
EPTCS 407

Proceedings of the

14th International Workshop on

Non-Classical Models of Automata and

Applications

Göttingen, Germany, 12-13 August 2024

Edited by: Florin Manea and Giovanni Pighizzini

Published: 11th September 2024

DOI: 10.4204/EPTCS.407

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Florin Manea and Giovanni Pighizzini

Complexities of One-way Jumping Finite Automata . 1

Szilárd Zsolt Fazekas, Robert Mercaş and Luca Prigioniero

A New Notion of Regularity: Finite State Automata Accepting Graphs . 5

Yvo Ad Meeres

A GLR-like Parsing Algorithm for Three-Valued Interpretations of Boolean Grammars with Strong

Negation . 27

Patrik Adrián and György Vaszil

Determinism in Multi-Soliton Automata . 44

Henning Bordihn and Helena Schulz

Operational State Complexity of Block Languages . 59

Guilherme Duarte, Nelma Moreira, Luca Prigioniero and Rogério Reis

Winning Strategies for the Synchronization Game on Subclasses of Finite Automata 77

Henning Fernau , Carolina Haase, Stefan Hoffmann and Mikhail Volkov

How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars 86

Martin Havel, Zbyněk Křivka and Alexander Meduna

Non-Global Parikh Tree Automata . 100

Luisa Herrmann and Johannes Osterholzer

Various Types of Comet Languages and their Application in External Contextual Grammars 118

Marvin Ködding and Bianca Truthe

Complexity of Unary Exclusive Nondeterministic Finite Automata . 136

Martin Kutrib, Andreas Malcher and Matthias Wendlandt

Repetitive Finite Automata With Translucent Letters . 150

František Mráz and Friedrich Otto

5’ -> 3’ Watson-Crick Automata accepting Necklaces . 168

Benedek Nagy

ii

Complexity Aspects of the Extension of Wagner’s Hierarchy to k-Partitions . 186

Vladimir Podolskii and Victor Selivanov

Large Language Models and the Extended Church-Turing Thesis . 198

Jiří Wiedermann and Jan van Leeuwen

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024

EPTCS 407, 2024, pp. iii–iv, doi:10.4204/EPTCS.407.0

© Florin Manea, Giovanni Pighizzini

This work is licensed under the

Creative Commons Attribution License.

Preface

Florin Manea

University of Göttingen, Germany

florin.manea@cs.uni-goettingen.de

Giovanni Pighizzini

Università degli Studi di Milano

pighizzini@di.unimi.it

The Fourteenth International Workshop on Non-Classical Models of Automata and Applications

(NCMA 2024) was held in Göttingen, Germany, on August 12 and 13, 2024, at the historic Georg-

Augustus-Universität, organized by the Theoretical Computer Science research group of the respective

university. The NCMA workshop series was established in 2009 as an annual event for researchers

working on non-classical and classical models of automata, grammars or related devices. Such models

are investigated both as theoretical models and as formal models for applications from various points of

view. The goal of the NCMA workshop series is to exchange and develop novel ideas in order to gain

deeper and interdisciplinary coverage of this particular area that may foster new insights and substantial

progress.

The previous NCMA workshops took place in Wrocław, Poland (2009), Jena, Germany (2010),

Milano, Italy (2011), Fribourg, Switzerland (2012), Umeå, Sweden (2013), Kassel, Germany (2014),

Porto, Portugal (2015), Debrecen, Hungary (2016), Prague, Czech Republic (2017), Koǎice, Slovakia

(2018), Valencia, Spain (2019). Due to the Covid-19 pandemic there was no NCMA workshop in 2020

and 2021. After that, the series returned to Debrecen (2022) and then continued in Famagusta, North

Cyprus (2023).

The Fourteenth edition, in Göttingen, Germany, was co-located with the 28th International Confer-

ence on Developments in Language Theory (DLT 2024, 12-16 August).

The invited lectures at NCMA 2024 have been the following:

• Martin Kutrib (Gießen, Germany): Cellular Automata: From Black-and-White to High Gloss

Color (joint invited lecture with DLT 2024)

• Robert Mercaş (Loughborough, UK): Complexities of One-way Jumping Finite Automata

The 13 regular contributions have been selected out of 17 submissions by a total of 38 authors from

10 different countries by the following members of the Program Committee:

• Marcella Anselmo (Salerno, Italy)

• Péter Battyányi (Debrecen, Hungary)

• Martin Berglund (Umeå, Sweden)

• Erzsébet Csuhaj-Varjú (Budapest, Hungary)

• Joel Day (Loughborough, UK)

• Pamela Fleischmann (Kiel, Germany)

• Tore Koß(Göttingen, Germany)

• Zbyněk Křivka (Brno, Czech Republic)

• Andreas Malcher (Gießen, Germany)

• Florin Manea (Göttingen, Germany, chair)

http://dx.doi.org/10.4204/EPTCS.407.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

iv Preface

• Victor Mitrana (Madrid, Spain)

• Giovanni Pighizzini (Milano, Italy, chair)

• Dana Pardubska (Bratislava, Slovak Republic)

• Luca Prigioniero (Loughborough, UK)

• Stefan Siemer (Göttingen, Germany)

• Bianca Truthe (Gießen, Germany)

• Brink Van Der Merwe (Stellenbosch, South Africa)

• Petra Wolf (Bordeaux, France)

A special issue of the Journal of Automata, Languages and Combinatorics containing extended ver-

sions of selected contributions to NCMA 2024 will also be edited after the workshop. The extended

papers will undergo the standard refereeing process of the journal.

We are grateful to the two invited speakers, to all authors who submitted a paper to NCMA 2024,

to all members of the Program Committee, their colleagues who helped evaluating the submissions, and

to the members of the Theoretical Computer Science research group of the University of Göttingen who

were involved in the local organization of NCMA 2024.

August 2024

Florin Manea

Giovanni Pighizzini

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 1–4, doi:10.4204/EPTCS.407.1

© S.Z. Fazekas, R. Mercaş & L. Prigioniero
This work is licensed under the
Creative Commons Attribution License.

Complexities of One-way Jumping Finite Automata

Szilárd Zsolt Fazekas
Akita University, Department of Mathematical

Science and Electrical-Electronic-Computer Engineering
szilard.fazekas@ie.akita-u.ac.jp

Robert Mercaş Luca Prigioniero
Loughborough University, Department of Computer Science

R.G.Mercas@lboro.ac.uk L.Prigioniero@lboro.ac.uk

Words are an integral part of computer science, and their classical sequential processing is reflected
by machines accepting various classes of languages of the Chomsky hierarchy. However, since already
the 70’s there has been keen interest, when considering words or languages of words, on presentations
of these sequences in the form of nonconsecutive symbols, i.e., [17, 13]. Within last thirty years, non-
classical models of automata have captured more and more attention, with the introduction of several
such models, i.e., restarting automata [11], jumping automata [14], input revolving automata [4] and
automata with translucent letters [16].

One-way jumping finite automata (OWJFA) were introduced [5] as a non-sequential processing
model of deterministic finite automata (DFA) that is more restrictive, with respect to the extra opera-
tions, than the general jumping automata introduced in [14]. The former two coincide in fact in the case
of complete DFAs, since the extra capabilities of the OWJFA stem precisely from the missing transitions
on any state in the classical DFA. At the same time, due to their restrictive definition of ‘jumping’ that
is only possible in the previously described case of a sequential read, they represent a natural restric-
tion of the model defined in [14]. To this end, they also represent a restriction of the (right) revolving
automata [4], where the revolving operation maintains the state it starts in (see [5]).

In a nutshell, OWJFAs are specified in exactly the same way as DFAs while allowing partial transition
functions, see Fig. 1. The only behavioural difference is when arriving at a tape symbol for which the
current state has no defined outgoing transition. In the classical case such inputs are rejected, in the
jumping mode these are irrelevant since we can jump anywhere on the tape, while in the revolving case
the only possibility is for a revolving operation to be applied, should one such operation be specified for
the current state and symbol. In the one-way jumping mode these symbols are skipped temporarily, but
must be processed later, i.e., the relative order of the skipped symbols is maintained, with the automaton
moving back to the beginning after each pass (called sweeps, see Fig. 2), and seeing only the symbols
previously skipped. Therefore one can also view this model as a type of DFA with a circular input tape,

q0 q1

a

b

Figure 1: OWJFA A accepting the lan-
guage L(A) = {w∈ {a,b}∗ | |w|a = |w|b}

position : 0 1 2 3 4 5 6 7 8 9
input a a a a b b a b b b

after sweep 1 ε a a a ε b ε ε b b
after sweep 2 ε ε a a ε ε ε ε b b
after sweep 3 ε ε ε a ε ε ε ε ε b
after sweep 4 ε ε ε ε ε ε ε ε ε ε

Figure 2: Computation for aaaabbabbb by OWJFA A

http://dx.doi.org/10.4204/EPTCS.407.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Complexities OWJFA

always jumping clockwise, reading and consuming the nearest letter for which it has a defined transition
from the current state.

While [5, 1] investigate various properties of the accepted language class, the decidability questions
that arise from these have been settled [2]. Considering the one-way jumping processing mode, authors
also investigated more powerful machines corresponding to the classical models, i.e., nondeterministic
finite automata [3, 6], two-way finite automata [7], pushdown automata and linear bounded automata [6].
While the language classes defined by the models have no nontrivial closure properties under usual
language operations, the accepting power and decidability issues raised some intriguing problems.

The above machine models are more powerful when the one-way jumping mode is present in all
cases, except for linear bounded automata. While this is rather natural and showing it follows clas-
sical techniques, the challenge was to figure just how powerful the new processing mode is, even in
the simplest of cases, when DFAs are considered. Since a complete transition function renders a DFA,
i.e., no symbols are skipped, the class of languages accepted by DFA in one-way jumping mode triv-
ially includes all regular languages. The language class defined by OWJFAs is incomparable with the
context-free class, but included in the context-sensitive class and in DTIME(n2) [1]. The separation re-
sults make use of combinations of a handful of regular languages together with a very simple type of
non-regular languages which contain words having letter counts in a certain ratio, e.g., the frequently
used Lab = {w ∈ {a,b}∗ | w contains as many a’s as b’s} accepted by the machine A in Fig. 1. While
this was enough to establish virtually all separations of interest, it left a significant gap in our under-
standing of the model when it comes to acceptance of non-regular languages that do not establish linear
relationships among letter counts.

Moreover, of high interest, in most cases, is the study of the effect that the non-sequential way of
processing inputs has on the various complexity aspects. In terms of computation complexity theory, [9]
considers the impact of the needed jumps or sweeps when looking at the computation of a machine.
The aim was to arrive at a decision procedure on whether a given machine accepts a regular language.
Part of this is the introduction of sweep complexity, a measure for the number of times, in the worst
case, that such machines have to return to the beginning of their input after having skipped some of the
symbols. The consideration was that sweep count can represent a measure of non-regular resources used
by a machine, posing the natural question of how much of this resource is needed to be able to accept
non-regular languages? The idea of sweep complexity appears in other contexts, too, and an interesting
and thorough investigation of a similar flavour established infinite hierarchies in terms of sweep count
for iterated uniform finite transducers [12]. Even more recently, the notion of jump complexity appears
in the context of automata with translucent letters [15].

It was known that constant sweep complexity does not increase the accepting power of the ma-
chines [10], and in [8] the authors refute the conjecture that, in fact, any automaton with higher than
constant sweep complexity accepts a non-regular language. Moreover, the same work shows that, in
general, the sweep complexity of an automaton does not distinguish between accepting regular and non-
regular languages, and provides a separation result for asymptotic classes defined by this complexity
measure. Thus language classes defined through asymptotic complexity form a true hierarchy, i.e., there
are languages which can be accepted by a machine with O(f (n)) sweep complexity but not by any with
o(f (n)) sweep complexity, for various functions f (n).

One of the main benefits that OWJFAs seem to exhibit, in comparison with similar classical ones,
is the size of the machine when considering the accepted languages. While already from [5] it was
established that there is no unique minimal machine describing a certain language, when talking about
regular languages, we were able to show some descriptional complexity results with respect to these
machines. In particular, we showed that while there might still be a, tight, exponential blow-up in the

S.Z. Fazekas, R. Mercaş & L. Prigioniero 3

number of states needed to represent an NFA with the help of an OWJFA, contrary to the classical case,
there are situations where such an exponential blow-up exists in the other direction as well, even for
3-letter alphabets. For the deterministic machines, since OWJFAs are presented in the form of DFAs,
only one direction is meaningful, and we were able to show that we get an exponential blow-up when for
a regular language accepted by OWJFAs we want a description in the form of a DFA.

Based on all of the previous discussion there are several questions that arise when considering models
with such operations. These range from the analysis of the hierarchy in the case of computational com-
plexity with respect to the number of sweeps that words from a language require, to the a descriptional
complexity analysis in the case of nondeteministic machines.

References

[1] Simon Beier & Markus Holzer (2019): Properties of right one-way jumping finite automata. Theoretical
Computer Science 798, pp. 78 – 94, doi:10.1016/j.tcs.2019.03.044.

[2] Simon Beier & Markus Holzer (2020): Decidability of Right One-Way Jumping Finite Automata. Interna-
tional Journal of Foundations of Computer Science 31(06), pp. 805–825, doi:10.1142/S0129054120410063.

[3] Simon Beier & Markus Holzer (2022): Nondeterministic right one-way jumping finite automata. Information
and Computation 284, p. 104687, doi:10.1016/j.ic.2021.104687.

[4] Henning Bordihn, Markus Holzer & Martin Kutrib (2005): Revolving-Input Finite Automata. In Clelia
de Felice & Antonio Restivo, editors: DLT 2005, LNCS 3572, pp. 168–179, doi:10.1007/11505877_15.

[5] Hiroyuki Chigahara, Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): One-Way Jumping Fi-
nite Automata. International Journal of Foundations of Computer Science 27(3), pp. 391–405,
doi:10.1142/S0129054116400165.

[6] Szilárd Zsolt Fazekas, Kaito Hoshi & Akihiro Yamamura (2021): The effect of jumping modes on various
automata models. Natural Computing, doi:10.1007/s11047-021-09844-4.

[7] Szilárd Zsolt Fazekas, Kaito Hoshi & Akihiro Yamamura (2021): Two-way deterministic automata with
jumping mode. Theoretical Computer Science 864, pp. 92–102, doi:10.1016/j.tcs.2021.02.030.

[8] Szilárd Zsolt Fazekas & Robert Mercaş (2023): Sweep Complexity Revisited. In Benedek Nagy, editor:
CIAA, LNCS 14151, Springer, pp. 116–127, doi:10.1007/978-3-031-40247-0_8.

[9] Szilárd Zsolt Fazekas, Robert Mercaş & Olivia Wu (2022): Complexities for Jumps and Sweeps. Journal of
Automata, Languages and Combinatorics 27(1-3), pp. 131–149, doi:10.25596/jalc-2022-131.

[10] Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): On regular languages accepted by one-way jumping
finite automata. In: NCMA, short papers, pp. 7–14.

[11] Petr Jančar, František Mráz, Martin Plátek & Jörg Vogel (1995): Restarting automata. In Horst Reichel,
editor: Fundamentals of Computation Theory, pp. 283–292, doi:10.1007/3-540-60249-6_60.

[12] Martin Kutrib, Andreas Malcher, Carlo Mereghetti & Beatrice Palano (2022): Descriptional com-
plexity of iterated uniform finite-state transducers. Information and Computation 284, p. 104691,
doi:10.1016/j.ic.2021.104691.

[13] David Maier (1978): The Complexity of Some Problems on Subsequences and Supersequences. Journal of
the ACM 25(2), pp. 322–336, doi:10.1145/322063.322075.

[14] Alexander Meduna & Petr Zemek (2012): Jumping Finite Automata. International Journal of Foundations of
Computer Science 23(7), pp. 1555–1578, doi:10.1142/S0129054112500244.

[15] Victor Mitrana, Andrei Paun, Mihaela Paun & José-Ramón Sánchez-Couso (2024): Jump com-
plexity of finite automata with translucent letters. Theoretical Computer Science 992, p. 114450,
doi:10.1016/J.TCS.2024.114450.

https://doi.org/10.1016/j.tcs.2019.03.044
https://doi.org/10.1142/S0129054120410063
https://doi.org/10.1016/j.ic.2021.104687
https://doi.org/10.1007/11505877_15
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1007/s11047-021-09844-4
https://doi.org/10.1016/j.tcs.2021.02.030
https://doi.org/10.1007/978-3-031-40247-0_8
https://doi.org/10.25596/jalc-2022-131
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1016/j.ic.2021.104691
https://doi.org/10.1145/322063.322075
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1016/J.TCS.2024.114450

4 Complexities OWJFA

[16] Benedek Nagy & Friedrich Otto (2011): Finite-state acceptors with translucent letters. In: ICAART 2011,
pp. 3–13.

[17] Imre Simon (1972): Hierarchies of events with dot-depth one - Ph.D. thesis. University of Waterloo.

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 5–26, doi:10.4204/EPTCS.407.2

© Yvo Ad Meeres
This work is licensed under the
Creative Commons Attribution License.

A New Notion of Regularity:
Finite State Automata Accepting Graphs

Yvo Ad Meeres
Department of Theoretical Computer Science

University of Bremen
Bremen, Germany

yvo.meeres@mailbox.org

Analogous to regular string and tree languages, regular languages of directed acyclic graphs (DAGs)
are defined in the literature. Although called regular, those DAG-languages are more powerful and,
consequently, standard problems have a higher complexity than in the string case. Top-down as
well as bottom-up deterministic DAG languages are subclasses of the regular DAG languages. We
refine this hierarchy by providing a weaker subclass of the deterministic DAG languages. For a DAG
grammar generating a language in this new DAG language class, or, equivalently, a DAG-automaton
recognizing it, a classical deterministic finite state automaton (DFA) can be constructed. As the main
result, we provide a characterization of this class.

The motivation behind this is the transfer of techniques for regular string languages to graphs.
Trivially, our restricted DAG language class is closed under union and intersection. This permits the
application of minimization and hyper-minimization algorithms known for DFAs. This alternative
notion of regularity coins at the existence of a DFA for recognizing a DAG language.

1 Introduction

Many research fields either struggle with the complexity of processing graphs – for example fields like
high performance computing [19] or neurocomputing [6], to mention just a few – or by encoding their
graph problems as strings, see e.g. [16, 11]. The well-researched class of regular string languages, recog-
nized by finite state automata (FSAs), exhibits a fruitful balance between expressiveness and efficiency
concerning standard algorithmic problems. The problem is, that these algorithms are only applicable to
strings. One approach would be to provide efficient graph algorithms for specific problems, as in [25]
for the membership problem circumventing Braess’s Paradox [7] or in [4] providing a faster algorithm
for the very specific problem of the maximum independent set on interval filament graphs. Instead of
the cumbersome approach to tackle all these specific problems one by one, our meta-approach suggests
porting all efficient algorithms known for string processing to graph processing in one sweep. To port
a wide range of well-known efficient algorithms (based on FSAs) from strings to graphs, this article
introduces FSAs recognizing sets of directed acyclic graphs (DAGs) instead of sets of strings. Such sets
are called DAG languages. We consider vertex-labeled DAGs with unlabeled edges but label those edges
for accepting a DAG. A classical FSA accepts a string by reading it symbol by symbol. Our proposed
FSA accepts a DAG by reading top-down vertex by vertex instead. A symbol read by the automaton
encodes a whole vertex, consisting of its vertex label and its ordered and labeled in- and outgoing edges.
While reading the vertices top-down, the outgoing edges in a DAG are labeled according to the automa-
ton’s specification while the ingoing edges, labeled beforehand, have to match. The FSA’s states keep
track of those ingoing edge labels whose target vertices are not yet read, thus whose outgoing edges are
unlabeled. The class of DAG languages accepted by such an FSA is a proper subset of the top-down

http://dx.doi.org/10.4204/EPTCS.407.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

6 Finite State Automata Accepting Graphs

Figure 1: Classical NLP parsing is blind to coreferences within sentences, since trees cannot represent
these edges within the parse tree. Graphs, on the contrary, are capable of showing coreferences between
e.g. words of parsed sentences. For the above sentence, its parse trees could neither model the obvious
possessive relation between the possessive pronoun his and the researcher nor the semantic kind of
equivalence relation requiring world knowledge between the paper and the work. But, a semantic graph
like an AMR DAG [29] could. The capabilities of semantic graphs are illustrated in [13] as well as for a
complex sentence in [12] by means of the representation of a sentence as an AMR DAG.

deterministic regular DAG languages defined in the literature [5]. This class, in turn, is a proper subset
of the regular DAG languages [5].

In literature, the notion of regularity concerning DAG languages differs from that applied to string
languages. Regular DAG automata recognize regular DAG languages [5]. These automata are one of
the formalisms [12] proposed in the literature to model semantics by using Abstract Meaning Repre-
sentation (AMR) [3]. DAG automata were originally introduced by Kamimura and Slutzki [21, 22]. A
promising alternative formalism, not considered in this paper, is the hyperedge replacement graph gram-
mar [20]. Classical natural language parsing turns a sentence into a parse tree while semantic parsing,
such as AMR parsers [9, 10, 30], can model coreferences between e.g. the words of a sentence. Fig. 1
shows two such relations which turn a parse tree into a DAG. Such semantic relations, expressible in
AMR, specify that the work was conducted by the mentioned researcher (researcher ← his) and writing
the paper is the researcher’s daily work (work→ paper). Semantic parsing provides vital contributions
to improve natural language processing (NLP). The anecdotes about AI chat bots inventing facts feed
wishes for NLP improvements by ensuring semantic consistency. This consistency is desirable also for
sophisticated spell and grammar checking and machine translations.

The membership problem for regular DAG automata surprisingly being NP-complete [8, 18], the
uniform and even the non-uniform one1, finding strategies for identifying efficient semantic parsing
algorithms remains the core problem. By determinizing, either top-down or bottom-up, the membership
problem becomes tractable. However, even with restrictions like determinism or planarity [21, 32],
parsing problems can easily become too complex. For instance, Vasiljeva et al. were surprised that for
certain probabilistic DAG automata non-trivial probability distributions are necessary to assign weights
[32]. Since the notions of regularity differ for the string and DAG case, we propose the new notion
of regularity: use the string case regularity for DAGs in order to obtain better algorithmic properties.
The regularity notion for DAGs, presented in literature, seems to be too powerful to provide efficient
algorithms. Viewing DAG languages only then as regular when they can be recognized by an FSA,
provides deep insight into the structural properties of DAG languages.

Although the mildly context sensitive upper bound for natural language parsing classifies parsing as
lying between context-free and context-sensitive formalisms, finite state descriptions of languages are of

1The uniform membership problem asks for a given automaton and a given graph whether the graph is an element of the
given language; the non-uniform membership problem asks for a fixed automaton and a given graph whether the automaton
accepts the graph, making the membership problem potentially easier.

Yvo Ad Meeres 7

classical
regularity:

FD

DAG
regularity:
ID∪FID

ID

FID

(a) Classical and DAG regularity

FD

FID

ID

regular DAG languages

(b) DAG language classes

Figure 2: Overview over the language classes
In both Venn diagrams, the circle denotes the the regular DAG languages whereas the oval denotes the
language class FD. The intersection between the two is the class FID which is both closed under edge
swap as well as under DFA-construction. The dotted part, the oval, corresponds to FD. The non-dotted
part corresponds to ID.
(a) Classically, the term regularity refers to FSAs and thus to string languages. This does not match the
notion of regularity for DAG languages. The two notions match only for languages in FID.
(b) Top-down determinism and bottom-up determinism are colored in yellow and blue. Consequently,
green stands for languages which are both top-down as well as bottom-up deterministic. In the right
Venn diagram, whereas all colored fields are deterministic, the nondeterministic part corresponds to the
white part The class ID comprises those regular DAG languages which are not in FID (and consequently
not in FD), and which are either (top-down / bottom-up) deterministic or non-deterministic.

major importance [1]. For the sake of efficiency, this field often seeks to digest also mildly context sen-
sitive structures with finite state methods [27, 23, 28], an approach conceivable also for DAG digestion.
The conference Finite State Methods in Natural Language Processing (FSMNLP) concentrates on this
lowest level of the Chomsky hierarchy. Many NLP tools, like apertium, HFST or GiellaLT [17, 31, 26]
operate with finite state descriptions.

All this said, our contributions, see them illustrated in Fig. 2, can be stated as

• the idea of using a classical FSA to recognize a DAG language

• the notion of a meta-state, a multiset of edge labels, serving as the states of the FSA

• separation of the regular top-down deterministic DAG languages into those recognizable (FID) and
those not recognizable (ID) via an FSA by means of the meta-state technique

• restricting a DAG automaton by meta-states, resulting in the class FD comprising FID but not being
a subset of the regular DAG languages

• characterization of the newly defined classes (main result).

8 Finite State Automata Accepting Graphs

Providing an FSA for a DAG language immediately opens up a wide range of results for DAGs
formerly applicable only to strings. The folklore algorithm of FSA minimization can be applied, just as
algorithms for lossy FSA compression, called hyper-minimization [2, 24], where hyper stands for the
tolerance of finitely many errors. Morphological transducers already prove hyper-minimizations being
useful for NLP [14].

Also from a structural point of view a deeper understanding of DAG language classes and a suitable
overall hierarchy would be a beautiful result for theoretical computer science. As mentioned in the begin-
ning, many research fields require efficient graph algorithms and therefore could potentially profit from
these very limited DAG languages since they are parsable as efficiently as regular string languages. Even
though their expressiveness is quite limited, implying that we cannot encode arbitrary graph languages,
for a variety of important problems, the limited expressiveness will suffice, and algorithms can be ported
directly from the string case.

2 Preliminaries

The set of non-negative integers is denoted by N. For n ∈ N we define [n] = {1, . . . ,n}. For a set A, we
denote its cardinality by |A|. A finite set A is called an alphabet, an element a ∈ A is a symbol, a string is
the concatenation of symbols, the set of all finite strings over A is denoted by A∗ and a, not necessarily
proper, subset of A∗ is called a language. The empty string of length 0 is denoted by λ . The length of a
string w ∈ A∗ is denoted by |w| and [w] denotes the smallest set A such that w ∈ A∗. The concatenation
of two strings a and b is written as its juxtaposition ab. For a string w1w2 . . .wi . . .wn of length n over
A, the position of a symbol wi ∈ A is i ∈ [n]. The canonical extensions of a function f : X → Y to
the power set of X and to X∗ are denoted by f as well. Thus, f ({x1, . . . ,xn}) = { f (x1), . . . , f (xn)}
and f (x1 · · ·xn) = f (x1) · · · f (xn) for all x1, . . . ,xn ∈ X . For a set Y a (locally finite) multiset over Y is
a function µ : Y → N. For brevity, we give a specific multiset by a string notation yµ(y1)

1 · · ·yµ(yn)
n for

y1 . . .yn ∈ Y . The size of µ is |µ|= ∑y∈Y µ(y). (Formally, |µ|= ∞ if µ(y)≥ 1 for infinitely many y, but
this case will not be relevant for this paper, i.e., all multisets appearing here will be finite.) We denote
the set of all multisets over Y by NY . For a function f : X → Y , we let fM : 2X → NY be the mapping
such that, for every X ′ ⊆ X , fM(X ′) is the multiset of images of elements of X ′ under f . Thus, formally,
fM(X ′)(y) = |{x ∈ X ′ | f (x) = y}| for every y ∈ Y .

This article studies languages of vertex-labeled, directed multigraphs without loops and with ordered
unlabeled edges (called graphs, see Def. 2.1) which are acyclic (called DAGs, see Def. 2.4). Edges will
be labeled only temporarily by a grammar (c.f. Def. 2.5), its equivalent automaton or classical finite state
automaton (see Section 7).

Definition 2.1 (Graph). A graph over Γ is a tuple G = (V,E, ℓ, in,out) with Γ, V and E being disjoint
finite sets, the sets of vertex labels, vertices and edges, respectively. The vertices are labeled by ℓ : V→Γ.
For an edge e ∈ E between the vertices (v,w) ∈ V ×V, directed from v to w, with v ̸= w, the source v is
referenced by src(e) and the target w by tar(e). By in,out : V → E∗ we assign to each vertex v ∈ V its
incoming and outgoing edges such that src(e) = v⇔ e ∈ [out(v)] and tar(e) = v⇔ e ∈ [in(v)]. These
edges are ordered as specified by the strings in(v) and out(v). The empty graph ∅ is the graph whose
set of vertices is empty. A vertex is called a root or a leaf if in(v) or out(v) are empty, respectively. The
disjoint union of graphs, meaning disjoint sets of vertices and edges, is denoted by the operator &.

Definition 2.2 (Path). A path in a graph G = (V,E, ℓ, in,out) is a nonempty sequence of edges e1, . . . ,en,
ei ∈ E for i ∈ [n], yielding a unique alternating sequence v0e1v1 · · ·envn with vertices v0, . . . ,vn ∈V such
that {src(ei), tar(ei)}= {vi−1,vi} for all i ∈ [n]. Such a path is a cycle if v0 = vn. A path between s and

Yvo Ad Meeres 9

t is a path with s ∈ {v0,e1} and t ∈ {vn,en}. A path is directed if for i ∈ [n] either ∀i : tar(ei) = vi or ∀i :
tar(ei) = vi−1 and we call it a path from s to t if it is a directed path between s and t with ∀i : tar(ei) = vi.
The length of a path is the number of its edges, written as |e1, . . . ,en| = n. The graph G is said to be
connected if there is a path between each pair of vertices. In a path specification, we may denote the
vertices and edges a ∈V ∪E by their respective label ℓ(a).

Definition 2.3 (Chord Path). A chord path of a cycle shares its end vertices with its corresponding cycle,
but none of its edges [33, 15]. Given a graph G = (V,E, ℓ, in,out), let the path c = e1, . . . ,en with
ei∈E for i∈ [n], be a cycle yielding vne1 · · ·envn. A chord path of the cycle c is a path e′1, . . . ,e

′
m with

e′j ∈E for j∈ [m] yielding v′0e′1v′1 · · ·e′nv′m with vertices v′0, . . . ,v
′
m ∈V such that v′0 ̸= v′m and {v′0,v′m} =

{v0, . . . ,vn}∩{v′0, . . . ,v′m} but {ei | i∈ [n]} and {e′j | j∈ [m]} being disjoint sets.

Definition 2.4 (DAG, complete DAG, prefix-DAG). A directed acyclic graph (over Γ), abbreviated as
DAG, is a graph over Γ that does not contain any directed cycle. The set of all connected and nonempty
DAGs over Σ is denoted by DΣ. A connected DAG G= (V,E, ℓ, in,out) is called a string DAG iff |in(v)| ≤
1 and |out(v)| ≤ 1 for all vertices v∈V . Throughout this paper, Σ and N being disjoint sets, Σ will denote
an alphabet of terminals, namely, the vertex labels, whereas N is our alphabet of nonterminals used for
labeling vertices and edges temporarily. We call a DAG over Σ a complete DAG. A DAG over Σ∪N is
called a prefix-DAG, a proper prefix-DAG if at least one vertex is labeled by a nonterminal n ∈ N.

Definition 2.5 (Regular DAG grammar, L(G), L(G)& [13]). A regular DAG grammar2 is a triple G =
(N,Σ,R). Each rule r ∈ R is of the form α σ β where σ ∈ Σ while the head α and the tail β are
elements of N∗. For the prefix DAGs G and G′, there exists a derivation step G⇒r G′ using a rule r if G
contains pairwise distinct vertices v1, . . . ,vk such that ℓ(v1 · · ·vk) = α . In that case, G′ is obtained from
G by

• adding the vertex v with its label ℓ(v) = σ

• by letting the edges, formerly pointing to v1, . . . ,vk, now point to v, thus tar(in(vi)) = v,

• deleting the temporary vertices v1, . . . ,vk and, in turn,

• adding the temporary vertices w1, . . . ,w j labeled by their nonterminals ℓ(w1 · · ·w j) = β

• by connecting them to the graph with the edges (v,w1), . . .(v,w j).

A derivation is a sequence of prefix DAGs3 G0⇒r1 G1⇒r2 · · · ⇒rn Gn, also denoted by G0⇒r1···rn Gn.
The set of all these Gn that are complete is denoted by L(G)&. The DAG language generated by G is
L(G) = {G ∈ DΣ | ∅⇒∗R G}, the set of connected and complete DAGs which the grammar can derive,
where⇒∗R denotes the transitive and reflexive closure of⇒R =

⋃
r∈R⇒r. As usual, a rule is said to be

useless if none of the derivations for DAGs in L(G) comprises this rule and useful if it does. The DAG
grammar G is deterministic if, for every pair α σ in N∗×Σ, there exists at most one β ∈ N∗ such
that (α σ β)∈ R. The DAG language generated by a deterministic DAG grammar, as well as a DAG
automaton recognizing it, is called top-down deterministic. By reversing the orientation of the edges,
we obtain its dual language. A language L(G) of a deterministic DAG grammar is called bottom-up
deterministic if its dual language is generated by G .

The class RDL of regular DAG languages consists of all DAG languages generated by a regular
DAG grammar (equivalently recognized by a regular DAG automaton). The class RDLdet of regular

2Since regular DAG grammars are equivalent to regular DAG automata, an illustrative example of how the DAGs are
handeled can be found in [12].

3We extend the notation⇒r1···rn to⇒E , where E is an (extended) regular expression over rules: if L(E) denotes the language
of sequences of rules denoted by E, then⇒E =

⋃
r1···rn∈L(E)⇒r1···rn .

10 Finite State Automata Accepting Graphs

deterministic DAG languages consists of all DAG languages and dual languages generated by regular
deterministic DAG grammars (equivalently recognized by a regular deterministic DAG automaton).

In a derivation of a DAG G, at the time a new edge e is generated, its newly created target vertex v
is labeled by a nonterminal, say q. At that time v “dangles” at the end of e without further incoming or
outgoing edges. Later rule applications will take v, merge it with other vertices and label the resulting
vertex with its final symbol taken from Σ according to the rule used. The edge e, however, remains
untouched. We may represent a derivation of G up to reordering of derivation steps by the DAG G itself
together with a labeling of edges by nonterminals. Then, e would be labeled with q. We call this the
derivation DAG of G.
Definition 2.6 (Derivation DAG, ⌊D⌋). Let G0 ⇒r1···rn Gn with r1, . . .rn ∈ R be a derivation of a DAG
Gn = G = (V,E, ℓ, in,out) generated by a DAG grammar G = (N,Σ,R). Then, the corresponding deriva-
tion DAG of G is the tuple D = (V,E, ℓ, in,out), where ℓ : E ∪V → Σ∪N is extended to edges by: for
every edge e ∈ E, ℓ(e) is the unique nonterminal q ∈ N such that, for some i ∈ [n], e is an edge of Gi with
ℓ(tarGi(e)) = q. Let ⌊D⌋ denote the DAG Gn, obtained from D by restricting ℓ to V, denoted by ℓ|V .

A derivation DAG is not necessarily connected, thus ⌊D⌋ ∈ L(G)& if ∅ ⇒∗R D but ⌊D⌋ ∈ L(G)
only if D, or equivalently ⌊D⌋, is connected. It should be noted that the set of all derivation DAGs of
(DAGs in) L(G) is easily characterized: For every such derivation DAG D = (V,E, ℓ, in,out) the DAG
G = (V,E, ℓ|V , in,out) is an element of DΣ) and for every vertex v ∈ V there is a rule α σ β such
that α = ℓ(in(v)) and β = ℓ(out(v)). Thus, the derivation DAGs of G coincide with the runs of the DAG
automata in [5], and L(G) is the set of all DAGs ⌊D⌋ such that D is a derivation DAG of a DAG generated
by G . Moreover, a regular DAG grammar G without useless rules is deterministic if and only if every
DAG in L(G) has exactly one derivation DAG.
Definition 2.7 (Rule Path and Cycle). Marking a symbol q (at a position i ∈ [n] of a string of length n)
by a mark ¯ means replacing it with q̄. We mark rules with the entry mark ˇ and the exit mark ˆ; if it is not
specified which of those two marks is used, we use .̄ A marked rule r̄ = (ᾱ σ β̄) is obtained from
a rule r = (α σ β) by marking two nonterminals at two distinct positions i, j ∈ [|αβ |] in αβ , one
with the entry, one with the exit mark; in a weakly marked rule only at one position with either entry
or exit mark. Such a marked nonterminal is referenced by its tuple (q̄, r̄) where r̄ = (ᾱ σ β̄) is the
(weakly) marked rule in which q is replaced with q̄. A rule pair (r̄i, r̄ j) for the (weakly) marked rules r̄i

and r̄ j agrees on the marked nonterminals (q̂, r̄i) and (q̌, r̄ j) if q is marked once in a head and once in
a tail in order to obtain (q̂, r̄i) and (q̌, r̄ j). Two weakly marked rules always agree – regardless of their
marked nonterminals. A rule sequence is a nonempty sequence of (weakly) marked rules r̄1, . . . , r̄n for
which all rule pairs (ri,ri+1modn) with i ∈ [n] agree and every marked nonterminal in the rule sequence
is exactly once agreed on. A rule sequence of marked rules r̄1, . . . , r̄n is a rule cycle, with r̄1 and r̄n being
weakly marked it is a rule path. A rule path between s and t is a rule path with marked nonterminals
q̄1, . . . , q̄n−1 which yields a path σ1,q1, . . . ,qn−1,σn in a derivation DAG between s and t for s ∈ {q1,σ1}
and t ∈ {qn,σn}.

Figures 5 and 6a show examples of rule sequences. Observe that these definitions permit two types
of rule sequences. A rule sequence yields a directed path in a graph if and only if both mark types, exit
and entry, do not occur both in heads and tails. We call this a directed rule sequence. If heads (and
consequently tails) comprise both types of marks, the resulting path in the graph will be undirected. This
is called an undirected rule sequence.
Observation 2.8 (Yielding Cycle). Obviously, a directed rule cycle cannot yield a directed cycle in a
DAG, since DAGs are acyclic. Therefore, only undirected rule cycles can yield a cycle in a DAG. Directed
rule cycles yield paths only, no cycles, in a DAG, undirected ones yield both paths and undirected cycles.

Yvo Ad Meeres 11

Theorem 2.9 (Infinite Language [5]). The DAG language generated by a DAG grammar G = (N,Σ,R)
without useless rules is infinite iff R contains a rule cycle.

Definition 2.10 (Swap). Let G= (V,E, ℓ, in,out) be a DAG. Two edges e0,e1 ∈E are independent if there
is no directed path between e0 and e1. In this case, the edge swap of e0 and e1 is defined and yields the
DAG G[e0 ▷◁ e1] = (V,E, ℓ,swap◦ in,out) given by the bijection swap : E→ E defined as swap(ei) = e1−i

for i ∈ {0,1} and swap(e) = e for e /∈ {e0,e1}. For k ∈N, let G0,G1, . . . ,Gk be k+1 disjoint isomorphic
copies of G, and for i ∈ {0,1, . . . ,k}, let ei and e′i be the copies of e and e′ in Gi, respectively. Then the
graph G(e ▷◁ e′)k for k ∈ N is defined as

G(e ▷◁ e′)0 = G0 and G(e ▷◁ e′)k = (G(e ▷◁ e′)k−1 & Gk)[e′k−1 ▷◁ ek].

Swapping two edges means that the tips of the arrows, the edge targets, are exchanged with one
another. This swapping operation is, of course only allowed, if the result of the swap is still a DAG.
Swapping edges yielding a directed cycle is not defined. The operation is central for regular DAG
languages since, after swapping two edges in a DAG that have the same label in one of its derivation
DAGs, the swapped result is still part of the language.

Lemma 2.11 (Swap Preserves Generation [5]). Let G = (N,Σ,R) be a regular DAG grammar and D =
(V,E, ℓ, in,out) a derivation DAG with ⌊D⌋ ∈ L(G)&. Then, if ℓ(e0) = ℓ(e1) for e0,e1 ∈ E, the edge swap
of e0 and e1 in D, in case it is defined, yields a DAG generated by G, thus ⌊D[e0 ▷◁ e1]⌋ ∈ L(G)&.

Deterministic DAG grammars as defined above are equivalent to the top-down deterministic DAG
automata in [5] and every derivation DAG of a grammar corresponds one-to-one to a run of the corre-
sponding DAG automaton. Therefore, all results for top-down deterministic DAG automata carry over
to deterministic DAG grammars. Refer to [5] for the notation concerning DAG automata. In particular,
this holds for the following theorem, in which a regular DAG grammar is called minimal if it does not
contain useless rules and there is no regular DAG grammar with fewer nonterminals generating the same
language.

Theorem 2.12 (Minimal Grammar [5]). For every deterministic DAG grammar G , a minimal determin-
istic DAG grammar G ′ with L(G ′) = L(G) can be computed in polynomial time. This DAG grammar is
unique: every minimal deterministic DAG grammar that accepts L(G) is identical to G ′ up to a bijective
renaming of its nonterminals.

3 Meta-State

Classical finite state automata recognize string languages by a finite memory, its set of states. In ev-
ery step the automaton memorizes exactly one state. On the contrary, while generating a DAG, every
derivation step of a DAG grammar has to recall several nonterminals and not just one. If we summarize
those nonterminals to one meta-state per derivation step, can we then accept DAGs with a finite state
automaton? If so, which kind of DAG languages can the finite state automaton recognize?

Definition 3.1 (Meta-state). A multiset over nonterminals, i.e. an element of NN, is called a meta-state.
The symbol Q is used for sets of meta-states, thus Q ∈ 2NN

. For a DAG G = (V,E, ℓ, in,out) over Σ∪N
we let G denote the meta-state ℓM({v∈V | ℓ(v)∈N}), the multiset of all labels which are nonterminals.4

Observe that it only depends on the meta-state of a graph, not on the graph as a whole, how the
derivation can proceed. For this we define the notion of a graph being useful.

4Note that, according to the Notation section, the function ℓM returns a multiset of labels.

12 Finite State Automata Accepting Graphs

Definition 3.2 (Useful). We say that a prefix DAG G is useful with respect to a given grammar G , if
this grammar G derives ∅⇒∗R G⇒∗R G′ with the DAG G′ being complete and language-useful if G′ is
complete and connected, thus equivalently, if G occurs in a derivation of a DAG G′ ∈ L(G).

Note that a prefix DAG with respect to a grammar is useful if and only if all its connected components
are language-useful. Which properties depend on the meta-state only?
Lemma 3.3 (Meta-state dependent). Let G,G′ be prefix DAGs with G = G′ derived by a DAG grammar
G = (N,Σ,R). Then, G can apply the rule r ∈ R as the next derivation step G⇒r H iff G′ ⇒r H ′.
Similarly, G is useful if and only if G′ is useful. However, if G is language-useful this only implies that
G′ is useful.

Interestingly, a minimal grammar can finalize every derivation to a complete DAG.
Lemma 3.4 (Useful Prefix DAG). Let G be a prefix DAG and G = (N,Σ,R) be a DAG grammar without
useless rules. If ∅⇒∗R G, then G is useful with respect to G , i.e. there exists a derivation ∅⇒∗R G⇒∗R G′

for a complete DAG G′. If G′ is connected it is language-useful.
After having defined the notion of a meta-state, let us use them for derivations. The first naive idea

is to use all meta-states which occur in all the derivations for complete graphs. We call that set Q0
because a derivation of a DAG in the language starts and ends with zero states. Apart from Q0 also
another set of meta-states is of interest. While Q0(G) incorporates all meta-states occurring during all
derivations of DAGs in L(G), not all of these meta-states may be needed to generate the language L(G).
This observation gives rise to a smaller set of meta-states Qmin.
Definition 3.5 (Q0 and Qmin). Let G be DAG grammar. The set of all meta-states that occur in deriva-
tions of DAGs in L(G) is denoted by Q0(G) with

Q0(G) = {G | G is a DAG which is language-useful with respect to G .}.
A minimal set of meta-states is denoted by Qmin. And, Qmin(G) denotes any set of meta-states such

that
1. every DAG Gn ∈ L(G) has a derivation ∅⇒r1 G1⇒r2 . . .⇒rn Gn

such that G1, . . . ,Gn ∈Qmin(G), and

2. there is no set of meta-states of smaller cardinality with this property.
Thus, Qmin(G) is a minimal set of meta-states sufficient to generate a DAG language, while Q0(G)

incorporates also meta-states that could be dispensed. The set Qmin(G) is not necessarily unique since
often several derivations exist for one DAG, and furthermore a permutation of derivation steps may result
in different meta-states. In general, we are interested in |Qmin(G)|, and in particular its finiteness, rather
than in the set itself.

The subsequent example illustrates the existence of DAG grammars for which Qmin(G) is finite
while Q0(G) is not.
Example 3.6 (DAG language of stars). Consider a DAG grammar Gstar with the rules r = λ r qp
and l = pq l λ . Let G ∈ L(Gstar), cf. Fig. 3a. First, ∅⇒rn Groot⇒ln G for n≥ 1 generates a graph
Groot consisting of n roots labeled r. Subsequently, l fuses pairs of nonterminal vertices into a single
leaf labeled l. Collecting the meta-states that occur in these derivations or in an arbitrary derivation
∅⇒∗R G both result in Q0(Gstar) = {pnqn | n ∈ N}, since every rule either consumes or produces both a
pair of nonterminals q and p. However, by first generating a single root, then alternating between r and
l, and finally applying l once more, Gstar offers the derivations ∅⇒r(rl)∗lG whose largest meta-state is
p2q2. Hence, Qmin(Gstar) = {pq, p2q2}.

The previous example gives rise to the following observation.
Observation 3.7. DAG Grammars G with finite Qmin(G) but infinite Q0(G) exist.

This brings us to a further investigation of the finiteness of Q0 and Qmin.

Yvo Ad Meeres 13

(a) DAG in L(Gstar)

/0 qp qq
pp

λ r qp λ r qp

pq l λpq l λ

(b) FSA for Gstar

Figure 3: The grammar Gstar gives rise to an FSA (b) that accepts DAGs like (a) (labels are omitted).

4 Finite Number of Meta-States

The previous section showed that languages generated with finite Qmin indeed exist. This section inves-
tigates which types of DAG languages can be generated with a finite number of meta-states induced by
the rules of a minimal deterministic grammar. First, the newly identified language class deserves a name.
We call it finite induced meta-state DAG language. The term induced is chosen since the grammar G
induces this set Q by a suitable (c.f. Lemma 4.4) or all (c.f. Lemma 4.3) derivation DAGs.

Definition 4.1 (Finite induced meta-state DAG language (FID)). A language recognized by a minimal
deterministic grammar G with finite Qmin(G) is called a finite induced meta-state DAG language. The
language class comprising finite induced meta-state DAG languages is denoted by FID.

In the following, we look into different categories for finite sets of meta-states. For each category we
check three types, first languages, second paths and finally rule cycles.

Lemma 4.2 (Finite L(G) – finite Q0 and Qmin). Let G = (N,Σ,R) be a DAG grammar.

1. If L(G) is finite, the sets Q0(G) and Qmin(G) are finite as well.

2. For a rule path Π of finite length within R, whose marked rules comprise only marked nonterminals
except for the weak marked rules, finitely many meta-states suffice for all derivation sequences
which generate the corresponding path π of Π in a DAG.

Proof. Since N is finite and L(G) is finite, only a finite number of derivations for all DAGs in L exists.
Obviously, this combination yields a finite number of meta-states for Q0(G) and consequently also for
Qmin(G). In the second statement, the finite rule path Π gives rise to a finite derivation G⇒Π G′ for all
possible prefix DAGs G of G′, since, due to all nonterminals marked except start and end, Π does not
need to be interleaved with rules. A finite derivation yields finitely many meta-states, both for Qmin as
well as for Q0.

Infinite languages L(G) do not necessarily induce an infinite Qmin and not even an infinite Q0. First,
we look at those cases, where they indeed induce finite sets of meta-states only.

Lemma 4.3 (Strings – finite Q0 and Qmin). Let G = (N,Σ,R) be a DAG grammar.

1. If L(G) is a string DAG language the sets Q0(G) and Qmin(G) are finite

2. For a, possibly arbitrary long, directed rule path, Π in R, whose marked rules comprise only
marked nonterminals except for the weak marked rules, finitely many meta-states suffice for all
derivation sequences which generate the corresponding path π by Π in a DAG.

14 Finite State Automata Accepting Graphs

3. For a directed rule cycle c whose marked rules comprise only marked nonterminals, finitely many
meta-states suffice for all derivation sequences which generate the corresponding path π by c in a
DAG.

Proof. Since string languages consume and produce exactly one nonterminal in every derivation step
except for the first and last steps producing and consuming one nonterminal only, respectively, N equals
Q0(G).5 Obviously, this means that Q0(G) is finite, since N is finite.

This carries over to subgraphs which are string DAGs. Strings as subgraphs are derived in the state-
ments (2) and (3). Let r̄ denote a marked rule with only marked nonterminals of the form q̌ σ p̂.
Such a rule r̄ does not alter the size of the meta-states, thus |G| = |G′|, in its derivation step G⇒r G′.
For a directed rule cycle c with only marked nonterminals holds the same just as for an infinite rule path
Π in R, since they consist of a rule sequence with rules of type r̄. Such a rule path Π comprises only
finitely many marked rules since R is finite. Thus, an arbitrary long rule path corresponds to a rule cycle.
Consequently, Q0 is finite for both (2) and (3).

In all three cases Q0 is finite, yielding a finite Qmin.

In summary, for strings of any kind, string languages or strings as subgraphs, also of unbounded
length, both Qmin and Q0 stay finite. This was to be expected since regular string languages are accepted
by finite state automata with a finite set of states. What happens beyond string DAGs?

Lemma 4.4 (Finite Qmin – infinite Q0). Let G = (N,Σ,R) be a minimal deterministic DAG gram-
mar

1. In the case where Qmin(G) is finite, it is possible that Q0(G) is infinite.

2. For a possibly arbitrary long, undirected rule path, Π in R, whose marked rules comprise only
marked nonterminals except for the weak marked rules, finitely many meta-states suffice for de-
riving all complete DAGs incorporating the corresponding path π generated by Π, however, some
derivations for each such complete DAG ask for an infinite set of meta-states.

3. For an undirected rule cycle c in R, whose marked rules comprise only marked nonterminals,
finitely many meta-states suffice for deriving all complete DAGs incorporating the corresponding
path π of unbounded length generated by c. However, some derivations for each such complete
DAG ask for an infinite set of meta-states.

Proof. The first statement is equivalent to Observation 3.7. Both Statements (2) and (3) may yield a path
π of unbounded length. Such a path π gives rise to a derivation which does not increase the cardinality
of the meta-state, such that Qmin with respect to Π and c is finite. This is possible by using rules that add
nonterminals to the current meta-state only when they are needed, just like for the DAG language of stars
in Example 3.6. But for undirected rule paths and cycles, we can rearrange the rules in the derivations
in order to first generate all roots (again, c.f. Example 3.6). Since both Π and c can make the path π

unbounded, the size of the meta-states will grow without bound, yielding an infinite Q0.

In the next section, we will turn to languages which cannot be generated with a finite set of meta-
states. Prior to this, we look at the unexpected fact that although a label does not occur in any rule cycle,
its number of occurrences could be unbounded.

5Since we use strings as a notation for multisets, this special set of multisets equals a normal set.

Yvo Ad Meeres 15

r c l

e

(a) G

r0 c0 l0
e0

(b) G0 = G

c0 c1 ck−1 ck

l0 l1 l2 lk−1 lk

r0 r1 ri rk

ek−1

ek

. . .

(c) Gk[ek−1 ▷◁ ek] = Gk−1 & Gk

Figure 4: The decorated one-pointed star G is shown in (a). This equals the star G0 in (b), where in
addition to the vertex label, the label’s index allows us to reference each vertex uniquely by its number
of copies. Note thus, that in (b), as well as in (c), the index is not part of the vertex label. To draw the
graph itself in those two pictures, the indices would be stripped off. Note, (c) illustrates the swapping of
k+1 disjoint isomorphic copies to a k+1-pointed star G(e ▷◁ e)k.

Lemma 4.5 (Unbounded without Rule Cycle). There exists a DAG grammar G = (N,Σ,R) and a vertex
or edge label u ∈ Σ∪N such that the number of occurrences of u in a (derivation) DAG generated by G
is unbounded, although u does not occur in any rule cycle.

The following lemma summarizes when the number of label occurrences is not bounded.

Lemma 4.6 (Unbounded Label Occurrence). Let G = (N,Σ,R) be a minimal deterministic DAG gram-
mar and u ∈ Σ∪N a label of a vertex or an edge. The number of occurrences of u in graphs G ∈ L(G),
or, for edge labels, in their corresponding derivation DAGs D, is unbounded, iff one of the two following
conditions is fulfilled:

a) Label u occurs in some rule cycle of G .

b) There exist both a rule cycle c in which an unmarked q∈N occurs as well as a rule path Π between
this nonterminal q and the label u.

5 Infinite Number of Meta-States

Unfortunately, from the algorithmic viewpoint at least, there exist infinite DAG languages where a finite
number of meta-states is not sufficient for generating them in a top-down deterministic manner. We call
this language class the infinite meta-state DAG languages, abbreviated as ID.

Definition 5.1 (Infinite meta-state DAG language (ID)). A language L(G) of a minimal deterministic
DAG grammar G is called an infinite meta-state DAG language if Qmin(G) is infinite. The language
class comprised of all infinite meta-state DAG languages is denoted ID.

Lemma 5.2 (Infinite Qmin – infinite Q0). Infinite meta-state DAG languages exist.

Proof. Let us consider the following DAG grammar for binary trees Gtree = ({q}, {r,m,L},R). As a
tree, every G ∈ L(Gtree) has only one root. Therefore, every derivation for the tree grammar Gtree applies
rr = λ r qq only once: ∅⇒rr Groot⇒R\{rr} G. The leaf rule rl = q l λ cannot be part of a rule
cycle since this requires a minimum of two nonterminals. The rule rm = q m qq is the only rule that
occurs in a rule cycle.

Every derivation step using rm increases the cardinality of the meta-state by one due to consuming
one nonterminal and producing two nonterminals. If rm is the only rule in a rule cycle and rm increments

16 Finite State Automata Accepting Graphs

the meta-state in every derivation step⇒rm , do we end up with an infinite set Qmin? Luckily, Lemma 4.5
tells us that we can repeatedly apply derivation steps also with rules not being part of a rule cycle.
Lemma 4.6 confirms that this is the case for the rule rl , since we have an unmarked q in all marked rule
combinations of rm for a rule cycle and we have a rule path q to l only with the rule rl . The number
of leaves, labeled by l, is not bounded. As a sole rule in R the leaf rule decreases the cardinality of the
meta-state. It is folklore that the amount of leaf vertices is one more than non-leaf vertices. This sounds
thus promising to end up for a finite set Qmin. The derivations ∅⇒rr Groot⇒rl G′root⇒(rmrl)∗ G′⇒rl G
generate DAGs in L(G). Those derivations include only two meta-states Groot = q2 and Groot = G′ = q.
Unfortunately, this does not yield fully balanced trees.

If we consider the fully balanced binary trees of depth n, where every leaf is the nth vertex in a path
from the root to the leaf, G has to generate at least n−2 vertices labeled m or n−1 vertices not labeled
l until it can apply the rule rl . This, in turn, means that n−2 derivation steps increment the meta-state.
The generation of a complete binary tree results in a meta-state qn. For generating the language of binary
trees of all depths, Q = {qi | i∈ [n]}. But this set is minimal, since no other derivations exist, and infinite
which shows that Qmin(Gtree) is infinite. Note, Gtree is a deterministic and minimal grammar. Thus,
minimal deterministic DAG grammars with finite Qmin exist.

After proving the existence of languages in the language class ID, we present languages in this class.
The following theorem about certain tree languages follows directly from Lemma 5.2.

Theorem 5.3 (Trees in ID). A minimal deterministic DAG grammar G = (N,Σ,R) generating fully bal-
anced trees of unbounded size, L(G) is in ID.

Proof. For L(G) comprising fully balanced trees with one root, L(G) ∈ ID was shown to be true in
Lemma 5.2. For trees “upside down”, one leaf and many roots, the argumentation is similar. Instead
every derivation step⇒rm for a path from a root to a leaf adds a state to produce the ensuing meta-state.
In doing so, it forces dependencies to be derived. The top-down generation of G prevents the isolated
derivation of a root-to-leaf path. A vertex at depth n requires n roots. Therefore, the size of the meta-
states depends on n, yielding infinitely many meta-states. Thus, the dependencies are responsible for the
infinite class Qmin(G).

Trees are fine, but what about graphs? We observed (Obs. 2.8) that only undirected rule cycles can
yield cycles in DAGs. Directed trees are generated by directed rule cycles. So let’s consider languages
with proper graphs, thus generated by undirected rule cycles.

Lemma 5.4 (DAG Cycles in ID). Let G be a minimal deterministic DAG grammar. Then L(G) ∈ ID if
some DAG G ∈ L(G) contains a cycle of arbitrary length that exhibits a chord path.

Proof. As Lemma 5.2 tells us, generating a cycle of arbitrary length causes Q0(G) to be infinite, but not
necessarily Qmin(G). Hence, the infinite size of Qmin(G) hides in the rule cycle’s chord path.

In a DAG, a cycle of arbitrary length m ∈ N requires the repeated application of an undirected rule
cycle (Obs. 2.8) in an unbounded number of iteration steps, say, in n ∈ N iteration steps, since the set
of rules in G is finite and, in order to obtain a cycle of arbitrary length m, as stated, by the pigeonhole
principle, we need an unbounded number n of applications of the required rule cycle.

Let c be this undirected rule cycle that is required. With the constant |c| denoting the number of rules
c consists of, the length of the DAG’s undirected cycle is m = |c| ·n.

Consider the DAG G generated by 2n rule cycle iterations of c, yielding a cycle of length 2 · |c| ·n, as
detailed in the following.

Yvo Ad Meeres 17

As stated, the cycle in G has a chord path. However, if one application of c generated the stated chord
path, a graph generated by many applications of c, could, if ‘wired’ appropriately, contain many such
chord paths instead of just one. The grammar G generated G by 2n applications of c. Consequently, G
can generate G in a way that it exhibits 2n such chord paths, thus, with identical edge labels as the stated
chord path exhibits. The identical labeling is key for the proof, since this will allow ‘wiring’ the chords
differently.

By definition (Def. 2.7), a rule cycle includes marked rules with a minimum of two nonterminals
with two of them marked. However, obviously, the end vertices of a chord path have a vertex degree of at
least three [34]. Due to that, the marked rules generating the chord path need at least three nonterminals
and that means one unmarked nonterminal. Thus, a chord path requires an unmarked nonterminal. An
unmarked nonterminal needs to be saved in a meta-state. Let us call this nonterminal s. Assume that G
opens and closes the chord paths one after another while generating G. Then G could possibly reuse the
meta-state in which we stored s: when it opens the chord path, it stores s in the ensuing meta-state, when
it closes the chord path, it does not need to save s anymore. Then, G repeats this step for the next chord
path, reusing the meta-state in which it stored s.

Yet, Lemma 2.11 allows the swapping of the 2n chord paths. In order to obtain one of those graphs in
L(G) requiring an infinite Qmin(G), let us swap the chord paths in G (technically more precise: certain
edges of the chord paths). Let ei, labeled with the afore mentioned ℓ(ei) = s, be one of the ends of
the chord path number i for i ∈ [2n]. Swapping G[e1 ▷◁ en], G[e2 ▷◁ en−1], . . . , thus G[ek ▷◁ en−k+1] for
k ∈ [n/2] results in the first n chord paths bridging a distance of length |c| ·n of its DAG cycle.

Please note: Swapping the second half of the chord paths is unnecessary, but can be performed in
order to obtain a symmetric, beautiful graph. If we would, however, swap the 2n’th chord path with the
first, the distance would be one length of c, since the chords are arranged on a cycle. First and 2n’th
chord paths are neighbors, thus. That is the reason for choosing 2n instead of n cycle iterations of c. The
first and the n’th chord paths are a maximum distance apart with respect to the cycle generated by 2n
applications of c.

After these swapping operations, the chords are nested: G opens the first chord path before the second
but closes the second before the first, and so on, according to the FILO (first in, last out) principle. This
constitutes the proof: by opening n/2 chord paths, all identically labeled with s, there exists a meta-state
in Qmin(G) that has to store all those sn/2 labels. Then, G has to remember that all these edges of the
chord paths are dangling. Thus, the number of meta-states depends on the number of cycle iterations 2n,
which completes the proof, since n ∈ N.

6 Characterization

Now we contemplate the newly found language classes which divide the class of top-down deterministic
regular DAG languages RDLdet, whose languages are generated by deterministic DAG grammars, into
disjoint subclasses.
Observation 6.1 (FID ∪ ID = RDLdet). By the definitions of FID and ID, it is true that FID and ID are
disjoint and that FID ∪ ID = RDLdet.

The following lemma characterizes the language class ID by the rules of a grammar. Since ID and
FID are disjoint, indirectly it is also a characterization of FID.
Theorem 6.2 (Characterization of ID). For a minimal deterministic DAG grammar G = (N,Σ,R) its set
of meta-states Qmin(G) is infinite iff there exist a rule cycle c, a rule path Π and not necessarily distinct
nonterminals q, p ∈ N satisfying the following conditions:

18 Finite State Automata Accepting Graphs

c Π

(a) Rule cycles’ graph

q̌ q̂q

(b) Rule cycle c – left branch

q qq̂ q̌ qq

(c) Rule path Π – right branch

Figure 5: Rule cycles and their graphs for the binary tree language given by a cycle and its chord

• The nonterminals q and p occur in c as unmarked q ∈ N and marked p̄ ∈ N̄. (c)

• The rule path Π lies between q and p. (Π)

• The nonterminal q is in c in a head iff it is in Π’s weak rule in the head. (cΠ)

Proof. Before proving the stated bi-implication, observe that the above conditions result in two distinct
rule cycles. It is easy to see that Π acts as a chord path for the rule cycle c, and consequently, provides an
alternative rule cycle. Fig. 5 demonstrates an example. For the rule cycle c condition (c) and for the rule
path Π condition (Π) urge the suitable nonterminals for gluing Π as a chord to c. The requirements stated
in (cΠ), concerning the nonterminals’ positions in head or tail ensure the right orientation of the edge
labeled q. And, this alternative rule cycle provided by Π is the crux of the matter. Since the grammar
has always two options to continue the derivation, it always has to remember the dangling edges of the
alternative it did not decide to generate next. Thus, in every cycle iteration, regardless of the decision
how to proceed, a new meta-state is needed since the number of dangling edges grows in an unbounded
fashion.

We start with assuming that G ’s rules have the stated form and then prove that Qmin(G) is infinite.
The proof by construction relies on two techniques. We construct a graph Gn for which the number
of meta-states in Qmin(G) needed to generate it depends on the number of rule cycle iterations n ∈ N.
The first technique is the (directed or undirected) path whose length depends on n: Our grammar G can
generate the above stated DAG Gn since a rule cycle can yield a path of length k ·n where k is the number
of edges generated by the marked nonterminals in one cycle iteration. A path as such is connected, and
our path is a subgraph of a connected prefix DAG, generated top-down by G . As such, it is a connected
prefix DAG which, according to Lemma 3.4, G can complete to a language-useful DAG. The second
technique is to disregard all the edges and vertices not mentioned in the conditions stated about the rules
of the grammar. Obviously, they are irrelevant since, due to the swapping operation (Theorem 2.11), they
would only increase the size and number of the meta-states.6 Like that, G causes Qmin to be infinite by
deriving Gn with a path of length n as a subgraph via:

• directed rule cycles and therefore fully balanced binary trees as subgraphs (Lemma 5.3)

• undirected rule cycles and therefore proper DAGs as shown in Lemma 5.4.

Consequently, G generates a DAG Gn whose size and number of meta-states depend on the number of
rule cycle iterations which are unbounded. Like that, Qmin(G) is infinite.

The direction vice versa assumes an infinite Qmin(G) and arguments by negating the conditions one
by one: The existence of the stated rule cycle and rule path, as well as the requirements (c), (Π) and
(cΠ) have to meet are iteratively shown to hold by negating them and concluding a contradiction.

• Assume no Π exists. By their definition, grammars without rule paths do not generate DAGs.
With Qmin(G) being infinite, a rule path must exist. Assume no c exists. Languages without a

6Note that, with this second technique applied, k – the number of edges generated by the marked nonterminals in one cycle
iteration – equals to one. We abstract away how many edges the cycle exactly generates. Relevant to distinguish between finite
and infinite Qmin is not the constant factor k, but only the number of iterations n.

Yvo Ad Meeres 19

rule cycle are finite (Lemma 2.9). Finite languages have a finite Qmin (Lemma 4.2), contradicting
our assumption that no rule cycle exists. Infinite languages are necessarily generated by cycles
(Lemma 2.9). Thus, both rule path and cycle, called Π and c, exist.

• Assume condition (c) does not hold. By definition, no rule cycles without marked nonterminals
exist, thus p̄ must occur in c. A rule cycle without an unmarked nonterminal, here q, yields finitely
many meta-states (Lemma 4.4, 3.). Condition (c) holds.

• Without condition (Π), thus without Π being connected with its both ends q and p to c, there
would be no chord path7. First, assume that there would be no rule path with q as one of its ends.
However, it is immediate that some rule path is indeed connected to c: Since q occurs unmarked
in c, a rule path Π connected by q necessarily exists, yielding – without the chord – an infinite set
of meta-states, indeed. But, it is Q0(G) which is infinite, not Qmin(G) – by Lemma 4.4 again – in
case Π does not lead back to c via p̄, our second assumption when negating (Π). This contradiction
shows that a path Π between q and p must exist for an infinite Qmin.

• Negating condition (cΠ) means allowing q as unmarked in a head of c while it is in a tail of Π’s
two weak rules or vice versa. This would induce the wrong orientation of q so that Π would not
be a chord. And, we already know from the previous point that Π has to be a chord.

We cannot sacrifice any condition without contradicting our assumption of an infinite Qmin(G) which
proves the second direction and by that completes the proof.

What if we restrict a grammar G with a set of meta-states Q instead of deriving this set out of
the grammar? In that case the grammar’s language possibly changes. Whereas when just extracting
Qmin(G), the grammar’s language is not altered.
Definition 6.3 (Finite meta-state DAG language (FD)). A minimal deterministic grammar G = (N,Σ,R)
generates a finite meta-state language LQ(G) where a finite set Q ⊆ NQ is given to restrict which rules
in R can be used. The derivation step G1⇒ G2 is only allowed if the meta-state G2 ∈Q.

Languages in the classes FID and FD can use their finite sets of meta-states, Qmin and Q, respectively,
to construct a classical finite state automaton to recognize themselves.

7 Classical Finite State Automata for DAG Languages

This section describes how classical finite state automata come into play when recognizing certain DAG
languages. An FD language can be recognized by a classical deterministic finite state automaton (DFA).
As an example, see Figure 3b which shows the automaton for accepting DAGs of L(Gstar) as defined
in Example 3.6. The top-down reading process induces merely a partial order on the vertices. The
deterministic automaton thus reads a DAG in a partly nondeterministic fashion.

A DFA is a five-tuple A = (Q,Γ,δ ,q0,q$) with the finite sets Q and Γ being the states and the
alphabet, resp., q0,q$ ∈ Q being the start and final state, resp., and δ : (Q×Γ)→ Q being the transition
function, extended inductively to strings δ (Q×Γ∗)→Q by applying δ symbol-wise. We omit entries of
δ if they do not lead to an accept state and thus consider only partial DFAs.

Every DAG grammar G = (N,Σ,R) with L(G) being a finite meta-state DAG language gives rise to
a DFA M = (R,Qmin(G),δ , /0, /0) such that for all q ∈Qmin the transition function yields the following if
α ⊆ q then

δ (q,(α σ β)) = (q\α)∪β .

7Recall the introduction of the proof for the explanation of Π being a chord path.

20 Finite State Automata Accepting Graphs

Although M meets the requirements of a DFA, we call its states in Qmin meta-states instead to avoid
confusion. While reading a string with a DFA is as easy as reading it symbol by symbol, reading a DAG
is somewhat more complicated since the vertices do not exhibit an obvious total order. Therefore, M
reads the vertices partly nondeterministically. Let G = (V,E, ℓ, in,out) be a DAG in DΣ. Such a DAG
has no labels assigned to its edges. We denote this by ℓ(e) = #. Since we are restricted to top-down
procedures, reading a vertex means assigning states to the outgoing edges: Consequently, M may read a
vertex only if all of its ingoing vertices have been assigned labels, thus # /∈ [ℓ(in)]. If ℓ(v) matches the
σ of a rule r = (α σ β) such that δ (q,r) yields a new state q′ of M, M can read v and assigns the
labels β to its outgoing edges: ℓ(out(v)) = β .8

By reading the vertices top-down, M will accept a DAG if it nondeterministically chooses the right
order of vertices. The order in which the vertices are read is already restricted by imposing the require-
ment to read top-down. But, we can improve upon this by fine-tuning the order in which the roots are
read. When M cannot read any non-root, then there exists no vertex with all its ingoing edges labeled.
Instead of choosing an arbitrary root next – since in a top-down a root has no prerequisites and can al-
ways be read top-down – M can choose a root which is needed next. Which root vroot ∈ V do we need
next? One where the DAG G has a path from vroot to a vertex vnext whose ingoing vertices are labeled as
well as not labeled.

We defined the language class FD at the end of the last section (c.f. Definition 6.3). Now that we
know how a grammar G in combination with a finite set of meta-states Q(G) can determine a DFA for
the DAG language L(G), let us come back to the idea of restricting a grammar with a set of meta-states
not derived from G. Since languages easily become ID languages, the rules which are allowed to remain
in the class of FID limit the expressiveness of languages. The motivation behind restricting via a finite Q
strives to increase the expressiveness of a language while keeping the number of meta-states to recognize
or generate it finite in order to profit from transferring the good algorithmic properties of regular string
languages. We use the language which comprises DAGs looking like a rainbow to illustrate restricting a
given ID language to become an FD language recognizable by an FSA, see Figure 6.

Theorem 7.1 (FD ⊈ RDLdet). The class of finite meta-state DAG languages is not a subset of the class
of top-down deterministic regular DAG languages RDLdet.

Proof. Given is a minimal deterministic DAG grammar G = (N,Σ,R) and a finite set of meta-states Q.
If FD ⊈ RDLdet holds, then there exists a DAG language LQ(G) that is not in the class of RDLdet. Our G
is a deterministic DAG grammar and as such generates a language L(G) ∈ RDLdet.

We try to construct a language not in RDLdet by limiting G ’s language to a finite one. Suppose, G
generates an infinite language L(G) and Q prevents derivations of any rule cycle in R. According to
Lemma 2.9, then, LQ(G) will be finite. However, Lemma 4.2 tells us that any finite language can be
generated by a deterministic DAG grammar G ′ ̸= G such that L(G ′) = LQ(G). This attempt did not
work out.

Our next attempt is the grammar Gbow with its infinite language L(Gbow) ∈ ID. Its rule set comprises
(λ r pq),(p o pq),(pq c p) and (pq l λ). The grammar Gbow can among others gen-
erate DAGs similar to garlands and rainbows. To generate an arbitrary long DAG looking like a garland,
the set of meta-states Q = {∅, p, pq} suffices. If, however, Gbow generates a DAG looking like a rain-
bow, it repeats the rule with the vertex label o an unbounded number of times.9 Such a rainbow DAG in

8Note that, by definition, the empty DAG ∅ is not in the language although the automaton accepts it due to the start state as
accepting state. Only DAGs G ∈ DΣ are considered and ∅ is not in DΣ.

9Allowing pennants spanning more than one vertex is possible, too. With Q = {pqn | p,q ∈ N and n ∈ N} the bow(s) for
the pennants in a DAG Ggarland ∈ LQ(G) can span the maximum of n vertices.

Yvo Ad Meeres 21

a) p̌ p̂q p̌q p̂ p̌ pq̂ pq̌ p̂

b) p̌ p̂q p̌ p̂q p̌q p̂ p̌q p̂ p̌ pq̂ pq̌ p̂

(a) The rule cycles in Gbow

p
p
p
p
p
p

qqq

p
p
p
p
p
p
p
p
p
p

qqqqq

p
p
p
p
p
p
p
p
p
p
p
p
p
p

qqqqqqq

(b) Some DAGs in L(Gbow)

/0 pq pqq pq3 pqk

λ pq p pq p pq

pq ppq ppq λ

. . .

(c) An FSA for the language L{pqk| k>0}(Gbow) with a fixed k ∈ N.

Figure 6: The grammar Gbow generates, among others, DAGs looking like rainbows (vertices implicit)
(a) via the rule cycles in (b). For a fixed k ∈ N, restricting the grammar by Q = {pqk| k > 0} allows the
construction of an FSA and imposes a bound on the number of bows in a ‘rainbow’.

LQ(G), with the length of the bow(s) limited, can only be generated by a deterministic DAG grammar
if the grammar’s language is finite. But, a finite language cannot include DAGs with n-sized bows of
arbitrary length. On the other hand, any grammar generating garland DAGs of unbounded length will
also include the rainbow DAGs due to the possibility to swap the edges (Lemma 2.11). And, according
to Lemma 4.6, we can swap the edges since the edge labels (the nonterminals) must be repeated for a
DAG of unbounded length and distinct edges labeled with the same nonterminal in a derivation DAG can
be swapped. Thus, restricting the language to LQ(Gbow) by above given Q results in a language not in
RDLdet, completing the proof.

Again, swapping (Lemma 2.11) would allow us to generate unbounded rainbows, so we conclude:
restricting a grammar by a set of meta-states can prevent the swapping operation.

Corollary 7.2 (Swapping in FD). For a grammar G with its LQ(G) ∈ FD\FID holds:

• ∃⌊D⌋∈LQ(G) : ⌊D(e0 ▷◁ e1)⌋ /∈ LQ(G)

• |LQ(G)|< |L(G)|

• L(G) = {⌊D(e0 ▷◁ e1)⌋ |D(e0 ▷◁ e1) ∈ LQ(G)}

• L(G) ∈ ID

Contrary to FID-grammars on whose derivation DAGs swapping is always allowed, the derivation
DAGs of grammars generating languages in LQ(G) ∈ FD\FID the swapping operation is restricted by
the given set of meta-states Q. Restricting a grammar by allowing only certain meta-states corresponds
to restricting swapping on the derivation DAGs. Via those restrictions, DAGs are lost which cannot be

22 Finite State Automata Accepting Graphs

accepted without the missing meta-states resulting in a language with less graphs. The transitive closure
of the swapping operation on the language LQ(G) returns the original language L(G) which must be in
the class ID.

For free – by FD definition – we can observe the closure properties valid for DFAs, since FD languages
are recognized by DFAs.

Observation 7.3 (FD – Closure under Union and Intersection).
The language class FD is closed under union and intersection.

8 Conclusion

We have defined the DAG language classes ID and FD and characterized them. By imposing the set of
meta-states as a given restriction, we additionally have defined FD, which intersects with RDL but is not
a subset of it – adding to expressiveness. For languages in FID and FD, we proved that it is possible
to construct a classical string automaton recognizing the language. Analysing ID further, we expect
similarities with the Chomsky hierarchy.

Pushdown Conjecture. Analogous to languages in FD being recognized by a finite state automaton, we
conjecture all languages in ID to be recognized by a pushdown automaton.

The FSA construction by meta-states, could be applied not only to the top-down deterministic ver-
sion, but also to the plain regular DAG automaton. By dropping the determinism restriction, similar to
dropping the planarity restriction [32] imposed in [21], possibly the NP-completeness for the member-
ship problem could be tackled. Imposing useful restrictions to be provided by the set of meta-states Q,
as the language class FD requires it, is the task for more application centric research, like semantic NLP
parsing [29, 3].

Yvo Ad Meeres 23

References

[1] Lene Antonsen, Erik Axelson, Eckhard Bick, Børre Gaup, Sam Hardwick, Katri Hiovain-Asikainen,
Arvi Hurskainen, Fred Karlsson, Kimmo Koskenniemi, Krister Lindén, Inari Listenmaa, Inga Mikkelsen,
Sjur Nørstebø Moshagen, Flammie A Pirinen, Aarne Ranta, Jack Rueter, Daniel G. Swanson, Trond
Trosterud & Linda Wiechetek (2023): Rule-Based Language Technology. NEJLT Monographs 2, North-
ern European Association for Language Technology (NEALT). Available at http://hdl.handle.net/
10062/89595.

[2] Andrew Badr (2009): HYPER-MINIMIZATION IN O(n2). Int. J. Found. Comput. Sci. 20(4), pp. 735–746,
doi:10.1142/S012905410900684X.

[3] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer & Nathan Schneider (2013): Abstract Meaning Representation for Sembank-
ing. In: Proc. 7th Linguistic Annotation Workshop, ACL 2013 Workshop.

[4] Darcy Best & Max Ward (2022): A faster algorithm for maximum independent set on interval filament graphs.
J. Graph Algorithms Appl. 26(1), pp. 199–205, doi:10.7155/JGAA.00588.

[5] Johannes Blum & Frank Drewes (2019): Language theoretic properties of regular DAG languages. Inf.
Comput. 265, pp. 57–76, doi:10.1016/j.ic.2017.07.011. Available at https://doi.org/10.1016/j.ic.
2017.07.011.

[6] Tommaso Boccato, Matteo Ferrante, Andrea Duggento & Nicola Toschi (2024): 4Ward: A relayering strat-
egy for efficient training of arbitrarily complex directed acyclic graphs. Neurocomputing 568, p. 127058,
doi:10.1016/J.NEUCOM.2023.127058.

[7] Dietrich Braess (1968): Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung 12(1), pp.
258–268, doi:10.1007/BF01918335.

[8] David Chiang, Frank Drewes, Daniel Gildea, Adam Lopez & Giorgio Satta (2018): Weighted DAG Automata
for Semantic Graphs. Computational Linguistics 44(1), doi:10.1162/COLI_a_00309.

[9] Marco Damonte & Shay B. Cohen (2018): Cross-lingual Abstract Meaning Representation Parsing. In:
Proceedings of NAACL, doi:10.18653/v1/N18-1104.

[10] Marco Damonte, Shay B. Cohen & Giorgio Satta (2017): An Incremental Parser for Abstract Meaning
Representation. In: Proceedings of EACL, doi:10.18653/v1/E17-1051.

[11] Martin Dias, Mariano Martinez Peck, Stéphane Ducasse & Gabriela Arévalo (2014): Fuel: a fast general
purpose object graph serializer. Softw. Pract. Exp. 44(4), pp. 433–453, doi:10.1002/SPE.2136.

[12] Frank Drewes (2017): DAG Automata for Meaning Representation. In Makoto Kanazawa, Philippe de Groote
& Mehrnoosh Sadrzadeh, editors: Proceedings of the 15th Meeting on the Mathematics of Language, MOL
2017, London, UK, July 13-14, 2017, ACL, pp. 88–99, doi:10.18653/v1/w17-3409.

[13] Frank Drewes (2017): On DAG Languages and DAG Transducers. Bulletin of the EATCS 121.

[14] Senka Drobac, Krister Lindén, Tommi A. Pirinen & Miikka Silfverberg (2014): Heuristic Hyper-
minimization of Finite State Lexicons. In Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Hrafn Lofts-
son, Bente Maegaard, Joseph Mariani, Asunción Moreno, Jan Odijk & Stelios Piperidis, editors: Proceedings
of the Ninth International Conference on Language Resources and Evaluation, LREC 2014, Reykjavik, Ice-
land, May 26-31, 2014, European Language Resources Association (ELRA), pp. 3319–3324. Available at
http://www.lrec-conf.org/proceedings/lrec2014/summaries/784.html.

[15] Vida Dujmovic & Pat Morin (2019): Dual Circumference and Collinear Sets. In Gill Barequet & Yusu
Wang, editors: 35th International Symposium on Computational Geometry, SoCG 2019, June 18-21, 2019,
Portland, Oregon, USA, LIPIcs 129, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 29:1–29:17,
doi:10.4230/LIPIcs.SoCG.2019.29.

[16] Anjan Dutta, Josep Lladós & Umapada Pal (2013): A symbol spotting approach in graphical documents by
hashing serialized graphs. Pattern Recognit. 46(3), pp. 752–768, doi:10.1016/J.PATCOG.2012.10.003.

http://hdl.handle.net/10062/89595
http://hdl.handle.net/10062/89595
https://doi.org/10.1142/S012905410900684X
https://doi.org/10.7155/JGAA.00588
https://doi.org/10.1016/j.ic.2017.07.011
https://doi.org/10.1016/j.ic.2017.07.011
https://doi.org/10.1016/j.ic.2017.07.011
https://doi.org/10.1016/J.NEUCOM.2023.127058
https://doi.org/10.1007/BF01918335
https://doi.org/10.1162/COLI_a_00309
https://doi.org/10.18653/v1/N18-1104
https://doi.org/10.18653/v1/E17-1051
https://doi.org/10.1002/SPE.2136
https://doi.org/10.18653/v1/w17-3409
http://www.lrec-conf.org/proceedings/lrec2014/summaries/784.html
https://doi.org/10.4230/LIPIcs.SoCG.2019.29
https://doi.org/10.1016/J.PATCOG.2012.10.003

24 Finite State Automata Accepting Graphs

[17] Krister Lindén Erik Axelson, Sam Hardwick (2023): HFST Training Environment and Recent Additions
(61-69) pdf, pp. 60–69. 2 of Hurskainen et al. [1]. Available at http://hdl.handle.net/10062/89595.

[18] Akio Fujiyoshi (2010): Recognition of directed acyclic graphs by spanning tree automata. Theor. Comput.
Sci. 411(38-39), pp. 3493–3506, doi:10.1016/j.tcs.2010.06.006.

[19] Abdullah Gharaibeh, Elizeu Santos-Neto, Lauro Beltrão Costa & Matei Ripeanu (2013): Efficient Large-
Scale Graph Processing on Hybrid CPU and GPU Systems. CoRR abs/1312.3018. arXiv:1312.3018.

[20] Annegret Habel & Hans-Jörg Kreowski (1986): May we introduce to you: hyperedge replacement. In Hart-
mut Ehrig, Manfred Nagl, Grzegorz Rozenberg & Azriel Rosenfeld, editors: Graph-Grammars and Their
Application to Computer Science, 3rd International Workshop, Warrenton, Virginia, USA, December 2-6,
1986, Lecture Notes in Computer Science 291, Springer, pp. 15–26, doi:10.1007/3-540-18771-5_41.

[21] Tsutomu Kamimura & Giora Slutzki (1981): Parallel and Two-Way Automata on Directed Ordered Acyclic
Graphs. Information and Control 49, pp. 10–51, doi:10.1016/S0019-9958(81)90438-1.

[22] Tsutomu Kamimura & Giora Slutzki (1982): Transductions of Dags and Trees. Mathematical Systems
Theory 15(3), pp. 225–249, doi:10.1007/BF01786981.

[23] Krister Lindén, Tommi Pirinen et al. (2009): Weighting finite-state morphological analyzers using hfst tools.
In: Finite-State Methods and Natural Language Processing-FSMNLP 2009 Eight International Workshop.

[24] Andreas Maletti & Daniel Quernheim (2011): Optimal Hyper-Minimization. Int. J. Found. Comput. Sci.
22(8), pp. 1877–1891, doi:10.1142/S0129054111009094.

[25] Akira Matsubayashi & Yushi Saito (2023): A Faster Algorithm for Recognizing Directed Graphs Invulnerable
to Braess’s Paradox. In Daniele Frigioni & Philine Schiewe, editors: 23rd Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems, ATMOS 2023, September 7-8, 2023,
Amsterdam, The Netherlands, OASIcs 115, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 12:1–
12:19, doi:10.4230/OASICS.ATMOS.2023.12.

[26] Sjur Nørstebø Moshagen, Flammie Pirinen, Lene Antonsen, Børre Gaup, Inga Mikkelsen, Trond Trosterud,
Linda Wiechetek & Katri Hiovain-Asikainen (2023): The GiellaLT infrastructure: A multilingual infrastruc-
ture for rule-based NLP. 2 of Hurskainen et al. [1]. Available at http://hdl.handle.net/10062/89595.

[27] Flammie A Pirinen (2023): Finite-State Technology in Rule-Based Natural Language Processing, pp. 49–59.
2 of Hurskainen et al. [1]. Available at http://hdl.handle.net/10062/89595.

[28] Tommi Pirinen, Krister Lindén et al. (2010): Finite-state spell-checking with weighted language and error
models. In: Proceedings of LREC 2010 Workshop on Creation and use of basic lexical resources for less-
resourced languages.

[29] Daniel Quernheim & Kevin Knight (2012): Towards Probabilistic Acceptors and Transducers for Feature
Structures. In: Proc. 6th Workshop on Syntax, Semantics and Structure in Statistical Translation, Association
for Computational Linguistics, pp. 76–85.

[30] Eloize Rossi Marques Seno, Helena de Medeiros Caseli, Marcio Lima Inácio, Rafael T. Anchiêta & Re-
nata Ramisch (2022): XPTA: um parser AMR para o Português baseado em uma abordagem entre línguas.
Linguamática 14(1), pp. 49–68, doi:10.21814/lm.14.1.359.

[31] Daniel G. Swanson (2023): Apertium, pp. 95–111. 2 of Hurskainen et al. [1]. Available at http://hdl.
handle.net/10062/89595.

[32] Ieva Vasiljeva, Sorcha Gilroy & Adam Lopez (2018): The problem with probabilistic DAG automata for
semantic graphs. CoRR abs/1810.12266. arXiv:1810.12266.

[33] Magnus Wahlström (2017): LP-branching algorithms based on biased graphs. In Philip N.
Klein, editor: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, SIAM, pp. 1559–1570,
doi:10.1137/1.9781611974782.102.

[34] Douglas B. West (2001): Introduction to Graph Theory, 2 edition. Prentice Hall.

http://hdl.handle.net/10062/89595
https://doi.org/10.1016/j.tcs.2010.06.006
https://arxiv.org/abs/1312.3018
https://doi.org/10.1007/3-540-18771-5_41
https://doi.org/10.1016/S0019-9958(81)90438-1
https://doi.org/10.1007/BF01786981
https://doi.org/10.1142/S0129054111009094
https://doi.org/10.4230/OASICS.ATMOS.2023.12
http://hdl.handle.net/10062/89595
http://hdl.handle.net/10062/89595
https://doi.org/10.21814/lm.14.1.359
http://hdl.handle.net/10062/89595
http://hdl.handle.net/10062/89595
https://arxiv.org/abs/1810.12266
https://doi.org/10.1137/1.9781611974782.102

Yvo Ad Meeres 25

9 Appendix

Lemma 9.1 (Meta-state dependent). Let G,G′ be prefix DAGs with G = G′ derived by a DAG grammar
G = (N,Σ,R). Then, G can apply the rule r ∈ R as the next derivation step G⇒r H iff G′ ⇒r H ′.
Similarly, G is useful if and only if G′ is useful. However, if G is language-useful this only implies that
G′ is useful.

Proof of Theorem 3.3. By the definition of a DAG grammar, a rule application depends only on the
temporary vertices labeled by non-terminals – elements of the meta-states G and G′. Consequently,
G⇒r H is possible iff G′⇒r H ′ is. Valuability requires a rule sequence and is therefore also dependent
on the meta-state only. It follows that G is useful if and only if G′ is useful. On the other hand, a common
meta-state does not preserve connectivity. With the given equality G = G′, G could be a connected DAG
while G′ is not. In that case G is language-useful, but G′ not necessarily – only if the preceding derivation
connects the unconnected components of G′. But since the language-useful G is useful, G′ is, too.

Lemma 9.2 (Useful Prefix DAG). Let G be a prefix DAG and G = (N,Σ,R) be a DAG grammar without
useless rules. If ∅⇒∗R G, then G is useful with respect to G , i.e. there exists a derivation ∅⇒∗R G⇒∗R G′

for a complete DAG G′. If G′ is connected it is language-useful.

Proof of Theorem 3.4. We prove this by induction on the length n of the derivation ∅⇒r1...rn G. For the
base case consider a derivation ∅⇒r G of length n = 1. As the rule set R contains no useless rules, there
is a derivation ∅⇒r′1...r

′
k

G′ where G′ ∈ DΣ and r = r′i for some i. Moreover, as ∅⇒r G, the head of the
rule r is the empty string and we may assume that r = r′1. This means that G is useful with respect to G
(for the sake of brevity, we say useful subsequently).

Consider now a derivation ∅ ⇒r1...rn G of length n > 1. Let ρ1 = r1 . . .rn−1. By the induction
hypothesis we know that there is a sequence ρ2 of rules such that ∅⇒ρ1ρ2 H for some H ∈DΣ. Moreover,
as R contains no useless rules, there are rule sequences ρ ′1,ρ

′
2, such that ∅⇒ρ ′1rnρ ′2

H ′ for some H ′ ∈DΣ.
It is also possible to concatenate these two derivations and to interleave the individual derivation steps.
This yields a derivation ∅⇒ρ1ρ ′1rn H∗⇒ρ2ρ ′2

(H&H ′) where H&H ′ denotes the disjoint union of H and
H ′.

Consider now the derivation ∅⇒ρ1rn G. We want to show that G is useful. As ρ ′1 can be applied on
the empty graph, there is some DAG G∗ such that ∅⇒ρ1rn G⇒ρ ′1

G∗. Moreover, G∗ and H∗ have the
same meta-state, as they were generated through the same multiset of rules. As H∗ is useful it follows
from Lemma 3.3, that G∗ is useful, and therefore, G is useful.

Therefore, if G is connected, so is the connected component G′′ in the complete DAG G′ which
finalized the prefix DAG G. This means that G can decide to choose only those derivation steps which
yield a connected DAG G′ = G′′. Consequently, a connected prefix DAG G is not only useful but also
language-useful with respect to its grammar G .

Lemma 9.3 (Unbounded without Rule Cycle). There exists a DAG grammar G = (N,Σ,R) and a vertex
or edge label u ∈ Σ∪N such that the number of occurrences of u in a (derivation) DAG generated by G
is unbounded, although u does not occur in any rule cycle.

Proof of Theorem 4.5. Consider the DAG grammar G = ({r,c, l},{r,c,l},R) containing the following
rules R = {λ r rr, rr c c,c c l, l l λ} and let u ∈ {l,l}, thus let u either denote the
edge label l or the vertex label l. Then, the vertex label l cannot occur in a marked rule ᾱ σ β̄ ,
which, by definition, comprises two marked nonterminals. On the contrary, the only rule with the label

26 Finite State Automata Accepting Graphs

l is l l λ with |αβ |= |lλ |=1 and thus comprises only one nonterminal. Consequently, l cannot
occur in a rule cycle since a rule cycle contains marked rules only. And, neither can the edge label l ∈ N.
In a rule cycle, l would occur both in a head as well as in a tail which it does in R, but, again, the rule
l l λ cannot take part in a rule cycle. Thus, by definition, u cannot participate in any of G ’s rule
cycles.

The DAG G ∈ L(G) in Figure 4a uses each rule r ∈ R only once, just as both vertex label l and edge
label l. We can take k disjoint isomorphic copies of G for any k ∈ N and connect them by swapping the
copies of e, as shown in Figure 4c, by Theorem 2.11. The resulting DAG G[ek−1 ▷◁ ek]

k is still accepted
by G and connected. Moreover, it contains k occurrences of label u, which proves the lemma.

Lemma 9.4 (Unbounded Label Occurrence). Let G = (N,Σ,R) be a minimal deterministic DAG gram-
mar and u ∈ Σ∪N a label of a vertex or an edge. The number of occurrences of u in graphs G ∈ L(G),
or, for edge labels, in their corresponding derivation DAGs D, is unbounded, iff one of the two following
conditions is fulfilled:

a) Label u occurs in some rule cycle of G .

b) There exist both a rule cycle c in which an unmarked q∈N occurs as well as a rule path Π between
this nonterminal q and the label u.

Proof of Theorem 4.6. Suppose that a) is true. Then L(G) is infinite, according to Theorem 2.9, which
in turn means that there is no bound on the length of (possibly undirected) paths in graphs G ∈ L(G). To
obtain paths of unlimited length by the pigeonhole principle the repetition of rules is needed since R is
finite. We may do so by using the rule cycle cu comprising u. The derivation /0⇒R G′⇒∗cu

⇒R G does
not impose a bound on the number of label u occurrences on Gs derived like that, which proves that a)
implies unboundedness of u occurrences.

Suppose that b) is true. The cycle c with the unmarked state q generates not only the labels it com-
prises arbitrarily often, as showed in above paragraph, but also an unbounded number of the nonterminal
q may appear when taking the intermediate graphs into account that are generated in the various steps
to yield G. At every q the derivation steps⇒Π generate a useful DAG with respect to L(G) with a path
comprising u. But G does not bound the generations of q, thus neither on the derivation step ⇒Π and
consequently also the number of the labels us which shows that b) implies that the number of occurrences
of u is not bounded.

Turning now to the second direction we assume that no bound on the number of us exists for the
DAG language L(G). This means that G can repeatedly generate u. With a finite number of rules R,
this is only possible by applying rules with label u an unbounded number of times. Repetition of rules is
obtained either by a rule cycle, a) or by rule paths to a cycle b). In every iteration of the cycle, also the
rule path Π is repeated and like that our label u.

Obviously, rules that do not participate in any rule cycle, not having a path to a rule cycle cannot be
used in a derivation multiple times, which proves the second direction. This result carries over without
difficulty when regarding u as the edge label u ∈ N in a derivation DAG D, instead of the vertex label
u ∈ Σ of a DAG ⌊D⌋= G, which completes the proof.

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 27–43, doi:10.4204/EPTCS.407.3

© P. Adrián & Gy. Vaszil

A GLR-like Parsing Algorithm for Three-Valued
Interpretations of Boolean Grammars with Strong Negation*

Patrik Adrián
Faculty of Informatics, University of Debrecen,

Kassai út 26, 4028 Debrecen, Hungary
adrianpatrik@mailbox.unideb.hu

György Vaszil
Faculty of Informatics, University of Debrecen,

Kassai út 26, 4028 Debrecen, Hungary
vaszil.gyorgy@inf.unideb.hu

Boolean grammars generalize context-free rewriting by extending the possibilities when dealing with
different rules for the same nonterminal symbol. By allowing not only disjunction (as in the case of
usual context-free grammars), but also conjunction and negation as possible connections between
different rules with the same left-hand side, they are able to simplify the description of context-free
languages and characterize languages that are not context-free. The use of negation, however, leads to
the possibility of introducing rules that interplay in such a way which is problematic to handle in the
classical, two-valued logical setting. Here we define a three valued interpretation to deal with such
contradictory grammars using a method introduced originally in the context of logic programming,
and present an algorithm to determine the membership status of strings with respect to the resulting
three valued languages.

Ever since their publication in 1956, context-free grammars (CFG) of Chomsky [2] have served as
the ubiquitous tool for formal grammar specification, thanks to their easy-to-understand semantics and
admission of simple parsing algorithms. Other formalisms, such as tree adjunct grammars [6], parsing
expression grammars [4] and others have since been developed, partially to address the inadequacy of
CFGs to fully describe natural languages, but none have been as successful as CFGs themselves.

Even though the original semantics of a CFG are defined in terms of a rewrite system over an alphabet
of terminal and nonterminal symbols, the parsing problem may just as well be seen as a problem of
logic, where grammar rules serve as rules of inference and parsing is a search for the proof of the root
proposition. The Boolean grammars of Okhotin [9] build upon this interpretation and extend traditional
CFGs with conjunction (intersection) and negation (complementation) operations. When interpreted
over a two-valued, classical logic, a Boolean grammar may be contradictory and not have a satisfying
solution. In a three-valued logic where indeterminacy is a truth value that is stable under negation, such
contradictions become tractable.

Our work involves the development of a parser based on a generalized LR (GLR) method for the
entailment semantics of a Boolean grammar. Okhotin’s GLR-like parser [10] for Boolean grammars
works on a two-valued foundation and is not general in the sense of a generalized parser, as it cannot
handle certain classes of grammars. His algorithm realizes negation by the deletion of edges from the
graph structured stack (GSS) used by the algorithm; our solution is more in the spirit of the original GLR
(see [14]), which uses a monotone approach to parsing, where edges are only created, never removed.

We were motivated by the work of Kountouriotis et al. [7] that described a tabular parser for the well-
founded semantics of a Boolean grammar. The well-founded semantics, originally introduced in [5] is a
three-valued semantic interpretation of a logic program that builds on a restricted version of the closed
world semantics and a closely associated rule of inference often referred to as “negation as failure”. The
(also three-valued) semantic model of [3] builds on what is very close to the open world semantics and
infers knowledge based only on entailment, rather than failure to be proven true.

*Supported by the University of Debrecen Scientific Research Bridging Fund (DETKA).

http://dx.doi.org/10.4204/EPTCS.407.3

28 A GLR-like algorithm for three-valued interpretations of Boolean grammars

The reader would rightfully expect the toy grammar with the singular rule S → ¬S to be self-
contradictory and not have any two-valued models. In a three-valued setting, the language defined by
such a grammar has an indeterminate relation to all strings of the underlying alphabet, i.e. it neither
contains, nor excludes them. A more interesting case is the similar grammar with the rule S→ S, which,
unlike the previous example, does have a two-valued model; in fact, every conceivable language models
this grammar. The well-founded model of this grammar is the language that excludes all strings. One
might, however, argue that the choice made here is rather arbitrary and is only a leftover from the two-
valued world; the “correct” three-valued solution here is that one also cannot determine the containment
status of words within this language; this time not because of inconsistency, but inadequacy. The Fitting-
semantics of logic programs (and by extension, Boolean grammars) is based on the latter philosophy, and
considers the containment status to be determinate if and only if it cannot be otherwise (i.e. it is entailed
by the axioms, here implied by the rules of the grammar).

1 Preliminaries

We base our discussion on a highly restricted fragment of first order logic that, for the lack of function
symbols, variables and quantifiers, we consider to be effectively propositional.

An atom is of the form P(c), where c is a constant symbol and P is a unary predicate. A formula is
either an atom or is built using the usual connectives ¬, ∧ and ∨, in decreasing order of precedence. The
set of all constant symbols is the Herbrand-universe (U) and the set of atoms are the Herbrand-base (B)
of the language.

A rule is of the form A← φ where A is an atom and φ is a formula. The symbol A is the head, φ is
the body of the rule. A set of rules is well-formed if and only if (iff) no two rules have the same head
and, for every atom A′ that appears anywhere within the body of a rule, a rule with head A′ exists, i.e.
we require that each atom is defined exactly once. The reader may assume that we are only dealing with
well-formed rulesets.

We consider the set of possible truth values B = {⊤,⊥,∽} representing truth, falsity and a third
judgement understood as being indeterminate. The usual Boolean operations are as in Figure 1, also
known as Kleene’s strong three-valued logic. A valuation is a function B→ B that assigns a truth value
to every atom in the Herbrand-base. We define the strict partial order ≺ over B as ∽≺ ⊥ and ∽≺ ⊤,
with ⊥ and ⊤ unrelated. The relation ⪯ is the reflexive closure of ≺. A valuation I1 is no more certain
than I2, written as I1 ⪯ I2 iff for all atoms A it holds that I1(A) ⪯ I2(A), i.e. I2 changes at most the truth
values of atoms that are indeterminate in I1. For an arbitrary formula φ , it holds that I1(φ)⪯ I2(φ).

¬
⊤ ⊥
∽ ∽
⊥ ⊤

(a) Negation.

∧ ⊤ ∽ ⊥
⊤ ⊤ ∽ ⊥
∽ ∽ ∽ ⊥
⊥ ⊥ ⊥ ⊥

(b) Conjunction.

∨ ⊤ ∽ ⊥
⊤ ⊤ ⊤ ⊤
∽ ⊤ ∽ ∽
⊥ ⊤ ∽ ⊥

(c) Disjunction.

Figure 1: Kleene’s strong three-valued connectives.

A rule A← φ is satisfied by the valuation I iff I(A) = I(φ), i.e. the truth value of its left-hand side
is the same as the value of the formula on its right-hand side, when evaluated over I. A set of rules Π is
satisfied by I iff all rules in Π are satisfied by I. A set of ground rules Π may be written as a (potentially

P. Adrián & Gy. Vaszil 29

countably infinite) vector equation A≡ φ where A contains atoms and φ contains formulas. A valuation
I is the solution of this vector equation iff I(A) = I(φ), where the elements are evaluated memberwise.

We will now describe deduction based on the semantics defined by Fitting [3].

Given a set of rules Π, the operator φ maps an arbitrary valuation I to its φ -successor φ(I) such that

φ(I)(A) = I(φ).

Let I∽ be the null valuation such that I∽(A) =∽ for all atoms A. Let n be a finite ordinal and ω0 be
the first infinite ordinal. We define

I0 = I∽
In = φ(In−1)

Iω0 = sup
n<ω0

In

where the supremum is taken over⪯ and is equal to
⋃

n<ω0
In where union is understood as (I1∪ I2)(A) =

max⪯{I1(A), I2(A)}. The sequence I is monotone in⪯ and has a supremum ω that we call the entailment
model of Π.

An important property of I is that it is monotone with regards to ⪯, i.e. it never “retracts” any
conclusion already made. Since ω =

⋃
n<ω0

In, any atom that has an assigned truth value in ω must have
one in In for some finite n.

In the original setting of logic programming, where arbitrary terms of first-order logic may be formed,
determinacy is only semidecidable, though our formulas will be constructed such that it is fully decidable.
This is due to the dependency set (the transitive closure of the set of atoms occurring in φ), for any rule
A← φ , being finite for every atom, therefore an evaluation procedure requiring only a finite number of
evaluations to determine the status of any A.

2 Three-valued languages and semantics

Given an alphabet Σ, Σℓ is the set of all strings (words) of length ℓ and Σ∗ is
⋃

i≥0 Σi. A (classical)
language over Σ is a (possibly improper) subset of Σ∗.

An n-partition of a word w is the tuple of words w1, . . . ,wn such that w = w1 · · ·wn, where w1 · · ·wn is
the concatenation of w1, . . . ,wn. Similarly, for natural numbers, an n-partition of a natural number ℓ is an
element of Nn whose members add up to ℓ. We will take advantage of the natural isomorphism between
the partitions of a natural number ℓ and those of a word w with |w|= ℓ.

The concatenation of languages L1, . . . ,Ln, denoted as L1 · · ·Ln is the language of words w such that
there exists a partition w = w1 · · ·wn such that wi ∈ Li, for all 1≤ i≤ n.

A three-valued language is a pair of languages L = ⟨L⊤,L⊥⟩ over an alphabet Σ such that L⊤ ∩L⊥

is empty. Notice that it is not required that L⊤∪L⊥ = Σ∗. We define the following operations on three-

30 A GLR-like algorithm for three-valued interpretations of Boolean grammars

valued languages (we use L|ℓ to denote the set of words in L that are exactly of length ℓ):

L = ⟨L⊥,L⊤⟩
L1∪·· ·∪Ln = ⟨L⊤1 ∪·· ·∪L⊤n ,L

⊥
1 ∩·· ·∩L⊥n ⟩

L1∩·· ·∩Ln = ⟨L⊤1 ∩·· ·∩L⊤n ,L
⊥
1 ∪·· ·∪L⊥n ⟩

L1 · · ·Ln =

〈 ⋃
(l≥0)

⋃
(p1+···+pn=l)

⋂
(i≤n)

Σ
p1 · · ·Σpi−1(L⊤i |pi)Σpi+1 · · ·Σpn ,

⋃
(l≥0)

⋂
(p1+···+pn=l)

⋃
(i≤n)

Σ
p1 · · ·Σpi−1(L⊥i |pi)Σpi+1 · · ·Σpn

〉

These definitions agree with those in [7], in particular
• a word is an element of (L1 · · ·Ln)

⊤ iff it has an n-partition such that for all 1 ≤ i ≤ n the ith part
belongs to Li and

• a word is an element of (L1 · · ·Ln)
⊥ iff in every n-partition there exists an 1 ≤ i ≤ n such that the

ith part is excluded from Li.
The characteristic function of a three-valued language L = ⟨L⊤,L⊥⟩ is the function L : Σ∗→ B such

that

L(w) =

⊤ if w ∈ L⊤,
⊥ if w ∈ L⊥,
∽ otherwise.

We will write w ∈ L for w ∈ L⊤ and w ̸∈ L for w ∈ L⊥; note that containment is not dichotomous. The
characteristic functions of the above are

L(w) = ¬L(w)

(L1∪·· ·∪Ln)(w) =
∨
i≤n

Li(w)

(L1∩·· ·∩Ln)(w) =
∧
i≤n

Li(w)

(L1 · · ·Ln)(w) =
∨

w=w1···wn

∧
i≤n

Li(wi)

A three-valued language may either include, exclude any given string or the containment may be
indeterminate. Indeterminacy may, informally, be understood as a sort of “weak exclusion” that is un-
suitable for further deduction. The set of all three-valued languages over the alphabet Σ will be denoted
by L .

2.1 Boolean grammars

A Boolean grammar is a triple G = ⟨V,Σ,P⟩ where V is the a of grammar variables (nonterminals), Σ is
an alphabet (terminals) and P is a set of grammar rules (productions). We will use Γ = V∪Σ∪{ε} to
denote the complete set of grammar symbols (ε ̸∈ V∪Σ).

We define grammar expressions and grammar rules as follows.
• Members of Γ are grammar expressions.

P. Adrián & Gy. Vaszil 31

• If φ is an expression, then ¬φ is a negated expression.
• If φ1, . . . ,φn are expressions, then φ1∨·· ·∨φn is a disjunctive expression.
• If φ1, . . . ,φn are expressions, then φ1∧·· ·∧φn is a conjunctive expression.
• If φ1, . . . ,φn are expressions, then φ1 · · ·φn is a concatenation expression.
• If φ is an expression and X ∈ V, then X → φ is a grammar rule and X is its head.
Rules are the top-level constructs of a Boolean grammar and are not expressions themselves. A

Boolean grammar is well-formed if, for all X ∈V, there is exactly one rule whose head is X . Furthermore,
we assume that n > 1 and that no direct subexpression of a grammar expression is of the same kind as its
parent.

Given a set of grammar variables V, an interpretation is a function I : V→L . We may naturally
extend it to arbitrary expressions as follows:

• I(ε) = ⟨ /0, /0⟩;
• I(t) = ⟨{t},{t}⟩ where t ∈ Σ;
• I(¬φ) = I(φ);
• I(φ1∨·· ·∨φn) = I(φ1)∪·· ·∪ I(φn);
• I(φ1∧·· ·∧φn) = I(φ1)∩·· ·∩ I(φn);
• I(φ1 · · ·φn) = I(φ1) · · · I(φn).

All complements are understood with respect to a universe of Σ∗.
A grammar rule X→ φ is to be understood as an equation I(X) = I(φ). An interpretation I is a model

(a solution) of a grammar if and only if all grammar rules hold in I.
Somewhat similar in spirit to the naturally reachable semantics of Okhotin [9], the entailment seman-

tics of Boolean grammars may be defined using an iterative approach. Let ⟨X1, . . . ,X|V|⟩ be a particular
ordering of the grammar variables. We may then write an interpretation I as a vector of languages
⟨I(X1), . . . , I(X|V|)⟩. Starting from I0 = ⟨⟨ /0, /0⟩, . . . ,⟨ /0, /0⟩⟩ as the null interpretation, we may assign the
next interpretation In+1 as ⟨In(φ1), . . . , In(φ|V|)⟩, where φi is the definition of variable Xi, i.e. there is a
rule Xi → φi in the grammar. The sequence always converges (in at most a countably infinite number
of steps) and provides a natural foundation of what we consider to be a natural three-valued semantics
of a Boolean grammar. The convergence also holds if only one element is updated at a time, i.e. if i is
arbitrarily chosen between 1 and |V| (assuming that each value is eventually picked a sufficient number
of times), then In+1 = ⟨In(X1), . . . , In(φi) . . . , In(X|V|)⟩.

This a construction, while it serves as a natural semantic model for a Boolean grammar, is not par-
ticularly useful for parsing. The following approach ultimately defines the same model but does so for a
single word at a time, using a particular construction of logic rules based on the characteristic functions.
This is the theoretical foundation of how our parser makes inferences.

Let the (countably infinitely many) constants of our language of logic be the words of Σ∗ and the
(unary) predicate symbols be members of Γ. We will construct a countably infinite set of logic rules, one
for each word and grammar rule, that expresses their semantics.

We define a function ρ(φ ,w) that takes an arbitrary grammar expression φ and a variable w in the
language of logic and maps it to an open (parametric) logic formula as follows:

• if φ ∈ Γ, then ρ(φ ,w) is φ(w);
• if φ is ¬ψ , then ρ(φ ,w) is ¬ρ(w);
• if φ is ψ1∨·· ·∨ψn, then ρ(φ ,w) is (ρ(ψ1,w)∨·· ·∨ρ(ψ1,w));
• if φ is ψ1∧·· ·∧ψn, then ρ(φ ,w) is (ρ(ψ1,w)∧·· ·∧ρ(ψ1,w));
• if φ is ψ1 · · ·ψn, then ρ(φ ,w) is

∨
w=w1···wn

∧
i≤n ρ(ψn,wn).

where the variables w1, . . . ,wn are new variables. The parametric forms of the rules are:
• for each grammar rule X → φ we generate X(w)← ρ(φ ,w);

32 A GLR-like algorithm for three-valued interpretations of Boolean grammars

• for each terminal t ∈ Σ∪{ε} we generate t(w)← t = w.

As a final step, the variables are substituted by the constants, i.e. the words over Σ. This results in a
total of |P|+ |Σ|+1 rules for each word in Σ∗.

These rules together define the intended meaning of a Boolean grammar. Note that even though the
set of rules is infinite (as there are infinitely many words in Σ∗), the value of every atom is defined, both
directly and indirectly, through others with a word length that is not greater than itself. In the worst case,
the number of atoms that need to be evaluated to determine the valuation of a string is the number of
distinct substrings times the number of symbols, i.e. (1+ 1

2 · |w| · (|w|+1)) · |Γ|, which is quadratic in the
length of the string.

We shall illustrate the above with the example grammar taken from [7] whose language S includes
precisely the strings that are of the form ww over an alphabet {a,b}:

S→¬(A∨B∨AB∨BA)

A→CAC∨a

B→CBC∨b

C→ a∨b

The open (parametric) rules generated for the above grammar are:

ε(w)← w = ε

a(w)← w = a

b(w)← w = b

S(w)←¬

(
A(w)∨B(w)∨

∨
w=w1w2

[A(w1)∧B(w2)]∨
∨

w=w1w2

[B(w1)∧A(w2)]

)
A(w)←

∨
w=w1w2w3

[C(w1)∧A(w2)∧C(w3)]∨a(w)

B(w)←
∨

w=w1w2w3

[C(w1)∧B(w2)∧C(w3)]∨b(w)

C(w)← a(w)∨b(w)

Finally, we substitute words into the parameter w. As the instantiated set is infinite, we will only
demonstrate some rules using abab and its substrings.

P. Adrián & Gy. Vaszil 33

S(abab)←¬
(

A(abab)∨B(abab)∨(
A(ε)∧B(abab)∨A(a)∧B(bab)∨A(ab)∧B(ab)∨
A(aba)∧B(b)∨A(abab)∧B(ε)

)
∨(

B(ε)∧A(abab)∨B(a)∧A(bab)∨B(ab)∧A(ab)∨

B(aba)∧A(b)∨B(abab)∧A(ε)
))

...

A(ε)←
(
C(ε)∧A(ε)∧C(ε)

)
∨a(ε)

A(a)←
(
C(a)∧A(ε)∧C(ε)∨C(ε)∧A(a)∧C(ε)∨C(ε)∧A(ε)∧C(a)

)
∨a(a)

...

A(aba)←
(
C(ε)∧A(ε)∧C(aba)∨C(ε)∧A(a)∧C(ba)∨C(ε)∧A(ab)∧C(a)∨
C(ε)∧A(aba)∧C(ε)∨C(a)∧A(ε)∧C(ba)∨C(a)∧A(b)∧C(a)∨
C(a)∧A(ba)∧C(ε)∨C(ab)∧A(ε)∧C(a)∨C(ab)∧A(a)∧C(ε)∨
C(aba)∧A(ε)∧C(ε)

)
∨a(aba)

...

C(a)← a(a)∨b(a)

C(ab)← a(ab)∨b(ab)
...

a(a)← a = a

a(b)← b = a
...

The interested reader may want to determine the status of the words a, b and ab in S of the grammar

A→ ε ∨A

S→ Ab

over the alphabet {a,b}1.

3 The Boolean GLR parser

First we give a very short review of the GLR algorithm and some of its modifications we build our variant
upon.

The LR automaton is essentially a Rabin-Scott construction of a trivial nondeterministic pushdown
automaton for a context-free grammar. Whenever a (context-free) rule A→α •Bβ is being read, with the
dot signaling the current position up to which it has already been recognized, it is allowed to transition

1Excluded, included and indeterminate.

34 A GLR-like algorithm for three-valued interpretations of Boolean grammars

to any rule B→ γ without the consumption of any input. Transitions not consuming any input are called
ε-transitions and their closure forms the states of the LR automaton. The LR parser is a deterministic
simulation of this automaton using a single stack, and has two main operations, shift and reduce, roughly
equivalent to the stack operations push and pop. Shifting happens when the automaton reads input and
pushes the new state on the stack; reduction consists of the removal of as many states as there are on the
right-hand side of a rule and a new state, corresponding to having read the left-hand side of the rule, is
pushed in their place. The automaton has a special state that signals the recognition of the start symbol
and serves as a terminator.

Given that some context-free grammars are not deterministically recognizable using the LR algo-
rithm, as the parsing actions are ambiguous (shift/reduce or reduce/reduce conflict), the first attempts
to broaden the algorithm’s applicability involved the use of lookaheads to assist the decision process.
Though an improvement over the naı̈ve design, lookaheads only generalize LR parsing to deterministic
context-free grammars, which is a proper subset of all CFGs.

Viewing the stack as a linear directed acyclic graph (DAG), it is possible to efficiently simulate
nondeterminism by generalization of the “graph-stack” into a nonlinear DAG, exploring all paths the LR
automaton might take . The resulting structure is often termed a graph structured stack (GSS) and can be
seen as a generalization of a stack, where every path ending at the root is a record of a possible stack of
the LR automaton. Note that it is possible, but not necessary, to use lookaheads to disambiguate actions
of the GLR algorithm.

The original GLR has a weakness in design when it comes to nullable rules (in a CFG, a rule is
nullable iff every symbol on its right-hand side is nullable, i.e. derives the empty string), namely that
edges corresponding to nulled deductions are still created in the GSS. This not only negatively affects
the algorithm’s efficiency, but also raises problems of correctness on a general CFG when certain rules
with nullable right-ends are concerned.

One solution to the problem is the ε-GLR construction of Nederhof and Sarbo [8] that modifies the
Rabin-Scott closure so that the closure of an item A→ α •Bβ not only includes items of B→ •γ , but –
iff B is nullable – also A→ αB•β . This modification prevents the creation of nulled edges in the graph
at the cost of more complicated reductions, as now edges corresponding to nullable symbols might or
might not be absent from the GSS. Another approach is the RNGLR of Scott and Johnstone [11], which
performs reductions early when all symbols to the right of the dot are nullable.

These algorithms may not be cubic in the worst case, as the path scanning (determining the GSS
nodes at which a reduction may end) may be of complexity O(|w|n−1) for a path with n components,
for a total runtime of O(|w|n+1). One may rewrite the grammar in Chomsky Normal Form to guarantee
cubic runtime, which may, depending on the implementation and applied postprocessing of the parsing
results, completely destroy its semantic structure. The BRNGLR of Scott and Johnstone [13] treats items
A→ α •Bβ as intermediary nonterminals and performs path reductions in steps of 2, guaranteeing an at
worst cubic runtime.

3.1 The Boolean LR automaton

We build our solution for Boolean grammars on the foundations laid by the ε-GLR and the BRNGLR,
namely

1. never create an edge in the GSS for nulled inputs and
2. never perform reductions of length greater than 2.
Nullability of symbols is a property of the grammar and not the input, therefore it is possible to

precompute this knowledge, for example by explicit evaluation of the Φ operator on logic rules given

P. Adrián & Gy. Vaszil 35

at the end of the previous part for the empty string, repeated until the interpretation has converged (i.e.
does not change between successive evaluations; this must happen in at most V steps). Notice that ε is
always positively nullable, terminals are never so.

Given the generalized structure of a Boolean grammar in the sense that we allow arbitrary formulas on
the right-hand side, the items that form a state of the automaton will be labeled with arbitrary expressions
that appear on the right-hand sides of grammar rules. As in our three-valued setting the lack of a proof
for truth is insufficient to derive falsity (which is different from not-truth), we also augment items with
a sign that signals whether derivations of the item should result in a positive or negative proof of the
formula. An item is, therefore a triple consisting of a sign (either + or −) indicating whether a positive
or negative proof is expected; a grammar formula φ and position of the “dot”, an index that ranges from
0 to n (inclusive) for n-ary concatenations and one of 0 or 1 for other items, signaling how much of a
given expression has been recognized.

The successor of an item is the item with the same sign and formula, and a dot that is one position
ahead. A completion item is one where the dot has the highest possible index; it does not have a successor.

Similarly to the context-free case, which only has positive concatenation and disjunction (in the form
of nondeterminism induced by transitions on multiple possible rules), the states (i.e. sets of items) are
the closure of some initial “seed” items over rules that will be given shortly, and may be computed using
iterated saturation. The items originally present in the state are referred to as kernel items, while those
added via the closure are the derived items.

For items with non-trivial grammar formulas further derived items must be present in the state, and
we will say they are generated by the item(s) that caused forced their inclusion. The parents of an item
are the non-concatenation items that generate it. Intuitively, these items represent the transitive closure
of the grammar expressions that may be required for the proof the kernel items.

We now go over the various expression types to detail how their child items are generated:
• ±t where t ∈ Σ∪ {ε}: Terminal items serve as the trivial cases of the matching algorithm and

generate no further items. An item +ε is never matched against the input as it is required nullable
(positively matches only the empty string and negatively matches everything else); −ε matches
any input segment that is not empty. The terminals match the respective single character in the
input and negatively match everything else.

• ±X where X ∈ V: In order to match a grammar variable, the expression on the right-hand side
of its defining rule must be matched, therefore a grammar variable generates exactly one item,
±φ , where φ is the grammar expression on the right-hand side of the rule X → φ . Because of the
well-formedness criterion on our definition of a Boolean grammar, there is exactly one such rule.

• ±¬φ : A negated expression matches if and only if φ matches with the opposite sign, therefore
negated items generate the expression without the negation but the opposite sign, i.e. ∓φ .

• ±
∨

i≤n φi and±
∧

i≤n φi: For these items to match, some or all of their formulas need to be satisfied
over some string. While the reduction phase (how the results are aggregated) is different for these
items, for the purpose of building the automaton, they are handled equivalently and generate all
their subformulas without a change of sign.

Concatenations also generate items within the state as part of the closure, but the concatenation is
not considered as a parent of the generated item. This is because the reducer handles concatenations
differently from other kinds of formulae.

• +φ1 · · ·φn: This is the classical case of concatenation whose subformulas must be matched se-
quentially. In the spirit of the ε-GLR described in [8], whenever the language defined by the
dotted subformula includes the empty string, the successor item, i.e. the item with the dot at the
successive index, is also included in the closure.

36 A GLR-like algorithm for three-valued interpretations of Boolean grammars

• −φ1 · · ·φn: A negative concatenation is proven over some string if and only if we are able to
ascertain that in every possible partition of the string there is a substring that is excluded by the
respective language. (We note, without proof, that negative concatenation is also associative.)
Suppose that the state contains an item −φ1 · · ·φn with the dot before some subformula φr. To
obtain a negative proof, either a negative proof of φr must be obtained, or the proof of φr may be
skipped entirely and only the remainder of the rule (that is φr+1 · · ·φn) be matched. Given that we
need to consider skipping input segments of zero length, we also unconditionally add the successor
item to the current state under the assumption that it follows a zero-length skip.

The transitions from a state s of the Boolean LR automaton are implied by the items of the state. For
any item ±• φ that is not a concatenation, the automaton has a transition on ±φ to a state with ±φ •.
For concatenation items, if the item is labeled ±φ1 · · · •φr · · ·φn, then there is a transition ±φr to a state
with the item ±φ1 · · ·φr • · · ·φn. If the concatenation is negative, the transition is marked as optional:
the transition may be taken over an arbitrary nonempty string in the input. Whenever this happens, the
resulting edge in the GSS is marked with the special symbol ∗ and not the formula.

The rationale behind the optional (“don’t care”) transitions is that in a negative concatenation it is
always enough to negatively prove one subformula for a partition; all others may be mapped to arbitrary
input segments. The marker ∗ will be referred to as a wildcard and a match marked with ∗ a wildcard
match.

The pseudocode for building the automaton is presented in Algorithm 1.

3.2 The Boolean GLR parser

We now turn our attention to the actual parser in Algorithm 2. A match in a given input stream is
identified by its left and right extents, which are the positions where the match begins and ends. As for
any given left extent i a trivial negative match may have almost any right extent j ≥ i, the scanner part of
the algorithm, even though progressing through the input in a left-to-right manner, finds for the current
position j all possible left extents i < j where a trivial match may have begun. A trivial match here is
either a positive or a negative match on ε , a terminal symbol or a wildcard match.

Whenever an edge is created in the GSS, it signals the acquisition of new knowledge in the parsing
process. It is necessary that further applications of this knowledge are investigated and the process is
continued until no further derivations can be made. This is the job of the reducer.

Given that no reductions are performed over an interval of length zero, as these are precomputed,
every reduction must involve at least one edge of the GSS. Whenever a new edge is created, the possible
reductions starting with that edge are investigated. The set ∆ j at this point contains ⟨u,e⟩ pairs where u
is a vertex in the GSS and e is an outgoing edge of u, pointing backwards, against the input direction.
Such a pair is created exactly once for each edge in the GSS and serves as a work item for the reducer.

No constructs other than concatenation require more than one edge in the GSS to be traversed se-
quentially. As a first step, the reducer calls FINISH-REDUCTION with a formula ±φ to sort out every
reduction that is not a concatenation. The purpose of FINISH-REDUCTION is to take a recognized for-
mula and apply it to its parents that are not concatenations. The parent formulas to be substituted into
should be precomputed, but even searching for them is constant time in the length of the input.

A variable is considered matched whenever its definition is matched, therefore if one of the parents
is a variable, an edge is immediately created that represents the match. Negation is similarly simple,
upon matching ±φ a transition on ∓¬φ is recorded in the GSS. If the parent is a positive disjunction
or a negative conjunction, matching the child immediately causes an edge to be created. These are
collectively referred to as existential reductions.

P. Adrián & Gy. Vaszil 37

Algorithm 1 Construction of the Boolean LR automaton.
procedure BUILD-AUTOMATON(S)

let s0 be a state with an empty kernel and items +•S and −•S
while there is an unprocessed state s do

CLOSURE(s)
end procedure
procedure CLOSURE(s)

while there is an unprocessed item ι in s that is not a completion item do
if ι is labeled −ε or ±c where c ∈ Σ then

add the completion of ι to the transition on the label of ι

else if ι is labeled ±A where A ∈ V then
create a new item ι ′ in s labeled ±φ where there is a rule A→ φ in the grammar
add the completion of ι to the transition on ±A

else if ι is labeled ±¬φ then
add a new item ι ′ labeled ∓φ in s
add the completion of ι to the transition on ±¬φ

else if ι is labeled ±φ1∨·· ·∨φn or ±φ1∧·· ·∧φn then
for φ in φ1, . . . ,φn do

add a new item ι ′ labeled ±φ in s
add the completion of ι to the transition on the label of ι

else if ι is labeled +φ1 · · · •φr · · ·φn then
add a new item labeled +φr to s
add the successor of ι to the transition on +φr

if φr is nullable and (r < n or ∃ a right-nullable kernel item +φ1 · · ·φn in s) then
add the successor of ι to s

else if ι is labeled −φ1 · · · •φr · · ·φn then
add a new item labeled −φr to s
add successor of ι to the transition on −φr

mark the transition on −φr as optional
if r < n or there is a kernel item −φ1 · · ·φn in s then

add the successor of ι to s
end procedure

38 A GLR-like algorithm for three-valued interpretations of Boolean grammars

Suppose that the parent is either a negative disjunction or a positive conjunction. These items require
that all children are matched before the parent edge is created. (Note that child matches may end at
different nodes in the GSS; this is no problem as long as these nodes belong to the same generation,
and therefore cover the same part of the input.) Therefore, when processing these reductions, we only
record in u that one of the subformulas was matched, and only create the parent edge when records for
all subformulas are present. These records are invalidated whenever the parser position advances, as
matches on a segment (i, j) are not meaningful for any other (i, j′).

So far we have discussed how reductions for the non-concatenation items are performed. We will
now switch our attention to concatenations, as path tracing is not handled by the FINISH-REDUCTION

function. For any formula other than negation, an edge will only satisfy an item of the same sign as the
edge’s label. Whenever an edge e from u to v is created, where u is a node in the current generation, only
a reduction via the respective sign needs to be considered.

As the edge e represents a transition of the underlying automaton, if e is labeled +φr, there must be
some item + · · ·φr • · · · in the kernel of u. The edge e may be the last edge of such a reduction only if the
rule is right-nullable, i.e. all of φr+1 · · ·φn are positively nullable. In this case we shall traverse the edge
and call the function EXTEND-POSITIVE-REDUCTION, which, if the concatenation is fully reduced (i.e.
r = 1) allows parent items to progress by invoking FINISH-REDUCTION, otherwise it merely queues the
rest of the rule for further progressing. Notice that even though we use the same set ∆ j for the queue as
CREATE-EDGE, this causes no confusion, as these items are of the shape ⟨v,±φ1 · · · •φr · · ·φn⟩, i.e. they
do not name the specific edge the reduction should be continued on.

The function CONTINUE-POSITIVE-REDUCTION takes a partially completed reduction that already
has had at least one edge matched and traces the path further either by matching edges in the GSS or by
eliminating them if they’re positively nullable.

The last piece of the puzzle is the negative deduction of a concatenation. In order to prove for
some segment (i, j) that a concatenation does not hold, one must prove that in every partition of that
segment there is at least one part that negatively matches. The problem with the naı̈ve approach of
simply enumerating all partitions is that there is O(|w|n−1) many of them, where n is the number of
concatenated entities. That’s way too many. Luckily, the binarization technique is also applicable for
negative concatenation, as the operation, like the positive case, remains associative.

Suppose that −φ1 · · ·φn is to be proven over some segment (i, j). It is clear that whatever partition
one chooses, it has a position, call it k that splits the interval into subintervals (i,k) and (k, j) such that
either −φ1 matches over (i,k) or −φ2 · · ·φn does over (k, j). If one is able to prove −φ2 · · ·φn over (k, j),
then for any choice of i≤ k −φ1 · · ·φn holds over (i, j) for that specific k. If the proof of −φ2 · · ·φn over
(k, j) was unsuccessful, then we are limited to choices of i where (i, j) matches−φ1. We call these suffix
and prefix proofs, respectively, of the partitioning point k.

One has to do this for all i ≤ k ≤ j to consider a concatenation negatively proven. Note that for
a positive concatenation/negative disjunction the number of subproofs required to be reducibe depends
on the number of subformulas (i.e. a proof of +φ1∧ ·· ·∧φn requires proofs of +φ1, . . . ,+φn each, for a
negative concatenation the number of subproofs is dependent on the length of the string it is being proven
over (j− i+1 for a segment with extents i and j).

We note that as the parser progresses in the input, suffix proofs get invalidated as the j in (k, j)
changes, but prefix proofs may be considered permanent.

P. Adrián & Gy. Vaszil 39

Algorithm 2 The Boolean GLR parser
procedure PARSE(S)

BUILD-AUTOMATON(S)
create a node labeled s0 in U0
if ±ε matches S then

yield the sign of ε at position 0
for j in [1..|w|] do

SHIFTER

REDUCER

end procedure
procedure SHIFTER

for each node u in generations Ui where i < j do
for each terminal transition t from u do

if w[i, j] matches t then
CREATE-EDGE(u, t)

for each optional transition from u do
CREATE-EDGE(u,∗)

end procedure
procedure CREATE-EDGE(u, l)

let v be the node in U j reached by the transition on l from u
add an edge e labeled l from v to u
add ⟨v,e⟩ to ∆ j

end procedure
procedure REDUCER

while there is a pending reduction ⟨u,e⟩ in ∆ j do
FINISH-REDUCTION(e.target,e.label)
if e is positive then

for ι in u.kernel labeled +φ1 · · ·φr • · · ·φn and +ε matches φr+1 · · ·φn do
EXTEND-POSITIVE-REDUCTION(e.target,+φ1 · · · •φr · · ·φn)

while there is an unprocessed continuation ⟨v,+φ1 · · ·φr • · · ·φn⟩ in ∆ j do
CONTINUE-POSITIVE-REDUCTION(v,+φ1 · · ·φr • · · ·φn)

else
for ι in u.kernel labeled −φ1 · · ·φr • · · ·φn do

if e is labeled −φr or e is labeled ∗ and −ε matches φr+1 · · ·φn then
if e is labeled −φr then

permanently mark position j as complete for −φ1 · · · •φr · · ·φn at v
EXTEND-NEGATIVE-REDUCTION(e.target,−φ1 · · · •φr · · ·φn, j)

while there is an unprocessed continuation ⟨v,−φ1 · · ·φr • · · ·φn⟩ in ∆ j do
CONTINUE-NEGATIVE-REDUCTION(v,−φ1 · · ·φr • · · ·φn)

end procedure

40 A GLR-like algorithm for three-valued interpretations of Boolean grammars

Algorithm 2 The Boolean GLR parser (cont.)
procedure FINISH-REDUCTION(u,φ)

let ι be the item in u that is labeled •φ
for ι ′ in ι .parents do

if ι ′ is a variable, negation, positive disjunction or negative conjunction then
CREATE-EDGE(u,φ)
if φ =±S then

yield the sign of φ at position j
else

mark the subformla φ as complete for ι ′ in u
if all subformulas of ι ′ are complete in u then

CREATE-EDGE(u,φ)
end procedure
procedure CONTINUE-POSITIVE-REDUCTION(v,+φ1 · · ·φr • · · ·φn)

if there is an item +φ1 · · · •φr · · ·φn in v and +ε matches φr then
EXTEND-POSITIVE-REDUCTION(v,+φ1 · · · •φr · · ·φn)

if +φ1 · · ·φr • · · ·φn is a kernel item in v then
for e in v.edges do

EXTEND-POSITIVE-REDUCTION(e.target,+φ1 · · · •φr · · ·φn)
end procedure
procedure CONTINUE-NEGATIVE-REDUCTION(v,−φ1 · · ·φr • · · ·φn)

let i← the position of v
if v contains the item −φ1 · · · •φr · · ·φn then

EXTEND-NEGATIVE-REDUCTION(v,−φ1 · · · •φr · · ·φn, i)
if v contains the kernel item −φ1 · · ·φr • · · ·φn then

for e in v.edges where e is labeled −φr or e is labeled ∗ do
EXTEND-NEGATIVE-REDUCTION(e.target,−φ1 · · · •φr · · ·φn, i)

end procedure
procedure EXTEND-POSITIVE-REDUCTION(v,+φ1 · · · •φr · · ·φn)

if r = 1 then
FINISH-REDUCTION(v,+φ1 · · ·φn)

else
add ⟨v,±φ1 · · · •φr · · ·φn⟩ to ∆ j

end procedure
procedure EXTEND-NEGATIVE-REDUCTION(v,−φ1 · · · •φr · · ·φn, p)

mark position p as complete for −φ1 · · · •φr · · ·φn at v
if r = n or −φ1 · · · •φr · · ·φn just got completed at v then

if r = 1 then
FINISH-REDUCTION(v,−φ1 · · ·φn)

else
add ⟨v,−φ1 · · · •φr · · ·φn⟩ to ∆ j

end procedure

P. Adrián & Gy. Vaszil 41

3.3 Notes

3.3.1 Generating parse trees

Our algorithm does not deal with the construction of parse trees. As the aptly titled paper [12] states,
“[r]ecognition is not parsing”, and we do indeed refer to our algorithm as a parser, rather than a recog-
nizer, whereas it is, in a strict sense, the latter. Our excuse for doing so is that through the application
of the usual techniques, it should not pose a significant technical challenge to turn the algorithm into
an actual parser; the algorithm is structured and the GSS is constructed in a way that contains all the
information that would be included in a parse tree. We therefore consider the implementation of parse
trees a technicality that was omitted for brevity, but should not be hard to implement, should the reader
desire to.

3.3.2 Optimization opportunities

We mention two possible opportunities for the optimization of the algorithm.
The first one involves the building of the Boolean LR automaton. Suppose that, for example, a state

s contains an item +φ1 · · · • (ψ1 ∨ψ2) · · ·φn. Then, by closure, it also contains + •ψ1 ∨ψ2 and then
+•ψ1 and +•ψ2. Suppose ψ1 is matched. The automaton currently has a transition on +ψ1 to a state p
with the item +ψ1•, where it is reduced, trivially traced back to s, it is found that it has an existentially
reducible parent +•ψ1∨ψ2, which causes another transition on the formula +ψ1∨ψ2 to a state q with
items +ψ1∨ψ2• and +φ1 · · ·(ψ1∨ψ2)• · · ·φn.

Notice, however, that when +ψ1 is matched, it is always the case that +ψ1 ∨ψ2 is matched, too,
therefore it is possible to transition on both into at the same time. A drawback of this optimization is that
the GSS would lose some of its structure, making the potential recovery of a parse tree harder.

The second optimization involves the tracing of paths in the GSS during the reduction phase. As the
GSS is an append-only structure whose new edges are drawn only to the current generation, which is
monotonously moving to the right, given any pending concatenation ⟨v,±φ1 · · · •φr · · ·φn⟩ the set of GSS
nodes where the paths reading φr−1, . . . ,φ1 (in order of backwards traversal) may end does not change
as the algorithm progresses. It would therefore be possible to build these sets progressively as part of
CREATE-EDGE, in a manner similar to [1]. This space-time tradeoff drastically reduces the time spent
searching for paths in the GSS at the cost of an extra O(|w|2) storage.

3.3.3 Complexity bounds

Any generation of the GSS may contain at most Q nodes, where Q is the number of states of the Boolean
LR automaton. For a string of length |w|, the largest possible number of different edges is of order
O(|w|2 ·Q ·F) where F is the cardinality of the set of all possible labels of edges. Note that both Q and
F are constant for any given grammar, therefore the size of the GSS is of order O(|w|2).

As for the time complexity, assume a given j. The SHIFTER runs in time O(j ·Q ·F) in worst case,
with CREATE-EDGE being O(1). In the reducer, FINISH-REDUCTION is once again of O(1) complexity
(the iteration on the parent items is invariant with respect to the input length) that is called for at most
O(j ·Q ·F) times for each edge pointing away from generation j. The amount of work done on the
concatenations are bounded by the size of ∆ j, which are at most of size O(j). For each pending reduction
⟨v,±φ1 · · · •φr · · ·φn⟩ the only operation that is not of constant time is the loop on the outgoing edges of
v in the CONTINUE methods, meaning there is O(j 2) steps performed overall for each concatenation.
Summing up all the above results in an O(|w|3) runtime, as j runs over each position.

42 A GLR-like algorithm for three-valued interpretations of Boolean grammars

4 Summary

Boolean grammars are a straightforward generalization of context-free grammars that both allow the
description of some languages that are not context-free, and simplify the description of others that are.
The introduction of negation, however opens up the possibility of contradictory grammars that have no
classical solution. An approach based on three-valued logic, where grammar rules are taken as a system
of logic equations, always produces a model through the iteration of a simple substitutive process. The
words found as being included or excluded from the language are exactly those entailed by the logic
equations. Containment in the three-valued sense is always decidable within tame polynomial bounds
for any given word of the alphabet and therefore serves as a suitable basis for a parser.

We provided a short overview of the logical foundations of the three-valued interpretation of Boolean
grammars and gave an efficient algorithm from the GLR family of constructions that is able to determine
the containment status of a string within cubic polynomial bounds.

References

[1] John Aycock & R. Nigel Horspool (2002): Practical Earley parsing. The Computer Journal 45(6), pp.
620–630, doi:10.1093/comjnl/45.6.620. Publisher: OUP.

[2] Noam Chomsky (1956): Three models for the description of language. IEEE Transactions on Information
Theory 2(3), pp. 113–124, doi:10.1109/tit.1956.1056813.

[3] Melvin Fitting (1985): A Kripke-Kleene semantics for logic programs. The Journal of Logic Programming
2(4), pp. 295–312, doi:10.1016/s0743-1066(85)80005-4.

[4] Bryan Ford (2004): Parsing expression grammars: a recognition-based syntactic foundation. In: Proceedings
of the 31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pp. 111–122,
doi:10.1145/982962.964011.

[5] Allen Van Gelder, Kenneth A. Ross & John S. Schlipf (1991): The well-founded semantics for general logic
programs. Journal of the ACM 38(3), pp. 619–649, doi:10.1145/116825.116838.

[6] Aravind K. Joshi, Leon S. Levy & Masako Takahashi (1975): Tree adjunct grammars. Journal of Computer
and System Sciences 10(1), pp. 136–163, doi:10.1016/S0022-0000(75)80019-5.

[7] Vassilis Kountouriotis, Christos Nomikos & Panos Rondogiannis (2009): Well-founded semantics for
Boolean grammars. Information and Computation 207(9), pp. 945–967, doi:10.1016/j.ic.2009.05.002.

[8] Mark-Jan Nederhof & Janos J. Sarbo (1996): Increasing the Applicability of LR Parsing. In Harry Bunt &
Masaru Tomita, editors: Recent Advances in Parsing Technology, Kluwer Academic Publishers, pp. 35–57.
Available at https://doi.org/10.1007/978-94-010-9733-8_3.

[9] Alexander Okhotin (2004): Boolean grammars. Information and Computation 194(1), pp. 19–48,
doi:10.1016/j.ic.2004.03.006.

[10] Alexander Okhotin (2006): Generalized LR parsing algorithm for Boolean grammars. International Journal
of Foundations of Computer Science 17(03), pp. 629–664, doi:10.1142/s0129054106004029.

[11] Elizabeth Scott & Adrian Johnstone (2006): Right Nulled GLR Parsers. ACM Transactions on Programming
Languages and Systems 28(4), pp. 577–618, doi:10.1145/1146809.1146810. Place: New York, NY, USA.

[12] Elizabeth Scott & Adrian Johnstone (2010): Recognition is not parsing — SPPF-style parsing from cubic
recognisers. Science of Computer Programming 75(1), pp. 55–70, doi:10.1016/j.scico.2009.07.001. Special
Issue on ETAPS 2006 and 2007 Workshops on Language Descriptions, Tools, and Applications (LDTA ’06
and ’07).

[13] Elizabeth Scott, Adrian Johnstone & Rob Economopoulos (2007): BRNGLR: a cubic Tomita-style GLR
parsing algorithm. Acta Informatica 44(6), pp. 427–461, doi:10.1007/s00236-007-0054-z.

https://doi.org/10.1093/comjnl/45.6.620
https://doi.org/10.1109/tit.1956.1056813
https://doi.org/10.1016/s0743-1066(85)80005-4
https://doi.org/10.1145/982962.964011
https://doi.org/10.1145/116825.116838
https://doi.org/10.1016/S0022-0000(75)80019-5
https://doi.org/10.1016/j.ic.2009.05.002
https://doi.org/10.1007/978-94-010-9733-8_3
https://doi.org/10.1016/j.ic.2004.03.006
https://doi.org/10.1142/s0129054106004029
https://doi.org/10.1145/1146809.1146810
https://doi.org/10.1016/j.scico.2009.07.001
https://doi.org/10.1007/s00236-007-0054-z

P. Adrián & Gy. Vaszil 43

[14] Masaru Tomita (1985): An Efficient Context-Free Parsing Algorithm for Natural Languages. In: Proceedings
of the 9th International Joint Conference on Artificial Intelligence - Volume 2, IJCAI’85, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, p. 756–764.

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 44–58, doi:10.4204/EPTCS.407.4

© H. Bordihn, H. Schulz
This work is licensed under the
Creative Commons Attribution License.

Determinism in Multi-Soliton Automata

Henning Bordihn
Institut für Informatik und Computational Science

Universität Potsdam
Potsdam, Germany

henning@cs.uni-potsdam.de

Helena Schulz
Fakultät für Elektrotechnik und Informatik

TU Berlin
Berlin, Germany

schulz-helena@gmx.de

Soliton automata are mathematical models of soliton switching in chemical molecules. Several con-
cepts of determinism for soliton automata have been defined. The concept of strong determinism
has been investigated for the case in which only a single soliton can be present in a molecule. In
the present paper, several different concepts of determinism are explored for the multi-soliton case.
It is shown that the degree of non-determinism is a connected measure of descriptional complexity
for multi-soliton automata. A characterization of the class of strongly deterministic multi-soliton
automata is presented. Finally, the concept of perfect determinism, forming a natural extension of
strong determinism, is introduced and considered for multi-soliton automata.

1 Introduction

Soliton automata represent a model based on the switching behaviour of certain chemical molecules in
which the bonds between (mainly carbon) atoms posses alternating weights. When some kind of distur-
bance is injected, it travels through the molecule like a wave (or likewise a particle). The disturbance
is called soliton as it travels through the molecule "unhindered", without loss of energy and without in-
terference. The bonds between the molecule’s atoms are changed along the path the soliton takes. This
results in a different molecule. Taking the so obtained molecules as states, one is led to a system which
behaves like an automaton.

For a brief account of the history of solitons we refer to [7] and [8, pp.18–19]. An extensive list of
references regarding soliton computations and soliton automata can be found in [1]. The notion of soliton
automata is encountered in [3]. In that paper also the concepts of determinism and strong determinism
of soliton automata are considered and have been further investigated in [4, 5]. Strong determinism
requires that, for every possible start and target atom, a soliton can take at most one path leading through
the molecule. The main simplification of soliton automata as considered in [3, 4, 5] is the assumption that
only one single soliton can be present in a molecule at the same time. This restriction has been overcome
in [1] (and the subsequent paper [6]), where multi-soliton automata have been taken into consideration
in which more than one soliton can travel through a molecule simultaneously. Several different concepts
of determinism for multi-soliton automata are defined in [9] and [2].

The present paper aims to continue this line of research. In the next section, the necessary notions
related to soliton automata and the various concepts of determinism are given. We restrict ourselves to
the case of multi-soliton automata since single-soliton automata as considered in [3] are special cases
of multi-soliton automata. In addition to deterministic and strongly deterministic soliton automata, also
the concepts of perfect determinism and the degree of non-determinism are defined. Perfect determin-
ism describes a natural concept that is somewhat "in between" determinism and strong determinism for
soliton automata. The degree of non-determinism is a measure of descriptional complexity quantifying
the amount of non-determinism of soliton automata. Section 2 concludes with the proof showing that

http://dx.doi.org/10.4204/EPTCS.407.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

H. Bordihn, H. Schulz 45

the degree of non-determinism is connected with respect to soliton automata, that is, for every positive
integer g, there is a soliton automaton with degree of non-determinism g.

Section 3 extends the notions of determinism to graphs underlying soliton automata (namely the
graphs representing the bonding structure of the molecules under consideration, called soliton graphs).
Similarly to the results known for the single-soliton case [3], we give a characterization of soliton graphs
always inducing strongly deterministic soliton automata. In [3] it is shown that a single-soliton automa-
ton is strongly deterministic if and only if its underlying graph is a tree or a so-called chestnut (see
Definition 21). For the multi-soliton case, we show that a soliton graph is strongly deterministic if and
only if it is a tree. Moreover, we prove that there is a chestnut which is not even perfectly deterministic.
The paper concludes with a few remarks on open research questions related to the results presented here.

2 Soliton Automata

First, we introduce some notation and review some basic notions. The sets of positive integers, of non-
negative integers and of integers are denoted by N, N0 and Z, respectively. We use standard notation for
sets. We write |S| for the cardinality of a set S. When no confusion is likely, we omit set brackets for
singleton sets.

An alphabet is a finite non-empty set the elements of which are called symbols. Let Σ be an alphabet.
The set of all (finite) words over Σ, including the empty word λ , is denoted by Σ∗; let Σ+ = Σ∗ \ {λ}.
The length lg(w) of a word w ∈ Σ∗ is defined by

lg(w) =

{
0, if w = λ ,
1+ lg(v), if w = av with a ∈ Σ and v ∈ Σ∗.

A semi-automaton is a construct A = (Q,Σ,τ) where Q is a non-empty set, Σ is an alphabet and
τ : Q×Σ → 2Q is a mapping. The elements of Q are called states; Σ is the input alphabet of A ; τ is the
transition function of A . In this paper, we assume that Q is finite and that, for all q ∈ Q and all a ∈ Σ,
τ(q,a) ̸= /0. Moreover, we drop the prefix “semi-” as we do not consider any other kind of automata.

Let A = (Q,Σ,τ) be an automaton. The transition function τ is extended to 2Q ×Σ∗ as follows: for
R ⊆ Q and w ∈ Σ∗, let

τ(R,w) =

{
R, if w = λ ,
τ
(⋃

q∈R τ(q,a),v
)
, if w = av with a ∈ Σ and v ∈ Σ∗.

For w ∈ Σ∗, let τw be the mapping defined by τw(R) = τ(R,w) for all R ⊆ Q. Instead of τw(R) we often
write Rτw.

The automaton A is said to be deterministic if |τa(q)|= 1 for all a ∈ Σ and all q ∈ Q. In that case τa

is considered as a mapping of Q into Q, that is as a transformation of Q rather than of 2Q. Inputs u and v
of A are said to be equivalent if and only if τu = τv.

A graph is a pair G = (N,E) with N the set of nodes and E ⊆ N ×N the set of edges. We consider
only finite undirected graphs. An edge connecting nodes n and n′ is given both as (n,n′) and (n′,n).
Therefore, we require that, for n,n′ ∈ N, (n,n′) ∈ E if and only if (n′,n) ∈ E and that these represent the
same edge. Thus, any two nodes can be connected by at most one edge. A path is a sequence of nodes
n0,n1, ...,nk such that for 0 ≤ i < k the pair (ni,ni+1) ∈ E.

46 Determinism in Multi-Soliton Automata

A weight function for G is a mapping w : N ×N → N0 satisfying

w(n,n′) = w(n′,n)

{
= 0, if (n,n′) /∈ E
> 0, if (n,n′) ∈ E.

A weighted graph is a triple (N,E,w) such that (N,E) is a graph and w is a weight function.
For a node n, the set V (n) = {n′ | (n,n′) ∈ E} is the vicinity of n. The degree of n is d(n) = |V (n)|,

and the weight of n is w(n) = ∑n′∈V (n) w(n,n′). A node n is said to be isolated if d(n) = 0, exterior if
d(n) = 1, and interior if d(n)> 1.

We now provide several definitions regarding soliton automata.

Definition 1 ([3]) A soliton graph is a weighted graph G = (N,E,w) satisfying the following conditions:
1. N is the finite, non-empty set of nodes.

2. E ⊆ N ×N is the set of undirected edges, such that (n,n′) ∈ E if and only if (n′,n) ∈ E.

3. Every node n ∈ N has the following properties:
(a) (n,n) /∈ E.
(b) 1 ≤ d(n)≤ 3.
(c) w(n) ∈ {1,2} if n is exterior, and w(n) = d(n)+1 if n is interior.

4. Every component (maximal connected subgraph) of G has at least one exterior node.

A soliton graph is an abstraction of a polyacetylene molecule. Carbon atoms are represented as inte-
rior nodes, and connections to surrounding structures are represented as exterior nodes. When drawing
soliton graphs, we use letters for interior nodes and numbers for exterior nodes. Just like in polyacety-
lene, only single and double bonds are allowed. In the graph, single bonds are represented as edges
with a weight of 1, and double bonds are represented as edges with a weight of 2. We draw an edge of
weight 1 as a simple line and an edge of weight 2 as two parallel lines. The conditions regarding weight
and degree imply that the two edges at a node of degree 2 must have different weights, and that, of the
three edges meeting at a node of degree 3, two must have weight 1 and one must have weight 2. An
example of a soliton graph is depicted in Figure 1.

Figure 1: A soliton graph with two external nodes.

H. Bordihn, H. Schulz 47

In [1] it has been reasoned about properties of the abstract model. The derived properties can be
summarized as follows:

(I) One can insert and extract solitons at exterior nodes.

(II) Solitons move at a constant speed and have to move in every step. The speed is measured discretely
as moving from one node to another one.

(III) Solitons move at the same speed, which is why solitons cannot overtake each other on the same
path.

(IV) Solitons move over edges of alternating weights.

(V) When a soliton travels along an edge of weight w, the weight of the edge changes to 3−w.

(VI) A soliton does not travel along the same edge twice in immediately consecutive steps.

(VII) Multiple solitons cannot travel along the same edge in the same step.

Definition 2 (Bursts of Inputs [1]) Let S be a finite non-empty set not containing the symbols ∥ and ⊥.
Moreover, let S∩N0 = /0.

A burst over S is a word of the form

s1∥k1s2∥k2 · · ·sm−1∥km−1sm⊥

with the following properties:

1. m ∈ N;

2. s1,s2, . . . ,sm ∈ S;

3. k1,k2, . . . ,km−1 ∈ N0;

The length of such a burst is m.
For m ∈ N, let Bm(S) be the set of all bursts of length m over S. Let

B≤m(S) =
m⋃

i=1

Bi(S) and B(S) =
⋃
i≥1

Bi(S).

Let G be a soliton graph, let X be the set of its exterior nodes and S = X ×X . Then any set B ⊆B(S)
is called a set of bursts for G. The pair si ∈ S contains the two nodes the ith soliton enters and leaves
the graph through, respectively. A burst of the form s1∥k1s2∥k2 · · ·sm−1∥km−1sm⊥ is to be interpreted as
follows. If the burst is initiated at time t, the symbol s1 is input at time t; s2 is input at time t + k1; and,
in general, s j is input at time t +∑

j−1
i=1 ki. Here the empty sum is defined to be 0. The symbol ⊥ indicates

that the input process pauses until the system has stabilized.

Definition 3 (Position Map [1]) For m∈N, let m= {1,2, . . . ,m}. Further, let G=(N,E,w) be a soliton
graph such that N ∩N0 = /0. A position map for m is a mapping of m into N ∪N0.

If π is a position map for m, then π(i) indicates at which node the ith soliton is or how many steps
are still required until it will enter the graph. Thus π(i) = 1 means that the ith soliton will enter the graph
in the next step. π(i) = n with n ∈ N means that the soliton is at node n. π(i) = 0 means, by definition,
that the ith soliton has left the graph.

48 Determinism in Multi-Soliton Automata

Definition 4 (Initial Position Map for a Burst [1]) Let

b = (n1,n′1)∥k1(n2,n′2)∥k2 · · ·(nm,n′m)⊥

be a burst of length m. The initial position map πb for b is defined as follows: Let r be minimal such that
k1 = k2 = · · ·kr = 0 and kr+1 > 0 or r = m−1. Then

πb(i) =

ni, if 1 ≤ i ≤ r+1,
kr+1, if i = r+2,
πb(i−1)+ ki−1, if i > r+2.

For example, let
b = (n1,n′1)∥0(n2,n′2)∥3(n3,n′3)∥1(n4,n′4)∥0(n5,n′5)⊥

be a burst. Then πb is given by the following table:

Soliton i 1 2 3 4 5

Position πb(i) n1 n2 3 4 4

This means that the first two solitons start at node n1 and n2, respectively. The other solitons have to
wait for 3 or 4 time steps.

Definition 5 (Final Position Map [1]) A position map π for m is said to be final if π(i) = 0 for all i ∈m.

The processing of a burst starts with its initial position map and ends with a final position map
corresponding in terms of the number of solitons. Small intermediate steps occur leading from the initial
position map to the final position map. A burst is successful if and only if all its solitons have left the
soliton graph after a finite amount of time.

Definition 6 (Potential Successor Map [1]) Let G be a soliton graph. Let m ∈ N, and let π and π ′ be
position maps for m. Let

b = (n1,n′1)∥k1(n2,n′2)∥k2 · · ·(nm,n′m)⊥

be a burst of length m.
The map π ′ is a potential (direct) successor of π (with respect to b), if and only if

π
′(i) =

π(i)−1, if π(i) ∈ N0 and π(i)> 1,
ni, if π(i) ∈ N0 and π(i) = 1,
n, if π(i) ∈ N, π(i) ̸= n′i, n ∈ N, and

(
π(i),n

)
∈ E,

0, if π(i) = n′i or if π(i) = 0.

for i = 1,2, . . . ,m.

This ensures that the waiting times of the solitons are reduced in every step, solitons enter the graph
at the right node, they have to use an edge in order to reach the next node, and that 0 is a value in the
position map if the corresponding soliton reached the exterior node it is supposed to leave the graph
through.

Definition 7 (Configuration and Configuration Trail [1]) Let G = (N,E,w) be a soliton graph. Let
m ∈ N, and let

b = (n1,n′1)∥k1(n2,n′2)∥k2 · · ·(nm,n′m)⊥

be a burst of length m.

H. Bordihn, H. Schulz 49

1. A configuration (for b) is a pair (G′,π) such that G′ = (N,E,w′) is a weighted graph with weights
in {1,2} and π is a position map for m.

2. A configuration trail for G and b is a finite sequence

(G0,π0),(G1,π1), . . .

of configurations for b with the following properties.

(a) G0 = G, and π0 is the initial position map for b.
(b) π1 is a potential successor of π0 such that π0(i) ∈ N implies π1(i) ∈ N for all i ∈m.

G1 = (N,E,w1) is obtained from G0 = (N,E,w0) by changing the weights of some edges as
follows: If π0(i) ∈ N, then

w1
(
π0(i),π1(i)

)
= w1

(
π1(i),π0(i)

)
= 3−w0

(
π0(i),π1(i)

)
.

For all other edges the weights remain unchanged.
(c) Let j > 1. The sequence

(G0,π0),(G1,π1), . . . ,(G j,π j)

is a configuration trail, if and only if

(G0,π0),(G1,π1), . . . ,(G j−1,π j−1)

is a configuration trail such that π j−1 is not final, G j = (N,E,w j), and the following condi-
tions are satisfied (for all i ∈m):

i. π j is a potential successor of π j−1.
ii. If π j−1(i) ∈ N is exterior and π j−2(i) = 1, then π j(i) ∈ N.

iii. If π j−1(i) ∈ N is exterior and equal to n′i, and if π j−2(i) ∈ N, then π j(i) = 0.
iv. If π j−1(i) ∈ N is interior and π j−2(i) ∈ N, then

w j−2
(
π j−2(i),π j−1(i)

)
̸= w j−1

(
π j−1(i),π j(i)

)
.

v. If π j(i) ̸= 0, then π j(i) ̸= π j−1(i) and π j(i) ̸= π j−2(i).
vi. G j is obtained from G j−1 by changing the weights of some edges as follows:

If
(
π j−1(i),π j(i)

)
∈ E, then

w j
(
π j−1(i),π j(i)

)
= w j

(
π j(i),π j−1(i)

)
= 3−w j−1

(
π j−1(i),π j(i)

)
.

All other weights remain unchanged.

3. A configuration trail is legal, if it satisfies the following conditions for all j ≥ 1:

(a) If π j−1(i) and π j−1(i′) are nodes and π j−1(i) = π j−1(i′) for some distinct i and i′,
then π j(i) ̸= π j(i′).

(b) If π j−1(i) and π j−1(i′) are nodes with
(
π j−1(i),π j−1(i′)

)
∈ E, then π j(i) ̸= π j−1(i′)

or π j(i′) ̸= π j−1(i).

4. A configuration trail
(G0,π0),(G1,π1), . . . ,(G j,π j)

is partial if π j is not final. Otherwise, it is total.

50 Determinism in Multi-Soliton Automata

A configuration defines the weights of the current graph and the positions of the solitons for a certain
time step. Note that the graph in a configuration need not be a soliton graph. It represents the situation
when all solitons have reached the "next" nodes on their ways. Consider, for example, the soliton graph
in Figure 1. If a soliton entered the graph at node 1 and has reached node h, the weight of edge (1,h) has
changed to 2; thus w(h) = 5.

The conditions above ensure that all solitons behave exactly as defined in the rules concerning soliton
movements. A consequence of the condition that no two solitons can traverse the same edge at the same
time is that they also cannot enter the same exterior node at the same time. This holds true both for
exterior nodes used as entry points and those used as exit points. Two solitons can be at an interior node
simultaneously, but must leave it on different edges. Moreover, they cannot simply swap places.
Definition 8 (Soliton Path) Let G = (N,E,w) be a soliton graph. Let m ∈ N, let

b = (n1,n′1)∥k1(n2,n′2)∥k2 · · ·(nm,n′m)⊥

be a burst of length m, and let C = (G0,π0),(G1,π1), . . . ,(G j,π j) be a configuration trail for G and b,
j ≥ 0. For every i ∈m, let ℓ be the smallest and r be the largest number, 0 ≤ ℓ≤ r ≤ j such that πℓ(i)∈ N
and πr(i) ∈ N. The path

πℓ(i),πℓ+1(i), . . . ,πr(i)

is the soliton path of soliton i in C. For ℓ≤ h < r, the edge (πh(i),πh+1(i)) is said to be used by soliton i
in C.

Definition 9 (Result of a Burst [1]) Let G be a soliton graph and let b be a burst. The result of burst b
on G is the set Result(G,b) of weighted graphs G′ such that there is a total legal configuration trail for G
and b transforming G into G′.

Every element of Result(G,b) is again a soliton graph.
Let B ⊆ B(X ×X) be a set of bursts. Let

Result(G,B) =
⋃
b∈B

Result(G,b).

For i ∈ N0, let

Resulti(G,B) =

{
G, if i = 0, and
Result(Resulti−1(G,B),B), if i > 0

and
Result∗(G,B) =

⋃
i≥0

Resulti(G,B).

We can use the resulting soliton graphs we obtain by traversing total legal configuration trails as
states of an automaton. Such an automaton is induced by an underlying soliton graph and a set of bursts.
Definition 10 (Multi-Soliton Automaton [1]) Let G be a soliton graph with set X of exterior nodes. Let
B ⊆ B(X ×X) be a set of bursts. Let

States(G,B) = Result∗(G,B).

The B-soliton automaton of G is the finite automaton AB(G) with inputs b ∈ B, state set States(G,B) and
non-deterministic transition function

τ(G′,b) =

{
Result(G′,b), if Result(G′,b) ̸= /0,
{G′}, otherwise,

for G′ ∈ States(G,B) and b ∈ B.

H. Bordihn, H. Schulz 51

Note that States(G,B) is bounded, as the set of vertices and the set of edges do not change, only the
weights do. Therefore, there is a finite set B of bursts such that States(G,B) = States(G,B′) for all sets B′

of bursts with B ⊆ B′. If there is no risk of confusion, a B-soliton automaton will be called multi-soliton
automaton or simply soliton automaton.

Now we define different kinds of determinism for soliton automata.

Definition 11 (Determinism [2]) Let G = (N,E,w) be a soliton graph and let B be a set of bursts for G.
AB(G) is called

(I) deterministic, if |Result(G′,b)|= 1 for all G′ ∈ States(G,B) and all b ∈ B.

(II) strongly deterministic, if for all G′ ∈ States(G,B) and b ∈ B, there is at most one total legal con-
figuration trail for G′ and b.

A soliton automaton is deterministic if there is exactly one successor state for each state in the set
States(G,B) and each burst in B. Strong determinism is an even stronger constraint, as it also restraints
in how many ways it is possible to transition from one state into another. An automaton has this kind of
determinism if there is at most one total legal configuration trail for each state in States(G,B) and each
burst in B.

By definition, all total legal configuration trails are considered as transitions between the automaton’s
states. There are, however, cases in which an infinite number of configuration trails are possible for a
state and a burst. For example, a soliton can get into a situation where it has the possibility to traverse a
cycle infinitely many times. Since configuration trails for those kinds of situations contain "unnecessary"
repetitions, we aim to classify configuration trails into two categories: perfect and imperfect. In order
to determine when a configuration trail becomes imperfect, we search for equivalent configurations in it.
Therefore, we first need to describe when two configurations are called equivalent.

Definition 12 ([2]) Let G be a soliton graph. Let C = (G0,π0),(G1,π1), ...,(Gi,πi) be a partial configu-
ration trail that is not a total configuration trail. The set of possible successor position maps, denoted as
SC(C), is the set containing all πi+1, such that (G0,π0),(G1,π1), ...,(Gi,πi),(Gi+1,πi+1) is a configura-
tion trail.

Definition 13 (Successor-Equivalence [2]) Let (G0,π0),(G1,π1), ...,(Gk,πk) be a configuration trail.
For integers i and j with 0 ≤ i ≤ k and 0 ≤ j ≤ k, let C = (G0,π0),(G1,π1), ...,(Gi,πi) and let C′ =
(G0,π0),(G1,π1), ...,(G j,π j). The configurations (Gi,πi) and (G j,π j) are called successor-equivalent,
if (Gi,πi) = (G j,π j) and SC(C) = SC(C′). This property is written as (Gi,πi)≡SC (G j,π j).

Definition 14 ((Im)Perfect Configuration Trail [2]) Let G be a soliton graph and let b be a burst. Let
C = (G0,π0),(G1,π1), ...,(Gk,πk) be a configuration trail with G0 = G and π0 = πb (the initial position
map for b). C is called imperfect, if at least two configurations (Gi,πi) and (G j,π j) exist, 0 ≤ i < j ≤ k,
where (Gi,πi)≡SC (G j,π j). Otherwise, C is called perfect.

A configuration trail is perfect, if there are no two occurrences of successor-equivalent configurations
in it. In the other case, we define it as imperfect, because then it would contain unnecessary steps. Con-
sider the case of a configuration trail with two successor-equivalent configurations (Gi,πi) and (G j,π j).
We could make the exact same next moves after time step i and j, so we might as well cut out all the con-
figurations from (Gi+1,πi+1) until (G j,π j). In [2] it is shown that considering only perfect configuration
trails in the construction of a soliton automaton does not change its set of states. Also, if an imperfect
configuration trail exists in a soliton automaton it can not be strongly deterministic.

52 Determinism in Multi-Soliton Automata

Let G be the soliton graph from configuration 1 in Figure 2 and let B = {(1,1)⊥}. In [3] it is shown
that the B-soliton automaton AB(G) is strongly deterministic. On the other hand, by using the set of
bursts B′ = {(1,1)∥1(1,1)⊥} the automaton AB′(G) is not strongly deterministic. This is due to the
white soliton having two possible successor positions in configuration 11. It could move to node b,
like in configuration 12, or it could move to node d, resulting in both solitons staying inside the cycle.
Eventually, this configuration trail would lead to a configuration successor-equivalent to configuration 11
and can therefore be classified as imperfect. However, for this graph and this burst we cannot find any
perfect total legal configuration trails, except from the trail continued from configuration 12. In order to
further discriminate such situations we introduce the following property.

Figure 2: Part of a configuration trail for the burst (1,1)∥1(1,1)⊥. The first soliton is depicted as a black
pebble, while the second one is depicted as a white pebble.

Definition 15 (Perfect Determinism) Let G = (N,E,w) be a soliton graph and let B be a set of bursts
for G. AB(G) is called perfectly deterministic, if for all G′ ∈ States(G,B) and b ∈ B, there is at most one
perfect total legal configuration trail for G′ and b.

H. Bordihn, H. Schulz 53

The automaton AB′(G) from our example is perfectly deterministic, but not strongly deterministic.
Hence, perfect determinism lies "in between" determinism and strong determinism.

Distinct soliton automata that are not deterministic may be different "distances" away from fulfilling
the determinism property. We now formulate a measure of descriptional complexity that quantifies this
distance.

Definition 16 (Degree of Non-Determinism [2]) Let G = (N,E,w) be a soliton graph and let B be a
set of bursts for G. The degree of non-determinism of AB(G) is the smallest integer g ≥ 1, such that
|Result(G′,b)| ≤ g for all G′ ∈ States(G,B) and all b ∈ B.

Theorem 1 The degree of non-determinism is a connected measure of descriptional complexity, that is,
for every positive integer g, there is a soliton automaton Ag such that its degree of non-determinism is g.

Proof. For g ≥ 1, let Gg = (Ng,Eg,wg) be the soliton graph with exactly two exterior nodes 1 and 2
and a path 1,n1,n2, . . . ,n2g−1,n2g with wg(1,n1) = 1 which we will call basic chain in the sequel. More-
over, additional edges leave the basic chain at every other node of the basic chain:

1 n1 n2 n3 n4 · · · n2g−1 n2g

The edges leaving the basic chain all lead to the exterior node 2 and belong to a sub-graph forming
a binary tree with n2,n4, . . . ,n2g as leaves and node 2 as its root, in which the root has weight 2 and
branching edges always have weight 1. The inner nodes of that tree are denoted by v1, . . . ,vr with
r = 2g− 3 (if g > 1). There is an edge (n2,v1) with weight 1 and, for 1 < k ≤ g, there is an edge
(n2k,v2k−3) with weight 1. The first three soliton graphs G1,G2,G3 are depicted in Figure 3.

1 n1 n2

v1

2

1 n1 n2 n3 n4

v1

2

1 n1 n2 n3 n4 n5 n6

v1

v2

v3

2

Figure 3: Soliton graphs G1, G2 and G3

Further, let B = {(1,2)⊥}. Since the soliton has a non-deterministic choice only on every node n2k
of the basic chain, 1 ≤ k < g, there are exactly g soliton paths for the soliton in B. Notice that once
the soliton has left the basic chain it has to follow the path leading directly to node 2 since it enters a
node with degree 3 only when it has just traversed an edge with weight 1. Thus, |Result(Gg,B)| ≤ g.
The soliton uses exactly one of the edges (n2,v1) or (n2k,v2k−3), 1 < k ≤ g, and the weight of the used
edge has turned to 2 whereas the other edges leaving the basic chain keep their weight 1. Consequently,
|Result(Gg,B)|= g.

54 Determinism in Multi-Soliton Automata

Next, we prove Result(G′,B) = {Gg} for all G′ ∈ Result(Gg,B) and every g ≥ 1. Assume the soliton
has used edge (n2k,v2k−3) in Gg, for some k, 1 < k ≤ g (the case k = 1, when it has used (n2,v1), is
similar). Then, the resulting soliton graph G′ is of the form

· · · n2k−2 n2k−1 n2k · · ·

· · ·

v2k−5

v2k−4

v2k−3

v2k−2

· · ·

2

In G′, every soliton path for burst (1,2)⊥ has the prefix 1,n1,n2, . . . ,n2k,v2k−3. Now, this path can be
continued with v2k−2,v2k−1, . . . ,2 leading directly to node 2, and the resulting soliton graph is Gg. Alter-
natively, the soliton can use edge (v2k−3,v2k−4) (or, if k = 1, edge (v1,n4)), or it can use (v2k−3,v2k−2)
and later an edge with weight 1 leading back towards the basic chain (which has the same weights as
in Gg now). In any such case, some node n j of the basic chain will be reached via an edge with weight 1.
Therefore, the soliton has to use the edge (n j,n j−1) next, leading "to the left" in the basic chain. Now,
it cannot reach node 2, because every node nℓ in the basic chain having degree 3 is reached via an edge
with weight 1 and has to be left to nℓ−1 since w(nℓ,nℓ−1) = 2. Therefore, no further soliton graphs are
added to Result(G′,B).

In conclusion, |Result(G′,B)| = 1 for all G′ ∈ Result(Gg,B) and g is the smallest integer with
|Result(G,B)| ≤ g for all G ∈ States(Gg,B). Hence, the degree of nondeterminism of AB(Gg) is g,
for every g ≥ 1. □

3 Graph Properties and Determinism

So far, we defined determinism properties only on soliton automata. We now extend our definitions to
soliton graphs.

Definition 17 (Graph Determinism) Let G be a soliton graph. G is called

(I) deterministic, if for all sets B of bursts for G AB(G) is deterministic.

(II) strongly deterministic, if for all sets B of bursts for G AB(G) is strongly deterministic.

(III) perfectly deterministic, if for all sets B of bursts for G AB(G) is perfectly deterministic.

H. Bordihn, H. Schulz 55

For our statements about graph determinism it is important to consider soliton graphs that can not
be decomposed into independent sub-graphs. In the case of a single wave, meaning the case of a single
soliton traversing a soliton graph, impervious paths may appear. A path is impervious if none of its edges
is used by the soliton in any configuration trail [3]. An example of an impervious path is the path h-i-j-k
in Figure 1. The soliton has to enter the soliton graph either via node 1 or node 2, hence by traversing an
edge with weight 1. Since it has to use an edge with weight 2 next, it can only move towards the cycle on
the respective side. On its way back, on node h or k, respectively, it has to traverse an edge with weight 2
in the next step, still not allowing it to enter the path h-i-j-k and forcing it to leave the soliton graph via
the node it entered the graph through. In order to formalize this idea for the case of multiple solitons
being present we give the following definitions.

Definition 18 (Used Edge) Let G0 = (N,E,w) be a soliton graph, let n,n′ ∈ N and let b be a burst. The
edge (n,n′) is said to be used in a configuration trail (G0,π0),(G1,π1), ...,(Gk,πk) with π0 = πb if there
exists a soliton i and a timestep j with 0 < j ≤ k, π j−1(i) = n and π j(i) = n′.

Definition 19 (Impervious Path) Let G = (N,E,w) be a soliton graph and let n,n′ ∈ N. A path from n
to n′ is said to be impervious if none of its edges are used in a configuration trail in any G′ ∈ States(G,B)
with any set of bursts B for G.

For the case of a single wave, if a soliton graph contains impervious paths then it can be decomposed
into multiple connected components. Soliton graphs which, after the removal of impervious paths, are
connected, are called indecomposable. For more details see [3].

Definition 20 (Indecomposable Soliton Graph) Let G be a soliton graph. G is said to be indecompos-
able if it does not contain an impervious path.

Definition 21 (Chestnut) An indecomposable soliton graph is called a chestnut if it consists of a single
cycle of even length and some paths leading into it with the following conditions:

(I) Entry points of different paths entering the cycle have even distances;

(II) Paths leading to the cycle may meet only at even distances from entry into the cycle.

For more details see [3].

Proposition 2 Let G = (N,E,w) be an indecomposable soliton graph. If G is a chestnut, then it is not
strongly deterministic.

Proof. As G is a chestnut, the graph (N,E) contains a cycle of even length (at least 4), that is there is
an integer k ≥ 2 and a path

n0, n1, . . . , n2k

with n0 = n2k and ni ̸= n j for 0 ≤ i < j < 2k. For every exterior node e, there is a path leading to the
cycle. Without loss of generality, let m0, m1, . . .mℓ be such path with ℓ ≥ 1, m0 = e and mℓ = ns for
some s, 0 ≤ s < 2k. If w(mℓ−1,mℓ) = 2, then w(ns,ns′) = w(ns,ns′′) = 1, where s′ = (s+1)mod 2k and
s′′ = (s− 1)mod 2k. As the length of the cycle is even and two edges with weight 2 cannot meet in a
soliton graph, there is a node nr ̸= ns in the cycle such that w(nr,nr′) = w(nr,nr′′) = 1, r′ = (r+1)mod 2k
and r′′ = (r− 1)mod 2k. An example graph with these properties is visualized in Figure 4. Because G
is a soliton graph, d(nr) = 3 and |r − s| is odd. Thus, G is not a chestnut. Hence, w(mℓ−1,mℓ) = 1.
Consequently, without loss of generality, w(ns,ns′) = 2 and w(ns,ns′′) = 1 (Figure 5) and there is a total
legal configuration trail for the burst (e,e)⊥. This is seen as follows: the soliton enters the cycle via edge

56 Determinism in Multi-Soliton Automata

Figure 4: A cycle with even length and two edges
with weight 2 leading into it.

Figure 5: A node of degree 3 as entry point of a
cycle.

(ml−1,ns) and changing its weight to 2. It has to continue to n′s. After completing the cycle it has moved
from n′′s to ns via an edge with weight 1 and must leave the cycle to ml−1.

Now, consider the burst b = (e,e)∥1(e,e)⊥. After the first soliton from b has reached ns′ , the second
one is at node ns and must follow the first soliton to ns′ , since otherwise the two solitons would collide
inside the cycle eventually. When the first soliton has reached ns again, it must continue to ns′ because
it has traversed (ns′′ ,ns) with weight 1 and w(ns,mℓ−1) = 1. In the next step (when the second soliton is
at ns), the second soliton has the option to leave the cycle to mℓ−1 or to further follow the first soliton in the
cycle. After completing another round through the cycle, exactly the same situation will be encountered
again. This situation is depicted in Figure 2, configuration 11.

Whenever the second soliton behaved to leave the cycle, the first soliton will be able to complete its
path to ns and then also leave the cycle from ns to mℓ−1 and on to e. In conclusion, there is more than
one total legal configuration trail for b. Hence, G is not strongly deterministic. □

Looking at the details in this proof, several (an infinite number of) imperfect configuration trails,
but only one perfect configuration trail, exist. That is why one might wonder, whether all chestnuts are
perfectly deterministic. The following statement disproves this assumption.

Proposition 3 There is a chestnut G which is not perfectly deterministic.

Proof. Let G be the chestnut in configuration a in Figure 6 and let bG = (1,1)∥3(3,1)∥1(3,1)⊥ be
a burst. There are two total legal configuration trails for G and bG. We show selected configurations of
both trails in Figure 6, which are a, b, c, d1 for the first and a, b, c, d2 for the second trail. They differ
in the third soliton, depicted as a black diamond, moving downwards to node g in d1 and upwards to
node e in d2. Therefore, both configurations trails are perfect. As both can be continued to total legal
configuration trails, G is not perfectly deterministic. □

Proposition 4 Let G = (N,E,w) be an indecomposable soliton graph. If (N,E) is a tree, then G is
strongly deterministic.

Proof. Let G = (N,E,w) be an indecomposable soliton graph, X be the set of its exterior nodes
and B a set of bursts over X ×X . Let (n,n′) be any pair of exterior nodes. If (N,E) is a tree, then there is
exactly one path n0,n1, . . .nk from n0 = n to nk = n′ such that i ̸= j implies ni ̸= n j, that is, no node occurs
more than once. In every total legal configuration trail C for G and a burst b ∈ B, condition 2.(c)v. of
Definition 7 guarantees that only paths with that property can be a soliton path of a soliton in b (solitons
are not allowed to turn around spontaneously). Consequently, for every soliton i in b ∈ B and every total
legal configuration trail C for G and b, there is at most one soliton path of soliton i in C. Therefore, the
automaton AB(G) is strongly deterministic. As B was arbitrary, G is strongly deterministic. □

H. Bordihn, H. Schulz 57

Figure 6: Selected configurations of two configuration trails for the burst (1,1)∥3(3,1)∥1(3,1)⊥. The
first soliton is depicted as a black pebble, the second soliton as a white pebble and the third soliton as a
black diamond. Configurations a, b and c appear in both configuration trails, while d1 is part of the first
trail and d2 is part of the second trail.

Theorem 5 Let G = (N,E,w) be an indecomposable soliton graph. G is strongly deterministic if and
only if (N,E) is a tree.

Proof. For single-soliton automata ([3]) it is known that an indecomposable solition graph is strongly
deterministic if and only if G is a chestnut or (N,E) is a tree, see Proposition 5.4 in [3]. Proposition 31
of [1] implies for every soliton graph G with set X of exterior nodes that the single-soliton automaton
based on G is the soliton automaton AB(G) where B = {(n,n′)⊥ | n,n′ ∈ X }.1 In conclusion, if G is
neither a chestnut nor is (N,E) a tree, then there is a set of bursts B such that AB(G) is not strongly
deterministic, thus G is not strongly deterministic. By Proposition 2, G is not strongly deterministic, if
it is a chestnut. Therefore, if G is strongly deterministic, then (N,E) is a tree. By Proposition 4, the
statement follows. □

4 Concluding Remarks

So far, the restriction for soliton automata to be (strongly) deterministic has only been investigated for
the single-soliton case in the literature, see [3]. In [2, 9] several concepts of determinism have been
defined for multi-soliton automata, but they have not been further investigated. In the present paper, the
new notion of perfect determinism is defined, forming a weaker requirement than strong determinism
but a stricter requirement than determinism. A characterization of strongly deterministic soliton graphs
is given that is deviating from the known result for single-soliton automata. An example of a soliton

1See also Definition 10 in [2].

58 Determinism in Multi-Soliton Automata

graph is presented that is strongly deterministic in the single-soliton case but is not even perfectly deter-
ministic in the multi-soliton case. The degree of non-determinism is shown to be a connected measure
of descriptional complexity for soliton automata.

The results use the condition that the soliton graphs are indecomposable, that is, there are no im-
pervious paths in the soliton graphs. An interesting research question is whether impervious paths can
appear at all in soliton graphs in the multi-soliton case. A soliton passing a node of a path that is imper-
vious to that soliton opens the path for a second soliton following. The question is whether or not this
principle can be generalized to open an unbounded number of impervious paths which may be "hidden"
behind each other without eventually causing collisions so that each soliton can leave the graph again,
constituting a total legal configuration trail for the respective burst.

In addition to the characterization of strongly deterministic soliton graphs one could also seek to
characterize perfectly deterministic and deterministic soliton graphs. Another field of future research is
the investigation of the transition monoids of multi-soliton automata.

References
[1] Henning Bordihn & Helmut Jürgensen (2022): Multi-Wave Soliton Automata. Journal of Automata, Languages

and Combinatorics 27, pp. 1–3, 91–130, doi:10.25596/jalc-2022-091.
[2] Henning Bordihn & Helena Schulz (2025): Determinism and Simulation of Soliton Automata. Journal of

Automata, Languages and Combinatorics. Accepted at JALC.
[3] Jürgen Dassow & Helmut Jürgensen (1990): Soliton automata. Journal of Computer and System Sciences

40(2), pp. 154–181, doi:10.1016/0022-0000(90)90010-I.
[4] Jürgen Dassow & Helmut Jürgensen (1991): Deterministic Soliton Automata with a Single Exterior Node.

Theor. Comput. Sci. 84(2), pp. 281–292, doi:10.1016/0304-3975(91)90164-W.
[5] Jürgen Dassow & Helmut Jürgensen (1993): Deterministic Soliton Automata with at Most One Cycle. J.

Comput. Syst. Sci. 46(2), pp. 155–197, doi:10.1016/0022-0000(93)90002-E.
[6] Tore Koss (2022): Reverting and combining soliton bursts. J. Autom. Lang. Comb. 27(1–3), pp. 179–186,

doi:10.25596/jalc-2022-179.
[7] P. S. Lomdahl (1984): What is a soliton? Los Alamos Science 10, pp. 27–31.
[8] Y. Lu (1988): Solitons & Polarons in Conducting Polymers. World Scientific, Singapore, doi:10.1142/0242.
[9] Helena Schulz (2023): Untersuchungen zum Determinismuskonzept bei Mehrwellen-Soliton-Automaten an-

hand einer zu implementierenden Simulation. Bsc thesis, Universität Potsdam.

https://doi.org/10.25596/jalc-2022-091
https://doi.org/10.1016/0022-0000(90)90010-I
https://doi.org/10.1016/0304-3975(91)90164-W
https://doi.org/10.1016/0022-0000(93)90002-E
https://doi.org/10.25596/jalc-2022-179
https://doi.org/10.1142/0242

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024

EPTCS 407, 2024, pp. 59–76, doi:10.4204/EPTCS.407.5

© G. Duarte, N. Moreira, L. Prigioniero & R. Reis

This work is licensed under the

Creative Commons Attribution License.

Operational State Complexity of Block Languages

Guilherme Duarte Nelma Moreira Rogério Reis*

CMUP & DCC, Faculdade de Ciências da Universidade do Porto
Rua do Campo Alegre, 4169-007 Porto, Portugal

{guilherme.duarte,nelma.moreira,rogerio.reis}@fc.up.pt

Luca Prigioniero

Department of Computer Science, Loughborough University
Epinal Way, Loughborough LE11 3TU, United Kingdom

l.prigioniero@lboro.ac.uk

In this paper we consider block languages, namely sets of words having the same length, and study

the deterministic and nondeterministic state complexity of several operations on these languages.

Being a subclass of finite languages, the upper bounds of operational state complexity known for

finite languages apply for block languages as well. However, in several cases, smaller values were

found. Block languages can be represented as bitmaps, which are a good tool to study their minimal

finite automata and their operations, as we illustrate here.

1 Introduction

In this paper we consider finite languages where all words have the same length, which are called ho-

mogeneous or block languages. Their investigation is mainly motivated by their applications to several

contexts such as code theory [10] and image processing [8, 9]. We will focus on the state complexity of

operations [5, 14]. The deterministic (nondeterministic) state complexity of a regular language L is the

number of states of its minimal complete deterministic (nondeterministic, resp.) finite automaton.

Here, we are interested in operational complexity, that is the size of the model accepting a language

resulting from an operation performed on one or more languages. In particular, the state complexity of an

operation (or operational state complexity) on regular languages is the worst-case state complexity of a

language resulting from the operation, considered as a function of the state complexities of the operands.

As a subclass of finite languages, block languages inherit some properties known for that class, which

differ from the existing ones for the class of regular languages [2]. Due to the fact that, in our case, all

words have the same length, there are some gains in terms of state complexity. For example, it is known

that the elimination of nondeterminism from an n-state nondeterministic finite automaton for a block

language costs 2Θ(
√

n) in size [9], which is smaller than the general case for finite languages.

A block language can be well characterized by its characteristic function which we denote by bitmap.

In particular, given an alphabet of size k and a length ℓ, a block language can be represented by a binary

string of length kℓ, also called bitmap, in which each symbol (or bit) indicates whether the correspondent

word, according to the lexicographical order, belongs to the language (bit equal to 1) or not (bit equal

to 0). Duarte et al. [4] used this representation as a tool to investigate several properties of block lan-

guages, namely how to convert bitmaps into minimal deterministic and nondeterministic finite automata

and what are the maximal numbers of states that the resulting automata can have. In this paper, we also

*This work was partially supported by CMUP, member of LASI, which is financed by national funds through FCT –

Fundação para a Ciência e a Tecnologia, I.P., under the projects with reference UIDB/00144/2020 and UIDP/00144/2020.

http://dx.doi.org/10.4204/EPTCS.407.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

60 Operational State Complexity of Block Languages

use bitmaps for studying the complexity of operations on block languages. Due to the distinguishing

property of the length of the words, we study Boolean binary operations over block languages with the

same length as well as block complement (i.e., Σℓ \L). Nonetheless, we also consider operations such as

concatenation, Kleene star, and Kleene plus, which are not closed for the class of block languages of a

given length.

The paper is organized as follows. In the next section we fix notation and review the bitmap represen-

tation for block languages. In Section 3, we revise the operational state complexities of basic operations

on finite languages. Then, we study the state complexity on block languages for the following operations:

reversal, word addition and removal, intersection, union, block complement, concatenation, Kleene star,

and plus. In Table 2, we summarize our results and we conclude the paper in Section 4 by describing

further lines of investigation.

2 Preliminaries

In this section we review some basic definitions about finite automata and languages and fix notation.

Given an alphabet Σ, a word w is a sequence of symbols, and a language L ⊆ Σ⋆ is a set of words on Σ.

The empty word is denoted by ε . The (left) quotient of a language L by a word w ∈ Σ⋆ refers to the set

w−1L = {w′ ∈ Σ⋆ | ww′ ∈ L}. The reversal of a word w = σ0σ1 · · ·σn−1 is denoted by wR and is obtained

by reversing the order of the symbols of w, that is wR = σn−1σn−2 · · ·σ0. The reversal of a language L

is LR = { wR | w ∈ L }. Given two integers i, j with i < j, let [i, j] denote the set of integers from i to j,

including both i and j, namely {i, . . . , j}. Moreover, we shall omit the left bound if it is equal to 0, thus

[j] = {0, . . . , j}.
A nondeterministic finite automaton (NFA) is a five-tuple A = 〈Q,Σ,δ , I,F〉 where Q is a finite

set of states, Σ is a finite alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,

and δ : Q×Σ→ 2Q is the transition function. We consider the size of an NFA as its number of states.

The transition function can be extended to words and sets of states in the natural way. When I = {q0},
we use I = q0. An NFA accepting a non-empty language is trim if every state is accessible from an initial

state and every state leads to a final state. Given a state q ∈ Q, the right language of q is Lq(A) = {w ∈
Σ⋆ | δ (q,w)∩F 6= /0}, and the left language is

←−
L q(A) = {w ∈ Σ⋆ | q ∈ δ (I,w)}. The language accepted

by A is L (A) =
⋃

q∈I Lq(A). An NFA A is minimal if it has the smallest number of states among all

NFAs that accept L (A).

An NFA is deterministic (DFA) if |I| = 1 and |δ (q,σ)| ≤ 1, for all (q,σ) ∈ Q×Σ. We can convert

an NFA A into an equivalent DFA D(A) using the well-known subset construction. Two states q1, q2 are

equivalent (or indistinguishable) if Lq1
(A) =Lq2

(A). A minimal DFA has no different equivalent states,

every state is reachable and it is unique up to isomorphism.

The state complexity of a language L, sc(L), is the size of its minimal DFA. The nondeterministic

state complexity of a language L, nsc(L), is defined analogously.

A trim NFA A = 〈Q,Σ,δ , I,F〉 for a finite language of words of size at most ℓ is acyclic and ranked,

i.e., the set of states Q can be partitioned into ℓ+ 1 disjoint sets Q0 ∪Q1∪ ·· · ∪Qℓ, such that for every

state q ∈ Qi, A reaches a final state by words of length at most i (Qi = {q ∈ Q | ∀w ∈ Σ⋆,δ (q,w) ∈
F =⇒ |w| ≤ i}) and all transitions from states of rank i lead only to states in i′, with i, i′ ∈ [ℓ] and

i′ < i. We define the width of a rank i, namely w(i), as the cardinality of the set Qi, and the width of A

to be the maximal width of a rank, i.e., w(A) = maxi∈[ℓ] |Qi|. A DFA for a finite language is also ranked

but it may have a dead state Ω which is the only state with a self-loop and without a rank. In a trim

acyclic automaton, two states q and q′ are equivalent if they are both in the same rank, either final or

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 61

not final, and their transition functions lead to equivalent states, i.e., δ (q,w) ∈ F ⇐⇒ δ (q′,w) ∈ F , for

each word w ∈ Σ∗. An acyclic DFA can be minimized by merging equivalent states and the resulting

algorithm runs in linear time in the size of the automaton (Revuz algorithm, [1, 12]).

2.1 Block Languages and Bitmap Representation

Given an alphabet Σ = {σ0, . . . ,σk−1} of size k > 0 and an integer ℓ > 0, a block language L ⊆ Σℓ is a

set of words of length ℓ over Σ. Let A = 〈Q,Σ,δ ,q0,F〉 be a NFA that accepts a block language with

a single initial state. Because all accepted words have the same length, we can assume that the finite

automata for block languages have only one final state, i.e., F = {q f }, for some q f ∈ Q. Moreover, as

before, the set of states Q can be partitioned into Q0 ∪Q1 ∪ ·· · ∪Qℓ where Qi is the set of states with

rank i and δ (Qi,σ) ⊆ Qi−1, where i = 1, . . . , ℓ and σ ∈ Σ. We also have a unique final state in rank 0,

that is Q0 = F = {q f }. If A is a DFA for a block language, then there exists an extra dead state Ω.

For each q ∈ Qi and σ ∈ Σ, either δ (q,σ) ∈ Qi−1 or δ (q,σ) = Ω (but q must have at least a transition

to Qi−1), for all i ∈ [1, ℓ].
Câmpeanu and Ho [3] estimated the maximal number of states of a minimal DFA accepting a block

language. In the next lemma, we recall that result and related properties. In Fig. 1 the constraints on the

widths of the ranks of a minimal DFA are depicted.

Lemma 1. Let L⊆ Σℓ be block language over an alphabet of size k and ℓ > 0. Then, we have

1. sc(L)≤ kℓ−r+1−1
k−1

+∑r−1
i=0 (2

ki −1)+1, where r = min{n ∈ [ℓ] | kℓ−n ≤ 2kn −1};
2. r = ⌊logk ℓ⌋+1+ x, for some x ∈ {−1,0,1};
3. Let A be a minimal DFA of maximal size for a block language. Then, w(A) = max{kℓ−r,2kr−1−1},

where w(r− 1) = 2kr−1 − 1 and w(r) = kℓ−r. Moreover, let rk,ℓ be the rank that the width of A is

reached, either r or r−1.

Proof (sketch). The first statement was proven in [3, Corollary 10] and follows from the fact that for

each rank i ∈ [ℓ], we have that w(i) ≤ 2ki − 1 and w(ℓ− i) ≤ ki. Then, for a DFA to have maximal size

we have w(i) = 2ki −1, for i ∈ [r−1], and w(i) = kℓ−i, for i ∈ [r, ℓ]. Finally, we need to add one for the

dead state. The second statement was proven in [4]. The third statement follows from the first, noticing

that w(r− 1) = 2kr−1 − 1 and depending on whether kℓ−r > 2kr−1 − 1 or not. We set rk,ℓ to be the rank

such that w(A) = w(rk,ℓ).

Figure 1: Constraints in the widths of the ranks of a minimal DFA for a block language. Each rank

(except the last and the first ones) is represented by a rectangle. The rightmost state is the dead-state (Ω).

62 Operational State Complexity of Block Languages

A block language L can be characterized by a word in {0,1}kℓ called bitmap and denoted as

B(L) = b0 · · ·bkℓ−1,

where bi = 1 if and only if i ∈ [kℓ− 1] is the index of w in the lexicographical ordered list of all the

words of Σℓ and the word w is in L. In this case, we denote i by ind(w). The bitmap of a language can

be denoted by B when it is unambiguous to which language the bitmap refers to. Reciprocally, given a

bitmap B ∈ {0,1}kℓ and an alphabet Σ of size k, L (B)⊆ Σℓ denotes the language represented by B.

Boolean bitwise operations on bitmaps trivially correspond to Boolean set operations on block lan-

guages of the same length. Formally, given two bitmaps B1,B2 ∈ {0,1}kℓ , the bitmap B1 ◦B2 is obtained

by carrying out the bitwise operation ◦ ∈ {∨,∧} between B1 and B2, while B1 is the bitwise complement

of B1.

Duarte et al. [4] studied block languages using bitmaps. In particular, it was shown how to convert

bitmaps into minimal deterministic and nondeterministic finite automata.

A bitmap B ∈ {0,1}kℓ of a language L ⊆ Σℓ, for some ℓ > 0, can be split into factors of length ki,

for i ∈ [ℓ]. Let si
j = b jki · · ·b(j+1)ki−1 denote the j-th factor of length ki, for j ∈ [kℓ−i− 1]. Since each

factor of length ki can also be split into k factors, si
j is inductively defined as:

si
j =

{

b j, if i = 0,

si−1
jk · · ·si−1

(j+1)k−1
, otherwise.

Furthermore, let i ∈ [ℓ], j ∈ [kℓ−i−1], and w ∈ Σℓ−i be the word of index j of length ℓ− i, in lexico-

graphic order. Then, si
j corresponds to the bitmap of w−1L.

Given a bitmap B ∈ {0,1}kℓ , let Bi be the set of factors of B of length ki, for i ∈ [ℓ], in which there

is at least one bit different from zero, that is,

Bi = {s ∈ {0,1}ki | ∃ j ∈ [kℓ−i−1] : s = si
j 6= 0ki}.

Example 1. Let Σ = {a,b}, k = 2, and ℓ= 4. Consider

L = {aaaa,aaba,aabb,abab,abba,abbb,babb,bbaa,bbab,bbba}.

The bitmap of L is B(L) = 1011011100011110. Moreover, we have that s2
0 = 1011 is the bitmap of

(aa)−1L = {aa,ba,bb}, s3
1 = 00011110 the bitmap of b−1L = {abb,baa,bab,bba}, and s4

0 = B the

bitmap of L. We also have B0 = {1}, B1 = {01,10,11}, B2 = {0001,0111,1011, 1110}, B3 =
{00011110,10110111}, and B4 = {B}.

The sets Bi are related to the states of the minimal finite automata representing the block language

with bitmap B, as shown in [4]. We now briefly recall such a result.

Given a bitmap B associated with a block language L ⊆ Σℓ, with |Σ| = k and ℓ > 0, one can di-

rectly build the minimal DFA A for L. Formally, A = 〈Q∪{Ω},Σ,δ ,B,{1}〉, where the set of states Q

correspond to bitmap factors, that is, Q =
⋃

i∈[ℓ]Bi; the initial state is the bitmap B; and the final state

is the bitmap factor 1. The transition function δ is given by the decomposition of each bitmap factor.

Let s∈Bi, where s = s0 · · · sk−1 and |s j|= ki−1, for i∈ [1, ℓ] and j ∈ [k−1]. Then, the transition function

contains δ (s,σ j) = s j. Moreover, the states in Bi have rank i. The DFA can be completed considering

transitions to Ω (dead-state) in the usual way.

A similar construction can be used to obtain a minimal NFA for L, where each rank will contain the

minimal cover of the sets {Bi}i∈[ℓ]. The main difference with the deterministic case is that the quotients

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 63

of the language, corresponding to factors from the bitmap, are represented by a set of states, instead of a

single one. For i∈ [ℓ] and s∈Bi, a cover of s is a set of n> 0 binary words {c0, . . . ,cn−1}, where |c j|= s,

for all j ∈ [n−1], such that the disjunction of the set equals s, that is,
∨

j∈[n−1] c j = s. Since bitmap factors

correspond to block languages, we have L (s) =
⋃

j∈[n−1]L (c j). A set C i of binary words of length ki

is a cover for the set Bi if all the words in Bi are covered by C i. For instance, it can be easily noticed

that Bi covers itself. Moreover, we say that C i is a minimal cover for Bi if there is no other set C
′
i smaller

than C i that covers Bi. Then, a minimal NFA A= 〈Q,Σ,δ ,{B},{1}〉 for L can be constructed as follows.

As indicated, the single final state is the factor 1. Additionally, we define the function ρ : {0,1}⋆→ 2{0,1}
⋆

that maps factors into covers, where initially we set ρ(1) = {1}. Next, for every rank i = 1, . . . , ℓ, we

consider a minimal cover C i for Bi, and we set, for every s ∈Bi, ρ(s) = {c0, . . . ,cn−1} ⊆ C i, such

that ρ(s) covers s. Furthermore, we set C i as the set of states at rank i of A, and so Q =
⋃

i∈[ℓ]C i. The

transitions from rank i to rank i− 1 will then be determined in a similar way to the DFA construction.

For each state c ∈ C i in rank i, we decompose c into c0 · · ·ck−1, where |c j|= ki−1, for every j ∈ [k−1],

and set δ (c,σ j) = ρ(c j), if only c j 6= 0ki−1

, where σ j ∈ Σ. We must also guarantee that ρ is defined for

each c j or, alternatively, that c j ∈Bi−1. For that, we need to limit the search space of the cover C i, so that

each word in the set is a composition of k words from Bi−1 or 0ki−1

. Formally, C i ⊆ (Bi−1∪0ki−1

)k \0ki

.

Also, Bℓ = {B}, so the minimal cover for Bℓ is itself. This result implies that B will be the single initial

state at rank 0.

In this paper, bitmaps will be a useful tool for the study of operational state complexities. Not

only languages are easily represented by their bitmaps but also bitwise operations on bitmaps mimic the

operations on languages.

3 Operational Complexity

In this section we consider operations on block languages using their bitmap representations and study

both the deterministic and nondeterministic state complexity of those operations. More precisely, the

operational state complexity is the worst-case state complexity of a language resulting from the operation,

considered as a function of the state complexities of the operands. For instance, the state complexity of

the union of two block languages can be stated as follows: given an m-state DFA A1 and an n-state DFA

A2, how many states are sufficient and necessary, in the worst case, to accept the language L(A1)∪L(A2)
by a DFA?

An upper bound can be obtained by providing an algorithm that, given DFAs for the operands, con-

structs a DFA that accepts the resulting language, and the number of states, in the worst case, of the

resulting DFA is an upper bound for the state complexity of the referred operation. To show that an up-

per bound is tight, a family of languages (one language, for each possible value of the state complexity)

for each operation must be given such that the resulting automata achieve that bound. We can call those

families witnesses or streams.

We will mainly consider operations under which the family of block languages is closed, i.e., the

resulting language is also a block language. In particular, we will consider the union and intersection

of two block languages whose words are of the same length, the concatenation of two arbitrary block

languages, the reversal, the complement of block languages closed to the block (i.e., Σℓ \L), and word

addition and removal from a block language. We will also analyze the Kleene star and plus operations

of block languages, which in general do not yield a block language.

Of course, the upper bounds of operational state complexity known for finite languages apply for

block languages. In Table 1, we review some complexity results for finite languages. The first two

64 Operational State Complexity of Block Languages

Table 1: Some complexity bounds for finite languages

Upper bound |Σ| Ref.

NFA→ DFA Θ(k
m

1+logk) 2 [13]

sc(L) kℓ+2

ℓ(k−1)2 log2 k
(1+o(1)) 2 [3]

sc |Σ| Ref. nsc |Σ| Ref.

L1∪L2 mn− (m+n) f (m,n) [6] m+n−2 2 [7]

L1∩L2 mn−3(m+n)+12 f (m,n) [6] O(mn) 2 [7]

L m 1 Θ(k
m

1+logk) 2 [7]

L1L2
(m−n+3)2n−2−1, m+1≥ n 2 [2]

m+n−1 2
[7]

m+n−2, if p1 = 1 1

L⋆ 2m−3 +2m−p−2, p≥ 2, m≥ 4 3 [2]
m−1, m > 1 1

[7]

m−1, if f = 1 1

LR O(k
m

1+logk) 2 [2] m 2 [7]

lines give the bounds for the determinization of an m-state NFA and the asymptotic upper bound of

the maximal size of a minimal DFA, respectively. For the operational state complexities, we consider

|Σ| = k or |Σ| = f (m) if a growing alphabet is taken into account, |Fi|= fi, and pi = |Fi−{qi}|, for the

i-th operand and its set of final states, Fi.

Additionally, we show how to build the bitmap of the language resulting by applying each operation

and also present a family of witness languages parameterized by the state complexity of the operands to

show that the bounds provided are tight. In general, other additional parameters are the length ℓ of the

words and the widths of each rank.

3.1 Reversal

In the following, given a bitmap B of a block language L ⊆ Σℓ, |Σ| = k, and ℓ > 0, we compute the

bitmap for the reversal language LR. Recall that the perfect shuffle of length 1, denoted �1, of two

words u = u0 · · ·un−1 and v = v0 · · ·vn−1 of the same length is obtained by interleaving the letters of u

and v, namely u�1 v= u0v0 · · ·un−1vn−1. If j is a divisor of n, the perfect shuffle of length j, denoted� j,

of u and v is the perfect shuffle of blocks of length j, that is,

u� j v = u0 · · ·u j−1v0 · · ·v j−1 · · ·un− j · · ·un−1vn− j · · ·vn−1.

Finally, if |u| = |v|, we denote u� j v by �2
j(uv). This can be generalized for any number m ≥ 2 of

words w0, . . . ,wm−1 of the same length by considering the perfect shuffle of blocks of length j taken

from each of the wi words, that is, �m
j (w0 · · ·wm−1). For j = 1 and wi = wi,0 · · ·wi,n−1, i ∈ [m− 1], one

has

�

m
1 (w0 · · ·wm−1) = w0,0 · · ·wn−1,0w0,1 · · ·wm−1,1 · · ·w0,n−1 · · ·wm−1,n−1.

Let R0 = B and Ri =�
k
ki−1(Ri−1), for i ∈ [1, ℓ−1] and k = |Σ|.

Lemma 2. Let L ⊆ Σℓ be a block language, for some ℓ > 0. The bitmap for the reversal of L, namely

B(LR), is Rℓ−1.

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 65

Proof. Let us prove that L (Rℓ−1) = LR. For i = 0, of course L (R0) = L (B) = L. Next, for i = 1 we

have R1 = �k
1(B). This operation performs the cyclic permutation S1 = (0 1 · · · ℓ− 1) in each word

of L (B), that is, each symbol of every word in L (B) is shifted one position to their right and the

last symbol becomes the first. The following operation, R2 =�
k
k(R1), performs the permutation S2 =

(1 2 · · · ℓ− 1) in every word of L (R1). Analogously, in this transformation each symbol apart from

the first of every word in L (R1) is shifted one position to their right but the last symbol becomes the

second. In general, the j-th shuffle performs the permutation S j = (j− 1 j · · · ℓ− 1), for j ∈ [1, ℓ− 1].
The composition of the transformations S1,S2, . . . ,Sℓ−1 ensure that L (Rℓ−1) = LR [11].

Example 2. Let Σ = {a,b} and ℓ = 3. Let B = b0b1b2b3b4b5b6b7 be a bitmap for a block language L

such that b0 = b3 = b4 = 1, and the remaining bits are 0. We have

R0 = b0b1b2b3b4b5b6b7 and L (R0) = {aaa,abb,baa},
R1 = b0b4b1b5b2b6b3b7 and L (R1) = {aaa,bab,aba},
R2 = b0b4b2b6b1b5b3b7 and L (R2) = {aaa,bba,aab},

and L (R2) = LR, as desired.

Now we turn to the analyze of the state complexity of this operation. The DFA for the reversal of

a block language L ⊆ Σℓ, with ℓ > 0, is given by reversing each transition on a DFA for L and then

determinising the resulting NFA. The cost of the determinisation of an m-state NFA for a block language

is 2Θ(
√

m) in size [9], so the state complexity of the reversal must also be limited by this bound.

Corollary 1. Given an m-state DFA for a block language L, 2O(
√

m) states are sufficient for a DFA

accepting LR.

In the following, we show that this bound is tight. Let ℓ > 0, Σ = {a,b}, k = 2, and consider

Lemma 1. We define a family of languages, parametrized by ℓ, that attain the maximal state complexity.

For convenience, let rℓ = r2,ℓ. Then, consider

MAXℓ = {w1w2 | w1 ∈ Σℓ−rℓ, w2 ∈ Σrℓ , i = ind(w1), j = ind(w2), and (i+1)∧2 j 6= 0},

where we use the notation i∧2 j 6= 0 to indicate that the j-th least significant bit of the binary represen-

tation of i, namely i[2], is 1. Informally, these languages contain words of size ℓ that can be split in w1 of

size ℓ− rℓ and w2 of size rℓ, with corresponding indices i = ind(w1) and j = ind(w2), such that the j-th

least significant bit of (i+1)[2] is 1.

Proposition 1 ([4]). The minimal DFA A accepting the language MAXℓ has maximal size and tℓ =
w(A) = w(rℓ) = max(2ℓ−r,22r−1 −1). Moreover, let

Ptℓ,rℓ =
tℓ

∏
i=1

pad(i[2],2
rℓ)R,

where pad(s, t) is a function that adds leading zeros to a binary string s until its length equals t. Then

the bitmap of the language MAXℓ is given by

B(MAXℓ) =

{

Ptℓ,rℓ , if tℓ = 2ℓ−r,

Ptℓ,rℓ ·02rℓ , if tℓ = 22r−1 −1.

66 Operational State Complexity of Block Languages

Example 3. For ℓ= 5, we have

MAX5 ={aaaaa,aabab,abaaa,abaab,abbba,baaaa,

baaba,babab,babba,bbaaa,bbaab,bbaba,bbbbb},

and B(MAX5) = ∏8
i=1pad(i[2],4)

R = 10000100110000101010011011100001. The minimal DFA is rep-

resented below, where the dead state is omitted.

q7

q8

q10

q9

q11

q12

q13

q14

q3

q4

q5

q6

q1

q2

q0

q15

q17

q16

q18

a

b

a

b

a

b

a

b

a

b

a

b

a

b

a

a

a

b

a,b

a

a

b

a

b

a

b

a,b

rank 2rank 3rank 4rank 5 rank 1 rank 0

Figure 2: The minimal DFA accepting the language MAXℓ for ℓ = 5. The sink-state is omitted, as well

as all transitions from and to it.

The reversal of MAXℓ, namely MAXR
ℓ , has a minimal DFA whose width is at most 2rℓ+1.

Lemma 3. Let r and rℓ be defined as before for ℓ > 0 and alphabet size k = 2. A minimal DFA B such

that w(B)≤ 2rℓ+1 is sufficient to accept the reversal of the language MAXℓ.

Proof. Let B be a DFA such that the last rℓ+ 1 ranks have maximal width, that is, 2ℓ−r′ states in each

rank r′ ∈ [ℓ− rℓ, ℓ]. In particular, the width of the rank ℓ− rℓ is 2rℓ . We can order the states in this rank in

such way that q j is the state whose left language is the reverse of the j-th word of Σrℓ , i.e.,
←−
L (q j) = {wR}

where j = ind(w), for each j ∈ [2rℓ −1].

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 67

Moreover, let us define the right language of q j as

Lq j
= {w ∈ Σℓ−rℓ | i = ind(wR), (i+1)∧2 j 6= 0}.

Clearly, B accepts MAXR
ℓ . Consider Bq j

, the DFA B with initial state q j, and let us show that w(Bq j
)≤ 2.

Let j ∈ [2rℓ − 1], r′ ∈ [ℓ− rℓ− 1], and Br′ be the set of factors of size 2r′ of the bitmap of MAXR
ℓ .

Let s ∈Br′ and w1 ∈ Σℓ−rℓ−r′ such that s represents the language w−1
1 Lq j

. From the definition of Lq j
,

w1w2 ∈Lq j
if (i+ 1)∧ 2 j 6= 0, where w2 ∈ Σr′ and i = ind(wR

2 wR
1). We will now show that the number

of states on the rank r′ of Bq j
is bounded by 2, by arguing that |Br′ | ≤ 2. Consider the following two

cases:

1. j < ℓ− rℓ− r′: in this case, it is sufficient to check if (i′+ 1)∧ 2 j 6= 0, where i′ = ind(wR
1), since

|wR
1 | = ℓ− rℓ− r′. Then, either i′+ 1 has its j-th bit equal to 1, which implies that s = 1 · · ·1, or

has not, implying that s = 0 · · ·0, so s /∈Br′ . Therefore, |Br′ |= 1.

2. j ≥ ℓ− rℓ− r′: if w1 ∈ Σℓ−rℓ−r′ \{bℓ−rℓ−r′}, the binary representation of i′+1, with i′ = ind(wR
1),

requires at most ℓ− rℓ− r′ bits. Then, the j-th bit of i, corresponds to the (j− ℓ+ rℓ+ r′)-bit of w2.

Hence, u−1Lq j
= v−1Lq j

, for all u,v ∈ Σℓ−rℓ−r′ \{bℓ−rℓ−r′}. On the other hand, if w1 = bℓ−rℓ−r′ ,

it results on a different quotient, since ℓ− rℓ− r′+1 bits are needed for the binary representation

of i′+1. Therefore, |Br′ |= 2.

This result implies that w(Bq j
) = 2. As a consequence, the width of the ranks r′ ∈ [ℓ− rℓ− 1] of A are

bounded by 2rℓ+1, as desired.

Then, we have the following bound on the state complexity of the reversal of a language.

Theorem 4. Let L⊆ Σℓ, ℓ > 0, such that sc(L) = m. Then, sc(LR) ∈ 2Θ(
√

m).

Proof. By Corollary 1 we have that 2O(
√

m) states are sufficient for a DFA accepting LR. Now, we prove

that this cost is necessary in the worst case.

Let A and B be the minimal DFAs for MAXℓ and MAXR
ℓ with set of states Q and P, respectively. For

this proof, assume that 2ℓ−r > 22r−1 −1, which implies that rℓ = r. A similar proof follows, otherwise.

By Proposition 1, A is of maximal size and its width is exactly 2ℓ−r. Therefore, the number of states

of A is

|Q|=
rℓ−1

∑
i=0

(22i −1)+
ℓ

∑
i=rℓ

2ℓ−i =
rℓ−1

∑
i=0

22i− rℓ+2ℓ−rℓ+1−1

≥ 22rℓ−1− (rℓ+1) 2ℓ−rℓ+1 > 0

≥ 22log2 ℓ+2−1− (log2 ℓ+3) 22rℓ−1≫ rℓ, r = rℓ, and r < log2 ℓ+2

≥ 24ℓ−1− (log2 ℓ+3) ∈ 2Ω(ℓ).

By Lemma 3, the width of B is bounded by 2rℓ+1. Moreover, the width of each rank i ∈ [r− 1] of B is

also bounded by 22i −1, as we have seen in Lemma 1. Then, let r′ = min{n ∈ [ℓ] | 2rℓ+1 ≤ 22n −1}. In

particular, we have

2rℓ+1 > 22r′−1−1 =⇒ 2rℓ+1 ≥ 22r′−1

=⇒ rℓ+1≥ 2r′−1

=⇒ log2 ℓ+3≥ 2r′−1 r = rℓ and r < log2 ℓ+2

=⇒ r′ ≤ log2(log2 ℓ+3)+1.

68 Operational State Complexity of Block Languages

The value of r′ tells us how many ranks in B can achieve the maximal width of 2rℓ+1. Then, the

number of states of B is bounded by

|P| ≤
r′−1

∑
i=0

(22i−1)+2rℓ+1(ℓ− rℓ− r′)+
ℓ

∑
i=ℓ−rℓ

2ℓ−i

≤ 22r′ − r′+2rℓ+1(ℓ− rℓ− r′+1)−1

≤ 22log2(log2 ℓ+3)+1

+2 ·2rℓ(ℓ+1) r′ ≤ log2(log2 ℓ+3)+1

≤ 26 ·2log2 ℓ
2

+23 ·2log2 ℓ(ℓ+1) r = rℓ and r < log2 ℓ+2

≤ 26ℓ2 +23(ℓ2 + ℓ) = O(ℓ2).

Thus, given L =MAXR
ℓ with sc(L) = m, we have that sc(LR) = 2Ω(

√
m), as desired.

The NFA for the reversal of a language L ⊆ Σℓ is given by reversing the transitions on the NFA

for L. In fact, the nondeterministic state complexity of the reversal of a finite language coincides with

the nondeterministic state complexity of the language, so no better result can be obtained for the block

languages.

Theorem 5. Let L⊆ Σℓ, for some ℓ > 0. Then, nsc(LR) = nsc(L).

Proof. The construction above shows that nsc(LR)≤ nsc(L). The following family of languages shows

that it is tight. Let Lℓ = {aℓ}, with ℓ > 0. We have both that nsc(Lℓ) = ℓ+1 and Lℓ = LR
ℓ .

3.2 Word Addition and Word Removal

Consider a language L ⊆ Σℓ, for some ℓ > 0, over an alphabet of size k. The operations of adding or

removing a word w ∈ Σℓ from the language, L \ {w} and L∪{w}, respectively, correspond to the not

operation on the ind(w)-th bit of B(L). From that observation, we can estimate the state complexity of

these operations.

Theorem 6. Let L⊆ Σℓ be a block language with |Σ|= k and ℓ > 0, such that sc(L) = m. Let⊕∈ {\,∪},
w ∈ Σℓ, and L′ = L⊕{w}. Then, n− (ℓ−1)≤ sc(L′)≤ m+(ℓ−1).

Proof. Let B(L) and B(L′) be the bitmaps of L and L′, respectively. Let us assume that the operation ⊕
results in a different language. Then, the bitmaps B(L′) and B(L) differ exactly for one bit. Let i ∈ [ℓ].
Then, there is exactly one j ∈ [kℓ−i−1] such that si

j 6= t i
j, where si

j and t i
j denote the j-th bitmap factor of

size ki of B(L) and B(L′), respectively. Also, recall B(L)i (resp. B(L′)i), the set of factors of size ki of

B(L) (resp. B(L′)). Then, there are four possible cases:

1. si
j ∈B(L′)i and t i

j ∈B(L)i: the two sets have the same size;

2. si
j ∈B(L′)i and t i

j /∈B(L)i: B(L′)i has one more element than B(L)i;

3. si
j /∈B(L′)i and t i

j ∈B(L)i: B(L)i has one more element than B(L′)i;

4. si
j /∈B(L′)i and t i

j /∈B(L)i: the two sets have the same size.

Then, the difference on the number of states from a DFA which accepts the language L′ and the DFA

which accepts L is bounded by ℓ−1, which is the number of ranks neither initial nor final.

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 69

These bounds also extend to the nondeterministic state complexity, as proved in the following result.

Theorem 7. Let L⊆ Σℓ be a block language with |Σ|= k and ℓ> 0, such that nsc(L)=m. Let⊕∈{\,∪},
w ∈ Σℓ, and L′ = L⊕{w}. Then, m− (ℓ−1)≤ nsc(L′)≤ m+(ℓ−1).

Proof. Consider the proof of Theorem 6 and its notation. If the case 2 verifies, that is, |B(L′)i| =
|B(L)i|+ 1, then the cover will require at most one more segment to cover the new set. Analogously,

the size of the cover for B(L′)i can be smaller by one than the cover for B(L)i, for the case 3.

The upper bounds from Theorems 6 and 7 are reached as stated in the following theorem.

Theorem 8. The bounds given in Theorems 6 and 7 are tight.

Proof. Let Σ = {a,b} and ℓ > 0. Consider Lℓ = {a,b}ℓ, whose bitmap is B(Lℓ) = 12ℓ . Let w = aℓ. We

have that nsc(Lℓ) = ℓ+ 1 and sc(Lℓ) = 1+ nsc(L) = 2+ ℓ, while sc(Lℓ \{w}) = 2ℓ+ 1 = 1+ nsc(Lℓ \
{w}). In the same way it is possible to prove for word addition.

The family of languages in the previous proof is also a witness for the upper bound of the opera-

tion Σℓ \{w}.

3.3 Intersection

Let L1,L2 ⊆ Σℓ be two block languages, for some ℓ > 0 and |Σ| = k, and their respective bitmaps

B(L1), B(L2). The bitmap of the intersection of L1 and L2 is given by B(L1)∧B(L2).

Now, let A = 〈Q∪{Ω1},Σ,δ1,q0,{q f }〉 and B = 〈P∪{Ω2},Σ,δ2, p0,{p f }〉 be the minimal DFAs for

L1 and L2, respectively. For obtaining a DFA for L1∩L2, one can use the standard product construction,

and obtain a product automaton C. As shown in [6] (see Table 1) the size of C is at most mn− 3(m+
n)+12, if |Q|= m−1 and |P|= n−1. This bound is the result of:

• There are no transitions to the initial state neither in A, B, nor C (this saves m−1+n−1 states);

• In C, all pairs of states (q,Ω2) and (Ω1, p), for q∈Q and p ∈ P, can be merged with (Ω1,Ω2) (this

saves m−2+n−2 states);

• In C, all pairs of states (q, p f) or (q f , p), for q ∈ Q and p ∈ P, can be merged with (q f , p f) or

(Ω1,Ω2) (if in general q f and p f are the pre-dead states, this saves m−3+n−3 states).

However, for block languages ,pre state can be saved since a state (q, p) of C is both accessible from

the initial state and leads to the final state if and only if rank(q) = rank(p), for every q ∈ Q, p ∈ P.

Let Qi be the set of states in rank i in A and mi = w(i) = |Qi|, for i ∈ [ℓ]. Let Pi be the set of states in

rank i in B and ni = w(i) = |Pi|, for i ∈ [ℓ]. Additionally, m = 1+∑i∈[ℓ] mi and n = 1+∑i∈[ℓ] ni since the

dead states Ω j do not belong to any rank. We have that:

Lemma 9. Given two DFAs A and B for block languages L1 and L2, respectively, a DFA with ∑ℓ
i=0 mini+

1 states is sufficient to recognize the intersection of L1 and L2, where mi and ni are the widths of rank i

in A and B, respectively, for i ∈ [ℓ].

Proof. Given the above considerations, the states of the DFA resulting from trimming C are, in the

worst-case,
⋃

i∈[ℓ] Qi×Pi and a single dead state is needed.

70 Operational State Complexity of Block Languages

Let us show that this bound is tight for a fixed size of the alphabet, as opposed to the general case of

finite languages where a growing alphabet is required [6]. Consider the following family of languages,

defined over an alphabet Σ of size k, and let d > 0 and x ∈ {0,1}:

Lk,d,x = {a0 · · ·a2d−1 ∈ Σ2d | ∀i ∈ [d−1] : i≡ x (mod 2) =⇒ ai = a2d−i }.

Informally, it contains the words that can be split into two halves of size d, where, if x = 0 (x = 1, resp.),

then the symbols in even (odd, resp.) positions of the first half are equal to their symmetric position in

the second half.

Lemma 10. Let k ≥ 2, d ≥ 0, and x ∈ {0,1}. Also, let A be the minimal DFA for Lk,d,x over a k-letter

alphabet Σ and let mi be the width of A, for i ∈ [2d]. Then, for i ∈ [d,2d] we have:

mi =

{

k⌈
2d−i

2
⌉, if x = 0;

k⌊
2d−i

2
⌋, if x = 1,

and for i ∈ [d] we have mi = m2d−1.

Proof. Let us prove for x = 0.

1. (∀i ∈ [d,2d]) : mi = k⌈
2d−i

2
⌉:

Let w1,w2 ∈ Σ2d−i such that they differ at least in one even position. Now, let w3 = σ 2(i−d)wR
1 ,

for some σ ∈ Σ. It is easy to see that w1w3 ∈ Lk,d,0 but w2w3 /∈ Lk,d,0, so w1 and w2 have different

quotients, and so they have to reach different states. Therefore, the number of states on rank i of A

is given by k⌈
2d−i

2
⌉, where the exponent is the number of odd integers between i and 2d−1.

2. (∀i ∈ [d]) : mi = m2d−i:

Let us look at AR, the NFA for LR
k,d given by reversing every transition in A and swapping the

initial with the final states. In fact, it is easy to see that Lk,d,x = LR
k,d,x, hence L (A) = L (AR).

In 1, we proved that m j = k⌈
2d− j

2
⌉, for every rank j ∈ [d,2d]. The i-th rank in A corresponds to

the (2d− i)-th rank in AR, so that bound must be preserved.

For x = 1, the number of states is k⌊
2d−i

2
⌋, where the exponent is the number of even integers between i

and 2d−1, so the proof is similar.

Then, we have the following result for the operational state complexity of intersection:

Lemma 11. Let A and B be DFAs that accept Lk,d,0 and Lk,d,1 and mi and ni the widths of rank i

in A and B, respectively, for i ∈ [2d] and d > 0. A DFA that recognizes the language Lk,d,0 ∩ Lk,d,1

needs ∑2d
i=0 mini +1 states.

Proof. As stated in Lemma 10, we have mi = m2d−i = k⌈
2d−i

2
⌉ and ni = n2d−i = k⌊

2d−i
2
⌋, for i ∈ [d,2d].

Moreover, it is easy to see that

Lk,d,0 ∩Lk,d,1 = {wwR | w ∈ Σd},
that is, the set of palindromes of even length. A minimal DFA C for this language with set of states

S = S0∪ . . .∪Sℓ must first be able to remember the entire first half of the word, therefore, |Si|= k · |Si+1|=
k2d−i for i∈ [d,2d−1]. For the second half, it must check for the repetition of the first, then, |Si|= |S2d−i|,
for i ∈ [d]. In fact,

|Si|= mini = k⌈
2d−i

2 ⌉k⌊
2d−i

2 ⌋ = k2d−i,

as desired.

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 71

From Lemmas 9 and 11 we have:

Theorem 12. Given two DFAs A,B for block languages L1,L2 ⊆ Σℓ, for ℓ > 0, ∑ℓ
i=0 mini + 1 states are

necessary and sufficient in the worst-case for a DFA that accepts the intersection of L1 and L2, where mi

and ni are the widths of rank i in A and B, respectively, for i ∈ [ℓ].

For the nondeterministic state complexity, the bounds are the same except that the dead state is not

considered. In fact, the family witness languages for the tightness of deterministic state complexity is

also a witness for the nondeterministic one.

Theorem 13. Let A = 〈Q,Σ,δ1,q0,{q f }〉 and B = 〈P,Σ,δ2, p0,{p f }〉 be minimal NFAs for two block

languages L1,L2 ⊆ Σℓ, respectively, for some ℓ > 0, and such that |Q| = m and |P| = n. Let Qi be the

set of states in rank i in A and mi = w(i) = |Qi|, for i ∈ [ℓ]. Let Pi be the set of states in rank i in B and

ni = w(i) = |Pi|, for i ∈ [ℓ]. Additionally, m = ∑i∈[ℓ] mi and n = ∑i∈[ℓ] ni.

Then, an NFA with ∑ℓ
i=0 mini states is sufficient to recognize the intersection of both languages and

the bound is tight for k > 1.

Proof. The fact that ∑ℓ
i=0 mini states are sufficient follows from the previous discussions. Moreover, this

number of states is necessary, as can be noticed by considering the languages Lk,d,x given above. Recall

the language Lk,d,x, for some k > 1, d > 0 and x ∈ {0,1}. In fact, it is easy to see that sc(Lk,d,x)− 1 =
nsc(Lk,d,x), since the NFA for Lk,d,x must also be able to remember the same information as the DFA.

Then, if A (resp. B) is a minimal NFA that recognizes the language Lk,d,0 (resp. Lk,d,1), an NFA that

recognizes the intersection of both needs exactly ∑ℓ
i=0 nimi states.

3.4 Union

Let L1,L2 ⊆ Σℓ be two block languages, for some ℓ > 0 and |Σ| = k, and their respective bitmaps

B(L1),B(L2). The bitmap of the union of L1 and L2 is B(L1)∨B(L2).
Let A = 〈Q∪{Ω1},Σ,δ1,q0,{q f }〉 and B = 〈P∪{Ω2},Σ,δ2, p0,{p f }〉 be the minimal DFAs for L1

and L2, respectively, with |Q| = m and |P| = n. Again, let C be the product DFA of A and B. Because

L1,L2 are finite we know that m+ n states can be saved: m+ n− 2 because the initial states are non

returning and 2 more because the final states (q f ,Ω2), (Ω1, p f), and (q f , p f) can be merged into a single

final state. However, again, one only needs to consider pairs of states (q, p) such that rank(q) = rank(p),
for q ∈Q, p∈ P. Let Qi be the set of states in rank i in A and mi =w(i) = |Qi|, for i∈ [ℓ]. Let Pi be the set

of states in rank i in B and ni =w(i) = |Pi|, for i ∈ [ℓ]. Additionally, m = 1+∑i∈[ℓ] mi and n = 1+∑i∈[ℓ] ni

since the dead states Ω j do not belong to any rank. We have that

Lemma 14. Given two DFAs A and B for block languages L1 and L2, respectively, a DFA with

ℓ−1

∑
i=1

(mini +mi +ni)+3

states is sufficient to recognize the union of L1 and L2, where mi and ni are the widths of rank i in A and

B, respectively, for i ∈ [ℓ].

Proof. Let C be the product automaton from A and B. As mentioned above, the final states (q f ,Ω2),
(Ω1, p f) can be merged with (q f , p f), and a state (p,q) is only accessible from the initial state if

rank(p) = rank(q). Therefore, the DFA resulting from trimming C has a single initial state, a final

state and a dead state, and also the states (Qi×Pi)∪(Qi×{Ω2})∪({Ω1}×Pi), at each rank i∈ [1, ℓ−1].
Thus, the sufficient number of states follows.

72 Operational State Complexity of Block Languages

In fact, the bound is tight for an alphabet with size at least 3.

Lemma 15. Given two DFAs A and B for block languages L1 and L2 over Σℓ, respectively, a DFA with

∑ℓ−1
i=1 (mini +mi +ni)+3 states is necessary to recognize the union of L1 and L2, where mi and ni are the

widths of rank i in A and B, respectively, for i ∈ [ℓ] and |Σ|> 2.

Proof. Since A and B are deterministic, nℓ−1 and mℓ−1, the number of states at rank ℓ− 1 of A and B,

respectively, are bounded by k and not equal to 0. Analogously, the width of the rank ℓ− 1 of the DFA

for the union of L (A) and L (B) is also at most k. When k = 2, it is easy to see that the inequality

0 < nℓ−1mℓ−1 +nℓ−1 +mℓ−1 ≤ k has no solutions.

Now, consider the languages L1,ℓ = {a,c}ℓ and L2,ℓ = {b,c}ℓ, and let A and B be the DFAs that

recognize them, respectively, for some ℓ and Σ = {a,b,c}. We have that sc(L1,ℓ) = sc(L2,ℓ) = ℓ+2 and

ni = mi = 1, for every i ∈ [ℓ]. The minimal DFA that recognizes the language L1,ℓ∪L2,ℓ requires 3 states

at each rank i ∈ [1, ℓ− 1]: one state when some a has already been read, so the word is in L1,ℓ; one

state when some b has already been read, so the word is in L2,ℓ; and one state for when only c’s have

been read, so the DFA still does not know to what particular language it belongs. Then, sc(L1,ℓ∪L2,ℓ) =

∑ℓ−1
i=1 (nimi +ni +mi)+3 = 3ℓ.

From Lemmas 14 and 15 we have:

Theorem 16. Given two DFAs A,B for block languages L1,L2 ⊆ Σℓ, for ℓ > 0, ∑ℓ−1
i=1 (mini +mi +ni)+3

states are sufficient and necessary, if Σ > 2, in the worst-case for a DFA that accepts the union of L1

and L2, where mi and ni are the widths of rank i in A and B, respectively, for i ∈ [ℓ].

For the nondeterministic state complexity, the upper bound is the same as for finite languages over

the same alphabet size.

Theorem 17. Let L1,L2 ⊆ Σℓ with ℓ > 0 and |Σ| = k, such that nsc(L1) = n and nsc(L2) = m. Then,

nsc(L1∪L2)≤ n+m−2, and this bound is reached.

Proof. Let L1,ℓ = {aℓ} and L2,ℓ = {bℓ}, for some ℓ > 0 and Σ = {a,b}. We have that nsc(L1,ℓ) =
nsc(L2,ℓ) = ℓ+1 and nsc(L1,ℓ∪L2,ℓ) = 2ℓ.

3.5 Concatenation

Consider two languages L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2 , for some ℓ1, ℓ2 > 0 and |Σ|= k, with bitmaps B(L1) and

B(L2), respectively. The bitmap for the language L1L2 is given by replacing each 1 in B(L1) by B(L2)

and each 0 by 0kℓ2 . This ensures that each word of L1L2 is obtained by concatenating a word of L1 with

a word of L2 and for each word obtained in such way the correspondent bit in B(L1L2) is set to 1.

The deterministic state complexity of the concatenation for block languages coincides with the one

for the finite languages when the first operand, L1, has a single final state in its minimal DFA. Therefore,

we have the following exact upper bound:

Theorem 18. Let L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2 , for some ℓ1, ℓ2 > 0, be two block languages over a k-letter

alphabet, where sc(L1) = m and sc(L2) = n. Then, sc(L1L2) = m+n−2.

Proof. Let A and B be the minimal DFAs for L1 and L2, respectively. Also, let C be the minimal DFA

for L1L2. Considering the bitmaps for these languages, the width of the rank i of C is |B(L2)|i, if i∈ [ℓ2],
or is |B(L1)|i−ℓ2

, if i∈ [ℓ2+1, ℓ1+ℓ2]. Then, C saves 2 states by reusing the final state of A for the initial

state of B (alternatively, reusing the initial state of B for the final state of A) and also by eliminating one

of the dead states.

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 73

For the nondeterministic state complexity, the same result is expected, coinciding with the state

complexity for the finite languages.

Theorem 19. Let L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2 , for some ℓ1, ℓ2 > 0, be two block languages over a k-letter

alphabet, where nsc(L1) = m and nsc(L2) = n. Then, nsc(L1L2) = m+n−1.

In fact, any two languages L1 ⊆ Σℓ1 and L2 ⊆ Σℓ2 result in a family of witness languages. That is due

to the fact that this operation preserves the ranks of the DFAs of the operands.

Example 4. Let L1,ℓ1
= {aℓ1} and L2,ℓ2

= {aℓ2}, for ℓ1, ℓ2 > 0 and Σ = {a}. We have that sc(L1,ℓ1
) = ℓ1+

2, sc(L2) = ℓ2 +2, and sc(L1,ℓ1
L2,ℓ2

) = ℓ1 + ℓ2+2. We also have nsc(L1,ℓ1
) = ℓ1+1, nsc(L2,ℓ2

) = ℓ2 +1,

and nsc(L1,ℓ1
L2,ℓ2

) = ℓ1 + ℓ2 +1.

3.6 Block Complement

Consider a language L ⊆ Σℓ, for some ℓ > 0 and alphabet of size k > 0, and let B be its bitmap. Now,

given a block language Σℓ, we consider block complement language, namely Σℓ \L, also denoted by L
ℓ
.

Then, the bitmap of the language Σℓ \L, namely B, is given by flipping every bit of B.

Theorem 20. Let L ⊆ Σℓ, with ℓ > 0, be a block language with |Σ| = k, such that sc(L) = m. Then,

m− (ℓ−1)≤ sc(Σℓ \L)≤m+(ℓ−1).

Proof. The number of states on a rank i ∈ [ℓ] of the minimal DFA for Σℓ \L is given by the cardinality

of Bi, the set of the non-null factors of length ki on the bitmap B. If, for some j ∈ [kℓ−i− 1], we have

that si
j = 0 · · ·0, which by definition implies that si

j /∈Bi, then si
j = 1 · · ·1 and so si

j ∈Bi. Moreover, the

complement may also occur. Therefore,
∣

∣|Bi |− |Bi|
∣

∣≤ 1.

Let Lℓ = {aℓ}, for ℓ > 0. As we previously saw on Theorem 8, sc(L) = ℓ+1, and sc(Σℓ \L) = 2ℓ.

For the nondeterministic state complexity of the block complement operation, we have that the bound

meets the one of the complement from the gmeneral case for finite languages considering the deter-

minization cost of block languages. Also, this bound is asymptotically tight for alphabets of size at least

2.

Lemma 21. Let L ⊆ Σℓ be a block language with |Σ| = k, such that L is accepted by an m-state NFA.

Then, 2O(
√

m) states are sufficient for an NFA for Σℓ \L.

Proof. Let A be a NFA for L with m states. The minimal DFA B for L will have at most 2O(
√

m) states [9].

Furthermore, the minimal DFA C for Σℓ \L will have at most ℓ+1 more states then B, as shown in Theo-

rem 20. The nondeterministic state complexity is trivially bounded by the deterministic state complexity,

so the sufficient number of states follows.

Consider the following family presented by Karhumäki and Okhotin [9]:

Lk,d = {w0 · · ·w2d−1 | ∃i ∈ [d−1] : wi = wi+d ∈ Σ\{σk−1}}

defined over a k-ary alphabet Σ = {σ0, . . . ,σk−1}. Informally, this language contains words that can be

split into two halves of size d, such that there is at least one position in the first half that matches its

counterpart in the second one, and it is different than the “prohibited symbol” σk−1.

Proposition 2 ([9]). For each k ≥ 2 and d ≥ 2, the language Lk,d is recognized by an NFA with (k−
1)d2 +2d states.

74 Operational State Complexity of Block Languages

Lemma 22. For each k ≥ 2 and d ≥ 2, the language L
2d
k,d defined over a k-letter alphabet Σ requires at

least kd states on the d-th rank.

Proof. First, notice that L
2d
k,d is the block complement of the language Lk,d defined above, formally

L
2d
k,d = {w0 · · ·w2d−1 | ∀i ∈ [d−1] : wi 6= wi+d or wi = σk−1 }.

Let w1 and w2 be two words in Σd such that a and b are the i-th symbols of w1 and w2, respectively,

with a 6= b and i ∈ [d]. If a = σk−1 then, with w3 = σ i−1
k−1 bσ d−i

k−1, we have w1w3 ∈ L
2d
k,d but w2w3 /∈

L
2d
k,d . If b = σk−1 then, with w3 = σ i−1

k−1 aσ d−i
k−1, we have w1w3 /∈ L

2d
k,d but w2w3 ∈ L

2d
k,d . As a conse-

quence, w−1
1 L

2d
k,d 6= w−1

2 L
2d
k,d . Therefore, one state in rank d is needed for each word in Σd .

With these results, it is possible to determine that the nondeterministic state complexity for the com-

plement operation given in Lemma 21 is tight.

Theorem 23. Let m ≥ 2 and Σ an alphabet of size k ≥ 2. Then, there exists a language L ⊆ Σℓ, for

some ℓ > 0, such that nsc(L) = m and nsc(Σℓ \L) = 2Ω(
√

m).

Proof. Consider d as the largest integer for which (k− 1)d2 + 2d ≤ m. Following the work in [9], we

have that

d =

⌊
√

m

k−1
+

1

(k−1)2
− 1

k−1

⌋

.

Then, Lk,d is a language recognized by an m-state NFA, while every NFA for L
ℓ
k,d requires, by Lemma 22,

at least

kd = k

⌊

√

m
k−1

+ 1

(k−1)2
− 1

k−1

⌋

≥ k
√

m
k−1
−2 = 2Ω(

√
m)

states, as required.

3.7 Kleene Star and Plus

Let L ⊆ Σℓ, for some ℓ > 0 and B its bitmap. From B one can obtain the minimal DFA for L, namely

A = 〈Q,Σ,δ0,q0,{q f }〉.
A DFA B = 〈Q\{q f},Σ,δ1,q0,{q0}〉 recognizes the language L⋆ if δ1(q,σ) = q0, for all q ∈Q such

that rank(q) = 1 and σ ∈ Σ, and δ1(q,σ) = δ (q,σ), for the remaining pairs (q,σ) ∈ Q×Σ. That is, the

DFA for L⋆ is given by substituting all the transitions with final state as the target state to transitions to

the initial state. The same applies for the NFA for L⋆, as the following theorem states.

Theorem 24. Let L ⊆ Σℓ, with ℓ > 0, be a block language with sc(L) = n and nsc(L) = m. Then,

sc(L⋆) = n−1 and nsc(L⋆) = m−1.

Moreover, a DFA C = 〈Q,Σ,δ2,q0,{q f }〉 recognizes the language L+ if δ2(q f ,σ) = δ0(q0,σ), for

σ ∈ Σ. Again, the NFA for L+ is given by applying the same changes to the minimal NFA for L. And

the witness languages coincide with the ones for finite languages, namely Lℓ = {aℓ} , for ℓ > 0.

Theorem 25. Let L⊆ Σℓ, with ℓ > 0. Then, sc(L+) = sc(L) and nsc(L+) = nsc(L).

G. Duarte, N. Moreira, L. Prigioniero & R. Reis 75

Table 2: Upper bounds of the state complexity for block languages of words of length ℓ.

Block Languages

sc |Σ| nsc |Σ|
L1∪L2 ∑ℓ−1

i=1 (mini +mi +ni)+3 3 m+n−2 2

L1∩L2 ∑ℓ
i=0 mini +1 2 ∑ℓ

i=0 mini 2

L1L2 m+n−2 1 m+n−1 1

Σℓ \L m+ ℓ−1 2 O(2
√

m) 2

L∪{w} m+ ℓ−1 2 m+ ℓ−1 2

L\{w} m+ ℓ−1 2 m+ ℓ−1 2

L∗ m−1 1 m−1 1

L+ m 1 m 1

LR 2Θ(
√

m) 2 m 1

4 Conclusions

The complexities obtained for operations on block languages are summarized in Table 2. One can com-

pare these results with the ones for finite languages summarized in Table 1. For the deterministic state

complexity, the bounds for Boolean operations on block languages are given using the rank widths and

are smaller than the ones for finite languages. It would be interesting to express them as a function of

the number of states of the operands (as it is usually done). Moreover, those bounds could be obtained

from a direct construction of the minimal DFA for the resulting language considering the bitmaps of

the operands. Note that bitwise Boolean operations can be performed to obtain the bitmap factors (i.e.,

states) in each rank of the resulting DFA. This study will be interesting to pursue in future work. For

concatenation and Kleene star the bounds correspond to special cases of the ones for finite languages.

Finally, for reversal the results are analogous to the ones for finite languages, but here considering the

bounds known for the determinization of block languages. The results for nondeterministic state com-

plexity meet the values known for finite languages except for intersection and the specific operations for

block languages (block complement, word addition, and word removal).

References

[1] Marco Almeida, Nelma Moreira & Rogério Reis (2008): Exact generation of minimal acyclic deterministic

finite automata. Int. J. Found. Comput. S. 19(4), pp. 751–765, doi:10.1142/S0129054108005930.

[2] Cezar Câmpeanu, Karel Culik II, Kai Salomaa & Sheng Yu (2001): State Complexity of Basic Operations on

Finite Languages. In Oliver Boldt & Helmut Jürgensen, editors: 4th WIA’99, LNCS 2214, Springer-Verlag,

pp. 60–70, doi:10.1007/3-540-45526-4 6.

[3] Cezar Câmpeanu & Wing Hong Ho (2004): The Maximum State Complexity for Finite Languages. J. Autom.

Lang. Comb. 9(2-3), pp. 189–202.

[4] Guilherme Duarte, Nelma Moreira, Luca Prigioniero & Rogério Reis (2024): Block Languages and their

Bitmap Representations. Submitted.

[5] Yuan Gao, Nelma Moreira, Rogério Reis & Sheng Yu (2017): A Survey on Operational State Complexity.

Journal of Automata, Languages and Combinatorics 21(4), pp. 251–310.

https://doi.org/10.1142/S0129054108005930
https://doi.org/10.1007/3-540-45526-4_6

76 Operational State Complexity of Block Languages

[6] Yo-Sub Han & Kai Salomaa (2008): State Complexity of Union and Intersection of Finite Languages. Int. J.

Found. Comput. Sci. 19(3), pp. 581–595, doi:10.1142/S0129054108005838.

[7] Markus Holzer & Martin Kutrib (2003): State Complexity of Basic Operations on Nondeterministic Finite

Automata. In Jean-Marc Champarnaud & Denis Maurel, editors: 7th CIAA 2002, LNCS 2608, Springer-

Verlag, pp. 148–157, doi:10.1007/3-540-44977-9 14.

[8] Juhani Karhumäki & Jarkko Kari (2021): Finite automata, image manipulation, and automatic real functions.

In Jean-Éric Pin, editor: Handbook of Automata Theory, European Mathematical Society, pp. 1105–1143,

doi:10.4171/AUTOMATA-2/8.

[9] Juhani Karhumäki & Alexander Okhotin (2014): On the Determinization Blowup for Finite Automata

Recognizing Equal-Length Languages. In R. Freivalds C. S. Calude & K. Iwama, editors: Com-

puting with New Resources - Essays Dedicated to Jozef Gruska, LNCS 8808, Springer, pp. 71–82,

doi:10.1007/978-3-319-13350-8 6.

[10] Stavros Konstantinidis, Nelma Moreira & Rogério Reis (2018): Randomized Generation Of Error Control

Codes With Automata And Transducers. RAIRO 52, pp. 169–184.

[11] Diaconis Persi, Graham R. L. & Kantor William.M. (1983): The mathematics of perfect shuffles. Advances

in Applied Mathematics 4, pp. 175–196, doi:10.1016/0196-8858(83)90009-X.

[12] Dominique Revuz (1992): Minimisation of acyclic deterministic automata in linear time. Theoret. Comput.

Sci. 92(1), pp. 181–189, doi:10.1016/0304-3975(92)90142-3.

[13] Kai Salomaa & Sheng Yu (1997): NFA to DFA Transformation for Finite Languages over Arbitrary Alpha-

bets. J. Autom. Lang. Comb. 2(3), pp. 177–186.

[14] Sheng Yu, Qingyu Zhuang & Kai Salomaa (1994): The State Complexities of Some Basic Operations on

Regular Languages. Theor. Comput. Sci. 125(2), pp. 315–328, doi:10.1016/0304-3975(92)00011-F.

https://doi.org/10.1142/S0129054108005838
https://doi.org/10.1007/3-540-44977-9_14
https://doi.org/10.4171/AUTOMATA-2/8
https://doi.org/10.1007/978-3-319-13350-8_6
https://doi.org/10.1016/0196-8858(83)90009-X
https://doi.org/10.1016/0304-3975(92)90142-3
https://doi.org/10.1016/0304-3975(92)00011-F

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 77–85, doi:10.4204/EPTCS.407.6

© H. Fernau, C. Haase, S. Hoffmann, M. Volkov
This work is licensed under the
Creative Commons Attribution License.

Winning Strategies for the Synchronization Game
on Subclasses of Finite Automata*

Henning Fernau Carolina Haase
Universität Trier, Fachbereich IV, Informatikwissenschaften, Trier, Germany

fernau@uni-trier.de haasec@uni-trier.de

Stefan Hoffmann
hoffmanns.tcs@gmail.com

Mikhail Volkov
Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, Russia

m.v.volkov@urfu.ru

We exhibit a winning strategy for Synchronizer in the synchronization game on every synchronizing
automaton in whose transition monoid the regular D-classes form subsemigroups.

1 Introduction

A complete deterministic finite automaton (DFA) is a pair (Q,Σ) of two finite sets equipped with a
map Q×Σ → Q whose image at (q,a) ∈ Q×Σ is denoted by q·a. We call Q the state set and Σ the
input alphabet. Elements of Q and Σ are referred to as states and, respectively, letters, and for a state
q ∈ Q and a letter a ∈ Σ, we refer to q·a as the result of the action of a at q ∈ Q. The action of letters
in Σ naturally extends to the action of words over Σ: if w = a1a2 · · ·an with a1,a2, . . . ,an ∈ Σ, then
q·w := (. . .((q·a1)·a2) . . .)·an.

A DFA (Q,Σ) is called synchronizing if there exists a word w over Σ whose action brings the DFA to
one particular state no matter at which state w is applied: q·w = q′·w for all q,q′ ∈ Q. Any word w with
this property is said to be a reset word for the automaton.

Synchronizing automata serve as transparent and natural models of error-resistant systems in many
applications (coding theory, robotics, testing of reactive systems) and reveal interesting connections with
symbolic dynamics, substitution systems, and other parts of mathematics. We refer the reader to chap-
ter [12] of the ‘Handbook of Automata Theory’ and survey [19] for an introduction to the area and an
overview of its state-of-the-art.

The fourth-named author initiated viewing synchronizing automata through the lens of game theory;
the motivation for this came from a game-theoretical approach to software testing suggested in [4]. In a
synchronization game on a DFA A , two players, Alice (Synchronizer) and Bob (Desynchronizer), take
turns choosing letters from the input alphabet of A . Alice who wants to synchronize A wins when the
sequence of chosen letters forms a reset word. Bob aims to prevent synchronization or, if synchronization
is unavoidable, to delay it as long as possible. Provided that both players play optimally, the outcome
of such a game depends on the automaton only. This raises the problem of classifying synchronizing
automata into those on which Alice and, respectively, Bob have a winning strategy. DFAs on which
Alice can ensure win are of interest because they are more amenable to synchronization, in a sense. For
brevity, we call such DFAs A-automata.

*Mikhail Volkov was supported by the Ministry of Science and Higher Education of the Russian Federation, project FEUZ-
2023-2022.

http://dx.doi.org/10.4204/EPTCS.407.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

78 Winning Strategies for the Synchronization Game

A few initial results on synchronization games were obtained in [8]. In particular, [8, Theorem 4]
provides an algorithm that, given a DFA A with n states and k input letters, decides who has a winning
strategy in the synchronization game on A in O(n2k) time. Thus, for any individual DFA, one can
determine whether it is an A-automaton. Here, however, we are interested in general conditions ensuring
that all synchronizing DFAs of a certain type are A-automata. One such condition was mentioned in [8]:
Alice always wins on definite DFAs introduced in [14].

In [7], the first three authors of the present note showed that within two further families of automata
considered in the literature—weakly acyclic DFAs and commutative DFAs—every synchronizing DFA
is an A-automaton. Here we continue this line of research by designing a winning strategy for Alice
that applies to synchronizing automata from yet another family of DFAs. Automata in this family are
distinguished by a structure feature of their transition monoids: the regular D-classes in these monoids
form subsemigroups. The set DS of all finite semigroups with regular D-classes being subsemigroups
plays a distinguished role in the algebraic theory of regular languages; see [1, Chapter 8]. Therefore,
DFAs with transition monoids in DS often show up in the literature; see, e.g., [2, 3]. As they seem to
have no specific name so far, we coin them DS-automata. Thus, our main result says that Alice can win
the synchronization game on every synchronizing DS-automaton. Since the family of DS-automata is
extensive and encompasses all the families above (definite, weakly acyclic, and commutative DFAs), this
provides a vast generalization of the mentioned results from [8, 7].

Our approach is algebraic as it exploits the structural properties of transition monoids. We have col-
lected all necessary prerequisites from semigroup theory in Section 2 to make the note self-contained, to
a reasonable extent. Section 3 presents Alice’s winning strategy in synchronization games on synchro-
nizing DS-automata. In Section 4, we relate our result to previously found facts about winning strategies
for synchronization games and state two open questions.

2 Preliminaries

2.1 Transition Monoids and Synchronization

For a DFA A = (Q,Σ), the map τa : Q → Q defined by the rule q 7→ q·a is a transformation on the set Q.

Definition 1. The transition monoid of a DFA A = (Q,Σ) is the submonoid of the monoid of all trans-
formations on the set Q generated by the set {τa | a ∈ Σ}.

We denote the transition monoid of a DFA A = (Q,Σ) by T (A). It is easy to see that any product
τa1τa2 · · ·τan is nothing but the transformation τw defined by the rule q 7→ q·w where w stands for the
word a1a2 · · ·an. Thus, the transition monoid T (A) can alternatively be defined as the monoid of all
transformations on the set Q caused by the action of words over Σ.

If A = (Q,Σ) is a synchronizing DFA and w is a reset word for A , then the transformation τw is a
constant map on Q, that is, Qτw = {q} for a certain q∈Q. Thus, the transition monoid of a synchronizing
automaton always contains a constant transformation. Conversely, if ζ ∈ T (A) is a constant transfor-
mation, then any word w with τw = ζ is a reset word for A and so A is synchronizing. We see that
synchronization is actually a property of the transition monoid of an automaton rather than the automa-
ton itself: for DFAs A = (Q,Σ) and A ′ = (Q,Σ′) with the same state set but different input alphabets,
the equality T (A) = T (A ′) guarantees that A ′ is synchronizing if and only if so is A .

We can say a bit more about transition monoids of synchronizing automata, but for this, we first need
to recall some concepts of semigroup theory. A nonempty subset I of a semigroup S is called an ideal in S
if, for all s ∈ S and i ∈ I, both products si and is lie in I. If I and J are two ideals in S, their intersection

H. Fernau, C. Haase, S. Hoffmann, M. Volkov 79

I ∩ J contains any product i j with i ∈ I, j ∈ J. So I ∩ J is nonempty, and then it is easy to verify that
I ∩ J is again an ideal in S. Therefore, each finite semigroup S has a least ideal called the kernel of S and
denoted KerS.

The following observation is folklore but we provide a proof for the sake of completeness.

Lemma 1. A DFA is synchronizing if and only if the kernel of its transition monoid consists of constant
transformations.

Proof. The ‘if’ part readily follows from the already mentioned fact that if the transition monoid of a
DFA contains a constant transformation, then the DFA is synchronizing.

For the ‘only if’ part, let A be a synchronizing DFA; then the set C of all constant transformations
in the transition monoid T (A) is nonempty. For any τ ∈ T (A) and any ζ ∈C, we have

τζ = ζ . (1)

Equality (1) implies that the set C is contained in every ideal of the monoid T (A), in particular, in its
kernel KerT (A). Further, for every τ ∈ T (A) and every ζ ∈C, the product ζ τ is a constant transforma-
tion: if Qζ = {q}, then Qζ τ = {qτ}. Together with (1), this observation implies that C forms an ideal
in T (A). Since KerT (A) contains C, we have KerT (A) =C by the definition of the kernel.

2.2 Structure of Semigroups in DS

Green [9] defined five important relations on every semigroup S, collectively referred to as Green’s
relations, of which we need the following three:

a R b ⇐⇒ either a = b or a = bs and b = at for some s, t ∈ S;

a L b ⇐⇒ either a = b or a = sb and b = ta for some s, t ∈ S;

a D b ⇐⇒ a R c and c L b for some c ∈ S.

The relations R and L are obviously equivalencies. The definition of D means that D is the product of
R and L as binary relations. As observed in [9], D is also the product of L and R, and this implies that
D is the least equivalence containing both R and L.

An element a of a semigroup S is said to be regular if asa = a for some s ∈ S. A D-class D is called
regular if it contains a regular element. (In this case, every element of D is known to be regular; see [9,
Theorem 6].) We denote by DS the set of all finite semigroups S such that the regular D-classes of S are
subsemigroups in S.

The structure of semigroups DS is well understood in terms of their decompositions into some basic
blocks. As we will use this structural result, we recall the notions involved.

A semilattice is a semigroup satisfying the laws of commutativity xy = yx and idempotency x2 = x.

Definition 2. Let Y be a semilattice and {Sy}y∈Y a family of disjoint semigroups indexed by the elements
of Y . A semigroup S is said to be a semilattice of semigroups Sy, y ∈ Y , if:

(S1) S =
⋃

y∈Y Sy;

(S2) each Sy is a subsemigroup in S;

(S3) for every y,z ∈ Y and every s ∈ Sy, t ∈ Sz, the product st belongs to Syz.

80 Winning Strategies for the Synchronization Game

We say that a semigroup S is m-nilpotent over its kernel (m being a positive integer) if every product
of m elements of S belongs to KerS. We call a semigroup nilpotent over its kernel if it is m-nilpotent
over its kernel for some m. (To a semigroupist, finite semigroups nilpotent over their kernels are familiar
as finite Archimedean semigroups.)

The following is a specialization of the equivalence (4c) ⇔ (1b) in [18, Theorem 3] to finite semi-
groups1.

Lemma 2. Every semigroup in DS is a semilattice of semigroups nilpotent over their kernels.

3 Winning Strategy in Synchronization Games on DS-Automata

We start with a visual yet rigorous description of the synchronization game under consideration. In this
game, two players, Alice and Bob, play on a fixed DFA A = (Q,Σ). At the start, each state in Q holds
a token. During the game, some tokens can be removed according to the rules specified in the next
paragraph. Alice wins if only one token remains, while Bob wins if he can keep at least two tokens
unremoved for an indefinite amount of time.

Alice moves first, and then players alternate moves. The player whose turn is to move proceeds by
selecting a letter a ∈ Σ. Then, for each state q ∈ Q that held a token before the move, the token advances
to the state q·a. (In the standard graphical representation of A as the labelled digraph with Q as the
vertex set and the labelled edges of the form q a−→ q·a, one can visualize the move as follows: all tokens
simultaneously slide along the edges labelled a.) If several tokens arrive at the same state after this, all
of them but one are removed so that when the move is completed, each state holds at most one token.

To illustrate, let us look at how the synchronization game might play out on the following DFA in
which, initially, each state holds a token (shown in gray).

0 1 2
a

b

b

a,b a

If Alice chooses the letter a on her first move, the tokens in states 0 and 2 remain due to the loops at these
states. The token from state 1 moves to 0 and then is removed because the state 0 is ‘occupied’. Hence,
the position after Alice’s first moves looks as follows:

0 1 2
a

b

b

a,b a

If Bob replies by choosing the letter b, the token in state 0 remains while the token from state 2 moves
to 1. Here is the position after Bob’s reply:

0 1 2
a

b

b

a,b a

1Theorem 3 in [18] deals with semigroups in which every element has a power that belongs to a subgroup. Every finite
semigroup has this property.

H. Fernau, C. Haase, S. Hoffmann, M. Volkov 81

Now choosing a, Alice wins because after the token from state 1 moves to 0, it is removed, and we get
the position with only one token:

0 1 2
a

b

b

a,b a

Notice that Alice won the game described above only because of Bob’s unfortunate reply. In fact,
Bob has a winning strategy in the synchronization game on this DFA: if he repeats Alice’s moves, that
is, chooses the same letter Alice chose on her previous move, he can maintain two tokens unremoved
forever. Hence, there are simple synchronizing DFAs that are not A-automata.

Recall that a DS-automaton is a DFA whose transition monoid lies in the set DS of all finite semi-
groups with regular D-classes being subsemigroups. The following is the main result of this note.

Theorem 3. Alice has a winning strategy on every synchronizing DS-automaton.

Proof. Take an arbitrary synchronizing DS-automaton A = (Q,Σ). We denote the transition monoid
T (A) by S to lighten the notation. Since S ∈ DS, by Lemma 2 there is a semilattice Y such that S is a
semilattice of semigroups Sy, y ∈ Y , where each semigroup Sy is nilpotent over its kernel.

The relation ≤ defined by x ≤ y ⇐⇒ xy = x is known (and easy to see) to be a partial order on every
semilattice, and so on Y . Due to the laws of commutativity and idempotency, the inequalities xy ≤ x and
xy ≤ y hold for all x,y ∈ Y . Since the semilattice Y is finite, it has a least element with respect to this
order; denote it by z. Then yz = zy = z for every y ∈ Y whence the semigroup Sz is an ideal in S by item
(S3) in Definition 2. Therefore Sz contains the kernel KerS of S, and therefore, KerSz ⊆ KerS. (In fact,
it is easy to show that the equality KerSz = KerS holds, but it is not needed for the present proof.)

Fix a positive integer m such that the semigroup Sz is m-nilpotent over its kernel KerSz. We show
that Alice can win in the synchronization game on A , using the following m-round strategy. Denote
by ak

i and bk
i the i-th letters chosen in the k-th round by Alice and Bob, respectively. In each round,

Alice chooses the first letter ak
1 at random. Then, after each reply of Bob, she checks whether the word

uk
i := ak

1bk
1 · · ·ak

i bk
i causes a transformation in Sz. If yes, then Alice starts the next round. If no, the

transformation caused by uk
i lies in some subsemigroup Sy with y ̸= z (recall that S =

⋃
y∈Y Sy by item

(S1) in Definition 2). For each letter a ∈ Σ, denote by y(a) the element of the semilattice Y such that
the transformation τa lies in the subsemigroup Sy(a). Take any transformation τ ∈ Sz. By Definition 1,
τ = τa1τa2 · · ·τan for some a1,a2, . . . ,an ∈ Σ whence by item (S3) in Definition 2, z = y(a1)y(a2) · · ·y(an).
If y ≤ y(ai) for all i = 1,2, . . . ,n, then y ≤ y(a1)y(a2) · · ·y(an) = z, and this would contradict the choice
of z as the least element with respect to ≤ and the assumption y ̸= z. Thus, there must be a letter a ∈ Σ

such that y ≰ y(a), and Alice chooses any such letter a as ak
i+1.

By the construction, if Sy ̸= Sz, then the index x of the subsemigroup Sx containing the transformation
caused by the word uk

i+1 is strictly less than y in the partially ordered set (Y ;≤). Hence, for each k, the
number ℓk of pairs of moves in the k-th round does not exceed the maximum length of strictly decreasing
chains in (Y ;≤), and the transformation caused by the word uk

ℓk
lies in the subsemigroup Sz. Then

the transformation τw caused by the word w := u1
ℓ1

u2
ℓ2
· · ·um

ℓm
is a product of m elements of Sz and so

τw belongs to KerSz as the semigroup Sz is m-nilpotent over its kernel. Since A is a synchronizing
automaton, the kernel KerS of its transition monoid consists of constant transformations by Lemma 1.
From the inclusion KerSz ⊆ KerS registered above, we conclude that τw is a constant transformation,
and so w is a reset word for A .

82 Winning Strategies for the Synchronization Game

4 Relations to Earlier Results and Future Work

4.1 Corollaries

In the introduction, we mentioned a few previously known families of A-automata. Now we show that
all these families consist of DS-automata so their winning strategies are subsumed by that of Theorem 3.

Definite automata. This DFA family was introduced by some of the pioneers of automata theory back
in 1963 [14]. In [14], the term ‘automaton’ meant a recognizer, that is, a DFA with a designated initial
state and a distinguished set of final states. However, DFAs without initial and final states as defined
in the present note also appeared in [14] but under the name ‘transition tables’. The following is [14,
Definition 13] stated in our terminology and notation.

Definition 3. A DFA (Q,Σ) is weakly k-definite if for every word w of length at least k over Σ, q·w= q′·w
for all q,q′ ∈ Q. A DFA is k-definite if it is weakly k-definite but not weakly (k−1)-definite. A DFA is
definite if it is k-definite for some k.

By Definition 3, every definite DFA is synchronizing and any word of length at least k is a reset word
for every k-definite DFA. Therefore, Alice wins on every definite automaton by selecting her moves at
random.

The transition monoid of a definite DFA is nilpotent over its kernel. This fact is implicitly contained
in [14] and in the explicit form, it is a part of [20, Theorem 3]. Comparing it with Lemma 2, we see
that definite automata constitute a special subfamily of DS-automata. Moreover, for definite automata,
Alice’s winning strategy from Theorem 3 specializes exactly to the random choice of moves. In fact, a
DFA is definite if and only if Alice can win by pure random choices of moves.

Commutative automata. A DFA is said commutative if its transition monoid is commutative, that is,
satisfy the law xy = yx. Synchronizing commutative automata were considered in [15, 16, 10]. A simple
winning strategy for Alice in synchronization games on such automata was suggested in [7, Theorem
5.2]: Alice must just choose letters spelling a reset word. Hence, as in the previous case, Alice can
completely ignore the moves of Bob.

Obviously, on any commutative semigroup, Green’s relations R and L coincide with each other, and
hence, with the relation D. If an element a of a commutative semigroup S is regular, then a= a2s for some
s ∈ S whence a R a2. By [9, Theorem 7], this ensures that the D-class containing a is a subsemigroup
(and even a subgroup) of S. Thus, in all commutative semigroups, regular D-classes are subsemigroups.
Therefore, commutative DFAs are DS-automata, and Theorem 3 applies to commutative synchronizing
DFAs.

Weakly acyclic automata. Let A = (Q,Σ) be a DFA and p,q ∈ Q. We say that q is reachable from p
in A if either p = q or there exists a word w over Σ such that q = p·w. The reachability relation of any
DFA is reflexive and transitive. A DFA is called weakly acyclic if its reachability relation is a partial
order.

Various properties of synchronizing weakly acyclic DFAs were considered in [17, 11]. A winning
strategy for Alice in synchronization games on such automata was suggested in [7, Theorem 2.3].

By [5, Proposition 6.2] the transition monoid T (A) of any weakly acyclic DFA A is R-trivial,
which means that Green’s relation R on T (A) coincides with the equality relation. It is well known that
regular D-classes are subsemigroups in any R-trivial semigroup, but we failed to locate a source where

H. Fernau, C. Haase, S. Hoffmann, M. Volkov 83

this fact was formulated such that it would be convenient to refer to it. Therefore we state it as a lemma
and provide a proof.

Lemma 4. In every R-trivial semigroup, regular D-classes are subsemigroups.

Proof. Let S be an R-trivial semigroup and let D be its regular D-class. Every element b ∈ D is regular,
so that b = btb for some t ∈ S. Then b R bt whence b = bt since S is R-trivial. We have b2 = btbt =
(btb)t = bt = b. Now if a ∈ D, then a L b since D= L in every R-trivial semigroup. By the definition of
the relation L, we have either a = b or a = sb for some s ∈ S. If a = b, then ab = b2 = b = a. If a = sb,
multiplying through on the right by b, we get ab = sb2 = sb = a. Thus, ab = a ∈ D for arbitrary a,b ∈ D,
whence D is a subsemigroup.

Thus, weakly acyclic DFAs are DS-automata, and Theorem 3 applies again.

4.2 Open Questions

Theorem 3 generalizes several earlier results on A-automata. Can it be further generalized? This is an
interesting question, but it requires specification.

We mentioned in Section 2.1 that synchronization is a property of transition monoids. This is not true
for the property of being an A-automaton. Moreover, for every synchronizing DFA A = (Q,Σ), there
exists an A-automaton A ′ = (Q,Σ′) such that T (A) = T (A ′). To see this, let Σ′ := Σ∪{c} where the
action of the added letter c coincides with the action of a fixed reset word for A . The transformations
caused by the letters in Σ′ generate the same submonoid of the monoid of all transformations on the set Q
as do the transformations caused by the letters in Σ. Still, Alice instantly wins the synchronization game
on A ′ by choosing the letter c on her first move.

Thus, one cannot hope for a characterization of A-automata in terms of transition monoids. One can,
however, try to find new sets P of finite semigroups such that DS ⊊ P and every synchronizing DFA
whose transition monoid lies in P is an A-automaton.

It is easy to verify that the property of being an A-automaton is inherited by subautomata, homo-
morphic images, and finite direct products. This suggests looking for sets P closed under corresponding
operations with semigroups. A set of finite semigroups closed under forming finite direct products and
taking subsemigroups and homomorphic images is called a pseudovariety; the set DS is an example
of a pseudovariety. Using the notion of a pseudovariety, we can specify a possible direction towards
generalizing Theorem 3 as follows:

Question 1. Is there a pseudovariety P of finite semigroups that strictly contains DS while all synchro-
nizing DFAs with transition monoids in P are A-automata?

The 5-element Brandt semigroup B2 consists of the following five 2×2-matrices, multiplied accord-
ing to the usual rule: (

1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

(
0 0
0 0

)
.

The monoid B1
2 obtained by adding the identity 2×2-matrix to B2 is the syntactic monoid of the language

(ab)∗, and hence, the transition monoid of the minimal automaton M of this language (shown below).

84 Winning Strategies for the Synchronization Game

0

1 2

b

a

b a

a,b

It is known that every pseudovariety of finite semigroups not contained in DS must include the semigroup
B2 (this fact occurs as Exercise 8.1.6 in [1]; the solution to this exercise follows from the proof of [13,
Theorem 3]). Thus, if Bob had a winning strategy on the automaton M , then the answer to Question 1
would be ‘No’, and moreover, DS would be the largest pseudovariety P with the property that Alice can
win the synchronization game on every synchronizing DFA whose transition monoid lies in P. However,
it is easy to see that Alice wins on M : she can start with choosing a; if Bob replies with a, he loses, and
if he replies with b, Alice wins by choosing b.

The fact that M is an A-automaton, along with other examples of A-automata beyond the family of
DS-automata, indicates that Question 1 might have an affirmative answer. We have a candidate pseu-
dovariety to witness such an answer but its definition requires more structure theory of semigroups than
assumed here.

Another question of interest concerns the speed of synchronization for A-automata. When we men-
tioned in the introduction that A-automata seem more amenable to synchronization, we meant that they
tend to have short reset words. Indeed, in all examples we know, an A-automaton with n states admits
a reset word of length at most n− 1. For DFAs in the range of Theorem 3, that is, synchronizing DS-
automata, this was established in [3, Theorem 2.6]. The DFA M with 3 states is reset by the words a2

and b2 of length 2 and hence provides another example. These observations lead to the next question.

Question 2. Is each A-automaton with n states reset by a word of length n−1?

Recall that for each n > 2, there exist synchronizing DFAs with n states whose shortest reset words
have length (n− 1)2; see [6, Lemma 1]. It can be verified that none of these ‘slowly synchronizing’
DFAs are A-automata.

Acknowledgement. The authors are grateful to the anonymous referees for their attention and remarks.

References

[1] Almeida, Jorge: Finite Semigroups and Universal Algebra. Series in Algebra, vol. 3. World Scientific, Sin-
gapore (1994)

[2] Almeida, Jorge, Margolis, Stuart, Steinberg, Benjamin, Volkov, Mikhail: Representation theory of finite
semigroups, semigroup radicals and formal language theory, Transactions of the American Mathematical
Society 361:3, 1429–1461 (2009). https://doi.org/10.1090/S0002-9947-08-04712-0

[3] Almeida, Jorge, Steinberg, Benjamin: Matrix mortality and the Černý–Pin conjecture. In: Diekert, Volker,
Nowotka, Dirk (eds.), Developments in Language Theory, 13th International Conference (DLT 2009), Lec-
ture Notes in Computer Science, vol. 5583, pp. 67–80. Springer, Berlin (2009). https://doi.org/10.
1007/978-3-642-02737-6_5

https://doi.org/10.1090/S0002-9947-08-04712-0
https://doi.org/10.1007/978-3-642-02737-6_5
https://doi.org/10.1007/978-3-642-02737-6_5

H. Fernau, C. Haase, S. Hoffmann, M. Volkov 85

[4] Blass, Andreas, Gurevich, Yuri, Nachmanson, Lev, Veanes, Margus: Play to test. In: Grieskamp, Wolfgang,
Weise, Carsten (eds.), Formal Approaches to Software Testing, 5th International Workshop (FATES 2005),
Lecture Notes in Computer Science, vol. 3997, pp. 32–46. Springer, Berlin, Heidelberg (2006). https:
//doi.org/10.1007/11759744_3

[5] Brzozowski, Janusz A., Fich, Faith E.: Languages of R-trivial monoids. Journal of Computer and System
Sciences 20:1, 32–49 (1980). https://doi.org/10.1016/0022-0000(80)90003-3

[6] Černý, Jan: Poznámka k homogénnym eksperimentom s konečnými automatami. Matematicko-fyzikalny
Časopis Slovenskej Akadémie Vied 14(3): 208–216 (1964) (in Slovak; English translation: A note on ho-
mogeneous experiments with finite automata. Journal of Automata, Languages, and Combinatorics 24:2-4,
123–132 (2019). https://doi.org/10.25596/jalc-2019-123)

[7] Fernau, Henning, Haase, Carolina, Hoffmann, Stefan: The synchronization game on subclasses of automata.
In: Fraigniaud, Pierre, Uno, Yushi (eds.), 11th International Conference on Fun with Algorithms (FUN
2022), Leibniz International Proceedings in Informatics (LIPIcs), vol. 226, pp. 14:1–14:17. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, Dagstuhl (2022). https://doi.org/10.4230/LIPIcs.FUN.2022.14

[8] Fominykh, Fedor M., Martyugin, Pavel V., Volkov, Mikhail V.: P(l)aying for synchronization, Interna-
tional Journal of Foundations of Computer Science 24:6, 765–780 (2013). https://doi.org/10.1142/
S0129054113400170

[9] Green, James Alexander: On the structure of semigroups. Annals of Mathematics, Second Series 54:1, 163–
172 (1951). https://doi.org/10.2307/1969317

[10] Hoffmann, Stefan: Constrained synchronization and commutativity. Theoretical Computer Science 890, 147-
–170 (2021). https://doi.org/10.1016/j.tcs.2021.08.030

[11] Hoffmann, Stefan: Constrained synchronization and subset synchronization problems for weakly acyclic
automata, in: Moreira, Nelma, Reis, Rogério (eds.), Developments in Language Theory, 25th International
Conference (DLT 2021), Lecture Notes in Computer Science, vol. 12811, pp. 204–216. Springer, Cham
(2021). https://doi.org/10.1007/978-3-030-81508-0_17

[12] Kari, Jarkko, Volkov, Mikhail: Černý’s conjecture and the road colouring problem. In: Pin, Jean-Éric (ed.),
Handbook of Automata Theory, vol. I, pp. 525–565. EMS Publishing House, Zürich (2021). https://doi.
org/10.4171/AUTOMATA-1/15

[13] Margolis, Stuart W. On M-varieties generated by power monoids. Semigroup Forum 22, 339–353 (1981).
https://doi.org/10.1007/BF02572813

[14] Perles, Micha, Rabin, Michael O., Shamir, Eliahu: The theory of definite automata. Transactions on Elec-
tronic Computers 12, 233–243 (1963). https://doi.org/10.1109/PGEC.1963.263534

[15] Rystsov, Igor: Exact linear bound for the length of reset words in commutative automata. Publicationes
Mathematicae Debrecen 48:3-4, 405–409 (1996)

[16] Rystsov, Igor: Reset words for commutative and solvable automata. Theoretical Computer Science 172:1–2,
273–279 (1997). https://doi.org/10.1016/S0304-3975(96)00136-3

[17] Ryzhikov, Andrew: Synchronization problems in automata without non-trivial cycles. Theoretical Computer
Science 787, 77–88 (2019). https://doi.org/10.1016/j.tcs.2018.12.026

[18] Shevrin, Lev N.: On the theory of epigroups. I. Russian Academy of Sciences. Sbornik. Mathematics 82:2,
485–512 (1995). https://doi.org/10.1070/SM1995v082n02ABEH003577

[19] Volkov, Mikhail V.: Synchronization of finite automata. Russian Mathematical Surveys 77:5, 819–891
(2022). https://doi.org/10.4213/rm10005e

[20] Zalcstein, Yechezkel: Locally testable languages. Journal of Computer and System Sciences 6, 151–167
(1972). https://doi.org/10.1016/S0022-0000(72)80020-5

https://doi.org/10.1007/11759744_3
https://doi.org/10.1007/11759744_3
https://doi.org/10.1016/0022-0000(80)90003-3
https://doi.org/10.25596/jalc-2019-123
https://doi.org/10.4230/LIPIcs.FUN.2022.14
https://doi.org/10.1142/S0129054113400170
https://doi.org/10.1142/S0129054113400170
https://doi.org/10.2307/1969317
https://doi.org/10.1016/j.tcs.2021.08.030
https://doi.org/10.1007/978-3-030-81508-0_17
https://doi.org/10.4171/AUTOMATA-1/15
https://doi.org/10.4171/AUTOMATA-1/15
https://doi.org/10.1007/BF02572813
https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1016/S0304-3975(96)00136-3
https://doi.org/10.1016/j.tcs.2018.12.026
https://doi.org/10.1070/SM1995v082n02ABEH003577
https://doi.org/10.4213/rm10005e
https://doi.org/10.1016/S0022-0000(72)80020-5

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024

EPTCS 407, 2024, pp. 86–99, doi:10.4204/EPTCS.407.7

© M. Havel, Z. Křivka & A. Meduna

This work is licensed under the

Creative Commons Attribution License.

How to Demonstrate Metalinearness and Regularity

by Tree-Restricted General Grammars

Martin Havel

Brno University of Technology,
Faculty of Information Technology,

Brno, Czech republic

ihavelm@fit.vut.cz

Zbyněk Křivka

Brno University of Technology,
Faculty of Information Technology,

Brno, Czech republic

krivka@fit.vut.cz

Alexander Meduna

Brno University of Technology,
Faculty of Information Technology,

Brno, Czech republic

meduna@fit.vut.cz

This paper introduces derivation trees for general grammars. Within these trees, it defines context-

dependent pairs of nodes, corresponding to rewriting two neighboring symbols using a non context-

free rule. It proves that the language generated by a linear core general grammar with a slow-

branching derivation tree is k-linear if there is a constant u such that every sentence w in the generated

language is the frontier of a derivation tree in which any pair of neighboring paths contains u or fewer

context-dependent pairs of nodes. Next, it proves that the language generated by a general grammar

with a regular core is regular if there is a constant u such that every sentence w in the generated lan-

guage is the frontier of a derivation tree in which any pair of neighboring paths contains u or fewer

context-dependent pairs of nodes. The paper explains that this result is a powerful tool for showing

that certain languages are k-linear or regular.

1 Introduction

Formal language theory has always intensively struggled to establish conditions under which general

grammars generate a proper subfamily of the family of recursively enumerable languages because re-

sults like this often significantly simplify proofs that some languages are members of the subfamily.

Continuing with this important investigation trend in formal language theory, the present paper estab-

lishes another result of this kind based upon a restriction illustrated in Fig. 1 placed upon a graph-based

representation of derivations in general grammars.

Concerning general grammars, which generate a proper subfamily of the family of recursively enu-

merable languages, some results of this kind have been achieved, too. First of all, [9] states that for a

grammar, the set of terminal strings generated by left-to-right derivations is context-free. Second, [10]

shows that the set of terminal strings generated by two-way derivations is context-free, which is further

studied in [4]. Third, [3] demonstrates that a grammar generates a context-free language if the left-hand

side of every rule contains only one nonterminal with terminal strings as the only context. Fourth, also

[3] shows that if every rule of a general grammar has as its left context a string of terminal symbols at

least as long as the right context, then the generated language is context-free. Fifth, [2] demonstrates that

a grammar generates a context-free language if the right-hand side of every rule contains a string of ter-

minals longer than any string of terminals between two nonterminals on the left-hand side. For k-linear

grammar, there is no such study. For regularity, there is the publication [6], which shows regularity only

in context-free languages.

Finally, Section 2.3.2 in [13] demonstrates context-freeness based on the tree restriction with context-

dependency. We explain and expand the importance of introduced context-dependency (see Fig. 1) to

demonstrate metalinearness and regularity.

http://dx.doi.org/10.4204/EPTCS.407.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Havel, Z. Křivka & A. Meduna 87

...

rp q

...

kA

lC

...

...

m B

n D

...

context dependency

Figure 1: Illustration of context dependency in t

To give an insight into the new result achieved in the present paper, some terminology is first needed

to be sketched. We introduce a linear core general grammar G if any p ∈ P has one of these forms,

AB →CD, A → BC, A → xEy

where A,B,C,D are nonterminals, E is a nonterminal or the empty string, and x,y are strings of terminals.

We define the notion of a derivation tree t graphically representing a derivation in G by analogy with

this notion in terms of a k-linear grammar (see Definiton 3 or Section 6.2 in [14]). However, in addition,

we introduce context-dependent pairs of nodes in t as follows. In t, two paths are neighboring if no other

path occurs between them. Let p and q be two neighboring paths in t. Let p contain a node k with a

single child l, where k and l are labeled with A and C, respectively, and let q contain a node m with a

single child n, where m and n are labeled with B and D, respectively. Let this four-node portion of t;

consisting of k, l, m, and n; graphically represents an application of AB → CD. Then, k and m are a

context-dependent pair of nodes (see Fig. 1).

The main theorem provided in this paper represents a powerful tool to demonstrate that if a linear

core general grammar H generates each of its sentences by a derivation satisfying prescribed conditions

(specifically, one of these conditions requires that there is a positive integer u and any two nonterminal

neighboring paths contain no more than u pairs of context-dependent nodes) then the language generated

by H is k-linear. Similarly, the following theorems provide a tool to demonstrate membership in the

regular language family.

2 Preliminaries

We assume that the reader is familiar with graph theory, including labeled ordered trees and their termi-

nology (see [1, 5, 7]) as well as formal language theory (see [12, 14, 15]).

A directed graph G is a pair G = (V,E), where V is a finite set of nodes and E ⊆ V 2 is a finite set

of edges. For a node v ∈V a number of edges of the form (x,v) ∈ E and a number of edges of the form

(v,y) ∈ E , for x,y ∈ V , is called an in-degree of v and an out-degree of v, respectively, and denoted by

88 How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars

in-d(v), out-d(v). Let (v1,v2, . . . ,vn) be an n-tuple of nodes, for some n ≥ 1, where vi ∈V , for 1 ≤ i ≤ n,

and there exists an edge (vk,vk+1) ∈ E , for every pair of nodes vk,vk+1, where 1 ≤ k ≤ n− 1, then, we

call it a sequence of length n. Let (v1,v2, . . . ,vn) be a sequence of the length n, for some n ≥ 1, where

vi 6= v j, for 1 ≤ i ≤ n, 1 ≤ j ≤ n, then, we call the sequence a path. Let (v1,v2, . . . ,vn) be a path in G, for

some n ≥ 1, and v1 = vn, then we call it a cycle. A graph G is acyclic iff it contains no cycle.

For a set W , card(W) denotes its cardinality. Let V be an alphabet (finite non-empty set). V ∗ is the

set of all strings over V. Algebraically, V ∗ represents the free monoid generated by V under the operation

of concatenation. The unit of V ∗ is denoted by ε . Set V+ =V ∗−{ε}. Algebraically, V+ is thus the free

semigroup generated by V under the operation of concatenation. For w ∈V ∗, |w| denotes the length of w.

The alphabet of w, denoted by alph(w), is the set of symbols appearing in w. Let I denote the set of all

positive integers.

Let ⇒ be a relation over V ∗. The transitive and transitive and reflexive closure of ⇒ are denoted ⇒+

and ⇒∗, respectively. Unless explicitly stated otherwise, we write x ⇒ y instead of (x,y) ∈⇒.

The families of context-free, context-sensitive and recursively enumerable languages are denoted

by CF, CS and RE, respectively.

3 Definitions and Examples

Definition 1. An (oriented) tree is a directed acyclic graph G = (V,E), with a specified node r ∈V called

the root such that in-d(r) = 0, in-d(x) = 1, and there exists a path (v1,v2, . . . ,vn), where v1 = r, vn = x,

for some n ≥ 1, for all x ∈V −{r}. For v,u ∈V , where (v,u) ∈ E, v is called a parent of u, u is called a

child of v, respectively. For v,u,z ∈V , where (v,u),(v,z) ∈ E, u is called a sibling of z and vice versa.

A tree is called labeled, if there exist a set of labels L and a total mapping l : V → L .

An ordered tree t is a tree, where for every set of siblings there exists a linear ordering. Let o has

the children n1,n2,. . . ,nr ordered in this way, where r ≥ 1. Then n1 is the leftmost child of o, nr is

the rightmost child of o and ni is the direct left sibling of ni+1, ni+1 is the direct right sibling of ni,

1 ≤ i ≤ r−1, and for j < k, n j is left sibling of nk and nk is right sibling of n j, 1 ≤ j ≤ r, 1 ≤ k ≤ r.

Let t be a labeled ordered tree, and let t contain node o. Let α = (o,m1,m2, . . . ,mr), and β =
(o,n1,n2, . . . ,ns) be two paths in t, for some r,s ≥ 1, such that o is the parent of m1 and n1, while

1. m1 is the direct left sibling of n1;

2. mi is a nonterminal child of mi−1, while all its right siblings are terminal siblings, 2 ≤ i ≤ r− 1,

n j is a nonterminal child of n j−1, while all its left siblings are terminal siblings, 2 ≤ j ≤ s−1;

3. if mr is a terminal node, then all its siblings are terminal nodes; otherwise, all its right siblings

are terminal siblings;

4. if ns is a terminal node, then all its siblings are terminal nodes; otherwise, all its left siblings are

terminal siblings;

Then, α and β are two nonterminal neighboring paths in t, α is a left nonterminal neighboring path to

β , and β is a right nonterminal neighboring path to α .

Next, we define the notion of a general grammar, also known as that of a type-0 grammar or that of

a phrase-structure grammar in the literature.

Definition 2. A general grammar (GG) G is a quadruple G = (V , T , P, S), where V is a total alphabet,

T ⊂ V is a terminal alphabet, P is a finite set of rules of the form x → y, where x,y ∈ V ∗, alph(x)∩
(V −T) 6= /0, S ∈ V −T is a start symbol. For every u,v ∈ V ∗ and x → y ∈ P, uxv ⇒ uyv[p] or simply

M. Havel, Z. Křivka & A. Meduna 89

uxv ⇒ uyv is a derivation step of G from uxv to uyv by the rule x → y, ⇒ is the direct derivation relation.

Let w0,w1, . . . ,wn ∈ V ∗, for some n ≥ 1, such that w0 ⇒ w1 [p1] ⇒ . . . ⇒ wn [pn], where pi ∈ P, for all

i = 1, . . . ,n, then, w0 ⇒
n wn; based on ⇒n, we define ⇒+ and ⇒∗.

A language of G is L(G) = {w ∈ T ∗ | S ⇒∗ w}. G is propagating if A → x ∈ P implies x 6= ε . G is

context-free if A → x ∈ P implies A ∈V −T. G is linear core GG if any p ∈ P has one of these forms:

AB →CD, A → BC, A → xEy

where A,B,C,D∈V −T, E ∈ (V −T)∪{ε}, x,y ∈ T ∗. In what follows, unless explicitly stated otherwise,

we assume that every GG is a linear core GG.

Similary, G is left linear core GG if any p ∈ P has one of these forms (see [8]):

AB →CD, A → BC, A → xE

where A,B,C,D ∈V −T, E ∈ (V −T)∪{ε}, x ∈ T ∗.

G is GG in the Kuroda normal form (KNF) [11] if every rule is one of these forms:

AB →CD, A → BC, A → B, A → a, A → ε

where A,B,C,D ∈V −T, a ∈ T .

As obvious, all rules of the form of A → B can be always removed from G without disturbing L(G).
Next, we show that the proposed linear core grammars have the same generative power as GGs.

Lemma 1. A language L is recursively enumerable iff L = L(G), where G is a linear core general

grammar.

Proof. Every language L generated by a linear core GG G is recursively enumerable, because every

general linear core grammar can be trivially converted to KNF. In other direction, every KNF G is a

linear core GG by Definition 2.

Lemma 2. A language L is context-sensitive iff L = L(G), where G is a propagating linear core general

grammar.

Proof. Every language L generated by propagating linear core GG G is context sensitive, because each

rule in P, where P ∈ G, is a form of x → y and |x| ≤ |y|.

Definition 3. A linear grammar G is a GG G = (V , T , P, S), where P contains rules of the form:

A → x

where A ∈ (V −T), x ∈ T ∗((V −T)∪{ε})T ∗. A language is linear (1-linear) if it can be generated by

a linear grammar. The concept of a linear grammar can be generalized: A k-linear grammar G is a GG

G = (V , T , P, S), where P is a finite set of rules of the form:

A → x, A → xBy, S →W

where A,B ∈ (V − T), x,y ∈ T ∗, W ∈ (V − (T ∪{S}))k. A language is said to be k-linear if it can be

generated by a k-linear grammar. A language is said to be metalinear if it is k-linear for some positive

integer k.

90 How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars

Definition 4. Let G = (V,T,P,S) be a linear core GG without rules of the form AB → CD. Let w ∈ T ∗

be a string derived from G. A derivation tree for w is a labeled tree τ such that:

1. The root of τ is labeled with S.

2. Each leaf of τ is labeled with a symbol from T .

3. Each internal node of τ is labeled with a symbol from V .

4. If an internal node v is labeled with A ∈V and has children labeled B1, B2, then there exists a rule

A → B1B2 in P and, analogically, for the rest of the rules of a linear core GG without rules of the

form AB →CD.

5. The yield of τ (that is, the concatenation of the labels on its leaves), denoted by frontier(τ), is w.

Example 1. The following graph (Fig. 2) represents a labeled ordered tree t for a GG in KNF. Since any

two distinct nodes have different labels, we refer to their labels below. The root node r̂ is a. It has no

parent and two children b and c. Then b is a sibling of c and c is a sibling of b. The leftmost child of b is

d, while the rightmost is e. The node d is a left sibling of e. The node d is the parent of h, but h has no

child, so it is a leaf node. horsm = frontier(t). Consider the node e. The nodes a and b are predecessors

of e, while i, j, o, p, and r are descendants of e. The nodes c or d are not in predecessor relation with e,

as they are neither predecessors of e, nor descendants of e. The sequence of nodes be jpr is a path in t.

The path cglqs is neighboring to be jpr; unlike acglqs, eio or bdh.

a

b

d

h

e

i

o

j

p

r

c

g

l

q

s

m

Figure 2: Labeled ordered tree t

Definition 5. Let G = (V,T,P,S) be a linear core GG.

1. For p : A → x ∈ P, A〈x〉 is the rule tree that represents p.

2. The derivation trees representing the derivations in G are defined recursively as follows:

(a) One-node tree with a node labeled X is the derivation tree corresponding to X ⇒0 X in G,

where X ∈V . If X = ε , we refer to the node labeled X as ε-node (ε-leaf); otherwise, we call

it non-ε-node (non-ε-leaf).

(b) Let d be the derivation tree with frontier(d) = uAv representing X ⇒∗ uAv [ρ] and let p : A →
x ∈ P. The derivation tree that represents

X ⇒∗ uAv [ρ]⇒ uxv [p]

is obtained by replacing the ith non-ε-leaf in d labeled A, with the rule tree corresponding to

p, A〈x〉, where i = |uA|.

M. Havel, Z. Křivka & A. Meduna 91

(c) Let d be the derivation tree with frontier(d) = uABv representing X ⇒∗ uABv [ρ] and let

p : AB →CD ∈ P. The derivation tree that represents

X ⇒∗ uABv [ρ]⇒ uCDv [p]

is obtained by replacing the ith and (i+1)th non-ε-leaf in d labeled A and B with A〈C〉 and

B〈D〉, respectively, where i = |uA|.

3. A derivation tree in G is any tree t for which there is a derivation represented by t (see item 2 in

this definition).

Note that the figure to illustrate the definition is postponed to Example 2. Moreover, after replacement

in 2c, the nodes A and B are the parents of the new leaves C and D, respectively, and we say that A and B

are context-dependent, alternatively speaking, we say that there is a context dependency between A and

B. In a derivation tree, two nodes are context-independent if they are not context-dependent.

Then, for any p : A→ x∈P, G△(p) denotes the rule tree corresponding to p. For any A⇒∗ x [ρ] in G,

where A ∈V −T, x ∈V ∗, and ρ ∈ P∗, G△(A ⇒∗ x [ρ]) denotes one of the derivation trees corresponding

to A ⇒∗ x [ρ]. Just like we often write A ⇒∗ x instead of A ⇒∗ x [ρ], we sometimes simplify G△(A ⇒∗

x [ρ]) to G△(A ⇒∗ x) in what follows if there is no danger of confusion. Let GN denote the set of all

derivation trees in G. Finally, by G△x ∈ GN, we mean a derivation tree whose frontier is x, where

x ∈ L(G).

If a node is labeled with a terminal, it is called a terminal node. If a node is labeled with a nonter-

minal, it is called a nonterminal node. Analogously, we define the notions of a terminal child, nonter-

minal child, terminal sibling, nonterminal sibling. If a node is labeled with a nonterminal and has two

nonterminal node children, it is called a branching nonterminal node. Let α = (o,m1,m2, . . . ,mr) and

β = (o,n1,n2, . . . ,ns) be two neighboring paths, where r,s ≥ 0, α is the left neighboring path to β , and

mr and ns are terminal nodes. Then, there is a t-tuple γ = (g1,g2, . . . ,gt) of nodes from α and t-tuple

δ = (h1,h2, . . . ,ht) of nodes from β , where gp < gq, for 1 ≤ p < q ≤ t, t < min(r,s), and gi and hi are

context-dependent, for 1 ≤ i ≤ t. Let ρ = p1 p2 . . . pt be a string of non-context-free rules corresponding

to context dependencies between γ and δ . We call ρ the right context of α and the left context of β or

the context of α and β . Consider a node mi ∈ α , where 1 ≤ i ≤ r, and two (t − k+ 1)-tuples of nodes

σ = (gk,gk+1, . . . ,gt) and ϕ = (hk,hk+1, . . . ,ht), where k is a minimal integer such that mi < gk. Then, a

string of non-context-free rules τ = pk pk+1 . . . pt corresponding to context dependencies between σ and

ϕ is called the right descendant context of mi, for some 1 ≤ k ≤ t. Analogously, we define the notion of

the left descendant context of a node n j in β , for some 1 ≤ j ≤ s.

Definition 6. A labeled ordered tree t is slow-branching if any of its pairs of nonterminal neighboring

paths contains no more than two nonterminal nodes having two nonterminal children and there is no

reachable terminal node from nodes of the path between the root and any branching nonterminal node.

A slow-branching labeled ordered tree is of degree k if it contains k branching nonterminal nodes, k ≥ 1.

Example 2. Let G = (V , T , P, S) be a GG, where V = N ∪T such that N = {S, X, Y , Z, A1, A2, B, C1,

C2, D1, D2, E, F1, F2}, T = {a, b, c, 0, 1}, and P contains the following rules:

92 How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars

(1) S → A1X

(2) X → A2Y

(3) Y → BZ

(4) Z →C1C2

(5) A1 → aA1

(6) A2 → A2a

(7) B → bBc

(8) C1 → aC1

(9) C2 →C2b

(10) A1A2 → D1D2

(11) B → E

(12) C1C2 → F1F2

(13) D1 → 0D1

(14) D2 → D21

(15) E → 0E1

(16) F1 → 0F1

(17) F2 → F21

(18) D1 → ε

(19) D2 → ε

(20) E → ε

(21) F1 → ε

(22) F2 → ε

A graph representing G△(S ⇒∗ aaa0011a0011b) is illustrated in Fig. 3 and illustrate slow-branch-

ingness. The graph is slow-branching since it has exactly k branching nodes. Those are S,X ,Y,Z. That

any of its pairs of nonterminal neighboring paths contains no more than two nonterminal nodes having

two nonterminal children and there is no reachable terminal node from nodes of the path between the root

and any branching nonterminal node. Observe that terminal nodes, denoted by square, do not influence

any condition.

Let us note that dashed lines and numbers contour only denote the context dependencies, and ap-

plied non-context-free rules, respectively, and are not part of the derivation tree. The pairs of context-

dependent nodes are linked with dashed lines, all the other nodes are context-independent.

Since aaa0011a0011b = frontier(G△aaa0011a0011b), all leaves are terminal nodes. Every other node

is a nonterminal node.

For a pair of neighboring paths α = SA1A1D1ε and β = SXA2A2A2D2ε , a string ρ = 10 is their

context, it is the left context of β and the right context of α .

4 Results

Theorem 1. A language L is k-linear iff there is a constant k ≥ 0, constant u≥ 0 and a linear core general

grammar G such that L= L(G) and for every x∈ L(G), there is a slow-branching tree of degree k denoted

by G△x ∈ GN that both following satisfies:

1. any two nonterminal neighboring paths contain no more than u pairs of context-dependent nodes;

2. all pairs of nodes occurring in non-neighboring paths are context-independent.

Proof. Construction. Consider any u ≥ 0. Let G = (V,T,P,S) be a GG such that L(G) = L. Set N =
V −T . Let Pcs ⊆ P denote the set of all non-context-free rules of G. Set

N ′ = {Al|r | A ∈ N, l,r ∈ (Pcs ∪{ε})u}.

Construct a grammar G′ = (V ′,T,P′,Sε |ε), where V ′ = N ′∪T . Set P′ = /0. Construct P′ by performing

(I) through (III) given next.

M. Havel, Z. Křivka & A. Meduna 93

S

A1

a A1

D1

ε

X

A2

A2

A2

D2

ε

a

a

Y

B

E

0 E

0 E

ε

1

1

Z

C1

a C1

F1

0 F1

0 F1

ε

C2

C2

F2

F2

F2

ε

1

1

b

10

12

Figure 3: G△aaa0011a0011b

(I) For all A → xEy ∈ P, A ∈ N, E ∈ N ∪{ε}, x,y ∈ T ∗, and l,r ∈ (Pcs ∪{ε})u, if E ∈ {ε} then add

Aε |ε → xy to P′ else add Al|r → xEl|ry to P′;

(II) for all A → BC ∈ P, where A,B,C ∈ N, and r, l,x ∈ (Pcs ∪{ε})u, add Al|r → Bl|xCx|r to P′;

(III) for all p : AB→CD ∈P, A,B,C,D∈N, x,z∈ (Pcs∪{ε})u, and y∈ (Pcs∪{ε})u−1, add Ax|py →Cx|y

and Bpy|z → Dy|z to P′.

Basic idea. Notice nonterminal symbols. Since every pair of neighboring paths of G contains a limited

number of context-dependent nodes, all of its context-dependencies are encoded in nonterminals. G′

nondeterministically decides about all context-dependencies while introducing a new pair of neighboring

paths by rules from (II). A new pair of neighboring paths is introduced with every application of

Al|r → Bl|xCx|r,

where x encodes a new descendant context. Context dependencies are realized later by context-free rules

from (III).

Since P′ contains no non-context-free rule and G′ is context-free. Next, we prove L(G) = L(G′) by

establishing Claims 1 through 3. Define the new homomorphism γ : V ′ →V , γ(Al|r) = A, for Al|r ∈ N ′,

and γ(a) = a otherwise.

94 How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars

Claim 1. If S ⇒m w in G, where m ≥ 0 and w ∈V ∗, then Sε |ε ⇒
∗ w′ in G′, where w′ ∈V ′∗ and γ(w′) = w.

Proof. We prove this by induction on m ≥ 0.

Basis. Let m = 0. That is S ⇒0 S in G. Clearly, Sε |ε ⇒
0 Sε |ε in G′, where γ(Sε |ε) = S, so the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 1 holds for all 0 ≤ m ≤ n.

Induction Step. Let S ⇒n+1 w in G. Then, S ⇒n v ⇒ w, where v ∈ V ∗, and there exists p ∈ P such

that v ⇒ w [p]. By the induction hypothesis, Sε |ε ⇒∗ v′, where γ(v′) = v, in G′. Next, we consider the

following three forms of p.

(I) Let p : A → xEy ∈ P, for some A ∈ N , E ∈ N ∪{ε}, x,y ∈ T ∗.

If there is no nonterminal on the right-hand side of the rule, it implies that left descendant con-

text and a right descendant context of A is ε , then, by the construction of G′, there exists a rule

p′ : Aε |ε → xy ∈ P′, where Aε |ε ∈ v′. Otherwise, suppose l and r are a left descendant context and a

right descendant context of A. By the construction of G′, there exists a rule p′ : Al|r → xEl|ry ∈ P′,

where Al|r ∈ v′. Then, there exists a derivation v′ ⇒ w′ [p′] in G′, where γ(w′) = w.

(II) Let p : A → BC ∈ P, for some A,B,C ∈ N. Without any loss of generality, suppose l and r are a

left descendant context and a right descendant context of A, and x ∈ (Pcs ∪{ε})u is a context of

neighboring paths beginning at this node. By the construction of G′, there exists a rule p′ : Al|r →
Bl|xCx|r ∈ P′, where Al|r,Bl|x,Cx|r ∈ v′. Then, there exists a derivation v′ ⇒ w′ [p′] in G′, where

γ(w′) = w.

(III) Let p : AB → CD ∈ P, for some A,B,C,D ∈ N. By the assumption stated in Theorem 1, A and B

occur in two neighboring paths denoted by α and β , respectively. Without any loss of generality,

suppose that a context of α and β is a string c∈ (Pcs∪ε)u, where c= pcd, and l is a left descendant

context, r is a right descendant context of A, B, respectively. By the construction of G′, there exist

two rules

p′l : Al|pcd →Cl|cd , p′r : Bpcd|r → Dcd|r ∈ P′
,

where Al|pcd ,Cl|cd ,Bpcd|r,Dcd|r ∈ V ′. Then, there exists a derivation v′ ⇒2 w′ [p′l p′r] in G′, where

γ(w′) = w.

Notice (III). The preservation of the context is achieved by nonterminal symbols. Since the stored context

is reduced symbol by symbol from left to right direction in both α and β , G′ simulates the applications

of non-context-free rules of G.

We covered all possible forms of p, so the claim holds.

Claim 2. Every x ∈ L(G′) can be derived in G′ as follows.

Sε |ε = x0 ⇒
d1 x1 ⇒

d2 x2 ⇒
d3 · · · ⇒dh−1 xh−1 ⇒

dh xh = x,

for some h ≥ 0, where di ∈ {1,2}, 1 ≤ i ≤ h, so that

1. if di = 1, then xi−1 = uAl|rv, xi = uzv, xi−1 ⇒ xi [Al|r → z], where u,v ∈V ′∗,

z ∈ {El|r,Bl|r,Cl|xDx|r,x,y}, for some Al|r,Bl|r,Cl|x,Dx|r ∈ N ′, El|r ∈ (N ′∪{ε}), x,y ∈ T ∗;

2. if di = 2, then xi−1 = uAx|pyBpy|zv, xi = uCx|yDy|zv, and

uAx|pyBpy|zv ⇒ uCx|yBpy|zv [Ax|py →Cx|y]⇒ uCx|yDy|zv [Bpy|z → Dy|z],

for some u,v ∈V ′∗ and Ax|py,Bpy|z,Cx|y,Dy|z ∈ N ′.

M. Havel, Z. Křivka & A. Meduna 95

Proof. Since G′ is context-free, without any loss of generality in every derivation of G′ we can always

reorder applied rules to satisfy Claim 2.

Claim 3. Let Sε |ε ⇒d1 x1 ⇒d2 · · · ⇒dm−1 xm−1 ⇒
dm xm in G′ be a derivation that satisfies Claim 2, for

some m ≥ 0. Then, S ⇒∗ w in G, where γ(xm) = w.

Proof. We prove this by induction on m ≥ 0.

Basis. Let m = 0. That is Sε |ε ⇒
0 Sε |ε in G′. Clearly, S ⇒0 S in G. Since γ(Sε |ε) = S, the basis holds.

Induction Hypothesis. Suppose that there exists n ≥ 0 such that Claim 3 holds for all 0 ≤ m ≤ n.

Induction Step. Let Sε |ε ⇒
d1 x1 ⇒

d2 · · · ⇒dn−1 xn−1 ⇒
dn xn ⇒

dn+1 xn+1 in G′ be a derivation that satisfies

Claim 2. By the induction hypothesis, S ⇒∗ v, v ∈V ∗, where γ(xn) = v, in G. Divide the proof into two

parts according to dn+1.

(A) Let dn+1 = 1. By the construction of G′, there exists a rule p′ ∈ P′ such that xn ⇒
dn+1 xn+1 [p

′]. Next,

we consider the following two forms of p′.

(I) Let p′ : Al|r → xEl|ry or p′ : Aε |ε → xy ∈ P′, for some A ∈ N, E ∈ N, x,y ∈ T ∗ and l,r ∈
(Pcs ∪{ε})u. By the construction of G′, rule p′ was introduced by some rule p : A → xEy ∈ P

or p : A → xy ∈ P, respectively. Then, there exists a derivation v ⇒ w [p], where γ(xn+1) = w.

(II) Let p′ : Al|r → Bl|xCx|r ∈ P′, for some A,B,C ∈ N and l,r,x ∈ (Pcs∪{ε})u. By the construction

of G′, rule p′ was introduced by some rule p : A → BC ∈ P. Then, there exists a derivation

v ⇒ w [p], where γ(xn+1) = w.

(B) Let dn+1 = 2. Then, xn ⇒
dn+1 xn+1 is equivalent to

u1Ax|pyBpy|zu2 ⇒ u1Cx|yBpy|zu2 [p′1]⇒ u1Cx|yDy|zu2 [p
′
2],

where xn = u1Ax|pyBpy|zu2, xn+1 = u1Cx|yDy|zu2, and

p′1 : Ax|py →Cx|y, p′2 : Bpy|z → Dy|z ∈ P′
,

for some u1,u2 ∈ V ′∗ and Ax|py, Bpy|z, Cx|y, Dy|z ∈ N ′. By the construction of G′, rules p′1 and p′2
were introduced by some rule p : AB → CD ∈ P, Then, there exists a derivation v ⇒ w [p], where

γ(xn+1) = w.

We covered all possibilities, so the claim holds.

Observe that respective the derivation trees of the constructed context-free G′ remain slow-branching.

Claim 4. The grammar G′ is k-linear.

Proof. In construction (III) we replace the rules of the form AB →CD with the rules of the form A → B,

where A,B,C,D ∈ N. Therefore, only the rules that are allowed to occur in the derivation G′ before the

rules of the form A → BC are the rules of the form A →B. Rules of the form A →B before the rules of the

form A → BC can be omitted by the trivial transformation of G′, similar to the algorithm on elimination

of unit productions from Section 5 in [11]. Therefore, the grammar G′ is k-linear.

96 How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars

By Claim 4 G′ is k-linear. By Claims 1 and 3, S ⇒∗ w in G iff Sε |ε ⇒∗ w′ in G′, where γ(w′) = w.

If S ⇒∗ w in G and w ∈ T ∗, then w ∈ L(G). Since γ(w′) = w′ = w, for w ∈ T ∗, w′ ∈ L(G′). Therefore,

L(G) = L(G′) and Theorem 1 hold.

Consider Theorem 1. Observe that the 2nd condition is superfluous whenever G is propagating.

Theorem 2. A language L is k-linear iff there is a constant k ≥ 0, constant u ≥ 0 and a propagating

linear core general grammar G such that L = L(G) and for every x ∈ L(G), there is a slow-branching

tree of degree k △x ∈ GN, where any two nonterminal neighboring paths contain no more than u pairs

of context-dependent nodes.

Proof. Prove this by analogy with the proof of Theorem 1.

Theorem 3. A language L is regular iff there is a constant u ≥ 0 and a left linear core general grammar

G such that L = L(G) and for every x ∈ L(G), there is a tree △x ∈ GN that satisfies:

1. any two nonterminal neighboring paths contain no more than u pairs of context-dependent nodes;

2. out of neighboring paths, any pair of nodes is context-independent.

Proof. Prove this by analogy with the proof of Theorem 1.

Theorem 4. A language L is regular iff there is a constant u ≥ 0 and a propagating left linear core

general grammar G such that L = L(G) and for every x ∈ L(G), there is a tree △x ∈ GN, where any two

nonterminal neighboring paths contain no more than u pairs of context-dependent nodes.

Proof. Prove this by analogy with the proof of Theorem 1.

5 Use

In this section, we explain how to apply the results achieved in the previous section in order to demon-

strate the metalinearness (or regularity) of a language, L. As a rule, this demonstration follows the next

three-step proof scheme for metalinearness.

1. Construct a linear core GG G.

2. Prove L(G) = L.

3. Prove that G satisfies conditions from Theorem 2 or Theorem 1 depending on whether G is context-

sensitive.

For regularity, we use a similar three-step scheme as following.

1. Construct a left linear core GG G.

2. Prove L(G) = L.

3. Prove that G satisfies conditions from Theorem 3 or Theorem 4 depending on whether G is context-

sensitive.

Reconsider the grammar G from Example 2. Following the proof scheme sketched above, we next

prove that L(G) is k-linear. Without any loss of generality, every terminal derivation of G can be divided

into the following 5 phases, where each rule may be used only in a specific phase:

(a) 1–4 (b) 5–9 (c) 10–12 (d) 13–17 (e) 18–22

M. Havel, Z. Křivka & A. Meduna 97

Next, we describe these phases in greater detail.

(a) First, we generate the following string by rules 1 though 4.

A1A2BC1C2

Possibly applicable rules from (b) and (c) may be postponed to the next phases without affecting the

derivation, since the rules in the previous phases cannot rewrite the nonterminals of the following

phases.

(b) The rules (5) through (9) are context-free rules and nonterminals on the left-hand side of the rule are

the same as on the right-hand side of the rule. Therefore, they are grouped into (b), since they only

generate terminals. Possibly applicable rules from (c) may be postponed for the phase (c) without

affecting the derivation since the rules in the previous phases cannot rewrite nonterminals from the

following phases.

a∗A1A2a∗b∗Bc∗a∗C1C2b∗.

(c) The rules 10 and 12 are non context-free rules. The rules 10 through 12 are all rules without generat-

ing terminals. For the same reason as in (a) rules 1 to 4 from the phases (d) and (e) can be postponed

to respective phases.

a∗D1D2a∗b∗Ec∗a∗F1F2b∗.

(d) The rules 13 through 17 are alike rules in (b)

a∗0∗D1D21∗a∗b∗0∗E1∗c∗a∗0∗F1F21∗b∗.

(e) Since rules 18 and 22 are erasing rules and they can always be postponed until the end of any

successful derivation.

a∗0∗1∗a∗b∗0∗1∗c∗a∗0∗1∗b∗.

Grammar G is obviously a linear core GG.

Only rules in the step (a) include branching of nonterminals, no terminals are generated and the

branching in the step (a) is a slow-branching since the degree derivation tree is 4 and, therefore, u is

always 4. Therefore, the slow-branching condition is fulfilled.

Let us now show that for any x ∈ L(G), there is G△x ∈ GN, where any two neighboring paths contain

no more than a one pair of context-dependent nodes.

Every pair of context-dependent nodes in G△x corresponds to one non-context-free rule in S ⇒∗ x.

Consider the five phases sketched above. Observe that all phases except (c) contain only non context-free

rules, so we only have to investigate (c). On the other hand, (c) contain no rule of the form A → BC, thus

the number of neighboring paths remains unchanged.

In (c) rule 10 and 12 introduce context dependency between two pairs of neighboring paths. After

the application of these two rules, we cannot reach the nonterminals again on the left-hand side of rules

10 and 12. Therefore, these context-dependencies can occur only once between a pair of neighboring

paths.

No other non-context-free rule is applied; therefore, no other context-dependent pair of nodes can

occur. Then, every pair of neighboring paths may contain at most one context-dependent pair of nodes

introduced in phase (c).

98 How to Demonstrate Metalinearness and Regularity by Tree-Restricted General Grammars

Since G is a linear core GG, where for every x∈ L(G), there is G△x ∈ GN, where any two neighboring

paths contain no more than one pair of context-dependent nodes, by Theorem 1, L(G) is k-linear.

Unfortunately, although we are able to transform any GG into KNF and, that is, linear core GG,

the question whether the conditions in Theorems 1 through 4 are satisfied is obviously undecidable. To

invent an algorithm that gives at least approximate results is part of a future research.

6 Final Remarks and Open Problems

Before closing this paper, we bring the reader’s attention to an open question. More specifically, consider

a more lenient definition of slow-branching tree as follows.

Definition 7. A labeled ordered tree t is slow-branching if any of its pairs of nonterminal neighboring

paths contains no more than two nonterminal nodes having two nonterminal children. A slow-branching

labeled ordered tree is of degree k if it contains k branching nonterminal nodes, k ≥ 1.

It is obvious that the newly provided Definition 7 is insufficient to prove that a grammar restricted

by a slow-branching derivation tree is k-linear. However, it is possible to apply different restrictions

to Definition 7 with its own advantages or demonstrate similar result to Theorem 1 to prove that it is

k-linear. Such a discovery would require further studies.

Acknowledgments

This work was supported by the BUT grant FIT-S-23-8209.

References

[1] Alfred Aho & Jeffrey Ullman (1972): The Theory of Parsing, Translation, and Compiling. Prentice-

Hall, Series in Automatic Computation.

[2] Brenda Baker (1974): Non-context-free grammars generating context-free languages. Information

and Control 24(3), pp. 231–246, doi:10.1016/S0019-9958(74)80038-0.

[3] Ronald Vernon Book (1972): Terminal Context in Context-Sensitive Grammars. SIAM J. Comput.

1(1), p. 20–30, doi:10.1137/0201003.

[4] Ronald Vernon Book (1973): On the structure of context-sensitive grammars. International Journal

of Computer & Information Sciences 2, p. 129–139, doi:10.1007/BF00976059.

[5] Thomas Cormen, Charles Leiserson & Ronald Rivest (2002): Introduction to Algorithms. McGraw-

Hill.

[6] Andrzej Ehrenfeucht, David Haussler & Grzegorz Rozenberg (1983): On regularity of

context-free languages. Theoretical Computer Science 27(3), pp. 311–332, doi:10.1016/

0304-3975(82)90124-4.

[7] Michael Harrison (1978): Introduction to Formal Language Theory. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[8] Sige-Yuki Kuroda (1964): Classes of languages and linear-bounded automata. Information and

Control 7(2), pp. 207–223, doi:10.1016/S0019-9958(64)90120-2.

https://doi.org/10.1016/S0019-9958(74)80038-0
https://doi.org/10.1137/0201003
https://doi.org/10.1007/BF00976059
https://doi.org/10.1016/0304-3975(82)90124-4
https://doi.org/10.1016/0304-3975(82)90124-4
https://doi.org/10.1016/S0019-9958(64)90120-2

M. Havel, Z. Křivka & A. Meduna 99

[9] Gethin Matthews (1964): A note on asymmetry in phrase structure grammars. Information and

Control 7(3), pp. 360–365, doi:10.1016/S0019-9958(64)90406-1.

[10] Gethin Matthews (1967): Two-way languages. Information and Control 10(2), pp. 111–119,

doi:10.1016/S0019-9958(67)80001-9.

[11] Alexander Meduna (2000): Automata and languages: theory and applications. Springer-Verlag,

Berlin, Heidelberg, doi:10.1007/978-1-4471-0501-5.

[12] Alexander Meduna (2014): Formal Languages and Computation: Models and Their Applications.

Taylor & Francis, New York, doi:10.1201/b16376.

[13] Alexander Meduna & Ondřej Soukup (2017): Modern Language Models and Computation: Theory

with Applications. Springer US, doi:10.1007/978-3-319-63100-4.

[14] Grzegorz Rozenberg & Arto Salomaa, editors (1997): Handbook of Formal Languages. Springer,

doi:10.1007/978-3-642-59136-5.

[15] Arto Salomaa (1973): Formal Languages. Academic Press, London.

https://doi.org/10.1016/S0019-9958(64)90406-1
https://doi.org/10.1016/S0019-9958(67)80001-9
https://doi.org/10.1007/978-1-4471-0501-5
https://doi.org/10.1201/b16376
https://doi.org/10.1007/978-3-319-63100-4
https://doi.org/10.1007/978-3-642-59136-5

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 100–117, doi:10.4204/EPTCS.407.8

© L. Herrmann, J. Osterholzer
This work is licensed under the
Creative Commons Attribution License.

Non-Global Parikh Tree Automata

Luisa Herrmann
Computational Logic Group, TU Dresden, Germany

ScaDS.AI Center for Scalable Data Analytics and Artificial Intelligence
Dresden/Leipzig, Germany

luisa.herrmann@tu-dresden.de

Johannes Osterholzer
secunet Security Networks AG, Germany

johannes.osterholzer@gmail.com

Parikh (tree) automata are an expressive and yet computationally well-behaved extension of finite au-
tomata – they allow to increment a number of counters during their computations, which are finally
tested by a semilinear constraint. In this work, we introduce and investigate a new perspective on
Parikh tree automata (PTA): instead of testing one counter configuration that results from the whole
input tree, we implement a non-global automaton model. Here, we copy and distribute the current
configuration at each node to all its children, incrementing the counters pathwise, and check the arith-
metic constraint at each leaf. We obtain that the classes of tree languages recognizable by global PTA
and non-global PTA are incomparable. In contrast to global PTA, the non-emptiness problem is un-
decidable for non-global PTA if we allow the automata to work with at least three counters, whereas
the membership problem stays decidable. However, for a restriction of the model, where counter
configurations are passed in a linear fashion to at most one child node, we can prove decidability of
the non-emptiness problem.

1 Introduction

Finite automata are one of the most fundamental computation models in theoretical computer science and
have been generalized to many structures that go beyond words, such as trees [18]. However, they are not
sufficient when arithmetic properties (such as two symbols occurring equally often) have to be ensured.
For this reason, there are numerous approaches to extending automata with counting mechanisms. In the
area of tree automata, although less studied than extensions of word automata, there are (among others)
two approaches that come into consideration: On the one hand, there are pushdown tree automata [7],
which extend pushdown automata to trees and thus recognize context-free tree languages, as well as
their restriction counter tree automata. And on the other hand, Parikh tree automata [14, 13] have
been considered: during their computations, they allow to increment a number of counters in each step.
These counters are finally tested to satisfy a semilinear constraint. The calculation principles for the
counting mechanisms work orthogonally in both approaches – while pushdown tree automata split their
computations at each node and execute them pathwise, Parikh tree automata allow a global view: their
counters are incremented over the whole input tree before their membership in a semilinear set is tested.
Thus, in the remaining work we will refer to this model as global Parikh tree automata (GPTA).

One motivation for the development and investigation of Parikh automata in recent years is the speci-
fication and verification of systems that fall outside the scope of regular languages. For such applications,
tree automata are also interesting, as they are more suitable to model non-determinism and parallel pro-
cesses than word automata. However, we think that a non-global view would be interesting for this case
in particular: with GPTA, requirements such as "the same arithmetic property applies in every alternative
path" cannot be modeled.

For this reason and inspired by the computation strategy of pushdown tree automata, we introduce
here an alternative, non-global definition of Parikh tree automata (PTA): we define a model which copies

http://dx.doi.org/10.4204/EPTCS.407.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

L. Herrmann, J. Osterholzer 101

and distributes the current counter configuration at each node to all its children, thus increments the
counters pathwise, and finally checks at each leaf node whether the obtained configuration is contained
in a semilinear set. In this way, PTAs are able to test arithmetic properties of tree paths.

Contributions In this work, we start the investigation of non-global PTA, especially from the perspec-
tive of their expressiveness and decidability:

• We generalize GPTA, which have so far only been considered for complete binary trees, to trees
over arbitrary ranked alphabets and prove an exchange lemma (Lemma 3): This lemma, originally
shown for Parikh word automata [1, Lemma 1], states that certain parts in computations of GPTA
can be rearranged. Thus, it can be used to show the limits of their expressive power.

• The exchange lemma is used to show that there are languages that are recognized by non-global
PTA but not by GPTA. The converse of this statement is also shown, and thus we obtain that the
language classes of these two models are incomparable (Theorem 1).

• We prove that, in contrast to GPTA, non-emptiness is undecidable for PTA with at least three coun-
ters (Theorem 2). This follows from a simulation of the computations of two counter machines.
On the other hand, membership is decidable for arbitrary PTA (Theorem 4).

• We introduce a restriction on the computation mechanism for PTA: linear PTA may at each node
only pass the current counter configuration to one child tree, the computations in all other child
trees start again with all counters zero. With this restriction, we can limit the number of such
"non-reset" paths that must at least occur if the language of a linear PTA is non-empty (Lemma 5).
Thereby, we can show that non-emptiness becomes decidable (Theorem 3).

Related work Since their introduction in [14, 15], Parikh automata have been studied in many works
from a variety of perspectives, cf. for example [1, 2]; recently there have also been extensions for infinite
words [8, 6] and infinite trees [11]. It is known that Parikh automata correspond to a special form
of vector addition systems with states (VASS) over integers, so-called Z-VASS [9]. For VASS, in [3]
a definition for alternation was provided by using branching – in this sense, PTA could be seen as a
formulation of alternating Z-VASS.

The idea of limiting the counter flow in a computation to linear paths originates from linear pushdown
tree automata [4] and has later also been extended to tree automata with storage [10].

2 Preliminaries

We denote by N the set of natural numbers including 0 and set [n] = {1, . . . ,n} for each n ∈ N. Given
a finite set A, we denote its cardinality, i.e., the number of its elements, by |A|. For each k ∈ N and
a1, . . . ,ak ∈ A, we call w = a1 . . .ak a word over A and say that its length is k. We let Ak be the set of all
words over A of length k and set A∗ =

⋃
n∈N Ak. Given some w ∈ A∗, we refer to its length by |w| and the

word of length 0 will be denoted by ε . We let ⊑ denote the prefix order on A: for words w1,w2 ∈ A we
have w1 ⊑ w2 if w2 = w1u for some u ∈ A∗. The lexicographic order on N∗ will be denoted by ≤lex, and
is defined for every u, v ∈N∗ such that u≤lex v whenever (i) either u⊑ v, or (ii) there are x, y, z ∈N∗ and
n, m ∈ N such that u = xny, v = xmz and n < m.

102 Non-Global Parikh Tree Automata

Alphabets, trees, and tree languages. A ranked set is a tuple (Σ, rk) where Σ is a set (its elements
called symbols or labels) and rk : Σ→ N is a function assigning to each symbol in Σ a natural number,
its rank. We often assume rk implicitly and only write Σ instead of (Σ, rk). For each n ∈ N, by Σ(n) we
mean rk−1(n) and we write σ (n) in order to say that σ ∈ Σ(n). We say that a ranked set (Σ, rk) is a ranked
alphabet if the set Σ is finite.1

Now let Σ be a ranked set and H a set. The set TΣ(H) of trees (over Σ and indexed by H) is defined
to be the smallest set T such that (i) H ⊆ T and (ii) for each n ∈ N, σ ∈ Σ(n), and ξ1, . . . ,ξn ∈ T we have
σ(ξ1, . . . ,ξn) ∈ T . If H = /0, we simply write TΣ instead of TΣ(H). As usual, we denote the tree α() by α

for each α ∈ Σ(0) and we often write monadic trees of the form γ1(γ2(. . .γk(#) . . .), where γ1, . . . ,γk ∈ Σ(1),
as words γ1 . . .γk#. Each subset L⊆ TΣ is called a tree language.

Let ξ , ζ ∈ TΣ(H). We let pos(ξ) ⊆ N∗ denote the set of positions of ξ , defined in the usual way:
for every α ∈ Σ(0) ∪H we let pos(α) = {ε} and for every n ≥ 1, σ ∈ Σ(n), and ξ1, . . . ,ξn ∈ TΣ(H) we
let pos(σ(ξ1, . . . ,ξn)) = {ε}∪{iρ | i ∈ [n],ρ ∈ pos(ξi)}. Furthermore, |ξ |= |pos(ξ)| stands for the size
of ξ , and, given a position ρ ∈ pos(ξ), we denote by ξ (ρ) the label of ξ at position ρ and by ξ|ρ the
subtree of ξ at position ρ , respectively. Let ξ [ζ]ρ designate the tree that results from ξ by replacing the
subtree rooted at ρ by ζ . We let ht(ξ) = max{|ρ| | ρ ∈ pos(ξ)} and sub(ξ) = {ξ|ρ | ρ ∈ pos(ξ)}. Given
positions ρ1,ρ2 ∈ pos(ξ) we say that the subtrees ξ|ρ1 and ξ|ρ2 are independent if ρ1 ̸⊑ ρ2 and ρ2 ̸⊑ ρ1.

A path π is a sequence π = ρ1 . . .ρn of positions ρ1, . . . ,ρn ∈ pos(ξ) such that for each i ∈ [n−1] we
have ρi+1 = ρik for some k ∈ [rk(ξ (ρi))]. The path word of π is given by ξ (π) = ξ (ρ1) . . .ξ (ρn). We
say that π is a complete path (or c-path) if ρ1 = ε and ξ (ρn) ∈ Σ(0); the set of all complete paths of ξ is
denoted by paths(ξ).

Example 1. Consider the ranked alphabet Σ = {σ (2),γ1,α(0)} as well as the set H = {u}. Then σ(α,α)
is a tree in TΣ and ξ = σ(σ(γ(α),α),γ(γ(u))) is a tree in TΣ(H). As mentioned above, we will also
sometimes write σ(σ(γα,α),γγu) for ξ . We have pos(ξ) = {ε,1,11,111,12,2,21,211}, ξ (ε) = σ and
ξ (21) = γ , and ξ|2 = γ(γ(u)). The trees in this example can be represented graphically as

σ

α α
and

σ

σ

γ

α

α

γ

γ

u

,

respectively. ◁

Contexts, spines, and composition. Let X = {x1,x2, . . .} be a fixed set of variables that is disjoint
from every other set in this work and let Xn = {x1, . . . ,xn}. Now let H be a set, k≥ 1 and ξ ∈ TΣ(H∪Xk).
We call ξ a context if (a) there is exactly one ρi ∈ pos(ξ) (in the further denoted by posxi

(ξ)) with
ξ (ρi) = xi for each i ∈ [k] and (b) for each i1, i2 ∈ [k], if i1 < i2, then posxi1

(ξ)≤lex posxi2
(ξ). The set of

all such contexts over Σ and H will be denoted by CΣ(H,Xk) (or by CΣ(Xk) if H = /0).
The composition ζ · ξ of a context ζ ∈ CΣ(H,X1) and a tree ξ ∈ TΣ(H ∪X) replaces x1 in ζ by ξ .

This operation can be transferred to arbitrary k ≥ 2, trees ξ ∈ TΣ(H ∪Xk) and ξ1, . . . ,ξk ∈ TΣ(H): we let
ξ [ξ1, . . . ,ξk] stand for the tree ζ obtained from ξ by replacing each occurrence of xi by ξi for each i∈ [k].

1Most tree languages in this paper will have labels from some finite ranked alphabet. However, we have to allow infinite
label sets for one definition.

L. Herrmann, J. Osterholzer 103

Given a tree ξ ∈ TΣ and a path ρ1 . . .ρn, we let the (ρ1,ρn)-spine of ξ , denoted by ξ [ρ1,ρn], be the
context ζ ∈CΣ(Xk) for some k ∈N containing exactly the path ρ1 . . .ρn, i.e., such that there are a context
ζ ′ ∈ CΣ(X1) and trees ξ1, . . . ,ξk ∈ TΣ with ξ = ζ ′ · (ζ [ξ1, . . . ,ξk]) and for each ρ ∈ N∗ we have ρ ∈
pos(ζ)\{posxi

(ζ) | i ∈ [k]} if and only if ρ1ρ = ρ j for some j ∈ [n].

Example 2. Consider the positions ρ1 = 1 and ρ2 = 11 of the tree ξ from Example 1. Then the (ρ1,ρ2)-
spine of ξ is ξ [ρ1,ρ2] = σ(γ(x1),x2), and we have ξ = σ(x1,γγu) · (σ(γ(x1),x2)[α,α]). ◁

Semilinear sets. Let s ≥ 1. We denote by 000s the zero-vector 000s = (0, ...,0) ∈ Ns of dimension s. If
s is clear from the context, we often only write 000. A set C ⊆ Ns, s ≥ 1, is linear if it is of the form
C = {d0 +∑i∈[l] midi | m1, . . . ,ml ∈ N} for some l ∈ N and vectors d0, . . . ,dl ∈ Ns. Any finite union of
linear sets is called semilinear.

Lemma 1 ([5, Theorem 1.2 and 1.3]). Given a semilinear set C⊆Ns and a vector d ∈Ns, it is decidable
whether d ∈C.

Parikh string automata Let s ≥ 1. A Parikh string automaton of dimension s (s-PA) is a tuple A =
(Q,Σ,q0,∆,F,C) where Q is a finite set of states, Σ is a (string) alphabet, q0 ∈ Q (initial state), F ⊆ Q
(final states), ∆ is a finite set of transitions of the form (q,a,d,q′) for q,q′ ∈ Q, a ∈ Σ, d ∈ Ns, and C is a
semi-linear set over Ns. Let w ∈ Σ∗. A run of A on w is a sequence

(p0,a1,d1, p1)(p1,a2,d2, p2) . . .(pn−1,an,dn, pn)

of transitions such that p0 = q0, a1 . . .an = w, pn ∈ F , and (d1+ . . .+dn)∈C. The set of all runs of A on
w is denoted RunA (w) and the language recognized by A is the set L (A) = {w ∈ Σ∗ | RunA (w) ̸= /0}.
Lemma 2 ([15, Property 6]). Given a Parikh string automaton A , it is decidable whether L (A) ̸= /0.

3 Global Parikh Tree Automata

Let us recall the definition of (global) Parikh tree automata from [14, 13]. Note that we use here a slight
variation of the original version: In [14, 13], only full binary trees were considered and, thus, the number
of successor states in each transition was fixed to two (also for leaf nodes). In this paper, we extend
Parikh tree automata to arbitrary ranked trees in the usual way – it is not hard to see that for alphabets
containing only binary and nullary symbols, both formalisms are equivalent.

Extended Parikh map. Given a ranked alphabet Σ and some finite D ⊆ Ns for s ≥ 1, the automaton
model works with symbols from Σ×D. Thus, we use the projections ·Σ : Σ×D→ Σ with (a,d)Σ = a and
·D : Σ×D→ D with (a,d)D = d, extended to trees in the obvious way. Moreover, the extended Parikh
map Ψ : TΣ×D→ Ns is defined for each tree ξ ∈ TΣ×D by Ψ(ξ) = ∑ρ∈pos(ξ)(ξ (ρ))D .

Global Parikh tree automata. Let m≥ 1. A global Parikh tree automaton of dimension m (m-GPTA)
is a tuple A = (Q,Σ,D,q0,∆,C) where Q is a finite set of states, Σ is a ranked alphabet, D⊂Nm is finite,
q0 ∈ Q is the initial state, C ⊆ Nm is a semilinear set, and ∆ is a finite set of transitions of the form

q→ ⟨σ ,d⟩(q1, . . . ,qn)

where n ∈ N, σ ∈ Σ(n), d ∈ D, and q,q1, . . . ,qn ∈ Q.

104 Non-Global Parikh Tree Automata

js

1s

1t

jt1u
2u

js

1s

1t

jt
2u

1u

Figure 1: The tree ξ divided as in Lemma 3 (1.) and its reordering as in (2.) where the red spine
corresponds to ζ2.

Given a tree ζ ∈ TΣ×D, a run of A on ζ is a mapping r : pos(ζ)→ Q such that for each ρ ∈ pos(ζ),
r(ρ)→ ζ (ρ)(r(ρ1), . . . ,r(ρn)) with n = rk(ζ (ρ)) is in ∆. We say that a run r is successful if r(ε) = q0
and Ψ(ζ) ∈C; we denote the set of all successful runs of A on ζ by RunA (ζ). Then the language of
A , denoted by L (A) is the set L (A) = {ξ ∈ TΣ | ∃ζ ∈ TΣ×D with (ζ)Σ = ξ and RunA (ζ) ̸= /0}.

3.1 Pumping-style Exchange Lemma for GPTA

For Parikh automata, a classical pumping lemma that cuts out or iterates parts of a computation is not
known – missing or additional parts in a computation would change the extended Parikh image and
thus affect acceptance. However, since the final counter configuration is a global result of the entire
computation, parts of the computation can be rearranged without changing the extended Parikh image.
This was shown in [1, Lemma 1] for the string case and is generalized here to the tree case. This result
will be useful later to show that certain tree languages recognizable by non-global Parikh tree automata
are not GPTA-recognizable. Note that a crucial part of the extension is that computation parts from
independent subtrees are reordered. This allows us to distinguish path counting from global counting
using the exchange lemma. Figure 1 is a graphical representation of the following lemma.

Lemma 3. Let L be a GPTA-recognizable tree language. Then there exist constants l, p > 0 such that
for each tree ξ ∈ L with at least l pairwise independent subtrees of height at least p there exists k ≥ 0,
contexts ζ1 ∈ CΣ(X2),ζ2 ∈ CΣ(Xk+1) with 0 < ht(ζ2) < p, trees s1, . . . ,sk, t1, . . . , tk, u1,u2 ∈ TΣ, and
j ∈ [k+1] such that

1. ξ = ζ1[ζ2[s1, . . . ,s j−1,x1,s j, . . . ,sk] ·u1,ζ2[t1, . . . , t j−1,x1, t j, . . . , tk] ·u2],

2. ζ1[u1,ζ2[s1, . . . ,s j−1,x1,s j, . . . ,sk] ·ζ2[t1, . . . , t j−1,x1, t j, . . . , tk] ·u2] ∈ L, and

3. ζ1[ζ2[s1, . . . ,s j−1,x1,s j, . . . ,sk] ·ζ2[t1, . . . , t j−1,x1, t j, . . . , tk] ·u1,u2] ∈ L.

L. Herrmann, J. Osterholzer 105

Proof. Let A = (Q,Σ,D,q0,∆,C) be a GPTA with L (A) = L and let p = |Q|+ 1. Further, let N be
the maximal rank of symbols in Σ. In order to define l, we build from the transitions of A a graph G
labeled by elements of ∆×N as follows: We let G = (V,E) with V = Q and E ⊆ Q× (∆× [N])×Q
such that (q,⟨τ, i⟩,q′) ∈ E if and only if τ = q→ ⟨σ ,d⟩(q1, . . . ,qn), i≤ n, and qi = q′. Now let l′ be the
number of cycles in G, i.e., the number of sequences (f0,u1, f1)(f1,u2, f2)...(fk−1,uk, fk) for k ≤ p such
that (fi−1,ui, fi) ∈ E for each i ∈ [k], f0 = fk, and there are no i, j ∈ [k] such that i ̸= j and fi = f j. Then
l = l′+1.

Now consider ξ ∈ L that fulfills the requirements of the statement. Then there exists a tree t ∈ TΣ×D

with (t)Σ = ξ and a successful run r ∈ RunA (t). By our requirement for ξ , also t contains l independent
subtrees of height at least p. Note that because of their height, each of these subtrees contains a cycle.
By the definition of l, we can apply the pigeonhole principle and obtain that there is a pair of paths
that contain the same cycle: there has to be some 1 ≤ h ≤ p and two paths ρ1

1 . . .ρ
1
h and ρ2

1 . . .ρ
2
h in

independent subtrees of t that induce transition cycles which coincide. Formally, for each i ∈ [2], let

wi = (r(ρ i
1), τ̃(ρ

i
1),r(ρ

i
2)) . . .(r(ρ

i
h−1), τ̃(ρ

i
h−1),r(ρ

i
h)),

where τ̃(ρ i
j) = ⟨r(ρ i

j)→ t(ρ i
j)(r(ρ

i
j1), . . . ,r(ρ

i
jn)),µ⟩, and µ ∈N such that ρ i

j+1 = ρ i
jµ . Both w1 and w2

are cycles in G, thus r(ρ i
1) = r(ρ i

h), and w1 = w2.
Now let ζ1 ∈CΣ(X2) such that ξ = ζ1[ξ|ρ1

1
,ξ|ρ2

1
] and let ζ2 = ξ

[ρ1
1 ,ρ

1
h−1] = ξ

[ρ2
1 ,ρ

2
h−1]. Clearly, there is

some k ∈ N, j ∈ [k+1], and trees s1, . . . ,sk, t1, . . . , tk ∈ TΣ such that ξ|ρ1
1
,ξ|ρ2

1
can be written as

ξ|ρ1
1
= ζ2[s1, . . . ,s j−1,x1,s j, . . . ,sk] ·ξ|ρ1

h
and ξ|ρ2

1
= ζ2[t1, . . . , t j−1,x1, t j, . . . , tk] ·ξ|ρ2

h
.

By letting u1 = ξ|ρ1
h

and u2 = ξ|ρ2
h

we obtain

ξ = ζ1[ζ2[s1, . . . ,s j−1,x1,s j, . . . ,sk] ·u1,ζ2[t1, . . . , t j−1,x1, t j, . . . , tk] ·u2]

which corresponds to item (1.) of the statement. Note that we can subdivide t in exactly the same building
blocks as ξ : there are δ1 ∈CΣ×D(X2), δ2 = t [ρ

1
1 ,ρ

1
h−1], and ŝ1, . . . , ŝk, t̂1, . . . , t̂k such that pos(δ1) = pos(ζ1),

pos(ŝi) = pos(si), pos(t̂i) = pos(ti) for each i ∈ [k], and we have

t = δ1[δ2[ŝ1, . . . , ŝ j−1,x1, ŝ j, . . . , ŝk] · t|ρ1
h
,δ2[t̂1, . . . , t̂ j−1,x1, t̂ j, . . . , t̂k] · t|ρ2

h
] .

For item (2.) we need to argue that the reordering

ξ
′ = ζ1[u1,ζ2[s1, . . . ,s j−1,x1,s j, . . . ,sk] ·ζ2[t1, . . . , t j−1,x1, t j, . . . , tk] ·u2]

of ξ can be recognized by A , too. To show this, we construct from r a computation r′ on the correspond-
ing reordering t ′ of t given by

t ′ = δ1[t|ρ1
h
,δ2[ŝ1, . . . , ŝ j−1,x1, ŝ j, . . . , ŝk] ·δ2[t̂1, . . . , t̂ j−1,x1, t̂ j, . . . , t̂k] · t|ρ2

h
]

as follows:
• for each ρ ∈ pos(δ1)\{posx1

(δ1),posx2
(δ1)} we let r′(ρ) = r(ρ),

• for each ρ ∈ pos(t|ρ1
h
) we let r′(ρ1

1 ρ) = r(ρ1
h ρ),

• for each ρ ∈ pos(δ2[ŝ1, . . . , ŝ j−1,x1, ŝ j, . . . , ŝk])\{posx1
(δ2[ŝ1, . . . , ŝ j−1,x1, ŝ j, . . . , ŝk])} we let

r′(ρ2
1 ρ) = r(ρ1

1 ρ), and

• for all ρ ∈ pos(δ2[t̂1, . . . , t̂ j−1,x1, t̂ j, . . . , t̂k] · t|ρ2
h
) we let r′(ρ2

h ρ) = r(ρ2
1 ρ).

It remains to argue that r′ is successful on t ′. But this is easy to see: as we only cut out and inserted
a part of the tree at positions which carry the same state, all transitions are still applicable. Finally, as
Ψ(t ′) = Ψ(t), we obtain r′ ∈ RunA (t ′) and, thus, ξ ′ ∈L (A).

The proof of item (3.) is analogous.

106 Non-Global Parikh Tree Automata

4 Non-Global Parikh Tree Automata

Now we define a non-global variant of Parikh tree automata in which not an extended Parikh image of a
whole input tree is computed, but counter vectors that occur in computations (i) are added up pathwise
and (ii) it is tested at each leaf node whether the resulting counter configuration is contained in the
semilinear set C of the automaton.

Here we do not consider counter vectors as additional labelings that we guess beforehand, but use
them in the transitions as operations which can differ per path, similar as it is done the case of pushdown
tree automata. Therefore, a transition that reads a k-ary symbol can send k different vectors to the
different subtrees. Additionally, we allow a reset operation ⟲ that sets each counter configuration back
to 000. This operation will be needed later to define Parikh tree automata that pass the current counter
configuration of each node to exactly one child node instead of copying it to all children. Such a reset
operation has also been introduced in the context of tree automata with storage to define a linear model
[10] and was used for an extension of Parikh string automata (over infinite words) [6].

Non-global Parikh tree automata. Let m ≥ 1. A (non-global) Parikh tree automaton of dimension
m with reset operation (m-PTAR) is a tuple A = (Q,Σ,q0,∆,C) where Q is a finite set of states, Σ is a
ranked alphabet, q0 ∈ Q is the initial state, C ⊆ Nm is a semilinear set, and ∆ is a finite set of transitions
of the form

q→ σ(q1(d1), . . . ,qn(dn))

where n ∈ N, σ ∈ Σ(n), q,q1, . . . ,qn ∈ Q, and d1 . . .dn ∈ (Nm∪{⟲}).
The semantics of an m-PTAR A = (Q,Σ,q0,∆,C) is defined as follows. We denote by ID the set

Q×Nm of automaton configurations, each consisting of a state and a counter configuration from Nm. For
each transition τ ∈∆ we let⇒τ be the binary relation on the set TΣ(ID) such that for each ζ1,ζ2 ∈ TΣ(ID)
we have

ζ1⇒τ
ζ2

if there are ζ̂ ∈CΣ(ID,X1), ζ̂1, ζ̂2 ∈ TΣ(ID) such that ζ1 = ζ̂ · ζ̂1, ζ2 = ζ̂ · ζ̂2, and either

• τ = q→ σ(q1(d1), . . . ,qn(dn)) for some n ≥ 1, ζ̂1 = (q,w), and ζ̂2 = σ((q1,w1), . . . ,(qn,wn))
where, for each i ∈ [n], wi = w+di if di ̸=⟲ and wi = 000 otherwise, or

• τ = q→ α for some α ∈ Σ(0), ζ̂1 = (q,w), w ∈C, and ζ̂2 = α .

The computation relation of A is the binary relation ⇒A =
⋃

τ∈∆ ⇒τ . A computation is a sequence
t = ζ0⇒τ1 ζ1 . . .⇒τn ζn (sometimes abbreviated as ζ0⇒τ1...τn ζn) such that n ∈ N, ζ0, . . . ,ζn ∈ TΣ(ID),
τ1, . . . ,τn ∈ ∆, and ζi−1 ⇒τi ζi for each i ∈ [n]. We say that the length of t is n. We call t successful
on ξ ∈ TΣ if ζ0 = (q0,000) and ζn = ξ ; the set of all successful computations of A on ξ is denoted by
compA (ξ). The language recognized by A is the set L (A) = {ξ ∈ TΣ | compA (ξ) ̸= /0}.

Now we consider an example showing the capability of non-global Parikh tree automata to check a
semi-linear property for each path in a tree.

Example 3. Let Σ = {a(2),b(2),#(0)}. We consider the tree language Lab containing all trees ξ such that
the word of labels of each complete path in ξ is of the form anbn# for some n≥ 1, i.e.,

Lab = {ξ ∈ TΣ | ∀π ∈ paths(ξ) : ξ (π) ∈ {anbn# | n≥ 1}} .

L. Herrmann, J. Osterholzer 107

This tree language can by recognized by the 2-PTA A = (Q,Σ,qa,∆,C) where Q = {qa,qb}, C =
{(i, i) | i≥ 1}, and ∆ contains the transitions

τa,1 : qa→ a(qa(1,0),qa(1,0)) τa,2 : qa→ b(qb(0,1),qb(0,1))

and
τb,1 : qb→ b(qb(0,1),qb(0,1)) τb,2 : qb→ # .

The intuition behind this automaton is quite easy: for each a it reads, the first counter component is
increased by 1 and for each b it reads, the second counter component is increased by 1. Finally, # can
only be computed if the value of the first and the second component is equal. This process becomes clear
if we look at a part of some computation for a(b(#,#),b(#,#)) ∈ Lab: let us consider a computation of
the form

(qa,(0,0))⇒τa,1 a
(
(qa,(1,0)),(qa,(1,0))

)
⇒τa,2 a

(
b((qb,(1,1)),(qb,(1,1))),(qa,(1,0))

)
⇒τb,2 a

(
b(#,(qb,(1,1))),(qa,(1,0))

)
⇒∗ a(b(#,#),b(#,#)) .

Observe that in the third step of the computation, from the automaton configuration (qb,(1,1))) the
application of τb,2 to compute the leaf # is allowed only because (1,1) ∈C. ◁

Remark 1. We note that the tree language Lab is a context-free tree language: it is a simple observation
that the set of path words occurring in its trees is context-free and, thus, Lab can be recognized by a
pushdown tree automaton. However, we can easily extend Example 3 to paths of the form anbncn# by
using a third counter – the resulting tree language would not be context-free anymore.

4.1 Restrictions of PTAR

If ⟲ does not occur in the transitions of A , we call A an m-PTA. Moreover, we say that A is linear if
for each transition q→ σ(q1(d1), . . . ,qn(dn)) in ∆ there is at most one i ∈ [n] with di ∈ Nm and for all
j ̸= i we have d j = ⟲, i.e., at each node the storage is either completely reset or passed to exactly one
child.

Spinal computation trees Let us define an alternative semantics for linear PTAR, needed later when
we prove decidability of their non-emptiness problem. The idea is to recursively structure the computa-
tions of such a linear PTAR A as follows: during the computation on an input tree ξ , we always apply
the rewrite relation⇒A to the node w ∈ pos(ξ) that has been passed the storage from its parent node,
if there is any such node. When there is no longer such a node, we apply this process recursively to the
remaining nodes labeled by states.
Example 4. For an example, consider the linear 1-PTAR A = (Q,Σ,q,∆,C), where Q = {q, p}, Σ =
{σ (2),α0}, C = N, and ∆ contains the transitions

q→ σ
(
q(⟲),q(1)

)
, q→ σ

(
q(2), p(⟲)

)
, q→ α , p→ σ(q(⟲),q(4) ,

denoted by τ1, τ2, τ3, and τ4, respectively. Assume the following computation of A .

(q,0) ⇒τ1
σ

(q,0) (q,1)
⇒τ2

σ

(q,0) σ

(q,3) (p,0)

⇒τ3

σ

(q,0) σ

α (p,0)

⇒∗

σ

σ

α σ

α α

σ

α σ

α α

108 Non-Global Parikh Tree Automata

Since in the computation’s first step, the storage has been passed to the second child, labeled (q,1),
we rewrite this position in the next step, and so on, until the leaf node α is reached. The path along
which this process takes place is shaded in red. Afterwards, the process can be applied recursively to the
states which did not receive the storage of their parent, resulting in the paths shaded in other colors.

The gist of this section is that the shaded parts of this computation can also be arranged into a tree of
subcomputations of the form

(q,0)⇒∗ σ((q,0),σ(α,(p,0)))

(q,0)⇒∗ σ((q,0),σ((q,0),α))

(q,0)⇒∗ α (q,0)⇒∗ α

(q,0)⇒∗ σ((q,0),α)

(q,0)⇒∗ α

,

called a spinal computation tree. We will prove that if the tree language of a PTAR is not empty, then
there is a spinal computation tree of bounded height, leading to a decision procedure. ◁

To formally define the notion of spinal computation trees, we have to restrict the derivation rela-
tion so that only children that received the storage from their parents can be rewritten. We do so by
constructing a new automaton which only has transitions for such positions. For this, assume a linear
m-PTAR A = (Q,Σ,q0,∆,C). Let Q′ = Q∪ Q̂, where Q̂ = {q̂ | q ∈Q}. We construct the linear m-PTAR
A ′ = (Q′,Σ, q̂0,∆

′,C) , where ∆′ is defined as follows.

• For every transition of the form q→ α in ∆, the set ∆′ contains the transition q̂→ α .

• For every transition q→ σ(q1(d1), . . . ,qn(dn)) in ∆, where di = ⟲ for each i ∈ [n], the set ∆′

contains the transition
q̂→ σ(q1(d1), . . . ,qn(dn)) .

• Finally, consider a transition q→ σ(q1(d1), . . . ,qn(dn)) in ∆ such that di ̸= ⟲ for some i ∈ [n].
Then the transition

q̂→ σ
(
q1(d1), . . . ,qi−1(di−1), q̂i(di),qi+1(di+1), . . . ,qn(dn)

)
is in ∆′.

Note that there are only transitions for states from Q̂ in ∆′, the computation cannot continue on states
from Q.

Consider a computation
ζ0⇒τ1 ζ1⇒τ2 · · · ⇒τn ζn

of A ′, such that n > 0, ζ0 = (q̂,000) for some q ∈ Q, and ζn ∈ TΣ(Q×Nm). We call such a computation
a spine computation of ζn from q. In fact, it is easy to see from the definition of A ′ that for every
occurrence in ζn of a tuple (q,c) with q ∈ Q and c ∈ Nm, it is the case that c = 000.

The set of all spine computations from q will be denoted by Sq, and given such a spine computa-
tion s ∈ Sq, the generated tree ζn will be denoted by tree(s). Moreover, assume that {w1, · · · ,wℓ} ⊆
pos(tree(s)), for some ℓ ∈ N, is the set of positions in tree(s) with labels from Q×Nm, and assume that
w1, . . . , wℓ are in left-to-right order, i.e. w1 <lex · · · <lex wℓ. Then we will write statepos(s) for the
sequence w1 · · ·wℓ. Additionally, if for every i ∈ [ℓ], we have tree(s)(wi) = (qi,000), then we will denote

L. Herrmann, J. Osterholzer 109

the sequence q1 · · ·qℓ by stateseq(s). For instance, when we write s for the red-shaded subcomputation
from Example 4, we would have

tree(s) = σ((q,0),σ(α,(p,0))) , statepos(s) = 1 22, and stateseq(s) = q p.

Now, for every q ∈ Q, the set of spinal computation trees Dq is defined to be the smallest set such
that the following property holds: for every spine computation s ∈ Sq with stateseq(s) = q1 · · ·qℓ where
ℓ ∈ N, and for every di ∈ Dqi , where i ∈ [ℓ], the tree s(d1, . . . ,dℓ) is an element of Dq.2

Given a spinal computation tree d = s(d1, . . . ,dℓ) ∈Dq with statepos(s) = w1 · · ·wℓ, we finally define
the computed tree tree(d) ∈ TΣ by

tree(d) = tree(s)[tree(d1)]w1 · · · [tree(dℓ)]wℓ
.

This recursive definition is well-behaved because we chose Dq to be the smallest set of trees fulfilling the
given property.

The following lemma relates the rewrite semantics of PTAR to the notion of spinal computation trees.

Lemma 4. Let A = (Q,Σ,q0,∆,C) be a linear PTAR, let q ∈ Q, and let ξ ∈ TΣ. Then (q,000)⇒∗A ξ if
and only if there is some d ∈ Dq with tree(d) = ξ . In particular, ξ ∈L (A) if and only if there is some
d ∈ Dq0 with tree(d) = ξ .

The direction “if” of the lemma can be shown by recursively “composing” the spine computations
in d. For the direction “only if”, one has to reorder the computation of ξ such that it begins with the
computation steps along the spine where no reset operation is performed. Then these steps correspond
to a spine computation s. As all computations besides the spine start in a configuration (q,000) for some
state q ∈ Q, this process can be repeated recursively to obtain a spinal computation tree d.

Lemma 5. For every linear PTAR A with state set Q, if L (A) ̸= /0, then there is some spinal computa-
tion tree d ∈ Dq0 such that ht(d)≤ |Q|.

Proof. By Lemma 4, we know that L (A) ̸= /0 implies the existence of some d ∈Dq0 . Assume that there
is some path ρ1 . . .ρn in d such that n > |Q|. But then there are two distinct indices i and j ∈ [n], say
i < j, such that d(ρi) ∈ Sq and d(ρ j) ∈ Sq for some q ∈ Q. Construct

d′ = d
[
d|ρ j

]
ρi

.

It is easy to see that d′ is also a valid spinal computation tree in Dq0 , by inspection of the property used in
their definition. Moreover, size(d′)< size(d), so by iterating this construction a finite number of times,
we obtain a tree d′′ ∈ Dq0 such that ht(d′′)≤ |Q|.

Now we turn to an example for a tree language that is recognizable by a linear PTAR and still quite
powerful: Although each counter configuration is passed to exactly one subtree, this PTAR ensures that
an arithmetical constraint holds on each c-path in the trees it accepts.

Example 5. Let Σ = {a(2),b(2),c(1),d(1),#(0)}. Given a word w ∈ Σ∗, we denote by pref(w) the set of all
nonempty prefixes of w, i.e., pref(w) = {u ∈ Σ+ | u⊑ w}. Now consider the tree language Llin consisting
of trees ξ of the form

a(u1,a(u2, ...a(un,b(un+1, ...b(u2n,#)))))

2Note that this is the point mentioned in the preliminaries, because of which we must allow trees with labels from an infinite
ranked set: the set of labels used for Dq is the set of spine computations

⋃
q∈Q Sq.

110 Non-Global Parikh Tree Automata

for some n≥ 1 and with ui ∈ {cmdm# | m≥ 1} for each i ∈ [2n]. Thus, for each ξ ∈ Llin there is exactly
one c-path π ∈ paths(ξ) with ξ (π) = anbn# for some n≥ 1 and for each remaining c-path π ′ ∈ paths(ξ)
we have ξ (π ′) = wu with w ∈ pref(anbn) and u ∈ {cmdm# | m≥ 1}.

The tree language Llin can be recognized by the following linear 2-PTAR: A = (Q,Σ,q0,∆,C) where
Q = {qa,qb,qc,qd}, C = {(i, i) | i≥ 1}, and ∆ contains the following transitions:

• qa→ a(qc(⟲),qa(1,0)), qa→ b(qc(⟲),qb(0,1))

• qb→ b(qc(⟲),qb(0,1)), qb→ #, and

• qc→ c(qc(1,0)), qc→ d(qd(0,1)),

• qd → d(qd(0,1)), qd → #

Thus, in the states qa and qb, A counts number of as and bs, respectively. When switching into state qc,
the counter configuration is reset and from now on it counts the number of cs and ds. ◁

5 Expressiveness

In this section we want to examine how the different formalisms we have introduced relate to each other
in terms of their expressiveness.

5.1 GPTA and PTA

First, we want to compare the classes of tree languages recognizable by PTA and GPTA. As the different
counting mechanisms of the two models already intuitively suggest, the two classes are incomparable.
For the formal proof we use tree languages which require counting on paths, or global counting, respec-
tively. We start by showing that the tree language Lab from Example 3 can not be recognized by a global
Parikh tree automaton by using the exchange lemma we obtained for GPTA (Lemma 3).

Lemma 6. The tree language Lab is not GPTA-recognizable.

Proof. Assume that there is some GPTA A with L (A) = Lab and let p, l ∈N as in the proof of Lemma
3. Now consider, for n≥ 1, the tree

ξn =

a

BIN(1) a

BIN(2) . . .
a

BIN(n) BIN(n)

where BIN(n) is the complete binary tree over b of height n inductively defined by BIN(1) = b(#,#) and
BIN(i) = b(BIN(i−1),BIN(i−1)) for each i > 1. Clearly, ξn ∈ Lab for each n ∈ N.

Now choose n big enough such that there are at least l independent subtrees of height at least p in ξn

and, thus, the requirements of Lemma 3 are fulfilled. However, it is not hard to see that we will not find
a context ζ2 as in Lemma 3 in ξn such that item (2.) and (3.) of the lemma are satisfied: as ζ2 needs to
occur in two independent subtrees, it can only consist of bs. However, cutting out bs in one subtree and
inserting them in another one necessarily leads to c-paths that are not of the form akbk# anymore and,
thus, the resulting tree ξ ′ is not in Lab. This is a contradiction.

L. Herrmann, J. Osterholzer 111

We can use the exchange lemma in a very similar way to show that Llin, which is recognizable by a
linear PTAR, is not GPTA-recognizable either.

Corollary 1. The tree language Llin is not GPTA-recognizable.

For the other direction, we consider a tree language where the number of symbol occurrences on two
different paths are compared. This global counting behavior cannot be implemented by non-global PTA.

Example 6. Let Σ = {σ (2),γ(1),#(0)} and consider the tree language

Lγγ = {σ(γn#,γn#) | n ∈ N}

which can be recognized by the following 2-GPTA A : We let A = (Q,Σ,D,q0,∆,C) where Q =
{q0,q1,q2}, D = {(0,0),(1,0),(0,1)}, C = {(i, i) | i ∈ N}, and ∆ consists of the transitions

• q0→ ⟨σ ,(0,0)⟩(q1,q2),

• q1→ ⟨γ,(1,0)⟩(q1) and q2→ ⟨γ,(0,1)⟩(q2), as well as

• q1→ ⟨#,(0,0)⟩ and q2→ ⟨#,(0,0)⟩. ◁

Lemma 7. The language Lγγ is not PTA-recognizable.

Proof. Assume towards a contradiction there is some m ∈ N and an m-PTA A with L(A) = Lγγ . As all
trees in Lγγ are of the shape σ(γn#,γn#) for some n∈N, each computation of A on some ξ =σ(ξ1,ξ1)∈
Lγγ has to be of the form

(q0,000)⇒ σ((q1,s1),(q2,s2))⇒∗A ξ

for some (q1,s1),(q2,s2) ∈ ID. As ∆ is finite, there are only finitely many configurations (q,s) ∈ ID

reachable from (q0,000) in one step by reading a σ and occurring in a successful computation; we denote
the set of all those configurations by ID1. However, as Lγγ is infinite, there has to be a (q,s) ∈ ID1 with
(q,s)⇒∗A γn1#, (q,s)⇒∗A γn2#, and n1 ̸= n2. Suppose without loss of generality that (q,s) is reached in
the left subtree of σ , i.e. (q0,000)⇒A σ((q,s),(q′,s′)) for some (q′,s′) ∈ ID.

By the assumption on (q,s), there exists a computation

(q0,000)⇒ σ((q,s),(q′,s′))⇒∗A σ(ξ1,ξ1)

and we can assume that ξ1 = γn1#. But by the above also

(q0,000)⇒ σ((q,s),(q′,s′))⇒∗A σ(γn2#,ξ1)

and σ(γn2#,ξ1) /∈ Lγγ , which is a contradiction.

From Lemma 6 and 7 it immediately follows that the tree languages recognizable by GPTA and PTA
are incomparable.

Theorem 1. The classes of tree languages recognizable by GPTA and PTA are incomparable.

112 Non-Global Parikh Tree Automata

5.2 PTA, PTAR, and Linear PTAR

In contrast to the string case, in the tree case a reset cannot be simulated simply by guessing the last reset
position: because of branching, a counter configuration could be processed further in one subtree, while
a reset takes place in the second subtree. This observation is illustrated by the following example.
Example 7. We consider the ranked alphabet Σ = {σ (2),a(1),b(1),α(0)} as well as the 2-PTAR A =
({q0,q1},Σ,q0,∆,C) where C = {(i, i) | i ∈ N} and ∆ contains the following transitions:

• q j→ a(q j(1,0)) and q j→ b(q j(0,1)) for j ∈ {0,1},
• q0→ σ(q1(0,0),q0(⟲)), q0→ σ(q1(0,0),q1(0,0)), and

• q1→ α

It is easy to observe that for each tree ξ ∈ L (A) it holds that if the context σ(x1,w1(σ(w2α,x2)))
occurs in ξ for some w1,w2 ∈ {a,b}∗, then the number of as in w1w2 equals the number of bs in w1w2.
Moreover, each σ only occurs on the rightmost c-path in ξ . Thus, each ξ ∈L (A) is of the form

𝛔

𝛔

𝛔

𝛂

𝛂

𝛂

...

𝛂

#a = #b

#a = #b

#a = #b

where the red arrows indicate the paths in ξ on which the number constraint on as and bs is tested, re-
spectively. As there might be arbitrary many such tests that are not calculated in completely independent
subtrees, it is crucial to reset the counter configuration in between. ◁

Therefore, we strongly expect PTAR to be more expressive than PTA. However, our proof methods
for PTA were not sufficient to formally prove this statement.
Conjecture. PTA are strictly less expressive than PTAR.

Finally, we observe that also the property of a PTAR to be linear restricts its expressive power.
Lemma 8. Linear PTAR are strictly less expressive than PTAR.

Proof. Let Σ = {σ (2),γ(1),#(0)} and consider the tree language L3 = {γn(σ(γn#,γn#)) | n ∈ N}. This
tree language can be recognized by a 2-PTA A = ({q0,q1},Σ,q0,∆,C) where C = {(i, i) | i ∈ N} and ∆

consists of the transitions q0→ γ(q0(1,0)), q0→ σ(q1(0,0),q1(0,0)), q1→ γ(q1(0,1)), and q1→ #.
On the other hand, it is not hard to see that L3 cannot be recognized by any linear PTAR A ′: by

definition, each transition recognizing σ in A ′ has to be of the form q → σ(q1(d),q2(⟲)) or q →
σ(q1(⟲),q2(d)). Then the argumentation is very similar to the proof of Lemma 7: we will find a state p
such that (1) (p,000) occurs in a successful computation of A ′ and (2) there are n1,n2 ∈ N with n1 ̸= n2,
(p,000)⇒∗A ′ γn1#, and (p,000)⇒∗A ′ γn2#. Thus, A ′ cannot recognize L3.

L. Herrmann, J. Osterholzer 113

6 Decidability

Now we investigate the question of decidability for two basic problems of PTAR – the non-emptiness
problem and the membership problem.3 The former is undecidable in general: as soon as we consider
PTA of at least dimension 3, we can simulate calculations of two-counter machines [17, 12] in a sim-
ilar way as it was done in [16, Lemma 3.4] for and-branching two-counter machines without zero-test
(ACM).

A two-counter machine (2CM) is a tuple M = (Q,q0,Q f ,T) where Q is a finite set of states, q0 ∈ Q
is the initial state, Q f ⊆ Q is a set of final states and T is a finite set of transitions of the following two
forms:

(q, f ,q′) (instruction)

(q, p,q′) (zero-test)

where q,q′ ∈ Q, p ∈ {0(1),0(2)}, and f ∈ {inc(1), inc(2),dec(1),dec(2)}.
Define for convenience of notation ¬1 = 2 and ¬2 = 1. For each τ ∈ T we let ⇒τ be the binary

relation on Q×N×N such that for each (q,k1,k2),(q′,k′1,k
′
2) ∈ (Q×N×N) we have (q,k1,k2)⇒τ

(q′,k′1,k
′
2) if either

• τ = (q, inc(i),q′) for some i ∈ {1,2}, k′i = ki +1, and k′¬i = k¬i, or

• τ = (q,dec(i),q′) for some i ∈ {1,2}, ki > 0, k′i = ki−1, and k′¬i = k¬i, or

• τ = (q,0(i),q′), ki = 0, k′1 = k1, and k2 = k′2.

We let ⇒M=
⋃

τ∈T ⇒τ . We say that M accepts if (q0,0,0)⇒∗M (q f ,0,0) for some q f ∈ Q f . By the
classical result that, given a 2CM M and k1,k2 ∈ N, it is undecidable whether (q0,k1,k2)⇒∗M (q f ,0,0)
[17], it is straightforward to obtain undecidability of acceptance of 2CM.

Lemma 9 ([17]). Let M be a 2CM. It is undecidable whether (q0,0,0)⇒∗M (q f ,0,0) for some q f ∈ Q f .

Theorem 2. For each m≥ 3 and m-PTA A it is undecidable whether L (A) ̸= /0.

Proof. To prove the statement we reduce the acceptance problem of 2CM to the emptiness problem of
PTA similar to the proof of [16, Lemma 3.4]. The idea is to simulate zero-tests with branching: while
in the right successor the calculation continues as if the zero-test had been successful, in the left subtree
it is checked whether the zero-test is indeed successful. In contrast to 2CM and ACM, PTAs cannot
decrement their counters. Therefore, we need 3 counters to represent the counter values of 2CM – the
counter configuration (s1,s2, l) of a PTA stands for the value (s1− l,s2− l) of the 2CM; each (j, j, j)
represents (0,0). In addition, for each decrement of counter i it must be tested that l is smaller than si,
this also happens via branching.

Given a 2CM M = (Q,q0,Q f ,T), we construct the 3-PTA A as follows: Let Σ = {σ (2),γ(1),α(0)}
be a ranked alphabet and A = (Q′,Σ,q0,∆,C) where Q′ = Q∪{=1,=2,<1,<2}, C = {(i, i, i) | i ∈ N},
and ∆ consists of the following transitions:

• for each transition of the form (q, inc(i),q′) in T , the transition q→ γ(q′(d)) is in ∆ where d =
(2,1,1) if i = 1 and d = (1,2,1) if i = 2,

• for each transition of the form (q,dec(i),q′) in T , the transition

q→ σ(<i (d),q′(d))

is in ∆ where d = (0,1,1) if i = 1 and d = (1,0,1) if i = 2,

3Note that the universality problem is undecidable already for Parikh string automata [15, Prop. 7].

114 Non-Global Parikh Tree Automata

• for each transition of the form (q,0(i),q′) in T , the transition

q→ σ(=i (0,0,0),q′(0,0,0))

is in ∆,

• for each q f ∈ Q f the transition q f → α is in ∆,

• for each d ∈ {(0,1,0),(0,0,1),(1,0,1)} the transition <1→ γ(<1 (d)) is in ∆ and for each d′ ∈
{(1,0,0),(0,0,1),(0,1,1)} the transition <2→ γ(<2 (d′)) is in ∆,

• for each d ∈{(1,0,1),(0,1,0)} the transition =1→ γ(=1 (d)) is in ∆ and for each d′ ∈{(0,1,1),(1,0,0)}
the transition =2→ γ(=2 (d′)) is in ∆, and

• the transitions <i→ α and =i→ α are in ∆ for each i ∈ {1,2}.
We can show that L (A) ̸= /0 if and only if (q0,0,0)⇒∗M (q f ,0,0) for some q f ∈ Q f by induction

on the length of the respective computations. For this, we note that the mapping ϕ : T → ∆ given by the
above construction is an injection. Moreover, the following three observations are helpful:

Observation 1. Let s1,s2, l ∈ N. Then (<i,(s1,s2, l))⇒∗A γn(<i,(j, j, j))⇒A γn(α) for some j ∈ N if
and only of either i = 1 and l ≤ s1 or i = 2 and l ≤ s2.

Observation 2. Let s1,s2, l ∈ N. Then (=i,(s1,s2, l))⇒∗A γn(=i,(j, j, j))⇒A γn(α) for some j ∈ N if
and only of either i = 1 and s1 = l or i = 2 and s2 = l.

Observation 3. Let q1,q2 ∈ Q, let s1,s2, l,s′1,s
′
2, l
′ ∈ N, and let ζ ∈ CΣ(X1). If (q1,(s1,s2, l)) ⇒∗A

ζ [(q2,(s′1,s
′
2, l
′))], then also (q1,(s1 +1,s2 +1, l +1))⇒∗A ζ [(q2,(s′1 +1,s′2 +1, l′+1))].

By using Lemma 9, we can conclude that non-emptiness of m-PTA for m≥ 3 is undecidable.

Now we come to a case of PTAR for which the situation is different: we can show that for linear
PTAR non-emptiness is decidable. To do so, we use the fact that for every non-empty linear PTAR
there must be a tree with less than |Q|+ 1 non-reset paths (Lemma 5) and, thus, reduce the problem to
non-emptiness of Parikh string automata, which is decidable (Lemma 2).

Definition 1. Let A = (Q,Σ,q0,∆,C) be a linear PTAR, U ⊆ Q, and q ∈ Q. The (U,q)-linearization
automaton of A is the PA A ′ = (Q,Σ,q,∆′,F,C) where

F = {p | p→ α ∈ ∆,α ∈ Σ
(0)}∪{p | p→ σ(q1(d1), . . . ,qn(dn)) ∈ ∆,d1, . . . ,dn =⟲,q1, . . . ,qn ∈U}

and ∆′ contains the transition (p,σ ,d, p′) if and only if there is a transition p→ σ(q1(d1), . . . ,qn(dn)) ∈
∆, i ∈ [n], such that qi = p′ and di = d ̸=⟲, and q1, . . . ,qi−1,qi+1, . . . ,qn ∈U .

Theorem 3. Given a linear PTAR A , it is decidable whether L (A) ̸= /0.

Proof. Consider Algorithm 1. We claim that this algorithm is a decision procedure for the non-emptiness
problem of linear PTAR.

Observe that, for every U ⊆Q and every q∈Q, when A ′ is the (U,q)-linearization automaton of A ,
we have

L (A ′) ̸= /0 iff ∃s ∈ Sq : stateseq(s) ∈U∗ . (⋆)

By this property, we can conclude that the following loop invariant holds for the outer loop of the
algorithm: for every j ∈ N and q ∈ Q, we have

q ∈U j iff ∃d ∈ Dq : ht(d)≤ j .

L. Herrmann, J. Osterholzer 115

Algorithm 1 Decision procedure for non-emptiness of linear PTAR
Input: linear PTAR A = (Q,Σ,q0,∆,C)
Output: “L (A) ̸= /0” if L (A) ̸= /0, otherwise “L (A) = /0”.

U0← /0, i← 0
repeat

Ui+1←Ui

for q ∈ Q do
Construct the (Ui,q)-linearization automaton A ′ of A .
if L (A ′) ̸= /0 then

Ui+1←Ui+1∪{q}
end if

end for
i← i+1

until Ui =Ui−1
if q0 ∈Ui then Output “L (A) ̸= /0” else Output “L (A) = /0” end if

The proof of the loop invariant is by induction on j. The base case j = 0 is vacuously true, so assume
the property is proven for some j ∈ N. For the direction “only if”, assume some q ∈U j+1. The case
q ∈ U j is already covered by the induction hypothesis, so it remains to consider q ∈ U j+1 \U j. Then
the language of the (U j,q)-linearization automaton of A is nonempty, hence there is some s ∈ Sq with
stateseq(s) ∈U∗j by (⋆). Moreover, by the induction hypothesis, there are, for all states qi in stateseq(s),
computation trees di ∈Dqi with ht(di)≤ j. So the computation tree s(d1, . . . ,dn) ∈Dq has height at most
j+1.

For the direction “if”, assume that there is some d ∈Dq such that ht(d)≤ j+1. Again, if ht(d)< j+
1, we can apply the induction hypothesis and are done immediately. So consider the case ht(d) = j+1.
Then d = s(d1, . . . ,sℓ) for some s∈ Sq, ℓ∈N and di ∈Dqi for all i∈ [ℓ]. In particular ht(di)≤ j, so qi ∈U j

by the induction hypothesis. Moreover, by (⋆), the language of the (U j,q)-linearization automaton is
nonempty, so we obtain that q ∈U j+1.

To show correctness of the algorithm, assume that the algorithm outputs “L (A) ̸= /0”. Then we
have q0 ∈Uk, where k is the value of the counter i after the outer loop terminates. By the loop invariant,
there is some d ∈ Dq0 , and by Lemma 4, L (A) ̸= /0.

For the proof of completeness of the algorithm, assume that L (A) ̸= /0. By Lemma 5, there is some
d ∈Dq0 with ht(d)≤ |Q|, and by the loop invariant, this means that q0 ∈U j for some j ≤ |Q|. Thus, also
q0 ∈Uk, where k is the value of the counter i after the outer loop terminates. So the algorithm outputs
“L (A) ̸= /0”.

Finally, we obtain that membership is decidable for arbitrary PTAR.

Theorem 4. Given an m-PTAR A over Σ and a tree ξ ∈ TΣ, it is decidable whether ξ ∈L (A).

Proof. In order to check whether ξ ∈L (A), the naive approach is sufficient: Clearly, ξ ∈L (A) if
and only if compA (ξ) ̸= /0. As each t ∈ compA (ξ) is of length |ξ |, we can simply guess a sequence of
transitions τ1 . . .τ|ξ | and check whether its application in lexicographic order results in a valid computa-
tion. This mainly involves to ensure a valid state behavior and to test for each leaf whether the reached
counter configuration is an element of C. The latter is decidable due to Lemma 1.

116 Non-Global Parikh Tree Automata

7 Conclusion

In this work, we introduced non-global PTA and compared its expressive power with that of GPTA. To
do so, we generalized an exchange lemma known from Parikh word automata to GPTA. Furthermore, we
investigated the question of decidability of non-emptiness and membership for PTA and linear PTAR.

Future work Our investigations in this paper were only a first step and raise many more questions that
can be addressed in future work. In particular, we think it worthwhile to further investigate the following
questions:

• Is it possible to formulate an exchange lemma for (linear) PTA(R)? Since the successful computa-
tions of all subtrees of a node depend on the current counter configuration, our attempts to reorder
parts of a computation have not been successful so far.

• Are PTAR strictly more expressive than PTA?

Finally, we did not investigate closure properties for the different models introduced in this work as well
as complexities of their non-emptiness and membership problems. We think that a further study could
contribute to a more complete picture.

Acknowledgements We want to thank the reviewers for their insightful and detailed comments, which
helped us to improve the paper. In particular, one of the reviewers had a really nice idea how to strengthen
the undecidability result from 4-PTA to 3-PTA.

References

[1] Michaël Cadilhac, Alain Finkel & Pierre McKenzie (2011): On the Expressiveness of Parikh Automata
and Related Models. In Rudolf Freund, Markus Holzer, Carlo Mereghetti, Friedrich Otto & Beatrice
Palano, editors: Third Workshop on Non-Classical Models for Automata and Applications (NCMA 2011),
books@ocg.at 282, Austrian Computer Society, pp. 103–119.

[2] Michaël Cadilhac, Arka Ghosh, Guillermo A. Pérez & Ritam Raha (2023): Parikh One-Counter Automata.
In Jérôme Leroux, Sylvain Lombardy & David Peleg, editors: 48th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS 2023), LIPIcs 272, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, pp. 30:1–30:15, doi:10.4230/LIPIcs.MFCS.2023.30.

[3] Jean-Baptiste Courtois & Sylvain Schmitz (2014): Alternating Vector Addition Systems with States. In Erzsé-
bet Csuhaj-Varjú, Martin Dietzfelbinger & Zoltán Ésik, editors: Mathematical Foundations of Computer
Science 2014, LNCS 8634, Springer, pp. 220–231, doi:10.1007/978-3-662-44522-8_19.

[4] Akio Fujiyoshi & Takumi Kasai (2000): Spinal-Formed Context-Free Tree Grammars. Theory Comput. Syst.
33(1), pp. 59–83, doi:10.1007/S002249910004.

[5] Seymour Ginsburg & Edwin Spanier (1966): Semigroups, Presburger formulas, and languages. Pacific
Journal of Mathematics 16(2), pp. 285–296, doi:10.2140/pjm.1966.16.285.

[6] Mario Grobler, Leif Sabellek & Sebastian Siebertz (2024): Remarks on Parikh-Recognizable Omega-
languages. In Aniello Murano & Alexandra Silva, editors: 32nd EACSL Annual Conference on Computer
Science Logic (CSL 2024), LIPIcs 288, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, pp. 31:1–31:21,
doi:10.4230/LIPIcs.CSL.2024.31.

[7] I. Guessarian (1981): On pushdown tree automata. In G. Goos, J. Hartmanis, W. Brauer, P. Brinch Hansen,
D. Gries, C. Moler, G. Seegmüller, J. Stoer, N. Wirth, Egidio Astesiano & Corrado Böhm, editors: CAAP
’81, 112, Springer, pp. 211–223, doi:10.1007/3-540-10828-9_64.

https://doi.org/10.4230/LIPIcs.MFCS.2023.30
https://doi.org/10.1007/978-3-662-44522-8_19
https://doi.org/10.1007/S002249910004
https://doi.org/10.2140/pjm.1966.16.285
https://doi.org/10.4230/LIPIcs.CSL.2024.31
https://doi.org/10.1007/3-540-10828-9_64

L. Herrmann, J. Osterholzer 117

[8] Shibashis Guha, Ismaël Jecker, Karoliina Lehtinen & Martin Zimmermann (2022): Parikh Automata over In-
finite Words. In Anuj Dawar & Venkatesan Guruswami, editors: 42nd IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science (FSTTCS 2022), LIPIcs 250, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 40:1–40:20, doi:10.4230/LIPICS.FSTTCS.2022.40.

[9] Christoph Haase & Simon Halfon (2014): Integer Vector Addition Systems with States. In Joël Ouaknine,
Igor Potapov & James Worrell, editors: Reachability Problems, Springer, pp. 112–124, doi:10.1007/978-3-
319-11439-2_9.

[10] Luisa Herrmann (2021): Linear weighted tree automata with storage and inverse linear tree homomorphisms.
Information and Computation 281, p. 104816, doi:10.1016/j.ic.2021.104816.

[11] Luisa Herrmann, Vincent Peth & Sebastian Rudolph (2024): Decidable (Ac)counting with Parikh and
Muller: Adding Presburger Arithmetic to Monadic Second-Order Logic over Tree-Interpretable Struc-
tures. In Aniello Murano & Alexandra Silva, editors: 32nd EACSL Annual Conference on Computer Sci-
ence Logic (CSL 2024), LIPIcs 288, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 33:1–33:19,
doi:10.4230/LIPICS.CSL.2024.33.

[12] John Hopcroft, Rajeev Motwani & Jeffrey Ullmann (2000): Introduction to Automata Theory, Languages,
and Computation, 2 edition. Addison-Wesley.

[13] Felix Klaedtke (2004): Automata-based decision procedures for weak arithmetics. Ph.D. thesis, University
of Freiburg. Available at http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html.

[14] Felix Klaedtke & Harald Rueß (2002): Parikh automata and monadic second-order logics with linear cardi-
nality constraints. Technical Report 177, Albert-Ludwigs-Universität Freiburg. (revised version).

[15] Felix Klaedtke & Harald Rueß (2003): Monadic Second-Order Logics with Cardinalities. In Jos C. M.
Baeten, Jan Karel Lenstra, Joachim Parrow & Gerhard J. Woeginger, editors: Automata, Languages
and Programming, 30th International Colloquium (ICALP 2003), LNCS 2719, Springer, pp. 681–696,
doi:10.1007/3-540-45061-0_54.

[16] Patrick Lincoln, John Mitchell, Andre Scedrov & Natarajan Shankar (1992): Decision problems for proposi-
tional linear logic. Annals of Pure and Applied Logic 56(1), pp. 239–311, doi:10.1016/0168-0072(92)90075-
B.

[17] Marvin L. Minsky (1967): Computation: finite and infinite machines. Prentice-Hall, Inc.
[18] J. W. Thatcher & J. B. Wright (1968): Generalized finite automata theory with an application to a decision

problem of second-order logic. Mathematical systems theory 2, pp. 57–81, doi:10.1007/BF01691346.

https://doi.org/10.4230/LIPICS.FSTTCS.2022.40
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1016/j.ic.2021.104816
https://doi.org/10.4230/LIPICS.CSL.2024.33
http://freidok.ub.uni-freiburg.de/volltexte/1439/index.html
https://doi.org/10.1007/3-540-45061-0_54
https://doi.org/10.1016/0168-0072(92)90075-B
https://doi.org/10.1016/0168-0072(92)90075-B
https://doi.org/10.1007/BF01691346

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024

EPTCS 407, 2024, pp. 118–135, doi:10.4204/EPTCS.407.9

© M. Ködding & B. Truthe

This work is licensed under the

Creative Commons Attribution License.

Various Types of Comet Languages and their Application in

External Contextual Grammars

Marvin Ködding Bianca Truthe

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{marvin.koedding,bianca.truthe}@informatik.uni-giessen.de

In this paper, we continue the research on the power of contextual grammars with selection languages

from subfamilies of the family of regular languages. We investigate various comet-like types of

languages and compare such language families to some other subregular families of languages (finite,

monoidal, nilpotent, combinational, (symmetric) definite, ordered, non-counting, power-separating,

suffix-closed, commutative, circular, or union-free languages). Further, we compare the language

families defined by these types for the selection with each other and with the families of the hierarchy

obtained for external contextual grammars. In this way, we extend the existing hierarchy by new

language families.

Keywords: Comet languages, contextual grammars, subregular selection languages, computational ca-

pacity.

1 Introduction

Contextual grammars were first introduced by Solomon Marcus in [16] as a formal model that might be

used for the generation of natural languages. The derivation steps consist in adding contexts to given

well-formed sentences, starting from an initial finite basis. Formally, a context is given by a pair (u,v) of

words and the external adding to a word x gives the word uxv. In order to control the derivation process,

contextual grammars with selection in a certain family of languages were defined. In such contextual

grammars, a context (u,v) may be added only around a word x if this word x belongs to a language

which is associated with the context. Language families were defined where all selection languages in a

contextual grammar belong to some language family F .

The study of external contextual grammars with selection in special regular sets was started by Jürgen

Dassow in [6]. The research was continued by Jürgen Dassow, Florin Manea, and Bianca Truthe (see [8])

where further subregular families of selection languages were considered.

In the present paper, we extend the hierarchy of subregular language families by families of comet-

like languages. Furthermore, we investigate the generative capacity of external contextual grammars

with selection in such subregular language families.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the basic concepts of the theory of

automata and formal languages. For details, we refer to [22]. Here we only recall some notation, defini-

tions, and previous results which we need for the present research.

An alphabet is a non-empty finite set of symbols. For an alphabet V , we denote by V ∗ and V+ the

set of all words and the set of all non-empty words over V , respectively. The empty word is denoted

http://dx.doi.org/10.4204/EPTCS.407.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Ködding & B. Truthe 119

by λ . For a word w and a letter a, we denote the length of w by |w| and the number of occurrences of

the letter a in the word w by |w|a. For a set A, we denote its cardinality by |A|. The reversal of a word w

is denoted by wR: if w = x1x2 . . .xn for letters x1, . . . ,xn, then wR = xnxn−1 . . .x1. By LR, we denote the

language of all reversals of the words in L: LR = { wR | w ∈ L }.

A deterministic finite automaton is a quintuple

A= (V,Z,z0,F,δ)

where V is a finite set of input symbols, Z is a finite set of states, z0 ∈ Z is the initial state, F ⊆ Z is

a set of accepting states, and δ is a transition function δ : Z ×V → Z. The language accepted by such

an automaton is the set of all input words over the alphabet V which lead letterwise by the transition

function from the initial state to an accepting state.

A regular expression over some alphabet V is defined inductively as follows:

1. ∅ is a regular expression;

2. every element x ∈V is a regular expression;

3. if R and S are regular expressions, so are the concatenation R · S, the union R∪ S, and the Kleene

closure R∗;

4. for every regular expression, there is a natural number n such that the regular expression is obtained

from the atomic elements ∅ and x ∈V by n operations concatenation, union, or Kleene closure.

The language L(R) which is described by a regular expression R is also inductively defined:

1. L(∅) = ∅;

2. for every element x ∈V , we have L(x) = {x};

3. if R and S are regular expressions, then

L(R ·S) = L(R) ·L(S), L(R∪S) = L(R)∪L(S), L(R∗) = (L(R))∗.

A general regular expression admits as operations (in the third item of the definition above) also

intersection (where L(R∩S) = L(R)∩L(S)) and complementation (where L(R) = L(R)).

All the languages accepted by a finite automaton or described by some regular expression are called

regular and form a family denoted by REG. Any subfamily of this set is called a subregular language

family.

2.1 Some subregular language families

We consider the following restrictions for regular languages. In the following list of properties, we give

already the abbreviation which denotes the family of all languages with the respective property. Let L be

a regular language over an alphabet V . With respect to the alphabet V , the language L is said to be

• monoidal (MON) if and only if L =V ∗,

• nilpotent (NIL) if and only if it is finite or its complement V ∗ \L is finite,

• combinational (COMB) if and only if it has the form L =V ∗X for some subset X ⊆V ,

• definite (DEF) if and only if it can be represented in the form L = A∪V ∗B where A and B are finite

subsets of V ∗,

120 Various Types of Comet Languages and their Application in External Contextual Grammars

• symmetric definite (SYDEF) if and only if L = EV ∗H for some regular languages E and H ,

• suffix-closed (SUF) (or fully initial or multiple-entry language) if and only if, for any two words

over V , say x ∈V ∗ and y ∈V ∗, the relation xy ∈ L implies the relation y ∈ L,

• ordered (ORD) if and only if the language is accepted by some deterministic finite automaton

A= (V,Z,z0,F,δ)

with an input alphabet V , a finite set Z of states, a start state z0 ∈ Z, a set F ⊆ Z of accepting states

and a transition mapping δ where (Z,�) is a totally ordered set and, for any input symbol a ∈V ,

the relation z � z′ implies δ (z,a) � δ (z′,a),

• commutative (COMM) if and only if it contains with each word also all permutations of this word,

• circular (CIRC) if and only if it contains with each word also all circular shifts of this word,

• non-counting (NC) if and only if there is a natural number k ≥ 1 such that, for any three

words x ∈V ∗, y ∈V ∗, and z ∈V ∗, it holds xykz ∈ L if and only if xyk+1z ∈ L,

• star-free (SF) if and only if L can be described by a regular expression which is built by concate-

nation, union, and complementation,

• power-separating (PS) if and only if, there is a natural number m≥ 1 such that for any word x∈V ∗,

either Jm
x ∩L = ∅ or Jm

x ⊆ L where Jm
x = { xn | n ≥ m },

• union-free (UF) if and only if L can be described by a regular expression which is only built by

concatenation and Kleene closure,

• star (STAR) if and only if L = H∗ for some regular language H ⊆V ∗,

• left-sided comet (LCOM) if and only if L = EG∗ for some regular language E and a regular lan-

guage G /∈ {∅,{λ}},

• right-sided comet (RCOM) if and only if L = G∗H for some regular language H and a regular

language G /∈ {∅,{λ}},

• two-sided comet (2COM) if and only if L=EG∗H for two regular languages E and H and a regular

language G /∈ {∅,{λ}}.

We remark that monoidal, nilpotent, combinational, (symmetric) definite, ordered, non-counting, star-

free, union-free, star, and (left-, right-, or two-sided) comet languages are regular, whereas non-regular

languages of the other types mentioned above exist. Here, we consider among the suffix-closed, commu-

tative, circular, and power-separating languages only those which are also regular. By FIN, we denote the

family of languages with finitely many words. In [17], it was shown that the families of the non-counting

languages and the star-free languages are equivalent (NC = SF).

Some properties of the languages of the classes mentioned above can be found in [23] (monoids), [10]

(nilpotent languages), [13] (combinational and commutative languages), [21] (definite languages), [20]

(symmetric definite languages), [11] and [5] (suffix-closed languages), [24] (ordered languages), [15]

(circular languages), [17] (non-counting and star free languages), [25] (power-separating languages), [2]

(union-free languages), [3] (star languages), [4] (comet languages).

M. Ködding & B. Truthe 121

2.2 Contextual grammars

Let F be a family of languages. A contextual grammar with selection in F is a triple G = (V,S,A) where

– V is an alphabet,

– S is a finite set of selection pairs (S,C) with a selection language S over some subset U of the al-

phabet V which belongs to the family F with respect to the alphabet U and a finite set C ⊂V ∗×V ∗

of contexts where, for each context (u,v) ∈C, at least one side is not empty: uv 6= λ ,

– A is a finite subset of V ∗ (its elements are called axioms).

We write a selection pair (S,C) also as S →C. In the case that C is a singleton set C = {(u,v)}, we also

write S → (u,v). For a contextual grammar G = (V,{ (S1,C1),(S2,C2), . . . ,(Sn,Cn)} ,A), we set

ℓA(G)=max{ |w| | w ∈ A} , ℓC(G)=max{ |uv| | (u,v) ∈Ci,1 ≤ i ≤ n} , ℓ(G)= ℓA(G)+ℓC(G)+1.

We now define the derivation modes for contextual grammars with selection.

Let G = (V,S,A) be a contextual grammar with selection. A direct external derivation step in G is

defined as follows: a word x derives a word y (written as x =⇒ y) if and only if there is a pair (S,C) ∈ S
such that x ∈ S and y = uxv for some pair (u,v) ∈C. Intuitively, one can only wrap a context (u,v) ∈C

around a word x if x belongs to the corresponding selection language S.

By =⇒∗ we denote the reflexive and transitive closure of the relation =⇒. The language generated

by G is L = { z | x =⇒∗ z for some x ∈ A }.

Example 1 Consider the contextual grammar G = ({a,b,c},{(S1 ,C1),(S2,C2)},{λ}) with

S1 = {a,b}∗, C1 = {(λ ,a),(λ ,b)}, S2 = {ab}∗, C2 = {(c,c)}.

Starting from the axiom λ , every word of the language S1 is generated by applying the first selection.

Starting from any word of S2 ⊂ S1, every word of the language {c}S2{c} is generated by applying the

second selection. Other words are not generated.

Thus, the language generated is

L(G) = {a,b}∗ ∪{ c(ab)nc | n ≥ 0 }.

Both selection languages are ordered: The language S1 is accepted by a finite automaton with exactly

one state. Hence, it is ordered. The language S2 is accepted by the following deterministic finite automa-

ton A = ({z0,z1,z2,z3},{a,b},δ ,z1 ,{z1}) where the transition function is illustrated in the following

picture and given in the table next to it, from which it can be seen that the automaton is ordered:

z1start z2

z3z0

a

b

b a

a,ba,b

z0 z1 z2 z3

a z0 z2 z3 z3

b z0 z0 z1 z3 ♦

By EC(F), we denote the family of all languages generated externally by contextual grammars with

selection in F . When a contextual grammar works in the external mode, we call it an external contextual

grammar.

The language generated by the external contextual grammar in Example 1 belongs, for instance, to

the family EC(ORD) because all selection languages (S1 and S2) are ordered.

122 Various Types of Comet Languages and their Application in External Contextual Grammars

3 Results on families of comet languages

We first present some observations about star languages and two-sided comet languages, we give normal

forms for two-sided comets, and we insert the subregular families investigated here into the existing

hierarchy.

From the structure of two-sided comet languages (languages L of the form EG∗H where G is neither

the empty set nor the set with the empty word only), we see that every such language is infinite if none

of the sets E , G, and H is the empty set. If one of the sets E or H is empty, then the whole language L is

also empty.

Lemma 2 For each language L ∈ 2COM, it holds that L is either infinite or empty.

A similar observation can be made for star languages.

Lemma 3 For each language L ∈ STAR, it holds that L either is infinite or consists of the empty word λ .

3.1 Normal forms

We first show some observations before we conclude a normal form for languages from the class 2COM.

This normal form is later used when we prove that 2COM-languages as selection languages are as pow-

erful as arbitrary regular languages.

Lemma 4 Each two-sided comet language L = EG∗H can be represented as a finite union

L =
n
⋃

i=1

EiG
∗H

for some number n ≥ 1 and with union-free languages Ei for all 1 ≤ i ≤ n.

Proof. Let L = EG∗H be a two-sided comet language. Every regular language is the union of finitely

many union-free languages [18]. Let n ≥ 1 be a natural number and Ei be a union-free language for any i

with 1 ≤ i ≤ n such that E = E1 ∪E2 ∪·· ·∪En. Then, it follows L = E1G∗H ∪E2G∗H ∪·· ·∪EnG∗H . �

In order to show later that we can transform any 2COM-language into the mentioned normal form,

we now present how an infinite union-free language can be represented by a special 2COM-form.

Lemma 5 For an infinite union-free language L, there exist sets Ll , Li, and Lr such that L = LlL
∗

i Lr

where Ll is finite and Li /∈ {∅,{λ}}.

Proof. We prove the assertion inductively via the number of construction steps required to create a

regular expression R such that L = L(R) holds. In construction step 0, only finite languages are created.

Therefore, the base case is n = 1.

Base case n = 1: Since L is infinite, we have R = {x}∗ for a letter x ∈ V . A desired representation for

the language L is then {λ}{x}∗{λ}.

Induction step n → n+1: Assume the induction hypothesis: For every regular expression R without the

union operator which describes an infinite language and which is at construction level of at most n, the

language L(R) can be represented as L(R) = LlL
∗

i Lr with |Ll| <∞ and Li /∈ {∅,{λ}}. Now, let R be

a regular expression of construction level n+1 which describes an infinite language and which does not

M. Ködding & B. Truthe 123

contain the union operator. Then, there are two possibilities how R is built: by concatenation of two

regular expressions where for at least one of the described languages the induction hypothesis holds or

by Kleene closure of a regular expression which neither describes the empty set nor the language {λ}
(otherwise, L(R) would be finite).

Case 1: Let R = ST . Then, the equation L(R) = L(S)L(T) holds. If L(S) is infinite, we get, ac-

cording to the induction hypothesis, L(S) = SlS
∗

i Sr for suitable sets Sl , Si, and Sr. With Rl = Sl , Ri = Si,

and Rr = SrL(T), we obtain L(R) =RlR
∗

i Rr with |Rl|<∞ and Ri /∈ {∅,{λ}}. If L(S) is finite, then L(T)
is infinite (because we consider only such R where L(R) is infinite) and we get, according to the induc-

tion hypothesis, that L(T)= TlT
∗

i Tr for suitable sets Tl , Ti, and Tr. With Rl = L(S)Tl , Ri = Ti, and Rr = Tr,

we obtain a desired representation L(R) = RlR
∗

i Rr with |Rl|<∞ and Ri /∈ {∅,{λ}}.

Case 2: Let R = S∗. Then, the equation L(R) = (L(S))∗ holds. Thus, with Rl = {λ}, Ri = L(S),
and Rr = {λ}, we obtain that L(R) = RlR

∗

i Rr with |Rl|<∞ and Ri /∈ {∅,{λ}}.

Hence, every infinite union-free language can be expressed in the claimed form. �

We proved with Lemma 4 that any 2COM-language can be given as a union of finitely many 2COM-

languages where the first comet tail is always union-free. Together, we obtain that any 2COM-language

has a representation in the 2COM-form where the first comet tail is a finite set.

Lemma 6 For each two-sided comet language L = EG∗H with E ∈ UF, there exist a finite language E ′,

a language G′ /∈ {∅,{λ}}, and a regular language H ′ such that L = E ′(G′)∗H ′.

Proof. We have shown in Lemma 2 that each two-sided comet language L is either empty or infinite.

For the first case, the assertion holds with E ′ = ∅ and any regular languages G′ /∈ {∅,{λ}} and H ′.

Now, let L = EG∗H be an infinite 2COM-language with E ∈ UF. If E is finite, then we already have

a desired form with E ′ = E , G′ = G, and H ′ = H .

So, let E be infinite. By Lemma 5, we know that there are languages El , Ei, and Er such that El is a

finite set, Ei /∈ {∅,{λ}}, and E = ElE
∗

i Er. If we set E ′ = El, G′ = Ei, and H ′ = ErG
∗H , then we obtain a

desired form because L = E ′(G′)∗H ′ where E ′ is finite, G′ /∈ {∅,{λ}}, and H ′ is a regular language. �

Now we connect the previous lemmas and conclude that, for every two-sided comet language, there

is such a representation where the first comet tail of the language is finite.

Theorem 7 (Normal form for 2COM-languages) For each two-sided comet language, there exists a

representation L = EG∗H such that E is a finite language and G /∈ {∅,{λ}}.

Proof. According to Lemma 4, any two-sided comet language L = E ′(G′)∗H ′ can be represented as

a union of finitely many languages E ′

i (G
′)∗H ′ such that all languages E ′

i are union-free. According to

Lemma 6, every such language E ′

i(G
′)∗H ′ can in turn be represented as a 2COM-language EiG

∗H where

the first tail Ei is finite. The union E of all these finite languages Ei is also finite. Hence, we obtain

L = E ′(G′)∗H ′ =
n
⋃

i=1

E ′

i (G
′)∗H ′ =

n
⋃

i=1

EiG
∗H =

(

n
⋃

i=1

Ei

)

G∗H = EG∗H

where E is finite and G /∈ {∅,{λ}}. �

We refer to this representation as a left-sided normal form. A right-sided normal form (where the last

comet tail is a finite set) can be derived in a similar way.

124 Various Types of Comet Languages and their Application in External Contextual Grammars

3.2 Hierarchy of subregular language classes

In this section, we investigate inclusion relations between various subregular languages classes. Figure 1

shows the results.

MON

FIN

NILCOMB

DEFSYDEF SUF

ORD

NC
[17]
= SF

PS

RCOMLCOM

2COM

COMM

CIRCUF

STAR

REG

16

17

[1]17

[1]

16

[14]

[27]

[14]

[14]

[27]

[31]

[14]

[24]

[25]

[14]

[27]

[14]

[31]

[13][19]

17 [19]

[19]

Figure 1: Resulting hierarchy of subregular language families

An arrow from a node X to a node Y stands for the proper inclusion X ⊂ Y . If two families are

not connected by a directed path, then they are incomparable. An edge label refers to the paper where

the proper inclusion has been shown (in some cases, it might be that it is not the first paper where

the respective inclusion has been mentioned, since it is so obvious that it was not emphasized in a

publication) or the lemma of this paper where the proper inclusion will be shown.

In the literature, it is often said that two languages are equivalent if they are equal or differ at most

in the empty word. Similarly, two families can be regarded to be equivalent if they differ only in the

languages ∅ or {λ}. Therefore, the set STAR of all star languages is sometimes regarded as a proper

subset of the set COM of all (left-, right-, or two-sided) comet languages although {λ} belongs to the

family STAR but not to LCOM, RCOM or 2COM. We regard STAR and STAR\{{λ}} as different. Then,

the family STAR is incomparable to LCOM, RCOM, and 2COM, as we will later show.

For space reasons, we give the following observation without a proof.

Lemma 8 Whenever a language L is a right-sided comet then its reversal LR is a left-sided comet lan-

guage and vice versa.

Corollary 9 We have LCOM = { LR | L ∈ RCOM } and RCOM = { LR | L ∈ LCOM }.

M. Ködding & B. Truthe 125

We now present some languages which will serve later as witness languages for proper inclusions or

incomparabilities.

Lemma 10 The language L = {λ} is in STAR\2COM.

Proof. The language L is a star language since L = H∗ with H = {λ}. According to Lemma 2, a

two-sided comet language is either infinite or the empty language. Hence, L is not a two-sided comet. �

Lemma 11 Let L = { a2n | n ≥ 0 }. Then, it holds L ∈ (STAR∩LCOM∩RCOM)\PS.

Proof. Let G = {aa} and E = H = {λ}. The language L can be expressed as L = G∗ = EG∗ = G∗H .

Therefore, L ∈ STAR∩LCOM∩RCOM.

Assume that L ∈ PS. Then, there is a natural number m ≥ 1 such that, for any word x ∈ {a}∗,

either Jm
x ∩ L = ∅ or Jm

x ⊆ L where Jm
x = { xn | n ≥ m }. For any natural number m ≥ 1, we have with

the word x = a the set Jm
a = { an | n ≥ m }. Since a2m ∈ Jm

a ∩ L, the intersection is not empty. But,

since a2m+1 ∈ Jm
a \L, it neither holds Jm

a ⊆ L. Hence, the language L is not power-separating. �

Lemma 12 Let L = {ab}∗. Then, it holds L ∈ (STAR∩LCOM∩RCOM)\CIRC.

Proof. Let G = {ab} and E = H = {λ}. The language L can be expressed as L = G∗ = EG∗ = G∗H .

Therefore, L ∈ STAR∩LCOM∩RCOM.

Assume that the language L is circular. Then, the word ba would belong to it because ab ∈ L but it

does not. Hence, L /∈ CIRC. �

Lemma 13 ([19]) Let V = {a,b} be an alphabet, H = {ba}{b}∗({aa}{b}∗)∗ a regular language over V ,

and L =V ∗H. Then, L ∈ SYDEF \SF.

Proof. The language L can be represented as {λ}V ∗H . So, the language is symmetric definite. As

shown in [19], the language is not star-free. �

Lemma 14 Let L1 = { anb | n ≥ 0 } and L2 = LR
1 . Then, L1 ∈ RCOM\LCOM and L2 ∈ LCOM\RCOM.

Proof. The language L1 can be expressed as {a}∗{b}, hence, in the form L1 = G∗H with G = {a}
and H = {b}. Thus, L1 ∈ RCOM.

Assume that L1 ∈ LCOM. Then, two languages E and I would exist such that L1 = EI∗. Since b is a

suffix of every word in L1, the letter b is also a suffix of a word in I. But then L1 would also contain a

word with more than one b which is a contradiction. Hence, L1 /∈ LCOM.

By Corollary 9, it follows that L2 ∈ LCOM \RCOM. �

Lemma 15 The language L = {λ ,a} belongs to the set (FIN ∩SUF∩COMM)\ (STAR∪2COM).

Proof. All suffixes of all words of the language L belong to L. Thus, L is suffix-closed. Furthermore,

the language is finite but not empty and commutative. According to Lemma 2, each two-sided comet

language is either empty or infinite. Hence, L is not a two-sided comet language. According to Lemma 3,

each star language is either infinite or contains only the empty word. Hence, L is not a star language

either. �

We now prove some proper inclusions.

126 Various Types of Comet Languages and their Application in External Contextual Grammars

Lemma 16 We have the proper inclusions MON ⊂ STAR ⊂ UF.

Proof. We first prove the relation MON ⊂ STAR: Any monoidal language can be expressed as L = V ∗

for some alphabet V . Since V is a regular language, L is a star language. A witness language for the

properness is the language L = { a2n | n ≥ 0 } as shown in Lemma 11.

We now prove the relation STAR⊂UF: Every language H∗ for some regular language H is union-free

according to [18]. A witness language for the properness is L = {a} which is union-free but, according

to Lemma 3, not a star language since it is neither infinite nor equal to {λ}. �

Lemma 17 We have the proper inclusions MON ⊂ SYDEF ⊂ C ⊂ 2COM for C ∈ {LCOM,RCOM}.

Proof.

1. MON ⊂ SYDEF: Any monoidal language can be expressed as L = V ∗ for some alphabet V and,

with E = H = {λ} also in the form EV ∗H . Hence, the language L is symmetric definite. A witness

language for the properness is {a,b}∗{ba}{b}∗({aa}{b}∗)∗ from Lemma 13 (and originally [19]).

2. SYDEF ⊂ RCOM: This relation was proved in [19].

3. SYDEF ⊂ LCOM: The family SYDEF is closed under reversal. For any symmetric definite lan-

guage L, its reversal LR also belongs to the family SYDEF and, by [19], is also a right-sided

comet language. By Lemma 8, the reversal of the language LR, hence L itself, is a left-sided

comet language. A witness language for the properness is the language L = { a2n | n ≥ 0 } ac-

cording to Lemma 11 where it is shown that L ∈ LCOM \PS and according to [19] where the

inclusion SYDEF ⊂ PS is proved.

4. RCOM ⊂ 2COM: This relation was proved in [19].

5. LCOM ⊂ 2COM: Any left-sided comet language L = EG∗ is also a two-sided comet EG∗H

with H = {λ}. In Lemma 14, it was shown that the language L = { anb | n ≥ 0 } is a right-sided

comet language but not a left-sided comet. By [19], it is a two-sided comet language. �

We now prove the incomparability relations mentioned in Figure 1 which have not been proved earlier.

These are the relations regarding the families STAR, SYDEF, LCOM, RCOM, and 2COM.

Lemma 18 Each of the families STAR and UF is incomparable to each of the families COMB, SYDEF,

RCOM, LCOM, and 2COM.

Proof. Due to inclusion relations, it suffices to show that there are a language L1 ∈ STAR\2COM and a

language L2 ∈COMB\UF. From Lemma 10, we get L1 = {λ}. From [14], we take L2 = {a,b,c}∗{a,b}.

�

Lemma 19 The language family STAR is incomparable to each of the families FIN, NIL, DEF, ORD,

NC, SF, PS, and SUF.

Proof. Due to inclusion relations, it suffices to show that there are a language L1 ∈ STAR \ PS, a

language L2 ∈ FIN \ STAR, and a language L3 ∈ SUF \ STAR. As L1, we obtain from Lemma 11 the

language L1 = { a2n | n ≥ 0 }. From Lemma 15, we take L2 = L3 = {λ ,a}. �

Lemma 20 The language family STAR is incomparable to the families CIRC and COMM.

M. Ködding & B. Truthe 127

Proof. Due to inclusion relations, it suffices to show that there are a language L1 ∈ STAR\CIRC and a

language L2 ∈ COMM \STAR. From Lemma 12, we have L1 = {ab}∗. From Lemma 15, we take again

the language L2 = {λ ,a}. �

Lemma 21 The language families LCOM and RCOM are incomparable to each other.

Proof. With the witness languages L1 = { anb | n≥ 0 }∈RCOM\LCOM and L2 = LR
1 ∈ LCOM\RCOM,

the statement follows from Lemma 14. �

Lemma 22 The language families SYDEF, LCOM, RCOM, and 2COM are incomparable to each of the

families FIN, NIL, DEF, ORD, NC, and SF.

Proof. Due to inclusion relations, it suffices to show that there are a language L1 ∈ SYDEF \SF and a

language L2 ∈ FIN \2COM. From Lemma 13 (and previously [19]), for the first language, we obtain the

language L1 = {a,b}∗{ba}{b}∗({aa}{b}∗)∗. From Lemma 15, we take the language L2 = {λ ,a}. �

Lemma 23 The language families LCOM, RCOM, and 2COM are incomparable to the family PS.

Proof. Due to inclusion relations, it suffices to show that there are a language L1 ∈ LCOM \PS and

a language L2 ∈ PS \2COM. The property of (non) power-separating is not influenced by the reversal

operation. If there is a language L1 ∈ LCOM \PS, then there is also a language in the set RCOM \PS,

namely LR
1 . From Lemma 11, we have L1 = { a2n | n ≥ 0 } ∈ (LCOM ∩RCOM) \PS. As language L2,

we take again the language L2 = {λ ,a} from Lemma 15. �

Lemma 24 The language families SYDEF, LCOM, RCOM, and 2COM are incomparable to each of the

families SUF, CIRC and COMM.

Proof. Due to inclusion relations, it suffices to show that there are a language L1 ∈ SYDEF \ SUF, a

language L2 ∈ SYDEF \CIRC, a language L3 ∈ SUF \ 2COM, and a language L4 ∈ COMM \ 2COM.

In [14], it was shown that the families COMB and SUF are disjoint. Since COMB ⊆ SYDEF, we can

take any combinational language as L1, for instance, L1 = {a,b}∗{b}. The same language serves as L2

because it is not circular. From Lemma 15, we take again the language {λ ,a} as L3 and L4. �

From all these relations, the hierachy presented in Figure 1 follows.

Theorem 25 (Resulting hierarchy) The inclusion relations presented in Figure 1 hold. An arrow from

an entry X to an entry Y depicts the proper inclusion X ⊂ Y ; if two families are not connected by a

directed path, then they are incomparable.

Proof. An edge label refers to the paper or lemma in the present paper where the proper inclusion is

shown. The incomparability results are proved in Lemmas 18 to 24. �

128 Various Types of Comet Languages and their Application in External Contextual Grammars

4 Results on subregular control in external contextual grammars

In this section, we include the families of languages generated by external contextual grammars with

selection languages from the subregular families under investigation into the existing hierarchy with

respect to external contextual grammars.

If, in a contextual grammar, all selection languages belong to some language family X , then they

belong also to every super set Y of X . Therefore, each language in EC(X) is also generated by a contextual

grammar with selection languages from Y and we have the following monotonicity.

Lemma 26 For any two language classes X and Y with X ⊆ Y , we have the inclusion EC(X)⊆ EC(Y).

Figure 2 shows a hierarchy of some language families which are generated by external contextual

grammars where the selection languages belong to subregular classes investigated before. The hierarchy

contains results which were already known (marked by a reference to the literature) and results which

will be proved in this section (marked by a number which refers to the respective lemma).

EC(MON)

EC(FIN)

EC(COMB) EC(NIL)

EC(DEF)

EC(ORD)EC(SYDEF)

EC(SUF)

EC(COMM)

EC(STAR)

EC(NC)

EC(PS)

EC(CIRC)

EC(REG)
[8]
= EC(UF)

35
= EC(LCOM)

35
= EC(RCOM)

35
= EC(2COM)

[6]

[6]
[7]

[28]

[26]

39

[9]

[28]

[6]

[28]

36

3840

[6]
[6]

[8]

[8]

[28]

Figure 2: Resulting hierarchy of language families by external contextual grammars with special selec-

tion languages

An arrow from a node X to a node Y stands for the proper inclusion X ⊂ Y . If two families are not

connected by a directed path, then they are incomparable. An edge label refers to the paper where the

proper inclusion has been shown or the lemma of this paper where the proper inclusion will be shown.

We now present some languages which will serve later as witness languages for proper inclusions or

incomparabilities. Due to space limitations, we give only proof sketches in some cases where we believe

that the reader finds the idea feasible.

M. Ködding & B. Truthe 129

Lemma 27 Let L = { anbbb | n ≥ 1 }∪{λ}. Then, it holds L ∈ EC(NIL)\EC(STAR).

Proof. The contextual grammar G = ({a,b},{{a,b}∗{a,b}4 → (a,λ)},{abbb,λ}) generates L.

During the derivation, the number of the letter a is increasing without changing the number of b. If

the selection languages are from STAR, then such a context containing letters a only could be wrapped

around the empty word yielding a word without b which is a contradiction. �

Lemma 28 Let L = { bna | n ≥ 0 }∪{λ}. Then, it holds L ∈ EC(COMB)\EC(STAR).

Proof. The contextual grammar G = ({a,b},{{a,b}∗{a} → (b,λ)},{λ ,a}) generates the language L

and the selection language is combinational.

Similarly to the proof before: With star selection languages, a word with the letter b but without a

could be generated. �

Lemma 29 Let L1 = {a,b}∗{ anbm | n ≥ 1, m ≥ 1 }, L2 = { canbmc | n ≥ 1, m ≥ 1 }, and L = L1 ∪L2.

Then, it holds L ∈ EC(SUF)\EC(STAR).

Proof. It holds L = L(G) for the contextual grammar G = ({a,b,c},{(S1 ,C1),(S2,C2)},{ab}) with

S1 = {a,b}∗, C1 = {(a,λ),(b,λ),(λ ,b)}, S2 = { anbm | n ≥ 0, m ≥ 1 }∪{λ}, C2 = {(c,c)}.

Using star selection languages, the two letters c could be wrapped around a word with more than

one a-to-b-change from L1 which would yield a word not belonging to L. �

Lemma 30 Let L1 = { an | n ≥ 2 } and L2 = { ba2nb | n ≥ 1 } be two languages and L = L1 ∪ L2 its

union. Then, the relation L ∈ EC(STAR)\EC(PS) holds.

Proof. It holds L = L(G) for the contextual grammar G = ({a,b},{(S1 ,C1),(S2,C2)},{aa}) with

S1 = { an | n ≥ 0 }, C1 = {(λ ,a)} and S2 = { a2n | n ≥ 0 }, C2 = {(b,b)}.

Now assume that L ∈ EC(PS). Then, L = L(G′) for a contextual grammar G′ where every selection

language is power-separating.

For every selection language (since it is power-separating), there is a number mS ∈ N such that, for

every word x ∈ {a,b}∗, either JmS
x ∩S = ∅ or JmS

x ⊆ S with JmS
x = { xn | n ≥ mS }. Let mS be the minimum

of these numbers for S and let m be the maximum of all the values mS for a selection language S.

Further, let p = m+ ℓ(G′). Then, we have the following statement for every selection language S: For

each word x ∈ {a,b}∗, it is

either Jp
x ∩S = ∅ or Jp

x ⊆ S (1)

where J
p
x = { xn | n ≥ p }.

The language L2 contains words with an arbitrary even number of letters a and a letter b at each end.

Hence, there is a derivation w0 =⇒
∗ w1 =⇒ uw1v with w0 ∈ A, |w1|a > p, |w1|b = 0, and |uv|b > 0. This

implies w1 = ak with k > p.

Let S be the selection language used in the last derivation step. Then, we have ak ∈ S and, with

property (1), also ak+1 ∈ S. Since ak+1 belongs to L1 and therefore also to L, the last derivation step

can also be applied to ak+1 which yields the word uak+1v. Since |uv|b > 0, the word uak+1v belongs at

most to L2. Since uakv ∈ L1, we know that |uakv|a is an even number and |uak+1v|a is an odd number.

Therefore, the word uak+1v does not belong to L2 and neither to L which is a contradiction to L = L(G′).
Thus, we conclude L /∈ EC(PS). �

130 Various Types of Comet Languages and their Application in External Contextual Grammars

Lemma 31 Let L = { anbn | n ≥ 1 }∪{ bnan | n ≥ 1 }. Then, it holds L ∈ EC(STAR)\EC(CIRC).

Proof. It holds L = L(G) for the contextual grammar G = ({a,b},{(S1 ,C1),(S2,C2)},{ab,ba}) with

S1 = { anbm | n ≥ 1, m ≥ 1 }∗, C1 = {(a,b)} and S2 = { bnam | n ≥ 1, m ≥ 1 }∗, C2 = {(b,a)}.

With circular selection languages, a context (ak,bk) could be wrapped around a word bmam yielding

a word which does not belong to the language L. �

Lemma 32 The language L = {a,b}∗ ∪{c}{ab}∗{c} belongs to the set EC(ORD)\EC(SYDEF).

Proof. In Example 1, we have given a contextual grammar where all selection languages are accepted

by ordered finite automata, and thus, have shown that L ∈ EC(ORD).
Suppose that the language L is also generated by a contextual grammar G′ where all selection lan-

guages are symmetric definite.

Let us consider a word w = c(ab)nc ∈ L for some n ≥ ℓ(G′). Due to the choice of n, the word w is

derived in one step from some word z by using a selection language S and context (u,v): z =⇒ uzv = w.

The word u begins with the letter c; the word v ends with c. Due to the choice of n, we also have |z|a > 0

and |z|b > 0. Since S is symmetric definite over the alphabet V = {a,b}, it can be expressed as S = EV∗H

for some regular languages E and H over V . The sets E and H are not empty because S contains at least

the word z. Let e be a word of E and h a word of H . Then, the word ebbh belongs to the selection

language S as well. Since ebbh ∈ {a,b}∗ and {a,b}∗ ⊆ L, we can apply the same derivation to this word

and obtain uebbhv. This word starts and ends with c but it does not have the form of those words from L

because of the double b. From this contradiction, it follows L /∈ EC(SYDEF). �

Lemma 33 The language L = {a,b}∗ ∪{c}{λ ,b}{ab}∗{c} belongs to EC(SUF)\EC(SYDEF).

Proof. The language L is generated by the contextual grammar G = ({a,b,c},{(S1 ,C1),(S2,C2)},{λ})
with

S1 = {a,b}∗, C1 = {(λ ,a),(λ ,b)} and S2 = Suf ({ab}∗), C2 = {(c,c)}

where Suf (M) denotes the suffix-closure of the set M.

With the same argumentation as in the proof of Lemma 32, one can show also here L /∈ EC(SYDEF)
(the letters c are in both cases wrapped around words which are an alternating sequence of a and b what

cannot be checked by a symmetric definite selection language). �

Lemma 34 Let L1 = { an | n ≥ 1 }, L2 = { banb | n ≥ 1 }, L3 = { cba2nbc | n ≥ 1 }, and L = L1∪L2∪L3.

Then, it holds L ∈ EC(SYDEF)\EC(NC).

Proof. Let V = {a,b,c}. The contextual grammar G = (V,{(S1,C1),(S2,C2)},{a}) with

S1 = {a}V ∗{λ}, C1 = {(λ ,a),(b,b)} and S2 = { ba2mb | m ≥ 1 }V ∗{λ}, C2 = {(c,c)}

generates the language L. This can be seen as follows: The shortest word of L is a which is the axiom. To

every word of L starting with the letter a (hence, any word of L1), another a can be added or the letter b is

added at the beginning and the end of the word (using the first selection component) yielding all and only

words of the languages L1 and L2. To every word of L2 which also belongs to S2, the letter c is added

at the beginning and the end of the word (using the second selection component) yielding exactly the

M. Ködding & B. Truthe 131

words of the language L3. To the words of L3, no selection component can be applied. All the selection

languages are symmetric definite as can be seen from the form in which they are given.

In [28], it was proved that the language L does not belong to the family EC(NC). �

Next, we show some equalities.

Lemma 35 A restriction to comet languages (left, right, two-sided) as selection languages does not

decrease the generative capacity of external contextual grammars:

EC(REG) = EC(LCOM) = EC(RCOM) = EC(2COM).

Proof. With the inclusions LCOM ⊆ 2COM, RCOM ⊆ 2COM, and 2COM ⊆ REG (see Theorem 25

and Figure 1), we obtain also the inclusions EC(LCOM) ⊆ EC(2COM), EC(RCOM) ⊆ EC(2COM),
and EC(2COM)⊆ EC(REG) according to Lemma 26.

Let G = (V,{(S1,C1), . . . ,(Sn,Cn)},A) be a contextual grammar with arbitrary regular selection lan-

guages. Further, let X be a new symbol (X /∈V). We set S′i = {X}∗Si for 1 ≤ i ≤ n. Then, the contextual

grammar G′ = (V ∪ {X},{(S′1,C1), . . . ,(S
′

n,Cn)},A) generates the same language as G. The selection

languages are all right-sided comet languages. The letter X neither occurs in an axiom nor in a context.

Therefore, the part {X}∗ of the selection languages has no impact on the possible derivations (the only

word used is λ). Thus, the inclusion EC(REG)⊆ EC(RCOM) holds.

With S′i = Si{X}∗ for 1 ≤ i ≤ n, the same language is generated and the selection languages are left-

sided comets. Hence, we also have the inclusion EC(REG)⊆EC(LCOM). Hence, we obtain the chain of

inclusions EC(REG) ⊆ C ⊆ 2COM ⊆ EC(REG) for C ∈ {LCOM,RCOM} which implies the equalities

stated in the lemma. �

We now prove some proper inclusions.

Lemma 36 The family EC(MON) is a proper subset of the family EC(STAR).

Proof. With the inclusion MON ⊆ STAR (see Theorem 25 and Figure 1), we obtain also the inclu-

sion EC(MON)⊆ EC(STAR) according to Lemma 26.

The language L = { an | n ≥ 2 }∪{ ba2nb | n ≥ 1 } from Lemma 30 belongs to the family EC(STAR)
but not to the family EC(PS) and, hence, neither to EC(MON). Thus, the language is a witness for the

properness of the inclusion. �

Lemma 37 The family EC(FIN) is a proper subset of the family EC(STAR)

Proof. According to [6], EC(FIN) ⊂ EC(MON). According to Lemma 36, EC(MON) ⊂ EC(STAR).
Hence, the family EC(FIN) is also a proper subset of the family EC(STAR). �

Lemma 38 The family EC(STAR) is a proper subset of the families EC(LCOM) and EC(RCOM).

Proof. The inclusions STAR \ {{λ}} ⊆ LCOM and STAR \ {{λ}} ⊆ RCOM hold as recalled in Sec-

tion 3.2. Consider an external contextual grammar with a single selection component ({λ},C) (if there

are more components with the selection language {λ}, they can be joined to one where the new set

of contexts is the union of the single sets and the selection language is still the same). If the gener-

ated language contains the empty word, then this is an axiom since it cannot be obtained by derivation.

132 Various Types of Comet Languages and their Application in External Contextual Grammars

Then, exactly the (finitely many) words uv with (u,v) ∈ C are generated using this selection compo-

nent. Thus, if we put all these words uv with (u,v) ∈ C into the set of axioms as well, we can re-

move the component ({λ},C) and obtain a contextual grammar which generates the same language but

has no selection language {λ} anymore. Then, the remaining selection languages belong to the fami-

lies LCOM and RCOM. Hence, every language of EC(STAR) also belongs to the families EC(LCOM)
and EC(RCOM).

According to Lemma 28, the language L = { bna | n ≥ 0 }∪ {λ} belongs to EC(COMB) (and also

to EC(LCOM) and EC(RCOM) by Theorem 25, Figure 1, and Lemma 26) but not to EC(STAR). This

proves the properness of the inclusion. �

Lemma 39 The family EC(DEF) is a proper subset of the family EC(SYDEF).

Proof. Let G = (V,{(S1,C1), . . . ,(Sn,Cn)},A) be a contextual grammar where all selection languages

are definite: Si = U∗

i Bi ∪Ai for 1 ≤ i ≤ n. We first separate the finite parts and obtain the contextual

grammar G′ =(V,{(U∗

1 B1,C1),(A1,C1), . . . ,(U
∗

n Bn,Cn),(An,Cn)},A) which generates the same language

as G. Next, we eliminate the components with finite selection languages: If a set Bi is empty, then the

entire selection language is empty and cannot be used for derivation. Hence, we can simply omit such

selection components without changing the generated language. For every component (Ai,Ci) where Ai

is a finite language (1 ≤ i ≤ n), we move all words uwv with (u,v) ∈ Ci and w ∈ Ai ∩L(G) into the set

of axioms. These are finitely many (as Ai and Ci are finite) and are exactly the words generated by these

components). Hence, we can remove these components afterwards. Then, we have obtained a contextual

grammar which still generates the same language L(G) but has only symmetric definite languages left.

The language L = { an | n ≥ 1 }∪{ banb | n ≥ 1 }∪{ cba2nbc | n ≥ 1 } is a witness language for the

properness of the inclusion which, according to Lemma 34, belongs to the family EC(SYDEF) but not to

the family EC(NC) and, hence, not to (since EC(DEF)⊂ EC(NC) according to [6]). �

Lemma 40 The family EC(SYDEF) is a proper subset of the family EC(PS).

Proof. From [19], we know the inclusion SYDEF ⊆ PS. Therefore, by Lemma 26, we have the inclu-

sion EC(SYDEF) ⊆ EC(PS). Its properness follows from Lemma 32 with L = {a,b}∗ ∪{c}{ab}∗{c}
which belongs to the family EC(ORD) (and also to EC(PS) by [28]) but not to the family EC(SYDEF).

�

Now, we prove the incomparability relations mentioned in Figure 2 which have not been proved

earlier. These are the relations regarding the families EC(STAR) and EC(SYDEF) since the fami-

lies EC(LCOM), EC(RCOM), and EC(2COM) coincide with EC(REG) and are therefore not incom-

parable to the other families mentioned.

Lemma 41 Let F = {COMB,DEF,SYDEF,ORD,NC,PS}. The family EC(STAR) is incomparable to

each family EC(F) with F ∈ F .

Proof. Due to the inclusion relations, it suffices to show that there are two languages L1 and L2 with the

properties L1 ∈ EC(COMB) \EC(STAR) and L2 ∈ EC(STAR) \EC(PS). From Lemma 28, we have the

language L1 = { bna | n ≥ 0 }∪{λ}. From Lemma 30, we have L2 = { ba2nb | n ≥ 1 }∪{ an | n ≥ 2 }. �

Lemma 42 Let F = {NIL,COMM,CIRC}. The family EC(STAR) is incomparable to each family EC(F)
with F ∈ F .

M. Ködding & B. Truthe 133

Proof. Due to the inclusion relations, it suffices to show that there are two languages L1 and L2 with the

properties L1 ∈ EC(NIL) \ EC(STAR) and L2 ∈ EC(STAR) \ EC(CIRC). From Lemma 27, we have the

language L1 = { anbbb | n ≥ 1 }∪{λ}. From Lemma 31, we have L2 = { anbn | n ≥ 1 }∪{ bnan | n ≥ 1 }.

�

Lemma 43 The language family EC(STAR) is incomparable to the family EC(SUF).

Proof. We have L1 = {a,b}∗{ anbm | n≥ 1, m ≥ 1 }∪{ canbmc | n ≥ 1, m ≥ 1 } ∈ EC(SUF)\EC(STAR)
from Lemma 29. From Lemma 30, we know that L2 = { an | n ≥ 2 }∪{ ba2nb | n ≥ 1 } belongs to the

family EC(STAR) but not to EC(PS) (and neither to EC(SUF) by [28]). �

Lemma 44 The language family EC(SYDEF) is incomparable to the family EC(SUF).

Proof. We have L1 = {a,b}∗ ∪ {c}{λ ,b}{ab}∗{c} ∈ EC(SUF) \ EC(SYDEF) from Lemma 33.

From [6], we know that L2 = { abn | n ≥ 1 }∪{λ} belongs to the family EC(COMB) but not to EC(SUF).
By [28] and Lemma 39, the language L2 also belongs to EC(SYDEF). �

Lemma 45 The family EC(SYDEF) is incomparable to each of the families EC(ORD) and EC(NC).

Proof. Due to the inclusion relations, it suffices to show that there are two languages L1 and L2 with

the properties L1 ∈ EC(ORD) \ EC(SYDEF) and L2 ∈ EC(SYDEF) \ EC(NC). From Lemma 32, we

have L1 = {a,b}∗∪{c}{ab}∗{c}. As L2, we take L2 = { an | n≥ 1 }∪{ banb | n≥ 1 }∪{ cba2nbc | n≥ 1 }
from Lemma 34. �

Lemma 46 The family EC(SYDEF) is incomparable to each of the families EC(COMM) and EC(CIRC).

Proof. Due to the inclusion relations, it suffices to show that there are two languages L1 and L2 with

the properties L1 ∈ EC(COMM)\EC(SYDEF) and L2 ∈ EC(SYDEF)\EC(CIRC). In [28], it was proved

that the language L1 = { an | n ≥ 2 }∪{ ba2nb | n ≥ 1 } belongs to EC(COMM) but not to EC(PS) (this

can be seen also in the proof of Lemma 30). By Lemma 40, the language L1 neither belongs to the

family EC(SYDEF).

In [6], it was proved that the language L2 = { abcn | n ≥ 1 }∪{ cnab | n ≥ 1 } belongs EC(COMB)
but not to EC(CIRC). By [28] and Lemma 39, the language L2 also belongs to the family EC(SYDEF).

�

Theorem 47 (Hierarchy of the EC language families) The inclusion relations presented in Figure 2

hold. An arrow from an entry X to an entry Y depicts the proper inclusion X ⊂ Y ; if two families

are not connected by a directed path, then they are incomparable.

Proof. An edge label refers to the paper or lemma in the present paper where the proper inclusion is

shown. The incomparability results are proved in Lemmas 41 to 46. �

134 Various Types of Comet Languages and their Application in External Contextual Grammars

5 Conclusion and future work

In this paper, we have extended the previous hierarchy of subregular language families and families

generated by external contextual grammars with selection in certain subregular language families.

Various other subregular language families have also been investigated in the past (for instance,

in [1, 12, 19]). Future research will be on extending and unifying current hierarchies of subregular

language families (presented, for instance, in [9, 28]) by additional families and to use them as control

in external contextual grammars. We already started investigations on the position of prefix- and infix-

closed as well as prefix-, suffix-, and infix-free languages in the current hierarchy and their impact on

the generative power of external contextual grammars when used for selection. The extension of the

hierarchy with other families of definite-like languages (for instance, ultimate definite, central definite,

noninital definite) has also already begun.

The research will be also extended to internal contextual grammars or tree-controlled grammars where

results are already available in [9, 28, 29, 30].

References

[1] Henning Bordihn, Markus Holzer & Martin Kutrib (2009): Determination of finite automata accepting sub-

regular languages. Theoretical Computer Science 410(35), pp. 3209–3222, doi:10.1016/j.tcs.2009.05.

019.

[2] Janusz A. Brzozowski (1962): Regular expression techniques for sequential circuits. Ph.D. thesis, Princeton

University, Princeton, NJ, USA.

[3] Janusz A. Brzozowski (1967): Roots of star events. Journal of the ACM 14(3), pp. 466–477, doi:10.1109/

SWAT.1966.21.

[4] Janusz A. Brzozowski & Rina Cohen (1969): On decompositions of regular events. Journal of the ACM

16(1), pp. 132–144, doi:10.1145/321495.321505.

[5] Janusz A. Brzozowski, Galina Jirásková & Chenglong Zou (2014): Quotient complexity of closed languages.

Theory of Computing Systems 54, pp. 277–292, doi:10.1007/s00224-013-9515-7.

[6] Jürgen Dassow (2005): Contextual grammars with subregular choice. Fundamenta Informaticae 64(1–4),

pp. 109–118.

[7] Jürgen Dassow (2015): Contextual languages with strictly locally testable and star free selection languages.

Analele Universitatii Bucuresti 62, pp. 25–36.

[8] Jürgen Dassow, Florin Manea & Bianca Truthe (2012): On external contextual grammars with subregular

selection languages. Theoretical Computer Science 449, pp. 64–73, doi:10.1016/j.tcs.2012.04.008.

[9] Jürgen Dassow & Bianca Truthe (2023): Relations of contextual grammars with strictly locally testable

selection languages. RAIRO – Theoretical Informatics and Applications 57, p. #10, doi:10.1051/ita/

2023012.

[10] Ference Gécseg & István Peák (1972): Algebraic Theory of Automata. Academiai Kiado, Budapest.

[11] Arthur Gill & Lawrence T. Kou (1974): Multiple-entry finite automata. Journal of Computer and System

Sciences 9(1), pp. 1–19, doi:10.1016/S0022-0000(74)80034-6.

[12] Yo-Sub Han & Kai Salomaa (2009): State complexity of basic operations on suffix-free regular languages.

Theoretical Computer Science 410(27), pp. 2537–2548, doi:10.1016/j.tcs.2008.12.054.

[13] Ivan M. Havel (1969): The theory of regular events II. Kybernetika 5(6), pp. 520–544.

[14] Markus Holzer & Bianca Truthe (2015): On relations between some subregular language families. In Rudolf

Freund, Markus Holzer, Nelma Moreira & Rogério Reis, editors: Seventh Workshop on Non-Classical Mod-

https://doi.org/10.1016/j.tcs.2009.05.019
https://doi.org/10.1016/j.tcs.2009.05.019
https://doi.org/10.1109/SWAT.1966.21
https://doi.org/10.1109/SWAT.1966.21
https://doi.org/10.1145/321495.321505
https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.1016/j.tcs.2012.04.008
https://doi.org/10.1051/ita/2023012
https://doi.org/10.1051/ita/2023012
https://doi.org/10.1016/S0022-0000(74)80034-6
https://doi.org/10.1016/j.tcs.2008.12.054

M. Ködding & B. Truthe 135

els of Automata and Applications – NCMA 2015, Porto, Portugal, August 31 – September 1, 2015. Proceed-

ings, books@ocg.at 318, Österreichische Computer Gesellschaft, pp. 109–124.

[15] Manfred Kudlek (2004): On languages of cyclic words. In Natasha Jonoska, Gheorghe Păun & Grzegorz

Rozenberg, editors: Aspects of Molecular Computing, Essays Dedicated to Tom Head on the Occasion of

His 70th Birthday, LNCS 2950, Springer-Verlag, pp. 278–288, doi:10.1007/978-3-540-24635-0_20.

[16] Solomon Marcus (1969): Contextual grammars. Revue Roumaine de Mathématique Pures et Appliquées 14,

pp. 1525–1534.

[17] Robert McNaughton & Seymour Papert (1971): Counter-Free Automata. MIT Press, Cambridge, USA.

[18] Benedek Nagy (2019): Union-Freeness, Deterministic Union-Freeness and Union-Complexity. In Michal

Hospodár, Galina Jirásková & Stavros Konstantinidis, editors: Descriptional Complexity of Formal Systems,

21st IFIP WG 1.02 International Conference, DCFS 2019, Košice, Slovakia, July 17–19, 2019, Proceedings,

Springer, Cham, pp. 46–56, doi:10.1007/978-3-030-23247-4_3.

[19] Viktor Olejár & Alexander Szabari (2023): Closure Properties of Subregular Languages Under Operations.

International Journal of Foundations of Computer Science, pp. 1–25, doi:10.1142/S0129054123450016.

[20] Azaria Paz & Bezalel Peleg (1965): Ultimate-definite and symmetric-definite events and automata. Journal

of the ACM 12(3), pp. 399–410, doi:10.1145/321281.321292.

[21] Micha A. Perles, Michael O. Rabin & Eli Shamir (1963): The theory of definite automata. IEEE Transactions

of Electronic Computers 12, pp. 233–243, doi:10.1109/PGEC.1963.263534.

[22] Grzegorz Rozenberg & Arto Salomaa, editors (1997): Handbook of Formal Languages. Springer-Verlag,

Berlin, doi:10.1007/978-3-642-59136-5.

[23] Huei-Jan Shyr (1991): Free Monoids and Languages. Hon Min Book Co., Taichung, Taiwan.

[24] Huei-Jan Shyr & Gabriel Thierrin (1974): Ordered automata and associated languages. Tamkang Journal of

Mathematics 5(1), pp. 9–20.

[25] Huei-Jan Shyr & Gabriel Thierrin (1974): Power-separating regular languages. Mathematical Systems

Theory 8(1), pp. 90–95, doi:10.1007/BF01761710.

[26] Bianca Truthe (2014): A relation between definite and ordered finite automata. In Suna Bensch, Rudolf

Freund & Friedrich Otto, editors: Sixth Workshop on Non-Classical Models for Automata and Applica-

tions – NCMA 2014, Kassel, Germany, July 28–29, 2014. Proceedings, books@ocg.at 304, Österreichische

Computer Gesellschaft, pp. 235–247.

[27] Bianca Truthe (2018): Hierarchy of Subregular Language Families. Technical Report, Justus-Liebig-

Universität Giessen, Institut für Informatik, IFIG Research Report 1801.

[28] Bianca Truthe (2021): Generative Capacity of Contextual Grammars with Subregular Selection Languages.

Fundamenta Informaticae 180(1–2), pp. 123–150, doi:10.3233/FI-2021-2037.

[29] Bianca Truthe (2023): Merging two Hierarchies of Internal Contextual Grammars with Subregular Selec-

tion. In Benedek Nagy & Rudolf Freund, editors: Proceedings of the 13th International Workshop on

Non-Classical Models of Automata and Applications, NCMA 2023, Famagusta, North Cyprus, 18th–19th

September, 2023, EPTCS 388, pp. 125–139, doi:10.4204/EPTCS.388.12.

[30] Bianca Truthe (2023): Strictly Locally Testable and Resources Restricted Control Languages in Tree-

Controlled Grammars. In Zsolt Gazdag, Szabolcs Iván & Gergely Kovásznai, editors: Proceedings of the

16th International Conference on Automata and Formal Languages, AFL 2023, Eger, Hungary, September

5–7, 2023, EPTCS 386, pp. 253–268, doi:10.4204/EPTCS.386.20.

[31] Barbara Wiedemann (1978): Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplo-

marbeit, Universität Rostock.

https://doi.org/10.1007/978-3-540-24635-0_20
https://doi.org/10.1007/978-3-030-23247-4_3
https://doi.org/10.1142/S0129054123450016
https://doi.org/10.1145/321281.321292
https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1007/978-3-642-59136-5
https://doi.org/10.1007/BF01761710
https://doi.org/10.3233/FI-2021-2037
https://doi.org/10.4204/EPTCS.388.12
https://doi.org/10.4204/EPTCS.386.20

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 136–149, doi:10.4204/EPTCS.407.10

© M. Kutrib, A. Malcher, M. Wendlandt

Complexity of Unary Exclusive
Nondeterministic Finite Automata

Martin Kutrib Andreas Malcher
Matthias Wendlandt

Institut für Informatik, Universität Giessen
Arndtstr. 2, 35392 Giessen, Germany

{kutrib, andreas.malcher, matthias.wendlandt}@informatik.uni-giessen.de

Exclusive nondeterministic finite automata (XNFA) are nondeterministic finite automata with a spe-
cial acceptance condition. An input is accepted if there is exactly one accepting path in its com-
putation tree. If there are none or more than one accepting paths, the input is rejected. We study
the descriptional complexity of XNFA accepting unary languages. While the state costs for mutual
simulations with DFA and NFA over general alphabets differ significantly from the known types of
finite automata, it turns out that the state costs for the simulations in the unary case are in the order of
magnitude of the general case. In particular, the state costs for the simulation of an XNFA by a DFA
or an NFA are eΘ(

√
n·lnn). Conversely, converting an NFA to an equivalent XNFA may cost eΘ(

√
n·lnn)

states as well. All bounds obtained are also tight in the order of magnitude. Finally, we investigate
the computational complexity of different decision problems for unary XNFAs and it is shown that
the problems of emptiness, universality, inclusion, and equivalence are coNP-complete, whereas the
general membership problem is NL-complete.

1 Introduction

The ability of using nondeterminism for finite automata does not increase their computational power
in comparison with the deterministic variant, but the simulation costs for a deterministic finite automa-
ton (DFA) can be exponentially higher in terms of states than for an equivalent nondeterministic finite
automaton (NFA) [21, 23].

In the last decades several structural extensions of finite automata have been examined. One such
extension is, for example, to give the reading head of the finite automaton the power of two-way motion.
Such two-way finite automata do also not increase the computational power of finite automata [30], but
they are interesting from a descriptional complexity point of view, since the costs for one-way determin-
istic finite automata for the simulation of two-way deterministic finite automata can be exponential in the
number of states [23]. Similar results can also be shown for the nondeterministic case [31].

A more fine-grained look on the range between nondeterministic and deterministic finite automata
leads to the model of unambiguous finite automata [32]. Here, nondeterminism is allowed, but for every
accepted word there has to be exactly one accepting path. From a descriptional complexity perspective it
is known that the trade-off from unambiguous finite automata to DFAs is exponential as well [17, 18, 32].

In contrast to these structural extensions, another extension is examined in [13, 14] that is based on
the acceptance conditions of the automata and which leads to exclusive nondeterministic finite automata
(XNFA). In this model, the computation tree of an input is defined in the same way as for nondetermin-
istic finite automata, but its interpretation is different. Namely, an input word w is accepted, if there is
exactly one accepting path for w. If there is no accepting path for w or two or more accepting paths
for w, then w is rejected. Clearly, any unambiguous finite automaton can be considered as an XNFA, but

http://dx.doi.org/10.4204/EPTCS.407.10

M. Kutrib, A. Malcher, M. Wendlandt 137

in comparison to unambiguous finite automata, multiple accepting paths are allowed and lead to non-
acceptance in an XNFA. In [13, 14] complexity aspects of XNFAs have been investigated. Concerning
the descriptional complexity, it is shown that n-state XNFAs can be determinized as well, but the upper
bound turns out to be 3n − 2n + 1 and is shown to be tight. Moreover, n · 2n−1 states are shown to be
a tight bound for the simulation of an XNFA by an equivalent NFA. The simulation of an NFA by an
equivalent XNFA leads to an upper bound of 2n − 1 which is shown to be tight as well. Concerning
the computational complexity, it is shown that the problems of emptiness, universality, inclusion, and
equivalence are PSPACE-complete, whereas the general membership problem is NL-complete. It should
be noted that a computational model with exactly one accepting computation on every accepted input has
already been known in the context of complexity theory as the class US (unique solution). It is defined
(see [1]) as the class of languages L for which there exists a nondeterministic polynomial time Turing
machine M such that w ∈ L if and only if M has on input w exactly one accepting computation path. A
short overview on the properties of the class US may be found in [8].

In this paper, we investigate the descriptional and computational complexity of XNFAs accepting
unary languages. The descriptional complexity of unary regular languages has extensively been studied
in the literature. A fundamental result was obtained by Chrobak in [2, 3]. He shows that O(F(n))
is a tight bound for the simulation of an NFA by an equivalent DFA. Here, F(n) denotes Landau’s
function [15] that is the maximal order of the cyclic subgroups of the symmetric group on n elements
and can be estimated as F(n) ∈ eΘ(

√
n·lnn). Landau’s function plays a crucial role in many results on the

descriptional complexity of unary regular languages. One line of research in the past years is that many
automata models such as, for example, one-way finite automata, two-way finite automata, pushdown
automata, and context-free grammars have been investigated and compared to each other with respect to
simulation results and the size costs of the simulation (see, for example, [6, 20, 25, 26, 29]). Another
line of research in recent years concerns investigations on the state complexity of operations on unary
languages which can be found, for example, in [9, 12, 19, 28].

The paper is structured as follows. In Section 2, we give the basic definitions that are used in the
further sections. In Section 3, we study the descriptional costs for determinizing a given unary XNFA. As
a fundamental preparatory step we show that any unary n-state XNFA can be converted to an equivalent
O(n3)-state XNFA in Chrobak normal form. This result is in slight contrast to NFAs where the conversion
of an arbitrary NFA to Chrobak normal form may induce only a quadratic blow-up of the number of
states. Based on the XNFA in Chrobak normal form we can construct an equivalent DFA whose number
of states is bounded by eΘ(

√
n·lnn). This upper bound is also tight in the order of magnitude. In Section 4,

we obtain similar upper and lower bounds for the conversion of unary XNFAs to equivalent NFAs and
of unary NFAs to equivalent XNFAs. Finally, in Section 5 we study the computational complexity of
decidability questions. In particular, we consider general membership, emptiness, universality, inclusion,
and equivalence with respect to the unary case and show that for unary XNFAs the general membership
problem is NL-complete, whereas the questions of emptiness, finiteness, inclusion, and equivalence are
coNP-complete.

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word is denoted by λ , and
Σ+ = Σ∗ \{λ}. The reversal of a word w is denoted by wR. For the length of w we write |w|. We use ⊆
for inclusions and ⊂ for strict inclusions. We write 2S for the power set and |S| for the cardinality of a
set S.

138 Complexity of Unary Exclusive NFAs

A nondeterministic finite automaton (NFA) is a system M = ⟨Q,Σ,δ ,q0,F⟩, where Q is the finite set
of states, Σ is the finite set of input symbols, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states, and δ : Q×Σ → 2Q is the transition function.

With an eye towards further modes of acceptance, we define the acceptance of an input in terms of
computation trees. For any input w = a1a2 · · ·an ∈ Σ∗ read by some NFA M, a (complete) path for w is
a sequence of states q0,q1, . . . ,qn such that qi+1 ∈ δ (qi,ai+1), 0 ≤ i ≤ n−1. All possible paths on w are
combined into a computation tree of M on w. So, a computation tree of M is a finite rooted tree whose
nodes are labeled with states of M. In particular, the root is labeled with the initial state, and the successor
nodes of a node labeled q are the nodes p1, p2, . . . , pm if and only if δ (q,a) = {p1, p2, . . . , pm}, for the
current input symbol a. A path in the computation tree is an accepting path if it ends in an accepting
state.

Now, an input w is accepted by an NFA if at least one path in the computation tree of w is accepting.
An NFA, where for acceptance it is required that exactly one path is accepting, is called an exclusive

nondeterministic finite automaton (XNFA).
The language accepted by the XNFA M is L(M) = {w ∈ Σ∗ | w is accepted by M }.
Finally, an NFA is a deterministic finite automaton (DFA) if and only if |δ (q,a)|= 1, for all q∈Q and

a ∈ Σ. In this case we simply write δ (q,a) = p for δ (q,a) = {p} assuming that the transition function is
a mapping δ : Q×Σ → Q. So, any DFA is complete, that is, the transition function is total, whereas for
the other automata types it is possible that δ maps to the empty set. A finite automaton is called unary if
its set of input symbols is a singleton. In this case we use Σ = {a} throughout the paper.

3 Determinization of unary XNFAs

The problem of evaluating the costs of unary automata simulations was raised in [34], and has led to
emphasize some relevant differences with the general case. For example, unary NFAs can be much more
concise than DFAs, but yet not as much as for the general case. Moreover, the sophisticated studies
in [20] reveal tight bounds for many other types of unary finite automata conversions. The paper and the
survey [27] are also a valuable source for further references.

For state complexity issues of unary finite automata, Landau’s function

F(n) = max{ lcm(c1,c2 . . . ,cl) | l ≥ 1,c1,c2, . . . ,cl ≥ 1,c1 + c2 + · · ·+ cl = n}

which gives the maximal order of the cyclic subgroups of the symmetric group on n elements, plays a
crucial role, where lcm denotes the least common multiple [15, 16]. It is well known that the ci always
can be chosen to be relatively prime. Moreover, an easy consequence of the definition is that the ci

always can be chosen such that c1,c2, . . . ,cl ≥ 2, c1 + c2 + · · ·+ cl ≤ n, and lcm(c1,c2, . . . ,cl) = F(n)
(cf., for example, [24]).

Since F depends on the irregular distribution of the prime numbers we cannot expect to express F(n)
explicitly by n. In [15, 16] the asymptotic growth rate limn→∞(lnF(n)/

√
n · lnn) = 1 was determined,

which for our purposes implies the (sufficient) rough estimate F(n) ∈ eΘ(
√

n·lnn) (see also [4, 36] for
bounds on F).

The asymptotically tight bound of F(n) for the unary NFA-to-DFA conversion was presented
in [2, 3]. The proof is based on a normal form for unary NFAs derived in [2]. Each n-state unary NFA
can effectively be converted into an equivalent O(n2)-state NFA in this so-called Chrobak normal form.
However, the original proof in [2] contains an error that has been discovered and fixed in [37]. While the
correction increases the state costs, their order of magnitude is not affected. In connection with magic

M. Kutrib, A. Malcher, M. Wendlandt 139

numbers, more precise and improved state bounds have been shown in [5] by a completely different
proof.

Let t,d ≥ 0 be two integers. An arithmetic progression with offset t and period d is the set

{ t + x ·d | x ≥ 0}.

We recall a well-known useful fact which is related to number theory and Frobenius numbers (see,
for example, [33] for a survey).

Lemma 1. Let 0 < c1 < c2 < · · · < cr ≤ n be positive integers. Then the set of integers z > n2 that can
be written as a non-negative integer linear combination of the ci is { t +x ·d | x ≥ 0}, where t is the least
integer greater than n2 that is a multiple of d = gcd(c1,c2, . . . ,cr).

A unary XNFA M = ⟨Q,{a},δ ,q0,F⟩ is in Chrobak normal form if, for some m ≥ 0 and k ≥ 0,
Q = {qi | 0 ≤ i ≤ m}∪C1 ∪C2 ∪·· ·∪Ck, where, for each 1 ≤ i ≤ k, Ci = { pi,0, pi,1, . . . , pi, ji−1 } for
some ji ≥ 1, δ (qi,a) = {qi+1} for 0 ≤ i ≤ m−1, and for each 1 ≤ i ≤ k and 0 ≤ h ≤ ji − 1,
δ (pi,h,a) = {pi,(h+1) mod ji}, and δ (qm,a) = {p1,0, p2,0, . . . , pk,0}.

So, an XNFA is in Chrobak normal form if its structure is a deterministic tail from q0 to qm, where the
automaton makes only a single nondeterministic decision, which chooses one of the disjoint cycles Ci.

Next, we show how to convert a unary XNFA into Chrobak normal form. The idea of the construction
is along the lines of the construction in [37] but with modifications with respect to the exclusiveness of
the XNFA.

Lemma 2. Let n≥ 1. For every unary n-state XNFA, an equivalent O(n3)-state XNFA in Chrobak normal
form can effectively be constructed, such that the sum of the cycle lengths is of order O(n).

Proof. Let M = ⟨Q,Σ,δ ,q0,F⟩ be an n-state XNFA. Since any unary language over some alphabet is
completely determined by the lengths of the words in the language, we can safely disregard Σ and con-
sider the state graph of M only. For L(M) = /0, the theorem is trivial. So, in the sequel we assume
that L(M) is not empty. Moreover, we may safely assume that all states q ∈ Q are reachable and produc-
tive, that is, there is a path from q0 to q and a path from q to a final state. Now, by adding states and
possibly removing some states and transitions, we modify M such that there is no incoming transition to
the initial state, such that F = {q+} is a singleton, and such that q+ is the only state without outgoing
transitions. To this end, all unreachable states together with their incoming and outgoing transitions are
removed. Similarly, all unproductive states together with their incoming and outgoing transitions are re-
moved as well. Next, if the initial state has incoming transitions, a new state without incoming transitions
is added whose outgoing transitions go to the successor states of the initial state. This new state becomes
the new initial state. In order to make F a singleton, we have to take care about words that are accepted
on more than one path. So, first a new accepting state q+ is added. For each pair of old accepting states,
if both states do not share a common predecessor state, from each of their predecessor states a transition
to q+ is added. Both states become non-accepting. However, if both states have at least one common
predecessor, say p, then there are two paths via p to accepting states. This means that inputs following
these paths do not belong to L(M). In this case, both states become non-accepting, some state p′ is added,
and all incoming transitions to p are doubled and are directed to p′ as well. Furthermore, a transition
from p to q+ and a transition from p′ to q+ is added. Similarly, for all common predecessors of the old
accepting states. In this way, we obtain an XNFA equivalent to M that has the desired properties. For
convenience, we call it also M. The modified XNFA has at most m = 2n states.

140 Complexity of Unary Exclusive NFAs

From now on, we identify M with its state graph. Let S be the set of non-trivial strongly connected
components of M. A superpath in M is a subgraph

α = P1S1P2S2 · · ·PℓSℓPℓ+1,

where, for 1 ≤ i ≤ ℓ, Si ∈ S; for 1 ≤ i ≤ ℓ+ 1, Pi is a path in M whose inner nodes do not belong to
non-trivial strongly component components of M; the first node of P1 is q0; the last node of Pℓ+1 is q+;
for 1 ≤ i ≤ ℓ, the last node of Pi belongs to Si; for 2 ≤ i ≤ ℓ+1, the first node of Pi belongs to Si−1.

For every superpath α in M, let Lα be the set of all lengths of paths in M from q0 to q+ that are in α .
It follows that the length of any accepting path in M belongs to

⋃
α Lα , where the union ranges over all

superpaths in M.
We define the set Ψα to be the subset of paths from q0 to q+ in α that are simple, that is, no state

appears twice. Clearly, the length of any path in Ψα does not exceed m.
Next, we define Πα to be another subset of paths from q0 to q+ in α . In particular, for every path σ

in Ψα , we put the following extensions σ ′ of σ into Πα . Whenever σ enters a strongly connected
component Si in some state v, then a Hamiltonian walk in Si (that is, a tour that visits all nodes in Si)
that cannot be shortened and that starts and ends in v is inserted into σ . Note that a Hamiltonian walk
that cannot be shortened is a path from which no nodes can be removed without obtaining a path that
is no longer Hamiltonian. It needs not to be the shortest Hamiltonian walk in Si. Since Si is strongly
connected, such Hamiltonian walks exist. Results in [7] show that the lengths of such Hamiltonian walks
in Si do not exceed |Si|2, where |Si| denotes the number of nodes in Si. Therefore, the length of any path
in Πα does not exceed m2 +m.

Now we consider a fixed superpath α in M. Let 0 < c1 < c2 < · · ·< cr ≤ m be the lengths of all
simple cycles in α , σ in Ψα , and σ ′ be an extension of σ in Πα . Since σ ′ visits each node in α at least
once, the set Zα,σ ′ of all lengths z for which z = |σ ′|+x1c1+x2c2+ · · ·+xrcr is solvable in non-negative
integers is contained in Lα . By Lemma 1, Zα,σ ′ = Xα ∪{ tσ ′ + x ·d | x ≥ 0}, where Xα contains lengths
not larger than 2m2 +m and tσ ′ is the least integer greater than 2m2 +m such that tσ ′ ≡ |σ ′| (mod d),
where d = gcd(c1,c2, . . . ,cr). Since the Hamiltonian walks in σ ′ are (compound) cycles, that is, linear
combinations of c1,c2, . . . ,cr, the number d divides their lengths and, thus, we have tσ ′ ≡ |σ | (mod d).

On the other hand, the set of all lengths y for which there is a σ in Ψα such that

y = |σ |+ x1c1 + x2c2 + · · ·+ xrcr

is solvable in non-negative integers, clearly contains Lα . Therefore, if w ∈ Lα and w > 2m2 +m then
Lemma 1 implies that there is a σ in Ψα such that w ≡ |σ | (mod d). Since { tσ + x ·d | x ≥ 0} ⊆ Zα,σ ′ ,
we conclude w ∈ Zα,σ ′ .

Altogether, we have Lα = Nα ∪
⋃

σ ′∈Πα
{ tσ ′ +x ·d | x ≥ 0}, where Nα contains lengths not larger than

2m2 +m.
So far, we have created the prerequisites for constructing the normal form without specifically ad-

dressing XNFAs. So, the next task is to assemble an XNFA M′ = ⟨Q′,{a},δ ′,q′0,F
′⟩ equivalent to M in

Chrobak normal form.
To this end, we start with a deterministic tail consisting of the m3 + 2 states {q′i | 0 ≤ i ≤ m3 + 1}

with δ ′(q′i,a) = {q′i+1}, for 0 ≤ i ≤ m3. A state qi of the tail becomes accepting if and only if the input
of length i belongs to L(M). So, all words whose length does not exceed m3 + 1 are correctly accepted
or rejected.

Next, we want to add the cycles to the initial tail of M′.

M. Kutrib, A. Malcher, M. Wendlandt 141

To construct the cycles appropriately, we consider each superpath α of M and distinguish three
cases, respectively. As before, let 0 < c1 < c2 < · · ·< cr ≤ m be the lengths of all simple cycles in α and
d = gcd(c1,c2, . . . ,cr). We consider all inputs of lengths z > m3 +1 ∈ Lα .

Case 1: There are at least two simple cycles C1 and C2 in α . Then, each path of length z in α that can
be shortened to some path in Πα by deleting cycles, sees at least z− (m2 +m) nodes in complete simple
cycles of α . If one of these paths contains at least two different cycles of the same length, then these
cycles can replace each other and, thus, there are at least two accepting paths of length z in α . Therefore,
the input of length z does not belong to L(M). Assume now that all cycles in these paths have different
lengths. Then there are at most m cycles. Assume that each of these cycles is passed through at most
m−1 times. Then,

z ≤ m2 +m+
m

∑
i=1

i(m−1) = m2 +m+
m2 +m

2
(m−1)

=
m2 +m

2
(m+1) =

m3 +2m2 +m
2

≤ m3 +1 < z.

From the contradiction we conclude that there is at least one cycle, say C1, that is passed through for
x1 ≥ m times. Let C2 be passed through for x2 times. We have x1 ≥ m ≥ |C2| ≥ 1 and |C1| ≥ 1. So,
x1|C1|+ x2|C2|= (x1 −|C2|)|C1|+(x2 + |C1|)|C2|. The equality means that passing x1 times through the
cycle C1 and x2 times through the cycle C2 is equivalent to passing (x1−|C2|) times through the cycle C1
and (x2 + |C1|) times through the cycle C2. So, there are at least two accepting paths of length z in α .
Therefore, the input of length z does not belong to L(M).

Case 2: There is exactly one simple cycle C1 in α . So, there is at most one non-trivial strongly
connected component in α and this strongly connected component is the cycle C1. Clearly, in this case
we have d = |C1| and the input length z is uniquely accepted along α .

Case 3: There is no simple cycle in α . In this case, there is no non-trivial strongly connected
component in α and the unique path of length z from the initial state ends in the initial tail and, by
construction, the input of length z is correctly accepted or rejected.

Now we are ready to add the cycles for α to the tail of M′. To this end, nothing has to be done for
Case 3.

For the remaining cases, the cycle length must be d. If there is no cycle of length d,
we add two disjoint cycles Aα and Rα each of length d. In particular, Aα consists of states
{s0,s1, . . . ,sd−1 } with δ ′(sh,a) = {s(h+1) mod d}, and similarly, Rα consists of states {r0,r1, . . . ,rd−1 }
with δ ′(rh,a) = {r(h+1) mod d}. The cycles are connected to the tail by the transitions δ (q′m3+1,a) = {s0}
and δ (q′m3+1,a) = {r0}. If there are already two cycles A and R of length d that have already been
constructed for some other superpath, then they are reused and nothing is added.

Next, we identify the accepting states on the cycles.
For Case 1, we consider each σ ∈ Ψα and states si and ri become accepting if m3 + 1+ i+ 1 ≡

|σ | (mod d). In this way, Case 1 is treated correctly, since now two different paths in M′ are accepting
for the same length.

For case 2, we also consider each σ ∈ Ψα . Here, only state si becomes accepting if m3 +1+ i+1 ≡
|σ | (mod d).

In this way, Case 2 is treated correctly, since only one path is made accepting. However, it may be
that ri was already accepting. This means that the corresponding inputs are also accepted by another
superpath.

This concludes the construction of M′. Note, if an input is accepted by different superpaths having
different cycle length, then it clearly does not belong to L(M′), but is also does not belong to L(M).

142 Complexity of Unary Exclusive NFAs

Conversely, if an input is accepted unambiguously by M then it is accepted also unambiguously by M′.
So, we conclude L(M) = L(M′). Moreover, since the sum of the different cycle lengths is at most m and
each cycle length appears at most twice, the total sum of the cycle lengths is at most 2m.

Next, we can utilize the normal form to show that the costs for the determinization of unary XNFAs
are the same (in the order of magnitude) as for NFAs. This is in strict contrast to XNFAs over a general
alphabet. The backbone of the construction is similar to the backbone of the construction given in [2].
However, here we have to treat the cases when inputs are accepted at multiple paths.

Theorem 3. Let n ≥ 1 and M be a unary n-state XNFA. Then eΘ(
√

n·lnn) states are sufficient for a DFA to
accept L(M).

Proof. Given a unary n-state XNFA M, we first construct an equivalent O(n3)-state XNFA M′ in Chrobak
normal form as in the proof of Lemma 2. Let A1,R1,A2,R2, . . . ,Ak,Rk, for k ≥ 1, be the cycles of M′,
where |Ai|= |Ri|, for 1 ≤ i ≤ k. We construct the equivalent DFA M′′ = ⟨Q,Σ,δ ,q0,F⟩ as follows.

First, we take over the initial deterministic tail of M′, which has the m3 + 2 states
{q′i | 0 ≤ i ≤ m3 +1}, where m = 2n as in the proof of Lemma 2. Then we add one big cycle of length
ℓ= lcm{|A1|, |A2|, . . . , |Ak|} to the tail. To this end the states from the set { pi | 0 ≤ i ≤ ℓ−1} are cycli-
cally connected and a transition from qm3+1 to p0 is added.

Next, we have to identify the accepting states. To this end, all accepting states on the tail remain
accepting. So, as for M′ all words up to length m3 +1 are treated correctly.

Then, we assume that each state pi of the cycle has a counter attached that is initially set to 0.
Now, we consider each cycle Ai of M′ consisting of the states {s0,s1, . . . ,sd−1}. Whenever a state s j is
accepting, then the counters of all states { pt | t = j + x · d, for 0 ≤ x ≤ ℓ

d − 1} are increased by one.
Similarly, for each cycle Ri of M′ consisting of the states {r0,r1, . . . ,rd−1}. If a state r j is accepting, then
the counters of all states { pt | t = j+ x ·d, for 0 ≤ x ≤ ℓ

d −1} are increased by one.
In a last construction step, all states whose counters are exactly one become accepting, all the others

become non-accepting. In this way, all inputs that are accepted by more than one path in M′ are rejected
in M′′, and all inputs that are accepted in M′ and, thus, in M by exactly one path are accepted by M′′ as
well. So, L(M) = L(M′′) and, clearly, M′′ is a DFA. Moreover, M′′ has at most

m3 +2+ ℓ≤ (2n)3 +2+ ℓ≤ (2n)3 +2+F(n) ∈ eΘ(
√

n·lnn)

many states.

It will turn out after Proposition 5 that the upper bound for the determinization in Theorem 3 is tight
in the order of magnitude.

4 Converting unary NFAs to XNFAs and Vice Versa

Here, again Landau’s function

F(n) = max{ lcm(c1,c2 . . . ,cl) | l ≥ 1,c1,c2, . . . ,cl ≥ 1,c1 + c2 + · · ·+ cl = n}

plays a crucial role. Recall that the ci always can be chosen to be relatively prime such that
c1,c2, . . . ,cl ≥ 2, c1 + c2 + · · ·+ cl ≤ n, and lcm(c1,c2, . . . ,cl) = F(n). This, for example, means that
the ci can be prime powers. An interesting and simplifying result in [22] revealed that, instead of prime
powers, one can sum up the first prime numbers such that the sum does not exceed the limit n. More,

M. Kutrib, A. Malcher, M. Wendlandt 143

precisely, it has been shown in [22] that the following function G(n) is of the same order of magnitude
as F(n), that is, G(n) ∈ Θ(F(n)). Let pi denote here the ith prime number with p1 = 2.

G(n) = max{ p1 · p2 · · · pl | l ≥ 1 and p1 + p2 + · · ·+ pl ≤ n}

In the following theorem we use the function G(n) to describe the worst case state costs of an NFA
simulating a unary XNFA.

Theorem 4. Let n ≥ 2. There exists a unary (n+ 1)-state XNFA M such that every NFA in Chrobak
normal form accepting L(M) has at least G(n) states.

Proof. For n ≥ 2, let G(n) be represented by the product p1 · p2 · · · pl of the first l ≥ 1 prime num-
bers. We consider the XNFA M = ⟨Q,{a},δ ,q0,F⟩ whose state graph has l disjoint cycles. Each cycle
1 ≤ i ≤ l has length pi and consists of the states {ri,0,ri,1, . . . ,ri,pi−1 }, where δ (ri,h,a) = {ri,(h+1) mod pi},
for 0 ≤ h ≤ pi −1. Now, the initial state q0 is nondeterministically connected to the cycles by
δ (q0,a) = {r1,1,r2,1, . . . ,rl,1}. The set of accepting states is F = {ri,0 | 1 ≤ i ≤ l }. By construction, M
has at most n+1 states.

The language L(M) accepted by M is

{am | there is exactly one i ∈ {1,2, . . . , ℓ} such that m ≡ 0 (mod pi)}.

We define the set of all integers that are not divisible by all pi, 1 ≤ i ≤ l, as

K = {k ∈ N | k is not divisible by all pi,1 ≤ i ≤ l }.

Assume now, that L(M) is accepted by an NFA M′ in Chrobak normal form with less than G(n)
states, say m < G(n) states.

Our first goal is to show the claim that for any pi, 1 ≤ i ≤ l, all cycles in the state graph of M′ on
which infinitely many words from {ax·pi | x ∈ K } are accepted, have a length that is divisible by pi.

Since all words from the infinite set {ax·pi | x ∈ K } belong to L(M), cycles on which infinitely many
such words are accepted exist. Assume that one of these cycles has a length c not divisible by pi and
let ax0·pi with x0 ∈ K be one of the accepted words. Then, the word w = ax0·pi+c·p with p = G(n)

pi
is

accepted as well. But since c and p are not divisible by pi, we have that |w| is not divisible by pi, either.
Moreover, since x0 · pi is not divisible by any p j with i ̸= j but c · p is, we have that |w| is not divisible
by any p j with i ̸= j, either. So, w cannot belong to L(M′). From this contradiction the claim follows.

Since m < G(n), there must be two cycles C1 and C2, say of length c1 and c2, such that there are two
different prime numbers pi ̸= p j with 1 ≤ i, j ≤ l, where c1 is divisible by pi but not divisible by p j and
infinitely many words from {ax·pi | x ∈ K } are accepted in C1, and where c2 is divisible by p j but not
divisible by pi and infinitely many words from {ax·p j | x ∈ K } are accepted in C2. Since p j is relatively
prime to c1, there is an integer p such that p · c1 ≡ 1 (mod p j). Consider some word w = ax0·pi with
x0 ∈ K that is accepted in C1. Then, the word ax1·p·c1+|w| with (x1 + |w|)≡ 0 (mod p j) is accepted in C1
as well. However, this word does not belong to L(M), since it is divisible by pi and p j.

So, from this contradiction we conclude there is no NFA in Chrobak normal form with less than G(n)
states.

Clearly the upper bound for the simulation of an XNFA by an NFA is given by determinization.
Thus, we have the following proposition.

Proposition 5. Let n ≥ 2 and M be a unary n-state XNFA. Then eΘ(
√

n·lnn) states are sufficient for an
NFA to accept L(M).

144 Complexity of Unary Exclusive NFAs

The lower bound in Theorem 4 says that there are (n+1)-state XNFAs such that any equivalent NFA
in Chrobak normal form has at least G(n) states. Moreover, any n-state NFA can be converted into an
equivalent NFA in Chrobak normal form that has at most O(n2) states. So, since G(n) ∈ Θ(F(n)) [22],
the lower bound for the state costs of the simulation of an n-state XNFA by an NFA (not necessarily in
Chrobak normal form) is

Θ(
√

G(n−1)) = Θ(

√
eΘ(

√
(n−1)·ln(n−1))) = eΘ(

√
n·lnn).

So, we conclude that the upper bound for the unary XNFA-to-DFA conversion shown in Theorem 3 and
the upper bound for the unary XNFA-to-NFA conversion shown in Proposition 5 are tight in the order of
magnitude.

We turn to the simulation of NFAs by XNFAs. In [25] it has been shown that the language

L = {an | n ̸≡ 0 (mod lcm(c1,c2, . . . ,ck))}∪{λ},

for k ≥ 1 and c1,c2, . . . ,ck ≥ 2 is accepted by an NFA with 1+∑
k
i=1 ci states, while the smallest UFA

for L needs at least 1+ lcm(c1,c2, . . . ,ck) many states. The proof of the lower bound is based on a method
given in [32] which is based on a rank argument on certain matrices. After a thorough analysis of the
arguments of the method, it turned out that exclusively accepting computations of the UFAs are used. In
other words, the arguments can be applied to XNFAs as well. So, we derive that also the smallest XNFA
needs at least 1+ lcm(c1,c2, . . . ,ck) states to accept the language L. So, we have the following lower
bound.

Theorem 6. Let n ≥ 2. There exists a unary (n+1)-state NFA M such that every XNFA accepting L(M)
has at least F(n)+1 states.

Clearly the upper bound for the simulation of an NFA by an XNFA is given by determinization.
Thus, we have the following proposition.

Proposition 7. Let n ≥ 2 and M be a unary n-state NFA. Then eΘ(
√

n·lnn) states are sufficient for an
XNFA to accept L(M).

As before, we also conclude here that the lower bound and upper bound are tight in the order of
magnitude.

5 Computational Complexity

In this section, we discuss the computational complexity of decidability questions. In particular, we
consider general membership, emptiness, universality, inclusion, and equivalence with respect to the
unary case. These problems have been studied in [13, 14] in case of general alphabets. It turns out
here that the general membership problem in the unary case shares the same computational complexity
with the general case, namely, both problems are NL-complete. However, the questions of emptiness,
universality, inclusion, and equivalence turn out to be coNP-complete in the unary case, whereas these
questions have been shown to be PSPACE-complete in the general case [13, 14].

Theorem 8. The problem of testing the general membership for unary XNFAs is NL-complete.

Proof. To show that the problem is in NL for unary XNFAs we can use the same construction that has
been described in [13, 14] for general alphabets. The basic idea is to test whether an input w is not

M. Kutrib, A. Malcher, M. Wendlandt 145

accepted by a given XNFA A. This means that either there is no accepting path in the computation tree
for w or there are at least two accepting paths. In the first case, the input w is not accepted by A even if A
is considered as an NFA. Hence, this case can be solved in NL using the known algorithms for NFAs.
The second case can be checked by guessing two different accepting paths in the computation tree. To
this end, one has to keep track of two states representing the current position on the two paths. Since this
can be realized in NL, the general membership problem is in NL in particular for unary XNFAs.

To show the NL-hardness of the general membership problem for unary XNFAs we can in principle
apply the reduction that is described in [14] for general alphabets. To adapt it to the unary case we have
to use the fact that the membership problem for unary NFAs remains NL-complete (see, e.g., [11]) and
we have to observe that the XNFA constructed in the reduction is unary, since the given NFA is unary.
Since the reduction described in [14] is not yet published we provide the reduction here for the sake of
completeness.

To show the NL-hardness of the general membership problem we reduce the non-membership prob-
lem for NFAs which is known to be NL-complete, since the membership problem for NFAs is NL-
complete.

Let ⟨A,w⟩ be the encoding of an NFA A = ⟨Q,{a},δ ,q0,F⟩ and an input word w. We construct an
XNFA A′ = ⟨Q∪{p0, p},{a},δ ′, p0,F ′⟩, where p0 and p are two new states not belonging to Q. The
accepting states F ′ are defined as F ′ = F ∪ {p0, p}, if λ ∈ L(A), and F ′ = F ∪ {p} otherwise. The
transition function δ ′ is defined as follows. First, A′ has the same behavior as A on states from Q.
Formally, δ ′(q,a) = δ (q,a) for all q ∈ Q. Second, from the new initial state p0 all states are reached that
are reached from the initial state q0 of A. Additionally, the new state p is reached from p0. Formally,
q′ ∈ δ ′(p0,a), if q′ ∈ δ (q0,a), and p ∈ δ ′(p0,a). Finally, the state p acts as an accepting sink state, that
is, p ∈ δ ′(p,a).

The reduction from the encoding ⟨A,w⟩ to an encoding ⟨A′,w⟩ can be realized by a deterministic
logarithmically space-bounded Turing machine.

For the correctness of the reduction we have to show that the XNFA A′ accepts w if and only if w is not
accepted by the NFA A. On the one hand, if w is accepted by A′, then p∈ δ ′(p0,w) and δ ′(p0,w)∩F = /0,
since otherwise there would be at least two accepting paths for w. Hence, w is not accepted by the NFA A.
On the other hand, if w is not accepted by A′, then p ∈ δ ′(p0,w) and δ ′(p0,w)∩F ̸= /0, since there must
be at least two accepting paths for w. Hence, w is accepted by the NFA A. This concludes the correctness
of the reduction and shows the NL-hardness of the general membership problem for XNFAs. Altogether,
we obtain that the general membership problem for XNFAs is NL-complete.

It is known that the emptiness problem for unary NFAs is NL-complete. In contrast, we show the
problem becomes coNP-complete for unary XNFAs. In the following proofs we need a result obtained
in [13, 14] on the conversion of XNFAs to DFAs in case of general alphabets.

Theorem 9. [13, 14] Let n ≥ 1 and M be an n-state XNFA. Then 3n − 2n + 1 states are sufficient for a
DFA to accept L(M).

Theorem 10. The emptiness problem for unary XNFAs is coNP-complete.

Proof. We will show that the non-emptiness problem for unary XNFAs is NP-complete which implies
that the emptiness problem is coNP-complete. To show that the non-emptiness problem belongs to NP
we use a similar approach as described in Theorem 6.1 in [35]. Let M be an XNFA over a unary al-
phabet {a} with state set Q = {q1,q2, . . . ,qn}, initial state q1, and transition function δ . By applying
Theorem 9 we know that there exists an equivalent DFA that has at most 3n states. It is clear that L(M)
is not empty if and only if M accepts a word of length m ≤ 3n.

146 Complexity of Unary Exclusive NFAs

Now, the idea is first to guess a length m ≤ 3n in ternary representation m1m2 · · ·mn and to check
whether there is exactly one path of length m in M leading from the initial state to an accepting state. The
latter can be realized by mapping the transition function of M to its corresponding adjacency matrix AM

where we set an entry AM[i, j] = 1 if and only if q j ∈ δ (qi,a), for 1 ≤ i, j ≤ n. Then, am ∈ L(M) if and
only if the first row of Am

M has exactly one entry corresponding to an accepting state with value 1. Thus,
we have as second task to compute the matrix product Am

M = Am1·3n−1

M ·Am2·3n−2

M · · · ·Amn
M by inspecting

the ternary counter. The matrix Am
M can be computed by successively cubing and multiplying AM. For

example, let m = 22 and its ternary notation be 211. Then, we have to multiply AM ·A3
M ·A9

M ·A9
M. In

general, we have at most 3 ·2log3(m)≤ 6n matrix multiplications. Since every matrix multiplication can
be realized in time n2, we obtain that Am

M can be computed in deterministic time bounded by a polynomial
in n. Finally, the first row of the resulting matrix Am

M has to be inspected. Altogether, these three tasks
can be realized in nondeterministic time bounded by a polynomial in n. Hence, the complete procedure
is in NP.

To show that the non-emptiness problem is NP-hard we use again a similar approach as described
in Theorem 6.1 in [35]. It is shown there that a given Boolean formula in conjunctive form with exactly
three literals per conjunct is satisfiable if and only if a regular unary language L described by a regular
expression is not equal to {a}∗. Moreover, the reduction is computable in logarithmic space. Since a
language described by a regular expression can equivalently be described by an NFA of similar size, we
let now L be described by an NFA M. Moreover, we construct a one-state DFA M′ that accepts {a}∗.
Then, we construct an XNFA M′′ that initially guesses whether it simulates for the complete input the
NFA M or the DFA M′. Since M′′ is an XNFA we obtain that L(M) = {a}∗ if and only if L(M′′) = /0.
Hence, we have L(M′′) ̸= /0 if and only if L(M) ̸= {a}∗ if and only if the given Boolean formula is
satisfiable. Since the constructions of M, M′, and M′′ can be realized in logarithmic space, we obtain the
NP-hardness of the non-emptiness problem for XNFAs and, thus, the coNP-hardness of the emptiness
problem for XNFAs.

Theorem 11. The problems of testing universality, inclusion, and equivalence for unary XNFAs are
coNP-complete.

Proof. Let us first show that the problems of testing non-universality, non-inclusion, and non-equivalence
for unary XNFAs are in NP. We start with the non-universality problem. Let M be an n-state XNFA.
By applying Theorem 9 we know that there exists an equivalent DFA that has at most 3n states. Hence,
L(M) ̸= {a}∗ if and only if there is a word of length m ≤ 3n that is not accepted by M. Similar to the
proof of Theorem 10 we can guess a ternary representation of that word, compute Am

M, and check that the
guessed word is not accepted by M by inspecting the first row whether there is no entry corresponding
to an accepting state with value 1. According to the considerations made in the proof of Theorem 10 the
procedure can be realized in nondeterministic polynomial time and we obtain that the non-universality
problem is in NP. Hence, the universality problem is in coNP.

Next, we consider the non-inclusion problem. Let M1 be an n1-state XNFA and M2 be an n2-state
XNFA. By applying Theorem 9 we know that there exist equivalent DFAs having at most 3n1 states
and 3n2 states, respectively. Hence, L(M1) ̸⊆ L(M2) if and only if L(M1)∩ L(M2) ̸= /0 if and only if
there is a word of length m ≤ 3n1+n2 that is accepted by M1, but not accepted by M2. Similar to the
proof of Theorem 10 and to the above construction for the non-universality problem we obtain that the
non-inclusion problem is in NP. Hence, the inclusion problem is in coNP.

Finally, we consider the equivalence problem. Let M1 and M2 be two XNFAs. Since the inclusion
problem is in coNP, we obtain that the equivalence problem is coNP by testing L(M1) ⊆ L(M2) and

M. Kutrib, A. Malcher, M. Wendlandt 147

L(M2)⊆ L(M1).
To show the coNP-hardness of the problems we shortly describe how the reduction given in the proof

of Theorem 10 has to be extended. We recall that we have constructed an XNFA M′′ such that L(M′′) ̸= /0
if and only if the given Boolean formula is satisfiable.

For non-universality we construct another XNFA A that initially guesses whether it simulates for the
complete input the XNFA M′′ or the DFA M′ accepting {a}∗. Then, we have L(A) ̸= {a}∗ if and only if
L(M′′) ̸= /0 and obtain the NP-hardness of non-universality. For the equivalence problem we consider M′

as an XNFA and have L(A) = L(M′) = {a}∗ if and only if L(M′′) = /0, which gives the coNP-hardness
of the equivalence problem. Finally, we have L(M′)⊆ L(A) if and only if L(A) = L(M′) if and only if
L(M′′) = /0 and obtain the coNP-hardness of the inclusion problem.

The computational complexity results in the unary case are summarized in Table 1.

DFA NFA XNFA AFA
membership L NL NL P

emptiness L NL coNP PSPACE

universality L coNP coNP PSPACE

inclusion L coNP coNP PSPACE

equivalence L coNP coNP PSPACE

Table 1: Computational complexity results for the decidability problems in the unary case. All problems
are complete with respect to the complexity class indicated. The results for XNFAs are obtained in
this paper. The remaining results and pointers to the literature are summarized, for example, in the
survey [10].

References

[1] Andreas Blass & Yuri Gurevich (1982): On the Unique Satisfiability Problem. Inform. Control 55, pp. 80–88,
doi:10.1016/S0019-9958(82)90439-9.

[2] Marek Chrobak (1986): Finite automata and unary languages. Theor. Comput. Sci. 47, pp. 149–158,
doi:10.1016/0304-3975(86)90142-8. Errata: [3].

[3] Marek Chrobak (2003): Errata to “Finite automata and unary languages”. Theor. Comput. Sci. 302, pp.
497–498, doi:10.1016/S0304-3975(03)00136-1.

[4] Keith Ellul (2004): Descriptional Complexity Measures of Regular Languages. Master’s thesis, University
of Waterloo, Ontario, Canada.

[5] Viliam Geffert (2007): Magic numbers in the state hierarchy of finite automata. Inform. Comput. 205(11),
pp. 1652–1670, doi:10.1016/j.ic.2007.07.001.

[6] Viliam Geffert, Carlo Mereghetti & Giovanni Pighizzini (2003): Converting two-way nondeterministic unary
automata into simpler automata. Theor. Comput. Sci. 295, pp. 189–203, doi:10.1016/S0304-3975(02)00403-
6.

[7] Yahya Ould Hamidoune (1979): Sur les parcours hamiltoniens dans les graphes orientes. Discrete Mathe-
matics 26, pp. 227–234, doi:10.1016/0012-365X(79)90028-1.

[8] Lane A. Hemaspaandra & Mitsunori Ogihara (2002): The Complexity Theory Companion. Springer,
doi:10.1007/978-3-662-04880-1.

https://doi.org/10.1016/S0019-9958(82)90439-9
https://doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1016/S0304-3975(03)00136-1
https://doi.org/10.1016/j.ic.2007.07.001
https://doi.org/10.1016/S0304-3975(02)00403-6
https://doi.org/10.1016/S0304-3975(02)00403-6
https://doi.org/10.1016/0012-365X(79)90028-1
https://doi.org/10.1007/978-3-662-04880-1

148 Complexity of Unary Exclusive NFAs

[9] Markus Holzer & Martin Kutrib (2003): Unary Language Operations and Their Nondeterministic State
Complexity. In M. Ito & M. Toyama, editors: Developments in Language Theory (DLT 2002), LNCS 2450,
Springer, pp. 162–172, doi:10.1007/3-540-45005-X 14.

[10] Markus Holzer & Martin Kutrib (2011): Descriptional and Computational Complexity of Finite Automata –
A Survey. Inform. Comput. 209, pp. 456–470, doi:10.1016/J.IC.2010.11.013.

[11] Neil D. Jones (1975): Space-Bounded Reducibility among Combinatorial Problems. J. Comput. Syst. Sci.
11, pp. 68–85, doi:10.1016/S0022-0000(75)80050-X.

[12] Michal Kunc & Alexander Okhotin (2012): State complexity of operations on two-way finite automata over
a unary alphabet. Theor. Comput. Sci. 449, pp. 106–118, doi:10.1016/J.TCS.2012.04.010.

[13] Martin Kutrib, Andreas Malcher & Matthias Wendlandt (2023): Complexity of Exclusive Nondeterministic
Finite Automata. In Henning Bordihn, Nicholas Tran & György Vaszil, editors: Descriptional Complexity of
Formal Systems (DCFS 2023), LNCS 13918, Springer, pp. 121–133, doi:10.1007/978-3-031-34326-1 9.

[14] Martin Kutrib, Andreas Malcher & Matthias Wendlandt (2024): Complexity of Exclusive Nondeterministic
Finite Automata. submitted for journal publication.

[15] Edmund Landau (1903): Über die Maximalordnung der Permutationen gegebenen Grades. Archiv der Math.
und Phys. 3, pp. 92–103.

[16] Edmund Landau (1909): Handbuch der Lehre von der Verteilung der Primzahlen. Teubner, Leipzig.

[17] Hing Leung (1998): Separating Exponentially Ambiguous Finite Automata from Polynomially Ambiguous
Finite Automata. SIAM J. Comput. 27, pp. 1073–1082, doi:10.1137/S0097539793252092.

[18] Hing Leung (2005): Descriptional complexity of NFA of different ambiguity. Int. J. Found. Comput. Sci. 16,
pp. 975–984, doi:10.1142/S0129054105003418.

[19] Filippo Mera & Giovanni Pighizzini (2005): Complementing unary nondeterministic automata. Theor. Com-
put. Sci. 330, pp. 349–360, doi:10.1016/J.TCS.2004.04.015.

[20] Carlo Mereghetti & Giovanni Pighizzini (2001): Optimal Simulations between Unary Automata. SIAM J.
Comput. 30, pp. 1976–1992, doi:10.1137/S009753979935431X.

[21] Albert R. Meyer & Michael J. Fischer (1971): Economy of Description by Automata, Grammars, and
Formal Systems. In: Symposium on Switching and Automata Theory (SWAT 1971), IEEE, pp. 188–191,
doi:10.1109/SWAT.1971.11.

[22] William Miller (1987): The maximum order of an element of a finite symmetric group. Am. Math. Mon. 94,
pp. 497–506, doi:10.1080/00029890.1987.12000673.

[23] Frank R. Moore (1971): On the Bounds for State-Set Size in the Proofs of Equivalence Between Deter-
ministic, Nondeterministic, and Two-Way Finite Automata. IEEE Trans. Comput. 20(10), pp. 1211–1214,
doi:10.1109/T-C.1971.223108.

[24] J.-L. Nicolas (1968): Sur l’ordre maximum d’un élément dans le groupe Sn des permutations. Acta Arith. 14,
pp. 315–332, doi:10.4064/aa-14-3-315-332.

[25] Alexander Okhotin (2012): Unambiguous finite automata over a unary alphabet. Inform. Comput. 212, pp.
15–36, doi:10.1016/J.IC.2012.01.003.

[26] Giovanni Pighizzini (2009): Deterministic Pushdown Automata and Unary Languages. Int. J. Found. Com-
put. Sci. 20(4), pp. 629–645, doi:10.1142/S0129054109006784.

[27] Giovanni Pighizzini (2015): Investigations on Automata and Languages Over a Unary Alphabet. Int. J.
Found. Comput. Sci. 26, pp. 827–850, doi:10.1142/S012905411540002X.

[28] Giovanni Pighizzini & Jeffrey Shallit (2002): Unary Language Operations, State Complexity and Jacob-
sthal’s Function. Int. J. Found. Comput. Sci. 13, pp. 145–159, doi:10.1142/S012905410200100X.

[29] Giovanni Pighizzini, Jeffrey Shallit & Ming-Wei Wang (2002): Unary Context-Free Grammars and Push-
down Automata, Descriptional Complexity and Auxiliary Space Lower Bounds. J. Comput. Syst. Sci. 65, pp.
393–414, doi:10.1006/JCSS.2002.1855.

https://doi.org/10.1007/3-540-45005-X_14
https://doi.org/10.1016/J.IC.2010.11.013
https://doi.org/10.1016/S0022-0000(75)80050-X
https://doi.org/10.1016/J.TCS.2012.04.010
https://doi.org/10.1007/978-3-031-34326-1_9
https://doi.org/10.1137/S0097539793252092
https://doi.org/10.1142/S0129054105003418
https://doi.org/10.1016/J.TCS.2004.04.015
https://doi.org/10.1137/S009753979935431X
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1080/00029890.1987.12000673
https://doi.org/10.1109/T-C.1971.223108
https://doi.org/10.4064/aa-14-3-315-332
https://doi.org/10.1016/J.IC.2012.01.003
https://doi.org/10.1142/S0129054109006784
https://doi.org/10.1142/S012905411540002X
https://doi.org/10.1142/S012905410200100X
https://doi.org/10.1006/JCSS.2002.1855

M. Kutrib, A. Malcher, M. Wendlandt 149

[30] Michael Oser Rabin & Dana Scott (1959): Finite Automata and Their Decision Problems. IBM J. Res. Dev.
3, pp. 114–125, doi:10.1147/rd.32.0114.

[31] William J. Sakoda & Michael Sipser (1978): Nondeterminism and the size of two way finite automata. In
ACM, editor: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing (STOC 1978),
ACM, ACM Press, New York, pp. 275–286, doi:10.1145/800133.804357.

[32] Erik Meineche Schmidt (1978): Succinctness of Dscriptions of Context-Free, Regular and Finite Languages.
Ph.D. thesis, Cornell University, Ithaca, NY.

[33] Jeffrey Shallit (2008): The Frobenius Problem and Its Generalizations. In Masami Ito & Masafumi Toyama,
editors: Developments in Language Theory (DLT 2008), LNCS 5257, Springer, pp. 72–83, doi:10.1007/978-
3-540-85780-8 5.

[34] Michael Sipser (1980): Lower Bounds on the Size of Sweeping Automata. J. Comput. Syst. Sci. 21, pp.
195–202, doi:10.1016/0022-0000(80)90034-3.

[35] Larry. J. Stockmeyer & A. R. Meyer (1973): Word Problems Requiring Exponential Time. In ACM, editor:
Proceedings of the Fifth Annual ACM Symposium on Theory of Computing (STOC 1973), ACM Press, New
York, NY, USA, pp. 1–9, doi:10.1145/800125.804029.

[36] M. Szalay (1980): On the maximal order in Sn and S∗n. Acta Arithm. 37, pp. 321–331, doi:10.4064/aa-37-1-
321-331.

[37] Anthony Widjaja To (2009): Unary finite automata vs. arithmetic progressions. Inform. Process. Lett. 109,
pp. 1010–1014, doi:10.1016/J.IPL.2009.06.005.

https://doi.org/10.1147/rd.32.0114
https://doi.org/10.1145/800133.804357
https://doi.org/10.1007/978-3-540-85780-8_5
https://doi.org/10.1007/978-3-540-85780-8_5
https://doi.org/10.1016/0022-0000(80)90034-3
https://doi.org/10.1145/800125.804029
https://doi.org/10.4064/aa-37-1-321-331
https://doi.org/10.4064/aa-37-1-321-331
https://doi.org/10.1016/J.IPL.2009.06.005

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 150–167, doi:10.4204/EPTCS.407.11

© F. Mráz and F. Otto
This work is licensed under the
Creative Commons Attribution License.

Repetitive Finite Automata With Translucent Letters

František Mráz
Charles University

Department of Computer Science
Malostranské nám. 25

118 00 PRAHA, Czech Republic
frantisek.mraz@mff.cuni.cz

Friedrich Otto
Universität Kassel

Fachbereich Elektrotechnik/Informatik
34109 KASSEL, Germany
f.otto@uni-kassel.de

Here we propose an extension of the (deterministic and the nondeterministic) finite automaton with
translucent letters (DFAwtl and NFAwtl), which lies between these automata and their non-returning
variants (that is, the nr-DFAwtl and the nr-NFAwtl). This new model works like a DFAwtl or an
NFAwtl, but on seeing the end-of-tape marker, it may change its internal state and continue with its
computation instead of just ending it, accepting or rejecting. This new type of automaton is called
a repetitive deterministic or nondeterministic finite automaton with translucent letters (RDFAwtl or
RNFAwtl). In the deterministic case, the new model is strictly more expressive than the DFAwtl, but
less expressive than the nr-DFAwtl, while in the nondeterministic case, the new model is equivalent
to the NFAwtl.

1 Introduction

While a finite automaton reads its input strictly from left to right, letter by letter, by now many types
of automata have been considered in the literature that process their inputs in a different, more involved
way. Under this aspect, the most extreme is the jumping finite automaton of Meduna and Zemek [7]
(see also [5]), which, after reading a letter, jumps to an arbitrary position of the remaining input. It
is known that the jumping finite automaton accepts languages that are not even context-free, like the
language {w ∈ {a,b,c}∗ | |w|a = |w|b = |w|c }, but at the same time, it does not even accept the finite
language {ab}.

Another example is the restarting automaton as introduced by Jančar, Mráz, Plátek, and Vogel in [6],
which processes a given input in cycles. In each cycle, a restarting automaton scans its tape contents
from left to right, using a window of a fixed finite size, until it executes a delete/restart operation. Such
an operation deletes one or more letters from the current contents of the window, returns the window to
the left end of the tape, and resets the automaton to its initial state. If a window of size larger than one is
used, these so-called R-automata accept a proper superclass of the regular languages that is incomparable
to the context-free and the growing context-sensitive languages with respect to inclusion (see, e.g., [17]).
However, with a window of size one, the R-automata accept exactly the regular languages [8].

Finally, there is the (deterministic and nondeterministic) finite automaton with translucent letters (or
DFAwtl and NFAwtl) of Nagy and Otto [13], which is equivalent to a cooperating distributed system of
stateless deterministic R-automata with windows of size one. For each state q of an NFAwtl, there is
a set τ(q) of translucent letters, which is a subset of the input alphabet that contains those letters that
the automaton cannot see when it is in state q. Accordingly, in each step, the NFAwtl just reads (and
deletes) the first letter from the left which it can see, that is, which is not translucent for the current state.
Here, it is important to notice that, in each step, an NFAwtl reads the current tape contents from the very
left, that is, after deleting a letter, it returns its head to the first letter of the remaining tape contents.
It has been shown that the NFAwtl accepts a class of semi-linear languages that properly contains all

http://dx.doi.org/10.4204/EPTCS.407.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

F. Mráz and F. Otto 151

rational trace languages, while its deterministic variant, the DFAwtl, is properly less expressive. In fact,
the DFAwtl just accepts a class of languages that is incomparable to the rational trace languages with
respect to inclusion [12, 14, 15, 16]. Although the NFAwtl is quite expressive, it cannot even accept the
deterministic linear language L2 = {anbn | n ≥ 0}, as such an automaton cannot possibly compare the
number of occurrences of the letter a with the number of occurrences of the letter b and ensure, at the
same time, that all a’s precede the first b.

To make up for this shortcoming, a variant of the finite automaton with translucent letters has been
proposed in [9], which, after reading and deleting a letter, does not return its head to the first letter of
the remaining tape contents, but that rather continues from the position of the letter just deleted. This
means that, in general, only a scattered subword of the input has been read and deleted before the head
reaches the end of the input. If the computation is now required to halt, either accepting or rejecting,
then it can easily be shown that this type of automaton just accepts the class of regular languages. For
the right one-way jumping finite automaton of [1, 3], this problem is overcome by cyclically shifting all
the translucent letters that are encountered during a computation to the end of the current tape contents.
In this way, these letters may be read and deleted at a later stage of the computation. For the type of
automaton proposed in [9], a different approach was taken. When the head of the automaton reaches
the end of the input, which is marked by a special end-of-tape marker, then the automaton can decide
whether to accept, reject, or continue, which means that it changes its state and again reads the remaining
tape contents from the beginning.

It has been established that this type of automaton, called a non-returning finite automaton with
translucent letters or an nr-NFAwtl, is strictly more expressive than the NFAwtl. This result also holds
for the deterministic case, although the deterministic variant, the nr-DFAwtl, is still not sufficiently ex-
pressive to accept all rational trace languages. In [10], the nr-DFAwtl and the nr-NFAwtl are compared
to the jumping finite automaton, the right one-way jumping finite automaton of [1, 3], and the right-
revolving finite automaton of [2], deriving the complete taxonomy of the resulting classes of languages.
As it turns out, the nr-DFAwtl can be seen as an extension of the right one-way jumping finite automaton
that can detect the end of its input.

When we look at the above description of the generalization of the NFAwtl to the nr-NFAwtl, then
we realize that this generalization actually consists of two steps:

• The head of the automaton does not return to the left end of the tape after a letter has been read and
deleted. This is the non-returning property (in contrast to the returning property of the NFAwtl).

• Once the end-of-tape marker is reached, an nr-NFAwtl may execute a step that changes its state
and returns its head to the left end of the tape. We call this the property of being repetitive (in
contrast to the non-repetitiveness of the NFAwtl, which must immediately halt as soon as its head
reaches the end-of-tape marker).

In this paper, we study the influence that these two properties have on the expressive capacity of
the finite automaton with translucent letters in detail. As we consider both, the deterministic and non-
deterministic variants of the resulting types of automata, we obtain eight different classes of automata
with translucent letters. In addition, we also include the (deterministic and the non-deterministic) right
one-way jumping finite automaton in our study. We shall derive the complete taxonomy of the resulting
language classes, which will nicely illustrate the effects that the non-returning property and the repeti-
tiveness have.

Actually, we shall only encounter one new language class that has not been considered before: the
class L (RDFAwtl) of languages that are accepted by repetitive DFAwtls. After presenting the necessary
notation and definitions in Section 2, we shall present our results on repetitive DFAwtls and repetitive

152 Repetitive Finite Automata with Translucent Letters

NFAwtls in Section 3. Here, it turns out that the repetitive DFAwtl (the RDFAwtl) is strictly more
expressive than the DFAwtl, while its nondeterministic variant, the repetitive NFAwtl (the RNFAwtl), is
equivalent to the NFAwtl. Then, in Section 4, we consider closure and non-closure properties for the
language class L (RDFAwtl). Finally, in the concluding section, we address the membership problem
and some other decision problems for the RDFAwtl in short, and we state some open problems.

2 Definitions

First, we restate the definition of the nondeterministic finite automaton with translucent letters and its
deterministic variant, the DFAwtl, from [13].

Definition 1 A finite automaton with translucent letters, or an NFAwtl for short, is defined as a 7-tuple
A = (Q,Σ,◁,τ, I,F,δ), where Q is a finite set of internal states, Σ is a finite alphabet of input letters,
◁ ̸∈ Σ is a special letter that is used as an end-of-tape marker, τ : Q →P(Σ) is a translucency mapping,
I ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, and δ : Q×Σ →P(Q) is a transition relation.
Here, we require that, for each state q ∈ Q and each letter a ∈ Σ, if a ∈ τ(q), then δ (q,a) = /0.

An NFAwtl A = (Q,Σ,◁,τ, I,F,δ) is a deterministic finite automaton with translucent letters, abbre-
viated as DFAwtl, if |I|= 1 and |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ.

A configuration of A is a word from the set Q ·Σ∗ ·◁ ∪ {Accept,Reject}. A configuration of the
form qw ·◁, where q ∈ Q and w ∈ Σ∗, expresses the situation that A is in state q, its tape contains the
word w followed by the sentinel ◁, and the head of A is on the first letter of w ·◁. For an input word
w ∈ Σ∗, a corresponding initial configuration is of the form q0w ·◁, where q0 ∈ I. The NFAwtl A induces
the following single-step computation relation on its set of configurations:

qw ·◁ ⊢A

q′uv ·◁, if w = uav, u ∈ (τ(q))∗, a ∈ Σ∖ τ(q), v ∈ Σ∗, and q′ ∈ δ (q,a),
Reject, if w = uav, u ∈ (τ(q))∗, a ∈ Σ∖ τ(q), v ∈ Σ∗, and δ (q,a) = /0,
Accept, if w ∈ (τ(q))∗ and q ∈ F,
Reject, if w ∈ (τ(q))∗ and q ̸∈ F.

Thus, in each step, A reads and deletes the first letter from the left that is not translucent for the current
state. In addition, if all letters on the tape are translucent for the current state, then A halts, and it
accepts if the current state is final. A word w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I
and a computation q0w ·◁ ⊢∗

A Accept, where ⊢∗
A denotes the reflexive transitive closure of the single-step

computation relation ⊢A. Now, L(A) = {w ∈ Σ∗ | w is accepted by A} is the language accepted by A, and
L (NFAwtl) denotes the class of all languages that are accepted by NFAwtls. Analogously, L (DFAwtl)
denotes the class of all languages that are accepted by DFAwtls.

Next, we define the first of the two possible extensions of the automaton with translucent letters that
we mentioned above.

Definition 2 A repetitive finite automaton with translucent letters, or an RNFAwtl, is specified through
a 6-tuple A = (Q,Σ,◁,τ, I,δ), where Q, Σ, ◁, τ , and I are defined as for an NFAwtl, while the transition
relation δ is a mapping δ : (Q× (Σ∪{◁}))→ (P(Q)∪{Accept}). Here, it is required that, for each
state q ∈ Q and each letter a ∈ Σ, δ (q,a) ⊆ Q and, if a ∈ τ(q), then δ (q,a) = /0. In addition, for each
state q ∈ Q, δ (q,◁) is either a subset of Q or δ (q,◁) = Accept.

F. Mráz and F. Otto 153

The set of configurations for an RNFAwtl is the same as for an NFAwtl. The RNFAwtl A induces the
following single-step computation relation on its set of configurations:

qw ·◁ ⊢A

q′uv ·◁ if w = uav, u ∈ (τ(q))∗,a ∈ Σ∖ τ(q),v ∈ Σ∗, and q′ ∈ δ (q,a),
Reject if w = uav, u ∈ (τ(q))∗,a ∈ Σ∖ τ(q),v ∈ Σ∗, and δ (q,a) = /0,
Accept if w ∈ (τ(q))∗ and δ (q,◁) = Accept,
Reject if w ∈ (τ(q))∗ and δ (q,◁) = /0,
q′w ·◁ if w ∈ (τ(q))∗ and q′ ∈ δ (q,◁).

Thus, if all letters on the tape are translucent for the current state q and δ (q,◁) ⊆ Q is nonempty,
then A changes its state to q′ ∈ δ (q,◁) and continues with its computation. The language L(A) accepted
by A is defined as L(A) = {w ∈ Σ∗ | w is accepted by A}, that is, it consists of all words for which A
has an accepting computation, and L (RNFAwtl) denotes the class of all languages that are accepted
by RNFAwtls.

An RNFAwtl A = (Q,Σ,◁,τ, I,δ) is a repetitive deterministic finite automaton with translucent let-
ters, or an RDFAwtl, if |I|= 1 and |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ∪{◁}. L (RDFAwtl) denotes
the class of all languages that are accepted by RDFAwtls.

Obviously, each NFAwtl can easily be turned into an RNFAwtl for the same language. Of course,
the same applies to a DFAwtl, giving an RDFAwtl for the same language. Thus, we have the following
inclusion relations.

Proposition 3 L (DFAwtl)⊆ L (RDFAwtl) and L (NFAwtl)⊆ L (RNFAwtl).

The following simple example illustrates the way in which a repetitive finite automaton with translu-
cent letters works.

Example 4 Let A∨,c = (Q,Σ,◁,τ, I,δ) be the RDFAwtl that is defined as follows:

• Q = {q0,q1,q2,q3,q4,q5,q6,q7} and I = {q0},

• Σ = {a,b,c},

• τ(q0) = {a,b}, τ(q1) = /0, τ(q2) = {a}, τ(q3) = {b},
τ(q4) = /0, τ(q5) = {a}, τ(q6) = {a}, τ(q7) = {b},

• δ (q0,c) = q1, δ (q0,◁) = q4,
δ (q1,a) = q2, δ (q1,b) = q3, δ (q1,◁) = Accept,
δ (q2,b) = q1, δ (q3,a) = q1,
δ (q4,a) = q5, δ (q4,b) = q7, δ (q4,◁) = Accept,
δ (q5,b) = q6, δ (q6,b) = q4, δ (q7,a) = q6.

while δ yields the empty set for all other pairs from Q× (Σ∪{◁}).

Using the graphical notation introduced in [10] for describing non-returning NFAwtls, the RDFAwtl A∨,c
can be depicted more compactly by the diagram in Fig. 1.

For example, the RDFAwtl A∨,c can execute the following accepting computations:

q0aabbcba ·◁ ⊢A∨,c q1aabbba ·◁ ⊢A∨,c q2abbba ·◁ ⊢A∨,c q1abba ·◁
⊢A∨,c q2bba ·◁ ⊢A∨,c q1ba ·◁ ⊢A∨,c q3a ·◁
⊢A∨,c q1 ·◁ ⊢A∨,c Accept,

154 Repetitive Finite Automata with Translucent Letters

q2

(a∗,b)
''

q1
b 77agg

◁

++

q3

(b∗,a)
ww

// q0
({a,b}∗,c)

BB

({a,b}∗,◁)

��

Accept

q5

(a∗,b) ,,

q4
b //aoo

◁
33

q7

(b∗,a)qqq6

(a∗,b)

OO

Figure 1: The diagram describing the RDFAwtl A∨,c. An arrow from a state q to a state q′ labeled with
a single letter x means that τ(q) = /0 and q′ ∈ δ (q,x). An arrow labeled with a pair (∆∗,x) means that
τ(q) = ∆ and q′ ∈ δ (q,x).

and
q0bbaabb ·◁ ⊢A∨,c q4bbaabb ·◁ ⊢A∨,c q7baabb ·◁ ⊢A∨,c q6babb ·◁

⊢A∨,c q4abb ·◁ ⊢A∨,c q5bb ·◁ ⊢A∨,c q6b ·◁
⊢A∨,c q4 ·◁ ⊢A∨,c Accept.

In fact, it can be checked that

L(A∨,c) = {w ∈ {a,b,c}∗ | |w|c = 1 and |w|a = |w|b } ∪ {w ∈ {a,b}∗ | 2 · |w|a = |w|b }. ■

Finally, we come to the second extension of the automaton with translucent letters that we mentioned
in the introduction.

Definition 5 A non-repetitive non-returning finite automaton with translucent letters, or an nr-nr-
NFAwtl, is defined like an NFAwtl, but its computation relation is defined differently. Let A =
(Q,Σ,◁,τ, I,F,δ) be an nr-nr-NFAwtl. Its set of configurations is Σ∗ ·Q · Σ∗ ·◁ ∪ {Accept,Reject}.
A configuration of the form xqw ·◁, where q ∈ Q and x,w ∈ Σ∗, expresses the situation that A is in
state q, the tape contains the word xw ·◁, and the head of A is on the first letter of the suffix w ·◁. The
single-step computation relation that A induces on this set of configurations is defined as follows, where
q ∈ Q and x,w ∈ Σ∗:

xqw ·◁ ⊢A

xuq′v ·◁, if w = uav, u ∈ (τ(q))∗, a ∈ Σ∖ τ(q), v ∈ Σ∗, and q′ ∈ δ (q,a),
Reject, if w = uav, u ∈ (τ(q))∗, a ∈ Σ∖ τ(q), v ∈ Σ∗, and δ (q,a) = /0,
Accept, if w ∈ (τ(q))∗ and q ∈ F,
Reject, if w ∈ (τ(q))∗ and q ̸∈ F.

Thus, in each step, A reads and deletes the first letter to the right of the current position of its head that is
not translucent for the current state. In particular, after reading and deleting a letter, the head does not
return to the left end of the tape (that is why this type of automaton is called non-returning), but it rather
moves to the next letter. In addition, if all letters on the tape that are to the right of the current head

F. Mráz and F. Otto 155

position are translucent for the current state, then A halts, and it accepts if the current state is final. A
word w ∈ Σ∗ is accepted by A if there exists an initial state q0 ∈ I and a computation q0w ·◁ ⊢∗

A Accept,
where ⊢∗

A denotes the reflexive transitive closure of the single-step computation relation ⊢A. Now, L(A) =
{w ∈ Σ∗ | w is accepted by A} is the language accepted by A, and L (nr-nr-NFAwtl) denotes the class
of all languages that are accepted by nr-nr-NFAwtls.

An nr-nr-NFAwtl A=(Q,Σ,◁,τ, I,F,δ) is a non-repetitive non-returning deterministic finite automa-
ton with translucent letters, or an nr-nr-DFAwtl, if |I| = 1 and |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ.
Then, L (nr-nr-DFAwtl) denotes the class of all languages that are accepted by nr-nr-DFAwtls.

The following result states that the non-repetitive non-returning finite automata with translucent let-
ters of Def. 5 are very weak in that they just accept the regular languages.

Theorem 6 From an nr-nr-NFAwtl A, one can construct an NFA B such that L(B) = L(A). In addition,
if A is deterministic, then so is B.

Proof. Let A = (Q,Σ,◁,τ, I,F,δ) be an nr-nr-NFAwtl. From the definition of the computation relation
of A, we see immediately that, whenever quav ·◁ ⊢A uq′v ·◁ is a step in an accepting computation of A,
where q,q′ ∈ Q, u ∈ (τ(q))+, and a ∈ Σ, then the prefix u will not be read again during the remaining
part of this accepting computation. Thus, instead of ignoring these letters, we could simply delete them.
Accordingly, A accepts the same language as the NFA B = (Q,Σ, I,F,δB) that is defined through the
following transition relation:

δB(q,a) =
{

q, if a ∈ τ(q),
δ (q,a), if a ̸∈ τ(q).

Trivially, if A is deterministic, the constructed automaton B is deterministic, too. □

It was actually this observation that led us to define the nr-NFAwtl and the nr-DFAwtl in [9].

Definition 7 ([9]) An nr-NFAwtl A = (Q,Σ,◁,τ, I,δ) is defined like an RNFAwtl but with the additional
extension that it is non-returning, that is, it behaves like an nr-nr-NFAwtl, but for some states q ∈ Q,
δ (q,◁) may be a subset of Q. Thus, if A is in a configuration of the form xqw ·◁, where q ∈ Q satisfying
δ (q,◁) ⊆ Q, x ∈ Σ∗, and w ∈ (τ(q))∗, then xqw ·◁ ⊢A q′xw ·◁ for each state q′ ∈ δ (q,◁). If |I| = 1
and |δ (q,a)| ≤ 1 for all q ∈ Q and all a ∈ Σ∪{◁}, then A is an nr-DFAwtl. We use L (nr-NFAwtl) and
L (nr-DFAwtl) to denote the corresponding classes of languages.

Thus, an nr-NFAwtl is both at the same time, non-returning in the sense of Def. 5 and repetitive in the
sense of Def. 2. In particular, the nr-NFAwtl (nr-DFAwtl) should not be confused with the nr-nr-NFAwtl
(nr-nr-DFAwtl) of Def. 5. The latter has been introduced here only to complete the picture. Theorem 6
above shows that they are not really interesting types of automata with translucent letters. Finally, we
should also mention another related type of automaton, the right one-way jumping finite automaton.

Definition 8 ([1, 3]) A nondeterministic right one-way jumping finite automaton, or an NROWJFA, is
given through a 6-tuple J = (Q,Σ,◁, I,F,δ), where Q, Σ, ◁, I, and F are defined as for an NFAwtl, and
δ : Q×Σ → P(Q) is a transition relation. For each state q ∈ Q, let Σq = {a ∈ Σ | δ (q,a) ̸= /0} be the
set of letters that J can read in state q.

A configuration of the NROWJFA J is a word qw ·◁ from the set Q ·Σ∗ ·◁. The computation re-
lation ⟳∗

J that J induces on its set of configurations is the reflexive and transitive closure of the right
one-way jumping relation ⟳J that is defined as follows, where q,q′ ∈ Q, x,y ∈ Σ∗, and a ∈ Σ :

qxay ·◁⟳J q′yx ·◁ if x ∈ (Σ∖Σq)
∗ and q′ ∈ δ (q,a).

156 Repetitive Finite Automata with Translucent Letters

Thus, being in state q, J reads and deletes the first letter to the right of the actual head position that it
can actually read in that state, while the prefix that consists of letters for which J has no transitions in
the current state is cyclically shifted to the end of the current tape inscription. Then,

L(J) = {w ∈ Σ
∗ | ∃q0 ∈ I∃q f ∈ F : q0w ·◁⟳∗

J q f ·◁}

is the language accepted by the NROWJFA J.

The NROWJFA J is deterministic, that is, a right one-way jumping finite automaton or an ROWJFA,
if |I|= 1 and |δ (q,a)| ≤ 1 for all q ∈ Q and a ∈ Σ.

Actually, as defined in [1, 3], the (N)ROWJFA does not have an end-of-tape marker, but it is obvious
that our definition is equivalent to the original one. We just introduced this end-of-tape marker to ensure
consistency with our other types of automata. We see that the (N)ROWJFA overcomes the problem of
processing letters that are skipped over by cyclically shifting these letters to the right so that they can be
read later. The following results are known concerning the various types of automata introduced above.

Theorem 9 ([10]) (a) REG ⊊ L (DFAwtl) ⊊ L (nr-DFAwtl) ⊊ L (nr-NFAwtl).
(b) REG ⊊ L (DFAwtl) ⊊ L (NFAwtl) ⊊ L (nr-NFAwtl).
(c) L (ROWJFA) ⊊ L (nr-DFAwtl).
(d) L (NROWJFA) ⊊ L (nr-NFAwtl).
(e) L (ROWJFA) ⊊ L (NROWJFA).

In addition, L (ROWJFA) is incomparable under inclusion to L (DFAwtl) and L (NFAwtl), and
L (NROWJFA) is incomparable to L (DFAwtl), L (NFAwtl), and L (nr-DFAwtl). Thus, it remains to
compare the deterministic and nondeterministic repetitive finite automata with translucent letters to these
other types of automata.

3 Comparing the Repetitive Automata to the Non-Repetitive Ones

We claim that the language L∨,c = L(A∨,c) of Example 4 is not accepted by any DFAwtl. As each DFAwtl
can be simulated by an RDFAwtl, this shows that L (DFAwtl)⊊ L (RDFAwtl).

Lemma 10 L∨,c ̸∈ L (DFAwtl).

Proof. Assume that A = (Q,Σ,◁,τ, I,F,δ) is a DFAwtl that accepts the language L∨,c, where Q =
{q0,q1, . . . ,qm−1}, Σ = {a,b,c}, and I = {q0}.

Let n > 2m, and let w = anbnc ∈ L∨,c. Then the computation of A on input w is accepting, that is, it
is of the form

q0anbnc ·◁ ⊢A qi1w1 ·◁ ⊢A · · · ⊢A qir wr ·◁ ⊢A Accept,

where wr ∈ (τ(qir))
∗ and qir ∈ F . If |wr|a > 0, then A would also accept on input an+1bnc ̸∈ L∨,c, if

|wr|b > 0, then A would also accept on input anbn+1c ̸∈ L∨,c, and if |wr|c > 0, then A would also accept
on input anbn ̸∈ L∨,c. Hence, it follows that wr = λ , that is, the accepting computation above consists of
2n+1 transition steps, each of which deletes a letter, and the final accepting step. In particular, the only
occurrence of the letter c is read and deleted during the above computation, that is, there exist an index j
and integers r,s ≥ 0 such that r+ s = j and

q0anbnc ·◁ ⊢ j
A qi j a

n−rbn−sc ·◁ ⊢A qi j+1an−rbn−s ·◁ ⊢∗
A qir ·◁ ⊢A Accept.

We now distinguish several cases.

F. Mráz and F. Otto 157

(1) Assume that a,b ∈ τ(qi j). Then A executes the following computation on input anb2n:

q0anb2n ·◁ ⊢ j
A qi j a

n−rb2n−s ·◁ ⊢A

{
Accept, if qi j ∈ F,
Reject, if qi j ̸∈ F.

As anb2n ∈ L∨,c, we see that the latter computation must be accepting, that is, qi j ∈ F . Thus, A can
also execute the following accepting computation:

q0ar+s+1br+s+1 ·◁ ⊢ j
A qi j a

s+1br+1 ·◁ ⊢A Accept,

which, however, contradicts the fact that ar+s+1br+s+1 ̸∈ L∨,c.

(2) Assume that a ̸∈ τ(qi j), but b ∈ τ(qi j). Then, r = n and s ≤ n, that is, an−rbn−sc = bn−sc. Now, A
executes the following computation on input anb2n:

q0anb2n ·◁ ⊢ j
A qi j a

n−rb2n−s ·◁= qi j b
2n−s ·◁ ⊢A

{
Accept, if qi j ∈ F,
Reject, if qi j ̸∈ F.

As anb2n ∈ L∨,c, we see that the latter computation must be accepting, that is, qi j ∈ F . Thus, A can
also execute the following accepting computation:

q0anb3n+s ·◁ ⊢ j
A qi j b

3n ·◁ ⊢A Accept,

which, however, contradicts the fact that anb3n+s ̸∈ L∨,c.

(3) Assume that b ̸∈ τ(qi j). Then r ≤ n and s = n, that is, an−rbn−sc = an−rc. As n > m, there exist
a state q and integers k0,k1, t0 ≥ 0 and t1 ≥ 1 such that the accepting computation above has the
form

q0anbnc ·◁ ⊢∗
A qan−k0bn−t0c ·◁ ⊢+

A qan−k0−k1bn−t0−t1c ·◁ ⊢∗
A qi j a

n−rc ·◁ ⊢∗
A Accept.

Hence, we also obtain the following accepting computation:

q0an+k1bn+t1c ·◁ ⊢∗
A qan+k1−k0bn+t1−t0c ·◁ ⊢+

A qan−k0bn−t0c ·◁ ⊢∗
A Accept.

This implies that an+k1bn+t1c ∈ L∨,c, which yields k1 = t1.
Now we consider the computations of A on input an+ν ·t1bn+ν ·t1 for all ν ≥ 0:

q0an+ν ·t1bn+ν ·t1 ·◁ ⊢∗
A qi j a

n−r ·◁.

As an+ν ·t1b2n+2ν ·t1 ∈ L∨,c, we see that the computation of A that begins with the configuration
qi j a

n−rbn+ν ·t1 leads to acceptance for all ν ≥ 0. Hence, we obtain

q0anbnbn+t1 ·◁ ⊢∗
A qi j a

n−rbn+t1 ·◁ ⊢∗
A Accept,

but we have anbnbn+t1 ̸∈ L∨,c, as t1 > 0, a contradiction.

As this covers all cases, we see that the language L∨,c is indeed not accepted by any DFAwtl. □

On the other hand, it can be shown quite easily that the RDFAwtl (the RNFAwtl) is a special case of
the nr-DFAwtl (the nr-NFAwtl).

158 Repetitive Finite Automata with Translucent Letters

Lemma 11 From an RNFAwtl A, one can construct an nr-NFAwtl B such that L(B) = L(A). In addition,
if A is deterministic, then so is B.

Proof. Let A = (Q,Σ,◁,τ, I,δ) be an RNFAwtl. We define an nr-NFAwtl B = (QB,Σ,◁,τB, IB,δB) that
simulates the computations of A as follows:

• QB = Q∪{q′ | q ∈ Q}, where for each state q ∈ Q, q′ is an additional auxiliary state, and IB = I,

• for each state q ∈ Q, τB(q) = τ(q) and τB(q′) = Σ,

• for each state q ∈ Q and each letter a ∈ Σ, δB(q,a) = { p′ | p ∈ δ (q,a)} and δB(q′,a) = /0.

• Furthermore, for each state q ∈ Q, δB(q,◁) = Accept, if δ (q,◁) = Accept, and δB(q,◁) = /0,
otherwise. Finally, δB(q′,◁) = {q}.

It remains to verify that B just simulates the computations of A.
Assume that qw ·◁ is a configuration of A, that is, q ∈ Q and w ∈ Σ∗. From the definition of the

computation relation ⊢A, we see that there are four different cases that we must consider.
First, if w = uav for some words u ∈ (τ(q))∗, v ∈ Σ∗, and a letter a ∈ (Σ∖ τ(q)), then A executes a

transition from δ (q,a).

• If p ∈ δ (q,a), then qw ·◁= quav ·◁ ⊢A puv ·◁ is a possible step of A. In this case, B can execute
the following sequence of steps:

qw ·◁= quav ·◁ ⊢B up′v ·◁ ⊢B puv ·◁.

• On the other hand, if δ (q,a) = /0, then A halts and rejects. However, in this case, also δB(q,a) = /0,
and hence, B halts and rejects as well.

Finally, if w ∈ (τ(q))∗, then A halts.

• If δ (q,◁) = Accept, then δB(q,◁) = Accept, too.

• If δ (q,◁) = /0, then A rejects. In this case, δB(q,◁) = /0, that is, B halts and rejects as well.

It follows that L(A)⊆ L(B).

Conversely, if w ∈ L(B), then it is easily verified that each accepting computation of B on input w is
just a simulation of an accepting computation of A on input w. Thus, we see that L(B) = L(A).

Finally, the above definition of B shows that B is deterministic, if A is. □

The language
L∨ = {w ∈ {a,b}∗ | |w|b = |w|a or |w|b = 2 · |w|a }

is a rational trace language, and as such, it is accepted by an NFAwtl. However, as proved in [10], this
language is not accepted by any nr-DFAwtl. Hence, L∨ is not accepted by any RDFAwtl, either. Thus,
we immediately obtain the following non-inclusion result.

Corollary 12 L (NFAwtl) ̸⊆ L (RDFAwtl).

As defined above, an RNFAwtl A = (Q,Σ,◁,τ, I,δ) may run into an infinite computation. Just
assume that q is a state of A, w ∈ (τ(q))∗, and q ∈ δ (q,◁). Then qw ·◁ ⊢A qw ·◁ ⊢A qw ·◁, and so forth.
However, we can avoid this by converting A into an equivalent RNFAwtl B as follows.

Let B = (Q′,Σ,◁,τ ′, I′,δ ′), where Q′ = {(q,S) | q ∈ Q and S ⊆ Q}, I′ = {(q, /0) | q ∈ I }, τ ′(q,S) =
τ(q) for all q ∈ Q and all S ⊆ Q,

δ
′((q,S),a) = {(p, /0) | p ∈ δ (q,a)} for all q ∈ Q, S ⊆ Q, and all a ∈ Σ,

F. Mráz and F. Otto 159

and
δ
′((q,S),◁) = {(p,S∪{q}) | p ∈ δ (q,◁) and q ̸∈ S} for all q ∈ Q and all S ⊆ Q.

Finally, take δ ′((q,S),◁) =Accept if δ (q,◁) =Accept. The set S is used to record those states in which
the end-of-tape marker has been reached, and the computation has continued. In the next cycle, when a
non-translucent letter is read, then this set is emptied, otherwise, the next state is added to it. This process
continues until either a letter is read and deleted, or until no new state can be added to the current set S,
in which case the computation fails.

Moreover, an RNFAwtl A = (Q,Σ,◁,τ, I,δ) may accept without having read and deleted its input
completely. However, we can easily extend the RNFAwtl A into an equivalent RNFAwtl C that always
reads and deletes its input completely before it accepts. Just take C = (Q∪{qe},Σ,◁,τ ′, I,δ ′), where qe

is a new state, τ ′(q) = τ(q) for all q ∈ Q and τ ′(qe) = /0, and δ ′ is defined as follows:

− δ ′(q,a) = δ (q,a) for all q ∈ Q and all a ∈ Σ,

− δ ′(q,◁) =

{
δ (q,◁), if δ (q,◁) ̸= Accept,
{qe}, if δ (q,◁) = Accept,

− δ ′(qe,a) = {qe} for all a ∈ Σ,
− δ ′(qe,◁) = Accept.

Given a word w ∈ Σ∗ as input, the RNFAwtl C will execute exactly the same steps as the RNFAwtl A
until A accepts. Now, the accept step of A is simulated by C through changing into state qe. As τ ′(qe) = /0
and as δ ′(qe,a) = {qe} for all a∈Σ, C will now read and delete the remaining tape contents and accept on
reaching the end-of-tape marker ◁. It follows easily that L(C) = L(A). Together, the two constructions
above yield the following technical result.

Lemma 13 Each RNFAwtl A can effectively be converted into an equivalent RNFAwtl C that never gets
into an infinite computation and that accepts only after reading and deleting its input completely. In
addition, if A is deterministic, then so is C.

Finally, we are ready to establish the following equality, which will be proved by simulation.

Theorem 14 L (RNFAwtl) = L (NFAwtl).

Proof. From Proposition 3, we know already that L (NFAwtl)⊆ L (RNFAwtl) holds. Thus, it remains
to prove the converse inclusion. Accordingly, we show how to simulate an RNFAwtl by an NFAwtl.

Let A = (Q,Σ,◁,τ, I,δ) be an RNFAwtl. By Lemma 13, we can assume that A never gets into an
infinite computation and that it accepts only after reading and deleting its input completely. We now
construct an NFAwtl B = (QB,Σ,◁,τB, IB,FB,δB) with the set of states QB = {(q,Γ) | q ∈ Q and Γ ⊆ Σ}.
The automaton B uses the second component of its states to keep track of the set of letters that may still
occur on its tape. At the beginning of its computation, Γ = Σ. When B simulates a step qw ·◁ ⊢A q′w ·◁
in which A changes its state at the right sentinel because all symbols on its tape are translucent for the
state q, that is, w ∈ (τ(q))∗, then the second component will be restricted to Γ∩ τ(q). The NFAwtl B is
defined as follows:

• IB = {(q,Σ) | q ∈ I }, and

• FB = {(q,Γ) | δ (q,◁) = Accept and Γ ⊆ Σ}.

• The translucency relation τB is defined through τB((q,Γ)) = τ(q)∩Γ for all q ∈ Q and all Γ ⊆ Σ,
and

160 Repetitive Finite Automata with Translucent Letters

• the transition relation δB is initialized as follows, where q ∈ Q, Γ ⊆ Σ, and a ∈ Σ:

δB((q,Γ),a) =
{

{(q′,Γ) | q′ ∈ δ (q,a)}, if a ∈ Γ and δ (q,a) ̸= /0,
/0, if a ∈ Σ∖Γ or δ (q,a) = /0.

It remains to add further transitions to δB that are to simulate the transitions of the form q′ ∈ δ (q,◁)
of A. Assume that q′ ∈ δ (q,◁). This transition can be applied by A to a configuration of the form qw ·◁
for which w ∈ (τ(q))∗, and it yields the configuration q′w ·◁. Thus, A simply executes a change of
state, but after that, it ‘knows’ that the word w only contains occurrences of letters from the set τ(q).
Accordingly, for each state p ∈ Q and each letter a ∈ Σ, if q ∈ δ (p,a), then we add the state (q′,Γ∩τ(q))
to δB((p,Γ),a) for each subset Γ containing the letter a. This transition allows B to simulate the sequence
of two transitions puav ·◁ ⊢A quv ·◁ ⊢ q′uv ·◁, where u ∈ (τ(p))∗ and u,v ∈ (τ(q))∗, by the single
transition (p,Γ)uav ·◁ ⊢B (q′,Γ∩ τ(q))uv ·◁. In addition, if q ∈ I, then the state (q′,τ(q)) is added to
the set IB, as A may start a computation by executing the step qw ·◁ ⊢A q′w ·◁, if w ∈ (τ(q))∗.

It can now be checked that B just simulates the computations of A. If during such a simulation, B
is in a state (q,Γ) but an occurrence of a letter c ̸∈ Γ is encountered, then B gets stuck and, so, rejects,
as in that situation, the letter c is neither translucent for the state (q,Γ) nor is the transition δB((q,Γ),c)
defined. It follows that L(B) = L(A), which completes the proof. □

It remains to compare the RDFAwtl to the nr-DFAwtl, the nr-NFAwtl, and the (N)ROWJFA. The
deterministic linear language L2 = {anbn | n ≥ 0} is accepted by an nr-DFAwtl [9]. However, it is not
accepted by any NFAwtl [13]. Hence, we get the following result from Lemma 11.

Corollary 15 L (RDFAwtl)⊊ L (nr-DFAwtl).

According to [10], the language classes L (DFAwtl) and L (NFAwtl) are incomparable under in-
clusion to the classes L (ROWJFA) and L (NROWJFA). Accordingly, we also have the following
incomparability result.

Corollary 16 The language class L (RDFAwtl) is incomparable under inclusion to the classes
L (ROWJFA) and L (NROWJFA).

The diagram in Figure 2 summarizes the inclusion and incomparability results obtained for the vari-
ous types of automata with translucent letters. All arrows in that diagram denote proper inclusions, and
classes that are not connected by a sequence of arrows are incomparable under inclusion. Here, LRAT de-
notes the class of rational trace languages (see, e.g., [15]), GCSL is the class of growing context-sensitive
languages (see, e.g., [4]), and (D)LIN is the class of (deterministic) linear context-free languages.

4 Closure Properties

In this section, we study closure properties of the classes of languages accepted by deterministic and non-
deterministic repetitive finite automata with translucent letters. As the class L (RNFAwtl) of languages
accepted by RNFAwtls coincides with the class L (NFAwtl), based on [15], we obtain immediately that
L (RNFAwtl) is closed under union, product, Kleene star, inverse projections, disjoint shuffle, and the
operation of taking the commutative closure, but it is neither closed under intersection (with regular sets),
nor under complementation, nor under non-erasing morphisms.

On the other hand, for the class L (DFAwtl), it is known [16] that it is closed under complementation,
but it is not closed under any of the following operations: union, intersection (with regular sets), product,
Kleene star, reversal, alphabetic morphisms, and commutative closure.

F. Mráz and F. Otto 161

CSL

GCSL

OO

L (nr-NFAwtl)

jj

CFL

OO

L (nr-DFAwtl)

kk

L (NROWJFA)

mm

LIN

OO

L (NFAwtl) = L (RNFAwtl)

OO

DLIN

OO

LRAT

OO

L (RDFAwtl)

OO

kk

L (ROWJFA)

OOdd

L (DFAwtl)

OO

REG

OO 99

L (nr-nr-NFAwtl) L (nr-nr-DFAwtl)

OO

>>

Figure 2: The inclusion relations between the various types of finite automata with translucent letters.

Here, the commutative closure of a language L is based on the letter-equivalence of words. We say
that two words u and v over an alphabet Σ are letter-equivalent if, for each letter a ∈ Σ, |u|a = |v|a. The
commutative closure com(L) of a language L ⊆ Σ∗ is the set of all words that are letter-equivalent to a
word from L, that is, com(L) = {w ∈ Σ∗ | ∃u ∈ L : u is letter-equivalent to w}.

In addition, we are interested in the shuffle operation. For two words u and v from Σ∗, the shuffle
u� v of u and v is the set of words

u� v = {u1v1u2v2 · · ·umvm | m ≥ 1,∀i = 1,2, . . . ,m : ui,vi ∈ Σ
∗,u = u1u2 · · ·um, and v = v1v2 · · ·vm },

and the shuffle of two languages L1,L2 ⊆ Σ∗ is the language L1�L2 =
⋃

u∈L1,v∈L2
(u� v).

We shall show that L (RDFAwtl) is closed under complementation, left quotient with respect to a
single word, and disjoint shuffle. However, it is not closed under union, intersection (with regular sets),
product, Kleene star, reversal, alphabetic morphism, commutative closure, and shuffle.

To begin with, observe that the languages

L= = {w ∈ {a,b}∗ | |w|a = |w|b } and L2= = {w ∈ {a,b}∗ | 2 · |w|a = |w|b }

are both accepted by DFAwtls. However, their union is the language L∨ that is not even accepted by any
nr-DFAwtl. In addition, if R denotes the regular language that is defined through the regular expression
(ab)∗ + (abb)∗, then com(R) = L∨. Moreover, let L′

2= = {w ∈ {c,d}∗ | 2 · |w|c = |w|d }. Then, it is
easily verified that the language L= ∪ L′

2= is also accepted by a DFAwtl. However, if ϕ : {a,b,c,d}∗ →
{a,b}∗ denotes the alphabetic morphism that is defined through a 7→ a, b 7→ b, c 7→ a, and d 7→ b, then
ϕ(L= ∪ L′

2=) = L∨. Finally, the language L2 = {anbn | n ≥ 0} = L= ∩ ({a}∗ · {b}∗) is not accepted by
any NFAwtl [13]. In summary, these examples yield the following non-closure properties.

Corollary 17 The language class L (RDFAwtl) is not closed under union, intersection (with regular
sets), alphabetic morphisms, or commutative closure.

Next, we prove that the class L (RDFAwtl) is closed under the operation of complementation.

Proposition 18 L (RDFAwtl) is closed under complementation.

162 Repetitive Finite Automata with Translucent Letters

Proof. Let A = (QA,Σ,◁,τA,q0,δA) be an RDFAwtl. To obtain an RDFAwtl B = (QB,Σ,◁,τB,q0,δB)
accepting the complement of L(A), we need to change all accepting steps into rejecting ones and all
rejecting steps into accepting ones. For that matter, we extend the set of states of A with an additional
state qa that will always lead to acceptance, that is, QB = QA ∪{qa}. The translucency mapping τB(q)
equals τA(q) for all states q∈QA, and τ(qa) = /0. Finally, we define the transition relation of B as follows,
where q ∈ QA and x ∈ Σ:

δB(q,x) =

{
δA(q,x), if δA(q,x) ̸= /0,
qa, if δA(q,x) = /0 and x ̸∈ τ(q),

δB(q,◁) =

δA(q,◁), if δA(q,◁) ∈ QA,
/0, if δA(q,◁) = Accept,
qa, if δA(q,◁) = /0,

δB(qa,x) = qa,
δB(qa,◁) = Accept.

Now, whenever a computation of the automaton A on an input word w ∈ Σ∗ is accepting, it is of the
following form:

q0w ·◁ ⊢∗
A qw′ ·◁ ⊢A Accept, where q ∈ QA,w′ ∈ (τ(q))∗, and δA(q,◁) = Accept.

Then, the automaton B will execute the computation q0w ·◁ ⊢∗
B qw′ ·◁ ⊢B Reject. Whenever a computa-

tion of A on an input word w ∈ Σ∗ is rejecting, then

q0w ·◁ ⊢∗
A qw′ ·◁ ⊢A Reject, where q ∈ QA and w′ ∈ Σ

∗.

Here either

1. w′ = uxv for some u ∈ (τ(q))∗,v ∈ Σ∗,x ∈ Σ∖ τ(q) such that δA(q,x) = /0, or

2. w′ ∈ (τ(q))∗ and δA(q,◁) = /0.

In both cases, the automaton B will execute an accepting computation of the form

q0w ·◁ ⊢∗
B qw′ ·◁ ⊢B qaw′ ·◁ ⊢∗

B Accept.

Thus, we see that L(B) = Σ∗∖L(A), the complement of the language L(A). □

The next lemma states that an RDFAwtl can be assumed to always read the very first letter during the
first step of each accepting computation. This is a purely technical result that will be useful below.

Lemma 19 From an RDFAwtl A, one can effectively construct an equivalent RDFAwtl B such that, in
the first step of each computation, B reads the very first letter of the given input.

Proof. Let A = (QA,Σ,◁,τA,q0,δA) be an RDFAwtl, and let L be the language accepted by A. By
Lemma 13, we can assume that A never gets into an infinite computation and that it reads and deletes its
input completely in each accepting computation. In fact, we can even assume that A reads and deletes its
input completely in each and every computation, that is, even in all its rejecting computations (see, e.g.,
the proof of Prop. 18). Moreover, we may assume without loss of generality that the initial state q0 is not
entered by any transition, that is, this state can only occur in initial configurations of A.

We now describe the RDFAwtl B = (QB,Σ,◁,τB,q0,δB) through the following definition:

F. Mráz and F. Otto 163

− QB = QA ∪ {(q,a) | q ∈ QA and a ∈ Σ such that a ∈ τA(q)},

− τB(p) =

/0, if p = q0,
τA(p), if p ∈ QA ∖{q0},
τA(q), if p = (q,a) for some q ∈ QA and a ∈ Σ,

− and the transition function δB is defined as follows, where q ∈ QA ∖{q0} and a ∈ Σ :

δB(q0,a) =

{
δA(q0,a), if a ̸∈ τA(q0),
(q0,a), if a ∈ τA(q0),

δB(q0,◁) = δA(q0,◁),

δB(q,b) = δA(q,b) for all q ∈ QA ∖{q0} and b ∈ Σ ∪ {◁},

δB((q,a),b) =

(δA(q,b),a), if b ̸= a and a ∈ τA(δA(q,b)),
δA(δA(q,b),a), if b ̸= a and a ̸∈ τA(δA(q,b)),
/0, if b = a,

δB((q,a),◁) =

{
(δA(q,◁),a), if a ∈ τA(δA(q,◁)),
δA(δA(q,◁),a), if a ̸∈ τA(δA(q,◁)).

The states of the form (q,a) are used to encode the fact that A is in state q and that the first letter on the
tape was an a, which, however, has not yet been read by A (but was already read by B). Hence, by our
above assumptions on the computations of A, we see that, if B is in state (q,a) reading the sentinel ◁,
then δA(q,◁) ∈ Q holds.

From the above definition, it follows immediately that, in each computation, the RDFAwtl B reads
and deletes the first letter on the tape. Moreover, the initial state q0, which is not entered by any transition
of A, is not entered by any transition of B, either. Now, by comparing the computations of B on a given
word w to that of A on w, it can be verified that B is equivalent to A, that is, that L(B) = L(A) holds. □

For a language L ⊆ Σ∗ and a word w ∈ Σ∗, the left quotient of L with respect to w is the language

w⋋L = {z ∈ Σ
∗ | wz ∈ L}.

If L is accepted by an RDFAwtl A = (Q,Σ,◁,τ,q0,δ), then by Lemma 19, we can assume that A always
reads the first letter of the given input during the first step of each computation. Hence, for each letter
a ∈ Σ, the RDFAwtl Ba = (Q,Σ,◁,τ,δ (q0,a),δ) accepts the language a⋋L, which shows that a⋋L is
accepted by an RDFAwtl. By induction on |w|, it now follows that w⋋L is accepted by an RDFAwtl for
each word w.

Corollary 20 The language class L (RDFAwtl) is closed under the operation of taking the left quotient
with respect to a single word.

To derive the other non-closure properties stated above, we need the following technical results.

Lemma 21 None of the following languages is accepted by an RDFAwtl:
(a) Lc = {wc | w ∈ {a,b}∗, |w|a ≥ |w|b },
(b) (LR

c)
+ and (LR

c)
∗, and

(c) L = {w ∈ {a,b}∗ | |w|a ≤ |w|b ≤ 2 · |w|a }.
Proof. (a) Let Σ = {a,b,c}. For deriving a contradiction, we assume that A = (Q,Σ,◁,τ,q0,δ) is an
RDFAwtl such that L(A) = Lc. Without loss of generality, we may assume that A reads and deletes its
input completely during each accepting computation.

164 Repetitive Finite Automata with Translucent Letters

For each n ≥ 1, the word anbnc belongs to the language Lc. Accordingly, the computation of A on
input wn = anbnc is of the form q0anbnc ·◁ ⊢∗

A q f ·◁ ⊢A Accept, where q f ∈ Q. Thus, in particular,
the single occurrence of the letter c is read and deleted during this computation. Accordingly, this
computation can be written as follows:

q0anbnc ·◁ ⊢∗
A qan−ibn− jc ·◁ ⊢A q′an−ibn− j ·◁ ⊢∗

A q f ·◁ ⊢A Accept,

where q,q′ ∈ Q, 0 ≤ i, j ≤ n, and δ (q,c) = q′. Then A can also execute the following computation:

q0aib jcan−ibn− j ·◁ ⊢∗
A qcan−ibn− j ·◁ ⊢A q′an−ibn− j ·◁ ⊢∗

A q f ·◁ ⊢A Accept.

However, the word aib jcan−ibn− j is not an element of the language Lc unless i = n and j = n, which
means that, in the accepting computation above, A first reads and deletes all occurrences of the letters a
and b before it reads the single occurrence of the letter c. In particular, it follows that this computation
has the form q0anbnc ·◁ ⊢∗

A qc ·◁ ⊢A q′ ·◁ ⊢∗
A q f ·◁ ⊢A Accept.

Now, let n > |Q|. If the computation q0anbnc ·◁ ⊢∗
A qc ·◁ begins with |Q| many steps that each read

an occurrence of the letter a, then there is a state q ∈ Q that is used twice during these steps, that is

q0anbnc ·◁ ⊢∗
A qan−ibnc ·◁ ⊢+

A qan−i− jbnc ·◁ ⊢∗
A Accept,

where i ≥ 0, j ≥ 1, and i+ j ≤ |Q|. But then A can also execute the following accepting computation:

q0an− jbnc ·◁ ⊢∗
A qan−i− jbnc ·◁ ⊢∗

A Accept.

However, as j ≥ 1, the word an− jbnc does not belong to the language Lc, a contradiction. This implies
that, within the first |Q| many steps in the accepting computation considered, an occurrence of the letter b
is read and deleted.

Let us now consider the first step in the above computation during which an occurrence of the letter b
is deleted:

q0anbnc ·◁ ⊢∗
A q1an−ibnc ·◁ ⊢A q2an−ibn−1c ·◁,

where 0 ≤ i < |Q|, q1,q2 ∈ Q, a ∈ τ(q1), and δ (q1,b) = q2. Given the input anc ∈ Lc, A will also accept.
However, as A is deterministic, the corresponding accepting computation begins with

q0anc ·◁ ⊢∗
A q1an−ic ·◁,

where a ∈ τ(q1).
If c ∈ τ(q1), then together with the partial computation q0anbc ·◁ ⊢∗

A q1an−ibc ·◁ ⊢A q2an−ic ·◁, the
automaton A could also execute the following partial computation:

q0ancb ·◁ ⊢∗
A q1an−icb ·◁ ⊢A q2an−ic ·◁.

As anbc ∈ Lc, the former computation leads to acceptance and, hence, so does the latter. This yields a
contradiction, as ancb ̸∈ Lc. Hence, it follows that c ̸∈ τ(q1).

This implies that, in the above configuration q1an−ic ·◁, A reads and deletes the letter c, that is,
δ (q1,c) = q′ for some q′ ∈ Q. Thus, we obtain the accepting computation

q0anc ·◁ ⊢∗
A q1an−ic ·◁ ⊢A q′an−i ·◁ ⊢∗

A Accept.

F. Mráz and F. Otto 165

But then, we also obtain the accepting computation

q0aican−i ·◁ ⊢∗
A q1can−i ·◁ ⊢A q′an−i ·◁ ⊢∗

A Accept,

which yields a contradiction, as aican−i ̸∈ Lc. In summary, this shows that the language Lc is not accepted
by any RDFAwtl.

(b) Assume to the contrary that (LR
c)

+ or (LR
c)

∗ is accepted by an RDFAwtl. Lemma 19 implies that the
language

L = c⋋ (LR
c)

+ = c⋋ (LR
c)

∗

= {w1cw2c · · ·cwk | k ≥ 1 and ∀i = 1,2, . . . ,k : wi ∈ {a,b}∗∧|wi|a ≥ |wi|b }

is also accepted by an RDFAwtl A = (Q,Σ,◁,τ,q0,δ), where Σ = {a,b,c}. For all m ≥ 0, the word
w(m) = ambmcab belongs to the language L, which means that the computation of A on input w(m) is
accepting. However, using pumping arguments as in the proof of (a), it can now be shown that, together
with the words w(m), the RDFAwtl A also accepts some words that do not belong to the language (LR

c)
∗.

Accordingly, the languages (LR
c)

+ and (LR
c)

∗ are not accepted by any RDFAwtls.

(c) By using pumping arguments, it can be proved that an RDFAwtl accepting the language

L = {w ∈ {a,b}∗ | |w|a ≤ |w|b ≤ 2 · |w|a }

also accepts some words that do not belong to this language. Again, this shows that this language is not
accepted by any RDFAwtl. □

It is easily seen that the languages

LR
c = {cw | w ∈ {a,b}∗, |w|a ≥ |w|b }, L≥ = {w ∈ {a,b}∗ | |w|a ≥ |w|b }, and {c}

are all accepted by DFAwtls. On the other hand, L = L=�L2= = {w ∈ {a,b}∗ | |w|a ≤ |w|b ≤ 2 · |w|a }
is not. Hence, Lemma 21 shows the following.

Corollary 22 The language class L (RDFAwtl) is not closed under reversal, (disjoint) product, Kleene
plus, Kleene star, or shuffle.

Finally, the class L (RDFAwtl) is closed under a restricted variant of the shuffle operation. If Σ is an
alphabet and ∆ is a subalphabet of Σ, we shall use P∆ to denote the projection P∆ : Σ → ∆ that maps each
letter from ∆ to itself and each letter from Σ∖∆ to the empty word λ . The projection P∆ can be extended
to words and languages in a natural way.

If a word w ∈ (ΣA ∪ΣB)
∗ is in the set u� v for some words u ∈ Σ∗

A and v ∈ Σ∗
B, where ΣA and ΣB

are two disjoint alphabets, then PΣA(w) = u and PΣB(w) = v. The shuffle of two words or languages over
disjoint alphabets is called a disjoint shuffle.

Proposition 23 The language class L (RDFAwtl) is closed under disjoint shuffle.

Proof. Let ΣA and ΣB be two disjoint alphabets, let A= (QA,ΣA,◁,τA,q
(A)
0 ,δA) be an RDFAwtl on ΣA that

accepts a language L(A) = LA, and let B = (QB,ΣB,◁,τB,q
(B)
0 ,δB) be an RDFAwtl on ΣB that accepts a

language L(B) = LB. We shall construct an RDFAwtl M for the disjoint shuffle L = LA�LB of LA and LB.
By Lemma 13, we can assume without loss of generality that A never gets into an infinite compu-

tation and that it reads and deletes its input completely in each accepting computation. The RDFAwtl

166 Repetitive Finite Automata with Translucent Letters

M = (Q,Σ,◁,τ,q0,δ) is constructed as follows, where we assume that the sets of states QA and QB are
disjoint:

− Q = QA ∪ QB and q0 = q(A)0 ,

− τ(q) =

{
τA(q)∪ΣB, if q ∈ QA,
τB(q), if q ∈ QB,

− δ (q,a) =

δA(q,a), if q ∈ QA and a ∈ ΣA,
δB(q,a), if q ∈ QB and a ∈ ΣB,
/0, otherwise,

δ (q,◁) =

δA(q,◁), if q ∈ QA and δA(q,◁) ̸= Accept,

q(B)0 , if q ∈ QA and δA(q,◁) = Accept,
δB(q,◁), if q ∈ QB.

For an input w ∈ u�v, where u ∈ Σ∗
A and v ∈ Σ∗

B, the RDFAwtl M first simulates the computation of A
on u, ignoring all occurrences of letters from ΣB. When A accepts, then M simulates the computation
of B on v. As A reads and deletes all letters of u in its accepting computation, it is obvious that M
accepts on input w if and only if A accepts on input u and B accepts on input v. It follows that L(M) =
L(A)�L(B) = LA�LB. Hence, L (RDFAwtl) is closed under the operation of disjoint shuffle. □

5 Conclusion

Concerning the complexity of the membership problem, it is easily seen that the algorithm for the mem-
bership problem of a DFAwtl presented by Nagy and Kovács in [11] applies to an RDFAwtl as well.
This yields the following result. Note that the complexity of the membership problem of a DFAwtl is
measured using a logarithmic cost of instructions.
Corollary 24 The membership problem for an RDFAwtl is decidable in time O(n · logn).

Furthermore, emptiness and finiteness are decidable for RDFAwtls, as they are decidable for
NFAwtls [16]. As L (RDFAwtl) is effectively closed under complementation, universality is also de-
cidable for these automata. On the other hand, the problem of deciding whether the language accepted
by a given RDFAwtl has a non-empty intersection with a given regular language is undecidable, as this
problem is already undecidable for DFAwtls. The same holds for the problem of deciding whether the
language accepted by a given RDFAwtl contains (or is contained in) a given regular language, and there-
with, the inclusion problem for RDFAwtls is undecidable, too. However, it remains open whether the
equivalence problem is decidable for RDFAwtls.

In summary, our results show that the RDFAwtl is just slightly more expressive than the DFAwtl, but it
seems to have the same closure and non-closure properties, and the same decidability and undecidability
results seem to hold. Moreover, we have seen that, when we add the property of being non-returning to
the DFAwtl (or the NFAwtl), we actually weaken the model. When we add the property of repetitiveness
to the DFAwtl, then we obtain a language class that is just a bit more expressive than the DFAwtl, while
in the nondeterministic case, this generalization has no effect on the expressive capacity of the model.
However, when we add both these properties, repetitiveness and the property of being non-returning,
then the resulting types of automata, that is, the nr-DFAwtl and the nr-NFAwtl, have indeed a much larger
expressive capacity than the original models. Thus, it is really the combination of these two properties
that implicates the enormous increase in the expressive capability from the DFAwtl and the NFAwtl to
the nr-DFAwtl and the nr-NFAwtl.

F. Mráz and F. Otto 167

References
[1] Simon Beier & Markus Holzer (2022): Nondeterministic right one-way jumping finite automata. Information

and Computation 284, doi:10.1016/j.ic.2021.104687.
[2] Suna Bensch, Henning Bordihn, Markus Holzer & Martin Kutrib (2009): On input-revolving deter-

ministic and nondeterministic finite automata. Information and Computation 207, pp. 1140–1155,
doi:10.1016/j.ic.2009.03.002.

[3] Hiroyuki Chigahara, Szilárd Zsolt Fazekas & Akihiro Yamamura (2016): One-way jumping fi-
nite automata. International Journal of Foundations of Computer Science 27, pp. 391–405,
doi:10.1142/S0129054116400165.

[4] Elias Dahlhaus & Manfred K. Warmuth (1986): Membership for growing context-sensitive grammars is poly-
nomial. Journal of Computer and System Sciences 33, pp. 456–472, doi:10.1016/0022-0000(86)90062-0.

[5] Henning Fernau, Meenakshi Paramasivan & Markus L. Schmid (2015): Jumping Finite Automata: Charac-
terizations and Complexity. In Frank Drewes, editor: CIAA 2015, Proc., LNCS 9223, Springer, Berlin, pp.
89–101, doi:10.1007/978-3-319-22360-5 8.

[6] Petr Jančar, František Mráz, Martin Plátek & Jörg Vogel (1995): Restarting automata. In Horst Reichel,
editor: FCT’95, Proc., LNCS 965, Springer, Berlin, pp. 283–292, doi:10.1007/3-540-60249-6 60.

[7] Alexander Meduna & Petr Zemek (2012): Jumping finite automata. International Journal of Foundations of
Computer Science 23, pp. 1555–1578, doi:10.1142/S0129054112500244.

[8] František Mráz (2001): Lookahead hierarchies of restarting automata. Journal of Automata, Languages and
Combinatorics 6, pp. 493–506, doi:10.25596/jalc-2001-493.

[9] František Mráz & Friedrich Otto (2022): Non-returning finite automata with translucent letters. In Henning
Bordihn, Géza Horváth & György Vaszil, editors: 12th International Workshop on Non-Classical Models of
Automata and Applications (NCMA 2022), EPTCS 367, Open Publishing Association, Waterloo, Australia,
pp. 143–159, doi:10.4204/EPTCS.367.10.

[10] František Mráz & Friedrich Otto (2023): Non-returning deterministic and nondeterministic finite automata
with translucent letters. RAIRO Theoretical Informatics and Applications 57, doi:10.1051/ita/2023009.

[11] Benedek Nagy & László Kovács (2014): Finite Automata with Translucent Letters Applied in Natural and
Formal Language Theory. In Ngoc Thanh Nguyen, Ryszard Kowalczyk, Ana Fred & Filipe Joaquim, editors:
Transactions on Computational Collective Intelligence XVII, LNCS 8790, Springer, Heidelberg, pp. 107–
127, doi:10.1007/978-3-662-44994-3 6.

[12] Benedek Nagy & Friedrich Otto (2010): CD-systems of stateless deterministic R(1)-automata accept all
rational trace languages. In Adrian-Horia Dediu, Henning Fernau & Carlos Martı́n-Vide, editors: LATA
2010, Proc., LNCS 6031, Springer, Berlin, pp. 463–474, doi:10.1007/978-3-642-13089-2 39.

[13] Benedek Nagy & Friedrich Otto (2011): Finite-state acceptors with translucent letters. In Gemma Bel-
Enguix, Veronica Dahl & Alfonso O. de la Puente, editors: BILC 2011: AI Methods for Interdisciplinary
Research in Language and Biology, Proc., SciTePress, Portugal, pp. 3–13, doi:10.5220/0003272500030013.

[14] Benedek Nagy & Friedrich Otto (2011): Globally deterministic CD-systems of stateless R(1)-automata. In
Adrian-Horia Dediu, Shunsuke Inenaga & Carlos Martı́n-Vide, editors: LATA 2011, Proc., LNCS 6638,
Springer, Berlin, pp. 390–401, doi:10.1007/978-3-642-21254-3 31.

[15] Benedek Nagy & Friedrich Otto (2012): On CD-systems of stateless deterministic R-automata with window
size one. Journal of Computer and System Sciences 78, pp. 780–806, doi:10.1016/j.jcss2011.12.009.

[16] Benedek Nagy & Friedrich Otto (2013): Globally deterministic CD-systems of stateless R-automata
with window size 1. International Journal of Computer Mathematics 90, pp. 1254–1277,
doi:10.1080/00207160.2012.688820.

[17] Friedrich Otto (2006): Restarting automata. In Zoltan Ésik, Carlos Martı́n-Vide & Victor Mitrana, editors:
Recent Advances in Formal Languages and Applications, Studies in Computational Intelligence 25, Springer,
Heidelberg, pp. 269–303, doi:10.1007/978-3-540-33461-3 11.

https://doi.org/10.1016/j.ic.2021.104687
https://doi.org/10.1016/j.ic.2009.03.002
https://doi.org/10.1142/S0129054116400165
https://doi.org/10.1016/0022-0000(86)90062-0
https://doi.org/10.1007/978-3-319-22360-5_8
https://doi.org/10.1007/3-540-60249-6_60
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.25596/jalc-2001-493
https://doi.org/10.4204/EPTCS.367.10
https://doi.org/10.1051/ita/2023009
https://doi.org/10.1007/978-3-662-44994-3_6
https://doi.org/10.1007/978-3-642-13089-2_39
https://doi.org/10.5220/0003272500030013
https://doi.org/10.1007/978-3-642-21254-3_31
https://doi.org/10.1016/j.jcss2011.12.009
https://doi.org/10.1080/00207160.2012.688820
https://doi.org/10.1007/978-3-540-33461-3_11

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024
EPTCS 407, 2024, pp. 168–185, doi:10.4204/EPTCS.407.12

© Benedek Nagy
This work is licensed under the
Creative Commons Attribution License.

5′ → 3′ Watson-Crick Automata accepting Necklaces

Benedek Nagy
Department of Mathematics, Eastern Mediterranean University

99628 Famagusta, North Cyprus, Mersin-10, Turkey
Department of Computer Science, Institute of Mathematics and Informatics,

Eszterházy Károly Catholic University, Eger, Hungary
nbenedek.inf@gmail.com

Watson-Crick (WK) finite automata work on a Watson-Crick tape representing a DNA molecule.
They have two reading heads. In 5′ → 3′ WK automata, the heads move and read the input in op-
posite physical directions. In this paper, we consider such inputs which are necklaces, i.e., they
represent circular DNA molecules. In sensing 5′ → 3′ WK automata, the computation on the input is
finished when the heads meet. As the original model is capable of accepting the linear context-free
languages, the necklace languages we are investigating here have strong relations to that class. Here,
we use these automata in two different acceptance modes. On the one hand, in weak acceptance
mode the heads are starting nondeterministically at any point of the input, like the necklace is cut at
a nondeterministically chosen point), and if the input is accepted, it is in the accepted necklace lan-
guage. These languages can be seen as the languages obtained from the linear context-free languages
by taking their closure under cyclic shift operation. On the other hand, in strong acceptance mode,
it is required that the input is accepted starting the heads in the computation from every point of the
cycle. These languages can be seen as the maximal cyclic shift closed languages included in a linear
language. On the other hand, as it will be shown, they have a kind of locally testable property. We
present some hierarchy results based on restricted variants of the WK automata, such as stateless or
all-final variants.

Keywords: Watson-Crick automata, 5′ → 3′ WK automata, languages of circular words, finite state
acceptors, hierarchy, bio-inspired computing, weak and strong acceptance

1 Introduction

On the one hand, there are numerous new computational paradigms that emerged in the last decades,
usually based on or motivated by some natural phenomena [31]. A number of them are connected to
DNA molecules, thus DNA computing has various theoretical [30] and various experimental branches
(based e.g., on [1]). Both Watson-Crick automata and the theory/combinatorics of circular words (also
called necklaces) are belonging to theoretical DNA motivated models. On the other hand, as their names
already hint, they have strong connections to classical computing theory, including automata and formal
languages. Watson-Crick automata (abbreviated by the first and last letters of the names of the Nobel
prize winner discoverers of the DNA molecule structure, i.e., WK automata), were introduced in [5] as
an automata type model of DNA computing [33, 4]. These automata are interesting both from theoretical
aspects of computations and also from their applicability in bioinformatical problems [34]. The DNA
molecules, from a computational point of view, can be seen as linear or circular double stranded words
over the alphabet of nucleotides, such that the two strands are related by the Watson-Crick complemen-
tarity relation (that is, in nature, a bijective pairing relation on the used 4 nucleotides). The original
models of WK automata work on double-stranded tapes called Watson-Crick tapes that represent (linear)
DNA molecules and the two read-only heads scanning the two strands in a correlated manner. These

http://dx.doi.org/10.4204/EPTCS.407.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Benedek Nagy 169

automata are closely related to finite automata having two heads. From the biological point of view there
are some restrictions that could be applied on the model, e.g., on the number of states or on the number
of input letters being read in a transition. Relationships between various restricted classes of the Watson-
Crick automata were presented in [5, 30, 12]. From another important biological motivation, the reverse
and 5′ → 3′ WK automata make more sense: each (linear) DNA strand has its own 5′ and 3′ end, where
these names come from the position of the carbon atoms in the sugar part to which the next nucleotide
can connect by covalent bond. The two strands of a DNA molecule have opposite chemical direction,
i.e., the 5′ end of a strand gives the 3′ end of the other and vice versa. Thus, if one believes that in these
automata a biochemical sensor, an enzyme, may read the strands, then, most probably, the enzyme reads
the two strands in the same chemical direction, i.e., from their 5′ ends to the direction of their 3′ ends
[5, 17, 13, 14]. While the reverse variant of WK automata is essentially the same as the full-reading non-
sensing variant of 5′ → 3′ WK automata [30, 13], in the sensing version, the computation on an input
finishes at latest when the two heads meet. This sensing was taken into account with a rather artificial
sensing parameter in [17, 21], while without it in [28, 27, 29, 26]. In [19] specific both-head stepping
variants were defined, where both heads move together and read letter by letter the input (till they meet).
We should mention here that sensing 5′ → 3′ WK automata is closely related to other 2-head finite au-
tomata models described under various names like linear automata [15], biautomata [9] or simply 2-head
automata [20], as their class is capable to accept the class of the linear context-free languages. The spe-
cific variant shown in [19] is able to accept the so-called even-linear languages [2, 35]. Other restricted
version, namely 5′ → 3′ WK automata with exactly one state, was investigated in details in [22]. Some
extensions of the 5′ → 3′ WK automata were also developed, e.g., jumping 5′ → 3′ WK automata [10],
combination with automata with translucent letters [24, 25] or 5′ → 3′ WK transducers [23].

In this paper, the model of 5′ → 3′ WK automata is used for languages of necklaces, i.e., sets of
circular words. As there are circular DNA molecules, it is of particular interest to investigate these
automata and analyze their computational power, etc. As usual, we are using linearization of necklaces,
i.e., we represent a necklace by the set of (linear) words that are obtained as the conjugate class of any
of the words that can represent the necklace. We use two modes of acceptance: a necklace is accepted
in the weak mode if any of its conjugates is accepted by the given automaton; and those necklaces are
accepted in the strong mode for which each of their conjugates are accepted.

In the next section, we formally define our concepts, and then in Sections 3 and 4 we give a sequence
of hierarchy results among the accepted classes of necklace languages including all-final, simple, 1-
limited, and stateless 5′ → 3′ Watson-Crick automata in case of the weak and strong accepting mode for
necklaces, respectively. Conclusions and open questions will close the paper.

Here, we recall only one of the main results for each of the acceptance modes:

• a language can be weakly accepted by a 5′ → 3′ WK automaton if and only if it is the cyclic closure
of a linear context-free language.

• if a language is strongly accepted by a 5′ → 3′ WK automaton, then the language has a kind of
locally testable property.

2 Preliminaries

We assume that the reader is familiar with basic concepts of formal languages and automata, otherwise
she or he is referred to [8, 32]. For any unexplained notions about DNA computing we refer, e.g., to
[30]. We denote the empty word by λ , and the sets of positive and nonnegative integers by N and N0,
respectively.

170 5′ → 3′ WK Automata for Necklaces

Let T be an alphabet, then for any word w ∈ T ∗ if w = uv, then the word vu is a conjugate of w, and
the set of all conjugates of w is called a necklace (or cyclic, or circular word) w◦. The operation by which
we can obtain each element of the class is called cyclic shift, i.e., the cyclic shift of aw is wa where a ∈ T
and w ∈ T ∗. The subsequent application of the cyclic shift operation cycl (at most as many times as
the length of the word) obtains each conjugate of the word we start with. Periodic properties of circular
words were studied in [6, 7], where a weak period of a circular word was defined as a period of an element
of the conjugate class and a period was a strong period if it was a period of each element of the conjugate
class. In fact, what we are dealing with is the linearization of the circular words. One can imagine those
as words written in a cyclic way joining (i.e., concatenating) the first letter of the word after its last letter,
in this way obtaining the word without a starting and without an ending point. Languages of necklaces
are also studied in the literature [11]. In this paper, we use necklaces to model (describe) circular DNA
molecules. A language of necklaces is represented by the union of the necklaces, i.e., conjugate classes.
Obviously, this condition can be translated as follows: a language L ⊂ T ∗ is a language of necklaces if
for any word w ∈ L each conjugate of w = uv is also in L, i.e. vu ∈ L. Consequently, necklace languages
are exactly those languages that are closed under cyclic shift operation, when we apply the operation cycl
for a language as follows: cycl(L) = {uv | u,v ∈ T ∗,w = vu ∈ L}=

⋃
w∈L

w◦. Further, the cyclic closure of

a class L of languages is the class of the cyclic closures of the languages in L .
One class of the Chomsky hierarchy, the class of linear context-free languages, has a strong connec-

tion to the automata model we start with, thus we recall it briefly. A generative grammar G = (N,T,S,P)
is linear context-free if every production is context-free and contains at most one nonterminal on the right
hand side, i.e., it is one of the forms A → u, A → uBv with A,B ∈ N and u,v ∈ T ∗. A language L is linear
context-free if it can be generated by a linear context-free grammar. This class of languages is denoted
by LLIN . It is known that, on the one hand, the classes of regular and context-free languages (denoted by
Lcontext− f ree) are closed under cyclic shift, on the other hand, the class of linear context-free languages
is not [3, 8].

The two strands of the DNA molecule have opposite 5′ → 3′ orientations. Therefore, Watson-Crick
finite automata that parse the two strands of the Watson-Crick tape in opposite directions are investigated.
Now, we use them to accept necklace languages. Figure 1 indicates the initial configuration of such an
automaton. As there is no specific start and end point of a necklace, the starting point can be chosen
arbitrarily (and based on that we will define two types of acceptance conditions).

A 5′ → 3′ WK automaton is called sensing if it senses that its heads are meeting, i.e., they are in
the same position. As in these models the full input is already processed at that time (if the heads meet
again), we use the model to make the decision of the type of the computation at that point, i.e., if the
computation is an accepting computation.

Formally, a Watson-Crick automaton is a 6-tuple M = (V,ρ,Q,q0,F,δ), where:

• V is the (input or tape) alphabet,

• ρ ⊆V ×V denotes a complementarity relation,

• Q represents a finite set of states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of final (also called accepting) states and

• δ is called the transition function and it is of the form δ : Q×
(

V ∗

V ∗

)
→ 2Q, such that it is

non-empty only for finitely many triplets (q,u,v),q ∈ Q,u,v ∈V ∗ when these triplets may also be

Benedek Nagy 171

 q0

 Finite state control

Figure 1: A sensing 5′ → 3′ WK automaton in the initial configuration.

written either in the form (q,u,v) or (q,
(u

v

)
) indicating which of the strings are read by which of the

heads. (The heads can be called upper (left or first) and lower (right or second) heads, respectively.

Based on our definition, in these WK automata every pair of positions in the Watson-Crick tape is
read by exactly one of the heads in an accepting computation, thus the complementarity relation cannot
play importance; instead, in this paper we always assume that it is the identity relation. We are presenting
the sensing 5′ → 3′ WK automaton in Figures 1 and 2 working on the 2-strand necklace. However, for
the above reason, it is more convenient to consider the input as a “normal” necklace and not a double
stranded necklace. Actually, this is a usual trick to simplify the notation, as, in some cases, also instead of
the nucleotide pairs, e.g.,

[
C
G

]
(with C,G ∈V) one may simply write a ∈ T , by shifting the description to

a new alphabet, which can be done always if the complementarity relation is symmetric and bijective (as
in the case of real DNA). Thus, we may use alphabet T instead of using V and ρ , to simplify the writing
of 5′ → 3′ WK automaton to a 5-tuple M = (T,Q,q0,F,δ), modifying δ appropriately to use T . On the
other hand, the complementarity relation can always be replaced by the identity, even in the traditional
models, as was proven in [12].

By continuing the formal description, we consider the computation of 5′ → 3′ WK automata on
necklaces as finite sequences of configurations. A configuration is a pair (q,w) where q ∈ Q is the
current state of the automaton and w is the part of the input necklace which has not been read (processed)
yet written as a normal word as we detail it. In the initial configuration, the initial state q0 is used with
any element of the conjugate class of the necklace, mimicking the arbitrary (nondeterministic) choice of
a position of the cycle from where the computation starts: the conjugate starting at that position will be
processed. As the 2 heads are moving in opposite physical directions, the unprocessed part between them
will be shorter and shorter until the heads meet (i.e., they are both in the same position again, as this is
shown in Figure 2). Formally, let w′,x,y ∈ T ∗, q,q′ ∈ Q. Then, there is a computation step between two
configurations: (q,xw′y)⇒ (q′,w′) if and only if q′ ∈ δ (q,x,y). The reflexive and transitive closure of
the relation ⇒ is, as usual, denoted by ⇒∗ and called computation. For a given conjugate w ∈ T ∗ of the
input, an accepting computation is a sequence of transitions (q0,w)⇒∗ (qF ,λ), starting from an initial

172 5′ → 3′ WK Automata for Necklaces

 q

 Finite state control

 qf

 Finite state control

Figure 2: A sensing 5′ → 3′ WK automaton in a configuration during a computation and in an accepting
configuration with a final state q f (bottom).

configuration and ending in a configuration consisting of a final state and the empty word. Now, based
on the conjugate class of a necklace we define our acceptance conditions:

1. A necklace w◦ is weakly accepted by a WK automaton M if there is a conjugate vu (when w = uv,
i.e., in this case vu ∈ w◦) such that there is an accepting computation on vu.

2. A necklace w◦ is strongly accepted by a WK automaton M if there is an accepting computation for
every conjugate of w (i.e., each element of w◦).

The weak and strong distinction comes in a similar manner as it was used for periods in [7]. Now,
one may consider the former case, as there is a nondeterministic choice for where to cut the necklace
to start the computation, and if this (nondeterministically chosen) starting point leads to an accepting
computation, then the necklace is accepted. Contrariwise, in the latter case, there must be an accepting
computation for each possible starting point for a necklace to be included in the accepted language.

1. The language L of necklaces is weakly accepted by a WK automaton M if for each word w ∈ L,
there is a conjugate vu (when w = uv) such that there is an accepting computation on vu.

Benedek Nagy 173

2. The language L of necklaces is strongly accepted by a WK automaton M if for each necklace
w◦ ⊂ L, all conjugates of w (i.e., each element of w◦) are accepted by M by some computations.

We may also write these conditions more formally and we can also use some special notation for these
languages:

1. Lw(M) = {w ∈ T ∗ | there exist u,v ∈ T ∗, q f ∈ F such that w = uv,(q0,vu)⇒∗ (q f ,λ)}.
2. Ls(M) = {w ∈ T ∗ | for each u ∈ w◦ there is a q f ∈ F such that (q0,u)⇒∗ (q f ,λ)}.

The classes of necklace languages weakly and strongly accepted by sensing 5′ → 3′ WK automata are
denoted by W∗ and S∗. There are some restricted variants of WK automata which are usually considered
(e.g., from computational and biological motivations):

• N: stateless, i.e., with only one state: if Q = F = {q0};

• F: all-final, i.e., with only final states: if Q = F ;

• S: simple (at most one head moves in a step) δ : (Q× (({λ},T ∗)∪ (T ∗,{λ})))→ 2Q.

• 1: 1-limited (exactly one letter is being read in each step) δ : (Q× (({λ},T)∪ (T,{λ})))→ 2Q.

Let WN , WF , WS and W1 denote the necklace language classes weakly accepted by sensing N, F, S and 1
5′ → 3′ WK automata, respectively. Further variants having multiple constraints can also be defined as
sensing F1, N1, FS, NS 5′ → 3′ WK automata. Their weakly accepted language classes are denoted by
WF1, WN1, WFS and WNS, respectively. Similarly, the notation SN ,SF ,SS,S1, etc. will be used for the
classes that are strongly accepted by the restricted classes of 5′ → 3′ WK automata, respectively. Further,
we may use the traditional way of acceptance for ‘ordinary’ (i.e., not necessarily necklace) languages
and we use the notation for these classes, L∗,LN , etc., respectively.

3 On weakly accepted necklace language classes

With this section our aim is twofold. On the one hand we would like to present some general result on
the class W∗ and, on the other hand, we are presenting hierarchy results among the language classes of
necklaces that are weakly accepted by the restricted models.

The next proposition is a direct consequence of the definitions and the fact that exactly the class LLIN

is accepted the class of (unrestricted) sensing 5′ → 3′ WK finite automata [17, 28, 18, 21, 27].

Proposition 1 The cyclic closure cycl(LLIN) is weakly accepted by sensing 5′ → 3′ WK finite automata,
that is, for each linear language L, its cyclic closure cycl(L) is in W∗ and for each language L′ ∈ W∗
there is a linear language L′′ such that L′ = cycl(L′′).

Moreover, for each restricted class x∈ {S,1,F,N,FS,F1,NS,N1},

Wx = cycl(Lx),

i.e., the class of weakly accepted necklace languages by a restricted class of sensing 5′ → 3′ WK finite
automata is the same as the cyclic closure of the languages accepted by the class of sensing 5′ → 3′ WK
finite automata with the same restriction.

The cyclic closure of the class LLIN was also defined as a kind of class of necklace languages (i.e.,
languages of cyclic words) among many other classes based on a somewhat similar idea in [11].

As LLIN is not closed, but Lcontext− f ree is closed under cyclic shift [3, 8], we can relate our classes
to the Chomsky hierarchy. As, clearly both LLIN and Lcontext− f ree contain some languages that are not
necklace languages, (e.g., the singleton language {ab}), we have:

174 5′ → 3′ WK Automata for Necklaces

Proposition 2 The inclusion W∗ ⊊ Lcontext− f ree is proper, while the classes W∗ and LLIN are incompa-
rable under set theoretic inclusion.

Now we show some equivalences among the classes on the top of the hierarchy. By, e.g., [28, 27],
it is known that sensing 5′ → 3′ WK finite automata accept exactly the linear context-free languages,
moreover the same class is accepted by the classes of the following variants: LLIN = L∗ = LS = L1.
This gives the consequence that the weakly accepted classes will also be the same:

Proposition 3 The following classes of necklace languages are identical: cycl(LLIN) =W∗ =WS =W1.

In the rest of the section we present various hierarchy results of the considered necklace languages.
To show that none of he language classes is empty, we start with the most restricted class, the necklace

languages weakly accepted by sensing N1 5′ → 3′ WK automata, to give an example language.

Proposition 4 The language L = {1i0 j1k | i, j,k ∈ N0}∪ {0i1 j0k | i, j,k ∈ N0} is weakly accepted by
the sensing N1 5′ → 3′ WK automaton: M = ({0,1},{q},q,{q},δ) with two allowed transitions q ∈
δ (q,0,λ) and q ∈ δ (q,λ ,1).

Proof Clearly the automaton has only one state and it reads exactly one letter in each step of the
computation, thus it is a sensing N1 5′ → 3′ WK automaton.

Now, considering the accepted language, for each word of the language there is a conjugate in the
form 0n1m (for w = 1i0 j1k, n = j and m = i+k; for w = 0i1 j0k, n = i+k and m = j). On the other hand,
M is accepting the language L(M) = {0n1m | n,m ∈ N0} when the first transition is used n, the second
one m times during the computation. Now, as cycl(L(M)) = L, the language L is weakly accepted by M.
The proof is complete. •
On the one hand, as all sensing N1 5′ → 3′ WK automata are also sensing F1 and also sensing NS 5′ → 3′

WK automata, we have obvious inclusion among the (weakly) accepted language classes. On the other
hand, we state and shall prove that both of these inclusions are proper.

Theorem 1 Each of the classes WF1 and WNS properly includes the class WN1:

WN1 ⊊ WF1 and WN1 ⊊ WNS.

Proof As the inclusions are obvious by definition, we shall prove only their properness.
Let us consider the first statement and the language L = {1i0 j1k | i, j,k ∈ N0, j ∈ {i+ k, i+ k +

1}} ∪ {0i1 j0k | i, j,k ∈ N0, i+ k ∈ { j, j + 1}}. It can weakly be accepted by a sensing F1 5′ → 3′

WK automaton: Let M = ({0,1},{q, p},q,{q, p},δ) with two allowed transitions p ∈ δ (q,0,λ) and
q∈ δ (p,λ ,1). Notice that for each word in L there is a conjugate in the form 0n1m with the condition that
either n = m or n = m+1. However, M is accepting exactly the language L′ = {0n1m | n ∈ {m,m+1}},
and thus weakly accepting L = cycl(L′).

To complete the proof of the first part, we should show that L cannot be weakly accepted by any
sensing N1 5′ → 3′ WK automata. This part of the proof goes by contradiction: Suppose that L is weakly
accepted by a sensing N1 5′ → 3′ WK automaton M′ with the sole state r and transition mapping δ ′.
As 0 = 0110 ∈ L, M′ must have at least one of the loop-transitions r ∈ δ ′(r,0,λ) and r ∈ δ ′(r,λ ,0).
However, in either case, all words (and thus all necklaces) of 0∗ would be (weakly) accepted. However,
no words (necklaces) of 0∗ other than λ and 0 are in the language. This contradiction proves that there
is no sensing N1 5′ → 3′ WK automaton that weakly accepts L, thus, the first statement of the theorem
has been proven.

Considering the second statement, let us consider the language L′′ = {1i0 j1k | i, j,k ∈N0, j is even}∪
{0i1 j0k | i, j,k ∈ N0, i+ k is even}. On the one hand, we show that L′′ is weakly accepted by a sensing

Benedek Nagy 175

NS 5′ → 3′ WK automaton. Thus, let M′′ = ({0,1},{q},q,{q},δ ′′) with two allowed transitions q ∈
δ ′′(q,00,λ) and q ∈ δ ′′(q,λ ,1). Then the language accepted by M′′ is L(M′′) = {02n1m | n,m ∈ N0},
and its cyclic closure cycl(L(M′′)) = L′′, i.e., there is an even number of 0s such that either they are next
to each other, or they form the prefix and suffix of the word in L′′. Now, on the other hand, we shall
prove that L′′ is not weakly accepted by any sensing N1 5′ → 3′ WK automata. To show this, notice that
00 ∈ L′′, but 0 ̸∈ L′′. However, a sensing N1 5′ → 3′ WK automaton must read the input letter by letter,
and each already read part must also form an accepted word, thus to accept 00, the automaton must read
a 0 in the first step of the computation, however, then 0 would also be accepted. In this way the proper
inclusion of the second statement has also been proven. •

Theorem 2 Each of the classes WN and WFS properly includes the class WNS:

WNS ⊊ WN and WNS ⊊ WFS.

Proof Let us start with the first statement and consider the necklace language L = {0i1 j0k | there exist
n,m ∈ N0 such that i+ k = 2n+m, j = 2m+n}∪{1i0 j1k | there exist n,m ∈ N0 such that i+ k = 2n+
m, j = 2m+ n}. Now, on the one hand, the automaton M = ({0,1},{q},q,{q},δ) with two transitions
q ∈ δ (q,0,11) and q ∈ δ (q,00,1) is weakly accepting L, as each element of L has a conjugate 0r1s with
n,m ∈N0 such that r = n+2m and s = 2n+m, where in fact n and m are the numbers of the computation
steps made by the two possible transitions, respectively. Further, it is easy to see that M is a sensing N
5′ → 3′ WK automaton. Now, on the other hand, it shall be shown that L is not weakly accepted by any
sensing NS 5′→ 3′ WK automaton. This part of the proof is by contradiction, thus let us assume that there
is such NS automaton M′ that weakly accepts L. As at least one of the words 011,101,110 is accepted by
M′ (with sole state p and transition mapping δ ′) to include this necklace in the language, the automaton
M′ must have at least one of the following six transitions: p ∈ δ ′(p,011,λ), p ∈ δ ′(p,101,λ), p ∈
δ ′(p,110,λ), p ∈ δ ′(p,λ ,011), p ∈ δ ′(p,λ ,101) and p ∈ δ ′(p,λ ,110). However, now by applying the
same transition in three consecutive computation steps, it leads to accept the following word: 011011011,
101101101, 110110110, 011011011, 101101101 or 110110110 respectively to the six cases. As all these
words contain more than two ‘blocks’ of 0’s, clearly none of them is in L, thus this contradicts to the
fact that M′ weakly accepts L. Therefore, the language L cannot be weakly accepted by any sensing NS
5′ → 3′ WK automata, completing the proof of the first statement.

Now, let us consider the second statement with the witness language L = {1i0 j1k | i, j,k ∈ N0, j ∈
{i+ k, i+ k+ 1}}∪{0i1 j0k | i, j,k ∈ N0, i+ k ∈ { j, j+ 1}} used in the proof of the previous theorem.
Clearly, the sensing F1 5′ → 3′ WK automaton given there is also a sensing FS 5′ → 3′ WK automaton.
On the other hand, as one needs to have one of the transitions to accept the word 0 as it is written in the
previous proof, every sensing N 5′ → 3′ WK automaton must also accept words like 00 and 000 which
are not in L (and not any of their conjugates are in L). This contradiction proves the properness of the
inclusion in the second statement. •

Theorem 3 The class WFS properly includes the class WF1:

WF1 ⊊ WFS.

Proof As the inclusion is trivial by definition, we need to show only its properness. Let us consider the
witness language L defined by the regular expression (11)∗. L contains all words over the unary alphabet
with even length. Now, on the one hand, let M = ({1},{p}, p,{p},δ) be a sensing FS 5′ → 3′ WK
automaton (in fact also NS and N) with the only transition p ∈ δ (p,11,λ). Clearly, L(M) = Lw(M) = L.

176 5′ → 3′ WK Automata for Necklaces

On the other hand, we need to show that no sensing F1 5′ → 3′ WK automata can (weakly) accept
L. As all states of F1 automata are final and they should read the input letter by letter, there must
be a configuration when only 1 is read in the accepting computation of, e.g., 11. As the state of this
configuration must also be accepting, 1 is also accepted (and weakly accepted) by any F1 automata that
are able to accept 11. As 1 ̸∈ L, this leads to a contradiction, thus there is no sensing F1 5′ → 3′ WK
automata that weakly accept L. •

Theorem 4 The class WF properly includes the class WN:

WN ⊊ WF .

Proof On the one hand, the inclusion is trivial by definition. On the other hand, for the properness, let us
consider the witness language the regular language L= 0∗+0∗10∗ which is also a necklace language. Let
M = ({0,1},{p,q}, p,{p,q},δ) with three transitions p ∈ δ (p,0,λ), q ∈ δ (p,1,λ) and q ∈ δ (q,0,λ),
then L(M) = Lw(M) = L, moreover M is a sensing F 5′ → 3′ WK automaton (in fact it is also FS and
F1). To show the properness, we need to show that there is no sensing N 5′ → 3′ WK automaton that
weakly accepts L. The proof goes by contradiction, thus let us assume that M′ is an automaton with its
sole state q′ and transition mapping δ ′ such that Lw(M′) = L. As the word (and also a necklace) 1 is
accepted, M′ must have at least one of the transitions q′ ∈ δ ′(q′,1,λ) and q′ ∈ δ ′(q′,λ ,1). However, in
either case, the words (and necklaces) 11 and 111 are also accepted. However, as they are not in L, we
have reached a contradiction. This contradiction shows that L is not weakly accepted by any sensing N
5′ → 3′ WK automata, and the proof is complete. •

Theorem 5 The class WF properly includes the class WFS:

WFS ⊊ WF .

Proof We need to show only the properness, thus let us have the witness language L = {0i1 j0k | j =
i+ k}∪{1i0 j1k | i+ k = j}. L is the cyclic closure of the linear context-free language {0n1n | n ∈ N0}.
Clearly, as the automaton ({0,1},{q},q,{q},δ) with a sole transition q ∈ δ (q,0,1) accepts the above
mentioned linear context-free language, it also weakly accepts L. This automaton is a sensing N 5′ → 3′

WK automaton, and thus, it is also a sensing F 5′ → 3′ WK automaton. Thus, we need to show only that
L cannot be weakly accepted by any sensing FS 5′ → 3′ WK automaton. The proof is by contradiction,
thus let us assume that M is a sensing FS 5′ → 3′ WK automaton such that Lw(M) = L. For each
WK automaton, as its transition function gives nonempty sets only for finitely many triplets, there is
a maximal length of strings that can be read in a computation step. Let r be this maximal length for
automaton M. Let us consider the word w = 03r13r ∈ L. Since the length of w is large, M needs more
than three computation steps to accept one of its conjugates, let us say u = 0i13r03r−i (or symmetrically,
v = 1 j03r13r− j; in this latter case the proof is analogous to the case we present here for u). Now, on the
one hand, as M is S 5′ → 3′ WK automaton, exactly one of the heads can move in each computation step,
thus always a prefix or a suffix of the (remaining) input is processed (and as the input must be processed,
there must be computation steps by reading the input). On the other hand, M is also F 5′ → 3′ WK
automaton, thus any computation step leads to the acceptance of the word composed by the already read
prefix and suffix of the input. Therefore, there are two cases.

If the prefix, let us say x is read in the first step (when input letter is processed), then the prefix x
of u must also be in L, thus it must also contain at least one occurrence of 0s and also of 1s: x = 0i1i

(i < r) must hold, and the remaining input is 13r−i03r−i (where 3r− i > 2r). Now, in the next step (of
the accepting computation of u when some input letters are processed) again a prefix or a suffix of the

Benedek Nagy 177

remaining input is read, however, both the block of 0s and 1s are so large that either only 1s are read
(prefix case) or only 0s are read (suffix case). Both lead to the acceptance of some words and necklaces
where the number of 0s and 1s mismatch, and thus this leads to a contradiction.

In the second case, if the suffix y of u is read in the first computation step (of the accepting compu-
tation of u, when at least one letter is processed), then as y is accepted by M, y ∈ L must also hold, and
thus y must contain also both 0 and 1: y = 13r−i03r−i (and in this case i > r). The remaining input after
this step is 0i1i. Now, by the second step (of the computation consuming input letter(s)), either the prefix
or the suffix of this remaining input is read, but with length at most r, meaning that either only 0s or only
1s can be read. But this would lead again to an acceptance of a word (and thus to the weak acceptance of
a necklace) that has mismatching numbers of 0s and 1s. This fact contradicts to our assumption, hence L
cannot be weakly accepted by any sensing FS 5′ → 3′ WK automata and thus the proof is complete. •

Finally, we present our last hierarchy result of the section by showing that all-final automata are
weaker than the unrestricted variants in the term of weakly accepting language classes.

Theorem 6 The class W∗ properly includes the class WF :

WF ⊊ W∗.

Proof Again, we need to prove only properness. Consider the witness language L = {0i10n10 j | n ∈
N, i, j ∈ N0, i+ j = n}. As L is the cyclic closure of the linear language {0n10n1 | n ∈ N}, it is in W∗.
Now, on the other hand, we show that there is no sensing F 5′ → 3′ WK automaton which weakly accepts
L. The proof is by contradiction. Thus, let us assume that the language L is weakly accepted by a sensing
F 5′ → 3′ WK automaton, say M. For each WK automaton, as its transition function gives nonempty sets
only for finitely many triplets, there is a maximal length of strings that can be read in a computation step.
Let r be this maximal length for automaton M. Let us consider the necklace w◦ = (02r102r1)◦ ⊂ L. In any
of the conjugates of 02r102r1, the distance of the two occurrences of 1s is 2r implying that at most one of
them can be read in the first step of the computation. However, as M is all-final, each computation step
leads to an accepted word, and thus, to a weakly accepted necklace. Therefore, as L(M) must contain a
word containing at most one 1, Lw(M) has a necklace containing less than two occurrences of 1 which is
contradicting to the assumption that Lw(M) = L. •

The hierarchy results of this section will be summarized on a Hasse diagram in the concluding sec-
tion.

4 On strongly accepted necklace language classes

In this section we use the strong acceptance mode, i.e., a necklace is in the accepted language if and
only if all of its conjugates are accepted by the automaton. By understanding the acceptance mode, and
knowing that sensing 5′ → 3′ WK automata accept exactly the languages of LLIN ([17, 21]), we can
deduce the following fact.

Proposition 5 Let L ∈ LLIN be a linear context-free language. The maximal necklace language L′ ⊂ L
contains exactly those words (necklaces) for which all conjugates (members) are in L. Then there is a
sensing 5′ → 3′ WK automaton M that accepts L, further, for this automaton M, Ls(M) = L′.

Moreover, the statement hold also in the other direction: Let M′ be a 5′ → 3′ WK automaton. The
strongly accepted necklace language Ls(M′) is the maximal necklace language L such that L ⊂ L(M′)
holds.

178 5′ → 3′ WK Automata for Necklaces

Now we introduce a notion for necklaces. If there is a subword x that occurs in some of the conjugates
of w, then we say that x is a pattern in the necklace w◦. If this pattern can be written as x = u′v′, then we
say it fits to the necklace in the (cut) point that defines the conjugate w′ in w◦ such that u′ is suffix and
v′ is a prefix of w′. Actually, we can see that one part of x is the prefix and the rest is the suffix of this
conjugate. Notice that depending on the length of the pattern there are usually more than one positions
where it fits.

We give an example to help the reader to easily catch the concept.

Example 1 Let the necklace be defined by the word abcabcaaacb. Then we have a pattern aacba in it,
as it is a subword of, e.g., the conjugate bcabcaaacba (especially, it is a suffix here). Now, this pattern
fits to the necklace to any points where it occurs, e.g., if we “cut” the necklace to obtain the conjugate
cbabcabcaaa, then u′ = aa and v′ = cba, thus our pattern is used as aa · cba.

Because of the special acceptance mode, we have a kind of locally testable property of all these
languages. (See [16, 36] for related concepts and language families defined in this way.)

Proposition 6 Let L be a necklace language strongly accepted by some 5′ → 3′ WK automata. Then
there is a finite set of patterns such that for each position of the necklace at least one of them must fit.

Proof As, there must be an accepting computation for each conjugate of a word of the language L, for
every (starting) point, one of the possible transitions from the initial state must match. Let us analyze the
case formally. Let w ∈ L (i.e., w◦ ⊂ L). Then for each starting point the computation could start, i.e., for
each conjugate w′ of w, there must be a suffix u′ and a prefix v′ of w′ such that there is a transition with
them, i.e., δ (q0,v′,u′) ̸= /0. That means that the pattern u′ · v′ fits to this cut point of the necklace. On the
one hand, there are finitely many possible transitions from the state q0 giving finitely many patterns. On
the other hand, for each position at least one of them must match to have an accepting computation for
that conjugate. •

In some special cases, e.g., if the heads read the same length subwords in each transition, the relation
with some classes of locally testable languages can be more immediate.

On the other hand, the property stated in the previous proposition must hold for each language in S∗,
but for some languages there could be more (meaning more complex) restrictions as we can see later.

Now we turn to present some hierarchy results among the corresponding necklace language classes.
As the very first result in this line, we show that even the most restricted class is not empty, i.e., there are
languages in SN1. Actually, we show more, we give a full characterization of this class.

Theorem 7 A necklace language L is in SN1 if and only if L = T ∗
1 ∪T ∗

2 for two alphabets T1,T2.

Proof The proof goes by two parts. First we show that every language of the form T ∗
1 ∪T ∗

2 for two
alphabets T1 and T2 is in SN1. By considering T1 = {a1, . . . ,an}∪{c1, . . . ,cm} and T2 = {b1, . . . ,bk}∪
{c1, . . . ,cm}, let us define the automaton M = (T,{q},q,{q},δ) with δ (q,x,λ) = {q} for each x ∈ T1
and δ (q,λ ,y) = {q} for each y ∈ T2. (For any other triplets let δ give the empty set.) Clearly, M is a
sensing N1 5′ → 3′ WK automaton. Moreover, M accepts T ∗

1 if only the first head is used during the
computation and T ∗

2 if only the second head is used during the computation. Now, we show that there is
no necklace that can be accepted such that both heads must be used. Contrary, let us assume that there
is a necklace w◦ which contains letters from both T1 \T2 and T2 \T1, then there is a pattern aib j in w◦,
i.e., it has a conjugate b juai (with some u ∈ (T1 ∪T2)

∗). However, there is no transition defined in M to
start the computation for this conjugate, thus this necklace cannot be accepted. Finally, as T ∗

1 ∪T ∗
2 is a

necklace language itself, the maximal necklace language in it is also itself, thus M accepts the necklace
language T ∗

1 ∪T ∗
2 in strong acceptance mode.

Benedek Nagy 179

Actually, every sensing N1 5′ → 3′ WK automaton can be described by two (maybe not disjoint)
sets T1 and T2 of letters having transitions δ (q,ai,λ) = {q} for each ai ∈ T1 and δ (q,λ ,b j) = {q} for
each b j ∈ T2. Then, with a similar argument as we used above, one can see that the language T ∗

1 ∪T ∗
2

is accepted, and actually, for each accepted word there is a computation where only one of the heads is
used to read the entire input. No input can be accepted that has letters that cannot be read by the same
head. •

Now, we present some hierarchy results among various classes of strictly accepted necklace lan-
guages.

Theorem 8 The class SNS properly includes the class SN1:

SN1 ⊊ SNS.

Proof The inclusion holds by definition, as all N1 automata are also NS automata. To show the proper-
ness we give an example. Consider M = ({a},{q},q,{q},δ) with δ (q,aa,λ) = {q} and δ gives the
empty set for any other triplets. It is easy to see that both the accepted and the strongly accepted lan-
guage is (aa)∗ which cannot be accepted by any N1 5′ → 3′ WK automaton as we have shown in Theorem
7. •

Lemma 1 Let L be a language strongly accepted by a sensing NS 5′ → 3′ WK automaton. If it contains
a nonempty word an with some a ∈ T and n ∈ N, then it contains all words of (an)∗.

Proof Any word of the form an can be considered as a singleton necklace. Further, as such automaton
has only one state, the same computation steps as the ones lead to the acceptance of an can be repeated
if the input is longer. In this way, each word of (an)∗ is accepted, thus the language is infinite. •

Lemma 2 Let L be a language of necklaces strongly accepted by a sensing F1 5′ → 3′ WK automaton.
If L contains a nonempty word, then it contains one letter long word(s).

Proof In a sensing F1 5′ → 3′ WK automaton all states are accepting, and the automaton can read
exactly one letter in the first step of the computation. Thus, if it has any transition from the initial state,
it will accept the one letter long word containing the letter of the transition. As every one letter long
word itself is a singleton necklace, it is also strongly accepted, thus it appears in the strongly accepted
necklace language. W.l.o.g., assume that there is a transition with letter a ∈ T with the first head in M,
i.e., δ (q0,a,λ) ̸= /0. Then a ∈ Ls(M). •

Theorem 9 The class SF1 properly includes the class SN1:

SN1 ⊊ SF1.

Proof The inclusion holds by definition, as all N1 automata are also F1 automata. To show the
properness we give an example. Consider M = ({a,b},{q, p,r},q,{q, p,r},δ) with δ (q,a,λ) = {p}
and δ (q,b,λ) = {r} (where δ gives the empty set for any other triplets). It is easy to see that both the
accepted and the strongly accepted language is {λ ,a,b} which cannot be accepted by any N1 5′ → 3′

WK automaton. •

Theorem 10 The class SFS properly includes both of the classes SF1 and SNS:

SF1 ⊊ SFS and SNS ⊊ SFS.

180 5′ → 3′ WK Automata for Necklaces

Proof The inclusions hold by definition, as all F1 automata and all NS automata are also FS au-
tomata. To show the properness we give an example. Consider M = ({a,b},{q, p},q,{q, p},δ) with
δ (q,aa,λ) = {p}, δ (q,ab,λ) = {p} and δ (q,ba,λ) = {p} (where δ gives the empty set for any other
triplets). It is easy to see that both the accepted and the strongly accepted language is {λ ,aa,ab,ba}
includes two nonempty necklaces. This language cannot be accepted by any F1 5′ → 3′ WK automaton
by Lemma 2 as each of its nonempty words has length 2. Moreover, Ls(M) is a finite language con-
taining the nonempty word aa, thus by Lemma 1 it cannot be strongly accepted by any NS 5′ → 3′ WK
automaton. •

The examples we have used so far defined regular languages. To show that the model we are consid-
ering here has a larger expressive power, we present the following example, where a non regular (and in
fact, not linear context-free) language is defined by an F1 5′ → 3′ WK automaton.

 p p1

 q0 pb p2 p3

 pa p4 p5

(a,) (a,)

(,b)

(b,) (a,) (b,)

(,a)

(,a)

(,a)

(,a)

(,b)

(,b)

(b,) (a,) (b,)

Figure 3: A sensing F1 5′ → 3′ WK automaton that is accepting a non linear context free language of
necklaces in the strong mode.

Example 2 Consider the sensing F1 5′ → 3′ WK automaton M shown in Figure 3. Depending on the
first letter of the chosen conjugate, the computation follows different ways and also there is computation
based on the last letter. If the first letter is b, then state pb is reached, and all continuations belong to
b∗a∗b∗ are accepted. In this way, clearly all words of b∗ are also strongly accepted, as each of them is a
singleton necklace. Whenever, the last letter of the conjugate is an a, there is a computation reaching pa

and the computation continues accepting all words of a∗b∗a∗. Here all necklaces containing only a-s are
also accepted, i.e., the elements of a∗ are in Ls(M). If the necklace contains both a and b, then it must
also be accepted when conjugate starting with a and finishing with a b (having the pattern b ·a to fit to
this position). However, in this case, the only computation goes from q0 to p and continues by using both
heads and counting the number of a-s and b-s not to have a larger difference than 1. Thus, the strongly

Benedek Nagy 181

accepted necklace language is {a∗}∪ {b∗}∪ {anbn}∪ {an+1bn}∪ {bkanbm | n ∈ {k +m,k +m+ 1}}.
This language is not regular, moreover, it is not linear. On the other hand, it is context-free as a PDA can
easily count the number of letters in each of the possible conjugates.

In [28] it was proven that exactly the class LLIN of linear context-free languages are accepted by
each of the classes of (arbitrary, i.e., unrestricted) sensing 5′ → 3′ WK automata, of sensing S 5′ → 3′

WK automata and of sensing 1 5′ → 3′ WK automata. By considering these automata for necklaces in
the strong acceptance mode, we have the following consequence on the top of the hierarchy.

Proposition 7
S∗ = SS = S1 ⊃ SF .

We leave open whether the hierarchy is proper or not for the pair of classes we did not show proofs.
A summary of these results can also be seen in the Hasse diagram in Figure 5 in the next section.

Figure 4: Hierarchy of necklace languages weakly accepted by sensing 5′ → 3′ WK finite automata in a
Hasse diagram. Each of the shown inclusions is proper.

5 Conclusions

Necklaces (or circular words) may represent various real word objects, e.g., DNA molecules having
circular (also called) cyclic structure. In mathematics and computer science they are often modeled by

182 5′ → 3′ WK Automata for Necklaces

Figure 5: Hierarchy of necklace languages strongly accepted by sensing 5′ → 3′ WK finite automata
in a Hasse diagram. Arrows represent proper inclusions, while lines represent inclusions where the
properness is left open.

the set of conjugates, i.e., linear (ordinary) words that could be the base of the cycle. In this paper,
we used WK automata to accept necklaces and necklace languages. Two acceptance modes have been
investigated, if at least one of the elements of the conjugate class is accepted, then the corresponding
necklace is weakly accepted, while in case all conjugates are accepted, the necklace is strongly accepted.
Based on the various restrictions of WK automata, we established hierarchies of the accepted language
classes. We summarize these hierarchy results obtained for necklace languages by Hasse diagrams and
we also list a few open problems.

On the first hand, a Hasse diagram shows the hierarchy of the weakly accepted classes of necklace
languages in Figure 4. On the other hand, Figure 5 shows the Hasse diagram of the language classes
of the strongly accepted necklace languages. Here, some of the inclusions are trivial by definition and
their properness are left open. More precisely, the relations (equality or proper inclusion) between the
following classes is open:

• SNS −SN ,

• SFS −SF ,

• SN −SF , and

• SF −S∗.

Benedek Nagy 183

Further open problems are, e.g., the closure properties of the newly defined language classes. Relations
to other families of languages, including locally testable families are also planned to be established in
the near future.

References

[1] Leonard M. Adleman (1994): Molecular computation of solutions to combinatorial problems, Science 226,
pp. 1021–1024, doi:10.1126/science.7973651.

[2] Amar, V., Putzolu, G.R. (1964): On a family of linear grammars. Inf. Control 7(3), 283–291,
doi:10.1016/S0019-9958(64)90294-3.

[3] Andreas Brandstädt (1981): Closure Properties of Certain Families of Formal Languages with Re-
spect to a Generalization of Cyclic Closure. RAIRO Theor. Informatics Appl. 15(3), pp. 233–252,
doi:10.1051/ita/1981150302331.

[4] Elena Czeizler & Eugen Czeizler (2006): A Short Survey on Watson-Crick Automata, Bulletin of the EATCS
88, pp. 104–119.

[5] Rudolf Freund, Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa (1997): Watson-Crick finite automata.
In: Harvey Rubin & David Harlan Wood, editors: DNA Based Computers, Proceedings of a DIMACS Workshop,
Philadelphia, Pennsylvania, USA, June 23-25, 1997, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 48, DIMACS/AMS, pp. 297–327, doi:10.1090/dimacs/048/22.

[6] László Hegedüs & Benedek Nagy (2013): Periodicity of circular words. In: WORDS 2013, Turku, Finland,
TUCS Lecture Notes No. 20 (09.2013), pp. 45–56.

[7] László Hegedüs & Benedek Nagy (2016): On periodic properties of circular words. Discrete Mathematics
339(3), pp. 1189–1197, doi:10.1016/j.disc.2015.10.043.

[8] John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading, M.A.

[9] Ondrej Klíma & Libor Polák (2011): On Biautomata. In Rudolf Freund, Markus Holzer, Carlo Mereghetti,
Friedrich Otto, Beatrice Palano (eds.): Third Workshop on Non-Classical Models for Automata and Applications
– NCMA 2011, Milan, Italy, July 18 - July 19, 2011. Proceedings. books@ocg.at 282, Austrian Computer
Society, pp. 153–164.

[10] Radim Kocman, Zbynek Krivka, Alexander Meduna & Benedek Nagy (2022): A jumping 5′ → 3′ Watson-
Crick finite automata model. Acta Informatica 59(5), pp. 557–584, doi:10.1007/s00236-021-00413-x

[11] Manfred Kudlek (2004): On languages of cyclic words. In: Natasa Jonoska, Gheorghe Păun, Grzegorz
Rozenberg (eds.): Aspects of Molecular Computing, Essays Dedicated to Tom Head on the Occasion of His
70th Birthday. Lecture Notes in Computer Science, LNCS 2950, pp. 278–288, doi:10.1007/978-3-540-24635-
0_20.

[12] Dietrich Kuske & Peter Weigel (2004): The role of the complementarity relation in Watson-Crick automata
and sticker systems. In: Cristian S. Calude, Elena Calude & Michael J. Dinneen (editors): Developments in
Language Theory, DLT 2004, Lecture Notes in Computer Science, LNCS 3340, Springer, Berlin, Heidelberg,
pp. 272–283. doi:10.1007/978-3-540-30550-7 23.

[13] Peter Leupold & Benedek Nagy (2009): 5′ → 3′ Watson-Crick automata with several runs. In: Henning
Bordihn, Rudolf Freund, Markus Holzer, Martin Kutrib, Friedrich Otto (eds.): Workshop on Non-Classical
Models for Automata and Applications - NCMA 2009, Wroclaw, Poland, August 31 - September 1, 2009.
Proceedings. books@ocg.at 256, Austrian Computer Society 2009, pp. 167–180.

[14] Peter Leupold & Benedek Nagy (2010): 5′ → 3′ Watson-Crick automata with several runs, Fundamenta
Informaticae 104, pp. 71–91, doi:10.3233/FI-2010-336.

[15] Roussanka Loukanova (2007): Linear context free languages. In: Cliff B. Jones, Zhiming Liu, Jim Wood-
cock (eds.): Theoretical Aspects of Computing - ICTAC 2007, 4th International Colloquium, Macau, China,

https://doi.org/10.1126/science.7973651
https://doi.org/10.1016/S0019-9958(64)90294-3
https://doi.org/10.1051/ita/1981150302331
https://doi.org/10.1090/dimacs/048/22
https://doi.org/10.1016/j.disc.2015.10.043
https://doi.org/10.1007/s00236-021-00413-x
https://doi.org/10.1007/978-3-540-24635-0_20
https://doi.org/10.1007/978-3-540-24635-0_20
https://doi.org/10.1007/978-3-540-30550-7 23
https://doi.org/10.3233/FI-2010-336

184 5′ → 3′ WK Automata for Necklaces

September 26-28, 2007, Proceedings. Lecture Notes in Computer Science 4711, Springer 2007, pp. 351–365,
doi:10.1007/978-3-540-75292-9_24.

[16] Robert McNaughton & Seymour Papert (1971): Counter-Free Automata. MIT Press.

[17] Benedek Nagy (2008): On 5′ → 3′ sensing Watson-Crick finite automata, In: Garzon M.H. & Yan H.
(eds.): DNA Computing. DNA 2007: Selected revised papers, Lecture Notes in Computer Science, LNCS 4848,
Springer, Berlin, Heidelberg, pp. 256–262. doi:10.1007/978-3-540-77962-9_27.

[18] Benedek Nagy (2009): On a hierarchy of 5′ → 3′ sensing WK finite automata languages, In: Computaility
in Europe, CiE 2009: Mathematical Theory and Computational Practice, Abstract Booklet, Heidelberg, pp.
266–275.

[19] Benedek Nagy (2010): 5′ → 3′ sensing Watson-Crick finite automata, In: Gabriel Fung (ed.): Sequence and
Genome Analysis II - Methods and Applications, pp. 39—56, iConcept Press.

[20] Benedek Nagy (2012): A class of 2-head finite automata for linear languages. Triangle 8: llenguatge, liter-
atura, computació, 89–99.

[21] Benedek Nagy (2013): On a hierarchy of 5′ → 3′ sensing Watson-Crick finite automata languages, Journal
of Logic and Computation 23(4), pp. 855–872, doi:10.1093/logcom/exr049.

[22] Benedek Nagy (2023): On language classes accepted by stateless 5′ → 3′ Watson-Crick finite automata.
Annales Mathematicae et Informaticae 58, pp. 110–120, doi:10.33039/ami.2023.08.004.

[23] Benedek Nagy & Zita Kovács (2021): On deterministic 1-limited 5′ → 3′ sensing Watson-Crick finite-state
transducers. RAIRO Theor. Informatics Appl. 55(5) (18 pages), doi:10.1051/ita/2021007.

[24] Benedek Nagy & Friedrich Otto (2011): Finite-State Acceptors with Translucent Letters, ICAART 2011 - 3rd
International Conference on Agents and Artificial Intelligence, BILC 2011 - 1st International Workshop on AI
Methods for Interdisciplinary Research in Language and Biology, pp. 3–13, doi:10.5220/0003272500030013.

[25] Benedek Nagy & Friedrich Otto (2020): Linear automata with translucent letters and linear context-free
trace languages. RAIRO Theor. Informatics Appl. 54, article number 3 (23 pages), doi:10.1051/ita/2020002.

[26] Benedek Nagy& Shaghayegh Parchami (2021): On deterministic sensing 5′ → 3′ Watson-Crick finite au-
tomata: a full hierarchy in 2detLIN, Acta Informatica 58(3), pp. 153–175, doi:10.1007/s00236-019-00362-6.

[27] Benedek Nagy & Shaghayegh Parchami (2022): 5′ → 3′ Watson-Crick automata languages-without sensing
parameter. Nat. Comput. 21(4), pp. 679–691, doi:10.1007/s11047-021-09869-9.

[28] Benedek Nagy, Shaghayegh Parchami & Hamid-Mir-Mohammed Sadeghi (2017): A new sensing 5′ → 3′

Watson-Crick automata concept. In AFL 2017: Proceedings 15th International Conference on Automata and
Formal Languages, EPTCS 252, pp. 195–204, doi:10.4204/EPTCS.252.19.

[29] Shaghayegh Parchami, Benedek Nagy (2018): Deterministic Sensing 5′ → 3′ Watson-Crick Automata With-
out Sensing Parameter, In Susan Stepney & Sergey Verlan (editors): UCNC 2018: 17th International Confer-
ence on Unconventional Computation and Natural Computation, LNCS 10867, pp. 173–187, doi:10.1007/978-
3-319-92435-9_13.

[30] Gheorghe Păun, Grzegorz Rozenberg & Arto Salomaa (2002): DNA Computing: New Computing Paradigms.
Springer-Verlag, doi:10.1007/978-3-662-03563-4.

[31] Grzegorz Rozenberg, Thomas Bäck & Joost N. Kok (2012): Handbook of Natural Computing. Springer,
doi:10.1007/978-3-540-92910-9

[32] Grzegorz Rozenberg & Arto Salomaa, eds., (1997): Handbook of Formal Languages. Springer,
doi:10.1007/978-3-642-59136-5.

[33] José M. Sempere (2004): A Representation Theorem for Languages Accepted by Watson-Crick Finite Au-
tomata. Bulletin of the EATCS 83, pp. 187–191.

[34] José M. Sempere (2018): On the application of Watson-Crick finite automata for the resolution of bioinfor-
matic problems, In Rudolf Freund, Michal Hospodár, Galina Jirásková & Giovanni Pighizzini, editors: Tenth
Workshop on Non-Classical Models of Automata and Applications, NCMA 2018, Österreichische Computer
Gesellschaft, pp. 29–30. Invited talk.

https://doi.org/10.1007/978-3-540-75292-9_24
https://doi.org/10.1007/978-3-540-77962-9_27
https://doi.org/10.1093/logcom/exr049
https://doi.org/10.33039/ami.2023.08.004
https://doi.org/10.1051/ita/2021007
https://doi.org/10.5220/0003272500030013
https://doi.org/10.1051/ita/2020002
https://doi.org/10.1007/s00236-019-00362-6
https://doi.org/10.1007/s11047-021-09869-9
https://doi.org/10.4204/EPTCS.252.19
https://doi.org/10.1007/978-3-319-92435-9_13
https://doi.org/10.1007/978-3-319-92435-9_13
https://doi.org/10.1007/978-3-662-03563-4
https://doi.org/10.1007/978-3-540-92910-9
https://doi.org/10.1007/978-3-642-59136-5

Benedek Nagy 185

[35] José M. Sempere & P. García (1994): A characterization of even linear languages and its application to the
learning problem. In: ICGI 1994, LNCS/LNAI 862, pp. 38–44, doi:10.1007/3-540-58473-0_135.

[36] Yechezkel Zalcstein (1972): Locally testable languages, Journal of Computer and System Sciences 6(2), pp.
151–167, doi:10.1016/S0022-0000(72)80020-5.

https://doi.org/10.1007/3-540-58473-0_135
https://doi.org/10.1016/S0022-0000(72)80020-5

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024

EPTCS 407, 2024, pp. 186–197, doi:10.4204/EPTCS.407.13

© V. Podolskii, V. Selivanov

This work is licensed under the

Creative Commons Attribution License.

Complexity Aspects of the Extension of

Wagner’s Hierarchy to k-Partitions

Vladimir Podolskii

Tufts University, Medford, MA, USA

podolskii.vv@gmail.com

Victor Selivanov

Department of Mathematics and Computer Science, St.Petersburg University, Saint Petersburg, Russia

A.P. Erhov Institute of Informatics Systems, Novosibirsk, Russia

vseliv@iis.nsk.su

It is known that the Wadge reducibility of regular ω-languages is efficiently decidable (Krishnan et

al., 1995), (Wilke, Yoo, 1995).

In this paper we study analogous problem for regular k-partitions of ω-languages. In the series

of previous papers (Selivanov, 2011), (Alaev, Selivanov, 2021), (Selivanov, 2012) there was a partial

progress towards obtaining an efficient algorithm for deciding the Wadge reducibility in this setting

as well. In this paper we finalize this line of research providing a quadratic algorithm (in RAM

model). For this we construct a quadratic algorithm to decide a preorder relation on iterated posets.

Additionally, we discuss the size of the representation of regular ω-languages and suggest a

more compact way to represent them. The algorithm we provide is efficient for the more compact

representation as well.

1 Introduction

In [23], K. Wagner has shown that the quotient-poset of the preorder (R;≤W) of regular ω-languages

under the Wadge reducibility (i.e., m-reducibility by continuous functions on the Cantor space of ω-

words) is semi-well-ordered with order type ωω , and that the related algorithmic problems are decidable.

E.g., given Muller acceptors A and B, one can effectively solve the relation L(A) ≤W L(B) between

the corresponding regular ω-languages. Later it was shown that there are efficient algorithms solving

such problems [11, 24], in particular the problem L(A)≤W L(B) is solvable in cubic time.

In [16] (see also [19] for detailed proofs), the Wagner theory was extended from the regular sets

A ⊆ Xω (identified in the usual way with functions A : Xω →{0,1}) to the regular k-partitions A : Xω →
{0, . . . ,k−1} of the set Xω of ω-words over a finite alphabet X . Motivations for this extension come from

the fact that similar objects are important e.g. in computability theory [18], descriptive set theory [9],

and complexity theory [10].

The extension from sets to k-partitions for k > 2 is non-trivial in the sense that the corresponding

structure (Rk;≤W) becomes much more complex. Nevertheless, it admits a nice combinatorial charac-

terization in terms of iterated h-preorders on labeled forests (terminology is briefly recalled in the next

section), and the full extension of Wagner’s hierarchy to k-partitions is possible; the extension is called

the fine hierarchy (FH) of ω-regular k-partitions). But the existence of the corresponding efficient algo-

rithms for the algorithmic problems (like the extension of L(A)≤W L(B) to Muller’s k-acceptors [19])

is far from obvious.

http://dx.doi.org/10.4204/EPTCS.407.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

V. Podolskii, V. Selivanov 187

In this paper, we address the latter problem. A first step in this direction was made in [1] where,

with the use of some previous results from [6], efficient algorithms deciding basic problems about the

iterated h-preorders on labeled forests were established. This is relevant because levels of the FH of

k-partitions are naturally denoted by the iterated labeled forests, and manipulations with the levels seem

inevitable. But unfortunately, this does not immediately yield an efficient algorithm for solving L(A)≤W

L(B) because one needs first to find (from given Muller’s k-acceptors) the levels of the FH (i.e., the

corresponding forests F for A and G for B) where the k-partitions L(A) and L(B) are Wadge complete.

In computing F,G from A ,B, one can first compute iterated k-posets P,R (this computation is feasible),

and then to unfold P,R to forests F = u(P),G = u(R) using a natural algorithm first described in [15] and

then elaborated in [17]. Unfortunately, the size of the unfolded forests grows exponentially, so on this

way it is hopeless to find an efficient algorithm.

A possible solution is suggested by the observation in [17] that it is possible to name levels of the FH

of k-partitions directly by the iterated poset P instead of the unfolded forest u(P), obtaining thus a more

succinct notation system for levels. But then we have to work with the preorder � on posets induced by

the preorder ≤h (i.e., P � R iff u(P)≤h u(R)), and we cannot directly use the algorithms from [1].

As the main result of this paper we reprove the complexity estimates in [1] directly for posets. This

result applies not only to the extension of Wagner’s hierarchy but might also be useful in other situations

where the FH of k-partitions naturally appears (for an example from computability theory see [18]). With

this at hand, it is not hard to get the desired efficient algorithms for the extended Wagner hierarchy.

For our algorithms we use the RAM model, which is more standard for studying efficient algorithms

than the Turing machine model used in [1]. In this model our algorithm is quadratic and we note that the

algorithm from [1] is quadratic as well in the RAM model (see Section 2.4 for details).

Since we are studying efficient algorithms, the size of the representation of the input matters. The

straightforward way to represent k-acceptors is to provide for each subset of states a label in the partition.

However, note that Muller acceptors operate with cycles and not all subsets can be cycles. We observe

that actually the number of cycles is polynomially smaller than the number of subsets of states. This

suggests another way to represent k-acceptors that is more compact and might be useful in some settings.

We note that the algorithm we provide is efficient for this type of representation of inputs as well.

After recalling some preliminaries in the next section, in Section 3 we prove the mentioned result

on iterated labeled posets. In Section 4 we explain how to deduce efficient algorithms working with a

straightforward representation of Muller’s k-acceptors. In Section 5 we discuss a less straightforward

representations of acceptors and translate our algorithm for Muller’s k-acceptors to a more succinct

representation of inputs.

2 Preliminaries

We use standard notation and facts about finite automata on infinite words which may be found e.g.

in [13, 21]. We work with a fixed finite alphabet X containing more than one letter, and only with

deterministic finite automata.

2.1 Automata and acceptors

By an automaton (over X) we mean a triple M = (Q, f , in) consisting of a finite non-empty set Q of

states, a transition function f : Q×X → Q and an initial state in ∈ Q. The function f is extended to the

function f : Q×X∗ → Q by induction f (q,ε) = q and f (q,u ·x) = f (f (q,u),x), where u ∈ X∗ and x ∈ X .

188 Complexity Aspects of the Extension of Wagner’s Hierarchy to k-Partitions

Similarly, we may define the function f : Q×Xω → Qω by f (q,ξ)(n) = f (q,ξ ↾n).

Associate with any automaton M the set of cycles (known also as loops) CM = { fM (ξ) | ξ ∈ Xω}
where fM (ξ) is the set of states that occur infinitely often in the sequence f (in,ξ) ∈ Qω . A Muller

acceptor is a pair (M ,F) where M is an automaton and F ⊆ CM ; it recognizes the set L(M ,F) =
{ξ ∈ Xω | fM (ξ) ∈ F}. The Muller acceptors recognize exactly the regular ω-languages.

A k-partition A : Xω → {0, . . . ,k−1} is regular, if any its component Ai = A−1(i), i < k, is regular.

Regular k-partition A may be represented by k-tuples of Muller acceptors which recognize the compo-

nents of A, but we will use a slightly different kind of acceptors introduced in [16]. A Muller k-acceptor

is a pair (M ,A) where M is an automaton and A : CM → k is a k-partition of CM . The Muller k-acceptor

(M ,A) recognizes the k-partition L(M ,A) = A◦ fM where fM : Xω →CM is defined above.

Note that the Muller 2-acceptors are equivalent to Muller acceptors though syntactically they are

slightly different beecause, along with the set F of accepting cicles a Muller 2-acceptor also contains its

complement CM \F . This causes some distinctions of our complexity estimates for k = 2 from those in

[11, 24].

2.2 Iterated k-posets

Next we recall some information about the iterated h-preorder and its variants; for additional information

see e.g. [18, 19]. Let (P;≤) be a finite poset; if ≤ is clear from the context, we simplify the notation of

the poset to P. Any subset of P may be considered as a poset with the induced partial ordering. By a

forest we mean a finite poset in which every lower cone ↓ x, x ∈ P, is a chain. A tree is a forest with the

least element (called the root of the tree).

Let (Q;≤) be a preorder. A Q-poset is a triple (P,≤,c) consisting of a finite nonempty poset (P;≤),
P ⊆ ω , and a labeling c : P → Q. Let PQ, FQ, and TQ denote the sets of all finite Q-posets, Q-forests,

and Q-trees, respectively. For the particular case Q = k̄ = {0, · · · ,k− 1} of antichain with k elements

we denote the corresponding h-preorders by Pk, Fk, and Tk. A morphism f : (P,≤,c) → (P′,≤′,c′)
between Q-posets is a monotone function f : (P;≤)→ (P′;≤′) satisfying ∀x ∈ P(c(x) ≤ c′(f (x))). The

h-preorder ≤h on PQ is defined as follows: P ≤h P′, if there is a morphism f : P → P′.

For any q∈Q let s(q)∈TQ be the singleton tree labeled by q; then q≤ r iff s(q)≤h s(r). Identifying q

with s(q), we may think that Q is a substructure of TQ. The quotient-poset of (FQ;≤h,⊔) is a semilattice

where the supremum operation is induced by the disjoint union F ⊔G of Q-forests F,G. The semilattice

is generated by the join-irreducible elements induced by trees. The set FQ may be identified with the set

T ⊔
Q of finite disjoint unions of trees.

For any finite Q-poset (P,c) there exist a finite Q-forest (F,d) and a morphism f from F onto P

such that F is a largest element in ({G ∈ FQ | G ≤h P};≤h). The forest F = u(P) is constructed by a

natural bottom-up unfolding of P (for additional details see [15] and sections 7,8 of [19]). The unfolding

operator u : PQ → FQ gives rise to a preorder � on PQ (already mentioned in the introduction) defined

by P � R ↔ u(P) ≤h u(R). Note that P ≤h R implies P � R (but the converse fails in general), and that

both relations coincide on FQ.

Define the sequence {Tk(n)}n<ω of preorders by induction on n as follows: Tk(0) = k and Tk(n+
1) = TTk(n). The sets Tk(n), n < ω , are pairwise disjoint but, identifying the elements i of k with the

corresponding singleton trees s(i) labeled by i (which are precisely the minimal elements of Tk(1)),
we may think that Tk(0) ⊑ Tk(1), i.e. the quotient-poset of the first preorder is an initial segment of

the quotient-poset of the second. This also induces an embedding of Tk(n) into Tk(n+ 1) as an initial

segment, so (abusing notation) we may think that Tk(0)⊑ Tk(1)⊑ ·· · .

V. Podolskii, V. Selivanov 189

Let Tk(ω) =
⋃

n<ω Tk(n); the induced preorder on this set is again denoted by ≤h. We often simplify

Tk(n)
⊔ to Fk(n); in particular, Fk(2) = FTk

. The embedding s is extended to Tk(ω) by defining s(T)
as the singleton tree labeled by T .

Similar iterations are possible for other aforementioned constructions. E.g., we can define iterations

of the construction Q 7→ VQ where VQ is the set of pointed posets from PQ (i.e., posets with a smallest

element) ordered by the relation � (rather than by ≤h). In this way, we obtain the sequence {Vk(n)}n≤ω .

The aforementioned unfolding operator u : PQ →FQ is naturally extended and modified to operators

u : Vk(n)→ Tk(n) and u : Vk(n)
⊔ →Tk(n)

⊔ for each n ≤ ω which have properties similar to those of the

basic operator u : PQ → FQ (cf. Lemma 8.7 in [19]). Especially relevant to this paper is the unfolding

u : PVk
→ FTk

which first unfolds the poset to a forest, and then unfolds the labels (which are pointed

k-posets) to k-trees.

2.3 Bases and fine hierarchies

Next we recall some notation and notions relevant to the fine hierarchies. A 1-base in a set S is just a

subalgebra L of (P(S);∪,∩, /0,S), i.e. a subset of of the Boolean P(S) closed under finite unions and

intersections. A 2-base in S is a pair L = (L0,L1) of 1-bases in S such that L0 ∪ Ľ0 ⊆ L1, where Ľ1

is the set of complements of sets in L1.

By an ω-base in a set S we mean a sequence L =L (S) = {Ln}n<ω of 1-bases such that Ln∪Ľn ⊆
Ln+1 for each n. Note that the ω-bases subsume the 1-bases L (by taking L0 = L and Lk+1 = (L)
where (L) is the Boolean closure of L) and the 2-bases (L0,L1) (by taking L0 = L0, L1 = L1 and

Lk+2 = (L1)).

The ω-base L is reducible if every its level Ln has the reduction property, i.e. for any A,B ∈ Ln

there exist A′,B′ ∈ Ln such that A′ ⊆ A, B′ ⊆ B, A′∩B′ = /0, and A′∪B′ = A∪B.

We give two examples of bases. Let {ΣΣΣ0
1+n}n<ω be the ω-base of finite ΣΣΣ-levels of Borel hierarchy in

the Cantor space Xω . This base is well known to be reducible. The class R of regular ω-languages over

X induces the ω-base {R ∩ΣΣΣ0
1+n}n<ω in R. Since all regular ω-languages sit in the Boolean closure of

ΣΣΣ0
2, the latter ω-base coincides with the 2-base RΣΣΣ = (R ∩ΣΣΣ0

1,R ∩ΣΣΣ0
2). As shown in [14], this base in

also reducible.

With any ω-base L in S one can associate the FH of k-partitions over L which is a family

{L (F)}F∈Tk(ω)⊔ of subsets of kS. The notation system Tk(ω)⊔ for levels of the FH based on iterated

trees and forests is convenient for establishing properties of the FH in a series of papers of the second

author (see e.g. [19] and references therein).

We do not reproduce here all (rather technical) details concerning the FH but we note that, instead

of the notation system Tk(ω)⊔ for its levels and the relation ≤h on the forests, we can equivalently

take the larger system Vk(ω)⊔ and the relation � on labeled posets, as explained in the introduction.

In the second approach (first described in sections 7 and 8 of [17]) the FH over ω-base L takes the

form {L (P)}P∈Vk(ω)⊔ , where the levels have the property: L (P) = L (u(P)) for each P ∈ Vk(ω)⊔

(see Lemma 8.16(5) in [17]). This property is crucial for the results in this paper, as explained in the

introduction.

We give some details for the particular cases of FHs of k-partitions over 1-bases and 2-bases (which

are in fact sufficient for this paper). The FH over a 1-base L in S looks as {L (F)}F∈Fk
(in the forest

notation system) or as {L (P)}P∈Pk
(in the poset notation system). The level L (P) of the latter hierarchy

consists of all k-partitions A : S → k̄ such that for some family {Bp}p∈P of L -sets we have: Ai =
⋃

{B̃p |
p ∈ Pi} for each i < k, where B̃p = Bp \

⋃

{Bq | p < q} and Pi = c−1(i), c : P → k̄. According to section

7 of [17], L (P) = L (u(P)), the family {Bp}p∈P may be assumed monotone (i.e., Bp ⊇ Bq for p < q),

190 Complexity Aspects of the Extension of Wagner’s Hierarchy to k-Partitions

and, if P ∈ Fk and L is reducible, the family {Bp}p∈P may be assumed reduced (i.e., Bp ∩Bq = /0 for

all incomparable p,q ∈ P).

The FH over a 2-base (L0,L1) in S looks as {L (F)}F∈FTk
(in the forest notation system) or as

{L (P)}P∈PVk
(in the poset notation system). The level L (P) of the latter hierarchy consists of all k-

partitions A : S → k̄ such that for some family {Bp}p∈P of L0-sets and for some families {Bp0 p1
}p1∈c(p0)

of L1-sets, p0 ∈ P, we have: Ai =
⋃

{B̃p0 p1
| p0 ∈ P, p1 ∈ c(p0)i} for each i < k, where B̃p0 p1

= Bp0 p1
\

⋃

{Bp0q1
| p1 < q1 ∈ c(p0)}, B̃p0

=
⋃

{B̃p0 p1
| p1 ∈ c(p0)}, and c(p0)i = d−1(i), d : c(p0)→ k̄. According

to section 8 of [17], L (P) = L (u(P)), the families above may be assumed monotone, and, if P ∈ FTk

and the base (L0,L1) is reducible, the families above may be assumed reduced.

For the 2-base L = (R ∩ΣΣΣ0
1,R ∩ΣΣΣ0

2) above, the FH {L (F)}F∈Tk(2)⊔ is the extension of Wagner’s

hierarchy to k-partitions introduced in [16]. For k = 2 we get back to the classical Wagner hierarchy

in a set-theoretical presentation from [14]. As shown in [16, 19], every ω-regular k-partition is Wadge

complete in some level F ∈ Tk(2)
⊔, all the possibilities are realized and the structure of such degrees is

isomorphic to Tk(2)
⊔.

2.4 Computational model

We conclude this section with comparing the computational model used in this paper with that from

[1]. The paper [1] used Turing machines to analyze the complexity of their algorithm. However, for

efficient algorithms the model that is closer to practical computations and that is widely considered to

be standard is the Random Access Machine (RAM) model. Each memory entry in this model contains

a string (typically bounded in length by O(logn), where n is the size of input) and standard arithmetic

operations on memory entries can be performed in constant time. Operations with memory (store, copy,

load) as well as control operations (branching, subroutine calls) can also be done in constant time. See

e.g. [3, Section 2.2] or [5, Section 1.1.2] for more details.

The paper [1] had constructed a cubic algorithm for the case of trees in the model of multitape Turing

machines. We note that this algorithm is quadratic in RAM model. Indeed, the main recurrence relations

on the complexity t(n,k) of the algorithm given two structures of size n and k respectively are

t(n,k)≤
l

∑
i=1

t(ni,k)+O(n+ k),

where n1, . . . ,nl are any natural numbers such that ∑i ni = n, and the symmetric relation for k instead of

n. The solution to this recurrence is t(n,k) = O(n2k+nk2).
The term O(n+ k) is needed on the step of the recursive construction to scan the inputs to find labels

of specific nodes. This requires linear complexity on multitape Turing machines, but can be done with

constant number operations in our model. Thus in our model the recurrence changes to

t(n,k) ≤
l

∑
i=1

t(ni,k)+O(1)

and the complexity drops to t(n,k) = O(nk).

3 Algorithms on labeled posets

Suppose we are given a finite poset (P,c) labeled by a poset Q, i.e. (P,c) ∈ PQ (see Section 2). In this

section it is convenient to represent the bottom-up unfolding of P by F(P) instead of u(P). It is convenient

V. Podolskii, V. Selivanov 191

to represent elements of the unfolding F(P) as paths v = v1 . . .vt , where vi ∈ P, v1 is a minimal element

in P, vi < vi+1, and there are no other elements of P between vi and vi+1. The ordering on F(P) can be

naturally described as v ≤ w, if v is a prefix of w.

According to Section 2, on PQ we have two preorders: ≤h and �, where P1 �P2 means that u(P1)≤h

u(P2). Deciding the relation ≤h on Pk is NP-complete for every k ≥ 2 [12]. It becomes polynomial time

decidable if we restrict posets to forests. However, as we show in this section, the order � is polynomial

time decidable for arbitrary posets.

For v ∈ P denote by P↑v ⊆ P an upper cone of v in P. It is easy to see that posets F(P↑v) and F(P)↑u,

where u is an arbitrary element of unfolding with an endpoint in v, are isomorphic.

From this the following observation follows easily.

Lemma 1. For any element v ∈ P all orders F(P)↑u, such that u has an endpoint v, are isomorphic.

Now we are ready to prove the main result of this section.

Theorem 2. Assume that there is an algorithm A that checks the relation q1 ≤ q2 on Q in time C · |q1| ·
|q2|, where |qi| is the size of the description of qi and C is a positive constant. Then, there is an algorithm

that checks the relation (P1,c1)� (P2,c2) on PQ in time C · |P1| · |P2|.

Proof. Next we describe the algorithm.

We will compute for all pairs of elements v1 ∈ P1 and v2 ∈ P2 one bit of information: whether there

is a morphism from F(P1↑v1
) to F(P2↑v2

). We denote this bit by M(v1,v2).
We assume that on the input we are given graphs corresponding to posets in which directed edges

connect an element p to each element q such that p < q and there are no other elements between p and

q. We call q a successor of p. The graphs are given as adjacency lists.

We run a depth-first search (DFS) on P1. For each vertex v1 we fill-in the corresponding row of M

after visiting all its successors (this is our post-processing of the vertex v1 in the DFS [4, Section 3.2.1]).

For this we run a depth-first search on P2 (that is, we have a loop over all vertices of P1 and inside of it

another loop over all vertices of P2).

After visiting all the neighbors of a vertex v2 we can use the following to compute M(v1,v2).

Claim 1. M(v1,v2) = 1 iff there is a successor u2 of v2, such that M(v1,u2) = 1, or c1(v1)≤ c2(v2) and

for each successor u1 of v1 we have M(u1,v2) = 1.

Observe that once all values of M are computed we can check if P1 � P2 just by checking if for all v1

there is v2 such that M(v1,v2) = 1.

Proof of the claim. M(v1,v2) = 1 iff there is a morphism from F(P1↑v1
) to F(P2↑v2

). In this morphism

F(v1) is mapped either to F(v2), or to some other element of the tree F(P2↑v2
). The second case means

that there is a successor u2 of v2, such that there is a morphism from F(P1↑v1
) to F(P2↑u2

). The first case

means that the label of c1(v1) is less or equal to c2(v2), and that for any successor u1 of v1 there is a

morphism of F(P1↑u1
) to F(P2↑v2

).

We can bound the running time of the algorithm (up to a multiplicative constant) by the following

expression:

∑
v1

(

O(1)+d(v1)+∑
v2

(O(1)+d(v2)+ |A(c1(v1),c2(v2))|+d(v1)+d(v2))

)

,

where d(v) is the out-degree of v and |A(c1(v1),c2(v2))| is the running time of the algorithm

A(c1(v1),c2(v2)) to compare the labels. In this expression the terms O(1)+d(v) correspond to the time

192 Complexity Aspects of the Extension of Wagner’s Hierarchy to k-Partitions

needed to explore vertex v in depth-first search and the terms d(v1) and d(v2) in the end of the formula

is the time needed to check the conditions of the claim (we need to go over all neighbors of v1 and v2 for

this).

Using the fact that the sum of the out-degrees of vertices in the graph is equal to the number of edges

we can simplify the expression to the following (up to a multiplicative factor):

|V1|+ |E1|+ ∑
v1,v2

(O(1)+d(v2)+ |A(c1(v1),c2(v2))|+d(v1)+d(v2)) =

|V1|+ |E1|+ |V1||V2|+ |V1||E2|+ ∑
v1,v2

A(c1(v1),c2(v2))+ |E1||V2|+ |V1||E2|=

O

(

|V1||V2|+ |V1||E2|+ |E1||V2|+ ∑
v1,v2

A(c1(v1),c2(v2))

)

Denote by a0 and b0 the sizes of descriptions of P1 and P2 respectively without the descriptions of labels

(the size of Pi is O(|Vi|+ |Ei|)). The sizes of descriptions of labels in P1 we denote by a1, . . . ,ak, and in

P2 by b1, . . . ,bl . Note that by the statement of the theorem A(c1(v1),c2(v2)) = O(aib j)), where ai is the

size of c1(v1) and b j is the size of c2(v2). Then we can upper bound the running time of the algorithm

(up to a multiplicative factor) by

a0b0 +
k

∑
i=1

l

∑
j=1

aib j ≤

(

k

∑
i=0

ai

)

·

(

l

∑
j=0

b j

)

as needed.

4 Algorithms on Muller’s k-acceptors

Here we describe a feasible algorithm deciding the relation L ≤W M (meaning that L = M ◦ f for some

continuous function f on Xω), where the ω-regular k-partitions L,M : Xω → k̄ are given by Muller

k-acceptors recognizing them.

The standard way to represent a Muller k-acceptor (M ,A) is to describe the graph of M with n ver-

tices (corresponding to the states q1, . . . ,qn), 2n bit vectors representing the sets of states, and labels l < k

of each vector representing the k-partition A. Because of the 2n bit vector the size of this representation

is O(2n) (we assume that k is constant).

Theorem 3. The relation L(M1,A1) ≤W L(M2,A2) may be decided in quadratic time in the size of the

inputs.

Proof. According to the idea sketched in Sections 1 and 2, we first compute the levels P1,P2 ∈ Vk(2)
⊔ in

which the given k-partitions are Wadge complete, and then apply the algorithm of Theorem 2 to check

whether P1 � P2. We explain how to compute P1. Let ≤0 and ≤1 be preorders on CM1
defined in [23]

as follows: c ≤0 d, if some (equivalently, every) state in d is reachable from some (equivalently, every)

state in c; c ≤1 d, if c ⊇ d. It follows that ≤1 implies ≡0 (the equivalence relation induced by ≤0), and

that any ≡0-equivalence class has a largest cycle under inclusion. The preorders are easily computable

from the presentation of (M1,A1) by using reachability in the graph of M1. Indeed, for preorder ≤0 it

is enough to precompute reachability relation in the graph of M1 (this can be done in time O(n2) for

graphs of constant degree, for example, by running bredth-first search from each vertex of the graph) and

V. Podolskii, V. Selivanov 193

then for each pair of subsets of vertices to check, if a vertex in one subset is reachable from a vertex in

the other one. For this we need constant time for each pair of subsets, which gives us O(22n) overall.

For relation ≤1 we need to compute for each pair of subsets if one is included in the other one

(we compute this relation for all subsets and then consider it for cycles only). We can think of subsets

as enumerated by their characteristic vectors interpreted as binary representation of integers. We can

compute the relation by splitting the vertices into two parts depending on the first coordinate of the

characteristic vector. In each part we compute the relation recursively, and to compute the relation

between the parts, observe that the relation holds for 0x and 1y iff it holds for 1x and 1y, and the latter

is already computed. To bound the running time of this recursive procedure, note that for any pair of

subsets we need constant time of computation. Thus, the total time of this step is O(22n) as well.

As explained in the proof of Lemma 15 in [19], we can take P1 = (CM1
/≡0

,≤0,d) where d :

CM1
/≡0

→ Vk is defined by d([c]0) = ([c]0,≤1,A1|[c]0). Note that the equivalence classes in CM1
/≡0

bijectively correspond to the reachable strongly connected components (SCCs) of the graph of M1 (i.e.,

the largest cycles), hence CM1
/≡0

may be replaced by the set of all SCCs (canonical representatives in

the equivalence classes). The latter set is computable in linear time from the graph of automaton by

Tarjan’s algorithm [20]. Altogether, P1,P2 are easily computable, and deciding the relation P1 � P2 is

quadratic in the size of input by Theorem 2.

5 Representation of k-acceptors

As we discussed, the standard representation of a Muller k-acceptor is of size Θ(2n). In this section we

observe that actually, the number of possible cycles in the acceptor is at most O(Cn), where C < 2 is a

positive constant independent of the size of the acceptor (but dependent on the size of the alphabet). As

a result, it is possible to have a more compact representation for k-acceptors.

Denote the number of vertices in the acceptor by n and the size of the alphabet by d. We prove the

following statement.

Lemma 4. The number of cycles in an acceptor is at most

max(2d ,Cn +n),

where C = 2
(

1− 1
2d+1

)
1

d+1 < 2.

Note that the first term 2d in the maximum is constant in terms of n and is needed only to cover the

case of small constant n.

In the proof of the lemma we will use the following lemma proved in [2] (we state only the special

case of their lemma that will be enough for us). This lemma is a simple consequence of the classic

Product Theorem [8, Theorem 22.10].

Lemma 5 ([2]). Let V be a finite set with n elements and with subsets A1, . . . ,An, such that every v ∈V

is contained in exactly δ subsets. Let F be a family of subsets of V and assume that there is a log-

concave function f ≥ 1 such that the projections Fi = {F ∩Ai | F ∈ F} satisfy |Fi| ≤ f (|Ai|) for each

i = 1, . . . ,n. Then,

|F | ≤ f (δ)n/δ .

Next we proceed to the proof of Lemma 4. The proof follows the same strategy as the proof of

Lemma 6 in [2].

194 Complexity Aspects of the Extension of Wagner’s Hierarchy to k-Partitions

Proof of Lemma 4. Denote the states of the automata by Q = {q1, . . . ,qn} and consider the automata as

a directed graph on Q, in which for every vertex qi and for every letter in the alphabet x ∈ X there is an

edge leaving qi labeled by x (some edges might be parallel and some edges might be loops). In particular,

the out-degree of every vertex in the graph is |X |= d.

If n ≤ d, then the number of cycles is less or equal to the number of subsets in Q, which is 2d . In this

case we are done. Thus, from now on we assume that n ≥ d+1.

Denote by N−(q) for q ∈ Q the set of vertices that have an outgoing edge to q. Analogously denote

by N+(q) the set of vertices that have incoming edges from q. Let V = Q and Ai = {qi}∪{N−(qi)}. If

for q j we have |N+(q j)| = l, then q j is contained in at most l + 1 sets Ai. Note that l might be smaller

than d, since there might be parallel edges and loops. If l < d, we add q j to arbitrary sets Ai, that do not

contain it yet, until q j is in d +1 sets. This is possible, since the total number of sets is n and n ≥ d +1.

Denote the resulting sets by A′
i. Now each vertex q j is contained in exactly d +1 sets A′

i.

Denote by C the set of all cycles in the acceptor. Let C ′ = C \{{q} | q ∈ Q}, that is C ′ consists of

cycles of size at least 2.

Note, that for any i the size of the set of projections |C ′
i |= {C∩Ai |C ∈ C ′} is at most 2|Ai|−1, since

{qi} cannot be a projection (any cycle of size at least 2 containing qi must contain one of its neighbors

in N−(qi)).

Consider a log-concave function f (a) = 2a − 1 and apply Lemma 5 to f , C ′, sets A′
1, . . . ,A

′
n and

δ = d +1. We get

|C ′| ≤ f (d +1)n/d+1 =
(

2d+1 −1
)

n
d+1

.

Since |C | ≤ |C ′|+n, the lemma follows.

Thus, the number of cycles can be substantially smaller than the number of subsets on Q. As a result,

if in the representation of an acceptor we provide the binary vector that contains a bit for each cycle,

instead of each subset of states, the representation becomes more compact. However, for an algorithm to

interpret this input, it needs first to compute the list of all cycles. In the next lemma we show that this

can be done efficiently.

Lemma 6. Given an acceptor M the set C of all cycles can be computed in time O(n · |C |2).

Proof. Let an elementary cycle in a directed graph be a sequence of distinct vertices v1, . . . ,vt , such

that from each vertex vi there is a directed edge to vi+1 and there is a directed edge from vt to v1. The

paper [7] provides an algorithm that constructs all elementary cycles in a directed graph G = (V,E) in

time O((|V |+ |E|)p), where p is the number of elementary cycles. We first apply this algorithm to the

acceptor and denote the resulting list by C ′.

From this list we can construct the list C . For this we first consider an undirected graph GC with C ′

as a set of vertices, such that Ci and C j are connected by an undirected edge if they share at least one

vertex. It is easy to see that cycles in C correspond to induced connected subgraphs of GC.

The graph GC can be constructed in time O(n|C ′|2): it is enough for each pair of vertices Ci, C j to

check if the cycles share a vertex. This can be done in O(n).

To store all elements of C we maintain a red-black tree data structure on them. In the beginning

the data structure is empty. To add elements of C to the red-black tree we iterate through the induced

connected subgraphs of GC and check if they correspond to a new element of C . More precisely, first we

create a queue of size 1 subgraphs of GC (they correspond to just elements of C ′). With each element

S ⊆ C ′ in the queue we will store the characteristic vector N(S) of the set of its neighbors in GC and the

V. Podolskii, V. Selivanov 195

characteristic vector Cyc(S) of the cycle in M that it corresponds to. Computing these vectors for the

each of the first elements of the queue naively takes time O(|C ′|) and O(n) respectively.

Next we repeat the following step. We extract the current first element S ⊆ C ′ of the queue. For each

of its neighbors C (there are at most |C ′| of them), we add C to S and compute Cyc(S∪C). This can be

done in time O(n) by scanning through the corresponding vectors for S and C. We check if the cycle

Cyc(S∪C) was already computed before. If it was, we move on to the next neighbor of S. If this is a new

cycle we add it to the red-black tree and add S∪C to the end of the queue. These operations with the red-

black tree can be performed in time logarithmic in the size of the tree, that is in time O(log |C |) = O(n)
(since |C | ≤ 2n). When adding new element to the queue we compute N(S∪C), this takes time O(|C ′|).
We are done once the queue is empty.

For the correctness of this procedure, note that if two induced connected subgraphs S,S′ ⊆ C ′ cor-

respond to the same cycle, they have the same set of neighbors in GC. As a result, our queue will scan

through subgraphs corresponding to all cycles.

Moreover, for each cycle C ∈ C we will have exactly one subgraph corresponding to it. For the

running time this means that the total number of subgraphs that are added to the queue is |C |. When we

add each element to the queue, we compute N(S) for it. For each S in the queue we consider at most

|C ′| neighbors, compute Cyc for the union and perform queue operations. In total, the running time is

O(|C | · (|C ′|+ |C ′| ·n)) = O(|C | · |C ′| ·n) = O(|C |2 ·n).

Next we prove a version of Theorem 3 for the more compact representation of k-acceptors.

Theorem 7. The relation L(M1,A1) ≤W L(M2,A2) may be decided in time O
(

n ·C2 +n2
)

, where n is

the size of the representations of graphs of M1 and M2 and C is the size of the representations of cycles

in M1 and M2.

Proof. The proof is analogous to the proof of Theorem 3.

As before, we compute preorders ≤0 and ≤1. For ≤0, as before, we can precompute reachability

relation on the graph of the automata (this takes O(n2) time) and then for each pair of cycles check

reachability between a couple of vertices in them (this requires C2 time). For the inclusion relation we

can check inclusion of each pair of cycles in O(n) straightforwardly. This results in time O(n ·C2)
The remaining part of the proof remains completely the same and requires O(C2) time.

Acknowledgments

V. Selivanov’s research was supported by the Russian Science Foundation, project 23-11-00133.

References

[1] Pavel Alaev & Victor L. Selivanov (2021): Complexity Issues for the Iterated h-Preorders. In Yo-Sub Han

& Sang-Ki Ko, editors: Descriptional Complexity of Formal Systems - 23rd IFIP WG 1.02 International

Conference, DCFS 2021, Virtual Event, September 5, 2021, Proceedings, Lecture Notes in Computer Science

13037, Springer, pp. 1–12. Available at https://doi.org/10.1007/978-3-030-93489-7_1.

[2] Andreas Björklund, Thore Husfeldt, Petteri Kaski & Mikko Koivisto (2008): The Travelling Salesman

Problem in Bounded Degree Graphs. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M.

Halldórsson, Anna Ingólfsdóttir & Igor Walukiewicz, editors: Automata, Languages and Programming, 35th

International Colloquium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack A:

Algorithms, Automata, Complexity, and Games, Lecture Notes in Computer Science 5125, Springer, pp.

198–209. Available at https://doi.org/10.1007/978-3-540-70575-8_17.

https://doi.org/10.1007/978-3-030-93489-7_1
https://doi.org/10.1007/978-3-540-70575-8_17

196 Complexity Aspects of the Extension of Wagner’s Hierarchy to k-Partitions

[3] T.H. Cormen, C.E. Leiserson, R.L. Rivest & C. Stein (2022): Introduction to Algorithms, fourth edition. MIT

Press. Available at https://books.google.com/books?id=HOJyzgEACAAJ.

[4] Sanjoy Dasgupta, Christos H. Papadimitriou & Umesh V. Vazirani (2008): Algorithms. McGraw-Hill.

[5] M.T. Goodrich & R. Tamassia (2014): Algorithm Design and Applications. Wiley. Available at https://

books.google.com/books?id=tQBFBQAAQBAJ.

[6] Peter Hertling & Victor L. Selivanov (2014): Complexity issues for Preorders on finite labeled forests. In

Vasco Brattka, Hannes Diener & Dieter Spreen, editors: Logic, Computation, Hierarchies, Ontos Mathe-

matical Logic 4, De Gruyter, pp. 165–190. Available at https://doi.org/10.1515/9781614518044.

165.

[7] Donald B. Johnson (1975): Finding All the Elementary Circuits of a Directed Graph. SIAM J. Comput. 4(1),

pp. 77–84. Available at https://doi.org/10.1137/0204007.

[8] Stasys Jukna (2011): Extremal Combinatorics - With Applications in Computer Science. Texts in The-

oretical Computer Science. An EATCS Series, Springer. Available at https://doi.org/10.1007/

978-3-642-17364-6.

[9] T. Kihara & A. Montalbán (2019): On the structure of the Wadge degrees of bqo-valued Borel functions.

Trans. Amer. Math. Soc. 371, pp. 7885–7923. Available at https://doi.org/10.1090/tran/7621.

[10] S. Kosub (2000): Complexity and Partitions. Phd thesis, Universität Würzburg.

[11] Sriram C. Krishnan, Anuj Puri & Robert K. Brayton (1995): Structural Complexity of Omega-Automata. In

Ernst W. Mayr & Claude Puech, editors: STACS 95, 12th Annual Symposium on Theoretical Aspects of

Computer Science, Munich, Germany, March 2-4, 1995, Proceedings, Lecture Notes in Computer Science

900, Springer, pp. 143–156. Available at https://doi.org/10.1007/3-540-59042-0_69.

[12] Léonard Kwuida & Erkko Lehtonen (2011): On the Homomorphism Order of Labeled Posets. Order 28(2),

pp. 251–265. Available at https://doi.org/10.1007/s11083-010-9169-x.

[13] D. Perrin & J.-E. Pin (2004): Infinite Words. Elsevier.

[14] Victor L. Selivanov (1998): Fine Hierarchy of Regular Omega-Languages. Theor. Comput. Sci. 191(1-2),

pp. 37–59. Available at https://doi.org/10.1016/S0304-3975(97)00301-0.

[15] Victor L. Selivanov (2004): Boolean hierarchies of partitions over a reducible base. Algebra and Logic

43(1), pp. 44–61. Available at https://doi.org/10.1023/B:ALLO.0000015130.31054.b3.

[16] Victor L. Selivanov (2011): A Fine Hierarchy of ω-Regular k-Partitions. In Benedikt Löwe, Dag Nor-

mann, Ivan N. Soskov & Alexandra A. Soskova, editors: Models of Computation in Context - 7th Con-

ference on Computability in Europe, CiE 2011, Sofia, Bulgaria, June 27 - July 2, 2011. Proceedings, Lec-

ture Notes in Computer Science 6735, Springer, pp. 260–269. Available at https://doi.org/10.1007/

978-3-642-21875-0_28.

[17] Victor L. Selivanov (2012): Fine hierarchies via Priestley duality. Ann. Pure Appl. Log. 163(8), pp. 1075–

1107. Available at https://doi.org/10.1016/j.apal.2011.12.029.

[18] Victor L. Selivanov (2022): Non-collapse of the effective Wadge hierarchy. Comput. 11(3-4), pp. 335–358.

Available at https://doi.org/10.3233/COM-210376.

[19] Victor L. Selivanov (2023): Wadge Degrees of Classes of ω-Regular k-Partitions. J. Autom. Lang. Comb.

28(1-3), pp. 167–199. Available at https://doi.org/10.25596/jalc-2023-167.

[20] Robert Endre Tarjan (1972): Depth-First Search and Linear Graph Algorithms. SIAM J. Comput. 1(2), pp.

146–160. Available at https://doi.org/10.1137/0201010.

[21] Wolfgang Thomas (1990): Automata on Infinite Objects. In Jan van Leeuwen, editor: Handbook of Theo-

retical Computer Science, Volume B: Formal Models and Semantics, Elsevier and MIT Press, pp. 133–191.

Available at https://doi.org/10.1016/b978-0-444-88074-1.50009-3.

[22] W. Wadge (1984): Reducibility and determinateness in the Baire space. Phd thesis, University of California,

Berkely.

https://books.google.com/books?id=HOJyzgEACAAJ
https://books.google.com/books?id=tQBFBQAAQBAJ
https://books.google.com/books?id=tQBFBQAAQBAJ
https://doi.org/10.1515/9781614518044.165
https://doi.org/10.1515/9781614518044.165
https://doi.org/10.1137/0204007
https://doi.org/10.1007/978-3-642-17364-6
https://doi.org/10.1007/978-3-642-17364-6
https://doi.org/10.1090/tran/7621
https://doi.org/10.1007/3-540-59042-0_69
https://doi.org/10.1007/s11083-010-9169-x
https://doi.org/10.1016/S0304-3975(97)00301-0
https://doi.org/10.1023/B:ALLO.0000015130.31054.b3
https://doi.org/10.1007/978-3-642-21875-0_28
https://doi.org/10.1007/978-3-642-21875-0_28
https://doi.org/10.1016/j.apal.2011.12.029
https://doi.org/10.3233/COM-210376
https://doi.org/10.25596/jalc-2023-167
https://doi.org/10.1137/0201010
https://doi.org/10.1016/b978-0-444-88074-1.50009-3

V. Podolskii, V. Selivanov 197

[23] K. Wagner (1979): On ω-regular sets. Information and Control 43, pp. 123–177. Available at https://

doi.org/10.1016/S0019-9958(79)90653-3.

[24] T. Wilke & H. Yoo (1995): Computing the Wadge degree, the Lipschitz degree, and the Rabin index of a

regular language of infinite words in polynomial time. In Peter D. Mosses, Mogens Nielsen & Michael I.

Schwartzbach, editors: TAPSOFT ’95: Theory and Practice of Software Development, Lecture Notes in

Computer Science 915, Springer, Berlin, Heidelberg, pp. 288–302. Available at https://doi.org/10.

1007/3-540-59293-8_202.

https://doi.org/10.1016/S0019-9958(79)90653-3
https://doi.org/10.1016/S0019-9958(79)90653-3
https://doi.org/10.1007/3-540-59293-8_202
https://doi.org/10.1007/3-540-59293-8_202

Giovanni Pighizzini, Florin Manea (Eds.): NCMA 2024

EPTCS 407, 2024, pp. 198–213, doi:10.4204/EPTCS.407.14

© Jiřı́ Wiedermann and Jan van Leeuwen

This work is licensed under the

Creative Commons Attribution License.

Large Language Models and

the Extended Church-Turing Thesis*

Jiřı́ Wiedermann

Institute of Computer Science
Czech Academy of Sciences

Prague, Czech Republic

jiri.wiedermann@cs.cas.cz

Jan van Leeuwen

Department of Information
and Computing Sciences,

Utrecht University, the Netherlands

J.vanLeeuwen1@uu.nl

The Extended Church-Turing Thesis (ECTT) posits that all effective information processing, includ-

ing unbounded and non-uniform interactive computations, can be described in terms of interactive

Turing machines with advice. Does this assertion also apply to the abilities of contemporary large

language models (LLMs)? From a broader perspective, this question calls for an investigation of the

computational power of LLMs by the classical means of computability and computational complexity

theory, especially the theory of automata. Along these lines, we establish a number of fundamental

results. Firstly, we argue that any fixed (non-adaptive) LLM is computationally equivalent to a, pos-

sibly very large, deterministic finite-state transducer. This characterizes the base level of LLMs. We

extend this to a key result concerning the simulation of space-bounded Turing machines by LLMs.

Secondly, we show that lineages of evolving LLMs are computationally equivalent to interactive Tur-

ing machines with advice. The latter finding confirms the validity of the ECTT for lineages of LLMs.

From a computability viewpoint, it also suggests that lineages of LLMs possess super-Turing com-

putational power. Consequently, in our computational model knowledge generation is in general a

non-algorithmic process realized by lineages of LLMs. Finally, we discuss the merits of our findings

in the broader context of several related disciplines and philosophies.

1 Introduction

Historical context Back in 2001, at the occasion of entering a new millennium, a notable book enti-

tled “Mathematics Unlimited — 2001 and Beyond” appeared, giving a unique overview of the state of

mathematics at the end of the twentieth century and offering remarkable insights into its future develop-

ment and that of its related fields. In one of the book chapters, we investigated the role of the classical

Turing machine paradigm in contemporary computing [15]. Especially, we were interested in whether

the Church-Turing Thesis (CTT), claiming that every algorithm can be described in terms of a Turing

machine, has withstood the ‘test of time’. Did this thesis still apply to all modern computations as we

witness them today? We characterized the latter as computations that fulfill three conditions that ap-

peared with the advent of modern computing technologies: non-uniformity of programs, interactivity

(or reactivity), and infinity of operation. Based on this observation, we brought evidence and argumen-

tation in favor of what we called the Extended Church-Turing Thesis (ECTT), which can be seen as a

strengthening of the classical Church-Turing Thesis from this newer perspective:

Extended Church-Turing Thesis: All effective information processing, including unbounded

and non-uniform interactive computations, can be modeled in terms of interactive Turing

machines with advice.

*The research of the first author was partially supported by Grant No. CK04000150 EBAVEL of the Czech Technology

Agency, programme Strategy AV21 “Philosophy and Artificial Intelligence”, and the Karel Čapek Center for Values in Science

and Technology.

http://dx.doi.org/10.4204/EPTCS.407.14
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Jiřı́ Wiedermann and Jan van Leeuwen 199

Interactive Turing machines with advice (ITM/As) are variants of Turing machines that accommodate the

above-mentioned, most general conditions: non-uniformity of programs (covered by the advice mecha-

nism), interactivity, and potentially unbounded operation [15]. The extended thesis still perceives Turing

machines as etalons of all underlying computations.

Examples of effective processes covered by the ECTT, aside from those covered by the classical CTT,

include artificial computational systems like the Internet, sensory nets, ad-hoc nets, cognitive systems,

relativistic computing, and natural data processing in DNA, cells, brains, and the Universe, and similar

systems.

Since the formulation of the ECTT, more than 20 years have passed. Today, new pretenders to the

most complex software systems have emerged: large language models (LLMs). Namely, as the pinnacles

of contemporary information technology, LLMs mark a paradigm shift in the AI landscape, offering so-

far unseen properties: emerging autonomy, and amazing abilities of natural language processing and

understanding. Some even see LLMs as messengers of artificial general intelligence (AGI) [1].

Motivation From this perspective, the following questions suggest themselves. Does the ECTT apply

to the effective behavior of LLMs, i.e., can ITM/As simulate LLMs? And if so, can LLMs simulate any

ITM/As, or is it beyond their power?

These questions seem to be of purely academic interest, but answering them is significant for several

reasons. For one, a positive answer to the first question would confirm the thesis’s validity for LLMs and

the ITM/A would keep its position as a lighthouse pointing the pathways in modern computing. This in

turn would confirm the fundamental position of Turing machines as a model of computation.

The second question is challenging as well. Namely, it calls for mutual simulations between both

kinds of devices. Alas, it is hard to imagine more opposing models. An ITM/A is an elegant mathematical

abstraction of purposeful information processing aiming at maximal computational efficiency, whereas

an LLM is a pinnacle of contemporary real information processing technology.

Yet both devices share a common inspiration: the human brain and its information-processing abili-

ties. From this perspective, both devices are complementary. On the one hand, ITM/As seem to be suit-

able mainly for modeling the brain body-controlling abilities by performing mechanistic, non-uniform

logic-inspired processing of non-verbal information, using potentially unbounded additional memory.

On the other hand, LLMs epitomize a biologically inspired approach mimicking the ability of the hu-

man brain to learn, produce, and understand natural languages (i.e., verbal information) by finite-state

machines. Can one imagine a conceptually more distant pair of devices?

Contributions and results Along the previous lines, the paper contributes to the present state of knowl-

edge about the computational power of LLMs, by answering the questions as implied by the ECTT.

First, we present mutual simulations between interactive finite-state transducers and fixed (trained

and non-adaptive) LLMs. This characterizes the computational power of both kinds of devices by proving

their computational equivalence, within the limit of the feasible context windows of the LLMs.

Second, we present a fundamental simulation of a space-restricted TM by a “standard”, sufficiently

large LLM. The vocabulary and word-to-vector embedding mechanisms of the simulated LLM must be

adjusted for processing the “language” represented by the computations of the simulated TM. Neverthe-

less, the necessary adjustments do not intervene in the standard architecture and internal workings of

LLMs. The simulation also reveals the interdependence between the space complexity of the simulated

TM and the size of the word-to-vector representation used by the simulating LLM.

Third, the insights gained from the previous simulations enable the design of mutual simulations

between ITM/As and lineages of evolving LLMs, i.e. of sequences of ever more capable LLMs. It

leads to a characterization of the computational power of the latter: lineages of LLMs possess super-

200 LLMs and the Extended Church-Turing Thesis

Turing computational power. In the recent investigations of the computational complexity of LLMs

(e.g. [11, 13, 14]), the results characterizing the computational power of evolving LLMs seem to be the

first to deal with the general complexity-theoretic aspects of this kind of device. If we see the LLMs as

knowledge generating devices, then their super-Turing abilities indicate that in this computational model,

knowledge is non-computational: it cannot be generated in general by computers satisfying the classical

Church-Turing Thesis.

The paper concludes with a discussion of the amazing knowledge-generating capabilities of (very)

large finite state systems, their limits, and the influence of the paradigm change in AI brought forth by

the technologies used by LLMs.

Closing this introductory section, a word of warning concerning the paper’s presentation style is in

place. We see our paper as a pioneering, pre-formal paper making a preliminary inquiry into the newly

born field of LLMs from the viewpoint of the computability theory. Necessarily, it is less formal since the

basic concepts related to LLMs and their understanding are still in statu nascendi. Priority is given to the

investigation of the scope of the new research field, the potential of automata theory to solve the related

problems, and their merits for associated disciplines and philosophies. Therefore, the paper presents only

the outlines of the basic concepts, proofs and contemplations on the respective achievements.

2 Simulations between LLMs and finite-state transducers

When it comes to characterizing the computational power of LLMs, note that a single LLM cannot in

principle simulate an arbitrary Turing machine, simply because LLMs are finite-state devices and no

such device can simulate an infinite-state machine. Thus, to characterize the computational power of

LLMs, we must look for weaker models than Turing machines. Finite-state transducers (FSTs) offer

themselves as a natural choice. We will argue first that deterministic FSTs and fixed (non-adaptive)

LLMs are computationally equivalent, within the input limits of the latter.

As far as the computational model of an LLM is concerned, we will consider a standard, or nowadays

one might even say, ‘classical’ elementary ChatGPT model as described, e.g., in [24]. These models are

able to learn probability distributions of words (tokens) during a training phase, and make use of it

during their inference phase. Probabilistic mechanisms are not included in the LLM architecture. During

inference, their behavior is influenced by their initial setting and a learned probabilistic distribution

captured from the training data.

From a computability viewpoint, trained LLMs can be viewed as deterministic interactive finite-state

systems producing knowledge in response to the initial prompts. They work with finite precision weights

and learned fixed statistical behavior, devoid of any memory or functional augmentations. They read their

inputs in a sequential manner. LLMs require substantial computational resources for their deployment,

although the development of their transformer decoder-based technology leads to ever more efficient

implementations [14].

A finite-state transducer is a finite-state machine with two tapes, following the terminology for Tur-

ing machines: a two-way read-only input tape and a write-only output tape. An FST reads strings of a

given set on the input tape and generates strings of a related set on the output tape. An FST is allowed

to make steps that do not consume an input symbol (ε-moves), to reflect ‘internal processing’ of state

information. A general FST can be thought of as a generator of strings, a deterministic FST as a mapping

from input to output strings.

The input-to-output properties of FSTs relate their abilities to those of LLMs. However, the models

are still very different. For example, LLMs have an intrinsic ability to learn and adapt based on vast

Jiřı́ Wiedermann and Jan van Leeuwen 201

amounts of data and using statistical methods, whereas FSTs are designed with static rule-sets or transi-

tion tables. Also, LLMs normally process inputs from ‘context windows’ of some bounded size, to allow

for the effect of various mechanisms to generate adequate output, whereas FSTs have no such limitation

on their input sequences. Techniques for ‘long text processing’ of LLMs are rapidly advancing [3, 7] but

not yet standard.

For a basic comparison we restrict attention to the capabilities of fixed (or, static) LLMs, i.e., LLMs

that are trained and ready but do not change or adapt during their operation. We may assume that these

LLMs are deterministic and of bounded size (in bits). To enable a mutual simulation between the two

kinds of devices, we assume that FSTs and LLMs work over the same alphabet and that an LLM’s

parameters are represented as finite strings of bits. In order to keep the modeling discrete and finite-state

we do not assume the use of analog neural nets working with real or rational weights (cf. [12]).

Theorem 1. Let L be a fixed LLM. Then, there is a deterministic FST T simulating L .

Proof. (Outline.) Let L be a fixed LLM. We argued that L is deterministic and of bounded size.

The Church-Turing thesis guarantees that the deterministic system L can, in principle, be simulated

by a Turing machine with the same input convention. Since L is of bounded size and hence a finite-

state system, the simulating Turing machine is of constant space complexity for all inputs and thus,

computationally equivalent to some deterministic FST T . This proves that theoretically, a sufficiently

large and complex FST could simulate the behavior of L .

The following remarks are in order. The simulation in Theorem 1 can also be seen as a philosophic

thought experiment, revealing strong and weak aspects of the involved devices. On the one hand, it

leads to the illuminating finding that, from a computability-theoretic point of view, fixed LLMs are

essentially deterministic finite-state transducers, which are fundamental devices of automata theory. On

the other hand, from a computational complexity point of view, a fixed LLM with millions or billions

of parameters would translate into a finite-state transducer with an astronomical number of states and

transitions among them. This ‘state explosion’ makes the resulting FST computationally intractable, but

efficiency has not been our current concern. Nor has it been our concern that the resulting FST would be

incredibly complex and opaque and would not offer the same level of insight into how the LLM arrives

at its outputs, compared to analyzing the LLM’s internal architecture directly.

The proof of the reverse to Theorem 1 is more involved since, to simulate a deterministic FST on

an LLM, one can only use the standard LLM mechanisms that are quite incompatible with an FST’s

computational mechanisms. We will argue that the processing of an input string by a deterministic FST

can be simulated by the ‘answering’ of the same input as a prompt by a suitable (fixed) LLM.

Theorem 2. Let T be a deterministic FST. Then, for any n ≥ 1, there is a fixed LLM L simulating T

on all words of length at most n.

Proof. (Outline.) Given n, we indicate how to construct an LLM L as required. Note that the given

FST T is a deterministic two-way transducer with a finite number of states, a finite number of in-

put and output symbols or phrases, and a finite number of transition rules. For an LLM, this makes

it a relatively simple system to learn: it can just represent the single-valued transition function of

T with rules (current state,symbol read) → (head move,new state,out put symbol), for every pair

(current state,symbol read).

The transition rules of T can be directly embedded into the vector representations used by an LLM.

The rules can be seen as the ‘words’ of the language that is to be processed by L , the sentences are

the sequences of ‘words’ as they are applied in deterministic order when T is processing an input

202 LLMs and the Extended Church-Turing Thesis

string. The LLM can efficiently learn the behavior of T because the LLM’s attention mechanism can

effectively capture the single-valued relationship between a tuple (current state,symbol read) and the

corresponding tuple (head move,new state,out put symbol).
When presented with a prompt (input) of size at most n, L stores it for reference and begins the

generation of the ‘answer’ (output string) like T would. The attention mechanism ‘predicts’ (here,

identifies) the unique transition rule based on the current state and input symbol, L outputs it as the

‘next’ word of the output, updates its state and O(logn)-size positional information, and repeats, thus

generating the output string word after word (until T would stop or some limit is exceeded). In stead

of outputting the words, L can ‘decode’ them and produce the output symbol that is contained in them.

This effectively makes L into a fixed LLM that mimics the deterministic transducer within the limit of

the context windows that it can handle.

There are several implicit facts one may observe in the proof. First, the proof illustrates that in general

learning the prediction-of-the-next-word idea is enough. The learning of the FST makes use of exactly

this idea. Second, the language of a (deterministic) FST to be learned is composed of fragments of

sequences of state transitions covering the state diagram of the transducer. Such a state diagram consists

of a finite number of cycles covering this diagram, and each computation presents a concatenation of

finite paths along these cycles. Hence what has to be learned is a finite number of fragments covering

the state diagram between the “crossroads” where the cycles meet.

We return to Theorem 2 in Section 3.1. The two theorems lead to the following conclusion, respecting

the input limitations of the LLMs.

Theorem 3. The computational power of fixed LLMs equals that of deterministic FSTs.

Theorem 3 is the ground level result for our purposes. More powerful simulations can be proved for

LLMs that allow for enhanced capabilities of the transformer decoders. For an overview of this recent

research area, see e.g. [5, 13].

3 Simulations between LLMs and interactive Turing machines with ad-

vice

We now turn to our main question: the position of LLMs with respect to the ECTT. How to deal with the

development towards more and more powerful LLMs in this respect? In answering it, an important role

will be played by the simulation of (deterministic) Turing machines by LLMs.

3.1 Simulating Turing machines ‘inside’ of LLMs

When contemplating the simulation of Turing machines (TMs) by LLMs, a first solution that comes to

mind is the one that led A.M. Turing to the design of his ‘Turing machine’. In this solution, the LLM

at hand is augmented with an external, potentially unbounded memory that will take the role of the tape

of the simulated TM, and the LLM itself will merely serve as the finite-state control of that machine.

Essentially, this is the solution presented by Schuurmans [11], who showed how to operate an external

read-write memory using specific prompts to simulate computations of a universal TM. In doing so, it

was not necessary to modify the LLM’s weights, which the author sees as a key aspect of his proposal.

In our present approach, we strive for a different exploitation of the computational potential of LLMs,

without augmenting them with any external memories – by scrutinizing the resource limits of their com-

putational mechanisms. This is achieved by specializing an LLM to the desired ‘degree’ in its only task,

Jiřı́ Wiedermann and Jan van Leeuwen 203

the simulation of the given TM as far as the finite-state nature of the model allows it. Accepting the

fact that LLMs are finite-state devices it is clear that, if the space complexity of the simulated TM grows

with the size of its inputs, we cannot hope for its simulation by an LLM on all inputs. That is, we must

accept that our simulation by an LLM of a given size can only work for a TM up to a certain fixed space

complexity bound for its work tape(s). This is what we call a TM simulation ‘inside’ of an LLM.

Now a crucial question arises that has to be answered first: where can we gain the space needed

for representing a TM and its computations inside an LLM? How can we exploit the existing LLM’s

architecture and mechanisms, without introducing new ones? To find a solution to this problem, we look

for an analogy between natural language processing (NLP) by LLMs and TM computations. Can we

interpret a TM computation as a language-processing task? We consider the generic case of deterministic

multi-tape TM acceptors.

Before explaining the analogy, let’s look at a common representation of a successful computation by

the given TM. On processing a given input, the TM generates a ‘sequence of configurations’. The input

is written on the separate read-only input tape – which will be presented as a ‘prompt’ to the simulating

LLM. Each configuration of the TM consists of a ‘listing’ of its current work tape configurations. Each

work tape configuration is represented by the contents of that work tape and the position of the read/write

head on that tape. The input symbol currently scanned by the TM’s reading head on the input tape and

the current state are appended to the end of the current list of work tape configurations. The ‘sequence

of configurations’ of the TM starts with the list of initial configurations for each work tape. It ends with

an accepting configuration or a configuration that exceeds the allowable space limit on the work tapes as

derived from the size of the LLM. (We assume that looping is prevented, e.g. by timing constraints.) The

transition function of the simulated TM orders the configurations in a ‘valid’ TM computation.

To see the analogy with natural language processing, one may view the configurations as the ‘words’

of a fictive ‘Turing machine language’. The syntax of these words is given by the prescription for

correct configuration representations. Sequences of such words represent sentences, or their fragments,

of the underlying ‘Turing machine language’. The semantics of the language is given by the orderings

of such words following the TM transition function. As a result, the words in a sentence are ordered

according to the cause-and-effect principle, because the simulated TM is assumed to be deterministic.

Any semantically correct sequence of such words represents a valid fragment of TM computations, and

its processing gives it its meaning.

Theorem 4. Let M be a deterministic multi-tape TM of space complexity S(n). Then, for any n and k

such that S(n) ≤ k, there is an LLM L using word-to-vector embeddings of size O(k) simulating M on

any input of length n.

Proof. Given n and k such that S(n) ≤ k, we construct an LLM L that simulates M on inputs of size

n. Without loss of generality, M may be assumed to be always halting. (Note that halting computations

cannot be longer than the number of different configurations of M , which is bounded by clog n+S(n) for

some constant c. This can be checked by keeping a count of the number of steps. If S(n) ≥ logn, this

can be done within the space bound by M itself, otherwise it can be done by L itself.) L will be a

‘standard’ LLM with word-to-vector embeddings of size O(k) with a special attentional mechanism to

be described later in this proof.

In the training phase, our initially “empty” LLM must be trained on various valid fragments of the

TM computation for inputs of size n, i.e. with configurations of size at most S(n), where S(n)≤ k. Doing

so, the set of all work tape configurations up to size k will become the basic ‘vocabulary’ (set of words) of

the language of our LLM. Each configuration will serve as the word-to-vector embedding of some word

from the underlying ‘Turing machine language’. The result of the training phase is the representation of

204 LLMs and the Extended Church-Turing Thesis

the complete transition table for tape configurations of M in the LLM’s memory for all inputs of size n

with S(n)≤ k.

After the training phase, the simulation of M on any given input of length n such that S(n)≤ k (given

to the LLM in the form of a prompt) can start. The simulation starts from M ’s initial configuration: the

input word is supplied at L ’s interface and stored for reference, and the initial tape configurations of M

are given in the respective word-to-vector embedding, i.e., as a word in the “Turing machine language”.

If the training phase was long enough (including valid fragments for all possible transitions) and the

desired transition table of tape configurations ‘fits’ into the LLM, the model will generate the correct

‘sentence’ of consecutive words that corresponds to M ’s computation on the given input, as for each

configuration there is exactly one successor configuration (because M is deterministic). As we assumed

that M always halts, the generated sentence will be finite. When complete, L can answer by outputting

‘accept’ or ‘reject’ depending on the final word.

If the training phase was not long enough, which may happen if k is large, then configurations may

arise for which the proper transition rule is missing and is yet to be ‘learned’. Eventually a 100%

correctness of the simulating LLM can be achieved by tuning its attentional mechanism (cf. [16]) to

follow the transition function among successive configurations of the simulated TM, as in the proof

of Theorem 2. There is no need to track the relations between the words (configurations) across long

sequences.

Thus, L eventually simulates M on all inputs within the bounds it can handle.

Theorem 4 can be seen as a generalization of Theorem 2 although, strictly speaking, the simulating

LLM need not be ‘fixed’ (non-adapting). The LLM is likely to be very large. As the entire transition

table for M ’s work tape configurations for inputs of size n must be represented in the word-to-vector

embeddings of L , the simulating LLM is likely to have a space complexity of at least order O(ck), where

c ≥ 2 is a bound on the size of the alphabets and the state set of M and S(n)≤ k.

A further remark can be made. The proof shows that an LLM L can be designed to generate the

chain of configurations corresponding to M ’s computation on an input, regardless of what the purpose

of the computation actually is. If, for example, M was meant to compute a more general recursive

function of the input instead, then L could be used equally well to obtain (an encoding of) the resulting

function value that is represented in the final configuration of M . This opens the way to the use of LLMs

for ‘computing’ arbitrary recursive functions, although it is uncommon that the LLM may well have to

go through many ‘internal’ word generations before it can actually output an answer. In several recent

studies, the possible extension of LLMs to allow for precisely these extended chains of inferences are

explored [5, 9].

We now argue that Theorem 4 even holds for Turing machines with advice, a very powerful variant

of the TM model that we will employ below. A Turing machine with advice (TM/A) is a (deterministic

multi-tape) Turing machine with an oracular input facility which, when the machine is given any input w,

provides the TM with an extra read-only input in the form of a finite string (‘advice’) that depends only

on the length of w, i.e. that is the same for all inputs of the given length. Advice models the possibility

that TM programs can get adjusted or modified over time, especially as input sizes increase. The advice

string is placed on a separate read-only advice tape. Similar to the original input, the length of the advice

is not counted into the space complexity of the respective machine.

Corollary 1. Let M be a TM/A of space complexity S(n). Then, for any n and k with S(n) ≤ k, there is

an LLM L using word-to-vector embeddings of size O(k) simulating M on any input of length n.

Proof. (Outline.) Referring to the proof of Theorem 4, one can clearly add M ’s advice as an extra input

Jiřı́ Wiedermann and Jan van Leeuwen 205

without altering the argument. The advice can be stored in the embeddings used by L at the cost of

adding only a single advice symbol to each embedding. This is the symbol read by M from its advice

tape at the time when M enters the configuration represented by the respective embedding. Since in

each step M reads at most one advice symbol, all advice symbols read during the computation of M

will fit into embeddings that are available in L for simulation of M .

The simulation proceeds similar to the proof of Theorem 4. The extension of the embeddings by

advice symbols will prolong the size of each embedding of the resulting LLM by one symbol.

From the proofs it is clear that the same LLM L will ultimately correctly simulate M on inputs of every

length n as long as S(n)≤ k.

It is important to note that the adjustments of any LLM specialized to simulating TMs with or without

advice did not put the resulting LLM outside the family of standard LLMs. When compared to LLMs

that process a natural language, the necessary adjustments affect just the form of the word embeddings

and the working of the attention mechanism. But the main ideas of the LLM architecture, its structure

and working, have remained intact. Note that the simulating LLM in the inference phase is fixed and

deterministic when fully trained.

The results clearly demonstrate that no single LLM can compute every function that a TM can. No

LLM is Turing complete. This is because the size of the vector embeddings of the words in the simulating

LLM must go hand in hand with the space complexity of the simulated TM, and this is not possible for

fixed size embeddings. In fact, it is the consequence of the fact that any LLM is a finite-state machine

and a TM generally isn’t, and trivially keeps LLMs within the scope of the ECTT.

On the other hand, Theorem 4 and Corollary 1 give evidence of the fact that by specifying more and

more ‘advanced’ TMs, even with advice, and by increasing n and k, more and more powerful LLMs can

be constructed. It suggests that LLMs can be ‘scaled’ to match any computational challenge they are up

against. This is a possibility that must be anticipated in our further investigation.

It is an open problem whether the simulations from Theorem 4 and Corollary 1 can be improved.

For instance, does the model need to explicitly represent the full dictionary of the necessary “Turing

machine words”? It seems to depend on the possibilities of the internal model of an LLM. Still, one

thing is sure: any simulation of an infinite-state Turing machine by a finite-state machine (like an LLM)

is necessarily limited by the lack of computational resources of the latter machine, and therefore is

confined to initial segments of computations of the former machines. Luckily, the simulations from

Theorem 4 and Corollary 1 are fully sufficient for our further purposes.

3.2 Non-uniform computation and lineages of LLMs

By their very definition, the LLMs are interactive computational devices. During their operation, future

prompts can react to the answers to the previous prompts. Also, by the results from the previous section,

it is conceivable that LLMs are adjusted or modified over time, or even do so themselves when needed

or desired. What could, ultimately, be the computational ‘reach’ of this conception of LLMs?

Lineages We model this very general notion of an evolving LLM by a sequence L = L1,L2, · · · of

consecutive LLMs called a lineage (after [17]). Each member of such a sequence is specialized in

performing computations that require specific ‘technical’ parameters, such as a specific size of word

embeddings, a specific input sizes and so on (like the values of n and k in Theorem 4). So far, this is the

standard approach as known in non-uniform complexity theory, e.g. in the study of Boolean circuits or

neural networks.

206 LLMs and the Extended Church-Turing Thesis

We assume that a lineage of evolving LLMs L = L1,L2, · · · can process finite but otherwise un-

bounded streams of inputs as follows. Processing is initiated by L1. Suppose the processing of the

current stream has progressed to LLM Li, for some i ≥ 1, and that a trigger of some sort is generated

that the lineage must ‘switch’ to the next ‘evolution’ Li+1 of the evolving LLM. (The trigger could be a

technology update, reaching a memory limit, and so on.) Then the processing is continued by Li+1 after

it is conditioned with the ‘knowledge’ built up by Li, possibly after being ‘pre-trained’ ahead of time on

the input stream that was processed so far. Li+1 only produces answers and responses to the new inputs

in the stream as it receives them.

We assume that for every lineage of LLMs L= L1,L2, · · · , the constituent LLMs Li are essentially

pre-trained and non-adaptive (fixed). Any change or update that is not the result of ‘internal’ computation

is assumed, in principle, to lead to a next LLM in the lineage. The action of constructing and activating

a next member of L is generally called model reconstruction.

Our question about the position of LLMs with respect to the ECTT can now be concretized as follows:

what is the position of lineages of evolving LLMs with respect to the ECTT?

Interactive Turing Machines with Advice Before answering this question, we need more details about

ITM/As. An interactive TM (ITM) is a (deterministic multi-tape) Turing machine that operates on a

‘stream’ of input symbols, supplied at an input port. In this mode inputs are not fixed before the compu-

tation starts but new, unforeseen inputs may appear at the input port as the computation proceeds. Inputs

may depend on outputs that were produced earlier. Moreover, the processing of a new stream may start

from the working tape configuration in which the processing of the previous stream has terminated, if it

was indeed finite. For a more detailed description, cf. [15].

Similar to TM/As, interactive Turing machines with advice (ITM/As) [15] are ITMs that are extended

with an advice facility. In this model, a new advice string may be supplied and appended to the existing

advice tape, every time a new input is read and input length is increased by 1. ITM/As arguably are the

most general machine model for non-uniform interactive information processing. (Cf. the discussion of

the ECTT in Section 1.)

3.3 Simulation of ITM/As by lineages of LLMs and Vice Versa

Will simulations as in Theorem 4 and Corollary 1 work also in the extended setting of lineages and

ITMs? Of course, as long as the input streams are confined to single members of a lineage and satisfy the

fixed assumptions of the theorem and the corollary, the simulations will work. But what happens when

the streams fail to satisfy these assumptions, e.g. when streams are not bounded ahead of time? We first

focus on the simulation of ITM/As.

To simulate an ITM/A by a lineage of LLMs, we must solve two problems. First, the simulation

must consider the fact that the space complexity of the simulated machine may grow with the size of the

input, and second, the use of advice (which depends only on the input size) must be taken into account as

well. (We consider the simulation on finite but unbounded inputs only, as infinite inputs are not realistic

as prompts for LLMs.)

The general idea of the simulation is to simulate computations of the given ITM/A M per partes

by members of a lineage of LLMs, as the individual sequences of configurations of M unfold, hav-

ing increasing requirements on the computational resources of the simulating LLMs. Each sequence

of configurations is simulated following Corollary 1 by a dedicated member of L ∈ L as long as the

configurations “fit” into the word embeddings of L and the advice of M remains unchanged.

Theorem 5. Let M be an ITM/A. Then, there exists an lineage of evolving LLMs L simulating M on all

input streams.

Jiřı́ Wiedermann and Jan van Leeuwen 207

Proof. (Outline) Our starting point is Corollary 1. Initially, assume that M has space complexity S(n)
and that we have chosen a ‘trigger’ k1 such that S(n) ≤ k1 holds for some initial values of n, the number

of symbols in the input stream so far. Then, by Corollary 1, there exists an LLM L1 using word-to-vector

embeddings of size O(k1) simulating M on the input stream for n inputs with n = 1,2, However, this

simulation may have to come to a halt from two reasons.

First, for some value of n, it may appear for the first time that S(n) exceeds k1. This means that a

configuration ρ of M has been reached that no longer fits into the word-to-vector embeddings of size

O(k1). To remedy this situation, we construct a new member L2 ∈ L with embeddings of size k2 > k1.

The respective embeddings will contain all configurations of M of size k2 which are descendants of

configuration ρ , augmented, of course, with all possible inputs and advice symbols as required in the

proof of Corollary 1.

Second, it might happen that for some value of n, it still holds that S(n) ≤ k1, but that M gets

a new advice as it reaches configuration ρ . As before, this calls for a model reconstruction, this time

constructing L2 ∈ L, with word embeddings of a size k2 with k2 > k1 for all descendants of ρ of size

O(k2) and a new advice string. This also handles the case when both reasons occur simultaneously.

Proceeding inductively in the same way as indicated above, an evolving lineage L = L1,L2, · · · is

obtained that simulates the ITM/A on all finite but unbounded streams.

We now consider the reverse simulation, of lineages of evolving LLMs by ITM/As. It is the simula-

tion required for the ECTT argument.

Let L = L1,L2, · · · be a lineage of evolving LLMs. Considering any LLM Li in the lineage, it is

useful to distinguish between its software and data on the one hand, and the environment in which it

runs on the other. Before it ‘evolves’, we view Li as essentially fixed, but its ‘environment’ can provide

external sources that the LLM might use during its computation e.g. for probabilistic purposes. We

assume that this provision is independent of the particular input that is processed but part of the ‘generic’

operation of Li. The LLM’s action is then fully determined by its program and data (and history), if a

full description of this interaction of the LLM with its environment over time is given as well. This is

exactly what advice does, the rest can be simulated by an interactive Turing machine.

Theorem 6. Let L = L1,L2, · · · be a lineage of evolving LLMs. Then, there exists an ITM/A M simu-

lating L on all input streams.

Proof. (Outline.) The result follows from the description of how lineages work, provided an ITM/A M

can be designed that, for every i ≥ 1, will simulate the i-th LLM of the lineage whenever this LLM’s turn

has come, i.e. when the i-th switching point is passed in the processing of the input stream.

For i ≥ 1, let the i-th advice of M be defined to be D(Li), a full description of Li (including any

provision from its environment that applies). On any input stream, if i inputs have been processed, M

calls its advice function to get access to D(Li) on its advice tape, enabling it to simulate Li when its

time in the simulation of the lineage has come. Thanks to the classical Church-Turing thesis this is

possible, as D(Li) is an algorithmic description of a real digital ‘machine’. Hence, M computes the

same transduction as Li on its part of the input stream.

Theorems 5 and 6 can be combined into a single statement as follows.

Theorem 7. For each lineage L of evolving LLMs there is an ITM/A M such that M simulates L on all

input streams, and vice versa.

208 LLMs and the Extended Church-Turing Thesis

From the point of view of computational complexity theory, Theorem 7 is significant because it

characterizes the computational power of ‘evolving LLMs’. Namely, it is known that Turing machines

with advice are more powerful than classical TMs, due to the effect of advice (cf. [15]). Therefore,

Theorem 7 can be said to express that lineages of LLMs have ‘super-Turing’ computational power. By

this we do not mean that such lineages can solve undecidable problems. We merely claim that such

lineages cannot be simulated by ‘classical’ ITMs (i.e., ITMs without advice). For a more comprehensive

discussion of the computational power of ITM/As, we refer to [15].

4 Discussion of the amazing knowledge generation ability of very large

finite-state transducers

We now review the results we obtained from a more detached viewpoint, in the broader perspective of

related fields like computability, computational complexity theory, AI theory, robotics, and cognitive

sciences. The common denominator in our discussion will be to point to the potential of our findings

for a better understanding of the essential qualities and limitations of the new emerging information

processing technology represented by evolving LLMs. The discussion aims to bring thought-provoking

insights, provide novel perspectives to the ongoing debates of LLMs, and challenge future AI research.

Computability and complexity aspects In these domains, the main message has been the confirmation

that the Extended Church-Turing Thesis is valid also for the latest achievement in the field of IT tech-

nology, the development of evolving LLMs. This result could be obtained, thanks to the design of a

novel simulation of “small” (resource-bounded) Turing machines entirely within LLMs as in Theorem

4 or Corollary 1. Subsequently, in the end, this has led to the proof of the super-Turing computational

power of these AI systems, as a consequence of Theorem 7. Related results comprised a complete char-

acterization of the computational power of single LLMs in Theorem 3, and that of lineages of LLMs

in Theorem 7. These results seem to be the first results dealing with the complexity of LLMs from an

automata theoretic point of view.

The results are a bit paradoxical – mankind’s most complex computational devices turn out to be

computationally equivalent to one of the simplest fundamental models of computation, finite-state trans-

ducers. LLMs are, in fact, instances of highly resourceful large scalable finite-state transducers.

The illusory language-processing power of LLMs In Theorem 3 we saw that the computational power

of LLMs is on par with that of FSTs. This raises questions concerning the natural language-processing

power of LLMs.

Namely, the languages generated or accepted by FSTs are regular. How it is then possible that, in the

practice of LLMs, these devices seem to correctly recognize long sequences of natural languages which

in general are known to be more complex than words in a regular language (cf. [10])? This conundrum

could be explained by the fact that a finite swath of a language of whatever complexity, captured in

the training set, can always be seen as part of a regular language. Beyond this swath, for sufficiently

long inputs, the language behaves as a regular language. On the one hand, this explains the apparent

inherent efficiency of giant LLMs in processing natural language texts of a reasonable length we see

in practice. On the other hand, it also explains the limited abilities of LLMs to deal with tasks not

sufficiently represented in the training set, such as simple arithmetic, logical operations like abduction,

planning, etcetera.

Nevertheless, prolonging the context window (hence the input length) indefinitely will reveal the

true recognition power—that of FSTs—of LLMs, which from a certain internal configuration will start

Jiřı́ Wiedermann and Jan van Leeuwen 209

to cycle (or halt). This seems to contradict the recently appearing articles about efficient methods to

scale LLMs to infinitely long inputs (cf. [7]). The theoretical catch here is that such methods cannot

work in fixed memory spaces like classical LLMs have. They need additional space to enable the long-

span attention mechanisms to work. This space may grow with the growing input size. To overcome this

difficulty either the full power of ITM/As is required or that of an infinite lineages of evolving LLMs (cf.

Theorem 5).

Another problem with viewing LLMs as FSTs is that, in FSTs, the semantics of transitions is encoded

entirely in the “relationships” between the states in the state diagram, not in their “names”, because the

states can be arbitrarily renamed (this seems to be an important observation). On the other hand, in

LLMs almost all of the semantics is encaged in the information ‘inside’ a state. The analogy between

relationships among automata states and the semantic processing of language data is hard to see. When

thinking about the semantics of words of a natural language, what is of importance is the relationships

among the meanings of words, not their “names”. Here may also lay the roots of the easiness with which

LLMs cross the boundaries between various existing natural languages.

The problem of understanding In the domain of AI, the amazingly versatile abilities of LLMs put

these systems into the position of the harbingers that announce a paradigm shift afflicting the entire AI

ecosystem. Our results contribute to a better apprehension of the nature of the information processing

in LLMs. The key observation in this respect is the analogy between natural language processing in

LLMs and general computation realization by Turing machines. While natural language processing in

LLMs works with finitely many words of a natural language, within a general TM computation each

configuration is seen as a word of the “Turing machine language”. Such a language has potentially an

infinite number of words. Syntax and semantics of this language are described by the underlying TM

“program”. It describes the relationship between the words generated by the program and, in the end,

between the input and the output of the program. In this way, it explains how the program’s execution

transforms the input to the output. This can be seen as a correctness proof of the program, or as a formal

proof of (the machine’s) understanding (of what it had done). Of course, this form of understanding is

different from what we, humans, understand as understanding.

It is here where the study of programming language theory can inspire, e.g., the ongoing debates on

understanding by LLMs (cf. [6]). The analogy between natural language processing by LLMs and the

processing of the TM language by a TM may shift the debate to a firm mathematical ground.

Understanding understanding To illustrate the difference in understanding in LLMs and TMs, let us

compare the “mechanism of understanding” in an LLM processing a natural language, and in an LLM

simulating a TM according to Theorem 4. In the former case, the decision to generate the next word of

the underlying natural language is based on the limited semantic context based on the vector embeddings

of several meticulously chosen words, and the gigantic linguistic background knowledge stored in the

form of neural nets. In the latter case, the decision to generate the next word of the Turing machine

language (i.e., the next TM configuration) is based on the entire history of computation represented by

the sequence of configurations entered by the machine until that time. Moreover, any TM computation

makes implicit use of the designer’s background knowledge that is already embedded in the design of the

underlying TM program. This kind of knowledge is tailored to the intended purpose of the computation.

Which of the two decisions concerning the prolongation of both computations being compared, is

based on a more profound knowledge of the situation? The winner is the TM, because its decision is

based on the maximal available information it could have directly and indirectly at its disposal.

Competence without linguistic understanding? From an evolutionary point of view, it seems that the

key to the notion of understanding is understanding in non-linguistic systems. “Human-like understand-

210 LLMs and the Extended Church-Turing Thesis

ing” adds a layer to the understanding in the AI systems of the latter type. Contemporary wisdom is that

human-like understanding is based on concepts – internal mental models of external categories, situa-

tions, events, and one’s internal state and “self” [6]. LLMs can build internal representations of external

categories, situations, and to some extent, one’s internal state mediated to the system via textual informa-

tion. Neural networks are good at building such kinds of representations and excel in verbally expressing

them. However, they fail to adequately represent the events and the “self” concept. Representation of

events calls for representing the sequences of situations and actions, and the LLMs lack adequate means

for doing that. Speaking about the “self” concept is difficult in the case of disembodied entities.

Except for linguistic expressions, non-linguistic embodied AI models can deal with all the concepts

mentioned before. Moreover, in the form of multi-modal cyber-physical systems, equipped with memory,

sensory, motor, and feedback units, they can do more since their artificial senses are grounded in the real

world. Such systems can aspire to represent, and deal with, events and realization of the concept of “what

is it like, for the system, to understand”. Memory augmenting of AI systems may help to remember,

recognize, and recall important events while multi-modality in the form of complementary external and

internal sensations allows to represent the last mentioned concept that is considered to be the hallmark of

consciousness [8]. Such systems will find themselves on the verge of artificial phenomenal experience

(cf. [21, 22]).

Note that the external view of non-linguistic understanding we are discussing above is “competence

without comprehension”, while the internal view, from the inner perspective of the system, is “what

it is like to understand”. It may well be that the latter concept presents the missing link even in our

understanding to human understanding.

The inner life of LLMs There is more to the previous comparison between LLMs and TMs. At each

computational step, an embodied TM governing a cognitive cyber-physical system has complete infor-

mation available not only about its own “current state”, from all its external and internal sensors, motors,

and the respective feedback from those devices that the system possesses, but also about all its past states.

Note that each configuration of such a TM contains a complete representation of the machine’s

“phenomenal experience” at that time (cf. [22]). This gives the LLM simulating a TM as in Theorem 4

(that by its very definition remembers all possible “states of mind” of such a machine, one is tempted to

say) an opportunity to “time travel” backward and forwards over these states, and thus explore its past

decisions or consider its possible “futures” and adjust its behavior accordingly. What never-thought-of

possibilities for classical LLMs! This observation is of interest, especially in the context of the recent

announcement on a new consensus: there is “a realistic possibility” for elements of consciousness in

reptiles, insects, and mollusks [4]. If so, why can’t it occur in the AI systems whose complexity competes

with such simple creatures? Is the feeling “how it is like to understand?” the missing element in our

understanding of understanding? In this context, considerations about minimal machine consciousness

are the first signs of similar general trends in AI (cf. [21, 22]).

In general, it might be possible to consider various high-level non-linguistic cognitive abilities of

LLMs via formal counterparts in the TM environment. For, how else could these abilities be ascribed to

LLMs without having their mirror in the language of TMs? In this way, variants of representations of a

Turing machine’s computations could serve as drosophila for ideas about LLMs.

Building a bridge between rule-based and biological computation The paradigm shift in our appre-

hension of computations mentioned above is pregnantly expressed precisely by Theorem 7, which builds

a bridge between biologically-inspired and logico-mathematical ways of information processing. Al-

though equipollent from a computability point of view, i.e. expressing the same computational power

by different means, the two ways do not have equivalent significance and reach. ITM/As epitomize the

Jiřı́ Wiedermann and Jan van Leeuwen 211

classical view of computations, which are seen merely as data transformation tools. The interpretation

of the results for ITM/A computations is left to its user. The view of computations through the lens of

LLMs puts stress on their semantic contents—it liberates the users from the burden of data interpretation

by “automatizing” that task through answers in a natural language. Another view of the respective com-

putations might be that ITM/As mostly capture the processing of non-verbal information, while LLMs

capture that of linguistic, verbal information. As Browning and LeCun [2] remind us, “abandoning the

view that all knowledge is linguistic permits us to realize how much of our knowledge is non-linguistic”.

Nevertheless, in both cases, these are but different forms of knowledge that are produced. Viewing

computations as knowledge generators has been coined and used by us since the last decade [19, 20, 23].

Semantics is all we need Although it may seem that LLMs let us forget about Turing Tests and Chi-

nese Room experiments, the opposite is true. These experiments focus our attention on semantics and

understanding, their importance, their representation, processing and interpretation of information that

results from computation. The above-mentioned tests and experiments expose the problem of expressing

the semantics of computations in their syntax and flow. Perhaps they open the problem of what are the

semantic resources of computation, and how are they best represented, utilized and shared. In the case

of LLMs, these seem to unequivocally be the word-to-vector embeddings. For ITM/As, the machine

configurations. Is there some general theory behind this? In any case, these speculations support the

view of computations as knowledge generators (cf. [19, 20]). This view puts stress on the meaning of

what is computed, rather than on how a computation is performed.

Is knowledge computable? The answer to this question depends on how we define “knowledge” and

“computable”. There is no one, universally agreed-upon definition of what is knowledge. Within our

quest of understanding computation (cf. [15, 18, 19, 20], we see computations as knowledge generators.

LLMs are typical examples of computations generating knowledge [23], and especially, wisdom as the

agentic form of knowledge. This is a type of knowledge that can be inferred from human-produced texts,

programs, pictures, videos, various multimodal sources, and the likes.

If we accept that knowledge is what is generated by computations, and that Turing machines are

recognized as the general model of computation in computability theory, then from Theorem 6 it fol-

lows that knowledge generation is a non-algorithmic process that cannot be performed by the classical

Turing machines. Or, to make knowledge generation computable, shouldn’t one redefine the notion of

computability using interactive Turing machines with advice?

5 Conclusion

The era of interactive non-uniform information processing at scale is here. The Extended Church-Turing

Thesis formulated as a vision more than 20 years ago, has appeared to hold for LLMs, too. The infor-

mation processing by evolving LLMs heralds the advent of the new understanding of computation, and

especially of AI. Despite their known deficiencies, the LLMs are wonderful, exciting, and so far quite

mysterious information processing devices possessing a maximal computational power like we can ex-

pect from massive classical computations. It remains to be seen where and what the new development

of LLMs-like devices will bring us in the future. Undoubtedly, the Extended Church-Turing Thesis will

cover our steps in this endeavor.

212 LLMs and the Extended Church-Turing Thesis

References

[1] Agüera y Arcas, B., Norvig, P.: Artificial General Intelligence Is Already Here. NOĒMA, October 13, 2023,

https://www.noemamag.com/artificial-general-intelligence-is-already-here/

[2] Browning, J., LeCun, Y.: AI and the Limits of Language. NOĒMA, August 23, 2022, https://www.

noemamag.com/ai-and-the-limits-of-language/

[3] Dong, Z., Tang, T., Li, L., Zhao, W.X.: A Survey on Long Text Modeling with Transformers. arXiv preprint,

arXiv:2302.14502 (2023), https://doi.org/10.48550/arXiv.2302.14502

[4] Lenharo, M.: Do insects have an inner life? Animal consciousness needs a rethink. Nature, April 19, 2024,

https://www.nature.com/articles/d41586-024-01144-y

[5] Merrill, W., Sabharwal, A.: The Expressive Power of Transformers with Chain of Thought. arXiv preprint,

arXiv:2310.07923 (2023), https://doi.org/10.48550/arXiv.2310.07923

[6] Mitchell, M., Krakauer, D.C.: The debate over understanding in AI’s large language models. Proceedings of

the National Academy of Sciences (PNAS), 120 (13) e2215907120, March 23, 2023, https://www.pnas.

org/doi/full/10.1073/pnas.2215907120

[7] Munkhdalai, T., Faruqui, M., Gopal, S.: Leave No Context Behind: Efficient Infinite Context Transform-

ers with Infini-attention. arXiv preprint, arXiv:2404.07143 (2024), https://doi.org/10.48550/arXiv.

2404.07143

[8] Nagel, T.: What Is It Like to Be a Bat? The Philosophical Review 83:4 (1974), 435-450, https://doi.org/

10.2307/2183914

[9] Nye, M., et al.: Show Your Work: Scratchpads for Intermediate Computation with Language Models. arXiv

preprint, arXiv:2112.00114 (2021), https://doi.org/10.48550/arXiv.2112.00114

[10] Pullum, G.K., Gazdar, G.: Natural languages and context-free languages. Linguistics and Philosophy 4 (1982)

471-504, https://doi.org/10.1007/BF00360802

[11] Schuurmans, D.: Memory Augmented Large Language Models are Computationally Universal. arXiv

preprint, arXiv:2301.04589 (2023), https://doi.org/10.48550/arXiv.2301.04589

[12] Siegelmann, H.T.: Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser (1999),

Springer Science & Business Media, 2012

[13] Strobl, L., Merrill, W., Weiss, G., Chiang, D., Angluin, D.: What Formal Languages Can Transformers Ex-

press? A Survey. Trans. Assoc. Comput. Ling. 12 (2024) 543-561, https://doi.org/10.1162/tacl_a_

00663

[14] Tai, Y., Dehghani, M., Bahri, D., Metzler, D.: Efficient Transformers: A Survey. ACM Comp. Surv. 55:6

(2022) 1-28, https://doi.org/10.1145/3530811

[15] van Leeuwen, J., Wiedermann, J.: The Turing Machine Paradigm in Contemporary Computing. In: Engquist,

B., Schmid, W. (eds), Mathematics Unlimited - 2001 and Beyond. Springer, Berlin, Heidelberg (2001), pp.

1139-1155, https://doi.org/10.1007/978-3-642-56478-9_59

[16] Vaswani, A., et al.: Attention is All you Need. In: Guyon, I., et al. (eds), Advances in Neural Information

Processing Systems 30 (NIPS 2017), https://doi.org/10.48550/arXiv.1706.03762

[17] Verbaan, P., van Leeuwen, J., Wiedermann, J.: Complexity of Evolving Interactive Systems. In: Karhumäki,

J., Maurer, H., Păun, G., Rozenberg, G. (eds), Theory Is Forever, Lecture Notes in Computer Science, vol

3113. Springer, Berlin, pp. 268-281 (2004) https://doi.org/10.1007/978-3-540-27812-2_24

[18] Wiedermann, J., van Leeuwen, J. (2008). How We Think of Computing Today. In: Beckmann, A., Dim-

itracopoulos, C., Löwe, B. (eds) Logic and Theory of Algorithms. CiE 2008. Lecture Notes in Com-

puter Science, vol 5028. Springer, Berlin, Heidelberg, pp. 579-593 (2008) https://doi.org/10.1007/

978-3-540-69407-6_61

https://www.noemamag.com/artificial-general-intelligence-is-already-here/
https://www.noemamag.com/ai-and-the-limits-of-language/
https://www.noemamag.com/ai-and-the-limits-of-language/
https://doi.org/10.48550/arXiv.2302.14502
https://www.nature.com/articles/d41586-024-01144-y
https://doi.org/10.48550/arXiv.2310.07923
https://www.pnas.org/doi/full/10.1073/pnas.2215907120
https://www.pnas.org/doi/full/10.1073/pnas.2215907120
https://doi.org/10.48550/arXiv.2404.07143
https://doi.org/10.48550/arXiv.2404.07143
https://doi.org/10.2307/2183914
https://doi.org/10.2307/2183914
https://doi.org/10.48550/arXiv.2112.00114
https://doi.org/10.1007/BF00360802
https://doi.org/10.48550/arXiv.2301.04589
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1162/tacl_a_00663
https://doi.org/10.1145/3530811
https://doi.org/10.1007/978-3-642-56478-9_59
https://doi.org/10.48550/arXiv.1706.03762
 https://doi.org/10.1007/978-3-540-27812-2_24
https://doi.org/10.1007/978-3-540-69407-6_61
https://doi.org/10.1007/978-3-540-69407-6_61

Jiřı́ Wiedermann and Jan van Leeuwen 213

[19] Wiedermann, J., van Leeuwen, J.: Rethinking computation. In: Brown, M., Erden, Y. (Eds), 6th AISB

Symp. on Computing and Philosophy: The Scandal of Computation – What is Computation?, Pro-

ceedings, AISB Convention 2013, University of Exeter, pp. 6-10 (2013), https://gordana.se/work/

PUBLICATIONS-files/2013-PROCEEDINGS-AISB.pdf

[20] Wiedermann, J., van Leeuwen, J.: What is Computation: An Epistemic Approach. In: G.F. Italiano et al.

(eds), SOFSEM 2015: Theory and Practice of Computer Science, Lecture Notes in Computer Science, vol.

8939, Springer, Berlin, pp. 1-13 (2015), https://doi.org/10.1007/978-3-662-46078-8_1

[21] Wiedermann, J., van Leeuwen, J.: Finite State Machines with Feedback: An Architecture Supporting Minimal

Machine Consciousness. In: Manea, F., et al. (eds), Computing with Foresight and Industry: 15th Conference

on Computability in Europe (CiE 2019), Proceedings, Lecture Notes in Computer Science, Vol. 11558, pp.

286-297. Springer, Cham (2019), https://doi.org/10.1007/978-3-030-22996-2_25

[22] Wiedermann, J., van Leeuwen, J.: Towards Minimally Conscious Cyber-Physical Systems: A Manifesto.

In: Bures̆, T., et al. (eds), SOFSEM 2021: Theory and Practice of Computer Science, Lecture Notes

in Computer Science, Vol. 12607, pp. 43-55. Springer, Cham (2021), https://doi.org/10.1007/

978-3-030-67731-2_4

[23] Wiedermann, J., van Leeuwen, J.: From Knowledge to Wisdom: The Power of Large Language Models

in AI, Technical Report UU-PCS-2023-01, Dept. of Information and Computing Sciences, Utrecht Uni-

versity, Utrecht, The Netherlands, 2023, https://webspace.science.uu.nl/~leeuw112/techreps/

UU-PCS-2023-01.pdf

[24] Wolfram, S.: What Is ChatGPT Doing. . . and Why Does It Work? Wolfram Media, Inc. (2023), https://

doi.org/10.1007/978-3-030-67731-2_4

https://gordana.se/work/PUBLICATIONS-files/2013-PROCEEDINGS-AISB.pdf
https://gordana.se/work/PUBLICATIONS-files/2013-PROCEEDINGS-AISB.pdf
https://doi.org/10.1007/978-3-662-46078-8_1
https://doi.org/10.1007/978-3-030-22996-2_25
https://doi.org/10.1007/978-3-030-67731-2_4
https://doi.org/10.1007/978-3-030-67731-2_4
https://webspace.science.uu.nl/~leeuw112/techreps/UU-PCS-2023-01.pdf
https://webspace.science.uu.nl/~leeuw112/techreps/UU-PCS-2023-01.pdf
https://doi.org/10.1007/978-3-030-67731-2_4
https://doi.org/10.1007/978-3-030-67731-2_4

	1 Introduction
	2 Preliminaries
	3 Meta-State
	4 Finite Number of Meta-States
	5 Infinite Number of Meta-States
	6 Characterization
	7 Classical Finite State Automata for DAG Languages
	8 Conclusion
	9 Appendix
	Preliminaries
	Three-valued languages and semantics
	Boolean grammars

	The Boolean GLR parser
	The Boolean LR automaton
	The Boolean GLR parser
	Notes
	Generating parse trees
	Optimization opportunities
	Complexity bounds

	Summary
	Introduction
	Soliton Automata
	Graph Properties and Determinism
	Concluding Remarks
	Introduction
	Preliminaries
	Block Languages and Bitmap Representation

	Operational Complexity
	Reversal
	Word Addition and Word Removal
	Intersection
	Union
	Concatenation
	Block Complement
	Kleene Star and Plus

	Conclusions
	Introduction
	Preliminaries
	Transition Monoids and Synchronization
	Structure of Semigroups in DS

	Winning Strategy in Synchronization Games on DS-Automata
	Relations to Earlier Results and Future Work
	Corollaries
	Open Questions

	Introduction
	Preliminaries
	Definitions and Examples
	Results
	Use
	Final Remarks and Open Problems
	Introduction
	Preliminaries
	Global Parikh Tree Automata
	Pumping-style Exchange Lemma for GPTA

	Non-Global Parikh Tree Automata
	Restrictions of PTAR

	Expressiveness
	GPTA and PTA
	PTA, PTAR, and Linear PTAR

	Decidability
	Conclusion
	Introduction
	Preliminaries
	Some subregular language families
	Contextual grammars

	Results on families of comet languages
	Normal forms
	Hierarchy of subregular language classes

	Results on subregular control in external contextual grammars
	Conclusion and future work
	Introduction
	Definitions and Preliminaries
	Determinization of unary XNFAs
	Converting unary NFAs to XNFAs and Vice Versa
	Computational Complexity
	Introduction
	Definitions
	Comparing the Repetitive Automata to the Non-Repetitive Ones
	Closure Properties
	Conclusion
	Introduction
	Preliminaries
	On weakly accepted necklace language classes
	On strongly accepted necklace language classes
	Conclusions
	Introduction
	Preliminaries
	Automata and acceptors
	Iterated k-posets
	Bases and fine hierarchies
	Computational model

	Algorithms on labeled posets
	Algorithms on Muller's k-acceptors
	Representation of k-acceptors
	Introduction
	Simulations between LLMs and finite-state transducers
	Simulations between LLMs and interactive Turing machines with advice
	Simulating Turing machines `inside' of LLMs
	Non-uniform computation and lineages of LLMs
	Simulation of ITM/As by lineages of LLMs and Vice Versa

	Discussion of the amazing knowledge generation ability of very large finite-state transducers
	Conclusion

