵ-1eifj

α1, β1

αi, βi

γ1, δ1

γj , δj

=
(Fusion)

α1-ϵ-1be1, β1

αi-ϵ-1bei, βi

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δj

...
...

...

...
...

... -ϵ-1e1f1
-ϵ-1e1fj

-ϵ-1eif1
-ϵ-1eifj

ω2-3ϵ-1ab ω2-3ϵ-1ab

Now, we prove the general version of pivoting.
Lemma 10 (Pivoting simplification). General pivoting is derivable in ZXStab

p :

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

· · · · · ·
α2, β2

· · ·

e2

f2
g1,k

g1,2 g2,k

=
γ1, δ1

γ2, δ2

γk, δk

· · ·
· · · · · ·

· · ·

ω2-3ϵ-1ab

Here again ϵ ∈ Z∗
p with every other variable on the left-hand side allowed arbitrary values. On

the right-hand side γi = αi − ϵ-1(afi + bei), δi = βi −2ϵ-1eifi, and gi,j = −ϵ-1(eifj +ejfi).
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Proof.

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1
ek

f1 fk

=

· · · · · ·

a, 0 b, 0
ϵ

α1, β1
αk, βk

· · ·

e1

ek

f1

fk

· · · · · ·

...
...

α2, β2

· · ·

e2

f2

α2, β2

· · ·

e2 f2
(Fusion)

=

-ϵ-1be1, 0

-ϵ-1bek, 0

-ϵ-1af1, 0

-ϵ-1afk, 0

...
...

-ϵ-1e1f1

-ϵ-1e1fk

-ϵ-1ekfk

-ϵ-1be2, 0 -ϵ-1af2, 0
-ϵ-1e2f2

α1, β1
αk, βk

· · ·· · · · · ·
α2, β2

· · ·

-ϵ-1e1f2 -ϵ-1e2f1

-ϵ-1ekf1

-ϵ-1e2fk -ϵ-1ekf2 ω2-3ϵ-1ab

(Lem 9)

=
α1-ϵ-1(af1 + be1), β1

α2-ϵ-1(af2 + be2), β2

αk-ϵ-1(afk + bek), βk

· · ·
· · · · · ·

-ϵ-1ekfk
-ϵ-1e1f1

· · ·

-ϵ-1e2f2
-ϵ-1e1f2

-ϵ-1e2f1

-ϵ-1e1fk

-ϵ-1ekf1

-ϵ-1e2fk

ω2-3ϵ-1ab

(Fusion)

-ϵ-1ekf2

=

α1-ϵ-1(af1 + be1), β1-2ϵ-1e1f1

α2-ϵ-1(af2 + be2), β2-2ϵ-1e2f2

αk-ϵ-1(afk + bek), βk-2ϵ-1ekfk

· · ·

· · ·

· · ·

-ϵ-1e1fk-ϵ-1ekf1

· · ·

-ϵ-1e1f2-ϵ-1e2f1
-ϵ-1e2fk-ϵ-1ekf2

ω2-3ϵ-1ab

(Prop 6)

(Lem 60)
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C A normal form

Lemma 12. A general non-zero n-qupit diagram in AP-form is described by the diagram:

a1, 0

α1, β1

α2, β2

αn, βn

ak, 0

e1,1
ek,1

e1,2

e1,n

ek,n

ek,2
...

f1,2

f1,n
f2,n

... (3)

where al,αi,βi,eh,i,fi,j ∈ Zp with l ∈ {1, . . . ,k} and i, j ∈ {1, . . . ,n} such that i < j. The inter-
pretation of this diagram is (up to some non-zero scalar) equal to a state∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩ (4)

where E is the weighted bipartite adjacency matrix of the internal and boundary spiders, a⃗
describes the Pauli phases of the internal spiders, and ϕ is a phase function that describes the
connectivity and phases of the boundary spiders:

E =

⎡⎢⎢⎢⎢⎣
e1,1 · · · e1,n

e2,1 · · · e2,n

...
...

ek,1 · · · ek,n

⎤⎥⎥⎥⎥⎦ , a⃗=

⎡⎢⎢⎣
a1
...
ak

⎤⎥⎥⎦ , ϕ(x⃗) =
∑︂

i,j∈{1,...,n}
i<j

2-3xiαi +2-2x2
iβi −2-3fi,jxixj

Proof. We can prove this claim purely diagrammatically, by composing the diagram of Equa-
tion (3) with an effect that corresponds to the vector ⟨x|. By rewriting the diagram while
keeping track of the scalars, we can prove that the diagram indeed represents the one de-
scribed in Equation (4). These transformations are as follows:

a1, 0

α1, β1

α2, β2

αn, βn

ak, 0

e1,1
ek,1

e1,2

ek,2

ek,n

e1,n

...

f1,2

f1,n
f2,n

=
(Fusion)

a1, 0

ak, 0

e1,1
ek,1

e1,2

ek,2

ek,n

e1,n

...

f1,2

f1,n
f2,n

α1, β1

α2, β2

αn, βn

x1, 0

x2, 0

xn, 0

x1, 0

x2, 0

xn, 0
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=
(Lem 32)

a1, 0

ak, 0

e1,1

ek,1

e1,2

ek,2

ek,n

e1,n

...

f2,n

xn, 0

f1,2

f1,n

x1, 0

x2, 0

xn, 0

α1, β1

α2, β2

αn, βn

x1, 0

x1, 0
x2, 0

x2, 0

xn, 0

xn, 0

x2, 0

x2, 0

x1, 0

x1, 0

xn, 0

=

a1, 0

ak, 0

e1,1

ek,1

e1,2

ek,2

ek,n

e1,n

...

xn, 0

x2, 0

x2, 0

x1, 0

x1, 0

xn, 0

ω
-2-3f1,2x1x2

ω
-2-3f1,nx1xn

ω
-2-3f2,nx2xn

ω
2-3x1α1+2-2x2

1β1

ω
2-3x2α2+2-2x2

2β2

ω2-3xnαn+2-2x2
nβn

(Lem 54)

(Omega)

=

a1, 0

ak, 0 ...

-xnek,n, 0

-x2e1,2, 0

-x2ek,2, 0

-x1e1,1, 0

-x1ek,1, 0

-xne1,n, 0

∏︁
i,j∈{1,...,n}

i<j

ω
2-3xiα1+2-2x2

i
βi-2-3fi,j xixj

=

a1-
∑︁n

i
xie1,i, 0

ak-
∑︁n

i
xiek,i, 0

...
(Fusion)

ωϕ(x⃗)

(Lem 53)

(Prod)

Note that if a Z-spider with no legs has phase (z,0) for any z ∈ Z∗
p, then it equals the zero

scalar. This means that the probability of such an effect is 0. Therefore, the above diagram
allows only such x⃗ vectors that satisfy the equation Ex⃗= a⃗. Furthermore, the scalars that are
copied from the phases part of the diagram equal the ωϕ(x⃗) component of the equation. We
conclude that a diagram in Equation (3) indeed equals the state presented in Equation (4).

C.1 Completeness

Lemma 14. For any non-zero state |ψ⟩, there is at most one triple (E,a⃗,ϕ) satisfying the
conditions of reduced AP-form such that:

|ψ⟩ ≈
∑︂

Ex⃗=a⃗

ωϕ(x⃗) |x⃗⟩

Proof. Since |ψ⟩ ̸= 0, the set A = {x⃗ | Ex⃗ = a⃗} is non-empty. Therefore, there is a unique
system of equations in RREF that define A. This means that E and a⃗ are uniquely fixed.
Now, for any assignment {xi1 := c1, . . . ,xik

:= ck} of free variables, there exists a state |x⃗⟩ ∈ A
such that xiµ = cµ. Therefore, we have ⟨x⃗|ψ⟩ = ωϕ(c1, ... ,ck) for some fixed constant λ ̸= 0. Using
this fact we can determine the value of ϕ at all inputs (c1, . . . , ck) which is enough to compute
each coefficient of ϕ. We conclude that ϕ is uniquely fixed by |ψ⟩.

Lemma 15. We can perform primitive row operations on a ZX-diagram in AP-form, i.e., we can
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“add” one inner spider to another. For any k,a,b,ei,fj ∈ Zp where i ∈ 1, . . . ,n and j ∈ 1, . . . ,m:

a, 0

b, 0

e1
e2

en f1
f2

fn

...

≈

a, 0

ka + b, 0

e1
e2

en
ke1+f1

ke2+f2

ken+fn

...

Proof. Firstly, we show that we can transform two disconnected X-states:

a, 0

b, 0

=

a, 0

b, 0

=

a, 0

b, 0

--

=

a, 0

b, 0

-

=

a, 0

b, 0

-

0
(Colour) (Lem 23) (Fusion) (Prop 6)

=

a, 0

b, 0

-

-k k =

a, 0

b, 0

-

-k
k

a, 0
=

a, 0

b, 0

k
ka, 0

=

a, 0

ka + b, 0

k

(Fusion)

-1-1
(Prop 6)

(Fusion)

(Lem 32) (Lem 53)

Then, we can show that we can transform a diagram in AP-form as follows:

a, 0

b, 0

e1
e2

en f1
f2

fn

...

=

e1
e2

en f1
f2

fn

...

a, 0

b, 0

(Fusion)

=

e1
e2

en f1
f2

fn

...

a, 0

ka + b, 0

k

-1

a, 0

ka+b, 0

e1
e2

en
ke1+f1

ke2+f2

ken+fn

...

=≈

a, 0 e1
e2

en

f1
f2

fn

...

ka + b, 0
ke1
ke2

ken

(Lem 9) (Fusion)

(Prop 6)

Lemma 66. We can remove Pauli-phases from the pivot spiders of diagrams in AP-form.
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Proof. For any a,x,ei ∈ Zp where i ∈ {2, . . . ,k} and e1 ∈ Z∗
p:

a, 0

e1

e2

ek

x, 0

...
=

(Lem 23)

a, 0

-e1

e2

ek

xe-1
1 , 0

...
≈ a′, 0

-e1

e2

ek

xe-1
1 , 0

...xe-1
1 , 0

= a′, 0

-e1

-e2

-ek

-xe-1
1 e2, 0

...
-xe-1

1 ek, 0

(Lem 53) (Lem 62) (Lem 53)

(Fusion)

where a′ := −(a+xe-1
1 ).

Lemma 67. We can remove strictly-Clifford phases from the pivot spiders of diagrams in AP-
form.

Proof. To prove this case, we first show that we can push strictly-Clifford Z-spider through
an X-spider with weighted outputs. That is, for any a,ei ∈ Zp where i ∈ {1, . . . ,k} and z ∈ Z∗

p:

a, z
...

e1

ek

≈
az-1, -z-1(Lem 8)

z-1
≈ ...

e1

ek

-ae1, ze2
1

-aek, ze2
k

(Lem 8)

ze1ek

e2 -az-1, -z-1

...

e1

ek

e2 e2
-ae2, ze2

2

ze1e2

ze2ek

-1

Therefore, for any a,x,ei ∈ Zp where i ∈ {2, . . . ,k} and z,e1 ∈ Z∗
p:

a, 0

x, z

...

=
(Lem 42)

e1

e2

e3

ek

xe-1
1 , ze-2

1

...

-e1

e2

e3

ek

a, 0

(Lem 23)
=

(Lem 62)

xe-1
1 -aze-2

1 , ze-2
1

...

-e1

e2

e3

ek

(Fusion)

-a, 0

=

xe-1
1 -aze-2

1 , ze-2
1

...

e1

e2

e3

ek

(Colour)

a, 0

-1

(Lem 49)

(Lem 52)

≈
...

A2, B2

A3, B3

Ak, Bk

e1

e2
e3

ek

a, 0

E2,3

E3,k
E2,k

=
...

A2, B2

A3, B3

Ak, Bk

e1

e2
e3

ek

a, 0(Fusion) E2,3

E3,k
E2,k

where Ai = (aze-1 −x)e-1ei, Bi = ze-2
1 e

2
i , and Ei,j = ze-2

1 eiej ,
Lemma 68. We can remove an H-edge between the pivot spider and a boundary spider that
connects to the same internal spider as the pivot.
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Proof. Let us suppose that the pivot spider is connected to the ℓ-th wire with an H-box. Then,
for any a,x,ei ∈ Zp where i ∈ {2, . . . ,k} and e1 ∈ Z∗

p:

...

x

a, 0
≈...

e1

e2

eℓ

ek

(Lem 10)

=
...

x
a, 0 ...

e1
e2
eℓ

ek

-1

(Lem 28)

(Lem 23)

...

-e-1
1 ax, -2e-1

1 eℓx

...
e-1

1 a, 0 e-1
1 e2

e-1
1 eℓ

e-1
1 ek

-e-1
1 e2x

-e-1
1 ekx

Lemma 69. We can remove an H-edge between the pivot spider and a boundary spider that
does not connect to the same internal spider as the pivot.

Proof. For any a,b,x,ei,fh ∈ Zp where i ∈ {2, . . . ,k}, h ∈ {1, . . . , j} and e1 ∈ Z∗
p:

a, 0
...x

b, 0

...

=

...

e1

e2

ek

f1

fh

fℓ

a, 0
...

x

b, 0

...

...

e1
e2

ek

f1

fh

fℓ

-1

(Lem 28)

(Lem 23)
≈

e-1
1 a, 0

...

b, 0

...

-e-1
1 ax, 0

...

e-1
1 e2

e-1
k e2

f1

fh

fℓ

(Lem 10)

-e-1
1 ekx

-e-1
1 e2x

Lemma 17. Any diagram in ZXStab
p can be converted into one in reduced AP-form.

Proof. First, we can convert any diagram in ZXStab
p into one in AP-form using local comple-

mentation and pivoting. Then, we can translate such a diagram into AP-form with a biadja-
cency matrix in RREF using Gaussian elimination, as demonstrated in Lemma 15. Further-
more, we have established the proofs for removing any phase from the pivot spider (Lemma 66
and Lemma 67), as well as removing any H-edge connected to the pivot spider (Lemma 68
and Lemma 69). These results allow us to transform a diagram in such a way that its phase
function ϕ only contains free variables from the equation system Ex⃗= a⃗. Consequently, we can
conclude that any diagram in ZXStab

p can be rewritten into a form that satisfies the necessary
properties to be considered a diagram in reduced AP-form.

Theorem 18 (Completeness). For any pair of ZX-diagrams A,B ∈ ZXStab
p , if JAK = JBK, we can

provide a sequence of rewrites that transforms A into B.
Proof. Without loss of generality, we can assume that both A and B are states by map-state
duality. If A and B represent the same linear map, i.e. JAK = JBK, then their reduced AP-forms
are identical, thanks to the uniqueness of the form proved in Lemma 14. Therefore, we can
transform both A and B into diagrams in reduced AP-form using Lemma 17. The sequence of
transformations from A to A in reduced AP-form, composed with the series of rewrites from
B in reduced AP-form to B, provides us with a sequence of rewrites that transforms A into
B.
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Lemma 20. The following boundary pivot rule is derivable in ZXStab
p :

a, 0

b, c

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ ≈

α1, β1

αi, βk

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δl

...
...

...

...
...

... g11

g1l

gk1

gkl

-ϵ-1a, 0

-

-ϵ-1a, 0

b, c

d-1

h1 h1

hk

hk

Here gij := −ϵ−1eifj and hi := −ϵ−1ei. This rule holds for all choices of phases as long as ϵ ̸= 0.
Proof. Unfuse spiders and introduce Hadamards as follows:

a, 0

b, c

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ =
a, 0

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ

b, c

-
-

(Fusion)

(Lem 28)

≈

α1, β1

αi, βk

γ1-ϵ-1af1, δ1

γj -ϵ-1afj , δl

...
...

...

...
...

... g11

g1l

gk1

gkl

-ϵ-1a, 0

-

-ϵ-1a, 0

b, c

d-1

h1 h1

hk

hk

=
a, 0

α1, β1

αi, βk

γ1, δ1

γj , δl

...
...

...

...
...

...
e1

ek

f1

fl

ϵ

b, c

-
-

(Lem 23) (Lem 9)

Where in the last step we applied the regular pivot Lemma 9.
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Floquet codes are a recently discovered type of quantum error correction code. They can be thought
of as generalising stabilizer codes and subsystem codes, by allowing the logical Pauli operators
of the code to vary dynamically over time. In this work, we use the ZX-calculus to create new
Floquet codes that are in a definable sense equivalent to known stabilizer codes. In particular, we
find a Floquet code that is equivalent to the colour code, but has the advantage that all measurements
required to implement it are of weight one or two. Notably, the qubits can even be laid out on a square
lattice. This circumvents current difficulties with implementing the colour code fault-tolerantly, while
preserving its advantages over other well-studied codes, and could furthermore allow one to benefit
from extra features exclusive to Floquet codes. On a higher level, as in Ref. [BLN+23], this work
shines a light on the relationship between ‘static’ stabilizer and subsystem codes and ‘dynamic’
Floquet codes; at first glance the latter seems a significant generalisation of the former, but in the case
of the codes that we find here, the difference is essentially just a few basic ZX-diagram deformations.

1 Introduction

In 2021, Hastings and Haah discovered the honeycomb code [HH21, ]. At first glance, it looked a lot
like a subsystem code [KLP05, ]; it was defined via a sequence of non-commuting Pauli measurements
whose individual outcomes were random, but combined to give deterministic outcomes suitable for use
in catching errors that occur during quantum computation. But something didn’t quite add up. Viewed
exactly as a subsystem code, it encoded no logical information. This was because the logical information
was instead ‘dynamically’ encoded. This made it the first member of a new class of codes, which have
come to be called Floquet codes [Vui21, ]. Since its publication, it seems a number of people have been
holed up in their offices thinking about Floquet codes, because of late a new one has popped up every
month or so [KFT+22, DTB22, AWH22, ZAV22, Bau23, SWP23]. In particular, in both Ref. [KFT+22]
and Ref. [DTB22], a whole family of Floquet codes is described, of which the honeycomb code is a
single member. We call this family the condensed colour codes, as in [KFT+22].

Plot-twist 1.1. Before the honeycomb code paper was published, another Floquet code had already
independently been discovered.

In Ref. [BLN+23], the authors write that Hector Bombín had previously discovered an equivalence be-
tween the rotated surface code [BMD07, ] and a (then unnamed) condensed colour code. This equiv-
alence is shown in Ref. [BLN+23] using the ZX-calculus, a flexible but rigorous graphical formalism
for quantum mechanics [CD11, CK17]. Given any ZX-diagram representing an error correction pro-
tocol, something the ZX-calculus is particularly good at is identifying ways of rewriting high-weight
Pauli measurements as weight-two or weight-one Pauli measurements. The authors of Ref. [BLN+23]
applied this idea to a ZX-diagram representing multiple rounds of rotated surface code measurements.
Interestingly, Craig Gidney had himself previously done something very similar in Ref. [Gid22] to find

http://dx.doi.org/10.4204/EPTCS.384.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://errorcorrectionzoo.org/c/honeycomb
https://errorcorrectionzoo.org/c/oecc
https://errorcorrectionzoo.org/c/floquet
https://errorcorrectionzoo.org/c/rotated_surface
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an implementation of the rotated surface code that uses only weight-two measurements. The only dif-
ference is that Gidney applied the idea to a circuit representing a single round of rotated surface code
measurements. In both cases all measurements were reduced to weight-two, but only in the former case
was the result a Floquet code1.

The colour code [BMD06, ] has certain properties that make it arguably more appealing than the
surface code, such as a higher encoding rate [LRA14], transversal Clifford gates [BMD06] and more
efficient lattice surgery operations [TKBB22]. The high-weight measurements naively required for its
implementation, however, are the major obstacle to realising it practically [CKYZ20]. So in the same
way that Ref. [BLN+23] ‘Floquetified’ the rotated surface code, it would be great to have a ‘Floqueti-
fied’ colour code - that is, a Floquet code that is in a definable sense equivalent to the colour code - in
which all measurements are weight-two or less. Perhaps even more excitingly, Floquet codes can come
equipped with the ability to perform logical Clifford gates both fault-tolerantly and at no extra effort; this
is discussed in detail in Ref. [AWH22]. The honeycomb code, for example, naturally performs a fault-
tolerant logical Hadamard gate every three timesteps. Exactly which logical gates can be implemented
by a Floquet code in this manner is restricted by the automorphism group of what condensed matter
theorists call the anyonic defects of the code. The honeycomb code can be shown to have exactly one
non-trivial such automorphism, which corresponds exactly to the logical Hadamard gate. A Floquetified
colour code, however, would in principle inherit its automorphism group from the colour code - this is
much richer, containing 72 elements [Yos15, KPEB18]. So in such a code, the set of logical Clifford
gates that could potentially be fault-tolerantly implemented in this way is larger.

To this end, we aimed to use the ideas from Ref. [BLN+23] to Floquetify the colour code. We succeeded,
finding a Floquet code with period 13 whose qubits can be laid out on a square lattice, and in which
all measurements are weight one or two. This paper proceeds as follows. In Section 2, we introduce
the definitions and notation we’ll need throughout the paper. First, we introduce ISG codes, of which
stabilizer codes [Got97, ], subsystem codes and Floquet codes are subtypes (thus far, we’re not aware
of any universally accepted formal definition of a Floquet code in the literature). We also import the
graphical formalism of Pauli webs from Ref. [BLN+23] (generalised to stabilizer flow in Ref. [MBG23]),
which allows us to reason graphically about stabilizers, logical operators and detectors. In Section 3, we
jump in the shallow end by Floquetifying the J4,2,2K code [VGW96, ], demonstrating the key ideas
behind this Floquetification process on a simple example. The deep end awaits in Section 4, where
we Floquetify the colour code. We include many extra details in appendices; these will be signposted
throughout the main text.

2 Preliminaries

We will assume familiarity with stabilizer codes and the stabilizer formalism [Got97], as well as the ZX-
calculus. For the uninitiated, good introductory references are Ref. [NC10, Section 10.5] or Ref. [Got09]
for the former, and Ref. [Wet20] for the latter. In the appendix, we also include a reminder of how
measurement works in the stabilizer formalism - see Theorem A.5.

1Similar in spirit to Ref. [BLN+23] is Ref. [Bau23]; both can be viewed as using graphical tensor network approaches to
construct new Floquet codes from existing stabilizer codes. However, the latter’s author approaches things through the lens of
topological spacetime path-integrals, and uses a tensor network approach that is closely related to, but isn’t exactly the same
as, the ZX-calculus. Nonetheless, for topological codes, we believe the two approaches are equivalent.

https://errorcorrectionzoo.org/c/color
https://errorcorrectionzoo.org/c/stabilizer
https://errorcorrectionzoo.org/c/stab_4_2_2
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2.1 ISG codes

We begin by introducing ISG codes, where ‘ISG’ stands for instantaneous stabilizer group, a term intro-
duced in Ref. [HH21]. But first, some notation; we’ll use σ0 = I,σ1 =X ,σ2 =Y and σ3 = Z to denote the
Pauli matrices, and P1 to denote the single qubit Pauli group they form under composition. Pn will then
denote the n-qubit Pauli group Pn = {p1⊗ . . .⊗ pn | ∀ j : p j ∈P1} for n > 1. Every element of this group
can be written in the form i`(σ j1⊗ . . .⊗σ jn), for ` ∈ {0,1,2,3}. This i` is often called a phase. One such
element we’ll use a lot is (σ j)k = I⊗ . . .⊗ I⊗σ j⊗ I⊗ . . .⊗ I, which has an I in each tensor factor except
the k-th, where we insert the Pauli matrix σ j. Another common element is 1 = I⊗ . . .⊗ I. By a slight
abuse of notation, we will usually write i`1 or i`I as just i`. The weight of any element i`(σ j1⊗ . . .⊗σ jn)
is the number of Pauli matrices σ jk that aren’t I.

Rather than defining qubits via Hilbert spaces, we’ll stick to group theory; we’ll simply define that we
have a system of n qubits whenever we have any group G isomorphic to Pn. A particularly important
example will be G = N(S)/S ∼= Pn−r, for any stabilizer group S ≤ Pn with rank (size of any minimal
generating set) r [Got09, Section 3.4]. Recall that a stabilizer group is just any subgroup of Pn that
doesn’t contain −1, and this forces it to be Abelian. Here, N(S) = {p ∈ Pn | pSp−1 = S} denotes the
normalizer of S in Pn. So N(S)/S is the quotient group consisting of left cosets of S in N(S), whose
elements pS = {ps | s∈ S} will often be denoted p for short. The weight of such a coset is the minimum
weight over all its elements. For any groups G1, . . . ,G`, we’ll write the product G1 . . .G` to mean the
group generated by the union of generating sets for G1, . . . ,G`.

It can be shown that Pn has presentation Pn = 〈i,X1,Z1,X2,Z2, . . . ,Xn,Zn〉. Thus any group G isomorphic
toPn has presentation 〈ι ,x1,z1,x2,z2, . . . ,xn,zn〉, for some elements ι ,x j,z j in G, with group isomorphism
G ∼= Pn given by ι 7→ i,x j 7→ X j and z j 7→ Z j. In particular, all the x j and z j generators obey the same
commutativity relations as the Paulis X j and Z j. If we think of G as defining n qubits, we can identify
qubit j with the subgroup 〈ι ,x j,z j〉 ∼= 〈i,X j,Z j〉 ∼= P1.

We can now define an ISG code. Given n qubits, an ISG code is defined entirely by a measurement
scheduleM, which is an ordered list [M0,M1, . . .] of Abelian subgroups of Pn. The scheduleM can
be finite or infinite. If it’s finite, with length `, say, then we let the subscript inM j be modulo `. Given
any such M, there exists a subgroup St of Pn for all t ∈ Z called the instantaneous stabilizer group
(ISG). This is defined recursively: for t < 0, it’s always the trivial group {1}. For t ≥ 0, St is formed
from St−1 by measuring a generating set forMt ; the effect of this can be determined using the stabilizer
formalism (Theorem A.5). This is well-defined, in that it doesn’t depend on the choice of generating set
forMt . We’ll often call t the timestep (or just time). At every timestep t ∈ Z, let rt denote the rank of
St , and let kt := n− rt . Then N(St)/St ∼= Pkt . That is, we can consider ourselves to have a system of kt

qubits. This is the idea behind an ISG code.

Definition 2.1. An Jn,k,dK ISG code is given by a measurement scheduleM, with the property that for
some T ∈Z≥0 and all t ≥ T , the group St has some fixed rank r. We say that for all such timesteps t ≥ T ,
the code is established. This encodes k = n− r logical qubits whenever t ≥ T , via the logical Pauli
group N(St)/St ∼=Pk. The distance d is the minimum weight of any element of N(St)/St , over all t ≥ T .
The period is the length ` ∈ Z≥0∪{∞} of the listM= [M0,M1, . . .], and can be finite or infinite.

For a slightly longer discussion of this definition, see Appendix C. As advertised, stabilizer codes, sub-
system codes and Floquet codes are types of ISG code.

Definition 2.2. A stabilizer code is an ISG code M = [M0,M1, . . .] such that the group M0M1 . . .
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generated by the union of generating sets of allMt inM is itself Abelian.

A stabilizer code has the property that, after establishment at time T , the ISG St is the same for all
t ≥ T . There thus exist fixed Paulis x1,z1, . . . ,xk,zk ∈Pn such that 〈i,x1,z1, . . . ,xk,zk〉 is a presentation for
N(St)/St ∼= Pk for all t ≥ T . This latter property is baked into the next definition, which is admittedly a
bit of a mouthful, and can be skipped by any readers not already familiar with subsystem codes. Therein,
for a group G, we let Z(G) = {g ∈ G | gh = hg ∀h ∈ G} denote its center, and P◦k be the ‘almost Pauli
group’ 〈X1,Z1, . . . ,Xk,Zk〉.

Definition 2.3. A subsystem code is an ISG codeM= [M0,M1, . . .] that establishes at time T , such that
the groupM0M1 . . . generated by the union of generating sets of allMt inM satisfies the following:
letting G = 〈i〉M0M1 . . . and S be a stabilizer group such that 〈i〉S = Z(G), there exist fixed Paulis
x1,z1, . . . ,xk,zk such that 〈x1G,z1G, . . . ,xkG,zkG〉 is a presentation for N(S)/G ∼= P◦k and, for all t ≥ T ,
〈iSt ,x1St ,z1St , . . . ,xkSt ,zkSt〉 is a presentation for N(St)/St ∼= Pk.

Unlike a stabilizer code, after establishment at time T , the ISG St of a subsystem code may change from
one timestep to another (while always having the same rank). However, such a code still has the property
that there exist fixed Paulis that can represent N(St)/St ∼= Pk for all t ≥ T . This is what is meant when
stabilizer and subsystem codes are labelled static.

Our stabilizer code definition above agrees exactly with the usual one; though our definition requires a
measurement scheduleM= [M0,M1, . . .] to be specified, the fact thatM0M1 . . . is Abelian makes this
irrelevant. Our subsystem code definition, however, slightly deviates from the usual one; here the fact
that a measurement schedule is required is very relevant. We go into more detail on this in Appendix D.

Definition 2.4. A Floquet code is an ISG code with a finite period.

We do not attribute so much importance to whether or not an ISG code has finite period, and hence
whether it’s labelled a Floquet code or not. Indeed, there are ISG codes that don’t fall into any of the
three categories above - examples include the dynamic tree codes of Ref. [DTB22]. More interesting
to us is the fact that for a general ISG code that establishes at time T , there need not exist fixed Paulis

Code type St N(St)/St Period
Stabilizer Static Static Finite or infinite

Subsystem Dynamic Static Finite or infinite
Floquet Dynamic Dynamic Finite

ISG Dynamic Dynamic Finite or infinite

ISG Stabilizer FloquetSubsystem

Figure 1: Table and Venn diagram showing relationships between stabilizer, subsystem, Floquet and ISG
codes. We attribute little importance to whether an ISG code has finite period, hence this column in the
table is drawn in grey. If this column is ignored, there is no difference between a Floquet code and a
general ISG code, hence the former’s row in the table, as well as its bubble in the Venn diagram, are also
drawn in grey. The Venn diagram shows that all stabilizer codes are subsystem codes, and all subsystem
codes are ISG codes. Though all Floquet codes are ISG codes, only stabilizer and subsystem codes with
finite period are Floquet codes.
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x1,z1, . . . ,xk,zk ∈ Pn such that 〈i,x1,z1, . . . ,xk,zk〉 is a presentation for N(St)/St ∼= Pk for all t ≥ T . This
is what is meant when such codes are labelled dynamic.

In Figure 1, we show a table and a Venn diagram characterising the relationships between these code
types, and in Appendix B we give a simple example of an ISG code and its evolution. When working
with ISG codes, calculating the effect on N(St)/St of measuring a Pauli p∈Pn is paramount. To this end,
a vital tool is a corollary of the stabilizer formalism which we informally call the normalizer formalism;
we state and prove it in Appendix A.

2.2 Pauli webs

Though we’ve now defined ISG codes, we haven’t said how to actually detect errors on them, nor how
to perform logical (Pauli) operations. Both of these can be viewed elegantly in the ZX-calculus via
Pauli webs, as defined in Ref. [BLN+23]. This is analogous to firing spiders in Ref. [Bor19], and is
generalised to stabilizer flow in Ref. [MBG23]. Here we’ll only introduce it in a limited and informal
way, since this is all we’ll need for Sections 3 and 4. For a more rigorous discussion, see Ref. [BLN+23]
or Ref. [MBG23].

Given a Clifford ZX-diagram (one in which all spider phases are integer multiples of π

2 ), we’ll define
an (unsigned CSS) Pauli web to be a highlighting of wires green or red (corresponding to Z and X ,
respectively), according to certain rules. Essentially, the green highlighted edges correspond to how
a Z gate can propagate through the diagram, and likewise for red edges and the X gate. Specifically, a
highlighted wire can only end at a Pauli spider (one whose phase is an integer multiple of π), a Hadamard
box2, or an input or output node of the overall diagram; a green Pauli spider must have an even number
of legs highlighted green (and likewise for red Pauli spiders and red edges); a green Pauli spider must
have no legs or every leg highlighted red (and likewise for red Pauli spiders and green edges); and if one
leg of a Hadamard box is highlighted green, the other must be red. Examples of Pauli webs on small
ZX-diagrams are shown below. Throughout this paper, ZX-diagrams should be read bottom-to-top:

(1)

2.2.1 Detectors

A detector is a set of measurement outcomes m j ∈ {−1,1} whose product is deterministic in the absence
of noise [Gid21, HG23]. We can write them as formal products3 with powers taken modulo 2. For exam-
ple, given a qubit in state |0〉, a Z-basis measurement should deterministically give outcome m = 1. Thus
the formal product m is a detector. On the other hand, if the qubit is in state |+〉, a Z-basis measurement’s
outcome m1 is completely random. But a second Z-basis measurement should give outcome m2 identi-
cal to m1; that is, m1m2 should be 1. So the formal product m1m2 is a detector. Specifically, it detects

2Under the hood, a Hadamard box is actually a composition of three spiders with phases ± π

2 . The fact that an unsigned
CSS Pauli web can end here might seem to contradict the fact we just said it can only end at Pauli spiders. However, this is just
a consequence of the limited way in which we’ve imported Pauli webs here. More general (unsigned) Pauli webs can terminate
at any Clifford spider - one with phase k π

2 , for k ∈ Z.
3By formal product, we mean we forget that symbols like m j are actually stand-ins for values like −1 and 1, and treat the

symbols just as objects to be moved around algebraically. By taking powers modulo 2, we mean - for example - the formal
product m3 is the same as m1 = m.
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Pauli X errors - if one occurs between the first and second measurement, we’ll get m2 =−m1 and hence
m1m2 = −1. We say in this case that the detector m1m2 is violated. In an ISG code context, detectors
occur whenever we measure a Pauli p such that p or −p is in the ISG St (Case 2 in Appendix A). Fol-
lowing [MBG23], we’ll define an (unsigned CSS) detecting region to be a Pauli web with the additional
constraint that no input or output nodes of the overall diagram are incident to highlighted edges. Now,
recall that in the ZX-calculus, Z⊗Z⊗ . . .⊗Z and X⊗X⊗ . . .⊗X measurements with outcome m can be
represented respectively as:

(2)

In particular, note that the measurement outcome m parametrises a spider phase. A detecting region then
corresponds to a detector m1 . . .md as follows: the measurement outcomes m j in the detector are all those
that parametrise a red spider incident to a green highlighted edge, or a green spider incident to a red
highlighted edge. In fact, throughout this paper we will always be able to post-select; that is, we can
assume all measurement outcomes m j are 1. See Appendix G for a longer discussion of this. Below are
some simple detecting regions; in each diagram, horizontal wires correspond to measurements (or rather,
post-selections; we can thus omit the spider phases that correspond to the measurement outcomes). The
resulting detectors consist of exactly the outcomes of the measurements represented by these horizontal
wires.

(3)

2.2.2 Stabilizers and logical operators

Given an ISG code, the stabilizers (elements of St) and logical operators (members of cosets of N(St)/St)
can also be seen via Pauli webs. In analogy with a detecting region, we can define an (unsigned CSS)
stabilizing region on a ZX-diagram to be a Pauli web in which none of the diagram’s input nodes are
incident to a highlighted edge, but at least one output node is. Supposing the ZX-diagram has n output
wires, the stabilizer corresponding to such a stabilizing region is (up to ±1 sign) the Pauli p = σ j1 ⊗
. . .⊗σ jn ∈ Pn, where σ j` is I if output wire ` isn’t highlighted, Z if it’s highlighted green, and X if it’s
highlighted red. For an ISG code with measurement scheduleM = [M0,M1, . . .], we can draw a ZX-
diagram that corresponds to measuring a generating set forM0, thenM1, and so on. If we do this up
toMt , the non-trivial elements of St are exactly the stabilizers derived from the stabilizing regions for
this diagram. Below we show this for timesteps t ∈ {−1,0,1} of the distance-two repetition code. This
is a J2,1,1K stabilizer code defined byM= [〈Z1Z2〉]. Its ISG St is thus trivial for t < 0 and 〈mZ1Z2〉 for
t ≥ 0, for some measurement outcome m.

t =−1 : t = 0 : t = 1 : (4)
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Logical operators get a very similar treatment. We can define an (unsigned CSS) operating region to
be a Pauli web in which at least one input and output node of the diagram are incident to highlighted
edges. If the diagram has n output legs, the corresponding operator p ∈ Pn is again found by looking
at the output wires, in exactly the same way as for a stabilizer above. Given any ISG code, if we again
draw a ZX-diagram that corresponds to sequentially measuring generating sets forM0 up toMt , then
representatives of non-trivial elements of N(St)/St are exactly the operators derived from the operating
regions for this diagram. The distance-two repetition code has N(St)/St = 〈i,Z1,X1,Z2,X2〉 ∼= P2 for
t < 0, and N(St)/St = 〈i,Z1,X1X2〉 ∼= P1 for t ≥ 0. Below, we show operating regions at time t = 1:

t = 1 : and (5)

We close this preliminary section with the comment that detectors and logical operators together provide
an alternative view of an ISG code. That is, one can think of such a code not as a group-theoretic object,
but as a Clifford ZX-diagram that is suitably covered by detecting regions, and contains a non-empty set
of pairs of operating regions whose corresponding operators satisfy the Pauli commutativity relations.
This corresponds to the unifying view of fault-tolerance put forward recently in Ref. [BLN+23], and is
in the same spirit as the spacetime codes of Ref. [DP23].

3 Floquetifying the J4,2,2K code

Let’s warm up with one of the simplest interesting codes around: the J4,2,2K code. This is a stabilizer
code, which we’ll define as M = [〈Z1Z2Z3Z4〉,〈X1X2X3X4〉]. The aim of this section is to prove the
following:

Theorem 3.1. The J4,2,2K stabilizer code is equivalent as a ZX-diagram to a J12,2,2K Floquet code
with period 6, which we call the double hexagon code.

In Figure 2, we show three equivalent ZX-diagrams depicting seven timesteps of this code. Here the grey
squares, grey numbers, wire colours and wire styles (solid/dashed) have no meaning in the ZX-calculus;
they’re just visual aids. The grey squares denote timesteps of the J4,2,2K code, and the grey numbers and
coloured/styled lines will be explained shortly. The leftmost diagram is the most natural one; it shows
measurements of Z1Z2Z3Z4 and X1X2X3X4 alternating at each timestep. The second diagram is obtained
from the first by unfusing every spider in the center of a grey square into two spiders, and unfusing
every spider in the corner of a grey square into three spiders. The third is identical to the second in the
ZX-calculus - all we’ve done is coloured and styled certain wires, and labelled all one-legged spiders
and black wires with an integer. Now, in the leftmost diagram, we interpret the four vertical lines as the
world-lines of the four qubits of the code. But we need not do this! The ZX-diagram remains equivalent
if we choose to interpret different wires as qubit world-lines. This is exactly what the colours and styles
in the rightmost diagram are for; each colour-style pair denotes a different qubit world-line. Since there
are twelve world-lines, we’re now viewing this as a system of twelve qubits, rather than four.

Let’s make some observations about this rightmost diagram. Firstly, if we follow the world-line of any
particular qubit up the page, the integer labels incident to it form an increasing sequence. For example,
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Figure 2: Three equivalent ZX-diagrams for seven timesteps of the J4,2,2K code.

starting from the bottom of the diagram and following the solid purple qubit upwards, the integers inci-
dent to it form the sequence [0,1, . . . ,6]. We can thus think of these integers as a new set of timesteps for
this diagram. Next, notice that we can interpret all the uncoloured black wires like and as
weight two ZuZv and XuXv measurements (respectively) between qubits. Furthermore, the qubit world-
lines only have limited interactions with each other via these measurements. Specifically, if we define
ordered lists colours = [purple, pink, orange, yellow, brown, blue] and styles = [solid, dashed], and
let qubit (i, j) denote the qubit with the i-th colour and j-th style, where i and j are taken modulo 6 and
2 respectively, then looking closely we see that qubit (i, j) is only ever involved in a measurement with
the three qubits (i+ 1, j),(i− 1, j) and (i, j+ 1). So supposing we now wanted to lay out these qubits
on a planar 2D chip, a natural geometry would be a ‘double hexagon’, as in the rightmost diagram of
Figure 3.

In fact, recalling the diagrammatic equation , which says non-destructive single qubit Pauli
measurements disconnect wires, we can also interpret all one-legged spiders as one half of such a mea-
surement. This interpretation is valid, in that the timestep at which the world-line of qubit (i, j) ‘ends’
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at a one-legged spider is the same as the timestep at which it ‘resumes’ via another one-legged spider
further up the page. Finally, we can see that this pattern of colours and styles repeats itself every six
timesteps.

From this analysis, we can now interpret the rightmost ZX-diagram as an ISG code; we can write down
the measurements that each qubit undergoes at each timestep, and consequently we can define the mea-
surement schedule described by this diagram. We getM= [M0, . . . ,M5], where:

Mt =< X(t,0),

X(t,1),

X(t+1,0)X(t+2,0),

X(t+1,1)X(t+2,1),

X(t+3,0)X(t+3,1),

X(t+4,0)X(t+5,0),

X(t+4,1)X(t+5,1) > if t even, Mt =< Z(t,0),

Z(t,1),

Z(t+1,0)Z(t+2,0),

Z(t+1,1)Z(t+2,1),

Z(t+3,0)Z(t+3,1),

Z(t+4,0)Z(t+5,0),

Z(t+4,1)Z(t+5,1) > if t odd. (6)

One can then calculate the group St , and consequently N(St)/St . It turns out St is established whenever
t ≥ T = 3, and can be minimally generated by the seven generators ofMt , plus three weight-six Paulis
st−1,st−2 and st−3, where:

st =

{
X(t,0)X(t,1)X(t−1,0)X(t−1,1)X(t−2,0)X(t−2,1) if t even
Z(t,0)Z(t,1)Z(t−1,0)Z(t−1,1)Z(t−2,0)Z(t−2,1) if t odd

(7)

Figure 3: A detecting region in the J4,2,2K code and its image in the double hexagon code. We use
the (∼) symbol between the second and third diagrams rather than an equals sign because, although the
two codes can be viewed as having equivalent ZX-diagrams, these two particular subdiagrams are not
equivalent - the rightmost one has more input and output wires, for example.
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Since we have 10 independent generators on 12 qubits, we can conclude that N(St)/St ∼=P2 for all t ≥ 3.
This then proves most of Theorem 3.1; namely that the double hexagon code encodes 2 logical qubits and
has period 6. The proof that the distance of the new Floquet code remains two is deferred to Appendix E.

In addition to being able to work with detectors, stabilizers and logical operators algebraically, as above,
the mapping of these objects from the J4,2,2K code to the double hexagon code can be seen graphically
via Pauli webs. In Figure 3 we show a detecting region in the J4,2,2K code and its image in the double
hexagon code. From the rightmost diagram of this figure, and recalling the rules for mapping a detecting
region to a detector from Subsection 2.2.1, one can see that the corresponding detector in the double
hexagon code consists of eight measurements. Specifically, in the bottom layer, we include two Z⊗Z
measurements between blue and purple qubits, and two single qubit Z measurements on pink qubits. In
the top layer, we include two Z⊗Z measurements between purple and pink qubits, and two single qubit
Z measurements on blue qubits. Since every detecting region in the J4,2,2K code is equivalent to the
one on the left of this figure (up to a space-time translation and exchanging the roles of Z and X), every
detecting region in the double hexagon code is equivalent to the one on the right (again up to a space-time
translation and Z↔ X interchange).

One could justifiably point out here that we seem to have made things worse; we’ve taken a J4,2,2K
ISG code and turned it into a J12,2,2K ISG code, and what’s more, each detector now consists of eight
measurements rather than two, so would seem to be noisier! The trade-off is that now every measurement
is weight-two or weight-one, rather than weight-four. As a general rule, the higher the measurement
weight, the noisier it will be. In particular, weight-one and weight-two measurements can be performed
natively in some architectures, whereas higher-weight measurements are implemented via extraction
circuits, which give more opportunities for noise to interfere.

On a higher-level, one can view this Floquetification process as a reinterpretation of the time direction in
a ZX-diagram. Below, we use two blue prisms (square and hexagonal) as abstractions of ZX-diagrams
for the J4,2,2K code and double hexagon code respectively. In grey we show how a timeslice in the
double hexagon code corresponds to an angled slice of the J4,2,2K code:

(8)

4 Floquetifying the colour code

We can apply the same ideas as in the last section to stabilizer codes more interesting than the J4,2,2K
code. In this section, we take this more interesting stabilizer code to be the colour code. Or, more
accurately, we take it to be the bulk of the colour code - i.e. ignoring the code’s global topology (whether
it lives on a torus, or is planar). A discussion of global topology is deferred to Subsection 4.2 at the end
of this section, and continued in detail in Appendix F.
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Figure 4: Two equivalent ZX-diagrams for a patch of the colour code at three consecutive timesteps.
Ideally we’d draw vertical wires connecting each column of patches, like we were able to do for the
J4,2,2K code in the last section, but doing this renders the diagrams pretty much unreadable. Instead,
we draw very small vertical wires going up and/or down from certain spiders, labelled by letters. These
letters define how a wire going vertically upwards in one layer is actually connected to a wire coming
vertically downwards from the layer above it; wires labelled by the same letter are connected.

4.1 The bulk

The 6.6.6 colour code is a stabilizer code defined on a honeycomb lattice, with qubits placed at vertices.
We write v ∈ f to mean that a vertex v is incident to a hexagonal face f . For any such face f , we define
weight-six Paulis X f = ∏v∈ f Xv and Z f = ∏v∈ f Zv. On a torus, the code is defined by the measurement
schedule M = [〈{Z f : face f}〉, 〈{X f : face f}〉]. On a planar geometry, slightly different Paulis are
measured at the boundaries [KPEB18].

As before, we start with a ZX-diagram of the colour code over multiple timesteps; see the left hand side of
Figure 4. We then unfuse every spider into four or five spiders to get the diagram on the right of the figure.
In these diagrams, grey hexagons, bars and integers, as well as letter labels and coloured wires, all have
no meaning in the ZX-calculus; they’re just visual aids. In the diagram on the right, wires within grey
bars correspond to weight-two measurements, while all other wires correspond to qubit world-lines. The
focus is on a single qubit’s world-line, which we’ve coloured purple; we can see that it’s only involved
in measurements with four other qubits, which we’ve coloured orange, pink, blue and brown. It turns out
that all qubit world-lines have this property of only interacting with four other qubits. Furthermore, these
interactions are such that the qubits of the new code can be laid out on a square lattice. So henceforth
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Figure 5: Left: measurements undergone by a single qubit and its four nearest neighbours over one full
period of 13 timesteps. Right: One ‘tile’ of one timestep of the measurement schedule in the bulk of the
Floquetified colour code. Here the grey lines are not ZX-diagram wires - they are just visual aids that
show this all sits on a square lattice.

we’ll label qubits of the new code with a pair of integer coordinates (x,y).

The grey bars labelled by integers denote the timesteps of the new code. These are well-defined; picking
any qubit world-line and following it up the page while noting down the integer label of every grey bar
it crosses produces an increasing sequence. For example, doing this for the purple qubit produces the
contiguous sequence [0,1,2, . . .]. As before, we can view all one-legged spiders as halves of single-qubit
measurements. The pattern repeats after every two timesteps of the old code (the colour code); one can
see this by noting that the bottom and top of the diagram are identical, up to a translation in space and an
increase by 13 in the labels of the grey bars. In other words, this new code has a period of 13.

Again, we can now write down the measurements that each qubit undergoes at each timestep. In Fig-
ure 5, we show a ZX-diagram of this, focused on the purple qubit from Figure 4. Each qubit undergoes
essentially the same pattern of measurements in each period. Specifically, whatever measurement qubit
(x,y) undergoes at timestep t, qubit (x,y+ 1) undergoes it at time t − 2, but with the roles of Z and
X exchanged. Likewise for the remaining neighbours (x+ 1,y), (x,y− 1) and (x− 1,y), but at times
t − 8, t + 2 and t + 8 respectively. Knowing this, we can then write down the measurement schedule
for the bulk of the new code (i.e. what measurements are happening at any single timestep). This has
a periodic structure; we draw a ZX-diagram for a single timestep t and single ‘tile’ of this on the right
of Figure 5. To see the measurements happening across the whole bulk at this timestep, one should tile
these grey rectangles across the square lattice. That is, whatever measurement qubit (x,y) undergoes at
time t, qubits (x+3,y+1) and (x−2,y+8) undergo this too. Then to get the measurements happening
at the next timestep, one should translate the measurements from time t by (−1,−3). That is, whatever
measurement qubit (x,y) undergoes at time t, qubit (x−1,y−3) undergoes it at time t +1.
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Figure 6: A detecting region in the colour code and the corresponding detecting region in the Floqueti-
fication. Again, grey lines are not ZX-diagram wires - they are just a visual guide showing the square
lattice.

Detectors and logical operators can again not only be worked with algebraically, but also graphically, via
Pauli webs. In Figure 6 we show a detecting region in the colour code bulk and its image in the bulk of the
new Floquet code. The corresponding detector in the new code consists of 14 weight-two measurements
and 4 single-qubit measurements, spread over 8 timesteps. Every detector in the bulk of the new code is
identical to this one, up to a space-time translation and exchanging Z and X . Just as in the colour code,
these detecting regions are tiled such that unique errors violate unique sets of detectors, so decoding
can be performed, though we leave investigating specific decoding strategies to future work. A similar
exercise can be repeated for the logical operators; one can draw the operating regions corresponding
to the known logical operators of the colour code, and see how these map to operating regions in the
Floquetified code, from which one can write down the new code’s logical operators.

4.2 Beyond the bulk

The Floquetification process described above can be applied directly to planar colour codes, and will
lead to a new code that is itself planar. But since the boundaries of the original code look different to the
bulk, extra work needs to be done to Floquetify these correctly. Furthermore, the resulting Floquet code
can exhibit a ‘drifting’ behaviour, which we discuss in more detail in Appendix F.1. There are potential
perks of this behaviour - e.g. for removing leakage - but it’s also handy to have a code that doesn’t drift.
One might think we could get around these two issues by starting with the colour code defined on a
torus, which has no boundaries to worry about. But viewing our procedure as tilting the time direction
in a ZX-diagram for a code, as described in the last section, we find we can only give well-defined new
timesteps when the code we start with is planar - this is discussed in more depth in Appendix F.2. Instead,
if we want to avoid boundaries, what we can do is Floquetify only the bulk, which will give the bulk of
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a potential new Floquet code, then see if placing this new bulk on a torus still encodes logical qubits. In
Appendix F.3 we apply the two ideas described above - we Floquetify a planar colour code, and place
the Floquetified colour code bulk from this section on a torus.

5 Conclusion and future work

In this work, we introduced ISG codes, which describe a large family of codes driven by sequentially
measuring sets of Pauli operators; this includes stabilizer, subsystem4 and Floquet codes, and more. We
then used the ZX-calculus to find a new ISG code (specifically, a Floquet code) that is equivalent to the
colour code, and can be implemented on a square lattice. The main disadvantage of the colour code versus
the surface code is its high-weight measurements - our construction removes this obstacle, since all its
measurements are of weight one or two. For it to be a genuine candidate for practical implementation,
we would need to investigate its decoding capabilities, its boundaries and its logical gates - we leave
these for future work.

One direction we find very interesting relates to the latter; in Ref. [AWH22], it is shown that Floquet
codes can natively implement certain logical Clifford gates fault-tolerantly at no extra effort. The set of
such implementable gates is restricted by the automorphisms of the code’s anyonic defects; we believe
our Floquetified colour code should inherit a rich set of such automorphisms from the colour code. We
would like to verify whether this is the case, and then see whether this can be leveraged to perform
fault-tolerant logical gates.

As it happens, the authors of an upcoming paper [DTB+23] do exactly this for an independently dis-
covered Floquet code that is also in a definable sense equivalent to the colour code. Specifically, using
the anyon condensation framework of Ref. [KFT+22], they construct a code that can implement the full
logical Clifford group via sequences of measurements of weight at most three. What’s more, a further
upcoming paper [DSTE23] contains a third independent ‘Floquetified colour code‘ construction, this
time by starting with a subsystem code (specifically, that of Ref. [Bom10]) and passing to an associated
ISG code (Definition D.1). We are excited to learn more about both of these works, and to think about the
connections between our various different constructions. More generally, understanding our own Flo-
quetified colour code in terms of topological phases and symmetries of the ZX-diagram representing it
seems an exciting research avenue that bridges between the fields of diagrammatic calculi, (topological)
error correction and condensed matter physics.

Further work is warranted around ISG codes more broadly. For example, there are interesting questions
to be answered around equivalences of such codes, how best to define a notion of distance on them, and
how subsystem codes as they’re usually defined fit into this framework. Though we go into more detail
on these in Appendices C and D, a more thorough investigation would be welcome. This could perhaps
lead to interesting re-evaluations of long-established quantum codes.

The other obvious further research direction would be to develop the ideas here into a full-blown general-
purpose Floquetification algorithm, which can take as input a stabilizer code (presumably satisfying
certain conditions), and return a Floquetified version of it, with all the advantages and trade-offs that
brings; e.g. lower-weight measurements, but more measurements per detector, typically. One could then

4Up to the caveat that our definition of a subsystem code as in Definition 2.3 differs slightly from the usual subsystem code
definition, a point which we explore in Appendix D.
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compare the performance of these stabilizer codes with their Floquetifications, to see if any practical
advantages emerge in the general case.

On a higher level, this work makes the same point as Ref. [BLN+23], in that it suggests static stabilizer
and subsystem codes are perhaps not so different from dynamic ISG codes (like Floquet codes) after
all, and that a unifying way to think of ISG codes could be as ZX-diagrams that are suitably covered
by detecting regions and contain pairs of operating regions satisfying Pauli commutativity relations. An
avenue for further work would be to develop this perspective further - for example, by taking it as a
starting point for designing new codes.
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A A corollary of the stabilizer formalism

Here we state and prove the effect that measuring a Hermitian Pauli p∈Pn has on the group N(S)/S, for
any stabilizer group S ≤ Pn. We will often refer to this as (measurement in) the normalizer formalism.
A few lemmas will be required in order to prove this; the first two are so fundamental that we will use
them without explicitly referencing them.

Lemma A.1. Any two elements p,q ∈ Pn either commute or anti-commute. That is, pq =±qp.

Corollary A.2. If S ≤ Pn is a stabilizer group, the normalizer N(S) = {p ∈ Pn : pSp−1 = S} is equal
to the centralizer C(S) = {p ∈ Pn : ∀s ∈ S, psp−1 = s}.

The next two are less elementary; their proofs can be found in Ref. [Got09, Section 3.4].

Lemma A.3. If S ≤ Pn is a stabilizer group with rank r, then N(S)/S ∼= Pk, where k = n− r.

Lemma A.4. If S ≤ Pn is a stabilizer group with rank r, and k = n− r, then for any maximally
Abelian subgroup 〈 x1, . . . ,xk 〉 of N(S)/S ∼= Pk we might choose, there exists a second Abelian sub-
group 〈 z1, . . . ,zk 〉, such that 〈 i, x1, z1, . . . , xk, zk 〉 is isomorphic to Pk = 〈i,X1,Z1, . . . ,Xk,Zk〉 via the
map i 7→ i,x j 7→ X j and z j 7→ Z j for all j.

First, we’ll remind ourselves of how measurement works in the stabilizer formalism.

Theorem A.5 (Measurement in the stabilizer formalism). Suppose we have a stabilizer group S =
〈s1, . . . ,sr〉 ≤ Pn with rank r, and let k = n− r. Measuring a Hermitian Pauli p produces a measurement
outcome m ∈ {−1,1} and a new stabilizer group S ′ ≤Pn. We have three cases:

Case 1 (only possible when r < n): p commutes with all generators s j but ±p /∈ S. In this case, the
measurement outcome m ∈ {1,−1} is random, and S ′ = 〈mp,s1,s2, . . . ,sr〉.

Case 2: p commutes with all generators s j and ±p ∈ S. Here the outcome m is deterministically ±1,
and S ′ = S.

Case 3: p anti-commutes with at least one s j. In fact, it can be shown that we can always pick a gen-
erating set such that p anti-commutes with exactly one generator s1, and commutes with the remaining
generators s2, . . . ,sr. In this case, the outcome m is again random, and S ′ = 〈mp,s2, . . . ,sr〉.

We can then define measurement in the normalizer formalism via the same three cases.

Theorem A.6 (Measurement in the normalizer formalism). Given a stabilizer group S = 〈s1, . . . ,sr〉 ≤
Pn with rank r, and letting k = n− r, we know that:

N(S)/S = 〈 i, x1, z1, x2, z2, . . . , xk, zk 〉 ∼= Pk (9)

for some Paulis x j and z j in N(S). Measuring a Hermitian Pauli p∈Pn produces a measurement outcome
m ∈ {1,−1} and a new stabilizer group S ′; we can describe the new logical Pauli group N(S ′)/S ′ in
terms of the old one N(S)/S according to the same three cases:

Case 1 (only possible when r < n): p commutes with all generators s j but ±p /∈ S. Equivalently, p is an
element of N(S)/S other than 1 or −1. By choosing a different generating set for N(S)/S if needed,
we may assume without loss of generality that p = x1. We then find that:

N(S ′)/S ′ = 〈 i, x2, z2, . . . , xk, zk 〉 ∼= Pk−1 (10)
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where S ′ is now 〈mp,s1, . . . ,sr〉.

Case 2: p commutes with all generators s j and ±p ∈ S. Equivalently, p is either 1 or −1 in N(S)/S.
This case is trivial: S ′ = S, hence N(S ′)/S ′ = N(S)/S.

Case 3: p anti-commutes with at least one s j. Equivalently, p /∈ N(S)/S. Without loss of generality, we
assume p anti-commutes with s1 and commutes with s2, . . . ,sr. Then by multiplying representatives of
generators of N(S)/S by s1 if needed, we can also assume x1,z1, . . . ,xk,zk all commute with p. We then
find that:

N(S ′)/S ′ = 〈 i, x1, z1, x2, z2, . . . , xk, zk 〉 ∼= Pk (11)

where S ′ is now 〈mp,s2, . . . ,sr〉.

Proof. Let’s first note that since p is Hermitian, we have p2 = 1. Thus if p is in N(S)/S , it must
be of order 2. This is important because it means that the three cases above are disjoint and cover all
possibilities; p is either in N(S)/S or it isn’t, and if it is, it’s either 1, −1 or another order-2 element.
In the following, we will occasionally need to be verbose as to whether q denotes qS ∈ N(S)/S or
qS ′ ∈ N(S ′)/S ′.

We start with Case 1. If p commutes with all generators of S but ±p /∈ S , then by definition this
means p is an order-2 element of N(S)/S other than 1 or −1. The converse also holds, hence our use
of the word ‘equivalently’ above was justified. By Lemma A.4, we can always choose a presentation
〈 i, x1, z1, . . . , xk, zk 〉 for N(S)/S such that x1 = p and the Pauli commutativity relations are satisfied
by all x j and z j. Since S ′ has minimal presentation 〈mp,s1, . . . ,sr〉, Lemma A.3 tells us that N(S ′)/S ′ is
isomorphic to Pk−1.

We then claim that a presentation for N(S ′)/S ′ is 〈i, x2, z2, . . . , xk, zk〉. Let’s first check this is well-
defined, in that the representative q of each generator q is in N(S ′). This follows from the fact that each q
was in N(S), so commutes with s1, . . . ,sr, and because each q commuted with x1 = p in N(S)/S, hence
q commutes with mp. Next, we check these generators remain independent in N(S ′)/S ′. Similarly, this
follows from the fact that they were independent of one another and of p = x1 in N(S)/S. Specifically,
let’s assume for a contradiction that a generator q can be written in terms of the remaining 2(k− 1)
generators q1, . . . , q2(k−1) as a word w := qa1

1 . . .q
a2(k−1)

2(k−1). Then this would imply q = ws′ for some

s′ ∈ S ′. This s′ can in turn be written as (mp)b0sb1
1 . . .sbr

r . But noting that m = i1−m, we can define
w′ = w(i1−m p)b0 as a new word over representatives of generators of N(S)/S, and can also define s =
sb1

1 . . .sbr
r ∈ S, so that q = w′s. But then this says q = w′ in N(S)/S, contradicting the fact that the

generators p,q,q1, . . . ,q2(n−k−1) were independent in N(S)/S.

Finally, we check that they obey the Pauli commutativity relations in N(S ′)/S ′; this follows directly
from the fact that they did so in N(S)/S . Thus this presentation is a subgroup of N(S ′)/S ′ isomorphic
to Pk−1. But since N(S ′)/S ′ is itself isomorphic to Pk−1, this presentation must be exactly N(S ′)/S ′, as
claimed.

Next up is Case 2, where p commutes with all generators s j and ±p ∈ S. By definition, if ±p ∈ S then
p = ±1 in N(S)/S, and vice versa, so again our use of ‘equivalently’ in the theorem statement was
justified. Then there’s nothing left to prove; since S ′ = S in this case, we know N(S ′)/S ′ = N(S)/S .

Finally, in Case 3, we know p anti-commutes with at least one generator of S. Thus it cannot be in
N(S), and hence p /∈N(S)/S. Again, the converse also holds, justifying our use of ‘equivalently’ above.
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We may assume without loss of generality that S = 〈s1, . . . ,sr〉 where p anti-commutes with s1 but
commutes with the remaining generators. We have a presentation 〈 i, x1, z1, . . . , xk, zk 〉 for N(S)/S. If
any generator qS = q ∈ {x1, z1, . . . , xk, zk} is such that its representative q anti-commutes with p, we
can pick a new representative qs1 ∈ qS that must commute with p. Hence without loss of generality we
may assume all representatives x1, z1, . . . , xk, zk commute with p. Since S ′ has minimal presentation
〈mp,s2, . . . ,sr〉, we know N(S ′)/S ′ is isomorphic to Pk.

We claim that a presentation for N(S ′)/S ′ is 〈i, x1, z1, . . . , xk, zk〉. To prove this, we repeat similar
steps as for Case 1 above; we first show this is well-defined, in that each generator representative is in
N(S ′). This follows from the fact that each one was in N(S), so commutes with s2, . . . ,sr, and from
the assumption above that we picked them to commute with p, and hence mp too. Then we must show
these generators remain independent. To see this, suppose for a contradiction that some generator q can
be written in terms of the other 2k generators q1, . . . ,q2k, as some word w := qa1

1 . . .qa2k
2k , for a j ∈ {0,1}.

This would mean q = ws′, for some s′ ∈ S ′. This s′ can itself be written as (mp)b1sb2
2 , . . . ,sbr

r . If b1 = 0,
then this contradicts the fact that the generators q,q1, . . . ,q2k were independent in N(S)/S. But equally
if b1 = 1, then s1 anticommutes with ws′ but not q, which is again a contradiction, since q = ws′. So
the generators must all be independent. Finally, we must prove the generators still satisfy the Pauli
commutation relations; this follows directly from the fact that they did so in N(S)/S . We can conclude
this presentation is a subgroup of N(S ′)/S ′ isomorphic to Pn−k, and since N(S ′)/S ′ is itself isomorphic
to N(S ′)/S ′, it must be that this presentation is the whole of N(S ′)/S ′, as claimed.

B ISG code example

Here we give a simple example of an ISG code and the evolution over time of its ISG St and logical Pauli
group N(St)/St . Once we know the ISG’s evolution, we can then immediately write down detectors for
the code too. We do all this algebraically, using the stabilizer and normalizer formalisms of Appendix A.
We will consider the ISG code defined by the scheduleM= [〈X1X2, X3X4〉,〈Z1Z3, Z2Z4〉]. Those who’ve
seen a bit of error correction before may recognise this as the distance-two Bacon-Shor subsystem code,
which can in turn be thought of as a subsystem implementation of the distance-two rotated surface code.

B.1 Instantaneous stabilizer group

The initial ISG S−1 is the trivial group {1}, as ever. Using the stabilizer formalism we can see how St

evolves. In the zero-th round we measure X1X2 and X3X4, so we are in Case 1 for both; we get random
outcomes m(0)

X1X2
and m(0)

X3X4
respectively, and the ISG immediately afterwards is:

S0 = 〈m(0)
X1X2

X1X2, m(0)
X3X4

X3X4〉 (12)

By multiplying the second generator by the first, we get a new presentation for the same group that’ll be
more convenient for figuring out what S1 is in a second:

S0 = 〈m(0)
X1X2

X1X2, m(0)
X1X2

m(0)
X3X4

X1X2X3X4〉 (13)

In the next round we measure Z1Z3 and Z2Z4. First, consider Z1Z3. Since it anticommutes with X1X2 but
commutes with X1X2X3X4, we’re in Case 3; m(0)

X1X2
X1X2 is removed from the generating set of S1, and

replaced by m(1)
Z1Z3

Z1Z3, where m(1)
Z1Z3

is the random outcome of measuring Z1Z3. Next, consider Z2Z4:
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since it commutes with Z1Z3 and X1X2X3X4 but neither it nor its negation is in S0, we’re in Case 1. So
m(1)

Z2Z4
Z2Z4 is added as a generator of S1, where m(1)

Z2Z4
is the random outcome of measuring Z2Z4. So

altogether:
S1 = 〈m(1)

Z1Z3
Z1Z3, m(1)

Z2Z4
Z2Z4, m(0)

X1X2
m(0)

X3X4
X1X2X3X4〉 (14)

For every subsequent timestep t > 1, the ISG St will have rank 3. That is, this code is established after
T = 1 timesteps. Let’s spell this out for t = 2, wherein we measure X1X2 and X3X4 again. We’ll first use
a different generating set for S1, like we did just a second ago:

S1 = 〈m(1)
Z1Z3

Z1Z3, m(1)
Z1Z3

m(1)
Z2Z4

Z1Z2Z3Z4, m(0)
X1X2

m(0)
X3X4

X1X2X3X4〉 (15)

We measure X1X2, which anticommutes with Z1Z3, commutes with the other generators, and neither
it nor its negation is in S1. So we’re in Case 3; we get random outcome m(2)

X1X2
, and m(2)

X1X2
X1X2 re-

places m(1)
Z1Z3

Z1Z3 as a generator. In particular, the product m(2)
X1X2

m(0)
X1X2

m(0)
X3X4

X3X4 of m(2)
X1X2

X1X2 and

m(0)
X1X2

m(0)
X3X4

X1X2X3X4 is now in S1. So when we then measure X3X4, we’re in Case 2; we get deter-

ministic outcome m(2)
X3X4

= m(2)
X1X2

m(0)
X1X2

m(0)
X3X4

, and S2 remains unchanged:

S2 = 〈m(2)
X1X2

X1X2, m(1)
Z1Z3

m(1)
Z2Z4

Z1Z2Z3Z4, m(0)
X1X2

m(0)
X3X4

X1X2X3X4〉 (16)

By multiplying the third generator by the first and using m(2)
X3X4

= m(2)
X1X2

m(0)
X1X2

m(0)
X3X4

, we get the following
more convenient presentation:

S2 = 〈m(2)
X1X2

X1X2, m(2)
X3X4

X3X4, m(1)
Z1Z3

m(1)
Z2Z4

Z1Z2Z3Z4〉 (17)

And indeed this has rank 3 again, as promised. If we continued this sort of analysis, we’d see that we
get:

St =



{1} if t < 0

〈m(0)
X1X2

X1X2, m(0)
X3X4

X3X4〉 if t = 0

〈m(t)
Z1Z3

Z1Z3, m(t)
Z3Z4

Z2Z4, m(0)
X1X2

m(0)
X3X4

X1X2X3X4〉 if t > 0 odd

〈m(t)
X1X2

X1X2, m(t)
X3X4

X3X4, m(1)
Z1Z3

m(1)
Z3Z4

Z1Z2Z3Z4〉 if t > 0 even

(18)

Note that the ISG here is dynamic even after establishment at T = 1; it changes from one timestep to the
next. As pointed out in the table in Figure 1, this is characteristic of a subsystem code. In fact, we can be
even more specific; for any subsystem code, the way in which the ISG changes between timesteps (after
establishment) is more commonly called gauge fixing - we give more detail on this in Appendix D.1.

B.2 Detectors

By analysing the evolution of the ISG of the code, we also uncover the code’s detectors. Specifically, any-
time we measure a Pauli p and find ourselves in Case 2, we learn a detector of the code. Moreover, a gen-
erating set of detectors of the code can be found this way. To see why this is, recall that a detector is de-
fined to be a set of measurement outcomes whose product is deterministic in the absence of noise. In any
ISG code, at any timestep t, every element of the ISG St is of the form m(t1)

p1 . . .m(t`)
p` p1 . . . p`, where each

p j is a Pauli and m(t j)
p j is the outcome of measuring p j at timestep t j. If at time t we measure some Pauli p
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and land in Case 2, it means that±p was already in St . In other words,±p=m(t1)
p1 . . .m(t`)

p` p1 . . . p`. So the
measurement outcome m(t)

p is deterministically equal to m(t1)
p1 . . .m(t`)

p` ; that is, the product m(t)
p m(t1)

p1 . . .m(t`)
p`

is deterministic (it’s 1, in this case). Hence the formal product m(t)
p m(t1)

p1 . . .m(t`)
p` is a detector.

For example, in the analysis above, the measurement of X3X4 at time t = 2 was handled by Case 2. We
found that the measurement outcome m(2)

X3X4
was deterministically equal to the product m(2)

X1X2
m(0)

X1X2
m(0)

X3X4

of previous measurements. Thus the formal product m(2)
X1X2

m(2)
X3X4

m(0)
X1X2

m(0)
X3X4

is a detector. Indeed, were
we to continue this analysis, we would find detectors:

m(t)
X1X2

m(t)
X3X4

m(t−2)
X1X2

m(t−2)
X3X4

at every even timestep t ≥ 2

m(t)
Z1Z3

m(t)
Z2Z4

m(t−2)
Z1Z3

m(t−2)
Z2Z4

at every odd timestep t ≥ 2
(19)

The reason we said this gives us a generating set of detectors is because detectors form a group. Suppose
we have two detectors m1 . . .mu and m′1 . . .m

′
v. Since by definition these products are deterministic, the

total product m1 . . .mum′1 . . .m
′
v must be deterministic too. Hence the formal product m1 . . .mum′1 . . .m

′
v is

a detector. The group’s unit is the trivial formal product, which corresponds to an empty set of measure-
ment outcomes. We can write this as ∏m j∈ /0 m j = 1. Every detector is then its own inverse; as a formal
product whose powers are taken mod 2, we have m1 . . .mum1 . . .mu = m2

1 . . .m
2
u = m0

1 . . .m
0
u = 1.

B.3 Logical Pauli group

Tracking the evolution of the logical Pauli group N(St)/St has a very similar feel as for St , but there’s
a little bit more to picking the right presentation for the group now, in order to be able to apply the
normalizer formalism.

As a reminder, we’re considering the scheduleM= [〈X1X2, X3X4〉,〈Z1Z3, Z2Z4〉]. Since the initial ISG
S−1 is trivial, the most obvious presentation for the initial logical Pauli group is:

N(S−1)/S−1 = 〈 i, X1, Z1, X2, Z2, X3, Z3, X4, Z4 〉 (20)

But at t = 0 we measure X1X2 and X3X4, so in order to use the normalizer formalism, we need a different
presentation. First, we consider measuring X1X2. We know we’ll be in Case 1; we can see this either by
observing that X1X2 is an element of N(S−1)/S−1 other than 1 or −1, or equivalently by observing that
X1X2 is not in S−1 but commutes with all its generators (vacuously, because there are none). To apply
the formalism, we can first multiply X1 by X2, so that X1X2 is a generator. One might think that we’re
then good to go, but we must be careful: this multiplication means the generators no longer satisfy the
Pauli commutativity relations. To account for this, we can multiply Z2 by Z1, to get:

N(S−1)/S−1 = 〈i, X1X2, Z1, X2, Z1Z2, X3, Z3, X4, Z4〉 (21)

Now we can apply the formalism! Doing this simply removes X1X2 and Z1 from the generating set. We
can repeat something similar for the measurement of X3X4; namely, we can multiply X3 by X4 and Z4 by
Z3, then apply Case 1 to get:

N(S0)/S0 = 〈 i, X2, Z1Z2, X4, Z3Z4 〉 (22)

where S0 = 〈m(0)
X1X2

X1X2, m(0)
X3X4

X3X4〉. At the next timestep t = 1, we first measure Z1Z3. This puts us in

Case 3, and transforms S0 to S ′0 = 〈m
(1)
Z1Z3

Z1Z3, m(0)
X1X2

m(0)
X3X4

X1X2X3X4〉. Since all representatives of the
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generators of N(S0)/S0 already commute with Z1Z3, we don’t need to change our presentation to be able
to apply the formalism. We get:

N(S ′0)/S ′0 = 〈 i, X2, Z1Z2, X4, Z3Z4 〉 (23)

The other measurement we make at timestep t = 1 is Z2Z4. This means we’re in Case 1, but we need an
alternative presentation first, in which Z2Z4 is a generator. We can do this by multiplying Z3Z4 by Z1Z2

to get Z1Z2Z3Z4, then, since m(1)
Z1Z3

Z1Z3 ∈ S ′0, we can pick a new representative m(1)
Z1Z3

Z2Z4. If necessary,

we can multiply this by i2 to get just Z2Z4, for convenience. But now our generators don’t satisfy the
Pauli commutativity relations again. Fortunately we can fix this by multiplying X2 by X4, picking a
new representative m(0)

X1X2
m(0)

X3X4
X1X3, and for convenience multiplying by i2 if needed to get just X1X3.

Altogether, this gives:
N(S ′0)/S ′0 = 〈 i, X1X3, Z1Z2, X4, Z2Z4 〉 (24)

We can now directly apply Case 1; the resulting new logical Pauli group is:

N(S1)/S1 = 〈 i, X1X3, Z1Z2 〉 (25)

And this is how things stay: for every measurement p performed at any future timestep t > 1, we’re
either in Case 2 or Case 3 - and when it’s the latter, the given representatives of generators of N(S1)/S1
even commute with p already. Hence:

N(St)/St =


〈 i, X1, Z1, X2, Z2, X3, Z3, X4, Z4 〉 ∼= P4 if t < 0
〈 i, X2, Z1Z2, X4, Z3Z4 〉 ∼= P2 if t = 0
〈 i, X1X3, Z1Z2 〉 ∼= P1 if t > 0

(26)

We can thus see that the logical Pauli group is static after becoming established at time T = 1. Again, as
noted in the table in Figure 1, this is characteristic of a subsystem code.

C Remarks on ISG codes

Here we comment on some aspects of ISG codes that we didn’t have space for in the main text. First, we
note that |N(St)/St | is a non-increasing sequence in t. That is, the number of qubits encoded in an ISG
code can only ever stay the same or decrease, but never increase. One can see this from the normalizer
formalism of the previous section; N(St)/St is initially isomorphic to Pn, so encodes n qubits, then
evolves exclusively by measuring Paulis p ∈ Pn. Such a measurement can only ever cause the number
of encoded qubits to decrease by one (Case 1) or stay the same (Cases 2 and 3).

Second, we note that, for all t, St has rank r ⇐⇒ N(St)/St ∼= Pn−r. Thus when we defined ‘establish-
ment’ as being the existence of a T such that St has fixed rank r for all t ≥ T , we could equally have
defined it in terms of logical qubits, as a T such that N(St)/St ∼= Pk for fixed k = n− r for all t ≥ T .

We confess that we have used a very naive definition of distance; namely, the minimum weight of any
element of N(St)/St over all t ≥ T . This only considers problematic Pauli operators within a single
timestep, and fails to take into account that there can be combinations of Pauli operators over multiple
timesteps which anti-commute with logical operators but do not violate any detectors. Our definition
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should perhaps be downgraded to a spacelike distance, and a better definition of distance could instead
be directly related to detecting and operating regions.

An interesting unanswered question concerns when two ISG codes should be considered equivalent. For
example, suppose we have an ISG codeM= [. . . ,Mt ,Mt+1, . . .]. IfMtMt+1 is Abelian (i.e. all Paulis
inMt andMt+1 commute with each other), should this be considered equivalent to the ISG codeM′ =
[. . . ,MtMt+1, . . .]? Certainly the ISGs St+1 ofM and S ′t ofM′ will be identical, and thus so too the
logical Pauli groups N(St+1)/St+1 and N(S ′t )/S ′t . If we think the answer to this question is yes, then any
stabilizer codeM= [M0,M1, . . . ,Mt , . . .] is equivalent to the period-1 codeM= [M0M1 . . .Mt . . .].
In particular, this would make every stabilizer code a Floquet code, demanding we update our Venn
diagram from Figure 1 to:

ISG Stabilizer FloquetSubsystem (27)

Other cases also arise - should the periodic ISG codeM = [M0,M1, . . . ,M`−2,M`−1] be considered
equivalent to one likeM′ = [M1,M2, . . . ,M`−1,M0], which has the same measurement sequence only
cyclically permuted? We would be interested to hear more opinions on this matter.

One could also point out that ‘establishment’ isn’t a strictly necessary part of the definition of an ISG
code. For example, one could imagine a measurement schedule M = [M0,M1, . . .] such that the se-
quence |N(St)/St | never becomes constant, but decreases so slowly that one can still use a subset of the
encoded logical qubits to perform quantum computation. We would be very interested to hear of any
non-trivial suchM. Finally, we remark that the definition could (and probably should) be extended such
that, in addition to Pauli measurements, Clifford operations are also allowed to be applied to the qubits
of the code.

D Remarks on subsystem codes

Here, we give more detail on the relationship between subsystem codes and ISG codes. In Definition 2.3,
we defined a subsystem code as a type of ISG code, and confessed that this definition actually deviates
slightly from the usual one. We now discuss this deviation at length. We first introduce new notation
- for any group G ≤ Pn, we use G? to denote G/〈i〉, the same group modulo phases - and we remind
ourselves of previous notation; for groups G1, . . . ,G` ≤ Pn, we write the product G1 . . .G` to mean the
group generated by the union of generating sets for G1, . . . ,G`, and we let P◦k denote the ‘almost Pauli
group’ 〈X1,Z1, . . . ,Xk,Zk〉, which satisfies 〈i〉P◦k = Pk.

At a high level, subsystem codes are stabilizer codes in which some logical qubits aren’t used to store
logical information. So the formalism doesn’t give rise to new codes, but rather gives rise to more flexible
ways of correcting errors on these codes [Bac06]. These unused logical qubits are referred to as gauge
qubits. Much like stabilizer codes can be defined entirely by a stabilizer group, subsystem codes can be
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defined entirely by a subgroup G ≤ Pn of the Pauli group. The only requirement on this G is that it must
contain i (and hence need not be Abelian). We must also pick a presentation 〈i,s1, . . . ,sR〉 of Z(G) such
that S = 〈s1, . . . ,sR〉 is a stabilizer group, but the actual choice is arbitrary. Crucially, at no point above
was a measurement schedule required, which makes this definition more general than ours. Throughout
the rest of this section, we will forget our Definition 2.3; whenever we mention a subsystem code, we
now just mean a gauge group G.

It was originally envisioned that, in order to use a subsystem code for error correction, one would repeat-
edly measure a generating set for S [Pou05]. Later, it was pointed out that actually one could potentially
measure a generating set for a group G′ satisfying 〈i〉G′ = G, and combine the outcomes in order to infer
the measurement outcomes of a generating set for S [Bom10]. Since the generators of such a G′ are
typically of lower-weight than those of S, this provides a significant practical advantage, and is thus
generally how subsystem codes are now envisioned to be implemented. But since G can be non-Abelian,
we can’t necessarily measure a full generating set for G′ at once. Instead, if choosing this route, we must
specify a schedule in which to measure mutually commuting sets of generators. This leads us to define
an associated ISG code for a subsystem code:

Definition D.1. Given a subsystem code G, an associated ISG code for it is an ISG code MG =
[M0,M1, . . .] that establishes at some time T ≥ 0, such that 〈i〉M0M1 . . . = G, and the ISG St sat-
isfies S? ≤ S?t for all t ≥ T .

In the other direction, we can define the associated subsystem code for an ISG code:

Definition D.2. Given an ISG codeM= [M0,M1, . . .], we say its associated subsystem code is defined
by the gauge group GM = 〈i〉M0M1 . . ..

Note that a single subsystem code G can have many associated ISG codesMG , but an ISG codeM has a
unique associated subsystem code GM. As an example, in Appendix B we said we looked at the distance-
two Bacon-Shor code, which is normally defined via the gauge group G = 〈i,X1X2,X3X4,Z1Z3,Z2Z4〉.
However, since this group is non-Abelian, if we choose to implement it by measuring generators of
a G′ satisfying 〈i〉G′ = G (the obvious choice being G′ = 〈X1X2,X3X4,Z1Z3,Z2Z4〉), then we require a
measurement schedule. In that section, we thus actually looked at the associated ISG code MG =
[〈X1X2,X3X4〉,〈Z1Z3,Z2Z4〉]. Let’s also point out quickly that, while any partition of generators of G into
mutually commuting subsets produces an ISG code, some fall foul of the definition of an associated ISG
code for G. The schedule MG = [〈X1X2〉,〈Z2Z4〉,〈X3X4〉,〈Z1Z3〉] is one such example for the Bacon-
Shor code above. Here the ISG at any time t is (up to phases) exactly the groupMt whose generating set
was just measured. That is, letting m(t)

p denote the outcome of measuring Pauli p at time t ≥ 0, we have:

St =



〈m(t)
X1X2

X1X2〉 if t = 0 mod 4

〈m(t)
Z2Z4

Z2Z4〉 if t = 1 mod 4

〈m(t)
X3X4

X3X4〉 if t = 2 mod 4

〈m(t)
Z1Z3

Z1Z3〉 if t = 3 mod 4

(28)

Since S? = Z(G)? = 〈X1X2X3X4,Z1Z3Z2Z4〉, this ISG code doesn’t satisfy S? ≤ S?t for any t, so isn’t an
associated ISG code for G.

We are very interested in precisely pinning down the relationship between a subsystem code G and any
associated ISG code MG for it. To this end, we state below one result and one open question. For a
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subsystem code G, the logical (almost!) Pauli group is defined as N(S)/G, and is isomorphic to P◦k , for
some k ∈ Z≥0. This k is defined to be the number of logical qubits of the subsystem code. The following
theorem effectively says that the logical qubits of a subsystem code are a subset of the logical qubits of
any associated ISG code. More precisely:

Theorem D.3. For any subsystem code G and any associated ISG code MG , there exist fixed Paulis
x1,z1, . . . ,xk,zk such that 〈x1G,z1G, . . . ,xkG,zkG〉 is a presentation for N(S)/G ∼= P◦k , and, for all t,
〈iSt ,x1St ,z1St , . . . ,xkSt ,zkSt〉 is a subgroup of N(St)/St isomorphic to Pk.

We prove the statement in two steps. First we show that every non-trivial coset of the subsystem code’s
logical Pauli group N(S)/G has a representative - a bare logical - which is also a non-trivial logical
operator for any associated ISG code at all times. Secondly, we show that inequivalent non-trivial logical
operators of the subsystem code are also inequivalent non-trivial logical operators of any associated
ISG code. Both statements rely on the fact that, for any subsystem code G and associated ISG code
MG = [M0,M1, . . .], the ISG is always a subgroup of the gauge group: ∀t ∈Z,St ≤G. This can be seen
directly from the fact that St is formed by measuring generating sets for groupsMt ,Mt−1, . . . ,M0 ≤G.
Thus every element of St is a product of elements of G, multiplied by some product ±1 of measurement
outcomes - both of which are again in G. We start in earnest by importing the following lemma separately,
so that we can refer to it again later:

Lemma D.4 ([Pou05]). For any subsystem code G ≤ Pn, the gauge group can be written as G =
S〈i〉〈x1,z1, . . . ,xK ,zK〉, for some Paulis x1,z1, . . . ,xK ,zK ∈ Pn, with 〈x1,z1, . . . ,xK ,zK〉 isomorphic to P◦K .

The group 〈x1,z1, . . . ,xK ,zK〉 ∼= P◦K above corresponds exactly to the K gauge qubits of the subsystem
code. Next we define bare and logical operators.

Definition D.5. Given a subsystem code G, a logical operator (a member of a coset of N(S)/G) is bare
if it commutes with all gauge qubit logical operators x1,z1, . . . ,xK ,zK , and dressed if not.

Every logical operator coset in N(S)/G contains at least one bare logical operator. We now relate these
bare logicals to the centralizer C(G) = {p∈Pn | ∀g∈ G, pg = gp} of G in Pn - i.e. all the Pauli operators
that commute with all elements of G.

Lemma D.6. Given a subsystem code G, the set of all non-trivial bare logical operators is exactly
C(G)−G.

Proof. A logical operator is a member of a coset of N(S)/G, so - ignoring the group structure and just
thinking in terms of sets - the non-trivial logical operators are exactly the set N(S)−G. For stabilizer
groups like S, the normalizer and centralizer coincide: N(S) =C(S) [Got09, Section 3.2]. So a logical
operator commutes with all elements of S . A bare logical operator by definition also commutes with all
gauge qubit logical operators x1,z1, . . . ,xK ,zK . From Lemma D.4 we know G = S〈i〉〈x1,z1, . . . ,xK ,zK〉,
and since every Pauli operator commutes with i, we deduce that a bare logical operator commutes with
all of G. So all non-trivial bare logical operators are in C(G)−G. The converse can also be seen to hold;
every element of C(G)−G is a non-trivial bare logical operator.

We now tie this all together.

Proof of Theorem D.3. A non-trivial subsystem code logical operator is an element of C(G)−G, by
Lemma D.6. Since St ≤ G for all t, we have C(G) ≤ C(St), and hence C(G)−G ≤ C(St)−St . If we
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again use the fact that centralizers and normalizers coincide for stabilizer groups like St , we see that any
non-trivial bare logical operator is a member of N(St)−St , and is hence a non-trivial logical operator of
the ISG code at all timesteps.

It remains to show that inequivalent logical operators of the subsystem code correspond to inequivalent
logical operators of any associated ISG code. Let p,q ∈ N(S)−G be inequivalent logicals of the sub-
system code - i.e. pG 6= qG in N(S)/G. Since St is a subgroup of G for all t ∈ Z, we can directly infer
that pSt 6= qSt . So we’re done; we’ve shown that choosing bare logical representatives x1,z1, . . . ,xk,zk of
〈x1G,z1G, . . . ,xkG,zkG〉 = N(S)/G gives us a presentation 〈iStx1St ,z1St , . . . ,xkSt ,zkSt〉 ∼= Pk of a sub-
group of N(St)/St for all t ∈ Z.

As a corollary, we can now bound the distance of any associated ISG code. For any subsystem code G,
let dG be its bare distance; that is, the minimum weight of any bare logical operator of the code. Then
the distance d of any associated ISG code must be at most dG . Similarly, letting kG be the number of
logical qubits in the subsystem code, the number k of logical qubits of any associated ISG code must be
at least kG . For this latter bound, it is natural to ask whether we can always find an associated ISG code
which saturates it - in other words, can we always find an associated ISG code whose logical qubits are
effectively exactly those of the subsystem code?

Open question D.7. For every subsystem code G, does there always exist an associated ISG code
MG that establishes at time T , and fixed Paulis x1,z1, . . . ,xk,zk, such that 〈x1G,z1G, . . . ,xkG,zkG〉 is
a presentation for N(S)/G ∼= P◦k , and, for all t, 〈iSt ,x1St ,z1St , . . . ,xkSt ,zkSt〉 is a presentation for
N(St)/St ∼= Pk?

For many subsystem codes, we can find such an associated ISG. In the small Bacon-Shor code of Ap-
pendix B, for example, we analysed the associated ISG code [〈X1X2,X3X4〉,〈Z1Z3,Z2Z4〉], and found that
after establishment it had logical Pauli group N(St)/St = 〈iSt ,X1X3St ,Z1Z2St〉 - see Equation (26). The
same representatives generate N(S)/G = 〈X1X3G,Z1Z2G〉 too. For some other subsystem codes, how-
ever, we have not managed to find such an associated ISG code - examples include Bombín’s topological
subsystem code introduced in Ref. [Bom10, Section IV]. We plan to investigate this subsystem code
through the lens of ISG codes in future work.

D.1 Gauge fixing

We close this section with a word on what gauge fixing means from an ISG code perspective. For any
subsystem code G ≤ Pn implemented by measuring generators of some G′ satisfying 〈i〉G′ = G, gauge
fixing is the name given to tracking what happens to the group stabilizing the system of n qubits as we
measure these generators. The name comes from the following: as shown in Lemma D.4, G can be
written as S〈i〉〈x1,z1, . . . ,xK ,zK〉, where the subgroup 〈x1,z1, . . . ,xK ,zK〉 ≤ G isomorphic to P◦k is the
group of logical operators for the gauge qubits. When we measure one of these logical operators, we are
then said to be fixing the overall system into an eigenstate of one of these gauge qubits. Hence: gauge
fixing. If we instead view these measurements of generators of G′ as implementing an associated ISG
code for G, gauge fixing is just another way of saying ‘tracking the ISG St over time’. Note that any
associated ISG code will potentially only gauge fix a subset of the gauge qubits. This would then lead to
a higher number of logical qubits in the ISG code compared to the subsystem code, a distinctive feature
of Floquet codes [HH21, DTB22, DSTE23].
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E Double hexagon code

We give here a little more detail on the double hexagon code of Section 3, showing that it still has distance
two, like the J4,2,2K code that it Floquetifies. In Figures 7 and 8, we show operating regions correspond-
ing to logical operators x1 and z1 respectively. Recall (Subsection 2.2.2) that given an operating region,
the corresponding logical operator is found by looking at which output legs are highlighted with which
colours. For example, in the rightmost diagram of Figure 7, we show seven timesteps t ∈ {0,1, . . . ,6} of
the period-six double hexagon code. So looking at the output wires of this diagram tells us a representa-
tive of the logical x1 at timestep t = 6. Namely, re-using the notation that assigns label (i, j) to the qubit
with the i-th colour and j-th style, where i and j are taken modulo 6 and 2 respectively, and the ordered
lists of colours and styles are [purple, pink, orange, yellow, brown, blue] and [solid, dashed], we see
the corresponding logical operator at this timestep is X(0,0)X(0,1)X(5,0)X(5,1).

To see the corresponding logical operator at a different timestep t, we can just truncate the diagram after
timestep t and again look at the highlighted output edges. This is shown for timesteps t ∈ {0,1,2} in
Figure 9 below; the corresponding operators are X(0,0)X(0,1)X(5,0)X(5,1) after timesteps t = 0 and t = 1,
and X(2,0)X(2,1)X(1,0)X(1,1) after timestep t = 2. In fact, truncating the rightmost diagram of Figure 7 after
any timestep t gives an operating region whose corresponding x1 representative has weight four. The
same is true for all possible truncations of the z1 operating region in Figure 8, and would also be true if
we repeated this process for the other logical operator cosets x2 and z2. That is, truncating after timestep
t would always give us an operating region whose corresponding operator had weight four. It would be
tempting to conclude, therefore, that the double hexagon code has distance four, and that Floquetifying
the J4,2,2K code has increased its distance. But this would be wrong.

The reason is that while this process gives us logical operators in the Floquetification, it doesn’t neces-
sarily give us minimum-weight ones, even though we started with minimum-weight operating regions of
the J4,2,2K code in the leftmost diagrams of Figures 7 and 8. Indeed, one can find stabilizers at a given
timestep t with which to multiply these logical operators, in order to reduce their weight to two. One
can do this algebraically, making use of the fact that we already worked out the ISG St of the double
hexagon code for all t (see Equation (7) and the preceding sentence). Alternatively, one can do this
graphically, using the fact that Pauli webs on the same diagram form a group and can thus be multiplied
together [MBG23, Appendix A.3]. Graphically, multiplying together two (unsigned CSS) Pauli webs
just means laying one diagram on top of the other, up to the rule that if a wire is highlighted twice by the
same colour, these cancel out and the wire becomes unhighlighted5. In Figure 10 below, we thus multiply
the weight-four operating regions by appropriate stabilizing regions to get weight-two operating regions.

Since this code is fairly small, one can use these ideas to check by hand that for all t, no logical operator
at time t has weight one. Hence, since representatives of weight two exist for the logical operator coset
x1, the code has distance two, as promised.

5If laying one diagram on top of another results in a wire being highlighted both red and green, then the resulting Pauli web
is no longer CSS, in the language of this paper. It is, however, a valid Pauli web according to the more general definition used
in Refs. [BLN+23, MBG23].
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Figure 7: An operating region corresponding to a representative of the logical x1 in the J4,2,2K code (left
and middle) and in its Floquetification, the double hexagon code (right).
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Figure 8: An operating region corresponding to a representative of the logical z1 in the J4,2,2K code (left
and middle) and in its Floquetification, the double hexagon code (right).
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Figure 9: The double hexagon code after timesteps t = 0, t = 1 and t = 2 respectively, annotated with an
operating region corresponding to a representative of the logical x1.

Figure 10: For timesteps t = 0 and t = 1 respectively, we multiply the weight-four operating regions of
Figure 9 by appropriate stabilizing regions, which gives us weight-two operating regions. This corre-
sponds exactly to composition of the corresponding Pauli operators - for example, the topmost graphical
equation corresponds to the algebraic equation X(0,0)X(0,1)X(5,0)X(5,1) ◦X(0,0)X(0,1) = X(5,0)X(5,1).
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F Floquetifying the colour code: beyond the bulk

In this section, we expand on what we mean by a code exhibiting drift, and sketch some ideas as to how it
might be avoided. Then we describe what goes wrong when attempting to Floquetify a non-planar code,
before turning our attention back to our specific example of the colour code.

F.1 Drift

In a drifting Floquet code, at any timestep a new qubit might need to be initialised and entangled into the
code, or an old qubit might be measured out and not used again. Were such a code to be implemented on
hardware that required qubits to be in fixed positions (e.g. on a superconducting chip), the code might
appear to slowly drift across the hardware in some direction. For example, if the qubits of the code
roughly form a square, and qubits on the top boundary of this square are being regularly measured out,
while on the bottom boundary new qubits are regularly being entangled in, then the code as a whole
will seem to drift downwards. Viewing our Floquetification procedure as tilting the time direction in a
ZX-diagram shows that drift is a natural consequence - see the left hand side of Figure 11.

There are many ways we can try to avoid drifting boundaries. In fact, we saw one of them already,
when we Floquetified the J4,2,2K code in Section 3. Ordinarily, the resulting code would exhibit drift, in
exactly the fashion visualised on the left hand side of Figure 11. However, our Floquetification re-used

Figure 11: Here blue prisms represent ZX-diagrams of codes, while grey planes are timeslices t0 < t1 < t2
after the time direction has been tilted. The shaded grey squares show the intersection of the code’s ZX-
diagram with a particular timestep. On the left, we see that taking a stabilizer code and tilting the
time direction to get an equivalent Floquet code naturally causes drift - notice how the shaded grey
intersections change position within the timeslices t0, t1 and t2. On the right, we show that one way to
avoid drifting boundaries is to Floquetify a code that is itself moving; here the grey intersections are
always in the same place within the timeslices t0, t1 and t2.
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qubits cyclically; once the pair of qubits on the top boundary of the code were measured out, they were
immediately re-entangled into the bottom boundary of the code at the next timestep - see the rightmost
diagram of Figure 2. In this sense, we made our code drift around in a circle, which gives it its double
hexagon shape. While this works nicely for the very small J4,2,2K code, it’s not a good general solution
from a practical perspective, since for hardware with qubits in fixed positions, an unusual connectivity
would be required in order to implement a large code that drifts circularly. (For other types of hardware,
where qubits can be moved around and re-used, this might be less of a problem).

Another potential solution is to Floquetify a code that is already moving, so as to cancel out the drift that
results from Floquetifying it. For example, the rotated surface code can be grown outwards from one
boundary (the top one, say), then contracted from the opposite one (the bottom), such that it appears to
move in a particular direction (upwards) - see, for example, Ref. [Lit19, Figure 40(c)]. The same idea
can be used to move other stabilizer and subsystem codes. If such a code can be moved in an appropriate
direction and at an appropriate speed, the resulting Floquetification will remain put; this is sketched
abstractly on the right hand side of Figure 11.

Other systematic ways one might hope to obtain non-drifting boundaries involve changing the measure-
ment schedule. Suppose a drifting Floquetification has scheduleM = [M0,M1, . . . ,M`−1]. Consider
a new Floquet code with scheduleM = [M0,M1, . . . ,M`−1,M`−1,M`−2, . . . ,M0]. One could hope
that this new code drifts in one direction in timesteps 0 ≤ t < `, but then drifts in exactly the opposite
direction in timesteps ` ≤ t < 2`, and so overall stays within a bounded region, while still having the
required error correcting properties.

F.2 Periodic boundaries

Recall once again that we can interpret our Floquetification procedure as tilting the time direction in a
ZX-diagram. If we attempt to do this for a code with periodic boundary conditions, this tilting can have
the effect of making time run circularly. The diagram below illustrates the problem: a ‘thickened’ torus
T 2× I is shown in blue (faces of the cube marked with the same letters A and B are glued together),
and three planes through it are drawn in different shades of grey. The thickened torus is an abstraction
for a ZX-diagram showing the time evolution of a code that lives on a torus, while the three grey planes
are potential new timeslices after Floquetifying this code. However, it’s impossible to label these three
planes with unique integers such that a line perpendicular to them passes through them an increasing
sequence:

(29)

A possible alternative strategy in the case that we’re given a code that lives on a torus is the following:
one can first try to Floquetify a patch of the bulk, by reinterpreting which wires in the code’s ZX-diagram
represent qubit world-lines. After doing this for as large a portion of the bulk as needed, one can then
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try to impose periodic boundary conditions on this Floquetified bulk patch, and see whether the resulting
ZX-diagram encodes the expected logical qubits.

F.3 The colour code

Having discussed drift and periodic boundaries in general, we now discuss strategies for completing our
Floquetification of the colour code bulk from the main text. Option one is to Floquetify a planar colour
code, which will give us a Floquet code with drifting boundaries. We show this explicitly in Figures 12
to 14 below, for a small colour code that lives on a parallelogram, but the idea extends to a planar colour
code of any size.

Figure 12: Two equivalent ZX-diagrams for one round of a small planar colour code on a parallelogram,
in which all Z⊗Z⊗ . . .⊗Z measurements are performed. As in Figure 4, the grey highlighted bars have
no meaning in the ZX-calculus, and instead denote timesteps of the corresponding Floquetified code.

Figure 13: The square lattice layout of the Floquetified planar colour code, with qubits on vertices, at
consecutive timesteps t−1, t and t+1. Vertices marked with a coloured cross correspond to qubit world-
lines of the same colour in Figure 14. Vertices highlighted yellow, blue or pink are active at the respective
timestep t − 1, t or t + 1. Here active means the qubit is initialised for the first time on or before this
timestep, and is measured out for the last time on or after this timestep. If we were to plot the active
qubits across all timesteps, we would see that the code drifts downwards and slightly to the left.
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Figure 14: ZX-diagram of nine rounds of the planar colour code. This figure should be read columnwise
up the page; first the left column, then the right. Much like in Figure 4, vertical ZX-wires between
consecutive layers have been omitted for clarity. Instead we state in words that, for a vertex v of the
underlying honeycomb lattice, the small vertical upwards wire closest to v going upwards from one layer
is connected to the small vertical wire closest to v protruding downwards from the next layer. Certain
wires have been coloured - these indicate the world-lines of different qubits. Specifically, these are the
world-lines of qubits that in a single column on the square lattice of the Floquetified code, as denoted
by coloured crosses in Figure 13. Grey highlighted bars again denote timesteps of the Floquetified code;
three of them have been coloured yellow, blue and pink respectively, denoting three consecutive timesteps
t−1, t and t +1.
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The sequence of measurements that a particular qubit undergoes will be almost the same as that described
in Section 4, with the exception that qubits near a boundary can be measured out earlier or initialised
later than usual. Additionally, as a consequence, a pairwise measurement that would ordinarily have
been performed is omitted if one of the two qubits it would have applied to has been measured out early
or initialised late. Detectors and logicals can again be found via Pauli webs, by drawing them on the
ZX-diagram for the planar colour code and seeing how they map to the Floquetification. In the bulk,
they will look as described in Section 4.

If we wish to prevent the Floquetified code from drifting, we could instead force our parallelogrammatic
colour code to regularly expand outwards from its top and right boundaries, and contract inwards from
its bottom and left boundaries, such that this cancels out the drift that results from Floquetifying it. The
expansion is performed by preparing pairs of qubits in Bell states, then entangling them into the code
by measuring the stabilizers of a bigger colour code. Similarly, contraction is done by measuring out
pairs of qubits in the Bell basis. We must be a little careful here to maintain the code’s timelike distance;
when measuring the stabilizers of the new, bigger code during an expansion phase, we must repeatedly
measure these stabilizers for d rounds, where d is the distance of the original code. Contraction, however,
can be done instantaneously. The distance by which we need to expand is determined by how fast the
world-lines of qubits in the Floquetified code move forwards and rightwards through the ZX-diagram for
the underlying colour code, as in Figure 14 or the right hand side of Figure 4. Let rows and columns in
the honeycomb lattice be defined as the pink and orange lines respectively in the following diagram:

(30)

Suppose we now have a parallelogrammatic colour code with distance d. The geometry of the parallel-
ogram forces d to be even. Such a code occupies 3d

2 − 1 rows and 3d
2 − 1 columns in the honeycomb

lattice. After every d rounds of stabilizer measurements, the code needs to have moved 4d rows forwards
and d columns rightwards in the honeycomb lattice in order to cancel out the drift the Floquetification
process would bring. It’s most convenient to expand and contract the colour code by multiples of 3 rows
or columns, so let’s also assume that d is an even multiple of 3. Thus, during an expansion phase, the
code occupies 3d

2 −1+4d rows and 3d
2 −1+d columns. The distance of the code during such a phase is

therefore 11d
3 in the forwards direction and 5d

3 in the rightwards direction. We sketch this in Figure 15.

The extra complication that this idea entails is that we now have also timelike boundaries to Floquetify.
These are points at which pairs of qubits either become Bell states and get entangled into the code, or
get measured out in the Bell basis. We could just do the same thing in our Floquetified code, but while
the pairs of qubits to be entangled/measured are all neighbours in the honeycomb lattice, they are not all
neighbours in the square lattice of the Floquetified code. This is shown in Figure 16a. Fortunately, as
shown in that Figure 16d, we can construct a circuit on groups of four qubits which achieves the same
thing but respects the nearest neighbour connectivity of the square lattice.
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Figure 15: An abstraction of a ZX-diagram of a parallelogrammatic colour code which expands and
contracts in the fashion specified in the text. In this figure, time goes directly upwards. The distance
of the original colour code is denoted d. Two timelike boundaries are shaded; at the pink one, pairs of
qubits are measured in the Bell basis, while at the orange one, Bell pairs are entangled into the code.

(a)

(b)
(c)

(d)

Figure 16: (a) The Bell basis measurements on a timelike boundary of the colour code, such as the pink
one in Figure 15, and their image in the square lattice Floquetification. (b) A destructive Bell basis mea-
surement (or rather, post-selection) in the ZX-calculus. (c) A non-destructive Bell basis measurement (or
rather, post-selection) in the ZX-calculus. (d) Two equivalent ZX-diagrams for performing a pair of Bell
basis measurements on four qubits. Whereas the diagram on the left involves a measurement between
two non-neighbouring qubits on the square lattice, the diagram on the right respects this connectivity
constraint, but costs one extra Bell basis measurement.
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Figure 17: Imposing periodic boundary conditions on a single rectangle of the Floquetified colour code
bulk, as in Figure 5, defines a Floquet code with no logical qubits. As a patch of the Floquetified colour
code bulk, this rectangle corresponds to the strip of colour code bulk on the right. Since this strip is not
three-colourable, imposing toric boundary conditions on it prevents it from supporting a colour code.

Figure 18: If we instead tile together a multiple of three columns of these rectangles, we define a Floquet
code with four logical qubits - the same number as for the toric colour code. The left diagram of this
figure is thus the support of the smallest member of our family of toric Floquetified colour codes. As
a patch of the Floquetified colour code bulk, this corresponds to the wider strip of colour code bulk on
the right. Unlike in Figure 17, this strip is three-colourable, and thus supports a colour code when toric
boundary conditions are imposed on it.
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An alternative option is to impose periodic boundary conditions on a patch of Floquetified colour code
bulk. On the right hand side of Figure 5 we drew a grey rectangle, and said that by tiling copies of these
rectangles across the square lattice, we can define the whole bulk of the Floquetified colour code. An
obvious candidate, then, for the patch of bulk on which to impose a toric geometry, is this rectangle. But it
turns out that we can’t just tile the torus any way we like with these rectangles; in order to actually encode
any logical information, we must choose a tiling in which the number of columns of such rectangles is
a multiple of three. That is, if we choose a tiling in which this is not the case, then we find that the
logical Pauli group N(St)/St becomes trivial after a full period of measurements. When we choose a
tiling in which it is the case, on the other hand, we find that N(St)/St ∼= P4 after establishment, just as
for the toric colour code. One explanation for this restriction is the fact that the underlying colour code
is three-coloured; indeed, analogously, one can’t define a colour code on a toric honeycomb lattice that
isn’t three-colourable. We sketch this correspondence in Figures 17 and 18.

G Measurement and post-selection

Throughout this paper, we’ve used post-selection instead of measurement in all of our ZX-diagrams.
Here we justify this. ISG codes detect and correct errors using detectors, as defined in Subsection 2.2.1.
The logical information they encode is characterised by their logical Pauli group N(St)/St . Suppose we
draw the ZX-diagram for a given ISG code, and actually use measurement rather than post-selection.
That is, we parametrise spiders representing measurements by 1−m

2 π , where m is the measurement out-
come (we showed an example of this in Equation (2) for CSS measurements). The set of all detecting
regions in this ZX-diagram corresponds exactly to the set of all detectors for the code. Likewise the set
of all operating regions corresponds exactly to the logical Pauli group N(St)/St . Thus these two types
of Pauli webs capture all of the error-correcting and information-encoding capabilities of an ISG code.

The admissible Pauli webs for a Pauli spider are independent of whether that spider’s phase is 0 or
π . Hence detecting regions and operating regions are independent of this too. In particular, they are
unaffected by whether a spider representing a measurement has phase 1−1

2 π = 0 or 1−(−1)
2 π = π . Thus

from an error correction perspective there is no loss of generality in assuming all the measurements have
outcome m = 1, say - i.e. in using post-selection, rather than measurement. In other contexts, of course,
this is not justifiable.

This is hinted at in Ref. [MBG23, Appendix A] and stated even more clearly in Ref. [BLN+23, III.
Checks] in their own language. Craig Gidney has also tweeted about the idea of a ‘Pauli-free’ ZX-
calculus [Gid23] suitable for use in error correction, in which a spider with phase α is equivalent to one
with phase α + kπ , for any k ∈ Z.

H ‘Colour code’ vs ‘color code’

For fear of having their British passport revoked, one third of the authors of this paper insisted on using
‘colour’ instead of ‘color’ throughout. We apologise for any distress caused.

I ‘Floquet’: how to say it

It rhymes with ‘okay’!
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