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Preface

This volume of EPTCS contains the proceedings of the Seventh Workshop on Proof Exchange for Theo-
rem Proving (PxTP 2021), held on 11 July 2021 as part of the CADE-28 conference, originally planned
in Pittsburg, USA, but finally hold in cyberspace.

The PxTP workshop series brings together researchers working on various aspects of communication,
integration, and cooperation between reasoning systems and formalisms, with a special focus on proofs.

The progress in computer-aided reasoning, both automated and interactive, during the past decades,
made it possible to build deduction tools that are increasingly more applicable to a wider range of prob-
lems and are able to tackle larger problems progressively faster. In recent years, cooperation between
such tools in larger systems has demonstrated the potential to reduce the amount of manual intervention.

Cooperation between reasoning systems relies on availability of theoretical formalisms and practical
tools to exchange problems, proofs, and models. The PxTP workshop series strives to encourage such
cooperation by inviting contributions on all aspects of cooperation between reasoning tools, whether
automatic or interactive, including the following topics:

* applications that integrate reasoning tools (ideally with certification of the result);

* interoperability of reasoning systems;

* translations between logics, proof systems, models;

» distribution of proof obligations among heterogeneous reasoning tools;

e algorithms and tools for checking and importing (replaying, reconstructing) proofs;

 proposed formats for expressing problems and solutions for different classes of logic solvers (SAT,
SMT, QBF, first-order logic, higher-order logic, typed logic, rewriting, etc.);

* metalanguages, logical frameworks, communication methods, standards, protocols, and APIs re-
lated to problems, proofs, and models;

* comparison, refactoring, transformation, migration, compression and optimization of proofs;

* data structures and algorithms for improved proof production in solvers (e.g. efficient proof repre-
sentations);

* (universal) libraries, corpora and benchmarks of proofs and theories;

* alignment of diverse logics, concepts and theories across systems and libraries;

* engineering aspects of proofs (e.g. granularity, flexiformality, persistence over time);
* proof certificates;

e proof checking;

* mining of (mathematical) information from proofs (e.g. quantifier instantiations, unsat cores, in-
terpolants,. .. );

* reverse engineering and understanding of formal proofs;
* universality of proofs (i.e. interoperability of proofs between different proof calculi);
* origins and kinds of proofs (e.g. (in)formal, automatically generated, interactive,...);

* Hilbert’s 24th Problem (i.e. what makes a proof better than another?);
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* social aspects (e.g. community-wide initiatives related to proofs, cooperation between communi-
ties, the future of (formal) proofs);

* applications relying on importing proofs from automatic theorem provers, such as certified static
analysis, proof-carrying code, or certified compilation;

* application-oriented proof theory;

* practical experiences, case studies, feasibility studies;

Previous editions of the workshop took place in Wroclaw (2011), Manchester (2012), Lake Placid
(2013), Berlin (2015), Brasilia (2017), and Natal (2019).

This edition of the workshop received submissions of three regular papers and three extended ab-
stracts. All submissions were evaluated by at least three anonymous reviewers. Two full papers and
three extended abstracts were accepted in the post-proceedings.

The program committee had the following members: Chantal Keller (co-chair, LRI, Université Paris-
Saclay), Mathias Fleury (co-chair, JKU Linz), Haniel Barbosa (Universidade Federal de Minas Gerai,
Denis Cousineau (Mitsubishi Electric R&D Centre Europe), Stefania Dumbrava (ENSIIE, Télécom Sud-
Paris), Katalin Fazekas (TU Wien), Predrag Jani¢i¢ (Univerzitet u Beogradu), Jens Otten (University of
Oslo), Aina Niemetz (Stanford University), Giselle Reis (Carnegie Mellon University), Geoff Sutcliffe
(University of Miami), Francois Thiré (Nomadic Labs), Sophie Tourret (Inria), and Josef Urban (Czech
Technical University in Prague).

We would like to thank all authors for their submissions and all members of the program committee
for the time and energy they spent to diligently ensure that accepted papers were of high quality. We also
thank Easychair for making it easy to chair the reviewing process. Furthermore, we are thankful to the
CADE-28 organizers who organized the conference in these challenging times.

We had the honor to welcome two invited speakers: Maria Paola Bonacina from the Universita degli
Studi di Verona gave a talk entitled Proof Generation in CDSAT and Giles Reger from the University of
Manchester, presented a talk entitled Reasoning in many logics with Vampire: Everything’s CNF in the
end. The presentations from the invited speakers and the presentations from the accepted papers raised
numerous, interesting, and fruitful discussions. We thank all the participants of the workshop.

The organization of this edition of PxTP stood on the shoulders of previous editions, and we are
grateful to the chairs of previous editions for all the resources and infrastructure that they made available
to us.

July 11, 2021

Chantal Keller and Mathias Fleury






Proof Generation in CDSAT

Maria Paola Bonacina
Dipartimento di Informatica, Universita degli Studi di Verona, Verona, Italy

mariapaola.bonacina@univr.it

Proofs of unsatisfiability of a negated conjecture, or, equivalently, proofs of validity of the original
conjecture, are an essential output of automated reasoning methods. The transformation, exchange, and
standardization of proofs is a key factor for the interoperability of different automated reasoning systems.
In theorem proving proof reconstruction is the task of extracting a proof from the final state of a derivation
after generating the empty clause. While for several theorem proving methods and theorem provers it is
a standard task, it is never trivial. For example, in parallel theorem proving with distributed search (see
[6] for a recent survey), multiple parallel processes perform inferences and search for a proof. A parallel
theorem proving method has distributed proof reconstruction, if the process that generates the empty
clause can reconstruct the proof from the final state of its database, even if all processes contributed to
the proof [4].

In propositional satisfiability (SAT) solving, the conflict-driven clause learning (CDCL) procedure
generates proofs by resolution, because it uses resolution to explain conflicts [28, 26]. SAT solvers apply
pre-processing steps and simplification techniques that also need to be accounted for in proofs. Further-
more, proofs generated by SAT solvers are so huge that their definition, generation, and manipulation,
involving various proof formats, is an important research topic (e.g., [14]).

Satisfiability modulo theories (SMT) solving represents a middle ground between first-order theorem
proving and SAT solving. Initially, model generation was emphasized over proof generation in SMT,
because the focus was on fragments of first-order theories where satisfiability is decidable, in contrast
with first-order logic where satisfiability is not even semidecidable. Over time, SMT solvers have been
applied more and more to unsatisfiable inputs, including inputs with quantifiers that may fall outside
decidable fragments. SMT solvers have become more similar to theorem provers, and proof generation
is crucial also in SMT. Since most SMT solvers are built on top of the CDCL procedure, their proofs are
proofs by resolution (with the same caveat as above) with proofs of theory lemmas plugged in as leaves
or black-box sub-proofs [17, 2,12, 23, 1].

CDSAT (Conflict-Driven SATisfiability) is a paradigm for SMT that innovates SMT solving in sev-
eral ways [8, 9, 10, 11]. To begin with, CDSAT solves SATisfiability problems Modulo theories and
Assignments (SMA), which means that the input problem may contain assignments to first-order terms
(e.g., x < 3). The solver has to determine whether there exists a model that satisfies the input formula
and also endorses the input first-order assignments. A model endorses an assignment if it interprets
identically left hand side and right hand side of the assignment. For uniformity, CDSAT views also for-
mule as assignments to Boolean terms (e.g., (A V B) < true), and seeks a model that endorses all input
assignments. There is a subtle technical difference between, say, x < 3 and (x ~ 3) < true, since in the
latter 3 is a constant symbol of the input language, whereas in the former 3 is a value, whose denotation
requires a theory extension. The generalization of SMT to SMA is relevant to approaching optimization
problems by solving iteratively SMA problems, where input first-order assignments are used to exclude
sub-optimal solutions and induce a convergence towards an optimal one [16].

As the name says, CDSAT is a conflict-driven method. In general, a procedure is conflict-driven if it
proposes a candidate model represented by a series of assignments, and performs non-trivial inferences
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2 Proof Generation in CDSAT

only to explain a conflict between the current candidate model and the formula to be satisfied. Since in
CDSAT also formula are assignments, the separation between candidate model and formula disappears.
The state of the computation is simply a sequence of assignments I', called a trail, which also contains
the input assignments. A conflict is a subset of I' that is unsatisfiable.

CDSAT is designed since the start for reasoning in a union of theories, with propositional logic as one
of the theories. CDSAT lifts the conflict-driven style of CDCL from propositional logic to conflict-driven
reasoning in a union of theories; and it reduces to CDCL if propositional logic is the sole theory. Prior
to CDSAT, MCSAT (Model-Constructing SATisfiability) [15, 20, 27, 19, 3, 18] showed how to integrate
CDCL with a conflict-driven theory satisfiability procedure (e.g., [22, 21, 13] and see [5] for a survey
with more references). CDSAT generalizes MCSAT to generic unions of disjoint theories, meaning that
their signatures do not share symbols other than equality on shared sorts. CDSAT resembles MCSAT, if
there are only propositional logic and another theory with a conflict-driven satisfiability procedure.

For an input problem to be satisfiable in a union of theories, the theories need to agree on which
shared terms are equal and on the cardinalities of shared sorts. Beginning with the pioneering work of
Nelson and Oppen [25, 24], most approaches to reasoning in a union of theories are defined as combi-
nation schemes that combine theory satisfiability procedures (see [7] for a survey with more references).
These schemes separate the original problem into sub-problems, one per theory in the union. The com-
pleteness of the combination scheme rests on a combination lemma that states which conditions the
theories need to satisfy in order to agree on the cardinalities of shared sorts. The satisfiability of the orig-
inal input in the union of theories is reduced to the satisfiability of every sub-problem in the respective
theory, where every sub-problem is conjoined with an arrangement. An arrangement is a conjunction
of equalities and disequalities between shared variables, or shared constants, depending on whether free
variables or constants are used to represent shared terms. In a non-deterministic description the arrange-
ment can be guessed. In practice, it is computed by the theory satisfiability procedures. The computation
of the arrangement is the only activity where the theory satisfiability procedures cooperate, typically by
exchanging equalities between shared variables.

In contrast with this traditional setting, CDSAT is defined as a transition system that orchestrates
theory-specific inference systems, called theory modules. An inference system is a set of inference rules,
and a theory module is an abstraction of a satisfiability procedure. Every module has its view of the trail,
called theory view, which contains whatever the module can understand. A theory module can expand
the trail with an assignment that is a decision, encapsulated in the decide transition rule of CDSAT, or
the result of a theory inference, encapsulated in the deduce transition rule of CDSAT. Theory inferences
are used for propagations, and conflict detection and explanation in the respective theory. The latter
applies until the theory conflict surfaces on the trail as a Boolean conflict (e.g., L < true and —L < true,
or, equivalently, L < true and L < false). Then the conflict-solving transition rules of CDSAT come
into play. Since the Boolean conflict may descend from first-order assignments, the conflict-solving
transition rules of CDSAT are designed to handle both Boolean and first-order assignments. It does not
matter whether a theory satisfiability procedure is conflict-driven, because CDSAT is conflict-driven for
all theories. At the very least, a theory satisfiability procedure can be abstracted into a black-box theory
module, with an inference rule that detects unsatisfiability by invoking the procedure.

The completeness of CDSAT rests mainly on properties of the theory modules. Every theory module
is required to be complete, meaning that it can expand its view of the trail if it is not satisfied by a model
of its theory. One of the theories in the union needs to be the leading theory. A leading theory is aware
of all the sorts in the union of theories, and its theory module is aware of all the constraints that the
theories may have on the cardinalities of shared sorts. While for the leading theory module it suffices to
be complete, any other module needs to be leading-theory-complete, meaning that it can expand its view
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of the trail if it is not satisfied by a model of its theory that concurs with a model of the leading theory on
cardinalities of shared sorts and equality of shared terms.

This description shows that while the traditional combination schemes combine decision procedures
as black-boxes, CDSAT provides a tighter form of integration at the inference level. This has conse-
quences on proof generation. Since the conflict-driven reasoning happens directly in the union of the
theories and not only in propositional logic, resolution does not have a dominant role. CDSAT proofs
can be rendered as resolution proofs, but this is not a necessary choice. Since the theory satisfiability
procedures are not combined as black-boxes, theory sub-proofs are not necessarily black-boxes either.
Since CDSAT solves SMA problems, also first-order assignments may appear in proofs. The theory
inferences may introduce new (i.e., non-input) terms, in order to explain conflicts. Thus, such new terms
may appear in proofs.

The powerful abstractions that characterize CDSAT leads to proof generation approaches also based
on abstraction. The CDSAT transition system can be made proof-carrying, by equipping the transition
rules with the capability to generate abstract proof terms. During proof reconstruction these proof terms
can be translated into different proof formats, including resolution proofs. The resulting proofs can be
dispatched to proof checkers or proof assistants, or otherwise manipulated and integrated. Alternatively,
CDSAT can adopt the LCF style for proofs, which avoids building proof objects in memory altogether.
In LCF style, the prover or solver (e.g., a CDSAT based solver) is built on top of a trusted kernel of
primitive operations. When the reasoner detects unsatisfiability, the refutation is correct by construction,
because otherwise a type error would arise.

Acknowledgements The author thanks Stéphane Graham-Lengrand for their discussions.
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A Framework for Proof-carrying Logical Transformations

Quentin Garchery
Université Paris-Saclay, CNRS, Inria, LMF, 91405, Orsay, France

In various provers and deductive verification tools, logical transformations are used extensively in
order to reduce a proof task into a number of simpler tasks. Logical transformations are often part
of the trusted base of such tools. In this paper, we develop a framework to improve confidence
in their results. We follow a modular and skeptical approach: transformations are instrumented
independently of each other and produce certificates that are checked by a third-party tool. Logical
transformations are considered in a higher-order logic, with type polymorphism and built-in theories
such as equality and integer arithmetic. We develop a language of proof certificates for them and use
it to implement the full chain of certificate generation and certificate verification.

1 Introduction

General Context and Motivation. Verifying a program is meant to improve its soundness guarantees
and relies on the trust towards the verification tool. Given how difficult it can be to verify relatively
simple programs, most tools try to simplify this process and to make it as automatized as possible, which
can drastically extend their trusted code base.

Consider deductive program verification, where the program to verify is annotated, and, in particular,
given a specification. In this setting, the code is analyzed against its specification thus generating proof
tasks, logical statements upon which depends the program correctness. To discharge a proof task, one can
first apply a logical transformation which reduces it to a number of new proof tasks which are hopefully
easier to discharge. Transformations are powerful tools that can, for example, be applied to translate a
task into a prover’s logic before calling it.

The main objective of this article is to improve trust in those logical transformations. This work
is decisive because logical transformations are general and can be used in many different settings. We
apply our method to the deductive program verification tool Why3 [6], which makes extensive use of
logical transformations. In fact, they are at the core of its interactive theorem proving feature and are
necessary to be able to encode proof tasks into the logic of one of the dozens of third-party automatic
theorem provers available inside Why3. The implementation of the transformations adds up to a total of
more than 17000 lines of OCaml code. This code being in the trusted Why3 code base, it represents an
interesting case study.

Example 1. Suppose that we have a proof task where we have to prove that p (y *y) holds for any
integer y of the form 'y = 2xx+ 1 and any integer predicate p that satisfies the hypothesis H stating
that Vi : int. p (4xi+ 1). Finding how to instantiate the hypothesis H is difficult or even impossible
for some automatic theorem provers so we cannot automatically discharge this task. The transformation
instantiate, defined in Why3, simply instantiates an hypothesis and when called with arguments H
and x xx + x on the given task, produces the same task but with the added hypothesis that states that
p (4% (xxx+x)+1). Provers won’t have to instantiate the hypothesis H to discharge this new task.
In fact, this task can now be discharged by theorem provers capable of handling arithmetic goals on
condition of translating it into the logic of the prover in question. This translation is also being done
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6 Proof-carrying Logical Transformations

with the help of transformations. The entire process described in this example is to be trusted to ensure
correctness of the initial program.

Contributions and Overview. In this article, we describe a practical framework to validate logical
transformations. In order to define what it means for a transformation to be correct, the logical setting
of proof tasks is detailed in Section 2. We follow a skeptical approach [4]: certificates, defined in
Section 3, are generated every time a transformation is applied and are checked independently at a later
time. Contrary to the autarkic approach, used for example for some automatic theorem provers [28],
which would consist here in verifying directly the transformations, the skeptical approach has the benefit
of not fixing the implementation of the transformations. Our work is based on certificates with holes, a
notion that is, to our knowledge, new in the setting of the skeptical approach. This allows for modular
development, where certificates can be built incrementally and transformations can be composed and
defined independently. We extend our framework with some key interpreted theories in Section 4 and
show how to do so for any other interpreted theory along the way. The checkers for our certificates
can also be defined independently, as it is done in Section 5. In fact, we designed two checkers and
one of them is based on Lambdapi/Dedukti [3], an off-the-shelf proof assistant. This has also led us to
develop a translation procedure for proof tasks into the AIT-Calculus modulo rewriting. This approach,
while applicable to logical transformations in general, has been applied to the program verification tool
Why3 for a number of its transformations including transformations dealing specifically with higher-
order logic. We conclude this article by evaluating this application to Why3 in Section 6. The source
code for the whole work described in this article is available in the Why3 repository [21].

2 Logical Setting

We present the logical setting used throughout this article. The goal here is to define logical transforma-
tions and the proof tasks they are applied to.

2.1 Types and Terms

Proof tasks are formed from typed terms and those terms are meant to designate both the terms from the
program and the formulas stating properties about them. We use the Hindley-Milner type system [29]
except that our terms are explicitly quantified over types. Names are taken from an infinite set of available
identifiers which is designated by ident.

Types are described by a type signature 1, a set of pairs of the form ‘1 : n” composed of an ident called
type symbol and an integer representing its arity. Sets are denoted by separating their elements with
commas. Note that according to the following grammar, type symbols are always completely applied.

type = « type variable
|  prop type of formulas
| type~ type arrow type
| i(type,...,type) type symbol application

Terms have polymorphic types and new terms can be built by quantifying over terms of any type.
Quantification over type variables is explicit and restricted to only be in the prenex form. Note that the
application uses the Curry notation, i.e., a function term is applied to a single argument term at a time.
The application is left-associative and the type arrow ~ is right-associative.



Quentin Garchery

termp,py termy,ono
[a. termyy, type quantifier
termypne = X variable
| T true formula
| L false formula
| = termypn, negation
| termyone Op termyon, logical binary operator
| termyone termy,on, application
| Ax:type. termyyn, anonymous function
| Jx:type. termyon, existential quantifier
| Vx:type. termypn, universal quantifier
op n= A conjonction
Y disjunction
| = implication
| < equivalence

The (term) substitution of variable x by term u in term ¢ is written ¢[x — u] and t[& — 7] is the (type)
substitution of type variable o by type 7 in term f. A signature ¥ is a set of pairs of the form ‘x: 7’
composed of a variable and its type; this type should be understood as quantified over all of its type
variables.

Definition 2 (Typing). We write I | LIt : T when the term t has no free type variables and has type T in
type signature I and signature ¥.. We omit I when it is clear from the context.

The complete set of rules defining this predicate is given in Appendix A. Remark that, in the case
where ¢ is an element of term,,,,, then the predicate ¥ I- ¢ : T implies that ¢ has no type variables: ¢ is
monomorphic.

2.2 Proof Tasks

Proof tasks represent sequents in higher-order logic, they are formed from two sets of premises: a set of
hypotheses and a set of goals. A premise is a pair of the form ‘P :#’ composed of an ident and a term,,,;,
representing a formula.

Definition 3 (Proof Task). Let I be a type signature, ¥ be a signature, I" and A be sets of premises. Proof
tasks are denoted by I | £ | I' = A which represents the sequent where goals, given by A, and hypotheses,
given by T, are written in the signature X with types in 1. We allow ourselves to omit I and, possibly, ¥,
when they are clear from the context.

Atask T:=1|X|I'F Ais said to be well-typed when every premise P : t from I" or A is such that
I | Ikt : prop. The validity of a task is only defined when it is well-typed. In this case, the task T is
said to be valid when every model of /, ¥ and every formula in I" is also a model of some formula in A.
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Example 4. Consider the task I | £ | '+ A with

I:= color:0, set: 1

Y := red : color(), green : color(), blue : color(),
empty : set(Q), add : o ~ set(®) ~ set(Q),
mem : Q. ~ set(Q) ~> prop

I''= H :Na.Vx:a.Vy: a.Vs:set(a). mem x s = mem x (add y s),
Hy :Tlo. Vx: o Vs : set(o). mem x (add x s)

A:= G:mem green (add red (add green empty))

This task defines the types color and set with associated symbols red, green, blue, empty, add and
mem. The type symbol declaration set : 1 defines a type symbol set of arity 1 for polymorphic sets. The
signature declaration add : @ ~ set(o) ~ set(a) allows us to declare a function that can be used to add
an element of any type to a set containing elements of the same type. This task also defines hypotheses
such that the predicate mem holds if its first argument is contained in the second argument. For instance,
the hypothesis H, is applicable to sets of any type, and states that every set contains the element that has
just been added to it. With the given goal, this task is valid.

2.3 Logical Transformations

A logical transformation is a function that takes a task as input and returns a list of tasks. Lists are
denoted by separating their elements with semicolons. We say that a transformation is applied on an
initial task and returns resulting tasks. A transformation can fail, in this case the whole process is
terminated and we do not have to prove the correctness of the application. If a transformation succeeds,
we want the verification to be based on the validity of the resulting tasks and to be able to forget about
the initial task. This is why we say that a transformation application is correct when the validity of each
resulting task implies the validity of the initial task. In Example 1, the transformation instantiate
returns the initial task modified by adding the instantiated hypothesis to it. When a transformation
application is correct, it only remains to prove that this resulting task is valid in order to make sure that
the initial task is also valid. This is our approach: we certify transformation applications, thus relating
initial and resulting tasks.

3 Certificates

To verify a transformation, we instrument it to produce a certificate and check each application of the
transformation thanks to the corresponding certificate. We first define our own certificate format with
the goal of making the verification of those certificates as easy as possible. We show how to improve
modularity and ease of use in a second time in Section 5.1.

3.1 Syntax

An excerpt of the recursive definition of certificates is given in Figure 1. More certificates will be detailed
on their own in Section 4 and the others won’t be presented in this article for brevity. We call these
certificates the kernel certificates. To make certificates easier to check, we design them in such a way
that they are very precise. For example, the Boolean values indicate whether the premise is an hypothesis
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cert = KHole(task)

KTrivial(bool, ident)

KAssert(ident, term,,qy, cert, cert)

KSplit(bool, termyene, termyen,, ident, cert, cert)
KDestruct(bool, termygp, , termy,,, , ident, ident, ident, cert)
KlntroQuant(bool, type, termy,n,, ident, ident, cert)
KlInstQuant(bool, type, termy,,n,, ident, ident, termyy,p, , cert)
KlntroType(termy,y, ident, ident, cert)

KlnstType(term,,;y, ident, ident, type, cert)

Figure 1: Definition of Kernel Certificates (excerpt)

or a goal. Moreover, the kernel certificates have voluntarily been kept as elementary as possible and this
makes it easier to trust them. In particular, this approach makes it easier to check every case (about
20 of them) when proving by induction a property of correctness of kernel certificates, as it is done in
paragraph 5.3.3.

The certificates can contain tasks and each KHole node carries one of those tasks. When c is a
certificate, the leaves of ¢ designate the list of all tasks obtained by collecting them (in the KHole nodes)
when doing an in-order traversal of the certificate tree. The leaves of a certificate are meant to be, in
the end, the resulting tasks of the transformation it is certifying. A certificate with holes associated to a
transformation application can be checked without needing to wait for the proof of the returned tasks to
fill its holes, and this is what makes our certificates original. This design choice has been guided by our
will for modularity: we want to progressively certify logical transformations.

3.2 Semantics

The semantics of certificates is defined by a binary predicate T | ¢, linking the initial task 7 to a certifi-
cate c¢. Informally, the predicate T | c holds if ¢ represents a proof of the fact that the validity of the leaves
of ¢ implies the validity of 7. In Figure 2, we give the rules that cover the certificates from Figure 1. In
this sense, the rules are only an excerpt of the complete set of rules (given in Appendix B) defining the
predicate T | c. Notice that some of the certificates have dual rules for the hypotheses and the goals.

The certificate KHole is used to validate transformations that have resulting tasks and can be used
directly for the identity transformation. The certificate KTrivial is used to validate a transformation appli-
cation that has no resulting task when the initial task contains a trivial premise. The KAssert certificate
allows to introduce a cut on a polymorphic formula. Remember that the side condition implies that this
formula cannot have free type variables. The certificates KSplit and KDestruct are used to validate a
transformation application that first splits a premise H. Certificate KIntroQuant is used to introduce the
variable of a quantified premise. The certificate KlnstQuant is used to instantiate a quantified premise
with a term and the side condition ensures that this term is monomorphic. The certificates KintroType
and KlnstType are used to deal with type-quantified premises.

Example S. Let T and T,y denote, respectively, the initial and the resulting task from Example 1, and
let H;,i be the name of the new instantiated hypothesis. Suppose that symbol plus, symbol mult and type
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I'-A ] KHole(I' - A) I'H: 1L+ A]KTrivial(false,H) I'A,G: T | KTrivial(true,G)

LITHEAP:t]c Y|ILP:tEAl Y-t prop
Y| THA|KAssert(Pt,cy,c2)

IH:t1 FA| ¢ I''H:hFEAlc I'EFAG:t ] c I'FAG:th |l
I''H:t1 VvVt }—AiKSp|it(false,t1,tg,H,Cl,cz) Fl—A,G:l‘l/\l‘zJ,KSp“t(l‘rue,tl,l‘z,G,Cl,CZ)

IHy :t1,H,:thFAlc
[ H :1y At = A ] KDestruct(false,ty,t,,H,Hy,H;,c)

I'FAG:t1,Gy:th |
I'EFAG: 61V KDestruct(true,tl,tg,G, G1,Ga,c)

Yy:t|[VH:tlx—y|FAlc yis fresh w.rt. X', A ¢
Y|ILH:3x: 1.t - Al KintroQuant(false,t,Ax: t.t,H,y,c)

Ly:T|THAG: tlx—y|lc yis fresh w.rt. 2,7, A, ¢
Y|THAG:Vx: 1.t ] KintroQuant(true,7,Ax: 1. t,G,y,c)

LITVH :Vx:t. t,Hy tx—ul-Alc Ylru:t
Y| H, :Vx: 1.t Al KinstQuant(false,T,Ax: 7. t,H;,Hy,u,c)

LITHFAG :3x:1.t,Gy:tlx—ullec  ZlFu:t
L|TFA G :3x: 1.t | KinstQuant(true,7,Ax: 7. t,G1,Ga,u,c)

Li:0|X|THAG: tlao—1]]c 11
I|X|THAG: o t | KintroType(Ile. £,G, 1,c¢)

I H :Ta.t,Hy :tfoo— 1] Al ¢ 7 has no type variables
[ H, :Oa.t+= A | KinstType(Ilex. t,Hy, Hy, T, ¢)

Figure 2: Certificate Rules (excerpt)

symbol int are defined in the signature and type signature, then we have T | ¢ with

¢ := KlInstQuant(false,int, Ai : int. p (plus (mult 4i) 1),
H,Hipg,int, plus (mult x x) x, KHole(Tus))

Proposition 6. If T is well-typed then every task in a derivation T | c is also well-typed.
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We also assume that transformations are always applied to well-typed initial tasks and produce well-
typed resulting tasks (or they fail), so that every task we consider from now on is implicitly assumed to
be well-typed.

Theorem 7 (Certificate Correctness). If T | c then the validity of each leaf of ¢ implies the validity of T.

Proof. By inductionon T | c. O

3.3 Design Choices

The certificate rules are taken from the sequent calculus LK rules with modifications for two reasons.
First, we want the production of certificates to be more natural. This is why the name KSplit is well-
suited for a transformation application that, from the initial task I';H : t; V1, - A, returns I'H : 1 = A
and I'H : r = A. Indeed, it would be confusing to say that, from this initial task, the transformation
does the left introduction of the disjunction. Second, we want to be able to implement a checker of
certificates following these rules. To this end, instead of asking the checkers to find the names that were
chosen by the transformation, we register these names in the certificates. For example, the KintroQuant
certificate mentions the name y of the new fresh variable that is being introduced and this is reflected in
the corresponding rules.

3.4 Certifying Transformations and Composition

Definition 8 (Certifying transformation). A certifying transformation is a transformation that, applied
on an initial task, produces, on top of a list L of resulting tasks, a certificate c such that L is the leaves
of c. We say that we instrumented the transformation to produce a certificate.

Composing transformations is useful to define a transformation from simpler ones. To compose
certifying transformations, one also needs to be able to substitute certificates, that is, to replace a KHole in
one certificate with another certificate. This composition allows for a modular development of certifying
transformations.

4 Adding Support for Interpreted Theories

For now, our formalism implicitly makes the assumption that every symbol is uninterpreted: they are
taken as fresh new symbols for every task. Still, we want some symbols (such as equality or arithmetic
operations) to have a fixed interpretation. Moreover, some transformations, like induction, use specific
theories and we need to add certificate steps to be able to certify them.

To make sure that the interpretation is unique, we should not quantify over the interpreted symbols
at the level of the tasks. Interpreted symbols are not part of the signature or type signature of tasks. This
ensures that the interpretation stays the same for the initial task and for the resulting tasks and this is
enough to handle transformations on tasks that contain interpreted symbols. To handle transformations
that deal with the interpreted symbols and use their properties, we extend our certificate format and add
rules corresponding to their properties.
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4.1 Polymorphic Equality

The polymorphic equality is interpreted. To obtain the usual properties of the equality, we add the
certificates:

KEqRefl(termyon,, ident)

KRewrite(bool, termyone , terMyyono, terMyon,, ident, ident, cert)

and three kernel rules:

I'H:a=b,P:tb|FAlc
L|THFAG:x=x|KEqRefl(x,G) I'H:a=>b,P:tla]- Al KRewrite(false,a,b,t,P,H,c)

I'H:a=bFAP:tb]|c
I'H:a=bt A P:tla] | KRewrite(true,a,b,t,P,H,c)

When 7 is a function of the form Ax. u, we write ¢[u] for the substitution u[x — u']. These rules deal
with the reflexivity of equality and the rewriting under context. They are sufficient to obtain the standard
properties of equality: symmetry, transitivity, and congruence.

Application to the rewrite Transformation. The Why3 rewrite transformation is a powerful trans-
formation that can rewrite terms modulo an equality that is under implications and universal quantifiers.
It looks for a substitution to match the left-hand side of the given equality to rewrite it as the right-hand
side following this substitution. Moreover, it allows rewriting from right to left instead. We instrument
this transformation in the general case: using the found substitution, we define certificates to introduce
in turns implications and universal quantifiers in a temporary hypothesis, to then apply symmetry of
equality if needed and to use this equality to rewrite the target premise and finally remove the temporary
hypothesis.

4.2 Integers

The type symbol int, integer literals and the operator symbols +, *, —, >, <, > and < are inter-
preted. To be able to certify a transformation that performs an induction on integers, we add a certificate
KlInduction(ident, termy,op,, termy,ono, ident, ident, ident, cert, cert) to the kernel certificates with one rule
for strong induction:

iis fresh w.r.t. I',A ¢ YIFi:int YIFa:int
VH; i <ab AG:t[i] | cpase I H;:i>a,Hpe:Vnint, n <i=tn]kAG:t[i] ] crec
' A,G:t[i] | Kinduction(i,a,t, G, H;, Hyec, Chases Crec)

Application to the induction Transformation. The Why3 induction transformation can be called
even if the context depends on the integer on which the induction is done and, in this case, the induction
hypothesis takes into account this context. This transformation is instrumented to produce the certificate
that first puts in the goal the premises that depend on the integer on which the induction is done, applies
the KInduction certificate, and then, for the two resulting tasks, introduces those premises.
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5 Certificate Checker

Let us consider an application of a certifying transformation ¢ on an initial task 7 that produces a
certificate ¢ and a list of resulting tasks L. To verify that this application is correct, ¢, T and L are
provided as input to some checker. If the checker validates this application then the transformation
returns L, otherwise it fails. In this section, we present the elaboration of certificates, a preprocessing
step realized before calling any checker. We then show how to define such checkers and be confident in
their answers.

5.1 Surface Certificates and Elaboration

Making a transformation certifying can be
difficult, especially if the transformation

has to produce a low level certificate. To fa- @ ¢ N
cilitate this process, we define surface cer- D l

tificates that are easier to use than kernel
certificates. We instrument the transfor- : i ’

N v B
! N .

mations to produce surface certificates in-

oration procedure is called with the initial
task and the resulting tasks as input. Be-
cause the proof of correctness of certificates
is done on the kernel certificates, we can de-
fine more complex surface certificates, as long as we are able to define the elaboration for them. Another
advantage of surface certificates over kernel certificates is that they are less verbose, making them easier
to produce.

stead of kernel certificates and implement i claborate E
an elaboration procedure to translate them ¢
into kernel certificates. In order to obtain E i
the needed data to produce the kernel cer- Chernel
tificate, before calling a checker, the elab- 5

i \ 4 :

Example 9. The surface certificate SSplit(ident, cert, cert) is elaborated into the kernel certificate KSplit.
Suppose that a certifying transformation applied on initial task T := H : x1 V x, = G : x returns the list
T, LhwithTy:=H :x1FG:xand T, == H : x, - G : x and the surface certificate

SSplit(H,KHole(T1),KHole(T2))

The elaboration produces a kernel certificate indicating which formulas it is applied to (x| and x;) and
that H is not a goal (Boolean false):

KSplit(false,x;,xz,H,EHole(T;),EHole(T3))

We can define every surface certificate that we find convenient. For now there are about 10 more
surface certificates than kernel certificates. Among them, there are SEqSym and SEqTrans for symmetry
and transitivity of equality and SConstruct described in the following example.

Example 10. We define the surface certificate SConstruct(ident, ident, ident, cert) to validate a transfor-
mation application that first merges two premises into one. More precisely, by writing ¢’ a certificate c
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that has been elaborated, we should be able to derive the following rules:

[LP:tyAtbFALC APtV |
[,P :t1,P:tp = A | SConstruct(Py, P>, P,c)’ AP :t,P 1y | SConstruct(Py, P>, P,c)’

The SConstruct certificate does not have a corresponding kernel certificate. Instead, it is replaced
during elaboration by a combination of the KAssert certificate on formula ty Aty and other propositional
certificates, notably KDestruct. Notice that we need to have access to the formula t| N\ ty, which is
precisely the point of the elaboration and why we could not define directly SConstruct as a combination
of surface certificates.

5.2 OCaml Checker

We implemented two checkers, the first one is written in OCaml and follows a computational approach:
it is based on a function ccheck that is called with the certificate ¢ and initial task 7 and interprets the
certificate as instructions to derive tasks such that their validity implies the validity of 7', verifying in the
end that the derived tasks are the leaves of c. The checker validates the application when this function
returns frue.

Theorem 11. Let ¢ be the certificate produced by applying a certifying transformation on task T. If
ccheck ¢ T =truethenT | c.

The OCaml-checker definition follows closely the semantics of the certificates. For this reason, the
proof of the previous theorem is relatively straightforward to do on paper. Together with Theorem 7, this
guarantees that each application of a transformation that is checked by the OCaml checker is correct.

5.3 Lambdapi Checker

The second checker uses Lambdapi/Dedukti [3], a proof assistant based on a type checker for the AIl-
Calculus modulo rewriting which extends the AIT-Calculus formalism with custom rewriting rules. This
checker has two main advantages over the OCaml checker: (1) this checker uses an off-the-shelf proof
assistant, benefiting from its reliability and its features, such as the ability to define custom rewriting
rules; (2) this checker is proven to be correct, and this proof is machine-checked.
Every time a transformation is called, a Lamb-
dapi proof is generated, and this proof is then o)
checked by the type checker. More precisely, @ o >
we define a shallow embedding of proof tasks in \ 4
Lambdapi: a proof task T is encoded as a Lamb- !
. = . o . Ckernel N
dapi formula 7'. In the diagram, a certifying trans- '
formation is applied to the initial task 7" and pro- \},::’ !
duces the resulting tasks L :=T1;...;T, and a cer- x'/ )
tificate ¢, elaborated as cgermer. Our tool then gen- i
erates the type ty(T, L) which is the Lambdapi for- H(Ckerner)) * (tY(T> L)
mula stating that T , T ,...,and T, implies T, type
that we call the application correctness type. Fi-
nally, we check that the application is correct by generating a proof term 7(cgener) and asking Lambdapi
to check that #(ckermer) has type ty(T,L).

Lambdapi
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This approach assumes that we trust Lambdapi, its type checker and the embedding of proof tasks
(paragraphs 5.3.1 and 5.3.2). However the proof term generation is not contained in the trust base: the
way the term is obtained does not matter as long as it has the requested type. Additionally, we have
defined terms in Lambdapi for each certificate (paragraph 5.3.3), including certificates from interpreted
theories (paragraph 5.3.4). These terms have been checked by Lambdapi to have the expected type so
this gives us a machine-checked proof of Theorem 7.

Theorem 12. Consider a transformation application that from task T returns the list of tasks L. If the
application correctness type ty(T,L) is inhabited, then this application is correct.

5.3.1 Shallow Embedding

In Lambdapi, we define the translation of a task validity by quantifying over type symbols and function
symbols, thus making these declarations explicit. We are able to quantify in this way, both at the level of
types and at the level of terms, by using an encoding of the Calculus of Constructions [26] (written CoC)
inside Lambdapi. We obtain a formal description of the whole task which allows us to state and prove the
correctness of a transformation application. For the system to stay coherent we should be careful when
adding rewriting rules and axioms (symbols in Lambdapi). We make use of an existing CoC encoding
inside Lambdapi [12] to which we add the axiom of excluded middle. This encoding is also a shallow
embedding inside Lambdapi, so we also get a shallow embedding of our language inside Lambdapi. In
this way, we do not need to explicitly mention the context of proof and to handle it through inversion and
weakening lemmas, which would make the method impracticable.

We are able to translate our whole formalism using this embedding. The translation of a term, a type
or a task 7 inside Lambdapi is denoted 7. We use exclusively the CoC syntax to describe this translation:
we write Vx : A, B for the dependent product, A — B when B does not depend on x, Ax : A, B for the
abstraction and omit A when it can easily be inferred. The sorts are Type and Kind, with Type being
of type Kind. To translate the terms, we use an impredicative encoding [30]. Here is an excerpt of this
encoding:

prop = Type 1= YC : Type, C
AN = YC: Type, (f — 1t — C) = C T:= 1 —=1
(VG == YC:Type, (H =C)—= (b —-C)—=C —t:= 1— L

We note 3 u for u — L such that =7 = 3 7 and we extend this notation to the conjunction and the
disjunction. Note that T is inhabited by Ac, c.
5.3.2 Translating Tasks

Let us give the translation of a task, where Type" denotes the n-ary function over Type (for example,
Type? is Type — Type — Type).

Task 7 | X | T'F A with : Corresponding Lambdapi term:
Ii=1 01, Uy s i Y, : Type', ... Vi, : Type™,
Y= 1T, fai Ta VfLia,---,ani’?n,
I''=H,:t,....Hy: 1, H— =l
A:=Gy:uy,...,Griuy —Tu\1—>—>—/\ﬁl—>j\_

Note that for polymorphic symbols, we need to declare them with extra type parameters and to apply
them to the appropriate type in the translation.
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5.3.3 Proof Term

For each kernel rule, we associate a Lambdapi type and define a term that has this type. When building a
proof term, we first introduce the identifiers of the resulting tasks and the identifiers of the type symbols,
function symbols and name of the premises of the initial task. Then, we translate the whole certificate
using the terms having the associated types. The KHole certificate is special and does not have a fixed
associated type. Instead, it is translated as the identifier of the task it contains applied to its symbols
and premises following the same order that they have been introduced in. Assuming that our encoding
is correct, the fact that we define a term for every rule of the certificate semantics gives us a machine-
checked proof of the certificate correctness, Theorem 7.

To produce the proof term, we benefit from the elaboration of certificate in two ways. First, the fact
that the kernel certificates are elementary also facilitates the definition of the terms corresponding to a
kernel rule. Second, each kernel certificate comes with additional data that we are able to use to define
such terms.

Example 13. For the KSplit rule presented in Figure 2, we define a Lambdapi term split that has the
associated type Vt, : Type, ¥ty : Type, (t; — L) — (ta — L) —t; V t — L. We check the application
of Example 9 by verifying that the type

(Vx1, Vx, x1 Saxo 1) >
(Vxz, Vx, x2—>:|x—>1)—>

Vxr, Vo, Vx, x1 Vo = Sx— L
is inhabited by the term

Ast, Asz, Axy, Axo, Ax, AH, AG,
split x; x (AH, sy x; x H G) (AH, s x x H G)

Notice that split takes the formulas it is applied to as arguments (x; and x;) and that those formulas have
been found by elaborating the certificate.

5.3.4 Encoding of Interpreted Theories

In Lambdapi, interpreted symbols are first declared in the preamble. When interpreted symbols have
corresponding certificate rules, we need to use the properties of those symbols to prove that the types
associated to these rules are inhabited. Instead of declaring such symbols, we define them, which allows
us to prove the needed properties. Since our Lambdapi development is included in the trusted code base
of the Lambdapi checker, we make sure to only add axioms and rewrite rules when necessary.

Polymorphic Equality. We define the equality in Lambdapi using the Leibniz definition of equality:
two terms #; and #, of type 7 are equal when VQ : T — Type, Q t; — Q . Note that the context of
rewriting in the KRewrite rules is explicitly given as a function. We use this function, translated as
a Lambdapi function, to apply it to the Leibniz equality when writing a proof term for a KRewrite
certificate.
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number of vari- 5 10 15 20 25 50 100 200 400 800
ables
transformation ~0 ~0 | 0.008 | 0.016 | 0.020 | 0.080 | 0.29 | 1.21 5.5 25

time (sec)

kernel certificate 2.1 5.8 12 19 28 85 270 | 950 3500 | 13000
size (kB)

OCaml checker ~0 ~0 ~0 ~0 ~0 ~0 ~0 | 0.020 | 0.084 | 0.35
time (sec)

Lambdapi chec- || 0.072 | 0.25 | 0.80 2.0 4.2 48 660 - - -

ker time (sec)

Figure 3: Tests on Propositional Tasks

Integers. We define the integer type and usual integer operators in Lambdapi. First, we define binary
positive integers and binary negative integers. Integers are then either O, positive or negative. We use
rewrite rules to define those data types which should be understood as algebraic data types [5]. From
these definitions, we get a simple induction principle that we use to define a Lambdapi term correspond-
ing to the stronger induction principle described by the rule of the certificate Kinduction.

6 Experimental Evaluation

The goal of this article is to provide a practical framework to render logical transformations certify-
ing. We apply the framework to Why3 and show that the approach does not have an inherent problem
of efficiency. More importantly, we show that it is expressive enough to allow us to render complex
transformations certifying.

6.1 Tests and Benchmarks

We defined simple certifying transformations (about 15 of them) to test every certificate. We also defined
a more complex transformation called blast meant to discharge tautological propositional tasks. This
transformation decomposes every logical connector appearing at the head of formulas before calling
itself recursively. Rendering this transformation certifying required using the composition of certifying
transformations. We evaluated the efficiency of our checkers by applying this transformation on problems
of increasing size in Figure 3. The problem with n propositional variables is to verify that:

p1 = (p1=p2) = ...(Pn—1 = Pn) = Pn

We notice that the size of the kernel certificates is not linear with respect to the number of variables.
This is due to the fact that, contrary to the surface certificates, the kernel certificates contain the formulas
they are applied to. Looking at the OCaml checker, our approach does not seem to have an inherent
problem of efficiency as the overhead it adds to the transformation is negligible. On the other hand, the
Lambdapi checker seems to be much slower. Performances of Lambdapi have already been improved
for our purposes [16-20], and we believe they could be further improved in future versions. We could
also modify our checker to help Lambdapi, for example by abstracting away big formulas. We leave this
for future work.
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6.2 Applications

We evaluated our method by applying it at different levels. When rendering the existing transformations
rewrite and induction certifying, we found that it is well-suited to add interpreted theories. When
transformations do not specifically deal with the theory in question, we do not need to extend our certifi-
cate format, while, in general, the duo surface/kernel certificates allows us to only define a minimal set of
kernel rules, even if it means deriving more surface certificates. By defining the Lambdapi checker, we
gave a machine-checked proof of the rules of our certificates which gives us confidence in our certificates
and their semantics.

6.3 Better Understanding of Transformations

This work has led to a better understanding of transformations. On one hand, instrumenting a transforma-
tion to produce an appropriate certificate requires to understand why each application of this transforma-
tion is correct. Additionally, once this is done, reading the certificate gives us another way to understand
why a particular transformation application is correct. On the other hand, this work had led to the defini-
tion of the semantics of tasks inside Lambdapi and the definition of the correction of a transformation in
this setting.

In particular, type quantification is explicit in Section 2.1. For example, the formula ITer. (Vx :
o.Vy:o. x=y)V-(Vx:a Vy:a. x=y) means that every type « either has at most one element
or it has more than one. This formula is provable but we cannot apply the certificate KSplit on such
an hypothesis. By contrast, in Why3, the type quantification is implicit, and it is possible apply the
destruct transformation on the hypothesis. This gives us two resulting tasks: one with an hypothesis
which states that every type has at most one element, and the other with an hypothesis which states that
every type has more than one element, both being contradictory. This bug [15] has been found in the
transformation destruct when encoding proof tasks in Lambdapi; a similar bug was also found in the
transformation case.

7 Related Work

To aid deductive program verification, a number of tools have been developed, based on proof assistants
or independently from them. In the first case, the programming language on which the verification
is done is built from dedicated libraries and definition of both the programming language and its logic
inside the proof assistant. This is the case for example for the library Iris [27] built on top of Coq and that
allows reasoning about concurrent, imperative programs or the library AutoCorres [23,24] built on top of
Isabelle and allowing to verify C programs. In such context, the correctness of the approach is based on
the formal semantics of programs and on deduction rules established once and for all, which requires a
large proof effort, thus limiting the flexibility of the language. In the second case, the tools developed are
verifying annotated programs, and generate proof obligations that are discharged by automatic theorem
provers such as SMT solvers. Examples of such tools are Why3, Dafny, Viper, Frama-C and SPARK.
Even though they rely on strong fundamental bases, their particular implementations of such tools and
some practical aspects such as their use of automatic theorem provers have not been machine-checked
and can contain bugs. An exception is given by F* [31], whose encoding’s correctness to SMT logic has
been partially proved in Coq [1].

Our work lies in between these two approaches. On one hand logical transformations are similar to
tactics used in proof assistants such as Coq [13], except that our transformations are considered part of the
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trusted code base. On the other hand, logical transformations can be used automatically or interactively
to help discharging proof obligations. We followed a skeptical approach extended with a preprocessing
step (namely the elaboration of certificates) similarly to [10], except that our framework allows to check
higher order proofs, and that the focus is put on the ease of production of certificates. Indeed, we aim
at making it as easy as possible to render transformations certifying. We designed two checkers: one
based on the reflexive approach, known to be very efficient [2,25] and the other one based on a shallow
embedding into the Lambdapi proof assistant. When using a shallow embedding, the correctness of the
verification relies on the considered proof tool’s correctness which makes its proof much easier [9,11].

8 Conclusion

We presented a framework to validate logical transformations based on a skeptical approach. When
defining certificates, we put an emphasis on modularity by having certificates with holes and, with the
notions of surface and kernel certificates, ease of use without compromising the checker’s verification.
We combined all of these notions and applied them to Why3 by implementing the certificate generation
for various transformations and the certificate verification with two checkers. The first checker was
written in OCaml and uses a computational approach which makes it very efficient while the second
checker is based on Lambdapi and gives us formal guarantees to its correctness. We extended our work
by adding the interpreted theories of the integers and of the polymorphic equality. This allowed us to
instrument more complex and existing transformations to produce certificates, such as induction and
rewrite. Finally, we validated our method during development and through tests and benchmarks.

Future Work. The current application of our method to Why3 could be improved at different levels.
The first idea is to instrument more transformations to produce certificates, with polymorphism elimi-
nation [7] and algebraic data type elimination being important challenges. As the number of certifying
transformations increases, we also want to improve the efficiency of the verification. To do so, we con-
sider two factors: first, we want to compress certificates on the fly when combining them; second, we
want to improve the efficiency of the Lambdapi checker by allowing to reuse the context of proof that
does not change. Additionally, we consider adding support for more interpreted theories, while keeping
the number of axioms and rewrite rules added to Lambdapi to a minimum.

A long term goal is to increase trust in other parts of Why3. For example, we could improve trust
when calling automatic theorem provers [2, 8] or improve trust in the proof task generation which would
require to formalize the semantics of the Why3 programming language [14].

Finally, our method is not specific to Why3 and can be applied, in general, to certified logical encod-
ings. In particular, existing (certifying) transformations could be used for encoding a proof assistant’s
logic into an automatic theorem prover’s logic in order to benefit from both systems.

Acknowledgments. We are grateful to Alexandrina Korneva for the English proofreading and to
Claude Marché, Chantal Keller and Andrei Paskevich for their constant support and their helpful sug-
gestions.
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A Typing

The predicate X I ¢ : T holds when ¢ has no free type variables and is of type 7 in signature ¥ and is
formally defined by the following rules:

L1:0|XIFt{a1]: prop 1 &1 T is a subtype of X(x) 7 has no type variables
I Xk (Ila.t) : prop Ylix:t
Y-t prop Y-t : prop Y-t : prop
XIFT: prop I L : prop X1kt prop Y-t opty: prop
TIEt T 1 Tt Yx:tl-t: prop 7 has no type variables x¢X
Liktitr:t LI (Vx:t.1): prop

Y x:1lkt: prop 7 has no type variables x¢X

Y- (3x:t.1): prop

rx:TlFt:T 7’ has no type variables  x&X
TIE(Ax:tt) Tt

B Certificate rules

For each kernel certificate appearing in this article, we give its corresponding rules. Theses rules are
taken from the set of rules definining the predicate T | c.

' Al KHole(T'HA) I'H: L+ A KTrivial(false,H) I'-A,G: T | KTrivial(true,G)

LITEAP:tlc Y|ILP:tEAl Y-t prop
Y| T A KAssert(Pt,cy,c2)

TLH:nFAley, TH:nbFAlce THFAG: hilei TFAG:nle
[VH :t; Vit = Al KSplit(false,t1,t2,H,c1,c2) I'EAG:t) Aty | KSplit(true,ty,t,,G,c1,c2)

F,Hl 1, Hy it FA\LC
[ H : 1) Atp = A ] KDestruct(false,ty,t,,H,Hy,Hy,c)

I'EAG:t1,Gy | c
I'EA,G:t; Vi, | KDestruct(true,t),t,G,G1,Ga,¢)
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Yy:t|[VH:tlx—y|lFAlc yis fresh wrt. T A ¢
Y| H:3x: 1.t F Al KintroQuant(false,7,Ax: T.t,H,y,c)

Ly:T|THFAG: tlx—y|lc yis fresh w.rt. 2,7, A, ¢
Y|TFAG:Vx: 1.t} KintroQuant(true,7,Ax: 7. t,G,y,c)

LITVH :Vx:t. t,Hy tx—ul-Alc Ylru:t
Y| H, :Vx: 1.t Al KinstQuant(false,t,Ax: 7. t,Hy,Hy,u,c)

YITHAG :3x:1.1,Gy:tlx—u] | c Ylru:t
L|TFA G :3x: 1.t | KinstQuant(true,7,Ax: 7. t,G1,Ga,u,c)

L1:0|X|THFAG: tla—1]lc 1¢1
I|2|THAG:a.t | KintroType(Tlex. £, G, 1,c¢)

IH :a.t,Hy it — 1] FA ] ¢ T has no type variables
I[VH, :Ha.t+= A | KinstType(Ilex. t,Hy , Hy, T, ¢)

[H:a=0b,P:tb|FAlc
Y|TFAG: x=x] KEqRefl(x,G) [ H:a=>b,P:t[a] F A | KRewrite(false,a,b,t,P,H,c)

[H:a=bFAP:tb]lc
I''H:a=bt A P:tla] | KRewrite(true,a,b,t,P,H,c)

iis fresh w.r.t. I'A ¢ YI-i:int Yl-a:int
[VHi:i<ab AG:tli] | cpase [ Hi:i>a,Hye:Vn:int, n<i=tn]tAG:t[i] ] crec
' A,G :t[i] | Kinduction(i,a,t,G, H;, Hyec, Cpases Crec)
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Whereas proof assistants based on Higher-Order Logic benefit from external solvers’ automation,
those based on Type Theory resist automation and thus require more expertise. Indeed, the latter
use a more expressive logic which is further away from first-order logic, the logic of most automatic
theorem provers. In this article, we develop a methodology to transform a subset of Coq goals
into first-order statements that can be automatically discharged by automatic provers. The general
idea is to write modular, pairwise independent transformations and combine them. Each of these
eliminates a specific aspect of Coq logic towards first-order logic. As a proof of concept, we apply
this methodology to a set of simple but crucial transformations which extend the local context with
proven first-order assertions that make Coq definitions and algebraic types explicit. They allow
users of Coq to solve non-trivial goals automatically. This methodology paves the way towards the
definition and combination of more complex transformations, making Coq more accessible.

1 Introduction

Interaction vs. automation. The Coq proof assistant allows us to prove theorems interactively: that
is, given a Coq goal G (i.e., a statement to prove), the user has to write a proof P consisting of inference
steps with ad hoc premises and conclusion. Then, they can check whether the given proof is correct by
writing Qed: the proof is then certified (or rejected) by a logical kernel implemented in OCaml which
type-checks the proof-term constructed by the user. In practice, proof assistants support a limited form
of automation: in Coq, the user can use keywords called factics, which operate logical transformations
on a goal and its hypotheses until solving it, e.g., a tactic may try to apply some inference/typing rules
as many times as possible and relieve the user of some bureaucratic work. An important idea to keep in
mind is that tactics may use elaborate tools (including plugins, auxiliary softwares, efc...) to produce
whole proof terms, including flawed ones. However, eventually, any proof term, whether it is written
by the user or produced by a tactic or an external tool, will be type-checked by the kernel of Coq, and
this is how the trust in Coq lies in the one we have in its kernel.

Anyway, automation in Coq is limited: in most cases (including many trivial proofs), the user has
to provide the bigger part of the structure and the steps of the proof: we will give a simple example just
below.

This situation is strikingly different from Automated Theorem Provers, such as first-order solvers
or SMT solvers, which find a proof without the user having to find the proof steps if the problem is
expressed in a suited way. However, these automated provers have two main limitations:

*This work is funded by a Nomadic Labs-Inria collaboration.

Chantal Keller and Mathias Fleury (Eds.): Seventh Workshop
on Proof eXchange for Theorem Proving (PxTP)
EPTCS 336, 2021, pp. 24-39, doi:10.4204/EPTCS.336.3
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Automatic provers Coq
Expressivity | First-order logic CIC
Safety | Trust the whole software | Kernel for proof checking
Automation | Automatic proof User-guided proof

Table 1: Pros (bold) and Cons of automatic provers and Coq

e One needs to trust their whole code, and not a small kernel.

e Most of them handle only first-order logic (FOL) whereas Coq is based on the Calculus of Induc-
tive Constructions (CIC), which is far richer: (1) CIC is polymorphic, and thus allows quantifying
not only over objects (such as integers) but also on types, e.g., in CIC, one may define polymor-
phic list concatenation ++ whose type is forall (A : Type), list A —1list A —1list A (2)
CIC features dependent typing, so that types may depend on terms and other types, e.g., Vec A n
specifies the type of vectors of length n on the carrier A, and thus depends on the number n and the
type A (3) CIC enables higher-order computation.

The logical expressiveness of CIC makes it possible to handle complex aspects of programming
languages and to prove properties about programs in Coq, in particular fine-grained specifications that
an automatic prover based on first-order logic could not understand. For instance, dependent typing
allows the specification of equalities beyond decidable datatypes, e.g., in Coq one may directly specify
that two functions are equal with an equality £ = g, which is not possible in general in automatic solvers.
Yet, it is precisely because most automatic provers only tackle FOL that they admit a lot of powerful
automation.

Improving the automation of Coq within first-order logic. To sum up the situation, on the one hand,
we have Coq, which is based on CIC and is a rich specification language, but for that reason, it is difficult
to automatize its proof search. On the other hand, automatic provers are based on a more limited logic
(FOL) but feature extremely efficient proof-search heuristics. Moreover, the trust we have in the former
is based on the implementation of a small, isolated kernel. This can be summarized in Table 1.

Such differences are to be expected, since proof assistants and automatic provers do not have the
same purposes and uses. However, as it turns out, in Coq, even a simple proof of first-order logic, e.g.,
on decidable datatypes, can be tedious and force the user to provide a lot of input, whereas an automatic
prover would automatically find a proof. Introducing more automation in Coq would thus be very useful
to spare the user some trivial parts of a proof.

Let us illustrate this with two examples.

Example 1 (Dealing with datatypes). We use the function hd_error from the List module of Coq
Standard Library, of type forall {A:Type}, list A —option A (the curly brackets mean that A is an
implicit argument, that is to say it can be omitted) defined by hd_error 1 = Some x whenl = x :: 10
(i.e., 1 not empty, x :A, 10 a list of elements of type A) and hd_error [] = None. We then prove:

Goal forall 1 (a:A), hd_error 1 = Some a — 1 <> nil.

in a context where A is a type variable!. A typical Coq proof is:

I'This is handled in Coq thanks to the section mechanism. It allows the user to introduce section-local variables that can be
used in other declarations in the section.
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Proof.
intros 1 a H. intro H’. rewrite H’ in H. simpl in H. discriminate H.
Qed.

The statement is straightforward, its proof relies on the fact that two different constructors always
output different values, e.g., Some x and None cannot be equal, neither x :: 1 and []. Yet, in Coq, the
user (especially a non-expert one) has to be highly precise in the way they compose their keywords,
even though they would not even bother writing the proof on paper. It may even be more frustrating that
this is a statement of first-order logic and as such, it would automatically be dealt with by a first-order
prover, provided it knows about (1) the definition of the function hd_error and (2) the datatypes list
and option.

Example 2 (Calling lemmas). In this example, we recall some of the annoyances met while using lem-
mas in Coq. We consider a Boolean search function:

Fixpoint search {A : Type} {H: CompDec A} (x : A) 1 :=
match 1 with
| [1 = false
| x0 :: 10 = eqb_of_compdec H x x0 || search x 10
end.

Not going into details, the implicit argument H: CompDec A specifies that A is a decidable type,
i.e., that equality is decidable on A. Boolean equality can then be computed with the function
eqb_of _compdec H2.

By induction, we prove search_app : forall {A: Type} {H : CompDec A} (x: A) (11 12:
list A), search x (11 ++ 12)= (search x 11)|| (search x 12). Now, let us consider a typical
Coq proof of the following simple statement:

Lemma search_lemma : forall (x: Z) (11 12 13: 1list Z),
search x (11 ++ 12 ++ 13) = search x (13 ++ 12 ++ 11).
Proof.
intros x 11 12 13. rewrite !search_app.

rewrite orb_comm with (bl := search x 13).
rewrite orb_comm with (bl := search x 12) (b2 := search x 11).
rewrite orb_assoc. reflexivity.

Qed.

As expected, the proof uses the commutativity and the associativity of Boolean disjunction | |, which can
be found in the module Coq.Bool.Bool of the Standard Library. We start by using the lemma search_app
4 times to eliminate ++ from the statement, which can be done automatically with the ! operator that
rewrites as much as needed. However, the order of commutativity/associativity uses must be carefully
chosen. Moreover, the instance of the bound variables of the commutativity lemma forall bl b2 :
bool, bl || b2 = b2 || bl must be specified: the same proof without specifying them fails, since
Coq would try to rewrite only the leftmost-outermost | |, which would not work. Actually, although the
user recognizes the proof as trivial, they must keep a keen eye at each step on the local proof context to
determine which lemma must be used with which instances, and sometimes, they have to print lemmas
to identify the names of bound variables they need to instantiate. All this may appear as a nuisance
compared to writing a formal proof with a pencil and a paper and deter new users of Coq.

2There are multiple ways of representing a decidable equality in Coq; we use the representation from the SMTCoq plugin
since we will use it as a back-end (see later).
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Our contribution: linking first-order Coq goals with automated provers An interesting observa-
tion about Examples 1 and 2 is that their statements and proofs pertain to first-order logic (with decidable
equalities). As such, they should be automatized.

In this paper, we provide a methodology to reconcile Coq goals with the logic of first-order provers.
This methodology consists in

1. implementing pairwise independent logical transformations: each transformation encodes one as-
pect of Coq logic as formulas in a less expressive logic (until reaching first-order formulas in Coq)
and establishes a soundness proof of this encoding;

2. providing strategies to combine these transformations in order to automatically translate Coq goals
into fully explicit first-order logic goals.

We also implement this methodology as a new Coq tactic called snipe (for the bird known in french as
bécassine des marais) so that the proofs of the two lemmas presented above become only one single call
to this tactic, passing the required lemma search_app in the second case.

The tactic snipe is two-fold.

1. As presented before, we implemented five small logical transformations, and a strategy that com-
bines them. The transformations presented in this paper deal with definitions, datatypes and poly-
morphism, and thus the strategy transforms a Coq goal containing these features into a fully first-
order goal.

2. Then, we use the SMT solver veri T as a back-end to discharge the obtained first-order goal, avail-
able through the SMTCoq? plugin[9], which enables safe communication between Coq and SMT
solvers.

In step 2, we benefit from the automation provided by the SMT solver veriT, which is able in partic-
ular to perform Boolean computation (as in Example 1), Linear Integer Arithmetic (LIA) or relieve the
user of the burden of finding the right instantiations of the lemmas. An important observation is that in
step 2, the use of SMTCoq could be replaced by any tactic solving first-order logic.

The remainder of the paper is dedicated to explaining the concept of snipe in details. In the next
section, we explain our methodology. In § 3, we present examples of useful logical transformations
together with their implementations. In § 4, we explain the full snipe tactic, as well as more examples
of its power. We finally present the state of the art before concluding.

The source code can be found athttps://github.com/smtcoq/sniper/releases/tag/pxtp21.

2 From the logic of Coq to first-order logic: modular transformations

From the Calculs of Inductive Constructions to first-order logic As we saw in the introductory
examples, Coq, which is based on CIC, is mostly not automatized even for simple proofs: while it now
enjoys very efficient decision procedures for dedicated theories [2, 11], attempts for general automation
has not truly succeeded yet (see § 5 for a detailed comparison).

Our contribution is to propose a new approach for general automation, based on (1) small transfor-
mations of a CIC goal towards a goal of first-order logic (2) stating and proving first-order properties in
the local context of a Coq proof. Then, the first-order goal and the associated first-order properties can
be sent to any external automated prover based on first-order logic. As we will see in the next paragraph,
the user may choose which transformation they apply.

3SMTCoq is available at https://smtcoq.github. io.
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We choose FOL as our target logic because a lot of work has been done to automatize reasoning
in this logic. So, after calling our transformations, the user can choose any way to automatically prove
a first-order goal: e.g., an automatic prover certified in Cogq, a tool calling external solvers, tactics like
firstorder or crush[6]. In § 4, we provide a fully-automated tactic that applies the transformations
presented in this paper and solves the resulting first-order goal using the SMT Coq plugin.

Modular and independent transformations Formally, a logical transformation from the language of
Coq to itself is a function f from the terms and formulas of Coq to themselves. Leaving aside the details
on the nature of the function f for now, we are interested in sound transformations, i.e., transformations
f such that, given any Coq statement G in the domain of f, we have f(G) = G. This means that it is
enough to prove f(G) for G to be valid. More precisely, we are interested with sound transformations
f such that f(G) is a first-order formula: indeed, if a Coq goal G is left to prove, we may transform G
into f(G) and then send f(G) to an automated theorem prover dealing with first-order. If this succeeds,
it means that G is valid.

We are actually also interested in functions g from a subset of Coq formulas such that, given a Coq
statement G, g(G) outputs (a list of) valid first-order logic statements in Coq that may help proving G.
We also call such a function g (which produce auxiliary first-order statements) a sound transformation.

Our approach is to develop modular and independent transformations: each of them encodes one im-
portant aspect of CIC. The aim is to tackle only one aspect at a time: it facilitates the proof of soundness
whenever we need to write one in Coq. Indeed, as the transformations are simple, they preserve as much
as possible the structure of the source formula. We expect that they are easier to implement than a bigger
encoding. In addition, this methodology facilitates the debugging and allows us to know precisely which
fragment of Coq we can handle. The transformations can be composed in different ways: we can use
them separately, combine them all, or only some of them, either by using a default tactic provided for
a user who does not want to think about which method they should choose, or by writing them one by
one. Moreover, they are independent from the technology used for first-order proving in the end. This is
illustrated by the left part of Figure 2.

Certifying and certified transformations There are two ways for writing logical transformations f
from Coq to itself. As we will see, both need to resort to the meta-language of Coq at some point: they
feature functions which cannot be defined in the core language of Coq, but only in extra-layers outside
its kernel. However, they do not work the same way from the logical point of view.

1. Certified transformations. The function f may be a Coq function. This relies on an internal
representation of Coq terms inside Coq, that we call term (see Example 3). It comes with two
meta-language transformations: the reification takes a Coq term as a parameter and outputs its
reification (in the type term) and the dereification is the converse. In this situation, f is a Coq
function (not a meta-function) of type term — term and we may prove that, for all t of type term,
f t implies t (up to some implicit reification). We call this kind of transformation a certified one,
because the soundness is proved once and for all, in a Coq statement.

2. Certifying transformations. The function f may be a meta-language function, i.e., f is not a
Coq function. In that case, it is not possible to write a Coq statement specifying that, for instance,
for all G of type set, f(G) implies G. However, we may write another meta-language function g
such that, for all G, g(G) generates on the fly a proof of f(G) — G. Such a transformation is said
to be certifying, because its soundness is not previously established. It takes a local context and
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a specific goal, and it operates the transformation, which will be type-checked at the end by the
kernel (when Qed is written) every time we use it.

The differences between certified and certifying transformations are summarized in Figure 1. In the
work presented in this article, we follow the paradigm of certifying transformations. Indeed, the former
require we work only with the reified syntax of the terms of CIC and even for a simple transformation,
the proof of soundess is hard (thousands lines of code). But in some situations, it could be useful to use
this solution, because it covers all cases.

Certified transformation

trad G = Coq function
(defined for all goals)

Coq Goal G — Reification G —* Soundness : trad G — G Dereification

Certifying transformation

transfo G
(may fail)

Coq Goal G |—* Reification G (in some transfo.) Dereification (in some transfo.)

Figure 1: Difference between certified and certifying transformations

Metalanguage tools Most logical transformations analyze the syntax of terms in the source language
and produce new statements. But in Coq, we do not directly have access to the syntax of terms. This is
the reason why we need meta-programming tools as we saw in the previous paragraph. Many different
tools are available now (see § 5), and we used two of them: Ltac [8] and MetaCoq [17], which offer
different advantages.

e ltacis a tactic language in Coq which is based on pattern matching, recursion and backtracking.
It allows its users to match on the syntax of Coq terms and also on the local context, for building
new goals and terms. It is also possible to execute basic tactics which operate on kernel terms,
called tacticals, in a Ltac function. Ltac cannot be seen as a proper meta-programming language
as there is no data type which contains the reified syntax of Coq terms. In our transformations, we
use Ltac whenever we need to use a particular function on every hypotheses of the context. Once
this function is applied, its result is certified in Ltac by a combination of simple Coq tacticals.
Sometimes, it is also useful when a superficial access to the syntax of a Coq term is required, but
Ltac is less convenient for analyzing the syntax completely.

e MetaCoq enables a more fine-grained analysis on Coq terms. Indeed, this plugin includes an
inductive type term which corresponds exactly to the Coq counterpart of OCaml kernel terms, and
comes with the reification and dereification transformations described above. As it offers an easy
access to the syntax of Coq terms, our transformations often use MetaCoq. The problem with
MetaCoq terms is that the reified syntax is not very readable: the variables are represented by de
Brujin indexes, and there is no notation to reduce the size of the terms. This is the reason why we
prefer Ltac to get information about the initial goal, and MetaCoq when we need to build a new
term. Such a flexible approach is possible, since we build certifying (not certified) transformations.

Example 3 (Reification). The MetaCoq representation of the Coq term forall (A:Type), A —A is
tProd (name "A") (tSort type_reif) (tProd unnamed (tRel 0) (tRel 1)). The constructor tProd
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corresponds to the Coq forall dependent product binder (and the — is simply a notation for a non-
dependent product). The type of the variable in this product is type_reif (not going into details, this is
the MetaCoq reification of Type). tRel 0 and tRel 1 are the variables, represented by their De Brujin
indexes.

3 Examples of transformations

We describe now some of the transformations we have implemented. Most of them are motivated by the
following facts.

1. When Coq and an external automated theorem prover communicate, a lot of symbols defined in
Coq will not be intrepreted. For instance, the function hd_error used in Example 1 may be unin-
terpreted in the external prover, which does not know anything about it except its type. In general,
pattern-matching may be uninterpreted. Moreover, algebraic data types and their constructors may
also be left uninterpreted. For instance, an external prover may not know that lists have basic prop-
erties, e.g., x1 :: 11 = x2 :: 12 implies x1 = x2 and 11 = 12, or that [1 <> x :: 1, whereas
these two first-order statements just come from the definition of the type list.

2. Coq handles higher-order objects (in particular, equalities about such objects), whereas first-
order provers do not. For instance, fun x = (x + 1)**x 2 = fun x =x ** 2 + 2 x + lisan
equality between functions (of type Z — Z) and cannot be directly interpreted in first-order logic.
Yet, it may be sufficient to consider its first-order consequence forall x, (x + 1)%* 2 = x *x*
2 + 2 * x + 1, which is a quantified equality on the type Z.

Such transformations, while simple at first glance, are already mandatory to give a bridge between a Coq
goal and a first-order prover: the first kind of transformation makes the global context explicit, whereas
the second kind encodes higher-order aspects.

As explained in the previous section, we implemented these encodings as certifying transformations
(cf. Figurel), using meta-programming. Transformations 3.1 and 3.5 do not need reification while others
do. The approach of each transformation is the following: by scanning the goal, it states and proves in
Coq various auxiliary lemmas of first-order logic about the terms encountered in the goal. The proofs
are done easily by applying Coq basic tactics. These lemmas are stored in the local context. It may also
perform some transformations on the goal, so that it becomes first-order.

3.1 Definitions

The first transformation* makes user-defined terms explicit. For instance, on Example 1, it will add the
following assertion to the local context:

hd_error_def : hd_error =
(fun (A : Type) (1 : list A) =
match 1 with | [] = None | x :: _ = Some x end)

This assertion is not first-order yet (it will be transformed again by the next two transformations) but it
allows one to have access to the definition of the constant.

For its implementation, it mainly uses the Coq tactic unfold, which takes an identifier (the name of
a previously defined term) as a parameter and replaces it by its definition. This tactic, get_def, takes the

4See file definitions.v.
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name of a constant and adds its definition as a proven hypothesis. The example right above is obtained
by applying this tactic on the identifier hd_error. While unfold may cause the goal or the hypotheses
to become verbose and not particularly understandable for the user, get_def will keep the definitions
in separated statements. In the tactic which combines all of our transformations, we apply get_def
recursively to all the definitions that occur in the hypotheses and in the goal.

3.2 Expansion

Note that in the example for the tactic get_def, the added hypothesis pertains to a higher-order function
(because of fun (A : Type)...). A good way to make the equality deal with first-order objects is
to apply the functional definition to an arbitrary argument of its domain®. That is, instead of writing
f = Ax.t(x), we write: Vx, f(x) = #(x) where x is a fresh variable, and ¢ the unfolded definition of f.
We did not use a transformation which encodes partial application with an applicative symbol because it
may lead to bigger terms and it is not necessary here. We have left it for future work and more complex
cases. The tactic takes a hypothesis H of the form t = u wherer : A; — ... =+ A,, — B, and asserts and
proves automatically the hypothesis

Vg Ay, oV s Ay £ (e ) = u(X, e Xp).

If we come back to our running example, once we get the axiom hd_error_def in our context, we
can apply expand hd_error_def to obtain a new assertion in the local context:

HO : forall (A : Type) (1 : 1list A), hd_error 1 =
match 1 with | [] = Nome | x :: _ = Some x end

The proof of this statement is really simple in Coq. It suffices to use the tactic rewrite H, followed
by reflexivity, which checks that both members of the equality are convertible in CIC. But the con-
struction of the statement is harder. First, the tactic takes a hypothesis H (hd_error_def in our case) and
finds, thanks to the Ltac value-function type of, its type 7, which must be an equality # = u. In order
to have an easy access to the domain and codomain of ¢ and u, we reify 7. That is, we call a tactic
quote_term from the MetaCoq plugin, which takes a Coq term and returns its reified syntax. Then we
can perform syntactic operations on this term by implementing auxiliary functions directly in Coq. Our
tactic is thus divided in four parts:

e The main tactic expand reifies the hypothesis H and calls the auxiliary functions.

e The first auxiliary function 1ist_of_args_and_codomain finds the common type of t and u: Ay —
...— A, — Band returns the pair ([Ao;...;An),B). All the terms involved here are MetaCoq terms.

e The second auxiliary function gen_eq constructs the reified equality that we want. It is defined
recursively on the list [A;...;A,] by the following equations.
gen_eq([],B,t,u) 2 t =pu
gen_eq ([Ag;...; A, B, t, u) £ Vxo @ Ao, gen_eq([A1;...;A,],B,t xo, u xo) The gen_eq function
deals with De Brujin indices by lifting these at every recursive call.

e The generated equality is then unquoted and proved by using Coq tactics.

3.3 Elimination of fixpoints

For the sake of simplicity, we have so far taken the example of a non-recursive function (hd_error).
However, it is very often the case that functions are defined recursively on datatypes. In this section,

>See file expand. v.



32 Automation through modular transformations

we take the example of the recursive function length computing the number of elements in a list. If we
expand its definition as presented in the previous sections, we get:
H : forall (A : Type) (1 : list A), length 1 =
(fix length_anon (1 : list A) : nat :=

match 1 with | [] = 0 | 1> = S (length_anon 1’) end) 1

As length is a fixpoint, its definition is hidden in an anonymous function denoted by fix. Again,
we transform this expression to make it more intelligible by automatic provers. This is the role of
the tactic eliminate_fix® that replaces the anonymous function with the constant it defines. Here,
eliminate_fix H asserts and proves the new hypothesis HO:
HO : forall (A : Type) (1 : list A), length 1 =
match 1 with
I [1 =0
| _ :: 1> =S (length 1°)
end
Thanks to this tactic, we now have access to the body of the definition of length as for non-recursive
functions.

3.4 Elimination of pattern matching

Definitions by pattern matching, such as the examples of the previous two subsections, are not under-
standable for automated provers. More generally, they are not part of the syntax of first-order terms.
Thus, instead of getting a function defined by pattern matching, we would like to have one statement
for each pattern. We implemented a tactic’ which does precisely this. In order to present it, let us con-
tinue our example from 3.2. The tactic eliminate_pattern_matching HO (where HO is the hypothesis
generated in 3.2), produces two hypotheses:

H1 : forall (A : Type), hd_error [] = None
H2 : forall (A : Type) (x : A) (1 : list A), hd_error (x::1) = Some x

The tactic works in five steps. Note that the formula to which it is applied must be of the form
forall (xg: Ap) ... (x: 4;), Elmatch x; with ...] where E is an environement with (possibly)
free variables.

e The index i of the matched variable is computed with a combination of a dummy subgoal and a

metavariable allowing to pass on the result to the main goal.

e The formula is reified and the reified types Ao, . ..,A; are retrieved.

e An independent tactic scans the global environment in which the inductive definition of A; can be
found. It returns the list of its reified constructors [C;...;C;| and their reified types [Top — ... —
TOJIO —>A,'; . ;ij — .. Tj,n_,- —)A,‘].

e For each constructor Ci, we construct the following statement:

forall (x¢: Ag) ... (x;_1: A1),
forall (ak’ol Tk,O) PN (ak’,lk : Tk,nk) N
E(match C; a;o ... ag, with ...)

e Each statement is unquoted, asserted and proved by intros; rewrite HO; reflexivity.

%See file elimination_fixpoints.v
7See file elimination_pattern_matching.v
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3.5 Monomorphization

Most automatic provers do not support polymorphism. In other words, they cannot prove lemmas about
functions that can be defined on any type of data. Typically, as we saw in Example 2, the lemma
search_app is polymorphic, and thus cannot be sent directly to most provers. However, only its in-
stance on Z is useful for proving search_lemma. This transformation will add the following statement to
the local context:

search_app_Z : forall (x: Z) (11 12: list Z), search x (11 ++ 12) =
(search x 11) || (search x 12)

There are various ways to handle polymorphism[3][4]. Among them we chose a monomorphization
based on instantiating the polymorphic types with chosen ground types from the context.

To write the monomorphization tactic®, the meta-programming language Ltac was our main tool.
Indeed, we did not need a detailed access to the syntax of the terms as MetaCoq provides, but we wanted
to apply the same tactic to all the hypotheses in a given context (or to a list of polymorphic lemmas). Ltac
allows matching on the local context in a rather simple way, thanks to the tactic match goal. In details,
the instantiation tactic tries to match all hypotheses in the local context whose type P is a quantified
hypothesis: VA : Type,P’. MetaCoq is useful here, to check that A has type Type.

Then, the monomorphization tactic scans the goal and instantiates the variable of type Type with all
the subterms of type Type in the goal. All the generated hypotheses are automatically proven by the tactic
specialize.

In order to avoid infinite loops, the instantiated hypothesis is not added in the context if it is already
present. The tactic can also take parameters (polymorphic lemmas), and they are monomorphized in the
same way.

In the future, we will run benchmarks to measure the performance of our tactic. This may help us to
develop heuristics for choosing the instances of lemmas efficiently.

3.6 Interpreting Algebraic types

Algebraic datatypes are a special case of inductive types which do not use non-prenex polymorphism or
type dependencies. The epitomy of such a type is perhaps 1ist that we used in our examples:
Inductive list (A : Type) : Type :=

| [1 : 1list A
| cons : A — list A — list A.

where the constructor cons has the infix notation ::. When one is familiar with inductive types, one
knows that this declaration specifies how equality works on the type 1ist. For instance, x1 :: 11 =
x2 :: 12implies x1 = x2and 11 = 12. Moreover, [] <> x :: 11. In general, in an algebraic datatype
I as defined in Coq:

e Each constructor C of I is injective, that is:

forall (x1 y1: A1) ... (xn yn: An),
Cx1 ... xn=Cyl ... yn—-x1 = y1 A ... AN xn = yn

e If C and C’ are two distinct constructors of I, then their direct images are disjoint, that is:

8Seeﬁleelimination_polymorphism.v.
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forall (x1 : A1) ... (xn : An) (x1’: A1°) ... (xp’ : Ap?),
Cx1 ... xn <> C” x1’ ... xp’

Any inhabitant of I is obtained from one of the C; of I, that is:

forall (x: I),
(Cexists xp1 : Arg)...(exists xy,1 @ Arg), X = Cp X1... X1x, )
V..V((exists xp1 : Ap1)...(exists Xk, : Anx,), X = Cp Xpi... Xnx, )

Note that the above propositions are statements of first-order logic and as such, may be communicated to
a first-order automatic theorem prover. However, the third property is written with existential quantifiers
which are not treated by the back-end we use in our proof of concept (see Sec 4), so our tactic does not
generate this property for the moment.

We define the tactic interp_alg_types’ that finds the algebraic datatypes of Coq (e.g., list Z)
which occur in the goal and automatically proves that (1) their constructors are injective (2) the direct
images of their constructors are disjoint.

If we come back to Example 1, the datatypes 1ist and option are both made explicit so that the
automatic prover is able to conclude.

4 Proof of concept

As explained in § 2 and the left part of Figure 2, the methodology is to combine such transformations,
possibly in different ways, then call an automatic solver.

In this section, we provide a proof of concept: all the transformations in the previous section are
combined in a fully automatized tactic called snipe which applies them and sends the resulting goal and
context to the SMT solver veriT through the SMTCoq plugin. This is illustrated by the right part of
Figure 2. We now detail this combination and come back to examples illustrating the snipe tactic.

4.1 Proof strategy

As presented in Figure 2 we proceed as follows. We first apply a combination of our transformations in
a unique tactic called scope. Thanks to the SMT Coq plugin, we send the goal and the local context with
additional lemmas obtained by the scope tactic to the external solver veriT. Let us describe this two-part
process more precisely:

e scope: This tactic consists of applying first interp_alg_types to all algebraic types in the goal
and in the context, except types already interpreted by the SMT solver like Z or the Booleans.
Then it calls the get_definitions tactic: it adds new definitional hypotheses in the local con-
text, except for the symbols which are part of the built-in theories of veriT. For instance, the
definition of the addition in Z is not needed. Then, the tactics expand, eliminate_fix and
elimination_pattern_matching are applied to the new generated hypotheses. Finally, the
monomorphization tactic will assert and prove a new proposition for every polymorphic hypothe-
sis applied to a subterm of type Type in the goal. A tuple of Coq lemmas choosen by the user can
be added as parameters to snipe: the tactic will also try to instantiate them if they are polymorphic.

9See file interpretation_algebraic_types.v.
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Figure 2: General methodology (left) and proof of concept (right)

e Once scope is applied, the tactic verit is called. It is an SMTCoq tactic which solves first-order
goals in a combination of built-in theories (such as linear arithmetic or congruence) by calling the
external SMT solver veriT and reconstructing a Coq proof. Note that:

— this tactic requires equalities to be decidable (this is the proposition CompDec A mentionned
in the introduction)

— its implementation relies on the Coq standard library for machine integers and arrays, which
axiomatize these data-structures; that is why the tactic snipe also relies on these axioms.

4.2 Examples

Let us go back to our examples'®. Example 1 is automatically solved with snipe. Note however that we
need an additional hypothesis Compdec A: as previously mentionned the type A has to have a decidable
equality for SMTCoq to reason on it. The scope part of the tactic adds all the hypotheses about the
constructors of types option and list, and they are instantiated by the variable A. The definition of
hd_error is also added in the local context. Since it contains a pattern matching, a proposition for every
pattern is created and proved. The tactic verit transforms the first-order hypotheses into assertions for
veriT and solves the goal.

Example 2, about search, requires the instantiation of the previous lemma search_app. Again, it is
solved automatically by the tactic snipe, taking this time the lemma search_app as a parameter. The
proof becomes:

Goal forall (A : Type) (H : CompDec A) (x: A) (11 12 13: 1list A),

search x (11 ++ 12 ++ 13) = search x (13 ++ 12 ++ 11).
Proof. intros A H. snipe @search_app. Qed.

10See file examples. v.
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The instantiation of the polymorphic lemma is done by the monomorphization tactic within scope. The
part of the proof which required a lemma about Booleans and an adequate instantiation of it is automati-
cally handled by the capabilities of veriT to perform propositional reasoning with quantifier instantiation.

More interestingly, we can also prove the intermediate lemma in a very satisfactory way. This lemma
is proved by induction on the first list, and induction is currently out of the scope of most automated
provers. However, once this induction is done, the user should not worry about proving the sub-cases.
This is made possible by our tactic:

Lemma search_app : forall {A:Type} {H:CompDec A} x (11 12:1ist A),
search x (11 ++ 12) = (search x 11) || (search x 12).

Proof. intros A H x 11 12. induction 11 as [ | x0 10 IH]; simpl;
snipe. Qed.

5 State of the art

General automation in proof assistants Improving automation in proof assistants based on Type
Theory is a long-standing research topic.

Decision procedures for dedicated theories have met a large success, witnesses the daily used
ring [11] and 1ia [2] tactics in Coq, deciding equalities respectively in (semi-)ring structures and propo-
sitions in the linear integer arithmetic theory. Automatic tactics also exist for propositional and first-order
logic, such as intuition, firstorder or crush[6] in Coq. The limitations of these tactics are that they
are useless as soon as the reasoning requires handling multiple aspects at one time (such as propositional
logic, arithmetic, equalities...), which is very often the case when using an interactive theorem prover.

This is why research in this area moved towards making use of more complex automatic solvers,
mainly SMT solvers, which can combine theories with tableau or first-order provers that usually do not
natively handle theories but better deal with quantifiers. In this direction, two approaches are usually
considered: the autarkic approach, which consists in implementing and proving correct the automatic
prover in the proof assistant (e.g., the SMT solver ergo [13] in Cogq, the tableau prover blast [14] in
Isabelle/HOL, or the first-order solver metis in the HOL family [12]), and the skeptical approach, which
consists in using external provers that output explanations and only checking these explanations at each
execution (e.g., SMTCoq [9] in Coq or smt [5] in Isabelle/HOL).

However, as we explained, goals in proof assistant usually do not belong to first-order logic, which
is the logic handled by these provers. This is why encodings need to be performed. In this direction, the
most successful tool is sledgehammer [15] for Isabelle/HOL, which mixes both an autarkic and skeptical
approches: it encodes a higher-order goal, calls many external solvers in parallel (using lemmas from
the global context selected by machine learning), and uses their answers to reconstruct a proof of the
original goal, by mixing standard tactics with smt or metis. This approach was ported to Coq in the
CogHammer [7] tool, but with less success.

We identified one main limitation of CogHammer to be proof reconstruction: the tool tries to build
a proof of the original goal, but the external solvers proved the encoded goal. This encoded goal is far
from the original goal because CogHammer uses a one pass, very complex encoding of CIC into FOL.
This was not a problem for Isabelle/HOL whose logic is simpler. One cannot rely on the reconstruction
of a proof of the encoded goal, because then it should be proved correct with respect to the original goal,
which is very difficult again because of the complexity of the encoding.

This is why we proposed this new approach, where the encoding is a combination of small trans-
formations that can either be certified or output Coq proofs (certifying). Then the resulting goal can
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be checked by any approach for first-order proving since we do not need to reconstruct a proof of the
original goal. This approach with small, independent transformations was inspired by other tools that
use external automatic solvers, in particular Why3 [10].

As we explained, we are independent of the back-end used to discharge the first-order goal produced
by the transformations. We chose SMTCoq in our proof of concept. It restricts us to hypotheses and
goals with only universal and prenex quantification, but offers built-in theories, which seems a good
trade-off for the kind of goals that are commonly present in Coq. Targeting first-order provers could also
be done by providing other strategies that would do less work on quantifiers but encode theories such as
linear arithmetic.

We leave for future work a detailed comparison with CogHammer, both in terms of performance and
expressivity. For this latter, we are currently theoretically less expressive than CogHammer (since we only
handle a small part of Coq logic beyond FOL), but

e we can detail the fragment of Coq logic that we handle, whereas the success of CogHammer is more
unpredictable,

e we believe that the approach will scale when implementing more involved transformations.

Recently, automatic provers have pushed towards more expressivity than FOL [1]. Once they can be
used in proof assistants such as Coq (currently they do not output certificates for higher-order aspects),
it will be very easy to integrate them in our setting: it simply requires unplugging the transformations
that deal with the aspects newly handled by these provers. We could also consider using the theory of
algebraic datatypes supported by some SMT solvers to handle a sub-part of Coq inductive types.

Meta-programming in Coq The approach by certified/certifying transformations relies on meta-
programming. As explained in § 2, we use two meta-programming tools available in Coq: Ltac and
MetaCoqg. These tools are complementary: Ltac allows us to handle surface meta-programming very
easily, whereas MetaCoq allows us to go deeper into the structure of terms, at the cost of difficult aspects
such as De Bruijn indices. We plan for future work to look at other tools that could enjoy both worlds,
in particular Ltac2 [16] and Cog-Elpi [18].

6 Conclusion and perspectives

We have developed a methodology to encode some aspects of CIC into FOL by writing independent and
modular transformations. This modularity is useful to delimit the features of CIC we can translate, and
to combine the transformations in a chosen order. As a proof of concept, we created a Coq tactic snipe
which performs the transformations described above and calls an external SMT solver. Some Coq proofs
are now totally automatized thanks to our tactic.

Now that we have the crucial and basic transformations to extend the local context with first-order
hypotheses, we plan to tackle more complex transformations. This future work will help to automatize
other aspects of Coq logic. Here is a non exhaustive list of transformations or features we would like to
treat:

¢ Encoding of higher-order terms. We may treat them as usual first-order terms and add an ap-
plicative symbol @ to the language signature. Thus, f(x) becomes @ (f,x).

¢ Encoding of inductive predicates. They are a particular case of dependent typing, and we would
like to obtain first-order statements from them as they are very common whenever program speci-
fications are written in Coq.
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e Skolemization. As we may use external solvers which do not deal with existential quantifiers
after applying our tactic scope, we would like to be able to encode them and thus perform a
skolemization on the goal and the hypotheses.

Another important part of our future work is to improve performance and do a benchmark analysis.
This benchmark has to be qualitative and quantitative, that is, we need to evaluate the efficiency of our
tactic and to know how many goals it can solve. In particular, we will compare snipe with CoqHammer.
As previously said, we hope that a more elaborated version of our tactic will do better than CogHammer
in the fragment of CIC we chose to deal with.
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Recently, we developed an automated theorem prover for projective incidence geometry. This prover,
based on a combinatorial approach using matroids, proceeds by saturation using the matroid rules.
It is designed as an independent tool, implemented in C, which takes a geometric configuration as
input and produces as output some Coq proof scripts: the statement of the expected theorem, a proof
script proving the theorem and possibly some auxiliary lemmas. In this document, we show how to
embed such an external tool as a plugin in Coq so that it can be used as a simple tactic.

1 Introduction

The Coq proof assistant [7, 3] is a generic theorem prover, with huge capabilities. One of its main
strengths is that it allows carrying out proofs either interactively or under some assumptions automati-
cally. Its standard tactics allow to solve goals in some well-understood fragments of its underlying logic,
e.g. first order logic using the tactic firstorder or linear arithmetic using the tactic 1ia. When
the proofs get more technical or are outside of the scope of these automatic tactics, the user can take
control and thus we are not limited any more by the power of automation. Contrary to what happens
with SMT provers, like Z3 [12] or Vampire [9], which either succeed or fail on the goal, in Coq, the user
can perform some proof steps interactively and then rely again on automated tools to solve the goal.

However, it requires a lot of expertise to be able to develop some new tactics in Coq to help the user
proving theorems more easily. Most tactics are written using the Ltac tactic language [8], but writing
tactics sometimes also requires to implement some features in OCaml in a Coq plugin.

In the context of geometry, we developed an independent theorem prover, implemented in C, which
handles first-order statements. It takes as input a geometric configuration, written as plain text, and
returns a Coq proof script, ready to be verified (type-checked) by Coq. We choose to proceed that
way in order to make the development as easy as possible for a non-expert in Coq internals. The only
requirements are to know the specification and the tactic languages of Coq, and thus to be able to produce
some Coq files (actually a simple . v file).

In this article, we show how to integrate such an automated prover as a tactic in Coq, without modi-
fying the interface of the automated prover.

In Sect. 2, we briefly present the automated prover, which we shall see as a blackbox in the rest of
this document. In Sect. 3, we show how to translate a Coq goal into the input language of our prover. In
Sect. 4, we investigate how to use the Coq script produced by our prover to solve the initial Coq goal. In
Sect. 5, we discuss our implementation choices and explain how it could be extended to other external
provers.

Chantal Keller and Mathias Fleury (Eds.): Seventh Workshop © N. Magaud
on Proof eXchange for Theorem Proving (PxTP) This work is licensed under the
EPTCS 336, 2021, pp. 4047, doi:10.4204/EPTCS.336.4 Creative Commons Attribution License.
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Figure 1: A simple geometric configuration illustrating the statement of Fig. 2

2 The automated prover

We work in the framework of projective incidence geometry, which is one of the simplest theory that
can be used to capture most aspects of geometry. It is based on an incidence relation between points
and lines. In its projective version, we assume that two coplanar lines always intersect. One of its main
advantages is that it can be described using only a few axioms; thus it is a well-suited framework to
try and automate proofs of theorems. This geometry can be described either in a synthetic way, writing
statements using the incidence relation €, or in a more combinatorial way, using the rank of a set of
points [11]. For instance, the property that a line has at least three distinct points can be expressed in a
synthetic way as follows :

Vi : Line,JABC : Point,A#BAB#CNA#CNA€lINBelNCeEL
It can also be implemented as the following statement using the matroid based description using ranks :
VAB : Point,rk{A,B} =2 = 3C: Point,rk{A,B,C} = rk{B,C} = rk{A,C} = 2.

In the combinatorial approach, we exclusively deal with points and geometric reasoning is replaced
by some computations relying on the combinatorial properties of the underlying matroid on which the
rank properties are based [11]. Concretely, the rank of a set of two distinct points A and B is equal to 2.
The rank of a set of three collinear points A, B, and C is also equal to 2. The rank of the whole plane
in a two dimensional setting is 3. In a space of dimension n > 3, the maximum rank of a set of points is
n—+ 1. In the case n = 3, a set of points whose rank is 4 is not a plane and actually captures the whole
space.

The above two approaches are shown to be equivalent [5] and the combinatorial one can be success-
fully used to automatically prove some emblematic theorems of 3D projective incidence geometry [4].
Among them we can cite Desargues’ theorem and Dandelin-Gallucci’s theorem [6]. The automated
prover, named Bip for matroid Based Incidence Prover, is designed to prove equality between ranks of
various sets of points. It is based on rank interval computations. For each subset of the powerset of the
geometric configuration, we define the minimum and the maximum rank (in the worst case, when no
information is known, the rank of each non-empty subset is between 1 and 4). We then use the matroid
axioms, which specify the rank function, and we reformulate them as rewrite rules to incrementally re-
duce the size of the interval for each subset. This is achieved using a saturation algorithm, which is run
on a valuated graph implementing the inclusion lattice of the point powerset, labeled by the minimum
and maximum rank. Once the saturation graph is built, it is traversed to build a Coq proof script which
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context
dimension 3
layers 1
endofcontext
layer O
Lemma ex2 : points
forall A B C D:Point, A BCD
rk (A :: B :: nil) = 3 —> hypotheses
D :: nil) 2 —> CD : 2
nil) = 2 - CA : 2
nil) = 2 - ACD : 2
B :: nil) ADB : 3
Proof. conclusion
ACB : 3
endoflayer
conclusion
ACB : 3
end

QO » QO
v v ol

[
w

Figure 2: The Coq statement of a simple projective geometry theorem (left) and the corresponding input
for the automated prover (right)

actually proves the statement at stake. Technical details about the implementation can be found in [4]
and the current implementation of the prover as well as several examples of applications are available in
the git repository: https://github.com/pascalschreck/MatroidIncidenceProver.

In the next sections, we show how to integrate such a tool so that it can be simply used as a tactic in
Cogq.

3 Translating a Coq statement into the input language of the prover

Provided that we define the theory of ranks in Coq (see Appendix A), as we first did in [10], we can state
geometric properties as Coq lemmas using equalities on the ranks of some sets of points.

A Coq statement featuring some rank properties can easily be translated into an input file for the
automated prover. It simply consists in traversing the context and the goal, harvesting all variables
of type Point and all statements of the form rk(e)=k. All other statements are simply dropped, as
they could not be used by the automatic prover yet. Fig. 2 shows the correspondence between the Coq
statement of a simple theorem in projective geometry, depicted in Fig. 1, and its translation into the input
langage of our automated prover.

This translation can be easily implemented inside a Coq plugin, following the examples of the plugin
tutorial available in the reference manual of Coq [7]. It produces a simple text file, which can be then
used as input by the Bip prover. In the generated input of the Bip prover shown in the right part of
Fig.2, layers are a legacy tool which was used to decompose the context at stake. This allows to build
smaller proof scripts which can be easily checked by Coq. In the current version of the prover, each
deduced statement is stated as a lemma and thus layers are not needed anymore. Once the input file is
generated, we simply execute the external prover from Coq using the Unix . system primitive of the
OCaml library. It produces a Coq file (. v), with the appropriate prelude, which is ready to be verified
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by Cogq.

An implementation of this translation as well as the mechanisms to use the produced proof inside
Coq is available in this git repository: https://github.com/magaud/projective—prover.
It works with Coq 8.12.2 (December 2020) and we are currently updating it to the most recent release of
Cogqg.

4 Running the (generated) Coq script and proving the goal

Assuming the automated prover manages to produce a Coq proof script which proves the goal at stake,
we still need to load this Coq file inside Coq and use the externally proven lemma to actually prove the
initial goal. Let us check what happens with our simple example. As the automated prover reorders the
points in the sets at stake (they are ordered according to the order in which they were introduced, during
the construction of the input file), the automatically generated statement and the initial one slightly differ.
In our case, the prover produces the following statement in a file named pprove_ex2.v!':

Lemma LABC : forall A B C D ,

rk (A C nil) = 2 ->

rk (A B D :: nil) = 3 —>

rk (C D nil) = 2 —>

rk (A C D :: nil) = 2 —>

rk (A B C :: nil) = 3.
Proof.

Proving the initial goal ex2 from Sect.3 requires compiling all the automatically generated code leading
to the proof of lemma LABC and loading it in Coq. Then the statement LABC can be almost directly
applied to prove the statement at stake ex2. The slight differences between these two statements lie in
the order of the points in each hypothesis or conclusion of the form rk(e) = n. Points need to be reordered
according to the order in which they are introduced in the context. This is achieved by running the Ltac
code solve_using? which transforms the initial goal until its exactly matches the automatically-
proven statement.

Require Import pprove_ex2.
solve_using LABC.

At this point, even if we can be fairly confident that the whole machinery works properly, we do not
have a strong warranty that everything went as planned. The last step of the proof is, as usual in Coq, to
type-check the built proof using the concluding command Qed. Once this step is completed, we are sure
that our prover actually proved the initial statement provided by the user.

5 Discussion

We choose a simple but efficient approach to run the prover inside Coq. One of the main advantages of
this approach is that it does not require the designer of the external prover to have any understandings
of the internals of Coq. It simply requires the developer to be knowledgeable of the way Coq scripts

IThe name of the Lemma is automatically generated, starts from the I of Lemma, followed by all the names of the points
used in the conclusion.
2The code of solve_usingisin the file Ltac_utils.v
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are written. This is a skill every Coq user has. Such an approach thus makes every Coq user a potential
tactic writer, provided we can build an interface linking Coq statements to the expected inputs of such
an external prover. Indeed, the critical part of our tool is the translation of the statement from Coq to the
input language of the prover. The proof generation does not need to be formally verified. Indeed, Coq
will reject the proof script if it does not actually prove the statement at stake (either because statements
do not coincide, or because the proof script is incorrect).

The connection from Coq to the automated prover is fairly straightforward. However the embedding
of the automated prover into Coq is a bit more technical. It is not fully automated yet because call-
ing a command (to load a compiled .vo file) from a tactic requires subtle interactions with the State
Transaction Machine (which allows for faster and parallel executions of some parts of the proofs [2]) to
maintain consistency of the proof document. For the time being, we make the pprove tactic display the
command and tactic to be applied to complete solving the goal. In the near future, we plan to integrate
these two extra steps directly into the code of the pprove tactic.

We think this simple way of embedding the prover could be generalized to other external provers.
So far, our automated prover is running from scratch every time we compute the proof again. We plan
to add some memoization techniques in order to avoid recomputing the saturation every time. We could
aim at a more incremental tool where the saturation mechanism is carried out when a new point is added
to the context.

More integrated tools to make automated proofs exist [1], designed to embed SAT and SMT solvers
inside Coq and ensure that they provide correct decision procedures. Their approach is safer than ours,
but we argue that simply generating a Coq file is much easier to carry out by an average programmer and
can be used as a first step towards integrating an automated tool into Coq.

6 Conclusions and Perspectives

We successfully embed the external prover Bip as a simple tactic to be used in Coq using Ltac. We
proceed in two steps: we first develop a prover, which is completely independent from the internals of
Coq. The second step consists in connecting this external prover to Coq. We call the prover from Coq
and retrieve the external proof script it generates. We then simply feed this script to Coq to type-check
it. The API of Coq is not intended to make it easy to embed some Coq proof scripts generated externally
to prove a goal. We believe it would be a nice feature to ease this process by allowing a tactic to simply
run a snippet of Coq code loaded from a file.

In the longer run, improving our prover requires to make it able to take synthetic geometry statements
as input rather than sets of points and ranks. We carry on developing a way to automatically translate
synthetic geometry statements into ranks equalities in Coq, so that the user deals with synthetic geometry,
whereas the prover deals with sets of points and their ranks in the back-end. A draft implementation of
this translation is available in the file t ranslate. v of the git repository.

Finally, we think our example describes an efficient and straight-to-the-point approach to embed an
automated prover inside Coq and is useful as a first step towards a more integrated embedding.
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A few lines of code specifying the rank function and its properties

We outline the context describing the rank function which is loaded before starting the proof in Coq. The
axioms describe the properties of the rank function and are used in the automatically built Coq proof
script. See files basic_matroid_list.vandbasic_rank_space_list.v for details.

Parameter Point : Set.

Parameter eq dec : forall A B : Point, {A = B} + {7 A = B}.
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Definition equivlist (1 1'’:1ist Point) :=
forall x, List.In x 1 <-> List.In x 1'.

Parameter rk : list Point —-> nat.
Parameter rk_compat
forall x x', equivlist x x’' -> rk x = rk x’'.

Global Instance rk_morph : Proper (equivlist ==> (@Logic.eq nat)) rk.

Parameter matroidl_a : forall X, rk X >= 0.
Parameter matroidl_b : forall X, rk X <= length X.
Parameter matroid2
forall X Y, incl X Y -> rk X <= rk Y.
Parameter matroid3
forall X Y, rk(X ++ Y) + rk(list_inter X Y) <= rk X + rk Y.

Parameter rk_singleton_ge

forall A, rk (A :: nil) >= 1.
Parameter rk_couple_ge
forall AB, " A =B —-—> rk(A :: B :: nil) >= 2.

Parameter rk_three_points_on_lines

forall A B, exists C, rk (A :: B :: C :: nil) = 2 /\
rk (B :: C :: nil) = 2 /\
rk (A :: C :: nil) = 2.

Parameter rk_inter

forall ABCD, rk(A :: B :: C :: D :: nil) <= 3 ->
exists J : Point, rk(A :: B :: J :: nil) = 2 /\
rk (C :¢: D :: J :: nil) = 2.

Parameter rk_lower_dim

exists A0 Al A2 A3, rk( A0 :: Al :: A2 :: A3 :: nil) = 4.
Parameter rk_upper_dim

forall e, rk(e) <= 4.

B An example of an automatically generated file

The file pprove_ex2 . v, which is 163-line long including comments, is automatically generated in the
process of proving the statement ex?2. It is available (or can be regenerated) from https://github.
com/magaud/projective-prover/blob/master/theories/pprove_ex2.v. All state-
ments, including intermediary statements have exactly the same hypotheses. In addition, there is exactly
one statement for each deduction achieved during the saturation phase of the algorithm. The last state-
ment LABC corresponds to the actual statement proved automatically. This lemma is then reused to prove
the initial Coq goal: ex2 in our example.
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Require Import lemmas_automation_g.

Lemma LB : forall A B C D ,

rk(A :: C :: nil) =2 —-> rk(A :: B :: D :: nil) = 3 —>
rk(C :«: D :: nil) =2 -> rk(A :: C :: D :: nil) = 2 ->
rk(B :: nil) = 1.
Proof. [...] Qed.
Lemma LAC : forall A B C D ,
rk(A :: C :: nil) =2 —> rk(A :: B :: D :: nil) = 3 —>
rk(C :«: D :: nil) =2 -> rk(A :: C :: D :: nil) = 2 ->
rk(A :: C :: nil) = 2.
Proof. [...] Qed.
[...]
Lemma LABC : forall A B C D ,
rk(A :: C :: nil) = 2 -> rk(A :: B :: D :: nil) = 3 —>
rk(C :: D :: nil) =2 -> rk(A :: C :: D :: nil) =2 ->
rk(A :: B :: C :: nil) = 3.
Proof.
intros A B C D
HACeqg HABDeqg HCDeqg HACDeqg .
assert (HABCm2 : rk(A :: B :: C :: nil) >= 2).
{
try assert (HACeq : rk(A :: C :: nil) = 2)
by (apply LAC with (A := A) (B := B) (C :=C) (D := D) ;
try assumption).
assert (HACmtmp : rk(A :: C :: nil) >= 2)
by (solve_hyps_min HACeq HACm2) .
assert (Hcomp : 2 <= 2) by (repeat constructor).
assert
(Hincl : incl (A :: C :: nil) (A :: B :: C :: nil))

by (repeat clear_all_rk;my_inO).

assert
(HT := rule_ 5 (A :: C :: nil) (A :: B :: C :: nil)
2 2 HACmtmp Hcomp Hincl) ;apply HT.

}
assert (HABCm3 : rk(A :: B :: C :: nil) >= 3).
[...]
assert (HABCM : rk(A :: B :: C :: nil) <= 3)
by (solve_hyps_max HABCeqg HABCM3) .
assert (HABCm : rk(A :: B :: C :: nil) >= 1)
by (solve_hyps_min HABCeqg HABCml) .
intuition.

Qed.
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The dramatic improvements in Boolean satisfiability (SAT) solving since the turn of the millennium
have made it possible to leverage state-of-the-art conflict-driven clause learning (CDCL) solvers for
many combinatorial problems in academia and industry, and the use of proof logging has played a
crucial role in increasing the confidence that the results these solvers produce are correct. However,
the conjunctive normal form (CNF) format used for SAT proof logging means that it is hard to extend
the method to other, stronger, solving paradigms for combinatorial problems.

We show how to instead leverage the cutting planes proof system to provide proof logging for
pseudo-Boolean solvers that translate pseudo-Boolean problems (a.k.a 0-1 integer linear programs)
to CNF and run CDCL. We are hopeful that this is just a first step towards providing a unified proof
logging approach that will also extend to maximum satisfiability (MaxSAT) solving and pseudo-
Boolean optimization in general.
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The first iteration of the proof format used by the SMT solver veriT was presented ten years ago at
the first PxXTP workshop. Since then the format has matured. veriT proofs are used within multiple
applications, and other solvers generate proofs in the same format. We would now like to gather
feedback from the community to guide future developments. Towards this, we review the history
of the format, present our pragmatic approach to develop the format, and also discuss problems that
might arise when other solvers use the format.

Over the years the production of machine-consumable formal proofs of unsatisfiability from SMT
solvers [6] has attracted significant attention [4]. Such proofs enable users to certify unsatisfiability
results similarly to how satisfiable results may be certified via models. However, a major difficulty that
SMT proof formats must address is the complex and heterogeneous nature of SMT solvers: a SAT solver
drives multiple, often very different, theory solvers; instantiation procedures generate ground instances;
and heavily theory-dependent simplification techniques ensure that the solvers are fast in practice. More-
over, how each of these components works internally can also differ from solver to solver. As a testament
to these challenges proof formats for SMT solvers have been mostly restricted to individual solvers and no
standard has emerged. To be adopted by several solvers, an SMT proof format must be carefully designed
to accommodate needs of specific solvers. This will require repeated refinement and generalization.

The basis for our efforts in this field is the proof format implemented by the SMT solver veriT [8] that
is now mature and used by multiple systems. To further improve the format, as well as to accommodate
not only the reasoning of the SMT solver veriT but also of other solvers, we are currently extending the
format and developing better tooling, such as an independent proof checker. To facilitate this effort and
overall usage, we are also writing a full specification. To emphasize the independence of the format we
are baptizing it Alethe.! We do not presume to propose a standard format a priori. Instead we believe that
Alethe, together with its tooling, can provide a basis for further discussions on how to achieve a format
to be used by multiple solvers.

1 The State of Alethe

Alethe combines two major ideas whose roots reach back ten years to the first PXTP workshop in 2011 [7,
9]. It was proposed as an easy-to-produce format with a term language very close to SMT-LIB [5], the
standard input language of SMT solvers, and rules with a varying level of granularity, allowing implicit

! Alethe is a genus of small birds and the name resembles aletheia, the Greek word for truth.
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proof steps in the proof and thus relying on powerful proof checkers capable of filling the gaps. Since
then the format has been refined and extended [2]. It is now mature, supports coarse- and fine-grained
proof steps capturing SMT solving for the SMT-LIB logic UFLIRA? and can be reconstructed by the
proof assistants Coq [1, 11] and Isabelle [12, 14]. In particular, the integration with Coq was also used as
a bridge for the reconstruction of proofs from the SMT solver CVC4 [3] in Coq, where its proofs in the
LFSC format [15] were first translated into the veriT format before reconstruction. Finally, the format
will also be natively supported in the upcoming cvcS. solver?

On the one hand, Alethe uses a natural-deduction style calculus driven mostly by resolution [7]. To
handle first-order reasoning, dedicated quantifier instantiation rules are used [9]. On the other hand,
it implements novel ideas to express reasoning typically used for processing, such as Skolemization,
renaming of variables, and other manipulations of bound variables [2]. While the format was always
inspired by the SMT-LIB language, we recently [12] changed the syntax of Alethe to closely resemble the
command structure used within SMT-LIB. When possible Alethe uses existing SMT-LIB features, such
as the define-fun command to define constants and the :named annotation to implement term sharing

The following proof fragment gives a taste of the format. The fragment first renames the bound
variable in the term 3x. f(x) from x to vr and then skolemizes the quantifier. A proof is a list of commands.
The assume command introduces an assumption, anchor starts a subproof, and step denotes an ordinary
proof step. Steps are annotated with an identifier, a rule, and premises. The SMT-LIB command define-
fun defines a function. The rule bind used by step t1 performs the renaming of the bound variable. It uses
a subproof (Steps t1.t1 and t1.t2). The subproof uses a context to denote that x is equal to vr within
the subproof. The anchor command starts the subproof and introduces the context. The bind rule does
not only make it possible to rename bound variables, but within the subproof it is possible to simplify the
formula as done during preprocessing. The steps t2 and t3 use resolution to finish the renaming. In step
t4 the bound variable is skolemized. Skolemization uses the choice binder € and derives f(evr. f(vr))
from Jvr. f(vr). To simplify the reconstruction the choice term is introduced as a defined constant (by
define-fun). Finally, resolution is used again to finish the proof.

(assume a0 ( ((x A)) (£ )N
(anchor :step tl :args (:= x vr))

(step tl1.t1 (¢l (= x vr)) :rule cong)
(step t1.t2 ( (= (f x) (f vr))) :rule cong)
(step t1 (cl (= ( ((x A)) (f x))
( ((vr A)) (£ vr)))) :rule bind)
(step t2 (cl ( (= ( ((vr A)) (£ x))
( (Gvr 1)) (£ vr))))

( ( (tvr A)) (£ x)))

( ((vr A)) (£ vr))) :rule equiv_posl)
(step t3 (cl ( ((vr A)) (f vr))) :premises (a0 tl t2) :rule resolution)
(define-fun X () A (choice ((vr A)) (f vr)))
(step t4 ( (= ( ((vr L)) (f vr)) (f X))) :rule sko_ex)
(step t5 (cl ( = ( (Gvr A)) (£ vr)) (£ X)))

( ( (Gvr A)) (f vr)))

(f X)) :rule equiv_posl)
(step t6 (cl (f X)) :premises (t3 t4 t5) :rule resolution)

2That is the logic for problems containing a mix of any of quantifiers, uninterpreted functions, and linear arithmetic.
Shttps://cvcd.github.io/2021/04/02/cvcE-announcement . html



Schurr, Fleury, Barbosa, and Fontaine 51

The output of Alethe proofs from veriT has now reached a certain level of maturity. The 2021 version
of the Isabelle theorem prover was released earlier this year and supports the reconstruction of Alethe
proofs generated by veriT. Users of Isabelle/HOL can invoke the smt tactic. This tactic encodes the
current proof goal as an SMT-LIB problem and calls an SMT solver. Previously only the SMT solver Z3
was supported. Now veriT is supported too. If the solver produces a proof, the proof is reconstructed
within the Isabelle kernel. In practice, users will seldom choose the smt tactic themselves. Instead, they
call the Sledgehammer tool that calls external tools to find relevant facts. Sometimes, the external tool
finds a proof, but the proof cannot be imported into Isabelle, requiring the user to write a proof manually.
The addition of the veriT-powered smt tactic halves [14] the rate of this kind of failures. The improvement
is especially pronounced for proofs found by CVC4. A key reason for this improvement is the support
for the conflicting-instance instantiation technique within veriT. Z3, the singular SMT solver supported
previously, does not implement this technique. Nevertheless, it is Alethe that allowed us to connect veriT
to Isabelle, and we hope that the support for Alethe in other solvers will ease this connection between
powerful SMT solvers and other tools in the future.

The process of implementing proof reconstruction in Isabelle also helped us to improve the proof
format. We found both, possible improvements in the format (like providing the Farkas’ coefficient
for lemmas of linear arithmetic) and in the implementation (by identifying concrete errors). One major
shortcoming of the proofs were rules that combined several simplification steps into one. We replaced
these steps by multiple simple and well-defined rules. In particular every simplification rule addresses a
specific theory instead of combining them. An interesting observation of the reconstruction in Isabelle
is that some steps can be skipped to improve performance. For example, the proofs for the renaming
of variables are irrelevant for Isabelle since this uses De Bruijn indices. This shows that reconstruction
specific optimizations can counterbalance the proof length which is increased by fine-grained rules. We
will take this prospect into account as we further refine the format.

2 A Glance Into the Future

The development of the Alethe proof format so far was not a monolithic process. Both practical consid-
erations and research progress — such as supporting fine-grained preprocessing rules — influenced the
development process. Due to this, the format is not fully homogeneous, but this approach allowed us to
quickly adapt the format when necessary. We will continue this pragmatic approach.

Speculative Specification. We are writing a speculative specification.* During the development of the
Isabelle reconstruction it became necessary to document the proof rules in a coherent and complete
manner. When we started to develop the reconstruction there was only an automatically generated list
of rules with a short comment for each rule. While this is enough for simple tautological rules, it does
not provide a clear definition of the more complex rules such as the linear arithmetic rules. To rectify
this, we studied veriT’s source code and wrote an independent document with a list of all rules and a
clear mathematical definition of each rule. We chose a level of precision for these descriptions that serves
the implementer: precise enough to clarify the edge case, but without the details that would make it a
fully formal specification. We are now extending this document to a full specification of the format. This
specification is speculative in the sense that it will not be cast in stone. It will describe the format as it is
in use at any point in time and will develop in parallel with practical support for the format within SMT
solvers, proof checkers, and other tools.

“4The current version is available at http: //www.verit-solver.org/documentation/alethe-spec.pdf.



52 Towards a Generic SMT Proof Format

Flexible Rules. The next solver that will gain support for the Alethe format is the upcoming cvc$5 solver.
Implementing a proof format into another solver reveals where the proof format is too tied to the current
implementation of veriT. On the one hand, new proof rules must be added to the format — e.g., veriT
does not support the theory of bitvectors, while cvc5 does. When CVC4 was integrated into Coq via a
translation of its LFESC proofs into Alethe proofs [11], an ad-hoc extension with bitvector rules was made.
A revised version of this extension will now be incorporated into the upcoming specification of the format
so that cve5 bitvector proofs can be represented in Alethe. Further extensions to other theories supported
by cvcs, like the theory of strings, will eventually be made as well.

Besides new theories, cvc5 can also be stricter than veriT in the usage of some rules. This strictness
can simplify the reconstruction, since less search is required. A good example of this is the trans rule
that expresses transitivity. This rule has a list of equalities as premises and the conclusion is an equality
derived by transitivity. In principle, this rule can have three levels of “strictness’:

1. The premises are ordered and the equalities are correctly oriented (like in cvcd), e.g.,a=b, b =c,
and ¢ =d implies a = d.

2. The premises are ordered but the equalities might not be correctly oriented (like in veriT), e.g.,
b=a,c=>b,and d = c implies d = a.

3. Neither are the assumptions ordered, nor are the equalities oriented, e.g.,c =b,b=a,and d = ¢
implies d = a.

The most strict variant is the easiest to reconstruct: a straightforward linear traversal of the premises
suffices for checking. From the point of view of producing it from the solver, however, this version
is the hardest to implement. This is due to implementations of the congruence closure decision pro-
cedure [13, 10] in SMT solvers being generally agnostic to the order of equalities, which can lead to
implicit reorientations that can be difficult to track. Anecdotally, for cvc5 to achieve this level of detail
several months of work were necessary, within the overall effort of redesigning from scratch CVC4’s
proof infrastructure. Since we cannot assume every solver developer will, or even should, undertake such
an effort, all the different levels of granularity must be allowed by the format, each requiring different
complexity levels of checking.

To keep the proof format flexible and proofs easy to produce, we will provide different versions of
proof rules, with varying levels of granularity as in the transitivity example case above, by annotating
them. This leverages the rule arguments, which are already used by some rules. For example, the Farkas’
coefficient of the linear arithmetic rule are provided as arguments. This puts pressure on proof checkers
and reconstruction in proof assistants to support all the variants or at least the most general one (at the
cost of efficiency). Hence, our design principle here is that the annotation is optional: the absence of an
annotation denotes the least strict version of the rule.

Powerful Tooling. We believe that powerful software tools may greatly increase the utility of a proof
format. Towards this end we have started implementing an independent proof checker for Alethe. In con-
trast to a proof-assistant-based reconstruction, this checker will not be structured around a small, trusted
kernel, and correct-by-construction extensions. Instead, the user would need to trust the implementation
does not lead to wrong checking results. Instead, its focus is on performance, support for multiple features
and greater flexibility for integrating extensions and refinements to the format. The Isabelle checker is
currently not suited to this task — one major issue is that it does not support SMT-LIB input files.’

5 A version capable of doing so was developed for Z3 but it was unfortunately lost.
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This independent checker will also serve as a proof “elaborator”. Rather than checking, it will also
allow converting a coarse-grained proof, containing implicit steps, to a fine-grained one, with more
detailed steps. The resulting proof can then be more efficiently checked by the tool itself or via proof-
assistant reconstructions. An example of such elaboration is the transitivity rule. If the rule is not in its
most detailed version, with premises in the correct order and none implicitly reordered, it can be elaborated
by greedily reordering the premises and adding proof steps using the symmetry of equality. Note however
that in the limit detailing coarse-grained steps can be as hard as solving an SMT problem. Should such
cases arise, the checker will rely on internal proof-producing procedures capable of producing a detailed
proof for the given step. At first the veriT and cvc5 solvers, which can produce fine-grained proofs for
several aspects of SMT solving, could be used in such cases.

A nice side effect of the use of an external checker is that it could prune useless steps. Currently
SMT solvers keep a full proof trace in memory and print a pruned proof after solving finishes. This is in
contrast to SAT solvers that dump proofs on-the-fly. For SAT proofs, the pruned proof can be obtained
from a full trace by using a tool like DRAT-TRIM. There is some ongoing work by Nikolaj Bjgrner on
73 to also generate proofs on-the-fly, but it is not clear how to support preprocessing and quantifiers.®

3 Conclusion

We have presented on overview of the current state of the Alethe proof format and some ideas on how we
intend to improve and extend the format, as well as supporting tools. In designing a new proof format
supported across two solvers we hope to provide a first step towards a format adopted by more solvers.
This format allows several levels of detail, and is thus flexible enough to reasonably easily produce proofs
in various contexts. We intend to define a precise semantics at each level though. This distinguishes our
format from other approaches, such as the TSTP format [16], that are probably easier to adopt but only
specify the syntax, leading to very different proofs generated by the various provers supporting it.

One limit of our approach for proofs is that we cannot express global transformations like symme-
try breaking. SAT solvers are able to add clauses (DRAT clauses) such that the overall problems is
equisatisfiable. It is unclear however how to add such clauses in the SMT context.

Overall, we hope to get feedback from users and developers to see what special needs they have and
exchange ideas on the proof format.

Acknowledgment We thank Bruno Andreotti for ongoing work on the proof checker and Hanna Lach-
nitt for ongoing work on the cvc5 support. We are grateful for the helpful comments provided to us by
the anonymous reviewers. The first author has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No.
713999, Matryoshka). The second author is supported by the LIT Al Lab funded by the State of Upper
Austria.

References

[1] Michaél Armand, Germain Faure, Benjamin Grégoire, Chantal Keller, Laurent Théry & Benjamin Werner
(2011): A Modular Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In Jean-Pierre Jouannaud
& Zhong Shao, editors: Certified Programs and Proofs, LNCS 7086, Springer, pp. 135-150, doi:10.1007/978-
3-642-25379-9_12.

Shttps://github.com/Z3Prover/z3/discussions/4881



54

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(1]

[12]

[13]

[14]

[15]

[16]

Towards a Generic SMT Proof Format

Haniel Barbosa, Jasmin C. Blanchette, Mathias Fleury & Pascal Fontaine (2019): Scalable Fine-Grained
Proofs for Formula Processing. Journal of Automated Reasoning, doi:10.1007/s10817-018-09502-y.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovié, Tim King, Andrew
Reynolds & Cesare Tinelli (2011): CVC4. In Ganesh Gopalakrishnan & Shaz Qadeer, editors: Computer
Aided Verification (CAV), Springer, pp. 171-177, doi:10.1007/978-3-642-22110-1_14.

Clark Barrett, Leonardo De Moura & Pascal Fontaine (2015): Proofs in satisfiability modulo theories. All
about proofs, Proofs for all 55(1), pp. 23—-44.

Clark Barrett, Pascal Fontaine & Cesare Tinelli (2017): The SMT-LIB Standard: Version 2.6. Technical
Report, Department of Computer Science, The University of lowa. Available at www.SMT-LIB.org.

Clark W. Barrett & Cesare Tinelli (2018): Satisfiability Modulo Theories. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith & Roderick Bloem, editors: Handbook of Model Checking., Springer, pp. 305-343,
doi:10.1007/978-3-319-10575-8_11.

Frédéric Besson, Pascal Fontaine & Laurent Théry (2011): A Flexible Proof Format for SMT: A Proposal. In
Pascal Fontaine & Aaron Stump, editors: PxTP 2011, pp. 15-26.

Thomas Bouton, Diego C. B. de Oliveira, David Déharbe & Pascal Fontaine (2009): veriT: An Open,
Trustable and Efficient SMT-solver. In Renate A. Schmidt, editor: CADE 22, LNCS 5663, Springer Berlin
Heidelberg, pp. 151-156, doi:10.1007/978-3-642-02959-2_12.

David Déharbe, Pascal Fontaine & Bruno Woltzenlogel Paleo (2011): Quantifier Inference Rules for SMT
Proofs. In Pascal Fontaine & Aaron Stump, editors: PxTP 2011, pp. 33-39.

Peter J. Downey, Ravi Sethi & Robert Endre Tarjan (1980): Variations on the Common Subexpression
Problem. J. ACM 27(4), pp. 758=771, doi:10.1145/322217.322228.

Burak Ekici, Alain Mebsout, Cesare Tinelli, Chantal Keller, Guy Katz, Andrew Reynolds & Clark Barrett
(2017): SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In Rupak Majumdar & Viktor Kuncak,
editors: CAV 2017, LNCS 10426, Springer, pp. 126—133, doi:10.1007/978-3-319-63390-9_7.

Mathias Fleury & Hans-Jorg Schurr (2019): Reconstructing veriT Proofs in Isabelle/HOL. In Giselle Reis &
Haniel Barbosa, editors: PxTP 2019, EPTCS 301, pp. 3650, doi:10.4204/EPTCS.301.6.

Greg Nelson & Derek C. Oppen (1980): Fast Decision Procedures Based on Congruence Closure. J. ACM
27(2), pp- 356-364, doi:10.1145/322186.322198.

Hans-Jorg Schurr, Mathias Fleury & Martin Desharnais (2021): Reliable Reconstruction of Fine-Grained
Proofs in a Proof Assistant. In: CADE 28, LNCS.

Aaron Stump, Duckki Oe, Andrew Reynolds, Liana Hadarean & Cesare Tinelli (2013): SMT proof checking
using a logical framework. Formal Methods in System Design 42(1), pp. 91-118, doi:10.1007/s10703-012-
0163-3.

Geoff Sutcliffe, Jiirgen Zimmer & Stephan Schulz (2004): TSTP Data-Exchange Formats for Automated
Theorem Proving Tools. In Weixiong Zhang & Volker Sorge, editors: Distributed Constraint Problem Solving

and Reasoning in Multi-Agent Systems, Frontiers in Artificial Intelligence and Applications 112, 10S Press,
pp. 201-215.



