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Preface

This volume contains the proceedings of the 19th International Conference on Quantum Physics and
Logic (QPL 2022). The conference was held from 27 June to 1 July 2022 at the University of Oxford,
UK.

Quantum Physics and Logic is an annual conference that brings together academic and industry re-
searchers working on mathematical foundations of quantum computation, quantum physics, and related
areas. The main focus is on the use of algebraic and categorical structures, formal languages, seman-
tic methods, as well as other mathematical and computer scientific techniques applicable to the study
of physical systems, physical processes, and their composition. Work applying quantum-inspired tech-
niques and structures to other fields (such as linguistics, artificial intelligence, and causality) is also
welcome.

The QPL 2022 conference solicited four different kinds of submissions: proceedings submissions, non-
proceedings submissions, poster submissions, and programming tool submissions.

Proceedings submissions were papers that were required to provide sufficient evidence of results of gen-
uine interest. Authors of accepted proceedings submissions were given the opportunity to present their
work during a talk at the conference and these papers were included in the proceedings of QPL 2022. No
other kinds of submissions were considered for inclusion in the proceedings. Non-proceedings submis-
sions consisted of a three page summary, together with a (link to a) separate published paper or preprint.
Authors of accepted non-proceeding submissions were allowed to present their work in the form of a talk
during the conference. Poster submissions consisted of a three page abstract of (partial) results or work in
progress and authors of accepted poster submissions were invited to present their work during one of the
poster sessions of the conference. Programming tool submissions consisted of three page descriptions of
programming tools or frameworks. Authors of accepted programming tool submissions were given an
opportunity to present their software during a dedicated ’Software Session”.

These proceedings contain 20 contributed papers that were selected for publication by the QPL 2022
Program Committee. An additional contributed paper is included, that was selected for publication by
the QPL 2020 Program Committee, but not included in the QPL 2020 proceedings in error. Papers sub-
mitted to QPL undergo a review process that is managed by members of the PC. Almost all submissions
received at least three reviews. The selection of accepted papers was done through the use of the Easy-
Chair conference management system following consideration of the submitted reviews and following
(where necessary) discussion among the PC. The review process was single-blind: the identity of the
authors is revealed to the reviewers, but not vice-versa. PC members were allowed to invite external
experts to serve as sub-reviewers and to participate in the discussion of those submissions which they
were invited to review.

A record 132 submissions (excluding withdrawals and retractions) were considered for review by the PC.
QPL 2023 had 49 accepted submissions in the non-proceedings track and 25 accepted submissions in the
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v Preface

proceedings track. Most of the talks were presented during parallel sessions, but a selection of talks
were presented during plenary sessions in the mornings. The program had a poster session, a session
dedicated to showcasing accepted programming tool submissions, as well as an industry session, where
industrial sponsors of QPL 2022 were given an opportunity to present their companies. The industry
session consisted of seven talks, from four sponsors: Quantinuum, Quandela, Huawei and Hashberg.

The official website of the conference is https://www.qplconference.org/ and it contains a lot of relevant
information about QPL 2022, as well as links to previous editions.

The Program Committee consisted of 40 members who were: Antonio Acin, Miriam Backens, Jonathan
Barrett, Dan Browne, Caslav Brukner, Giulio Chiribella, Bob Coecke, Alejandro Diaz-Caro, Ross Dun-
can, Yuan Feng, Stefano Gogioso (co-chair), Amar Hadzihasanovic, Teiko Heinosaari, Chris Heunen,
Matty Hoban (co-chair), Martti Karvonen, Kohei Kishida, Aleks Kissinger, Ravi Kunjwal, Martha Lewis,
Shane Mansfield, Konstantinos Meichanetzidis, David Moore, Mio Murao, Simon Perdrix, Julien Ross,
Mehrnoosh Sadrzadeh, Ana Belén Sainz, Carlo Maria Scandolo, John Selby, Rui Soares Barbosa, Pawel
Sobocinski, Rob Spekkens, Isar Stubbe, Benoit Valiron, John van de Wetering, Quanlong Wang, Alexan-
der Wilce, Vladimir Zamdzhiev, and Margherita Zorzi.

The Organising Committee consisted of 6 members who were: Bob Coecke, Aleks Kissinger, Stefano
Gogioso, Konstantinos Meichanetzidis, Matty Hoban, and Destiny Chen.

The QPL Steering Committee consisted of Bob Coecke, Prakash Panangaden, and Peter Selinger.

We wish to thank all the members of the PC for their work in selecting the program of QPL 2022. We
thank all external sub-reviewers for their help, and the authors for their submissions. We are grateful
to the EPTCS team for their help in preparing the proceedings of the conference. We also thank the
members of the Organising Committee for their help in setting up the conference, the student helpers
who volunteered to assist us, as well as the staff of Wolfson College, Oxford, who helped us with the
organisation of the conference. Finally, we thank the QPL steering committee for their support and we
thank all people who have contributed to the success of QPL 2022.

QPL 2022 received (financial) support from Quantinuum, Quandela, the US Air Force, MindSpore
(Huawei), and Hashberg.

Nov 2023, Stefano Gogioso and Matty Hoban
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While non-contextual hidden-variable theories are proved to be impossible, contextual ones are pos-
sible. In a contextual hidden-variable theory, an observable is called a beable if the hidden-variable
assigns its value in a given measurement context specified by a state and a preferred observable.
Halvorson and Clifton characterized the algebraic structure of beables as a von Neumann subalge-
bra, called a beable subalgebra, of the full observable algebra such that the probability distribution of
every observable affiliated therewith admits the ignorance interpretation. On the other hand, we have
shown that for every von Neumann algebra there is a unique set theoretical universe such that the
internal “real numbers” bijectively correspond to the observables affiliated with the given von Neu-
mann algebra. Here, we show that a set theoretical universe is associated with a beable subalgebra
if and only if it is ZFC-satisfiable, namely, every theorem of ZFC set theory holds with probability
equal to unity. Moreover, we show that there is a unique maximal ZFC-satisfiable subuniverse “im-
plicitly definable”, in the sense of Malament and others, by the given measurement context. The set
theoretical language for the ZFC-satisfiable universe, characterized by the present work, rigorously
reconstructs Bohr’s notion of the “classical language” to describe the beables in a given measurement
context.

1 Introduction

In 1935, Einstein, Podolsky, and Rosen [[14]] argued that the quantum mechanical description of physical
reality is incomplete. Bohr [[6] immediately responded to rebut their conclusion. As to which claim is
correct, the majority view has become in favor of Bohr, based on no-go theorems against non-contextual
hidden-variable theories by von Neumann [25]], Gleason [[16]], Kochen-Specker [22]]. From the above
debate it has been concluded that non-contextual hidden-variable theories for quantum mechanics are
impossible. Nevertheless, contextual hidden-variable theories are possible as Bohr’s complementarity
interpretation [3]] and the Bohmian mechanics [4].

In accordance with the above view, the modal interpretation of quantum mechanics has been studied
extensively, used for no-collapse interpretation to solve the measurement problem [9], and successfully
articulated Bohr’s otherwise obscure complementarity interpretation of quantum mechanics [9418l33].
In modal interpretation, an observable possessing a well defined value is called a “beable”, and it is at-
tempted to define the class of beables as broad as possible depending on the given measurement context.
The observable to be measured is naturally considered to possess its value to be revealed by the measure-
ment even in a superposition of its eigenstates. This avoids the measurement problem arising from state
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2 Hidden-Variable Theories and Quantum set theory

collapsing with the Dirac-von Neumann interpretation [[12,25]] that an observable has a value only in its
eigenstates or mixtures of them [9].

Halvorson and Clifton [[17] algebraically characterized a contextual hidden-variable theory for a state
v in the Hilbert space 7 of a quantum system S as a von Neumann subalgebra 43, called a beable sub-
algebra, of the full observable algebra .Z(.7) such that the probability distribution of every observable
therein admits the ignorance interpretation. Their celebrated uniqueness theorem determines the unique
maximal beable subalgebra #(y,A) “implicitly definable”, in the sense of Malament [23]] and others,
by the given measurement context (y,A). However, the algebraic structure of beables does not directly
treat the logical structure of observational propositions nor the structure of the language speaking of
beables, so that we do not have a formal framework to treat, for instance, Bohr’s original notion of the
“classical language” to describe beables in a given measurement context, or Hardy’s logical formulation
of non—locality

Here, we introduce a new approach based on quantum set theory to provide a logical framework for
modal interpretations. Quantum set theory was introduced by Takeuti [37] for constructing mathematics
based on quantum logic and developed by the present author [[26(-32]; the relationship with topos quan-
tum theory was studied by Eva [15] and Doring ef al. [|[13]]. In the preceding study, we have shown that
for any von Neumann subalgebra .# of the full observable algebra .#(.7°) on a Hilbert space 77, we
can construct the unique mathematical, or more specifically, set theoretical, universe V[.#] based on the
logic represented by the projection lattice & (.#) in .4 such that the internal “real numbers” in the uni-
verse V[./] coincides with the self-adjoint operators (or observables) affiliated with the von Neumann
algebra ./ .

In this work, we shall logically characterize a contextual hidden-variable theory by showing that a von
Neumann algebra 4 is a beable subalgebra of .Z(.%7) for a state y € S if and only if the set theoretical
universe V[)] based on the logic &(9%) is ZFC-satisfiable in y, in the sense that every theorem of
ZFC set theory in the language L(€,V[4]) of set theory augmented by the names of elements of V[%)]
holds in V[%] with probability equal to unity in the state y. In this case, the set of beables represented
by self-adjoint operators affiliated with % coincides with the set of the internal “real numbers” in the
universe V[%]. Moreover, we uniquely determine the maximal ZFC-satisfiable subuniverse V[Z(y,A)]
among those implicitly definable by the given measurement context (y,A). Thus, we can identify Bohr’s
notion of “classical language” describing the beables in the given measurement context (y,A) with the
language L(E,V[%(W,A)])EI

2 Algebraic approach to beables

In this paper, we consider a quantum system S described by a separable Hilbert space .77, called the state
space of S, with inner product (§,1) for all &, € 77, linear in 1 and conjugate linear in . Observables
of S are bijectively represented by self-adjoint operators (densely defined) on Z and every unit vector in
¢ represents a (pure) state of S. If an observable (represented by a self-adjoint operator) X is measured
in a state (represented by a unit vector) ¢ € 77, the outcome x of the measurement satisfies the Born
statistical formula

Pr{x < x| ¢} = (9,EX(x)9) (1)

I'We focus on the former topic in this paper and we will discuss the latter elsewhere.

2Bohr called the notion of beables in the given measurement context in several different ways, e.g., as the observables
definable for the given measurement arrangement, or the elements of physical reality determined by the measurement of a
preferred observable in the given state.
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for every real number x € R, where EX (x) is the resolution of the identity belonging to the self-adjoint
operator X [25, p. 119]. We denote by pr( the Borel probability measure on IR uniquely determined by
the relation pig ((—co,x]) = (¢, E*(x)9), and call it the (Born) probability distribution of the observable
X in the state ¢. From the above, for any (real-valued) Borel function f the observable f(X) defined by
f(X) = [g f(x)dEX(x) has the expectation value

Ex{f(X)ll¢} = (9, (X)9) 2)
if 9 € dom(f(X)).

Now we consider a situation, called the measurement context (y,A), in which an observable A is to
be measured in a state Y, and we take the ignorance interpretation for the Born probability distribution
u@, as a typical reading of Bohr’s complementarity interpretation [9,17.18.33]], that just before the mea-
surement of the observable A in the state y, the observable A possesses its value with the probability
distribution /.L{,*,, and that the measurement faithfully reveals the value possessed by A. We would call an
observable that is considered to possess its value in the measurement context (y,A) as a beable [, p. 41]
in that measurement context. Obviously, the observable A itself should be a beable together with its
functions f(A) for all Borel functions f.

The objective of modal interpretations is to determine the set of beables in the context (y,A) as broad
as possible. We would call it the maximal beable set. From the impossibility theorem of non-contextual
hidden-variable theories by von Neumann [25]] and others the maximal beable set cannot be the whole
set of observables.

It is natural to assume that the maximal beable set is closed under appropriate algebraic operations
(i.e., addition, Jordan product, and Lie product) and closed under appropriate convergences, so that we
assume that the maximal beable set is the set of observables (or self-adjoint operators) affiliated with a
von Neumann algebra % on .7 F_f]

The first requirement for such a von Neumann algebra % concerns the state y requires that the
Born probability distribution of every beable admit the ignorance interpretation. This requirement is
mathematically formulated as follows. We call any normalized positive linear functional on Z a state on
AB. A state ® on 4 is said to be dispersion-free iff ©(X*X) = |®(X)|* for any X € %. We say that a von
Neumann algebra A is a beable subalgebra for a state vector Wy € S¢ iff there is a probability measure
U on the space Z(Z) of dispersion-free states of A satisfying

(v, Xy) = /j ) o(X)du(o) 3)

for every X € Z. The second requirement is, of course, that the observable A be affiliated with % as a
“privileged” observable, from which it follows that f(A) be affiliated with 2 for all Borel functions f by
the Borel function calculus in von Neumann algebras. Thus, we call a von Neumann algebra % on ¢ a
beable subalgebra for the measurement context (y,A) iff it satisfies following conditions:

(i) (Beable) £ is a beable subalgebra for .
(ii) (A-Priv) A is affiliated with Z.

3The first general proof of the impossibility theorem for non-contextual hidden-variable theories was given by von Neumann
[125]1; see [[1410L11)24] for the recent debate on the status of von Neumann’s impossibility proof. Later, Kochen and Specker [22]
proved the theorem for the Hilbert space with the dimension greater than 2 under the sole requirement that hidden-variables
satisfy functional relations for observables; a similar result can be derived as a corollary of Gleason’s theorem [16].

#An observable X is affiliated with 4 if and only if EX (x) € 2 for all x € RR..
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According to the above formulation, we are tempted to identity the maximal beable set with the set
of observables affiliated with a maximal von Neumann algebra among those satisfying the requirements
(A-Priv) and (Beable) above. However, such a choice is not unique.

To see this, consider the measurement context (y,A) for the composite system S of two spin 1/2 par-
ticles with the state space . = C>® C?, consisting of the singlet state y = 27 1/2(|4,)| =) — | =) |+.))
and the z-component A = ¢, ® I of Pauli spin operators of the first particle. In this case, we have many
beable subalgebras By = W*(0,) ® W*(0y ), Where 6y = cos 00, +sinfo,, for 0 < 6 < ﬂE] Yet, there
is no common maximal subalgebra %, since if B were to include By and By with 0 £ ', there
would be no dispersion-free state on PBpax-

To consider which beable subalgebra we should choose, recall the debate between EPR [14] and
Bohr [6]] around the “reality criterion” proposed by EPR.

If, without in any way disturbing a system, we can predict with certainty (i.e., with probabil-

ity equal to unity) the value of a physical quantity, then there exists an element of physical

reality corresponding to this physical quantity. |14} p.777]
EPR argued, in accordance with this criterion, that in the EPR state the position and momentum of
the second particle have simultaneous reality, because the measurement on the first particle measures
the second particle without disturbing it [36, p. 334]. Yet, the position and momentum cannot have
simultaneous reality in any states by the uncertainty principle, so that EPR concluded that quantum-
mechanical description of physical reality is incomplete. Bohr immediately responded to EPR. Bohr
claimed that although the measurement on the first particle does not mechanically disturb the second
particle, the measurement on the first particle influences the condition that defines elements of reality for
the second particle, and he rejected EPR’s conclusion.

[T]here is in a case like that just considered no question of a mechanical disturbance of the
system under investigation during the last critical stage of the measuring procedure. But
even at this stage there is essentially the question of an influence on the very conditions
which define the possible types of predictions regarding the future behavior of the system.
... [W]e see that the argumentation of the mentioned authors [EPR] does not justify their
conclusion that quantum-mechanical description is essentially incomplete.” [6, p. 700]

Following the reality criterion posed by EPR [[14]], but “contextualized” to the particular measurement
context (y,A) as suggested by Bohr [6] above, we should choose By = I ® 0; to be a beable in this
measurement context but not Bg = I ® 6y with 6 # 0, because only the value of By can be inferred from
the value of A = 6, ® I in the measurement context (y,A) without disturbing the second particle. If the
observer were to measure the observable A’ = o, ® I instead of A = 6, ® I, then from the value of A the
observer could infer the value of By, = I ® 0y without disturbing the second particle. EPR might have
concluded that both By and By, are beables, or elements of reality. However, Bohr [6] pointed out that
the status of being beable depends on the inference from the value of A to the value of By or the inference
from the value of A’ to the value of B, /2, but each inference is justified only in the respective context,
in which classical logic and classical mathematics can be used in the ordinary sense, and that there is
no context-free classical language that supports the above two types of inferences simultaneously. Thus,
what are beables of the second particle depends on what is measured on the first particle as Bohr [6]]
suggested.

Halvorson and Clifton [18, pp.14—15] proposed a mathematical approach to single out appropriate
beable subalgebras consistent with the above “contextualized” reality criterion, as follows. We say that

>For an observable X, we denote by W*(X) the von Neumann algebra generated by X if X is bounded, or the von Neumann
algebra generated by EX (x) for all x € R.
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a von Neumann algebra 2 is implicitly definable by a measurement context (y,A) iff U* BU = A for
any unitary U € £ () such that U*AU = A and Uy = y. In other words, 4 is implicitly definable by
(y,A) iff the membership relation X € Z for any X € £ () is not affected (i.e., X € £ if and only if
o(X) € %) by any automorphism «a of .Z(.) that leaves y and A invariantﬁ which is widely used in
foundational studies, for example, by Malament [23, p.297]. A beable subalgebra & for (y,A) is called
definable iff it further satisfies

(iii) (Def) £ is implicitly definable by (y,A).

We call a von Neumann algebra 9 a maximally definable beable subalgebra for the measurement
context (y,A) iff A satisfies (A-Priv), (Beable), and (Def) and # is maximal (in the set inclusion)
among all von Neumann subalgebras of £’ () satisfying those three requirements. Then, the celebrated
Halvorson-Clifton uniqueness theorem [[17] is stated as follows.

Theorem 2.1 (Halvorson-Clifton [17]). For any state v and an observable A, there exists the unique
maximally definable beable subalgebra %(y,A) for the measurement context (y,A), and it is of the
form

B(y,A) =W*(A)PD.L(P+), 4)

where P is the projection from F onto the cyclic subspace € (y,A) of F generated by W and A, i.e,
€ (y,A) = {f(A)w | f is a bounded Borel function}*=.

3  Quantum logic

Bohr’s view has, unfortunately, prevailed with several improper restatements, and there have been only
a few serious attempts to reconstruct his reply in a rigorous analysis. In his early contribution, Howard
[19420] attempted to clarify what is the element of physical reality for Bohr. He focused on Bohr’s
notion of “classical description”. In fact, Bohr emphasizes in several places that one should describe
experimental evidence classically[]

Howard’s view was further sharpened by Halvorson and Clifton [18]] in the framework of modal
interpretations as presented in the preceding section; see also Ref. [33]] for mathematical refinements.
While Howard [[1920] formulated Bohr’s classicality requirement by the notion of “appropriate” mixture,
Halvorson and Clifton reformulate it as the requirement that the Born probability distribution admit the
ignorance interpretation. However, Bohr never explained his notion of “classical description” by the
ignorance interpretation of the Born probability distribution. In this paper, we attempt to go a step
further.

In view of Bohr’s writings, it seems that “classical” means classical physics, but he also stated:

[I]t would seem that the recourse to three-valued logic, sometimes proposed as means for
dealing with the paradoxical features of quantum theory, is not suited to give a clearer ac-
count of the situation, since all well-defined experimental evidence, even if it cannot be
analysed in terms of classical physics, must be expressed in ordinary language making use
of common logic. [7, p. 317]

6 Any automorphism & of .Z () is of the form a(X) = U*XU for some unitary U € .2 () [34, p. 119].

7“[Mt is decisive to recognize that, however far the phenomena transcend the scope of classical physical explanation, the
account of all evidence must be expressed in classical terms. The argument is simply that by the word “experiment” we refer
to a situation where we can tell others what we have done and what we have learned and that, therefore, the account of the
experimental arrangement and of the results of the observations must be expressed in unambiguous language with suitable
application of the terminology of classical physics.” [8 p.209]



6 Hidden-Variable Theories and Quantum set theory

According to the above, we can see that what Bohr refers to in the word “classical” is a broader
concept than classical physics and it is well understood as the classical language that obeys classical
logic rather than quantum logic. Therefore, if the algebraic reconstruction should be consistent with
Bohr’s original view, the language that speaks of the beables should obey classical logic and theorems
of classical mathematics. The purpose of this paper is to rigorously realize this interpretation of Bohr’s
view in the framework of quantum set theory.

Recall that the logic of observational propositions on the system S is represented by the projection
lattice &2 (.¢) of all projections on .7Z. In order to treat a context-dependent part of the whole observa-
tional propositions, we consider a sublogics of & () represented by the projection lattice (. ) of a
von Neumann subalgebra .# of £ (7). Let .# be a von Neumann algebra on .7 and denote by &'(.#)
the set of observables affiliated with .#. The observational propositions on the observables affiliated with
M are constructed from atomic propositions “X <, A”, where X € O(.#) and A € R, by connecting
them with A (conjunction), V (disjunction), — (conditional), <+ (equivalence), and — (negation). In what
follows, we consider only the conjunction and negation as primitive symbols and the other connectives
as derived symbols by the following definitions: @; V @ = =(=@; A—=¢2), @1 — @2 = —@1 V (1 A @),
01 < 0= (o1 = ©2) A (P2 — @1). Here, we note that the conditional — is defined as the Sasaki condi-
tional [35]. We denote by L(.#) the set of observational propositions on the observables in &(.#). We
also write L(7) = L(Z (). We have L(.#,) C L(#,) if 4, C M>.

Following Birkhoff and von Neumann [3]], every observational proposition ¢ has the projection-
valued truth value [@], determined by the following rules.

) [[X <o k]]o = EX(A)

(D) [@1 A @20 = [@1]]o A [@2]lo-

(i) [~ello = [¢]o™

Then for every observational proposition ¢ we define the probability that the observational propo-
sition ¢ holds in the state y by Pr{@|w} = ||[@]ow|]*>. It is well-know that the logic of observational
propositions in L(.77) is non-distributive, so that it does not necessarily follow the laws of classical logic.
According to Bohr’s view on “classical description” it is natural to expect that in the state y the language
L (%) satisfies classical logic and all the mathematical theorems, if 4 is beable for the state y. However,
the language L(.#) has only a limited power in expressing observational relations between observables,
just as the propositional logic has only a limited power in expressing relations between mathematical ob-
jects. In fact, the language L.(.#) cannot generally express relations between observables in &'(.#') such
as equality and order relation, so that it cannot assign the projection valued truth-value, or the probability
in the state y, for the proposition “A and B have the same value”. In what follows we strengthen the
language of observational propositions to have full power of expressing all the mathematically definable
relations between observables with projection-valued truth values.

4 Quantum set theory

In this and the next sections, we shall introduce basic facts about quantum set theory. We refer the reader
to Ref. [31] for detailed formulations. Let .# be a von Neumann algebra. The purpose of quantum set
theory is to extend the universe, or a ground model, V of ZFC set theory to a sort of “generic extension”
V[.#] adding self-adjoint operators affiliated with .# as “generic reals” to V.

We denote by V the universe of the Zermelo-Fraenkel set theory with the axiom of choice (ZFC).
Let L(€) be the language for first-order theory with equality augmented by a binary relation symbol €,
bounded quantifier symbols Vx € y, dx € y, and no constant symbols. For any class U, the language
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L(€,U) is the one obtained by adding a name for each element of U. We take the symbols —, A, Vx € y,
and Vx as primitive, and the symbols V, —, <+, 3x € y, and Ix as derived symbols by defining:

) o1V e =—(=p1 A=),

(i) @1 = @2 ==p1 V(91 A ),
(i) @1 < @2 = (@1 = @) A (92 = 1),
(iv) I eypx) =~(Vxcy-9(x)),

(V) Fx@(x) = ~(Vx=9(x)).

Let .# be a von Neumann algebra on a Hilbert space .7#°. For each ordinal o, let

Vol ) = {u| u:dom(u) - P(A) and (3B < o) dom(u) C Vp[.#] } (5)
The P (A )-valued universe V[.#] is defined by
U Val2], (6)
acOn

where On is the class of all ordinals. We shall write Vi [7] = Vi [ ()] and V [ = V[.L (). For
every u € V[, the rank of u, denoted by rank(u), is defined as the least o such that u € Vo [#]. Tt
is easy to see that if u € dom(v) then rank(u) < rank(v).

We introduce the implication operation — and its dual conjunction operation * on the lattice 2 ()
by P— Q=P-V(PAQ)and PxQ = PA(P+VQ), or equivalently P+ Q = (P — Q*)*, for any
P.Q € P (). The operation — on P () is called the Sasaki arrow and the operation Q — P Q is
called the Sasaki projection [21]].

For any u,v € V[.#], the & (. )-valued truth values of atomic formulas u = v and u € v are assigned
by the following rules recursive in rank.

i) [u=v]y= inf (w)—[uev] )N inf O)—=[V €uly).
u' edom(u) v'edom(v)

i) [uev].z= sup (vO)*[u=V].»).
vedom(v)

To each statement ¢ of L(€,V [.#]) we assign the &2 (.# )-valued truth value [[¢]_, by the following
rules.

(viii) [-¢].s = [o].«
(ix) [P1 A= [[901]]%/\[[%]]//1-
® [(ewo]ls= N (@)= [o0)]r)
u'edom (u)
D) [ eWls= A low]as
ueV[.H#)

We say that a statement @ of L(€,V[.#]) holds in V[.#) if @], = 1. A formula in L(€,V[.Z])
is called a Ag-formula iff it has no unbounded quantifiers Vx or Ix. The following theorem holds [31}
Theorem 4.3].

Theorem 4.1 (Ag-Absoluteness Principle). For any Ag-formula @(x,...,x,) of L(€) and uy,...,u, €
V[, we have

[pGer,....n)ar = [t )] ™

8We denote by dom(f) the domain of a function f. By f : D — R we mean that f is a function defined on a set D with
values in a set R.
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Henceforth, for any Ap-formula @ (xi,...,x,) and uy,...,u, € V[.#], we abbreviate [@(ui,...,u,)] =
lo(u1,... ,us)]|.z, which is the common & (¢ )-valued truth value for uy,...,u, € V[.77).

The universe V can be embedded in V[.#] by the following operation V : v — Vv defined by the €-
recursion: for each v € V, v = {ii| u € v} x {I}. Note that v € V[.#] for any v € V and any von Neumann
subalgebra . C £ (7). Then we have the following [31, Theorem 4.8].

Theorem 4.2 (Aj-Elementary Equivalence Principle). For any Ag-formula ¢(xi,...,x,) of L(€) and
Ui,...up €V, we have (V,€) = @(uy,...,u,) if and only if [@ (i1, ..., i,)] = 1.

Thus, V[.#] includes (a copy of) the standard universe V as a Ag-elementary equivalent submodel.
For further detail about the universe V[.#] we refer the reader to [31].

S Transfer principle

For any u € V[.#], we define the support of u, denoted by L(u), by transfinite recursion on the rank of u
by the relation

Lu)= |J Lx)U{u(x)|xedom(u)}u{0}. (8)

xedom(u)

For o7 C V[.#]| we write L(%/) = U,y L(u) and for uy,...,u, € V[.#]| we write L(ui,...,u,) =
L({u1,...,un}). Let & C L (). The commutant of <7 in £ (), denoted by <7’ is defined by

o' ={A e L(H)|[A,B]=0forall Be o}, 9)

and the commutant of o/ in (), denoted by 7', is defined by &' = &' N P ().
Let o C P (). Takeuti [37] introduced the commutator of </, denoted by com(.e/), given by

com(#) = \/{E € @' na" | [P,QJE =0 forall ,Q € &/}. (10)

For any Py,...,P, € (), we write com({Py,...,P,}) = com(P,...,P,). We refer the reader to [2§]]
for further properties of commutators.
Let o C V[.#]. The commutator of <7, denoted by com(.<7), is defined by

com(e/) = com(L()). (11)

For any uy,...,u, € V[.#], we write com(uy,...,u,) = com({uy,...,u,}).
We have the following transfer principle for bounded theorems of ZFC [31, Theorem 4.15].

Theorem 5.1 (Ao-ZFC Transfer Principle). For any Ag-formula @(xy,...,x,) of L(€) and uy,...,u, €
V[A), if o(x1,...,x,) is provable in ZFC, then

lo(ui,...,u,)] > com(uy,...,u,). (12)

6 Internal real numbers in quantum set theory

Let @ be the set of rational numbers in V. We define the set of rational numbers in the model V[.#] to
be @Q. We define a real number in the model by a Dedekind cut of the rational numbers. More precisely,
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we identify a real number with the upper segment of a Dedekind cut whose lower segment has no end
point. Therefore, the formal definition of the predicate R (x), “x is a real number,” is expressed by

R(x) = WexpeQ)AIyeQrex)ATyeQy¢x)
AVy e Qyex<VzeQ(y<z—2z€x)). (13)

We define R[.#] to be the interpretation of the set R of real numbers in V[.Z] as follows.
R[.#] = {u € V[.#] | dom(u) = dom(Q) and [R(u)] = I}. (14)
For any u € R[.#] and A € R, we define E“(1) by

E'A) = N\ u(). 15)

A<re@

Then it can be shown that {E"(1)}, <R is a resolution of identity in &?(.#) and hence by the spectral
theorem there is an observable @i € O (.#) uniquely satisfying &t = [ AdE“(A). On the other hand, let
A€ O(M). We define A € V[.#] by

A={(FEAr) | reQ}. (16)

Then dom(A) = dom(®Q) and A(# F) = EA(r) for all r € Q. Tt is easy to see that A € R[.#] and we have
()" = u for all u € R[.#] and (A)" = A for all A € O(.#). Therefore, the correspondence between
R[] and O () is bijective. We call the above correspondence the Takeuti correspondence. Now, we
have the following.

Theorem 6.1. The relations
() E*A)= N u(® foralldeq,
A<re@
(i) u(¥)=EA(r) forallrc @,
where u = A € R[4 and A = it € O(MH), sets up a bijective correspondence between u € R[.#| and
Ae o).
For any r € R, we shall write 7 = (r1); where r1 is the scalar operator on .7#. Then we have

dom(7) = dom(®Q) and #(¥) = [[¥ < {], so that we have L(7) = {0, 1}. The order relation for u,v € R[.#]
is naturally defined by

u<vi=WVxeQ)xcv—-xcul. (17)

Recall that a formula @(x1,...,x,) € L(€,V[.#]) is called a Ap-formula iff it contains no unbounded
quantifiers Vx nor 3x. In this paper, we focus on the sublanguage Lo (€, V[.#]) consisting of Ap-formulas
in L(€,V[.#]). Then, for every statement ¢ € Lo(€,V[.#]) we have the (.4 )-valued truth value
[¢] = [[@] #() and for every observable X € &(.#) we have a real number X € R[.#] in V[.Z].
Thus, there is an embedding of every observational proposition ¢ in the language L(.#) into a statement
@ in the language Lo(€,V[.#]) defined by the following rules for any X € &(.#) and x € R, and
observational propositions @, @1, @»:

QD) X<, x:=X <%
(Q2) 59 := .
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(Q3) @1 A= Gi A
Then, it is easy to see that the relation

(] = [ol, (18)

holds for any observational proposition ¢.

Thus, all the observational propositions are embedded in a set of statements in Lo(€,V[.#]) pre-
serving their projection-valued truth values. Quantum set theory provides a language strong enough
to express all the possible mathematical relations among observables. For every mathematical relation
R(x1,...,x,) definable in ZFC set theory, we can assign the quantum logical truth value [R(X,...,X,)] €
P (M) of the relation R(Xy,...,X,) for any observables Xi,...,X, € (). For example, we can
generally define the projection valued truth values for the order relation and the equality relation for
observables so that the following relation hold:

.

[X<¥]=[(vxeQ)[¥
<

x x— X <A, (19)
[X=Y]=[X<YAY

<
X]. (20)

7 Beable subuniverses

Let y € % be a state. We say that a statement @ (uy,...,u,) € Lo(€,V[.#Z]) holds in y, and write y |-
O(uy,...,uy), iff Pr{@(uy,...,u,)||y} =I. For any von Neumann algebra .2 C .Z (7€), the subuniverse
V[ C V[ is said to be ZFC-satisfiable in y iff

yiEo(up,... uy) (21)

for any uy,...,u, € V[.#| and any formula @(x,...,x,) € Lo(€) provable in ZFC.
The following theorem holds.

Theorem 7.1. Let .# be a von Neumann algebra on 5. Then the following conditions are all equiva-
lent.

(i) V[ is ZFC-satisfiable in .
(ii) . is beable for .
(iii) [X,Y|y=0foranyX,Y € .
(v) |v)(y| <com(uy,...,uy) forany uy,...,u, € V[.AH].

8 Context-definable beable subuniverses

Let (y,A) be a measurement context. For any unitary operator U on ¢, we define oy : V[5¢] — V[.H|
by transfinite recursion on the rank of u € V[J¢] as

oy (u) ={{ay(x),U u(x)U) | x € dom(u)}. (22)

A subclass % C V[.#] is called definable by (y,A) iff

WhAe,

(i) oy (% ) C % for any unitary operator U on ¢ satisfying [A,U] =0and Uy = y.

A subuniverse V[.#| C V[7] is called a maximally definable ZFC-satisfiable subuniverse for the
measurement context (y,A) iff V[.Z] is a ZFC-satisfiable subuniverse in y definable by (y,A) and
there is no ZFC-satisfiable subuniverse V[.#] definable by (y,A) that properly includes V[.#]. Then,
we have the following.



M. Ozawa 11

Theorem 8.1. (i) A subuniverse V[.# is a ZFC-satisfiable subuniverse of V[7¢] definable by (y,A) if
and only if A is a beable subalgebra of £ () definable by (y,A).

(ii) There uniquely exists a maximally definable ZF C-satisfiable subuniverse V[.#| C V[ for any

measurement context (Y,A). In this case, M is of the form M = B(y,A), ie.,

M =W (A)POL(P+H), (23)

where P is the projection from S onto the cyclic subspace € (y,A) of H generated by W and A.
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Generators and Relations for 2-Qubit Clifford+7 Operators

Xiaoning Bian and Peter Selinger

Dalhousie University

We give a presentation by generators and relations of the group of Clifford+7 operators on two
qubits. The proof relies on an application of the Reidemeister-Schreier theorem to an earlier result
of Greylyn, and has been formally verified in the proof assistant Agda.

1 Introduction

The simplification of Clifford+7 circuits is a topic of current interest in quantum computing [4} |5} |6,
15,116, [17]]. The Clifford+T gate set is both universal [18] and convenient for quantum error correction
[9], and is therefore the preferred gate set for fault-tolerant quantum computing. Generally, in a fault-
tolerant regime, applying a Clifford gate is some orders of magnitude cheaper than applying a T-gate,
and therefore, it is sensible to try to simplify circuits so as to minimize the 7-count [3]. Many methods
for doing so have been proposed in the recent literature, including methods based on matroid partitioning
[2], Reed-Muller codes [4], and ZX calculus [3,16,/16]. Regardless of which method is used, the objective
is to replace a Clifford+7 circuit by a simpler, but equivalent circuit. This requires being able to tell when
two circuits are equivalent. Surprisingly, no complete set of relations for ancilla-free Clifford+7 circuits
is currently known, i.e., there is no known set of relations by which any two equivalent Clifford+7
circuits can be transformed into each other.

In this paper, we give such a complete set of relations for the case of 2-qubit Clifford+7 circuits. We
do this in several steps. First, a presentation of the group U4(Z[%, i]) of all unitary 4 x 4-matrices over

the ring Z[\%, i] is known due to the work of Greylyn [13]. Second, it is known that the group of 2-qubit
Clifford+T circuits is exactly the subgroup of this group consisting of matrices whose determinant is in
{£1,4i} [10]. Third, there is a theorem in group theory called the Reidemeister-Schreier theorem, by
which a complete set of relations for a subgroup can be derived from a complete set of relations for the
supergroup. Fourth, since the resulting relations are very long and complicated, we simplify them.

The last two steps of this procedure (applying the Reidemeister-Schreier theorem and simplifying
the resulting relations) require a large amount of algebraic manipulations. Our longest equational proof
has 480 steps, each of which in turns requires a lemma or rewrite procedure whose proof itself requires
many equational steps. Such proofs would be impossible to verify by hand, and even verifying them by
software is error-prone since it is hard to guarantee that no unwarranted assumptions were used. For this
reason, we encoded our proof in machine-checkable form, using the proof assistant Agda [1]].

The rest of this paper is organized as follows. In Section 2] we state our main result. Section [3]
gives a brief overview of the proof. In Section 4] we present the required background material, including

Greylyn’s presentation of Uy (Z[-=,i]), the Reidemeister-Schreier theorem, and the Pauli rotation repre-

V2’

sentation, which is an important tool for manipulating Clifford+T circuits. We also briefly describe our
reasons for formalizing our proof in a proof assistant. Section [3|describes our formal proof of the main
result. In Section [6] we briefly discuss the meaning of the Clifford+7 relations, and especially of the

three “non-obvious” relations. Section [/lcontains some concluding remarks and ideas for future work.
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2 Statement of the main result

Recall that the set of Clifford operators is generated by the operators

1 100 0
o =™, Hzﬁ(i 1) os=(0}) @= §ég 81 :

and is closed under multiplication and tensor product. Every such operator U is of size 2" x 2" for some
natural number n, and as usual, we say that U is an operator on n qubits. We write ¢'(n) for the group
of n-qubit Clifford operators. It is well-known that this group is finite for any given n [21]], and therefore
not universal for quantum computing. We obtain a universal gate set by also adding the T-gate as a

generator.
/10
7=(0 o)

The resulting operators are called the Clifford+7 operators, and we write .7 (n) for the n-qubit Clif-
ford+7T group.

In this paper, we focus on the case n = 2. Our goal is to give a complete presentation of the 2-qubit
Clifford+T group in terms of generators and relations. To ensure that all of our generators are 4 x 4-
matrices, we introduce the following notation: we write 7o =7 ® [ and T} = ® T, and similarly for Hy,
Hy, Sy, and S|. We also identify the scalar @ with the 4 x 4-matrix @/. Our main result is the following:
Theorem 2.1. The 2-qubit Clifford+T group is presented by (2 ,T"), where the set of generators is

2 ={w,Hy,H1,50,51,To,T1,(Z},

and the set of relations T is shown in Figure[ll
In Figure [1 we have used circuit notation to express some of the relations; for example, we have

written
—TH _—
, T and

for Ty, T1, and CZ, respectively. Note that the qubits are numbered from top to bottom. We write circuits
in the same order as matrix multiplication. Moreover, in relations (CI8)—(C20), we have used a number
of abbreviations; these are defined in Figure 2l The empty word is denoted €.

3 Proof outline

In a nutshell, the proof can be described in a few sentences. It proceeds as follows. Let R = Z[%, i] be

the smallest subring of the complex numbers containing % and i, and let G = U4(R) be the group of

unitary 4 x 4-matrices with entries in R. Then it is clear that ¥".7 (2) is a subgroup of G, because all of its
generators belong to G. Moreover, from [10], it is known that ¢ .7 (2) is precisely equal to the subgroup
of G consisting of matrices whose determinant is a power of i. A presentation of G by generators and
relations was given by Greylyn [13]]. There is a general procedure, called the Reidemeister-Schreier
procedure [19} 20], for finding generators and relations of a subgroup, given generators and relations of
the supergroup. Applying this procedure therefore yields a complete set of relations for €7 (2).

While in principle, the above proof outline suffices to prove Theorem in practice there is a large
amount of non-trivial work involved in generating and simplifying the actual relations. For this reason,
we have formalized Theorem and its proof in the proof assistant Agda. This allows the proof to be
independently checked without too much manual work.
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(a) Monoidal relations:

wA = Aw, whereAe€{H;,S; T, L} (CD)
AoB1 = BjAy, WheI'CA,BE{H,S,T} (C2)

(b) Order of Clifford group elements:

(C3)
(C4)
(C5)
(Co)
(C7)

S£N
Il
m g ™ o oo

(c) Remaining Clifford relations:

(C8)

(C9)

=l =
~IHSHSHI - -

-
=

(C10)

BE
][]
[
[

(C11)

][]
][]
[
[

[

[

[

[
|

) (C12)

) (C13)

] [l
[x]
2

|

=

[
=]

(d) “Obvious” relations involving T':
7 = S (Cl14)

(THS;SH)*> = (C15)

(C16)

(C17)

(C18)

(C19)

(C20)

Figure 1: Relations for 2-qubit Clifford+T operators. Here i € {0,1}.
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T8 = 17
st = &

-

pe
& = dmoom
e

[H — [SHEHT HO{rHAHS]

H
O
o - @

Figure 2: Abbreviations used in circuit notations

4 Background
4.1 Presentation of U4(Z[%, i])

As usual, Z is the ring of integers. Let R = Z[%,i] be the smallest subring of the complex numbers

containing % and i. Let @ = ¢"*/* be an 8th root of unity, and note that @ = % € R. As before, Us(R)
is the group of unitary 4 x 4-matrices with entries in R.

Greylyn [13] gave a presentation of Us(R) by generators and relations. His generators are (OFR
Xijx» and Hj; . where j,k € {0,...,3} and j < k. The relations are shown in Figure 3l The intended
interpretation of the generators is as 1- and 2-level matrices; specifically, @y; is like the identity matrix,
except with @ in the jth row and column, and X|;  and H|; ;) are like identity matrices, except with the
entries of X, respectively H, in the jth and kth rows and columns, like this:

ek S

e 1 00 00 :I(I)O(l)o

1 0 0 ilo oo 10 i|0 5 0 5 0

o =70 o 0|, Xjg= 007 00|, Hjg=:[0 01 0 0
1o o0 1 k|l 0 1 0 0 0 k|0 £ 0o —L o

V2 V2

00001 00 0 0 I

Note that we index rows and columns of matrices starting from 0, whereas Greylyn indexed them starting
from 1. Greylyn’s result is the following:

Theorem 4.1 (Greylyn [13]]). A presentation of the group Us(R) is given by (¥ ,A), where the set of
generators is % = {0, Xj i, Hjj | j,k €{1,...,4} and j <k}, and the set of relations A is shown in
Figure

4.2 The Reidemeister-Schreier theorem for monoids

The Reidemeister-Schreier theorem is a theorem in group theory that allows one to derive a complete set
of relations for a subgroup from a complete set of relations for the supergroup, given enough information
about the cosets. We will use a version of the Reidemeister-Schreier theorem that works for monoids,
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(a) Order of generators:

8
@ €
2
Hijy €
2
Xijn €
(b) Disjoint generators commute:
COU] CO[k] = CO[k] COU], where ] #k
w[((]H[j,k] = H[jvk] a)m, where ¢ 75 j,k
w[((]X[j,k] = X[jvk] (l)[(g], where ¢ 75 j,k
H[j,k]H[[{,t] = H[Z7Z]H[j7k]7 where {g,t} N {j,k} =0
H[j’k]X[(gJ] = X[Z,Z]H[j,k]7 where {g,t} N {j,k} =0
X[j’k]X[(gJ] = X[Z,I]X[j,k]7 where {g,t} N {j,k} =0
(¢) X permutes indices:
Xjnoy = 0y
Xjuoy = OyXjx
XiwXjg = XX
XijmXie = XewXjn
XijwHjg = HioXjjx
XjmHey) = HpnXjjn
(d) wyj @y is diagonal:
OO X ja = X[jx @ O
O H g = Hiji oo
(e) Relations for H:
HnXjn = OyHjx
2 6 35
HijnopHjg = oH 0050
HjjoHpaHjjoHyy = HjgHpgHjjgHpen, wherek </f

17

(GI)
(G2)
(G3)

(G4)
(G5)
(G6)
(G7)
(G8)
(G9)

(G10)
(G11)
(G12)
(G13)
(G14)
(G15)

(G16)
(G17)

(G18)

(G19)
(G20)

Figure 3: Greylyn’s relations for U4(Z[%, i]). Whenever we use a generator X[jx or Hjj 4, we implicitly

assume that j < k.
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which we now describe. To our knowledge, this monoid formulation of the Reidemeister-Schreier theo-
rem does not appear in the literature.

If X is a set, let us write X* for the set of finite sequences of elements of X, which we also call
words over the alphabet X. We write w - v or simply wv for the concatenation of words, making X* into a
monoid. The unit of this monoid is the empty word €. As usual, we identify X with the set of one-letter
words.

Let G be a monoid and let X C G be a subset of G. We write (X) for the smallest submonoid of G
containing X, and we say that X generates G if (X) = G. Given any word w € X*, we write [w|g € G
for the canonical interpretation of w in G, i.e., [—]|s : X* — G is the unique monoid homomorphism such
that [x]¢ = x for all x € X.

A relation over X is an element of X* x X*, i.e., an ordered pair of words. We say that a relation (w,v)
is valid in G if [w]g = [v|g. If I' is a set of relations over X, we write ~r for the smallest congruence
relation on X* containing I". Here, as usual, a congruence relation is an equivalence relation that is
compatible with the monoid operation, i.e., such that w ~ v and w' ~ V' implies ww’ ~ vv'. Given a set X
of generators for a monoid G and a set I of valid relations, we say that I" is complete if for all w,v € X*,
[w]g = [v]¢ implies w ~r v. In that case, we also say that (X,I") is a presentation by generators and
relations (or simply presentation) of G.

Definition 4.2. Given sets X,Y and a function f: X — Y*, let f*: X* — Y* be the unique monoid
homomorphism extending f. Concretely, f* is given by f*(x1...x,) = f(x1) ...  f(xn).

More generally, given sets C,X,Y and a function f:Cx X —Y* xC,let f*:CxX* —Y*xC be
the function defined by f**(co,x1...x,) = (Wi ... wy,cp), where f(c;—1,x;) = (wi,¢;) foralli=1,...,n.

Note that in case C is a singleton, the functions f* and f** are essentially the same. In general, the
difference is that f** also keeps a “state” in the form of an element of C.

Theorem 4.3 (Reidemeister-Schreier theorem for monoids). Let X and Y be sets, and let I" and A be sets
of relations over X and Y, respectively. Suppose that the following additional data is given:

* a set C with a distinguished element I € C,

* afunction f : X — Y7,

* afunction h:CxY — X*xC,
subject to the following conditions:

(a) Forallx e X, if (I, f(x)) = (v,c), then v ~rxand c = I.
(b) For all ¢ € C and w,w' € Y* with (w,w') € A, if h**(c,w) = (v,¢') and h**(c,w') = (V/, ") then
verV and ' =c".
Then for all v,v' € X*, *(v) ~a f*(V') implies v ~r V.

To better understand the utility of this theorem, let us briefly provide some context. First, we note
that we will be using this theorem in the case where G is a monoid, H is a submonoid of G, (Y,A) is a
presentation of G, X is a set of generators for H, and we wish to show that some proposed set of relations
I is complete for H. Assuming that all hypotheses of Theorem[4.3]are satisfied, and further assuming that
f represents the inclusion function of H into G, i.e., that for all x € X, [f(x)]¢ = [x]u, the completeness
of I then follows. Namely, [v]y = [V/]g implies [f*(v)]¢ = [f*(V')]c, which implies f*(v) ~a f*(V') by
completeness of A, which implies v ~r V' by Theorem

To see how the theorem works, it is useful to further concentrate on the case where G and H are
groups, although the theorem itself does not require this. In the case of groups, one would typically
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consider the set H\G = {Hc | ¢ € G} of right cosets of H in G, and one would let C be a set of chosen
coset representatives. The function f is then chosen to assign to each x € X some word w € Y* such
that [x]y = [w]g. The function A is chosen to assign to each pair of a coset representative ¢ € C and
generator y € Y the unique coset representative ¢’ € C and some word v € X* such that c[y]g = [v]uc’.
Conditions (a) and (b) are then sufficient for the set of relations I" to be complete. In the more general
case of monoids, G is not necessarily partitioned into cosets, but the method works anyway, provided
that appropriate C, f, and & can be chosen.

Proof of Theoremd.3] Let us say that a word w € Y* is special if h**(I,w) = (v,I) for some v € X*. Let
Y, be the set of special words. By definition of #**, the empty word is special and special words are
closed under concatenation, so Y;* is a submonoid of Y*. Moreover, the image of f is special by property
(a), and therefore the image of f* is also special. Finally, there is a translation back from special words
inY to words in X: define g : Y;* — X* by letting g(w) = v where 2**(I,w) = (v,I). Clearly, g is a monoid
homomorphism.

Claim A: for all v € X*, we have v ~r g(f*(v)). Proof: Since both g and f* are monoid homomorphisms
and ~r is a congruence, it suffices to show this in the case when v € X is a generator. But in that case, it
holds by assumption (a).
Claim B: for all w,w’ € Y* and ¢ € C, if w ~p w' and h**(c,w) = (v,d) and h**(c,w') = (V/,d’), then
v~rVv and d = d'. Proof: define a relation ~ on Y* by w ~ w' if for all ¢ € C, h**(c,w) = (v,d) and
r*(c,w") = (V,d") implies v ~r V' and d = d’. We must show that w ~4 w' implies w ~ w’. Since ~4 is,
by definition, the smallest congruence containing A, it suffices to show that ~ is a congruence containing
A. The fact that ~ is reflexive, symmetric, and transitive is obvious from its definition. The fact that it is
a congruence follows from the definition of #** and the fact that ~r is a congruence. Finally, ~ contains
A by assumption (b).

Note that, as a special case of claim B, we also have the following: if w,w’ € Y;* are special words,
then w ~, w' implies g(w) ~r g(w'). This follows directly from the definition of g.

To finish the proof of the Reidemeister-Schreier theorem, let v,/ € X* and assume that f*(v) ~4
F*(V'). Then we have:

vo~r g(f(v) ~rog(f (V) ~r v,

where the first and last congruence holds by claim A, and the middle one holds by the special case of
claim B. Therefore, v ~r V' as claimed. O

Corollary 4.4. Let G be a monoid with presentation (Y,A), where Y C G. Suppose H C G is a submonoid
and X is a set of generators for H. Let I" be a set of valid relations for H. Assume a set C and functions
f and h are given, satisfying the hypotheses of Theorem and assume that f represents the inclusion
function of H into G, i.e., that x € X, [f(x)|¢ = [x]u. Then T is a complete set of relations for H. O

4.3 Pauli rotation representation

One of the problems we face in applying the Reidemeister-Schreier theorem is that we must show that
a large number of (computer-generated) Clifford+7 relations follow from the relations in Figure [Il It
would be very useful if this task could be automated. Ideally, the relations in Figure [1lcould be turned
into a set of rewrite rules with the property that every Clifford+7 circuit can be rewritten to a unique
normal form; in that case, to show that a given relation follows from the ones in Figure [1} it would be
sufficient to reduce the left-hand and right-hand sides to normal form and check that they are equal.
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Unfortunately, no such rewrite system or normal form is known. Instead, the best we can do is a
semi-automated process in which words are rewritten to something that is “almost” a normal form, i.e.,
not quite unique, but close enough so that many relations can be proved automatically, and the rest are
more easily solvable by hand.

For this, the Pauli rotation representation of Clifford+T operators turns out to be useful. This repre-
sentation was first described in [12} Section 3]. We start by noting that the T-gate is a linear combination
of the identity / and the Pauli operator Z. Specifically:

/10 _I+o 1—w
T‘(Ow)_ 2 It A M
Therefore, an operator A commutes with 7" if and only if it commutes with Z. More generally, given any

n-qubit Pauli operator P, define
I+, 1-o
Rp = —I+—P. 2
P 51+ — (2)
Note that Ry = T. We refer to the operators Rp as (45 degree) Pauli rotations. Note that Rp is not a Pauli
operator; we call it a Pauli rotation because it is a rotation about a Pauli axis. By (), it is again obvious
that an operator A commutes with Rp if and only if it commutes with P. Moreover, from (2)), we get the

following fundamental property of Pauli rotations:
CPC™'=Q ifandonlyif CRpC™' =Ry. (3)

LetZ;) =1®..01IQ®Z®I1®...®I be the n-qubit Pauli operator with Z acting on the ith qubit, and
similarly 7)) =1®... QIQT®I®...QI = Rz, . Since the Clifford operators act transitively on the set
of non-trivial self-adjoint Pauli operators by conjugation, for every such n-qubit Pauli operator P, there
exists a (non-unique) Clifford operator C such that CZ(l)C*1 = P, and therefore CT(l)C*1 = Rp. We
therefore see that all of the Pauli rotations are Clifford conjugates of the 7(;)-gate.

Next, we note that every Clifford+7 operator can be written as a product of Pauli rotations followed
by a single Clifford operator. Specifically, by definition, every Clifford+7 operator can be written as

CiTiCo T3, Cs -+ CuT(, ) Gt 1.«
For all k, let D;, = C1C5 - - - Cy, so that Cy, = Dkille. Then the above can be rewritten as

CTi)CTi) G G Corr = CiRy, \GRz, G- Gy Cag
= DiRz, Dy'DsRz, D,'Ds---D, ! \DyRy, Dy ' Dy

= RDlz(il)DflRDzz(iz)Dgl'”RDnZ(,-n)DZlD”"‘l
= RpRp,---Rp,Dpyy,

where P, = DkZ(,-k)Dlzl. Therefore, every Clifford+7" operator can be written as a product of Pauli rota-
tions followed by a single Clifford operator, as claimed. It also shows that the number of required Pauli
rotations is at most equal to the 7-count of the original circuit. In fact, since every Pauli rotation has
T-count 1, it is clear that every product of n Pauli rotations can be converted to a circuit of T-count n,
and vice versa. In particular, the minimal 7-count of a circuit is equal to the minimal number of Pauli
rotations required to express it.

The Pauli rotation representation is not unique. There are some obvious relations:

(a) Rp and Ry commute if and only if P and Q commute. This follows from (2)).
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(b) For any P, the operator R123 is Clifford, and therefore can be eliminated, resulting in a shorter
word. To see why, recall that there exists a Clifford operator C such that Rp = CT1)C ~1; therefore

R} =CT;,C". Since T3, = (1 is a Clifford gate, it follows that R}, is Clifford.

(c) For any P, there exists a Clifford operator D such that R_py = RpD. Indeed, let C be a Clif-
ford operator such that P = CZ(I)C”. Then —P = C(—Z(l))C*1 = CX(I)Z(I)X(UC”. Therefore
R(_p) = CX(1)T(X1yC~". Using the relation XTX = TS'®, we have R_p) = CT(;)S/,, 0C ! =

()
CTiyC~'CS], @C ™! = ReCS]; @C~". Thus, the claim holds with D = CS|, @C ",

It is relatively easy to standardize the Pauli rotation representation modulo the above three relations:
First, we eliminate any generators of the form R(_p). This can be done from left to right, using relations
from (c); the resulting Clifford operator can be shifted all the way to the end of the word using relations
of the form DRp = RoD, where Q = DPD!, see (3). Next, we use relations from (a) to swap adjacent
generators when possible, for example arriving at the lexicographically smallest word that is equal to
the given word up to such commuting permutations. Next, we use relations from (b) to remove any
duplicates. Should there be any such duplicates, the resulting word will need to be standardized again,
but since it uses fewer Pauli rotations, the process eventually terminates.

However, even when the Pauli rotation representation is standardized modulo the relations (a), (b),
and (c), it is still not unique. Indeed, there are some “non-obvious” relations. In a sense, the contribution
of this paper is to state exactly what these non-obvious relations are. They turn out to be the following.
Here, for brevity, we have omitted the tensor symbol ®, i.e., we wrote R;x instead of R;x.

RixRizRz77R7x = RzxRizRzzRx,
RixRizRixRzxRz7R7x = RzxRizRixRzxRz7R/x,
RxyRyzRxzRixRziRyxRzyRzxRxiR;z = RyxRzyRzxRxRizRxyRyzRxzRxRz;.

These turn out to be equivalent to relations (CI8), (C19), and (C20Q) in Figure [I respectively. We will
address the question of what these relations might “mean” (i.e., how one might be able to see that they
are true without computing the matrices) in Section [6l

4.4 Proof assistants

As outlined in Section [3] once we are armed with the Reidemeister-Schreier theorem, in theory there is
a mechanical way to obtain a complete set of relations for 4’7 (2), given that ¥.7 (2) is a subgroup of
U4(Z[%, i]) and we already have a complete set of relations for the latter due to Greylyn [13]]. However,
when applied in practice, this method yields a large number of very large relations, all of which must be
shown to follow from the relations in Figure[Il Although Figure [3] appears to contain only 20 relations,
they are actually parameterized by indices such as j k, etc. After accounting for these indices, there
are 123 distinct relations. Since there are two cosets of .7 (2) in U4(Z[\%,i]), under part (b) of the
Reidemeister-Schreier theorem, each of these 123 relations yields two Clifford+7 relations, plus another
8 relations (one for each generator) from part (a), giving a total of 254 Clifford+7 relations that must be
verified. This task is too daunting to do “by hand”.

Given the mechanical and repetitive nature of these calculations, we initially wrote a computer pro-
gram to generate and verify the relations. However, this raised another issue: our program was large
and complicated and used a variety of tactics to show that the given relations follow from the ones in
Figure [II We could not claim with mathematical certainty that our program was free of bugs, nor that it
didn’t use some hidden assumptions that weren’t actually consequences of Figurelll Moreover, it would
have been unreasonable for any referee to verify our calculations.
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For this reason, we decided to go one step further and formalize the soundness and completeness
proofs in a proof assistant. A proof assistant is a piece of software in which one can write definitions,
theorems, and proofs, and the software will check the correctness of the proofs. Purists might object that
the proof assistant is itself a piece of software that might be buggy. But, as has been argued eloquently
by [L1} 14], current proof assistants can be scrutinized at many levels and are many orders of magnitude
more reliable than the traditional way of checking paper-and-pencil proofs. The particular proof assistant
we used in this work is Agda [[1]].

5 Proof of the main result

5.1 Soundness and completeness

Our goal is to prove that Theorem implies Theorem Recall that Greylyn’s set of generators for
Us(R) is @ = {w};),X|j Hjju | J,k€{1,...,4} and j < k}. Also recall that our target set of generators
for ¢.7(2)is £ ={w,Hy,H,,50,51,To, T1,CZ}. We fix a translation from 2" to % as follows:

flo) = wpoyoyop),
f(Ho) = HpzHpy,
f(Hy) = HpsHp,y,
fS0) = opap,

f81) = opap,

f(Th) = apopy,

() = opopy,

(@) = wé]-

We prove the following soundness and completeness theorems for this translation:
Theorem 5.1 (Soundness). For all w,v € 2™, w ~r v implies f*(w) ~a f*(v).
Theorem 5.2 (Completeness). For all w,v € 27, f*(w) ~a f*(v) implies w ~r v.

As already noted in Section these two theorems, together with Theorem immediately imply
Theorem [2.1] Specifically, we have w ~r v if and only if f*(w) ~A f*(v) if and only if [f*(w)] = [f*(v)]
if and only if [w] = [v], where the first equivalence follows from Theorems and the second
equivalence follows from Theorem [4.1] and the last equivalence holds because the function f respects
the interpretation.

5.2 The formal proof

Soundness and completeness are formally proved in the Agda code accompanying this paper [8]. We
organized the code to make it hopefully as easy as possible to verify the result. The code consists of 67
files that are listed in Figure 4} and which we now briefly describe.

(a) Background. The eight files in the “background” section contain general-purpose definitions of
the kind that are usually found in the Agda standard library, i.e., basic properties of booleans, integers,
equality, propositional connectives, etc. The reason we did not use the actual Agda standard library is
that it is very large and changes frequently. We felt that it is better for our code to be self-contained rather
than depending on a particular library version.
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(b) Statement of the result. In these two files, we give a minimal set of definitions that allows us to
state the soundness and completeness theorems. The file Word . agda defines what it means to be a word
over a set of generators, as well as the inference rules we use for deriving relations from a set of axioms
(such as reflexivity, symmetry, transitivity, congruence, associativity, and the left and right unit laws).
Note that in the Agda code, we define a word as a term in the language of monoids, rather than as a
sequence of generators. In other words, associativity and the unit laws are treated as laws, rather than
being built into the definition. The file Word . agda also defines the f* operation used in the statement of
the soundness and completeness theorems. The file Generator.agda defines the Clifford+7 generators
and the relations from Figure [Il Greylyn’s generators and the relations from Figure[3] and the translation
function f from Section It also contains the statement of the soundness and completeness theorems,
but not their proofs. The reason we state these theorems separately from their proofs is to make sure
that Agda (and a human reviewer) can verify that the statement of these theorems only depends on the
relatively small number of definitions given so far, and not on the much larger number of definitions and
tactics used in the proof.

(c) Details of the proof. The proof of the soundness and completeness theorems relies on a large
number of auxiliary definitions and lemmas, and comprises the bulk of our code with 56 files. This
includes a formal proof of the Reidemeister-Schreier theorem; several tactics for automating steps in
certain equational proofs; a simplified presentation of Greylyn’s generators and relations, using only 5
generators and 19 relations (instead of Greylyn’s original 16 generators and 123 relations), along with the
proof of its completeness; a formalization of Pauli rotations and their relevant properties; as well as 46
step-by-step proofs of individual relations. These details are primarily intended to be machine-readable,
and can safely be skipped by readers who trust Agda and merely want to check the proof rather than
reading it. However, all of the files are documented and human-readable.

The relations in the files Equationl.agdato Equation46.agda are at the heart of the completeness
proof. These are the relations that must be proved to satisfy the hypotheses of the Reidemeister-Schreier
theorem. Some of these relations are trivial, such as Equation13.agda. Others are highly non-trivial
and require almost a thousand proof steps, such as Equation44.agda. In particular, the proofs that
require relations (CI8)—(C20) from Figure [1] tend to be non-obvious; in fact, this is how we discovered
relations (CI8)—(C20) in the first place. We did not write these equational proofs by hand; instead, we
used a semi-automated process where most of the proofs were generated by a separate Haskell program
and output in a format that is convenient and efficient for Agda to check. Originally, we also attempted
to write Agda tactics that would allow Agda to derive these relations fully automatically; however, this
failed due to performance issues with Agda.

(d) Proof witness. Finally, the file Proof .agda contains nothing but a witness of the fact that the
soundness and completeness theorems have been formally proven. A reader who wants to skip the details
of the formal proof only needs to check two things: the statement of the main result in Generator.agda
(to make sure the statement correctly captures what we said it does), and the fact that the Agda proof
checker accepts Proof . agda.

6 Discussion of the axioms

Here, we give some further perspectives on what the axioms of Figure[llmight “mean”, and in particular,
how one might convince oneself that the relations are true without having to compute the corresponding
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(a) Background:

Boolean.agda
Proposition.agda
Equality.agda
Decidable.agda
Inspect.agda
Nat.agda
Maybe.agda
List.agda

(b) Statement of the result
Word.agda

Generator.agda

(c) Proof of the result

Word-Lemmas.agda
Reidemeister-Schreier.agda
Word-Tactics.agda
Clifford-Lemmas.agda
CliffordT-Lemmas.agda
Greylyn-Lemmas.agda
Soundness.agda
Greylyn-Simplified.agda

PauliRotations.agda

Equationl.agda — Equation46.agda

Completeness.agda

(d) Top-level proof witness

Proof.agda

Generators and Relations for 2-Qubit Clifford+T Operators

The type of booleans.

Basic definitions in propositional logic.

Basic properties of equality.

Some definitions to deal with decidable properties.

Agda’s “inspect” paradigm, to assist with pattern matching.
Basic properties of the natural numbers.

The “Maybe” type.

Basic properties of lists.

Basic properties of words.
Generators and relations for our two groups, and statement of main result.

Basic lemmas about monoids and groups, and equational reasoning.
Two versions of the Reidemeister-Schreier theorem.

Some tactics for proving properties of words.

A decision procedure for equality of 2-qubit Clifford operators.
Properties and tactics for Clifford+7 operators.

Some automation for Greylyn’s 1- and 2-level operators.

Proof of soundness.

A smaller set of generators and relations for Greylyn’s operators.
Definitions, properties, and tactics for Pauli rotations.

Explicit proofs of 46 relations required for completeness.

Proof of completeness.

The final witness for soundness and completeness.

Figure 4: List of Agda files. The files are listed in order of dependency, i.e., each file only imports earlier

files.
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matrices.

Note that we are not claiming that axioms (CI)—(C20Q) are independent; for example, (C8) clearly
follows from (C14)) and (CI6)); however, we found it useful to separate the Clifford relations from the rest,
which is why (C8)) was included. It would be nice to know whether axioms (CI8)—(C20Q) are independent
from the others and from each other, and this seems likely to be true, but we do not know.

The axioms in groups (a)—(c) are well-known; they merely express the Clifford relations [21] and the
fact that operators on disjoint qubits commute. Relations and (CI3)) express the well-known facts
that 72 = S and (TX)? = o, whereas relation (CI6) holds because diagonal operators commute. Note
that the upside-down version of relation was not included among our axioms; this is because it is
actually derivable from the remaining axioms. Relation (CI7)) becomes obvious once one realizes that
the swap gate can be expressed as a sequence of three controlled-not gates:

oC =

Relation (CI7) is then obtained by simplifying the following, which expresses the fact that a T-gate can

be moved past a swap-gate:
_
O =

We will now focus on the “non-obvious” relations (CI8)—(C20). Relations (C18) and (CI19) are of

the form
= e @)

They hold because positively controlled gates commute with negatively controlled gates. Note that there
are infinitely many relations of the form (), where A is any single-qubit Clifford+7 operator, but our
completeness proof shows that, in the presence of the remaining axioms, two of them are sufficient to
prove all the others.

Relation is more interesting. It, too, states that two operators commute, but it is less obvious
why this is so. Ideally, we would be able to find some simpler and more obvious relations that imply
(C20). While we have not been able to find such simpler relations in the Clifford+7" generators, we can do
this if we permit ourselves a controlled 7'-gate. Note that the controlled 7-gate is not itself a member of
the 2-qubit Clifford+7 group, since representing it as a Clifford+7 operator requires an ancilla [[10]. But
the use of controlled 7-gates is nevertheless helpful in explaining relation (C20). We start by noting that
the controlled T -gate satisfies the following obvious circuit identities (and their upside-down versions):

= 5)
fi- = ©)
= ™
- ' ®)

Identities (3)—(Z) are obvious because all of the operators in them are diagonal. Identity (8) holds by case
distinction: this circuit applies either HT or T H to the bottom qubit, depending on whether the top qubit
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is |0) or |1). Using these identities, we can easily prove (C20):

"1..
O B
&

@ H

O

_ (] T

O

G.o ?

. [H] T
®
(&
@

Note that there is again an infinite family of such relations, because in the above derivation, we could have
used any gate in place of H. However, due to completeness, all other such relations are consequences of
(C18)—(C20) and the remaining axioms.

Another way to look at relations (CI8)—(C20Q) is in terms of their Pauli rotation representations. As
we already mentioned in Section up to basis changes, the three relations can be written in terms of
Pauli rotations, respectively as follows:

RixRizRz77R7x = RzxRizRzz7Rx,

RixRizRixR7xRz7Rzx = RzxRizRixRzxRzzR;x,
RxyRyzRxzRixRziRyxRzyRzxRxiR;z = RyxRzyRzxRxRizRxyRyzRxzRxRz;.

When written in this form, the first two of these relations only use X and Z Paulis, and use only Z on
the left qubit. This indicates that these relations are about controlled gates. We can also see that in both
cases, the relation exchanges the positions of the leftmost R;x and the rightmost Rzx. The first relation
can also be seen to express the fact that R;zRzz commutes with RZXfol, and similarly for the second
relation. The third relation again takes the form of an operator commuting with its upside-down version.

7 Conclusion and future work

We gave a presentation of the 2-qubit Clifford+7 group by generators and relations. We did this by
applying the Reidemeister-Schreier theorem to Greylyn’s presentation of the group of unitary 4 x 4-
matrices over the ring Z[%, i]. Since there is a very large number of relations to check and simplify, and
checking them by hand or by an unverified computer program would be error-prone, we used the proof
assistant Agda to formalize our proof. The latter process is painstaking and took us more than 5 years to
complete after our result was first announced in [[7]].



Xiaoning Bian and Peter Selinger 27

An obvious candidate for future work would be to find a complete set of relations for the Clifford+7T
group with 3 or more qubits. This is currently out of reach for two reasons: first, the computations
required to simplify any potential set of relations will be even more labor-intensive than in the 2-qubit
case. Second, and more seriously, there is no known presentation of the group of unitary n X n-matrices
over the ring Z[%, i] forn > 4.

Another project that is currently in progress is to apply the method of this paper to restrictions of the
Clifford+T group for which presentations of the corresponding matrix group are known. This includes
the Clifford+Toffoli gate set and the Clifford+controlled-S gate set.
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In the near term, programming quantum computers will remain severely limited by low quantum
volumes. Therefore, it is desirable to implement quantum circuits with the fewest resources possible.
For the common Clifford+T circuits, most research is focused on reducing the number of T gates,
since they are an order of magnitude more expensive than Clifford gates in quantum error corrected
encoding schemes. However, this optimization sometimes leads to more 2-qubit gates, which, even
though they are less expensive in terms of fault-tolerance, contribute significantly to the overall circuit
cost. Approaches based on the ZX-calculus have recently gained some popularity in the field, but
reduction of 2-qubit gates is not their focus. In this work, we present an alternative for improving
2-qubit gate count of a quantum circuit with the ZX-calculus by using heuristics in ZX-diagram
simplification. Our approach maintains the good reduction of the T gate count provided by other
strategies based on ZX-calculus, thus serving as an extension for other optimization algorithms. Our
results show that combining the available ZX-calculus-based optimizations with our algorithms can
reduce the number of 2-qubit gates by as much as 40 % compared to current approaches using ZX-
calculus. Additionally, we improve the results of the best currently available optimization technique
of Nam et. al [22] for some circuits by up to 15 %.

1 Introduction

Many famous quantum algorithms, like Shor [26], HHL [13]] or Grover [12], base upon techniques like
Quantum Fourier Transformation, Quantum Phase Estimation or Amplification, respectively. Although
these algorithms provide significant (sometimes even exponential) speed-ups, current quantum chips
can only execute toy problems, mostly due to the low gate fidelity. Even for problems that can be easily
solved on a state-of-the-art desktop PC, those algorithms require tens of thousands of gates, and are there-
fore infeasible to run on near-term quantum devices. However, applications in quantum simulation are
supposed to achieve significant improvements in quantum chemistry, material sciences, or high-energy
physics on near-term devices. With variational algorithms (e.g., QAOA [10] or VQE [25]), real-world
applications like optimization problems on real quantum chips may become feasible. While the associ-
ated speed-up is unknown for many use cases, they require only few qubits and quantum gates to achieve
promising results. Quantum Machine Learning (QML) is such an example: Here, the combination of
clever encoding strategies, variational algorithms, and classical pre- and post-processing achieves high
accurate classification rates with fewer qubits compared to classical bits.
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Still, even algorithms with smaller circuits cannot be executed on current devices and gate optimiza-
tion is a vibrant research topic. While global optimization of arbitrary quantum circuits is generally
QMA-hard [16]], different algorithms like quantum optimal control [[18] have been proposed to reduce
the size of a quantum circuit. In this context the so-called ZX-calculus [6] is considered a promising
tool. It provides an abstract graphical language for describing quantum systems and can be seen as an
alternative to the predominant description in the Hilbert space. We can transform any quantum circuit
into a ZX-diagram equivalent, apply the rules of the ZX-calculus to simplify the diagram, and re-extract
a quantum circuit from it.

Scope of this work

Our work is based on optimizing circuits with ZX-calculus, where several optimization strategies have
been proposed recently [9,20,[27]]. Currently, these strategies yield very good results for pure Clifford
circuits, as well as for T gate elimination in Clifford+T circuits, which is worthwhile for fault-tolerant
quantum computers with error-corrected gates. For such devices, the cost of a T gate is sometimes
estimated to be up to a hundred times higher than the cost of a CNOT gate [24] (even though recent
studies suggest lower rates [211]).

However, reducing 2-qubit gates is generally of interest for quantum hardware that is not error cor-
rected (e.g., NISQ devices) or in which quantum states do not tend to interact easily, e.g., in Photonic
Quantum computing [3]. A major drawback of the current ZX-calculus based strategies is that these
gates in particular are not optimized very well; in fact, for many large Clifford+T circuits, the 2-qubit
gate count even increases when using algorithms like the one in [9]].

We propose new optimization approaches especially for reducing 2-qubit gates. To do so, we use
heuristics for estimating the 2-qubit gate count in ZX-diagrams as cost functions for classical search
algorithms like I.) random selection and IL.) greedy algorithm. By combining them with existing opti-
mization approaches, we maintain the T gate count reduction rate and improve the total gate count and
the 2-qubit gate count for most given circuits. We evaluate the performance on circuits from the Tpar
benchmark [1]]. We find that our optimizations can outperform existing ZX-based approaches and can
additionally be used to further improve already optimized circuits.

2 Background

Throughout this paper, we use the notation from [23]] for quantum gates; the most essential ones are
detailed in by name and matrix-, gate- and ZX-calculus-representation. Every unitary operation
can be decomposed into a combination of CNOTSs and single-qubit gates [23]]. A well-studied example
for a minimal gate set with which to approximate any unitary operation is the so-called Clifford+T set,
i.e., the gate set generated by {H,T,CNOT}. That is why many optimization algorithms target circuits
generated with the Clifford+T set. The Clifford set generated by {H,S,CNOT} is also well-known and
useful for quantum circuit simulations on classical computers, but not every unitary operation can be
represented with it. For convenience, we abbreviate some gates in the Clifford+T set, namely X,Y,Z,S,
and CZ (instead of writing, for example, Z=T7-T-T -T).

2.1 ZX-Calculus

Since ZX-calculus and its optimization strategies rely on graph theory, we provide some background
in The ZX-calculus [7,/8] is a graphical language for expressing linear maps on qubits as
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Table 1: Overview of important quantum gates and the respective ZX-Spiders.

Name Iz‘z;" Z Z-Phase T X X-Phase H CNOT
. ' ' 1000
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ZX-diagrams. Relations in multi-qubit systems are often difficult to understand in Dirac notation, since
the matrix size doubles with every qubit and the complex number space quickly becomes confusing.

ZX-calculus provides a way to represent quantum circuits as 2-
dimensional diagrams where nodes (spiders) and edges (wires) form an
undirected graph. In contrast to quantum circuits, the number of input-
and output wires does not have to match, hence the resulting transforma- Spider X-Spider
tions are not necessarily unitary. However, many important concepts in
quantum mechanics follow very intuitively from this representation and we will briefly introduce the
main principles.

2.1.1 Representing Quantum Circuits

Any transformation on a single qubit can be described as a  —4

rotation around the X and Z axes. Further, we can represent

any quantum gate as a combination of X - (red) and Z-spiders - . . - )
(green) in ZX-diagrams (c.f. [Eq. 1)), of which the most im- S, o

portant are shown in We call the wires on the left- and rightmost the input and output of the
graph, respectively. The three generators of the universal Clifford+T set are constructed with the H-wire,
the Z-spider with phase 7 /4, and a combination of an empty X- and Z-spiders (phase o = 0) represent-
ing a CNOT. In general, we can read a ZX-diagram in any direction since only the connectivity of the
spiders matters, but for comparison with common quantum circuits it is convenient to read ZX-diagrams
horizontally as shown in[Eq. 2]

2.1.2 Basic Rules

We introduce the most important transformation rules in the ZX language that are useful for optimiza-
tion [6] in All ZX-rules can be applied in both directions and also apply with inverted colors.

Any two Clifford diagrams (i.e., diagrams only containing spiders with a Clifford phase o = k- 7k €
7Z) that represent the same linear map can be transformed into each other by some combination of those
rules. Recent developments have introduced rule sets where this is also possible for Clifford+T diagrams
and for all ZX-diagrams [17,28]].
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Figure 1: The important rules in ZX-Calculus that can be used for optimization are: Identity- (il,i2),
Fusion- (f), Hadamard- (h), Bialgebra- (b), Pi- (i), Copy- (c) and Hadamard-Decomposition (hd) rule.
Each holds for all a, 8 € [0,27x]. Due to (h) and (i2), all rules hold with the colours interchanged.

3 Circuit optimization with ZX-calculus

With the rules of ZX-calculus, the optimization of quantum circuits becomes a simplification problem
on the ZX-diagram. By simplification we mean reducing the total number of either spiders or wires in a
diagram in order to obtain a smaller diagram. The general process is as follows:

1.) Transform the circuit to a ZX-diagram

2.) (optional:) transform to a graph-like diagram, i.e.:

 All spiders are Z-spiders. wires and are connected to at most one spider.
* All connections are Hadamard wires. Every spider has at most one input and one out-
* There are no loops. put.

* Inputs and outputs are the only non-Hadamard

3.) Simplify the diagram using ZX-rules.
4.) Extract a quantum circuit out of the ZX-diagram.

This allows powerful optimization of circuits, which are not obvious at a first glance (we provide an

intuitive example in[Appendix C).

3.1 Diagram simplification

The presented ZX-rules allow many degrees of freedom, hence, simplification is still a difficult problem.
The term “simplification of diagrams” has to be taken with a grain of salt since decreasing the number
of spiders in a diagram can also lead to more complex extracted circuits. Since rules can be applied
in both directions it is important to find ferminating algorithms for diagram simplification. A common
approach has been to only use ZX-rules which decrease the total number of spiders in a diagram with
every application, thus ensuring termination. We present some common approaches, many of which are
implemented in the PyZX-library [19]].

3.1.1 Clifford spider simplification

The core of most strategies are two rules from graph theory — namely local complementation and pivot-
ing — which work on diagrams that are graph-like. Both rules allow the elimination of interior Clifford
spiders (phase 0,7/2, 7, or —7/2; not connected to an input or output) from ZX-diagrams.
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Local complementation (/c) In ZX-calculus, local complementa- a

tion from is applicable on graph-like diagrams. If the @ """ (lc)
spider a in G xa has a phase of £7/2, the phase is subtracted from - ™

those of the neighboring spiders and the spider is eliminated for sim- . . . -
plification of the diagram as shown in

3

Pivoting (p) Similarly we can eliminate a pair of spiders uv with phase 0 or & by applying a graph-
theoretic pivot G A uv (c.f. [Section B.2)) on the diagram as in the following example (j,k € Z):

o =o;+km

@ @ --------- @ ® @ Bl =PBi+(j+k+D)m

“)

‘ ......... ' ......... @:' ..................... Y =%+in

3.1.2 Clifford simplification algorithm
These rules allow constructing an algorithm for graph-like diagrams which removes most interior Clif-
ford spiders [9]. The procedure is as follows:

1. Eliminate empty spiders with two wires using the identity rule and subsequently fuse the adjacent
spiders in order to maintain a graph-like diagram.

2. Apply local complementation on every spider of phase +7/2 and pivoting on every pair of con-
nected spiders of phase 0 or 7 as often as possible.

3. If step 2 modified the diagram, start again with step 1, else stop the iteration.

That allows us to remove every interior spider with phase +7/2 and every pair of connected spiders with
phase 0 or . However, after simplification some interior Clifford spiders with phase 0 or 7 may remain.

3.1.3 Phase gadget simplification (p2)

We can use phase gadgets to apply pivoting on a pair of spiders where one spider ~ phase gadget

has a non-Clifford phase (# 0,7/2,7,—m/2). A phase gadget as defined in [20]] -
is a parameterized spider with only one wire connected via Hadamard edge to a (@ 0
phaseless spider as in[Eq. 5] —

We can modify pivoting (Eq. 4) to exchange the spider with a non-Clifford phase to a phase gadget:

< phase gadget

o = (—l)jG
‘@ ——@}ﬁ/ Bi+(+1)rm
@ Y=Y+in ©

With the additional rules in we can eliminate every interior Clifford spider in a diagram [20]].

3.2 Circuit extraction

Extracting a quantum circuit from a simplified diagram can be challenging, since spiders with an arbi-
trary number of wires have no direct gate representation [2]. The most general circuit extraction rou-
tine makes use of so called “flow properties” originating in measurement-based quantum computing
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(MBQC). Graph-like ZX-diagrams can be seen as an extension of MBQC graph states where the phases
of spiders represent measurements in either the XY, XZ or YZ plane of the Bloch sphere:

meas. plane XY ‘ XZ ‘ YZ

|
meas. effect H ()— ‘ = (-G ‘ @— = @

Diagrams simplified with the Clifford simplification algorithm from [9] only contain spiders in the XY
measurement plane and preserve a flow property called focused generalized flow (gflow). Those diagrams
can be extracted by converting every spider with phase o to an R, (o) gate and a Hadamard wire as either
a H or CZ gate or a combination of CNOT gates. As an example consider the diagrams from |[Eq. 4
Extracting the diagram on the left hand side yields the following circuit:

Rz(ou) {H Rz(jm) Ry(km) {HY Rz () ®
e Ry (B) [ R () ———

whereas extracting the diagram after rule application yields the equivalent smaller circuit:

———————¢\Re(e) {H}{ Rz (B) Rz(¥) )

Rz(05) HH S Rz(1)

(7

However, ZX-diagrams simplified with [Eq. 6 may contain spiders in XZ and YZ plane as well. While it
has been shown that those diagrams still preserve generalized flow (gflow), the circuit extraction routine
has to convert those spiders back into XY spiders using either pivoting (YZ) or a combination of local
complementation and pivoting (XZ) before extracting the diagram [2]]. An algorithm to efficiently extract
diagrams that do not admit the gflow property is yet to be discovered; however, recent findings suggest
that such an algorithm may not exist for general ZX-diagrams [4]. Hence, even though the diagram may
represent a unitary matrix, we cannot extract a quantum circuit from the diagram efficiently.

4 Enhancing reduction of 2-qubit gates

As seen in and 0] a Hadamard wire gets extracted to H, CNOT or CZ gates. The number of
Hadamard wires in a graph-like ZX-diagram therefore correlates with the number of 2-qubit gates in the
extracted circuit. The diagram simplification algorithms shown in[Section 3lfocus on eliminating spiders
while neglecting — or even increasing — the number of Hadamard wires. Hence, this section introduces
methods which additionally minimize the amount of Hadamard wires (ref. as #wires in the following).

To do so, it is crucial to examine where and when
local complementation and pivoting are applied. Both
rules can either increase or decrease #wires, depend-
ing on the connectivity of the relevant neighbors.
and 4] show examples in which #wires decreases. How-
ever, as shows it can also increase #wires and we easily construct extreme cases like the one
shown in[Eq. 10] Applying local complementation to the central spider with phase /2 yields a diagram
containing one spider less but a significantly higher #wires. Extracting the left diagram with the current
version of the PyZX-library produces a circuit with six 2-qubit gates, while the diagram on the right gets
extracted as a circuit with 21 2-qubit gates. Generally, applying local complementation on a spider with
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. 1 . . . . .
n unconnected neighbors leads to @ —n new wires. As pivoting involves local complementation on

two spiders, the effect usually even worsens for this rule.

To prevent such cases and to guide the simplification process towards a minimal #wires, we intro-
duce cost functions for local complementation and pivoting allowing us to calculate #wires after rule
applications. We take those as a heuristic for estimating how rule applications change the number of
2-qubit gates and implement decision strategies for diagram simpliciation based on the heuristics.

4.1 Pivoting and local complementation on spiders with arbitrary phases

In contrast to the Clifford simplification algorithm from &3
we can apply local complementation and pivot- .

ing on spiders with arbitrary phases. Similar to the Pivot @ 2D, @ @ . an

Phase Gadget (p2) rule, we can change a spider with non- . 'f,zz 11). .( . .

Clifford phase by a combination of the rules (f,i2,il) as in

With that we can apply local complementation on spiders with phase different from /2 (this
introduces one XZ-spider) and pivoting on pairs of spiders where one/no spider has a phase of 0 or &
(this introduces one/two Y Z-spiders). Note that this does not change the gflow property (c.f. [2, Lemma
3.1]).

4.2 Local Complementation Heuristic (LCH)

The costs for local complementation are calculated on the following proposition:

Proposition 4.1 Let G = (V,E) be an open graph; u € V an arbitrary vertex with neighbors N (u) C V;
n = |N (u)| the number of neighbors; and m the number of edges between the neighbors, i.e.,

m=1|{(a,b) € E|la,b € N(u)}|.

. -1
For Gxu, n remains the same, but m changes to m' = /\,_| —m, where /\,_| = "("2 ),

Hence, the difference in the number of wires after application of the local complementation rule is:
(n+m)—(n+ (Lp1—m)) =2m— D,y (12)

With respect to the phase @ (u) of the spider u, the graph changes as follows:
 If ¢ (u) = £m/2: Remove u from the graph and eliminate all wires between u and N (u).

* If ¢ (u) is non-Clifford: All wires between u and N () remain and we get an additional wire for
the phase gadget.

* If ¢ (u) is 0 or m: No phase gadget is needed and we can use the m-copy rule.
The LCH is calculated as follows:
2m— Ly +n if @ (u) = :I:%
LCH (u) =< 2m— A\, ifo(u)=k-nkcZ 13)

2m—A\,_1—1 otherwise
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4.3 Pivoting Heuristic (PH)
We calculate the upper bound of new connections with the sets A, B,C (see |Appendix B):

We denote the number of neighbors of u and v by n, = |[N(u)| and n, = |[N(v)|, respectively, and the
number of edges between neighbors of different sets as m.
The changes of the graph G to G A uv have the following cases (j,k € Z):

(C1) ¢ (u)=j-m,¢@(v) =k-m: If both spiders have a phase of 0 or 7, all connections between {u, v}
and N (u) UN (v) are eliminated.

(C2) ¢ (u)=j -m,@(v)#k-m: If v becomes a phase gadget and u gets eliminated, all neighbors of u
get connected to v and we have an additional wire for the phase gadget.

(C3) ¢o(u)# j-m @ (v) =k-m: If ubecomes a phase gadget and v gets eliminated, all neighbors of v
get connected to u and we have an additional wire for the phase gadget.

(C4) @ (u)+# j-m @ (v)+#k-m: If both spiders become phase gadgets, all neighbors of u get connected
to v and all neighbors of v get connected to u. Furthermore, u# gets connected to v again and we
have two more wires for the phase gadgets.

With these conditions, the PH is calculated as follows:

2m—Cpax+n,+n,—1 for (Cl)

PH (u,v) = 2m — Cpgx +ny,— 1 for (C2) (15)
) 2m = Crax 41w — 1 for (C3)
2m — Cpax — 2 for (C4)

4.4 Decision strategies

With the two heuristics (LCH,PH) at hand we can now implement different strategies to decide where
and when local complementation or pivoting are applied during the simplification. A single simplification
step in our procedure consists of the following actions:

1. Filter all possible rule applications of the current ZX-diagram.
2. Select rule according to selection strategy (see below).
3. Apply rule on the ZX-diagram.

For filtering rule applications we can specify a lower bound for the heuristic, e.g., LCH or PH = —5
says that we do not consider rule applications which increase #wires by more than five. We can also
specify whether rule applications are allowed on boundary spiders (c.f. and whether rules
are allowed on arbitrary phased spiders. For selecting a rule we implemented two different strategies:

* Random selection: Rules are chosen by a random coin flip.
* Greedy selection: Chooses the rule application which maximally decreases #wires.

Each algorithm terminates if we allow only rule applications with a LCH /PH > 0 and when there is
no rule left that decreases #wires. They also terminate if we allow negative gains (LCH/PH < 0) and
restrict the matches to interior spiders that do not generate new spiders. This is the case in standard local
complementation on a spider with phase 4+ /2 and pivoting on a pair of spiders with phase 0 or . The
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algorithm eliminates at least one spider in every step and terminates when neither interior spiders with
phase +7/2 nor pairs with phase 0 or 7 are left.

On the other hand, allowing rule applications on spiders of arbitrary phases which increase #wires
may result in loops and therefore no termination. For such cases we only allow rule applications which
increase #wires on spiders present since the very beginning of our simplification procedure. On newly
generated spiders only rules which decrease #wires are allowed.

S New optimization rule: Neighbor Unfusion

As shown in[Eq. 6] the application of local complementation (/c) and pivoting (p) on spiders with many
neighbors can not only decrease but also increase #wires. The heuristics shown in[Section 4/may help to
identify and prevent extreme cases as in However, spiders that are measured in Y Z- or XZ-plane
(c.f. require special attention: When extracting a spider in Y Z-plane (e.g., the empty spider
of the phase gadget in and [6)), pivoting has to be applied to maintain the focused gflow property.
The same happens for spiders in XZ-plane, but they are resolved by local complementation [2[]. This
affects #wires after the simplification and a simplified diagram containing some spiders in YZ- and
XZ-plane may result in an expensive circuit.

However, when applying either rule on diagrams with arbitrary spiders as discussed in[Section 4.1)),
spiders in YZ- or XZ-plane are generated. We introduce the neighbor unfusion (nu) rule, which allows
Ic and p on such arbitrary-phase spiders without introducing spiders in YZ- or X Z—plane.

Neighbor unfusion combines the fusion (f) and iden- ... , T
tity rules (i1,i2) as shown in[Eq. 16] If a spider with phase @ ------- @ @ (} . @ (16)
a is connected to a neighbor, we change its phase to an ¢ --- % ¢ -
arbitrary phase 7y by inserting an empty spider and a spider with phase o — ¥ between the splder and its
neighbor. It allows changing the phase of an arbitrary spider to Y = £7 and thus local complementation

and removal of spiders with arbitrary phases. @ _____ . @ o . . @ @ .

For illustration, we apply neighbor unfll;sion (nu) j ) i (1)) T ™ (17)
to the example of[Eq. TT| We can move the 8 spiderto %~ 7 ~
any direction (in [Eq. I7]towards @), so it is then not . . . . - -
affected by the application of local complementation (Ic). Comparing [Eq. 11and [Eq. 17] we see that we
not only reduce #wires, but also prevent the generation of a spider in XZ-plane. However, the neighbor
unfusion rule sometimes leads to diagrams which do not have focused gflow property. This is due to
the insertion of the empty spider and the spider with phase & — 7 in We observed that this problem
does not occur if the spiders with phase o and 8 get extracted to the same qubit. Currently, we find
such pairs of spiders by using the flow hierarchy of the maximally delayed gflow of the diagram (c.f. [2]),
which is quite costly, because we need to recalculate the gflow at each simplification step. Therefore,
diagram simplification with neighbor unfusion has a much higher runtime than the other simplification
procedures. It is an open question whether neighbour unfusion can only destroy the focused gflow
property, or also more general flow properties like gflow or Pauli flow.

6 Evaluation

We evaluate our heuristic-based simplification algorithms on a set of circuits first used in [1]. They
implement various arithmetic problems as quantum circuits and were used as a benchmark set for com-
paring different optimization strategies [20.22]]. We use it to compare our heuristic-based approaches
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Table 2: Circuit metrics for original benchmark circuits, Post-optimization metrics of the standard Clif-
ford simplification [9], PyZX [20], Nam et al. [22]], our heuristic-based simplification method, and the
combined approach of Nam et al. and our heuristic-based methods. Only our best optimization is pre-
sented: 1) Greedy, 2) Random, 3) Greedy with neighbor unfusion, 4) Random with neighbor unfusion,
the lower bound for the heuristics is denoted in brackets. If the best PyZX result is achieved by the t|ket)-
library, the respective cell is marked with . The best results of each metric in each row are marked.

Circuit Original | Clifford algorithm |PyZX/t/ket)*| Nam et al. | Heuristic algorithm Nam+Heuristic
20| | 20 Y |20] £ | 20| X |2 |Ag| £ | 20 |Al
Mod 54 63|28 36 21 24° | 12* | 51 | 28 | 41 | 23 |2(20)] 38 | 23 |3(D)
VBE-Adder; [150| 70 | 116 59 101 | 54 | 89 | 50 | 87 | 42 |3(1)| 8 | 42 |4
CSLA-MUX3 [170| 80 | 177 97 156 | 75 | 155 | 70 | 155 | 74 [3(-5)| 156 | 67 | 3(D)
CSUM-MUX3 [420(168 | 455 271 327* | 158* | 266 | 140 | 303 | 150 | 3(1) | 266 | 140 | 1(1)
QCLA-Com; [443|186| 397 223 316 | 148 | 284 | 132 | 295 | 138 |4(-5) | 275 | 132 | 1(D)
QCLA-Mod; |884|382| 903 475 717 | 324 | - - | 705 | 311 |4(-20)| - - -
QCLA-Addery|521|233 | 562 305 435 | 199 | 399 | 183 | 417 | 193 [4(-20)| 398 | 182 | 4(1)
Adderg 900|409 | 779 429 675 | 339 | 606 | 291 | 597 | 295 | 4(1) | 514 | 256 | 4(1)
RC-Adders  [200] 93 | 206 113 393% |164* | 140 | 71 | 159 | 71 | 1(1) | 152 [ 71 | 1(D)
Mod-Redy;  |278|105 | 260 130 217 | 93 | 180 | 77 | 196 | 85 |3(1) | 179 | 76 | 1(1)
Mod-Multss  [119| 48 | 124 74 91 | 42 | 91 | 40 | 90 | 40 | 1(1)| 90 | 41 | 1D
Toff-Barencoz | 58 | 24 | 50 26 59 |18 | 40 | 18 | 46 | 21 | L) | 40 | 18 |3(-5)
Toff-NC3 45| 18 | 41 20 40 |16 | 35 | 14 | 36 | 15 |31 | 35 | 14 | 1()
Toff-Barencos [114| 48 | 117 60 95 | 44 | 72 | 34 | 88 | 40 |4 | 72 | 34 |3
Toff-NCy 75130 | 86 43 65 | 26 | 55 | 22 | 57 | 24 |31 | 55 [ 22 | 1(D)
Toff-Barencos [170| 72 | 149 86 140 | 66 | 104 | 50 | 122 | 57 |41) | 102 | 48 | 3(1)
Toff-NCs 105) 42 | 92 42 90 | 36 | 75 | 30 | 78 | 33 [3D| 75 | 30 | 1D
Toff-Barencojo [450|192| 392 196 365 | 176 | 264 | 130 | 325 | 151 | 4(1) | 252 | 118 | 3(1)
Toff-NCjg 255|102 237 100 215 | 86 | 175 | 70 | 183 | 78 | 3(1) | 175 | 70 | 1(1)
GF(2Y)-Mult  |225]| 99 | 245 140 193 | 99 | 187 | 99 | 195 | 101 | 2(1) | 180 | 98 |3(-5)
GF(2°)-Mult  |347|154| 351 197 304 | 154 | 296 | 154 | 306 | 156 | 1(1) | 289 | 155 |4(-20)
GF(2%)-Mult 495|221 | 545 308 422 | 221 | 403 | 221 | 418 | 217 |4(-5)| 390 | 218 |3(-5)
GF(2')-Mult 669|300 | 736 417 573 | 300 | 555 | 300 | 572 | 299 |4(-5)| 535 | 292 |4(-20)
GF(2%)-Mult  |883[405 | 1015 606 745 | 405 | 712 | 405 | 745 | 405 | 1(1) | 691 | 399 | (D)
Avg. reduction | | |~ 3%| N =22% |~ 14%|~ 9%|~ 27%]|~ 19%|~ 23%|~ 16%| |~29%|~ 21%| |

with the Clifford simplification algorithm described in [9], and some of the best results reported for cir-
cuit optimizations with [20] and without using ZX-calculus [22]]. We also investigate how ZX-calculus
based approaches perform when using the TODD-algorithm [14] for additional T gate reduction.

6.1 Implementation
With the exception of [20] — which omits simplifying the diagram (step 3) and extraction (step 4) — we
use the following pipeline for ZX-calculus based optimization algorithms:

. Optimize circuit using gate cancellation and commutation.

. Transform circuit to ZX-diagram and apply phase teleportation to reduce T-count (as in [20]).

1
2
3. Simplify ZX-diagram (standard Clifford or heuristic-based simplification).
4. Extract circuit from ZX-diagram.

5

. Optimize circuit as in step 1.
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Since our heuristic-based algorithms do not reduce T gates, we always apply the phase teleportation in
step 2 since this reduces T gates as far as currently possible with ZX-calculus. This ensures comparable
results regarding the 2-qubit gate count against non-ZX-calculus based approaches that optimize all
types of gates. We implemented our algorithms in a clone of the PyZX library which also contains our
optimized circuits in the OpenQASM forma. All results were proven to be correct by checking whether
the optimized circuit together with the adjoint of the original circuit can be reduced to the identity.

6.2 Results

For each circuit we compare the total gate count Table 3: Circuit metrics for the original bench-
Y and the 2-qubit gate count 2Q. The results mark circuits, Post-optimization metrics for
are summarized in [Table 2 and Bt Their columns PyZX+TODD and of our heuristic-based algo-
show circuit name, metrics of the original cir- rithms+TODD.
cuit of the benchmark, metrics of one (or more) o Original |PyZX+TODD| Heuristic+TODD
existing optimization algorithms and the metrics Circuit ¥ ‘2Q| 7| 5 | 20 ‘g 5 ‘ 20 | 9| Alg.
of the best performing heuristic-based algorithm. CSLA-MUX; |170] 80|70 | 262 | 175 | 43 | 257 | 169 | 43 | 2(1)
For the latter, we denote the simplification strat- CSUM-MUX; |420|168196| 575 | 428 | 74 | 411 | 261 | 74 | 4(-5)
. . QCLA-Com; |443|186(203| 454 | 274 | 93 | 389 | 211 | 93 | 4(1)
egy achieving the best result in the last column: ¢y A adder,o|521|233|238] 800 | 517 |143] 677 | 391 [143]4(20)
1. Greedy, 2. Random, 3. Greedy with neighbor Mod—i\dultss 119(48 | 49| 107 | 56 |27 | 104 | 55 | 27 | 4(-5)
unfusion, 4. Random with neighbor unfusion. gig;ﬁsﬁ iig ]9594 i;? gzg fé(l) g; ?Zi iég gé ;(('15))

As a very first result, the last column in the GFQ%)-Mult |495(221(252| 943 | 764 |134] 933 | 750 | 134 3(1)
“Heuristic Algortim” section of THIED promi- - SO (0wl o o v oo o 4
nently indicates the great value of neighbor unfu-
sion (Alg. 3 and 4), as it achieves the best performance of our heuristics in > 70% of the cases.

We now compare our heuristic-based simplifications following against other ZX-calculus based op-
timizations in For most circuits our heuristic-based simplification clearly outperforms the stan-
dard Clifford simplification [9]], both in total and 2-qubit gate reduction. Moreover, while our approaches
almost always decrease circuit metrics, the standard approach often yields circuits with higher metrics
than the original circuit (e.g.,“CSLA-MUXj3”, “GF(2°)-Mult”). Especially for 2-qubit gates our ap-
proaches decrease 2-qubit gate count by 16%, while the standard approach even increases the count
by 22%. In a direct comparison our approaches have up to 33% (“Toff-NC,”) fewer total and 47%
(“Mod-Multss”) fewer 2-qubit gates than the standard Clifford approach.

Second, we compare against the best available PyZX implementation [20] and the recommended op-
timization pipeline of the t|ket)-library [27] with the routines PauliSimp and FullPeepholeOptimize,
which use similar strategies. The column “PyZX/t|ket)” in [Table 2] shows the best optimization results
for both implementations and * indicates results from t|ket). Except for two circuits (“Mod 54" and
“Toff-Barencos”), our algorithms outperform all ZX-calculus based algorithms in terms of total gate
count and 2-qubit gate count.

Third, also shows our result in comparison to the cutting-edge non-ZX-calculus based algo-
rithm from Nam et al. [22]]. It can be seen that the algorithm from [22]] outperforms any ZX-calculus
based algorithm for most circuits. Still, we were able to achieve better results for the circuits “VBE-
Adders” and “Mod-Multss”. Note that we did not compare for the “QCLA-Mod;” circuit, because [135]]
reports that the optimized circuit from [22]] does not correspond to the original.

Last, the rightmost columns of show a combination of Nam et al’s approach with ours. We

Ihttps://github.com/mnm-team/pyzx-heuristics
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use the output circuits from the Nam et al. optimization as input for our algorithms and observe that we
achieve equally good or better results for almost all circuits. The larger the circuit, the more significantly
this combination improves the previous best known results. Most notably, we improve the total count of
the “Adderg” circuit by more than 15% and the 2-qubit gate count by more than 12%.

Apart from the 2-qubit gate count, the T gate count of a quantum circuit is an important metric,
since T-gates are more complex to implement for an error-corrected quantum computer. Therefore, we
compare our algorithms to the other ZX-calculus based approaches using the TODD algorithm as opti-
mization step 1). It is designed to reduce T gate count by introducing ancilla qubits, but sometimes also
reduces T-gates in the ancilla-free case. shows those benchmarks circuits where the combination
of TODD and a ZX-calculus based algorithm reduces T gate count even more compared to the best result
in We compare the best combination of our heuristic-based algorithm and TODD against the
best combination of an existing ZX-calculus based algorithm and TODD.

While we observe a general increase in 2-qubit and total gates using TODD algorithm, our best
algorithm yields better results than the existing ZX-calculus based algorithms in every case.

7 Conclusions and Future Work

In this work we introduce two functions, namely the Local Complementation Heuristic LCH (for the
local complementation rule) and the Pivot Heuristic PH (for the pivot rule). The functions calculate the
number of Hadamard wires that would be added or removed by applying the respective rule, thus serving
as a heuristic for estimating the 2-qubit gate count of the underlying circuit. This allows us to develop
a more sophisticated strategy for ZX-diagram simplification: First, dismiss the applicable rules that cost
too much and then either select a rule randomly or select the rule with the best wire count decrease.

Notably, the T gate count remains unchanged throughout this process, which is why our approach
and others that mainly decrease the T gate count complement each other well. Further, we introduce
the new Neighbor Unfusion rule which combines the established fusion and identity rules. This rule
allows introducing spiders with arbitrary phases into the circuit if needed, for example when the local
complementation or pivot rule would be useful to reduce Hadamard wires. As a side note, we also
formally describe how to use the local complementation and the pivoting rule on spiders with non-
Clifford phases, which is a common implementation practice but has never been mentioned in theory.

We measure the impact of aligning the optimization strategy with the heuristics and adding the neigh-
bor unfusion rule by comparing our algorithm to four other approaches, some based on ZX-calculus and
some not, on a set of 24 well-established benchmark circuits. Our approaches show significant improve-
ments compared to all other ZX-based approaches, especially in 2-qubit gate reduction. On their own,
non-ZX-based approaches still yield slightly better results than our ZX-based approaches. However,
when combining both we are able optimize circuits better than the previously best known result, which
seems to be a promising field for further research.

Using heuristics for ZX-diagram simplification also provides many possibilities for future improve-
ment. Regarding the selection of rules, both random and greedy strategy are non-optimal for finding a
ZX-diagram with minimal number of wires. Instead, we propose using a metaheuristic selection strategy
like simulated annealing for escaping local minima during simplification. Furthermore, since simplifica-
tion with neighbor unfusion tends to yield the best results, we think it is important to further investigate
in which cases neighbor unfusion generates XY spiders and if we can preserve valid ZX-diagrams when
allowing unfusion on spiders which get extracted on different qubits.
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A Further rules

In addition to the rules in additional rules have been developed to eliminate every interior
Clifford spider.

A.1 Pivoting Boundary Spiders (p1)

The pivoting rule can also be applied if one of the spiders is a boundary spider, i.e., connected to an input
or output, using the following transformation:

P (18)

Here v gets transformed to an interior spider and both u# and v can be removed using the pivoting rule.

A.2 Gadget Fusion (gf):
@

An important feature of phase gadgets is that we can fuse two (o)
phase gadgets connected to the same neighbors by summing ,: . (&f) '“Q:\ : (19
up their phases. ®-9-. : \

This rule is used for eliminating non-Clifford spiders in
a diagram, for instance, two phase gadgets with phase /4 connected to the same set of neighbours can
be fused into a single phase gadget with phase /2. Combining the Clifford simplification algorithm
with those extended rules we can eliminate all interior Clifford spiders (in exchange for phase gadgets)
and some interior non-Clifford spiders.
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B Graph Theory

Since ZX-calculus and its optimization strategies rely on graph operations on undirected graphs, we
provide some background on it: An undirected graph is a tuple G = (V,E) with vertices (or “nodes”) V
and edges E CV X V.

B.1 Local Complementation

The local complementation * [5]] of an undirected graph G = (V, E) about a vertex u is defined as follows
(A is the symmetric set difference: A AB:= (AUB)\ (ANB)):

G*u:=(V.EA{(a,b)|(a,u),(b,u) € E,a+#b}) (20)

The following example shows a graph G and its local complementation about a. Intuitively, local
complementation connects two neighbours of a if they are not connected (e.g., b,c) and disconnects
them otherwise (e.g., ¢,d).

a b a b
G :‘S (Gxa) :RI
¢ d ¢ d @1
B.2 Pivoting [11]
Pivoting A rewrites an edge (u,v) € E by triple local complementation:
GAuv:=((G*u)*v)*xu (22)

To derive the new graph, we consider three disjoint sets (where the neighborhood of vertex x is defined
as N(x) ={y € V|(x,y) € E}):

* A:=N(u)NN(v): Vertices connected to u and v.
* B:=N(u)\N(v): Vertices connected to u and not to v.
* C:=N(v)\N(u): Vertices connected to v and not to u.

In a pivoted graph G A uv, two vertices from different sets A, B or C are connected if, and only if, the
two are not connected in G. Connections between vertices of the same set are not modified. As an
example, consider the following graphs G (left) and G A uv (right), where A = {b},B = {a,d},C ={c,e}.
Intuitively, pivoting connects all vertices between A, B,C that are not connected in G (e.g., a,b) and
disconnects them otherwise (e.g., b,d):

u 1%

e (23)
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C Example for ZX optimization

The following circuit can be optimized as follows:

—1

A
\

<

= —Eb— 24)

N
L

N

PE

N
7

N
o

We use the following rules@ (the affected spiders/wires to which a rule is applied are framed):

BH-0—@+
(f)
1) Eliminate the two Z-gates using — 7

spider fusion (f):

g

qi
2) Reduce from 3 to 2 CNOTs with ﬂ M Q) %@ (b_)> j{}@
fusion (f) and bialgebra rule (b): —o@ 7 —O@-

(m) )
3) Eliminate one X by the 7 copy rule: — @

2The example is inspired by a talk of Russ Duncan “Quantum Formal Methods” from 2021 (1h 35min) which is publicly
available.
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Phase gadgets have proved to be an indispensable tool for reasoning about ZX-diagrams, being used
in optimisation and simulation of quantum circuits and the theory of measurement-based quantum
computation. In this paper we study phase gadgets for qutrits. We present the flexsymmetric variant
of the original qutrit ZX-calculus, which allows for rewriting that is closer in spirit to the original
(qubit) ZX-calculus. In this calculus phase gadgets look as you would expect, but there are non-trivial
differences in their properties. We devise new qutrit-specific tricks to extend the graphical Fourier
theory of qubits, resulting in a translation between the ‘additive’ phase gadgets and a ‘multiplicative’
counterpart we dub phase multipliers.

This enables us to generalise the qubit notion of multiple-control to qutrits in two ways. The first
type is controlling on a single tritstring, while the second type applies the gate a number of times equal
to the tritwise multiplication modulo 3 of the control qutrits. We show how both types of control can
be implemented for any qutrit Z or X phase gate, ancilla-free, and using only Clifford and phase gates.
The first requires a polynomial number of gates and exponentially small phases, while the second
requires an exponential number of gates, but constant sized phases. This is interesting, because such a
construction is not possible in the qubit setting.

As an application of these results we find a construction for emulating arbitrary qubit diagonal
unitaries, and specifically find an ancilla-free emulation for the qubit CCZ gate that only requires three
single-qutrit non-Clifford gates — provably lower than the four 7 gates needed for qubits with ancilla.

1 Introduction

Most quantum computing theory developed thus far has focussed on qubits — two-level quantum systems.
However, there has been a recent surge of interest in studying the more general case of d-level quantum
systems, called qgudits. This has led to applications of qudits for quantum algorithms [52], improving
magic state distillation noise thresholds [12], and communication noise resilience [20]. Qudits have
been experimentally demonstrated on quantum processors based on ion traps [46]] and superconducting
devices [18, 155,157, 134].

The specific case of qutrits, where d = 3, has been used to improve qubit readout [40], but most
notably, qutrits have been used to study emulation: where qubit computation is emulated inside a subspace
of the qudits to enable more resource-efficient gate implementations. In contrast, it has been argued that
qubits cannot simulate qudit (where d > 2 and d is not a power of 2) computation efficiently [11].

Much work on qutrits and emulation has focussed on classical functions: those that come from a
map of classical trits. For instance, using qutrits we can build logarithmic-depth Toffolis [27, 41] and
binary AND gates on superconducting qutrits [[16l]. This leaves open the question of whether there are any
advantages to emulation by studying ‘truly’ quantum gates such as diagonal unitaries. For qubits a useful
tool for understanding diagonal unitaries has been the concept of a phase gadget [138]]. This is a type of
symmetric multi-qubit interaction that occurs naturally in many hardware architectures [43] 42} 47]], and
serves as a good basis for optimising quantum circuits [[18, 19} (7, 16} 54, |5]. Any diagonal qubit unitary
can be expressed as a product of phase gadgets by writing the unitary as a phase polynomial |1, 31]].

S. Gogioso, M. Hoban (Eds.):
Quantum Physics and Logic (QPL) 2022
EPTCS 394, 2023, pp. 46-{65} doi{10.4204/EPTCS.394.4
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In this paper we study the generalisation of phase gadgets to the qutrit setting. We do this by adapting
the qutrit ZX-calculus of Refs. [28] [50]] and transforming it into a flexsymmetric calculus [15] where the
spiders have more desirable symmetry properties. We find this calculus has a simple set of rules for the
Clifford fragment. We define phase gadgets analogously to the qubit case, meaning that as diagrams they
look nearly identical. There are however significant differences between the qubit and qutrit gadgets.
We will show that we can nevertheless use qutrit phase gadgets to construct some useful qutrit diagonal
unitaries, such as controlled phase gates, and a type of gate we dub a phase multiplier. This last one
is possible by generalising the formula that leads to the graphical Fourier theory for qubit diagonal
unitaries [39].

As an application of our results we show how we can emulate an arbitrary qubit diagonal unitary
using qutrit phase gadgets. This leads us to a construction of the emulated qubit CCZ gate that requires
only three non-Clifford qutrit R gates [26]]. This is surprising because using just qubits, we would require
at least four 7' gates to implement the CCZ [35]].

We start the paper by reviewing the basics of qutrit quantum computation in Section [2| Then we
introduce the flexsymmetric qutrit ZX-calculus in Section [3] Diagonal qutrit unitaries, phase gadgets,
controlled phase gates, and phase multipliers are studied in Section 4, We show how to use these to
emulate diagonal qubit unitaries in Section [5]and end with some discussion on future work in Section [6]

2  Qutrit quantum computation

A qubit is a two-dimensional Hilbert space. Similarly, a qutrit is a three-dimensional Hilbert space. We
will write |0), |1), and |2) for the standard computational basis states of a qutrit. Any normalised qutrit
state can then be written as | W) = & |0) + B |1) +7|2) where o, 8,7 € C and |a|> +|B|* + |y]> = 1.

Several concepts for qubits extend to qutrits, or more generally to qudits, which are d-dimensional
quantum systems. In particular, the concept of Pauli’s and Cliffords. For a d-dimensional qudit, we define
the respective Pauli X and Z gates as

X k) = |k+1) Z|k) = o |k) (1

where @ := e?*/4 is such that ®? = 1, and the addition |k+ 1) is taken modulo d [30}[36]. Note that for
qubits this X gate is just the NOT gate, while Z = diag(1,—1). We call unitaries generated by products
and tensor products of the X and Z gate Pauli gates. In this paper we will work solely with qutrits, so we
take @ to always be equal to ¢2™/3, Note that @' = w* = @ where 7 denotes the complex conjugate of z.
For a qubit there is only one non-trivial permutation of the standard basis states, implemented by the
X gate. For qutrits there are five non-trivial permutations of the basis states. By analogy we will call them
all ternary X gates. These gates are X1, X_1, Xo1, X12, and Xo. The gate X1 sends |¢) to |(r £ 1) mod 3)
forr € {0,1,2}; Xo; is just the qubit X gate which is the identity when the input is |2); X, sends |1) to |2)
and |2) to |1), and likewise for Xy,. Note that the qutrit Pauli X gate is the X | gate, while XT = X_| = X2
Another concept that translates to qutrits (or more generally qudits) is that of Clifford unitaries.

Definition 2.1. Let U be a qudit unitary acting on n qudits. We say it is Clifford when every Pauli is
mapped to another Pauli under conjugation by U. Le. if UPU" is a Pauli for any Pauli P.

The set of n-qudit Cliffords forms a group under composition. For qubits, this group is generated
by the S, Hadamard and CX gates. The same is true for qutrits, for the right generalisation of these

gate [30]].

I The gate definitions for various qudit Cliffords may vary across the literature up to a global phase. Indeed, by Deﬁnition
whether a gate is Clifford is invariant under changes in global phase.
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Definition 2.2. The qutrit S gate is S := diag(1, 1, ®). Le. it multiplies the |2) state by the phase @.

For qubits, the Hadamard gate interchanges the Z eigenbasis {|0),|1) and the X eigenbasis consisting
of the states |+) := %(|0> +|[1)). The same holds for the qutrit Hadamard. In this case the X basis
consists of the following states:

- 5 = S +on+oR)  18) = —=(0)+0])+ol2)

+)
) !
Definition 2.3. The qutrit Hadamard gate H is the unitary mapping |0) — |+), |1) — |®) and |2) — |®).

(10)+[1H)+12))  |o):

S

1
H = —

1
0 2
NG g 2

e e -

Note that, unlike the qubit Hadamard, the qutrit Hadamard is not self-inverse. Instead we have
H? = X5 so that H* = I. This means that H' = H3.
The final Clifford gate we need is the qutrit CX.

Definition 2.4. The qutrit CX is defined such that CX|i, j) = |i, (i + j) mod 3), where i, j € {0,1,2}.

Any qutrit Clifford unitary can be written as a composition of S, H and CX gates (up to global
phase). Clifford gates are efficiently classically simulable, so we need to add a non-Clifford gate to get an
(approximately) universal gate set for quantum computing [30]. Here we consider when this is a phase
gate.

Definition 2.5. We write Z(a,b) for the phase gate that acts as Z(a,b) |0) = |0), Z(a,b) |1) = @*|1) and
Z(a,b)|2) = ”|2) where we take a,b € R.

We define Z(a, D) in this way, taking a and b to correspond to powers of @, because then Z(a,b) is
Clifford iff a and b are both integers, so that we can easily see from the parameters whether the gate is
Clifford or not. The group of Z(a,b) phase gates constitutes the group of diagonal single-qutrit unitaries
modded out by a global phase. Composition of these gates is given by Z(a,b) - Z(c,d) = Z(a+c,b+d).
Note that S = Z(0, 1). This brings us to the definition of the qutrit 7' gate.

Definition 2.6. The qutrit 7 gate is defined as T := Z(1, 1) = diag(1, 05,0~ 3) [44,[13,36].

Like the qubit T gate, the qutrit T gate belongs to the third level of the Clifford hierarchy, can be
injected into a circuit using magic states, and its magic states can be distilled by magic state distillation.
This means that we can fault-tolerantly implement this qutrit 7 gate on many types of quantum error
correcting codes. Also as for qubits, the qutrit Clifford+7" gate set is approximately universal, meaning
that we can approximate any qutrit unitary using just Clifford gates and the 7" gate [23, Theorem 1].

There is another useful single-qutrit non-Clifford gate.

Definition 2.7. The qutrit reflection gate is defined as R := Z(0,3/2) = diag(1,1,—1).

Like the T gate, the R gate can be added to the Clifford gate set to attain universality [30]], as explicitly
proved in Ref. [23 Theorem 2]. It can be exactly synthesized fault-tolerantly in three known ways: magic
state distillation followed by repeat-until-success injection [2]], braiding and topological measurement of
weakly-integral non-Abelian anyons [22, [23]] followed by repeat-until-success injection [2]], or unitarily in
qutrit Clifford+7T [26].
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2.1 Controlled unitaries

When we have an n-qubit unitary U, we can speak of the controlled gate that implements U. This is the
(n+ 1)-qubit gate that acts as the identity when the first qubit is in the |0) state, and implements U on the
last n qubits if the first qubit is in the |1) state. For qutrits there are multiple notions of control.
Definition 2.8. Let U be a qutrit unitary. Then the |2)-controlled U is the unitary that acts as

O)@[y) =02y e[y = [hely)  2)@[y)—=[2)U[y)

Le. it implements U on the last qutrits if and only if the first qutrit is in the |2) state.

Note that by conjugating the first qutrit with X, or X_; gates we can make the gate also be controlled
on the |1) or |0) state. A different notion of qutrit control was introduced in Ref. [10] where if the control
is in the |x) state, then it should apply U* on the target, i.e. apply U once iff x = 1 and U? iff x = 2. An
example of this is the Clifford CX gate defined earlier, which applies X ; when the control is |1) and X,
when it is |2). Note that we can get this latter notion of control from the former: just apply a |1)-controlled
U, followed by a |2)-controlled U?.

A number of Clifford+T constructions for controlled qutrit unitaries are already known. For instance,
all the |2)-controlled permutation X gates can be built from the constructions given in Ref. [9]. In our
previous work, we provided ancilla-free explicit constructions for any multiple-controlled Clifford+T
unitary in the Clifford+7 gate set, with gate count polynomial in the number of controls [S6]]. In this
work, by using the qutrit ZX-calculus, we will build upon our previous results and show how to construct
multiple-controlled phase gates for an arbitrary phase.

3 The qutrit ZX-calculus

We will assume the reader has some familiarity with the original qubit ZX-calculus [[17]]. For a review see
Ref. [53].

A qutrit ZX-calculus was presented and used in Refs. [45] 51} 28] 150, 48]]. While quite similar to the
qubit one, it loses some of the properties that make the original easy to work with. In particular, for each
X-spider, the distinction between its input wires and output wires becomes important. This means we can
no longer treat qutrit ZX-diagrams as undirected graphs with the spiders as vertices. This makes intuitive
reasoning about these diagrams harder, and also complicates the implementation of software for dealing
with these diagrams.

Here we will present a variation on the qutrit ZX-calculus of Refs. [28}150] where the spiders do enjoy
this additional symmetry between inputs and outputs. The way we do this is by redefining the X-spider.
In the original qutrit ZX-calculus we have

>< o Y . 3)

Xyt X =Y+t
Here the sum x| +--- +x, = y; + - - + Y1 is taken modulo 3. If we put a cup on one of the wires to turn
an output into an input, then this has the effect of introducing a minus sign on that variable, changing for
instance x| +x, = y; +y; into x; +x, — y» = y;. For qubits this is not a problem since —x = x modulo 2,
but for qutrits this changes the map. We fix this by defining a new X-spider as

X o Y aE @)
X,y

X1+ Xyt +ym=0
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We see that in this definition the inputs and outputs are treated on equal footing. In order to prevent
confusion with earlier work, we will denote this new X-spider in pink, instead of in recﬂ
Let’s now give the full definition of the spiders. We define the Z-spider as

% =10---0)(0---0] + @*[1---1)(1---1] + a)B|2-~-2><2~--2].

Here we have two phase angles o and f3, as opposed to just the one angle in qubit ZX. In general, for
a d-dimensional spider, you will need to specify d — 1 phases. In particular, when written in a spider %
should be interpreted as two different phases and not as the fraction /. Note that we define the phase
angles as @* and ®P so that these correspond to the complex phases ¢’3'® and ¢7'P. This means that
when «a and 3 are integers, that the spiders correspond to the Clifford fragment of the calculus. We define
the X-spider similarly, but with respect to the X-basis:

ﬁf = |+ )+t + 00 o) oo + of |0 0) (@6l

This requires some explanation, because this does not look symmetric in the inputs and outputs. However,
note that (0| = (J@))" = (|0) + ®|1) + ®[2))" = (0| + @ (1| + @ (2|. Hence, if we take the transpose of
|w) we actually get (@|. It is straightforward to check that with & = 8 = 0 we get back Eq. (). These
definitions of the Z-spider and X-spider satisfy the symmetry properties we want, namely:

>g<:

These symmetries mean our spiders are flexsymmetric, as defined by Carette [15]], and as a result we may
treat our ZX-diagrams as undirected graphs with the spiders as vertices. Note that here the cups and caps
are defined with respect to the Z basis: C = |00) 4 |11) +|22). As usual, our calculus also formally has
generators for the identity wire and the swap.

It will be useful to introduce an additional graphical generator for the Hadamard:

[——1 = [+) (O] + ) (1] + [@) (2 = 0) {(+] + [1) (@[ +|2) (] . (5)

We write the Hadamard as a slanted box, because it is self-transpose, but not self-adjoint, and so should
be denoted in a way that is symmetric under a rotation, but not a reflection.

Our redefinition of the X-spider comes at a ‘cost’. Namely, the 1-input, 1-output X-spider is no longer
the identity: —o— = |0) (0| +[2) (1| +[1) (2| = |+) (+|+|®) (@] + |w) (®|. This map is implementing
|x) — |—x) where —x is taken modulo 3, and is equal to X;,. Additionally, the X-spider is not really a
spider any more in the sense that it doesn’t satisfy the standard spider-fusion equation. Instead it satisfies
the ‘harvestman equation’ [[15] that also holds for for instance the W-spider [32] and H-box [4]:

In Figure[I]| we present a full set of rewrite rules for this qutrit ZX-calculus. We have accounted for
the global phase for each rule here as a complex number, as those will be relevant to us. Note however
that the rewrite rules are not scalar-accurate as we are ignoring factors of v/3.

2We have checked the accessibility of this color scheme; in fact, a red-green colorblind person greatly preferred this pink to
the default ZX red.
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i@O® (EV)

Figure 1: Rules for the flexsymmetric qutrit ZX-calculus. These hold for all o, 3,1,0 € R, and for any
permutation of the input and output wires. Additional useful derived rules are presented in Figure [2]
The letters stand respectively for (S)pider-Z, (H)adamard, (B)ialgebra, (SP)ecial, (P)auli, and (EU)ler
decomposition.

—o0— = (ID) —O0— = oo (H2) o7 = ——  (H4)

- 0 @O @ =

-9 o =wﬁ“ (P2) (1)

= @ ®
D = DO @< - a{
oo = | DO

- (%)  wo =i QOO (EV)
o =i DOD

Figure 2: These rules are derivable from the rules of Figure[I|for any o, 8,71,0 € R and x € {0,1,2}.
The new letters stand respectively for (ID)entity, (IN)vert and (S)pider-X.

Using these rules, other useful qutrit ZX-calculus rewrite rules may be derived. In particular, we can
use these rules to prove the derived rules presented in Figure [2] As these rules are (a slight variation)
on the non-flexsymmetric qutrit rules of Ref. [50]], our calculus is also complete for the qutrit Clifford
fragment (when ignoring non-zero scalars). The proofs of the derived rules of Figure [2] are given in
Appendix We show in Appendix that most rules of Figure|l|are necessary (i.e. not derivable
from the others).

We see in these rules that there is a special role for phases of the form 3= where x € {0, 1,2}. This is
because (3)— o |x) and —3)— = Z*. These relations can be derived by using the identity 1+ 0+ @ =0
together with ®> = w~! = @. In general we will see a lot of phases because they implement the
|x) = 0™ |x) phase gate. Additionally, note that the (P2) rule on the qubit subspace is exactly the familiar
qubit ZX rule = ol , since the red 7 is the qubit Pauli X while the pink } phase is the
qutrit Pauli X.
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4 Diagonal qutrit gates

4.1 Phase gadgets

For qubits the concept of a phase gadget has proven very useful. There’s several different ways we can
define a qubit phase gadget. One way is to consider it as the diagonal gate |x,y) — e/ |x,y) (for
simplicity we are only considering a two-qubit phase gadget). This applies a phase of ¢/* when x @y = 1.
Here @ is the XOR operation, which is the addition on Z,. This suggests that we should define the qutrit
phase gadget as |x,y) — e/**) |x,y) where now we take x +y to be modulo 3.

We could also define a phase gadget by its circuit realisation or diagrammatic representation. For

qubits [38]:
O O O

We claim the qutrit variant of this construction is given by the following circuit which can be simplified to

a similar diagrammatic representation:
logob ™ Lal '
= = o< @) = o0 % (6)
.
@

&—Q @ @& ) &
-0 oc OO0F = F X0 = G 7
pe

This ‘floating scalar’ expression evaluates to v/3@*+¥m0d3) o that this diagram indeed implements the
operation we want, and we see that these three ways to define a qubit phase gadget—via the action, via
the circuit, or via the diagrammatic representation—are also equal for qutrits.

We can easily generalise this construction to an arbitrary number of qutrits:

X+y-+z+w mod 3

5y zw) = % Vx,y,z,w)  (8)

We can also define more general phase gadgets where the phases don’t have to be related to each
other, i.e. we can replace Z(a,2a) with Z(c, ). In this case we would still be calculating the value
x+y+z+w modulo 3, but then we apply a different phase depending on the value of this sum: if itis O
we don’t apply any phase; if it is 1 we apply @%; and if it is 2 we apply @P.

A particularly relevant choice of phases here is when oo = 3. In this case, we apply the phase iff the
sum value is not 0. For a trit x it turns out that x> = 0 if x = 0 and x> = 1 otherwise — this is actually a
consequence of Fermat’s little theorem and generalises to x”~! = 1 modulo p when x # 0 for p prime.
Hence:

2 [x) > @0 mod3) |y 9)

There is a complication with the phase gadget circuit representation that doesn’t arise in the qubit
setting, which is that the CNOT gate is self-inverse while the CX qutrit gate is not. In Eq. (6) we needed
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to pair a CX with a CX' to make the construction work. If we instead have a pair of CX gates, we get

something a bit more complicated:
O O © o O O O
O-0{(Z)r0-0 O 0-O O—0-O

Remark 4.1. Another way to view qubit phase gadgets is as an exponentiated Pauli ¢'**®Z [18, [19].
This however does not generalise to qutrits, as the qutrit Pauli Z is not self-adjoint, and hence cannot be
exponentiated to give a unitary. In fact, a qutrit phase gadget cannot be represented as the exponential of a
‘pure tensor’ like ¢/*A®8_ This does suggest that there could be another suitable generalisation of a phase
gadget that is the exponential of a tensor of Gell-Mann matrices, a qutrit basis of self-adjoint matrices.

4.2 Controlled phase gates

The other type of useful diagonal gate for qubits is the controlled phase gate. Such a gate applies a Z( )
gate on a qubit controlled on the value of a control. There are multiple ways in which we can generalise
these to the quitrit setting. The type of control we will consider first is the |2)-control of Definition To
see how we can build a |2)-controlled Z phase gate, we will take inspiration from the qubit construction.

Recall that there we have:
@2Q
= > (11)
an-c

We can ‘port’ the right-hand side to the qutrit setting, by taking each of the phases to be a Z(c, ).
However, we then run into some problems. It is easy to check that when the top qutrit (the control) is |0)
that the diagram indeed acts as the identity on the bottom qutrit (the target). However, it implements a
different phase gate on the target depending on whether the control is in |1) or |2):

Z(0,0) if control is |0)
Q0(ZH) ~ ( Z2o— B, +B) if control is |1) (12)
® Z(a+B,2—a) ifcontrolis |2)

Seeing as we want to construct the |2)-controlled gate that should act as the identity when the control is
|1) this is a problem. We solve this issue by ‘doubling up’ the construction, with the second construction
being conjugated by Xj, on the control in order to interchange the role of |1) and |2):

13)

By referring to Eq. (I2)) we see then that in order for Eq. (13) to be equal to the |2)-controlled Z(6,¢)
gate it needs to satisfy a set of linear equations. We can solve these to get a (unique up to some Clifford
phases) solution:

y:% 5= 229 (14)
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We can hence write any |2)-controlled phase gate using at most four CX gates and four phase gates. For
example, if we pick 8 = 1 and ¢ = 2 (so that we are constructing the controlled Z gate) we get:

Here we write this blue dot with a 2 in it to denote a |2)-control. We see then that our construction
in the special case of |2)-controlled Paulis indeed achieves the lowest known T-count of 3 [9]. By
conjugating the control wire by either X or X_; we can make the gate instead be controlled on either |1)
or |0).

We can add any number of controls to our construction in Eq. to make it controlled on any
tritstring. Without loss of generality, let us say the tritstring in question is |2)“" (by conjugating with
X gates, we can make this into a control on any tritstring of length ). The naive way to construct this
controlled gate is to inductively add controls to each gate in the decomposition: controlled constructions
for the X or CX gate are described in, for instance, Ref. [56], while controlled Z phase gates can be
constructed by recursively applying Eq. (I3). However, this method is not efficient as it requires an
exponential number of gates as the number of controls increases.

We can do better by not adding controls to all the gates in the decomposition:

—@— O 2—0—=0 @
' S
b o hd \H{}
8 e R0
Z(6,9) aC)a —

In the case where all the controlled gates fire, this indeed implements any desired Z phase gate on the
target qutrit. Otherwise, none of the controlled gates fire, and then the bottom two qutrits becomes identity
(use (H2) and (H4) on the top qutrit and (SZ) and (ID) on the bottom qutrit). We hence get the following
proposition.

Proposition 4.2. Any tritstring-controlled qutrit Z or X phase gate can be constructed without ancillae
and with a polynomial number of Clifford and phase gates.

Proof. The X phase gates can be constructed from the Z phase gates by conjugating by Hadamards, so we
only need to describe how to construct tritstring-controlled Z phase gates. Suppose we wish to construct
a phase gate with n controls. By our prior work in Ref. [56], each ]2)®(”_]) -controlled CX gate can be
built ancilla-free using O(n>%) qutrit Clifford+T gates. It then remains to show how to construct the
\2>®(" ~U_controlled Z phase gate in Eq. (I6). We do this recursively. To construct the gate with k controls,
we need four controlled CX gates with k — 1 controls and a k — 1 controlled Z phase gate, which then
needs four controlled CX gates with kK — 2 controls, and so on. The total asymptotic gate count is then
40(n*3%5) +40((n— 1)) 4 ... which gives us a gate count of O(n*%). O

Note that in this construction, the size of the phases involved becomes exponentially smaller in the
number of controls. We will next see that there is a notion of control which circumvents this issue.
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4.3 Phase multipliers

The |2)-controlled phase gate is just one possible way to extend the idea of a controlled-phase gate from
qubits. Another way is to realise that for qubits we can describe the action of a controlled phase gate as
|x,y) = €/**7 |x,y). Indeed, if the control qubit is in the state x = 0, then this is just the identity, while if
x = 1, we apply €'* which corresponds to a Z(a) gate on the |y) qubit.

We see then that while a phase gadget is based on the addition operation of Z,, controlled phase gates
are based on the multiplication operation of Z,. This suggests that the controlled phase gate equivalent
for qutrits should be |x,y) — €/ |x,y) where now we take x -y modulo 3. We will show how we can
construct this operation using phase gadgets. In order to distinguish this type of gate from the previously
considered controlled phase gates, we will refer to a gate where the phase depends on x -y as a phase
multiplier. Before we show how to build phase multipliers for qutrits, we first need to understand how to
build them for qubits. For bits x and y we have the relation

1
x-yZE(ery—(x@y))- (17)

Importantly, we are considering the 4 operation here not modulo 2, but just as an action on real numbers,
and we are writing @ for addition modulo 2. Using this relation we can write e/**) = ¢/ 2Oty —(x®y)) =
¢/2%%i2@Ye=i20(x2Y)  This is where the circuit decomposition of Eq. (TT) comes from. This relation
between additive and multiplicative phase gates follows from a Fourier-type duality that exists for
semi-Boolean functions, which is explored in detail in Ref. [39].

It turns out that a similar decomposition is possible for qutrits. Note that we can derive Eq. by
starting with the equation (x4 y)? = x> +y? + 2x -y and then realising that x> = x for x € {0,1} so that
this reduces to x &y = x4y + 2x - y for bits. When working with trits we can’t remove these squares, but
we can still get a useful relation. Bring terms to the other side to get —2x-y = x*> +y? — (x+y)? and then
use the fact that modulo 3 we have —2 = 1 to get x-y = x> +y? — (x+y)?. It is now straightforward to
check that this continues to hold when we interpret the outer + and — here not modulo 3, but as operations
on the real numbers, so that we get the relation:

x-ymod 3 = (x* mod 3) + (y* mod 3) — ((x+y)* mod 3) (18)
Hence, using Eq. (9) we get the following decomposition:

&0
00D o ny) e @ med Iy y) (19)

ORe

We can easily generalise Eq. (I8) to as many variables as desired by iterating it. For three trits:

(x-y)-z = 2 zytz—(x+y)? ez
=+ 2 - (P )Py 2= 0P )P - () = () +2)?
= 4+ 42— (P +2)? = (P +2) = () + () +2)? (20)

Here we used that x* = x*> modulo 3.

Note that Eq. (9) shows how to apply a phase proportional to the input trit squared modulo 3. However,
in order to use this trick to apply a phase proportional to a higher order term such as (y+x?)?, we need a
way to compute y + x> and store it “on the wire”. In other words, we need to construct a circuit for the
unitary defined by |x,y) — |x,y +x2>. Because this simply adds 1 (modulo 3) to y iff x ## 0, we construct
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it by adding 1 to the second qubit, and then applying a |0)-controlled X_; gate. To build this gate, we use
the |2)-controlled Z gate that we built from two phase gadgets in Eq. (T3)):

© _ 4{}(—1 @ X+1% . |x,y> . |x,y+x2> (21)

The above trick was also described in Ref. [9]. We further use this to build the type of phase gate below.

0 © -
T T 5 y) e 0% |y (22)

{X—H HX—I X+1 HX—1 F

We now have all the ingredients necessary to build the phase multiplier corresponding to the formula (20).
What is interesting about this is that we do not have to use smaller factors of ¢. This is in contrast to the
qubit counterpart of the formula (20) where we get a factor of 1. due to the factor of % in Eq. (I7). In
fact, for qubits, the generalisation to n variables will have a prefactor of (1/2)"~! so that for instance the
three-qubit-controlled Z and controlled T gates cannot be constructed without ancillae in Clifford+7 [25]],
as we need /8 phase gates. Instead, no matter the number of qutrits, we do not get such a prefactor
and can iteratively construct it as in the formula (20), as we did for qutrit Clifford+7 in Ref. [56]. The
circuit (22)), alongside the square phase of Eq. (9) suffices to generalise Eq. to any number of qutrits.

Proposition 4.3. We can construct, without ancillae and using O(2") Clifford+T, Z(a, @), and Z(— ¢, — )
gates, the n-qutrit phase multiplier gate defined by |xi,...,x,) — @®((1-x)mod3) |y = ).

See Appendix [B] for the details.

Remark 4.4. In Ref. [21]] the diagonal gates at all levels of the Clifford hierarchy are analysed for any
qudit of prime dimension. They show for instance that the gate implementing |x; - - - x;,) — @ |x; -+ - x;,)
(which is the n-controlled 27 /3 phase multiplier gate) is in the nth level of the Clifford hierarchy. This
might be surprising as our construction shows how to build this gate, for any n, only using gates from the
third level of the Clifford hierarchy (namely Clifford gates and the T gate). However, note that while the
diagonal gates on a level of the hierarchy form a group, the full set of (not necessarily diagonal) gates is
not closed under composition, and hence we can build higher-level unitaries using lower-level ones.

S Applications

We’ve now seen that we can use phase gadgets to build a number of useful diagonal unitaries. In this
section we will see how we can build more general diagonal qutrit unitaries, and specifically those that
emulate qubit operations. Qudit emulation of qubit operations can result in efficiency gains, by using
higher level states rather than ancillae. While there has been significant work on emulating qubits using
qutrits and qudits, much of this has been limited to realising gates within classical reversible computing
such as multiple-controlled Toffolis. In contrast, fewer works have addressed qutrit gate sets containing
arbitrary phases. Examples include a |2)-controlled Z(0, ¢) decomposition in terms of qutrit-controlled
qubit ¢ /3 rotations [24] or quantum multiplexers and uniformly-controlled Givens rotations from the
cosine-sine decomposition [37]].

Throughout this section, we will write £ to denote that a qubit unitary is emulated by a qutrit unitary.

We will first see how to emulate arbitrary qubit diagonal unitaries. Note that when we restrict to the
{|0),|1)} subspace, that a qutrit phase multiplier |x;, ..., x,) — e/®((¥1-2)mod3) | " only applies a
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phase « if and only if all n qubits are in the |1) state. Hence, for instance, the two-qubit CZ(a) gate is
directly emulated by its two-qutrit counterpart of Eq. (T9) with action |x,y) +— ¢'* |x,y). Consequently,
by Proposition [4.3| we see that using qutrit Clifford+T gates along with Z(a, ) and Z(—a, — ) we can
emulate the multiple-controlled Z(a) qubit gate without ancillae.

Now, by conjugating a multiple-controlled CZ() gate by the appropriate Xy; gates, we can decide on
which input the ¢'* phase is applied. Using multiple of these gates we can then arbitrarily decide for each
input which phase should be applied to it. This then allows us to emulate an arbitrary diagonal qubit gate.

Proposition 5.1. We can emulate the diag(w® ..., ®*") qubit unitary using qutrit Clifford+7', Z( o, &)
and Z(—oj, —o;) gates and without using ancillae.

When using a standard qubit unitary synthesis algorithm, the desired phases ¢'% would be implemented
using many-controlled phase gates that require exponentially small angles e'% /2" which is problematic
when the use-case is in fault-tolerant computing where non-Clifford phase gates must be constructed using
magic state distillation and injection. Our construction could hence lead to some benefits in synthesising
diagonal qubit unitaries using less non-Clifford resources.

It turns out that for the specific case of a qubit CCZ gate, that we can emulate it using qutrits in an
even more efficient way. While we could use the emulation construction above, it turns out to be better to
consider an altered construction.

Lemma 5.2. Given a qutrit |2)-controlled U gate for an emulated qubit unitary U, we can construct a
qutrit emulation of the qubit CCU gate with the same non-Clifford cost as the |2)-controlled U gate.

Proof. One can readily verify, by initializing the top two qubits to {|00),|01),]10) ,and|11)}, that the
below qutrit decomposition from Ref. [27] emulates the qubit CCU gate.

e il Ix 23)

We can then replace the two non-Clifford |1)-controlled X, | and |1)-controlled X ; by CX and CX',
preserving correctness of the emulation as the action on the {|0),|1)} subspace is unchanged [10]. [

Using this lemma we see that to get an efficient emulation of the qubit CCZ, it remains to find an
efficient qutrit emulation of the |2)-controlled qubit Z gate.

Lemma 5.3. Let U = diag(1, ®™) be an arbitrary qubit Z phase gate. Then we can build the |2)-controlled
emulated U using the controlled phase gate of Eq. (12):

@ e O—Q N O—2 &
= = = D-OCP 24)

Here a and f satisfy, for some k € Z, 2 — B = 3k and o + 3 = 1 and the questionmarks ? denote that
these phases are irrelevant for the emulation.

If we choose @ =3/2 and B = 0 in this construction we are emulating the |2)-controlled qubit Z gate,
because the phase of /> = —1 applies iff the control qutrit is |2) and the target qubit is |1). Note that a
Z(3/2,0) phase is equal to X1, R Xi, referring to the R gate from Definition Hence:

Corollary 5.4. The |2)-controlled qubit Z gate can be emulated with R-count 3.

Combining this corollary with Lemma[5.2] we arrive at our result.
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Proposition 5.5. The qubit CCZ gate can be emulated ancilla-free in qutrit Clifford+R with R-count 3.

As shown in Ref. [35], any implementation of a CCZ gate requires at least four qubit 7T gates.
Additionally any unitary implementation requires at least seven [29]. Here we see that surprisingly, by
embedding the CCZ into qutrit space, we can construct it using just three non-Clifford single-qutrit gates
and that moreover this is unitary and ancilla-free. This is also a new minimum amongst qudit emulations:
for instance, in Ref. [33]], they needed four qudit (for prime d > 3) T gates to emulate qubit CCZ.

6 Conclusion

We introduced phase gadgets in the qutrit ZX-calculus. To do this, we adapted the original qutrit ZX-
calculus to be flexsymmetric so that the phase gadgets’ behaviour would not depend on the directionality
of their edges. Using phase gadgets we showed how to build two types of qutrit controlled phase gates:
tritstring-controlled phase gates and phase multipliers. This allowed us to emulate the qubit CCZ gate
using just three single-qudit non-Clifford gates.

While some of our constructions will naturally generalise to arbitrary qudit dimension, some things
are qutrit specific. It seems to be a coincidence that for qutrits, in contrast with other-dimensional qudits,
you can derive a relation between modular multiplication and addition (18] from the same binomial as for
qubits (T7)), which comes from having a natural way to express x*> mod 3 thanks to Fermat’s little theorem.
As aresult, qubit and qutrit phase multipliers admit constructions which are structurally similar, despite
the fact that for qubits it applies a phase of & on only one possible input — where all n qubits are |1)
— while for qutrits it applies a phase, which can be & or 2, for 2" of the 3" possible input basis states.
Moreover, it seems quite special that Eq. does not have any factors making the size of the phases
internal to the decomposition decrease (in contrast to the qubit case).

We believe we could use these results as a stepping stone towards defining a qutrit ZH-calculus [4]].
In the qubit ZH-calculus, the H-boxes represent matrices with coefficients a'l~/1J» for a complex
number a and iy, ..., im, j1,..., jn € {0, 1}. Therefore, the obvious generalisation to qutrits (at least for a a
complex phase) corresponds to our qutrit phase multipliers. Phase gadgets and phase multipliers could
then be related in the same way as they are for qubit ZX and ZH [39].

An open problem is to find a suitable qutrit equivalent of exponentiated Paulis. The canonical self-
adjoint generalisation of qubit Paulis to qutrits, the Gell-Mann matrices, can be exponentiated to unitaries,
but it is not clear how they are related to the qutrit Paulis exactly. A starting point to find the proper
relation here is to express exponentiations using a Hermitian operator basis constructed from the qutrit
Paulis [3]].

Finally, let us mention that based on work on an earlier draft of this paper, a proposed scheme for
physically implementing a qutrit phase gadget in superconducting qutrit hardware was made [14].
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A Qutrit ZX-calculus

A.1 Necessity of rules

We can show that most of the rules in Figure[I|are necessary, meaning that they cannot be derived from the
other rules. We do this by adapting the reasoning of Ref. [49]. Namely, the following rules are definitely
necessary:

* (SZ): this is the only rule which can decompose a generator with four or more legs into generators
with fewer legs.

(P): this is the only rule which resolves diagrams containing generators to the identity.

(B1): this is the only rule that can transform a connected diagram into a disconnected one.

(EU): this is necessary per the argument of Ref. [51 Proposition 3.2].

* At least one of (H) and (H') is necessary as these are the only ones that can convert a diagram
containing a X generator with a non-integer phase into one containing a Z generator with a non-
integer phase.

We do not know whether the other rules are necessary, although we do suspect this is the case.

A.2  Proofs of the derived rules
Lemma A.1. The (ID) rule can be derived from the (SZ) and (SP) rules.

Proof.
(P) (82) (SP)
—O0— = o0 = Ao = — O
Lemma A.2. The (H2) rule can be derived from the (H') and (ID) rules.
Proof.
(ID) (H')
-~ = -0 = —O0— 0

Lemma A.3. The (H4) rule can be derived from the (H), (ID), and (H2) rules.

Proof.
(H2) (H) (ID)

L~ = O = —0O0— = — Il
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Lemma A.4. The (SX) rule can be derived from the (SZ), (H'), (H2), and (H4) rules.
Proof.

Lemma A.5. The (P1’) rules can be derived from the (P1), (SX), (H), (

"), (H2), and (H4) rules.
Proof. Let’s first derive the rule for x = 0:

(H2) (H4) (H') (H) (H2)
ol = oo = o = e = o = S
From that, we can derive the below rule:

(25)

(8X) (P1) (25)) (P1) (8X)
€) o Do® ®
DL = DodY == = < ~ o (26)
Doy @~ @o® ®
The two above rules, along with the (P1) rule, are captured by the following rule where x € {0,1,2}:

® - <

We now colour-change the above rule to finish deriving all the (P1’) rules:

)

27

=

(H') (H2) () ®os EZ,ZL HE 7z 52,4))7 (®)
DL = w@ewa] = oo = ofpoT <ol D s @

O
Lemma A.6. The (P2') rules can be derived from the (P2), (H), (H'), (SZ), (SX), (H2), and (H4) rules
Proof. We prove them one by one:

@D = QOO == Qo@D = Qe =i+ DD ® = DO (29)
(#) sk (k2) oy (H)
O = 2@ = QB = Jx o@D = Ju 2B = o@D (0
(52) €0

(EV) (52)
= =l = elle+ha) = ¢P

(€29)
O
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Lemma A.7. The (EU’) rules can be derived from the (EU), (H), (H'), (SZ), (SX), (H2), and (H4)
rules.

Proof. We show the first equation directly:

(EU) (H) (H)
woo- = i vHOO =i 20O =i -GG (32)
For the second one we first note that:
(H4) (k) (SX
(H2) (EU) (S2) (H2)
@3 (8X) (ID) (H4)
—i =—ioo@O— = OBoodDD®— = = — (33
Then:
G2 (H4)
—HHF~ =—] "" 999 =—i (34)
And finally, we find the different decomposition of H:
(H4) ez (H) (H)
o = o0 =i QOO =-iv@QeQsDo =-i-OOD 69
O
B Constructing general phase multipliers
When we have two variables we use the formula
x-ymod 3 = (x* mod 3) + (y* mod 3) — ((x+y)* mod 3) (36)

to construct the two-qutrit phase multiplier. We generalised this to three variables in the following way:
(xy)-z = o2y 2= (b)) oz = AP 2 = (P42 = (P 427 = (k) () +2)% (BT)

To see how we go to 4 variables and beyond, we start with the expression (x-y-z)-w and decompose
x -y -z with the above formula resulting in terms tlz, ...,t2. Bach of these terms is a square, because that is
the case for all the terms in Eq. (36). Since we are working with qutrits we have (tjz)2 = tjz-. The terms in
our formula are now of the form tjz -w. We apply Eq. to each of these. This gives us terms t;»‘, w? and
(tjz +w)2. The first of these is just tjz, and by induction we already know how to construct the appropriate
phase term on the circuit for this term. The second of these is w?, and hence corresponds to a simple
phase gate. Note that this is the same for each tjz -w we are decomposing. Furthermore, the plus signs and
minus signs on the terms are such that they almost all cancel, and we will have one copy of w?.

The only ‘interesting’ new term we then get is hence (tj2 +w)2. For instance, in Eq. the terms of
this form are (x*> +2)2, (y> +z)? and ((x+y)? +2z)?. The corresponding phase terms are constructed by
using the gadget of Eq. to store tjz -+ w “on the wire” and then applying a Z( o, ¢t) phase gate.

Hence, if we go from 3 to 4 variables we get each of the original terms ¢, plus a w? term and a
(tjz +w)? term for each j. This straightforwardly generalises to n variables, and it is then easy to check
that we will have 2" — 1 terms.



J. van de Wetering & L. Yeh 65

We can build a circuit for the n > 2 qutrit phase multiplier by first building the circuit for n — 1 qutrits,
and then inserting the gadget of Eq. (22) after every application of a Z( o, t) phase with as the target
the nth qutrit. The reason this works is because the n-qutrit phase multiplier still contains every term of
the n — 1 qutrit multiplier, but now also needs to combine those terms with the nth variable. In the four
variable case, we would first store on a wire the value of the term #; we need, and then apply a Z(o, o)
gate in order to get the phase ¢} Then we would apply Eq. on the qutrit of w in order to get the
phase /%)’ This construction involves temporarily storing tjz- +w on the wire of w, so we can use
this term if we want to construct the five-qutrit phase multiplier as well.

We then see that the cost of the n-qutrit phase multiplier in terms of (non-Clifford) gates is the cost of
the n — 1 qutrit phase multiplier plus the cost of 2"~ — 1 applications of the Eq. (22)) gadget. In particular,
each phase term requires precisely one of either a Z( o, ) or a Z(—o, — ) gate, so that we need 2" — 1 of
them. The circuit of Eq. (22)) requires 6 T gates to construct, and hence the T-count of the n-qutrit phase
multiplier is 6(2"~! — 1) = 3-2" —6 (for n > 2).



Complete Flow-Preserving Rewrite Rules for MBQC Patterns
with Pauli Measurements

Tommy McElvanney Miriam Backens
School of Computer Science School of Computer Science
University of Birmingham University of Birmingham
txm6390@student . bham.ac.uk m.backens@cs.bham.ac.uk

In the one-way model of measurement-based quantum computation (MBQC), computation proceeds
via measurements on some standard resource state. So-called flow conditions ensure that the overall
computation is deterministic in a suitable sense, with Pauli flow being the most general of these.
Existing work on rewriting MBQC patterns while preserving the existence of flow has focused on
rewrites that reduce the number of qubits.

In this work, we show that introducing new Z-measured qubits, connected to any subset of the
existing qubits, preserves the existence of Pauli flow. Furthermore, we give a unique canonical form
for stabilizer ZX-diagrams inspired by recent work of Hu & Khesin [17]]. We prove that any MBQC-
like stabilizer ZX-diagram with Pauli flow can be rewritten into this canonical form using only rules
which preserve the existence of Pauli flow, and that each of these rules can be reversed while also
preserving the existence of Pauli flow. Hence we have complete graphical rewriting for MBQC-like
stabilizer ZX-diagrams with Pauli flow.

1 Introduction

The one-way model of measurement-based quantum computation (MBQC) shows how to implement
quantum computations by successive adaptive single-qubit measurements on a resource state [23], largely
without using any unitary operations. This contrasts with the more commonly-used circuit model and
has applications in server-client scenarios as well as for certain quantum error-correcting codes.

An MBQC computation is given as a pattern, which specifies the resource state —usually a graph state
— and a sequence of measurements of certain types [12]. As measurements are non-deterministic, future
measurements need to be adapted depending on the outcomes of past measurements to obtain an overall
deterministic computation. Yet not every pattern can be implemented deterministically. Sufficient (and
in some cases necessary) criteria for determinism are given by the different kinds of flow, which define
a partial order on the measured qubits and give instructions for how to adapt the future computation if a
measurement yields the undesired outcome [[11} 8] (cf. Section 2.3).

In addition to the applications mentioned above, the flexible structure of MBQC patterns is also
useful as a theoretical tool. For example, translations between circuits and MBQC patterns have been
used to trade off circuit depth versus qubit number [7] or to reduce the number of T-gates in a Clifford+T
circuit [20]. When translating an MBQC pattern (back) into a circuit, it is important that the pattern still
have flow, as circuit extraction algorithms rely on flow [11, 21} 14!} 4]

This work uses the ZX-calculus, a graphical language for representing and reasoning about quantum
computations, which is convenient for representing both quantum circuits and MBQC patterns, and for
translating between the two. ZX-calculus diagrams directly corresponding to MBQC-patterns are said
to be in MBQC form. The ZX-calculus has various complete sets of rewrite rules, meaning any two
diagrams that represent the same linear map can be transformed into each other entirely graphically

S. Gogioso, M. Hoban (Eds.): © T. McElvanney & M. Backens
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[2, 18l 22]]. Yet these rewrite rules do not necessarily preserve the existence of a flow, nor even the
MBQC-form structure. Thus, circuit optimisation using MBQC and the ZX-calculus relies on proofs that
certain diagram rewrites do preserve both [14.4]. Work so far has focused on rewrite rules that maintain
or reduce the number of qubits, which find direct application in T-count optimisation [[14]. Nevertheless,
it is sometimes desirable to increase the number of qubits in an MBQC pattern while preserving the
existence of flow, such as for more involved optimisation strategies [25] or for obfuscation.

In this paper, we begin investigating rewrite rules that preserve the existence of flow while increasing
the number of qubits. In particular, we prove that a rewrite rule that introduces a new Z-measured
qubit preserves flow. Most work on flow-preserving rewriting so far has been done in the context of
generalised flow, also known as gflow [8]], in either its simple [[14] or extended version [4]. Yet with the
qubit introduction rule, the setting shifts to that of Pauli flow [8) 24] since preserving the interpretation
of the diagram requires that the new qubit be measured in the Pauli-Z basis.

We show that adding this one new rule to the known flow-preserving rewrite rules suffices to get
completeness for MBQC-form diagrams within the stabilizer fragment of the ZX-calculus. To achieve
completeness, we introduce a new unique normal form for stabilizer ZX-calculus diagrams, which is
close to the MBQC form. This normal form is based on work by Hu and Khesin [[17] using the stabilizer
graph notation of Elliott, Eastin and Caves [16]], like the original stabilizer ZX-calculus completeness re-
sult [2]. As the proof by Hu and Khesin is somewhat difficult to follow, we give an alternative uniqueness
proof using the language of affine spaces.

The remainder of this paper is structured as follows: in Section Pl we introduce the ZX-calculus,
measurement-based quantum computing, and existing flow-preserving rewrite rules. Section [3 contains
the new canonical form and its uniqueness proof. Sectiond|presents the new flow-preserving rewrite rule
and the completeness proof for the stabilizer MBQC-form fragment. The conclusions are in Section [3l

2 Preliminaries

In this section, we give an overview of the ZX-calculus and then use it to introduce measurement-based
quantum computing. We discuss the notion of flow that will be used in this paper and some existing
rewrite rules which preserve the existence of this flow.

2.1 The ZX-calculus

The ZX-calculus is a diagrammatic language for reasoning about quantum computations. We will pro-
vide a short introduction here; for a more thorough overview, see [27, [10].

A ZX-diagram consists of spiders and wires. Diagrams are read from left to right: wires entering a
diagram from the left are inputs while wires exiting the diagram on the right are outputs, like in the quan-
tum circuit model. ZX-diagrams compose in two distinct ways: horizontal composition, which involves
connecting the output wires of one diagram to the input wires of another, and vertical composition (or
the tensor product), which just involves drawing one diagram vertically above the other. The linear map
corresponding to a ZX-diagram D is denoted by [D].

ZX-diagrams are generated by two families of spiders which may have any number of inputs or
outputs, corresponding to the Z and X bases respectively. Z-spiders are drawn as green dots and X-
spiders as red dots; with m inputs, n outputs, and using (-)®¥ to denote a k-fold tensor power, we have:

ﬁ%‘m — ’O>®n <0‘®m_’_eia ‘1>®n <1’®m ﬁ}xfﬂ — H_>®n <+‘®m_’_eia ‘_>®n <_‘®m
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Figure 1: A complete set of rewrite rules for the scalar-free stabilizer ZX-calculus. Each rule also holds
with the colours or the directions reversed.

Spiders with exactly one input and output are unitary, in particular [~@-] = |0) (0| +e*|1) (1| = Z,,
and [-@-] = [+) (+]+€* =) (—] = Xa.

Two diagrams D and D’ are said to be equivalent if [D] = z[[D'] for some non-zero complex number
z. For the rest of the paper, whenever we write a diagram equality we will mean equality up to some
global scalar in this way. For treatments of the ZX-calculus which do not ignore scalars see [3] for the
stabilizer fragment, [18] for the Clifford+T fragment and [19, 22]] for the full ZX-calculus.

The Hadamard gate H = [+) (0] + [—) (1| = Zz 0 Xz 0 Zz will be used throughout the paper (where
= denotes equality up to non-zero scalar factor). It has two common syntactic sugars — a yellow square,
or a blue dotted line — with the latter only used between spiders:

10— = O@0C— —O0—{—0— = —O---0—

The ZX-calculus is equipped with a set of rewrite rules which can be used to transform a ZX-diagram
into another diagram representing the same linear map. As this paper focuses on stabilizer quantum
mechanics, we give a rule set for the stabilizer ZX-calculus in Figure [1I Together with the definition
of —{1—, this set of rewrite rules is complete: any two stabilizer ZX-diagrams which correspond (up to
non-zero scalar factor) to the same linear map can be rewritten into one another using these rules [2].

2.2 Measurement-based Quantum computation

Measurement-based Quantum computation (MBQC) is a particularly interesting model of quantum com-
putation with no classical analogue. In MBQC, one first constructs a highly entangled resource state that
can be independent of the specific computation that one wants to perform (only depending on the ‘size’
of the computation) by preparing qubits in the |+) state and applying CZ-gates to certain pairs of qubits.
The computation then proceeds by performing single qubit measurements in a specified order. MBQC
is a universal model for quantum computation — any computation can be performed by choosing an
appropriate resource state and then performing a certain combination of measurements on said state.

Measurement-based computations are traditionally expressed as measurement patterns, which use
a sequence of commands to describe how the resource state is constructed and how the computation
proceeds [12]. As the resource states are graph states, a graphical representation of MBQC protocols can
be more intuitive; we shall therefore introduce MBQC with ZX-diagrams.

Definition 2.1 ([15]]). A graph state diagram is a ZX-diagram where each vertex is a (phase-free) green
spider, each edge connecting spiders has a Hadamard gate on it, and there is a single output wire incident
on each vertex. A ZX-diagram is in graph state with local Clifford (GS-LC) form if it is a graph state up
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<+XZ7a’i <+YZ7a’i <+X70’i <+Y70‘,- <+Z70’,- <+X77r‘,- <‘|‘Y77r‘,- (+Z7n\,-

dgan | @ |-o@| @ | < -0 —-|o|al-0

operator H (+xv.al;

Table 1: MBQC measurement effects in Dirac notation and their corresponding ZX-diagrams

to single qubit Clifford operators on the input and output wires. It is in reduced GS-LC (rGS-LC) form if
those single-qubit Clifford operators are all in the set {{(%)-,~5)—@)-} for some k € Zj and if no two
qubits with red phases in their vertex operator are connected to each other.

Definition 2.2. [4, Definitions 2.18, 2.23] A ZX-diagram is in MBQC-form if it consists of a graph state
diagram in which each vertex of the graph may furthermore be connected to an input (in addition to its
output), and a measurement effect instead of its output. A ZX-diagram is in MBQC+LC-form if it is in
MBQC-form up to single qubit Clifford operators on the input and output wires.

MBQC restricts the allowed single-qubit measurements to three planes of the Bloch sphere: those
spanned by the eigenstates of two Pauli matrices, called the XY, YZ and XZ planes. Each time a qubit u
is measured in a plane A (u) at an angle @, one may obtain either the desired outcome, denoted (+ l(u),a\,
or the undesired outcome (—j(,).¢| = (+1(u),a+x|- Measurements where the angle is an integer multiple
of 7 are Pauli measurements; the corresponding measurement type is denoted by simply X, Y, or Z. The
ZX-diagram corresponding to each (desired) measurement outcome is given in Table[ll The structure of
an MBQC protocol is formalised as follows.

Definition 2.3. A labelled open graph is a tuple I' = (G,1,0,1), where G = (V,E) is a simple undi-
rected graph, I CV is a set of input vertices, O C V is a set of output vertices, and A : V\ O —
{X,Y,Z,XY,XZ,YZ} assigns a measurement plane or Pauli measurement to each non-output vertex.

In this paper, we consider stabilizer MBQC diagrams: MBQC-form diagrams where every non-
output qubit has a Pauli measurement applied to it, i.e. where A : V\ O — {X,Y,Z}.

2.3 Pauli flow

Measurement-based computations are inherently probabilistic because measurements are probabilistic.
Computations can be made deterministic overall (up to Pauli corrections on the outputs) by tracking
which measurements result in undesired outcomes and then correcting for these by adapting future mea-
surements. A sufficient (and in some cases necessary) condition for this to be possible on a given labelled
open graph is Pauli flow. In the following, Z2(S) denotes the powerset of a set S.

Definition 2.4 ([8, Definition 5]). A labelled open graph (G,1,0,A) has Pauli flow if there exists a map
p:V\O— Z(V\I)and a partial order < over V such that forallu € V'\ O,

1. ifve p(u),v#uand A(v) € {X,Y}, then u < v.

2. ifve Oddg(p(u)), v#uand A(v) & {Y,Z}, then u < v.

3. if 7(u<v)and A(v) =Y, then v € p(u) <= v € Oddg(p(u)).

4. if A(u) = XY, then u & p(u) and u € Oddg(p(u)).

5. if A(u) = XZ, then u € p(u) and u € Oddg(p(u)).

6. if A(u) =YZ, then u € p(u) and u ¢ Oddg(p(u)).

7. if A(u) = X, then u € Oddg(p(u)).

8. if A(u) =Z, then u € p(u).

9. if A(u) =Y then either u € p(u) and u ¢ Oddg(p(u)) or u & p(u) and u € Oddg(p(u)).
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Here, the partial order restricts the time order in which the qubits need to be measured. The set p(u)
denotes qubits that are modified by Pauli-X to compensate for an undesired measurement outcome on u,
Oddg(p(u)) denotes the set of vertices that are modified by Pauli-Z.

Pauli flow is a sufficient condition for strong, stepwise and uniform determinism: this means all
branches of the computation should implement the same linear operator up to a phase, any interval of
the computation should be deterministic on its own, and the computation should be deterministic for
all choices of measurement angles that satisfy A [8, p. 5]. Pauli flow (and related flow conditions)
are particularly interesting from a ZX-calculus perspective as there are polynomial-time algorithms for
extracting circuits from MBQC-form ZX-diagrams with flow [[14}, |4, [24]], while circuit extraction from
general ZX-diagrams is #P-hard [5].

2.4 Existing flow-preserving rewrite rules

The basic ZX-calculus rewrite rules in Figure[Ildo not generally preserve even the MBQC-form structure
of a ZX-calculus diagram. Yet there are some more complex derived rewrite rules that are known to pre-
serve both the MBQC-form structure and the existence of a flow. These rules were previously considered
in the context of gflow [14]] and extended gflow [4]; the Pauli-flow preservation proofs are due to [24]].
The simplest of these rules is Z-deletion:

Lemma 2.5 ([24, Lemma D.6]). Deleting a Z-measured vertex preserves the existence of Pauli flow.

o oG e

Other rewrite rules are based around quantum generalisations of two graph-theoretic operations.

Definition 2.6. Let G = (V,E) be a graph and u € V. The local complementation of G about u is
the operation which maps G to Gxu := (V,E A{(b,c)|(b,u),(c,u) € E and b # c}), where A is the
symmetric difference operator given by A AB = (AUB) \ (AN B). The pivot of G about the edge (u,v)
is the operation mapping G to the graph G Auv := Gxuxv*u.

Local complementation keeps the vertices of the graph the same but toggles some edges: for each pair
of neighbours of u, i.e. v,v' € Ng(u), there is an edge connecting v and v/ in G *u if and only if there is no
edge connecting v and V' in G. Pivoting is a series of three local complementations, but has some special
properties which make it worth distinguishing. It interchanges the vertices u# and v and complements (or
‘toggles’) the connectivity between the following three subsets of vertices [0, Section 8]:

* Ng(u)\ ({v}UNg(v)), the neighbours of u that are neither neighbours of v nor v itself.
* Ng(v)\ ({u}UNg(u)), the neighbours of v that are neither neighbours of « nor u itself.
* Ng(u) N"Ng(v), the common neighbours of u and v.

From the above characterisation we see that pivoting is symmetric, i.e. GAuv = G A vu.

Both local complementation and pivoting give rise to operations on MBQC-form diagrams which
preserve the MBQC form as well as the existence of Pauli flow (after some simple merging of single-
qubit Cliffords into measurement effects, cf. [4], Section 4.2]). We illustrate the operations with examples
as they are difficult to express in ZX-calculus in generality.

Lemma 2.7 (|24, Lemma D.12]). A local complementation about a vertex u preserves the existence of
Pauli flow.
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Observation 2.9. Lemmas 2.7 and 2.8 provide their own inverses since four successive local comple-
mentations about the same vertex, or two successive pivots about the same edge, leave the diagram
invariant. Two successive local complementations correspond to the T-copy rule.

While the inverse of the Z-deletion rule of Lemma [2.3] straightforwardly preserves the MBQC-form,
it is not obvious that it also preserves the existence of Pauli flow. In Section we will prove that this
is indeed the case.

3 A canonical form for stabilizer state diagrams

Stabilizer state diagrams in the ZX-calculus have a pseudo-normal form: the rGS-LC form, which arises
from the representation of a stabilizer state in terms of a graph state and local Clifford operators [2].

Here, we propose a new pseudo-normal form, based on the representation of a stabilizer state in
terms of its affine support and a phase polynomial [1]]. Like the rGS-LC form, this is closely related to
the stabilizer graphs of Elliott et al. [16]] but it translates them into the ZX-calculus differently. The new
normal form allows (and in most cases requires) both green and red spiders, meaning it is not strictly
‘graph-like’.

Based on a recent proposal by Hu and Khesin [17]], we then show how to make this new pseudo-
normal form unique, yielding a canonical form for stabilizer state diagrams in the ZX-calculug!]. In the
process, we simplify the uniqueness proof of Hu and Khesin by making use of formalisms and results
from the literature about holant problems.

We first prove some lemmas about the algebraic representation of stabilizer states which will be use-
ful in proving uniqueness of the canonical form. Next we introduce to the new pseudo-normal ‘phase
polynomial form’ and show how it corresponds to stabilizer states in phase-polynomial representation.
Finally, we define the canonical form, prove its uniqueness, and give an algorithm for rewriting dia-
grams into canonical form. Throughout this section, diagrams contain red spiders and thus are not in
MBQC+LC-form; yet by colour changing all of the red vertices and unfusing phases these can straight-
forwardly be transformed into MBQC+LC-form diagrams.

T At QCTIP 2022, we learned that an analogous result was independently derived by John van de Wetering [28]).
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3.1 Stabilizer states in terms of affine support and phase polynomial

It has long been known [13] [26]] that an n-qubit stabilizer state can be written (up to normalisation) as

Z il(X)(_l)q(X) lx) (1)

XEA

where A is an affine subspace of Z5, I(x) = ¥ ;d;x; for some fixed d; € Z, is a linear function computed
modulo 2, and g(x) = ¥, cixjx + X ;cjx; for some fixed cji,c; € Z; is a quadratic function. The
functions / and ¢q together form a phase polynomial for the state, while A determines the support.

Assuming dim(A) = n — m, the elements of the affine space A are the solutions to a set of linear
equations Rx = b, where R is an m x n binary matrix of rank m (with 0 <m < n) and b € Z7'. Each
component of x is considered a variable. With respect to this linear system, the variables xj,...,x, can
be partitioned (not generally uniquely) into a set of (n —m) free variables and a set of m dependent
variables such that every assignment of values to the free variables induces exactly one assignment of
values to the dependent variables which satisfies all the linear equations. This follows from a standard
process of solving the system of linear equations, which also yields a linear equation in terms of the
free variables for each dependent variable. In the following, we will denote the set of indices by [n] :=
{1,2,...,n} and the free variables by a subset F C [n] of the indices, and write the dependent variables
as x; = a; D Pycr ajkXi, where aj,aj; € Zo and the sum is modulo 2. If aj; = 1, we say the variable x;
depends on xy.

It will be useful to give a canonical choice of free variables, this is inspired by Hu and Khesin’s nor-
mal form for stabilizer states [[17]], and will lead us to an analogous normal form for stabilizer diagrams.

Definition 3.1. We call the result of the following procedure the canonical set of free variables. Start with
x1 and consider the variables in ascending order. For each j, if the value of x; is fixed by the requirement
to satisfy Rx = b given values for all free variables among xi,...,x;_ then we say that x; is dependent.
Otherwise we say that x; is free.

Lemma 3.2. Given an affine space A, the canonical set F is the unique set of free variables with the
following property: if x; depends on the free variable xi, then k < j.

Proof. Let F’ be another set of free variables for A which also has the property that if x; is a dependent
variable and depends on the free variable xi, then k < j. In other words, for each j € [n]\ F’, there is an
equation x; = a; + Y ja Xk, where furthermore aj; = 0if k ¢ F /.

Now suppose for a contradiction that F # F’. The two sets must have the same size |F| = |F'| =
dim(A). Thus, there must be a smallest element j € F such that j ¢ F’. Then F’ induces an equation

Xj=a;d @ ajgXg- 2)
keF' k<j

Suppose aj; = 1 only if k € F. Then the value of x; is fixed by the free variables of lower index in F, so
J should not be free according to Definition [3.1] a contradiction.

Otherwise, there exists some k' ¢ F such that a j& = 1. But then by the definition of F, there exists
some equation xy = by © D g<p bre. Thus we can substitute for xp in while preserving the
property that x; only depends on variables of lower index. The process eliminates one variable which is
not in F from the decomposition and does not introduce any new variables which are not in . Hence
repeated application will terminate, at which point we have an equation that fixes x; from only variables
in F of index less than j. Again, this means j should not be in F, a contradiction.

Hence we must have F = F. O
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As pointed out in the holant literature, it is possible to express the functions / and ¢ solely in terms
of the free variables, while keeping their other properties the same [9, Definition 8]. We give a proof in
Appendix [Al for completeness.

Lemma 3.3. Suppose F denotes a set of free variables for the affine space A, and | ) is some stabilizer
state with support on A. Then there exists a linear function | and a quadratic function q, both depending
only on the free variables, as well as a scalar A € C\ {0}, such that:

W) =2 L (=1 ).
X€EA

There are generally multiple ways of expressing the same state in the form of (). Yet if we pick a
set of free variables F' and require / and ¢ to depend only on free variables, the representation becomes
unique. Moreover, we can even give a unique representation in terms of a phase polynomial (evaluated
modulo 4, rather than 2). Again, the proof is in Appendix [Al
Lemma 3.4. Given an n-qubit stabilizer state |y) and a set F C [n], there exists a unique polynomial
p(X) =X jertiXj+2¥ keF, j<kSjkXjXk With 1 € Zy and s ji € Zy and scalar A € C\ {0} such that |y) =
A ZxEA ip(X) |X>

3.2 A new pseudo-normal form related to phase polynomials

In the rGS-LC form for stabilizer state diagrams, local Clifford operators on the graph state are expressed
in terms of green and red spiders. Alternatively, it is also possible to express local Clifford operators in
terms of green spiders and Hadamards (and this is what is done in the stabilizer graph formalism of [[16]).
In ZX-terms, this means the allowed local Clifford operators are @ and —@)—{—, where k € Z4 and
a € Zy. As for red nodes in rGS-LC diagrams, qubits whose local Clifford operator contains an H are
not allowed to be connected to each other; therefore we can ‘push’ the Hadamards through and get the
following pseudo-normal form. It is possible to convert between the two kinds of local Clifford operators
via local complementations on the qubits that have red nodes or Hadamards.

Definition 3.5. A stabilizer ZX-calculus diagram is in phase-polynomial form if the following hold:

* Each dangling edge is connected to a unique red or green spider.

* Red spiders have phases that are 0 or 7.

* Green spiders have phases that are integer multiples of /2.

* There may be edges connecting spiders of different colours.

» Furthermore, green spiders may be connected to other green spiders via Hadamard nodes.
Observation 3.6. An rGS-LC diagram can be brought into phase-polynomial form via the following
process. First, apply local complementations to all qubits that have red nodes in their local Cliffords.
This maps to 1+ and | 3—@)— to —@—. Then, change the colour of all spiders which
now have Hadamards as part of their vertex operators and merge adjacent spiders of the same colour.
Example 3.7. Applying this procedure to the rGS-LC diagram on the left yields the phase polynomial-
form diagram in the middle. Colour-changing each red spider and unfusing the phases leads to an equiv-
alent GS-LC form diagram which we will say is in phase-polynomial form up to colour changing the
spiders with Hadamard gates in their vertex operators.

a—®
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Diagrams in phase-polynomial form correspond directly to pairs of a state and a set of free variables
for the underlying affine support. Appendix [Blcontains an example illustrating this correspondence.

Lemma 3.8. Ignoring scaling, there is a bijection between phase-polynomial form diagrams and pairs
(ly), F), where |y) is an n-qubit stabilizer state and F C [n| indicates a set of free variables for the
affine space A which is the support of |y).

Proof. By Lemmal[3.4] there exists a unique function p(x) = Y ;jcp 7% +2 ¥ ker, jok SjxX Xk With r; € Zy
and s i € Z, such that |y) 2 ¥, i?™ |x). To construct a diagram from a state and a set of free variables
from this, proceed as follows:

* For each dependent variable x; with k € [n] \ F, find the unique linear expression x; = a; ®
€ jcr axjx; which satisfies the defining linear equations Rx = b of the affine space A.

* For each j € F, place a green spider with an output wire. The phase of this spider is r;7.

For each k € [n] \ F, place a red spider with an output wire. The phase of this spider is a;.

* Draw a (plain) edge connecting the green spider j to the red spider k whenever a;; = 1.

* Draw a Hadamard edge connecting the green spiders j and ;' whenever s;; = 1.

Conversely, given a diagram in phase-polynomial form, construct the corresponding state as below:

* The set F of free variables consists of the indices of the green spiders.

* The affine space A is defined by the set of equations {x j=a; D Bren(j) xk} e where a; =0
JEN\F
if the phase of the red spider with index j is 0, and 1 otherwise.
e For each j € F such that the phase of the green spider j is «;, define r; to be the value in Z4 that
is equivalent to % mod 4.
e Foreach j,k € F with j <k, define sj; = 1 if there exists a Hadamard edge between spiders j and

k, and s = 0 otherwise.

Let p(x) := Y jep 7jXj +2X ) keF, j<k SjkX;Xk, then the desired state is Y c4 i?™ |x). The two procedures
are inverses of each other (noting that 37” = —% mod 27).

Suppose D is the ZX-diagram corresponding to some stabilizer state |y) according to the above
translation. Then it is straightforward to see that the support of [D] and the support of |y) are equal.

Thus, by phase-polynomial techniques, it is quick to check that [D] equals |y) up to scalar factor. O

3.3 The canonical phase-polynomial diagram

Using the bijection between phase-polynomial form diagrams and pairs of a state and a set of free vari-
ables, we can now define a unique canonical diagram for any stabilizer state.

Definition 3.9. Let |y) be a stabilizer state, then its canonical diagram is the one translated from (|y) , F)
by Lemma[3.8] where F is the canonical set of free variables according to Definition [3.11

Apart from the translation into our terminology, this differs from the normal form definition of Hu
and Khesin [17]] only by reversing the order: we ask for free variables to come first whereas they put
them last. Our uniqueness proof, making use of the properties of the affine support of a stabilizer state is
shorter and simpler than that in [[17].

Theorem 3.10. The canonical form is unique.

Proof. This follows from the uniqueness of the canonical set of free variables proved in Lemma[3.2]and
from the bijection between pairs consisting of a state and a set of free variables in Lemma [3.8] O
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Proposition 3.11. Every phase-polynomial form diagram can be re-written into canonical form using
only local complementation and pivoting.

Proof. Pick some order < on the spiders, say from top to bottom. We want each red spider to only be
connected to spiders that appear earlier in <. While this does not hold, repeat the following procedure:

1. Let dj be the minimal red spider under < such that there exists some green spider f; connected to
di, with d;, < fj.

2. Let f;, be the maximal green spider under < such that d is connected to f},.

3. If f;, has a phase of +Z, perform local complementation about f;, and then about dj. Otherwise,
pivot about the edge connecting f;, and di. After applying either of these equivalence transforma-
tions, f, is now red and dj, is now green and the diagram is still in phase-polynomial form.

4. By maximality of f;, we have that fj is only connected to green spiders f, with f, < f;. By
minimality of d, we have that d; is only connected to red spiders d,,, with dy < d,,,.

This procedure strictly reduces the number of connections between red spiders and green spiders that ap-
pear later in the order. Hence repeating it will eventually terminate, transforming any phase-polynomial
form diagram into canonical form. O

Remark 3.12. The canonical form is unique only up to the choice of order on the qubits; different orders
may yield different ‘canonical forms’. Thus the choice of order is arbitrary (but needs to happen in
advance, independently of the diagram considered) — we have chosen top-to-bottom for simplicity.

4 Completeness

Having established a canonical form for stabilizer ZX-calculus diagrams, we now give the completeness
proof. This first requires proving that a new rewrite rule preserves the existence of Pauli flow: an inverse
to the Z-deletion rule of Lemma While there has been a lot of previous research on rewrite rules
which reduce the number of spiders while preserving flow conditions, rewrite rules which increase the
number of spiders have not been studied beyond introducing new degree-2 vertices along input or output
wires (e.g. [4, Lemma 4.1]).

4.1 Inserting new Z-measured qubits

Inserting Z-measured qubits into MBQC+LC form diagram preserves the existence of Pauli flow.

Proposition 4.1. Let G = (V,E,I,0,A) be a labelled open graph with Pauli flow and let W C'V be
some arbitrary subset of the vertices. Then G' = (V' E',1,0,A") has a Pauli flow, where V' =V U{x},
E'=EU{(x,w) |weW}withA'(v) =A(v) if v£xand M (x) = Z.

Proof. Let (p,<) be a Pauli flow for G and define p' : V'\ O — Z(V'\I) by p'(v) := p(v) if v # x and
p'(x) := {x}. For vertices from the original graph, measurement planes and correction sets remain the
same while the only change to odd neighbourhoods is that x may be added. Thus conditions -7 and
remain trivially satisfied. Condition [8 holds for x as x € p/(x), and for all other Z-measured vertices
because (p, <) is a Pauli flow.

Let <’ be the transitive closure of <U{(x,v)|v € Ng(x)}. Then <’ is a partial order because < is a
partial order and we only add successors for x. Now, condition [I] of Pauli flow is inherited from (p, <)
forall u € V'\ O because u ¢ p'(x). Condition [2is satisfied for all u € V \ O because A (x) = Z and (p, <)
is a Pauli flow. Condition [3|is inherited because the new vertex has only successors. O
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4.2 Complete flow-preserving rewrite rules

We are now able to assemble the main proof. In the following, we will say an MBQC+LC-form diagram
has no interior spiders if the MBQC-form part of the diagram (i.e. ignoring the local Cliffords) has no
interior vertices (V \ (/UO) = 0). Additionally, we say an MBQC+LC-form diagram has Pauli flow if
its MBQC-form part has Pauli flow (analogous to gflow in [4, Section 4.1]).

Theorem 4.2. Given two equivalent stabilizer MBQC+LC-form diagrams D and D' with Pauli flow and
satisfying [D] = [D'], there exists a sequence of rewrite rules — each preserving the existence of Pauli
flow and preserving the MBQC+LC-form — transforming D into D'.

Proof. We begin by deleting all Z-measured vertices from both diagrams, keeping track of which vertices
we delete and their set of neighbours when deleted. The resulting diagrams has Pauli flow by Lemmal[2.3]
After all Z-measured vertices are removed, the MBQC-form parts of the diagrams (ignoring the local
Cliffords) only have X and Y measurements and are thus of the kind considered in [14]]. Then, there exists
a terminating procedure (consisting of a sequence of local complementations, pivots and Z-deletions)
rewriting the two diagrams into MBQC+LC-form diagrams N and N’ which contain no interior spiders
[14, Theorem 5.4]. Since local complementation and pivoting also preserve the existence of Pauli flow
(Lemmas2.7]and 2.8), N and N’ will also have Pauli flow.

As only X and Y measurements remain, they can be spider-merged and unmerged through each qubit
to become local Cliffords on the outputs, thus N and N’ are equivalent to GS-LC form diagrams. By
[2, Theorem 13], every GS-LC form diagram can be rewritten into rGS-LC form using a sequence of
local complementations, thus this step preserves Pauli flow. By Observation we can then rewrite
each diagram into phase polynomial form, again using only local complementations (along with some
operations on the local Cliffords that do not alter the flow), thus preserving Pauli flow. Finally, by
Proposition [3.11] we can rewrite each diagram into canonical form'. The rewrite steps use only local
complementations and pivoting, so they preserve Pauli flow. The resulting diagrams are equivalent and
the canonical form is unique, so we have found a sequence of local complementations, pivots and Z-
deletions rewriting D and D’ into the same canonical form diagram C.

By Observation local complementation and pivot can be inverted. Furthermore, Z-insert is a
Pauli-flow preserving inverse to Z-delete. Thus the sequence of rewrites from D’ to C can be inverted
while still preserving Pauli-flow. By rewriting D to C, then rewriting C to D', we obtain a sequence of
flow-preserving rewrite rules transforming D into D’. This completes the proof. O

Example 4.3. We shall give a short example of this rewrite procedure in action. Consider the following
two MBQC+LC-form diagrams, which we will call D and D', and which satisfy [D] = [D'] by (non-flow
preserving) diagram simplification techniques.

a - <
----- & e

Using the procedure from the proof of Theorem[4.2] we first rewrite D to phase polynomial form. Perform
triple local complementations (i.e. ‘inverse local complementations’) about both the left-most and right-
most qubits in the MBQC-form part, then apply Z-deletion to these qubits. A local complementation

1Up to map-state duality and colour changing vertices with Hadamard operators.
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about the top left qubit gives us the fourth diagram, which is in rGS-LC form and in fact is equivalent
to the left-most diagram in Example up to map-state duality. We then obtain the final diagram by
following the procedure in Observation note that this diagram is already in canonical form (up to
map-state duality and colour changing spiders with Hadamard gates in their vertex operators) assuming
that the input qubits have lower indices than the output qubits.

O—Q NG
For D', we perform local complementation about the two interior qubits of the MBQC-form part (here
we have done this about the top qubit first, then the bottom qubit), and Z-delete both qubits.

). .o—o ). ..o—o &)
.: = Lo 0@ >

ﬂ% &(% ﬂ% o @— s e o
0—@ O—@ Ot-@

This final diagram is already in phase polynomial form (up to map state duality and colour changing the
spiders with Hadamard edges in their vertex operators) without us having to go through rGS-LC form.

To rewrite this diagram into canonical form, all that remains is to pivot along the edge connecting the
bottom left qubit to the bottom right qubit, giving the following diagram:

ﬂé'“

We have therefore rewritten D and D’ into the same canonical form diagram. Every rule used to re-write
D and D’ to canonical form is invertible and the inverses preserve Pauli flow, giving us a sequence of
flow preserving rewrite rules taking D to D'

5 Conclusions

We have presented the first flow-preserving rewrite rule that increases the number of qubits in an MBQC-
form ZX-diagram, and shown that this — together with existing rewrite rules that preserve the MBQC
form — is complete for stabilizer MBQC-form diagrams. The completeness proof goes via a new canon-
ical form. The result may find applications in obfuscation or in more involved optimisation protocols.

Yet that is only the beginning of the investigation of flow-preserving rewrite rules and in future work
we will consider more extensive sets of rewrite rules and ZX-diagrams. The recent proof that circuit
extraction from general unitary ZX-diagrams is #P-hard [5] means this line of research is particularly
important, as it allows us to explore the only family of ZX-diagrams for which a polynomial-time circuit-
extraction algorithm is currently known.

Pauli flow is known not to be necessary for deterministic implementability of MBQC patterns with
all-Pauli measurements [8]]; it would also be interesting to see how it can be extended and what flow-
preserving rewriting would look like under the new conditions.
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A Algebraic proofs for the canonical form

Proof of Lemma(3.3l In (I)), the functions / and ¢ are allowed to depend on all components of the bit
string x, i.e. [(x) = @ ;d;x; for some fixed d; € Z; and q(x) = @, cjxxjxx © D ;c;x; for some fixed
Cjk,Cj € 7.

Given the set of free variables F, solving the defining system of linear equations for A yields linear
equations x; = a; ® @y ajixy for every j € [n]\ F, where aj,aji € Zy.

Now suppose d; # 0 for some j ¢ F. Then we can substitute

l(x):@djxj: @ djx;j @as@@astxt:as@ @ (dj ®ayj)x;,

JEn] JEMN{s} = Jeln\{s}

where we define ay; = 0 if j ¢ F. The a; is constant and the factor i can be absorbed into the overall
scalar A. Since [ is computed modulo 2, the new function satisfies the same properties as the original
one but no longer depends on x;. Furthermore, as ay; = 0 for all j ¢ F, this process does not introduce
any new dependencies on dependent variables.
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Therefore, the substitution process strictly decreases the number of dependent variables that / de-
pends on and successive applications will eventually yield a function that depends only on free variables.
An analogous argument holds for g. U

Lemma A.1. Ler |y) and |9) be two stabilizer states with the same support A, and let F be a set of free
variables for A. Suppose there exists A, |t € C\ {0} such that

W =AY and  (9) = p L 1)70

XEA XEA

where for some dj,d},cj,Cj, 'y, € Lo,

1(x) = Pdjx; 9= D cpmePey

JjeF J.keF, j<k J
I'(x) = @d}xj q(x) = @ XX @c’jxj.
JjEF J.kEF, j<k J

Then |y) and |@) are linearly dependent if and only if for all j,k € F we have d; = d}, Cjk = c’jk, and
cj=c)

Proof. The ‘if” direction is straightforward: if d; = d}, cjx = ¢y, and ¢; = ¢} for all j,k € F, then
wly) =1 16).

For the ‘only if” direction, note that /(x) = I'(x) = g(x) = ¢/(x) = 0 if all variables in F are assigned
0, so by rescaling such that A = u, we get |y) = |¢) if and only if they are linearly dependent.

By definition, each assignment of values to the free variables in F' induces one assignment of values
to all the variables that is in A. Suppose there exists a j € F such that d; # d;., wlog assume d; = 1 and
d} = 0 (otherwise the argument is symmetric). Let & be the bit string in A that has every free variable
set to 0 except the one with index j. Then (£ | y) is imaginary while (£ | ¢) is real, so since the two
states have the same non-zero amplitude for the assignment induced by setting all free variables to 0,
they cannot be linearly dependent.

Similarly, suppose there exists j € F' such that ¢; # c}, then for the same & we have (£ | y) =
— (& | ¢), so again the two states cannot be linearly dependent.

So without loss of generality, assume that d; = d;- and ¢; = c;- for all j € F. Now suppose there are
J.k € F such that ¢ # c’jk. Let { be the bit string induced by the assignment where x; = x; = 1 and all
other free variables are 0. Then again, ({ | ) = — (£ | ¢) so the two states cannot be linearly dependent.

Therefore, linear dependence implies that for all j,k € F we have d; =d}, cjy =y, and ¢; = ¢} O
Proof of Lemma (34l Via Lemmas [3.3] and we can uniquely write |y) = A Y, 4 '™ (= 1)70) |x),
where [(x) = @ jcpdjx; and q(x) = @ rer, jor CjxXjXx © D, cjx; with all coefficients taking values in
7.

Asy mod 2 = y> mod 4 for all y € Z, we have

2
@djxj: (Zdij) mod 4 = <Zdjxj+2 Z djdkxjxk> mod 4,
JEF JEF JjEF J.kEF, j<k

where we have used the fact that d;,x; € Z; for all j and hence (d;x;)? = d;x;. We can thus write

Z 10 (= 1)) |x) = Z P [x) |

XEA XEA
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where

p(x):Zdjxj—l—2< ) cjkxjxk+chxj>+2 Y  didixjx
J

JjeF J.keF, j<k J.keF, j<k
=Y (dj+2c))x;+2 Y, (cjctdydi)x;x
jeF Jj.kEF, j<k

Now, r;j:= (d i+2¢ j) € Z4. The coefficient s j := cjx +d;d) could take value 2, but as p is in the exponent
of i and s j; is multiplied by 2, we may without loss of generality replace it with s := ¢ 1 ® ddj so that
Sjk € Zy.

Conversely, we can find functions / and g from p by setting d; := r; mod 2, c¢; := %(rj —dj), and
Cjk := Sji D d;dy. Thus, by uniqueness of / and g, the phase polynomial expression is also unique. U

B An example illustrating Lemma

Consider the following phase-polynomial form diagram from Example 3.7, where we have numbered
the qubits from top to bottom.

AW =

Following the procedure from Lemma[3.8] we construct the state corresponding to this diagram. The
state will be expressed as ¥4 i’ |x), where p(x) = Yicr X +2Y; ker, j<k SjeXjxk. Here, F is the set
of free variables, A is the affine space on which the state has support, and p(x) is the phase polynomial
with r; € Z4 and s € Zy for all j,k € F.

* The set F of free variables corresponding to this diagram is F = {x;,x,} since qubits 1 and 2 are

denoted by green spiders.
* The affine space A is defined by the following set of equations arising from the red spiders:

x3=168dx X4 =X1Dx2 3)

since qubit 3 has phase 7 (giving the constant 1 on the right-hand side) and is connected to qubit
1, while qubit 4 has phase 0 and is connected to both 1 and 2.

* For the linear terms in the phase polynomial, we get that r; = 1 and r, = 0 as the phase of x; is 7
and the phase of x; is 0.

* For the quadratic terms in the phase polynomial, we have s;» = 1 as there is a Hadamard edge
connecting x; and xp.

Combining these, the phase polynomial is p(x) = x| + 2x;x,. The state corresponding to the diagram is
therefore given by:

Yot = Y M (1) [y (l@x) (v Sx2))

XEA X1, X2EZn

= 10010) +|0111) +[1001) — i|1100)

It is then quick to check that applying the procedure in Lemma [3.8] for constructing a diagram from a
state and a set of free variables gives back the original diagram.



82 Complete Flow-Preserving Rewrite Rules for MBQC Patterns with Pauli Measurements

Instead, we will show how to construct the diagram corresponding to the same state with a different
set of free variables F = {x;,x3}. To do this, we first rewrite the affine space and the phase polynomial
in terms of the new free variables x, and x3, and then apply the procedure for obtaining diagrams.

Choosing x3 to be free instead of xi, we rearrange the first equation of (3 and then substitute it into
the second to get:

x1=1®x; X4 =1Dx2®x3 4

Substituting into the phase polynomial yields p(x) = (1 ®x3) + 2(1 & x3)x, where & denotes addition
modulo 2. Yet we want the phase polynomial to be computed modulo 4, since i* = 1. Now, as y mod 2 =
y?> mod 4 for all y € Z, and b*> = b for all b € Z,, this can be rewritten to:

p(x) = (10x3) +2(1®x3)x0 = (14+x3)> +2(1 +x3)%x0 = 1 +2x2 4+ 3x3 +2xox3  (mod 4)

We thus have r, =2, r;3 =3, and sp3 = 1. The constant term in the phase polynomial is irrelevant since
we are ignoring global scalars. Up to scalar factor, the full state is

Z jP2t3x3 420003 ‘(1 EBXg)xzxg(l Dxy @X3)> .

X2, X3E€E7n

To construct the diagram corresponding to this state and set of free variables:

* We already have the equations for the dependent variables in terms of F = {x,x3} in ().

* Place a green spider with phase 7 = 7 for qubit 2 and a green spider with phase 735 = 37” (or,
equivalently, —7) for qubit 3. Each of the spiders is connected to one output wire.

* Place a red spider with phase 7 for qubit 1 and a red spider with phase 7 for qubit 4 since the
equations for both x; and x4 contain a constant term. Again, each of the spiders is connected to
one output wire.

* Variable x; depends on x3, so draw a plain wire between the spiders for qubits 1 and 3. Variable x4
depends on both x; and x3, so draw plain wires between the spiders for qubits 2 and 4, as well as
between 3 and 4.

* Assp3 = 1, draw a Hadamard edge connecting the green spiders corresponding to x, and x3.

This yields the following diagram:
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We establish a formal bridge between qubit-based and photonic quantum computing. We do this
by defining a functor from the ZX calculus to linear optical circuits. In the process we provide a
compositional theory of quantum linear optics which allows to reason about events involving multiple
photons such as those required to perform linear-optical and fusion-based quantum computing.

1 Introduction

Quantum optics has pioneered experimental tests of entanglement [[1]], nonlocality [2], teleportation [3]],
quantum-key distribution [4]], and quantum advantage [5]. These experiments ultimately rely on the
ability to process coherent states of photons in /inear optical devices, an intractable task for classical
computers [6]. Recently, the potential of using linear optics for quantum computing has encouraged the
development of both hardware [7] and software [8} 9] for photonic technologies. The first proposal was
formulated by Knill, Laflamme and Millburn in 2001 [[10]. Qubits are encoded in pairs of optical modes
and quantum computing may be performed using only linear optical elements and photon detectors.
Several improvements to the original scheme have been proposed in the literature [[11} 12} [13]]. Fusion
measurements were introduced by Browne and Rudolf [[14]. They form the basic ingredient of a recent
proposal to achieve fault-tolerant quantum computation with photonic qubits [[15].

String diagrams provide an intuitive language for quantum processes [16, (17, [18} (19} 20] and are
implicitly employed in quantum software packages such as tket [21]], PyZX [22]], lambeq [23]], DisCoPy
[24], Quanhoven [25]. On the one hand, Coecke and Duncan [26] introduced the ZX calculus, a
graphical language for reasoning about qubit quantum computing, with applications in circuit-based [27],
measurement-based [28]], and fault tolerant [29] quantum computing. The axioms of this calculus feature
a bialgebra structure governing the Z and X qubit bases. On the other hand, Vicary and Fiore used the
symmetric (or bosonic) Fock space to study the quantum harmonic oscillator, and discovered a different
bialgebra structure on this infinite dimensional Hilbert space [30, [31]. These two foundational works
are hardly ever related in the literature, possibly because of the difference in state space cardinality.
However, it is well-known that photons in linear optics behave as quantum harmonic oscillators. Given
the developments in linear-optical quantum computing, a formal bridge should be established between
qubit-based and photonic QC. This would allow the construction of reliable software for compiling
quantum computations into photonic circuits.

In this paper, we provide such a bridge by defining a functor from the ZX calculus to linear optics. In
the process, we unify several results on the structure and combinatorics of quantum optical experiments.
We start by studying the category of linear optical circuits, with their classical interpretation in terms
of matrices or weighted paths (Sections [2)). We then use the work of Vicary [30] to derive a functorial
model for bosonic linear optics. Our first contribution is an explicit proof that this model is equivalent to
the model based on matrix permanents of Aaronson and Arkhipov [6] (Section E]) Second, we introduce
a graphical calculus QPath which allows to compute the amplitudes of linear optical events involving
multiple photons, by rewriting diagrams to normal form (Section[d)). Finally, we construct a functor from
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the ZX calculus to QPath and use it to describe the basic protocols used in linear-optical and fusion-based
quantum computing (Section [5).

Related work Graphical approaches of linear optics are widespread in the literature. Notable examples
are the matchgates introduced by Valiant [32], corresponding to fermionic linear optics [33], whose
amplitudes are computed by finding the perfect matchings of a graph. Graph-theoretic methods are
also widely used in bosonic linear optics [34} [35)]. There are strong links between linear optics and
categorical logic. Blute et al. [36] studied Fock space as exponential modality for linear logic. The
fermionic version of the Fock space has been studied in [37], it forms the W core of the ZW calculus
introduced by Coecke, Kissinger and Hadzihasanovic [38] 139, 40]]. More recently, there has been work
on a diagrammatic calculus for reasoning about polarising beam splitters for quantum control [41]], an
informal essay describing bosonic linear optics with category theory [42], and a complete rewriting
system for the single photon semantics of linear optical circuits [43]]. The ZX calculus has also been used
to describe the fault-tolerant aspects of fusion-based quantum computing [44].

2 Linear optical circuits

Linear optical circuits are generated by two basic physical gates. The beam splitter BS :a®a — a®a
acts on a pair of optical modes, and may be implemented using prisms or half-silvered mirrors. The
phase shift S(a) : a — a acts on a single mode and has a single parameter « € [0,27]. We depict them:

a
S

Linear optical circuits are obtained from these gates by composing them vertically and horizontally. They
form a set LO, which has the structure of a free monoidal category, i.e. circuits can be composed in
sequence or in parallel.

Definition 2.1. The classical interpretation of LO is given by a monoidal functor U : LO — Matg, into
the category of matrices over the complex numbers, where @ is the direct sum of vector spaces. On
objects U is defined by U (a) = C. On arrows we have:

U(S(a)) = (')

(i1
us -5 )

where we use one standard interpretation of the beam splitter [45)].

The Mach-Zehnder interferometer is obtained as the following composition:

j:E: 2a B

The classical interpretation of this diagram is then given by:

—ePsin(a) cos(a)
eBcos(a) sin(a)

MZI(a,pB) =ie'® (
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MZIs may be used to parametrize any unitary map on m modes. They are the basic building blocks
of integrated nanophotonic circuits currently being produced [7]. The first architecture for a universal
multiport interferometer was proposed by Reck et al. [46] and consists of a mesh of MZIs. It was later
simplified by Clements et al. into a grid-like architecture, reducing the depth from d =2m—-3tod =m
and thus the probability of photon loss [47].

Reck et al. Clements et al.
Using one of these architectures, we have a parametrized circuit ¢(8) : m — m € LO, where the parameters
6 correspond to phases @, of the Mach-Zehnder interferometers making up the chip. As shown in

both[46] and [47]], for any unitary U : C" — C™, there is a configuration of parameters 6 such that
U (c(6)) = U. We may restate their results in our notation.

Proposition 2.1 (Universality). [46] 47] For any m X m unitary U, there is a circuit ¢ : m — m in LO
such that U(c) = U.

In classical light experiments, we can measure the energy or intensity of an electromagnetic wave
E = Ege!(k*=@1) where k is the wavenumber, w is the angular frequency and Ej is called the amplitude
[48]]. The intensity is then given by the quadratic quantity / = %eoEg where € is the permittivity of free
space and c is the speed of light. The intensity is thus proportional to the Born rule / « ||E 2. Using the
Born rule and the classical interpretation of LO, we may compute the output distribution of a photonic
chip ¢ € LO with m spatial modes, when the input is a classical or incoherent beam of light. Suppose the
input intensities of light are / € R™. One may assume },", /; = 1. Then the intensities J at the output of
an interferometer ¢ € LO are given by:

J=Ue)*1

where juxtaposition denotes matrix multiplication and the norm squared ||.||? is applied entry-wise. Note
that || U(c)|) is a doubly stochastic matrix since U (c) is unitary.
Example 2.1 (Classical light). The intensities at the output of the beam splitter BS on any normalised
input I are J = (%, %) since:
11
, (3L
IBS||” = (f %)

2 2
The Mach-Zehnder interferometer yields the following stochastic matrix:

sin(@)?* cos(a)?
cos(@)? sin(a)?

IMZI(, B)|I* = (

The reflection and transmission coefficients for light intensities are given by R = sin(@)? and T = sin(a)?
with R+T = 1. Thus, if we input a beam of incoherent light on the left leg I = (1,0), we will observe the
distribution J = (R,T) in the output.

We have seen that linear optical circuits have a classical interpretation as complex-valued matrices.
We now give a graph-theoretic interpretation of these circuits, using a syntactic category for counting
paths. The classical Path calculus has the following generators:

e =
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denoted respectively 6, €, u, 7, o and r. Path diagrams are obtained by composing these generators
horizontally or vertically. Two Path diagrams are equal if we can rewrite from one to the other using the
rules defined in Figure ().

Bialgebra
(Co)copy
Oi
- . 0—O0 = >0 ;
Oi
(Co)unit

(Co)associativity

(Co)commutativity
—0

Homomorphlsms

AR AAA

X
= bl —A = ’
N Additive law Multiplicative law
—__>— = Ty v Xy
y
70 = —0 O— ) 1 = R

Figure 1: Axioms of the Path calculus

In categorical terms, we may define Path as the PROP generated by a bialgebra (8, €, u,n7) together
with endomorphisms r : 1 — 1 with a semiring structure r € S. Throughout this paper we fix S =C
although our main results can be generalised to any semiring. This calculus is folklore in category theory
and was first studied by Pirashvili [49]. Bonchi, Sobocinski and Zanasi used it to model signal flow
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graphs [50]. We can interpret Path in the monoidal category of matrices with direct sum.

Proposition 2.2. There is a monoidal functor C : Path — Matg,

Proof. C is given on objects by C(a) = 1 and on the generators (1)) by:

c<5>=(i)’ CO=0. cw=0 1, =0, Cr=(), CW:(? <1>)

where C(€) =(): 1 > 0and C(n) = () : 0 — 1 are the unique morphisms of that type in Matg. It is easy
to check that all the relations in Figure[I]are satisfied by C. O

Moreover, there is a functor turning linear optical gates into Path diagrams, representing their
underlying matrix:

F: LO — Path
a el
—0— -

Proposition 2.3. The classical interpretation of linear optics factors through the Path calculus, i.e. the
functor F : LO — Path defined above satisfies U = Co F.

The rewrite rules of Path allow to reduce any diagram to a normal form, which carries the same data
as a weighted bipartite graph. This normal form can be reached by the following (pseudo) algorithm:

1. remove all possible instances of 7: 0 — 1 and € : 1 — 0 by using the (co)unit and (co)copy laws
repeatedly.

2. apply the bialgebra law, together with homomorphism and multiplicative laws, until all instances
of the comonoid ¢ precede all instances of the monoid g,

3. apply the additive rule to contract parallel edges.

As an example, the following equation holds in Path, the normal form procedure going from left to right.

e =

where the thick wires carry the endomorphism 2 : 1 — 1. Computation of the weights on the resulting
graph is equivalent to the block-diagonal matrix multiplication defined by C. This is stated formally as
the following result.

Proposition 2.4 (Completeness). The axioms of Path are complete for Matg, i.e. C : Path — Matg is
a monoidal equivalence.

Proof. The normalisation procedure is described above, see also [50, Proposition 1]. O
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3 Fock space and permanents

Processing bosonic particles, such as photons, with linear optical devices gives rise to statistics that are
hard to simulate classically [6]. In this section we give an interpretation of linear optical circuits, derived
from [30], in terms of free and symmetric Fock space functors ¥, B : Matg — Vectg. We show that this
characterisation is equivalent to the model introduced in [6].

Consider a box containing particles. Assume that the space of states of a single particle is given by a
Hilbert space H. The free Fock space is defined as follows:

F(H) = é H®"
n=0

where ® is the usual tensor product and @ the direct sum. ¥ (H) describes the state space of a given
number of distinguishable particles indexed by n. Given a basis X of modes such that H = CX, we have
that:

F(CX) ~*(X")

where CX denotes the free vector space space with basis X, X* is the set of lists over X and [? is
the canonical Hilbert space construction defined in [51]. Thus for n particles in m modes we have
Fn(C™) = (C™)®" ~ C([m]") the basis states [m]" are given by lists of length n using m distinct
symbols.

Proposition 3.1. The free Fock space can be extended to a functor ¥ : Matg — Vectg defined on the
n-particle sector by F,(A) = A®" for matrices A.

Proof. This follows by functoriality of tensor ® and biproduct &. O

Now suppose that the particles in the box are indistinguishable. The state space of the system will
then be described by the symmetric or bosonic Fock space, defined as follows:

B(H) = é HE"
n=0

where & is the quotient of the tensor product by the equivalence relation x®y = y®x, which ensures that
the bosons are indistinguishable. One may show that 8(CX) ~ [>(NX), i.e. the bosonic Fock space
over a set of modes X is spanned by the basis states of occupation numbers. The n-particle sector of the
bosonic Fock space 8,,(H) is the n-th component in the direct sum above. When H = C™ has dimension
m, we have n indistinguishable particles in m possible modes. The basis states of 8,,(H) are given by:

m
Dy ={(s1,.,5m) | D si=n, s eN} ¢ N™
i=1

Note that |®,, | = (m+:—1) and B, (H) = H®" = C(®,,,). Let us compare the basis states for distin-
guishable and bosonic particles. There is a family of linear maps ay : ¥ (H) — B(H) defined on the
basis states of the n-particle sector X € [m]" by:

n!

|a(X))
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where a : [m]" — ®,, , is defined by a(X); = [{i|X; = j }| for j € [m]. Note that the normalisation factor
is equal to the size of the pre-image a~'(a(X)). Let us write the map o explicitly:

N,
Iy =L 2L
o n=y=1 3 1%
Xea (I
where N; = H’}”‘: 1 1;!. We can now use « to define the action of B on arrows.

Proposition 3.2. [30] The bosonic Fock space can be extended to a strong monoidal functor 8 : Matg —
Vecty defined on arrows A : m — k by:

B, (A) = A®" = @A®"o"
and satisfying B(A® B) = B(A) @ B(B).
Proof. Functoriality follows from naturality of e [30, Lemma 6.6]. 8B is moreover strong monoidal:

B(CX®CY) =~ B(C(X+Y)) =~ P(N*) = 2(N¥ xNY) =~ B(CX) ® B(CY)

We can use the bosonic Fock space to define a functorial model for linear optics.

Definition 3.1 (Functorial model). The functorial interpretation of linear optics is given by the compo-

u B
sition B : LO — Matg — Vectg. Given a chip ¢ : m — m € LO, the probability of observing output
state J € @y, ,, on input I € @, ,, is given by:

PEUID = 11 B() DI = || aU(e)® o' 1D

Aaronson and Arkhipov [6] introduced a formal model for linear optics based on matrix permanents.

Definition 3.2 (Permanent model [|6]). Given a chip c : m — m € LO, the probability of observing output
state J € ©y, ,, on input I € ®,, ,, is given by:

Pe(JI) = %NJ”Perm("L[(c)I,J)”z

where Ng = H;.": 1S, Perm denotes the matrix permanent, and Uj j is the n X n matrix obtained from an
m xm matrix U as follows. We first construct the m X n matrix U by taking J; copies of the jth column
of U for each j < m. Then we construct Uy j by taking I; copies of the ith row of Uj.

We give an explicit proof that the models introduced above are equivalent, although the argument can
be traced back to Fock [52].

Theorem 3.1. The functorial model of linear optics is equivalent to the permanent model. Explicitly, for

any m X m unitary U and basis states 1,J € @y, 5,

Perm(Uy. ;)

JIBW)I|I) =
(1B Nopor
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Proof. We start by expanding the left-hand side:

JIBWU)II) = U Ty = (T U |I) = (T 10)) U (@ |1))

\/Nif 2, U®"\/N7f >, 1%

Yeal(J) Xeal(I)
\/NJNI _ N
=t Y vy
Yea'(J)
N]NI n'
n! N] Ny 0_; !_[ Fo)

1
= Perm(U; )
VNiN;
where X € a™'(I) and Y € a'(J) are any chosen representatives. Note that this choice is irrelevant since
we sum over all permutations, and so in particular we can set (U y);j = Uy L7 , yielding the last step. O

Example 3.1 (Hong-Ou-Mandel). Consider the matrix of the beam splitter:

pe (i
V2 \L i
Suppose we input one boson in each port I = (1,1). There are three possible outcomes J = (2,0), (1, 1), (0,2).
We may determine the amplitudes of the different outcomes by computing permanents:

Perml l:2i Perml 1,:0 Perml_ 1_:21'
1 1 1 i i i

The component for outcome (1,1) is 0. We deduce that the probability of observing one boson in each
output port is 0. Thus interference ensures that the bosons bunch together at the output of the device, a
phenomenon known as the Hong-Ou-Mandel effect.

4 Quantum paths and matchings

In the previous section we have shown that bosonic linear optics can be formulated equivalently in terms
of Fock space and permanents. Aaronson and Arkhipov [[6] used the second definition to show that
sampling from a linear optical chip with bosonic particles is classically hard: if a classical computer can
compute an additive approximation of matrix permanents then the polynomial hierarchy collapses. While
this computational definition is useful for proving complexity results, we want to develop a diagrammatic
syntax for programming linear optical circuits. We do this by developing a quantised calculus QPath
which allows us to compute the amplitudes of linear optical events involving multiple photons, using
simple rewrite rules. In order to quantise the Path calculus, we add creation and annihilation of particles
as generators.

In) n)
QPath=Path+{ o - —
neN+

This yields a free monoidal category where we can represent linear optical processes with state prepa-
rations (creation) and post-selection (annihilation). Before developing a calculus around the QPath
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generators, the first thing to note is that QPath is equivalent to Path if we interpret it classically, i.e.
functors QPath — Matg are in bijective correspondence with functors Path — Matg. In fact, black and
white nodes are necessarily equal in Matg, since the unit O is both a terminal and an initial object. In
order to interpret black nodes, representing modes occupied by photons, we need to use the bosonic Fock
space functor.

The quantum interpretation 8 : QPath — Hilbg is obtained on the Path generators (I)) by composing
C : Path — Matg with the bosonic Fock space functor 8 : Matg, — Hilbg. The generating object a of
QPath is mapped to the free Hilbert space />(N). The comonoid 6 : 1 — 2 is mapped as follows:

H< - BO) ) - Z(Z)2|k>|n—k>,
k=0

while the monoid y is mapped to the dagger B(u) = B(5)". White nodes are mapped to |0), (0|,
indicating that the mode is empty. Endomorphisms 7 : 1 — 1 in QPath are interpreted as follows:

d — B(r):|n) +— r'|n)

Finally, the black nodes in QPath are mapped respectively to |n) and (n|, indicating that the mode is
occupied by n particles. Hadzihasanovic [40] showed directly that (u,|0),d,(0|) forms a bialgebra. In
fact all the axioms that hold in the classical interpretation C also hold in the bosonic interpretation B8
since it is defined by functor-composition. However, black nodes allow to express some processes which
were not available in the classical semantics, as we will see below.

The axioms of QPath include all the axioms of Path, given in Figure[l| The only additional rules
we will need to reason with black nodes are the following:

Scalar Bone

r

—e = | 5 —(O = () = O—-e
Branching

O— -~ —0 —e

>—<< = =+ ] >>—< = =+ >

- O— —e —0

Normalisation

) : |m)

Figure 2: Additional axioms for the QPath calculus

A

It is easy to show that the axioms above are sound for the bosonic interpretation 5.

Example 4.1 (Creation/Annihilation). The creation and annihilation operators on single modes have the
Jollowing representation as QPath diagrams.

Creation Annihilation

S
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We recover the commuting relations for these operators using the branching law:

e N

Example 4.2 (Hong-Ou-Mandel). We compute the amplitude of the beam splitter BS on input/output
I=(1,1)=J:

oy

and we recover the zero amplitude for this event.

We interpret a closed diagram d : 0 — 0 € QPath as an event where particle creations are matched to
particle annihilations. Given a linear optical circuit ¢ : m — m € LO together with a pair of states /,J €
®,,, ,, of occupation numbers, we may construct a closed diagram d = (J| F (¢) |I) € QPath, corresponding
to the event that we observe output J when we input / in a chip c¢. Using only the Path axioms together
with the normalisation rule, we can rewrite d as in the following example.

12 — 12) — 12)
a = = a
 pa <
TS PR
|2> c |2> c ‘2> ¢
12)

]
~
~
a
Il
[N
ol
Q
+
Q
IN)

ba+c

where we use the following syntactic sugar: < = ._<< , >- = >>_. At the end of the rewriting
process, we obtain a weighted bipartite graph. Let us denote this graph by G4 = (N, E) where N is the
set of nodes and E C N? is the set of edges, together with w : E — C an assignment of complex weights
to every edge. Note that G is an undirected graph, i.e. (i,j) € E = (j,i) € E.

Proposition 4.1 (Normal form). Any closed diagram d € QPath can be reduced to a pair (Gg4,Ng),
where G g is weighted bipartite graph and N is a normalisation factor, using the axioms in Figure[l|and
the normalisation law.

Proof. The normal form procedure exemplified above is the same as for Path, with the addition of the
use of the normalisation law which determines N. m|

Once d € QPath has been reduced to a weighted bipartite graph, we may further reduce it down to a
scalar value by using the branching and scalar laws. Most terms obtained by branching will cancel out
because of the first scalar law. The remaining terms are found to be in one-to-one correspondence with
the perfect matchings of G 4. Recall that a matching for a graph G is a subset of the edges M C E such
that no node is contained in two edges of M. A perfect matching is a matching M such that every node
is contained in an edge of M.
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Theorem 4.1 (Matchings). For closed diagrams d : 0 — 0 € QPath, the rewrite rules of QPath are
complete for the bosonic intepretation 8 : QPath — Hilbg, which moreover satisfies:

B(d)=Ng ) [ | we @)

M eeM

where M ranges over the perfect matchings of the graph G 4.

Proof. We need to show that if two closed diagrams d, d’ have the same intepretation 8(d) = B(d’) € C,
then we can rewrite from d to d’ using the axioms of QPath. To see this, note that for any closed
diagram d, the branching law turns the graph G4 into a sum of »n" terms, where n is the number of
photon preparations. We can cancel most of these terms using the “bone” law, which leaves us with n!
terms corresponding to the perfect matchings of G4: each photon preparation is matched to a photon
annihilation. Finally we reduce each of the terms to a complex value using the scalar law. It is a standard
result in graph theory that the sum of weights of perfect matchings of a graph is equal to the permanent
of its adjacency matrix, yielding (2). Therefore we can use the axioms of QPath to reduce both d and
d’ to the same scalar value in C. Since all the rules of QPath are invertible we can rewrite from d to d’,
yielding completeness. We do not currently know if the rules are complete also for “open” diagrams. O

Example 4.3. For a generic event d with three photons in QPath, the normal form procedure gives us a
weighted bipartite graph G g with input and output of size 3, or equivalently we have a 3 X 3 adjacency
matrix of weights. Using the branching law, we reduce the diagram to the following sum:

equivalently, we have just split the graph into its perfect matchings. Now we use the scalar laws to reduce
each term to a complex number. Equivalently, we multiply the weights assigned to the edges on each
matching. Finally we sum those terms to obtain the amplitude. Equivalently, we have computed the
permanent of the adjacency matrix of G 4.

S Linear-optical quantum computing

Our aim in this section is to describe how linear optics is used for qubit quantum computation. We will
do this by giving a complete mapping from the ZX calculus to QPath. We start by introducing the
ZX calculus on qubits. The dual-rail encoding allows to encode a logical qubit as a photon in a pair of
spatial modes. We show how all single qubit unitaries may be applied using simple linear optical devices.
We describe fusion measurements as diagrams in QPath and show how they can be used, along with
polarising beam splitters, to construct Bell states and more general cluster states.

ZX calculus. The ZX calculus is a graphical language for reasoning about qubit quantum computation.
It has strong links with both circuit-based and measurement-based models of quantum computing [28]].
The ZX calculus is generated by the following basic operations:

ZX generators

@
>_,Q_,_<,_o,_o_,_g_
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We will also use the following syntactic sugar for X states and phases:

a a
O— = O=—{=— s —_—O— = O -

In this section we are not really interested in the rewrite rules for ZX diagrams, rather in their interpretation
as linear maps between qubits. We will give this interpretation as we map each ZX generator to post-
selected optical circuits in QPath, and refer to [53][20] for more in-depth discussions.

Dual rail qubits. The dual-rail encoding can be thought of as a translation between polarized and
spatial modes of photons. The polarization states of a single photon are spanned by the basis states
|H),|V) for horizontal and vertical polarization, and thus naturally form a qubit. The dual-rail encoding
consists in encoding a polarised mode of light as a pair of spatial modes in LO under the mapping
|H) — |0,1),|V) — |1,0). The Z basis of a dual rail qubit may be expressed as a pair of QPath
diagrams:

T o— -

— - o— R {H).1V))

The Z and X effects correspond to the following diagrams:

—o
o —o , > {CHI (HI+ V1)

The Z effect may be implemented by post-selecting a photon detector, the X effect by precomposition
with a beam splitter. Z phases on dual-rail qubits are obtained as follows:

@ — |H) - |H)
V) o ei )

eia

The rotations from the Z basis to the X and Y bases are given by the beam splitters BSy and BS respectively,

defined as follows:
>< X |H) — [H)+|V)
H [V) = |H)—=|V)

—_— =
2 >< X |H) — i|[H)+|V)
L O a— —
V) = [H)+i|V)
where we use the following syntactic sugar: S , = L we give the

encoding up to scalar factor which does not affect the logic of the mapping. For example, the hadamard
gate is technically %BS w - In conjunction with Z phases, we can use it to obtain all single qubit unitaries
in dual rail encoding.

Example 5.1 (HOM). Using the beam splitters above, we obtain two versions of the Hong-Ou-Mandel
effect which are depicted graphically as follows:
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Fusion measurements. Fusion measurements are Bell measurements on dual-rail qubits. They corre-
spond to the linear map: |H,H) — |H),|V,V) — |V),|H,V),|V,H) — 0, which is denoted as a green
spider with two inputs and one output in ZX, and is obtained on dual-rail qubits as the following diagram

in QPath.

To see that this measures the Bell basis, note that there must be exactly one photon in the two middle
modes. The input basis state in dual-rail encoding are { |0101),]|0110),|1010),]|1001) } and this condition
is satisfied only by |[1010) and |0101) which correspond respectively to |[H, H) and |V, V).

|H,H) — |H)
V.V) = 1V)

b

Bell states. We engineer a representation of dual-rail bell states as QPath diagrams.

A~ U

We can check that this diagram corresponds to the bell state |H, H) + |V, V) by branching:

AW N Y M W
R T O A N A 0 0 A O A R O B

and using the Hong-Ou-Mandel effect (Example [5.I). Similarly, the Bell state |HH) — [VV) may be
represented using blue edes as follows:

/4
/O\ |H,H)—-|V,V)

and we can check this using branching and HOM:
0 T O A N A 0 8 O O O N O N

Note that there may be different equivalent representations of Bell states.

Polarising beam splitters. On bulk optics, the polarization states of photons can be acted upon using
wave plates, polarizing beam splitters (PBSs) and photon counting measurements. Wave plates are simply
X phase rotations, represented as red nodes in ZX. The PBS admits no description in ZX. It does however
have a simple interpretation in LO:

|H,
|V
% |H,
v,
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In combination with X states and effects, polarising beam splitters can be used to perform post-selected
fusion measurements and their transpose:
(H,H|+(V,V]|
+(HV,0|+(0,HV|

|V.H)+|H,V)
+|HV,0)+10,HV)

As an application, the linear-optical protocol for generating Bell states demonstrated in [13] may be
described as a diagram using PBSs and ZX primitives:

o

We recover the diagram for the Bell state by reducing to normal form.

B

ST

Spiders. The only missing ZX generator, which we need for a complete mapping ZX — QPath, is the
Z copy spider. We may readily deduce its representation using a known equality in ZX:

é [H) 1o |H, H)
_C< = ; }ﬁ V) = |V, V)
—

Similarly, we may turn the input leg into an output using a second Bell state. This yields a protocol
for generating the dual-rail GHZ state using five ancillary photons. Note that the mapping is in no
way unique, and we may obtain several equivalent protocols by further twisiting the spider above. This
however increases the number of ancillary photons needed. As first shown in [[14]], any cluster state can
be obtained by performing additional fusion measurements.

Outlook

The theory in this paper is being implemented in DisCoPy [24], the Python library for monoidal categories.
DisCoPy already has a number of tools for qubit quantum computing, including interfaces with tket [21]],
PyZX [22] and high-performance libraries for classical simulation. DisCoPy functors will allow to
compile qubit circuits and cluster states into linear optical circuits for efficient simulation with Perceval
[9] and future interfaces with photonic devices.
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Though the topic of causal inference is typically considered in the context of classical statistical
models, recent years have seen great interest in extending causal inference techniques to quantum
and generalized theories. Causal identification is a type of causal inference problem concerned with
recovering from observational data and qualitative assumptions the causal mechanisms generating
the data, and hence the effects of hypothetical interventions. A major obstacle to a theory of causal
identification in the quantum setting is the question of what should play the role of “observational
data,” as any means of extracting data at a locus will almost certainly disturb the system. Hence, one
might think a priori that quantum measurements are already too much like interventions, so that the
problem of causal identification trivializes. This is not the case. Fixing a limited class of quantum
instruments (namely the class of all projective measurements) to play the role of “observations,” we
note that as in the classical setting, there exist scenarios for which causal identification is impossi-
ble. We then present sufficient conditions for quantum causal identification, starting with a quantum
analogue of the well-known “front-door criterion” and finishing with a broader class of scenarios for
which the effect of a single intervention is identifiable. These results emerge from generalizing the
process-theoretic account of classical causal inference due to Jacobs, Kissinger, and Zanasi beyond
the setting of Markov categories, and thereby treating the classical and quantum problems uniformly.

1 Introduction

The problem of causal inference is to deduce from statistical correlations among variables something
about the causal mechanisms responsible for those correlations, where a causal mechanism is a process
that answers interventional queries. Although the majority of the work in the field of causal inference
has focused on classical, statistical models, it is interesting to consider causal inference problems in
the quantum setting as well, where quantum systems play the role of classical random variables. One
can ask, for example, whether it is possible for agents confronted with a recurring scenario involving
a pair of quantum systems to deduce using only certain limited operations whether the agents are in a
common-cause-type situation (e.g., accessing two parts of a quantum entangled state) or a cause-effect-
type situation (e.g., accessing the same system at two points in time). Ried et al. [16] presented a
solution to such an inference problem for specific scenarios involving two quantum systems, and raised
the problem of inference with larger collections of systems. Essentially what is sought is quantum
generalization of some of the theory of statistical causal inference, which has systematized much of the
business of combining qualitative knowledge of “causal structure” with quantitative data to characterize
causal influences between variables. This article accomplishes such generalization, using the logical
conception of causality presented in [12] to reveal the common process-theoretic underpinnings of causal
inference in both ordinary stochastic and quantum settings.

A theory of quantum causal inference requires first a mathematical model of quantum causal sce-
narios. Here, we will take a minimal notion of a quantum causal model consisting of a “circuit with

S. Gogioso, M. Hoban (Eds.): © I. Friend & A. Kissinger
Quantum Physics and Logic (QPL) 2022 This work is licensed under the
EPTCS 394, 2023, pp. 101113} doi{10.4204/EPTCS.394.7 Creative Commons|Attributionl License.


http://dx.doi.org/10.4204/EPTCS.394.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

102 Quantum Causal Identification

holes,” i.e., a directed acyclic string diagram wherein some wires have gaps allowing agents to apply
local processes. The circuit can be seen as a second-order process, or comb [3l], which maps local non-
deterministic processes to probabilities.

This notion of causal model is relatively weak in that unlike the one studied in [1]] and [2]], it doesn’t
seem to admit a relation of “complete common cause” whereby a single intervenable quantum system
can act as the sole source of correlations between two systems in its future. As a complete common
cause can be pictured in the classical setting as “copying” a random variable and using it as input to two
or more subsequent stochastic maps, it is difficult and somewhat subtle to make sense of a “complete
quantum common cause” in the absence of a physically meaningful process of cloning or broadcasting
quantum systems. Hence, it is interesting to see how much traction we can get on causal inference for
a class of models that don’t admit the explicit general representation of complete common causes. We
will show here that, in the case of the particular problem of quantum causal identification, we can get
relatively far without such a representation. We also recover, from an abstract perspective, results in
classical statistical causal inference.

Causal identification, in the classical case, refers to the problem of identifying the effects of (often
hypothetical) interventions on the basis of purely observational data [[15]]. In contrast to related problems
such as causal discovery, here the hypothesized causal structure of events—represented, e.g., by a directed
acyclic graph depicting the possible directions of causal influence between random variables—is known
in advance, but not the exact conditional probability distributions (or functional dependencies) governing
the influence of individual variables on each other. Even with the causal structure given in advance, this
problem can be highly non-trivial in the presence of confounding variables [[15] or selection bias [8]].

In generalizing to quantum causal identification, one needs to fix a notion that stands in the place of
“observation,” as it is impossible to extract any data from a quantum system without causing a distur-
bance, which in some sense is already an active intervention. Here, we fix the class of processes playing
the role of “observations” as local projective measurements, whereas “interventions” can be arbitrary
quantum instruments. The latter includes, for example, the process of discarding the incoming state of a
system and preparing a fixed new state, while the former does not.

While we do not intend to argue here that these notions of “observation” and “intervention” are fully
conceptually justified, we will give strong evidence instead that this kind of quantum causal identification
problem is interesting: we note that the problem can be impossible, then show that it becomes possible
when a causal structure satisfies certain criteria.

By analogy to the classical case, causal identification is defined to be impossible when a causal struc-
ture admits a pair of models that behave identically with respect to projective measurements, but differ-
ently under arbitrary interventions. Simple such pairs of models were mentioned in [16]], and we give an
example. Our first new result is a quantum version of the front-door criterion for causal identifiability
[14]. This result is then generalized to a sufficient condition for identifiability that implies the quantum
analogues of multiple sufficient conditions in the statistical causal modeling literature, including some
cases covered by Galles and Pearl in [[11]] and by Tian and Pearl in [18]. The statements and proofs here
invoke diagrammatic technology presented in [15]] and previously applied to causal inference by Jacobs,
Kissinger, and Zanasi [12]], who indicated the possibility, realized in the present article, of “import[ing]
results from classical causal reasoning to the quantum case” by changing the concrete process theory in
which abstract causal diagrams are modeled.

Potential consequences of the work lie in multiple areas. With respect to applicable quantum infor-
mation science, the present work first of all describes how to identify certain interventional quantities in
quantum networks of certain shapes, without full tomography. In fact, our results indicate that the ab-
stract causal structure of a collection of quantum processes can sometimes be used to characterize those
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processes completely, even with limited interactions. As Ried et al. explained, quantum causal inference
schemes with limited operations “promise extensive applications in experiments exhibiting quantum ef-
fects” [16]. Our means of inference in scenarios involving unobserved common causes might apply
specifically to the problem of detecting non-Markovianity in quantum information processing [[17].

This work may also have consequences for the theory of non-quantum statistical causal inference.
The process-theoretic presentation here, unifying classical and quantum causal identification, uncovers
the basic structures and procedures—comb factorization, informationally complete sets of states and ef-
fects, and process tomography—that underpin causal inference but are often masked by the details of
classical probability theory. The isolation of these rudiments should not only help guide the further
development of theories of causal inference for quantum and other special kinds of processes, but also
motivate continued research in ordinary statistical causal modeling using the logical and compositional
techniques of theoretical computer science.

Finally, we hope this work will contribute to the program aimed at answering questions in the foun-
dations of quantum physics by viewing them through the lens of causal modeling and inference [19]]. In
order to draw foundational conclusions from our results, those pursuing such ideas will have to assess the
implications of the fact that projective measurement as “passive observation” defines a close quantum
analogue of the classical problem of causal identification with latent variable models.

2 Preliminaries

To treat classical probability and quantum theory on the same footing, we will use the language of process
theories (3] throughout. Process theories have been defined in slightly varying ways in the literature. Our
definition follows.

Definition 1. A process theory is a symmetric monoidal category (¢, ®,1).

The concrete classical and quantum process theories of causal models studied in this work are each
equipped with a distinguished family of discarding morphisms dy4 : A — I for each object A, satisfying
dagp =da®dp and df = 1;.

To give a physical or computational interpretation to process theories, it is typical to refer to generic
morphisms f : A — B as processes, morphisms of the form p : I — A as states, and morphisms of the
form 7 : A — I as effects. Morphisms of the form A : I — I are called numbers or scalars. Objects are
also called system-types.

Throughout the paper, we will adopt string diagram notation, where processes are depicted as boxes
and objects as wires. We depict discarding using a black dot.

A
B p:l—A ~ @7
fA—=B ~ dy:A—=1  ~ ?A

A
n:A—1 ~ C”F
A

Note that the discarding maps in a process theory are not required a priori to satisfy any equations
aside from the basic compatibility with ®. They play an important role, however, in identifying cer-
tain families of well-behaved maps within a process theory. The most important such condition is the
following.
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Definition 2. A map f: A — B is called causal if dg o f = du, or diagrammatically:

-1 ()

Intuitively, causality captures the fact that the only influence a map can have is on its “future,” i.e.,
its output. If the output is discarded, then the actual causal process that took place is irrelevant.

Our main examples of process theories are Mat|R, | and CPM, which contain (finite-dimensional)
classical probability theory and quantum theory, respectively.

B

A

Example 1. The process theory Mat[R | has as objects natural numbers and as morphisms M : m — n
the n X m matrices whose entries are non-negative real numbers. The monoidal product is given by tensor
product of matrices (a.k.a. Kronecker product), whose unit is the 1 x 1 matrix (1) : 1 — 1. Discarding
maps d, : n — 1 are the 1 X n matrices (i.e. row vectors) consisting of all 1’s. Consequently, causal
states are column vectors of positive numbers whose entries sum to 1 (i.e., probability distributions),
and causal processes are matrices whose columns each sum to 1 (i.e., stochastic maps, equivalent to
conditional probability distributions with P(i| j) := M;;).

Example 2. The process theory CPM has as objects finite-dimensional Hilbert spaces 7,7, ... and
as morphisms completely positive maps ® : L(#) — L(.# ), where L(J) is the algebra of operators
¢ — 7. The monoidal product is again given by tensor product, whose unit is the identity map
on L(C) = C. States p : C — L(s) are fixed by a single positive operator p(1) € L(7) and causal
states correspond to trace-1 positive operators. More generally, causal processes are the trace-preserving
completely positive maps.

We will furthermore find it convenient to assume that each process theory has a (self-dual) compact
structure, meaning that every object A is equipped with a pair of maps Us : 1 > A®Aand Mg :ARA — 1,
called “cups” and “caps” respectively, satisfying the so-called yanking equations, which are depicted in
string diagram notation as follows:

This structure enables us easily to represent higher-order maps as first order ones. For example, we
can represent a process that takes processes of type A — A’ and produces processes of type B — B’ as a
normal, first-order process f : B A’ — A ® B'. We then indicate its higher-order interpretation by draw-
ing f as a box with a “hole” in it, and use cups and caps to define “plugging” another box into that hole:

A |B
L]~
B !

In [12], the authors furthermore assumed the structure of a CDU category—a minor variation on the
notion of a Markov category [10]-which captures an abstract notion of probabilistic maps by assuming
every object carries a “copying” (a.k.a. “broadcasting”) map [6]. In particular, this structure allows one
to capture causal models based on Bayesian networks as certain functors between CDU categories.

B/

2 (3)
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The famous no-cloning/no-broadcasting theorems of quantum theory, however, rule out a Markov-
like structure in the category CPM of quantum maps. Hence, we adopt a weaker notion of causal model,
consisting of a formal string diagram (i.e., a morphism in the free category over a signature) and an
interpretation of that diagram into a concrete process theory (of, e.g., probabilistic or quantum maps).

3 Interventional causal models

A causal model consists of two parts: (i) a formal string diagram capturing our causal hypotheses, and
(ii) an associated interpretation in a concrete process theory (i.e., Mat[R | or CPM). We will also use
the word “model” to refer just to (ii): the interpretation in the concrete process theory gives a model of
(1) in a logical sense.

We define a formal string diagram as a morphism of a particular form in the free symmetric monoidal
category Free(X) over some signature X. For a fixed set of objects {X,...,X,} in X, we call a diagram
D:X1®..0X, = X1 ®...0X, a circuit with holes if it is a morphism in the free symmetric monoidal
category and furthermore has the property that joining each input X; to its corresponding output X; yields
another morphism in the free SMC (i.e., it doesn’t introduce a directed cycle).

The intuition is that each of the input/output pairs is a “hole” in the diagram, which we call an
intervention locus, or simply locus (plural loci), where a local process can be plugged in. For example:

X P (X

P = 1| ] B i, 1 @
‘Xl ‘Xz ‘Xs ‘X4 [ a | @7

Xi X, X3 Xy

We require a locus’s input and output system-types to be identical, partly in order to accommodate the
special “trivial intervention,” which joins a locus’s input and output with an identity wire. More broadly,
statistical causal inference often involves considering a pair of instances of a single variable, with, e.g.,
one being observed and the other set by intervention. What is being represented is the same causal
relatum at two different “times,” before and after intervention.

We can now introduce a notion of causal model that is similar in spirit to that of [12]], but no longer
relies on the CDU structure needed to capture Bayesian networks.

Definition 3. For any process theory &, an interventional causal model consists of a pair (D,®) where
D is a circuit-with-holes in Free(X), ® is a causal process in %, and there exists a symmetric monoidal
functor F : Free(X) — % such that F(D) = ®.

When ¢ = Mat[R*] we call (D,®) a classical interventional causal model, whereas when € =
CPM, we call it a quantum interventional causal model.

The shape of the abstract diagram D containing loci X; and X; may prohibit models in which inter-
ventions at X; can causally affect events at X;. Call locus X; a descendant of locus X; in abstract diagram
D if and only if, when every input other than X; and X is joined to its corresponding output, the resulting
circuit has a path from input X; (the wire leaving locus X;) to output X; (the wire arriving at locus X;)
along which every traversal of a box is in the upward direction. Thus in the example depicted in 4l X,
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is a descendant of X5, but not of X3. If locus X; is not a descendant of locus X; in abstract diagram D,
then for any model of D, for every fixed set of causal processes plugged into the loci other than X; and
X, plugging a causal process into locus X; yields a process, with only input/output pair X;, that does
not depend on the choice of causal process at X;. In other words, X; being a non-descendant of X; in D
captures the hypothesis that interventions at locus X; cannot possibly affect events at X;, and the problem
of identifying the causal influence of X; on X is uninteresting. Note finally that if X; is a descendant of
X, then X; is not a descendant of X;, and the uninteresting identification scenario obtains. We therefore
lose nothing by focusing henceforth on the case wherein X; is not a descendant of X;.

Inferring the “causal influence” of one locus on another will mean inferring, from whatever data
are available, the value of a certain process determined by the causal model. That process, called an
interventional channel between the two loci, encodes the quantitative causal relation between the loci
according to the model at hand.

Definition 4. In a classical or quantum interventional causal model with loci Xy, ..., X,, the interven-
tional channel from X; to X, where X; is a non-descendant of X, is the process obtained by filling in all
loci other than X; and X; with identity interventions, and inputting a normalized, i.e., causal, state to the
wire leaving locus X ;.

The interventional channel-whose definition as above using an unspecified causal state is made pos-
sible by the assumption that X; is a non-descendant of X;—is a process of the form

i

Xi

l

which maps (possibly non-deterministic) intervention outcome—f : X; — X; at locus X; to the state on
system X; resulting from the combination of intervention f at X; and trivial (identity) interventions at
all loci other than X; and X;. In particular, the interventional channel gives the consequence for X; of

forcibly setting the state leaving X; to y:
X;

Thus the interventional channel yields what in ordinary statistical causal inference is called an “inter-
ventional distribution” of X; due to “surgical intervention” at X;. Moreover, one can compose the in-
terventional channel with arbitrary causal processes X; — X; to evaluate the influences of so-called soft
interventions [[7], for which the state leaving a locus depends on the incoming state.

Thus the shift in focus from distributions to channels, in line with a general trend toward channel-
based accounts of probabilistic reasoning [13} 4] and suggested for the present work by the difficulties of
defining and reasoning with quantum analogues of conditional probability distributions, has definite ad-
vantages for a theory of causal inference. The single process called the interventional channel supports
uniform reasoning about the consequences of all kinds of interventions, including soft interventions,
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which are likely to be the norm in applications to quantum information processing, where the interven-
tions under consideration may be, e.g., coherent quantum processes. The channel-based approach is both
conceptually clarifying in its application to classical causal models, and especially suited for the most
pertinent problems of quantum causal inference.

One expects that an interventional causal model’s data-generating process should be completely dis-
coverable from the results of various interventions [9]]. That is, there should exist a set of instruments for
which the outcome statistics suffice to determine the data-generating process. This property is guaranteed
for the interventional causal models in the present article by a key commonality between the classical
and quantum processes studied in this work: they can be completely specified by the numbers that result
when they are locally composed with states and effects.

Proposition 1. The theories Mat[R ;.| and CPM have local process tomography: any process

c

e

B

is determined by numbers

c| D
®)
A| B

where i, j, k, and | index certain finite sets of states or effects on the appropriate system-types. In quantum
tomography literature, the appropriate sets are called “informationally complete.”

We call the set of numbers in equation () the generalized matrix elements associated with a process
f- A local process tomography protocol for causal-i.e., probability-preserving—maps in Mat[R | and
CPM uses observed probabilities of combinations of measurement outcomes conditioned on combina-
tions of causal state preparations. In the quantum case, though one cannot obtain all of the generalized
matrix elements using a single choice of measurement basis, it is always possible to obtain them from
the measurement statistics of multiple projective measurements at the outputs (along with independent
state preparations at the inputs).

Local process tomography for comb-shaped quantum processes, which corresponds to Ried et al.’s
[16] “causal tomography,” is mathematically just the same as local process tomography for ordinary
first-order processes, but in the physical implementation, the measurement realizing an effect at a locus
precedes temporally the preparation of the state leaving that locus. Thus local process tomography
for a classical or quantum interventional model typically relies on probabilities that result from filling
intervention loci with maps of the form

P

where i and j index informationally complete sets of effects and causal states. To implement all these
maps in an experiment and thereby learn corresponding probabilities requires the ability to record an
observation labeled i and then prepare the system in a new state labeled j, where j does not depend on i.

(6)
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In contrast, what we will call observational data arise, for instance, when the only outcomes of this
form that can be implemented are those satisfying i = j: the state to be fed forward from a locus is
determined by the observation outcome, and so, for simplicity, we label them with the same value of a
single index. This article is concerned with what can be inferred circumstances like these. The general
problem of causal identification is to use qualitative assumptions about the causal scenario to compute
quantitative causal influences given statistics from only a highly restricted set of interventions. Usu-
ally the allowed interventions are “passive observations,” which non-deterministically implement certain
maps of the aforementioned “observational” form, and thereby teach the observer certain limited sets of
probabilities. There is no quantum instrument representing a procedure appropriately called passive ob-
servation. For the purposes of this paper, the quantum interventions allowed as “observations” are exactly
the projective measurements, which include identity processes (totally uninformative measurements) as
well as instruments whose outcomes take the form of (6) for i = j.

The class of projective measurement instruments is closely related to a criterion, called informational
symmetry, whereby Ried et al. characterized certain interventions in both classical and quantum causal
scenarios as mere observations [16]]. Informational symmetry, however, depends on both the intervening
process and the prior state, whereas we desire a criterion applying only to the intervening process itself.

To apply our proofs of sufficient conditions for identifiability to the classical stochastic setting, we
need not characterize completely a classical stochastic analogue of the quantum class of observation
outcomes, but only posit that classical observation outcomes include identity matrices and matrices that
have all zero entries except 1 in a single position on the main diagonal. (When classical probability
theory is viewed as a sub-theory of quantum theory, the non-identity classical observation outcomes just
described are in fact identified with outcomes of maximally informative projective measurement in a
fixed basis.) The latter kind of matrix represents an outcome of what is normally called “observing a
random variable.” By marginalization, identity interventions in the classical setting can be simulated
from the probabilities of such projections onto pure causal states (point distributions). Thus our proofs
of classical identifiability really appeal to no intervention procedures other than ordinary maximally
informative classical observation. When we say an inference in the classical setting is impossible with
only observational data accessible, “observational data” means probabilities of the classical outcomes
just described.

The question of identifiability of the causal influence of one locus on another is whether the quali-
tative causal assumptions encoded in the abstract string diagram D are strong enough that together with
observational data for a causal scenario represented by an unknown model of D, they determine the value
of the interventional channel derived from the unknown model. A classical or quantum interventional
channel, respectively, from one locus to another will be called identifiable from an abstract string diagram
if for any positive stochastic or quantum model of the string diagram, the interventional channel can be
computed from the probabilities of arbitrary combinations of observation outcomes at all intervention
loci of the model. Positivity is defined as follows:

Definition 5. A positive stochastic or quantum interventional model is a model whose composition with
any non-zero state and any non-zero effect gives a strictly positive number.

The states and effects composed with a model may in particular be products of those implemented at
individual intervention loci. For a positive model, therefore, any combination of observational outcomes
occurs with non-zero probability. The positivity condition in our process-theoretic account serves the
same purpose as the common requirement in ordinary causal modeling that a probabilistic causal model
induce a strictly positive joint distribution on all variables. Positivity ensures that all relevant conditional
probabilities are defined, and that detecting an arbitrary state at a locus after intervening at another
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locus is at least possible—if it were not, asking for the corresponding interventional probability would
make no sense. The definition of identifiability from an abstract string diagram captures the notion that
the assumptions of no direct influence between loci disconnected in the abstract diagram—equivalent
to assumptions of absence of certain arrows in a directed acyclic graph representing a classical [15]] or
quantum [9] causal structure—suffice for inference: in any model satisfying at least the constraints implied
by the string diagram, the quantity in question can be deduced from observational outcome statistics.

Circumscribing the class of allowed interventions raises the question of whether the restrictions are
strong enough to rule out schemes like causal tomography that would always allow causal identification.
The answer is affirmative, as Ried et al. [[16] noted, and is evident from string diagrams like

for which the interventional channel

from X to Y is not identifiable. Two models yielding different interventional channels but identical
observational outcome statistics are constructed via functorial interpretation according to Definition 3t
in both models, u is interpreted as the Bell state |¥)(¥*| = 1(|0) +[1))({0] + (1|) on two qubits, z
as a fixed quantum state with full support (i.e., a state whose composition with any non-zero effect is
non-zero, corresponding to an operator of full rank), and x as the quantum map that discards its left-hand
input and outputs its right-hand input unchanged. In the first model, y is interpreted as the map that
discards its right-hand input and applies to its left-hand input a projective measurement followed by a
depolarizing channel with parameter A. In the second model, y is interpreted as the map that discards
its left-hand input and applies to its right-hand input the same projective measurement followed by the
same depolarizing channel as in the first model. Thus the interpretations of y in the two models are

Model 2
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where

£(p) =10){01p10)(0] + 1) 1lpI1) 1
F(0) = (1-A)o+ A10)(0] + 311}

These models are positive because z has full support, the reduced state arriving at X is maximally
mixed, and the state arriving at Y includes a maximally mixed state with weight A no matter what
outcome has occurred at X. They produce identical outcome statistics for projective measurements at the
loci. The interventional channel is therefore not identifiable from the abstract string diagram, because it
cannot be computed for every positive model. The theory behind the two-locus quantum identification
schemes of [16], however, might sometimes help in three-locus situations—perhaps some scenarios that
involve coherence or entanglement and also include an “instrumental variable,” which would correspond
here to the locus Z.

Because Z does not influence X or Y in these models, this example is essentially equivalent to those
two-variable scenarios in [16]] for which the desired interventional channel was noted to be unidenti-
fiable. We show three variables to detach our example from the two-variable case of the “quantum
advantage.” Moreover, we explicitly note that identification is impossible even for positive models of the
string diagram.

4 Front-door scenarios

It is generally impossible to tell from observational data whether two correlated random variables, one
of which is known not to be a descendant of the other—i.e., one of which comes “before” the other—stand
in a cause-effect relation or are instead descendants of an unobserved common cause. If, however, there
is a third observed variable or set of variables along the possible path of causal influence between the
first two, the “front-door criterion” for causal identifiability implies that such inference may be possible.
The operative sufficient condition has a quantum analogue, captured along with the classical version by
the following result, which is derived for both process theories simultaneously, using the fact that the
theories’ scalars are real numbers.

In this and the following section, each system represented by an uppercase letter may be a composite
of multiple smaller systems, and similarly each box may be a composite of smaller boxes. Thus, a single
locus in one of our diagrams might correspond to a list of several classical variables or quantum labora-
tories [9] occupying several nodes of a more traditional causal diagram. What we call an intervention at
a locus would then correspond to (possibly choreographed/non-local) intervention at all those nodes.

Proposition 2. For quantum or stochastic models of a string diagram

%)

the interventional channel
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Each proof of identifiability from here on consists in demonstrating how to compute the causal quan-
tity of interest—usually an interventional channel-from certain component processes of the model, spec-
ified by their generalized matrix elements, which are ultimately computed from probabilities of local
observation outcomes. Each proof can be read in either the classical or the quantum process theory. An
observation outcome consisting of an effect labeled, say, i, followed by a state with the same label, is to
be understood in the classical case as a row vector with 1 in the ith position followed by the transpose of
that vector. The composite map is the matrix product of the two. In the quantum case, a state/effect pair
represents a single outcome of a non-degenerate projective measurement. The state labeled i is the ith
measurement eigenstate, whereas the effect is the CPM obtained by tracing the input together with the
ith eigenstate.

Proof. First, we compute the process z, determined by its generalized matrix elements, which we obtain
by introducing a non-zero scalar factor and its inverse (where the inverse is indicated by a diagram inside
{—1~1), then using the causality equation (IJ) to transform into the following quantity:

Note that the scalars being inverted are indeed non-zero, by positivity of the whole interventional model.
Furthermore, the rightmost diagram above consists of quantities that can be computed purely from pro-
jective measurements at all of the loci (including the identity/trivial measurement at Z).

Once we have computed the generalized matrix elements of z, we can use them to compute those of
another factor of the model by a procedure we call “adjusting for z:”
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Finally, we compose the two processes at Z, leaving the X input and output, to obtain the interventional
channel. O

<

Thus, in the quantum just as in the classical case, observation at a locus Z lying on the path between
X and Y “blocks” that path and allows control of the confounding influence of u.

S A more general case of a single intervention

The identification criterion of Proposition [2] can be generalized, using the same proof technique, to a
quantum version of Jacobs, Kissinger, and Zanasi’s Theorem 8.1 [12]].

Proposition 3. For quantum or stochastic models of a string diagram

?
C
f
B
A X
f
C
f2

-
e

the interventional channel

from X to C is identifiable.
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Proof. First, we compute the generalized matrix elements of g, similarly to before:
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Once we have the generalized matrix elements for g, we can again generate those of the outer comb by
adjusting for g:

f

>
>
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Finally, we compose the two processes at A and B, leaving the X input and output, to obtain the interven-
tional channel. U

6 Conclusion

Functorial causal models, combined with string diagrammatic language, promise continued develop-
ments on multiple fronts of quantum and classical causal inference. Since our comb factorization roughly
amounts to Tian and Pearl’s c-component factorization [18]], we expect to be able to deal with more com-
plicated quantum scenarios than the ones presented here, by porting classical identification protocols
based on c-component factorization through our process-theoretic formalism to the category of quan-
tum models. Moreover, in both the quantum and classical settings, understanding causal inference as
invoking a process theory’s property of local process tomography unlocks the potential for immediately
applying the abstract techniques of this article to inference with data from more general instruments
than projective measurement or classical passive observation. While on the classical side both sorts of
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generalization—to more complicated network shapes and to other data-collection instruments—may first
lead simply to more efficient presentations of existing theory, all developments on the quantum side will
constitute new domain knowledge.

Because graphs representing causal structure in other literature are often taken to encode stronger
assumptions about complete common causes than are expressible in our framework, some identifiability
conditions based on tests of such graphs do not have analogues in terms of the diagrams used in this
article; our front-door criterion might be considered only a limited analogue of the classical set of suf-
ficient conditions known by that name. Our diagrams’ lack of explicit representation of completeness
of common causes is valuable in allowing us to discern which classical graphical criteria do not involve
considerations of independence of multiple variables conditioned on observed complete common causes,
and to derive the quantum analogues of those criteria without a treatment of quantum complete common
causes. Future work, however, will extend the framework here to incorporate assumptions of complete-
ness of observed common causes, with a view to unified process-theoretic description of those parts of
classical and quantum causal inference that rely on such assumptions.
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We propose a new algorithm to synthesise quantum circuits for phase polynomials, which takes
into account the qubit connectivity of the quantum computer. We focus on the architectures of
currently available NISQ devices. Our algorithm generates circuits with a smaller CNOT depth than
the algorithms currently used in Staq and t|ket), while improving the runtime with respect the former.

1 Introduction

Many current quantum computing architectures have restricted qubit connectivity, meaning that interac-
tions between qubits are only possible when the physical qubits are adjacent in a certain graph, henceforth
called the architecture, defined by the design of the quantum hardware. Traditional compiling techniques
for quantum circuits work around this limitation by inserting additional SWAP gates into the circuit to
move the logical qubits into a location where the desired interaction is physically possible, a process
called routing or mapping (6, (16} 19} [17]]. This typically increases the depth and gate count of the circuit
by a multiplicative factor between 1.5 and 3 [6]. However, recent work by Kissinger and Meijer-van
de Griend [[11]] has shown that for pure CNOT circuits it is possible to compile a circuit directly to an
architecture without dramatically increasing the number of CNOT gates. Their approach was to use a
higher-level representation of the desired unitary transform and (re)synthesise the corresponding circuit in
an architecture-aware manner.

In this paper, we consider another class of high-level constructs called phase polynomials, which
give rise to circuits containing only CNOT and Rz(6) gates. The current state-of-the-art algorithm for
phase polynomial synthesis is the GraySynth algorithm [1]]. Unlike other algorithms for phase polynomial
synthesis [3]], GraySynth attempts to minimise the number of 2-qubit gates. Unfortunately, GraySynth
assumes unrestricted qubit connectivity. This limitation was removed by Nash et al. [[13]], by adding qubit
permutation subcircuits whenever a sequence of CNOTs required by GraySynth is not permitted by the
architecture. Nevertheless, the algorithm still relies on the same recursive strategy as GraySynth, which
might be suboptimal for sparse architectures.

In this paper we propose a new algorithm for the architecture-aware synthesis of phase polynomial
circuits. The algorithm has been tuned for the relatively sparse connectivity graphs of current quantum
computers.
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We compare our algorithm against two compilers that are able to natively synthesise phase polynomials:
t|ket) [13] and Staq [2]. We compare the different methods based on the final CNOT count, final CNOT
depth, and their runtime. These figures of merit are appropriate for noisy-intermediate scale quantum
(NISQ) devices [[14]], since the single-qubit gates of such devices typically have error rates an order of
magnitude less than that of the two qubit gates. By minimising the CNOT count we are minimising
the exposure of our computation to gate error, including crosstalk; by minimising depth we reduce its
exposure to decoherence.

We show that for sufficiently sparse quantum computer architectures and sufficiently large phase
polynomials, our algorithm outperforms the algorithm from Nash et al. [13] that is used in Staq [2] as well
as the decomposition and routing strategies from t|ket) [6]. Our algorithm relies on finding non-cutting
vertices in the connectivity graph, and does not require computing any Steiner trees; we find that in most
cases our algorithm has reduced runtime compared to that of Nash et al.

In section [2] we introduce phase polynomials and existing methods for their synthesis, both with and
without architecture-awareness. Our new algorithm is described in section [3]and our experimental results
can be found in sectiond] Throughout the paper we will assume some familiarity with the zZX-calculus [4],
which we use as notation. For the uninitiated, Cowtan et al. [7] give a short introduction to the calculus,
including the phase gadget notation; Coecke and Kissinger provide a complete treatment [S].

Notation We use bold face letters x, y, to denote vectors, and the corresponding regular weight letters x;,
y; to denote their components.

2 Phase polynomial synthesis

Following Amy et al. [1]], we define the phase polynomial via the sum-over-paths formalism [8].

Definition 2.1. Let C be a circuit consisting of only CNOT and Rz(0) gates; then its corresponding
unitary matrix Uc has a sum-over-paths form,

Uc=Y, ™ |Ax) (x] 1)
x€lFy
consisting of a phase polynomial
fE) =Y FO) (x1y1 D x2y2 ® -+ D xayn) (2)
yeFy;

with Fourier coefficients f(y) € R, and a basis transform A € GL(n,F,). When no confusion will arise
we refer to the pair (f,A) as the phase polynomial of C.

Note that parity functions — henceforth just called parities — of the form x — (x1y; @ -+ B x,y,) as in
Equation 2] can be identified with the bit string y; these are the basis of the space of phase polynomials.
Those parities for which f(y) # 0 are called the support of f.

Every circuit over {CNOT, Rz(0)} has a canonical sum-over-paths form, which we now sketch. First,
we associate a parity to each “wire segment” of the circuit as follows: the inputs of the circuit are labelled
X1,...,Xx, respectively; the output of an Rz gate has the same parity as its input; and a CNOT gate with
parities p; and p, on its control and target inputs has output parities p; and p; @ p, respectively. Second,
the coefficients f (y) are computed by summing all the angles 6 occurring in Rz gates labelled by the
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parity y. Finally, the linear transform A is defined by the mapping x — x’ where x’ are the final labels of
circuit outputs. We refer the reader to Amy et al. [1] for more details.

The task of phase polynomial synthesis is the reverse: given (f,A) we must find the circuit C. This
amounts to constructing a parity labelled CNOT circuit such that every y in the support of f occurs as a
label on some wire, adding an Rz(f(y)) gate on that wire, and extending that circuit so that the desired
output parities for A are achieved. Since f(x) is a sum, and addition is commutative, the order in which
the parities are achieved is irrelevant; neither does it matter on which qubits these parities occur. To obtain
the required final parities, additional CNOTs are added to the circuit. Since the new parity is the sum of
the parities of both the control and the target qubit, applying a CNOT gate can therefore be seen as an
elementary row operation on the matrix x — x'. If the desired parities for each qubit are known, Gaussian
elimination can produce a CNOT sequence to achieve those parities [[12, [11} [13]]. This method suffices to
synthesise the matrix A of the phase polynomial [3} (1, [13]]; note, however, that this second phase is totally
independent of the earlier synthesis of the parities required for f(x).

Architecture agnostic synthesis. Phase polynomials may be synthesised via the phase gadget construct
of the zX-calculus [[7]. Since our algorithm can be intuitively described using phase gadgets, we will
briefly explain this method.

Definition 2.2. In zZX-calculus notation we denote the R, gate with phase @ and CNOT gate as:

m o p=

iZ"" which we represent by the

In a phase polynomial (f,A), each term in f(x) defines an operator e~
phase gadget D () :

(@)= O

O
where & = f(y) and the gadget is connected to qubit 7 iff x;y; = 1.
Lemma 2.3. We have the following law for decomposition of phase gadgets [7].

DS S E e W

< 3

Y ;

Lemma [2.3]serves as a recursive definition of the phase gadget, and demonstrates how the gadget
may be realised as two ladders of CNOTs and an Rz gate. Cowtan et al. [7] showed how to synthesise
phase gadgets in reduced depth using a balanced tree of CNOTSs, however if the gadgets are synthesised
singly, and their ordering is not taken into account, the circuit may still be suboptimal even after local
optimisation.

A consequence of Lemma [2.3]is that phase gadgets stabilise CNOT circuits in the following sense.
Let C;; be a CNOT gate with control qubit i and target qubit j; then for all phase gadgets ®(a) there
exists &' () such that C;;®(or) = ®'(a)C;j. @’ is identical to @ except that &' is connected qubit i iff ¢
is connected to exactly one of i and ;.

This observation leads to an improvement in the algorithm. If we view the sequence of phase gadgets
as a binary matrix whose rows are the qubits and whose columns are the corresponding parities y in the
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support of f, then commuting C;; through the entire circuit is an elementary row operation, namely adding
row j to row i. Therefore, by conjugating the circuit with CNOTSs, we may obtain a column containing
a single 1. At that point, the desired parity (corresponding to the column in the matrix) is achieved on
the qubit corresponding to the row with the 1. The Rz gate can then be placed, and the column can be
removed from the matrix.

For example, the 3 qubit phase polynomial, (f(x), ), specified by f(x) = a1 (x2 ®x3) + o2 (x; B x2) +
03(x] ©x3) + 04x3, can be represented in a ZX-diagram and corresponding binary matrix as:

@ @@ @
s ?

2
—_ = O

1 10
1 00
011

Conjugating the first and second qubits with two CNOTs, and applying Eq. [3] we obtain the following
rewrite sequence and final matrix:

gate:

Note the equation relies on the fact that Rz gates commute with phase gadgets.

The matrix representation reduces the task of phase polynomial synthesis to finding the order in which
to reduce the columns, and which qubit should remain a 1 in the matrix for each column. Amy et al. [1]]
proposed a heuristic algorithm called GraySynth based on Gray codes. The main idea is to pick the qubit
g participating in most parities and then achieving all parities containing ¢ in order of Gray codes [9]] on
qubit g. As a result, many CNOTs will have the same target qubit. This algorithm has been implemented
as part of Staq [2] in combination with SWAP-based routing.

Unfortunately, GraySynth does not accommodate qubit connectivity restrictions, making it less useful
for NISQ devices. A naive solution is to apply a generic qubit routing routine to the synthesised circuit,
however this will almost always increase the size of the circuit. Luckily, there is no need to be so naive.

Architecture-aware synthesis. It is possible to define synthesis algorithms which produce circuits
that immediately satisfy the constraints imposed by the quantum computer. Several algorithms such
architecture-aware synthesis algorithms for CNOT circuits and phase polynomials have recently been
proposed [11} [13]]. While SWAP-based methods respect the original structure of the circuit at the level
of individual gates, architecture-aware synthesis preserves only the overall unitary, and this additional
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freedom allows the architectural constraints to inform the choice of which gates to generate. This concept
has also been used in the Staq compiler [2]], which uses the algorithms described in this section.

Kissinger et al. [11] and Nash et al. [13] independently modified the Gaussian elimination algorithm
sketched above to synthesise routed CNOT circuits. They used Steiner trees to determine paths on the
connectivity graph across which to simulate one or more CNOT gates. Nash et al. [[13]] showed that their
method scales well with respect to the size and the density of the connectivity graph of the quantum
computer. Kissinger et al. [[11] showed that for circuits consisting only of CNOT gates their method
outperformed current state-of-the-art SWAP-based methods. Wu et al. [18] have recently improved these
methods with an adaptation relying on Steiner trees and non-cutting vertices.

This constrained version of Gaussian elimination, called Steiner-Gauss, can be used in any synthesis
algorithm by replacing the original Gaussian elimination such that it routes (part of) the synthesised circuit.
In particular, this can be used in the T-par algorithm [3]] and in GraySynth it can be used to synthesise the
matrix A.

Nash et al. [13] also proposed an adaptation of the GraySynth algorithm we called Steiner-GraySynth.
They replaced the step in the original GraySynth algorithm that generates a small sequence of CNOT's
with a step that emulates this sequence with routed CNOTs. This emulation is created using a Steiner tree
over the connectivity graph with the phase qubit as root and the other qubits participating in the sequence
of CNOTs as nodes. Then, a CNOT is placed for every Steiner-node in the tree and one for every edge in
the Steiner tree.

For phase polynomial synthesis, this algorithm performs better than naive routing [13l]. However,
following GraySynth, it will place many CNOT gates with the same target qubit. If this qubit is poorly
connected in the architecture, a large CNOT overhead will result. Furthermore, it requires the construction
of a Steiner tree in order to route the CNOT gates. The minimal Steiner tree problem is NP-hard[10], so
finding the true optimum is not feasible, but it can be approximated in polynomial time using the all-pairs
shortest paths and building a spanning tree between them.

3 New natively routed heuristic algorithm

In this section, we describe a natively routed algorithm that attempts to take the architecture into account.
It uses a novel heuristic which works well for sparse architecture graphs.

Pseudo-code for the algorithm is shown in Figure [I]and its sub-procedures are listed in Appendix [A]
A full worked example is presented in Appendix B} for ease of comparison this example is the same one
treated by Amy et al. [1]] using the GraySynth algorithm.

In the following, the architecture graph — that is, the connectivity map of the physical qubits — is
denoted G. The phase polynomial to be synthesised, (f,A), is represented as two binary matrices, P and
A, where the columns of P are the corresponding parities y in the support of f, as explained in Section 2]
By construction, the columns in P are unique and no column y has all values set to 0.

Preprocessing. The algorithm starts by synthesising phase gadgets of the form specified by Equation f]
This will remove trivial columns in P and placing their corresponding Rz phase gates. A column y is trivial
if it has exactly one index j such that y; = 1. The phase gate Ry is placed on the qubit corresponding to j
and its phase « is equal to f (y). This makes sure that every column y in P contains at least two elements
with value 1. Hence, each column requires at least one CNOT in order to be synthesised by Lemma[2.3]

For example, consider the phase polynomial from Section 2] we can use Equation []to remove the
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global variables

G, the architecture graph

Circuit, An initially empty circuit with |G.vertices| qubits

A, The basis transform of the phase polynomial

P, The matrix describing the support of f

ZPhases, The list of Z phases f(y) belonging to each parity y in f
end global variables

function BASERECURSIONSTEP(Cols, Qubits)
if Qubits non-empty and Cols non-empty then
H <+ InducedSubgraph(G,Qubits)
Rows < NonCuttingVertices(H)
ChosenRow <— argmax . g,,,s MaxXycr, |{c € Cols where P, = x}|
Cols0,Cols1 <+ SplitColsOnRow(Cols, ChosenRow)
BaseRecursionStep(Cols0, Qubits \ {ChosenRow})
OnesRecursionStep(Cols1, Qubits, ChosenRow)
end if
end function

function ONESRECURSIONSTEP(Cols, Qubits, ChosenRow)
if Cols non-empty then
Neighbours < {q € Qubits where g ~ ChosenRow in G}
14— ArgMax e neighpours | 1€ € Cols where Py . = 1}
if [{c € Cols where P, . = 1}| > 0 then
PlaceCNOT (ChosenRow, n)
Cols < ReduceColumns(Cols)
else
PlaceCNOT (n, ChosenRow)
PlaceCNOT (ChosenRow, n)
end if
Cols0,Cols1 < SplitColsOnRow(Cols, ChosenRow)
BaseRecursionStep(Cols0, Qubits \ {ChosenRow})
OnesRecursionStep(Cols1, Qubits, ChosenRow)
end if
end function

algorithm ROUTEDPHASEPOLYSYNTH
Columns < ReduceColumns({0, . .., |P.columns|})
BaseRecursionStep(Columns, G.vertices)
Circuit. AddGates(SteinerGauss(A x P~ 1))

end algorithm

Figure 1: Algorithm for synthesising phase polynomials in an architecture aware manner. The subroutines
not defined here are in listed in Appendix
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fourth column (corresponding to ¢t4) and synthesise the phase gate Rz(a4) on qubit 3:

Base recursion step. Similar to GraySynth, we want to synthesise the phase gadgets in the phase
polynomial in an order that requires the least amount of CNOT gates. However, we do not want to
synthesise the phase gadgets such that many phase gates are placed on the same qubit. Instead, we pick
one qubit and attempt to remove its row from P. However, we cannot pick just any row to remove from
P because it might still be needed to synthesise other phase gadgets due to the connectivity constraints.
Thus, we pick a non-cutting vertex i € G such that row P, has either the most ones or the most zeroes.
A non-cutting vertex is a vertex in G that can be removed from G without disconnecting the remaining
graph. Like GraySynth, we split P into two matrices, P° and P', such that column P; is a column in
P iff P ; =0 and P; is a column in P! otherwise. Since all entries in row Pl-o are equal to 0, we do not
need this row any more and we can remove it from P°, and because i is non-cutting, its removal leaves
the graph connected. Then, we use the base recursion step on the sub-matrix P° (excluding row i) with
the sub-graph of G where vertex i has been removed. The matrix P! is treated by a different recursive
procedure using the full graph G, described below.

Continuing the example above, suppose we are targeting the architecture G : x; < xp < x3. We can
pick either x; or x3 as they are both non-cutting and have the same number of ones and zeroes; we will
make the arbitrary choice of x;. This choice yields our new P° and P':

0 1 1 . 11
P=[11 0 P0:<1> Pl=11 0
1 0 1 0 1

Note that P° corresponds to the phase gadget «;, and P' corresponds to the phase gadgets o and o3.
Recursing on P” will eventually place the CNOT C3, and Rz (o) gate on qubit x,, as shown below.

—_ = O
O =

Bear in mind that the recursion on P° may add CNOTS to the circuit, performing a row operation on
the global P matrix. For our recursion scheme to be valid we require that the row P! remains equal to 1.
Initially, this holds by the construction of P'. Since row i has been removed from P, no gate involving
qubit i will be added by recursion on P°, and hence the ith row of P' will be unchanged. Moreover, P!
does not contain any trivial columns because for every column j in P! there will always be another row
k # i such that PkIJ =1.

Ones recursion step. The recursion step for P! attempts to remove as many ones from row i as possible
such that it can be removed. This can be achieved by placing CNOTs in the circuit, however we are
restricted by the connectivity graph. Therefore, we pick a neighbour vertex n € G such that row P!
has most ones. Picking the row P! with most ones will ensure that most ones are removed. Then, we
can conjugate with CNOT C; ,, and update P by adding row 7 to row i, as explained in Section [2] This
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might introduce trivial columns in P! (note that P = @ by the recursion), which are removed like in the
preprocessing step. Thus, in the example circuit:

However, if every entry of row P! is 0, conjugation with C;,» will have no effect. In this situation, we
first apply the opposite CNOT, C,; and then C; , as before. This effectively swaps the rows i and n, so
there is no need to reduce the circuit. Nevertheless, this ensures that every entry in row Pl-1 is 0.

After placing the CNOT gate(s), we have modified row 1’-"1-1 and we can split P! into two matrices, P!
and P!, and recurse upon these two as in the base recursion step.

In our example P''* ~ {o} and P'"! ~ {@3}. We use the base recursion on P'¥ and pick x3 arbitrarily.
Note that we only consider the sub-matrix P'? to count the number of ones and zeroes. Then, we split
P'"%into @ and {a,}, respectively. In the ones recursion step, we pick neighbour x, and place CNOT C; »
and Rz(a) on qubit x;.

Afterwards, we use the ones recursion step twice on the remaining row, placing two CNOTs, C; 1 and
C3,, and placing the final phase gate Rz(0;3) on qubit x3

O O i O O
0@d o@bddodo
i Sl b Sl

Post-processing. Lastly, we need to synthesise the basis transform A. Because the CNOT gates in
the circuit, obtained by synthesising the phase gadgets, change the parities on each qubit, we need to
undo these changes. Let P’ be the basis transform corresponding to the final parities of the synthesised
circuit, then we can undo this transform and apply the desired transform A by synthesising A - P'~! using
Steiner-Gauss as explained in Section 2]

In our synthesis example, P'~! is equivalent to the CNOTSs that were commuted to the end of the ZX-
diagram. Incidentally, P’~! = A - P'~! because of our choice A = I, thus the desired linear transformation
is already achieved. Moreover, these trailing CNOTs are already routed, however resynthesising them
might remove a few redundant CNOTs for the final circuit.

Termination and correctness. Our algorithm terminates and is correct if the recursion converges and it
synthesises the desired phase polynomial (f,A) while satisfying the connectivity constraints imposed by
the architecture.

At each recursion step, the matrix P is split into P° and P!. In the case of P°, the base recursion step
will effectively remove a row from P°. In the case of P!, the ones recursion step will place one or two
CNOT gates. This will either remove a column from P! or, when splitting P! into P'? and P!, make sure
that P10 £ (. The recursion finishes when P is empty. Hence, the recursion converges and the algorithm
terminates.



124 Architecture-Aware Synthesis of Phase Polynomials for NISQ Devices

By construction, the matrix P describes the remaining phase gadgets to be synthesised (initially the
parities y in the support of f). This remains the case while synthesising because placing a CNOT updates
P with an elementary row addition as explained in Section[2] Moreover, a column is only removed from
P iff the phase gadget is trivial, i.e. it is of the form described by Equation ] Consequently, the phase
gates are placed at the right parity by Lemma[2.3] Lastly, the basis transform A is obtained as described in
the previous paragraph. Thus, the algorithm has synthesised the desired phase polynomial once it has
terminated.

Additionally, all CNOT gates that are added have the property that the control and target qubits
are neighbours in the connectivity graph G, thus satisfying the connectivity constraints imposed by the
architecture.

Hence, our algorithm terminates and when it does the desired phase polynomial has been synthesised
in an architecture-aware manner.

4 Results and discussion

To verify the quality of our algorithm, we generated random phase polynomials and synthesised them for
two different real quantum computers: Rigetti’s 16 qubit Aspen device and IBM’s 20 qubit Singapore
device ﬂ We compare the average CNOT count, CNOT depth and runtime (in seconds) of our proposed
algorithm with Staq [2] and t|ket) [15]. To the best of our knowledge, t|ket) and Staq are the only
compilers that can synthesise and route phase polynomials from an abstract representatio

For each architecture, we randomly generated phase polynomials until we had 20 distinct ones with 1,
5, 10, 50, 100, 500, and 1000 phase gadgets in each. The phase gadgets were sampled uniformly across
the parameter space. Figure [2| shows how each algorithm scales with respect to the number of phase
gadgets on the two quantum computer architectures. Each point in the chart is the average of the 20 phase
polynomials of that size.

We used pytket version 0.4.3ﬂ We described our phase polynomials in terms of t|ket)’s abstract
representation for phase gadgets (PauliExpBox) which t|ket) synthesises and then routes using swaps
[15]. While routing, we allowed t|ket) to also find an optimal qubit placement.

For Staq, we used version 1.0. We chose to use the Steiner tree option because this results in a much
lower CNOT count and depth. Unfortunately, we were unable to use this option in combination with
optimal qubit placement because this took too long for large phase polynomials (> 50 phase gadgets) Fﬂ

Note that both t|ket) and Staq are implemented in C++, while our algorithm was written in python
3.6, putting it at a significant runtime disadvantage. All experiments were run on a 2017 MacBook Pro
with an Intel Core i5 2.3 GHz and 8 GB 2133 MHz RAM. We used pytket to calculate the CNOT count
and CNOT depth of all circuits (including Staq).

We observe that for very small phase polynomials (1 phase gadget), t|ket) is the best method, but it
does not scale well in CNOT count and depth for larger, more realistic phase polynomials (see Figure [2).
This shows that naive synthesis combined with clever routing is not competitive with architecture-aware
synthesis methods.

Between five and 100 phase gadgets, Staq has the lowest average CNOT count. For larger phase

! Qubit-scaling and gadget-scaling results for synthetic architectures can be found in Appendix

2The source code to replicate our results, including the raw experimental data, can be found on
https://github.com/CQCL/architecture-aware-phasepoly-synth

JThis pytket version will be released for the general public soon

4Staq results with placement for small phase polynomials can be found in Figureof Appendix
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Figure 2: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect to the
number of phase gadgets on the 16 qubit Rigetti Aspen architecture and the 20 qubit IBMQ Singapore
device. The exact data can be found in Table |I| in Appendix g

polynomials, Staq’s CNOT count performance is equal to the proposed algorithm. However, the CNOT
depth is consistently better when synthesised with the proposed algorithm for phase polynomials with
more than 10 gadgets. This means that it is better at parallelising CNOT gates than Stagq.

With respect to runtime, we observe that for phase polynomials with 5-1000 phase gadgets, Staq is
the fastest synthesis algorithm. The proposed algorithm is faster at synthesising than t|ket) for phase
polynomials 50-1000 gadgets on both architectures. We do note that both Staq and the proposed algorithm
does not scale linearly with respect to the number of phase gadgets, thus it might not be faster than t|ket)
for phase polynomials with more phase gadgets than we have tested.

5 Conclusion and Future Work

In this paper, we introduced one of the first successful algorithms for architecture-aware synthesis of phase
polynomials. We showed that this algorithm performs comparable or better than current state-of-the-art
compilers for current NISQ devices without compromising the runtime of the algorithm.
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Although our algorithm is very promising, it should still be adjusted to better fit the specification of
the device that it is synthesising for. For example, the choice of placing the qubits affects the size of
the synthesised circuit because the connectivity graph of a quantum computer is generally not regular.
Similarly, the current algorithm improves CNOT depth, but it might do so in a way that increases the
crosstalk between parallel gates.

And, lastly, our algorithm can only synthesise phase polynomials. This means that circuits containing
rotations over X and Y need to be split into subcircuits to use our algorithm. It will be much more
beneficial if our algorithm can be extended to also synthesise the generalised version of phase gadgets,
called Pauli exponentials.
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A Subfunctions for the proposed synthesis algorithm

The subfunctions that we used in the pseudocode for our algorithm (Figure[I) are listed below.

function REDUCECOLUMNS(Columns)
for all ¢ € Columns do
if |{g € Prows where P, . = 1}| = 1 then
Qubit <— argmax ;¢ prows Fy.c
Circuit. AddGate(Rz(ZPhases|c|, Qubit))
Columns < Columns\ {c}
end if
end for
return Columns
end function
function PLACECNOT(Control, Target)
Circuit AddGate(CNOT (Control, Target))
P|[Control] < P[Control] + P|Target]
end function
function SPLITCOLSONROW(Columns, Row)
Cols0 < {c € Columns where Pgyy,. = 0}
Colsl <+ {c € Columns where Pgoy, = 1}
return Cols0, Cols1
end function

B Example synthesis

To get a better idea of the inner workings of the algorithm, we synthesise the following phase polynomial:
f(x) =0 (XZ @X3) + Otz()q) + OC3(X1 @x4) + 054(X1 D x2 @X4) + 065()61 @XQ) + 066()61 D xo @X3)
A=1
Note that this is the parameterised version of the example phase polynomial given by Amy et al.[1]]. The

connectivity graph we use for synthesis is a simple line architecture: G : x| <& x3 & x3 < Xx4.
This phase polynomial corresponds to the following ZX-diagram C and matrix representation P.

S = = O
SO O =
—_0 O —
—_— O = =
SO = =
O = =

Note that the matrix P has a column for each phase gadget in the diagram and each row has a 1 iff the
corresponding qubit is participating in the corresponding phase gadget (i.e. it has a green spider). We
have added a red vertical line to the ZX-diagram to represent the frontier. This indicates the progress of
our synthesis. The diagram on the left of the frontier has been synthesised, the diagram on the right of the
frontier contains the phase polynomial to be synthesised. Additionally, while synthesising, we will rewrite
the diagram C by adding gates to the frontier without changing the semantics of C.
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Preprocessing. The first step in the algorithm is to check if any columns can be removed from the
matrix. This is possible if the column contains exactly a single entry with the value 1. If this is the case,
the phase gadget is only acting on a single qubit and it is equivalent to a Z phase gate which we can move
to the other side of the frontier.

We describe this process as placing a phase gate.

Once the phase gate Rz (o) is placed on qubit x;, we have a phase gadget less, so we can remove the
corresponding column from the matrix P.

01 1 1 1
101 11
¢ = “ 11 000 1
01100

Main recursion. Now we can start the main recursion loop. We start with the base recursion step and
calculate all non-cutting vertices of our graph G, which are {x,x4}. We pick the row in P with either most
ones or most zeroes, which is x;. We split the row in to columns with zeroes P’ ~ {a; }, and columns
with ones P! ~ {03, 04, 0ts, &% }. We recurse using the base recursion step on P and the ones recursion
step on P!,

In the base recursion step on PY, we have subgraph G : x, < x3 < x4, with non-cutting vertices
{x2,x4}. We pick x, arbitrarily and split the matrix once more into P*° ~ @ and P! ~ {a; }. This time,
there are no columns with zeroes, so the base recursion step is trivial. Then, in the ones recursion step
on P%!, we pick a neighbour of x, with the most ones, this is x3, and we place a CNOT gate, Cy, x5, 10
front of the frontier. To keep the diagram equivalent to the previous diagrams, we add a second CNOT
gate, Cy, ,, after the frontier and commute it through the phase gadgets. By commuting the second CNOT
gate through the gadgets, each control qubit will participate in the phase gadget iff either the control or
the target qubit (exclusive) was participating before commuting the CNOT through, see Section [2|for a
detailed explanation. This is the same as adding the target row to the control row in the matrix P (modulo
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2). Observe that this also changes the columns in P!,

01111
00110
1 00 01
01100

S = O =

Note that placing the phase gate causes that P° = 0 so splitting the row X, and recursing on P*? ~ 0 and
P!~ 0 is trivial.

Now we are finished with the base recursion step on P° and continue with the ones recursion step on
P! and the full graph G. We had chosen x; earlier, now we pick a neighbour, x,, and place the CNOT gate,
Cy, x,- This allows us to place a phase gate, Rz(s), on qubit x,.

—_—0 O =
_ o = O
S = O =

I O &) / I:
X3 X2 B x: % X2 D2 X

: — @ = : = @ :
X4 X4 X4

Again, we split row x; into columns with zeroes P''* ~ {ay} and with ones P! ~ {03, a6 }. We use
the base recursion step on P10 with the subgraph G : x; < x3 < x4 and we use the ones recursion step on
plil

The subgraph G : x; < x3 < x4 has non-cutting vertices x, and x4. We pick x4 arbitrarily and split the
row into P19 ~ @ and P'"%! ~ {ay}. The base recursion step on P'% is trivial. In the ones recursion
step, we pick neighbour x3 and place two CNOT gates, Cy, ,,, and Cy, .,, because x3 only has zeroes in

e

O

//4/1 Lﬁﬂ ////g S

‘.

X4 L 2B

—_——= O =
— = O
S = O =

X2 Dx3 DXy I

O O
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~ R 101
010
= X2 x1©xz X2 X2 ~
¢ :I l @ / / 1 11
X2 D x3 O—T -~ X2 B X3 X3 X3 0 0 1
L x @ x34 +X4I Py X4 X4

Now we split P1%! on row x4 into P01 ~ {oy} and P!"O1!1 ~ @ and recurse as before, note that the
latter case in trivial.

In the base recursion step on P01 we are left with the subgraph G : x, < x3. We pick row x,
arbitrarily and split it into P1:0:1.9:0 ~ @ and P1O1-01 ~ Loy}, The base recursion step on P10:1:9:0 g trivial
and in the ones recursion step, we pick neighbour x3. Hence we can place a CNOT gate, C,, ,,, and a
phase gate, Rz(0t4) on qubit x3.

X1

C= = xl ®x2

O = = =
—

:((: 065
X2 Dz X4 xX; D x2 D xg
OTXZ Dx3d x4

This finishes the recursion on P'* and we can continue with the ones recursion step on P1'! ~ {03, 6 }.
Once more, we are back at the original graph G : x; < x; < x3 < x4. We previously picked row x; and
so we now pick neighbour x,. We place a CNOT gate, Cy, ,,, and split on row x; into pLLO {oa,06},
and P11~ 0.

O @)
X1 f X1
o o o
o o

C = ixl Pxz X2 x@x X2 X2 ~
3 D x3 X1 Dx2Dxg X4 XoBX3 X3 X3
0 - @
X2 Bx3PBxg ,_/ X4 X4
A A

\9

(¢

S = = O
— = e O

In the base recursion step on P11:0, we pick row x, and split P10 into P1.1:00 ~ @, and P11OT ~
{0, 06 }. The base recursion step on P11:00 is trivial.

In the ones recursion step on , we pick neighbour x3, and place a CNOT gate, C,, ,,, and a
phase gate, Rz(o3), on qubit x3.

pL1O1

—_—— O O
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We split P'1:%1 on row x,, resulting in P11910 ~ Lo}, and P11O11 ~ @ and we recurse as before.

In the base recursion on P11010 we are left with subgraph G : x3 < x4. We pick x3 and split on it
resulting in P11-0:1.00 ¢ and 110101 L}, The base recursion step is trivial.

Finally, in the ones recursion step on P'"10:1.9:1 "we pick neighbour x4 and place a CNOT gate, C,, ,
and a phase gate, Rz( %), on qubit xs.

X] f_\
:i @ol

zFBX3 X4 X1 Dx2Oxg X1 ©xg X1 DxpBxg |
X4 x2+x1-PX4 OTK[GPKzﬁ—X X2 DX3 D x4

Now we have synthesised every phase gadget in the support of f.

C=

Post-processing. What remains is synthesising the basis transform A = I. At the frontier, the basis
transform of the qubits is equal to the matrix P/,

101 1
, o101
P=10 0 0 1

0010

as can be seen in the parity annotation of each qubit of the final circuit. This transform needs to be undone
before the basis transform A can be applied.

As explained at the end of Section[3] this is transformation is undone by the trailing CNOTSs on the right
of the frontier. I.e. the CNOTS on the right of the frontier apply the basis transform P'~!. Although these
CNOTs are already mapped, they could be optimised using an architecture-aware CNOT circuit synthesis
technique, such as Steiner-Gauss. In case the matrix A # I, we can calculate the full transformation A’ by
undoing the existing linear transformation and then applying the desired transformation: A’ =A - P'~!.

C Additional results

This appendix contains additional figures and tables to show the performance of the proposed algorithm
with respect to the existing algorithms.

To show the scaling of our algorithm with respect the number of qubits, the number of phase gadgets
and the density of the device connectivity graph, we have run several experiments, generating 20 random
phase polynomials per experimental setting. Since Staq only supports a small selection of quantum
computer architectures, we compare the proposed algorithm against an in-house implementation of
Steiner-GraySynth for all synthetic architectures.

Figure [3|shows how our algorithm and the two baselines perform on a line, square and fully connected
connectivity of various sizes given a phase polynomial with 100 phase gadgets. Similarly, Figure [
shows how our algorithm and the two baselines perform on phase polynomials of various sizes given a 36
qubit line, square and unconstrained connectivity graph. In Figure[5] we show that, if Staq is used with
qubit placement optimisation, it can synthesise slightly smaller circuits than without qubit placement.
However, this comes at an extreme runtime cost. The runtime of this option was long enough that it was
not feasible for to run experiments with more than 50 and 100 gadgets (IBMQ Singapore and Rigetti
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Aspen, respectively) because Staq would take more than two hours to synthesise a single circuit with 500
gadgets on Rigetti Aspen.

Lastly, the exact data that was visualised in each figure, Figure and[3] is given in Table
and ] respectively.
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Figure 3: The influence of the number of qubits on the CNOT count, CNOT depth and runtime for
architectures with different regular structures: line, square grid and fully connected. The exact data can be
found in Table 2]
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Figure 4: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect to the
number of phase gadgets on a 36 qubit line, square grid, and unconstrained architecture. The exact data

can be found in Table E}
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Figure 5: Plots showing the scaling of the CNOT count, CNOT depth and runtime with respect to the
number of phase gadgets on the 16 qubit Rigetti Aspen architecture and the 20 qubit IBMQ Singapore
device. The exact data can be found in TableEl
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t|ket) Staq Proposed
#R, count depth time count depth time count depth time
1 13.80 13.80  0.004s 31.10 2370  0.017s 32.00 28.30 0.035s
5 209.55 14295  0.020s | 169.85 9470  0.018s | 229.30 109.70  0.066s

10 433.25 302.65 0.038s | 264.80 136.45 0.021s | 355.80 14395  0.073s
50 210935 162245 0.164s | 820.80  409.00 0.044s | 961.05 331.90  0.110s
100 3917.60  3090.60 0.306s | 1466.85  728.80 0.074s | 1611.90 522.05  0.151s
500 | 17416.70 14274.65 1.506s | 5928.60 3293.90 0.345s | 6081.30  2082.25 0.611s
1000 | 32357.05 26896.25 2.851s | 11043.40 6500.05 0.807s | 11238.30 4018.20  1.431s

(a) Rigetti 16Q Aspen

t|ket) Staq Proposed
#R; count depth time count depth time count depth time
1 25.20 2520  0.007s 69.60 62.75 0.014s | 40.60 35.70 0.068s
5 296.70 210.60  0.032s | 218.60 129.15 0.021s | 301.60 139.75  0.140s

10 604.95 417.90  0.057s | 376.50 208.60 0.025s | 475.50 191.75  0.151s
50 2499.30  1897.70  0.219s | 1073.25  492.40 0.054s | 1226.00 39520  0.206s
100 4969.60  3863.90 0.431s | 1834.75 819.65 0.091s | 2035.10 607.95  0.265s
500 | 22710.00 18205.90 2.033s | 7498.85 3440.55 0.437s | 8054.35 229345 0.893s
1000 | 43538.10 35533.30 3.983s | 14309.70 6867.05 1.031s | 14908.55 4422.70  2.054s

(b) IBMQ Singapore

Table 1: The average number of CNOT, CNOT depth and runtime for 20 circuits for synthesising phase
polynomials with various sizes using t|ket), Staq (without qubit placement) and our proposed algorithm
on Rigetti Aspen (Table Ta) and IBMQ Singapore (Table Tb). This data was visualised in Figure 2}
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t|ket) Nash Proposed
Qubits count depth time count depth time count depth time
9 144430 114275 0.117s | 836.45 42275 0.186s 575.40 318.65 0.038s
16 4565.50  3846.85 0.362s | 2480.10 62995 1.121s | 1818.75 499.85 0.168s
25 9240.80  8004.30  0.905s | 4724.60 711.55 4.269s | 3673.35 627.50 0.609s
36 14761.20 13074.70 1.863s | 7866.50 788.75 13.198s | 6211.55 739.30 2.072s
49 24291.45 21651.35 3.867s | 11920.00 886.60 36.099s | 9592.70 875.40 6.484s
64 27632.10 24473.65 5.462s | 16960.45 97530 82.994s | 13750.00 1017.30  17.706s
(a) Line
t|ket) Nash Proposed

Qubits count depth time count depth time count depth time

9 1025.65 87475  0.120s | 472.15 316.10 0.201s | 459.35 283.85 0.044s
16 2986.20  2372.30 0.458s | 1222.50 530.50  1.342s | 1299.00  505.95 0.236s
25 5514.35 432740 0.939s | 2191.35 67730 4.479s | 2497.65  672.35 0.693s
36 8842.65 6993.00 2.227s | 3409.85 824.35 13.679s | 3982.25  815.60 2.475s
49 13171.00 10457.15 4.432s | 4948.05 984.55 34.106s | 6135.10 1016.65  6.843s
64 18259.70  14393.05 7.977s | 6881.55 117430 70.358s | 8615.05 1261.85 16.918s

(b) Square
t|ket) Nash Proposed

Qubits | count depth time count depth time coun