
EPTCS 394

Proceedings of the

19th International Conference on

Quantum Physics and Logic

Wolfson College, Oxford, UK, 27 June - 1 July 2022

Edited by: Stefano Gogioso and Matty Hoban



Published: 16th November 2023

DOI: 10.4204/EPTCS.394

ISSN: 2075-2180

Open Publishing Association



i

Table of Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Stefano Gogioso and Matty Hoban

Logical Characterization of Contextual Hidden-Variable Theories based on Quantum Set Theory . . . 1

Masanao Ozawa

Generators and Relations for 2-Qubit Clifford+T Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Xiaoning Bian and Peter Selinger

Reducing 2-QuBit Gate Count for ZX-Calculus based Quantum Circuit Optimization . . . . . . . . . . . . . 29

Korbinian Staudacher, Tobias Guggemos, Sophia Grundner-Culemann and Wolfgang Gehrke

Building Qutrit Diagonal Gates from Phase Gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

John van de Wetering and Lia Yeh

Complete Flow-Preserving Rewrite Rules for MBQC Patterns with Pauli Measurements. . . . . . . . . . . 66

Tommy McElvanney and Miriam Backens

Quantum Linear Optics via String Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Giovanni de Felice and Bob Coecke

Identification of Causal Influences in Quantum Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Isaac Friend and Aleks Kissinger

Architecture-Aware Synthesis of Phase Polynomials for NISQ Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Arianne Meijer-van de Griend and Ross Duncan

Encoding High-level Quantum Programs as SZX-diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Augustin Borgna and Rafael Romero

Q# as a Quantum Algorithmic Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

Kartik Singhal, Kesha Hietala, Sarah Marshall and Robert Rand

Universal Properties of Partial Quantum Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

Pablo Andrés-Martínez, Chris Heunen and Robin Kaarsgaard

The Causal Structure of Semantic Ambiguities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Daphne Wang and Mehrnoosh Sadrzadeh

Tunable Quantum Neural Networks in the QPAC-Learning Framework . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Viet Pham Ngoc, David Tuckey and Herbert Wiklicky



ii

How to Sum and Exponentiate Hamiltonians in ZXW Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

Razin A. Shaikh, Quanlong Wang and Richie Yeung

Diagrammatic Analysis for Parameterized Quantum Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Tobias Stollenwerk and Stuart Hadfield

A Biset-Enriched Categorical Model for Proto-Quipper with Dynamic Lifting . . . . . . . . . . . . . . . . . . . . 302

Peng Fu, Kohei Kishida, Neil J. Ross and Peter Selinger

Symbolic Synthesis of Clifford Circuits and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Matthew Amy, Owen Bennett-Gibbs and Neil J. Ross

Dynamic Qubit Routing with CNOT Circuit Synthesis for Quantum Compilation . . . . . . . . . . . . . . . . . 363

Arianne Meijer-van de Griend and Sarah Meng Li

Quantum de Finetti Theorems as Categorical Limits, and Limits of State Spaces of C*-algebras . . . . 400

Sam Staton and Ned Summers

Annealing Optimisation of Mixed ZX Phase Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Stefano Gogioso and Richie Yeung

Finite-dimensional Quantum Observables are the Special Symmetric Dagger-Frobenius Algebras of

CP Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 432

Stefano Gogioso



S. Gogioso, M. Hoban (Eds.):

Quantum Physics and Logic (QPL) 2022

EPTCS 394, 2023, pp. iii–iv, doi:10.4204/EPTCS.394.0

Preface

This volume contains the proceedings of the 19th International Conference on Quantum Physics and

Logic (QPL 2022). The conference was held from 27 June to 1 July 2022 at the University of Oxford,

UK.

Quantum Physics and Logic is an annual conference that brings together academic and industry re-

searchers working on mathematical foundations of quantum computation, quantum physics, and related

areas. The main focus is on the use of algebraic and categorical structures, formal languages, seman-

tic methods, as well as other mathematical and computer scientific techniques applicable to the study

of physical systems, physical processes, and their composition. Work applying quantum-inspired tech-

niques and structures to other fields (such as linguistics, artificial intelligence, and causality) is also

welcome.

The QPL 2022 conference solicited four different kinds of submissions: proceedings submissions, non-

proceedings submissions, poster submissions, and programming tool submissions.

Proceedings submissions were papers that were required to provide sufficient evidence of results of gen-

uine interest. Authors of accepted proceedings submissions were given the opportunity to present their

work during a talk at the conference and these papers were included in the proceedings of QPL 2022. No

other kinds of submissions were considered for inclusion in the proceedings. Non-proceedings submis-

sions consisted of a three page summary, together with a (link to a) separate published paper or preprint.

Authors of accepted non-proceeding submissions were allowed to present their work in the form of a talk

during the conference. Poster submissions consisted of a three page abstract of (partial) results or work in

progress and authors of accepted poster submissions were invited to present their work during one of the

poster sessions of the conference. Programming tool submissions consisted of three page descriptions of

programming tools or frameworks. Authors of accepted programming tool submissions were given an

opportunity to present their software during a dedicated ”Software Session”.

These proceedings contain 20 contributed papers that were selected for publication by the QPL 2022

Program Committee. An additional contributed paper is included, that was selected for publication by

the QPL 2020 Program Committee, but not included in the QPL 2020 proceedings in error. Papers sub-

mitted to QPL undergo a review process that is managed by members of the PC. Almost all submissions

received at least three reviews. The selection of accepted papers was done through the use of the Easy-

Chair conference management system following consideration of the submitted reviews and following

(where necessary) discussion among the PC. The review process was single-blind: the identity of the

authors is revealed to the reviewers, but not vice-versa. PC members were allowed to invite external

experts to serve as sub-reviewers and to participate in the discussion of those submissions which they

were invited to review.

A record 132 submissions (excluding withdrawals and retractions) were considered for review by the PC.

QPL 2023 had 49 accepted submissions in the non-proceedings track and 25 accepted submissions in the

http://dx.doi.org/10.4204/EPTCS.394.0
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proceedings track. Most of the talks were presented during parallel sessions, but a selection of talks

were presented during plenary sessions in the mornings. The program had a poster session, a session

dedicated to showcasing accepted programming tool submissions, as well as an industry session, where

industrial sponsors of QPL 2022 were given an opportunity to present their companies. The industry

session consisted of seven talks, from four sponsors: Quantinuum, Quandela, Huawei and Hashberg.

The official website of the conference is https://www.qplconference.org/ and it contains a lot of relevant

information about QPL 2022, as well as links to previous editions.

The Program Committee consisted of 40 members who were: Antonio Acin, Miriam Backens, Jonathan

Barrett, Dan Browne, Caslav Brukner, Giulio Chiribella, Bob Coecke, Alejandro Diaz-Caro, Ross Dun-

can, Yuan Feng, Stefano Gogioso (co-chair), Amar Hadzihasanovic, Teiko Heinosaari, Chris Heunen,

Matty Hoban (co-chair), Martti Karvonen, Kohei Kishida, Aleks Kissinger, Ravi Kunjwal, Martha Lewis,

Shane Mansfield, Konstantinos Meichanetzidis, David Moore, Mio Murao, Simon Perdrix, Julien Ross,

Mehrnoosh Sadrzadeh, Ana Belén Sainz, Carlo Maria Scandolo, John Selby, Rui Soares Barbosa, Pawel

Sobocinski, Rob Spekkens, Isar Stubbe, Benoit Valiron, John van de Wetering, Quanlong Wang, Alexan-

der Wilce, Vladimir Zamdzhiev, and Margherita Zorzi.

The Organising Committee consisted of 6 members who were: Bob Coecke, Aleks Kissinger, Stefano

Gogioso, Konstantinos Meichanetzidis, Matty Hoban, and Destiny Chen.

The QPL Steering Committee consisted of Bob Coecke, Prakash Panangaden, and Peter Selinger.

We wish to thank all the members of the PC for their work in selecting the program of QPL 2022. We

thank all external sub-reviewers for their help, and the authors for their submissions. We are grateful

to the EPTCS team for their help in preparing the proceedings of the conference. We also thank the

members of the Organising Committee for their help in setting up the conference, the student helpers

who volunteered to assist us, as well as the staff of Wolfson College, Oxford, who helped us with the

organisation of the conference. Finally, we thank the QPL steering committee for their support and we

thank all people who have contributed to the success of QPL 2022.

QPL 2022 received (financial) support from Quantinuum, Quandela, the US Air Force, MindSpore

(Huawei), and Hashberg.

Nov 2023, Stefano Gogioso and Matty Hoban
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While non-contextual hidden-variable theories are proved to be impossible, contextual ones are pos-
sible. In a contextual hidden-variable theory, an observable is called a beable if the hidden-variable
assigns its value in a given measurement context specified by a state and a preferred observable.
Halvorson and Clifton characterized the algebraic structure of beables as a von Neumann subalge-
bra, called a beable subalgebra, of the full observable algebra such that the probability distribution of
every observable affiliated therewith admits the ignorance interpretation. On the other hand, we have
shown that for every von Neumann algebra there is a unique set theoretical universe such that the
internal “real numbers” bijectively correspond to the observables affiliated with the given von Neu-
mann algebra. Here, we show that a set theoretical universe is associated with a beable subalgebra
if and only if it is ZFC-satisfiable, namely, every theorem of ZFC set theory holds with probability
equal to unity. Moreover, we show that there is a unique maximal ZFC-satisfiable subuniverse “im-
plicitly definable”, in the sense of Malament and others, by the given measurement context. The set
theoretical language for the ZFC-satisfiable universe, characterized by the present work, rigorously
reconstructs Bohr’s notion of the “classical language” to describe the beables in a given measurement
context.

1 Introduction

In 1935, Einstein, Podolsky, and Rosen [14] argued that the quantum mechanical description of physical
reality is incomplete. Bohr [6] immediately responded to rebut their conclusion. As to which claim is
correct, the majority view has become in favor of Bohr, based on no-go theorems against non-contextual
hidden-variable theories by von Neumann [25], Gleason [16], Kochen-Specker [22]. From the above
debate it has been concluded that non-contextual hidden-variable theories for quantum mechanics are
impossible. Nevertheless, contextual hidden-variable theories are possible as Bohr’s complementarity
interpretation [5] and the Bohmian mechanics [4].

In accordance with the above view, the modal interpretation of quantum mechanics has been studied
extensively, used for no-collapse interpretation to solve the measurement problem [9], and successfully
articulated Bohr’s otherwise obscure complementarity interpretation of quantum mechanics [9,18,33].
In modal interpretation, an observable possessing a well defined value is called a “beable", and it is at-
tempted to define the class of beables as broad as possible depending on the given measurement context.
The observable to be measured is naturally considered to possess its value to be revealed by the measure-
ment even in a superposition of its eigenstates. This avoids the measurement problem arising from state

*Supported by JSPS KAKENHI Grant Numbers JP22K03424, JP21K11764, JP19H04066.
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2 Hidden-Variable Theories and Quantum set theory

collapsing with the Dirac-von Neumann interpretation [12,25] that an observable has a value only in its
eigenstates or mixtures of them [9].

Halvorson and Clifton [17] algebraically characterized a contextual hidden-variable theory for a state
ψ in the Hilbert space H of a quantum system S as a von Neumann subalgebra B, called a beable sub-
algebra, of the full observable algebra L (H ) such that the probability distribution of every observable
therein admits the ignorance interpretation. Their celebrated uniqueness theorem determines the unique
maximal beable subalgebra B(ψ,A) “implicitly definable”, in the sense of Malament [23] and others,
by the given measurement context (ψ,A). However, the algebraic structure of beables does not directly
treat the logical structure of observational propositions nor the structure of the language speaking of
beables, so that we do not have a formal framework to treat, for instance, Bohr’s original notion of the
“classical language” to describe beables in a given measurement context, or Hardy’s logical formulation
of non-locality.1

Here, we introduce a new approach based on quantum set theory to provide a logical framework for
modal interpretations. Quantum set theory was introduced by Takeuti [37] for constructing mathematics
based on quantum logic and developed by the present author [26–32]; the relationship with topos quan-
tum theory was studied by Eva [15] and Döring et al. [13]. In the preceding study, we have shown that
for any von Neumann subalgebra M of the full observable algebra L (H ) on a Hilbert space H , we
can construct the unique mathematical, or more specifically, set theoretical, universe V [M ] based on the
logic represented by the projection lattice P(M ) in M such that the internal “real numbers” in the uni-
verse V [M ] coincides with the self-adjoint operators (or observables) affiliated with the von Neumann
algebra M .

In this work, we shall logically characterize a contextual hidden-variable theory by showing that a von
Neumann algebra B is a beable subalgebra of L (H ) for a state ψ ∈H if and only if the set theoretical
universe V [B] based on the logic P(B) is ZFC-satisfiable in ψ , in the sense that every theorem of
ZFC set theory in the language L(∈,V [B]) of set theory augmented by the names of elements of V [B]
holds in V [B] with probability equal to unity in the state ψ . In this case, the set of beables represented
by self-adjoint operators affiliated with B coincides with the set of the internal “real numbers” in the
universe V [B]. Moreover, we uniquely determine the maximal ZFC-satisfiable subuniverse V [B(ψ,A)]
among those implicitly definable by the given measurement context (ψ,A). Thus, we can identify Bohr’s
notion of “classical language” describing the beables in the given measurement context (ψ,A) with the
language L(∈,V [B(ψ,A)]).2

2 Algebraic approach to beables

In this paper, we consider a quantum system S described by a separable Hilbert space H , called the state
space of S, with inner product (ξ ,η) for all ξ ,η ∈H , linear in η and conjugate linear in ξ . Observables
of S are bijectively represented by self-adjoint operators (densely defined) on H and every unit vector in
H represents a (pure) state of S. If an observable (represented by a self-adjoint operator) X is measured
in a state (represented by a unit vector) φ ∈H , the outcome x of the measurement satisfies the Born
statistical formula

Pr{x≤ x‖φ}= (φ ,EX(x)φ) (1)

1We focus on the former topic in this paper and we will discuss the latter elsewhere.
2Bohr called the notion of beables in the given measurement context in several different ways, e.g., as the observables

definable for the given measurement arrangement, or the elements of physical reality determined by the measurement of a
preferred observable in the given state.
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for every real number x ∈R, where EX(x) is the resolution of the identity belonging to the self-adjoint
operator X [25, p. 119]. We denote by µX

φ
the Borel probability measure on R uniquely determined by

the relation µX
φ
((−∞,x]) = (φ ,EX(x)φ), and call it the (Born) probability distribution of the observable

X in the state φ . From the above, for any (real-valued) Borel function f the observable f (X) defined by
f (X) =

∫
R f (x)dEX(x) has the expectation value

Ex{ f (X)‖φ}= (φ , f (X)φ) (2)

if φ ∈ dom( f (X)).
Now we consider a situation, called the measurement context (ψ,A), in which an observable A is to

be measured in a state ψ , and we take the ignorance interpretation for the Born probability distribution
µA

ψ , as a typical reading of Bohr’s complementarity interpretation [9,17,18,33], that just before the mea-
surement of the observable A in the state ψ , the observable A possesses its value with the probability
distribution µA

ψ , and that the measurement faithfully reveals the value possessed by A. We would call an
observable that is considered to possess its value in the measurement context (ψ,A) as a beable [2, p. 41]
in that measurement context. Obviously, the observable A itself should be a beable together with its
functions f (A) for all Borel functions f .

The objective of modal interpretations is to determine the set of beables in the context (ψ,A) as broad
as possible. We would call it the maximal beable set. From the impossibility theorem of non-contextual
hidden-variable theories by von Neumann [25] and others,3 the maximal beable set cannot be the whole
set of observables.

It is natural to assume that the maximal beable set is closed under appropriate algebraic operations
(i.e., addition, Jordan product, and Lie product) and closed under appropriate convergences, so that we
assume that the maximal beable set is the set of observables (or self-adjoint operators) affiliated with a
von Neumann algebra B on H .4

The first requirement for such a von Neumann algebra B concerns the state ψ requires that the
Born probability distribution of every beable admit the ignorance interpretation. This requirement is
mathematically formulated as follows. We call any normalized positive linear functional on B a state on
B. A state ω on B is said to be dispersion-free iff ω(X∗X) = |ω(X)|2 for any X ∈B. We say that a von
Neumann algebra B is a beable subalgebra for a state vector ψ ∈H iff there is a probability measure
µ on the space D(B) of dispersion-free states of B satisfying

(ψ,Xψ) =
∫

D(B)
ω(X)dµ(ω) (3)

for every X ∈B. The second requirement is, of course, that the observable A be affiliated with B as a
“privileged” observable, from which it follows that f (A) be affiliated with B for all Borel functions f by
the Borel function calculus in von Neumann algebras. Thus, we call a von Neumann algebra B on H a
beable subalgebra for the measurement context (ψ,A) iff it satisfies following conditions:

(i) (Beable) B is a beable subalgebra for ψ .

(ii) (A-Priv) A is affiliated with B.

3The first general proof of the impossibility theorem for non-contextual hidden-variable theories was given by von Neumann
[25]; see [1,10,11,24] for the recent debate on the status of von Neumann’s impossibility proof. Later, Kochen and Specker [22]
proved the theorem for the Hilbert space with the dimension greater than 2 under the sole requirement that hidden-variables
satisfy functional relations for observables; a similar result can be derived as a corollary of Gleason’s theorem [16].

4An observable X is affiliated with B if and only if EX (x) ∈B for all x ∈R.
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According to the above formulation, we are tempted to identity the maximal beable set with the set
of observables affiliated with a maximal von Neumann algebra among those satisfying the requirements
(A-Priv) and (Beable) above. However, such a choice is not unique.

To see this, consider the measurement context (ψ,A) for the composite system S of two spin 1/2 par-
ticles with the state space H = C2⊗C2, consisting of the singlet state ψ = 2−1/2(|+z〉|−z〉− |−z〉|+z〉)
and the z-component A = σz⊗ I of Pauli spin operators of the first particle. In this case, we have many
beable subalgebras Bθ =W ∗(σz)⊗W ∗(σθ ), where σθ = cosθσz + sinθσx, for 0 ≤ θ < π .5 Yet, there
is no common maximal subalgebra Bmax, since if Bmax were to include Bθ and Bθ ′ with θ 6= θ ′, there
would be no dispersion-free state on Bmax.

To consider which beable subalgebra we should choose, recall the debate between EPR [14] and
Bohr [6] around the “reality criterion” proposed by EPR.

If, without in any way disturbing a system, we can predict with certainty (i.e., with probabil-
ity equal to unity) the value of a physical quantity, then there exists an element of physical
reality corresponding to this physical quantity. [14, p.777]

EPR argued, in accordance with this criterion, that in the EPR state the position and momentum of
the second particle have simultaneous reality, because the measurement on the first particle measures
the second particle without disturbing it [36, p. 334]. Yet, the position and momentum cannot have
simultaneous reality in any states by the uncertainty principle, so that EPR concluded that quantum-
mechanical description of physical reality is incomplete. Bohr immediately responded to EPR. Bohr
claimed that although the measurement on the first particle does not mechanically disturb the second
particle, the measurement on the first particle influences the condition that defines elements of reality for
the second particle, and he rejected EPR’s conclusion.

[T]here is in a case like that just considered no question of a mechanical disturbance of the
system under investigation during the last critical stage of the measuring procedure. But
even at this stage there is essentially the question of an influence on the very conditions
which define the possible types of predictions regarding the future behavior of the system.
. . . [W]e see that the argumentation of the mentioned authors [EPR] does not justify their
conclusion that quantum-mechanical description is essentially incomplete.” [6, p. 700]

Following the reality criterion posed by EPR [14], but “contextualized” to the particular measurement
context (ψ,A) as suggested by Bohr [6] above, we should choose B0 = I⊗σz to be a beable in this
measurement context but not Bθ = I⊗σθ with θ 6= 0, because only the value of B0 can be inferred from
the value of A = σz⊗ I in the measurement context (ψ,A) without disturbing the second particle. If the
observer were to measure the observable A′ = σx⊗ I instead of A = σz⊗ I, then from the value of A′ the
observer could infer the value of Bπ/2 = I⊗σx without disturbing the second particle. EPR might have
concluded that both B0 and Bπ/2 are beables, or elements of reality. However, Bohr [6] pointed out that
the status of being beable depends on the inference from the value of A to the value of B0 or the inference
from the value of A′ to the value of Bπ/2, but each inference is justified only in the respective context,
in which classical logic and classical mathematics can be used in the ordinary sense, and that there is
no context-free classical language that supports the above two types of inferences simultaneously. Thus,
what are beables of the second particle depends on what is measured on the first particle as Bohr [6]
suggested.

Halvorson and Clifton [18, pp.14–15] proposed a mathematical approach to single out appropriate
beable subalgebras consistent with the above “contextualized” reality criterion, as follows. We say that

5For an observable X , we denote by W ∗(X) the von Neumann algebra generated by X if X is bounded, or the von Neumann
algebra generated by EX (x) for all x ∈R.
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a von Neumann algebra B is implicitly definable by a measurement context (ψ,A) iff U∗BU = B for
any unitary U ∈L (H ) such that U∗AU = A and Uψ = ψ . In other words, B is implicitly definable by
(ψ,A) iff the membership relation X ∈B for any X ∈L (H ) is not affected (i.e., X ∈B if and only if
α(X) ∈B) by any automorphism α of L (H ) that leaves ψ and A invariant,6 which is widely used in
foundational studies, for example, by Malament [23, p.297]. A beable subalgebra B for (ψ,A) is called
definable iff it further satisfies

(iii) (Def) B is implicitly definable by (ψ,A).
We call a von Neumann algebra B a maximally definable beable subalgebra for the measurement

context (ψ,A) iff B satisfies (A-Priv), (Beable), and (Def) and B is maximal (in the set inclusion)
among all von Neumann subalgebras of L (H ) satisfying those three requirements. Then, the celebrated
Halvorson-Clifton uniqueness theorem [17] is stated as follows.
Theorem 2.1 (Halvorson-Clifton [17]). For any state ψ and an observable A, there exists the unique
maximally definable beable subalgebra B(ψ,A) for the measurement context (ψ,A), and it is of the
form

B(ψ,A) =W ∗(A)P⊕L (P⊥H ), (4)

where P is the projection from H onto the cyclic subspace C (ψ,A) of H generated by ψ and A, i.e,
C (ψ,A) = { f (A)ψ | f is a bounded Borel function}⊥⊥.

3 Quantum logic

Bohr’s view has, unfortunately, prevailed with several improper restatements, and there have been only
a few serious attempts to reconstruct his reply in a rigorous analysis. In his early contribution, Howard
[19,20] attempted to clarify what is the element of physical reality for Bohr. He focused on Bohr’s
notion of “classical description”. In fact, Bohr emphasizes in several places that one should describe
experimental evidence classically.7

Howard’s view was further sharpened by Halvorson and Clifton [18] in the framework of modal
interpretations as presented in the preceding section; see also Ref. [33] for mathematical refinements.
While Howard [19,20] formulated Bohr’s classicality requirement by the notion of “appropriate” mixture,
Halvorson and Clifton reformulate it as the requirement that the Born probability distribution admit the
ignorance interpretation. However, Bohr never explained his notion of “classical description” by the
ignorance interpretation of the Born probability distribution. In this paper, we attempt to go a step
further.

In view of Bohr’s writings, it seems that “classical” means classical physics, but he also stated:

[I]t would seem that the recourse to three-valued logic, sometimes proposed as means for
dealing with the paradoxical features of quantum theory, is not suited to give a clearer ac-
count of the situation, since all well-defined experimental evidence, even if it cannot be
analysed in terms of classical physics, must be expressed in ordinary language making use
of common logic. [7, p. 317]

6Any automorphism α of L (H ) is of the form α(X) =U∗XU for some unitary U ∈L (H ) [34, p. 119].
7“[I]t is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the

account of all evidence must be expressed in classical terms. The argument is simply that by the word “experiment” we refer
to a situation where we can tell others what we have done and what we have learned and that, therefore, the account of the
experimental arrangement and of the results of the observations must be expressed in unambiguous language with suitable
application of the terminology of classical physics.” [8, p.209]
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According to the above, we can see that what Bohr refers to in the word “classical” is a broader
concept than classical physics and it is well understood as the classical language that obeys classical
logic rather than quantum logic. Therefore, if the algebraic reconstruction should be consistent with
Bohr’s original view, the language that speaks of the beables should obey classical logic and theorems
of classical mathematics. The purpose of this paper is to rigorously realize this interpretation of Bohr’s
view in the framework of quantum set theory.

Recall that the logic of observational propositions on the system S is represented by the projection
lattice P(H ) of all projections on H . In order to treat a context-dependent part of the whole observa-
tional propositions, we consider a sublogics of P(H ) represented by the projection lattice P(M ) of a
von Neumann subalgebra M of L (H ). Let M be a von Neumann algebra on H and denote by O(M )
the set of observables affiliated with M . The observational propositions on the observables affiliated with
M are constructed from atomic propositions “X ≤o λ”, where X ∈ O(M ) and λ ∈ R, by connecting
them with ∧ (conjunction), ∨ (disjunction),→ (conditional),↔ (equivalence), and ¬ (negation). In what
follows, we consider only the conjunction and negation as primitive symbols and the other connectives
as derived symbols by the following definitions: ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2), ϕ1→ ϕ2 = ¬ϕ1∨ (ϕ1∧ϕ2),
ϕ1↔ ϕ2 = (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1). Here, we note that the conditional→ is defined as the Sasaki condi-
tional [35]. We denote by L(M ) the set of observational propositions on the observables in O(M ). We
also write L(H ) = L(L (H )). We have L(M2)⊆ L(M2) if M1 ⊆M2.

Following Birkhoff and von Neumann [3], every observational proposition ϕ has the projection-
valued truth value [[ϕ]]o determined by the following rules.

(i) [[X ≤o λ ]]o = EX(λ ).
(ii) [[ϕ1∧ϕ2]]o = [[ϕ1]]o∧ [[ϕ2]]o.
(iii) [[¬ϕ]]o = [[ϕ]]o

⊥.
Then for every observational proposition ϕ we define the probability that the observational propo-

sition ϕ holds in the state ψ by Pr{ϕ‖ψ} = ‖[[ϕ]]oψ‖2. It is well-know that the logic of observational
propositions in L(H ) is non-distributive, so that it does not necessarily follow the laws of classical logic.
According to Bohr’s view on “classical description” it is natural to expect that in the state ψ the language
L(B) satisfies classical logic and all the mathematical theorems, if B is beable for the state ψ . However,
the language L(M ) has only a limited power in expressing observational relations between observables,
just as the propositional logic has only a limited power in expressing relations between mathematical ob-
jects. In fact, the language L(M ) cannot generally express relations between observables in O(M ) such
as equality and order relation, so that it cannot assign the projection valued truth-value, or the probability
in the state ψ , for the proposition “A and B have the same value”. In what follows we strengthen the
language of observational propositions to have full power of expressing all the mathematically definable
relations between observables with projection-valued truth values.

4 Quantum set theory

In this and the next sections, we shall introduce basic facts about quantum set theory. We refer the reader
to Ref. [31] for detailed formulations. Let M be a von Neumann algebra. The purpose of quantum set
theory is to extend the universe, or a ground model, V of ZFC set theory to a sort of “generic extension”
V [M ] adding self-adjoint operators affiliated with M as “generic reals” to V .

We denote by V the universe of the Zermelo-Fraenkel set theory with the axiom of choice (ZFC).
Let L(∈) be the language for first-order theory with equality augmented by a binary relation symbol ∈,
bounded quantifier symbols ∀x ∈ y, ∃x ∈ y, and no constant symbols. For any class U , the language
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L(∈,U) is the one obtained by adding a name for each element of U . We take the symbols ¬, ∧, ∀x ∈ y,
and ∀x as primitive, and the symbols ∨,→,↔, ∃x ∈ y, and ∃x as derived symbols by defining:

(i) ϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2),
(ii) ϕ1→ ϕ2 = ¬ϕ1∨ (ϕ1∧ϕ2),

(iii) ϕ1↔ ϕ2 = (ϕ1→ ϕ2)∧ (ϕ2→ ϕ1),
(iv) ∃x ∈ yϕ(x) = ¬(∀x ∈ y¬ϕ(x)),
(v) ∃xϕ(x) = ¬(∀x¬ϕ(x)).

Let M be a von Neumann algebra on a Hilbert space H . For each ordinal α , let

Vα [M ] =
{

u
∣∣ u : dom(u)→P(M ) and (∃β < α) dom(u)⊆Vβ [M ]

}
.8 (5)

The P(M )-valued universe V [M ] is defined by

V [M ] =
⋃

α∈On
Vα [M ], (6)

where On is the class of all ordinals. We shall write Vα [H ] =Vα [L (H )] and V [H ] =V [L (H )]. For
every u ∈ V [M ], the rank of u, denoted by rank(u), is defined as the least α such that u ∈ Vα+1[M ]. It
is easy to see that if u ∈ dom(v) then rank(u)< rank(v).

We introduce the implication operation→ and its dual conjunction operation ∗ on the lattice P(M )
by P→ Q = P⊥ ∨ (P∧Q) and P ∗Q = P∧ (P⊥ ∨Q), or equivalently P ∗Q = (P→ Q⊥)⊥, for any
P,Q ∈P(M ). The operation→ on P(M ) is called the Sasaki arrow and the operation Q 7→ P ∗Q is
called the Sasaki projection [21].

For any u,v∈V [M ], the P(M )-valued truth values of atomic formulas u = v and u∈ v are assigned
by the following rules recursive in rank.

(vi) [[u = v]]M = inf
u′∈dom(u)

(u(u′)→ [[u′ ∈ v]]M )∧ inf
v′∈dom(v)

(v(v′)→ [[v′ ∈ u]]M ).

(vii) [[u ∈ v]]M = sup
v′∈dom(v)

(v(v′)∗ [[u = v′]]M ).

To each statement ϕ of L(∈,V [M ]) we assign the P(M )-valued truth value [[ϕ]]M by the following
rules.

(viii) [[¬ϕ]]M = [[ϕ]]M
⊥.

(ix) [[ϕ1∧ϕ2]]M = [[ϕ1]]M ∧ [[ϕ2]]M .
(x) [[(∀x ∈ u)ϕ(x)]]M =

∧
u′∈dom(u)

(u(u′)→ [[ϕ(u′)]]M ).

(xi) [[(∀x)ϕ(x)]]M =
∧

u∈V [M ]

[[ϕ(u)]]M .

We say that a statement ϕ of L(∈,V [M ]) holds in V [M ] if [[ϕ]]M = I. A formula in L(∈,V [M ])
is called a ∆0-formula iff it has no unbounded quantifiers ∀x or ∃x. The following theorem holds [31,
Theorem 4.3].

Theorem 4.1 (∆0-Absoluteness Principle). For any ∆0-formula ϕ(x1, . . .,xn) of L(∈) and u1, . . .,un ∈
V [M ], we have

[[ϕ(u1, . . . ,un)]]M = [[ϕ(u1, . . . ,un)]]L (H ). (7)
8We denote by dom( f ) the domain of a function f . By f : D→ R we mean that f is a function defined on a set D with

values in a set R.
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Henceforth, for any ∆0-formula ϕ(x1, . . .,xn) and u1, . . . ,un ∈V [M ], we abbreviate [[ϕ(u1, . . . ,un)]] =
[[ϕ(u1, . . . ,un)]]M , which is the common P(H )-valued truth value for u1, . . . ,un ∈V [H ].

The universe V can be embedded in V [M ] by the following operation ∨ : v 7→ v̌ defined by the ∈-
recursion: for each v ∈V , v̌ = {ǔ| u ∈ v}×{I}. Note that v̌ ∈V [M ] for any v ∈V and any von Neumann
subalgebra M ⊆L (H ). Then we have the following [31, Theorem 4.8].

Theorem 4.2 (∆0-Elementary Equivalence Principle). For any ∆0-formula ϕ(x1, . . .,xn) of L(∈) and
u1, . . .,un ∈V , we have 〈V,∈〉 |= ϕ(u1, . . .,un) if and only if [[ϕ(ǔ1, . . . , ǔn)]] = I.

Thus, V [M ] includes (a copy of) the standard universe V as a ∆0-elementary equivalent submodel.
For further detail about the universe V [M ] we refer the reader to [31].

5 Transfer principle

For any u ∈V [M ], we define the support of u, denoted by L(u), by transfinite recursion on the rank of u
by the relation

L(u) =
⋃

x∈dom(u)

L(x)∪{u(x) | x ∈ dom(u)}∪{0}. (8)

For A ⊆ V [M ] we write L(A ) =
⋃

u∈A L(u) and for u1, . . . ,un ∈ V [M ] we write L(u1, . . . ,un) =
L({u1, . . . ,un}). Let A ⊆L (H ). The commutant of A in L (H ), denoted by A ′, is defined by

A ′ = {A ∈L (H ) | [A,B] = 0 for all B ∈A }, (9)

and the commutant of A in P(H ), denoted by A !, is defined by A ! = A ′∩P(H ).
Let A ⊆P(H ). Takeuti [37] introduced the commutator of A , denoted by com(A ), given by

com(A ) =
∨
{E ∈A !∩A !! | [P,Q]E = 0 for all P,Q ∈A }. (10)

For any P1, . . . ,Pn ∈P(H ), we write com({P1, . . . ,Pn}) = com(P1, . . . ,Pn). We refer the reader to [28]
for further properties of commutators.

Let A ⊆V [M ]. The commutator of A , denoted by com(A ), is defined by

com(A ) = com(L(A )). (11)

For any u1, . . . ,un ∈V [M ], we write com(u1, . . . ,un) = com({u1, . . . ,un}).
We have the following transfer principle for bounded theorems of ZFC [31, Theorem 4.15].

Theorem 5.1 (∆0-ZFC Transfer Principle). For any ∆0-formula ϕ(x1, . . .,xn) of L(∈) and u1, . . .,un ∈
V [M ], if ϕ(x1, . . .,xn) is provable in ZFC, then

[[ϕ(u1, . . . ,un)]]≥ com(u1, . . . ,un). (12)

6 Internal real numbers in quantum set theory

Let Q be the set of rational numbers in V . We define the set of rational numbers in the model V [M ] to
be Q̌. We define a real number in the model by a Dedekind cut of the rational numbers. More precisely,



M. Ozawa 9

we identify a real number with the upper segment of a Dedekind cut whose lower segment has no end
point. Therefore, the formal definition of the predicateR(x), “x is a real number,” is expressed by

R(x) := ∀y ∈ x(y ∈ Q̌)∧∃y ∈ Q̌(y ∈ x)∧∃y ∈ Q̌(y 6∈ x)

∧∀y ∈ Q̌(y ∈ x↔∀z ∈ Q̌(y < z→ z ∈ x)). (13)

We defineR[M ] to be the interpretation of the setR of real numbers in V [M ] as follows.

R[M ] = {u ∈V [M ] | dom(u) = dom(Q̌) and [[R(u)]] = I}. (14)

For any u ∈R[M ] and λ ∈R, we define Eu(λ ) by

Eu(λ ) =
∧

λ<r∈Q
u(ř). (15)

Then it can be shown that {Eu(λ )}λ∈R is a resolution of identity in P(M ) and hence by the spectral
theorem there is an observable û ∈ O(M ) uniquely satisfying û =

∫
Rλ dEu(λ ). On the other hand, let

A ∈ O(M ). We define Ã ∈V [M ] by

Ã = {(ř,EA(r)) | r ∈Q}. (16)

Then dom(Ã) = dom(Q̌) and Ã(ř) = EA(r) for all r ∈Q. It is easy to see that Ã ∈R[M ] and we have
(û)˜ = u for all u ∈ R[M ] and (Ã)ˆ = A for all A ∈ O(M ). Therefore, the correspondence between
R[M ] and O(M ) is bijective. We call the above correspondence the Takeuti correspondence. Now, we
have the following.

Theorem 6.1. The relations

(i) EA(λ ) =
∧

λ<r∈Q
u(ř) for all λ ∈Q,

(ii) u(ř) = EA(r) for all r ∈Q,

where u = Ã ∈R[M ] and A = û ∈ O(M ), sets up a bijective correspondence between u ∈R[M ] and
A ∈ O(M ).

For any r ∈ R, we shall write r̃ = (r1) ,̃ where r1 is the scalar operator on H . Then we have
dom(r̃) = dom(Q̌) and r̃(ť) = [[ř≤ ť]], so that we have L(r̃) = {0,1}. The order relation for u,v ∈R[M ]
is naturally defined by

u≤ v := (∀x ∈ Q̌) [x ∈ v→ x ∈ u]. (17)

Recall that a formula ϕ(x1, . . . ,xn)∈L(∈,V [M ]) is called a ∆0-formula iff it contains no unbounded
quantifiers ∀x nor ∃x. In this paper, we focus on the sublanguage L0(∈,V [M ]) consisting of ∆0-formulas
in L(∈,V [M ]). Then, for every statement ϕ ∈ L0(∈,V [M ]) we have the P(M )-valued truth value
[[ϕ]] = [[ϕ]]L (H ), and for every observable X ∈ O(M ) we have a real number X̃ ∈ R[M ] in V [M ].
Thus, there is an embedding of every observational proposition ϕ in the language L(M ) into a statement
ϕ̃ in the language L0(∈,V [M ]) defined by the following rules for any X ∈ O(M ) and x ∈ R, and
observational propositions ϕ,ϕ1,ϕ2:

(Q1) X̃ ≤o x := X̃ ≤ x̃.
(Q2) ¬̃ϕ := ¬ϕ̃.
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(Q3) ϕ̃1∧ϕ2 := ϕ̃1∧ ϕ̃2.

Then, it is easy to see that the relation
[[ϕ̃]] = [[ϕ]]o (18)

holds for any observational proposition ϕ .
Thus, all the observational propositions are embedded in a set of statements in L0(∈,V [M ]) pre-

serving their projection-valued truth values. Quantum set theory provides a language strong enough
to express all the possible mathematical relations among observables. For every mathematical relation
R(x1, . . . ,xn) definable in ZFC set theory, we can assign the quantum logical truth value [[R(X̃1, . . . , X̃n)]]∈
P(M ) of the relation R(X̃1, . . . , X̃n) for any observables X1, . . . ,Xn ∈ O(H ). For example, we can
generally define the projection valued truth values for the order relation and the equality relation for
observables so that the following relation hold:

[[X̃ ≤ Ỹ ]] = [[(∀x ∈ Q̌) [Ỹ ≤ x→ X̃ ≤ x]]], (19)

[[X̃ = Ỹ ]] = [[X̃ ≤ Ỹ ∧ Ỹ ≤ X̃ ]]. (20)

7 Beable subuniverses

Let ψ ∈H be a state. We say that a statement ϕ(u1, . . . ,un) ∈ L0(∈,V [M ]) holds in ψ , and write ψ 

ϕ(u1, . . . ,un), iff Pr{ϕ(u1, . . . ,un)‖ψ}= I. For any von Neumann algebra M ⊆L (H ), the subuniverse
V [M ]⊆V [H ] is said to be ZFC-satisfiable in ψ iff

ψ 
 φ(u1, . . . ,un) (21)

for any u1, . . . ,un ∈V [M ] and any formula ϕ(x1, . . . ,xn) ∈ L0(∈) provable in ZFC.
The following theorem holds.

Theorem 7.1. Let M be a von Neumann algebra on H . Then the following conditions are all equiva-
lent.

(i) V [M ] is ZFC-satisfiable in ψ .
(ii) M is beable for ψ .

(iii) [X ,Y ]ψ = 0 for any X ,Y ∈M .
(iv) |ψ〉〈ψ| ≤ com(u1, . . . ,un) for any u1, . . . ,un ∈V [M ].

8 Context-definable beable subuniverses

Let (ψ,A) be a measurement context. For any unitary operator U on H , we define αU : V [H ]→V [H ]
by transfinite recursion on the rank of u ∈V [H ] as

αU(u) = {〈αU(x),U∗u(x)U〉 | x ∈ dom(u)}. (22)

A subclass U ⊆V [M ] is called definable by (ψ,A) iff
(i) Ã ∈U ,
(ii) αU(U )⊆U for any unitary operator U on H satisfying [A,U ] = 0 and Uψ = ψ .
A subuniverse V [M ] ⊆ V [H ] is called a maximally definable ZFC-satisfiable subuniverse for the

measurement context (ψ,A) iff V [M ] is a ZFC-satisfiable subuniverse in ψ definable by (ψ,A) and
there is no ZFC-satisfiable subuniverse V [M0] definable by (ψ,A) that properly includes V [M ]. Then,
we have the following.
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Theorem 8.1. (i) A subuniverse V [M ] is a ZFC-satisfiable subuniverse of V [H ] definable by (ψ,A) if
and only if M is a beable subalgebra of L (H ) definable by (ψ,A).

(ii) There uniquely exists a maximally definable ZFC-satisfiable subuniverse V [M ]⊆V [H ] for any
measurement context (ψ,A). In this case, M is of the form M = B(ψ,A), i.e.,

M =W ∗(A)P⊕L (P⊥H ), (23)

where P is the projection from H onto the cyclic subspace C (ψ,A) of H generated by ψ and A.

References

[1] P. Acuña (2021): Von Neumann’s Theorem Revisited. Found. Phys. 51, pp. 73/1–73/29, doi:10.1007/s10701-
021-00474-5.

[2] J. S. Bell (2004): Subject and object. In: Speakable and Unspeakable in Quantum Mechanics: Collected Pa-
pers on Quantum Philosophy, 2nd edition, Cambridge UP, pp. 40–44, doi:10.1017/CBO9780511815676.007.

[3] G. Birkhoff & J. von Neumann (1936): The Logic of Quantum Mechanics. Ann. Math. 37, pp. 823–843,
doi:10.2307/1968621.

[4] D. Bohm (1952): A Suggested Interpretation of the Quantum Theory in Terms of “Hidden Variables,” I, II.
Phys, Rev. 85, pp. 166–179, 180–193, doi:10.1103/PhysRev.85.166, 10.1103/PhysRev.85.180.

[5] N. Bohr (1928): The Quantum Postulate and the Recent Development of Atomic Theory. Nature 121, pp.
580–590, doi:10.1038/121580a0.

[6] N. Bohr (1935): Can Quantum-Mechanical Description of Physical Reality be Considered Complete? Phys.
Rev. 48, pp. 696–702, doi:10.1103/PhysRev.48.696.

[7] N. Bohr (1948): On the Notions of Causality and Complementarity. Dialectica 2, pp. 312–319,
doi:10.1111/j.1746-8361.1948.tb00703.x.

[8] N. Bohr (1949): Discussion with Einstein on epistemological problems in atomic physics. In P. A. Shilpp,
editor: Albert Einstein: Philosopher-Scientist, The Library of Living Philosophers VII, Northwestern Uni-
versity, Evanston, pp. 200–241, doi:10.1016/S1876-0503(08)70379-7.

[9] J. Bub (1997): Interpreting the Quantum World. Cambridge UP, Cambridge.

[10] J. Bub (2010): Von Neumann’s ‘No Hidden Variables’ Proof: A Re-Appraisal. Found. Phys. 40, pp. 1333–
1340, doi:10.1007/s10701-010-9480-9.

[11] D. Dieks (2017): Von Neumann’s impossibility proof: Mathematics in the service of rhetorics. Stud. Hist.
Philos. Sci. B 60, pp. 136–148, doi:10.1016/j.shpsb.2017.01.008.

[12] P. A. M. Dirac (1958): The Principles of Quantum Mechanics, 4th edition. Oxford UP, Oxford,
doi:10.1063/1.3062610.

[13] A. Döring, B. Eva & M. Ozawa (2021): A Bridge Between Q-Worlds. Rev. Symb. Log. 14(2), pp. 447–486,
doi:10.1017/S1755020319000492.

[14] A. Einstein, B. Podolsky & N. Rosen (1935): Can Quantum-Mechanical Description of Physical Reality be
Considered Complete? Phys. Rev. 47, pp. 777–780, doi:10.1103/PhysRev.47.777.

[15] B. Eva (2015): Towards a Paraconsistent Quantum Set Theory. Electronic Proceedings in Theoretical Com-
puter Science 195, pp. 158–169, doi:10.4204/EPTCS.195.12.

[16] A. M. Gleason (1957): Measures on the Closed Subspaces of a Hilbert Space. J. Math. Mech. 6, pp. 885–893,
doi:10.1512/iumj.1957.6.56050.

[17] H. Halvorson & R. Clifton (1999): Maximal Beable Subalgebras of Quantum Mechanical Observables. Int.
J. Theor. Phys. 38, pp. 2441–2484, doi:10.1023/A:1026628407645.

https://doi.org/10.1007/s10701-021-00474-5
https://doi.org/10.1007/s10701-021-00474-5
https://doi.org/10.1017/CBO9780511815676.007
https://doi.org/10.2307/1968621
https://doi.org/10.1103/PhysRev.85.166, 10.1103/PhysRev.85.180
https://doi.org/10.1038/121580a0
https://doi.org/10.1103/PhysRev.48.696
https://doi.org/10.1111/j.1746-8361.1948.tb00703.x
https://doi.org/10.1016/S1876-0503(08)70379-7
https://doi.org/10.1007/s10701-010-9480-9
https://doi.org/10.1016/j.shpsb.2017.01.008
https://doi.org/10.1063/1.3062610
https://doi.org/10.1017/S1755020319000492
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.4204/EPTCS.195.12
https://doi.org/10.1512/iumj.1957.6.56050
https://doi.org/10.1023/A:1026628407645


12 Hidden-Variable Theories and Quantum set theory

[18] H. Halvorson & R. Clifton (2002): Reconsidering Bohr’s reply to EPR. In T. Placek & J. Butterfield, editors:
Non-locality and Modality, Kluwer, Dordrecht, pp. 3–18, doi:10.1007/978-94-010-0385-8_1.

[19] D. Howard (1994): What makes a classical concept classical? In Jan Faye & Henry J. Folse, editors: Niels
Bohr and Contemporary Philosophy, Kluwer, Dordrecht, pp. 201–229, doi:10.1007/978-94-015-8106-6_9.

[20] D. A. Howard (1979): Complementarity and Ontology: Niels Bohr and the Problem of Scientific Realism in
Quantum Physics. Ph.D. thesis, Boston University.

[21] G. Kalmbach (1983): Orthomodular Lattices. Academic, London.
[22] S. Kochen & E. P. Specker (1967): The Problem of Hidden Variables in Quantum Mechanics. J. Math. Mech.

17, pp. 59–87, doi:10.1512/iumj.1968.17.17004.
[23] D. Malament (1977): Causal Theories of Time and the Conventionality of Simultaneity. Noûs 11, pp. 293–

300, doi:10.2307/2214766.
[24] N. D. Mermin & R. Schack (2018): Homer Nodded: Von Neumann’s Surprising Oversight. Found. Phys. 48,

pp. 1007–1020, doi:10.1007/s10701-018-0197-5.
[25] J. von Neumann (1955): Mathematical Foundations of Quantum Mechanics. Princeton UP, Princeton, NJ.

[Originally published: Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)].
[26] M. Ozawa (2007): Transfer Principle in Quantum Set Theory. J. Symb. Log. 72, pp. 625–648,

doi:10.2178/jsl/1185803627. arXiv:math/0604349.
[27] M. Ozawa (2014): Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum

Theory (Extended Abstract). Electronic Proceedings in Theoretical Computer Science (EPTCS) 172, pp.
15–26, doi:10.4204/EPTCS.172.2.

[28] M. Ozawa (2016): Quantum Set Theory Extending the Standard Probabilistic Interpretation of Quantum
Theory. New Generat. Comput. 34, pp. 125–152, doi:10.1007/s00354-016-0205-2. arXiv:1504.06838.

[29] M. Ozawa (2017): Operational Meanings of Orders of Observables Defined through Quantum Set Theories
with Different Conditionals. Electronic Proceedings in Theoretical Computer Science (EPTCS) 236, pp.
127–144, doi:10.4204/EPTCS.236.9.

[30] M. Ozawa (2017): Orthomodular-Valued Models for Quantum Set Theory. Rev. Symb. Log. 10, pp. 782–807,
doi:10.1017/S1755020317000120. arXiv:0908.0367.

[31] M. Ozawa (2021): Quantum set theory: Transfer Principle and De Morgan’s Laws. Ann. Pure Appl. Log.
172, pp. 102938/1–102938/42, doi:10.1016/j.apal.2020.102938. arXiv:2002.06692.

[32] M. Ozawa (2021): Reforming Takeuti’s Quantum Set Theory to Satisfy de Morgan’s Laws. In Arai, T. et
al., editor: Advances in Mathematical Logic, Springer Singapore, Singapore, pp. 143–159, doi:10.1007/978-
981-16-4173-2_7. arXiv:2012.02928.

[33] M. Ozawa & Y. Kitajima (2012): Reconstructing Bohr’s Reply to EPR in Algebraic Quantum Theory. Found.
Phys. 42, pp. 475–487, doi:10.1007/s10701-011-9615-7. arXiv:1107.0737.

[34] S. Sakai (1971): C*-Algebras and W*-Algebras. Springer, Berlin.
[35] U. Sasaki (1954): Orthocomplemented Lattices Satisfying the Exchange Axiom. J. Sci. Hiroshima Univ. A

17, pp. 293–302, doi:10.32917/hmj/1557281141.
[36] E. Schrödinger (1935): Die gegenwärtige Situation in der Quantenmechanik. Naturwissenshaften 23, pp.

807–812, 823–828, 844–849, doi:10.1007/BF01491891, 10.1007/BF01491914, 10.1007/BF01491987. [En-
glish translation by J. D. Trimmer, Proc. Am. Philos. Soc. 124, 323–338 (1980)].

[37] G. Takeuti (1981): Quantum Set Theory. In E. Beltrametti & B. C. van Frassen, editors: Current Issues in
Quantum Logic, Plenum, New York, pp. 303–322, doi:10.1007/978-1-4613-3228-2_19.

https://doi.org/10.1007/978-94-010-0385-8_1
https://doi.org/10.1007/978-94-015-8106-6_9
https://doi.org/10.1512/iumj.1968.17.17004
https://doi.org/10.2307/2214766
https://doi.org/10.1007/s10701-018-0197-5
https://doi.org/10.2178/jsl/1185803627
https://arxiv.org/abs/math/0604349
https://doi.org/10.4204/EPTCS.172.2
https://doi.org/10.1007/s00354-016-0205-2
https://arxiv.org/abs/1504.06838
https://doi.org/10.4204/EPTCS.236.9
https://doi.org/10.1017/S1755020317000120
https://arxiv.org/abs/0908.0367
https://doi.org/10.1016/j.apal.2020.102938
https://arxiv.org/abs/2002.06692
https://doi.org/10.1007/978-981-16-4173-2_7
https://doi.org/10.1007/978-981-16-4173-2_7
https://arxiv.org/abs/2012.02928
https://doi.org/10.1007/s10701-011-9615-7
https://arxiv.org/abs/1107.0737
https://doi.org/10.32917/hmj/1557281141
https://doi.org/10.1007/BF01491891, 10.1007/BF01491914, 10.1007/BF01491987
https://doi.org/10.1007/978-1-4613-3228-2_19


S. Gogioso, M. Hoban (Eds.):

Quantum Physics and Logic (QPL) 2022

EPTCS 394, 2023, pp. 13–28, doi:10.4204/EPTCS.394.2

© Xiaoning Bian and Peter Selinger

Generators and Relations for 2-Qubit Clifford+T Operators

Xiaoning Bian and Peter Selinger

Dalhousie University

We give a presentation by generators and relations of the group of Clifford+T operators on two

qubits. The proof relies on an application of the Reidemeister-Schreier theorem to an earlier result

of Greylyn, and has been formally verified in the proof assistant Agda.

1 Introduction

The simplification of Clifford+T circuits is a topic of current interest in quantum computing [4, 5, 6,

15, 16, 17]. The Clifford+T gate set is both universal [18] and convenient for quantum error correction

[9], and is therefore the preferred gate set for fault-tolerant quantum computing. Generally, in a fault-

tolerant regime, applying a Clifford gate is some orders of magnitude cheaper than applying a T -gate,

and therefore, it is sensible to try to simplify circuits so as to minimize the T -count [3]. Many methods

for doing so have been proposed in the recent literature, including methods based on matroid partitioning

[2], Reed-Muller codes [4], and ZX calculus [5, 6, 16]. Regardless of which method is used, the objective

is to replace a Clifford+T circuit by a simpler, but equivalent circuit. This requires being able to tell when

two circuits are equivalent. Surprisingly, no complete set of relations for ancilla-free Clifford+T circuits

is currently known, i.e., there is no known set of relations by which any two equivalent Clifford+T

circuits can be transformed into each other.

In this paper, we give such a complete set of relations for the case of 2-qubit Clifford+T circuits. We

do this in several steps. First, a presentation of the group U4(Z[
1√
2
, i]) of all unitary 4×4-matrices over

the ring Z[ 1√
2
, i] is known due to the work of Greylyn [13]. Second, it is known that the group of 2-qubit

Clifford+T circuits is exactly the subgroup of this group consisting of matrices whose determinant is in

{±1,±i} [10]. Third, there is a theorem in group theory called the Reidemeister-Schreier theorem, by

which a complete set of relations for a subgroup can be derived from a complete set of relations for the

supergroup. Fourth, since the resulting relations are very long and complicated, we simplify them.

The last two steps of this procedure (applying the Reidemeister-Schreier theorem and simplifying

the resulting relations) require a large amount of algebraic manipulations. Our longest equational proof

has 480 steps, each of which in turns requires a lemma or rewrite procedure whose proof itself requires

many equational steps. Such proofs would be impossible to verify by hand, and even verifying them by

software is error-prone since it is hard to guarantee that no unwarranted assumptions were used. For this

reason, we encoded our proof in machine-checkable form, using the proof assistant Agda [1].

The rest of this paper is organized as follows. In Section 2, we state our main result. Section 3

gives a brief overview of the proof. In Section 4, we present the required background material, including

Greylyn’s presentation of U4(Z[
1√
2
, i]), the Reidemeister-Schreier theorem, and the Pauli rotation repre-

sentation, which is an important tool for manipulating Clifford+T circuits. We also briefly describe our

reasons for formalizing our proof in a proof assistant. Section 5 describes our formal proof of the main

result. In Section 6, we briefly discuss the meaning of the Clifford+T relations, and especially of the

three “non-obvious” relations. Section 7 contains some concluding remarks and ideas for future work.

http://dx.doi.org/10.4204/EPTCS.394.2
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2 Statement of the main result

Recall that the set of Clifford operators is generated by the operators

ω = eiπ/4, H =
1√
2

(

1 1
1 −1

)

, S =
(

1 0
0 i

)

, CZ =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



,

and is closed under multiplication and tensor product. Every such operator U is of size 2n ×2n for some

natural number n, and as usual, we say that U is an operator on n qubits. We write C (n) for the group

of n-qubit Clifford operators. It is well-known that this group is finite for any given n [21], and therefore

not universal for quantum computing. We obtain a universal gate set by also adding the T -gate as a

generator.

T =
(

1 0
0 ω

)

,

The resulting operators are called the Clifford+T operators, and we write C T (n) for the n-qubit Clif-

ford+T group.

In this paper, we focus on the case n = 2. Our goal is to give a complete presentation of the 2-qubit

Clifford+T group in terms of generators and relations. To ensure that all of our generators are 4× 4-

matrices, we introduce the following notation: we write T0 = T ⊗ I and T1 = I⊗T , and similarly for H0,

H1, S0, and S1. We also identify the scalar ω with the 4×4-matrix ωI. Our main result is the following:

Theorem 2.1. The 2-qubit Clifford+T group is presented by (X ,Γ), where the set of generators is

X = {ω ,H0,H1,S0,S1,T0,T1,CZ},
and the set of relations Γ is shown in Figure 1.

In Figure 1, we have used circuit notation to express some of the relations; for example, we have

written
T ,

T
, and

for T0, T1, and CZ, respectively. Note that the qubits are numbered from top to bottom. We write circuits

in the same order as matrix multiplication. Moreover, in relations (C18)–(C20), we have used a number

of abbreviations; these are defined in Figure 2. The empty word is denoted ε .

3 Proof outline

In a nutshell, the proof can be described in a few sentences. It proceeds as follows. Let R = Z[ 1√
2
, i] be

the smallest subring of the complex numbers containing 1√
2

and i, and let G = U4(R) be the group of

unitary 4×4-matrices with entries in R. Then it is clear that C T (2) is a subgroup of G, because all of its

generators belong to G. Moreover, from [10], it is known that C T (2) is precisely equal to the subgroup

of G consisting of matrices whose determinant is a power of i. A presentation of G by generators and

relations was given by Greylyn [13]. There is a general procedure, called the Reidemeister-Schreier

procedure [19, 20], for finding generators and relations of a subgroup, given generators and relations of

the supergroup. Applying this procedure therefore yields a complete set of relations for C T (2).
While in principle, the above proof outline suffices to prove Theorem 2.1, in practice there is a large

amount of non-trivial work involved in generating and simplifying the actual relations. For this reason,

we have formalized Theorem 2.1 and its proof in the proof assistant Agda. This allows the proof to be

independently checked without too much manual work.
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(a) Monoidal relations:

ωA = Aω , where A ∈ {Hi,Si,Ti,CZ} (C1)

A0B1 = B1A0, where A,B ∈ {H,S,T} (C2)

(b) Order of Clifford group elements:

ω
8 = ε (C3)

H2
i = ε (C4)

S4
i = ε (C5)

(SiHi)
3 = ω (C6)

CZ2 = ε (C7)

(c) Remaining Clifford relations:

S = S (C8)

S
=

S
(C9)

H S S H =
S S

H S S H (C10)

H S S H
= S S

H S S H
(C11)

H = S H

S

S H S ·ω−1 (C12)

H
=

S H

S

S H S
·ω−1 (C13)

(d) “Obvious” relations involving T :

T 2
i = Si (C14)

(TiHiSiSiHi)
2 = ω (C15)

T = T (C16)

H H

H H T =
T H H

H H (C17)

(e) “Non-obvious” relations involving T :

T H T † T H T † =
T H T † T H T † (C18)

T H T H T † T H T † H T † =
T H T H T † T H T † H T † (C19)

H T H

H T H = H T H

H T H
(C20)

Figure 1: Relations for 2-qubit Clifford+T operators. Here i ∈ {0,1}.
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T † = T 7

S† = S3

=
H H

=
H S S H

H
=

S H T T † H S†

H
=

H H

Figure 2: Abbreviations used in circuit notations

4 Background

4.1 Presentation of U4(Z[
1√
2
, i])

As usual, Z is the ring of integers. Let R = Z[ 1√
2
, i] be the smallest subring of the complex numbers

containing 1√
2

and i. Let ω = eiπ/4 be an 8th root of unity, and note that ω = 1+i√
2
∈ R. As before, U4(R)

is the group of unitary 4×4-matrices with entries in R.

Greylyn [13] gave a presentation of U4(R) by generators and relations. His generators are ω[ j],

X[ j,k], and H[ j,k], where j,k ∈ {0, ...,3} and j < k. The relations are shown in Figure 3. The intended

interpretation of the generators is as 1- and 2-level matrices; specifically, ω[ j] is like the identity matrix,

except with ω in the jth row and column, and X[ j,k] and H[ j,k] are like identity matrices, except with the

entries of X , respectively H , in the jth and kth rows and columns, like this:

ω[ j] =





··· j ···
... I 0 0

j 0 ω 0
... 0 0 I



, X[ j,k] =













... j ... k ...

... I 0 0 0 0

j 0 0 0 1 0
... 0 0 I 0 0

k 0 1 0 0 0
... 0 0 0 0 I













, H[ j,k] =















... j ... k ...

... I 0 0 0 0

j 0 1√
2

0 1√
2

0
... 0 0 I 0 0

k 0 1√
2

0 − 1√
2

0
... 0 0 0 0 I















.

Note that we index rows and columns of matrices starting from 0, whereas Greylyn indexed them starting

from 1. Greylyn’s result is the following:

Theorem 4.1 (Greylyn [13]). A presentation of the group U4(R) is given by (Y ,∆), where the set of

generators is Y = {ω[ j],X[ j,k],H[ j,k] | j,k ∈ {1, ...,4} and j < k}, and the set of relations ∆ is shown in

Figure 3.

4.2 The Reidemeister-Schreier theorem for monoids

The Reidemeister-Schreier theorem is a theorem in group theory that allows one to derive a complete set

of relations for a subgroup from a complete set of relations for the supergroup, given enough information

about the cosets. We will use a version of the Reidemeister-Schreier theorem that works for monoids,
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(a) Order of generators:

ω
8
[ j] = ε (G1)

H2
[ j,k] = ε (G2)

X2
[ j,k] = ε (G3)

(b) Disjoint generators commute:

ω[ j]ω[k] = ω[k]ω[ j], where j 6= k (G4)

ω[ℓ]H[ j,k] = H[ j,k]ω[ℓ], where ℓ 6= j,k (G5)

ω[ℓ]X[ j,k] = X[ j,k]ω[ℓ], where ℓ 6= j,k (G6)

H[ j,k]H[ℓ,t] = H[ℓ,t]H[ j,k], where {ℓ, t}∩{ j,k}= /0 (G7)

H[ j,k]X[ℓ,t] = X[ℓ,t]H[ j,k], where {ℓ, t}∩{ j,k}= /0 (G8)

X[ j,k]X[ℓ,t] = X[ℓ,t]X[ j,k], where {ℓ, t}∩{ j,k}= /0 (G9)

(c) X permutes indices:

X[ j,k]ω[k] = ω[ j]X[ j,k] (G10)

X[ j,k]ω[ j] = ω[k]X[ j,k] (G11)

X[ j,k]X[ j,ℓ] = X[k,ℓ]X[ j,k] (G12)

X[ j,k]X[ℓ, j] = X[ℓ,k]X[ j,k] (G13)

X[ j,k]H[ j,ℓ] = H[k,ℓ]X[ j,k] (G14)

X[ j,k]H[ℓ, j] = H[ℓ,k]X[ j,k] (G15)

(d) ω[ j]ω[k] is diagonal:

ω[ j]ω[k]X[ j,k] = X[ j,k]ω[ j]ω[k] (G16)

ω[ j]ω[k]H[ j,k] = H[ j,k]ω[ j]ω[k] (G17)

(e) Relations for H:

H[ j,k]X[ j,k] = ω
4
[k]H[ j,k] (G18)

H[ j,k]ω
2
[ j]H[ j,k] = ω

6
[ j]H[ j,k]ω

3
[ j]ω

5
[k] (G19)

H[ j,k]H[ℓ,t]H[ j,ℓ]H[k,t] = H[ j,ℓ]H[k,t]H[ j,k]H[ℓ,t], where k < ℓ (G20)

Figure 3: Greylyn’s relations for U4(Z[
1√
2
, i]). Whenever we use a generator X[ j,k] or H[ j,k], we implicitly

assume that j < k.
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which we now describe. To our knowledge, this monoid formulation of the Reidemeister-Schreier theo-

rem does not appear in the literature.

If X is a set, let us write X∗ for the set of finite sequences of elements of X , which we also call

words over the alphabet X . We write w ·v or simply wv for the concatenation of words, making X∗ into a

monoid. The unit of this monoid is the empty word ε . As usual, we identify X with the set of one-letter

words.

Let G be a monoid and let X ⊆ G be a subset of G. We write 〈X〉 for the smallest submonoid of G

containing X , and we say that X generates G if 〈X〉 = G. Given any word w ∈ X∗, we write [w]G ∈ G

for the canonical interpretation of w in G, i.e., [−]G : X∗ → G is the unique monoid homomorphism such

that [x]G = x for all x ∈ X .

A relation over X is an element of X∗×X∗, i.e., an ordered pair of words. We say that a relation (w,v)
is valid in G if [w]G = [v]G. If Γ is a set of relations over X , we write ∼Γ for the smallest congruence

relation on X∗ containing Γ. Here, as usual, a congruence relation is an equivalence relation that is

compatible with the monoid operation, i.e., such that w ∼ v and w′ ∼ v′ implies ww′ ∼ vv′. Given a set X

of generators for a monoid G and a set Γ of valid relations, we say that Γ is complete if for all w,v ∈ X∗,
[w]G = [v]G implies w ∼Γ v. In that case, we also say that (X ,Γ) is a presentation by generators and

relations (or simply presentation) of G.

Definition 4.2. Given sets X ,Y and a function f : X → Y ∗, let f ∗ : X∗ → Y ∗ be the unique monoid

homomorphism extending f . Concretely, f ∗ is given by f ∗(x1 . . .xn) = f (x1) · . . . · f (xn).
More generally, given sets C,X ,Y and a function f : C×X → Y ∗×C, let f ∗∗ : C×X∗ → Y ∗×C be

the function defined by f ∗∗(c0,x1 . . .xn) = (w1 · . . . ·wn,cn), where f (ci−1,xi) = (wi,ci) for all i= 1, . . . ,n.

Note that in case C is a singleton, the functions f ∗ and f ∗∗ are essentially the same. In general, the

difference is that f ∗∗ also keeps a “state” in the form of an element of C.

Theorem 4.3 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and let Γ and ∆ be sets

of relations over X and Y , respectively. Suppose that the following additional data is given:

• a set C with a distinguished element I ∈C,

• a function f : X →Y ∗,

• a function h : C×Y → X∗×C,

subject to the following conditions:

(a) For all x ∈ X, if h∗∗(I, f (x)) = (v,c), then v ∼Γ x and c = I.

(b) For all c ∈ C and w,w′ ∈ Y ∗ with (w,w′) ∈ ∆, if h∗∗(c,w) = (v,c′) and h∗∗(c,w′) = (v′,c′′) then

v ∼Γ v′ and c′ = c′′.

Then for all v,v′ ∈ X∗, f ∗(v) ∼∆ f ∗(v′) implies v ∼Γ v′.

To better understand the utility of this theorem, let us briefly provide some context. First, we note

that we will be using this theorem in the case where G is a monoid, H is a submonoid of G, (Y,∆) is a

presentation of G, X is a set of generators for H , and we wish to show that some proposed set of relations

Γ is complete for H . Assuming that all hypotheses of Theorem 4.3 are satisfied, and further assuming that

f represents the inclusion function of H into G, i.e., that for all x ∈ X , [ f (x)]G = [x]H , the completeness

of Γ then follows. Namely, [v]H = [v′]H implies [ f ∗(v)]G = [ f ∗(v′)]G, which implies f ∗(v) ∼∆ f ∗(v′) by

completeness of ∆, which implies v ∼Γ v′ by Theorem 4.3.

To see how the theorem works, it is useful to further concentrate on the case where G and H are

groups, although the theorem itself does not require this. In the case of groups, one would typically
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consider the set H\G = {Hc | c ∈ G} of right cosets of H in G, and one would let C be a set of chosen

coset representatives. The function f is then chosen to assign to each x ∈ X some word w ∈ Y ∗ such

that [x]H = [w]G. The function h is chosen to assign to each pair of a coset representative c ∈ C and

generator y ∈ Y the unique coset representative c′ ∈ C and some word v ∈ X∗ such that c[y]G = [v]Hc′.
Conditions (a) and (b) are then sufficient for the set of relations Γ to be complete. In the more general

case of monoids, G is not necessarily partitioned into cosets, but the method works anyway, provided

that appropriate C, f , and h can be chosen.

Proof of Theorem 4.3. Let us say that a word w ∈ Y ∗ is special if h∗∗(I,w) = (v, I) for some v ∈ X∗. Let

Y ∗
s be the set of special words. By definition of h∗∗, the empty word is special and special words are

closed under concatenation, so Y ∗
s is a submonoid of Y ∗. Moreover, the image of f is special by property

(a), and therefore the image of f ∗ is also special. Finally, there is a translation back from special words

in Y to words in X : define g : Y ∗
s → X∗ by letting g(w) = v where h∗∗(I,w) = (v, I). Clearly, g is a monoid

homomorphism.

Claim A: for all v ∈ X∗, we have v ∼Γ g( f ∗(v)). Proof: Since both g and f ∗ are monoid homomorphisms

and ∼Γ is a congruence, it suffices to show this in the case when v ∈ X is a generator. But in that case, it

holds by assumption (a).

Claim B: for all w,w′ ∈ Y ∗ and c ∈ C, if w ∼∆ w′ and h∗∗(c,w) = (v,d) and h∗∗(c,w′) = (v′,d′), then

v ∼Γ v′ and d = d′. Proof: define a relation ∼ on Y ∗ by w ∼ w′ if for all c ∈ C, h∗∗(c,w) = (v,d) and

h∗∗(c,w′) = (v′,d′) implies v ∼Γ v′ and d = d′. We must show that w ∼∆ w′ implies w ∼ w′. Since ∼∆ is,

by definition, the smallest congruence containing ∆, it suffices to show that ∼ is a congruence containing

∆. The fact that ∼ is reflexive, symmetric, and transitive is obvious from its definition. The fact that it is

a congruence follows from the definition of h∗∗ and the fact that ∼Γ is a congruence. Finally, ∼ contains

∆ by assumption (b).

Note that, as a special case of claim B, we also have the following: if w,w′ ∈ Y ∗
s are special words,

then w ∼∆ w′ implies g(w)∼Γ g(w′). This follows directly from the definition of g.

To finish the proof of the Reidemeister-Schreier theorem, let v,v′ ∈ X∗ and assume that f ∗(v) ∼∆

f ∗(v′). Then we have:

v ∼Γ g( f ∗(v)) ∼Γ g( f ∗(v′)) ∼Γ v′,

where the first and last congruence holds by claim A, and the middle one holds by the special case of

claim B. Therefore, v ∼Γ v′ as claimed.

Corollary 4.4. Let G be a monoid with presentation (Y,∆), where Y ⊆G. Suppose H ⊆G is a submonoid

and X is a set of generators for H. Let Γ be a set of valid relations for H. Assume a set C and functions

f and h are given, satisfying the hypotheses of Theorem 4.3, and assume that f represents the inclusion

function of H into G, i.e., that x ∈ X, [ f (x)]G = [x]H . Then Γ is a complete set of relations for H.

4.3 Pauli rotation representation

One of the problems we face in applying the Reidemeister-Schreier theorem is that we must show that

a large number of (computer-generated) Clifford+T relations follow from the relations in Figure 1. It

would be very useful if this task could be automated. Ideally, the relations in Figure 1 could be turned

into a set of rewrite rules with the property that every Clifford+T circuit can be rewritten to a unique

normal form; in that case, to show that a given relation follows from the ones in Figure 1, it would be

sufficient to reduce the left-hand and right-hand sides to normal form and check that they are equal.
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Unfortunately, no such rewrite system or normal form is known. Instead, the best we can do is a

semi-automated process in which words are rewritten to something that is “almost” a normal form, i.e.,

not quite unique, but close enough so that many relations can be proved automatically, and the rest are

more easily solvable by hand.

For this, the Pauli rotation representation of Clifford+T operators turns out to be useful. This repre-

sentation was first described in [12, Section 3]. We start by noting that the T -gate is a linear combination

of the identity I and the Pauli operator Z. Specifically:

T =
(

1 0
0 ω

)

=
1+ω

2
I +

1−ω

2
Z. (1)

Therefore, an operator A commutes with T if and only if it commutes with Z. More generally, given any

n-qubit Pauli operator P, define

RP =
1+ω

2
I+

1−ω

2
P. (2)

Note that RZ = T . We refer to the operators RP as (45 degree) Pauli rotations. Note that RP is not a Pauli

operator; we call it a Pauli rotation because it is a rotation about a Pauli axis. By (2), it is again obvious

that an operator A commutes with RP if and only if it commutes with P. Moreover, from (2), we get the

following fundamental property of Pauli rotations:

CPC−1 = Q if and only if CRPC−1 = RQ. (3)

Let Z(i) = I ⊗ . . .⊗ I ⊗ Z ⊗ I ⊗ . . .⊗ I be the n-qubit Pauli operator with Z acting on the ith qubit, and

similarly T(i) = I⊗ . . .⊗ I⊗T ⊗ I⊗ . . .⊗ I = RZ(i)
. Since the Clifford operators act transitively on the set

of non-trivial self-adjoint Pauli operators by conjugation, for every such n-qubit Pauli operator P, there

exists a (non-unique) Clifford operator C such that CZ(1)C
−1 = P, and therefore CT(1)C

−1 = RP. We

therefore see that all of the Pauli rotations are Clifford conjugates of the T(1)-gate.

Next, we note that every Clifford+T operator can be written as a product of Pauli rotations followed

by a single Clifford operator. Specifically, by definition, every Clifford+T operator can be written as

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1.

For all k, let Dk =C1C2 · · ·Ck, so that Ck = D−1
k−1Dk. Then the above can be rewritten as

C1T(i1)C2T(i2)C3 · · ·CnT(in)Cn+1 = C1RZ(i1)
C2RZ(i2)

C3 · · ·CnRZ(in)
Cn+1

= D1RZ(i1)
D−1

1 D2RZ(i2)
D−1

2 D3 · · ·D−1
n−1DnRZ(in)

D−1
n Dn+1

= RD1Z(i1)
D−1

1
RD2Z(i2)

D−1
2
· · ·RDnZ(in)D

−1
n

Dn+1

= RP1
RP2

· · ·RPn
Dn+1,

where Pk = DkZ(ik)D
−1
k . Therefore, every Clifford+T operator can be written as a product of Pauli rota-

tions followed by a single Clifford operator, as claimed. It also shows that the number of required Pauli

rotations is at most equal to the T -count of the original circuit. In fact, since every Pauli rotation has

T -count 1, it is clear that every product of n Pauli rotations can be converted to a circuit of T -count n,

and vice versa. In particular, the minimal T -count of a circuit is equal to the minimal number of Pauli

rotations required to express it.

The Pauli rotation representation is not unique. There are some obvious relations:

(a) RP and RQ commute if and only if P and Q commute. This follows from (2).
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(b) For any P, the operator R2
P is Clifford, and therefore can be eliminated, resulting in a shorter

word. To see why, recall that there exists a Clifford operator C such that RP =CT(1)C
−1; therefore

R2
P =CT 2

(1)C
−1. Since T 2

(1) = S(1) is a Clifford gate, it follows that R2
P is Clifford.

(c) For any P, there exists a Clifford operator D such that R(−P) = RPD. Indeed, let C be a Clif-

ford operator such that P = CZ(1)C
−1. Then −P = C(−Z(1))C

−1 = CX(1)Z(1)X(1)C
−1. Therefore

R(−P) = CX(1)T(1)X(1)C
−1. Using the relation XTX = T S†

ω , we have R(−P) = CT(1)S
†
(1)ωC−1 =

CT(1)C
−1CS

†
(1)ωC−1 = RPCS

†
(1)ωC−1. Thus, the claim holds with D =CS

†
(1)ωC−1.

It is relatively easy to standardize the Pauli rotation representation modulo the above three relations:

First, we eliminate any generators of the form R(−P). This can be done from left to right, using relations

from (c); the resulting Clifford operator can be shifted all the way to the end of the word using relations

of the form DRP = RQD, where Q = DPD−1, see (3). Next, we use relations from (a) to swap adjacent

generators when possible, for example arriving at the lexicographically smallest word that is equal to

the given word up to such commuting permutations. Next, we use relations from (b) to remove any

duplicates. Should there be any such duplicates, the resulting word will need to be standardized again,

but since it uses fewer Pauli rotations, the process eventually terminates.

However, even when the Pauli rotation representation is standardized modulo the relations (a), (b),

and (c), it is still not unique. Indeed, there are some “non-obvious” relations. In a sense, the contribution

of this paper is to state exactly what these non-obvious relations are. They turn out to be the following.

Here, for brevity, we have omitted the tensor symbol ⊗, i.e., we wrote RIX instead of RI⊗X .

RIX RIZRZZRZX = RZX RIZRZZRIX ,
RIX RIZRIX RZX RZZRZX = RZX RIZRIX RZX RZZRIX ,

RXY RYZRXZRIX RZIRYX RZY RZX RXIRIZ = RYX RZY RZX RXIRIZRXY RYZRXZRIX RZI.

These turn out to be equivalent to relations (C18), (C19), and (C20) in Figure 1, respectively. We will

address the question of what these relations might “mean” (i.e., how one might be able to see that they

are true without computing the matrices) in Section 6.

4.4 Proof assistants

As outlined in Section 3, once we are armed with the Reidemeister-Schreier theorem, in theory there is

a mechanical way to obtain a complete set of relations for C T (2), given that C T (2) is a subgroup of

U4(Z[
1√
2
, i]) and we already have a complete set of relations for the latter due to Greylyn [13]. However,

when applied in practice, this method yields a large number of very large relations, all of which must be

shown to follow from the relations in Figure 1. Although Figure 3 appears to contain only 20 relations,

they are actually parameterized by indices such as j,k, etc. After accounting for these indices, there

are 123 distinct relations. Since there are two cosets of C T (2) in U4(Z[
1√
2
, i]), under part (b) of the

Reidemeister-Schreier theorem, each of these 123 relations yields two Clifford+T relations, plus another

8 relations (one for each generator) from part (a), giving a total of 254 Clifford+T relations that must be

verified. This task is too daunting to do “by hand”.

Given the mechanical and repetitive nature of these calculations, we initially wrote a computer pro-

gram to generate and verify the relations. However, this raised another issue: our program was large

and complicated and used a variety of tactics to show that the given relations follow from the ones in

Figure 1. We could not claim with mathematical certainty that our program was free of bugs, nor that it

didn’t use some hidden assumptions that weren’t actually consequences of Figure 1. Moreover, it would

have been unreasonable for any referee to verify our calculations.
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For this reason, we decided to go one step further and formalize the soundness and completeness

proofs in a proof assistant. A proof assistant is a piece of software in which one can write definitions,

theorems, and proofs, and the software will check the correctness of the proofs. Purists might object that

the proof assistant is itself a piece of software that might be buggy. But, as has been argued eloquently

by [11, 14], current proof assistants can be scrutinized at many levels and are many orders of magnitude

more reliable than the traditional way of checking paper-and-pencil proofs. The particular proof assistant

we used in this work is Agda [1].

5 Proof of the main result

5.1 Soundness and completeness

Our goal is to prove that Theorem 4.1 implies Theorem 2.1. Recall that Greylyn’s set of generators for

U4(R) is Y = {ω[ j],X[ j,k],H[ j,k] | j,k ∈ {1, ...,4} and j < k}. Also recall that our target set of generators

for C T (2) is X = {ω ,H0,H1,S0,S1,T0,T1,CZ}. We fix a translation from X to Y ∗ as follows:

f (ω) = ω[0]ω[1]ω[2]ω[3],

f (H0) = H[1,3]H[0,2],

f (H1) = H[2,3]H[0,1],

f (S0) = ω
2
[2]ω

2
[3],

f (S1) = ω
2
[1]ω

2
[3],

f (T0) = ω[2]ω[3],

f (T1) = ω[1]ω[3],

f (CZ) = ω
4
[3].

We prove the following soundness and completeness theorems for this translation:

Theorem 5.1 (Soundness). For all w,v ∈ X ∗, w ∼Γ v implies f ∗(w)∼∆ f ∗(v).

Theorem 5.2 (Completeness). For all w,v ∈ X ∗, f ∗(w)∼∆ f ∗(v) implies w ∼Γ v.

As already noted in Section 4.2, these two theorems, together with Theorem 4.1, immediately imply

Theorem 2.1. Specifically, we have w ∼Γ v if and only if f ∗(w)∼∆ f ∗(v) if and only if [ f ∗(w)] = [ f ∗(v)]
if and only if [w] = [v], where the first equivalence follows from Theorems 5.1 and 5.2, the second

equivalence follows from Theorem 4.1, and the last equivalence holds because the function f respects

the interpretation.

5.2 The formal proof

Soundness and completeness are formally proved in the Agda code accompanying this paper [8]. We

organized the code to make it hopefully as easy as possible to verify the result. The code consists of 67

files that are listed in Figure 4, and which we now briefly describe.

(a) Background. The eight files in the “background” section contain general-purpose definitions of

the kind that are usually found in the Agda standard library, i.e., basic properties of booleans, integers,

equality, propositional connectives, etc. The reason we did not use the actual Agda standard library is

that it is very large and changes frequently. We felt that it is better for our code to be self-contained rather

than depending on a particular library version.
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(b) Statement of the result. In these two files, we give a minimal set of definitions that allows us to

state the soundness and completeness theorems. The file Word.agda defines what it means to be a word

over a set of generators, as well as the inference rules we use for deriving relations from a set of axioms

(such as reflexivity, symmetry, transitivity, congruence, associativity, and the left and right unit laws).

Note that in the Agda code, we define a word as a term in the language of monoids, rather than as a

sequence of generators. In other words, associativity and the unit laws are treated as laws, rather than

being built into the definition. The file Word.agda also defines the f ∗ operation used in the statement of

the soundness and completeness theorems. The file Generator.agda defines the Clifford+T generators

and the relations from Figure 1, Greylyn’s generators and the relations from Figure 3, and the translation

function f from Section 5.1. It also contains the statement of the soundness and completeness theorems,

but not their proofs. The reason we state these theorems separately from their proofs is to make sure

that Agda (and a human reviewer) can verify that the statement of these theorems only depends on the

relatively small number of definitions given so far, and not on the much larger number of definitions and

tactics used in the proof.

(c) Details of the proof. The proof of the soundness and completeness theorems relies on a large

number of auxiliary definitions and lemmas, and comprises the bulk of our code with 56 files. This

includes a formal proof of the Reidemeister-Schreier theorem; several tactics for automating steps in

certain equational proofs; a simplified presentation of Greylyn’s generators and relations, using only 5

generators and 19 relations (instead of Greylyn’s original 16 generators and 123 relations), along with the

proof of its completeness; a formalization of Pauli rotations and their relevant properties; as well as 46

step-by-step proofs of individual relations. These details are primarily intended to be machine-readable,

and can safely be skipped by readers who trust Agda and merely want to check the proof rather than

reading it. However, all of the files are documented and human-readable.

The relations in the files Equation1.agda to Equation46.agda are at the heart of the completeness

proof. These are the relations that must be proved to satisfy the hypotheses of the Reidemeister-Schreier

theorem. Some of these relations are trivial, such as Equation13.agda. Others are highly non-trivial

and require almost a thousand proof steps, such as Equation44.agda. In particular, the proofs that

require relations (C18)–(C20) from Figure 1 tend to be non-obvious; in fact, this is how we discovered

relations (C18)–(C20) in the first place. We did not write these equational proofs by hand; instead, we

used a semi-automated process where most of the proofs were generated by a separate Haskell program

and output in a format that is convenient and efficient for Agda to check. Originally, we also attempted

to write Agda tactics that would allow Agda to derive these relations fully automatically; however, this

failed due to performance issues with Agda.

(d) Proof witness. Finally, the file Proof.agda contains nothing but a witness of the fact that the

soundness and completeness theorems have been formally proven. A reader who wants to skip the details

of the formal proof only needs to check two things: the statement of the main result in Generator.agda

(to make sure the statement correctly captures what we said it does), and the fact that the Agda proof

checker accepts Proof.agda.

6 Discussion of the axioms

Here, we give some further perspectives on what the axioms of Figure 1 might “mean”, and in particular,

how one might convince oneself that the relations are true without having to compute the corresponding
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(a) Background:

Boolean.agda The type of booleans.

Proposition.agda Basic definitions in propositional logic.

Equality.agda Basic properties of equality.

Decidable.agda Some definitions to deal with decidable properties.

Inspect.agda Agda’s “inspect” paradigm, to assist with pattern matching.

Nat.agda Basic properties of the natural numbers.

Maybe.agda The “Maybe” type.

List.agda Basic properties of lists.

(b) Statement of the result

Word.agda Basic properties of words.

Generator.agda Generators and relations for our two groups, and statement of main result.

(c) Proof of the result

Word-Lemmas.agda Basic lemmas about monoids and groups, and equational reasoning.

Reidemeister-Schreier.agda Two versions of the Reidemeister-Schreier theorem.

Word-Tactics.agda Some tactics for proving properties of words.

Clifford-Lemmas.agda A decision procedure for equality of 2-qubit Clifford operators.

CliffordT-Lemmas.agda Properties and tactics for Clifford+T operators.

Greylyn-Lemmas.agda Some automation for Greylyn’s 1- and 2-level operators.

Soundness.agda Proof of soundness.

Greylyn-Simplified.agda A smaller set of generators and relations for Greylyn’s operators.

PauliRotations.agda Definitions, properties, and tactics for Pauli rotations.

Equation1.agda – Equation46.agda Explicit proofs of 46 relations required for completeness.

Completeness.agda Proof of completeness.

(d) Top-level proof witness

Proof.agda The final witness for soundness and completeness.

Figure 4: List of Agda files. The files are listed in order of dependency, i.e., each file only imports earlier

files.
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matrices.

Note that we are not claiming that axioms (C1)–(C20) are independent; for example, (C8) clearly

follows from (C14) and (C16); however, we found it useful to separate the Clifford relations from the rest,

which is why (C8) was included. It would be nice to know whether axioms (C18)–(C20) are independent

from the others and from each other, and this seems likely to be true, but we do not know.

The axioms in groups (a)–(c) are well-known; they merely express the Clifford relations [21] and the

fact that operators on disjoint qubits commute. Relations (C14) and (C15) express the well-known facts

that T 2 = S and (T X)2 = ω , whereas relation (C16) holds because diagonal operators commute. Note

that the upside-down version of relation (C16) was not included among our axioms; this is because it is

actually derivable from the remaining axioms. Relation (C17) becomes obvious once one realizes that

the swap gate can be expressed as a sequence of three controlled-not gates:

=

Relation (C17) is then obtained by simplifying the following, which expresses the fact that a T -gate can

be moved past a swap-gate:

T =
T

We will now focus on the “non-obvious” relations (C18)–(C20). Relations (C18) and (C19) are of

the form

A A† =
A A† . (4)

They hold because positively controlled gates commute with negatively controlled gates. Note that there

are infinitely many relations of the form (4), where A is any single-qubit Clifford+T operator, but our

completeness proof shows that, in the presence of the remaining axioms, two of them are sufficient to

prove all the others.

Relation (C20) is more interesting. It, too, states that two operators commute, but it is less obvious

why this is so. Ideally, we would be able to find some simpler and more obvious relations that imply

(C20). While we have not been able to find such simpler relations in the Clifford+T generators, we can do

this if we permit ourselves a controlled T -gate. Note that the controlled T -gate is not itself a member of

the 2-qubit Clifford+T group, since representing it as a Clifford+T operator requires an ancilla [10]. But

the use of controlled T -gates is nevertheless helpful in explaining relation (C20). We start by noting that

the controlled T -gate satisfies the following obvious circuit identities (and their upside-down versions):

T
= T (5)

T T
=

T
(6)

T

T
=

T

T
(7)

H T H
=

T H T
. (8)

Identities (5)–(7) are obvious because all of the operators in them are diagonal. Identity (8) holds by case

distinction: this circuit applies either HT or T H to the bottom qubit, depending on whether the top qubit
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is |0〉 or |1〉. Using these identities, we can easily prove (C20):

H T H

H T H (8)
=

T H T

T H T

(5)
=

T H T T

H T

(6)
=

T H T

H T

=
T H T

H T

(5),(7)
= T H T

H T

= T H T

H T

(6)
= T H

H

T T

T

(5)
= T H

H

T

T T

(8)
= H T H

H T H
.

Note that there is again an infinite family of such relations, because in the above derivation, we could have

used any gate in place of H . However, due to completeness, all other such relations are consequences of

(C18)–(C20) and the remaining axioms.

Another way to look at relations (C18)–(C20) is in terms of their Pauli rotation representations. As

we already mentioned in Section 4.3, up to basis changes, the three relations can be written in terms of

Pauli rotations, respectively as follows:

RIX RIZRZZRZX = RZX RIZRZZRIX ,
RIX RIZRIX RZX RZZRZX = RZX RIZRIX RZX RZZRIX ,

RXY RYZRXZRIX RZIRYX RZY RZX RXIRIZ = RYX RZY RZX RXIRIZRXY RYZRXZRIX RZI.

When written in this form, the first two of these relations only use X and Z Paulis, and use only Z on

the left qubit. This indicates that these relations are about controlled gates. We can also see that in both

cases, the relation exchanges the positions of the leftmost RIX and the rightmost RZX . The first relation

can also be seen to express the fact that RIZRZZ commutes with RZX R−1
IX , and similarly for the second

relation. The third relation again takes the form of an operator commuting with its upside-down version.

7 Conclusion and future work

We gave a presentation of the 2-qubit Clifford+T group by generators and relations. We did this by

applying the Reidemeister-Schreier theorem to Greylyn’s presentation of the group of unitary 4 × 4-

matrices over the ring Z[ 1√
2
, i]. Since there is a very large number of relations to check and simplify, and

checking them by hand or by an unverified computer program would be error-prone, we used the proof

assistant Agda to formalize our proof. The latter process is painstaking and took us more than 5 years to

complete after our result was first announced in [7].
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An obvious candidate for future work would be to find a complete set of relations for the Clifford+T

group with 3 or more qubits. This is currently out of reach for two reasons: first, the computations

required to simplify any potential set of relations will be even more labor-intensive than in the 2-qubit

case. Second, and more seriously, there is no known presentation of the group of unitary n×n-matrices

over the ring Z[ 1√
2
, i] for n > 4.

Another project that is currently in progress is to apply the method of this paper to restrictions of the

Clifford+T group for which presentations of the corresponding matrix group are known. This includes

the Clifford+Toffoli gate set and the Clifford+controlled-S gate set.

References

[1] Agda Documentation. https://agda.readthedocs.io/. Accessed: 2022-02-15.

[2] Matthew Amy, Dmitri Maslov & Michele Mosca (2014): Polynomial-Time T-Depth Optimization of Clif-

ford+T Circuits Via Matroid Partitioning. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 33(10), pp. 1476–1489, doi:10.1109/TCAD.2014.2341953. Also available from

arXiv:1303.2042.

[3] Matthew Amy, Dmitri Maslov, Michele Mosca & Martin Roetteler (2013): A Meet-in-the-Middle Algorithm

for Fast Synthesis of Depth-Optimal Quantum Circuits. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems 32(6), pp. 818–830, doi:10.1109/TCAD.2013.2244643. Also available from

arXiv:1206.0758v2.

[4] Matthew Amy & Michele Mosca (2019): T -count optimization and Reed-Muller codes. IEEE Transac-

tions on Information Theory 65(8), pp. 4771–4784, doi:10.1109/TIT.2019.2906374. Also available from

arXiv:1601.07363.

[5] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Fast and effective techniques for T-count

reduction via spider nest identities. In Steven T. Flammia, editor: 15th Conference on the Theory

of Quantum Computation, Communication and Cryptography (TQC 2020), Leibniz International Pro-

ceedings in Informatics (LIPIcs) 158, Schloss Dagstuhl–Leibniz-Zentrum für Informatik, pp. 11:1–23,

doi:10.4230/LIPIcs.TQC.2020.11. Also available from arXiv:2004.05164.

[6] Niel de Beaudrap, Xiaoning Bian & Quanlong Wang (2020): Techniques to reduce π/4-parity-phase circuits,

motivated by the ZX calculus. Electronic Proceedings in Theoretical Computer Science 318, p. 131–149,

doi:10.4204/eptcs.318.9. Available from arXiv:1911.09039.

[7] Xiaoning Bian & Peter Selinger (2015): Relations for the 2-qubit Clifford+T operator group. Slides pre-

sented at the Workshop on Quantum Programming and Circuits, Waterloo, Canada, June 8–11, 2015. Avail-

able from https://mathstat.dal.ca/~xbian/talks/slide_cliffordt2.pdf.

[8] Xiaoning Bian & Peter Selinger (2022): Agda code accompanying this paper. Available as ancillary material

at arXiv:2204.02217.

[9] Harry Buhrman, Richard Cleve, Monique Laurent, Noah Linden, Alexander Schrijver & Falk Unger (2006):

New Limits on Fault-Tolerant Quantum Computation. In: Proceedings of the 47th Annual IEEE Symposium

on Foundations of Computer Science (FOCS 2006), pp. 411–419, doi:10.1109/FOCS.2006.50. Also available

from arXiv:quant-ph/0604141.

[10] Brett Giles & Peter Selinger (2013): Exact synthesis of multiqubit Clifford+T circuits. Physical Review A

87(3), p. 032332 (7 pages), doi:10.1103/PhysRevA.87.032332. Also available from arXiv:1212.0506.

[11] Georges Gonthier (2008): Formal Proof — The Four Color Theorem. Notices of the American Mathematical

Society 55(11), pp. 1382–1393.

[12] David Gosset, Vadym Kliuchnikov, Michele Mosca & Vincent Russo (2014): An Algorithm for the T-Count.

Quantum Information and Computation 14(15–16), pp. 1261–1276, doi:10.26421/QIC14.15-16-1. Also

available from arXiv:1308.4134.

https://agda.readthedocs.io/
https://doi.org/10.1109/TCAD.2014.2341953
https://arxiv.org/abs/1303.2042
https://doi.org/10.1109/TCAD.2013.2244643
https://arxiv.org/abs/1206.0758v2
https://doi.org/10.1109/TIT.2019.2906374
https://arxiv.org/abs/1601.07363
https://doi.org/10.4230/LIPIcs.TQC.2020.11
https://arxiv.org/abs/2004.05164
https://doi.org/10.4204/eptcs.318.9
https://arxiv.org/abs/1911.09039
https://mathstat.dal.ca/~xbian/talks/slide_cliffordt2.pdf
https://arxiv.org/abs/2204.02217
https://doi.org/10.1109/FOCS.2006.50
https://arxiv.org/abs/quant-ph/0604141
https://doi.org/10.1103/PhysRevA.87.032332
https://arxiv.org/abs/1212.0506
https://doi.org/10.26421/QIC14.15-16-1
https://arxiv.org/abs/1308.4134


28 Generators and Relations for 2-Qubit Clifford+T Operators

[13] Seth E. M. Greylyn (2014): Generators and relations for the group U4(Z[
1√
2
, i]). M.Sc. thesis, Dalhousie

University. Available from arXiv:1408.6204.

[14] Thomas C. Hales (2008): Formal Proof. Notices of the American Mathematical Society 55(11), pp. 1370–

1380.

[15] Luke E. Heyfron & Earl T. Campbell (2018): An efficient quantum compiler that reduces T count.

Quantum Science and Technology 4(1), p. 015004, doi:10.1088/2058-9565/aad604. Also available from

arXiv:1712.01557.

[16] Aleks Kissinger & John van de Wetering (2020): Reducing the number of non-Clifford gates in quan-

tum circuits. Phys. Rev. A 102, p. 022406, doi:10.1103/PhysRevA.102.022406. Preprint available from

arXiv:1903.10477.

[17] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs & Dmitri Maslov (2018): Automated op-

timization of large quantum circuits with continuous parameters. NPJ Quantum Information 4(1),

doi:10.1038/s41534-018-0072-4. Also available from arXiv:1710.07345.

[18] Michael A. Nielsen & Isaac L. Chuang (2002): Quantum Computation and Quantum Information. Cambridge

University Press.

[19] Kurt Reidemeister (1927): Knoten und Gruppen. Abhandlungen aus dem Mathematischen Seminar der

Universität Hamburg 5(1), pp. 7–23, doi:10.1007/BF02952506.

[20] Otto Schreier (1927): Die Untergruppen der freien Gruppen. Abhandlungen aus dem Mathematischen Sem-

inar der Universität Hamburg 5(1), pp. 161–183, doi:10.1007/BF02952517.

[21] Peter Selinger (2015): Generators and Relations for n-Qubit Clifford Operators. Logical Methods in Com-

puter Science 11(2:10), pp. 1–17, doi:10.2168/LMCS-11(2:10)2015. Also available from arXiv:1310.6813.

https://arxiv.org/abs/1408.6204
https://doi.org/10.1088/2058-9565/aad604
https://arxiv.org/abs/1712.01557
https://doi.org/10.1103/PhysRevA.102.022406
https://arxiv.org/abs/1903.10477
https://doi.org/10.1038/s41534-018-0072-4
https://arxiv.org/abs/1710.07345
https://doi.org/10.1007/BF02952506
https://doi.org/10.1007/BF02952517
https://doi.org/10.2168/LMCS-11(2:10)2015
https://arxiv.org/abs/1310.6813


S. Gogioso, M. Hoban (Eds.):

Quantum Physics and Logic (QPL) 2022

EPTCS 394, 2023, pp. 29–45, doi:10.4204/EPTCS.394.3

© Staudacher, Guggemos, Gehrke,

Grundner-Culemann

This work is licensed under the

Creative Commons Attribution License.

Reducing 2-QuBit Gate Count for ZX-Calculus based

Quantum Circuit Optimization

Korbinian Staudacher, Tobias Guggemos, Sophia Grundner-Culemann

MNM-Team
Ludwig-Maximilians-Universität München

Munich, Germany

{staudacher,guggemos,grundner-culemann}@nm.ifi.lmu.de

Wolfgang Gehrke

Research Institute CODE
Universität der Bundeswehr München Munich, Germany

wolfgang.gehrke@unibw.de

In the near term, programming quantum computers will remain severely limited by low quantum

volumes. Therefore, it is desirable to implement quantum circuits with the fewest resources possible.

For the common Clifford+T circuits, most research is focused on reducing the number of T gates,

since they are an order of magnitude more expensive than Clifford gates in quantum error corrected

encoding schemes. However, this optimization sometimes leads to more 2-qubit gates, which, even

though they are less expensive in terms of fault-tolerance, contribute significantly to the overall circuit

cost. Approaches based on the ZX-calculus have recently gained some popularity in the field, but

reduction of 2-qubit gates is not their focus. In this work, we present an alternative for improving

2-qubit gate count of a quantum circuit with the ZX-calculus by using heuristics in ZX-diagram

simplification. Our approach maintains the good reduction of the T gate count provided by other

strategies based on ZX-calculus, thus serving as an extension for other optimization algorithms. Our

results show that combining the available ZX-calculus-based optimizations with our algorithms can

reduce the number of 2-qubit gates by as much as 40 % compared to current approaches using ZX-

calculus. Additionally, we improve the results of the best currently available optimization technique

of Nam et. al [22] for some circuits by up to 15 %.

1 Introduction

Many famous quantum algorithms, like Shor [26], HHL [13] or Grover [12], base upon techniques like

Quantum Fourier Transformation, Quantum Phase Estimation or Amplification, respectively. Although

these algorithms provide significant (sometimes even exponential) speed-ups, current quantum chips

can only execute toy problems, mostly due to the low gate fidelity. Even for problems that can be easily

solved on a state-of-the-art desktop PC, those algorithms require tens of thousands of gates, and are there-

fore infeasible to run on near-term quantum devices. However, applications in quantum simulation are

supposed to achieve significant improvements in quantum chemistry, material sciences, or high-energy

physics on near-term devices. With variational algorithms (e.g., QAOA [10] or VQE [25]), real-world

applications like optimization problems on real quantum chips may become feasible. While the associ-

ated speed-up is unknown for many use cases, they require only few qubits and quantum gates to achieve

promising results. Quantum Machine Learning (QML) is such an example: Here, the combination of

clever encoding strategies, variational algorithms, and classical pre- and post-processing achieves high

accurate classification rates with fewer qubits compared to classical bits.

http://dx.doi.org/10.4204/EPTCS.394.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Still, even algorithms with smaller circuits cannot be executed on current devices and gate optimiza-

tion is a vibrant research topic. While global optimization of arbitrary quantum circuits is generally

QMA-hard [16], different algorithms like quantum optimal control [18] have been proposed to reduce

the size of a quantum circuit. In this context the so-called ZX-calculus [6] is considered a promising

tool. It provides an abstract graphical language for describing quantum systems and can be seen as an

alternative to the predominant description in the Hilbert space. We can transform any quantum circuit

into a ZX-diagram equivalent, apply the rules of the ZX-calculus to simplify the diagram, and re-extract

a quantum circuit from it.

Scope of this work

Our work is based on optimizing circuits with ZX-calculus, where several optimization strategies have

been proposed recently [9, 20, 27]. Currently, these strategies yield very good results for pure Clifford

circuits, as well as for T gate elimination in Clifford+T circuits, which is worthwhile for fault-tolerant

quantum computers with error-corrected gates. For such devices, the cost of a T gate is sometimes

estimated to be up to a hundred times higher than the cost of a CNOT gate [24] (even though recent

studies suggest lower rates [21]).

However, reducing 2-qubit gates is generally of interest for quantum hardware that is not error cor-

rected (e.g., NISQ devices) or in which quantum states do not tend to interact easily, e.g., in Photonic

Quantum computing [3]. A major drawback of the current ZX-calculus based strategies is that these

gates in particular are not optimized very well; in fact, for many large Clifford+T circuits, the 2-qubit

gate count even increases when using algorithms like the one in [9].

We propose new optimization approaches especially for reducing 2-qubit gates. To do so, we use

heuristics for estimating the 2-qubit gate count in ZX-diagrams as cost functions for classical search

algorithms like I.) random selection and II.) greedy algorithm. By combining them with existing opti-

mization approaches, we maintain the T gate count reduction rate and improve the total gate count and

the 2-qubit gate count for most given circuits. We evaluate the performance on circuits from the Tpar

benchmark [1]. We find that our optimizations can outperform existing ZX-based approaches and can

additionally be used to further improve already optimized circuits.

2 Background

Throughout this paper, we use the notation from [23] for quantum gates; the most essential ones are

detailed in Table 1 by name and matrix-, gate- and ZX-calculus-representation. Every unitary operation

can be decomposed into a combination of CNOTs and single-qubit gates [23]. A well-studied example

for a minimal gate set with which to approximate any unitary operation is the so-called Clifford+T set,

i.e., the gate set generated by {H,T,CNOT}. That is why many optimization algorithms target circuits

generated with the Clifford+T set. The Clifford set generated by {H,S,CNOT} is also well-known and

useful for quantum circuit simulations on classical computers, but not every unitary operation can be

represented with it. For convenience, we abbreviate some gates in the Clifford+T set, namely X ,Y,Z,S,

and CZ (instead of writing, for example, Z = T ·T ·T ·T ).

2.1 ZX-Calculus

Since ZX-calculus and its optimization strategies rely on graph theory, we provide some background

in Appendix B. The ZX-calculus [7, 8] is a graphical language for expressing linear maps on qubits as
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Table 1: Overview of important quantum gates and the respective ZX-Spiders.

Name
Iden-

tity
Z Z-Phase T X X-Phase H CNOT

Matrix
(

1 0

0 1

) (

1 0

0 −1

) (

1 0

0 eiα

) (

1 0

0 e
iπ
4

) (

0 1

1 0

)

1
2

(

1+ eiα 1− eiα

1− eiα 1+ eiα

)

1√
2

(

1 1

1 −1

)









1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0









Gate I Z Rz(α) T X Rx(α) H •

Spider/

Wire π α π
4 π α or

ZX-diagrams. Relations in multi-qubit systems are often difficult to understand in Dirac notation, since

the matrix size doubles with every qubit and the complex number space quickly becomes confusing.

α

. . .

. . .n

m

α

. . .

. . .n

m
Z-Spider X-Spider

(1)

ZX-calculus provides a way to represent quantum circuits as 2-

dimensional diagrams where nodes (spiders) and edges (wires) form an

undirected graph. In contrast to quantum circuits, the number of input-

and output wires does not have to match, hence the resulting transforma-

tions are not necessarily unitary. However, many important concepts in

quantum mechanics follow very intuitively from this representation and we will briefly introduce the

main principles.

2.1.1 Representing Quantum Circuits

•
Z • Z = π π (2)

Any transformation on a single qubit can be described as a

rotation around the X and Z axes. Further, we can represent

any quantum gate as a combination of X - (red) and Z-spiders

(green) in ZX-diagrams (c.f. Eq. 1), of which the most im-

portant are shown in Table 1. We call the wires on the left- and rightmost the input and output of the

graph, respectively. The three generators of the universal Clifford+T set are constructed with the H-wire,

the Z-spider with phase π/4, and a combination of an empty X - and Z-spiders (phase α = 0) represent-

ing a CNOT. In general, we can read a ZX-diagram in any direction since only the connectivity of the

spiders matters, but for comparison with common quantum circuits it is convenient to read ZX-diagrams

horizontally as shown in Eq. 2.

2.1.2 Basic Rules

We introduce the most important transformation rules in the ZX language that are useful for optimiza-

tion [6] in Figure 1. All ZX-rules can be applied in both directions and also apply with inverted colors.

Any two Clifford diagrams (i.e., diagrams only containing spiders with a Clifford phase α = k · π
2

;k ∈
Z) that represent the same linear map can be transformed into each other by some combination of those

rules. Recent developments have introduced rule sets where this is also possible for Clifford+T diagrams

and for all ZX-diagrams [17, 28].
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(c)
=...

α ...

( f )
=β

α
α +β. . .

. . . . . .

. . .
. . .

. . .
(i2)
=

(i1)
=

(b)
=

(π)
=

...απ −α ...

π

π

α

. . .

. . .
(h)
= α

. . .

. . .

π/2

π/2

π/2

(hd)
=

Figure 1: The important rules in ZX-Calculus that can be used for optimization are: Identity- (i1,i2),

Fusion- (f), Hadamard- (h), Bialgebra- (b), Pi- (π), Copy- (c) and Hadamard-Decomposition (hd) rule.

Each holds for all α ,β ∈ [0,2π]. Due to (h) and (i2), all rules hold with the colours interchanged.

3 Circuit optimization with ZX-calculus

With the rules of ZX-calculus, the optimization of quantum circuits becomes a simplification problem

on the ZX-diagram. By simplification we mean reducing the total number of either spiders or wires in a

diagram in order to obtain a smaller diagram. The general process is as follows:

1.) Transform the circuit to a ZX-diagram

2.) (optional:) transform to a graph-like diagram, i.e.:

• All spiders are Z-spiders.

• All connections are Hadamard wires.

• There are no loops.

• Inputs and outputs are the only non-Hadamard

wires and are connected to at most one spider.

Every spider has at most one input and one out-

put.

3.) Simplify the diagram using ZX-rules.

4.) Extract a quantum circuit out of the ZX-diagram.

This allows powerful optimization of circuits, which are not obvious at a first glance (we provide an

intuitive example in Appendix C).

3.1 Diagram simplification

The presented ZX-rules allow many degrees of freedom, hence, simplification is still a difficult problem.

The term “simplification of diagrams” has to be taken with a grain of salt since decreasing the number

of spiders in a diagram can also lead to more complex extracted circuits. Since rules can be applied

in both directions it is important to find terminating algorithms for diagram simplification. A common

approach has been to only use ZX-rules which decrease the total number of spiders in a diagram with

every application, thus ensuring termination. We present some common approaches, many of which are

implemented in the PyZX-library [19].

3.1.1 Clifford spider simplification

The core of most strategies are two rules from graph theory – namely local complementation and pivot-

ing – which work on diagrams that are graph-like. Both rules allow the elimination of interior Clifford

spiders (phase 0,π/2,π, or −π/2; not connected to an input or output) from ZX-diagrams.
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α1± π
2

α2 α3

=
α1∓ π

2

α2∓ π
2 α3∓ π

2

a
(lc)

(3)

Local complementation (lc) In ZX-calculus, local complementa-

tion from Section B.1 is applicable on graph-like diagrams. If the

spider a in G ⋆a has a phase of ±π/2, the phase is subtracted from

those of the neighboring spiders and the spider is eliminated for sim-

plification of the diagram as shown in Eq. 3.

Pivoting (p) Similarly we can eliminate a pair of spiders uv with phase 0 or π by applying a graph-

theoretic pivot G∧uv (c.f. Section B.2) on the diagram as in the following example ( j,k ∈ Z):

α2

α1 jπ kπ γ1

β1 γ2

(p)
=

α ′1

α ′2 γ ′2

β ′1

γ ′1
α ′i = αi + kπu v

β ′i = βi +( j+ k+1)π

γ ′i = γi + jπ
(4)

3.1.2 Clifford simplification algorithm

These rules allow constructing an algorithm for graph-like diagrams which removes most interior Clif-

ford spiders [9]. The procedure is as follows:

1. Eliminate empty spiders with two wires using the identity rule and subsequently fuse the adjacent

spiders in order to maintain a graph-like diagram.

2. Apply local complementation on every spider of phase ±π/2 and pivoting on every pair of con-

nected spiders of phase 0 or π as often as possible.

3. If step 2 modified the diagram, start again with step 1, else stop the iteration.

That allows us to remove every interior spider with phase ±π/2 and every pair of connected spiders with

phase 0 or π . However, after simplification some interior Clifford spiders with phase 0 or π may remain.

3.1.3 Phase gadget simplification (p2)

α . . .

phase gadget

(5)

We can use phase gadgets to apply pivoting on a pair of spiders where one spider

has a non-Clifford phase (6= 0,π/2,π,−π/2). A phase gadget as defined in [20]

is a parameterized spider with only one wire connected via Hadamard edge to a

phaseless spider as in Eq. 5.

We can modify pivoting (Eq. 4) to exchange the spider with a non-Clifford phase to a phase gadget:

α2

α1 jπ σ γ1

β1 γ2

(p2)
=

u v

β ′i = βi +( j+1)π

γ ′i = γi + jπ

σ ′ = (−1) jσ
α1

α2 γ ′2

β ′1

γ ′1

σ ′ ← phase gadget

(6)

With the additional rules in Appendix A, we can eliminate every interior Clifford spider in a diagram [20].

3.2 Circuit extraction

Extracting a quantum circuit from a simplified diagram can be challenging, since spiders with an arbi-

trary number of wires have no direct gate representation [2]. The most general circuit extraction rou-

tine makes use of so called “flow properties” originating in measurement-based quantum computing
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(MBQC). Graph-like ZX-diagrams can be seen as an extension of MBQC graph states where the phases

of spiders represent measurements in either the XY, XZ or YZ plane of the Bloch sphere:

meas. plane XY XZ YZ

meas. effect α α π
2 = α π

2 α = α
(7)

Diagrams simplified with the Clifford simplification algorithm from [9] only contain spiders in the XY

measurement plane and preserve a flow property called focused generalized flow (gflow). Those diagrams

can be extracted by converting every spider with phase α to an Rz (α) gate and a Hadamard wire as either

a H or CZ gate or a combination of CNOT gates. As an example consider the diagrams from Eq. 4.

Extracting the diagram on the left hand side yields the following circuit:

RZ(α1) H • • RZ( jπ) H • • RZ(kπ) H RZ(γ1)

• RZ(α2) H • • RZ(β1) H • RZ(γ2)

(8)

whereas extracting the diagram after rule application yields the equivalent smaller circuit:

• RZ(α
′
1) H RZ(β

′
1) H • RZ(γ

′
1)

RZ(α
′
2) H • RZ(γ

′
2)

(9)

However, ZX-diagrams simplified with Eq. 6 may contain spiders in XZ and Y Z plane as well. While it

has been shown that those diagrams still preserve generalized flow (gflow), the circuit extraction routine

has to convert those spiders back into XY spiders using either pivoting (Y Z) or a combination of local

complementation and pivoting (XZ) before extracting the diagram [2]. An algorithm to efficiently extract

diagrams that do not admit the gflow property is yet to be discovered; however, recent findings suggest

that such an algorithm may not exist for general ZX-diagrams [4]. Hence, even though the diagram may

represent a unitary matrix, we cannot extract a quantum circuit from the diagram efficiently.

4 Enhancing reduction of 2-qubit gates

As seen in Eq. 8 and 9, a Hadamard wire gets extracted to H, CNOT or CZ gates. The number of

Hadamard wires in a graph-like ZX-diagram therefore correlates with the number of 2-qubit gates in the

extracted circuit. The diagram simplification algorithms shown in Section 3 focus on eliminating spiders

while neglecting – or even increasing – the number of Hadamard wires. Hence, this section introduces

methods which additionally minimize the amount of Hadamard wires (ref. as #wires in the following).
π

π
2

- π
2

π
4

π
4

π

- π
2

π
4

(lc)
=

π
2

π

π
4

π
4

- π
2

- π
2

π
2

- π
2

π

π
4

- π
2 (10)

To do so, it is crucial to examine where and when

local complementation and pivoting are applied. Both

rules can either increase or decrease #wires, depend-

ing on the connectivity of the relevant neighbors. Eq. 3

and 4 show examples in which #wires decreases. How-

ever, as Eq. 6 shows it can also increase #wires and we easily construct extreme cases like the one

shown in Eq. 10. Applying local complementation to the central spider with phase π/2 yields a diagram

containing one spider less but a significantly higher #wires. Extracting the left diagram with the current

version of the PyZX-library produces a circuit with six 2-qubit gates, while the diagram on the right gets

extracted as a circuit with 21 2-qubit gates. Generally, applying local complementation on a spider with
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n unconnected neighbors leads to
n(n+1)

2
−n new wires. As pivoting involves local complementation on

two spiders, the effect usually even worsens for this rule.

To prevent such cases and to guide the simplification process towards a minimal #wires, we intro-

duce cost functions for local complementation and pivoting allowing us to calculate #wires after rule

applications. We take those as a heuristic for estimating how rule applications change the number of

2-qubit gates and implement decision strategies for diagram simpliciation based on the heuristics.

4.1 Pivoting and local complementation on spiders with arbitrary phases

α3

± π
2 α1

α2

(lc)
=

α1∓ π
2

α2∓ π
2α3∓ π

2

β ∓ π
2

∓ π
2

α1β

α2 α3

( f ,i2,i1)
=

β ∓ π
2

(11)

In contrast to the Clifford simplification algorithm from

Section 3, we can apply local complementation and pivot-

ing on spiders with arbitrary phases. Similar to the Pivot

Phase Gadget (p2) rule, we can change a spider with non-

Clifford phase by a combination of the rules ( f , i2, i1) as in

Eq. 11. With that we can apply local complementation on spiders with phase different from ±π/2 (this

introduces one XZ-spider) and pivoting on pairs of spiders where one/no spider has a phase of 0 or π

(this introduces one/two Y Z-spiders). Note that this does not change the gflow property (c.f. [2, Lemma

3.1]).

4.2 Local Complementation Heuristic (LCH)

The costs for local complementation are calculated on the following proposition:

Proposition 4.1 Let G = (V,E) be an open graph; u ∈V an arbitrary vertex with neighbors N (u)⊂V ;

n = |N (u)| the number of neighbors; and m the number of edges between the neighbors, i.e.,

m = |{(a,b) ∈ E|a,b ∈ N (u)}| .

For G⋆u, n remains the same, but m changes to m′ =△n−1−m, where△n−1 =
n(n−1)

2
.

Hence, the difference in the number of wires after application of the local complementation rule is:

(n+m)− (n+(△n−1−m)) = 2m−△n−1 (12)

With respect to the phase ϕ(u) of the spider u, the graph changes as follows:

• If ϕ (u) =±π/2: Remove u from the graph and eliminate all wires between u and N(u).

• If ϕ (u) is non-Clifford: All wires between u and N (u) remain and we get an additional wire for

the phase gadget.

• If ϕ (u) is 0 or π: No phase gadget is needed and we can use the π-copy rule.

The LCH is calculated as follows:

LCH (u) =











2m−△n−1 +n if ϕ (u) =±π
2

2m−△n−1 if ϕ (u) = k ·π,k ∈ Z

2m−△n−1−1 otherwise

(13)
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4.3 Pivoting Heuristic (PH)

We calculate the upper bound of new connections with the sets A,B,C (see Appendix B):

Cmax = |A| · |B|+ |A| · |C|+ |B| · |C| (14)

We denote the number of neighbors of u and v by nu = |N(u)| and nv = |N(v)|, respectively, and the

number of edges between neighbors of different sets as m.

The changes of the graph G to G∧uv have the following cases ( j,k ∈ Z):

(C1) ϕ (u) = j ·π,ϕ (v) = k ·π: If both spiders have a phase of 0 or π , all connections between {u,v}
and N (u)∪N (v) are eliminated.

(C2) ϕ (u) = j ·π,ϕ (v) 6= k ·π: If v becomes a phase gadget and u gets eliminated, all neighbors of u

get connected to v and we have an additional wire for the phase gadget.

(C3) ϕ (u) 6= j ·π,ϕ (v) = k ·π: If u becomes a phase gadget and v gets eliminated, all neighbors of v

get connected to u and we have an additional wire for the phase gadget.

(C4) ϕ (u) 6= j ·π,ϕ (v) 6= k ·π: If both spiders become phase gadgets, all neighbors of u get connected

to v and all neighbors of v get connected to u. Furthermore, u gets connected to v again and we

have two more wires for the phase gadgets.

With these conditions, the PH is calculated as follows:

PH (u,v) =



















2m−Cmax + nu + nv− 1 for (C1)

2m−Cmax + nv− 1 for (C2)

2m−Cmax + nu− 1 for (C3)

2m−Cmax− 2 for (C4)

(15)

4.4 Decision strategies

With the two heuristics (LCH,PH) at hand we can now implement different strategies to decide where

and when local complementation or pivoting are applied during the simplification. A single simplification

step in our procedure consists of the following actions:

1. Filter all possible rule applications of the current ZX-diagram.

2. Select rule according to selection strategy (see below).

3. Apply rule on the ZX-diagram.

For filtering rule applications we can specify a lower bound for the heuristic, e.g., LCH or PH = −5

says that we do not consider rule applications which increase #wires by more than five. We can also

specify whether rule applications are allowed on boundary spiders (c.f. Appendix A) and whether rules

are allowed on arbitrary phased spiders. For selecting a rule we implemented two different strategies:

• Random selection: Rules are chosen by a random coin flip.

• Greedy selection: Chooses the rule application which maximally decreases #wires.

Each algorithm terminates if we allow only rule applications with a LCH/PH > 0 and when there is

no rule left that decreases #wires. They also terminate if we allow negative gains (LCH/PH ≤ 0) and

restrict the matches to interior spiders that do not generate new spiders. This is the case in standard local

complementation on a spider with phase ±π/2 and pivoting on a pair of spiders with phase 0 or π . The
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algorithm eliminates at least one spider in every step and terminates when neither interior spiders with

phase ±π/2 nor pairs with phase 0 or π are left.

On the other hand, allowing rule applications on spiders of arbitrary phases which increase #wires

may result in loops and therefore no termination. For such cases we only allow rule applications which

increase #wires on spiders present since the very beginning of our simplification procedure. On newly

generated spiders only rules which decrease #wires are allowed.

5 New optimization rule: Neighbor Unfusion

As shown in Eq. 6, the application of local complementation (lc) and pivoting (p) on spiders with many

neighbors can not only decrease but also increase #wires. The heuristics shown in Section 4 may help to

identify and prevent extreme cases as in Eq. 10. However, spiders that are measured in Y Z- or XZ-plane

(c.f. Section 3.2) require special attention: When extracting a spider in Y Z-plane (e.g., the empty spider

of the phase gadget in Eq. 5 and 6), pivoting has to be applied to maintain the focused gflow property.

The same happens for spiders in XZ-plane, but they are resolved by local complementation [2]. This

affects #wires after the simplification and a simplified diagram containing some spiders in Y Z- and

XZ-plane may result in an expensive circuit.

However, when applying either rule on diagrams with arbitrary spiders as discussed in Section 4.1),

spiders in Y Z- or XZ-plane are generated. We introduce the neighbor unfusion (nu) rule, which allows

lc and p on such arbitrary-phase spiders without introducing spiders in Y Z- or XZ-plane.

α β

. . . . . .

. . .. . .

(nu)
= γ β

. . . . . .

. . .. . .
α− γ (16)

Neighbor unfusion combines the fusion ( f ) and iden-

tity rules (i1, i2) as shown in Eq. 16. If a spider with phase

α is connected to a neighbor, we change its phase to an

arbitrary phase γ by inserting an empty spider and a spider with phase α− γ between the spider and its

neighbor. It allows changing the phase of an arbitrary spider to γ =±π
2

and thus local complementation

and removal of spiders with arbitrary phases.

α3

± π
2

α2

(lc)
=

β ∓ π
2

α1β

α2 α3

(nu)
=

α1

α3∓ π
2 α2∓ π

2

β ∓ π
2

α1∓ π
2

(17)For illustration, we apply neighbor unfusion (nu)

to the example of Eq. 11. We can move the β spider to

any direction (in Eq. 17 towards α1), so it is then not

affected by the application of local complementation (lc). Comparing Eq. 11 and Eq. 17 we see that we

not only reduce #wires, but also prevent the generation of a spider in XZ-plane. However, the neighbor

unfusion rule sometimes leads to diagrams which do not have focused gflow property. This is due to

the insertion of the empty spider and the spider with phase α− γ in 16. We observed that this problem

does not occur if the spiders with phase α and β get extracted to the same qubit. Currently, we find

such pairs of spiders by using the flow hierarchy of the maximally delayed gflow of the diagram (c.f. [2]),

which is quite costly, because we need to recalculate the gflow at each simplification step. Therefore,

diagram simplification with neighbor unfusion has a much higher runtime than the other simplification

procedures. It is an open question whether neighbour unfusion can only destroy the focused gflow

property, or also more general flow properties like gflow or Pauli flow.

6 Evaluation

We evaluate our heuristic-based simplification algorithms on a set of circuits first used in [1]. They

implement various arithmetic problems as quantum circuits and were used as a benchmark set for com-

paring different optimization strategies [20, 22]. We use it to compare our heuristic-based approaches
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Table 2: Circuit metrics for original benchmark circuits, Post-optimization metrics of the standard Clif-

ford simplification [9], PyZX [20], Nam et al. [22], our heuristic-based simplification method, and the

combined approach of Nam et al. and our heuristic-based methods. Only our best optimization is pre-

sented: 1) Greedy, 2) Random, 3) Greedy with neighbor unfusion, 4) Random with neighbor unfusion,

the lower bound for the heuristics is denoted in brackets. If the best PyZX result is achieved by the t|ket〉-
library, the respective cell is marked with ⋆. The best results of each metric in each row are marked.

Circuit
Original Clifford algorithm PyZX/t|ket〉⋆ Nam et al. Heuristic algorithm Nam+Heuristic

Σ 2Q Σ 2Q Σ 2Q Σ 2Q Σ 2Q Alg. Σ 2Q Alg.

Mod 54 63 28 36 21 24⋆ 12⋆ 51 28 41 23 2(-20) 38 23 3(1)

VBE-Adder3 150 70 116 59 101 54 89 50 87 42 3(1) 87 42 4(1)

CSLA-MUX3 170 80 177 97 156 75 155 70 155 74 3(-5) 156 67 3(1)

CSUM-MUX3 420 168 455 271 327⋆ 158⋆ 266 140 303 150 3(1) 266 140 1(1)

QCLA-Com7 443 186 397 223 316 148 284 132 295 138 4(-5) 275 132 1(1)

QCLA-Mod7 884 382 903 475 717 324 - - 705 311 4(-20) - - -

QCLA-Adder10 521 233 562 305 435 199 399 183 417 193 4(-20) 398 182 4(1)

Adder8 900 409 779 429 675 339 606 291 597 295 4(1) 514 256 4(1)

RC-Adder6 200 93 206 113 393⋆ 164⋆ 140 71 159 71 1(1) 152 71 1(1)

Mod-Red21 278 105 260 130 217 93 180 77 196 85 3(1) 179 76 1(1)

Mod-Mult55 119 48 124 74 91 42 91 40 90 40 1(1) 90 41 1(1)

Toff-Barenco3 58 24 50 26 59⋆ 18⋆ 40 18 46 21 1(1) 40 18 3(-5)

Toff-NC3 45 18 41 20 40 16 35 14 36 15 3(1) 35 14 1(1)

Toff-Barenco4 114 48 117 60 95 44 72 34 88 40 4(1) 72 34 3(1)

Toff-NC4 75 30 86 43 65 26 55 22 57 24 3(1) 55 22 1(1)

Toff-Barenco5 170 72 149 86 140 66 104 50 122 57 4(1) 102 48 3(1)

Toff-NC5 105 42 92 42 90 36 75 30 78 33 3(1) 75 30 1(1)

Toff-Barenco10 450 192 392 196 365 176 264 130 325 151 4(1) 252 118 3(1)

Toff-NC10 255 102 237 100 215 86 175 70 183 78 3(1) 175 70 1(1)

GF(24)-Mult 225 99 245 140 193 99 187 99 195 101 2(1) 180 98 3(-5)

GF(25)-Mult 347 154 351 197 304 154 296 154 306 156 1(1) 289 155 4(-20)

GF(26)-Mult 495 221 545 308 422 221 403 221 418 217 4(-5) 390 218 3(-5)

GF(27)-Mult 669 300 736 417 573 300 555 300 572 299 4(-5) 535 292 4(-20)

GF(28)-Mult 883 405 1015 606 745 405 712 405 745 405 1(1) 691 399 1(1)

Avg. reduction ∼ 3% ∼−22% ∼ 14% ∼ 9% ∼ 27% ∼ 19% ∼ 23% ∼ 16% ∼ 29% ∼ 21%

with the Clifford simplification algorithm described in [9], and some of the best results reported for cir-

cuit optimizations with [20] and without using ZX-calculus [22]. We also investigate how ZX-calculus

based approaches perform when using the TODD-algorithm [14] for additional T gate reduction.

6.1 Implementation

With the exception of [20] – which omits simplifying the diagram (step 3) and extraction (step 4) – we

use the following pipeline for ZX-calculus based optimization algorithms:

1. Optimize circuit using gate cancellation and commutation.

2. Transform circuit to ZX-diagram and apply phase teleportation to reduce T-count (as in [20]).

3. Simplify ZX-diagram (standard Clifford or heuristic-based simplification).

4. Extract circuit from ZX-diagram.

5. Optimize circuit as in step 1.
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Since our heuristic-based algorithms do not reduce T gates, we always apply the phase teleportation in

step 2 since this reduces T gates as far as currently possible with ZX-calculus. This ensures comparable

results regarding the 2-qubit gate count against non-ZX-calculus based approaches that optimize all

types of gates. We implemented our algorithms in a clone of the PyZX library which also contains our

optimized circuits in the OpenQASM format1. All results were proven to be correct by checking whether

the optimized circuit together with the adjoint of the original circuit can be reduced to the identity.

6.2 Results

Table 3: Circuit metrics for the original bench-

mark circuits, Post-optimization metrics for

PyZX+TODD and of our heuristic-based algo-

rithms+TODD.

Circuit
Original PyZX+TODD Heuristic+TODD

Σ 2Q T Σ 2Q T Σ 2Q T Alg.

CSLA-MUX3 170 80 70 262 175 43 257 169 43 2(1)

CSUM-MUX3 420 168 196 575 428 74 411 261 74 4(-5)

QCLA-Com7 443 186 203 454 274 93 389 211 93 4(1)

QCLA-Adder10 521 233 238 800 517 143 677 391 143 4(-20)

Mod-Mult55 119 48 49 107 56 27 104 55 27 4(-5)

GF(24)-Mult 225 99 112 298 221 52 295 220 52 1(-5)

GF(25)-Mult 347 154 175 538 420 88 524 403 88 3(1)

GF(26)-Mult 495 221 252 943 764 134 933 750 134 3(1)

GF(27)-Mult 669 300 343 1253 1036 180 1223 993 180 4(1)

GF(28)-Mult 883 405 448 1791 1521 224 1780 1507 224 3(1)

For each circuit we compare the total gate count

Σ and the 2-qubit gate count 2Q. The results

are summarized in Table 2 and 3: Their columns

show circuit name, metrics of the original cir-

cuit of the benchmark, metrics of one (or more)

existing optimization algorithms and the metrics

of the best performing heuristic-based algorithm.

For the latter, we denote the simplification strat-

egy achieving the best result in the last column:

1. Greedy, 2. Random, 3. Greedy with neighbor

unfusion, 4. Random with neighbor unfusion.

As a very first result, the last column in the

“Heuristic Algorithm” section of Table 2 promi-

nently indicates the great value of neighbor unfu-

sion (Alg. 3 and 4), as it achieves the best performance of our heuristics in > 70% of the cases.

We now compare our heuristic-based simplifications following against other ZX-calculus based op-

timizations in Table 2. For most circuits our heuristic-based simplification clearly outperforms the stan-

dard Clifford simplification [9], both in total and 2-qubit gate reduction. Moreover, while our approaches

almost always decrease circuit metrics, the standard approach often yields circuits with higher metrics

than the original circuit (e.g.,“CSLA-MUX3”, “GF(26)-Mult”). Especially for 2-qubit gates our ap-

proaches decrease 2-qubit gate count by 16%, while the standard approach even increases the count

by 22%. In a direct comparison our approaches have up to 33% (“Toff-NC4”) fewer total and 47%

(“Mod-Mult55”) fewer 2-qubit gates than the standard Clifford approach.

Second, we compare against the best available PyZX implementation [20] and the recommended op-

timization pipeline of the t|ket〉-library [27] with the routines PauliSimp and FullPeepholeOptimize,

which use similar strategies. The column “PyZX/t|ket〉” in Table 2 shows the best optimization results

for both implementations and ⋆ indicates results from t|ket〉. Except for two circuits (“Mod 54” and

“Toff-Barenco3”), our algorithms outperform all ZX-calculus based algorithms in terms of total gate

count and 2-qubit gate count.

Third, Table 2 also shows our result in comparison to the cutting-edge non-ZX-calculus based algo-

rithm from Nam et al. [22]. It can be seen that the algorithm from [22] outperforms any ZX-calculus

based algorithm for most circuits. Still, we were able to achieve better results for the circuits “VBE-

Adder3” and “Mod-Mult55”. Note that we did not compare for the “QCLA-Mod7” circuit, because [15]

reports that the optimized circuit from [22] does not correspond to the original.

Last, the rightmost columns of Table 2 show a combination of Nam et al’s approach with ours. We

1https://github.com/mnm-team/pyzx-heuristics

https://github.com/mnm-team/pyzx-heuristics
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use the output circuits from the Nam et al. optimization as input for our algorithms and observe that we

achieve equally good or better results for almost all circuits. The larger the circuit, the more significantly

this combination improves the previous best known results. Most notably, we improve the total count of

the “Adder8” circuit by more than 15% and the 2-qubit gate count by more than 12%.

Apart from the 2-qubit gate count, the T gate count of a quantum circuit is an important metric,

since T-gates are more complex to implement for an error-corrected quantum computer. Therefore, we

compare our algorithms to the other ZX-calculus based approaches using the TODD algorithm as opti-

mization step 1). It is designed to reduce T gate count by introducing ancilla qubits, but sometimes also

reduces T-gates in the ancilla-free case. Table 3 shows those benchmarks circuits where the combination

of TODD and a ZX-calculus based algorithm reduces T gate count even more compared to the best result

in Table 2. We compare the best combination of our heuristic-based algorithm and TODD against the

best combination of an existing ZX-calculus based algorithm and TODD.

While we observe a general increase in 2-qubit and total gates using TODD algorithm, our best

algorithm yields better results than the existing ZX-calculus based algorithms in every case.

7 Conclusions and Future Work

In this work we introduce two functions, namely the Local Complementation Heuristic LCH (for the

local complementation rule) and the Pivot Heuristic PH (for the pivot rule). The functions calculate the

number of Hadamard wires that would be added or removed by applying the respective rule, thus serving

as a heuristic for estimating the 2-qubit gate count of the underlying circuit. This allows us to develop

a more sophisticated strategy for ZX-diagram simplification: First, dismiss the applicable rules that cost

too much and then either select a rule randomly or select the rule with the best wire count decrease.

Notably, the T gate count remains unchanged throughout this process, which is why our approach

and others that mainly decrease the T gate count complement each other well. Further, we introduce

the new Neighbor Unfusion rule which combines the established fusion and identity rules. This rule

allows introducing spiders with arbitrary phases into the circuit if needed, for example when the local

complementation or pivot rule would be useful to reduce Hadamard wires. As a side note, we also

formally describe how to use the local complementation and the pivoting rule on spiders with non-

Clifford phases, which is a common implementation practice but has never been mentioned in theory.

We measure the impact of aligning the optimization strategy with the heuristics and adding the neigh-

bor unfusion rule by comparing our algorithm to four other approaches, some based on ZX-calculus and

some not, on a set of 24 well-established benchmark circuits. Our approaches show significant improve-

ments compared to all other ZX-based approaches, especially in 2-qubit gate reduction. On their own,

non-ZX-based approaches still yield slightly better results than our ZX-based approaches. However,

when combining both we are able optimize circuits better than the previously best known result, which

seems to be a promising field for further research.

Using heuristics for ZX-diagram simplification also provides many possibilities for future improve-

ment. Regarding the selection of rules, both random and greedy strategy are non-optimal for finding a

ZX-diagram with minimal number of wires. Instead, we propose using a metaheuristic selection strategy

like simulated annealing for escaping local minima during simplification. Furthermore, since simplifica-

tion with neighbor unfusion tends to yield the best results, we think it is important to further investigate

in which cases neighbor unfusion generates XY spiders and if we can preserve valid ZX-diagrams when

allowing unfusion on spiders which get extracted on different qubits.
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A Further rules

In addition to the rules in Section 3, additional rules have been developed to eliminate every interior

Clifford spider.

A.1 Pivoting Boundary Spiders (p1)

The pivoting rule can also be applied if one of the spiders is a boundary spider, i.e., connected to an input

or output, using the following transformation:

jπ kπ =
(i1, i2)

jπ kπ

. . . . . . . . . . . .

u v u v

. . . . . .

=
(p)

(18)

Here v gets transformed to an interior spider and both u and v can be removed using the pivoting rule.

A.2 Gadget Fusion (gf):

α

β

α1

αn

α +β...

α1

αn

...
(g f )
= (19)

An important feature of phase gadgets is that we can fuse two

phase gadgets connected to the same neighbors by summing

up their phases.

This rule is used for eliminating non-Clifford spiders in

a diagram, for instance, two phase gadgets with phase π/4 connected to the same set of neighbours can

be fused into a single phase gadget with phase π/2. Combining the Clifford simplification algorithm

with those extended rules we can eliminate all interior Clifford spiders (in exchange for phase gadgets)

and some interior non-Clifford spiders.
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B Graph Theory

Since ZX-calculus and its optimization strategies rely on graph operations on undirected graphs, we

provide some background on it: An undirected graph is a tuple G = (V,E) with vertices (or “nodes”) V

and edges E ⊆V ×V .

B.1 Local Complementation

The local complementation ⋆ [5] of an undirected graph G = (V,E) about a vertex u is defined as follows

(∆ is the symmetric set difference: A ∆ B := (A∪B)\(A∩B)):

G⋆u := (V,E ∆ {(a,b) |(a,u) ,(b,u) ∈ E,a 6= b}) (20)

The following example shows a graph G and its local complementation about a. Intuitively, local

complementation connects two neighbours of a if they are not connected (e.g., b,c) and disconnects

them otherwise (e.g., c,d).

G = (G⋆a) =

a b

c d

a b

c d (21)

B.2 Pivoting [11]

Pivoting ∧ rewrites an edge (u,v) ∈ E by triple local complementation:

G∧uv := ((G⋆u)⋆ v)⋆u (22)

To derive the new graph, we consider three disjoint sets (where the neighborhood of vertex x is defined

as N(x) = {y ∈V |(x,y) ∈ E}):
• A := N(u)∩N(v): Vertices connected to u and v.

• B := N(u)\N(v): Vertices connected to u and not to v.

• C := N(v)\N(u): Vertices connected to v and not to u.

In a pivoted graph G∧ uv, two vertices from different sets A,B or C are connected if, and only if, the

two are not connected in G. Connections between vertices of the same set are not modified. As an

example, consider the following graphs G (left) and G∧uv (right), where A = {b},B = {a,d},C = {c,e}.
Intuitively, pivoting connects all vertices between A,B,C that are not connected in G (e.g., a,b) and

disconnects them otherwise (e.g., b,d):

a

d

u v

c

e

b
G∧uv−−−→

a

d

v u

c

e

b

(23)
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C Example for ZX optimization

The following circuit can be optimized as follows:

• Z • Z

• X

X

=

•
X • (24)

We use the following rules2 (the affected spiders/wires to which a rule is applied are framed):

1) Eliminate the two Z-gates using

spider fusion (f):

π

π π

π

(f)−→ π

π

2) Reduce from 3 to 2 CNOTs with

fusion (f) and bialgebra rule (b):

(f )−→ π

π

(f)−→ π

π

(b)−→ π

π

3) Eliminate one X by the π copy rule:
(π)−−→ π

π
π

(f)−→ π

2The example is inspired by a talk of Russ Duncan “Quantum Formal Methods” from 2021 (1h 35min) which is publicly

available.
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Phase gadgets have proved to be an indispensable tool for reasoning about ZX-diagrams, being used
in optimisation and simulation of quantum circuits and the theory of measurement-based quantum
computation. In this paper we study phase gadgets for qutrits. We present the flexsymmetric variant
of the original qutrit ZX-calculus, which allows for rewriting that is closer in spirit to the original
(qubit) ZX-calculus. In this calculus phase gadgets look as you would expect, but there are non-trivial
differences in their properties. We devise new qutrit-specific tricks to extend the graphical Fourier
theory of qubits, resulting in a translation between the ‘additive’ phase gadgets and a ‘multiplicative’
counterpart we dub phase multipliers.

This enables us to generalise the qubit notion of multiple-control to qutrits in two ways. The first
type is controlling on a single tritstring, while the second type applies the gate a number of times equal
to the tritwise multiplication modulo 3 of the control qutrits. We show how both types of control can
be implemented for any qutrit Z or X phase gate, ancilla-free, and using only Clifford and phase gates.
The first requires a polynomial number of gates and exponentially small phases, while the second
requires an exponential number of gates, but constant sized phases. This is interesting, because such a
construction is not possible in the qubit setting.

As an application of these results we find a construction for emulating arbitrary qubit diagonal
unitaries, and specifically find an ancilla-free emulation for the qubit CCZ gate that only requires three
single-qutrit non-Clifford gates — provably lower than the four T gates needed for qubits with ancilla.

1 Introduction

Most quantum computing theory developed thus far has focussed on qubits — two-level quantum systems.
However, there has been a recent surge of interest in studying the more general case of d-level quantum
systems, called qudits. This has led to applications of qudits for quantum algorithms [52], improving
magic state distillation noise thresholds [12], and communication noise resilience [20]. Qudits have
been experimentally demonstrated on quantum processors based on ion traps [46] and superconducting
devices [8, 55, 57, 34].

The specific case of qutrits, where d = 3, has been used to improve qubit readout [40], but most
notably, qutrits have been used to study emulation: where qubit computation is emulated inside a subspace
of the qudits to enable more resource-efficient gate implementations. In contrast, it has been argued that
qubits cannot simulate qudit (where d > 2 and d is not a power of 2) computation efficiently [11].

Much work on qutrits and emulation has focussed on classical functions: those that come from a
map of classical trits. For instance, using qutrits we can build logarithmic-depth Toffolis [27, 41] and
binary AND gates on superconducting qutrits [16]. This leaves open the question of whether there are any
advantages to emulation by studying ‘truly’ quantum gates such as diagonal unitaries. For qubits a useful
tool for understanding diagonal unitaries has been the concept of a phase gadget [38]. This is a type of
symmetric multi-qubit interaction that occurs naturally in many hardware architectures [43, 42, 47], and
serves as a good basis for optimising quantum circuits [18, 19, 7, 6, 54, 5]. Any diagonal qubit unitary
can be expressed as a product of phase gadgets by writing the unitary as a phase polynomial [1, 31].

http://dx.doi.org/10.4204/EPTCS.394.4
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In this paper we study the generalisation of phase gadgets to the qutrit setting. We do this by adapting
the qutrit ZX-calculus of Refs. [28, 50] and transforming it into a flexsymmetric calculus [15] where the
spiders have more desirable symmetry properties. We find this calculus has a simple set of rules for the
Clifford fragment. We define phase gadgets analogously to the qubit case, meaning that as diagrams they
look nearly identical. There are however significant differences between the qubit and qutrit gadgets.
We will show that we can nevertheless use qutrit phase gadgets to construct some useful qutrit diagonal
unitaries, such as controlled phase gates, and a type of gate we dub a phase multiplier. This last one
is possible by generalising the formula that leads to the graphical Fourier theory for qubit diagonal
unitaries [39].

As an application of our results we show how we can emulate an arbitrary qubit diagonal unitary
using qutrit phase gadgets. This leads us to a construction of the emulated qubit CCZ gate that requires
only three non-Clifford qutrit R gates [26]. This is surprising because using just qubits, we would require
at least four T gates to implement the CCZ [35].

We start the paper by reviewing the basics of qutrit quantum computation in Section 2. Then we
introduce the flexsymmetric qutrit ZX-calculus in Section 3. Diagonal qutrit unitaries, phase gadgets,
controlled phase gates, and phase multipliers are studied in Section 4. We show how to use these to
emulate diagonal qubit unitaries in Section 5 and end with some discussion on future work in Section 6.

2 Qutrit quantum computation

A qubit is a two-dimensional Hilbert space. Similarly, a qutrit is a three-dimensional Hilbert space. We
will write |0〉, |1〉, and |2〉 for the standard computational basis states of a qutrit. Any normalised qutrit
state can then be written as |ψ〉= α |0〉+β |1〉+ γ |2〉 where α,β ,γ ∈ C and |α|2 + |β |2 + |γ|2 = 1.

Several concepts for qubits extend to qutrits, or more generally to qudits, which are d-dimensional
quantum systems. In particular, the concept of Pauli’s and Cliffords. For a d-dimensional qudit, we define
the respective Pauli X and Z gates as

X |k〉= |k+1〉 Z |k〉= ω
k |k〉 (1)

where ω := e2πi/d is such that ωd = 1, and the addition |k+1〉 is taken modulo d [30, 36]. Note that for
qubits this X gate is just the NOT gate, while Z = diag(1,−1). We call unitaries generated by products
and tensor products of the X and Z gate Pauli gates. In this paper we will work solely with qutrits, so we
take ω to always be equal to e2πi/3. Note that ω−1 = ω2 = ω̄ where z̄ denotes the complex conjugate of z.

For a qubit there is only one non-trivial permutation of the standard basis states, implemented by the
X gate. For qutrits there are five non-trivial permutations of the basis states. By analogy we will call them
all ternary X gates. These gates are X+1, X−1, X01, X12, and X02. The gate X±1 sends |t〉 to |(t±1) mod 3〉
for t ∈ {0,1,2}; X01 is just the qubit X gate which is the identity when the input is |2〉; X12 sends |1〉 to |2〉
and |2〉 to |1〉, and likewise for X02. Note that the qutrit Pauli X gate is the X+1 gate, while X† = X−1 = X2.

Another concept that translates to qutrits (or more generally qudits) is that of Clifford unitaries.
Definition 2.1. Let U be a qudit unitary acting on n qudits. We say it is Clifford when every Pauli is
mapped to another Pauli under conjugation by U . I.e. if UPU† is a Pauli for any Pauli P.

The set of n-qudit Cliffords forms a group under composition. For qubits, this group is generated
by the S, Hadamard and CX gates. The same is true for qutrits, for the right generalisation of these
gates1 [30].

1The gate definitions for various qudit Cliffords may vary across the literature up to a global phase. Indeed, by Definition 2.1,
whether a gate is Clifford is invariant under changes in global phase.
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Definition 2.2. The qutrit S gate is S := diag(1,1,ω). I.e. it multiplies the |2〉 state by the phase ω .

For qubits, the Hadamard gate interchanges the Z eigenbasis {|0〉 , |1〉 and the X eigenbasis consisting
of the states |±〉 := 1√

2
(|0〉± |1〉). The same holds for the qutrit Hadamard. In this case the X basis

consists of the following states:

|+〉 :=
1√
3
(|0〉+ |1〉+ |2〉) |ω〉 :=

1√
3
(|0〉+ω |1〉+ ω̄ |2〉) |ω̄〉 :=

1√
3
(|0〉+ ω̄ |1〉+ω |2〉)

Definition 2.3. The qutrit Hadamard gate H is the unitary mapping |0〉 7→ |+〉, |1〉 7→ |ω〉 and |2〉 7→ |ω̄〉.

H :=
1√
3

1 1 1
1 ω ω̄

1 ω̄ ω

 (2)

Note that, unlike the qubit Hadamard, the qutrit Hadamard is not self-inverse. Instead we have
H2 = X12 so that H4 = I. This means that H† = H3.

The final Clifford gate we need is the qutrit CX.

Definition 2.4. The qutrit CX is defined such that CX |i, j〉= |i,(i+ j) mod 3〉, where i, j ∈ {0,1,2}.

Any qutrit Clifford unitary can be written as a composition of S, H and CX gates (up to global
phase). Clifford gates are efficiently classically simulable, so we need to add a non-Clifford gate to get an
(approximately) universal gate set for quantum computing [30]. Here we consider when this is a phase
gate.

Definition 2.5. We write Z(a,b) for the phase gate that acts as Z(a,b) |0〉= |0〉, Z(a,b) |1〉= ωa |1〉 and
Z(a,b) |2〉= ωb |2〉 where we take a,b ∈ R.

We define Z(a,b) in this way, taking a and b to correspond to powers of ω , because then Z(a,b) is
Clifford iff a and b are both integers, so that we can easily see from the parameters whether the gate is
Clifford or not. The group of Z(a,b) phase gates constitutes the group of diagonal single-qutrit unitaries
modded out by a global phase. Composition of these gates is given by Z(a,b) ·Z(c,d) = Z(a+ c,b+d).
Note that S = Z(0,1). This brings us to the definition of the qutrit T gate.

Definition 2.6. The qutrit T gate is defined as T := Z(1
3 ,−

1
3) = diag(1,ω

1
3 ,ω−

1
3 ) [44, 13, 36].

Like the qubit T gate, the qutrit T gate belongs to the third level of the Clifford hierarchy, can be
injected into a circuit using magic states, and its magic states can be distilled by magic state distillation.
This means that we can fault-tolerantly implement this qutrit T gate on many types of quantum error
correcting codes. Also as for qubits, the qutrit Clifford+T gate set is approximately universal, meaning
that we can approximate any qutrit unitary using just Clifford gates and the T gate [23, Theorem 1].

There is another useful single-qutrit non-Clifford gate.

Definition 2.7. The qutrit reflection gate is defined as R := Z(0,3/2) = diag(1,1,−1).

Like the T gate, the R gate can be added to the Clifford gate set to attain universality [30], as explicitly
proved in Ref. [23, Theorem 2]. It can be exactly synthesized fault-tolerantly in three known ways: magic
state distillation followed by repeat-until-success injection [2], braiding and topological measurement of
weakly-integral non-Abelian anyons [22, 23] followed by repeat-until-success injection [2], or unitarily in
qutrit Clifford+T [26].
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2.1 Controlled unitaries

When we have an n-qubit unitary U , we can speak of the controlled gate that implements U . This is the
(n+1)-qubit gate that acts as the identity when the first qubit is in the |0〉 state, and implements U on the
last n qubits if the first qubit is in the |1〉 state. For qutrits there are multiple notions of control.
Definition 2.8. Let U be a qutrit unitary. Then the |2〉-controlled U is the unitary that acts as

|0〉⊗ |ψ〉 7→ |0〉⊗ |ψ〉 |1〉⊗ |ψ〉 7→ |1〉⊗ |ψ〉 |2〉⊗ |ψ〉 7→ |2〉⊗U |ψ〉

I.e. it implements U on the last qutrits if and only if the first qutrit is in the |2〉 state.
Note that by conjugating the first qutrit with X+1 or X−1 gates we can make the gate also be controlled

on the |1〉 or |0〉 state. A different notion of qutrit control was introduced in Ref. [10] where if the control
is in the |x〉 state, then it should apply Ux on the target, i.e. apply U once iff x = 1 and U2 iff x = 2. An
example of this is the Clifford CX gate defined earlier, which applies X+1 when the control is |1〉 and X+2
when it is |2〉. Note that we can get this latter notion of control from the former: just apply a |1〉-controlled
U , followed by a |2〉-controlled U2.

A number of Clifford+T constructions for controlled qutrit unitaries are already known. For instance,
all the |2〉-controlled permutation X gates can be built from the constructions given in Ref. [9]. In our
previous work, we provided ancilla-free explicit constructions for any multiple-controlled Clifford+T
unitary in the Clifford+T gate set, with gate count polynomial in the number of controls [56]. In this
work, by using the qutrit ZX-calculus, we will build upon our previous results and show how to construct
multiple-controlled phase gates for an arbitrary phase.

3 The qutrit ZX-calculus

We will assume the reader has some familiarity with the original qubit ZX-calculus [17]. For a review see
Ref. [53].

A qutrit ZX-calculus was presented and used in Refs. [45, 51, 28, 50, 48]. While quite similar to the
qubit one, it loses some of the properties that make the original easy to work with. In particular, for each
X-spider, the distinction between its input wires and output wires becomes important. This means we can
no longer treat qutrit ZX-diagrams as undirected graphs with the spiders as vertices. This makes intuitive
reasoning about these diagrams harder, and also complicates the implementation of software for dealing
with these diagrams.

Here we will present a variation on the qutrit ZX-calculus of Refs. [28, 50] where the spiders do enjoy
this additional symmetry between inputs and outputs. The way we do this is by redefining the X-spider.
In the original qutrit ZX-calculus we have

... ... ∝ ∑
~x,~y

x1+···+xn=y1+···+ym

|~y〉〈~x| . (3)

Here the sum x1 + · · ·+ xn = y1 + · · ·+ ym is taken modulo 3. If we put a cup on one of the wires to turn
an output into an input, then this has the effect of introducing a minus sign on that variable, changing for
instance x1 + x2 = y1 + y2 into x1 + x2− y2 = y1. For qubits this is not a problem since −x = x modulo 2,
but for qutrits this changes the map. We fix this by defining a new X-spider as

... ... ∝ ∑
~x,~y

x1+···+xn+y1+···+ym=0

|~y〉〈~x| . (4)
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We see that in this definition the inputs and outputs are treated on equal footing. In order to prevent
confusion with earlier work, we will denote this new X-spider in pink, instead of in red2.

Let’s now give the full definition of the spiders. We define the Z-spider as

α

β... ... = |0 · · ·0〉〈0 · · ·0| + ω
α |1 · · ·1〉〈1 · · ·1| + ω

β |2 · · ·2〉〈2 · · ·2| .

Here we have two phase angles α and β , as opposed to just the one angle in qubit ZX. In general, for
a d-dimensional spider, you will need to specify d−1 phases. In particular, when written in a spider α

β

should be interpreted as two different phases and not as the fraction α/β . Note that we define the phase
angles as ωα and ωβ so that these correspond to the complex phases e

2πi
3 α and e

2πi
3 β . This means that

when α and β are integers, that the spiders correspond to the Clifford fragment of the calculus. We define
the X-spider similarly, but with respect to the X-basis:

α

β... ... = |+ · · ·+〉〈+ · · ·+| + ω
α |ω̄ · · · ω̄〉〈ω · · ·ω| + ω

β |ω · · ·ω〉〈ω̄ · · · ω̄|

This requires some explanation, because this does not look symmetric in the inputs and outputs. However,
note that 〈ω|= (|ω〉)† = (|0〉+ω |1〉+ω |2〉)† = 〈0|+ ω̄ 〈1|+ω 〈2|. Hence, if we take the transpose of
|ω〉 we actually get 〈ω̄|. It is straightforward to check that with α = β = 0 we get back Eq. (4). These
definitions of the Z-spider and X-spider satisfy the symmetry properties we want, namely:

α

β = α

β

...
...

...... ...

= = ...
α

β

... =α

β

... ......

...
α

β

...
α

β = α

β

...
...

...... ...

= = ...
α

β

... =α

β

... ......

...
α

β

...

These symmetries mean our spiders are flexsymmetric, as defined by Carette [15], and as a result we may
treat our ZX-diagrams as undirected graphs with the spiders as vertices. Note that here the cups and caps
are defined with respect to the Z basis: ⊂ = |00〉+ |11〉+ |22〉. As usual, our calculus also formally has
generators for the identity wire and the swap.

It will be useful to introduce an additional graphical generator for the Hadamard:

J K = |+〉〈0|+ |ω〉〈1|+ |ω̄〉〈2|= |0〉〈+|+ |1〉〈ω̄|+ |2〉〈ω| . (5)

We write the Hadamard as a slanted box, because it is self-transpose, but not self-adjoint, and so should
be denoted in a way that is symmetric under a rotation, but not a reflection.

Our redefinition of the X-spider comes at a ‘cost’. Namely, the 1-input, 1-output X-spider is no longer
the identity: = |0〉〈0|+ |2〉〈1|+ |1〉〈2| = |+〉〈+|+ |ω̄〉〈ω|+ |ω〉〈ω̄|. This map is implementing
|x〉 7→ |−x〉 where −x is taken modulo 3, and is equal to X12. Additionally, the X-spider is not really a
spider any more in the sense that it doesn’t satisfy the standard spider-fusion equation. Instead it satisfies
the ‘harvestman equation’ [15] that also holds for for instance the W-spider [32] and H-box [4]:

· · · = α+η

β+θ

η

θ

...

...

α

β

...

...

...
...

In Figure 1, we present a full set of rewrite rules for this qutrit ZX-calculus. We have accounted for
the global phase for each rule here as a complex number, as those will be relevant to us. Note however
that the rewrite rules are not scalar-accurate as we are ignoring factors of

√
3.

2We have checked the accessibility of this color scheme; in fact, a red-green colorblind person greatly preferred this pink to
the default ZX red.
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· · · = α+η

β+θ

η

θ

...

...

α

β

...

...

...
... (SZ) ... = ......α

β

α

β ... (H) ... = ......α

β
β

α ... (H ′)

= (B1) = (B2) = (SP)

=
1
2

1
21

2 (P1) 1
2

α

β
1
2

-α

β-α= ωα (P2) = 2
2

2
2

2
2i (EU)

Figure 1: Rules for the flexsymmetric qutrit ZX-calculus. These hold for all α,β ,η ,θ ∈ R, and for any
permutation of the input and output wires. Additional useful derived rules are presented in Figure 2.
The letters stand respectively for (S)pider-Z, (H)adamard, (B)ialgebra, (SP)ecial, (P)auli, and (EU)ler
decomposition.

= (ID) = (H2) = (H4)

=α

β

α

β =

β

α

β

α

(IN)

1
2

α

β
2
1

β-α

-α
= ωα

2
1

α

β
1
2

-β

α-β
= ωβ

2
1

α

β
2
1

α-β

-β
= ωβ

(P2′)

=
x
2x

x
2xx

2x

=
2x
x

2x
xx

2x

(P1′)

· · · = α+η

β+θ

η

θ

...

...

α

β

...

...

...
... (SX)

= 2
2

2
2

2
2i

= 1
1

1
1

1
1-i

= 1
1

1
1

1
1-i

(EU ′)

Figure 2: These rules are derivable from the rules of Figure 1 for any α,β ,η ,θ ∈ R and x ∈ {0,1,2}.
The new letters stand respectively for (ID)entity, (IN)vert and (S)pider-X.

Using these rules, other useful qutrit ZX-calculus rewrite rules may be derived. In particular, we can
use these rules to prove the derived rules presented in Figure 2. As these rules are (a slight variation)
on the non-flexsymmetric qutrit rules of Ref. [50], our calculus is also complete for the qutrit Clifford
fragment (when ignoring non-zero scalars). The proofs of the derived rules of Figure 2 are given in
Appendix A.2. We show in Appendix A.1 that most rules of Figure 1 are necessary (i.e. not derivable
from the others).

We see in these rules that there is a special role for phases of the form x
2x where x ∈ {0,1,2}. This is

because x
2x ∝ |x〉 and x

2x = Zx. These relations can be derived by using the identity 1+ω + ω̄ = 0
together with ω2 = ω−1 = ω̄ . In general we will see a lot of α

2α phases because they implement the
|x〉 7→ωαx |x〉 phase gate. Additionally, note that the (P2) rule on the qubit subspace is exactly the familiar
qubit ZX rule π α π-α= eiα , since the red π is the qubit Pauli X while the pink 1

2 phase is the
qutrit Pauli X .
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4 Diagonal qutrit gates

4.1 Phase gadgets

For qubits the concept of a phase gadget has proven very useful. There’s several different ways we can
define a qubit phase gadget. One way is to consider it as the diagonal gate |x,y〉 7→ eiα(x⊕y) |x,y〉 (for
simplicity we are only considering a two-qubit phase gadget). This applies a phase of eiα when x⊕ y = 1.
Here ⊕ is the XOR operation, which is the addition on Z2. This suggests that we should define the qutrit
phase gadget as |x,y〉 7→ eiα(x+y) |x,y〉 where now we take x+ y to be modulo 3.

We could also define a phase gadget by its circuit realisation or diagrammatic representation. For
qubits [38]:

α

∝ α

We claim the qutrit variant of this construction is given by the following circuit which can be simplified to
a similar diagrammatic representation:

α

2α

=
2α

α

=

2α

α

∝

2α

α

= α

2α (6)

Indeed, inputting |x,y〉 into this diagram allows us to calculate its action:

∝
y

2y

x
2x

α

2α
y

2y

x
2x

α

2α

x
2x
y

2y

=
y

2y

x
2x

α

2α

x
2x
y

2y

=
y
2y

x
2x

α

2α

x+y
2(x+y) (7)

This ‘floating scalar’ expression evaluates to
√

3ωα(x+y mod 3), so that this diagram indeed implements the
operation we want, and we see that these three ways to define a qubit phase gadget—via the action, via
the circuit, or via the diagrammatic representation—are also equal for qutrits.

We can easily generalise this construction to an arbitrary number of qutrits:

α

2α

=

α

2α

:: |x,y,z,w〉 7→ ω
α(x+y+z+w mod 3) |x,y,z,w〉 (8)

We can also define more general phase gadgets where the phases don’t have to be related to each
other, i.e. we can replace Z(α,2α) with Z(α,β ). In this case we would still be calculating the value
x+ y+ z+w modulo 3, but then we apply a different phase depending on the value of this sum: if it is 0
we don’t apply any phase; if it is 1 we apply ωα ; and if it is 2 we apply ωβ .

A particularly relevant choice of phases here is when α = β . In this case, we apply the phase iff the
sum value is not 0. For a trit x it turns out that x2 = 0 if x = 0 and x2 = 1 otherwise — this is actually a
consequence of Fermat’s little theorem and generalises to xp−1 = 1 modulo p when x 6= 0 for p prime.
Hence:

α

α :: |x〉 7→ ω
α(x2 mod 3) |x〉 . (9)

There is a complication with the phase gadget circuit representation that doesn’t arise in the qubit
setting, which is that the CNOT gate is self-inverse while the CX qutrit gate is not. In Eq. (6) we needed
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to pair a CX with a CX† to make the construction work. If we instead have a pair of CX gates, we get
something a bit more complicated:

α

2α

= α

2α

α

2α

=
(6)

α

2α= (10)

Remark 4.1. Another way to view qubit phase gadgets is as an exponentiated Pauli eiαZ⊗Z [18, 19].
This however does not generalise to qutrits, as the qutrit Pauli Z is not self-adjoint, and hence cannot be
exponentiated to give a unitary. In fact, a qutrit phase gadget cannot be represented as the exponential of a
‘pure tensor’ like eiαA⊗B. This does suggest that there could be another suitable generalisation of a phase
gadget that is the exponential of a tensor of Gell-Mann matrices, a qutrit basis of self-adjoint matrices.

4.2 Controlled phase gates

The other type of useful diagonal gate for qubits is the controlled phase gate. Such a gate applies a Z(α)
gate on a qubit controlled on the value of a control. There are multiple ways in which we can generalise
these to the qutrit setting. The type of control we will consider first is the |2〉-control of Definition 2.8. To
see how we can build a |2〉-controlled Z phase gate, we will take inspiration from the qubit construction.
Recall that there we have:

Z(α)
=

α/2

α/2
−α/2 (11)

We can ‘port’ the right-hand side to the qutrit setting, by taking each of the phases to be a Z(α,β ).
However, we then run into some problems. It is easy to check that when the top qutrit (the control) is |0〉
that the diagram indeed acts as the identity on the bottom qutrit (the target). However, it implements a
different phase gate on the target depending on whether the control is in |1〉 or |2〉:

α

β

α

β

−α

−β  


Z(0,0) if control is |0〉
Z(2α−β ,α +β ) if control is |1〉
Z(α +β ,2β −α) if control is |2〉

(12)

Seeing as we want to construct the |2〉-controlled gate that should act as the identity when the control is
|1〉 this is a problem. We solve this issue by ‘doubling up’ the construction, with the second construction
being conjugated by X12 on the control in order to interchange the role of |1〉 and |2〉:

γ

δ

γ

δ

−γ

−δ

α+δ

β+γ

α+γ

β+δ

−α

−β

−γ

−δ
=

α

β

α

β

−α

−β =
−α

−β

α+δ

β+γ

−γ

−δ

α+γ

β+δ

(13)

By referring to Eq. (12) we see then that in order for Eq. (13) to be equal to the |2〉-controlled Z(θ ,φ)
gate it needs to satisfy a set of linear equations. We can solve these to get a (unique up to some Clifford
phases) solution:

α =
θ −φ

3
β =

θ

3
γ =

φ

3
δ =

φ −θ

3
(14)
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We can hence write any |2〉-controlled phase gate using at most four CX gates and four phase gates. For
example, if we pick θ = 1 and φ = 2 (so that we are constructing the controlled Z gate) we get:

0
1

1/3
2/3

1/3
−1/3

−2/3
−1/3

0
1

1/3
2/3

=
1/3
−1/3

0
1

0
1

1/3
−1/3

1/3
−1/3

−1
0

1/3
−1/3

−2/3
−1/3

Z

2
= =

(15)
Here we write this blue dot with a 2 in it to denote a |2〉-control. We see then that our construction

in the special case of |2〉-controlled Paulis indeed achieves the lowest known T -count of 3 [9]. By
conjugating the control wire by either X+1 or X−1 we can make the gate instead be controlled on either |1〉
or |0〉.

We can add any number of controls to our construction in Eq. (13) to make it controlled on any
tritstring. Without loss of generality, let us say the tritstring in question is |2〉⊗n (by conjugating with
X gates, we can make this into a control on any tritstring of length n). The naı̈ve way to construct this
controlled gate is to inductively add controls to each gate in the decomposition: controlled constructions
for the X or CX gate are described in, for instance, Ref. [56], while controlled Z phase gates can be
constructed by recursively applying Eq. (13). However, this method is not efficient as it requires an
exponential number of gates as the number of controls increases.

We can do better by not adding controls to all the gates in the decomposition:

=
−α

−β

α+δ

β+γ

−γ

−δ

α+γ

β+δZ(θ ,φ)

2

2

2
...

2

2
...

2

2
...

2

2
...

2

2
...

2

2
...

(16)

In the case where all the controlled gates fire, this indeed implements any desired Z phase gate on the
target qutrit. Otherwise, none of the controlled gates fire, and then the bottom two qutrits becomes identity
(use (H2) and (H4) on the top qutrit and (SZ) and (ID) on the bottom qutrit). We hence get the following
proposition.

Proposition 4.2. Any tritstring-controlled qutrit Z or X phase gate can be constructed without ancillae
and with a polynomial number of Clifford and phase gates.

Proof. The X phase gates can be constructed from the Z phase gates by conjugating by Hadamards, so we
only need to describe how to construct tritstring-controlled Z phase gates. Suppose we wish to construct
a phase gate with n controls. By our prior work in Ref. [56], each |2〉⊗(n−1)-controlled CX gate can be
built ancilla-free using O(n2.585) qutrit Clifford+T gates. It then remains to show how to construct the
|2〉⊗(n−1)-controlled Z phase gate in Eq. (16). We do this recursively. To construct the gate with k controls,
we need four controlled CX gates with k−1 controls and a k−1 controlled Z phase gate, which then
needs four controlled CX gates with k−2 controls, and so on. The total asymptotic gate count is then
4O(n2.585)+4O((n−1)2.585)+ ... which gives us a gate count of O(n3.585).

Note that in this construction, the size of the phases involved becomes exponentially smaller in the
number of controls. We will next see that there is a notion of control which circumvents this issue.
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4.3 Phase multipliers

The |2〉-controlled phase gate is just one possible way to extend the idea of a controlled-phase gate from
qubits. Another way is to realise that for qubits we can describe the action of a controlled phase gate as
|x,y〉 7→ eiα x·y |x,y〉. Indeed, if the control qubit is in the state x = 0, then this is just the identity, while if
x = 1, we apply eiαy which corresponds to a Z(α) gate on the |y〉 qubit.

We see then that while a phase gadget is based on the addition operation of Z2, controlled phase gates
are based on the multiplication operation of Z2. This suggests that the controlled phase gate equivalent
for qutrits should be |x,y〉 7→ eiαx·y |x,y〉 where now we take x · y modulo 3. We will show how we can
construct this operation using phase gadgets. In order to distinguish this type of gate from the previously
considered controlled phase gates, we will refer to a gate where the phase depends on x · y as a phase
multiplier. Before we show how to build phase multipliers for qutrits, we first need to understand how to
build them for qubits. For bits x and y we have the relation

x · y = 1
2
(x+ y− (x⊕ y)). (17)

Importantly, we are considering the + operation here not modulo 2, but just as an action on real numbers,
and we are writing ⊕ for addition modulo 2. Using this relation we can write eiα(x·y) = ei 1

2 α(x+y−(x⊕y)) =
ei 1

2 αxei 1
2 αye−i 1

2 α(x⊕y). This is where the circuit decomposition of Eq. (11) comes from. This relation
between additive and multiplicative phase gates follows from a Fourier-type duality that exists for
semi-Boolean functions, which is explored in detail in Ref. [39].

It turns out that a similar decomposition is possible for qutrits. Note that we can derive Eq. (17) by
starting with the equation (x+ y)2 = x2 + y2 +2x · y and then realising that x2 = x for x ∈ {0,1} so that
this reduces to x⊕ y = x+ y+2x · y for bits. When working with trits we can’t remove these squares, but
we can still get a useful relation. Bring terms to the other side to get −2x · y = x2 + y2− (x+ y)2 and then
use the fact that modulo 3 we have −2 = 1 to get x · y = x2 + y2− (x+ y)2. It is now straightforward to
check that this continues to hold when we interpret the outer + and− here not modulo 3, but as operations
on the real numbers, so that we get the relation:

x · y mod 3 = (x2 mod 3)+(y2 mod 3)− ((x+ y)2 mod 3) (18)

Hence, using Eq. (9) we get the following decomposition:

α

α

α

α

−α

−α :: |x,y〉 7→ ω
α(x·y mod 3) |x,y〉 (19)

We can easily generalise Eq. (18) to as many variables as desired by iterating it. For three trits:

(x · y) · z = x2 · z+ y2 · z− (x+ y)2 · z
= x4 + z2− (x2 + z)2 + y4 + z2− (y2 + z)2− (x+ y)4− z2 +((x+ y)2 + z)2

= x2 + y2 + z2− (x2 + z)2− (y2 + z)2− (x+ y)2 +((x+ y)2 + z)2 (20)

Here we used that x4 = x2 modulo 3.
Note that Eq. (9) shows how to apply a phase proportional to the input trit squared modulo 3. However,

in order to use this trick to apply a phase proportional to a higher order term such as (y+ x2)2, we need a
way to compute y+ x2 and store it “on the wire”. In other words, we need to construct a circuit for the
unitary defined by |x,y〉 7→

∣∣x,y+ x2
〉
. Because this simply adds 1 (modulo 3) to y iff x 6= 0, we construct
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it by adding 1 to the second qubit, and then applying a |0〉-controlled X−1 gate. To build this gate, we use
the |2〉-controlled Z gate that we built from two phase gadgets in Eq. (15):

0

X−1X+1

=
Z†H† HZ

2X−1 X+1
:: |x,y〉 7→

∣∣x,y+ x2〉 (21)

The above trick was also described in Ref. [9]. We further use this to build the type of phase gate below.

0

X−1X+1

0

X+1 X−1
α

α

:: |x,y〉 7→ ω
α(y+x2)2 |x,y〉 . (22)

We now have all the ingredients necessary to build the phase multiplier corresponding to the formula (20).
What is interesting about this is that we do not have to use smaller factors of α . This is in contrast to the
qubit counterpart of the formula (20) where we get a factor of 1

4 , due to the factor of 1
2 in Eq. (17). In

fact, for qubits, the generalisation to n variables will have a prefactor of (1/2)n−1 so that for instance the
three-qubit-controlled Z and controlled T gates cannot be constructed without ancillae in Clifford+T [25],
as we need π/8 phase gates. Instead, no matter the number of qutrits, we do not get such a prefactor
and can iteratively construct it as in the formula (20), as we did for qutrit Clifford+T in Ref. [56]. The
circuit (22), alongside the square phase of Eq. (9) suffices to generalise Eq. (19) to any number of qutrits.

Proposition 4.3. We can construct, without ancillae and using O(2n) Clifford+T , Z(α,α), and Z(−α,−α)
gates, the n-qutrit phase multiplier gate defined by |x1, . . . ,xn〉 7→ ωα((x1···xn) mod 3) |x1, . . . ,xn〉.
See Appendix B for the details.

Remark 4.4. In Ref. [21] the diagonal gates at all levels of the Clifford hierarchy are analysed for any
qudit of prime dimension. They show for instance that the gate implementing |x1 · · ·xn〉 7→ωx1···xn |x1 · · ·xn〉
(which is the n-controlled 2π/3 phase multiplier gate) is in the nth level of the Clifford hierarchy. This
might be surprising as our construction shows how to build this gate, for any n, only using gates from the
third level of the Clifford hierarchy (namely Clifford gates and the T gate). However, note that while the
diagonal gates on a level of the hierarchy form a group, the full set of (not necessarily diagonal) gates is
not closed under composition, and hence we can build higher-level unitaries using lower-level ones.

5 Applications

We’ve now seen that we can use phase gadgets to build a number of useful diagonal unitaries. In this
section we will see how we can build more general diagonal qutrit unitaries, and specifically those that
emulate qubit operations. Qudit emulation of qubit operations can result in efficiency gains, by using
higher level states rather than ancillae. While there has been significant work on emulating qubits using
qutrits and qudits, much of this has been limited to realising gates within classical reversible computing
such as multiple-controlled Toffolis. In contrast, fewer works have addressed qutrit gate sets containing
arbitrary phases. Examples include a |2〉-controlled Z(0,φ) decomposition in terms of qutrit-controlled
qubit φ/3 rotations [24] or quantum multiplexers and uniformly-controlled Givens rotations from the
cosine-sine decomposition [37].

Throughout this section, we will write e
= to denote that a qubit unitary is emulated by a qutrit unitary.

We will first see how to emulate arbitrary qubit diagonal unitaries. Note that when we restrict to the
{|0〉 , |1〉} subspace, that a qutrit phase multiplier |x1, . . . ,xn〉 7→ eiα((x1···xn) mod 3) |x1, . . . ,xn〉 only applies a
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phase α if and only if all n qubits are in the |1〉 state. Hence, for instance, the two-qubit CZ(α) gate is
directly emulated by its two-qutrit counterpart of Eq. (19) with action |x,y〉 7→ eiαx·y |x,y〉. Consequently,
by Proposition 4.3 we see that using qutrit Clifford+T gates along with Z(α,α) and Z(−α,−α) we can
emulate the multiple-controlled Z(α) qubit gate without ancillae.

Now, by conjugating a multiple-controlled CZ(α) gate by the appropriate X01 gates, we can decide on
which input the eiα phase is applied. Using multiple of these gates we can then arbitrarily decide for each
input which phase should be applied to it. This then allows us to emulate an arbitrary diagonal qubit gate.

Proposition 5.1. We can emulate the diag(ωα1 , . . . ,ωα2n ) qubit unitary using qutrit Clifford+T , Z(α j,α j)
and Z(−α j,−α j) gates and without using ancillae.

When using a standard qubit unitary synthesis algorithm, the desired phases eiα j would be implemented
using many-controlled phase gates that require exponentially small angles eiα j/2n

, which is problematic
when the use-case is in fault-tolerant computing where non-Clifford phase gates must be constructed using
magic state distillation and injection. Our construction could hence lead to some benefits in synthesising
diagonal qubit unitaries using less non-Clifford resources.

It turns out that for the specific case of a qubit CCZ gate, that we can emulate it using qutrits in an
even more efficient way. While we could use the emulation construction above, it turns out to be better to
consider an altered construction.

Lemma 5.2. Given a qutrit |2〉-controlled U gate for an emulated qubit unitary U , we can construct a
qutrit emulation of the qubit CCU gate with the same non-Clifford cost as the |2〉-controlled U gate.

Proof. One can readily verify, by initializing the top two qubits to {|00〉 , |01〉 , |10〉 ,and |11〉}, that the
below qutrit decomposition from Ref. [27] emulates the qubit CCU gate.

1

X+1 2

U

1

X−1
e
=

U
(23)

We can then replace the two non-Clifford |1〉-controlled X+1 and |1〉-controlled X−1 by CX and CX†,
preserving correctness of the emulation as the action on the {|0〉 , |1〉} subspace is unchanged [10].

Using this lemma we see that to get an efficient emulation of the qubit CCZ, it remains to find an
efficient qutrit emulation of the |2〉-controlled qubit Z gate.

Lemma 5.3. Let U = diag(1,ωη) be an arbitrary qubit Z phase gate. Then we can build the |2〉-controlled
emulated U using the controlled phase gate of Eq. (12):

α

β

−α

−β
α

β

=
1

2α−β

α+β

2

α+β

2β−α

e
=

1

0
?

2

η

?

2

U

e
= (24)

Here α and β satisfy, for some k ∈ Z, 2α−β = 3k and α +β = η and the questionmarks ? denote that
these phases are irrelevant for the emulation.

If we choose α = 3/2 and β = 0 in this construction we are emulating the |2〉-controlled qubit Z gate,
because the phase of ω3/2 =−1 applies iff the control qutrit is |2〉 and the target qubit is |1〉. Note that a
Z(3/2,0) phase is equal to X12 R X12, referring to the R gate from Definition 2.7. Hence:

Corollary 5.4. The |2〉-controlled qubit Z gate can be emulated with R-count 3.

Combining this corollary with Lemma 5.2 we arrive at our result.
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Proposition 5.5. The qubit CCZ gate can be emulated ancilla-free in qutrit Clifford+R with R-count 3.

As shown in Ref. [35], any implementation of a CCZ gate requires at least four qubit T gates.
Additionally any unitary implementation requires at least seven [29]. Here we see that surprisingly, by
embedding the CCZ into qutrit space, we can construct it using just three non-Clifford single-qutrit gates
and that moreover this is unitary and ancilla-free. This is also a new minimum amongst qudit emulations:
for instance, in Ref. [33], they needed four qudit (for prime d > 3) T gates to emulate qubit CCZ.

6 Conclusion

We introduced phase gadgets in the qutrit ZX-calculus. To do this, we adapted the original qutrit ZX-
calculus to be flexsymmetric so that the phase gadgets’ behaviour would not depend on the directionality
of their edges. Using phase gadgets we showed how to build two types of qutrit controlled phase gates:
tritstring-controlled phase gates and phase multipliers. This allowed us to emulate the qubit CCZ gate
using just three single-qudit non-Clifford gates.

While some of our constructions will naturally generalise to arbitrary qudit dimension, some things
are qutrit specific. It seems to be a coincidence that for qutrits, in contrast with other-dimensional qudits,
you can derive a relation between modular multiplication and addition (18) from the same binomial as for
qubits (17), which comes from having a natural way to express x2 mod 3 thanks to Fermat’s little theorem.
As a result, qubit and qutrit phase multipliers admit constructions which are structurally similar, despite
the fact that for qubits it applies a phase of α on only one possible input — where all n qubits are |1〉
— while for qutrits it applies a phase, which can be α or 2α , for 2n of the 3n possible input basis states.
Moreover, it seems quite special that Eq. (18) does not have any factors making the size of the phases
internal to the decomposition decrease (in contrast to the qubit case).

We believe we could use these results as a stepping stone towards defining a qutrit ZH-calculus [4].
In the qubit ZH-calculus, the H-boxes represent matrices with coefficients ai1...im j1... jn for a complex
number a and i1, ..., im, j1, ..., jn ∈ {0,1}. Therefore, the obvious generalisation to qutrits (at least for a a
complex phase) corresponds to our qutrit phase multipliers. Phase gadgets and phase multipliers could
then be related in the same way as they are for qubit ZX and ZH [39].

An open problem is to find a suitable qutrit equivalent of exponentiated Paulis. The canonical self-
adjoint generalisation of qubit Paulis to qutrits, the Gell-Mann matrices, can be exponentiated to unitaries,
but it is not clear how they are related to the qutrit Paulis exactly. A starting point to find the proper
relation here is to express exponentiations using a Hermitian operator basis constructed from the qutrit
Paulis [3].

Finally, let us mention that based on work on an earlier draft of this paper, a proposed scheme for
physically implementing a qutrit phase gadget in superconducting qutrit hardware was made [14].
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A Qutrit ZX-calculus

A.1 Necessity of rules

We can show that most of the rules in Figure 1 are necessary, meaning that they cannot be derived from the
other rules. We do this by adapting the reasoning of Ref. [49]. Namely, the following rules are definitely
necessary:

• (SZ): this is the only rule which can decompose a generator with four or more legs into generators
with fewer legs.

• (P): this is the only rule which resolves diagrams containing generators to the identity.

• (B1): this is the only rule that can transform a connected diagram into a disconnected one.

• (EU): this is necessary per the argument of Ref. [51, Proposition 3.2].

• At least one of (H) and (H ′) is necessary as these are the only ones that can convert a diagram
containing a X generator with a non-integer phase into one containing a Z generator with a non-
integer phase.

We do not know whether the other rules are necessary, although we do suspect this is the case.

A.2 Proofs of the derived rules

Lemma A.1. The (ID) rule can be derived from the (SZ) and (SP) rules.

Proof.

= = =

(P) (SZ) (SP)

Lemma A.2. The (H2) rule can be derived from the (H ′) and (ID) rules.

Proof.

= =

(ID) (H ′)

Lemma A.3. The (H4) rule can be derived from the (H), (ID), and (H2) rules.

Proof.

= = =

(H2) (H) (ID)
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Lemma A.4. The (SX) rule can be derived from the (SZ), (H ′), (H2), and (H4) rules.

Proof.

· · · = α+η

β+θ

η

θ
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...

α

β

...

...
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...= · · · = · · ·

θ

η
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= · · ·
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...β

α

...

= β+θ

α+η

...
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(H ′) (H2) (H4) (SZ) (H ′)

Lemma A.5. The (P1′) rules can be derived from the (P1), (SX), (H), (H ′), (H2), and (H4) rules.

Proof. Let’s first derive the rule for x = 0:

== = = =

(H2) (H4) (H ′) (H) (H2)

(25)

From that, we can derive the below rule:

2
1 1

2

1
2= =1

2
1
2

1
2 1

2

1
21

2 1
2

1
2

1
2

1
2

2
1

2
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(SX) (P1)

=

(25)

=

(P1)

=

(SX)

(26)

The two above rules, along with the (P1) rule, are captured by the following rule where x ∈ {0,1,2}:

=
x
2x

x
2xx

2x (27)

We now colour-change the above rule to finish deriving all the (P1′) rules:

2x
x

2x
xx

2x
x
2x x

2x

x
2x

2x
x

2x
xx

2x=

(H)

=

(H2)

=

(27)

= =
(H ′)

(H ′),
(H4)

(H ′),
(H2)

(28)

Lemma A.6. The (P2′) rules can be derived from the (P2), (H), (H ′), (SZ), (SX), (H2), and (H4) rules.

Proof. We prove them one by one:

2
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β-αeiα= 1
2

1
2

β-α

-αeiα= 1
2 = 1

2
-(β-α)

-α-(β-α)ei(α+β-α) 1
2

2
1

α-β

-β
=eiβ
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Lemma A.7. The (EU ′) rules can be derived from the (EU), (H), (H ′), (SZ), (SX), (H2), and (H4)
rules.

Proof. We show the first equation directly:

= 2
2

2
2

2
2i = 2

2
2
2

2
2i = 2

2
2
2

2
2i

(EU) (H) (H)

(32)

For the second one we first note that:

=−i

(EU)

1
1

1
1

1
1

(H4)

(H2)

1
1

1
1

1
1

(25)

= 1
1

1
1

(SX)
2
2

2
2 = 1

1
2
2

(SZ)

(25)

(ID)

=

(SX)

(H4)

(H2)

−i (33)

Then:

1
1

1
1

1
1=

(33)

−i 1
1

1
1

1
1=

(H4)

−i (34)

And finally, we find the different decomposition of H:

= = 1
1

1
1

1
1-i = 1

1
1
1

1
1-i = 1

1
1
1

1
1-i

(H4) (34) (H) (H)

(35)

B Constructing general phase multipliers

When we have two variables we use the formula

x · y mod 3 = (x2 mod 3)+(y2 mod 3)− ((x+ y)2 mod 3) (36)

to construct the two-qutrit phase multiplier. We generalised this to three variables in the following way:

(x ·y) ·z = x2 ·z+y2 ·z−(x+y)2 ·z = x2+y2+z2−(x2+z)2−(y2+z)2−(x+y)2+((x+y)2+z)2. (37)

To see how we go to 4 variables and beyond, we start with the expression (x · y · z) ·w and decompose
x · y · z with the above formula resulting in terms t2

1 , . . . , t
2
n . Each of these terms is a square, because that is

the case for all the terms in Eq. (36). Since we are working with qutrits we have (t2
j )

2 = t2
j . The terms in

our formula are now of the form t2
j ·w. We apply Eq. (36) to each of these. This gives us terms t4

j , w2 and
(t2

j +w)2. The first of these is just t2
j , and by induction we already know how to construct the appropriate

phase term on the circuit for this term. The second of these is w2, and hence corresponds to a simple
phase gate. Note that this is the same for each t2

j ·w we are decomposing. Furthermore, the plus signs and
minus signs on the terms are such that they almost all cancel, and we will have one copy of w2.

The only ‘interesting’ new term we then get is hence (t2
j +w)2. For instance, in Eq. (37) the terms of

this form are (x2 + z)2, (y2 + z)2 and ((x+ y)2 + z)2. The corresponding phase terms are constructed by
using the gadget of Eq. (21) to store t2

j +w “on the wire” and then applying a Z(α,α) phase gate.
Hence, if we go from 3 to 4 variables we get each of the original terms t2

j , plus a w2 term and a
(t2

j +w)2 term for each j. This straightforwardly generalises to n variables, and it is then easy to check
that we will have 2n−1 terms.
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We can build a circuit for the n > 2 qutrit phase multiplier by first building the circuit for n−1 qutrits,
and then inserting the gadget of Eq. (22) after every application of a Z(α,α) phase with as the target
the nth qutrit. The reason this works is because the n-qutrit phase multiplier still contains every term of
the n−1 qutrit multiplier, but now also needs to combine those terms with the nth variable. In the four
variable case, we would first store on a wire the value of the term t j we need, and then apply a Z(α,α)

gate in order to get the phase eiαt2
j . Then we would apply Eq. (22) on the qutrit of w in order to get the

phase eiα(t2
j +w)2

. This construction involves temporarily storing t2
j +w on the wire of w, so we can use

this term if we want to construct the five-qutrit phase multiplier as well.
We then see that the cost of the n-qutrit phase multiplier in terms of (non-Clifford) gates is the cost of

the n−1 qutrit phase multiplier plus the cost of 2n−1−1 applications of the Eq. (22) gadget. In particular,
each phase term requires precisely one of either a Z(α,α) or a Z(−α,−α) gate, so that we need 2n−1 of
them. The circuit of Eq. (22) requires 6 T gates to construct, and hence the T -count of the n-qutrit phase
multiplier is 6(2n−1−1) = 3 ·2n−6 (for n > 2).
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In the one-way model of measurement-based quantum computation (MBQC), computation proceeds

via measurements on some standard resource state. So-called flow conditions ensure that the overall

computation is deterministic in a suitable sense, with Pauli flow being the most general of these.

Existing work on rewriting MBQC patterns while preserving the existence of flow has focused on

rewrites that reduce the number of qubits.

In this work, we show that introducing new Z-measured qubits, connected to any subset of the

existing qubits, preserves the existence of Pauli flow. Furthermore, we give a unique canonical form

for stabilizer ZX-diagrams inspired by recent work of Hu & Khesin [17]. We prove that any MBQC-

like stabilizer ZX-diagram with Pauli flow can be rewritten into this canonical form using only rules

which preserve the existence of Pauli flow, and that each of these rules can be reversed while also

preserving the existence of Pauli flow. Hence we have complete graphical rewriting for MBQC-like

stabilizer ZX-diagrams with Pauli flow.

1 Introduction

The one-way model of measurement-based quantum computation (MBQC) shows how to implement

quantum computations by successive adaptive single-qubit measurements on a resource state [23], largely

without using any unitary operations. This contrasts with the more commonly-used circuit model and

has applications in server-client scenarios as well as for certain quantum error-correcting codes.

An MBQC computation is given as a pattern, which specifies the resource state – usually a graph state

– and a sequence of measurements of certain types [12]. As measurements are non-deterministic, future

measurements need to be adapted depending on the outcomes of past measurements to obtain an overall

deterministic computation. Yet not every pattern can be implemented deterministically. Sufficient (and

in some cases necessary) criteria for determinism are given by the different kinds of flow, which define

a partial order on the measured qubits and give instructions for how to adapt the future computation if a

measurement yields the undesired outcome [11, 8] (cf. Section 2.3).

In addition to the applications mentioned above, the flexible structure of MBQC patterns is also

useful as a theoretical tool. For example, translations between circuits and MBQC patterns have been

used to trade off circuit depth versus qubit number [7] or to reduce the number of T -gates in a Clifford+T

circuit [20]. When translating an MBQC pattern (back) into a circuit, it is important that the pattern still

have flow, as circuit extraction algorithms rely on flow [11, 21, 14, 4]

This work uses the ZX-calculus, a graphical language for representing and reasoning about quantum

computations, which is convenient for representing both quantum circuits and MBQC patterns, and for

translating between the two. ZX-calculus diagrams directly corresponding to MBQC-patterns are said

to be in MBQC form. The ZX-calculus has various complete sets of rewrite rules, meaning any two

diagrams that represent the same linear map can be transformed into each other entirely graphically

http://dx.doi.org/10.4204/EPTCS.394.5
https://creativecommons.org
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[2, 18, 22]. Yet these rewrite rules do not necessarily preserve the existence of a flow, nor even the

MBQC-form structure. Thus, circuit optimisation using MBQC and the ZX-calculus relies on proofs that

certain diagram rewrites do preserve both [14, 4]. Work so far has focused on rewrite rules that maintain

or reduce the number of qubits, which find direct application in T-count optimisation [14]. Nevertheless,

it is sometimes desirable to increase the number of qubits in an MBQC pattern while preserving the

existence of flow, such as for more involved optimisation strategies [25] or for obfuscation.

In this paper, we begin investigating rewrite rules that preserve the existence of flow while increasing

the number of qubits. In particular, we prove that a rewrite rule that introduces a new Z-measured

qubit preserves flow. Most work on flow-preserving rewriting so far has been done in the context of

generalised flow, also known as gflow [8], in either its simple [14] or extended version [4]. Yet with the

qubit introduction rule, the setting shifts to that of Pauli flow [8, 24] since preserving the interpretation

of the diagram requires that the new qubit be measured in the Pauli-Z basis.

We show that adding this one new rule to the known flow-preserving rewrite rules suffices to get

completeness for MBQC-form diagrams within the stabilizer fragment of the ZX-calculus. To achieve

completeness, we introduce a new unique normal form for stabilizer ZX-calculus diagrams, which is

close to the MBQC form. This normal form is based on work by Hu and Khesin [17] using the stabilizer

graph notation of Elliott, Eastin and Caves [16], like the original stabilizer ZX-calculus completeness re-

sult [2]. As the proof by Hu and Khesin is somewhat difficult to follow, we give an alternative uniqueness

proof using the language of affine spaces.

The remainder of this paper is structured as follows: in Section 2, we introduce the ZX-calculus,

measurement-based quantum computing, and existing flow-preserving rewrite rules. Section 3 contains

the new canonical form and its uniqueness proof. Section 4 presents the new flow-preserving rewrite rule

and the completeness proof for the stabilizer MBQC-form fragment. The conclusions are in Section 5.

2 Preliminaries

In this section, we give an overview of the ZX-calculus and then use it to introduce measurement-based

quantum computing. We discuss the notion of flow that will be used in this paper and some existing

rewrite rules which preserve the existence of this flow.

2.1 The ZX-calculus

The ZX-calculus is a diagrammatic language for reasoning about quantum computations. We will pro-

vide a short introduction here; for a more thorough overview, see [27, 10].

A ZX-diagram consists of spiders and wires. Diagrams are read from left to right: wires entering a

diagram from the left are inputs while wires exiting the diagram on the right are outputs, like in the quan-

tum circuit model. ZX-diagrams compose in two distinct ways: horizontal composition, which involves

connecting the output wires of one diagram to the input wires of another, and vertical composition (or

the tensor product), which just involves drawing one diagram vertically above the other. The linear map

corresponding to a ZX-diagram D is denoted by JDK.

ZX-diagrams are generated by two families of spiders which may have any number of inputs or

outputs, corresponding to the Z and X bases respectively. Z-spiders are drawn as green dots and X -

spiders as red dots; with m inputs, n outputs, and using (·)⊗k to denote a k-fold tensor power, we have:

t
α...

...

|
= |0〉⊗n 〈0|⊗m + eiα |1〉⊗n 〈1|⊗m

t
α...

...

|
= |+〉⊗n 〈+|⊗m + eiα |−〉⊗n 〈−|⊗m
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Figure 1: A complete set of rewrite rules for the scalar-free stabilizer ZX-calculus. Each rule also holds

with the colours or the directions reversed.

Spiders with exactly one input and output are unitary, in particular J α K= |0〉 〈0|+eiα |1〉 〈1|= Zα

and J α K = |+〉〈+|+ eiα |−〉〈−|= Xα .

Two diagrams D and D′ are said to be equivalent if JDK= zJD′K for some non-zero complex number

z. For the rest of the paper, whenever we write a diagram equality we will mean equality up to some

global scalar in this way. For treatments of the ZX-calculus which do not ignore scalars see [3] for the

stabilizer fragment, [18] for the Clifford+T fragment and [19, 22] for the full ZX-calculus.

The Hadamard gate H = |+〉〈0|+ |−〉〈1| ∼= Z π
2
◦X π

2
◦Z π

2
will be used throughout the paper (where

∼= denotes equality up to non-zero scalar factor). It has two common syntactic sugars – a yellow square,

or a blue dotted line – with the latter only used between spiders:

π
2

π
2

π
2= =

The ZX-calculus is equipped with a set of rewrite rules which can be used to transform a ZX-diagram

into another diagram representing the same linear map. As this paper focuses on stabilizer quantum

mechanics, we give a rule set for the stabilizer ZX-calculus in Figure 1. Together with the definition

of , this set of rewrite rules is complete: any two stabilizer ZX-diagrams which correspond (up to

non-zero scalar factor) to the same linear map can be rewritten into one another using these rules [2].

2.2 Measurement-based Quantum computation

Measurement-based Quantum computation (MBQC) is a particularly interesting model of quantum com-

putation with no classical analogue. In MBQC, one first constructs a highly entangled resource state that

can be independent of the specific computation that one wants to perform (only depending on the ‘size’

of the computation) by preparing qubits in the |+〉 state and applying CZ-gates to certain pairs of qubits.

The computation then proceeds by performing single qubit measurements in a specified order. MBQC

is a universal model for quantum computation – any computation can be performed by choosing an

appropriate resource state and then performing a certain combination of measurements on said state.

Measurement-based computations are traditionally expressed as measurement patterns, which use

a sequence of commands to describe how the resource state is constructed and how the computation

proceeds [12]. As the resource states are graph states, a graphical representation of MBQC protocols can

be more intuitive; we shall therefore introduce MBQC with ZX-diagrams.

Definition 2.1 ([15]). A graph state diagram is a ZX-diagram where each vertex is a (phase-free) green

spider, each edge connecting spiders has a Hadamard gate on it, and there is a single output wire incident

on each vertex. A ZX-diagram is in graph state with local Clifford (GS-LC) form if it is a graph state up
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operator 〈+XY,α |i 〈+XZ,α |i 〈+YZ,α |i 〈+X ,0|i 〈+Y,0|i 〈+Z,0|i 〈+X ,π |i 〈+Y,π |i 〈+Z,π |i

diagram α(i) π
2 α(i) α(i) π

2 π − π
2 π

Table 1: MBQC measurement effects in Dirac notation and their corresponding ZX-diagrams

to single qubit Clifford operators on the input and output wires. It is in reduced GS-LC (rGS-LC) form if

those single-qubit Clifford operators are all in the set { kπ
2 , ± π

2
π
2 } for some k ∈ Z4 and if no two

qubits with red phases in their vertex operator are connected to each other.

Definition 2.2. [4, Definitions 2.18, 2.23] A ZX-diagram is in MBQC-form if it consists of a graph state

diagram in which each vertex of the graph may furthermore be connected to an input (in addition to its

output), and a measurement effect instead of its output. A ZX-diagram is in MBQC+LC-form if it is in

MBQC-form up to single qubit Clifford operators on the input and output wires.

MBQC restricts the allowed single-qubit measurements to three planes of the Bloch sphere: those

spanned by the eigenstates of two Pauli matrices, called the XY, YZ and XZ planes. Each time a qubit u

is measured in a plane λ (u) at an angle α , one may obtain either the desired outcome, denoted 〈+λ(u),α |,
or the undesired outcome 〈−λ(u),α |= 〈+λ(u),α+π |. Measurements where the angle is an integer multiple

of π
2

are Pauli measurements; the corresponding measurement type is denoted by simply X , Y , or Z. The

ZX-diagram corresponding to each (desired) measurement outcome is given in Table 1. The structure of

an MBQC protocol is formalised as follows.

Definition 2.3. A labelled open graph is a tuple Γ = (G, I,O,λ ), where G = (V,E) is a simple undi-

rected graph, I ⊆ V is a set of input vertices, O ⊆ V is a set of output vertices, and λ : V \ O →
{X ,Y,Z,XY,XZ,YZ} assigns a measurement plane or Pauli measurement to each non-output vertex.

In this paper, we consider stabilizer MBQC diagrams: MBQC-form diagrams where every non-

output qubit has a Pauli measurement applied to it, i.e. where λ : V \O →{X ,Y,Z}.

2.3 Pauli flow

Measurement-based computations are inherently probabilistic because measurements are probabilistic.

Computations can be made deterministic overall (up to Pauli corrections on the outputs) by tracking

which measurements result in undesired outcomes and then correcting for these by adapting future mea-

surements. A sufficient (and in some cases necessary) condition for this to be possible on a given labelled

open graph is Pauli flow. In the following, P(S) denotes the powerset of a set S.

Definition 2.4 ([8, Definition 5]). A labelled open graph (G, I,O,λ ) has Pauli flow if there exists a map

p : V \O → P(V \ I) and a partial order ≺ over V such that for all u ∈V \O,

1. if v ∈ p(u), v 6= u and λ (v) 6∈ {X ,Y}, then u ≺ v.

2. if v ∈ OddG(p(u)), v 6= u and λ (v) 6∈ {Y,Z}, then u ≺ v.

3. if ¬(u ≺ v) and λ (v) =Y , then v ∈ p(u)⇐⇒ v ∈ OddG(p(u)).
4. if λ (u) = XY , then u 6∈ p(u) and u ∈ OddG(p(u)).
5. if λ (u) = XZ, then u ∈ p(u) and u ∈ OddG(p(u)).
6. if λ (u) = Y Z, then u ∈ p(u) and u 6∈ OddG(p(u)).
7. if λ (u) = X , then u ∈ OddG(p(u)).
8. if λ (u) = Z, then u ∈ p(u).
9. if λ (u) = Y then either u ∈ p(u) and u 6∈ OddG(p(u)) or u 6∈ p(u) and u ∈ OddG(p(u)).
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Here, the partial order restricts the time order in which the qubits need to be measured. The set p(u)
denotes qubits that are modified by Pauli-X to compensate for an undesired measurement outcome on u,

OddG(p(u)) denotes the set of vertices that are modified by Pauli-Z.

Pauli flow is a sufficient condition for strong, stepwise and uniform determinism: this means all

branches of the computation should implement the same linear operator up to a phase, any interval of

the computation should be deterministic on its own, and the computation should be deterministic for

all choices of measurement angles that satisfy λ [8, p. 5]. Pauli flow (and related flow conditions)

are particularly interesting from a ZX-calculus perspective as there are polynomial-time algorithms for

extracting circuits from MBQC-form ZX-diagrams with flow [14, 4, 24], while circuit extraction from

general ZX-diagrams is #P-hard [5].

2.4 Existing flow-preserving rewrite rules

The basic ZX-calculus rewrite rules in Figure 1 do not generally preserve even the MBQC-form structure

of a ZX-calculus diagram. Yet there are some more complex derived rewrite rules that are known to pre-

serve both the MBQC-form structure and the existence of a flow. These rules were previously considered

in the context of gflow [14] and extended gflow [4]; the Pauli-flow preservation proofs are due to [24].

The simplest of these rules is Z-deletion:

Lemma 2.5 ([24, Lemma D.6]). Deleting a Z-measured vertex preserves the existence of Pauli flow.

...

...

...

...

aπ

=
...

...

aπ

aπ aπ

aπ...

...

...

...

...
...

Other rewrite rules are based around quantum generalisations of two graph-theoretic operations.

Definition 2.6. Let G = (V,E) be a graph and u ∈ V . The local complementation of G about u is

the operation which maps G to G ⋆ u := (V,E
a
{(b,c)|(b,u),(c,u) ∈ E and b 6= c}), where

a
is the

symmetric difference operator given by A
a

B = (A∪B) \ (A∩B). The pivot of G about the edge (u,v)
is the operation mapping G to the graph G∧uv := G⋆u⋆ v⋆u.

Local complementation keeps the vertices of the graph the same but toggles some edges: for each pair

of neighbours of u, i.e. v,v′ ∈ NG(u), there is an edge connecting v and v′ in G⋆u if and only if there is no

edge connecting v and v′ in G. Pivoting is a series of three local complementations, but has some special

properties which make it worth distinguishing. It interchanges the vertices u and v and complements (or

‘toggles’) the connectivity between the following three subsets of vertices [6, Section 8]:

• NG(u)\ ({v}∪NG(v)), the neighbours of u that are neither neighbours of v nor v itself.

• NG(v)\ ({u}∪NG(u)), the neighbours of v that are neither neighbours of u nor u itself.

• NG(u)∩NG(v), the common neighbours of u and v.

From the above characterisation we see that pivoting is symmetric, i.e. G∧uv = G∧ vu.

Both local complementation and pivoting give rise to operations on MBQC-form diagrams which

preserve the MBQC form as well as the existence of Pauli flow (after some simple merging of single-

qubit Cliffords into measurement effects, cf. [4, Section 4.2]). We illustrate the operations with examples

as they are difficult to express in ZX-calculus in generality.

Lemma 2.7 ([24, Lemma D.12]). A local complementation about a vertex u preserves the existence of

Pauli flow.
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...

u

=
...

− π
2

π
2

π
2

π
2

u

Lemma 2.8 ([24, Lemma D.21]). A pivot about an edge (u,v) preserves the existence of Pauli flow.

=

v

u

u

v

π

π

Observation 2.9. Lemmas 2.7 and 2.8 provide their own inverses since four successive local comple-

mentations about the same vertex, or two successive pivots about the same edge, leave the diagram

invariant. Two successive local complementations correspond to the π-copy rule.

While the inverse of the Z-deletion rule of Lemma 2.5 straightforwardly preserves the MBQC-form,

it is not obvious that it also preserves the existence of Pauli flow. In Section 4.1, we will prove that this

is indeed the case.

3 A canonical form for stabilizer state diagrams

Stabilizer state diagrams in the ZX-calculus have a pseudo-normal form: the rGS-LC form, which arises

from the representation of a stabilizer state in terms of a graph state and local Clifford operators [2].

Here, we propose a new pseudo-normal form, based on the representation of a stabilizer state in

terms of its affine support and a phase polynomial [1]. Like the rGS-LC form, this is closely related to

the stabilizer graphs of Elliott et al. [16] but it translates them into the ZX-calculus differently. The new

normal form allows (and in most cases requires) both green and red spiders, meaning it is not strictly

‘graph-like’.

Based on a recent proposal by Hu and Khesin [17], we then show how to make this new pseudo-

normal form unique, yielding a canonical form for stabilizer state diagrams in the ZX-calculus1. In the

process, we simplify the uniqueness proof of Hu and Khesin by making use of formalisms and results

from the literature about holant problems.

We first prove some lemmas about the algebraic representation of stabilizer states which will be use-

ful in proving uniqueness of the canonical form. Next we introduce to the new pseudo-normal ‘phase

polynomial form’ and show how it corresponds to stabilizer states in phase-polynomial representation.

Finally, we define the canonical form, prove its uniqueness, and give an algorithm for rewriting dia-

grams into canonical form. Throughout this section, diagrams contain red spiders and thus are not in

MBQC+LC-form; yet by colour changing all of the red vertices and unfusing phases these can straight-

forwardly be transformed into MBQC+LC-form diagrams.

1At QCTIP 2022, we learned that an analogous result was independently derived by John van de Wetering [28].
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3.1 Stabilizer states in terms of affine support and phase polynomial

It has long been known [13, 26] that an n-qubit stabilizer state can be written (up to normalisation) as

∑
x∈A

il(x)(−1)q(x) |x〉 , (1)

where A is an affine subspace of Zn
2, l(x) = ∑ j d jx j for some fixed d j ∈ Z2 is a linear function computed

modulo 2, and q(x) = ∑ j<k c jkx jxk +∑ j c jx j for some fixed c jk,c j ∈ Z2 is a quadratic function. The

functions l and q together form a phase polynomial for the state, while A determines the support.

Assuming dim(A) = n−m, the elements of the affine space A are the solutions to a set of linear

equations Rx = b, where R is an m× n binary matrix of rank m (with 0 ≤ m ≤ n) and b ∈ Z
m
2 . Each

component of x is considered a variable. With respect to this linear system, the variables x1, . . . ,xn can

be partitioned (not generally uniquely) into a set of (n− m) free variables and a set of m dependent

variables such that every assignment of values to the free variables induces exactly one assignment of

values to the dependent variables which satisfies all the linear equations. This follows from a standard

process of solving the system of linear equations, which also yields a linear equation in terms of the

free variables for each dependent variable. In the following, we will denote the set of indices by [n] :=
{1,2, . . . ,n} and the free variables by a subset F ⊆ [n] of the indices, and write the dependent variables

as x j = a j ⊕
⊕

k∈F a jkxk, where a j,a jk ∈ Z2 and the sum is modulo 2. If a jk = 1, we say the variable x j

depends on xk.

It will be useful to give a canonical choice of free variables, this is inspired by Hu and Khesin’s nor-

mal form for stabilizer states [17], and will lead us to an analogous normal form for stabilizer diagrams.

Definition 3.1. We call the result of the following procedure the canonical set of free variables. Start with

x1 and consider the variables in ascending order. For each j, if the value of x j is fixed by the requirement

to satisfy Rx = b given values for all free variables among x1, . . . ,x j−1 then we say that x j is dependent.

Otherwise we say that x j is free.

Lemma 3.2. Given an affine space A, the canonical set F is the unique set of free variables with the

following property: if x j depends on the free variable xk, then k < j.

Proof. Let F ′ be another set of free variables for A which also has the property that if x j is a dependent

variable and depends on the free variable xk, then k < j. In other words, for each j ∈ [n]\F ′, there is an

equation x j = a j +∑k< j a jkxk, where furthermore a jk = 0 if k /∈ F ′.

Now suppose for a contradiction that F 6= F ′. The two sets must have the same size |F| = |F ′| =
dim(A). Thus, there must be a smallest element j ∈ F such that j /∈ F ′. Then F ′ induces an equation

x j = a j ⊕
⊕

k∈F ′, k< j

a jkxk. (2)

Suppose a jk = 1 only if k ∈ F . Then the value of x j is fixed by the free variables of lower index in F , so

j should not be free according to Definition 3.1, a contradiction.

Otherwise, there exists some k′ /∈ F such that a jk′ = 1. But then by the definition of F , there exists

some equation xk′ = bk′ ⊕
⊕

ℓ∈F, ℓ<k′ bk′ℓ. Thus we can substitute for xk′ in (2) while preserving the

property that x j only depends on variables of lower index. The process eliminates one variable which is

not in F from the decomposition and does not introduce any new variables which are not in F . Hence

repeated application will terminate, at which point we have an equation that fixes x j from only variables

in F of index less than j. Again, this means j should not be in F , a contradiction.

Hence we must have F = F ′.
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As pointed out in the holant literature, it is possible to express the functions l and q solely in terms

of the free variables, while keeping their other properties the same [9, Definition 8]. We give a proof in

Appendix A for completeness.

Lemma 3.3. Suppose F denotes a set of free variables for the affine space A, and |ψ〉 is some stabilizer

state with support on A. Then there exists a linear function l and a quadratic function q, both depending

only on the free variables, as well as a scalar λ ∈ C\{0}, such that:

|ψ〉= λ ∑
x∈A

il(x)(−1)q(x) |x〉 .

There are generally multiple ways of expressing the same state in the form of (1). Yet if we pick a

set of free variables F and require l and q to depend only on free variables, the representation becomes

unique. Moreover, we can even give a unique representation in terms of a phase polynomial (evaluated

modulo 4, rather than 2). Again, the proof is in Appendix A.

Lemma 3.4. Given an n-qubit stabilizer state |ψ〉 and a set F ⊆ [n], there exists a unique polynomial

p(x) = ∑ j∈F r jx j +2∑ j,k∈F, j<k s jkx jxk with r j ∈ Z4 and s jk ∈ Z2 and scalar λ ∈C\{0} such that |ψ〉=

λ ∑x∈A ip(x) |x〉.

3.2 A new pseudo-normal form related to phase polynomials

In the rGS-LC form for stabilizer state diagrams, local Clifford operators on the graph state are expressed

in terms of green and red spiders. Alternatively, it is also possible to express local Clifford operators in

terms of green spiders and Hadamards (and this is what is done in the stabilizer graph formalism of [16]).

In ZX-terms, this means the allowed local Clifford operators are kπ
2 and aπ , where k ∈ Z4 and

a ∈ Z2. As for red nodes in rGS-LC diagrams, qubits whose local Clifford operator contains an H are

not allowed to be connected to each other; therefore we can ‘push’ the Hadamards through and get the

following pseudo-normal form. It is possible to convert between the two kinds of local Clifford operators

via local complementations on the qubits that have red nodes or Hadamards.

Definition 3.5. A stabilizer ZX-calculus diagram is in phase-polynomial form if the following hold:

• Each dangling edge is connected to a unique red or green spider.

• Red spiders have phases that are 0 or π .

• Green spiders have phases that are integer multiples of π/2.

• There may be edges connecting spiders of different colours.

• Furthermore, green spiders may be connected to other green spiders via Hadamard nodes.

Observation 3.6. An rGS-LC diagram can be brought into phase-polynomial form via the following

process. First, apply local complementations to all qubits that have red nodes in their local Cliffords.

This maps π
2

π
2 to and - π

2
π
2 to π . Then, change the colour of all spiders which

now have Hadamards as part of their vertex operators and merge adjacent spiders of the same colour.

Example 3.7. Applying this procedure to the rGS-LC diagram on the left yields the phase polynomial-

form diagram in the middle. Colour-changing each red spider and unfusing the phases leads to an equiv-

alent GS-LC form diagram which we will say is in phase-polynomial form up to colour changing the

spiders with Hadamard gates in their vertex operators.
π
2

π
2

− π
2

π
2

π
2

π
2

π
2

π

π
2

π
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Diagrams in phase-polynomial form correspond directly to pairs of a state and a set of free variables

for the underlying affine support. Appendix B contains an example illustrating this correspondence.

Lemma 3.8. Ignoring scaling, there is a bijection between phase-polynomial form diagrams and pairs

(|ψ〉 , F), where |ψ〉 is an n-qubit stabilizer state and F ⊆ [n] indicates a set of free variables for the

affine space A which is the support of |ψ〉.

Proof. By Lemma 3.4, there exists a unique function p(x) =∑ j∈F r jx j +2∑ j,k∈F, j<k s jkx jxk with r j ∈Z4

and s jk ∈ Z2 such that |ψ〉 ∼= ∑x∈A ip(x) |x〉. To construct a diagram from a state and a set of free variables

from this, proceed as follows:

• For each dependent variable xk with k ∈ [n] \ F , find the unique linear expression xk = ak ⊕
⊕

j∈F ak jx j which satisfies the defining linear equations Rx = b of the affine space A.

• For each j ∈ F , place a green spider with an output wire. The phase of this spider is r j
π
2

.

• For each k ∈ [n]\F , place a red spider with an output wire. The phase of this spider is a jπ .

• Draw a (plain) edge connecting the green spider j to the red spider k whenever ak j = 1.

• Draw a Hadamard edge connecting the green spiders j and j′ whenever s j j′ = 1.

Conversely, given a diagram in phase-polynomial form, construct the corresponding state as below:

• The set F of free variables consists of the indices of the green spiders.

• The affine space A is defined by the set of equations
{

x j = a j ⊕
⊕

k∈N( j) xk

}

j∈[n]\F
, where a j = 0

if the phase of the red spider with index j is 0, and 1 otherwise.

• For each j ∈ F such that the phase of the green spider j is α j, define r j to be the value in Z4 that

is equivalent to
2α j

π mod 4.

• For each j,k ∈ F with j < k, define s jk = 1 if there exists a Hadamard edge between spiders j and

k, and s jk = 0 otherwise.

Let p(x) := ∑ j∈F r jx j + 2∑ j,k∈F, j<k s jkx jxk, then the desired state is ∑x∈A ip(x) |x〉. The two procedures

are inverses of each other (noting that 3π
2
≡−π

2
mod 2π).

Suppose D is the ZX-diagram corresponding to some stabilizer state |ψ〉 according to the above

translation. Then it is straightforward to see that the support of JDK and the support of |ψ〉 are equal.

Thus, by phase-polynomial techniques, it is quick to check that JDK equals |ψ〉 up to scalar factor.

3.3 The canonical phase-polynomial diagram

Using the bijection between phase-polynomial form diagrams and pairs of a state and a set of free vari-

ables, we can now define a unique canonical diagram for any stabilizer state.

Definition 3.9. Let |ψ〉 be a stabilizer state, then its canonical diagram is the one translated from (|ψ〉 ,F)
by Lemma 3.8, where F is the canonical set of free variables according to Definition 3.1.

Apart from the translation into our terminology, this differs from the normal form definition of Hu

and Khesin [17] only by reversing the order: we ask for free variables to come first whereas they put

them last. Our uniqueness proof, making use of the properties of the affine support of a stabilizer state is

shorter and simpler than that in [17].

Theorem 3.10. The canonical form is unique.

Proof. This follows from the uniqueness of the canonical set of free variables proved in Lemma 3.2 and

from the bijection between pairs consisting of a state and a set of free variables in Lemma 3.8.
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Proposition 3.11. Every phase-polynomial form diagram can be re-written into canonical form using

only local complementation and pivoting.

Proof. Pick some order < on the spiders, say from top to bottom. We want each red spider to only be

connected to spiders that appear earlier in <. While this does not hold, repeat the following procedure:

1. Let dk be the minimal red spider under < such that there exists some green spider f j connected to

dk with dk < f j.

2. Let fh be the maximal green spider under < such that dk is connected to fh.

3. If fh has a phase of ±π
2

, perform local complementation about fh and then about dk. Otherwise,

pivot about the edge connecting fh and dk. After applying either of these equivalence transforma-

tions, fh is now red and dk is now green and the diagram is still in phase-polynomial form.

4. By maximality of fh, we have that fh is only connected to green spiders fn with fn < fh. By

minimality of dk, we have that dk is only connected to red spiders dm with dk < dm.

This procedure strictly reduces the number of connections between red spiders and green spiders that ap-

pear later in the order. Hence repeating it will eventually terminate, transforming any phase-polynomial

form diagram into canonical form.

Remark 3.12. The canonical form is unique only up to the choice of order on the qubits; different orders

may yield different ‘canonical forms’. Thus the choice of order is arbitrary (but needs to happen in

advance, independently of the diagram considered) – we have chosen top-to-bottom for simplicity.

4 Completeness

Having established a canonical form for stabilizer ZX-calculus diagrams, we now give the completeness

proof. This first requires proving that a new rewrite rule preserves the existence of Pauli flow: an inverse

to the Z-deletion rule of Lemma 2.5. While there has been a lot of previous research on rewrite rules

which reduce the number of spiders while preserving flow conditions, rewrite rules which increase the

number of spiders have not been studied beyond introducing new degree-2 vertices along input or output

wires (e.g. [4, Lemma 4.1]).

4.1 Inserting new Z-measured qubits

Inserting Z-measured qubits into MBQC+LC form diagram preserves the existence of Pauli flow.

Proposition 4.1. Let G = (V,E, I,O,λ ) be a labelled open graph with Pauli flow and let W ⊆ V be

some arbitrary subset of the vertices. Then G′ = (V ′,E ′, I,O,λ ′) has a Pauli flow, where V ′ =V ∪{x},

E ′ = E ∪{(x,w) | w ∈W} with λ ′(v) = λ (v) if v 6= x and λ ′(x) = Z.

Proof. Let (p,≺) be a Pauli flow for G and define p′ : V ′ \O → P(V ′ \ I) by p′(v) := p(v) if v 6= x and

p′(x) := {x}. For vertices from the original graph, measurement planes and correction sets remain the

same while the only change to odd neighbourhoods is that x may be added. Thus conditions 4–7 and 9

remain trivially satisfied. Condition 8 holds for x as x ∈ p′(x), and for all other Z-measured vertices

because (p,≺) is a Pauli flow.

Let ≺′ be the transitive closure of ≺∪{(x,v)|v ∈ NG′(x)}. Then ≺′ is a partial order because ≺ is a

partial order and we only add successors for x. Now, condition 1 of Pauli flow is inherited from (p,≺)
for all u ∈V \O because u 6∈ p′(x). Condition 2 is satisfied for all u ∈V \O because λ (x) = Z and (p,≺)
is a Pauli flow. Condition 3 is inherited because the new vertex has only successors.
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4.2 Complete flow-preserving rewrite rules

We are now able to assemble the main proof. In the following, we will say an MBQC+LC-form diagram

has no interior spiders if the MBQC-form part of the diagram (i.e. ignoring the local Cliffords) has no

interior vertices (V \ (I ∪O) = /0). Additionally, we say an MBQC+LC-form diagram has Pauli flow if

its MBQC-form part has Pauli flow (analogous to gflow in [4, Section 4.1]).

Theorem 4.2. Given two equivalent stabilizer MBQC+LC-form diagrams D and D′ with Pauli flow and

satisfying JDK ∼= JD′K, there exists a sequence of rewrite rules – each preserving the existence of Pauli

flow and preserving the MBQC+LC-form – transforming D into D′.

Proof. We begin by deleting all Z-measured vertices from both diagrams, keeping track of which vertices

we delete and their set of neighbours when deleted. The resulting diagrams has Pauli flow by Lemma 2.5.

After all Z-measured vertices are removed, the MBQC-form parts of the diagrams (ignoring the local

Cliffords) only have X and Y measurements and are thus of the kind considered in [14]. Then, there exists

a terminating procedure (consisting of a sequence of local complementations, pivots and Z-deletions)

rewriting the two diagrams into MBQC+LC-form diagrams N and N ′ which contain no interior spiders

[14, Theorem 5.4]. Since local complementation and pivoting also preserve the existence of Pauli flow

(Lemmas 2.7 and 2.8), N and N ′ will also have Pauli flow.

As only X and Y measurements remain, they can be spider-merged and unmerged through each qubit

to become local Cliffords on the outputs, thus N and N ′ are equivalent to GS-LC form diagrams. By

[2, Theorem 13], every GS-LC form diagram can be rewritten into rGS-LC form using a sequence of

local complementations, thus this step preserves Pauli flow. By Observation 3.6, we can then rewrite

each diagram into phase polynomial form, again using only local complementations (along with some

operations on the local Cliffords that do not alter the flow), thus preserving Pauli flow. Finally, by

Proposition 3.11, we can rewrite each diagram into canonical form1. The rewrite steps use only local

complementations and pivoting, so they preserve Pauli flow. The resulting diagrams are equivalent and

the canonical form is unique, so we have found a sequence of local complementations, pivots and Z-

deletions rewriting D and D′ into the same canonical form diagram C.

By Observation 2.9, local complementation and pivot can be inverted. Furthermore, Z-insert is a

Pauli-flow preserving inverse to Z-delete. Thus the sequence of rewrites from D′ to C can be inverted

while still preserving Pauli-flow. By rewriting D to C, then rewriting C to D′, we obtain a sequence of

flow-preserving rewrite rules transforming D into D′. This completes the proof.

Example 4.3. We shall give a short example of this rewrite procedure in action. Consider the following

two MBQC+LC-form diagrams, which we will call D and D′, and which satisfy JDK∼= JD′K by (non-flow

preserving) diagram simplification techniques.

π
2

− π
2

π
2

π

π
2

π
2

π
2

π
2

− π
2

π
2

π
2

π
2

− π
2

π
2

π
2

Using the procedure from the proof of Theorem 4.2, we first rewrite D to phase polynomial form. Perform

triple local complementations (i.e. ‘inverse local complementations’) about both the left-most and right-

most qubits in the MBQC-form part, then apply Z-deletion to these qubits. A local complementation

1Up to map-state duality and colour changing vertices with Hadamard operators.
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about the top left qubit gives us the fourth diagram, which is in rGS-LC form and in fact is equivalent

to the left-most diagram in Example 3.7 up to map-state duality. We then obtain the final diagram by

following the procedure in Observation 3.6; note that this diagram is already in canonical form (up to

map-state duality and colour changing spiders with Hadamard gates in their vertex operators) assuming

that the input qubits have lower indices than the output qubits.

π
2

− π
2

π
2

π

π
2

π
2

π
2

π
2

− π
2

π
2

π

π
2

π
2

π
2

− π
2

π
2

π

π
2

π
2

π
2

− π
2

π
2

π

π
2

π
2

π
2

π
2

− π
2

===

π
2

π

=

For D′, we perform local complementation about the two interior qubits of the MBQC-form part (here

we have done this about the top qubit first, then the bottom qubit), and Z-delete both qubits.

π
2

π
2

− π
2

π
2

π
2

=

− π
2

π
2

π
2

π

π
2

=

− π
2

π

=

− π
2

π

This final diagram is already in phase polynomial form (up to map state duality and colour changing the

spiders with Hadamard edges in their vertex operators) without us having to go through rGS-LC form.

To rewrite this diagram into canonical form, all that remains is to pivot along the edge connecting the

bottom left qubit to the bottom right qubit, giving the following diagram:
π
2

π

We have therefore rewritten D and D′ into the same canonical form diagram. Every rule used to re-write

D and D′ to canonical form is invertible and the inverses preserve Pauli flow, giving us a sequence of

flow preserving rewrite rules taking D to D′.

5 Conclusions

We have presented the first flow-preserving rewrite rule that increases the number of qubits in an MBQC-

form ZX-diagram, and shown that this – together with existing rewrite rules that preserve the MBQC

form – is complete for stabilizer MBQC-form diagrams. The completeness proof goes via a new canon-

ical form. The result may find applications in obfuscation or in more involved optimisation protocols.

Yet that is only the beginning of the investigation of flow-preserving rewrite rules and in future work

we will consider more extensive sets of rewrite rules and ZX-diagrams. The recent proof that circuit

extraction from general unitary ZX-diagrams is #P-hard [5] means this line of research is particularly

important, as it allows us to explore the only family of ZX-diagrams for which a polynomial-time circuit-

extraction algorithm is currently known.

Pauli flow is known not to be necessary for deterministic implementability of MBQC patterns with

all-Pauli measurements [8]; it would also be interesting to see how it can be extended and what flow-

preserving rewriting would look like under the new conditions.
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string x, i.e. l(x) =
⊕

j d jx j for some fixed d j ∈ Z2 and q(x) =
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j c jx j for some fixed

c jk,c j ∈ Z2.
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k∈F a jkxk for every j ∈ [n]\F , where a j,a jk ∈ Z2.
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(d j ⊕as j)x j,

where we define as j = 0 if j /∈ F . The as is constant and the factor ias can be absorbed into the overall

scalar λ . Since l is computed modulo 2, the new function satisfies the same properties as the original
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Therefore, the substitution process strictly decreases the number of dependent variables that l de-

pends on and successive applications will eventually yield a function that depends only on free variables.

An analogous argument holds for q.

Lemma A.1. Let |ψ〉 and |φ〉 be two stabilizer states with the same support A, and let F be a set of free

variables for A. Suppose there exists λ ,µ ∈ C\{0} such that

|ψ〉= λ ∑
x∈A

il(x)(−1)q(x) |x〉 and |φ〉= µ ∑
x∈A

il
′(x)(−1)q′(x) |x〉

where for some d j,d
′
j,c jk,c j,c

′
jk,c

′
j ∈ Z2,

l(x) =
⊕

j∈F

d jx j q(x) =
⊕

j,k∈F, j<k

c jkx jxk ⊕
⊕

j

c jx j

l′(x) =
⊕

j∈F

d′
jx j q′(x) =

⊕

j,k∈F, j<k

c′jkx jxk ⊕
⊕

j

c′jx j.

Then |ψ〉 and |φ〉 are linearly dependent if and only if for all j,k ∈ F we have d j = d′
j, c jk = c′jk, and

c j = c′j.

Proof. The ‘if’ direction is straightforward: if d j = d′
j, c jk = c′jk, and c j = c′j for all j,k ∈ F , then

µ |ψ〉= λ |φ〉.
For the ‘only if’ direction, note that l(x) = l′(x) = q(x) = q′(x) = 0 if all variables in F are assigned

0, so by rescaling such that λ = µ , we get |ψ〉= |φ〉 if and only if they are linearly dependent.

By definition, each assignment of values to the free variables in F induces one assignment of values

to all the variables that is in A. Suppose there exists a j ∈ F such that d j 6= d′
j, wlog assume d j = 1 and

d′
j = 0 (otherwise the argument is symmetric). Let ξ be the bit string in A that has every free variable

set to 0 except the one with index j. Then 〈ξ | ψ〉 is imaginary while 〈ξ | φ 〉 is real, so since the two

states have the same non-zero amplitude for the assignment induced by setting all free variables to 0,

they cannot be linearly dependent.

Similarly, suppose there exists j ∈ F such that c j 6= c′j, then for the same ξ we have 〈ξ | ψ〉 =
−〈ξ | φ 〉, so again the two states cannot be linearly dependent.

So without loss of generality, assume that d j = d′
j and c j = c′j for all j ∈ F . Now suppose there are

j,k ∈ F such that c jk 6= c′jk. Let ζ be the bit string induced by the assignment where x j = xk = 1 and all

other free variables are 0. Then again, 〈ζ | ψ〉=−〈ζ | φ 〉 so the two states cannot be linearly dependent.

Therefore, linear dependence implies that for all j,k ∈ F we have d j = d′
j, c jk = c′jk, and c j = c′j.

Proof of Lemma 3.4. Via Lemmas 3.3 and A.1, we can uniquely write |ψ〉 = λ ∑x∈A il(x)(−1)q(x) |x〉,
where l(x) =

⊕

j∈F d jx j and q(x) =
⊕

j,k∈F, j<k c jkx jxk ⊕
⊕

j c jx j with all coefficients taking values in

Z2.

As y mod 2 = y2 mod 4 for all y ∈ Z, we have

⊕

j∈F

d jx j =

(

∑
j∈F

d jx j

)2

mod 4 =

(

∑
j∈F

d jx j +2 ∑
j,k∈F, j<k

d jdkx jxk

)

mod 4,

where we have used the fact that d j,x j ∈ Z2 for all j and hence (d jx j)
2 = d jx j. We can thus write

∑
x∈A

il(x)(−1)q(x) |x〉= ∑
x∈A

ip(x) |x〉 ,
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where

p(x) = ∑
j∈F

d jx j +2

(

∑
j,k∈F, j<k

c jkx jxk +∑
j

c jx j

)

+2 ∑
j,k∈F, j<k

d jdkx jxk

= ∑
j∈F

(d j +2c j)x j +2 ∑
j,k∈F, j<k

(c jk +d jdk)x jxk

Now, r j := (d j +2c j)∈Z4. The coefficient s jk := c jk+d jdk could take value 2, but as p is in the exponent

of i and s jk is multiplied by 2, we may without loss of generality replace it with s jk := c jk ⊕d jdk so that

s jk ∈ Z2.

Conversely, we can find functions l and q from p by setting d j := r j mod 2, c j := 1
2
(r j − d j), and

c jk := s jk ⊕d jdk. Thus, by uniqueness of l and q, the phase polynomial expression is also unique.

B An example illustrating Lemma 3.8

Consider the following phase-polynomial form diagram from Example 3.7, where we have numbered

the qubits from top to bottom.

π
2

π

1

2

3

4

Following the procedure from Lemma 3.8, we construct the state corresponding to this diagram. The

state will be expressed as ∑x∈A ip(x) |x〉, where p(x) = ∑ j∈F r jx j +2∑ j,k∈F, j<k s jkx jxk. Here, F is the set

of free variables, A is the affine space on which the state has support, and p(x) is the phase polynomial

with r j ∈ Z4 and s jk ∈ Z2 for all j,k ∈ F .

• The set F of free variables corresponding to this diagram is F = {x1,x2} since qubits 1 and 2 are

denoted by green spiders.

• The affine space A is defined by the following set of equations arising from the red spiders:

x3 = 1⊕ x1 x4 = x1 ⊕ x2 (3)

since qubit 3 has phase π (giving the constant 1 on the right-hand side) and is connected to qubit

1, while qubit 4 has phase 0 and is connected to both 1 and 2.

• For the linear terms in the phase polynomial, we get that r1 = 1 and r2 = 0 as the phase of x1 is π
2

and the phase of x2 is 0.

• For the quadratic terms in the phase polynomial, we have s12 = 1 as there is a Hadamard edge

connecting x1 and x2.

Combining these, the phase polynomial is p(x) = x1 +2x1x2. The state corresponding to the diagram is

therefore given by:

∑
x∈A

ix1+2x1x2 |x〉= ∑
x1,x2∈Z2

ix1(−1)x1x2 |x1x2(1⊕ x1)(x1 ⊕ x2)〉

= |0010〉+ |0111〉+ i |1001〉− i |1100〉

It is then quick to check that applying the procedure in Lemma 3.8 for constructing a diagram from a

state and a set of free variables gives back the original diagram.
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Instead, we will show how to construct the diagram corresponding to the same state with a different

set of free variables F = {x2,x3}. To do this, we first rewrite the affine space and the phase polynomial

in terms of the new free variables x2 and x3, and then apply the procedure for obtaining diagrams.

Choosing x3 to be free instead of x1, we rearrange the first equation of (3) and then substitute it into

the second to get:

x1 = 1⊕ x3 x4 = 1⊕ x2 ⊕ x3 (4)

Substituting into the phase polynomial yields p(x) = (1⊕ x3)+ 2(1⊕ x3)x2 where ⊕ denotes addition

modulo 2. Yet we want the phase polynomial to be computed modulo 4, since i4 = 1. Now, as y mod 2 =
y2 mod 4 for all y ∈ Z, and b2 = b for all b ∈ Z2, this can be rewritten to:

p(x) = (1⊕ x3)+2(1⊕ x3)x2 = (1+ x3)
2 +2(1+ x3)

2x2 = 1+2x2 +3x3 +2x2x3 (mod 4)

We thus have r2 = 2, r3 = 3, and s23 = 1. The constant term in the phase polynomial is irrelevant since

we are ignoring global scalars. Up to scalar factor, the full state is

∑
x2,x3∈Z2

i2x2+3x3+2x2x3 |(1⊕ x3)x2x3(1⊕ x2 ⊕ x3)〉 .

To construct the diagram corresponding to this state and set of free variables:

• We already have the equations for the dependent variables in terms of F = {x2,x3} in (4).

• Place a green spider with phase r2
π
2
= π for qubit 2 and a green spider with phase r3

π
2
= 3π

2
(or,

equivalently, −π
2

) for qubit 3. Each of the spiders is connected to one output wire.

• Place a red spider with phase π for qubit 1 and a red spider with phase π for qubit 4 since the

equations for both x1 and x4 contain a constant term. Again, each of the spiders is connected to

one output wire.

• Variable x1 depends on x3, so draw a plain wire between the spiders for qubits 1 and 3. Variable x4

depends on both x2 and x3, so draw plain wires between the spiders for qubits 2 and 4, as well as

between 3 and 4.

• As s23 = 1, draw a Hadamard edge connecting the green spiders corresponding to x2 and x3.

This yields the following diagram:

π

− π
2

π

π 1

2

3

4
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We establish a formal bridge between qubit-based and photonic quantum computing. We do this
by defining a functor from the ZX calculus to linear optical circuits. In the process we provide a
compositional theory of quantum linear optics which allows to reason about events involving multiple
photons such as those required to perform linear-optical and fusion-based quantum computing.

1 Introduction

Quantum optics has pioneered experimental tests of entanglement [1], nonlocality [2], teleportation [3],
quantum-key distribution [4], and quantum advantage [5]. These experiments ultimately rely on the
ability to process coherent states of photons in linear optical devices, an intractable task for classical
computers [6]. Recently, the potential of using linear optics for quantum computing has encouraged the
development of both hardware [7] and software [8, 9] for photonic technologies. The first proposal was
formulated by Knill, Laflamme and Millburn in 2001 [10]. Qubits are encoded in pairs of optical modes
and quantum computing may be performed using only linear optical elements and photon detectors.
Several improvements to the original scheme have been proposed in the literature [11, 12, 13]. Fusion
measurements were introduced by Browne and Rudolf [14]. They form the basic ingredient of a recent
proposal to achieve fault-tolerant quantum computation with photonic qubits [15].

String diagrams provide an intuitive language for quantum processes [16, 17, 18, 19, 20] and are
implicitly employed in quantum software packages such as tket [21], PyZX [22], lambeq [23], DisCoPy
[24], Quanhoven [25]. On the one hand, Coecke and Duncan [26] introduced the ZX calculus, a
graphical language for reasoning about qubit quantum computing, with applications in circuit-based [27],
measurement-based [28], and fault tolerant [29] quantum computing. The axioms of this calculus feature
a bialgebra structure governing the 𝑍 and 𝑋 qubit bases. On the other hand, Vicary and Fiore used the
symmetric (or bosonic) Fock space to study the quantum harmonic oscillator, and discovered a different
bialgebra structure on this infinite dimensional Hilbert space [30, 31]. These two foundational works
are hardly ever related in the literature, possibly because of the difference in state space cardinality.
However, it is well-known that photons in linear optics behave as quantum harmonic oscillators. Given
the developments in linear-optical quantum computing, a formal bridge should be established between
qubit-based and photonic QC. This would allow the construction of reliable software for compiling
quantum computations into photonic circuits.

In this paper, we provide such a bridge by defining a functor from the ZX calculus to linear optics. In
the process, we unify several results on the structure and combinatorics of quantum optical experiments.
We start by studying the category of linear optical circuits, with their classical interpretation in terms
of matrices or weighted paths (Sections 2). We then use the work of Vicary [30] to derive a functorial
model for bosonic linear optics. Our first contribution is an explicit proof that this model is equivalent to
the model based on matrix permanents of Aaronson and Arkhipov [6] (Section 3). Second, we introduce
a graphical calculus QPath which allows to compute the amplitudes of linear optical events involving
multiple photons, by rewriting diagrams to normal form (Section 4). Finally, we construct a functor from

http://dx.doi.org/10.4204/EPTCS.394.6
https://creativecommons.org
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the ZX calculus to QPath and use it to describe the basic protocols used in linear-optical and fusion-based
quantum computing (Section 5).

Related work Graphical approaches of linear optics are widespread in the literature. Notable examples
are the matchgates introduced by Valiant [32], corresponding to fermionic linear optics [33], whose
amplitudes are computed by finding the perfect matchings of a graph. Graph-theoretic methods are
also widely used in bosonic linear optics [34, 35]. There are strong links between linear optics and
categorical logic. Blute et al. [36] studied Fock space as exponential modality for linear logic. The
fermionic version of the Fock space has been studied in [37], it forms the W core of the ZW calculus
introduced by Coecke, Kissinger and Hadzihasanovic [38, 39, 40]. More recently, there has been work
on a diagrammatic calculus for reasoning about polarising beam splitters for quantum control [41], an
informal essay describing bosonic linear optics with category theory [42], and a complete rewriting
system for the single photon semantics of linear optical circuits [43]. The ZX calculus has also been used
to describe the fault-tolerant aspects of fusion-based quantum computing [44].

2 Linear optical circuits

Linear optical circuits are generated by two basic physical gates. The beam splitter BS : 𝑎 ⊗ 𝑎 → 𝑎 ⊗ 𝑎

acts on a pair of optical modes, and may be implemented using prisms or half-silvered mirrors. The
phase shift S(𝛼) : 𝑎 → 𝑎 acts on a single mode and has a single parameter 𝛼 ∈ [0,2𝜋]. We depict them:

, 𝛼

Linear optical circuits are obtained from these gates by composing them vertically and horizontally. They
form a set LO, which has the structure of a free monoidal category, i.e. circuits can be composed in
sequence or in parallel.

Definition 2.1. The classical interpretation of LO is given by a monoidal functor U : LO → Mat⊕ into
the category of matrices over the complex numbers, where ⊕ is the direct sum of vector spaces. On
objects U is defined by U(𝑎) = C. On arrows we have:

U(S(𝛼)) = (𝑒𝑖𝛼)

U(BS) = 1
√

2

(
𝑖 1
1 𝑖

)
where we use one standard interpretation of the beam splitter [45].

The Mach-Zehnder interferometer is obtained as the following composition:

=

2𝛼 𝛽

The classical interpretation of this diagram is then given by:

MZI(𝛼, 𝛽) = 𝑖𝑒𝑖𝛼
(
−𝑒𝑖𝛽sin(𝛼) cos(𝛼)
𝑒𝑖𝛽cos(𝛼) sin(𝛼)

)



G. de Felice & B. Coecke 85

MZIs may be used to parametrize any unitary map on 𝑚 modes. They are the basic building blocks
of integrated nanophotonic circuits currently being produced [7]. The first architecture for a universal
multiport interferometer was proposed by Reck et al. [46] and consists of a mesh of MZIs. It was later
simplified by Clements et al. into a grid-like architecture, reducing the depth from 𝑑 = 2𝑚−3 to 𝑑 = 𝑚

and thus the probability of photon loss [47].

Reck et al. Clements et al.

Using one of these architectures, we have a parametrized circuit 𝑐(𝜃) :𝑚→𝑚 ∈ LO, where the parameters
𝜃 correspond to phases 𝛼, 𝛽 of the Mach-Zehnder interferometers making up the chip. As shown in
both[46] and [47], for any unitary 𝑈 : C𝑚 → C𝑚, there is a configuration of parameters 𝜃 such that
U(𝑐(𝜃)) =𝑈. We may restate their results in our notation.
Proposition 2.1 (Universality). [46, 47] For any 𝑚 ×𝑚 unitary 𝑈, there is a circuit 𝑐 : 𝑚 → 𝑚 in LO
such that U(𝑐) =𝑈.

In classical light experiments, we can measure the energy or intensity of an electromagnetic wave
𝐸 = 𝐸0𝑒

𝑖 (𝑘𝑥−𝜔𝑡) where 𝑘 is the wavenumber, 𝜔 is the angular frequency and 𝐸0 is called the amplitude
[48]. The intensity is then given by the quadratic quantity 𝐼 = 𝑐

2 𝜖0𝐸
2
0 where 𝜖0 is the permittivity of free

space and 𝑐 is the speed of light. The intensity is thus proportional to the Born rule 𝐼 ∝ ‖𝐸 ‖2. Using the
Born rule and the classical interpretation of LO, we may compute the output distribution of a photonic
chip 𝑐 ∈ LO with 𝑚 spatial modes, when the input is a classical or incoherent beam of light. Suppose the
input intensities of light are 𝐼 ∈ R𝑚. One may assume

∑𝑚
𝑖=1 𝐼𝑖 = 1. Then the intensities 𝐽 at the output of

an interferometer 𝑐 ∈ LO are given by:
𝐽 = ‖U(𝑐)‖2𝐼

where juxtaposition denotes matrix multiplication and the norm squared ‖.‖2 is applied entry-wise. Note
that ‖U(𝑐)‖2 is a doubly stochastic matrix since U(𝑐) is unitary.
Example 2.1 (Classical light). The intensities at the output of the beam splitter BS on any normalised
input 𝐼 are 𝐽 = ( 1

2 ,
1
2 ) since:

‖BS‖2 =

( 1
2

1
2

1
2

1
2

)
The Mach-Zehnder interferometer yields the following stochastic matrix:

‖MZI(𝛼, 𝛽)‖2 =

(
sin(𝛼)2 cos(𝛼)2

cos(𝛼)2 sin(𝛼)2

)
The reflection and transmission coefficients for light intensities are given by 𝑅 = sin(𝛼)2 and𝑇 = sin(𝛼)2

with 𝑅 +𝑇 = 1. Thus, if we input a beam of incoherent light on the left leg 𝐼 = (1,0), we will observe the
distribution 𝐽 = (𝑅,𝑇) in the output.

We have seen that linear optical circuits have a classical interpretation as complex-valued matrices.
We now give a graph-theoretic interpretation of these circuits, using a syntactic category for counting
paths. The classical Path calculus has the following generators:

, 𝑟, ,, , (1)
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denoted respectively 𝛿, 𝜖 , 𝜇, 𝜂, 𝜎 and 𝑟 . Path diagrams are obtained by composing these generators
horizontally or vertically. Two Path diagrams are equal if we can rewrite from one to the other using the
rules defined in Figure (1).

=

𝑥

=

𝑦

𝑥 + 𝑦 𝑥
=

𝑦 𝑥 · 𝑦

𝑥
=

𝑥

𝑥

, =

𝑦

𝑦

𝑦

,

= = ==

= , =

=
𝑥

=
𝑥,

Bialgebra

(Co)unit

Additive law Multiplicative law

Homomorphisms

= =,

= , =

(Co)copy

(Co)associativity

(Co)commutativity

=

.

, ,

,

,

,

,

,

,

,

,

,0 = 1
=

Figure 1: Axioms of the Path calculus

In categorical terms, we may define Path as the PROP generated by a bialgebra (𝛿, 𝜖, 𝜇,𝜂) together
with endomorphisms 𝑟 : 1 → 1 with a semiring structure 𝑟 ∈ S. Throughout this paper we fix S = C
although our main results can be generalised to any semiring. This calculus is folklore in category theory
and was first studied by Pirashvili [49]. Bonchi, Sobocinski and Zanasi used it to model signal flow
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graphs [50]. We can interpret Path in the monoidal category of matrices with direct sum.
Proposition 2.2. There is a monoidal functor C : Path → Mat⊕.

Proof. C is given on objects by C(𝑎) = 1 and on the generators (1) by:

C(𝛿) =
(
1
1

)
, C(𝜖) = () , C(𝜇) =

(
1 1

)
, C(𝜂) = () , C(𝑟) =

(
𝑟
)
, C(𝜎) =

(
0 1
1 0

)
.

where C(𝜖) = () : 1 → 0 and 𝐶 (𝜂) = () : 0 → 1 are the unique morphisms of that type in Mat⊕. It is easy
to check that all the relations in Figure 1 are satisfied by C. �

Moreover, there is a functor turning linear optical gates into Path diagrams, representing their
underlying matrix:

↦→

𝑒𝑖𝛼
𝛼

↦→

−→LO Path𝐹 :

1√
2

𝑖√
2

𝑖√
2

1√
2

Proposition 2.3. The classical interpretation of linear optics factors through the Path calculus, i.e. the
functor 𝐹 : LO → Path defined above satisfies U = C ◦𝐹.

The rewrite rules of Path allow to reduce any diagram to a normal form, which carries the same data
as a weighted bipartite graph. This normal form can be reached by the following (pseudo) algorithm:

1. remove all possible instances of 𝜂 : 0 → 1 and 𝜖 : 1 → 0 by using the (co)unit and (co)copy laws
repeatedly.

2. apply the bialgebra law, together with homomorphism and multiplicative laws, until all instances
of the comonoid 𝛿 precede all instances of the monoid 𝜇,

3. apply the additive rule to contract parallel edges.
As an example, the following equation holds in Path, the normal form procedure going from left to right.

=

where the thick wires carry the endomorphism 2 : 1 → 1. Computation of the weights on the resulting
graph is equivalent to the block-diagonal matrix multiplication defined by C. This is stated formally as
the following result.
Proposition 2.4 (Completeness). The axioms of Path are complete for Mat⊕, i.e. C : Path → Mat⊕ is
a monoidal equivalence.

Proof. The normalisation procedure is described above, see also [50, Proposition 1]. �
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3 Fock space and permanents

Processing bosonic particles, such as photons, with linear optical devices gives rise to statistics that are
hard to simulate classically [6]. In this section we give an interpretation of linear optical circuits, derived
from [30], in terms of free and symmetric Fock space functors F ,B : Mat⊕ → Vect⊗. We show that this
characterisation is equivalent to the model introduced in [6].

Consider a box containing particles. Assume that the space of states of a single particle is given by a
Hilbert space 𝐻. The free Fock space is defined as follows:

F (𝐻) =
∞⊕
𝑛=0

𝐻⊗𝑛

where ⊗ is the usual tensor product and ⊕ the direct sum. F (𝐻) describes the state space of a given
number of distinguishable particles indexed by 𝑛. Given a basis 𝑋 of modes such that 𝐻 = C𝑋 , we have
that:

F (C𝑋) ' 𝑙2(𝑋∗)

where C𝑋 denotes the free vector space space with basis 𝑋 , 𝑋∗ is the set of lists over 𝑋 and 𝑙2 is
the canonical Hilbert space construction defined in [51]. Thus for 𝑛 particles in 𝑚 modes we have
F𝑛 (C𝑚) = (C𝑚)⊗𝑛 ' C( [𝑚]𝑛) the basis states [𝑚]𝑛 are given by lists of length 𝑛 using 𝑚 distinct
symbols.

Proposition 3.1. The free Fock space can be extended to a functor F : Mat⊕ → Vect⊗ defined on the
𝑛-particle sector by F𝑛 (𝐴) = 𝐴⊗𝑛 for matrices 𝐴.

Proof. This follows by functoriality of tensor ⊗ and biproduct ⊕. �

Now suppose that the particles in the box are indistinguishable. The state space of the system will
then be described by the symmetric or bosonic Fock space, defined as follows:

B(𝐻) =
∞⊕
𝑛=0

𝐻 ⊗̂𝑛

where ⊗̂ is the quotient of the tensor product by the equivalence relation 𝑥⊗̂𝑦 = 𝑦⊗̂𝑥, which ensures that
the bosons are indistinguishable. One may show that B(C𝑋) ' 𝑙2(N𝑋 ), i.e. the bosonic Fock space
over a set of modes 𝑋 is spanned by the basis states of occupation numbers. The 𝑛-particle sector of the
bosonic Fock space B𝑛 (𝐻) is the 𝑛-th component in the direct sum above. When 𝐻 = C𝑚 has dimension
𝑚, we have 𝑛 indistinguishable particles in 𝑚 possible modes. The basis states of B𝑛 (𝐻) are given by:

Φ𝑚,𝑛 = { (𝑠1, . . . , 𝑠𝑚) |
𝑚∑︁
𝑖=1

𝑠𝑖 = 𝑛 , 𝑠𝑖 ∈ N } ⊆ N𝑚

Note that |Φ𝑚,𝑛 | =
(𝑚+𝑛−1

𝑛

)
and B𝑛 (𝐻) = 𝐻 ⊗̂𝑛 = C(Φ𝑚,𝑛). Let us compare the basis states for distin-

guishable and bosonic particles. There is a family of linear maps 𝛼𝐻 : F (𝐻) → B(𝐻) defined on the
basis states of the 𝑛-particle sector 𝑋 ∈ [𝑚]𝑛 by:

𝛼(𝑋) =
√︄

𝑛!∏𝑚
𝑗=1 𝑎(𝑋) 𝑗!

|𝑎(𝑋)〉
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where 𝑎 : [𝑚]𝑛 →Φ𝑚,𝑛 is defined by 𝑎(𝑋) 𝑗 = |{ 𝑖 |𝑋𝑖 = 𝑗 }| for 𝑗 ∈ [𝑚]. Note that the normalisation factor
is equal to the size of the pre-image 𝑎−1(𝑎(𝑋)). Let us write the map 𝛼† explicitly:

𝛼† |𝐼〉 =
√︂

𝑁𝐼

𝑛!

∑︁
𝑋 ∈𝑎−1 (𝐼 )

|𝑋〉

where 𝑁𝐼 =
∏𝑚

𝑗=1 𝐼 𝑗!. We can now use 𝛼 to define the action of B on arrows.

Proposition 3.2. [30] The bosonic Fock space can be extended to a strong monoidal functor B : Mat⊕ →
Vect⊗ defined on arrows 𝐴 : 𝑚 → 𝑘 by:

B𝑛 (𝐴) = 𝐴 ⊗̂𝑛 = 𝛼𝐴⊗𝑛𝛼†

and satisfying B(𝐴⊕ 𝐵) = B(𝐴) ⊗ B(𝐵).

Proof. Functoriality follows from naturality of 𝛼†𝛼 [30, Lemma 6.6]. B is moreover strong monoidal:

B(C𝑋 ⊕C𝑌 ) ' B(C(𝑋 +𝑌 )) ' 𝑙2(N𝑋+𝑌 ) ' 𝑙2(N𝑋 ×N𝑌 ) ' B(C𝑋) ⊗ B(C𝑌 )

�

We can use the bosonic Fock space to define a functorial model for linear optics.

Definition 3.1 (Functorial model). The functorial interpretation of linear optics is given by the compo-
sition B : LO U−−→ Mat⊕

B−→ Vect⊗. Given a chip 𝑐 : 𝑚 → 𝑚 ∈ LO, the probability of observing output
state 𝐽 ∈ Φ𝑚,𝑛 on input 𝐼 ∈ Φ𝑚,𝑛 is given by:

𝑃B
𝑐 (𝐽 |𝐼) = ‖〈𝐽 | B(𝑐) |𝐼〉‖2 =



〈𝐽 |𝛼U(𝑐)⊗𝑛𝛼† |𝐼〉


2

Aaronson and Arkhipov [6] introduced a formal model for linear optics based on matrix permanents.

Definition 3.2 (Permanent model [6]). Given a chip 𝑐 : 𝑚→𝑚 ∈ LO, the probability of observing output
state 𝐽 ∈ Φ𝑚,𝑛 on input 𝐼 ∈ Φ𝑚,𝑛 is given by:

𝑃𝑐 (𝐽 |𝐼) =
1

𝑁𝐼𝑁𝐽



Perm(U(𝑐)𝐼 ,𝐽 )


2

where 𝑁𝑆 =
∏𝑚

𝑗=1 𝑆 𝑗!, Perm denotes the matrix permanent, and𝑈𝐼 ,𝐽 is the 𝑛×𝑛 matrix obtained from an
𝑚×𝑚 matrix 𝑈 as follows. We first construct the 𝑚×𝑛 matrix 𝑈𝐽 by taking 𝐽 𝑗 copies of the 𝑗 th column
of 𝑈 for each 𝑗 ≤ 𝑚. Then we construct 𝑈𝐼 ,𝐽 by taking 𝐼𝑖 copies of the 𝑖th row of 𝑈𝐽 .

We give an explicit proof that the models introduced above are equivalent, although the argument can
be traced back to Fock [52].

Theorem 3.1. The functorial model of linear optics is equivalent to the permanent model. Explicitly, for
any 𝑚×𝑚 unitary 𝑈 and basis states 𝐼, 𝐽 ∈ Φ𝑚,𝑛

〈𝐽 | B(𝑈) |𝐼〉 =
Perm(𝑈𝐼 ,𝐽 )√

𝑁𝐼𝑁𝐽
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Proof. We start by expanding the left-hand side:

〈𝐽 | B(𝑈) |𝐼〉 = 〈𝐽 |𝑈 ⊗̂𝑛 |𝐼〉 = 〈𝐽 |𝛼𝑈⊗𝑛𝛼† |𝐼〉 = (𝛼† |𝐽〉)†𝑈⊗𝑛 (𝛼† |𝐼〉)

=
©­«
√︂

𝑁𝐽

𝑛!

∑︁
𝑌 ∈𝑎−1 (𝐽 )

〈𝑌 |ª®¬𝑈⊗𝑛 ©­«
√︂

𝑁𝐼

𝑛!

∑︁
𝑋 ∈𝑎−1 (𝐼 )

|𝑋〉ª®¬
=

√
𝑁𝐽𝑁𝐼

𝑛!
��𝑎−1(𝐼)

�� ∑︁
𝑌 ∈𝑎−1 (𝐽 )

〈𝑌 |𝑈⊗𝑛 ��𝑋̂〉
=

√
𝑁𝐽𝑁𝐼

𝑛!
𝑛!
𝑁𝐼

1
𝑁𝐽

∑︁
𝜎∈𝑆𝑛

𝑛∏
𝑖=1

𝑈𝑋̂𝑖 ,𝑌̂𝜎 (𝑖)

=
1

√
𝑁𝐼𝑁𝐽

Perm(𝑈𝐼 ,𝐽 )

where 𝑋̂ ∈ 𝑎−1(𝐼) and 𝑌 ∈ 𝑎−1(𝐽) are any chosen representatives. Note that this choice is irrelevant since
we sum over all permutations, and so in particular we can set (𝑈𝐼 ,𝐽 )𝑖 𝑗 =𝑈𝑋̂𝑖 ,𝑌̂𝑗

, yielding the last step. �

Example 3.1 (Hong-Ou-Mandel). Consider the matrix of the beam splitter:

𝑈 =
1
√

2

(
𝑖 1
1 𝑖

)
Suppose we input one boson in each port 𝐼 = (1,1). There are three possible outcomes 𝐽 = (2,0), (1,1), (0,2).
We may determine the amplitudes of the different outcomes by computing permanents:

Perm

(
𝑖 𝑖

1 1

)
= 2𝑖 Perm

(
𝑖 1
1 𝑖

)
= 0 Perm

(
1 1
𝑖 𝑖

)
= 2𝑖

The component for outcome (1,1) is 0. We deduce that the probability of observing one boson in each
output port is 0. Thus interference ensures that the bosons bunch together at the output of the device, a
phenomenon known as the Hong-Ou-Mandel effect.

4 Quantum paths and matchings

In the previous section we have shown that bosonic linear optics can be formulated equivalently in terms
of Fock space and permanents. Aaronson and Arkhipov [6] used the second definition to show that
sampling from a linear optical chip with bosonic particles is classically hard: if a classical computer can
compute an additive approximation of matrix permanents then the polynomial hierarchy collapses. While
this computational definition is useful for proving complexity results, we want to develop a diagrammatic
syntax for programming linear optical circuits. We do this by developing a quantised calculus QPath
which allows us to compute the amplitudes of linear optical events involving multiple photons, using
simple rewrite rules. In order to quantise the Path calculus, we add creation and annihilation of particles
as generators.

QPath = Path+
{

,
|𝑛〉 |𝑛〉 }

𝑛∈N+

This yields a free monoidal category where we can represent linear optical processes with state prepa-
rations (creation) and post-selection (annihilation). Before developing a calculus around the QPath
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generators, the first thing to note is that QPath is equivalent to Path if we interpret it classically, i.e.
functors QPath → Mat⊕ are in bijective correspondence with functors Path → Mat⊕. In fact, black and
white nodes are necessarily equal in Mat⊕, since the unit 0 is both a terminal and an initial object. In
order to interpret black nodes, representing modes occupied by photons, we need to use the bosonic Fock
space functor.

The quantum interpretation B : QPath → Hilb⊗ is obtained on the Path generators (1) by composing
C : Path → Mat⊕ with the bosonic Fock space functor B : Mat⊕ → Hilb⊗. The generating object 𝑎 of
QPath is mapped to the free Hilbert space 𝑙2(N). The comonoid 𝛿 : 1 → 2 is mapped as follows:

↦→ B(𝛿) : |𝑛〉 ↦→
𝑛∑︁

𝑘=0

(
𝑛

𝑘

) 1
2

|𝑘〉 |𝑛− 𝑘〉 ,

while the monoid 𝜇 is mapped to the dagger B(𝜇) = B(𝛿)†. White nodes are mapped to |0〉, 〈0|,
indicating that the mode is empty. Endomorphisms 𝑟 : 1 → 1 in QPath are interpreted as follows:

𝑟 ↦→ B(𝑟) : |𝑛〉 ↦→ 𝑟𝑛 |𝑛〉

Finally, the black nodes in QPath are mapped respectively to |𝑛〉 and 〈𝑛|, indicating that the mode is
occupied by 𝑛 particles. Hadzihasanovic [40] showed directly that (𝜇, |0〉 , 𝛿, 〈0|) forms a bialgebra. In
fact all the axioms that hold in the classical interpretation C also hold in the bosonic interpretation B
since it is defined by functor-composition. However, black nodes allow to express some processes which
were not available in the classical semantics, as we will see below.

The axioms of QPath include all the axioms of Path, given in Figure 1. The only additional rules
we will need to reason with black nodes are the following:

= + = +,

Branching

= 0= 𝑟 ,𝑟

Scalar

=

Normalisation

Bone

,...
𝑛 =

|𝑛〉
= ...𝑛

|𝑛〉
.√

𝑛!
√
𝑛!

,

,

Figure 2: Additional axioms for the QPath calculus

It is easy to show that the axioms above are sound for the bosonic interpretation B.

Example 4.1 (Creation/Annihilation). The creation and annihilation operators on single modes have the
following representation as QPath diagrams.

,

Creation Annihilation
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We recover the commuting relations for these operators using the branching law:

= = +

= +

Example 4.2 (Hong-Ou-Mandel). We compute the amplitude of the beam splitter BS on input/output
𝐼 = (1,1) = 𝐽:

𝑖

𝑖

= +

𝑖

𝑖

= = 0−1+1

and we recover the zero amplitude for this event.

We interpret a closed diagram 𝑑 : 0 → 0 ∈ QPath as an event where particle creations are matched to
particle annihilations. Given a linear optical circuit 𝑐 : 𝑚 → 𝑚 ∈ LO together with a pair of states 𝐼, 𝐽 ∈
Φ𝑚,𝑛 of occupation numbers, we may construct a closed diagram 𝑑 = 〈𝐽 |𝐹 (𝑐) |𝐼〉 ∈ QPath, corresponding
to the event that we observe output 𝐽 when we input 𝐼 in a chip 𝑐. Using only the Path axioms together
with the normalisation rule, we can rewrite 𝑑 as in the following example.

=

𝑐

𝑏

𝑎
𝑎

|2〉

|2〉

=

|2〉

|2〉

𝑐

𝑏

=

= 𝑎

|2〉

|2〉

𝑏𝑎 + 𝑐
𝑎

𝑏𝑎 + 𝑐

𝑏𝑎 + 𝑐

𝑎

|2〉

|2〉

𝑐

𝑏𝑎

1
2

where we use the following syntactic sugar: := :=, . At the end of the rewriting
process, we obtain a weighted bipartite graph. Let us denote this graph by 𝐺𝑑 = (𝑁,𝐸) where 𝑁 is the
set of nodes and 𝐸 ⊆ 𝑁2 is the set of edges, together with 𝑤 : 𝐸 → C an assignment of complex weights
to every edge. Note that 𝐺 is an undirected graph, i.e. (𝑖, 𝑗) ∈ 𝐸 =⇒ ( 𝑗 , 𝑖) ∈ 𝐸 .

Proposition 4.1 (Normal form). Any closed diagram 𝑑 ∈ QPath can be reduced to a pair (𝐺𝑑 , 𝑁𝑑),
where 𝐺𝑑 is weighted bipartite graph and 𝑁𝑑 is a normalisation factor, using the axioms in Figure 1 and
the normalisation law.

Proof. The normal form procedure exemplified above is the same as for Path, with the addition of the
use of the normalisation law which determines 𝑁𝑑 . �

Once 𝑑 ∈ QPath has been reduced to a weighted bipartite graph, we may further reduce it down to a
scalar value by using the branching and scalar laws. Most terms obtained by branching will cancel out
because of the first scalar law. The remaining terms are found to be in one-to-one correspondence with
the perfect matchings of 𝐺𝑑 . Recall that a matching for a graph 𝐺 is a subset of the edges 𝑀 ⊆ 𝐸 such
that no node is contained in two edges of 𝑀 . A perfect matching is a matching 𝑀 such that every node
is contained in an edge of 𝑀 .
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Theorem 4.1 (Matchings). For closed diagrams 𝑑 : 0 → 0 ∈ QPath, the rewrite rules of QPath are
complete for the bosonic intepretation B : QPath → Hilb⊗, which moreover satisfies:

B(𝑑) = 𝑁𝑑

∑︁
𝑀

∏
𝑒∈𝑀

𝑤𝑒 (2)

where 𝑀 ranges over the perfect matchings of the graph 𝐺𝑑 .

Proof. We need to show that if two closed diagrams 𝑑, 𝑑 ′ have the same intepretation B(𝑑) = B(𝑑 ′) ∈ C,
then we can rewrite from 𝑑 to 𝑑 ′ using the axioms of QPath. To see this, note that for any closed
diagram 𝑑, the branching law turns the graph 𝐺𝑑 into a sum of 𝑛𝑛 terms, where 𝑛 is the number of
photon preparations. We can cancel most of these terms using the “bone” law, which leaves us with 𝑛!
terms corresponding to the perfect matchings of 𝐺𝑑: each photon preparation is matched to a photon
annihilation. Finally we reduce each of the terms to a complex value using the scalar law. It is a standard
result in graph theory that the sum of weights of perfect matchings of a graph is equal to the permanent
of its adjacency matrix, yielding (2). Therefore we can use the axioms of QPath to reduce both 𝑑 and
𝑑 ′ to the same scalar value in C. Since all the rules of QPath are invertible we can rewrite from 𝑑 to 𝑑 ′,
yielding completeness. We do not currently know if the rules are complete also for “open” diagrams. �

Example 4.3. For a generic event 𝑑 with three photons in QPath, the normal form procedure gives us a
weighted bipartite graph 𝐺𝑑 with input and output of size 3, or equivalently we have a 3×3 adjacency
matrix of weights. Using the branching law, we reduce the diagram to the following sum:

= + + + ++

equivalently, we have just split the graph into its perfect matchings. Now we use the scalar laws to reduce
each term to a complex number. Equivalently, we multiply the weights assigned to the edges on each
matching. Finally we sum those terms to obtain the amplitude. Equivalently, we have computed the
permanent of the adjacency matrix of 𝐺𝑑 .

5 Linear-optical quantum computing

Our aim in this section is to describe how linear optics is used for qubit quantum computation. We will
do this by giving a complete mapping from the ZX calculus to QPath. We start by introducing the
ZX calculus on qubits. The dual-rail encoding allows to encode a logical qubit as a photon in a pair of
spatial modes. We show how all single qubit unitaries may be applied using simple linear optical devices.
We describe fusion measurements as diagrams in QPath and show how they can be used, along with
polarising beam splitters, to construct Bell states and more general cluster states.

ZX calculus. The ZX calculus is a graphical language for reasoning about qubit quantum computation.
It has strong links with both circuit-based and measurement-based models of quantum computing [28].
The ZX calculus is generated by the following basic operations:

ZX generators

, ,,,
𝛼

,
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We will also use the following syntactic sugar for 𝑋 states and phases:

𝛼𝛼
:=,:=

In this section we are not really interested in the rewrite rules for ZX diagrams, rather in their interpretation
as linear maps between qubits. We will give this interpretation as we map each ZX generator to post-
selected optical circuits in QPath, and refer to [53, 20] for more in-depth discussions.

Dual rail qubits. The dual-rail encoding can be thought of as a translation between polarized and
spatial modes of photons. The polarization states of a single photon are spanned by the basis states
|𝐻〉 , |𝑉〉 for horizontal and vertical polarization, and thus naturally form a qubit. The dual-rail encoding
consists in encoding a polarised mode of light as a pair of spatial modes in LO under the mapping
|𝐻〉 ↦→ |0,1〉 , |𝑉〉 ↦→ |1,0〉. The 𝑍 basis of a dual rail qubit may be expressed as a pair of QPath
diagrams:

, { |𝐻〉 , |𝑉〉 },
𝜋

The 𝑍 and 𝑋 effects correspond to the following diagrams:

{〈𝐻 | , 〈𝐻 | + 〈𝑉 |}, ,

The 𝑍 effect may be implemented by post-selecting a photon detector, the 𝑋 effect by precomposition
with a beam splitter. 𝑍 phases on dual-rail qubits are obtained as follows:

𝛼

𝑒𝑖𝛼

|𝐻〉 ↦→ |𝐻〉
|𝑉〉 ↦→ 𝑒𝑖𝛼 |𝑉〉

The rotations from the 𝑍 basis to the 𝑋 and𝑌 bases are given by the beam splitters BS𝐻 and BS respectively,
defined as follows:

|𝐻〉 ↦→ |𝐻〉 + |𝑉〉

|𝑉〉 ↦→ |𝐻〉 − |𝑉〉𝐻

=

|𝐻〉 ↦→ 𝑖 |𝐻〉 + |𝑉〉

|𝑉〉 ↦→ |𝐻〉 + 𝑖 |𝑉〉
=

𝜋
2

where we use the following syntactic sugar: := −1 := 𝑖, . We give the
encoding up to scalar factor which does not affect the logic of the mapping. For example, the hadamard
gate is technically 1√

2
BS𝐻 . In conjunction with 𝑍 phases, we can use it to obtain all single qubit unitaries

in dual rail encoding.

Example 5.1 (HOM). Using the beam splitters above, we obtain two versions of the Hong-Ou-Mandel
effect which are depicted graphically as follows:

= 0 =
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Fusion measurements. Fusion measurements are Bell measurements on dual-rail qubits. They corre-
spond to the linear map: |𝐻,𝐻〉 ↦→ |𝐻〉 , |𝑉,𝑉〉 ↦→ |𝑉〉 , |𝐻,𝑉〉 , |𝑉,𝐻〉 ↦→ 0, which is denoted as a green
spider with two inputs and one output in ZX, and is obtained on dual-rail qubits as the following diagram
in QPath.

|𝐻,𝐻〉 ↦→ |𝐻〉
|𝑉,𝑉〉 ↦→ |𝑉〉

To see that this measures the Bell basis, note that there must be exactly one photon in the two middle
modes. The input basis state in dual-rail encoding are { |0101〉 , |0110〉 , |1010〉 , |1001〉 } and this condition
is satisfied only by |1010〉 and |0101〉 which correspond respectively to |𝐻,𝐻〉 and |𝑉,𝑉〉.

Bell states. We engineer a representation of dual-rail bell states as QPath diagrams.

|𝐻,𝐻〉 + |𝑉,𝑉〉

We can check that this diagram corresponds to the bell state |𝐻,𝐻〉 + |𝑉,𝑉〉 by branching:

+ + + ++

and using the Hong-Ou-Mandel effect (Example 5.1). Similarly, the Bell state |𝐻𝐻〉 − |𝑉𝑉〉 may be
represented using blue edes as follows:

𝜋

|𝐻,𝐻〉 − |𝑉,𝑉〉

and we can check this using branching and HOM:

+ + +++

Note that there may be different equivalent representations of Bell states.

Polarising beam splitters. On bulk optics, the polarization states of photons can be acted upon using
wave plates, polarizing beam splitters (PBSs) and photon counting measurements. Wave plates are simply
𝑋 phase rotations, represented as red nodes in ZX. The PBS admits no description in ZX. It does however
have a simple interpretation in LO:

|𝐻,𝐻〉 ↦→ |𝐻,𝐻〉

|𝐻,𝑉〉 ↦→ |𝐻𝑉,0〉
|𝑉,𝑉〉 ↦→ |𝑉,𝑉〉

|𝑉,𝐻〉 ↦→ |0, 𝐻𝑉〉
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In combination with 𝑋 states and effects, polarising beam splitters can be used to perform post-selected
fusion measurements and their transpose:

〈𝐻,𝐻 | + 〈𝑉,𝑉 |

+ |𝐻𝑉,0〉 + |0, 𝐻𝑉〉

=

=
|𝑉,𝐻〉 + |𝐻,𝑉〉

+ 〈𝐻𝑉,0| + 〈0, 𝐻𝑉 |

As an application, the linear-optical protocol for generating Bell states demonstrated in [13] may be
described as a diagram using PBSs and ZX primitives:

↦→ =

− 𝜋
2

𝜋
2

†

We recover the diagram for the Bell state by reducing to normal form.

Spiders. The only missing ZX generator, which we need for a complete mapping ZX → QPath, is the
𝑍 copy spider. We may readily deduce its representation using a known equality in ZX:

|𝐻〉 ↦→ |𝐻,𝐻〉

|𝑉〉 ↦→ |𝑉,𝑉〉
=

Similarly, we may turn the input leg into an output using a second Bell state. This yields a protocol
for generating the dual-rail GHZ state using five ancillary photons. Note that the mapping is in no
way unique, and we may obtain several equivalent protocols by further twisiting the spider above. This
however increases the number of ancillary photons needed. As first shown in [14], any cluster state can
be obtained by performing additional fusion measurements.

Outlook

The theory in this paper is being implemented in DisCoPy [24], the Python library for monoidal categories.
DisCoPy already has a number of tools for qubit quantum computing, including interfaces with tket [21],
PyZX [22] and high-performance libraries for classical simulation. DisCoPy functors will allow to
compile qubit circuits and cluster states into linear optical circuits for efficient simulation with Perceval
[9] and future interfaces with photonic devices.
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Though the topic of causal inference is typically considered in the context of classical statistical

models, recent years have seen great interest in extending causal inference techniques to quantum

and generalized theories. Causal identification is a type of causal inference problem concerned with

recovering from observational data and qualitative assumptions the causal mechanisms generating

the data, and hence the effects of hypothetical interventions. A major obstacle to a theory of causal

identification in the quantum setting is the question of what should play the role of “observational

data,” as any means of extracting data at a locus will almost certainly disturb the system. Hence, one

might think a priori that quantum measurements are already too much like interventions, so that the

problem of causal identification trivializes. This is not the case. Fixing a limited class of quantum

instruments (namely the class of all projective measurements) to play the role of “observations,” we

note that as in the classical setting, there exist scenarios for which causal identification is impossi-

ble. We then present sufficient conditions for quantum causal identification, starting with a quantum

analogue of the well-known “front-door criterion” and finishing with a broader class of scenarios for

which the effect of a single intervention is identifiable. These results emerge from generalizing the

process-theoretic account of classical causal inference due to Jacobs, Kissinger, and Zanasi beyond

the setting of Markov categories, and thereby treating the classical and quantum problems uniformly.

1 Introduction

The problem of causal inference is to deduce from statistical correlations among variables something

about the causal mechanisms responsible for those correlations, where a causal mechanism is a process

that answers interventional queries. Although the majority of the work in the field of causal inference

has focused on classical, statistical models, it is interesting to consider causal inference problems in

the quantum setting as well, where quantum systems play the role of classical random variables. One

can ask, for example, whether it is possible for agents confronted with a recurring scenario involving

a pair of quantum systems to deduce using only certain limited operations whether the agents are in a

common-cause-type situation (e.g., accessing two parts of a quantum entangled state) or a cause-effect-

type situation (e.g., accessing the same system at two points in time). Ried et al. [16] presented a

solution to such an inference problem for specific scenarios involving two quantum systems, and raised

the problem of inference with larger collections of systems. Essentially what is sought is quantum

generalization of some of the theory of statistical causal inference, which has systematized much of the

business of combining qualitative knowledge of “causal structure” with quantitative data to characterize

causal influences between variables. This article accomplishes such generalization, using the logical

conception of causality presented in [12] to reveal the common process-theoretic underpinnings of causal

inference in both ordinary stochastic and quantum settings.

A theory of quantum causal inference requires first a mathematical model of quantum causal sce-

narios. Here, we will take a minimal notion of a quantum causal model consisting of a “circuit with

http://dx.doi.org/10.4204/EPTCS.394.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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holes,” i.e., a directed acyclic string diagram wherein some wires have gaps allowing agents to apply

local processes. The circuit can be seen as a second-order process, or comb [3], which maps local non-

deterministic processes to probabilities.

This notion of causal model is relatively weak in that unlike the one studied in [1] and [2], it doesn’t

seem to admit a relation of “complete common cause” whereby a single intervenable quantum system

can act as the sole source of correlations between two systems in its future. As a complete common

cause can be pictured in the classical setting as “copying” a random variable and using it as input to two

or more subsequent stochastic maps, it is difficult and somewhat subtle to make sense of a “complete

quantum common cause” in the absence of a physically meaningful process of cloning or broadcasting

quantum systems. Hence, it is interesting to see how much traction we can get on causal inference for

a class of models that don’t admit the explicit general representation of complete common causes. We

will show here that, in the case of the particular problem of quantum causal identification, we can get

relatively far without such a representation. We also recover, from an abstract perspective, results in

classical statistical causal inference.

Causal identification, in the classical case, refers to the problem of identifying the effects of (often

hypothetical) interventions on the basis of purely observational data [15]. In contrast to related problems

such as causal discovery, here the hypothesized causal structure of events–represented, e.g., by a directed

acyclic graph depicting the possible directions of causal influence between random variables–is known

in advance, but not the exact conditional probability distributions (or functional dependencies) governing

the influence of individual variables on each other. Even with the causal structure given in advance, this

problem can be highly non-trivial in the presence of confounding variables [15] or selection bias [8].

In generalizing to quantum causal identification, one needs to fix a notion that stands in the place of

“observation,” as it is impossible to extract any data from a quantum system without causing a distur-

bance, which in some sense is already an active intervention. Here, we fix the class of processes playing

the role of “observations” as local projective measurements, whereas “interventions” can be arbitrary

quantum instruments. The latter includes, for example, the process of discarding the incoming state of a

system and preparing a fixed new state, while the former does not.

While we do not intend to argue here that these notions of “observation” and “intervention” are fully

conceptually justified, we will give strong evidence instead that this kind of quantum causal identification

problem is interesting: we note that the problem can be impossible, then show that it becomes possible

when a causal structure satisfies certain criteria.

By analogy to the classical case, causal identification is defined to be impossible when a causal struc-

ture admits a pair of models that behave identically with respect to projective measurements, but differ-

ently under arbitrary interventions. Simple such pairs of models were mentioned in [16], and we give an

example. Our first new result is a quantum version of the front-door criterion for causal identifiability

[14]. This result is then generalized to a sufficient condition for identifiability that implies the quantum

analogues of multiple sufficient conditions in the statistical causal modeling literature, including some

cases covered by Galles and Pearl in [11] and by Tian and Pearl in [18]. The statements and proofs here

invoke diagrammatic technology presented in [5] and previously applied to causal inference by Jacobs,

Kissinger, and Zanasi [12], who indicated the possibility, realized in the present article, of “import[ing]

results from classical causal reasoning to the quantum case” by changing the concrete process theory in

which abstract causal diagrams are modeled.

Potential consequences of the work lie in multiple areas. With respect to applicable quantum infor-

mation science, the present work first of all describes how to identify certain interventional quantities in

quantum networks of certain shapes, without full tomography. In fact, our results indicate that the ab-

stract causal structure of a collection of quantum processes can sometimes be used to characterize those
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processes completely, even with limited interactions. As Ried et al. explained, quantum causal inference

schemes with limited operations “promise extensive applications in experiments exhibiting quantum ef-

fects” [16]. Our means of inference in scenarios involving unobserved common causes might apply

specifically to the problem of detecting non-Markovianity in quantum information processing [17].

This work may also have consequences for the theory of non-quantum statistical causal inference.

The process-theoretic presentation here, unifying classical and quantum causal identification, uncovers

the basic structures and procedures–comb factorization, informationally complete sets of states and ef-

fects, and process tomography–that underpin causal inference but are often masked by the details of

classical probability theory. The isolation of these rudiments should not only help guide the further

development of theories of causal inference for quantum and other special kinds of processes, but also

motivate continued research in ordinary statistical causal modeling using the logical and compositional

techniques of theoretical computer science.

Finally, we hope this work will contribute to the program aimed at answering questions in the foun-

dations of quantum physics by viewing them through the lens of causal modeling and inference [19]. In

order to draw foundational conclusions from our results, those pursuing such ideas will have to assess the

implications of the fact that projective measurement as “passive observation” defines a close quantum

analogue of the classical problem of causal identification with latent variable models.

2 Preliminaries

To treat classical probability and quantum theory on the same footing, we will use the language of process

theories [5] throughout. Process theories have been defined in slightly varying ways in the literature. Our

definition follows.

Definition 1. A process theory is a symmetric monoidal category (C ,⊗, I).

The concrete classical and quantum process theories of causal models studied in this work are each

equipped with a distinguished family of discarding morphisms dA : A → I for each object A, satisfying

dA⊗B = dA ⊗dB and dI = 1I .

To give a physical or computational interpretation to process theories, it is typical to refer to generic

morphisms f : A → B as processes, morphisms of the form ρ : I → A as states, and morphisms of the

form π : A → I as effects. Morphisms of the form λ : I → I are called numbers or scalars. Objects are

also called system-types.

Throughout the paper, we will adopt string diagram notation, where processes are depicted as boxes

and objects as wires. We depict discarding using a black dot.

f : A → B  f

A

B

A

ρ : I → A  ρ

A

π : A → I  
π

A

dA : A → I  

Note that the discarding maps in a process theory are not required a priori to satisfy any equations

aside from the basic compatibility with ⊗. They play an important role, however, in identifying cer-

tain families of well-behaved maps within a process theory. The most important such condition is the

following.
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Definition 2. A map f : A → B is called causal if dB ◦ f = dA, or diagrammatically:

f

A

B

=
A (1)

Intuitively, causality captures the fact that the only influence a map can have is on its “future,” i.e.,

its output. If the output is discarded, then the actual causal process that took place is irrelevant.

Our main examples of process theories are Mat[R+] and CPM, which contain (finite-dimensional)

classical probability theory and quantum theory, respectively.

Example 1. The process theory Mat[R+] has as objects natural numbers and as morphisms M : m → n

the n×m matrices whose entries are non-negative real numbers. The monoidal product is given by tensor

product of matrices (a.k.a. Kronecker product), whose unit is the 1× 1 matrix (1) : 1 → 1. Discarding

maps dn : n → 1 are the 1× n matrices (i.e. row vectors) consisting of all 1’s. Consequently, causal

states are column vectors of positive numbers whose entries sum to 1 (i.e., probability distributions),

and causal processes are matrices whose columns each sum to 1 (i.e., stochastic maps, equivalent to

conditional probability distributions with P(i| j) := Mi j).

Example 2. The process theory CPM has as objects finite-dimensional Hilbert spaces H ,K , ... and

as morphisms completely positive maps Φ : L(H ) → L(K ), where L(H ) is the algebra of operators

H → H . The monoidal product is again given by tensor product, whose unit is the identity map

on L(C) ∼= C. States ρ : C → L(H ) are fixed by a single positive operator ρ(1) ∈ L(H ) and causal

states correspond to trace-1 positive operators. More generally, causal processes are the trace-preserving

completely positive maps.

We will furthermore find it convenient to assume that each process theory has a (self-dual) compact

structure, meaning that every object A is equipped with a pair of maps ∪A : I → A⊗A and ∩A : A⊗A→ I,

called “cups” and “caps” respectively, satisfying the so-called yanking equations, which are depicted in

string diagram notation as follows:

= =

This structure enables us easily to represent higher-order maps as first order ones. For example, we

can represent a process that takes processes of type A → A′ and produces processes of type B → B′ as a

normal, first-order process f : B⊗A′ → A⊗B′. We then indicate its higher-order interpretation by draw-

ing f as a box with a “hole” in it, and use cups and caps to define “plugging” another box into that hole:

f

A′

A

B

B′

 f

B

A

A′

B′

(2) f

B

A

A′

B′

g :=

f

A′

A

A′

g

B

B′

(3)

In [12], the authors furthermore assumed the structure of a CDU category–a minor variation on the

notion of a Markov category [10]–which captures an abstract notion of probabilistic maps by assuming

every object carries a “copying” (a.k.a. “broadcasting”) map [6]. In particular, this structure allows one

to capture causal models based on Bayesian networks as certain functors between CDU categories.
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The famous no-cloning/no-broadcasting theorems of quantum theory, however, rule out a Markov-

like structure in the category CPM of quantum maps. Hence, we adopt a weaker notion of causal model,

consisting of a formal string diagram (i.e., a morphism in the free category over a signature) and an

interpretation of that diagram into a concrete process theory (of, e.g., probabilistic or quantum maps).

3 Interventional causal models

A causal model consists of two parts: (i) a formal string diagram capturing our causal hypotheses, and

(ii) an associated interpretation in a concrete process theory (i.e., Mat[R+] or CPM). We will also use

the word “model” to refer just to (ii): the interpretation in the concrete process theory gives a model of

(i) in a logical sense.

We define a formal string diagram as a morphism of a particular form in the free symmetric monoidal

category Free(Σ) over some signature Σ. For a fixed set of objects {X1, . . . ,Xn} in Σ, we call a diagram

D : X1 ⊗ . . .⊗Xn → X1 ⊗ . . .⊗Xn a circuit with holes if it is a morphism in the free symmetric monoidal

category and furthermore has the property that joining each input Xi to its corresponding output Xi yields

another morphism in the free SMC (i.e., it doesn’t introduce a directed cycle).

The intuition is that each of the input/output pairs is a “hole” in the diagram, which we call an

intervention locus, or simply locus (plural loci), where a local process can be plugged in. For example:

cb

z a

X1 X2

X3 X4

d

:=D

X1

X1

X2

X2

X3

X3

X4

X4

cb

z

a

X1 X2 X3 X4

d

X1 X2 X3 X4

 (4)

We require a locus’s input and output system-types to be identical, partly in order to accommodate the

special “trivial intervention,” which joins a locus’s input and output with an identity wire. More broadly,

statistical causal inference often involves considering a pair of instances of a single variable, with, e.g.,

one being observed and the other set by intervention. What is being represented is the same causal

relatum at two different “times,” before and after intervention.

We can now introduce a notion of causal model that is similar in spirit to that of [12], but no longer

relies on the CDU structure needed to capture Bayesian networks.

Definition 3. For any process theory C , an interventional causal model consists of a pair (D,Φ) where

D is a circuit-with-holes in Free(Σ), Φ is a causal process in C , and there exists a symmetric monoidal

functor F : Free(Σ)→ C such that F(D) = Φ.

When C = Mat[R+] we call (D,Φ) a classical interventional causal model, whereas when C =
CPM, we call it a quantum interventional causal model.

The shape of the abstract diagram D containing loci Xi and X j may prohibit models in which inter-

ventions at Xi can causally affect events at X j. Call locus X j a descendant of locus Xi in abstract diagram

D if and only if, when every input other than Xi and X j is joined to its corresponding output, the resulting

circuit has a path from input Xi (the wire leaving locus Xi) to output X j (the wire arriving at locus X j)

along which every traversal of a box is in the upward direction. Thus in the example depicted in 4, X4
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is a descendant of X2, but not of X3. If locus X j is not a descendant of locus Xi in abstract diagram D,

then for any model of D, for every fixed set of causal processes plugged into the loci other than Xi and

X j, plugging a causal process into locus Xi yields a process, with only input/output pair X j, that does

not depend on the choice of causal process at Xi. In other words, X j being a non-descendant of Xi in D

captures the hypothesis that interventions at locus Xi cannot possibly affect events at X j, and the problem

of identifying the causal influence of Xi on X j is uninteresting. Note finally that if Xi is a descendant of

X j, then X j is not a descendant of Xi, and the uninteresting identification scenario obtains. We therefore

lose nothing by focusing henceforth on the case wherein Xi is not a descendant of X j.

Inferring the “causal influence” of one locus on another will mean inferring, from whatever data

are available, the value of a certain process determined by the causal model. That process, called an

interventional channel between the two loci, encodes the quantitative causal relation between the loci

according to the model at hand.

Definition 4. In a classical or quantum interventional causal model with loci X1, . . . , Xn, the interven-

tional channel from Xi to X j, where Xi is a non-descendant of X j, is the process obtained by filling in all

loci other than Xi and X j with identity interventions, and inputting a normalized, i.e., causal, state to the

wire leaving locus X j.

The interventional channel–whose definition as above using an unspecified causal state is made pos-

sible by the assumption that Xi is a non-descendant of X j–is a process of the form

Xi

X j

which maps (possibly non-deterministic) intervention outcome– f : Xi → Xi at locus Xi to the state on

system X j resulting from the combination of intervention f at Xi and trivial (identity) interventions at

all loci other than Xi and X j. In particular, the interventional channel gives the consequence for X j of

forcibly setting the state leaving Xi to ψ :

X j

ψ

Thus the interventional channel yields what in ordinary statistical causal inference is called an “inter-

ventional distribution” of X j due to “surgical intervention” at Xi. Moreover, one can compose the in-

terventional channel with arbitrary causal processes Xi → Xi to evaluate the influences of so-called soft

interventions [7], for which the state leaving a locus depends on the incoming state.

Thus the shift in focus from distributions to channels, in line with a general trend toward channel-

based accounts of probabilistic reasoning [13, 4] and suggested for the present work by the difficulties of

defining and reasoning with quantum analogues of conditional probability distributions, has definite ad-

vantages for a theory of causal inference. The single process called the interventional channel supports

uniform reasoning about the consequences of all kinds of interventions, including soft interventions,
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which are likely to be the norm in applications to quantum information processing, where the interven-

tions under consideration may be, e.g., coherent quantum processes. The channel-based approach is both

conceptually clarifying in its application to classical causal models, and especially suited for the most

pertinent problems of quantum causal inference.

One expects that an interventional causal model’s data-generating process should be completely dis-

coverable from the results of various interventions [9]. That is, there should exist a set of instruments for

which the outcome statistics suffice to determine the data-generating process. This property is guaranteed

for the interventional causal models in the present article by a key commonality between the classical

and quantum processes studied in this work: they can be completely specified by the numbers that result

when they are locally composed with states and effects.

Proposition 1. The theories Mat[R+] and CPM have local process tomography: any process

f

A B

C D

is determined by numbers

f

A B

C D

k l

i j

(5)

where i, j,k, and l index certain finite sets of states or effects on the appropriate system-types. In quantum

tomography literature, the appropriate sets are called “informationally complete.”

We call the set of numbers in equation (5) the generalized matrix elements associated with a process

f . A local process tomography protocol for causal–i.e., probability-preserving–maps in Mat[R+] and

CPM uses observed probabilities of combinations of measurement outcomes conditioned on combina-

tions of causal state preparations. In the quantum case, though one cannot obtain all of the generalized

matrix elements using a single choice of measurement basis, it is always possible to obtain them from

the measurement statistics of multiple projective measurements at the outputs (along with independent

state preparations at the inputs).

Local process tomography for comb-shaped quantum processes, which corresponds to Ried et al.’s

[16] “causal tomography,” is mathematically just the same as local process tomography for ordinary

first-order processes, but in the physical implementation, the measurement realizing an effect at a locus

precedes temporally the preparation of the state leaving that locus. Thus local process tomography

for a classical or quantum interventional model typically relies on probabilities that result from filling

intervention loci with maps of the form

i

j

(6)

where i and j index informationally complete sets of effects and causal states. To implement all these

maps in an experiment and thereby learn corresponding probabilities requires the ability to record an

observation labeled i and then prepare the system in a new state labeled j, where j does not depend on i.



108 Quantum Causal Identification

In contrast, what we will call observational data arise, for instance, when the only outcomes of this

form that can be implemented are those satisfying i = j: the state to be fed forward from a locus is

determined by the observation outcome, and so, for simplicity, we label them with the same value of a

single index. This article is concerned with what can be inferred circumstances like these. The general

problem of causal identification is to use qualitative assumptions about the causal scenario to compute

quantitative causal influences given statistics from only a highly restricted set of interventions. Usu-

ally the allowed interventions are “passive observations,” which non-deterministically implement certain

maps of the aforementioned “observational” form, and thereby teach the observer certain limited sets of

probabilities. There is no quantum instrument representing a procedure appropriately called passive ob-

servation. For the purposes of this paper, the quantum interventions allowed as “observations” are exactly

the projective measurements, which include identity processes (totally uninformative measurements) as

well as instruments whose outcomes take the form of (6) for i = j.

The class of projective measurement instruments is closely related to a criterion, called informational

symmetry, whereby Ried et al. characterized certain interventions in both classical and quantum causal

scenarios as mere observations [16]. Informational symmetry, however, depends on both the intervening

process and the prior state, whereas we desire a criterion applying only to the intervening process itself.

To apply our proofs of sufficient conditions for identifiability to the classical stochastic setting, we

need not characterize completely a classical stochastic analogue of the quantum class of observation

outcomes, but only posit that classical observation outcomes include identity matrices and matrices that

have all zero entries except 1 in a single position on the main diagonal. (When classical probability

theory is viewed as a sub-theory of quantum theory, the non-identity classical observation outcomes just

described are in fact identified with outcomes of maximally informative projective measurement in a

fixed basis.) The latter kind of matrix represents an outcome of what is normally called “observing a

random variable.” By marginalization, identity interventions in the classical setting can be simulated

from the probabilities of such projections onto pure causal states (point distributions). Thus our proofs

of classical identifiability really appeal to no intervention procedures other than ordinary maximally

informative classical observation. When we say an inference in the classical setting is impossible with

only observational data accessible, “observational data” means probabilities of the classical outcomes

just described.

The question of identifiability of the causal influence of one locus on another is whether the quali-

tative causal assumptions encoded in the abstract string diagram D are strong enough that together with

observational data for a causal scenario represented by an unknown model of D, they determine the value

of the interventional channel derived from the unknown model. A classical or quantum interventional

channel, respectively, from one locus to another will be called identifiable from an abstract string diagram

if for any positive stochastic or quantum model of the string diagram, the interventional channel can be

computed from the probabilities of arbitrary combinations of observation outcomes at all intervention

loci of the model. Positivity is defined as follows:

Definition 5. A positive stochastic or quantum interventional model is a model whose composition with

any non-zero state and any non-zero effect gives a strictly positive number.

The states and effects composed with a model may in particular be products of those implemented at

individual intervention loci. For a positive model, therefore, any combination of observational outcomes

occurs with non-zero probability. The positivity condition in our process-theoretic account serves the

same purpose as the common requirement in ordinary causal modeling that a probabilistic causal model

induce a strictly positive joint distribution on all variables. Positivity ensures that all relevant conditional

probabilities are defined, and that detecting an arbitrary state at a locus after intervening at another
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locus is at least possible–if it were not, asking for the corresponding interventional probability would

make no sense. The definition of identifiability from an abstract string diagram captures the notion that

the assumptions of no direct influence between loci disconnected in the abstract diagram–equivalent

to assumptions of absence of certain arrows in a directed acyclic graph representing a classical [15] or

quantum [9] causal structure–suffice for inference: in any model satisfying at least the constraints implied

by the string diagram, the quantity in question can be deduced from observational outcome statistics.

Circumscribing the class of allowed interventions raises the question of whether the restrictions are

strong enough to rule out schemes like causal tomography that would always allow causal identification.

The answer is affirmative, as Ried et al. [16] noted, and is evident from string diagrams like

y

u

Y

X

Z

z

x

for which the interventional channel

y

u

Y

X

z

x

from X to Y is not identifiable. Two models yielding different interventional channels but identical

observational outcome statistics are constructed via functorial interpretation according to Definition 3:

in both models, u is interpreted as the Bell state |Ψ+〉〈Ψ+| = 1
2
(|0〉+ |1〉)(〈0|+ 〈1|) on two qubits, z

as a fixed quantum state with full support (i.e., a state whose composition with any non-zero effect is

non-zero, corresponding to an operator of full rank), and x as the quantum map that discards its left-hand

input and outputs its right-hand input unchanged. In the first model, y is interpreted as the map that

discards its right-hand input and applies to its left-hand input a projective measurement followed by a

depolarizing channel with parameter λ . In the second model, y is interpreted as the map that discards

its left-hand input and applies to its right-hand input the same projective measurement followed by the

same depolarizing channel as in the first model. Thus the interpretations of y in the two models are

y

E

F

E

F

Model 1 Model 2

7→
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where

E (ρ) = |0〉〈0|ρ |0〉〈0|+ |1〉〈1|ρ |1〉〈1|

F (σ) = (1−λ )σ +λ (
1

2
|0〉〈0|+

1

2
|1〉〈1|).

These models are positive because z has full support, the reduced state arriving at X is maximally

mixed, and the state arriving at Y includes a maximally mixed state with weight λ no matter what

outcome has occurred at X . They produce identical outcome statistics for projective measurements at the

loci. The interventional channel is therefore not identifiable from the abstract string diagram, because it

cannot be computed for every positive model. The theory behind the two-locus quantum identification

schemes of [16], however, might sometimes help in three-locus situations–perhaps some scenarios that

involve coherence or entanglement and also include an “instrumental variable,” which would correspond

here to the locus Z.

Because Z does not influence X or Y in these models, this example is essentially equivalent to those

two-variable scenarios in [16] for which the desired interventional channel was noted to be unidenti-

fiable. We show three variables to detach our example from the two-variable case of the “quantum

advantage.” Moreover, we explicitly note that identification is impossible even for positive models of the

string diagram.

4 Front-door scenarios

It is generally impossible to tell from observational data whether two correlated random variables, one

of which is known not to be a descendant of the other–i.e., one of which comes “before” the other–stand

in a cause-effect relation or are instead descendants of an unobserved common cause. If, however, there

is a third observed variable or set of variables along the possible path of causal influence between the

first two, the “front-door criterion” for causal identifiability implies that such inference may be possible.

The operative sufficient condition has a quantum analogue, captured along with the classical version by

the following result, which is derived for both process theories simultaneously, using the fact that the

theories’ scalars are real numbers.

In this and the following section, each system represented by an uppercase letter may be a composite

of multiple smaller systems, and similarly each box may be a composite of smaller boxes. Thus, a single

locus in one of our diagrams might correspond to a list of several classical variables or quantum labora-

tories [9] occupying several nodes of a more traditional causal diagram. What we call an intervention at

a locus would then correspond to (possibly choreographed/non-local) intervention at all those nodes.

Proposition 2. For quantum or stochastic models of a string diagram

y

u

Y

X

Z

z (7)

the interventional channel
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y

u

X

z

Y

from X to Y is identifiable.

Each proof of identifiability from here on consists in demonstrating how to compute the causal quan-

tity of interest–usually an interventional channel–from certain component processes of the model, spec-

ified by their generalized matrix elements, which are ultimately computed from probabilities of local

observation outcomes. Each proof can be read in either the classical or the quantum process theory. An

observation outcome consisting of an effect labeled, say, i, followed by a state with the same label, is to

be understood in the classical case as a row vector with 1 in the ith position followed by the transpose of

that vector. The composite map is the matrix product of the two. In the quantum case, a state/effect pair

represents a single outcome of a non-degenerate projective measurement. The state labeled i is the ith

measurement eigenstate, whereas the effect is the CPM obtained by tracing the input together with the

ith eigenstate.

Proof. First, we compute the process z, determined by its generalized matrix elements, which we obtain

by introducing a non-zero scalar factor and its inverse (where the inverse is indicated by a diagram inside

{−}−1), then using the causality equation (1) to transform into the following quantity:

y

u

z

j

i

j

i

z

i

j

y

u

j

i

−1

=

y

u

z

j

i

j

i

u

i

=

y

u

z

j

i

j

i

=

y

u

z

i

i

−1

−1

Note that the scalars being inverted are indeed non-zero, by positivity of the whole interventional model.

Furthermore, the rightmost diagram above consists of quantities that can be computed purely from pro-

jective measurements at all of the loci (including the identity/trivial measurement at Z).

Once we have computed the generalized matrix elements of z, we can use them to compute those of

another factor of the model by a procedure we call “adjusting for z:”
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y

u

j

i

k y

u

z

j

i

j

i

=

k

k

z

i

j

−1

Finally, we compose the two processes at Z, leaving the X input and output, to obtain the interventional

channel.

Thus, in the quantum just as in the classical case, observation at a locus Z lying on the path between

X and Y “blocks” that path and allows control of the confounding influence of u.

5 A more general case of a single intervention

The identification criterion of Proposition 2 can be generalized, using the same proof technique, to a

quantum version of Jacobs, Kissinger, and Zanasi’s Theorem 8.1 [12].

Proposition 3. For quantum or stochastic models of a string diagram

f2

f1

C

X

g

A

B

the interventional channel

f2

f1

C

X

g

from X to C is identifiable.
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Proof. First, we compute the generalized matrix elements of g, similarly to before:

g

i j

k

=

f2

f1

g

i j

k

k

i j

−1

=
f1

i j

f2

f1

g

i j

k

k

i j

f2

f1

k

i j

−1

=

f2

f1

g

i j

i j

−1

f2

f1

g

i j

k

k

i j

Once we have the generalized matrix elements for g, we can again generate those of the outer comb by

adjusting for g:

f2

f1

k

i j

l

=

f2

f1

g

i j

k

k

i j

g

i j

k

l

l

−1

Finally, we compose the two processes at A and B, leaving the X input and output, to obtain the interven-

tional channel.

6 Conclusion

Functorial causal models, combined with string diagrammatic language, promise continued develop-

ments on multiple fronts of quantum and classical causal inference. Since our comb factorization roughly

amounts to Tian and Pearl’s c-component factorization [18], we expect to be able to deal with more com-

plicated quantum scenarios than the ones presented here, by porting classical identification protocols

based on c-component factorization through our process-theoretic formalism to the category of quan-

tum models. Moreover, in both the quantum and classical settings, understanding causal inference as

invoking a process theory’s property of local process tomography unlocks the potential for immediately

applying the abstract techniques of this article to inference with data from more general instruments

than projective measurement or classical passive observation. While on the classical side both sorts of
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generalization–to more complicated network shapes and to other data-collection instruments–may first

lead simply to more efficient presentations of existing theory, all developments on the quantum side will

constitute new domain knowledge.

Because graphs representing causal structure in other literature are often taken to encode stronger

assumptions about complete common causes than are expressible in our framework, some identifiability

conditions based on tests of such graphs do not have analogues in terms of the diagrams used in this

article; our front-door criterion might be considered only a limited analogue of the classical set of suf-

ficient conditions known by that name. Our diagrams’ lack of explicit representation of completeness

of common causes is valuable in allowing us to discern which classical graphical criteria do not involve

considerations of independence of multiple variables conditioned on observed complete common causes,

and to derive the quantum analogues of those criteria without a treatment of quantum complete common

causes. Future work, however, will extend the framework here to incorporate assumptions of complete-

ness of observed common causes, with a view to unified process-theoretic description of those parts of

classical and quantum causal inference that rely on such assumptions.
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We propose a new algorithm to synthesise quantum circuits for phase polynomials, which takes
into account the qubit connectivity of the quantum computer. We focus on the architectures of
currently available NISQ devices. Our algorithm generates circuits with a smaller CNOT depth than
the algorithms currently used in Staq and t|ket〉, while improving the runtime with respect the former.

1 Introduction

Many current quantum computing architectures have restricted qubit connectivity, meaning that interac-
tions between qubits are only possible when the physical qubits are adjacent in a certain graph, henceforth
called the architecture, defined by the design of the quantum hardware. Traditional compiling techniques
for quantum circuits work around this limitation by inserting additional SWAP gates into the circuit to
move the logical qubits into a location where the desired interaction is physically possible, a process
called routing or mapping [6, 16, 19, 17]. This typically increases the depth and gate count of the circuit
by a multiplicative factor between 1.5 and 3 [6]. However, recent work by Kissinger and Meijer-van
de Griend [11] has shown that for pure CNOT circuits it is possible to compile a circuit directly to an
architecture without dramatically increasing the number of CNOT gates. Their approach was to use a
higher-level representation of the desired unitary transform and (re)synthesise the corresponding circuit in
an architecture-aware manner.

In this paper, we consider another class of high-level constructs called phase polynomials, which
give rise to circuits containing only CNOT and RZ(θ) gates. The current state-of-the-art algorithm for
phase polynomial synthesis is the GraySynth algorithm [1]. Unlike other algorithms for phase polynomial
synthesis [3], GraySynth attempts to minimise the number of 2-qubit gates. Unfortunately, GraySynth
assumes unrestricted qubit connectivity. This limitation was removed by Nash et al. [13], by adding qubit
permutation subcircuits whenever a sequence of CNOTs required by GraySynth is not permitted by the
architecture. Nevertheless, the algorithm still relies on the same recursive strategy as GraySynth, which
might be suboptimal for sparse architectures.

In this paper we propose a new algorithm for the architecture-aware synthesis of phase polynomial
circuits. The algorithm has been tuned for the relatively sparse connectivity graphs of current quantum
computers.
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†ross.duncan@quantinuum.com

http://dx.doi.org/10.4204/EPTCS.394.8


R.A. Meijer-van de Griend & R. Duncan 117

We compare our algorithm against two compilers that are able to natively synthesise phase polynomials:
t|ket〉 [15] and Staq [2]. We compare the different methods based on the final CNOT count, final CNOT
depth, and their runtime. These figures of merit are appropriate for noisy-intermediate scale quantum
(NISQ) devices [14], since the single-qubit gates of such devices typically have error rates an order of
magnitude less than that of the two qubit gates. By minimising the CNOT count we are minimising
the exposure of our computation to gate error, including crosstalk; by minimising depth we reduce its
exposure to decoherence.

We show that for sufficiently sparse quantum computer architectures and sufficiently large phase
polynomials, our algorithm outperforms the algorithm from Nash et al. [13] that is used in Staq [2] as well
as the decomposition and routing strategies from t|ket〉 [6]. Our algorithm relies on finding non-cutting
vertices in the connectivity graph, and does not require computing any Steiner trees; we find that in most
cases our algorithm has reduced runtime compared to that of Nash et al.

In section 2, we introduce phase polynomials and existing methods for their synthesis, both with and
without architecture-awareness. Our new algorithm is described in section 3 and our experimental results
can be found in section 4. Throughout the paper we will assume some familiarity with the ZX-calculus [4],
which we use as notation. For the uninitiated, Cowtan et al. [7] give a short introduction to the calculus,
including the phase gadget notation; Coecke and Kissinger provide a complete treatment [5].

Notation We use bold face letters x, y, to denote vectors, and the corresponding regular weight letters xi,
y j to denote their components.

2 Phase polynomial synthesis

Following Amy et al. [1], we define the phase polynomial via the sum-over-paths formalism [8].

Definition 2.1. Let C be a circuit consisting of only CNOT and RZ(θ) gates; then its corresponding
unitary matrix UC has a sum-over-paths form,

UC = ∑
x∈Fn

2

e2πi f (x) |Ax〉〈x| (1)

consisting of a phase polynomial

f (x) = ∑
y∈Fn

2

f̂ (y) · (x1y1⊕ x2y2⊕·· ·⊕ xnyn) (2)

with Fourier coefficients f̂ (y) ∈ R, and a basis transform A ∈ GL(n,F2). When no confusion will arise
we refer to the pair ( f ,A) as the phase polynomial of C.

Note that parity functions – henceforth just called parities – of the form x 7→ (x1y1⊕·· ·⊕ xnyn) as in
Equation 2, can be identified with the bit string y; these are the basis of the space of phase polynomials.
Those parities for which f̂ (y) 6= 0 are called the support of f .

Every circuit over {CNOT,RZ(θ)} has a canonical sum-over-paths form, which we now sketch. First,
we associate a parity to each “wire segment” of the circuit as follows: the inputs of the circuit are labelled
x1, . . . ,xn respectively; the output of an RZ gate has the same parity as its input; and a CNOT gate with
parities p1 and p2 on its control and target inputs has output parities p1 and p1⊕ p2, respectively. Second,
the coefficients f̂ (y) are computed by summing all the angles θ occurring in RZ gates labelled by the
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parity y. Finally, the linear transform A is defined by the mapping x 7→ x′ where x′ are the final labels of
circuit outputs. We refer the reader to Amy et al. [1] for more details.

The task of phase polynomial synthesis is the reverse: given ( f ,A) we must find the circuit C. This
amounts to constructing a parity labelled CNOT circuit such that every y in the support of f occurs as a
label on some wire, adding an RZ( f̂ (y)) gate on that wire, and extending that circuit so that the desired
output parities for A are achieved. Since f (x) is a sum, and addition is commutative, the order in which
the parities are achieved is irrelevant; neither does it matter on which qubits these parities occur. To obtain
the required final parities, additional CNOTs are added to the circuit. Since the new parity is the sum of
the parities of both the control and the target qubit, applying a CNOT gate can therefore be seen as an
elementary row operation on the matrix x 7→ x′. If the desired parities for each qubit are known, Gaussian
elimination can produce a CNOT sequence to achieve those parities [12, 11, 13]. This method suffices to
synthesise the matrix A of the phase polynomial [3, 1, 13]; note, however, that this second phase is totally
independent of the earlier synthesis of the parities required for f (x).

Architecture agnostic synthesis. Phase polynomials may be synthesised via the phase gadget construct
of the ZX-calculus [7]. Since our algorithm can be intuitively described using phase gadgets, we will
briefly explain this method.

Definition 2.2. In ZX-calculus notation we denote the RZ gate with phase α and CNOT gate as:

Z(α) ' α '

In a phase polynomial ( f ,A), each term in f (x) defines an operator e−i α

2 Z⊗n
, which we represent by the

phase gadget Φn(α) :

Φn(α) :=
α

...

where α = f̂ (y) and the gadget is connected to qubit i iff xiyi = 1.

Lemma 2.3. We have the following law for decomposition of phase gadgets [7].

α

...

=

α

...

(3)

α

...

= α

...

(4)

Lemma 2.3 serves as a recursive definition of the phase gadget, and demonstrates how the gadget
may be realised as two ladders of CNOTs and an RZ gate. Cowtan et al. [7] showed how to synthesise
phase gadgets in reduced depth using a balanced tree of CNOTs, however if the gadgets are synthesised
singly, and their ordering is not taken into account, the circuit may still be suboptimal even after local
optimisation.

A consequence of Lemma 2.3 is that phase gadgets stabilise CNOT circuits in the following sense.
Let Ci j be a CNOT gate with control qubit i and target qubit j; then for all phase gadgets Φ(α) there
exists Φ′(α) such that Ci jΦ(α) = Φ′(α)Ci j. Φ′ is identical to Φ except that Φ′ is connected qubit i iff Φ

is connected to exactly one of i and j.
This observation leads to an improvement in the algorithm. If we view the sequence of phase gadgets

as a binary matrix whose rows are the qubits and whose columns are the corresponding parities y in the
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support of f , then commuting Ci j through the entire circuit is an elementary row operation, namely adding
row j to row i. Therefore, by conjugating the circuit with CNOTs, we may obtain a column containing
a single 1. At that point, the desired parity (corresponding to the column in the matrix) is achieved on
the qubit corresponding to the row with the 1. The RZ gate can then be placed, and the column can be
removed from the matrix.

For example, the 3 qubit phase polynomial, ( f (x), I), specified by f (x) = α1(x2⊕ x3)+α2(x1⊕ x2)+
α3(x1⊕ x3)+α4x3, can be represented in a ZX-diagram and corresponding binary matrix as:

α1 α2 α3 α4

∼

0 1 1 0
1 1 0 0
1 0 1 1


Conjugating the first and second qubits with two CNOTs, and applying Eq. 3 we obtain the following
rewrite sequence and final matrix:

α1 α2 α3 α4

=

α1 α2 α3 α4

=

α1 α2 α3 α4

=

α1 α2 α3 α4

=

α1 α2 α3 α4

=

α1 α2 α3 α4

∼

1 0 1 0
1 1 0 0
1 0 1 1


The second and last columns of the matrix contain only a single 1, so we can use Equation 4 to place a RZ

gate:

α1 α2 α3 α4

=

α1 α3

α2

α4

=

α1 α3

α2

α4

∼

1 1
1 0
1 1


Note the equation relies on the fact that RZ gates commute with phase gadgets.

The matrix representation reduces the task of phase polynomial synthesis to finding the order in which
to reduce the columns, and which qubit should remain a 1 in the matrix for each column. Amy et al. [1]
proposed a heuristic algorithm called GraySynth based on Gray codes. The main idea is to pick the qubit
q participating in most parities and then achieving all parities containing q in order of Gray codes [9] on
qubit q. As a result, many CNOTs will have the same target qubit. This algorithm has been implemented
as part of Staq [2] in combination with SWAP-based routing.

Unfortunately, GraySynth does not accommodate qubit connectivity restrictions, making it less useful
for NISQ devices. A naive solution is to apply a generic qubit routing routine to the synthesised circuit,
however this will almost always increase the size of the circuit. Luckily, there is no need to be so naive.

Architecture-aware synthesis. It is possible to define synthesis algorithms which produce circuits
that immediately satisfy the constraints imposed by the quantum computer. Several algorithms such
architecture-aware synthesis algorithms for CNOT circuits and phase polynomials have recently been
proposed [11, 13]. While SWAP-based methods respect the original structure of the circuit at the level
of individual gates, architecture-aware synthesis preserves only the overall unitary, and this additional
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freedom allows the architectural constraints to inform the choice of which gates to generate. This concept
has also been used in the Staq compiler [2], which uses the algorithms described in this section.

Kissinger et al. [11] and Nash et al. [13] independently modified the Gaussian elimination algorithm
sketched above to synthesise routed CNOT circuits. They used Steiner trees to determine paths on the
connectivity graph across which to simulate one or more CNOT gates. Nash et al. [13] showed that their
method scales well with respect to the size and the density of the connectivity graph of the quantum
computer. Kissinger et al. [11] showed that for circuits consisting only of CNOT gates their method
outperformed current state-of-the-art SWAP-based methods. Wu et al. [18] have recently improved these
methods with an adaptation relying on Steiner trees and non-cutting vertices.

This constrained version of Gaussian elimination, called Steiner-Gauss, can be used in any synthesis
algorithm by replacing the original Gaussian elimination such that it routes (part of) the synthesised circuit.
In particular, this can be used in the T-par algorithm [3] and in GraySynth it can be used to synthesise the
matrix A.

Nash et al. [13] also proposed an adaptation of the GraySynth algorithm we called Steiner-GraySynth.
They replaced the step in the original GraySynth algorithm that generates a small sequence of CNOTs
with a step that emulates this sequence with routed CNOTs. This emulation is created using a Steiner tree
over the connectivity graph with the phase qubit as root and the other qubits participating in the sequence
of CNOTs as nodes. Then, a CNOT is placed for every Steiner-node in the tree and one for every edge in
the Steiner tree.

For phase polynomial synthesis, this algorithm performs better than naive routing [13]. However,
following GraySynth, it will place many CNOT gates with the same target qubit. If this qubit is poorly
connected in the architecture, a large CNOT overhead will result. Furthermore, it requires the construction
of a Steiner tree in order to route the CNOT gates. The minimal Steiner tree problem is NP-hard[10], so
finding the true optimum is not feasible, but it can be approximated in polynomial time using the all-pairs
shortest paths and building a spanning tree between them.

3 New natively routed heuristic algorithm

In this section, we describe a natively routed algorithm that attempts to take the architecture into account.
It uses a novel heuristic which works well for sparse architecture graphs.

Pseudo-code for the algorithm is shown in Figure 1 and its sub-procedures are listed in Appendix A.
A full worked example is presented in Appendix B; for ease of comparison this example is the same one
treated by Amy et al. [1] using the GraySynth algorithm.

In the following, the architecture graph – that is, the connectivity map of the physical qubits – is
denoted G. The phase polynomial to be synthesised, ( f ,A), is represented as two binary matrices, P and
A, where the columns of P are the corresponding parities y in the support of f , as explained in Section 2.
By construction, the columns in P are unique and no column y has all values set to 0.

Preprocessing. The algorithm starts by synthesising phase gadgets of the form specified by Equation 4.
This will remove trivial columns in P and placing their corresponding RZ phase gates. A column y is trivial
if it has exactly one index j such that y j = 1. The phase gate RZ is placed on the qubit corresponding to j
and its phase α is equal to f̂ (y). This makes sure that every column y in P contains at least two elements
with value 1. Hence, each column requires at least one CNOT in order to be synthesised by Lemma 2.3.

For example, consider the phase polynomial from Section 2, we can use Equation 4 to remove the
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global variables
G, the architecture graph
Circuit, An initially empty circuit with |G.vertices| qubits
A, The basis transform of the phase polynomial
P, The matrix describing the support of f
ZPhases, The list of Z phases f̂ (y) belonging to each parity y in f

end global variables

function BASERECURSIONSTEP(Cols, Qubits)
if Qubits non-empty and Cols non-empty then

H← InducedSubgraph(G,Qubits)
Rows← NonCuttingVertices(H)
ChosenRow← argmaxr∈Rows maxx∈F2 |{c ∈Cols where Pr,c = x}|
Cols0,Cols1← SplitColsOnRow(Cols, ChosenRow)
BaseRecursionStep(Cols0, Qubits\{ChosenRow})
OnesRecursionStep(Cols1, Qubits, ChosenRow)

end if
end function

function ONESRECURSIONSTEP(Cols, Qubits, ChosenRow)
if Cols non-empty then

Neighbours←{q ∈ Qubits where q∼ChosenRow in G}
n← argmaxq∈Neighbours |{c ∈Cols where Pq,c = 1}|
if |{c ∈Cols where Pn,c = 1}|> 0 then

PlaceCNOT (ChosenRow, n)
Cols← ReduceColumns(Cols)

else
PlaceCNOT (n, ChosenRow)
PlaceCNOT (ChosenRow, n)

end if
Cols0,Cols1← SplitColsOnRow(Cols, ChosenRow)
BaseRecursionStep(Cols0, Qubits\{ChosenRow})
OnesRecursionStep(Cols1, Qubits, ChosenRow)

end if
end function

algorithm ROUTEDPHASEPOLYSYNTH

Columns← ReduceColumns({0, . . . , |P.columns|})
BaseRecursionStep(Columns, G.vertices)
Circuit.AddGates(SteinerGauss(A∗P′−1))

end algorithm

Figure 1: Algorithm for synthesising phase polynomials in an architecture aware manner. The subroutines
not defined here are in listed in Appendix A.
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fourth column (corresponding to α4) and synthesise the phase gate RZ(α4) on qubit 3:0 1 1 0
1 1 0 0
1 0 1 1

∼ α1 α2 α3 α4

=

α1 α2 α3

α4

∼

0 1 1
1 1 0
1 0 1


Base recursion step. Similar to GraySynth, we want to synthesise the phase gadgets in the phase
polynomial in an order that requires the least amount of CNOT gates. However, we do not want to
synthesise the phase gadgets such that many phase gates are placed on the same qubit. Instead, we pick
one qubit and attempt to remove its row from P. However, we cannot pick just any row to remove from
P because it might still be needed to synthesise other phase gadgets due to the connectivity constraints.
Thus, we pick a non-cutting vertex i ∈ G such that row Pi has either the most ones or the most zeroes.
A non-cutting vertex is a vertex in G that can be removed from G without disconnecting the remaining
graph. Like GraySynth, we split P into two matrices, P0 and P1, such that column Pj is a column in
P0 iff Pi, j = 0 and Pj is a column in P1 otherwise. Since all entries in row P0

i are equal to 0, we do not
need this row any more and we can remove it from P0, and because i is non-cutting, its removal leaves
the graph connected. Then, we use the base recursion step on the sub-matrix P0 (excluding row i) with
the sub-graph of G where vertex i has been removed. The matrix P1 is treated by a different recursive
procedure using the full graph G, described below.

Continuing the example above, suppose we are targeting the architecture G : x1⇔ x2⇔ x3. We can
pick either x1 or x3 as they are both non-cutting and have the same number of ones and zeroes; we will
make the arbitrary choice of x1. This choice yields our new P0 and P1:

P =

0 1 1
1 1 0
1 0 1

 P0 =

(
1
1

)
P1 =

1 1
1 0
0 1


Note that P0 corresponds to the phase gadget α1, and P1 corresponds to the phase gadgets α2 and α3.
Recursing on P0 will eventually place the CNOT C3,2 and RZ(α1) gate on qubit x2, as shown below.0 1 1

1 1 0
1 0 1

∼ α1 α2 α3

α4

=

α1 α2 α3

α4

=

α2 α3

α4

α1

∼

1 1
1 0
1 1


Bear in mind that the recursion on P0 may add CNOTs to the circuit, performing a row operation on

the global P matrix. For our recursion scheme to be valid we require that the row P1
i remains equal to 1.

Initially, this holds by the construction of P1. Since row i has been removed from P0, no gate involving
qubit i will be added by recursion on P0, and hence the ith row of P1 will be unchanged. Moreover, P1

does not contain any trivial columns because for every column j in P1 there will always be another row
k 6= i such that P1

k, j = 1.

Ones recursion step. The recursion step for P1 attempts to remove as many ones from row i as possible
such that it can be removed. This can be achieved by placing CNOTs in the circuit, however we are
restricted by the connectivity graph. Therefore, we pick a neighbour vertex n ∈ G such that row P1

n
has most ones. Picking the row P1

n with most ones will ensure that most ones are removed. Then, we
can conjugate with CNOT Ci,n, and update P by adding row n to row i, as explained in Section 2. This
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might introduce trivial columns in P1 (note that P0 = /0 by the recursion), which are removed like in the
preprocessing step. Thus, in the example circuit:1 1

1 0
1 1

∼ α2 α3

α4

α1

=

α2 α3

α4

α1

∼

0 1
1 0
1 1


However, if every entry of row P1

n is 0, conjugation with Ci,n will have no effect. In this situation, we
first apply the opposite CNOT, Cn,i and then Ci,n as before. This effectively swaps the rows i and n, so
there is no need to reduce the circuit. Nevertheless, this ensures that every entry in row P1

i is 0.
After placing the CNOT gate(s), we have modified row P1

i and we can split P1 into two matrices, P1,0

and P1,1, and recurse upon these two as in the base recursion step.
In our example P1,0 ∼ {α2} and P1,1 ∼ {α3}. We use the base recursion on P1,0 and pick x3 arbitrarily.

Note that we only consider the sub-matrix P1,0 to count the number of ones and zeroes. Then, we split
P1,0 into /0 and {α2}, respectively. In the ones recursion step, we pick neighbour x2 and place CNOT C3,2
and RZ(α2) on qubit x2.

α2 α3

α4

α1

=

α2 α3

α4

α1

=

α3

α2

α4

α1

∼

1
1
1


Afterwards, we use the ones recursion step twice on the remaining row, placing two CNOTs, C2,1 and
C3,2, and placing the final phase gate RZ(α3) on qubit x3

α3

α2

α4

α1

=

α3

α2

α4

α1

= α2

α3α4

α1

Post-processing. Lastly, we need to synthesise the basis transform A. Because the CNOT gates in
the circuit, obtained by synthesising the phase gadgets, change the parities on each qubit, we need to
undo these changes. Let P′ be the basis transform corresponding to the final parities of the synthesised
circuit, then we can undo this transform and apply the desired transform A by synthesising A ·P′−1 using
Steiner-Gauss as explained in Section 2.

In our synthesis example, P′−1 is equivalent to the CNOTs that were commuted to the end of the ZX-
diagram. Incidentally, P′−1 = A ·P′−1 because of our choice A = I, thus the desired linear transformation
is already achieved. Moreover, these trailing CNOTs are already routed, however resynthesising them
might remove a few redundant CNOTs for the final circuit.

Termination and correctness. Our algorithm terminates and is correct if the recursion converges and it
synthesises the desired phase polynomial ( f ,A) while satisfying the connectivity constraints imposed by
the architecture.

At each recursion step, the matrix P is split into P0 and P1. In the case of P0, the base recursion step
will effectively remove a row from P0. In the case of P1, the ones recursion step will place one or two
CNOT gates. This will either remove a column from P1 or, when splitting P1 into P1,0 and P1,1, make sure
that P1,0 6= /0. The recursion finishes when P is empty. Hence, the recursion converges and the algorithm
terminates.
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By construction, the matrix P describes the remaining phase gadgets to be synthesised (initially the
parities y in the support of f ). This remains the case while synthesising because placing a CNOT updates
P with an elementary row addition as explained in Section 2. Moreover, a column is only removed from
P iff the phase gadget is trivial, i.e. it is of the form described by Equation 4. Consequently, the phase
gates are placed at the right parity by Lemma 2.3. Lastly, the basis transform A is obtained as described in
the previous paragraph. Thus, the algorithm has synthesised the desired phase polynomial once it has
terminated.

Additionally, all CNOT gates that are added have the property that the control and target qubits
are neighbours in the connectivity graph G, thus satisfying the connectivity constraints imposed by the
architecture.

Hence, our algorithm terminates and when it does the desired phase polynomial has been synthesised
in an architecture-aware manner.

4 Results and discussion

To verify the quality of our algorithm, we generated random phase polynomials and synthesised them for
two different real quantum computers: Rigetti’s 16 qubit Aspen device and IBM’s 20 qubit Singapore
device 1. We compare the average CNOT count, CNOT depth and runtime (in seconds) of our proposed
algorithm with Staq [2] and t|ket〉 [15]. To the best of our knowledge, t|ket〉 and Staq are the only
compilers that can synthesise and route phase polynomials from an abstract representation2.

For each architecture, we randomly generated phase polynomials until we had 20 distinct ones with 1,
5, 10, 50, 100, 500, and 1000 phase gadgets in each. The phase gadgets were sampled uniformly across
the parameter space. Figure 2 shows how each algorithm scales with respect to the number of phase
gadgets on the two quantum computer architectures. Each point in the chart is the average of the 20 phase
polynomials of that size.

We used pytket version 0.4.33. We described our phase polynomials in terms of t|ket〉’s abstract
representation for phase gadgets (PauliExpBox) which t|ket〉 synthesises and then routes using swaps
[15]. While routing, we allowed t|ket〉 to also find an optimal qubit placement.

For Staq, we used version 1.0. We chose to use the Steiner tree option because this results in a much
lower CNOT count and depth. Unfortunately, we were unable to use this option in combination with
optimal qubit placement because this took too long for large phase polynomials (≥ 50 phase gadgets) 4.

Note that both t|ket〉 and Staq are implemented in C++, while our algorithm was written in python
3.6, putting it at a significant runtime disadvantage. All experiments were run on a 2017 MacBook Pro
with an Intel Core i5 2.3 GHz and 8 GB 2133 MHz RAM. We used pytket to calculate the CNOT count
and CNOT depth of all circuits (including Staq).

We observe that for very small phase polynomials (1 phase gadget), t|ket〉 is the best method, but it
does not scale well in CNOT count and depth for larger, more realistic phase polynomials (see Figure 2).
This shows that naive synthesis combined with clever routing is not competitive with architecture-aware
synthesis methods.

Between five and 100 phase gadgets, Staq has the lowest average CNOT count. For larger phase

1Qubit-scaling and gadget-scaling results for synthetic architectures can be found in Appendix C
2The source code to replicate our results, including the raw experimental data, can be found on

https://github.com/CQCL/architecture-aware-phasepoly-synth
3This pytket version will be released for the general public soon
4Staq results with placement for small phase polynomials can be found in Figure 5 of Appendix C

https://github.com/CQCL/architecture-aware-phasepoly-synth
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(a) 16 qubit Rigetti Aspen
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(b) 20 qubit IBM Singapore

Figure 2: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect to the
number of phase gadgets on the 16 qubit Rigetti Aspen architecture and the 20 qubit IBMQ Singapore
device. The exact data can be found in Table 1 in Appendix C.

polynomials, Staq’s CNOT count performance is equal to the proposed algorithm. However, the CNOT
depth is consistently better when synthesised with the proposed algorithm for phase polynomials with
more than 10 gadgets. This means that it is better at parallelising CNOT gates than Staq.

With respect to runtime, we observe that for phase polynomials with 5-1000 phase gadgets, Staq is
the fastest synthesis algorithm. The proposed algorithm is faster at synthesising than t|ket〉 for phase
polynomials 50-1000 gadgets on both architectures. We do note that both Staq and the proposed algorithm
does not scale linearly with respect to the number of phase gadgets, thus it might not be faster than t|ket〉
for phase polynomials with more phase gadgets than we have tested.

5 Conclusion and Future Work

In this paper, we introduced one of the first successful algorithms for architecture-aware synthesis of phase
polynomials. We showed that this algorithm performs comparable or better than current state-of-the-art
compilers for current NISQ devices without compromising the runtime of the algorithm.
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Although our algorithm is very promising, it should still be adjusted to better fit the specification of
the device that it is synthesising for. For example, the choice of placing the qubits affects the size of
the synthesised circuit because the connectivity graph of a quantum computer is generally not regular.
Similarly, the current algorithm improves CNOT depth, but it might do so in a way that increases the
crosstalk between parallel gates.

And, lastly, our algorithm can only synthesise phase polynomials. This means that circuits containing
rotations over X and Y need to be split into subcircuits to use our algorithm. It will be much more
beneficial if our algorithm can be extended to also synthesise the generalised version of phase gadgets,
called Pauli exponentials.
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A Subfunctions for the proposed synthesis algorithm

The subfunctions that we used in the pseudocode for our algorithm (Figure 1) are listed below.
function REDUCECOLUMNS(Columns)

for all c ∈Columns do
if |{q ∈ P.rows where Pq,c = 1}|= 1 then

Qubit← argmaxq∈P.rows Pq,c

Circuit.AddGate(RZ(ZPhases[c], Qubit))
Columns←Columns\{c}

end if
end for
return Columns

end function
function PLACECNOT(Control, Target)

Circuit.AddGate(CNOT (Control, Target))
P[Control]← P[Control]+P[Target]

end function
function SPLITCOLSONROW(Columns, Row)

Cols0←{c ∈Columns where PRow,c = 0}
Cols1←{c ∈Columns where PRow,c = 1}
return Cols0, Cols1

end function

B Example synthesis

To get a better idea of the inner workings of the algorithm, we synthesise the following phase polynomial:

f (x) = α1(x2⊕ x3)+α2(x1)+α3(x1⊕ x4)+α4(x1⊕ x2⊕ x4)+α5(x1⊕ x2)+α6(x1⊕ x2⊕ x3)

A = I

Note that this is the parameterised version of the example phase polynomial given by Amy et al.[1]. The
connectivity graph we use for synthesis is a simple line architecture: G : x1⇔ x2⇔ x3⇔ x4.

This phase polynomial corresponds to the following ZX-diagram C and matrix representation P.

C =

α1 α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

α2

∼


0 1 1 1 1 1
1 0 0 1 1 1
1 0 0 0 0 1
0 0 1 1 0 0

 = P

Note that the matrix P has a column for each phase gadget in the diagram and each row has a 1 iff the
corresponding qubit is participating in the corresponding phase gadget (i.e. it has a green spider). We
have added a red vertical line to the ZX-diagram to represent the frontier. This indicates the progress of
our synthesis. The diagram on the left of the frontier has been synthesised, the diagram on the right of the
frontier contains the phase polynomial to be synthesised. Additionally, while synthesising, we will rewrite
the diagram C by adding gates to the frontier without changing the semantics of C.
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Preprocessing. The first step in the algorithm is to check if any columns can be removed from the
matrix. This is possible if the column contains exactly a single entry with the value 1. If this is the case,
the phase gadget is only acting on a single qubit and it is equivalent to a Z phase gate which we can move
to the other side of the frontier.

C =

α1 α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

α2

=

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

=

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

We describe this process as placing a phase gate.
Once the phase gate RZ(α2) is placed on qubit x1, we have a phase gadget less, so we can remove the

corresponding column from the matrix P.

C =

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

∼


0 1 1 1 1
1 0 1 1 1
1 0 0 0 1
0 1 1 0 0



Main recursion. Now we can start the main recursion loop. We start with the base recursion step and
calculate all non-cutting vertices of our graph G, which are {x1,x4}. We pick the row in P with either most
ones or most zeroes, which is x1. We split the row in to columns with zeroes P0 ∼ {α1}, and columns
with ones P1 ∼ {α3,α4,α5,α6}. We recurse using the base recursion step on P0 and the ones recursion
step on P1.

In the base recursion step on P0, we have subgraph G : x2 ⇔ x3 ⇔ x4, with non-cutting vertices
{x2,x4}. We pick x2 arbitrarily and split the matrix once more into P0,0 ∼ /0 and P0,1 ∼ {α1}. This time,
there are no columns with zeroes, so the base recursion step is trivial. Then, in the ones recursion step
on P0,1, we pick a neighbour of x2 with the most ones, this is x3, and we place a CNOT gate, Cx2,x3 , in
front of the frontier. To keep the diagram equivalent to the previous diagrams, we add a second CNOT
gate, Cx2,x3 , after the frontier and commute it through the phase gadgets. By commuting the second CNOT
gate through the gadgets, each control qubit will participate in the phase gadget iff either the control or
the target qubit (exclusive) was participating before commuting the CNOT through, see Section 2 for a
detailed explanation. This is the same as adding the target row to the control row in the matrix P (modulo
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2). Observe that this also changes the columns in P1.

C =

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3 x3

=

α1

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3

∼


0 1 1 1 1
0 0 1 1 0
1 0 0 0 1
0 1 1 0 0



As a result, we can place a phase gate, RZ(α1), corresponding to α1 on qubit x3.

C =

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3
α1

∼


1 1 1 1
0 1 1 0
0 0 0 1
1 1 0 0



Note that placing the phase gate causes that P0 = /0 so splitting the row X2 and recursing on P0,0 ∼ /0 and
P0,1 ∼ /0 is trivial.

Now we are finished with the base recursion step on P0 and continue with the ones recursion step on
P1 and the full graph G. We had chosen x1 earlier, now we pick a neighbour, x2, and place the CNOT gate,
Cx1,x2 . This allows us to place a phase gate, RZ(α5), on qubit x2.

C =

α2

α3 α4 α5 α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3
α1

x1⊕ x2 x2 =

α2

α3 α4

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3
α1

x1⊕ x2 x2 ∼


1 0 1
0 1 0
0 0 1
1 1 0



Again, we split row x1 into columns with zeroes P1,0 ∼ {α4} and with ones P1,1 ∼ {α3,α6}. We use
the base recursion step on P1,0 with the subgraph G : x2⇔ x3⇔ x4 and we use the ones recursion step on
P1,1

The subgraph G : x2⇔ x3⇔ x4 has non-cutting vertices x2 and x4. We pick x4 arbitrarily and split the
row into P1,0,0 ∼ /0 and P1,0,1 ∼ {α4}. The base recursion step on P1,0,0 is trivial. In the ones recursion
step, we pick neighbour x3 and place two CNOT gates, Cx3,x4 , and Cx4,x3 , because x3 only has zeroes in
P1,0,1.

C =

α2

α3 α4

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3
α1

x1⊕ x2 x2

x4x2⊕ x3⊕ x4

x4 x2⊕ x3

∼


1 0 1
0 1 0
1 1 1
1 1 0


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C =

α2

α3 α4

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3 x3
α1

x1⊕ x2 x2

x4x2⊕ x3⊕ x4

x4 x2⊕ x3

∼


1 0 1
0 1 0
1 1 1
0 0 1



Now we split P1,0,1 on row x4 into P1,0,1,0 ∼ {α4} and P1,0,1,1 ∼ /0 and recurse as before, note that the
latter case in trivial.

In the base recursion step on P1,0,1,0, we are left with the subgraph G : x2 ⇔ x3. We pick row x2
arbitrarily and split it into P1,0,1,0,0 ∼ /0 and P1,0,1,0,1 ∼ {α4}. The base recursion step on P1,0,1,0,0 is trivial
and in the ones recursion step, we pick neighbour x3. Hence we can place a CNOT gate, Cx2,x3 , and a
phase gate, RZ(α4) on qubit x3.

C =

α2

α3

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3 x3
α1

x1⊕ x2 x2

x4x2⊕ x3⊕ x4

x4 x2⊕ x3
α4

x4x1⊕ x2⊕ x4

∼


1 1
1 1
1 1
0 1



This finishes the recursion on P1,0 and we can continue with the ones recursion step on P1,1∼{α3,α6}.
Once more, we are back at the original graph G : x1⇔ x2⇔ x3⇔ x4. We previously picked row x1 and
so we now pick neighbour x2. We place a CNOT gate, Cx1,x2 , and split on row x1 into P1,1,0 ∼ {α3,α6},
and P1,1,1 ∼ /0.

C =

α2

α3

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3 x3
α1

x1⊕ x2 x2

x4x2⊕ x3⊕ x4

x4 x2⊕ x3
α4

x4x1⊕ x2⊕ x4

x1⊕ x2x2 ∼


0 0
1 1
1 1
0 1



In the base recursion step on P1,1,0, we pick row x2 and split P1,1,0 into P1,1,0,0 ∼ /0, and P1,1,0,1 ∼
{α3,α6}. The base recursion step on P1,1,0,0 is trivial.

In the ones recursion step on P1,1,0,1, we pick neighbour x3, and place a CNOT gate, Cx2,x3 , and a
phase gate, RZ(α3), on qubit x3.

C =

α2

α5

α6

x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3 x3
α1

x1⊕ x2 x2

x4x2⊕ x3⊕ x4

x4 x2⊕ x3
α4 α3

x4x1⊕ x2⊕ x4

x1⊕ x2x2

x1⊕ x4 x1⊕ x2⊕ x4

∼


0
0
1
1


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We split P1,1,0,1 on row x2, resulting in P1,1,0,1,0 ∼ {α6}, and P1,1,0,1,1 ∼ /0 and we recurse as before.
In the base recursion on P1,1,0,1,0, we are left with subgraph G : x3⇔ x4. We pick x3 and split on it

resulting in P1,1,0,1,0,0 ∼ /0 and P1,1,0,1,0,1 ∼ {α6}. The base recursion step is trivial.
Finally, in the ones recursion step on P1,1,0,1,0,1, we pick neighbour x4 and place a CNOT gate, Cx3,x4

and a phase gate, RZ(α6), on qubit x4.

C =

α2

α5
x2

x3

x4

x1

x2

x3

x4

x1

x2⊕ x3 x3
α1

x1⊕ x2 x2

x4x2⊕ x3⊕ x4

x4 x2⊕ x3
α4 α3

α6

x4x1⊕ x2⊕ x4

x1⊕ x2x2

x1⊕ x4 x1⊕ x2⊕ x4

x1⊕ x2⊕ x3 x2⊕ x3⊕ x4

∼




Now we have synthesised every phase gadget in the support of f .

Post-processing. What remains is synthesising the basis transform A = I. At the frontier, the basis
transform of the qubits is equal to the matrix P′,

P′ =


1 0 1 1
0 1 0 1
0 0 0 1
0 0 1 0


as can be seen in the parity annotation of each qubit of the final circuit. This transform needs to be undone
before the basis transform A can be applied.

As explained at the end of Section 3, this is transformation is undone by the trailing CNOTs on the right
of the frontier. I.e. the CNOTs on the right of the frontier apply the basis transform P′−1. Although these
CNOTs are already mapped, they could be optimised using an architecture-aware CNOT circuit synthesis
technique, such as Steiner-Gauss. In case the matrix A 6= I, we can calculate the full transformation A′ by
undoing the existing linear transformation and then applying the desired transformation: A′ = A ·P′−1.

C Additional results

This appendix contains additional figures and tables to show the performance of the proposed algorithm
with respect to the existing algorithms.

To show the scaling of our algorithm with respect the number of qubits, the number of phase gadgets
and the density of the device connectivity graph, we have run several experiments, generating 20 random
phase polynomials per experimental setting. Since Staq only supports a small selection of quantum
computer architectures, we compare the proposed algorithm against an in-house implementation of
Steiner-GraySynth for all synthetic architectures.

Figure 3 shows how our algorithm and the two baselines perform on a line, square and fully connected
connectivity of various sizes given a phase polynomial with 100 phase gadgets. Similarly, Figure 4
shows how our algorithm and the two baselines perform on phase polynomials of various sizes given a 36
qubit line, square and unconstrained connectivity graph. In Figure 5, we show that, if Staq is used with
qubit placement optimisation, it can synthesise slightly smaller circuits than without qubit placement.
However, this comes at an extreme runtime cost. The runtime of this option was long enough that it was
not feasible for to run experiments with more than 50 and 100 gadgets (IBMQ Singapore and Rigetti
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Aspen, respectively) because Staq would take more than two hours to synthesise a single circuit with 500
gadgets on Rigetti Aspen.

Lastly, the exact data that was visualised in each figure, Figure 2, 3, 4, and 5, is given in Table 1, 2, 3,
and 4, respectively.
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(b) square grid
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Figure 3: The influence of the number of qubits on the CNOT count, CNOT depth and runtime for
architectures with different regular structures: line, square grid and fully connected. The exact data can be
found in Table 2.
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Figure 4: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect to the
number of phase gadgets on a 36 qubit line, square grid, and unconstrained architecture. The exact data
can be found in Table 3.
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(a) 16 qubit Rigetti Aspen
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(b) 20 qubit IBM Singapore

Figure 5: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect to the
number of phase gadgets on the 16 qubit Rigetti Aspen architecture and the 20 qubit IBMQ Singapore
device. The exact data can be found in Table 4.
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t|ket〉 Staq Proposed
#RZ count depth time count depth time count depth time
1 13.80 13.80 0.004s 31.10 23.70 0.017s 32.00 28.30 0.035s
5 209.55 142.95 0.020s 169.85 94.70 0.018s 229.30 109.70 0.066s
10 433.25 302.65 0.038s 264.80 136.45 0.021s 355.80 143.95 0.073s
50 2109.35 1622.45 0.164s 820.80 409.00 0.044s 961.05 331.90 0.110s
100 3917.60 3090.60 0.306s 1466.85 728.80 0.074s 1611.90 522.05 0.151s
500 17416.70 14274.65 1.506s 5928.60 3293.90 0.345s 6081.30 2082.25 0.611s
1000 32357.05 26896.25 2.851s 11043.40 6500.05 0.807s 11238.30 4018.20 1.431s

(a) Rigetti 16Q Aspen
t|ket〉 Staq Proposed

#RZ count depth time count depth time count depth time
1 25.20 25.20 0.007s 69.60 62.75 0.014s 40.60 35.70 0.068s
5 296.70 210.60 0.032s 218.60 129.15 0.021s 301.60 139.75 0.140s
10 604.95 417.90 0.057s 376.50 208.60 0.025s 475.50 191.75 0.151s
50 2499.30 1897.70 0.219s 1073.25 492.40 0.054s 1226.00 395.20 0.206s
100 4969.60 3863.90 0.431s 1834.75 819.65 0.091s 2035.10 607.95 0.265s
500 22710.00 18205.90 2.033s 7498.85 3440.55 0.437s 8054.35 2293.45 0.893s
1000 43538.10 35533.30 3.983s 14309.70 6867.05 1.031s 14908.55 4422.70 2.054s

(b) IBMQ Singapore

Table 1: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising phase
polynomials with various sizes using t|ket〉, Staq (without qubit placement) and our proposed algorithm
on Rigetti Aspen (Table 1a) and IBMQ Singapore (Table 1b). This data was visualised in Figure 2.
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t|ket〉 Nash Proposed
Qubits count depth time count depth time count depth time
9 1444.30 1142.75 0.117s 836.45 422.75 0.186s 575.40 318.65 0.038s
16 4565.50 3846.85 0.362s 2480.10 629.95 1.121s 1818.75 499.85 0.168s
25 9240.80 8004.30 0.905s 4724.60 711.55 4.269s 3673.35 627.50 0.609s
36 14761.20 13074.70 1.863s 7866.50 788.75 13.198s 6211.55 739.30 2.072s
49 24291.45 21651.35 3.867s 11920.00 886.60 36.099s 9592.70 875.40 6.484s
64 27632.10 24473.65 5.462s 16960.45 975.30 82.994s 13750.00 1017.30 17.706s

(a) Line
t|ket〉 Nash Proposed

Qubits count depth time count depth time count depth time
9 1025.65 874.75 0.120s 472.15 316.10 0.201s 459.35 283.85 0.044s
16 2986.20 2372.30 0.458s 1222.50 530.50 1.342s 1299.00 505.95 0.236s
25 5514.35 4327.40 0.939s 2191.35 677.30 4.479s 2497.65 672.35 0.693s
36 8842.65 6993.00 2.227s 3409.85 824.35 13.679s 3982.25 815.60 2.475s
49 13171.00 10457.15 4.432s 4948.05 984.55 34.106s 6135.10 1016.65 6.843s
64 18259.70 14393.05 7.977s 6881.55 1174.30 70.358s 8615.05 1261.85 16.918s

(b) Square
t|ket〉 Nash Proposed

Qubits count depth time count depth time count depth time
9 583.30 566.90 0.069s 187.75 180.05 0.184s 233.75 162.25 0.038s
16 1343.40 1294.60 0.148s 527.05 506.25 1.103s 583.85 330.15 0.206s
25 2227.70 2155.15 0.280s 990.10 949.85 4.463s 1125.55 555.80 0.963s
36 3351.10 3281.25 0.502s 1543.40 1483.15 13.501s 1915.45 847.85 3.642s
49 4668.50 4599.60 0.813s 2200.75 2131.25 35.417s 2994.10 1271.05 11.777s
64 6155.90 6076.20 1.303s 2978.95 2880.10 80.856s 4466.60 1829.50 33.257s

(c) Unconstrained

Table 2: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising phase
polynomials with 100 phase gadgets using t|ket〉, Nash and our proposed algorithm on synthetic qubit
architectures of various sizes connected in a line (Table 2a), square (Table 2b) and fully connected (Table
2c). This data was visualised in Figure 3.
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t|ket〉 Nash Proposed
#RZ count depth time count depth time count depth time
1 37.10 37.10 0.016s 64.15 35.40 0.714s 96.90 96.90 0.658s
5 1298.70 684.85 0.181s 521.10 82.00 1.126s 603.80 183.95 1.163s
10 2142.80 1424.30 0.257s 991.85 157.15 1.631s 1167.45 248.40 1.335s
50 7960.45 6700.05 0.884s 4391.70 477.30 5.943s 3800.50 512.50 1.624s
100 14761.20 13074.70 1.591s 7866.50 788.75 11.137s 6211.55 739.30 1.776s
500 69417.10 64493.35 7.885s 34883.95 3272.30 55.913s 23425.10 2435.75 3.718s
1000 126095.50 118035.55 14.913s 69584.50 6446.50 120.575s 43934.05 4564.45 7.853s

(a) 36 qubit line
t|ket〉 Nash Proposed

#RZ count depth time count depth time count depth time
1 34.10 34.10 0.013s 34.60 14.20 0.755s 61.30 35.80 0.681s
5 493.45 346.30 0.128s 268.80 92.15 1.164s 562.95 226.65 1.400s
10 1017.65 745.20 0.238s 541.70 177.15 1.695s 1002.75 317.45 1.552s
50 4859.05 3737.90 0.980s 1969.35 488.35 5.762s 2512.10 568.20 1.658s
100 8842.65 6993.00 1.669s 3409.85 824.35 10.080s 3982.25 815.60 1.809s
500 40734.55 33232.65 8.840s 14560.45 3469.65 52.656s 15492.85 2844.85 4.087s
1000 79821.90 65423.70 17.518s 28530.30 6876.90 113.956s 29621.30 5390.25 8.196s

(b) 36 qubit square
t|ket〉 Nash Proposed

#RZ count depth time count depth time count depth time
1 34.10 34.10 0.012s 17.05 17.05 0.826s 34.10 34.10 0.769s
5 166.90 163.50 0.034s 83.80 70.65 1.239s 232.70 110.90 1.141s
10 333.80 326.95 0.063s 174.95 156.00 1.897s 551.40 255.60 1.759s
50 1673.00 1636.20 0.259s 801.60 761.30 6.981s 1290.25 581.80 2.695s
100 3351.10 3281.25 0.520s 1543.40 1483.15 13.252s 1915.45 847.85 3.611s
500 16781.80 16489.55 2.715s 7081.75 7006.85 77.596s 6741.75 2935.00 11.749s
1000 33291.10 32759.35 4.999s 13642.20 13550.90 135.732s 12660.40 5479.05 19.504s

(c) 36 qubit unconstrained

Table 3: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising phase
polynomials with various sizes using t|ket〉, Nash and our proposed algorithm on synthetic 36 qubit
architectures connected in a line (Table 3a), square (Table 3b) and fully connected (Table 3c). This data
was visualised in Figure 4.
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t|ket〉 Staq Proposed
#RZ count depth time count depth time count depth time
1 13.80 13.80 0.004s 31.10 23.70 0.518s 32.00 28.30 0.037s
5 209.55 142.95 0.021s 160.20 91.20 3.407s 229.30 109.70 0.068s
10 433.25 302.65 0.040s 260.65 134.45 8.854s 355.80 143.95 0.076s
50 2109.35 1622.45 0.193s 820.80 409.00 138.448s 961.05 331.90 0.121s
100 3917.60 3090.60 0.380s 1466.85 728.80 521.102s 1611.90 522.05 0.199s

(a) Rigetti 16Q Aspen
t|ket〉 Staq Proposed

#RZ count depth time count depth time count depth time
1 25.20 25.20 0.006s 69.60 62.75 1.784s 40.60 35.70 0.068s
5 296.70 210.60 0.034s 213.30 124.95 11.770s 301.60 139.75 0.143s
10 604.95 417.90 0.060s 376.30 208.80 34.636s 475.50 191.75 0.163s
50 2499.30 1897.70 0.227s 1073.25 492.40 597.870s 1226.00 395.20 0.229s

(b) IBMQ Singapore

Table 4: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising phase
polynomials with various sizes using t|ket〉, Staq (with qubit placement) and our proposed algorithm on
Rigetti Aspen (Table 4a) and IBMQ Singapore (Table 4b). This data was visualised in Figure 5.
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The Scalable ZX-calculus is a compact graphical language used to reason about linear maps be-
tween quantum states. These diagrams have multiple applications, but they frequently have to be
constructed in a case-by-case basis. In this work we present a method to encode quantum programs
implemented in a fragment of the linear dependently typed Proto-Quipper-D language as families
of SZX-diagrams. We define a subset of translatable Proto-Quipper-D programs and show that our
procedure is able to encode non-trivial algorithms as diagrams that grow linearly on the size of the
program.

1 Introduction

The ZX calculus [18] has been used as intermediary representation language for quantum programs in
optimization methods [12, 5, 3] and in the design of error correcting schemes [4]. The highly flexible
representation of linear maps as open graphs with a complete formal rewriting system and the multiple
extensions adapted to represent different sets of quantum primitives have proven useful in reasoning
about the properties of quantum circuits.

Quantum operations are usually represented as quantum circuits composed by primitive gates op-
erating over a fixed number of qubits. The ZX calculus has a close correspondence to this model and
is similarly limited to representing operations at a single-qubit level. In this work we will focus on the
Scalable ZX extension [7], which generalizes the ZX diagrams to work with arbitrary qubit registers us-
ing a compact representation. Previous work [6] has shown that the SZX calculus is capable of encoding
nontrivial algorithms via the presentation of multiple hand-written examples. For an efficient usage as
an intermediate representation language, we require an automated compilation method from quantum
programming languages to SZX diagrams. While ZX diagrams can be directly obtained from a program
compiled to a quantum circuit, to the best of our knowledge there is no efficient method leveraging the
parametricity of the SZX calculus.

There exist several quantum programming languages capable of encoding high-level parametric pro-
grams [1, 11, 17]. Quipper [15] is a language for quantum computing capable or generating families of
quantum operations indexed by parameters. These parameters need to be instantiated at compile time
to generate concrete quantum circuit representations. Quipper has multiple formal specifications, in
this work we focus on the linear dependently typed Proto-Quipper-D formalization [14, 13] to express
high-level programs with integer parameters.

The contributions of this article the following. We introduce a list initialization notation to represent
multiple elements of a SZX diagram family composed in parallel. We formally define a fragment of
Proto-Quipper-D programs that can be described as families of diagrams. Then we present a novel
compilation method that encodes quantum programs as families of SZX diagrams and demonstrate the
codification and translation of a nontrivial algorithm using our procedure.

http://dx.doi.org/10.4204/EPTCS.394.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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In Section 2 we outline both languages and introduce the list initialization notation. In Section 3
we define the restricted Proto-Quipper-D fragment. In Section 4 we introduce the translation into SZX
diagrams. Finally, in Section 5 we demonstrate an encoding of the Quantum Fourier Transform algorithm
using our method. The proofs of the lemmas stated in this work can be found in Appendix E.

2 Background

We describe a quantum state as a system of n qubits corresponding to a vector in the C2n
Hilbert space.

We may partition the set of qubits into multi-qubit registers representing logically related subsets. Quan-
tum computations under the QRAM model correspond to compositions of unitary operators between
these quantum states, called quantum gates. Additionally, the qubits may be initialized on a set state and
measured.

High-level programs can be encoded in Quipper [15], a Haskell-like programming language for
describing quantum computations. In this work we use a formalization of the language called Proto-
Quipper-D[13] with support for linear and dependent types. Concrete quantum operations correspond to
linear functions between quantum states, generated as a composition of primitive operations that can be
described directly as a quantum circuit. Generic circuits may have additional parameters that must fixed
at compilation time to produce the corresponding quantum circuit.

In Section 3 we describe a restricted fragment of the Proto-Quipper-D language containing the rele-
vant operations for the work presented in this paper.

2.1 The Scalable ZX-calculus. The ZX calculus [18] is a formal graphical language that encodes linear
maps between quantum states. Multiple extensions to the calculus have been proposed. We first present
the base calculus with the grounded-ZX extension, denoted ZX [10], to allow us to encode quantum
state measurement operations. A ZX diagram is generated by the following primitives, in addition to
parallel and serial composition:

α... ...n m : n1→ m1 α... ...n m : n1→ m1 : 11→ 11 : 11→ 01

: 11→ 11 : 01→ 21 : 21→ 01 : 21→ 21 : 01→ 01

where nk represents the n-tensor of k-qubit registers, the green and red nodes are called Z and X spiders,
α ∈ [0,2π) is the phase of the spiders, and the yellow square is called the Hadamard node. These
primitives allow us to encode any quantum operation, but they can become impractical when working
with multiple qubit registers.

The SZX calculus [7, 6] is a Scalable extension to the ZX-calculus that generalizes the primitives to
work with arbitrarily sized qubit registers. This facilitates the representation of diagrams with repeated
structure in a compact manner. Carette et al. [6] show that the scalable and grounded extensions can be
directly composed. Will refer to the resulting SZX -calculus as SZX for simplicity. Bold wires in a
SZX diagram are tagged with a non-negative integer representing the size of the qubit register they carry,
and other generators are marked in bold to represent a parallel application over each qubit in the register.
Bold spiders with multiplicity k are tagged with k-sized vectors of phases α = α1 :: · · · :: αk. The natural
extension of the ZX generators correspond to the following primitives:

−→
α... ...

k k

k k

n m : nk→ mk
−→
α... ...

k k

k k

n m : nk→ mk
k k : 1k→ 1k

k : 1k→ 00
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k : 1k→ 1k k : 00→ 2k k : 2k→ 00

k l
: 1k⊗1l → 1l⊗1k : 0k→ 0k

Wires of multiplicity zero are equivalent to the empty mapping. We may omit writing the wire multiplic-
ity if it can be deduced by context.

The extension defines two additional generators; a split node to split registers into multiple wires, and
a function arrow to apply arbitrary functions over a register. In this work we restrict the arrow functions
to permutations σ : [0 . . .k)→ [0 . . .k) that rearrange the order of the wires. Using the split node and the
wire primitives can derive the rotated version, which we call a gather.

nn+m

m
: 1n+m→ 1n⊗1m

n n+m

m
: 1n⊗1m→ 1n+m

σ
: 1k→ 1k

The rewriting rules of the calculus imply that a SZX diagrams can be considered as an open graph
where only the topology of its nodes and edges matters. In the translation process we will make repeated
use of the following reductions rules to simplify the diagrams:

n+m n+m
n

m

(sg)
= n+m n+m

n

m

n

m

(gs)
= m

n

We may also depict composition of gathers as single multi-legged generators. In an analogous manner,
we will use a legless gather to terminate wires with cardinality zero. This could be encoded as the
zero-multiplicity spider [ ] , which represents the empty mapping.

Refer to Appendix A for a complete definition of the rewriting rules and the interpretation of the
SZX calculus. Cf. [6] for a description of the calculus including the generalized arrow generators.

Carette et al. [6] showed that the SZX calculus can encode the repetition of a function f : 1n→ 1n an
arbitrary number of times k ≥ 1 as follows:

kn

n n
f k kn

(k−1)n

=
(

n f n
)k

where f k corresponds to k parallel applications of f . With a simple modification this construction can be
used to encode an accumulating map operation.

Lemma 2.1 Let g : 1n⊗1s→ 1m⊗1s and k ≥ 1, then

ks
s s

gk ks

(k−1)s
kn km

=
s g

kn km

. . .

. . .

g s

. . .
n

n m

m

As an example, given a list N = [n1,n2,n3] and a starting accumulator value x0, this construction would
produce the mapping ([n1,n2,n3],x0) 7→ ([m1,m2,m3],x3) where (mi,xi) = g(ni,xi−1) for i ∈ [1,3].

2.2 SZX diagram families and list instantiation. We introduce the definition of a family of SZX
diagrams D : Nk→D as a function from k integer parameters to SZX diagrams. We require the structure
of the diagrams to be the same for all elements in the family, parameters may only alter the wire tags and
spider phases. Partial application is allowed, we write D(n) to fix the first parameter of D.

Since instantiations of a family share the same structure, we can compose them in parallel by merging
the different values of wire tags and spider phases. We introduce a shorthand for instantiating a family of
diagrams on multiple values and combining the resulting diagrams in parallel. This definition is strictly



144 Encoding High-level Quantum Programs as SZX-diagrams

more general than the thickening endofunctor presented by Carette et al. [6], which replicates a concrete
diagram in parallel. A list instantiation of a family of diagrams D : Nk+1→ D over a list N of integers
is written as (D(n),n ∈ N). This results in a family with one fewer parameter, (D(n),n ∈ N) : Nk→ D .
We graphically depict a list instantiation as a dashed box in a diagram, as follows.

D(n)

n ∈ N

:= D(n)
n∈N

The definition of the list instantiation operator is given recursively on the construction of D in Fig-
ure 1. On the diagram wires we use v(N) to denote the wire cardinality ∑n∈N v(n),−→α (N) for the concate-
nation of phase vectors−→α (n1) :: · · · ::−→α (nm), and σ(N) for the composition of permutations

⊗
n∈N σ(n).

In general, a permutation arrow σ(N,v,w) instantiated in concrete values can be replaced by a reordering
of wires between two gather gates using the rewrite rule (p).

Lemma 2.2 For any diagram family D, n0 : N, N : Nk,

D(n)
n∈n0::N

=
D(n)
n∈N

D(n0)

Lemma 2.3 A diagram family initialized with the empty list corresponds to the empty map. For any
diagram family D,

D(n)
n∈[ ]

0 0
=

0 0

Lemma 2.4 The list instantiation procedure on an n-node diagram family adds O(n) nodes to the origi-
nal diagram.

3 The λD calculus

We first define a base language from which to build our translation. In this section we present the calculus
λD, as a subset of the strongly normalizing Proto-Quipper-D programs. Terms are inductively defined
by:

M,N,L := x |C | R | U | 0 | 1 | n | meas | new |λxS.M |M N | λ ′xP.M |M @ N |
? |M⊗N | let xS1⊗ yS2 = M in N |M;N |
VNilA |M :: N | let xS :: yVec n S = M in N

M�N | ifz L then M else N | for kP in M do N

Where C is a set of implicit bounded recursive primitives used for operating with vectors and iterating
functions. n ∈ N, � ∈ {+,−,×,/,∧} and ifz L then M else N is the conditional that tests for zero.

Here U denotes a set of unitary operations and R is a phase shift gate with a parametrized angle. In
this article we fix the former to the CNOT and Hadamard (H) gates, and the latter to the arbitrary rotation
gates Rz(α) and Rx(α).

For the remaining constants, 0 and 1 represent bits, new is used to create a qubit, and meas to
measure it. ? is the inhabitant of the Unit type, and the sequence M;N is used to discard it. Qubits can
be combined via the tensor product M⊗N with let xS1⊗ yS2 = M in N as its corresponding destructor.
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Given D : Nk+1→D , N = [n1, . . . ,nm] ∈ Nm,

((D1⊗D2)(n),n ∈ N) := (D1(n),n ∈ N)⊗ (D2(n),n ∈ N)

n ∈ N

v(n) v(N)v(N)
:=

v(N)

((D2 ◦D1)(n),n ∈ N) := (D2(n),n ∈ N)◦ (D1(n),n ∈ N)

n ∈ N

v(n)v(N)
:=

v(N)

n ∈ N

v(n) v(n) v(N)v(N)
:=

v(N) v(N)

n ∈ N

v(n) v(n)σ(N) v(N)v(N)
:=

σ(N)v(N) v(N)

n ∈ N

−→
α (n)

v(n)

v(n)

v(n)

v(n)

v(N)

v(N)

v(N)

v(N)

...
... := −→

α (N)

v(N)

v(N)

v(N)

v(N)

...
...

n ∈ N

−→
α (n)

v(n)

v(n)

v(n)

v(n)

v(N)

v(N)

v(N)

v(N)

...
... := −→

α (N)

v(N)

v(N)

v(N)

v(N)

...
...

n ∈ N

v(n)
v(n)+w(n)

w(n)

(v+w)(N)

w(N)

v(N)

:=
(v+w)(N)

w(N)

v(N)
σ(N,v,w)v(N)+w(N)

Where σ(N,v,w) ∈ Fv(N)+w(N)×v(N)+w(N)
2 is the permutation defined as the matrix

σ(N,v,w) =
(
σN

f |σN
g
)
, σ

N
f ∈ Fv(N)+w(N)×v(N)

2 , σ
N
g ∈ Fv(N)+w(N)×w(N)

2

σ
[ ]
f = Id0 σn::N′

f =

Idv(n) 0
0 0
0 σN′

f

 σ
[ ]
g = Id0 σn::N′

g =

 0 0
Idw(n) 0

0 σN′
g


Figure 1: Definition of the list instantiation operator.

The system supports lists; VNilA represents the empty list, M :: N the constructor and let xS ::
yVec n S = M in N acts as the destructor. Finally, the term for kP in M do N allows iterating over pa-
rameter lists.

The typing system is defined in Figure 2. We write |Φ| for the list of variables in a typing context Φ.
The type Vec n A represents a vector of known length n of elements of type A.

We differentiate between state contexts (Noted with Γ and ∆) and parameter contexts (Noted with
Φ). For our case of study, parameter contexts consist only of pairs x : Nat or x : Vec (n : Nat) Nat, since
they are the only non-linear types of variables that we manage. Every other variable falls under the state
context. The terms λxS.M and MN correspond to the abstraction and application which will be used for
state-typed terms. The analogous constructions for parameter-typed terms are λ ′xP.M and M@N.

In this sense we deviate from the original Proto-Quipper-D type system, which supports a single
context decorated with indices. Instead, we use a linear and non-linear approach similar to the work of
Cervesato and Pfenning[9].
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A key difference between Quipper (and, by extension, Proto-Quipper-D) and λD is the approach to
defining circuits. In Quipper, circuits are an intrinsic part of the language and can be operated upon.
In our case, the translation into SZX diagrams will be mediated with a function defined outside the
language.

Types: A := S | P | (n : Nat)→ A[n]
State types: S := B | Q | Unit | S1⊗S2 | S1( S2 | Vec (n : Nat) S
Parameter types: P := Nat | Vec (n : Nat) Nat
State contexts: Γ,∆ := · | x : S,Γ
Parameter contexts: Φ := · | x : P,Φ

Φ,x : A ` x : A
ax

Φ ` 0 : B
ax0

Φ ` 1 : B
ax1

n ∈ N
Φ ` n : Nat

axn
Φ `M : Nat Φ ` N : Nat

Φ `M�N : Nat �

Φ ` meas : Q( B
meas

Φ ` new : B( Q
new

Φ ` ? : Unit
axUnit

Φ ` U : Q⊗n( Q⊗n u
Φ ` R : (n : Nat)→ Q⊗n( Q⊗n r

Φ,Γ,x : A `M : B
Φ,Γ ` λx.M : A( B

(i
Φ,x : Nat,Γ `M : B[x]

Φ,Γ ` λ ′x.M : (n : Nat)→ B
→i

Φ,Γ `M : A( B Φ,∆ ` N : A
Φ,Γ,∆ `MN : B

(e
Φ,Γ `M : (n : Nat)→ B Φ ` N : Nat

Φ,Γ `M@N : B[n/N]
→e

Φ,Γ `M : Unit Φ,∆ ` N : B
Φ,Γ,∆ `M;N : B

; Φ,Γ `M : Vec 0 A Φ,∆ ` N : B
Φ,Γ,∆ `M;v N : B

;vec

Φ,Γ `M : A Φ,∆ ` N : B
Φ,Γ,∆ `M⊗N : A⊗B

⊗
Φ,Γ `M : A⊗B Φ,∆,x : A,y : B ` N : C

Φ,Γ,∆ ` let xA⊗ yB = M in N : C
let⊗

Φ ` VNilA : Vec 0 A
VNil

Φ,Γ `M : A Φ,∆ ` N : Vec n A
Φ,Γ,∆ `M ::N : Vec (n+1) A

Vec

Φ,Γ `M : Vec (n+1) A Φ,∆,x : A,y : Vec n A ` N : C

Φ,Γ,∆ ` let xA : yVec n A = M in N : C
letvec

n : Nat Φ `V : Vec n Nat k : Nat,Φ,Γ `M : A[k]
Φ,Γn ` for k in V do M : Vec n A[k]

f or

Φ ` L : Nat Φ,Γ `M : A Φ,Γ ` N : A
Φ,Γ ` ifz L then M else N : A

i f z

Figure 2: Type system.

Types are divided into two kinds; parameter and state types. Both of these can depend on terms of
type Nat. For the scope of this work, this dependence may only influence the size of vectors types.

Parameter types represent non-linear variable types which are known at the time of generation of the
concrete quantum operations. In the translation into SZX diagrams, these variables may dictate the labels
of the wires and spiders. Vectors of Nat terms represent their cartesian product. On the other hand, state
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types correspond to the quantum operations and states to be computed. In the translation, these terms
inform the shape and composition of the diagrams. Vectors of state type terms represent their tensor
product.

In lieu of unbounded and implicit recursion, we define a series of primitive functions for performing
explicit vector manipulation. These primitives can be defined in the original language, with the advantage
of them being strongly normalizing. The first four primitives are used to manage state vectors, while the
last one is used for generating parameters. For ease of translation some terms are decorated with type
annotations, however we will omit these for clarity when the type is apparent.

Φ ` accuMapA,B,C : (n : Nat)→ Vec n A( Vec n (A(C( B⊗C)(C( (Vec n B)⊗C
Φ ` splitA : (n : Nat)→ (m : Nat)→ Vec (n+m) A( Vec n A⊗Vec m A
Φ ` appendA : (n : Nat)→ (m : Nat)→ Vec n A( Vec m A( Vec (n+m) A
Φ ` drop : (n : Nat)→ Vec n Unit( Unit

Φ ` range : (n : Nat)→ (m : Nat)→ Vec (m−n) Nat

Since every diagram represents a linear map between qubits there is no representation equivalent
to non-terminating terms, even for weakly normalizing programs. This is the main reason behind the
design choice of the primitives set. We include the operational semantics of the calculus and primitives
in Appendix B. The encoding of the primitives as Proto-Quipper-D functions is shown in Appendix C.

We additionally define the following helpful terms based on the previous primitives to aid in the
manipulation of vectors. Cf. Appendix B for their definition as λD-terms.

Φ ` mapA,B : (n : Nat)→ Vec n A( Vec n (A( B)( Vec n B
Φ ` foldA,C : (n : Nat)→ Vec n A( Vec n (A(C(C)(C(C
Φ ` composeA : (n : Nat)→ Vec n (A( A)( A( A

The distinction between primitives that deal with state and parameters highlights the inclusion of the
for as a construction into the language instead of a primitive. Since it acts over both parameter and
state types, its function is effectively to bridge the gap between the two of them. This operation closely
corresponds to the list instantiation procedure presented in the Section 2.1.

For example, if we take ns to be a vector of natural numbers, and xs a vector of abstractions
R@k(new0). The term for k in ns do xs generates a vector of quantum maps by instantiating the ab-
stractions for each individual parameter in ns.

4 Encoding programs as diagram families

In this section we introduce an encoding of the lambda calculus presented in Section 3 into families of
SZX diagrams with context variables as inputs and term values as outputs. We split the lambda-terms
into those that represent linear mappings between quantum states and can be encoded as families of SZX
diagrams, and parameter terms that can be completely evaluated at compile-time.

4.1 Parameter evaluation. We say a type is evaluable if it has the form A = (n1 : Nat)→ ··· → (nk :
Nat)→ P[n1, . . . ,nk] with P a parameter type. Since A does not encode a quantum operation, we interpret
it directly into functions over vectors of natural numbers. The translation of an evaluable type, bAc, is
defined recursively as follows:

b(n : Nat)→ B[n]c= N→
⋃

n∈N
bB[n]c bNatc= N bVec (n : Nat) Natc= Nn
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Given a type judgement Φ ` L : P where P is an evaluable type, we define bLc
Φ

as the evaluation of
the term into a function from parameters into products of natural numbers. Since the typing is syntax
directed, the evaluation is defined directly over the terms as follows:

bxcx:Nat,Φ = x, |Φ| 7→ x bnc
Φ
= |Φ| 7→ n bM�Nc

Φ
= |Φ| 7→ bMc

Φ
(|Φ|)�bNc

Φ
(|Φ|)

bM :: Nc
Φ
= |Φ| 7→ bMc

Φ
(|Φ|)×bNc

Φ
(|Φ|)

⌊
VNilNat

⌋
Φ
= |Φ| 7→ []⌊

λ
′xP.M

⌋
Φ
= x, |Φ| 7→ bMc

Φ
(x, |Φ|) bM@Nc

Φ
= bMc

Φ
(bNc

Φ
(|Φ|),Φ)

bifz L then M else Nc
Φ
= |Φ| 7→

{
bMc

Φ
(|Φ|) if bLc

Φ
(|Φ|) = 0

bNc
Φ
(|Φ|) otherwise

brange c
Φ
= n,m, |Φ| 7→

m−1

×
i=n

i

bfor k in V do Mc
Φ
= |Φ| 7→ ×

k∈bVc
Φ
(|Φ|)
bMck:NatΦ

(k, |Φ|)

⌊
let xP :: yVec n P = M in N

⌋
Φ
= |Φ| 7→ bNcx:P,y:Vec n P,Φ (y1, [y2, . . . ,yn], |Φ|) where [y1,...,yn]=bMcΦ(|Φ|)

Lemma 4.1 Given an evaluable type A and a type judgement Φ ` L : A, bLc
Φ
∈×x:P∈Φ

bPc → bAc.

Lemma 4.2 Given an evaluable type A, a type judgement Φ ` L : A, and M→ N, then bMc
Φ
= bNc

Φ
.

4.2 Diagram encoding. A non-evaluable type has necessarily the form A = (n1 : Nat)→ ··· → (nk :
Nat)→ S, with S any state type. We call such types translatable since they correspond to terms that
encode quantum operations that can be described as families of diagrams.

We first define a translation J·K from state types into wire multiplicities as follows. Notice that due to
the symmetries of the SZX diagrams the linear functions have the same representation as the products.

JBK= 1 JQK= 1 JVec (n : Nat) AK= JAK⊗n JA⊗BK= JAK⊗JBK JA( BK= JAK⊗JBK

Given a translatable type judgement Φ,Γ `M : (n1 : Nat)→ ··· → (nk : Nat)→ S we can encode it

as a family of SZX diagrams n1, . . . ,nk, |Φ| 7→ M(|Φ|)
JS[|Φ|]KJΓK

. We will omit the brackets in our
diagrams for clarity. In a similar manner to the evaluation, we define the translation JMK

Φ,Γ recursively
on the terms as follows:

JxK
Φ,x:A = |Φ| 7→ A J0K

Φ
= |Φ| 7→

Q
J1K

Φ
= |Φ| 7→

Q
π JmeasK

Φ
= |Φ| 7→

Q(Q

JnewK
Φ
= |Φ| 7→ 1(1

JUK
Φ
= |Φ| 7→

nQ(nQ

U
JRK

Φ
= n, |Φ| 7→

Q(Q

R(n)

q
λ
′xA.M

y
Φ,Γ

= x, |Φ| 7→ M(x, |Φ|)
AΓ

JM @NK
Φ,Γ = |Φ| 7→ M(bNc

Φ
(|Φ|), |Φ|)

BΓ

q
λxA.M

y
Φ,Γ

= |Φ| 7→

A

M(|Φ|) B

A(B
Γ JM NK

Φ,Γ,∆ = |Φ| 7→

∆

M(|Φ|)
A(B BΓ

N(|Φ|)
A

JM;NK
Φ,Γ,∆ = |Φ| 7→

∆

N(|Φ|)
A

Γ

M(|Φ|)
J?K

Φ
= |Φ| 7→ JM⊗NK

Φ,Γ,∆ = |Φ| 7→
∆

N(|Φ|)

AΓ

M(|Φ|)

B

A⊗B
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JM;v NK
Φ,Γ,∆ = |Φ| 7→

∆

N(|Φ|)
A

Γ

M(|Φ|)
JVNilK

Φ
= |Φ| 7→

q
let xA⊗ yB = M in N

y
Φ,Γ,∆

= |Φ| 7→
∆

N(|Φ|)B

Γ

M(|Φ|)
A⊗B A

C

q
let xA : yVec n A = M in N

y
Φ,Γ,∆

= |Φ| 7→
∆

N(|Φ|)A⊗n

Γ

M(|Φ|)
A⊗n+1 A

C

JM ::NK
Φ,Γ,∆ = |Φ| 7→

∆

N(|Φ|)

AΓ

M(|Φ|)

A⊗n

A⊗n+1

Jfor k in V do MK
Φ,Γn = |Φ| 7→ A⊗n

M(k)
k∈bVc(|Φ|)

Γ⊗n

Jifz L then M else NK
Φ,Γ = |Φ| 7→

N
k∈[0]⊗δl>0

Γ

M
k∈[0]⊗δl=0

A⊗δl>0

A
Γ
⊗δl=0

Γ
⊗δl>0

A⊗δl=0

where δ is the Kronecker delta and l = bLc(|Φ|). Notice that the new and meas operations share the same
translation. Although new can be encoded as a simple wire, we keep the additional node to maintain the
symmetry with the measurement.

The unitary operators U and rotations R correspond to a predefined set of primitives, and their trans-
lation is defined on a by case basis. The following table shows the encoding of the operators used in this
paper.

Name Rz(n) Rz−1(n) Rx(n) Rx−1(n) H CNOT

Encoding π

n − π

n
π

n − π

n

The primitives split, append, drop and accuMap are translated below. Since vectors are isomor-
phic to products in the wire encoding, the first three primitives do not perform any operation. For the
accumulating map we utilize the construction presented in Lemma 2.1, replacing the function box with
a function vector input. In the latter we omit the wires and gathers connecting the inputs and outputs of
the function to a single wire on the right of the diagram for clarity.

JsplitAK
Φ
= n,m, |Φ| 7→ (n+m)A(nA⊗mA(n+m)A

JappendAK
Φ
= n,m, |Φ| 7→ nA(mA((n+m)A(n+m)A

JdropK
Φ
= n, |Φ| 7→ n0(0

q
accuMapA,B,C

y
Φ
= n, |Φ| 7→

nCC C

(n−1)C

nA

nB
τn,A,B,C

n(A(C(B⊗C) nA(nC(nB⊗nCC

nA

n(A(C(B⊗C)

nB⊗CC

0A

0(A(C(B⊗C)

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0
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where τn,A,B,C is a permutation that rearranges the vectors of functions into tensors of vectors for each
parameter and return value. That is, τn,A,B,C reorders a sequence of registers (A,C,B,C) . . .(A,C,B,C)
into the sequence (A . . .A)(C . . .C)(B . . .B)(C . . .C). It is defined as follows,

τn,A,B,C(i) =


i mod k+a∗ (i div k) if i mod k < a
i mod k+ c∗ (i div k)+a∗ (n−1) if a≤ i mod k < (a+ c)
i mod k+b∗ (i div k)+(a+ c)∗ (n−1) if (a+ c)≤ i mod k < (a+ c+b)
i mod k+ c∗ (i div k)+(a+ c+b)∗ (n−1) if (a+ c+b)≤ i mod k

for i ∈ [0,(a+c+b+c)∗n), where mod and div are the integer modulo and division operators, a = JAK,
b = JBK, c = JCK, and k = a+ c+b+ c.

As a consequence of Lemma 2.4, the number of nodes in the produced diagrams grows linearly
with the size of the input. Notice that the ZX spiders, the ground, and the Hadamard operator are only
produced in the translations of the quantum primitives. We may instead have used other variations of
the calculus supporting the scalable extension, such as the ZH calculus [2], better suited for other sets of
quantum operators.
Lemma 4.3 The translation procedure is correct in respect to the operational semantics of λD. If A is a
translatable type, Φ,Γ `M : A, and M→ N, then JMK

Φ,Γ = JNK
Φ,Γ.

5 Application example: QFT

The Quantum Fourier Transform is an algorithm used extensively in quantum computation, notably as
part of Shor’s algorithm for integer factorization [16]. The QFT function operates generically over n-
qubit states and in general a circuit encoding of it requires O(n2) gates. In this section we present
an encoding of the algorithm as a λD term, followed by the translation into a family of constant-sized
diagrams. The corresponding Proto-Quipper-D program is listed in Appendix D.

The following presentation divides the algorithm into three parts. The crot term applies a controlled
rotation over a qubit with a parametrized angle. apply crot operates over the last n− k qubits of an
n-qubit state by applying a Hadamard gate to the first one and then using it as target of successive crot
applications using the rest of the qubits as controls. Finally, qft repeats apply crot for all values of k. In
the terms, we use n . . .m as a shorthand for range @n @m.

crot : (n : Nat)→ (Q⊗Q)( (Q⊗Q)
crot := λ ′nNat.λqsQ⊗Q.let cQ⊗qQ = qs in let cQ⊗qQ = CNOT c (Rz @2n q) in CNOT c (Rz−1 @2n q)

apply crot : (n : Nat)→ (k : Nat)→ Vec n Q( Vec n Q

apply crot := λ
′nNat. λ

′kNat. λqsVec n Q.

ifz (n− k) then qs else

let hVec k Q⊗qs′ Vec n−k Q = split @k @(n− k) qs in

let qQ⊗ csVec n−k−1 Q = qs′ in

let f sVec (n−k−1) (Q⊗Q(Q⊗Q) = for mNat in 2..(n− k+1) do crot @m in

let cs′ (Vec n−k−1 Q)⊗q′ Q = accuMap f s (H q) cs in

concat h (q′ : cs′)
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qft : (n : Nat)→ Vec n Q( Vec n Q

qft := λ
′nNat.λqsVec n Q.compose

(for kNat in reverse vec @(0..n) do λqs′ Vec n Q.apply crot @n @k qs′) qs

The translation of each term into a family of diagrams is shown below. We omit the wire connecting
the function inputs to the right side of the graphs for clarity and eliminate superfluous gathers and splitters
using rules (sg) and (gs). Notice that, in contrast to a quantum circuit encoding, the resulting diagram’s
size does not depend on the number of qubits n.

JcrotK = n 7→ 2

− π

2n
π

2n

2

Japply crotK = n,k 7→

nn
k

n−k crot(m)
m∈2..(n−k+1)

n−k−2

n−k−1

n−k−1
n−k−1

n−k−1

n−k

n×δn−k=0

n×δn−k>0n×δn−k>0

x∈[0]⊗δn−k>0

JqftK = n 7→ n n
n×(n−1)

apply crot(n,k)
k∈rev(0..n)

n×n n×n

6 Discussion

In this article, we presented an efficient method to compile parametric quantum programs written in a
fragment of the Proto-Quipper-D language into families of SZX diagrams. We restricted the fragment to
strongly normalizing terms that can be represented as diagrams. Additionally, we introduced a notation
to easily compose elements of a diagram family in parallel. We proved that our method produces compact
diagrams and shown that it can encode non-trivial algorithms.

A current line of work is defining categorical semantics for the calculus and families of diagrams,
including a subsequent proof of adequacy for the translation. More work needs to be done to expand the
fragment of the Quipper language that can be translated.

We would like to acknowledge Benoı̂t Valiron for helpful discussion on this topic, and Frank Fu
for his help during the implementation of the Proto-Quipper-D primitives. This work was supported
in part by the French National Research Agency (ANR) under the research projects SoftQPRO ANR-
17-CE25-0009-02 and Plan France 2030 ANR-22-PETQ-0007, by the DGE of the French Ministry of
Industry under the research project PIA-GDN/QuantEx P163746-484124, by the project STIC-AmSud
project Qapla’ 21-SITC-10, the ECOS-Sud A17C03 project, the PICT-2019-1272 project, the French-
Argentinian IRP SINFIN and the PIP 11220200100368CO project.
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A Semantics of the SZX calculus

We reproduce below the standard interpretation of SZX diagrams as density matrices and completely
positive maps [8, 6], modulo scalars.

Let Dn ⊆ C2n×2n
be the set of n-qubit density matrices. We define the functor {{·}} : ZX →

CPM(Qubit) which associates to any diagram D : n→ m a completely positive map {{D}} : Dn→ Dm,
inductively as follows.

{{D1⊗D2}} := {{D1}}⊗{{D2}} {{D2 ◦D1}} := {{D2}}◦{{D1}}{{
k k

}}
:= ρ 7→V ρ V † where V = ∑

x,y∈Fk
2

(−1)x•y |y〉〈x|

{{
−→
α... ...

k k

k k

n m

}}
:= ρ 7→V ρ V † where V = ∑

x∈Fk
2

eix•−→α |x〉⊗m 〈x|⊗n

{{
−→
α... ...

k k

k k

n m

}}
:=
{{

k k
}}⊗m ◦

{{
−→
α... ...

k k

k k

n m

}}
◦
{{

k k
}}⊗n

{{
k
}}

:= ρ 7→ ∑
x∈Fk

2

〈x|ρ |x〉
{{

k
}}

:= ∑
x∈Fk

2

|x〉〈x|
{{

k
}}

:= ρ 7→ ρ

{{ n n+m

m

}}
:= ρ 7→ ρ

{{
σ

}}
:= ρ 7→V ρ V † where V = ∑

x∈Fk
2

|σ(x)〉〈x|

{{
k

}}
:= ρ 7→ ∑

x∈Fk
2

〈xx|ρ |xx〉
{{

k

}}
:= ∑

x∈Fk
2

|xx〉〈xx|
{{ }}

:= Id0

{{ k l }}
:= ρ 7→V ρ V † where V = ∑

x∈Fk
2,y∈Fl

2

|yx〉〈xy|

where ∀u,v ∈ Rn,u• v = ∑
m
i=1 uivi.

The SZX calculus defines a set of rewrite rules, shown below.

β

... ...

α ......

=... ... ...α+β

( fff )

−α=

π

π α ... ...

π
(πππ)

...α =...

(ccc)

... = ...

(hhh)
(iii111)
=

=
(iii222)

(bbb)
=

...α α ...

(kkk)
=

(lll)
= α

(mmm)
=

(nnn)
=

n+m n+m
n

m

(sg)
= n+m n+m

n

m

n

m

(gs)
= m

n

−→
α

...=...

−→
β

(((zzz222)))−→
α ::
−→
β =

(((www)))(((zzz111)))
= =

(((zzz333)))
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Additionally, for the arrows restricted to permutations of wires we have the following rules [6]:

=
(((ppp111)))

σ
=
(((ppp))) σ

...
...

...

σ σ−1

−→
α σ(−→α )=

(((ppp222)))...
...

σ

σ

σ
σ σ

=
(((ppp333)))

=
(((ppp444)))...

...
σ1⊗σ2

σ1

σ2

Finally, since wires with cardinality zero correspond to empty mappings they can be discarded from the
diagrams.

...=...

( /0111)
[ ]...

0 0

0 0

...

=
( /0222)0 0 0

n=
( /0444)

n

0
n

=
( /0333)0 0 0

=
( /0w)0

B Operational Semantics of the λD calculus

We define a weak call-by-value small step operational semantics on Table 1.
A key point to note here is that every rewriting rule preserves the state. There are no measurements

or unitary operations applied, the rewriting is merely syntactical. Since our goal is translation into an
SZX-diagram, this system is powerful enough. We include the rewrite rules for the primitives on Table 2.

Additionally, we define useful macros based on these functions on Table 3. They provide syntactic
sugar to deal with state vectors.

C Implementation of primitives in Proto-Quipper-D

The implicitly recursive primitives defined in Section 3 can be implemented in proto-quipper-D as fol-
lows. The implementation has been checked with the dpq tool implemented by Frank Fu (see https:

//gitlab.com/frank-peng-fu/dpq-remake).

module Primitives where

import "/dpq/Prelude.dpq"

foreach : ! forall a b (n : Nat)

-> (Parameter a) => !(a -> b) -> Vec a n -> Vec b n

foreach f l = map f l

split : ! forall a (n : Nat) (m: Nat) -> Vec a (n+m) -> Vec a n * Vec a m

split n m v =

case v of

VNil -> (VNil, VNil)

VCons x v' ->

case n of

Z -> (VNil, v)

S n' ->

let (v1, v2) = split n' m v'

in (VCons x v1, v2)

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake
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V := x |C | 0 | 1 | meas | new | U |
λxS.M | λ ′xP.M |? |M⊗N |
VNil |M :: N

(λx.M)V →M[V/x]

(λ ′x.M)@V →M[V/x]

let x⊗ y = M1⊗M2 in N→ N[x/M1][y/M2]

let x :: y = M1 :: M2 in N→ N[x/M1][y/M2]

ifz V then M else N→

{
M If V = 0
N Otherwise

? ; M→M

VNil ;v M→M

V1�V2→V Where Vi = ni and V = n1�n2

for k in M1 :: M2 do N→ N[k/M1] :: for k in M2 do N

for k in VNil do N→ VNil

M→ N
MV → NV

M→ N
LM→ LN

M→ N
M@V → N@V

M→ N
L@M→ L@N

M→ N
let x⊗ y = M in L→ let x⊗ y = N in L

M→ N
let x :: y = M in L→ let x :: y = N in L

M→ N
L�M→ L�N

M→ N
M�V →M�V

M→ N
M ; L→ N ; L

M→ N
let x : y = M in L→ let x : y = N in L

M→ N
ifz M then L1 else L2→ ifz N then L1 else L2

M→ N
for k in M do L→ for k in N do L

Table 1: Rewrite system for λD.
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accuMap @n xs f s z→ifz n then xs ;v f s ;v VNil⊗ z else

let x :: xs′ = xs in let f :: f s′ = f s in

let y⊗ z′ = f x z in let ys⊗ z′′ = accuMap @(n−1) xs′ f s′ z′ in

(y :: ys)⊗ z′′

split @n @m xs→ifz n then VNil⊗ xs else let y :: xs′ = xs in

let ys1⊗ ys2 = split@(n−1) @m xs′ in (y :: ys1)⊗ ys2

append @n @m xs ys→ifz n then xs ;v ys else

let x :: xs′ = xs in x :: (append @(n−1) @m xs′ ys)

drop @n xs→ifz n then xs ;v ? else let x :: xs′ = xs in x ; drop @(n−1) xs′

range @n @m→ifz m−n then VNil else n :: range @(n+1) @m

Table 2: Reductions pertaining to the primitives.

map @n xs f s := let f s′⊗u1 = accuMap @n f s

(for k in (0..n) do λ f .λu.(λx.λu. f x⊗u)⊗u) ?

in let xs′⊗u2 = accuMap @n xs f s′ ?

in u1 ; u2 ; xs′

fold @n xs f s z := let f s′⊗u = accuMap @n f s

(for k in (0..n) do λ f .λu.(λx.λy. ?⊗ f x y)⊗u) ?

in let us⊗ r = accuMap @n xs f s′ z

in u ; drop @n us ; r

compose @n xs = fold @n xs (for k in 0..n do (λ f .λg.λx. f (g x))) (λx.x)

Table 3: Function macros.
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cons : ! forall a (n : Nat) (m: Nat) -> Vec a n -> Vec a m -> Vec a (n+m)

cons n m vn vm =

case vn of

VNil -> VNil

VCons x vn' -> x : cons n m vn' vm

accuMap : ! forall a b c (n : Nat)

-> Vec a n -> Vec (a -> c -> (b,c)) n -> c -> (Vec b n, c)

accuMap n v fs z =

case v of

VNil -> (VNil, z)

VCons x v' ->

case n of

S n' ->

let (y, z') = f x z

in (VCons y accuMap n' v' f z', z')

mapp : ! forall a b (n : Nat) -> Vec a n -> Vec (a -> b) n -> Vec b n

mapp n v f =

let (v', _) = accuMap n v (\x z -> (f x, z)) VNil

in v'

fold : ! forall a b (n : Nat) -> Vec a n -> Vec (a -> b -> b) n -> b -> b

fold n v f z =

let (_, z') = accuMap n v (\x z -> (VNil, f x z)) z

in z'

compose : ! (n : Nat) -> Vec (a -> a) n -> a -> a

compose n fs x = fold fs (replicate n (\f x -> f x)) x

range_aux : ! (n : Nat) -> (m : Nat) -> Nat -> Vec Nat (minus m n)

range_aux n m x =

case m of

Z -> VNil

S m' -> case n of

Z -> let r' = range_aux Z m' (S x)

in subst (\x -> Vec Nat x) (minusSZ' m') (VCons x r')

S n' -> range_aux n' m' (S x)

range : ! (n : Nat) -> (m : Nat) -> Vec Nat (minus m n)

range n m = range_aux n m Z

drop : ! (n : Nat) -> Vec Unit n -> Unit

drop n v = case n of

Z -> ()
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S n' -> case v of

VCons _ v' -> drop n' v'

D QFT algorithm in Quipper code

The following Proto-Quipper-D code corresponds to the algorithm presented in Section 5. This imple-
mentation has been checked with the dpq tool implemented by Frank Fu (see https://gitlab.com/

frank-peng-fu/dpq-remake). Notice that, in contrast to the presented lambda terms, the type checker
implementation requires explicit encodings of the Leibniz equalities between parameter types.

module Qft where

import "/dpq/Prelude.dpq"

crot : ! (n : Nat) -> Qubit * Qubit -> Qubit * Qubit

crot n q = let (q',c) = q in flip $ R n q' c

-- Specify types to help the typechecker

applyCrot_aux : ! (n : Nat) -> Qubit -> Qubit -> Qubit * Qubit

applyCrot_aux n ctrl q = crot n (q, ctrl)

-- Apply a CROT sequence to a qubit register, ignoring the first k qubits.

applyCrot : ! (n k : Nat) -> Vec Qubit n -> Vec Qubit n

applyCrot n k qs =

let WithEq r e = inspect (minus n k)

in case r of

Z -> qs

S n' ->

let

-- e : Eq Nat (S n') (minus n k)

-- e' : Eq Nat (add k (S n')) n

e' = trans (symAdd k (S n')) $ minusPlus n n' k $ sym (minus n k) e

-- qs' : Vec Qubit (minus n k)

qs' = subst (\m -> Vec Qubit m) (sym (add k (S n')) e') qs

(head, qs') = split k (S n') $ qs'

(q,ctrls) = chop qs'

-- fs : Vec (Qubit -> Qubit -> Qubit * Qubit) (minus n' Z)

fs = foreach (\k -> applyCrot_aux (S(S k))) $ 0..n'

-- fs : Vec (Qubit -> Qubit -> Qubit * Qubit) Z

eq = sym n' $ minusZ n'

fs = subst (\m -> Vec (Qubit -> Qubit -> Qubit * Qubit) m) eq fs

(ctrls', q') = accumap fs (H q) ctrls

in subst (\m -> Vec Qubit m) e' $ append head (VCons q' ctrls')

-- Required for the type checker to derive the second !

qft_aux : ! (n : Nat) -> ! (k : Nat) -> Vec Qubit n -> Vec Qubit n

qft_aux n head_size qs = applyCrot n head_size qs

https://gitlab.com/frank-peng-fu/dpq-remake
https://gitlab.com/frank-peng-fu/dpq-remake
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qft : ! (n : Nat) -> Vec Qubit n -> Vec Qubit n

qft n qs = let f = qft_aux n in compose' (foreach f $ reverse_vec (0..n)) qs

E Proofs

Lemma (2.1) Let g : 1n⊗1s→ 1m⊗1s and k ≥ 1, then

ks
s s

gk ks

(k−1)s
kn km

=
s g

kn km

. . .

. . .

g s

. . .
n

n m

m

Proof By induction on k. If k = 1,

s
s s

g s

0
n m

(i1, /01)
= s

s s
g s

0

n m
( /04)
= s g s

n m

If k > 1,

ks
s s

gk ks

(k−1)s

kn km
de f
= kss s

gk−1 ks

(k−1)s

kn kmg
mn

(k−1)s (k−1)s

(gs)
= s sgk−1

(k−2)s

kn kmg
mn

(k−1)s (k−1)s
s

=
s sgk−1

(k−2)s

kn km

g

m

n

(k−1)s (k−1)s
s

(k−1)n
(k−1)m HI

=
s g

kn km

. . .

. . .

g s

. . .
n

n m

m

�

Lemma (2.2) For any diagram family D, n0 : N, N : Nk,

D(n)
n∈n0::N

=
D(n)
n∈N

D(n0)

Proof By induction on the term construction

• If D is a gather,

(v+w)(n::N)

w(n::N)

v(n::N)
σ(n::N,v,w)

v(n::N)+w(n::N) (p)
=

(v+w)(n::N)

w(n::N)

v(n::N)

σ(N,v,w)

v(N)+w(N)

Idw(n)

Idv(n)

v(N)+w(N)

v(n) v(n)

w(n) w(n)

w(N)w(N)
v(N) v(N)

(sg,gs,p)
= (v+w)(n::N)

w(n::N)

v(n::N)

σ(N,v,w)

v(N)+w(N)
(v+w)(N)

v(n)
(v+w)(n)

w(n)

w(N)

v(N)
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• The other cases can be directly derived from the commutation properties of the gather generator
via rules (z1),(z2),(z3),(w), and (p4). �

Lemma (2.3) A diagram family initialized with the empty list corresponds to the empty map. For any
diagram family D,

D(n)
n∈[ ]

0 0
=

0 0

Proof Notice that any wire in the initialized diagrams has cardinality zero. By rules ( /01), ( /02), ( /03),
( /04), and ( /0w) every internal node can be eliminated from the diagram. �

Lemma (2.4) The list instantiation procedure on an n-node diagram family adds O(n) nodes to the
original diagram.

Proof By induction on the term construction. Notice that the instantiation of any term except the gather
does not introduce any new nodes, and the gather introduction creates exactly one extra node. Therefore,
the list instantiation adds a number of nodes equal to the number of gather generators in the diagram. �

Lemma E.5 Given type judgements Φ,x : A`M : B, and Φ`N : A. bMcx:A,Φ (bNc
Φ
, |Φ|)= bM[N/x]c

Φ
(

|Φ| ).

Proof Proof by straightforward induction on M. �

Lemma (4.1) Given an evaluable type A and a type judgement Φ `M : A, bMc
Φ
∈×x:P∈Φ

bPc → bAc.

Proof By induction on the typing judgement Φ `M : A:

• If Φ ` n : Nat, then bnc
Φ
= |Φ| 7→ n ∈×x:P∈Φ

bPc → N.

• If Φ,x : A ` x : A, then bxcx:A,Φ = x, |Φ| 7→ x ∈×y:P∈x:A,Φ bPc → bAc.

• If Φ`M�N : NatΦ,Γ,∆`M ::N : Vec (n+1) A, then bM�Nc
Φ
= |Φ| 7→ bMc

Φ
(|Φ|)� bNc

Φ
( |Φ|

). By inductive hypothesis, bMc
Φ
(|Φ|),bMc

Φ
(|Φ|) ∈ N. Then, |Φ| 7→ bMc

Φ
(|Φ|)�bNc

Φ
(|Φ|) ∈

×x:P∈Φ
bPc → N.

• If Φ ` λ ′x.M : (x : P)→ B then
⌊
λ ′xP.M

⌋
Φ
= x, |Φ| 7→ bMc

Φ
(x, |Φ|). By inductive hypothesis,

bMc
Φ
(x, |Φ|) ∈ bBc. Then, |Φ| 7→ bMc

Φ
(x, |Φ|) ∈×y:P∈x:PΦ

bPc → bBc.

• If Φ,Γ `M@N : B[x/r], then bM@Nc
Φ
= |Φ| 7→ bMc

Φ
(bNc

Φ
(|Φ|),Φ). By inductive hypothesis,

bNc
Φ
(|Φ|) ∈ N and x 7→ bMc

Φ
(x,Φ) ∈ bx : Nat→ B[x]c. Then, |Φ| 7→ bMc

Φ
(bNc

Φ
(|Φ|),Φ) ∈

×y:P∈Φ
bPc → bB[A/x]c.

• If Φ ` VNilA : Vec 0 A, then
⌊
VNilP

⌋
Φ
= |Φ| 7→ [] ∈×x:P∈Φ

bPc → N0.

• If Φ,Γ,∆ `M ::N : Vec (n+1) A, then bM :: Nc
Φ
= |Φ| 7→ bMc

Φ
(|Φ|)×bNc

Φ
(|Φ|). By induc-

tive hypothesis MΦ(|Φ|) ∈ bAc and bNc
Φ
(|Φ|) ∈ bAcn. Then, |Φ| 7→ bMc

Φ
(|Φ|)×bNc

Φ
(|Φ|) ∈

×x:P∈Φ
bPc → bAcn+1.

• If Φ,Γ ` ifz L then M else N : A, then

bifz L then M else Nc
Φ
= |Φ| 7→

{
bMc

Φ
(|Φ|) if bLc

Φ
(|Φ|) = 0

bNc
Φ
(|Φ|) otherwise

.

By inductive hypothesis bmc
Φ
(|Φ|),bNc

Φ
(|Φ|) ∈ bAc and bLc

Φ
(|Φ|) ∈ N.

Then bifz L then M else Nc
Φ
∈×x:P∈Φ

bPc → bAc.
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• If Φ ` for k in N do M : Vec n A, then bfor k in V do Mc
Φ
= |Φ| 7→×k∈bNc

Φ
(|Φ|) bMck:NatΦ

(k,
|Φ|). By induction hypothesis, bNc

Φ
(|Φ|) ∈ Natn and x 7→ bMc

Φ
(x,Φ) ∈ bk : Nat→ A[k]c. Then

|Φ| 7→×k∈bNc
Φ
(|Φ|) bMck:NatΦ

(k, |Φ|) ∈×x:P∈Φ
bPc → bA[k/N]cn.

• If Φ ` let xB : yVec n B = M in N : A, then
⌊
let xP :: yVec n P = M in N

⌋
Φ
=|Φ| 7→

bNcx:P,y:Vec n PΦ
(y1, [y2, . . . ,yn], |Φ|) where [y1, . . . ,yn] = bMcΦ (|Φ|).

By inductive hypothesis bMc
Φ
(|Φ|) ∈ bBcn and bNcx:P,y:Vec n PΦ

(y1, [y2, . . . ,yn], |Φ|) ∈ bAc. Then
|Φ| 7→ bNcx:P,y:Vec n PΦ

(y1, [y2, . . . ,yn], |Φ|) ∈×x:P∈Φ
bPc → bAc.

• If Φ ` range : (n : Nat)→ (m : Nat)→ Vec (m−n) Nat, then brange c
Φ
= n,m, |Φ| 7→×m−1

i=n i∈
×z:P∈x:Nat,y:Nat,Φ bPc → Nm−n �

Lemma (4.2) Given an evaluable type A, a type judgement Φ `M : A, and M→ N, then bMc
Φ
= bNc

Φ
.

Proof By induction on the evaluation function bMc
Φ

:

• If M = x, M = n, M = VNilNat, M = λ ′x.M′, M = M1 :: M2 or M = range then M is in normal
form and it does not reduce.

• If M = M1�M2 we have three cases:

– If M→M1�N with M2→ N, then:

bM1�M2cΦ = |Φ| 7→ bM1cΦ (|Φ|)�bM2cΦ (|Φ|)
= |Φ| 7→ bM1cΦ (|Φ|)�bNc

Φ
(|Φ|)

= bM1�Nc
Φ

– If M→ N�V with M1→ N, then:

bM1�Vc
Φ
= |Φ| 7→ bM1cΦ (|Φ|)�bVc

Φ
(|Φ|)

= |Φ| 7→ bNc
Φ
(|Φ|)�bVc

Φ
(|Φ|)

= bN�Vc
Φ

– If M→ n with Mi = ni ∈ N and n = n1�n2, then:

bn1�n2cΦ = |Φ| 7→ bn1cΦ (|Φ|)�bn2cΦ (|Φ|)
= |Φ| 7→ n1�n2

= |Φ| 7→ n

= bnc
Φ

• If M = M1 @ M2 we have three cases:

– If M→M1 @ N with M2→ N, then:

bM1 @ M2cΦ = |Φ| 7→ bM1cΦ (bM2cΦ (|Φ|),Φ)

= |Φ| 7→ bM1cΦ (bNc
Φ
(|Φ|),Φ)

= bM1 @ Nc
Φ
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– If M→ N @ V with M1→ N, then:

bM1 @ Vc
Φ
= |Φ| 7→ bM1cΦ (bVc

Φ
(|Φ|),Φ)

= |Φ| 7→ bM1cΦ (bVc
Φ
(|Φ|),Φ)

= bN @Vc
Φ

– If M→M′[V/x] with M1 = λ ′x.M′ and M2 =V , then:

⌊
(λ ′x.M)@V

⌋
Φ
= |Φ| 7→

⌊
λ
′x.M

⌋
Φ
(bVc

Φ
(|Φ|),Φ)

= |Φ| 7→ (x, |Φ| 7→ bMcx,Φ (x, |Φ|))(bVc
Φ
(|Φ|),Φ)

= |Φ| 7→ bM[V/X ]c
Φ
(|Φ|)

= bM[V/X ]c
Φ

• If M = ifz M′ then L else R we have three cases:

– If M→ ifz N then L else R with M′→ N, then:

⌊
ifz M′ then L else R

⌋
Φ
= |Φ| 7→

{
bMc

Φ
(|Φ|) if bM′c

Φ
(|Φ|) = 0

bNc
Φ
(|Φ|) otherwise

= |Φ| 7→

{
bMc

Φ
(|Φ|) if bM′c

Φ
(|Φ|) = 0

bNc
Φ
(|Φ|) otherwise

= bifz N then L else Rc
Φ

– If M→ L with M′ = 0, then:

⌊
ifz M′ then L else R

⌋
Φ
= |Φ| 7→

{
bMc

Φ
(|Φ|) if bM′c

Φ
(|Φ|) = 0

bNc
Φ
(|Φ|) otherwise

= |Φ| 7→ bLc
Φ
(|Φ|)

= bLc
Φ

– The symmetric case for the else branch is similar to the previous one.

• If M = for k in M′ do R we have three cases:

– If M→ for k in N do R with M′→ N, then:

⌊
for k in M′ do R

⌋
Φ
= |Φ| 7→ ×

k∈bM′c
Φ
(|Φ|)
bRc

Φ
(k, |Φ|)

= |Φ| 7→ ×
k∈bNc

Φ
(|Φ|)
bRc

Φ
(k, |Φ|)

= bfor k in N do Rc
Φ
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– If M→ R[k/M1] : for k in M2 do R with M′ =V :: L, then:

bfor k in M1 :: M2 do Rc
Φ
= |Φ| 7→ ×

k∈bM1 :: M2cΦ(|Φ|)
bRc

Φ
(k, |Φ|)

= |Φ| 7→ ×
k∈bM1cΦ(|Φ|)×bM2cΦ(|Φ|)

bRc
Φ
(k, |Φ|)

= |Φ| 7→ bRck,Φ (bM1cΦ (|Φ|), |Φ|)× ×
k∈bM2cΦ(|Φ|

bRck,Φ (k, |Φ|)

= bR[M1/k]c
Φ
×bfor k in M2 do Rc

Φ

= bR[M1/k] :: for k in M2 do Rc
Φ

– If M→ VNil with M′ = VNilNat, then:⌊
for k in VNilNat do R

⌋
Φ
= |Φ| 7→ ×

k∈bVNilNatc
Φ
(|Φ|)
bRc

Φ
(k, |Φ|)

= |Φ| 7→×
k∈[]
bRc

Φ
(k, |Φ|)

= |Φ| 7→ []

=
⌊
VNilNat

⌋
Φ

• If M = let x :: y = M1 in M2 we have two cases:
– If M→ let x :: y = N in M2 with M1→ N, then:

blet x :: y = M1 in M2cΦ = |Φ| 7→ bM2cΦ (y1, [y2, . . . ,yn], |Φ|) where [y1,...,yn]=bM1cΦ(|Φ|)

= |Φ| 7→ bM2cΦ (y1, [y2, . . . ,yn], |Φ|) where [y1,...,yn]=bNcΦ(|Φ|)

= blet x :: y = N in M2cΦ

– If M→ N[x/M1][y/M2] with M′ = M1 :: M2, then:

bfor k in M1 :: M2 do Nc
Φ
= |Φ| 7→ bNcx,y,Φ (y1, [y2, . . . ,yn], |Φ|)
= |Φ| 7→ bNcx,y,Φ (M1,M2, |Φ|)
= |Φ| 7→ bN[M1/x][M2/y]c

Φ
(|Φ|)

= bN[M1/x][M2/y]c
Φ

where [y1, . . . ,yn] = bM1 :: M2cΦ (|Φ|).
• If M = range @n @M2 then:

brange @n@mc
Φ
= |Φ| 7→

m−1

×
i=n

i

= |Φ| 7→

{
[] if n−m = 0
n××m−1

i=n+1 i otherwise

= |Φ| 7→

{
[] if bn−mc

Φ
= 0

bnc
Φ
×brange @(n+1)@m)c otherwise

= bifz m−n then VNil else n :: range @(n+1) @mc
Φ

�
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Lemma (4.3) The translation procedure is correct in respect to the operational semantics. If A is a
translatable type, Φ,Γ `M : A, and M→ N, then JMK

Φ,Γ = JNK
Φ,Γ.

Proof By case analysis on the reductions of translatable terms.
• If M = (λxA.M′)V and N = M′[V/x],

q
(λxA.M′)V

y
Φ,∆,Γ

= |Φ| 7→

∆

B

V (|Φ|)
A

A

M′(|Φ|) B

A(B
Γ

(gs)
= |Φ| 7→

∆

V (|Φ|)
A

M′(|Φ|)
B

Γ =
q

M′[V/x]
y

Φ,∆,Γ

• If M = (λ ′xA.M′)@V and N = M′[V/x],
q
(λ ′xA.M′)@V

y
Φ,Γ

= |Φ| 7→
⌊
(λ ′xA.M′)

⌋
Φ
(bVc

Φ
(|Φ|), |Φ|)

BΓ

= |Φ| 7→ b(M′c
Φ
(bVc

Φ
(|Φ|), |Φ|)

BΓ
=

q
M′[V/x]

y
Φ,Γ

• If M = let xA⊗ yB =V1⊗V2 in M′ and N = M′[V1/x][V2/y],

q
let xA⊗ yB =V1⊗V2 in M′

y
Φ,Γ,∆,Λ

= |Φ| 7→
Λ

N(|Φ|)B

A
C

∆

N(|Φ|)

AΓ

M(|Φ|)

B

A⊗B

(gs)
= |Φ| 7→

Λ

N(|Φ|)
C

∆

N(|Φ|)

AΓ

M(|Φ|)

B
=

q
M′[V1/x][V2/y]

y
Φ,∆,Γ,Λ

• If M = let xA :: yVec n A =V1 :: V2 in M′ and N = M′[V1/x][V2/y],

q
let xA :: yVec n A =V1 :: V2 in M′

y
Φ,Γ,∆,Λ

= |Φ| 7→
Λ

N(|Φ|)nA

A
B

∆

N(|Φ|)

AΓ

M(|Φ|)

nA

(n+1)A

(gs)
= |Φ| 7→

Λ

N(|Φ|)
B

∆

N(|Φ|)

AΓ

M(|Φ|)

nA
=

q
M′[V1/x][V2/y]

y
Φ,∆,Γ,Λ

• If M = ifz L then M′ else N′,
– if L = 0 and N = M′, bLc

Φ
= 0 and

q
ifz L then M′ else N′

y
Φ,Γ

= |Φ| 7→
N′(|Φ|)

k∈[ ]

Γ

M′(|Φ|)
k∈[0] A

Γ

0

A

0

Lemma 2.3
= |Φ| 7→ Γ

M′(|Φ|) A
Γ

0

A

0

( /04)
= |Φ| 7→ Γ

M′(|Φ|)
A
=

q
M′

y
Φ,Γ
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– The case where L > 0 and N = N′ is symmetric to the case above.

• If M = VNil;M′ and N = M′,

q
VNil;v M′

y
Φ,Γ

= |Φ| 7→
Γ

M′(|Φ|)
A =

q
M′

y
Φ,Γ

• If M = ?;M′ and N = M′,

q
?;M′

y
Φ,Γ

= |Φ| 7→
Γ

M′(|Φ|)
A =

q
M′

y
Φ,Γ

• If M = for k in V :: M′ do N′ and N = N′[k/V ] :: for k in M′ do N′,

q
for k in V :: M′ do N′

y
Φ,Γ⊗n = |Φ| 7→

A⊗nN′(k, |Φ|)
k∈bV ::M′c(|Φ|)

Γ⊗n

Lemma 2.2
= |Φ| 7→ A⊗n

N′(k, |Φ|)
k∈bM′c(|Φ|)

Γ⊗n
N′(bVc(|Φ|), |Φ|) AΓ

Γ⊗n−1 A⊗n−1
=

q
N′[k/V ] :: for k in M′ do N′

y
Φ,Γ⊗n

• If M = for k in VNil do N′ and N = VNil,

q
for k in VNil do N′

y
Φ
= |Φ| 7→ 0N′(k, |Φ|)

k∈[ ]

0

Lemma 2.3
= |Φ| 7→ 00

= |Φ| 7→ = JVNilK
Φ

• If M = accuMapA,B,C N′ Mxs M f s Mz and N = ifz N′ then xs ;v f s ;v VNil⊗Mz else

let x :: xs′ = Mxs in let f :: f s′ = M f s in let y⊗ z′ = f x z in let ys⊗ z′′ = accuMap @(N′−
1) xs′ f s′ z′ in (y :: ys)⊗ z′′. Let n = bN1cΦ (|Φ|).
Notice that, by definition of τn,A,B,C,

τn+1,A,B,C

(n+1)(A(C(B⊗C) (n+1)A((n+1)C((n+1)B⊗(n+1)C

(n+1)A

(n+1)C

(n+1)B

(n+1)C

(p)
= τn,A,B,C

n(A(C(B⊗C) nA(nC(nB⊗nC

A(C(B⊗C

(n+1)A

(n+1)C

(n+1)B

(n+1)C

Therefore,
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q
accuMapA,B,C N′ Mxs M f s Mz

y
Φ,Γ,∆,Π

= |Φ| 7→ M f s(|Φ|)

Mxs(|Φ|)

Mz(|Φ|)

Γ

Π

∆

nCC C

(n−1)C

nA

nB
τn,A,B,C

n(A(C(B⊗C) nA(nC(nB⊗nCC

nA

n(A(C(B⊗C)

nB⊗CC

0A

0(A(C(B⊗C)

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

(p,gs,sg)
= |Φ| 7→ M f s(|Φ|)

Mxs(|Φ|)

Mz(|Φ|)

Γ

Π

∆

(n−1)CC
C

(n−2)C

nA

nB

τn−1,A,B,C
C

nA

n(A(C(B⊗C)

nB⊗CC

0A

0(A(C(B⊗C)

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

A(C(B⊗C

(n−1)A
A

(n−1)B

B

C

= Jifz N′ then xs ;v f s ;v VNil⊗Mz else let x :: xs′ = Mxs in let f :: f s′ = M f s in let y⊗
z′ = f x z in let ys⊗ z′′ = accuMap @(N′−1) xs′ f s′ z′ in (y :: ys)⊗ z′′KΦ,Γ,∆,Π

• If M = splitA @n @m xs and N = ifz n then VNil⊗ xs else let y :: xs′ = xs in let ys1⊗
ys2 = split@(n−1) @m xs′ in (y :: ys1)⊗ ys2. Let n = bN1cΦ (|Φ|) and m = bN2cΦ (|Φ|).

JsplitA @n @m xsK
Φ,Γ = |Φ| 7→ Γ

M′(|Φ|)

(n+m)A
(n+m)A

(n+m)A (sg,gs)
= |Φ| 7→ Γ

M′(|Φ|)
(n+m)A

( /04),Lemma 2.3
= |Φ| 7→

Γ

M′(|Φ|)
(n+m)A

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

M′(|Φ|)
(n+m)A

Γ (n+m)A
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(sg,gs, /04)
= |Φ| 7→

Γ

M′(|Φ|)
(n+m)A

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

M′(|Φ|)
(n+m)A

Γ (n+m)A

0
(n+m)A

(n+m)A

mA

nA
A

(n−1+m)A

(n−1+m)A
(n−1+m)A

(n−1)A

= Jifz n then VNil⊗ xs else let y :: xs′ = xs in let ys1⊗ ys2 = split@(n− 1) @m xs′ in
(y :: ys1)⊗ ys2KΦ,Γ

• If M = appendA @N1 @N2 M1 M2 and N = ifz N1 then M1 ;v M2 else let x :: xs′ = M1 in

x :: (append @(N1−1) @N2 M1 M2). Let n = bN1cΦ (|Φ|) and m = bN2cΦ (|Φ|).

JappendA @N1 @N2 M1 M2KΦ,Γ,∆ = |Φ| 7→

Γ

M1(|Φ|)
nA

∆

M2(|Φ|)
mA

(n+m)A
(n+m)A

(n+m)A

( /04),Lemma 2.3
= |Φ| 7→

Γ

M1(|Φ|)
nA

∆

M2(|Φ|)
mA

(n+m)A
(n+m)A

(n+m)A

Γ

M1(|Φ|)
nA

∆

M2(|Φ|)
mA

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

∆

(sg,gs)
= |Φ| 7→ Γ

M1(|Φ|)
nA

∆

M2(|Φ|)
mA

(n+m)A

Γ

M1(|Φ|)
nA

∆

M2(|Φ|)
mA

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

∆
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(i1, /01, /04,sg,gs)
= |Φ| 7→

Γ M1(|Φ|)
nA

∆

M2(|Φ|)
mA

(n+m)A

Γ

M1(|Φ|)
∆

M2(|Φ|)
mA

k ∈ [0]⊗δn>0

k ∈ [0]⊗δn=0

Γ

∆

(n−1+m)A
(n−1+m)A

(n−1+m)A

A

(n−1)A

= Jifz N1 then M1 ;v M2 else let x :: xs′ = M1 in x :: (append @(N1−1) @N2 M1 M2KΦ,Γ,∆

• If M = drop @N′ M′ and N = ifz N′ then M′ ; ? else let x :: xs′ = M′ in x ; drop @(N′−
1) xs′. Let l = bN′c

Φ
(|Φ|),

q
drop @N′ M′

y
Φ,Γ

= |Φ| 7→ 0

Γ

M′

0

0

( /04),Lemma 2.3
= |Φ| 7→

0
Γ

M′
00

0
Γ

M′

0

0

Γ

k ∈ [0]⊗δl>0

k ∈ [0]⊗δl=0

0

(z3, /04)
= |Φ| 7→

0

Γ M′ 0

0Γ
M′

0

Γ

k ∈ [0]⊗δl>0

k ∈ [0]⊗δl=0

0

0

0

=
q
ifz N′ then M′ ; ? else let x :: xs′ = M′ in x ; drop @(N′−1) xs′

y
Φ,Γ

• If M→N is an internal reduction of a translatable term, then the diagrams result equivalent via the
inductive hypothesis.

• If M→ N is an internal reduction of an evaluable term, then the diagrams result equivalent via the
inductive hypothesis and Lemma 4.2. �
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Q# is a standalone domain-specific programming language from Microsoft for writing and running
quantum programs. Like most industrial languages, it was designed without a formal specification,
which can naturally lead to ambiguity in its interpretation. We aim to provide a formal language
definition for Q#, placing the language on a solid mathematical foundation and enabling further
evolution of its design and type system. This paper presents λQ#, an idealized version of Q# that
illustrates how we may view Q# as a quantum ALGOL (algorithmic language). We show the safety
properties enforced by λQ#’s type system and present its equational semantics based on a fully
complete algebraic theory by Staton.

1 Introduction

Microsoft’s Q# programming language [56] is one of the most full-featured quantum programming
languages that have emerged from the recent boom in quantum computing research. However, with a
growing code base and increasing popularity comes the demand for more features and the resulting added
complexity. Hence, Q# faces challenges familiar to many growing programming languages—maintaining
correctness, ease of use, and intuitive understanding while evolving to meet users’ needs.

Quantum programming languages face unique challenges that are not present in classical languages.
Quantum algorithms are more challenging to design and reason about than classical ones as they use
quantum phenomena like superposition and entanglement. Quantum programs are challenging to test and
debug. Their simulation on classical computers is slow and limited to a handful of qubits while languages
like Q# are designed for large-scale fault-tolerant quantum computers with thousands of logical qubits.
When running a quantum program directly on quantum hardware, we cannot observe the whole quantum
state directly, and measuring a classical result during execution (partial observation) may itself destroy the
state. Additionally, existing quantum hardware provides limited qubit count and poor gate fidelity.

These challenges underscore why it is essential for Q# to have a well-specified definition that can serve
as a foundation for extensions, multiple implementations, and formal verification of programs written
in the language. A formal specification and mechanization of its metatheory will help ensure that Q# is
robust enough to meet the unique needs of the developing field of quantum software engineering.

A tried-and-tested approach to achieving this ambitious goal is to define an idealized core version of
the language, provide an elaboration from the surface language to this core language, and provide static
and dynamic semantics for the core. In this paper, we argue that even though Q# is a relatively large
language, we can condense it to a small core capturing most of its interesting features. We call this core
λQ#. In it, we make several implicit features of Q# explicit: its treatment of qubits as references, its stack-
like memory management that enables reasoning about the quantum state in a local manner, and its safe
synthesis of effectful and pure computation. In the classical setting, this stack-like memory management
and combination of effectful and pure computation are inherent to many ALGOL-like languages [48].
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Contributions In 2018, when introducing Q#, its designers stated that as opposed to several existing
circuit definition languages, “Q# is an algorithm definition language” [56]; the goal of our paper is to
show that, in its essence, Q# is a quantum algorithmic language (ALGOL).

• To support this characterization, we introduce λQ#, an idealized version of Q# inspired by Harper’s
language MA (Modernized Algol) [17]. In λQ#, we expose values of the Qubit type in Q# as
references to logical qubits and formalize the ALGOL-like stack discipline implicit in Q#’s quantum
memory management.

• We develop a type system for λQ# that extends Q#’s type system to enforce the no-cloning theorem
and stack-like management of qubits.

• We provide an equational dynamics for λQ# building upon the fully complete equational theory of
quantum computation by Staton [54].

• Finally, we provide an elaboration relation from Q# to λQ#, thereby endowing a significant portion
of Q# with a formal specification and additional safety guarantees.

Outline In the rest of the paper, we review background on the Q# programming language and Staton’s
theory for quantum computation (§2); introduce λQ# along with its syntax and semantics (§3); describe
how λQ# is faithful to the surface Q# language (§4); and discuss related and future work (§5 and §6).

2 Background

Before introducing λQ#, we discuss the two projects that inspired our work. The first is Microsoft’s
Q# [56], a modern, self-contained quantum programming language that boasts a large community of
developers. The second is Sam Staton’s equational theory for quantum programs [54], which provides a
compelling alternative to the standard matrix-based semantics for quantum programs.

2.1 The Q# Programming Language

Q# [56] is a hybrid quantum-classical programming language that supports interlacing stateful quantum
operations with pure classical functions, collectively referred to as callables. Q# encourages thinking
about quantum programs as algorithms rather than circuits, where quantum operations can be combined
with classical control flow such as branches and loops. When a programmer measures a qubit, they can
perform an arbitrary classical computation on the result, and the program execution can continue without
requiring the qubit to be released. This computational model allows quantum and classical algorithms to
be fully mixed. At the same time, Q# enforces a degree of separation between the quantum and classical
components. Operations can call functions, but functions cannot call operations. An example Q# program,
implementing the quantum teleportation protocol, is shown in Listing 1 in Appendix D.

Q# contains a blend of functional and imperative features (it evolved from an F#-like language [4]).
For classical data, Q# follows the so-called value semantics [22], perhaps better known as referential
transparency. Q# functions are always pure, and variable bindings are immutable by default. Bindings
may be declared mutable, but they correspond to a local state change, enclosed in the scope of the parent
callable. Hence, equational reasoning is possible across function boundaries. By contrast, qubits are
opaque types that act as references to logical qubits [11, 12]—their values are never exposed. Gate
operations are inherently effectful: a (single-qubit) quantum gate application is a procedure that takes a
qubit reference as input and returns a trivial output of type Unit after altering the quantum state.
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operation NewQubit () : Qubit {
use q = Qubit ();
return q;

}

(a) Returning a qubit after its lifetime has ended.

operation Clone () : Unit {
use q1 = Qubit ();
let q2 = q1;
CNOT(q1, q2);

}

(b) Using the same qubit as both control and target.

Figure 1: Sample unsafe Q# programs.

Callables in Q# can be higher-order: functions and operations are values and can be given as arguments
to, or returned by, other functions and operations. Both functions and operations can be partially applied.
Quantum algorithms parameterized by quantum subroutines are easily expressed in Q# using higher-order
operations. For example, an operation implementing Grover’s search [15] can accept an oracle as a
parameter and apply it in each iteration.

Q# supports a restricted form of metaprogramming, where the compiler can automatically generate
the adjoint and controlled versions of unitary operations. Operations can declare their support for Adjoint
and Controlled functors (in Q#’s terminology1) using the characteristics Adj and Ctl, respectively.

Q# follows the QRAM model of computation [26], which assumes an unbounded supply of logical
qubits from which the programmer can obtain a reference to a new qubit by calling the use command.
Qubits are hence allocated and deallocated in a stack-like manner, where the lifetime of a qubit is equivalent
to the lexical scope of the use command. Even though this stack discipline can ensure safe (quantum)
memory management, it is currently not enforced by the Q# compiler and type system. Figure 1a shows a
minimal example that passes the type checker but fails at runtime (in a simulator).

Programmers are allowed to create new bindings using let that refer to the same qubit as another
binding, leading to aliasing of qubit references. While aliasing is ubiquitous in Q#, it can lead to unsafe
behavior in violation of the no-cloning theorem [60], which forbids duplication of qubits. In Figure 1b,
both q1 and q2 refer to the same qubit. Applying CNOT with q1 as the control and q2 as the target is
equivalent to cloning the underlying qubit. Currently, Q# cannot prevent this issue statically.

An informal specification of the Q# language was recently published [44]. However, it does not
capture the subtle aspects of the language, such as the aliasing of qubit references or its goal of maintaining
a stack discipline. Our work makes these subtleties explicit and formal.

2.2 An Equational Theory for QRAM

Staton [54] presents a substructural (linear) version of his framework for “parameterized algebraic
theories” [53]. He develops an axiomatization for quantum computation using this framework, which
he shows to be fully complete. Staton then extracts an equational theory for a quantum programming
language from his algebraic theory that uses generic effects rather than algebraic operations [43]. Finally,
Staton remarks upon a variant of his theory [54, §6.2] that applies to the QRAM model, where instead of
working with qubits, we work with references to qubits. This is the approach taken in projects like the
Quantum IO Monad [2], Quantum Hoare Type Theory [50, 51], and, to our advantage, Q#.2

Here we reproduce Staton’s theory of a “quantum local store” [54, §6.2, p. 11] for reference; we will

1Perhaps a better name for functors would be ‘combinators’ from the functional programming community to avoid confusion
with other accepted meanings of the term ‘functor.’

2However, the stack-like management of qubits is unique to Q#.
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see in §3.3 how this algebraic theory helps us describe the equational dynamics of λQ#. We assume that
the qubit references are unique, which we guarantee for λQ# in §3.2.1.

Generic Effects Staton adds the following generic effects to a standard linear type theory and obtains a
quantum programming language [54, §5] similar to Selinger’s QPL [49].

⊢ new() : qubit

Γ ⊢ t : qubit⊗n

Γ ⊢ applyU(t) : qubit⊗n

Γ ⊢ t : qubit

Γ ⊢measure(t) : bool

Program Equations There are two interesting classes of axioms (ignoring the axioms that describe
commutativity of let). For completeness, we also show axiom (C) pertaining to the discard operation
(equivalent to measuring a qubit and ignoring its result). However, it does not apply in the QRAM model
as noted by Staton [54, §6.2].
Axioms relating unitary gates and measurement:

(A) measure(applyX(a))≡ ¬ measure(a)

(B) let (a′,x′) be applyD(U,V )
(a,x) in (measure(a′),x′)≡

if measure(a) = 0 then (0,applyU(x)) else (1,applyV (x))

(C) discard(applyU(x))≡ discard(x)

Axioms relating allocation with unitaries and measurement:

(D) measure(new())≡ 0

(E) applyD(U,V )
(new(),x)≡ (new(),applyU(x))

where D(U,V ) =U⊕V =
(

U 0
0 V

)
applies U or V depending on the value of its first argument.

Axiom (A) says that applying the quantum X gate to a qubit and then measuring it is the same as
negating the measurement result. Axiom (B) explains the action of a block diagonal matrix D(U,V ) as
quantum control by stating that applying the diagonal matrix and then measuring the control qubit is
equivalent to measuring the control qubit and branching on the result to decide whether to apply U or
V . Axiom (C) says that if the qubits are to be discarded, applying a unitary is the same as doing nothing.
Axiom (D) states that measuring a new qubit always results in 0, i.e., qubits are always initialized to 0.
Axiom (E) says that using a new qubit as control is the same as controlling by 0.

We will show in §3.3 that our λQ# calculus follows similar program equations.

3 λλλ Q#: A Core Calculus for Q#

Our approach closely follows the type-theoretic interpretation of Standard ML, where Harper and
Stone [20] developed a well-typed internal language for Standard ML, defined an elaboration rela-
tion between the external language and this internal language, and proved the properties of the metatheory
of the language using the internal language. Harper and collaborators [7, 28] followed this work with the
mechanization of the metatheory using the Twelf logical framework [42]. As a first step, we identify and
isolate the core language, λQ#, that captures the essential aspects of Q#. This core language is explicitly
typed, and the safety properties of its type structure can be easily stated and proved.
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Once we have identified the core, we define an elaboration relation from the surface Q# language to
λQ# (§4). A Q# program is well-formed when it has a well-typed elaboration, and its semantics is defined
to be that of its elaboration. The advantage of this approach is that proving properties about the metatheory
of a large language becomes tractable because we only need to do it for the small, well-formed core.

To mirror the separation between operations and functions in Q#, we base the design of λQ# on
Harper’s MA (Modernized Algol) [17], which maintains a separation between commands that modify
state and expressions that do not. Q# is an ALGOL-like language in more ways than one—syntax, block-
structure, local (classical) state, and safe integration of functional and imperative paradigms. However,
unlike Reynolds’ Idealized ALGOL [48], the variables in Q# are immutable by default, and the language
follows a call-by-value semantics, both of which make it closer to Harper’s MA.

Before presenting λQ#, let us motivate our design choices and establish some terminology. Q# has
two kinds of variable bindings. Those defined using the let keyword are the same as the variables in
MA and follow the usual substitution-based semantics of functional programming languages. Those
defined using the mutable keyword correspond to assignables that can be reassigned similar to “variables”
in imperative languages. Significantly, they are restricted to the lexical scope in which they are bound.
Since they do not affect equational reasoning across function boundaries, and our focus is on the quantum
state, we ignore mutable variables in the rest of this paper. Qubits have type Qubit and syntactically look
just like other variables but are references to underlying logical qubits that are never exposed. Unlike
classical bindings, which follow value semantics, aliasing is permitted on qubits, leading to problems such
as the violation of the no-cloning theorem discussed in §2.1. Qubits come into scope with either the use

or borrow keywords. The former provides access to freshly allocated qubits in state |0⟩, while the latter
allows access to previously allocated (and potentially entangled) qubits. We do not consider borrowing in
this work as it is an optimization concern that lets a programmer reuse ancillae in their code. The only
allowed operations on qubits are gate application and measurement.

3.1 Syntax

Figure 2 presents the abstract syntax of λQ#. We divide the grammar into a monadic effectful command
language and a pure expression language (the simply-typed λ -calculus extended with encapsulated com-
mands). We precisely specify the binding structure of the syntax following the notion of abstract binding
trees from Harper’s PFPL [18]. Following the PFPL-syntactic conventions, qref⟨q⟩, gateap⟨U2n⟩(e),
and diagap⟨U2n ,V2n⟩(e1 ; e2) are indexed by symbols [18, Ch. 31] (marked in color) and variadic product
operators are indexed by finite sets, n, where we slightly abuse the notation, n ≜ {1,2, . . . ,n}. We also
use the notation, τn ≜ i ↪→ τi | i ∈ n. Some operators take optional arguments marked by square brackets.
We will often use the concrete syntax in blue color, and some standard derived forms from Harper’s
language MA, shown in Appendix A, wherever there is no possibility of confusion.

The qubit reference type qref⟨q⟩ is a singleton type [3, 21], which is equivalent to ptr(l) in
alias types [52]. Qubit symbols are shown in orange to distinguish them from the usual variables
denoted by the metavariable x; we use qubit symbols to model the underlying logical qubit that the
surface Q# language does not expose. Unitary operations, U (shown in pink), are parametric to the
grammar; similar to Q#, which does not prefer a specific gate set. An n-qubit unitary is typed as
U :

Ś

i∈n(i ↪→ qref⟨qi⟩)→ cmd(unit), where dim(U) = 2n. This type ensures that multi-qubit gates can
be applied only to distinct qubits. The applyU(e) command applies the given unitary operation to a tuple
of unique qubit references, where we follow singleton-tuple equivalence like Q# in case of a single-qubit
unitary. Controlled unitaries can be represented using block diagonals, e.g., CNOT ≜ D(I2,X) and are typed
as D(U,V) :

Ś

i∈n+1(i ↪→ qref⟨qi⟩)→ cmd(unit), where dim(U) = dim(V) = 2n. It is understood that
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Sort Abstract Concrete
Typ τ ::= qref⟨q⟩ qref⟨q⟩ qubit reference

fun(τ1 ; τ2) τ1→ τ2 function
cmd(τ) cmd(τ) command
prod(i ↪→ τi | i ∈ n)

Ś

i∈n(i ↪→ τi) variadic product
bool bool boolean
unit unit unit

Exp e ::= x x variable
let[τ1 ; τ2](e1 ; x . e2) let x be e1 in e2 let binding
λ [τ1 ; τ2](x . e) λ (x . e) function
ap[τ1 ; τ2](e1 ; e2) ap(e1 ; e2) application
cmd[τ](m) cmd(m) encapsulated command
tuple[τn](i ↪→ ei | i ∈ n) ⟨i ↪→ ei | i ∈ n⟩ tuple
proj⟨i⟩[τn](e) e · i projection
true true true
false false false
if[τ](e ; e1 ; e2) if e then e1 else e2 if expression
unit ⟨⟩ unit

Cmd m ::= ret[τ](e) ret(e) return
bnd[τ1 ; τ2](e ; x .m) bnd x← e;m bind
newqref[τ](x .m) new x in m new qubit reference
gateap⟨U2n⟩(e) applyU(e) gate application
diagap⟨U2n ,V2n⟩(e1 ; e2) applyD(U,V)(e1 ; e2) diagonal gate application
meas(e) meas(e) measure

Figure 2: Abstract and concrete syntax of λQ#.

the number of arguments required for both forms of gate application depends on the dimension of the
unitary parameters involved and is enforced by the typing rules.

3.2 Static Semantics

The pure fragment of λQ# is the usual simply-typed λ -calculus, so we will not say much about it here. We
show typing rules for the effectful portion of λQ# in Figure 3.

All of our command typing judgments are parameterized by a signature, Σ, that keeps track of
available qubit symbols in scope and corresponds to the shape of the quantum memory, much like store
shapes3 in the semantics of ALGOL [35, 36, 48]. The intuition behind incorporating a signature is that
the block structure induced by the allocation command changes the shape of the quantum memory under
consideration by making a new qubit available to the program on entry and removing it on exit. This is
the essence of the stack-like treatment of local state.4

Rules CMD-RET and CMD-BND are the two standard rules for monadic return and bind operations.
The other four rules are specific to quantum computation.

The newqref(x .m) command allocates a fresh logical qubit q and immediately makes a reference to
it available in the scope of m. Its typing rule CMD-NEWQREF says that if command m returns a value of

3Store shapes follow laws similar to what are known as lenses in the current literature [10].
4Another view is to think of the commands as being parametrically polymorphic [9, 33, 34] to the store, an idea considered by

Reynolds as early as 1975 [6, 47], even before store shapes. Still, we prefer the signature-based approach taken in Harper’s MA.
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Γ ⊢Σ m∼·· τ (m is a well-formed command relative to Σ, returning a value of type τ)

CMD-RET
Γ ⊢Σ e : τ

Γ ⊢Σ ret(e) ∼·· τ

CMD-BND
Γ ⊢Σ e : cmd(τ)

Γ,x : τ ⊢Σ m ∼·· τ
′

Γ ⊢Σ bnd(e;x.m) ∼·· τ
′

CMD-NEWQREF

Γ,x : qref⟨q⟩ ⊢Σ,q m ∼·· τ

Γ ⊢Σ newqref(x.m) ∼·· τ

CMD-GATEAPREF

Γ ⊢Σ e : prod( i ↪→ qref⟨qi⟩
i∈1..n

)

Γ ⊢Σ gateap⟨U2n⟩(e) ∼·· unit

CMD-DIAGAPREF
Γ ⊢Σ e1 : qref⟨q⟩

Γ ⊢Σ e2 : prod( i ↪→ qref⟨ri⟩
i∈1..n

)

Γ ⊢Σ diagap⟨U2n ,V 2n⟩(e1;e2) ∼·· unit

CMD-MEASREF
Γ ⊢Σ e : qref⟨q⟩

Γ ⊢Σ meas(e) ∼·· bool

Figure 3: Typing of commands. Γ is the standard typing context, and the signature, Σ, keeps track of qubit
symbols in scope. Each qubit symbol is required to be distinct. See other rules in Appendix B.1.

type τ in a context containing x : qref⟨q⟩ and a signature extended with q, then newqref(x .m) returns a
value of type τ . The binding structure ensures that the lifetime of the newly allocated qubit is equal to its
lexical scope, ensuring a strict stack discipline and providing safe and automatic management of qubits.

Rules CMD-GATEAPREF and CMD-DIAGAPREF for unitary operations enforce the constraint that
the input qubit references are distinct. Rule CMD-MEASREF shows how to obtain a boolean value from
an expression that resolves to a qubit reference.

In summary, the allocation command changes the shape of the store (quantum state under considera-
tion), while commands like unitary application and measurement change the store (quantum state).

3.2.1 Safety Properties

We claim that our type system supports two safety properties currently not offered by Q#:
Proposition 1. λQ# supports controlled aliasing and hence, statically enforces the no-cloning theorem for
all unitary operations.

This follows from rules CMD-GATEAPREF and CMD-DIAGAPREF: The premises of both typing rules
require the input qubit references to be unique as all the entries in a tuple are required to be references to
different logical qubits. In the case of the block diagonal, the control qubit reference, e1, is also required
to be distinct from the qubit references in e2.
Example 3.1. The unsafe code fragment from Figure 1b can be written in λQ# syntax as:

newqref(q1 .ret(let(q1 ; q2 .cmd(diagap⟨I2,X2⟩(q1 ; q2)))))

or in the concrete syntax as new q1 in ret(let q2 be q1 in cmd(applyD(I2,X)(q1 ; q2))). Since the type
of the qubit reference in λQ#, qref⟨q⟩, is indexed by the symbolic name of the qubit, we can tell statically
that q1 and q2 reference the same underlying logical qubit. This allows our type system to reject the above
program even though the Q# compiler allows it to pass.
Proposition 2. λQ# statically ensures safe memory management and disallows dangling qubit references.

The allocation command, newqref(x .m), as previously explained, comes with its own binding form,
which ensures that the reference created during allocation can never escape its lexical scope. In rule CMD-
NEWQREF, the fresh logical qubit q allocated during this command is only available in the extended
signature in the premise and not in the conclusion at the end of the command.
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Example 3.2. Using λQ# concrete syntax and the derived forms from Appendix A, the unsafe code
fragment shown in Figure 1a can be written as let NewQubit be proc() { new x in ret(x) } in ⟨⟩. Here,
while ret(x) has type qref⟨q⟩ when q is in the signature, i.e., Γ,x : qref⟨q⟩ ⊢Σ,q ret(x)∼·· qref⟨q⟩; the
conclusion of rule CMD-NEWQREF removes q from scope and renders new x in ret(x) ill-typed, i.e.,
Γ ⊬Σ new x in ret(x)∼·· qref⟨q⟩.

3.3 Dynamic Semantics

As Staton [54, p. 3] suggests, “by giving a fully complete equational theory we can understand quantum
computation from the axioms of the theory without having to turn to denotational models built from
operator algebra”; we rely on his equational theory for quantum local store [54, §6.2] to provide an
equational dynamics for the effectful quantum fragment of λQ#.5 Unlike Staton’s language, our unitary
operations do not return qubits but modify them in place. In this presentation, we use several derived
forms from Appendix A. Specifically, do returns the result of sequential execution of commands. The
program equations assume the availability of a universal gate set.

Interesting Axioms

a : qref⟨q⟩ ⊢ do {applyX(a); meas(a)} ≡ ¬ do {meas(a)} (A)

a : qref⟨q⟩, b :
ą

i∈n
(i ↪→ qref⟨ri⟩) ⊢ {applyD(U,V)(a ; b); meas(a); ret(⟨⟩)} ≡

{x← meas(a); ret(if x then cmd(applyV(b)) else cmd(applyU(b)))} (B)

· ⊢ do {new a in meas(a)} ≡ false (D)

b : qref⟨q⟩ ⊢ do {new a in applyD(U,V)(a ; b)} ≡ do {applyU(b); new a in ret(⟨⟩)} (E)

As mentioned in §2.2, we omit Staton’s axiom (C) because, in the QRAM model, the discard operation
just forgets the name of the reference to a qubit. In Q# and λQ#, we may consider an equivalent behavior:
qubit references are automatically forgotten when they reach the end of their lexical scope. A degenerate
case of axiom (C) (for a 1×1 unitary) holds for both Staton’s theory for a quantum local store and λQ#; it
says that one can ignore the global phase.

Administrative Axioms The following equations correspond to respecting the composition and product
monoidal structure of unitaries:

m1 : cmd(τ1), m2 : cmd(τ2) ⊢ do {new a in new b in m1;applySWAP(a,b); m2} ≡
do {new a in new b in m1;let ⟨b,a⟩ be ⟨a,b⟩ in cmd(m2) (F)

e :
ą

i∈n
(i ↪→ qref⟨qi⟩) ⊢ do {applyI2n (e)} ≡ ⟨⟩ (G)

e :
ą

i∈n
(i ↪→ qref⟨qi⟩) ⊢ do {applyVU(e)} ≡ do {applyU(e);applyV(e)} (H)

e1 :
ą

i∈m
(i ↪→ qref⟨qi⟩),

e2 :
ą

i∈n
(i ↪→ qref⟨ri⟩) ⊢ do {applyU⊗V(e1,e2)} ≡ do {applyU(e1);applyV(e2)} (I)

Selinger [49] notes that the SWAP gate is equivalent to classically renaming qubit references, which
captures the intuition behind equation (F). However, in our case, we have to ensure that the scope of the

5We show the traditional operational semantics in Appendix B.2.
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qubits is limited to our expression (since SWAP is stateful). Axiom (G) says that applying an identity gate
is equivalent to doing nothing. Axioms (H) and (I) show the two ways of composing unitaries—sequential
and tensor products (horizontal and vertical composition, respectively, in circuit notation).

Like Staton, we also state the commutativity equations that hold for λQ#:

a : qref⟨q⟩, b : qref⟨r⟩, m : cmd(τ) ⊢ do {x←meas(a); y←meas(b);m} ≡
do {y←meas(b); x←meas(a);m} (J)

m : cmd(τ) ⊢ do {new a in new b in m} ≡ do {new b in new a in m} (K)

b : qref⟨q⟩, m : cmd(τ) ⊢ do {new a in y←meas(b);m} ≡
do {y←meas(b);new a in m} (L)

Now that we have shown that the quantum portion of λQ# is equivalent to Staton’s quantum program-
ming language [54, §5]6 and corresponding program equations with his theory of quantum local store, we
can restate Staton’s result [54, p. 8, Theorem 11] for our language:

Theorem 1 (Universality of λQ#). For any linear map f : M2n1 ⊕·· ·⊕M2nk →M2p that is completely
positive and unital (i.e. corresponds to a trace-preserving superoperator), there is a λQ# term, t, such that
t implements f .

This corresponds to Staton’s Theorem 11.1 [54], which is a variation on Selinger’s Theorem 6.14 [49].
The proof relies on the correspondence between Staton’s simple quantum language and a fragment of λQ#,
where the translation is straightforward (Appendix C).

Theorem 2 (Completeness). Assuming an axiomatization of unitaries, if two terms t and u have equivalent
interpretation in a common context, Γ, then Γ ⊢ t ≡ u is derivable.

Note that since Q# is parameterized over gate sets, we need an equational theory over unitaries for
λQ#. In the simplest case, we can declare two unitaries equal if their corresponding matrices are equal.
Again, the result follows from Staton’s Theorem 11.2. There are two differences: (1) instead of algebraic
operations, our theorem is stated in terms of generic effects (which correspond directly to programming);
(2) in addition to the equations (A)–(L) stated above, we also need the standard βη-equalities of simply-
typed λ -calculus, which are required because our axioms do not live in isolation but are written as typed
expressions in a context.

4 Translation from Q# to λλλ Q#

We summarize the rules for converting from the supported features of Q# to λQ# in Table 1. For ease of
presentation, we use the derived forms from Appendix A. Figure 4 in Appendix D shows the elaboration
of the Q# teleport example from Listing 1.

Elaboration maintains a context (not shown in Table 1) that stores the logical qubit associated with
each qubit reference. To translate the Q# type Qubit to the λQ# type qref⟨q⟩, we look up the reference
associated with the Qubit type in the context or add a new logical qubit to the context. The use statements
and operation parameters update the context to include a mapping from the new qubit or qubit parameter(s)
to a fresh logical qubit. In Figure 4, a, b, and m are distinct logical qubits introduced by elaboration.

Elaboration performs some type checking to produce well-formed λQ# terms. For example, elaboration
checks that the first argument to a Controlled or Adjoint functor is equipped with the Ctl and/or Adj

6See Appendix C for the trivial term translation.
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Q# Syntax λQ# Translation

[[(τ1, . . . ,τn)]]
Ś

i∈n(i ↪→ [[τi]])
[[τ1 -> τ2]] [[τ1]]→ [[τ2]]
[[τ1 => τ2]] [[τ1]]⇒ [[τ2]]
[[Bool]] and [[Result]] bool
[[Qubit]] qref⟨q⟩
[[Unit]] unit
[[function f (x1 : τ1, . . . ) : τ {e}]] λ [

Ś

i∈n(i ↪→ [[τi]]) ; τ](⟨i ↪→ xi | i ∈ n⟩ . [[e]])
[[operation f (x1 : τ1, . . . ) : τ {s}]] λ [

Ś

i∈n(i ↪→ [[τi]]) ;cmd(τ)](⟨i ↪→ xi | i ∈ n⟩ . [[s]])
[[return e]] ret([[e]])
[[let x = e; . . . ]] let x be [[e]] in [[. . .]]
[[if e { s1 } else { s2 }]] if [[e]] then cmd([[s1]]) else cmd([[s2]])
[[use q = Qubit { s }]] new q in [[s]]
[[Adjoint e1 (e2)]] applyU†([[e2]]), where U = mat([[e1]])
[[Controlled e1 (q, e2)]] applyD(I2n ,U)(q ; [[e2]]), where U = mat([[e1]])

[[e1 (e2)]] [[e1]]([[e2]])
[[(e1, . . . ,en)]] ⟨[[ei]], . . . , [[en]]⟩
[[true]] and [[One]] true
[[false]] and [[Zero]] false

Table 1: Select Q# to λQ# elaboration rules. f , x, and q are variable names, e is a Q# expression, s is a Q#
statement, and τ is a Q# type. [[·]] is the elaboration function and mat(·) converts a λQ# expression to its
corresponding unitary operator. In the rule for Qubit, q is determined from the elaboration context.

characteristics and inlines the corresponding operation specialization, converting it to a unitary operator.
We need to do this during elaboration because we do not yet encode characteristic information or
specializations in λQ#. An adjointable Q# operation with type (Qubit,...,Qubit) => Unit can be converted
into a unitary matrix by composing the unitary representations of its primitive gates. Note that the type
signature and the fact that the operation is adjointable (i.e., no measurement) mean it can be unfolded
to a sequence of primitive gates. We also expand multi-controlled operations (Controlled statements
with a list of controls) into a nested group of single-qubit controlled operations, and expand if-elif-else

expressions into nested if-then-else expressions using ⟨⟩ in place of an empty else block. Finally, we
restrict Q# function bodies to be pure expressions since we do not handle classical mutable values.

As this is our initial attempt to get the foundations right, we do not yet support several Q# features:
namespaces; operation characteristics; custom operation specializations (i.e., implementations of con-
trolled or adjoint variants); general application of the Adjoint and Controlled functors; arrays and slices;
type parameters; base types outside of Bool, Result, and Unit; iteration using for, while, or repeat; and
within-apply blocks (which apply an operation and its adjoint). We say more in §6 about the challenges
involved in supporting some of these features.

5 Related Work

Large Language Definition Efforts In starting this project, we were encouraged by previous efforts
in the formal specification of large programming languages such as Standard ML [20, 28], Java [23],
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JavaScript [16], Rust [24, 25], and, most recently, Go [14]. As we mentioned in §3, we more or less
followed the pioneering methodology of the formalization and mechanization of the definition of Standard
ML [29] by identifying a well-founded core language and performing all metatheoretical reasoning on that
core. These projects demonstrate the extent to which it is possible to distill large and complex languages
into their formal and faithful essence. Java and Go serve as examples of industry-scale languages in mass
use benefiting from formalization and academic study: Extensions such as generics (polymorphism) were
first investigated on smaller cores of the respective languages before being adopted in production over the
years. In the case of JavaScript, perhaps the impact of a careful formal study was even more significant
as JavaScript is the de-facto programming language of the web. We hope our work serves as a similar
playground for extensions and future impact.

Equational Theories Like Staton, we do not focus on the axiomatization of unitaries but of quantum
computation in general. We discuss two similar works here.

Paykin and Zdancewic [40] build upon Staton’s work and present an equational theory for quantum
computation embedded inside homotopy type theory (HoTT) [57]. The essential idea to treat unitaries as
higher inductive paths simplifies the presentation of the equational theory as several axioms can be derived
using the rich structure of HoTT. While their work focuses on embedding a quantum language inside a
highly expressive dependent type theory, we are motivated by practical concerns in defining semantics for
a real-world quantum language.

Peng et al. [41] introduce Non-Idempotent Kleene Algebra (NKAT) to reason about programs alge-
braically. Their language is based on Kozen’s Kleene Algebra with Test (or KAT), which models both
programs and assertions, allowing for a lightweight implementation of a Hoare-style logic [27]. While the
underlying language of regular expressions is not designed for convenience in programming, their use of
NKAT to verify quantum program transformations is a key use case of equational theories and one we
plan to explore in the future.

Linearity and Monadic Quantum Languages Research-oriented languages like QWIRE [39] and
Silq [5] employ a linear type system to enforce the no-cloning theorem. So far, industry languages,
including Q#, have not adopted linear typing. The lack of linear typing in Q# is justified by its monadic
treatment of state. That is, the monad interface imposes a sequential order to manipulate the quantum
state as every monad can be treated as a linear-use state monad [30]. The design decision in Q# to permit
uncontrolled aliasing of qubits for user comfort is the only reason a monadic interface is not enough,
which is addressed by our type system.

Other monadic languages include Quantum IO Monad [2] (QIO) and Quantum Hoare Type Theory [50,
51] (QHTT). QIO is a pioneering monadic interface that isolates quantum effects inside a monad as we do
in λQ#. QHTT is a typed framework that extends the QIO monad with pre- and postconditions so that
precise specifications about the quantum state can be stated and proved in a dependent type theory.

ALGOL-like Quantum Languages The IQu language [38] extends Idealized ALGOL with quantum
circuits and quantum variables, much as we extend Harper’s Modernized Algol (MA). Like λQ#, IQu uses
references to access qubits and therefore does not need a linear type system to prevent cloning. Though
every newly allocated qubit is unique, IQu does not have a way to guarantee that multiple references to
the same qubit are not passed to a single operation. Instead, IQu’s use of Idealized ALGOL is focused on
programmability, following a design philosophy similar to that of Q#. IQu allows programmers to write
the classical parts of their programs in a familiar way while providing access to the quantum state.
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6 Conclusion and Perspectives

We present a core calculus for the Q# programming language, dubbed λQ#. We maintain a separation
between the quantum effectful and the pure expression sub-languages, expose the monadic nature of
computation inherent in Q#, make qubit aliasing and block structure explicit, and present an equational
semantics for λQ#, building upon Staton’s fully complete equational theory for quantum computation.

A formal specification of the whole Q# language still requires more work. Some extensions are
straightforward; e.g., classical mutable bindings in Q# can be modeled after assignables in Harper’s MA;
conveniently, they follow the model of classical local store analogous to how we modeled the quantum
local store in this paper. Here it helps that Q# does not allow references to any types other than qubits.
Other features are more challenging, including arrays, slices, iteration, polymorphism, and patterns like
within-apply and repeat-until-success [37]. Then there is the question of how to treat operations that have
specializations supplied by the programmer versus those auto-generated by the Q# compiler (which is not
known statically); we may need to consider a phase distinction [19] here to distinguish between what can
be derived statically using types and what requires inspecting the code.

We plan to gain confidence in our formalization by mechanizing its metatheory. We see potential
in recent developments such as the Agda-based formalization of Second-Order Abstract Syntax [8],
which lets users concisely specify algebraic theories such as Staton’s and significantly reduces the
boilerplate code required to state interesting theorems about the theory. However, this tool does not
support substructural assumptions on qubit symbols, making our proposed extension a nontrivial prospect.

A major goal of this project is to form a playground for prototyping extensions to the Q# type system.
For instance, a peculiar decision in Q# is to allow uncontrolled aliasing of qubits to support user-friendly
features such as qubit arrays. While convenient, reasoning about interference freedom for arrays is
notoriously hard; specifically, our approach to enforce no-cloning inspired by alias types [52, 59] does
not easily scale to arrays [58, §3.5.1]. We are extending our λQ# type checker with a constraint solver
to evaluate potential solutions for scenarios that occur in practice in Q# library code. Depending on the
complexity of the array indexing used in practice, we may use a natural number inequality checker, a
simple symbolic numerical solver, or a full-fledged SMT solver like Z3 [31] to guarantee qubit distinctness.

We could also statically check Q#’s Adj and Ctl characteristics for validity. In the simplest case, we
would flag operations as unitary or non-unitary in order to inform the compiler when adjoints and controls
can be trivially synthesized, in the manner of Silq [5]. However, more complex programs are adjointable
and controllable in practice, which may require a more sophisticated approach.

One of our insights from this project is that even though quantum computation is a fundamentally
new abstraction, many classical techniques from programming languages and compilers communities
can be adapted to the quantum setting [55]. Q# and its Quantum Development Kit (QDK) are significant
examples of realizing that vision [1]. As a high-level programming language, Q# must also compile to
efficient, low-level machine instructions. Recently, Microsoft announced QIR, a Quantum Intermediate
Representation based on the popular LLVM framework [13], which has gained significant industry backing
in the form of the QIR Alliance [45]. This provides an exciting avenue for future development. We
plan to explore semantics-preserving compilation from Q# to QIR using our formalization. This project
will require formally specifying the semantics of QIR, for which we will draw upon the Verified LLVM
(Vellvm) project [61, 62]. We also aim to formalize QIR’s profiles, which specify what kinds of quantum
operations are allowed on a given quantum architecture. This, along with our current work, will constitute
a significant step toward our broader vision of a fully verified quantum stack [46].
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A Derived Forms

In addition to the syntax shown in Figure 2, we use these straightforward derived forms from Harper’s
language MA [17]:

{x← m1;m2} ≜ bnd x←cmd(m1);m2

{x1← m1; . . .xn−1← mn−1;mn} ≜ {x1← m1; . . .{xn−1← mn−1;mn}}
{m1;m2} ≜ {_← m1;m2}

{m1; . . .mn−1;mn} ≜ {m1; . . .{mn−1;mn}}
do m ≜ {x← m;ret(x)}

τ1⇒ τ2 ≜ τ1→ cmd(τ2)

proc (x : τ) m ≜ λ (x .cmd(m))

call e1(e2) ≜ do (ap(e1 ; e2))

call e ≜ call e(⟨⟩)

B Remaining Static and Dynamic Rules

These are standard rules from Harper’s PFPL [18] adapted to quantum computation. Note that in the
PFPL terminology, we are following the scoped dynamics of symbols [18, Ch. 31]. Instead of typed
assignables [18, §34.3], we only have a single type of qubit symbols, which we hence do not annotate in
the signature, Σ, i.e., the signature only contains active qubit symbols in scope and nothing else. Further,
since there are no reference types [18, Ch. 35] except for a single qubit reference type, we do not explicitly
state any mobility conditions [18, §31.1]. Under scoped dynamics, qubit references are immobile [18,
§35.2]. This mobility restriction is crucial in ensuring the stack discipline for qubit management.

B.1 Type System

We provide the most interesting rules of our type system in Figure 3. We include the following rules here
for completeness.

Γ ⊢ e : τ (Expression e has type τ in context Γ)

TY-VAR

Γ,x : τ ⊢ x : τ

TY-LET
Γ ⊢ e1 : τ1

Γ,x : τ1 ⊢ e2 : τ2

Γ ⊢ let(e1;x.e2) : τ2

TY-LAM
Γ,x : τ1 ⊢ e : τ2

Γ ⊢ λ {τ1}(x.e) : fun(τ1;τ2)

TY-AP
Γ ⊢ e1 : fun(τ2;τ)

Γ ⊢ e2 : τ2

Γ ⊢ ap(e1;e2) : τ

TY-PR

Γ ⊢ e : prod( i ↪→ τ i
i∈1..n

)
1≤ i≤ n

Γ ⊢ proj⟨i⟩(e) : τ i

TY-TPL

Γ ⊢ ei : τ i
i∈1..n

Γ ⊢ tuple( i ↪→ ei
i∈1..n

) : prod( i ↪→ τ i
i∈1..n

)
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In rule TYS-QLOC and rule VS-QLOC in the next subsection, qloc[q] is the value of the reference to
an active qubit symbol q. It can be thought of as a classical pointer value indexed by a qubit symbol. The
signature plays a role wherever commands or qubits are involved.

Γ ⊢Σ e : τ (Expression e has type τ relative to the signature)

TYS-CMD
Γ ⊢Σ m ∼·· τ

Γ ⊢Σ cmd(m) : cmd(τ)

TYS-QLOC

Γ ⊢Σ,q qloc⟨q⟩ : qref⟨q⟩

B.2 Operations Semantics

Pure Classical Sub-language

e val (e is a value)

V-LAM

λ {τ}(x.e)val

V-TPL

ei val
i∈1..n

tuple( i ↪→ ei
i∈1..n

)val

e 7−→ e′ (e steps to e′)

TR-LET
e1 7−→ e′1

let(e1;x.e2) 7−→ let(e′1;x.e2)

TR-LETINSTR
e1 val

let(e1;x.e2) 7−→ [e1/x]e2

TR-APL
e1 7−→ e′1

ap(e1;e2) 7−→ ap(e′1;e2)

TR-APR
e1 val e2 7−→ e′2

ap(e1;e2) 7−→ ap(e1;e′2)

TR-APINSTR
e2 val

ap(λ {τ2}(x.e1);e2) 7−→ [e2/x]e1

TR-TPL

ei val
i∈1..na e 7−→ e′

tuple( i ↪→ ei
i∈1..na ,k ↪→ e, j ↪→ e′j

j∈1..nb
) 7−→ tuple( i ↪→ ei

i∈1..na ,k ↪→ e′, j ↪→ e′j
j∈1..nb

)

TR-PR
e 7−→ e′

proj⟨i⟩(e) 7−→ proj⟨i⟩(e′)

TR-PRINSTR

tuple( i ↪→ ei
i∈1..n

)val
1≤ j≤ n

proj⟨j⟩(tuple( i ↪→ ei
i∈1..n

)) 7−→ ej

e valΣ (e is a value relative to Σ)

VS-CMD

cmd(m) valΣ

VS-QLOC

qloc⟨q⟩ valΣ,q
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Effectful Quantum Sublanguage In the following rules, we do not show the quantum store, preferring
the equational dynamics shown in §3.3. In reading these rules, consider the quantum store shape being
expanded and restored during the allocation command (as reflected in the signature) and the quantum
state being modified during the measurement and the gate application commands.

m finalΣ (Command m is complete)

FN-RET
e valΣ

ret(e) finalΣ

m 7−→Σ m′ (Command m steps to m′)

ST-RET
e 7−→

Σ
e′

ret(e) 7−→
Σ

ret(e′)

ST-BND
e 7−→

Σ
e′

bnd(e;x.m) 7−→
Σ

bnd(e′;x.m)

ST-BNDINSTR
e valΣ

bnd(cmd(ret(e));x.m) 7−→
Σ

[e/x]m

ST-BNDCMD
m1 7−→

Σ
m′1

bnd(cmd(m1);x.m2) 7−→
Σ

bnd(cmd(m′1);x.m2)

ST-NEWQREF

m 7−→
Σ,q

m′

newqref(x.m) 7−→
Σ

newqref(x.m′)

ST-NEWQREFINSTR

e valΣ

newqref(x.ret(e)) 7−→
Σ

ret(e)

ST-GATEAPREF
e 7−→

Σ
e′

gateap⟨U2n⟩(e) 7−→
Σ

gateap⟨U2n⟩(e′)

ST-DIAGAPREFL
e1 7−→

Σ
e′1

diagap⟨U2n ,V 2n⟩(e1;e2) 7−→
Σ

diagap⟨U2n ,V 2n⟩(e′1;e2)

ST-DIAGAPREFR
e1 valΣ e2 7−→

Σ
e′2

diagap⟨U2n ,V 2n⟩(e1;e2) 7−→
Σ

diagap⟨U2n ,V 2n⟩(e1;e′2)

ST-MEASREF
e 7−→

Σ
e′

meas(e) 7−→
Σ

meas(e′)

C Correspondence between λλλ Q# and Staton’s quantum language

We can easily translate the quantum-specific fragment of λQ# to Staton’s quantum programming lan-
guage [54, §5]. Note that the generic effects of his quantum language are equivalent to the algebraic
operations (of the algebraic theory) [43] that he uses in his proof of Theorem 11 [54, pp. 12–15, Appendix
A]. The translation follows:

let q = new() in m ≡ newqref(q .m)

measure(e) ≡ meas(e)

applyU(e) ≡ gateap⟨U2n⟩(e)
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Note that gateap⟨U2n⟩(e) subsumes diagap⟨U2n ,V2n⟩(e1 ; e2), just like in Staton’s work. In other
words, we can define each of Staton’s terms using terms of our language.

D An Elaboration Example

Listing 1 shows a sample Q# program. Figure 4 shows the corresponding elaboration to λQ#.

namespace Quantum.Kata.Teleportation {

open Microsoft.Quantum.Intrinsic; // for H, X, Z, CNOT , and M

operation Entangle (qAlice : Qubit , qBob : Qubit) : Unit is Adj {
H(qAlice );
CNOT(qAlice , qBob);

}

operation SendMsg (qAlice : Qubit , qMsg : Qubit) : (Bool , Bool) {
CNOT(qMsg , qAlice );
H(qMsg);
return (M(qMsg) == One , M(qAlice) == One);

}

operation DecodeMsg (qBob : Qubit , (b1 : Bool , b2 : Bool)) : Unit {
if b1 { Z(qBob); }
if b2 { X(qBob); }

}

operation Teleport (qAlice : Qubit , qBob : Qubit , qMsg : Qubit) : Unit {
Entangle(qAlice , qBob);
let classicalBits = SendMsg(qAlice , qMsg);
DecodeMsg(qBob , classicalBits );

}
}

Listing 1: Teleportation in Q# (adapted from Quantum Katas [32]).
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let Entangle be proc (⟨qAlice,qBob⟩ : qref⟨a⟩×qref⟨b⟩) {
applyH(qAlice);

applyD(I2,X)(qAlice ; qBob)} in
let SendMsg be proc (⟨qAlice,qMsg⟩ : qref⟨a⟩×qref⟨m⟩) {

applyD(I2,X)(qMsg ; qAlice);

applyH(qMsg);

ret(⟨cmd(meas(qMsg)),cmd(meas(qAlice))⟩)} in
let DecodeMsg be proc (⟨qBob,⟨b1,b2⟩⟩ : qref⟨b⟩× (bool×bool)) {

if b1 then applyZ(qBob) else⟨⟩;
if b2 then applyX(qBob) else⟨⟩} in

let Teleport be proc (⟨qAlice,qBob,qMsg⟩ : qref⟨a⟩×qref⟨b⟩×qref⟨m⟩) {
call Entangle(⟨qAlice,qBob⟩);
classicalBits ← call SendMsg(⟨qAlice,qMsg⟩);
call DecodeMsg(⟨qBob,classicalBits⟩)} in ⟨⟩

Figure 4: λQ# elaboration of the Q# program in Listing 1.
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We provide a universal construction of the category of finite-dimensional C*-algebras and completely

positive trace-nonincreasing maps from the rig category of finite-dimensional Hilbert spaces and uni-

taries. This construction, which can be applied to any dagger rig category, is described in three steps,

each associated with their own universal property, and draws on results from dilation theory in finite

dimension. In this way, we explicitly construct the category that captures hybrid quantum/classical

computation with possible nontermination from the category of its reversible foundations. We discuss

how this construction can be used in the design and semantics of quantum programming languages.

1 Introduction

The account of quantum measurement offered by decoherence establishes that the irreversible nature

of mixed-state evolution occurs when a system is considered in isolation from its environment. When

the environment is brought back into view, mathematically through techniques such as quantum state

purification and Stinespring dilation, the reversible underpinnings of mixed-state evolution are exposed.

This perspective has in recent years led to the study of quantum theory through categorical comple-

tions of its reversible foundations, the category of finite-dimensional Hilbert spaces and unitaries, demon-

strating connections between universal constructions and effectful quantum programming [11]. This

article constructs in a universal way the category of finite-dimensional C*-algebras and partial quan-

tum channels (completely positive trace-nonincreasing maps) from the rig category of finite-dimensional

Hilbert spaces and unitaries. The construction has three stages, each with a universal property of its own.

• Freely allowing partiality respecting the dagger structure (by making the additive unit a zero

object) allows contractive maps to be described by unitaries through Halmos dilation [8, 25, 20].

• Freely allowing the hiding of states in a way that respects partiality (by making the multiplicative

unit terminal for total maps) allows completely positive trace-nonincreasing maps to be described

through contractions, using a variant of Stinespring dilation [29]. This construction has an inter-

esting universal property as a pushout of monoidal categories.

• Freely splitting certain idempotents on finite-dimensional Hilbert spaces yields finite-dimensional

C*-algebras, which describe hybrid quantum/classical computation.

All three universal constructions are abstract and apply to any suitably structured category. They show

that the traditional model of C*-algebras inevitably arises from the mere concepts of quantum circuits,

partiality, hiding, and classical communication, without any concept of e.g. norm. Thus they inform

the design of quantum programming languages [11], as part of a highly effective broader approach to

program semantics from universal properties [30, 16, 27].
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Related work The role of universal properties and categorical completions in quantum theory, in par-

ticular the monoidal indeterminates construction [9], has been studied in recent years [24, 14, 15, 4, 10,

11] (see also [28] for a related approach in the probabilistic case, and [31, 22] for other accounts of dila-

tions as universal properties). The role of partiality in effectus theory was studied in [2]. We deepen the

connections between dilations and universal properties of functors between categories of quantum sys-

tems first observed in [14, 15]. A direct connection between universal constructions and the design and

semantics of quantum programming languages with effects was demonstrated in [11]. The idempotent

splitting of the category of finite-dimensional Hilbert spaces and completely positive maps, in particular

the fact that it contains all finite-dimensional C*-algebras, has been the subject of study and discussion

in [12, 24, 3].

Overview Section 2 recalls some facts about rig categories and their additive affine completion and

relation to partiality, which we extend in Section 3 to the biaffine completion and dagger partiality,

and show that the biaffine completion of the category Unitary of (finite-dimensional Hilbert spaces

and) unitaries is precisely Contraction of contractive maps. Section 4 describes a construction that

completes Contraction to the category FHilbCPTN of partial quantum channels (completely positive

trace-nonincreasing maps) using a variant of Stinespring dilation, and we show that this construction

satisfies a universal property as a pushout in the category of monoidal categories. Finally, Section 5 shows

that splitting along a particular class of idempotents, corresponding in FHilbCPTN to measurements,

completes FHilbCPTN to the category FCstarCPTN of finite-dimensional C*-algebras and partial quantum

channels. We end in Section 6 with a discussion of the applications of these constructions to the design

and semantics of quantum programming languages.

2 The additive affine completion of rig categories

We enter the story assuming that the reader is familiar with monoidal categories and dagger cate-

gories [13], and proceed with preliminaries about rig categories and their additive affine completion.

A rig category is a category which is symmetric monoidal in two different ways, such that one

monoidal product distributes over the other, subject to a large amount of coherence equations [19]. In

analogy with the situation in Hilbert spaces, we usually write these monoidal products as (⊗, I) (the

“tensor product”) and (⊕,O) (the “direct sum”) with ⊗ distributing (up to natural isomorphism) over ⊕
via distributors δ L : A⊗ (B⊕C) → (A⊗B)⊕ (A⊗C) and δ R : (A⊕B)⊗C → (A⊗C)⊕ (B⊗C) and

annihilators (“nullary distributors”) δ L
0 : O⊗A → O and δ R

0 : A⊗O → O. A dagger rig category is a

dagger category with a rig structure such that all coherence isomorphisms are unitary (i.e., satisfy f−1 =
f †). Natural examples of rig categories are distributive categories where ⊗ is a categorical product with

a terminal object as its monoidal unit and ⊕ is a categorical coproduct with an initial unit. However, not

all rig categories are of this form: the category Unitary of finite-dimensional Hilbert spaces and unitaries

(with tensor product and direct sum) and the category FinBij of finite sets and bijections (with cartesian

product and disjoint union) are both (dagger) rig categories, but neither has products or coproducts.

2.1 Partiality and the additive affine completion

What is the appropriate notion of partiality for a given rig category? If coproducts and a terminal object

are available the lift monad (−)+1 can answer this question, but not every rig category has these. Instead,

we can think of a partial map A → B as a map A → B⊕E , i.e., extend the output state space with an extra
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part E to receive all the inputs we wish to be undefined. Any map f : A → B can be lifted to a total map

ρ−1
⊕ ◦ f : A → B⊕O using the inverse right unitor, and partial maps f : A → B⊕E and g : B → C⊕E ′

can be composed by composing their defined parts, i.e., α⊕ ◦g⊗ idE ◦ f : A → C⊕ (E ′⊕E). This is an

information-preserving variant of Kleisli-composition for the lift monad.

This describes the additive affine completion of a rig category, barring one detail: given that E

describes where the map is undefined, it shouldn’t actually matter how we represent this particular part.

For example, given some partial map f : A → B⊕E and some manipulation m : E → E ′ of the undefined

part, f and (id⊕m)◦ f morally describe the same partial map. Therefore, given morphisms f : A→B⊕E

and f ′ : A → B⊕E ′, we write f ≤L f ′ if and only if there exists some mediator m : E → E ′ such that

A

B⊕E B⊕E ′

f f ′

id⊕m

commutes. This straightforwardly gives a preorder, though not (necessarily) an equivalence relation since

mediators need not be invertible. However, since we would like momentarily to treat it as an equivalence,

we consider instead its equivalence closure ∼L, i.e.,, the least equivalence relation containing ≤L.

Definition 1. Given a rig category C, its additive affine completion L⊕(C) is the category whose

• objects are those of C,

• morphisms [ f ,E] : A → B are pairs of an object E and an equivalence class of morphisms f : A →
B⊕E of C under ∼L,

• identities A → A are [ρ−1
⊕ ,O] (with ρ⊕ : A⊕O → A the right unitor), and

• composition of [ f ,E] : A → B and [g,E ′] : B →C is [α⊕ ◦g⊗ idE ◦ f ,E ′⊕E].

There is a dual to this construction, the additive coaffine completion R⊕(C), defined as L⊕(C
op)op.

Explicitly, morphisms A → B in R⊕(C) are equivalence classes of morphisms A⊕E → B, and so hide

part of their source space rather than their target space. We summarise some features of these categories.

Proposition 2. When C is a rig category, so are L⊕(C) and R⊕(C).

Proof. That R⊕(C) is a rig category was shown in [11, Lemma 12]; that L⊕(C) is also a rig category

follows by L⊕(C)∼= R⊕(C
op)op and the fact that C is a rig category iff Cop is.

Proposition 3. The additive unit O is terminal in L⊕(C) and initial in R⊕(C).

Proof. The inverse left unitor λ−1
⊕ : A→O⊕A of C represents a morphism A→O in L⊕(C); this satisfies

the universal property of the terminal object by definition of ∼L. Dually, O is initial in R⊕(C).

We call a rig category additively coaffine when the additive unit is initial, and additively affine when

it is terminal.

Proposition 4. There are strict rig functors D : C → L⊕(C) and E : C → R⊕(C).

Proof. Define D(A) = A on objects, and D( f ) = [ρ−1
⊕ ◦ f ,O] on morphisms, and E dually. Straightfor-

ward calculations show that this defines strict rig functors.

As the name suggests, these are, indeed, completions on rig categories.
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Proposition 5. L⊕(C) is the additive affine completion of C in the following sense: given any additively

affine rig category D and strong rig functor F : C → D, there is a unique strong rig functor F̂ : L⊕(C)→
D making the diagram below commute.

C L⊕(C)

D

D

F̂
F

Proof. By [11, Theorem 19] and duality.

Dualising this result exhibits R⊕(C) as the additive coaffine completion of C.

3 Dagger partiality and the additive biaffine completion

As the (co)affine completion explicitly involves hiding a part of the source or target space of a morphism,

we cannot expect to lift either construction to a completion of dagger rig categories. A great example

of this fact is demonstrated by considering R⊕(Unitary). Write Isometry for the category of finite-

dimensional Hilbert spaces and morphisms satisfying f † ◦ f = id, and coIsometry for its dual.

Proposition 6. There are rig equivalences R⊕(Unitary)≃ Isometry and L⊕(Unitary)≃ coIsometry.

Proof. That R⊕(Unitary) ≃ Isometry was shown in [14]. The other statement follows from duality:

L⊕(Unitary)≃ R⊕(Unitaryop)op ≃ R⊕(Unitary)op ≃ Isometryop ≃ coIsometry.

However, though Unitary is a dagger rig category, Isometry and coIsometry are mere rig categories.

Intuitively, this must be the case because dagger categories are self-dual (i.e., satisfy C ∼= Cop) so limits

and colimits coincide, but the affine completion only adds (certain) limits without the corresponding

colimits. However, this also suggests that if we seek a notion of partiality that respects daggers, we

would need the additive unit to be both initial and terminal, i.e., a zero object. Fortunately, we can ensure

this by applying L⊕ after R⊕ or vice versa.

Proposition 7. The additive unit O is a zero object in both L⊕(R⊕(C)) and R⊕(L⊕(C)).

Proof. By [11, Lemma 11], R⊕(−) preserves terminal objects, and by duality, L⊕(−) preserves initial

objects. Thus O is both initial and terminal (i.e., a zero object) in both L⊕(R⊕(C)) and R⊕(L⊕(C)).

The situation is interesting: neither L⊕(−) nor R⊕(−) on their own preserve dagger rig categories,

but as we will see, their combination does. Hence it is advantageous to consider them together for dagger

rig categories, which also leads to a slightly simpler presentation. In a rig category, define ∼LR⊕ as the

least equivalence relation containing the three relations ∼id⊕ , ∼L⊕ , and ∼R⊕ defined as follows, for all

f : A⊕H → B⊕G:

• f ∼L⊕ (id⊕m)◦ f for all m : G → G′;

• f ∼R⊕ f ◦ (id⊕n) for all n : H ′ → H;

• f ∼id⊕ α⊕ ◦ ( f ⊕ idX)◦α−1
⊕ for all identities idX .

Definition 8. Given a rig category C, its biaffine completion LR⊕(C) is the category whose

• objects are those of C,
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• morphisms [H, f ,G] : A → B are triples consisting of two objects H and G and a morphism A⊕
H → B⊕G of C quotiented by ∼LR⊕ ,

• identities A → A are [O, idA⊕O,O], and

• the composition of f : A⊕H → B⊕G and g : B⊕H ′ →C⊕G′ is given by

A⊕(H⊕H ′)
α−1
⊕

−−→ (A⊕H)⊕H ′ f⊕id
−−−→ (B⊕G)⊕H ′ ∼=

−→ (B⊕H ′)⊕G
g⊕id
−−→ (C⊕G′)⊕G

α⊕
−→C⊕(G′⊕G).

We state some properties of the LR⊕-construction, the proofs of which can be found in the appendix.

Proposition 9. The additive unit O is a zero object in LR⊕(C).

Proposition 10. When C is a dagger rig category, so is LR⊕(C).

As before, there is a functor F : C → LR⊕(C) given on objects by F (A) = A and on morphisms by

F( f ) = [0, f ⊕ id0,0], making LR⊕(C) a completion in the formal sense. We say that a rig category is

additively biaffine if the unit of the sum is a zero object.

Theorem 11. LR⊕(C) is the additive biaffine completion of C in the following sense: given any ad-

ditively biaffine rig category D and strong rig functor F : C → D, there is a unique strong rig functor

F̂ : LR⊕(C)→ D making the diagram below commute.

C LR⊕(C)

D

F

F̂
F

Proof. Assuming such a functor exists, we first prove its uniqueness. Imposing F = F̂ ◦F implies that

F̂(A) = F(A) on objects and, on morphisms in the image of F , we have that F̂(F ( f )) = F( f ). It is easy

to check (for instance, diagrammatically) that any [H, f ,G] : A → B in LR⊕[C] decomposes as follows:

[H, f ,G] = A
ρ−1

−−→ A⊕O
id⊕!
−−→ A⊕H

F ( f )
−−−→ B⊕G

id⊕!
−−→ B⊕O

ρ
−→ B

where the objects and morphisms shown are in LR⊕[C], where O is a zero object, and ! refer to the

corresponding unique morphisms. The image under F̂ of each of these morphisms is uniquely determined

because F̂ is assumed to be monoidal, the fact that D has 0 ∼= F(O) as its zero object, and the equality

F̂(F ( f )) = F( f ) discussed above. Thus it only remains to prove that F̂ as defined above is indeed a

strong rig functor. By definition, F̂(id) = F(id), and functoriality is easy to check using naturality of

ρ and the fact that 0 is a zero object. The fact that F̂ is a strong rig functor follows directly from the

same property for F , since F is a strict rig functor, F̂(O) = F(O) ∼= 0, and F̂(A⊕B) = F(A⊕B) ∼=
F(A)⊕F(B) = F̂(A)⊕ F̂(B).

Using this characterisation, we can show commutativity of the L⊕ and R⊕ constructions, the proof of

which is found in the appendix.

Proposition 12. When C is a rig category, L⊕(R⊕(C))∼= LR⊕(C)∼= R⊕(L⊕(C)).
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3.1 Unitaries with dagger partiality are contractions

A linear map f : A → B between normed spaces A and B is (weakly) contractive iff ‖ f (x)‖ ≤ ‖x‖ for all

x ∈ A. So contractive maps include all isometries, coisometries, and unitaries. We now show that apply-

ing the LR⊕-construction to the category of finite-dimensional Hilbert spaces and unitaries is equivalent

to the category Contraction of finite-dimensional Hilbert spaces and contractions. Another way of say-

ing this is that extending the unitaries with dagger partiality gives precisely the contractions.

Theorem 13. LR⊕(Unitary)∼= Contraction.

Proof. Proposition 12 gives LR⊕(Unitary)∼= L⊕(R⊕(Unitary)), and Proposition 6 gives R⊕(Unitary)∼=
Isometry, so it suffices to show L⊕(Isometry) ∼= Contraction. The strategy is to define a functor

F : Contraction → L⊕(Isometry) and prove it is full, faithful and essentially surjective. On objects,

F(A) = A so F is essentially surjective. Let T : A → B be a contraction and let f : A → B⊕G be an isom-

etry such that T = πB ◦ f : for example, by [8, 25], an isometric dilation A → B⊕A can be constructed

as

f =

(
T

(1−T †T )
1
2

)
.

Let F(T ) = [ f ,G]. We need to check this mapping is well-defined, i.e., if f ′ : A → B⊕G′ also satisfies

T = πB ◦ f ′, verify that [ f ,G] = [ f ′,G′]. To do this, first consider the Hilbert space im( f ) ⊆ B⊕G and

similarly im( f ′) and define a function g : im( f ′)→ im( f ) by f ′(a) 7→ f (a). This function is well-defined

because f and f ′ are isometries and hence injective. It is easy to see that g is linear; also notice that

〈
g( f ′a)

∣∣g( f ′a)
〉
= 〈 f a| f a〉= 〈a|a〉=

〈
f ′a
∣∣ f ′a

〉

because f and f ′ are isometries. This applies to all vectors in im( f ′), so g is an isometry; in fact, because

dim(im( f )) = dim(im( f ′)) is finite, g has an inverse that is also an isometry, so g : im( f ′) → im( f )
is unitary. Whenever f (a) ∈ B it is necessary that f (a) = f ′(a) for them to be dilations of T , which

means that g acts as the identity on im(T ). Since im( f ) = (im( f )∩B)⊕ (im( f )∩G) and similarly for

im( f ′), while im( f )∩B = im(T ) = im( f ′)∩B, we can decompose g into a block matrix of the form

g : im(T )⊕ (im( f ′)∩G′)→ im(T )⊕ (im( f )∩G). Given that the component im(T )→ im(T ) has been

established to be the identity, and g is unitary, it follows that g must be of the form

g =

(
id 0

0 h

)

for some unitary h : im( f ′)∩G′ → im( f )∩G. Next, we lift h to a map k : G′ → G. Assume without loss

of generality that dim(G′)≤ dim(G) and pick an isometry k : G′ → G satisfying (idB ⊕ k)◦ f ′ = f . Such

a function exists: let k(x) = h(x) whenever x ∈ im( f ′)∩G′ and, for each element x ∈ G′ not in im( f ′),
choose an element y ∈ G not in im( f ) and let k(x) = y. Since dim(G′) ≤ dim(G) by assumption, the

latter choices can be made so that k is an isometry. Then, it is immediate that f ∼L⊕ f ′ since k : G′ → G

is an isometry acting as their mediator, and we conclude that [ f ,G] = [ f ′,G′]. Moreover, if F(T ) = [ f ,G]
and F(S) = [g,G′] then it’s easy to check that (g⊕ idG)◦ f is an isometric dilation of S◦T , so F is indeed

a functor. For any two contractions T and S, if F(T ) = F(S) then there is an isometric dilation f such

that T = π ◦ f = S and, hence, F is faithful. Finally, πG ◦ f is a contraction for all [ f ,G], so F is full.
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4 Hiding in a partial setting

The previous section considered (co)affine completions with respect to the direct sum. But rig categories

have another monoidal structure, the tensor product. Just as we can form the additive affine completion

L⊕(C) of a rig category C, we can also form the multiplicative one L⊗(C): objects are those of C,

morphisms A→B are equivalence classes of morphisms A→B⊗G in C, with identities and composition

just as in Definition 1. Where the L⊕-construction captures partiality by allowing part of the state space

to be hidden, the L⊗-construction models discarding by allowing any state to be hidden (partly or fully).

This construction was shown to capture Stinespring dilation in [14], where the authors argued that

L⊗(Isometry) is monoidally equivalent to the category FHilbCPTP of finite-dimensional Hilbert spaces

and completely positive trace-preserving (CPTP) maps (or quantum channels). A drawback is that this

does not generally preserve the direct sum, so L⊗(C) is generally only monoidal (under tensor product)

when C is a rig category (though remnants of the direct sum persist, see [11, Section 4.4]).

Unfortunately, we cannot hope to use the L⊗-construction to construct the category FHilbCPTN of

finite-dimensional Hilbert spaces and completely positive trace-nonincreasing (CPTN) maps (or partial

quantum channels) for a simple reason: the unit I of the tensor product is terminal in L⊗(C), but unlike

FHilbCPTP, it is not terminal in FHilbCPTN. The unique map A → I in FHilbCPTP is given by the trace of

a density matrix on A, and it is unique because all density matrices have unit trace. On the other hand, the

subnormalised density matrices found in FHilbCPTN take their traces in the unit interval, so even though

there is only one trace-preserving map A → I, there are as many trace-nonincreasing ones as there are

real numbers in [0,1]. Another way to say this is that the L⊗-construction fails to respect partiality in

FHilbCPTN (as also discussed in [10]).

This section generalises the result from [14] to the partial case. To do this, we show a variant of

Stinespring dilation for completely positive trace-nonincreasing maps, describe a construction Lt
⊗(C)

that extends C with unique total deletion maps, and relate the two by showing that Lt
⊗(Contraction)≃

FHilbCPTN. We relate this to the total case by showing that Lt
⊗(C) has a universal property as a certain

pushout in the category of (locally small) monoidal categories.

4.1 Stinespring dilation for partial quantum channels

We begin with a small lemma, which turns out to be incredibly useful when working with contractions.

Proposition 14. T is contractive if and only if T †T ≤ 1.

Proof. By definition, T †T ≤ 1 iff 1−T †T is positive semidefinite, which in turn is the case iff 〈φ | (1−
T †T ) |φ〉 ≥ 0 for all |φ〉. But since

〈φ |(1−T †T ) |φ〉= 〈φ |φ〉− 〈φ |T †T |φ〉= ‖|φ〉‖2 −‖T |φ〉‖2
,

1−T †T is positive semidefinite iff ‖|φ〉‖2 −‖T |φ〉‖2 ≥ 0 for all |φ〉, i.e., when T is contractive.

The previous proposition links handily to the following theorem about the Kraus representation of

completely positive trace-nonincreasing maps.

Proposition 15 ([1]). Any CPTN map Φ admits a representation Φ(ρ) = ∑k
i=1 MiρM

†
i with ∑i M

†
i Mi ≤ 1.

As in the trace-preserving case, we can construct a Stinespring dilation from the Kraus representation.

Proposition 16. Every CPTN map Φ admits a Stinespring dilation Φ(ρ) = trE(T ρT †) for some con-

traction T and Hilbert space E.
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Proof. Let B(A)
Φ
−→B(B) be a partial quantum channel with Kraus representation Φ(ρ) =∑k

i=1 MiρM
†
i .

Define E = Ck, let A⊗C
UR−→ A denote the right unitor, and let T =

(
∑k

i=1 Mi ⊗|i〉
)

U
†
R . Now for any ρ :

trE(T ρT †) = trE

((
k

∑
i=1

Mi ⊗|i〉

)
U

†
R ρ UR

(
k

∑
j=1

M
†
j ⊗〈 j|

))
= trE

(
k

∑
i=1

k

∑
j=1

MiρM
†
j ⊗|i〉〈 j|

)

=
k

∑
i=1

k

∑
j=1

tr(|i〉〈 j|)MiρM
†
j =

k

∑
i=1

MiρM
†
i = Φ(ρ) .

It remains to show that T is contractive:

T †T =UR

(
k

∑
j=1

M
†
j ⊗〈 j|

)(
k

∑
i=1

Mi ⊗|i〉

)
U

†
R =UR

(
k

∑
j=1

k

∑
i=1

M
†
j Mi ⊗〈 j|i〉

)
U

†
R

=UR

(
k

∑
i=1

M
†
i Mi ⊗〈i|i〉

)
U

†
R =

k

∑
i=1

M
†
i Mi ≤ 1

which finishes the proof.

This representation is essentially unique, i.e., unique up to an isometry applied to the ancilla.

Lemma 17 ([21, Theorem 8.2 ]). Let Φ be a CP map with two Kraus representations Φ(ρ) =∑k
i=1 EiρE

†
i

and Φ(ρ) = ∑k′

j=1 FjρF
†
j . Assume k = k′; if k < k′, add some Ei = 0 for all k < i ≤ k′. There is a unitary

k-by-k matrix U = (ui j) such that Ei = ∑k
j=1 ui jFj for all i.

Proposition 18. Let Φ be a CPTN map, and let TE : A→B⊗G, TF : A→B⊗G′ be two contractions such

that Φ(ρ) = trG(TEρT
†

E ) = trG′(TFρT
†

F ). If dim(G) ≤ dim(G′), then there is an isometry W : G → G′

such that TF = (1⊗W )TE .

Proof. Write UR for the right unitor. Fix an orthonormal basis for G and define Ei =UR(1⊗〈i|)TE ; do the

same for Fj =UR(1⊗〈 j|)TF . Notice that TE = (∑i Ei⊗|i〉)U†
R thanks to ∑i |i〉〈i|= 1G for an orthonormal

basis. Take V to be an injection of G into a Hilbert space with the same dimension as G′. Let U = (ui j)
be the unitary from the lemma above. Then:

TE = (∑
i

Ei ⊗|i〉)U†
R = (∑

i

(∑
j

ui jFj)⊗|i〉)U†
R = (∑

i

(∑
j

ui jFj ⊗|i〉))U†
R = (∑

j

Fj ⊗ (∑
i

ui j |i〉))U
†
R.

Because U is unitary,
∣∣ ĵ
〉
= ∑i ui j |i〉 form an orthonormal basis for G′. Finally, we obtain the isometry

W : G → G′ by composing W = RUV where R is the unitary mapping
∣∣ ĵ
〉
7→ | j〉.

Moreover, as in the trace-preserving case, contractions give rise to CPTN maps through conjugation.

Proposition 19. Every contraction T gives rise to a CPTN map Φ(ρ) = T ρT †.

Proof. Conjugation by any linear map is completely positive. That Φ is trace-nonincreasing follows by

tr
(
T ρT †

)
= tr

(
ρT †T

)
≤ tr(ρ 1) = tr(ρ).

Taken together, these results show that the situation between Contraction and FHilbCPTN mirrors

that between Isometry and FHilbCPTP: there is a (strict monoidal) functor Contraction → FHilbCPTN

that sends a contraction T to conjugation by T , and every CPTN map can be expressed this way (in an

essentially unique way) if we allow ourselves an ancilla system.
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4.2 Total eclipse of the state

We now formulate the new Lt
⊗-construction, adding a notion of hiding that cooperates with the total

maps in a monoidal dagger category. Consider a monoidal dagger category C. We can think of its dagger

monomorphisms (i.e., morphisms f satisfying f † ◦ f = id) as its total maps. These form a subcategory

of C, which we denote DagMon(C). The significance of the total maps is that, instead of being able to

mediate with arbitrary maps from C (as in the L⊗-construction), we are only permitted to mediate with

total maps (i.e., morphisms in DagMon(C)) in the Lt
⊗-construction. Explicitly, for f : A → B⊗G and

f ′ : A → B⊗G′, write f ≤Lt
⊗

f ′ iff there exists a dagger monomorphism m : G → G′ making

A

B⊗G B⊗G′
id⊗m

f f ′

commute. Let ∼Lt
⊗

denote the equivalence closure of ≤Lt
⊗

.

Definition 20. The partial multiplicative affine completion Lt
⊗(C) of a symmetric monoidal dagger cat-

egory C is the category whose

• objects are those of C,

• morphisms [ f ,G] : A → B are pairs of an object G and an equivalence class of morphisms f : A →
B⊗G of C under ∼Lt

⊗
,

• identities are [ρ−1
⊗ , I], and

• composition of [ f ,G] : A → B and [g,G′] : B →C is [α⊗ ◦g⊗ idG ◦ f ,G′⊗G].

Before proceeding with the universal property of this construction, we first establish that it succeeds

in constructing FHilbCPTN.

Theorem 21. There is an equivalence Lt
⊗(Contraction)≃ FHilbCPTN of monoidal categories.

Proof. Construct a functor Lt
⊗(Contraction)→ FHilbCPTN acting as the identity on objects, by sending

[ f ,G] : A → B to the map ρ 7→ trG( f †ρ f ), which is CPTN by Proposition 19 and since the partial trace

is trace-preserving. This is well-defined since dagger monomorphisms in Contraction are precisely

the isometries, and since Stinespring dilations are invariant under isometric manipulation of the ancilla

system G. This functor is essentially surjective since it is identity on objects and Lt
⊗(Contraction) and

FHilbCPTN have the same objects; it is full since every CPTN map admits a Stinespring dilation (by

Proposition 16); it is faithful since different Stinespring dilations of the same CPTN map are always

connected by an isometry on the ancilla by Proposition 18; and it is (strict) monoidal since it preserves

coherence isomorphisms.

An immediate consequence of the definition of Lt
⊗(C) is that each object comes equipped with a

discarding map and chosen projections.

Proposition 22. Every object A of Lt
⊗(C) has a discarding map : A → I, giving canonical projections

π1 : A⊗B → A and π2 : A⊗B → B.

Proof. As in L⊕, construct : A → I as the equivalence class of the pair [λ−1
⊗ ,A] where λ−1

⊗ : A → I ⊗A

is the inverse left unitor of C. Projections are given by the equivalence class of [idA⊗B,B] : A⊗B → A

and that of [σ⊗,A] : A⊗B → B.
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We state some basic properties of this construction, shown analogously to those for the L⊕-construction.

Proposition 23. When C is a symmetric monoidal dagger category, Lt
⊗(C) is symmetric monoidal.

Proposition 24. There is a strict monoidal functor Et : C → Lt
⊗(C) given by Et(A) = A on objects and

Et( f ) = [ρ−1
⊗ ◦ f , I] on morphisms.

The connection between the L⊗ and the Lt
⊗ construction is made clear by the following inclusion.

Proposition 25. There is a strict monoidal inclusion functor It : L⊗(DagMon(C))→ Lt
⊗(C).

Indeed, as we will see momentarily, the Lt
⊗-construction is characterised by this inclusion. Interest-

ingly, this construction can be seen as a particular instance of the monoidal indeterminates-construction [9].

This gives a very useful factorisation lemma, which may be regarded as an instance of purification.

Lemma 26. Let C be a symmetric monoidal dagger category. Then

(i) morphisms [ f ,E] of L⊗(DagMon(C)) factor uniquely as π1 ◦E ( f ′) for some f ′ in DagMon(C),

(ii) morphisms [ f ,E] of Lt
⊗(C) factor uniquely as π1 ◦Et( f ′) for some f ′ in C, and

(iii) morphisms [ f ,E] of Lt
⊗(C) factor uniquely as It(π1)◦E ( f ′) for some f ′ in C.

Proof. (i,ii) are the expansion-raw factorisation of [9], and (iii) holds as π1 = It(π1) in Lt
⊗(C).

We are now ready to establish the universal property of Lt
⊗(C).

Theorem 27. Lt
⊗(C) is a pushout of E : DagMon(C) → L⊗(DagMon(C)) along the inclusion functor

DagMon(C)֌ C in the category of locally small symmetric monoidal categories and strong monoidal

functors.

DagMon(C) C

L⊗(DagMon(C)) Lt
⊗(C)

D

I

E

It

Et

F

Ft

F̂

Proof sketch. Notice first that the upper square commutes since all functors involved are strict monoidal,

and I and It are merely inclusions behaving as the identity on objects and morphisms, while E is precisely

Et restricted to dagger monomorphisms of C.

Next, since objects on C, DagMon(C), Lt
⊗(C), and L⊗(DagMon(C)) all coincide, F and Ft must

agree on objects, so we may define F̂(X) = F(X) = Ft(X) on objects, and F̂ ◦ It = F and F̂ ◦Et = Ft

on objects follows immediately. On morphisms we define F̂([ f ,E]) = F(π1) ◦Ft( f ). That this defini-

tion satisfies F̂ ◦ It = F and F̂ ◦Et = Ft on morphisms as well, and that F̂ is unique, follows using the

factorisation lemma above (full proof in the appendix).

Instantiating this property to the case of Contraction, where the functors Contraction → Isometry

and FHilbCPTP →FHilbCPTN are inclusions, and the functors Isometry→FHilbCPTP and Contraction→
FHilbCPTN conjugating by an isometry or contraction, we obtain the following characterisation.

Corollary 28. The following square is a pushout of symmetric monoidal categories:

Isometry Contraction

FHilbCPTP FHilbCPTN
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Proof. That DagMon(Contraction)≃ Isometry follows by the fact that every isometry f is contractive

(it satisfies ‖ f (x)‖= ‖x‖, so specifically ‖ f (x)‖≤‖x‖) and satisfies f †◦ f = id. Finally, L⊗(Isometry)≃
FHilbCPTP is known [14], and Lt

⊗(Contraction)≃ FHilbCPTN by Theorem 21.

5 Splitting measurements

The category FHilbCPTN does not have coproducts, but it can nevertheless be instructive to see why

a given candidate for cotupling fails. Working in Lt
⊗(Contraction), given two Stinespring dilations

f : A →C⊗G and g : B →C⊗G′, a candidate for the Stinespring dilation of their cotupling is the map

δ−1
L ◦ f ⊕ g : A⊕B → C ⊗ (G⊕G′). In particular, if we were to try to cotuple the trivial Stinespring

dilations of the canonical injections i1 : A → (A⊕B)⊗ I and i2 : B → (A⊕B)⊗ I in Contraction, the

result would be the map δ−1
L ◦ i1 ⊕ i2 : A⊕B → (A⊕B)⊗ (I ⊕ I) . Notice the non-trivial nature of the

ancilla of this dilation, which tracks whether the result came from i1 or i2. This is not simply the identity,

as it should be if this were an actual cotupling. Computing, we see that this map acts on block diagonal

density matrices on A⊕B by measuring whether the result falls in A or in B, i.e., by the mapping

(
X Y

Z W

)
7→

(
X 0

0 W

)
.

Clearly, maps e such as these are both idempotent and causal (in that they satisfy ◦ e = ), but inter-

estingly they do not split in FHilbCPTN. However, they do have a very natural splitting in the category

FCstarCPTN of finite-dimensional C*-algebras and CPTN maps, via m : B(A⊕B)→ B(A)⊕B(B) and

p : B(A)⊕B(B)→ B(A⊕B) given by

m

(
X Y

Z W

)
= (X ,W ) and p(X ,W ) =

(
X 0

0 W

)
(1)

as we then have m ◦ p = id and p ◦m = e. Indeed, as argued in [3], this is a defining characteristic of

finite-dimensional C*-algebras compared to Hilbert spaces.

Definition 29 ([3]). The idempotent splitting of causal idempotents in C (where C is a category with

discarding) is the category Split (C) whose

• objects are pairs (A,e) of an object A of C and an idempotent e : A → A satisfying ◦ e = ,

• morphisms f : (A,e)→ (B,e′) are morphisms f : A → B of C satisfying e′ ◦ f ◦ e = f ,

• each identity (A,e)→ (A,e) is e, and

• composition is as in C.

There is an inclusion of C in Split (C) sending objects A to (A, id) and leaving morphisms un-

changed. This construction is well-known to be the free splitting of these idempotents; more abstractly,

it is the completion of a category with regards to certain absolute colimits [23]. That this constructs finite

dimensional C*-algebras out of Hilbert spaces follows by [3]:

Proposition 30. There is a (monoidal, causal) equivalence Split (FHilbCPTN)≃ FCstarCPTN.

Proof. It suffices to argue that the objects of Split (FHilbCPTN) are finite-dimensional C*-algebras,

which is immediate by Corollary 3.4 of [3].
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6 Discussion

We have presented a universal construction that constructs the category of finite-dimensional C*-algebras

and completely positive trace-nonincreasing maps from the category of finite-dimensional Hilbert spaces

and unitaries. Though we have kept to the finite-dimensional case in this paper, there is reason to suspect

that many of these results will generalise to infinite dimensions. For example, Halmos dilation has a

far stronger statement as Sz. Nagy dilation in the infinite-dimensional case, and the usual Stinespring

dilation theorem generalises to the infinite-dimensional case as well.

The key application that we envision for this work is in the design and semantics of quantum pro-

gramming languages. One application of the LR⊕-construction is in the quantisation of reversible clas-

sical programs. It can be shown that applying the LR⊕-construction to the category FinBij of finite

sets and bijections yields the category FinPInj of finite sets and partial injective functions. In partic-

ular, this means that the quantisation functor FinBij → Unitary lifts uniquely to a functor FinPInj →
Contraction. This is interesting since FinPInj is the setting for (finite) reversible classical computing

(see e.g. [18, 6, 7]), in particular reversible (classical) flowcharts [32, 5] (with a finite state space). This

suggests that Contraction may be similarly considered as a setting for reversible quantum flowcharts, a

kind of quantum flowcharts (see also [26]) which eschew measurements in favour of quantum control.

Another application concerns extending the quantum programming language U Π
χ
a (“yuppie-chi-

a”) [11] with classical types. U Π
χ
a is an effectful extension of U Π, a quantum extension to the strongly

typed classical reversible programming language Π [17]. The effectful part of U Π
χ
a is that it uses the L⊗

and R⊕ constructions in a very direct way to add measurement as an effect to an otherwise measurement-

free language, taking its semantics from Unitary to FHilbCPTP. Since the causal idempotents described

in Section 5 can all be described as U Π
χ
a programs, the Split -construction can similarly be used very

directly to add classical types to this language as a computational effect. This addresses a known short-

coming of the language by allowing a distinction between e.g. the type of bits and the type of qubits (as

in e.g. [26]), but also allows for a much more fine-grained type-level separation of measurement maps in

how much they measure.
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A Deferred proofs

Proposition 9. The additive unit O is a zero object in LR⊕(C).

Proof. Define maps A → O and O → A as the equivalence classes of the symmetry σ⊕ : A⊕O → O⊕A

and σ⊕ : O⊕A → A⊕O. To see that the map A → O is unique, let f : A⊕H → O⊕G be any other

morphism of C. Then [O,σ ,A]∼LR⊕ [H, f ,G] can be seen using the graphical language [13]:

A O

O A

A O

O A

∼id⊕

H

H

A O

O

∼R⊕

H

f

O G

A O

=

H

f

GOO

A O

H

f

G

O
O

∼LR⊕

A H

f

GO

=

That the map O → A is unique follows analogously, so O is both initial and terminal, i.e., a zero object.
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Proposition 10. When C is a dagger rig category, so is LR⊕(C).

Proof. For any morphism [H, f ,G] : A → B in LR⊕(C), its dagger is defined to be

[H, f ,G]† = [G, f †
,H].

First, we need to check this is well-defined, i.e., given [H, f ,G] = [H ′, f ′,G′], verify [H, f ,G]† = [H ′, f ′,G′]†.

This is straightforward, as f ∼LR⊕ g implies f † ∼LR⊕ g†; to see this, notice that

f ∼L⊕ g =⇒ f † ∼R⊕ g†

f ∼R⊕ g =⇒ f † ∼L⊕ g†

by using the dagger of the mediators and, furthermore, f ∼id⊕ g trivially implies f † ∼id⊕ g†. Clearly, this

dagger is involutive and

id
†
A = [O, idA⊕O,O]† = [O, id

†
A⊕O,O] = idA.

Checking explicitly that (g◦ f )† = f † ◦g† is more involved, but conceptually trivial: flip the diagram and

use the fact that C is a dagger category. This works because, in LR⊕(C) there is symmetry between input

and output: the dagger turns hidden parts of the input into a hidden part of the output, and vice versa.

That coherence isomorphisms are unitary follows immediately by the fact that they are inherited from C,

where are they unitary by C a dagger rig category.

Proposition 12. When C is a rig category, L⊕(R⊕(C))∼= LR⊕(C)∼= R⊕(L⊕(C)).

Proof. The fact that O is initial in LR⊕(C) together with the universal property of R⊕ implies that the top

triangle of the diagram below commutes, for a unique functor Φ. Then, the fact that O is also terminal

in LR⊕(C) and the universal property of L⊕ implies that the bottom triangle also commutes, for a unique

functor F̂ .

C R⊕(C)

LR⊕(C) L⊕(R⊕(C))

D

F
Φ

E

F̂

Moreover, O is a zero object in L⊕(R⊕(C)) and, thus, the universal property of LR⊕ implies there is

a unique strong monoidal functor Ê ◦D : LR⊕(C) → L⊕(R⊕(C)) such that E ◦D = Ê ◦D ◦F . This,

together with the commuting diagram above implies:

Ê ◦D ◦ F̂ ◦E ◦D = Ê ◦D ◦Φ◦D = Ê ◦D ◦F = E ◦D

which is captured in the outer triangle of the diagram below

C R⊕(C) L⊕(R⊕(C))

L⊕(R⊕(C))

D E

Ê ◦D◦F̂E ◦D
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Due to the universal property of R⊕, the functor shown above as a diagonal dashed line is unique, so it

must be E ; then, Ê ◦D ◦ F̂ = 1L⊕(R⊕(C)) as both functors make the inner right triangle commute but, by

the universal property of L⊕, there is only one such functor. By a similar argument F̂ ◦ Ê ◦D = 1LR⊕(C)

and hence L⊕(R⊕(C)) ∼= LR⊕(C). This is an equivalence of rig categories, as F̂ and Ê ◦D are rig

functors by construction. The same strategy proves R⊕(L⊕(C))∼= LR⊕(C).

Theorem 27. Lt
⊗(C) is a pushout of E : DagMon(C) → L⊗(DagMon(C)) along the inclusion functor

DagMon(C)֌ C in the category of locally small symmetric monoidal categories and strong monoidal

functors.

DagMon(C) C

L⊗(DagMon(C)) Lt
⊗(C)

D

I

E

It

Et

F

Ft

F̂

Proof. Notice first that the upper square commutes since all functors involved are strict monoidal, and I

and It are merely inclusions behaving as the identity on objects and morphisms, while E is precisely Et

restricted to dagger monomorphisms of C.

Next, since objects on C, DagMon(C), Lt
⊗(C), and L⊗(DagMon(C)) all coincide, F and Ft must

agree on objects, so we may define F̂(X) = F(X) = Ft(X) on objects, and F̂ ◦ It = F and F̂ ◦Et = Ft on

objects follows immediately. On morphisms we define F̂([ f ,E]) = F(π1)◦Ft( f ). Then

F̂(It([ f ,E])) = F̂(It(π1 ◦E ( f ))) = F̂(It(π1)◦ It(E ( f ))) = F̂(It(π1)◦Et(I( f )))

= F̂([I( f ),E]) = F(π1)◦Ft(I( f )) = F(π1)◦F(E ( f ))

= F(π1 ◦E ( f )) = F([ f ,E])

so F̂ ◦ It = F on morphisms as well. For the other triangle,

F̂(Et( f )) = F̂(π1 ◦ρ−1 ◦Et( f )) = F̂(π1 ◦Et(ρ
−1)◦Et( f )) = F̂(π1 ◦Et(ρ

−1 ◦ f ))

= F̂([ρ−1 ◦ f , I]) = F(π1)◦Ft(ρ
−1 ◦ f ) = F(π1)◦F(ρ−1)◦Ft( f )

= F(π1)◦Ft(I(ρ
−1))◦Ft( f ) = F(π1)◦F(E (ρ−1))◦Ft( f )

= F(π1 ◦E (ρ−1))◦Ft( f ) = F([ρ−1
, I])◦Ft( f ) = F(id)◦Ft( f ) = Ft( f )

establishing F̂ ◦Et = Ft on morphisms. Finally, suppose G satisfies G◦ It = F and G◦Et = Ft . Then

G([ f ,E]) = G(It(π1)◦Et( f )) = G(It(π1))◦G(Et( f )) = F(π1)◦Ft( f ) = F̂([ f ,E])

on morphisms, and since G and F̂ must agree on objects as well (e.g. F̂(X) = F(X) = G(It(X)) = G(X)),
we get G = F̂ . Finally, F̂ is strong monoidal since Et is strict monoidal and Ft and F̂ agree on objects, so

F̂ may reuse the coercions I ∼= Ft(I) and Ft(A⊗B)∼= Ft(A)⊗Ft(B).
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Ambiguity is a natural language phenomenon occurring at different levels of syntax, semantics, and
pragmatics. It is widely studied; in Psycholinguistics, for instance, we have a variety of competing
studies for the human disambiguation processes. These studies are empirical and based on eye-
tracking measurements. Here we take first steps towards formalizing these processes for semantic
ambiguities where we identified the presence of two features: (1) joint plausibility degrees of dif-
ferent possible interpretations, (2) causal structures according to which certain words play a more
substantial role in the processes. The novel sheaf-theoretic model of definite causality developed by
Gogioso and Pinzani in QPL 2021 offers tools to model and reason about these features. We applied
this theory to a dataset of ambiguous phrases extracted from Psycholinguistics literature and their
human plausibility judgements collected by us using the Amazon Mechanical Turk engine. We mea-
sured the causal fractions of different disambiguation orders within the phrases and discovered two
prominent orders: from subject to verb in the subject-verb and from object to verb in the verb object
phrases. We also found evidence for delay in the disambiguation of polysemous vs homonymous
verbs, again compatible with Psycholinguistic findings.

1 Introduction

Discovering, studying, and formalising the ambiguities of natural language is an area of the field of
Computational Linguistics. Natural language ambiguities occur at different levels of syntax, semantics,
and pragmatics. Syntactic ambiguities are due to single words with multiple grammatical roles, e.g. both
noun and verb, as in ‘book’ and ‘cook’. They also occur at the phrase level, e.g. in the phrase ‘old
men and women’ the adjective ‘old’ can be modifying both the word ‘men’ or the conjunction ‘men
and women’. Other examples are ‘Show me the meals on the flight from SF’, and ‘We saw the Eiffel
Tower flying to Paris’. Ambiguities surpass sentential boundaries, as in the anaphorically ambiguous
discourse ‘I put the CD in the computer. It broke.’. Another prominent type of ambiguity is due to
different interpretations of words and phrases. Words/phrases that are ‘homonymous’ have more than one
unrelated interpretation, due to historical incidence or other reasons, as in ‘plant’, ‘pitcher’, or ‘coach’.
Polysemous words/phrases have more than one related interpretations, as in ‘newspaper’, which can refer
to the collection of papers stapled together (literal) or the content conveyed by these (figurative).

The process of semantic disambiguation and the role of the context has been studied in the field of
Psycholinguistics via devices such as eye-tracking. Here, the delay in reading and the trajectory of the
gaze shows that context plays different roles when disambiguating different types of semantically am-
biguous words. These results show that ambiguous verbs get disambiguated late, e.g. after reading the
whole sentence, whereas certain ambiguous nouns get disambiguated almost immediately and without
much reliance on context. They also show that polysemous verbs are disambiguated later than homony-
mous verbs, and the same applies for nouns, i.e. that polysemous nouns are disambiguated later than
homonymous nouns. Semantic ambiguities are plentiful and universal. They also easily lift from word
to phrase level, where the number and complexity of potential interpretations increase exponentially.
Assuming only two interpretations per word (which is the minimal criteria for ambiguity; resources such
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as WordNet list 78695 senses for a total of 128321 words of English), a 2-word phrase, the simplest
ambiguous combination of two ambiguous words, can have up to four different interpretations, a 3-word
phrase up to 8, an n-word one up to 2n. Instances of ambiguous 2-word phrases are ‘(the) cabinet re-
flects’, ‘(the) pitcher threw’, and ‘(the) plant bored’, where ‘pitcher threw’ has 3 interpretations: a jug
throwing a shadow, a baseball player throwing a shadow, or a baseball player throwing a ball. ‘A plant
bore’ has 4 interpretations: a factory that makes holes (e.g. in metal bars), a factory that made its workers
weary, a house plant that was uninteresting, a house plant that pierced its pot.

Whether word or phrase, the interpretations of ambiguous natural language expressions depends
on their contexts and this can be formalised in different ways. We use the fact that interpretations are
context-dependent and that this gives rise to context-dependent probability distributions, corresponding
to the likelihood that a certain meaning of a word is selected in a context. By context we refer to any
linguistic or non-linguistic information, e.g. knowledge-based, resources and background information.
This gives rise to two questions that we aim at investigating. (1) Given these resources, can the single
distributions of the interpretations of each word within a phrase be used to compute a distribution for the
meaning combination of the full phrase? For example, if we see the word “pitcher” in the corpus mostly
as a baseball player and “threw” as throwing a ball, when we next come across the phrase “pitcher threw”,
can we be sure that it means a baseball player threw a ball and not a jug threw a shadow? (2) Since there
is a temporal order in the disambiguation process, is there a causal order in the process, and if so how
can it be quantified used to replicate the Psycholinguistics findings? The first question can be formalised
in terms of quantum-like contextuality and indeed previous research has been done on whether cognitive
processes are contextual in this way, (see for example the work of Bruza et. al. focusing on concept
combinations[3] and the “mental lexicon”[2]).

We answered the first question in previous work [14, 13, 12] using the sheaf theoretic model of
contextuality of [1] and its generalisation to signalling scenarios in the Contextuality by Default (CbD)
setting of [5]. Using these tools, we formalised the first question as: “Is there a global joint probability
distribution that describes the probabilistic distributions of phrases where we can maximise the probabil-
ity distributions of each word within the phrase?”. We hypothesised that, similar to the case in Quantum
mechanics, the answer to this question is no, and found a few examples that witnessed it. This led us to
the conclusion that the pre-existing value of the interpretation of a word in a phrase is not independent
of the interpretations of other words in the context (including the phrase itself).

In this paper, we formalise and answer the second question using recent advances in causal sheaf
theory and in particular the development of [8]. Our methodology is as follows. We first devise a dataset
consisting of equal numbers of polysemous and homonymous nouns and verbs. The nouns and verbs
are trimmed down from a larger such set, with the demarcation rule that both of their subject-verb and
verb-object combinations in a phrase would make sense. We put these phrases on Amazon Mechanical
Turk and collect human judgements for degrees of plausibility of each phrase. We compute probability
distributions from our Amazon Turk human judgements and verify which proportion of the judgements
are compatible with one of our four main causal orders: Object/Subject→ Verb, Verb→ Object/Subject.
We then work within Subject-Verb and Verb-Object phrases and for each phrase type study which of the
four causal order was higher than the other: polysemous verbs/nouns or homonymous verbs/nouns. Our
findings confirm the Psycholinguistic research, that (1) the prominent causal order of phrases is from
the noun to the verb, i.e. from Subject → Verb in Subject-Verb phrases and from the Object → Verb
in the Verb-Object phrase. In other words, the verb is the last part of speech to be disambiguated in a
sentence, (2) polysemous verbs are disambiguated later than homonymous verbs, (3) polysemous nouns
are disambiguated later than homonymous nouns.
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2 The causal framework and the causal fraction

The aim of this section is to introduce the causal framework and the causal fraction therein. In this entry
paragraph we briefly review the relevance of these to linguistic scenarios.

The study of quantum contextuality relies on the no-signalling property of a given system; i.e. that
choices of observables do not influence the outcomes of other observables measured at the same time.
However, linguistic scenarios do not necessarily satisfy this property, and neither does it fit with our in-
tuition: no-signalling in our linguistic scenarios would mean that the choice of a word does not influence
the interpretation of other words in a phrase. There are mathematical models that generalise the no-
tion of contextuality from no-signalling to all systems. An example is the Contextual-by-Default (CbD)
framework [5]. In this framework, however, the source and nature of signalling propoerty is completely
disregarded, and the interpretation of what contextuality might say about the system is not clear any-
more. In previous work [13, 14, 12], we nonetheless used the CbD framework and analysed ambiguous
examples from natural language. Here, instead, we work with the extension of the sheaf-theoretic model
of contextuality to causality. This extension was developed in [8]. The use of the causal framework not
only enables us to allow for some signalling, but also determines whether the signalling observed in our
systems has a direction; for example, does the choice of verb has an influence on the interpretation of its
object, or similarly on the interpretation of its subject.

2.1 The causal framework

A causal scenario consists of a list of events and a set of causal relations associated to them. An
event X is usually considered to be a generalised process with a set of possible inputs and outputs;
these are respectively denoted as IX and OX . If we are considering a definite causal scenario, then the
relations form a partial order where, e.g. A→ B if A causally precedes B, as we do not allow causal
loops (antisymmetry), and causality is clearly transitive and reflexive. If we are considering indefinite
causal scenarios, then more exotic processes not compatible with the standard circuit model of quantum
computation will be needed to describe the systems.

Formally, a causal scenario is defined to be a triple Σ = (Ω, I,O) where Ω is a poset representing the
causal relations between events, I = (Iω)ω∈Ω

includes all possible inputs for all events, and O= (Oω)ω∈Ω

includes all the possible outputs for all events.

Given the poset Ω, its associated set of lowersets is denoted by Λ(Ω). These are downwards closed
subsets of Ω. In terms of causal events, each element of Λ(Ω) corresponds to a set of events that admits
a description independent to other events.

The locale of events is the set:

LΣ =
{(

λ ,(Uω)ω∈λ

) ∣∣ λ ∈ Λ(Ω) ,Uω ⊆ Iω ,Uω 6= /0
}

(1)

with which there is associated a partial order U = (λU ,U) ≤ V = (λV ,V ) iff λU ⊆ λV and Uω ⊆ Vω for
all ω ∈ λU . The meets and joins of this locale are defined as follows:

U ∪V =(λU ∪λV ,(Uω ∪Vω)) (2)

U ∩V =({ω ∈ λU ∩λV |Uω ∩Vω 6= /0} ,(Uω ∩Vω)) (3)
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Over a (causal) poset Ω, we introduce causal functions; these are the functions from inputs to outputs
that respect the causal order, i.e. the inputs of succeeding events do not influence the outputs of preceding
events. Formally, this means that if we order the events ω1→ω2 . . .→ωn, the function f : I1× I2× . . .×
In→ O1×O2× . . .On satisfies the following for all k’s:

f (a1, . . . ,ak,ak+1, . . . ,an)|ωk↓ = f
(
a1, . . . ,ak,a′k+1, . . . ,a

′
n
)∣∣

ωk↓
(4)

We can now define the event sheaf as follows:

EΣ : L op → Set

(λU ,U) 7→

{
f : U → ∏

ω∈λU

Oω

∣∣∣∣∣ f causal

}
(5)

and the restriction map is given by:

(U ≤V ) 7→ ( f 7→ f |U) (6)

The above means that the event sheaf associates to a lowerset and a set of inputs on the lowerset, the set
of all functions which respect the causal order of the scenario. This sheaf encodes the required conditions
for definite causality.

An empirical model is a specific distribution on causal functions and is defined over all strings of
inputs. Formally, it is the following element:

e ∈ ∏
i∈IΣ

DREΣ (Ω, i) (7)

where i is – by abus de langage – the string of singletons ({iω})iω∈i, and IΣ = ∏Iω∈Ω Iω is the set of
all strings of inputs (for all events). Also, DR is the R-distribution monad and EΣ is the event sheaf
defined above. This needs to be a compatible family of distributions (by definition), i.e. the marginals
on lowersets should be well-defined. For the rest of this paper, we will only make use of probabilistic
distributions (i.e. R = R+).

2.1.1 Example

Let’s consider an empirical model with only two events Ω= {A,B}with the single causal relation A→B,
such that IA = IB = OA = OB = {0,1}, and the probability distribution on Ω ∈ Λ(Ω) given as follows:

(A,B)
Output

(0,0) (0,1) (1,0) (1,1)

In
pu

t

(0,0) 0 6/13 0 7/13
(0,1) 24/65 6/65 7/13 0
(1,0) 23/65 0 14/65 28/65
(1,1) 23/260 69/260 42/65 0

(8)

These types of models are called (2,2,2) Bell-type scenarios (2 parties, 2 possible inputs each, 2 pos-
sible outcomes each) and are the simplest non-trivial empirical models with definite causality (up to
relabelling). (2,2,2) Bell-type scenarios are the models explored further below, in the main body of this
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work. Note that this is indeed a compatible family on the given causal scenario as the restriction of the
lowerset {A} ∈ Λ(Ω) is well defined, i.e. we have:

e(Ω,(IA,{0}))
∣∣
({A},IA)

= e(Ω,(IA,{1}))
∣∣
({A},IA)

=
A

Output
0 1

In
pu

t 0 6/13 7/13
1 23/65 42/65

(9)

2.2 The causal fraction

So far, we assumed that the causal order of our system is known, but this is not generally the case.
We now describe how given a known final distribution such as the one depicted in (8), one can decide
what the underlying causal order is. In particular, one define the causal fraction of a (final) family of
distributions which corresponds to the proportion of the model which is compatible with a given causal
order. In the phenomena we are modelling, i.e. semantic ambiguity in natural language, the causal order
of the system is in general unknown and so we have to start from the set of probability distributions over
all events and only decide later which of these is the most likely causal order.

If a model e is not fully compatible with a given causal order Ω, we can calculate how much of the
model can be explained by the causal order Ω. By definition, this is defined as the maximal γ ∈ [0,1] s.t.:

γ · eΩ � e (10)

where the partial order � is defined component-wise on empirical models defined on the same causal
scenarios. Equivalently, this is to say that the causal fraction corresponds to the maximal proportion of
the model which can be explained by an empirical model compatible with a given causal scenario.

In general, finding γ in 10 is a hard optimisation problem, as one needs to consider all empirical
models eΩ compatible with the causal order Ω. We here prove that there are simpler ways to approximate,
using 11, or in some cases even calculate the causal fraction (see Proposition 2).

Proposition 1. For a family of probability distributions where the causal order is not known, an upper
bound of the causal fraction can be calculated as follows1:

γ ≤min
U,V

1−
∣∣∣ ei
∣∣
U

∣∣
U∩V (o)− ei

∣∣
V

∣∣
U∩V (o)

∣∣∣ (11)

where ei
∣∣
U

∣∣
U∩V corresponds to the restriction of ei to first U and then from U to U ∩V (and similarly

for ei
∣∣
V

∣∣
U∩V ).

Proof. For every causal empirical causal model eΩ w.r.t. a causal scenario Σ = (Ω, I,O), if we have
γ · eΩ � e, then both:

γ · eΩ
i

∣∣
U∩V

(o)≤ ei
∣∣
U

∣∣
U∩V (o) (12)

and
γ · eΩ

i

∣∣
U∩V

(o)≤ ei
∣∣
V

∣∣
U∩V (o) (13)

So:
γ · eΩ

i

∣∣
U∩V

(o)≤ min
X∈{U,V}

ei
∣∣
X

∣∣
U∩V (o) (14)

1Note: the order of the restrictions is from left to right.
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Now, since ei are probability distributions:

1− ei
∣∣
X

∣∣
U∩V (o) = ∑

o′ 6=o
ei
∣∣
X

∣∣
U∩V (o′) (15)

and similarly for eΩ. Therefore, using γeΩ � e once again:

γ

(
1− eΩ

i

∣∣
X

∣∣∣
U∩V

(o)
)
≤ min

X∈{U,V}
1− ei

∣∣
X

∣∣
U∩V (o) = 1− max

X∈{U,V}
ei
∣∣
X

∣∣
U∩V (o) (16)

Then, writing m− = minX∈{U,V} ei
∣∣
X

∣∣
U∩V (o) and m+ = maxX∈{U,V} ei

∣∣
X

∣∣
U∩V (o) for simplicity, we use

(14) and (16) to get:
γ ≤ 1−m++m− (17)

Now, using binary minima and maxima this reduces to:

γ ≤ 1−
∣∣∣ ei
∣∣
U

∣∣
U∩V (o)− ei

∣∣
V

∣∣
U∩V (o)

∣∣∣ (18)

And since this has to be the case for all U,V ∈L , the claimed inequality has to hold.

In certain cases, such as the models described in Section 2.1.1, the above inequality becomes an equality
as the upper bound is attained. This is expressed and proven below.2

Proposition 2. For the causal order A→ B in a (2,2,2) Bell-type scenario, the causal fraction is given
by:

γ = min
iA∈{0,1},o∈{0,1}

1−
∣∣∣ e(iA,0)

∣∣
A→B

∣∣∣
A
(o)− e(iA,1)

∣∣
A→B

∣∣∣
A
(o)
∣∣∣ (19)

Proof. Let’s describe a construction of a causal empirical model eΩ which satisfies γ · eΩ � e, for any
given (2,2,2) Bell-type model e, where γ is given as in (19).

We start by constructing a probability distribution for the event A as follows. For any iA ∈ IA, we
select o∗A ∈ OA s.t.:

min
iB∈IB

e(iA,iB)
∣∣
A→B

∣∣∣
A
(o∗A) = min

oA∈OA
min
iB∈IB

e(iA,iB)
∣∣
A→B

∣∣∣
A
(oA) (20)

and set:

eΩ

(iA,iB)

∣∣∣
A
(o∗A) =

miniB∈IB e(iA,iB)
∣∣
A→B

∣∣∣
A
(o∗A)

γ
(21)

and eΩ

(iA,iB)

∣∣∣
A
(¬o∗A) = 1− eΩ

(iA,iB)

∣∣∣
A
(o∗A). Then we have:

γ · eΩ

(iA,iB)

∣∣∣
A→B

∣∣∣
A
(oA)≤ e(iA,iB)

∣∣
A→B

∣∣∣
A
(oA) (22)

for all (iA, iB) ∈ IA× IB, and for all possible outcome oA ∈ OA.
One can then extend this distribution to the lowerset A→ B = Ω by setting, for example:

eΩ

(iA,iB) (oA,oB) =
eΩ

(iA,iB)

∣∣∣
A→B

(oA,oB)

e(iA,iB)
∣∣
A→B

∣∣∣
A
(oA)

eΩ

(iA,iB)

∣∣∣
A→B

∣∣∣
A
(oA) (23)

It is routine to check that this construction leads to a valid empirical model eΩ, which does indeed
satisfy γ · eΩ � e.

2We believe that this equality in fact holds for a larger range of systems. Proving a more general version of the proposition
is left to future work.
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2.2.1 Example

Let’s consider another (2,2,2) Bell-type example, where this time the final family of distributions are:

e =

(A,B)
Output

(0,0) (0,1) (1,0) (1,1)

In
pu

t

(0,0) 0 1/7 0 6/7
(0,1) 2/3 1/6 1/6 0
(1,0) 1/4 0 1/4 1/2
(1,1) 1/5 3/5 1/5 0

(24)

The marginal distributions for the two choices of inputs for B are given by:

A
Output
0 1

In
pu

t 0 1/7 6/7
1 1/4 3/4

(25)

if iB = 0 and:
A

Output
0 1

In
pu

t 0 5/6 1/6
1 4/5 1/5

(26)

if iB = 1. Therefore, the model is not compatible with the causal scenario A→ B and causal fraction can
be calculated as γ = 13/42 using (19). In fact, the model in Section 2.1.1, which we will denote as eA→B

does satisfy:
13
42

eA→B � e (27)

This means that less than 31% of this scenario can be explained as process where the choice of input
of A can influence the output of B.

3 The experiment

We started from a list of ambiguous nouns (homonymous and polysemous) and list of ambiguous verbs
(homonymous and polysemous) and manually selected the verb-noun pairs for which several possible
interpretations of both the verb-object and subject-verb phrases were possible. From these, we randomly
selected 50 phrases that had a homonymous verb and a homonymous noun, 50 phrases with a homony-
mous verb and a polysemous noun, 50 phrases with a polysemous verb and a homonymous noun, and
finally 50 phrases with a polysemous verb and a polysemous noun. This resulted in a dataset of 200
ambiguous phrases with an equal number of different types of ambiguous (polysemous or homonymous)
verbs and nouns.

We launched this dataset on the Amazon Mechanical Turk (AMT) engine to collect human judge-
ments. AMT workers were tasked to rate the plausibility of the different interpretations of the ambiguous
phrases of the dataset. Each worker was provided with all interpretations of each of the words of each
phrase and only saw a subset of the dataset with 8 phrases in it. These sub-datasets are referred to as
HIT by AMT. The phrases of each HIT only contained either subject-verb or verb-object combinations.
We ranged the plausibility scores over the discrete 0 to 7 interval and had 8 degrees of plausibility. In
Psycholinguistics, a 7 grade scale has been deemed as most effective for human subjects, however, in
order to avoid randomly chosen and accidental answers due to indecision, we also allowed for an 8th
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neutral grade. We positioned this option in the middle of the scale and designed an 8 grade scale. Each
worker was thus tasked to choose one of the 8 provided “scale-description” degrees of plausibility for
each phrase. These were as follows:

0: impossible 1: extremely unlikely 2: very unlikely 3: somewhat unlikely
4: neutral 5: somewhat likely 6: very likely 7: extremely likely

The annotations were used to compute a probability distribution for all the possible interpretations
of a phrase. This was done by averaging the scores of all the workers for a particular phrase, and then
normalising the obtained average score. After this step, we combined the probability distributions to
form “Bell-type scenarios”, in which we then studied the causality and contextuality of the empirical
models.

Each phrase was annotated by 25 workers and in total we had 1250 annotators. An annotator could
choose to annotate multiple HIT’s, and spent on average 10 minutes per HIT. We paid the workers based
on the minimum wage in the UK. The probability distributions obtained from the workers’ plausibility
scales were used to form 322 (2,2,2) Bell-type scenarios corresponding to subject-verb phrases, and the
same number of verb-object phrases.

An examples of a subject-verb phrase was ‘pitcher threw’. The annotators were provided with all
possible meaning combinations of the phrase, which were as follows:

• combination 1: ‘pitcher’ is a type of jug and ‘throw’ is the literal action of sending something
through the air, e.g. a ball.

• combination 2: ‘pitcher’ is a type of jug and ‘throw’ is the figurative action of sending something
into a different state, e.g. a shadow.

• combination 3: ‘pitcher’ is a baseball player and ‘throw’ is the literal action of sending something
through the air, e.g. a ball.

• combination 4: ‘pitcher’ is a baseball player and ‘throw’ is the figurative action of sending some-
thing into a different state, e.g. a shadow.

A typical annotation for ‘pitcher threw’ was as follows:

combination 1: 0, combination 2: 5, combination 3: 6, combination 4: 5

4 Causal relations in natural language models

4.1 Causality of SVO phrases

We analyse the causality of subject-verb and verb-object phrases separately. Phrases were then com-
bined in (2,2,2) Bell-type scenarios as described in the previous section. In these scenarios, an event
corresponds to choosing a grammatical type for a word, i.,e. subject of a verb or object of a verb or a
verb, as input and then select an interpretation of that word as output. An example of such an event is
choosing the word plant as the subject of a verb (i.e. plant will be the input) and then picking the “fac-
tory” interpretation of it as the output. An example of a subject-verb and object verb empirical model is
shown in Fig. 1; in turns, the full dataset can be found in [15].

What we have access to is the final distribution of possible interpretations of a phrase. What we are
interested in is whether our empirical models are compatible with a definite causal order and indeed if
so, which one. For each subject-verb model (resp. verb-object model) we have two events: S and V
(resp. V and O); these corresponds to choosing the subject and the verb (resp. verb and object) in a
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(0,0) (0,1) (1,0) (1,1)
the paper bored 0.21 0.13 0.51 0.15

the paper launched 0.18 0.23 0.16 0.43
the plant bored 0.17 0.30 0.16 0.37

the plant launched 0.19 0.20 0.28 0.33

(a) A subject-verb model.

(0,0) (0,1) (1,0) (1,1)
bored the paper 0.19 0.23 0.29 0.29
bored the plant 0.18 0.21 0.32 0.29

launched the paper 0.26 0.23 0.21 0.30
launched the plant 0.29 0.18 0.23 0.30

(b) A verb-object model.

Figure 1: Examples of empirical models. Note: plant and bore have multiple meanings (respectively the
living organism or the factory and making people loose interest or making holes) and paper and launch
have multiple senses (respectively the material or content of an article and literally setting something in
motion or starting an activity.)

given phrase. There are 3 possible definite (acyclic) causal orders associated to each subject-verb phrase,
namely S→ V , V → S and S and V being no-signalling (resp. V → O, O→ V and once again having
V and O no-signalling in verb-object phrases). The obtained causal fractions for all subject-verb and
verb-object models are shown in Figs. 2a and 2b respectively.

(a) Causal fractions associated with definite causal
orders for subject-verb models

(b) Causal fractions associated with definite causal
orders for verb-object models

Figure 2

What emerged from the data is that subject-verb phrases are predominantly compatible with the
S→V causal order. All of the models had a causal fraction > 0.7. Both the V → S and the no-signalling
fractions achieved lower causal fraction values, see Fig.3a. A similar result held for all of the verb-object
models: these also achieved a causal fraction with the O→ V order higher than 70%, and their other
causal fractions reached significantly lower scores, see Fig.3b. What these results suggest is that the
choice of nouns (subject or object) have more influence on which interpretation of the verb is selected,
rather than the other way around, i.e. that the choice of verb has more influence on the interpretation of
its subject or object.

Finally the causal fractions (in either direction) were also found to be higher for verb-object phrases
compared to subject-verb phrases. This would suggests that verb-object phrases are in general easier to
disambiguate than subject-verb phrases (see Fig.4).

4.2 Causality and levels of ambiguity

After determining the causal order of the phrases of our dataset, we would like to establish a relationship
between the type of ambiguity of each word within a phrase, i.e. whether they are homonymous or



D. Wang & M. Sadrzadeh 217

(a) Causal fractions for subject-verb models (b) Causal fractions for verb-object models

Figure 3

Figure 4: Causal fractions in subject-verb models and in verb-object models.

polysemous, and the causal fraction of the phrase. In other words, we would like to know whether the
type of ambiguity has an effect on the causal fraction.

After investigating, we found out that the types of ambiguities of the words in the model do not play
a major role in the value of the different causal fractions. Indeed, no apparent correlation was observed in
the verb-object models, where we computed a Spearman R-coefficient ρ = 0.009, with a p-value> 87%.
There was only a mild effect for the subject-verb models, here the more polysemous the words in a
model, the higher the S→V causal fraction (Spearman R-coefficient ρ = 0.15, p-value< 0.7%). These
results are depicted in Fig. 5a.

The more significant difference was related to the type of ambiguities of the noun and the verb of
the phrase. In both subject-verb and verb-object phrases, the S→ V and O→ V causal fractions were
higher when the verb was polysemous (Spearman R-coefficient ρ = 0.17, p-value < 0.2% for subject-
verb phrases, R-coefficient ρ = 0.16, p-value < 0.4% for verb-object phrases), as depicted in see Fig.6c
and Fig.6b respectively. In addition, the causal fraction associated with O→ V was higher whenever
objects were homonymous (Spearman R-coefficient ρ = 0.14, p-value< 2%), as depicted in Fig.6d, no
such effect was observed for the subject-verb phrases (Spearman R-coefficient ρ = 0.04, p-value> 50%).

One may not that the Spearman coefficents found above are fairly low (ρ < 0.2), which does suggest
that the correlations observed are quite mild. However, the p-values showed that the correlations claimed
in the above paragraph are statistically significant, i.e. it is highly unlikely that no correlation exist
between the causal fraction and levels of ambiguity.
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(a) S→V causal fraction (b) O→V causal fraction

Figure 5: Causal fraction with respect to number of homonymous words in the model

5 Conclusion

We believe that our data reflects the findings of the Psycholinguistics and eye-tracking experiments.
Indeed, the study of Pickering and Frisson in [10] observed a delay in disambiguation of ambiguous
(transitive) verbs in comparison to the processing of ambiguous nouns. Hence, it would make sense that
in a subject-verb or verb-object phrase, where each word is ambiguous, the verb would be disambiguated
last, thus explaining the dominance of the S→V and O→V causal fractions.

It has also been shown in [10] that polysemous verbs are disambiguated even later than homony-
mous verbs. This is consistent with our finding in the subject-verb phrases, where models with several
polysemous verbs tend to have a higher causal fraction, as the verb would be disambiguated even later
than homonymous verbs would. Similarly, several similar studies have shown that homonymous nouns
are (partially) disambiguated instantly [6], whilst polysemous nouns generally require a larger context
in order to be (even partially) disambiguated[6, 9, 7]. This fits with our data for the verb-object models,
where it was observed that O→V causal fractions are higher whenever the object had multiple meanings
(which is then disambiguated even faster than when the object has multiple senses).

What remains to find out is why the effect of the ambiguity of nouns was different in subject-verb and
verb-object models. One way to interpret this would be by taking into account the difference between
pre and post contexts of the phrases. It was shown in [6] that homonymous nouns were disambiguated
a lot faster than polysemous nouns, when the disambiguation context occurs before the target words.
This would nicely explain the difference between verb-object and subject-verb phrases. The only possi-
ble disambiguation context for nouns in verb-object phrases is the verb, and therefore in such cases, it
should be even clearer that the verb would be disambiguated after its object when the latter has multiple
meanings. In the case of disambiguation context for nouns, it was shown that reading times were longer
for both homonymous and polysemous nouns. This explains why we did not detect any particular effect
in the subject-verb phrases.

5.1 Future Work

The framework developed in [8] allows us to distinguish quantum-like (i.e. contextual) and classical
processes assuming that a given model is compatible with a definite causal structure. Due to the ap-
proximate nature of the probability distribution obtained, i.e. that all the probabilities calculated are not
exact, the causal fractions are not exactly 1, and there are infinitely many sub-distributions that would
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(a) S→ V causal fraction w.r.t. to the number of
homonymous nouns.

(b) V → O causal fraction w.r.t. to the number of
homonymous verbs.

(c) S→ V causal fraction w.r.t. to the number of
homonymous verbs.

(d) V → O causal fraction w.r.t. to the number of
homonymous nouns.

Figure 6

be compatible with a given causal order. In such cases, it is not easy to determine whether our empirical
model could be contextual or not. Investigating how to extend the model to include these is an interest-
ing future direction. Also, we would like to collect probabilities using state of the art neural embeddings
such as BERT and extending the current study to ambiguities arising from syntax and discourse. Finally,
computing casual fragments is much cheaper and quicker than collecting data in labs with eye-tracking
equipment and exploring this impact case is our future ambition. We would also like to relate our work
with related work such as the density matrices model of lexical ambiguity[11]. Similarly, we could also
study other datasets from psychology and behavioural science which showed signalling but no “true
contextuality”[4], such as the concept combination dataset of Bruza et. al.[3].
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In this paper, we investigate the performances of tunable quantum neural networks in the Quantum
Probably Approximately Correct (QPAC) learning framework. Tunable neural networks are quantum
circuits made of multi-controlled X gates. By tuning the set of controls these circuits are able to
approximate any Boolean functions. This architecture is particularly suited to be used in the QPAC-
learning framework as it can handle the superposition produced by the oracle. In order to tune the
network so that it can approximate a target concept, we have devised and implemented an algorithm
based on amplitude amplification. The numerical results show that this approach can efficiently learn
concepts from a simple class.

1 Introduction

Machine learning is believed to be an application of quantum computing that will yield promising results.
It is the reason why, in the past years, significant efforts have been put into developing machine learning
techniques suited to quantum computers. One interesting approach to this task consists in adapting
existing classical techniques [16, 20, 18, 13] to take advantage of quantum properties and gain some
speed-up.

Introduced by [21], probably approximately correct (PAC) learning provides a mathematical frame-
work to analyse classical machine learning techniques. This framework revolves around the existence
of an oracle that provides samples drawn from the instance space. These examples are then used as
examples for an algorithm to learn a target concept. The efficiency of this learning algorithm can then be
characterised thanks to its sampling complexity. Given the momentum gained by quantum techniques for
machine learning, it seems natural for a quantum equivalence of PAC-learning to be introduced. This is
exactly what was done in [6] with QPAC-learning. In this framework, instead of providing samples from
the instance space, the oracle generates a superposition of all the examples. Similarly to PAC-learning,
QPAC-learning can be used to evaluate the learning efficiency of quantum algorithm.

In this paper we are using this framework to study a learning algorithm based on quantum amplitude
amplification [5]. This fundamental quantum procedure allows us both to compare the error rate to a
threshold as well as increase the probability of measuring the errors produced by the learner. These
measured errors are then used to tune the learner in order to decrease the error rate. In our case, this
learner is a tunable quantum neural network [15] which is essentially a quantum circuit made of multi-
controlled X gates. We prove that this setup is able to learn efficiently by implementing it and testing it
against a simple class of concepts.

http://dx.doi.org/10.4204/EPTCS.394.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


222 TNN in the QPAC-Learning Framework

2 Related Works

Studied in [15], the tunable quantum neural networks (TNN) are an interesting kind of quantum circuits in
the sense that they naturally express Boolean functions hence are able to approximate any target function.
At the core of this concept is the fact that a Boolean function can be expanded into a polynomial form
called the algebraic normal form (ANF). This polynomial form can then easily be transposed into a
quantum circuit.

Let u = u0 . . .un−1 ∈ Bn, we denote 1u = {i ∈ [0,n− 1] | ui = 1} and for x ∈ Bn, xu = ∏i∈1u xi. Let
f ∈ BBn

then its algebraic normal form is:

f (x) =
⊕
u∈Bn

αuxu (1)

Where αu ∈ {0,1} denotes the absence or the presence of the monomial xu in the expansion. As an
example, let us consider the function g ∈ BB2

defined by g(x0,x1) = 1⊕ x1⊕ x0.x1. With the previously
introduced notations, its ANF can be written: g(x) = x00⊕ x01⊕ x11 with α00 = α01 = α11 = 1 and
α10 = 0. Using this form, any Boolean function can be expressed with a quantum circuit made of multi-
controlled X gates.

Let f ∈ BBn
with ANF as in (1) and consider a quantum circuit of n+1 qubits with the first n qubits

being denoted q0, . . . ,qn−1 and the last one being the ancillary qubit, denoted a. Now for u ∈ Bn such
that αu = 1 in the ANF of f , place an X gate controlled by the qubits {qi | i ∈ 1u} on the ancillary qubit.
Let QC be the resulting circuit, then it is such that for x ∈ Bn and b ∈ B:

QC |x〉 |b〉= |x〉 |b⊕ f (x)〉

Let us consider the function g ∈ BB2
introduced previously, then the circuit pictured in Figure 1 is ex-

pressing g.

q0 •
q1 • •

a X X X

Figure 1: Circuit expressing g(x) = 1⊕ x1⊕ x0.x1.

A tunable neural network is then a quantum circuit of this type for which the set of controlled X gates
can be tuned so that the expressed function is an approximation of a target function. Now let f ∈BBn

and
consider the network TNN( f ) expressing f , then for a superposition of the form |φ〉 = ∑x∈Bn dx |x〉 |0〉
we have:

TNN( f ) |φ〉= ∑
x∈Bn

dx |x〉 | f (x)〉

Which is reminiscent of the output from the oracle encountered in the QPAC-learning framework.
QPAC-Learning has been introduced in [6] and is a quantum version of the work presented in [21].

In this framework, we call C ⊆ BBn
a class of concept and the aim is to learn c ∈ C . A probability

distribution D is placed over Bn and for a hypothesis h ∈ BBn
the error is defined by

errD(h,c) = Px∼D(h(x) 6= c(x)) (2)
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For 0 < ε < 1
2 and 0 < δ < 1

2 , the goal is then to produce h ∈ C such that:

P(errD(h,c)< ε)> 1−δ (3)

A class of concept C is said to be PAC-learnable with an algorithm A if for c ∈ C , for all distribution D
and for 0 < ε < 1

2 , 0 < δ < 1
2 , A will output a hypothesis h ∈ BBn

verifying (3).
During the learning process, we are given access to an oracle EX(c,D) such that each call to this

oracle will produce the superposition |Ψ(c,D)〉:

|Ψ(c,D)〉= ∑
x∈Bn

√
D(x) |x〉 |c(x)〉

For the rest of the paper we will assume that EX(c,D) is a quantum gate such that:

EX(c,D) |0〉= |Ψ(c,D)〉

With these notations, for a concept c and a hypothesis h we have:

errD(h,c) = ∑
h(x)6=c(x)

D(x)

A learning algorithm is then said to be an efficient PAC-learner when the number of calls to EX that
are necessary to attain (3) is polynomial in 1

ε
and 1

δ
.

The learning algorithm presented in this paper is based on quantum amplitude amplification. Intro-
duced by [5] the quantum amplitude amplification algorithm is a generalisation of Grover’s algorithm
[9]. Let G be the set of states we want to measure and A be a quantum circuit such that A |0〉 = |Φ〉
with:

|Φ〉= ∑
x/∈G

dx |x〉+ ∑
x∈G

dx |x〉

This state can be rewritten as
|Φ〉= cos(θ) |ΦB〉+ sin(θ) |ΦG〉 (4)

With θ ∈
[
0, π

2

]
, cos(θ) =

√
∑x/∈G |dx|2, |ΦB〉 = 1

cos(θ) ∑x/∈G dx |x〉, sin(θ) =
√

∑x∈G |dx|2 and |ΦG〉 =
1

sin(θ) ∑x∈G dx |x〉. We also have 〈ΦB|ΦG〉= 0
Now let XG be such that:

XG |x〉=

{
−|x〉 if x ∈ G
|x〉 otherwise

Then we have XG |ΦG〉 = −|ΦG〉 and XG |ΦB〉 = |ΦB〉. We also define X0 = I− 2 |0〉〈0| then by
denoting Q =−A X0A −1XG, Q is the diffusion operator and acts on |Φ〉 in the following way:

Qm |Φ〉= cos((2m+1)θ) |Φb〉+ sin((2m+1)θ) |Φg〉 for m ∈ N

Suppose we know θ , then by choosing m such that (2m+ 1)θ ≈ π

2 , for example m =
⌊1

2

(
π

2θ
−1
)⌋

, we
are ensured that when measuring, a state in G will almost certainly be measured.

This amplitude amplification procedure is at the heart of numerous quantum amplitude estimation
algorithms [5, 14, 1]. In this setup, a state of a form similar to that of (4) is given but θ ∈

[
0, π

2

]
is

unknown and these algorithms seek to approximate sin(θ). Where [5] makes use of quantum Fourier
transforms an integrant part of the algorithm, [14, 1] do without while still maintaining quantum speed-
up. If a = sin(θ) ∈ [0,1] is the amplitude to be evaluated and ε,δ > 0, then these algorithms output an
estimation ã such that P(|ã−a|< aε)> 1−δ .
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3 TNN in the QPAC-Learning Framework

As said previously, tunable networks are particularly well suited to be employed in the QPAC-learning
framework. Let C ⊆ BBn

be a class of concept and c ∈ C . Let D be a probability distribution over Bn

and EX(c,D) the oracle such that:

EX(c,D) |0〉= |Ψ(c,D)〉= ∑
x∈Bn

√
D(x) |x〉 |c(x)〉

Now let TNN(h) be a tunable neural network expressing h ∈ BBn
in its current state. Then we have:

|Φ〉= TNN(h) |Ψ(c,D)〉

= ∑
x∈Bn

√
D(x) |x〉 |c(x)⊕h(x)〉

= ∑
h(x)=c(x)

√
D(x) |x〉 |0〉+ ∑

h(x)6=c(x)

√
D(x) |x〉 |1〉

The corresponding circuit is given in Figure 2.

|0〉⊗n

EX(c,D) TNN(h)
|0〉

Figure 2: Circuit resulting in the state |Φ〉.

The state |Φ〉 can then be rewritten as:

|Φ〉= cos(θe) |φg〉 |0〉+ sin(θe) |φe〉 |1〉

With 〈φg,0|φe,1〉= 0. This state is similar to the one encountered in the amplitude amplification proce-

dure. Because sin(θe) =
√

∑h(x)6=c(x) D(x), we also have

sin2(θe) = ∑
h(x)6=c(x)

D(x) = errD(h,c)

In order to use tunable neural networks in the QPAC-learning framework we thus need a mean to estimate
sin2(θe) and compare it to 0 < ε < 1/2. If the error is smaller than ε , stop. Otherwise, tune the network
so that it expresses another hypothesis h′ and repeat. The algorithm proposed in this paper does just that
by using amplitude amplification.

4 Tuning Algorithm

At its core, the algorithm is similar to quantum amplitude estimation, the difference being that it com-
pares the unknown amplitude errD(h,c) to ε instead of estimating the amplitude to a relative error of
ε . Let θerr and θε such that sin2(θerr) = errD(h,c) and sin2(θε) = ε . Because D is a distribution we
can take θerr ∈

[
0, π

2

]
and because 0 < ε < 1

2 we can assume θε ∈
]
0, π

4

[
. There are then two possible

cases: either errD(h,c) ≥ ε or errD(h,c) < ε . Because sin is increasing on
[
0, π

2

]
, these translate into

θerr ≥ θε or θerr < θε respectively. Now let mmax be the smallest integer such that (2mmax + 1)θε ≥ π

4 ,
we introduce this following simple lemma:
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Lemma 4.1. Let θ ∈
[
0, π

2

]
. If for all m≤ mmax, we have sin2 ((2m+1)θ)< 1

2 then θ < θε

Proof. We show this by contraposition.
Let θ ≥ θε .
Suppose θ ∈

[
π

4 ,
π

2

]
, then taking m = 0≤ mmax, we have sin2(θ)≥ 1

2 .

Now suppose that θ ∈
[
0, π

4

[
. By definition we have mmax =

⌈
1
2

(
π

4θε
−1
)⌉

and we denote m=
⌈1

2

(
π

4θ
−1
)⌉

,

then m≤ mmax. Let 0≤ α < 1 such that m = 1
2

(
π

4θ
−1
)
+α . Then we have (2m+1)θ = π

4 +2αθ and
π

4 ≤ (2m+1)θ ≤ 3π

4 . This leads to sin2((2m+1)θ)≥ 1
2 .

Hence Lemma 4.1.

This result is illustrated in Figures 3 and 4.

π

4

θ

θε

(a) Initial state.

(2m+1)θ

(2m+1)θε

(b) After m ≤ mmax steps of amplitude amplifica-
tion.

Figure 3: Case where θ ≥ θε .

π

4

θεθ

(a) Initial state.

(2mmax+1)θε

(2mmax+1)θ

(b) After mmax steps of amplitude amplification.

Figure 4: Case where θ < θε .

The tuning algorithm works as follow. After each update of the tunable network, the error is compared to
ε thanks to Lemma 4.1: after m0 < mmax steps of amplification, the resulting state is measured N times
and the number S of measurements for which the ancillary qubit is in state |1〉 is counted.
If S > N

2 , then the error is greater than ε and the network is updated using the measurements on the first
n qubits. If on the other hand S≤ N

2 , the process is repeated with m0 +1≤ mmax steps of amplification.
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The algorithm stops when the network reaches a state such that even after mmax steps of amplification
we have S ≤ N

2 . It is thus necessary to choose N such that when the algorithm stops the error is most
probably lower than ε .

To avoid the angle (2mmax + 1)θε from overshooting π

4 by too much, we have chosen to limit ε to]
0, 1

10

[
. This limitation can be achieved without loss of generality by scaling the problem by a factor of

1
5 . This can be done by introducing a second ancillary qubit and applying a controlled rotation gate R
such that R |10〉= 2√

5
|10〉+ 1√

5
|11〉. The states of interest are then the ones for which the two ancillary

qubits are in state |11〉. This means that for ε ∈
]
0, 1

2

[
, we are effectively working with ε ′ = ε

5 ∈
]
0, 1

10

[
as

required. With this procedure, the effective error is itself limited to
[
0, 1

5

]
. This also ensures that we have

θerr ∈
[
0,arcsin

(
1√
5

)]
meaning that θerr 6= π

4 which is a stationary point of the amplitude amplification
process so the error will always be amplified.

To account for this additional procedure, the diffusion operator has to be redefined. We now denote
A (h) =

(
I⊗n ⊗R

)(
(TNN(h)EX(c,D))⊗ I

)
, XG = CZ(a0,a1), the controlled Z gate for which the

control is the first ancillary qubit and the target is the second ancillary qubit and X0 = I− 2 |0〉〈0|.
These allow us to define the diffusion operator Q in a similar way as previously with:

Q(h) =−A (h)X0A
−1(h)XG

The corresponding circuit is represented in Figure 5 and the tuning algorithm is given in Algorithm 1.

|0〉⊗n

EX(c,D) TNN(h)
Qm(h)|0〉 •

|0〉 R

Figure 5: Circuit used to tune the network.

In Algorithm 1 the instruction "Update TNN according to errors" is given without further specifica-
tion as the way it is done might depend on the class of concepts that is being learnt. The update strategy
used to learn the class of concepts introduced in Section 6 is given in Algorithm 2

5 Proof and Analysis of the Algorithm

The algorithm stops when the network is in such a state that even after mmax rounds of amplitude ampli-
fication, if S is the number of measurements for which the ancillary qubits are in state |11〉, then S ≤ N

2
where N is the number of measurements. This stage is only reached if for all the m in the schedule we
also have S≤ N

2 after m rounds of amplification. Let |Φ〉= A |0〉, then it can be written:

|Φ〉= cos(θe) |φ⊥〉+ sin(θe) |φe〉 |11〉

Where |φ⊥〉 is orthogonal to |φe〉 |11〉 and |φe〉 contains the inputs that have been misclassified by the
network. After mmax rounds of amplification we have:

Qmmax |Φ〉= cos((2mmax +1)θe) |φ⊥〉+ sin((2mmax +1)θe) |φe〉 |11〉
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Algorithm 1: Tuning Algorithm

Data: 0 < ε < 1
2 , 0 < δ < 1

2 , EX(c,D)
Result: TNN expressing h∗ such that P(errD(h∗,c)< ε)> 1−δ

N← 2
(⌊ 1

πδ 2

⌋
//2
)
+2;

mmax← smallest integer such that (2mmax +1)arcsin
(√

ε

5

)
≥ π

4 ;

TNN← I;
m←−1;
errors← [];
while m < mmax or length(errors)> N

2 do
m← m+1;
errors← [];
A ←

(
I⊗n⊗R

)(
(TNN.EX(c,D))⊗ I

)
;

|Φ〉 ←A |0〉;
Q←−A (h)X0A −1(h)XG;
for 1≤ n≤ N do

Measure Qm |Φ〉;
if 11 is measured on the ancillary qubits then

append the string of the first n qubits to errors
end

end
if length(errors)> N

2 then
Update TNN according to errors;
m←−1;

end
end

If p is the probability of measuring 11 on the ancillary qubits then p = sin2((2mmax +1)θe) and we want
to compare it to 1

2 in order to apply Lemma 4.1. This boils down to estimating P
(

p < 1
2 | S≤

N
2

)
. We

have:

P(p < 1/2 | S≤ N/2) =
P(S≤ N/2 | p < 1/2)P(p < 1/2)

P(S≤ N/2)

By placing a uniform marginal distribution on p we get:

P(p < 1/2 | S≤ N/2) =
∑

N/2
k=0

(N
k

)∫ 1
2

0 θ k(1−θ)N−kdθ

∑
N/2
k=0

(N
k

)∫ 1
0 θ k(1−θ)N−kdθ

(5)

From now on we assume that N is even. For a ∈ [0,1] it can be shown by integrating by parts that:

∫ a

0
θ

k(1−θ)N−kdθ =
k!(N− k)!
(N +1)!

− (1−a)N−k+1
k

∑
i=0

k!(N− k)!
(k− i)!(N− k+ i+1)!

ak−i(1−a)i

This leads to: ∫ 1

0
θ

k(1−θ)N−kdθ =
k!(N− k)!
(N +1)!
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And
N/2

∑
k=0

(
N
k

)∫ 1

0
θ

k(1−θ)N−kdθ =
N +2

2(N +1)
(6)

Similarly we have:∫ 1
2

0
θ

k(1−θ)N−kdθ =
k!(N− k)!
(N +1)!

−
(

1
2

)N+1 k

∑
i=0

k!(N− k)!
(k− i)!(N− k+ i+1)!

And

N/2

∑
k=0

(
N
k

)∫ 1
2

0
θ

k(1−θ)N−kdθ =
N +2

2(N +1)
−
(

1
2

)N+1 N/2

∑
k=0

k

∑
i=0

N!
(k− i)!(N− k+ i+1)!

(7)

Putting (5), (6) and (7) together yields:

P(p < 1/2 | S≤ N/2) = 1−
(

1
2

)N N +1
N +2

N/2

∑
k=0

k

∑
i=0

N!
(k− i)!(N− k+ i+1)!

= 1−
(

1
2

)N 1
N +2

N/2

∑
k=0

k

∑
i=0

(N +1)!
(k− i)!(N− k+ i+1)!

= 1−
(

1
2

)N 1
N +2

N/2

∑
k=0

k

∑
i=0

(
N +1
k− i

)

= 1−
(

1
2

)N 1
N +2

N/2

∑
k=0

k

∑
i=0

(
N +1

i

)

= 1−
(

1
2

)N 1
N +2

N/2

∑
k=0

(
N +1

k

)(
N
2
+1− k

)
(8)

Now
N/2

∑
k=0

(
N +1

k

)(
N
2
+1− k

)
=

N +2
2

N/2

∑
k=0

(
N +1

k

)
−

N/2

∑
k=0

(
N +1

k

)
k (9)

For k > 0 we have: (
N +1

k

)
k =

(
N

k−1

)
(N +1)

And N being even, we also have:
N/2

∑
k=0

(
N +1

k

)
= 2N

Plugging these back into (9) we get:

N/2

∑
k=0

(
N +1

k

)(
N
2
+1− k

)
= 2N−1(N +2)− (N +1)

N
2 −1

∑
k=0

(
N
k

)
Coming back to (8), we thus have:

P(p < 1/2 | S≤ N/2) =
1
2
+

(
1
2

)N N +1
N +2

N
2 −1

∑
k=0

(
N
k

)
(10)
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Because N is even:
N
2 −1

∑
k=0

(
N
k

)
=

1
2

(
2N−

(
N

N/2

))
Together with (10), this leads to:

P(p < 1/2 | S≤ N/2) =
1
2
+

(
1
2

)N+1 N +1
N +2

(
2N−

(
N

N/2

))
But [8]: (

N
N/2

)
≤
√

2
2N
√

πN

So:

P(p < 1/2 | S≤ N/2)≥ 1
2
+

N +1
2(N +2)

(
1−

√
2√

πN

)
Because N+1

N+2 ∼ 1 we look for a lower bound of the form 1− α√
N

. For example, we have:

P(p < 1/2 | S≤ N/2)> 1− 1√
πN

So for 0 < δ < 1
2 , in order to have P(p < 1/2 | S≤ N/2)> 1−δ , it suffices to take for N an even integer

that is greater than 1
πδ 2 , hence:

N = 2
(⌊

1
πδ 2

⌋
//2
)
+2

We have shown that when the algorithm stops, we have:

P
(

sin2 ((2mmax +1)θe)<
1
2

)
> 1−δ

Together with Lemma 4.1, it comes that:

P(θe < θε)> 1−δ

Hence:
P(err < ε)> 1−δ

So each sampling phase requires 1
πδ 2 calls to the oracle EX(c,d). In order to perform one update of the

network, the algorithm requires at most mmax ≈ 1
2

(
π

4arcsin
(√

ε/5
) −1

)
of these sampling phases. Now

for ε ∈
]
0, 1

2

[
, we have arcsin

(√
ε/5
)
≈
√

ε/5 so for one update of the network, the total number of

call to EX(c,d) is O
(

1
δ 2

1√
ε

)
. The number of updates needed to reach the learning target is dependant

on the class of concept.
It is possible to reduce the number of calls to EX(c,d) during one update phase by incrementing m

not by 1 but with powers of a given number. In this case the total number for an update is O
( 1

δ 2 log
( 1

ε

))
but this comes at the cost of possibly having a lower probability of success as we will see in Section 6.
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6 Learning a Particular Class

Let n ∈ N, for s ∈ Bn, we define the parity function ps : x 7→ s.x = s0.x0⊕ . . .⊕ sn−1.xn−1 and we are
interested in learning the class of the parity functions Cp:

Cp = {ps | s ∈ Bn}

Any concept from this class can easily be expressed by a TNN: for each non-zero bit of s it suffices
to apply the X gate controlled by the corresponding qubit. In order to learn a parity function, we are
applying the update strategy shown in Algorithm 2. Because the gates to be updated are all controlled by
a single qubit, we are assured that the final hypothesis will be a parity function.

Algorithm 2: Update strategy
Data: errors and corrects the lists of measured inputs that are respectively misclassified and

correctly classified
Result: gates the list of gates to be updated
Gather the measurements in errors by group of same Hamming weight so that errors[i] is the
list of misclassified inputs of Hamming weight i;

Do the same with corrects;
gates← errors[1];
for 1≤ i≤ n−1 do

for e in errors[i] do
for c in corrects[i+1] do

if e⊕ c has Hamming weight 1 then
Add e⊕ c to gates if it is not already in;

end
end

end
for c in corrects[i] do

for e in errors[i+1] do
if c⊕ e has Hamming weight 1 then

Add c⊕ e to gates if it is not already in;
end

end
end

end
Return gates;

This approach has been implemented for n = 4,6 and 8 using the Qiskit library1. For a given n, a
probability distribution over Bn has been created randomly by applying to each qubit a Ry rotation gate
with an angle randomly chosen in [0,π]. The controlled X gates corresponding to the target concept are
then added to the circuit. These two blocks taken together are constituting the oracle EX(c,D). The
construction of such oracles for n = 4 is illustrated in Figure 6. The TNN has then been trained to learn
the concepts of the class Cp according to the training algorithm and the update strategy introduced in

1The code can be found in the following repository: https://github.com/vietphamngoc/QPAC
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this paper. For n = 4 the experiments have been run for all the concepts of the class while for n = 6 and
8 the experiments have been performed for 16 randomly selected concepts from this class. In all cases
different values of ε and δ . Once the training has been completed, the error is evaluated using the Qiskit
statevector simulator by running the circuit composed of the oracle and the tuned network and getting
the amplitude of all the inputs for which the network’s output is wrong.

|0〉 Ry(θ0) •

|0〉 Ry(θ1)

|0〉 Ry(θ2) •

|0〉 Ry(θ3)

|0〉 X X

(a) Oracle for p1010.

|0〉 Ry(θ0)

|0〉 Ry(θ1) •

|0〉 Ry(θ2) •

|0〉 Ry(θ3) •
|0〉 X X X

(b) Oracle for p0111.

Figure 6: Implementation of the oracle for n = 4 and different target concepts.

To account for the overall randomness of the process, each training has been performed 50 times and
the results are represented with violin plots where the width of the plot is proportional to their distribution
within the repetitions. In Figure 7 are represented the results of some of these experiments. For given
function and ε , in general, as δ decreases, the distribution of the final error rates tend to accumulates
toward a minimum value, which was expected. Regarding the maximum value, we notice that in our
set up, it never went above ε , except for the case n = 6, ε = 0.05 and δ = 0.1 for the function p010001
as can be seen in Figure 7d. In this specific case the final error rate was greater than ε once in the 50
experiments. This event did not happen again for lower values of δ .

As said previously, the number of update steps necessary until a state with an error rate lower than ε

depends on the class of concept. In the case of Cp and with the experiments realised, we have found that
the number of update steps decreases with decreasing δ . This can be explained by the fact that decreasing
δ will increase the number of samples, hence the diversity of the measurements. This in turn allows for
more accurate updates which result in less updates. This trend is depicted in Figure 8 where the number
of updates is plotted in the cases n = 4 and 8, ε = 0.05 and for different values of δ . Although there are
few experiments, we can see that the number of updates does not significantly increases with n.

Finally, we wished to investigate how the increment schedule of m, the number of amplification
round, could impact the behaviour of the tuning algorithm. In Algorithm 1, m was incremented by 1
after each sampling round. To speed-up the algorithm, the increment schedule was changed to increase
m with powers of 2. We have compared the two schedule for ε = 0.01, that is m ∈ [0,9] against m ∈
{0,1,2,4,8,9}, in the case n = 6 and with different values of δ . As previously, for each different value
of δ the experiments have been repeated 50 times. The results of these experiments, as reported in
Figure 9, show that incrementing m with powers of 2 yields similar performances compared to when
m is incremented by 1. This means that the total number of calls to the oracle could be reduced from
O
(

1
δ 2

1√
ε

)
to O

( 1
δ 2 ln

( 1
ε

))
.
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7 Conclusion

In this paper we have studied tunable quantum neural networks in the context of QPAC-learning. To
do so, we have devised and proved a learning algorithm that uses quantum amplitude amplification.
Amplitude amplification is used to both compare the error rate to the threshold ε and to better measure
the errors. These measurements are then used to update the network. We have implemented this approach
and tested it against the class of parity functions and found that this algorithm is indeed an efficient
learner as its sample complexity is O

(
1

δ 2
1√
ε

)
with a possible reduction to O

( 1
δ 2 ln

( 1
ε

))
. Experimental

results show that most of the final error rates are quite far away from the threshold ε , which could be
explained by an excessive number of samples. As future work we will look for a tighter lower bound
for the probability of success which should reduce the dependence in 1

δ
in the algorithm’s complexity.

Finally we will study the generalisation of this approach to more complex classes of concepts.
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(a) n = 4 and ε = 0.1 (b) n = 4 and ε = 0.05

(c) n = 6 and ε = 0.1 (d) n = 6 and ε = 0.05

(e) n = 8 and ε = 0.1 (f) n = 8 and ε = 0.05

Figure 7: Final error rates for different values of n, ε and δ . The red line represents ε .
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(a) n = 4 (b) n = 8

Figure 8: Number of updates for different values of n and ε = 0.05

(a) m incremented by 1 (b) m incremented with powers of 2

(c) m incremented by 1 (d) m incremented with powers of 2

Figure 9: n = 6 and ε = 0.01. Final error rate (Figures 9a and 9b) and number of updates (Figures 9c
and 9d), for different values of δ , resulting from different increment schedules for m.



S. Gogioso, M. Hoban (Eds.):
Quantum Physics and Logic (QPL) 2022
EPTCS 394, 2023, pp. 236–261, doi:10.4204/EPTCS.394.14

© R. A. Shaikh, Q. Wang & R. Yeung
This work is licensed under the
Creative Commons Attribution License.

How to Sum and Exponentiate Hamiltonians in ZXW Calculus

Razin A. Shaikh Quanlong Wang Richie Yeung

Quantinuum, 17 Beaumont Street, Oxford OX1 2NA, United Kingdom

This paper develops practical summation techniques in ZXW calculus to reason about quantum dy-
namics, such as unitary time evolution. First we give a direct representation of a wide class of sums
of linear operators, including arbitrary qubits Hamiltonians, in ZXW calculus. As an application,
we demonstrate the linearity of the Schrödinger equation and give a diagrammatic representation of
the Hamiltonian in Greene-Diniz et al [13], which is the first paper that models carbon capture using
quantum computing. We then use the Cayley-Hamilton theorem to show in principle how to expo-
nentiate arbitrary qubits Hamiltonians in ZXW calculus. Finally, we develop practical techniques
and show how to do Taylor expansion and Trotterization diagrammatically for Hamiltonian simula-
tion. This sets up the framework for using ZXW calculus to the problems in quantum chemistry and
condensed matter physics.

1 Introduction

ZX calculus [4] is a graphical representation for quantum circuits and linear algebra in general: a diagram
with n inputs and m outputs represents a 2n ×2m linear map. ZX calculus comes with a complete set of
rewrite rules such that two diagrams that represent the same linear map can always be rewritten to one
another. Using this philosophy of computation via rewriting, ZX calculus has been successfully applied
to a wide range of problems in quantum computing, including circuit compilation [1, 7, 8, 20], circuit
equality validation [21,24], circuit simulation [22], error correction [2,3], natural language processing [5,
25] and quantum machine learning [30, 38, 39].

To solve a problem using ZX calculus, or other diagrammatic calculii, we first need to synthesise the
expressions involved into diagrams. This can be done in an ad-hoc way or using general methods such
as elementary matrices [36]. For example: in Hamiltonian simulation problems [26] the Hamiltonian is
typically given as a sum of Pauli operators, and without an efficient representation of such Hamiltonians
in ZX calculus, there is simply no way to proceed with the problem.

As of this writing, there is no published work on how to efficiently combine sums of ZX diagrams.
Both [18] and [32] first require an inefficient conversion step to an intermediate form before the diagrams
can be summed together. Furthermore, the resulting diagram is large and does not resemble the original
symbolic expression, so the advantage of using diagrammatic reasoning is diminished.

To obtain intuitive sums of diagrams, we introduce the framework of ZXW calculus. Coecke and
Kissinger [6] proposed the idea of developing a graphical calculus based on the interaction between
GHZ and W states. Following up on that, Hadzihasanovic [15, 16] developed the ZW calculus. The
ZW-calculus has found applications in linear optical quantum computing [9, 17], describing interactions
in quantum field theory [29], and studying multi-partite entanglement [6]. In this paper, we combine the
ZX and ZW calculii to create the ZXW calculus. The W-spider of the ZXW calculus plays an important

http://dx.doi.org/10.4204/EPTCS.394.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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role in producing efficient and compact sums of diagrams. We define the ZXW calculus through a slight
modification of the algebraic ZX calculus [33].

In this work, we modify and extend the notion of controlled states [19] to give direct representations
of controlled diagrams for a wide class of matrices and show how to sum them within the framework
of ZXW calculus. These representations, combined with the recently developed techniques of differ-
entiating arbitrary ZX diagrams [18, 37], allow us to practically reason about analytical problems that
were previously inaccessible to ZX calculus. Moreover, the addition, exponentiation and differentiation
operations interact nicely, allowing us to work with ZX diagrams as naturally as the traditional matrix
notation, while still keeping the compact representation and rewriting advantages of the ZX calculus.

Specifically, these techniques allow us to reason about quantum dynamics and quantum chemistry in the
ZXW calculus. Previous diagrammatic approaches [10, 11, 12] to quantum dynamics have tackled the
problem from an abstract categorical perspective. In this paper, we develop diagrammatic techniques to
tackle problems of quantum chemistry and condensed matter physics in a concrete and practical way.
We first devise a diagrammatic form for arbitrary Hamiltonians in the ZXW calculus. One of the main
problems in quantum computational chemistry is that of Hamiltonian simulation: given a Hamiltonian,
find an approximation to its unitary time evolution. The ideal evolution is given by e−iHt/2, where H is the
Hamiltonian and t is time. Using the diagrammatic form of Hamiltonian and the summation techniques
developed in this paper, we show how to diagrammatically exponentiate Hamiltonians. This allows us to
write the unitary time evolution graphically and apply the ZXW rewrite rules to extract a quantum circuit
for Hamiltonian simulation.

Summary of results

1. Representing sums of square matrices and arbitrary vectors: We show how to represent a sum
of any square matrices of size 2m × 2m or any vectors of size 2m in ZXW calculus (Section 3 and
Section 4). As an application, We formulate the Schrödinger equation in ZXW calculus and show
the linearity of its solutions. (Section 5)

2. Representing arbitrary Hamiltonians: We show how to construct a diagram for any Hamiltonian
defined on arbitrary number of qubits (Section 6). As an example, we express the Hamiltonian used
in Greene-Diniz et. al. [13] (Figure 1).

3. Representing Taylor expansion and Trotterization: We show how Taylor expansion and Trotter-
ization used for practical Hamiltonian exponentiation can be realised in ZXW calculus. (Section 7)

2 ZXW Calculus

In this section, we give an introduction to ZXW calculus which is a slight modification of the algebraic
ZX calculus [33], including its generators and rewriting rules. Note that algebraic ZX calculus is com-
plete [33] for matrices of size 2m × 2n and hence, so is the ZXW calculus. In this paper diagrams are
either read from left to right or top to bottom.

2.1 Generators

The diagrams in ZXW calculus are defined by freely combining the following generating objects. Note
that a can be any complex number.
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m

n

a

...

...

2.2 Additional notation

For simplicity, we introduce additional notation based on the given generators:

1. The green spider from the original ZX calculus can be defined using the green box spider in ZXW
calculus.

...
α

...
eiα

...

...
:= 1

... ...
:=

......

2. The triangle and the inverse triangle can be expressed as follows. The transposes of the triangle and
the inverse triangle can be drawn as inverted triangles.

:= :=
−1

π

:= −1 :=
−1

3. The red spider from the original ZX calculus can be defined by performing Hadamard conjugation on
each leg of the green spider, and the pink spider is the algebraic equivalent of the red spider. It is only
defined for τ ∈ {0,π}, and is rescaled to have integer components in its matrix representation.

m

n

m

n

...
:=(X)

... ...

...

2
m+n−2

2 −1:=
...

0τ

...
...
...τ

4. The plus gate (also known as V gate) and minus gate ( also known as V† gate) can be used for
constructing the Pauli Y gate, they are defined as V = HS H and V† = HS †H respectively:

+ := π
2 − := −π

2

5. The “and” box is defined as the following.

−1
∧ :=



R. A. Shaikh, Q. Wang & R. Yeung 239

2.3 Rules

Now we give the rewriting rules of ZXW calculus.

...
a

...
b

ab

...
...

...

...

=

...

...

ab

...

= (S 1) = = (S 2)

= = (S 3)
·

·

·

·

·
a

· ·

·
·

· ·

·

·

= ·
·

·

(Ept)

= (B1) = (B2)

π
π

=
π

(B3) =

-1

(Brk)

= (Bas0) =
π

(Bas1)

a a + 1
= (S uc) -1 =

-1

= (Inv)

0
= (Zero) −2=

π

√
2

(EU)

=

(S ym) = (Aso)

=
a

a a

(Pcy) = (Wdc)

where a,b ∈ C. The vertically flipped versions of the rules are assumed to hold as well.

2.4 Interpretation

Although the generators in ZXW calculus are formal mathematical objects in their own right, in the
context of this paper we interpret the generators as linear maps, so each ZXW diagram is equivalent to a
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vector or matrix.

m

n

a

...

...
= |0〉⊗m 〈0|⊗n + a |1〉⊗m 〈1|⊗n =

1
√

2

(
1 1
1 −1

)
=


1 0
0 1
0 1
0 0



=

(
1 0
0 1

)
=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =


1
0
0
1

 =
(
1 0 0 1

)
,

Remark 2.1. Due to the associative rule (Aso), we can define the W spider and give its interpretation as
follows [34]:

· · · · · ·

:= . . .

m

· · ·· · ·

= |0 · · ·0〉︸ ︷︷ ︸
m

〈0|+
m∑

k=1

m︷           ︸︸           ︷
|0 · · ·0︸︷︷︸

k−1

10 · · ·0〉 〈1| .

As a consequence, we have

+· · ·+
π π

+. . .
π

. . .. . .

······

π

··· ···

=

. . .=

(1)

3 Controlled diagrams

We start by stating the definitions of controlled states and matrices, and how to perform operations on
them. Note that our definition of controlled states are slightly different from that of Jeandel et al [18],
as we send |0〉 to |0〉⊗n instead of |+〉⊗n. They also have a notion of controlled matrices by applying the
map-state duality to the controlled state, which maps |0〉 to |+〉⊗n 〈+|⊗n instead of the identity matrix as
used in our definition, so their definition is not equivalent to ours.

Definition 3.1 (Controlled matrix). The controlled matrix M̃ corresponding to the matrix M is a diagram

M̃
.
.
. such that M̃

.

.

.
=

.

.

. and M̃
.
.
.

π

=
.
.
. M

Definition 3.2 (Controlled state). The controlled state Ṽ corresponding to the state V is a diagram

Ṽ
· · ·

such that Ṽ
· · ·

· · ·= and Ṽ
· · ·

=

π

V
· · ·
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Now, we show how to construct control diagrams for sums and products of matrices, given the controlled
diagrams for the original matrices.

Proposition 3.3 (Controlled product of matrices). Given controlled matrices M̃1, . . . , M̃k corresponding
to matrices M1, . . . ,Mk, the controlled matrix for

∏
i Mi is given by

M̃1
.
.
. M̃k

· · ·

.

.

.

.

.

.

∏̃
i Mi

.

.

.
=

(2)

Proposition 3.4 (Controlled sum of matrices). Given controlled matrices M̃1, . . . , M̃k corresponding to
matrices M1, . . . ,Mk and complex numbers c1, . . . ,ck, the controlled matrix for

∑
i ciMi is given by

M̃1
.
.
. M̃k

· · ·

.

.

.

.

.

.

∑̃
i ciMi

.

.

.
=

c1 ck

(3)

Both of these can be verified by simply plugging in the standard basis states. Similarly, we can construct
the controlled diagram for sums of states.

Proposition 3.5 (Controlled sum of states). Given controlled states Ṽ1, . . . , Ṽk corresponding to states
V1, . . . ,Vk and complex numbers c1, . . . ,ck, the controlled state for

∑
i ciVi is given by

Ṽ1
· · ·

Ṽk
· · ·

· · ·

· · ·

∑̃
i ciVi

· · ·

=

c1 ck

(4)

4 Realising controlled diagrams

In this section, we show how to directly construct the controlled matrix M̃ given a square matrix M, and
the controlled state ψ̃ given a state ψ.

4.1 Controlled matrix

Consider a matrix M of size 2m×2m. As given in [36], M can be represented in diagrams as follows:

E1 Ek
...

...
...

where Ei,1 ≤ i ≤ k is an elementary matrix. As a consequence of Proposition 3.3, if we know how to
construct any controlled elementary matrix, then we are able to depict the controlled matrix M. It has
been shown in [36] that the elementary matrix Ei must be of one of the following forms:
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a

ā0π

ām−1π

ākπ ∧...

...

0

k

m−1

...

...

∧ a

ā j1π

ām−1π

ā0π

ā jsπ

...

j1

js

m−1

0

...

...

... js

ā0π

ām−1π

...

0

...

m−1

... (a j1⊕a js )π

...

(a j1⊕a jk )π

∧

...

j1

...

jk

...

row multiplication row addition row switching

Then it can be verified by plugging standard basis that their corresponding controlled matrices can be
obtained by simply adding a branch to the And-gate:

Proposition 4.1. The controlled elementary matrices are given as:

ākπ

0

a

m−1

k

∧

...
ā0π

ām−1π

...

...

ā j1π

0

m−1

ā jsπ

...

js

...

...

...

∧ ...

ā0π

j1

ām−1π

a

...
m−1

j1

jk

...

...

...

ā0π

ām−1π

...

...

0

js

(a j1⊕a jk )π

(a j1⊕a js )π

...

∧

...

row multiplication row addition row switching

4.2 Controlled state

According to Wang [32, 35], a state vector (a0, . . . ,a2m−1)T of dimension 2m, m ∈ N, can be represented
in the following normal form:

a2m−1· · ·

0j1m−1

a j

js

· · ·a0

· · · · · ·· · ·

π

(5)

Hence, we can realise any controlled state by constructing the controlled diagram of the above normal
form. This is given in the following proposition.

Proposition 4.2. Controlled state for a vector (a0, . . . ,a2m−1)T is given by

a2m−1· · ·

0j1m−1

a j

js

· · ·a0

· · · · · ·· · ·

(6)



R. A. Shaikh, Q. Wang & R. Yeung 243

Using the above result and Proposition 3.5, we can derive the expression for linear combination of states,
represented in the normal form.

Proposition 4.3.

a1, j

0

as,2m−1

· · ·

· · ·· · ·
+

0

a1, j

m−1

a1,2m−1a1,2m−1 as,0

π
x1

π

j1 j1

as,2m−1as, j

· · ·

j1

π

· · ·
· · ·

xs

· · ·

js

· · ·

js

· · ·· · ·

0

· · ·

x1

m−1

a1,0

m−1 js

π

· · ·· · ·

xs

· · ·· · ·

· · ·

=

π

· · ·a1,0 as,0 as, j
· · · +

· · ·

5 Schrödinger Equation

As an application of the results from the previous sections, we prove the linearity of the solutions of the
Schrödinger equation. We recall the Schrödinger equation:

i
∂

∂t
|Ψ(t)〉 = H |Ψ(t)〉 (7)

where t is time, |Ψ(t)〉 is the state vector of the quantum system in question, and H is a Hamiltonian
operator. We can write the Schrödinger equation diagrammatically as:

Ψ′(t)

· · ·

Ψ(t)
· · ·

= H
· · ·

π

i (8)

where |Ψ(t)〉 can be expressed using the normal form and |Ψ′(t)〉 can be obtained by applying the differen-
tiation gadget [37] to |Ψ(t)〉. Along with this, we use Proposition 4.3 to show that any linear combination
of solutions of Schrödinger equation is also a solution.

Proposition 5.1. Assume that Ψ(t) and Φ(t) satisfy the Schrödinger equation (7) and a,b are arbitrary
complex numbers, then so does aΨ(t) + bΦ(t), i.e.,

ba

π

Ψ̃′(t)

· · ·

Φ̃′(t)

· · ·

ba

π

Ψ̃(t) Φ̃(t)

· · ·

· · · · · ·

· · ·

H
· · ·

=
π

i

(9)

6 Representing Hamiltonians in ZXW

Here we give an efficient representation for a wide class of matrices using the ZXW calculus.

Lemma 6.1. Any matrix of the form
∑n

i=1αic−1
i

(⊗m
j=1 D(ai j)

)
ci, where D(ai j) = |0〉 〈0|+ ai j |1〉 〈1|, ci is

the conjugation, and αi is a complex coefficient, can be expressed in ZXW calculus as
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M̃1

α1 αn

π

· · ·

M̃n.
.
.

.

.

.

c1 c−1
1

cn c−1
n

1

j

m

.

.

.

.

.

.

M̃i.
.
.

.

.

.

.

.

.

.

.

.

ai1

∧
ain

∧

=
.
.
.

.

.

.where

Theorem 6.2. Any Hamiltonian
∑n

i=1αi
⊗m

j=1 Pi j can be expressed in ZXW calculus using controlled-
Paulis.

c1

α1 αn

π

c†1

· · ·

cn c†n.
.
.

.

.

.

1

j

m

.

.

.

.

.

.

For each controlled-Pauli, there is a leg on the j-th qubit if Pi j , I, and ci is the Clifford conjugation
corresponding to the Pauli operator Pi j = c†i jZci j.

Example 6.3. For the Hamiltonian H = X1X2 + X2X3−Z1−Z2−Z3, we have

π

−1 −1 −1

For an even larger example, the Hamiltonian used in [13] is shown in Figure 1.

Proposition 6.4. The diagrammatic representation of controlled sum of Hamiltonians, thus the sum of
Hamiltonians, in Theorem 6.2 respects commutativity of addition (i.e. P̃i + P j = P̃ j + Pi):

= =

While this proposition is obvious in non-diagrammatic calculations, our goal here is to diagrammatically
characterise the commutative properties of controlled matrices.
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7 Hamiltonian Exponentiation

According to Stone’s theorem [31], the time-evolution operator of a Hamiltonian is the one-parameter
unitary group (OPUG) generated by the Hamiltonian. Tasks such as Hamiltonian simulation require
finding a unitary circuit that approximates the time evolution operator e−iHt/2 for a given Hamiltonian H.
In general, finding such unitary circuit is a hard problem. Developing a method to obtain the one-
parameter unitary group of Hamiltonian diagrams in ZXW will allow us tackle problems from quantum
chemistry and condensed matter physics using diagrammatic tools. We could further use the rules of
ZXW calculus to rewrite a Hamiltonian exponential diagram to a unitary time-evolution circuit. In this
section, we first talk about the exponentiation of Hamiltonians containing only commuting Pauli terms.
We susequently describe the general case where the Hamiltonian may contain non-commuting terms.

7.1 Hamiltonians with only commuting terms

For Hamiltonians comprised of only commuting Pauli terms, we have a simple correspondence between
the diagrams of Hamiltonians and their exponentials. In the following example, we show how to obtain
the Hamiltonian from its one-parameter unitary group. We begin by writing the exponential of Pauli
strings of the Hamiltonian using the phase gadgets [7]. Then we differentiate the exponential diagram and

set t to 0: e−iHt/2 ∂
7→ −i

2 He−iHt/2 t=0
7→ −i

2 H. As an example, consider the Hamiltonian H = ZZZ + 2XZX.
We will omit the global phase in the diagrams for simplicity.

∂
7→

2tt

π

2

2tt

π

2

2tt

bialg
=

π

2

A.14
=

2tt

π

2

=

2tt

We see from the above that the Hamiltonian diagrammatically commutes with its exponential. We set
t = 0 to get the Hamiltonian:

π

2
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In the following table, we show the correspondence between a few more Hamiltonians H and their
OPUGs ΦH(t).

Z ↔ ΦZ(t) ZXY ↔ ΦZXY (t)

π t↔ π

π

π+ − + −

=

π

+ −

↔

t

3(XZY)− (ZZX) ↔ ΦXZY (3t) ΦZZX(−t)

↔

−t3t

3

π

−1

+ − + −

For a more detailed reference of Pauli/phase gadgets and how to differentiate them, see [7] and [23]
respectively.

7.2 General case

In most of the interesting examples, the Hamiltonian contains some non-commuting terms. Construct-
ing an exact circuit for the OPUG of such Hamiltonians is difficult. We will use the Cayley-Hamilton
theorem [14, 27] to construct an exact diagram for the OPUG of the Hamiltonian. But calculating the
coefficients in such diagram is computationally hard. Hence, we will present approximate diagrams of
the OPUGs via Taylor expansion and Trotterization, which we can use in practical applications.

7.2.1 Exact exponential diagram

To give an exact diagram for the exponential, we can use the Cayley-Hamilton theorem [14, 27]. For a
n×n matrix of the Hamiltonian H, we can express its exponential as

e−iHt/2 = c0(t)I + c1(t)H + · · ·+ cn−1(t)Hn−1 (10)

where c0, . . . ,cn−1 are some functions of t. Using this equation, we present the exact form of the Hamil-
tonian exponential function in ZXW:

H̃
.
.
. H̃

· · ·

n−1-times

H̃ H̃ H̃

c0(t) c1(t) c2(t) cn−1(t)

π

· · ·
.
.
.

=
.
.
. e−iHt/2 .

.

.

(11)

The coefficients c0, . . . ,cn−1 can be calculated using Putzer’s algorithm [28], but its computational com-
plexity is exponential in the number of qubits.
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Now, we demonstrate the utility of the ZXW calculus by using its rules to rewrite a Hamiltonian expo-
nential diagram to a quantum circuit.

Example 7.1. Consider the following Hamiltonian:

H = aX + bZ (12)

for any complex a and b. There exists s0(t) and s1(t) such that

=

a b

s0(t) s1(t)

π

a b

e−iHt/2

(13)

Using ZXW, we can rewrite it to the following circuit. The full simplification steps are shown in Ap-
pendix B.

bs1(t)+s0(t)−
√

s0(t)2−b2 s1(t)2

bs1(t)−s0(t)+
√

s0(t)2−b2 s1(t)2
π

as1(t)−
√

s0(t)2−b2 s1(t)2

as1(t)+
√

s0(t)2−b2 s1(t)2

√
s0(t)−bs1(t)
s0(t)+bs1(t)as1(t)

√
2

π

=e−iHt/2

(14)

7.2.2 Taylor expansion

We consider Taylor expansion of the exponential to give a simple approximation of the OPUG in terms
of ZXW diagram. The expansion is given as:

e−iHt/2 =

∞∑
k=0

(
−i t
2

)k Hk

k!
(15)

To construct a ZXW diagram, we need to take a finite number of terms from the expansion. Suppose, we
take the n-th order approximation of the exponential. We can write it as the following diagram.

H̃
.
.
. H̃

· · ·

n-times

H̃ H̃ H̃

1 −i t
2

−t2

8
(−i t)n

2nn!

π

· · ·
.
.
.

=
.
.
. e−iHt/2 .

.

.

(16)

Example 7.2. Consider the Hamiltonian H = aZ1Z2 + bZ1X2. The diagram for this Hamiltonian is

a b

π
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The third order approximation of e−iHt/2 is the following diagram

1 −i t
2

−t2

8
i t3

48

π

a b a b a b a b a b a b

7.2.3 Trotterization

Using the Trotter-Suzuki formula, we can approximate the time evolution operator of the Hamiltonian by
evolving the system in small time-steps. With small enough time-steps, we can treat the non-commuting
terms in the Hamiltonian as commuting terms. Hence, for a Hamiltonian H =

∑
k Hk, we get

e−iHt/2 =

∏
k

e−iHkt/2n

n

+O

(
t2

n

)
(17)

where n is the number of Trotter steps. This allows us to apply the techniques developed in Section 7.1
to construct the diagram for the OPUG of Hamiltonian.

Example 7.3. Consider the Hamiltonian H = 3ZY + 2ZZ represented by the following diagram.

3 2

π

+ −

By approximating e−iHt/2 with 5 Trotter steps, we obtain the diagram shown below.

3t/5 2t/5

+ −

3t/5 2t/5

+ −

3t/5 2t/5

+ −

3t/5 2t/5

+ −

3t/5 2t/5

+ −

8 Future work

In this paper, we give direct representations of controlled diagrams for a wide class of matrices and show
how to sum them. As applications, we express any Hamiltonian with a form of a sum of Pauli operators,
including the Hamiltonians used for carbon capture in [13], convert between a Hamiltonian and its one-
parameter unitary group, and represent Taylor expansion and Trotterizatio used for practical Hamiltonian
exponentiation in ZXW calculus.

We would like to apply the summation techniques developed in this paper to practical problems, like
quantum approximate optimization, integration on arbitrary ZX diagrams, or quantum machine learning.
Also, we would like to develop tools to rewrite Hamiltonian exponentiation diagrams to quantum circuits.
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[27] Héctor Manuel Moya-Cessa & Francisco Soto-Eguibar (2011): Differential equations: an operational ap-
proach. Rinton Press, Incorporated.

[28] Eugene J Putzer (1966): Avoiding the Jordan canonical form in the discussion of linear systems with constant
coefficients. The American Mathematical Monthly 73(1), pp. 2–7, doi:10.2307/2313914.

[29] Razin A Shaikh & Stefano Gogioso (2022): Categorical Semantics for Feynman Diagrams. arXiv preprint
arXiv:2205.00466, doi:10.48550/arXiv.2205.00466.

[30] Tobias Stollenwerk & Stuart Hadfield (2022): Diagrammatic Analysis for Parameterized Quantum Circuits.

[31] Marshall H Stone (1932): On one-parameter unitary groups in Hilbert space. Annals of Mathematics, pp.
643–648, doi:10.2307/1968538.

[32] Quanlong Wang (2020): Algebraic complete axiomatisation of ZX-calculus with a normal form via elemen-
tary matrix operations. doi:10.48550/arXiv.2007.13739.

[33] Quanlong Wang (2021): An Algebraic Axiomatisation of ZX-calculus. Electronic Proceedings in Theoretical
Computer Science 340, pp. 303–332, doi:10.4204/eptcs.340.16.

[34] Quanlong Wang (2021): A non-anyonic qudit ZW-calculus. doi:10.48550/arXiv.2109.11285.

[35] Quanlong Wang (2022): Qufinite ZX-calculus: A Unified Framework of Qudit ZX-calculi,
doi:10.48550/arXiv.2104.06429.

http://arxiv.org/abs/1709.08086
http://dx.doi.org/10.4230/LIPIcs.FSCD.2018.17
http://dx.doi.org/10.1109/LICS.2019.8785754
http://dx.doi.org/10.4204/eptcs.318.14
http://dx.doi.org/10.1103/PhysRevA.102.022406
http://dx.doi.org/10.4230/LIPIcs.TQC.2022.5
http://dx.doi.org/10.4204/EPTCS.340.10
http://dx.doi.org/10.1613/jair.1.14329
http://dx.doi.org/10.1103/RevModPhys.92.015003
http://dx.doi.org/10.2307/2313914
http://dx.doi.org/10.48550/arXiv.2205.00466
http://dx.doi.org/10.2307/1968538
http://dx.doi.org/10.48550/arXiv.2007.13739
http://dx.doi.org/10.4204/eptcs.340.16
http://dx.doi.org/10.48550/arXiv.2109.11285
http://dx.doi.org/10.48550/arXiv.2104.06429


252 How to Sum and Exponentiate Hamiltonians in ZXW Calculus

[36] Quanlong Wang & Richie Yeung (2021): Representing Matrices Using Algebraic ZX-calculus. arXiv preprint
arXiv:2110.06898, doi:10.48550/arXiv.2110.06898.

[37] Quanlong Wang, Richie Yeung & Mark Koch (2022): Differentiating and Integrating ZX Diagrams with
Applications to Quantum Machine Learning, doi:10.48550/arXiv.2201.13250.

[38] Richie Yeung (2020): Diagrammatic Design and Study of Ansatze for Quantum Machine Learning. arXiv
preprint arXiv:2011.11073, doi:10.48550/arXiv.2011.11073.

[39] Chen Zhao & Xiao-Shan Gao (2021): Analyzing the barren plateau phenomenon in training quantum neural
networks with the ZX-calculus. Quantum 5, p. 466, doi:10.22331/q-2021-06-04-466.

A Proofs and Lemmas

In this appendix, we include all the lemmas which have been essentially existed (up to scalars) in previous
papers. The lemmas are given in the order which they appear in this paper.

A.1 Useful lemmas

We present several useful results in the following table.

Lemma A.1. [32]
For τ,σ ∈ {0,π}, pink spiders fuse.

τ+σ
τ

...

...
...

...
... =

σ
=

...

...

τ+σ

...
(S 1r)

Lemma A.2. [32]
Hadamard is involutive.

= (H2)

Lemma A.3. [32]
Pink π transposes the triangle.

=
π

π

Lemma A.4. [32]
Green π inverts the triangle.

-1
π

=

π

= ππ

Lemma A.5. [32]
(triangle)T stabilises |1〉.

π
=

π

Lemma A.6. [32]
Hopf rule.

= (Hop f )

Lemma A.7. [32]
π copy rule. For m ≥ 0:

m m

...
π

...

π

π

= (Pic)

Lemma A.8. [32]
π commutation rule.

α

π −αα

ππ
=

http://dx.doi.org/10.48550/arXiv.2110.06898
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Lemma A.9. Suppose a , 0,a ∈ C. Then

√
a

√
a

1
√

a

a

=
-1

This equality can be verified by plugging in the standard basis on the inputs of the diagrams. Next, we
have

Lemma A.10.

a

1−a
1+a= 1−a

1+a =:

As a consequence of the above two lemmas, we have

Lemma A.11.

a−1 =

a

-1 =
√

a

1
√

a

√
a

=
√

a

1
√

a

√
a

=

√
a

√
a

√
a−1
√

a+1

Lemma A.12.

. . .

π

asa ja1 . . .

π

. . . . . .

. . . . . .

=

π

. . . . . .a j asa1

where a1, · · · ,as are arbitrary complex numbers.
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Proof.

. . .

π

asa ja1 . . .

π

. . . . . .

=

π

. . . . . .a j asa1

=

. . .

π

asa ja1 . . .

π

. . . . . .

=
. . .

π

asa ja1 . . .

π

. . . . . .

=

. . .

π

asa ja1 . . .

π

. . . . . .

. . .

π

asa ja1 . . .

π

. . . . . .

= . . .

π

asa ja1 . . .

π

. . . . . .

=

= . . .

π

asa ja1 . . .

π

. . . . . .

π

= . . .

π

asa ja1 . . .

π

. . . . . .

π

�

Lemma A.13.

∂

∂t


ψ2m−1(t)· · ·

0j1m−1

ψ j(t)

js

· · ·ψ0(t)

· · · · · ·· · ·

π


=
ψ′0(t)

j1m−1 0

ψ′2m−1(t)

· · ·· · ·

· · ·

js

ψ′j(t)· · ·

π

· · ·
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Proof.

∂

∂t


ψ2m−1(t)· · ·

0j1m−1

ψ j(t)

js

· · ·ψ0(t)

· · · · · ·· · ·

π


=

ψ′j(t)
ψ j(t)

ψ′2m−1(t)
ψ2m−1(t)

ψ′0(t)
ψ0(t)

π

ψ0(t)

j1m−1 0

ψ2m−1(t)

· · ·· · ·

· · ·

js

ψ j(t)· · ·

π

· · ·

· · · · · ·

A.12
=

· · ·

js

· · ·

j1

· · ·

ψ0(t) · · · · · · ψ2m−1(t)ψ j(t)

m−1 0

π

ψ′0(t)
ψ0(t)

ψ′j(t)
ψ j(t)

ψ′2m−1(t)
ψ2m−1(t)

=
ψ′0(t)

j1m−1 0

ψ′2m−1(t)

· · ·· · ·

· · ·

js

ψ′j(t)· · ·

π

· · ·

�

Lemma A.14.
=

This shows that a Hadamard edge is added to the ‘body’ of the Pauli gadgets when their Hamiltonians
anti-commute, the proof can be found in [38, Theorem 3].

A.2 Proofs

Proof of Proposition 5.1.

ba

π

Ψ̃′(t)

· · ·

Φ̃′(t)

· · ·

· · ·

π

i
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ψ′j(t)
ψ j(t)

· · ·· · ·
js 0

a

j1

π

b

φ′2m−1(t)
φ2m−1(t)

i

· · · · · ·

φ2m−1(t)ψ0(t)

ψ′2m−1(t)
ψ2m−1(t)

ψ2m−1(t) φ j(t)

π
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φ′j(t)
φ j(t)
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ψ′0(t)
ψ0(t)

π

φ′0(t)
φ0(t)

ψ j(t)
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φ0(t) · · ·· · ·
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· · · · · ·
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0

· · ·

bφ2m−1(t)aψ2m−1(t)
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ψ j(t)
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ψ′0(t)
ψ0(t)

i

π

φ′j(t)
φ j(t)
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· · ·

π
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π
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· · ·aψ′j(t)
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π

j1

bφ′j(t)aψ′2m−1(t)

· · ·
js

π
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=

bφ′2m−1(t)

i

ψ′j(t) · · ·

· · ·

· · ·

j1

· · · φ′2m−1(t)ψ′2m−1(t) φ′j(t)· · ·ψ′0(t)

· · ·

i
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· · ·

π

π
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=

· · · · · ·

· · ·

4.3
=

· · ·

π π

js

ψ′2m−1(t)ψ′j(t)
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ψ′0(t)

b
a

· · · · · ·φ′j(t)
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· · ·

π π

js 0
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π
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=
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0
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js j1
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· · ·
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ψ j(t)

a

π

φ2m−1(t)

b

· · ·· · · · · ·φ0(t)

0

H

js j1

ψ2m−1(t)

m−1

· · ·

· · · φ j(t)

· · ·

ψ0(t)

· · ·

4.3
=

ba

π

Ψ̃(t) Φ̃(t)

· · · · · ·

· · ·

H
· · ·

=

0m−1

�

Proof of Lemma 6.1. We need check that the controlled matrix M̃i represents the controlled matrix of⊗m
j=1 D(ai j). After that, the rest of the proof follows from Proposition 3.4.

ai1

∧

ain

∧

...
...

...
...

=

ai1

∧

ain

∧

π

...
...

=

ai1

ain

...
...

=

ai1

ain

...
...

=

ai1

ain

...
...

=

ai1

∧

ain

∧

...
...

=

ai1

∧

ain

∧

...
...

π

π

�

Proof of Theorem 6.2. In the Lemma 6.1, we set

ai j =

ei0 if Pi j = I
eiπ otherwise.
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When ai j = ei0, the leg on the j-th qubit will be disconnected:

∧
= 0 = =

On the other hand, for ai j = eiπ, we get

∧

π
= −2 = −2 =

Substituting the above in the controlled matrix M̃i, we get

.

.

.

1

j

m

.

.

.

.

.

.

.

.

.

.

.

.

1

j

m

.

.

.

.

.

.

.

.

.

=

where there is a leg on the j-th qubit if Pi j , I. �

Proof of Proposition 6.4.

A.14
= =
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Here for the second equality we have

= =

= =
π
2

π
2

π
2

=

−π
2

π
2

π
2

=

−π
2

π
2

π
2

=

−π
2

π
2

π
2

= =

�

B Circuit extraction of the exponential from Equation 13

To simplify this diagram to a circuit, we will use the following two propositions.

Proposition B.1.
π

= π

Proof of Proposition B.1.

π

=

π

=

π

= = = = = π
π

=

�
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Proposition B.2.

x

π

√
2 =

√
1− x2

√
1−x
1+x

b
√

1−x2−1
x

Proof of Proposition B.2.

x =

π

√
2

x

=

-2

x

=

b-2

=

b−2xx

=b−2xx =1 + x b−2x =
b−2x

1+x

1 + x

=
−2x
1+x

1 + x √
1−x
1+x

=

√
1−x
1+x

b
√

1−x2−1
x

1 + x √
1− x2

√
1−x
1+x

b
√

1−x2−1
x

�

Now, we begin simplifying (13).

b

s0(t) s1(t)

π

a b = b

s0(t)

π

as1(t) bs1(t) = bs0(t)

π

as1(t) bs1(t)a b

s0(t) s1(t)

π

a b =

b

π
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s0(t)

bs1(t)
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π

s0(t)

bas1(t)
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bs1(t)
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π

s0(t)

=

π

b

π
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π

s0(t)

=

as1(t)
s0(t)

π

s0(t)
as1(t)= b

π
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bs1(t)
s0(t)

s0(t)

=

bs1(t)
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as1(t)

π

s0(t)
as1(t)

π

=

as1(t)
√

2

π

s0(t)
as1(t)

π

√
s0(t)−bs1(t)
s0(t)+bs1(t)
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=
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√

2

π
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√
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√
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bs1(t)+s0(t)−
√

s0(t)2−b2 s1(t)2

bs1(t)−s0(t)+
√

s0(t)2−b2 s1(t)2
π

as1(t)−
√

s0(t)2−b2 s1(t)2
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√
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√
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√
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Diagrammatic representations of quantum algorithms and circuits offer novel approaches to their
design and analysis. In this work, we describe extensions of the ZX-calculus especially suitable
for parameterized quantum circuits, in particular for computing observable expectation values as
functions of or for fixed parameters, which are important algorithmic quantities in a variety of ap-
plications ranging from combinatorial optimization to quantum chemistry. We provide several new
ZX-diagram rewrite rules and generalizations for this setting. In particular, we give formal rules for
dealing with linear combinations of ZX-diagrams, where the relative complex-valued scale factors
of each diagram must be kept track of, in contrast to most previously studied single-diagram realiza-
tions where these coefficients can be effectively ignored. This allows us to directly import a number
useful relations from the operator analysis to ZX-calculus setting, including causal cone and quan-
tum gate commutation rules. We demonstrate that the diagrammatic approach offers useful insights
into algorithm structure and performance by considering several ansätze from the literature including
realizations of hardware-efficient ansätze and QAOA. We find that by employing a diagrammatic rep-
resentation, calculations across different ansätze can become more intuitive and potentially easier to
approach systematically than by alternative means. Finally, we outline how diagrammatic approaches
may aid in the design and study of new and more effective quantum circuit ansätze.

1 Introduction

Diagrammatic approaches to quantum mechanics [9, 13, 12] have gained much attention in recent years
as an advantageous alternative approach to analyzing and understanding quantum systems, providing
simpler intuition and in some cases improved algorithmic approaches. These methods provide straight-
forward rules for representing, manipulating, and simplifying quantum objects, while at the same time are
underpinned by sophisticated mathematical ideas (in particular, category theory [1, 55]). An important
example is the ZX-calculus [9, 10, 55] and its closely related variants [43, 51, 31, 35, 32, 3, 20] which
have seen a number of successful applications in quantum computing, ranging from circuit optimiza-
tion [19, 37, 4, 25] and synthesis [15, 26], to algorithm analysis [7, 49], natural language processing [11]
and machine learning [57, 48, 58], among others.

In this paper we show how the ZX-calculus is also useful for analyzing algorithms based on param-
eterized quantum circuits (PQCs), such as variational quantum algorithms, in particular for calculating
important derived quantities such as expectation values of quantum observables, or their gradients. Such
quantities may be computed as functions of the circuit parameters, in which case the parameters are
symbolically carried through subsequent ZX-diagrams, or as numbers for the case of fixed parameters

http://dx.doi.org/10.4204/EPTCS.394.15
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of interest. To enable this, we present several new ZX-rules generalizing the standard ones appearing
in the literature; in particular, we present rules and notation for explicitly handling linear combinations
of ZX-diagrams which naturally arise, for example, when incorporating commutation rules for unitary
operators which are used for instance in computing expectation values. For linear combination of dia-
grams, clearly, it is critical to keep track of the scalar multiplier of each diagram, whereas in previous
single-diagram applications such global phases or normalization constants can typically be ignored. In
our application these multipliers will typically be complex-valued functions of the quantum circuit pa-
rameters. Furthermore, our formalism then allows direct importation of a number of useful relations
from the operator analysis to ZX calculus setting, such as causal cone and operator commutation rules,
among others.

After stating the new rules we demonstrate their efficacy with several prototypical examples of pa-
rameterized quantum circuits in the context of combinatorial optimization, including straightforward
derivation of some new and existing results concerning example circuits drawn from the literature. While
for computing expectation values of relatively shallow circuits we are able to show most of the key dia-
gram reduction steps explicitly, for deeper circuits our approach can be aided by integration with software
implementations of the ZX-calculus (e.g., [38, 36]). Though we focus on the common task of analyz-
ing quantum circuit expectation values, important in particular for assessing algorithm performance, our
proposed rules are general and may find much broader application in future work. For instance, toward
analyzing phenomena related to parameter setting, expectation value gradients may be obtained either
by differentiating directly [48], or by reducing the calculation to that of computing further circuit expec-
tation values as in parameter shift rules [17, 56]. We emphasize that our approach may be applied to a
wide variety of application problems and related quantum circuits beyond those explicitly considered in
our examples, and further ZX results and generalizations from the literature may be leveraged, including
extensions to qudits [51] or fermions [32, 16], among others.

2 Preliminaries

2.1 ZX-Calculus

We refer the reader to [50, 55] and the references therein for comprehensive introductions, including
complete sets of graphical rewrite rules as well as their mathematical details. A number of the most
important ZX-diagram rewrite rules are displayed in Figure 1. We use the label attached to each equation
to reference these rules when we apply them in the examples we consider below.

2.2 Parameterized Quantum Circuits

Parameterized quantum circuits (PQC) have gained much attention in recent years, in particular as heuris-
tic approaches suitable for NISQ [42] era devices that are classically optimized (often variationally) as
part of a hybrid protocol, though we emphasize they are by no means restricted to this setting; see [8, 5]
for reviews of recent developments. Two particular approaches of interest are the QAOA (quantum al-
ternating operator ansatz [29], which generalizes the quantum approximate optimization algorithm [22])
and VQE (variational quantum eigensolver [41, 40]) paradigms, as well as a number of more recent
variants of these approaches. Here we briefly review the original QAOA paradigm and its application
to combinatorial optimization, though our results to follow may be applied more generally to a variety
of problems and algorithms. In QAOA we are given a cost function c(x) and corresponding classical
Hamiltonian C (i.e., diagonal in the computational basis, C |x〉 = c(x) |x〉) we seek to optimize over bit
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n ... α β
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( fff )
= n ... α+β

... m
... α

...
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=
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=

(hhhhhh)
=

π α
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(πππ)
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π

√
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=
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=
√

2
(hhhoooppp fff )
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2

Figure 1: The ZX-diagram rewrite rules (cf. for example [55] or [58]). Note the explicit scalar factors.

strings x ∈ {0,1}n. A QAOAp circuit consists of 2p alternating layers specified by 2p angles γi,βi in
some domain (e.g. [−π,π]) to create the state

|γγγβββ 〉=UM(βp)UP(γp) . . .UM(β1)UP(γ1) |s〉 ,

for phase operator UP(γ) = exp(−iγC), (transverse-field) mixing operator UM(β ) = exp(−iβB) where
B = ∑

n
i=1 Xi, and standard initial product state |s〉 = |+〉⊗n. The state is then measured in the computa-

tional basis which returns some y ∈ {0,1}n achieving cost c(y). Figure 2 shows a simple example of a
QAOA circuit. Repeated state preparation and measurement gives further samples which may be used to

|0〉 . . . . . .

|0〉 . . . . . .

|0〉 . . . . . .

H RX(β )

H RZ(γ) RX(β )

H RZ(γ) RX(β )

Figure 2: Example of a parameterized quantum circuit: QAOA on 3 qubits. Here the phase and mixing
operators as well as initial state preparation have been compiled to basic quantum gates.

estimate the cost expectation 〈C〉p or other important quantities. These quantities may be used to update
or search for better circuit parameters if desired; we emphasize that in different cases parameters may be
found through analytic [53], numeric [22], or average-case [47] techniques, or, distinctly, searched for
empirically (e.g., variationally). After a set number of runs overall, or when other suitable termination
criteria has been reached, the best solution found is returned.

A fundamentally important quantity for QAOA as well as related approaches is the cost expectation
value 〈C〉, which may be computed for a single instance or over a suitable class, and can be used to
bound the expected approximation ratio achieved [22, 30, 29, 28] for the given problem. Importantly,
we are often given a decomposition of the cost Hamiltonian such as C = ∑ j C j which we may exploit in
computing 〈C〉 = ∑ j〈C j〉 as a sum of terms (typically, a linear combination of Pauli Z operators [27]),
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which directly motivates the rules we introduce for accommodating linear combinations of ZX-diagrams.
For combinatorial optimization the C j terms mutually commute which leads to further simplifications,
whereas this may not be true for more general problems and applications such as quantum chemistry
(though linearity of expectation still applies). In general, many quantities of interest for PQCs can be
expressed as expectation values and are hence amenable to similar analysis via diagrammatic techniques
as we explore below.

2.3 Related Work

Several recent papers provide related but distinct results towards applying the ZX calculus in the PQC
setting. In particular, three papers [48, 52, 34] which appeared during preparation of this work that
consider differentiation and addition of ZX-diagrams. These papers introduce diagrammatic extensions
complementary to our results. However they do not deal with expectation values explicitly which is
the focus of this work. In terms of previous applications to variational quantum algorithms, a recent
paper [58] considers using the ZX-calculus for computing and analyzing expectation values of deriva-
tives of the cost expectation for particular classes of random parameterized quantum circuits built from
particular gate sets (see in particular [58, Assumption 1]), in the context of detecting possible barren
plateaus [39]. Our work differs in that we consider expectation values of the cost function themselves,
and make no similar assumption of randomly selected parameters. A particular similarity with [58] is
both their application and ours require explicit accounting of scalar factors associated to ZX-diagrams
(see Section 3). However, while it is observed in [58, Eq. 7] that quantum expectation values may repre-
sented with the ZX-calculus in [58, Eq. 7], the authors do not apply the decomposition C = ∑ j C j, which
we exploit to derive novel ZX rules and analysis. Our approach and results are complementary to those
of [58]. Another work [23] applied ZX-calculus in analysis of symmetries in the parameter landscape of
the cost function expectation. We note that a different diagrammatic approach to constructing parame-
terized quantum circuits is considered in [33]. Concepts related to linear combinations of ZX-diagrams
have been discussed in the framework of category theory for example in [14, 18].

3 ZX-Calculus for Parameterized Quantum Circuits

In this section we extend the ZX-calculus to accommodate linear combinations of (conventional) ZX-
diagrams. Then, toward its application to parameterized quantum circuits we derive a collection of gen-
eral rules and useful identities within the new framework. We will apply these rules to several concrete
quantum circuit examples in Section 4 and the Appendices.

3.1 Diagrammatic Rules for Linear Combinations

Here we define linear combinations of diagrams, in which case diagram constants give the relative
weights of the sum. For example, for computing the expectation value of an observable H = ∑

m
j=1 a jH j

for some quantum circuit state |ψ〉 = U |ψ0〉 we have 〈H〉ψ = ∑
m
j=1 a j〈H j〉ψ , which hence corresponds

to a single ZX-diagram or equivalently to a sum of m weighted diagrams. This idea generalizes in the
natural way to sums of linear maps and more general ZX objects. We also show new ZX-diagram rules
which relate single (sub)diagrams to sums or products of (sub)diagrams, such that the resulting diagram
reductions involve differing numbers of diagrams.

As mentioned, we do not use the common convention of considering diagrams equivalent up to
scalars or phases; hence we include complex scalar multipliers explicitly in our diagrams and rules to



266 Diagrammatic Analysis for Parameterized Quantum Circuits

follow, i.e.,

a · ...m ... nA 6= b · ...m ... nA unless a = b ,

where a,b are complex scalar multipliers and the diagram is a placeholder for an arbitrary ZX-diagram
with m inputs and n outputs. In particular, care must be taken in applying the usual rules of ZX-calculus
to account for any implicit constant factors. We note that scalar factors are also retained in the distinct
application of [58]; see [58, Fig. 4] for an example list of some ZX-diagram rewrite rules with explicit
scalars.

Definition 3.1 (Sum notation). We define novel diagram notation for describing arbitrary linear combi-
nations. The linear combination of two ZX-diagrams with m inputs and n outputs is written

a · ...m ... nA + b · ...m ... nB =: Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n . (1)

Each summand is written inside a bubble and the scalar factors are written on the line combining
the new summation symbol and the bubbles. This definition naturally extends to an arbitrary number of
summands. Summand diagrams are required have the same numbers of input (m) and output (n) lines
as each other and as the those of the sum object. Note that m or n are zero for diagrams representing
states (m = 0), effects (n = 0), or constants (m = n = 0). Sums of diagrams also arise in [57, 48, 58]
in the context of differentiating diagram components (where sums arise, for example, from the product
rule of calculus). Our work is complementary to these results in that we consider the generalization to
complex linear combinations of diagrams; extensions to scalars beyond the complex numbers are also
possible [48].

3.1.1 Rules

Now we state the two rules needed for the extension of ZX-calculus to linear combinations.

1. Diagram Pull Rule

The first rule applies if diagrams in a linear combination are equal up to a certain subdiagram
(A and B below). Then we can write a single diagram containing the linear combination of the
beforementioned subdiagrams

a · ...`

... n...m

... k

A

...p

+b · ...`

... n...m

... k

B

...p
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(1)
= Σ

Σ

...`

... n...m

... k

A

...p

...`

... n...m

... k

B

...p

a

b

...`
... k

=

...` ...m ... nA

...m ... nB

a

b

... n...m

... k

...p

. (i)

The last equality we call the diagram pull rule. This also holds if any of the `, p, k, m, n vanish.
Thus describing how to pull scalars, effects and states in and out of the bubbles. If p = 0, the rule
describes how to pull in and out diagrams only from the left or only from the right. We will make
heavy use of this in Section 4.

2. Product (Composition) Rule

The second rule describes how to combine products (i.e., compositions) of linear combinations of
diagrams. We state the rule for a product of two linear combinations comprised of two summands
each

(
a · ...m ... nA + b · ...m ... nB

)
◦
(

c · ...n ... `C + d · ...n ... `D
)
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= Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n ◦ Σ

Σ

...n ... `C

...n ... `D

c

d

...n ... l

= Σ

Σ

...m A
...

... `C

...m A
...

... `D

...m B
...

... `C

...m B
...

... `D

ac

ad

bc

bd

...m ... ` . (ii)

The product rule extends in the obvious way to the case of more than two factors or summands.
Several additional rules are given in Appendix A.

3.2 ZX-Calculus for Expectation Values of Quantum Circuits

In this section, we will present various identities within the extended ZX-calculus framework, that are
useful for the analysis of parameterized quantum circuits. While we primarily consider Pauli operators
here, similar results may derived in different basis or gate sets. See [16] for some additional useful rules
regarding Pauli operator exponentials.

3.2.1 Rotations

First, we can write rotation operators in terms of linear combinations of Clifford gates

eiγZ = eiγ −2γ = Σ

Σ

π

cγ

isγ

, (5)

eiβX = eiβ −2β = Σ

Σ

π

cβ

isβ

. (6)

In both cases the proof easily follows from the identity eiαA = cosαI + i sinαA for operators satisfying
A2 = I. We use cα := cos(α) and sα := sin(α) throughout.
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3.2.2 Phase-Gadgets

Important for parameterized quantum circuits are multi-qubit rotations, so-called phase-gadgets (cf. [16]),
for example

eiγZuZv =
√

2eiγ −2γ = Σ

Σ

π

π

cγ

isγ

u
v . (7)

A proof of the first equality is given in [16, Corollary 3.4]. The second equality is derived similarly to
(5), (6). In particular, for the analysis of QAOA expectation values, we will encounter conjugates of
phase-gadgets in conjunction with π-X-spiders. We will make heavy use of the following identity which
is proven in Appendix D.1.

. . . . . .
tπ

−γ `π rπ γ

bπ

. . . . . .

=

eiγ
√

2

. . . . . .
(t+r)π rπ

−2γ

(b+1)π π

. . . . . .

1
2

. . . . . .
tπ

bπ

. . . . . .

if (t + l +b+ r) odd

if (t + l +b+ r) even

. (8)

Phase-gadgets can be combined to implement so-called phase polynomials, i.e., parameterized expo-
nentials of diagonal Hamiltonians such as utilized in QAOA circuits [26, 16, 29, 27].

3.2.3 Lightcones

For quantum circuits of limited depth or connectivity, it is often the case when computing a particular
quantity that a significant fraction of the gates and qubits can be ignored or discarded due to having
no effect, in analogy with spacelike-separated events in relativity. Naturally, the same principle may be
fruitfully applied to diagrammatic analysis.

Given an observable C = ∑ j C j, typically each C j acts nontrivially on a subset of ` < n qubits. Hence,
depending on the structure of the problem and given quantum circuit ansatz U |ψ0〉, the n-qubit expecta-
tion values 〈C j〉may be equivalently reduced to ones over L qubits, `≤ L≤ n, by in each case restricting
the quantum circuit in the natural way. This phenomena is generally known as the lightcone or causal
cone rule [21, 22, 47, 28], and is clearly exhibited with the ZX-calculus. For example, if |ψ0〉 is a product
state and U consists of only 1-local gates, then L = ` independently of the circuit depth (cf. the example
of Section 4.1). For QAOA applied to MaxCut, `= 2 and it is easily shown that the lightcone after each
qth QAOA layer consists of the restriction to the subgraph within distance q of the given edge [22, 28],
i.e., its size L depends on the vertex degrees in the graph neighborhood. Hence, importantly, for QAOA
or similar layered ansatz we may apply the lightcone rule layer-by-layer. Applying this restriction, the



270 Diagrammatic Analysis for Parameterized Quantum Circuits

inner operator for a MaxCut QAOA expectation value reads

O p
uv :=

p

∏
`=1

eiγ`Ceiβ̃`B ZuZv

1

∏
k=p

e−iβ̃kBe−iγkC

=

...M p
uv

...N p
uv

...N p−1
uv

...
...

...N 1
uv

v

u

9γ1 9β1

· · ·

· · ·

· · ·

· · ·

9γp 9βp
π

π

...

βp γp
· · ·

· · ·

· · ·

· · ·
β1 γ1

...

...

...

...

...

, (9)

where we used placeholder diagrams for the reduced phase-separation layer

NL

L

...

...

...

...

...

...

...

...

...

...

...

...
γ

:=
√

2
nL

...

...

...

...

...

...

γ

...

· · ·

· · ·
γ

γ ∈ L×L∩E

· · ·

· · ·

· · ·

γ

· · ·

γ

· · · γ

γ

· · ·

· · ·

γ

γ

· · ·

· · ·

· · ·

...

γ

γ

· · ·

· · ·

· · ·

· · ·

γ

γ

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

γ

...

...

...

...

...

...

, (10)

and the reduced mixing layer

...
...β :=

92β̃

...

92β̃

=

β

...

β

(11)

where β :=−2β̃ for convenience. For the reduced phase-separation layer we have used the MaxCut cost
function Hamiltonian C = 1

2 ∑uv∈E (1−ZuZv) and

eiγC = ∏
(u,v)∈E

e
iγ
2 e
−iγ

2 ZuZv (7)
=
√

2
|E|

∏
(u,v)∈E

u
γ

v
.
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This leads to the factor
√

2
nL in (10), where nL is the number of phase-gadgets in the right diagram

of (10). Also, we implicitly used the neighborhood of a set of nodes L, NL :=
⋃

`∈L nbhd(`), the exclusive
p-th neighborhood of {u,v}, recursively defined by

N p
uv :=

⋃
i, j∈N p−1

uv ×N p−1
uv ∩E

N{i, j} \∪
p−1
k=0 N k

uv ,

where N 0
uv := {u,v}, as well as the complement M p

uv = N p
uv \E.

While here we have considered QAOA circuits as a demonstrative example, the same principle may
be applied to or formalized for more general ansätze and observables.

4 Application to Combinatorial Optimization

Expectation values of quantum circuit observables – i.e., constants – may be represented with ZX-
diagrams, as has been previously observed in [58, Eq. 7]. In doing so, in some cases the structure
of the original problem may be directly reflected in the structure of the corresponding ZX-diagrams.
This is demonstrated by two examples in this section, in which apply our ZX-calculus extension to cal-
culate cost expectation values for a particular ansatz for combinatorial optimization. The purpose of this
section is twofold. First, we want to demonstrate that calculations with parameterized quantum circuits,
like the finding an analytical expression for expectation values, can sometimes become more intuitive
and simplified by using ZX-calculus in conjunction with our extension to linear combinations. Second,
we show that our extension is indeed necessary to achieve the aforementioned task diagrammatically by,
for instance, providing means to “commute” X- and Z-spiders (cf. (12)), while explicitly keeping track
of all resulting terms.

We show how the cost function expectation value 〈C〉 may be computed and analyzed using our
extended ZX-calculus. Recall that given a decomposition of the cost Hamiltonian C = ∑C` it suffices
to compute the 〈C`〉 values independently, which typically correspond to similar diagrams. In particular
(sub)graph symmetry can be exploited to reduced the number of unique diagrams required [22, 44, 45].
Generally the quantity 〈C〉 is important in parameter setting, as well as bounding algorithm performance
such as the approximation ratio achieved [30].

4.1 Independent Single-Qubit Rotations Ansatz

We begin with a simple but important example. Consider an arbitrary cost function and corresponding
cost (diagonal) Hamiltonian C on n qubits we seek to extremize, together with the simple depth-1 ansatz
consisting of a free single-qubit Pauli-Y rotation on each qubit, applied to the initial state |00 . . .0〉 =
|0〉⊗n,

...
...

|0〉 RY (α1)

|0〉 RY (α2)

|0〉 RY (αn)

=
1√
2n

9 π

2 α
π

2

9 π

2 α
π

2

...
...

9 π

2 α
π

2

.

For example, consider an arbitrary instance of MaxCut, a prototypical NP-hard optimization problem,
though the same argument we show here applies similarly to many other problems. For a graph with edge
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set E the cost Hamiltonian is C = |E|
2 −

1
2 ∑(uv)∈E ZuZv. As demonstrated in Equation (12) the derivation

of each 〈ZuZv〉 becomes very simple with ZX-calculus.

9 π

2 αu π 9αu
π

2

9 π

2 αv π 9αv
π

2

...
〈ZuZv〉 = 1

2n = cαucαv

π

2 92αu
π

2eiαu=
( fff ) (πππ)

π

2 Σ

Σ

π

2

π

cαu

isαu

=

(6)

Σ

Σ

π

2 π
π

2

cαu

isαu

= 0

= = 2cαu

. (12)

Here, again, sα = sin(α) and cα = cos(α), and each underbrace used refers only to the subdiagram
directly above. Note that after the second step the usage of linear combinations to handle the X-spider
with phase (−2αu) provides a way to continue the calculation, which would not be possible within the
conventional ZX-framework. From the permutation symmetry of the ansatz, the expectation value 〈ZiZ j〉
of each edge is of the same form [44]. Hence we have

〈C〉= |E|
2 −

1
2 ∑
(u,v)∈E

cos(αu)cos(αv), (13)

which implies
max

α
〈C〉= max

α∈{0,π}n
〈C〉= max

x
c(x) = c(y∗),

where we have used the observation that angles α∗ ∈{0,π}n encode a bit string y∗ via y∗i =
1
2−

1
2 cos(α∗i ).

Hence, as any globally optimal angles must directly encode an optimal solution to the MaxCut instance,
the expectation value 〈C〉 is NP-hard to optimize. Indeed, for MaxCut, (13) reproduces the quantity
of Equation 1 of [6] (up to an affine shift). This result is used throughout [6] via further reductions
to show that optimizing a number of other classes of PQCs is NP-hard in general. We have similarly
demonstrated that the single-qubit rotations ansatz is NP-hard to optimize for problems such as MaxCut,
but via a compact derivation using ZX-diagrams.

4.2 QAOA1 for MaxCut on a Simple Graph

Next we turn to QAOA [22, 29], for which we continue our use of MaxCut as a running example. For
simplicity we consider QAOA1, the lowest depth realization, which is indicative of the p > 1 case due
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to the alternating structure of the ansatz. Recall that for a QAOA state the MaxCut expectation value
reads 〈C〉 = |E|

2 −
1
2 ∑i, j∈E〈ZiZ j〉 . We begin with the specific graph G of Figure 3, before we consider

ring graphs in Section B.2, and arbitrary graphs in Appendix B.3. Observe how the structure of the graph

G =

1
2

3
4

Figure 3: Simple example graph to consider for MaxCut with QAOA

directly reappears in the diagrams below, which reflects the fact that the QAOA phase operator is derived
from the cost Hamiltonian. For deeper QAOA circuits, the graph structure will again appear at each layer
in the diagrammatic representation. Hence ZX-calculus provides a toolkit toward directly incorporating
or better understanding the relationship between the cost function and a given parameterized quantum
algorithm.

Here we demonstrate the edge expectation value calculation for QAOA1,

〈Z2Z3〉QAOA1 =
24

24

9γ

9γ

9γ
9γ

9β

9β

9β

9β

π

π

β

β

β

β

γ

γ

γ
γ

( fff )(πππ)
=

π

π

e−2iβ

9γ

9γ

9γ
9γ

2β

2β

γ

γ

γ
γ

(6)
=

π

π

9γ

9γ

9γ
9γ

Σ

Σ

π

cβ

−isβ

Σ

Σ

π

cβ

−isβ

γ

γ

γ
γ
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(i) (ii)
=

π

π

9γ

9γ

9γ
9γ

Σ

Σ

π

π

π

π

c2
β

−icβ sβ

−icβ sβ

−s2
β

γ

γ

γ
γ

(i)
= Σ
Σ

π

π

9γ

9γ

9γ9γ

γ

γ

γ
γ

π

π

9γ

9γ

9γ9γ

π

γ

γ

γ
γ

π

π

9γ

9γ

9γ9γ

π

γ

γ

γ
γ

π

π

9γ

9γ

9γ9γ

π

π

γ

γ

γ
γ

c2
β

−icβ sβ

−icβ sβ

−s2
β

(14)

(20)(21)(22)(23)
= Σ

Σ

0

isγcγ

isγc2
γ

−s2
γ cγ

c2
β

−icβ sβ

−icβ sβ

−s2
β

= cβ sβ sγcγ + cβ sβ sγc2
γ + s2

β
s2

γ cγ .
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The remaining expectation values can be similarly computed for each of the edges in E to give 〈C〉. In
the third step above, we could not have easily continued within the conventional ZX-calculus framework.
Whenever one needs to pull parameterized X-spiders through parameterized Z-spiders or vice versa, our
extension is utilized. The detailed calculation of the four contributions used in the last step is given in
Appendix C. Note that calculation of the general n-qubit case (cf. Appendix B.3) is surprisingly concise
compared to the special case of 4-qubits considered here.

We consider a hardware-efficient ansatz and two more general QAOA examples in Appendix B.

5 Outlook

We introduced an extension of the ZX-calculus to conveniently incorporate linear combinations of ZX-
diagrams. Moreover we demonstrated how this generalized diagrammatic framework can be applied to
the analysis of parameterized quantum circuits, in particular to the calculation of observable expectation
values. Further quantities of interest such as gradients may be similarly derived, as well as more com-
plicated PQC phenomenon such as barren plateaus studied, by combining our framework with several
distinct but complementary recent ZX-calculus advances [58, 34, 52]. Software implementation of these
results may facilitate novel approaches for automatic contraction of diagrams related to PQCs, including
but not limited to expectation values. A concrete next step is to rigorously derive such algorithms and
carefully analyze problems and PQC classes where they may yield advantages.

Future research could further formalize our approach as well as integrate it with other variants of ZX-
calculus, like ZH-calculus [3] or the ZX-framework for qudits [43, 51]. In particular the latter could facil-
itate novel insights into performance analysis of quantum alternating operator ansätze [29] for problems
like graph-coloring [54] and beyond [46]. Similarly, our approach could be likewise applied to applica-
tions beyond combinatorial optimization, like variational quantum eigensolvers for quantum chemistry
applications [16]. Generally, it is of interest to explore to what extent diagrammatic approaches may
ultimately aid in the design and analysis of better performing parameterized quantum circuit ansätze, as
well as help with important related challenges such as alleviating the cost of parameter setting, avoid-
ing undesirable features such as barren plateaus, or tailoring ansatz design to a given set of hardware
constraints.
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A Additional Rules for Linear Combinations of ZX-Diagrams

We introduce several additional rules which are useful for the calculation of expectation values for PQC
which we utilize in the derivations to follow.

Scalar-pull rule First, scalars can be pulled through the bubble. I.e. it does not matter if we write them
to the left or right of the bubbles.

Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n = Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n .

Linear combinations for states and effects Since we can put the scalar factor left or right of the
bubbles, we can simplify linear combinations in the case of states or effects. For states (no inputs), we
can cut the left half of the diagram

Σ

Σ

... nA

... nB

a

b

... n =: Σ

... nA

... nB

a

b

... n .

For effects (no outputs), we can cut the right half of the diagram

Σ

Σ

...m A

...m B

a

b

...m =: Σ

...m A

...m B

a

b

...m .

Direct connection of diagrams (no bubbles) We can also completely drop the bubbles and continue
the input and output wires through the sum symbols

Σ

Σ

...m ... nA

...m ... nB

a

b

...m ... n =: Σ

Σ

Aa
· · ·

··
·

· · ·

··
·

Bb
· · ·

··
·

· · ·

··
·

...m ... n .

However, we will not require this notation in the examples considered in this paper.

B Additional Examples

Here we continue our examples from Section 4 and diagrammatically derive MaxCut expectation values
for a hardware efficient ansatz as well as for QAOA1 on rings and general graphs.
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B.1 Hardware Efficient Ansatz

We consider a variant of a hardware efficient SU-2 2-local ansatz from Qiskit [2]. This ansatz was also
studied in [24]. For simplicity here we consider a 3-qubit realization,

|0〉 RY (β̃11) RZ(γ̃11) RY (β12) RZ(γ̃12)

|0〉 RY (β̃21) RZ(γ̃21) RY (β22) RZ(γ̃22)

|0〉 RY (β̃31) RZ(γ̃31) RY (β32) RZ(γ̃32)

=
1√
23

9 π

2 β̃11
π

2 γ̃11 9 π

2 β12
π

2 γ̃12

9 π

2 β̃21
π

2 γ̃21 9 π

2 β22
π

2 γ̃22

9 π

2 β̃31
π

2 γ̃31 9 π

2 β32
π

2 γ̃32

( fff ),(ccc)
=

1√
23

β̃11 γ11 9 π

2 β12 γ12

β̃21 γ21 9 π

2 β22 γ22

β̃31 γ31 9 π

2 β32 γ32

,

where we conveniently set γi j := γ̃i j +
π

2 and βi j := −β̃ i j
2 . To compute the expectation value of a given

cost Hamiltonian, we again requite expectation values of products of Pauli-Z operators. We demonstrate
how such calculations can be performed diagrammatically by considering again MaxCut as an example.
For the expectation value corresponding to a given edge (2,3) we have

〈Z2Z3〉=

1
23

β̃11

β̃21

β̃31

γ11

γ21

γ31

9π

2

9π

2

9π

2
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β22

β32

γ12

γ22

γ32

π

π
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9γ22

9γ32
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9β22

9β32

π

2

π

2

π

2

9γ11

9γ21

9γ31

9β̃11

9β̃21

9β̃31
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( fff ),(πππ)
=

1
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(6)
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cβ31

isβ31

Σ

Σ

9 π

2
π

2

9 π

2 π
π

2

cβ22

isβ22

Σ

Σ

9 π

2
π

2

9 π

2 π
π

2

cβ32

isβ32

· · ·

· · ·

· · ·
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(ccc)
(πππ)
( fff )
=

1
23

Σ

π

cβ11

−ieiγ11sβ11

Σ

π

cβ21

ieiγ21sβ21

Σ

π

cβ31

−ieiγ31sβ31

Σ

Σ

π π

cβ22

sβ22

Σ

Σ

π π

cβ32

sβ32

Σ

π

cβ11

−isβ11

Σ

π

cβ21

−isβ21

Σ

π

cβ31

−isβ31

(17)
= c2

β11
c2

β21
cβ22c2

β31
cβ32− ic2

β11
c2

β21
cβ22cβ31sβ31sβ32eiγ31

+ ic2
β11

c2
β21

cβ22cβ31sβ31sβ32− c2
β11

c2
β21

cβ22cβ32s2
β31

eiγ31

+ ic2
β11

cβ21c2
β31

sβ21sβ22sβ32eiγ21− ic2
β11

cβ21c2
β31

sβ21sβ22sβ32

+ c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31eiγ21eiγ31 + c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31eiγ21

+ c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31eiγ31 + c2
β11

cβ21cβ31cβ32sβ21sβ22sβ31

+ ic2
β11

cβ21sβ21sβ22s2
β31

sβ32eiγ21eiγ31− ic2
β11

cβ21sβ21sβ22s2
β31

sβ32eiγ31

+ c2
β11

cβ22c2
β31

cβ32s2
β21

eiγ21 + ic2
β11

cβ22cβ31s2
β21

sβ31sβ32eiγ21eiγ31

− ic2
β11

cβ22cβ31s2
β21

sβ31sβ32eiγ21− c2
β11

cβ22cβ32s2
β21

s2
β31

eiγ21eiγ31

− c2
β21

cβ22c2
β31

s2
β11

sβ32eiγ11 + ic2
β21

cβ22cβ31cβ32s2
β11

sβ31eiγ11eiγ31

+ ic2
β21

cβ22cβ31cβ32s2
β11

sβ31eiγ11− c2
β21

cβ22s2
β11

s2
β31

sβ32eiγ11eiγ31

+ icβ21c2
β31

cβ32s2
β11

sβ21sβ22eiγ11eiγ21 + icβ21c2
β31

cβ32s2
β11

sβ21sβ22eiγ11

+ cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11eiγ21eiγ31− cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11eiγ21

− cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11eiγ31 + cβ21cβ31s2
β11

sβ21sβ22sβ31sβ32eiγ11

− icβ21cβ32s2
β11

sβ21sβ22s2
β31

eiγ11eiγ21eiγ31− icβ21cβ32s2
β11

sβ21sβ22s2
β31

eiγ11eiγ31

+ cβ22c2
β31

s2
β11

s2
β21

sβ32eiγ11eiγ21 + icβ22cβ31cβ32s2
β11

s2
β21

sβ31eiγ11eiγ21eiγ31

+ icβ22cβ31cβ32s2
β11

s2
β21

sβ31eiγ11eiγ21 + cβ22s2
β11

s2
β21

s2
β31

sβ32eiγ11eiγ21eiγ31 , (16)

where in the last step we have used the identity

`1π r1π

`2π m2π m2π r2π

`3π m3π m3π r3π

=
f r1r2r3
m2m3

23

(`1+m2+`3+m3+r3)π (r1+m2+`3+m3+r3)π

(`2+m2+r2)π
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=

0 if
`1 +m2 + `3 +m3 + r3 odd
∨r1 +m2 + `3 +m3 + r3 odd
∨`2 +m2 + r2 odd

f r1r2r3
m2m3

else
, (17)

with `1, `2, `3,m2,m3,r1,r2,r3 ∈ {0,1}×8 and f r1r2r3
m2m3

:= (−1)m2r1+(m2⊕m3)r2+m3r3 , which is the proven in
Appendix D.2. Observe that in the second step above any dependency on the parameters γ12,γ22, and
γ32 was immediately shown to cancel out (due to commuting with the diagonal cost Hamiltonian), and
likewise for β12 (due to the locality of Z2Z3). Similar simplifications are often easily obtained from the
diagrammatic perspective.

The formula (16) exemplifies the significant difficulty faced in obtaining analytical results for PQCs,
even for relatively small ansätze. Nevertheless, in our analysis the complexity remained manageable with
the diagrammatic approach up until the very last step, were we applied a simple numerical procedure to
collect all the surviving terms (according to (17)) of the contraction. Different hardware-efficient ansätze
may be similarly considered, including ones tailored to specific hardware topology. As mentioned, for
deeper or more complicated ansätze, analysis may be aided or automated through implementation in
software. Here (15) demonstrates how diagrammatic approaches can yield more compact representations
of expectation values (as compared to (16)).

B.2 QAOA for MaxCut on Ring graphs

We consider the simple example of the one-dimensional “ring-of-disagrees”, i.e., 2-regular connected
graphs, and rederive the QAOA1 expectation value as previously shown in [22, 53]. First consider the
case of QAOA with arbitrary number of layers p, with n� p. From the problem symmetry, it suffices to
consider the expectation value of a single edge term 〈ZiZi+1〉QAOAp . Applying the lightcone rule (9), the
outermost reduced phase-separation layer (10) reads

...
...

i

i+1

i+2p−1

i+2p

i−1

γ

=

γ γ

γ

...
...· · ·

.

Hence for the QAOAp expectation value we obtain

〈ZiZi+1〉QAOAp
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=
1

22(p+1)

i+ p+1

i+ p

...

i+2

i+1

i

i−1

...

i− p+1

i− p

...

...

9γ19γ1

9γ1

9γ1

9γ1

9γ1

9β1

...

9β1

9β1

9β1

9β1

...

9β1

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

9γp

9γp

9γp

9βp

9βp

π

π

βp

βp

γp

γp

γp

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

β1

β1

...

β1

β1

β1

...

β1

...

...

γ1

γ1

γ1

γ1

γ1

...

...

.

Observe how the problem and structure again appears in the above diagram (i.e., p-neighborhoods of the
edge (i, i+1) are line graphs). Furthermore, the utility of the lightcone rule is clearly demonstrated here.
Continuing for the p = 1 case, we get

〈ZiZi+1〉QAOA1 =
23

24

i+2

i+1

i

i−1

9γ

9γ

9γ

9β

9β

π

π

β

β

γ

γ

γ

(πππ),( fff )
=

e−2iβ

2

π

π

9γ

9γ

9γ

2β

2β

γ

γ

γ
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(6)
=

1
2

π

π

9γ

9γ

9γ

Σ

Σ

π

cβ

−isβ

Σ

Σ

π

cβ

−isβ

γ

γ

γ

(i),(ii)
=

1
2

π

π

9γ

9γ

9γ

Σ

Σ

π

π

π

π

c2
β

−icβ sβ

−icβ sβ

−s2
β

γ

γ

γ

(i)
=

1
2

Σ

Σ

π

π

9γ

9γ

9γ

γ

γ

γ

π

π

9γ

9γ

9γ

π

γ

γ

γ

π

π

9γ

9γ

9γ

π

γ

γ

γ

π

π

9γ

9γ

9γ

π

π

γ

γ

γ

c2
β

−icβ sβ

−icβ sβ

−s2
β
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(8)
=

1
2

Σ

π

π

9γ

9γ

9γ

π

γ

γ

γ

π

π

9γ

9γ

9γ

π

π

γ

γ

γ

−2icβ sβ

−s2
β

(πππ)
(8)
=

e2iγ

23 Σ

π

π

92γ

92γ

π

π

92γ

92γ

−2icβ sβ

−s2
β

(7)
= −2icβ sβ

e2iγ

23

π

π

92γ

92γ

(7)
=
−2icβ sβ

24

Σ

Σ

π

π

π π

π π

cγ

isγ
Σ

Σ

π

π

cγ

isγ

= 2cβ sβ sγcγ

The result is consistent with that of [53, Thm. 1]. The expression obtained for 〈C〉 is easily optimized
to reproduce the performance result obtained numerically for the ring of disagrees in [22]. Similar to the
previous examples, here we saw the necessity of our extension for handling X-Z commutations in the
third and seventh steps of the derivation above.

In Appendix B.3 we show the same calculation for MaxCut on general graphs, as obtained for
QAOA1 in [53, Thm. 1]. Similar techniques may be applied and results obtained for a wide variety
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of important problems, for instance quadratic binary optimization problems of which MaxCut is a spe-
cial case.

B.3 QAOA1 for MaxCut on General Graphs

For the QAOA expectation value for MaxCut 〈C〉 = |E|
2 −

1
2 ∑u,v∈E〈ZuZv〉 on general graphs we need to

calculate the contributions 〈ZuZv〉. In this section, we perform the calculation for general graphs in the
QAOA, p = 1 case, reproducing results obtained in [53].

Following the lightcone rule from Equation (9) we obtain for Z-Z terms in the MaxCut QAOA1
expectation value on a general graph G = (V,E)

〈ZuZv〉QAOA1

(9)
=

1
2|V |

...M 1
uv

...N 1
uv

v

u
9γ 9β

π

π

...

...

β γ

...

...

(11)
(πππ)
=

e−2iβ

2|N 1
uv|+2

π

π

...

9γ 2β γ

...

(6)
(ii)
=

1
2|N 1

uv|+2

π

π

...

9γ Σ

Σ

π

π

π

π

c2
β

−icβ sβ

−icβ sβ

−s2
β

γ

...
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(i)
=

1
2|N 1

uv|+2 Σ

Σ

π

π

...

9γ γ

...

π

π

...

9γ
π

γ

...

π

π

...

9γ
π

γ

...

π

π

...

9γ
π

π

γ

...

c2
β

−icβ sβ

−icβ sβ

−s2
β

.

The first summand vanishes and the second and third are linked by symmetry. We continue with the
second summand (the I-X-term)

1
2|N 1

uv|+2

π

π

...

9γ

π

γ

...

(10)
=

2nu+2nuv+nv+1

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

γ

· · ·

· · ·

· · ·

π

γ

γ

γ

γ

γ

γ

γ

γ

γ

· · ·

· · ·

· · ·

...

...

... nu

nuv

nv

v

u
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(πππ)
(ccc)
(8)
=

2nu+nuv+1

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

· · ·

· · ·

πγ

π γ

πγ

π γ

π γ

· · ·

· · ·

...

... nu

nuv

nv

v

u

( fff )
=

2nu+nuv+nv+1

2|N 1
uv|+2

π

π

9γ

9γ 9γ

· · ·

· · ·

π γ π γ

π γ

· · ·

· · ·

nuv +nu

( fff )
(18)
=

cnu+nuv
γ

2 π

π

9γ π γ

(8)
(7)
=

cnu+nuv
γ

22
π

π

Σ

Σ

π

π

cγ

isγ

=isγcnu+nuv
γ ,

where we have used the size of the exclusive neighborhoods nu := |Nu \{Nv∪u}|, nv := |Nv \{Nu∪ v}|,
and the joined neighborhood nuv := |Nu∩Nv|, the relation |N 1

uv|= nu +nuv +nv, as well as

9γ π γ
(8)
=

eiγ
√

2
92γ
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(7)
=

1
2 Σ

Σ

π

π

cγ

isγ

= cγ . (18)

Analogously the third summand (the X-I-term) can be obtained as

π

π

...

9γ

π

γ

...

= isγcnv+nuv
γ .

The fourth summand (the X-X-term) reads

1
2|N 1

uv|+2

π

π

...

9γ

π

π

γ

...

(10)
=

2nu+2nuv+nv+1

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

· · ·

· · ·

· · ·

π

π

γ

γ

γ

γ

γ

γ

γ

γ

γ

· · ·

· · ·

· · ·

...

...

... nu

nuv

nv

v

u
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(πππ)
(8)
=

2nu+2nuv+nv

2|N 1
uv|+2

π

π

...

...

...

9γ

9γ

9γ

9γ

9γ

9γ

9γ

9γ

· · ·

· · ·

· · ·

πγ

π γ

πγ

π γ

πγ

π γ

πγ

π γ

· · ·

· · ·

· · ·

...

...

... nu

nuv

nv

v

u

( fff )
(7)
=

2nuv

22

(
eiγ
√

2

)nu+2nuv+nv

π

π

92γ
92γ

· · ·

· · ·

92γ

92γ

92γ

92γ

· · ·

· · ·

· · ·

92γ

92γ

· · ·

· · ·

nv

nuv

nu

(18)
(19)
=

cnu+nv
γ

22

π

π

Σ

Σ

π

π

c2
γ

−s2
γ

· · ·

· · ·
Σ

Σ

π

π

c2
γ

−s2
γ

nuv times

(ii)
=
−cnu+nv

γ

22

{(
nuv

1

)
s2

γ cnuv−2
γ

π π

π π

+

(
nuv

3

)
s6

γ cnuv−6
γ

π π π π

π π π π
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+

(
nuv

5

)
s10

γ cnuv−10
γ

π π π π π π

π π π π π π

+ . . .

}

=−cnu+nv
γ ∑

i=1,3,...

(
nuv

i

)
(s2

γ)
i(c2

γ)
nuv−i ,

where we have used

92γ

92γ

( fff )
=

92γ

92γ

(7)
=

(
e−iγ
√

2

)2
Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

=2
(

e−iγ
√

2

)2

Σ

Σ

π

π

c2
γ

−s2
γ

. (19)

Hence, the total Z-Z-expectation value reads

〈ZuZv〉QAOA1 = cβ sβ sγ

(
cnu+nuv

γ + cnv+nuv
γ

)
+ cnu+nv

γ s2
β ∑

i=1,3,...

(
nuv

i

)
(s2

γ)
i(c2

γ)
nuv−i.

This result is consistent with the corresponding QAOA1 performance analysis of [53]; applying the
binomial theorem to write the sum above in closed form then leads directly to the result of [53, Thm. 1].



294 Diagrammatic Analysis for Parameterized Quantum Circuits

C Details on QAOA1 for MaxCut on Simple Graph

We calculate each of the four summands in (14). The first summand (the I-I-term) reads

π

π

9γ

9γ

9γ
9γ

γ

γ

γ
γ

( fff )
=

π

π

9γ

9γ

9γ

9γ

γ

γ

γ

γ

(8)
=

1
24

π

π

= 0 . (20)

The second summand (the I-X-term) reads

π

π

9γ

9γ

9γ
9γ

π

γ

γ

γ
γ

(πππ)
=

π

π

9γ

9γ

9γ
9γ

γ

π

γ

γ

π γ

( fff )
=

π

π

9γ

9γ

9γ

9γ

γ

γ

π γ

π γ
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(8)
=

1
22

π

π

9γ

9γ

π γ

π γ

=
1
22

π

π

9γ

9γ

π γ

π γ

(8)
=

1
23

π

π

e2iγ 92γ

92γ

(7)
=

1
24

π

π

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

(i)
=

1
24

Σ

Σ

π

π

π π

π π

cγ

isγ

Σ

Σ

π

π

cγ

isγ
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(ii)
=

1
24

π π

π π

isγcγ = isγcγ (21)

.

The third summand (the X-I-term) reads

π

π

9γ

9γ

9γ
9γ

π

γ

γ

γ
γ

(πππ)
=

π

π

9γ

9γ

9γ
9γ

π γ

π

γ

πγ
γ

( fff )
=

π

π

9γ

9γ

9γ

9γ

π γ

π γ

π γ

γ

(8)
=

1
2

π

π

9γ

9γ

9γ

π γ

π γ

π γ

=
1
2

π

π

9γ

9γ

9γ

π γ

π γ

π γ

(8)
=

1√
25

π

π

e3iγ

92γ

92γ

92γ
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(7)
=

1
24

π

π

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

(i)
=

1
24

Σ

Σ

π

π

π π

π π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

(ii)
=

1
24

π π

π π

isγc2
γ = isγc2

γ (22)

.

The fourth summand (the X-X-term) reads

π

π

9γ

9γ

9γ
9γ

π

π

γ

γ

γ
γ

(πππ)
=

π

π

9γ

9γ

9γ
9γ

π γ

2π

γ

πγ

π γ
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( fff )
=

π

π

9γ

9γ

9γ

9γ

π γ

π γ

γ

π γ

(8)
=

1
2

π

π

9γ

9γ
9γ

π γ

π γ

π γ

=
1
2

π

π

γ

γ

γ

π 9γ

π 9γ

π 9γ

(8)
=

1√
25

π

π

e3iγ

92γ

92γ

92γ

(7)
=

1
24

π

π

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ

(i)
=

1
24

Σ

Σ

π

π

π π

cγ

isγ

Σ

Σ

π

π π

π

cγ

isγ

Σ

Σ

π

π

cγ

isγ
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(ii)
=

1
24

π π

ππ

π π

(−s2
γ cγ) = −s2

γ cγ . (23)

D Proofs of useful ZX-diagram Identities

D.1 Phase-gadget identity

Proof of (8). First, we can us the spider fusion rule to write
. . . . . .

tπ

−γ `π rπ γ

bπ

. . . . . .

( fff )
=

. . . . . .
tπ

−γ `π rπ γ

bπ

. . . . . .

.

Then, we just consider the inner part

tπ

−γ `π rπ γ

bπ

(πππ)
=

tπ

−γ (t+`+b)π rπ γ

bπ

( fff )
=

tπ

−γ (t+`+b)π rπ γ

bπ

=

tπ

t+`+bπ −γ

rπ γ

bπ

( fff )
=

tπ

(t+`+b)π −γ

rπ γ

bπ

(bbb)
=

1√
2

tπ

(t+`+b)π −γ

rπ γ

bπ
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(πππ)( fff )
=

1√
2

(t+r)π rπ

γ (t+`+b+r)π −γ

bπ

.

If t + l +b+ r even, we have

1√
2

(t+r)π rπ

γ −γ

bπ

(iiiddd),( fff )
=

1√
2

(t+r)π rπ

bπ

(ccc)
=

1
2

(t+r)π rπ

bπ

(iiiddd),( fff )
=

1
2

tπ

bπ

,

else, if t + l +b+ r odd, we have

1√
2

(t+r)π rπ

γ π −γ

bπ

( fff ),(πππ)
=

1√
2

eiγ

(t+r)π rπ

−2γ

(b+1)π π

,

which proves (8).

D.2 Hardware Efficient Ansatz

Proof of (17).

`1π r1π

`2π m2π m2π r2π

`3π m3π m3π r3π

(πππ),( fff )
=

`1π m2π r1π

`2π m2π (m2+m3)π r2π

`3π m3π m3π r3π

(ccc),(πππ),( fff )
= (−1)m2r1+(m2⊕m3)r2+m3r3︸ ︷︷ ︸

=: f
r1r2r3
m2m3

`1π r1π

`2π m2π r2π

`3π m3π r3π

( fff )
= f r1r2r3

m2m3

`1π r1π

`2π m2π r2π

`3π m3π r3π

( fff )
= f r1r2r3

m2m3

`1π r1π

(`3+m3+r3)π

`2π m2π r2π
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(πππ),( fff )
= f r1r2r3

m2m3

`1π r1π

(m2+`3+m3+r3)π

(`2+m2)π r2π

( fff )
= f r1r2r3

m2m3

`1π r1π

(`2+m2)π (m2+`3+m3+r3)π r2π

(hhhoooppp fff ),( fff )
=

f r1r2r3
m2m3

2

`1π r1π

(`2+m2+r2)π (m2+`3+m3+r3)π

(hhhoooppp fff ),( fff )
=

f r1r2r3
m2m3

22

`1π r1π

(`2+m2+r2)π (m2+`3+m3+r3)π

(ccc),( fff )
=

f r1r2r3
m2m3

23

(`1+m2+`3+m3+r3)π (r1+m2+`3+m3+r3)π

(`2+m2+r2)π
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Quipper and Proto-Quipper are a family of quantum programming languages that, by their nature

as circuit description languages, involve two runtimes: one at which the program generates a circuit

and one at which the circuit is executed, normally with probabilistic results due to measurements.

Accordingly, the language distinguishes two kinds of data: parameters, which are known at circuit

generation time, and states, which are known at circuit execution time. Sometimes, it is desirable

for the results of measurements to control the generation of the next part of the circuit. Therefore,

the language needs to turn states, such as measurement outcomes, into parameters, an operation we

call dynamic lifting. The goal of this paper is to model this interaction between the runtimes by

providing a general categorical structure enriched in what we call “bisets”. We demonstrate that the

biset-enriched structure achieves a proper semantics of the two runtimes and their interaction, by

showing that it models a variant of Proto-Quipper with dynamic lifting. The present paper deals with

the concrete categorical semantics of this language, whereas a companion paper [7] deals with the

syntax, type system, operational semantics, and abstract categorical semantics.

1 Introduction

Quipper [9, 10] is a functional programming language for designing quantum circuits. It shares many

properties with hardware description languages. For example, Quipper distinguishes two kinds of run-

time: (i) Circuit generation time. This is when a quantum circuit is generated on a classical computer.

(ii) Circuit execution time. This is when a quantum circuit is run on a quantum computer or simulator.

As a result of these two runtimes, Quipper makes a distinction between (i) parameters and (ii) states. A

parameter is a value known at circuit generation time, such as a boolean for an if-then-else expression.

A state is a value only known at circuit execution time, such as the state of a qubit or a bit in a circuit.

The distinction between parameters and states reflects the assumption that classical computers and

quantum devices may reside in different physical locations and that they cooperate to perform compu-

tations. This is also an assumption shared by the quantum computing model QRAM [12]. In practice,

the computation in a quantum device can interleave with the computation in a classical computer. This

means that there should be a mechanism to turn the results of measurements, which are states, into pa-

rameters. Dynamic lifting is a construct that makes this possible in the programming language. It lifts

the result of a measurement from a quantum computer to a boolean in the programming language, where

it can then be used as a parameter in the construction of the rest of the circuit. This enables more general

post-processing for quantum computation than the simpler model where all measurements are done at

the end. Some quantum algorithms, such as those involving magic state distillation, require dynamic

lifting, while many others do not.

Since Quipper is implemented as an embedded language in the host language Haskell, it does not

have a formal semantics. Proto-Quipper [6, 8, 17, 18] is a family of quantum programming languages that

http://dx.doi.org/10.4204/EPTCS.394.16
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are intended to provide Quipper with a formal foundation such as operational and categorical semantics.

Like Quipper, Proto-Quipper has the two runtimes and distinguishes between parameters and states.

The semantics of the two runtimes depends on the meaning of “circuit” and “quantum operation”.

Rather than fixing one specific kind of circuit or quantum operation, the programming language is para-

metric on two small categories M and Q, which are assumed to be given but otherwise arbitrary, subject

to some conditions. The first of these is a symmetric monoidal category M, whose morphisms represent

quantum circuits. The second is a symmetric monoidal category Q, whose morphisms represent quantum

operations. We note that there is an important conceptual difference between these categories. The mor-

phisms of M represent circuits as syntactic entities. For example, Quipper allows circuits to be boxed,

which turns them into a data structure that can be inspected and operated on. A boxed circuit may then

be reversed, printed, iterated over, etc. Thus, M is typically a free category generated by some collection

of (quantum and classical) gates. Measurement can be supported in the category M, but it will merely

be a gate in a circuit, turning a qubit into a classical bit of the circuit. On the other hand, the category Q

represents quantum operations, which are physical entities. Typically, Q is a category of superoperators

(which include unitary operations and measurements). We assume that M and Q have the same objects,

and that there is a symmetric monoidal interpretation functor J : M → Q, which interprets circuits by the

quantum operations they embody.

We emphasize that measurement and dynamic lifting are two different concepts that should not be

confused. Measurement is merely a gate in a quantum circuit, which turns a qubit (a state) into a classical

bit (also a state). On the other hand, dynamic lifting is an operation of the programming language, which

turns a classical bit (a state) into a boolean of the programming language (a parameter). In the categorical

semantics, measurement is a morphism Qubit → Bit in the categories M and Q. On the other hand,

dynamic lifting is not a morphism in M or in Q; rather, it is a morphism in a certain Kleisli category.

Specifically, in our recent work [7], we proposed a type system, an operational semantics and an

abstract categorical semantics for a version of Proto-Quipper with dynamic lifting, which is called Proto-

Quipper-Dyn. Dynamic lifting is modeled as a map Bit → T Bool, where T is a commutative strong

monad, such that the following diagram commutes.

Bit

Bool T Bool

dynlift

η

init

We have shown in [7] that our categorical model is sound with respect to the type system and operational

semantics of the language. However, the categorical semantics in [7] is purely abstract, simply listing the

properties that such a categorical model must have, without showing that such a category actually exists

or giving an example of one.

In this paper, we construct a concrete model for the general categorical semantics of [7]. Constructing

such a model is challenging because it requires a novel combination of quantum circuits (morphisms in

M) and quantum operations (morphisms in Q): The categorical model must be able to account for both

quantum circuits and quantum operations, as well as operations such as boxing, dynamic lifting, and of

course higher-order functions.

Our technical innovation to make all of this work is biset enrichment. A biset is an object in the

category Set2op

, or, more concretely, it is a triple (X0,X1, f ) of sets X0,X1 and a function f : X1 → X0. A

morphism of bisets is an obvious commutative square. We will consider categories enriched in bisets.

Concretely, such a category has one kind of objects, but two kinds of morphisms, which we use to model

quantum circuits and quantum operations, respectively. Our construction is based on a biset-enriched

category C constructed from M and Q. Its objects are the same as those of M and Q, and its hom-bisets
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are (Q(A,B),M(A,B),JA,B), where the function JA,B : M(A,B)→ Q(A,B) is given by the interpretation

functor J. A global element f of C(A,B) consists of a pair of functions f0, f1 that makes the following

diagram commute.

1 M(A,B)

Q(A,B)

f1

f0

JA,B

Thus, f1 is a quantum circuit, which can be used as a quantum operation f0 by composing with JA,B.

The biset-enriched category C therefore maintains a distinction between M and Q while taking the

interpretation functor J into account. To model the higher-order features of the programming language,

we embed C in a monoidal closed biset-enriched category C̃, which we construct as a certain subcategory

of the biset-enriched category of presheaves over C. We show that C̃ satisfies the axiomatization specified

in [7]. Therefore it is a concrete model for Proto-Quipper with dynamic lifting.

Our approach to modeling dynamic lifting differs from recent work by Lee et al. [15], where the

category of quantum channels, which generalize quantum circuits with a notion of branching for mea-

surement results, is used to model a single runtime. Because our model accounts separately for circuit

generation time (category M) and circuit execution time (category Q), we are able to support a type sys-

tem that distinguishes quantum circuits from quantum computations that use dynamic lifting [7]. This

prevents a class of runtime errors in Quipper caused by boxing a computation that uses dynamic lifting.

The rest of the paper is structured as follows. In Section 2, we first review some basic concepts from

enriched category theory, and then recall from [7] the axiomatization of an enriched categorical semantics

for dynamic lifting. In Section 3, we define the biset-enriched category C. We show its presheaf category

C admits a commutative strong monad and a linear-non-linear adjunction. In Section 4, we construct a

reflective subcategory C̃ of C and show that it is an enriched categorical model for dynamic lifting.

2 An enriched categorical semantics for dynamic lifting

Enriched categories are a generalization of categories where, instead of hom-sets, one works with hom-

objects, which are objects in a monoidal category.

Definition 2.1. Let V be a monoidal category. A V -enriched category A is given by the following:

• A class of objects, also denoted A.

• For any A,B ∈ A, an object A(A,B) in V .

• For any A ∈ A, a morphism uA : I → A(A,A) in V , called the identity on A.

• For any A,B,C ∈ A, a morphism cA,B,C : A(A,B)⊗A(B,C)→ A(A,C) in V , called composition.

• The composition and identity morphisms must satisfy suitable diagrams in V (see [2, 11]).

Remarks

• Many concepts from the theory of non-enriched categories can be generalized to the enriched

setting. For example, V -functors, V -natural transformations, V -adjunctions, and the V -Yoneda

embedding are all straightforward generalizations of their non-enriched counterparts. We refer the

reader to [2, 11] for comprehensive introductions. Symmetric monoidal categories can also be

generalized to the enriched setting (see Appendix A for a definition).
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• In the rest of this paper, when we speak of a map f : A → B in a V -enriched category A, we mean

a morphism of the form f : I → A(A,B) in V . Furthermore, when g : B → C is also a map in A,

we write g◦ f : A →C as a shorthand for

I
f⊗g
→ A(A,B)⊗A(B,C)

c
→ A(A,C).

• A V -enriched category A gives rise to an ordinary (non-enriched) category V (A), called the un-

derlying category of A.1 The objects of V (A) are the objects of A and the hom-sets of V (A) are

defined as V (A)(A,B) = V (I,A(A,B)), for any A,B ∈ V (A). Similarly, a V -functor F : A → B

gives rise to a functor V F : V (A)→V (B) and a V -natural transformation α : F → G gives rise to

a natural transformation V α : V F →V G.

The construction in this paper is parameterized by two small symmetric monoidal categories, denoted

by M and Q. We fix M and Q once and for all and require the following:

(1) M and Q have the same objects, including a distinguished object called Bit. The category M has

distinguished morphisms zero,one : I → Bit.

(2) Q has a coproduct Bit = I + I, and the tensor product in Q distributes over this coproduct.

(3) There is a strict symmetric monoidal functor J : M→Q that is the identity on objects and J(zero)=
inj1 : I → I+ I,J(one) = inj2 : I → I + I. We call J the interpretation functor.

(4) The category Q is enriched in convex spaces. That is, for any real numbers p1, p2 ∈ [0,1] such

that p1 + p2 = 1, and any maps f ,g ∈ Q(A,B), there is a convex sum p1 f + p2g ∈ Q(A,B), and

the convex sum satisfies certain standard conditions which are detailed in Appendix C. Moreover,

composition is bilinear with respect to convex sum, i.e., (p1 f1+ p2 f2)◦g = p1( f1 ◦g)+ p2( f2 ◦g)
and h◦ (p1 f1 + p2 f2) = p1(h◦ f1)+ p2(h◦ f2).

(5) For any A ∈Q, and f : I → Bit⊗A∈ Q, we have f = p1(inj1⊗ f1)+ p2(inj2⊗ f2), where inj1, inj2 :

I → I + I and p1, p2 ∈ [0,1] are uniquely determined real numbers such that p1 + p2 = 1. When

pi 6= 0, the map fi : I → A is also unique.

Perhaps it is useful to explain more specifically what we mean when we say that M and Q are fixed

“once and for all”. The point is that these categories are not only used in the categorical semantics, but

also in the operational semantics of Proto-Quipper-Dyn (i.e., to run the program, we must know what

a circuit is and what a quantum operation is). Therefore, these categories should be regarded as given

as part of the language specification, rather than as a degree of freedom in the semantics. On the other

hand, nothing in the operational or denotational semantics depends on particular properties of M and Q

other than properties (1)–(5) above. Therefore, Proto-Quipper-Dyn can handle a wide variety of possible

circuit models and physical execution models.

In practice, the category M will be a category of quantum circuits and the category Q will be a

category of quantum operations. These categories will typically have additional objects, such as Qubit

and perhaps Qutrit, and additional morphisms, such as H : Qubit → Qubit and Meas : Qubit → Bit.

Requirement (5) is only needed in the operational semantics of Proto-Quipper-Dyn; it is not needed for

the denotational semantics.

We now recall the enriched categorical semantics for dynamic lifting specified in [7].

1We use V (A) to denote the underlying category, rather than the usual U(A), because the letter U will serve another purpose

in this paper.
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Definition 2.2. Let V be a cartesian closed category with coproducts. A V -category A is a model for

Proto-Quipper with dynamic lifting if it satisfies the following properties.

a A is symmetric monoidal closed, i.e., it is symmetric monoidal and there is a V -adjunction −⊗A⊣
A ⊸− for any A ∈ A.

b A has coproducts. Note that the tensor products distribute over coproducts, because −⊗A is a left

adjoint functor for any A ∈ A, which preserves coproducts.

c A is equipped with a V -adjunction p : V → A ⊣ ♭ : A → V such that p is a strong monoidal

V -functor. This implies that p(1)∼= I and p(X ×Y )∼= pX ⊗ pY .

d A is equipped with a commutative strong V -monad T . For any A,B ∈ A, we write tA,B : A⊗T B →
T (A⊗B) for the strength and sA,B : TA⊗B → T (A⊗B) for the costrength.

e Let V (A) be the underlying category of A, V T be the underlying monad of T , and KlV T (V (A))
be the Kleisli category of V T . The Kleisli category KlVT (V (A)) is enriched in convex spaces. In

other words, for any A,B,C ∈ A, if f ,g : A → T B and p,q ∈ [0,1] , p+ q = 1, then there exists a

convex sum p f +qg : A → T B. Moreover, for any h : C → TA,e : B → TC, we have the following:

µ ◦T (p f +qg)◦h = p(µ ◦T f ◦h)+q(µ ◦T g◦h),

µ ◦Te◦ (p f +qg) = p(µ ◦Te◦ f )+q(µ ◦Te◦g).

f There are fully faithful embeddings M
ψ
→֒V (A) and Q

φ
→֒ KlVT (V (A)). These embedding functors

are strong monoidal, and φ preserves the convex sum. Moreover, the following diagram commutes

for any S,U ∈ M.

M(S,U) V (A)(S,U)

Q(S,U) KlV T (V (A))(S,U)

ψS,U

JS,U ES,U

φS,U

Here, E : V (A)→ KlV T (V (A)) is the functor such that E(A) = A and E( f ) = η ◦ f .

g Let S denote the set of objects in the image of ψ . For any S,U ∈ S , there is an isomorphism

♭(S ⊸U)
e
∼= A(S,U).

h There are maps dynlift : Bit → T Bool and init : Bool → Bit in A such that the following diagram

commutes.
Bit

Bool T Bool

dynlift

η

init

Remarks

• Condition c gives rise to a comonoid structure dupX : pX → pX ⊗ pX and discardX : pX → I for

any X ∈ V . Moreover, for any map f : X →Y in V , we have the following in A.

dupY ◦ p f = (p f ⊗ p f )◦dupX .
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• Objects in the image of the functor p are called parameter objects in A. Such objects are equipped

with maps dup : A → A⊗A and discard : A → I. In particular, Bool := I+ I = p(1)+ p(1) = p(2)
is a parameter object.

• Using condition g, we define box= p(e) and unbox= p(e−1), and we have

p♭(S ⊸U)
box/unbox

∼= pA(S,U).

• Note that

KlVT (V (A))(A,B)=V (A)(A,V T B)=V (1,A(A,T B))=V (1,KlT (A)(A,B))=V (KlT (A))(A,B).

• The Kleisli category KlVT (V (A)) is monoidal because V T is a commutative strong monad and

V (A) is monoidal. For any f : A1 →V T B1 and g : A2 →V T B2 in KlV T (V (A)), we define f ⊗g ∈
KlVT (V (A))(A1 ⊗A2,B1 ⊗B2) by

A1 ⊗A2
f⊗g
→ V T B1 ⊗V T B2

s
→V T (B1 ⊗V T B2)

Tt
→V TV T (B1 ⊗B2)

µ
→V T (B1 ⊗B2).

• Since ψ(S) = φ(S) for any S ∈ M,Q, we define Bit = ψ(Bit) = φ(Bit) ∈ A.

• Condition f expresses the requirement that the enriched category A must combine both categories

M and Q, i.e., they are subcategories of V (A) and its Kleisli category, respectively. Thus A has

both quantum circuits and quantum operations. The commutative diagram implies that a circuit in

A can be used as a quantum operation.

• In [7], we have shown that conditions a-h are sufficient to give a model of Proto-Quipper-Dyn that

is sound with respect to its type system and an operational semantics.

3 A biset-enriched category C and its category of presheaves C

3.1 Biset enrichment

We now begin our construction of a concrete model satisfying Definition 2.2. Let 2 be the category with

two objects 0,1 and one nontrivial arrow 0 → 1. Let V = Set2op

be the category of functors from 2op

to Set. Concretely, the objects of V are triples (A0,A1, f ), where A0,A1 are sets and f is a function

A1 → A0. We call such a triple a biset. A morphism in V from (A0,A1, f ) to (B0,B1,g) is a pair (h0,h1),
where h0 : A0 → B0 and h1 : A1 → B1 are functions such that the following diagram commutes.

A1 B1

A0 B0

h1

f g

h0

Because it is a presheaf category, the category of bisets V = Set2op

is complete, cocomplete, and cartesian

closed. We write A ⇒ B to denote an exponential object in V .

The category V is itself a V -category where the hom-object V (A,B) is given by the exponential

object A ⇒ B. We write HomV (A,B) to denote a hom-set when viewing V as an ordinary category. Any

set X can be viewed as a trivial biset (X ,X , Id). Therefore, any ordinary category can be viewed as a

trivial biset-enriched category. For example, Set can be viewed as a V -category, where the hom-objects

are given by Set(A,B) = (Set(A,B),Set(A,B), Id) for any A,B ∈ Set.
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Definition 3.1. We define V -functors U0(A0,A1,a) = A0 : V → Set, and ∆(X) = (X ,X , Id) : Set → V .

The V -functor ∆ is fully faithful and U0 is strong monoidal. Note that there is also another functor

U1(A0,A1,a) = A1 : V → Set, but it is only an ordinary functor, not a V -functor. This is because for

A,B ∈ V , there does not in general exist a morphism A ⇒ B → Set(A1,B1) in V . The functor U1 will

play no role in this paper, but the two V -functors U0 and ∆ will be important.

Proposition 3.2. There is a V -adjunction U0 : V → Set ⊣ ∆ : Set → V . We write T for the V -monad

∆◦U0, it is a commutative strong V -monad.

3.2 The V -category C

In the following we define a non-trivial V -category C.

Definition 3.3. We define the V -category C as following.

• The objects of C are the same as those of M and Q.

• For objects A,B ∈ C, we define C(A,B) as the following object of V ,

C(A,B) = (Q(A,B),M(A,B),JAB : M(A,B)→ Q(A,B)),

where J : M → Q is the interpretation functor.

• For every object A ∈ C, we have a morphism uA = (Ĩd0, Ĩd1) : 1 → C(A,A) in V , where Ĩd1(∗) =
IdA : A → A in M and Ĩd0(∗) = IdA : A → A in Q.

• For any A,B,C ∈ C, we have a morphism cA,B,C = (c0,c1) : C(A,B)×C(B,C) → C(A,C) in V ,

where c0 : Q(A,B)×Q(B,C)→ Q(A,C) and c1 : M(A,B)×M(B,C)→ M(A,C) are the composi-

tions in Q and M, respectively.

3.3 The V -category C

The biset-enriched category C is symmetric monoidal. However, it is not closed. For that, we will need

to work in the V -enriched presheaf category C.

Definition 3.4. We define the V -category C = V Cop

. Concretely, an object F ∈ C is a V -functor Cop →
V . Because V is complete, for any F,G ∈ C, we have a hom-object C(F,G) ∈ V that represents V -

natural transformations F → G.

An object in C is a V -functor F : Cop → V . This means that for each A ∈ Cop, there is an object

FA ∈ V . And for any A,B ∈ Cop there is a morphism FAB : Cop(A,B) → FA ⇒ FB in V , which is the

following commutative diagram.

M(B,A) (FA ⇒ FB)1 = HomV (FA,FB)

Q(B,A) (FA ⇒ FB)0 = Set((FA)0,(FB)0).

JB,A

F1
AB

p0

F0
AB

Note that an element h ∈ HomV (FA,FB) is a pair of function (h0,h1) such that the following commutes.

(FA)1 (FB)1

(FA)0 (FB)0

h1

f g

h0

Thus we define p0(h0,h1)= h0. So a V -functor F : Cop →V induces an ordinary functor F0 : Qop → Set,

where F0(A) = (FA)0 and the function Q(B,A)→ Set(F0A,F0B) is given by F0
AB for any A,B ∈ Q.
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Proposition 3.5. The V -category C is a V -monoidal closed category, where the tensor product ⊗Day

and linear exponential ⊸Day are given by Day’s convolution [3]. The tensor unit is defined by I := yI =
C(−, I), where y is the V -enriched Yoneda embedding functor.

The V -category C has coproducts. Day’s construction implies that the Day tensor product distributes

over the coproducts, and that the V -enriched Yoneda embedding y : C →֒ C is strong monoidal.

The V -adjunction U0 ⊣ ∆ and the V -monad T can be lifted to C.

Definition 3.6. We define V -functors U0(F) :=U0 ◦F : V Cop

→ SetCop

, ∆(F) := ∆◦F : SetCop

→ V Cop

,

and T := ∆◦U0 : V Cop

→ V Cop

.

Note that ∆ is fully faithful and that U0 is strong monoidal.

Proposition 3.7. There is a V -adjunction U0 : V Cop

→ SetCop

⊣ ∆ : SetCop

→ V Cop

.

Proof. For any F ∈ SetCop

,G ∈ C, we need to show that SetCop

(U0F,G)∼= V Cop

(F,∆G) that is V -natural

in F and G. This is true since the following isomorphisms follow from properties of end.

V
Cop

(F,∆G)∼=

∫

A∈C
V (FA,∆GA)∼=

∫

A∈C
Set(U0FA,GA)∼=

∫

A∈C
V (∆U0FA,∆GA)

∼= V
Cop

(∆U0F,∆G)∼= SetCop

(U0F,G).

Proposition 3.8. The monad T is a commutative strong monad.

Proposition 3.8 is a consequence of the following more general theorem, whose proof can be found

in Appendix D.

Theorem 3.9. Let V be a complete, cocomplete, symmetric monoidal closed category. Let A be a V -

category. If T is a commutative strong V -monad on V , then T (F) = T ◦F is a commutative strong

V -monad on V Aop

.

Consider a V -functor F : Cop → Set. For any A,B ∈ C, FA ∈ Set, and the map FAB : C(B,A) →
Set(FA,FB) is uniquely determined by the function F0

AB : Q(B,A) → Set(FA,FB). So F is uniquely

determined by F0 : Qop → Set. In fact, the following theorem holds (the proof is in Appendix B).

Theorem 3.10. We have SetCop ∼= SetQop

.

The following proposition shows the maps in the Kleisli category of T are essentially maps in SetQop

.

Proposition 3.11. For any F,G ∈ C, we have

C(F,T G) = C(F,∆U0G)∼= SetCop

(U0F,U0G)∼= SetQop

(F0,G0).

3.4 A linear-non-linear adjunction in C

Suppose F ∈ C and V ∈ V . By definition, the copower V ⊙F , if it exists, is an object V ⊙F ∈ C such

that the isomorphism C(V ⊙F,G)∼=V ⇒ C(F,G) is V -natural in G ∈ C.

Definition 3.12. Let V ∈ V ,F ∈ C. We define the copower V ⊙F in C as follows:

(V ⊙F)(A) =V ×FA : Cop → V .

The fact that the above is indeed a copower can be verified using the calculus of ends. For any

F,G ∈ C, we have

C(V ⊙F,G)∼=

∫

A∈C
V ×FA ⇒ GA ∼=

∫

A∈C
V ⇒ (FA ⇒ GA)

∼=V ⇒

∫

A∈C
(FA ⇒ GA)∼=V ⇒ C(F,G).
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Definition 3.13. We define V -functors p(X) = X ⊙ I : V → C and ♭(F) = C(I,F) : C → V .

The V -functors p and ♭ form a linear-non-linear adjunction in the sense of Benton [1].

Theorem 3.14. We have a V -adjunction p ⊣ ♭. Moreover, p is strong monoidal.

Proof. We have C(pX ,G)∼= C(X ⊙ I,G)∼= X ⇒ C(I,G)∼= X ⇒ ♭(G). Moreover, p is a strong monoidal

V -functor. We have p(1) = 1⊙ yI ∼= 1×C(−, I)∼= yI and

p(X)⊗Day p(Y ) =

∫ A,B

C(−,A⊗B)×X × yI(A)×Y × yI(B)

∼= X ×Y ×

∫ A,B

C(−,A⊗B)× yI(A)× yI(B)∼= X ×Y × yI = p(X ×Y).

Theorem 3.15. For any S,U ∈ C, there is an isomorphism ♭(yS ⊸Day yU)∼= C(S,U).

Proof. We have ♭(yS ⊸Day yU) = C(I,yS ⊸Day yU)∼= C(yS,yU) ∼= C(S,U).

Applying p to the above isomorphism yields p♭(yS ⊸Day yU) ∼= pC(S,U). This isomorphism is

called the box/unbox isomorphism in [17].

4 A reflective subcategory C̃ of C

The V -category C itself is not a model for Proto-Quipper with dynamic lifting. For example, it does not

have a map Bit → T Bool for dynamic lifting. Namely, we define Bool := yI + yI = C(−, I)+C(−, I)
and Bit := yBit = C(−,Bit) ∈ C, where Bit ∈ C. Note that Bit = I+ I in Q. Consider the following

C(Bit,T Bool)∼= SetCop

(U0Bit,U0Bool)∼= SetQop

(Bit0,Bool0)

∼= SetQop

(Q(−,Bit),Q(−, I)+Q(−, I)) = SetQop

(Q(−, I + I),Q(−, I)+Q(−, I)).

So a map in C(Bit,T Bool) is the same as a natural transformation from Q(−, I+ I) to Q(−, I)+Q(−, I)
in SetQop

. Moreover, for condition h to be satisfied, this natural transformation should be a left inverse of

the canonical natural transformation Q(−, I)+Q(−, I)→ Q(−, I+ I). On the other hand, by the Yoneda

lemma, every natural transformation from Q(−, I + I) to Q(−, I)+Q(−, I) either takes all of its values

in the left component or in the right component of the disjoint union. Therefore, it can’t be a left inverse

to Q(−, I)+Q(−, I)→ Q(−, I + I). It follows that dynamic lifting cannot be interpreted in C. To fix

this, we now consider a reflective subcategory of C, in the style of Lambek [14].

Definition 4.1. A V -functor F : Cop → V is called smooth if F0 : Qop → Set is a product-preserving

functor, i.e., F0(A+B)∼= F0A×F0B for any A,B ∈ Q.

Observe that for any A ∈ C, the V -enriched Yoneda embedding y of A, which is C(−,A), is smooth.

Because C(−,A)0 = Q(−,A), and for any B1,B2 ∈ Q, we have Q(B1 +B2,A) ∼= Q(B1,A)×Q(B2,A).
Thus, the codomain of y consists of smooth V -functors.

Definition 4.2. We define C̃ to be the full V -subcategory of smooth functors.

Definition 4.3. We define the Lambek embedding y : C → C̃ to be the corestriction of the Yoneda em-

bedding y, i.e., it is the unique V -functor such that the following diagram commutes.

C

C̃ C

y
y

i
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The details of the proof of the following theorem are in Appendix E.

Theorem 4.4. The V -category C̃ is a reflective V -subcategory of C, i.e., the inclusion V -functor i :

C̃ →֒ C has a left adjoint L̃.

Using results of Day [4, 5] (see also [16] for a more recent exposition), we can furthermore show

that that C̃ is symmetric monoidal and L̃ is strong monoidal. See Appendix F for further details. We now

give an explicit definition of the monoidal closed structure in C̃.

Definition 4.5. For any F,G ∈ C̃, we define the tensor product, internal hom and tensor unit in C̃ as

F ⊗Lam G := L̃(iF ⊗Day iG), F ⊸Lam G := iF ⊸Day iG, and I := yI = C(−, I), respectively.

In the above definition, the linear exponential F ⊸Lam G is well-defined because iF ⊸Day iG is an

object in C̃ (Theorem F.1).

Theorem 4.6. The V -category C̃ is symmetric monoidal closed. For any F,G,H ∈ C̃, there is a V -

natural isomorphism C̃(F ⊗Lam G,H)∼= C̃(F,G ⊸Lam H).

Proof. We have C̃(F ⊗Lam G,H) ∼= C̃(L̃(iF ⊗Day iG),H) ∼= C(iF ⊗Day iG, iH) ∼= C(iF, iG ⊸Day iH) ∼=

C̃(F,G ⊸Lam H).

4.1 A linear-non-linear adjunction in C̃

The V -category C̃ also admits a linear-non-linear adjunction and, as in C, there is a box/unbox isomor-

phism in C̃.

Definition 4.7. We define the V -functors p̃(X) = L̃(p(X)) : V → C̃ and ♭̃(F) = ♭(iF) : C̃ → V .

Theorem 4.8. We have a V -adjunction p̃ ⊣ ♭̃. Moreover, p̃ is strong monoidal.

Proof. We have C̃(p̃X ,F) = C̃(L̃(p(X)),F) ∼= C(pX , iF) ∼= X ⇒ ♭(iF) ∼= X ⇒ ♭̃(F). Moreover, p̃ is

strong monoidal because both L̃ and p are strong monoidal.

Theorem 4.9. For any S,U ∈ C, we have C(S,U)∼= ♭̃(yS ⊸Lam yU).

Proof. We have ♭̃(yS ⊸Lam yU) = ♭(i(yS ⊸Lam yU)) = C(I, i(yS ⊸Lam yU)) ∼= C̃(I,yS ⊸Lam yU) ∼=
C̃(yS,yU)∼= C(S,U).

4.2 A commutative strong monad on C̃

The V -category C̃ has a commutative strong monad. In the following we write [V Cop

]prod for C̃ and V Cop

for C. We write [SetQop

]prod for the full subcategory of product-preserving functors of SetQop

. Consider

the following diagram.

SetCop

V Cop

[
SetCop

]
prod

[
V Cop]

prod
.

∆
L

U0

L̃j

∆
′

U0
′

i

We define the V -functor U0
′
: [V Cop

]prod → [SetCop

]prod by restricting the domain of U0 to [V Cop

]prod. Here

[SetCop

]prod is the full V -subcategory of smooth V -functors. Similarly, ∆
′

: [SetCop

]prod → [V Cop

]prod

is a restriction of ∆. We have a monoidal adjunction L ⊣ j, since [SetQop

]prod
∼= [SetCop

]prod, the full

subcategory of product-preserving functors, is reflective in SetQop ∼= SetCop

. We write T̃ = ∆
′
◦U0

′
.

Observe that T̃ is T with a restricted domain.
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Proposition 4.10. By definition, we have i◦∆
′∼=∆◦ j and j◦U0

′∼=U0◦i, therefore i◦T̃ ∼= T ◦i. Moreover,

U0
′
◦ L̃ ∼= L◦U0.

Theorem 4.11. We have a V -adjunction U0
′
⊣ ∆′ : [SetCop

]prod → [V Cop

]prod. And U0
′
is strong monoidal.

Proof. For any X ∈ [V Cop

]prod,Y ∈ [SetCop

]prod, we have

[
SetCop

]
prod

(U0
′
X ,Y )∼= SetCop

( jU0
′
X , jY )∼= SetCop

(U0iX , jY )

∼= V
Cop

(iX ,∆ jY )∼= V
Cop

(iX , i∆′Y )∼=
[
V

Cop
]

prod
(X ,∆′Y ).

The V -functor U0
′
is strong monoidal. For any F,G ∈ [V Cop

]prod, we have U0
′
I ∼=U0I ∼= I and

U0
′
(F ⊗Lam G) =U0

′
L̃(iF ⊗Day iG)∼= LU0(iF ⊗Day iG)∼= L(U0iF ⊗Day U0iG)

∼= L( jU0
′
F ⊗Day jU0

′
G) =U0

′
F ⊗Lam U0

′
G.

Theorem 4.12. There is a V -natural transformation ρ : L̃◦T → T̃ ◦ L̃.

Proof. For any F ∈ C, let ηF : F → iL̃F be the unit and εF : L̃iF → F be the counit (which is an

isomorphism). We define ρF to be the composition L̃T F
L̃T ηF
→ L̃T iL̃F

∼=
→ L̃iT̃ L̃F

ε
T̃ L̃F→ T̃ L̃F .

The natural transformation ρ is one of the components for defining the strength for T̃ .

Theorem 4.13. The V -functor T̃ is a commutative strong monad.

Proof. For any F,G ∈ C̃, the strength of T̃ is given by

F ⊗Lam T̃ G = L̃(iF ⊗Day iT̃ G)
∼=
→ L̃(iF ⊗Day T iG)

L̃t
→ L̃T (iF ⊗Day iG)

ρ
→ T̃ L̃(iF ⊗Day iG) = T̃ (F ⊗Lam G).

Note that t is the strength for T . The verification of the strength diagrams is in Appendix G.

Similarly to Proposition 3.11, we have the following theorem for T̃ .

Theorem 4.14. For any F,G ∈ C̃, we have the following V -natural isomorphisms.

C̃(F, T̃ G)∼= [SetCop

]prod(U0
′
F,U0

′
G)∼= [SetQop

]prod(F
0,G0).

Proof. We have C̃(F, T̃ G) = C̃(F,∆
′
U0

′
G) ∼= [SetCop

]prod(U0
′
F,U0

′
G) ∼= [SetQop

]prod(F
0,G0). Note that

by Theorem 3.10, [SetCop

]prod
∼= [SetQop

]prod.

4.3 Dynamic lifting in C̃

Since C has coproducts and C̃ is a reflective subcategory, the coproduct of A,B∈ C̃ is defined as A+′B =
L̃(iA+ iB). In C̃, we define Bool := yI+′ yI = L̃(yI+yI) and Bit := y(Bit), where I,Bit ∈C. There exists

maps zero,one : yI → Bit in C̃. We are now ready to define a map for dynamic lifting.

Theorem 4.15. There are V -natural transformations init : Bool → Bit and dynlift : Bit → T̃ Bool in C̃

such that the following diagram commutes.

Bit

Bool T̃ Bool

dynlift

η

init



P. Fu, K. Kishida, N.J. Ross & P. Selinger 313

Proof. We define init= [zero,one] : Bool→Bit. Firstly, we want to show that T̃ init : T̃ Bool→ T̃ Bit is an

isomorphism. Using Yoneda’s principle, we just need to show C̃(F, T̃ init) : C̃(F, T̃ Bool)→ C̃(F, T̃ Bit)
is an isomorphism for any F ∈ C̃. By Theorem 4.14, this is equivalent to showing that

[SetQop

]prod(F
0, init0) : [SetQop

]prod(F
0,Bool0)→ [SetQop

]prod(F
0,Bit0)

is an isomorphism. This is the case because the Lambek embedding κ : Q →֒ [SetQop

]prod preserves

coproducts, Bit = I+ I ∈ Q, and the map init0 : κI+κI → κ(I+ I) is an isomorphism in [SetQop

]prod. We

therefore define dynlift as the composition (T̃ init)−1 ◦η : Bit → T̃ Bit → T̃ Bool. As a result, we have the

following commutative diagram.

Bool T̃ Bool

Bit T̃ Bit T̃ Bool

η

init T̃ init
Id

η

(T̃ init)−1

4.4 C̃ is a model for Proto-Quipper with dynamic lifting

Recall that the category Q is enriched in convex spaces, i.e., the hom-sets of Q are convex spaces and

the composition is bilinear with respect to the convex sum. We have the following theorem, whose proof

is in Appendix C.

Theorem 4.16. The category [SetQop

]prod is enriched in convex spaces. Moreover, the Lambek embedding

κ : Q →֒ [SetQop

]prod preserves the convex sum in Q.

The above theorem implies that for any A,B ∈ C̃, the Kleisli-hom C̃(A, T̃ B) is convex because of the

isomorphism C̃(A, T̃ B) ∼= [SetQop

]prod(A
0,B0) from Theorem 4.14. We are now ready to state our main

theorem (see Appendix H for the proof).

Theorem 4.17. The V -category C̃ is a model for Proto-Quipper with dynamic lifting, i.e., it satisfies

conditions a–h in Definition 2.2.

5 Conclusion

We constructed a categorical model for dynamic lifting using biset enrichment. We defined a biset-

enriched category C, which combines the categories M and Q. We then considered the full subcategory

C̃ of smooth functors and showed that C̃ is a reflective subcategory in the enriched presheaf category of

C. Finally, we proved that C̃ is categorical model for dynamic lifting in the sense of [7].
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A Enriched symmetric monoidal categories

Definition A.1. Let V be a symmetric monoidal category. A V -category A is symmetric monoidal if it

is equipped with the following:

• There is an object I, called the tensor unit. For all A,B∈A, there is an object A⊗B∈ A. Moreover,

for all A1,A2,B1,B2 ∈ A, there is a map

Tensor : A(A1,B1)⊗A(A2,B2)→ A(A1 ⊗A2,B1 ⊗B2)

in V . The tensor product is a bifunctor in the sense that Tensor◦ (uA ⊗uB) = uA⊗B for the identity

maps uA,uB,uA⊗B, and the following diagram commutes for any A1,A2,B1,B2,C1,C2 ∈ A.

A(A1,B1)⊗A(A2,B2)⊗A(B1,C1)⊗A(B2,C2) A(A1,C1)⊗A(A2,C2)

A(A1 ⊗A2,B1 ⊗B2)⊗A(B1⊗B2,C1 ⊗C2) A(A1 ⊗A2,C1 ⊗C2)

c⊗c

Tensor⊗Tensor Tensor

c

• There are the following V -natural isomorphisms in A and they satisfy the same coherence dia-

grams as for symmetric monoidal categories, and analogous naturality conditions.

lA : I⊗A → A

rA : A⊗ I → A

γA,B : A⊗B → B⊗A

αA,B,C : (A⊗B)⊗C → A⊗ (B⊗C)

If the V -category A is symmetric monoidal, for all maps f : A1 → B1,g : A2 → B2 in A, we write

f ⊗g : A1 ⊗A2 → B1 ⊗B2 as a shorthand for the following composition.

I
f⊗g
→ A(A1,B1)⊗A(A2,B2)

Tensor
→ A(A1 ⊗A2,B1 ⊗B2)

B Biset-enriched functor categories

Notations. Let A,B be V -categories. For all A,B ∈ A, we have

A(A,B) = (A(A,B)0,A(A,B)1,ϕ
A : A(A,B)1 → A(A,B)0).

So we write A →1 B := A(A,B)1 and A →0 B := A(A,B)0. Moreover, for all f : A →1 B, we have

ϕA( f ) : A →0 B. A V -functor F : A → B gives rise to the following commutative diagram for all

A,B ∈ A.

A(A,B)1 B(FA,FB)1

A(A,B)0 B(FA,FB)0

F1
A,B

ϕA ϕB

F0
A,B
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For all f : A →1 B, we have F1
A,B f : FA →1 FB. Similarly, for all g : A →0 B, we have F0

A,Bg : FA →0 FB.

For any V -functors F,G : A → B, we define a biset (F ⇒0 G,F ⇒1 G, p : F ⇒1 G → F ⇒0 G) as

follows.

F ⇒0 G := {(βA : FA →0 GA)A∈A | ∀A,B ∈ A,∀g : A →0 B,βB ◦F0
ABg = G0

ABg◦βA}

F ⇒1 G := {(αA : FA →1 GA)A∈A | ∀A,B ∈ A,∀ f : A →1 B,αB ◦F1
AB f = G1

AB f ◦αA,

∀A,B ∈ A,∀g : A →0 B,ϕB(αB)◦F0
ABg = G0

ABg◦ϕB(αA)}

p((αA : FA →1 GA)A∈A) := (ϕB(αA) : FA →0 GA)A∈A : F ⇒1 G → F ⇒0 G

Proposition B.1. Suppose A,B are V -categories. Since the category of bisets V is complete, the functor

category BA is V -enriched. For all V -functors F,G : A → B, we have

BA(F,G) :=
∫

A∈A
B(FA,GA)∼= (F ⇒0 G,F ⇒1 G, p : F ⇒1 G → F ⇒0 G)

Proof. By definition of end, we have the following equalizer diagram in V .

∫
A∈A B(FA,GA) := eq(u,v) ∏A∈A B(FA,GA) ∏A,B∈A A(A,B)⇒ B(FA,GB)

k
u

v

Note that u = 〈curry(c◦ (πA ×GAB))〉A,B∈A, where c◦ (πA ×GAB) is the following.

(∏A B(FA,GA))×A(A,B) B(FA,GA)×B(GA,GB) B(FA,GB)
πA×GAB c

We have v = 〈curry(c◦ (πB ×FAB))〉A,B∈A, where c◦ (πB ×FAB) is the following.

(∏A B(FA,GA))×A(A,B) B(FB,GB)×B(FA,FB) B(FA,GB)
πB×FAB c

We can show (
∫

A∈A B(FA,GA))1 = eq(u1,v1) ∼= F ⇒1 G and (
∫

A∈A B(FA,GA))0 = eq(u0,v0) ∼= F ⇒0

G.

Theorem B.2. The biset-enriched categories SetCop

and SetQop

are isomorphic.

Proof. Let us define a V -enriched functor Ω : SetCop

→ SetQop

. On objects, Ω(F) = F0 for any F ∈
SetCop

. Since F : Cop → Set is uniquely determined by F0, the function Ω is bijective on objects.

Suppose F,G : Cop → Set. We claim that SetCop

(F,G)∼= SetQop

(F0,G0). This will allow us to define

ΩF,G to be this isomorphism. To show SetCop

(F,G)∼= SetQop

(F0,G0), first of all, we have

SetQop

(F0,G0) = (X ,X , Id),

where

X = {(αA : F0A → G0A)A∈Q | ∀A,B ∈ Q,∀ f : A → B ∈ Q,αB ◦F0
AB f = G0

AB f ◦αA}.

Next,

SetCop

(F,G) = (F ⇒1 G,F ⇒0 G, p),
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where

F ⇒0 G = {(αA : FA →0 GA)A∈C | ∀A,B ∈ C,∀ f : A →0 B ∈ C,αB ◦F0
AB f = G0

AB f ◦αA} ∼= X

and

F ⇒1 G := {(αA : FA →1 GA)A∈A | ∀A,B ∈ C,∀ f : A →1 B,αB ◦F1
AB f = G1

AB f ◦αA,

∀A,B ∈ C,∀g : A →0 B,ϕSet(αB)◦F0
ABg = G0

ABg◦ϕSet(αA)}.

Since F1
A,B = F0

A,B ◦ϕCop

, and ϕSet = Id, and ϕCop

( f ) : A →0 B for any f : A →1 B with A,B ∈ C,

therefore ∀A,B∈C,∀g : A→0 B,ϕSet(αB)◦F0
ABg=G0

ABg◦ϕSet(αA) implies ∀A,B∈C,∀ f : A→1 B,αB◦
F1

AB f = G1
AB f ◦αA. So F ⇒1 G ∼= F ⇒0 G ∼= X and p = Id.

C Convexity

Let [0,1] denote the real unit interval.

Definition C.1. A convexity structure on a set X is an operation that assigns to all p,q ∈ [0,1] with

p+ q = 1 and all x,y ∈ X an element px+ qy ∈ X , subject to the following properties. Throughout, we

assume p+q = 1.

(a) px+qx = x for all x ∈ X .

(b) px+qy = qy+ px for all x,y ∈ X .

(c) 0x+1y = y for all x,y ∈ X .

(d) (a+ b)( a
a+b

x+ b
a+b

y)+ (c+ d)( c
c+d

z+ d
c+d

w) = (a+ c)( a
a+c

x+ c
a+c

z) + (b+ d)( b
b+d

y+ d
b+d

w),
where a,b,c,d ∈ [0,1] with a+b+ c+d = 1 and all denominators are non-zero.

Remark. Property (d) can best be understood by realizing that both sides of the equation are equal

to ax+ by+ cz+ dw, decomposed in two different ways into convex sums of two elements at a time.

In the literature, we sometimes find a different, but equivalent condition of the form s(px+ qy)+ rz =
spx+(qs+ r)( qs

qs+r
y+ r

qs+r
z). The latter axiom is arguably shorter, but harder to read.

We often expand the binary + operation to a multi-arity operation, i.e., ∑i pixi, where ∑i pi = 1 and

xi ∈ X for all i.

We say that a category A is enriched in convex spaces if for all A,B ∈ A, the hom-set A(A,B) is

convex, and composition is bilinear, i.e., for all f ,g ∈ A(A,B),e ∈ A(C,A),h ∈ A(B,C) and p,q ∈ [0,1]
with p+q = 1, we have

(p f +qg)◦ e = p f ◦ e+qg◦ e

and

h◦ (p f +qg) = ph◦ f +qh◦g.

Theorem C.2. Let A be a symmetric monoidal category with a coproduct I + I, such that tensor dis-

tributes over this coproduct. The following are equivalent.

1. The category A is enriched in convex spaces.
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2. There exists a family of maps 〈〈p,q〉〉 : I → I + I, where p,q ∈ [0,1] with p+ q = 1, such that the

following diagrams commute:

I I+ I I

Id

〈〈p,q〉〉 [Id,Id] I I + I

I + I

〈〈p,q〉〉

〈〈q,p〉〉
[inj2,inj1]

I I+ I

〈〈0,1〉〉

inj2

I

I+ I I+ I

(I + I)+ (I+ I) (I + I)+ (I+ I)

〈〈a+b,c+d〉〉 〈〈a+c,b+d〉〉

〈〈 a
a+b

, b
a+b

〉〉+〈〈 c
c+d

, d
c+d

〉〉 〈〈 a
a+c

, c
a+c

〉〉+〈〈 b
b+d

, d
b+d

〉〉

iso

Here, in the last diagram, we have a,b,c,d ∈ [0,1] with a+ b+ c+ d = 1, and we assume the

denominators are non-zero. The map “iso” is the canonical isomorphism (A+B)+ (C +D) ∼=
(A+C)+ (B+D).

Proof. For the left-to-right implication, suppose A is enriched in convex spaces. We can define

〈〈p,q〉〉 := p inj1 +q inj2 : I → I + I.

It is easy to verify that this definition of 〈〈p,q〉〉 satisfies the four diagrams above.

We now focus on the right-to-left implication.

• First we need to show that A(A,B) is convex for all A,B ∈ A. Given f ,g ∈ A(A,B), we define

p f +qg as follows.

A
λ−1

−−→ A⊗ I
A⊗〈〈p,q〉〉
−−−−−→ A⊗ (I+ I)

d
−→ A⊗ I+A⊗ I

λ+λ
−−−→ A+A

[ f ,g]
−−→ B.

• p f +q f = f . This holds because the following diagram commutes.

A A⊗ I A⊗ (I+ I) A⊗ I+A⊗ I A+A B

B B⊗ I B⊗ (I+ I) B⊗ I+B⊗ I B+B

B⊗ I

λ−1

f

A⊗〈〈p,q〉〉

f⊗I

d

f⊗(I+I)

λ+λ

f⊗I+ f⊗I

[ f , f ]

f+ f

λ−1 B⊗〈〈p,q〉〉

Id

d

B⊗[Id,Id]

λ+λ

[Id,Id]

[Id,Id]

λ

• p f +qg = qg+ p f . This holds because the following diagram commutes.

A A⊗ I A⊗ (I+ I) A⊗ I+A⊗ I A+A B

A⊗ (I+ I) A⊗ I+A⊗ I A+A

λ−1 A⊗〈〈p,q〉〉

A⊗〈〈q,p〉〉

d

A⊗[inj2,inj1]

λ+λ [ f ,g]

[inj2,inj1]

d λ+λ
[g, f ]
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• 0 f +1g = g. We have the following commutative diagram.

A A⊗ I

A⊗ (I+ I)

A⊗ I+A⊗ I

A+A

B

λ−1

g

inj2

A⊗〈〈0,1〉〉

inj2

A⊗inj2

d

λ+λ

[ f ,g]

• (a+b)( a
a+b

f + b
a+b

g)+ (c+d)( c
c+d

h+ d
c+d

w) = (a+ c)( a
a+c

f + c
a+c

h)+ (b+d)( b
b+d

g+ d
b+d

w).

Let us write α = a
a+b

f + b
a+b

g and β = c
c+d

h+ d
c+d

w. We have the following commutative diagram.

A A⊗ I A⊗ (I+ I) A⊗ I+A⊗ I A+A B

A⊗ ((I+ I)+ (I+ I))

A⊗ (I+ I)+A⊗ (I+ I)

(A⊗ I+A⊗ I)+ (A⊗ I+A⊗ I)

(A+A)+ (A+A) B+B

λ−1 A⊗〈〈a+b,c+d〉〉 d

A⊗(〈〈 a
a+b

, b
a+b

〉〉+〈〈 c
c+d

, d
c+d

〉〉)

A⊗〈〈 a
a+b

, b
a+b

〉〉+A⊗〈〈 c
c+d

, d
c+d

〉〉

λ+λ [α ,β ]

α+β

d

d+d

(λ+λ )+(λ+λ )

[ f ,g]+[h,w]

[Id,Id]

Thus

(a+b)( a
a+b

f + b
a+b

g)+ (c+d)( c
c+d

h+ d
c+d

w)

= [Id, Id]◦ ([ f ,g]+ [h,w])◦ ((λ +λ )+ (λ +λ ))◦ (d+d)◦d

◦ (A⊗ (〈〈 a
a+b

, b
a+b

〉〉+ 〈〈 c
c+d

, d
c+d

〉〉))◦ (A⊗〈〈a+b,c+d〉〉)◦λ−1.

Similarly, we can show that

(a+ c)( a
a+c

f + c
a+c

h)+ (b+d)( b
b+d

g+ d
b+d

w)

= [Id, Id]◦ ([ f ,h]+ [g,w])◦ ((λ +λ )+ (λ +λ ))◦ (d+d)◦d

◦ (A⊗ (〈〈 a
a+c

, c
a+c

〉〉+ 〈〈 b
b+d

, d
b+d

〉〉))◦ (A⊗〈〈a+ c,b+d〉〉)◦λ−1.

Thus we can show

(a+b)( a
a+b

f + b
a+b

g)+ (c+d)( c
c+d

h+ d
c+d

w) = (a+ c)( a
a+c

f + c
a+c

h)+ (b+d)( b
b+d

g+ d
b+d

w)
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by the following commutative diagram.

A⊗ I

A⊗ (I+ I) A⊗ (I+ I)

A⊗ ((I+ I)+ (I+ I)) A⊗ ((I+ I)+ (I+ I))

A⊗ (I+ I)+A⊗ (I+ I) A⊗ (I+ I)+A⊗ (I+ I)

(A⊗ I+A⊗ I)+ (A⊗ I+A⊗ I) (A⊗ I+A⊗ I)+ (A⊗ I+A⊗ I)

(A+A)+ (A+A) (A+A)+ (A+A)

B+B B B+B

A⊗〈〈a+b,c+d〉〉 A⊗〈〈a+c,b+d〉〉

A⊗(〈〈 a
a+b

, b
a+b

〉〉+〈〈 c
c+d

, d
c+d

〉〉) A⊗(〈〈 a
a+c

, c
a+c

〉〉+〈〈 b
b+d

, d
b+d

〉〉)

d

A⊗iso

d

d+d d+d

iso

(λ+λ)+(λ+λ) (λ+λ)+(λ+λ)

iso

[ f ,g]+[h,w] [ f ,w]+[g,h]

[Id,Id] [Id,Id]

• (p f +qg)◦ e = p( f ◦ e)+q(g◦ e). This is by the following commutative diagram.

C A A⊗ I A⊗ (I+ I) A⊗ I+A⊗ I A+A B

C⊗ I C⊗ (I+ I) C⊗ I+C⊗ I C+C

e

λ−1

λ−1 A⊗〈〈p,q〉〉 d λ+λ [ f ,g]

e⊗I

C⊗〈〈p,q〉〉

e⊗(I+I)

d λ+λ

e⊗I+e⊗I e+e
[ f◦e,g◦e]

• h◦ (p f +qg) = p(h◦ f )+q(h◦g). This is by the following.

A A⊗ I A⊗ (I+ I) A⊗ I+A⊗ I A+A B C
λ−1 A⊗〈〈p,q〉〉 d λ+λ [ f ,g]

[h◦ f ,h◦g]

h

Theorem C.3. The category [SetQop

]prod is enriched in convex spaces. Moreover, the Lambek embedding

κ : Q →֒ [SetQop

]prod preserves the convex sum in Q.

Proof. By Theorem C.2 (2), there exists a map 〈〈p,q〉〉 : I → I + I in Q for any p,q ∈ [0,1], p+ q = 1,

and it satisfies the four diagrams. Since κ preserves coproducts in Q, the map κ〈〈p,q〉〉 : κI → κI +′ κI

in [SetQop

]prod also satisfies the four diagrams in Theorem C.2 (2). Therefore [SetQop

]prod is enriched in

convex spaces.

For all f ,g ∈ Q(A,B), the convex sum p f +qg ∈ Q(A,B) is defined to be the following.

A
λ−1

−−→ A⊗ I
A⊗〈〈p,q〉〉
−−−−−→ A⊗ (I+ I)

d
−→ A⊗ I+A⊗ I

λ+λ
−−−→ A+A

[ f ,g]
−−→ B

Since κ preserves coproducts in Q and it is strong monoidal, we have κ(p f + qg) = pκ( f )+ qκ(g) ∈
[SetQop

]prod(κA,κB).
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D Proof of Theorem 3.9

In this section, we assume V to be a complete, cocomplete, symmetric monoidal closed category. The

following proposition is due to Kock [13].

Proposition D.1. Let T : V → V be a V -monad. Then T is a strong monad with strength t : A ⊗
T B → T (A⊗B) given by the following commutative diagram. Note that η is the unit of the adjunction

−⊗A ⊣ A ⊸−.

A T B ⊸ T (A⊗B)

B ⊸ A⊗B

η

curry(t)

TB,A⊗B

Theorem D.2. Let T be a strong monad on V and F : Aop → V be a V -functor. For all A,B ∈ A, we

have maps

FAB : A(B,A)→ FB ⊸ FA

and

(T F)AB : A(B,A)→ T FB ⊸ T FA.

We have the following commutative diagram.

A(B,A)⊗TFA

T (A(B,A)⊗FA) T FB

uncurry((TF)AB)t

Tuncurry(FAB)

Proof. By currying the diagram above, we just need to show the right triangle commutes in the following

diagram.

A(B,A)

FA ⊸ A(B,A)⊗FA T FA ⊸ T (A(B,A)⊗FA)

FA ⊸ FB T FA ⊸ T FB

FAB

η
(TF)AB

curry(t)

FA⊸uncurry(FAB)

TFA,A(B,A)⊗FA

TFA⊸Tuncurry(FAB)

TFA,FB

Note that the bottom square commutes because of the V -naturality of T . The left triangle commutes by

the property of monoidal closedness. The front triangle commutes by definition of (T F)AB. The back

triangle commutes by Proposition D.1.

Theorem D.3. Let F : Aop ⊗A → V be a V -functor and let T be a strong monad on V . Then there

exists a natural map

ξF :

∫ A∈A

T F(A,A)→ T

∫ A∈A

F(A,A).
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Proof. Recall that by definition of coend, we have the following coequalizers.

∑A,B∈A A(B,A)⊗F(A,B) ∑A∈A F(A,A)
∫ A∈A

F(A,A)
ρ1

ρ2

e

∑A,B∈A A(B,A)⊗TF(A,B) ∑A∈A T F(A,A)
∫ A∈A

T F(A,A)
ρ ′

1

ρ ′
2

e′

For any A ∈ A, the functor F(A,−) : A → V gives rise to a map

F(A,−)BA : A(B,A)→ F(A,B)⊸ F(A,A)

for each B ∈ A. The map ρ1 is defined as the coproduct pairing [injA ◦ uncurry(F(A,−)BA)]A,B∈A. For

any B ∈ A, the functor F(−,B) : Aop → V gives rise to a map

F(−,B)AB : A(B,A)→ F(A,B)⊸ F(B,B)

for each A ∈ A. The map ρ2 is defined as the coproduct pairing [injB ◦uncurry(F(−,B)AB)]A,B∈A. The

maps ρ ′
1,ρ

′
2 are induced similarly.

Consider the following diagram.

∫ A
T F(A,A) T

∫ A
F(A,A)

∑A T F(A,A) T ∑A F(A,A)

∑A,B A(B,A)⊗TF(A,B) ∑A,B T (A(B,A)⊗F(A,B)) T ∑A,B A(B,A)⊗F(A,B)

ξ

[T injA]A

e′ Te

∑A,B t

ρ ′
1 ρ ′

2 [T injA,B]A,B
Tρ1 Tρ2

Note that [T injA]A and [T injA,B]A,B are coproduct pairings. The morphism t : A(B,A)⊗ T F(A,B) →
T (A(B,A)⊗F(A,B)) is the strength map for T .

To show the existence of ξ , we just need to show Te◦ [T injA]A ◦ρ ′
1 = Te◦ [T injA]A ◦ρ ′

2, which is to

show the bottom square commutes for ρ ′
1 and T ρ1 (ρ ′

2 and T ρ2). This is the case because of the following

commutative diagram. Note that the left triangle commutes by Theorem D.2.

A(B,A)⊗TF(A,B) T F(A,A) T ∑A F(A,A)

T (A(B,A)⊗F(A,B)) T ∑A,B A(B,A)⊗F(A,B)

ρ ′
1(A,B)

t

T injA

T injA,B

Tρ1(A,B)
Tρ1

Note that ρ ′
1(A,B) is a component of ρ ′

1 and ρ1(A,B) is a component of ρ1. By the universal property of

the coequalizer e′, there exists a unique arrow

ξ :

∫ A∈A

T F(A,A)→ T

∫ A∈A

F(A,A).
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Proposition D.4. Suppose F : Aop → V . For all B,C ∈ A, the following diagram commutes.

A(C,B)⊗F(B)
∫ B

A(C,B)⊗F(B)

F(C)

uncurry(FBC)

eB

y

Note that y is an isomorphism expressing the Yoneda lemma in the language of coends, and FBC :

A(C,B)→ F(B)⊸ F(C), and eB is the unit of the coend.

Proof sketch. Note that the map uncurry(FBC) : A(C,B)⊗F(B)→ F(C) is V -natural in B. By the uni-

versal property of coends, there exists a map y :
∫ B

A(C,B)⊗F(B)→ F(C) such that the diagram above

commutes. Moreover, y is an isomorphism [11, Chapter 2.4].

Theorem D.5. Let T be a strong monad on V . For all F : Aop⊗A → V , the map ξF :
∫ A∈A

T F(A,A)→
T
∫ A∈A

F(A,A) makes the following diagrams commute.

1.
∫ A

F(A,A)

T
∫ A

F(A,A)
∫ A

T F(A,A)

η

∫
η

ξ

2.
∫ A

T T F(A,A) T
∫ A

T F(A,A) T T
∫ A

F(A,A)

∫ A
T F(A,A) T

∫ A
F(A,A)

ξ

∫
µ

Tξ

µ

ξ

3. Suppose G : Aop → V and A ∈ A.

∫ B
A(A,B)⊗TGB T GA

∫ B
T (A(A,B)⊗GB) T

∫ B
A(A,B)⊗GB

∫
t

y′

ξ

Ty

Note that y′,y are isomorphisms induced by the Yoneda lemma.

4. Suppose F : Aop ⊗A → V and X ∈ V .

(
∫ A

F(A,A))⊗TX T ((
∫ A

F(A,A))⊗X)

∫ A(F(A,A)⊗TX)

∫ A
T (F(A,A)⊗X) T

∫ A(F(A,A)⊗X)

t

∼=

∼=

∫
t

ξ
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5. Suppose F : Aop ⊗A → V and X ∈ V .

∫ A(X ⊗TF(A,A))
∫ A

T (X ⊗F(A,A))

X ⊗
∫ A

T F(A,A) T
∫ A(X ⊗F(A,A))

X ⊗T
∫ A

F(A,A) T (X ⊗
∫ A

F(A,A))

∫
t

∼= ξ

X⊗ξ ∼=

t

6. Suppose F : Aop ⊗Aop ⊗A⊗A → V .

∫ A ∫ B
T F(A,B,A,B)

∫ A
T
∫ B

F(A,B,A,B) T
∫ A ∫ B

F(A,B,A,B)

∫ A,B
T F(A,B,A,B) T

∫ A,B
F(A,B,A,B)

∫ A ξ

∼=

ξ

∼=

ξ

Proof. 1. We need to show that the following commutes.

∫ A
F(A,A)

T
∫ A

F(A,A)
∫ A

T F(A,A)

η

∫
η

ξ

Consider the following diagram. We write η1 for the map F(A,A)→ T F(A,A) and η2 for the map∫ A
F(A,A)→ T

∫ A
F(A,A).

∫ A
F(A,A)

∫ A
T F(A,A)

T
∫ A

F(A,A)

∑A F(A,A) ∑A T F(A,A)

T ∑A F(A,A)

∫
η1

η2
ξ

e

∑η1

η

e′

[T injA]A

Te

We need to show that the top triangle commutes. Since e is an epimorphism, we just need to

show ξ ◦
∫

η1 ◦ e = η2 ◦ e. This is the case because the bottom triangle commutes and all three

square faces commute. The bottom triangle commutes by the universal property of coproducts.

The square with ξ commutes by definition of ξ . Also note that e′ ◦∑η1 =
∫

η1 ◦e is a property of

coends (see [11, 4.2]).

2. The proof is similar to (1).
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3. Next we need to show that the following commutes (where y,y′ are isomorphisms induced by the

Yoneda lemma).
∫ B

A(A,B)⊗TGB
∫ B

T (A(A,B)⊗GB)

T GA T
∫ B

A(A,B)⊗GB

y′

∫
t

ξ

Ty

The above diagram commutes because the following diagram commutes for all A,B ∈ A.

A(A,B)⊗T GB
∫ B

A(A,B)⊗T GB

T GA T (A(A,B)⊗GB) T GA
∫ B T (A(A,B)⊗GB)

T (A(A,B)⊗G(B)) T
∫ B

A(A,B)⊗GB

e1

uncurry((TG)BA)
t

y′

∫
t

Id
Id

e2

ξ
Tuncurry(GBA)

Te3

Ty

Since G and T G are contravariant V -functors, there are the following maps in V .

GBA : A(A,B)→ GB ⇒ GA

(T G)BA : A(A,B)→ T GB ⇒ T GA

The bottom square commutes by the definition of ξ , and the back square (with e1,e2) commutes

by naturality of coends. The top and the front squares commutes because of Proposition D.4. Thus

we just need to show that the left square commutes, i.e.,

C(C,B)⊗TFB T (C(C,B)⊗FB)

T FC

t

u′

Tu

.

This commutes by Proposition D.2.

4. Next we need to prove that the following commutes.

(
∫ A

F(A,A))⊗TX T ((
∫ A

F(A,A))⊗X)

∫ A(F(A,A)⊗TX)

∫ A
T (F(A,A)⊗X) T

∫ A(F(A,A)⊗X)

t

∼=

∼=

∫
t

ξ

First observe that the following commutes (each arrow is canonical).

(∑A F(A,A))⊗TX T ((∑A F(A,A))⊗X)

∑A(F(A,A)⊗TX)

∑A T (F(A,A)⊗X) T ∑A(F(A,A)⊗X)

∼=

∼=
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Now let us consider the following cube.

(
∫ A

F(A,A))⊗T X T ((
∫ A

F(A,A))⊗X)

(∑A F(A,A))⊗T X T ((∑A F(A,A))⊗X)

∫ A(F(A,A)⊗T X)

∑A(F(A,A)⊗T X)

∫ A
T (F(A,A)⊗X) T

∫ A(F(A,A)⊗X)

∑A T (F(A,A)⊗X) T ∑A(F(A,A)⊗X)

∼=

t

∼=

t

∼=

T(e⊗X)

∼=
∫

t

∑A t
ξ

[T injA]A

Te′

Note that the top square commutes, by naturality of t. The bottom square commutes, by definition

of ξ . The left square involving ∑A t,
∫

t commutes by naturality of coend. The right square and the

left top square commute for the same reason. For simplicity, consider the following diagram.

(∑A,B A(B,A)⊗F(A,B))⊗X (∑A F(A,A))⊗X (
∫ A

F(A,A))⊗X

∑A,B(A(B,A)⊗F(A,B)⊗X) ∑A(F(A,A)⊗X)
∫ A(F(A,A)⊗X)

∼= ∼= ∼=

Note that the right square is the same square as the right square in the cube. And −⊗X preserves

coequalizers. The left square commutes by naturality. This implies that the right square commutes,

by the universal property of coequalizers. Therefore the cube above commutes.

5. Next, we need to show that the following diagram commutes.

∫ A(X ⊗TF(A,A))
∫ A

T (X ⊗F(A,A))

X ⊗
∫ A

T F(A,A) T
∫ A(X ⊗F(A,A))

X ⊗T
∫ A

F(A,A) T (X ⊗
∫ A

F(A,A))

∫
t

∼= ξ

Id⊗ξ ∼=

t

First, observe that the following diagram commutes.

∑A(X ⊗T F(A,A)) ∑A T (X ⊗F(A,A))

X ⊗∑A T F(A,A) T ∑A(X ⊗F(A,A))

X ⊗T ∑A F(A,A) T (X ⊗∑A F(A,A))

∼=

∼=
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Now let us consider the following cube.

∫ A(X ⊗T F(A,A))
∫ A T (X ⊗F(A,A))

∑A(X ⊗T F(A,A)) ∑A T (X ⊗F(A,A))

X ⊗
∫ A T F(A,A) T

∫ A(X ⊗F(A,A))

X ⊗∑A T F(A,A) T ∑A(X ⊗F(A,A))

X ⊗T
∫ A

F(A,A) T (X ⊗
∫ A(F(A,A)

X ⊗T ∑A F(A,A) T (X ⊗∑A F(A,A))

∼=

∫
t

ξ
∑ t

∼=

X⊗ξ ∼=

∼=
t

t

Te′

Note that the top square commutes by naturality of coends. The bottom square commutes by

naturality of t. The left bottom and the right top square involving ξ commute by definition. The

left top and the right bottom square commute for the same reason. Consider the following diagram.

∑A,B(A(B,A)⊗X ⊗F(A,B)) ∑A(X ⊗F(A,A))
∫ A(X ⊗F(A,A))

X ⊗∑A,B(A(B,A)⊗F(A,B)) X ⊗∑A F(A,A) X ⊗
∫ A

F(A,A)

∼= ∼= ∼=

Note that the right square is the same square as the right bottom square in the cube under the functor

T . And X ⊗− preserves coequalizers. The left square commutes by naturality. This implies that

the right square commutes, by the universal property of coequalizers. Therefore the cube above

commutes.

6. Let F : Aop ⊗Aop ⊗A⊗A → V . We now need to show that the following diagram commutes.

∫ A ∫ B
T F(A,B,A,B)

∫ A
T
∫ B

F(A,B,A,B) T
∫ A ∫ B

F(A,B,A,B)

∫ A,B
T F(A,B,A,B) T

∫ A,B
F(A,B,A,B)

∫ A ξ

f

ξ

T f

ξ

First, the isomorphisms f , T f above are instances of so-called Fubini theorem for coends, which

also gives rise to the following commutative diagram for any F : Aop ⊗Aop ⊗A⊗A → V .

F(A,B,A,B)
∫ A,B

F(A,B,A,B)

∫ B
F(A,B,A,B)

∫ A ∫ B
F(A,B,A,B)

eA,B

eB

eA

f
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We have the following commutative diagram.

∫ A ∫ B
T F(A,B,A,B)

∫ A
T
∫ B

F(A,B,A,B) T
∫ A ∫ B

F(A,B,A,B)

∫ A,B
T F(A,B,A,B)

∫ B
T F(A,B,A,B) T

∫ B
F(A,B,A,B) T

∫ A,B
F(A,B,A,B)

T F(A,B,A,B)

f

∫ A ξ ξ

T f

ξ

ξ

e′A e′′A
TeA

e′A,B
e′B TeB

TeA,B

Note that above diagram commutes, by properties of the Fubini theorem, definition of ξ , V -

naturality of coends, and because e′A,B is an epimorphism.

Theorem D.6. Let A be a V -category. If T is a commutative strong monad on V (the strength is given

by the map tA,B : A⊗ T B → T (A⊗B) for any A,B ∈ A), then T (F) = T ◦F is a commutative strong

V -monad on V Aop

.

Proof. It is straightforward to verify that T is a monad. We define the strength t to be the following

composition.

(F ⊗Day T G)(C) =

∫ (A,B)∈A⊗A

A(C,A⊗B)⊗FA⊗TGB

∫ (A,B)
t

→
∫ (A,B)∈A⊗A

T (A(C,A⊗B)⊗FA⊗GB)

ξ
→ T

∫ (A,B)∈A⊗A

(A(C,A⊗B)⊗FA⊗GB)

= T (F ⊗Day G)(C)

Now to show that T is a commutative strong monad, we need to show the following diagrams commute.

•

F ⊗Day G F ⊗Day T G

T (F ⊗Day G)

F⊗Dayη

η
t

To show this, we just need to show that the following diagram commutes for any C ∈ A.

∫ A,B
A(C,A⊗B)⊗FA⊗GB

∫ A,B
A(C,A⊗B)⊗FA⊗TGB

T (
∫ A,B

A(C,A⊗B)⊗FA⊗GB)
∫ A,B

T (A(C,A⊗B)⊗FA⊗GB)

∫ A,B η ′

η

∫ A,B η ∫ A,B
t

ξ

Note that
∫ A,B η ′ is a shorthand for

∫ A,B
A(C,A⊗B)⊗FA⊗η . Similarly,

∫ A,B
t is a shorthand

for
∫ A,B

tA(C,A⊗B)⊗FA,GB in the above diagram. The bottom triangle commutes because of Theo-

rem D.5(1). The top triangle commutes by properties of t.
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• We need to show that the following diagram commutes.

I ⊗Day T F T (I ⊗Day F)

T F

tI,F

λT F

TλF

If we unfold the definition of the Day tensor, we have the following diagram for any C ∈ A.

∫ B A(C, I ⊗B)⊗T FB
∫ B T (A(C, I ⊗B)⊗FB)

∫ B
A(C,B)⊗T FB

∫ B
T (A(C,B)⊗FB) T

∫ B
A(C, I ⊗B)⊗FB

T FC T
∫ B A(C,B)⊗FB

∫
t

∫
λ

∫
T λ

ξ

∫
t ′

∼=
ξ

T
∫

λ
∼=

Note that for any C ∈ A, the following commutes by naturality of t.

∫ B
A(C, I⊗B)⊗TFB

∫ B
T (A(C, I ⊗B)⊗FB)

∫ B
A(C,B)⊗TFB

∫ B
T (A(C,B)⊗FB)

∫
t

∫
λB

∫
TλB

∫
t ′

Note that I = A(−, I) ∈ V Aop

, and
∫

t is a shorthand for
∫ B

tA(C,I⊗B),FB, and
∫

λB is a shorthand for
∫ B

A(C,λB)⊗ IdT FB, and
∫

T λB is a shorthand for
∫ B

T A(C,λB)⊗ IdFB, and
∫

t ′ is a shorthand for∫ B
tA(C,B),FB.

The bottom square commutes because of Theorem D.5(3). The right square commutes by the

naturality of ξ .

• Next we need to show that the following diagram commutes.

F ⊗Day T T G T (F ⊗Day T G) T T (F ⊗Day G)

F ⊗Day T G T (F ⊗Day G)

t

IdF⊗Dayµ

Tt

µ

t

The above diagram commutes because for any C ∈A, we have the following commutative diagram.

∫ A,B
A(C,A⊗B)⊗FA⊗T T GB

∫ A,B
T (A(C,A⊗B)⊗FA⊗T GB) T

∫ A,B(A(C,A⊗B)⊗FA⊗T GB)

∫ A,B
A(C,A⊗B)⊗FA⊗T GB

∫ A,B
T T (A(C,A⊗B)⊗FA⊗GB) T

∫ A,B
T (A(C,A⊗B)⊗FA⊗GB)

∫ A,B
T (A(C,A⊗B)⊗FA⊗GB) T

∫ A,B(A(C,A⊗B)⊗FA⊗GB) T T
∫ A,B(A(C,A⊗B)⊗FA⊗GB)

∫
t

∫
Id⊗µ

ξ

∫
Tt T

∫
t

∫
t

ξ

∫
µ

Tξ

ξ

µ

Note that the top right square commutes by naturality of ξ , the bottom diagram commutes by

Theorem D.5 (2), and the left diagram commutes by properties of t.
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• Next we need to show that the following diagram commutes.

(F ⊗Day G)⊗Day T H T ((F ⊗Day G)⊗Day H)

F ⊗Day (G⊗Day T H) F ⊗Day T (G⊗Day H) T (F ⊗Day (G⊗Day H))

t

α Tα

IdF⊗Dayt t

For any C ∈ A, we have

((F ⊗Day G)⊗Day T H)(C)∼=

∫ B∈A ∫ (X ,Y )∈A⊗A

A(C,(X ⊗Y )⊗B)⊗FX ⊗GY ⊗THB

and

(F ⊗Day (G⊗Day T H))(C)∼=

∫ X∈A ∫ (Y,B)∈A⊗A

A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗THB

∼=

∫ X ,Y,B

FX ⊗GY ⊗THB⊗

∫ A

A(A,Y ⊗B)⊗A(C,X ⊗A).

Consider the following diagram. We need to show that the outermost diagram commutes. Note

that
∫

y,T
∫

y,a,a′ are all isomorphisms.

∫ B,X ,Y
A(C,(X ⊗Y )⊗B)⊗FX ⊗GY ⊗THB

∫ B,X ,Y
T (A(C,(X ⊗Y )⊗B)⊗FX ⊗GY ⊗HB)

∫ B,X ,Y
A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗THB

∫ B,X ,Y
T (A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗HB) T

∫ B,X ,Y
A(C,(X ⊗Y )⊗B)⊗FX ⊗GY ⊗HB

∫ A,X
A(C,X ⊗A)⊗FX ⊗

∫ Y,B
A(A,Y ⊗B)⊗GY ⊗THB T

∫ B,X ,Y
A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗HB

∫ A,X
A(C,X ⊗A)⊗FX ⊗

∫ Y,B
T (A(A,Y ⊗B)⊗GY ⊗HB) T

∫ X ,Y,B ∫ A
A(C,X ⊗A)⊗A(A,Y ⊗B)⊗FX ⊗GY ⊗HB

∫ A,X
A(C,X ⊗A)⊗FX ⊗T

∫ Y,B
A(A,Y ⊗B)⊗GY ⊗HB

∫ A,X
T (A(C,X ⊗A)⊗FX ⊗

∫ Y,B
A(A,Y ⊗B)⊗GY ⊗HB) T

∫ A,X
A(C,X ⊗A)⊗FX ⊗

∫ Y,B
A(A,Y ⊗B)⊗GY ⊗HB

∫
t

∫
α

∫
Tα ξ

∫
t

∼=
ξ T

∫
α

∫
Id⊗

∫
t ∼=

∫
Id⊗ξ ∼=

∫
t ξ

Note that the top square and the top right square commute by naturality of t and ξ . We just need

to show that the bottom diagram commutes. The expanded bottom diagram is the following.

∫ B,X ,Y
A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗THB

∫ B,X ,Y
T (A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗HB) T

∫ B,X ,Y
A(C,X ⊗ (Y ⊗B))⊗FX ⊗GY ⊗HB

∫ B,X ,Y (
∫ A

A(A,Y ⊗B)⊗A(C,X ⊗A))⊗FX ⊗GY ⊗THB
∫ B,X ,Y

T ((
∫ A

A(A,Y ⊗B)⊗A(C,X ⊗A))⊗FX ⊗GY ⊗HB) T
∫ B,X ,Y (

∫ A
A(A,Y ⊗B)⊗A(C,X ⊗A))⊗FX ⊗GY ⊗HB

∫ B,X ,Y ∫ A(A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗T HB)
∫ B,X ,Y ∫ A

T (A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗HB)
∫ B,X ,Y

T
∫ A(A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗HB) T

∫ B,X ,Y ∫ A(A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗HB)

∫ B,Y ∫ A,X(A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗T HB)
∫ B,Y ∫ A,X

T (A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗HB)
∫ B,Y

T
∫ A,X(A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗HB) T

∫ B,Y ∫ A,X(A(A,Y ⊗B)⊗A(C,X ⊗A)⊗FX ⊗GY ⊗HB)

∫ A,X ∫ B,Y (A(C,X ⊗A)⊗FX ⊗A(A,Y ⊗B)⊗GY ⊗T HB)
∫ A,X ∫ B,Y

T (A(C,X ⊗A)⊗FX ⊗A(A,Y ⊗B)⊗GY ⊗HB)
∫ A,X

T
∫ B,Y (A(C,X ⊗A)⊗FX ⊗A(A,Y ⊗B)⊗GY ⊗HB) T

∫ A,X ∫ B,Y (A(C,X ⊗A)⊗FX ⊗A(A,Y ⊗B)⊗GY ⊗HB)

∫ A,X
A(C,X ⊗A)⊗FX ⊗

∫ B,Y (A(A,Y ⊗B)⊗GY ⊗T HB)
∫ A,X ∫ B,Y (A(C,X ⊗A)⊗FX ⊗T(A(A,Y ⊗B)⊗GY ⊗HB))

∫ A,X
A(C,X ⊗A)⊗FX ⊗

∫ B,Y
T (A(A,Y ⊗B)⊗GY ⊗HB)

∫ A,X
A(C,X ⊗A)⊗FX ⊗T

∫ B,Y (A(A,Y ⊗B)⊗GY ⊗HB)
∫ A,X

T (A(C,X ⊗A)⊗FX ⊗
∫ B,Y (A(A,Y ⊗B)⊗GY ⊗HB)) T

∫ A,X(A(C,X ⊗A)⊗FX ⊗
∫ B,Y (A(A,Y ⊗B)⊗GY ⊗HB))

∫
t

∼=

ξ

∼= ∼=
∫

t

∼=

ξ

∼= ∼=

∼=

∫ ∫
t

∫
ξ

∼=

ξ

∼=
∫ ∫

t

∼=

∫
ξ

∼=

ξ

∼=
∫ ∫

t

∼=

∫ ∫
Id⊗t

∫
ξ ξ

∼= ∼=

∫
Id⊗

∫
t ∼=

∫ ∫
t

∫
Id⊗ξ

∫
t ξ

Our goal is to show that the outermost diagram commutes. Note that all the inner diagrams com-

mute, by Theorem D.3(4)–(6) and naturality. Therefore the whole diagram commutes.

• Lastly, since V Aop

is a symmetric monoidal V -category with γF,G : F ⊗Day G → G⊗Day F , we can

define the costrength as the following for any F,B ∈ V Aop

.

σF,G := T γG,F ◦ tG,F ◦ γT F,G : T F ⊗Day G → T (F ⊗Day G)



P. Fu, K. Kishida, N.J. Ross & P. Selinger 331

We need to show that the following diagram commutes.

T F ⊗Day T G

T (F ⊗Day T G) T (T F ⊗Day G)

T T (F ⊗Day G) T T (F ⊗Day G)

T (F ⊗Day G)

σ
t

Tt Tσ

µ

µ

For any C ∈ A, the above diagram can be expanded to the following diagram. We need to show

the outermost diagram commutes.
∫ A,B

A(C,A⊗B)⊗TFA⊗TGB

∫ A,B
A(C,B⊗A)⊗TGB⊗TFA

∫ A,B
T (A(C,A⊗B)⊗TFA⊗GB)

∫ A,B
T (A(C,B⊗A)⊗TGB⊗FA)

∫ A,B
T (A(C,B⊗A)⊗GB⊗TFA) T

∫ A,B(A(C,A⊗B)⊗TFA⊗GB)

T
∫ A,B(A(C,B⊗A)⊗TGB⊗FA)

∫ A,B
T (A(C,A⊗B)⊗FA⊗TGB)

∫ A,B
T T (A(C,B⊗A)⊗GB⊗FA) T

∫ A,B(A(C,B⊗A)⊗GB⊗TFA)

T
∫ A,B(A(C,A⊗B)⊗FA⊗TGB)

∫ A,B
T T (A(C,A⊗B)⊗FA⊗GB) T

∫ A,B
T (A(C,B⊗A)⊗GB⊗FA)

T
∫ A,B

T (A(C,A⊗B)⊗FA⊗GB) T T
∫ A,B(A(C,B⊗A)⊗GB⊗FA)

T T
∫ A,B(A(C,A⊗B)⊗FA⊗GB)

∫ A,B
T (A(C,A⊗B)⊗FA⊗GB)

T
∫ A,B(A(C,A⊗B)⊗FA⊗GB)

∫
t

∫
γ

∫
t

ξ
∫

T γ

ξ

∫
T γ

∫
Tt

ξ

T
∫

γ

T
∫

γ
∫

Tt

ξ
∫

T Tγ

ξ

T
∫

t

T
∫

t

ξ ∫
µ Tξ

Tξ

TT
∫

γ

µ
ξ

It commutes because every inner diagram commutes (by naturality and Theorem D.3(2)).

E Proof of Theorem 4.4

We write [SetQop

]prod for the full subcategory of SetQop

consisting of product-preserving functors. We

write L : SetQop

→ [SetQop

]prod for the left adjoint of the inclusion functor i : [SetQop

]prod →֒ SetQop

. We

write η : Id → iL for the unit of the adjunction.

Definition E.1. We define a function L̃ : C → C̃ as follows.

• For any F ∈ C, we define L̃(F) = G such that for all A ∈ C,

G(A) = ((iLF0)A,(FA)1,(ηF0)A ◦hA : (FA)1 → (iLF0)A) ∈ V ,

where hA : (FA)1 → (FA)0 and (ηF0)A : F0A → (iLF0)A.

For any A,B ∈ C, we define G0
AB and G1

AB by the following.

f ∈ Mop(A,B) (F1
AB f ,(iLF0)(JAB f )) ∈ V (GA,GB)

JAB f ∈ Qop(A,B) (iLF0)(JAB f ) ∈ Set((iLF0)A,(iLF0)B)

G1
AB

JAB
p0

G0
AB

Note that G is smooth, hence G ∈ C̃.

Proposition E.2. L̃ : C → C̃ is a V -functor.
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Proof. We just need to show that for all F,G ∈ C, there is a morphism

L̃FG : C(F,G)→ C̃(L̃F, L̃G)

in V . This is provided by the following commuting square in Set.

{(αA : FA → GA)A∈C | α ∈ V -Nat(F,G)} {(βA : (iL̃F)A → (iL̃G)A)A∈C | β ∈ V -Nat(iL̃F, iL̃G)}

SetQop

(F0,G0)
[
SetQop

]
prod

(LF0,LG0)

L̃1
FG

L̃0
FG

We write V -Nat(F,G) for the set of V -natural transformations from F to G. The arrow L̃0
FG is given by

the functor L : SetQop

→ [SetQop

]prod. And the arrow L̃1
FG is given by extending the commuting square

αA : FA → GA with η : Id → iL, as in the following diagram. Note that for each V -natural transformation

α ∈ V Nat(F,G), we have α0 : F0 → G0.

(FA)1 (GA)1

(FA)0 (GA)0

(iLF0)A (iLG0)A

α1
A

α0
A

(η
F0 )A (η

G0 )A

(iL)α0
A

Theorem E.3. The V -category C̃ is a reflective V -subcategory of C, i.e., the inclusion V -functor i :

C̃ →֒ C has a left adjoint L̃.

Proof sketch. We need to show C(F, iG)∼= C̃(L̃F,G) for any F ∈ C,G ∈ C̃ and it is V -natural in F and

G. We just need to show the following diagram commutes.

V -Nat(F, iG) V -Nat(iL̃F, iG)

SetQop

(F0, iG0) [SetQop

]prod(LF0,G0)

∼=

∼=

The bottom arrow is an isomorphism because L ⊣ i. The top arrow is an isomorphism because for any

A ∈ C and V -natural transformation γ : F → iG, we have the following commutative diagram.

(FA)1 ((iG)A)1

(FA)0 ((iG)A)0

(iLF0)A

γ1
A

γ0
A

(η
F0 )A

i(γ̂0)A
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F Day’s reflection theorem for C̃

Theorem F.1. If H ∈ C̃, then G ⊸Day iH is also a smooth functor for any G ∈ C.

Proof. Suppose H ∈ C̃ and G ∈ C. For any C ∈ C, we have

(G ⊸Day iH)(C) =
∫

A∈C
GA ⇒ iH(C⊗A)∼= C(G, iH(C⊗−)).

Thus

(G ⊸Day H)(C)0
∼= C(G, iH(C⊗−))0

∼= SetQop

(G0,(iH)0(C⊗−))

∼=

∫

A∈Q
Set(G0A,(iH)0(C⊗A)) ∼= (G0

⊸Day (iH)0)(C),

where G0
⊸Day (iH)0 is an exponential in SetQop

. Since H0 preserves products, so does G0
⊸Day (iH)0,

thus G ⊸Day iH is smooth and G ⊸Day iH ∈ C̃. The functor G0
⊸Day (iH)0 preserves products in Qop

because for any C1,C2 ∈ C, we have

(G0
⊸Day iH0)(C1 +C2) =

∫

A
Set(G0A, iH0((C1 +C2)⊗A))

∼=

∫

A
Set(G0A, iH0(C1 ⊗A+C2⊗A))

∼=

∫

A
Set(G0A, iH0(C1 ⊗A)× iH0(C2 ⊗A))

∼=

∫

A
Set(G0A, iH0(C1 ⊗A))×Set(G0A, iH0(C2 ⊗A))

∼=

∫

A
Set(G0A, iH0(C1 ⊗A))×

∫

A
Set(G0A, iH0(C2 ⊗A))

= (G0
⊸Day iH0)(C1)× (G0

⊸Day iH0)(C2).

The above theorem implies that for any G ∈ C̃,F ∈ C, the unit ηF⊸DayiG : F ⊸Day iG → iL̃(F ⊸Day

iG) is an isomorphism, which gives rise to the following theorem.

Theorem F.2. For any F,H ∈ C, we have

L̃(F ⊗Day H)
L̃(ηF⊗DayH)

∼= L̃(iL̃F ⊗Day H).
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Proof. For any G ∈ C̃, we have the following commutative diagram.

C̃(L̃(iL̃F ⊗Day H),G) C̃(L̃(F ⊗Day H),G)

C(iL̃F ⊗Day H, iG) C(F ⊗Day H, iG)

C(iL̃F,H ⊸Day iG) C(F,H ⊸Day iG)

C(iL̃F, iL̃(H ⊸Day iG)) C(F, iL̃(H ⊸Day iG))

C̃(L̃F, L̃(H ⊸Day iG))

C̃(F, iL̃(H ⊸Day iG))

C̃(L̃(ηF⊗DayH),G)

∼= ∼=

C(ηF⊗DayH,iG)

∼= ∼=

C(ηF ,H⊸DayiG)

C(iL̃F,ηH⊸Day iG) C(F,ηH⊸DayiG)

C(ηF ,iL̃(H⊸DayiG))

∼=

Id

∼=

The top two squares commute by naturality of the adjunctions, the third square commutes by the bi-

functoriality of C(−,−) and the bottom triangle commutes by properties of the adjunction L̃ ⊣ i.

With the help of Theorem F.2, one can verify that L̃ is strong monoidal, e.g., for any F,G ∈ C,

L̃F ⊗Lam L̃G = L̃(iL̃F ⊗Day iL̃G)∼= L̃(F ⊗Day G).

G Proof of Theorem 4.13

We write β : i◦ T̃ → T ◦ i to denote the isomorphism i◦ T̃ ∼= T ◦ i.

Theorem G.1. The following diagrams commute.

1. Suppose F ∈ C̃.

iF iT̃ F

T iF

iη T̃

ηT

β

2. Suppose F ∈ C.

L̃F L̃T F

T̃ L̃F

L̃ηT

η T̃

ρ
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3. Suppose F ∈ C̃.

iT̃ T̃ F T iT̃ F T T iF

iT̃ F T iF

β

iµ T̃

Tβ

µT

β

4. Suppose F ∈ C.

L̃T T F T̃ L̃T F T̃ T̃ L̃F

L̃T F T̃ L̃F

ρ

L̃µT

T̃ρ

µ T̃

ρ

5. Suppose F ∈ C̃.

L̃iT̃ F L̃T iF

T̃ F T̃ L̃iF

L̃β

ε ρ

T̃ε

6. Suppose F ∈ C,G ∈ C̃.

L̃T (iT̃ G⊗D F) L̃T (T iG⊗D F) L̃T (F ⊗D T iG)

T̃ L̃(iT̃ G⊗D F) T̃ L̃(F ⊗D iT̃ G) T̃ L̃(F ⊗D T iG)

L̃T (β⊗DF)

ρ

L̃Tγ

ρ

T̃ L̃γ T̃ L̃(F⊗Dβ)

7. Suppose F,G ∈ C.

L̃(F ⊗D T G) L̃T (F ⊗D G) T̃ L̃(F ⊗D G) T̃ L̃(F ⊗D iL̃G)

L̃(F ⊗D iL̃T G) L̃(F ⊗D iT̃ L̃G) L̃(F ⊗D T iL̃G) L̃T (F ⊗D iL̃G)

L̃t

L̃(F⊗Dη iL̃)

ρ T̃ L̃(F⊗dη iL̃)

L̃(F⊗Diρ) L̃(F⊗Dβ) L̃t

ρ

Proof. 1. We have

C(iF,T iF) = C(iF,∆U0iF)∼= C(U0iF,U0iF)∼= C( jU0
′
F, jU0

′
F)∼= C̃(U0

′
F,U0

′
F)∼= C̃(F, T̃ F)

.

2. If we unfold the definition of ρ , we have the following diagram.
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L̃F L̃T F

L̃T iL̃F

L̃iT̃ L̃F

T̃ L̃F

L̃ηT

η T̃

L̃Tη iL̃

L̃β−1

ε

Note that we have the following commutative diagram, by naturality and (1).

F T F T iL̃F iT̃ L̃F

iL̃F

ηT

η L̃

Tη iL̃ β−1

ηT

iη T̃

Therefore we just need to show the following diagram commutes (and indeed it does).

L̃F L̃iL̃F L̃iT̃ L̃F

L̃F T̃ L̃F

L̃η iL̃

Id ε

L̃iη T̃

ε

η T̃

3. Since each component of µ and β is an identity, the diagram commutes.

4. If we unfold the definition of ρ , we have the following diagram.

L̃T T F L̃T iL̃T F L̃iT̃ L̃T F T̃ L̃T F

L̃T F L̃iT̃ L̃T iL̃F T̃ L̃T iL̃F

L̃T iL̃F L̃iT̃ L̃iT̃ L̃F T̃ L̃iT̃ L̃F

L̃iT̃ L̃F L̃iT̃ T̃ L̃F T̃ T̃ L̃F

T̃ L̃F

L̃Tη iL̃

L̃µT

L̃β−1
ε

L̃iT̃ L̃Tη iL̃ T̃ L̃Tη iL̃

L̃Tη L̃

ε

L̃iT̃ L̃β−1 T̃ L̃β−1

L̃β−1

ε

L̃iT̃ ε T̃ε

ε

ε

L̃iµ T̃

µ T̃

All of the squares commute by naturality. We just need to show the left diagram commutes. It
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commutes because the following commutes.

T T F T iL̃T F iT̃ L̃T F

T F T T iL̃F T iL̃T iL̃F

T iL̃F T iT̃ L̃F T iL̃iT̃ L̃F iT̃ L̃T iL̃F

iT̃ L̃F iT̃ T̃ L̃F iT̃ L̃iT̃ L̃F

Tη iL̃

µ
TT η iL̃

β−1

TiL̃Tη iL̃

iL̃Tη iL̃

Tη iL̃

Tη iL̃

µ
Tβ−1

β−1

TiL̃β−1

β−1

Tη iL̃

β−1
β−1

iT̃ L̃β−1

iµ iT̃ ε

The above diagram commutes, because all the squares commutes by naturality. The bottom left

corner diagram commutes by (3). Note that iε ◦η iL̃ = Id.

5. If we unfold the definition of ρ , we have the following diagram.

L̃iT̃ F L̃T iF

L̃T iF L̃T iL̃iF

L̃iT̃ F L̃iT̃ L̃iF

T̃ F T̃ L̃iF

L̃β

L̃β L̃T η iL̃

L̃β−1 L̃β−1

L̃T iε

ε ε
L̃iT̃ ε

T̃ε

The bottom two squares commute by naturality. The top square commutes because iε ◦η iL̃ = Id.

6. See the following commutative diagram.

L̃T (iT̃ G⊗D F) L̃T (T iG⊗D F) L̃T (F ⊗D T iG)

T̃ L̃(T iG⊗D F)

T̃ L̃(iT̃ G⊗D F) T̃ L̃(F ⊗D iT̃ G) T̃ L̃(F ⊗D T iG)

L̃T (β⊗DF)

ρ

L̃Tγ

ρ

ρ

T̃ L̃γ

T̃ L̃γ

T̃ L̃(β⊗DF)

T̃ L̃(F⊗Dβ)

7. Consider the following diagram.

L̃(F ⊗D T G) L̃T (F ⊗D G) T̃ L̃(F ⊗D G) T̃ L̃(F ⊗D iL̃G)

L̃(F ⊗D iL̃T G) L̃(F ⊗D iT̃ L̃G) L̃(F ⊗D T iL̃G) L̃T (F ⊗D iL̃G)

L̃t̄

L̃(F⊗η iL̃)
L̃(F⊗Tη iL̃)

ρ

L̃T (F⊗η iL̃)

T̃ L̃(F⊗η iL̃)

L̃(F⊗Diρ)

L̃(F⊗Dβ)

L̃t̄

ρ
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Note that the very right diagram and the middle square commute by naturality. The left diagram

commutes because the following diagram commutes (with ρ unfolded).

L̃(F ⊗D T G) L̃(F ⊗D T iL̃G)

L̃(F ⊗D iL̃T G) L̃(F ⊗D T iL̃G) L̃(F ⊗D iT̃ L̃G)

L̃(F ⊗D iL̃T iL̃G) L̃(F ⊗D iL̃iT̃ L̃G) L̃(F ⊗D iT̃ L̃G)

L̃(F⊗Tη iL̃)

L̃(F⊗Tη iL̃)
L̃(F⊗η iL̃)

L̃(F⊗iL̃T η iL̃)

Id

L̃(F⊗η iL̃)

L̃(F⊗Dβ−1)

L̃(F⊗η iL̃)

L̃(F⊗DiL̃β−1) L̃(F⊗Diε)

L̃(F⊗Dβ)

Theorem G.2. The V -functor T̃ is a commutative strong monad. The strength is given by t̃F,G : F ⊗Lam

T̃ G → T̃ (F ⊗Lam G) for any F,G ∈ C̃.

Proof. For any F,G ∈ C̃, we define t̃F,G by the following composition.

F ⊗Lam T̃ G = L̃(iF ⊗Day iT̃ G)

β
∼= L̃(iF ⊗Day T iG)

t̄
→ L̃(T (iF ⊗Day iG))

ρ
→ T̃ (L̃(iF ⊗Day iG)) = T̃ (F ⊗Lam G).

Now we need to show T̃ is a commutative strong monad.

•

F ⊗Lam G F ⊗Lam T̃ G

T̃ (F ⊗Lam G)

IdF⊗Lamη

η
t̃

The above diagram commutes because the following diagram commutes (by properties of t̄ and

Theorem G.1(1)+(2)).

L̃(iF ⊗Day iG) L̃(iF ⊗Day iT̃ G) L̃(iF ⊗Day T iG)

T̃ L̃(iF ⊗Day iG) L̃T (iF ⊗Day iG)
L̃ηT

L̃(Id⊗DηT )

L̃(Id⊗Diη T̃ )

η T̃

L̃(Id⊗Dβ)

L̃t̄

ρ

•

F ⊗Lam T̃ T̃ G T̃ (F ⊗Lam T̃ G) T̃ T̃ (F ⊗Lam G)

F ⊗Lam T̃ G T̃ (F ⊗Lam G)

t̃

F⊗Lamµ T̃

T̃ t̃

µ T̃

t̃
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The above diagram commutes because the following diagram commutes (all the inner diagrams

commute, by naturality, properties of t̄, and Theorem G.1(3)+(4)).

L̃(iF ⊗D iT̃ T̃ G) L̃(iF ⊗D T iT̃ G) L̃T (iF ⊗D iT̃ G)

L̃(iF ⊗D iT̃ G) L̃(iF ⊗D T T iG) T̃ L̃(iF ⊗D iT̃ G)

L̃(iF ⊗D T iG) L̃T (iF ⊗D T iG) T̃ L̃(iF ⊗D T iG)

L̃T (iF ⊗D iG) L̃T T (iF ⊗D iG) T̃ L̃T (iF ⊗D iG)

T̃ L̃(iF ⊗D iG) T̃ T̃ L̃(iF ⊗D iG)

L̃(Id⊗Dβ)

L̃(Id⊗Diµ T̃ )

L̃t̄

L̃(Id⊗DTβ) ρ

L̃T (Id⊗Dβ)L̃(Id⊗β) L̃t̄
L̃(Id⊗DµT )

T̃ L̃(Id⊗Dβ)

L̃t̄

ρ

L̃T t̄ T̃ L̃t̄

ρ

ρ

L̃µT

T̃ρ

µ T̃

•

(F ⊗Lam G)⊗Lam T̃ H T̃ ((F ⊗Lam G)⊗Lam H)

F ⊗Lam (G⊗Lam T̃ H) F ⊗Lam T̃ (G⊗Lam H) T̃ (F ⊗Lam (G⊗Lam H))

t̃

α T̃α

IdF⊗Lamt̃ t̃

Again, the above diagram commutes because the following diagram commutes (all of the inner

diagrams commute by naturality, properties of t̄, and Theorem G.1(7)).

L̃(iL̃(iF ⊗D iG)⊗D iT̃ H) L̃(iL̃(iF ⊗D iG)⊗D T iH) L̃T (iL̃(iF ⊗D iG)⊗D iH)

L̃((iF ⊗D iG)⊗D iT̃ H) L̃((iF ⊗D iG)⊗D T iH) L̃T ((iF ⊗D iG)⊗D iH) T̃ L̃(iL̃(iF ⊗D iG)⊗D iH)

L̃(iF ⊗D (iG⊗D iT̃ H)) L̃(iF ⊗D (iG⊗D T iH)) T̃ L̃((iF ⊗D iG)⊗D iH)

L̃(iF ⊗D iL̃(iG⊗D iT̃ H)) L̃(iF ⊗D T (iG⊗D iH)) T̃ L̃(iF ⊗D (iG⊗D iH))

L̃(iF ⊗D iL̃(iG⊗D T iH)) L̃T (iF ⊗D (iG⊗D iH)) T̃ L̃(iF ⊗D iL̃(iG⊗D iH))

L̃(iF ⊗D iL̃T (iG⊗D iH)) L̃(iF ⊗D iT̃ L̃(iG⊗D iH)) L̃(iF ⊗D T iL̃(iG⊗D iH)) L̃T (iF ⊗D iL̃(iG⊗D iH))

L̃(Id⊗Dβ)

(L̃(η iL̃⊗DId))−1

L̃t̄

(L̃(η iL̃⊗DId))−1 ρ

L̃(Id⊗Dβ)

L̃α

L̃t̄

L̃α
ρ

L̃Tα

T̃ (L̃(η iL̃⊗DId))−1

L̃(Id⊗D(Id⊗β))

L̃(Id⊗Dη iL̃) L̃(Id⊗Dt̄)L̃(Id⊗Dη iL̃) T̃ L̃α

L̃(Id⊗DiL̃(Id⊗Dβ)) L̃t̄

L̃(Id⊗Dη iL̃)

T̃ (L̃(Id⊗Dη iL̃))

L̃(Id⊗DiL̃t̄)

ρ

L̃(Id⊗Diρ) L̃(Id⊗Dβ) L̃t̄

ρ

•

I⊗Lam T̃ F T̃ (I ⊗Lam F)

T̃ F

t̃I,F

λ
T̃ F

T̃λF

The above diagram commutes because the following commutes (all the inner diagrams commute,
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by naturality, property of t̄, and Theorem G.1 (5)).

L̃(I ⊗D iT̃ F) L̃(I⊗D T iF) L̃T (I ⊗D iF)

L̃iT̃ F L̃T iF T̃ L̃(I ⊗D iF)

T̃ F T̃ L̃iF

L̃(Id⊗Dβ)

L̃λ

L̃t̄

L̃λ ρL̃Tλ

L̃β

ε
ρ

T̃ L̃λ

T̃ε

• Lastly, since C̃ is symmetric monoidal with γF,G : F ⊗Lam G → G⊗Lam F . We define the costrength

σF,G := T̃ γG,F ◦ t̃G,F ◦γ
T̃ F,G : T̃ F ⊗Lam G → T̃ (F ⊗Lam G). We need to show the following diagram

commutes.

T̃ F ⊗Lam T̃ G

T̃ (F ⊗Lam T̃ G) T̃ (T̃ F ⊗Lam G)

T̃ T̃ (F ⊗Lam G) T̃ T̃ (F ⊗Lam G)

T̃ (F ⊗Lam G)

σ
t̃

T̃ t̃ T̃σ

µ T̃

µ T̃

Again, the above diagram commutes because the following diagram commutes (all the inner dia-

grams commute, by naturality, properties of t̄, and Theorem G.1(4)+(6)).

L̃(iT̃ G⊗D iT̃ F) L̃(iT̃ F ⊗D iT̃ G)

L̃(T iF ⊗D iT̃ G) L̃(iT̃ F ⊗D T iG)

L̃(iT̃ G⊗D T iF) L̃(T iF ⊗D T iG) L̃T (iT̃ F ⊗D iG)

L̃T (iT̃ G⊗D iF) L̃(T iG⊗D T iF) L̃T (T iF ⊗D iG) T̃ L̃(iT̃ F ⊗D iG)

T̃ L̃(iT̃ G⊗D iF) L̃T (T iG⊗D iF) L̃T (iG⊗D T iF) T̃ L̃(T iF ⊗D iG) T̃ L̃(iG⊗D iT̃ F)

T̃ L̃(iF ⊗D iT̃ G) L̃T (iF ⊗D T iG) L̃T T (iG⊗D iF) T̃ L̃(iG⊗D T iF)

T̃ L̃(iF ⊗D T iG) L̃T T (iF ⊗D iG) T̃ L̃T (iG⊗D iF)

T̃ L̃T (iF ⊗D iG) T̃ T̃ L̃(iG⊗D iF)

L̃T (iF ⊗D iG) T̃ T̃ L̃(iF ⊗D iG)

T̃ L̃(iF ⊗D iG)

L̃(Id⊗Dβ)

L̃(Id⊗Dβ)L̃(β⊗DId)

L̃γ

L̃(Id⊗Dβ)

L̃γ

L̃(β⊗DId) L̃t̄

L̃(β⊗DId)L̃t̄ L̃t̄

L̃γ L̃T (β⊗DId)

ρ

L̃T (β⊗DId)

ρ L̃t̄

ρ

L̃Tγ T̃ L̃(β⊗DId)

T̃ L̃λ

T̃ L̃γ L̃Tγ L̃T t̄

ρ T̃ L̃λ

T̃ L̃(Id⊗Dβ)

T̃ L̃(Id⊗Dβ)

ρ
L̃T t̄

L̃TT γ

ρ

T̃ L̃t̄

T̃ L̃t̄

ρ

L̃µ

T̃ρ

T̃ρ

T̃ T̃ L̃γ

ρ

µ

H Proof of Theorem 4.17

Theorem H.1. The V -category C̃ is a model for Proto-Quipper with dynamic lifting.

Proof. We have already shown that C̃ satisfies conditions a–e and g–h. In the following we will focus

on condition f.
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• First we need to define a functor ψ : M →֒V (C̃). We define it as the following composition.

M ∼=V (C)
V y
→֒V (C̃)

The functor ψ is strong monoidal, because V y is strong monoidal.

• Next we need to define a functor φ : Q →֒ Kl
VT̃

(V (C̃)). We write

θF,G : C̃(F, T̃ G)∼= [SetCop

]prod(U0
′
F,U0

′
G)

for any F,G ∈ C̃. We also write Ω : [SetCop

]prod
∼= [SetQop

]prod. We have

Kl
VT̃

(V (C̃))(F,G) = V (1,C̃(F, T̃ G))

V (1,θF,G)
∼= V (1, [SetCop

]prod(U0
′
F,U0

′
G))

Ω
U0

′
F,U0

′
G

∼= [SetQop

]prod(F
0,G0)

for any F,G ∈ C̃. The category Kl
V T̃

(V (C̃)) is enriched in convex spaces because [SetQop

]prod is

enriched in convex spaces.

Now we define φ . On objects, we define

φ(S) = yS = C(−,S).

On morphisms, for any S,U ∈ Q, we define φS,U by the following composition of isomorphisms.

Q(S,U)
κS,U
∼= [SetQop

]prod(κS,κU) = [SetQop

]prod((yS)0,(yU)0)

Ω−1

U0
′
yS,U0

′
yU

∼= V (1, [SetCop

]prod(U0
′
yS,U0

′
yU))

V (1,θ−1
yS,yU )
∼= Kl

V T̃
(V (C̃))(yS,yU)

Since the Lambek embedding κS,U preserves convex sum (Theorem 4.16) and the composition

V (1,θ−1
yS,yU)◦Ω−1

U0
′
yS,U0

′
yU

preserves convex sum, we conclude that φ preserves convex sum.

Next we need to show φ is strong monoidal. Since κ is strong monoidal, we have the natural

isomorphisms I
e′

∼= κI and κS⊗ κU
m′

S,U
∼= κ(S⊗U) for any S,U ∈ Q. Recall that for any S ∈ Q,

κS = Q(−,S) =U0
′
C(−,S) and U0 is strong monoidal. Via the isomorphism Ω (which preserves

the monoidal structure) we have the following natural isomorphisms in [SetCop

]prod.

Ω−1(e′) : U0
′
C(−, I)→U0

′
C(−, I)

Ω−1(m′
S,U) : U0

′
(C(−,S)⊗C(−,U))→U0

′
C(−,S⊗U).

Now let mS,U = θ−1
yS,yU(Ω

−1(m′
S,U)) : C(−,S)⊗C(−,U)→ T̃ C(−,S⊗U) and e= θ−1

yI,yI(Ω
−1(e′)) :

C(−, I)→ T̃ C(−, I). It is obvious that e is an isomorphism in Kl
V T̃

(V (C̃)). The inverse of mS,U

is defined as θ−1
yS,yU(Ω

−1(m′
S,U

−1)), which can be verified. We can furthermore show that mS,U is

natural and that e,mS,U satisfies the strength diagrams for any S,U ∈Q. For example, showing mS,U

is natural in Kl
VT̃

(V (C̃)), via the adjunction U0
′
⊣ ∆

′
, is equivalent to the naturality of Ω−1(m′

S,U).
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• Lastly, we want to show that the following diagram commutes.

M(S,U) V (1,C̃(yS,yU)) =V (C̃)(yS,yU)

Q(S,U) V (1,C̃(yS, T̃ yU)) = Kl
V T̃

(V (C̃)(yS,yU)

ψS,U

JS,U ES,U

φ−1
S,U

Let f ∈ M(S,U). We write ( f ,JS,U f ) for the corresponding map in V (1,C(S,U)). It corresponds

to the following map in C̃ via the enriched Yoneda embedding.

C(−,S) C(−,U)
y( f ,JS,U f )

Applying ηU to the above map, we have the following.

C(−,S) C(−,U) T̃ C(−,U)
y( f ,JS,U f ) ηU

So for any A ∈ C, we have the following.

M(A,S) M(A,U) Q(A,U)

Q(A,S) Q(A,U) Q(A,U)

M(A, f )

JA,S

JA,U

JA,U Id

Q(A,JS,U f ) Id

Since φ−1
S,U = κ−1

S,U ◦Ω
U0

′
yS,U0

′
yU

◦V (1,θyS,yU), we have

φ−1
S,U(ηU ◦ y( f ,JS,U f )) = κ−1

S,U Ω
U0

′
yS,U0

′
yU

V (1,θyS,yU)(ηU ◦ y( f ,JS,U f ))

= κ−1
S,U Ω

U0
′
yS,U0

′
yU
(U0

′
y( f ,JS,U f )) = κ−1

S,U(Q(−,JS,U f )) = JS,U f ∈ Q(S,U).
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Path sums are a convenient symbolic formalism for quantum operations with applications to the

simulation, optimization, and verification of quantum protocols. Unlike quantum circuits, path sums

are not limited to unitary operations, but can express arbitrary linear ones. Two problems, therefore,

naturally arise in the study of path sums: the unitarity problem and the extraction problem. The

former is the problem of deciding whether a given path sum represents a unitary operator. The latter

is the problem of constructing a quantum circuit, given a path sum promised to represent a unitary

operator.

In this paper, we show that the unitarity problem is co-NP-hard in general, but that it is in P

when restricted to Clifford path sums. We then provide an algorithm to synthesize a Clifford circuit

from a unitary Clifford path sum. The circuits produced by our extraction algorithm are of the form

C1HC2, where C1 and C2 are Hadamard-free circuits and H is a layer of Hadamard gates. We also

provide a heuristic generalization of our extraction algorithm to arbitrary path sums. While this algo-

rithm is not guaranteed to succeed, it often succeeds and typically produces natural looking circuits.

Alongside applications to the optimization and decompilation of quantum circuits, we demonstrate

the capability of our algorithm by synthesizing the standard quantum Fourier transform directly from

a path sum.

1 Introduction

The circuit model is ubiquitous in quantum computing, from hardware assembly code to the high-level

description of algorithms. Quantum compilation typically amounts to a series of circuit-to-circuit trans-

formations, lowering a circuit, described programmatically in a circuit description language over a high-

level gate set, down through a series of progressively restrictive gate sets with more fault-tolerance and

hardware constraints. Accordingly, quantum algorithms are frequently described at the level of quantum

circuits, plugging together inputs and outputs of large, complicated circuits. An exception is the classical

oracles used in many quantum algorithms, which are often described at the level of classical programs

or Boolean logic, and then synthesized as a high-level quantum circuit.

Despite this, the circuit model is often a less than ideal representation of quantum computations.

Semantically, circuits expose little information about a computation to the naked eye, particularly when

low-level gate sets like Clifford+T are used. Likewise, reasoning about quantum circuits is often a

difficult affair involving re-write rules derived from circuit relations. Complete sets of relations are

only known for a small number of low-level non-universal gate sets [28, 3, 22], or higher-level gate sets

[12, 21] which result in a large degree of overhead when compiled. Even with complete sets of relations,

http://dx.doi.org/10.4204/EPTCS.394.17
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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simplification of quantum circuits using re-write rules is costly and highly local, yielding results which

are typically far from optimal.

Recently, alternative models of quantum computation such as those based on diagrammatic calculi

[14, 7], have risen in popularity. These models have seen success in circuit simplification, among other

applications, due in part to more effective re-writing methods. However, as most existing quantum

computers ultimately run on circuit-like languages, a key component in using such models for circuit

transformations is the ability to synthesize or extract a circuit back from the representation. This problem

has seen a great deal of attention recently in the context of graphical calculi, resulting in methods for the

extraction of Clifford and Clifford+T circuits from ZX diagrams admitting a generalized flow [17, 8], as

well as theoretical results studying the hardness of this extraction problem [11].

In this paper, we study the problem of synthesizing a unitary circuit given a symbolic expression of

a linear operator as a sum-over-paths or path sum [2]. As any linear operator between 2n-dimensional

Hilbert spaces is representable in this form, we first consider the problem of deciding whether a path sum

representations a unitary transformation and show that it is generically coNP-hard. Restricting to path

sums representing Clifford operators we show that the unitarity problem is in P, and that a unitary circuit

can be synthesized in time polynomial in the number of qubits. This extraction algorithm produces

circuits of the form C1HC2, where C1 and C2 are Hadamard-free circuits decomposable as a product of

S, X, CZ, and CNOT gates, and H is a layer of Hadamard gates. As a consequence we obtain a simple,

constructive proof of the 7-stage Bruhat decomposition of the Clifford group [13, 23].

For non-Clifford operations, we give a heuristic for the unitary synthesis of general sums. While our

heuristic does not always produce a circuit even if the path sum represents a unitary operator, it succeeds

often in practice and typically returns efficient, natural circuits. Alongside circuit optimization, this

heuristic has applications to the decompilation of quantum circuits, whereby a circuit over a low-level

gate set such as Clifford+T is re-written over a higher-level gate set such as multiply-controlled Toffoli

gates. We further demonstrate the capability of our algorithm by synthesizing the typical quantum Fourier

transform circuit directly from its specification as a sum-over-paths.

2 Path sums

We begin by briefly reviewing the theory of path sums [2, 30]. A path sum representation of a linear

operator Ψ : C2m → C
2n

is an expression for Ψ as a sum indexed by binary variables such as

Ψ |~x〉= N ∑
~y∈Zk

2

e2πiP(~x,~y) | f (~x,~y)〉 , (1)

where N ∈ C \ {0} is a normalization factor, and P : Zm
2 ×Z

k
2 → R and f : Zm

2 ×Z
k
2 → Z

n
2 are real-

and Boolean-valued multilinear polynomials, respectively. The path sum in Equation (1) is said to be

amplitude-balanced because the normalization factor N is independent of ~x and ~y. We sometimes

denote the path sum representation of an operator Ψ by |Ψ〉.
Equation (1) provides a representation the operator Ψ in the sense that instantiating the binary vari-

ables~x and~y on both sides of the equality yields a true equation. For this reason, we think of a path sum

as a symbolic description of the action of a linear operator on computational basis states.

Example 2.1. The phase gates S and T, as well as the Hadamard gate H, can be represented by path sums

as follows, where ω = eiπ/4:

• S |x〉= ix |x〉,
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• T |x〉= ωx |x〉, and

• H |x〉= 1√
2

∑y(−1)xy |y〉.

As path sums involve arithmetic and polynomials over Boolean variables in various rings, it is useful

to recall that Boolean algebra can be embedded in any (unital) ring R using the lifting construction

defined in [2, Lemma 7.1.6] and reproduced below.

0 = 0R f ∧g = f ·g
1 = 1R f ⊕g = f +g− (2 · f ·g)

Lifting allows one to use Boolean expressions of variables inside path sums coherently, leading to more

natural expressions, as in the following example.

Example 2.2. The gates CNOT and TOF admit the following path sum representations:

• CNOT |x1x2〉= |x1〉 |x1⊕ x2〉 and

• TOF |x1x2x3〉= |x1〉 |x2〉 |x1⊕ (x2 · x3)〉.
The sum-over-paths representations of linear operators has been studied extensively in the context of

quantum information [15, 9, 27, 24, 19, 10]. Recent work on the connection to graphical calculi [20, 30]

has shown that path sums form a universal model for linear operators over 2n-dimensional Hilbert spaces

through direct translations from universal graphical calculi such as the ZH-calculus [7].

Proposition 2.3 (Unversality). Any linear operator Ψ : C2m → C
2n

admits a representation as a path

sum.

Example 2.4. Path sums can represent linear operators between spaces of different dimensions. The

operators η : C→ C
2⊗C

2 and ε : C2⊗C
2→ C, which act, respectively, as the unit and counit in the

category FdHilb [30], can be written as the following path sums:

• η |〉= ∑y |yy〉 and

• ε |x1x2〉= 1
2 ∑y(−1)y(x1+x2) |〉.

When a path sum represents a row or column vector as above, we drop any empty |〉. A path sum with a

single output dimension, representing a C-valued linear map, is said to be dimensionless.

In contrast to graphical calculi, which have a compositional structure, path sums are effectively

global expressions of a linear operator. In other words, the composition (sequential or parallel) of two

linear operators is reified into an expression of the form of Equation (1). This is accomplished through

the substitution of free variables — variables that are not summed over, corresponding to inputs of the

operator as elements of the computational basis. We denote the free variables of a path sum |Ψ〉 by

FV (|Ψ〉). A path sum with free variables may be thought of as a symbolic state vector in indeterminates

~x = FV (|Ψ〉). Hence we use the notation |Ψ(~x)〉 to denote a path sum expression for the operator Ψ with

free variables ~x. We use |Ψ(x)〉 to denote a path sum with a distinguished free variable x.

Through the lifting operation described above, we can define a notion of substitution for path sums

with free variables. In particular, given a free variable x appearing in a path sum we may substitute x

with any Boolean expression f in all relevant contexts (the phase or the state).

Definition 2.5 (Substitution). Let |Ψ(x)〉 be a path sum with free variable x and let f be a Boolean

expression. Then the substitution of x with f is denoted |Ψ( f )〉.
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Reasoning with local binders and free variables in the path sums requires care to avoid variable

capture. For instance, let |Ψ(x)〉 = ∑y |x〉. It can be observed that |Ψ(x)〉 represents the linear operator

Ψ = 2I. However, if x is substituted with the free variable y, the ∑y captures y, giving the path sum

|Ψ(y)〉= ∑y |y〉, representing the vector |0〉+ |1〉. We assume that substitution is capture-avoiding unless

otherwise noted.

A variable may also be bound by summing over its possible values. A bound variable may be locally

viewed as a free variable by pulling the summation outside of an expression. Indeed, if |Ψ(x)〉 is a path

sum with free variable x, then ∑x |Ψ(x)〉 is a path sum with free variables FV (|Ψ〉)\{x}. We sometimes

refer to bound variables as path variables.

Example 2.6. Recall that the Hadamard gate can be represented as H |x〉 = 1√
2

∑y(−1)xy |y〉. Alterna-

tively, the Hadamard gate can also be written as H |x〉 = ∑y |Ψ(x,y)〉 where |Ψ(x,y)〉= 1√
2
(−1)xy |y〉 is a

path sum in the free variables x and y.

By Proposition 2.3, any linear operator admits a path sum representation. In particular, the composi-

tion or tensor product of any two linear operators can also be represented as a path sum. The following

proposition gives explicit expression for these constructions in the language of path sums.

Proposition 2.7 (Parallel & Sequential composition). Let Ψ : C2m → C
2n

and Φ : C2s → C
2t

be two

linear operators and let Ψ |~x〉 = N ∑~y∈Zk
2
e2πiP(~x,~y) | f (~x,~y)〉 and Φ |~w〉 = M ∑~z∈Zl

2
e2πiQ(~w,~z) |g(~w,~z)〉 be

expressions of Ψ and Φ as path sums. Then

Ψ⊗Φ |~x〉 |~w〉= N M ∑
~y∈Zk

2

∑
~z∈Zl

2

e2πi[P(~x,~y)+Q(~w,~z)] | f (~x,~y)〉⊗ |g(~w,~z)〉

Φ◦Ψ |~x〉= N ∑
~y∈Zk

2

e2πiP(~x,~y) |Φ( f (~x,~y))〉

as path sums, where the latter is well-formed if and only if s = n.

The parallel and sequential composition of path sums provides a method to compute a symbolic

expression for a circuit over a set of basic gates with known path sums. Moreover, for typical gate sets of

interest, this representation has size polynomial in the size of the circuit. We give one such result below

[2, Corollary 2.15] for the class of circuits which will be most relevant for the purposes of this paper.

Proposition 2.8 (Efficiency for Clifford+T ). Any circuit over Clifford+T gates of volume V can be

expressed as a path sum which has size polynomial in V and can be computed in time polynomial in V .

Equational reasoning A major utility of the path sum representation [2] comes from the ability to

perform equational reasoning. Complete equational theories of Clifford unitaries [2] and more general

stabilizer operations [30] have previously been developed. We reformulate these theories here using

locally free variables to simplify their presentation.

Proposition 2.9. Let Ψ be a path sum such that y /∈ FV (Ψ) and let f be a Boolean expression such that

x,y /∈ FV ( f ). Then the following equations hold.

∑
y

|Ψ〉= 2 |Ψ〉 (2)

∑
x,y

(−1)y(x+ f ) |Ψ(x)〉= 2 |Ψ( f )〉 (3)

∑
y

iy(−1)y f |Ψ〉= ω
√

2(−i) f |Ψ〉 (4)

∑
y

|Ψ(y)〉=∑
y

|Ψ(y+ f )〉 (5)
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Equations (2), (3) and (4) are restatements of [2, Proposition 3.1]. Equation (5) is a generalization of

the (ket) rule given in [30, Figure 3] and can be derived from Equation (3) as follows:

∑
y

|Ψ(y)〉= ∑
y

[

1

2
∑
x,z

(−1)z(x+(y+ f )) |Ψ(y)〉
]

By Equation (3) where x,z /∈ FV ( f )∪FV (Ψ)

= ∑
x

[

1

2
∑
y,z

(−1)z(y+(x+ f )) |Ψ(y)〉
]

Basic arithmetic

= ∑
x

|Ψ(x+ f )〉 By Equation (3)

= ∑
y

|Ψ(y+ f )〉 Since y /∈ FV ( f )∪FV (Ψ)

The first equality above uses the instance ∑x,z(−1)z(x+ f ′) |Ψ(y)〉= 2 |Ψ(y)〉 of Equation (3), where f ′ =
y+ f and |Ψ(y)〉 is viewed as a path sum with zero occurrences of the free variable x.

Example 2.10. Consider the dimensionless path sum 1√
2

∑y iy. By Equation (4) it follows that 1√
2

∑y iy =

ω . Hence, Equation (4) symbolically encodes the fact that ω = 1+i√
2

.

Relationship to post-selected circuits As with the ZX-calculus and variants, path sum expressions

correspond naturally to circuits with ancillas and postselection. Given a path sum expression of a linear

operator Ψ : C2m → C
2n

of the form of Equation (1), a circuit implementing Ψ up to a constant scalar

factor can be achieved through postselection as follows. First, prepare k ancillary qubits in the state
1√
2

k ∑~y∈Zk
2
|~y〉 by applying Hadamard gates to the |0〉⊗k state. The symbolic state is then prepared up to

some garbage |g(~x,~y)〉 via the unitary transformation

ΨPS : |~x〉⊗ |~y〉 7→ e2πiP(~x,~y) | f (~x,~y)〉⊗ |g(~x,~y)〉 .

Finally, the garbage is discarded by postselecting H
⊗m+k−n |g(~x,~y)〉= N ′∑~z(−1)~z·g(~x,~y) |~z〉 on~z =~0.

Since postselected quantum circuits are believed to be strictly more powerful than non-postselected

circuits [1], the rest of this paper focuses on the question of synthesizing unitary circuits for path sums

representing unitary transformations, up to normalization.

3 Unitarity testing

We are interested in the synthesis of unitary quantum circuits implementing a path sum. As a path sum

may represent an arbitrary linear operator, a natural question to ask is whether a given path sum represents

a unitary transformation, and hence can be extracted to a unitary circuit. We call this the unitarity testing

problem for path sums and formulate it as a decision problem below.

Definition 3.1 (UNITARY). UNITARY is the set of path-sums |Ψ〉 where Ψ is a unitary transformation.

The unitarity problem is clearly decidable since we can always explicitly compute a matrix represen-

tation of Ψ from a path sum |Ψ〉. However, since the size of the corresponding matrix is exponential in

n, this solution is not efficient. As we show in this section, one should not hope for an efficient solution

in general.

Recall that the complexity class co-NP consists of the decision problems whose complement belongs

to NP, and hence is widely believed to be intractable. A canonical complete problem for co-NP is the
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tautology problem, recognizing the set of propositional formulas over the connectives {¬,∧,∨} which

are satisfied by every variable assignment. We view a propositional formula in n distinct free variables

as a function Z
n
2→ Z2, using the standard interpretation ¬x := 1+ x, x∧ y := xy and x∨ y := x+ y− xy.

The application of ϕ to some~x ∈ Z
n
2 is denoted by ϕ(~x).

Definition 3.2 (Tautology). A propositional formula ϕ in n variables is a tautology if ϕ(~x) = 1 for every

~x ∈ Z
n
2, written ϕ ≡ 1.

Definition 3.3 (TAUT). TAUT is the set of all propositional formulas that are tautologies.

Theorem 3.4 (Karp’s 21 NP-complete problems). The TAUT problem is co-NP-complete.

To reduce TAUT to UNITARY, our goal is to encode a propositional formula ϕ as a path sum repre-

senting the linear operator Φ |~x〉= ϕ(~x) |~x〉 which is the identity if ϕ ≡ 1, and non-unitary otherwise. To

do so we establish an encoding of ϕ as a dimensionless path sum of the form ϕ(~x) = N ∑~y(−1)P(~x,~y),
where P is a multilinear Boolean polynomial.

It can readily be observed that x = 2−1 ∑y∈Z2
(−1)y(1+x) for any x ∈ Z2. This gives an immediate

encoding of any propositional formula in a path sum by extending the lifting discussed in Section 2 to

propositional negation and disjunction via the equations ¬ϕ = 1−ϕ , ϕ ∨ψ = ϕ +ψ−ϕ ·ψ, and then

setting

ϕ(~x) = 2−1 ∑
y

(−1)y(1+ϕ(~x)).

However, the lifting of a propositional formula ϕ may generally have size exponential in the size of ϕ .

To obtain a polynomial size encoding we rely on the Tseytin transformation [29].

Given two propositional formulas ϕ and ψ , we write ϕ ↔ ψ for the logical equality of ϕ and ψ ,

which is satisfied by an assignment ~x if and only if ϕ(~x) = ψ(~x). The Tseytin transformation takes a

propositional formula ϕ with k distinct subterms and returns an equisatisfiable conjunction of at most

O(k) constant-depth formulas by assigning a fresh propositional variable to the value of each subterm.

For instance, given a propositional formula ϕ = x1∧(x2∨¬x3), the Tseytin transformation of ϕ , denoted

T (ϕ), is

T (ϕ) = z1∧ (z1↔ x1∧ z2)∧ (z2↔ x2∨ z3)∧ (z3↔¬x3).

Note that FV (ϕ) ⊆ FV (T (ϕ)) and that the satisfying assignments of ϕ and T (ϕ) are in a 1-to-1

correspondence and agree on FV (ϕ).
Given a propositional formula ϕ , we can encode the Tseytin transformation T (ϕ) of ϕ in a dimen-

sionless sum over the free variables of ϕ using the following encoding of logical equality

(ϕ ↔ ψ)(~x) = ∑
y

(−1)yϕ(~x)+yψ(~x).

Note that for a clause of the Tseytin transformation z↔ ϕ where ϕ has constant depth, ϕ has constant

size. If we denote the clauses of T (ϕ) by z1↔ c1, . . . ,zk↔ ck, we may encode T (ϕ) as a polynomial-

size sum by taking the product of each clause and distributing over the summations:

T (ϕ)(~x,~z) = z1 ∏
i

(zi↔ ci)(~x) = 2−1 ∑
y

(−1)y(1+z1)∏
i

2−1 ∑
yi

(−1)yi(zi+ci(~x))

= 2−(k+1)∑
y

∑
~y∈Zk

2

(−1)y(1+z1)+∑i yi(zi+ci(~x)).

Finally, since the satisfying assignments of ϕ and T (ϕ) are in a 1-to-1 correspondence, we see that

ϕ(~x) =∑
~z

T (ϕ)(~x,~z) = 2−(k+1)∑
y

∑
~y∈Zk

2

∑
~z∈Zk

2

(−1)y(1+z1)+∑i yi(zi+ci(~x)).
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Proposition 3.5. Let ϕ be a propositional formula in n variables and let T (ϕ) = z1 ∧ (
∧k

i=1 zi ↔ ci).
Then for any~x ∈ Z

n
2,

ϕ(~x) = 2−(k+1)∑
y

∑
~y∈Zk

2

∑
~z∈Zk

2

(−1)y(1+z1)+∑i yi(zi+ci(~x))

where the sum on the right hand size has size polynomial in k.

Remark 3.6. The encoding of ϕ in Proposition 3.5 is interesting because it gives a polynomial-size

expression in the same variables as ϕ . This is in contrast to the propositional Tseytin transformation

which gives an encoding over a superset of free variables, and hence only remains equi-satisfiable. In

particular, T (·) does not preserve tautologies, whilst our encoding does when viewed as a {0,1}-valued

function.

Given the encoding of ϕ above, we can now prove co-NP-hardness of the unitarity testing problem

by a reduction from TAUT.

Theorem 3.7. The unitarity testing problem is co-NP-hard

Proof. By many-one reduction from TAUT to UNITARY. Given a propositional formula ϕ in n variables,

define Ψ : Zn
2→ Z

n
2 to be the linear operator given by Ψ |~x〉= ϕ(~x) |~x〉 . By Proposition 3.5, Ψ admits the

following representation as a path sum

Ψ |~x〉= 2−(k+1)∑
y

∑
~y∈Zk

2

∑
~z∈Zk

2

(−1)y(1+z1)+∑i yi(zi+ci(~x)) |~x〉

which has size polynomial in the number of subterms of ϕ . Hence all that remains is to show that Ψ is

unitary if and only if ϕ is a tautology. If suffices to observe that, for any ~x ∈ Z
n
2, Ψ |~x〉 = ϕ(~x) |~x〉 = |~x〉

if ϕ(~x) = 1 and ~x ∈ Z
n
2, Ψ |~x〉 = ϕ(~x) |~x〉 = 0 otherwise. In particular, if ϕ(~x) = 1 for all ~x ∈ Z2, then

Ψ = In. Otherwise, there exists~x ∈ Z2 such that Ψ |~x〉= 0 and hence Ψ is non-unitary, as required.

4 Clifford synthesis

In this section we look at the problems of synthesis and unitarity testing in the restricted case of Clifford

operations. The synthesis of Clifford circuits has applications both to randomized benchmarking, as well

as to the design and analysis of error correction circuits. We first review the definition of the Clifford

group.

Definition 4.1 (Pauli group). The n-qubit Pauli group Pn is the group of n-fold tensor products of Pauli

operators {I,X ,Y,Z}.
Definition 4.2 (Clifford group). The n-qubit Clifford group is the group Cn = {U ∈U2n |UPnU

† =Pn}.
A well-known consequences of the Gottesman-Knill theorem is the fact that, up to global phases,

the Clifford group is generated by {H,S,CNOT}. We may use this fact to give a convenient path sum

representation of Clifford operations.

Proposition 4.3. Every Clifford operator Ψ : C2n → C
2n

can be written as a sum of the form

Ψ |~x〉= ω l

√
2k

∑
~y∈Zk

2

iL(~x,~y)(−1)Q(~x,~y) | f (~x,~y)〉 (6)

where ω = e2πi/8, l ∈ Z8, L : Zn
2×Z

k
2 → Z4 is linear, Q : Zn

2×Z
k
2 → Z2 is pure quadratic, and f :

Z
n
2×Z

k
2→ Z2 is affine.
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Proof. As the Clifford group generators CNOT,S, and H can be written in the form of Equation (6), it

only remains to show that the composition of two such sums can be written in the form of Equation (6).

It suffices to note that substitution of a variable with an affine Boolean expression does not increase the

degree of Q or f , while substitution in L produces a quadratic form with degree 2 terms divisible by

2.

We call an expression of the form of Equation (6) a Clifford path sum. In the context of stabilizer

states — states |ψ〉 = C |~0〉 for some C ∈ Cn — this representation is well-known by various names,

including the quadratic form expansion [10] and the affine representation [16, 26]. Through the inclusion

of free parameters we can represent stabilizer states, Clifford unitaries, or Clifford circuits with ancillas

in this form.

We next define a normal form for Clifford path sums which will be useful for circuit synthesis.

Definition 4.4 (Normal form). A Clifford path sum for Ψ is in normal form if, up to a reordering of

qubits,

Ψ |~x〉= ω l

√
2k

∑
~y∈Zk

2

iL(~x,~y)(−1)Q(~x,~y) |~y〉⊗ | f (~x,~y)〉 , (7)

where l ∈ Z8, L : Zn
2×Z

k
2→ Z4 is linear, Q : Zn

2×Z
k
2→ Z2 is pure quadratic, and f : Zn

2×Z
k
2→ Z2 is

affine.

The normal form above corresponds to re-writing the sum over a minimal set of vectors spanning the

affine subspace of Zn
2 given by { f (~x,~y) |~y ∈ Z

k
2}. The following proposition states that Equations (2),

(3), (4) and (5) suffice to re-write a unitary Clifford path sum into normal form.

Proposition 4.5. Let |Ψ〉 be a Clifford path sum. There exists a re-writing procedure which will terminate

with |Ψ〉 in normal form if Ψ is unitary and runs in time polynomial in the size of |Ψ〉.

Proof. For each path variable yi, if there exists j such that f j(~x,~y) = yi⊕ f ′(~x,~y), Equation (5) can be

applied to substitute yi with yi⊕ f ′(~x,~y). If no such j exists, either Ψ is unitary and one of Equations (2),

(3) and (4) necessarily applies to eliminate yi [2], or no rule applies and Ψ is non-unitary.

Remark 4.6. Proposition 4.5 also holds for non-square Ψ : C2m → C
2n

with m ≤ n so long as Ψ is an

isometry — that is, if Ψ corresponds to a Clifford circuit with some ancillas or fixed inputs.

Corollary 4.7. The unitarity testing problem for Clifford path sums is in P.

Proof. Given a Clifford path sum |Ψ〉, we can construct a path sum representation of Ψ† efficiently using

η , ε , and negating L. Then by Proposition 4.5 we can normalize the path sum representations of ΨΨ†

and Ψ†Ψ each in polynomial time. If either fails to produce a normal form, then one of ΨΨ† or Ψ†Ψ

is non-unitary and hence Ψ is non-unitary. If both are reduced to normal form, it suffices to observe

that we can check whether a Clifford path sum in normal form represents the identity transformation in

polynomial time.

It is now straightforward to compute a circuit implementing a (unitary) Clifford path sum from its

normalized form. If we decompose f , L, and Q as f (~x,~y) = fx(~x)+ fy(~y)+~b, L(~x,~y) = Lx(~x)+Ly(~y), and
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Q(~x,~y) = Qx(~x)+Qy(~y)+∑k
i=1 yiRi(~x) then the normal form can be written as the following sequence of

transformations:

|~x〉 7→ ω liLx(~x)(−1)Qx(~x) |~x〉
|~x〉 7→ |R(~x)〉 | fx(~x)〉

|R(~x)〉 | fx(~x)〉 7→
1√
2k

∑
~y∈Zk

2

(−1)∑i yiRi(~x) |~y〉 | fx(~x)〉

|~y〉 | fx(~x)〉 7→ |~y〉 | fx(~x)+ fy(~y)+~b〉
|~y〉 | f (~x,~y)〉 7→ iLy(~y)(−1)Qy(~y) |~y〉 | f (~x,~y)〉

This gives a circuit of the form U(H
⊗k⊗ In−k)V where U and V are generalized permutations contained

in the Clifford group. Moreover, |~x〉 7→ |R(~x)〉 | fx(~x)〉 is the only operator which may be non-unitary, and

in particular is unitary if and only if Ψ is. Note that the unitarity of Ψ hence forces {Ri} to be linearly

independent and for Ri to be non-zero. This is summarized in Algorithm 1.

Algorithm 1 Clifford synthesis algorithm

1. Normalize |Ψ〉 in the form ω l√
2k ∑~y∈Zk

2
iL(~x,~y)(−1)Q(~x,~y) |~y〉⊗ | f (~x,~y)〉 up to qubit reordering.

2. Decompose f , L, and Q as f (~x,~y)= fx(~x)+ fy(~y)+~b, L(~x,~y)= Lx(~x)+Ly(~y) and Q(~x,~y)=Qx(~x)+
Qy(~y)+∑i yiRi(~x) where each Ri is linear.

3. Synthesize circuits for the following linear transformations:

• D |~x〉= iLx(~x)(−1)Qx(~x) |~x〉
• U |~x〉= |R(~x)〉 | fx(~x)〉
• V |~y〉 | fx(~x)〉= |~y〉 | fx(~x)+ fy(~y)+~b〉
• P |~y〉 | f (~x,~y)〉= iLy(~y)(−1)Qy(~y) |~y〉 | f (~x,~y)〉

4. Return ω lPV (H
⊗k⊗ In−k)UD with qubits appropriately reordered.

Theorem 4.8. Let Ψ : C2n → C
2n

be expressed as a Clifford path sum. If Ψ is unitary, then Algorithm 1

produces a circuit over {ω ,CNOT,X,CZ,S,H} implementing Ψ in time polynomial in the size of the

expression. Moreover, this circuit can be written up to global phase as an 8-stage circuit of the form

S · CZ · CNOT ·H · CNOT ·X · CZ · S

Proof. That Ψ = ω lPV (H
⊗k⊗ In−k)UD follows by an easy calculation.

By Proposition 4.5, Ψ can be written up to a permutation of qubits in normal form in polynomial

time. Since Lx and Ly are linear, and Qx and Qy are pure quadratic, D and P can each be synthesized

using a single stage each of S and CZ gates — one S
m gate for each non-zero term of L{x,y} and one

CZ gate for each non-zero term of Q{x,y}. Likewise, since fy(~y) is linear, V can be synthesized in time

polynomial in n using a single stage each of CNOT and X gates — one gate for each non-zero entry of

fy(~y) and~b. Finally, U |~x〉= |R(~x)〉⊗ | fx(~x)〉 can be synthesized over {CNOT} in polynomial time using

Gaussian elimination if and only if U is invertible. Moreover, since

U = ω−l(H
⊗k⊗ In−k)V

†P†ΨD†,

it follows that U is invertible if and only if Ψ is unitary.



352 Symbolic Synthesis of Clifford Circuits and Beyond

We give a diagrammatic presentation of Theorem 4.8 showing the circuit schematically below.

x1 SLx(x1)

(−1)Qx(~x) U

H •
(−1)Qy(~y)

SLy(y1) y1

...
. . .

...
xk SLx(xk) H • SLy(yk) yk

xk+1 SLx(xk+1)

X fy(y1) X fy(yk)

Xb1 f1(~x,~y)
...

...
xn SLx(xn) Xbn−k fn−k(~x,~y)

Discussion In [23] a 7 stage decomposition of the Clifford group of the form S · CZ · C · H · C · CZ · S
was given, where C is circuit implementing an affine permutation. As affine permutations require both

CNOT and X gates to implement without ancillas — and moreover X can not be written in the form

S · CZ · CNOT ·H · CNOT · CZ · S — our projective decomposition reduces the equivalent 9-stage projective

decomposition of [23] to 8 stages.

It can also be observed that with a minor modification, Algorithm 1 suffices to synthesize Clifford

circuits with ancillas, including circuits for preparing stabilizer states. In particular, if Ψ : C2m → C
2n

is

an isometric Clifford path sum with m ≤ n, the only modification needed is in the synthesis of U |~x〉 =
|R(~x)〉⊗ | fx(~x)〉. If indeed m ≤ n, then a Clifford circuit with ancillas exists and can be synthesized if

and only if {Ri}∪{( fx)i} contains m linearly independent (row) vectors. This produces a 5-stage circuit

of the form H ·CNOT ·X ·CZ · S for the preparation of an arbitrary stabilizer state up to global phase. This

stabilizer state decomposition was previously given in [26].

Corollary 4.9. A Clifford normal form |~x〉 7→ ω l√
2k ∑~y∈Zk

2
iL(~x,~y)(−1)Q(~x,~y) |~y〉⊗ | f (~x,~y)〉 from m to n ≥ m

qubits can be implemented with Clifford gates and ancillas initialized in the |0〉 state if and only if

rank({Ri}∪{( fx)i}) = m.

The circuit is shown schematically below:

x1 SLx(x1)

(−1)Qx(~x)

U

H •
(−1)Qy(~y)

SLy(y1) y1
...

. . .
...

xk SLx(xk) H • SLy(yk) yk

xk+1 SLx(xk+1)

X fy(y1) X fy(yk)

Xb1 f1(~x,~y)
...

...
xm SLx(xm) Xbm−k fm−k(~x,~y)

0 Xbm−k+1 fm−k+1(~x,~y)
...

...
0 Xbn−k fn−k(~x,~y)

5 General synthesis

We now consider the more challenging problem of synthesizing a unitary circuit from an arbitrary path

sum. Our method attempts to iteratively reduce the number of summed variables in a path sum by

alternately applying generalized permutations and Hadamard gates to the symbolic state. Recall that a
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(unitary) generalized permutation is a permutation matrix whose nonzero entries are elements of T =
{z ∈ C | |z|= 1}. The generalized permutations are generated by the gates

Λk(X) : |~x〉 |y〉 7→ |~x〉 |y⊕∏
i

xi〉 and Λk(RZ(θ)) : |~x〉 7→ e2πiθ ∏i xi |~x〉 .

Together with the Hadamard gate this forms an exactly universal set as it includes every single-qubit

unitary along with the CNOT gate.

The following fact forms the basis of our synthesis algorithm. It gives a condition on a path sum

which allows a summed variable to be eliminated by multiplication with a Hadamard gate.

Proposition 5.1. Let Ψ : C2m → C
2n

be a linear operator where

Ψ |~x〉= N ∑
z∈Z2

∑
~y∈Zk

2

(−1)zQ(~x,~y)e2πiP(~x,~y) |z〉⊗ | f (~x,~y)〉 .

Then (H⊗ In−1)Ψ |~x〉=
√

2N ∑~y∈Zk
2
e2πiP(~x,~y) |Q(~x,~y)〉⊗ | f (~x,~y)〉 .

Proof. By Equation (3), since (H⊗ In−1)Ψ |~x〉= 1√
2
N ∑z ∑~y(−1)zQ(~x,~y)+zz′e2πiP(~x,~y) |z′〉⊗ | f (~x,~y)〉

Note that Proposition 5.1 is essentially an inversion of the H gate, H
† : ∑z(−1)xz |z〉 7→ |x〉. We say

that a variable z is reducible in the path sum |Ψ〉 if |Ψ〉 is in the form of Proposition 5.1.

Definition 5.2 (Reducible). A variable z is reducible in an expression of Ψ : C2m → C
2n

if, up to qubit

reordering, it has the form

Ψ |~x〉= N ∑
z∈Z2

∑
~y∈Zk

2

(−1)zQ(~x,~y)e2πiP(~x,~y) |z〉⊗ | f (~x,~y)〉 .

At a high level, our algorithm proceeds by attempting to synthesize a generalized permutation which

will leave some path variable reducible. If the process terminates with remaining summed variables, or

an unsynthesizeable ground term e2πiP(~x) | f (~x)〉, the algorithm fails to produce a circuit. Algorithm 2

gives the high-level algorithm in pseudo-code.

Algorithm 2 General path sum synthesis algorithm

1. Set C to the empty circuit and normalize |Ψ〉 using Equations (2), (3) and (4)

2. For each remaining path variable y in |Ψ〉
(a) If there exists a generalized permutation U such that y is reducible in U† |Ψ〉,

i. |Ψ〉 ← (H⊗ In−1)U
† |Ψ〉

ii. Append U(H⊗ In−1) to C

iii. Go to step 1

3. If path variables remain or Ψ is non-unitary, fail. Otherwise, append Ψ† to C and return C.

Finding such a generalized permutation is highly non-trivial. Our method applies a series of symbolic

simplifications, corresponding to Λk(X) and Λk(RZ(θ)) gates, to the term e2πiP(~x,~y) | f (~x,~y)〉. If these

simplifications fail to leave any variable reducible, we fall back to an exponential-time procedure aimed

at computing a substitution of the form in Equation (5) which will make some variable reducible. These

heuristics are described in Appendix A.
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6 Experiments

To test the performance and utility of our synthesis methods, we implemented Algorithms 1 and 2 in

the FEYNMAN
1 software package. In this section, we briefly detail our investigations into applications

to the optimization and decompilation of circuits, and to specification-based synthesis. All Clifford

circuits synthesized have been checked for correctness using the method of [2]. For Algorithm 2, as the

method of [2] often fails to verify circuits extracted using Equation (5), we instead validated correctness

of our synthesis procedure by verifying the individual synthesis steps each on 1000 unitary path sums

extracted from randomly generated Clifford+T circuits. Table 1 gives some statistics from experiments

re-synthesizing random circuits. Random circuits were generated by selecting a given number of gates

on a given number of qubits, taken from the {CNOT,H,S} and {CNOT,H,T} gate sets for Clifford and

Clifford+T , respectively.

n # gates # circuits avg. time (s) avg. change (+/-) success

Clifford 20 500 1000 0.137 +19.2% –
20 1000 1000 0.481 -12.9% –

50 500 1000 0.264 +90.7% –
50 1000 1000 1.518 +129.1% –

Clifford+T 20 100 1000 0.010 +48.9% 99.9%
20 200 1000 0.045 +93.7% 94.9%
20 300 1000 0.097 +115.9% 74.7%

50 100 1000 0.016 +33.5% 100.0%
50 200 1000 0.044 +49.0% 100.0%
50 300 1000 0.104 +79.4% 99.6%

Table 1: Re-synthesis results for randomly generated circuits on n qubits. Avg. change gives the average

percent increase (+) or decrease (-) in the re-synthesized gate count compared to the original circuit.

Success gives the percentage of circuits successfully re-synthesized.

Circuit optimization One of the key factors in phase folding optimizations [4, 25] is the placement of

Hadamard gates. It was shown in [5] that the T -count in a Clifford+T circuit can be upper bounded by

O(hn2), where h is the number of Hadamard layers in the circuit. As our Clifford synthesis algorithm

produces circuits with just a single layer of Hadamard gates, it is natural to ask whether we can optimize

T -count by reducing the number of Hadamard layers in Clifford+T circuits.

We implemented a Clifford sub-circuit normalization method (the -clifford pass in FEYNOPT)

using Algorithm 1 to re-synthesize simple greedily chosen Clifford sub-circuits. We tested the effect on

T -count optimization by applying Clifford normalization together with phase folding and compared it

against [18] on the benchmark set of [4]. In all but 4 benchmarks, the same T -count was achieved by

normalizing greedily chosen Clifford sub-circuits and applying phase polynomial optimizations. In two

of those cases, qcla-com7 and csla-mux3, our method produced lower T -count circuits — 94 (down

from 95) and 60 (down from 62), respectively. For the other two cases, ham15-med and adder8, our

method produced worse results — 230 (up from 212) and 215 (up from 173), respectively.

More broadly, we might expect to be able to optimize a circuit by resynthesizing its simplified path

sum using the general synthesis algorithm Algorithm 2. This is often effective when the path sum is

simple, as in the resynthesized circuits corresponding to sub-circuits of the adder8 benchmark below, but

as the path sum becomes increasingly complex extraction typically performs worse than human designs.

1Available at https://github.com/meamy/feynman.

https://github.com/meamy/feynman
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We leave it as an avenue for future work to make symbolic synthesis practical for circuit optimization,

and in particular to develop effective peephole optimization procedures.

• • •
• • •
• •

−→
•

•

• • •
• • •
• • −→

•
•

• •

Decompilation An interesting application of our symbolic synthesis algorithm is to the decompilation

of quantum circuits. Classically, decompilation is the process of translating a program in a low-level

language to equivalent high-level source code, typically used for reverse engineering or recompilation.

As the gate set targeted by Algorithm 2 is quite high-level, in many cases it can be used to effectively

decompile lower-level circuits. This decompilation can potentially help developers to examine the high-

level structure of a low-level circuit, and also allow optimizations targeting higher level gate sets to be

performed on circuits written over low-level gate sets, such as Clifford+T . Below we give some examples

of standard circuits from the literature decompiled using Algorithm 2. The decompiler can be accessed

with the -decompile option in FEYNOPT.

T • T † T † •
T • T † • •
H T • T • H

−→
•
•

T • •
T T †

−→
•
S

• •
• •
• •
• •

−→

•
•
•

•
•

• •
H T T † iX T T † H

−→

• • • •
• • S† •
• •
• • S† S

The bottom right circuit above is a relative phase Toffoli gate implementation taken from [6]. The utility

of decompilation is apparant here, as both the fact that it implements a Toffoli up to phase and the exact

form of the relative phase can be readily observed from the decompiled circuit.

Specification-based synthesis In [2] it was noted that path sums offer a convenient form of logi-

cal specification for many quantum computations, being very close to the “textbook” specification.

Algorithm 2 gives a method of synthesizing a circuit directly from such a specification. Such specifi-

cations include not only classical reversible functions such as |x1x2x3〉 7→ |x1x2(x3⊕ x1x2)〉, which can be

synthesized by existing reversible circuit synthesis methods, but also classical functions “in the phase,”

up to relative phases, or inside superpositions. We illustrate this by using Algorithm 2 to synthesize the

quantum Fourier transform.

Recall that the n-qubit quantum fourier transform can be expressed as QFTn |~x〉 = 1√
2n ∑~y∈Zn

2
ω
~x~y
2n |~y〉

where ~x~y is the integer product of ~x and~y. In the 3 qubit case, expanding the integer multiplication to a

multilinear polynomial we have

QFT3 |x1x2x3〉=
1√
23

∑
y1,y2,y3

ωx3y3 ix3y2+x2y3(−1)x3y1+x2y2+x1y3 |y1y2y3〉
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where y1 is reducible, and in particular

(H⊗ I2)QFT3 |x1x2x3〉=
1√
22

∑
y2,y3

ωx3y3 ix3y2+x2y3(−1)x2y2+x1y3 |x3y2y3〉 .

While neither of y2 or y3 are reducible above, the ωx3y3 and ix3y2 terms can be eliminated by applying

controlled-T
† and -S

† gates, respectively, leaving y2 reducible:

(Λ(S
†)⊗ I)(SWAP⊗ I)(I⊗Λ(T

†))(SWAP⊗ I)(H⊗ I2)QFT3 |x1x2x3〉=
1√
22

∑
y2,y3

ix2y3(−1)x2y2+x1y3 |x3y2y3〉 .

After eliminating y2, the process repeats for y1, leaving a final permutation to be synthesized.

A 5 qubit QFT circuit synthesized with our implementation is shown verbatim below, where Rk :=
RZ(1/2k). We were able to synthesize instances on up to 50 qubits in just seconds on a desktop computer.

✚✚
✚✚
✚✚
✚✚
✚✚
✚✚

• • • • H

✚✚
✚✚
✚✚

• • • H 76 5401 23R2

• • H 76 5401 23R2
76 5401 23R3

✩✩✩✩✩✩ • H 76 5401 23R2
76 5401 23R3

76 5401 23R4

✩✩✩✩✩✩✩✩✩✩✩✩
H 76 5401 23R2

76 5401 23R3
76 5401 23R4

76 5401 23R5

7 Conclusion

In this paper we looked at the problem of synthesis of unitary quantum circuits from symbolic expressions

as sums-over-paths. We showed that we cannot hope to efficiently synthesize a circuit from a general

path sum efficiently, as the problem of checking whether there the path sum represents a unitary transfor-

mation is itself co-NP-hard. A stronger result was given recently for the extraction of ZX-diagrams [11],

though their work did not address the complexity of the potentially easier problem of unitarity testing.

The problem of unitarity testing for ZX-diagrams is likewise believed to be intractable [31].

For the restricted case of Clifford operations, we showed that a circuit can be synthesized efficiently

in the form C1HC2 for Hadamard-free Clifford circuits C1 and C2. For more general path sums we

gave a heuristic based on symbolic manipulation and simplification of the sum. We experimentally

validated our method, showing that most path sums corresponding to unitary transformations can in fact

be synthesized. Moreover, our algorithm is capable of producing natural, high-level circuit designs for

some path sums, including the quantum Fourier transform. It remains as a course of future work however

to develop a complete synthesis algorithm, as well as to reduce the cost of synthesized circuits.
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formation, is fully reduced with respect to Equations (2), (3) and (4):

1√
22

∑
y1,y2

ix2y1−x2y2(−1)x1y1+x1y2+x2y1y2 |y1〉 |y2〉

However, neither y1 nor y2 are reducible due to the quadratic terms x2y1 and x2y2 in the exponent of i. At

the moment, it is unclear how to proceed symbolically to find a generalized permutation that will make

either path variable reducible in the above expression.
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sequence of simplification stages generically to both reduce the redundant synthesis work, and produce

simpler circuits in practice. The sequence of stages is given in Algorithm 3, and the individual synthesis

steps are described in detail below.

Algorithm 3 Generalized permutation synthesis heuristic

1. Apply affine simplifications to the output state | f (~x,~y)〉
2. Apply non-linear simplifications to the phase e2πiP(~x,~y)

3. Apply non-linear simplifications to the output state | f ′(~x,~y)〉
4. Apply non-linear simplifications to the phase e2πiP′(~x,~y)

5. If no path variable is reducible, attempt degree reduction on each variable

Affine simplifications As X and CNOT gates are relatively inexpensive, the first stage of our generalize

permutation synthesis attempts to simplify the output | f (~x,~y)〉 of the path sum as much as possible

using only these affine transformations. In order to reduce the number of high-degree terms, which

would otherwise require expensive multiply-controlled Toffoli gates, we perform affine simplifications

on a linearization of f . Specifically, we write each fi(~x,~y) as a sparse vector ~ui ∈ Z
2n+k

2 using reverse

lexociographic order for the encoding of monomials, then set A =
[

u1 u2 . . . un

]T
and use Gaussian

elimination to compute a sequence of CNOT gates reducing A to echelon form. The example below

illustrates our method.

Example A.1. Consider the path sum |x1〉 |x2〉 |x3⊕ x1x2〉 |x4⊕ x1x2〉. This could naturally by synthesized

using two non-linear Toffolis to eliminate the x1x2 terms from the third and forth qubits. The resulting

circuit is shown below:

x1 • • x1

x2 • • x2

x3 x3⊕ x1x2

x4 x4⊕ x1x2

Alternatively, we can write the output as a (sparse) linear system over all monomials in x1,x2,x3,x4 as

shown below:
x1x2 x4 x3 x2 x1

x1 0 0 0 0 1

x2 0 0 0 1 0

x3⊕ x1x2 1 0 1 0 0

x4⊕ x1x2 1 1 0 0 0

We use reverse lexicographic order so that reduction to echelon form will prioritize the number of high

degree terms. Reducing this to echelon form results in a single CNOT gate and reduces the state to

|x1〉 |x2〉 |x3⊕ x1x2〉 |x4⊕ x3〉. Synthesizing this remaining transformation gives the overall circuit

x1 • x1

x2 • x2

x3 • • x3⊕ x1x2

x4 x4⊕ x1x2
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Phase simplifications To reduce and simplify the number of terms in the phase e2πiP(~x,~y) of a path sum

controlled RZ gates with continuous parameters are used. In particular, given an n-dimensional path sum

e2πiθ ∏i xi |~x〉, we can reduce the phase term by applying a Λn(RZ(−θ)) gate, since

Λn(RZ(−θ)) : e2πiθ ∏i xi |~x〉 7→ |~x〉 .

As the output of the path sum is in some state | f (~x,~y)〉, to apply the above rule we first need to apply

a change of frame by setting fi(~x,~y) = zi and writing the phase polynomial P(~x,~y) as P′(~x,~y,~z). This

is achieved by, for each fi, letting l be the largest (non-zero) degree term of fi and substituting l ←
zi⊕ l⊕ fi(~x,~y) in the path sum.

Example A.2. Consider the irreducible path sum 1√
2

∑y1
ω−x1 ix1y1−x2y1(−1)x1x2y1 |x1⊕ x2〉 |y1〉. Substi-

tuting [x2← z1⊕ x1, y1← z2] gives the re-framed path sum

ω−x1 i−z1z2(−1)x1z2 |z1〉 |z2〉 .

Applying a controlled S gate to eliminate the term i−z1z2 and rolling back the substitutions gives

ω−x1(−1)x1y1 |x1⊕ x2〉 |y1〉 .

The variable y1 is now reducible, so we can finish synthesis by applying a Hadamard to the second qubit,

then synthesizing the final generalized permutation |x1x2〉 7→ ω−x1 |x1⊕ x2〉 |x1〉. The resulting circuit is

given below:

x1

✗✗
✗✗
✗ • x1⊕ x2

x2

✬✬✬✬✬
T † • H S† y1

In our implementation, we apply phase simplifications both before and after non-linear simplifica-

tions in the state. This is so that we can effectively utilize high degree terms in the state to simplify high

degree terms in the phase with phase gates on fewer qubits. The following example illustrates this effect.

Example A.3. Consider the path sum ωx3+x1x2 i−x1x2x3 |x1〉 |x2〉 |x3⊕ x1x2〉. Eliminating the x1x2 term in

qubit 3 before simplifying the phase results in the following circuit:

x1 • • • x1

x2 T • • x2

x3 T S† x3⊕ x1x2

However, by re-framing the sum with the substitution [x1← z1,x2← z2,z1z2← z3⊕ x3] we find

ωx3+x1x2 i−x1x2x3 |x1〉 |x2〉 |x3⊕ x1x2〉 ≡ ωz3 |z1〉 |z2〉 |z3〉

which can now be simplified with a single T gate. Note that the substitution is applied left to right, rather

than as a simultaneous substitution. The resulting circuit is shown below:

x1 • x1

x2 • x2

x3 T x3⊕ x1x2
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The final substitution z1z2← z3⊕x3 may seem counter-intuitive, as we could instead substitute x3← z3⊕
z1z2. We choose a monomial of maximal degree to substitute in order to avoid inadvertently increasing

the degreee of the phase polynomial. For instance, if the initial path sum was instead ωx3 |x1〉 |x2〉 |x3⊕ x1x2〉,
substituting x3← z3⊕ z1z2 results in a re-framed sum of ωz3+z1z2 i−z1z2z3 |z1〉 |z2〉 |z3〉 and the final circuit

x1 • • • x1

x2 • T • x2

x3 T S† x3⊕ x1x2

By substituting the highest degree monomial instead, we avoid this issue and synthesize the simpler

circuit placing the T gate to the left of the Toffoli.

Non-linear simplifications The non-linear simplification step of our synthesis algorithm reduces the

number of non-linear terms in the output | f (~x,~y)〉 by applying multiply-controlled Toffoli gates Λk(X)
via the rule

Λk(X) : |~x〉 | f ⊕∏
i

xi〉 7→ |~x〉 | f 〉 .

Our method for non-linear simplifications uses a naı̈ve heuristic whereby a set of variables

V = {v | fi(~x,~y) = v for some i}

is computed. Any term in f (~x,~y) which is a product of variables contained in V is then eliminated with

an appropriately controlled Toffoli gate.

This method is far from optimal, and in particular misses cases which can be factorized as a cascade

of Toffoli gates. While better reversible synthesis methods exist, the lack of a known permutation to

synthesize a priori in our case makes it difficult to apply such methods directly. An interesting avenue for

future work would be to re-synthesize the permutation discovered through this process of simplification

using state-of-the-art methods.

Degree reduction In many cases, the simplifications previously described fail to leave some path vari-

able in a reducible position. When this happens, our last resort is to fall back to an exponential time

procedure we call degree reduction. The idea of is to reduce the degree of the (non-Boolean) parts of

a phase polynomial restricted to a particular variable, as these terms serve as roadblocks for reduction.

This can in some cases be accomplished by applying variable substitutions in such a way as to cancel out

terms involving a particular variable.

To illustrate degree reduction, recall the irreducible path sum expression from the beginning of this

section,

1√
22

∑
y1,y2

ix2y1−x2y2(−1)x1y1+x1y2+x2y1y2 |y1〉 |y2〉

The exponent of i cannot be directly reduced via simple phase simplifications, as both terms depend on

x2. However, we can indirectly eliminate one of these terms by applying Equation (5), substituting y1
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with y1⊕ y2:

1√
22

∑
y1,y2

ix2y1−x2y2(−1)x1y1+x1y2+x2y1y2 |y1〉 |y2〉

=
1√
22

∑
y1,y2

ix2(y1⊕y2)−x2y2(−1)x1(y1⊕y2)+x1y2+x2(y1⊕y2)y2 |y1⊕ y2〉 |y2〉 by Equation (5)

=
1√
22

∑
y1,y2

ix2y1(−1)x1y1+x2y2 |y1⊕ y2〉 |y2〉

The final expression above can be simplified to 1√
22 ∑y1,y2

ix2y1(−1)x1y1+x2y2 |y1〉 |y2〉 by applying a CNOT

gate, which leaves y2 in a reducible position. The resulting circuit is given below:

x1 H • y1⊕ y2

x2 S H • y2

The above example is relatively easy to spot, but more complicated cases may require substitution of

multiple variables, or even non-linear substitutions. Our heuristic revolves around computing a type of

cover for the quotient 2(P/y), where y is the candidate for degree reduction.

Lemma A.4. Let P ∈ R[y,x1, . . . ,xn] such that 4(P/y) ≡ 0 mod 2. If there exists a set S ⊆ {1, . . . ,n}
such that 4(P/xi)≡ 0 mod 2 for all i ∈ S and

∑
i∈S

2(P/xi)≡ 2(P/y) mod 2

then 2(P[xi← xi⊕ y | i ∈ S]/y) ≡ 0 mod 2

Proof. First recall that x⊕ y = x+ y−2xy. Hence

2P[xi← xi⊕ y | i ∈ S] = 2P+∑
i∈S

2y(P/xi)+∑
i∈S

4xiy(P/xi)

Taking the quotient by y we see

2(P[xi← xi⊕ y | i ∈ S]/y) = 2(P/y)+∑
i∈S

2(P/xi)+∑
i∈S

4xi(P/xi)

≡ 2(P/y)+2(P/y) mod 2

≡ 0 mod 2

In the context of path sums, Lemma A.4 tells us that if e2πiP(~x,~y) can be written as iyiQ(~x,~y)e2πiR(~x,~y)

for some i, and there exists a subset of path variables {y j | j 6= i} such that e2πiP(~x,~y) = iy jQ j(~x,~y)e2πiR j (~x,~y)

and i∑ j Q j(~x,~y) = iQ(~x,~y), then the simultaneous substitution y j ← y j ⊕ yi will eliminate the term iyiQ(~x,~y).

Additional simplifications in the state may then be further required to leave the path sum in a reducible

state, as in the previous above.
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Many quantum computers have constraints regarding which two-qubit operations are locally allowed.
To run a quantum circuit under those constraints, qubits need to be mapped to different quantum
registers, and multi-qubit gates need to be routed accordingly. Recent developments have shown that
compiling strategies based on Steiner tree provide a competitive tool to route CNOTs. However,
these algorithms require the qubit map to be decided before routing. Moreover, the qubit map is
fixed throughout the computation, i.e. the logical qubit will not be moved to a different physical
qubit register. This is inefficient with respect to the CNOT count of the resulting circuit.

In this paper, we propose the algorithm PermRowCol for routing CNOTs in a quantum circuit. It
dynamically remaps logical qubits during the computation, and thus results in fewer output CNOTs
than the algorithms Steiner-Gauss [14] and RowCol [27].

Here we focus on circuits over CNOT only, but this method could be generalized to a routing and
mapping strategy on Clifford+T circuits by slicing the quantum circuit into subcircuits composed of
CNOTs and single-qubit gates. Additionally, PermRowCol can be used in place of Steiner-Gauss in
the synthesis of phase polynomials as well as the extraction of quantum circuits from ZX-diagrams.

1 Introduction

Recent strides in quantum computing have made it possible to execute quantum algorithms on real quan-
tum hardware [4, 29]. Contrary to classical computing, efficient quantum circuits are necessary for
successful execution due to the decoherence of qubits [18]. If a quantum circuit takes too long to exe-
cute, it will not produce any usable results. Moreover, due to poor gate fidelities, each additional gate
in the quantum circuit adds a small error to the computation. In the absence of fault-tolerant quantum
computers, circuits with more gates produce less accurate results. Therefore, we need to reduce the gate
complexity of the executed quantum circuits. This requires resource-efficient algorithms and improved
quantum compiling procedures.

When mapping a quantum circuit to the physical layer, one has to consider the numerous constraints
imposed by the underlying hardware architecture. For example, in a superconducting quantum com-
puter [24], connectivity of the physical qubits restricts multi-qubit operations to adjacent qubits. These
restrictions are known as connectivity constraints and can be represented by a connected graph (also
known as a topology). Each vertex represents a distinct physical qubit. When two qubits are adjacent,
there is an edge between the corresponding vertices.

Thus, we are interested in improving the routing of a quantum circuit onto a quantum computer.
Current routing strategies are dominated by SWAP-based approaches [15, 26, 23, 28]. These strategies
move the logical qubits around on different quantum registers. The drawback of this is that every SWAP-
gate adds 3 CNOTs to the circuit (Figure 1.a), adding only more gates to the original circuit. As a
result, it will take much longer to execute a routed quantum circuit, and thus introduce more errors to the
computation.

http://dx.doi.org/10.4204/EPTCS.394.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Additionally, these SWAP-based strategies can be replaced by a bridge template (or bridge) that
acts like a remote CNOT. As shown in Figure 1.b, the bridge template only requires 4 CNOTs while
swapping the qubits would have cost 7 CNOTs (Figure 1.c). The CNOT ladders in the bridge template
can be generalized for remote CNOTs with more qubits in between. Note that usually in SWAP-based
strategies, the last SWAP (Figure 1.c) is omitted, resulting in 4 CNOTs instead of 7. Therefore, unlike
with SWAP gates, the subsequent parts of the circuit cannot benefit from the new qubit placement because
the bridge template does not move the qubits. Thus, we need to make a trade-off between swapping qubits
and remote CNOTs when there is a sequence of CNOTs to be routed.

|1〉 × • |2〉

|2〉 × = • • |1〉

(a) A SWAP gate implemented by 3 CNOTs.

|1〉 • • • |1〉

|2〉 = • • |2〉

|3〉 |1⊕3〉

(b) A bridge template implemented by 4 CNOTs.

|1〉 × × |1〉 • • |1〉

|2〉 × • × |2〉 = • • • • • |2〉

|3〉 |1⊕3〉 |1⊕3〉

(c) Routing CNOT(1,3) with SWAP gates results in 7 CNOTs.

Figure 1: Visualize how a SWAP gate and a bridge template is implemented by CNOTs respectively.
Note that for a single CNOT constrained by a 3-qubit line topology, the bridge gate is the same as the
output of the Steiner-Gauss algorithm .

Alternatively, we can use Steiner-tree based synthesis [2, 14, 17, 11, 25, 10] to find a generalized
bridge gate for a CNOT circuit. The new sequence of CNOTs has the same effect on the logical states as
the original CNOT circuit, and every gate is permitted by the hardware’s connectivity constraint. This is
done by changing the rigid representation of the quantum circuit to a more flexible one (Section 2.1), with
which we could synthesize a routed circuit (Section 2.3). This way, we can make global improvements
to the CNOT circuit re-synthesis more easily. By re-synthesis, we refer to the process of turning a CNOT
circuit into a parity matrix and synthesizing an equivalent CNOT circuit from that parity matrix, up to
permutation.

The Steiner-Gauss algorithm provides the first Steiner-tree based synthesis approach and it is used
to synthesize CNOT circuits [14, 17]. Later on, it is used for synthesizing circuits over CNOT and Rz

gates [17, 11, 25], and further for circuits over CNOT, Rz, and NOT gates. Finally, this algorithm is
generalized for Clifford+T circuits with the slice-and-build procotol based on the locality of Hadamard
gates in the circuits [10].

One major drawback of the existing Steiner-tree based methods is that they are not flexible with
respect to the mapping of qubits. Logical qubits of the synthesized circuit will always be stored in the
same physical qubit registers where they were originally allocated. However, this is not always optimal.
Figure 2 shows an example where there exists a smaller synthesized circuit by reallocating logical qubits
to the physical registers (Figure 2.c) than using Steiner-Gauss (Figure 2.d). Note that with the fixed
qubit map, Steiner-Gauss produces fewer CNOTs than the SWAP-based method (Figure 2.b). Thus, we
conclude that the synthesized circuit in Figure 2.d contains implicit SWAP gates.

Moreover, remapping logical outputs of a quantum circuit to physical registers based on the original
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1 2 3

4 5 6

7 8 9

(a) The 9-qubit square grid.

|1〉 × × |1〉
|2〉 × × × × |2〉
|5〉 × • × |5〉
|8〉 × × |8〉
|9〉 × × |1⊕9〉

(b) SWAP template with a fixed qubit map.

|1〉 × |2〉
|2〉 × × |5〉
|5〉 × • |1〉
|8〉 × |1⊕9〉
|9〉 × |8〉

(c) SWAP template with dynamic qubits maps.

|1〉 • • |1〉
|2〉 • • • • |2〉
|5〉 • • • • |5〉
|8〉 • • |8〉
|9〉 |1⊕9〉

(d) Steiner-Gauss with a fixed qubit map [14].

Figure 2: Given the constrained topology in Figure 2.a, three different routing strategies are compared
for implementing CNOT(1,9). The CNOT count corresponding to each template is 19, 10, and 12
respectively.

qubit mapping can be done by a classical operation. Hence, such operation is considered trivial in
quantum computing. In other words, preparing a qubit in a register, routing it to a different register and
measuring it does not influence the computation of a quantum circuit. Thus, it is desirable to have a
synthesis procedure that permits dynamic qubit maps.

The first CNOT synthesis procedures [17, 14] under topological constraints are based on Gaussian
elimination: the parity matrix representing the synthesized CNOT circuit is eliminated to the identity
matrix (Section 2.3). In Section 2.4, we show that dynamically changing the qubit maps is the same as
eliminating the parity matrix into the identity matrix up to permutation. To do this, we need to determine
to which permutation of the identity matrix to synthesize a priori, which is not a trivial task. However, by
adjusting the algorithm RowCol [27], we can determine the new qubit map whilst synthesizing a CNOT
circuit.

Here, we propose the algorithm PermRowCol: a new Steiner-tree based synthesis method for CNOT
circuits re-synthesis under topological constraints. It dynamically determines the output qubit maps. This
method could be generalized to synthesizing an arbitrary quantum circuit, as articulated in Section 6.2.

The paper is structured as follows. In Section 2, we introduce the Steiner-tree based synthesis ap-
proach. In Section 3, we describe our algorithm PermRowCol. In Section 4, we show how well it
performs against Steiner-Gauss [14] and RowCol [27]. In Section 5, we discuss the results and other
open problems. Finally, we explain some ongoing improvements for PermRowCol in Section 6. Look-
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ing forward, our goal is to fairly compare PermRowCol with CNOT re-synthesis algorithms in quantum
compilers such as SABRE [15], Qiskit [26], and TKET [23].

2 Preliminaries

Here we introduce the core concepts required to understand the proposed algorithm PermRowCol. In
Section 2.1, we define the matrix representation of a CNOT circuit. In Section 2.2, we describe the
concepts of Steiner tree. In Section 2.3, we use it for synthesizing a CNOT circuit under a constrained
topology. In Section 2.4, we explain the core idea behind algorithm PermRowCol: the dynamic mapping
of qubits using permutation matrices.

2.1 The parity matrix of a CNOT circuit

In this paper, we consider circuits composed of only CNOTs, and call them CNOT circuits. CNOT is
short for "controlled not". It acts on two qubits: a control and a target. We write CNOT(c, t) to denote
a CNOT applied between a control qubit c and a target qubit t. The control qubit c decides whether
a NOT gate is applied to the target qubit t. When |c〉 = |0〉, CNOT(c, t) acts trivially on |t〉, leaving
it unchanged. Otherwise, |t〉 = |0〉 is changed to |t〉 = |1〉 and vice versa. Alternatively, we write that
CNOT(c, t) changes |t〉 to |c⊕ t〉, where ⊕ denotes addition modulo 2.

For a CNOT circuit, we can keep track of its state evolution by checking which qubits appear in the
summation modulo 2 at the circuit output. In Figure 3.a, there are 5 CNOTs acting on 4 qubits, whose
overall behaviour is described by the sum of some logical qubits on each output wire. We call such a
sum a parity term because it keeps track of whether a logical qubit participates in the sum or not. As
such, we can write a parity term as a binary string whose length is equal to the number of qubits in the
circuit. In this representation, a 0 means that the corresponding logical qubit is not present in the sum,
and a 1 means otherwise.

|1〉 • |2〉

|2〉 • • |1⊕2〉

|3〉 • • |1⊕2⊕3〉

|4〉 |1⊕2⊕4〉

(a) A CNOT circuit acting on 4 qubits.

A =

1′ 2′ 3′ 4′


1 0 1 1 1
2 1 1 1 1
3 0 0 1 0
4 0 0 0 1

(b) Parity matrix for figure (a).

Figure 3: The matrix representation of a 4-qubit CNOT circuit.

We can use the output parities of a CNOT circuit to create a square matrix where each column
represents a parity term and each row represents an input qubit. This matrix is called a parity matrix
and its properties are well-studied in [1, 22, 19]. Figure 4 shows two examples of constructing the parity
matrix for the given CNOT circuits. Additionally, adding a CNOT to the circuit corresponds to a row
operation on the parity matrix. That is, adding the row indexed by the target to the row indexed by the
control, while keeping the target-indexed row unchanged (Figure 12.b).
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|c〉 |c〉

|t〉 |t〉
(a) An empty circuit.

c′ t ′( )
c 1 0
t 0 1

(b) The parity matrix for (a).

|c〉 • |c〉

|t〉 |c⊕ t〉
(c) A CNOT circuit.

c′ t ′( )
c 1 1
t 0 1

(d) The parity matrix for (c).

Figure 4: Example constructions of parity matrices.

This means that we can extract a CNOT circuit from a parity matrix by adding rows of the parity
matrix to other rows until we obtain the identity matrix. In the literature, Gaussian elimination is a com-
monly used algorithm for CNOT circuit synthesis [19, 14, 27, 10]. Here, we refer readers to textbooks
on linear algebra for more details about Gaussian elimination.

2.2 Steiner tree

We use Steiner trees to enforce the connectivity constraints when synthesizing a semantically equivalent
CNOT circuit from the parity matrix. Note that Steiner trees are not the only approach to carry out the
architecture-aware CNOT circuit synthesis procedure (e.g., see [6] for an alternative), but it is the method
we use here.

We start with the basics; a graph is an order pair G = (VG,EG), where VG is a set of vertices and EG

is a set of edges. Each edge is defined as e = (u,v) where u,v ∈VG. The degree of a vertex is the number
of edges that are incident to that vertex. Graphs also have a weight assigned to each edge by a weight
function ωE : EG→ R.

The connectivity graph of a quantum computer is generally considered a simple graph, meaning that
it is an undirected graph (i.e., (u,v) ≡ (v,u)) with all edge weights equal to 1. It has at most one edge
between two distinct vertices (i.e. ∀(e,e′) ∈ EG : e 6= e′), and no self-loops (i.e., (u,u) /∈ EG).

Some graphs are connected, meaning that for every vertex there exists a sequence of edges (a path)
from which we can go from that vertex to any other vertex in the graph. A graph that is not connected
is disconnected. The topology of a quantum computer needs to be connected if we want any pair of
arbitrary qubits to interact with each other. A cut vertex is a vertex that when removed, the graph will
become disconnected. We use non-cutting vertex to mean a vertex that is not a cut vertex.

A subgraph G′ = (V
′
G,E

′
G) of G is a graph that is wholly contained in G such that V

′
G ⊆VG, E

′
G ⊆ EG,

and for all (u,v) ∈ E
′
G, u,v ∈V

′
G.

A tree is an undirected connected graph that has no path which starts and ends at the same vertex. A
tree is acyclic. A minimum spanning tree T of a connected graph G is a subgraph of G with the same set
of vertices VG and a subset of the edges EG such that the sum of the edge weights is minimal and T is
still connected.

A Steiner tree is similar to a minimum spanning tree. It is defined as follows.

Definition 2.1 (Steiner tree). Given a graph G= (VG,EG) with a weight function ωE and a set of vertices
S⊆VG, a Steiner tree T = (VT ,ET ) is a tree that is a subgraph of G such that S⊆VT and the sum of edge
weights in ET is minimized. The vertices in S are called terminals while those in VT \S are called Steiner
nodes.

Figure 5 demonstrates a solution to the Steiner tree problem on a 12-qubit grid, with S = {1,6,7,11}.
In Figure 5.a, nodes in S are coloured in red. The edges of the Steiner tree T are highlighted in green and
the Steiner nodes can be read off from the graph. For example, in Figure 5.b, they are the unfilled node
on the paths of T : VT \S = {4,5,8}. Note that the solution to a Steiner tree problem may not be unique.
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For the graph G and a set of terminals S in Figure 5.a, Figure 5.b and Figure 5.c provide two solutions.
In this example and the remainder of this paper, we assume each edge is of unit weight without loss of
generality.

1 2 3

4 5 6

7 8 9

10 11 12

(a) Terminals: S = {1,6,7,11}.

1 2 3

4 5 6

7 8 9

10 11 12

(b) Steiner nodes: {4,5,8}.

1 2 3

4 5 6

7 8 9

10 11 12

(c) Steiner nodes: {2,5,8}.

Figure 5: Solutions to the Steiner tree problem on the 12-qubit grid G.

Computing Steiner trees is NP-hard and the related decision problem is NP-complete [13]. There
are a number of heuristic algorithms that compute approximate Steiner trees [20, 7, 12]. There is a
trade-off between the size of the approximate Steiner tree and the algorithm’s runtime, so the choice
of algorithm is determined by its application. Here, we create an approximate Steiner tree by building
a minimum spanning tree over the terminals (we use Prim’s algorithm [8]), with the weights being the
distance between the terminals. Whenever a terminal is added to the spanning tree, its entire path to the
tree is added. The weights calculated in the next step involve the paths between the tree up until then and
terminals not yet added to the spanning tree. For this, we use Floyd-Warshall’s algorithm [8] to calculate
the shortest path between all qubits.

2.3 Synthesizing CNOT circuits for specific topologies

Given the parity matrix of a CNOT circuit, we want to synthesize an equivalent CNOT circuit such that
all CNOTs are allowed according to a connectivity graph. From Section 2.1, we know that every CNOT
corresponds to a row operation in the parity matrix. Moreover, we can use Gaussian elimination to turn
the parity matrix into the identity matrix. The process of adding rows are called elimination. If we keep
track of which row operations are performed during the Gaussian elimination process, we obtain a CNOT
circuit that is semantically equivalent, which means that the parity matrix of the original circuit is equal
to that of the synthesized circuit. Hence, these two circuits have the same input-output behaviour.

For the extracted CNOTs to adhere to the given connectivity constraints, we need to adjust our
method to allow only row operations that correspond to the connected vertices in the topology. There
are several methods to do this [14, 17, 19]. Our algorithm is based on the algorithm RowCol [27], which
reduces the input parity matrix into the identity matrix by eliminating a column and a row at each round
of execution.

It starts by selecting a qubit (i.e., a vertex in the connectivity graph). This determines the pivot
column, which is the column to be eliminated. To ensure the updated topology stays connected, the
selected qubit must correspond to a non-cutting vertex. This means we can select qubits in an arbitrary
order as long as the vertex removal does not disconnect the graph. Then we build Steiner trees to find
the shortest paths over which the row additions are performed. As a result, the eliminations send the
pivot column and a corresponding row to the basis vectors, after which they are removed from the parity
matrix. Accordingly, the selected qubit is no longer needed and the vertex is removed from the graph.
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Next, the algorithm starts on a smaller instance of the problem. In what follows, we explain the column
and row eliminations in more details.

To eliminate a column, we identify all 1s in the column. Then a Steiner tree T is built with the
diagonal as the root and the rows with a 1 as terminals. These rows should be added together so that we
end up with an column equal to a basis vector. Due to the connectivity constraints, we use the Steiner
nodes to "move" the 1s to the terminals. This is done by traversing T from the bottom up. When a Steiner
node is reached, we add its child to itself, so the corresponding row in the pivot column is equal to 1.
Then, T is traversed again, during which each row is added to its child in the Steiner tree. As a result,
only the root row will be 1, while other rows will be 0 in the pivot column. Thus, the pivot column is
eliminated. This procedure is also described by Algorithm 4 in Appendix A.

A row is eliminated in a similar manner. For brevity, we call it a pivot row. Compared to the column
elimination, it is less straightforward to find which row operations to perform in order to eliminate the
pivot row. According to [27], they are determined by solving a system of linear equations defined by
the parity matrix. We can once more build a Steiner tree T ′ with the diagonal as root and the rows
added the pivot row as terminals. Then we traverse T ′ top down from the root, adding every Steiner
node to its parent. Next, we traverse T ′ bottom up and add every node to its parent. As a result, the
rows corresponding to the Steiner nodes are added twice to their parent. They do not participate in the
sum since the row addition is performed modulo 2. Moreover, every terminal is added together and
propagated to the root after the bottom-up traversal. This procedure is described as by Algorithm 5 in
Appendix A.

2.4 Dynamic qubit mapping with permutation matrices

The state-of-the-art CNOT circuit synthesis eliminates the parity matrix to an identity matrix, which is
essentially a qubit map where logical qubit i is stored in the physical qubit register i. This means that
the exact synthesis preserves the circuit’s semantics and moves the logical qubits back to their original
registers. However, to route CNOTs in a topologically-constrained quantum circuit, it might not be
necessary to stick to the parity matrix faithfully. Moreover, restoring the logical values in each physical
qubit register adds extra CNOTs to the synthesis results. For example, in Figure 2, the synthesized circuit
(Figure 2.d) have less CNOTs if we allow dynamic qubit maps (Figure 2.c). Additionally, if the CNOT
synthesis is done as part of a slice-and-build approach where each subcircuit is synthesized locally [10],
the cost of keeping the logical qubits in the same physical qubit registers grows linearly with the number
of slices.

Recall that in the parity matrix, the ith column stores the parity term being output from the ith qubit
of the CNOT circuit, 1≤ i≤ n, where n is the number of qubits in the circuit. In other words, the order
of the columns corresponds to the different physical qubit registers where these parity terms are stored.
If we change which parity term ends up on each physical qubit register, we can equivalently synthesize
a CNOT circuit where the parity matrix has its columns reordered with respect to the original parity
matrix. In the case of routing CNOTs, this is exactly possible. Reordering the columns of the identity
matrix corresponds to reading the logical qubits from different quantum registers that are defined by the
new column order. Since reading the circuit output from different registers is a classical operation, it can
be considered free when running a quantum circuit.

In this work, we remove the restriction on qubit maps in CNOT circuit synthesis and propose an
algorithm that eliminates the parity matrix to the permutation matrix, which is an identity matrix with
reordered columns. Accordingly, a parity matrix M that is a permutation matrix can be seen as a qubit
map where the logical qubit i is stored in the physical qubit register j iff Mi, j = 1.



370 Dynamic Qubit Routing with CNOT Circuit Synthesis for Quantum Compilation

However, it is not trivial to determine an optimal qubit remap. In [14], a generic algorithm Steiner-
Gauss was proposed to find a better qubit map, but it is unfortunately unscalable. In the next section, we
explain how to do this in a scalable way.

2.5 Reverse traversal strategy

Reverse Traversal Strategy (RT) [15] leverages the reversibility of quantum circuits. We define a reverse
circuit to be the circuit that is the original circuit in reverse. Since CNOTs are self-inverse, this is equiv-
alent to the inverse circuit. Reverse Traversal iteratively improves the initial qubit mapping using any
routing procedure that optimizes the circuit and remaps the qubits. It does this by using the output qubit
mapping as input qubit mapping for the reverse circuit and reapplying the routing procedure. Because
the routing procedure optimizes the circuit in the process, we might find a smaller circuit than what we
started out with. Then, we can repeat this processes of routing the reverse-reverse circuit to obtain a new
output mapping and possibly find a better circuit. We refer the reader to the orignal paper [15] for a more
detailed explanation with pictures.

This technique can only be used in a routing method that remaps the qubits. Therefore, RT could not
be used for Steiner-tree based methods until now.

3 The PermRowCol Algorithm

Here, we introduce the algorithm PermRowCol. It is a Steiner-tree based synthesis algorithm that dy-
namically remaps the logical qubits to physical registers while routing CNOTs. To this end, we build on
the algorithm RowCol [27] described in Section 2.3. This algorithm is executed iteratively on the input
parity matrix until it is eliminated to an identity. At each round, RowCol picks a new logical qubit and
eliminates the corresponding row and column such that they can be removed from the problem.

Our adjustment is described by algorithm 1, where we lift the restrictions for the row and column to
be removed such that they don’t necessarily intersect at the diagonal. Specifically, we pick the logical
qubit corresponding to the row (i.e., the pivot row), and a column (i.e., the pivot column) to be the new
register for that logical qubit. Then, we can eliminate both the pivot column and row through a sequence
of row operations such that they become basis vectors. In the meantime, PermRowCol uses subroutines
described in Appendix A, whose behaviour is articulated below.

Given a parity matrix M to synthesize over a connectivity graph G, the vertices of G correspond to
the numbering of rows in M. Before the synthesis, the original qubit map indicates that the logical qubit
i is stored in the physical qubit register i, which corresponds to the vertex i.

At the start of each round, pick the logical qubit i that we want to remove from the problem. The
only constraint is that it needs to be non-cutting for G. Among the non-cutting qubits, we use Algorithm
2 to determine which row to eliminate. For our purpose, a simple heuristic is used: selecting the row
with the lowest hamming weight in M. This gives us the pivot row i.

Next, we use Algorithm 3 to choose the pivot column to eliminate. Suppose column j is picked
for row i. This means logical qubit i will be stored in the physical qubit register j after this round of
elimination. Any column should work as long as it has a 1 on row i and does not have a qubit assigned to
it yet. Among all the candidate columns, here we choose the column with the lowest hamming weight.

Note that in principle, we can choose any arbitrary row and column, as long as the vertex corre-
sponding to the pivot row does not disconnect G after it is removed. Moreover, the pivot row and column
should not have been picked before. This means Algorithms 2 and 3 could be replaced by other heuristics
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so long as the above constraints are satisfied. We discuss the implications of these choices in Section 5
and a possible improvement in Section 6.

With the pivot row and column, we can add rows together such that the pivot row and column only
have a 1 at their intersection in M, and 0’s everywhere else. This means that they are eliminated. More
precisely, in Algorithm 4, we start with the pivot column and gather all its rows that are non-zero. Let it
be S. Then, build a Steiner tree with the pivot row as the root and the nodes in S as terminals. Starting
at the leafs, for each Steiner node in the tree, add its child to it. By construction, the Steiner nodes
correspond to the rows that are zero in the pivot column. Thus, this method will make all Steiner nodes
equal to 1. Next, traverse the tree again from the leafs to the root and add every parent to its child. This
results in a matrix with all zeros in the pivot column except for the pivot row.

Afterwards, Algorithm 5 carries out a similar elimination process for the pivot row. First, we need
to find which rows to add together such that the entire pivot row is filled with 0’s except for the pivot
column. This could be done by solving a system of linear equations defined by M. Let the set of rows
to be added be T . Then, we can construct a new Steiner tree with the pivot row as the root and the rows
in T as terminals. Again we traverse the tree twice: once top-down while adding Steiner nodes to their
parents, and once bottom-up while adding all nodes to their parents. As a result, all rows in T are added
to the pivot row, and thus it is turned into a basis vector.

After column j and row i are eliminated to basis vectors, they are removed from the parity matrix.
Accordingly, vertex i is removed from the connectivity graph. We can update the output qubit map to
indicate that logical qubit i is now stored in the physical qubit register j after this round of elimination.
As discussed in Section 2.3, Algorithms 4 and 5 are adapted from the algorithm RowCol in [27].

In summary, Algorithm 1 constructs Steiner trees based on the rows of M and generates CNOT based
up row operations. Once a row in M becomes an identity row (i.e. only contains a single 1), this row
is eliminated and we can remove the corresponding vertex from the connectivity graph. Then we restart
the algorithm on a smaller problem, until the updated graph has no vertex. This ensures the termination
of the algorithm.

The time complexity of Algorithm 1-PermRowCol depends on the choice of heuristics in Algorithms
2 and 3, as well as the choice of the (approximate) Steiner tree algorithm when eliminating a row and
column in Algorithms 4 and 5. The remaining time complexity is dominated by calculating the non-
cutting vertices. Thus, given N qubits and a connectivity graph with E edges, the time complexity for
PermRowCol is as follows.

O(PermRowCol) = O(N)
(
O(NonCuttingVertices)+O(ChooseRow)+O(ChooseColumn)+O(EliminateColumn)+O(EliminateRow)

)
= O(N)

(
O(NonCuttingVertices)+O(ChooseRow)+O(ChooseColumn)+2∗O(Steinertree)

)
The suggested ChooseRow and ChooseColumn heuristics both have time complexity O(N2), but

these can be replaced by other heuristics with improved complexities. In the meantime, the complexity
of the Steiner tree algorithm depends heavily on the choice of the algorithm. Building Steiner trees is NP-
hard but the topologies being benchmarked are sparse enough that approximate methods perform well.
The algorithm we use is based on Prim’s and Floyd-Warshall’s algorithms and it has time complexity
O(N3). Thus, the time complexity for our specific implementation of PermRowCol is

O(PermRowCol) = O(N)
(
O(N2 +EN)+2∗O(N2)+2∗O(N3)

)
= O(N4).
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Algorithm 1: PermRowCol
Input : Parity matrix M and topology G(VG,EG) with labels corresponding to the rows of M
Output: CNOT circuit C and output qubit map P
P← [−1 · · ·−1] ; /* |VG| times */

C← New empty circuit;
while |VG|> 1 do

// Find non-cutting qubits V s that can (still) be removed G.

V s← NonCuttingVertices(G);
r← ChooseRow(V s,M);
// Choose a physical qubit register to map r to.

c← ChooseColumn(M,r, [i : i ∈ [1 . . . |P|] where P[i] =−1]);
Nodes← [i : i ∈VG where Mi,c = 1];
C.add(EliminateColumn(M,G,r,Nodes));
// Reduce the row if it is not yet eliminated.

if ∑ j∈1...|P|Mr, j > 1 then
A←M without row r and without column c;
B←M[r] without column c;
X ← A−1B ; /* Find rows to add to eliminate row r */

Nodes← [i : i ∈VG where i = r or X [Index(i)] = 1];
C.add(EliminateRow(M,G,r,Nodes));

end
// Update the output qubit map.

P[c]← r;
G← subgraph of G with vertex r and connecting edges removed;

end
// The loop ends with 1 qubit in G.

// Update the map for the last output qubit.

i← [i : i ∈ [1 . . . |P|] where P[i] =−1]; /* Find index with -1 */

P[i]←VG[0];
return C,P

4 Benchmarking Results

We benchmark our algorithm against Steiner-Gauss [14] and RowCol [27] to demonstrate the advantage
of dynamically remapping qubits during synthesis, both with and without Reverse Traversal (RT). To
do this, we generate CNOT circuits with q qubits and d CNOTs that are sampled uniformly at random.
The final dataset consists of 100 such CNOT circuits per (q,d)-pair. The implementation of our proposed
algorithm, the benchmark algorithms, the CNOT circuit generation script, unit tests, as well as the dataset
of random CNOT circuits can be found on GitHub1. The specific script that ran our experiments can also
be found there2.

The number of CNOTs in the routed circuit versus the number of CNOTs in the original circuit
are plotted in Figures 6, 7, 8 and 10. The blue line x = y serves as the baseline to compare the routing

1https://github.com/Aerylia/pyzx/tree/rowcol
2https://github.com/Aerylia/pyzx/blob/rowcol/demos/PermRowCol%20results.ipynb

https://github.com/Aerylia/pyzx/tree/rowcol
https://github.com/Aerylia/pyzx/blob/rowcol/demos/PermRowCol%20results.ipynb
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Figure 6: Compare the number of CNOTs generated by Steiner-Gauss [14] (orange), RowCol [27]
(green), and PermRowCol without Reverse Traversal (RT) (red) and with RT (purple) for different fic-
titious square grid topologies: 9-qubit square grid (left) and 16-qubit square grid (right). The blue line
x = y serves as the baseline to compare the routing overhead of different algorithms. If a point is above
the blue line, the routed circuit requires more CNOTs than the original circuit. If a point is below the
blue line, then otherwise.

overhead of different algorithms. If a point is above the blue line, the routed circuit requires more CNOTs
than the original circuit. This is expected in practice, but we want as few CNOTs as possible. On the other
hand, when the original CNOT circuit has many CNOTs, it is possible for some algorithm to synthesize
a circuit with fewer CNOTs than that of the original circuit. This implies that the original circuit contains
redundant CNOTs which are removed by the algorithm. This happens because after a certain amount of
CNOTs, the parity matrix representing the circuit becomes a random matrix and synthesizing a random
parity matrix requires a constant amount of CNOTs, as discussed in [19].

Figure 6 compares the performance of the three algorithms on two fictitious square grid topologies,
whereas Figure 7 compares their performance on three real device topologies. The corresponding con-
nectivity graphs are shown in Figure 9. Overall, the proposed PermRowCol algorithm outperforms the
other algorithms when the CNOT count is small. For a large number of CNOTs, it depends on the topol-
ogy whether the proposed algorithm still outperforms the others. Possible reasons for this are discussed
in Section 5.

When the algorithm PermRowCol is combined with the Reverse Traversal (RT) strategy, it outper-
forms the other algorithms on all architectures, as shown by the purple line in Figures 6 and 7. Note that
because algorithms SteinerGauss and RowCol does not remap the qubits, RT would have no effect on
them.

5 Discussion and Conclusion

In this paper, we propose the algorithm PermRowCol that synthesizes CNOT circuits from a parity ma-
trix while respecting the connectivity constraints of a quantum computer. It dynamically remaps logical
qubits to different physical qubit registers. This technique is designed for the global optimization of
quantum circuits. Therefore, our technique can add improvements that cannot be found with local opti-
mization methods. Our work is based on the observation that allowing dynamic qubit maps during the
circuit synthesis may reduce the output CNOT count. We provide a recipe to construct the improved al-



374 Dynamic Qubit Routing with CNOT Circuit Synthesis for Quantum Compilation

Figure 7: Compare the number of CNOTs generated by Steiner-Gauss [14] (orange), RowCol [27]
(green), and PermRowCol without Reverse Traversal (RT) (red) and with RT (purple) for different real
topologies: 16-qubit IBM QX5 (left), 16-qubit Rigetti Aspen (right), and 20-qubit IBM Tokyo (middle).
The blue line x = y serves as the baseline to compare the routing overhead of different algorithms. If a
point is above the blue line, the routed circuit requires more CNOTs than the original circuit. If a point
is below the blue line, then otherwise.

gorithm whose performance has been confirmed by the benchmarking results. We show that in some but
not all cases, the qubit remap results in a smaller CNOT overhead compared to the other state-of-the-art
algorithms. Moreover, adding the Reverse Traversal (RT) technique improves the results noticeably.

Looking ahead, many problems remain open. For example, in some cases, the PermRowCol performs
worse than the original RowCol, which differs from the PermRowCol because we pick a different row
and column to eliminate rather than the ones intersecting at the diagonal. This flexibility results in the
remap of qubits. If the PermRowCol produces more CNOT overhead than that of RowCol, we may have
picked an inefficient remap. Thus, the simple heuristics used in our algorithm may not be optimal when
synthesizing a random parity matrix. This makes sense because our heuristic relies on the number of
1s in each row and column; but in a random parity matrix, the number of 1s in each row and column
is approximately the same. Therefore, the PermRowCol with our choice of heuristic may decide to
eliminate a random row and column that requires more CNOTs later in the synthesis process.
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Besides, there seems to be some connections between the underlying topologies and different algo-
rithms’ performance. In Figure 9, the 16-qubit square grid machine, the IBM QX5 machine, and the
Rigetti Aspen machine all consist of 16 qubits, but have distinct connectivity constraints. In Figure 6, to
synthesize large CNOT circuits (≥ 200 CNOTs) given the 16-qubit square grid (Figure 9.c), PermRowCol
without RT generates the most CNOTs. For a circuit of arbitrary size and for all topologies in Figure 9,
PermRowCol with RT generates the least CNOTs (Figure 7). In the meantime, Table 1 shows that the
topologies of the real devices are sparser than their fictitious counterparts. This means that when remov-
ing random non-cutting vertices from the connectivity graph, our options are much more limited when
working with real devices. Conversely, removing random non-cutting vertices from a square grid will
restrict our options less because the vertices are connected through more paths. This makes it less likely
to pick an inefficient option. However, when synthesizing circuits without any connectivity constraints,
Figure 8 shows that PermRowCol outperforms other algorithms even when it is not combined with RT. It
seems that picking an inefficient qubit allocation is less detrimental when CNOTs are allowed between
arbitrary pairs of qubits.

Qubit Count Topology Avg. Graph Distance Average Degree

16
Fictitious devices

Square 2.5 4
Fully-Connected 1 15

Real devices
Rigetti Aspen 3.25 2.25
IBM QX5 3.125 2.75

Table 1: Different topologies in Figure 9 have distinct average graph distance and average vertex degree.
The topologies of real devices (i.e., Rigetti Aspen and IBM QX5) have greater average graph distance
and smaller average vertex degree than those of fictitious devices (i.e., Square and Fully-Connected). In
our example, the topologies of real devices are sparser than their fictitious counterparts.

Based upon the above observations, we expect that the heuristics for picking the pivot row and
column can be further improved. Since we need to pick the pivot row and column in an optimal order,
this is a combinatorial search space. For completeness, we have implemented an A* algorithm [21]
for the choice of pivots that tries all possible pivots following Dijkstra’s shortest path algorithm. These
results and their technical details can be found in Appendix E. Since this method scales exponentially
with respect to the number of qubits, we do not think this is a sensible approach. This is why it is not in
the main body of this paper. The A* algorithm is only added to indicate the effect of a “perfect“ heuristic.

In Appendix E, we show that the A* algorithm performs marginally worse than RT on its own on
5-qubit devices. This seems to indicate that it is equally important for PermRowCol to have a good initial
qubit mapping as having a good heuristic. This effect is diminished when PermRowCol is applied on
multiple CNOT slices in a circuit. Because the initial qubit mapping cascades throughout the repeated
applications of PermRowCol that uses the heuristic for every slice.

Additionally, it is likely that the performance of alternative heuristics depends heavily on the given
topology and parity matrix. Therefore, we encourage the reader to think about what heuristics would
work well for their specific use case.

In conclusion, we need a better method to determine the dynamic qubit maps than the heuristic we
have used in this paper. This is also why we have not yet compared the performance of PermRowCol
with those in the established quantum compilers such as Qiskit, TKET, and SABRE. We will discuss
possible directions for improvements in the next section.
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6 Future Work

Our PermRowCol algorithm is shown to be promising when combined with Reverse Traversal (RT). In
Section 6.1, we discuss ways to improve the PermRowCol. In Section 6.2, we illustrate how to leverage
the PermRowCol to synthesize an arbitrary quantum circuit.

6.1 Improve the PermRowCol algorithm

In Section 5, we conclude that a better heuristic is needed for choosing the row and column to eliminate.
Moreover, the quality of the heuristics may depend on the given topology and the original CNOT circuit.
Beyond this, to achieve the full-stack quantum circuit compilation, it is important to extend our method
by accounting for different gate error rates and the difficulty to couple two qubits. When constructing a
Steiner tree, we can define a non-uniform weight function based on the quality of the gates acting on each
qubit and the prevalent error model in the chosen architecture. This insight may inspire some interesting
error-mitigation techniques. Moreover, due to the dynamic qubit maps in the PermRowCol, we might
redesign the algorithm to take into account the quality of the single qubit gates that are executed after the
CNOT circuit. Under such restrictions, some qubits cannot be mapped to certain registers. These kinds
of selection rules can then be added to the PermRowCol by changing the heuristic for choosing which
column to eliminate.

Additionally, the PermRowCol can be improved by adding a blockwise elimination method [19]. In
[27], in addition to the algorithm RowCol, the size-block elimination (SBE) was introduced. It uses a
similar strategy as did in [19] but with Steiner trees and Gray codes. Eliminating blocks of rows and
columns might not be very efficient on sparse graphs, but it might be interesting as an alternative to the
unconstrained Gaussian elimination tasks where a permutation matrix is accepted as a valid solution (e.g.
ZX-diagram extraction [5]).

6.2 Extension PermRowCol to synthesize arbitrary quantum circuits

To achieve the universality for quantum computing, we need to work with unitaries beyond just CNOT
gate. Therefore, a natural next step for us is to extend the PermRowCol algorithm such that we can route
and map qubits in any quantum circuit. There are two potential approaches: (1) synthesize the full circuit
from a flexible representation; (2) cut the circuit into pieces so that we can synthesize each subcircuit
separately and glue the synthesized pieces back together. In what follows, we discuss these strategies by
building upon our PermRowCol algorithm to work with more general quantum circuits until we end up
with the set of universal quantum circuits.

Since the PermRowCol can only synthesize circuits over CNOT, we start by extending it to work
with the class of circuits over CNOT and Rz rotations. These circuit can be characterized by phase
polynomials, which are described by the set of parity terms where each Rz occurs, along with a parity
matrix describing the output parity terms of the quantum circuit [3, 2]. This notion is also known the
sum-over-paths. Various Steiner-tree-based methods have been proposed to synthesize the parity term
of each Rz gate [17, 11, 10, 25]. The remaining parity matrix can then be synthesized by PermRowCol.
To extend the phase polynomials to arbitrary quantum circuits, we need to add the H gate which these
methods cannot synthesize. To this end, we can cut the circuit into subcircuits at the locality of H gates,
and each subcircuit is composed of CNOT and Rz gates. Then our problem is reduced to synthesizing
the phase polynomial of each subcircuit and then glue them back together. This method is known as the
slice-and-build, and it is proposed in [10]. PermRowCol can make a difference because the dynamic qubit
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maps allows this algorithm to move the H gates so that they could act on different but more convenient
quantum registers.

Moreover, the presence of a NOT gate is compatible with the current characterization because a NOT
gate on some physical qubit introduces an 1 modulo 2 to the corresponding parity term. Thus, we can
further extend the above method to work with circuits over NOT, CNOT, and Rz rotations by adding an
extra row to the parity matrix to represent the participation of a NOT gate. Then we can proceed as before
using the phase-polynomial network synthesis and the slice-and-build to synthesize a circuit over NOT,
CNOT, and Rz rotations [10]. This is much simpler than first synthesizing the phase polynomial without
the NOT gates, replacing each NOT by HRz(π)H, and then synthesizing the latter phase polynomial.
Accordingly, we have generalized PermRowCol to synthesize the Clifford+T circuits, which is a family
of circuits that are well-suited for universal quantum computation.

Furthermore, it is worth investigating how to combine PermRowCol with a generalized notion of the
sum-over-paths: Pauli exponentials [9]. Like phase polynomials, the Pauli exponential keeps track of the
parity terms where each Rz rotation occurs. This is done by using Pauli strings over I,X ,Y,Z rather than
using the binary strings. In [9], an algorithm is proposed to extract a circuit from the Pauli exponential
form. This is done by adding Clifford gates to the circuit until the Pauli exponential is reduced to a phase
polynomial. Although the algorithm is not architecture-aware, it is possible to adjust the algorithm such
that it only generates CNOTs that are allowed by the target topology, and the phase polynomial can be
synthesized using the methods described above. Additionally, the algorithm was created for synthesizing
particular quantum chemistry circuits, but it can be argued that the Pauli exponentials should serve as an
important primitive for quantum computation in general [16].

Lastly, we can use PermRowCol in the extraction of ZX diagrams [5]. ZX calculus is universal for
quantum computation, so any quantum circuit can be expressed as a ZX diagram. Then, we can make
the diagram into a normal form from which to extract an optimized circuit. The Gaussian elimination is
used in the extraction procedure, and it can be replaced by the PermRowCol. Even though the extraction
procedure doesn’t take any topologies into account, it may be interesting to use the PermRowCol with
a fully-connected graph. In ZX-calculus, only connectivity matters, so reordering the outputs of the
extracted circuit is equivalent to bending wires and therefore free. Thus, it is better to end up with
crossing wires than to extract CNOTs. In Figure 8, we show that the PermRowCol results in less CNOTs
compared to the Gaussian elimination and the RowCol. Therefore, the PermRowCol could be beneficial
to improve the overhead of quantum circuit synthesis.
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A Subroutines

For reference, this section contains the pseudo-code of all subroutines used in Algorithm 1.

Algorithm 2: ChooseRow: Subroutine for choosing which row to eliminate.
Input : Parity matrix M, candidate vertices V s that correspond to rows in M
Output: The row to eliminate: the pivot row
// Pick the row with the least 1s in M.

row← argminv∈V s(∑M[v]);
return pivot row

Algorithm 3: ChooseColumn: Subroutine for choosing which column to eliminate.
Input : Parity matrix M, candidate columns in M, the pivot row
Output: The column to eliminate: the pivot column
// For columns with an 1 in the pivot row, pick the one with the least 1s.

row← argminc∈ColsToEliminate(∑M[:][c] if M[row][c] = 1 else |ColsToEliminate|);
return pivot column
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Algorithm 4: EliminateColumn: Subroutine for eliminating a column. Here, SteinerTree
is a routine which creates a Steiner tree over graph G with root root and nodes Terminals.
BottomU pTraversal performs a post-order traversal on the given tree and returns the edges
rather than the vertices.

Input : Parity matrix M, graph G representing the connectivity constraints, root vertex,
Terminals to build the Steiner tree over

Output: List of CNOTs C to add to the circuit.
C← [];
Tree← SteinerTree(G,root,Terminals);
for edge ∈ BottomU pTraversal(Tree) do

if M[edge[0]][col] = 0 then
C.add(CNOT (edge[0],edge[1])) ; /* Make Steiner nodes into 1s */

M[edge[0]]←M[edge[0]]+M[edge[1]] mod 2;
end

end
for edge ∈ BottomU pTraversal(Tree) do

C.add(CNOT (edge[1],edge[0])) ; /* Make the column into identity */

M[edge[1]]←M[edge[0]]+M[edge[1]] mod 2;
end
return C

Algorithm 5: EliminateRow: Subroutine for eliminating a row. Here, SteinerTree is a
routine which creates a Steiner tree over graph G with root root and nodes Terminals.
TopDownTraversal performs a pre-order traversal on the given tree and returns the edges
rather than the vertices. Similarly, BottomU pTraversal performs a post-order traversal on
the tree and returns the edges when traversed for the second time.

Input : Parity matrix M, graph G representing the connectivity constraints, root vertex,
Terminals to build the Steiner tree over

Output: List of CNOTs C to add to the circuit.
C← [];
Tree← SteinerTree(G,root,Terminals);
for edge ∈ TopDownTraversal(Tree) do

if edge[1] /∈ Nodes then
C.add(CNOT (edge[0],edge[1])) M[edge[0]]←M[edge[0]]+M[edge[1]] mod 2;

end
end
for edge ∈ BottomU pTraversal(Tree) do

C.add(CNOT (edge[0],edge[1])) M[edge[0]]←M[edge[0]]+M[edge[1]] mod 2;
end
return C
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B Unconstrained performance

As additional information, Figure 8 compares the algorithm performance in the unconstrained case, i.e.
synthesizing a CNOT circuit given a fully connected topology. Although this use case does not include
the routing of CNOTs, there are two use cases for which this is interesting. Both of these cases need to
allow reallocation of qubits to make use of PermRowCol. Restricting PermRowCol to a fixed allocation
is equivalent to the RowCol algorithm.

First of all, we can use PermRowCol without topological restrictions in case we have a circuit with
many CNOTs (with respect to the number of qubits) to optimize the number CNOTs.

Secondly, PermRowCol can be used in cases when the CNOT circuit is not known beforehand
and needs to be synthesized from a given parity matrix. For example, this can be done as part of the
GraySynth [2] algorithm that is used in the PauliSynth [9] algorithm for generating UCCSD circuits in
quantum chemistry. Alternatively, it can be used in place of Gaussian elimination as part of ZX-diagram
extraction [5]. As we have already discussed in Section 6.2.

(a) Algorithms’ performance for the 5-qubit fully con-
nected graph.

(b) Algorithms’ performance for the 9-qubit fully con-
nected graph.

(c) Algorithms’ performance for the 16-qubit fully con-
nected graph.

(d) Algorithms’ performance for the 20-qubit fully con-
nected graph.

Figure 8: These figures show the number of CNOTs generated by Steiner-Gauss [14] (orange), Row-
Col [27] (green), and PermRowCol (proposed, red) for the unconstrained case, i.e. a complete graph of
5, 9, 16, and 20 qubits where every pair of distinct vertices is connected by a unique edge. The blue
x = y-line is used to infer the CNOT overhead.
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C Topologies of real devices

We show in Figure 9 the different topologies for the real quantum computers that we used for the con-
nectivity constraints in our experiments.

Figure 9: Topologies of existing quantum computers that we use for testing our algorithm. Images are
taken from [6].

D Results in table form

For completeness, we show the results from Figure 6 and 7 in the form of Table 2.
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CNOT Topology Steiner-Gauss RowCol PermRowCol PermRowCol+RT
3 9q-square 11.96 (298.67 %) 12.26 (308.67 %) 12.17 (305.67 %) 4.74 (58.00 %)
5 9q-square 18.23 (264.60 %) 18.74 (274.80 %) 16.33 (226.60 %) 7.48 (49.60 %)
10 9q-square 33.69 (236.90 %) 32.67 (226.70 %) 28.17 (181.70 %) 14.22 (42.20 %)
20 9q-square 49.05 (145.25 %) 46.82 (134.10 %) 40.01 (100.05 %) 24.47 (22.35 %)
30 9q-square 55.58 (85.27 %) 53.52 (78.40 %) 45.75 (52.50 %) 31.23 (4.10 %)
4 16q-square 29.90 (647.50 %) 29.02 (625.50 %) 33.86 (746.50 %) 7.21 (80.25 %)
8 16q-square 55.14 (589.25 %) 55.70 (596.25 %) 58.49 (631.13 %) 15.96 (99.50 %)
16 16q-square 97.85 (511.56 %) 92.24 (476.50 %) 87.95 (449.69 %) 34.34 (114.63 %)
32 16q-square 151.54 (373.56 %) 141.57 (342.41 %) 133.99 (318.72 %) 81.68 (155.25 %)
64 16q-square 189.09 (195.45 %) 175.74 (174.59 %) 184.84 (188.81 %) 141.75 (121.48 %)
128 16q-square 200.40 (56.56 %) 189.32 (47.91 %) 204.89 (60.07 %) 165.97 (29.66 %)
256 16q-square 201.95 (−21.11 %) 190.83(−25.46 %) 205.16(−19.86 %) 167.55(−34.55 %)
4 rigetti 16q aspen 55.59 (1289.75 %) 50.00 (1150.00 %) 51.77 (1194.25 %) 14.17 (254.25 %)
8 rigetti 16q aspen 100.85(1160.63 %) 88.78 (1009.75 %) 90.12 (1026.50 %) 30.13 (276.63 %)
16 rigetti 16q aspen 155.25 (870.31 %) 138.99 (768.69 %) 132.58 (728.63 %) 54.15 (238.44 %)
32 rigetti 16q aspen 223.03 (596.97 %) 199.41 (523.16 %) 174.21 (444.41 %) 106.04 (231.38 %)
64 rigetti 16q aspen 259.77 (305.89 %) 240.51 (275.80 %) 229.71 (258.92 %) 178.55 (178.98 %)
128 rigetti 16q aspen 270.64 (111.44 %) 252.33 (97.13 %) 252.95 (97.62 %) 209.31 (63.52 %)
256 rigetti 16q aspen 270.07 (5.50 %) 255.06 (−0.37 %) 252.69 (−1.29 %) 209.52(−18.16 %)
4 ibm qx5 37.87 (846.75 %) 37.96 (849.00 %) 40.54 (913.50 %) 9.62 (140.50 %)
8 ibm qx5 72.34 (804.25 %) 71.43 (792.88 %) 66.81 (735.13 %) 20.62 (157.75 %)
16 ibm qx5 121.33 (658.31 %) 115.63 (622.69 %) 104.60 (553.75 %) 40.31 (151.94 %)
32 ibm qx5 184.57 (476.78 %) 174.74 (446.06 %) 154.56 (383.00 %) 91.17 (184.91 %)
64 ibm qx5 227.48 (255.44 %) 218.93 (242.08 %) 211.51 (230.48 %) 159.43 (149.11 %)
128 ibm qx5 242.96 (89.81 %) 238.07 (85.99 %) 229.47 (79.27 %) 189.13 (47.76 %)
256 ibm qx5 244.43 (−4.52 %) 238.25 (−6.93 %) 233.83 (−8.66 %) 191.73(−25.11 %)
4 ibm q20 tokyo 24.04 (501.00 %) 23.14 (478.50 %) 28.88 (622.00 %) 6.71 (67.75 %)
8 ibm q20 tokyo 50.58 (532.25 %) 49.09 (513.63 %) 54.29 (578.63 %) 14.72 (84.00 %)
16 ibm q20 tokyo 99.70 (523.13 %) 94.17 (488.56 %) 95.66 (497.88 %) 30.08 (88.00 %)
32 ibm q20 tokyo 177.58 (454.94 %) 163.22 (410.06 %) 156.28 (388.38 %) 82.09 (156.53 %)
64 ibm q20 tokyo 249.51 (289.86 %) 235.23 (267.55 %) 238.52 (272.69 %) 183.99 (187.48 %)
128 ibm q20 tokyo 281.34 (119.80 %) 269.25 (110.35 %) 289.53 (126.20 %) 245.02 (91.42 %)
256 ibm q20 tokyo 288.01 (12.50 %) 273.23 (6.73 %) 300.92 (17.55 %) 256.48 (0.19 %)

Table 2: This table shows the performance of Steiner-Gauss [14, 17], RowCol [27], PermRowCol (pro-
posed), and PermRowCol with Reverse Traversal strategy (proposed) for different topologies. The shown
numbers represent the average CNOT count over 100 circuits and the average CNOT overhead with re-
spect to the original circuit in brackets behind it.
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E A* results

In this appendix, we show the results for using the A* algorithm [21] for choosing the row and column
in the iterations of PermRowCol. We do this for different 5-qubit topologies because the overhead of A*
becomes too long for larger topologies.

We added the A* algorithm into PermRowCol using a priority queue. Initially, we push the original
problem into the queue with priority equal to 0. Then, while the queue is not empty, we remove an
instance from the queue, reduce the matrix for each combination of chosen row and column and push
the resulting smaller problem to the queue with the size of the circuit until now as priority. We continue
this process until a solution has been found. By construction, the resulting solution will be the smallest
circuit that can be found with PermRowCol regardless of the choice in ChooseRow and ChooseColumn
heuristics, but the complexity is exponential in the number of qubits.

To reduce the runtime of the algorithm, we restrict the number of new problem instances created at
each iteration by a parameter called choiceWidth. Instead of expanding each possible combination of row
and column, we only expand the top choiceWidth options where we rank the options using the original
ChooseRow and ChooseColumn heuristics. Where the ChooseRow has priority. Additionally, we limit
the size of the queue such that problem instances low in the queue are removed from memory since they
probably don’t need to be expanded before a solution is found. For these results, we used choiceWidth=
4 and max_size= 10. Resulting in an algorithm with time complexity O(choiceWidthO(PermRowCol) =

O(4n4
).

The results are shown in Figure 10 where we see that A* does not perform better than than the
Reverse Traversal (RT) strategy, even when combining the two algorithms.
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(a) Algorithms’ performance for the 5-qubit fully con-
nected graph. (b) Algorithms’ performance for the 5-qubit line graph.

(c) Algorithms’ performance for the 5-qubit IBM QX2
device.

(d) Algorithms’ performance for the 5-qubit IBM QX4
device.

Figure 10: These figures show the number of CNOTs generated by Steiner-Gauss [14] (orange), Row-
Col [27] (green), and different variants of PermRowCol (proposed) on different 5-qubit topologies. The
different variants of PermRowCol are the original (red), with A* algorithm (purple), with Reverse Traver-
sal (RT) (brown), and with both A* and RT (pink). The blue x = y-line is used to infer the CNOT over-
head.

F Example execution of PermRowCol

In the section, we execute algorithm PermRowCol with inputs in Figure 11. We start with a parity matrix
A to synthesize over the topology graph G, and reduce the problem to eliminating A to a permutation
matrix. The labelling of vertices in G corresponds to the numbering of rows in A.
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|1〉 • • |2⊕3⊕4⊕5⊕6〉

|2〉 • • • |1⊕2⊕4〉

|3〉 • |2⊕4⊕5⊕6〉

C = |4〉 • • |1⊕2〉

|5〉 • |1⊕2⊕3⊕4⊕5⊕6〉

|6〉 • |3⊕6〉

(a) A CNOT circuit C composed of 6 qubits.

A =

1′ 2′ 3′ 4′ 5′ 6′


1 0 1 0 1 1 0
2 1 1 1 1 1 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

(b) The parity matrix of C.

G =

1 2 3

4 5 6

(c) The 6-qubit square grid G.

Figure 11: The CNOT circuit C in figure (a) can be exactly represented by the 6×6 parity matrix A in
figure (b). Under the constrained topology G in figure (c), the Steiner-tree based algorithm PermRowCol
accounts for G and re-synthesizes C.

F.1 Notations

We declare notations that will be used in Appendices F.2 and F.3.
According to algorithm PermRowCol, the chosen logical qubit corresponds to a row in A. Its index is

denoted by r. The chosen new physical register for r corresponds to a column in A. Its index is denoted
by c. Vs is a set of non-cutting vertices of G under which A is synthesized. S is the set of terminal nodes
corresponding the indices of all non-zero entries in a row or column. R(i, j) denotes a row operation on
A such that row i is added to row j, while row i remains unchanged.

The output qubit allocation Table 3 keeps track of the row and column being selected at each elimi-
nation step.

Logical qubit/r 1 2 3 4 5 6
Physical register/c

Table 3: The output qubit allocation table

F.2 Parity matrix for a CNOT circuit

Consider a CNOT circuit composed of n qubits, where CNOT(c, t) has control c and target t. Based
on the specification in Section 2.1, CNOT(c, t) corresponds to a row operation R(t,c) such that row t is
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added to row c, while row t remains unchanged.
In addition to the parity matrix defined in this paper, we note an alternative characterization for

CNOT circuits [19, 17, 10]. Let’s call it as the alt-parity matrix for a CNOT circuit. Similar to the parity
matrix characterization, a square matrix is constructed to record the output parities of the circuit. Each
row represents a parity term, and each column represents the input qubit. By construction, given a CNOT
circuit, its alt-parity matrix is the transpose of its parity matrix. Accordingly, CNOT(c, t) corresponds to
a row operation R(c, t) such that row c is added to row t, while row c remains unchanged. However, the
synthesis procedure constructs the circuit in reverse.

For example, in Figure 12, we compare the differences between the two notations and the cor-
responding CNOT synthesis algorithms. In Figure 12.c, we see that the column-wise representation
of the parities (Figure 12.b) results in taking row operations that correspond to the CNOTs in or-
der, while adding the target to the control: R(2,1)R(3,2) ∼ CNOT (1,2)CNOT (2,3). Alternatively,
in Figure 12.e, we see that the row-wise representation of the parities (Figure 12.d) results in taking
row operations that correspond to the CNOTs in reverse order, while adding the control to the target:
R(2,3)R(1,2)∼CNOT (1,2)CNOT (2,3).
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|1〉 • |1〉

C = |2〉 • |1⊕2〉

|3〉 |1⊕2⊕3〉

(a) A CNOT circuit C composed of 3 qubits and 2 CNOTs. The labels of input qubits are denoted on the left of the
circuit. The output parities are denoted on the right of the circuit.

A =

1′ 2′ 3′( )1 1 1 1
2 0 1 1
3 0 0 1

(b) A is the parity matrix of C. Each column represents an output parity term and each row represents an input
qubit.

A =

1′ 2′ 3′( )1 1 1 1
2 0 1 1
3 0 0 1

R(2,1)−−−→ A′ =

1′ 2′ 3′( )1 1 0 0
2 0 1 1
3 0 0 1

R(3,2)−−−→ I =

1′ 2′ 3′( )1 1 0 0
2 0 1 0
3 0 0 1

(c) Given A, CNOT(1,2) corresponds to the row operation R(2,1) and CNOT(2,3) corresponds to the row opera-
tion R(3,2).

B =

1 2 3( )1′ 1 0 0
2′ 1 1 0
3′ 1 1 1

(d) B is the alt-parity matrix of C. Each row represents an output parity term and each column represents an input
qubit.

B =

1 2 3( )1′ 1 0 0
2′ 1 1 0
3′ 1 1 1

R(2,3)−−−→ B′ =

1 2 3( )1′ 1 0 0
2′ 1 1 0
3′ 0 0 1

R(1,2)−−−→ I =

1 2 3( )1′ 1 0 0
2′ 0 1 0
3′ 0 0 1

(e) Given B, CNOT(2,3) corresponds to the row operation R(2,3) and CNOT(1,2) corresponds to the row opera-
tion R(1,2).

Figure 12: Circuit C in (a) is composed of CNOT(1,2) and CNOT(2,3). Its output parities are described
by the parity matrix A in (b), or equivalently, by the alt-parity matrix B in (d). B> = A.
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F.3 PermRowCol walkthrough

Elimination step 1 Before the first elimination step, the parity matrix A and the constrained topology
G are shown in Figure 11.

Choose the row and column to eliminate: The set of non-cutting vertices of G is Vs = {1,2,3,4,5,6}.
Then r = 1 and c = 4 since

1′ 2′ 3′ 4′ 5′ 6′ Sum Row


1 0 1 0 1 1 0 3 X
2 1 1 1 1 1 0 5
3 1 0 0 0 1 1 3
4 1 1 1 0 1 0 4
5 1 0 1 0 1 0 3
6 1 0 1 0 1 1 4

⇒

1′ 2′ 3′ 4′ 5′ 6′


1 0 1 0 1 1 0
2 1 1 1 1 1 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

Sum \ 3 \ 2 6 \
Column X

Eliminate the chosen row and column: We start by eliminating column 4′ to eᵀ1 , then S = {1,2}.
The Steiner tree T1,S has root 1 and a set of terminals S:

T1,S = 1 2

Thus, algorithm PermRowCol assigns CNOT(2,1). It follows that

A =

1′ 2′ 3′ 4′ 5′ 6′


1 0 1 0 1 1 0
2 1 1 1 1 1 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

R(1,2)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 1 0 1 1 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

. (1)

Next, we eliminate row 1 to e4. From solving the system of linear equations while emitting
column 4′, row 1 is formed by rows 2 and 4. Thus S = {1,2,4}. The Steiner tree T1,S has
root 1 and a set of terminals S:

T1,S = 1 2

4
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Thus, algorithm PermRowCol assigns CNOT(1,2)CNOT(1,4). It follows that

(1) =

1′ 2′ 3′ 4′ 5′ 6′


1 0 1 0 1 1 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

R(2,1)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 1 1 1 1 1 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

(2)

R(4,1)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

(3)

Update the output qubit allocation: The output qubit allocation after eliminating row 1 and col-
umn 4′ is updated in Table 4.

Logical qubit/r 1 2 3 4 5 6
Physical register/c 4

Table 4: Logical qubit 1 is stored in the physical register 4.

Elimination step 2 After the first elimination step, the parity matrix A′ and the constrained topology G′

are shown in Figure 13.

A′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

(a) The updated parity matrix A′.

G′ =

2 3

4 5 6

(b) The 5-qubit grid G′.

Figure 13: After elimination step 1, PermRowCol eliminates the parity matrix A to A′ in (a) under the
constrained topology G. Accordingly, G is reduced to G′ in (b).

Choose the row and column to eliminate: The set of non-cutting vertices of G′ is Vs = {2,3,4,6}.
Then r = 2 and c = 3 since
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A′=

1′ 2′ 3′ 4′ 5′ 6′ Sum Row


1 0 0 0 1 0 0 \
2 1 0 1 0 0 0 2 X
3 1 0 0 0 1 1 3
4 1 1 1 0 1 0 4
5 1 0 1 0 1 0 \
6 1 0 1 0 1 1 4

⇒

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

Sum 5 \ 4 \ \ \
Column X

Eliminate the chosen row and column: We start by eliminating column 3′ to eᵀ2 , then S= {2,4,5,6}.
The Steiner tree T2,S has root 2 and a set of terminals S:

T2,S =

2

4 5 6
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Thus, algorithm PermRowCol assigns CNOT(4,5)CNOT(6,5)CNOT(5,2). It follows that

A′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 1 1 1 0 1 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

R(5,4)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 0 1 0 0 0 0
5 1 0 1 0 1 0
6 1 0 1 0 1 1

(4)

R(5,6)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 0 1 0 0 0 0
5 1 0 1 0 1 0
6 0 0 0 0 0 1

(5)

R(2,5)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

. (6)

Next, we eliminate row 2 to e3. From solving the system of linear equations while emitting
columns 3′ and 4′, row 2 is formed by rows 3, 5, and 6. Thus S = {2,3,5,6}. The Steiner
tree T2,S has root 2 and a set of terminals S:

T2,S =

2 3

5 6
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Thus, algorithm PermRowCol assigns CNOT(3,6)CNOT(2,3)CNOT(2,5). It follows that

(6) =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

R(6,3)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 1 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

(7)

R(3,2)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 1 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

(8)

R(5,2)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

(9)

Update the output qubit allocation: The output qubit allocation after eliminating row 2 and col-
umn 3′ is updated in Table 5.

Logical qubit/r 1 2 3 4 5 6
Physical register/c 4 3

Table 5: Logical qubit 2 is stored in the physical register 3.

Elimination step 3 After the second elimination step, the parity matrix A′′ and the constrained topology
G′′ are shown in Figure 14.
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A′′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

(a) The updated parity matrix A′′.

G′′ =

3

4 5 6

(b) The 4-qubit line G′′.

Figure 14: After elimination step 2, PermRowCol eliminates the parity matrix A′ to A′′ in (a) under the
constrained topology G′. Accordingly, G′ is reduced to G′′ in (b).

Choose the row and column to eliminate: The set of non-cutting vertices of G′′ is Vs = {3,4,5,6}.
Then r = 4 and c = 2 since

A′′=

1′ 2′ 3′ 4′ 5′ 6′ Sum Row


1 0 0 0 1 0 0 \
2 0 0 1 0 0 0 \
3 1 0 0 0 1 0 2
4 0 1 0 0 0 0 1 X
5 0 0 0 0 1 0 1
6 0 0 0 0 0 1 1

⇒

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

Sum \ 1 \ \ \ \
Column X

Eliminate the chosen row and column: In fact, column 2′ and row 4 is eᵀ4 and e2 respectively,
this step is complete.

Update the output qubit allocation: The output qubit allocation after eliminating row 4 and col-
umn 2′ is updated in Table 6.

Logical qubit/r 1 2 3 4 5 6
Physical register/c 4 3 2

Table 6: Logical qubit 4 is stored in the physical register 2.

Elimination step 4 After the third elimination step, the parity matrix A′′′ and the constrained topology
G′′′ are shown in Figure 15.
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A′′′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

(a) The updated parity matrix A′′′.

G′′′ =

3

5 6

(b) The 3-qubit line G′′′.

Figure 15: After elimination step 3, PermRowCol eliminates the parity matrix A′′ to A′′′ in (a) under the
constrained topology G′′. Accordingly, G′′ is reduced to G′′′ in (b).

Choose the row and column to eliminate: The set of non-cutting vertices of G′′′ is Vs = {3,5}.
Then r = c = 5 since

A′′′=

1′ 2′ 3′ 4′ 5′ 6′ Sum Row


1 0 0 0 1 0 0 \
2 0 0 1 0 0 0 \
3 1 0 0 0 1 0 2
4 0 1 0 0 0 0 \
5 0 0 0 0 1 0 1 X
6 0 0 0 0 0 1 \

⇒

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

Sum \ \ \ \ 2 \
Column X

Eliminate the chosen row and column: We start by eliminating column 5′ to eᵀ5 , then S = {3,5}.
The Steiner tree T5,S has root 5 and a set of terminals S:

T5,S =

3

5 6
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Thus, algorithm PermRowCol assigns CNOT(6,3)CNOT(3,6)CNOT(6,5). It follows that

A′′′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 0 0 0 0 0 1

R(3,6)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 1 0 0 0 1 0
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 1 1

(10)

R(6,3)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 1 1

(11)

R(5,6)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 1

. (12)

Since row 5 is in fact e5, this step is complete.
Update the output qubit allocation: The output qubit allocation after eliminating row 5 and col-

umn 5′ is updated in Table 7.

Logical qubit/r 1 2 3 4 5 6
Physical register/c 4 3 2 5

Table 7: Logical qubit 5 is stored in the physical register 5.

Elimination step 5 After the fourth elimination step, the parity matrix A′′′′ and the constrained topology
G′′′′ are shown in Figure 16.
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A′′′′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 1

(a) The updated parity matrix A′′′′.

G′′′′ =

3

6

(b) The 2-qubit line G′′′′.

Figure 16: After elimination step 4, PermRowCol eliminates the parity matrix A′′′ to A′′′′ in (a) under the
constrained topology G′′′. Accordingly, G′′′ is reduced to G′′′′ in (b).

Choose the row and column to eliminate: The set of non-cutting vertices of G′′′′ is Vs = {3,6}.
Then r = 3 and c = 6 since

A′′′′=

1′ 2′ 3′ 4′ 5′ 6′ Sum Row


1 0 0 0 1 0 0 \
2 0 0 1 0 0 0 \
3 0 0 0 0 0 1 1 X
4 0 1 0 0 0 0 \
5 0 0 0 0 1 0 \
6 1 0 0 0 0 1 2

⇒

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 1

Sum \ \ \ \ \ 1
Column X

Eliminate the chosen row and column: We start by eliminating column 6′ to eᵀ3 , then S = {3,6}.
The Steiner tree T3,S has root 3 and a set of terminals S:

T3,S =

3

6
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Thus, algorithm PermRowCol assigns CNOT(6,3). It follows that

A′′′′ =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 1

R(3,6)−−−→

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 0

. (13)

Since row 3 is in fact e6, this step is complete.
Update the output qubit allocation: The output qubit allocation after eliminating row 3 and col-

umn 6′ is updated in Table 8.

Logical qubit/r 1 2 3 4 5 6
Physical register/c 4 3 6 2 5

Table 8: Logical qubit 3 is stored in the physical register 6.

F.4 Output from PermRowCol

After the fifth elimination step, PermRowCol terminates as there is precisely one vertex left in the con-
strained topology. The parity matrix A is reduced to a permutation P. Accordingly, the final output qubit
allocation is shown below.

P =

1′ 2′ 3′ 4′ 5′ 6′


1 0 0 0 1 0 0
2 0 0 1 0 0 0
3 0 0 0 0 0 1
4 0 1 0 0 0 0
5 0 0 0 0 1 0
6 1 0 0 0 0 0

Logical qubit/r 1 2 3 4 5 6
Physical register/c 4 3 6 2 5 1

Table 9: Qubit allocation after resynthesizing the CNOT circuit C under the constrained topology G.

F.5 Examination of the output validity

By concatenating CNOTs produced from each elimination step, the re-synthesized circuit C′ and the
corresponding parity matrix M is shown in Figure 17. With the input parity matrix A and the permutation
matrix P output by PermRowCol, we have MP = A. This corresponds to the qubit allocation after re-
synthesizing the CNOT circuit C over G, as described by Table 9. Hence, our re-synthesized circuit C′

is equivalent to circuit C up to column permutation specified by P.
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|1〉 • • |1⊕2〉

|2〉 • • • |2⊕4⊕5⊕6〉

|3〉 • • |3⊕6〉

C′ = |4〉 • |1⊕2⊕4〉

|5〉 • |1⊕2⊕3⊕4⊕5⊕6〉

|6〉 • • • • |2⊕3⊕4⊕5⊕6〉

(a) The re-synthesized CNOT circuit C′ after running PermRowCol with input parity matrix and constrained topol-
ogy defined in Figure 11.

M =

1’ 2’ 3’ 4’ 5’ 6’


1 1 0 0 1 1 0
2 1 1 0 1 1 1
3 0 0 1 0 1 1
4 0 1 0 1 1 1
5 0 1 0 0 1 1
6 0 1 1 0 1 1

(b) M is the parity matrix of C′.

Figure 17: The circuit C′ in (a) can be exactly represented by the 6×6 parity matrix M in (b).
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De Finetti theorems tell us that if we expect the likelihood of outcomes to be independent of their

order, then these sequences of outcomes could be equivalently generated by drawing an experiment

at random from a distribution, and repeating it over and over. In particular, the quantum de Finetti

theorem says that exchangeable sequences of quantum states are always represented by distributions

over a single state produced over and over. The main result of this paper is that this quantum de

Finetti construction has a universal property as a categorical limit. This allows us to pass canonically

between categorical treatments of finite dimensional quantum theory and the infinite dimensional.

The treatment here is through understanding properties of (co)limits with respect to the contravariant

functor which takes a C*-algebra describing a physical system to its convex, compact space of states,

and through discussion of the Radon probability monad. We also show that the same categorical

analysis also justifies a continuous de Finetti theorem for classical probability.

1 Introduction

The quantum analogue of de Finetti’s theorem [4, 14, 13, 24] explains that a “belief about a quantum

state” has a more elementary description as an exchangeable sequences of quantum states. The point of

this paper is to show that this de Finetti theorem can be phrased in categorical terms. Thus we connect

this theorem, which is a fundamental theorem of quantum Bayesianism (e.g. [8]), with categorical and

compositional approaches to axiomatizations and reconstructions of quantum theory (e.g. [6, 11, 15, 22,

23, 25, 26]).

Let H be a Hilbert space (e.g. C2). An sequence of states on H is a collection of quantum states on

tensor powers of H:

a state ρ0 for H⊗0 = C, a state ρ1 for H⊗1 =H, a state ρ2 for H⊗2 =H⊗H, a state ρ3 for H⊗3
, . . .

For example, if H = C
2, then a sequence of states on H is a sequence of density matrices in C

(2n)2

. A

sequence is exchangeable if each state commutes with reindexing, e.g. ρ2 = ρ2 ◦ swap for the swap map

H⊗H→H⊗H, and if taking the partial trace of ρm over any m−n indices gives ρn, for n ≤ m. We can

phrase this in categorical terms by recalling that a state is a quantum channel C→H (i.e. a CPTP map

between the corresponding spaces of density matrices), and so an exchangeable sequence is a commuting

cone of quantum channels

H⊗0 H⊗1 H⊗2 H⊗3 · · ·

C

...

...

(1)

http://dx.doi.org/10.4204/EPTCS.394.19
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Our categorical statement of the quantum de Finetti theorem (Theorem 4.3, dgm. (5)) is about a limit for

this diagram, i.e. a universal exchangeable sequence of quantum channels. This follows recent categori-

cal treatments of the classical case [7, 16].

To give this categorical statement precisely, we make three steps.

1. Firstly, we extend our set up to allow for channels that have both quantum and classical infor-

mation. Formally, this is done by recalling that the dual category (C∗
CPU)

op
of C*-algebras and

completely positive unital maps fully embeds the category of quantum channels, but also fully em-

beds a good deal of classical probability, in terms of Radon probability kernels between compact

Hausdorff spaces.

(quantum channels) (C∗
CPU)

op
(classical probability kernels) (2)

This move is important. It turns out that there is no Hilbert space that is the limit of diagram 1.

Instead, some classical probability is necessary.

2. Then, rather than look only at exchangeable sequences of states C→H⊗n, we look more generally

at parameterized exchangeable sequences, i.e. sequences of channels K → H⊗n, incorporating

both classical and quantum randomness.

H⊗0 H⊗1 H⊗2 H⊗3 · · ·

K

...

...

(3)

3. Theorem 4.3 (paraphrased): There is a C∗-algebra QdF(H) and a cone

H⊗0 H⊗1 H⊗2 H⊗3 · · ·

QdF(H)

...

...

(4)

which is limiting in the category (C∗
CPU)

op
.

This universal property says that any cone factors uniquely through QdF(H).

H⊗0 H⊗1 H⊗2 H⊗3 · · ·

QdF(H)

K

...

... (5)

In other words, to give a cone, i.e. a parameterised exchangeable sequence of states in H, is

equivalent to giving a channel of quantum and classical information to QdF(H).
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The starting point for our proof of Theorem 4.3 is Størmer’s quantum de Finetti result [24]. Inspired

by Størmer’s result, we take the candidate limiting cone QdF(H) to be the C∗-algebra corresponding to

the space of classical distributions on all states of H. Although Størmer’s work is not phrased in categor-

ical terms at all, it follows from that result that there is a unique mediating morphism in diagram (5) in

the case where K = C. To show that this is indeed is a categorical limit, we follow the following steps.

• We note that the candidate limiting cone QdF(H) is classical, that is to say, it lies on the right hand,

classical side of (2), even though the diagram itself typically lies on the left hand, quantum side of

(2). So we can consider the categorical limit and diagram (5) in the category of C∗-algebras and

positive unital maps since positive maps into and out of commutative C∗-algebras are necessarily

completely positive.

• The category of C*-algebras and positive unital maps dually embeds into a category of compact

spaces with convex structure, by regarding their states (§2, Thm. 2.18; [9]). This category of

convex compact spaces is categorically well-behaved, since it is the category of algebras for a

monad on another well-behaved category. In this larger category we are able to use standard

monadicity results to translate ‘pointwise’ limiting structure to categorical limiting structure (§3,

Theorem 3.2).

In particular, we can then show that diagram (4) is a categorical limit (§4, Theorem 4.3).

In this way, we can understand “belief about a quantum state” in categorical terms. This opens the

door to using categorical diagrammatic notation, which we illustrate in Section 5.

2 Preliminaries

We recall rudiments of probability theory (§2.1) and C∗-algebras (§2.3,2.6). In this context we recall clas-

sical and quantum de Finetti theorems (§2.2,2.7) and the C∗-algebraic treatment of probability (§2.4,2.5).

2.1 Rudiments of Probability Theory

We begin by recalling some measure-theoretic probability theory.

Definition 2.1 (Probability Measure). For a set X , a σ -algebra for X is a collection of subsets of X ,

ΣX ⊆ P(X), which contains X and is closed under countable unions and complements.

A measurable space is a pair (X ,ΣX) of a set X and a σ -algebra ΣX on X .

In what follows, we are almost exclusively concerned with measures on topological spaces. The

Borel σ -algebra Borel (X) on a topological space X is the smallest σ -algebra generated by the open sets

of X . Additionally, when we refer to finite or countable sets, we consider them as measurable spaces

with the σ -algebra of all possible subsets.

A measurable function between measurable spaces (X ,ΣX) and (Y,ΣY ) is a function f : X → Y

such that for any S ∈ ΣY , we have f−1 (S) ∈ ΣX . Continuous functions between topological spaces

(X ,Borel (X))→ (Y,Borel (Y )) are measurable, though not all measurable functions are continuous.

A probability measure on a measurable space (X ,ΣX) is a function µ : ΣX → [0,1] such that µ(X)= 1

and for a disjoint countable collection of sets {Ui}i∈N ⊂ ΣX , µ (
⋃

i∈NUi) = ∑i∈N µ(Ui). Given a prob-

ability measure µ : ΣX → [0,1] and a measurable function f : X → Y , the pushforward of µ by f , a

probability measure on Y , is denoted f∗µ and given by f∗µ(S) := µ
(

f−1(S)
)

for measurable S ∈ ΣY .

All our topological spaces will be compact, Hausdorff spaces, so we will only use measures that

behave well with the compactness of the space. Let X be a compact Hausdorff space. A Radon probability
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measure on X , µ : Borel (X) → [0,1], is a probability measure on the Borel σ -algebra which is inner

regular: for any measurable S ⊆ X , µ(S) = supK⊆S µ(K) where K varies over all compact subsets. For

any continuous function f : X →C, a Radon probability measure µ induces an integral
∫

x∈X f (x)dµ ∈C,

so that we can regard µ as a map from the set (in fact, space) of continuous functions on X to C (see

Thm. 2.13, §2.5).

2.2 Kolmogorov Extension Theorem and Hewitt-Savage de Finetti Theorem

Kolmogorov’s extension theorem connects measures on infinite product spaces with measures on finite

truncations. Recall that for a set of topological spaces {Xi}i∈I , their product has underlying set ∏i∈I Xi and

has topology generated by the cylinder sets V [Ui1 , . . . ,Uin ] = {(xi)i∈I ∈ ∏i∈I Xi |xik ∈Uik for 1 ≤ k ≤ n},

varying over all finite subsets {i1, . . . , in} ⊂ I and open sets Uik ⊂ Xik .

Theorem 2.2 (Kolmogorov Extension Theorem (e.g. [21])). Let X be a compact Hausdorff space. Let

XN be the countable product of copies of X. For each finite N ⊂N, let µN be a Radon probability measure

on XN with the product topology, with the condition that if we take finite subsets M ⊂ N ⊂ N, µM is the

pushforward of µN by the projection XN → XM. Then there exists a unique probability measure µ on XN

such that, for any finite N ⊂ N, µN is the pushforward of µ by the projection XN → XN. Further, this

measure is itself Radon.

From here we can now define an exchangeable measure.

Definition 2.3 (Exchangeable Measure). Let X be a measurable space. Let µ be a measure on XN. For

each permutation σ : N→ N, there is an isomorphism

ησ : XN → XN ησ (x1,x2,x3, . . . ) = (xσ−1(1),xσ−1(2),xσ−1(3), . . . ).

µ is called exchangeable if, for every permutation σ : N → N which fixes all but a finite number of

elements, we have that (ησ )∗µ = µ .

Let X be a compact Hausdorff space. We define R(X) to be the set of all Radon probability measures

on the Borel σ -algebra on X , made into a compact Hausdorff space with the topology generated by the

open sets {µ ∈R(X) :
∫

x∈X f (x)dµ ∈U} for U ⊆ C open, f : X → C continuous.

Given a Radon measure µ on X , by Kolmogorov extension, there is a Radon measure µ̃ on XN defined

on the basis of cylinder set opens by µ̃ (V [Un1
, . . . ,Unk

]) =∏i∈N µ (Uni
) for Uni

⊂X open. This is because

for all n ∈ N there is a unique Radon measure on Xn, denoted by µn, which has µn(U1 × ·· · ×Un) =

∏i∈N µ (Ui) for Ui ∈ Borel (X).

Theorem 2.4 (Hewitt-Savage de Finetti Theorem [12]). Let µ ∈ R
(
XN

)
be an exchangeable Radon

probability measure on the countably infinite product of copies of X, with the Borel σ -algebra. Then

there exists a Radon probability measure ν on R(X) (i.e. ν ∈ R(R(X))) such that, for all measurable

U ⊆ XN,

µ(U) =

∫

p∈R(X)
p̃(U)dν .

Example 2.5. Supposing that we are modelling coin flips, so X = {H,T}, then R(X)∼= [0,1], and the

de Finetti result says that an exchangeable distribution on sequences of H and T can only come from

picking from bag of coins with bias distributed according to some distribution on [0,1] and then flipping

the coin you have picked over and over forever.
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2.3 Rudiments of C∗-algebras and Gelfand duality

Definition 2.6 (C*-Algebra). An algebra V (over C) is a vector space V over C equipped with a binary

operation of multiplication, · : V ×V →V , which is bilinear. If this multiplication is commutative, then

V is a commutative algebra. We will assume that all algebras are unital, i.e. have a multiplicative unit.

A Banach algebra is an algebra V equipped with a norm ‖ · ‖ such that V is complete with respect

to ‖ · ‖ and for all x,y ∈ V , ‖x · y‖ ≤ ‖x‖‖y‖. A ∗-algebra is a algebra V that is equipped with an

involution: a function (−)∗ : V → V that is is self-inverse, a multiplication antihomomorphism (i.e. it

reverses multiplication) and is conjugate linear.

A bounded linear map between ∗-algebras which preserves multiplication, the unit and involution is

called a ∗-homomorphism. A C∗-algebra A is a Banach ∗-algebra such that for all x ∈ A, ‖x∗x‖= ‖x‖2.

We write C∗
Mult for the category which has as its objects C∗-algebras and ∗-homomorphisms as its

morphisms. It has as a full subcategory cC∗
Mult of commutative C∗-algebras.

Example 2.7. For any Hilbert space H over C, we denote the space of all bounded linear operators

φ : H→H by B(H). B(H) is the prototypical example of a C∗-algebra. The generally non-commutative

multiplication is given by composition of operators, the unit is the identity map and involution is taking

the adjoint of a map. The norm is the operator norm.

Theorem 2.8 (e.g. [17], C.12). Every C∗-algebra is isomorphic to a sub-algebra of B(H) for some H.

Example 2.9 (Commutative C∗-algebras). One important example of a C∗-algebra is the space C(X) =
{ψ : X → C |ψ is continuous} for some compact Hausdorff space X , equipped with the (topological)

supremum norm: ‖ f‖ = supx∈X | f (x)| < ∞. It is an algebra with multiplication and involution defined

pointwise, and is commutative. The unit is the constant map to 1.

This extends to a duality between commutative C∗-algebras and the category CH of compact Haus-

dorff spaces and continuous maps.

Theorem 2.10 (Gelfand Duality). The functor C (−) = Top(−,C) : CH → (cC∗
Mult)

op
, which acts on

morphisms by C ( f : X →Y ) : φ 7→ φ ◦ f , is an equivalence of categories.

2.4 Positivity, Probabilistic Gelfand Duality, and the Radon Monad

Definition 2.11 (Positivity in C∗-algebras). For a C∗-algebra A, an element x ∈ A is called positive if

there is some y ∈ A such that x = y∗y.

In C, these are exactly the elements of the non-negative real line R0≤. In B(H), for some Hilbert

space H , these are exactly the operators φ : H → H such that for all v ∈ H , 〈v |φv〉 ≥ 0. In C(X), for

some compact Hausdorff space X , these are the functions whose images lie exclusively in R0≤.

A linear map between C∗-algebras, f : A1 →A2, is called positive if, for all x ∈ A1, f (x∗x)≥ 0. In

other words, it takes positive elements of A1 to positive elements of A2. If both the domain and codomain

have a unit, the map is called unital if it takes the unit of the domain to the unit of the codomain.

We will refer to the category of C∗-algebras with positive, unital maps between them as C∗
Pos. It has

C∗
Mult as a subcategory.

Jacobs and Furber [9] extended Gelfand duality stochastically: the addition of positive maps which

are not multiplicative (i.e. not ∗-homomorphisms) is equivalent to adding stochastic maps to CH.

Definition 2.12 (Radon Monad, e.g. [9]). Let X be a compact Hausdorff space, and let R(X) be the

space of all Radon probability measures on X as for Thm.2.4 above. With this topology, R(X) is both

compact and Hausdorff.
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We regard R as a monad on the category CH of compact Hausdorff spaces and continuous maps.

The functor part is given by pushforward: let f : X →Y be a morphism in CH; then R( f )(µ) := f∗(µ).
The unit of the monad takes x ∈ X to the Dirac measure δx ∈ R(X), the distribution supported entirely

at x. The multiplication is a form of marginalization, or averaging:

mult : R2 (X)→R(X) mult(φ)(U) :=
∫

µ∈R(X)
µ(U)dφ(µ)

Theorem 2.13 (Probabilistic Gelfand Duality, [9]). The functor C (−) : Kl (R)→ (cC∗
Pos)

op
, which acts

on morphisms by C ( f : X →R(Y )) : φ 7→
∫

φ d f (−), is an equivalence of categories between the Kleisli

category of the Radon monad and the opposite of the category of commutative C∗-algebras and positive

unital maps.

2.5 States, State Spaces, and Convex Spaces

A particularly important class of positive, unital maps are states:

Definition 2.14. Positive, unital maps from a C∗-algebra A to C are called states on A.

Under the probabilistic Gelfand duality (Thm. 2.13), for any compact Hausdorff space X we have the

correspondence (as sets)

C∗
Pos(C(X),C) ∼= Kl (R)({∗} ,X) = CH({∗} ,R(X)) ∼= R(X) .

In fact, all of the objects in this correspondence have structures as convex, compact, Hausdorff spaces

and are isomorphic as such. Thus it is meaningful to consider states on C∗-algebras as a generalisation

of classical probability distributions.

Example 2.15 (Density Matrices are States on a C∗-algebra). Density matrices in quantum theory are

given by operators ρ ∈ B(H), for a finite dimensional Hilbert space H, with Tr(ρ) = 1 such that for all

v ∈ H, 〈v|ρv〉 ≥ 0. For each such ρ , we may define a linear map sρ : B(H) → C by sρ(a) = Tr(ρa).
The trace condition says this map is unital. Further, in the finite dimensional case, where we can form a

eigenvalue decomposition ρ = ∑i∈I pi |vi〉〈vi|, then

sρ(a
∗a) = Tr(ρa∗a) = ∑i pi 〈vi |a∗avi〉= ∑i pi 〈avi |avi〉= ∑i pi‖avi‖ ≥ 0.

So sρ is a state on B(H). In fact, in this finite dimensional case, all states on B(H) are of this form.

So we can see C∗-algebra states generalise both classical and quantum probability.

Definition 2.16 (State Space of a C∗-algebra). Let A be a C∗-algebra. The state space of A, denoted by

S(A) := C∗
Pos(A,C), is the set of all states on A equipped with the coarsest topology such that for all

a ∈ A, the evaluation function eva : S(A) → C which takes ρ 7→ ρ(a) is continuous. The topology is

generated by the sets ev−1
a (Ω) for a ∈ A and Ω ⊂ C open. S(A) has the additional properties of always

being Hausdorff and compact. Moreover, S(−) extends to a functor (C∗
Pos)

op → CH via S( f ) =−◦ f .

In fact S(A) also has an obvious convex structure where the convex combination λρ1 +(1−λ )ρ2

for λ ∈ [0,1] and ρ1,ρ2 ∈ S(A) is evaluated pointwise using the addition of C. We now recall how this

convex structure is functorial.

Definition 2.17. For our purposes, a compact convex space is a pair (V,X) where V is a convex, compact

subset of a locally convex, Hausdorff topological vector space X . The category ConvCH has as objects

compact convex spaces (V,X), and morphisms are affine, continuous maps between the convex subsets

V (only).



406 Quantum de Finetti Theorems as Limits

Theorem 2.18 ([9]). The state space functor S : (C∗
Pos)

op → CH factors through ConvCH. Moreover

the resulting functor S : (C∗
Pos)

op → ConvCH is full and faithful.

In other words, (C∗
Pos)

op
is isomorphic to a full subcategory of ConvCH (characterized in [1]).

Theorem 2.19 ([9]). The category of Eilenberg-Moore algebras of the Radon monad, Em(R) (Def. 2.12),

is equivalent to the category ConvCH (Def. 2.17).

This realises the forgetful functor U : ConvCH → CH as the right adjoint of the monadic adjunction

R′ ⊣U for R′ : CH → ConvCH taking a space X to the convex, compact Hausdorff space R(X).
Note then that all the objects of Em(R) are either spaces of probability measures (the free algebras,

equivalently objects of Kl (R), Thm. 2.13), or they are (category-theoretical) “quotients” of these spaces

(the non-free algebras). The transition from classical to quantum probability has as a crucial part the

fact that some convex mixtures of outcomes to an experiment are equivalent (for example, different

decompositions of mixed states into pure states).

2.6 Tensor products and complete positivity

Recall that the tensor product of Hilbert spaces, H1 ⊗H H2, is the completion of the algebraic tensor

product H1 ⊗H2 under the inner product norm.

Definition 2.20 (Spatial Tensor Product of C∗-algebras). Let A1 and A2 be C∗-algebras, with repre-

sentations πi : Ai → B(Hi) (Thm. 2.8). Then the map π1 ⊗ π2 : A1 ⊗A2 → B(H1 ⊗H H2) given by

(π1 ⊗π2)(A1 ⊗A2) = π1(A1)⊗π2(A2) is a faithful representation of the vector space A1 ⊗A2 and thus

we can use it to give a norm to that space, ‖a‖∗ = ‖(π1 ⊗π2)(a)‖, which is independent of the choice of

representations (πi). The spatial tensor product A1⊗minA2 is the completion with respect to this norm.

There are other tensor products definable on C∗-algebras, though this is the smallest. If a C∗-algebra

A is finite dimensional or commutative, then all possible C∗-norms on A⊗B are equivalent.

Not all positive maps are physical, and now that we have defined a tensor product on C∗-algebras,

we are able to define those that are.

Definition 2.21 (Completely Positive). A linear map between C∗-algebras φ : A → B is called com-

pletely positive if, for all n ∈ N, the map φ ⊗1n : A⊗B(Cn)→B⊗B(Cn) is positive.

All positive maps to or from commutative spaces are completely positive.

Example 2.22. Let H,K be finite dimensional Hilbert spaces. Then a completely positive and unital map

B(H) → B(K) induces a function S(B(K)) → S(B(H)) between the corresponding spaces of density

matrices (Ex. 2.15); these are exactly the quantum channels (e.g. [20]).

As we noticed a few times before, much of the seemingly infinite behaviour in different formula-

tions of the De Finetti theorem is, in fact, the result of behaviour which happens on all possible finite

truncations of a process, with requirements of consistency between them.

Given a C∗-algebra A, we can define A⊗n :=A⊗min . . .⊗minA
︸ ︷︷ ︸

n times

. For n ≤ m, there is an isometric
∗-homomorphism embedding of C∗-algebras

ιnm : A⊗n →A⊗m ιnm

(
⊗n

i=1 Ai

)

:=
⊗n

i=1 Ai ⊗
⊗m

i=n+1 1A.

Definition 2.23 (Infinite Spatial Tensor Product). The (countably) infinite spatial tensor product of A
is defined as the colimit as Banach spaces (equivalently, in C∗

Pos) of the ω-shaped diagram, for ω =

0 1 2 3 · · · , which has the objects A⊗n for all n ∈ N and the morphisms ιnm for all n ≤ m.

We will denote it by A⊗∞.
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This comes equipped with embeddings, again isometric ∗-homomorphisms, ψn : A⊗n →A⊗∞ which

we may intuitively imagine as taking
⊗n

i=1 Ai 7→
⊗n

i=1 Ai⊗
⊗∞

i=n+1 1A since for all n≤ m, ψn = ψm ◦ ιnm.

A⊗1 A⊗2 . . . A⊗n . . . A⊗m . . .

A⊗∞

ι12 ι2n ιnm

ψ1

ψ2 ψn
ψm

(6)

2.7 The Quantum Kolmogorov Extension and de Finetti Theorems

Theorem 2.24 (Quantum Kolmogorov Extension Theorem [10]). Let {ρn}n∈N be a sequence with ρn ∈
S(A⊗n) such that, for all n ≤ m, ρn = ρm ◦ ιnm. There is a unique state ρ ∈ S(A⊗∞) such that ρn = ρ ◦ψn

for all n ∈ N (with ψn as in (6)).

Definition 2.25 (Exchangeable State). Given a permutation σ ∈ Sn, we may define an associated map

permuting the spaces of the n-fold tensor product A⊗n

ησ : A⊗n →A⊗n ησ (a1 ⊗·· ·⊗an) := aσ−1(1)⊗·· ·⊗aσ−1(n)

A state ρn ∈ S(A⊗n) is said to be symmetric if, for all σ ∈ Sn, ρn = ρn ◦ησ . A state ρ : A⊗∞ → C is

said to be exchangeable if, for all n ∈N, ρn = ρ ◦ψn is symmetric. Note again that we are only concerned

with permutations on a finite number of factors.

The space of exchangeable states of A⊗∞, denoted by I (A) := {ρ ∈ S(A⊗∞) |ρ is exchangeable} is

convex, compact and Hausdorff, so in ConvCH.

Theorem 2.26 (Størmer’s Quantum de Finetti Theorem). Let A be a C∗-algebra. Then there is a bi-

continuous, affine bijection I (A) ∼=R(S(A)). In other words, the exchangeable state space of A⊗∞ is

isomorphic to S(C (S(A)))∼=R(S(A)) in ConvCH.

Remark. To be explicit about this isomorphism we note that given states ρ1 ∈ S(A1) ,ρ2 ∈ S(A2), we

can form a unique state ρ1⊗ρ2 ∈ S(A1⊗minA2) with the property that ρ1⊗ρ2(a1⊗a2) = ρ1(a1)ρ2(a2).
Then, for ρ ∈ S(A), we define

ρ⊗n := ρ ⊗·· ·⊗ρ
︸ ︷︷ ︸

n times

∈ S
(
A⊗n

)
.

There is a state on A⊗∞, ρ⊗∞ ∈ S(A⊗∞), via theorem 2.24 from the sequence {ρ⊗n}n∈N.

This isomorphism then is given by −◦ Φ : S(C (S(A))) → I (A) where Φ : A⊗∞ → C(S(A)) is

defined as Φ(a)(ρ) = ρ⊗∞(a).

3 (Co)limits and the State Space Functor

We now build on the prior work in Section 2 to characterize the categorical limits in the categories of

positive unital maps between C∗-algebras ((C∗
Pos)

op
) and compact convex spaces (ConvCH).

Lemma 3.1. The state space functor S : (C∗
Pos)

op → ConvCH (Thm. 2.18) preserves and reflects limits.

That is to say that, given a diagram of C∗-algebras A− : J → C∗
Pos, a cocone {A j → B} j∈J is a

colimit if and only if the corresponding cone {S(B)→ S(A j)} j∈J of the diagram (J )op → (C∗
Pos)

op S→
Em(R) is a limit.
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Proof. Since S is full and faithful (Thm. 2.18), it must reflect limits and colimits.

There are monadic forgetful functors from U : Em(R)→ CH and from U ′ : CH → Set (Thm. 2.19,

[18, VI.9]). They create limits. The composition

(C∗
Pos)

op Em(R) CH Set
S U U ′

is just the hom-functor C∗
Pos(−,C) : (C∗

Pos)
op → Set. Thus, supposing a colimit exists in C∗

Pos, it is

preserved via C∗
Pos(−,C) into a limit in Set, which then creates a limit in CH and then creates another in

Em(R)∼= ConvCH. Thus S preserves the original colimit(/limit in (C∗
Pos)

op
).

The de Finetti limits we construct will be a simple result of the way that limits in ConvCH are

constructed pointwise in the following way:

Lemma 3.2 (Pointwise limits are limits in ConvCH). Consider a diagram W− : J → ConvCH. That is,

consider a collection {Wi}i∈J of compact convex spaces with affine continuous maps {ξk : Wi → W j}k∈J (i, j).

Let W be a convex, compact Hausdorff space with morphisms ωi : W→Wi satisfying the following prop-

erties:

• {ωi : W → Wi}i∈J is a cone over the diagram: for all ξk : Wi → W j in the diagram, ωi = ω j ◦ξk.

• For any collection of elements (wi)i∈J ∈ ∏i∈J Wi which are compatible, in the sense that for all

ξk : W j → Wi in the diagram, wi = ξk(wk), there is a unique element w ∈ W with wi = ωi(w).

Then W is the limit of the diagram in CH and ConvCH.

W1

{∗} W

W2

w1

ω1

∃!w

w2

ξ

ω2

If the cone comprises state spaces W j = S(A j) and W = S(B), rather than general objects of

ConvCH, then the second condition can alternatively be visualised on the level of positive unital maps:

A1

B C

A2

ρ1

φ1

∃!ρ

ρ2

f

φ2

In this way we may talk about limits of state spaces being built pointwise. If every set of compatible

states corresponds to a limiting state on some other space, then this is naturally a limit, without having

to concern outselves with continuity or affineness of the limiting maps.

Proof. The forgetful functors U : ConvCH → CH and U ′ : CH → Set are both monadic (Thm. 2.19,

[18, VI.9]) and thus create limits.

Suppose we have a diagram W− : J → ConvCH as above, and a pointwise limit W with maps

ωi : W → Wi, where Wi is the underlying set for each Wi. Then for any set A, a cone of the diagram
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of Wis, that is a collection of maps { fi : A →Wi}i∈I gives a unique map f : A → W by, for each a ∈ A,

letting f (a) be the element of W corresponding to the collection { fi(a) ∈ Wi} under the pointwise limit

property. Thus, W is the limit in Set of the diagram

J ConvCH CH Set
W− U U ′

Since CH is monadic over Set, then W, regarded as a compact Hausdorff space, is created as the

limit in CH and similarly by monadicity of ConvCH over CH, it is created as the limit in ConvCH.

Informally, what this lemma tells us is that non-categorical, state-based treatments of limiting be-

haviours have been categorical all along. Looking at these things pointwise is fine because the structural

properties take care of themselves.

4 A Quantum de Finetti Theorem as a Categorical Limit

We now use the lemmas of Section 3 to recast the quantum Kolmogorov extension theorem (Thm. 2.24)

and quantum de Finetti theorem (Thm. 2.26) in a categorical light (Thms. 4.1, 4.3).

Theorem 4.1 (Quantum Kolmogorov Extension Theorem as a Categorical Limit). Let A be a C∗-

algebra. The limit of the diagram of state spaces (as compact convex spaces in ConvCH)

S(A) S
(
A⊗2

)
S
(
A⊗3

)
· · ·−◦ι12 −◦ι23

(7)

is S(A⊗∞) with the inclusions −◦ψn : S(A⊗∞)→ S(A⊗n).

Proof. Since this diagram is exactly the image under S of that which has A⊗∞ as its colimit (Def. 2.23),

and by Lma. 3.1, S preserves colimits.

Lemma 4.2 (Quantum de Finetti Theorem as a Categorical Limit For Positive Maps). Let A be a C∗-

algebra. Let Iinj be the category of the finite sets {1, . . . ,n} for n ∈ N and injections between them.

We define an Iinj-indexed diagram in C∗
Pos by taking {1, . . . ,n} to A⊗n and, for n ≤ m and an injection

τ : {1, . . . ,n} →֒ {1, . . . ,m}, we define

ητ : A⊗n →A⊗m (8)

by taking A1 ⊗·· ·⊗An to the element B1 ⊗·· ·⊗Bm which has

B j =

{

Ai if j = τ(i),

1 otherwise.

The colimit of this diagram in C∗
Pos is C (S(A)).

In other words, the space of exchangeable sequences of states is a limit of a diagram and is affinely

isomorphic to the space of Radon probability measures on S(A).

Proof. Størmer’s proof of Thm. 2.26 [24] gives a bi-continuous, affine bijection I (A) ∼=R(S(A)). In

other words, the symmetric state space of A⊗∞ is isomorphic to R(S(A)) in ConvCH. All that is

necessary then is to show that I (A) ⊂ S(A⊗∞), with the morphisms ρ 7→ ρ ◦ψn (with ψn as in (6)) is

the limit of the diagram above. We do this using Lma.3.2.
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Via Thm. 2.18, we can regard the diagram {ητ : A⊗n →A⊗m} of C∗-algebras as a diagram of state

spaces {S(ητ) : S(A⊗m) → S(A⊗n)} in ConvCH. Since any ρ ∈ I (A) is symmetric we get that ρ 7→
ρ ◦ψn is a cone for {S(ητ )}.

Any collection of states {ρn ∈ S(A⊗n)}n∈N which satisfies the diagram {S(ητ )} also satisfies the

diagram 7 and thus we get a state on A⊗∞, ρ ∈ S(A⊗∞), such that ρn = ρ ◦ψn for all n ∈ N. Since for

any permutation σ of {1, . . . ,n}, ρn ◦ησ = ρn, ρ is symmetric. Thus, ρ ∈ I (A) and I (A) is a pointwise

limit, and thus a limit for the diagram {S(ητ)} in ConvCH, via Lma. 3.2.

That C (S(A)) is the colimit in the diagram in C∗
Pos is a corollary of Lma.3.1: S reflects limits.

Theorem 4.3 (Quantum de Finetti Theorem as a Categorical Limit For Quantum Channels). The colimit

of the diagram (8) in C∗
CPU is C (S(A)).

Proof. Since all the maps in the diagram (8) are ∗-homomorphisms, in particular completely positive, the

diagram factors through C∗
CPU and, because C (S(A)) is commutative, the colimiting maps are always

completely positive. Thus from Lma. 4.2, C (S(A)) is also the colimit in C∗
CPU.

5 Illustrations

To illustrate the de Finetti construction, we focus temporarily on states of a qubit (i.e. A= B(C2)). Our

categorical quantum de Finetti theorem gives a universal property to the infinite dimensional space of

all states (C(S(A))), in terms of finite dimensional spaces (C2,C4 etc..). We can thus use conventional

methods from finite dimensional categorical/diagrammatic quantum mechanics to analyze C(S(A)).

Since every state in B(C(2n)) corresponds to a quantum circuit with n output qubits, we can describe

a sequence of states by giving a sequence of circuits. For example, the following sequence of circuits

describes a sequence of qubit states that is exchangeable (in that postcomposition with any permutation

or discarding of the qubit wires respects the sequence). For familiarity, we use a quantum circuit notation,

but any diagrammatic notation with discarding could be used (e.g. [3]).

|0〉
|0〉

H

X

|0〉
|0〉
|0〉

H

X

X

|0〉
|0〉
|0〉
|0〉

H

X

X

X

. . .

This exchangeable sequence corresponds to a belief about a qubit state: that the state is pure, and is either

|0〉 (with probability 0.5) or |1〉 (with probability 0.5). The following sequence is also exchangeable:

|0〉
|0〉

H

X

|0〉
|0〉
|0〉
|0〉

H

H

X

X

|0〉
|0〉
|0〉
|0〉
|0〉
|0〉

H

H

H

X

X

X

. . .

But this sequence corresponds to a different belief about a qubit state: that the state is definitely the

mixed state with density matrix 1
2
(1 0

0 1). In each case, the overall sequence of states is equivalent to the

process of drawing a state at random from a classical distribution and then repeating it.
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There are many other exchangeable sequences of qubit states. For example, there is one corre-

sponding to the belief that a qubit is in a pure state somewhere on the equator of the Bloch sphere,
1√
2
(|0〉+ eiφ |1〉), with φ uniformly distributed in [0,2π]. There is also one corresponding to the belief

that a qubit is in a totally unknown state, i.e. density matrix r
1
3

2
( 1+z

√
1−z2e−iθ√

1−z2eiθ 1−z
) with r,z,θ uniformly

distributed in [0,1], [−1,1] and [0,2π] respectively.

Our categorical version of the quantum de Finetti theorem allows us to also consider sequences with

parameters. Since every completely positive unital map B(C(2n))→B(C(2m)) corresponds to a quantum

circuit with n output qubits and m input qubits, we can describe a cone with apex B(C(2m)) by giving a

sequence of circuits with m inputs.

For example, the following sequence of circuits describes a cone with apex B(C2).

input

|0〉 X

input

|0〉
|0〉

X

X

input

|0〉
|0〉
|0〉

X

X

X

. . .

This corresponds to a belief that the quantum state is pure, and either |0〉 or |1〉, with the probability

determined by a standard basis measurement of the input state. Indeed, the categorical quantum de Finetti

theorem (Thm. 4.3) says that every exchangeable sequence of circuits is equivalent to a sequence where

each circuit first measures all the input qubits, resulting in random classical data, and then generates a

quantum state depending on this classical outcome.

6 Aside on the Hewitt-Savage de Finetti Theorem as a Categorical Limit

As an aside, we note that de Finetti theorem for classical probability (Thm. 2.4) now also arises as a

categorical limit. We express it first in the category ConvCH of compact convex spaces, but then state

it in terms of the Kleisli category of the Radon monad to show the similarity with the previous result

in [16].

Theorem 6.1 (Categorical Hewitt-Savage De Finetti Theorem). Let X be a compact Hausdorff space.

Consider the diagram
(
Iinj

)op → ConvCH which takes {1, . . . ,n} to R(Xn) and an injective function

τ : {1, . . . ,n} → {1, . . . ,m} to ζτ : R(Xm)→R(Xn), defined by ζτ(µ)(A) = µ(Ãτ) for

Ãτ :=
{
(x1, . . . ,xm) ∈ Xm |

(
xτ(1),xτ(2), . . . ,xτ(n)

)
∈ A

}
.

The limit of this diagram is the space of exchangeable measures on XN, and is isomorphic to R(R(X)),
where the maps R(R(X))→R(Xn) take a measure Φ on R(X) to the measure

A ∈ Borel (Xn) 7→
∫

µ∈R(X)
µ ×·· ·×µ
︸ ︷︷ ︸

n times

(A)dΦ.

Proof. This follows from instantiating Theorem 4.3 with the commutative C∗-algebra C (X) and noting

that C (X)⊗minC (Y )∼=C (X ×Y ).

To emphasise the connection with [16], we write X  Y for a Kleisli morphism X →R(Y ).
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Corollary 6.2 (Categorical de Finetti Theorem in Kl (R)). For some X ∈ CH, consider the diagram
(
Iinj

)op →Kl (R) into the Kleisli category of the Radon monad, which takes {1, . . . ,n} to Xn and each

injection τ : {1, . . . ,n} → {1, . . . ,m} to the Kleisli-map ητ : Xm
 Xn given by

ητ(x1, . . . ,xm) = δ(xτ(1),xτ(2) ,...,xτ(n))

This diagram has limit R(X) in Kl (R), with maps iidn : R(X) Xn given, for measurable A ⊂ Xn, by

iidn(µ)(A) = (µ ×·· ·×µ
︸ ︷︷ ︸

n times

)(A).

Proof. The limit in theorem 6.1 is reflected into Kl (R), as this category is a full subcategory of Em(R)∼=
ConvCH and the limit itself is a free algebra.

The notation iidn arises because µ ×·· ·×µ
︸ ︷︷ ︸

n times

describes independent and identical distributions µ on n

copies of X .

7 Concluding remarks

We have shown that the quantum de Finetti theorem amounts to a categorical limit for a diagram A⊗− :
(
Iinj

)op → (C∗
CPU)

op
(Theorem 4.3). This puts the quantum de Finetti theorem, a cornerstone of quantum

Bayesianism and a starting point for quantum tomography, in the setting of categorical and diagrammatic

quantum theory. We have focused on C∗-algebras, but the set-up is relevant more broadly. Recall that an

affine monoidal category is a symmetric monoidal category with a terminal unit, and these are argued to

be causal models of quantum theory (e.g. [5]). Now,
(
Iinj

)op
is the free affine monoidal category on one

generator (e.g. [19]), and so A⊗− :
(
Iinj

)op → (C∗
CPU)

op
is canonical for A. So we can consider de Finetti

limits in other models of quantum theory, perhaps making a bridge to the test space analysis of [2].
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In Matteo Paris & Jaroslav Řeháček, editors: Quantum State Estimation, 649, Springer Berlin Heidelberg,

Berlin, Heidelberg, pp. 147–187, doi:10.1007/b98673. arXiv:quant-ph/0404156.

[9] Robert Furber & Bart Jacobs (2015): From Kleisli Categories to Commutative C*-algebras: Probabilistic

Gelfand Duality. Logical Methods in Computer Science 11(2), pp. 1–28, doi:10.2168/lmcs-11(2:5)2015.

[10] Alain Guichardet (1969): Tensor Products of C*Algebras Part II. Infinite Tensor Products. Retrieved Septem-

ber 18 2023 from https://ncatlab.org/schreiber/files/GuichardetTensorProduct.pdf.

[11] Chris Heunen, Aleks Kissinger & Peter Selinger (2014): Completely Positive Projections and Biproducts.

Electronic Proceedings in Theoretical Computer Science 171, pp. 71–83, doi:10.4204/EPTCS.171.7.

[12] Edwin Hewitt & Leonard J. Savage (1955): Symmetric Measures on Cartesian Products. Transactions of the

American Mathematical Society 80(2), p. 470, doi:10.2307/1992999.

[13] R. L. Hudson (1981): Analogs of de Finetti’s theorem and interpretative problems of quantum mechanics.

Foundations of Physics 11(9-10), pp. 805–808, doi:10.1007/BF00726951.

[14] R. L. Hudson & G. R. Moody (1976): Locally normal symmetric states and an analogue of de Finetti’s

theorem. Z. Wahrschein. verw. Geb. 33(4), pp. 343–351, doi:10.1007/BF00534784.

[15] Mathieu Huot & Sam Staton (2019): Universal Properties in Quantum Theory. Electronic Proceedings in

Theoretical Computer Science 287, pp. 213–223, doi:10.4204/EPTCS.287.12.

[16] Bart Jacobs & Sam Staton (2020): De Finetti’s Construction as a Categorical Limit. In Daniela Petrişan
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We present a topology-aware optimisation technique for circuits of mixed ZX phase gadgets, based
on conjugation by CX gates and simulated annealing.

1 Introduction

In this work, we build upon the Master’s thesis by one of the authors [18] and present a topology-aware
optimisation technique for circuits of mixed ZX phase gadgets, based on conjugation by CX gates and
simulated annealing. The basic rules on CX conjugation of phase gadgets have previously appeared in
the literature [2, 3, 7, 11, 14]—which features other topology-aware techniques—and are used by both
the PyZX library [9, 10] and the t|ket〉 compiler [15, 16]. We test the performance of our optimisation
technique on random circuits of mixed ZX phase gadgets. An open-source implementation is made
available as part of the Python library pauliopt [6], which is also used to generate the circuit figures in
this work.

With NISQ applications in mind, our optimisation target is the number countCX (P) of nearest-
neighbour (NN) CX gates required to implement a mixed ZX phase circuit P on a given topology, making
the following assumptions on compilation:

• Each phase gadget will be compiled to a single-qubit rotation conjugated by trees of CX gates.

• Long-range CX gates in the topology will be compiled to double-ladders of NN CX gates.

In these circumstances, the CX count of an individual phase gadget depends on the mutual distances
between its legs. Specifically, it is computed by finding a minimum spanning tree with weights related
to the distance of leg qubits in the given topology.

Our optimisation technique is based on the observation that conjugating a given mixed ZX phase
circuit P with an arbitrary CX circuit C has the effect of changing the legs of the individual gadgets,
without otherwise altering their angles or position within the circuit. The resulting circuit C† (P) :=
C† ◦P◦C is again a mixed ZX phase circuit, related to the original circuit by:

P =C ◦C† (P)◦C†

However, the different gadget legs in C† (P) might result in a lower overall CX count:

2 · countCX (C)+ countCX
(
C† (P)

)
Finding a CX circuit Copt which (approximately) minimises the overall CX count above results in an
optimised implementation of our initial mixed ZX phase circuit P, expressed as conjugation of another
mixed ZX phase circuit C†

opt (P) by the CX circuit Copt :

P =Copt ◦C†
opt (P)◦C†

opt
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We use simulated annealing to explore the space of conjugating CX circuits and find an approximately
optimal Copt , starting from the empty CX circuit. We fix a number of layers and explore the space by
progressively introducing or removing NN CX gates within those layers, altering the overall CX count in
the process. In the early stages of optimisation, the annealing “temperature” t is high and we are free to
explore the configuration space, even at the expense of a—hopefully temporary—increase in overall CX
count. As the optimisation progresses, the temperature t is lowered and the search becomes progressively
more greedy, accepting changes which increase the CX count by ∆ with progressively lower probability:

Prob(accept CX count increase ∆) =
1

2∆/t

Our technique is applicable to parametric circuits, such as the ansatzes used in quantum machine learn-
ing, adiabatic quantum computation [5] and quantum approximate optimisation [4]. Such ansatzes typi-
cally consist of a large number of repeating layers, using the same phase gadgets with possibly different
parameters. In this context, a key observation about our technique is that a single conjugating CX circuit
is sufficient to optimise all layers at once. The number K of layers can then be absorbed into the overall
CX count calculation, with a single layer L being optimised:

2 · countCX (C)+K · countCX
(
C† (L)

)
As a consequence, the optimisation cost scales with the size of L, regardless of K, making our technique
especially suited for application in the aforementioned domains.

2 ZX Phase Gadgets

A Z phase gadget on n qubits is the exponential of an imaginary scalar multiple of an element of the
Pauli group Pn on n qubits involving only the Z and I Pauli matrices (and with scalar factor +1):

exp

(
iθ

n−1⊗
q=0

Gq

)
where

{
Gq = Z if qubit q is a leg
Gq = I otherwise

The element
⊗n−1

q=0 Gq ∈ Pn is known as the generator, the parameter θ ∈U(1) is known as the angle,
and the qubits q where Gq = Z are known as the legs of the gadget. An X phase gadget on n qubits is
analogously defined, using the Pauli matrix X in place of Z. Below are two examples of phase gadgets
on 3 qubits:

exp
(

i
π

4
Z⊗ I⊗Z

)
exp
(

i
3π

4
X⊗X⊗X

)
Phase gadgets can be represented in the ZX calculus by attaching spiders for the gadget basis to each leg
and joining them at a “hub”, formed by spiders of alternating colours and including the angle (θ = π

4 and
θ = 3π

4 respectively) as a spider phase. Below are the same two examples represented in the ZX calculus
(Z phase gadget on the left, X phase gadget on the right):

0 0

1 1

2 2

π/4
0 0

1 1

2 2

3π/4
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2.1 Conjugation by CX gates

Z and X phase gadgets are particularly well-behaved under conjugation by CX gates: they either keep
the same legs, they gain a leg, or they lose a leg, but basis and angle are always left unchanged. Instead
of thinking of CX gates in terms of control and target, we think of them as having a Z qubit (the control)
and an X qubit (the target). Z phase gadgets are left unchanged under conjugation if the X qubit is not a
leg:

0 0

1 1

2 2

θ

=
0 0

1 1

2 2

θ

If the X qubit is a leg and the Z qubit is not a leg before conjugation, the Z qubit becomes a leg after
conjugation:

0 0

1 1

2 2

θ

=
0 0

1 1

2 2

θ

If the X qubit is a leg and the Z qubit is a leg before conjugation, the Z qubit is no longer a leg after
conjugation:

0 0

1 1

2 2

θ

=
0 0

1 1

2 2

θ

The behaviour of X phase gadgets is obtained by inverting Z and X everywhere. X phase gadgets are left
unchanged under conjugation if the Z qubit is not a leg:

0 0

1 1

2 2

θ

=
0 0

1 1

2 2

θ

If the Z qubit is a leg and the X qubit is not a leg before conjugation, the X qubit becomes a leg after
conjugation:

0 0

1 1

2 2

θ

=
0 0

1 1

2 2

θ

If the Z qubit is a leg and the X qubit is a leg before conjugation, the X qubit is no longer a leg after
conjugation:

0 0

1 1

2 2

θ

=
0 0

1 1

2 2

θ

There are several different ways to obtain the conjugation rules above. A simple one goes through the
observation that conjugation commutes with matrix exponentiation:

A

(
exp

(
iθ

n−1⊗
q=0

Gq

))
A† = exp

(
iθ A

(
n−1⊗
q=0

Gq

)
A†

)
From this, it is enough to look at conjugation by CX for a handful of Pauli group elements:

cx0,1(Z⊗ I)cx0,1 = Z⊗ I cx0,1(I⊗Z)cx0,1 = Z⊗Z cx0,1(Z⊗Z)cx0,1 = I⊗Z
cx0,1(I⊗X)cx0,1 = I⊗X cx0,1(X⊗ I)cx0,1 = X⊗X cx0,1(X⊗X)cx0,1 = X⊗ I
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2.2 Mixed ZX Phase circuits

A mixed ZX phase circuit is, as the name suggests, a quantum circuit consisting of a mix of Z phase
gadgets and X phase gadgets. Examples of mixed ZX phase circuits include the ansatzë used by adiabatic
quantum computation [5], the quantum approximate optimisation algorithm [4], as well as many quantum
machine learning techniques [18]. The pauliopt library allows these circuits—called phase circuits,
for short—to be created directly from a sequence of phase gadgets with given angles and legs:

circ = PhaseCircuit(3)

circ >>= Z(π/2)@{0,1}

circ >>= X(π)@{0}, Z(π/2)@{1}

circ >>= X(-π/4)@{1,2}

0 0

1 1

2 2

π/2 π

π/2 7π/4

Utility methods are also made available to translate common gates into phase gadgets:

circ = PhaseCircuit(3)

circ.ccz(0,1,2)

0 0

1 1

2 2

π/4

π/4

π/4

7π/4

7π/4

7π/4 π/4

A generalisation of Euler’s decomposition to n qubits (technically, a consequence of Zassenhaus formula
[1, 13]) implies that every unitary on n qubits can be expressed using a bounded number of Z and X
phase gadgets, meaning that circuits of mixed ZX phase gadgets are universal.

3 Annealing optimisation

3.1 Topology-aware cost of phase gadgets

The optimisation method targets the CX count for phase gadget implementation on a given topology,
which we refer to as its cost. The cost of a gadget relies on its implementation using a balanced tree of
CX gates between its legs [2], individually converted into double ladders of nearest-neighbour (NN) CX
gates (without further simplification). The balanced tree of minimum CX count is obtained using Prim’s
algorithm for minimum spanning trees, using the following weights for any two distinct leg qubits qi and
q j in the phase gadget:

w(qi,q j) := 4d(qi,q j)−2
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where d(qi,q j) is the graph distance between qubits qi and q j in the given topology. For example,
consider the following 4-legged gadget on a 3-by-3 grid topology:

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

θ

The minimum spanning tree implementation for this gadget uses two (adjoint) balanced trees of 3 CX
gates each—between qubits {0,3} (NN CX count: 1), between qubits {3,6} (NN CX count: 1), and
between qubits {3,5} (NN CX count: 3)—for a total implementation cost of 10 NN CX gates. In this
case, it is easy to see that every alternative would have been sub-optimal, because the only common
nearest neighbour between qubits 0 and 6 on the grid is qubit 3: connecting both qubits to a qubit at
distance 2 from both would have incurred a NN CX count of at least 3+ 3 = 6, while connecting one
qubit to a different nearest neighbour of the other (e.g. connecting 0 and 6 to 1) would have incurred a
NN CX count of at least 5+1 = 6, both already exceeding the optimal overall NN CX count of 5. The
following snippet produces the phase gadget in Qiskit [17] using the above minimum spanning tree:

from qiskit.circuit import QuantumCircuit, Parameter

cx_tree = QuantumCircuit(4)

cx_tree.cx(0, 2)

cx_tree.cx(1, 2)

cx_tree.cx(2, 3)

gadget = QuantumCircuit(8)

gadget.compose(cx_tree, qubits=(0,6,3,5), inplace=True)

gadget.rz(Parameter("θ"), 5)

gadget.compose(cx_tree.inverse(), qubits=(0,6,3,5), inplace=True)

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

θ

7→

3.2 Conjugation by CX circuits

As discussed above, conjugation of mixed ZX phase circuits by CX circuits preserves the order and
angles of the gadgets, but modifies their legs. For adequate choices of nearest-neighbour CX circuits, the
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increase in CX count from the conjugating CX gates is counterbalanced by a decrease in implementation
cost for the phase gadgets on a given topology, due to leg changes and reduction. The overall 2-qubit gate
count can then be used as a cost function for global optimisation methods (such as simulated annealing).
Here is example of a 10-gadget circuit on 4 qubits:

0 0

1 1

2 2

3 3

θ[0] θ[1] θ[2] θ[3] θ[4]

θ[5]

θ[6] θ[7]

θ[8] θ[9]

On a cycle topology, the circuit above has a CX count of 42. Below is an equivalent circuit with a CX
count of 14, obtained by conjugation from two layers of nearest-neighbour CX gates:

0 0

1 1

2 2

3 3

θ[0]

θ[1]

θ[2]

θ[3]

θ[4]

θ[5]

θ[6]

θ[7]

θ[8]

θ[9]

Here is a second example, of a 20-gadget circuit on 9 qubits:

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

θ[0]

θ[1]

θ[2]

θ[3]

θ[4]

θ[5]

θ[6]

θ[7]

θ[8]

θ[9]

θ[10]

θ[11]

θ[12]

θ[13]

θ[14]

θ[15]

θ[16]

θ[17]

θ[18]

θ[19]

On a 3-by-3 grid topology, the circuit above has a CX count of 142. Below is an equivalent circuit with
a CX count of 126, obtained by conjugation from two layers of nearest-neighbour CX gates:

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

θ[0]

θ[1]

θ[2]

θ[3]

θ[4]

θ[5]

θ[6] θ[7]

θ[8]

θ[9]

θ[10]

θ[11]

θ[12]

θ[13]

θ[14] θ[15]

θ[16]

θ[17]

θ[18]

θ[19]

The two layers of conjugating CX gates for each one of the two example above, arranged on the corre-
sponding qubit topologies, are displayed below:

3.3 Repeating layers

A remarkable feature of our optimisation technique concerns its use with circuits composed of repeating
layers. For such circuits, it is enough to simplify an individual layer and then repeat it: the conjugating
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CX gates between repeating layers cancel out in pairs, leaving a single pair of conjugating CX block for
the entire circuit.

This means that the per-layer CX cost reduction is multiplied by the number of layers, while the CX cost
for the conjugating blocks is fixed: as the number of layers grows, the cost of larger conjugating CX
blocks is offset by the increased savings on the layers, at no additional computational expense for the
optimisation itself. As a concrete example, consider the following 4-gadget layer:

0 0

1 1

2 2

3 3

4 4

θ[0]

θ[1]

θ[2]

θ[3]

On a line topology with 5 qubits, the initial CX count for this layer is 22. If optimisation is run for a
single layer, the CX count is reduced by 18%, from 22 to 18:

0 0

1 1

2 2

3 3

4 4

θ[0] θ[1]

θ[2]

θ[3]

With 2 layers, the CX count is reduced by 36%, from 44 to 28:

0 0

1 1

2 2

3 3

4 4

θ[0] θ[1]

θ[2]

θ[3]

θ[4] θ[5]

θ[6]

θ[7]

With 5 layers, the CX count is reduced by 47%, from 110 to 58:

0 0

1 1

2 2

3 3

4 4

θ[0]θ[1]

θ[2]

θ[3]

θ[4]θ[5]

θ[6]

θ[7]

θ[8]θ[9]

θ[10]

θ[11]

θ[12]θ[13]

θ[14]

θ[15]

θ[16]θ[17]

θ[18]

θ[19]

The 8 conjugating CX gates are independent of the number of layers, leaving 10 CX gates per simplified
layer from an initial count of 22. In the limit of a large number of layers, the relative CX count reduction
for this conjugating CX block approaches 12/22, or 54.5%.
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This feature of our optimisation technique makes it particularly interesting for applications in quan-
tum machine learning (QML), adiabatic quantum computation and the quantum approximate optimisa-
tion algorithm (QAOA), where circuit ansatzë often feature the aforementioned repeating layers structure.
In particular, note that the technique is insensitive to the specific angles used in the repeated layers: the
angles can be different, and even parametric (as indeed shown in the examples above). This means that
an ansatz circuit only need be optimised once, before assigning specific values to its parameter. For a
mixed ZX phase circuit formulation of several such ansatzë, we refer the reader to [18].

3.4 Configuration space

The configuration space explored by our optimisation algorithm on a given topology consists of all
circuits of nearest-neighbour CX gates with a fixed number of layers, which we refer to as the CX blocks.
At any given point in configuration space, i.e. at any such CX block C, the cost for a phase circuit P is
given by sum of:

• the CX count for C†;

• the CX counts for the individual gadgets of C†(P), computed on the given topology;

• the CX count for C;

where C†(P) :=C† ◦P◦C is the phase circuit obtained from P through conjugation by C†.

For fixed topology and number of layers, we say that a CX block C′ is obtained from another CX block
C by flipping a CX gate cxi, j on a layer l if either:

• the gate cxi, j is present at layer l in C, and C′ is obtained from C exactly by removing cxi, j from
layer l;

• there is no gate at layer l in C which is incident to either qubit i or qubit j (or both), and C′ is
obtained from C exactly by adding cxi, j to layer l.

We write C
l;i, j−→C′ to denote this fact; because CX gates are self-inverse, this is equivalent to C

l;i, j←−C′.
We consider two CX blocks to be nearest neighbours in configuration space if one can be obtained from
the other by a single CX gate flip: this endows the configuration space with the structure of an undirected
graph, where edges are labelled by the triples (l; i, j) describing the CX gate flips. Our optimisation
algorithm performs a random walk on this graph, starting from the empty CX block and attempting to
(globally) minimise the cost for a given phase circuit.

3.5 Simulated Annealing

Simulated annealing is a global optimisation method which explores a discrete problem-dependent con-
figuration space X , in an attempt to find an approximate optimum for a an arbitrary cost function f . At
each step of the optimisation, the algorithm sits at some configuration x ∈X and selects a uniformly
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random “direction” to explore; that is, it samples a uniformly random x′ ∈ N(x), where N(x)⊆X \{x}
a bounded set of nearest neighbours of x in configuration space. The algorithm the computes f (x′) and
compares it to f (x): if f (x′)≤ f (x), then the algorithm moves to x′ deterministically; otherwise, it moves
to x′ with a probability which decreases exponentially in the difference ∆ := f (x′)− f (x):

Prob
(
x→ x′

)
= exp

(
−∆ log(2)

t

)
The parameter t > 0 is known as the temperature: it decreases from an initial value t0 to a final value
tN ≈ 0 over N iterations, in a way specified by the “temperature schedule”. The temperature schedule
for the annealing determines the probability of accepting changes which increase the cost function: an
increase of t log2(1/p) has probability p of being accepted. At the start of the annealing, when the
temperature is high, the random walk is allowed to explore the configuration space, even at the cost of an
increase in cost. As iterations progress and the temperature is lowered, the random walk progressively
favours those steps which decrease the cost. Towards the end, the probability of accepting steps which
increase the cost becomes vanishingly small, and the algorithm is reduced to a greedy optimisation.

3.6 Simulated Annealing for Mixed ZX Phase Circuit Optimisation

For our problem, the simulated annealing configuration space consists of a fixed number of layers of NN
CX gates on the given topology, with nearest neighbours in configuration space determined by CX gate
flips in any one of the layers. Given a mixed ZX phase circuit, a topology and a fixed number of layers
for the CX blocks, we construct an optimized circuit container; initially, this consists of the phase circuit
conjugated by empty CX blocks. To minimise the cost of over the space of CX blocks, we perform
a random walk using simulated annealing [8], for a given number of steps/iterations and following a
given temperature schedule. At the end of the annealing, the optimized circuit contains a simplified
phase circuit conjugated by (typically) non-empty CX blocks. Every iteration of our simulated annealing
algorithm proceeds as follows:

1. We obtain the current temperature t from the temperature schedule using the current iteration
number (e.g. linearly interpolating from initial temperature to final temperature).

2. We select a random CX gate flip for the current block, i.e. select a random neighbour.

3. We flip the selected CX gate (see Subsection 3.7 below).

4. We calculate the CX count cnew for the new circuit and compare it to the previous CX count cold ,
by computing ∆ := cnew− cold and sampling a uniformly random number r ∈ [0,1]:

• if r ≤ exp
(
−∆ log(2)

t

)
, and in particular if cnew ≤ cold , the move is accepted and we go to the

next iteration from the new CX block;
• otherwise, the move is undone—by flipping the selected CX gate again—and we go the next

iteration from the old CX block.

Our selection of temperature schedule depends on the shape of the temperature curve (linear, geometric,
reciprocal or logarithmic) and two parameters: the amount of time we want to spend exploring the
configuration space at the start of the annealing and the amount of time we want to spend performing
greedy optimisation at the end of the annealing. As a convention, we take the temperature value t =
2m+ 2 (where m is the number of phase gadgets) to denote the end of the exploration phase and the
temperature value t = 2 to denote the start of the greedy optimisation phase. Because the CX gates are
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nearest-neighbour, 2m+2 is the maximum possible increase in CX count from a single CX gate flip: 2
CX gates added plus a leg added to all gadgets, at a worst-case CX count increase of 2 per gadget. On
the other hand, 2 is the minimum possible (positive) increase: CX count always changes by multiples
of 2. This defines the exploration phase as the time where every CX gate flip has a probability higher
than 50% of being accepted, and the greedy optimisation phase as the time where every increase in CX
count has a probability lower than 50% of being accepted. As an example, below is a sketch of a linear
temperature schedule over N iterations:

3.7 Flipping CX gates

Because simulated annealing requires thousands of iterations, optimised execution of CX gate flips is
paramount. Naively, one could simply maintain the current CX block C and compute the conjugated
circuit from scratch at every iteration: this requires conjugating every gadget in the phase circuit by
every CX gate in the CX block, even though the CX block itself has only changed by one gate flip. In
this work, we adopt a different strategy, where we maintain both the current CX block C and the current

conjugated phase circuit C†(P). Imagine we wish to perform a gate flip C
l;i, j−→ C′, e.g. performing the

flip C
3;5,4−→C′ boxed in dark blue below.

To perform the flip, we go through the following 4 steps:

1. Starting from layer l−1 and moving inwards towards layer 0, we create the (partially ordered) set
(l; i, j)↓ of all CX gates that are strictly in the “past” of gate cxi, j at layer l. These are boxed and
highlighted below.
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2. We undo all the CX gates in (l; i, j)↓, conjugating the phase circuit by each one, working our way
outwards from layer 0 (closest to the phase circuit) up to layer l−1 (just below the gate we’ll flip).

3. We flip gate cxi, j at layer l, conjugating the phase circuit by cxi, j (adding cxi, j to layer l if it wasn’t
there, removing it from layer l if it was). Below, we remove cx5,4 from layer 3.

4. We redo all the CX gates in (l; i, j)↓, conjugating the phase circuit by each one, this time working
our way inwards from layer l−1 down to layer 0.

To define the poset (l; i, j)↓ of past gates formally, consider the partial order on the gates (l;x,y) of the
CX block obtained by transitive-reflexive closure of the following relation:

(l1;x1,y1)< (l2;x2,y2)⇔ l1 < l2 and {x1,y1}∩{x2,y2} 6= /0

The poset (l; i, j)↓ consists of all gates strictly less than (l; i, j) in this partial order.

4 Performance Evaluation

4.1 Random mixed ZX phase circuits

To evaluate the performance of our technique, we test it on random mixed ZX phase circuits with a
varying number 2- and 3-legged gadgets, on 16, 25 and 36 qubits arranged in a square grid.

Our random model samples a fixed number of gadgets num gadgets on a fixed number of qubits
num qubits, selecting legs in a independent, identically distributed way for each gadget. Legs for a
gadget are sampled by first selecting the number of legs uniformly randomly in a given range (from
min legs to max legs, both included), and then selecting a uniformly random subset of qubits with the
desired cardinality.
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PhaseCircuit.random(num_qubits, num_gadgets, *, min_legs, max_legs)

Below is an example of a random circuit of 10 gadgets on 6 qubits, with between 1 and 3 legs:

0 0

1 1

2 2

3 3

4 4

5 5

π

7π/4

7π/4

π

π/4

3π/2 π/2

3π/4

7π/4

π

We can also make our random circuits purely parametric, but this doesn’t impact our benchmarking.

4.2 Internal representation of mixed ZX phase circuits

The internal representation of phase circuits in our technique is optimised for execution of the the an-
nealing algorithm. A circuit (n qubits, mz Z gadgets and mx X gadgets, in any order) is broken down into
the following components:

• a pair of binary matrices (an n×mz matrix Lz for Z gadgets and an n×mx matrix Lx for X gadgets)
encoding the positions of the legs;

• a pair of lists (length mz for Z gadgets and length mx for X gadgets) mapping the columns of each
matrix to the position of the corresponding gadget in the circuit;

• a list (length mz +mx) of angles for the gadgets (concrete or parametric).

The annealing algorithm operates on gadget legs only—i.e. on the the two matrices—without any al-
teration to the original gadget order and angles. The algorithm further acts on the columns of each
matrix independently, leaving ample scope for caching (implemented) and GPU parallelisation (not yet
implemented). As an example, consider the following circuit of mz +mx = 5 gadgets on n = 3 qubits:

0 0

1 1

2 2

π/2 π

7π/4

π/4 π/2

The matrices for this circuit are as follows:

Lz =

 1 1
1 0
0 1

 Lx =

 1 0 1
0 1 1
1 1 0


The lists mapping columns to gadgets are (0,3) for Lz and (1,2,4) for Lx. The list of angles for the
gadgets is (π/2,π,7π/4,π/4,π/2).

4.3 Benchmarking Results

In all benchmarks below, we proceed as follows:

1. We generate 50 random mixed ZX phase circuits, for various combinations of hyper-parameters—
number of qubits, number of gadgets per layer, initial temperature, schedule type—randomly sam-
pling between 2-legged and 3-legged gadgets. The number of CX block layers is fixed to 3.
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2. We run annealing optimisation with varying number of iterations, from 100 to 5000, in increments
of 100. The number of circuit layer repetitions is fixed to 5.

3. We look at the reduction in NN CX count—in average or in distribution—from each original
random circuit to the corresponding optimised circuit, relative to the NN CX count of the original
circuit. The NN CX count is computed using Prim’s algorithm for minimum spanning trees.

To start with, we look at the performance for four different initial temperatures t0 = 1,5,10,20 and two
annealing schedules (linear and geometric). Below is the average CX count reduction over all runs for
the linear annealing schedule at the four initial temperatures.

Below is the average CX count reduction over all runs for the geometric annealing schedule at the four
initial temperatures. Because of the inferior average performance of other combinations, we restrict our
attention to linearly annealed runs with t0 = 10 for the remainder of this section.

For our optimisation, we always use 5 layer repetitions for the phase circuit and 3 layers for the conjugat-
ing CX blocks. Below is the average CX count reduction—as a percentage of the initial CX count—for
varying number m of phase gadgets per circuit layer, ranging from 10 to 35 in increments of 5.
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The average CX count reduction degrades as the number of gadgets/layer increases, decreasing by ap-
proximately 0.5% per additional gadget on 36 qubits.

This behaviour is roughly linear when the number of gadgets/layer is small compared to the number of
qubits, but approaches a horizontal asymptote as the number of gadgets/layer increases. The following
graphs showcase this behaviour over smaller grid topologies (3×3, 3×4, 4×4 and 4×5 respectively).

The optimised flipping of CX gates allows us to avoid recomputing the whole conjugated circuit every
time. We also implement some basic caching techniques for gadget legs, and use a modified version of
Prim’s algorithm to efficiently compute the topologically-aware CX count for each gadget. Our Python
implementation is reasonably efficient, taking between 400µs and 800µs per iteration.

Over the full range of iterations we considered, from 100 to 5000, our experiments never took more than
4s, with the vast majority under 3s.
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To evaluate the performance of our approach under strict time constraints, we restrict our attention to the
runs that finished under 1s, using almost all the time they were allowed (in the 90th to 100th percentile
within runs under 1s for the same number of qubits and gadget/layers). We observe that the average CX
count reduction decreases as the number of gadgets/layer increases, and that the distribution narrows.

To further evaluate the effect of time on our optimisation, we restrict our attention to runs at 30 gad-
gets/layer, partitioned into time bins with 0.5s resolution. The average CX count reduction improves
only slightly as more time is allowed, indicating diminishing returns for progressively higher number of
iterations. However, we observe a marked improvement of worst-case CX count reduction from anneals
under 0.5s to anneals up to 1s, with only marginal improvement after that point.

5 Future Work

Our first avenue for future work concerns the annealing itself: rather than using simulated annealing
on classical hardware, we have started working on a formulation of the problem suitable for execution
on D-Wave quantum annealers. This would allow our exploration of the space of configurations to
efficiently scale to much larger examples, involving hundreds of gadgets and qubits. It would also make
our technique a “quantum optimisation of quantum circuits”, which is fun to say. Thanks to QPL 2022
Anonymous Reviewer #1 for pointing us to [12], which provides an Ising formulation for the minimum
spanning tree objective.

Our second avenue for future work concerns the scope and method of optimisation: instead of limit-
ing ourselves to mixed phase gadgets and random CX circuits, we have have generalised our observation
to arbitrary layers of Pauli gadgets using random Clifford circuits. We are in the process of implementing
this technique and will report on its performance in future work. We also plan to incorporate commuta-
tion between phase gadgets in different bases to further improve performance.

We will benchmark our techniques explicitly against previous literature, using realistic circuit fam-
ilies from quantum chemistry, adiabatic quantum computation, quantum approximate optimisation and
quantum machine learning.
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We use purity, a principle borrowed from the foundations of quantum information, to show that all
special symmetric †-Frobenius algebras in CPM(fHilb)—and, in particular, all classical structures—
are canonical, i.e. that they arise by doubling of special symmetric †-Frobenius algebras in fHilb.

1 Introduction

The exact correspondence [9] between finite-dimensional C*-algebras and special symmetric †-Frobenius
algebras (†-SSFAs) in fHilb—the dagger compact category of finite-dimensional complex Hilbert spaces
and linear maps—is a cornerstone result in the categorical treatment of quantum theory [1, 4, 7]. A cor-
responding characterisation in CPM(fHilb)—the dagger compact category of finite-dimensional Hilbert
spaces and completely positive maps [8]—has been an open question for around 10 years [5, 6]—of
interest, for example, in the investigation of the robustness of sequentialisable quantum protocols [2, 6].

In this work we use purity, a principle borrowed from the foundations of quantum information [3],
to answer this question once and for all: the †-SSFAs in CPM(fHilb) are exactly the canonical ones,
the ones arising by doubling of †-SSFAs in fHilb. This is a notable result in that it allows fundamental
notions from quantum theory—notably, those of quantum observable and measurement—to be defined
directly in the diagrammatic language of CP maps, without reference to fHilb or the CPM construction,
and without relying on the biproduct or convex-linear structure of CPM(fHilb).

2 Purity

The very definition of morphisms in the category CPM(fHilb) means that a CP map Φ : H →K can
always be purified, i.e. that it can be written in terms of a pure map Ψ : H →K ⊗E and discarding of
an “environment” system E :

Φ := Ψ

In this work, by a pure CP map Ψ : H →K we mean a CP map in the form Ψ = CPM(ψ), arising by
doubling of a morphism ψ : H →K in fHilb. This “diagrammatic” notion of purity is connected to the
notion of purity used in the foundations of quantum information by the following purity principle.

http://dx.doi.org/10.4204/EPTCS.394.21
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Proposition 1 (Purity Principle).
If the following holds for some pure CP maps Ψ : H →K ⊗E and F : H →K :

Ψ = F

then there is a normalised pure state f on E such that:

Ψ = F f

By expanding the discarding map in terms of some orthonormal basis of pure states, one straightfor-
wardly gets an equivalent formulation of the principle in terms of sums.
Proposition 2 (Purity Principle, sums version).
If the following holds for pure CP maps (Ψi : H →K )i and F : H →K :

Ψi∑
i

= F

then there are coefficients pi ∈ R+ summing to 1 such that the following holds for all i:

Ψi = pi F

Because CPM(fHilb) is dagger compact, finally, one can also straightforwardly obtain a more general
formulation of the principle which replaces the purifying state f with a purifying operator f .
Proposition 3 (Purity Principle, operator version).
If the following holds for some pure CP maps Ψ : H ⊗F →K ⊗E and F : H →K :

Ψ = F

then there is a pure CP map f : F → E such that:

Ψ = F f
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3 Isometries of CP maps

Theorem 4 (Purification of CP isometries).
Every isometry Φ in CPM(fHilb) can be written as a R+-linear combination of pure isometries Vi with
pairwise orthogonal images.

Φ
† ◦Φ = 1 ⇒ Φ = ∑

i
qiVi with V †

i ◦Vj = δi j 1

In pictures, this means that if the following equation holds, where Ψ is any purification of Φ:

Ψ

Ψ

=

then we must in fact have:

Ψ = Vi∑
i

qi with
Vi

V †
j

= δi j

Furthermore, the coefficients satisfy ∑i(qi)
2 = 1, and they can be chosen to be all non-zero.

Proof. By the existence of purifications, we can obtain Φ : H →K by discarding an “environment”
system E from some pure Ψ : H →K ⊗E :

Φ := Ψ

By the operator version of the purity principle, the isometry equation Φ† ◦Φ = 1 for Φ implies the
following equation for Ψ, where f is some pure CP map E → E :

Ψ

Ψ

= f
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The pure CP map f is self-adjoint, which means that we can find an orthonormal basis of pure states
(ϕi)

dimE
i=1 and associated non-negative real numbers (qi)i such that:

f

ϕi

ϕ
†
j

= δi jq2
i

for all i, j = 1, ...,dimE . For each i with qi 6= 0, define:

Vi :=
1
qi

Ψ

ϕ
†
i

This way we get:

Φ = Ψ Ψ∑
i

ϕ
†
i

∑
i s.t. qi 6=0

qi Vi= =

Furthermore, the Vi pure maps we just defined are isometries with orthogonal images:

Vi

V †
j

Ψ

Ψ

ϕ
†
j

ϕi

=
1

qiq j
f

ϕi

ϕ
†
j

= δi j
q2

i

qiq j
= δi j=

1
qiq j

Finally, we have that:

Ψ

Ψ

= ∑
i j

qiq j

Vi

V †
j

= ∑
i j

δi jqiq j = ∑
i

q2
i=

so we conclude that ∑i(qi)
2 = 1.
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4 Main result

A comonoid (∆,E) on an object H of the dagger compact category CPM(fHilb) is a pair of completely
positive maps satisfying the associativity and unit laws:

H

H H

H

∆ : E :

=

associativity law

=

unit laws

=

Theorem 5 (Ophidian isometric CP comonoids are pure).
If (∆,E) is a comonoid in CPM(fHilb) which is isometric and satisfies the snake equations, then the CP
maps ∆ and E are both pure.1

=

snake equations

= =

isometry

Proof. By Theorem 4 and the isometry condition, we know that:

Vi

n

∑
i=1

qi=

for some pure isometries Vi of fHilb with V †
i ◦Vj = δi j 1. The coefficients qi satisfy q ·q = ∑i(qi)

2 = 1,
and we choose them to be all non-zero. By the existence of purifications, we decompose E as a sum of

1Associativity is not actually necessary for this result to hold.
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non-zero pure effects:

Ek∑
k

=

By the purity principle and the unit laws for the comonoid, we deduce that there are coefficients ri,k, li,k ∈
R+ such that:

Vi

Ek

Vi

Ek

= li,k = ri,k

Writing li := ∑k li,k and ri := ∑k ri,k, the unit laws imply that q · r = ∑i qiri = 1 = ∑i qili = q · l: it cannot
therefore be that for all i,k we have li,k = 0 or that for all i,k we have ri,k = 0. Picking some i,k such that
li,k 6= 0, we deduce that E is, in fact, a non-zero pure effect:

li,k Vi

Ek

Ekri= =

Because E is a pure effect, we will henceforth drop the discarding map in our notation:

E :

The same trick can then be used to show that ri = li for all i:

li Vi ri= =

Having established that the counit is pure, we now move on to establish that the comultiplication is pure
as well. From the snake equations, the purity principle implies the existence of coefficients λi, j,ρi, j ∈ R+

such that:

Vi

V †
j

Vi

V †
j

= λi, j = ρi, j
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We now proceed to show that λi, j = δi j, using the left snake equation. The proof that ρi, j = δi j is
analogous, using the right snake equation. Taking the trace on both sides of the snake equation, we obtain
the following equation, where H is the underlying Hilbert space for the comonoid (we get dim(H )2

because we are working in the CPM category, where the scalar is doubled):

Vi

V †
j

= λi, j = λi, j dim(H )2

Taking the trace on the LHS of the snake equation and using the fact that V †
j Vi = δi j1, we get a different

equation:

Vi

V †
j

= δi j = δi j dim(H )2

The rightmost equality follows from isometry and the snake equation:

dim(H )2 = = = =
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Having established that λi, j = δi j = ρi, j, we now show that n≥ 2 leads to a contradiction unless dim(H )=
0 (in which case the statement of this theorem is trivial). Indeed, we have the following equation for all
i, j:

Vjδi j

Vi

V †
j

Vj

Vi= =

If we have n ≥ 2, then we can set i 6= j in the equation above, concluding that the RHS state is the
zero state. However, we also know that Vi is an isometry and that the adjoint of the counit is a state
of norm dim(H )2, hence the RHS state also has norm dim(H )2. So either n = 1, in which case the
comultiplication is pure, or n≥ 2 and dim(H ) = 0, in which case the comultiplication is the zero map,
which is also pure.

Lemma 6. Let δ : H →H ⊗H and ε : H → C be morphisms in fHilb which satisfy the associativity
law up to a phase eiα , the symmetry law up to a phase eiσ , the left unit law exactly, the right unit law up
to a phase eiρ and the Frobenius law up to a phase eiϕ :

δ

δ

eiα

δ

δ

δ

ε†

eiσ δ

ε†

a
=

s
=

δ

ε

δ

ε

lu
=

ru
= eiρ

δ

δ †

eiϕ

δ

δ †

f
=

Then (δ ,ε,δ †,ε†) is a symmetric †-Frobenius algebra in fHilb, i.e. α = ρ = σ = ϕ = 0 mod 2π .
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Proof. The associativity law and left unit law prove that α = 0 mod 2π:

δ

δ

δ

ε

eiα

δ

δ

ε

eiα δlu
=

a
= lu

=

Then, the associativity law and the unit laws prove that ρ = 0 mod 2π:

δ

δ

δ

ε

δ

δ

ε

eiρ δlu
=

a
=

ru
=

Then, the symmetry law and the unit laws prove that σ = 0 mod 2π:

ε† δ

ε†

ε

δ

ε†

ε

eiσ δ

ε†

ε

eiσ ε†lu
= = s

=
ru
=

Finally, the Frobenius law and the right unit law prove that ϕ = 0 mod 2π:

ε† δ

ε†

ε

δ

ε†

δ †

ε

ε†

eiϕ

δ

ε†

δ †

ε†

ε

eiϕ δ †

ε†ε†

eiϕ ε†ru
= lu†

=
f
=

ru
= lu†

=

This concludes our proof.

Corollary 7 (CP †-SSFAs are all canonical).
The †-SSFAs in CPM(fHilb) are all canonical, i.e. they all arise by doubling of †-SSFAs in fHilb.

Proof. Now let (∆,E,∆†,E†) be a †-SSFA in CPM(fHilb). Because (∆,E) is a comonoid which is iso-
metric and satisfies the snake equations, we now know that ∆ and E are pure, i.e. that we can find linear
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maps δ and ε in fHilb such that ∆ = CPM(δ ) and E = CPM(ε) arise by doubling. We now wish to con-
clude that (δ ,ε,δ †,ε†) form a †-SSFA in fHilb, but this doesnt immediately follow from the equations
in CPM(fHilb): while δ is certainly an isometry in fHilb, the associativity law, unit laws, symmetry law
and Frobenius law for δ and ε are only guaranteed to hold up to phase. In fact, (δ ,ε,δ †,ε†) is not, in
general, a †-SSFA in fHilb. However, it is easy to show (cf. Lemma 6 below) that (δ ,e−iλ ε,δ †,eiλ ε†) is
always a †-SSFA in fHilb, where eiλ is the phase associated to the identity in the left unit law. Because
CPM(e−iλ ε) = CPM(ε), this is enough to prove our result.
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