
EPTCS 378

Proceedings of the

14th Workshop on

Programming Language Approaches to

Concurrency and Communication-cEntric

Software

Paris, France, 22 April 2023

Edited by: Ilaria Castellani and Alceste Scalas

Published: 13th April 2023

DOI: 10.4204/EPTCS.378

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Ilaria Castellani and Alceste Scalas

Keynote Talk: VerCors & Alpinist: Verification of Optimised GPU Programs. iv

Marieke Huisman

Keynote Talk: Thirthy Years of Session Types . v

Vasco T. Vasconcelos

Presentations of Preliminary or Already-Published Work . vi

Kind Inference for the FreeST Programming Language . 1

Bernardo Almeida, Andreia Mordido and Vasco T. Vasconcelos

A Declarative Validator for GSOS Languages . 14

Matteo Cimini

A Logical Account of Subtyping for Session Types . 26

Ross Horne and Luca Padovani

Communicating Actor Automata - Modelling Erlang Processes as Communicating Machines 38

Dominic Orchard, Mihail Munteanu and Paulo Torrens

Choreographic Programming of Isolated Transactions . 49

Ton Smeele and Sung-Shik Jongmans

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. ii–iii, doi:10.4204/EPTCS.378.0

© Ilaria Castellani and Alceste Scalas

This work is licensed under the

Creative Commons Attribution License.

Preface

Ilaria Castellani

INRIA Sophia Antipolis Méditerranée, FR

ilaria.castellani@inria.fr

Alceste Scalas

Technical University of Denmark, DK

alcsc@dtu.dk

This volume contains the proceedings of PLACES 2023, the 14th edition of the Workshop on Pro-

gramming Language Approaches to Concurrency and Communication-cEntric Software. The workshop

is scheduled to take place in Paris on 22 April 2023, as a satellite event of ETAPS, the European Joint

Conferences on Theory and Practice of Software.

PLACES offers a forum for exchanging new ideas on how to address the challenges of concurrent

and distributed programming, and how to improve the foundations of modern and future computer appli-

cations. PLACES welcomes researchers from various fields, and its topics include the design of new pro-

gramming languges, models for concurrent and distributed systems, type systems, program verification,

and applications in various areas (e.g. microservices, sensor networks, blockchains, event processing,

business process management).

The Programme Committee of PLACES 2023 consisted of:

• Marco Carbone, IT University of Copenhagen, DK

• Elias Castegren, Uppsala University, SE

• Silvia Crafa, Università di Padova, IT

• Francisco Ferreira, Royal Holloway, University of London, UK

• José Fragoso Santos, Universidade de Lisboa and INESC-ID, PT

• Paola Giannini, Università del Piemonte Orientale, IT

• Andrew K. Hirsch, State University of New York at Buffalo, US

• Sung-Shik Jongmans, Open University of the Netherlands, NL

• Luc Maranget, INRIA Paris, FR

• Andreia Mordido, Universidade de Lisboa and LASIGE, PT

• Violet Ka I Pun, Western Norway University of Applied Sciences, NO

• Emilio Tuosto, Gran Sasso Science Institute, IT

• Laura Voinea, University of Glasgow, UK

After a thorough reviewing process, the Programme Committee has accepted five research papers (out

of seven submitted for review): such papers are published in this volume. The Programme Committee

has also accepted seven talk proposal on preliminary or already-published work: the titles and abstracts

of such talks are also listed in this volume (except for one, because the authors had to cancel their

presentation). Each submission (research paper or talk proposal) was reviewed by three Programme

Committee members and then discussed on the Easychair platform.

We would like to thank everyone who contributed to PLACES 2023: this includes the authors of sub-

missions, the Programme Committee members, the ETAPS 2023 organisers, the Easychair and EPTCS

http://dx.doi.org/10.4204/EPTCS.378.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Ilaria Castellani and Alceste Scalas iii

administrators. We would also like to thank Marieke Huisman and Vasco T. Vasconcelos for accepting

our invitation to give a keynote talk. Finally, a special thank you goes to the Steering Committee of

PLACES, consisting of Simon Gay, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida.

4 April 2023

Ilaria Castellani and Alceste Scalas

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. iv–iv, doi:10.4204/EPTCS.378.0.1

© Marieke Huisman

This work is licensed under the

Creative Commons Attribution License.

Keynote Talk:

VerCors & Alpinist: Verification of Optimised GPU Programs

Marieke Huisman

University of Twente, NL

m.huisman@utwente.nl

The VerCors verifier is a tool set for the verification of parallel and concurrent software. Its main

characteristics are (i) that it can verify programs under different concurrency models, written in high-

level programming languages, such as for example in Java, OpenCL and OpenMP; and (ii) that it can

reason not only about race freedom and memory safety, but also about functional correctness. In this talk

I will first give an overview of the VerCors verifier, and how it has been used for the verification of many

different parallel and concurrent algorithms.

In the second part of my talk I will zoom in on verification of GPU programs, as they are widely

used in industry. To obtain the best performance, a typical development process involves the manual

or semi-automatic application of optimizations prior to compiling the code. To avoid the introduction

of errors, we can augment GPU programs with (pre- and postcondition-style) annotations to capture

functional properties. However, keeping these annotations correct when optimizing GPU programs is

labor-intensive and error-prone.

In my talk I introduce Alpinist, an annotation-aware GPU program optimizer. It applies frequently-

used GPU optimizations, but besides transforming code, it also transforms the annotations. We evaluate

Alpinist, in combination with the VerCors program verifier, to automatically optimize a collection of

verified programs and reverify them.

http://dx.doi.org/10.4204/EPTCS.378.0.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. v–v, doi:10.4204/EPTCS.378.0.2

© Vasco T. Vasconcelos

This work is licensed under the

Creative Commons Attribution License.

Keynote Talk:

Thirthy Years of Session Types

Vasco T. Vasconcelos

University of Lisbon, PT

vmvasconcelos@ciencias.ulisboa.pt

1993. Kohei Honda publishes Types for Dyadic Interaction. In the course of five years two further

papers shaped a field that was to became known as Session Types. Session types discipline interactive

behaviour in the same way that functional types govern applicative behaviour. What are session types?

What are they good for? What sort of applications benefit from the discipline imposed by such types?

What are the challenges ahead?

http://dx.doi.org/10.4204/EPTCS.378.0.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. vi–viii, doi:10.4204/EPTCS.378.0.3

© Ilaria Castellani and Alceste Scalas

This work is licensed under the

Creative Commons Attribution License.

Presentations of Preliminary and Already-Published Work

Ilaria Castellani

INRIA Sophia Antipolis Méditerranée, FR

ilaria.castellani@inria.fr

Alceste Scalas

Technical University of Denmark, DK

alcsc@dtu.dk

PLACES 2023 welcomed the submissions of talk proposals (describing preliminary or already-

published work) that could spark interesting discussion during the workshop. This is the list of all

accepted talk proposals.

Concurrent Symbolic Execution with Trace Semantics in Coq

Åsmund Aqissiaq Arild Kløvstad — Department of Informatics, University of Oslo, NO.

Symbolic Execution is a technique for program analysis using symbolic expressions to abstract over

program state, thereby covering many program states simultaneously. Symbolic execution has been used

since the mid 70’s in both testing and analysis, but its formal aspects have only recently begun to be

explored and unified. We present a model of symbolic execution with trace semantics in a concurrent

setting in Coq, utilizing syntactic contexts to succinctly deal with parallelism.

MAGπ: Types for Failure-Prone Communication

Matthew Alan Le Brun and Ornela Dardha — University of Glasgow, UK.

This talk proposal is based on work accepted for publication at ESOP 2023. We introduce MAGπ —

Multiparty, Asynchronous and Generalised π-calculus — an extension of generalised session type theory

into a calculus capable of modelling non-Byzantine faults, for various physical topologies and network

assumptions. Our contributions are: (1) a calculus and type-system enriched with timeouts and message

loss semantics — capable of modelling the widest set of non-Byzantine faults; (2) a novel and most

general definition of reliability, allowing MAGπ to model physical topologies of distributed systems; (3)

a generalised theory capable of specifying assumptions of underlying network protocols; and (4) type

properties that lift the benefits of generalised MPST into our realm of failure-prone communication.

Functions as Processes: The Non-Deterministic Case

Joseph Paulus — University of Groningen, NL.

Daniele Nantes-Sobrinho — Imperial College London, UK.

Jorge A. Pérez — University of Groningen, NL.

Milner’s seminal work on encodings of the lambda-calculus into the pi-calculus (“functions-as-processes”)

explains how interaction in pi subsumes evaluation in lambda. His work opened a research strand on for-

mal connections between sequential and concurrent calculi, covering untyped and typed regimes.

In this talk, we review a recent series of works in which we extend “functions-as-processes”; by con-

sidering calculi in which computation is non-deterministic and may lead to failures - two relevant features

in programming models. On the functional side, we consider a resource lambda-calculus with non-

determinism and failure, equipped with non-idempotent intersection types; on the concurrent side, we

http://dx.doi.org/10.4204/EPTCS.378.0.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Ilaria Castellani and Alceste Scalas vii

consider a session-typed pi-calculus in which non-determinism and failure are justified by logical foun-

dations (”propositions-as-sessions”). We have developed correct encodings of the former into the latter;

they describe how typed session protocols can codify sequential evaluation in which absence/excess of

resources leads to failures.

Our work reveals a new connection between two different mechanisms for enforcing resource aware-

ness in programming calculi, namely intersection types and session types. Our talk shall elaborate on the

challenges involved in connecting these different type disciplines, and also how our encodings allow us

to study confluent and non-confluent forms of non-determinism in the typed setting.

Polymorphic Sessions and Sequential Composition of Types

Diogo Poças, Diana Costa, Andreia Mordido, Vasco T. Vasconcelos — LASIGE, Faculdade de Ciéncias,

Universidade de Lisboa, PT.

Session types equipped with a sequential composition operator are known as context-free session types.

The sequential composition operator poses new challenges not present in traditional, tail recursive types.

The foremost challenge is probably deciding type equivalence. This problem has been studied in in-

creasingly expressive systems, from first-order systems (where only base types may be exchanged), to

higher-order systems; from Damas-Milner polymorphism to System F; and, more recently in the higher-

order polymorphic lambda calculus. In all these systems, however, polymorphic types are of a functional

nature, meaning that types cannot be exchanged on messages. We introduce polymorphic session types

in a language of higher-order context free sessions and show that type equivalence is still decidable.

Language Support for Implementing Algorithms on Low Level Hardware Components

Mads Rosendahl, Maja H. Kirkeby, Mathias Larsen, Martin Sundman — Roskilde University, DK.

Tjark Petersen, Martin Schoeberl — Technical University of Denmark, DK.

Future optimizations of algorithms will include hardware implementations targeting a field-programmable

gate array (FPGA). However, describing hardware in a hardware description language like VHDL or

Verilog is cumbersome compared to describing an algorithm in a software language like C or Java. An

alternative is to use High-level synthesis to convert programs in C into hardware design.

We explore language extensions that can assist programmers in designing algorithms for FPGA com-

ponents and be integrated into existing hardware designs. The aim is to give the programmer control over

the parallelism while retaining the algorithmic aspects in the development process. We compare hardware

designs generated using the language extensions with designs written directly in hardware description

languages.

Multiparty Session Types Meet Message Sequence Charts

Felix Stutz — Max Planck Institute for Software Systems, DE.

Implementing communication protocols is a routine task for distributed software. However, verifying

that a protocol is implemented correctly in an asynchronous setting is challenging. The implementability

problem asks if a (global) protocol can be implemented locally and has been studied from two per-

spectives. On the one hand, multiparty session types (MSTs) provide a type-theoretic approach that

restricts the expressiveness of protocols. Its projection operator is a partial function that, given a proto-

col, attempts to compute a correct-by-construction implementation. As a best-effort technique, it is very

viii Presentations of Preliminary and Already-Published Work

efficient but rejects implementable protocols. On the other hand, high-level message sequence charts

(HMSCs) do not impose any restrictions on the protocols, yielding undecidability of the implementabil-

ity problem for HMSCs. Consequently, model-checking can easily diverge but also suffers from high

complexity. Our research aims to bridge the gap between both approaches. In this talk, we report on

recent results from this endeavour. I will first visually explain classical MST projection operators and

exemplify their shortcomings, showcasing sources of incompleteness for the classical MST projection

approach. Then, I will elaborate on our decidability result for MST implementability. For this, we ex-

ploit our formal encoding from MSTs to HMSCs, generalise results for the latter, and prove that any

implementable MST falls into a class of HMSCs with decidable implementability. Last, I will showcase

techniques from the HMSC domain that become applicable in the MST setting with these results.

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. 1–13, doi:10.4204/EPTCS.378.1

© B. Almeida, A. Mordido & V.T. Vasconcelos

This work is licensed under the

Creative Commons Attribution License.

Kind Inference for the FreeST Programming Language

Bernardo Almeida Andreia Mordido

Vasco T. Vasconcelos

LASIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal

{bpdalmeida,afmordido,vmvasconcelos}@ciencias.ulisboa.pt

We present a kind inference algorithm for the FREEST programming language. The input to the

algorithm is FREEST source code with (possibly part of) kind annotations replaced by kind variables.

The algorithm infers concrete kinds for all kind variables. We ran the algorithm on the FREEST test

suite by first replacing kind annotation on all type variables by fresh kind variables, and concluded

that the algorithm correctly infers all kinds. Non surprisingly, we found out that programmers do not

choose the most general kind in 20% of the cases.

1 Introduction

Software systems usually handle resources such as files and communication channels. The correct usage

of such resources generally follows a protocol that describes valid patterns of interactions. For exam-

ple a file should be opened and eventually closed, after which no read or write operations should ever

be performed. The case for communication channels is similar: channels are opened, messages are

exchanged, channels may eventually be closed, after which no more messages should be exchanged.

Session types [6, 7, 15] allow expressing elaborate protocols (for files and channels, for example) guar-

anteeing that protocols are obeyed by programs.

FREEST [1, 2, 3] is a concurrent functional programming language based on System F where pro-

cesses communicate via heterogeneously typed-channels governed by context-free session types [16].

Context-free session types allow describing protocols such as the serialization of arithmetic expressions.

Consider the following datatype for arithmetic expressions.

1 data Exp = L i t Int | Plus Exp Exp | Times Exp Exp

An Exp is either a literal with an integer (Lit Int), a sum of two sub-expressions (Plus Exp Exp) or the

product of two sub-expressions (Times Exp Exp). To serialise a value of type Exp we use a session type

such as the following.

2 type ExpC = ⊕{L i tC : ! Int , PlusC : ExpC ; ExpC , TimesC : ExpC ; ExpC}

The abbreviation ExpC defines the type of a channel as seen from the point of view of the writer. A

channel of type ExpC offers a set of options LitC, PlusC and TimesC. If the first option is chosen, an

integer must be sent (! Int), while, in the others, two (sub-) expressions are expected to be sent.

Now, suppose that serialise is a function that serialises an Exp on a channel ExpC.

3 s e r i a l i s e : Exp → ExpC ; a → a

The function expects a channel whose initial part is of type ExpC and then behaves as a: serialise is thus

polymorphic on a. It consumes the front of the channel (of type ExpC) and returns the unused part of the

channel (of type a).

http://dx.doi.org/10.4204/EPTCS.378.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Kind inference

As simple as it may seem, the above code is not valid in the current version of FREEST. The actual

code requires further annotations allowing to distinguish functional from session types as well as linear

from unrestricted types. The distinction is materialised by classifying types with kinds.

In FREEST kinds are composed of a multiplicity and a basic kind. Multiplicities control the number

of times a value may be used: exactly once (linear, 1) or zero or more (unrestricted, ∗). Basic kinds

distinguish functional types (T) from session types (S). The reason why FREEST requires kinds lies on

polymorphism. If !Int ;? Int is undoubtedly a session type and Int → Bool a functional type, the same

does not apply to the polymorphic variable a. Is it a session type or a functional type? The answer

depends on the base kind of a: if S or then it is a session type, if T then it is a functional type. Kinds are

thus necessary to decide whether the types such as a ;! Int are well-formed.

The datatype defined in line 1 is currently written in annotated form as follows.

4 data Exp :∗T = L i t Int | Plus Exp Exp | Times Exp Exp

The kind annotation ∗T, says that the datatype is functional. As for the multiplicity, we chose the unre-

stricted usage so that it may be used as often as required. Notwithstanding, one may declare Exp of kind

1T, in which case serialise must become a linear function (of type Exp → ExpC;a 1→ a).

Expanding the abbreviation and annotating the datatype in line 2 we get the following type.

5 type ExpC : 1 S = rec a : 1 S . ⊕{L i tC : ! Int , PlusC : a ; a , TimesC : a ; a}

ExpC defines a recursive type that is well-formed when the kind of its body, the external choice (⊕), is a

subkind of the kind for the recursion variable. In this case, the recursion variable ExpC is annotated with

1S, given that its body is itself a linear session.

Finally, the function serialise is currently written as follows.

6 s e r i a l i s e : ∀a : 1 S . Exp → ExpC ; a → a

The polymorphic variable a stands for the continuation channel; it must be a linear session. Annotating

a with the unrestricted session ∗S would dictate that it can only be instantiated with Skip, the only

unrestricted session type.

Even if kinds are necessary in the underlying theory of the FREEST language, they clutter the code.

The code in lines 1–3 is easier to understand and quicker to write; programmers need not fight the

subtleties of each kind. Note that once kinds are inferred, the prenex occurrences of ∀ can be omitted.

The algorithm that we present in this paper annotates all type variables with their kinds, converting the

code in lines 1–3 to that in lines 4–6.

The works more closely related to FREEST are Quill [9], Affe [13], Alms [17], F◦ [8], FuSe{} [11]

and Linear Haskell [4]. All these languages feature substructural type systems for dealing with linear,

functional and affine types (in the case of Affe).

Quill [9] is a language with linear types and a syntax similar to that of Haskell. Quill features

a novel design that combines linear and functional types. Contrarily to FREEST, Quill does not use

kind mechanisms to distinguish between linear and functional types, instead it uses type predicates (or,

qualified types) to reason about linearity. Furthermore, Quill does not support subkinding. Quill also

has a type inference algorithm which was proven sound and complete. Affe [13] is an ML-like language

with support to linear, affine and unrestricted types. Like Quill, Affe uses kinds and constrained types

to distinguish between linear and affine types. Affe supports subkinding and it is equipped with full

principal type inference. Like Affe, Alms [17] is an ML-like language but is based on System Fω
<:, the

higher-order polymorphic λ -calculus with subtyping. Alms supports affine and unrestricted types. It

features a rich kind system with dependent kinds, unions, and intersections. Moreover, Alms supports

ML modules, allows to expose unrestricted types as affine which gives flexibility to library programmers

B. Almeida, A. Mordido & V.T. Vasconcelos 3

m ::= ∗ |  | ϕ Multiplicity

υ ::= S | T Prekind

κ ::= mυ | χ Kind

♯ ::= ! | ? Polarity

⋆ ::= ⊕ | & View

L·M ::= {·} | 〈·〉 Record

T ::= Skip | End | ♯T | ⋆Lℓ : TℓMℓ∈L | T ;T | ()m Type

| T m→ T | Lℓ : TℓMℓ∈L | ∀aκ .T | µ aκ .T | a

e ::= ()m | x | λm x : T .e | Λaκ .v | e e | {ℓ=eℓ}ℓ∈L | let {ℓ=xℓ}ℓ∈L = e in e Expression

| ℓ e | let ()m = e in e | case e of {ℓ→xℓ}ℓ∈L | e [T] | match e with {ℓ→xℓ}ℓ∈L

Figure 1: The syntax of kinds and types with support for kind inference

and it is equipped with local type inference. F◦ [8] is an extension of System F that uses kinds to

distinguish between linear and unrestricted types. Similarly to Affe and Alms, it supports subkinding.

Similarly to FREEST, but unlike Affe, F◦ does not support quantification over kinds. The work closest

to FREEST in terms of context-free session types is FuSe{} [11]. Padovani proposed an alternative

formulation of context-free session types in which code and types are aligned via extra annotations,

something we decided to avoid in FREEST. Linear Haskell [4] is a proposal to bring linear types to

Haskell. In Linear Haskell functions T → U and T ⊸ U describe how the arguments of the function

are used. The latter form, inspired by linear logic [5], uses the argument T exactly once. In FREEST,

annotated arrows T ∗→U or T →U describe how the function is used (unbounded usage or exactly

once). FREEST kinding system differentiates session from functional types. It also classifies types

according to their usage, linear or unrestricted. Other systems consider these notions separately (or only

one of them). The ideas behind our inference algorithm are similar to Quill and Affe, but the details are

quite different since we do not use type qualifiers to reason about linearity.

2 The Syntax of Kinds, Types and Expressions

This section briefly introduces the notions of kinds, types and expressions; we refer the interested reader

to previous work for details [1]. FREEST relies on a base set for type variables (denoted by a, b, c)

and another for labels (denoted by k, ℓ). For the purpose of kind inference, we further use multiplicity

variables (denoted by ϕ) and kind variables (denoted by χ). The syntax of kinds, types and expressions

is in fig. 1.

T

∗T S

∗S

Multiplicities are used to indicate the number of times a value can be used. They

are either unrestricted (∗), which denotes an arbitrary number of usages, linear (),

indicating precisely one usage, or a multiplicity variable (ϕ). The kinding system

relies on two base kinds: S for session types and T for arbitrary types. Kinds are either

the combination of a base kind and a multiplicity or a kind variable χ . Since a value

of an unrestricted type may be used zero or more times, and one with a linear type

must be used exactly once, it should be clear that an unrestricted value can used where

4 Kind inference

a linear one is expected. Similarly, the interpretation of base kinds should be such that a session type

(∗S, S) can be used in place of an arbitrary type (T). The subkind relation for non variables (denoted

κ <: κ) forms a lattice, as exhibited in the diagram.

Session types include Skip indicating no communication, End representing channels ready to be

closed, output (!T) and input (?T) messages, internal (&{ℓ : Tℓ}ℓ∈L) and external choices (⊕{ℓ : Tℓ}ℓ∈L)

and sequential composition (T ;U). Functional types are composed of linear () and unrestricted unit

types ()∗, linear T →U and unrestricted T ∗→U functions, records {ℓ : Tℓ}ℓ∈L, variants 〈ℓ : Tℓ〉ℓ∈L and

universal types ∀aκ .T . Recursive types µ aκ .T are either session or functional depending on κ . Type

variables a may refer to recursion variables in recursive types or to polymorphic variables in universal

types. A function capturing in its body a free linear variable must itself be linear.

Expressions include variables x, term abstraction λm x : T .e and application e e, type abstrac-

tion Λaκ .v and application e [T], record {ℓ=eℓ}ℓ∈L and record elimination let {ℓ=xℓ}ℓ∈L = e in e,

unit ()m and unit elimination let ()m = e in e, injection in a variant ℓ e and variant elimination

case e of {ℓ→xℓ}ℓ∈L. The expressions for channel operations include channel creation, new T , and

branching on a choice, match e with {ℓ→xℓ}ℓ∈L. The remaining operations on channels—namely new,

send, receive and select ℓ—are all understood as constants (pre-defined variables).

Given that our goal is to infer kind annotations, the reader may wonder why we allow them in the

source language, namely in polymorphic types ∀aκ .T , in recursive types µ aκ .T and in type abstractions

Λaκ .v. Programmers may, if they so wish, provide kind annotations in the source code. Such annotations

are passed to the algorithm. For those omitted, a fresh kind variable χ is generated in its place.

3 Kind Inference

Our approach to kind inference follows the established two-step process, wherein the first gathers con-

straints and the second resolves the constraints. The constraint generation step produces constraints in

two forms: κ <: κ and ϕ =
⊔

ℓ∈L mult(κℓ). The first form represents subkinding constraints, while the

second represents equalities between multiplicity variables and the least upper bound of a given set of

multiplicities. To enhance readability, we use shorthand notation ϕ = mult(κ) for ϕ =
⊔

mult(κ) and

use
⊔

in infix format for binary sets.

Constraint Generation from Types Kind and multiplicity constraints are captured by judgement ∆in ⊢
T in : κout ⇒Cout. The judgement states that type T has kind κ under kinding context ∆ (a map from type

variables to kinds), producing constraint set C . To clarify the distinction between input and output, we

use the subscript in for parameters and out for results.

We explain a core subset of the constraint generation rules, those in fig. 2 (the complete set is in

fig. 4). Rule CG-Var reads the kind for type variable a (recursive or polymorphic) from the kinding

context, generating no additional restrictions. Rule CG-Rec governs recursive types which can either be

session or functional. The kind of the recursion variable is copied to the kinding context when analysing

type T . A constraint κ ′ <: κ is generated to ensure that the kind κ ′ of the body of the recursive type

is a subkind of the kind κ of the recursion variable. Rule CG-Arrow, deals with functions T m→U .

It applies the algorithm recursively to T and U , and assigns the kind mT to the function type, where

m comes from the arrow annotation. Rule CG-Rcd builds kinds and constraints for all elements in the

record. It generates a new fresh multiplicity variable ϕ . The result is kind ϕT and the constraint set is

composed of the union of Cℓ for all ℓ ∈ L and a new constraint associating variable ϕ to the least upper

bound of the multiplicities of κℓ. In order to ensure that ϕ gets the expected multiplicity, all elements

B. Almeida, A. Mordido & V.T. Vasconcelos 5

∆in ⊢ T in : κout ⇒ Cout

CG-VAR

∆,a : κ ⊢ a : κ ⇒∅

CG-REC

∆,a : κ ⊢ T : κ ′ ⇒ C

∆ ⊢ µ aκ .T : κ ′ ⇒ C ∪{κ ′ <: κ}

CG-ARROW

∆ ⊢ T : κ1 ⇒ C1 ∆ ⊢U : κ2 ⇒ C2

∆ ⊢ T m→U : mT ⇒ C1 ∪C2

CG-RCD

∆ ⊢ Tℓ : κℓ ⇒ Cℓ ϕ fresh (∀ℓ ∈ L)

∆ ⊢ {ℓ : Tℓ}ℓ∈L : ϕT ⇒
⋃

ℓ∈L

Cℓ∪{ϕ =
⊔

ℓ∈L

mult(κℓ),κℓ <: ϕT}

CG-TABS

∆,a : κ ⊢ T : κ ′ ⇒ C ϕ fresh

∆ ⊢ ∀aκ .T : ϕT ⇒ C ∪{ϕ = mult(κ ′)}

Figure 2: Constraint generation from types

must be subkinds of the kind of the record, that is ϕT. Thus, if at least one entry in the record is linear,

then ϕ is also constrained to be linear. Rule CG-TAbs adds the kind of the polymorphic variable to the

typing context when checking the body T . It then assigns kind ϕT to the incoming type ∀aκ .T , where

the fresh multiplicity variable ϕ denotes the multiplicity of the kind of type T .

Type operator mult is fully resolved only after analysing expressions. At this point it can only be

partially resolved. When applied to a kind of the form mυ operator mult rewrites into multiplicity m,

that is, mult(mυ) = m.

As an example, let us consider the function that extracts the first element of a pair.

fst : ∀aχa .∀bχb .{fst : a,snd : b} ∗→ a

The application of the rules in fig. 2, yields the constraint set {ϕ1 = mult(ϕ2T),ϕ2 = mult(∗T),ϕ3 =
mult(χa) ⊔ mult(χb)}. Solving the constraint set one obtains {ϕ1 = ∗,ϕ2 = ∗,ϕ3 = mult(χa) ⊔
mult(χb)}. We resolve the indeterminacy of kind variables χa and χb by assuming that they both are T,

the maximum of the kind lattice. The solution would then be {ϕ1 = ∗, ϕ2 = ∗, ϕ3 = , χa = T,χb = T}.

We argue that assigning T (the maximum) to χa and χb is the preferred solution, since it is the less

restrictive of all solutions. If we were to choose another kind, such as ∗T, then it would be impossible

to call function fst on linear values (of types with kind T). We would, undesirably, be ruling out some

perfectly well-behaved programs.

But is T the best kind for variables χa and χb? The answer depends on the definition of fst.

fst= Λaχa .Λbχb .λ∗ p : {fst : a,snd : b}. let {fst= x,snd= y} = p in x

An examination of expression let {fst= x,snd= y} = p in x reveals that the second element of the

pair, y, is discarded. Hence, χb must be unrestricted. Would χb = T be chosen, then FREEST would

complain about a linearity violation when type checking the function. In other words, constraint χb <:

∗T must be added to the constraint set, but an inspection of the type of fst alone does not provide

enough information to generate such a constraint. In the following, we present rules that allow generating

constraints such as χb <: ∗T by inspecting variable usage in expressions.

Constraint Generation from Expressions Constraints for expressions are derived from judgement

∆in | Γin ⊢ ein : T out ⇒ Cout | Σout. The judgement states that expression e has type T under kinding

context ∆ and typing context Γ. It generates a constraint set C and a usage context Σ. Typing contexts

map term variables x to types T ; usage contexts map term variables x to the kind κ of their types. Usage

6 Kind inference

∆in | Γin ⊢ ein : T out ⇒ Cout | Σout

INF-VAR

∆ ⊢ T : κ ⇒ C

∆ | Γ,x : T ⊢ x : T ⇒ C | {x : κ}

INF-ABS

∆ ⊢ T1 : κ ⇒ C1 ∆ | Γ,x : T1 ⊢ e : T2 ⇒ C2 | Σ C3 = if isAbs e then {κ <: mT} else ∅

∆ | Γ ⊢ λm x : T1.e : T1 m→ T2 ⇒ C1 ∪C2∪C3 ∪Weaken(Σ, x, κ) | Σ\ x

INF-APP

∆ | Γ ⊢ e1 : T1 m→ T2 ⇒ C1 | Σ1 ∆ | Γ ⊢ e2 : T1 ⇒ C2 | Σ2 ∆ ⊢ T1 m→ T2 : κ ⇒ C3

∆ | Γ ⊢ e1 e2 : T2 ⇒ C1 ∪C2 ∪C3 ∪Merge(Σ1,Σ2) | Σ1 ∪Σ2

INF-RCDELIM

∆ | Γ ⊢ e1 : {ℓ : Tℓ}ℓ∈L ⇒ C1 | Σ1 ∆ | Γ,(xℓ : Tℓ)ℓ∈L ⊢ e2 : T ⇒ C2 | Σ2 ∆ ⊢ T : κ ⇒ C3

∆ ⊢ Tℓ : κℓ ⇒ Cℓ C = C1 ∪C2 ∪C3∪Cℓ∪Merge(Σ1,Σ2)∪Weaken(Σ2, xℓ, κℓ) (∀ℓ ∈ L)

∆ | Γ ⊢ let {ℓ=xℓ}ℓ∈L = e1 in e2 : T ⇒ C | (Σ1 ∪Σ2)\{xℓ}ℓ∈L

Figure 3: Constraint generation from expressions

contexts enable reasoning about variable usage: if the variable is used exactly once, it may be linear,

otherwise it must be unrestricted. Next, we define functions Weaken and Merge. The former checks

whether variables are used in expressions. If a variable is not used, then the set with constraint κ <: ∗T

is returned. The latter checks whether a variable is used more than once: if it appears in multiple usage

contexts, it must also be unrestricted.

Weaken(Σ, x, κ) =

{

∅ ifx ∈ Σ

{κ <: ∗T} otherwise

Merge(Σ1,Σ2) = {κ <: ∗T | x : κ ∈ Σ1 ∩Σ2}

We are now in a position to explain the rules for expressions, in fig. 3 (the complete set is in fig. 5).

Rule Inf-Var is used to assign a type to a variable in a given typing context. The rule requires the type

context Γ to contain an entry x : T . The constraints pertaining to type T are gathered in C . To reflect

the usage of x, the rule returns a singleton map x : κ , where κ is the kind of T . Rule Inf-Abs deals with

abstractions λm x : T1.e. It recursively calls the judgments on T 1 and on e to collect constraint sets C1, C2

and usage context Σ. The rule uses a new predicate, isAbs e, which holds when e is an abstraction. Then,

if e is a closure the kind of T 1 must be a subkind of mT, where m is the multiplicity of the abstraction.

This restriction ensures that unrestricted abstractions do not close over linear values. The result is type

T1 m→ T2 together with a constraint set composed of the union of C1, C2, C3 and the result of Weaken.

The Weaken function checks whether a variable is unused at the end of its scope. In this case, the lambda

abstraction introduces term variable x and therefore, at the end of the scope, we have to check its usage.

Rule Inf-App states that if e1 has type T1 m→ T2 and e2 has type T 1, then the expression e1 e2 has type

T 2. The constraints C and usage context Σ are computed by combining the results of the kind inference

of e1, e2 and T . The final constraint set is the union of Σ1, Σ2, Σ3, and the result of the Merge function

which imposes that any variable found in both Σ1 and Σ2 must be unrestricted. The final usage context is

Σ1 ∪Σ2. Rule Inf-RcdElim combines all previously discussed concepts: it evaluates expressions e1 and

e2, collecting C1,C2 and Σ1,Σ2. The result is the type of e2, a constraint set C , which is the union of

B. Almeida, A. Mordido & V.T. Vasconcelos 7

C1,C2,C3, the result of Merge on Σ1 and Σ2, and the application of Weaken on Σ2 for all xℓ : κℓ to check

for unused variables. The resulting usage context is the combination of Σ1 and Σ2 with all entries for xℓ
removed.

When analysing constraint generation from the type for function fst, we intuitively concluded that

the second element in the pair must be unrestricted because it is discarded. The application of rules in

fig. 3, yield the constraint set {χb <: ∗T,χa <: ϕ1T,χb <: ϕ1T,χa <: ϕ0T,χb <: ϕ0T,ϕ0 = mult(χa)⊔
mult(χb),ϕ1 = mult(χa)⊔ mult(χb)}. A solution for this set is {ϕ0 = ,ϕ1 = ,χa = T,χb = ∗T}.

The kind variable χb is set to ∗T as we predicted. The constraint set is computed by combining the

constraint sets generated resulting from applying the judgement to all sub-expressions and the result of

functions Merge and Weaken. First, we examine the Merge function: it takes contexts {p : κ p} and

{x : χa} as input and calculates the intersection of the two contexts, adding a constraint κ <: ∗T for

each element in the intersection. This process ensures that any variable that is used in both contexts

is unrestricted. The Weaken function is used to verify if any newly introduced variable is eventually

discarded. In our example, Weaken is applied to x : χa and y : χb against usage context {p : κ p, x : χa}.

For y : χb function Weaken proceeds as follows: since y is not present in the context, a new constraint

{χb <: ∗T} is added. On the other hand, since x is already in the context, no constraint is created.

Constraint Solving We now describe an algorithm to solve constraint sets.

1. Initialise all kind variables χ to the maximum of the kind lattice, T. Likewise initialize all multi-

plicity variables ϕ to the maximum of multiplicities, . Store them in σ .

2. Iterate over each constraint in the set:

(a) If the constraint is of the form χ <: κ , then update the entry for χ in σ with the greatest

lower bound of κ and σ(χ). For example, if σ = [χ 7→ T] and we are analysing constraint

χ <: ∗T, then the value for χ in σ must be updated to T ⊓ ∗T = ∗T. After this step, we

would have σ = [χ 7→ ∗T].

(b) If the constraint is of the form κ <: χ , then check whether κ and the kind for χ in σ is in

the subkind relation; if not then fail. For example, if σ = [χ 7→ T] and we are analysing

constraint ∗T <: χ , then we find that it is in the subkind relation since ∗T <: T. A failure

would happen with σ = [χ 7→ T].

(c) If the constraint is of the form κ1 <: κ2 and neither of the elements is a kind variable, then

check whether κ1 <: κ2 is in the subkind relation; if not then fail. If not fail, then remove

constraint κ1 <: κ2 from the constraint set.

(d) If the constraint is a multiplicity constraint ϕ =
⊔

ℓ∈Lmult(κℓ), then compute the least upper

bound of the multiplicities. If any κℓ is a kind variable (χ) or a base kind with a multiplicity

variable (ϕT), we get its kind from σ (recall that all variables are in σ as per step 1). If the

thus obtained kind is more restrictive than that for ϕ in σ (e.g. ∗ against σ(ϕ) = ), then

store it in σ . If ϕ = ∗, then remove the constraint from the set.

3. Repeat the process in step 2 until there are no further updates to be made.

4. If all constraints have been satisfied, then return the solution σ . Otherwise, the constraint set is

unsatisfiable.

In the case of function fst, the constraints gathered by the rules in fig. 3 are as follows.

χ1 <: ϕ0T,χ0 <: ϕ0T,χ1 <: ϕ1T,χ0 <: ϕ1T,χ1 <: ∗T,

ϕ0 = mult(χ0)⊔mult(χ1),ϕ1 = mult(χ0)⊔mult(χ1)

8 Kind inference

Category of annotation Number of annotations in the

source code

Number of more general

annotations generated

Datatypes 129 0

Type abbreviations 206 7

Universal types 282 94

Explicit recursive types 23 10

Type abstractions 30 25

Total 670 136

Table 1: Distribution of annotations

We start with σ = [χ0 7→ T,χ1 7→ T,ϕ0 7→ ,ϕ1 7→ ]. Next we pick constraint χ1 <: ϕ0T and

use item 2(a). We have, χ1 <: T since σ(ϕ0) = . Given that σ(χ0) is equal to T, and subkinding is

reflexive, σ(ϕ0) remains as T. The process for the second constraint, χ1 <: ϕ0T, is similar. We analyse

the constraint χ1 <: T since σ(ϕ0) = . Also in this case item 2(a) does not change σ . The next two

constraints, χ1 <: ϕ1T and χ0 <: ϕ1T, are also handled by item 2(a). Once again, σ is subject to no

update. Now we pick constraint χ1 <: ∗T. Under item 2(a) the algorithm computes the greatest lower

bound of ∗T and T, which is ∗T, so σ is updated accordingly. For the last two constraints we use item

2(d). We read the values of χ0 and χ1 from σ and compute the least upper bound of mult(T) and

mult(∗T) which yields . Both entries for χ0 and χ1 are already  and therefore no update to σ is done.

Since we analysed all constraints and σ was updated in this iteration of the algorithm, the fixed-point

is not reached yet and so we go through each constraint once again. This time no update is made and

therefore we terminate with σ = [χ0 7→ T,χ1 7→ ∗T,ϕ0 7→ ,ϕ0 7→ ].
The algorithm iteratively updates the values of the kind and multiplicity variables until no further

updates can be made, that is, until a fixed point is reached. Since the kind lattice is finite, any sequence

of updates must eventually converge to a fixed point. For the same reason, each constraint can only be

updated a finite number of times. Therefore, the algorithm terminates after a finite number of iterations.

The running time of the constraint generation algorithm is linear on the size of the input expression;

that of the constraint satisfaction algorithm is quadratic. In the worst case scenario the number of con-

straints is equal to the size of the expression. Each constraint can only update σ twice (when a more

restrictive solution is found). The worst case happens when a different constraint performs an update

in each iteration, forcing the algorithm to analyse all the constraints in each iteration. A sensible opti-

mization removes the constraints from the constraint set also in items 2(a) and 2(b), after concluding that

they cannot update σ to a more restrictive solution. Since the update can only be performed a constant

number of times, the algorithm becomes linear on the size of the input expression.

Evaluation We implemented the algorithm and incorporated it in the FREEST interpreter. Then we

conducted an evaluation to check the behaviour of the algorithm when used on FREEST source code.

The evaluation consisted of replacing all the 670 kind annotations by fresh kind variables in the 232

valid programs in the FREEST test suite and standard library (total of 9131 lines of code), running the

algorithm and checking whether the algorithm infers the annotations back.

Kind annotations are spread over datatypes, type abbreviations, universal types, recursive types, and

type abstractions. The distribution of annotations is as in table 1. The small number of annotations in

recursive types and type abstractions comes from the fact that they are usually introduced implicitly,

either via type abbreviations (as in the code in line 2) or through compiler elaboration introducing type

B. Almeida, A. Mordido & V.T. Vasconcelos 9

abstractions Λaκ .v for functions accompanied by their signatures.

We concluded that the algorithm correctly inferred all annotations and found that 136 of the 670

annotations (that is, 20%) were too specific and could be relaxed to a more general kind. The largest

number of more general annotations found by the algorithm come from universal types. We attribute

this to the conservative nature of programmers: if we are developing Church encodings (heavy on poly-

morphism), why would one require linear type variables? The algorithm did not improve the kind for

datatypes: datatypes are usually used in an unrestricted manner in programs. Moreover, in the test suite,

they usually appear as the first argument (to be pattern-matched) of functions with unrestricted closures

and therefore they cannot be linear.

For an example where the algorithm suggests a more general kind, consider function composition.

dot : ∀ a :∗T b :∗T c :∗T . (b → c) → (a → b) → a → c
dot f g x = f (g x)

If we only provide unrestricted arguments to dot, then there is no reason why the polymorphic variables

a, b and c could not have kind ∗T. However, we would be ruling out programs that apply dot to linear

arguments. Consider the following program.

dot : (b → c) → (a → b) → a → c
dot f g x = f (g x)

g : ? Int ;End → Int

g c = l e t (x , c) = r ece ive c i n c lo se c ; x

main : Int

main =
l e t (w, r) = new () i n

fork (\ 1→ l e t w = send 5 w i n c lo se w) ;
dot i d g r

This program would be flagged as untypable because we instantiate the polymorphic variable a with the

linear session type ?Int ;End. Since there is no reason why a, b and c should be unrestricted, the algorithm

assigns kind 1T to the three polymorphic variables.

4 Future Work

There are several avenues for future work. The most immediate is to prove the correctness of the algo-

rithm with respect to the typing system. Then, equipped with kind inference, we may think of introducing

a third base kind, that for session types that must be eventually closed (that reach type End). In this case

we would require the kind of the argument to function new to be of the newly introduced kind. We

further plan to study the possibility of quantifying over kinds or multiplicities for extra flexibility in

programming.

Acknowledgements We thank the anonymous reviewers for their detailed comments that greatly

contributed to improve the paper. This work was supported by FCT through project SafeSessions,

ref. PTDC/CCI-COM/6453/2020, and the LASIGE Research Unit, ref. UIDB/00408/2020 and ref.

UIDP/00408/2020.

10 Kind inference

References

[1] Bernardo Almeida, Andreia Mordido, Peter Thiemann & Vasco T. Vasconcelos (2022): Polymorphic lambda

calculus with context-free session types. Inf. Comput. 289(Part), p. 104948, doi:10.1016/j.ic.2022.

104948.

[2] Bernardo Almeida, Andreia Mordido & Vasco T. Vasconcelos (2019): FreeST, a concurrent programming

language with context-free session types. https://freest-lang.github.io. Last accessed 2023.

[3] Bernardo Almeida, Andreia Mordido & Vasco T. Vasconcelos (2019): FreeST: Context-free Session Types in

a Functional Language. In: PLACES, EPTCS 291, pp. 12–23, doi:10.4204/EPTCS.291.2.

[4] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones & Arnaud Spiwack

(2018): Linear Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program.

Lang. 2(POPL), pp. 5:1–5:29, doi:10.1145/3158093.

[5] Jean-Yves Girard (1987): Linear Logic. Theor. Comput. Sci. 50, pp. 1–102, doi:10.1016/

0304-3975(87)90045-4.

[6] Kohei Honda (1993): Types for Dyadic Interaction. In: CONCUR, LNCS 715, Springer, pp. 509–523,

doi:10.1007/3-540-57208-2_35.

[7] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Dis-

cipline for Structured Communication-Based Programming. In: ESOP, LNCS 1381, Springer, pp. 122–138,

doi:10.1007/BFb0053567.

[8] Karl Mazurak, Jianzhou Zhao & Steve Zdancewic (2010): Lightweight linear types in system fdegree. In

Andrew Kennedy & Nick Benton, editors: Proceedings of TLDI 2010: 2010 ACM SIGPLAN International

Workshop on Types in Languages Design and Implementation, Madrid, Spain, January 23, 2010, ACM, pp.

77–88, doi:10.1145/1708016.1708027.

[9] J. Garrett Morris (2016): The best of both worlds: linear functional programming without compromise.

In Jacques Garrigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016,

ACM, pp. 448–461, doi:10.1145/2951913.2951925.

[10] Martin Odersky, Christoph Zenger & Matthias Zenger (2001): Colored local type inference. In Chris Hankin

& Dave Schmidt, editors: Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, London, UK, January 17-19, 2001, ACM, pp. 41–53, doi:10.

1145/360204.360207.

[11] Luca Padovani (2019): Context-Free Session Type Inference. ACM Trans. Program. Lang. Syst. 41(2), pp.

9:1–9:37, doi:10.1145/3229062.

[12] Benjamin C. Pierce & David N. Turner (2000): Local type inference. ACM Trans. Program. Lang. Syst.

22(1), pp. 1–44, doi:10.1145/345099.345100.

[13] Gabriel Radanne, Hannes Saffrich & Peter Thiemann (2020): Kindly bent to free us. Proc. ACM Program.

Lang. 4(ICFP), pp. 103:1–103:29, doi:10.1145/3408985.

[14] John C. Reynolds (1974): Towards a theory of type structure. In Bernard J. Robinet, editor: Programming

Symposium, Proceedings Colloque sur la Programmation, Paris, France, April 9-11, 1974, Lecture Notes in

Computer Science 19, Springer, pp. 408–423, doi:10.1007/3-540-06859-7_148.

[15] Kaku Takeuchi, Kohei Honda & Makoto Kubo (1994): An Interaction-based Language and its Typing System.

In: PARLE, LNCS 817, Springer, pp. 398–413, doi:10.1007/3-540-58184-7_118.

[16] Peter Thiemann & Vasco T. Vasconcelos (2016): Context-free session types. In Jacques Garrigue, Gabriele

Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International Conference on Func-

tional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 462–475, doi:10.1145/

2951913.2951926.

https://doi.org/10.1016/j.ic.2022.104948
https://doi.org/10.1016/j.ic.2022.104948
https://freest-lang.github.io
https://doi.org/10.4204/EPTCS.291.2
https://doi.org/10.1145/3158093
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1708016.1708027
https://doi.org/10.1145/2951913.2951925
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/3229062
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/3408985
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-58184-7_118
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1145/2951913.2951926

B. Almeida, A. Mordido & V.T. Vasconcelos 11

[17] Jesse A. Tov & Riccardo Pucella (2011): Practical affine types. In Thomas Ball & Mooly Sagiv, editors:

Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL 2011, Austin, TX, USA, January 26-28, 2011, ACM, pp. 447–458, doi:10.1145/1926385.1926436.

[18] J. B. Wells (1994): Typability and Type-Checking in the Second-Order lambda-Calculus are Equivalent and

Undecidable. In: LICS, IEEE Computer Society, pp. 176–185, doi:10.1109/LICS.1994.316068.

[19] Andrew K. Wright (1995): Simple Imperative Polymorphism. LISP Symb. Comput. 8(4), pp. 343–355.

https://doi.org/10.1145/1926385.1926436
https://doi.org/10.1109/LICS.1994.316068

12 Kind inference

∆in ⊢ T in : κout ⇒ Cout

CG-UNIT

∆ ⊢ ()m : mT ⇒∅

CG-VAR

∆,a : κ ⊢ a : κ ⇒∅

CG-SKIP

∆ ⊢ Skip : ∗S ⇒∅

CG-END

∆ ⊢ End : S ⇒∅

CG-MSG

∆ ⊢ T : κ ⇒ C

∆ ⊢ ♯T : S ⇒ C

CG-CH

∆ ⊢ Tℓ : κℓ ⇒ Cℓ (∀ℓ ∈ L)

∆ ⊢ ⋆Lℓ : TℓMℓ∈L : S ⇒
⋃

ℓ∈L

Cℓ∪{κℓ <: S}

CG-SEQ

∆ ⊢ T : κ1 ⇒ C1 ∆ ⊢U : κ2 ⇒ C2 ϕ fresh

∆ ⊢ T ;U : ϕS ⇒ C1 ∪C2 ∪{κ1 <: S,κ2 <: S,ϕ = mult(κ1)⊔mult(κ2)}

CG-REC

∆,a : κ ⊢ T : κ ′ ⇒ C

∆ ⊢ µ aκ .T : κ ′ ⇒ C ∪{κ ′ <: κ}

CG-ARROW

∆ ⊢ T : κ1 ⇒ C1 ∆ ⊢U : κ2 ⇒ C2

∆ ⊢ T m→U : mT ⇒ C1 ∪C2

CG-RCD

∆ ⊢ Tℓ : κℓ ⇒ Cℓ ϕ fresh (∀ℓ ∈ L)

∆ ⊢ {ℓ : Tℓ}ℓ∈L : ϕT ⇒
⋃

ℓ∈L

Cℓ∪{ϕ =
⊔

ℓ∈L

mult(κℓ),κℓ <: ϕT}

CG-TABS

∆,a : κ ⊢ T : κ ′ ⇒ C ϕ fresh

∆ ⊢ ∀aκ .T : ϕT ⇒ C ∪{ϕ = mult(κ ′)}

Figure 4: Constraint generation from types (complete set of rules)

B. Almeida, A. Mordido & V.T. Vasconcelos 13

∆in | Γin ⊢ ein : T out ⇒ Cout | Σout

INF-CONST

∆ ⊢ typeof(c) : κ ⇒ C

∆ | Γ ⊢ c : typeof(c)⇒ C |∅

INF-VAR

∆ ⊢ T : κ ⇒ C

∆ | Γ,x : T ⊢ x : T ⇒ C | {x : κ}

INF-ABS

∆ ⊢ T1 : κ ⇒ C1 ∆ | Γ,x : T1 ⊢ e : T2 ⇒ C2 | Σ C3 = if isAbs e then {κ <: mT} else ∅

∆ | Γ ⊢ λm x : T1.e : T1 m→ T2 ⇒ C1 ∪C2∪C3 ∪Weaken(Σ, x, κ) | Σ\{x : κ}

INF-APP

∆ | Γ ⊢ e1 : T1 m→ T2 ⇒ C1 | Σ1 ∆ | Γ ⊢ e2 : T1 ⇒ C2 | Σ2 ∆ ⊢ T1 m→ T2 : κ ⇒ C3

∆ | Γ ⊢ e1 e2 : T2 ⇒ C1 ∪C2 ∪C3 ∪Merge(Σ1,Σ2) | Σ1 ∪Σ2

INF-TABS

∆,a : κ | Γ ⊢ v : T ⇒ C1 | Σ ∆ ⊢ T : κ ′ ⇒ C2

∆ | Γ ⊢ Λaκ .v : ∀aκ .T ⇒ C1 ∪C2 | Σ

INF-TAPP

∆ ⊢ T : κ1 ⇒ C1 ∆ | Γ ⊢ e : ∀aκ2 .U ⇒ C2 | Σ

∆ | Γ ⊢ e [T] : U [T/a]⇒ C1 ∪C2 | Σ

INF-RCDELIM

∆ | Γ ⊢ e1 : {ℓ : Tℓ}ℓ∈L ⇒ C1 | Σ1 ∆ | Γ,(xℓ : Tℓ)ℓ∈L ⊢ e2 : T ⇒ C2 | Σ2 ∆ ⊢ T : κ ⇒ C3

∆ ⊢ Tℓ : κℓ ⇒ Cℓ C = C1 ∪C2 ∪C3 ∪Merge(Σ1,Σ2)∪Weaken(Σ2, xℓ, κℓ) (∀ℓ ∈ L)

∆ | Γ ⊢ let {ℓ=xℓ}ℓ∈L = e1 in e2 : T ⇒ C | (Σ1 ∪Σ2)\{xℓ : κℓ}ℓ∈L

INF-RCD

∆ | Γ ⊢ eℓ : Tℓ ⇒ Cℓ | Σℓ ∆ ⊢ Tℓ : κℓ ⇒ C
′
ℓ (∀ℓ ∈ L)

∆ | Γ ⊢ {ℓ=vℓ}ℓ∈L : {ℓ : Tℓ}ℓ∈L ⇒ Cℓ∪C
′
ℓ ∪Merge(Σℓ) |

⋃

ℓ∈L

Σℓ

INF-VARIANT

∆ | Γ ⊢ e : Tk ⇒ C1 | Σ ∆ ⊢ Tℓ : κℓ ⇒ Cℓ k ∈ L (∀ℓ ∈ L)

∆ | Γ ⊢ k e : 〈ℓ : Tℓ〉ℓ∈L ⇒ C1 ∪Cℓ | Σ

INF-CASE

∆ | Γ ⊢ e : 〈ℓ : Tℓ〉ℓ∈L ⇒ C1 | Σ1 ∆ | Γ ⊢ eℓ : Tℓ m→ T ⇒ Cℓ | Σℓ ∆ ⊢ Tℓ : κℓ ⇒ C
′
ℓ (∀ℓ ∈ L)

∆ | Γ ⊢ case e of {ℓ→xℓ}ℓ∈L : T ⇒ C1 ∪Cℓ∪C
′
ℓ | Σ1 ∪Σℓ

INF-SEL

∆ ⊢ Tℓ : κℓ ⇒ Cℓ ∆ | Γ ⊢ eℓ : Tℓ m→ T ⇒ C
′
ℓ | Σℓ k ∈ L (∀ℓ ∈ L)

∆ | Γ ⊢ select k : ⊕Lℓ : TℓMℓ∈L m→ Tk ⇒ Cℓ∪C
′
ℓ |

⋃

ℓ∈L

Σℓ

INF-NEW

∅ ⊢ T : κ ⇒ C

∆ | Γ ⊢ new T : {fst : T,snd : T} ⇒ C | /0

Figure 5: Constraint generation from expressions (complete set of rules)

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop
on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES 2023).
EPTCS 378, 2023, pp. 14–25, doi:10.4204/EPTCS.378.2

© M. Cimini
This work is licensed under the
Creative Commons Attribution License.

A Declarative Validator for GSOS Languages

Matteo Cimini
University of Massachusetts Lowell

Lowell, MA, USA

matteo_cimini@uml.edu

Rule formats can quickly establish meta-theoretic properties of process algebras. It is then desirable
to identify domain-specific languages (DSLs) that can easily express rule formats. In prior work, we
have developed LANG-N-CHANGE, a DSL that includes convenient features for browsing language
definitions and retrieving information from them. In this paper, we use LANG-N-CHANGE to write
a validator for the GSOS rule format, and we augment LANG-N-CHANGE with suitable macros on
our way to do so. Our GSOS validator is concise, and amounts to a few lines of code. We have used
it to validate several concurrency operators as adhering to the GSOS format. Moreover, our code
expresses the restrictions of the format declaratively.

1 Introduction

After creating a process algebra, the job of a language designer is not finished yet. Ideally, the language
designer would strive to prove that the process algebra at hand affords the desired properties. Depending
on the process algebra, it may be interesting to establish whether bisimilarity is a congruence, whether
the language is deterministic, or whether some of its operators satisfy certain algebraic laws such as
commutativity and associativity, to name a few.

The field of language validation aims at developing methods and tools that take a language definition
as input, apply a static analysis on it, and establish whether some property holds for the language. In
the context of concurrency theory, language validation has been best expressed with rule formats [34]
over Structural Operational Semantics (SOS) specifications [36]. Rule formats state that if the rules that
have been used to write the SOS specification of a language conform to some syntactic restrictions then
some semantic property is guaranteed to hold. This approach has been applied to automatically derive
the congruence of strong bisimilarity [12, 25, 26, 40], of weak bisimilarity [11, 21, 23], and to establish
algebraic laws of operators [4, 5, 18, 35], as well as deriving global properties such as determinism [1]
and bounded nondeterminism [22], and has also been applied to probabilistic transitions [9, 19, 28] and
contexts with binders [6, 20, 41], to name a few applications.

It is then desirable to identify suitable domain-specific languages (DSLs) that make it easier for
designers of rule formats to express their formats and automatically test them. This allows them to
quickly test their new ideas, do so on a suite of several process algebras at once, and have a path to rapidly
prototyping new formats. These tests are helpful for debugging a new rule format while designers are
still crafting a theoretical result.

Unfortunately, literature does not offer any DSL that has been specifically designed for expressing
rule formats. In this paper, we focus on an existing DSL called LANG-N-CHANGE [30, 32], which has
been created for purposes other than language validation but whose operations can be repurposed to write
rule formats. LANG-N-CHANGE is a DSL for expressing language transformations, that is, the input is
a language definition and transformation instructions, and the output is a modification of the language

http://dx.doi.org/10.4204/EPTCS.378.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Cimini 15

given as input. Consider the typing rule of function application below on the left and its version with
subtyping on the right.

(T-APP)
Γ ⊢ e1 : T1 → T2 Γ ⊢ e2 : T1

Γ ⊢ e1 e2 : T2
=⇒

(T-APP’)
Γ ⊢ e1 : T11 → T2 Γ ⊢ e2 : T12 T12 <: T11

Γ ⊢ e1 e2 : T2

(T-APP’) is a transformation of (T-APP). LANG-N-CHANGE provides linguistic features to ex-
press such a transformation. For example, LANG-N-CHANGE can express the test that detects that T1

has been used twice in (T-APP) and assigns new distinct variables T11 and T12 to those occurrences.
LANG-N-CHANGE also includes the operation for creating the premise T12 <: T11. LANG-N-CHANGE

has been applied to several case studies that automatically transform SOS specifications, such as adding
subtyping [16, 30], pattern-matching [32], references [32], gradual typing [31], as well as automatically
deriving big-step semantics from small-step style [30], and CK machines [16].

To express language transformations, LANG-N-CHANGE offers fine-grained operations for browsing
SOS rules, their premises, and other components of the language. In this paper, we explore the idea
of using LANG-N-CHANGE to express rule formats. The idea is to devise a language transformation
that ultimately does not modify the language in input, but that uses the operations of LANG-N-CHANGE

to test the syntactic constraints prescribed by the rule formats, and throw a runtime error when they
are not met. We have written a checker for the GSOS format [12] using LANG-N-CHANGE. This is a
well-known rule format, which can establish the congruence of bisimilarity of many process algebras
with common operators. To better express some of the tests that are prescribed by this format, we have
augmented LANG-N-CHANGE with suitable macros. These are not extensions to the core language, nor
to its evaluator. These are parsed away into ordinary operations of LANG-N-CHANGE.

We have used our tool to validate common concurrency operators that are known to adhere to the
GSOS format, such as the CCS parallel operator [29], the synchronous parallel composition from CSP
[27], and the projection operator of ACP [10]. (Section 4 provides a complete list of our tests.) In total,
we have validated 18 concurrency operators. We have also performed a series of negative tests. More
specifically, we have given to our tool languages as input that do not adhere to the GSOS format, and we
confirm that our tool rejects them, indeed.

Our GSOS validator amounts to 6 lines of code, which makes for a very concise validator. Also,
our code expresses the GSOS syntactic restrictions declaratively. The work in this paper provides some
evidence that LANG-N-CHANGE can be a useful tool for expressing rule formats.

The paper is organized as follows. Section 2 provides an overview of LANG-N-CHANGE. Section 3
presents our new macros and our GSOS validator. Section 4 discusses our evaluation. Section 5 discusses
related work, and Section 6 concludes the paper.

2 Overview on LANG-N-CHANGE

We repeat the relevant background on LANG-N-CHANGE [30, 32] in this section. Fig. 1 shows the
tool pipeline of LANG-N-CHANGE. The input consists of two elements: A language definition and a
language transformation. The output is either a language definition, or an error message.

What Language Definitions? LANG-N-CHANGE works with languages defined in SOS. The input is
a textual representation of transition system specifications for SOS (with negative transitions) [13]. The

16 A Declarative Validator for GSOS Languages

Language Transformation

Language Definition

LANG-N-CHANGE

Language Definition

Error Message

Figure 1: Tool pipeline of LANG-N-CHANGE

following is an example language that is input to LANG-N-CHANGE: A process algebra with the prefix
operator, the interleaving operator, and the sequence operator.

Label L ::= (a) | (b) | (c)
Process P ::= (null) | (a P) | (b P) | (c P) | (par P P) | (sequence P P)

(a P) --(a)--> P.

(par P1 P2) --(a)--> (par P1’ P2) <== P1 --(a)--> P1’.
(par P1 P2) --(a)--> (par P1 P2’) <== P2 --(a)--> P2’.

(sequence P1 P2) --(a)--> (sequence P1’ P2) <== P1 --(a)--> P1’.
(sequence P1 P2) --(a)--> P2’ <== P2 --(a)--> P2’ /\ P1 -/-(a)-->

/\ P1 -/-(b)-->
/\ P1 -/-(c)-->.

... rest of the rules (same as the rules above but for the other labels)

That is, a grammar declares processes and labels, and a series of inference rules define labeled transi-
tions. Intuitively, <== means “provided that”, and the formulae after that symbol are the premises of the
rule. A formula such as “P2 -/-(a)–->” means that P2 does not perform an a-transition. This syntax
does not present any novelty compared to other textual representations for SOS, and is indeed inspired
by the syntax employed in the Ott tool [38].

Some remarks on our example language: The GSOS format only works with a finite set of labels [12].
For simplicity, we have chosen the set of actions {a,b,c}. Moreover, the uniform setting for operators
in GSOS is that of a function symbol applied to processes. This is typically accommodated as shown
above: A prefix operator for each action.

M. Cimini 17

What Language Transformations? The following is the subset of the syntax of LANG-N-CHANGE

that is relevant to this paper1.

Expression e ::= x | str | t | [e . . . e] | head e | tail e | e@e | e− e | map(e,e) | e(e)
| rules | premises | conclusion | self
| e[p] : e | uniquefy(e)⇒ (x,x) : e | getVars(e)
| if b then e else e | skip | error str

Boolean Expr. b ::= e = e | isVar(e) | b and b | b or b | not b

Pattern p ::= x | [p . . . p] | predname p | opname p | x p

We assume a set of operator names OPNAME ranged over by opname. OPNAME contains elements
such as par, and sequence, for example. We also assume a set of predicate names PREDNAME ranged
over by predname. PREDNAME contains elements such as −→ and 6−→. LANG-N-CHANGE accommo-
dates formulae uniformly in abstract syntax (predname arg1 . . . argn), as it does not make assumptions
on the language. Yet, the tool still reads transitions such as P −→a P′ with syntax P –-(a)–-> P’ for
the convenience of users (see the example language above).

Expression is the main syntactic category. Given an SOS specification, i.e., a language L , and given
an expression e, e contains the operations that will be applied to L . Expressions can be variables, strings
(str), terms (t) (such as (par P1 P2) and (sequence P1 P2)), and lists with ordinary operations for
extracting the head and the tail of lists, appending two lists (e @ e), and performing list difference (e − e).
Expressions can also be maps map(e1,e2), where e1 and e2 are lists. The first element of e1 is the key of
the first element of e2, and so on for the rest of the elements2. Given a map m, m(k) retrieves the value
in m associated with the key k.

LANG-N-CHANGE includes the special keywords rules, premises, conclusion, and self. The
keyword rules returns a list with all the inference rules of the language given as input. We shall describe
the other keywords in the context of the following operator.

The selector operator e1[p] : e2 selects one by one the elements of the list e1 that satisfy the pattern
p and executes the body e2 for each of them. The selector returns a list with the values produced by each
evaluation of e2. The keyword self, when used in e2, returns the element of the list e1 that has been
selected at that iteration. A pattern p can be a variable, can attempt to match a list (pattern [p . . . p]), to
match a formula that uses a specific predicate name (pattern predname p), to match a term with a specific
top-level operator (pattern opname p), or can attempt to match a formula or term with an unspecified top-
level name (pattern x p). As typical with pattern-matching, the variables that are used in the pattern p are
bound in e2, and are instantiated at runtime. To make an example, let us consider rules[P −→L P′] : e2

being executed for the example language above (with prefix, par, and sequence). rules evaluates
to a list with all the rules of the language. When the list contains rules, the pattern of the selector is
applied to match the conclusions of these rules. Therefore, the pattern P −→L P′ selects all the reduction
rules. The first iteration of e2 is executed with P = (a P), L = (a), and P′ = P, and so on. (Notice
that there is no clash between pattern variables and the metavariables of rules, as they are separate in
LANG-N-CHANGE.) For the convenience of programmers, simply writing rules[−→] : e selects the
rules that define −→ without specifying a full pattern. Also, e[p] is a shorthand for e[p] : self, i.e., a
list of the elements selected by the pattern. Therefore, rules[−→] simply selects all reduction rules.

1We refer the reader to [30] and [32] for the syntax of LANG-N-CHANGE.
2This schema is motivated in [30]. For example, it quickly maps Ti to T ′

i from conclusions of subtyping rules such as the
conclusions T1 → T2 <: T ′

1 → T ′
2 and T1 ×T2 <: T ′

1 ×T ′
2 .

18 A Declarative Validator for GSOS Languages

The keyword premises can be used when the selector operator works on rules, and returns the list of
premises of the selected rule. For example, rules[−→] : premises returns a list where each element
is the list of premises of a rule such as [[], [P1 –-(a)–-> P1’], [P2 –-(a)–-> P2’], . . .] in our example
process algebra. Similarly, the keyword conclusion returns the conclusion of the selected rule.

uniquefy(e1)⇒ (x,y) : e2 takes a list e1 of formulae, and returns a version of these formulae where
multiple occurrences of a metavariable have been assigned distinct metavariables. The computation
continues by executing e2. The list of new formulae is passed to e2 as x. uniquefy also computes a map
that summarizes the changes that have been made to the original list of formulae e1. This map is passed
to e2 as y. This operation is useful for transformations such as that of (T-APP) into (T-APP’) that we have
described in Section 1. Suppose that l contains the list of premises of (T-APP), then uniquefy(l) ⇒
(newPremises,mapOfChanges) : e will execute e where newPremises is the list [Γ ⊢ e1 : T11 → T2,Γ ⊢
e2 : T12] and mapOfChanges is the map {T1 7→ [T11,T12]}, which denotes that the occurrences of T1 have
been split into T11 and T12

3.
getVars(e) returns the list of metavariables that are used in e after it has been evaluated. We also

have an if-statement, and a skip operation that does not perform any operation. When if has no else

branch, as in if b then e, it means if b then e else skip. Error error throws a runtime error and car-
ries a string as error message. The boolean conditions of the if-statement can check for syntactic equality,
whether e is a metavariable with isVar(e), and can combine these checks with boolean operations.

We do not discuss here the type checker of LANG-N-CHANGE, which has been presented in [30] and
can reject, for example, e[p] : e′ when e is not a list, and other type errors.

3 A GSOS Validator

The GSOS Rule Format We recall the GSOS format [12]. The following is the shape for GSOS rules:

{xi −→
li j yi j | i ∈ I,1 ≤ j ≤ mi} ∪ {x j 6−→ l′jk | j ∈ J,1 ≤ k ≤ n j}

(op x1 . . .xh)−→
l t

Notice that xs and ys are metavariables for metavariables, so that some relation can be stated among
different metavariables. In other words, xs and ys all denote metavariables such as P, P1, P2, and so on.
We have that xi and yi are all distinct. I and J are subsets of {1, . . . ,h}, that is, xs in the premises come
from the conclusion, and each of them can be the subject of positive premises multiple times, as well as
the subject of negative premises multiple times. The metavariables that occur in t can only come from xs
and ys, Finally, labels ls are constants.

A rule that conforms to these restrictions is a GSOS rule. For example, all the rules of the example
process algebra in the previous section (with prefix, par, and sequence) are GSOS rules.

Consider the following rule, which defines the behavior of the replication operator.

(P | !P)−→a P′

!P −→a P′

This rule is not a GSOS rule because the source of the premise is (P | !P) rather than a variable.
The following is a classic result of the meta-theory of SOS: If all the rules of the language are GSOS

rules then bisimilarity is a congruence for the language [12].

3uniquefy can be used in a more fine-grained style, as shown in [30], but we do not need that style in this paper.

M. Cimini 19

3.1 New Macros for LANG-N-CHANGE

We define the following macros in LANG-N-CHANGE.

• e must match p1 | p2 | . . . | pn otherwise e′ , if not((e−e[p1]−e[p2] . . .−e[pn]) = []) then e′.

Here, e is a list. The idea is that each element of e must match one of the patterns p1, p2, . . . , pn,
otherwise we execute e′. To do that, we progressively subtract from e its sublists filtered by the
patterns and check that the resulting list is empty. This macro is useful to check that premises and
conclusions have the correct shape. We use this same “empty list”-test to check whether a list is
a sublist of another with: e sublistOf e′ , (e− e′) = []. This macro is useful to check that the
metavariables being used in some part of the rule all come from the correct list of metavariables.

• match e with p → e′ otherwise e′′ , if [e][p] = [] then e′′ else e′.

Here, we check that e matches the pattern p and, if that is the case, we execute e′, otherwise we
execute e′′. To do so, we create the list with only one element [e] and use the selector to filter
it by pattern p. If the resulting list is empty then the pattern p does not succeed for e4. When
we omit “→ e′” in this macro, it means “→ skip”. When we omit “otherwise e′′”, it means
“otherwise skip”. This macro is useful to check a pattern for one element, as opposed to a list
as above, and to specify a then- versus otherwise-reaction.

• The following macros are useful to quickly access sources and targets of transition formulae:

premises.LTsources , (premises[P –-L–-> P′]:P) @ (premises[P –/-L–->]:P)

premises.LTtargets , premises[P –-L–-> P′]:P′

conclusion.LTsource , head ([conclusion][P –-L–-> P′]:P)

conclusion.LTtarget , head ([conclusion][P –-L–-> P′]:P′)

Notice that premises.LTsources extracts the sources of both positive and negative labeled tran-
sition formulae. “LT” in LTsources stands for labeled transition. We also have introduced the
analogous macros for (unlabeled) transitions P −→ P such as Tsources, Ttargets, and so on.
We do not think that these are ad-hoc macros in the context of language design. Labeled and (un-
labeled) transitions are so common that it is reasonable to have operations that say, for example,
“handle this premise as a labeled transition formula and return its source”. When a formula of
another shape is given, premises.LTsources and premises.LTtargets return an empty list,
and head fails at runtime for conclusion.LTsource and conclusion.LTtarget.

• distinctVars(e) otherwise e′ ,

uniquefy([(pname e)])⇒ (new,m) : if not(m = map([], [])) then e′

Here, e is a list of metavariables. We create the formula (pname e) with an unused predicate name
pname just so we can pass it to uniquefy. If m is the empty map map([], []) then uniquefy did
not detect any metavariable as being used more than once, i.e., all metavariables in e are distinct.
distinctVars executes e′ otherwise.

3.2 A GSOS Validator in LANG-N-CHANGE

We now use LANG-N-CHANGE to write a GSOS validator. We divide our task into 5 parts. These are 5
checks that are meant to be performed in the order they appear, i.e., first Part 1, then Part 2, and so on.

4 [31] used this method for a simpler version of this macro.

20 A Declarative Validator for GSOS Languages

They all return skip if their corresponding check succeeds, otherwise they throw a runtime error. Thanks
to the operations of LANG-N-CHANGE and our macros, these checks are easy to read, and we may omit
commenting on some of them. Below, we use math font for LANG-N-CHANGE pattern variables.

• Part 1: All premises are positive or negative transition formulae, and they use constant labels.

rules[-->]: premises must match P --(op [])--> P′ | P -/-(op [])-->
otherwise error msg

where msg = “Premises must be either positive labeled transitions or negative labeled transitions,
and their label must be a constant”. A constant is a term with a top-level operator and an empty
list as arguments.

• Part 2: All conclusions are transition formulae that use a constant label, and are defined for an
operator applied to metavariables as arguments. (Part 4 will check later that these metavariables
are distinct, as they also need to be distinct from ys.)

rules[-->]: match conclusion with (op1 Ps)--(op2 [])--> P′ ->
Ps[P]: if not(isVar(P)) then error msg 1

otherwise error msg 2

where msg 1 = “The operator that is the subject of the conclusion must have all metavariables as
arguments”, and msg 2 = “Conclusion formulae must be positive labeled transitions with a constant
label and must apply to an operator”.

• Part 3: Sources of premises must come from xs of the conclusion, and ys must be metavariables.

rules[-->]:
if not(premises.LTsources sublistOf getVars(conclusion.LTsource))
then error msg 1

else premises.LTtargets[P]: if not(isVar(P)) then error msg 2

where msg 1 = “Sources of premises must be arguments of the operator in the source of the con-
clusion”, and msg 2 = “Targets of premises must be metavariables”. Here, premises.LTsources,
conclusion.LTsource, and premises.LTtargets are used after Part 1 and Part 2 have checked
that we do have labeled transition formulae.

• Part 4: xs in the source of the conclusion, and ys in the premises must all be distinct.

rules[-->]:
distinctVars (getVars(conclusion.LTsource) @ premises.LTtargets)
otherwise error msg

where msg = “The arguments of the operator in the source of the conclusion and the targets of the
premises must all be distinct metavariables”.

• Part 5: Metavariables in the target of the conclusion come from xs and ys.

rules[-->]:
if not(getVars(conclusion.LTtarget)

sublistOf
(getVars(conclusion.LTsource) @ premises.LTtargets))

then error msg

M. Cimini 21

where msg = “The metavariables in the target of the conclusion must come from the source of the
conclusion or from the targets of premises”.

4 Evaluation

We have implemented the macros that we have described in this paper [14]5. More precisely, we have not
changed the core language of LANG-N-CHANGE, but we have added those constructors to the surface
language for the convenience of programmers. These constructors are simply parsed away.

We have created a collection of test cases for our GSOS validator. We have defined a base language
definition with only the prefix operator l.P. This language serves as a base to which we have added other
features. Starting from this, we have created one language for each of the following concurrency oper-
ators: the interleaving parallel operator of CCS [29] (without process communication), the full parallel
operator with communication of CCS [29], the synchronous parallel composition from CSP [27], the
external choice of CCS, the internal choice of CSP, projection of ACP [10], hiding of CSP, left merge
operator, the rename operator of CCS, the restriction operator of CCS, the “hourglass” operator from [2],
signaling [8], the disrupt operator, the interrupt operator, the sequence operator ;, the priority operator,
and a while-loop operator. These operators are known to satisfy the GSOS restrictions.

Our repo contains 18 concurrency operators, and we confirm that our GSOS validator successfully
executes the checks of Section 3.2 (Part 1–5) on all these languages. That is, our tool validates the above-
mentioned operators as adhering to the GSOS format. We have also performed a series of negative tests.
Specifically, we have created languages that do not conform to the GSOS restrictions described in Section
3. We confirm that our GSOS validator fails in these cases and provide the corresponding error message.

Most of the checks of Section 3.2 can be written in one line despite having presented them in multiple
lines for readability. Overall, we could write a GSOS validator in 6 lines of LANG-N-CHANGE code.
This is a remarkably concise validator. Moreover, we believe that our code expresses the syntactic
restrictions of the GSOS format declaratively. The website of our tool reports on all our tests [14].

5 Related Work

We are not aware of domain-specific languages that have been designed to express rule formats.
There are only a few tools that validate rule formats. PREG Axiomatizer [3] includes a checker for

the GSOS format in around four hundred lines of Maude code6. Besides the format checks, this part
implements methods for retrieving information from languages. For example, it implements functions
for retrieving rules, searching premises, and obtaining the variables used in formulae, to name a few. As
it turns out, these are functionalities that most language tools [15, 17, 24, 37, 39] need to use. It appears
that each tool makes use of a specific programming language, stores languages as a data type of such pro-
gramming language, and reimplements these retrieval functions. This is an issue that LANG-N-CHANGE

can alleviate by providing a DSL for expressing them concisely and declaratively. It would be interesting
to embed LANG-N-CHANGE into programming languages so that implementors can call its primitives.

5The flagship implementation of LANG-N-CHANGE is that of [32] but it uses a syntax that is more verbose than the one
firstly proposed in [30]. We have then implemented a lightweight evaluator of the LANG-N-CHANGE DSL. The flagship
implementation of LANG-N-CHANGE remains that of [32].

6We are thankful to Eugen-Ioan Goriac for kindly providing this estimation in private communications via email, and also
for clarifying that such a GSOS checker is originally a part of PREG Axiomatizer rather than Meta SOS. Notice that if we did
not count the code for parsing, the checker is estimated to be around 150 lines of Maude code.

22 A Declarative Validator for GSOS Languages

Meta SOS [7] implements rule formats other than the GSOS format, hence a direct comparison is
not possible. The tool of Mousavi and Reniers [33] provides a GSOS validator in Maude, and adopts a
different implementation approach than [3]. Process algebras are provided as Maude rewriting rules. The
tool then makes use of Maude introspective reflective features to explore the shape of rules, premises,
and so on. Language designers can certainly use this approach to express their next rule formats, but
it requires familiarity with Maude, with its reflective library, and with a very particular style of meta-
programming that can have a steep learning curve. Some practitioners may find the linguistic features of
LANG-N-CHANGE more intuitive and accessible.

6 Conclusion

Rule formats can quickly establish meta-theoretic properties of process algebras. It is then desirable to
identify DSLs that can easily express rule formats and automatically test them. In this paper, we have
observed that LANG-N-CHANGE offers convenient operations to interrogate operational semantics. We
have created macros on top of LANG-N-CHANGE to better express some of the checks that often occur in
rule formats. We have then used LANG-N-CHANGE and our macros to implement the GSOS rule format.
Overall, we have written a full GSOS validator with only 6 lines of code, and we have used it to validate
several concurrency operators. Moreover, our code expresses the GSOS restrictions declaratively.

In the future, we would like to apply our approach to other rule formats [34]. Several formats,
including tyft, ntyft, path and panth [25, 26, 40], check for distinct variables, impose a specific shape
for transition formulae, and retrieve sources and targets for analysis. We believe that LANG-N-CHANGE

and our macros can be useful in those cases. However, there are possibly challenging aspects of our
approach. For example, there may be operations that LANG-N-CHANGE does not implement yet, and
whose need may be discovered at the attempt of capturing other rule formats. We have encountered
an instance of this scenario when using LANG-N-CHANGE to automatically add references to certain
pure functional languages [32]. This endeavor requires lifting the shape of reduction rules from e −→
e to e; µ −→ e; µ , where µ is the heap. In that occasion we have extended LANG-N-CHANGE with
an operator called lift to specify the change of shape for relations. That is, we have added a new
operator that LANG-N-CHANGE lacked. (This operator turned out to be useful also for automating
gradual typing in [31], and it is therein described.) Another challenge is that LANG-N-CHANGE presents
some limitations. For example, a characteristic of the GSOS rule format is that its checks remain “local”
and confined to the rule that has been selected for analysis. Some rule formats, instead, need to maintain
a more global view on the process algebra at hand. An example is the rule format that establishes the
commutativity of operators (modulo bisimilarity) [35], which compares multiple rules at the same time.
LANG-N-CHANGE seems to be best suited to select one rule at a time. We will explore developing other
DSLs, if other linguistic designs are more suitable.

Our tool is publicly available, and all our tests are documented at its GitHub repo [14].

References

[1] Luca Aceto, Arnar Birgisson, Anna Ingolfsdottir, MohammadReza Mousavi & Michel A. Reniers (2009):
Rule Formats for Determinism and Idempotence. In: Proceedings of the Third IPM International Conference
on Fundamentals of Software Engineering, FSEN’09, Springer-Verlag, Berlin, Heidelberg, pp. 146–161,
doi:10.1007/978-3-642-11623-0_8.

http://dx.doi.org/10.1007/978-3-642-11623-0_8

M. Cimini 23

[2] Luca Aceto, Bard Bloom & Frits Vaandrager (1994): Turning SOS Rules into Equations. Information and
Computation 111(1), pp. 1–52, doi:10.1006/inco.1994.1040.

[3] Luca Aceto, Georgiana Caltais, Eugen-Ioan Goriac & Anna Ingolfsdottir (2011): PREG Axiomatizer – A

Ground Bisimilarity Checker for GSOS with Predicates. In Andrea Corradini, Bartek Klin & Corina Cîrstea,
editors: International Conference on Algebra and Coalgebra in Computer Science (CALCO 2011), Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 378–385, doi:10.1007/978-3-642-22944-2_27.

[4] Luca Aceto, Matteo Cimini, Anna Ingólfsdóttir, Mohammad Reza Mousavi & Michel A. Reniers (2011):
SOS rule formats for zero and unit elements. Theoretical Computer Science 412(28), pp. 3045–3071,
doi:10.1016/j.tcs.2011.01.024.

[5] Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, MohammadReza Mousavi & Michel A. Reniers (2012):
Rule formats for distributivity. Theoretical Computer Science 458, pp. 1–28, doi:10.1016/j.tcs.2012.07.036.

[6] Luca Aceto, Ignacio Fábregas, Álvaro García-Pérez, Anna Ingólfsdóttir & Yolanda Ortega-Mallén
(2019): Rule Formats for Nominal Process Calculi. Logical Methods in Computer Science 15(4),
doi:10.23638/LMCS-15(4:2)2019.

[7] Luca Aceto, Eugen-Ioan Goriac & Anna Ingólfsdóttir (2013): Meta SOS - A Maude Based SOS Meta-

Theory Framework. In Johannes Borgström & Bas Luttik, editors: Proceedings Combined 20th Inter-
national Workshop on Expressiveness in Concurrency and 10th Workshop on Structural Operational Se-
mantics, EXPRESS/SOS 2013, Buenos Aires, Argentina, 26th August, 2013, EPTCS 120, pp. 93–107,
doi:10.4204/EPTCS.120.8.

[8] J. C. M. Baeten & J. A. Bergstra (1992): Process Algebra with Signals and Conditions. In Manfred Broy,
editor: Programming and Mathematical Method, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 273–
323, doi:10.1007/978-3-642-77572-7_13.

[9] Falk Bartels (2002): GSOS for probabilistic transition systems: (extended abstract). Electronic Notes in
Theoretical Computer Science 65(1), pp. 29–53, doi:10.1016/S1571-0661(04)80358-X. CMCS’2002, Coal-
gebraic Methods in Computer Science (Satellite Event of ETAPS 2002).

[10] J.A. Bergstra & J.W. Klop (1984): Process algebra for synchronous communication. Information and Control
60(1), pp. 109–137, doi:10.1016/S0019-9958(84)80025-X.

[11] Bard Bloom (1995): Structural operational semantics for weak bisimulations. Theoretical Computer Science
146(1), pp. 25–68, doi:10.1016/0304-3975(94)00152-9.

[12] Bard Bloom, Sorin Istrail & Albert R. Meyer (1995): Bisimulation Can’t Be Traced. Journal of the ACM
42(1), pp. 232–268, doi:10.1145/200836.200876.

[13] Roland Bol & Jan Friso Groote (1996): The Meaning of Negative Premises in Transition System Specifica-

tions. Journal of the ACM 43(5), pp. 863–914, doi:10.1145/234752.234756.

[14] Matteo Cimini (2022): GSOS-Validator. https://github.com/mcimini/gsos-validator.

[15] Matteo Cimini, Dale Miller & Jeremy G. Siek (2020): Extrinsically typed operational semantics for

functional languages. In: Proceedings of the 13th ACM SIGPLAN International Conference on Soft-
ware Language Engineering, SLE 2020, Virtual Event, USA, November 16-17, 2020, pp. 108–125,
doi:10.1145/3426425.3426936.

[16] Matteo Cimini & Benjamin Mourad (2021): Language Transformations in the Classroom. In Ornela Dardha
& Valentina Castiglioni, editors: Proceedings Combined 28th International Workshop on Expressiveness
in Concurrency and 18th Workshop on Structural Operational Semantics, EXPRESS/SOS 2021, and 18th
Workshop on Structural Operational SemanticsParis, France (online event), 23rd August 2021, EPTCS 339,
pp. 43–58, doi:10.4204/EPTCS.339.6.

[17] Matteo Cimini & Jeremy G. Siek (2016): The Gradualizer: A Methodology and Algorithm for Generating

Gradual Type Systems. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, POPL ’16, Association for Computing Machinery, New York, NY, USA,
pp. 443–455, doi:10.1145/2837614.2837632.

http://dx.doi.org/10.1006/inco.1994.1040
http://dx.doi.org/10.1007/978-3-642-22944-2_27
http://dx.doi.org/10.1016/j.tcs.2011.01.024
http://dx.doi.org/10.1016/j.tcs.2012.07.036
http://dx.doi.org/10.23638/LMCS-15(4:2)2019
http://dx.doi.org/10.4204/EPTCS.120.8
http://dx.doi.org/10.1007/978-3-642-77572-7_13
http://dx.doi.org/10.1016/S1571-0661(04)80358-X
http://dx.doi.org/10.1016/S0019-9958(84)80025-X
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/234752.234756
https://github.com/mcimini/gsos-validator
http://dx.doi.org/10.1145/3426425.3426936
http://dx.doi.org/10.4204/EPTCS.339.6
http://dx.doi.org/10.1145/2837614.2837632

24 A Declarative Validator for GSOS Languages

[18] Sjoerd Cranen, MohammadReza Mousavi & Michel A. Reniers (2008): A Rule Format for Associativity.
In Franck van Breugel & Marsha Chechik, editors: CONCUR 2008 - Concurrency Theory, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 447–461, doi:10.1007/978-3-540-85361-9_35.

[19] Pedro R. D’Argenio, Matias David Lee & Daniel Gebler (2015): SOS rule formats for convex and ab-

stract probabilistic bisimulations. In Silvia Crafa & Daniel Gebler, editors: Proceedings of the Com-
bined 22th International Workshop on Expressiveness in Concurrency and 12th Workshop on Structural
Operational Semantics, EXPRESS/SOS 2015, Madrid, Spain, 31st August 2015, EPTCS 190, pp. 31–45,
doi:10.4204/EPTCS.190.3.

[20] Marcelo Fiore & Sam Staton (2009): A congruence rule format for name-passing process calculi. Informa-
tion and Computation 207(2), pp. 209–236, doi:10.1016/j.ic.2007.12.005.

[21] Wan J. Fokkink (2000): Rooted Branching Bisimulation as a Congruence. Journal of Computer and System
Sciences 60(1), pp. 13–37, doi:10.1006/jcss.1999.1663.

[22] Wan J. Fokkink & Thuy Duong Vu (2003): Structural operational semantics and bounded nondeterminism.
Acta Informatica 39, pp. 501–516, doi:10.1007/s00236-003-0111-1.

[23] Rob J. van Glabbeek (2005): On Cool Congruence Formats for Weak Bisimulations. In Dang Van Hung
& Martin Wirsing, editors: Theoretical Aspects of Computing – ICTAC 2005, Springer Berlin Heidelberg,
Berlin, Heidelberg, pp. 318–333, doi:10.1007/11560647_21.

[24] Sylvia Grewe, Sebastian Erdweg, Pascal Wittmann & Mira Mezini (2015): Type Systems for the Masses:

Deriving Soundness Proofs and Efficient Checkers. In: 2015 ACM International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software (Onward!), Onward! 2015, ACM, New
York, NY, USA, pp. 137–150, doi:10.1145/2814228.2814239.

[25] Jan Friso Groote (1993): Transition system specifications with negative premises. Theoretical Computer
Science 118(2), pp. 263–299, doi:10.1016/0304-3975(93)90111-6.

[26] Jan Friso Groote & Frits Vaandrager (1992): Structured operational semantics and bisimulation as a congru-

ence. Information and Computation 100(2), pp. 202–260, doi:10.1016/0890-5401(92)90013-6.

[27] C. A. R. Hoare (1978): Communicating Sequential Processes. Communications of the ACM 21(8), pp.
666–677, doi:10.1145/359576.359585.

[28] Ruggero Lanotte & Simone Tini (2009): Probabilistic Bisimulation as a Congruence. ACM Transactions on
Computational Logic 10(2), pp. 9:1–9:48, doi:10.1145/1462179.1462181.

[29] Robin Milner (1980): A Calculus of Communicating Systems. Lecture Notes in Computer Science 92,
Springer Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/3-540-10235-3.

[30] Benjamin Mourad & Matteo Cimini (2020): A Calculus for Language Transformations. In: 46th International
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM 2020), Springer, pp. 547–
555, doi:10.1007/978-3-030-38919-2_44.

[31] Benjamin Mourad & Matteo Cimini (2020): A Declarative Gradualizer with Language Transforma-

tions. In Olaf Chitil, editor: IFL 2020: 32nd Symposium on Implementation and Application
of Functional Languages, Virtual Event / Canterbury, UK, September 2-4, 2020, ACM, pp. 44–54,
doi:10.1145/3462172.3462190.

[32] Benjamin Mourad & Matteo Cimini (2020): System Description: Lang-n-Change - A Tool for Transforming

Languages. In Keisuke Nakano & Konstantinos Sagonas, editors: Functional and Logic Programming - 15th
International Symposium, FLOPS 2020, Akita, Japan, September 14-16, 2020, Proceedings, Lecture Notes
in Computer Science 12073, Springer, pp. 198–214, doi:10.1007/978-3-030-59025-3_12.

[33] Mohammad Reza Mousavi & Michel A. Reniers (2006): Prototyping SOS Meta-theory in Maude. Electronic
Notes in Theoretical Computer Science 156(1), pp. 135–150, doi:10.1016/j.entcs.2005.09.030. Proceedings
of the Second Workshop on Structural Operational Semantics (SOS 2005).

[34] Mohammad Reza Mousavi, Michel A. Reniers & Jan F. Groote (2007): SOS formats and meta-theory: 20

years after. Theoretical Computer Science 373(3), pp. 238–272, doi:10.1016/j.tcs.2006.12.019.

http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.4204/EPTCS.190.3
http://dx.doi.org/10.1016/j.ic.2007.12.005
http://dx.doi.org/10.1006/jcss.1999.1663
http://dx.doi.org/10.1007/s00236-003-0111-1
http://dx.doi.org/10.1007/11560647_21
http://dx.doi.org/10.1145/2814228.2814239
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1145/1462179.1462181
http://dx.doi.org/10.1007/3-540-10235-3
http://dx.doi.org/10.1007/978-3-030-38919-2_44
http://dx.doi.org/10.1145/3462172.3462190
http://dx.doi.org/10.1007/978-3-030-59025-3_12
http://dx.doi.org/10.1016/j.entcs.2005.09.030
http://dx.doi.org/10.1016/j.tcs.2006.12.019

M. Cimini 25

[35] MohammadReza Mousavi, Michel Reniers & Jan Friso Groote (2005): A syntactic commutativity format for

SOS. Information Processing Letters 93(5), pp. 217–223, doi:10.1016/j.ipl.2004.11.007.

[36] Gordon D. Plotkin (2004): A structural approach to operational semantics. Journal of Logic and Algebraic
Programming 60-61, pp. 17–139, doi:10.1016/j.jlap.2004.05.001.

[37] Michael Roberson, Melanie Harries, Paul T. Darga & Chandrasekhar Boyapati (2008): Efficient Software

Model Checking of Soundness of Type Systems. In Gail E. Harris, editor: Proceedings of the 23rd ACM SIG-
PLAN Conference on Object-Oriented Programming Systems Languages and Applications, OOPSLA ’08,
Association for Computing Machinery, New York, NY, USA, pp. 493–504, doi:10.1145/1449764.1449803.

[38] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit Sarkar & Rok
Strniša (2010): Ott: Effective tool support for the working semanticist. Journal of Functional Programming
20(1), pp. 71–122, doi:10.1017/S0956796809990293.

[39] Andrei Stefănescu, Daejun Park, Shijiao Yuwen, Yilong Li & Grigore Roşu (2016): Semantics-based

program verifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA 2016,
part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November 4, 2016, pp. 74–91,
doi:10.1145/2983990.2984027.

[40] C. Verhoef (1994): A congruence theorem for structured operational semantics with predicates and negative

premises. In Bengt Jonsson & Joachim Parrow, editors: CONCUR ’94: Concurrency Theory, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 433–448, doi:10.1007/978-3-540-48654-1_32.

[41] Axelle Ziegler, Dale Miller & Catuscia Palamidessi (2006): A Congruence Format for Name-passing Calculi.
Electronic Notes in Theoretical Computer Science 156(1), pp. 169–189, doi:10.1016/j.entcs.2005.09.032.
Proceedings of the Second Workshop on Structural Operational Semantics (SOS 2005).

http://dx.doi.org/10.1016/j.ipl.2004.11.007
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1145/1449764.1449803
http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.1145/2983990.2984027
http://dx.doi.org/10.1007/978-3-540-48654-1_32
http://dx.doi.org/10.1016/j.entcs.2005.09.032

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. 26–37, doi:10.4204/EPTCS.378.3

© R. Horne and L. Padovani

This work is licensed under the

Creative Commons Attribution License.

A Logical Account of Subtyping for Session Types

Ross Horne

University of Luxembourg

Luca Padovani

University of Camerino

We study the notion of subtyping for session types in a logical setting, where session types are

propositions of multiplicative/additive linear logic extended with least and greatest fixed points. The

resulting subtyping relation admits a simple characterization that can be roughly spelled out as the

following lapalissade: every session type is larger than the smallest session type and smaller than

the largest session type. At the same time, we observe that this subtyping, unlike traditional ones,

preserves termination in addition to the usual safety properties of sessions. We present a calculus of

sessions that adopts this subtyping relation and we show that subtyping, while useful in practice, is

superfluous in the theory: every use of subtyping can be “compiled away” via a coercion semantics.

1 Introduction

Session types [12, 13, 15] are descriptions of communication protocols supported by an elegant corre-

spondence with linear logic [23, 3, 16] that provides session type systems with solid logical foundations.

As an example, below is the definition of a session type describing the protocol implemented by a mathe-

matical server (in the examples of this section, N and ⊕ are n-ary operators denoting external and internal

labeled choices, respectively):

B = N{end : ⊥,add : Num⊥ ONum
⊥ ONum⊗B}

According to the session type B, the server first waits for a label – either end or add – that identifies

the operation requested by the client. If the label is end, the client has no more requests and the server

terminates. If the label is add, the server waits for two numbers, sends their sum back to the client and

then makes itself available again offering the same protocol B. In this example, we write Num
⊥ for the

type of numbers being consumed and Num for the type of numbers being produced. A client of this

server could implement a communication protocol described by the following session type:

A =⊕{add : Num⊗Num⊗Num
⊥ O⊕{end : 1}}

This client sends the label add followed by two numbers, it receives the result and then terminates the

interaction with the server by sending the label end. When we connect two processes through a session,

we expect their interaction to be flawless. In many session type systems, this is guaranteed by making

sure that the session type describing the behavior of one process is the dual of the session type describing

the behavior of its peer. Duality, often denoted by ·⊥, is the operator on session types that inverts the

direction of messages without otherwise altering the structure of protocol. In the above example it is

clear that A is not the dual of B nor is B the dual of A. Nonetheless, we would like such client and

such server to be declared compatible, since the client is exercising only a subset of the capabilities of

the server. To express this compatibility we have to resort to a more complex relation between A and

B, either by observing that B (the behavior of the server) is a more accommodating version of A⊥ or by

observing that A (the behavior of the client) is a less demanding version of B⊥. We make these relations

precise by means of a subtyping relation 6 for session types. Subtyping enhances the applicability of

http://dx.doi.org/10.4204/EPTCS.378.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

R. Horne and L. Padovani 27

type systems by means of the well-known substitution principle: an entity of type C can be used where

an entity of type D is expected if C is a subtype of D. After the initial work of Gay and Hole [9] many

subtyping relations for session types have been studied [4, 20, 17, 21, 10]. Such subtyping relations differ

widely in the way they are defined and/or in the properties they preserve, but they all share the fact that

subtyping is essentially defined by the branching structure of session types given by labels. To illustrate

this aspect, let us consider again the session types A and B defined above. We have

B 6 N{add : Num⊥ ONum
⊥ ONum⊗N{end : ⊥}}= A⊥ (1)

meaning that a server behaving as B can be safely used where a server behaving as A⊥ is expected.

Dually, we also have

A 6⊕{end : 1,add : Num⊗Num⊗Num
⊥ OB⊥}= B⊥ (2)

meaning that a client behaving as A can be safely used where a client behaving as B⊥ is expected. Note

how subtyping is crucially determined by the sets of labels that can be received/sent when comparing two

related types. In (1), the server of type B is willing to accept any label from the set {end,add}, which is

a superset of {add} that we have in A⊥. In (2), the client is (initially) sending a label from the set {add},

which is a subset of {end,add} that we have in B⊥. This co/contra variance of labels in session types is

a key distinguishing feature of all known notions of subtyping for session types.1

In this work we study the notion of subtyping for session types in a setting where session types are

propositions of µMALL
∞ [2, 6], the infinitary proof theory of multiplicative additive linear logic extended

with least and greatest fixed points. Our investigation has two objectives. First, to understand whether

and how it is possible to capture the well-known co/contra variance of behaviors when the connectives

used to describe branching session types (N and ⊕ of linear logic) have fixed arity. Second, to understand

whether there are criticial aspects of subtyping that become relevant when typing derivations are meant

to be logically sound.

At the core of our proposal is the observation that, when session types (hence process behaviors) are

represented by linear logic propositions [23, 3, 16], it is impossible to write a process that behaves as 0

and it is very easy to write a process that behaves as ⊤. If we think of a session type as the set of processes

that behave according to that type, this means that the additive constants 0 and ⊤ may serve well as the

least and greatest elements of a session subtyping relation. Somewhat surprisingly, the subtyping relation

defined by these properties of 0 and ⊤ allows us to express essentially the same subtyping relations that

arise from the usual co/contra variance of labels. For example, following our proposal the session type

of the client, previously denoted A, would instead be written as

C =⊕{end : 0,add : Num⊗Num⊗Num
⊥ O⊕{end : 1,add : 0}}

using which we can derive both

B 6 N{end : ⊤,add : Num⊥ ONum
⊥ ONum⊗N{end : ⊥,add : ⊤}}=C⊥ as well as C 6 B⊥

without comparing labels and just using the fact that 0 is the least session type and ⊤ the greatest one.

Basically, instead of omitting those labels that correspond to impossible continuations (cf. the missing

1Gay and Hole [9] and other authors [4, 20, 21] define subtyping for session types in such a way that the opposite relations

of eqs. (1) and (2) hold. Both viewpoints are viable depending on whether session types are considered to be types of channels

or types of processes. Here we take the latter stance, referring to Gay [8] for a comparison of the two approaches.

28 A Logical Account of Subtyping for Session Types

Process P,Q ::=
A〈x〉 invocation

| x().P signal input

| x(y).P channel input

| case x{P,Q} choice input

| (x)(P |Q) composition

| fail x failure

| x[] signal output

| x[y](P |Q) channel output

| x[ini].P choice output i ∈ {0,1}

Table 1: Syntax of µCP
∞.

end and add in A), we use the uninhabited session type 0 or its dual ⊤ as impossible continuations (cf. C).

It could be argued that the difference between the two approaches is mostly cosmetic. Indeed, it is easy to

devise (de)sugaring functions to rewrite session types from one syntax to the other. However, the novel

approach we propose allows us to recast the well-known subtyping relation for session types in a logical

setting. A first consequence of this achievement is that the soundness of the type system with subtyping

does not require an ad hoc proof, but follows from the soundness of the type system without subtyping

through a suitable coercion semantics. In addition, we find out that the subtyping relation we propose

preserves not only the usual safety properties – communication safety, protocol fidelity and deadlock

freedom – but also termination, which is a liveness property.

Structure of the paper. In Section 2 we define µCP
∞, a session calculus of processes closely related to

µCP [16] and CP [23]. In Section 3 we define the type language for µCP
∞ and the subtyping relation. In

Section 4 we define the typing rules for µCP
∞ and give a coercion semantics to subtyping, thus showing

that the type system of µCP
∞ is a conservative extension of µMALL

∞ [2, 6]. We wrap up in Section 5.

2 Syntax and semantics of µCP
∞

The syntax of µCP
∞ is shown in Table 1 and makes use of a set of process names A, B, . . . and of an infi-

nite set of channels x, y, z and so on. The calculus includes standard forms representing communication

actions: fail x models a process failing on x; x().P and x[] model the input/output of a termination signal

on x; case x{P,Q} and x[ini].P model the input/output of a label ini on x; x(y).P and x[y](P |Q) model the

input/output of a channel y on x. Note that x[y](P |Q) outputs a new channel y which is bound in P but not

in Q. Free channel output can be encoded as shown in previous works [16]. The form (x)(P |Q) models

a session x connecting two parallel processes P and Q and the form A〈x〉 models the invocation of the

process named A with parameters x. For each process name A we assume that there is a unique global

definition of the form A(x), P that gives its meaning. Hereafter x denotes a possibly empty sequence of

channels. The notions of free and bound channels are defined in the expected way. We identify processes

up to renaming of bound channels and we write fn(P) for the set of free channels of P.

The operational semantics of µCP
∞ is shown in Table 2 and consists of a structural pre-congruence

relation 4 and a reduction relation →, both of which are fairly standard. We write P → if P → Q for

some Q and we say that P is stuck, notation P X→, if not P →.

Example 2.1. We can model client and server described in Section 1 as the processes below.

Client(x), x[in1].x[in0].x[] Server(x,z) , case x{x().z[],Server〈x,z〉}

For simplicity, we only focus on the overall structure of the processes rather than on the actual mathe-

matical operations they perform, so we omit any exchange of concrete data from this model. y

R. Horne and L. Padovani 29

[S-PAR-COMM] (x)(P |Q) 4 (x)(Q |P)
[S-PAR-ASSOC] (x)(P | (y)(Q |R)) 4 (y)((x)(P |Q) |R) x ∈ fn(Q)\ fn(R),y 6∈ fn(P)

[S-CALL] A〈x〉 4 P A(x), P

[R-CLOSE] (x)(x[] | x().P) → P

[R-COMM] (x)(x[y](P |Q) | x(y).R) → (y)(P | (x)(Q |R))
[R-CASE] (x)(x[ini].P | case x{Q0,Q1}) → (x)(P |Qi) i ∈ {0,1}

[R-PAR] (x)(P |R) → (x)(Q |R) P → Q

[R-STRUCT] P → Q P 4 P′ → Q′ 4 Q

Table 2: Structrual pre-congruence and reduction semantics of µCP
∞.

We conclude this section with the definitions of the properties ensured by our type system, namely

deadlock freedom and termination. The latter notion is particularly relevant in our setting since termina-

tion preservation is a novel aspect of the subtyping relation that we are about to define.

Definition 2.1 (deadlock-free process). We say that P is deadlock free if P ⇒ Q X→ implies that Q is not

(structurally pre-congruent to) a process of the form (x)(R1 |R2).

A deadlock-free process either reduces or it is stuck waiting to synchronize on some free channel.

Definition 2.2 (terminating process). A run of a process P is a (finite or infinite) sequence (P0,P1, . . .)
of processes such that P0 = P and Pi → Pi+1 whenever i+1 is a valid index of the sequence. We say that

a run is maximal if either it is infinite or if the last process in it is stuck. We say that P is terminating if

every maximal run of P is finite.

Note that a terminating process is not necessarily free of restrictions. For example, (x)(fail x | x[]) is

terminated but not deadlock free. It really is the conjunction of deadlock freedom and termination (as

defined above) that ensure that a process is “well behaved”.

3 Types and subtyping

The type language for µCP
∞ consists of the propositions of µMALL

∞ [2, 6, 1], the infinitary proof

theory of multiplicative/additive linear logic extended with least and greatest fixed points. We start from

the definition of pre-types, which are linear logic propositions built using type variables taken from an

infinite set and ranged over by X and Y .

Pre-type A,B ::= X | ⊥ | 1 | ⊤ | 0 | A OB | A⊗B | A NB | A⊕B | νX .A | µX .A

The usual notions of free and bound type variables apply. A type is a closed pre-type. We assume

that type variables occurring in types are guarded. That is, we forbid types of the form σ1X1 . . .σnXn.Xi

where σ1, . . . ,σn ∈ {µ ,ν}. We write A⊥ for the dual of A, which is defined in the expected way with the

proviso that X⊥ = X . This way of dualizing type variables is not problematic since we will always apply

·⊥ to types, which contain no free type variables. As usual, we write A{B/X} for the (pre-)type obtained

by replacing every X occurring free in the pre-type A with the type B. Hereafter we let κ range over the

constants 0, 1, ⊥ and ⊤, we let ⋆ range over the connectives N, ⊕, O and ⊗ and σ range over the binders

µ and ν . Also, we say that any type of the form σX .A is a σ -type.

30 A Logical Account of Subtyping for Session Types

[BOT]

0 6 A

[TOP]

A 6⊤

[REFL]

κ 6 κ

[CONG]

A 6 A′ B 6 B′

A⋆B 6 A′ ⋆B′

[LEFT-σ]

A{σX .A/X}6 B

σX .A 6 B

[RIGHT-σ]

A 6 B{σX .B/X}

A 6 σX .B

Table 3: Subtyping for session types.

We write � for the standard sub-formula relation on types. To be precise, the relation � is the least

preorder on types such that A � σX .A and Ai � A1 ⋆A2. For example, consider A
def

= µX .νY.(1⊕X) and

its unfolding A′ def

= νY.(1⊕A). We have A � 1⊕A � A′, hence A is a sub-formula of A′. Given a set T

of types we write minT for the �-minimum type in T when it is defined.

Table 3 shows the inference rules for subtyping judgments. The rules are meant to be interpreted

coinductively so that a judgment A 6 B is derivable if it is the conclusion of a finite/infinite derivation.

The rules [BOT] and [TOP] establish that 0 and ⊤ are respectively the least and the greatest session type;

the rules [REFL] and [CONG] establish reflexivity and pre-congruence of 6 with respect to all the constants

and connectives; the rules [LEFT-σ] and [RIGHT-σ] allow fixed points to be unfolded on either side of 6.

Example 3.1. Consider the types A
def

= 0⊕ (1⊕ 0) and B
def

= νX .(⊥N X) which, as we will see later,

describe the behavior of Client and Server in Example 2.1. We can derive both A 6 B⊥ and B 6 A⊥ thus:

[BOT]
0 6 1

[REFL]
1 6 1

[BOT]
0 6 B⊥

[CONG]
1⊕0 6 1⊕B⊥

[RIGHT-µ]
1⊕0 6 B⊥

[CONG]
A 6 1⊕B⊥

[RIGHT-µ]
A 6 B⊥

[TOP]
⊥6⊤

[REFL]
⊥6⊥

[TOP]
B 6⊤

[CONG]
⊥OB 6⊥O⊤

[LEFT-ν]
B 6⊥N⊤

[CONG]
⊥OB 6 A⊥

[LEFT-ν]
B 6 A⊥

The rules [LEFT-σ] and [RIGHT-σ] may look suspicious since they are applicable to either side of 6
regardless of the intuitive interpretation of µ and ν as least and greatest fixed points. In fact, if subtyping

were solely defined by the derivability according to the rules in Table 3, the two fixed point operators

would be equivalent. For example, both µX .(1⊕X) 6 νX .(1⊕X) and νX .(1⊕X) 6 µX .(1⊕X) are

derivable even though only the first relation seems reasonable. We will see in Example 4.2 that allowing

the second relation is actually unsound, in the sense that it compromises the termination property enjoyed

by well-typed processes. We obtain a sound subtyping relation by ruling out some infinite derivations as

per the following (and final) definition of subtyping.

Definition 3.1 (subtyping). We say that A is a subtype of B if A 6 B is derivable and, for every infinite

branch (Ai 6 Bi)i∈N of the derivation, either (1) min{C | ∃∞i : Ai = C} is a µ-type or (2) min{C | ∃∞i :

Bi =C} is a ν-type. Hereafter ∃∞i means the existence of infinitely many i’s with the stated property.

The clauses (1) and (2) of Definition 3.1 make sure that µ and ν are correctly interpreted as least

and greatest fixed points. In particular, we expect the least fixed point to be subsumed by a greatest fixed

point, but not vice versa in general. For example, consider once again the (straightforward) derivations

for the aforementioned subtyping judgments µX .(1⊕X)6 νX .(1⊕X) and νX .(1⊕X)6 µX .(1⊕X).
The first derivation satisfies both clauses (there is only one infinite branch, along which a µ-type is

unfolded infinitely many times on the left hand side of 6 and a ν-type is unfolded infinitely many times

on the right hand side of 6). The second derivation satisfies neither clause. Therefore, µX .(1⊕X) is a

R. Horne and L. Padovani 31

[CALL]

P ⊢ x : A

A〈x〉 ⊢ x : A
A(x), P

[SUB]

P ⊢ Γ ,x : A Q ⊢ ∆,x : B

(x)(P |Q) ⊢ Γ ,∆
A 6 B⊥

[⊤]

fail x ⊢ Γ ,x : ⊤

[⊥]

P ⊢ Γ

x().P ⊢ Γ ,x : ⊥

[1]

x[] ⊢ x : 1

[O]

P ⊢ Γ ,y : A,x : B

x(y).P ⊢ Γ ,x : A OB

[⊗]

P ⊢ Γ ,y : A Q ⊢ ∆,x : B

x[y](P |Q) ⊢ Γ ,∆,x : A⊗B

[N]

P ⊢ Γ ,x : A Q ⊢ Γ ,x : B

case x{P,Q} ⊢ Γ ,x : A NB

[⊕]

P ⊢ Γ ,x : Ai

x[ini].P ⊢ Γ ,x : A0 ⊕A1

i ∈ {0,1}

[σ]

P ⊢ Γ ,x : A{σX .A/X}

P ⊢ Γ ,x : σX .A

Table 4: Typing rules for µCP
∞.

subtype of νX .(1⊕X) but νX .(1⊕X) is not a subtype of µX .(1⊕X). As we will see in Section 4, the

application of a subtyping relation A 6 B can be explicitly modeled as a process consuming a channel of

type A while producing a channel of type B. According to this interpretation of subtyping, we can see

that clause (1) of Definition 3.1 is just a dualized version of clause (2).

In both clauses of Definition 3.1 there is a requirement that the type of the fixed point on each side of

the relation is determined by the �-minimum of the types that appear infinitely often on either side. This

is needed to handle correctly alternating fixed points, by determining which one is actively contributing

to the infinite path. To see what effect this has consider the types A
def

= µX .νY.(1⊕X), A′ def

= νY.(1⊕A),
B

def

= µX .µY.(1⊕X) and B′ def

= µY.(1⊕B). Observe that A unfolds to A′, A′ unfolds to 1⊕A, B unfolds to

B′ and B′ unfolds to 1⊕B. We have A 6 B despite Y is bound by a greatest fixed point on the left and by

a least fixed point on the right. Indeed, both A and A′ occur infinitely often in the (only) infinite branch

of the derivation for A 6 B, but A � A′ according to the intuition that the �-minimum type that occurs

infinitely often is the one corresponding to the outermost fixed point. In this case, the outermost fixed

point is µX which “overrides” the contribution of the inner fixed point νY . The interested reader may

refer to the literature on µMALL
∞ [2, 6] for details.

Hereafter, unless otherwise specified, we write A 6 B to imply that A is a subtype of B and not simply

that the judgment A 6 B is derivable. It is possible to show that 6 is a preorder and that A 6 B implies

B⊥ 6 A⊥. Indeed, as illustrated in Example 3.1, we obtain a derivation of B⊥ 6 A⊥ from that of A 6 B by

dualizing every judgment and by turning every application of [LEFT-σ] (respectively [RIGHT-σ], [BOT],

[TOP]) into an application of [RIGHT-σ⊥] (respectively [LEFT-σ⊥], [TOP], [BOT]).

4 Typing rules

In this section we describe the typing rules for µCP
∞. Typing judgments have the form P⊢ Γ where P is a

process and Γ is a typing context, namely a finite map from channels to types. We can read this judgment

as the fact that P behaves as described by the types in the range of Γ with respect to the channels in the

domain of Γ . We write dom(Γ) for the domain of Γ , we write x : A for the typing context with domain {x}
that maps x to A, we write Γ ,∆ for the union of Γ and ∆ when dom(Γ)∩dom(∆) = /0. The typing rules

of µCP
∞ are shown in Table 4 and, with the exception of [CALL] and [SUB], they correspond to the proof

32 A Logical Account of Subtyping for Session Types

rules of µMALL
∞ [2, 6] in which the context is the sequent being proved and the process is (almost)

a syntactic representation of the proof. The rules for the multiplicative/additive constants and for the

connectives are standard. The rule [σ] where σ ∈ {µ ,ν} simply unfolds fixed points regardless of their

nature. The rule [CALL] unfolds a process invocation into its definition, checking that the invocation and

the definition are well typed in the same context. Finally, [SUB] checks that the composition (x)(P |Q)
is well typed provided that A (the behavior of P with respect to x) is a subtype of B⊥ (where B is the

behavior of Q with respect to x). In this sense [SUB] embeds the substitution principle induced by 6
since it allows a process behaving as A to be used where a process behaving as B⊥ is expected. Note that

the standard cut rule of µMALL
∞ is a special case of [SUB] because of the reflexivity of 6.

Like in µMALL
∞, the rules are meant to be interpreted coinductively so that a judgment P ⊢ Γ is

deemed derivable if there is an arbitrary (finite or infinite) derivation whose conclusion is P ⊢ Γ .

Example 4.1. Let us show the typing derivations for the processes discussed in Example 2.1. To this

aim, let A
def

= 0⊕ (1⊕0) and B
def

= νX .(⊥NX) and recall from Example 3.1 that A 6 B⊥. We derive:

[1]
x[] ⊢ 1

[⊕]
x[in0].x[] ⊢ 1⊕0

[⊕]
x[in1].x[in0].x[] ⊢ x : A

[CALL]
Client〈x〉 ⊢ x : A

[1]
z[] ⊢ z : 1

[⊥]
x().z[] ⊢ x : ⊥,z : 1

...

Server〈x,z〉 ⊢ x : B,z : 1
[N]

case x{x().z[],Server〈x,z〉} ⊢ x : ⊥NB,z : 1
[ν]

case x{x().z[],Server〈x,z〉} ⊢ x : B,z : 1
[CALL]

Server〈x,z〉 ⊢ x : B,z : 1
[SUB]

(x)(Client〈x〉 |Server〈x,z〉) ⊢ z : 1

We can obtain a similar typing derivation by swapping Client and Server and using the relation

B 6 A⊥. Note that Client and Server cannot be composed directly using a standard cut since A 6= B⊥. So,

the use of subtyping in the above typing derivation is important to obtain a well-typed composition. y

It is a known fact that not every µMALL
∞ derivation is a valid one [2, 6, 1]. In order to characterize

the valid derivations we need some auxiliary notions which we recall below.

Definition 4.1 (thread). Let γ = (Pi ⊢ Γi)i∈N be an infinite branch in a typing derivation and recall that

Pi+1 ⊢ Γi+1 is a premise of Pi ⊢ Γi. A thread of γ is a sequence (xi)i≥k of channels such that xi ∈ dom(Γi)
and either xi = xi+1 or Pi = xi[xi+1](Pi+1 |Q) or Pi = xi(xi+1).Pi+1 for every i ≥ k.

Intuitively, a thread is an infinite sequence of channel names (xi)i≥k that are found starting from some

position k in an infinite branch (Pi ⊢ Γi)i∈N and that pertain to the same session. For example, consider

the derivation in Example 4.1 and observe that there is only one infinite branch, the rightmost one. The

sequence (x,x,x, . . .) is a thread that starts right above the conclusion of the derivation.

Definition 4.2 (ν-thread). Given a branch γ = (Pi ⊢ Γi)i∈N and a thread t = (xi)i≥k of γ , we write

inf(γ , t)
def

= {A | ∃∞i ≥ k : Γi(xi) = A}. We say that t is a ν-thread of γ if min inf(γ , t) is a ν-type.

Given a branch γ = (Pi ⊢ Γi)i∈N and a thread t = (xi)i≥k of γ , the thread identifies an infinite sequence

(Γi(xi))i≥k of types. The set inf(γ , t) is the set of those types that occur infinitely often in this sequence and

min inf(γ , t) is the �-minimum among these types (it can be shown that the minimum of any set inf(γ , t)
is always defined [6]). We say that t is a ν-thread if such minimum type is a ν-type. In Example 4.1,

the thread t = (x,x,x, . . .) identifies the sequence (B,B,⊥NB,B, . . .) of types in which both B and ⊥NB

occur infinitely often. Since B �⊥NB and B is a ν-type we conclude that t is a ν-thread.

R. Horne and L. Padovani 33

t

0 6 A

|

x,y

, fail x

t

1 6 1

|

x,y

, x().y[]

t
π1 :: A 6 A′

π2 :: B 6 B′

A⊕B 6 A′⊕B′

|

x,y

, case x{y[in0].Jπ1Kx,y ,y[in1].Jπ2Kx,y}

t
π1 :: A 6 A′

π2 :: B 6 B′

A⊗B 6 A′⊗B′

|

x,y

, x(u).y[v](Jπ1Ku,v | Jπ2Kx,y) (u and v fresh)

t
π :: A{σX .A/X}6 B

σX .A 6 B

|

x,y

, JπKx,y

t
π :: A 6 B{σX .B/X}

A 6 σX .B

|

x,y

, JπKx,y

Table 5: Coercion semantics of subtyping (selected equations).

Definition 4.3 (valid branch). Let γ = (Pi ⊢ Γi)i∈N be an infinite branch of a typing derivation. We say

that γ is valid if there is a ν-thread (xi)i≥k of γ such that [ν] is applied to infinitely many of the xi.

Definition 4.3 establishes that a branch is valid if it contains a ν-thread in which the ν-type occurring

infinitely often is also unfolded infinitely often. This happens in Example 4.1, in which the [ν] rule is

applied infinitely often to unfold the type of x. The reader familiar with the µMALL
∞ literature may have

spotted a subtle difference between our notion of valid branch and the standard one [2, 6]. In µMALL
∞,

a branch is valid only provided that the ν-thread in it is not “eventually constant”, namely if the greatest

fixed point that defines the ν-thread is unfolded infinitely many times. This condition is satisfied by our

notion of valid branch because of the requirement that there must be infinitely many applications of [ν]

concerning the names in the ν-thread. Now we can define the notion of valid typing derivation.

Definition 4.4 (valid derivation). A typing derivation is valid if so is every infinite branch in it.

Following Pierce [22] we provide a coercion semantics to our subtyping relation by means of two

translation functions, one on derivations of subtyping relations A 6B and one on typing derivations P⊢ Γ

that make use of subtyping. The first translation is (partially) given in Table 5. The translation takes a

derivation π of a subtyping relation A 6 B – which we denote by π :: A 6 B – and generates a process

JπKx,y that transforms (the protocol described by) A into (the protocol described by) B. The translation

is parametrized by the two channels x and y on which the transformation takes place: the protocol A is

“consumed” from x and reissued on y as a protocol B. In Table 5 we show a fairly complete selection

of cases, the remaining ones being obvious variations. It is easy to establish that JπKx,y ⊢ x : A⊥,y : B if

A 6 B. In particular, consider an infinite branch γ
def

= (JπiKxi,yi
⊢ xi : A⊥

i ,y : Bi)i∈N in the typing derivation

of the coercion where A0 = A and B0 = B. This branch corresponds to an infinite branch (Ai 6 Bi)i∈N in

π :: A 6 B. According to Definition 3.1, either clause (1) or clause (2) holds for this branch. Suppose,

without loss of generality, that clause (1) holds. Then min{C | ∃∞i ∈ N : Ai =C} is a µ-type. According

to Table 5 we have that (xi)i∈N is a ν-thread of γ , hence γ is a valid branch. Note that in general JπKx,y is

(the invocation of) a recursive process.

34 A Logical Account of Subtyping for Session Types

Concerning the translation of typing derivations, it is defined by the equation

t
π1 :: P ⊢ Γ ,x : A π2 :: Q ⊢ Γ ,x : B

(x)(P |Q) ⊢ Γ

|
=

Jπ1{y/x}K JπKy,x ⊢ y : A⊥,x : B

(y)(P{y/x} | JπKy,x) ⊢ Γ ,x : B Jπ2K
(x)((y)(P{y/x} | JπKy,x) |Q) ⊢ Γ

(3)

where π :: A 6 B⊥ and extended homomorphically to all the other typing rules in Table 4. Note that (3)

turns every application of the [SUB] into two applications of the standard µMALL
∞ cut rule. The validity

of the resulting typing derivation follows immediately from that of the original typing derivation and that

for the coercion, as argued earlier.

Thanks to the correspondence between µCP
∞’s typing rules and µMALL

∞, well-typed µCP
∞ pro-

cesses are well behaved. In particular, processes that are well typed in a singleton context are deadlock

free.

Theorem 4.1 (deadlock freedom). If P ⊢ x : A then P is deadlock free.

Moreover, the cut elimination property of µMALL
∞ [2, 6] can be used to prove that well-typed µCP

∞

processes terminate, similarly to related systems [16, 5].

Theorem 4.2 (termination). If P ⊢ Γ then P is terminating.

Proof sketch. The typing derivation for P ⊢ Γ with the subtype coercion made explicit maps directly to

a valid µMALL
∞ proof. Every reduction step of P maps directly to one or more principal reductions in

the µMALL
∞ proof. The reason why we could have more than one principal reduction for each process

reduction comes from our choice of not having an explicit process form triggering the unfolding of a

fixed point (see [σ]). Now, suppose that P has an infinite run. Then there would be an infinite sequence

of reduction steps starting from P, hence an infinite sequence of cut reductions in the corresponding

µMALL
∞ proof, which contradicts [6, Proposition 3.5]. Thus every run of P must be finite.

Note that Theorem 4.2 only assures that a well-typed process will not reduce forever, not necessar-

ily that the final configuration of the process is free of restricted sessions. These may occur guarded

by a prefix concerning some free channel in the process. We can formulate a property of “successful

termination” by combining Theorems 4.1 and 4.2.

Corollary 4.1. If P ⊢ x : 1 then P eventually reduces to x[].

We conclude this section with an example showing that the additional clauses of Definition 3.1 are

key to making sure that 6 is a termination-preserving subtyping relation.

Example 4.2. Consider a degenerate client Chatter(x) , x[in1].Chatter〈x〉 that engages into an infinite

interaction with Server from Example 2.1 and let C
def

= νX .(1⊕X). The derivation
...

[ν]
Chatter〈x〉 ⊢ x : C

[⊕]
x[in1].Chatter〈x〉 ⊢ x : 1⊕C

[CALL]
Chatter〈x〉 ⊢ x : 1⊕C

[ν]
Chatter〈x〉 ⊢ x : C

is valid since the only infinite branch contains a ν-thread (x,x, . . .) along which we find infinitely many

applications of [ν]. If we allowed the relation C 6 B⊥ (cf. the discussion leading to Definition 3.1) the

composition (x)(Chatter〈x〉 |Server〈x,z〉) would be well typed and it would no longer be the case that

well-typed processes terminate, as the interaction between Chatter and Server goes on forever. y

R. Horne and L. Padovani 35

5 Concluding remarks

We have defined a subtyping relation for session types as the precongruence that is insensitive to the

(un)folding of recursive types and such that 0 and ⊤ act as least and greatest elements. Despite the

minimalistic look of the relation and the apparent rigidity in the syntax of types, in which the arity of

internal and external choices is fixed, 6 captures the usual co/contra variance of labels thanks to the

interpretation given to 0 and ⊤. Other refinement relations for session types with least and greatest

elements have been studied in the past [19, 21], although without an explicit correspondance with logic.

Unlike subtyping relations for session types [9, 4, 17, 10] that only preserve safety properties of

sessions (communication safety, protocol fidelity and deadlock freedom), 6 also preserves termination,

which is a liveness property. For this reason, 6 is somewhat related to fair subtyping [20, 21], which

preserves fair termination [11, 7]. It appears that 6 is coarser than fair subtyping, although the exact

relationship between the two relations is difficult to characterize because of the fundamentally different

ways in which recursive behaviors are represented in the syntax of types. The subtyping relation defined

in this paper inherits least and greatest fixed points from µMALL
∞ [2, 6], whereas fair subtyping has

been studied on session type languages that either make use of general recursion [20] or that use regular

trees directly [21]. A more conclusive comparison is left for future work.

A key difference between the treatment of fixed points in this work and a related logical approach

to session subtyping [14] is that, while both guarantee deadlock freedom, the current approach also

guarantees termination. Insight concerning the design of fixed points should be exportable to other

session calculi independently from any logical interpretation. In particular, it would be interesting to

study subtyping for asynchronous session types [17, 10] in light of Definition 3.1. This can be done by

adopting a suitable coercion semantics to enable buffering of messages as in simple orchestrators [18].

Acknowledgments. We are grateful to the anonymous reviewers for their thoughtful comments.

References

[1] David Baelde, Amina Doumane, Denis Kuperberg & Alexis Saurin (2022): Bouncing Threads for Circular

and Non-Wellfounded Proofs: Towards Compositionality with Circular Proofs. In Christel Baier & Dana

Fisman, editors: LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,

Israel, August 2 - 5, 2022, ACM, pp. 63:1–63:13, doi:10.1145/3531130.3533375.

[2] David Baelde, Amina Doumane & Alexis Saurin (2016): Infinitary Proof Theory: the Multiplicative Additive

Case. In Jean-Marc Talbot & Laurent Regnier, editors: 25th EACSL Annual Conference on Computer

Science Logic, CSL 2016, August 29 - September 1, 2016, Marseille, France, LIPIcs 62, Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, pp. 42:1–42:17, doi:10.4230/LIPIcs.CSL.2016.42.

[3] Luı́s Caires, Frank Pfenning & Bernardo Toninho (2016): Linear logic propositions as session types. Math.

Struct. Comput. Sci. 26(3), pp. 367–423, doi:10.1017/S0960129514000218.

[4] Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino & Luca Padovani (2009): Foundations

of session types. In António Porto & Francisco Javier López-Fraguas, editors: Proceedings of the 11th In-

ternational ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, September

7-9, 2009, Coimbra, Portugal, ACM, pp. 219–230, doi:10.1145/1599410.1599437.

[5] Farzaneh Derakhshan & Frank Pfenning (2022): Circular Proofs as Session-Typed Processes: A Local Va-

lidity Condition. Logical Methods in Computer Science Volume 18, Issue 2, doi:10.46298/lmcs-18(2:

8)2022.

https://doi.org/10.1145/3531130.3533375
https://doi.org/10.4230/LIPIcs.CSL.2016.42
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.1145/1599410.1599437
https://doi.org/10.46298/lmcs-18(2:8)2022
https://doi.org/10.46298/lmcs-18(2:8)2022

36 A Logical Account of Subtyping for Session Types

[6] Amina Doumane (2017): On the infinitary proof theory of logics with fixed points. (Théorie de la

démonstration infinitaire pour les logiques à points fixes). Ph.D. thesis, Paris Diderot University, France.

Available at https://tel.archives-ouvertes.fr/tel-01676953.

[7] Nissim Francez (1986): Fairness. Monographs in Comp. Sci., Springer, doi:10.1007/

978-1-4612-4886-6.

[8] Simon J. Gay (2016): Subtyping Supports Safe Session Substitution. In Sam Lindley, Conor McBride,

Philip W. Trinder & Donald Sannella, editors: A List of Successes That Can Change the World - Essays

Dedicated to Philip Wadler on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 9600,

Springer, pp. 95–108, doi:10.1007/978-3-319-30936-1_5.

[9] Simon J. Gay & Malcolm Hole (2005): Subtyping for session types in the pi calculus. Acta Informatica

42(2-3), pp. 191–225, doi:10.1007/s00236-005-0177-z.

[10] Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas & Nobuko Yoshida (2022): Precise Subtyping

for Asynchronous Multiparty Sessions. ACM Trans. Comput. Logic, doi:10.1145/3568422. Just Accepted.

[11] Orna Grumberg, Nissim Francez & Shmuel Katz (1984): Fair Termination of Communicating Processes.

In: Proceedings of the Third Annual ACM Symposium on Principles of Distributed Computing, PODC ’84,

Association for Computing Machinery, New York, NY, USA, pp. 254–265, doi:10.1145/800222.806752.

[12] Kohei Honda (1993): Types for Dyadic Interaction. In Eike Best, editor: CONCUR ’93, 4th International

Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993, Proceedings, Lecture Notes

in Computer Science 715, Springer, pp. 509–523, doi:10.1007/3-540-57208-2_35.

[13] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Disci-

pline for Structured Communication-Based Programming. In Chris Hankin, editor: Programming Languages

and Systems - ESOP’98, 7th European Symposium on Programming, Lisbon, Portugal, March 28 - April 4,

Lecture Notes in Computer Science 1381, Springer, pp. 122–138, doi:10.1007/BFb0053567.

[14] Ross Horne (2020): Session Subtyping and Multiparty Compatibility Using Circular Sequents. In Igor

Konnov & Laura Kovács, editors: 31st International Conference on Concurrency Theory, CONCUR 2020,

September 1-4, 2020, Vienna, Austria (Virtual Conference), LIPIcs 171, Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, pp. 12:1–12:22, doi:10.4230/LIPIcs.CONCUR.2020.12.

[15] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luı́s Caires, Marco Carbone, Pierre-Malo Deniélou, Dim-

itris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira & Gianluigi Zavattaro

(2016): Foundations of Session Types and Behavioural Contracts. ACM Comput. Surv. 49(1), pp. 3:1–3:36,

doi:10.1145/2873052.

[16] Sam Lindley & J. Garrett Morris (2016): Talking bananas: structural recursion for session types. In Jacques

Garrigue, Gabriele Keller & Eijiro Sumii, editors: Proceedings of the 21st ACM SIGPLAN International

Conference on Functional Programming, ICFP 2016, Nara, Japan, September 18-22, 2016, ACM, pp. 434–

447, doi:10.1145/2951913.2951921.

[17] Dimitris Mostrous & Nobuko Yoshida (2015): Session typing and asynchronous subtyping for the higher-

order π-calculus. Inf. Comput. 241, pp. 227–263, doi:10.1016/j.ic.2015.02.002.

[18] Luca Padovani (2010): Contract-based discovery of Web services modulo simple orchestrators. Theor. Com-

put. Sci. 411(37), pp. 3328–3347, doi:10.1016/j.tcs.2010.05.002.

[19] Luca Padovani (2010): Session Types = Intersection Types + Union Types. In Elaine Pimentel, Betti Venneri

& Joe B. Wells, editors: Proceedings Fifth Workshop on Intersection Types and Related Systems, ITRS 2010,

Edinburgh, U.K., 9th July 2010, EPTCS 45, pp. 71–89, doi:10.4204/EPTCS.45.6.

[20] Luca Padovani (2013): Fair Subtyping for Open Session Types. In Fedor V. Fomin, Rusins Freivalds, Marta Z.

Kwiatkowska & David Peleg, editors: Automata, Languages, and Programming - 40th International Collo-

quium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, Lecture Notes in Computer Science

7966, Springer, pp. 373–384, doi:10.1007/978-3-642-39212-2_34.

[21] Luca Padovani (2016): Fair subtyping for multi-party session types. Math. Struct. Comput. Sci. 26(3), pp.

424–464, doi:10.1017/S096012951400022X.

https://tel.archives-ouvertes.fr/tel-01676953
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1145/3568422
https://doi.org/10.1145/800222.806752
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.4230/LIPIcs.CONCUR.2020.12
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1016/j.ic.2015.02.002
https://doi.org/10.1016/j.tcs.2010.05.002
https://doi.org/10.4204/EPTCS.45.6
https://doi.org/10.1007/978-3-642-39212-2_34
https://doi.org/10.1017/S096012951400022X

R. Horne and L. Padovani 37

[22] Benjamin C. Pierce (2002): Types and programming languages. MIT Press.

[23] Philip Wadler (2014): Propositions as sessions. J. Funct. Program. 24(2-3), pp. 384–418, doi:10.1017/

S095679681400001X.

https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. 38–48, doi:10.4204/EPTCS.378.4

© D. Orchard, M. Munteanu & P. Torrens

Communicating Actor Automata – Modelling Erlang

Processes as Communicating Machines

Dominic Orchard

University of Kent, UK

d.a.orchard@kent.ac.uk

Mihail Munteanu

Masabi Ltd.

mihailmunteanu944@gmail.com

Paulo Torrens

University of Kent, UK

paulotorrens@gnu.org

Brand and Zafiropulo’s notion of Communicating Finite-State Machines (CFSMs) provides

a succinct and powerful model of message-passing concurrency, based around channels. However, a

major variant of message-passing concurrency is not readily captured by CFSMs: the actor model. In

this work, we define a variant of CFSMs, called Communicating Actor Automata, to capture the ac-

tor model of concurrency as provided by Erlang: with mailboxes, from which messages are received

according to repeated application of pattern matching. Furthermore, this variant of CFSMs supports

dynamic process topologies, capturing common programming idioms in the context of actor-based

message-passing concurrency. This gives a new basis for modelling, specifying, and verifying Erlang

programs. We also consider a class of CAAs that give rise to freedom from race conditions.

1 Introduction

Modern software development often deviates from the traditional approach of sequential computation

and thrives on concurrency, where code is written such that several processes may run simultaneously

while potentially sharing resources. Out of the increasing complexity of software systems, platforms and

programming languages were created to facilitate the development of concurrent, parallel, and distributed

computations, such as the Erlang programming language [1, 2]. The need for formal specification of such

systems has motivated the design of formal systems that allow programs to be reasoned about.

The Communicating Finite-State Machines (CFSMs) of Brand and Zafiropulo (also known as com-

municating automata) provide a model for describing concurrent, communicating processes in which a

notion of well-formed communication protocols can be described [7]. The essential idea is to model a (fi-

nite) set of concurrent processes as finite automata (one automaton per process) whose labels correspond

to sending and receiving messages on channels connecting each pair of automata, collectively called a

protocol. Through such precise descriptions, properties of communicating processes can be studied, e.g.,

checking whether every message is received, or whether no process is left awaiting for a message which

is never sent.

This model is useful for further studying the decidability, or undecidability, of various properties of

concurrent systems (e.g., [16, 17, 11, 13, 14]). For example, Brand and Zafiropulo show that bounded-

ness (i.e., that communication can proceed with bounded queues), deadlock freedom, and unspecified

reception (sending messages that aren’t received) are all decidable properties when restricted to two

machines with a single type of message [7]. Furthermore, deciding these properties can be computed

in polynomial time [18], and can be computed when only one machine is restricted to a single type of

message. CFSMs have also been employed more recently as a core modelling tool that provides a useful

interface between other models of concurrent programs, such as graphical choreographies [15].

In the CFSM model, processes communicate via channels (FIFO queues) linking each process.

Therefore a process knows from which other process a message is received. This differs to the actor

http://dx.doi.org/10.4204/EPTCS.378.4

D. Orchard, M. Munteanu & P. Torrens 39

model where each process has a ‘mailbox’ into which other processes deposit messages, not necessar-

ily with any information about the sender. This makes it difficult to capture actor-based approaches in

traditional CFSMs. A further limitation of CFSMs is that they capture programs with fixed communi-

cation topologies: both sender and receiver of a message are fixed in the model, and a process cannot

have its messages dynamically targeted to different processes. However, this is not the predominant pro-

gramming idiom in concurrent programming settings. CFSMs also prescribe simple models of message

reception, and do not capture more fine-grained reception methods, such as Erlang’s mailbox semantics

which allow processing messages other than the most recent one, leveraging pattern matching at the lan-

guage level. Even so, CFSMs are tantalisingly close to Erlang’s computational model, with every pair of

processes representing sequential computation that is able to communicate bidirectionally.

We propose a variant of CFSMs to capture Erlang’s asynchronous mailbox semantics, and further-

more allow dynamic topologies through the binding (and rebinding) of variables for process identifiers

via a notion of memory within a process’ automaton. Section 2 explicates the model including examples

of models corresponding to simple Erlang programs. We consider properties of such models in Section 3.

Section 4 concludes with a discussion, some related work, and next steps.

1.1 Communicating Finite-State Machines

To facilitate comparison, we briefly recap the formal definition of CFSMs [7]. A system of N-CFSMs is

referred to as a protocol which comprises four components (usually represented as a 4-tuple):

• (Si)
N
i=1 are N (disjoint) finite sets Si giving the set of states of each process i;

• (oi)
N
i=1 where oi ∈ Si are the initial states of each process i;

• (Mi, j)
N
i, j=1 are N2 (disjoint) finite sets where Mi, j represents the set of messages that can be sent

from process i to process j, and where Mi, j = /0 when i = j;

• (succ : (Si ×
⋃N

j=1(Mi, j ⊎M j,i))→ Si)
N
i=1 are N state transition functions (partial functions) where

succ(s, l) computes the successor state s′ for process i from the state s and given a message l that

is either being sent from i to j (thus l ∈ Mi, j) or being received from j by i (thus l ∈ M j,i).

The typical presentation views the above indexed sets as finite sequences. We use the notation l for

messages as we later refer to these as being ‘labels’ of automata.

For a protocol, a global state (or configuration) is a pair (S,C) of a sequence of states for each process

S = 〈s1 ∈ S1, . . . sN ∈ SN〉 and C is an N ×N matrix whose elements ci, j ∈C are finite sequences drawn

from Mi, j representing a FIFO queue (channel) of messages between process i and j (here and later we

use · to concatenate such sequences and [l1, . . . , lm] for an instance of a sequence with m messages).

A binary-relation step captures when one global state (S,C) can evolve into another global state

(S′,C′) due to a single succ function. That is, (S′,C′) ∈ step(S,C) iff there exists i, k, li,k and either:

1. (i sends to k): s′i ∈ S′ = succi(si, li,k) and c′i,k ∈C′ = ci,k · [li,k]

or 2. (reception from k by i): s′k ∈ S′ = succk(sk, li,k) and ci,k ∈C = [li,k] · c
′
i,k

We adopt similar terminology and structure, but vary enough to capture the actor model of Erlang.

2 A variant of CFSMs for Erlang

Our main goal is to define a CFSM variant, which we call Communicating Actor Automata (CAA), by

borrowing from Erlang’s mailbox semantics. We first review some core Erlang concepts, and follow by

40 Communicating Actor Automata

describing CAA and their composition into protocols. While the traditional definition of CFSMs imme-

diately considers a global configuration (state) of some processes, we take each process (representing an

Erlang actor) as a separate state machine, which gives a local “in-isolation” characterisation from which

the global “protocol” characterisation is derived.

2.1 Erlang basic definitions

A key concept in Erlang is that of a mailbox: instead of processing messages strictly in FIFO order, each

process (also referred to as an actor) possesses a queue of incoming messages from which they may

match: given a sequence of patterns, a process picks the first message from the queue that unifies with

one of those patterns, in an ordered fashion. If no pattern matches the first message in the queue, the next

message is tried for all patterns, and so on [8]. In the following, we will use Erlang’s term syntax in an

abstract way (for details, see Carlsson et al. [9]), whose actual choice may vary. Concrete syntax is given

in monospace font, e.g., {1, 2} is an Erlang tuple of two integer terms.

Definition 2.1 (Syntactic categories). Let Term be the set of terms, ranged over by t. Let Var ⊂ Term

be the set of variables, ranged over by uppercase letters. Let Proc ⊂ Var be the set of process identifiers

which uniquely identify processes. Let Pat be the set of patterns, ranged over by pat. As Erlang has

a call-by-value semantics, we define a subset Value ⊂ Term of terms which are normal forms (called

values), ranged over by v. Notice that Var ⊂ Value.

We note that, in regard to the semantics proposed in this paper, we mostly focus on four basic kinds

of terms: process identifiers, variables, atoms and tuples. While identifiers and variables allow us to

control the topology, atoms and tuples are useful for structuring message patterns (aiding in identifying

which message is to be sent or received). In the example that will be given in Section 2.3, we shall also

consider integers and arithmetic operators, but that’s not necessary. It would also be possible to consider

functions in the term syntax, but we won’t entertain this possibility in this paper as we intend to focus on

the expressivity of the process automaton itself and not on the term language.

In order to mimic Erlang’s method of receiving messages, we need a notion of unification: incoming

messages are matched against a set of patterns, and will proceed only if one of those is accepted.

Definition 2.2 (Unification). We define the notion of unification [8, 9] between a term and a pattern

written t ⊲ pat which either yields ⊥ representing failure to pattern match or it yields an environment

which is a finite map from a subset of variables V ⊆ Var to terms, i.e., ΓV : V → Term represents the

binding context of a successful pattern match. Such maps are ranged over by γ . If t ⊲ pat = γ , with

γ ∈ ΓV for some V , then pat becomes equal to t if we replace every variable v ∈ V in it by γV (v). We

write {X1 7→ t1, ..., Xn 7→ tn} to denote the environment that maps Xi to ti (for all 1 ≤ i ≤ n).

2.2 CAAs for individual processes

Just as in CFSMs, we describe actors by finite-state automata. Each automaton is described individually

and represents a single Erlang process, having its own unique identifier. Our main intention is to capture

possible states in an Erlang process, by saying which messages it’s allowed to receive and to send at a

given point during execution, and what it should do after it.

We formally define our notion of actor as follows (note the addition of final states, not always in-

cluded for CFSMs).

Definition 2.3. A Communicating Actor Automata (CAA) is a 7-tuple (S, o, F, L!, L?, δ ,<), which

includes a finite set of states S, an initial state o ∈ S, a possibly empty set of final states F ⊆ S, a set of

D. Orchard, M. Munteanu & P. Torrens 41

send labels L! ⊆ Term, a finite set of receive labels L? ⊆ Pat, a function δ : S× (L? ∪ (Var×L!))→ S,

describing transitions, and an S-indexed family of order relations < on L?. We impose a restriction on

the domain of δ such that a state may only have either some number of receive labels or a single send

label (but never both). We write δ (s,?pat) for any transitions which receive a message matching pat, and

δ (s,X !t) for transitions which send a message, where X !t denotes the pair (X , t) of a message given by

term t being sent to process X . For an state s ∈ S, we write <s as the order relation on such state.

Notice a CAA is essentially a deterministic finite automata (DFA) state machine with the alphabet

defined as Σ =L?∪(Var×L!). Non-determinism is exposed by interaction of many CAAs in a protocol,

which will be described in Section 2.3. As such, a notion of a “static CAA” (as opposed to mobile) can

be conceived of as having transitions δ : S× (L? ∪ (Proc×L!)) → S where we replace the variables

associated with send labels by concrete process identifiers, i.e., the target of a send is always known

ahead of time. We do not explore this notion further here.

Example 2.1. Consider the following Erlang code which defines a function mem which emulates a mem-

ory cell via recursion:

mem(S) −> r e c e i v e

{ get , P } −> P ! S, mem(S);
{ put , X } −> mem(X)

end.

The state of the memory cell is given by variable S. The process receives either a pair {get, P}, after

which it sends S to the process identifier P, or a pair {put, X}, after which it recurses with X as the

argument (the ‘updated’ memory cell state). Note that lowercase terms in Erlang are atoms.

Once spawned, this function can be modelled as a CAA with states S = {s0, s1}, initial and final

states o = s0 and F = {s0}, send labels L! = Terms, receive labels L? = {{get, P}, {put, S}}, order

stating {get, P}<s0
{put, S}, and the following transition (with corresponding automaton):

δ (s0, ?{get, P}) = s1

δ (s0, ?{put, S}) = s0

δ (s1, P!S) = s0

s0start s1

?{get, P}

P!S
?{put, S}

Notice we don’t use the variable X in the above example for the ‘put’ message, as we want to rebind the

received value (in the second component of the pair) to S in the recursive call. We do not consider the

additional aspect of Erlang’s semantics in which already bound variables may appear in pattern matches,

incurring a unification, which is a further complication not considered in this paper.

The above definition is enough to capture the static semantics of an actor. However, during execution,

further information is needed to represent its dynamic behaviour at runtime: namely the mailbox and the

internal state of the actor. We proceed to formally define this.

Definition 2.4. A local state (or machine configuration) is a triple (s,m,γ), being comprised of a state s,

a finite sequence of terms m, and an environment γ . The sequence of terms m models message queues,

also called actor mailboxes, of unreceived messages, and γ is the actor’s memory. We write ε for the

empty sequence and [t1, . . . , tn] for the sequence comprising n elements with t1 being the head of the

queue. Two sequences m, m′ can be appended, written m ·m′, e.g., [1,2,3] · [4,5] = [1,2,3,4,5].

42 Communicating Actor Automata

2.3 Systems of CAAs: protocols, states, and traces

As with a CFSM model or an Erlang program, computation is described by the communication among

concurrent actors. In order to formally define that, we give an operational semantics to the combination

of several CAAs, called a protocol, through an evaluation step relation between states.

Definition 2.5 (Protocol). A protocol is an indexed family of CAAs, of finite size (or arity) N, written

〈(Si, oi, Fi, L!i, L?i, δi)〉
N
i=1. Each index i represents the unique process identifier of each process.

Definition 2.6 (Global state). A global state (or system configuration) for a protocol comprises a finite

sequence of N local states, written 〈(si,mi,γi)〉
N
i=1 where every si ∈ Si. We denote the set of global states

for a protocol with arity N as GN .

Given a protocol, we may derive what we call an initial global state: before starting, each process has

an empty mailbox, and is in its initial state as defined in its own CAA. This initial state is deterministic:

for any given protocol, there’s a single possible initial state.

Definition 2.7 (Initial global state). For a protocol, the initial global state is 〈(oi, ε , /0)〉N
i=1 ∈ GN , i.e.,

every machine is in its initial state with an empty mailbox, and its mapping from variables to process

identifiers is empty.

In order to use the mailbox semantics, we define a partial function that is defined only if a message

may be accepted at the moment. As in Erlang, we look for each message that’s in the mailbox in order,

and only try the next message if no currently accepting pattern matches. While checking each message,

patterns are checked in the defined order and only the first one that matches will be accepted.

Definition 2.8 (Pick function). We implictly assume a CAA (S, o, F, L!, L?, δ , <) as our context.

Then, the partial function pick(s,m,v) = 〈pat,γ〉 is defined if and only if:

• For all pat ′ ∈ L?, if δ (s,?pat) is defined, then for all vk ∈ m, we have that vk ⊲ pat =⊥;

• For all pat ′ <s pat, we have v⊲ pat ′ =⊥; and

• There is a γ such that v⊲ pat = γ .

Finally, we now can define our semantics through a step relation, which defines what happens to a

global state once one of the current possible transitions is performed.

Definition 2.9 (Step relation). Given a protocol 〈(Si, oi, Fi, L!i, L?i, δi,<i)〉
N
i=1, the relation1 step

denotes the non-deterministic transitions of the overall concurrent system, of type step : GN → P(GN).
We write step(c1) ∋ c2 if c2 is amongst the possible outcomes of step(c1), as defined by the following

two rules:

δi(si,P!t) = s′i γi(P) = j γi(t)→
∗ v

(SEND)
step(〈(si,mi,γi)〉

N
i=1) ∋ 〈...,(s′i,mi,γi), ...,(s j,m j · [v],γ j), ...〉

δ j(s j,?pat) = s′j m j = m · [v] ·m′ pick(s j,m,v) = 〈pat,γ〉
(RECV)

step(〈(si,mi,γi)〉
N
i=1) ∋ 〈...,(s′j,m ·m′,γ j ∪ γ), ...〉

1Notice step can be equivalently thought of as a non-deterministic function (producing many possible global states) or as a

relation from a single input global state to many outcome global states. The definition here declaratively defines this relation.

D. Orchard, M. Munteanu & P. Torrens 43

The first rule, (SEND), actions a send transition with label P!t for a process i in state si resulting in the

state s′i. We lookup the variable P from the process identifier environment γi to get the process identifier

we are sending to, i.e., γi(P) = j, which means we are sending to process j. Notice that as γi is a finite

map, γi(P) =P if P is not in the domain of γi. By abuse of notation, γ(t) replaces occurrences of variables

of γ in t, allowing for the use of internal state, and then we evaluate the resulting term to a value v (which

is denoted by the reduction relation →∗). Subsequently in the resulting global configuration, process i is

now in state s′i and process j has the message v enqueued onto the end of its mailbox in its configuration,

while the states for any other processes is kept the same.

The second rule, (RECV), actions a receive transition with label pat for a process j in state s j resulting

in the process j being in state s′j under the condition that the mailbox m j contains a message v at some

point with prefix m and suffix m′. We use the pick function to check the semantic constraints: we want

to pick the first message v for which some possible pattern matches, and the first one that does so. If

this is the correct pattern, given state, prefix and value, then the value term v will unify with pat to

produce an binding γ . Subsequently, process j is now in state s′j with v removed from its mailbox and

its process identifier environment updated to γ j ∪ γ : its internal state gets updated by any terms matched

while receiving the message. Any states for processes other than j remains the same.

Following that, a way to describe a possible result for computation is through a trace, which rep-

resents a sequence of steps from the initial global state into one possible final state (as step is non-

deterministic, several outcomes are possible). We proceed by formally defining a notion of trace.

Definition 2.10 (Trace). A trace is a sequence of system configurations such that the first one is the initial

global state, and the subsequent states are obtained from applying the step relation onto the previous

configuration. We call a sequence of global states T a trace if it has the form T = 〈t0, t1, ..., tx〉 and

satisfies the following conditions:

• t0 = 〈(oi,ε , /0)〉N
i=1

• step(ti) ∋ ti+1

• step(tx) = /0 where tx is the last term in the trace sequence.

Example 2.2. Recall the mem function from Example 2.1, to which we assign process id 0. We consider a
protocol comprises four machines, with three further machines with process identifiers 1, 2 and 3, given
by the following definitions:

S1 = {c0,c1,c2,c3} o1 = c0 F1 = {c3} L!1 = {{get, 1},{put, X+1}} L?1 = {X}

δ1(c0,0!{get, 1}) = c1 δ1(c1,?X) = c2 δ1(c2,0!{put, X+1}) = c3

S2 = {d0,d1,d2,d3} o2 = d0 F2 = {d3} L!2 = {{get, 2},{put, X+2}} L?2 = {X}

δ2(d0,0!{get, 2}) = d1 δ2(d1,?X) = d2 δ2(d2,0!{put, X+2}) = d3

S3 = {e0,e1} o3 = e0 F3 = {e1} L!3 = {{put, 0}} L?3 = /0

δ3(e0,0!{put, 0}) = e1

The first machine above (process id 1) makes a ‘get’ request to process 0 then receives the result X and

sends back to 0 a ‘put’ message with X+1. The second machine above (process id 2) is similar to the first,

requesting the value from process 0 but then sending back a ‘put’ message with X+2. The third machine

(process id 3) sends to 0 a ‘put’ message with the initial value 0.

We can then get the following trace for the protocol 〈(Si,oi,Fi,L!i,L?i,δi)〉
3
i=1, one of the many

possibilities, demonstrating mobility and the ability to store internal state (we underline the parts of the

configuration which have changed at each step of the trace for clarity):

44 Communicating Actor Automata

〈(s0,ε , /0), (c0,ε , /0), (d0,ε , /0), (e0,ε , /0)〉
〈(s0, [{put,0}], /0), (c0,ε , /0), (d0,ε , /0), (e1,ε , /0)〉

〈(s0,ε ,{S 7→ 0}), (c0,ε , /0), (d0,ε , /0), (e1,ε , /0)〉

〈(s0, [{get,1}],{S 7→ 0}), (c1,ε , /0), (d0,ε , /0), (e1,ε , /0)〉

〈(s1,ε ,{S 7→ 0,P 7→ 1}), (c1,ε , /0), (d0,ε , /0), (e1,ε , /0)〉

〈(s0,ε ,{S 7→ 0,P 7→ 1}), (c1, [0], /0), (d0,ε , /0), (e1,ε , /0)〉

〈(s0,ε ,{S 7→ 0,P 7→ 1}), (c2,ε ,{X 7→ 0}), (d0,ε , /0), (e1,ε , /0)〉

〈(s0, [{put,1}],{S 7→ 0,P 7→ 1}), (c3,ε ,{X 7→ 0}), (d0,ε , /0), (e1,ε , /0)〉

〈(s0, [{put,1},{get,2}],{S 7→ 0,P 7→ 1}), (c3,ε ,{X 7→ 0}), (d1,ε , /0), (e1,ε , /0)〉

〈(s0, [{get,2}],{S 7→ 1,P 7→ 1}), (c3,ε ,{X 7→ 0}), (d1,ε , /0), (e1,ε , /0)〉

〈(s1,ε ,{S 7→ 1,P 7→ 2}), (c3,ε ,{X 7→ 0}), (d1,ε , /0), (e1,ε , /0)〉

〈(s0,ε ,{S 7→ 1,P 7→ 2}), (c3,ε ,{X 7→ 0}), (d1, [1], /0), (e1,ε , /0)〉

〈(s0,ε ,{S 7→ 1,P 7→ 2}), (c3,ε ,{X 7→ 0}), (d2,ε ,{X 7→ 1}), (e1,ε , /0)〉

〈(s0, [{put,3}],{S 7→ 1,P 7→ 2}), (c3,ε ,{X 7→ 0}), (d3,ε ,{X 7→ 1}), (e1,ε , /0)〉

〈(s0,ε ,{S 7→ 3,P 7→ 2}), (c3,ε ,{X 7→ 0}), (d3,ε ,{X 7→ 1}), (e1,ε , /0)〉

3 Characterising CAA systems: race freedom and convergence

We consider how to characterise race conditions between CAAs and identify a subclass of CAA systems

which is race free, or exhibiting convergence. To characterise race conditions, we first define the notion

of what possible messages can be observed as ‘incoming’ to a process at a particular step in a trace. We

define this notion via multisets of messages:

Definition 3.1 (Multiset of messages in a mailbox). Given a mailbox m, we denote by Am the multiset

of elements in m, i.e., there is a way of ‘arranging’ the elements of Am to obtain m.

Definition 3.2 (Incoming messages multiset). Let GN = 〈c1, ...,(si,mi,γi), ...,cN〉 be a global configura-

tion with process i at state si, where the next step of the system gives M possible configurations:

step(GN) = {〈c11, ...,(si1,mi1,γi1), ...,cN 1〉, ...〈c1M, ...,(siM,miM,γiM), ...,cN M〉}

The incoming message multiset Ii represents all the possible incoming messages for process i defined:

Ii = (
M⋃

y=1

Amiy
)−Ami

i.e., we take the union of all the possible mailbox multisets Amiy
for i obtained after a step is taken, from

which is subtracted (multiset difference) the messages in the mailbox of i before that step. That is, the

incoming messages Ii are all possible messages that can be added to the mailbox of i after taking a step.

The definition of I is implicitly parameterised by the starting configuration GN . We will typically

superscript I to denote it occurring at some position x in a trace, i.e., Ix
i .

Remark. We use overloaded notation mi = 〈I0
i , I

1
i , ..., I

n
i 〉 to represent a mailbox where the first message

is drawn from I0
i , second from I1

i and so on. That is, mi = 〈l0i, l1i, ..., lni〉 where lxi ∈ Ix
i .

The mailbox of a process i can now be written as a sequence of multisets of incoming messages,

more precisely a subsequence of 〈I0
i , I

1
i , ..., I

n
i 〉. Thus, mi = 〈Ix0

i , Ix1

i , ..., Ixm

i 〉, where x0 < ... < xm. But

why a subsequence? If message lxi is consumed, then multiset Ix
i disappears from the mailbox.

D. Orchard, M. Munteanu & P. Torrens 45

Remark (Transition function δ notation overloading). Usually a transition function δ has as its argument

a pair of a state and a label. We overload the second part of this pair to allow a multiset such that

δ (s,?Ix
i) = {s′|,∀l ∈ Ix

i ,δ (s,?l) = s′}, i.e., the set of target states for any of the possible messages in Ix
i .

Definition 3.3 (Race condition). For a protocol, a race condition represents the scenario in which there

exists a state that can consume 2 or more messages from the same Ix
i and cannot consume any messages

from the previous mailbox sets. That is:

∀y ∈ [0,x−1]. |δ (s,?I
y
i)|= 0 ∧ |δ (s,?Ix

i)| ≥ 2

Intuitively, if in the current state for a process we can receive 2 or more messages from set Ix
i we are faced

with a race condition, since these messages were sent at the same step and could arrive in any order. This

is represented by the second part of the above conjunction. However, in order for us to reach Ix
i , we need

to not consume any messages before that, hence the first part of the conjunction. If a previous multiset

of messages has just one message we can consume, the race condition will not take place.

Trace convergence and race freedom for systems of two automata We consider a class of binary

CAA systems (i.e., where N = 2) that is race free by showing that its traces always converge, that is, the

system is deterministic. Furthermore, this makes the testing of a two automata system much easier, as

we need only examine one trace to determine the final state of the system.

We recall that our definition of CAAs allows only for a restricted set of transitions: if a state has

a transition, it can only be either some number of receive transition, properly ordered, or a single send

transition. In fact, Erlang’s semantics is such that transitions cannot be mixed in other ways and should

have at most one send transition from any state, a condition we refer to as affine sends. We use this

condition in order to reason about the possibility of non-determinism in a trace.

In the following, we will assume that self-messaging is disallowed: i.e., given any local state (si,mi,γi)
for si ∈ Si, δ (si,P!t) is undefined for any P such that γi(P) = i2. For a class of binary models where no

self messaging is allowed we observe (and formally prove below) that there will be no race conditions.

A pre-requisite of a race condition (Definition 3.3) is that an actor can receive two incoming messages

at the same trace step. By the stated conditions, there can only be one sender of messages at a time and

therefore there is at most one transition for every state of an actor, across all global configurations. Thus,

if a final state is reached then there will only be one possible trace to it.

To prove that we can have at most one transition at a specific time for an actor, we need to look

at the mailbox. Send actions are affine (i.e., deterministic) and so we only need to show that receive

transitions are deterministic. The proof considers two possible scenarios where we have two different

global configurations for the system:

• Automata in both configurations are in states about to send, or both about to receive. Since both

automata are going to perform the same type of action, they will only affect one mailbox; the

mailbox configuration cannot diverge in this case.

• One automata is in a state about to send and the other to receive. If the actor in the receive

state does not have a valid message to consume, the only valid action is the send (i.e., the other

configuration progresses), otherwise both actions would impact the same mailbox making these

two configurations diverge. However the send state is a “constructive” action, which will append a

message at the end of the mailbox, while the receive action is “destructive” consuming a message

from the mailbox, their disjoint nature will result in the convergence of the mailbox.

2This restriction is given to avoid both static messages to self, such as in 1!t, and dynamic ones, such as P!t where P is

bound to 1. A more strict approach would be to require that each process only sends static messages to each other.

46 Communicating Actor Automata

Proposition 3.1 (Convergence). Let X1 = (S1,o1,F1,L!1
,L?1

,δ1) and X2 = (S2,o2,F2,L!2
,L?2

,δ2) form

a protocol of two actors, where there are no mixed transitions, only affine sends, and no self messaging.

Such a protocol, if it converges to a final state, will do so deterministically, i.e., any global configuration

with converge to the same final global configuration, and as a consequence, be race free.

Proof. We prove our desired goal by showing that any two traces T1 and T2 of the same size are the same.

We note that a possible sequence of states must follow a pattern 〈s0, ...,sn〉, for some n, and show that for

any k ≤ n, the prefix of size k of T1 and T2 is the same. Taking k to be n, they are the same. This proof

follows by well-founded induction on k (which has an upper bound):

1. Base case: we take k = 1. Both prefixes should then be 〈s〉, where s is the initial global state. This

follows by definition of a trace, as it deterministically specifies which is the first state for any given

configuration.

2. Inductive step: our inductive assumption says that our prefixes 〈s0...sk〉 match. If k = n, then

we are done. If, however, k ≤ n, then sk is not a final state and we have that T1 = 〈s0...skt1〉
and T2 = 〈s0...skt2〉. We must now show that t1 = t2. Since we can only have one other process

sending messages, we have that ∀ j ∈ [1,k + 1], |I
j+1

i | ≤ 1. Now, since the size of the sets is at

most one, consuming a message would nullify the set, therefore we can represents the mailbox as

a subsequence of the set {I0
i , I

1
i , .., I

k
i }, with mi = 〈Ix1

i , Ix2

i , ...I
xy

i 〉 where x1 < x2 < ... < xy < k+1.

We find the greatest z such that ∀ j ∈ [1,z], |δ (sk,?I
j

i)| = 0. Let Pi be the set of all possible states

after a receive transition. If j = y, then |Pi|= 0, so no messages can be consumed and we stay put

at the same state, otherwise Pi = {s′|∀m ∈ Iz+1
i ,δ (sk,?m) = s′}. Since we can receive at most one

message, |Iz+1
i | ≤ 1 therefore |Pi| ≤ 1, having at most one possible transition, so just one possible

new state. This can’t be zero as we have t1 and t2: thus the list of possible next states has only one

member, and t1 = t2 as expected.

Compatibility in Erlang Early work on CFSMs identified the notion of compatibility between ma-

chines as a key step towards guaranteeing progress of systems [14]. Compatibility is the automata ana-

logue of what is commonly known as duality: that every receive has a corresponding send and vice versa.

A pair of compatible, deterministic machines is then free from deadlock and unspecified receptions [14].

Due to Erlang’s design principles, we might not always care about ending up with an empty mail-

box and admit systems as being compatible even if some messages are not received, leaving remaining

messages in the mailbox. For future work we thus propose ‘tiers’ of final conditions on a system which

characterise, roughly, different levels of compatibility.

In the following, let the set of all possible traces for a system of CAAs be Y .

Definition 3.4. (Tier 1) A system is strongly compatible iff, ∀T ∈ Y, t|T | = 〈(fi,ε ,γi)〉
N
i=1 where fi ∈ Fi,

i.e., no process has any message left in their mailboxes and they have reached final states.

Definition 3.5. (Tier 2) A system is weakly compatible iff, ∀T ∈ Y, t|T | = 〈(fi,mi,γi)〉
N
i=1 where fi ∈ Fi,

i.e., some processes may have some messages left in their mailbox, but all have reached final states.

Definition 3.6. (Tier 3) A system is communication-lacking iff, ∀T ∈ Y, t|T | = 〈(si,ε ,γi)〉
N
i=1 where si ∈

Si/Fi, i.e., processes didn’t reach their final states but can’t continue because of lack of input.

Definition 3.7. (Tier 4) If none of the previous conditions are met, the system is said to be incompatible.

We remark that the system in Example 2.2 is strongly compatible, as all possible traces will end up

with empty mailboxes and in final states.

D. Orchard, M. Munteanu & P. Torrens 47

4 Discussion and Related work

Fowler describes a framework for generating runtime monitors for Erlang/OTP’s gen_server behaviours

from multiparty session types as conceived of in the Scribble language [12]. This leverages the idea, due

to Deniélou and Yoshida [10] of projecting Scribble’s global types (multiparty session types) into local

types, and then implementing local types as CFSMs. It is not clear however to what extent this models

Erlang’s general mailbox semantics. This warrants a further investigation.

A classic mantra of Erlang is to “let it crash” (or “let it fail”). Our model here does not deal with

process failure, although recent models have incorporated such aspects [4]. In the model of Bocchi et

al. [4], actors communicate via unidirectional links to their mailboxes, similar to the structure of CFSMs,

but with increased flexibility in the way that steps occur. The approach doesn’t integrate pattern matching

or dynamic topologies. Mailbox MSCs (Message Sequence Charts) [5, 6], build a message sequent chart

model of processes with a single incoming channel and matching semantics similar in philosophy to

our model but not directly based in the CFSM tradition. A deeper comparison with our approach is

further work. One considerable difference in our approach is the integration of dynamic topologies by

the ‘memory’ environment γ for each process, which enables messages to be sent to a variable which is

a process identifier bound by a preceding receive.

In preliminary work, we have created a tool for extracting a CAA model from the Erlang code,

and also the other way around, generating an Erlang skeleton of concurrent communicating code from

a description of a CAA protocol. Further work includes developing this into a tool for analysis and

specification of Erlang programs. We also note that due to the possibility to describe mobile processes,

we conjecture that Milner’s CPS translations from the λ -calculus into the π-calculus could be adapted to

use CAAs as a target language. If that’s the case, then it follows that CAAs describe a Turing-complete

model of computation, and we intend to investigate this possibility.

Acknowledgments With thanks to Kartik Jalal for insights coming from model extraction of CAAs

from Erlang, Simon Thompson for his Erlang expertise in the early days of this idea, and University

of Kent undergraduates taking CO545: Functional and Concurrent Programming between 2017-20 for

being a test audience for this model and its use in diagnosing race conditions and deadlocks. This work

was partly supported by EPSRC project EP/T013516/1 (Granule). Orchard is also supported in part by

the generosity of Eric and Wendy Schmidt by recommendation of the Schmidt Futures program.

References

[1] Joe Armstrong (1997): The development of Erlang. In: Proceedings of the second ACM SIGPLAN interna-

tional conference on Functional programming, pp. 196–203, doi:10.1145/258948.258967.

[2] Joe Armstrong (2007): A history of Erlang. In: Proceedings of the third ACM SIGPLAN conference on

History of programming languages, pp. 6–1, doi:10.1145/1238844.1238850.

[3] Samik Basu, Tevfik Bultan & Meriem Ouederni (2012): Deciding choreography realizability. ACM SIG-

PLAN Notices 47(1), pp. 191–202, doi:10.1145/2103621.2103680.

[4] Laura Bocchi, Julien Lange, Simon Thompson & A. Laura Voinea (2022): A Model of Actors and Grey Fail-

ures. In Maurice H. ter Beek & Marjan Sirjani, editors: Coordination Models and Languages - 24th IFIP WG

6.1 International Conference, COORDINATION 2022, Held as Part of the 17th International Federated Con-

ference on Distributed Computing Techniques, DisCoTec 2022, Lucca, Italy, June 13-17, 2022, Proceedings,

Lecture Notes in Computer Science 13271, Springer, pp. 140–158, doi:10.1007/978-3-031-08143-9_9.

https://doi.org/10.1145/258948.258967
https://doi.org/10.1145/1238844.1238850
https://doi.org/10.1145/2103621.2103680
https://doi.org/10.1007/978-3-031-08143-9_9

48 Communicating Actor Automata

[5] Benedikt Bollig, Cinzia Di Giusto, Alain Finkel, Laetitia Laversa, Etienne Lozes & Amrita Suresh (2021):

A unifying framework for deciding synchronizability. In: CONCUR 2021-32nd International Conference on

Concurrency Theory, pp. 1–33, doi:10.4230/LIPIcs.CONCUR.2021.14.

[6] Ahmed Bouajjani, Constantin Enea, Kailiang Ji & Shaz Qadeer (2018): On the completeness of verifying

message passing programs under bounded asynchrony. In: Computer Aided Verification: 30th International

Conference, CAV 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 14-17,

2018, Proceedings, Part II 30, Springer, pp. 372–391, doi:10.1007/978-3-319-96142-2_23.

[7] Daniel Brand & Pitro Zafiropulo (1983): On communicating finite-state machines. Journal of the ACM

(JACM) 30(2), pp. 323–342, doi:10.1145/322374.322380.

[8] Richard Carlsson (2001): An introduction to Core Erlang. In: Proceedings of the PLI, 1, Citeseer.

[9] Richard Carlsson, Björn Gustavsson, Erik Johansson, Thomas Lindgren, Sven-Olof Nyström, Mikael Petters-

son & Robert Virding (2000): Core Erlang 1.0 language specification. Information Technology Department,

Uppsala University, Tech. Rep.

[10] Pierre-Malo Deniélou & Nobuko Yoshida (2012): Multiparty session types meet communicating automata.

In: European Symposium on Programming, Springer, pp. 194–213, doi:10.1007/978-3-642-28869-2_10.

[11] Alain Finkel & Etienne Lozes (2017): Synchronizability of communicating finite state machines is not decid-

able. arXiv preprint arXiv:1702.07213, doi:10.48550/arXiv.1702.07213.

[12] Simon Fowler (2016): An Erlang implementation of multiparty session actors. arXiv preprint

arXiv:1608.03321, doi:10.4204/EPTCS.223.3.

[13] Mohamed G Gouda (1984): Closed covers: to verify progress for communicating finite state machines. IEEE

transactions on software engineering (6), pp. 846–855, doi:10.1109/TSE.1984.5010313.

[14] Mohamed G Gouda, Eric G Manning & Yao-Tin Yu (1984): On the progress of communication between two

finite state machines. Information and control 63(3), pp. 200–216, doi:10.1016/S0019-9958(84)80014-5.

[15] Julien Lange, Emilio Tuosto & Nobuko Yoshida (2015): From Communicating Machines to Graphical

Choreographies. In Sriram K. Rajamani & David Walker, editors: Proceedings of the 42nd Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India,

January 15-17, 2015, ACM, pp. 221–232, doi:10.1145/2676726.2676964.

[16] Jan Pachl (2003): Reachability problems for communicating finite state machines. arXiv preprint cs/0306121,

doi:10.48550/arXiv.cs/0306121.

[17] Wuxu Peng & S Purushothaman (1992): Analysis of a class of communicating finite state machines. Acta

Informatica 29(6-7), pp. 499–522, doi:10.1007/BF01185558.

[18] Louis E Rosier & Mohamed G Gouda (1984): Deciding progress for a class of communicating finite state

machines.

https://doi.org/10.4230/LIPIcs.CONCUR.2021.14
https://doi.org/10.1007/978-3-319-96142-2_23
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-642-28869-2_10
https://doi.org/10.48550/arXiv.1702.07213
https://doi.org/10.4204/EPTCS.223.3
https://doi.org/10.1109/TSE.1984.5010313
https://doi.org/10.1016/S0019-9958(84)80014-5
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.48550/arXiv.cs/0306121
https://doi.org/10.1007/BF01185558

Ilaria Castellani and Alceste Scalas (Ed.): 14th Workshop

on Programming Language Approaches to Concurrency and

Communication-cEntric Software (PLACES 2023).

EPTCS 378, 2023, pp. 49–60, doi:10.4204/EPTCS.378.5

© T. Smeele & S. Jongmans

This work is licensed under the

Creative Commons Attribution License.

Choreographic Programming of Isolated Transactions

Ton Smeele

Open University of the Netherlands
Heerlen, the Netherlands

Sung-Shik Jongmans

Open University of the Netherlands
Heerlen, the Netherlands

Centrum Wiskunde & Informatica (CWI)
Amsterdam, the Netherlands

ssj@ou.nl

Implementing distributed systems is hard; choreographic programming aims to make it easier. In this

paper, we present the design of a new choreographic programming language that supports isolated

transactions among overlapping sets of processes. The first idea is to track for every variable which

processes are permitted to use it. The second idea is to use model checking to prove isolation.

1 Introduction

1.1 Background: Choreographic Programming

G

L1 L2 · · · Ln

global program:

projection:

local programs:

Figure 1: Method

Implementing distributed systems is hard; choreographic program-

ming aims to make it easier [8, 10, 37]. Figure 1 shows the idea.

Initially, a distributed system is written as a global program G

(“the choreography”). It implements the behaviour of all processes

collectively, in a sequential programming style (easy to write, but

hard to run as a distributed system). For instance, the following global program implements a distributed

system in which, first, a data object is communicated from Alice to Bob, and second, its hash.

Gab = (a."foo"_b.x) ; (a.hash :=md5("foo")) ; (a.hash_b.y)

Here, p.e_q.y and q.y :=e express inter-process communication and intra-process computation. Com-

munication p.e_q.y implements the output of the value of expression e at process p and the correspond-

ing input into variable y at process q; the transport is asynchronous, reliable, and FIFO. Computation

q.y :=e implements the storage of the value of expression e in variable y at process q.

Subsequently, the distributed system is run as a family of local programs L1, . . . ,Ln, automatically

extracted from the global program through projection. The local programs implement the behaviour of

each process individually, in a parallel programming style (easy to run as a distributed system, but hard

to write). For instance, the following local programs implement Alice and Bob:

La = (ab!"foo") ; (a.hash :=md5("foo")) ; (ab!hash) Lb = (ab?x) ; (ab?y)

Here, send pq!e and receive pq?y implement an output and an input through the channel from p to q.

The keystone assurance of choreographic programming is operational equivalence: methodically, a

global program and its family of local programs are assured to have the same behaviour. To prove prop-

erties of families of local programs, operational equivalence allows us to prove them of global programs

instead. This is typically simpler. A premier example of such a property is absence of deadlocks.

Choreographic programming originated with Carbone et al. [7, 8] (using binary session types [31])

and with Carbone and Montesi [10, 37] (using multiparty session types [32]); substantial progress has

been made since. Montesi and Yoshida developed a theory of compositional choreographic programming

http://dx.doi.org/10.4204/EPTCS.378.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

50 Choreographic Programming of Isolated Transactions

that supports open distributed systems [38]; Carbone et al. studied connections between choreographic

programming and linear logic [6,11]; Dalla Preda et al. combined choreographic programming with dy-

namic adaptation [39–41]; Cruz-Filipe and Montesi developed a minimal Turing-complete language of

global programs [21]; Cruz-Filipe et al. and Kjær et al. presented techniques to extract global programs

from families of local programs [17, 35]; Giallorenzo et al. studied a correspondence between choreo-

graphic programming and multitier languages [27]; Jongmans and Van den Bos combined choreographic

programming with deductive verification [34]; Hirsch and Garg and Cruz-Filipe et al. developed func-

tional choreographic programming languages [16, 30]. Other work includes results on case studies [18],

procedural abstractions [20], asynchronous communication [19], polyadic communication [22, 29], im-

plementability [26], and formalisation/mechanisation in Coq [23,24,30]. These theoretical developments

are supported in practice by several tools [4, 10, 27, 40, 41].

1.2 Open Problem: Isolated Transactions

Suppose we need to implement a distributed system that fulfils the following requirements:

1. A data object and its hash are communicated from both Alice and Carol, in parallel, to Bob.

2. Either Alice’s data object and its hash are eventually stored at Bob, or Carol’s (but no mixture).

Requirement 1 can readily be fulfilled in a choreographic programming language with parallel composi-

tion (free interleaving), as demonstrated in the following global program:

Gv1
acb

= G§1.1
ab

‖ Gcb Gcb = (c."bar"_b.x) ; (c.hash :=md5("bar")) ; (c.hash_b.y)

In contrast, requirement 2 cannot be fulfilled in any choreographic programming language that we know

of (i.e., none of the choreographic programming languages cited in §1.1 seem to be capable of it). What

is needed, is a mechanism to run Gab and Gcb as isolated transactions.

One possibility is to enrich the language with the standard non-deterministic choice operator +. In

that case, the system can be implemented as (Gab ; Gcb) + (Gcb ; Gab). However, such an approach,

in which parallel compositions are explicitly expanded into choices, generally leads to exponentially

sized global programs (in the number of transactions), while obscuring the intention of the system. For

instance, if Dave were added as a third client of Bob, we need to write the following global program:

Gv1
abcd

= (Gab ; ((Gcb ; Gdb) + (Gdb ; Gcb))) +

(Gcb ; ((Gab ; Gdb) + (Gdb ; Gab))) +

(Gdb ; ((Gab ; Gcb) + (Gcb ; Gab)))

Gdb = (d."baz"_b.x) ;

(d.hash :=md5("baz")) ;

(d.hash_b.y)

Moreover, if we want to allow independent segments of transactions, which use disjoint sets of variables,

to overlap to improve performance (i.e., their interleaved execution would not break isolation), then

programmability is further complicated with the non-deterministic choice approach.

To avoid these issues, we propose a more fine-grained approach in this paper that supports eventual

consistency while allowing for interleaved execution of isolated transactions. Instead of manually imple-

menting isolated transactions by enumerating admissible sequences of communications, in our approach,

isolation emerges out of explicit programming language support.

1.3 Contributions of This Paper

We present the design of a new choreographic programming language that supports isolated transactions.

The first idea is to track for each variable which processes are permitted to use it. Initially, each

process is permitted to use each variable. Subsequently, process p can acquire exclusive permission

T. Smeele & S. Jongmans 51

to use variable y of process q. When granted, each usage of y by not-p is blocked until p releases

its exclusive permission. Management of usage permissions is transparant to the programmer; it is a

feature of the programming language. The following global programs demonstrate the syntax and fulfil

requirement 2 in §1.2:

Gv2
acb

= ((a acq b.x) ; G§1.1
ab

; (a rel b.x)) ‖ ((c acq b.x) ; G§1.2
cb

; (c rel b.x))

Gv2
acdb

= Gv2
acb

‖ ((d acq b.x) ; G§1.2
db

; (d rel b.x))

We note that Gv2
acdb

is compositionally constructed out of Gv2
acb

, without the need to refer to sub-programs

Gab and Gcb; this is not possible when parallel compositions are explicitly expanded into choices.

Thus, the idea of tracking usage permissions—and blocking those usages that are forbidden—enables

the programmer to write more compact global programs, intended to better preserve the intention of the

system. However:

– This feature does not guarantee isolation by itself; it is just a means to achieve it. In other words, a

separate mechanism is still needed to check isolation and guarantee it is preserved by projection.

– “Blocking those usages that are forbidden” also has an adverse side-effect: processes that compete

to acquire permission to use the same variables can deadlock. For instance, the following global

program implements a system in which Alice tries to acquire permission to use variables x and y

of Bob, while Carol tries to acquire permission to use the same variables, but in reverse:

(a acq b.x ; a acq b.y ; · · ·) ‖ (c acq b.y ; c acq b.x ; · · ·)

A deadlock arises when Alice acquires permission to use x, while Carol acquires permission to

use y, so neither one of them can acquire permission to use a second variable.1

To address these points, the second idea of this paper is to specify properties, such as isolation and

absence of deadlocks, in temporal logic and use model checking to prove that they are satisfied. We

believe this combination with choreographic programming is new.

2 The Design

systems (§2.6)

programs (§2.3) stores (§2.4) channels (§2.5)

actions (§2.2)

names (§2.1) data (§2.1)

Figure 2: Design

We define a language in which both global pro-

grams and families of local programs can be ex-

pressed. Figure 2 shows the design. It has four

layers: every system is defined in terms of pro-

grams (either a single global one, or multiple local

ones), stores (one for every process), and channels

(one between every pair of processes); every program, store, or channel is defined in terms of actions,

process/channel names, and data; every action is itself defined in terms of names and data, too.

2.1 Names and Data

First, we define: the syntax of names (Definition 1); the syntax of data (Definition 2). As the topic of

interest is “processes that communicate”, instead of “data that are communicated”, we omit most details.

1We note that this is a different source of deadlock than the communication deadlocks that choreographic programming

traditionally avoids (i.e., waiting for a message that is never sent).

52 Choreographic Programming of Isolated Transactions

Definition 1. Let R = {a,b,c, . . .} denote the set of process names, ranged over by p,q,r. Let R×R \
{(r,r) | r ∈ R} denote the set of channel names.

Definition 2. Let X= { ,x,y,z, . . .} denote the set of variables, ranged over by x,y,z. Let V= {unit,
true,false,0,1,2, . . . ,acq,rel} denote the set of values, ranged over by u,v,w. Let E denote the set

of expressions, ranged over by E; it is defined as follows:

E ::= x
∣

∣ u
∣

∣ E1 ==E2

∣

∣ ~E
∣

∣ E1 &&E2

∣

∣ E1 +E2

∣

∣ · · ·

Symbol is a special variable that loses all data written to it, similar to /dev/null in Unix. Symbols

acq and rel are special values to control usage permissions of variables (§2.4).

2.2 Actions

Next, we define: the syntax of actions that processes can execute (Definition 3); functions to retrieve the

“subject” and the “object” of an action (Definition 4). The subject is the process that executes an action;

the object is the channel through which an action is executed, if any.

Definition 3. Let A denote the set of actions, ranged over by α ; it is defined as follows:

α ::= p.E
∣

∣ q.y :=E
∣

∣ pq!E
∣

∣ pq?E
∣

∣

τ

Action p.E implements a test of expression E at process p. Action q.y :=E implements an assignment of

the value of expression E to variable y at process q. Actions pq!E and pq?E implement an asynchronous

send and receive of the value of expression E from process p to process q. Action τ implements idling.

Definition 4. Let subj(α) and obj(α) denote the subject and the object of α ; they are defined as follows:

subj(p.E) = p

subj(pq!E) = p

subj(q.y :=E) = q

subj(pq?y) = q

obj(pq!E) = pq

obj(pq?E) = pq

2.3 Programs

Next, we define: the syntax of programs (Definition 5); a function to extract local programs from a global

program (Definition 6); the operational semantics of programs (Definition 7).

Definition 5. Let P denote the set of programs, ranged over by P,G,L; it is defined as follows:

P ::= 1
∣

∣ α
∣

∣ P1 + P2

∣

∣ P1 ‖ P2

∣

∣ P1 ; P2

Program 1 implements an empty execution. Program P1 + P2 implements a choice between P1 and P2.

Program P1 ‖ P2 implements an interleaving of P1 and P2. Program P1 ; P2 implements a sequence of P1

and P2. Furthermore, we use the following shorthand notation:

p.E _q.y instead of pq!E ; pq?y

p acq q.y instead of (p.acq_q.y) ; (q.unit_ p.)

p acq q.[y1, . . . ,yn] instead of p acq q.y1 ; · · · ; p acq q.yn

p rel q.y instead of p.rel_q.y

p rel q.[y1, . . . ,yn] instead of p rel q.y1 ; · · · ; p rel q.yn

if p.e P1 P2 instead of (p.E ; P1) + (p.~E ; P2)

A program is global if at least two subjects occur in it; it is local if it at most one subject occurs in it.

A local program for process r can be extracted from global program G through projection. The idea is to

replace every action in G of which r is not the subject with τ.

Definition 6. Let P ↾ r denote the projection of P onto r; it is induced by the following equations:

T. Smeele & S. Jongmans 53

α
α
−→ 1

P1
α
−→ P′

1

P1 + P2
α
−→ P′

1

P2
α
−→ P′

2

P1 + P2
α
−→ P′

2

P1
α
−→ P′

1

P1 ‖ P2
α
−→ P′

1 ‖ P2

P2
α
−→ P′

2

P1 ‖ P2
α
−→ P1 ‖ P′

2

P1
α
−→ P′

1

P1 ; P2
α
−→ P′

1 ; P2

subj(α) /∈ {subj(α̂) | P1 → ··· →
α̂
−→} P2

α
−→ P′

2

P1 ; P2
α
−→ P′

2

(a) Programs. Let → ··· → denote a sequence of 0-or-more reductions.

SJEKp = true

S
p.E

−−−−→
p.true

S

SJEKq = v

S
q.y :=E
−−−−→
q.y := v

S[y 7→ v]q

SJEKp = u

S
pq!E
−−−→
pq!u

S S
pq?y
−−→
pq?v

S[y 7→ v]p S
τ

−→
τ

S

(b) Stores

C −→
p.v

C C −−−−→
q.y := v

C

|~v|< n

(~v,n) −−→
pq!u

(u·~v,n) (~u·v,n) −−→
pq?v

(~u,n) C −→
τ

C

(c) Channels

P
α
−→ P′

{P}∪P
α
−→ {P′}∪P

S
α
−→
¯
α

S′ subj(α) = r

{subj(α) 7→ S}∪S
α
−→
¯
α

{subj(α) 7→ S′}∪S

C −→
¯
α

C′ obj(
¯
α) = pq

{pq 7→C}∪C −→
¯
α

{pq 7→C′}∪C

P
α
−→ P ′ S

α
−→
¯
α

S ′ C −→
¯
α

C′

(P,S,C)
α
−→
¯
α

(P ′,S ′,C′)

(d) Systems

Figure 3: Operational semantics

α ↾ subj(α) = α

α ↾ r = τ if: r 6= subj(α)

1 ↾ r = 1

P1 ◦ P2 ↾ r = (P1 ↾ r) ◦ (P2 ↾ r) if: ◦ ∈ {+,‖, ;}

We define the operational semantics of programs through a labelled reduction relation.

Definition 7. Let P
α
−→ P′ denote reduction from P to P′ with α ; it is defined in Figure 3a.

Most rules are standard. The only special rule is the second rule for sequencing: it allows sequences

of actions to be executed out-of-order, so long as they are executed at different processes (i.e., they are

independent; insisting on a sequential order would be unreasonable in a parallel environment). That

is, the left premise of the rule entails that the subject of α does not occur in P1 (cf. the operational

semantics of global multiparty session types). For instance, in a.x :=5 ; b.y :=6, the assignments at

Alice and Bob may be executed out-of-order. In contrast, in a.x :=5 ; a.x+1_b.y, the assignment and

the communication must be executed in-order.

54 Choreographic Programming of Isolated Transactions

2.4 Stores

Next, we define: the syntax of stores (Definition 8); functions to read expressions from a store and write

values to it (Definition 9); the operational semantics of stores (Definition 10).

Definition 8. Let S= (X\{ })⇀ (V×2R) denote the set of stores, ranged over by S.

Storage S(x) = (u,R) means that variable x has value u, and that the processes in R are permitted to use

it. Typically, R ∈ {R}∪{{r} | r ∈ R}: either every process is permitted to use x (if R = R), or only one

process (if R = {r} for some r ∈R). Every process has its own store, but through communications, other

processes can use it, too.

Definition 9. Let SJEKr and S[y 7→ v]r denote the read of E in S by r and the write of v to y in S by r;

they are defined as follows:

SJxKr = u if: S(x) = (u,R) and r ∈ R

SJuKr = u

S[7→ v]r = S

S[y 7→ v]r = {x 7→ S(x) | x 6= y}∪















{y 7→ (v,R)} if: acq 6= v 6= rel

{y 7→ (u,{r})} if: acq= v 6= rel

{y 7→ (u,R)} if: acq 6= v = rel

if: y 6= and S(y) = (u,R) and r ∈ R

SJE1 ==E2Kr = . . .

SJ~EKr = . . .

SJE1 &&E2Kr = . . .

SJE1 +E2Kr = . . .
...

...
...

Writes S[y 7→ acq]r and S[y 7→ rel]r mean that process r tries to acquire or release exclusive permission to

use y, without changing the value; it succeeds only if r already has permission (possibly non-exclusive).

The crux of the definition is that SJEKr and S[y 7→ v]r are undefined when r is not permitted to use

a variable that occurs in E or y. Such undefinedness is leveraged in the operational semantics of stores

(next definition). We note that SJEKr is also undefined when operations are performed on sub-expressions

of incompatible types. For instance, SJ5 + trueKr is undefined. A type system can be used to catch such

errors statically; this is orthogonal to the aim of this paper.

We define the operational semantics of stores through a labelled reduction relation. Every reduction

has two labels: an action (written above the arrow) and the “ground” version of the action (written

below). In the ground version, every expression is replaced by its value, if any.

Definition 10. Let S
α
−→
¯
α

S′ denote reduction from S to S′ with α and
¯
α ; it is defined in Figure 3b.

The first rule states that a test p.E is executed on a store by reading E , if the value of E is true, and if

p has enough permissions. The second rule states that an assignment q.y :=E is executed by reading E ,

and by writing the value of E to y, if q has enough permissions. The third rule states that a send pq!E

is executed by reading E , if p has enough permissions. The fourth rule states that a receive pq?y and

its ground version pq?v are executed by writing v to y, if p has permission to use y (not q; essentially,

we treat receives as remote assignments). If a process does not have enough permissions for a rule to be

applicable, the store cannot reduce, so the action is blocked.

2.5 Channels

Next, we define: the syntax of channels (Definition 11); the operational semantics (Definition 12).

Henceforth, we write ~u for a list of values, and we write v·~u and ~u·v for prefixing and suffixing.

Definition 11. Let C= V
∗×{0,1,2, . . . ,∞} denote a set of channels, ranged over by C.

T. Smeele & S. Jongmans 55

Channel (~u,n) means that its n-capacity buffer contains the values in ~u; the buffer is reliable and FIFO.

We define the operational semantics of channels through a labelled reduction relation. As channels

contain values, every reduction has one label: a ground action (written below the arrow).

Definition 12. Let C −→
¯
α

C′ denote reduction from C to C′ with
¯
α ; it is defined in Figure 3c.

The first and second rule state that a test and an assignment are executed on a channel without really

using it. The third rule states that a send is executed by enqueueing a value to the buffer, if it is not full.

The fourth rule states that a receive is executed by dequeueing a value from the buffer, if it is not empty.

Henceforth, we omit reduction labels when they do not matter.

2.6 Systems

Last, we define: the syntax of systems (Definition 13); the operational semantics (Definition 14); opera-

tional equivalence (Definition 15)

Definition 13. Let PPP= 2P \{ /0} denote the set of (non-empty) sets of programs, ranged over by P. Let

SSS= R⇀ S denote the set of families of stores, ranged over by S . Let CCC = R×R⇀ C denote the set of

families of channels, ranged over by C. Let PPP×SSS×CCC denote the set of systems, ranged over by D.

System (P,S,C) means that the program(s) in P, the stores in S , and the channels in C are executed

together. It is well-formed if there exists a set of processes R = {r1, . . . ,rn} such that the domain of S is

R (every process has a store), and the domain of C is R×R (every pair of processes has a channel), and:

P ∈ {{P} | P is global and every subject that occurs in P occurs in R}∪

{{P1, . . . ,Pn} | for each 1 ≤ i ≤ n, Pri
is local and every subject that occurs in Pri

is ri}

We define the operational semantics of systems through a labelled reduction relation.

Definition 14. Let (P,S,C)
α
−→
¯
α

(P,S,C)′ denote reduction from (P,S,C) to (P,S,C) with α and
¯
α ; it

is defined in Figure 3d.

The first, second, and third rule lift reduction from individual programs, stores, and channels to sets of

programs, families of stores, and families of channels. The fourth rule connects them together.

Two systems are operationally equivalent if they have the same behaviour. We formalise “having

the same behaviour” in terms of branching bisimilarity [28] (in contrast to trace equivalence as usual),

because: it is insensitive to idling; it preserves the validity of formulas in many temporal logics (including

LTL, CTL, CTL∗, and µ-calculus, subject to conditions), which we require to specify properties of global

programs. Two systems (resp. processes, stores, channels, sets of processes, families of stores, families

of channels) are branching bisimilar iff they can repeatedly mimic each other’s reductions, modulo idling.

Definition 15. Let {≈1,≈2, . . .} denote the set of branching bisimulations, ranged over by ≈; it is defined

as follows, coinductively:

• for each D1
τ

−→
τ

∗ D†
1

α
−→
¯
α

D‡
1

τ

−→
τ

∗ D′
1, for some D2

τ

−→
τ

∗ D†
2

α
−→
¯
α

D‡
2

τ

−→
τ

∗ D′
2, D†

1 ≈D†
2, D‡

1 ≈D‡
2, D′

1 ≈D′
2

• for each D2
τ

−→
τ

∗ D†
2

α
−→
¯
α

D‡
2

τ

−→
τ

∗ D′
2, for some D1

τ

−→
τ

∗ D†
1

α
−→
¯
α

D‡
1

τ

−→
τ

∗ D′
1, D†

1 ≈D†
2, D‡

1 ≈D‡
2, D′

1 ≈D′
2

D1 ≈D2

Let ≡=≈1 ∪≈2 ∪ ·· · denote operational equivalence (i.e., the largest branching bisimulation).

56 Choreographic Programming of Isolated Transactions

The following proposition states that operational equivalence of sets of programs implies that of the

systems they constitute. Specifically, if P is a global program, and if {P} ≡ {P ↾ r | r is a subject of P},

then the local programs extracted from P have the same behaviour as P in any initial stores and channels.

In the absence of loops, as in this paper, checking P1 ≡P2 is clearly decidable; in the presence of loops,

it is not. We leave decidable approximations of ≡ (e.g., well-formedness conditions on the syntax of

choices, as usual) for future work, when we extend our work with loops.

Proposition 1. For all S,C, if P1 ≡ P2, then (P1,S,C)≡ (P2,S,C).

2.7 Properties

To prove properties, we adopt a state-based temporal logic in the style of CTL [25]. We are primarily

interested in two classes of properties (although other classes may be specified, too): isolation of transac-

tions and absence of deadlock; our logic has special predicates to formulate such properties. The need to

explicitly prove absence of deadlock arises from the fact that systems in this paper are not deadlock-free

by construction. For instance, any system that consists of the following program can deadlock (elabora-

tion of the last example in §1.3):

Gv3
acb

= ((a acq b.[x,y]) ; G§1.1
ab

; (a rel b.[x,y])) ‖ ((c acq b.[y,x]) ; G§1.2
cb

; (c rel b.[x,y]))

The problem is that Alice acquires x and y (in that order), while Carol acquires y and x (in that order).

Definition 16. Let F denote the set of formulas, ranged over by ϕ ; it is defined as follows:

ϕ ::= ⊤
∣

∣ ¬ϕ
∣

∣ ϕ1 ∧ϕ2

∣

∣ EG(ϕ)
∣

∣ EU(ϕ1,ϕ2)
∣

∣ p.E
∣

∣ AXq.y(ϕ)
∣

∣ dead

Formula ⊤ specifies truth. Formulas ¬ϕ and ϕ1 ∧ϕ2 specify negation and conjunction. Formula EG(ϕ)
specifies that, in some branch, ϕ is always true. Formula EU(ϕ1,ϕ2) specifies that, in some branch, ϕ1

is true until ϕ2 is true. Formula p.E specifies proposition E at p. Formula AXq.y(ϕ) specifies that ϕ

is true next if variable y at process q was changed. Formula dead specifies the presence of deadlock.

Furthermore, we use the following shorthand notation (standard):

⊥ instead of ¬⊤

φ1 ∨φ2 instead of ¬(¬φ1 ∧¬φ2)

AG(ϕ) instead of EU(⊤,¬ϕ)

AU(ϕ1,ϕ2) instead of ¬(EU(¬ϕ2,¬(ϕ1 ∨ϕ2))∨EG(¬ϕ2))

Definition 17. Let D |= ϕ denote entailment of ϕ by D; it is defined as follows:

D |=⊤

D 6|= ϕ

D |= ¬ϕ

D |= ϕ1 D |= ϕ2

D |= ϕ1 ∧ϕ2

D −→D′ D |= ϕ D′ |= EG(ϕ)

D |= EG(ϕ)

D |= ϕ2

D |= EU(ϕ1,ϕ2)

D −→D′ D |= ϕ1 D′ |= EU(ϕ1,ϕ2)

D |= EU(ϕ1,ϕ2)

S
p.E

−−−−→
p.true

S

(P,S,C) |= p.E

for each (P,S,C) −→ (P ′,S ′,C′)
if S(q)(y) 6= S ′(q)(y), then (P ′,S ′,C′) |= ϕ

(P,S,C) |= AXq.y(ϕ)

P −→
(P,S,C) 6→

(P,S,C) |= dead

The rules on the first two lines are the standard ones for CTL. The first rule on the third line states that a

proposition is true if the corresponding test succeeds. The second rule on the third line states that every

reduction that changes variable y at process q must make ϕ true. The third rule on the third line states that

the presence of deadlock is true if the set of programs can reduce, but the system cannot (i.e., program

reduction is blocked by stores and/or channels).

T. Smeele & S. Jongmans 57

In the absence of loops, as in this paper, the model checking problem is decidable: it is straight-

forward to adapt classical model checking algorithms for CTL (e.g., Clarke et al. [13]) to also support

our formulas p.E , AXq.y(ϕ), and dead. If a global program G satisfies operational equivalence, then it

suffices to model check the system that consists of G instead of model checking the system that consists

of G’s projections; the former is generally much more efficient as the state space of G’s projections can

be exponentially larger than that of G (due to τ-reductions of the projections).

2.8 Examples

We end this section with some examples. Let:

S = {a 7→ {hash 7→ 0},b 7→ {x 7→ "",y 7→ 0},c 7→ {hash 7→ 0}}

C = {pq 7→ (ǫ,∞) | p,q ∈ {a,b,c} and p 6= q}

In words, S is an initial family of stores (for Alice, Bob, and Carol) in which all variables have default

values, while C is an initial family of empty channels (between Alice, Bob, and Carol). Furthermore, in

addition to Gv1
acb

in §1.2, Gv2
acb

in §1.3, and Gv3
acb

in §2.7, let:

Gv4
acb

= ((a acq b.x) ; G§1.1
ab

; (a rel b.x)) ‖ G§1.2
cb

Gv5
acb

= (G§1.1
ab

; G§1.2
cb

) + (G§1.2
cb

; G§1.1
ab

)

– Regarding isolation of transactions, the property to be proved can be specified as follows:

ϕ = AG(AXb.x(AU(AXb.x(⊥)∧AXb.y(⊥),AXb.y(b.(md5(x)== y)))))

That is: in all branches, always (AG), if x is changed at Bob (AXb.x), it is not changed again

(AXb.x(⊥)) until y is changed at Bob (AXb.y) such that x and y are consistent (b.(md5(x) == y)).

System ({Gv1
acb

},S,C) violates ϕ , as informally explained in §1.2. System ({Gv2
acb

},S,C) satisfies

ϕ , as Alice and Carol acquire exclusive permission to use x and y at Bob. System ({Gv3
acb

},S,C)
also satisfies ϕ : when the system does deadlock, it does so before x at Bob is changed; when it does

not deadlock, Alice and Carol acquire exclusive permission. System ({Gv4
acb

},S,C) violates ϕ :

while G§1.1
ab

runs as an isolated transaction (as Alice does acquire exclusive permission), G§1.2
cb

is not

(as Carol does not). System ({Gv5
acb

},S,C) satisfies ϕ , too, but it violates operational equivalence.

– Regarding absence of deadlocks, the property to be proved can be specified as ϕ = AG(¬dead).
Systems ({Gv1

acb
},S,C), ({Gv2

acb
},S,C), ({Gv4

acb
},S,C), and ({Gv5

acb
},S,C) satisfy ϕ . In contrast,

system ({Gv3
acb

},S,C) violates ϕ .

3 Conclusion

3.1 Related Work

Advances in choreographic programming were cited in §1.1. Outside choreographic programming, clos-

est to our work are mechanisms in the literature on session types to assure mutual exclusion. In the

literature on binary session types, mutual exclusion and related patterns are supported in the work of

Balzer et al. [1] (without deadlock freedom) and by Balzer et al. and Kokke et al. [2, 36] (with deadlock

freedom) in the form of typing disciplines for linear and shared channels. In the literature multiparty

session types, mutual exclusion is supported in the work of Voinea et al. [42] in the form of a typing

discipline for linear and shared channels in the special case when multiple processes together implement

a single role. More generally, parallel composition has been studied in the context of multiparty session

typing in several ways: through static interleaving of types (e.g., [32,33]); through dynamic interleaving

of programs (e.g., [3, 14]); through a combination of those two (e.g., in the form of nesting [9, 12]).

58 Choreographic Programming of Isolated Transactions

3.2 This Work

We presented the design of a new choreographic programming language that supports isolated transac-

tions among overlapping sets of processes. The first idea was to track for every variable which processes

are permitted to use it. The second idea was to use model checking to prove isolation. This paper is our

first one in which we pursue these ideas. We believe there is plenty of room to explore alternative designs

and/or refine our work as presented. Examples include new primitives in the choreographic programming

language to implement programs and new modalities in the temporal logic to specify properties.

3.3 Future Work

On the theoretical side, we see three main avenues. First, we aim to extend the choreographic pro-

gramming language with primitives that guarantee isolation and absence of deadlocks by construction.

One possible design is a primitive of the form “isolate P” that implements P as an isolated transaction.

The challenge is to define the operational semantics such that exclusive permission of variables is auto-

matically acquired as late as possible, and released as soon as possible, while avoiding deadlocks (e.g.,

by imposing a total order on variables). Second, we aim to study an extension of our choreographic

programming language with loops. Third, we aim to investigate symbolic methods to prove properties.

On the practical side, we are now developing a proof-of-concept implementation of the design in the

form of a compiler from our choreographic programming language to mCRL2 [5, 15]. On input of a

global program, the compiler extracts a family of local programs through projection and translates both

the global program and its family to mCRL2 specifications. Using the mCRL2 toolset, we can then check

properties of the global program (µ-calculus versions of our CTL formulas) and operational equivalence.

References

[1] Stephanie Balzer & Frank Pfenning (2017): Manifest sharing with session types. Proc. ACM Program. Lang.

1(ICFP), pp. 37:1–37:29, doi:10.1145/3110281.

[2] Stephanie Balzer, Bernardo Toninho & Frank Pfenning (2019): Manifest Deadlock-Freedom for Shared Ses-

sion Types. In: ESOP, Lecture Notes in Computer Science 11423, Springer, pp. 611–639, doi:10.1007/

978-3-030-17184-1_22.

[3] Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-Ciancaglini & Nobuko

Yoshida (2008): Global Progress in Dynamically Interleaved Multiparty Sessions. In: CONCUR, Lecture

Notes in Computer Science 5201, Springer, pp. 418–433, doi:10.1007/978-3-540-85361-9_33.

[4] Petra van den Bos & Sung-Shik Jongmans (2023): VeyMont: Parallelising Verified Programs Instead of

Verifying Parallel Programs. In: FM, Lecture Notes in Computer Science 14000, Springer, pp. 321–339,

doi:10.1007/978-3-031-27481-7_19.

[5] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger

Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems

- Improvements in Expressivity and Usability. In: TACAS (2), Lecture Notes in Computer Science 11428,

Springer, pp. 21–39, doi:10.1007/978-3-030-17465-1_2.

[6] Marco Carbone, Luı́s Cruz-Filipe, Fabrizio Montesi & Agata Murawska (2018): Multiparty Classical Chore-

ographies. In: LOPSTR, Lecture Notes in Computer Science 11408, Springer, pp. 59–76, doi:10.1007/

978-3-030-13838-7_4.

[7] Marco Carbone, Kohei Honda & Nobuko Yoshida (2007): Structured Communication-Centred Programming

for Web Services. In: ESOP, Lecture Notes in Computer Science 4421, Springer, pp. 2–17, doi:10.1007/

978-3-540-71316-6_2.

https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-540-85361-9_33
https://doi.org/10.1007/978-3-031-27481-7_19
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-030-13838-7_4
https://doi.org/10.1007/978-3-030-13838-7_4
https://doi.org/10.1007/978-3-540-71316-6_2
https://doi.org/10.1007/978-3-540-71316-6_2

T. Smeele & S. Jongmans 59

[8] Marco Carbone, Kohei Honda & Nobuko Yoshida (2012): Structured Communication-Centered Program-

ming for Web Services. ACM Trans. Program. Lang. Syst. 34(2), pp. 8:1–8:78, doi:10.1145/2220365.

2220367.

[9] Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann & Philip Wadler (2016): Coherence

Generalises Duality: A Logical Explanation of Multiparty Session Types. In: CONCUR, LIPIcs 59, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 33:1–33:15, doi:10.4230/LIPIcs.CONCUR.2016.33.

[10] Marco Carbone & Fabrizio Montesi (2013): Deadlock-freedom-by-design: multiparty asynchronous global

programming. In: POPL, ACM, pp. 263–274, doi:10.1145/2429069.2429101.

[11] Marco Carbone, Fabrizio Montesi & Carsten Schürmann (2018): Choreographies, logically. Distributed

Comput. 31(1), pp. 51–67, doi:10.1007/s00446-017-0295-1.

[12] Marco Carbone, Fabrizio Montesi, Carsten Schürmann & Nobuko Yoshida (2017): Multiparty session types

as coherence proofs. Acta Informatica 54(3), pp. 243–269, doi:10.1007/s00236-016-0285-y.

[13] Edmund M. Clarke, E. Allen Emerson & A. Prasad Sistla (1986): Automatic Verification of Finite-State

Concurrent Systems Using Temporal Logic Specifications. ACM Trans. Program. Lang. Syst. 8(2), pp. 244–

263, doi:10.1145/5397.5399.

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida & Luca Padovani (2016): Global progress

for dynamically interleaved multiparty sessions. Mathematical Structures in Computer Science 26(2), pp.

238–302, doi:10.1017/S0960129514000188.

[15] Sjoerd Cranen, Jan Friso Groote, Jeroen J. A. Keiren, Frank P. M. Stappers, Erik P. de Vink, Wieger Wesselink

& Tim A. C. Willemse (2013): An Overview of the mCRL2 Toolset and Its Recent Advances. In: TACAS,

Lecture Notes in Computer Science 7795, Springer, pp. 199–213, doi:10.1007/978-3-642-36742-7_15.

[16] Luı́s Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi & Marco Peressotti (2022): Functional

Choreographic Programming. In: ICTAC, Lecture Notes in Computer Science 13572, Springer, pp. 212–237,

doi:10.1007/978-3-031-17715-6_15.

[17] Luı́s Cruz-Filipe, Kim S. Larsen & Fabrizio Montesi (2017): The Paths to Choreography Extraction. In: FoS-

SaCS, Lecture Notes in Computer Science 10203, pp. 424–440, doi:10.1007/978-3-662-54458-7_25.

[18] Luı́s Cruz-Filipe & Fabrizio Montesi (2016): Choreographies in Practice. In: FORTE, Lecture Notes in

Computer Science 9688, Springer, pp. 114–123, doi:10.1007/978-3-319-39570-8_8.

[19] Luı́s Cruz-Filipe & Fabrizio Montesi (2017): Encoding asynchrony in choreographies. In: SAC, ACM, pp.

1175–1177, doi:10.1145/3019612.3019901.

[20] Luı́s Cruz-Filipe & Fabrizio Montesi (2017): Procedural Choreographic Programming. In: FORTE, Lecture

Notes in Computer Science 10321, Springer, pp. 92–107, doi:10.1007/978-3-319-60225-7_7.

[21] Luı́s Cruz-Filipe & Fabrizio Montesi (2020): A core model for choreographic programming. Theor. Comput.

Sci. 802, pp. 38–66, doi:10.1016/j.tcs.2019.07.005.

[22] Luı́s Cruz-Filipe, Fabrizio Montesi & Marco Peressotti (2018): Communications in choreographies, revisited.

In: SAC, ACM, pp. 1248–1255, doi:10.1145/3167132.3167267.

[23] Luı́s Cruz-Filipe, Fabrizio Montesi & Marco Peressotti (2021): Certifying Choreography Compila-

tion. In: ICTAC, Lecture Notes in Computer Science 12819, Springer, pp. 115–133, doi:10.1007/

978-3-030-85315-0_8.

[24] Luı́s Cruz-Filipe, Fabrizio Montesi & Marco Peressotti (2021): Formalising a Turing-Complete Choreo-

graphic Language in Coq. In: ITP, LIPIcs 193, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp.

15:1–15:18, doi:10.4230/LIPIcs.ITP.2021.15.

[25] E. Allen Emerson & Edmund M. Clarke (1982): Using Branching Time Temporal Logic to Synthesize Syn-

chronization Skeletons. Sci. Comput. Program. 2(3), pp. 241–266, doi:10.1016/0167-6423(83)90017-5.

[26] Saverio Giallorenzo, Fabrizio Montesi & Maurizio Gabbrielli (2018): Applied Choreographies. In: FORTE,

Lecture Notes in Computer Science 10854, Springer, pp. 21–40, doi:10.1007/978-3-319-92612-4_2.

https://doi.org/10.1145/2220365.2220367
https://doi.org/10.1145/2220365.2220367
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/s00446-017-0295-1
https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1145/5397.5399
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1007/978-3-642-36742-7_15
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-662-54458-7_25
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1145/3019612.3019901
https://doi.org/10.1007/978-3-319-60225-7_7
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1145/3167132.3167267
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.1007/978-3-030-85315-0_8
https://doi.org/10.4230/LIPIcs.ITP.2021.15
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1007/978-3-319-92612-4_2

60 Choreographic Programming of Isolated Transactions

[27] Saverio Giallorenzo, Fabrizio Montesi, Marco Peressotti, David Richter, Guido Salvaneschi & Pascal

Weisenburger (2021): Multiparty Languages: The Choreographic and Multitier Cases (Pearl). In: ECOOP,

LIPIcs 194, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 22:1–22:27, doi:10.4230/LIPIcs.

ECOOP.2021.22.

[28] Rob J. van Glabbeek & W. P. Weijland (1996): Branching Time and Abstraction in Bisimulation Semantics.

J. ACM 43(3), pp. 555–600, doi:10.1145/233551.233556.

[29] Thomas T. Hildebrandt, Tijs Slaats, Hugo A. López, Søren Debois & Marco Carbone (2019): Declarative

Choreographies and Liveness. In: FORTE, Lecture Notes in Computer Science 11535, Springer, pp. 129–

147, doi:10.1007/978-3-030-21759-4_8.

[30] Andrew K. Hirsch & Deepak Garg (2022): Pirouette: higher-order typed functional choreographies. Proc.

ACM Program. Lang. 6(POPL), pp. 1–27, doi:10.1145/3498684.

[31] Kohei Honda, Vasco Thudichum Vasconcelos & Makoto Kubo (1998): Language Primitives and Type Dis-

cipline for Structured Communication-Based Programming. In: ESOP, Lecture Notes in Computer Science

1381, Springer, pp. 122–138, doi:10.1007/BFb0053567.

[32] Kohei Honda, Nobuko Yoshida & Marco Carbone (2008): Multiparty asynchronous session types. In: POPL,

ACM, pp. 273–284, doi:10.1145/1328438.1328472.

[33] Kohei Honda, Nobuko Yoshida & Marco Carbone (2016): Multiparty Asynchronous Session Types. J. ACM

63(1), pp. 9:1–9:67, doi:10.1145/2827695.

[34] Sung-Shik Jongmans & Petra van den Bos (2022): A Predicate Transformer for Choreographies - Comput-

ing Preconditions in Choreographic Programming. In: ESOP, Lecture Notes in Computer Science 13240,

Springer, pp. 520–547, doi:10.1007/978-3-030-99336-8_19.

[35] Bjørn Angel Kjær, Luı́s Cruz-Filipe & Fabrizio Montesi (2022): From Infinity to Choreographies - Extraction

for Unbounded Systems. In: LOPSTR, Lecture Notes in Computer Science 13474, Springer, pp. 103–120,

doi:10.1007/978-3-031-16767-6_6.

[36] Wen Kokke, J. Garrett Morris & Philip Wadler (2020): Towards Races in Linear Logic. Log. Methods

Comput. Sci. 16(4), doi:10.23638/LMCS-16(4:15)2020.

[37] Fabrizio Montesi (2013): Choreographic Programming. Ph.D. Thesis, IT University of Copenhagen.

https://www.fabriziomontesi.com/files/choreographic-programming.pdf.

[38] Fabrizio Montesi & Nobuko Yoshida (2013): Compositional Choreographies. In: CONCUR, Lecture Notes

in Computer Science 8052, Springer, pp. 425–439, doi:10.1007/978-3-642-40184-8_30.

[39] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese & Jacopo Mauro (2015): Dynamic

Choreographies - Safe Runtime Updates of Distributed Applications. In: COORDINATION, Lecture Notes

in Computer Science 9037, Springer, pp. 67–82, doi:10.1007/978-3-319-19282-6_5.

[40] Mila Dalla Preda, Maurizio Gabbrielli, Saverio Giallorenzo, Ivan Lanese & Jacopo Mauro (2017): Dy-

namic Choreographies: Theory And Implementation. Log. Methods Comput. Sci. 13(2), doi:10.1007/

BF01221097.

[41] Mila Dalla Preda, Saverio Giallorenzo, Ivan Lanese, Jacopo Mauro & Maurizio Gabbrielli (2014): AIOCJ: A

Choreographic Framework for Safe Adaptive Distributed Applications. In: SLE, Lecture Notes in Computer

Science 8706, Springer, pp. 161–170, doi:10.1007/978-3-319-11245-9_9.

[42] A. Laura Voinea, Ornela Dardha & Simon J. Gay (2019): Resource Sharing via Capability-Based Multiparty

Session Types. In: IFM, Lecture Notes in Computer Science 11918, Springer, pp. 437–455, doi:10.1007/

978-3-030-34968-4_24.

https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.4230/LIPIcs.ECOOP.2021.22
https://doi.org/10.1145/233551.233556
https://doi.org/10.1007/978-3-030-21759-4_8
https://doi.org/10.1145/3498684
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-030-99336-8_19
https://doi.org/10.1007/978-3-031-16767-6_6
https://doi.org/10.23638/LMCS-16(4:15)2020
https://www.fabriziomontesi.com/files/choreographic-programming.pdf
https://doi.org/10.1007/978-3-642-40184-8_30
https://doi.org/10.1007/978-3-319-19282-6_5
https://doi.org/10.1007/BF01221097
https://doi.org/10.1007/BF01221097
https://doi.org/10.1007/978-3-319-11245-9_9
https://doi.org/10.1007/978-3-030-34968-4_24
https://doi.org/10.1007/978-3-030-34968-4_24

	Introduction
	The Syntax of Kinds, Types and Expressions
	Kind Inference
	Future Work
	Introduction
	Overview on Lang-n-Change
	A GSOS Validator
	New Macros for Lang-n-Change
	A GSOS Validator in Lang-n-Change

	Evaluation
	Related Work
	Conclusion
	Introduction
	Syntax and semantics of calculus
	Types and subtyping
	Typing rules
	Concluding remarks
	1 Introduction
	1.1 Communicating Finite-State Machines

	2 A variant of CFSMs for Erlang
	2.1 Erlang basic definitions
	2.2 CAAs for individual processes
	2.3 Systems of CAAs: protocols, states, and traces

	3 Characterising CAA systems: race freedom and convergence
	4 Discussion and Related work
	Introduction
	Background: Choreographic Programming
	Open Problem: Isolated Transactions
	Contributions of This Paper

	The Design
	Names and Data
	Actions
	Programs
	Stores
	Channels
	Systems
	Properties
	Examples

	Conclusion
	Related Work
	This Work
	Future Work

