
EPTCS 401

Proceedings of the

15th Workshop on

Programming Language Approaches to

Concurrency and Communication-cEntric

Software

Luxembourg City, Luxembourg, 6th April 2024

Edited by: Diana Costa and Raymond Hu

Published: 6th April 2024

DOI: 10.4204/EPTCS.401

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Diana Costa and Raymond Hu

Keynote Talk: Simple MultiParty Sessions . iii

Mariangiola Dezani-Ciancaglini

Keynote Talk: Verified Secure Routing . iv

Peter Müller

Presentations of Preliminary or Already-Published Work . v

Linear Contextual Metaprogramming and Session Types . 1

Pedro Ângelo, Atsushi Igarashi and Vasco T. Vasconcelos

Towards a Semantic Characterisation of Global Type Well-formedness . 11

Ilaria Castellani and Paola Giannini

Session Types for the Transport Layer: Towards an Implementation of TCP . 22

Samuel Cavoj, Ivan Nikitin, Colin Perkins and Ornela Dardha

Behavioural Types for Heterogeneous Systems (Position Paper) . 37

Simon Fowler, Philipp Haller, Roland Kuhn, Sam Lindley, Alceste Scalas and
Vasco T. Vasconcelos

Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses 49

Thien Udomsrirungruang and Nobuko Yoshida

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. ii–ii, doi:10.4204/EPTCS.401.0

© D. Costa and R. Hu

This work is licensed under the

Creative Commons Attribution License.

Preface

Diana Costa

Universidade de Lisboa, PT

dfdcosta@ciencias.ulisboa.pt

Raymond Hu

Queen Mary University of London, UK

r.hu@qmul.ac.uk

This volume contains the proceedings of PLACES 2024, the 15th edition of the Workshop on Pro-

gramming Language Approaches to Concurrency and Communication-cEntric Software. The workshop

is scheduled to take place in Luxembourg City, Luxembourg on April 6, 2024, as a satellite event of

ETAPS, the European Joint Conferences on Theory and Practice of Software.

PLACES offers a forum for exchanging new ideas on how to address the challenges of concurrent

and distributed programming, and how to improve the foundations of modern and future computer appli-

cations. PLACES welcomes researchers from various fields, and its topics include the design of new pro-

gramming languages, models for concurrent and distributed systems, type systems, program verification,

and applications in various areas (e.g. microservices, sensor networks, blockchains, event processing,

business process management).

The Programme Committee of PLACES 2024 consisted of:

• Laura Bocchi, University of Kent, UK

• Cinzia Di Giusto, Université Côte d’Azur, CNRS, FR

• Juliana Franco, DeepMind, UK

• Lorenzo Gheri, University of Liverpool, UK

• Ping Hou, University of Oxford, UK

• Cosimo Laneve, University of Bologna, IT

• Matthew Alan Le Brun, University of Glasgow, UK

• Rumyana Neykova, Brunel University, UK

• Kirstin Peters, Universität Augsburg, DE

• Diogo Poças, LASIGE, Universidade de Lisboa, PT

• Shoji Yuen, Nagoya University, JP

After a thorough reviewing process, the Programme Committee has accepted five research papers

(out of six original submissions): such papers are published in this volume. The Programme Committee

has also accepted three talk proposals on preliminary or already-published work: the titles and abstracts

of such talks are also listed in this volume. Each submission (research paper or talk proposal) was

reviewed and discussed by three Programme Committee members on the EasyChair platform.

We would like to thank everyone who contributed to PLACES 2024: this includes the authors of

submissions, the Programme Committee members, Mariangiola Dezani-Ciancaglini and Peter Müller

for their keynote talks, the ETAPS 2024 organisers, the EasyChair and EPTCS administrators. Finally,

special thanks to the Steering Committee of PLACES - Simon Gay, Luca Padovani, Vasco T. Vasconce-

los, and Nobuko Yoshida.

3 April 2024

Diana Costa and Raymond Hu

http://dx.doi.org/10.4204/EPTCS.401.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. iii–iii, doi:10.4204/EPTCS.401.0.1

© M. Dezani-Ciancaglini

This work is licensed under the

Creative Commons Attribution License.

Keynote Talk: Simple MultiParty Sessions

Mariangiola Dezani-Ciancaglini

Università di Torino, IT

dezani@di.unito.it

Simple MultiParty Sessions (SMPS) do not have channels, session initiators and the distinction be-

tween compile time and run time syntax. They are based only on participant names and input/output

processes. They are equipped with global types without requiring projections and local types. In this

presentation we will discuss pros and cons of SMPS. On the good side SMPS allow to easily describe

internal delegation, partial typing and session composition. On the bad side SMPS are less expressive

than standard MultiParty Sessions. In particular interleaved sessions with crossing delegations cannot be

represented.

http://dx.doi.org/10.4204/EPTCS.401.0.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. iv–iv, doi:10.4204/EPTCS.401.0.2

© P. Müller

This work is licensed under the

Creative Commons Attribution License.

Keynote Talk: Verified Secure Routing

Peter Müller

ETH Zurich, CH

peter.mueller@inf.ethz.ch

SCION is a new Internet architecture that addresses many of the security vulnerabilities of today’s

Internet. Its clean-slate design provides, among other properties, route control, failure isolation, and

multi-path communication. The verifiedSCION project is an effort to formally verify the correctness and

security of SCION. It aims to provide strong guarantees for the entire architecture, from the protocol

design to its concrete implementation. The project uses stepwise refinement to prove that the protocol

withstands increasingly strong attackers. The refinement proofs assume that all network components

such as routers satisfy their specifications. This property is then verified separately using deductive

program verification in separation logic. This talk will give an overview of the verifiedSCION project

and explain, in particular, how we verify code-level properties such as memory safety, I/O behavior, and

information flow security.

http://dx.doi.org/10.4204/EPTCS.401.0.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. v–vi, doi:10.4204/EPTCS.401.0.3

© D. Costa and R. Hu

This work is licensed under the

Creative Commons Attribution License.

Presentations of Preliminary or Already-Published Work

Diana Costa

Universidade de Lisboa, PT

dfdcosta@ciencias.ulisboa.pt

Raymond Hu

Queen Mary University of London, UK

r.hu@qmul.ac.uk

PLACES 2024 welcomed the submissions of talk proposals (describing preliminary or already-

published work) that could spark interesting discussion during the workshop. This is the list of all

accepted talk proposals.

Multiparty Session Type Projection and Subtyping with Automata

Elaine Li – New York University, USA

Felix Stutz – MPI-SWS, DE

Thomas Wies – New York University, USA

Multiparty session types (MSTs) are a type-based approach to verifying communication protocols. Cen-

tral to MSTs is a projection operator: a partial function that maps protocols represented as global types

to correct-by-construction implementations for each participant, represented as a communicating state

machine (CSM). Existing projection operators are syntactic in nature, and trade efficiency for complete-

ness. In the first part of the talk, I will present the first projection operator that is sound and complete.

I will highlight the automata-theoretic nature of our projection operator, which separates synthesis from

checking implementability, and can be computed in PSPACE.

While our projection operator always computes a candidate implementation if one exists, it may

not always compute the best candidate. In the second part of the talk, I motivate three variations of

the subtyping problem for MSTs. I highlight differences between the problems in terms of complexity,

compositionality and context-dependence. I show how our previous solution to implementability gives

rise to solutions to subtyping problems for MSTs, with unrestricted CSMs as implementation model.

Hapi – Implementing the asynchronous π-calculus with multiparty session types

Lasse Nielsen – Denmark

Nobuko Yoshida – University of Oxford, UK

We introduce the language hapi, implementing the asynchronous π-calculus with multiparty session

types. Hapi offers type verification and compilation of the calculus into C++. The direct syntax rep-

resentation of the π-calculus with multiparty session types in hapi enables a concise declaration of

message-passing processes. Hapi’s type verification guarantees a linear usage of channels, type safety,

no race-conditions and progress properties of hapi processes.

Multiparty Session Type Inference for a Rust DSL

Walid Nawfal Sabihi, Martin Vassor and Nobuko Yoshida – University of Oxford, UK

http://dx.doi.org/10.4204/EPTCS.401.0.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

vi Presentations of Preliminary or Already-Published Work

Multiparty Session Types (MPSTs) have traditionally been used in a top-down manner, starting from a

global type which provides a specification for the system, that is then projected onto local types that are

used to type-check each participant in the protocol. This approach is challenging to adopt for existing

systems that need to gradually integrate MPSTs but have not yet defined a global type that fully covers

their behaviour.

In this talk, we propose an inference system for a subset of Rust programs, synthesising anonymous

local session types. We also discuss a participant allocation algorithm that generates a global session

type from a set of anonymous local session types, with guarantees for correctness and completeness.

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. 1–10, doi:10.4204/EPTCS.401.1

© P. Ângelo, A. Igarashi & V. T. Vasconcelos

This work is licensed under the

Creative Commons Attribution License.

Linear Contextual Metaprogramming and Session Types

Pedro Ângelo

LIACC, Faculdade de Ciências da Universidade do Porto, Portugal

LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal

pjangelo@ciencias.ulisboa.pt

Atsushi Igarashi

Kyoto University, Kyoto, Japan

igarashi@kuis.kyoto-u.ac.jp

Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências da Universidade de Lisboa, Portugal

vmvasconcelos@ciencias.ulisboa.pt

We explore the integration of metaprogramming in a call-by-value linear lambda-calculus and sketch

its extension to a session type system. We build on a model of contextual modal type theory with

multi-level contexts, where contextual values, closing arbitrary terms over a series of variables, may

then be boxed and transmitted in messages. Once received, one such value may then be unboxed

(with a let-box construct) and locally applied before being run. We present a series of examples

where servers prepare and ship code on demand via session typed messages.

1 Introduction

Metaprogramming manipulates code in order to generate and evaluate code at runtime, allowing in par-

ticular to explore the availability of certain arguments to functions in order to save computational effort.

In this paper we are interested in programming languages where the code produced is typed by construc-

tion and where code may refer to a context providing types for the free variables, commonly known as

contextual typing [8, 11, 12, 13]. On an orthogonal axis, session types have been advocated as a means to

discipline concurrent computations, by accurately describing protocols for the channels used to exchange

messages between processes [1, 5, 6, 7, 15, 16, 17].

The integration of session types with metaprogramming allows to setup code-producing servers that

run in parallel with the rest of the program and provide code on demand, exchanged on typed channels.

Linearity is central to session types, but current metaprogramming models lack support for such a feature.

We extend a simple model of contextual modal type theory (with monomorphic contexts) with support

for linear types, to obtain a call-by-value linear lambda calculus with multi-level contexts. We then

sketch how to extend this language with support for concurrency and session types.

Our development is based on Davies and Pfenning [4], where we use a box modality to distinguish

generated code. We further allow code to refer to variables in a context, described by contextual types,

along the lines of Nanevski et al. [13]. Mœbius [8] further adds to modal contextual type theory the

provision for pattern matching on code, for generating polymorphic code, and for generating code that

depends on other code fragments. We forgo the first two directions, and base our development on the last.

We propose a multilevel contextual modal linear lambda calculus, where in particular the composition

of code fragments avoids creating extraneous administrative redexes due to boxing and unboxing.

An alternative starting point would have been the Fitch- or Kripke-style formulation, providing for

the Lisp quote/unquote, where typing contexts are viewed as stacks modeling the different stages of

computation [11]. It seemed to us that the let-box approach would simplify the extension to the linear

setting, and then to session types.

http://dx.doi.org/10.4204/EPTCS.401.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Linear Contextual Metaprogramming and Session Types

To motivate the problem let us start with the issue of generating code to send a fixed number of

integers on a stream. The type of streams, as seen from the side of processes writing on the stream is as

follows.

type Stream = ⊕{More : ! Int . Stream , Done : Close}

The writer chooses between selecting More values or selecting Done. In the former case, the writer sends

an integer value and “goes back to the beginning”; in the latter case the writer must close the channel.

Function sendFives accepts an integer value and returns a code fragment that requires a Stream and,

when executed, produces a unit value, written [Stream ⊢ Unit]. We proceed by pattern-matching on the

parameter.

s e ndF i v e s : Int → [Stream ⊢ Unit]
s e n dF i v e s 0 = box (y . c lo se (s e l e c t Done y))
s e ndF i v e s n = l e t box u = s endF i v e s (n − 1)

i n box (x . u [send 5 (s e l e c t More x)])

When all values have been sent in the stream (when n is 0), all it remains is to select Done and then close

the channel. The box expression generates code under a variable environment (an evaluation context), in

this case containing variable y alone, the channel endpoint. Otherwise, we recursively compute code to

send n−1 values, unbox it storing the result in u, and then prepare code to send the n-th value. Expression

u[send 5 (select More x)] (an applied variable) applies expression send 5 (select More x) of type Stream

to u (a contextual value of type (Stream ⊢ Unit) to obtain an expression of type Unit. If u is the contextual

value y. close (select Done y), then the explicit substitution evaluates to close (select Done send 5 (

select More x)).

We may now compute and run code to send a fixed number of integer values.

s e nd4F i v e s : Stream → Unit

s e nd4F i v e s c = l e t box u = s endF i v e s 4 i n u [c]

Expression sendFives 4 is a boxed code fragment of type [Stream ⊢ Unit]. Then, u is an (unboxed) code

fragment of contextual type (Stream ⊢ Unit). We provide the code fragment with an explicit substitution

[c]. The whole let expression then amounts to running the code

c lo se (s e l e c t Done (send 5 (s e l e c t More (. . . send 5 (s e l e c t More c) . . .))))

without calling function sendFives or using recursion in any other form.

The next example transmits code on channels. Imagine a server preparing code on behalf of clients.

The server uses a channel to interact with its clients: it first receives a number n, then replies with code

to send n fives, and finally waits for the channel to be closed. The type of the communication channel is

as follows.

type Bu i l d e r = ? Int . ! [Stream ⊢ Unit] . Wait

The server receives n on a given channel and computes the code using a call to sendFives:

s e r v e F i v e s : B u i l d e r → Unit

s e r v e F i v e s c =
l e t (n , c) = r ece ive c i n wait (send (s e ndF i v e s n) c)

On the other end of the channel sits a client: it sends a number (4 in this case), receives the code (of

type [Stream ⊢ Unit]), closes the channel and evaluates the code received.

s endF i ve s ’ : Dual Bu i l d e r → Stream → Unit

s endF i ve s ’ c d =

P. Ângelo, A. Igarashi & V. T. Vasconcelos 3

l e t (code , c) = r ece ive (send 4 c) i n c lo se c ;
l e t box u = code i n u [d]

The Dual operator on session types provides a view of the other end of the channel. In this case, Dual

Builder is the type !Int .?[Stream ⊢ Unit].Close, where ! is turned into ? and Wait is turned into Close

(and conversely in both cases). Notice that code is a boxed code fragment of type [Stream ⊢ Unit], hence

u is the corresponding code fragment (of type (Stream ⊢ Unit)) and u[d] runs the code on channel d.

To complete the example we need a function for reading streams, a consumer of type Dual Stream →

Unit. Function readInts reads and discards all integer values on the stream and then waits for the stream

to be closed.

r e a d I n t s : Dual Stream → Unit

r e a d I n t s (Done c) = wait c
r e a d I n t s (More c) = l e t (, c) = r ece ive c i n r e a d I n t s c

Finally, the main thread forks two threads—one running serveFives , the other to collect the integer

values (readInts)—and continues with sendFives ’ . We take advantage of a primitive function, forkWith

that expects a suspended computation (a thunk), creates a new channel, forks the thunk on one end of the

channel, and returns the other end of the channel for further interaction.

main : Unit

main =
l e t c = fo rkWith (λ → s e r v e F i v e s) i n −− c : Dual Bu i l d e r
l e t d = fo rkWith (λ → r e a d I n t s) i n −− d : Stream
sendF i ve s ’ c d

The interaction among the three processes is depicted as follows

serveFives sendFives ’ readInts

Builder c Dual Builder
Stream d Dual Stream

4

code

close
More

5

More

. . .

Done

close

where the code produced by function serveFives and transmitted to sendFives ’ is

box (c lo se (s e l e c t Done (send 5 (s e l e c t More (. . . (s e l e c t More c) . . .)))))

In the rest of the paper we develop our system. In section 2 we introduce the call-by-value linear

lambda calculus with multi-level contexts and in section 3 we sketch the extensions required to type and

run the examples in this section. We conclude in section 4.

2 Linear staged metaprogramming

This section introduces the call-by-value linear lambda calculus with multi-level contexts.

4 Linear Contextual Metaprogramming and Session Types

Syntax Our language is defined over the syntactic categories of set of variables, x,y,z. We write X for

a sequence of objects X1 · · ·Xn with n ≥ 0. The empty sequence (when n = 0) is denoted by ε .

Contextual type τ ::= (τ ⊢ T)

Type T,U ::= ∗ | T → T |�τ

Contextual value ρ ,σ ::= x.M

Value v ::= ∗ | λx.M | boxσ

Term M,N ::= v | x[σ] | let ∗= M in M | MM | let box x = M in M

Level k,m,n ∈N

Typing context Γ,∆ ::= ε | Γ,x :n τ

Types include the unit (∗) linear type, the linear arrow type T →U , and the linear boxed contextual

type �τ . A contextual type τ of the form (τ ⊢ T) represents code of type T , parameterized on variables

typed by a list of contextual types τ , called contexts [8, 11].

To objects of the form x.M we call contextual values. They denote code fragments M parameterized

by the variables in sequence x. The values in the language include ∗ (introducing type ∗), lambda

abstraction (introducing the arrow type), and the box term (introducing the contextual modal type �τ).

Terms include values, contextual term variables x[σ] applying contextual values σ to the code fragment

described by x, the let ∗ (eliminating ∗), lambda application (eliminating the arrow type), and the let box
term (eliminating the contextual modal type �τ).

When x is the empty sequence we sometimes write M in place of the contextual value ε .M. Simi-

larly, when σ is the empty sequence we sometimes write x instead of the contextual term variable x[ε].
Furthermore, in examples we write Unit in place of ∗, and [τ ⊢ T] in place of �(τ ⊢ T).

The bindings in the language are the following. Variable x is bound in M (but not in N) in terms λx.M
and let box x = N in M. The set of bound and free variables in terms (free M) are defined accordingly.

We follow the variable convention whereby terms that differ only in the names of the bound variables are

interchangeable in all contexts [14].

Contexts for local and outer variables Typing contexts bind contextual types to variables; we anno-

tate each entry with its level n. We assume that contexts contain no duplicate variables and write Γ,∆ for

the context containing the entries in both Γ and ∆, provided they feature disjoint sets of variables.

We introduce two predicates on typing contexts. If Γ = x1 :k1 τ1, . . . ,xm :km τm, then Γ<n holds when

n is greater than all the levels of the bindings in Γ (that is, k1, . . . , km), and Γ≥n holds when n is smaller

or equal than all the levels in Γ. More precisely,

Γ<n holds when max(0,k1, . . .km)< n Γ≥n holds when m = 0 or min(k1, . . .km)≥ n

Intuitively, Γ<n denotes the local variables in a code fragment of level n, whereas Γ≥n denotes the outer

variables. Notice that there is no context Γ for which Γ<0 (not even the empty context), meaning that

code fragments start at level 1.

Substitution Substitution is that of the linear lambda calculus except for the fact that we use applied

modal variables x[σ] rather than ordinary variables x. We denote by [σ/x]M the term obtained by replac-

P. Ângelo, A. Igarashi & V. T. Vasconcelos 5

ing variable x by the contextual value σ in term M. We detail some illustrative cases.

[z.M/x](x[ρ]) = [ρ/z]M

[σ/x](let box y = M in N) =

{

let box y = [σ/x]M in N if x ∈ free M

let box y = M in [σ/x]N if x ∈ free N

Substitution on let ∗ and on application is similar to let box. Substitution on the remaining type con-

structors is an homomorphism; for example [σ/x](box (y.M)) = box(y.[σ/x]M). Substitution on applied

variables, [z.M/x](y[ρ]), is defined only when x and y coincide and when z and ρ are sequences of the

same length (the variable convention ensures that the variables in z are pairwise distinct and not free out-

side M, hence the substitution of the various variables in z can be performed in sequence). Substitution

in let box is defined only when x ∈ free (MN); it is undefined when x is both free in M and in N. The

typing system guarantees substitution is defined for all typable processes. Typing judgments are of the

form Γ ⊢ M : T stating that term M has type T under typing context Γ; the rules are introduced below.

Lemma 2.1 (Substitution principle).

Γ,x :n τ ⊢ M : T ∆≥n ⊢ σ : τ

Γ,∆≥n ⊢ [σ/x]M : T
SUBS

When the contextual term variable denotes a parameterless code fragment, we recover the conven-

tional substitution principle in linear type systems. If we write (ε ⊢ T) simply as T , and the contextual

value ε .N as N, we have

Γ,x :n (ε ⊢U) ⊢ M : T ∆≥n ⊢ ε .N : (ε ⊢U)

Γ,∆≥n ⊢ [ε .N/x]M : T
abbreviated to

Γ,x : U ⊢ M : T ∆ ⊢ N : U

Γ,∆ ⊢ [N/x]M : T

Evaluation Evaluation on terms is given by the relation M −→ N defined by the axioms

(λx.M)v −→ [ε .v/x]M

let ∗= ∗ in M −→ M

let box x = boxσ in M −→ [σ/x]M

compounded by the usual congruence rules of the call-by-value λ -calculus. We do not allow reduction

inside a box term (a value) as we do not allow reduction under a λ (another value).

Typing contextual terms Contextual terms are closures of the form x.M, closing term M over a se-

quence of variables x. Such a contextual term is given a contextual type (τ ⊢ T) when M is of type T

under the hypothesis that the variables in x are of the types in τ .

Γ≥n,x :k τ
<n

⊢ M : T

Γ≥n ⊢ x.M : (τ ⊢ T)
CTXT

Intuitively, the free variables of M are split in two groups: local and outer. The local variables, x, are

distinguished in the contextual term x.M and typed under context x :k τ
<n

where n is an upper bound of

the levels ki assigned to each local variable. The level of each local variable is arbitrary, as long as it is

lower than n. Outer variables are typed under context Γ≥n. Natural number n thus denotes the level at

which the code fragment x.M is typed. In general, a contextual term σ can be typed at different levels.

All resources (variables) in the context Γ in the conclusion are consumed in the premise; furthermore

resources x are consumed in the derivation of M (implying that they must be free in M).

6 Linear Contextual Metaprogramming and Session Types

Typing variables Variables are of the form x[σ1 · · ·σm], denoting a contextual term applied to contex-

tual values σ1 · · ·σm. To type each σi we need a separate context which we call Γi. The type of x must be

a contextual type of the form (τ1 · · ·τm ⊢ T) and each contextual term σi must be of type τi. We can easily

see that all resources in the typing context in the conclusion are consumed: the various Γi are consumed

in the premises, that for x is consumed at the right of the turnstile. This guarantees that all resources are

used and thus that the rule includes no implicit form of weakening.

Γ ⊢ σ : τ

Γ,x :n (τ ⊢ T) ⊢ x[σ] : T
VAR

The lengths of all sequences, Γ, σ and τ , must coincide. When the sequences are empty, the rule becomes

an axiom. In fact rule VAR is the natural generalization of the axiom in the linear λ -calculus, obtained

when writing type (ε ⊢ T) in the context as T , writing applied variable x[ε] as x, and omitting the level

of the variable in the context.

x :n (ε ⊢ T) ⊢ x[ε] : T
abbreviated to

x : T ⊢ x : T

Typing λ abstraction and application We now address the conventional typing rules for the intro-

duction and elimination of the arrow in the linear lambda calculus; the rules are below.

Γ,x :0 (ε ⊢ T) ⊢ M : U

Γ ⊢ λx.M : T →U
→I

Γ ⊢ M : T →U ∆ ⊢ N : T

Γ,∆ ⊢ MN : U
→E

The λ -bound variable x is local to M, hence of level 0.

Local soundness. Notice that ∆≥0 is true of all contexts ∆.

Γ,x :0 (ε ⊢ T) ⊢ M : U

Γ ⊢ λx.M : T →U
→I

∆ ⊢ v : T

Γ,∆ ⊢ (λx.M)v : U
→E

⇒

Γ,x :0 (ε ⊢ T) ⊢ M : U

∆ ⊢ v : T

∆ ⊢ ε .v : (ε ⊢ T)
CTXT

Γ,∆ ⊢ [ε .v/x]M : U
SUBS

Local completeness:

Γ,∆ ⊢ M : T →U ⇒

Γ,∆ ⊢ M : T →U x :0 (ε ⊢ T) ⊢ x[ε] : T
VAR

Γ,∆,x :0 (ε ⊢ T) ⊢ M(x[ε]) : U
→E

Γ,∆ ⊢ λx.M(x[ε]) : T →U
→I

Typing * introduction and elimination Rules:

⊢ ∗ : ∗
∗I

Γ ⊢ M : ∗ ∆ ⊢ N : T

Γ,∆ ⊢ let ∗= M in N : T
∗E

Local soundness and local completeness:

⊢ ∗ : ∗
∗I

Γ ⊢ M : T

⊢ let ∗= ∗ in M : T
∗E

⇔ Γ ⊢ M : T

P. Ângelo, A. Igarashi & V. T. Vasconcelos 7

Typing box introduction and elimination The box introduction and elimination rules are as follows.

Γ ⊢ σ : τ

Γ ⊢ boxσ : �τ
�I

Γ≥n ⊢ M : �τ ∆,x :n τ ⊢ N : T

Γ≥n,∆ ⊢ let box x = M in N : T
�E

In rule �I, the type of the box is the contextual modal type �τ if the contextual term σ has type τ . The

context for the box elimination rule, �E, is split into two: one part (Γ≥n) to type M, the other (∆) to type

N. Term M must denote a code fragment, hence the type of M must be a contextual modal type �τ .

Term N is typed under context ∆ extended with an entry for x. The context in the conclusion is formed

by the juxtaposition of the contexts in the premises thus ensuring that all resources are fully consumed.

The level n of variable x determines the level of code M. In contrast to preceding work [4, 8, 12], level

control is shifted from box introduction to the rule that types contextual values. A rule derived from

CTXT followed by �I coincides with the box introduction rule of Mœbius [8]:

Γ≥n,x :k τ
<n

⊢ M : T

Γ≥n ⊢ box(x.M) : �(τ ⊢ T)

Local soundness:

Γ≥n ⊢ σ : τ

Γ≥n ⊢ boxσ : �τ
�I

∆,x :n τ ⊢ M : T

Γ≥n,∆ ⊢ let box x = boxσ in M : T
�E

⇒

∆,x :n τ ⊢ M : T Γ≥n ⊢ σ : τ

Γ≥n,∆ ⊢ [σ/x]M : T
SUBS

Local completeness:

Γ≥2 ⊢ M : �τ ⇒

Γ≥2 ⊢ M : �τ

xi :1 (ε ⊢Ui) ⊢ xi[ε] : Ui

VAR

xi :1 (ε ⊢Ui) ⊢ ε .xi[ε] : (ε ⊢Ui)
CTXT

u :2 τ ,x :1 (ε ⊢U) ⊢ u[ε .x[ε]] : T
VAR

u :2 τ ⊢ x.u[ε .x[ε]] : τ
CTXT

u :2 τ ⊢ box(x.u[ε .x[ε]]) : �τ
�I

Γ≥2 ⊢ let box u = M in box (x.u[ε .x[ε]]) : �τ
�E

where τ abbreviates ((ε ⊢U) ⊢ T) and U =U1 · · ·Um and similarly for x.

An example from Mœbius Concrete syntax apart, the β -reduction for box terms is that of Mœbius [8].

We adapt an example to make it linear.

l e t box r = box (y . y + 2) i n

l e t box u = box (c , x . 3 ∗ z + c [2 ∗ x]) i n

box (y . u [y . r [y] , y])

reduces to

l e t box u = box (c , x . 3 ∗ z + c [2 ∗ x]) i n

box (y . u [y . y + 2 , y])

under substitution [(y. y + 2) / r] , which in turn reduces to

8 Linear Contextual Metaprogramming and Session Types

box (y . 3 ∗ z + 2 ∗ y + 2)

under substitution [(c,x. 3 ∗ z + c[2 ∗ x]) / u], generating no administrative redexes. The original re-

dex (or any contractum) has type � (⊢ Int) under typing context z :3 (⊢ Int), assuming suitable rules

for integer constants and arithmetic operators. Contextual value (y. y + 2), and hence also the contex-

tual variable r, is typed at level 2. Contextual value (c,x. 3 ∗ z + c[2 ∗ x]) , and hence also contextual

variable u, is typed at level 2. Variable z can be typed at level 2.

3 From linear staged to session staged metaprogramming

This section briefly outlines what it takes to bridge the gap between the linear lambda calculus with

multi-level contexts and the language required to type and run the examples in the introduction.

First and foremost, session types must be introduced in the syntax of types. In the absence of poly-

morphism, a new syntactic category S may be introduced for session types. Session types include input

and output (?T.S and !T.S), branch and select (&{l : Sl}
l∈L and ⊕{l : Sl}

l∈L), and channel closing (Wait
and Close), where l denotes a label and L a label set. In addition, and in order to express the Stream

type in the example, we need recursive types. They are usually introduced in the form of a µ (or rec)

constructor and type references (sometimes called type variables), and treated equi-recursively. Session

types then become an extra constructor for types T [7, 17]. For a more ambitious setting one may con-

sider the sequential composition of types (R;S) and continuation-less input and output (?T and !T) as in

context-free session types [1, 16].

At the level of terms, we require a few session-related primitives. We need constants to receive, to

send, to select a choice, to wait for a channel to be closed and to close a channel. These can be given type

schemes. For example, the type of constant send can be given by a type of the form T → !T.S → S, a

function receiving a value to be sent and a channel on which to send the value, and returning the channel

on which to continue interaction. We further need a constant to fork a new thread whose type can be

given by type (∗ → ∗)→∗, accepting a thunk and giving back a unit vale. Branching (achieved by

pattern-matching in the examples) cannot be given by a constant. We then add a new term constructor

match M with {l : Ml}
l∈L. Finally we need a primitive to create a new channel, usually of the form

new S, returning the two end points of the newly created channel. Both the primitive receive operation

and channel creation new S return a pair; we then need linear pairs of type T ×U , with introduction

(M,N) and elimination let (x,y) = M in N terms. Details can be found in Gay and Vasconcelos [5].

The description so far produces a linear session typed language. In particular we cannot take ad-

vantage of recursive types for there is no support for consuming such a type. Recursive functions are

the usual means of consuming recursive types, a Stream for example, but they constitute the finished

example of non-linear resources. A simple way out is to annotate entries in the typing context with

the number of times a resource can be used, along the lines of Linear Haskell [3] or Quantitative Type

Theory [2, 9] (also used in Nominal Session Types [10]). An alternative would be to introduce shared

resources, functions in particular, in the linear type system [5].

The fork operator creates a new thread. Yet the term language depicted so far features no support for

threads running concurrently. This is usually achieved by introducing a separate language for processes,

denoted by P,Q. The basic processes are terms, for example of the form 〈M〉, composed by means of

the parallel composition of two processes, P | Q, and of scope restriction, (νxy)P, describing the two

end points x and y of a channel circumscribed to process P. Processes come equipped with a notion of

reduction, featuring axioms for output-input, select-branch, and close-wait interactions, complemented

P. Ângelo, A. Igarashi & V. T. Vasconcelos 9

with suitable congruence rules. For example, the axiom, for output-input might be as follows,

(νxy)(〈E[sendvx]〉 | 〈F[receivey]〉)→ (νxy)(〈E[x]〉 | 〈F [(v,y)]〉)

where the sendvx term in evaluation context E is rewritten in channel x (so that term E[x] may continue

interaction on x) and the receivey term in evaluation context F is rewritten in a pair featuring the value

received v and the continuation channel y (so that term F[(v,y)] may use the value v in the message while

continuing the interaction on y). Details can be found in different sources [1, 5].

4 Conclusion and future work

We show how to integrate staged metaprogramming into a linear lambda calculus and sketch how to

extend the language to concurrency and session types. The type system we propose is deliberately non-

algorithmic. We believe that standard techniques—including an explicitly typed and level-annotated

syntax [8] and having the typing rules “return” the unused part of the context [18]—would lead to algo-

rithmic type checking.

Acknowledgements This work was partly supported by JSPS Invitational Short-Term Fellow-

ships for Research in Japan. It was further supported by the FCT through project Safe-

Sessions (doi: 10.54499/PTDC/CCI-COM/6453/2020), by the LASIGE Research Unit (doi:

10.54499/UIDB/00408/2020 and doi: 10.54499/UIDP/00408/2020), and by the LIACC Research Unit

(doi: 10.54499/UIDB/00027/2020 and doi: 10.54499/UIDP/00027/2020),

References

[1] Bernardo Almeida, Andreia Mordido, Peter Thiemann & Vasco T. Vasconcelos (2022): Polymorphic lambda

calculus with context-free session types. Inf. Comput. 289(Part), p. 104948, doi:10.1016/J.IC.2022.

104948.

[2] Robert Atkey (2018): Syntax and Semantics of Quantitative Type Theory. In: LICS, ACM, pp. 56–65,

doi:10.1145/3209108.3209189.

[3] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones & Arnaud Spiwack

(2018): Linear Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program.

Lang. 2(POPL), pp. 5:1–5:29, doi:10.1145/3158093.

[4] Rowan Davies & Frank Pfenning (2001): A modal analysis of staged computation. J. ACM 48(3), pp. 555–

604, doi:10.1145/382780.382785.

[5] Simon J. Gay & Vasco Thudichum Vasconcelos (2010): Linear type theory for asynchronous session types.

J. Funct. Program. 20(1), pp. 19–50, doi:10.1017/S0956796809990268.

[6] Kohei Honda (1993): Types for Dyadic Interaction. In: CONCUR, LNCS 715, Springer, pp. 509–523,

doi:10.1007/3-540-57208-2_35.

[7] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Dis-

cipline for Structured Communication-Based Programming. In: ESOP, LNCS 1381, Springer, pp. 122–138,

doi:10.1007/BFb0053567.

[8] Junyoung Jang, Samuel Gélineau, Stefan Monnier & Brigitte Pientka (2022): Mœbius: metaprogramming

using contextual types: the stage where system F can pattern match on itself. Proc. ACM Program. Lang.

6(POPL), pp. 1–27, doi:10.1145/3498700.

https://doi.org/10.54499/PTDC/CCI-COM/6453/2020
https://doi.org/10.54499/UIDB/00408/2020
https://doi.org/10.54499/UIDP/00408/2020
https://doi.org/10.54499/UIDB/00027/2020
https://doi.org/10.54499/UIDP/00027/2020
https://doi.org/10.1016/J.IC.2022.104948
https://doi.org/10.1016/J.IC.2022.104948
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1145/3158093
https://doi.org/10.1145/382780.382785
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/3498700

10 Linear Contextual Metaprogramming and Session Types

[9] Conor McBride (2016): I Got Plenty o’ Nuttin’. In: A List of Successes That Can Change the World - Essays

Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 9600,

Springer, pp. 207–233, doi:10.1007/978-3-319-30936-1_12.

[10] Andreia Mordido, Janek Spaderna, Peter Thiemann & Vasco T. Vasconcelos (2023): Parameterized Algebraic

Protocols. Proc. ACM Program. Lang. 7(PLDI), pp. 1389–1413, doi:10.1145/3591277.

[11] Yuito Murase, Yuichi Nishiwaki & Atsushi Igarashi (2023): Contextual Modal Type Theory with Polymorphic

Contexts. In: ESOP, Lecture Notes in Computer Science 13990, Springer, pp. 281–308, doi:10.1007/

978-3-031-30044-8_11.

[12] Aleksandar Nanevski & Frank Pfenning (2005): Staged computation with names and necessity. J. Funct.

Program. 15(5), pp. 893–939, doi:10.1017/S095679680500568X.

[13] Aleksandar Nanevski, Frank Pfenning & Brigitte Pientka (2008): Contextual modal type theory. ACM Trans.

Comput. Log. 9(3), pp. 23:1–23:49, doi:10.1145/1352582.1352591.

[14] Benjamin C. Pierce (2002): Types and programming languages. MIT Press.

[15] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.

In: PARLE, LNCS 817, Springer, pp. 398–413, doi:10.1007/3-540-58184-7_118.

[16] Peter Thiemann & Vasco T. Vasconcelos (2016): Context-free session types. In: ICFP, ACM, pp. 462–475,

doi:10.1145/2951913.2951926.

[17] Vasco T. Vasconcelos (2012): Fundamentals of session types. Inf. Comput. 217, pp. 52–70, doi:10.1016/

J.IC.2012.05.002.

[18] David Walker (2005): Advanced Topics in Types and Programming Languages, chapter Substructural Type

Systems, pp. 3–44. The MIT Press.

https://doi.org/10.1007/978-3-319-30936-1_12
https://doi.org/10.1145/3591277
https://doi.org/10.1007/978-3-031-30044-8_11
https://doi.org/10.1007/978-3-031-30044-8_11
https://doi.org/10.1017/S095679680500568X
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1016/J.IC.2012.05.002
https://doi.org/10.1016/J.IC.2012.05.002

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. 11–21, doi:10.4204/EPTCS.401.2

© I. Castellani and P. Giannini

This work is licensed under the

Creative Commons Attribution License.

Towards a Semantic Characterisation

of Global Type Well-formedness

Ilaria Castellani*

INRIA, Université Côte d’Azur, France

ilaria.castellani@inria.fr

Paola Giannini†

DiSSTE, Università del Piemonte Orientale, Italy

paola.giannini@uniupo.it

We address the question of characterising the well-formedness properties of multiparty session types

semantically, i.e., as properties of the semantic model used to interpret types. Choosing Prime Event

Structures (PESs) as our semantic model, we present semantic counterparts for the two properties

that underpin global type well-formedness, namely projectability and boundedness, in this model.

As a first step towards a characterisation of the class of PESs corresponding to well-formed global

types, we identify some simple structural properties satisfied by such PESs.

1 Introduction

This paper builds on our previous work [4], where we investigated the use of Event Structures (ESs) as a

denotational model for multiparty session types (MPSTs). That paper presented an ES semantics for both

sessions and global types, using respectively Flow Event Structures (FESs) and Prime Event Structures

(PESs), and showed that if a session is typable with a given global type, then the FES associated with the

session and the PES associated with the global type yield isomorphic domains of configurations.

The ES semantics proposed in [4] abstracts away from the syntax of global types, by making explicit

the concurrency relation between independent communications. This abstraction is expected since ESs

are a “true concurrency” model, where concurrency is treated as a primitive notion. However, [4] fo-

cussed on the equivalence between the FES of a session and the PES of its global type, without drawing

all the consequences of its results and demonstrating the full benefits of the ES semantics for MPSTs.

In the present paper, we move one step further by studying how the well-formedness property of

global types considered in [4] is reflected in their interpretation as Prime Event Structures (PESs). In [4],

global type well-formedness is the conjunction of a projectability condition and a boundedness condition.

Having semantic counterparts for these conditions will enable us to reason directly on PESs, taking

advantage of their faithful account of concurrency and of their graphical representation.

We prove that: 1) all global types that type the same network yield identical PESs, 2) our proposed

properties of semantic projectability and semantic boundedness for PESs reflect the corresponding prop-

erties of global types, and 3) PESs obtained from global types enjoy some simple structural properties.

The rest of the paper is organised as follows. In Section 2 and Section 3 we recall the necessary

background from [4] and present the result 1) above. In Section 4 we define our semantic notions of

projectability and boundedness and prove the result 2) above. Section 5 is devoted to the result 3).

Finally, in Section 6 we discuss related work and sketch some directions for future work.

In the paper, all theorems are given with proofs while all lemmas are stated without proofs.

*This research has been supported by the ANR17-CE25-0014-01 CISC project.
†This work was partially funded by the MUR project “T-LADIES” (PRIN 2020TL3X8X) and has the financial support of

the Università del Piemonte Orientale.

https://dx.doi.org/10.4204/EPTCS.401.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

12 Towards a semantic characterisation of global type well-formedness

2 Networks and Global Types

To set up the stage for our study, we recall the definitions of sessions and global types from [4]. In the

core multiparty session calculus of [4], sessions are described as networks of sequential processes, and

processes coincide with local types. Session participants are denoted by p,q, r, and messages by λ ,λ ′.

Definition 2.1 (Processes and networks)

• Processes are defined by: P ::=coind
⊕

i∈I p!λi;Pi | Σi∈Ip?λi;Pi | 0

where I is a finite non-empty index set and λh 6= λk for h 6= k.

• Networks are defined by: N= p1[[P]] ‖ · · · ‖ pn[[P]] with n ≥ 1 and ph 6= pk for h 6= k.

The symbol ::=coind in the definition of processes indicates that the definition is coinductive. This allows

infinite processes to be defined without using an explicit recursion operator. However, in order to achieve

decidability we focus on regular processes, namely those with a finite number of distinct subprocesses.

In writing processes, we will omit trailing 0’s and when | I | = 1 we will omit the choice symbol.

A network is a parallel composition of processes, each located at a different participant. The LTS

semantics of networks is specified by the unique rule:

p[[
⊕

i∈I q!λi;Pi]] ‖ q[[Σ j∈Jp?λ j;Q j]] ‖ N
pqλk−−→ p[[Pk]] ‖ q[[Qk]] ‖ N where k ∈ I∩J [COMM]

Definition 2.2 (Global types) Global types G are defined by: G ::=coind p→ q : {λi;Gi}i∈I | End
where I is finite non-empty index set and λh 6= λk for h 6= k.

Here again, ::=coind indicates that the definition is coinductive, and we focus on regular global types. We

will omit trailing End’s and when | I | = 1 we will write a global type p→ q : {λ ;G} simply as p
λ
→ q;G.

A communication pqλ represents the transmission of label λ on the channel pq from p to q. Com-

munications are ranged over by α ,β . The following notion of trace will be extensively used in the

sequel.

Definition 2.3 (Traces) A trace σ ,τ is a finite sequence of communications, i.e. σ ::= ε | α ·σ .

The set of traces is denoted by Traces.

It is useful to define sets of participants also for communications and traces. We define part(pqλ) =
{p,q}, and we lift this definition to traces by letting part(ε) = /0 and part(α ·σ) = part(α)∪part(σ).

As observed in [4], global types may be viewed as trees whose internal nodes are decorated by

channels pq, leaves by End, and edges by labels λ . Given a global type, the sequences of decorations of

nodes and edges on the path from the root to an edge in the tree of the global type are traces. We denote

by Tr+(G) the set of traces of G. By definition, Tr+(End) = /0 and each trace in Tr+(G) is non-empty.

The set of participants of a global type G, part(G), is the union of the sets of participants of its traces,

i.e. part(G) =
⋃

σ∈Tr+(G)part(σ). The regularity assumption ensures that part(G) is finite for any G.

The semantics of global types is given by the standard LTS presented in Figure 1, where transitions

are labelled by communications.

The projection of a global type onto participants is given in Figure 2. As usual, projection is defined

only when it is defined on all participants. Due to the simplicity of our calculus, the projection of a global

type, when defined, is simply a process. The definition is the standard one from [9, 10]: the projection of

a choice type on the sender or the receiver yields an output choice or an input choice, while its projection

on a third participant is its projection on the continuation of the branch, which must be equal on all

branches. Our coinductive definition is more permissive than the standard one for infinite types (see [4]).

I. Castellani and P. Giannini 13

p→ q : {λi;Gi}i∈I

pqλ j
−−→ G j j ∈ I [ECOMM]

Gi
α
−→ G′

i for all i ∈ I part(α)∩{p,q}= /0
[ICOMM]

p→ q : {λi;Gi}i∈I
α
−→ p→ q : {λi;G

′
i}i∈I

Figure 1: LTS for global types.

G↾ r = 0 if r 6∈ part(G) (p→ q : {λi;Gi}i∈I)↾ r =





Σi∈Ip?λi;Gi ↾ r if r = q,
⊕

i∈I q!λi;Gi ↾ r if r = p,

G1 ↾ r if r 6∈ {p,q} and r ∈ part(G1)

and Gi ↾ r = G1 ↾ r for all i ∈ I

Figure 2: Projection of global types onto participants.

A global type G is projectable if G↾p is defined for all p.

The following property of boundedness for global types is used to ensure progress.

Definition 2.4 (Depth and boundedness) The two functions δ (p,σ) and δ (p,G) are defined by:

δ (p,σ) =

{
|σ1 ·α | if σ = σ1 ·α ·σ2 and p /∈ part(σ1) and p ∈ part(α)

0 otherwise

δ (p,G) = sup({δ (p,σ) | σ ∈ Tr+(G)})
A global type G is bounded if δ (p,G′) is finite for each participant p and each subtree G′ of G.

If δ (p,G) is finite, then there is no path in the tree of G in which p is delayed indefinitely. Note that

if δ (p,G) is finite, G may have subtrees G′ for which δ (p,G′) is infinite.

Definition 2.5 (Well-formed global types) A global type G is well formed if it is projectable and bounded.

We conclude this section by recalling the type system for networks. The unique typing rule for

networks is Rule [NET] in Figure 3. It relies on a preorder on processes, P ≤ Q, meaning that process

P can be used where we expect process Q. This preorder plays the same role as the standard subtyping

for local types, except that it is invariant for output processes (rather than covariant). This restriction is

imposed in [4] in order to obtain bisimilar LTSs for networks and their global types, a property which in

turn is used to prove our main result there (isomorphism of the configuration domains of the two ESs).

The preorder rules are interpreted coinductively, since processes may have infinite (regular) trees.

A network is well typed if all its participants behave as specified by the projections of the same global

type G. Rule [NET] is standard for MPSTs, so we do not discuss it further.

0 ≤ 0 [≤ -0]
Pi ≤ Qi i ∈ I

Σi∈I∪Jp?λi;Pi ≤ Σi∈Ip?λi;Qi

============================[≤-IN]
Pi ≤ Qi i ∈ I

⊕
i∈Ip!λi;Pi ≤

⊕
i∈I p!λi;Qi

=========================[≤-OUT]

Pi ≤ G↾pi i ∈ I part(G)⊆ {pi | i ∈ I}

⊢ Πi∈Ipi[[Pi]] : G
[NET]

Figure 3: Preorder on processes and network typing rule.

14 Towards a semantic characterisation of global type well-formedness

3 Event Structure Semantics of Global Types

In this section we present the interpretation of global types as Prime Event Structures, as proposed in our

previous work [4]. We start by recalling the definition of Prime Event Structure (PES) and configuration

from [12]. All the following definitions (from Definition 3.3 to Definition 3.10) are required background

taken from [4], with some minor variations. The new material starts immediately after Definition 3.10.

Definition 3.1 ([12] Prime Event Structure) A prime event structure (PES) is a tuple S = (E,≤, #)
where E is a denumerable set of events; ≤⊆ (E ×E) is a partial order relation, called the causality

relation; # ⊆ (E ×E) is an irreflexive symmetric relation, called the conflict relation, satisfying the

property of conflict hereditariness: ∀e,e′,e′′ ∈ E : e#e′ ≤ e′′ ⇒ e#e′′.

A PES configuration is a set of events that may have occurred at some stage of computation.

Definition 3.2 ([12] PES configuration) Let S = (E,≤, #) be a prime event structure. A configuration

of S is a finite subset X of E which is (1) downward-closed: e′ ≤ e ∈ X ⇒ e′ ∈ X ; and (2)

conflict-free: ∀e,e′ ∈ X ,¬(e # e′).

The semantics of a PES S is given by its poset of configurations ordered by set inclusion, where X1 ⊂X2

means that S may evolve from X1 to X2.

The events of the PES associated with a global type will be equivalence classes of particular traces.

We introduce some notations for traces σ . We denote by σ [i] the i-th element of σ . If i ≤ j, we define

σ [i ... j] = σ [i] · · ·σ [j] to be the subtrace of σ consisting of the (j− i+1) elements starting from the i-th

one and ending with the j-th one. If i > j, we convene that σ [i ... j] denotes the empty trace ε .

A permutation equivalence on Traces is used to swap communications with disjoint participants.

Definition 3.3 (Permutation equivalence) The permutation equivalence on Traces is the least equiva-

lence ∼ such that

σ ·α ·α ′ ·σ ′ ∼ σ ·α ′ ·α ·σ ′ if part(α)∩part(α ′) = /0

We denote by [σ]∼ the equivalence class of σ , and by Traces/∼ the set of equivalence classes on Traces.

The events of the PES associated with a global type are equivalence classes of particular traces that we

call pointed. Intuitively, a pointed trace “points to” its last communication, in that all the preceding

communications in the trace should cause some subsequent communication in the trace. Formally:

Definition 3.4 (Pointed trace) A non empty trace σ = σ [1 ...n] is said to be pointed if

∀i .1 ≤ i < n, ∃ j . i < j ≤ n . part(σ [i])∩part(σ [j]) 6= /0

Note that the condition of Definition 3.4 is vacuously satisfied by any trace of length n = 1, since in that

case there is no i such that 1 ≤ i < n.

Let us also point out that Definition 3.4 is slightly different from (but equivalent to) the definition of

pointed trace given in [4].

For example, let α1 = pqλ1, α2 = rsλ2 and α3 = rpλ3. Then σ1 = α1 and σ3 = α1 ·α2 ·α3 are pointed

traces, while σ2 = α1 ·α2 is not a pointed trace.

If σ is non empty, we use last(σ) to denote the last communication of σ . It is easy to prove that, if

σ is a pointed trace and σ ∼ σ ′, then σ ′ is a pointed trace and last(σ) = last(σ ′).

Definition 3.5 (Global event) Let σ = σ ′ ·α be a pointed trace. Then γ = [σ]∼ is a global event, also

called g-event, with communication α , notation cm(γ) = α .

Notice that, due to the observation above, cm(γ) is well defined. We denote by GE the set of g-events.

We now introduce an operator that adds a communication α in front of a g-event γ , provided α is

a cause of some communication in the trace of γ . This ensures that the operator always transforms a

g-event into another g-event. We call this operator causal prefixing of a g-event by a communication.

I. Castellani and P. Giannini 15

Definition 3.6 (Causal prefixing of a g-event by a communication)

1. The causal prefixing of a g-event γ by a communication α is defined by:

α ◦ γ =

{
[α ·σ]∼ if γ = [σ]∼ and part(α)∩part(σ) 6= /0

γ otherwise

2. The operator ◦ naturally extends to traces by: ε ◦ γ = γ (α ·σ)◦ γ = α ◦ (σ ◦ γ)

An easy consequence of Clause 2 is that (σ ′ ·σ)◦ γ = σ ′ ◦ (σ ◦ γ) for all σ and σ ′.

Using causal prefixing, we can define the mapping ev(·) which, applied to a trace σ , yields the

g-event representing the communication last(σ) prefixed by its causes occurring in σ .

Definition 3.7 The g-event generated by a non-empty trace is defined by: ev(σ ·α) = σ ◦ [α]∼

Clearly, ev(σ) is a subtrace of σ and cm(ev(σ)) = last(σ). Observe that the function ev(·) is not

injective on the set of traces of a global type. For example, let G = p→ q : {λ1; r
λ
→ s , λ2; r

λ
→ s}. Let

σ1 = pqλ1 · rsλ and σ2 = pqλ2 · rsλ . Then σ1,σ2 ∈ Tr+(G) and ev(σ1) = ev(σ2) = [rsλ]∼.

Lemma 3.8 If part(α1) = part(α2) and ev(σ ·α1) = [σ ′ ·α1]∼, then ev(σ ·α2) = [σ ′ ·α2]∼.

We proceed now to define the causality and conflict relations on g-events.

Definition 3.9 (Causality and conflict relations on g-events) The causality relation ≤ and the conflict

relation # on the set of g-events GE are defined by:

1. γ ≤ γ ′ if γ = [σ]∼ and γ ′ = [σ ·σ ′]∼ for some σ ,σ ′;

2. γ # γ ′ if γ = [σ ·pqλ1 ·σ1]∼ and γ ′ = [σ ·pqλ2 ·σ2]∼ for some σ ,σ1,σ2,p,q,λ1,λ2 where λ1 6= λ2.

If γ = [σ ·α ·σ ′ ·α ′]∼, then the communication α must be done before the communication α ′. This is

expressed by the causality [σ ·α]∼ ≤ γ . An example is [pqλ]∼ ≤ [rsλ ′ ·pqλ · sqλ ′′]∼. As regards the

conflict relation, an example is [rsλ ·pqλ1 ·qrλ]∼ # [pqλ2 · rsλ]∼, since pqλ2 · rsλ ∼ rsλ ·pqλ2.

Definition 3.10 ([4] Event structure of a global type) The event structure of the global type G is the

triple S (G) = (E (G),≤G, #G) where: E (G) = {ev(σ) | σ ∈ Tr+(G)} and ≤G and # G are the restric-

tions of ≤ and # to E (G).

When clear from the context, we shall omit the subscript G in the relations ≤G and # G.

In the sequel, a PES obtained from a global type by Definition 3.10 will often be called a g-PES.

It should be stressed that Definition 3.10 only makes sense for global types that are projectable.

Such global types are guaranteed to be realisable by some distributed implementation, i.e., to type some

network. For these global types it has been shown in [4] that the semantics in Definition 3.10 preserves

and reflects the operational semantics, namely that G performs a transition sequence labelled by a trace σ

in the LTS of Figure 1 if and only if the associated PES admits the configuration X = {ev(σ ′) | σ ′ ⊑ σ}.

Example 3.11 The global type G= p→ q : {λ1; r
λ3→ s,λ2; r

λ3→ s} is projectable, with projections:

G↾p = P = q!λ1 ⊕q!λ2 G↾q = Q = p?λ1 +p?λ2 G↾ r = R = s!λ3 G↾s =U = r?λ3

Clearly, G types the network p[[P]] ‖ q[[Q]] ‖ r[[R]] ‖ s[[U]]. The PES S associated with G by Defini-

tion 3.10 has three events γ1 = [pqλ1]∼,γ2 = [pqλ2]∼,γ3 = [rsλ3]∼, with ≤G= Id and γ1 # Gγ2.

Consider now the global type G′ = p→ q : {λ1;End,λ2; r
λ3→ s}, where the first branch of the choice

has no continuation. Clearly, G′ is not projectable. However, Definition 3.10 associates the same PES S

with G′, whereas G′ and S do not have the same operational semantics, since G′ pqλ1
−−−→ End while in the

PES S the configuration X = {γ1} can be extended to the configuration X ′ = {γ1,γ3}.

16 Towards a semantic characterisation of global type well-formedness

Our PES interpretation of global types explicitly brings out the concurrency between communica-

tions that is left implicit in the syntax of global types. We prove now that all well-formed global types

that type the same network yield the same PES (Theorem 3.14). We start by proving a weaker theorem,

which follows from results established in [12] and [4]. We say that two well-formed global types G and

G′ are equivalent if ⊢ N : G and ⊢ N : G′ for some network N. Let ∼= denote PES isomorphism.

Theorem 3.12 (Equivalent well-formed global types yield isomorphic PESs) Let G and G′ be well-

formed global types. If ⊢ N : G and ⊢ N : G′ for some network N, then S (G)∼= S (G′).

Proof. It was shown in [4] (Theorem 8.18 p 25) that if ⊢N : G then the domain of configurations of S (G)
is isomorphic to the domain of configurations of the Flow Event Structure associated with N. Then, from

⊢ N : G and ⊢ N : G′ it follows that S (G) and S (G′) have isomorphic domains of configurations. A

classical result in [12] (Theorem 9 p. 102) establishes that a PES S is isomorphic to the PES whose

events are the prime elements of the domain of configurations of S, with causality relation given by set

inclusion and conflict relation given by set inconsistency. We conclude that S (G)∼= S (G′). �

We now wish to go a step further by showing that S (G) and S (G′) are actually identical PESs. We

write G
σ
−→ G′ if G

α1−→ G1 · · ·
αn−→ Gn where α1 · · ·αn = σ and Gn = G′, and G

σ
−→ if there exists G′ such

that G
σ
−→ G′. A similar notation will be used for transition sequences of a network N.

Our next theorem relies on the following key lemma.

Lemma 3.13 Let G be a global type and σ be a trace. Then:

1. σ ∈ Tr+(G) implies G
σ
−→ ;

2. G
σ
−→ implies ev(σ) ∈ E (G).

Theorem 3.14 (Equivalent well-formed global types yield identical PESs) Let G and G′ be well-

formed global types. If ⊢ N : G and ⊢ N : G′ for some network N, then S (G) = S (G′).

Proof. It is enough to show that S (G) and S (G′) have exactly the same sets of events, since events

are defined syntactically and the relations of causality and conflict can be extracted from their syntax.

We prove that E (G) = E (G′). Let e ∈ E (G). By Definition 3.10 there exists σ ∈ Tr+(G) such that

ev(σ) = e. Then G
σ
−→ by Lemma 3.13(1), from which we deduce N

σ
−→ by the Session Fidelity result

in [4] (Theorem 6.11 p. 16). Then G′ σ
−→ by the Subject Reduction result in [4] (Theorem 6.10 p. 16).

By Lemma 3.13(2) this implies ev(σ) ∈ E (G′), i.e., e ∈ E (G′).
�

4 Semantic Well-formedness

We now investigate semantic counterparts for the syntactic well-formedness property of global types.

Recall that type well-formedness is the conjunction of two properties: projectability and boundedness.

We start by defining a notion of semantic projectability for PESs. We first give some auxiliary definitions.

Definition 4.1 Let G be a global type and S (G) = (E (G),≤, #). Two events γ1,γ2 ∈ E (G) are in initial

conflict, γ1 #in γ2, if γ1 = [σ ·pqλ1]∼ and γ2 = [σ ·pqλ2]∼ for some σ ,p,q,λ1,λ2 such that λ1 6= λ2.

Definition 4.2 (Projection of traces on participants) The projection of σ on r, σ@r , is defined by:

ε@r = ε (pqλ ·σ)@r =





q!λ ·σ@r if r= p

p?λ ·σ@r if r= q

σ@r if r 6∈ {p,q}

I. Castellani and P. Giannini 17

Definition 4.3 (Semantic projectability) Let G be a global type and S (G)= (E (G),≤, #). We say that

S (G) is semantically projectable if for all γ1,γ2 ∈ E (G) in initial conflict:

if there is γ ′1 = [σ1 ·α1]∼ with γ1 ≤G γ ′1 and r ∈ part(α1)\part(cm(γ1)),

then there is γ ′2 = [σ2 ·α2]∼ with γ2 ≤G γ ′2 and α2 = α1 and σ2@r = σ1@r .

Note that if G is semantically projectable, then also any subterm G′ of G is semantically projectable.

We now show that, if a global type G is projectable, then all initial conflicts between two participants

p and q in the event structure S (G) reflect branching points between p and q in the tree of G. In general,

the mapping from branching points in the tree of G to initial conflicts in S (G) is not injective, namely,

there may be several branching points in the tree of G that give rise to the same initial conflict in S (G).

Lemma 4.4 (Initial conflicts in S (G) reflect branching points in the tree of G) Let G be a global type

and S (G) = (E (G),≤, #). Let γ1,γ2 ∈ E (G) be in initial conflict and γi = [σ ·αi]∼ for i ∈ {1,2}. If G is

projectable then there exists σ ′ such that σ ′ ·αi ∈ Tr+(G) and ev(σ ′ ·αi) = [σ ·αi]∼ for i ∈ {1,2}.

Let σ ∈ Tr+(G). We denote by Gσ the subterm of G after σ , which is easily defined by induction

on the length of σ . The converse of Lemma 4.4 is immediate, since any subterm of G is Gσ for some

σ ∈ Tr+(G). So if Gσ = p→ q : {λi;G
′
i}i∈I with {1,2} ⊆ I, then the two events γ1 = ev(σ ·pqλ1) and

γ2 = ev(σ ·pqλ2) are in initial conflict because by Lemma 3.8 there exists σ ′ such that ev(σ ·pqλi) =
[σ ′ ·pqλi]∼ for i ∈ {1,2}.

Theorem 4.5 (Projectability preservation) If G is projectable then S (G) is semantically projectable.

Proof. Let γ1,γ2 ∈ E (G) and γ1 #in γ2. By definition, γ1 = [σ ·pqλ1]∼ and γ2 = [σ ·pqλ2]∼ for some

σ ,p,q,λ1,λ2 such that λ1 6= λ2. Let αi = pqλi for i ∈ {1,2}.

Since G is projectable, by Lemma 4.4 there exists σ ′ such that σ ′ ·αi ∈Tr+(G) and ev(σ ′ ·αi) = [σ ·αi]∼
for i ∈ {1,2}. Then Gσ ′ = p → q : {λi;G

′
i}i∈I with {1,2} ⊆ I. Since G is projectable, also Gσ ′ is

projectable. Thus, for any r 6∈ {p,q} we get G′
1 ↾ r = G′

2 ↾ r .

Let γ ′1 ∈ E (G), with γ1 ≤G γ ′1, cm(γ ′1) = β , and r ∈ part(β)\{p,q}. Since γ1 ≤G γ ′1, it must necessarily

be γ ′1 = [σ ·α1 ·σ1 ·β]∼ = ev(σ ′ ·α1 ·σ
′
1 ·β) for some σ1,σ

′
1. Then σ ′

1 ·β is a path in G′
1.

Since Gσ ′ is projectable, G′
1↾r =G′

2↾r . Then there must be a path σ ′
2 of G′

2 such that σ ′
1 ·β@r =σ ′

2 ·β@r .

We want to show that γ ′2 = ev(σ ′ ·α2 ·σ
′
2 ·β) = [σ ′ ·α2 ·σ2 ·β]∼ for some σ2, i.e., that γ2 ≤ γ ′2. Now, if

part(β)∩{p,q} 6= /0, we can conclude immediately. So, let us assume part(β)∩{p,q}= /0.

Since γ ′1 = ev(σ ′ ·α1 ·σ
′
1 ·β) = [σ ·α1 ·σ1 ·β]∼ we know that α1 ·σ1 ·β is a pointed trace. So, there must

be a bridging communication sequence between α1 and β , namely there must be a subtrace β1 · · ·βn of

σ1 for some n ≥ 1 such that

part(α1)∩part(β1) 6= /0 part(βn)∩part(β) 6= /0 part(βi)∩part(βi+1) 6= /0 for 1 ≤ i < n

Correspondingly, we will have σ ′
1 = σ̂1 ·β1 · · · σ̂n ·βn. There are now two possible cases:

- part(βi) 6= {p,q} for every i = 1, . . . ,n. Since Gσ ′ is projectable, G′
1 ↾ s = G′

2 ↾ s for all s 6∈ {p,q},

i.e., σ ′
1@s = σ ′

2@s . Therefore all the βi’s for 1 ≤ i ≤ n must occur in the same order in σ ′
2, i.e. σ ′

2 =
τ1 ·β1 · · · τn ·βn for some τ1, . . . ,τn. Hence ev(σ ′ ·α2 ·σ

′
2 ·β) = [σ ′ ·α2 ·σ2 ·β]∼ for some σ2.

- part(β j) = {p,q} for some j, 1 ≤ j ≤ n. Let k be the maximum such index j. Then we know that

part(βh) 6= {p,q} for every h,k+1 ≤ h ≤ n, and either p ∈ part(βk+1) or q ∈ part(βk+1). Therefore all

the βh’s for k + 1 ≤ h ≤ n must occur in the same order in σ ′
2, i.e. σ ′

2 = τk · βk+1 · · · τn · βn for some

τk, . . . ,τn. Hence, ev(σ ′ ·α2 ·σ
′
2 ·β) = [σ ′ ·α2 ·σ2 ·β]∼ for some σ2. �

The converse is not true, i.e., semantic projectability of S (G) does not imply projectability of G, as

shown by the global type G′ in Example 3.11. Note that there is no network behaving as prescribed by

G′. We conjecture that for realisable global types semantic projectability implies projectability.

18 Towards a semantic characterisation of global type well-formedness

We now define a notion of semantic boundedness for PESs, which is global in that it looks simulta-

neously at all occurrences of each participant p in the g-events whose last communication involves p. Let

S = (E,≤, #) be a g-PES. For any participant p, let p∈ part(S) if there exists γ ∈ E such that p∈ part(γ).

Definition 4.6 (Semantic k-depth and semantic boundedness) Let S = (E,≤, #) be a g-PES. The two

functions δ k
sem(p,γ) and δgsem(p,S) are defined by:

δ k
sem(p, [σ]∼) =





|σ | if σ = σ1 ·α1 · · ·σk ·αk and p ∈ part(αi) for i = 1, . . . ,k

and p /∈ part(σi) for i = 1, . . . ,k

0 otherwise

δ k
gsem(p,S) = sup({δ k

sem(p,γ) | γ ∈ E}) for every k ∈N

S is semantically bounded if δ k
gsem(p,S) is finite for each participant p ∈ part(S) and each k ∈ N.

Theorem 4.7 (Boundedness preservation) If G is bounded, then S (G) is semantically bounded.

Proof. Let G be bounded and S (G) = (E (G),≤, #). We want to show that δ k
gsem(p,S (G)) is finite

for each participant p ∈ part(S (G)) and each k ∈ N. Fix some p. If p 6∈ part(G) then p 6∈ part(S (G))
and thus the statement is vacuously true. So, assume p ∈ part(G). We show now, by induction on k, that

there exists nk ∈N such that δ k
sem(p,γ)≤ nk for any γ ∈ E (G).

- Case k = 1. We may assume γ = [σ1 ·α1]∼ ∈ E (G) with p 6∈ part(σ1) and p ∈ part(α1), since

for any γ ′ not of this shape we have δ 1
sem(p,γ

′) = 0 and we can immediately conclude. Then there

exists σ ′
1 ·α1 ∈ Tr+(G) such that γ = ev(σ ′

1 ·α1). Note that it must be p 6∈ part(σ ′
1), since otherwise

there would be some β in σ ′
1 such that part(β) ∩ part(α1) 6= /0 and the function ev(·) would keep

this β , contradicting the hypothesis p 6∈ part(σ1). Let n1 = δ (p,G) = sup({δ (p,σ) | σ ∈ Tr+(G)}).
By Definition 2.4 δ (p,σ ′

1 ·α1) = | σ ′
1 ·α1 | ≤ n1. Then by Definition 4.6 we get δ 1

sem(p, [σ1 ·α1]∼) =
|σ1 ·α1 | ≤ |σ ′

1 ·α1 | ≤ n1.

- Case k > 1. Assume that sup({δ k−1
sem (p,γ) | γ ∈ E (G)}) ≤ nk−1. Let σ = σ1 ·α1 · · ·σk ·αk be such

that p 6∈ part(σi) and p ∈ part(αi) for every i = 1, . . . ,k, and let γ = [σ]∼ ∈ E (G). Then there exists

σ ′ = σ ′
1 ·α1 · · ·σ

′
k ·αk ∈ Tr+(G) such that γ = ev(σ ′). For each i = 1, . . . ,k we must have p 6∈ part(σ ′

i),
because otherwise we would contradict the hypothesis p 6∈ part(σi) (as argued in the previous case). Let

now σ ′′ = σ ′
1 ·α1 · · ·σ

′
k−1 ·αk−1, and consider the subterm Gσ ′′ of G.

Since G is bounded and Gσ ′′ is a subtree of G, by Definition 2.4 we get δ (p,Gσ ′′)= sup({δ (p,σ) | σ ∈
Tr+(Gσ ′′)}) =m for some m∈N. Therefore δ 1

sem(p, [σk ·αk]∼)= |σk ·αk | ≤ |σ ′
k ·αk | = δ (p,σ ′

k ·αk)≤m.

δ (p,σ ′
k ·αk) = |σ ′

k ·αk | ≤ m. Let nk = nk−1 +m. We may conclude that δ k
sem(p, [σ1 ·α1 · · ·σk ·αk]∼) =

δ k−1
sem (p, [σ1 ·α1 · · ·σk−1 ·αk−1]∼)+δ 1

sem(p, [σk ·αk]∼)≤ nk−1 +m = nk.

�

5 Structural Properties of g-PESs

In this section we discuss some additional properties of the PESs we obtain by interpreting global types.

Some of these properties do not depend on the well-formedness of global types but only on their syntax.

For instance, since we adopt for global types the directed choice construct of [9, 10]: p→ q : {λi;Gi}i∈I ,

every branch of a choice uses the same channel pq. As a consequence, g-PESs satisfy the property of

initial conflict uniformity: in every set X = {γ1, . . . ,γn} of initially conflicting g-events, every γi ∈ X uses

the same channel pq in its last communication, i.e., cm(γi) = pqλi for some λi. Moreover, since global

types have deterministic LTSs, where no state can perform two different transitions with the same label,

I. Castellani and P. Giannini 19

the same holds for g-PESs: if X ,X ∪{γ1},X ∪{γ2} are configurations of the same g-PES, then γ1 6= γ2

implies cm(γ1) 6= cm(γ2). If moreover ¬(γ1 # γ2), we additionally have part(cm(γ1))∩part(cm(γ2)) = /0.

Note that our core session calculus may be viewed as a linear subcalculus of Milner’s calculus CCS,

where parallel composition appears only at top level and any pair of processes P and Q, run by partic-

ipants p and q, can communicate only via two unidirectional channels: channel pq for communication

from p to q, and channel qp for communication from q to p. Hence, restricted parallel composition,

which is the kind of parallel composition used in session calculi, where processes are only allowed to

communicate with each other but not to proceed independently, becomes an associative operation, while

it is not associative in full CCS (as observed by Milner in his 1980 book, see [11] page 21).

Then, a natural question is: how does our ES semantics for the linear subcalculus of CCS compare to

the ES semantics proposed in [2, 3] for other fragments of CCS? To carry out this comparison, we would

need to take a more extensional view of g-PESs, forgetting about the syntactic structure of g-events

and retaining only their last communication. In other words, we should consider Labelled PESs, where

events are labelled by communications pqλ and have no specific structure. Moreover, some care should

be taken since, unlike our session calculus, our language for global types is not a subcalculus of CCS:

indeed, while the syntax of global types is included in that of CCS with guarded sums, their semantics is

not the same as that of CCS processes, since some communications may be performed under guards.

More in detail, the work [2] provides a characterisation of the class of Labelled PESs obtained by

interpreting the fragment of CCS built from actions a,b, . . . by means of the three constructors +, ; ,‖,

denoting respectively choice, sequential composition and parallel composition with no communication.

As a matter of fact, [2] uses slightly more relaxed PESs where conflict is not required to be hereditary

- let us call them r-PESs - and shows that the Labelled r-PESs obtained for that fragment of CCS are

exactly those satisfying two structural properties called triangle freeness and N-freeness. In conjunction,

these two properties express the possibility of extracting a head operator among +, ; ,‖ from the structure

of the r-PES. We recall from [2] the definition of these properties. Let ⌣ denote the concurrency relation

on the events of a PES S = (E,≤, #), defined by ⌣= (E ×E)− (≤∪ ≥ ∪#). Let ⋄= (≤ ∪ ≥) denote

causal connection. By definition the three relations ⋄, # and ⌣ set a partition over E ×E . Then triangle

freeness (or ∇-freeness) is defined as the absence of a triple of events e,e′,e′′ such that e ⋄ e′ # e′′ ⌣ e

(see [2] page 41). Note that one half of triangle-freeness, where ⋄ is replaced by ≥, is implied by conflict

hereditariness in g-PESs. We conjecture that g-PESs satisfy also the other half of triangle-freeness,

where ⋄ is replaced by ≤, namely they do not feature the pattern e ≤ e′ # e′′ ⌣ e, a situation known

as asymmetric confusion in Petri nets. The property of N-freeness is slightly more involved. For any

R ∈ {≤, # ,⌣}, let Rε be the reflexive and symmetric closure of R and ‡(R) be the R− incomparability

relation defined by ‡(R) = (E ×E)−Rε . Then the N-freeness property is stated as follows:

N-freeness ∀R ∈ {≤, # ,⌣}: (e0Re1 ∧ e0 ‡ (R)e2 ∧ e2Re3 ∧ e1 ‡ (R)e3) =⇒ (e0Re3 =⇒ e2Re1)

This property does not hold for g-PESs, e.g., it does not hold for the g-PES of the global type G =

p
λ0→ q;p

λ1→ t; r
λ2→ s;q

λ3→ s, with e0 = [pqλ0]∼,e1 = [pqλ0 ·ptλ1]∼,e2 = [rsλ2]∼,e3 = [pqλ0 · rsλ2 ·qsλ3]∼.

However, we may show that g-PESs satisfy particular instances of N-freeness, for instance when R

is the covering relation of ≤ and e1 #in e3 (in which case conflict hereditariness enforces e0 ⌣ e2).

The paper [3], on the other hand, presents a Flow Event Structure semantics for the whole calculus

CCS. Our conjecture is that this semantics should coincide with the Flow ES semantics proposed for

sessions in [4]. However, this is not entirely trivial since the semantics of [3] uses self-conflicting events,

a specific feature of Flow ESs, to interpret restricted parallel composition, while the semantics of [4] uses

a pre-processing phase to rule out the g-events that do not satisfy a causal well-foundedness condition,

and these events are a superset of those that are self-conflicting in the semantics of [3]. However, one

20 Towards a semantic characterisation of global type well-formedness

may already observe that the Flow ESs obtained by interpreting sessions in [4] trivially satisfy the axiom

∆ put forward in [5] in order to guarantee that CCS parallel composition is a categorical product.

6 Conclusion

We conclude by further discussing related work and by sketching some directions for future work.

Related work. In Section 5 we compared our PES semantics for global types to existing ES seman-

tics for other fragments of CCS. In that case, the comparison was somewhat hindered by the fact that the

target ESs were not exactly the same (PESs vs r-PESs vs Flow ESs). We now turn to other proposals of

denotational models for MPSTs. The models that are closest to ours are the graphical choreographies by

Guanciale and Tuosto [14], the choreography automata by Barbanera, Lanese and Tuosto [1], the global

choreographies by de’Liguoro, Melgratti and Tuosto [6], and the branching pomsets by Edixhoven et

al. [8]. It should be noted that most of these works deal with asynchronous communication, so “events”

(or communications) are split into send events and receive events. Common well-formedness conditions

proposed in these works are well-branchedness [1, 6, 8], which in our case is enforced by the syntax of

global types, and well-sequencedness [1, 6], which is automatically enforced by our PES semantics. As

regards the use of ESs to model MPSTs, the paper [6] also uses PESs to model (asynchronous) chore-

ographies, but it needs an additional type system to obtain projectability (so, the resulting notion of

projectability is not totally semantic). In [8], asynchronous choreographies are modelled with branching

pomsets, a model featuring both concurrency and choice, which is compared with various classes of ESs.

Future work. In this paper, we have devised semantic counterparts for the well-formedness condi-

tions of global types. However, we have only gone half the way in establishing a characterisation of the

class of Prime ESs representing well-formed global types. To achieve such a characterisation, we should

prove the converse of Theorem 4.7 and the following weaker form of the converse of Theorem 4.5:

Conjecture [Projectability reflection] Let G be a global type. If S (G) is semantically projectable

then there exists a projectable global type G′ such that S (G′) = S (G).
If this conjecture were true, then our PES semantics for global types would also provide a way to

“sanitise” ill-formed global types. For instance, starting from the g-PES S (G′) of the ill-formed global

type G′ of Example 3.11, we would be able to get back to the well-formed global type G of the same

example or to the well-formed global type G′′ = r
λ3→ s;p → q : {λ1;End,λ2;End}. Once we achieve a

characterisation for this class of g-PESs, the next step would be to propose an algorithm to synthesise a

well-formed global type (or directly a network) from a g-PES of this class. A further goal would be to

semantically characterise less restrictive notions of projection, such as the one proposed in [7].

Since g-PESs are images of regular trees, it would be worth investigating their connection with

Regular Event Structures [13]. Moreover, as argued in the previous section, extensional g-PESs, where

g-events have no structure and are labelled by their last communication, may be viewed as Labelled ESs

whose observable behaviour (the communications) is deterministic. Hence, such extensional g-PESs

could be characterised by the trace language they recognise1 .

Acknowledgments. We are grateful to the anonymous reviewers for their useful suggestions. The first

author would also like to acknowledge interesting discussions with Nobuko Yoshida, Francisco Ferreira

and Raymond Hu during her visits to Oxford University and Queen Mary University of London in 2023.

1Here,“trace” should be intended as a Mazurkiewicz trace, namely as an equivalence class of standard traces with respect to

an independence relation I on the alphabet of the language, which in our case is given by pqλ I rsλ ′ if {p,q}∩{r,s} = /0.

I. Castellani and P. Giannini 21

References

[1] Franco Barbanera, Ivan Lanese & Emilio Tuosto (2020): Choreography Automata. In Simon Bliudze &

Laura Bocchi, editors: Coordination Models and Languages - 22nd IFIP WG 6.1 International Conference,

COORDINATION 2020, 12134, Springer, pp. 86–106, doi:10.1007/978-3-030-50029-0_6.

[2] Gérard Boudol & Ilaria Castellani (1988): Concurrency and atomicity. Theoretical Computer Science 59(1-

2), pp. 25–84, doi:10.1016/0304-3975(88)90096-5.

[3] Gérard Boudol & Ilaria Castellani (1988): Permutation of transitions: an event structure semantics for CCS

and SCCS. In J.W. de Bakker, W.-P. de Roever & G. Rozenberg, editors: REX School/Workshop on Linear

Time, Branching Time and Partial Order in Logics and Models for Concurrency, Noordwijkerhout, Lecture

Notes in Computer Science 354, Springer-Verlag, pp. 411–427, doi:10.1007/BFb0013028.

[4] Ilaria Castellani, Mariangiola Dezani-Ciancaglini & Paola Giannini (2023): Event structure semantics for

multiparty sessions. J. Log. Algebraic Methods Program. 131, p. 100844, doi:10.1016/j.jlamp.2022.

100844.

[5] Ilaria Castellani & Guo Qiang Zhang (1997): Parallel product of event structures. Theoretical Computer

Science 179(1-2), pp. 203–215, doi:10.1016/S0304-3975(96)00104-1.

[6] Ugo de’Liguoro, Hernán C. Melgratti & Emilio Tuosto (2022): Towards refinable choreographies. J. Log.

Algebraic Methods Program. 127, p. 100776, doi:10.1016/j.jlamp.2022.100776.

[7] Pierre-Malo Deniélou & Nobuko Yoshida (2013): Multiparty Compatibility in Communicating Automata:

Characterisation and Synthesis of Global Session Types. In Fedor V. Fomin, Rusins Freivalds, Marta Z.

Kwiatkowska & David Peleg, editors: Automata, Languages, and Programming - 40th International Collo-

quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Lecture Notes in Computer Science

7966, Springer, pp. 174–186, doi:10.1007/978-3-642-39212-2_18.

[8] Luc Edixhoven, Sung-Shik Jongmans, José Proença & Ilaria Castellani (2024): Branching pomsets: Design,

expressiveness and applications to choreographies. J. Log. Algebraic Methods Program. 136, p. 100919,

doi:10.1016/J.JLAMP.2023.100919.

[9] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty Asynchronous Session Types. In

George C. Necula & Philip Wadler, editors: POPL, ACM Press, New York, pp. 273–284, doi:10.1145/

1328897.1328472.

[10] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. Journal

of ACM 63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[11] Robin Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92,

Springer, doi:10.1007/3-540-10235-3.

[12] Mogens Nielsen, Gordon Plotkin & Glynn Winskel (1981): Petri Nets, Event Structures and Domains, Part

I. Theoretical Computer Science 13(1), pp. 85–108, doi:10.1016/0304-3975(81)90112-2.

[13] Mogens Nielsen & P. S. Thiagarajan (2002): Regular Event Structures and Finite Petri Nets: The Conflict-

Free Case. In Javier Esparza & Charles Lakos, editors: Applications and Theory of Petri Nets 2002, 23rd

International Conference, ICATPN 2002, Adelaide, Australia, June 24-30, 2002, Proceedings, Lecture Notes

in Computer Science 2360, Springer, pp. 335–351, doi:10.1007/3-540-48068-4_20.

[14] Emilio Tuosto & Roberto Guanciale (2018): Semantics of global view of choreographies. J. Log. Algebraic

Methods Program. 95, pp. 17–40, doi:10.1016/j.jlamp.2017.11.002.

https://doi.org/10.1007/978-3-030-50029-0_6
https://doi.org/10.1016/0304-3975(88)90096-5
https://doi.org/10.1007/BFb0013028
https://doi.org/10.1016/j.jlamp.2022.100844
https://doi.org/10.1016/j.jlamp.2022.100844
https://doi.org/10.1016/S0304-3975(96)00104-1
https://doi.org/10.1016/j.jlamp.2022.100776
https://doi.org/10.1007/978-3-642-39212-2_18
https://doi.org/10.1016/J.JLAMP.2023.100919
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/3-540-10235-3
https://doi.org/10.1016/0304-3975(81)90112-2
https://doi.org/10.1007/3-540-48068-4_20
https://doi.org/10.1016/j.jlamp.2017.11.002

D. Costa, R. Hu (Eds.): Programming Language Approaches to
Concurrency and Communication-cEntric Software 2024 (PLACES’24)
EPTCS 401, 2024, pp. 22–36, doi:10.4204/EPTCS.401.3

© S. Cavoj, I. Nikitin, C. Perkins, O. Dardha
This work is licensed under the
Creative Commons Attribution License.

Session Types for the Transport Layer: Towards an
Implementation of TCP*

Samuel Cavoj
samuel@cavoj.net

University of Glasgow

Ivan Nikitin
ivan@niktivan.org

University of Glasgow

Colin Perkins
csp@csperkins.org

University of Glasgow

Ornela Dardha
ornela.dardha@glasgow.ac.uk

University of Glasgow

Session types are a typing discipline used to formally describe communication-driven applications
with the aim of fewer errors and easier debugging later into the life cycle of the software. Protocols at
the transport layer such as TCP, UDP, and QUIC underpin most of the communication on the modern
Internet and affect billions of end-users. The transport layer has different requirements and constraints
compared to the application layer resulting in different requirements for verification. Despite this,
to our best knowledge, no work shows the application of session types at the transport layer. In
this work, we discuss how multiparty session types (MPST) can be applied to implement the TCP
protocol. We develop an MPST-based implementation of a subset of a TCP server in Rust and test
its interoperability against the Linux TCP stack. Our results highlight the differences in assumptions
between session type theory and the way transport layer protocols are usually implemented. This
work is the first step towards bringing session types into the transport layer.

1 Introduction

Session types [11] are a typing discipline for communication protocols. They can describe the sequence
of messages exchanged between participants over a communication channel and can be used to verify that
the protocol is implemented correctly or has certain desirable properties. Further, session types can be
realised within programming languages and used to type-check the implementation of a protocol against
a session type definition, with type errors indicating inconsistencies between implementation and the
session type. Session types have been an active area of research since the beginning of the 1990s [11]
and have been implemented in a number of programming languages including C [26], Java [13] and Rust
[14, 15] and other programming languages [9, 16, 25, 27, 29].

Network protocols that are part of the Internet Protocol suite (TCP/IP) are the foundation of the
Internet. They are responsible for interoperability between different devices, operating systems, and
applications. To ensure that different implementations of the same protocol are compatible, they must
adhere to a technical specification which, in the case of Internet protocols, is defined in a series of
documents, known as RFCs [8], developed by the Internet Engineering Task Force (IETF). Specifically,
the latest version of the TCP protocol specification is defined in RFC 9293 [7].

The IETF follows a consensus-based process when developing standards [4, 30], with protocol
specifications being developed in working group meetings and on mailing lists over a multi-year period.
The resulting RFCs are written primarily in English prose, allowing the documents to be used in the

*Supported in part by the UK EPSRC grants EP/X027309/1 and EP/S036075/1.

https://dx.doi.org/10.4204/EPTCS.401.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 23

consensus-building process, but the natural language can be ambiguous and unclear and this can lead to
inconsistent and non-conforming implementations. [22, 23, 28]. In this sense, ensuring the correctness of
Internet protocols is vital. Developing formalised models of the protocols described in RFCs is one way
to achieve this. Session types are one such modelling technique that has not previously been explored for
transport-layer protocols, such as TCP.

In this paper, we implement a core subset of the TCP protocol in the Rust programming language
and use session types to describe the network operations. Session types are encoded into native Rust
types and the type checker is used to verify that the implementation follows the session type specification.
In this way, the Rust compiler verifies that the implementation of the protocol is correct in terms of the
types of messages exchanged and the order in which they are exchanged, i.e., that it follows the declared
session type, for a session type model describing a synchronous subset of TCP. Additionally, session
types are used to describe the application interface, so we can verify that the application uses the TCP
implementation correctly.

Our contributions are as follows:

1. Session Types Libraries. We develop1 the libraries required for encoding the session type model
into native Rust types in an ergonomic fashion (§4.1).

2. Implementation. We implement a subset of the TCP protocol [7], including key aspects of both
the user/TCP interface and the TCP/lower-level interface, in Rust while adhering to the session type
model. This is done in a way such that the Rust compiler can detect deviation from the session type
(§4.4).

3. Testing. We test our implementation against a real TCP stack (§5).

The remainder of this paper is structured as follows. Section 2 briefly reviews the multiparty session
type model we use. Section 3 outlines key properties of TCP and its state machine. Section 4 describes our
session typed implementation of TCP in Rust. Section 5 evaluates the correctness of our implementation.
Finally, Section 6 reviews related work and concludes.

2 Session types

Session types [11] describe communication among participants in a distributed system in terms of the
types and order of messages that are exchanged. A single session type describes the sequence of messages
sent or received from the perspective of one of the participants. The theory of session types was later
extended to multiparty session types (MPST) which can describe protocols between any number of
participants [12].

In this paper, the bottom-up multiparty session type approach [31] is used to describe TCP. An
example of a simple ping-pong protocol using this approach is demonstrated in Equation 1. When
type-checking any type using the bottom-up approach, we must additionally choose a safety invariant.
Safety invariants are parameters associated with the properties a protocol may demonstrate during runtime,
such as deadlock-freedom and liveness. Each safety invariant is accompanied by specific typing rules (not
presented here) that guarantee the maintenance of the corresponding invariant. If the protocol successfully
type-checks with the instantiation of the safety invariant, it will manifest the property represented by the
invariant during its runtime.

1Our session type library and TCP implementation is available at https://github.com/sammko/tcpst2

https://github.com/sammko/tcpst2

24 Session types for TCP

Γ1 = s[a] : b ⊕ l1(ping) . b & l3(pong) . end,
s[b] : a & l2(ping) . a ⊕ l1(pong) . end

(1)

The implications of this approach are that global types and the concept of duality are not used. Instead
of duality, the compatibility invariant is used to check that actions are dual between the given types.
However, a protocol can still be described using session types even if safety does not hold.

3 Transmission Control Protocol (TCP)

The TCP transport is layered on top of the datagram service provided by the Internet Protocol (IP). The
IP layer provides an unreliable, best-effort, datagram service, where packets may be lost, duplicated,
delayed, or re-ordered in transit. TCP segments, sent within IP packets, contain sequence numbers and
acknowledgements such that, upon detection of a lost packet, either triggered by a timer expiration or
receipt of a triple-duplicate acknowledgement, the sender can re-transmit the lost segment.

TCP is usually used in a client-server manner, but also supports a rarely used simultaneous open mode
with peer-to-peer connections. In the context of this paper, we assume client-server usage, with one side
being a passive server listening for incoming connections, while the other is an active client initiating the
connection. We describe the operation of the TCP state machine below and provide a diagram of the TCP
state transitions in Figure 1.

The establishment of a reliable connection between two network devices is facilitated by the TCP
three-way handshake. It commences with the initiation of a connection with the client sending a TCP
segment with the SYN (synchronise) bit set in the header and containing the client’s initial sequence
number. The server responds with a segment with the SYN and ACK bits set, acknowledging the client’s
initial sequence number and providing the initial sequence number the server will use. Finally, the client
confirms the establishment of the connection by sending a segment with the ACK (acknowledge) bit set.
This sequence ensures both sides agree on their initial sequence numbers and confirm their willingness to
communicate.

TCP uses a sliding window algorithm to manage data transmission by sending segments with sequence
numbers. The window size determines the number of unacknowledged segments in transit. The receiver
discards unacceptable segments falling outside the expected sequence range, leading to retransmission
by the sender. Acknowledgements are sent upon receiving new data, indicating the next expected
contiguous sequence number. TCP handles packet loss or reordering at the IP layer by detecting duplicate
acknowledgements; a triple-duplicate acknowledgement triggers retransmission. Additionally, TCP
utilises a retransmission timeout (RTO) mechanism, dynamically adjusted based on network conditions.
TCP buffers play a crucial role on both the sender and receiver sides, with the send buffer holding outgoing
segments awaiting acknowledgement and the receive buffer storing incoming segments yet to be delivered
to the application.

The TCP closing handshake, another three-way handshake involving packets with the FIN (finish) and
ACK (acknowledge) bits signifies the end of a connection. The initial party sends a FIN packet, followed
by an acknowledgement from the other party, culminating in a reciprocal FIN-ACK exchange. The final
step includes an acknowledgement from the original sender, leading to the TIME-WAIT state. This state
ensures a reliable closure, allowing the handling of delayed or duplicate IP packets before concluding the
connection.

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 25

 +---------+ -----------------\ active OPEN
 | CLOSED | \ -----------
 +---------+<---------------\ \ create TCB
 | ^ \ \ snd SYN
 passive OPEN | | CLOSE \ \
 ------------ | | ---------- \ \
 create TCB | | delete TCB \ \
 V | \ \
 rcv RST (note 1) +---------+ CLOSE | \
 -------------------->| LISTEN | ---------- | |
 / +---------+ delete TCB | |
 / rcv SYN | | SEND | |
 / ----------- | | ------- | V
+--------+ snd SYN,ACK / \ snd SYN +--------+
	<----------------- ------------------>	
SYN	rcv SYN	SYN
RCVD	<---	SENT
	snd SYN,ACK	
	------------------ -------------------	
+--------+ rcv ACK of SYN \ / rcv SYN,ACK +--------+		
--------------		-----------
x		snd ACK
V V		
CLOSE +---------+		
-------	ESTAB	
snd FIN +---------+		
CLOSE		rcv FIN
V -------		-------
+---------+ snd FIN / \ snd ACK +---------+		
FIN	<---------------- ------------------>	CLOSE
WAIT-1	------------------	WAIT
+---------+ rcv FIN \ +---------+		
rcv ACK of FIN -------	CLOSE	
-------------- snd ACK	-------	
V x V snd FIN V		
+---------+ +---------+ +---------+		
FINWAIT-2		CLOSING
+---------+ +---------+ +---------+		
rcv ACK of FIN	rcv ACK of FIN	
rcv FIN --------------	Timeout=2MSL --------------	
------- x V ------------ x V		
 \ snd ACK +---------+delete TCB +---------+
 -------------------->|TIME-WAIT|------------------->| CLOSED |
 +---------+ +---------+

Figure 1: The state transition diagram of TCP in RFC9293 [7]. We annotate the diagram with the
messages and transitions modelled in our implementation. Note that we do not model timeouts as part of
the type system, hence, the TIME-WAIT to CLOSED transition is not implemented using session types.
Additionally, we do not implement the active OPEN case of the handshake for simplicity (as this would
not demonstrate any new modelling or implementation techniques), this is however possible using our
implementation.

4 Implementation

We implement the basic functionality of the TCP server protocol while modelling both the network and
the application interface using session types. Note that more information on the implementation can be
found in the Appendix. Under the less is more formalisation of multiparty session types [31], the roles we
are considering the following:

Server User The server application using the TCP protocol.

Server System The TCP implementation.

26 Session types for TCP

Client System The TCP implementation on the other end of the network.

The channel between the Server System and the Client System represents the network. The messages
exchanged between the Server User and the Server System are a formalisation of the user/TCP (i.e.,
application programming) interface and do not pass over the network. The system call interfaces,
representing the user and the system (in this paper simulated through threads), each have a session type
which prescribes their behaviour relative to the other roles. The Client System role has no associated
session type in our implementation as it is assumed to be another host on the Internet and not part of our
program.

4.1 Defining session types

The basic building blocks of our implementation are the generic structs OfferOne, OfferTwo, SelectOne,
and SelectTwo. All of these implement the trait Action which represents a general session type. The
type parameters of the structs encode the role the action is performed with respect to, the types of mes-
sages exchanged, and the continuation of the session. In addition, the End struct is also an Action and
represents the end session type.

The OfferTwo struct has five type parameters. The first is the peer role, and the next two are the types
of messages exchanged in either of the two branches of the offer and the final two parameters are the
session types of the continuations of the two branches.

pub struct OfferTwo<R, M1, M2, A1, A2>

where R: Role, M1: Message, M2: Message,

A1: Action, A2: Action,

{

phantom: PhantomData<(R, M1, M2, A1, A2)>,

}

The OfferTwo struct, as a way of encoding a session type construct in Rust, has type parameters but
contains no data. The PhantomData-typed field contained within the struct is a zero-sized marker type
that simulates a field of the given type to support the Rust type checker.2

The SelectTwo struct has the same type parameters and is also a zero-sized type. Finally, the non-
branching actions OfferOne and SelectOne have only three type parameters: the peer role, the message
type, and the continuation type, but are otherwise analogous.

To define a session type one can define a type alias for the root action of the session. For example a
simple session type for a client-server interaction could be defined as follows:

type ServerSt = OfferOne<Client, Request, SelectOne<Client, Response, End>>;

type ClientSt = SelectOne<Server, Request, OfferOne<Server, Response, End>>;

This basic syntax, however, quickly becomes unwieldy when defining more complex session types. To
address this, we have implemented a macro which converts a more readable syntax into the full definition
of the type. Rust’s macro_rules! mechanism is powerful enough to allow us to define a syntax which
attempts to mimic the mathematical notation. The macro is called St! and the ServerSt type from the
above example could be re-written as follows:

type ServerSt = St![(Client & Request).(Client + Response).end]

2https://doc.rust-lang.org/nomicon/phantom-data.html

https://doc.rust-lang.org/nomicon/phantom-data.html

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 27

The macro is recursive and supports arbitrary nesting of offers and selections. The full definition can
be found in the st macros.rs file of the source code.

4.2 Multi-way Offer branching

As Rust does not support variadic generic types, we are not aware of a way to implement a generic Offer
type which would support a variable number of branches. Hence we implement OfferOne and OfferTwo

as separate constructs with some repetition in the corresponding infrastructure such as the offer one,
offer two and similar selection methods. These are described in §4.4.

However, support for more than two branches is required in practice. A simple way to do this is to
implement OfferThree, OfferFour, . . . , in the same way, along with the code supporting this. This
leads to more code duplication, but does not increase complexity, and the usage is straightforward.

As an alternative, to avoid duplication, we chose a nesting approach where a branching of arity N is
transformed into a two-way branching between the first case and an N −1 branching of the other cases.3

This is recursively expanded until it finally results in a tree of two-way forks, where each left branch
represents a single case from the original N. All right branches except the bottom-most one lead to a
virtual node which was not present in the original type.

4.3 Recursive session types

Type aliases in Rust cannot be recursive. The reason for this is that a type alias does not create a new
type and is merely another name for the same type. For instance, defining a type alias type A = X<A>

is not allowed because the expansion would be infinite – the name X<A> would expand to X<X<A>>, etc.
However, we somehow need to represent recursive session types.

Fortunately, this is not difficult to circumvent. Whereas type aliases cannot be recursive, there is
no such restriction for types themselves, as long as the size of the type is finite. As such, types which
contain a recursive cycle with no indirection are not allowed as the size of the type is infinite. But inserting
indirection into the cycle (such as a reference &T or Box<T>) resolves this problem since the size of a
reference does not depend on the size of the target type T.

4.4 Using session types

A channel provides methods to send and receive messages which consume a corresponding session type
and return the continuation. The type of the channel is generic over the roles between which it exists and
the method signatures ensure that they can be only called with an appropriate session type instance and
message. Consider a channel of type Channel<R1, R2> which we define as the endpoint belonging to
role R1, i.e. it can send to or receive from R2. Then its select one method could have the following
signature:

fn select_one<M, A>(&mut self, _o: SelectOne<R2, M, A>, message: M) -> A

where M: Message, A: Action;

It is generic over the message type, but it has to match the one prescribed by the provided session
typed token. The role R2 is already bound by the channel type. The token is moved into this function,
so the owner cannot re-use it. The continuation type from the token is instantiated and returned to the

3Naturally, it would be better to split into halves instead, reducing the expansion depth from O(N) to O(logN) but this is
more difficult to implement and provides little practical benefit in all but the most extreme branching cases.

28 Session types for TCP

caller for further operations. And, of course, the message is transmitted over the underlying transport the
nature of which is not restricted by this abstraction. The only requirement is that the Message trait can
be converted to a representation that the channel can process, which is the reason for the trait in the first
place.

The implementation of the offer methods is slightly more involved. Once a message is received
from the underlying transport we must determine which branch of the offer to take and convert it to the
appropriate message type. We outsource the decision to a function we receive as an argument called the
picker. We find that in our particular use case, having the capability to differentiate branches based on
external context is necessary. This allows us to distinguish the receipt of an expected packet from the error
condition when an unexpected packet is received

4.5 Establishing a Connection

A TCP connection is established via a three-way handshake as described in Section 3. We define the
ServerSystemSessionType to describe creation of the server socket (receipt of Open from the server
user), creating the internal state (the “TCB”; §A.1), waiting for a SYN from the client, and generating the
SYN-ACK segment, corresponding to the transition through the LISTEN state of Figure 1 into the SYN
RCVD state:

pub type ServerSystemSessionType = St![

(RoleServerUser & Open).

(RoleServerUser + TcbCreated).

(RoleClientSystem & Syn).

(RoleClientSystem + SynAck).

ServerSystemSynRcvd

];

The ServerSystemSynRcvd type describes the SYN RCVD state, with branches indicating the
transition to the ESTAB state in ServerSystemCommLoop if the received ACK is acceptable or closing
the connection if not.

Rec!(pub ServerSystemSynRcvd, [

(RoleClientSystem & {

Ack. // acceptable (i.e., matches the SYN-ACK sent)

(RoleServerUser + Connected).

ServerSystemCommLoop,

Ack. // unacceptable

(RoleClientSystem + {

Ack.ServerSystemSynRcvd, Rst.(RoleServerUser + Close).end

})

})

]);

The implementation of three-way handshake is further described in Appendix A.1.

4.6 Data Transmission and Re-transmission

When a TCP segment goes unacknowledged for a certain amount of time, it is retransmitted. There are
two implementation choices that could be made here: incorporate timeouts into the type system, or leave

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 29

them out and instead signal session type transitions using external timeouts. The session type theory we
are using does not have a notion of timeouts, nor does any session type work containing timeouts [1, 2, 5]
have the ability to model the operations needed for TCP timeouts. Hence, we opt to emulate timeouts by
introducing a virtual message type and adding it as another branch to the offer session type. In this branch,
we continue with a select operation, retransmitting an ACK message and then recursively receiving the
next message. The offer method on the network channel now accepts another argument, specifying the
timeout duration or None if no timeout is desired. If the retransmission queue is empty, no timeout should
be employed as we run into an issue if it expires – the session type requires a segment to be sent, but there
is nothing to send. Further details around data transmission are in Appendix A.2.

4.7 Closing the connection

Closing a TCP connection is a two-step process usually combined into a three-way handshake, as shown in
the lower half of Figure 1. Each direction of the stream can be closed independently by sending a segment
with the FIN bit set. The Server System session type describes receiving a FIN first and then deciding to
close eventually, after allowing the user to send more data using the ServerSystemCloseWait session
type:

Rec!(pub ServerSystemCloseWait, [

(RoleServerUser & {

Data.

(RoleClientSystem + Ack).

(RoleClientSystem & Ack /* empty ack */).

ServerSystemCloseWait,

Close.

(RoleClientSystem + FinAck).

(RoleClientSystem & Ack).

end

})

]);

The case where the server closes first is handled by the ServerSystemFinWait1 type:

pub type ServerSystemFinWait1 = St![

(RoleClientSystem & {

Ack. // ACK of FIN

ServerSystemFinWait2,

FinAck. // FIN and ACK of our FIN at the same time

(RoleClientSystem + Ack).

end

})];

The branch in the ServerSystemFinWait1 type represents the ways in which the closing handshake can
proceed after sending a FIN to close the connection and entering into the FINWAIT-1 state (see Figure 1):
either a segment containing an ACK is received causing the system to transition to FINWAIT-2, waiting
for a segment containing a FIN indicating that the peer has also finished; or a segment with both FIN
and ACK is received causing the final ACK to be sent and terminating the connection via the implied
CLOSING and TIME-WAIT states. The ServerSystemFinWait2 implementation is analogous, but
elided due to space constraints.

30 Session types for TCP

Finally, in a full TCP implementation, a “simultaneous close” situation can occur where both peers
decide to close at the same time. This is not handled by our implementation as it is rarely used and does
not fit with the call-and-response style of interaction we model – there is no opportunity for the server to
decide to close while waiting for the client.

5 Evaluation

To evaluate our Server System component, we have implemented a simple echo server in the Server User.
Every piece of data it receives from the system is split into lines, each line is reversed and then sent back.

The functionality of the server tested is as follows:

Establishing a connection by running netcat and connecting to the server.

Exchanging data with the client by typing in messages manually.

Initiating connection close by sending an empty line to the server. The server user has been programmed
to close the connection if an empty line is received.

Responding to connection close by typing ^C which causes netcat to close the socket and therefore send
a FIN to the server.

Correctly handling a FIN-ACK response to a FIN by piping an empty line immediately followed by
EOF to netcat. In this situation netcat sends the empty line but does not shutdown the socket
immediately. Instead it waits for the server to send a FIN-ACK and then sends a FIN-ACK in
response.

We tested our TCP implementation primarily against the Linux kernel TCP stack, running our program
and connecting to it using a Linux user-space TCP client (netcat). We have used Scapy [32], a packet
manipulation framework, to emulate a misbehaving TCP client or network and evaluate the behaviour
of our server in response to this. This included sending packets with invalid sequence numbers, invalid
acknowledgement numbers, spurious retransmission or overlapping segments. Finally, we have tested
our implementation against the Linux kernel TCP stack with the addition of simulated network errors
using the netem module to introduce packet loss, delay and reordering. Our test script configures the
TCP NODELAY option on the socket and sends messages in a loop with a small delay between them. This
ensures that the client sends a lot of small packets to observe the effect of packet loss and reordering.
The received data was then compared to the expected output. In all cases, we utilised a packet sniffer to
monitor the communication.

All of the presented test cases were found to be handled correctly provided the server is in the
ESTABLISHED state. During the opening three-way handshake, after the initial SYN segment, handling
is robust as well. We found that the server can handle packet loss and reordering errors and the connection
can recover once the impairments are lifted. The server does not cache out of order segments in the receive
window affecting performance, since these segments will need to be re-transmitted, but not correctness.
This is a limitation inherent in using synchronous session types to model an synchronous protocol that
permits reordering and packet loss, and suggests future work to extend the modelling approach.

6 Related Work and Conclusion

Network protocols have been used as examples for various session type theories. The main protocols
used as a demonstration in many works are SMTP [3, 6, 17, 18, 19, 20, 21] and POP3 [10, 24]. Both of

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 31

these protocols are application-layer protocols. Due to this, models of SMTP and POP3 can assume the
guarantees provided by the underlying transport layer protocol – in most cases this is TCP. Specifically,
any faults, retransmissions and packet re-orderings are handled by the transport layer. In addition to this,
these works do implement or model the protocols exactly from the specification with some works only
implementing SMTP partially. The specific challenges presented by the network link are not considered
and the communication channel is considered only in an abstract manner. This also means that, unlike our
implementation of TCP, the works are not shown to connect or work with existing protocol stacks, such as
the kernel. To our best knowledge, ours is the first work to consider the implementation of transport layer
protocols from their specification using session types.

In this paper, we have modelled TCP of the Internet protocol suite [7] using MPST [31] and imple-
mented a proof of concept in the Rust programming language, leveraging the Rust type system and borrow
checker to verify that the implementation complies with the session type. We have successfully tested our
implementation using manual testing against the Linux kernel TCP stack as well as manually constructed
TCP segments. In future work, we aim to address limitations of our implementation such as a lack of
timeouts in the type system and the synchronous nature of our implementation. We additionally aim to
model important aspects of the protocol such as congestion control in the future.

References

[1] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida & Fangyi Zhou (2022): Generalised Multiparty Session
Types with Crash-Stop Failures. In Bartek Klin, Slawomir Lasota & Anca Muscholl, editors: 33rd International
Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022, Warsaw, Poland, LIPIcs 243,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 35:1–35:25, doi:10.4230/LIPICS.CONCUR.2022.35.

[2] Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos & Nobuko Yoshida (2019): Asynchronous
Timed Session Types - From Duality to Time-Sensitive Processes. In Luı́s Caires, editor: Programming
Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Lecture Notes in Computer Science 11423, Springer, pp. 583–610, doi:10.1007/978-
3-030-17184-1 21.

[3] Laura Bocchi, Maurizio Murgia, Vasco Thudichum Vasconcelos & Nobuko Yoshida (2019): Asynchronous
Timed Session Types - From Duality to Time-Sensitive Processes. In Luı́s Caires, editor: Programming
Languages and Systems - 28th European Symposium on Programming, ESOP 2019, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, Lecture Notes in Computer Science 11423, Springer, pp. 583–610, doi:10.1007/978-
3-030-17184-1 21.

[4] Scott O. Bradner (1996): The Internet Standards Process – Revision 3. RFC 2026, doi:10.17487/RFC2026.
Available at https://www.rfc-editor.org/info/rfc2026.

[5] Matthew Alan Le Brun & Ornela Dardha (2023): MAGπ: Types for Failure-Prone Communication. In Thomas
Wies, editor: Programming Languages and Systems - 32nd European Symposium on Programming, ESOP
2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris,
France, April 22-27, 2023, Proceedings, Lecture Notes in Computer Science 13990, Springer, pp. 363–391,
doi:10.1007/978-3-031-30044-8 14.

[6] Christian Bartolo Burlò, Adrian Francalanza & Alceste Scalas (2021): On the Monitorability of Session Types,
in Theory and Practice (Artifact). Dagstuhl Artifacts Ser. 7(2), pp. 02:1–02:3, doi:10.4230/DARTS.7.2.2.

[7] Wesley Eddy (2022): Transmission Control Protocol (TCP). RFC 9293, doi:10.17487/RFC9293. Available at
https://www.rfc-editor.org/info/rfc9293.

https://doi.org/10.4230/LIPICS.CONCUR.2022.35
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.1007/978-3-030-17184-1_21
https://doi.org/10.17487/RFC2026
https://www.rfc-editor.org/info/rfc2026
https://doi.org/10.1007/978-3-031-30044-8_14
https://doi.org/10.4230/DARTS.7.2.2
https://doi.org/10.17487/RFC9293
https://www.rfc-editor.org/info/rfc9293

32 Session types for TCP

[8] Heather Flanagan (2019): Fifty Years of RFCs. RFC 8700, doi:10.17487/RFC8700. Available at https:
//www.rfc-editor.org/info/rfc8700.

[9] Simon Fowler (2016): An Erlang Implementation of Multiparty Session Actors. In Massimo Bartoletti,
Ludovic Henrio, Sophia Knight & Hugo Torres Vieira, editors: Proceedings 9th Interaction and Concurrency
Experience, ICE 2016, Heraklion, Greece, 8-9 June 2016, EPTCS 223, pp. 36–50, doi:10.4204/EPTCS.223.3.

[10] Simon Gay, Vasco Vasconcelos & António Ravara (2003): Session Types for Inter-Process Communication.
Available at https://www.dcs.gla.ac.uk/~simon/publications/TR-2003-133.pdf.

[11] Kohei Honda, Vasco T. Vasconcelos & Makoto Kubo (1998): Language primitives and type discipline for
structured communication-based programming. In Chris Hankin, editor: Programming Languages and
Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 122–138, doi:10.1007/BFb0053567.

[12] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty Asynchronous Session Types. In: Proc. of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’08,
Association for Computing Machinery, New York, NY, USA, pp. 273–284, doi:10.1145/1328438.1328472.

[13] Raymond Hu, Nobuko Yoshida & Kohei Honda (2008): Session-Based Distributed Programming in Java.
In Jan Vitek, editor: ECOOP 2008 – Object-Oriented Programming, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 516–541, doi:10.1007/978-3-540-70592-5 22.

[14] Thomas Bracht Laumann Jespersen, Philip Munksgaard & Ken Friis Larsen (2015): Session Types for Rust.
In: Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming, WGP 2015, Association for
Computing Machinery, New York, NY, USA, pp. 13–22, doi:10.1145/2808098.2808100.

[15] Wen Kokke (2019): Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic Proceedings in
Theoretical Computer Science 304, pp. 48–60, doi:10.4204/eptcs.304.4.

[16] Wen Kokke & Ornela Dardha (2021): Deadlock-free session types in linear Haskell. In: Haskell 2021:
Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell, Virtual Event, Korea, August
26-27, 2021, ACM, pp. 1–13, doi:10.1145/3471874.3472979.

[17] Dimitrios Kouzapas, Ornela Dardha, Roly Perera & Simon J. Gay (2016): Typechecking protocols with
Mungo and StMungo. In: Proceedings of the 18th International Symposium on Principles and Practice
of Declarative Programming, Edinburgh, United Kingdom, September 5-7, 2016, ACM, pp. 146–159,
doi:10.1145/2967973.2968595.

[18] Dimitrios Kouzapas, Ornela Dardha, Roly Perera & Simon J. Gay (2018): Typechecking protocols with
Mungo and StMungo: A session type toolchain for Java. Sci. Comput. Program. 155, pp. 52–75,
doi:10.1016/J.SCICO.2017.10.006.

[19] Nicolas Lagaillardie, Rumyana Neykova & Nobuko Yoshida (2022): Stay Safe Under Panic: Affine Rust
Programming with Multiparty Session Types (Artifact). Dagstuhl Artifacts Ser. 8(2), pp. 09:1–09:16,
doi:10.4230/DARTS.8.2.9.

[20] Sam Lindley & J. Garrett Morris (2015): A Semantics for Propositions as Sessions. In Jan Vitek, editor:
Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings, Lecture Notes in Computer Science 9032, Springer, pp. 560–584,
doi:10.1007/978-3-662-46669-8 23.

[21] Sam Lindley & J. Garrett Morris (2016): Talking bananas: structural recursion for session types. In Jacques
Garrigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 434–447,
doi:10.1145/2951913.2951921.

[22] Stephen McQuistin, Vivian Band, Dejice Jacob & Colin Perkins (2020): Parsing Protocol Standards to
Parse Standard Protocols. In: Proceedings of the Applied Networking Research Workshop, Association for
Computing Machinery, New York, NY, USA, p. 25–31, doi:10.1145/3404868.3406671.

https://doi.org/10.17487/RFC8700
https://www.rfc-editor.org/info/rfc8700
https://www.rfc-editor.org/info/rfc8700
https://doi.org/10.4204/EPTCS.223.3
https://www.dcs.gla.ac.uk/~simon/publications/TR-2003-133.pdf
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/J.SCICO.2017.10.006
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/3404868.3406671

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 33

[23] Stephen McQuistin, Vivian Band, Dejice Jacob & Colin Perkins (2021): Investigating Automatic Code
Generation for Network Packet Parsing. In: Proceedings of the IFIP Networking Conference, pp. 1–9,
doi:10.23919/IFIPNetworking52078.2021.9472829.

[24] Matthias Neubauer & Peter Thiemann (2004): An Implementation of Session Types. In Bharat Jayaraman,
editor: Practical Aspects of Declarative Languages, 6th International Symposium, PADL 2004, Dallas,
TX, USA, June 18-19, 2004, Proceedings, Lecture Notes in Computer Science 3057, Springer, pp. 56–70,
doi:10.1007/978-3-540-24836-1 5.

[25] Nicholas Ng & Nobuko Yoshida (2016): Static deadlock detection for concurrent go by global session
graph synthesis. In Ayal Zaks & Manuel V. Hermenegildo, editors: Proceedings of the 25th International
Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016, ACM, pp. 174–184,
doi:10.1145/2892208.2892232.

[26] Nicholas Ng, Nobuko Yoshida & Kohei Honda (2012): Multiparty Session C: Safe Parallel Programming with
Message Optimisation. In Carlo A. Furia & Sebastian Nanz, editors: Objects, Models, Components, Patterns,
Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 202–218, doi:10.1007/978-3-642-30561-0 15.

[27] Luca Padovani (2017): A simple library implementation of binary sessions. J. Funct. Program. 27, p. e4,
doi:10.1017/S0956796816000289.

[28] Vern Paxson (1997): Automated packet trace analysis of TCP implementations. In: Proceedings of the
ACM SIGCOMM’97 conference on Applications, technologies, architectures, and protocols for computer
communication, pp. 167–179, doi:10.1145/263105.263160.

[29] Riccardo Pucella & Jesse A. Tov (2008): Haskell session types with (almost) no class. In Andy Gill, editor:
Proceedings of the 1st ACM SIGPLAN Symposium on Haskell, Haskell 2008, Victoria, BC, Canada, 25
September 2008, ACM, pp. 25–36, doi:10.1145/1411286.1411290.

[30] Pete Resnick (2014): On Consensus and Humming in the IETF. RFC 7282, doi:10.17487/RFC7282. Available
at https://www.rfc-editor.org/info/rfc7282.

[31] Alceste Scalas & Nobuko Yoshida (2019): Less is More: Multiparty Session Types Revisited. Proc. ACM
Program. Lang. 3(POPL), doi:10.1145/3290343.

[32] Scapy community: Scapy. https://scapy.net/.

A Appendix

A.1 Three-way handshake

The session type and the TCP state machine are initiated in the CLOSED state:

let st = ServerSystemSessionType::new();

let tcp = TcpClosed::new();

The user role calls the Open method and a TCB is created. This message is received using offerone by
the system role:

let (_open, st) = system_user_channel.offer_one(st);

The system now transitions to the LISTEN state, waiting for a connection establishment to initiate, and
sends a TcbCreated in response:

let tcp: TcpListen = tcp.open(LocalAddr { /* ... */ });

let st = system_user_channel.select_one(st, TcbCreated(()));

The next steps are to wait for a SYN segment from the network and respond with a SYN ACK segment.
Once a SYN segment is received we transition to the SYN-RCVD state:

https://doi.org/10.23919/IFIPNetworking52078.2021.9472829
https://doi.org/10.1007/978-3-540-24836-1_5
https://doi.org/10.1145/2892208.2892232
https://doi.org/10.1007/978-3-642-30561-0_15
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1145/263105.263160
https://doi.org/10.1145/1411286.1411290
https://doi.org/10.17487/RFC7282
https://www.rfc-editor.org/info/rfc7282
https://doi.org/10.1145/3290343
https://scapy.net/

34 Session types for TCP

Client Server System Server User

Open

TcbCreated

SYN

SYN ACK

ACK

Connected

CLOSED

LISTEN

SYN-RCVD

ESTAB

Figure 2: TCP three-way Handshake with all roles.

let (addr, syn, st) = net_channel.offer_one_with_addr(st, &tcp);

let (mut tcp /* Tcp<SynRcvd> */, synack) = tcp.recv_syn(addr, &syn);

let mut syn_rcvd = net_channel.select_one(st, addr, synack);

The recursive SynRcvd session type handles unacceptable acknowledgements of SYN ACK segments
which need to be responded to with an ACK with the potential of a connection reset:

let (mut tcp, st) = loop {

let st = syn_rcvd.inner();

let tcp_for_picker = tcp.for_picker();

The offer_two_filtered method can now be called on the network channel. This method takes
the session type, a picker function, and a channel filter:

match net_channel.offer_two_filtered(

st,

|packet| match tcp_for_picker.acceptable(&packet) {

ReactionInner::Acceptable(_, _) => Branch::Left(

packet.into()),

_ => Branch::Right(packet.into()),

},

&tcp,

) {

Note that the picker determines which branch to take based on the TCP state machine.
The left branch of the session type corresponds to an acceptable ACK segment:

Branch::Left((acceptable, st)) => {

let tcp: Tcp<Established> = tcp

S. Cavoj, I. Nikitin, C. Perkins, O. Dardha 35

.recv_ack(&acceptable)

.empty_acceptable()

.expect("First␣ACK␣must␣be␣empty");

break (tcp, st);

}

However, if the ACK is not acceptable, the right branch is taken – an ACK is either sent back and the
system waits for another ACK:

Branch::Right((unacceptable, st)) => {

let remote_addr = tcp.remote_addr();

match tcp.recv_ack(&unacceptable) {

Reaction::NotAcceptable(tcp2, Some(response)) => {

let st = net_channel.select_left(

st, tcp2.remote_addr(), response);

syn_rcvd = st;

tcp = tcp2;

continue;

}

Alternatively, an RST, notifying the user that the connection is being reset:

Reaction::Reset(Some(rst)) => {

let st = net_channel.select_right(

st, remote_addr, rst);

let end = system_user_channel.select_one(

st, Close(()));

net_channel.close(end);

system_user_channel.close(end);

return;

}

Finally, once out of the loop, the implementation is in the ESTAB state and the system notifies the user
that the connection is established:

let mut recursive = system_user_channel.select_one(st, Connected(()));

info!("established");

This concludes the implementation of the three-way handshake.

A.2 Exchanging data

The main loop of the implementation waits to receive a segment (using an Offer session type) and
branches based on their type and whether it is acceptable or not.

Rec!(pub ServerSystemCommLoop, [

(RoleClientSystem & {

Acceptable with payload where an acceptable segment is received and there is data present:

36 Session types for TCP

Ack.

(RoleClientSystem + Ack /* empty */).

(RoleServerUser + Data).

(RoleServerUser & {

Data.

(RoleClientSystem + Ack /* with data */).

ServerSystemCommLoop,

Close.

(RoleClientSystem + FinAck).

ServerSystemFinWait1

}),

Initially, data acknowledgement is accomplished using an empty ACK segment. The data contained
within the ACK segment is then transmitted to the server user within a message of type Data. The
user has the option to respond by sending back a message, leading to the transmission of an ACK
with payload. Alternatively, the user may choose to initiate the closure of the connection, resulting
in the transmission of a FIN ACK.

Acceptable without payload In the case where these segments are acknowledgements of previously
sent segments, we pass the ACK to the TCP state machine to update the state and update the
retransmission queue:

Ack.ServerSystemCommLoop,

FIN ACK The peer has initiated closing the connection. In this case, the TCP state machine will transition
from ESTABLISHED to the CLOSE-WAIT state. Note that due to the absence of timeouts in
the type system, the timeout in the close-wait state is implemented outside the session typed state
machine.

FinAck.

(RoleClientSystem + Ack /* we ACK the FIN */).

(RoleServerUser + Close).

ServerSystemCloseWait,

Unacceptable A segment where the sequence numbers are not acceptable has been received. The server
will respond with an ACK which serves to inform the peer about the current receive window start
and length [7].

Ack.

(RoleClientSystem + Ack).

ServerSystemCommLoop,

})

]);

D. Costa, R. Hu (Eds.): Programming Language Approaches to
Concurrency and Communication-cEntric Software 2024 (PLACES’24)
EPTCS 401, 2024, pp. 37–48, doi:10.4204/EPTCS.401.4

© Fowler et al.
This work is licensed under the
Creative Commons Attribution License.

Behavioural Types for Heterogeneous Systems
(Position Paper)

Simon Fowler
University of Glasgow, UK

Philipp Haller
Digital Futures, KTH Royal Institute of Technology, SE

Roland Kuhn
Actyx AG, DE

Sam Lindley
The University of Edinburgh, UK

Alceste Scalas
Technical University of Denmark, DK

Vasco T. Vasconcelos
University of Lisbon, PT

Behavioural types provide a promising way to achieve lightweight, language-integrated verification
for communication-centric software. However, a large barrier to the adoption of behavioural types is
that the current state of the art expects software to be written using the same tools and typing discipline
throughout a system, and has little support for components over which a developer has no control.

This position paper describes the outcomes of a working group discussion at Dagstuhl Seminar
24051 (Next-Generation Protocols for Heterogeneous Systems). We propose a methodology for
integrating multiple behaviourally-typed components, written in different languages. Our proposed
approach involves an extensible protocol description language, a session IR that can describe data
transformations and boundary monitoring and which can be compiled into program-specific session
proxies, and finally a session middleware to aid session establishment.

We hope that this position paper will stimulate discussion on one of the most pressing challenges
facing the widespread adoption of behavioural typing.

1 Introduction

Behavioural types provide a powerful and lightweight mechanism for language-integrated verification of
behavioural properties: whereas traditional data types rule out errors such as adding an integer to a string,
behavioural types can rule out behavioural errors such as forgetting to close a file handle or sending an
invalid message on a communication channel.

Session types [20, 21] are a behavioural typing discipline for checking adherence to communication
protocols: if a process is typed according to its session type, then it is guaranteed to fulfil its role in the
communication protocol at runtime. Although originally designed for two communicating participants,
work on multiparty session types (MPSTs) [22] extends session typing to handle systems with multiple
components. If all components are either derived from a well-formed global type, or all components have
compatible local types, then the entire system should not encounter any communication errors at runtime.
Many MPST disciplines include further guarantees such as global progress or liveness.

Extensive research has gone into behavioural types, in particular session types, over the years. A recent
workshop celebrated 30 years of session types [2], and a recent book concentrates on how decades of
research into behavioural types has given rise to a plethora of tools [18]. Many international programming
languages conferences typically have sessions dedicated to behavioural type systems.

Nevertheless, and notwithstanding efforts to overcome barriers to practical adoption (e.g., work on
failure handling [7, 17], graphical user interfaces [16, 32], and subsessions [13]), behavioural typing has
not yet seen widespread industrial use. Arguably the key issue facing the behavioural types community1 is

1And indeed, other neighbouring communities such as choreographic programming [33], although we concentrate on
behavioural types in this paper.

http://dx.doi.org/10.4204/EPTCS.401.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

38 Behavioural Types for Heterogeneous Systems (Position Paper)

the inability for behavioural types to work satisfactorily with heterogeneous systems, consisting of software
components developed in different languages, using different tools, with different typing guarantees.

Heterogeneity may arise for practical reasons: for example, we may want to write some components in
a given language due to better library support (e.g., using Python due to its rich support for data science),
or because it is important to obtain stronger static guarantees for a particular participant or portion of a
protocol. Heterogeneity may even arise in a single program, for example writing parts of an application
in different programming languages (e.g., writing performance-critical code in a systems language such
as C++ or Rust, and the remainder of the program in a managed language like Python). Furthermore, in
any realistic setting, we would have to assume that some components are implemented using different
languages or accessible only through an API (for example as is common with microservices). Similarly,
we may have existing components that offer similar services that do not quite correspond to the expected
types. We concentrate on the following scenario:

Scenario: Travel Booking System. We want to design a travel booking system that includes
both timing constraints and data refinements. A travel booking session consists of a client,
travel agent, and flight provider; we are in control of the agent and client, but the provider is
developed by an external company and accessible via an API. The client initiates a search,
and receives a set of suitable flights. After receiving the results, the client has 6 minutes to
select a flight before the results expire.

When the client selects a flight, it receives a token, and should send the same token to the
provider in order to continue the booking. Finally, the provider sends the client either a
booking confirmation, or an error message.

Crucially, we will consider a heterogeneous version of this scenario in which the client, travel agent, and
flight provider are implemented using different tools with quite different capabilities.

Paper structure. The paper proceeds as follows. Section 2 gives relevant background. Section 3
describes a motivating scenario of a travel agent application written in different tools with differing
language features. Section 4 describes our proposed solution and speculates on several potential research
challenges. Section 5 discusses related work, and Section 6 concludes.

2 Background

(Multiparty) Session Types. Session types are types for protocols: whereas a data type describes the
shape of some data, ruling out errors such as adding an integer to a string, a session type describes both
the type and direction of data to be communicated between participants [20, 21]. Session types were
originally investigated in the binary setting between two participants, but later work on multiparty session
types [22] describes communication between multiple communicating participants. We concentrate on
multiparty session typing in the remainder of the paper.

The following example describes the classic two-buyer protocol where two participants collaborate in
order to buy an expensive item (usually a book). Buyer1 begins by sending the title to the Seller, who
responds with a quote. Buyer1 then sends the quote to Buyer2, who decides whether to accept the quote
by sending their address to the Seller and subsequently receiving a delivery data, or declining the offer.

The global type describing all interactions in the system is described on the left. Global types can
then be projected into local types for each participant; it is then possible to typecheck or monitor all
participants against their local types. The local type for Buyer2 is shown on the right.

Fowler et al. 39

Buyer1→ Seller : title(String) .
Seller→ Buyer1 : quote(Int) .
Buyer1→ Buyer2 : share(Int) .
Buyer2→ Seller : {
address(String) .
Seller→ Buyer2 : date(Date) . end,

quit(Unit) . end
}

Buyer2 ≜ Buyer1&share(Int) .

Seller⊕{
address(String) .

Seller&date(Date) . end,

quit(Unit) . end

}

A multitude of tools have been developed for checking against multiparty session types, for example
in Java [28], Scala [40], Rust [12, 29], and F# [37]. However, each tool embeds the assumption that the
entire system is written using that same tool; the possibility of combining heterogeneous components
written using different tools and programming languages is not part of the tools’ specification.

Runtime Monitoring against Session Types. Although the original work on session typing envisaged
static checking, a correspondence between MPSTs and communicating automata [14] showed how it was
possible to monitor processes against a session type, allowing a degree of runtime verification. The key
idea is to translate a local type into a finite state machine where transition corresponds to a send or receive
action; for each session endpoint, a monitor process observes incoming and outgoing messages — and
upon receiving an invalid message, the monitor drops it and/or reports a violation. We describe runtime
monitoring against session types in more depth in Section 5.

Multi-language Interoperability. There has been increasing attention given to semantic foundations
for multi-language interoperability, for example through foreign function interfaces (FFIs). A major
inspiration for our proposed solution is the approach of Patterson et al. [38] who introduce a methodology
for interoperability by defining a common intermediate representation along with convertibility relations
and boundary conversions and show how to verify semantic soundness using logical relations.

Our goal is to adopt an analogous methodology but for the world of message passing as opposed to
shared memory. Rather than challenges such as linking and foreign function interfaces, our challenge is to
describe the “glue” that can allow a program written in Go, for example, to safely interact with a program
written in Java or Rust, while keeping as many of the guarantees that we would expect if a program was
written in a single behaviourally-typed language.

3 Heterogeneous Multiparty Session Typing

We can start by writing an idealised global type (omitting some irrelevant timing constraints):

Customer→ Agent : search(origin : AirportName,destination : AirportName) .
Agent→ Customer : results(searchResults : [(FlightNum,Time,Price,Provider)]) .
Customer→ Agent : {
select{t ≤ 360}(flightNum : FlightNum) 7→
Agent→ Customer : providerRef(ref : ProviderRef) .
Customer→ Provider : book{token == ref}(token : ProviderRef,details : PaymentDetails) .
Provider→ Customer : {

ok() 7→ end,
error() 7→ end

},
timeout{t > 360}() 7→
Customer→ Provider : timeout() . end

}

40 Behavioural Types for Heterogeneous Systems (Position Paper)

Note that the clock at the customer can only send a select message within 360 seconds, and otherwise
must send a timeout message. Similarly, the data refinement on the book message ensures that the same
reference is sent to the provider as is received from the agent. Say that our system consisted of:

• The Agent in Python using the time-aware framework proposed by Neykova et al. [36]

• The Customer in F⋆ using SESSION⋆ by Zhou et al. [46] to statically verify the data refinement

• The Provider, developed by a different company and accessible only through an API

In the above, the Agent has inbuilt verification of timing constraints, the Customer has static
verification of data refinements, and the Provider does not even have verification of communication
patterns. There are several research problems posed by this scenario:

Extensibility. At present there are different, incompatible, dialects of session types for each extension.

Precision mismatch. However, each tool available to implement a constraint (Python for timing con-
straints; SESSION⋆ for data refinement) only works in a single language. Thus, some checks must
take place at runtime using boundary monitors.

Message rejection. Existing work on monitoring against multiparty session types takes a suppression-
based approach to monitoring: a monitor will drop any non-conforming messages that it receives
(either silently, or reporting a violation). Although suppression maintains safety (by stopping any
non-conforming messages from being processed by the program logic), dropping a message may
mean that the remaining actions in the protocol cannot be fulfilled—thus breaking liveness.

As well as research questions, there are also some more practical issues:

Session Initiation. The session needs to be established, which involves discovering each component,
inviting it to the session, and setting up the communication infrastructure.

Wire format. Communication needs to occur over a standard message layout. Most session typing
systems either do not include any wire communication, or communicate using non-standard message
layouts that vary per tool.

4 Proposed Solution

Figure 1 gives an overview of our proposed approach. The overall idea is:

• A developer designs the protocol in an extensible, language-agnostic protocol description language

• The protocol is projected and compiled down into a program-specific session IR, whose purpose is
to describe any necessary dynamic checks, message re-orderings, and data transformations

• The session IR is used to generate session proxies that act as adapters to each program

Extensible Protocol Description Language The first step is to write a protocol in a language-agnostic
protocol description language. The Scribble protocol description language [44, 45] provides a good
starting point, but the key point is that the language should be extensible in a modular way by supporting
plugins supporting individual language features (e.g., value-dependency or timeouts).

Fowler et al. 41

Extensible Protocol

Description Language

Refinement

Types Plugin
Timing Plugin

Session IR Program 1 Session IR Program 2

Program 1 Program 2
Session

Proxy 2

Session

Proxy 1

Session Wire FormatProtobuf Thrift

Figure 1: Proposed System

Session IR In traditional multiparty session programming, a global protocol description is projected
as a local type for each participant. The local type serves as a language-agnostic specification for the
communication actions that the participants should perform, and can be used for static type checking.

In addition to local types for static checking, we propose a session intermediate representation
(Session IR). Whereas local types are meant to be implementation-agnostic, the Session IR is used to
describe any monitoring or message transformations required in order to integrate a component with the
system. In particular, we envisage the session IR being able to support at least the following:

• Boundary Monitoring To address the precision mismatches between the static checking supported
by the tool, as well as maintaining timing properties, a core role of each session proxy is to
perform boundary monitoring [8, 11] before an incoming message is delivered (and in some
circumstances before an outgoing message is committed to the system). Monitor violations may
result in suppression (i.e., dropping messages that are violated), but may also allow violations to
be reported to the program in order to allow compensatory actions (e.g., raising an exception or
requesting that the sender provides a revised message).

• Message Insertion / Reordering It may be that a component supports a compatible variation of its
role in a protocol, but does not match the protocol exactly (for example, due to a version upgrade).
In this case, the session IR can describe message reorderings (inspired by theoretical work on
session type isomorphisms [5, 15]), or insertions of messages at a given point. This would enable
migrating components to new versions with a different but compatible behaviour.

• Wire Formatting Each program will have its own expected communication mechanism (be that
sockets, protocol buffers [19], or interface description languages like Thrift [3]). The final job of
the session IR will be to describe transformations between the internal protocol representation and
the wire protocol.

For trusted components that are statically checked to follow the protocol, the session proxy will only
need to perform wire formatting and monitoring of incoming messages.

Session Proxies. Each session IR program can then be compiled into a session proxy to interact with
each program. The session proxy acts as an adapter between the program and the other participants in
the session. Interaction between session proxies happens using a standardised session wire format and
communication medium.

42 Behavioural Types for Heterogeneous Systems (Position Paper)

There are several ways by which session proxies could be integrated with each application. We expect
that for basic suppression-based monitors, it would suffice to leave the original application untouched
and instead route all communication through the proxy (indeed, this would also support a level of session
typing for components that are not programmed with session types). For more involved session proxies
such as those that raise an application-level exception when a message violation occurs, it would likely
be necessary to either adapt the current tooling to incorporate the session proxy or provide an API that a
developer can code against.

Language Features. Another concern is the features that must be available to each language or tool in
order for it to support any operations required by each session proxy. For suppression-based monitors, it
is unlikely that any additional language features would be needed. If we would like to report any monitor
violations to the program, however, then we would likely need some additional language support: for
example, exception handling [17] in the case of needing to deal with linear resources, or additional failure
handling callbacks in the case of a tool based around inversion-of-control [46].

Session Establishment. Figure 1 does not describe how sessions are established. We envisage a
middleware application, similar to that described by Atzei et al. [6], is a potential solution: such a system
would allow participants to register to take part in a session, discover other participants, and finally allow
sessions to be established. Alternatively, session establishment could happen directly (as is done, for
example, with explicit connection actions [24]).

4.1 Potential Challenges

Although we believe our proposed solution offers a promising framework for future research on heteroge-
neous session typing, we envisage several challenges, at least including the following:

Interactions between extensions. Our scenario considers two fairly orthogonal extensions: data refine-
ments and timing. However, there could be other extensions (e.g., explicit connection actions [24]
that require a more liberal syntax) that could pose challenges when combined with existing dis-
ciplines. How can we ensure that the extensible language is sufficiently general to both mediate
between the different dialects of session typing, and how can we ensure that their combination does
not lead to safety errors?

Formal guarantees. It is important to understand the desired guarantees to be given by the system. It
seems reasonable to expect, at a minimum, that the system will ensure session fidelity (i.e., that
every message that is exchanged will conform to the given protocol). Nevertheless, ensuring
properties such as liveness is more challenging in a monitored setting. A further open challenge
would be reasoning about the metatheory in a modular way.

Generality of the IR. The Session IR will at least need to be able to describe monitoring, message
reordering, and message reformatting. However, there is a large design space and there are inherent
trade-offs to ensuring the IR design remains sufficiently high-level while also sufficiently general to
support the array of possible extensions.

Performance. Any runtime checking and message rewriting will inevitably incur a runtime overhead,
so it will be necessary to ensure that any overhead is not prohibitive. This can be mitigated to an
extent by only checking properties that are not guaranteed statically, and ensuring that the monitor
is located on the same machine as the monitored process. In addition to runtime overheads, it is

Fowler et al. 43

possible that monitors may need to record some message history, for example to enforce dependent
type constraints [41]. It is therefore necessary to ensure that any generated monitor does not require
unbounded space.

Location of error reporting. In addition to the language design challenges in allowing applications to
handle any errors, it is possible that there are multiple places to report a violation. Some notion of
blame [43] is likely to be important, but defining “more” or “less” typed is likely to be challenging
in the presence of multiple extensions.

5 Related Work

Protocol description languages. MPSTs were designed without a particular implementation in mind. A
good starting point for heterogeneity is the language-agnostic Scribble protocol description language [35,
44] for describing MPST specifications; implementations of Scribble (e.g., [45]) support well-formedness
checking, projection, and monitor generation. A necessary step in the pursuit of heterogeneity would be to
generalise a language like Scribble to allow modular and composable extensions with different language
features, as opposed to the current status quo of ad-hoc extensions for each new feature.

Monitoring against MPSTs. Most closely relevant is work on runtime monitoring against local types [8,
11], based on the correspondence between multiparty session types and communicating automata [14]. The
core idea is to translate each local type into an FSM and check each incoming and outgoing message against
the monitor, rejecting the message if the message does not match any transition. In particular, Bocchi
et al. [8] show safety (monitors ensure that ill-behaved participants do not send messages that violate
their specification) and transparency (monitors do not affect the behaviour of well-behaved components).
However, these monitors discard non-conforming messages without any feedback to the sender or receiver.
In turn, this means that (especially for non-recursive protocols), non-conforming messages cause the
protocol to silently stop. Later work by van den Heuvel et al. [42] addresses the black-box monitoring of
multiparty sessions through monitoring processes that are directly generated from global types, and (unlike
Bocchi et al. [8]) actively report violations by stopping execution. Burlò et al. [9] proposes a prototype
implementation of a “hybrid” verification approach where session-typed components can interoperate
with heterogeneous (possibly untyped) components through autogenerated monitors — which, in turn, are
session-typed (only for two-party sessions), and can translate messages between different wire formats,
and suppress and report protocol-violating messages; Burlò et al. [10] later studies the properties of
such black-box monitors in terms of soundness and completeness of violation reports. In contrast to all
the works on session monitoring listed above, we believe that it may be necessary to forego monitor
transparency and instead allow compensatory behaviours upon a monitor violation (for example, raising
an exception or requiring the sender to send a revised message).

Session types and heterogeneity. Only very little work has attempted to address heterogeneous session
typing. Jongmans and Proença [27] describe the design of a system called ST4MP that aims to support
multi-lingual programming through the established API generation approach [23]; the idea is to generate
multiple compatible APIs for different languages from a given global type specification. In contrast to this
position paper, ST4MP supports a base multiparty session typing discipline without any advanced language
features (e.g., timing or refinement types), and does not make use of any form of runtime checking. In
contrast we would expect our general session IR to be able to support even untyped components.

44 Behavioural Types for Heterogeneous Systems (Position Paper)

Language and system interoperability. Our proposal to use a common Session IR to provide safety
properties even when composing heterogeneous components written in different languages is similar
in spirit to recent work on sound language interoperability [38, 39]. While previous work only targets
languages interoperating via shared memory, our proposal specifically aims to address interoperability
for typed message-passing concurrency. Gradual session types [25] provide a framework for ensuring
type and communication safety for programs integrating statically-typed sessions and dynamic types. It
is assumed that programs share a common internal language with casts. Our proposal aims to decouple
components even further by mediating communication via Session IR proxies which may, in addition
to casts, insert or reorder messages and perform other forms of monitoring. Session IR and Session
IR proxies are related to IDLs used for integrating distributed components [30] as well as systems for
business-to-business interactions [31] which explicitly aim to address heterogeneity.

At a more abstract level, the ideas presented in this position paper can be related to another position
paper by Albert et al. [4] that advocates a formal language for service-level agreements (SLAs) for
(virtualised and heterogeneous) distributed services, to be enforced via e.g. static verification and/or
runtime monitoring, possibly aided by code generation from executable models written in ABS [26]. Our
approach is focused on behavioural types (which could be seen both as a form of formalised SLA) and as
a form of executable specification (usable e.g. for monitor generation via the session IR).

Jolie [1, 34] is a service-oriented programming language. Programs can either be written in Jolie, or
Jolie can serve as an interface to services written in a different programming language. Jolie programs can
also serve as orchestrators to interact with multiple other services, potentially using different transport
mechanisms. In contrast, our proposal takes a more protocol-centric approach: instead of specifying the
services and an orchestration-based method of allowing them to interact, our proposal instead involves
concentrates on boundary monitoring and manipulation of existing communication flows. An advantage
is that we can (potentially statically) verify fine-grained data and timing constraints.

6 Conclusion

Although behavioural types offer a strong foundation for lightweight, language-integrated verification of
behavioural properties, a large barrier to their adoption is that at present an entire system must be written
in a single language. In this position paper we have described a potential line of work that, if completed
successfully, could allow behavioural types in heterogeneous software systems where components can
be written in different languages, using different tools, each of which support different static guarantees.
Our approach relies on an extensible protocol description language that can support additional language
features (e.g., timing or refinement types) as plugins, and a session IR that can describe transformations
on data (e.g., wire formatting, message reordering, and boundary monitoring). Structured support for
heterogeneity can greatly expand the reach of behavioural types in real-world systems, and we hope that
these initial ideas serve as a starting point for addressing this challenging research topic.

Acknowledgements

We thank the organisers of Dagstuhl Seminar 24051 and Schloss Dagstuhl — Leibniz Center for Informatics for making this

work possible. We are also grateful to the anonymous reviewers for their detailed and encouraging reviews. This work was

supported by EPSRC grant EP/T014628/1 (STARDUST), Horizon Europe grant 101093006 (TaRDIS), Independent Research

Fund Denmark RP-1 grant “Hyben”, Digital Futures Research Pairs Consolidator Project “PORTALS”, and UKRI Future Leaders

Fellowship MR/T043830/1 (EHOP), FCT grant PTDC/CCI-COM/6453/2020 (SafeSessions), and the LASIGE Research Unit.

Fowler et al. 45

References

[1] Jolie programming language — official website. URL https://www.jolie-lang.org/. Accessed
on 25/03/2024.

[2] ST30: 30 years of session types — workshop website. URL https://2023.splashcon.org/
home/st-anniversary-30. Accessed on 11/01/2024.

[3] Apache Thrift - official website. URL https://protobuf.dev/. Accessed on 11/01/2024.

[4] Elvira Albert, Frank de Boer, Reiner Hähnle, Einar Broch Johnsen, and Cosimo Laneve. Engineering
virtualized services. In Proceedings of the Second Nordic Symposium on Cloud Computing &
Internet Technologies, NordiCloud ’13, page 59–63. Association for Computing Machinery, 2013.
doi: 10.1145/2513534.2513545.

[5] Assel Altayeva and Nobuko Yoshida. Service equivalence via multiparty session type isomorphisms.
In PLACES@ETAPS, volume 291 of EPTCS, pages 1–11, 2019. doi: 10.4204/eptcs.291.1.

[6] Nicola Atzei, Massimo Bartoletti, Tiziana Cimoli, Stefano Lande, Maurizio Murgia, Alessandro Se-
bastian Podda, and Livio Pompianu. Contract-oriented programming with timed session types.
Behavioural Types: from Theory to Tools, page 27, 2017. doi: 10.1201/9781003337331-2.

[7] Adam D. Barwell, Alceste Scalas, Nobuko Yoshida, and Fangyi Zhou. Generalised multiparty
session types with crash-stop failures. In CONCUR, volume 243 of LIPIcs, pages 35:1–35:25.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.CONCUR.2022.35.

[8] Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida. Mon-
itoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017. doi:
10.1016/j.tcs.2017.02.009.

[9] Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. Towards a hybrid verification
methodology for communication protocols (short paper). In FORTE, volume 12136 of Lecture Notes
in Computer Science, pages 227–235. Springer, 2020. doi: 10.1007/978-3-030-50086-3_13.

[10] Christian Bartolo Burlò, Adrian Francalanza, and Alceste Scalas. On the monitorability of session
types, in theory and practice. In Anders Møller and Manu Sridharan, editors, 35th European
Conference on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark
(Virtual Conference), volume 194 of LIPIcs, pages 20:1–20:30. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021. doi: 10.4230/LIPICS.ECOOP.2021.20.

[11] Tzu-Chun Chen, Laura Bocchi, Pierre-Malo Deniélou, Kohei Honda, and Nobuko Yoshida. Asyn-
chronous distributed monitoring for multiparty session enforcement. In TGC, volume 7173 of Lecture
Notes in Computer Science, pages 25–45. Springer, 2011. doi: 10.1007/978-3-642-30065-3_2.

[12] Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message reordering in
Rust with multiparty session types. In PPoPP, pages 246–261. ACM, 2022. doi: 10.1145/3503221.
3508404.

[13] Romain Demangeon and Kohei Honda. Nested protocols in session types. In CONCUR,
volume 7454 of Lecture Notes in Computer Science, pages 272–286. Springer, 2012. doi:
10.1007/978-3-642-32940-1_20.

[14] Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating automata.
In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213. Springer, 2012. doi:
10.1007/978-3-642-28869-2_10.

https://www.jolie-lang.org/
https://2023.splashcon.org/home/st-anniversary-30
https://2023.splashcon.org/home/st-anniversary-30
https://protobuf.dev/

46 Behavioural Types for Heterogeneous Systems (Position Paper)

[15] Mariangiola Dezani-Ciancaglini, Luca Padovani, and Jovanka Pantovic. Session type isomorphisms.
In PLACES, volume 155 of EPTCS, pages 61–71, 2014. doi: 10.4204/eptcs.155.9.

[16] Simon Fowler. Model-view-update-communicate: Session types meet the Elm architecture. In
ECOOP, volume 166 of LIPIcs, pages 14:1–14:28. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020. doi: 10.4230/LIPIcs.ECOOP.2020.14.

[17] Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous session
types: session types without tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29, 2019. doi:
10.1145/3291617.

[18] Simon Gay and António Ravara. Behavioural Types: from Theory to Tools. River Publishers, 2017.

[19] Google. Protocol buffers documentation. URL https://protobuf.dev/. Accessed on 11/01/2024.

[20] Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of Lecture Notes in Computer
Science, pages 509–523. Springer, 1993. doi: 10.1007/3-540-57208-2_35.

[21] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In ESOP, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi: 10.1007/BFb0053567.

[22] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
POPL, pages 273–284. ACM, 2008. doi: 10.1145/1328438.1328472.

[23] Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API generation. In
FASE, volume 9633 of Lecture Notes in Computer Science, pages 401–418. Springer, 2016. doi:
10.1007/978-3-662-49665-7_24.

[24] Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types. In
FASE, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer, 2017. doi:
10.1007/978-3-662-54494-5_7.

[25] Atsushi Igarashi, Peter Thiemann, Yuya Tsuda, Vasco T. Vasconcelos, and Philip Wadler. Gradual
session types. J. Funct. Program., 29:e17, 2019. doi: 10.1017/S0956796819000169. URL
https://doi.org/10.1017/S0956796819000169.

[26] Einar Broch Johnsen, Reiner Hähnle, Jan Schäfer, Rudolf Schlatte, and Martin Steffen. ABS: A core
language for abstract behavioral specification. In Bernhard K. Aichernig, Frank S. de Boer, and
Marcello M. Bonsangue, editors, Formal Methods for Components and Objects - 9th International
Symposium, FMCO 2010, Graz, Austria, November 29 - December 1, 2010. Revised Papers,
volume 6957 of Lecture Notes in Computer Science, pages 142–164. Springer, 2010. doi: 10.1007/
978-3-642-25271-6_8.

[27] Sung-Shik Jongmans and José Proença. ST4MP: A blueprint of multiparty session typing for
multilingual programming. In ISoLA (1), volume 13701 of Lecture Notes in Computer Science,
pages 460–478. Springer, 2022. doi: 10.1007/978-3-031-19849-6_26.

[28] Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols with
mungo and stmungo: A session type toolchain for Java. Sci. Comput. Program., 155:52–75, 2018.
doi: 10.1016/j.scico.2017.10.006.

[29] Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay safe under panic: Affine Rust
programming with multiparty session types. In ECOOP, volume 222 of LIPIcs, pages 4:1–4:29.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPIcs.ECOOP.2022.4.

https://protobuf.dev/
https://doi.org/10.1017/S0956796819000169

Fowler et al. 47

[30] Scott M. Lewandowski. Frameworks for component-based client/server computing. ACM Comput.
Surv., 30(1):3–27, 1998. doi: 10.1145/274440.274441. URL https://doi.org/10.1145/274440.
274441.

[31] Brahim Medjahed, Boualem Benatallah, Athman Bouguettaya, Anne H. H. Ngu, and Ahmed K.
Elmagarmid. Business-to-business interactions: issues and enabling technologies. VLDB J.,
12(1):59–85, 2003. doi: 10.1007/S00778-003-0087-Z. URL https://doi.org/10.1007/
s00778-003-0087-z.

[32] Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in TypeScript with routed multiparty session types. In CC, pages 94–106. ACM, 2021.
doi: 10.1145/3446804.3446854.

[33] Fabrizio Montesi. Introduction to Choreographies. Cambridge University Press, 2023. doi:
10.1017/9781108981491.

[34] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming with Jolie.
In Web Services Foundations, pages 81–107. Springer, 2014. doi: 10.1007/978-1-4614-7518-7_4.

[35] Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble. In Models, Languages, and Tools
for Concurrent and Distributed Programming, volume 11665 of Lecture Notes in Computer Science,
pages 236–259. Springer, 2019. doi: 10.1007/978-3-030-21485-2_14.

[36] Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for multiparty
conversations. Formal Aspects Comput., 29(5):877–910, 2017. doi: 10.1007/s00165-017-0420-8.

[37] Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type provider:
compile-time API generation of distributed protocols with refinements in f#. In CC, pages 128–138.
ACM, 2018. doi: 10.1145/3178372.3179495.

[38] Daniel Patterson, Noble Mushtak, Andrew Wagner, and Amal Ahmed. Semantic soundness for
language interoperability. In PLDI, pages 609–624. ACM, 2022. doi: 10.1145/3519939.3523703.

[39] Daniel Patterson, Andrew Wagner, and Amal Ahmed. Semantic encapsulation using linking types.
In TyDe@ICFP, pages 14–28. ACM, 2023. doi: 10.1145/3609027.3609405.

[40] Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition
of multiparty sessions for safe distributed programming. In Peter Müller, editor, 31st European
Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain,
volume 74 of LIPIcs, pages 24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.
doi: 10.4230/LIPICS.ECOOP.2017.24. URL https://doi.org/10.4230/LIPIcs.ECOOP.2017.
24.

[41] Bernardo Toninho and Nobuko Yoshida. Certifying data in multiparty session types. J. Log. Algebraic
Methods Program., 90:61–83, 2017. doi: 10.1016/j.jlamp.2016.11.005.

[42] Bas van den Heuvel, Jorge A. Pérez, and Rares A. Dobre. Monitoring blackbox implementations of
multiparty session protocols. In RV, volume 14245 of Lecture Notes in Computer Science, pages
66–85. Springer, 2023. doi: 10.1007/978-3-031-44267-4_4.

[43] Philip Wadler and Robert Bruce Findler. Well-typed programs can’t be blamed. In ESOP, vol-
ume 5502 of Lecture Notes in Computer Science, pages 1–16. Springer, 2009. doi: 10.1007/
978-3-642-00590-9_1.

https://doi.org/10.1145/274440.274441
https://doi.org/10.1145/274440.274441
https://doi.org/10.1007/s00778-003-0087-z
https://doi.org/10.1007/s00778-003-0087-z
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24

48 Behavioural Types for Heterogeneous Systems (Position Paper)

[44] Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In TGC, volume 8358 of Lecture Notes in Computer Science, pages 22–41. Springer,
2013. doi: 10.1007/978-3-319-05119-2_3.

[45] Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines and
an extensible toolchain for multiparty session types. In FCT, volume 12867 of Lecture Notes in
Computer Science, pages 18–35. Springer, 2021. doi: 10.1007/978-3-030-86593-1_2.

[46] Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Statically
verified refinements for multiparty protocols. Proc. ACM Program. Lang., 4(OOPSLA):148:1–
148:30, 2020. doi: 10.1145/3428216.

D. Costa, R. Hu (Eds.): Programming Language Approaches to

Concurrency and Communication-cEntric Software 2024 (PLACES’24)

EPTCS 401, 2024, pp. 49–60, doi:10.4204/EPTCS.401.5

Three Subtyping Algorithms for Binary Session Types and

their Complexity Analyses

Thien Udomsrirungruang

University of Oxford, Oxford, UK

thien.udomsrirungruang@keble.ox.ac.uk

Nobuko Yoshida

University of Oxford, Oxford, UK

nobuko.yoshida@cs.ox.ac.uk

Session types are a type discipline for describing and specifying communication behaviours of con-

current processes. Session subtyping, firstly introduced by Gay and Hole [3], is widely used for

enlarging typability of session programs. This paper gives the complexity analysis of three algo-

rithms for subtyping of synchronous binary session types. First, we analyse the complexity of the

algorithm from the original paper, which is based on an inductive tree search. We then introduce its

optimised version, which improves the complexity, but is still exponential against the size of the two

types. Finally, we propose a new quadratic algorithm based on a graph search using the concept of

X Y Z W -simulation, recently introduced by Silva et al. [11].

1 Introduction

Session types [5, 12] are a type discipline for describing and specifying communication behaviours of

concurrent processes. They stem from the observation that many real-world processes communicate in a

highly-structured manner; these communications may include sending and receiving messages, selection

and branching from a set of labels, and recursion. These session types allow programs to be validated

for type safety using typechecking algorithms.

With regards to the synchronous session type system, Gay and Hole [3] proposed a subtyping scheme,

and proved the soundness of the type system; Chen et al. [2] later proved that the type system was

complete (i.e. there is no larger subtyping relation between session types that is sound). Thus this notion

of subtyping is of interest as it is most general. Our presentation of session types will use this system, as

described in Gay and Hole’s paper [3]. For simplicity, we omit the channel type [̂S]: they can be adopted

into the algorithms with little issue.

As an example, consider the following type, which represents an interface to a server which is able

to respond to pings, as well as terminate itself:

T interface
1 = µX .⊕〈respond : ?[end];X ,exit : end〉 (1)

Here, the channel offers two choices of label to the process using it: (1) choosing respond then receiving

a message of unit type end, or (2) choosing exit and terminating the channel. After performing (1), the

µ-recursion means that the channel reverts to its original state.

Next, consider the scenario where we upgrade the interface to the server such that it can be replicated.

T interface
2 = µX .⊕〈respond : ?[end];X ,exit : end, replicate : ?[X];X〉 (2)

The interface offers another choice: (3) choosing replicate and receiving a new channel with the same

type T interface
2 . We can immediately see that any program that expects a channel of type T interface

1 will

also work on a channel of type T interface
2 . This is because the functionality of the new channel type

http://dx.doi.org/10.4204/EPTCS.401.5

50 Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses

is identical to the old type, as long as the replicate label is never chosen. Thus, it would make sense to

accept T interface
2 in type checking. It turns out that T interface

2 is a subtype of T interface
1 (denoted T interface

2 ≤c

T interface
1), which characterises this property.

This subtyping relation is easy to see with a syntactic approach: the shapes of the types are almost

identical, except for one additional branch in T interface
2 ; we could then argue inductively that the subtyping

relation holds. However, for some types, this is not possible:

T interface
3 = µY.⊕〈respond : ?[end];Y,exit : end, replicate : ?[T interface

1];Y 〉 (3)

In essence, T interface
3 is an interface that can be replicated to get copies, but those copies cannot

themselves be replicated. We have that T interface
2 ≤c T interface

3 . Syntactic subtyping does not work because

the types do not have the same shapes (namely, the messages sent in the replicate branch are X and

T interface
1 respectively). The difficulty of checking subtyping comes from the ability to "branch off" into

multiple subterms: in the above example, checking the subterm ?[T interface
1];Y would require us to check

both T interface
1 and Y . In certain cases this can lead to exponential complexity in the standard inductive

algorithm given in [3] (see Example 3.8).

Contributions. We first analyse the algorithm given in Gay and Hole’s original paper on session

type subtyping [3, §5.1], improving the bound given in [8, §5.1]. Second, we propose its optimised

version, in the style of [10, Fig. 21-4]. Both of these algorithms have worst-case exponential complexity,

with the second algorithm having better complexity than the first. Third, we represent types as labeled

transition systems, and formulate the subtyping problem as checking an X Y Z W -simulation, similarly

to [11]; we then give a quadratic algorithm for subtyping by checking the validity of the simulation. A

full version of this paper is available [13], which contains full versions of definitions and examples.

2 Preliminaries

We restate the definitions given in [3], which are used in this paper.

Definition 2.1 (Session Types). Session types (denoted S,S′,T,U,V,W, . . .) are defined by the following

grammar:

S ::= end (inaction)

| ?[S1, . . . ,Sn];S (input)

| ![S1, . . . ,Sn];S (output)

| ⊕〈li : Si〉1≤i≤n (selection)

|&〈li : Si〉1≤i≤n (branching)

|µX .S (recursive type)

|X (type variable)

X ,Xi,Y,Z, . . . range over a countable set of type variables. We require that all terms are contractive, i.e.

µX1.µX2. . . .µXn.X1 is not allowed as a subterm for any n ≥ 1. As shorthand, we use ?[T̃];S instead of

?[T1, . . . ,Tn];S when there is no ambiguity on n, and similarly for ![T̃];S.

Definition 2.2 (Unfolding). unfold(µX .T) = unfold(T [µX .T/X]), and unfold(T) = T otherwise.

Note that as all terms are contractive, this is well-defined.

Definition 2.3 (Coinductive subtyping). A relation R is a subtyping relation if the following rules hold,

for all TRU :

• If unfold(T) = ?[T̃ ′];S1 then unfold(U) = ?[Ũ ′];S2, and T̃ ′RŨ ′ and S1RS2.

T. Udomsrirungruang & N. Yoshida 51

• If unfold(T) = ![T̃ ′];S1 then unfold(U) = ![Ũ ′];S2, and Ũ ′RT̃ ′ and S1RS2.

• If unfold(T)=&〈li : Ti〉1≤i≤m then unfold(U)=&〈li :Ui〉1≤i≤n, and m≤ n and ∀i∈{1, . . . ,m}.TiRUi.

• If unfold(T)=⊕〈li : Ti〉1≤i≤m then unfold(U)=⊕〈li :Ui〉1≤i≤n, and n≤m and ∀i∈{1, . . . ,n}.TiRUi.

• If unfold(T) = end then unfold(U) = end.

Subtyping ≤c is defined by S≤c T if (S,T) ∈R in some type simulation R. It immediately follows that

subtyping is the largest type simulation.

Definition 2.4 (Coinductive equality). T =c T ′ if T ≤c T ′ and T ′ ≤c T .

Example 2.5 (Interface). We can now formally prove the subtyping relations mentioned in Section 1. Let

us define R = {(T interface
2 ,T interface

3),(?[end];T interface
2 , ?[end];T interface

3),(end,end),(T interface
2 ,T interface

1),
(?[T interface

2];T interface
2 , ?[T interface

1]; ,T interface
3),(?[end];T interface

2 , ?[end];T interface
1)}. We verify that the

rules in Definition 2.3 hold. Thus TRU implies T ≤c U . In particular, T interface
2 ≤c T interface

3 and

T interface
2 ≤c T interface

1 .

To reason about the running time of the subtyping algorithms, we define the size of a session type.

Definition 2.6 (Size). |end|= |X |= 1, |µX .T |= |T |+1; |![T1, . . . ,Tn];U |= |?[T1, . . . ,Tn];U |=∑n
i=1 |Ti|+

|U |+1; |⊕〈l1 : T1, . . . , ln : Tn〉|= |&〈l1 : T1, . . . , ln : Tn〉|= ∑n
i=1 |Ti|+1.

We will also need a notion of subterms. The following function is defined in [3].

Definition 2.7 (Bottom-up subterms). The set of bottom-up subterms of T is defined inductively as:

Sub(end) = {end}; Sub(X) = {X}; Sub(µX .T) = {µX .T}∪{S[µX .T/X] | S ∈ Sub(T)};
Sub(![T1, . . . ,Tn];S) = { ![T1, . . . ,Tn];S}∪Sub(S)∪⋃n

i=1 Sub(Ti);
Sub(?[T1, . . . ,Tn];S) = { ?[T1, . . . ,Tn];S}∪Sub(S)∪⋃n

i=1 Sub(Ti);
Sub(⊕〈l1 : T1, . . . , ln : Tn〉) = {⊕〈l1 : T1, . . . , ln : Tn〉S}∪

⋃n
i=1 Sub(Ti); and

Sub(&〈l1 : T1, . . . , ln : Tn〉) = {&〈l1 : T1, . . . , ln : Tn〉S}∪
⋃n

i=1 Sub(Ti).
Then we define Sub(T,U) = Sub(T)∪Sub(U).

Due the use of unfolds (Definition 2.2) in our proof rules, it will be easier to reason with a definition of

subterms that use an operation similar to unfolding in the treatment of recursive types. Thus, we give

the analogue of [10, Definition 21.9.1] for session types. The full definition is in the full version of this

paper [13, Definition A.1].

Definition 2.8 (Top-down subterms). The set of top-down subterms of T is defined: SubTD(µX .T) =
{µX .T}∪SubTD(T [µX .T/X]), with all other rules from Definition 2.7 with Sub replaced by SubTD.

3 Inductive subtyping algorithms

Number of subterms. In this section we show that the number of top-down subterms of a binary

session type is linear. Proving this directly by induction is difficult as the definition of top-down subterm

of µX .T relies on the definition of a potentially larger term T [µX .T/X].
We adapt the proofs in [10, Chapter 21.9], which dealt with µ-types in the lambda calculus. We will

use bottom-up subterms as a proxy for top-down subterms: we will show that all top-down subterms

are bottom-up subterms, and there are linearly many bottom-up subterms. Note that in this section we

assume all substitutions are capture-avoiding. This can be done by alpha-conversion without changing

the size of the term.

Lemma 3.1. |Sub(T)| ≤ |T |.

52 Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses

Proof. By induction on the structure of T .

Case. T = end, or T = X . Trivial.

Case. T = µX .T ′. Assuming the inductive hypothesis, we have |Sub(T)| = |{T}∪ {S[µX .T/X] |
S ∈ Sub(T)}| ≤ |{T}|+ |Sub(T)|= 1+ |T ′|= |T |.

Case. T =⊕〈T1, . . . ,Tn〉, or T =&〈T1, . . . ,Tn〉. Assuming the inductive hypothesis, we have |Sub(T)| ≤
|{T}|+∑n

i=1 |Sub(Ti)|= 1+∑n
i=1 |Ti|= |T |.

Case. T = ![T1, . . . ,Tn];S or T = ?[T1, . . . ,Tn];S. Similar to the above.

Lemma 3.2. If S ∈ Sub(T [Q/X]) then S = S′[Q/X] for some S′ ∈ Sub(T), or S ∈ Sub(Q).

Proof. By induction on the structure of T .

Case. T = end. Then S = end, so take S′ = end.

Case. T = Y . If Y = X , then S ∈ Sub(Q). Otherwise S = Y , so take S′ = Y .

Case. T = ![T1, . . . ,Tn];U . Then either:

• S = T [Q/X]. Then S′ = T .

• S ∈ Sub(U [Q/X]). Then, by the inductive hypothesis, either S ∈ Sub(Q), or S = S′[Q/X] for some

S′ ∈ Sub(U). In the latter case, S′ ∈ Sub(T) by definition.

• S ∈ Sub(Ti[Q/X]). Similar.

Case. T = ?[T1, . . . ,Tn];U , T =⊕〈T1, . . . ,Tn〉or T = &〈T1, . . . ,Tn〉. Similar to the above case.

Case. T = µY.T ′. We have S ∈ Sub(µY.T ′[Q/X]). By definition, either:

• S = µY.T ′[Q/X]. Take S′ = T = µY.T ′.

• S = S1[(µY.T ′[Q/X])/Y] for some S1 ∈ Sub(T ′[Q/X]). Then by the inductive hypothesis, either:

– S1 ∈ Sub(Q). Then because our substitutions are capture-avoiding, Y /∈ fv(Q), so

S1[(µY.T ′[Q/X])/Y] = S1. Therefore S = S1 ∈ Sub(Q).

– S1 = S2[Q/X] for some S2 ∈ Sub(T ′).
Then S = S2[Q/X][(µY.T ′[Q/X])/Y] = S2[µY.T ′/Y][Q/X]. Take S′ = S2[µY.T ′/Y]. (By

definition S′ ∈ Sub(T).)

Lemma 3.3. SubTD(S)⊆ Sub(S).

Proof. Similar to [10, Prop. 21.9.10]. We need to show that each rule of SubTD can be matched by Sub.

All rules except for µX .T are identical. For µX .T , we use Lemma 3.2: if S ∈ Sub(T [µX .T/X]) then

either S ∈ Sub(T), or S = S′[µX .T/X] for some S′ ∈ Sub(T). The former is what we want; the latter is

part of the rule for µ in Sub.

Corollary 3.3.1. |SubTD(T)| ≤ |T |. Follows from Lemmas 3.3 and 3.1.

T. Udomsrirungruang & N. Yoshida 53

T ≤U ∈ Σ
[AS-ASSUMP]

Σ ⊢ T ≤U

[AS-END]
Σ ⊢ end≤ end

Σ,µX .T ≤U ⊢ T [µX .T/X]≤U
[AS-RECL]

Σ ⊢ µX .T ≤U

Σ,T ≤ µX .U ⊢ T ≤U [µX .U/X]
[AS-RECR]

Σ ⊢ T ≤ µX .U

Σ ⊢ T̃ ≤ Ũ Σ ⊢V ≤W
[AS-IN]

Σ ⊢ ?[T̃];V ≤ ?[Ũ];W

Σ ⊢ Ũ ≤ T̃ Σ ⊢V ≤W
[AS-OUT]

Σ ⊢ ![T̃];V ≤ ![Ũ];W

m≤ n ∀i ∈ 1, . . . ,m.Σ ⊢ Si ≤ Ti
[AS-BRA]

Σ ⊢&〈li : Si〉1≤i≤m ≤&〈li : Ti〉1≤i≤n

m≤ n ∀i ∈ 1, . . . ,m.Σ ⊢ Si ≤ Ti
[AS-SEL]

Σ ⊢ ⊕〈li : Si〉1≤i≤n ≤⊕〈li : Ti〉1≤i≤m

Figure 1: Algorithmic rules for subtyping, taken from [3].

3.1 An inductive algorithm [3]

First, we introduce the algorithm for checking subtyping in the original paper by Gay and Hole [3]. The

paper introduces the algorithmic rules for subtyping shown in Figure 1. These rules prove judgements

of the form Σ ⊢ T ≤U , which is intuitively read: “assuming the relations in Σ, we can deduce that T is

a subtype of U”. The paper then formalises this by proving soundness and completeness of the rules in

Figure 1, i.e. T ≤c U iff there is a proof tree deriving /0 ⊢ T ≤U .

Thus, in the algorithm, the objective is to infer this rule. To do this, it builds the proof tree bottom-

up, using rules in Figure 1 with [AS-ASSUMP] used with highest priority, and ties between [AS-RECL]

and [AS-RECR] broken arbitrarily (we will assume that [AS-RECL] takes priority). All other rules are

applicable on disjoint sets of judgements, so there is no further ambiguity.

Gay and Hole’s proof of termination [3, Lemma 10] contains the following fact, using Sub instead

of SubTD. However, with our definition of SubTD, the proof is clearer:

Lemma 3.4. If Γ ⊢ T ′ ≤U ′ is produced from /0 ⊢ T ≤U , then T ′ ∈ SubTD(T,U) and U ′ ∈ SubTD(T,U),
and for all V ≤W ∈ Γ, V ∈ SubTD(T,U) and W ∈ SubTD(T,U).

Proof. Verify this for each rule in Figure 1. The result follows from transitivity of the subterm relation.

Definition 3.5 (Nesting depth). nd(end) = nd(X) = 1; nd(µX .T) = nd(T)+ 1; nd(?[T1, . . . ,Tn];U) =
nd(![T1, . . . ,Tn];U) = max({nd(Ti) | 1≤ i≤ n}∪{nd(U)})+1; and nd(⊕〈l1 : T1, . . . , ln : Tn〉) = nd(&〈l1 :

T1, . . . , ln : Tn〉) = max({nd(Ti) | 1≤ i≤ n})+1.

Using the notion of nesting depth, Gay and Hole proceed to prove termination, as follows. Observe

that when generating the premise Γ′ ⊢ V ′ ≤W ′ above Γ ⊢ V ≤W , either |Γ′| > |Γ|; or |Γ′| = |Γ| and

nd(V ′)< nd(V).
Thus pairs (Γ,nd(V)) for judgements Γ ⊢V ≤W are distinct along any path from the root to any leaf of

the proof tree. Termination follows by observing that both |Γ| and nd(V) are bounded. We may extend

this to a complexity bound as follows.

Theorem 3.6. The worst-case complexity of Gay and Hole’s subtyping algorithm is O
(

nn3
)

, where n is

the sum of the sizes of the two inputs.

Proof. When Γ ⊢V ≤W is generated from the rule /0 ⊢ T ≤U , we have:

• The number of possible judgements in Γ is |SubTD(T,U)|2 by Lemma 3.4.

54 Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses

1: function SUBTYPE(∆,Σ,T,U)

2: if ∆ = false then

3: return false

4: end if

5: if Σ ⊢ T ≤U ∈ ∆ then ⊲ Memoization of inferences

6: return ∆
7: end if

8: ∆← ∆∪Σ ⊢ T ≤U ∈ ∆ ⊲ Add to the memoized set

9: if T ≤U ∈ Σ then

10: return ∆
11: else if T = end and U = end then

12: return ∆
13: else if T = µX .T ′ then

14: return SUBTYPE(∆,Σ∪{T ≤U},T ′[T/X],U)

15: else if U = µX .U ′ then

16: return SUBTYPE(∆,Σ∪{T ≤U},T,U ′[U/X])
17: else if T = ?[T̃];V and U = ?[Ũ];W then

18: for (Ti,Ui)← (T̃ ,Ũ) do

19: ∆← SUBTYPE(∆,Σ,Ti,Ui)
20: end for

21: return SUBTYPE(∆,Σ,V,W)

22: else if T = ![T̃];V and U = ![Ũ];W then

23: for (Ti,Ui)← (T̃ ,Ũ) do

24: ∆← SUBTYPE(∆,Σ,Ui,Ti)
25: end for

26: return SUBTYPE(∆,Σ,V,W)

27: else if T = &〈li : Ti〉1≤i≤m and U = &〈li : Ui〉1≤i≤n and m≤ n then

28: for i← 1..m do

29: ∆← SUBTYPE(∆,Σ,Ti,Ui)
30: end for

31: return ∆
32: else if T =⊕〈li : Ti〉1≤i≤n and U =⊕〈li : Ui〉1≤i≤m and m≤ n then

33: for i← 1..m do

34: ∆← SUBTYPE(∆,Σ,Ti,Ui)
35: end for

36: return ∆
37: else

38: return false

39: end if

40: end function

Figure 2: A memoized subtyping algorithm.

• The number of possible values of V is |SubTD(T,U)|, thus there are only |SubTD(T,U)| possible

values of nd(V).

Therefore the height of the tree is bounded by (|T |+ |U |)3, using Corollary 3.3.1, and the branching

factor is O(|T |+ |U |), so the worst-case complexity is O
(

nn3
)

, taking n = |T |+ |U |.

3.2 An algorithm with memoization

A way to optimise the first algorithm is to treat the proof tree like a proof DAG: as identical nodes will

have the same subtrees, we can search for their proofs only once. The algorithm in Figure 2 performs a

depth-first search of the proof tree, ignoring nodes that have been seen before. This is done by keeping a

set ∆ of visited nodes.

Theorem 3.7. The algorithm in Fig. 2 has worst-case time complexity 2O(n2).

Proof. Observe that the runtime is proportional to |∆| at the end of the program. As an upper bound, by

Lemma 3.4, there are |SubTD(T,U)|2 possible judgements in Σ, and |SubTD(T,U)| possible terms for T

and U , so ∆ has size at most 2|SubTD(T,U)|2 · |SubTD(T,U)|2 = 2O(n2), again by Corollary 3.3.1.

Example 3.8. To show for certain that the algorithms so far are exponential in complexity, we will show

that the following construction takes exponential time for the two subtyping algorithms presented:

Tk ≤c Tk+1 where Tk := µX . ?[µYk−1.V
k

k−1]; ?[µYk−2.V
k

k−2]; . . . ?[µY1.V
k
1]; ?[µY0.V

k
0];X

and V k
l := ?[µZ. ?[Z];Z]; ?[µZ. ?[Z];Z];︸ ︷︷ ︸

l times

X

We first show that the subtyping relation holds, by proving the stronger notion of coinductive equality.

Lemma 3.9. In Example 3.8, Tk =c µX . ![X];X .

T. Udomsrirungruang & N. Yoshida 55

Proof. Let U = µX .![X];X , and take R = {(T,U) | T ∈ SubTD(Tk)} and R ′= {(U,T) | T ∈ SubTD(Tk)}.
It is easy to see that for all T ∈ SubTD(Tk), unfold(T) = ![S1];S2 for some S1,S2 ∈ SubTD(Tk). Also we

have unfold(U) = ![U];U . Hence (S1,U),(S2,U) ∈ R and (U,S1),(U,S2) ∈ R ′. Thus R and R ′ are

type simulations.

Corollary 3.9.1. Tk ≤c Tk+1.

Proof. Follows from transitivity of =c.

Therefore, by completeness of the inductive rules [3] it follows that the algorithm will construct a

valid derivation of /0 ⊢ Tk ≤ Tk+1. As both algorithms presented so far will need to traverse every node in

the tree at least once, we will now show that this proof tree has an exponential amount of nodes.

Lemma 3.10. Define: W k
r = V k

r [Tk/X] and Sk
r = ?[µY k

r−1.W
k

r−1]; . . . ?[µY k
0 .W

k
0];Tk. Then for every se-

quence α1, . . . ,αl(0≤ l < k) such that 0≤ αi < k− i:

{Tk ≤ Tk+1,S
k
k ≤ Tk+1}∪{µYαi

.W k
αi
≤ µYαi+i.W

k+1
αi+i | 1≤ i≤ l}

∪{W k
αi
≤ µYαi+i.W

k+1
αi+i | 1≤ i≤ l}∪{Tk ≤W k+1

i | 1≤ i≤ l}
∪{Sk

k−i ≤ Tk+1 | 1≤ i≤ l}




⊢ Sk

k−l ≤ Sk+1
k+1 (4)

is derivable from /0 ⊢ Tk ≤ Tk+1 as the root.

Proof. By induction on l. For some α1, . . . ,αk−1, let Sl be the set of inferences on the left side of (4).

The base case l = 0 is simple: S0 = {Tk ≤ Tk+1,S
k
k ≤ Tk+1}. The corresponding proof tree is

S0 ⊢ Sk
k ≤ Sk+1

k+1
[AS-RECR]

Tk ≤ Tk+1 ⊢ Sk
k ≤ Tk+1

[AS-RECL]
/0 ⊢ Tk ≤ Tk+1

For the inductive step, we will build the tree starting from Sl−1 ⊢ Sk
k−(l−1) ≤ Sk

k+1, for l > 0, using

the inductive hypothesis. The following proof tree works, taking

C1 = µYαl
.W k

αl
≤ µY k+1

αl+l.W
k+1
αl+l, C2 =W k

αl
≤ µY k+1

αl+l.W
k+1

αl+l, C3 = Tk ≤W k+1
l , C4 = Sk

k−l ≤ Tk+1:

. . .

Sl−1∪{C1,C2 ,C3,C4} ⊢ Sk
k−l ≤ Sk+1

k+1
[AS-RECR]

Sl−1∪{C1,C2,C3} ⊢ Sk
k−l ≤ Tk+1 =W k+1

0 . . .
[AS-IN]

.

.

.
[AS-IN]

Sl−1∪{C1,C2,C3} ⊢ Sk
k ≤W k+1

l
[AS-RECL]

Sl−1∪{C1,C2} ⊢W k
0 = Tk ≤W k+1

l . . .
[AS-IN]

.

.

.
[AS-IN]

Sl−1∪{C1,C2} ⊢W k
αl
≤W k+1

αl+l

[AS-RECR]
Sl−1∪{C1} ⊢W k

αl
≤ µY k+1

αl
.W k+1

αl+1

[AS-RECL]
Sl−1 ⊢ µYαl

.W k
αl
≤ µY k+1

αl+l .W
k+1
αl+l

[AS-IN]
Sl−1 ⊢ Sk

αl+1 ≤ Sk+1
αl+l+1 . . .

[AS-IN]
.
.
.

[AS-IN]
Sl−1 ⊢ Sk

k−(l−1) ≤ Sk+1
k+1

Observing that Sl = Sl−1∪{C1,C2,C3,C4} finishes the proof.

56 Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses

unfold(T) = end
[G-E]

T
end−−→ Skip

unfold(T) = ?[T1, . . . ,Tn];U
[G-IC]

T
?c−→U

unfold(T) = ?[T1, . . . ,Tn];U 1≤ i≤ n
[G-IP]

T
?pi−→ Ti

unfold(T) = ![T1, . . . ,Tn];U
[G-OC]

T
!c−→U

unfold(T) = ![T1, . . . ,Tn];U 1≤ i≤ n
[G-OP]

T
!pi−→ Ti

unfold(T) = &〈li : Ti〉1≤i≤m 1≤ j ≤ m
[G-B]

T
⊕l j−−→ Tj

unfold(T) =⊕〈li : Ti〉1≤i≤m 1≤ j ≤ m
[G-S]

T
&l j−−→ Tj

Figure 3: Rules for the type LTS.

Theorem 3.11. The lower bound of the worst-case complexity of both inductive algorithms in this sec-

tion is Ω((
√

n)!).

Proof. Consider Example 3.8. The complexity is at least the number of distinct nodes in the proof tree.

Lemma 3.10 shows that there are Ω(k!) such nodes, by observing that each sequence α1, . . . ,αl yields

a distinct set Sl. As |Tk|+ |Tk+1| = Θ(k2), we conclude that both algorithms on inductive trees run in

worst-case exponential time, i.e. Ω((
√

n)!).

4 Quadratic subtyping algorithm

We exploit the coinductive nature of subtyping to yield a quadratic algorithm. Firstly, we translate the

constructs from Definition 2.3 into a labelled transition system (LTS), so that subtyping is defined as a

simulation-like relation.

Definition 4.1. The type LTS is defined as in Figure 3. For a type T , the type LTS for T is the part of the

LTS that is reachable from T .

The above definition gives us a graphical representation of types, which will be easier to work with.

We show that the size of this LTS is linear:

Lemma 4.2. The number of nodes in the type LTS for T is O(|T |).

Proof. Note that T
α−→ T ′ implies T ′ ∈ SubTD(T) or T ′ = Skip, thus all nodes reachable from T are

elements of SubTD(T)∪{Skip}. The result follows from Corollary 3.3.1.

Lemma 4.3. The number of edges in the type LTS for T is O(|T |).

Proof. Define the following function, which is the out-degree of an unfolded type: od(X)= 0; od(end)=
1; od(![T1, . . . ,Tn];U) = od(?[T1, . . . ,Tn];U) = n+1; and od(⊕〈l1 : T1, . . . , ln : Tn〉) = od(&〈l1 : T1, . . . , ln :

Tn〉) = n. Also, od(µX .T) = 0 as it is not an unfolded type.

Then, the number of edges in the LTS is ∑U reachable from T od(unfold(U)) ≤ ∑U∈SubTD(T) od(U) ≤
∑U∈Sub(T) od(U).

Let f (T) = ∑U∈Sub(V) od(T).

We prove that f (T)≤ 2|T |−1, by structural induction on T .

Case. T = end, or T = X . Then Sub(T) = {T}, so f (T)≤ 2|T |−1.

Case. T = µX .T ′. Then f (T) = od(T)+ f (T ′). By the inductive hypothesis, f (T ′)≤ 2|T ′|−1. By

definition, od(T) = 0, so ∑U∈Sub(T) od(U)≤ 2|T ′|−1≤ 2|T |−1.

T. Udomsrirungruang & N. Yoshida 57

Case. T = ![T1, . . . ,Tn];W , T = ?[T1, . . . ,Tn];W . Then f (T) = od(T)+ f (W)+∑n
i=1 f (Ti). By the

inductive hypothesis, f (W) ≤ 2|W |− 1 and f (Ti) ≤ 2|Ti|− 1. By definition, od(T) = n+ 1, so f (T) ≤
n+1+2|W |−1+∑n

i=1(2|Ti|−1) = 2(1+ |W |+∑n
i=1 |Ti|)−2 = 2|T |−2≤ 2|T |−1.

Case. T = ⊕〈T1, . . . ,Tn〉, T = &〈T1, . . . ,Tn〉. Then f (T) = od(T) + ∑n
i=1 f (Ti). By the inductive

hypothesis, f (Ti)≤ 2|Ti|−1. By definition, od(T) = n, so f (T)≤ n+∑n
i=1(2|Ti|−1) = 2∑n

i=1 |Ti|−1≤
2|T |−1.

In line with the treatment of context-free session types in Silva et al. [11], we can then rewrite Defini-

tion 2.3 in terms of this representation. In the language of the paper, this is a X Y Z W -simulation, with

X = {?c, !c,?pi,&l,end},Y = {?pi,⊕l,end},Z = α ∈ {!pi},W = α ∈ {!pi}. We will then demon-

strate how to check this X Y Z W -simulation relation in quadratic time on a type LTS.

Definition 4.4. R is a subtyping relation if, for all TRU :

• If T
α−→ T ′ then U

α−→U ′, and T ′RU ′, for α ∈ {?c, !c,?pi,&l,end}.
• If U

α−→U ′ then T
α−→ T ′, and T ′RU ′, for α ∈ {?pi,⊕l,end}.

• If T
α−→ T ′ then U

α−→U ′, and U ′RT ′, for α ∈ {!pi}.
• If U

α−→U ′ then T
α−→ T ′, and U ′RT ′, for α ∈ {!pi}.

S ≤c T if (S,T) ∈R in some type simulation R.

It follows that Definitions 2.3 and 4.4 are equivalent.

Definition 4.5. Call a pair (T,U) inconsistent if at least one of the following hold: (1) T
α−→ T ′ and U 6 α−→,

for some α ∈ {?c, !c,?pi,&l,end}; (2) U
α−→U ′ and T 6 α−→, for some α ∈ {?pi,⊕l,end}; (3) T

α−→ T ′ and

U 6 α−→, for some α ∈ {!pi}; or (4) U
α−→U ′ and T 6 α−→, for some α ∈ {!pi}.

The LTS presentation gives rise to the following algorithm for checking T ≤c U , where we want to

find a consistent relation R containing (T,U); this can be extended to an algorithm that checks for any

X Y Z W -simulation on finite structures.

Theorem 4.6. T ≤c U can be checked in O(n2) time (where n = |T |+ |U |).

Proof. Our algorithm is as follows: construct a graph on nodes (T ′,U ′) ∈ (SubTD(T,U)∪{Skip})×
(SubTD(T,U)∪{Skip}). For each node, check whether it is inconsistent (Definition 4.5). Then, add an

edge (V,W)→ (V ′,W ′) if VRW directly implies V ′RW ′ under Definiton 4.4. If any inconsistent nodes

are reachable from (T,U), then T 6≤c U , otherwise T ≤c U .

To show correctness, observe that any set of consistent vertices closed under reachability is a type

simulation, directly from Definition 4.4. The minimal such set containing (T,U), if it exists, must be the

set of reachable nodes from (T,U). Thus we can check if any inconsistent nodes are contained in this set

to solve the problem.

Note that there are O((|T |+ |U |)2) nodes and edges in the graph, by Lemmas 3.3.1 and 4.3. Thus we

can check T ≤c U in O(n2) time with a simple reachability search.

Corollary 4.6.1. T ′ ≤c U ′ for all subterms T ′,U ′ ∈ SubTD(T,U) can be checked in O(n2) time.

Proof. By finding the set of nodes in the above graph for which no inconsistent node is reachable, which

can be done with a graph search from the inconsistent nodes in time linear in the size of the graph.

The next examples use the above algorithm to decide subtyping for examples from Section 1.

58 Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses

(T interface
2 ,T interface

3) (?[end];T interface
2 , ?[end];T interface

3)

(end,end)(?[T interface
2];T interface

2 , ?[T interface
1];T interface

3)

(T interface
1 ,T interface

3) (?[end];T interface
2 , ?[end];T interface

1)

(Skip,Skip)

Figure 4: Graph for (T interface
2 ,T interface

3).

Example 4.7. The graph for (T interface
2 ,T interface

3) is drawn in Figure 4. There are no inconsistent nodes,

which shows that T interface
2 ≤c T interface

3 . Note the similarity to Example 2.5.

Example 4.8. Node (T interface
1 ,T interface

2) is inconsistent because T interface
2

⊕replicate−−−−−−→?[T interface
2];T interface

2

but T interface
1 6 ⊕replicate−−−−−−→ . Thus T interface

1 6≤c T interface
2 .

We could also represent this algorithm procedually, similarly to Figure 2, differing only in what we

keep track of to avoid repetition. In the inductive algorithm we store entire judgements of the form

Γ ⊢ T ≤U (lines 1-8), but in this quadratic algorithm we only store visited nodes of the form T ≤U .

The main difference is the number of possible values we could store: exponential in the former case and

quadratic in the latter. The full version of this paper [13, Figure A.1] contains this presentation of the

algorithm. This procedural form is also similar to the subtyping algorithm for µ-lambda-terms in [10,

Fig. 21-4].

However, the LTS presentation of the algorithm does have its benefits; by representing the types as a

LTS (as in Theorem 4.6), we obtain a representation of types that eliminates the overhead of manipulating

the types, to yield a truly quadratic algorithm.

5 Related work

The first algorithm for subtyping of recursive function types dates back to Amadio and Cardelli [1], where

they give an exponential algorithm for recursive function type subtyping. Their algorithm inductively

checks for α → β ≤ γ → δ by recursively checking that α ≤ γ and β ≤ δ , unwrapping µ-recursions,

and keeping track of which pairs have been checked before.

Pierce [10, Chapter 21.12] surveys the development of quadratic subtyping algorithms for these

types. Notably, Kozen et al. [7] represent types as automata, then does a linear-time check on the product

automaton of two types to check for subtyping, a method similar to our third algorithm (§4).

The subtyping relation for synchronous session types was introduced by Gay and Hole [3], in which

they showed that subtyping is sound and decidable. Their algorithm for subtyping (as presented here in

§3.1), is similar to Amadio and Cardelli’s, adapted for session types. Later, Chen et al.[2] proved that

this relation is precise: no strictly larger relation respects type safety.

Lange and Yoshida [8] investigate subtyping for session types by converting terms to a modal µ-

calculus formula which represents its subtypes, then using a model checker to check for subtyping. A

short analysis of two other subtyping algorithms is also provided, along with an empirical evaluation.

The first is Gay and Hole’s algorithm [3], in which a doubly-exponential upper bound is given, which

we improve to a singly-exponential bound. The second is an adaptation of Kozen’s algorithm [7], which

T. Udomsrirungruang & N. Yoshida 59

is similar to our LTS-based construction (§4) in that it builds a product automaton and checks for reach-

ability. A quadratic algorithm is given; however, the type system provided in [8] does not allow sending

sessions as messages; instead, sorts are used as payloads. Our algorithm is adapted to remove this re-

striction. A comparison of complexity bounds in [8] and this paper is in Table 1.

Algorithm [8] This paper

Gay and Hole [3] O
(
n2n)

O
(

nn3
)
,Ω((
√

n)!)

[3] with memoization – 2O(n2),Ω((
√

n)!)

Coinductive subtyping O
(
n2
)

O
(
n2
)

Table 1: Comparison between upper and lower

bounds for the worst-case complexity given in [8]

and this paper to check the subtyping relation

T ≤c U where n = |T |+ |U |.

Subtyping for non-regular session types, in

which there are infinitely many subterms, are ex-

plored by Silva et al. [11], in which the concept of

X Y Z W -simulation for session type subtyping

is introduced; it is also used in this paper. A sound

algorithm is introduced to semi-decide the subtyp-

ing problem for context-free session types, which

is accompanied by an empirical evaluation. In

general, subtyping for context-free session types

is undecidable, as shown by Padovani [9].

We believe that the results from this paper

could be applied to other session typing schemes with little difficulty: for example, the subtyping re-

lation for local synchronous multiparty session types [6], which is also sound and complete [4].

Acknowledgements. The authors thank PLACES’24 reviewers for their careful reading and comments.

The first author is supported by the Keble Association Grant. The second author is supported by EP-

SRC EP/T006544/2, EP/Y005244/1, EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/N027833/2,

EP/T014709/2, EP/V000462/1, EP/X015955/1 and Horizon EU TaRDIS 101093006.

References

[1] Roberto Amadio & Luca Cardelli (1993): Subtyping Recursive Types. ACM transactions on programming

languages and systems 15(4), pp. 575–631, doi:10.1145/155183.155231.

[2] Tzu Chun Chen, Mariangiola Dezani-Ciancaglini, Alceste Scalas & Nobuko Yoshida (2017): On

the Preciseness of Subtyping in Session Types. Logical Methods in Computer Science 13(2),

doi:10.23638/LMCS-13(2:12)2017.

[3] Simon Gay & Malcolm Hole (2005): Subtyping for Session Types in the Pi Calculus. Acta Informatica

42(2-3), pp. 191–225, doi:10.1007/s00236-005-0177-z.

[4] Silvia Ghilezan, Svetlana Jakšić, Jovanka Pantović, Alceste Scalas & Nobuko Yoshida (2019): Precise Sub-

typing for Synchronous Multiparty Sessions. Journal of Logical and Algebraic Methods in Programming 104,

pp. 127–173, doi:10.1016/j.jlamp.2018.12.002.

[5] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disci-

pline for Structured Communication-Based Programming. In Chris Hankin, editor: Programming Languages

and Systems - ESOP’98, 7th European Symposium on Programming, Held as Part of the European Joint

Conferences on the Theory and Practice of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998,

Proceedings, Lecture Notes in Computer Science 1381, Springer, pp. 122–138, doi:10.1007/BFB0053567.

[6] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty Asynchronous Session Types.

In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’08, Association for Computing Machinery, New York, NY, USA, pp. 273–284,

doi:10.1145/1328438.1328472.

https://doi.org/10.1145/155183.155231
https://doi.org/10.23638/LMCS-13(2:12)2017
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1016/j.jlamp.2018.12.002
https://doi.org/10.1007/BFB0053567
https://doi.org/10.1145/1328438.1328472

60 Three Subtyping Algorithms for Binary Session Types and their Complexity Analyses

[7] Dexter Kozen, Jens Palsberg & Michael I. Schwartzbach (1993): Efficient Recursive Subtyping. In: Proceed-

ings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’93,

Association for Computing Machinery, New York, NY, USA, pp. 419–428, doi:10.1145/158511.158700.

[8] Julien Lange & Nobuko Yoshida (2016): Characteristic Formulae for Session Types. In Marsha Chechik &

Jean-François Raskin, editors: Tools and Algorithms for the Construction and Analysis of Systems, Lecture

Notes in Computer Science, Springer, Berlin, Heidelberg, pp. 833–850, doi:10.1007/978-3-662-49674-9_52.

[9] Luca Padovani (2019): Context-Free Session Type Inference. ACM Transactions on Programming Languages

and Systems 41(2), pp. 9:1–9:37, doi:10.1145/3229062.

[10] Benjamin C. Pierce (2002): Types and Programming Languages, 1st edition. The MIT Press.

[11] Gil Silva, Andreia Mordido & Vasco T. Vasconcelos (2023): Subtyping Context-Free Ses-

sion Types. 279, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 11:1–11:19,

doi:10.4230/LIPICS.CONCUR.2023.11.

[12] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and Its Typing Sys-

tem. In Constantine Halatsis, Dimitris G. Maritsas, George Philokyprou & Sergios Theodoridis, editors:

PARLE ’94: Parallel Architectures and Languages Europe, 6th International PARLE Conference, Athens,

Greece, July 4-8, 1994, Proceedings, Lecture Notes in Computer Science 817, Springer, pp. 398–413,

doi:10.1007/3-540-58184-7_118.

[13] Thien Udomsrirungruang & Nobuko Yoshida (2024): Three Subtyping Algorithms for Binary Session Types

and Their Complexity Analyses (full version), doi:10.48550/arXiv.2402.06988. arXiv:2402.06988.

https://doi.org/10.1145/158511.158700
https://doi.org/10.1007/978-3-662-49674-9_52
https://doi.org/10.1145/3229062
https://doi.org/10.4230/LIPICS.CONCUR.2023.11
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.48550/arXiv.2402.06988
https://arxiv.org/abs/2402.06988

	Introduction
	Linear staged metaprogramming
	From linear staged to session staged metaprogramming
	Conclusion and future work
	Introduction
	Networks and Global Types
	Event Structure Semantics of Global Types
	Semantic Well-formedness
	Structural Properties of g-PESs
	Conclusion
	Introduction
	Session types
	Transmission Control Protocol (TCP)
	Implementation
	Defining session types
	Multi-way Offer branching
	Recursive session types
	Using session types
	Establishing a Connection
	Data Transmission and Re-transmission
	Closing the connection

	Evaluation
	Related Work and Conclusion
	Appendix
	Three-way handshake
	Exchanging data

	Introduction
	Background
	Heterogeneous Multiparty Session Typing
	Proposed Solution
	Potential Challenges

	Related Work
	Conclusion
	Introduction
	Preliminaries
	Inductive subtyping algorithms
	An inductive algorithm Gay2005
	An algorithm with memoization

	Quadratic subtyping algorithm
	Related work

