
EPTCS 388

Proceedings of the

13th International Workshop on

Non-Classical Models of Automata and

Applications

Famagusta, North Cyprus, 18th-19th September, 2023

Edited by: Benedek Nagy and Rudolf Freund

Published: 15th September 2023

DOI: 10.4204/EPTCS.388

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Rudolf Freund and Benedek Nagy

Invited Presentation: A Survey on Automata with Translucent Letters . 1

Friedrich Otto

Invited Presentation: Membrane Computing and Petri Nets . 2

György Vaszil

Generating Semantic Graph Corpora with Graph Expansion Grammar . 3

Eric Andersson, Johanna Björklund, Frank Drewes and Anna Jonsson

Formalizing BPE Tokenization . 16

Martin Berglund and Brink van der Merwe

On Languages Generated by Signed Grammars . 28

Ömer Eğecioğlu and Benedek Nagy

Final Sentential Forms . 38

Tomáš Kožár, Zbyněk Křivka and Alexander Meduna

Deterministic Real-Time Tree-Walking-Storage Automata . 48

Martin Kutrib and Uwe Meyer

Latvian Quantum Finite State Automata for Unary Languages . 63

Carlo Mereghetti, Beatrice Palano and Priscilla Raucci

Constituency Parsing as an Instance of the M-monoid Parsing Problem . 79

Richard Mörbitz

Forgetting 1-Limited Automata . 95

Giovanni Pighizzini and Luca Prigioniero

Sweeping Permutation Automata . 110

Maria Radionova and Alexander Okhotin

Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection 125

Bianca Truthe

Ordered Context-Free Grammars Revisited . 140

Brink van der Merwe

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. ii–iii, doi:10.4204/EPTCS.388.0

© Rudolf Freund & Benedek Nagy

This work is licensed under the

Creative Commons Attribution License.

Preface

The Thirteenth International Workshop on Non-Classical Models of Automata and Applications

(NCMA 2023) was held in Famagusta, North Cyprus, on September 18 and 19, 2023, organized by

the Eastern Mediterranean University. The NCMA workshop series was established in 2009 as an annual

event for researchers working on non-classical and classical models of automata, grammars or related

devices. Such models are investigated both as theoretical models and as formal models for applications

from various points of view. The goal of the NCMA workshop series is to exchange and develop novel

ideas in order to gain deeper and interdisciplinary coverage of this particular area that may foster new

insights and substantial progress.

The previous NCMA workshops took place in the following places: Wrocław, Poland (2009), Jena,

Germany (2010), Milano, Italy (2011), Fribourg, Switzerland (2012), Umeå, Sweden (2013), Kassel,

Germany (2014), Porto, Portugal (2015), Debrecen, Hungary (2016), Prague, Czech Republic (2017),

Košice, Slovakia (2018), Valencia, Spain (2019). Due to the Covid-19 pandemic there was no NCMA

workshop in 2020 and 2021. The Twelfth International Workshop on Non-Classical Models of Automata

and Applications (NCMA 2022) was organized by the Faculty of Informatics of the University of Debre-

cen, Hungary. NCMA 2023, organized by the Eastern Mediterranean University, in Famagusta, North

Cyprus, was co-located with the 27th International Conference on Implementation and Application of

Automata (CIAA 2023, 19-22 September).

The invited lectures at NCMA 2023 have been the following:

• Friedrich Otto (Kassel, Germany): A Survey on Automata with Translucent Letters (joint invited

lecture with CIAA 2023)

• György Vaszil (Debrecen, Hungary): Membrane Computing and Petri Nets

The 11 regular contributions have been selected out of 15 submissions by a total of 29 authors from

10 different countries by the following members of the Program Committee:

• Artiom Alhazov (Institute of Mathematics and Computer Science of Academy of Sciences of

Moldova)

• Péter Battyányi (University of Debrecen, Hungary)

• Martin Berglund (University of Umeå, Sweden)

• Erzsébet Csuhaj-Varjú (Eötvös Loránd University, Budapest, Hungary)

• Rudolf Freund (TU Wien, Vienna, Austria), co-chair

• Zoltán Fülöp (University of Szeged, Hungary)

• Géza Horváth (University of Debrecen, Hungary)

• Szabolcs Iván (University of Szeged, Hungary)

• Sergiu Ivanov (Paris-Saclay University, France)

• Miklós Krész (Innorenew, Slovenia and University of Szeged, Hungary)

• Zbyněk Křivka (Brno University of Technology, Czech Republic)

http://dx.doi.org/10.4204/EPTCS.388.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Rudolf Freund & Benedek Nagy iii

• Peter Leupold (Germany)

• Ian McQuillan (University of Saskatchewan, Canada)

• Ludovic Mignot (Université de Rouen Normandie, France)

• Nelma Moreira (University of Porto, Portugal)

• Benedek Nagy (Eastern Mediterranean University, Famagusta, North Cyprus and Eszterházy Ká-

roly Catholic University, Eger, Hungary), co-chair

• Beatrice Palano (University of Milan, Italy)

• Agustı́n Riscos-Núñez (Universidad de Sevilla, Spain)

• Jose M. Sempere (Universitat Politècnica de València, Spain)

• Alexander Szabari (UPJŠ Košice, Slovakia)

• Bianca Truthe (University of Giessen, Germany)

• György Vaszil (University of Debrecen, Hungary)

In addition to the invited lectures and the regular submissions, NCMA 2023 also featured three

short presentations to emphasize the workshop character. This volume contains the invited and regular

presentations.

A special issue of the journal Acta Informatica containing extended versions of selected regular

contributions to NCMA 2023 will also be edited after the workshop. The extended papers will undergo

the standard refereeing process of the journal.

We are grateful to the two invited speakers, to all authors who submitted a paper to NCMA 2023,

to all members of the Program Committee, their colleagues who helped evaluating the submissions, and

to the members of the Eastern Mediterranean University who were involved in the local organization of

NCMA 2023.

30th of August, 2023. Rudolf Freund

Benedek Nagy

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. 1–1, doi:10.4204/EPTCS.388.1

© Friedrich Otto

This work is licensed under the

Creative Commons Attribution License.

A Survey on Automata with Translucent Letters

Friedrich Otto

Universität Kassel, Germany

In this talk (see also the survey paper in the co-located CIAA proceedings: [1]), we present the vari-

ous types of automata with translucent letters that have been studied in the literature. These include the

finite automata and the pushdown automata with translucent letters, which are obtained as reinterpreta-

tions of certain cooperating distributed systems of a restricted type of restarting automaton, the linear

automaton with translucent letters, and the visibly pushdown automaton with translucent letters. For

each of these types of automata with translucent letters, it has been shown that they accept those trace

languages which are obtained from the class of languages that is accepted by the corresponding type of

automaton without translucent letters.

References

[1] Friedrich Otto (2023): A Survey on Automata with Translucent Letters. In Benedek Nagy, editor: Proceedings

of the 27th International Conference on Implementation and Application of Automata, CIAA 2023, Fama-

gusta, North Cyprus, September 19–22, 2023, Lecture Notes in Computer Science 14151, Springer, pp. 21–50,

doi:10.1007/978-3-031-40247-0_2.

http://dx.doi.org/10.4204/EPTCS.388.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-031-40247-0_2

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. 2–2, doi:10.4204/EPTCS.388.2

© György Vaszil

This work is licensed under the

Creative Commons Attribution License.

Membrane Computing and Petri Nets

György Vaszil

University of Debrecen, Hungary

When looking at the computations of membrane systems and the behavior of place/transition Petri

nets, we might notice several features which are related to each other. Petri net transitions consume

tokens from their input places and produce new tokens at their output places, so in some sense they

behave similarly to membrane systems which consume, produce, and move objects around in the regions

of their membrane structure. Based on these relationships, the functioning of place/transition nets can

naturally be described by transformations of multisets corresponding to possible token distributions on

the places of the net, while different kinds of objects and object evolution rules in different compartments

of a membrane system can be represented by the places and transitions of a Petri net.

In the talk we look in more detail at these structural links between the two models which, on one

hand, motivate the examination of membrane systems from the point of view of the concurrent nature of

their behavior, and on the other hand, inspires the study of Petri net variants suitable for the modeling of

membrane system computations.

http://dx.doi.org/10.4204/EPTCS.388.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 3–15, doi:10.4204/EPTCS.388.3

© Andersson et al.

Generating Semantic Graph Corpora with
Graph Expansion Grammar

Eric Andersson Johanna Björklund* Frank Drewes† Anna Jonsson
Department of Computing Science
Umeå University, Umeå, Sweden

{dv20ean,johanna,drewes,aj}@cs.umu.se

We introduce LOVELACE, a tool for creating corpora of semantic graphs. The system uses graph
expansion grammar as a representational language, thus allowing users to craft a grammar that de-
scribes a corpus with desired properties. When given such grammar as input, the system generates
a set of output graphs that are well-formed according to the grammar, i.e., a graph bank. The gen-
eration process can be controlled via a number of configurable parameters that allow the user to, for
example, specify a range of desired output graph sizes. Central use cases are the creation of synthetic
data to augment existing corpora, and as a pedagogical tool for teaching formal language theory.

1 Introduction

Semantic representations are formalisms designed to express the meaning of natural language data in a
clear and concise way, which is suitable both for manual inspection and for automated processing. A wide
range of representational formats has been considered in literature. Some of the more commonly used are
based on graphs, in which nodes correspond to concepts, and edges to relations between them. Prominent
examples are combinatory categorial grammar [19], abstract meaning representation (AMR) [12, 3] and
universal conceptual cognitive annotation [1].

It would be valuable for many applications if one could automatically translate natural language
sentences into semantic graphs. However, for developing, training, and testing such approaches, cor-
pora like the AMR corpora1 are required. The creation of high-quality corpora is work intensive and
requires both linguistic knowledge and a familiarity with the representational formalism at hand. More-
over, even skilled annotators tire, and hence the resulting translations are bound to contain errors and
inconsistencies. In addition to this, hand-annotated real-world data is of limited use for conducting con-
trolled experiments whose purpose it is to study the influence of particular structural properties of the
representation on a given machine learning technique.

To address these problems, we provide the software LOVELACE2 that generates well-formed graphs
with respect to a graph expansion grammar (GEG) [7]. GEGs are hyperedge replacement grammars [5,
10, 8] that have been extended by a type of contextual rules inspired by [9].

Technically, a GEG is defined as a regular tree grammar that generates terms over a particular graph
algebra, and these terms are then evaluated into a set of directed acyclic graphs. As usual, the evaluation
of a term is done recursively. Assuming that a given subterm has already been evaluated to a graph, which
will become a subgraph of the generated graph, the evaluation of an operation on top of it adds new nodes

*Supported by the Swedish Research Council under grant number 2020-03852
†Supported by the Wallenberg AI, Autonomous Systems and Software Program through the NEST project STING
1https://amr.isi.edu
2https://github.com/tm11ajn/lovelace/

http://dx.doi.org/10.4204/EPTCS.388.3
https://amr.isi.edu
https://github.com/tm11ajn/lovelace/

4 Generating Semantic Graph Corpora

with edges pointing to already existing nodes of the subgraph. In [7], the placement of these edges can be
restricted by a formula in counting monadic second-order logic. LOVELACE does not currently make use
of such a powerful mechanism, which we leave for future extensions. In another respect (to be discussed
in Section 2), we generalise expansion operations slightly, which ensures that the formalism becomes
more powerful than hyperedge replacement. This deviation from the original definition [7] is motivated
by the fact that the focus in that work was on polynomial parsing, whereas LOVELACE is a generative
tool for which the well-known NP-completeness of hyperedge replacement languages is of no relevance.

There are several semantically annotated treebanks available, including PropBank [15], FrameNet [2],
and the Penn Discourse TreeBank [17, 16]. There are also tools that generate synthetic treebanks from
grammars, which can, if so designed, contain semantic information. In this category of tools we have
Grammatical Framework [18], a programming language specifically designed for writing string gram-
mars, but which also provides functionality for generating corpora of parse trees with respect to a given
grammar. Another example is Tiburon [13], a capable toolkit for processing weighted automata which
includes an algorithm for extracting N parse trees with optimal weight from a weighted string grammar.
Finally we have BETTY [6], which can extract both the N best derivation trees, but also the N best output
trees with respect to a tree grammar; cf. Section 3.

Turning specifically to graph banks, Hockenmeir and Steedman propose an algorithm for translating
the Penn Treebank into a corpus of CCG derivations augmented with local and long-range word–word
dependencies [11]. There is also the manually created AMR bank by [4]. The present paper adds to this
line of work by providing a method of creating synthetic corpora of semantic graphs from a specification
given in the form of a graph expansion grammar.

The paper contains the following main sections: Section 2 recalls the graph expansion grammar
formalism, Section 3 explains how to find and use the software, and Section 4 provides a summary of the
work presented here together with ideas for improvement.

2 Graph Expansion Grammar

To recall the graph expansion grammar formalism [7], we first fix a few standard definitions and related
notation from discrete mathematics and automata theory.

The set of natural numbers (including 0) is denoted by N, and [n] = {1, . . . ,n} for n ∈ N. The set of
all strings (that is, finite sequences) over a set S is S∗, which in particular contains the empty string ε .
The subset of S∗ containing only those strings which do not have repeating elements is S~. For a string
w, we let [w] denote the smallest set S such that w ∈ S∗. We denote the canonical extensions of a function
f : S→ T to S∗ and to the powerset℘(S) of S also by f , i.e., f (s1 · · ·sn) = f (s1) · · · f (sn) for s1, . . . ,sn ∈ S,
and f (S′) = { f (s) | s ∈ S′} for S′ ∈℘(S).

A ranked alphabet is a pair A = (Σ,rk) consisting of a finite set of symbols Σ and a function rk : Σ→
N that assigns a rank to every symbol σ ∈ Σ. Writing σ (k) indicates that rk(σ) = k. If there is no danger
of confusion, we keep rk implicit and identify A with Σ.

The set TΣ of all trees over Σ is the smallest set of formal expressions such that σ [t1, . . . , tk] ∈ TΣ for
every σ (k) ∈ Σ and all trees t1, . . . , tk ∈ TΣ. Thus, the rank k of σ determines the number of subtrees of
every occurrence of σ in a tree. If k = 0, then f [] ∈ TΣ, which we abbreviate as f , omitting the brackets.

Given a ranked alphabet Σ as above, a Σ-algebra is a pair A = (A,(fA) f∈Σ) consisting of a set
A, the domain of A , and a function fA : Ak → A for every f (k) ∈ Σ, the interpretation of f in A .
Now, if t = f [t1, . . . , tk] is a tree in TΣ, evaluating t with respect to A yields valA (t) ∈ A, defined as
valA (t) = fA (valA (t1), . . . ,valA (tk)).

Andersson et al. 5

To generate trees over the operations of an algebra, we use regular tree grammars.

Definition 1 A regular tree grammar (over Σ) is a tuple g = (N,Σ,P,S) consisting of

• a ranked alphabet N of symbols of rank 0, called nonterminals,
• a ranked alphabet Σ of terminals, disjoint with N,
• a set P of productions A→ f [A1, . . . ,Ak] where f (k) ∈ Σ for some k ∈N and A,A1, . . . ,Ak ∈ N, and
• an initial nonterminal S ∈ N.

The regular tree language (rtg) generated by g is L(g) = LS(g) where (LA(g))A∈N is the smallest
family of subsets of TΣ such that, for A ∈ N, a tree f [t1, . . . , tk] is in LA(g) if (A→ f [A1, . . . ,Ak]) ∈ P and
ti ∈ LAi(g) for all i ∈ [k]. (See Figures 3 and 4 for an example regular tree grammar and a tree in its
language, respectively.)

To generate languages other than tree languages using regular tree grammars, we follow the idea of
the seminal paper by Mezei and Wright [14]: the combination of a regular tree grammar g over Σ and a
Σ-algebra A generates the subset of A whose elements are all valA (t) such that t ∈ L(g). In our case, A is
the set of graphs (over a given set of labels). The operations are, thus, operations on graphs. However, the
central operation is nondeterministic, meaning that its application to a given graph can produce several
possible outputs. Formally, we model this by letting the operations work on sets of graphs instead of
individual graphs.

The graphs we work with are node- and edge-labelled directed graphs, each equipped with a se-
quence of so-called ports. From a graph operation point of view, the sequence of ports of a graph is its
“interface”: its nodes are the only ones that can individually be accessed by operations to attach new
edges to them. The number of ports is the type of the graph.

Definition 2 Let L = (L̇, L̄) be a labelling alphabet: a pair of finite sets of labels L̇ and L̄. A graph over
L is a tuple G = (V,E, lab,port) such that

• V is the finite set of nodes,
• E ⊆V × L̄×V is the set of edges,
• lab : V → L̇ labels the nodes, and
• port ∈V~ is the sequence of ports of the graph.

The type of G is type(G) = |port|. The set of all graphs of type k is denoted by Gk.

If the components of a graph G are not explicitly named, they are denoted by VG, EG, labG, and
portG, respectively.

Graph expansion grammars generate graphs using two types of graph operations: disjoint union
and the more complex graph expansion operations. Disjoint union just combines two graphs into one
by placing them next to each other (after making their node sets disjoint) and concatenating their port
sequences. Formally, let k,k′ ∈ N. Then]kk′ : Gk×Gk′ → Gk+k′ is defined as follows: for G ∈ Gk and
G′ ∈ Gk′ with disjoint sets of nodes,]kk′(G,G′) yields the graph (V,E, lab,port) ∈ Gk+k′ given by V =
VG∪VG′ , E = EG∪EG′ , lab = labG∪ labG′ , and port = portGportG′ .

3 If VG∩VG′ 6= /0, we silently rename
nodes before we apply]kk′ , because we are only interested in generating graphs up to isomorphism. Note
that]kk′ is not commutative because of the concatenation of port sequences. We usually write G]kk′ G′

instead of]kk′(G,G′). We extend]kk′ to]kk′ : ℘(Gk)×℘(Gk′)→℘(Gk+k′) by letting G]kk′ G
′ =

{G]kk′ G′ | G ∈ G , G′ ∈ G ′} for G ⊆ Gk and G ′ ⊆ Gk′ .

3Here, labG∪ labG′ is the usual union of binary relations.

6 Generating Semantic Graph Corpora

The other type of operation, the graph expansion, extends an existing graph with an additional struc-
ture placed “on top” of that graph. Expansion is specified by a template graph with an additional sequence
of designated nodes called docks. Applying an extension operation adds the template graph to the argu-
ment graph and identifies the docks with the ports of that graph. The ports of the template become the
ports of the combined graph. The template also contains a number of context nodes that can be identified
with arbitrarily chosen nodes with matching labels in the argument graph. Formally, a graph expansion
operation is a unary operation given by a tuple Φ = (V,E, lab,port,dock) where (V,E, lab,port), hence-
forth denoted by Φ, is the underlying graph and dock ∈ V ∗ is the sequence of docks. Note that dock, in
contrast to port, may contain repetitions. Similarly to our notation for the components of graphs, we use
the notations VΦ, EΦ, labΦ, portΦ, and dockΦ if these components are not explicitly named. Furthermore,
we let CΦ =V \ ([port]∪ [dock]) denote the set of context nodes of Φ.

An expansion operation Φ as above can be applied to an argument graph G = (V,E, lab,port) ∈ G` if
|dockΦ|= `. It then yields a graph of type |portΦ| by identifying the nodes in dockΦ with those in port,
and each context node with an arbitrary node in V that carries the same label. The port sequence of the
resulting graph is portΦ.

Formally, let |portΦ| = k and |dockΦ| = `. Then Φ is interpreted as the nondeterministic operation
Φ : G`→℘(Gk) defined as follows. For a graph G = (V,E, lab,port) ∈ G`, a graph H ∈ Gk is in Φ(G) if
it can be obtained by the following stepewise procedure:

1. Rename the nodes of Φ to make the set of nodes of Φ disjoint with V . (As in the case of], we
will in the following assume that this is done silently “under the hood”.)

2. Add the nodes and edges of Φ to G.
3. Identify the i-th node v of port with the i-th node of dockΦ for all i ∈ [`] and label the resulting

node with labΦ(v).
4. Identify every node u ∈CΦ with any node v ∈V \ [port] for which lab(v) = labΦ(u).
5. Define portH = portΦ.

Note that the process of identifying docks of Φ with ports of the argument graph G may merge ports
of G if dock contains repetitions. The expansion operations defined here are thus more general than those
in [7]. In fact, readers familiar with hyperedge replacement grammars will easily be able to see that this
allows us to simulate hyperedge replacement. Together with the fact that context nodes can be used to
create graphs of unbounded treewidth, this implies that graph expansion grammars, to be defined below,
are strictly more powerful than hyperedge replacement grammars.

Further deviations from [7] are that the definition above does not make use of the cloning of context
nodes, and that the logic formula that determines which mappings of context nodes to nodes in the
argument graph are allowed has been replaced by the much simpler condition that node labels must
match. The cloning ability is not needed here since we consider expansion operations rather than the
special case of extension operations as in [7] (see below), which means that cloning can be implemented
by repeated application of expansion. The latter has been dropped in the current paper for simplicity, and
because it is not yet implemented in LOVELACE anyway.

The major result of [7] applies to a restricted form of expansion operations, the so-called extension
operations. By using only extension operations, we can make sure that graphs are built bottom-up, that
is, that Φ always extends the input graph by placing nodes and edges “on top”, with edges being directed
downwards, and that all nodes of generated graphs are reachable from the ports. For a brief explanation,
let NEWΦ = [portΦ]\ [dockΦ] denote the set of nodes that an application of Φ adds to the graph, i.e. those
nodes of Φ which are not identified with nodes of the argument graph when Φ is applied. Then Φ is an
extension operation if it satisfies the following requirements:

Andersson et al. 7

(R1) EΦ ⊆ NEWΦ× L̄× (VΦ \NEWΦ) and
(R2) every node in [dockΦ]\ [portΦ] has an incoming edge.

By induction, (R1) ensures that all graphs generated by a graph extension grammar (i.e., a GEG
all of whose expansion operations are extension operations) are directed acyclic graphs. Likewise by
induction, (R2) ensures that every node in a graph generated by a graph extension grammar is reachable
from a port. While these restrictions are not employed in the current paper (since they are not needed
unless one is interested in efficient parsing), they are well justified when generating semantic graphs such
as AMR, because these typically consist of directed acyclic graphs in which all nodes are reachable from
the roots (which would translate to ports in the graph grammar formalism). Thus, while LOVELACE does
not enforce (R1) and (R2), our examples will actually obey these requirements.

b
1

a
2

b
4

(1)
c b

3

(2), (3)

c
1

a
3

c
b
2

a c c

b b a

Figure 1: The figure on the left shows an expansion operation Φ with four ports (indicated with numbers
above the nodes), three docks (indicated with numbers in parentheses below the nodes), and two context
nodes (the ones that are neither ports nor docks). Docks 2 and 3 coincide. Applying the expansion
operation identifies docks with corresponding ports of the argument graph and each context node with
a non-port in the input graph that carries a matching label. The application of Φ to the graph G (on the
right) yields a non-empty number of possible results because the number of ports of G coincides with the
number of docks of Φ, and since there are nodes labelled b and c in G which are not ports.

b
1

a
2

b
4

c

c
b

3

a c c

b b a

b
1

a
2

b
4

c

c
b

3

a c c

b b a

b
1

a
2

b
4

c

c
b

3

a c c

b b a

Figure 2: Three graphs in Φ(G) where Φ and G are as in Figure 1. The differences between the graphs
reflect how the context nodes in Φ were chosen to be mapped to nodes in G.

Figure 1 depicts an expansion operation together with a graph to which it can be applied. Figure 2
shows three different graphs, all resulting from the application of the expansion operation to the (now
argument) graph in Figure 2. The resulting graphs differ because different mappings of context nodes to
nodes in the argument graph were chosen. Note that Φ fuses ports 2 and 3 of the argument graph, which
become port 3 of the result, because docks 2 and 3 coincide.

8 Generating Semantic Graph Corpora

A graph expansion algebra is a Σ-algebra A = (℘(G),(fA) f∈Σ) where every symbol in Σ is inter-
preted as an expansion operation, a union operation, or the set {φ}, where φ is the empty graph (/0, /0, /0,ε).
As previously mentioned, the operations of the algebra act on sets of graphs rather than on single graphs,
due to the nondeterministic nature of expansion. This also takes care of the fact that operations are only
defined on graphs of matching types: we simply use the convention that the application of an operation
to a graph of an inappropriate type returns the empty set.

Definition 3 A graph expansion grammar is a pair Γ = (g,A) where A is a graph expansion Σ-algebra
for some ranked alphabet Σ and g is a regular tree grammar over Σ.

L(Γ) =
⋃

t∈L(g)

valA (t)

is the graph language generated by Γ.

3 LOVELACE

Let us now make use of the capacity of graph expansion grammars for expressing semantic graph lan-
guages to create a semantic graph generator. We named the software tool that implements this func-
tionality LOVELACE4. To use LOVELACE, one needs to have access to, or themselves define, a graph
expansion grammar describing a language that contains the wanted corpora. In the rest of this section,
we explain in greater detail how to combine LOVELACE with the tool BETTY5 to generate graph corpora.

BETTY operates on weighted regular tree grammars, that is, on rtgs in which the rules are equipped
with weights. In the case of BETTY, these must be taken from the tropical semiring. The resulting
grammars work precisely like those in Definition 1, but assign an additional weight to every generated
tree, computed as follows. The weight of a derivation is the sum of all weights of the rules applied to
generate the tree. The weight of a tree in the language is the minimum of all weights of derivations
that yield that tree. BETTY takes as input such a weighted grammar and some natural number N, and
outputs N best trees, that is, N pairwise distinct trees of least weight (in the order of increasing weight).
Thus, in this context, lesser weight is better. In the case of ties, BETTY gives precedence to smaller trees.
In particular, assigning all rules the same weight results in picking N smallest possible trees from the
generated language. It is in fact unnecessary to provide rules with an explicit weight as BETTY interprets
rules without a weight as rules of weight 0. For simplicity, the example we use below in order to illustrate
the generation of corpora makes use of this possibility.

To generate the semantic graph corpora, a two-step approach is used: First N best trees are extracted
from the (now weighted) regular tree grammar component of the graph expansion grammar, and these
are then evaluated with respect to the algebra. As there is currently no direct integration of BETTY and
LOVELACE, this pipeline must be set up manually. Syntactically, the input format to BETTY is the rtg
format of [13]; see that paper for more information. An example regular tree grammar on rtg format
can be seen in Figure 3, and Figure 4 shows an example tree in the corresponding language. The trees
that BETTY then outputs are the derivation trees that comprise the basis of the corpus.

In the next step of the generation process, the derivation trees are translated into graphs using
LOVELACE. To do this, we must specify the graph expansion algebra. In other words, we must as-
sociate an operation with every terminal in the regular tree grammar and gather them in an operation file.

4https://github.com/tm11ajn/lovelace/
5https://github.com/tm11ajn/betty/

https://github.com/tm11ajn/lovelace/
https://github.com/tm11ajn/betty/

Andersson et al. 9

1 S
2 S -> op1(C)
3 C -> op2(U)
4 U -> op3(S’ S)
5 S’ -> op4
6 S -> op5

Figure 3: A regular tree grammar (on rtg
format). The first nonterminal in the file
represents the starting nonterminal.

op1

op2

op3

op4 op5

Figure 4: A visual representation of the unique tree
op1[op2[op3[op4, op5]] in the language generated by
the regular tree grammar in Figure 3 on the left.

op1 :
persuade

1

she
(1) (2)

ar
g0

a
r
g
1

arg2 op2 :
belive

2

1

(1) (2)

ar
g0

arg1

op3 : S′]11 S op4 : they
1

op5 : she
1

Figure 5: A definition of five graph operations. Here, op3 is a union operation that takes two argument
graphs with one port each, and the remaining operations are graph expansion operations.

Such a set of operations for the tree of Figure 4 is depicted in Figure 5. Union operations and expansion
operations have similar textual formats. Both use the keyword operation together with the name of
the operation (i.e., the corresponding terminal in the regular tree grammar) and curly brackets to enclose
the operation specification. A union operation is specified – as seen in Figure 6 – using a single line of
two numbers referring to the number of ports of the two input arguments. An expansion operation must
necessarily specify a graph with ports and docks, which is why we found it convenient to base the repre-
sentation on the gv digraph format used by the open-source tool Graphviz1 (see Figures 9 and 10 for an
example). In Figure 7, we provide an example expansion operation that corresponds to the operation op1
of Figure 5. The only addition to the Graphviz format is that the user must specify which nodes are ports
and docks by enumerating them using the keywords port and dock, respectively. We see that node 0
is the only port of the operation, and that nodes 2 and 3 are its docks.

Once we have both a file specifying the operations and a file of derivation trees, we can input
them to LOVELACE by using the mandatory parameters -g and -t, respectively. An example usage
of LOVELACE is thus given by

java lovelace.java -g file-of-operations.txt -t file-of-trees.txt

LOVELACE will then evaluate the trees into graphs (by interpreting the nodes of the trees as graph op-
erations) and output them. The process of evaluating the tree in Figure 4 with respect to the operations

1https://graphviz.org/

https://graphviz.org/

10 Generating Semantic Graph Corpora

1 operation op3 {
2 1 1
3 }

Figure 6: A textual representation of the union
operation op3 that takes two graphs with one
port each and turns them into a single graph
with two ports.

1 operation op1 {
2 0 [label="persuade", port=1]
3 1 [label="she"]
4 2 [dock=1]
5 3 [dock=2]
6 0 -> 1 [label="arg0"]
7 0 -> 2 [label="arg1"]
8 0 -> 3 [label="arg2"]
9 }

Figure 7: A textual representation of the expansion
operation op1 in Figure 5. The name of the operation
is op1, which is also the label that is used in a tree
grammar file to refer to this operation.

in Figure 5 is depicted in Figure 8. Each output graph is saved as a single text file in gv format (one
such file resulting from our running example is depicted in Figure 9), which makes their visualisation by
Graphviz easy. We recommend using the Graphviz online tool6 for quick and easy graph visualisation.
An example of a visualisation of the graph in Figure 9 by Graphviz is shown in Figure 10.

In addition to its basic functionality, LOVELACE allows the user to generate graphs with abstract
labels, which are then replaced by concrete labels when the generated graphs are outputted. More pre-
cisely, the user can provide definitions of one-to-many label replacements, and the system will then
output all possible instantiations based on these replacements. Such definitions are provided in a text
file passed as an argument to LOVELACE via the -d option. This text file should include definitions for
every label that shall be replaced by one or more labels. For example, we can generate graphs with the
abstract label sing-pronoun which is then replaced by singular pronouns to generate various valid
semantic graphs from a single result of the generation process. As a more sophisticated example, we
can expand an abstract label representing the VerbNet class conjecture-29.5-1 (which contains,
for example, the verb believe) by any verbs in the same class. In Figure 11, we provide a definition
file in which the concepts they, she and believe have been expanded to provide a richer variety of
semantic graphs. When such a file is provided to LOVELACE, all combinations of the replacements are
used to create more semantic graphs. This naturally yields a combinatorial explosion, which is why this
option should be used with care. An alternative way of instantiating graphs is discussed in Section 4.

The three remaining parameters of the program are quite straight-forward: -L specifies the minimum
number of nodes that a generated graph can have, -H is similar but instead provides an upper bound of
nodes, and -k takes an operation name as an argument and forces every generation to use that particular
operation at least once. In Section 4, we discuss other potential parameters for fine-tuning the output
data that a user might be interested in.

To summarise the above information, we have collected the parameters implemented thus far in a
cheat sheet, see Figure 12.

6https://dreampuf.github.io/GraphvizOnline/

https://dreampuf.github.io/GraphvizOnline/

Andersson et al. 11

op1

op2

op3

op4 op5

→ she
1

op1

op2

op3

op4 op5

→ she
1

, they
1

op1

op2

op3

op4 op5

→ she
1

they
2

op1

op2

op3

op4 op5

→

belive
2

she
1

they

ar
g0

arg1

op1

op2

op3

op4 op5

→

persuade
1

belive

she they

a
r
g
0 a

r
g
1

a
r
g
2

a
r
g
0

a
r
g
1

Figure 8: The bottom-up evaluation of the tree in Figure 4 produced by the regular tree grammar in
Figure 3 into a graph, using the operations defined in Figure 5. When the operation corresponding to a
node in the tree is applied, the node is marked to make the derivation process clearer.

4 Conclusion and Future Work

We have presented the software LOVELACE that generates corpora of semantic graphs; it is based on
the formalism of graph expansion grammar. To improve the software, we would appreciate input as to
what features would be useful to the natural language processing community. Below, we list some of the
currently planned improvements.

As described in the previous section, BETTY and LOVELACE are currently not integrated. The user
first applies the N-best extraction software BETTY to a weighted regular tree grammar and then inputs
the resulting list of trees to LOVELACE, together with a file specifying graph operations and other pa-
rameters, to output a graph corpus. To make the process smoother, we plan on integrating BETTY into
LOVELACE so that the transition between both steps happens automatically. This integration would
require LOVELACE to take additional input parameters such as the desired size of the corpus.

The graph expansion operations used in this paper are a modified version of those used in [7]. In

12 Generating Semantic Graph Corpora

1 digraph G {
2 0 [label="they"]
3 1 [label="she"]
4 2 [label="believe"]
5 3 [label="persuade"]
6
7 2 -> 0 [label="arg0"]
8 2 -> 1 [label="arg1"]
9 3 -> 1 [label="arg0"]

10 3 -> 0 [label="arg1"]
11 3 -> 2 [label="arg2"]
12 }

Figure 9: A file in the Graphviz format gv repre-
senting the graph resulting from evaluating the tree
in Figure 4 with respect to the operations in Figure 5.

Figure 10: A visualisation of the output file de-
picted in Figure 9, created using Graphviz.

1 conjecture-29.5-1 = presume trust guess believe
2 sing-pronoun = they he she

Figure 11: Example definition file.

some respects they are more general, while in others they are more restricted. The major differences are
the following ones:

• Graph expansion operations are allowed to contain repetitions in the sequence of docks. This
ensures that graph expansion grammars can generate all hyperedge replacement languages. For a
generation system such as LOVELACE, this is desirable whereas in the context of [7], which focuses
on parsing, it is detrimental as it implies that NP-complete graph languages can be generated.

• In this paper, context nodes can be mapped to arbitrary nodes in the argument graph of a graph
expansion operation, provided that labels match. In [7], admissible mappings are specified by
counting monadic second-order logic, which is a much more powerful mechanism not yet imple-
mented in LOVELACE.

• Finally, we do not make use of the mechanism of cloning context nodes. The reason is that we
consider expansion operations rather than the more restricted graph extension operations (cf. the
earlier discussion of requirements (R1) and (R2)). The former can implement cloning by iterated
application of rules, which makes the use of this concept unnecessary. However, cloning may be
added as an optional feature in the future to enable the user to make the rule set more compact.

Another planned area of improvement concerns the implementation of mapping the context nodes to
nodes in the argument graph. Currently, this is done by randomly choosing a node in the argument graph
with a matching label. If there is no matching candidate, then the expansion operation cannot be applied,
and the program returns an error message. This is a deviation from the formal definition in two ways. On

Andersson et al. 13

-t <tree file> Mandatory parameter whose argument should be the file that lists
the derivation trees.

-g <operation file> Mandatory parameter whose argument specifies the input
expansion operations. Note that for every label of the input regular tree grammar
file, there should be exactly one expansion operation specified.

-L <min num nodes> Sets the minimum number of nodes in the tree. For in-
stance, if the argument is 4, then the program skips every derivation tree that
has less than 4 nodes.

-H <max num nodes> Sets the maximum number of nodes in the tree. Its func-
tionality is analogous to that of L’s, but it sets an upper bound of nodes instead of
a lower bound.

-d <definition file> This argument allows the user to replace labels in the
generated graphs to create the combination of all defined label replacements.

-k <operation name> Only generates the graphs whose generation process in-
cludes the specified operation. An example usage is -k op3.

Figure 12: Parameter cheat sheet.

the one hand, only a single graph is returned, even though there may in fact be several results due to the
nondeterminism in the formal definition. Second, if there is no matching candidate at all, the tree should
simply contribute zero resulting graphs to the generated corpus instead of producing an error message.
(A warning message should, however, be issued as the situation may indicate a modelling error.) One
possibility would be to implement an option to have all of the formally generated graphs being outputted.
Of course, this may in general cause a combinatorial explosion, similarly to how instantiating nodes using
a definition file may result in a combinatorial explosion.

The possibility, mentioned above, to use logical formulas to guide the mapping of context nodes is
not the only way in which to improve the user control of the context node mapping. In fact, such a control
mechanism may be seen as an independent module which can be implemented in whatever way suitable.
In particular, we are planning to study ways of instantiating it by neural mechanisms, which would make
it possible to use machine learning to learn valid context node mappings.

Finally, future work includes developing more options to more easily fine-tune the graph generation.
There are plenty of ways in which we could extend the parameters that can be used to tweak the semantic
graph corpora. One idea is to fine-tune the -d parameter: one may want the system to pick a random
concept from each definition set for each instance of the concept instead of using all of the combinations.
Another idea is to control more in detail what concepts should show up in the output corpus and also to
what extent, that is, a type of filtering of the corpus. There are several options to achieve such filtering
functionality, and future work will investigate these possibilities.

Acknowledgements

We are grateful to the anonymous reviewers for their insightful and constructive comments which helped
improve the quality of this article.

14 Generating Semantic Graph Corpora

References

[1] Omri Abend & Ari Rappoport (2013): Universal Conceptual Cognitive Annotation (UCCA). In: Pro-
ceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Association for Computational Linguistics, Sofia, Bulgaria, pp. 228–238. Available at https:
//aclanthology.org/P13-1023.

[2] Collin F. Baker, Charles J. Fillmore & John B. Lowe (1998): The Berkeley FrameNet Project. In: 36th Annual
Meeting of the Association for Computational Linguistics and 17th International Conference on Computa-
tional Linguistics, Volume 1, Association for Computational Linguistics, Montreal, Quebec, Canada, pp.
86–90, doi:10.3115/980845.980860. Available at https://aclanthology.org/P98-1013.

[3] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer & Nathan Schneider (2013): Abstract Meaning Representation for Sembank-
ing. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse, ACL,
Sofia, Bulgaria, pp. 178–186.

[4] Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin Knight,
Philipp Koehn, Martha Palmer & Nathan Schneider (2014): Abstract Meaning Representation (AMR) 1.2
Specification. Technical Report, Information Science Institute, University of Southern California, CA, USA.

[5] Michel Bauderon & Bruno Courcelle (1987): Graph Expressions and Graph Rewriting. Mathematical Sys-
tems Theory 20, pp. 83–127, doi:10.1007/BF01692060.

[6] Johanna Björklund, Frank Drewes & Anna Jonsson (2022): Improved N-Best Extraction with an Evaluation
on Language Data. Computational Linguistics 48(1), pp. 119–153, doi:10.1162/coli_a_00427. Available at
https://aclanthology.org/2022.cl-1.4.

[7] Johanna Björklund, Frank Drewes & Anna Jonsson (2023): Generation and Polynomial Pars-
ing of Graph Languages with Non-Structural Reentrancies. Computational Linguistics, pp. 1–41,
doi:10.1162/coli_a_00488.

[8] Frank Drewes, Annegret Habel & Hans-Jörg Kreowski (1997): Hyperedge Replacement Graph Grammars.
In G. Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformation. Vol. 1:
Foundations, chapter 2, World Scientific, Singapore, pp. 95–162, doi:10.1142/3303.

[9] Frank Drewes, Berthold Hoffmann, Dirk Janssens & Mark Minas (2010): Adaptive star grammars and their
languages. Theoretical Computer Science 411, pp. 3090–3109, doi:10.1016/j.tcs.2010.04.038.

[10] Annegret Habel (1992): Hyperedge Replacement: Grammars and Languages. Lecture Notes in Computer
Science 643, Springer, doi:10.1007/BFb0013875.

[11] Julia Hockenmaier & Mark Steedman (2007): CCGbank: A Corpus of CCG Derivations and Depen-
dency Structures Extracted from the Penn Treebank. Computational Linguistics 33(3), pp. 355–396,
doi:10.1162/coli.2007.33.3.355. Available at https://aclanthology.org/J07-3004.

[12] Irene Langkilde & Kevin Knight (1998): Generation That Exploits Corpus-based Statistical Knowl-
edge. In: Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and
17th International Conference on Computational Linguistics (Volume 1), Montreal, Quebec, pp. 704–710,
doi:10.3115/980845.980963.

[13] Jonathan May & Kevin Knight (2006): Tiburon: A Weighted Tree Automata Toolkit. In Oscar H Ibarra &
Hsu-Chun Yen, editors: Implementation and Application of Automata: 11th International Conference, CIAA
2006, Taipei, Taiwan, August 21-23, 2006. Proceedings, Springer Berlin Heidelberg, Berlin, Heidelberg, pp.
102–113, doi:10.1007/11812128_11.

[14] Jorge Mezei & Jesse B. Wright (1967): Algebraic Automata and Context-Free Sets. Information and Control
11, pp. 3–29, doi:10.1016/S0019-9958(67)90353-1.

[15] Martha Palmer, Daniel Gildea & Paul Kingsbury (2005): The Proposition Bank: An Annotated Corpus of
Semantic Roles. Computational Linguistics 31(1), pp. 71–106, doi:10.1162/0891201053630264. Available
at https://aclanthology.org/J05-1004.

https://aclanthology.org/P13-1023
https://aclanthology.org/P13-1023
https://doi.org/10.3115/980845.980860
https://aclanthology.org/P98-1013
https://doi.org/10.1007/BF01692060
https://doi.org/10.1162/coli_a_00427
https://aclanthology.org/2022.cl-1.4
https://doi.org/10.1162/coli_a_00488
https://doi.org/10.1142/3303
https://doi.org/10.1016/j.tcs.2010.04.038
https://doi.org/10.1007/BFb0013875
https://doi.org/10.1162/coli.2007.33.3.355
https://aclanthology.org/J07-3004
https://doi.org/10.3115/980845.980963
https://doi.org/10.1007/11812128_11
https://doi.org/10.1016/S0019-9958(67)90353-1
https://doi.org/10.1162/0891201053630264
https://aclanthology.org/J05-1004

Andersson et al. 15

[16] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo, Aravind Joshi & Bonnie Web-
ber (2008): The Penn Discourse TreeBank 2.0. In: Proceedings of the Sixth International Conference on
Language Resources and Evaluation (LREC’08), European Language Resources Association (ELRA), Mar-
rakech, Morocco. Available at http://www.lrec-conf.org/proceedings/lrec2008/pdf/
754_paper.pdf.

[17] Rashmi Prasad, Aravind Joshi, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki & Bonnie Webber (2008): The
Penn Discourse TreeBank as a resource for natural language generation. In: Proc. of the Corpus Linguistics
Workshop on Using Corpora for Natural Language Generation, p. 25–32.

[18] Aarne Ranta (2004): Grammatical framework. Journal of Functional Programming 14(2), pp. 145–189,
doi:10.1017/S0956796803004738.

[19] Mark Steedman & Jason Baldridge (2011): Combinatory categorial grammar. John Wiley & Sons Inc.,
United States, doi:10.1002/9781444395037.ch5.

http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
https://doi.org/10.1017/S0956796803004738
https://doi.org/10.1002/9781444395037.ch5

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 16–27, doi:10.4204/EPTCS.388.4

© M. Berglund & B. van der Merwe

Formalizing BPE Tokenization

Martin Berglund
Department of Computing Science

Umeå University
Umeå, Sweden
mbe@cs.umu.se

Brink van der Merwe
Department of Computer Science

Stellenbosch University
Stellenbosch, South Africa
abvdm@cs.sun.ac.za

In this paper, we formalize practical byte pair encoding tokenization as it is used in large language
models and other NLP systems, in particular we formally define and investigate the semantics of the
SentencePiece and HuggingFace tokenizers, in particular how they relate to each other, depending
on how the tokenization rules are constructed. Beyond this we consider how tokenization can be
performed in an incremental fashion, as well as doing it left-to-right using an amount of memory
constant in the length of the string, enabling e.g. using a finite state string-to-string transducer.

1 Introduction

Many modern NLP systems, for example large language models such as the GPT models which under-
pin services like ChatGPT [6], operate on a tokenization of text. This tokenization defines an alphabet of
symbols (in the formal languages sense) which include as many common words and fragments of words
as possible. For example, the OpenAI GPT-2 model has an alphabet size (a “vocabulary” in their termi-
nology) of 50,257 tokens, which is enough to turn the sentence “taking a ride on a boat” into1 the token
sequence “ taking a ride on a boat ”, as all words are common enough to be in the alphabet, but “par-
taking in a nautical excursion aboard a vessel” is tokenized as “ part aking in a n autical exc ursion
ab oard a ves sel ”, as the words are uncommon, but fragments of the words are common enough. This
alphabet is then more semantically rich. For example, forming unusual plurals (turning “ earths ” into
“ earth s ”), or making a noun into a “non-existing” verb (i.e. turning “ verb ” into “ verb ing ”), retaining
the informative root word, but also it generally makes the model more robust to misspellings and other
minor transformations of the text [7].

One common way of performing this tokenization is by byte pair encoding [7] (BPE), used by
OpenAI GPT models, and e.g. the recent Swedish GPT-SW3 model [9], which uses the Google tokenizer
implementation SentencePiece [4]. BPE operates similar to a compression technique, with a dictionary
of token merges constructed greedily maximizing the number of tokens that get merged in a training set
(see Remark 1 for a sketch of the procedure).

There are other methods for performing this type of tokenization, e.g. the unigram language model
also implemented in SentencePiece [4], where tokens are individually weighted. We do not consider
this case here. BPE tokenization can be contrasted to lexical analysis [5], as lexical analysis (as exhib-
ited in e.g. the POSIX tool lex) differs in that the rules are typically authored by hand, and break the
string into an infinite language of tokens divided among a constant set of categories. Consider for ex-
ample extracting arbitrarily long identifiers and string constants when parsing programming languages.
BPE tokenization can also be viewed as one case of text segmentation in natural language processing

1We are for the purposes of this example ignoring some details, involving whitespace and the string beginning and end.

http://dx.doi.org/10.4204/EPTCS.388.4

M. Berglund & B. van der Merwe 17

(see e.g. [3]), which covers e.g. breaking a text into topics, sentences, or words. These text segmenta-
tion algorithms have commonly been at least partially supervised or authored, where the tokenization
algorithms considered here are designed for language-agnostic unsupervised learning.

The way the tokenization procedure is defined and implemented in common tools [2, 4] is essen-
tially global: the highest priority rule that can be applied to the text is, no matter where in the text this
application would happen. This is not usually a problem, as the text is pretokenized by splitting it on
whitespace before applying the main tokenization procedure. That is sufficient to make tokenization
algorithm behavior irrelevant in general, however:

• Some natural languages simply do not use interword whitespace, such as writing systems for Thai,
Chinese and Japanese.

• In many artificial (e.g. programming) languages whitespace is common but not required, for exam-
ple “minified” code is very common [8], where all unnecessary whitespace is removed to reduce
file sizes. Language models are commonly trained at least partially on code, e.g. the GPT-SW3
dataset contains 9.5% code in various programming languages [1].

• In some cases there is whitespace, but pretokenizing using it does not produce the best tokens.
E.g. in the SQL query language “LEFT OUTER JOIN” is a single concept, and would ideally be a
single token.

• Even in cases where the pretokenization normally works well, such as for English, a hypothetical
system relying heavily (more so than any currently existing system) on the pretokenization creating
short text fragments may then be vulnerable to a denial of service attack. Compare to e.g. [10] on
such attacks for regular expression matchers.

As such, as these systems find their way into broader and more complex use, it becomes interesting
to investigate robust algorithms for operating on tokenizations. We investigate the following questions.

• Can we perform a BPE tokenization online: observing a stream of text can we output a stream of
tokens using only limited memory and computation?

• If we have a tokenization of a large text, and the text is modified in a localized way, can we compute
a localized update of the tokenization?

The answers to all of these questions are interconnected, but first we need firm definitions of the
semantics we are considering.

The outline of this paper is as follows. After introducing our notation, we define (formally) Senten-
cePiece and HuggingFace tokenizers. Then we consider how to do tokenization in a streaming fashion.
This is followed by a short section outlining our envisioned future work.

2 Notation

An alphabet Σ is a finite set of symbols. Let Σ
∗ denote all strings over the alphabet Σ, including the empty

string ε , and Σ
+ =Σ

∗∖{ε}. A sequence of non-empty strings is a tokenization, e.g. for u1, . . . ,un ∈Σ
+, we

denote this u1 ≀⋯≀un. By Σ
≀ we denote the set of all tokenizations constructed from strings from Σ

∗. We
refer to those strings as the tokens. Let π ∶ Σ≀ → Σ

∗ be the concatenation of the strings in a tokenization,
e.g. π(u1 ≀⋯≀un) = u1⋯un ∈ Σ

∗. As a special case, we let π applied to the tokenization with n = 0, be the
empty string. When π(u1 ≀⋯≀un) =w ∈ Σ

∗, we say that u1 ≀⋯≀un is a tokenization of w. For τ = u1 ≀⋯≀un,
we denote by ∣τ ∣ the integer n. Thus, ∣τ ∣ = 0 if and only if τ is the empty tokenization. Also, for u ∈ Σ

∗,
we let ∣u∣ denote the length of u, i.e. the number of symbols from Σ in the string u. It will be clear from

18 Formalizing BPE Tokenization

the context and notation when τ denotes a tokenization with ∣τ ∣ = 1, i.e. a tokenization of length one
instead of a string of length one, given that in this case, τ could be interpreted as either. In fact, given
our notational conventions discussed below, the symbol τ will always represent a tokenization.

In addition to using ∣τ ∣ and ∣u∣ for the length of a tokenization τ and length of a string u respectively,
we use ∣S∣ to denote the cardinality of a (finite) set S.

Differentiating between strings and tokenizations becomes important as we continue, so we adopt
some conventions. Let Σ denote the alphabet whenever not otherwise specified. When giving examples,
we always use Σ = {a,b,c, . . .}. Furthermore, we always let α,β ,γ be variables denoting symbols from
the alphabet, u,v,w denote strings, and τ,φ denote tokenizations, including all sub-/superscripted variants
of each. In other words, u,v,w ∈ Σ

∗ and τ,φ ,ψ ∈ Σ
≀ , and for that matter u1,u2 ∈ Σ

∗, τ
′ ∈ Σ

≀ , etc. As such
we may write e.g. u ≀τ ≀v = φ to mean that τ is a tokenization where the first token is u, the last is v, and
the intervening tokens form the tokenization τ , so ∣φ ∣ = ∣τ ∣+2.

3 Tokenizing Semantics

First, we define a byte pair dictionary, which will be used to restrict the set of possible tokenizations for
a given string w. We will only use D and its sub-/superscripted variants to denote a dictionary.
Definition 1. A byte pair dictionary D= [u1 ≀v1, . . . ,un ≀vn] of length ∣D∣= n is a sequence of tokenizations
u1 ≀v1, . . . ,un ≀vn, with each tokenization ui ≀vi being of length 2. We call each ui ≀vi a rule and say that (a
rule) ui ≀vi has higher priority than u j ≀v j, when i < j.

We write τ ⇒D
τ
′ if τ = φ ≀u ≀v ≀φ ′ and τ

′ = φ ≀uv ≀φ ′, for some u ≀v ∈ D. The dictionary D will
always be clear from the context, thus we omit the superscript on ⇒. We let ⇒+ and ⇒∗ denote the
transitive and reflexive transitive closure of⇒, respectively. Also, for w = α1⋯αn, we denote by T∅(w)
the tokenization α1 ≀⋯≀αn.

Next, we transfer terminology used in derivations over context-free grammars, to our setting. For w =
α1 . . .αn, we begin a derivation for a tokenization with T∅(w), although a more complicated pretokenizer
step could certainly also be of interest, but not considered in this paper. Whereas in the case of context-
free grammars, a derivation step consists of applying a grammar rule by replacing the non-terminal
on the left-hand side of a rule, by its right-hand side, in our setting, a derivation step is of the form
φ ≀ui ≀vi ≀φ ′⇒ φ ≀uivi ≀φ ′, for ui ≀vi in D. A derivation terminates when no further rules from D can be
applied.

The definition of a base tokenizer on D, which ignores the priority of rules in D, is as follows.
Definition 2. For D = [u1 ≀v1, . . . ,um ≀vm] and w = α1⋯αn, we obtain the base tokenizations of w by D,
denoted as TD

base(w) ⊂ Σ
≀ , as follows. We have τp ∈TD

base(w) if:
• τ0 =T∅(w),

• τ0⇒⋯⇒ τp,

• there exists no τp+1 such that τp⇒ τp+1.
That is, TD

base(w) are the tokenizations of w which can be achieved by applying rules to an initial
tokenization T∅(w) where all symbols in w are their own token, until a point where no further rules
can be applied. Thus, to obtain one of the possible base tokenizations, we select non-deterministically a
rule from D that can be applied to the current tokenization, until the set of rules that could be applied,
is empty. Given that ∣TD

base∣ ≥ 1, since there is non-deterministic choice in selecting the next applicable
rule, a SentencePiece tokenizer [4] is defined to remove ambiguity from the base tokenizer. We will (in
a somewhat biased way) refer to this tokenization as the correct tokenization.

M. Berglund & B. van der Merwe 19

Definition 3. The SentencePiece tokenization of w, denoted TD(w), also referred to as the correct tok-
enization of w, is τn, with τn ∈TD

base(w), where:

• τ0 =T∅(w);

• τ0⇒⋯⇒ τn, and for 0 ≤ i < n, we pick the decomposition τi = φ ≀u ≀v ≀φ ′, to obtain τi+1 = φ ≀uv ≀φ ′,
in such a way that:

– u ≀v is the highest priority rule in D for which such a decomposition exists;

– among the remaining decompositions, we pick the unique one which minimizes ∣φ ∣;

• no further rules apply to τn.

Observe that TD(w) always exists, and is obtained, intuitively, as follows. Whenever it is possible to
apply a rule from the dictionary D to merge some tokens in the interim tokenization, merge the highest-
priority rule that occurs, and merge the left-most such pair if multiple occurrences exist. Note that this
selects a unique tokenization, for each string w, from the set TD

base(w).

Example 1. Take the dictionary D = [a ≀b,a ≀bc,b ≀c,ab ≀c], then the correct tokenization of the string
abcbcab is abc ≀bc ≀ab, using the following steps:

• Initially, τ0 = a ≀b ≀c ≀b ≀c ≀a ≀b, a ≀b ∈D applies to the leftmost a ≀b, producing τ1 = ab ≀c ≀b ≀c ≀a ≀b.

• The rule a ≀b still applies, now to the last two tokens, producing τ2 = ab ≀c ≀b ≀c ≀ab. The rule a ≀b
now no longer applies anywhere.

• The next rule a ≀bc does not apply, as there is no token bc, but b ≀c does apply, producing τ3 =
ab ≀c ≀bc ≀ab.

• The first rule that can now be applied is the rule ab ≀c, producing τ4 = abc ≀bc ≀ab. Now, no further
rules apply, so abc ≀bc ≀ab is the correct (SentencePiece) tokenization.

It is interesting to observe that the rule a ≀bc has the second-highest priority in the dictionary, but was
never applied. Also, when using the base tokenizer, a ≀bc can certainly be applied when tokenizing the
string abcbcab. Observe that applying a ≀bc would produce the token abc, but tokenizing the string abc
takes the steps a ≀b ≀c⇒ ab ≀c⇒ abc. Later on in Corollary 1 we show that a rule ui ≀vi is useful, i.e. gets
applied in the tokenization of some string, if and only if it gets applied when tokenizing the string uivi. ◇
Example 2. Take the dictionary D = [c ≀ab,ab ≀c,a ≀b]. Then the correct tokenization of abcabcabcabc
is abc ≀abc ≀abc ≀abc. Notice that this tokenization is achieved left to right. After five steps, we have the
tokenization abc ≀abc ≀ab ≀c ≀a ≀b ≀c. Contrast this to tokenizing the string bcabcabcabc (i.e. we delete
the initial a) which tokenizes as b ≀cab ≀cab ≀cab ≀c, or cabcabcabcabc (i.e. adding an initial c), which
leads to cab ≀cab ≀cab ≀cab ≀c, where we need to move left to apply c ≀ab, after having applied a ≀b. This
illustrates that a small modification to the string can cause an arbitrarily large change to the resulting
tokenization (to the right). ◇

Interestingly enough, not all tokenization libraries modify the base tokenizer in the same way in
order to eliminate ambiguity of tokenization. Let us consider the Python implementation of the GPT-2
tokenizer offered by HuggingFace [2], which removes ambiguity from the base tokenizer, as follows.

Definition 4. The HuggingFace tokenization τn of w, which we denote by TD
hf(w) ∈TD

base(w), is defined
as follows, where τ0 =T∅(w). In τ0⇒+⋯⇒+

τn, for 0 ≤ i < n, we select a decomposition τi = φ ≀u ≀v ≀φ ′,
such that u ≀v ∈ D is the highest priority rule applicable to τi, and then apply u ≀v from left to right, until
it is no longer applicable, in order to obtain the unique τi+1.

20 Formalizing BPE Tokenization

That is, in both Definitions 3 and 4 we rewrite τi by picking the highest-priority applicable rule and
applying it at the left-most possible position. However, the SentencePiece semantics picks the highest-
priority applicable rule in every step, where HuggingFace picks a rule and uses it until it becomes inap-
plicable. This does create a formal difference in semantics, but as we will see they differ only in cases
which may be considered degenerate given the way dictionaries are usually constructed.

Example 3. Take the dictionary D = [ab ≀a,a ≀b] and consider the tokenization of w = abababab, which
has TD(w) = aba ≀b ≀aba ≀b, but TD

hf(w) = ab ≀ab ≀ab ≀ab. ◇
Remark 1. The reason why the D in the previous example is regarded to be degenerate or improper, is
that a byte pair dictionary is typically produced [7] by taking a training corpus, initially tokenizing it
symbol by symbol, and then iteratively adding the most common token pair to the dictionary, tokenizing,
and repeating. For example, in the training corpus a ≀b ≀c ≀a ≀b ≀c ≀a ≀c ≀a, the most common token pair is
c ≀a, which is inserted as the first rule in the dictionary. Then, we continue using a ≀b ≀ca ≀b ≀ca ≀ca. Now,
the most common pair is b ≀ca, and this rule is added to the dictionary, which now consists of the rules
[c ≀a,b ≀ca]. The new dictionary now produces a ≀bca ≀bca ≀ca, as tokenization, and so on. Observe that
when constructing a dictionary in this way, a rule ui ≀vi cannot have higher priority than the rules needed
to produce ui and vi, a property formalized in the next definition. Also, when tokenizing the training
corpus with the dictionary obtained through training, using HuggingFace semantics, the tokenization
obtained will be the tokenization of the training corpus at the end of the training process, and each rule
in the dictionary will be used in this tokenization. ◇

Definition 5. A dictionary D = [u1 ≀v1, . . .ui ≀vi, . . . ,u j ≀v j, . . . ,un ≀vn] is proper if for each j with ∣u j∣ > 1,
there exists i < j such that u j = uivi, and similarly, for each j′ with ∣v j′ ∣ > 1, there exists i′ < j′ such that
v j′ = ui′vi′ .

Note that a proper dictionary may still contain rules which are not useful. Consider for example the
dictionary D = [b ≀c,a ≀b,c ≀d,ab ≀cd]. Then D is proper, but ab ≀cd is not useful. This can be seen by
noting that when T∅(w) equals a ≀b ≀c ≀d, then the first rule gets applied to produce a ≀bc ≀d, and thus it
is not possible to apply the rules a ≀b and c ≀d, in order so that ab ≀cd could be applied. But note that if D
is constructed from a training corpus, then D is proper and each rule in D is useful.

With the additional assumption that the dictionary is proper, the SentencePiece and HuggingFace
tokenizers turn out to have equivalent semantics. This should to some extent be expected, as they are
intended to achieve the same results, the HuggingFace approach effectively being a small simplification.

Lemma 1. If D is proper, we have TD(w) =TD
hf(w) for all w.

Proof. By contradiction, assume that some w has TD(w) ≠TD
hf(w). Let τ0⇒⋯⇒ τn be the tokenization

steps taken by TD(w), and φ0⇒⋯⇒ φm the tokenization steps taken by TD
hf. Let i be the smallest index

such that τi ≠ φi. Note, such an i must exist, otherwise, one sequence would be a subsequence of the
other, which is impossible by Definition 2. Thus, one sequence cannot be a proper prefix of the other.
We also have i ≥ 2, as the semantics differ only in that Definition 4 prefers repeating the previous rule
over the highest priority one, but this difference can only be exhibited when there is a previous step to
repeat.

We then have τi−2 = φi−2, τi−1 = φi−1 and τi ≠ φi. Let r0 be the rule applied in τi−2 ⇒ τi−1 (and
φi−2 ⇒ φi−1 as they are equal), r1 the rule in τi−1 ⇒ τi, and r2 the rule in τi−1 ⇒ φi. That is, with some
abuse of notation, the following situation:

M. Berglund & B. van der Merwe 21

⋯⇒ (τi−2 = φi−2)
r0Ô⇒ (τi−1 = φi−1)

r1Ô⇒ τi⇒⋯
r2Ô⇒ φi ⇒⋯

Then we know that r1 has higher priority than r2, since they must differ, and Definition 3 (SentencePiece)
always picks the highest priority rule applicable. The only possible reason for them to differ is that
r0 = r2, i.e. the Definition 4 (HuggingFace) semantics prioritized using the same rule as in the previous
step. However, as they agree in the previous step this means that we picked r0 in that step by virtue of
Definition 3, even though r1 has higher priority than r0, which must mean that r1 was not applicable
before. This leads to a contradiction, as applying r0 must then have created a token which made r1
applicable, which, since r0 is of lower priority, contradicts D being a proper dictionary. As such, our
assumption was wrong and TD

hf(w) =TD(w) by necessity.

With this result in hand, it becomes less relevant to differentiate between the two semantics whenever
considering only proper dictionaries.
Remark 2. It can be decided whether D is proper in timeO(∥D∥2) (assuming ∣uv∣ is constant for all rules
u ≀v in D), where ∥D∥ =∑{∣uv∣ ∣ u ≀v ∈D}. For each u ≀v ∈D, determine all u′ ≀v′ such that uv is a substring
of u′ or v′, and for all such rules u′ ≀v′, verify that u ≀v has lower priority than u′ ≀v′. ◇

Next, we investigate the relationship between the tokenization of substrings of w, and the tokenization
of w. First, we consider the following example. Let u,v be strings with TD(u)= τ1 ≀τ2 and TD(v)= φ1 ≀φ2.
Then it is not necessarily the case that τ1 ≀φ2 = TD(π(τ1 ≀φ2)) or that φ1 ≀τ2 = TD(π(φ1 ≀τ2)). An easy
counterexample is obtained by letting D = [a ≀a,b ≀b], τ1 = a, τ2 = b, φ1 = b, and φ2 = a. Observe that
indeed TD(ab) = a ≀b = τ1 ≀τ2, and TD(ba) = b ≀a = φ1 ≀φ2, however τ1 ≀φ2 = a ≀a ≠ TD(aa) and φ1 ≀τ2 =
b ≀b ≠ TD(bb). This shows that tokenizations can not be decomposed and then again glued together in
arbitrary ways. However, deriving the tokenization of substrings of a given string w, given the final full
tokenization of w, is sometimes possible, as shown in the following lemma.

Lemma 2. Tokenization derivations and tokenizations have the following properties:

(i) For both SentencePiece and HuggingFace, if φ1 ≀ . . . ≀φk ⇒∗
φ
′

1 ≀ . . . ≀φ ′k, then if π(φi) = π(φ
′

i) for
all i, we have that φi⇒∗

φ
′

i for all i.

(ii) For a dictionary D and string w such that TD(w) = τ1 ≀ . . . ≀τk (or TD
h f (w) = τ1 ≀ . . . ≀τk), it holds

that TD(π(τi)) = τi (respectively TD
h f (π(τi)) = τi).

Proof. For (i), let φ1,1 ≀ . . . ≀φk,1⇒⋯⇒ φ1,n ≀ . . . ≀φk,n be the steps taken by the procedure in Definition 2,
such that φi,1 = φi and φi,n = φ

′

i for all i, and π(φi, j) = π(φi, j′) for all i, j and j′. Removing all duplicates
from φi,1, . . . ,φi,n produces the sequence of steps taken by SentencePiece or HuggingFace derivations,
i.e. in each step we apply the highest-priority rule from D as left-most as possible, in the case of Sen-
tencePiece semantics, and we apply the highest-priority rule as many times as possible, in the case of
HuggingFace semantics.

For (ii), take φi =T∅(τi) and φ
′

i = τi in (i).

Remark 3. A trivial outcome of this lemma is then that one can freely truncate tokenizations. I.e. if
we have tokenized a long text w and are only interested in a prefix, we can pick a suitable prefix of the
tokenization (not the string) and it will be correct for the string it represents. A similar remark holds for
a suffix of a tokenization.

22 Formalizing BPE Tokenization

Corollary 1. For SentencePiece or HuggingFace semantics, a rule in a dictionary D is useful if and only
if it gets applied when tokenizing the string it produces.

Proof. The “if” part follows directly from the definition of useful, so for the converse, assume we have a
derivation α1 ≀⋯≀αn⇒⋯⇒φ ≀u ≀v ≀φ ′⇒φ ≀uv ≀φ ′. But then the previous lemma implies that T∅(uv)⇒∗

u ≀v⇒ uv.

The main purpose of Lemma 2 is that it makes it possible to do tokenizations in streaming and
incremental ways. Algorithm 1 below shows how this is achieved, but in order to establish the correctness
of this algorithm, we first need the following corollary, which shows how we can split and then glue
tokenizations.
Corollary 2. If TD(v) = τ1 ≀u ≀τ2 and TD(w) = φ1 ≀u ≀φ2 then we also have TD(π(τ1 ≀u ≀φ2)) = τ1 ≀u ≀φ2
and TD(π(φ1 ≀u ≀τ2)) = φ1 ≀u ≀τ2. The same result holds for the HuggingFace semantics.

Proof. Remark 3 give us that TD(π(τ1 ≀u)) = τ1 ≀u,TD(π(u ≀τ2)) = u ≀τ2 and similarly TD(π(φ1 ≀u)) =
φ1 ≀u,TD(π(u ≀φ2)) = u ≀φ2 where u, τ1, φ1, τ1, and τ2 are as in the corollary above. The result now
follows from the observation that we can glue two tokenizations together, if the end token of the first
tokenization is the same as the start token of the next tokenization. The same argument holds for Hug-
gingFace semantics. This follows the same line of argument as Lemma 2, except instead of pruning steps
from one tokenization, we interleave the steps of two, deduplicating rules applied to the overlapping to-
ken. The overlapping token ensures that one tokenization cannot “disturb” the other.

With this in hand we can define an incremental update algorithm, which is not necessarily efficient
in general (due to cases like Example 2), but will often do much less work than full retokenization, if we
are in a situation where steps 4 and 5 are performed only a few times, i.e. if i is close to n and j close
to 1 when the condition ‘If (v1 = ui or i = 1) and (vk = u′j or j = m)’ in step 3 holds. When showing the
correctness of Algorithm 1 below, we will use the special case of the previous corollary where τ1 and φ2
are empty tokenizations, or τ2 and φ1 are empty.
Algorithm 1. Given TD(w) = τ and TD(w′) = τ

′ we compute the tokenization TD(ww′) in the following
way, assuming we are not in the trivial case where w = ε or w′ = ε .

1. Let τ = u1 ≀⋯≀un and τ
′ = u′1 ≀⋯≀u′m, initialize i = n and j = 1.

2. Compute TD(ui⋯unu′1⋯u′j) = v1 ≀⋯≀vk.

3. If (v1 = ui or i = 1) and (vk = u′j or j = m) output u1 ≀⋯≀ui ≀v2 ≀⋯≀vk−1 ≀u′j ≀⋯≀u′m as TD(ww′) and
halt.

4. If ui ≠ v1 and i > 1, then i← i−1.

5. If u′j ≠ vk and j <m, then j← j+1.

6. Go to step 2.
Theorem 1. Algorithm 1 is correct.

Proof. This amounts to two applications of Corollary 2. The algorithm halts in a state where both
u1 ≀⋯≀ui and v1 ≀⋯≀vk are correct tokenizations, the former holds by Remark 3 and the latter by con-
struction. We also have ui = v1 (either that or i = 1, but that case is trivial), which allows the application
of Corollary 2 to establish that τ1 ≀ui ≀v2 ≀⋯≀vk is a correct tokenization. To make this specific, in the
terms of Corollary 2 we have τ2 = φ1 = ε , u = ui = v1, τ1 = u1 ≀ . . . ≀ui−1, and φ2 = v2 ≀⋯≀vk, which gives
us that τ1 ≀u ≀φ2 = u1 ≀⋯ui ≀v2 ≀⋯≀vk is a correct tokenization. Now repeat this argument for the suffix to
complete the proof.

M. Berglund & B. van der Merwe 23

Remark 3 and Algorithm 1 give tools to perform arbitrary incremental updates. For example, assume
we have the tokenization τ of a (long) string w, and we make a small change in w, let’s say w = v1αv2
and the updated string is w′ = v1βv2. Then let τ1 be the prefix of τ which falls entirely within v1, let τ2 be
the suffix of τ which falls entirely inside v2, let u be the string such that π(τ1)uπ(τ2) =w′, then compute
φ = TD(u), and obtain the tokenization of w′ by applying Algorithm 1 to concatenate τ1 to φ , and then
that tokenization to τ2.

Unfortunately, Algorithm 1 is not necessarily more efficient than retokenizing the whole string, and
might be worse. Of course, an experimental bound can be used in steps 3 and 4, where once we have de-
creased i and increased j, more times than the specified bound, we fall back to retokenizing the complete
string. In cases where there is a subset of symbols Σ

′ from Σ, where symbols from Σ
′ can only appear

as the first or last symbols in uv for rules u ≀v, and in all input strings there is a relatively small distance
between symbols in Σ

′ (i.e. input is not selected from all of Σ
∗), we certainly have that Algorithm 1 is

much more efficient than retokenizing the whole string. In general, it seems likely that steps 4 and 5 in
Algorithm 1 will be performed relatively few times in most practical dictionaries, but investigating this,
is left for future work. We consider the worst-case in more generality in the next section. We establish
a bound on how many times i can be decremented determined solely by the dictionary (so a constant in
the length of the string). Thus, we consider the worst-case when modifications happen late in a string,
for example when applying appends.

4 Tokenizing Online with Finite Lookahead

In this section, we assume all dictionaries are proper (although at times we do state this explicitly, to
emphasize that we are making this assumption), so by Lemma 1 TD and TD

hf are interchangeable. We
investigate the following question: When we tokenize a string, in a streaming fashion, how long is the
suffix that we need to tokenize again, when we resume tokenization, given we make no assumptions about
the input string being tokenized. We refer to this constant as the lookahead constant for a dictionary D,
and denote it by l(D). More formally, we have the following definition.

Definition 6. Let D be proper and φ ,τ and ψ be tokenizations. Then l(D), the lookahead constant for D,
is the smallest constant such that if ∣π(τ)∣ ≥ l(D) and TD(π(φ)π(τ)) = φ ≀τ , then TD(π(φ ≀τ)π(ψ)) =
φ ≀ψ ′, for some tokenization ψ

′.

We show in Theorem 2, that l(D) ≤ ∣D∣ ⋅max{∣uv∣ ∣ u ≀v ∈ D}, where ∣D∣ is the number of rules in D.
After this, in Remark 5, we explore how to improve on this bound.

The next lemma will be used in Theorem 2 to perform HuggingFace tokenization in a straightforward
inductive way, where for a proper dictionary D = [u1 ≀v1, . . . ,un ≀vn] we can tokenize a string by first
applying the rule u1 ≀v1 as many times as possible, then the rule u2 ≀v2 as many times as possible, and so
on.

Lemma 3. Let D be proper dictionary and TD
hf(w) = τ . Assume r1, . . . ,rn is the sequence of rules applied

to produce τ according to Definition 4 (i.e. using HuggingFace semantics). Then it must be the case that
r1, . . . ,rn are in order of decreasing priority.

Proof. We proceed in a way similar to Lemma 1. By contradiction, assume that there exists some ri such
that ri+1 is of higher priority than ri. This means that the tokenization after the first i steps contains the
pair ri+1 = u ≀v, but this pair cannot have been created by the applications of ri, as it is of lower priority
than ri+1 and D is proper, and it also cannot have existed in the tokenization when ri was picked as the

24 Formalizing BPE Tokenization

rule to next apply, as that contradicts how rules are picked in Definition 4. As such, our assumption was
wrong, and ri is of higher priority or equal to ri+1.

We will use the term refinement for the way a tokenization is developed in this way, i.e. a tokenization
τ is a refinement of τ

′, if τ
′ can be obtained from τ by applying π to some of the subtokenizations in

τ . For example, φ ≀φ ′ ≀φ ′′ is a refinement of φ ≀π(φ
′) ≀φ ′′ and also of π(φ) ≀π(φ

′) ≀φ ′′. We can also
consider the opposite notion, i.e. a tokenization τ

′ is coarser than τ , if τ is a refinement of τ
′. Thus,

a (final) tokenization of a given string is obtained by using rules from D to obtain coarser and coarser
tokenizations. Recall, ∣D∣ denotes the number of rules in D.

Theorem 2. Let D be proper, ∣τ ∣ ≥ ∣D∣ and TD(π(φ)π(τ)) = φ ≀τ . Then TD(π(φ ≀τ)π(ψ)) = φ ≀ψ ′, for
some tokenization ψ

′. That is, by Definition 6 we have l(D) ≤ ∣D∣ ⋅max{∣uv∣ ∣ u ≀v ∈D}.

Proof. This is easier to see using TD
hf, which is equivalent to TD by Lemma 1. Let D be the dictionary

[u1 ≀v1, . . . ,un ≀vn] and Di be the i-length prefix of D, i.e. Di = [u1 ≀v1, . . . ,ui ≀vi] for each i. We determine
TD

hf(w) as follows: First calculate TD1
hf (w), then assuming we know TDi

hf , we apply ui+1 ≀vi+1 to TDi
hf (w)

wherever possible (working left to right) to obtain TDi+1
hf . This procedure is correct by Lemma 3. We

refer to TDi(w) as a tokenization at level i, and note that TDi(w) is a refinement of TD(w).
Let φ ≀τ =w1 ≀ . . . ≀wk and w = π(φ ≀τ)π(ψ). We show that the tokenization of w at level i is a refine-

ment of a tokenization of the form w1 ≀ . . . ≀wk−i ≀ψi, thus that TDi
hf (w) is a refinement of a tokenization

of the form w1 ≀ . . . ≀wk−i ≀ψi, for some tokenization ψi. More precisely, when we use the dictionary Di,
then tokenizing π(φ ≀τ)π(ψ), instead of only π(φ ≀τ), changes at most the rightmost i tokens in φ ≀τ .
This implies that when i = n, we obtain that TDn

hf (w) is a tokenization of the form w1 ≀ . . . ≀wk−n ≀ψn, i.e.
not only a refinement of a tokenization of the given form.

First, we show that TD1
hf (w) is a refinement of a tokenization of the form w1 ≀ . . . ≀wk−1 ≀ψ1. Note that

u1 ≀v1 could potentially be applied to the substring wkπ(ψ), when tokenizing π(φ ≀τ)π(ψ), but u1 ≀v1 is
not applied across any of the (k−1) boundaries between tokens in w1 ≀ . . . ≀wk. This must be the case,
otherwise u1 ≀v1 would have been applied over some of these (k−1) boundaries between the tokens wi,
for 1 ≤ i ≤ k, when computing the tokenization w1 ≀ . . . ≀wk with the full dictionary D.

Moving on to the next rule in terms of priority, u2 ≀v2, we repeat the argument we used for u1 ≀v1.
More precisely, u2 ≀v2 could potentially be applied, one or more times, to the substring wk−1π(ψ1),
when tokenizing π(w1 ≀ . . . ≀wk−1 ≀ψ1), but u2 ≀v2 is not applied across any of the (k− 2) tokenization
boundaries in w1 ≀ . . . ≀wk−1, otherwise it would have when π(φ ≀τ) was tokenized using D. Thus, TD2

hf (w)
is a refinement of a tokenization of the form w1 ≀ . . . ≀wk−2 ≀ψ2.

We iterate this procedure for i = 3, . . . ,n to obtain the theorem.

Example 4. In this example, we consider the bound ∣τ ∣ ≥ ∣D∣, in the previous corollary. Fix a positive
integer n and let D be a dictionary with the following n rules:

an ≀an+1, an−1 ≀anan+1, an−2 ≀an−1anan+1, . . . , a1 ≀a2 . . .an+1

Also, let φ = a0, τ = a1 ≀a2 ≀ . . . ≀an, and let ψ = an+1. Then, TD(π(φ ≀τ)π(ψ)) = a0 ≀a1a2 . . .an+1, and we
can not move any prefix of the tokenization of τ to φ , otherwise we no longer have TD(π(φ ≀τ)π(ψ)) =
φ ≀ψ ′, for some tokenization ψ

′. ◇
Theorem 2 may at first appear quite abstract, but they demonstrate a fact that is very useful in practice:

a finite lookahead is sufficient to tokenize a string from left to right.

Definition 7. The sufficient lookahead of a proper dictionary D is ∣D∣ ⋅max{∣uv∣ ∣ u ≀v ∈D}. Observe that
by Theorem 2 the sufficient lookahead is greater than or equal to l(D).

M. Berglund & B. van der Merwe 25

That is, for a proper dictionary D and a string w, if we know that φ is a prefix of TD(w) (beginning
the process by taking ∣φ ∣ = 0) we can compute a prefix φ ≀u by inspecting only the sufficient lookahead
many next symbols. Observe that this lookahead length does not depend on ∣w∣. This has potential to
improve tokenization performance by cache locality (where e.g. SentencePiece [4] and HuggingFace [2]
access the string contents with random access), but also enables doing streaming tokenization using a
constant amount of memory, for when the entire string is not available or impractical to hold in memory.
One way to express this finite state tokenization approach is as a deterministic string-to-string transducer.
First, to avoid special cases for the end of the string, let us define a simple normal form.

Definition 8. For a dictionary D over the alphabet Σ, let k be the sufficient lookahead for D, assume z ∉Σ,
then a string v ∈ (Σ∪{z})∗ is the end-padding of w if it is of the form wzz⋯z where there are a total of k
trailing zs.

Remark 4. Observe that if v is w end-padded, then we have TD(v) =TD(w) ≀φ where φ = z ≀⋯≀z, since D
contains no rules involving z. This means that tokenizing v from the left to right we can end the procedure
the moment the lookahead consists only of zs, as that is the padding which will always tokenize to
φ = z ≀⋯≀z. ◇

This allows us to state a straightforward left-to-right tokenization algorithm without having special
cases for when the

Algorithm 2. Let D be a proper dictionary over the alphabet Σ and k its sufficient lookahead. Assume
that z ∉ Σ.

Precompute f ∶ (Σ∪{z})k → Σ
≀ such that for all w ∈ Σ∪{z} we have f (w) = u where TD(w) = u ≀τ

for some τ . Observe that then TD(ww′) = u ≀τ ′ for all w′ as well, by Theorem 2.
Then for any string w let v be its end-padding, we can then compute TD(v) using the following steps.

1. Split v = v′v′′ such that ∣v′∣ = k.

2. If v′ = z⋯z, halt.

3. Lookup f (v′) = u, output u.

4. Split v = uu′ (observe that u must be a prefix of v′ and in turn v).

5. Update v to be u′, then go to 1.

Theorem 3. For any fixed proper D and any string w, Algorithm 2 outputs TD(w) in time O(∣w∣) and
using O(1) taking D to be fixed and the input string to be read only.

Proof. Correctness follows from Theorem 2, with the algorithm picking tokens based on a long enough
prefix of the string (guaranteed to exceed l(D)) that it is guaranteed that any suffixes will still have the
correct tokenization produce that same token.

The time and space bounds are trivial noting that each iteration step uses up part of the string, and
suitably implemented each step uses an amount of time and space bounded in l(D), which is O(1).
Reusing space, the indicated bounds are reached.

A perhaps more natural presentation of this algorithm would be constructing a string-to-string trans-
ducer. This is not very complicated, the transducer would read l(D) symbols and then, in much the same
way as the precomputed f in Algorithm 2, output a token accordingly. However, the bound here provided
is quite large, and a more sophisticated construction is likely needed.

The bound established by Theorem 2 is clearly quite loose for most realistic dictionaries. Basically,
it assumes that the rules in the dictionary create a chain, where each successive rule can “interfere” with
the application of the next lower priority rule.

26 Formalizing BPE Tokenization

Remark 5. We have from Theorem 2 that l(D) ≤ ∣D∣ ⋅max{∣uv∣ ∣ u ≀v ∈ D}, where l(D) is the lookahead
constant of D, since ∣π(τ)∣≥ ∣D∣ ⋅max{∣uv∣ ∣ u ≀v ∈D}, implies ∣τ ∣≥ ∣D∣. Next, we consider (informally) how
to improve the bound ∣τ ∣ ≥ ∣D∣, which will then improve the bound on the lookahead constant. Consider
dictionaries D = [a ≀b,c ≀d,ab ≀cd] and D′ = [c ≀d,a ≀b,ab ≀cd], i.e. D and D′ have the same rules, but we
switched the order of the first two rules in these dictionaries. Now, note that the tokenizations of any
string w will be the same, independent of if we use D or D′. We say that dictionaries D and D′ are
equivalent if TD(w) = TD′(w) for all strings w ∈ Σ

∗. The complexity of deciding if two dictionaries are
equivalent, and if equivalence is even decidable, is left for future research.

Next, we define the chain length of a dictionary D, denoted as c(D). For a dictionary D, we let
c(D) be the maximum value of n such that we have a sequence of rules of decreasing priority, r1, . . . ,rn,
in all dictionaries equivalent to D. Thus, we certainly have that c(D) ≤ ∣D∣. Again, the complexity of
computing c(D) will be considered in a future publication, but once we have some, but necessary all
dictionaries equivalent to D, we can obtain an upper bound for c(D), most likely better than ∣D∣. In
particular, if r = u ≀v and r′ = u′ ≀v′ are neighbouring rules in D, such that a non-empty suffix of uv is not
a prefix of u′v′, a non-empty prefix of uv is not a suffix of u′v′, and uv is not a substring of u′v′, and we
have similar conditions when swapping r and r′, then certainly we can switch r and r′ in D and this will
not change the tokenization of any string. For example, if D = [a ≀b,c ≀d,ab ≀cd], then c(D) ≤ 2, since
[a ≀b,c ≀d,ab ≀cd] and [c ≀d,a ≀b,ab ≀cd] are equivalent dictionaries.

Finally, note that with these concepts in hand, the proof of Theorem 2 actually shows a stronger
result: the theorem holds if we replace the bound ∣τ ∣ ≤ ∣D∣ by ∣τ ∣ ≤ c(D). This can be seen by noting
that the proof of Theorem 2 implies that there is a sequence of rules r1, . . . ,rn, such that if we apply
these rules in order, as in HuggingFace semantics, then we obtain a refinement of w1 ≀ . . . ≀wk−i ≀ψi after
having applied ri. But, independently of which dictionary equivalent to D is used, r1 is only potentially
applied over the tokenization boundary between wk and ψ , and not over any of the (n−1) tokenization
boundaries between any of the wi. Similarly, none of the ri, with i ≥ 2, is applied over any of the (k− i−1)
tokenization boundaries in w1 ≀ . . . ≀wk−i. This is the case, since with equivalent dictionaries, by definition,
we obtain the same tokenization, and as shown in the proof of Theorem 2, in order to cross the next
tokenization boundary from the right, we need a lower priority rule. In summary, each ri from r1 . . .rn,
will, in order, cross at most one more tokenization boundary, from the right, in w1 ≀ . . . ≀wk ≀ψi, and each
ri has lower priority than ri−1, independent of which dictionary equivalent to D is considered. We thus
have that l(D) ≤ c(D) ⋅max{∣uv∣ ∣ u ≀v ∈D}.

It is necessary to obtain c(D) through a more efficient procedure than pure enumeration. Note, the
enumeration involved in constructing f in Algorithm 2 inefficiently “finds” the true l(D) anyway. ◇

5 Conclusions and Future Work

In some ways, the main contribution of this paper is the more formal definition of the tokenization
semantics, allowing them to be studied in closer details. We leveraged this to establish some interesting
properties of tokenizations, and established algorithms for both incrementally modifying a tokenization
and for doing tokenizations left-to-right using space constant in the length of the string.

Much future work remains, including the following.

• Experimental studies should be performed, for example, testing how the incremental algorithm
behaves in random cases. It seems likely to be extremely efficient in practice, as long chains of
changes, or infinite ones such as in Example 2, do not seem to be very common or realistic. We do

M. Berglund & B. van der Merwe 27

not offer implementation details in this paper, as in general the bounds implied by the constructions
are high enough to be impractical.

• Determining better upper bounds for the lookahead constant. Some more aspects that will be
considered, are listed throughout the paper, and in particular in Remark 5. Once such bounds are
established practical implementation details can be considered.

• Beyond improving the bounds of Theorem 2 there is also its converse, determining how much
a tokenization may change from appending strings on the left. Example 2 already demonstrates
that this is not finite for all D, but from random testing it seems to often be finite. It should
be investigated whether the dictionaries exhibiting these infinite ripples of changes do so due to
some easily decidable property, and whether the “lookbehind” (compare Definition 6) is efficiently
computable when finite.

References
[1] Ariel Ekgren, Amaru Cuba Gyllensten, Felix Stollenwerk, Joey Öhman, Tim Isbister, Evangelia Gogoulou,

Fredrik Carlsson, Alice Heiman, Judit Casademont & Magnus Sahlgren (2023): GPT-SW3: An Autoregres-
sive Language Model for the Nordic Languages. arXiv:2305.12987.

[2] Hugging Face (2023): Transformers. https://github.com/huggingface/transformers/blob/v4.

28.1/src/transformers/models/gpt2/tokenization_gpt2.py.
[3] Marti A Hearst (1997): Text tiling: Segmenting text into multi-paragraph subtopic passages. Computational

linguistics 23(1), pp. 33–64.
[4] Taku Kudo & John Richardson (2018): SentencePiece: A simple and language independent subword tok-

enizer and detokenizer for Neural Text Processing. CoRR abs/1808.06226. arXiv:1808.06226.
[5] Monica Lam, Ravi Sethi, Jeffrey D Ullman & Alfred Aho (2006): Compilers: principles, techniques, and

tools. Pearson Education.
[6] OpenAI (2022): ChatGPT: Optimizing language models for dialogue. Available at https://openai.com/

blog/chatgpt/.
[7] Rico Sennrich, Barry Haddow & Alexandra Birch (2016): Neural Machine Translation of Rare Words with

Subword Units. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguistics, Berlin, Germany, pp. 1715–1725,
doi:10.18653/v1/P16-1162. Available at https://aclanthology.org/P16-1162.

[8] Philippe Skolka, Cristian-Alexandru Staicu & Michael Pradel (2019): Anything to Hide? Studying Mini-
fied and Obfuscated Code in the Web. In: The World Wide Web Conference, WWW ’19, Association for
Computing Machinery, New York, NY, USA, p. 1735–1746, doi:10.1145/3308558.3313752.

[9] Felix Stollenwerk (2023): Training and Evaluation of a Multilingual Tokenizer for GPT-SW3.
arXiv:2304.14780.

[10] Nicolaas Weideman, Brink van der Merwe, Martin Berglund & Bruce W. Watson (2016): Analyzing Match-
ing Time Behavior of Backtracking Regular Expression Matchers by Using Ambiguity of NFA. In Yo-Sub
Han & Kai Salomaa, editors: Implementation and Application of Automata - 21st International Conference,
CIAA 2016, Seoul, South Korea, July 19-22, 2016, Proceedings, Lecture Notes in Computer Science 9705,
Springer, pp. 322–334, doi:10.1007/978-3-319-40946-7_27.

https://arxiv.org/abs/2305.12987
https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/models/gpt2/tokenization_gpt2.py
https://github.com/huggingface/transformers/blob/v4.28.1/src/transformers/models/gpt2/tokenization_gpt2.py
https://arxiv.org/abs/1808.06226
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.1145/3308558.3313752
https://arxiv.org/abs/2304.14780
https://doi.org/10.1007/978-3-319-40946-7_27

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 28–37, doi:10.4204/EPTCS.388.5

© Ömer Eğecioğlu & Benedek Nagy
This work is licensed under the
Creative Commons Attribution License.

On Languages Generated by Signed Grammars

Ömer Eğecioğlu
Department of Computer Science

University of California
Santa Barbara, CA 93106, USA

omer@cs.ucsb.edu

Benedek Nagy
Department of Mathematics, Eastern Mediterranean University

99628 Famagusta, North Cyprus, Mersin-10, Turkey
Department of Computer Science, Institute of Mathematics and Informatics,

Eszterházy Károly Catholic University, Eger, Hungary
nbenedek.inf@gmail.com

We consider languages defined by signed grammars which are similar to context-free grammars
except productions with signs associated to them are allowed. As a consequence, the words generated
also have signs. We use the structure of the formal series of yields of all derivation trees over such a
grammar as a method of specifying a formal language and study properties of the resulting family of
languages.

1 Introduction

We consider properties of signed grammars, which are grammars obtained from context-free grammars
(CFGs) by allowing right hand sides of productions to have negative signs in front. The concept of
generation for such grammars is somewhat different from that of context-free grammars. A signed
grammar is said to generate a language L if the formal sum of the yields over all derivation trees over
the grammar corresponds to the list of words in L . For a signed grammar, the yields of derivation trees
may have negative signs attached to them, but the requirement is that when the arithmetic operations are
carried out in the formal sum, the only remaining words are those of L , each appearing with multiplicity
one.

The structure of context-free languages (CFLs) under a full commutation relation defined on the
terminal alphabet is the central principle behind Parikh’s theorem [24]. In partial commutation, the
order of letters of some pairs of the terminal alphabet is immaterial, that is, if they appear consecutively,
the word obtained by swapping their order is equivalent to the original one. These equivalence classes
are also called traces and studied intensively in connection to parallel processes [18, 12, 21, 4]. Our
motivation for this work is languages obtained by picking representatives of the equivalence classes in
Σ∗ under a partial commutativity relation, called Cartier-Foata languages [1]. In the description of these
languages with Kleene-closure type expansions, words appear with negative signs attached to them.
However such words are cancelled by those with positive signs, leaving only the sum of the words of the
language. An example of this is (a+b−ba)∗ which is more familiarly denoted by the regular expression
a∗b∗. The interesting aspect of Cartier-Foata languages is that the words with negative signs cancel out
automatically, leaving only the representative words, each appearing exactly once.

Motivated by these languages, we consider grammars which are obtained from context-free gram-
mars by allowing signed productions, i.e., normal productions (in the role of positive productions) and
productions of the form A→ −α (negative productions). In this way, a derivation results in a signed
word where the sign depends on the parity of the number of negative rules applied in the derivation. We
consider those derivations equivalent that belong to the same derivation tree, and actually, the derivation
tree itself defines the sign of the derived word. The language generated by such a grammar is obtained
by taking all possible derivation trees for a given word (both its positive and negative derivations) and

http://dx.doi.org/10.4204/EPTCS.388.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Ömer Eğecioğlu & Benedek Nagy 29

requiring that the sum of the yields of all derivation trees over the grammar simply is a list of the words
in a language L . This means that the simplified formal sum is of the form ∑w∈L w, each word of the
language appearing with multiplicity one. (Without loss of generality, in this study, we restrict ourselves
to grammars having finitely many parse trees for each of the derived words.)

On one hand, the requirements in the specification of a language generated by a signed grammar may
seem too restrictive. But at the same time this class of languages includes all unambiguous context-free
languages and it is closed under complementation, and consequently can generate languages that are not
even context-free. Therefore it is of interest to consider the interplay between the restrictions and various
properties of languages generated by signed grammars.

2 Preliminaries

Given a language L over an alphabet Σ, we identify L with the formal sum of its words denoted by
f (L):

f (L) = ∑
w∈L

w . (1)

The sum in (1) is also referred to as the listing series of L . A weighted series of L is a formal series of
the form ∑w∈L nw w where nw are integers. Thus a weighted series of Σ∗

∑
w∈Σ∗

nw w

is the listing series of some language L over Σ iff

nw =

{
1 if w ∈L
0 if w 6∈L .

(2)

We are allowed ordinary arithmetic operations on weighted series in a natural way. The important thing
is that a weighted series is the listing series of a language L iff the coefficients of the words in L in
the weighted series are 1, and all the others are 0. So for example over Σ = {a,b,c}, the weighted series
a+ b+ c+ ba is the listing series of the finite language L = {a,b,c,ba}, whereas the weighted series
a+ b+ c− ba does not correspond to a language over Σ. This is because in the latter example nw does
not satisfy (2) for w = ba. As another example, the difference of the weighted series 2a+ 3b− c+ ba
and a+2b−2c+ba corresponds to the language L = {a,b,c}.

2.1 CFGs and degree of ambiguity

Next we look at the usual CFGs G = (V,Σ,P,S). Here the start symbol is S ∈ V . Let T be a parse
(derivation) tree over G with root label S and terminal letters as labels of the leaves of T . Let Y (T) ∈ Σ∗

be the yield of T . Then the language generated by G is

L (G) = {Y (T) | T is a parse tree over G} .

This is equivalent to L (G) = {w ∈ Σ∗ | S =⇒∗
G

w}. For a CFG G, we can define the formal weighted
sum

f (G) = ∑
T∈TG

Y (T) = ∑
w∈Σ∗

nww (3)

30 Signed grammars

where TG denotes all parse trees over G. Various notions of ambiguity for CFLs can be interpreted as
the nature of the coefficients nw that appear in (3). Rewriting some of the definitions in Harrison [8, pp.
240-242] in terms of these coefficients, we have

1. Given k ≥ 1, G is ambiguous of degree k if nw ≤ k for all w ∈L (G).

2. L is inherently ambiguous of degree k ≥ 2 if L cannot be generated by any grammar that is
ambiguous of degree less than k but can be generated by by a grammar that is ambiguous of
degree k. In other words the degree of ambiguity of a CFL is the least upper bound for the number
of derivation trees which a word in the language can have.

3. L is finitely inherently ambiguous if there is some k and some G for L so that G is inherently
ambiguous of degree k.

4. A CFG G is infinitely ambiguous if for each i≥ 1, there exists a word in L (G) which has at least
i parse trees. A language L is infinitely inherently ambiguous if every grammar generating L is
infinitely ambiguous.

The CFL A = {aib jck | i = j or j = k} is inherently ambiguous of degree 2 [8, p. 240], A m is
inherently ambiguous of degree 2m [8, Theorem 7.3.1], and A ∗ is infinitely inherently ambiguous [8,
Theorem 7.3.3]. Another interesting CFL which is infinitely inherently ambiguous is Crestin’s language
[3] of double palindromes over a binary alphabet {w1w2 | w1,w2 ∈ {a,b}∗,w1 = wR

1 ,w2 = wR
2}. Further-

more, for every k ≥ 1, there exist inherently ambiguous CFLs of degree k. The behavior of the sequence
nw over all CFGs for a language was studied by Wich [25, 26].

3 Signed grammars

We consider signed grammars G which are like CFGs but with a sign associated with each production,
that is, apart from the usual (say positive) productions, we allow productions of the form A→−α . In
the derivation relation we use the signs as usual in a multiplicative manner: We start the derivation from
the sentence symbol (with + sign, but as usual we may not need to put it, as it is the default sign). The
derivation steps, as rewriting steps, occur as they are expected in a CFG, the only extension is that we
need to deal with also the sign. When a positive production is applied in a sentential form, its sign does
not change, while whenever a negative production is applied, this derivation step switches the sign of the
sentential form. Thus, in this case the yield of a parse tree of G is a word over Σ with a ± sign attached
to it. Furthermore, the sign of a derived word depends only on the parity of the number of negative
productions used during its derivation. Therefore, different derivation trees for the same word may lead
to the word with different signs attached to it. We note that, in fact, any CFG is a signed grammar. For a
signed grammar G, let f (G) be defined as in (3), where again TG denotes all parse trees over G. Without
loss of generality, we may assume that in the grammar G there are only finitely many parse trees for any
of the words generated by the grammar.
Definition 1 We say that a signed grammar G generates a language L iff the weighted series f (G) in
(3) is the listing series of L , i.e. f (G) = f (L).

3.1 Examples of languages generated by signed grammars

Example 1 For the signed grammar G1 with start symbol A and productions A→−aA |λ , we have

f (G1) = ∑
i≥0

a2i−∑
i≥0

a2i+1 . (4)

Ömer Eğecioğlu & Benedek Nagy 31

Therefore the signed grammar G with productions S→ A |B, A→ −aA |λ , B→ aaB |a generates the
regular language (aa)∗. As this is our first example, we provide details of the derivations in G:

• The empty word λ can be derived only in one way, by applying a positive production, thus it is in
the language.

• By applying a negative and a positive production, S⇒ A⇒−aA⇒−a yields−a, and S⇒ B⇒ a
yields +a. These two are the only derivations over G for ±a. This means that the word a is not in
the language.

• For the word aa, the only derivation is S⇒ A⇒−aA⇒ aaA⇒ aa. Consequently aa is in the
generated language.

• Finally, by induction, one can see that an even number of a-s can only be produced by starting
the derivation by S⇒ A. Following this positive production, each usage of A→−aA introduces
a negative sign. Therefore each word of the form a2i is generated once this way with a + sign.
On the other hand there are two possible ways to produce a string a2i+1 of an odd number of a-s.
One of these starts with A⇒−aA as before and produces−a2i+1 after an odd number of usages of
A→−aA; the other one starts with S⇒ B and produces a2i+1 after an even number of applications
of B→ aaB, followed by B→ a. Therefore odd length words cancel each other out and are not in
the language generated.

Another way to look at this is to note that for the (signed) grammar G2 with the start symbol B and
productions B→ aaB |a, we have

f (G2) = ∑
i≥0

a2i+1 , (5)

and the words generated by G are given by the formal sum of (4) and (5).

Example 2 The signed grammar with productions S→ aS |bS | −baS |λ generates the regular language
denoted by the regular expression a∗b∗. First few applications of the productions give

λ ;

a+b−ba;

a2 +ab−aba+ba+b2−b2a−ba2−bab+baba;

in which the only immediate cancellation is of −ba, though all words carrying negative signs will even-
tually cancel out. This is a special case of the Cartier-Foata result [1], [5, Section 8.4].

Example 3 Over the decimal (or the binary) alphabet we can construct an unambiguous regular grammar
G that generates all nonnegative even numbers, e.g., S→ 9S |8A |7S |6A |5S |4A |3S |2A |1S |0A and A→
9S |8A |7S |6A |5S |4A |3S |2A |1S |0A |λ . Let, further, a regular grammar G′ be generating the numbers
which are divisible by 6 (e.g., based on the deterministic finite automaton checking the sum of the digits
to be divisible by 3 and the last digit must be even, we need states/nonterminals to count the sum of
already read digits by mod 3 and take care to the last digit as we did for G).

Then L (G) consists of all even numbers and L (G′) consists of all numbers divisible by 6. Now,
from G′, we may make a signed grammar G′′ which allows us to derive every multiple of 6 with the sign
−. Then by combining the two grammars G and G′′, we can easily give a signed grammar that generates
all even numbers that are not divisible by 3 (i.e., even numbers not divisible by 6).

32 Signed grammars

Example 4 Over the alphabet {a,b} consider the signed grammar with productions S→ aSa |bSb |a |b.
This so far generates odd length palindromes. Let us add the productions S→−A, A→−abAba |a.

Then each odd length palindrome with the letter b in the middle has exactly one derivation tree with
a + sign. There are no cancellations for these and therefore all odd length palindromes with b in the
middle are in the language. If the middle of an odd length palindrome w is a but not ababa, then w is not
in L as it has also derivation tree with− sign. Similarly, if the middle of w is ababa but not ababababa,
w is in L . In general, if an odd length palindrome w has (ab)2k−1a(ba)2k−1 in the middle, but it does
not have (ab)2ka(ba)2k in its middle, then it is in L . Here the number of derivation trees for a word with
a + sign is either equal to the number of derivation trees with a − sign for the word, or it is exactly one
more.

Example 5 For the following signed grammar

S1→−aA |Ba |a
A→−aA |Ba |a
B→−aB |Ba | −a |aa

for n odd, there are 2n−1 parse trees for an and 2n−1−1 parse trees for−an. For n even, there are 2n−1−1
parse trees for an and 2n−1 parse trees for −an. In other words for the above grammar

f (G) = ∑
i≥0

22ia2i+1 +∑
i≥0

(22i−1)a2i−∑
i≥0

(22i−1)a2i+1−∑
i≥0

22ia2i

= ∑
i≥0

(−1)iai+1 .

If we add the productions S→ S1 |S2, S2 → aaS2 |aa then the resulting signed grammar generates
the regular language a(aa)∗. Even though the language generated is very simple we see that signed
grammars possess some interesting behavior.

4 Properties of languages generated by signed grammars

In this section our aim is twofold. On the one hand we give some closure properties of the class of
languages generated by our new approach and, on the other hand, we give hierarchy like results by
establishing where this family of languages is compared to various other classes.

We immediately observe that in the weighted sum (3) for a CFG G (i.e. a signed grammar G with
no signed productions), the coefficient nw is the number of parse trees for w over G, in other words the
degree of ambiguity of w.

Proposition 1 Any unambiguous CFL is generated by a signed grammar.

Proof An unambiguous CFL L is generated by the signed grammar G where G is any unambiguous
CFG for L . •

As the class of unambiguous CFLs contains all deterministic CFLs, LR(0) languages, regular lan-
guages, subsets of w∗1w∗2 [7, Theorem 7.1], all of these languages are generated by signed grammars.
Further, all these classes are proper subsets of the class of languages generated by signed grammars.

Now we present a closure property.

Proposition 2 Languages generated by signed grammars are closed under complementation.

Ömer Eğecioğlu & Benedek Nagy 33

Proof Take an unambiguous CFG for Σ∗ with start symbol S1. If L is generated by a signed grammar
with start symbol S2 (and no common nonterminal in the two grammars), then the productions of the two
grammars together with S→ S1 | −S2 with a new start symbol S generates L . •

We continue the section comparing our new class of languages with other well-known language class,
the class of CFLs.

In 1966 Hibbard and Ullian constructed an unambiguous CFL whose complement is not a CFL
[9, Theorem 2]. Recently Martynova and Okhotin constructed an unambiguous linear language whose
complement is not context-free [14]. This shows that unambiguous linear CFLs are not closed under
complementation while providing another proof of Hibbard and Ullian’s result.

We know that languages generated by signed grammars are closed under complementation, and
also every unambiguous CFL is generated by a signed grammar. A consequence of this is that signed
grammars can generate languages that are not context-free.

Proposition 3 There is a language generated by a signed grammar that is not context-free.

Proof If L is the unambiguous CFL constructed by Hibbard and Ullian, then L and therefore L are
generated by signed grammars. But we know that L is not context-free. •

Actually, our last proposition shows that the generative power of signed grammars is surprisingly
large, it contains, e.g., all deterministic and unambiguous CFLs and their complements. Thus, one can
easily generate some languages that are not in the class of CFLs.

Continuing with closure properties, recall that disjoint union is an operation that is defined only on
disjoint sets which produces their union.

Proposition 4 Languages generated by signed grammars are closed under disjoint union].

Proof Let L1 and L2 be two languages over an alphabet Σ such that L1∩L2 = /0. Let L1 be generated
by a signed grammar with start symbol S1 and L2 be generated by a signed grammar with start symbol
S2, such that the sets of nonterminals of these two grammars are disjoint. Then the productions of the
two grammars together with S→ S1 | S2 with a new start symbol S generates the disjoint union L1]L2.
•

Now, let us define the set theoretical operation “subset minus” (), as follows: let A ⊆ B, then
B	A = B\A. This type of setminus operation is defined only for sets where the subset condition holds.

Proposition 5 Languages generated by signed grammars are closed under subset minus 	.

Proof Let L1 ⊆ L2 be two languages over a given alphabet Σ. Take the signed grammar for L1
with start symbol S1. If L2 is generated by a signed grammar with start symbol S2 (with no common
nonterminals of the two grammars), then the productions of the two grammars together with S→ S1 | −S2
with a new start symbol S generates the language of L2	L1. •

Let L1,L2 ⊆ Σ∗ be two languages and $ 6∈ Σ. The $-concatenation of L1 and L2 is the language
L1$L2 over the alphabet Σ∪{$}.

Proposition 6 Languages generated by signed grammars are closed under $-concatenation.

Proof The language L1$ has the prefix property (i.e. it is prefix-free) due to the special role of the
marker $. Let G1 and G3 be signed grammars with disjoint variables and start symbols S1 and S3 that
generate L1 and L2, respectively. Consider also the signed grammar G2 with the single production

34 Signed grammars

S2 → $. Then the signed grammar which have all the productions of G1,G2,G3 together with the pro-
duction S→ S1S2S3 where S is a new start symbol generates the language L1$L2. The proof follows
by observing that for u,u′ ∈L1 and v,v′ ∈L2, u$v = u′$v′ iff u = u′ and v = v′, so that each word that
appears in the expansion of (

∑
w∈L1

w

)
$

(
∑

w∈L2

w

)
has coefficient 1. •

In a similar manner, it can also be seen that we have a similar statement for languages over disjoint
alphabet, i.e., the class of languages generated by signed grammars is closed under “disjoint concatena-
tion” �.

Proposition 7 Let L1 ⊆ Σ∗1 and L2 ⊆ Σ∗2 be two languages that are generated by signed grammars,
where Σ1∩Σ2 = /0. Then, the language L1 �L2 = L1L2 can be generated by a signed grammar.

In the following proposition, f (L) and f (G) are as defined in (1) and (3).

Proposition 8 Suppose L generated by a signed grammar. Then there are CFGs G1 and G2 such that
f (L) = f (G1)− f (G2).

Proof Given a signed grammar over Σ, add an extra letter t to Σ and replace all productions of the form
A→−α by A→ tα . The words generated by this CFG over Σ∪{t} with an even number of occurrences
of t is a CFL since it is the intersection of CFL and the regular language, i.e. all words over Σ∪{t} with
an even number of occurrences of t. Similarly, the words generated with an odd number of occurrences
of t is a CFL. We can then take homomorphic images of these two languages generated by replacing t by
λ and obtain two CFLs generated by CFGs G1 and G2. The weighted series f (G) is then the difference
of two weighted series

f (G) = f (G1)− f (G2) = ∑
w∈Σ∗

nww − ∑
w∈Σ∗

n′ww . (6)

In (6), the coefficients nw and n′w are nonnegative integers for all w ∈ Σ∗ as they count the number of
derivation trees for w over G1 and G2, respectively. •

Remark 1 In Proposition 8, f (G1)− f (G2) is the listing series of L , and therefore nw− n′w = 1 or
nw−n′w = 0 for all w ∈ Σ∗. In the first case w ∈L , and in the second w 6∈L . Note that these conditions
do not imply that L = L (G1)\L (G2).

5 Partial commutativity

Addition of commutativity relations to CFGs was considered in [19]. Here we consider partial commuta-
tivity defined on Σ∗ where Σ = {x1,x2, . . . ,xm}. Given an m×m symmetric {0,1}-matrix A = [ai, j] with
1s down the diagonal, a pair of letters xi,x j is a commuting pair iff ai, j = 1. This defines an equivalence
relation and partitions Σ∗ into equivalence classes, also known as traces. Thinking about the element
of the alphabet as processes and traces as their scheduling, commuting processes are considered as in-
dependent from each other. In this way the theory of traces has been intensively studied in connection
to parallel processes [11, 12]. A (linearization of a) trace language is a union of some of these equiv-
alence classes. Trace languages based on regular, linear and context-free languages (adding a partial

Ömer Eğecioğlu & Benedek Nagy 35

commutativity relation to the language) were studied and accepted by various types of automata with
translucent letters in [21, 23, 22], respectively. Traces and trajectories are also analyzed in various grids
[15, 16, 20]. On the other hand, the Cartier–Foata language LA corresponding to the matrix A of a
partial commutativity relation is constructed by picking a representative word from each equivalence
class.

Let us define a set F ⊆ Σ to be commuting if any pair of letters in F commute. Let C (A) denote the
collection of all nonempty commuting sets. Denote by w(F) the word obtained by juxtaposing the letters
of F . The order in which these letters are juxtaposed is immaterial since all arrangements are equivalent.

The central result is that the listing series f (LA) can be constructed directly from the matrix A:

f (LA) =

(
∑

F∈C (A)
(−1)#Fw(F)

)∗
= ∑

n≥0

(
∑

F∈C (A)
(−1)#Fw(F)

)n

, (7)

where #F denotes the number of elements of F .
Over Σ = {a,b} where a and b commute, the Cartier-Foata theorem gives LA as (a + b− ba)∗,

which is to be interpreted as the weighted series λ +(a+ b− ba)+ (a+ b− ba)2 + · · · In this case the
representatives of the equivalence classes are seen to be the words in a∗b∗. The essence of the theorem
is that this is a listing series, so there is exactly one representative word from each equivalence class that
remains after algebraic cancellations are carried out.

Similarly over Σ = {a,b,c} with a,b and a,c commuting pairs, the listing series is λ +(a+b+ c−
ba− ca)+(a+b+ c−ba− ca)2 + · · ·

The words in this second language are generated by the signed grammar

S→ λ |aS |bS |cS | −baS | − caS .

6 Conclusions and a conjecture

Proposition 8 provides an expression for the listing series of a language generated by a signed grammar
in terms of weighted listed series of two CFLs. However this result is short of a characterization in terms
of CFLs. It is also possible to change the way signed grammars generate languages by requiring nw ≥ 1
in (2) instead of equality. In this way, every signed grammar would generate a language, and obviously,
the class of generated languages would also change. However, our consideration in this paper to allow
only 0 and 1 to be the signed sum, gives a nice and immediate connection to Cartier-Foata languages in
the regular case by special regular like expressions.

Since by signed grammars, we generate languages based on counting the number of (signed) deriva-
tion trees, it is straightforward to see the connection between our grammars and unambiguous CFLs. On
the other hand, there may be more than one derivation tree for a given word w, with the proviso that the
algebraic sum of the yields of derivation trees for it has multiplicity nw ∈ {0,1}. Therefore signed gram-
mars may also generate ambiguous CFLs. In this sense, the bottom of the hierarchy, the unambiguous
CFLs are included in the class we have investigated. On the other hand, if there are multiple derivation
trees for a word generated by a grammar, by playing with their signs, we have a chance to somehow have
their signed sum to be in {0,1}. Thus, it may be possible to generate languages that are higher in the
hierarchy based on ambiguity. However, this is still an open problem.

We have shown that signed grammars can generate languages that are not context-free. It would be
of interest to use the fact that the languages generated by signed grammars are closed under comple-
mentation to show that signed grammars can generate inherently ambiguous CFLs. One way to do this

36 Signed grammars

would be to start with an unambiguous CFL whose complement is an inherently ambiguous CFL. The
standard examples of inherently ambiguous CFLs do not seem to have this property. By the Chomsky-
Schützenberger theorem [2] the generating function of an unambiguous CFL is algebraic. Using the
contrapositive and analytical methods, Flajolet [6] and later Koechlin [13] devised ingenious methods to
show the transcendence of the generating function of a given language to prove its inherent ambiguity.
However if the generating function of L is transcendental so is the generating function of its complement
L . This means that one needs to look among inherently ambiguous languages with algebraic generating
functions (e.g. {aib jck | i = j or j = k}, see [13, Proposition 14]) if the complement has any chance of
being unambiguous.

So it would be nice to have an answer to the following question: Is there an unambiguous CFL whose
complement is an inherently ambiguous CFL?

A related problem of showing the existence of an inherently ambiguous CFL whose complement is
also an inherently ambiguous CFL was settled by Maurer [17].

References

[1] P. Cartier & D. Foata (1969): Problèmes combinatoires de commutation et réarrangements. Springer,
doi:10.1007/BFb0079468.

[2] N. Chomsky & M. P. Schützenberger (1963): The Algebraic Theory of Context-Free Languages. In P. Braffort
& D. Hirschberg, editors: Computer Programming and Formal Systems, Studies in Logic and the Foundations
of Mathematics 35, Elsevier, pp. 118–161, doi:10.1016/S0049-237X(08)72023-8. Available at https://
www.sciencedirect.com/science/article/pii/S0049237X08720238.

[3] J. P. Crestin (1972): Un langage non ambigu dont le carré est d’ambiguité non bornée. In Maurice Nivat,
editor: Automata, Languages and Programming, Colloquium, Paris, France, July 3-7, 1972, North-Holland,
Amsterdam, pp. 377–390. Available at https://api.semanticscholar.org/CorpusID:44540005.

[4] V. Diekert & G. Rozenberg, editors (1995): The Book of Traces. World Scientific, doi:10.1142/2563.

[5] Ö. Eğecioğlu & A. Garsia (2021): Lessons in Enumerative Combinatorics. Springer, Graduate Texts in
Mathematics, doi:10.1007/978-3-030-71250-1.

[6] P. Flajolet (1987): Analytic models and ambiguity of context-free languages. Theor. Comput. Sci. 49(2), pp.
283–309, doi:10.1016/0304-3975(87)90011-9.

[7] S. Ginsburg & J. S. Ullian (1966): Ambiguity in context free languages. J. ACM 13, pp. 62–89,
doi:10.1145/321341.321345.

[8] M. A. Harrison (1978): Introduction to Formal Language Theory. Addison-Wesley.

[9] T. N. Hibbard & J. S. Ullian (1966): The independence of inherent ambiguity from complementedness among
context-free languages. Journal of the ACM 13(4), pp. 588–593, doi:10.1145/321356.321366.

[10] J. Hopcroft & J. Ullman (1979): Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley.

[11] Ryszard Janicki, Jetty Kleijn, Maciej Koutny & Lukasz Mikulski (2017): Invariant Structures and Depen-
dence Relations. Fundam. Informaticae 155(1-2), pp. 1–29, doi:10.3233/FI-2017-1574.

[12] Ryszard Janicki, Jetty Kleijn, Maciej Koutny & Lukasz Mikulski (2019): Classifying invariant structures of
step traces. J. Comput. Syst. Sci. 104, pp. 297–322, doi:10.1016/j.jcss.2017.05.002.

[13] F. Koechlin (2022): New Analytic Techniques for Proving the Inherent Ambiguity of Context-Free Languages.
In Anuj Dawar & Venkatesan Guruswami, editors: 42nd IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2022), Leibniz International Proceed-
ings in Informatics (LIPIcs) 250, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,

https://doi.org/10.1007/BFb0079468
https://doi.org/10.1016/S0049-237X(08)72023-8
https://www.sciencedirect.com/science/article/pii/S0049237X08720238
https://www.sciencedirect.com/science/article/pii/S0049237X08720238
https://api.semanticscholar.org/CorpusID:44540005
https://doi.org/10.1142/2563
https://doi.org/10.1007/978-3-030-71250-1
https://doi.org/10.1016/0304-3975(87)90011-9
https://doi.org/10.1145/321341.321345
https://doi.org/10.1145/321356.321366
https://doi.org/10.3233/FI-2017-1574
https://doi.org/10.1016/j.jcss.2017.05.002

Ömer Eğecioğlu & Benedek Nagy 37

pp. 41:1–41:22, doi:10.4230/LIPIcs.FSTTCS.2022.41. Available at https://drops.dagstuhl.de/opus/
volltexte/2022/17433.

[14] O. Martynova & A. Okhotin (2023): Non-Closure under Complementation for Unambiguous Linear Gram-
mars. Inf. Comput. 292(C), doi:10.1016/j.ic.2023.105031.

[15] Alexandru Mateescu, Grzegorz Rozenberg & Arto Salomaa (1998): Shuffle on Trajectories: Syntactic Con-
straints. Theor. Comput. Sci. 197(1-2), pp. 1–56, doi:10.1016/S0304-3975(97)00163-1.

[16] Alexandru Mateescu, Kai Salomaa & Sheng Yu (2000): On Fairness of Many-Dimensional Trajectories. J.
Autom. Lang. Comb. 5(2), pp. 145–157, doi:10.25596/jalc-2000-145.

[17] H. A. Maurer (1970): A note on the complement of inherently ambiguous context-free languages. Commun.
ACM 13, p. 194, doi:10.1145/362052.362065.

[18] A. Mazurkiewicz (1977): Concurrent Program Schemes and their Interpretations. DAIMI Report Series
6(78), doi:10.7146/dpb.v6i78.7691. Available at https://tidsskrift.dk/daimipb/article/view/
7691.

[19] Benedek Nagy (2009): Languages generated by context-free grammars extended by type AB → BA rules.
Journal of Automata, Languages and Combinatorics 14, pp. 175–186, doi:10.25596/jalc-2009-175.

[20] Benedek Nagy & Arif A. Akkeles (2017): Trajectories and Traces on Non-traditional Regular Tessellations
of the Plane. In Valentin E. Brimkov & Reneta P. Barneva, editors: Combinatorial Image Analysis - 18th
International Workshop, IWCIA 2017, Plovdiv, Bulgaria, June 19-21, 2017, Proceedings, Lecture Notes in
Computer Science 10256, Springer, pp. 16–29, doi:10.1007/978-3-319-59108-7_2.

[21] Benedek Nagy & Friedrich Otto (2010): CD-Systems of Stateless Deterministic R(1)-Automata Accept
All Rational Trace Languages. In Adrian-Horia Dediu, Henning Fernau & Carlos Martín-Vide, editors:
Language and Automata Theory and Applications, 4th International Conference, LATA 2010, Trier, Ger-
many, May 24-28, 2010. Proceedings, Lecture Notes in Computer Science 6031, Springer, pp. 463–474,
doi:10.1007/978-3-642-13089-2_39.

[22] Benedek Nagy & Friedrich Otto (2011): An Automata-Theoretical Characterization of Context-Free Trace
Languages. In Ivana Cerná, Tibor Gyimóthy, Juraj Hromkovic, Keith G. Jeffery, Rastislav Královic, Marko
Vukolic & Stefan Wolf, editors: SOFSEM 2011: Theory and Practice of Computer Science - 37th Conference
on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 22-28,
2011. Proceedings, Lecture Notes in Computer Science 6543, Springer, pp. 406–417, doi:10.1007/978-3-
642-18381-2_34.

[23] Benedek Nagy & Friedrich Otto (2020): Linear automata with translucent letters and linear context-free
trace languages. RAIRO Theor. Informatics Appl. 54, p. 3, doi:10.1051/ita/2020002.

[24] R. J. Parikh (1961): Language generating devices. MIT Res. Lab., Quarterly Progress Report 60, pp. 199–
212.

[25] K. Wich (2000): Sublinear Ambiguity. In Mogens Nielsen & Branislav Rovan, editors: Mathematical
Foundations of Computer Science 2000, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 690–698,
doi:10.1007/3-540-44612-5_64.

[26] K. Wich (2005): Sublogarithmic ambiguity. Theoretical Computer Science 345(2), pp. 473–504,
doi:10.1016/j.tcs.2005.07.024.

https://doi.org/10.4230/LIPIcs.FSTTCS.2022.41
https://drops.dagstuhl.de/opus/volltexte/2022/17433
https://drops.dagstuhl.de/opus/volltexte/2022/17433
https://doi.org/10.1016/j.ic.2023.105031
https://doi.org/10.1016/S0304-3975(97)00163-1
https://doi.org/10.25596/jalc-2000-145
https://doi.org/10.1145/362052.362065
https://doi.org/10.7146/dpb.v6i78.7691
https://tidsskrift.dk/daimipb/article/view/7691
https://tidsskrift.dk/daimipb/article/view/7691
https://doi.org/10.25596/jalc-2009-175
https://doi.org/10.1007/978-3-319-59108-7_2
https://doi.org/10.1007/978-3-642-13089-2_39
https://doi.org/10.1007/978-3-642-18381-2_34
https://doi.org/10.1007/978-3-642-18381-2_34
https://doi.org/10.1051/ita/2020002
https://doi.org/10.1007/3-540-44612-5_64
https://doi.org/10.1016/j.tcs.2005.07.024

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. 38–47, doi:10.4204/EPTCS.388.6

© A. Meduna, T. Kožár, Z. Křivka

This work is licensed under the

Creative Commons Attribution License.

Final Sentential Forms

Tomáš Kožár

Faculty of Information Technology
Brno University of Technology

Czech Republic

ikozar@fit.vut.cz

Zbyněk Křivka

Faculty of Information Technology
Brno University of Technology

Czech Republic

krivka@fit.vut.cz

Alexander Meduna

Faculty of Information Technology
Brno University of Technology

Czech Republic

meduna@fit.vut.cz

Let G be a context-free grammar with a total alphabet V , and let F be a final language over an

alphabet W ⊆V . A final sentential form is any sentential form of G that, after omitting symbols from

V −W , it belongs to F . The string resulting from the elimination of all nonterminals from W in a

final sentential form is in the language of G finalized by F if and only if it contains only terminals.

The language of any context-free grammar finalized by a regular language is context-free. On the

other hand, it is demonstrated that L is a recursively enumerable language if and only if there exists

a propagating context-free grammar G such that L equals the language of G finalized by {w#wR |w ∈
{0,1}∗}, where wR is the reversal of w.

1 Introduction

The present paper introduces and studies final sentential forms of context-free grammars. These forms

represent the sentential forms in which the sequences of prescribed symbols, possibly including non-

terminals, belong to given final languages. If all the other symbols are terminals, these final forms are

changed to the sentences of the generated languages by simply eliminating all nonterminals in them.

Next, we sketch both a practical inspiration and a theoretical reason for introducing this new way of

context-free language generation.

I. Indisputably, parsing represents a crucially important application area of ordinary context-free

grammars (see Chapters 3 through 5 in [4]) as well as their modified versions, such as regulated

grammars (see Section 20.3 in [6]). During the parsing process, the correctness of the source

program syntax is often verified before all nonterminals are eliminated; nevertheless, most clas-

sically constructed parsers go on eliminating these nonterminals by using erasing rules until only

terminals are derived. As a result, the entire parsing process is slowed down uselessly during this

closing phase (for a simple, but straightforward illustration of this computational situation, see, for

instance, Case Study 14/35 in [4] or Example 4.35 in [1]). Clearly, as the newly introduced way of

language generation frees us from a necessity of this closing elimination of all nonterminals, the

parsers that make use of it work faster.

II. From a theoretical viewpoint, in the present paper, we achieve a new representation for recur-

sively enumerable languages based upon context-free languages. Admittedly, the theory of formal

languages is overflown with many representations for recursively enumerable languages based

upon operations over some context-free languages or their special cases (see Section 4.1.3 in [7]).

Nonetheless, we believe this new representation is of some interest when compared with the previ-

ously demonstrated representations. Indeed, each of the already existing representations is demon-

strated, in essence, by a proof that has the following general format. (i) First, given any recursively

enumerable language L, it represents L by a suitable language model G, such as a phrase struc-

ture grammar in a normal form. (ii) Then, from G, it derives both operations and context-free

http://dx.doi.org/10.4204/EPTCS.388.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. Meduna, T. Kožár, Z. Křivka 39

languages involved in the representation in question. (iii) Finally, it shows that the representation

made in this way from G holds true. What is important from our standpoint is that in a proof like

this, the specific form of all the operations as well as the languages involved in the representation

always depend on G, which generates L. As opposed to this, the new representation achieved in

the present paper is much less dependent on L or any of its language models . More precisely, we

demonstrate the existence of a unique constant language C defined as C = {w#wR |w ∈ {0,1}∗}
and express any recursively enumerable language L by using C and a minimal linear language

without any operation. Consequently, C always remains unchanged and, therefore, independent of

L or its models. Considering this independency as well as the absence of any operations in the new

representation, we believe this representation might be of some interest to formal language theory.

To give a more detailed insight into this study, we first informally recall the notion of an ordinary

context-free grammar and its language (this paper assumes a familiarity with formal language theory).

A context-free grammar G is based upon a grammatical alphabet V of symbols and a finite set of rules.

The alphabet V is divided into two disjoint subalphabets—the alphabet of terminals T and the alphabet

of nonterminals N. Each rule has the form A → x, where A is a nonterminal and x is a string over V .

Starting from a special start nonterminal, G repeatedly rewrites strings according to its rules, and in this

way, it generates its sentential forms. Sentential forms that consist only of terminal symbols are called

sentences, and the set of all sentences represents the language generated by G.

In this paper, we shortened the generating process sketched above by introducing a final language

F over a subalphabet W ⊆ V . A final sentential form of G is any of the sentential forms in which the

sequence of symbols from W belong to F . If in this form, all the symbols from V −W are terminals,

the string obtained by eliminating all nonterminals from N ∩W results into a sentence of the generated

language L(G,F) finalized by F .

Next, we illustrate the newly introduced concept of final sentential forms by a simple example in linguis-

tic morphology, which studies word formation, such as inflection and compounding, in natural languages.

Example 1. Consider an alphabet Σ of consonants and vowels. Suppose that a morphological study

deals with a language L consisting of all possible words over Σ together with their consonant-vowel

binary schemes in which every consonant and every vowel are represented by 1 and 0, respectively.

Mathematically, L = {w#σ(w) |w ∈ Σ+}, where σ is the homomorphism from Σ∗ to {0,1}∗ defined as

σ(x) = 1 and σ(y) = 0 for every consonant x in Σ and every vowel y in Σ, respectively. For instance,

considering Σ as the English alphabet, the#110 ∈ L while the#100 6∈ L. Define the context-free grammar

G with the following rules.

• S → A#B, B → 0Y B, B → 0Y , B → 1XB, B → 1X ,

• A → aAY , A → aY for all vowels a in Σ,

• A → bAX , A → bX for all consonants b in Σ,

where the uppercase symbols are nonterminals with S being the start nonterminal, and the other symbols

are terminals. Set W = {X ,Y,#} and F = {w#wR |w ∈ {X ,Y}∗}. For instance, take this step-by-step

derivation

S ⇒ A#B ⇒ tAX#B ⇒ thAXX#B ⇒ theY XX#B

⇒ theY XX#1XB ⇒ theY XX#1X1XB ⇒ theY XX#1X1X0Y

40 Final Sentential Forms

In theY XX#1X1X0Y , Y XX#XXY ∈ F , and apart from X ,Y,# ∈ W , theY XX#1X1X0Y contains only

terminals. The removal of all Xs and Y s in theY XX#1X1X0Y results into the#110, which thus belongs

to L(G,F). On contrary,

S ⇒∗ theY XX#1X1XB ⇒ theY XX#1X1X0YB = γ ⇒ theY XX#1X1X0Y0Y = δ

Let T = Σ∪{0,1}. Consider γ . Although Y XX#XXY ∈ F , the#110B /∈ L(G,F) since B /∈ W ∪T . On

the other hand, considering δ , after omitting symbols from W − T , we have the#1100 ∈ T ∗, but since

Y XX#XXYY /∈ F , the#1100 /∈ L(G,F).
Clearly, L(G,F) = L.

As its main result, the present paper demonstrates that L is a recursively enumerable language if

and only if L = L(G,{w#wR |w ∈ {0,1}∗}), where G is a context-free grammar; observe that in this

equivalence, the final language {w#wR |w ∈ {0,1}∗} remains constant independently of L. On the other

hand, the paper also proves that any L(G,F) is context-free if G is a context-free grammar and F is

regular.

The rest of the paper is organized as follows. First, Section 2 gives all the necessary terminology

and defines the new notions, informally sketched in this introduction. Then, Section 3 establishes the

above-mentioned results and points out an open problem related to the present study.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with the language theory (see [5]).

For a set Q, card(Q) denotes the cardinality of Q. For an alphabet V , V ∗ represents the free monoid

generated by V under the operation of concatenation. The unit of V ∗ is denoted by ε . Set V+ = V ∗ - {ε};

algebraically, V+ is thus the free semigroup generated by V under the operation of concatenation. For

w ∈V ∗, |w| and wR denotes the length of w and the reversal of w, respectively. Let W be an alphabet and

ω be a homomorphism from V ∗ to W ∗ (see [5] for the definition of homomorphism); ω is a weak identity

if ω(a) ∈ {a,ε} for all a ∈V .

A context-free grammar (CFG for short) is a quadruple G = (V,T,P,S), where V is an alphabet,

T ⊆V , P ⊆ (V −T)×V ∗ is finite, and S ∈V −T . Set N =V −T . The components V,T,N,P, and S are

referred to as the total alphabet, the terminal alphabet, the nonterminal alphabet, the set of rules, and the

start symbol of G, respectively. Instead of (A,x) ∈ P, we write A → x ∈ P throughout. For brevity, we

often denote A → x by a unique label p as p : A → x, and we briefly use p instead of A → x under this

denotation. For every p : A → x ∈ P, the left-hand side of p is defined as lhs(p) = A. The grammar G

is propagating if A → x ∈ P implies x ∈V+. The grammar G is linear if no more than one nonterminal

appears on the right-hand side of any rule in P. Furthermore, a linear grammar G is minimal (see page

76 in [8]) if N = {S} and S → # ∈ P, # ∈ T , is the only rule with no nonterminal on the right-hand side,

whereas it is assumed that # does not occur in any other rule. In this paper, a minimal linear grammar G

is called a palindromial grammar if card(P) ≥ 2, and every rule of the form S → xSy, where x,y ∈ T ∗,

satisfies x = y and x,y ∈ T . For instance, H = ({S,0,1,#},{0,1,#},{S → 0S0,S → 1S1,S → #},S) is a

palindromial grammar.

For every u,v ∈ V ∗ and p : A → x ∈ P, write uAv ⇒ uxv [p] or, simply, uAv ⇒ uxv; ⇒ is called the

direct derivation relation over V ∗. For n≥ 0,⇒n denotes the n-th power of ⇒. Furthermore, ⇒+ and ⇒∗

denote the transitive closure and the transitive-reflexive closure of ⇒, respectively. Let φ(G) = {w ∈V ∗|
S ⇒∗ w} denotes the set of all sentential forms of G. The language of G is denoted by L(G) and defined

as L(G) = T ∗∩ φ(G). For example, L(H) = {w#wR |w ∈ {0,1}∗}, where H is defined as above.

A. Meduna, T. Kožár, Z. Křivka 41

Let G= (V,T,P,S) be a CFG and W ⊆V . Define the weak identity W ω from V ∗ to W ∗ as W ω(X)= X

for all X ∈W , and W ω(X) = ε for all X ∈V −W . Let F ⊆W ∗. Set

φ(G,F) = {x |x ∈ φ(G), W ω(x) ∈ F}

L(G,F) = {T ω(y) |y ∈ φ(G,F), (N−W)ω(y) = ε}.

φ(G,F) and L(G,F) are referred to as the set of sentential forms of G finalized by F and the language of G

finalized by F , respectively. Members of φ(G,F) are called final sentential forms. REG,PAL,LIN,CF,

and RE denote the families of regular, palindromial, linear, context-free, and recursively enumerable

languages, respectively. Observe that

REG∩PAL = /0 and REG∪PAL ⊂ LIN.

Set

CFPAL = {L(G,F) |G is a CFG, F ∈ PAL}

CFREG = {L(G,F) |G is a CFG, F ∈ REG}

Example 2. Set I = {i(x) |x ∈ {0,1}+}, where i(x) denotes the integer represented by x in the standard

way; for instance, i(011) = 3. Consider

L = {u#v |u,v ∈ {0,1}+, i(u) > i(v) and |u|= |v|}.

Next, we define a CFG G and F ∈ PAL such that L = L(G,F). Let G = (V,T,P,S) be a context-free

grammar. Set V = {S,X ,X ,Y,Y ,A,B,C,D,0,1,#}, T = {0,1,#}, and set P as the set of the following

rules

• S → X#X ,

• X → 1AX , X → 0BX , X → 1CY , X → 1C,

• X → 1XA, X → 0XB, X → 0YC, X → 0C,

• Y → αDY , Y → αD, Y → αY D, Y → αD for all α ∈ {0,1}.

Set W = {A,B,C,D,#} and F = {w#wR |w ∈ {A,B,C,D}+ and n ≥ 1}. Observe that F = L(H), where

H = ({S,A,B,C,D,#},{A,B,C,D,#},{S → ASA,S → BSB,S → CSC,S → DSD,S → #},S) is a palin-

dromial grammar. Therefore, F ∈ PAL. For instance, take this step-by-step derivation

S ⇒ X#X ⇒ 1AX#X ⇒ 1A0BX#X ⇒ 1A0B1CY #X ⇒ 1A0B1C0D#X

⇒ 1A0B1C0D#1XA ⇒ 1A0B1C0D#10XBA ⇒ 1A0B1C0D#100YCBA

⇒ 1A0B1C0D#1001Y DCBA ⇒ 1A0B1C0D#1001DCBA

in G. Notice that W ω(1A0B1C0D#1001DCBA) ∈ F, and T ω(1A0B1C0D#1001DCBA) ∈ L(G,F). The

reader is encouraged to verify that L = L(G,F).

A queue grammar (see [2]) is a sextuple, Q = (V,T,U,D,s,P), where V and U are alphabets satis-

fying V ∩ U = /0, T ⊆ V , D ⊆ U , s ∈ (V − T)(U −D), and P ⊆ (V × (U −D))× (V ∗×U) is a finite

relation such that for for every a ∈ V , there exists an element (a,b,z,c) ∈ P. If u,v ∈ V ∗U such that

u = arb;v = rzc;a ∈ V ;r,z ∈ V ∗;b,c ∈ U ; and (a,b,z,c) ∈ P, then u ⇒ v [(a,b,z,c)] in G or, simply,

u ⇒ v. In the standard manner, extend ⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗.

42 Final Sentential Forms

The language of Q, L(Q), is defined as L(Q) = {w ∈ T ∗ |s ⇒∗ w f where f ∈ D}. A left-extended queue

grammar is a sextuple, Q = (V,T,U,D,s,P), where V,T,U,D, and s have the same meaning as in a

queue grammar, and P ⊆ (V × (U −D))× (V ∗×U) is a finite relation (as opposed to an ordinary queue

grammar, this definition does not require that for every a∈V , there exists an element (a,b,z,c) ∈P). Fur-

thermore, assume that # /∈V ∪U . If u,v ∈V ∗{#}V ∗U so that u = w#arb; v = wa#rzc; a ∈V ; r,z,w ∈V ∗;

b,c ∈U ; and (a,b,z,c) ∈ P, then u ⇒ v[(a,b,z,c)] in G or, simply u ⇒ v. In the standard manner, extend

⇒ to ⇒n, where n ≥ 0; then, based on ⇒n, define ⇒+ and ⇒∗. The language of Q, L(Q), is defined

as L(Q) = {v ∈ T ∗ |#s ⇒∗ w#v f for some w ∈ V ∗ and f ∈ D}. Less formally, during every step of a

derivation, a left-extended queue grammar shifts the rewritten symbol over #; in this way, it records the

derivation history, which plays a crucial role in the proof of Lemma 5 in the next section.

A deterministic finite automaton (DFA for short) is a quintuple M = (Q,Σ,R,s,F), where Q is a finite

set of states, Σ is an alphabet of input symbols, Q∩Σ = /0, s ∈ Q is a special state called the start state,

F ⊆ Q is a set of final states in M, and R is a total function from Q×Σ to Q. Instead of R(q,a) = p, we

write qa → p, where q, p ∈ Q and a ∈ Σ∪{ε}; R is referred to as the set of rules in M. For any x ∈ Σ∗ and

qa → p ∈ R, we write qax ⇒ px. The language of M, L(M), is defined as L(M) = {w |w ∈ Σ∗, sw ⇒∗ f ,

f ∈ F}, where ⇒∗ denotes the reflexive-transitive closure of ⇒. Recall that DFAs characterize REG

(see page 29 in [5]).

3 Results

In this section, we show that every language generated by a context-free grammar finalized by a regular

language is context-free (see Theorem 2). On the other hand, we prove that every recursively enumerable

language can be generated by a propagating context-free grammar finalized by {w#wR |w ∈ {0,1}∗} (see

Theorem 9).

Lemma 1. Let G = (V,T,P,S) be any CFG and F ∈ REG. Then, L(G,F) ∈ CF.

Proof. Let G = (V,T,P,S) be any CFG and F ∈ REG. Let F = L(M), where M = (Q,W,R,qs,QF) is a

DFA.

Construction. Introduce U = {〈paq〉 | p,q ∈ Q, a ∈ V}∪ {〈qsSQF〉}. From G and M, construct a new

CFG H such that L(H) = L(G,F) in the following way. Set

H = (V ,T,P,〈qsSQF〉)

The components of H are constructed as follows. Set V = V ∪U and initialize P to /0. Construct P as

follows:

(0) Add 〈qsSQF〉 → 〈qsSq f 〉 for all q f ∈ QF .

(1) Let A → y0X1y1X2 . . .Xnyn ∈ P, where A ∈V −T,yi ∈ (V −W)∗ and X j ∈V , 0 ≤ i ≤ n, 1 ≤ j ≤ n,

for some n ≥ 1;

then, add 〈q1Aqn+1〉 → y0〈q1X1q2〉y1〈q2X2q3〉 . . . 〈qnXnqn+1〉yn to P, for all q1,q2, . . . ,qn+1 ∈ Q.

(2) Let A → α ∈ P, where A ∈V − (T ∪W),α ∈ (V −W)∗;

then, add A → α to P.

(3) Let 〈paq〉 ∈U , where a ∈W ∩T, pa → q ∈ R;

then, add 〈paq〉 → a to P.

A. Meduna, T. Kožár, Z. Křivka 43

(4) Let 〈pBq〉 ∈U , where pB → q ∈ R,B ∈W ∩ (V −T);
then, add 〈pBq〉 → ε to P.

To prove L(G,F) = L(H), we first prove L(H)⊆ L(G,F); then, we establish L(G,F)⊆ L(H). To demon-

strate L(H)⊆ L(G,F), we first make three observations—(i) through (iii)—concerning every derivation

of the form 〈qsSq f 〉 ⇒
∗ y with y ∈ T ∗.

(i) By using rules constructed in (1) and (2), H makes a derivation of the form

〈qsSq f 〉 ⇒
∗ x0〈q1Z1q2〉x1 . . . 〈qnZnqn+1〉xn

where xi ∈ (T −W)∗, 0 ≤ i ≤ n, 〈q jZ jq j+1〉 ∈U , Z j ∈W , 1 ≤ j ≤ n, q1 = qs, qn+1 = q f , q1, . . . ,qn+1 ∈ Q,

q f ∈ QF .

(ii) If

〈qsSq f 〉 ⇒
∗ x0〈q1Z1q2〉x1 . . . 〈qnZnqn+1〉xn

in H , then

S ⇒∗ x0Z1x1 . . .Znxn

in G, where all the symbols have the same meaning as in (i).

(iii) Let H make

x0〈q1Z1q2〉x1 . . . 〈qnZnqn+1〉xn ⇒
∗ y

by using rules constructed in (3) and (4), where y ∈ T ∗, and all the other symbols have the same meaning

as in (i). Then, for all 1 ≤ j ≤ n,q jZ j → q j+1 ∈ R,y = x0U1x1 . . .Unxn, where U j = T ω(Z j). As q jZ j →
q j+1 ∈ R, 1 ≤ j ≤ n, q1 = qs and qn+1 = q f , q f ∈ QF , we have Z1 . . .Zn ∈ L(M).

Based on (i) through (iii), we are now ready to prove L(H)⊆ L(G,F). Let y ∈ L(H). Thus, 〈qsSQF〉⇒
∗

y, y ∈ T ∗ in H . As H is an ordinary CFG, we can always rearrange the applications of rules during

〈qsSQF〉 ⇒
∗ y in such a way that

〈qsSQF〉 ⇒ 〈qsSq f 〉 (α)
⇒∗ x0〈q1Z1q2〉x1 . . . 〈qmZmqm+1〉xm (β)
⇒∗ y (γ)

so that during (α), only a rule from (0) is used, during β only rules from (1) and (2) are used, and

during (γ) only rules from (3) and (4) are used. Recall that Z1Z2 . . .Zn ∈ F (see (iii)). Consequently,

W ω(x0Z1x1 . . .Znxn) ∈ F . From (3), (4), (ii), and (iii), it follows that

S ⇒∗ x0Z1x1 . . .xn−1Znxn in G.

Thus, as L(M) = F , we have y ∈ L(G,F), so L(H)⊆ L(G,F).

44 Final Sentential Forms

To prove L(G,F)⊆ L(H), take any y ∈ L(G,F). Thus,

S ⇒∗ x0Z1x1 . . .xn−1Znxn in G, and

y = T ω(x0Z1x1 . . .xn−1Znxn) with Z1 . . .Zn ∈ F

where xi ∈ (T −W)∗,0 ≤ i ≤ n,Z j ∈ W,1 ≤ j ≤ n. As Z1 . . .Zn ∈ F , we have q1Z1 → q2, . . . , qnZn →
qn+1 ∈ R, q1, . . . ,qn+1 ∈ Q, q1 = qs, qn+1 = q f , q f ∈ QF . Consequently, from (0) through (4) of the

Construction, we see that

〈qsSQ f 〉 ⇒ 〈qsSq f 〉

⇒∗ x0Z1x1 . . .Znxn

⇒∗ x0U1x1 . . .Unxn

where U j = T ω(Z j), 1 ≤ j ≤ n. Hence, y ∈ L(H), so L(G,F)⊆ L(H).

Thus, L(G,F) = L(H).

Theorem 2. CFREG = CF.

Proof. Clearly, CF ⊆ CFREG. From Lemma 1, CFREG ⊆ CF. Thus, Theorem 2 holds true.

Now, we prove that by using the constant palindromial language {w#wR |w ∈ {0,1}∗} to finalize a

propagating context-free grammar, we can represent any recursively enumerable language.

Lemma 3. Let L ∈ RE. Then, there exists a left-extended queue grammar Q satisfying L(Q) = L.

Proof. See Lemma 1 in [3].

Lemma 4. Let H be a left-extended queue grammar. Then, there exists a left-extended queue grammar,

Q = (V,T,U,D,s,R), such that L(H) = L(Q) and every (a,b,x,c) ∈ R satisfies a ∈ V − T , b ∈ U −D,

x ∈ (V −T)∗∪T ∗, and c ∈U .

Proof. See Lemma 2 in [3].

Lemma 5. Let Q = (V,T,U,D,s,R) be a left-extended queue grammar. Then, L(Q) = L(G,{w#wR |w ∈
{0,1}∗}), where G is a CFG.

Proof. Without any loss of generality, assume that Q satisfies the properties described in Lemma 4 and

that {0,1} ∩ (V ∪U) = /0. For some positive integer, n, define an injection, ι , from Ψ∗ to ({0,1}n −
1n), where Ψ = {ab |(a,b,x,c) ∈ R, a ∈ V − T , b ∈ U −D, x ∈ (V − T)∗ ∪ T ∗, c ∈ U} so that ι is an

injective homomorphism when its domain is extended to Ψ∗; after this extension, ι thus represents an

injective homomorphism from Ψ∗ to ({0,1}n − 1n)∗ (a proof that such an injection necessarily exists

is simple and left to the reader). Based on ι , define the substitution, ν from V to ({0,1}n − 1n) as

ν(a) = {ι(aq) |q ∈U} for every a ∈V . Extend domain of ν to V ∗. Furthermore, define the substitution,

µ , from U to ({0,1}n −1n) as µ(q) = {ι(aq)R |a ∈V} for every q ∈U . Extend the domain of µ to U∗.

Set J = {〈p, i〉 | p ∈U −D and i ∈ {1,2}}.

Construction. Next, we introduce a CFG G so that L(Q) = L(G,{w#wR |w ∈ {0,1}∗}). Let G =
(V ,T,P,S), where V = J ∪ {0,1,#} ∪ T . Construct P in the following way. Initially, set P = /0; then,

perform the following steps 1 through 5.

1. if (a,q,y, p) ∈ R, where a ∈V −T , p,q ∈U −D, y ∈ (V −T)∗ and aq = s,

then add S → u〈p,1〉v to P, for all u ∈ ν(y) and v ∈ µ(p);

A. Meduna, T. Kožár, Z. Křivka 45

2. if (a,q,y, p) ∈ R, where a ∈V −T , p,q ∈U −D and y ∈ (V −T)∗,

then add 〈q,1〉 → u〈p,1〉v to P, for all u ∈ ν(y) and v ∈ µ(p);

3. for every q ∈U −D, add 〈q,1〉 → 〈q,2〉 to P;

4. if (a,q,y, p) ∈ R, where a ∈V −T , p,q ∈U −D, y ∈ T ∗,

then add 〈q,2〉 → y〈p,2〉v to P, for all v ∈ µ(p);

5. if (a,q,y, p) ∈ R, where a ∈V −T , q ∈U −D, y ∈ T ∗, and p ∈ D,

then add 〈q,2〉 → y# to P.

Set W = {0,1,#} and Ω = {xy#z ∈ φ(G) |x ∈ {0,1}+, y ∈ T ∗, z = xR}.

Claim 6. Every h ∈ Ω is generated by G in this way

S

⇒ g1〈q1,1〉t1 ⇒ g2〈q2,1〉t2 ⇒ ··· ⇒ gk〈qk,1〉tk ⇒ gk〈qk,2〉tk
⇒ gky1〈qk+1,2〉tk+1 ⇒ gky1y2〈qk+2,2〉tk+2 ⇒ ··· ⇒ gky1y2 . . .ym−1〈qk+m−1,2〉tk+m−1

⇒ gky1y2 . . .ym−1ym#tk+m

in G, where k,m ≥ 1; q1, . . . ,qk+m−1 ∈U −D; y1, . . . ,ym ∈ T ∗; ti ∈ µ(qi . . .q1) for i = 1, . . . ,k+m; g j ∈
ν(d1 . . .d j) with d1, . . . ,d j ∈ (V −T)∗ for j = 1, . . . ,k; d1 . . .dk = a1 . . .ak+m with a1, . . . , ak+m ∈V −T

(that is, gk ∈ ν(a1 . . .ak+m) with gk = (tk+m)
R);h = y1y2 . . .ym−1ym.

Proof. Examine the construction of P. Observe that every derivation begins with an application of a

rule having S on its left-hand side. Set 1-J = {〈p,1〉 | p ∈ U},2-J = {〈p,2〉 | p ∈ U},1-P = {p | p ∈
P and lhs(p) ∈ 1-J},2-P = {p | p ∈ P and lhs(p) ∈ 2-J}. Observe that in every successful derivation of

h, all applications of rules from 1-P precede the applications of rules from 2-P. Thus, the generation of

h can be expressed as

S

⇒ g1〈q1,1〉t1 ⇒ g2〈q2,1〉t2 ⇒ ··· ⇒ gk〈qk,1〉tk ⇒ gk〈qk,2〉tk
⇒ gky1〈qk+1,2〉tk+1 ⇒ gky1y2〈qk+2,2〉tk+2 ⇒ ··· ⇒ gky1y2 . . .ym−1〈qk+m−1,2〉tk+m−1

⇒ gky1y2 . . .ym−1ym#tk+m

where all the involved symbols have the meaning stated in Claim 6.

Claim 7. Every h ∈ L(Q) is generated by Q in this way

#a0q0

⇒ a0#x0q1 [(a0,q0,z0,q1)]
⇒ a0a1#x1q2 [(a1,q1,z1,q2)]

...

⇒ a0a1 . . .ak#xkqk+1 [(ak,qk,zk,qk+1)]
⇒ a0a1 . . .akak+1#xk+1qk+2 [(ak+1,qk+1,y1,qk+2)]

...

⇒ a0a1 . . .akak+1 . . .ak+m−1#xk+m−1y1 . . .ym−1qk+m [(ak+m−1,qk+m−1,ym−1,qk+m)]
⇒ a0a1 . . .akak+1 . . .ak+m#y1 . . .ymqk+m+1 [(ak+m,qk+m,ym,qk+m+1)]

where k,m ≥ 1, ai ∈V −T for i = 0, . . . ,k+m, x j ∈ (V −T)∗ for j = 1, . . . ,k+m, s = a0q0, a jx j = x j−1z j

for j = 1, . . . ,k, a1 . . .akxk+1 = z0 . . . zk, ak+1 . . .ak+m = xk, q0,q1, . . . ,qk+m ∈ U −D and qk+m+1 ∈ D,

z1, . . . ,zk ∈ (V −T)∗, y1, . . . ,ym ∈ T ∗, h = y1y2 . . .ym−1ym.

Proof. Recall that Q satisfies the properties given in Lemma 4. These properties imply that Claim 7

holds true.

46 Final Sentential Forms

Claim 8. L(G,{w#wR |w ∈ {0,1}∗}) = L(Q).

Proof. To prove that L(G,{w#wR |w ∈ {0,1}∗})⊆ L(Q), take any h ∈ Ω generated in the way described

in Claim 6. From W ω(h) ∈ {w#wR |w ∈ {0,1}∗} with W = {0,1,#}, it follows that xy#z with z = xR

where x = gk, y = y1 . . .ym, z = tk+m. At this point, R contains (a0,q0,z0,q1), . . . , (ak,qk,zk,qk+1),
(ak+1,qk+1,y1,qk+2), . . . , (ak+m−1, qk+m−1, ym−1, qk+m), (ak+m, qk+m, ym, qk+m+1), where z1, . . . , zk ∈
(V −T)∗, and y1, . . . , ym ∈ T ∗. Then, Q makes the generation of T ω(h) in the way described in Claim 7.

Thus, T ω(h) ∈ L(Q).
To prove L(Q)⊆ L(G,{w#wR |w ∈ {0,1}∗}), take any h ∈ L(Q). Recall that h is generated in the way

described in Claim 7. Consider the rules used in this generation. Furthermore, consider the definition of

ν and µ . Based on this consideration, observe that from the construction of P, it follows that S ⇒∗ oh#o

in G for some o,o ∈ {0,1}+ with o = oR. Thus, W ω(oh#o) ∈ {w#wR |w ∈ {0,1}∗}, so consequently,

h ∈ L(G,{w#wR |w ∈ {0,1}∗}).

Claims 6 through 8 imply that Lemma 5 holds true.

Theorem 9. A language L ∈ RE if and only if L = L(G,{w#wR |w ∈ {0,1}∗}), where G is a propagating

CFG.

Proof. This theorem follows from Lemmas 3 through 5.

Corollary 10. RE = CFPAL.

Consider {w#wR |w ∈ {0,1}∗} without #—that is {wwR |w ∈ {0,1}∗}. On the one hand, this language is

out of CFPAL because the central symbol # does not occur in it. On the other hand, it is worth pointing

out that Theorem 9 can be based upon this purely binary language as well.

Corollary 11. A language L ∈ RE if and only if L = L(G,{wwR |w ∈ {0,1}∗}), where G is propagating

CFG.

Proof. Prove this corollary by analogy with the way Theorem 9 is demonstrated.

Before closing this paper, we point out an open problem. As its main results, the paper has demonstrated

that every recursively enumerable language can be generated by a propagating context-free grammar

G finalized by {w#wR |w ∈ {0,1}∗} (see Theorem 9). Can this results be established with G having a

limited number of nonterminals and/or rules?

Acknowledgement

This work was supported by Brno University of Technology grant FIT-S-23-8209.

References

[1] A. V. Aho, M. S. Lam, R. Sethi & J. D. Ullman (2006): Compilers: Principles, Techniques, and Tools (2nd

Edition), 2nd edition. Addison-Wesley.

[2] H. C. M. Kleijn & G. Rozenberg (1983): On the Generative Power of Regular Pattern Grammars. Acta

Informatica 20(4), pp. 391–411, doi:10.1007/BF00264281.

[3] A. Meduna (2000): Generative Power of Three-Nonterminal Scattered Context Grammars. Theoretical Com-

puter Science 246(1–2), pp. 279–284, doi:10.1016/S0304-3975(00)00153-5.

[4] A. Meduna (2008): Elements of Compiler Design. Taylor & Francis, doi:10.1201/9781420063257.

https://doi.org/10.1007/BF00264281
https://doi.org/10.1016/S0304-3975(00)00153-5
https://doi.org/10.1201/9781420063257

A. Meduna, T. Kožár, Z. Křivka 47

[5] A. Meduna (2014): Formal Languages and Computation. Taylor & Francis, doi:10.1201/b16376.

[6] A. Meduna & P. Zemek (2014): Regulated Grammars and Automata. Springer,

doi:10.1007/978-1-4939-0369-6.

[7] G. Rozenberg & A. Salomaa, editors (1997): Handbook of Formal Languages, Vol. 1: Word, Language,

Grammar. Springer.

[8] A. Salomaa (1973): Formal Languages. ACM monograph series, Academic Press.

https://doi.org/10.1201/b16376
https://doi.org/10.1007/978-1-4939-0369-6

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 48–62, doi:10.4204/EPTCS.388.7

© M. Kutrib, U. Meyer

Deterministic Real-Time Tree-Walking-Storage Automata

Martin Kutrib
Institut für Informatik, Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany
kutrib@informatik.uni-giessen.de

Uwe Meyer
Technische Hochschule Mittelhessen

Wiesenstr. 14, 35390 Giessen, Germany
uwe.meyer@mni.thm.de

We study deterministic tree-walking-storage automata, which are finite-state devices equipped with
a tree-like storage. These automata are generalized stack automata, where the linear stack storage is
replaced by a non-linear tree-like stack. Therefore, tree-walking-storage automata have the ability
to explore the interior of the tree storage without altering the contents, with the possible moves of
the tree pointer corresponding to those of tree-walking automata. In addition, a tree-walking-storage
automaton can append (push) non-existent descendants to a tree node and remove (pop) leaves from
the tree. Here we are particularly considering the capacities of deterministic tree-walking-storage
automata working in real time. It is shown that even the non-erasing variant can accept rather com-
plicated unary languages as, for example, the language of words whose lengths are powers of two, or
the language of words whose lengths are Fibonacci numbers. Comparing the computational capac-
ities with automata from the classical automata hierarchy, we derive that the families of languages
accepted by real-time deterministic (non-erasing) tree-walking-storage automata is located between
the regular and the deterministic context-sensitive languages. There is a context-free language that
is not accepted by any real-time deterministic tree-walking-storage automaton. On the other hand,
these devices accept a unary language in non-erasing mode that cannot be accepted by any classical
stack automaton, even in erasing mode and arbitrary time. Basic closure properties of the induced
families of languages are shown. In particular, we consider Boolean operations (complementation,
union, intersection) and AFL operations (union, intersection with regular languages, homomorphism,
inverse homomorphism, concatenation, iteration). It turns out that the two families in question have
the same properties and, in particular, share all but one of these closure properties with the important
family of deterministic context-free languages.

1 Introduction

Stack automata were introduced in [6] as a theoretical model motivated by compiler theory, and the
implementation of recursive procedures with parameters. Their computational power lies between that of
pushdown automata and Turing machines. Basically, a stack automaton is a finite-state device equipped
with a generalization of a pushdown store. In addition to be able to push or pop at the top of the
pushdown store, a stack automaton can move its storage head (stack pointer) inside the stack to read stack
symbols, but without altering the contents. In this way, it is possible to read but not to change the stored
information. Over the years, stack automata have aroused great interest and have been studied in different
variants. Apart from distinguishing deterministic and nondeterministic computations, the original two-
way input reading variant has been restricted to one-way [7]. Further investigated restrictions concern
the usage of the stack storage. A stack automaton is said to be non-erasing if no symbol may be popped
from the stack [13], and it is checking if it cannot push any symbols once the stack pointer has moved
into the stack [9]. While the early studies of stack automata have extensively been done in relation
with AFL theory as well as time and space complexity [11, 14, 15, 22, 25], more recent papers consider
the computational power gained in generalizations by allowing the input head to jump [19], allowing
multiple input heads, multiple stacks [18], and multiple reversal-bounded counters [17]. The stack size

http://dx.doi.org/10.4204/EPTCS.388.7

M. Kutrib, U. Meyer 49

required to accept a language by stack automata has been considered as well [16]. In [20] the property of
working input-driven has been imposed to stack automata, and their capacities as transducer are studied
in [2].

All these models have in common that their storage structures are linear. Therefore, it is a natu-
ral idea to generalize stack automata by replacing the stack storage by some non-linear data structure.
In [21] tree-walking-storage automata have been introduced, which are essentially stack automata with a
tree-like stack. As for classical stack automata, tree-walking-storage automata have the additional ability
to move the storage head (here tree pointer) inside the tree without altering the contents. The possible
moves of the tree pointer correspond to those of tree walking automata. In this way, it is possible to
read but not to change the stored information. In addition, a tree-walking-storage automaton can append
(push) a non-existent descendant to a tree node and remove (pop) a leaf from the tree. A main focus
in [21] is on the comparisons of the different variants of tree-walking-storage automata as well as on the
comparisons with classical stack automata. It turned out that the checking variant is no more powerful
than classical checking stack automata. In particular it is shown that in the case of unlimited time de-
terministic tree-walking-storage automata are as powerful as Turing machines. This result suggested to
consider time constraints for deterministic tree-walking-storage automata. The computational capacities
of polynomial-time non-erasing tree-walking-storage automata and non-erasing stack automata are sep-
arated. Moreover, it is shown that non-erasing tree-walking-storage and tree-walking-storage automata
are equally powerful.

Here we continue the study of tree-walking-storage automata by imposing a very strict time limit.
We consider the minimal time to solve non-trivial problems, that is, we consider real-time computations.
This natural limitation has been investigated from the early beginnings of complexity theory. Already
before the seminal paper [12], Rabin considered computations such that if the problem (the input data)
consists of n symbols then the computation must be performed in n basic steps, one step per input
symbol [24].

Before we turn to our main results and the organization of the paper, we briefly mention different
approaches to introduce tree-like stacks. So-called pushdown tree automata [10] extend the usual string
pushdown automata by allowing trees instead of strings in both the input and the stack. So, these ma-
chines accept trees and may not explore the interior of the stack. Essentially, this model has been adapted
to string inputs and tree-stacks where the so-called tree-stack automaton can explore the interior of the
tree-stack in read-only mode [8]. However, in the writing-mode a new tree can be pushed on the stack
employing the subtrees of the old tree-stack, that is, subtrees can be permuted, deleted, or copied. If
the root of the tree-stack is popped, exactly one subtree is left in the store. Another model also intro-
duced under the name tree-stack automaton gave up the bulky way of pushing and popping at the root
of the tree-stack [5]. However, this model may alter the interior nodes of the tree-stack. Therefore, the
tree-stack is actually a non-linear Turing tape. Therefore, we have chosen the name tree-walking-storage
automaton, so as not to have one more model under the name of tree-stack automaton.

The idea of a tree-walking process originates from [1]. A tree-walking automaton is a sequential
model that processes input trees. For example, it is known that deterministic tree-walking automata
are strictly weaker than nondeterministic ones [3] and that even nondeterministic tree-walking automata
cannot accept all regular tree languages [4].

The paper is organized as follows. The definition of the models and an illustrating example are given
in Section 2. Section 3 is devoted to compare the computational capacity of real-time deterministic tree-
walking-storage automata with some classical types of acceptors. It is shown that the possibility to create
tree-storages of certain types in real time can be utilized to accept further, even unary, languages by real-
time deterministic, even non-erasing, tree-walking-storage automata. To this end, the non-semilinear

50 Deterministic Real-Time Tree-Walking-Storage Automata

unary language of the words whose lengths are double Fibonacci numbers is used as a witness.
Then, a technique for disproving that languages are accepted is established for real-time tree-walking-

storage automata. The technique is based on equivalence classes which are induced by formal languages.
If some language induces a number of equivalence classes which exceeds the number of classes distin-
guishable by a certain device, then the language is not accepted by that device. Applying these results,
we show that there is a context-free language which is not accepted by any tree-walking-storage automa-
ton in real time. For the comparison with classical deterministic one-way stack automata we show that
the unary language {an3 | n ≥ 0} is a real-time tree-walking-storage automaton language. It is known
from [23] that this language is not accepted by any classical deterministic one-way stack automaton.
Finally, in Section 4 some basic closure properties of the language families in question are derived. It
turns out that the two families in question have the same properties and, in particular, share all but one
of these closure properties with the important family of deterministic context-free languages. In particu-
lar, we consider Boolean operations (complementation, union, intersection) and AFL operations (union,
intersection with regular languages, homomorphism, inverse homomorphism, concatenation, iteration).
The results are summarized in Table 1 at the end of the section.

2 Definitions and Preliminaries

Let Σ∗ denote the set of all words over the finite alphabet Σ. The empty word is denoted by λ , and
Σ+ = Σ∗ \{λ}. The set of words of length n≥ 0 is denoted by Σn. The reversal of a word w is denoted
by wR. For the length of w we write |w|. We use⊆ for inclusions and⊂ for strict inclusions. We write |S|
for the cardinality of a set S. We say that two language families L1 and L2 are incomparable if L1 is
not a subset of L2 and vice versa.

A tree-walking-storage automaton is an extension of a classical stack automaton to a tree storage.
As for classical stack automata, tree-walking-storage automata have the additional ability to move the
storage head (here tree pointer) inside the tree without altering the contents. The possible moves of the
tree pointer correspond to those of tree walking automata. In this way, it is possible to read but not to
change the stored information. However, a classical stack automaton can push and pop at the top of the
stack. Accordingly, a tree-walking-storage automaton can append (push) a non-existent descendant to a
tree node and remove (pop) a leaf from the tree.

Here we consider mainly deterministic one-way devices. The trees in this paper are finite, binary
trees whose nodes are labeled by a finite alphabet Γ. A Γ-tree T is represented by a mapping from a
finite, non-empty, prefix-closed subset of {l,r}∗ to Γ∪{⊥}, such that T (w) = ⊥ if and only if w = λ .
The elements of the domain of T are called nodes of the tree. Each node of the tree has a type from
TYPE = {−, l,r}×{−,+}2, where the first component expresses whether the node is the root (−), a
left descendant (l), or a right descendant (r), and the second and third components tell whether the node
has a left and right descendant (+), or not (−). A direction is an element from DIRECT= {u,s,dl,dr},
where u stands for ‘up’, s stands for ‘stay’, dl stands for ‘left descendant’ and dr for ‘right descendant’.

A deterministic tree-walking-storage automaton (twsDA) is a system M = 〈Q,Σ,Γ,δ ,q0,C,⊥,F〉,
where Q is the finite set of internal states, Σ is the finite set of input symbols not containing the end-
marker C, Γ is the finite set of tree symbols, q0 ∈ Q is the initial state, ⊥ /∈ Γ is the root symbol, F ⊆ Q
is the set of accepting states, and

δ : Q× (Σ∪{λ ,C})×TYPE× (Γ∪{⊥})→
Q× (DIRECT∪{pop}∪{push(x,d) | x ∈ Γ,d ∈ {l,r}})

M. Kutrib, U. Meyer 51

is the transition function. There must never be a choice of using an input symbol or of using λ input. So,
it is required that for all q in Q, (t1, t2, t3) ∈ TYPE, and x in Γ∪{⊥}: if δ (q,λ ,(t1, t2, t3),x) is defined,
then δ (q,a,(t1, t2, t3),x) is undefined for all a in Σ∪{C}.

A configuration of a twsDA is a quadruple (q,v,T,P), where q ∈Q is the current state, v ∈ Σ∗{C,λ}
is the unread part of the input, T is the current Γ-tree, and P is an element of the domain of T , called the
tree pointer, that is the current node of T . The initial configuration for input w is set to (q0,wC,T0,λ),
where T0(λ) =⊥ and T0 is undefined otherwise.

During the course of its computation, M runs through a sequence of configurations. In a given
configuration (q,v,T,P), M is in state q, reads the first symbol of v or λ , knows the type of the current
node P, and sees the label T (P) of the current node. Then it applies δ and, thus, enters a new state
and either moves the tree pointer along a direction, removes the current node (if it is a leaf) by pop, or
appends a new descendant to the current node (if this descendant does not exist) by push. Here and in
the sequel it is understood that δ is well defined in the sense that it will never move the tree pointer to
a non-existing node, will never pop a non-leaf node, and will never push an existing descendant. This
normal form is always available through effective constructions.

One step from a configuration to its successor configuration is denoted by `, and the reflexive and
transitive (resp., transitive) closure of ` is denoted by `∗ (respectively `+). Let q ∈ Q, av ∈ Σ∗C with
a ∈ Σ∪{λ ,C}, T be a Γ-tree, P be a tree pointer of T , and (t1, t2, t3) ∈ TYPE be the type of the current
node P. We set

1. (q,av,T,P) ` (q′,v,T,P′) with P = P′l or P = P′r,
if t1 6=− and δ (q,a,(t1, t2, t3),T (P)) = (q′,u), (move the tree pointer up),

2. (q,av,T,P) ` (q′,v,T,P),
if δ (q,a,(t1, t2, t3),T (P)) = (q′,s), (do not move the tree pointer),

3. (q,av,T,P) ` (q′,v,T,P′) with P′ = Pl,
if t2 =+ and δ (q,a,(t1, t2, t3),T (P)) = (q′,dl), (move the tree pointer to the left descendant),

4. (q,av,T,P) ` (q′,v,T,P′) with P′ = Pr,
if t3 =+ and δ (q,a,(t1, t2, t3),T (P)) = (q′,dr), (move the tree pointer to the right descendant),

5. (q,av,T,P) ` (q′,v,T ′,P′) with P = P′l or P = P′r, T ′(P) is undefined and T ′(w) = T (w) for
w 6= P,
if t2 = t3 =− and δ (q,a,(t1, t2, t3),T (P)) = (q′,pop), (remove the current leaf node, whereby the
tree pointer is moved up),

6. (q,av,T,P) ` (q′,v,T ′,P′) with P′ = Pl, T ′(Pl) = x and T ′(w) = T (w) for w 6= Pl,
if t2 = − and δ (q,a,(t1, t2, t3),T (P)) = (q′,push(x, l)), (append a left descendant to the current
node, whereby the tree pointer is moved to the descendant),

7. (q,av,T,P) ` (q′,v,T ′,P′) with P′ = Pr, T ′(Pr) = x and T ′(w) = T (w) for w 6= Pr,
if t3 = − and δ (q,a,(t1, t2, t3),T (P)) = (q′,push(x,r)), (append a right descendant to the current
node, whereby the tree pointer is moved to the descendant).

Figure 1 illustrates the transitions that move the tree pointer up, respectively to the left descendant.
Figure 2 illustrates the push, respectively the pop transitions. All remaining transitions are analogous.
So, a classical stack automaton can be seen as a tree-walking-storage automaton all of whose right

descendants of the tree-storage are not present. In accordance with stack automata, a twsDA is said to be
non-erasing (twsDNEA) if it is not allowed to pop from the tree.

52 Deterministic Real-Time Tree-Walking-Storage Automata

⊥

ν1P→ ν2

up
=⇒

⊥P→

ν1 ν2

⊥

ν1P→

ν3 ν4

ν2

down left
=⇒

⊥

ν1

ν3P→ ν4

ν2

Figure 1: Up and left transitions

⊥

ν1P→

ν4

ν2

push left
=⇒

⊥

ν1

ν3P→ ν4

ν2

⊥

ν1P→ ν2

pop
=⇒

⊥P→

ν2

Figure 2: Push left and pop operations

A twsDCA M halts if the transition function is not defined for the current configuration. A word w is
accepted if the machine halts in an accepting state after having read the input wC entirely, otherwise it
is rejected. The language accepted by M is L(M) = {w ∈ Σ∗ | w is accepted by M }.

A twsDA works in real time if its transition function is undefined for λ input. That is, it reads one
symbol from the input at every time step, thus, halts on input w after at most |w|+1 steps.

We write DSA for deterministic one-way stack automata, DNESA for the non-erasing, and DCSA for
the checking variant. The family of languages accepted by a device of type X is denoted by L (X). We
write in particular Lrt(X) if acceptance has to be in real time.

In order to clarify our notion, we continue with an example.

Example 1. The language Lexpo = {a2n | n≥ 0} is accepted by some twsDNEA in real time.
The basic idea of the construction is to let a twsDNEA successively create tree-storages which are

complete binary trees. To this end, we construct a twsDNEA M = 〈Q,{a},{•},δ ,ql,C,⊥,F〉 with state
set Q = {ql,qp,qd ,qr} that runs in phases. In each phase a complete level is added to the complete binary
tree. So, at the outset of the computation the tree-storage of M forms a complete binary tree of level 1,
that is a single node. After the (`− 1)th phase, the tree-storage of M forms a complete binary tree of
level `, that is, the tree has 2`−1 nodes. At the beginning and at the end of each phase the tree pointer
is at the root of the tree-storage. For simplicity, we construct M such that it works on empty input only.
Later, it will be extended.

Next, we explain how a level is added when the tree-storage of M forms a complete binary tree of
level `≥ 1 and the tree pointer is at the root.

Let a star ∗ as component of the type of the current node in the tree-walking-storage of M denote an
arbitrary entry and γ ∈ Γ∪{⊥}. We set:

M. Kutrib, U. Meyer 53

1. δ (ql,λ ,(∗,+,∗),γ) = (ql,dl)

2. δ (ql,λ ,(∗,−,−),γ) = (qp,push(•, l))

3. δ (qp,λ ,(l,−,−),γ) = (qr,u)

First, state ql is used to move the tree pointer as far as possible to the left (Transition 1). The leaf
reached is the first node that gets descendants. After pushing a left descendant (Transition 2), M enters
state qp to indicate that the last tree operation was a push. If the new leaf was pushed as left descendant,
the tree pointer is moved up while state qr is entered (Transition 3). State qr indicates that the right
subtree of the current node has still to be processed.

4. δ (qr,λ ,(∗,+,−),γ) = (qp,push(•,r))

5. δ (qp,λ ,(r,−,−),γ) = (qd ,u)

If the current leaf has no right descendant and M is in state qr, a right descendant is pushed (Tran-
sition 4). Again, state qp is entered. If the new leaf was pushed as right descendant, the tree pointer
is moved up while state qd is entered (Transition 5). State qd indicates that the current node has been
processed entirely.

6. δ (qd ,λ ,(l,∗,∗),γ) = (qr,u)

7. δ (qd ,λ ,(r,∗,∗),γ) = (qd ,u)

In state qd , the tree pointer is moved to the ancestor. However, if it comes to the ancestor from the
left subtree, the right subtree is still to be processed. In this case, Transition 6 sends the tree pointer to
the ancestor in state qr. If the tree pointer comes to the ancestor from the right subtree, the ancestor has
entirely be processed and the tree pointer is moved up in the appropriate state qd (Transition 7).

8. δ (qr,λ ,(∗,+,+),γ) = (ql,dr)

If there is a right descendant of the node visited in state qr then the process is recursively applied to
the right subtree by moving the tree pointer to the right descendant in state ql (Transition 8).

The end of the phase that can uniquely be detected by M when its tree pointer comes back to the root
in state qd from the right.

Before we next turn to the extension of M, we consider the number of steps taken to generate the
complete binary trees. The total number of nodes in such a tree of level `≥ 1 is 2`−1. Since all nodes
except the root are connected by exactly one edge, the number of edges is 2`−2. In order to increase the
level of the tree-storage from ` to `+1, the tree pointer takes a tour through the tree as for a depth-first
traversal. So, every edge is moved along twice. In addition, each of the 2` new nodes is connected
whereby for each new node the connecting (new) edge is also moved along twice. In total, we obtain
2(2`− 2+ 2`) = 2`+2− 4 moves to increase the level. Summing up the moves yields the number of
moves taken by M to increase the level of the tree-storage from initially 1 to ` as

`−1

∑
i=1

2i+2−4 =−4(`−1)+2`+2−8 = 2`+2−4`−4.

Now, the construction of M is completed as follows. Initially, M performs 8 moves without any
operation on the tree-storage. That is, the tree pointer stays at the root. This can be realized by additional

54 Deterministic Real-Time Tree-Walking-Storage Automata

states. Next, M starts to run through the phases described above, where at the end of phase `−1 the tree-
storage forms a complete binary tree of level `. Before each phase, M performs additionally 4 moves
without any operation on the tree-storage, respectively.

Finally, it remains to be described how the input is read and possibly accepted. We let M read an
input symbol at every move. An input word is accepted if and only if its length is 20, 21, 22, 23, or if M
reads the last input symbol exactly at the end of some phase.

In order to give evidence that M works correctly, assume that the input length is 2x, for some x ≥ 4.
Then M starts to generate a tree-storage that forms a complete binary tree of level x−2. The generation
takes 2x−4(x−2)−4 moves plus the initial delay of 8 moves plus the delay of totally 4(x−3) moves
before each phase. Altogether, this makes 2x moves. Since M reads one input symbol at every move, it
reads exactly 2x symbols and works in real time. �

3 Computational Capacity

This section is devoted to compare the computational capacity of real-time deterministic tree-walking-
storage automata with some classical types of acceptors. On the bottom of the automata hierarchy there
are finite state automata characterizing the family of regular languages REG. Trivially, we have the
inclusion REG⊂Lrt(twsDNEA) whose properness follows from Example 1.

On the other end, we consider the deterministic linear bounded automata that are characterizing the
family of deterministic context-sensitive languages DCSL, that is, the complexity class DSPACE(n). In
a real-time computation of some twsDA, the tree-storage can grow not beyond n+1 nodes, where n is the
length of the input. Since a binary tree with n nodes can be encoded with O(n) bits, the tree-storage can
be simulated in deterministic space n. Therefore, a real-time twsDA can be simulated by a deterministic
linear bounded automaton and we obtain the inclusion Lrt(twsDA)⊆ DCSL.

We continue the investigation by showing that the possibility to create tree-storages of certain types
in real time can be utilized to accept further, even unary, languages by real-time deterministic, even
non-erasing, tree-walking-storage automata. To this end, we make the construction of Example 1 more
involved and consider the non-semilinear unary language of the words whose lengths are double Fi-
bonacci numbers.

The Fibonacci numbers form a sequence in which each number is the sum of the two preceding ones.
The sequence starts from 1 and 1 (sometimes in the literature it starts from 0 and 1). A prefix of the se-
quence is 1,1,2,3,5,8,13,21,34,55,89. Correspondingly, we are speaking of the ith Fibonacci number
fi, where i is the position in the sequence starting from 1. So, for example, f6 is the number 8. We are
going to prove that the language Lfib = {a2n | n is a Fibonacci number} is accepted by some twsDNEA
in real time by showing that a twsDNEA can successively create tree-storages that are Fibonacci trees.
Fibonacci trees are recursively defined as follows. The Fibonacci tree F0 of level 0 is the empty tree.
The Fibonacci tree F1 of level 1 is the tree that consists of one node only. The Fibonacci tree F̀ of
level ` ≥ 2 consists of the root whose left subtree is a Fibonacci tree of level `− 1 and whose right
subtree is a Fibonacci tree of level `− 2 (see Figure 3). For our purposes, the number of nodes of a
Fibonacci tree is important. It is well known that the number of nodes of Fibonacci tree F̀ , for `≥ 2, is
ν` = ν`−1 +ν`−2 +1. In other words, we obtain ν` = f`+2−1.

Theorem 2. The language Lfib is accepted by some twsDNEA in real time.

Proof. We proceed as in Example 1 and construct a twsDNEA M = 〈Q,{a},{•},δ ,ql,C,⊥,F〉with state
set Q = {ql,qp,qd ,qr} that runs in phases. Again, at the outset of the computation the tree-storage of M

M. Kutrib, U. Meyer 55

1

2

4

8

15

20

16

9

17

5

10

18

11

3

6

12

19

13

7

14

Figure 3: A Fibonacci tree of level 6. Removing the blue nodes (the leaves) yields a Fibonacci tree of
level 5.

forms a Fibonacci tree of level 1. After the (`−1)th phase, the tree-storage of M forms a Fibonacci tree
of level `. At the beginning and at the end of each phase the tree pointer is at the root of the tree-storage.
Again, we first construct M such that it works on empty input and extend it later.

So, assume that the tree-storage of M forms a Fibonacci tree of level ` ≥ 1 and that its tree pointer
is at the root. According to the recursive definition of Fibonacci trees, M will increase the levels of the
subtrees of every node by one in a bottom-up fashion. To this end, first state ql is used to move the tree
pointer as far as possible to the left. The leaf reached is the first node to be dealt with. In particular, this
leaf gets a left descendant. See Figure 3 for an example, where the Fibonacci tree of level 5 depicted by
the green nodes is extended to the entire Fibonacci tree of level 6 by adding the blue nodes.

Let a star ∗ as component of the type of the current node in the tree-walking-storage of M denote an
arbitrary entry and γ ∈ Γ∪{⊥}. We set:

1. δ (ql,λ ,(∗,+,∗),γ) = (ql,dl)

2. δ (ql,λ ,(∗,−,−),γ) = (qp,push(•, l))

3. δ (qp,λ ,(∗,∗,∗),γ) = (qd ,u)

Essentially, the meaning of the states are as in Example 1. State qp indicates that the last tree opera-
tion was a push, and the meaning of state qd is to indicate that the current node has entirely be processed
and that its ancestor is the next node to consider. So far, in Figure 3 node 20 has been pushed and the
tree pointer is back at node 15 in state qd .

4. δ (qd ,λ ,(l,∗,∗),γ) = (qr,u)

5. δ (qd ,λ ,(r,∗,∗),γ) = (qd ,u)

Node 15 has entirely be processed, since it got a new left subtree of level 1 and, thus, stick with a
right subtree of level 0 (the empty tree). By Transitions 4 and 5 the tree pointer is moved to the ancestor.
However, if it comes to the ancestor from the left subtree, the right subtree is still to be processed. In
this case, Transition 4 sends the tree pointer to the ancestor in state qr. If the tree pointer comes to the

56 Deterministic Real-Time Tree-Walking-Storage Automata

ancestor from the right subtree, the ancestor has entirely be processed and the tree pointer is moved up
in the appropriate state qd (Transition 5).

6. δ (qr,λ ,(∗,+,−),γ) = (qp,push(•,r))
7. δ (qr,λ ,(∗,+,+),γ) = (ql,dr)

If there is a right descendant of the node visited in state qr then the process is recursively applied to
the right subtree by moving the tree pointer to the right descendant in state ql (Transition 7). Otherwise,
if there is no right descendant of the node visited in state qr then this empty right subtree has to be
replaced by a subtree of level 1. This is simply done by pushing a single node (Transition 6). In Figure 3,
node 16 has been pushed as right descendant of node 8. Then, after the next few steps, node 8 has entirely
processed and node 4 is reached in state qr. Continuing, this process will end when node 3 has entirely
been processed and the root is reached from the right subtree in state qd . This is the end of the phase that
can uniquely be detected by M when its tree pointer comes back to the root from the right.

Before we next turn to the extension of M, we consider the number of steps taken to generate the
Fibonacci tree.

To this end, let `≥ 1 and recall that the number of nodes of Fibonacci tree F̀ is ν` = f`+2−1. Since
all nodes except the root are connected by exactly one edge, the number of edges of Fibonacci tree F̀ is
κ` = f`+2−2. We derive that the number of nodes of F̀ +1 is ν`+1 = f`+3−1 = f`+2−1+ f`+1 and the
number of its edges is κ`+1 = f`+2− 2+ f`+1. In order to increase the level of the tree-storage from `
to `+1, the tree pointer takes a tour through the tree as for a depth-first traversal. So, every edge of F̀ is
moved along twice. In addition, each new node is connected whereby for each new node the connecting
(new) edge is also moved along twice. In total, we obtain 2(f`+2−2) plus 2 f`+1 moves, that is, 2 f`+3−4
moves. Summing up the moves yields the number of moves taken by M to increase the level of the
tree-storage from initially 1 to ` as

`−1

∑
i=1

2 fi+3−4 =−4(`−1)+2
`−1

∑
i=1

fi+3 =−4(`−1)−8+2
`+2

∑
i=1

fi

= 2(f`+4−1)−4`−4 = 2 f`+4−4`−6,

since, in general, ∑
`
i=1 fi = f`+2−1.

Now, the construction of M is completed as follows. Initially, M performs 6 moves without any
operation on the tree-storage. That is, the tree pointer stays at the root. This can be realized by ad-
ditional states. Next, M starts to run through the phases described above, where at the end of phase `
the tree-storage forms a Fibonacci tree of level `+1. Before the first and after each phase, M performs
additionally 4 moves without any operation on the tree-storage, respectively.

Finally, it remains to be described how the input is read and possibly accepted. We let M read an
input symbol at every move. An input word is accepted if and only if its length is 2 f1, 2 f2, 2 f3, 2 f4, or
if M reads the last input symbol exactly at the end of some phase. In order to give evidence that M works
correctly, assume that the input length is 2 fx, for some x≥ 5. Then M starts to generate a tree-storage that
forms a Fibonacci tree of level x−4. The generation takes 2 fx−4(x−4)−6 moves plus the initial delay
of 6 moves plus the delay of totally 4(x−4) moves before the first and after each phase. Altogether, this
makes 2 fx−4(x−4)−6+6+4(x−4) = 2 fx moves. Since M reads one input symbol at every move, it
reads exactly 2 fx symbols. Clearly, M works in real time.

Now we turn to a technique for disproving that languages are accepted. In general, the method is
based on equivalence classes which are induced by formal languages. If some language induces a number

M. Kutrib, U. Meyer 57

of equivalence classes which exceeds the number of classes distinguishable by a certain device, then the
language is not accepted by that device. First we give the definition of an equivalence relation which
applies to real-time twsDAs.

Let L ⊆ Σ∗ be a language and ` ≥ 1 be an integer constant. Two words w ∈ Σ∗ and w′ ∈ Σ∗ are
`-equivalent with respect to L if and only if wu ∈ L ⇐⇒ w′u ∈ L for all u ∈ Σ∗, |u| ≤ `. The number of
`-equivalence classes with respect to L is denoted by E(L, `).

Lemma 3. Let L⊆ Σ∗ be a language accepted by some twsDA in real time. Then there exists a constant
p≥ 1 such that E(L, `)≤ 2p·2` .

Proof. The number of different binary trees with n nodes is known to be the nth Catalan number Cn. We
have C0 = 1 and Cn+1 =

4n+2
n+2 Cn (see, for example, [26]). So, we obtain Cn ≤ 4n, which is a rough but for

our purposes good enough estimation.
Now, let M be a real-time twsDA with state set Q and tree symbols Γ. In order to determine an

upper bound for the number of `-equivalence classes with respect to L(M), we consider the possible
configurations of M after reading all but ` input symbols. The remaining computation depends on the
last ` input symbols, the current state of M, the current Γ-tree as well as the current tree pointer P.
Since M works in real time, in its last at most `+ 1 steps it can only access at most `+ 1 tree nodes,
starting with the current node. These may be located in the upper ` levels of the tree rooted in the current
node, or at the upper `−1 levels of the tree rooted in the ancestor of the current node, etc. So, there are no
more than 2`+1−1+2`−1+2`−2+ · · ·+20≤ 2`+2 nodes that can be accessed. Though the corresponding
part of the tree can have certain structures only, we consider all non-isomorphic binary trees with 2`+2

nodes. Each node may be labeled by a symbol of Γ or by ⊥. Together, there are at most

|Q| ·C2`+2 · (|Γ|+1)2`+2 ≤ 2log(|Q|)+2·2`+2+log(|Γ|+1)·2`+2
= 2log(|Q|)+4·(2+log(|Γ|+1))·2`

different possibilities. Setting p = log(|Q|)+4(2+ log(|Γ|+1)), we derive

2log(|Q|)+4·(2+log(|Γ|+1))·2` ≤ 2p·2` .

Since the number of equivalence classes is not affected by the last ` input symbols, there are at
most 2p·2` equivalence classes.

Next, we turn to apply Lemma 3 to show that there is a context-free language which is not accepted
by any twsDA in real time. To this end, we consider the homomorphism h : {α0,α1,α2,α3}∗→ {a,b}∗
defined as h(α0) = aa, h(α1) = ab, h(α2) = ba, h(α3) = bb, and the witness language

Lh = {x1$x2$ · · ·$xk#y | k ≥ 0,xi ∈ {a,b}∗,1≤ i≤ k, and there exists j such that xR
j = h(y)}.

Theorem 4. The language Lh is not accepted by any twsDA in real time.

Proof. We consider some integer constant ` ≥ 1 and show that E(Lh, `) exceeds the number of equiva-
lence classes distinguishable by any real-time twsDA. To this end, let L(`)

h ⊂ Lh be the language of words
from Lh whose factors xi, 1≤ i≤ k, all have length 2`.

There are 222`
different subsets of {a,b}2`. For every subset P = {v1,v2, . . . ,vk} ⊆ {a,b}2`, we

define a word wP = $v1$v2$ · · ·$vk#. Now, let P and S be two different subsets. Then there is some word
u ∈ {a,b}2` such that u belongs to the symmetric difference of P and S. Say, u belongs to P\S. Setting
û = h−1(u) We have wPûR ∈ Lh and wSûR /∈ Lh. Therefore, language Lh induces at least 222`

equivalence
classes in E(Lh, `).

58 Deterministic Real-Time Tree-Walking-Storage Automata

On the other hand, if L would be accepted by some real-time twsDA, then, by Lemma 3, there is a
constant p ≥ 1 such that E(Lh, `) ≤ 2p·2` . Since Lh is infinite, we may choose ` large enough such that
22` > p ·2`.

Since the language Lh is context free and, on the other hand, the non-semilinear unary language of
Proposition 2 belongs to Lrt(twsDNEA), we have the following incomparabilities.

Theorem 5. The families Lrt(twsDA) and Lrt(twsDNEA) are both incomparable with the family of
context-free languages.

Next, we consider classical deterministic one-way stack automata. It has been shown that the unary
language Lcub = {an3 | n≥ 0} is not accepted by any DSA [23].

Proposition 6. The language Lcub is accepted by some twsDA in real time.

Proposition 6 and the result in [23] yield the following corollary.

Corollary 7. There is a language belonging to Lrt(twsDA) that does not belong to L (DSA).

4 Basic Closure Properties

The goal of this section is to collect some basic closure properties of the families Lrt(twsDA) and
Lrt(twsDNEA). In particular, we consider Boolean operations (complementation, union, intersection)
and AFL operations (union, intersection with regular languages, homomorphism, inverse homomor-
phism, concatenation, iteration). The results are summarized in Table 1 at the end of the section.

It turns out that the two families in question have the same properties and, in particular, share all but
one of these closure properties with the important family of deterministic context-free languages.

We start by mentioning the only two positive closure properties which more or less follow trivially
from the definitions.

Proposition 8. The families Lrt(twsDA) and Lrt(twsDNEA) are closed under complementation and
intersection with regular languages.

Proof. For acceptance it is required that the tree-walking-storage automata halt accepting after having
read the input entirely. Due to the real-time requirement the machines halt in any case. Should this
happen somewhere in the input, the remaining input can be read in an extra state. So, interchanging
accepting and non-accepting states is sufficient to accept the complement of a language.

For the intersection with regular languages, it is enough to simulate a deterministic finite automaton
in the states which is a standard construction for automata.

In order to prepare for further (non-)closure properties, we now tweak the language Lh of Section 3
and define

Lp = {x1$
|x1|x2$

|x2| · · ·xk$
|xk|#y | k ≥ 0,xi ∈ {a,b}∗,1≤ i≤ k,

no xi is proper prefix of x j, for 1≤ j < i, and there exists m such that xm = y}.

These little changes have a big impact. The language becomes now real-time acceptable by some
twsDNEA M. The basic idea of the construction of M is that it can accept Lp by building a trie from
x1,x2, . . . ,xk, observing that the $ padding allows it to return to the root between each part, and then on
encountering # it matches y to the trie.

M. Kutrib, U. Meyer 59

Theorem 9. The language Lp is accepted by some twsDNEA in real time.

The construction in the proof of Theorem 9 can straightforwardly be extended to show that the
following language L̂p is also accepted by some twsDNEA in real time.

L̂p = {x1$
|x1|x2$

|x2| · · ·xk$
|xk|¢z#1y | k ≥ 0,xi ∈ {a,b}∗,1≤ i≤ k,z ∈ {a,b,$}∗

no xi is proper prefix of x j, for 1≤ j < i, and there exists m such that xm = y}.

The language
L̂mi = {x¢v$vR#2 | x ∈ {a,b,$}∗,v ∈ {a,b}∗ }

is accepted by some deterministic pushdown automaton in real time. Therefore, it is accepted by some
real-time twsDNEA as well.

The proof of the next Proposition first shows the non-closure under union. Then the non-closure
under intersection follows from the closure under complementation by De Morgan’s law. A witness for
the non-closure under union is L = L̂p ∪ L̂mi. No real-time twsDA can accept L as any deterministic
automaton would have to represent a tree with arbitrary height representing a potential v from L̂mi, which
makes it impossible for it to reach whatever representation it has built of x1,x2, . . . ,xk if it turns out to be
trying to accept L̂p.

Proposition 10. The families Lrt(twsDA) and Lrt(twsDNEA) are neither closed under union nor under
intersection.

We turn to the catenation operations.

Proposition 11. The families Lrt(twsDA) and Lrt(twsDNEA) are neither closed under concatenation
nor under iteration.

Proof. To make the language L̂p∪ L̂mi more manageable we add a hint to the left of the words. So, let •
be a new symbol and set L1 = •L̂p∪ L̂mi. Since L̂p and L̂mi do belong to L (twsDNEA), L1 is accepted
by some real-time twsDNEA as well. The second language used here is the finite language L2 = {•,••}
that certainly also belongs to L (twsDNEA).

We consider the concatenation L2 ·L1 and assume that it belongs to L (twsDA). Since L (twsDA)
is closed under intersection with regular languages, (L2 · L1)∩ • • {a,b,$,¢,#1,#2}∗ = • • (L̂p ∪ L̂mi)
belongs to L (twsDA). Since L (twsDA) is straightforwardly closed under left quotient by a singleton,
we obtain L̂p∪ L̂mi ∈L (twsDA), a contradiction.

The non-closure under iteration follows similarly. Since L2 is regular, we derive that
L1∪L2 ∈L (twsDA). However, (L1∪L2)

∗∩••{a,b,$,¢,#1,#2}+ equals again ••(L̂p∪ L̂mi). So, as for
the concatenation we obtain a contradiction to the assumption that L (twsDA) is closed under iteration.

Proposition 12. The families Lrt(twsDA) and Lrt(twsDNEA) are not closed under length-preserving
homomorphisms.

Proof. The idea to show the non-closure is first to provide some hint that allows a language to be ac-
cepted, and then to make the hint worthless by applying a homomorphism.

So, let us provide a hint that makes the language L̂p∪ L̂mi acceptable by some real-time twsDNEA.
We use two new symbols •1 and •2 and set L = •1L̂p∪•2L̂mi. In this way, L belongs to Lrt(twsDNEA).
However applying the homomorphism h : {a,b,$,¢,#1,#2,•1,•2}∗→{a,b,$,¢,#1,#2,•}∗, that maps •1
and •2 to • and all other symbols to itself, to language L yields h(L) = •(L̂p∪ L̂mi) which does not belong
to Lrt(twsDA).

60 Deterministic Real-Time Tree-Walking-Storage Automata

Proposition 13. The families Lrt(twsDA) and Lrt(twsDNEA) are not closed under inverse homomor-
phisms.

Proof. Previously, we have taken the language Lh /∈Lrt(twsDA) and tweaked it to Lp ∈Lrt(twsDNEA).
Now we merge both languages to

L̃h = {x1$
|x1|x2$

|x2| · · ·xk$
|xk|#y | k ≥ 0,xi ∈ {a,b}∗,1≤ i≤ k,

no xi is proper prefix of x j, for 1≤ j < i, and there exists m such that xm = h(y)},

where h : {α0,α1,α2,α3}∗→{a,b}∗ is defined as h(α0) = aa, h(α1) = ab, h(α2) = ba, and h(α3) = bb.
The main ingredients to show that Lh /∈Lrt(twsDA) (Theorem 4) are kept such that L̃h /∈Lrt(twsDA)
immediately follows.

Similarly, if we require that y ∈ {a′,b′} has to match a factor xi after being unprimed then the corre-
sponding language

L̃p = {x1$
|x1|x2$

|x2| · · ·xk$
|xk|#y | k ≥ 0,xi ∈ {a,b}∗,1≤ i≤ k,

no xi is proper prefix of x j, for 1≤ j < i, and there exists m such that xm = h1(y)}

where h1 : {a′,b′}∗→{a,b}∗ is defined as h1(a′) = a, and h1(b′) = b, still belongs to Lrt(twsDNEA).
We define the homomorphism h2 : {α0,α1,α2,α3,a,b,$,¢,#1,#2}∗→{a,b,$,¢,#1,#2,a′,b′}∗ as

h2(α0) = a′a′, h2(α1) = a′b′, h2(α2) = b′a′, h2(α3) = b′b′, and h2(x) = x, for x ∈ {a,b,$,¢,#1,#2}.
So, we have h−1

2 (L̃p) = L̃h which implies the non-closure under inverse homomorphisms.

Finally, we consider the reversal.

Proposition 14. The families Lrt(twsDA) and Lrt(twsDNEA) are not closed under reversal.

Proof. A witness for the non-closure under reversal is the language L = L̂p∪ L̂mi. By Proposition 10, it
is not accepted by any real-time twsDA.

Concerning LR, the first symbol of an input decides to which language it still may belong. If the
symbol is #2 the input may only belong to L̂R

mi. If it is from {a,b,#2} then the input may only belong
to L̂R

p.
The language L̂R

mi is accepted by some real-time deterministic pushdown automaton and, thus, by
some real-time twsDNEA. Furthermore, it is not hard to see that L̂R

p belongs to Lrt(twsDNEA) as well.
We conclude the non-closures under reversal.

Family ∪ ∩ ∩reg · ∗ hlen.pres. h−1 R

Lrt(twsDA) 3 7 7 3 7 7 7 7 7

Lrt(twsDNEA) 3 7 7 3 7 7 7 7 7

DCFL 3 7 7 3 7 7 7 3 7

Table 1: Closure properties of the language families discussed. DCFL denotes the family of deterministic
context-free languages.

M. Kutrib, U. Meyer 61

5 Future Work

We made some first steps to investigate deterministic real-time tree-walking-storage automata. Several
possible lines of future research may be tackled. First of all, it would be natural to consider the nondeter-
ministic variants of the model. Decision problems and their computational complexities are an untouched
area. Another question is how and to which extent the capacities and complexities are changing in case
of a unary input alphabet and/or a unary set of tree symbols (which lead to the notion of counters in the
classical models).

References

[1] Alfred V. Aho & Jeffrey D. Ullman (1971): Translations on a Context-Free Grammar. Inform. Control 19(5),
pp. 439–475, doi:10.1016/S0019-9958(71)90706-6.

[2] Suna Bensch, Johanna Björklund & Martin Kutrib (2017): Deterministic Stack Transducers. Int. J. Found.
Comput. Sci. 28, pp. 583–601, doi:10.1142/S0129054117400081.

[3] Mikołaj Bojańczyk & Thomas Colcombet (2006): Tree-walking automata cannot be determinized. Theor.
Comput. Sci. 350, pp. 164–173, doi:10.1016/j.tcs.2005.10.031.

[4] Mikołaj Bojańczyk & Thomas Colcombet (2008): Tree-Walking Automata Do Not Recognize All Regular
Languages. SIAM J. Comput. 38, pp. 658–701, doi:10.1137/050645427.

[5] Tobias Denkinger (2016): An Automata Characterisation for Multiple Context-Free Languages. In Srecko
Brlek & Christophe Reutenauer, editors: Developments in Language Theory (DLT 2016), LNCS 9840,
Springer, pp. 138–150, doi:10.1007/978-3-662-53132-7 12.

[6] Seymour Ginsburg, Sheila A. Greibach & M. A. Harrison (1967): Stack automata and compiling. J. ACM
14, pp. 172–201, doi:10.1145/321371.321385.

[7] Seymour Ginsburg, Sheila A. Greibach & Michael A. Harrison (1967): One-Way Stack Automata. J. ACM
14, pp. 389–418, doi:10.1145/321386.321403.

[8] Wolfgang Golubski & Wolfram-Manfred Lippe (1996): Tree-Stack Automata. Math. Systems Theory 29, pp.
227–244, doi:10.1007/BF01201277.

[9] Sheila A. Greibach (1969): Checking Automata and One-Way Stack Languages. J. Comput. Syst. Sci. 3, pp.
196–217, doi:10.1016/S0022-0000(69)80012-7.

[10] Irène Guessarian (1983): Pushdown Tree Automata. Math. Systems Theory 16, pp. 237–263,
doi:10.1007/BF01744582.

[11] Eitan M. Gurari & Oscar H. Ibarra (1982): (Semi)Alternating Stack Automata. Math. Systems Theory 15, pp.
211–224, doi:10.1007/BF01786980.

[12] J. Hartmanis & R. E. Stearns (1965): On the Computational Complexity of Algorithms. Trans. Amer. Math.
Soc. 117, pp. 285–306, doi:10.1090/S0002-9947-1965-0170805-7.

[13] John E. Hopcroft & Jeffrey D. Ullman (1967): Nonerasing Stack Automata. J. Comput. Syst. Sci. 1, pp.
166–186, doi:10.1016/S0022-0000(67)80013-8.

[14] John E. Hopcroft & Jeffrey D. Ullman (1968): Deterministic Stack Automata and the Quotient Operator. J.
Comput. Syst. Sci. 2, pp. 1–12, doi:10.1016/S0022-0000(68)80003-0.

[15] Oscar H. Ibarra (1971): Characterizations of Some Tape and Time Complexity Classes of Turing Ma-
chines in Terms of Multihead and Auxiliary Stack Automata. J. Comput. Syst. Sci. 5(2), pp. 88–117,
doi:10.1016/S0022-0000(71)80029-6.

[16] Oscar H. Ibarra, Jozef Jirásek, Ian McQuillan & Luca Prigioniero (2021): Space Complexity of Stack Au-
tomata Models. Int. J. Found. Comput. Sci. 32, pp. 801–823, doi:10.1142/S0129054121420090.

https://doi.org/10.1016/S0019-9958(71)90706-6
https://doi.org/10.1142/S0129054117400081
https://doi.org/10.1016/j.tcs.2005.10.031
https://doi.org/10.1137/050645427
https://doi.org/10.1007/978-3-662-53132-7_12
https://doi.org/10.1145/321371.321385
https://doi.org/10.1145/321386.321403
https://doi.org/10.1007/BF01201277
https://doi.org/10.1016/S0022-0000(69)80012-7
https://doi.org/10.1007/BF01744582
https://doi.org/10.1007/BF01786980
https://doi.org/10.1090/S0002-9947-1965-0170805-7
https://doi.org/10.1016/S0022-0000(67)80013-8
https://doi.org/10.1016/S0022-0000(68)80003-0
https://doi.org/10.1016/S0022-0000(71)80029-6
https://doi.org/10.1142/S0129054121420090

62 Deterministic Real-Time Tree-Walking-Storage Automata

[17] Oscar H. Ibarra & Ian McQuillan (2018): Variations of checking stack automata: Obtaining unexpected
decidability properties. Theor. Comput. Sci. 738, pp. 1–12, doi:10.1016/j.tcs.2018.04.024.

[18] Oscar H. Ibarra & Ian McQuillan (2021): Generalizations of Checking Stack Automata: Characterizations
and Hierarchies. Int. J. Found. Comput. Sci. 32, pp. 481–508, doi:10.1142/S0129054121410045.

[19] S. Rao Kosaraju (1974): 1-Way Stack Automaton with Jumps. J. Comput. Syst. Sci. 9, pp. 164–176,
doi:10.1016/S0022-0000(74)80005-X.

[20] Martin Kutrib, Andreas Malcher & Matthias Wendlandt (2017): Tinput-Driven Pushdown, Counter, and
Stack Automata. Fund. Inform. 155, pp. 59–88, doi:10.3233/FI-2017-1576.

[21] Martin Kutrib & Uwe Meyer (2023): Tree-Walking-Storage Automata. In Frank Drewes & Mikhail
Volkov, editors: Developments in Language Theory (DLT 2023), LNCS 13911, Springer, pp. 182–194,
doi:10.1007/978-3-031-33264-7 15.

[22] Klaus-Jörn Lange (2010): A Note on the P-completeness of Deterministic One-way Stack Language. J. UCS
16, pp. 795–799, doi:10.3217/jucs-016-05-0795.

[23] William F. Ogden (1969): Intercalation Theorems for Stack Languages. In: Proceedings of the First
Annual ACM Symposium on Theory of Computing (STOC 1969), ACM Press, New York, pp. 31–42,
doi:10.1145/800169.805419.

[24] Michael Oser Rabin (1963): Real time computation. Israel J. Math. 1, pp. 203–211,
doi:10.1007/BF02759719.

[25] Eli Shamir & Catriel Beeri (1974): Checking Stacks and Context-Free Programmed Grammars Accept P-
complete Languages. In Jacques Loeckx, editor: International Colloquium on Automata, Languages and
Programming (ICALP 1974), LNCS 14, Springer, pp. 27–33, doi:10.1007/3-540-06841-4 50.

[26] Richard P. Stanley (2015): Catalan Numbers. Cambridge University Press,
doi:10.1017/CBO9781139871495.

https://doi.org/10.1016/j.tcs.2018.04.024
https://doi.org/10.1142/S0129054121410045
https://doi.org/10.1016/S0022-0000(74)80005-X
https://doi.org/10.3233/FI-2017-1576
https://doi.org/10.1007/978-3-031-33264-7_15
https://doi.org/10.3217/jucs-016-05-0795
https://doi.org/10.1145/800169.805419
https://doi.org/10.1007/BF02759719
https://doi.org/10.1007/3-540-06841-4_50
https://doi.org/10.1017/CBO9781139871495

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 63–78, doi:10.4204/EPTCS.388.8

© C. Mereghetti, B. Palano & P. Raucci
This work is licensed under the
Creative Commons Attribution License.

Latvian Quantum Finite State Automata
for Unary Languages

Carlo Mereghetti Beatrice Palano Priscilla Raucci
Dipartimento di Informatica “Giovanni Degli Antoni”

Università degli Studi di Milano, via Celoria 18, 20135 Milano – Italy
{carlo.mereghetti, beatrice.palano, priscilla.raucci}@unimi.it

We design Latvian quantum finite state automata (LQFAs for short) recognizing unary regular lan-
guages with isolated cut point 1

2 . From an architectural point of view, we combine two LQFAs rec-
ognizing with isolated cut point, respectively, the finite part and the ultimately periodic part of any
given unary regular language L. In both modules, we use a component addressed in the literature
and here suitably adapted to the unary case, to discriminate strings on the basis of their length. The
number of basis states and the isolation around the cut point of the resulting LQFA for L exponentially
depends on the size of the minimal deterministic finite state automaton for L.

1 Introduction

Quantum finite automata (QFAs for short) represent a theoretical model for a quantum computer with
finite memory [3, 4]. While we can hardly expect to see a full-featured quantum computer in the near
future, small quantum components, modeled by QFAs, seem to be promising from a physical implemen-
tation viewpoint (see, e.g., [7, 15]).

Very roughly speaking, a QFA is obtained by imposing the quantum paradigm — superposition,
unitary evolution, observation — to a classical finite state automaton. The state of the QFA can be seen as
a linear combination of classical states, called superposition. The QFA steps from a superposition to the
next one by a unitary (reversible) evolution. Superpositions can transfer the complexity of a computation
from a large number of sequential steps to a large number of coherently superposed classical states (this
phenomenon is sometimes referred as quantum parallelism). Along its computation, the QFA can be
“observed”, i.e., some features, called observables, can be measured. From measuring an observable,
an outcome is obtained with a certain probability and the current superposition irreversibly “collapses”,
with the same probability, to a particular superposition (coherent with the observed outcome).

QFAs exhibit both advantages and disadvantages with respect to their classical (deterministic or prob-
abilistic) counterpart. Basically, quantum superposition offers some computational advantages on prob-
abilistic superposition. On the other hand, quantum dynamics are reversible: because of limitation of
memory, it is sometimes impossible to simulate deterministic finite state automata (DFAs for short) by
quantum automata. Limitations due to reversibility can be partially attenuated by systematically intro-
ducing measurements of suitable observables as computational steps.

In the literature, several models of QFAs are proposed, which mainly differ in their measurement
policy. The first and most simple model is the measure-once QFA (MO-QFA for short) [6, 16], where
the probability of accepting strings is evaluated by “observing” just once, at the end of input processing.
In measure-many QFAs (MM-QFAs for short) [11], instead, the acceptance probability is evaluated by
observing after each move, thus allowing the possibility of halting the computation in the middle of
input processing. An additional model is the Latvian QFA (LQFA for short) [1], which can be regarded as

http://dx.doi.org/10.4204/EPTCS.388.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

64 Latvian Quantum Finite State Automata for Unary Languages

“intermediate” between MO-QFAs and MM-QFAs. In fact, as in the MM-QFA model, LQFAs are observed
after each move; on the other hand, as in the MO-QFA model, acceptance probability is evaluated at the
end of the computation only. From a language recognition point of view, it is well known that MO-QFAs
are strictly less powerful than LQFAs, which are strictly less powerful than MM-QFAs, which are strictly
less powerful than DFAs. This hierarchy is established, e.g., in [1, 6, 11].

In this paper, we investigate the architecture and size of LQFAs processing unary languages, i.e.
languages built over a single-letter alphabet. A similar investigation is presented in [5], where MM-QFAs
recognizing unary regular languages with isolated cut point are exhibited, whose size (number of basis
states) is linear in the size of equivalent minimal DFAs. Here, we show that unary regular languages
can be recognized with isolated cut point by the less powerful model of LQFAs as well, paying by an
exponential size increase. A relevant module in our construction is a LQFA recognizing with isolated cut
point the strings of length exceeding a fixed threshold. For its design, we adapt a construction in [1, 14]
to the unary case. Such a module is then suitably combined with two LQFAs taking care, respectively, of
the finite part and the ultimately periodic part any unary regular language consists of. The architecture of
the resulting LQFA turns out to be significantly different from the equivalent MM-QFAs in [5]. Moreover,
while in the MM-QFA case the isolation around the cut point is constant, for LQFAs it exponentially
decreases with respect to the size of the DFA for the finite part of the target unary regular language.
However, it should be stressed that the less powerful model of MO-QFAs cannot recognize with isolated
cut point all unary regular languages. Our results constructively prove that LQFAs and MM-QFAs have
the same recognition power, whenever restricted to recognize unary languages with isolated cut point.

The paper is organized as follows. In Section 2, we overview basics on formal language theory,
linear algebra, and quantum finite state automaton models. In Section 3, we design isolated cut point
LQFAs recognizing the strings whose length is greater than or equal to a fixed value. Then, in Section 4,
we provide the full architecture of isolated cut point LQFAs for unary regular languages, analyzing their
size, cut point, and isolation. Finally, in Section 5, we draw some concluding remarks and offer possible
research hints.

2 Preliminaries

2.1 Formal Languages

We assume familiarity with basic notions of formal language theory (see, e.g., [9]). Given a set S, we
let |S| denote its cardinality. The set of all words or strings (including the empty string ε) over a finite
alphabet Σ is denoted by Σ∗, and we let Σ+ = Σ∗ \ε . For a string w ∈ Σ∗, we let |w| denote its length and
wi its ith symbol. For any given i≥ 0, we let Σi be the set of strings over Σ of length i, with Σ0 = {ε}. We
let Σ≤i =

⋃i
j=0 Σ j; sets Σ>i and Σ≥i are defined accordingly. A language over Σ is any subset L⊆ Σ∗; its

complement is the language Lc = Σ∗ \L. A deterministic finite state automaton (DFA) is formally defined
as a 5-tuple D = (Q,Σ,q0,δ ,F), where Q is the finite set of states, Σ the finite input alphabet, q0 ∈Q the
initial state, F ⊆Q the set of accepting states, and δ : Q×Σ→Q the transition function. Denoting by δ ∗

the canonical extension of δ to Σ∗, the language recognized by D is the set LD = {w∈ Σ∗|δ ∗(q0,w)∈ F}.
It is well known that DFAs characterize the class of regular languages.

A unary language is any language built over a single letter alphabet, e.g., Σ = {σ }, and thus has the
general form L⊆ σ∗. Unary regular languages form ultimately periodic sets, as stated by the following

Theorem 1. ([9, 17]) Let L⊆ σ∗ be a unary regular language. Then, there exist two integers T ≥ 0 and
P > 0 such that, for any k ≥ T , we have σ k ∈ L if and only if σ k+P ∈ L.

C. Mereghetti, B. Palano & P. Raucci 65

By Theorem 1, it is easy to see that any unary regular language L can be recognized by a (minimal)
DFA consisting of an initial path of T states joined to a cycle of P states; accepting states are suitably
settled on both the path and the cycle. Unary regular languages satisfying Theorem 1 with T = 0 are
called periodic languages of period P.

2.2 Linear Algebra

We quickly recall some notions of linear algebra, useful to describe quantum computational devices.
For more details, we refer the reader to, e.g., [19]. The fields of real and complex numbers are denoted
by R and C, respectively. Given a complex number z = a+ ib, with a,b ∈ R, its conjugate is denoted
by z∗ = a− ib, and its modulus by |z| =

√
z · z∗. We let Cn×m denote the set of n×m matrices with

entries in C. Given a matrix M ∈ Cn×m, for 1 ≤ i ≤ n and 1 ≤ j ≤ m, we denote by Mi j its (i, j)th
entry. The transpose of M is the matrix MT ∈ Cm×n satisfying MT

i j = M ji, while we let M∗ be the
matrix satisfying M∗i j = (Mi j)

∗. The adjoint of M is the matrix M† = (MT)
∗. For matrices A,B ∈Cn×m,

their sum is the n×m matrix (A+B)i j = Ai j +Bi j. For matrices C ∈ Cn×m and D ∈ Cm×r, their product
is the n× r matrix (C ·D)i j = ∑

m
k=1Cik ·Dk j. For matrices A ∈Cn×m and B ∈Cp×q, their direct (or tensor

or Kronecker) product is the n·p×m·q matrix defined as

A⊗B =

 A11B · · · A1mB
...

. . .
...

An1B · · · AnmB

 .

When operations are allowed by matrix dimensions, we have that (A⊗B) · (C⊗D) = A ·C ⊗ B ·D.
A Hilbert space of dimension n is the linear space Cn of n-dimensional complex row vectors equipped

with sum and product by elements in C, where the inner product 〈ϕ,ψ〉= ϕ ·ψ† is defined, for vectors

ϕ,ψ ∈Cn. The ith component of ϕ is denoted by ϕi, its norm is given by ‖ϕ‖=
√
〈ϕ,ϕ〉=

√
∑

n
i=1 |ϕi|2.

If 〈ϕ,ψ〉= 0 (and ‖ϕ‖= 1 = ‖ψ‖), then ϕ and ψ are orthogonal (orthonormal). An orthonormal basis
of Cn is any set of n orthonormal vectors in Cn. In particular, the canonical basis of Cn is the set
{e1,e2, . . . ,en }, where ei ∈ Cn is the vector having 1 at the ith component and 0 elsewhere. Clearly, any
vector ϕ ∈ Cn can be univocally expressed as a linear combination of the vectors in the canonical basis
as ϕ = ∑

n
i=1 ϕi · ei. This latter fact is usually addressed by saying that Cn is spanned by {e1,e2, . . . ,en }.

Two subspaces X ,Y ⊆Cn are orthogonal if any vector in X is orthogonal to any vector in Y . In this case,
we denote by XuY the linear space generated by X ∪Y . For vectors ϕ ∈Cn and ψ ∈Cm, their direct (or
tensor or Kronecker) product is the vector ϕ⊗ψ = (ϕ1 ·ψ, . . . ,ϕn ·ψ); we have ‖ϕ⊗ψ‖= ‖ϕ‖ · ‖ψ‖.

A matrix M ∈ Cn×n is said to be unitary if M ·M† = I(n) = M† ·M, where I(n) is the n× n identity
matrix. Equivalently, M is unitary if it preserves the norm, i.e., ‖ϕ ·M‖ = ‖ϕ‖ for any vector ϕ ∈ Cn.
Direct products of unitary matrices are unitary as well. The matrix M is said to be Hermitian (or self-
adjoint) if M =M†. Let O ∈Cn×n be an Hermitian matrix, ν1,ν2, . . . ,νs its eigenvalues, and E1,E2, . . . ,Es

the corresponding eigenspaces. It is well known that each eigenvalue νk is real, that Ei is orthogonal to E j

for every 1 ≤ i 6= j ≤ s, and that E1uE2u · · ·uEs = Cn. Thus, every vector ϕ ∈ Cn can be uniquely
decomposed as ϕ = ϕ(1)+ϕ(2)+ · · ·+ϕ(s), for unique ϕ(j) ∈ E j. The linear transformation ϕ 7→ ϕ(j) is
the projector Pj onto the subspace E j. Actually, the Hermitian matrix O is biunivocally determined by
its eigenvalues and projectors as O = ν1 ·P1 +ν2 ·P2 + · · ·+νs ·Ps. We recall that a matrix P ∈ Cn×n is a
projector if and only if P is Hermitian and idempotent, i.e. P2 = P.

Let ω = ei 2π

n be the nth root of the unity (ωn = 1) and define the Vandermonde matrix W ∈ Cn×n

whose (r,c)th component is ωrc, for 0 ≤ r,c < n. Let the n× n complex matrix Fn =
1√
n ·W. It is easy

66 Latvian Quantum Finite State Automata for Unary Languages

to see that Fn is the unitary matrix implementing the quantum Fourier transform. Throughout the paper,
it will be useful to recall that operating Fn on the jth vector of the canonical basis yields the vector
e j ·Fn =

1√
n · (ω

0,ω(j−1)·1, . . . ,ω(j−1)·(n−1)). We remark that |(e j ·Fn)k|2 = 1
n , for every 1≤ k ≤ n.

As we will see in the next section, in accordance with quantum mechanics principles (see, e.g., [10]),
the state of a quantum finite state automaton at any given time during its computation is represented by a
norm 1 vector from a suitable Hilbert space, the state evolution of the automaton is modeled by unitary
matrices, and information on certain characteristics of the automaton are probabilistically extracted by
measuring some “observables” represented by Hermitian matrices.

2.3 Quantum Finite State Automata

Here, we recall the model of a Latvian quantum finite state automaton [1] we are mostly interested in.
We then quickly introduce measure-once quantum finite state automata [6, 16] as a particular case of
Latvian automata. Finally, we overview measure-many quantum finite state automata [11].
Definition 1. Let Σ be an input alphabet,] /∈ Σ an endmarker symbol, and set Γ = Σ∪{]}. A Latvian
quantum finite automaton (LQFA for short) is a system A =(Q,Σ,π0,{U(σ)}σ∈Γ,{Oσ}σ∈Γ,Qacc), where

• Q = {q1,q2, . . . ,qn} is the finite set of basis states; the elements of Q span1 the Hilbert space Cn,

• Qacc ⊆ Q is the set of accepting basis states,

• π0 ∈ Cn is the initial amplitude vector (superposition) satisfying ‖π0‖= 1,

• U(σ) ∈ Cn×n is the unitary evolution matrix, for any σ ∈ Γ,

• for any σ ∈ Σ, we let Oσ = ∑
kσ−1
i=0 ci(σ) ·Pi(σ) be an observable (Hermitian matrix) on Cn, where

{c0(σ), . . . ,ckσ−1(σ)} is the set of all possible outcomes (eigenvalues) of measuring Oσ , and
{P0(σ), . . . ,Pkσ−1(σ)} are the projectors onto the corresponding eigenspaces,

• we let O] = a ·Pacc(])+ r · (I(n)−Pacc(])) be the final observable, where Pacc(]) is the projector
onto the subspace of Cn spanned by the states in Qacc.

Let us briefly describe the behavior of A on an input word w]∈ Σ∗]. At any given time, the state of A is
a superposition of basis states in Q which is represented by a norm 1 vector ξ ∈Cn. We have that ξi ∈C
is the amplitude of the basis state qi, while |ξi|2 ∈ [0,1] is the probability of observing A in the basis
state qi. The computation of A on w] starts in the initial superposition π0 by reading the first input
symbol. Then, the transformations associated with each input symbol are applied in succession. The
transformation corresponding to a symbol σ ∈ Γ consists of two steps:

1. Evolution: the matrix U(σ) acts on the current state ξ of A , yielding the next state ξ ′ = ξ ·U(σ).

2. Observation: the observable Oσ is measured and the outcome ci(σ) is seen with probability
‖ξ ′ ·Pi(σ)‖2; upon seeing ci(σ), according to Copenhagen interpretation of quantum mechan-
ics [10], the state of A "collapses" to (norm 1) state ξ ′ ·Pi(σ)/‖ξ ′ ·Pi(σ)‖ and the computation
continues, unless we are processing the endmarker].

Upon processing the endmarker], the final observable O] is measured yielding the probability of see-
ing A in an accepting basis state. Therefore, the probability of accepting w ∈ Σ∗ is given by

pA (w) =
kw1−1

∑
i1=0
· · ·

kw|w|−1

∑
i|w|=0

∥∥∥π0 ·U(w1) ·Pi1(w1) · · · · ·U(w|w|) ·Pi|w|(w|w|) ·U(]) ·Pacc(])
∥∥∥2

.

1We can associate with the set Q = {q1,q2, . . . ,qn} of basis states the canonical basis {e1, . . . ,en } of the Hilbert space Cn

(see Section 2.2) where, for each 1≤ i≤ n, we let ei represent the basis state qi. As the canonical basis spans Cn, with a slight
abuse of notation, we say that the elements of Q spans Cn.

C. Mereghetti, B. Palano & P. Raucci 67

The function pA : Σ∗→ [0,1] is the stochastic event induced by A . The language recognized by A with
cut point λ ∈ [0,1] is the set of words LA ,λ = {w ∈ Σ∗ | pA (w)> λ}. The cut point λ is said to be
isolated whenever there exists ρ ∈

(
0, 1

2

]
such that |pA (w)−λ | ≥ ρ , for any w ∈ Σ∗. The parameter ρ

is usually referred to as radius of isolation.
In general, a language L⊆ Σ∗ is recognized with isolated cut point by a LQFA whenever there exists

a LQFA A such that (inf{pA (w) | w ∈ L}− sup{pA (w) | w 6∈ L})> 0. In this case, we can compute
the cut point as being λ = 1

2 · (inf{pA (w) | w ∈ L}+ sup{pA (w) | w 6∈ L}), with radius of isolation
ρ = 1

2 ·(inf{pA (w) | w ∈ L}−sup{pA (w) | w 6∈ L}). Throughout the rest of the paper, for the sake of
conciseness, we will sometimes be writing “isolated cut point quantum finite automaton for a language”
instead of “quantum finite automaton recognizing a language with isolated cut point”. Isolated cut point
turns out to be one of the main language recognition policies within the literature of probabilistic devices.
Its relevance in the realm of finite state automata is due to the fact that we can arbitrarily reduce the
classification error probability of an input word w by repeating a constant number of times (not depending
on the length of w) its parsing and taking the majority of the answers. We refer the reader to ,e.g., [18,
Sec. 5], where the notion of isolated cut point recognition is introduced and carefully analyzed.

One of the two original and most studied models of a quantum finite state automaton is the measure-
once model (MO-QFA for short). An MO-QFA can be seen as a particular LQFA where, for any σ ∈ Σ,
we have that Oσ = I(n). Basically, this amounts to leave the computation of A undisturbed up to the
final observation for acceptance. Thus, an MO-QFA can be formally and more succinctly written as
A = (Q,Σ,π0,{U(σ)}

σ∈Γ
,Qacc). The probability of A accepting the word w ∈ Σ∗ now simplifies as

pA (w) =
∥∥π0 ·U(w1) · · · · ·U(w|w|) ·U(]) ·Pacc(])

∥∥2
.

Let us now switch to the other original model, namely a measure-many quantum finite state automa-
ton (MM-QFA for short). Roughly speaking, an MM-QFA A is defined as LQFA but with the possibility of
accepting/rejecting the input string before reaching the endmarker. More precisely, the set Q of the basis
states of A can be partitioned into halting states, which can be either accepting or rejecting, and non
halting states, also called go states, i.e., Q = Qacc∪Qre j ∪Qgo. Following such a state partition, the sole
observable O = a ·Pacc + r ·Pre j +g ·Pgo, whose projectors map onto the subspaces spanned by the cor-
responding basis states, is associated with each symbol in Γ. At each step, the observable O is measured
and the computation of A continues (unless we are processing]) only if the outcome g is seen. Instead,
if the outcome a (r) is seen, then A halts and accepts (rejects). Formally, the MM-QFA A can be written
as A = (Q,Σ,π0,{U(σ)}σ∈Γ,O,Qacc), and the probability of accepting the word w]= w1 · · ·wnwn+1 is

pA (w) = ∑
n+1
k=1 ‖π0 · (∏k−1

i=1 U(wi) ·Pgo) ·U(wk) ·Pacc‖2.

It is well known (see, e.g., [6, 16]) that the class of languages recognized by isolated cut point MO-
QFAs coincides with the class of group languages. Notice that finite languages are not group languages,
and hence they cannot be accepted by isolated cut point MO-QFAs. Isolated cut point LQFAs are proved
in [1, 14] to be strictly more powerful than isolated cut point MO-QFAs, since their recognition power
coincides with the class of block group languages. An equivalent characterization states that a language
is recognized by an isolated cut point LQFA if and only if it belongs to the boolean closure of languages
of the form L1a1L2a2 · · ·akLk+1, for ai ∈ Σ, group language Li ⊆ Σ∗, and |Σ|> 1. Finally, the recognition
power of isolated cut point MM-QFAs still remains an open question. However, it is know that MM-QFAs
are strictly more powerful than LQFAs but strictly less powerful than DFAs. In fact, isolated cut point MM-
QFAs can recognize the language aΣ∗ which cannot be accepted by isolated cut point LQFAs [1]. On the
other hand, isolated cut point MM-QFAs cannot recognize the language Σ∗a, for |Σ|> 1 and a ∈ Σ [11].

68 Latvian Quantum Finite State Automata for Unary Languages

3 Isolated Cut Point LQFAs for Words Longer than T

Here, we design an isolated cut point LQFA recognizing the unary language σ≥T , for any given T > 0
(i.e., the set of unary strings whose length is greater than or equal to T). As it will be clear in the next
section, this LQFA will be a relevant component in the modular construction of isolated cut point LQFAs
for unary regular languages.

Our design pattern is inspired by [1, 14], where the authors provide an isolated cut point LQFA for
the language Σ∗a1Σ∗a2 · · · akΣ∗, with ai ∈ Σ and |Σ|> 1. So, we focus on recognizing the unary version
of Σ∗a1Σ∗a2 · · · aT Σ∗ yielded by fixing a1 = · · · = aT = σ and Σ = {σ }, namely, the desired language
a1 · · ·aT Σ∗ =σ≥T . We adapt the construction in [1, 14], and inductively exhibit a family {M(`) }`≥1
of LQFAs such that: (i) M(`) recognizes the language σ≥` with isolated cut point, and (ii) M(`) is con-
structed by “expanding” M(`−1). So, the desired isolated cut point LQFA for σ≥T will result after T
“expansions”, starting from the LQFA M(1). We provide a detailed analysis of the stochastic behavior
of M(`) machines, emphasizing cut points, isolations and their size (i.e., number of their basis states). In
this section, to have a convenient notation, we will be using Aσ for the evolution operator of our LQFAs.

Base of the construction: For the induction base, we define the LQFA M(1) for the language σ≥1 as

M(1) = (Q(1),{σ } ,π0,{A(1)
σ ,A(1)

] },{O
(1)
σ ,O

(1)
] },Q

(1)
acc),

where Q(1) = {q0, . . . ,qn−1} is the set of n basis states, π0 = e1 meaning that M(1) starts in the state q0,
Q(1)

acc = Q(1)\{q0 } is the set of n− 1 accepting states. For the evolution matrices, we let A(1)
σ = Fn (the

quantum Fourier transform) and A(1)
] = I (the identity matrix). The observable O

(1)
σ is the canonical

observable defined by the projectors {e1
† · e1, e2

† · e2, . . . ,en
† · en}. By measuring O

(1)
σ on M(1) being in

the superposition ξ ∈ Cn, we will see M(1) in the basis state qi−1 with probability ‖ξ · (ei
† · ei)‖2 = |ξi|2.

Upon such an outcome, the state of M(1) clearly collapses to ei. The final observation O
(1)
] projects onto

the subspace spanned by the accepting basis states {q1, . . . ,qn−1 }.
The automaton M(1) behaves as follows: when the first input symbol is read, the state of M(1) be-

comes π0 ·A(1)
σ = e1 ·Fn, upon which the canonical observation is measured. As noticed at the end of Sec-

tion 2.2, such a measurement will cause M(1) to move from q0 to some basis state qi, with 0≤ i≤ n−1,
uniformly at random (i.e., with probability |(e1 ·Fn)i+1|2 = 1

n). After processing (again, by quantum
Fourier transform followed by measuring the canonical observable) the next input symbol from being
in the state ei, we again find M(1) in a basis state uniformly at random. Such a dynamics continues
unaltered, until the endmarker is reached and processed by the identity matrix. At this point, the fi-
nal observation O] is measured, and an accepting state is easily seen to be reached with probability
|Q(1)

acc| · 1
n = (n−1

n). Clearly, processing the empty string leaves M(1) in the non accepting state q0 with
certainty. Therefore, pM(1)(ε) = 0, while for k > 0 we have pM(1)(σ k) = (n−1

n). So, M(1) recognizes the
language σ≥1 with isolated cut point.

Inductive step of the construction: For the inductive step, we show how to build the isolated cut point
LQFA M(`) for the language σ≥` from the LQFA M(`−1) for the language σ≥`−1, this latter LQFA being
given by inductive hypothesis. We define

M(`) = (Q(`),{σ } ,π0,{A(`)
σ ,A(`)

] },{O
(`)
σ ,O

(`)
] },Q

(`)
acc),

where the set Q(`) of basis states consists of the previous set Q(`−1) of basis states, plus (n−1) new basis
states per each state in Q(`−1)

acc . We let Q(`)
acc be the set containing these (n−1) · |Q(`−1)

acc | new states, with
|Q(`)

acc|= (n−1)`. Therefore, Q(`) = Q(`−1)∪Q(`)
acc = {q0}∪Q(1)

acc∪Q(2)
acc∪·· ·∪Q(`)

acc with |Q(i)
acc|= (n−1)i,

C. Mereghetti, B. Palano & P. Raucci 69

so that |Q(`)| = ∑
`
i=0(n− 1)i = (n−1)(`+1)−1

n−2 . The initial superposition is π0 = e1. We let A(`)
] = I and

A(`)
σ = B(`) · Ã(`−1), where Ã(`−1) is the transformation acting as A(`−1)

σ on Q(`−1) ⊂ Q(`), and as the
identity elsewhere. Instead, B(`) is an additional operator working as follows. For any q̃ ∈ Q(`−1)

acc , let
Qq̃ = {q̃1, . . . , q̃n−1} ⊂ Q(`)

acc be the set of the n−1 new added accepting states associated with q̃. Thus,
the operator B(`) first acts as Fn on { q̃} ∪Qq̃ for every q̃ ∈ Q(`−1)

acc , then it measures O
(`)
σ being the

canonical observable on Q(`−1)
acc ∪Q(`)

acc plus the identity projector on the remaining basis states. The final
observable O

(`)
] as usual projects onto the subspace spanned by Q(`)

acc. Actually, the automaton so far

constructed does not perfectly comply with the definition of a LQFA given in Section 2.3 since A(`)
σ is

not a unitary matrix. However, [1, Claim 1] ensures that the action of the operator B(`) · Ã(`−1) followed
by measuring Õ

(`−1)
σ (the observable of M(`−1) extended to Q(`) by the identity projector onto Q(`)

acc) can
be expressed as a unitary matrix followed by measuring a suitable observable. This last detail possibly
enlarges the dimension of the Hilbert space for M(`) by a factor bounded by n`. The stochastic event
induced by M(`) will be discussed later.

To clarify the architecture and behavior of this family of automata, we now describe the LQFA M(3)

recognizing the language σ≥3 with isolated cut point. We have

M(3) = (Q(3),{σ } ,π0,{A(3)
σ ,A(3)

] },{O
(3)
σ ,O

(3)
] } ,Q

(3)
acc),

where we let the set of basis states be Q(3) = {q0}∪Q(1)
acc∪Q(2)

acc∪Q(3)
acc with Q(1)

acc = {qi | 1≤ i≤ n−1},
Q(2)

acc =
{

qi, j | 1≤ i, j ≤ n−1
}

, and Q(3)
acc =

{
qi, j,k | 1≤ i, j,k ≤ n−1

}
. We remark that Q(3)

acc is the set
of (n− 1)3 accepting basis states of M(3). We can regard basis states as partitioned into three groups
reflected by the number of subscripts attributed to each basis state; each group of states is added in a
subsequent step of the inductive construction. The general structure of the state (superposition) of M(3)

is a norm 1 vector in C|Q(3)| of the following form, with α(q) denoting the amplitude of the basis state q:

[α(q0),α(q1),α(q1,1), [. . . α(q1,1,k) . . .],α(q1,2), [. . . α(q1,2,k) . . .], . . . ,α(q1,n−1), [. . . α(q1,n−1,k) . . .],

α(q2),α(q2,1), [. . . α(q2,1,k) . . .],α(q2,2), [. . . α(q2,2,k) . . .], . . . ,α(q2,n−1), [. . . α(q2,n−1,k) . . .],

...

α(qn−1),α(qn−1,1), [. . . α(qn−1,1,k) . . .],α(qn−1,2), [. . . α(qn−1,2,k) . . .], . . . ,α(qn−1,n−1), [. . . α(qn−1,n−1,k) . . .]].

(*) Form of states (superpositions) of M(3).

As usual, we let π0 = e1. The evolution matrices of M(3) are A(3)
] = I, while we have A(3)

σ =B(3) ·B̃(2) ·Ã(1),
where each matrix in the product acts on levels of the basis states as follows: Ã(1) affects the states in
{q0 }∪Q(1)

acc, B̃(2) the states in Q(1)
acc ∪Q(2)

acc, and B(3) the states in Q(2)
acc ∪Q(3)

acc. From now on, it will be
useful to describe the dynamic of M(3) by displaying the sequence of the stochastic vectors obtained by
squaring the amplitudes in the superpositions of the form in (*). In such vectors, the value |α(q)|2 of
the component associated with q represents the probability for M(3) of being in the basis state q. This
stochastic dynamic description turns out to be appropriate as M(3) uses the canonical observable after
each quantum Fourier transform operation. Upon reading a symbol σ , the LQFA M(3) executes A(3)

σ

followed by measuring Õ
(1)
σ : formally, we write A(3)

σ ↓ Õ
(1)
σ . This operation distributes the probability

differently in the three group of basis states Q(1), Q(2)
acc and Q(3)

acc. In particular, the probability values turn
out to be identical within each group of basis states, for each step of computation (except for the initial

70 Latvian Quantum Finite State Automata for Unary Languages

superposition π0). Therefore, the form of the stochastic vector at each step of computation is

[x, x, y, [· · · z · · ·], y, [· · · z · · ·], . . . , y, [· · · z · · ·],
x, y, [· · · z · · ·], y, [· · · z · · ·], . . . ,y, [· · · z · · ·],

...

x, y, [· · · z · · ·], y, [· · · z · · ·], . . . , y, [· · · z · · ·]],

where x is the probability value for the states in Q(1), y for the states in Q(2)
acc, and z for the (accepting)

states in Q(3)
acc. Thus, the current accepting probability is (n−1)3 · z.

Now, let x(k), y(k), and z(k) be the above basis states probabilities after processing the kth input
symbol. We are going to establish the dependence of such values from x(k− 1), y(k− 1), and z(k− 1)
in order to single out a closed formula for the stochastic event pM(3) . To this aim, for reader’s ease of
mind, a graphical representation is given in Figure 1, of how one step of the evolution-plus-observation
A(3)

σ ↓ Õ
(1)
σ affects the probability values in each different group of basis states.

Figure 1: Stochastic representation of a computation step of M(3) on the symbol σ for basis states of dif-
ferent groups. The notation Ã1 ↓ Õ

(1)
σ means that Ã1 is applied and then the observable Õ

(1)
σ is measured.

Wave (straight) edges indicate basis state transitions occurring with probability 1
n (with certainty). For

instance, the tree in (b) says that, starting from qi 6=0 for a fixed i and after one step of computation, we
will observe M(3) in q0 with probability 1

n2 . Note that there exist n−1 trees of the form (b) leading to q0.

C. Mereghetti, B. Palano & P. Raucci 71

Let us focus, e.g., on x(k). The probability x(k) depends on x(k−1), y(k−1), and z(k−1) as follows:

• Figure 1(a) shows that the basis state q0 contributes with 1
n · x(k−1).

• Figure 1(b) shows the contribution of each basis states in Q(1)
acc, which is 1

n2 · x(k− 1); given that

|Q(1)
acc|= (n−1), the total contribution is (n−1)

n2 · x(k−1).

• Figure 1(c) shows that the total contribution given by y(k−1) elements (i.e., by the (n−1)2 basis
states in Q(2)

acc) is (n−1)2

n3 · y(k−1).

• Figure 1(d) shows that the total contribution given by z(k−1) elements (i.e., by the (n−1)3 basis
states in Q(3)

acc) is (n−1)3

n3 · z(k−1).

By analogous reasonings, we can obtain recurrences for y(k) and z(k), globally yielding the system
x(k) = 1

n · x(k−1)+ (n−1)
n2 · x(k−1)+ (n−1)2

n3 · y(k−1)+ (n−1)3

n3 · z(k−1)

y(k) = 1
n · x(k−1)+ (n−1)

n2 · y(k−1)+ (n−1)2

n2 · z(k−1)
z(k) = 1

n · y(k−1)+ (n−1)
n · z(k−1).

(1)

The base for this system of recurrences is the probability distribution after reading the first symbol σ , i.e.:{
x(1) = 1

n

y(1) = z(1) = 0.
(2)

From the system (1), the reader may verify that at each computation step the probability “shifts” towards
the next deeper level of the basis states until reaching the basis states in Q(3)

acc. In fact, after the first step
(yielding probabilities in (2)), only the x-components have non null values. After the second step, only
the x- and y-components have values different from 0, while the value of the z-components is still 0.
This shows that M(3) rejects with certainty the strings in σ≤2. After the third step, all the components
have non null values; in particular, z(3) = 1

n3 , so that the accepting probability of the string σ3 attains

|Q(3)
acc| · z(3) = (n−1

n)3. By solving the system (1), we get a closed formula for z(k), with k ≥ 2, as

z(k) =
1

n(n−1)2 ·

(
1−

(2n−2
n2)k−2 · (n−1)2 +1

(n−1)2 +1

)
.

This allows us to evaluate the accepting probability of M(3) for any string in σ∗ as

pM(3)(σ k) = |Q(3)
acc| · z(k) =

0 if k ≤ 2
n−1

n ·
(

1−
(2n−2

n2)k−2·(n−1)2+1
(n−1)2+1

)
if k ≥ 3.

(3)

Equation (3) shows that M(3) recognizes σ≥3 with isolated cut point. Clearly, the stochastic event induced
by M(3) depends on the number n of the basis states of M(1), the initial automaton of the inductive
construction. Figure 2 displays pM(3) for some values of n. As expected, the higher n grows, the better
the isolation around the cut point becomes.

72 Latvian Quantum Finite State Automata for Unary Languages

Figure 2: The (“continuous version” of the) stochastic events induced by M(3) according to Equation 3,
for different values of the number n of basis states of M(1), the base module inductively leading to M(3).

Now, we consider the general LQFA M(`), and derive the system of recurrences for its stochastic dynamic.
The set of basis states of M(`) is now partitioned into ` groups. For 1 ≤ h ≤ `, we denote by xh(k) the
probability for M(`) of being in a basis state of the hth group, after processing k input symbols. The
system of recurrences for M(`) generalizes the system (1) as follows:

x1(k) = 1
n · x1(k−1)+∑

`−1
j=1

(n−1) j

n j+1 · x j(k−1)+ (n−1)`

n` · x`(k−1)

x2(k) =
(

∑
`−2
j=0

(n−1) j

n j+1 · x j+1(k−1)
)
+ (n−1)`−1

n`−1 · x`(k−1)
...

xh(k) =
(

∑
`−h
j=0

(n−1) j

n j+1 · x j+h−1(k−1)
)
+ (n−1)`−h+1

n`−h+1 · x`(k−1)
...

x`(k) = 1
n · x`−1(k−1)+ (n−1)

n · x`(k−1),

(4)

with initial values x1(1) = 1
n , and xh(1) = 0 for every 2≤ h≤ `. We show the validity of this system of

recurrences by induction, having, e.g., the system (1) for the automaton M(3) as base case. By inductive
hypothesis, we assume the system of recurrences for M(`−1), and we build the system (4) for M(`). We
consider the set of trees representing one step of the computation of our automata, starting from basis
states of different groups. E.g., Figure 1 displays the four different types of trees for M(3), one per each
group of basis states, plus one for the evolution from the state q0. So, for M(`) we are going to provide `

of such trees, plus the one for q0. Let us explain how to obtain them from the trees of M(`−1). Let T (`−1)
j

be a tree representing one step of the evolution of M(`−1) on a basis state of group 1≤ j≤ `−1, namely, a
basis state from Q(j)

acc. Moreover, let T (`−1)
0 be the tree for q0. The evolution for M(`) is A(`)

σ =B(`) · Ã(`−1).
Thus, the behavior of M(`) is described by `+1 trees with the following structure:

• The trees T (`)
j for 0 ≤ j < `− 1 are basically the trees T (`−1)

j with a preliminary step due to the
action of B(`). Since in these trees the root is labeled by a basis state of level j < `− 1, such a
preliminary step coincides with the identity evolution.

• Even the trees T (`)
`−1 and T (`)

` have the action of B(`) as a preliminary step. However, in these cases,

B(`) acts as Fn on the basis states of groups `− 1 in the tree T (`)
`−1, and ` in the tree T (`)

` . The
structure of these two trees, both containing the tree T `−1

`−1 as a sub-tree, is presented in Figure 3.

C. Mereghetti, B. Palano & P. Raucci 73

qi1,...,i`−1

qi1,...,i`−1,n−1

. . .

qi1,...,i`−1,n−1

. . .

. . .

. . .

qi1,...,i`−1,1

. . .

qi1,...,i`−1,1

T `−1
`−1

B`

(a)

qi1,...,i`

qi1,...,i`−1,n−1

. . .

qi1,...,i`−1,n−1

. . .

. . .

. . .

qi1,...,i`−1,1

. . .

qi1,...,i`−1,1

T `−1
`−1

B`

(b)

Figure 3: The form of the tree T `
`−1 in (a), and of the tree T `

` in (b) for the automaton M(`). Within both
these two trees, the tree T `−1

`−1 turns out to be a sub-tree.

It is now possible to properly justify the system (4) by using the induction step. Starting from the sys-
tem of recurrences for M(`−1), we show how it modifies towards the system for M(`). Clearly, a new
recurrence for x`(k) (i.e., the probabilities for basis states of group `, the accepting states for M(`)) is
added at the end of the system. This component receives contributions only from the trees T (`)

`−1 and T (`)
`

weighted, respectively, by x`−1(k−1) and x`(k−1). Precisely, from the former tree we get the contribu-
tion 1

n ·x`−1(k−1), from the latter (n−1 different trees) the contribution is n−1
n ·x`(k−1). For xh(k), with

1 ≤ h ≤ `− 1, we note that the only modified contribution is the one carried by x`−1(k− 1); moreover
a new contribution from x`(k− 1) is added. Even in this case, the trees T (`)

`−1 and T (`)
` account for these

modifications: the new coefficient of x`−1(k− 1) is the old one for x`−1(k− 1) (i.e., the one associated
with x`−1(k−1) in the system for M(`−1)) multiplied by 1

n , while the coefficient of the new contribution
x`(k−1) is the old one for x`−1(k−1) multiplied by (n−1)

n .
By simply applying repeated substitutions in the system (4), one may verify that, for 1 ≤ k ≤ `, the

value xk(k) always equals 1
nk , while we have xk+1(k) = · · · = x`(k) = 0. Nevertheless, this implies that

the acceptance probability of M(`) for the string σ k is zero for k < `, while is |Q(`)
acc| · x`(`) = (n−1

n)` for
k = `. We are now going to prove that for the strings in the language σ≥` the acceptance probability
never goes below (n−1

n)`. To this aim, it suffices to show

Theorem 2. On the input string σ `+s, with s≥ 0, the probability for M(`) of being in one of the accepting
basis states in Q(`)

acc while processing the suffix σ s is greater than or equal to 1
n` .

Proof. We split the proof into two parts, both proved by induction. In the first part, we focus on the input
prefix σ `. We show by induction on 1 ≤ k ≤ ` that xh(k) ≥ 1

nk in the system (4) holds true for every
1 ≤ h ≤ k. This will enables us to obtain that x1(`), . . . ,x`(`) ≥ 1

n` . For the base case k = 1, we recall
that x1(1) = 1

n . So, let us assume by inductive hypothesis that xh(k) ≥ 1
nk for a given k < ` and every

1≤ h≤ k, and prove the property for k+1. From the system (4), we have

xh(k+1) =
1
n
· xh−1(k)+

n−1
n2 · xh(k)+

(n−1)2

n3 · xh+1(k)+ · · ·+
(n−1)k−h+1

nk−h+2 · xk(k)+ · · ·+
(n−1)`−h+1

n`−h+1 · x`(k).

Since xh(k)≥ 1
nk for 1≤ h≤ k, and 0 otherwise, we can bound xh(k+1) from below as

xh(k+1)≥ 1
nk ·

1
n
·
(

1+
n−1

n
+

(n−1)2

n2 + · · ·+ (n−1)k−h+1

nk−h+1

)
≥ 1

nk+1 .

Now, the second part of the proof comes, where we show, again by induction on k, that xh(k) ≥ 1
n` for

k ≥ ` and 1 ≤ h ≤ `. By the first part of the proof, we have x1(`),x2(`), . . .x`(`) ≥ 1
n` , and so the base

74 Latvian Quantum Finite State Automata for Unary Languages

case holds true. We prove xh(k+1)≥ 1
n` assuming such a property for k by inductive hypothesis. From

the system (4), we get

xh(k+1) =
1
n
· xh−1(k)+

n−1
n2 · xh(k)+

(n−1)2

n3 · xh+1(k)+ . . .+
(n−1)`−h

n`−h+1 · x`−1(k)+
(n−1)`−h+1

n`−h+1 · x`(k).

Since we are assuming all x j(k)’s to be greater than or equal to 1
n` , we can bound xh(k+1) from below as

xh(k+1)≥ 1
n`
·

(
1
n
+

n−1
n2 +

(n−1)2

n3 + · · ·+ (n−1)`−h

n`−h+1 +

(
n−1

n

)`−h+1
)

=
1
n`
,

whence, the claimed result follows.

We can conclude that M(`) induces the following stochastic event:

pM(`)(σ k) = |Q(`)
acc| · x`(k)

{
= 0 if k < `

≥
(n−1

n

)` if k ≥ `.
(5)

This shows that the automaton M(`) recognizes σ≥` with isolated cut point and nO(`) basis states. As
expected, for n→ ∞, the event in (5) approximates a deterministic behavior. In fact, for growing values
of n, we have pM(`)(σ k)→ 1 for k ≥ `, and pM(`)(σ k) = 0 for k < `.

To sum up, let us get back to our initial purpose, i.e., building an isolated cut point LQFA for the
language σ≥T . Such a LQFA is obtained by pushing T steps ahead from M(1) the inductive construction
to finally get the LQFA M(T). As noted, M(T) features nO(T) basis states, n being the number of basis states
of M(1). From Equation (5), we can fix a cut point 1

2 ·
(n−1

n

)T isolated by 1
2 ·
(n−1

n

)T . By increasing n, we
widen such an isolation, tending to a deterministic recognition of the language σ≥T .

Focusing on the size of M(T), we observe that its number of basis states exponentially depends on T .
As a matter of fact, we can avoid such an exponential blow up by noticing that even the LQFA M(3) can
actually accept with isolated cut point the language σ≥T , for T ≥ 4. This is due to the fact that the
stochastic event induced by M(3) is an increasing function, as one may readily infer from Equation (3)
and Figure 2. By this property, we can fix the isolated cut point between pM(3)(σT−1) and pM(3)(σT), thus
recognizing σ≥T with nO(1) basis states, not depending on T any more. Nevertheless, such a dramatic
size reduction comes at a price. In fact, the isolation around the cut point shrinks from 1

2 ·
(n−1

n

)T to
p

M(3) (σ
T)−p

M(3) (σ
T−1)

2 = 1
2 · (

2
n)

T−3 · (n−1
n)T−1 · (n+1

n). This isolation vanishes as n grows, thus suggesting
to consider small values of n. E.g., for n = 2 we obtain an isolation of 3

2 · (
1
2)

T ; for n = 3 we get 27
8 · (

4
9)

T .

4 Isolated Cut Point LQFAs for Unary Regular Languages

Here, we are going to use the LQFAs designed in the previous section as modules in a more general
construction yielding isolated cut point LQFAs for unary regular languages. This investigation is inspired
by [5] where the same problem is tackled for MM-QFAs. Our result constructively shows that isolated
cut point MM-QFAs and LQFAs are equivalent on unary inputs, in sharp contrast to the case for general
alphabets where MM-QFAs outperform LQFAs (see Section 2.3).

We start by observing that, according to Theorem 1, any unary regular language L⊆σ∗ can viewed as
the disjoint union of two unary languages, namely, the finite language LT = L∩σ≤T plus the ultimately
periodic language LP = L∩σ≥T+1. So, we are going to design two LQFA modules recognizing these two
languages with isolated cut point, and then suitably assemble such modules into a final isolated cut point
LQFA AL for the unary regular language L.

C. Mereghetti, B. Palano & P. Raucci 75

The finite language LT : We define the “(T +1)-periodic continuation” LT	 of LT , namely, the language
obtained from LT by adding all the strings of the form σ i+h·(T+1), with h ≥ 0, for σ i ∈ LT . Formally,
LT	 =

{
σ i+h·(T+1) | h≥ 0 and σ i ∈ LT

}
. Clearly, LT	 is a periodic language of period (T +1), and we

have that LT = LT	∩σ≤T . Therefore, in order to recognize LT , we start by defining the isolated cut point
LQFA AT	 for LT	 . We let AT	 = (Q,{σ},π0,{U(σ),U(])},{Oσ ,O]},Qacc), where: Q = {q0, . . . ,qT}
is the set of basis states, Qacc =

{
qi | 0≤ i≤ T and σ i ∈ LT

}
is the set of accepting basis states, π0 = e1

is the initial superposition, U(σ) = S, where S ∈ {0,1}(T+1)×(T+1) is the matrix representing the cyclic
permutation: S has 1 at the (i, i+ 1)th entries for 1 ≤ i ≤ T and at the (T + 1,1)th entry, all the other
entries are 0, U(])= I(T+1), Oσ is the observable having the identity as sole projector, O] is the usual final
observable projecting onto the subspace spanned by Qacc. Given the observable Oσ , we have that AT	

is basically a MO-QFA whose induced event writes as pAT	
(σ k) = ‖π0 ·U(σ)k ·U(]) ·Pacc(])‖2. After

processing the input σ k], the state ξ (k) of AT	 is

ξ (k) = π0 ·U(σ)k ·U(]) = e1 ·U(σ)k ·U(]) = e(k mod (T+1))+1. (6)

Let us now discuss measuring by the final observable, i.e., the action of the projector Pacc(]) on the final
superposition ξ (k). By (6), ξ (k) is e(k mod (T+1))+1, representing the basis state qk mod (T+1). By definition
of Qacc we have that qk mod (T+1) is an accepting state if and only if σ k mod (T+1) ∈ LT if and only if σ k ∈
LT	 . Therefore, we can rewrite the stochastic event induced by AT	 as pAT	

(σ k) = ‖ξ (k) ·Pacc(])‖2 = 1
if σ k ∈ LT	 , and 0 otherwise. Whence, the LQFA AT	 recognizes LT	 by a deterministic event. Now,
we need AT	 to work simultaneously with a module which checks whether or not the input string has
length not exceeding T , so that the resulting accepted language is LT	 ∩σ≤T = LT . Such a module can
be obtained by complementing the LQFA M(T+1) for σ≥T+1 presented in Section 3 (basically, by taking
Q\Qacc as the set of accepting basis states). The resulting LQFA M(T+1) induces the complement of the
event in Equation (5) with `= T +1:

p
M(T+1)(σ k) = 1− pM(T+1)(σ k)

{
= 1 if k ≤ T

≤ 1−
(n−1

n

)(T+1) if k ≥ T +1,

thus recognizing the language σ≤T with isolated cut point and nO(T) basis states. Finally, we build
the LQFA AT	 ⊗M(T+1) (basically by taking the direct product component wise of the two LQFAs AT	

and M(T+1)) inducing the product event

p
AT	⊗M(T+1)(σ k) = pAT	

· p
M(T+1)(σ k)

{
= 1 if σ k ∈ LT

≤ 1−
(n−1

n

)(T+1) otherwise,

defining LT with (T +1) ·nO(T) basis states, and cut point 1− 1
2 ·
(n−1

n

)(T+1) isolated by 1
2 ·
(n−1

n

)(T+1).

Notice that, for large values of n, the LQFA AT	⊗M(T+1) approximates a deterministic recognition of LT .

The ultimately periodic language LP: It suites our goal to rewrite LP as LP = LP	∩σ≥T+1, where we let
LP	 =

{
σ (T+1+i) mod P +h·P | 0≤ i < P, h≥ 0, and σT+1+i ∈ LP

}
. Clearly, LP	 is a periodic language

of period P. So, for recognizing LP, we first focus on building the isolated cut point LQFA AP	 for
LP	 . We let AP	 = (Q,{σ},π0,{U(σ),U(])},{Oσ ,O]},Qacc), where: Q = {q0, . . . ,qP−1} is the set of
basis states, Qacc =

{
qi | 0≤ i < P and σ i ∈ LP	

}
is the set of accepting basis states, π0 = e1 is the

initial superposition, U(σ) = S, where S ∈ {0,1}P×P is the cyclic permutation matrix, U(]) = I(P), Oσ

76 Latvian Quantum Finite State Automata for Unary Languages

is the observable having the identity as sole projector, O] is the usual final observable projecting onto
the subspace spanned by Qacc. Given the observable Oσ , we have that AP	 is basically a MO-QFA whose
induced event writes as pAP	 (σ k) = ‖π0 ·U(σ)k ·U(]) ·Pacc(])‖2. After processing the input σ k], the
state ξ (k) of AP	 is

ξ (k) = π0 ·U(σ)k ·U(]) = e1 ·U(σ)k ·U(]) = e(k mod P)+1. (7)

Let us now measure the final observable on the final superposition ξ (k). By (7), ξ (k) is e(k mod P)+1,
representing the basis state qk mod P. By definition of Qacc, we have that qk mod P is an accepting state if
and only if σ k ∈ LP	 . Therefore, the stochastic event induced by AP	 is pP	(σ

k) = ‖ξ (k) ·Pacc(])‖2 = 1,
if σ k ∈ LP	 , and 0 otherwise. whence, the LQFA AP	 recognizes LP	 by a deterministic event. Now, we
need AP	 to work simultaneously with a module which checks whether or not the input string has length
exceeding T , so that the resulting accepted language is LP	 ∩σ≥T+1 = LP. Such a module is the LQFA

M(T+1) for σ≥T+1 presented in Section 3, and inducing the event

pM(T+1)(σ k)

{
≥ (n−1

n)T+1 if k ≥ T +1
= 0 k ≤ T ,

thus recognizing the language σ≥T+1 with isolated cut point and nO(T) basis states. Finally, we build the
LQFA AP	⊗M(T+1), inducing the product event

pAP	⊗M(T+1)(σ k) = pAP	
· pM(T+1)(σ k)

{
≥ (n−1

n)T+1 if σ k ∈ LP

= 0 otherwise,

defining LP with P ·nO(T) basis states, and cut point 1
2 ·
(n−1

n

)(T+1) isolated by 1
2 ·
(n−1

n

)(T+1). Notice that,
for large values of n, the LQFA AP	⊗M(T+1) approximates a deterministic recognition of LP.

Putting things together: We are now ready to suitably assemble the two LQFAs AT = AT	 ⊗M(T+1)

and AP = AP	 ⊗M(T+1) so far described to obtain an isolated cut point LQFA AL for the unary regular
language L. We notice that L= LT ∪LP =(Lc

T ∩Lc
P)

c. This suggests first to construct LQFAs for Lc
T and Lc

P
by building AT and AP inducing the complement events pAT

= 1− pAT and pAP
= 1− pAP , respectively.

Next, to account for the intersection, we construct the LQFA AL = AT ⊗AP inducing the product event
pAL

= (1− pAT) · (1− pAP). Finally, the desired LQFA AL will be obtained by complementing AL, so that
pAL = (1− pAL

) = 1− (1− pAT) · (1− pAP) = pAT + pAP− pAT · pAP .

Let us now explain how pAL behaves on input string σ k:
• σ k ∈ L = LT ∪LP: Clearly, we have either σ k ∈ LT or σ k ∈ LP. Suppose σ k ∈ LT . Then, we have

that pAT (σ
k) = 1 since AT = AT	 ⊗M(T+1) and both its sub-modules will accept with certainty;

correspondingly, pAP(σ
k) = 0 since AP = AP	⊗M(T+1) and the sub-module M(T+1) accepts with 0

probability the input strings of length less than or equal to T . Globally, we have pAL(σ
k) = 1.

Suppose σ k ∈ LP. Then, we have that pAP(σ
k)≥

(n−1
n

)T+1 since AP	 accepts with certainty, while

the sub-module M(T+1) accepts with probability not less than
(n−1

n

)T+1. Let us now focus on AT .
The sub-module AT	 could accept with probability either 0 or 1. In the former case, globally
we have pAL(σ

k) ≥
(n−1

n

)T+1, in the latter, the sub-module M(T+1) accepts with a probability

bounded above by 1−
(n−1

n

)T+1. By letting (1− y) the acceptance probability of M(T+1), with

0≤ y≤
(n−1

n

)T+1, we get pAL(σ
k)≥

(n−1
n

)T+1
+(1− y)−

(n−1
n

)T+1 · (1− y)≥
(n−1

n

)T+1
.

In conclusion, for any σ k ∈ L, we have pAL(σ
k)≥

(n−1
n

)T+1
.

C. Mereghetti, B. Palano & P. Raucci 77

• σ k 6∈ L = LT ∪ LP: Clearly, both σ k 6∈ LT and σ k 6∈ LP. By assuming k ≤ T , we must have
σ k 6∈ LT	 . Therfore, the sole acceptance probability contribution could come from the module
AP = AP	 ⊗M(T+1). However, since k ≤ T , the sub-module M(T+1) accepts with 0 probability.
So, pAL(σ

k) = 0. Instead, by assuming k ≥ T + 1, we must have that σ k 6∈ LP	 . Thus, the sole
acceptance probability could come from the module AT . However, the acceptance probability
yielded by the sub-module M(T+1) turns out to be at most 1−

(n−1
n

)T+1.

In conclusion, for any σ k 6∈ L, we have pAL(σ
k)≤ 1−

(n−1
n

)T+1.

Summing up, the stochastic event induced by the LQFA AL is

pAL(σ
k)

{
≥
(n−1

n

)T+1 if σ k ∈ L

≤ 1−
(n−1

n

)T+1 otherwise.
(8)

By the event in Equation (8), we get that AL recognizes L with the following cut point and isolation radius:

λ =
1
2
·

((
n−1

n

)T+1

+1−
(

n−1
n

)T+1
)
=

1
2
, ρ =

1
2
·

((
n−1

n

)T+1

−1+
(

n−1
n

)T+1
)
=

(
n−1

n

)T+1

− 1
2
.

Clearly, to have an isolation around λ , we must require that ρ > 0. This can always be achieved on
any T > 0 by imposing

(n−1
n

)T+1
> 1

2 , which is attained whenever n > 1
1− T+1
√

1
2

. This latter condition is

satisfied, e.g., by letting n = 4T for any T > 0. Nevertheless, the isolation radius ρ tends to 1
2 as n grows.

Let us inspect the size of the LQFA AL =AT ⊗AP. As above pointed out, AT and AP have, respectively,
(T +1) ·nO(T) and P ·nO(T) basis states. The complements AT and AP maintain the same number of basis
states, while the product AT ⊗AP requires ((T + 1) · nO(T)) · (P · nO(T)) ≤ T ·P · nO(T) basis states. The
final complement AT ⊗AP maintains the same number of basis states. By replacing n with 4T , as above
suggested, the number of basis states of the isolated cut point LQFA AL for L becomes P ·T O(T).

5 Conclusions

In this work, we have exhibited a modular framework for building isolated cut point LQFAs for unary
regular languages. By suitably adapting to the unary case an inductive construction in [1, 14], we have
first designed LQFAs discriminating unary inputs on the basis of their length. These devices have then
been plugged into two sub-modules recognizing the finite part and the ultimately periodic part any unary
regular language consists of. The resulting LQFA recognizes a unary regular language L with isolated cut
point 1

2 , and a number of basis states which is exponential in the number of states of the minimal DFA

for L. In spite of this exponential size blow up, it should be stressed that more restricted models of quan-
tum finite automata in the literature, such as MO-QFAs, cannot recognize all unary regular languages.
On the other hand, a linear amount of basis states is sufficient for the more powerful model of isolated
cut point MM-QFAs [5]. Thus, it would be worth investigating whether a more size efficient construction
for unary LQFAs could be provided. Another interesting line of research might explore the descriptional
power (see, e.g., [2, 8, 12, 13] for topics in descriptional complexity) of isolated cut point LQFAs with re-
spect to other relevant classes of subregular languages such as, e.g., commutative regular languages [20].

Acknowledgements. The authors wish to thank the anonymous referees for their valuable comments.

78 Latvian Quantum Finite State Automata for Unary Languages

References
[1] Andris Ambainis, Martin Beaudry, Marats Golovkins, Arnolds Kikusts, Mark Mercer & Denis Thérien

(2006): Algebraic results on quantum automata. Theory of Computing Systems 39, pp. 165–188,
doi:10.1007/s00224-005-1263-x.

[2] Zuzana Bednárová, Viliam Geffert, Carlo Mereghetti & Beatrice Palano (2017): Boolean language opera-
tions on nondeterministic automata with a pushdown of constant height. Journal of Computer and System
Sciences 90, pp. 99 – 114, doi:10.1016/j.jcss.2017.06.007.

[3] Maria Paola Bianchi, Carlo Mereghetti & Beatrice Palano (2014): Size lower bounds for quantum automata.
Theoretical Computer Science 551, p. 102 – 115, doi:10.1016/j.tcs.2014.07.004.

[4] Maria Paola Bianchi, Carlo Mereghetti & Beatrice Palano (2017): Quantum finite automata: Advances on
Bertoni’s ideas. Theoretical Computer Science 664, pp. 39–53, doi:10.1016/j.tcs.2016.01.045.

[5] Maria Paola Bianchi & Beatrice Palano (2010): Behaviours of unary quantum automata. Fundamenta Infor-
maticae 104, pp. 1–15, doi:10.3233/FI-2010-333.

[6] Alex Brodsky & Nicholas Pippenger (2002): Characterizations of 1-way quantum finite automata. SIAM
Journal on Computing 31, pp. 1456–1478, doi:10.1137/S0097539799353443.

[7] Alessandro Candeloro, Carlo Mereghetti, Beatrice Palano, Simone Cialdi, Matteo G. A. Paris & Ste-
fano Olivares (2021): An enhanced photonic quantum finite automaton. Applied Sciences 11, p. 8768,
doi:10.3390/app11188768.

[8] Markus Holzer & Martin Kutrib (2011): Descriptional and computational complexity of finite automata - A
survey. Information and Computation 209, pp. 456–470, doi:10.1016/j.ic.2010.11.013.

[9] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2006): Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edition. Addison-Wesley.

[10] R.I.G. Hughes (1992): The Structure and Interpretation of Quantum Mechanics. Harvard University Press.
[11] Attila Kondacs & John Watrous (1997): On the power of quantum finite state automata. In: Proc. 38th Symp.

on Found. Comp. Sci. (FOCS), IEEE Computer Society, pp. 66–75, doi:10.1109/SFCS.1997.646094.
[12] Martin Kutrib, Andreas Malcher, Carlo Mereghetti & Beatrice Palano (2020): Deterministic and nondeter-

ministic iterated uniform finite-state transducers: computational and descriptional power. In: Proc. 16th Int.
Conf. Comp. Europe (CiE 2020), LNCS 12098, Springer, pp. 87–99, doi:10.1007/978-3-030-51466-2_8.

[13] Martin Kutrib, Andreas Malcher, Carlo Mereghetti & Beatrice Palano (2020): Iterated uniform finite-state
transducers: descriptional complexity of nondeterminism and two-way motion. In: Proc. 22nd Int. Conf. Des.
Comp. Form. Sys. (DCFS 2020), LNCS 12442, Springer, pp. 117–129, doi:10.1007/978-3-030-62536-8_10.

[14] Mark Mercer (2007): Applications of Algebraic Automata Theory to Quantum Finite Automata. Ph.D. thesis,
McGill University, Montreal, Quebec, Canada.

[15] Carlo Mereghetti, Beatrice Palano, Simone Cialdi, Valeria Vento, Matteo G. A. Paris & Stefano Olivares
(2020): Photonic realization of a quantum finite automaton. Physical Review Research 2, p. 013089,
doi:10.1103/PhysRevResearch.2.013089.

[16] Cristopher Moore & James P. Crutchfield (2000): Quantum automata and quantum grammars. Theoretical
Computer Science 237, pp. 275–306, doi:10.1016/S0304-3975(98)00191-1.

[17] Rohit Parikh (1966): On context-free languages. J. ACM 13, pp. 570–581, doi:10.1145/321356.321364.
[18] Michael O. Rabin (1963): Probabilistic automata. Information and Control 6, pp. 230–245,

doi:10.1016/S0019-9958(63)90290-0.
[19] Georgy E. Shilov (1971): Linear Algebra. Prentice-Hall. Reprinted by Dover, 1977.
[20] Bianca Truthe (2018): Hierarchy of Subregular Language Families. Technical Report, Universitätsbibliothek

Gießen, Institut für Informatik, doi:10.22029/JLUPUB-6984.

https://doi.org/10.1007/s00224-005-1263-x
https://doi.org/10.1016/j.jcss.2017.06.007
https://doi.org/10.1016/j.tcs.2014.07.004
https://doi.org/10.1016/j.tcs.2016.01.045
https://doi.org/10.3233/FI-2010-333
https://doi.org/10.1137/S0097539799353443
https://doi.org/10.3390/app11188768
https://doi.org/10.1016/j.ic.2010.11.013
https://doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1007/978-3-030-51466-2_8
https://doi.org/10.1007/978-3-030-62536-8_10
https://doi.org/10.1103/PhysRevResearch.2.013089
https://doi.org/10.1016/S0304-3975(98)00191-1
https://doi.org/10.1145/321356.321364
https://doi.org/{10.1016/S0019-9958(63)90290-0}
https://doi.org/10.22029/JLUPUB-6984

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 79–94, doi:10.4204/EPTCS.388.9

© R. Mörbitz
This work is licensed under the
Creative Commons Attribution License.

Constituency Parsing as an Instance of
the M-monoid Parsing Problem

Richard Mörbitz
Faculty of Computer Science

Technische Universität Dresden
01062 Dresden

richard.moerbitz@tu-dresden.de

We consider the constituent parsing problem which states: given a final state normalized constituent
tree automaton (CTA) and a string, compute the set of all constituent trees that are inductively rec-
ognized by the CTA and yield the string. We show that this problem is an instance of the M-monoid
parsing problem. Moreover, we show that we can employ the generic M-monoid parsing algorithm
to solve the constituency parsing problem for a meaningful class of CTA.

1 Introduction

Constituency, sometimes also referred to as phrase structure, is an important aspect of natural language
processing (NLP). Given a phrase of natural language, the task of constituency parsing consists in com-
puting a tree-like structure which describes the syntactic composition of the phrase. These structures are
usually visualized as trees where the words of the phrase occur as leaves. Figure 1 (left) shows such a
constituent tree for the German phrase “hat schnell gearbeitet”. The ordering of the phrase is indicated
below the tree where dashed lines link the leaves to their corresponding positions in the phrase. A special
phenomenon that may occur in the scope of constituency parsing are discontinuous constituents. These
span non-contiguous parts of a phrase; for instance, cf. the constituent labeled V which spans the sub-
phrases “hat” and “gearbeitet” in our example. In the usual illustration, discontinuity manifests itself by
crossing lines between the leaves of the tree and the ordering of the phrase.

Usual formal models employed in NLP, such as context-free grammars (CFG) and finite-state tree
automata (FTA), are not adequate for modeling discontinuous constituents. This problem has been solved
on the grammar side by exploring more powerful grammar formalisms such as tree adjoining grammars
(TAG; [7]) and linear context-free rewriting systems (LCFRS; [15, 8]). On the automaton side, hybrid
tree automata [2] have recently been introduced. In this context, hybrid trees are usual trees where labels
can be extended by a positive number, called index, which indicates their position in the phrase. (Each
index may only occur once per hybrid tree.) Thus, constituent trees are a particular type of hybrid trees
where a label has an index if and only if it occurs at a leaf position. Cf. the tree ξ in Fig. 1 (center)
which corresponds to the constituent tree from above. The previously mentioned discontinuity in its
first subtree is resembled by the fact that the set of indices occurring in this subtree is not contiguous.
Given a constituent tree, we can obtain its phrase by reading off the labels at the leaves in the order of
their indices; we call this operation yield. Non-contiguous indices lead to phrases with gaps that are
formalized using a comma. For instance, the first subtree of ξ (whose root is labeled by V) yields the
string tuple (hat,gearbeitet). In contrast to this formalization of constituent trees, the usual representation
of constituent trees in NLP does not feature indices and is thus more abstract.

We briefly recall the automaton model of [2]. In essence, a hybrid tree automaton (HTA) is an FTA
where each transition additionally has an index constraint which describes the acceptable combinations

http://dx.doi.org/10.4204/EPTCS.388.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

80 Constituency Parsing as an Instance of the M-monoid Parsing Problem

VP

V

hat gearbeitet

ADV

schnell

hat schnell gearbeitet

VP

V

hat〈1〉 gearbeitet〈3〉

ADV

schnell〈2〉

ξ :

yield(ξ) = (hat schnell gearbeitet)

yield(ξ |1) = (hat, gearbeitet)

VP→ (VP,(x1
1 x1

2 x2
1))(V,ADV)

V→ (V,(x1
1,x

1
2))(h,g)

h→ (hat) g→ (gearbeitet)

ADV→ (ADV,(x1
1))(s)

s→ (schnell)

d :

(·)CT ◦ (·)Γ

(·)Y ◦wt

Figure 1: Left: constituent tree for the German phrase “hat schnell gearbeitet”. It is discontinuous as the
phrase of the left subtree is interleaved with a word from the right subtree. Center: formalization of this
constituent tree in the framework of [2]. Right: AST of an RTG and its evaluation in the algebras of our
M-monoid parsing problem.

of indices. Such a constraint may refer to both the indices occurring in the subtrees of the position where
the transition is applied and the index occurring at that position itself. If unrestricted, these general
constraints lead to an overly expressive automaton model. This is why [2] also introduced constituent
tree automata (CTA) as a restricted form of HTA to recognize languages of constituent trees. Here, the
index constraints are given by word tuples as they occur in LCFRS. For instance, the word tuple (x1

1x1
2x2

1)
states that the indices of the first subtree form two separate intervals, i.e., sets of contiguous numbers,
referred to by x1

1 and x2
1, and the indices of the second subtree (x1

2) lie in between. Thus, discontinuous
constituents can also be modeled. In essence, a CTA is final state normalized if the constituent trees it
recognizes may only yield contiguous phrases (of course, there may be discontinuity in the subtrees).
Drewes et al. (2022) [2] showed that the yields of the languages inductively recognized by final state
normalized CTA are equal to the languages generated by LCFRS. Thus, CTA provide a meaningful
framework for specifying constituency analyses. They did, however, not tackle the following problem
which we call the constituency parsing problem: given a final state normalized CTA A and a string u,
compute the set of all constituent trees that are inductively recognized by A and yield u. In this paper,
we will solve this problem by showing that it is an instance of the M-monoid parsing problem to which
the generic M-monoid parsing algorithm can be applied, provided that A fulfils a certain condition.

M-monoid parsing [12, 13] is an algebraic framework for weighted parsing. Its kernel is a weighted
RTG-based language model (wRTG-LM) Ḡ; each wRTG-LM consists of a regular tree grammar (RTG)
G , a Γ -algebra (L ,φ) called language algebra, a complete M-monoid K called weight algebra, and a
weight mapping wt from the set of rules of G to the signature of K. Moreover, the terminal alphabet of G
is required to be a subset of Γ . The algebraic computations are based on the abstract syntax trees (ASTs)
of G ; these are trees over rules which represent valid derivations. In the language algebra, each AST
can be evaluated to an element of L by first projecting it to a tree over Γ and then applying the unique
homomorphism from the Γ -term algebra to L . In the weight algebra, each AST can be evaluated to an
element of K by first applying wt to every rule and then applying the unique homomorphism from the
Ω -term algebra to K.

The M-monoid parsing problem states the following: given a wRTG-LM Ḡ and an element u ∈L
of the language algebra, compute the sum of the weights (in K) of all ASTs of G which have the initial
nonterminal as the left-hand side of the rule in their root and evaluate to u in the language algebra.

Our first contribution is the instantiation of the M-monoid parsing problem to constituency parsing.
In attempting this instantiation, the constituent trees by [2] turn out to be not suitable for such an algebraic

R. Mörbitz 81

framework. Instead, we introduce partitioned constituent trees which are inspired by Nederhof and
Vogler (2014) [14] (also cf. [5]). They are tuples consisting of a (usual) tree, a strict total order on
its leaves, and a partitioning of its leaves. Compared to constituent trees, partitioned constituent trees
abstract from particular indices and only preserve information about the order of the leaves and their
groupings (where leaves with consecutive indices fall into the same component of the partitioning). This
is also closer to the usual notion of constituent trees in NLP. The yield of partitioned constituent trees
is defined analogously to constituent trees: now, the order of the labels is determined by the total order
on the leaves and commas are placed between labels whose positions belong to different subsets of the
partitioning.

The main part of the instantiation is the following construction. Given a final state normalized CTA
A , we construct a wRTG-LM Ḡ such that the M-monoid parsing problem for Ḡ is equal to the con-
stituency parsing problem for A . For the definition of Ḡ, we introduce two algebras: one for computing
partitioned constituent trees and one for computing their yield. Both use the same signature Γ where
each operator consists of a symbol from some ranked alphabet Σ and a word tuple. The first algebra,
called constituent tree algebra, operates on partitioned constituent trees over Σ by performing top con-
catenation on their tree components (using the operator’s symbol from Σ) and merging their total orders
and partitionings using the operator’s word tuple. The second one, called constituent tree yield alge-
bra, operates on Σ -string tuples by combining them using the operator’s word tuple in the same way
as the language generated by an LCFRS is computed. Both algebras are many-sorted to ensure that the
operators and the arguments fit.

Now, given a CTA A , we define the A -wRTG-LM Ḡ as follows. Its RTG G is a syntactical variant
of A , where the nonterminals, terminals, and the initial nonterminal of G are the states of A , a particular
subset of Γ , and the final state of A , respectively. Each transition (q1 · · ·qk,a,e,q) of A becomes a rule
q→ (a,e)(q1, . . . ,qk) in G. Moreover, the language algebra of Ḡ is the constituent tree yield algebra, the
weight algebra is the constituent tree algebra lifted to sets, and the weight mapping maps each rule to its
Γ -symbol. This leads to the following M-monoid parsing problem. Given Ḡ and u ∈ Σ ∗, compute the
set of all partitioned constituent trees that are results of evaluating an AST d of G in the constituent tree
algebra, provided that d evaluates to u in the constituent tree yield algebra. We can prove that this set
equals, modulo particular indices, the set of all constituent trees that are inductively recognized by A
and yield u. Since adding (resp. removing) these indices is trivial, the M-monoid parsing problem for Ḡ
and u is equivalent to the constituency parsing problem for A and u. In Figure 1 we indicate the result
of this construction by showing an AST d of some RTG G which could be obtained as the result of the
above construction for a given CTA A that inductively recognizes ξ . Moreover, we show the evaluation
of d in the constituent tree yield algebra as well as in the constituent tree algebra (where the partitioned
constituent tree is shown via the typical illustration of constituent trees in NLP) via the homomorphisms
(·)Y and (·)CT , resp. (Here, (·)Γ projects rules to their Γ -symbols.)

Our second contribution concerns the applicability of the generic M-monoid parsing algorithm [13]
to the M-monoid parsing problem defined above. We find that the algorithm is in general not applicable,
where the problem lies in monadic cycles: if the CTA A contains transitions of the form (q1,a1,e1,q2),
(q2,a2,e2,q3), . . . , (qn,an,en,q1), then termination of the algorithm is not guaranteed. Otherwise, if A
is free of such cycles, the M-monoid parsing algorithm is applicable to the M-monoid parsing problem
constructed from A and thus solves the constituency parsing problem for A .

This paper is structured as follows. In Section 2 we fix the basic notions and repeat some mathematic
foundations, especially from the area of algebra. In Sections 3 and 4, we recall the central ideas of CTA
and the M-monoid parsing problem, respectively. In Section 5, we detail the definition of the wRTG-LM
Ḡ we use to model constituency parsing and we show that the corresponding M-monoid parsing problem

82 Constituency Parsing as an Instance of the M-monoid Parsing Problem

is equivalent to the constituency parsing problem. Finally, in Section 6, we discuss the applicability of
the M-monoid parsing algorithm.

2 Preliminaries

Mathematical notions. The set of natural numbers (including 0) is denoted by N and we let N+ =
N\{0}. For every k, ` ∈ N, we let [k, `] denote the interval {i ∈ N | k≤ i≤ `} and we abbreviate [1, `] by
[`]. The set of all nonempty intervals of N+ is denoted by I. For every I, I′ ∈ I, the expression I < I′ holds
if max I < min I′ and I y I′ holds if max I + 1 = min I′. Thus I y I′ implies I < I′. For each set A, we
let P(A) denote the power set of A. We extend a mapping f : A→ B in the canonical way to a mapping
f : P(A)→P(B). A family (ai | i ∈ I) is a mapping f : I→ A with f (i) = ai for each i ∈ I. Let A, B,
and C be sets. The composition of two mappings f : A→ B and g : B→C is denoted by g◦ f . Whenever
we deal with a partitioning (A1, . . . ,An) of a set A, we require Ai to be non-empty (for each i ∈ [n]). An
alphabet is a finite and non-empty set.

Strings and tuples. Let A be a set and k ∈ N. We let Ak denote the set of all strings w = a1 · · ·ak
of length k, where a1, . . . ,ak ∈ A, and we let A∗ =

⋃
k∈N Ak. The empty string (k = 0) is denoted by

ε . We denote substrings of a string w = a1 · · ·ak in A∗ as follows: for every i ∈ [k] and j ∈ [k− i+ 1],
we let w[i; j] = ai · · ·ai+ j−1, and w[i] abbreviates w[i;1]. Let ` ∈ N. The concatenation of two strings
v = a1 · · ·ak in Ak and w = b1 · · ·b` in A`, denoted by v ·w, is the string a1 · · ·akb1 · · ·b` in Ak+`; we drop
· if it is clear from the context. Moreover, we lift concatenation to sets of strings in the obvious way.

We let Tupk(A) denote the k-fold Cartesian product of A; its elements are called k-tuples over A.
Moreover, we let Tup(A) =

⋃
k∈N Tupk(A). In the obvious way, we transfer the notion of substrings from

strings to tuples.

Sorted sets, trees, and regular tree grammars. Let S be a set; its elements are usually called sorts.
An S-sorted set is a pair (A,sort) where A is a set and sort : A→ S is a mapping. For each s ∈ S, we let
A(s) = {a ∈ A | sort(a) = s}. We call an S-sorted set single-sorted if |S| = 1; thus, each (usual) set can
be viewed as a single-sorted set. A ranked set is an N-sorted set; its sort mapping is usually denoted by
rk. In examples, we will show the rank of a symbol as a superscript in parentheses, e.g., a(k) if rk(a) = k.
An S-sorted (resp. ranked) alphabet is an S-sorted (resp. ranked) set which is an alphabet.

An (S∗× S)-sorted set Γ is called S-signature. Whenever we write γ ∈ Γ (s1···sk,s) we assume that
k ∈ N and s,s1, . . . ,sk ∈ S are universally quantified if not specified otherwise. Now let H be an S-sorted
set. The set of S-sorted trees over Γ and H, denoted by TΓ (H), is the smallest S-sorted set T such that,
for each s ∈ S, we have H(s) ⊆ T (s) and, for every γ ∈ Γ (s1···sk,s) and t1 ∈ T (s1), . . . , tk ∈ T (sk), we have
γ(t1, . . . , tk) ∈ T (s). We abbreviate TΓ (/0) by TΓ . Since we can view each (S∗×S)-sorted set as a ranked
set by, for every γ ∈ Γ (s1···sk,s), letting rk(γ) = k, the above definition also covers the usual trees over
ranked alphabets.

The set of positions of a tree is defined by the mapping pos : TΓ (H)→P((N+)
∗) as usual. Let

t ∈ TΓ (H) and w ∈ pos(t). The set of leaves of t, the label of t at w, and the subtree of t at w are also
defined as usual, and are denoted by leaves(t), t(w), and t|w, respectively.

An S-sorted regular tree grammar (RTG; [1]) is a tuple G = (N,Γ ,A0,R) where N is an S-sorted
alphabet (nonterminals), Γ is an (S∗× S)-sorted alphabet (terminals) with N ∩Γ = /0, A0 ∈ N (initial
nonterminal), and R is a finite set of rules where each rule r has the form A→ γ(A1, . . . ,Ak) with k ∈ N,

R. Mörbitz 83

γ ∈ Γ (s1···sk,s), and A ∈ N(s),A1 ∈ N(s1), . . . ,Ak ∈ N(sk). (Thus, we only consider RTGs in normal form.)
We call A the left-hand side of r; it is denoted by lhs(r).

We view R as an (N∗×N)-sorted set where each rule A→ γ(A1, . . . ,Ak) has sort (A1 · · ·Ak,A). Thus,
for every d ∈ TR and w ∈ pos(d), the following holds: if d(w) is A→ γ(A1, . . . ,Ak), then, for each i ∈ [k],
we have lhs(d(w · i)) = Ai. We call TR the set of abstract syntax trees (short: ASTs) of G . We define
the mapping (·)Γ : TR→ TΓ such that (d)Γ is obtained from d by replacing each A→ γ(A1, . . . ,Ak) by
γ . The tree language generated by G is the set L(G) = (TR)Γ .

S-sorted Γ -algebras. Let S be a set and Γ be an S-signature. An S-sorted Γ -algebra (short: algebra) is
a pair (A ,φ) where A is an S-sorted set (carrier set) and φ is a mapping which maps each γ ∈Γ (s1···sk,s)

to a mapping φ(γ) : A (s1)×·· ·×A (sk)→A (s). We will sometimes identify φ(γ) and γ (as it is usual).
The S-sorted Γ -term algebra is the S-sorted Γ -algebra (TΓ ,φΓ) where, for every γ ∈ Γ (s1···sk,s) and

t1 ∈ T(s1)
Γ

, . . . , tk ∈ T(sk)
Γ

, we let φΓ (γ)(t1, . . . , tk) = γ(t1, . . . , tk). For each Γ -algebra (A ,φ) there is a
unique homomorphism, denoted by (·)A , from the Γ -term algebra to (A ,φ) [16]. We write its appli-
cation to an argument t ∈ TΓ as (t)A . Intuitively, (·)A evaluates a tree t in (A ,φ), in the same way as
arithmetic expressions are evaluated to numbers. For instance, the expression 3+2 · (4+5) is evaluated
to 21 in the {+, ·}-algebra (N,+, ·). Often we abbreviate an algebra (A ,φ) by A . For every a ∈A we
let factors(a) = {b ∈A | b <factor

∗a} where, for every a,b ∈A , b <factor a if there is a γ ∈ Γ such that
b occurs in some tuple (b1, . . . ,bk) with φ(γ)(b1, . . . ,bk) = a. That is, factors(a) is the set of all values
that occur in a term which evaluates to a. We call (A ,φ) finitely decomposable if factors(a) is finite for
every a ∈A .

Word tuples. Let k ∈ N and κ = (`1, . . . , `k) in Tupk(N+). We let Xκ = {x j
i | i ∈ [k], j ∈ [`i]} and call

each element x j
i of Xκ a variable. Moreover, let n ∈ N+ and ∆ be an alphabet. Then we denote by

Wn
κ(∆) the set of all tuples e = (s1, . . . ,sn) such that (1) for each i ∈ [n], the component si is a string over

∆ and Xκ , (2) each variable in Xκ occurs exactly once in e, and (3) for all x j1
i ,x j2

i ∈ Xκ with j1 < j2,
the variable x j1

i occurs left of x j2
i in e. Each element of Wn

κ(∆) is a monotone (n,κ)-word tuple.1 We let
W(∆) =

⋃
n∈N+,k∈N,κ∈Tupk(N+)W

n
κ(∆) and we drop ‘(/0)’ for empty ∆ .

Let e = (s1, . . . ,sn) be in Wn
κ(∆). The word function induced by e is the mapping

JeK : Tup`1
(∆ ∗)×·· ·×Tup`k

(∆ ∗)→ Tupn(∆
∗)

which is defined, for every (w1
1, . . . ,w

`1
1) ∈ Tup`1

(∆ ∗), . . . , (w1
k , . . . ,w

`k
k) ∈ Tup`k

(∆ ∗), by

JeK((w1
1, . . . ,w

`1
1), . . . ,(w

1
k , . . . ,w

`k
k)) = (v1, . . . ,vn)

where each vm (m ∈ [n]) is obtained from sm by replacing every occurrence of a variable x j
i by w j

i . For
instance, let ∆ = {a,b,c,d}. The word tuple e = (bx1

2x1
1ax2

1,acx2
2x3

1a) in W2
(3,2)(∆) induces the word

function JeK : Tup3(∆
∗)×Tup2(∆

∗)→ Tup2(∆
∗) with

JeK((w1
1,w

2
1,w

3
1),(w

1
2,w

2
2)) = (bw1

2w1
1aw2

1,acw2
2w3

1a).

We view W(∆) as a (N∗+×N+)-sorted set in the obvious way (i.e., e ∈Wn
κ(∆) has sort (κ,n)) and

we denote the unique homomorphism from the N+-sorted W(∆)-term algebra to the N+-sorted algebra
(Tup(∆ ∗),J·K) also by J·K. Intuitively, it evaluates trees over word tuples to elements of Tup(∆ ∗) by
applying in a bottom-up way the word functions induced by their word tuples.

1Monotonicity is expressed by condition (3); in this paper, we do not deal with non-monotone word tuples.

84 Constituency Parsing as an Instance of the M-monoid Parsing Problem

Monoids. A monoid is an algebra (K,⊕,0) such that ⊕ is a binary, associative operation on K and
0⊕k = k = k⊕0 for each k ∈K. The monoid is commutative if ⊕ is commutative and it is idempotent
if k⊕ k = k. It is complete if, for each countable set I, there is an operation ∑

⊕
I which maps each

family (ki | i ∈ I) to an element of K, coincides with ⊕ when I is finite, and otherwise satisfies axioms
which guarantee commutativity and associativity [4, p. 124]. We abbreviate ∑

⊕
I (ki | i ∈ I) by ∑

⊕
i∈I ki.

A complete monoid is d-complete [9] if, for every k ∈ K and family (ki | i ∈ N) of elements of K, the
following holds: if there is an n0 ∈ N such that for every n ∈ N with n ≥ n0, ∑

⊕
i∈N : i≤nki = k, then

∑
⊕

i∈Nki = k. A complete monoid is completely idempotent if for every k ∈ K and countable set I it
holds that ∑

⊕
i∈I k = k. An easy proof shows that if K is completely idempotent, it is also d-complete.

M-monoids. A multioperator monoid (M-monoid; [11]) is an algebra (K,⊕,0,Ω ,φ) where (K,⊕,0)
is a commutative monoid (additive monoid), Ω is a ranked set, and (K,φ) is an Ω -algebra. An M-
monoid inherits the properties of its monoid (e.g., being complete). We denote a complete M-monoid by
(K,⊕,0,Ω ,φ ,∑⊕). An M-monoid is distributive if, for every ω ∈Ω (m), i ∈ [m], and k,k1, . . . ,km ∈ K,

ω(k1, . . . ,ki−1,ki⊕k,ki+1, . . . ,km)=ω(k1, . . . ,ki−1,ki,ki+1, . . . ,km)⊕ω(k1, . . . ,ki−1,k,ki+1, . . . ,km).

If K is complete, then we only call it distributive if the above equation also holds for each countable set
of summands. We sometimes refer to an M-monoid only by its carrier set.

Example 1. Let S be a set, Ω be an S-signature, and (A ,φ) be an S-sorted set. We will now define
an M-monoid which lifts the computations from (A ,φ) to sets of elements of A . Its carrier set will be
B =

⋃
s∈S P(A (s))∪{⊥} where ⊥ is a new element. Thus, B contains all single-sorted subsets of A

and an element⊥ which will be used whenever an operation is applied to arguments which do not match
its sort. Formally, we define the M-monoid (B,∪S , /0,Ω ,ψ) where, for every B1,B2 ∈ B,

B1∪S B2 =

{
B1∪B2 if there exists s ∈ S such that B1,B2 ⊆A (s)

⊥ otherwise

and, for every γ ∈ Γ (s1···sk,s) and B1, . . . ,Bk ∈ B,

ψ(γ)(B1, . . . ,Bk) =

{
φ(γ)(B1, . . . ,Bk) if B1 ⊆A (s1), . . . ,Bk ⊆A (sk)

⊥ otherwise.

We consider ∑
∪S which is defined for every index set I as

⋃
I . It is easy to see that B together with ∑

∪S

is complete and distributive. Moreover, since the monoid (B,∪S , /0,∑∪
S) is completely idempotent, we

obtain that (B,∪S , /0,Ω ,ψ,∑∪
S) is d-complete. /

3 Constituent tree automata

Hybrid trees and, as a special case thereof, constituent trees are certain trees over potentially indexed
symbols where, intuitively, an indexed symbol is a symbol equipped with a positive number. Formally,
let Σ be an alphabet. The set of indexed Σ -symbols, denoted by Σ〈N+〉, is the ranked set defined by
Σ〈N+〉(k) = {a〈n〉 | a ∈ Σ (k),n ∈ N+} for each k ∈ N. An element a〈n〉 is called indexed symbol and n is
the index of a〈n〉. We write (a〈n〉)Σ for a and (a〈n〉)N for n.

Here we only define constituent trees; for a general definition of hybrid trees, cf. [2]. A constituent
tree is a tree ξ ∈ TΣ (Σ〈N+〉) such that, for every w,w′ ∈ leaves(ξ), we have that (ξ (w))N = (ξ (w′))N

R. Mörbitz 85

implies w = w′. In words, a symbol is indexed if and only if it occurs at a leaf and no index occurs twice.
We let (ξ)Σ denote the tree in TΣ obtained from ξ by removing all indices. The set of all constituent
trees over Σ is denoted by CΣ .

We extract the linear phrase from a constituent tree ξ using the mapping yield : CΣ →Tup(Σ ∗) which
we define as follows. We order the set of indexed symbols occurring in ξ into a sequence according to
their indices, then we drop each comma between neighbored symbols with consecutive indices, and
finally we drop the indices. Thus, the tuple yield(ξ) has one more component than the number of gaps in
the set of indices occurring in ξ . For instance, consider the constituent tree ξ in Figure 1. The ordering
of its set of indexed symbols is (hat〈1〉,schnell〈2〉,gearbeitet〈3〉) and all commas are dropped as there
are no gaps between indices.

A constituent tree automaton (short: CTA) is a tuple A = (Q,Σ ,δ ,q f) where

• Q is a ranked alphabet with Q(0) = /0 (states),

• Σ is a ranked alphabet,

• δ is a finite set of transitions, each of which having either form (ε,a,q) where a ∈ Σ (0) and
q ∈Q(1) or form (q1 · · ·qk,a,e,q) where k ∈ N+, e ∈Wn

(`1,...,`k)
, q1 ∈Q(`1), . . . ,qk ∈Q(`k),q ∈Q(n),

and a ∈ Σ (k); and

• q f ∈ Q (final state).

We call A final state normalized if q f ∈ Q(1).
We note that this definition of CTA simplifies the definition by [2] in three regards. First, we opted

to define CTA directly and not as a special case of HTA. Second, their nullary transitions contain an
additional object, the universal index constraint UIC0,1, which we have dropped for the sake of clarity.
Third, to achieve coherence with RTGs, our CTA has only a single final state q f . This is not a restriction,
since each CTA of [2] with a set of final states can be transformed into an equivalent CTA with a single
final state using a standard construction from automata theory (cf., e.g., [3, L. 4.8]).

Example 2. Let A = (Q,Σ ,δ ,q f) be a CTA where the states are Q= {q(3),q(2)l ,q(2)r ,q(1)a ,q(1)b ,q(1)c ,q(1)f },
the terminal alphabet is Σ = {a(0),b(0),c(0),d(3),e(2)}, and δ consists of the following transitions:

(qlqqc,d,(x1
1x1

2x2
1x2

2x1
3x3

2),q f) (qaqqr,d,(x1
1x1

2x1
3x2

2x2
3x3

2),q f)

(qlqqc,d,(x1
1x1

2,x
2
1x2

2,x
1
3x3

2),q) (qaqqr,d,(x1
1x1

2,x
1
3x2

2,x
2
3x3

2),q)

(qaqbqc,d,(x1
1,x

1
2,x

1
3),q) (qaqb,e,(x1

1,x
1
2),ql) (qbqc,e,(x1

1,x
1
2),qr)

(ε,a,qa) (ε,b,qb) (ε,c,qc).

We note that A is final state normalized. We will use A to illustrate the semantics of CTA which we
define next. /

While there are two semantics of CTA in [2], we are only interested in one of them, called the hybrid
tree language inductively recognized by CTA. In this paper, we refer to it simply as language inductively
recognized by A and define it in the following.

Let k, `1, . . . , `k ∈ N+. We let κ = (`1, . . . , `k). A κ-assignment is a mapping ϕ : Xκ → I such that,
for every x,x′ ∈Xκ with x 6= x′, it holds that ϕ(x)∩ϕ(x′) = /0. Now let n ∈ N+ and e ∈Wn

κ . We say that
ϕ models e, denoted by ϕ |= e, if the expression e′ holds where e′ is obtained from e by (1) writing y
between each occurrence of two consecutive variables, (2) replacing each comma by <, and (3) replacing
each variable x by ϕ(x). As an example, consider the word tuple e = (x1

1 x1
2, x1

3 x2
2, x2

3 x3
2) which occurs

at position 2 of ρ in Figure 2. We define the (1,3,2)-assignment ϕ with ϕ(x1
1) = {2}, ϕ(x1

2) = {3},

86 Constituency Parsing as an Instance of the M-monoid Parsing Problem

d

e

a〈1〉 b〈4〉
d

a〈2〉 d

a〈3〉 b〈6〉 c〈9〉

e

b〈5〉 c〈8〉

c〈7〉

ξ ∈ CΣ :

a〈3〉 b〈6〉

a〈4〉

a〈5〉 b〈8〉 c〈11〉

b〈7〉 c〈10〉

c〈9〉

d

e
d

d
e

ξ ′ ∈ CΣ : (
q f ,(x1

1 x1
2 x2

1 x2
2 x1

3 x3
2)
)

(
ql,(x1

1, x1
2)
)

qa qb

(
q,(x1

1 x1
2, x1

3 x2
2, x2

3 x3
2)
)

qa (
q,(x1

1, x1
2, x1

3)
)

qa qb qc

(
qr,(x1

1, x1
2)
)

qb qc

qc

ρ ∈ RA :

q f →
(
d,(x1

1 x1
2 x2

1 x2
2 x1

3 x3
2)
)
(ql,q,qc)

ql →
(
e,(x1

1, x1
2)
)
(qa,qb)

qa→ (a) qb→ (b)
q→

(
d,(x1

1 x1
2, x1

3 x2
2, x2

3 x3
2)
)
(qa,q,qr)

qa→ (a)

q→
(
d,(x1

1, x1
2, x1

3)
)
(qa,qb,qc)

qa→ (a) qb→ (b) qc→ (c)

qr→
(
e,(x1

1, x1
2)
)
(qb,qc)

qb→ (b) qc→ (c)

qc→ (c)

d ∈ RTG :

(
d,(x1

1 x1
2 x2

1 x2
2 x1

3 x3
2)
)

(
e,(x1

1, x1
2)
)

a b

(
d,(x1

1 x1
2, x1

3 x2
2, x2

3 x3
2)
)

a (
d,(x1

1, x1
2, x1

3)
)

a b c

(
e,(x1

1, x1
2)
)

b c

c

t ∈ TΓ :

(aaabbbccc) rep(ξ)

[ξ ,ρ]

yield rep

p-yield

(·)Y (·)CT

ψ

(.)Γ

Figure 2: Top: constituent tree ξ and run ρ of the CTA A from Example 2 such that (ξ ,ρ) ∈ CRA . We
also show a constituent tree ξ ′ with (ξ ′,ρ)∼ (ξ ,ρ) in gray. Bottom: AST d of the A -RTG G which is
the image of [ξ ,ρ] under the bijection ψ . The mappings introduced in this paper commute; in particular,
yield(ξ) = ((ψ([ξ ,ρ]))Γ)Y.

ϕ(x1
3) = {5}, ϕ(x2

2) = {6}, ϕ(x2
3) = {8}, ϕ(x3

2) = {9}, where the indices are taken from the constituent
tree ξ in Figure 2. We obtain the expression e′ = ({2}y {3}< {5}y {6}< {8}y {9}) which is valid
and hence ϕ |= e.

Let A = (Q,Σ ,δ ,q f) be a CTA. A run of A is a tree ρ ∈ TQ×W(Q) where, for (q,e)∈Q×W , we let
rk(q,e) = k if e ∈Wn

(`1,...,`k)
. We let RA denote the set of runs of A . We define ΘA ⊆CΣ ×RA ×Tup(I)

to be the smallest set T that satisfies the following:

• For every (ε,a,q) ∈ δ and i ∈ N+ it holds that
(
a〈i〉,q,{i}

)
∈ T.

• For every (q1 · · ·qk,a,e,q) ∈ δ and (ξ1,ρ1,J1), . . . ,(ξk,ρk,Jk) ∈ T where qi is the state at ρi(ε)
(for i ∈ [k]), we let κ denote (rk(q1), . . . , rk(qk)) and consider the mapping ϕ : Xκ → I defined, for
every i ∈ [k] and j ∈ [rk(qi)], by ϕ(x j

i) = Ji[j]. (The fact that Ji[j] is indeed an interval can easily
be verified by induction.) Now, if ϕ is a κ-assignment (i.e., its image consists of pairwise disjoint
sets) and ϕ |= e, then

(
a(ξ1, . . . ,ξk),ρ,(U1, . . . ,Urk(q))

)
∈ T where we let ρ = (q,e)(ρ1, . . . ,ρk)

and, for each m ∈ [rk(q)], Um =
⋃

i, j: x j
i occurs in the m-th component of e ϕ(x j

i).

We define the following projection of ΘA (where CR stands for “constituent (trees and) runs”):

CRA = {(ξ ,ρ) | (∃J ∈ Tup(I)).(ξ ,ρ,J) ∈ΘA }.

R. Mörbitz 87

d

e

a〈1〉 b〈4〉

d

a〈2〉 d

a〈3〉 b〈6〉 c〈9〉

e

b〈5〉 c〈8〉

c〈7〉

ξ ∈ CΣ :
(q f ,(x1

1x1
2x2

1x2
2x1

3x3
2))

(ql,(x1
1,x

1
2)) (q,(x1

1x1
2,x

1
3x2

2,x
2
3x3

2))

(q,(x1
1,x

1
2,x

1
3)) (qr,(x1

1,x
1
2))

(qa) (qb)
(qa)

(qa) (qb) (qc) (qb) (qc)

(qc)

d

a〈1〉
d

e

a〈2〉 b〈5〉
d

a〈3〉 b〈6〉 c〈9〉

c〈8〉

e

b〈4〉 c〈7〉

ξ ′ ∈ CΣ :

Figure 3: Left: constituent tree ξ and run ρ of the CTA A from Example 2 such that (ξ ,ρ) ∈ CRA

where the states and word tuples of ρ have been written next to the positions of ξ . Arrows indicate the
family of assignments which witnesses (ξ ,ρ) ∈ CRA where, at each non-leaf position of ρ , a variable is
assigned the set of all indices whose arrows reach it. Right: another constituent tree ξ ′ ∈ Lind(A) such
that yield(ξ) = yield(ξ ′).

The language inductively recognized by A , denoted by Lind(A), is the set

Lind(A) = {ξ | (ξ ,ρ) ∈ CRA ,ρ(ε) has state q f }.

Example 3. Recall the CTA A of Example 2. The top left of Figure 2 shows a constituent tree ξ and
a run ρ of A such that (ξ ,ρ) ∈ CRA . In order to show that (ξ ,ρ) ∈ CRA indeed holds, in Figure 3
(left), we illustrate the assignments used at each position of ξ in the inductive definition of ΘA . For this,
we use arrows starting at the indices in the leaves of ξ . At every non-leaf position w of ρ , we show the
κ-assignment ϕ which witnesses the existence of J ∈ Tup(I) such that (ξ |w,ρ|w,J) ∈ ΘA as follows:
for each variable x j

i in the word tuple at ρ(w), it holds that ϕ(x j
i) consists of all indices whose arrows

reach x j
i . In the way these arrows pass through the word tuples at subtrees of ρ|w, it is shown that ϕ is

consistent with the assignments in the subtrees. This stresses the inductive nature of CRA .
The constituent tree ξ exemplifies the form of each constituent tree inductively recognized by A .

The backbone is a monadic chain where each position is labeled with d. The bottom of the chain has
three leaf children, labeled by a, b, and c. Each inner position of the chain has three children as well,
the second of which continues the chain. Moreover, the symbols a, b, and c are distributed as leaves
among the first and third child, where e serves as an intermediate node under the child receiving two
symbols (cf. positions ε and 2 of ξ). The indices are placed such that, for each of a, b, and c, the
indices occurring with this symbol form an interval where a has the lowest and c has the highest interval.
Thus, yield(Lind(A)) = {anbncn | n ∈ N+} which is not context-free. As there are two patterns for inner
positions of the backbone, A may recognize several constituent trees with the same yield (an example is
given in the right of Figure 3). /

The constituency parsing problem states:

Given: a final state normalized CTA A = (Q,Σ ,δ ,q f) and u ∈ (Σ (0))∗

Compute: {ξ ∈ Lind(A) | yield(ξ) = (u)}.
We note that, since A is final state normalized, every ξ ∈ Lind(A) has yield(ξ) ∈ Σ ∗. Hence we did
not allow string tuples consisting of more than one component in the specification of the constituency
parsing problem.

88 Constituency Parsing as an Instance of the M-monoid Parsing Problem

4 Weighted RTG-based language models and the M-monoid parsing prob-
lem

The M-monoid parsing problem [12, 13] builds on RTG-based language models which are inspired by
the initial algebra approach [6].

An RTG-based language model (RTG-LM) is a tuple (G ,(L ,φ)) where, for some S-signature Γ ,

• (L ,φ) is a Γ -algebra (language algebra), we call the elements of L syntactic objects, and

• G = (N,Λ ,A0,R) is an S-sorted RTG with Λ ⊆ Γ .

The language generated by (G ,(L ,φ)) is the set

(L(G))L = {(t)L | t ∈ L(G)} ⊆L ,

i.e., the set of all syntactic objects obtained by evaluating trees of L(G) in the language algebra L . We
note that (L(G))L ⊆L sort(A0), i.e., each syntactic object in the language generated by (G ,(L ,φ)) has
the sort of A0.

A weighted RTG-based language model (wRTG-LM) is a tuple(
(G ,(L ,φ)), (K,⊕,0,Ω ,ψ,∑⊕), wt

)
where

• (G ,(L ,φ)) is an RTG-LM,

• (K,⊕,0,Ω ,ψ,∑⊕) is a complete M-monoid (weight algebra), and

• wt maps each rule of G with rank k to a k-ary operation in Ω . In the obvious way, we lift wt to the
mapping wt′ : TR→ TΩ and let wt also denote wt′.

The M-monoid parsing problem states:

Given: a wRTG-LM ((G ,(L ,φ)),(K,⊕,0,Ω ,ψ,∑⊕),wt) with G = (N,Λ ,A0,R) and a ∈L

Compute: the value parse(G ,L)(a) ∈ K where

parse(G ,L)(a) = ∑
⊕

d∈TR :
((d)Γ)L =a,lhs(d(ε))=A0

(wt(d))K.

The computation of parse(G ,L)(a) employs the homomorphisms of both algebras. Each AST of G is
mapped to an element of L via the homomorphisms (·)Γ and (·)L and it is mapped to an element of K
via the homomorphisms wt and (·)K . Given a syntactic object a, the M-monoid parsing problem states
to first compute a collection of ASTs2 via the inverse of the homomorphisms (·)Γ and (·)L . These ASTs
are filtered for those where the left-hand side of the rule at the root is the initial nonterminal. Then,
values in K are computed from the remaining ASTs via the homomorphisms wt and (·)K . Finally, these
values are accumulated to a single value using ∑

⊕.

2Due to ambiguity, an AST may occur several times in the computation of parse(G ,L)(a) [13].

R. Mörbitz 89

5 Constituency parsing as an M-monoid parsing problem

In this section, we give the formal details of the definition of the constituent tree algebra, the constituent
tree yield algebra, and the wRTG-LM we construct for a given CTA to model its constituency parsing
problem. Moreover, we sketch the proof of the statement that the corresponding M-monoid parsing
problem is equal to that constituency parsing problem. We start by defining partitioned constituent trees
which are inspired by the hybrid trees of Nederhof and Vogler (2014) [14] (also cf. [5, 10]).

Let Σ be a ranked alphabet. A partitioned constituent tree (over Σ) is a tuple ξ = (t,<,(U1, . . . ,Un))
where t ∈ TΣ , < is a strict total order on leaves(t), n ∈N+, and (U1, . . . ,Un) is a partitioning of leaves(ξ)
such that, for every i ∈ [n−1], w1 ∈Ui, and w2 ∈Ui+1, we have that w1 < w2. Intuitively, this condition
on the partitioning enforces consistency with <, i.e., positions further left in (U1, . . . ,Un) are smaller. We
say that ξ has n segments. The set of all partitioned constituent trees over Σ is denoted by pCΣ .

Compared to the constituent trees of [2], partitioned constituent trees abstract from particular indices.
Thus, each partitioned constituent tree represents infinitely many constituent trees. To formalize this, we
define the mapping rep : CΣ → pCΣ as follows. Let ξ ∈ CΣ . If ξ is of the form a〈n〉, we let rep(a〈n〉) =
(a, /0,({ε})). Otherwise, ξ is of the form a(ξ1, . . . ,ξk) and we let rep(ξ) = ((ξ)Σ ,<,(U1, . . . ,Un)) where,
for every w1,w2 ∈ leaves(ξ), we let w1 < w2 if and only if (ξ (w1))N < (ξ (w2))N and (U1, . . . ,Un) is the
unique partitioning of leaves(ξ) such that, for each m ∈ [n], the set {(ξ (w))N | w ∈Um} is an interval
and, for each m ∈ [n−1], maxw∈Um(ξ (w))N+1 < minw∈Um+1(ξ (w))N. Intuitively, < orders the leaves of
ξ by their indices and (U1, . . . ,Un) groups the leaves such that, for each subset of the partitioning, the
indices of the leaves in that subset form an interval and this interval is as large as possible.

We remark that our partitioned constituent trees differ from the hybrid trees by [14] in three regards.
(1) In the first component, we only allow a tree ξ rather than a sequence of trees. (2) The total order < is
defined on the set of leaves of ξ rather than the set of all positions of ξ whose labels are from a particular
subset Γ of Σ . We note that [5] defined constituent trees3 as a special case of hybrid trees where Γ makes
up the leaf labels, hence that difference is only syntactical (also, this was already indicated by [14]).
(3) Their hybrid trees did not feature a partitioning, so phrases with gaps cannot be modeled. Compared
to the segmented totally ordered terms (tots) of [10], the total order of our partitioned constituent trees
only regards the leaves rather than the entire set of positions.

Intuitively, the linear phrase represented by a partitioned constituent tree (t,<,(U1, . . . ,Un)) can be
obtained analogously to the yield of constituent trees in CΣ ; we merely order the symbols at the leaves
according to < rather than by their index and we place commas according to (U1, . . . ,Un) rather than
gaps in the indices. We formalize this by defining the mapping p-yield : pCΣ → Tup(Σ ∗) as follows. Let
ξ = (t,<,(U1, . . . ,Un)) be in pCΣ . Then

p-yield(ξ) = (ft,<(U1), . . . , ft,<(Un))

where the auxiliary mapping ft,< is inductively defined by ft,<(/0) = ε and, for nonempty U ⊆ leaves(t),
ft,<(U) = t(min<U) · ft,<(U \{min<U}).

It is easy prove that, for every ξ ∈ CΣ , we have

yield(ξ) = p-yield(rep(ξ)), (1)

i.e., intuitively, the mapping rep preserves yield.

3They refer to constituent trees as phrase structure trees.

90 Constituency Parsing as an Instance of the M-monoid Parsing Problem

5.1 The constituent tree algebra and the constituent tree yield algebra

Prior to the definition of the algebras we give the formal definition of their signature Γ . The intuition
behind our choice of sorts is the observation that the elements of both algebras, partitioned constituent
trees and string tuples, have a certain “arity”: each partitioned constituent tree has n segments, i.e., groups
of leaves, and each string tuple consists of n strings where, in both cases, n ∈ N+.

We define the ((N+)
∗×N+)-sorted set Γ = Γ (ε,1)∪

⋃
n,k,`1,...,`k∈N+

Γ (`1···`k,n) where

• Γ (ε,1) = Σ (0) and

• for every n,k, `1, . . . , `k ∈ N+, we let

Γ
(`1···`k,n) = {(a,e) | a ∈ Σ

(k),e ∈Wn
(`1,...,`k)

}.

Now we can approach the definition of the constituent tree algebra as a Γ -algebra whose carrier set
is pCΣ . For this, we consider pCΣ as an N+-sorted set by letting, for every n ∈ N+,

(pCΣ)
(n) = {ξ ∈ pCΣ | ξ has n segments}.

The constituent tree algebra is the N+-sorted Γ -algebra CT = (pCΣ ,θΣ) where
• for each a ∈ Σ (0), we let θΣ (a) = (a, /0,({ε})) and

• for every (a,e)∈Γ (`1···`k,n) and ξ1 ∈ (pCΣ)
(`1), . . . ,ξk ∈ (pCΣ)

(`k) with ξi = (ti,<i,(U
(i)
1 , . . . ,U (`i)

i))
(for i ∈ [k]), we let

θΣ (a,e)(ξ1, . . . ,ξk) = (t,<,(U1, . . . ,Un))

where t = a(t1, . . . , tk) and, for each m ∈ [n], we let Um be the union of all sets {i} ·U (j)
i such that

x j
i occurs in the m-th component of e. Thus, clearly, (U1, . . . ,Un) is a partitioning of leaves(t).

Hence, for each w ∈ leaves(t), there exist exactly one i ∈ [k] and j ∈ [`i] such that w ∈ {i} ·U (j)
i ;

we let var(w) denote x j
i . For the definition of <, let w1,w2 ∈ leaves(t). If var(w1) 6= var(w2), then

we let w1 < w2 if and only if var(w1) occurs left of var(w2) in e. Otherwise, we let i ∈ [k] and
j ∈ [`i] such that var(w1) = x j

i . Then w1 < w2 if and only if w′1 <i w′2 where w′1,w
′
2 ∈ pos(ti) such

that w1 = i ·w′1 and w2 = i ·w′2.
We let (·)CT denote the unique Γ -homomorphism from TΓ to pCΣ .

We note that the definition of CT is semantically close to the algebra of segmented tots by [10],
but the operations of CT are defined using word tuples and the non-nullary symbols of Γ do not add
tree positions to the total order or the partitioning since, in our case, these components only refer to
the leaves. Moreover, one cannot define a Γ -algebra similar to CT but with CΣ as its carrier set.
For this, one would need to fix a mapping sort : CΣ → N+. An appropriate choice could be assigning
to each ξ ∈ CΣ the smallest number n such that the indices of ξ form n intervals. For instance, let
ξ1 = a〈2〉 and ξ2 = b(a〈1〉,a〈4〉) be constituent trees over Σ . Then we have sort(ξ1) = 1 and sort(ξ2) =
2. In essence, this mimics the sort mapping of pCΣ but considers intervals of indices rather than the
partitioning of the set of leaves. However, this approach bears the following problem. Let c ∈ Σ (2)

and e = (x1
2x1

1,x
2
2). We compute θΣ (c,e)(ξ1,ξ2) = a(ξ1,ξ2) and have sort(a(ξ1,ξ2)) = 2. On the other

hand, if we also consider ξ3 = b(a〈1〉,a〈3〉), then θΣ (c,e)(ξ1,ξ3) has sort 1 which contradicts the sort
of (c,e). Moreover, this sort mapping falls short of inhibiting that constituent trees with overlapping
indices are passed as arguments to θΣ (e). The rich field of many-sorted algebra surely provides means to
remedy these problems by choosing a more complex signature rather than Γ . However, we believe that
circumventing these problems by dealing with pCΣ is a cleaner solution.

We define the constituent tree yield algebra to be the N+-sorted Γ -algebra (Tup(Σ ∗),θY) where

R. Mörbitz 91

• for each n ∈ N+, we let sort(Tupn(Σ
∗)) = n,

• for each a ∈ Σ (0), we let θY(a) = (a), and

• for each (a,e) ∈ Γ (`1···`k,n), we let θY(a,e) = JeK.
Let (·)Y denote the unique homomorphism from TΓ to Tup(Σ ∗). We can also show that the mapping
p-yield is a Γ -homomorphism from pCΣ to Tup(Σ ∗). Thus, by the laws of universal algebra (cf., e.g.,
[16]), we obtain that, for every t ∈ TΓ ,

p-yield((t)CT) = (t)Y. (2)

5.2 The wRTG-LM for constituency parsing

Here we show, given a CTA A and a string u, how to construct a wRTG-LM such that the corresponding
M-monoid parsing problem is equivalent to the constituency parsing problem for A and u. We start with
the RTG and afterwards add the algebras from the previous subsection.

Let A = (Q,Σ ,δ ,q f) be a CTA. We define the A -RTG to be the RTG G = (Q,Λ ,R,q f) where
(1) Λ = Λ (ε,1) ∪

⋃
k∈N+,n,`1,...,`k∈rk(Q)Λ (`1···`k,n) where we let Λ (ε,1) = Σ (0) and, for each k ∈ N+ and

every n, `1, . . . , `k ∈ rk(Q), we let Λ (`1···`k,n) = Σ (k)×Wn
(`1,...,`k)

,4

(2) for every a ∈ Σ (0) and q ∈ Q it holds that (ε,a,q) ∈ δ if and only if (q→ (a)) ∈ R, and

(3) for every k ∈ N+, a ∈ Σ (k), e ∈W , and q1, . . . ,qk,q ∈ Q it holds that (q1 . . .qk,a,e,q) ∈ δ if and
only if (q→ (a,e)(q1, . . . ,qk)) ∈ R.

Example 4. Recall the CTA A = (Q,Σ ,δ ,q f) from Example 2. The A -RTG is G = (Q,Λ ,R,q f) where
Λ (ε,1) = {a,b,c}, for every n, `1, `2, `3 ∈ [3], Λ (`1`2,n) = {e}×Wn

(`1,`2)
and Λ (`1`2`3,n) = {d}×Wn

(`1,`2,`3)
;

and R consists of the following rules:

q f → (d,(x1
1x1

2x2
1x2

2x1
3x3

2))(ql,q,qc) q f → (d,(x1
1x1

2x1
3x2

2x2
3x3

2))(qa,q,qr)

q→ (d,(x1
1x1

2,x
2
1x2

2,x
1
3x3

2))(ql,q,qc) q→ (d,(x1
1x1

2,x
1
3x2

2,x
2
3x3

2))(qa,q,qr)

q→ (d,(x1
1,x

1
2,x

1
3))(qa,qb,qc) ql → (e,(x1

1,x
1
2))(qa,qb) qr→ (e,(x1

1,x
1
2))(qb,qc)

qa→ (a) qb→ (b) qc→ (c).

The bottom right of Figure 2 shows an AST of G . /

As the language algebra of our wRTG-LM we use the constituent tree yield algebra (Tup(Σ ∗),θY).
For the weight algebra we point out that each of its operations computes a single partitioned constituent
tree. However, our goal as determined by the constituency parsing problem is to compute a set of
constituent trees. Hence, we lift the constituent tree algebra to sets. Formally, we define the M-monoid

C= (
⋃

n∈N+

P(pC(n)
Σ
)∪{⊥},∪N , /0,Γ ,θ ′Σ ,∑∪

N)

where ∪N and θ ′
Σ

are defined like their counterparts in Example 1. In the following, we will write θΣ

rather than θ ′
Σ

and we let (·)CT denote also the unique Γ -homomorphism from TΓ to this algebra.
Combining these components, we define the A -wRTG-LM to be the wRTG-LM

Ḡ = ((G ,(Tup(Σ ∗),θY)),C,wt)

where G is the A -RTG and, for every r = (A→ γ(A1, . . . ,Ak)) in R, we let wt(r) = γ .
4Thus Λ is a finite subset of Γ .

92 Constituency Parsing as an Instance of the M-monoid Parsing Problem

5.3 Constituency parsing is an instance of the M-monoid parsing problem

Let A = (Q,Σ ,δ ,q f) be a CTA and let Ḡ = ((G ,(Tup(Σ ∗),θY)),C,wt) with G = (Q,Λ ,R,q f) be the
A -wRTG-LM. The M-monoid parsing problem for Ḡ is, given some (u) ∈ Tup(Σ ∗), to compute

parse(G ,CΣ)
(u) =

⋃
d∈TR :

((d)Γ)Y=(u), lhs(d(ε))=q f

(wt(d))CT .

For a given phrase u, this instance of the M-monoid parsing problem enumerates the set of all ASTs of
G that have the initial nonterminal at the root and evaluate to u in the constituent tree yield algebra. Each
of these ASTs is evaluated in the constituent tree algebra.

In order to show that this M-monoid parsing problem is equal to the constituency parsing problem for
A (and u), we seek a bijection ψ between the set CRA and the set of abstract syntax trees of G . However,
similar to [2], we only find such a bijection if we consider certain elements of CRA equivalent.

Formally, we define the equivalence relation ∼ as follows. For every (ξ1,ρ1),(ξ2,ρ2) ∈ CRA , we
let (ξ1,ρ1) ∼ (ξ2,ρ2) if and only if (ξ1)Σ = (ξ2)Σ and ρ1 = ρ2. Clearly, ∼ is indeed an equivalence
relation. Let CRA /∼ denote the quotient set of CRA by ∼. For each (ξ ,ρ) ∈ CRA , we let [ξ ,ρ] denote
the equivalence class (ξ ,ρ) belongs to. An example for ∼ is given in the top of Figure 2.

We define the mapping ψ : CRA /∼→ TR inductively as follows. Let (ξ ,ρ) ∈ CRA . If (ξ ,ρ) is of
the form (a〈n〉,q), we let ψ([a〈n〉,q]) = q→ (a). Otherwise, ξ is of the form a(ξ1, . . . ,ξk) and ρ is of
the form (q,e)(ρ1, . . . ,ρk), then we let

ψ([ξ ,ρ]) = q→(a,e)(ψ([ξ1,ρ1]), . . . ,ψ([ξk,ρk])).

We illustrate ψ for the CTA A from Example 2 and the A -RTG G from Example 4 in Figure 2.
Using a method similar to [2] we can show that ψ is indeed a bijection. Moreover, we can prove the

following auxiliary statement. Let (ξ ,ρ) ∈ CRA . If ((ψ([ξ ,ρ]))Γ)CT = (t1,<1,(U
(1)
1 , . . . ,U (`1)

1)) and
rep(ξ) = (t2,<2,(U

(1)
2 , . . . ,U (`2)

2)), then

t1 = t2 and <1 =<2. (3)

Intuitively, ((ψ([ξ ,ρ]))Γ)CT and rep(ξ) may only differ in the partitioning. For instance, consider the
constituent tree ξ and the run ρ in Figure 2 where we even have ((ψ([ξ ,ρ]))Γ)CT = rep(ξ).

We note that since A is final state normalized, ψ implies that each AST d of G with lhs(d(ε)) = q f

has ((d)Γ)Y ∈ Σ ∗. Thus, parse(G ,CΣ)
(u) is only non-empty if u is a string. This resembles the fact that the

constituency parsing problem is only defined for strings. We will assume that u ∈ Σ ∗ in the following.
After these preparations, we can show that the M-monoid parsing problem for Ḡ and u relates to the

constituency parsing problem for A and u in the following way:

parse(G ,CΣ)
(u) = {(wt(d))CT | d ∈ TR,((d)Γ)Y = u, lhs(d(ε)) = q f }

(2)
= {(wt(d))CT | d ∈ TR,p-yield(((d)Γ)CT) = u, lhs(d(ε)) = q f }
bij.
= {(wt(ψ([ξ ,ρ])))CT | (ξ ,ρ) ∈ CRA ,p-yield(((ψ([ξ ,ρ]))Γ)CT) = u,

lhs(ψ([ξ ,ρ])(ε)) = q f }
?1= {(wt(ψ([ξ ,ρ])))CT | (ξ ,ρ) ∈ CRA ,p-yield(((ψ([ξ ,ρ]))Γ)CT) = u,

q f is the state at ρ(ε)}

R. Mörbitz 93

?2= {rep(ξ) | (ξ ,ρ) ∈ CRA ,p-yield(rep(ξ)) = u,q f is the state at ρ(ε)}
(1)
= {rep(ξ) | (ξ ,ρ) ∈ CRA ,yield(ξ) = u,q f is the state at ρ(ε)}
= {rep(ξ) | ξ ∈ Lind(A),yield(ξ) = u}

where ?1 holds by definition of ψ and ?2 follows from (3) (using wt = (·)Γ) and both rep(ξ) and
(wt(ψ([ξ ,ρ])))CT being in pC(1)

Σ
(which is a consequence of A being final state normalized). We

illustrate this equality by showing how the mapping rep commutes with (·)CT ◦ (·)Γ ◦ψ in Figure 2.
We note that parse(G ,CΣ)

(u) is a subset of pCΣ (i.e., constituent trees without particular indices)
whereas the constituency parsing problem computes a subset of CΣ . To bridge this gap, we note that
the set T = {ξ ∈ CΣ | rep(ξ) ∈ parse(G ,CΣ)

(u)} can be easily constructed. We sketch this construction
by letting ξ = (t,<,(U1, . . . ,Un)) ∈ parse(G ,CΣ)

(u). Since A is final state normalized, we have n = 1.
Now we let m∈N+ and fix an interval [m,m+ |U1|], then we obtain ξ ′ ∈CΣ from t by adding the indices
m,m+1, . . . ,m+ |U1| to the symbols at the leaves of t in the order determined by <. Clearly, rep(ξ ′) = ξ .
By letting m range over N+ we obtain the set {ξ ′ ∈ CΣ | rep(ξ ′) = ξ}. Clearly, for every ξ ∈ T we have
yield(ξ) = u and ξ ∈ Lind(A). Thus T is the solution of the constituency parsing problem of A and u.

6 Applicability of the M-monoid parsing algorithm

The M-monoid parsing algorithm [13] is a two-phase pipeline which is applicable to a large class of
M-monoid parsing problems, where applicability means that the algorithm is terminating and correct.
Due to space restrictions, we cannot repeat the algorithm here and only investigate its applicability to our
scenario. For this, we let W (CTA) be the set of all A -wRTG-LMs for each final state normalized CTA
A . We let Ḡ ∈W (CTA) and u ∈ Σ ∗.

The first phase of the M-monoid parsing algorithm applies a weighted deduction system to Ḡ and
u, thus obtaining a new wRTG-LM Ḡ′. Mörbitz and Vogler (2021) [13] provide the canonical weighted
deduction system which is applicable in all situations where the language algebra of the input wRTG-LM
is finitely decomposable. Since this is clearly the case for (Tup(Σ ∗),θY), we obtain that the first phase
of the M-monoid parsing algorithm is applicable to every Ḡ ∈W (CTA) and u ∈ Σ ∗.

The second phase, called value computation algorithm, uses Ḡ′ to compute an element in the weight
algebra. There are two independent sufficient conditions for this value to be equal to parse(G ,CΣ)

(u).
The first condition requires Ḡ to fulfil a property called closed. Without giving details on this property,
we state that not every wRTG-LM in W (CTA) is closed.5 The second condition requires Ḡ to fulfil a
property called nonlooping and the weight algebra to be distributive and d-complete. Now distributivity
of C is easy to see and d-completeness of C follows from the fact that its additive monoid is completely
idempotent. In essence, Ḡ is nonlooping if for each AST d of its RTG the following holds: if there is a
proper subtree d|w of d which evaluates to the same syntactic object as d in the language algebra, then
d(w) must have a different label than d(ε). As our language algebra is (Tup(Σ ∗),θY), this property can
only be violated if each node in d from ε to w is monadic. Then, by pumping the monadic chain from ε

to w, we can construct infinitely many ASTs with the same yield, each of which is evaluated to a different
constituent tree in the weight algebra. However, a terminating algorithm cannot compute an infinite set
of constituent trees. By the construction of Ḡ, we find that this situation is only possible if the CTA A
contains transitions of the form (q1,a1,e1,q2), (q2,a2,e2,q3), . . . , (qn,an,en,q1). Thus, if A is free of
such monadic cycles, Ḡ is nonlooping and the M-monoid parsing algorithm is correct for Ḡ and u.

5The interested reader may see that for themselves in a way similar to [13, Appendix A.7].

94 Constituency Parsing as an Instance of the M-monoid Parsing Problem

7 Future work

Dependency is another important syntactical analysis in NLP. Dependency trees are also introduced
by [2] where dependency tree automata are mentioned as another possible special case of HTA, mirroring
CTA. We believe that the corresponding dependency parsing problem can be shown to be an instance of
M-monoid parsing in a way very similar to the present paper.

The constituency parsing problem considered here states to compute the set of all suitable constituent
trees. However, parsing problems often occur in weighted settings where the weights are, e.g., probabil-
ities, and compute only the best analysis. A constituency parsing problem with such additional weights
also falls in the scope of the M-monoid parsing problem. Moreover, the underlying CTA could even have
transitions that allow monadic cycles as long as they lead to a decrease in weight.

References
[1] W.S. Brainerd (1969): Tree generating regular systems. Information and Control 14(2), pp. 217–231,

doi:10.1016/S0019-9958(69)90065-5.

[2] F. Drewes, R. Mörbitz & H. Vogler (2022): Hybrid Tree Automata and the Yield Theorem for Constituent
Tree Automata. In: 26th International Conference on Implementation and Application of Automata, LNCS
13266, Springer, pp. 93–105, doi:10.1007/978-3-031-07469-1_7.

[3] M. Droste, C. Pech & H. Vogler (2005): A Kleene theorem for weighted tree automata. Theory of Computing
Systems 38(1), pp. 1–38, doi:10.1007/s00224-004-1096-z.

[4] S. Eilenberg (1974): Automata, languages, and machines. Academic press.

[5] K. Gebhardt, M.-J. Nederhof & H. Vogler (2017): Hybrid Grammars for Parsing of Discontinuous Phrase
Structures and Non-Projective Dependency Structures. Computational Linguistics 43(3), pp. 465–520,
doi:10.1162/COLI_a_00291.

[6] J.A. Goguen, J.W. Thatcher, E.G. Wagner & J.B. Wright (1977): Initial algebra semantics and continuous
algebras. Journal of the ACM (JACM) 24(1), pp. 68–95, doi:10.1145/321992.321997.

[7] A.K. Joshi & Y. Schabes (1997): Tree-Adjoining Grammars. In: Handbook of Formal Languages, Springer,
pp. 69–123, doi:10.1007/978-3-642-59126-6_2.

[8] L. Kallmeyer (2010): Parsing beyond context-free grammars. Springer, doi:10.1007/978-3-642-14846-0.

[9] G. Karner (1992): On limits in complete semirings. Semigroup Forum 45(1), doi:10.1007/BF03025757.

[10] Kuhlmann & Niehren (2008): Logics and Automata for Totally Ordered Trees. In: Rewriting Techniques and
Applications, Springer Berlin Heidelberg, Berlin, pp. 217–231, doi:10.1007/978-3-540-70590-1_15.

[11] W. Kuich (1999): Linear systems of equations and automata on distributive multioperator monoids. Contri-
butions to general algebra 12, pp. 247–256.

[12] R. Mörbitz & H. Vogler (2019): Weighted parsing for grammar-based language models. In: Proceedings
of the 14th International Conference on Finite-State Methods and Natural Language Processing, Association
for Computational Linguistics, Dresden, Germany, pp. 46–55, doi:10.18653/v1/W19-3108.

[13] R. Mörbitz & H. Vogler (2021): Weighted parsing for grammar-based language models over multioperator
monoids. Information and Computation 281, doi:10.1016/j.ic.2021.104774.

[14] M.-J. Nederhof & H. Vogler (2014): Hybrid grammars for discontinuous parsing. In: Proc. of 25th Interna-
tional Conference on Computational Linguistics. Available at https://aclanthology.org/C14-1130.

[15] H. Seki, T. Matsumura, M. Takashi, M. Fujii & T. Kasami (1991): On multiple context-free grammars 88(2),
pp. 191–229. doi:10.1016/0304-3975(91)90374-B.

[16] W. Wechler (1992): Universal Algebra for Computer Scientists, first edition. Monogr. Theoret. Comput. Sci.
EATCS Ser. 25, Springer-Verlag, Heidelberg/Berlin, doi:10.1007/978-3-642-76771-5_3.

https://doi.org/10.1016/S0019-9958(69)90065-5
https://doi.org/10.1007/978-3-031-07469-1_7
https://doi.org/10.1007/s00224-004-1096-z
https://doi.org/10.1162/COLI_a_00291
https://doi.org/10.1145/321992.321997
https://doi.org/10.1007/978-3-642-59126-6_2
https://doi.org/10.1007/978-3-642-14846-0
https://doi.org/10.1007/BF03025757
https://doi.org/10.1007/978-3-540-70590-1_15
https://doi.org/10.18653/v1/W19-3108
https://doi.org/10.1016/j.ic.2021.104774
https://aclanthology.org/C14-1130
https://doi.org/10.1016/0304-3975(91)90374-B
https://doi.org/10.1007/978-3-642-76771-5_3

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. 95–109, doi:10.4204/EPTCS.388.10

© G. Pighizzini & L. Prigioniero

This work is licensed under the

Creative Commons Attribution License.

Forgetting 1-Limited Automata

Giovanni Pighizzini

Dipartimento di Informatica
Università degli Studi di Milano, Italy

pighizzini@di.unimi.it

Luca Prigioniero

Department of Computer Science
Loughborough University, UK

l.prigioniero@lboro.ac.uk

We introduce and investigate forgetting 1-limited automata, which are single-tape Turing machines

that, when visiting a cell for the first time, replace the input symbol in it by a fixed symbol, so

forgetting the original contents. These devices have the same computational power as finite au-

tomata, namely they characterize the class of regular languages. We study the cost in size of the

conversions of forgetting 1-limited automata, in both nondeterministic and deterministic cases, into

equivalent one-way nondeterministic and deterministic automata, providing optimal bounds in terms

of exponential or superpolynomial functions. We also discuss the size relationships with two-way

finite automata. In this respect, we prove the existence of a language for which forgetting 1-limited

automata are exponentially larger than equivalent minimal deterministic two-way automata.

1 Introduction

Limited automata have been introduced in 1967 by Hibbard, with the aim of generalizing the notion of

determinism for context-free languages [6]. These devices regained attention in the last decade, mainly

from a descriptional complexity point of view, and they have been considered in several papers, starting

with [14, 15]. (For a recent survey see [13].)

In particular, 1-limited automata are single-tape nondeterministic Turing machines that are allowed

to rewrite the content of each tape cell only in the first visit. They have the same computational power as

finite automata [24, Thm. 12.1], but they can be extremely more succinct. Indeed, in the worst case the

size gap from the descriptions of 1-limited automata to those of equivalent one-way deterministic finite

automata is double exponential [14].

In order to understand this phenomenon better, we recently studied two restrictions of 1-limited

automata [17]. In the first restriction, called once-marking 1-limited automata, during each computation

the machine can make only one change to the tape, just marking exactly one cell during the first visit to

it. We proved that, under this restriction, a double exponential size gap to one-way deterministic finite

automata remains possible.

In the second restriction, called always-marking 1-limited automata, each tape cell is marked during

the first visit. In this way, at each step of the computation, the original content in the cell remains

available, together with the information saying if it has been already visited at least one time. In this

case, the size gap to one-way deterministic finite automata reduces to a single exponential. However, the

information about which cells have been already visited still gives extra descriptional power. In fact, the

conversion into equivalent two-way finite automata in the worst case costs exponential in size, even if the

original machine is deterministic and the target machine is allowed to make nondeterministic choices.

A natural way to continue these investigations is to ask what happens if in each cell the information

about the original input symbol is lost after the first visit. This leads us to introduce and study the subject

of this paper, namely forgetting 1-limited automata. These devices are 1-limited automata in which,

during the first visit to a cell, the input symbol in it is replaced with a unique fixed symbol. Forgetting

http://dx.doi.org/10.4204/EPTCS.388.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

96 Forgetting 1-Limited Automata

automata have been introduced in the literature longtime ago [8]. Similarly to the devices we consider

here, they can use only one fixed symbol to replace symbols on the tape. However, the replacement is not

required to happen in the first visit, so giving the possibility to recognize more than regular languages. In

contrast, being a restriction of 1-limited automata, forgetting 1-limited automata recognize only regular

languages.

In this paper, first we study the size costs of the simulations of forgetting 1-limited automata, in both

nondeterministic and deterministic versions, by one-way finite automata. The upper bounds we prove

are exponential, when the simulated and the target machines are nondeterministic and deterministic,

respectively. In the other cases they are superpolynomial. These bounds are obtained starting from the

conversions of always-marking 1-limited automata into one-way finite automata presented in [17], whose

costs, in the case we are considering, can be reduced using techniques and results derived in the context

of automata over a one-letter alphabet [2, 11]. We also provide witness languages showing that these

upper bounds cannot be improved asymptotically.

In the last part of the paper we discuss the relationships with the size of two-way finite automata,

which are not completely clear. We show that losing the information on the input content can reduce the

descriptional power. In fact, we show languages for which forgetting 1-limited automata, even if nonde-

terministic, are exponentially larger than minimal two-way deterministic finite automata. We conjecture

that also the converse can happen. In particular we show a family of languages for which we conjec-

ture that two-way finite automata, even if nondeterministic, must be significantly larger than minimal

deterministic forgetting 1-limited automata.

2 Preliminaries

In this section we recall some basic definitions useful in the paper. Given a set S, #S denotes its cardinality

and 2S the family of all its subsets. Given an alphabet Σ and a string w ∈ Σ∗, |w| denotes the length of w,

|w|a the number of occurrences of a in w, and Σk the set of all strings on Σ of length k.

We assume the reader to be familiar with notions from formal languages and automata theory, in

particular with the fundamental variants of finite automata (1DFAs, 1NFAs, 2DFAs, 2NFAs, for short,

where 1/2 mean one-way/two-way and D/N mean deterministic/nondeterministic, respectively). For any

unfamiliar terminology see, e.g., [7].

A 1-limited automaton (1-LA, for short) is a tuple A = (Q,Σ,Γ,δ ,qI ,F), where Q is a finite set of

states, Σ is a finite input alphabet, Γ is a finite work alphabet such that Σ∪{⊲,⊳} ⊆ Γ, ⊲,⊳ /∈ Σ are

two special symbols, called the left and the right end-markers, δ : Q×Γ → 2Q×(Γ\{⊲,⊳})×{−1,+1} is the

transition function, and F ⊆ Q is a set of final states. At the beginning of the computation, the input

word w ∈ Σ∗ is stored onto the tape surrounded by the two end-markers, the left end-marker being in

position zero and the right end-marker being in position |w|+1. The head of the automaton is on cell 1

and the state of the finite control is the initial state qI .

In one move, according to δ and the current state, A reads a symbol from the tape, changes its state,

replaces the symbol just read from the tape with a new symbol, and moves its head to one position for-

ward or backward. Furthermore, the head cannot pass the end-markers, except at the end of computation,

to accept the input, as explained below. Replacing symbols is allowed to modify the content of each cell

only during the first visit, with the exception of the cells containing the end-markers, which are never

modified. Hence, after the first visit, a tape cell is “frozen”. More technical details can be found in [14].

The automaton A accepts an input w if and only if there is a computation path that starts from the

initial state qI with the input tape containing w surrounded by the two end-markers and the head on the

G. Pighizzini & L. Prigioniero 97

first input cell, and which ends in a final state q ∈ F after passing the right end-marker. The device A is

said to be deterministic (D-1-LA, for short) whenever #δ (q,σ)≤ 1, for every q ∈ Q and σ ∈ Γ.

We say that the 1-LA A is a forgetting 1-LA (for short F-1-LA or D-F-1-LA in the deterministic case),

when there is only one symbol Z that is used to replace symbols in the first visit, i.e., the work alphabet

is Γ = Σ∪{Z}∪{⊲,⊳}, with Z /∈ Σ and if (q,A,d) ∈ δ (p,a) and a ∈ Σ then A = Z.

Two-way finite automata are limited automata in which no rewritings are possible; one-way fi-

nite automata can scan the input in a one-way fashion only. A finite automaton is, as usual, a tu-

ple (Q,Σ,δ ,qI ,F), where, analogously to 1-LAs, Q is the finite set of states, Σ is the finite input alphabet,

δ is the transition function, qI is the initial state, and F is the set of final states. We point out that for

two-way finite automata we assume the same accepting conditions as for 1-LAs.

Two-way machines in which the direction of the head can change only at the end-markers are said to

be sweeping [22].

In this paper we are interested in comparing the size of machines. The size of a model is given by

the total number of symbols used to write down its description. Therefore, the size of 1-LAs is bounded

by a polynomial in the number of states and of work symbols, while, in the case of finite automata, since

no writings are allowed, the size is linear in the number of instructions and states, which is bounded by a

polynomial in the number of states and in the number of input symbols. We point out that, since F-1-LAs

use work alphabet Γ = Σ∪{Z}∪{⊲,⊳}, Z /∈ Σ, the relevant parameter for evaluating the size of these

devices is their number of states, differently than 1-LAs, in which the size of the work alphabet is not

fixed, i.e., depends on the machine.

We now shortly recall some notions and results related to number theory that will be useful to obtain

our cost estimations. First, given two integers m and n, let us denote by gcd(m,n) and by lcm(m,n) their

greatest common divisor and least common multiple, respectively.

We remind the reader that each integer ℓ > 1 can be factorized in a unique way as product of powers

of primes, i.e., as ℓ= p
k1

1 · · · pkr
r , where p1 < · · ·< pr are primes, and k1, . . . ,kr > 0.

In our estimations, we shall make use of the Landau’s function F(n) [9, 10], which plays an important

role in the analysis of simulations among different types of unary automata (e.g. [2, 4, 11]). Given a

positive integer n, let

F(n) = max{lcm(λ1, . . . ,λr) | λ1 + · · ·+λr = n} ,
where λ1, . . . ,λr denote, for the time being, arbitrary positive integers. Szalay [23] gave a sharp estima-

tion of F(n) that, after some simplifications, can be formulated as follows:

F(n) = e(1+o(1))·
√

n·lnn.

Note that the function F(n) grows less than en, but more than each polynomial in n. In this sense we say

that F(n) is a superpolynomial function.

As observed in [5], for each integer n > 1 the value of F(n) can also be expressed as the maximum

product of powers of primes, whose sum is bounded by n, i.e.,

F(n) = max{p
k1

1 · · · pkr
r | p

k1

1 + · · ·+ pkr
r ≤ n, p1, . . . , pr are primes, and k1, . . . ,kr > 0}.

3 Forgetting 1-Limited Automata vs. One-Way Automata

When forgetting 1-limited automata visit a cell for the first time, they replace the symbol in it with a

fixed symbol Z, namely they forget the original content. In this way, each input prefix can be rewritten in

98 Forgetting 1-Limited Automata

a unique way. As already proved for always-marking 1-LAs, this prevents a double exponential size gap

in the conversion to 1DFAs [17]. However, in this case the upper bounds obtained for always-marking

1-LAs, can be further reduced, using the fact that only one symbol is used to replace input symbols:

Theorem 1 Let M be an n-state F-1-LA. Then M can be simulated by a 1NFA with at most n · (5n2 +
F(n))+1 states and by a complete 1DFA with at most (2n −1) · (5n2 +F(n))+2 states.

Proof. First of all, we recall the argument for the conversion of 1-LAs into 1NFAs and 1DFAs pre-

sented [14, Thm. 2] that, in turn, is derived from the technique to convert 2DFAs into equivalent 1DFAs,

presented in [21], and based on transitions tables.

Let us start by supposing that M = (Q,Σ,Γ,δ ,q0,F) is an n-state 1-LA.

Roughly, transition tables represent the possible behaviors of M on “frozen” tape segments. More

precisely, given z ∈ Γ∗ , the transition table associated with z is the binary relation τz ⊆ Q×Q, consisting

of all pairs (p,q) such that M has a computation path that starts in the state p on the rightmost symbol

of a tape segment containing ⊲z, ends reaching the state q by leaving the same tape segment to the right

side, i.e., by moving from the rightmost cell of the segment to the right, and does not visit any cell outside

the segment.

A 1NFA A can simulate M by keeping in the finite control two components:

• The transition table corresponding to the part of the tape at the left of the head. This part has been

already visited and, hence, it is frozen.

• The state in which the simulated computation of M reaches the current tape position.

Since the number of transition tables is at most 2n2

, the number of states in the resulting 1NFA A is

bounded by n ·2n2

.

Applying the subset construction, this automaton can be converted into an equivalent deterministic

one, with an exponential increasing in the number of states, so obtaining a double exponential number of

states in n. In the general case, this number cannot be reduced due to the fact that different computations

of A, after reading the same input, could keep in the control different transition tables, depending on the

fact that M could replace the same input by different strings.

We now suppose that M is a F-1-LA. In this case each input string can be replaced by a unique string.

This would reduce the cost of the conversion to 1DFAs to a single exponential. Indeed, it is possible to

convert the 1NFA A obtained from M into an equivalent 1DFA that keeps in its finite control the unique

transition table for the part of the tape scanned so far (namely, the same first component as in the state

of A), and the set of states that are reachable by M when entering the current tape cell (namely, a set of

states that can appear in the second component of A, while entering the current tape cell). This leads to

an upper bound of 2n · 2n2

states for the resulting 1DFA. We can make a further improvement, reducing

the number of transition tables used during the simulation. Indeed we are going to prove that only a

subset of all the possible 2n2

transition tables can appear during the simulation.

Since only a fixed symbol Z is used to replace input symbols on the tape, the transition table when

the head is in a cell depends only on the position of the cell and not on the initial tape content.

For each integer m ≥ 0, let us call τm the transition table corresponding to a frozen tape segment of

length m, namely the transition table when the head of the simulating one-way automaton is on the tape

cell m+ 1. We are going to prove that the sequence τ0,τ1, . . . ,τm, . . . is ultimately periodic, with period

length bounded by F(n) and, more precisely, τm = τm+F(n) for each m > 5n2.

The proof is based on the analysis of computation paths in unary 2NFAs carried on in [11, Section 3].

Indeed, we can see the parts of the computation on a frozen tape segment as computation paths of a

unary 2NFA. More precisely, by definition, for p,q ∈ Q, τm(p,q) = 1 if and only if there is a computation

G. Pighizzini & L. Prigioniero 99

path C that enters the frozen tape segment of length m from the right in the state p and, after some steps,

exits the segment to the right in the state q. Hence, during the path C the head can visit only frozen cells

(i.e., the cells in positions 1, . . . ,m) of the tape, and the left end-marker. There are two possible cases:

• In the computation path C the head never visits the left end-marker.

A path of this kind is also called left U-turn. Since it does not depend on the position of the left

end-marker, this path will also be possible, suitably shifted to the right, on each frozen segment of

length m′ > m. Hence τm′(p,q) = 1 for each m′ ≥ m. Furthermore, it has been proven that if there

is a left U-turn which starts in the state p on cell m, and ends in state q, then there exists another

left U-turn satisfying the same constraints, in which the head never moves farther than n2 positions

to the left of the position m [11, Lemma 3.1]. So, such a “short” U-turn can be shifted to the left,

provided that the tape segment is longer than n2.

Hence, in this case τm(p,q) = 1 implies τm′(p,q) = 1 for each m′ > n2.

• In the computation path C the head visits at least one time the left end-marker.

Let s0,s1, . . . ,sk, k ≥ 0, be the sequence of the states in which C visits the left end-marker. We can

decompose C in a sequence of computation paths C0,C1, . . . ,Ck,Ck+1, where:

– C0 starts from the state p with the head on the cell m and ends in s0 when the head reaches

the left end-marker. C0 is called right-to-left traversal of the frozen segment.

– For i = 1, . . . ,k, Ci starts in state si−1 with the head on the left end-marker and ends in si,

when the head is back to the left end-marker. Ci is called right U-turn. Since, as seen before

for left U-turns, each right U-turn can always be replaced by a “short” right U-turn, without

loss of generality we suppose that Ci does not visit more than n2 cells to the right of the left

end-marker.

– Ck+1 starts from the state sk with the head on the left end-marker and ends in q, when the head

leaves the segment, moving to the right of the cell m. Ck+1 is called left-to-right traversal of

the frozen segment.

From [11, Theorem 3.5], there exists a set of positive integers {ℓ1, . . . , ℓr} ⊆ {1, . . . ,n} satisfy-

ing ℓ1 + · · ·+ ℓr ≤ n such that for m ≥ n, if a frozen tape segment of length m can be (left-to-right

or right-to-left) traversed from a state s to a state s′ then there is an index i∈ {1, . . . ,r} such that, for

each µ > 5n2−m
ℓi

, a frozen tape segment of length m+µℓi can be traversed (in the same direction)

from state s to state s′. This was proved by showing that for m> 5n2 a traversal from s to s′ of a seg-

ment of length m can always be “pumped” to obtain a traversal of a segment of length m′ =m+µℓi,

for µ > 0, and, furthermore, the segment can be “unpumped” by taking µ < 0, provided that the

resulting length m′ is greater than 5n2.

Let ℓ be the least common multiple of ℓ1, . . . , ℓr. If m > 5n2, from the original computation path C,

by suitably pumping or unpumping the parts C0 and Ck+1, and without changing Ci, for i = 1, . . . ,k,

for each m′ = m+ µℓ > 5n2, with µ ∈ Z, we can obtain a computation path that enters a frozen

segment of length m′ from the right in the state p and exits the segment to the right in the state q.

By summarizing, from the previous analysis we conclude that for all m,m′ > 5n2, if m ≡ m′ (mod ℓ)
then τm = τm′ . Hence, the transition tables used in the simulation are at most 5n2+ℓ. Since, by definition,

ℓ cannot exceed F(n), we obtain the number of different transitions tables that are used in the simulation

is bounded by 5n2 +1+F(n).

According with the construction outlined at the beginning of the proof, from the F-1-LA M we can

obtain a 1NFA A that, when the head reaches the tape cell m+ 1, has in the first component of its finite

100 Forgetting 1-Limited Automata

control the transition table τm, and in the second component the state in which the cell m+ 1 is entered

for the first time during the simulated computation. Hence the total number of states of A is bounded

by n · (5n2 +1+F(n)).
We observe that, at the beginning of the computation, the initial state is the pair containing the

transition matrix τ0 and the initial state of M. Hence, we do not need to consider other states with τ0

as first component, unless τ0 occurs in the sequence τ1, . . . ,τ5n2+F(n). This allows to reduce the upper

bound to n · (5n2 +F(n))+1

If the simulating automaton A is a 1DFA, then first component does not change, while the second

component contains the set of states in which the cell m+1 is entered for the first time during all possible

computations of M. This would give a 2n · (5n2 +F(n))+1 state upper bound. However, if the set in the

second component is empty then the computation of M is rejecting, regardless what is the remaining part

of the input and what has been written on the tape. Hence, in this case, the simulating 1DFA can enter a

sink state. This allows to reduce the upper bound to (2n −1) · (5n2 +F(n))+2.

Optimality: The Language Ln,ℓ

We now study the optimality of the state upper bounds presented in Theorem 1. To this aim, we introduce

a family of languages Ln,ℓ, that are defined with respect to integer parameters n, ℓ > 0.

Each language in this family is composed by all strings of length multiple of ℓ belonging to the lan-

guage LMFn
which is accepted by the n-state 1NFA AMFn

= (Qn,{a,b},δn,q0,{q0}) depicted in Figure 1,

i.e., Ln,ℓ = LMFn
∩ ({a,b}ℓ)∗.

The automaton AMFn
was proposed longtime ago by Meyer and Fischer as a witness of the exponential

state gap from 1NFAs to 1DFAs [12]. Indeed, it can be proved that the smallest 1DFA accepting it has

exactly 2n states. In the following we shall refer to some arguments given in the proof of such result

presented in [20, Thm. 3.9.6].

qn−1

q0 q1

q2

qn−2 q3

b

b

bb

b

a

a

aa

a

b

b

b

b

b

Figure 1: The 1NFA AMFn
accepting the language of Meyer and Fischer.

Let us start by presenting some simple state upper bounds for the recognition of Ln,ℓ by one-way

finite automata.

Theorem 2 For every two integers n, ℓ > 0, there exists a complete 1DFA accepting Ln,ℓ with (2n −1) ·
ℓ+1 states and a 1NFA with n · ℓ states.

G. Pighizzini & L. Prigioniero 101

Proof. We apply the subset construction to convert the 1NFA AMFn
into a 1DFA with 2n states and

then, with the standard product construction, we intersect the resulting automaton with the trivial ℓ-state

automaton accepting ({a,b}ℓ)∗. In this way we obtain a 1DFA with 2n · ℓ states for Ln,ℓ. However, all

the states obtained from the sink state, corresponding to the empty set, are equivalent, so they can be

replaced by a unique sink state. This allows to reduce the number of states to (2n −1) · ℓ+1.

In the case of 1NFAs we apply the product construction to AMFn
and the ℓ-state automaton accept-

ing ({a,b}ℓ)∗, so obtaining a 1NFA with n · ℓ states.

We now study how to recognize Ln,ℓ using two-way automata and F-1-LAs. In both cases we obtain

sweeping machines.

Theorem 3 Let ℓ > 0 be an integer that factorizes ℓ= p
k1

1 · · · pkr
r as a product of prime powers and o =

r mod 2. Then:

• Ln,ℓ is accepted by a sweeping 2NFA with n+ p
k1

1 + · · ·+ pkr
r +o states, that uses nondeterministic

transitions only in the first sweep.

• Ln,ℓ is accepted by a sweeping F-1-LA with max(n, p
k1

1 + · · ·+ pkr
r +o) states that uses nondeter-

ministic transitions only in the first sweep.

• Ln,ℓ is accepted by a sweeping 2DFA with 2n+ p
k1

1 + · · ·+ pkr
r +o states.

Proof. In the first sweep, the 2NFA for Ln,ℓ, using n states, simulates the 1NFA AMFn
to check if the

input belongs to LMFn
. Then, it makes one sweep for each i = 1, . . . ,r (alternating a right-to-left sweep

with a left-to-right sweep), using p
ki

i states in order to check whether p
ki

i divides the input length. If the

outcomes of all these tests are positive, then the automaton accepts. When r is even, the last sweep ends

with the head on the right end-marker. Then, moving the head one position to the right, the automaton

can reach the accepting configuration. However, when r is odd, the last sweep ends on the left end-

marker. Hence, using an extra state, the head can traverse the entire tape to finally reach the accepting

configuration.

A F-1-LA can implement the same strategy. However, to check if the tape length is a multiple

of ℓ, it can reuse the n states used in the first sweep, plus p
k1

1 + · · ·+ pkr
r + o− n extra states when n <

p
k1

1 + · · ·+ pkr
r + o. This is due to the fact that the value of the transition function depends on the state

and on the symbol in the tape cell and that, in the first sweep, all the input symbols have been replaced

by Z.

Finally, we can implement a 2DFA that recognizes Ln,ℓ by firstly making r sweeps to check whether p
ki

i

divides the input length, i = 1, . . . ,r. If so, then the automaton, after moving the head from the left to the

right end-marker in case of r even, makes a further sweep from right to left, to simulate a 1DFA accept-

ing the reversal of LMFn
, which can be accepted using 2n states [19]. If the simulated automaton accepts,

then the machine can make a further sweep, by using a unique state to move the head from the left end-

marker to the right one, and then accept. The total number of states is 2n+ p
k1

1 + · · ·+ pkr
r +2−o. This

number can be slightly reduced as follows: in the first sweep (which is from left to right) the automaton

checks the divisibility of the input length by p
k1

1 ; in the second sweep (from right to left) the automaton

checks the membership to LMFn
; in the remaining r−1 sweeps (alternating left-to-right with right-to-left

sweeps), it checks the divisibility for p
ki

i , i = 2, . . . ,r. So, the total number of sweeps for these checks

is r+ 1. This means that, when r is even, the last sweep ends on the right end-marker and the machine

can immediately move to the accepting configuration. Otherwise the head needs to cross the input from

left to right, using an extra state.

As a consequence of Theorem 3, in the case of F-1-LAs we immediately obtain:

102 Forgetting 1-Limited Automata

Corollary 1 For each n > 0 the language Ln,F(n) is accepted by a F-1-LA with at most n+1 states.

Proof. If F(n)= p
k1

1 · · · pkr
r then p

k1

1 + · · ·+ pkr
r ≤ n≤F(n). Hence, the statement follows from Theorem 3.

We are now going to prove lower bounds for the recognition of Ln,ℓ, in the case n and ℓ are relatively

primes.

Let us start by considering the recognition by 1DFAs.

Theorem 4 Given two integers n, ℓ > 0 with gcd(n, ℓ) = 1, each 1DFA accepting Ln,ℓ must have at

least (2n −1) · ℓ+1 states.

Proof. Let Qn = {q0,q1, . . . ,qn−1} be the set of states of AMFn
(see Figure 1). First, we briefly recall

some arguments from the proof presented in [20, Thm. 3.9.6]. For each subset S of Qn, we define a

string wS having the property that δn(q0,wS) = S. Furthermore, it is proved that all the strings so defined

are pairwise distinguishable, so obtaining the state lower bound 2n for each 1DFA equivalent to AMFn
. In

particular, the string wS is defined as follows:

wS =

b if S = /0;

ai if S = {qi};

aek−ek−1baek−1−ek−2b · · ·ae2−e1bae1 , otherwise;

(1)

where in the second case S = {qi}, 0 ≤ i < n, while in the third case S = {qe1
,qe2

, . . . ,qek
}, 1 < k ≤ n,

and 0 ≤ e1 < e2 < · · ·< ek < n.

To obtain the claimed state lower bound in the case of the language Ln,ℓ, for each nonempty subset S

of Qn and each integer j, with 0 ≤ j < ℓ, we define a string wS, j which is obtained by suitably padding

the string wS in such a way that the set of states reachable from the initial state by reading wS, j remains S

and the length of wS, j, divided by ℓ, gives j as reminder. Then we shall prove that all the so obtained

strings are pairwise distinguishable. Unlike (1), when defining wS, j we do not consider the case S = /0.

In the following, let us denote by f :N×N→N a function satisfying f (i, j) mod n= i and f (i, j) mod

ℓ= j, for i, j ∈N. Since gcd(n, ℓ) = 1, by the Chinese Reminder Theorem, such a function always exists.

For each non-empty subset S of Qn and each integer j, with 0 ≤ j < ℓ, the string wS, j is defined as:

wS, j =

{

a f (i, j) if S = {qi};

aek−ek−1baek−1−ek−2b · · ·ae2−e1bHℓ−k−ek+2+ jae1 , otherwise;
(2)

where in the first case S = {qi}, 0 ≤ i < n, while in the second case S = {qe1
,qe2

, . . . ,qek
}, 1 < k ≤ n,

0 ≤ e1 < e2 < · · · < ek < n, and H ≥ 1 is a fixed integer such that Hℓ > 2n (this last condition is useful

to have Hℓ− k− ek + 2+ j > 0, in such a way that the last block of b’s is always well defined and not

empty).

We claim and prove the following facts:

1. |wS, j| mod ℓ= j.

If S= {qi}, then by definition |wS, j| mod ℓ= f (i, j) mod ℓ= j. Otherwise, according to the second

case in (2), S = {qe1
,qe2

, . . . ,qek
} and |wS, j|= ek−ek−1+1+ek−1−ek−2+1+ · · ·+e2−e1+Hℓ−

k− ek +2+ j+ e1, which is equal to Hℓ+ j.

2. δn(q0,wS, j) = S.

In the automaton AMFn
, all the transitions on the letter a are deterministic. Furthermore, by reading

G. Pighizzini & L. Prigioniero 103

the string ax, x > 0, from the state q0, the only reachable state is qx mod n. Hence, for the first

case S = {qi} in (2) we have δn(q0,wS, j) = {q f (i, j) mod n}= {qi}.

For the second case, we already mentioned that δn(q0,wS) = S. Furthermore wS, j is obtained

from wS by replacing the rightmost b by a block of more than one b. From the transition diagram

of AMFn
we observe that from each state qi, with i > 0, reading a b the automaton can either remain

in qi or move to q0. Furthermore, from q0 there are no transitions on the letter b. This allows to

conclude that the behavior does not change when one replaces an occurrence of b in a string with

a sequence of more than one b. Hence, δn(q0,wS, j) = δn(q0,wS) = S.

3. For i = 0, . . . ,n−1 and x ≥ 0, δn(qi,a
x) = {qi′} where i′ = 0 if and only if x mod n = n− i. Hence

ax is accepted by some computation path starting from qi if and only if x mod n = n− i.

It is enough to observe that all the transitions on the letter a are deterministic and form a loop

visiting all the states. More precisely i′ =(i+x) mod n. Hence, i′ = 0 if and only if x mod n= n− i.

We now prove that all the strings wS, j are pairwise distinguishable. To this aim, let us consider two such

strings wS, j and wT,h, with (S, j) 6= (T,h). We inspect the following two cases:

• S 6= T . Without loss of generality, let us consider a state qs ∈ S\T . We take z = a f (n−s,ℓ− j). By the

previous claims, we obtain that wS, j ·z∈ LMFn
, while wT,h ·z /∈ LMFn

. Furthermore, |wS, j ·z| mod ℓ=
(j + ℓ− j) mod ℓ = 0. Hence wS, j · z ∈ ({a,b}ℓ)∗. This allows to conclude that wS, j · z ∈ Ln,ℓ,

while wT,h · z /∈ Ln,ℓ.

• j 6= h. We choose a state qs ∈ S and, again, the string z= a f (n−s,ℓ− j). Exactly as in the previous case

we obtain wS, j · z ∈ Ln,ℓ. Furthermore, being j 6= h and 0 ≤ j,h < ℓ, we get that |wT,h · z| mod ℓ=
(h+ ℓ− j) mod ℓ 6= 0. Hence wT,h · z /∈ ({a,b}ℓ)∗, thus implying wT,h · z /∈ Ln,ℓ.

By summarizing, we have proved that all the above defined (2n − 1) · ℓ strings wS, j are pairwise dis-

tinguishable. We also observe that each string starting with the letter b is not accepted by the automa-

ton AMFn
.1 This implies that the string b and each string wS, j are distinguishable. Hence, we are able to

conclude that each 1DFA accepting Ln,ℓ has at least (2n −1) · ℓ+1 states.

Concerning 1NFAs, we prove the following:

Theorem 5 Given two integers n, ℓ > 0 with gcd(n, ℓ) = 1, each 1NFA accepting Ln,ℓ must have at

least n · ℓ states.

Proof. The proof can be easily given by observing that X = {(ai,an·ℓ−i) | i = 0, . . . ,n ·ℓ−1} is a fooling

set for Ln,ℓ [1]. Hence, the number of states of each 1NFA for Ln,ℓ cannot be lower than the cardinality

of X .

As a consequence of Theorems 4 and 5 we obtain:

Theorem 6 For each prime n > 4, every 1DFA and every 1NFA accepting Ln,F(n) needs (2n−1) ·F(n)+
1 and n ·F(n) states, respectively.

Proof. First, we prove that gcd(n,F(n)) = 1 for each prime n > 4. To this aim, we observe that by

definition F(n)≥ 2 · (n−2) for each prime n. Furthermore, if n > 4 then 2 · (n−2)> n. Hence F(n)> n

for each prime n > 4. Suppose that gcd(n,F(n)) 6= 1. Then n, being prime and less than F(n), should

1We point out that two strings that in AMFn
lead to the emptyset are not distinguishable. This is the reason why we did not

considered strings of the form w /0, j in (2).

104 Forgetting 1-Limited Automata

divide F(n). By definition of F(n), this would imply F(n) = n; a contradiction. This allows us to

conclude that gcd(n,F(n)) = 1, for each prime n > 4.

Using Theorems 4 and 5, we get that, for all such n’s, a 1DFA needs at least (2n −1) ·F(n)+1 states

to accept Ln,F(n), while an equivalent 1NFA needs at least n · ℓ states.

As a consequence of Theorem 6, for infinitely many n, the 1DFA and 1NFA for the language Ln,F(n)

described in Theorem 2 are minimal.

By combining the results in Corollary 1 and Theorem 6, we obtain that the costs of the simulations

of F-1-LAs by 1NFAs and 1DFAs presented in Theorem 1 are asymptotically optimal:

Corollary 2 For infinitely many integers n there exists a language which is accepted by a F-1-LA with

at most n+ 1 states and such that all equivalent 1DFAs and 1NFAs require at least (2n − 1) ·F(n)+ 1

and n ·F(n) states, respectively.

4 Deterministic Forgetting 1-Limited Automata vs. One-Way Automata

In Section 3 we studied the size costs of the conversions from F-1-LAs to one-way finite automata. We

now restrict our attention to the simulation of deterministic machines. By adapting to this case the

arguments used to prove Theorem 1, we obtain a superpolynomial state bound for the conversion into

1DFAs, which is not so far from the bound obtained starting from nondeterminstic machines:

Theorem 7 Let M be an n-state D-F-1-LA. Then M can be simulated by a 1DFA with at most n · (n+
F(n))+2 states.

Proof. We can apply the construction given in the proof of Theorem 1 to build, from the given D-F-1-

LA M, a one-way finite automaton that, when the head reaches the tape cell m+1, has in its finite control

the transition table τm associated with the tape segment of length m and the state in which the cell is

reached for the first time. Since the transitions of M are deterministic, each tape cell is reached for the

first time by at most one computation and the resulting automaton is a (possible partial) 1DFA, with no

more than n·(5n2+F(n))+1 states. However, in this case the number of transition tables can be reduced,

so decreasing the upper bound. In particular, due to determinism and the unary content in the frozen part,

we can observe that left and right U-turns cannot visit more than n tape cells. Furthermore, after visiting

more than n tape cells, a traversal is repeating a loop. This allows to show that the sequence of transition

matrices starts to be periodic after the matrix τn, i.e, for m,m′ > n, if m ≡ m′ (mod F(n)) then τm = τm′ .

Hence, the number of different transition tables used during the simulation is at most n+1+F(n), and

the number of states of the simulating (possibly partial) 1DFA is bounded by n ·(n+F(n))+1. By adding

one more state we finally obtain a complete 1DFA.

Optimality: The Language Jn,ℓ

We now present a family of languages for which we prove a size gap very close to the upper bound in

Theorem 7. Given two integers n, ℓ > 0, let us consider:

Jn,ℓ = {w ∈ {a,b}∗ | |w|a mod n = 0 and |w| mod ℓ= 0} .

First of all, we observe that it is not difficult to recognize Jn,ℓ using a 1DFA with n · ℓ states that counts

the number of a’s using one counter modulo n, and the input length using one counter modulo ℓ. This

number of states cannot be reduced, even allowing nondeterministic transitions:

G. Pighizzini & L. Prigioniero 105

Theorem 8 Each 1NFA accepting Jn,ℓ has at least n · ℓ states.

Proof. Let H > ℓ+ n be a multiple of ℓ. For i = 1, . . . , ℓ, j = 0, . . . ,n − 1, consider xi j = a jbH+i− j

and yi j = bH−i−n+ jan− j. We are going to prove that the set

X = {(xi j,yi j) | 1 ≤ i ≤ ℓ,0 ≤ j < n}
is an extended fooling set for Jn,ℓ. To this aim, let us consider i, i′ = 1, . . . , ℓ, j, j′ = 0, . . . ,n− 1. We

observe that the string xi jyi j contains n a’s and has length j+H + i− j +H − i− n+ j+ n− j = 2H

and hence it belongs to Jn,ℓ. For i, i′ = 1, . . . , ℓ, if i 6= i′ then the string xi jyi′ j /∈ Jn,ℓ because it has

length 2H + i− i′ which cannot be a multiple of ℓ. On the other hand, if j < j′, the string xi jyi′ j′ con-

tains j+n− j′ < n many a’s, so it cannot belong to Jn,ℓ,

Concerning the recognition of Jn,ℓ by F-1-LAs we prove the following:

Theorem 9 Let ℓ > 0 be an integer that factorizes ℓ= p
k1

1 · · · pkr
s as product of prime powers, o = r mod

2, and n > 0. Then Jn,ℓ is accepted by a sweeping 2DFA with n+ p
k1

1 + · · ·+ pkr
r + o states and by a

sweeping D-F-1-LA with max(n, p
k1

1 + · · ·+ pkr
r +o) states.

Proof. A 2DFA can make a first sweep of the input, using n states, to check if the number of a’s in the

input is a multiple of n. Then, in further r sweeps, alternating right-to-left with left-to-right sweeps, it

can check the divisibility of the input length by p
ki

i , i = 1, . . . ,r. If r is odd this process ends with the

head on the left end-marker. Hence, in this case, when all tests are positive, a further sweep (made by

using a unique state) is used to move the head from the left to the right end-marker and then reach the

accepting configuration.

We can implement a D-F-1-LA that uses the same strategy. However, after the first sweep, all input

symbols are replaced by Z. Hence, as in the proof of Theorem 3, the machine can reuse the n states of

the first sweep. So, the total number of states reduces to max(n, p
k1

1 + · · ·+ pkr
r +o).

As a consequence of Theorem 9, we obtain:

Corollary 3 For each integer n > 0 the language Jn,F(n) is accepted by a D-F-1-LA with at most n+1

states.

By combining the upper bound in Corollary 3 with the lower bound in Theorem 8, we obtain that

the superpolynomial cost of the simulation of D-F-1-LAs by 1DFAs given in Theorem 7 is asymptotically

optimal and it cannot be reduced even if the resulting automaton is nondeterministic:

Corollary 4 For each integer n > 0 there exists a language accepted by a D-F-1-LA with at most n+1

states and such that all equivalent 1DFAs and 1NFAs require at least n ·F(n) states.

5 Forgetting 1-Limited vs. Two-Way Automata

Up to now, we have studied the size costs of the transformations of F-1-LAs and D-F-1-LAs into one-way

automata. We proved that they cannot be significantly reduced, by providing suitable witness languages.

However, we can notice that such languages are accepted by two-way automata whose sizes are not

so far from the sizes of F-1-LAs and D-F-1-LAs we gave. So we now analyze the size relationships

between forgetting and two-way automata. On the one hand, we show that forgetting input symbols can

dramatically reduce the descriptional power. Indeed, we provide a family of languages for which F-1-LAs

are exponentially larger than 2DFAs. On the other hand, we guess that also in the opposite direction at

least a superpolynomial gap can be possible. To this aim we present a language accepted by a D-F-1-LA

of size O(n) and we conjuncture that each 2NFA accepting it requires more than F(n) states.

106 Forgetting 1-Limited Automata

From Two-way to Forgetting 1-Limited Automata

For each integer n > 0, let us consider the following language

En = {w ∈ {a,b}∗ | ∃x ∈ {a,b}n,∃y,z ∈ {a,b}∗ : w = x · y = z · xR},

i.e., the set of strings in which the prefix of length n is equal to the reversal of the suffix. As we shall

see, it is possible to obtain a 2DFA with O(n) states accepting it. Furthermore, each equivalent F-1-LA

requires 2n states.

To achieve this result, first we give a lower bound technique for the number of states of F-1-LAs,

which is inspired by the fooling set technique for 1NFAs [1].

Lemma 1 Let L ⊆ Σ∗ be a language and X = {(xi,yi) | i = 1, . . . ,n} be a set of words such that the

following hold:

• |x1|= |x2|= · · ·= |xn|,
• xiyi ∈ L, for i = 1, . . . ,n,

• xiy j /∈ L or x jyi /∈ L, for i, j = 1, . . . ,n with i 6= j.

Then each F-1-LAs accepting L has at least n states.

Proof. Let M be a F-1-LAs accepting L. Let Ci be an accepting computation of M on input xiyi, i =
1, . . . ,n. We divide Ci into two parts C′

i and C′′
i , where C′

i is the part of Ci that starts from the initial

configuration and ends when the head reaches for the first time the first cell to the right of xi, namely the

cell containing the first symbol of yi, while C′′
i is the remaining part of Ci. Let qi be the state reached at

the end of C′
i , namely the state from which C′′

i starts.

If qi = q j, for some 1 ≤ i, j ≤ n, then the computation obtained concatenating C′
i and C′′

j accepts the

input xiy j. Indeed, at the end of C′
i and of C′

j, the content of the tape to the left of the head is replaced

by the same string Z|xi| = Z|x j |. So M, after inspecting xi, can perform exactly the same moves as on

input x jy j after inspecting x j and hence it can accept xiy j. In a similar way, concatenating C′
j and C′′

i we

obtain an accepting computation on x jyi. If i 6= j, then this is a contradiction.

This allows to conclude that n different states are necessary for M.

We are now able to prove the claimed separation.

Theorem 10 The language En is accepted by a 2DFA with O(n) states, while each F-1-LA accepting it

has at least 2n states.

Proof. We can build a 2DFA that on input w ∈ Σ∗ tests the equality between the symbols in positions i

and |w|− i of w, for i = 1, . . . ,n. If one of the tests fails, then the automaton stops and rejects, otherwise

it finally accepts. For each i, the test starts with the head on the left end-marker and the value of i in the

finite control. Then, the head is moved to the right, while decrementing i, to locate the ith input cell and

remember its content in the finite control. At this point, the head is moved back to the left end-marked,

while counting input cells to restore the value of i. The input is completely crossed from left to right, by

keeping this value in the control. When the right end-marker is reached, a similar procedure is applied

to locate the symbol in position |w|− i, which is then compared with that in position i, previously stored

in the control. If the two symbols are equal, then the head is moved again to the right end-marker, while

restoring i. If i = n, then the machine moves in the accepting configuration, otherwise the value of i

is incremented and the head is moved to the left end-marker to prepare the next test. From the above

description we can conclude that O(n) states are enough for a 2DFA to accept En.

For the lower bound, we observe that the set X = {(x,xR) | x ∈ {a,b}n}, whose cardinality is 2n,

satisfies the requirements of Lemma 1.

G. Pighizzini & L. Prigioniero 107

From Forgetting 1-limited to Two-way Automata

We wonder if there is some language showing an exponential, or at least superpolynomial, size gap

from F-1-LAs to two-way automata. Here we propose, as a possible candidate, the following language,

where n, ℓ > 0 are integers:

Hn,ℓ = {ubnv | u ∈ (a+b)∗a, v ∈ (a+b)∗, |u|a mod n = 0, and |u| mod ℓ= 0}.

We prove that Hn,F(n) can be recognized by a D-F-1-LA with a number of states linear in n.

Theorem 11 For each integer n > 1 the language Hn,F(n) is accepted by a D-F-1-LA with O(n) states.

Proof. A D-F-1-LA M can start to inspect the input from left to right, while counting modulo n the a’s.

In this way it can discover each prefix u that ends with an a and such that |u|a mod n = 0. When such a

prefix is located, M verifies whether |u| is a multiple of F(n) and it is followed by bn. We will discuss how

to do that below. If the result of the verification is positive, then M moves to the accepting configuration,

otherwise it continues the same process.

Now we explain how the verification can be performed. Suppose F(n) = p
k1

1 · · · pkr
r , where p

k1

1 , . . . , pkr
r

are prime powers. First, we point out that when the verification starts, exactly the first |u| tape cells have

been rewritten. Hence, the rough idea is to alternate right-to-left and left-to-right sweeps on such a

portion of the tape, to check the divisibility of |u| by each p
ki

i , i = 1, . . . ,r. A right-to-left sweep stops

when the head reaches the left end-marker. On the other hand, a left-to-right sweep can end only when the

head reaches the first cell to the right of the frozen segment. This forces the replacement of the symbol

in it with the symbol Z, so increasing the length of the frozen segment by 1. In the next sweeps, the

machine has to take into account how much the frozen segment increased. For instance, after checking

divisibility by p
k1

1 and by p
k2

2 , in the next sweep the machine should verify that the length of the frozen

segment, modulo p
k3

3 , is 1. Because the machine has to check r divisors and right-to-left sweeps alternate

with left-to-right sweeps, when all r sweeps are done, exactly ⌊r/2⌋ extra cells to the right of the original

input prefix u are frozen. Since n > r/2, if the original symbol in all those cells was b, to complete the

verification phase the machine has to check whether the next n−⌊r/2⌋ not yet visited cells contain b.

However, the verification fails if a cell containing an a or the right end-marker is reached during some

point of the verification phase. This can happen either while checking the length of the frozen segment

or while checking the last n−⌊r/2⌋ cells. If the right end-marker is reached, then the machine rejects.

Otherwise it returns to the main procedure, i.e., resumes the counting of the a’s.

The machine uses a counter modulo n for the a’s. In the verification phase this counter keeps the

value 0. The device first has to count the length of the frozen part modulo p
ki

i , iteratively for i = 1, . . . ,r,

and to verify that the inspected prefix is followed by bn, using again a counter. Since p
k1

1 + · · ·+ pkr
r ≤ n,

by summing up we conclude that the total number of states is O(n).

By using a modification of the argument in the proof of Theorem 8, we can show that each 1NFA

accepting Hn,F(n) cannot have less than n ·F(n) states.2 We guess that such a number cannot be sub-

stantially reduced even having the possibility of moving the head in both directions. In fact, a two-way

automaton using O(n) states can easily locate on the input tape a “candidate” prefix u. However, it can-

not remember in which position of the tape u ends, in order to check |u| in several sweeps of u. So we

do not see how the machine could verify whether |u| is a multiple of F(n) using less than F(n) states.

2It is enough to consider the set X ′ = {(xi j,yi jb
n) | 1 ≤ i ≤ ℓ,0 ≤ j < n}, instead of X .

108 Forgetting 1-Limited Automata

6 Conclusion

We compared the size of forgetting 1-limited automata with that of finite automata, proving exponential

and superpolynomial gaps. We did not discuss the size relationships with 1-LAs. However, since 2DFAs

are D-1-LAs that never write, as a corollary of Theorem 10 we get an exponential size gap from D-1-LAs

to F-1-LAs. Indeed, the fact of having a unique symbol to rewrite the tape content dramatically reduces

the descriptional power.

We point out that this reduction happens also in the case of F-1-LAs accepting languages defined over

a one-letter alphabet, namely unary languages. To this aim, for each integer n > 0, let us consider the

language (a2n

)∗. This language can be accepted with a D-1-LA having O(n) states and a work alphabet

of cardinality O(n), and with a D-1-LA having O
(

n3
)

states and a work alphabet of size not dependent

on n [16, 18]. However, each 2NFA accepting it requires at least 2n states [16]. Considering the cost

of the conversion of F-1-LAs into 1NFAs (Theorem 1), we can conclude that such a language cannot be

accepted by any F-1-LA having a number of states polynomial in n.

References

[1] Jean-Camille Birget (1992): Intersection and Union of Regular Languages and State Complexity. Inf. Pro-

cess. Lett. 43(4), pp. 185–190, doi:10.1016/0020-0190(92)90198-5.

[2] Marek Chrobak (1986): Finite Automata and Unary Languages. Theor. Comput. Sci. 47(3), pp. 149–158.

Available at http://dx.doi.org/10.1016/0304-3975(86)90142-8. Errata: [3].

[3] Marek Chrobak (2003): Errata to: Finite automata and unary languages: [Theoret. Comput. Sci. 47 (1986)

149-158]. Theor. Comput. Sci. 302(1-3), pp. 497 – 498, doi:10.1016/S0304-3975(03)00136-1.

[4] Viliam Geffert (2007): Magic numbers in the state hierarchy of finite automata. Inf. Comput. 205(11), pp.

1652–1670. Available at http://dx.doi.org/10.1016/j.ic.2007.07.001.

[5] Viliam Geffert & Giovanni Pighizzini (2012): Pairs of Complementary Unary Languages with “Balanced”

Nondeterministic Automata. Algorithmica 63(3), pp. 571–587, doi:10.1007/s00453-010-9479-9.

[6] Thomas N. Hibbard (1967): A Generalization of Context-Free Determinism. Inf. Control. 11(1/2), pp. 196–

238, doi:10.1016/S0019-9958(67)90513-X.

[7] John E. Hopcroft & Jeffrey D. Ullman (1979): Introduction to Automata Theory, Languages and Computa-

tion. Addison-Wesley.

[8] Petr Jancar, Frantisek Mráz & Martin Plátek (1993): A Taxonomy of Forgetting Automata. In: MFCS’93,

Lecture Notes in Computer Science 711, Springer, pp. 527–536, doi:10.1007/3-540-57182-5_44.

[9] Edmund Landau (1903): Über die Maximalordnung der Permutation gegebenen Grades. Archiv der Mathe-

matik und Physik 3, pp. 92–103.

[10] Edmund Landau (1909): Handbuch der Lehre von der Verteilung der Primzahlen I. Teubner, Leipzig/Berlin.

[11] Carlo Mereghetti & Giovanni Pighizzini (2001): Optimal Simulations between Unary Automata. SIAM J.

Comput. 30(6), pp. 1976–1992, doi:10.1137/S009753979935431X.

[12] Albert R. Meyer & Michael J. Fischer (1971): SWAT 1971. IEEE Computer Society, pp. 188–191, doi:10.

1109/SWAT.1971.11.

[13] Giovanni Pighizzini (2019): Limited Automata: Properties, Complexity and Variants. In: DCFS 2019,

Lecture Notes in Computer Science 11612, Springer, pp. 57–73, doi:10.1007/978-3-030-23247-4_4.

[14] Giovanni Pighizzini & Andrea Pisoni (2014): Limited Automata and Regular Languages. Int. J. Found.

Comput. Sci. 25(7), pp. 897–916, doi:10.1142/S0129054114400140.

[15] Giovanni Pighizzini & Andrea Pisoni (2015): Limited Automata and Context-Free Languages. Fundam.

Inform. 136(1-2), pp. 157–176, doi:10.3233/FI-2015-1148.

https://doi.org/10.1016/0020-0190(92)90198-5
http://dx.doi.org/10.1016/0304-3975(86)90142-8
https://doi.org/10.1016/S0304-3975(03)00136-1
http://dx.doi.org/10.1016/j.ic.2007.07.001
https://doi.org/10.1007/s00453-010-9479-9
https://doi.org/10.1016/S0019-9958(67)90513-X
https://doi.org/10.1007/3-540-57182-5_44
https://doi.org/10.1137/S009753979935431X
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1109/SWAT.1971.11
https://doi.org/10.1007/978-3-030-23247-4_4
https://doi.org/10.1142/S0129054114400140
https://doi.org/10.3233/FI-2015-1148

G. Pighizzini & L. Prigioniero 109

[16] Giovanni Pighizzini & Luca Prigioniero (2019): Limited automata and unary languages. Inf. Comput. 266,

pp. 60–74, doi:10.1016/j.ic.2019.01.002.

[17] Giovanni Pighizzini & Luca Prigioniero (2023): Once-Marking and Always-Marking 1-Limited Automata.

In: AFL 2023, Electronic Proceedings in Theoretical Computer Science 386, pp. 215–227, doi:10.4204/

EPTCS.386.17.

[18] Giovanni Pighizzini & Luca Prigioniero (2023): Two-way Machines and de Bruijn Words. In: CIAA 2023,

Lecture Notes in Computer Science 14151, pp. 254–65, doi:10.1007/978-3-031-40247-0_19.

[19] Giovanni Pighizzini, Luca Prigioniero & Simon Šádovský (2022): 1-Limited Automata: Witness Languages

and Techniques. J. Autom. Lang. Comb. 27(1-3), pp. 229–244, doi:10.25596/jalc-2022-229.

[20] Jeffrey O. Shallit (2008): A Second Course in Formal Languages and Automata Theory. Cambridge Univer-

sity Press, doi:10.1017/CBO9780511808876.

[21] John C. Shepherdson (1959): The Reduction of Two-Way Automata to One-Way Automata. IBM J. Res. Dev.

3(2), pp. 198–200, doi:10.1147/rd.32.0198.

[22] Michael Sipser (1980): Lower Bounds on the Size of Sweeping Automata. J. Comput. Syst. Sci. 21(2), pp.

195–202, doi:10.1016/0022-0000(80)90034-3.

[23] Mihály Szalay (1980): On the maximal order in Sn and S∗n. Acta Arithmetica 37, pp. 321–331, doi:10.4064/

aa-37-1-321-331.

[24] Klaus W. Wagner & Gerd Wechsung (1986): Computational complexity. D. Reidel Publishing Company,

Dordrecht.

https://doi.org/10.1016/j.ic.2019.01.002
https://doi.org/10.4204/EPTCS.386.17
https://doi.org/10.4204/EPTCS.386.17
https://doi.org/10.1007/978-3-031-40247-0_19
https://doi.org/10.25596/jalc-2022-229
https://doi.org/10.1017/CBO9780511808876
https://doi.org/10.1147/rd.32.0198
https://doi.org/10.1016/0022-0000(80)90034-3
https://doi.org/10.4064/aa-37-1-321-331
https://doi.org/10.4064/aa-37-1-321-331

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on
Non-Classical Models of Automata and Applications (NCMA 2023)
EPTCS 388, 2023, pp. 110–124, doi:10.4204/EPTCS.388.11

© M. Radionova & A. Okhotin
This work is licensed under the
Creative Commons Attribution License.

Sweeping Permutation Automata

Maria Radionova
Department of Mathematics and Computer Science

St. Petersburg State University
Saint Petersburg, Russia
radmarale@gmail.com

Alexander Okhotin
Department of Mathematics and Computer Science

St. Petersburg State University
Saint Petersburg, Russia

alexander.okhotin@spbu.ru

This paper introduces sweeping permutation automata, which move over an input string in alternating
left-to-right and right-to-left sweeps and have a bijective transition function. It is proved that these au-
tomata recognize the same family of languages as the classical one-way permutation automata (Thier-
rin, “Permutation automata”, Mathematical Systems Theory, 1968). An n-state two-way permutation
automaton is transformed to a one-way permutation automaton with F(n) = maxk+`=n,m6` k ·

(`
m

)
·(k−1

`−m

)
· (`−m)! states. This number of states is proved to be necessary in the worst case, and its

growth rate is estimated as F(n) = n
n
2− 1+ln2

2
n

lnn (1+o(1)).

1 Introduction

Permutation automata, introduced by Thierrin [15], are one-way deterministic finite automata, in which
the transition function by each symbol forms a permutation of the set of states. They recognize a proper
subfamily of regular languages: for instance, no finite language is recognized by any permutation au-
tomaton. The language family recognized by permutation automata is known as the group languages,
because their syntactic monoid is a group, and it has received some attention in the literature on al-
gebraic automata theory [9]. Recently, Hospodár and Mlynárčik [3] determined the state complexity
of operations on these automata, while Rauch and Holzer [12] investigated the effect of operations on
permutation automata on the number of accepting states.

Permutation automata are reversible, in the sense that, indeed, knowing the current state and the
last read symbol one can always reconstruct the state at the previous step. The more general reversible
automata, studied by Angluin [1] and by Pin [10], additionally allow undefined transitions, so that the
transition function by each symbol is injective. Reversible automata still cannot recognize all regular
languages [11], but since they can recognize all finite languages, they are a more powerful model than
permutation automata.

The notion of reversible computation has also been studied for two-way finite automata. In general,
a two-way automaton (2DFA) operates on a string delimited by a left end-marker (`) and a right end-
marker (a), and may move its head to the left or to the right in any transition. For the reversible subclass
of two-way finite automata (2RFA), Kondacs and Watrous [7] proved that 2RFA can recognize every
regular language. Later, Kunc and Okhotin [8, Sect. 8.1] showed that every regular language can still
be recognized by 2RFA with no undefined transitions on symbols of the alphabet, and with injective
functions on the end-markers. But since the latter automata, in spite of having some kind of bijections
in their transition functions, recognize all regular languages, they are no longer a model for the group
languages. And there seems to be no reasonable way to have 2RFA act bijectively on both end-markers,
because in this case it would be impossible to define both an accepting and a rejecting state.

Can permutation automata have any two-way generalization at all? This paper gives a positive answer
by investigating sweeping permutation automata. This new model is a subclass of sweeping automata,

http://dx.doi.org/10.4204/EPTCS.388.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Radionova & A. Okhotin 111

that is, two-way automata that may turn only at the end-markers. In a sweeping automaton, there are left-
moving and right-moving states, and any transition in a right-moving state by any symbol other than an
end-marker must move the head to the right and lead to another right-moving state (same for left-moving
states). The transitions by each symbol other than an end-marker form two functions, one acting on
the right-moving states, and the other on the left-moving states. In the proposed sweeping permutation
automata, both functions must be bijections, whereas the transition functions at the end-markers must be
injective. A formal definition of the new model is given in Section 2.

The main motivation for the study of sweeping permutation automata (2PerFA) is that these automata
recognize the same family of languages as the classical one-way permutation automata (1PerFA). This
result is established in Section 3 by showing that if the optimal transformation of two-way automata
to one-way, as defined by Kapoutsis [5, 6], is carefully applied to a 2PerFA, then it always produces a
1PerFA.

The next question studied in this paper is the number of states in a 1PerFA needed to simulate an
n-state 2PerFA. The number of states used in the transformation in Section 3 depends on the partition
of n states of the 2PerFA into k right-moving and ` left-moving states, and also on the number m of
left-moving states in which there are no transitions by the left end-marker (`). The resulting 1PerFA has
k ·
(
`
m

)
·
(k−1
`−m

)
· (`−m)! states. A matching lower bound for each triple (k, `,m), with k > ` and m > 0,

is established in Section 4, where it is proved that there exists a 2PerFA with k right-moving states and
` left-moving states, and with the given value of m, such that every one-way deterministic automaton
(1DFA) recognizing the same language must have at least k ·

(
`
m

)
·
(k−1
`−m

)
· (`−m)! states.

The desired state complexity of transforming two-way permutation automata to one-way should give
the number of states in a 1PerFA that is sufficient and in the worst case necessary to simulate every
2PerFA with n states. Note that the minimal 1DFA for a group language is always a 1PerFA [3], and
hence this is the same state complexity tradeoff as from 2PerFA to 1DFA. The following function gives
an upper bound on this state complexity.

F(n) = max
k+`=n

m6`

k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)!

This bound is proved to be precise in Section 5, where it is shown that the maximum in the formula
is reached for k = bn+2

2 c and ` = dn−2
2 e, that is, for k > `. Since Section 4 provides witness languages

for these values of k and ` that require k ·
(
`
m

)
·
(k−1
`−m

)
· (`−m)! states in every 1PerFA, this gives a lower

bound F(n). Finally, the growth rate of the function F(n) is estimated as F(n) = n
n
2− 1+ln2

2
n

lnn (1+o(1)) using
Stirling’s approximation.

An alternative, more general definition of sweeping permutation automata, which allows acceptance
both at the left end-marker and at the right end-marker, is presented in Section 6. A proof that they still
can be transformed to 1PerFA is sketched, but the generalized transformation uses more states.

2 Definition

A one-way permutation automaton (1PerFA) is a one-way deterministic finite automaton (1DFA) in
which the transition function by every symbol is a bijection [15].

This restriction is adapted to the more general sweeping automata [14], in which the set of states is
divided into disjoint classes of right-moving (Q+) and left-moving (Q−) states, so that the automaton may
turn only at the end-markers. In the proposed sweeping permutation automata, the transition function

112 Sweeping permutation automata

+Q

−Q

� �

0q

1a 2a ka. . .

Figure 1: Transitions of a 2PerFA on an input string.

by each symbol forms one left-to-right bijection and another right-to-left bijection. Transitions at the
end-markers are injective partial functions.

Definition 1. A sweeping permutation automaton (2PerFA) is a 9-tuple A =
(Σ,Q+,Q−,q0,〈δ+

a 〉a∈Σ,〈δ−a 〉a∈Σ,δ`,δa,F), where

• Σ is the alphabet;

• Q+∪Q− is the set of states, where Q+∩Q− =∅;

• q0 ∈ Q+ is the initial state;

• for each symbol a ∈ Σ, δ+
a : Q+→ Q+ and δ−a : Q−→ Q− are bijective transition functions;

• the transition functions at the end-markers δ` : (Q− ∪{q0})→ Q+, δa : Q+ → Q− are partially
defined and injective on their respective domains;

• F ⊆ Q+ is the set of accepting states, with δa(q) undefined for all q ∈ F .

The computation of the automaton is defined in the same way as for sweeping automata of the general
form. Given an input string w= a1 . . .am ∈Σ∗, the automaton operates on a tape `a1 . . .ama. Its computa-
tion is a uniquely defined sequence of configurations, which are pairs (q, i) of a current state q∈Q+∪Q−
and a position i∈ {0,1, . . . ,m+1} on the tape. It starts in the configuration (q0,0) and makes a transition
to (δ`(q0),1). If the automaton is in a configuration (q, i) with q∈Q+ and i∈ {1, . . . ,m}, it moves to the
next configuration (δ+

ai
(q), i+1). Once the automaton is in a configuration (q,m+1), it accepts if q ∈ F ,

or moves to (δa(q),m) if δa(q) is defined, and rejects otherwise. In a configuration (q, i) with q ∈ Q−
and i ∈ {1, . . . ,m}, the automaton moves to (δ−ai

(q), i−1). Finally, in a configuration (q,0) with q ∈Q−,
the automaton turns back to (δ`(q),1) or rejects if this transition is undefined.

The language recognized by an automaton A , denoted by L(A), is the set of all strings it accepts.

A one-way permutation automaton (1PerFA) is a 2PerFA in which Q− = ∅ and δa is undefined on
every state. The left end-marker can be removed, making δ`(q0) the new initial state.

Note that a 2PerFA never loops. If it did, then some configuration would appear twice in some
computation. Consider the earliest such configuration. If it is not the initial configuration, then there
exists only one possible previous configuration. It appears at least twice in the computation, and it

M. Radionova & A. Okhotin 113

precedes the configuration considered before, a contradiction. The repeated configuration cannot be the
initial configuration, in which the 2PerFA is at the left end-marker in the state q0 ∈ Q+, because the
automaton may return to ` only in the states from Q−.

3 Transformation to one-way

Since a 2PerFA is a 2DFA, the well-known transformation to a one-way automaton can be applied to it [5,
13]: after reading a prefix of a string u, the 1DFA stores the first state in which the 2PerFA eventually goes
right from the last symbol of the prefix, and the function which encodes the outcomes of all computations
starting at the last symbol of the prefix and ending with the transition from that symbol to the right. For
a sweeping automaton, all computations encoded by the functions start in Q− and end in Q+. Moreover,
computations starting in different states should end in different states. Therefore, a one-way automaton
has to remember fewer different functions of a simpler form, and eventually turns out to be a permutation
automaton.

Lemma 1. For every 2PerFA A = (Σ,Q+,Q−,q0,〈δ+
a 〉a∈Σ,〈δ−a 〉a∈Σ,δ`,δa,F) with

|Q+|= k, |Q−|= `, |Q×−|= m,

where Q×− ⊆ Q− is the set of states from which there is no transition by `, there exists a 1PerFA recog-
nizing the same language which uses states of the form (q, f) satisfying the following restrictions:

• q ∈ Q+,

• f : Q−→ Q+ is a partially defined function,

• q /∈ Im f ,

• f is injective,

• f is undefined on exactly m states.

Proof. We will construct a 1PerFA B = (Σ,Q, q̃0, δ̃ , F̃); states of B shall be pairs (q, f), where q ∈ Q+

and f : Q−→ Q+ is a partial function.
After reading a prefix s ∈ Σ∗, the automaton B should come to a state (q, f), where q and f describe

the outcomes of the following computations of A on s:

• if the 2PerFA starts on `s in its initial configuration, then it eventually moves from the last symbol
of `s to the right in the state q,

• if the 2PerFA starts at the last symbol of `s in a state p from Q−, then it eventually leaves s in the
state f (p) ∈ Q+. If the computation reaches an undefined transition at `, then the value f (p) is
undefined.

The initial state is defined as
q̃0 = (δ`(q0),δ`

∣∣
Q−

)

where δ`
∣∣
Q−

is δ` restricted to the domain Q−.
The definition of the transition function is as follows:

δ̃a((q, f)) = (δ+
a (q),δ+

a ◦ f ◦δ
−
a), for all a ∈ Σ.

Claim 1. Every pair (q, f) reachable from q̃0 by transitions in δ̃ satisfies the following conditions:

114 Sweeping permutation automata

• q ∈ Q+,

• f : Q−→ Q+ is a partially defined function,

• q /∈ Im f ,

• f is injective,

• f is undefined on exactly m states.

Proof. Induction on the length of the string. Let (q, f) be reachable in B by a string u. If u = ε , then
(q, f) is the initial state

(q, f) = (δ`(q0),δ`
∣∣
Q−

)

The first two conditions are satisfied because the domain of δ` is split into q0 and Q−. The third and the
fourth conditions follow from the injectivity of δ` and the disjointness of {q0} and Q−. The states on
which δ`

∣∣
Q−

is not defined are the states in Q×− by definition, and there are m of them.
Let (q, f) be reachable in B by a string u and let (q′, f ′) be reachable from it by a transition by a.

The induction assumption is true for the state (q, f), and (q′, f ′) is defined as

(q′, f ′) = (δ+
a (q),δ+

a ◦ f ◦δ
−
a)

The state q′ ∈ Q+ because δ+
a is a total function which acts from Q+ to Q+. The function f ′ acts from

Q− to Q+ because δ−a acts from Q− and δ+
a acts to Q+. To see that δ+

a (q) /∈ Im δ+
a ◦ f ◦ δ−a , consider

that {q} and Im f are disjoint by the induction assumption, and therefore their images under a bijection
δ+

a , that are, {δ+
a (q)} and Im δ+

a ◦ f , are disjoint as well.
The function δ+

a ◦ f ◦δ−a is injective as a composition of injective functions. The function δ+
a ◦ f ◦δ−a

is undefined on exactly m states because f is, and functions δ+
a and δ−a are total bijections.

Let Q be the set of all pairs (q, f) satisfying Claim 1.

Claim 2. After reading a prefix s ∈ Σ∗ the automaton B comes to a state (q, f), where

• if the 2PerFA starts on `s in its initial configuration, then it eventually moves from the last symbol
of `s to the right in the state q,

• if the 2PerFA starts at the last symbol of `s in a state p from Q−, then it eventually leaves s in the
state f (p) ∈ Q+. If the computation reaches an undefined transition at `, then the value f (p) is
undefined.

Proof. Induction on the length of the string. It is clear for the empty string and the initial state. Let
(q, f) be the state of B after reading s, then (q′, f ′) = δ̃a((q, f)) is the state after reading sa. By the
induction assumption, the state (q, f) and the string s satisfy the property. Then B reads the symbol
a and comes to the state (δ+

a (q),δ+
a ◦ f ◦ δ−a). The automaton eventually leaves `s to the right in the

state q; then it comes to a in this state and makes a transition to δ+
a (q), thus leaving `sa to the right.

To prove the second condition, let the 2PerFA start on `sa at the symbol a in a state p ∈ Q−. Then it
moves left to the last symbol of `s in the state δ−a (p). Then the computation continues on the string `s
and its outcome is given by the function f . Eventually the 2PerFA leaves `s to the right and comes to a
in the state f (δ−a (p)). Then the 2PerFA looks at the symbol and goes to δ+

a (f (δ−a (p))) moving to the
right. If f (δ−a (p)) is undefined, then so is f ′(p). So, the function δ+

a ◦ f ◦δ−a indeed satisfies the second
claim.

M. Radionova & A. Okhotin 115

+Q

−Q

�

0q

s a

′q

′f

︷︸︸︷

+Q

−Q

�

0q

s

q

f

︷︸︸︷

Figure 2: (left) B in a state (q, f); (right) transition of B by a.

To define (q, f) as an accepting or a rejecting state, consider the following sequence of states {qi}i>1
with qi ∈ Q+. The first element is

q1 = q

For each qi if the 2PerFA has a transition by a from qi and the function f is defined on δa(qi) then

qi+1 = f (δa(qi))

Otherwise the sequence ends. The sequence {qi}i>1 is always finite, because if it loops then some state
q̃ appears at least twice. Consider the earliest repeated state. If it is not q1 then there is the previous one.
The previous state for q̃ is the same for all its appearances as f (δa) is an injective function. Therefore,
q̃ is not the earliest repeated state. So, q̃ should be q1. As q1 /∈ Im f the state q1 cannot be repeated, a
contradiction.

If this sequence ends with an accepting state qi ∈F , then the state (q, f) is accepting in B. Otherwise,
the state (q, f) is rejecting.

The constructed one-way automaton accepts the same language as the 2PerFA because when it comes
by some string s to a state (q, f), then before accepting or rejecting on `sa the 2PerFA passes through
the sequence of states {qi}i>1, with qi ∈ Q+, at a.

Claim 3. The resulting one-way automaton is a permutation automaton.

Proof. We will prove that the transition function δ̃a is a bijection for each symbol a∈ Σ. Firstly, we show
its injectivity. Let

δ̃a((q1, f1)) = δ̃a((q2, f2))

Then, by the definition of δ̃a,

(δ+
a (q1),δ

+
a ◦ f1 ◦δ

−
a) = (δ+

a (q2),δ
+
a ◦ f2 ◦δ

−
a)

Then δ+
a (q1) = δ+

a (q2), which means that q1 = q2, because δ+
a is a bijection. Then consider the equality

δ
+
a ◦ f1 ◦δ

−
a = δ

+
a ◦ f2 ◦δ

−
a

116 Sweeping permutation automata

Taking a composition of both sides of the equation with (δ+
a)−1 on the left and (δ−a)−1 on the right yields

(δ+
a)−1 ◦δ

+
a ◦ f1 ◦δ

−
a ◦ (δ−a)−1 = (δ+

a)−1 ◦δ
+
a ◦ f2 ◦δ

−
a ◦ (δ−a)−1

Then f1 = f2, and the injectivity is proved. The function δ̃a is total and has equal domain and range, it is
therefore a bijection.

This completes the proof of the lemma.

Theorem 1. For every 2PerFA A = (Σ,Q+,Q−,q0,〈δ+
a 〉a∈Σ,〈δ−a 〉a∈Σ,δ`,δa,F) with

|Q+|= k, |Q−|= `, |Q×−|= m,

where Q×− ⊆ Q− is the set of states from which there is no transition by `, there exists a 1PerFA with at
most

k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)!

states that recognizes the same language.

Proof. Consider the one-way automaton B obtained for the 2PerFA A in Lemma 1. Every state (q, f)
of B satisfies the following conditions:

• q ∈ Q+,

• f : Q−→ Q+ is a partially defined function,

• q /∈ Im f ,

• f is injective,

• and f is undefined on exactly m states.

For a fixed q ∈ Q+, let us count the number of functions satisfying the conditions above: firstly, we
should choose m states from Q− on which f is not defined. Secondly, from the k− 1 states we should
choose `−m different values for f ’s range. And lastly, we can choose a bijection between these two sets
in (`−m)! ways. (

`

m

)
·
(

k−1
`−m

)
· (`−m)!

By multiplying this number by k (the number of different states q) we will get the claimed number of
states.

If a two-way automaton has n states in total, then there is only a finite number of partitions into
left-moving and right-moving states, and finitely many choices of m, and hence the following number of
states is sufficient to transform this automaton to one-way.

F(n) = max
k,`,m

k>0, `>m>0
m>`−k+1

k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)!

Corollary 1. For every n-state 2PerFA there exists a 1PerFA with F(n) states that recognizes the same
language.

Later it will be proved that F(n) is a sharp bound, that is, for some n-state 2PerFA every 1PerFA
recognizing the same language has to have at least F(n) states.

M. Radionova & A. Okhotin 117

a b c d

+Q

−Q

� �

0q

1q

2q

3 q

0r

1r

2r

Figure 3: Symbols a,b,c,d in the construction of A .

4 Lower bound on the number of states

In this section it will be shown that the upper bound on the number of states in a 1DFA needed to
simulate a 2PerFA is sharp for each triple (k, `,m), where k > ` and ` > m > 0. Only the case of k > `
is considered, because, as it will be shown later, the maximum over (k, `,m) in F(n) is reached for k > `
(in other words, a 2PerFA that requires the maximum number of states in a 1PerFA has |Q+|> |Q−|).
Theorem 2. For all k, `,m with k > ` > 0 and ` > m > 0 there exists a 2PerFA A =
(Σ,Q+,Q−,q0,〈δ+

a 〉a∈Σ,〈δ−a 〉a∈Σ,δ`,δa,F) such that

|Q+|= k, |Q−|= `,

the function δ` is undefined on exactly m arguments from Q−, and every 1DFA recognizing L(A) must
have at least

k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)!

states.

Proof. Fix k, `,m and consider a 2PerFA A = (Σ,Q+,Q−,q0,〈δ+
a 〉a∈Σ,〈δ−a 〉a∈Σ,δ`,δa,F) where

• Q+ = {q0, . . . ,qk−1},Q− = {r0, . . . ,r`−1}.
• The initial state is q0 and the accepting states are {q`, . . . ,qk−1}.
• The functions δ+

a and δ
+
b are generators of the permutation group on the set Q+ (for example,

these could be a cycle on all elements of Q+ and an elementary transposition). Similarly, δ−c ,δ−d
are generators of the permutation group on the set Q−, and δ−a ,δ−b ,δ+

c ,δ+
d are identity functions.

• Transitions at the left end-marker are δ`(q0) = q0 and δ`(ri) = qi+1 for 0 6 i < `−m. There are
no transitions by ` in the remaining m states.

• Transitions at the right end-marker are δa(qi) = ri for 0 6 i < `. There are no transitions by a in
the remaining k− ` states.

118 Sweeping permutation automata

� �

q

0r

1r

2r

0q

)0r(σ

)2r(σ

)1r(σ

1q

2q

)0q(π

)1q(π

)2q(π

)3q(π

)0r(f

)2r(f

︷︸︸︷ πv σu ︷︸︸︷

Figure 4: The action of σ and π .

The proof of the lower bound on the size of any 1DFA recognizing this language is by showing that the
automaton B = (Q, q̃0, F̃ , δ̃ ,Σ) obtained from A by the transformation in Lemma 1 will be minimal.
We will show that every state is reachable and for every two states there exists a separating string. Firstly
prove the reachability. Consider a state (q, f). It satisfies the following conditions from Lemma 1:

• q ∈ Q+,

• f : Q−→ Q+ is a partially defined function,

• q /∈ Im f ,

• f is injective,

• f is undefined on exactly m states.

Let σ be a permutation on the set Q− that maps the states on which f is not defined to the m
states from Q− without a transition by `. Take a string uσ ∈ {c,d}∗ that, when read from right to
left, implements the permutation σ , and acts as an identity on Q+ when read from left to right. Next,
the goal is to define a permutation π on the set Q+ that maps q0 to q, and, for each state q′ ∈ Q− on
which f is defined, it should map the state δ`(σ(q′)) to the state f (q′), as shown in Figure 4. Note that
δ`(σ(q′)) is defined for all q′ in the domain of f . We can introduce such a permutation because each
state δ`(σ(q′)) is not equal to q0 and they are all pairwise distinct (as σ is a permutation and δ` is an
injection). Also each state f (q′) is not equal to q and they are all pairwise distinct too. Take the string
vπ ∈ {a,b}∗ that, when read from left to right, implements π , and is an identity on Q− if read from right
to left. So, by the string vπuσ we reach the state (q, f).

Next, the existence of a separating string for all pairs of states is proved. Consider different states
(q1, f1) and (q2, f2). Let them be reached by strings s1 and s2, respectively. There are several cases.

• The states q1,q2 are different, as shown in Figure 5. Fix a state r ∈ Q− with no transition on the
left end-marker defined. Since A is a permutation automaton, there exists a state r̃ ∈ Q− such
that after reading s1 from right to left starting in the state r̃, the automaton is in the state r. Also
let q′1 ∈ Q+ be the state from which there is a transition to r̃ by the right end-marker: such a state
exists, because in the 2PerFA there are transitions to all states in Q− by the right end-marker. Then

M. Radionova & A. Okhotin 119

� �πv

1s

2s

1s

1q

2q

r

r̃ r̃

1
′q

2
′q

︷︸︸︷

Figure 5: A separating string for states (q1, f1) and (q2, f2), with q1 6= q2.

let π be such a permutation on the set Q+ that maps q1 to q′1 and q2 to an accepting state q′2 ∈ Q+.
Let vπ ∈ {a,b}∗ be the string that implements the permutation π when read from left to right. So,
the string s1vπ will be rejected by 2PerFA and the string s2vπ will be accepted. That is, vπ is a
separating string.

• The states q1,q2 are the same, but f1 6= f2. Because f1 6= f2 there exists a state r ∈ Q− on which
these functions differ, that is, either one of f1(r), f2(r) is defined and the other is not, or both are
defined and are different states.

1. First, assume that f1 is defined on r, but f2 is not (the case of f2(r) defined and f1(r) un-
defined is symmetric). It is true that f1(r) 6= q1, because q1 /∈ Im f1 in every state of B.
Fix the state q with a transition from it to r by the right end-marker. Then let π be such a
permutation of the set Q+ that maps q1 to q and f1(r) to an accepting state. And let the string
vπ ∈ {a,b}∗ implement π when the 2PerFA reads it from left to right as shown in Figure 6.
The string s1vπ will be accepted by the 2PerFA and the string s2vπ will be rejected. So, vπ is
a separating string.

2. Both functions f1 and f2 are defined on r. It is true that f1(r) 6= q1 and f2(r) 6= q1. Again, fix
the state q from which there is a transition to r by the right end-marker. Then fix a state r̃ from
Q− without a transition by the left end-marker (it exists because m > 1). Let r∗ ∈ Q− be the
state from which the 2PerFA reads s1 and finishes in r̃. We can choose such a state because
the 2PerFA is a permutation automaton, and this state cannot coincide with r because in this
case f1(r) would be undefined. Then let q∗ ∈Q+ be the state, from which there is a transition
by the right end-marker to r∗: it exists because there are such transitions to all states in Q−.
Let vπ ∈ {a,b}∗ implement a permutation π on Q+ that maps q1 to q, f1(r) to q∗ and f2(r) to
an accepting state, as illustrated in Figure 7. The string s1vπ will be rejected by the 2PerFA,
and the string s2vπ will be accepted, so, vπ is a separating string.

120 Sweeping permutation automata

� �πv

1s

2s
1q

rr

q

)r(1f

1s

2s

︷︸︸︷

Figure 6: A separating string for states (q1, f1) and (q2, f2), with q1 = q2, f1(r) defined, f2(r) undefined.

5 Optimal partition of n in F(n) and the logarithmic asymptotics of F(n)

It has been proved above that every n-state 2PerFA can be transformed to an equivalent 1PerFA with

F(n) = max
k,`,m

k>0, `>m>0
m>`−k+1

G(k, `,m)

states, where

G(k, `,m) = k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)!

What is the optimal partition of n states into k right-moving and ` left-moving states, and what is the
optimal number m of unused states at the left end-marker? This question is answered in the following
lemma.

Lemma 2. For every fixed n = k+ ` the function

G(k, `,m) = k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)!

is defined for k > 0, `> m > 0, m > `−k+1, and reaches its maximum value on a triple (k, `,m), where
k > `. If n > 8, then the optimal values of the arguments are:

k =
⌊

n+2
2

⌋
, `=

⌈
n−2

2

⌉
, m =

{
d
√

3+2n−3
2 e, n is odd

d
√

4+2n−4
2 e, n is even

Sketch of a proof. To prove this, firstly, find an optimal value of m for a fixed pair (k, `). Denote it by
mopt = mopt(k, `). Then analyse the next ratio

G(k, `,mopt(k, `))
G(k+1, `−1,mopt(k+1, `−1))

M. Radionova & A. Okhotin 121

� �v

1s

2s 1q

rr

q

)r(1f

1s

2s

)r(2f

1s

2s

1s

∗q

∗r∗r

︷︸︸︷

Figure 7: A separating string for states (q1, f1) and (q2, f2), with q1 = q2, f1(r) 6= f2(r).

It is proved that this ratio is at least 1 if k > ` and n > 8, and at most 1 if k 6 `. Therefore, the optimal
partition n = k+ ` has k > `. If n > 8, then it has k = `+ 1 or k = `+ 2, depending on the parity of n,
and the optimal values of k and ` are

k =
⌊

n+2
2

⌋
, `=

⌈
n−2

2

⌉

There is a formula for mopt(k, `), and its value for approximately equal k and ` is

mopt(k, `) =
⌈√

D+ `− k−2
2

⌉
, where D = (k− `)2 +4(`+1)

Then, for a given n > 8, the claimed optimal value of m can be found by substituting the optimal values
of k and ` into the formula for mopt.

With the optimal values of k, ` and m determined, the main result of this paper can now be finally
stated.

Theorem 3. Let n > 1. For every n-state 2PerFA there exists a 1PerFA with F(n) states that recognizes
the same language, and in the worst case F(n) states in a 1PerFA are necessary.

Proof. The upper bound is given in Corollary 1.
For the lower bound, for every n > 8, let k, ` and m be as in Lemma 2. Then, since k > `, Theorem 2

presents the desired n-state 2PerFA, for which every 1PerFA recognizing the same language must have
at least G(k, `,m) = F(n) states.

For n= 5,6,7, a calculation of possible values k, `,m shows that the maximum of G(k, `,m) is reached
for m = 1. Then, Theorem 2 is still applicable and provides the witness languages.

For n = 4, the optimal values given by a calculation are k = 3, ` = 1 and m = 0. Nevertheless,
the same automaton as in Theorem 2 still provides the desired lower bound, which was checked by a
computer calculation.

Finally, F(n) = n for n = 1,2,3, and (trivial) witness languages are (an)∗.

122 Sweeping permutation automata

So, F(n) = G(k, `,m) for the specified values of k, `,m. As

G(k, `,m) = k ·
(
`

m

)
·
(

k−1
`−m

)
· (`−m)! =

k!`!
(k−1− `+m)!m!(`−m)!

the asymptotics of F(n) can be determined by using Stirling’s approximation of factorials for k, `,m from
the optimal partition. The final result is given in the following theorem.

Theorem 4. F(n) = n
n
2− 1+ln2

2
n

lnn (1+o(1)).

To compare, transformation of 2DFA of the general form to 1DFA has the sharp bound proved by
Kapoutsis [6].

n(nn− (n−1)n)+1

The transformation of sweeping 2DFA to 1DFA [2] requires slightly fewer states, yet still of the order
nn(1+o(1)).

ϕ(n) =
n

max
k=1

kn−k+1 +1 = nn− n ln lnn
lnn +O(n

lnn)

Evidently, in the case of 2PerFA, the cost of transformation to one-way is substantially reduced (with the
exponent divided by two).

The transformation complexity in these three cases is compared for small values of n in Table 1.

n F(n)
n

max
k=1

kn−k+1 +1 n(nn− (n−1)n)+1

(2PerFA to 1DFA) (sweeping to 1DFA) (2DFA to 1DFA)
1 1 2 2
2 2 3 7
3 3 5 58
4 6 10 701
5 12 28 10506
6 24 82 186187
7 72 257 3805250
8 180 1025 88099321
9 480 4097 2278824850

10 1440 16385 65132155991
11 3600 78126 2038428376722
12 12600 390626 69332064858421

Table 1: The value of F(n) compared to the known transformations for irreversible 2DFA, for small
values of n.

6 A more general definition

Consider a variant of the definition of a 2PerFA, in which acceptance is also allowed at the left end-
marker in states from Q−. It entails that in a transformation from 2PerFA to 1PerFA in each state (q, f)
the function f operates from Q− to Q+∪{ACC,REJ}. Upon reading a string u ∈ Σ∗, the 1PerFA comes
to a state (q, f), where q ∈ Q+ is the state in which the 2PerFA first moves to the right from the last
symbol of `u, and for every state r ∈ Q− and p ∈ Q+, if f (r) = p, then the 2PerFA after reading `u

M. Radionova & A. Okhotin 123

starting at its last symbol in the state r finishes in the state p. If f (r) = REJ then, after reading `u from
right to left starting in r, the 2PerFA rejects at the left end-marker. And if f (r) =ACC, then, after reading
`u from right to left starting in r the 2PerFA accepts at the left end-marker. The transition function δ ,
the initial state and the set of accepting states will be defined similarly to Lemma 1. The automaton
constructed by this transformation will be a permutation automaton. To prove this claim, δ is first shown
to be injective, and then bijectivity follows from the equality of its domain and range.

As in the proof of Lemma 1, suppose that δ is not injective, and has the same value on two different
states:

δ ((q1, f1)) = δ ((q2, f2))

(δ+
a (q1),δ

+
a ◦ f1 ◦δ

−
a) = (δ+

a (q2),δ
+
a ◦ f2 ◦δ

−
a)

From
δ
+
a (q1) = δ

+
a (q2)

follows
q1 = q2

as δ+
a is a bijection. And from

δ
+
a ◦ f1 ◦δ

−
a = δ

+
a ◦ f2 ◦δ

−
a

by multiplying by inverse functions of (δ+
a)−1,(δ−a)−1 from the left side and from the right side respec-

tively, the next equation follows

(δ+
a)−1 ◦δ

+
a ◦ f1 ◦δ

−
a ◦ (δ−a)−1 = (δ+

a)−1 ◦δ
+
a ◦ f2 ◦δ

−
a ◦ (δ−a)−1

f1 = f2

So, (q1, f1) = (q2, f2), therefore δ is a bijection and the constructed automaton is a permutation
automaton.

Denote the number of accepting states in Q− by e. The exact number of states in the constructed
1PerFA is given in the following theorem.

Theorem 5. For every 2PerFA A = (Σ,Q+,Q−,q0,〈δ+
a 〉a∈Σ,〈δ−a 〉a∈Σ,δ`,δa,F) with F ⊆Q+∪Q− and

|Q+|= k, |Q−|= `, |Q×−|= m, |F ∩Q−|= e,

where Q×− ⊆Q− is the set of rejecting states from which there is no transition by `, there exists a 1PerFA
with at most

k ·
(
`

m

)
·
(

m
e

)
·
(

k−1
`−m

)
· (`−m)!

states that recognizes the same language.

7 Conclusion

The complexity of transforming sweeping permutation automata (2PerFA) to classical one-way permu-
tation automata (1PerFA) has been determined precisely. A suggested question for future research is the
state complexity of operations on 2PerFA. Indeed, state complexity of operations on 1PerFA has recently
been investigated [3, 12], state complexity of operations on 2DFA of the general form was studied as
well [4], and it would be interesting to know how the case of 2PerFA compares to these related models.

124 Sweeping permutation automata

References
[1] D. Angluin, “Inference of Reversible Languages”, Journal of the ACM, 29:3 (1982), 741–765. https://

doi.org/10.1145/322326.322334

[2] V. Geffert, A. Okhotin, “Deterministic one-way simulation of two-way deterministic finite automata over
small alphabets”, Descriptional Complexity of Formal Systems 2021, LNCS 13037, 26–37. https://doi.
org/10.1007/978-3-030-93489-7_3

[3] M. Hospodár, P. Mlynárčik, “Operations on Permutation automata”, DLT 2020, LNCS 12086, 122–136.
https://doi.org/10.1007/978-3-030-48516-0_10

[4] G. Jirásková, A. Okhotin, “On the state complexity of operations on two-way finite automata”, Information
and Computation, 253:1 (2017), 36–63. http://dx.doi.org/10.1016/j.ic.2016.12.007

[5] C. A. Kapoutsis, “Removing bidirectionality from nondeterministic finite automata”, Mathematical Foun-
dations of Computer Science (MFCS 2005, Gdansk, Poland, 29 August–2 September 2005), LNCS 3618,
544–555. http://dx.doi.org/10.1007/11549345_47

[6] C. A. Kapoutsis, Algorithms and Lower Bounds in Finite Automata Size Complexity, Ph. D. thesis, Mas-
sachusetts Institute of Technology, 2006.

[7] A. Kondacs, J. Watrous, “On the power of quantum finite state automata”, 38th Annual Symposium on Foun-
dations of Computer Science (FOCS 1997, Miami Beach, Florida, USA, 19–22 October 1997), IEEE, 66–75.
http:dx.doi.org/10.1109/SFCS.1997.646094

[8] M. Kunc, A. Okhotin, “Reversibility of computations in graph-walking automata”, Information and Compu-
tation, 275 (2020), article 104631. https://doi.org/10.1016/j.ic.2020.104631

[9] S. W. Margolis, J.-É. Pin, “Products of group languages”, FCT 1985, 285–299. https://doi.org/10.
1007/BFb0028813

[10] J.-É. Pin, “On the Language Accepted by Finite Reversible automata”, Automata, Languages and Program-
ming, 14th International Colloquium, (ICALP 1987, Karlsruhe, Germany, July 13–17, 1987), LNCS 267,
237–249. https://doi.org/10.1007/3-540-18088-5_19

[11] J.-É. Pin, “On Reversible automata”, LATIN ’92, 1st Latin American Symposium on Theoretical Informatics
(São Paulo, Brazil, April 6–10, 1992), LNCS 583, 401–416. https://doi.org/10.1007/BFb0023844

[12] C. Rauch, M. Holzer, “On the Accepting State Complexity of Operations on Permutation Automata”, Pro-
ceedings 12th International Workshop on Non-Classical Models of Automata and Applications (NCMA 2022,
Debrecen, Hungary, August 26–27, 2022), EPTCS 367, 2022, 177–189. https://doi.org/10.4204/
EPTCS.367.12

[13] J. C. Shepherdson, “The reduction of two-way automata to one-way automata”, IBM Journal of Research
and Development, 3 (1959), 198–200. http://dx.doi.org/10.1147/rd.32.0198

[14] M. Sipser, “Lower bounds on the size of sweeping automata”, Journal of Computer and System Sciences,
21:2 (1980), 195–202. https://doi.org/10.1016/0022-0000(80)90034-3

[15] G. Thierrin, “Permutation automata”, Mathematical Systems Theory, 2:1 (1968), 83–90. https://doi.
org/10.1007/BF01691347

https://doi.org/10.1145/322326.322334
https://doi.org/10.1145/322326.322334
https://doi.org/10.1145/322326.322334
https://doi.org/10.1007/978-3-030-93489-7_3
https://doi.org/10.1007/978-3-030-93489-7_3
https://doi.org/10.1007/978-3-030-93489-7_3
https://doi.org/10.1007/978-3-030-93489-7_3
https://doi.org/10.1007/978-3-030-48516-0_10
https://doi.org/10.1007/978-3-030-48516-0_10
http://dx.doi.org/10.1016/j.ic.2016.12.007
http://dx.doi.org/10.1016/j.ic.2016.12.007
http://dx.doi.org/10.1007/11549345_47
http://dx.doi.org/10.1007/11549345_47
http:dx.doi.org/10.1109/SFCS.1997.646094
http:dx.doi.org/10.1109/SFCS.1997.646094
https://doi.org/10.1016/j.ic.2020.104631
https://doi.org/10.1016/j.ic.2020.104631
https://doi.org/10.1007/BFb0028813
https://doi.org/10.1007/BFb0028813
https://doi.org/10.1007/BFb0028813
https://doi.org/10.1007/3-540-18088-5_19
https://doi.org/10.1007/3-540-18088-5_19
https://doi.org/10.1007/BFb0023844
https://doi.org/10.1007/BFb0023844
https://doi.org/10.4204/EPTCS.367.12
https://doi.org/10.4204/EPTCS.367.12
https://doi.org/10.4204/EPTCS.367.12
http://dx.doi.org/10.1147/rd.32.0198
http://dx.doi.org/10.1147/rd.32.0198
https://doi.org/10.1016/0022-0000(80)90034-3
https://doi.org/10.1016/0022-0000(80)90034-3
https://doi.org/10.1007/BF01691347
https://doi.org/10.1007/BF01691347
https://doi.org/10.1007/BF01691347

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. 125–139, doi:10.4204/EPTCS.388.12

© B. Truthe

This work is licensed under the

Creative Commons Attribution License.

Merging two Hierarchies of Internal Contextual Grammars

with Subregular Selection

Bianca Truthe

Institut für Informatik, Universität Giessen, Arndtstr. 2, 35392 Giessen, Germany

bianca.truthe@informatik.uni-giessen.de

In this paper, we continue the research on the power of contextual grammars with selection lan-

guages from subfamilies of the family of regular languages. In the past, two independent hierarchies

have been obtained for external and internal contextual grammars, one based on selection languages

defined by structural properties (finite, monoidal, nilpotent, combinational, definite, ordered, non-

counting, power-separating, suffix-closed, commutative, circular, or union-free languages), the other

one based on selection languages defined by resources (number of non-terminal symbols, production

rules, or states needed for generating or accepting them). In a previous paper, the language families

of these hierarchies for external contextual grammars were compared and the hierarchies merged.

In the present paper, we compare the language families of these hierarchies for internal contextual

grammars and merge these hierarchies.

1 Introduction

Contextual grammars were introduced by S. Marcus in [17] as a formal model that might be used in the

generation of natural languages. The derivation steps consist in adding contexts to given well formed

sentences, starting from an initial finite basis. Formally, a context is given by a pair (u,v) of words

and inserting it externally into a word x gives the word uxv whereas inserting it internally gives all

words x1ux2vx3 when x = x1x2x3. In order to control the derivation process, contextual grammars with

selection were defined. In such contextual grammars, a context (u,v) may be added only if the sur-

rounded word x or x2 belongs to a language which is associated with the context. Language families

were defined where all selection languages in a contextual grammar belong to some language family F .

Such contextual grammars are said to be ‘with selection in the family F ’. Contextual grammars have

been studied where the family F is taken from the Chomsky hierarchy (see [15, 20, 21] and references

therein).

In [4], the study of external contextual grammars with selection in special regular sets was started.

Finite, combinational, definite, nilpotent, regular suffix-closed, regular commutative languages and lan-

guages of the form V ∗ for some alphabet V were considered. The research was continued in [8, 9, 10, 16]

where further subregular families of selection languages were considered and the effect of subregular se-

lection languages on the generative power of external and internal contextual grammars was investigated.

A recent survey can be found in [27] which presents for each type of contextual grammars (external

and internal ones) two hierarchies, one based on selection languages defined by structural properties

(finite, monoidal, nilpotent, combinational, definite, ordered, non-counting, power-separating, suffix-

closed, commutative, circular, or union-free languages), the other one based on selection languages

defined by resources (number of non-terminal symbols, production rules, or states needed for generating

or accepting them). In [28], the language families of these hierarchies for external contextual grammars

were compared and the hierarchies merged. In the present paper, we compare the language families of

these hierarchies for internal contextual grammars and merge the hierarchies.

http://dx.doi.org/10.4204/EPTCS.388.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

126 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

The internal case is different from the case of external contextual grammars, as there are two main

differences between the ways in which words are derived. In the case of internal contextual grammars, it

is possible that the insertion of a context into a sentential form can be done at more than one place, such

that the derivation becomes in some sense non-deterministic; in the case of external grammars, once a

context was selected, there is at most one way to insert it: wrapped around the sentential form, when this

word is in the selection language of the context. On the other hand, the outermost ends of a word derived

externally have been added at the end of the derivation, whereas derived internally the ends could have

been at the ends of the word already from the beginning since some inner part can be ‘pumped’. If a

context can be added internally, then it can be added arbitrarily often (because the subword where the

context is wrapped around does not change) which does not necessarily hold for external grammars.

In Section 2, we give the definitions and notation of the concepts used in this paper (languages,

grammars, automata, subregular language families, inclusion relations between these families, contextual

grammars, and inclusion relations between the families generated by internal contextual grammars where

the selection languages belong to various subregular language families). In Section 3, we present our

results where, first, several languages are presented which later serve as witness languages for proper

inclusions or the incomparability of two language families and, later, these languages are used to prove

relations between the various language families generated by internal contextual grammars with different

types of selection. Finally, in Section 4, we state some problems which are left open and give some ideas

for future research.

2 Preliminaries

Throughout the paper, we assume that the reader is familiar with the basic concepts of the theory of

automata and formal languages. For details, we refer to [21]. Here we only recall some notation and the

definition of contextual grammars with selection which form the central notion of the paper.

2.1 Languages, grammars, automata

Given an alphabet V , we denote by V ∗ and V+ the set of all words and the set of all non-empty words

over V , respectively. The empty word is denoted by λ . By V k and V≤k for some natural number k, we

denote the set of all words of the alphabet V with exactly k letters and the set of all words over V with at

most k letters, respectively. For a word w and a letter a, we denote the length of w by |w| and the number

of occurrences of the letter a in the word w by |w|a. For a set A, we denote its cardinality by |A|.
A right-linear grammar is a quadruple

G = (N,T,P,S)

where N is a finite set of non-terminal symbols, T is a finite set of terminal symbols, P is a finite set

of production rules of the form A → wB or A → w with A,B ∈ N and w ∈ T ∗, and S ∈ N is the start

symbol. Such a grammar is called regular, if all the rules are of the form A → xB or A → x with A,B ∈ N

and x ∈ T or S → λ . The language generated by a right-linear or regular grammar is the set of all words

over the terminal alphabet which are obtained from the start symbol S by a successive replacement of

the non-terminal symbols according to the rules in the set P. Every language generated by a right-linear

grammar can also be generated by a regular grammar.

A deterministic finite automaton is a quintuple

A = (V,Z,z0,F,δ)

B. Truthe 127

where V is a finite set of input symbols, Z is a finite set of states, z0 ∈ Z is the initial state, F ⊆ Z is

a set of accepting states, and δ is a transition function δ : Z ×V → Z. The language accepted by such

an automaton is the set of all input words over the alphabet V which lead letterwise by the transition

function from the initial state to an accepting state.

The set of all languages generated by some right-linear grammar coincides with the set of all lan-

guages accepted by a deterministic finite automaton. All these languages are called regular and form a

family denoted by REG. Any subfamily of this set is called a subregular language family.

2.2 Resources restricted languages

We define subregular families by restricting the resources needed for generating or accepting their ele-

ments:

RLV
n = {L | L is generated by a right-linear grammar with at most n non-terminal symbols} ,

RLP
n = {L | L is generated by a right-linear grammar with at most n production rules} ,

REGZ
n = {L | L is accepted by a deterministic finite automaton with at most n states } .

2.3 Subregular language families based on the structure

We consider the following restrictions for regular languages. Let L be a language over an alphabet V .

With respect to the alphabet V , the language L is said to be

• monoidal if and only if L =V ∗,

• nilpotent if and only if it is finite or its complement V ∗ \L is finite,

• combinational if and only if it has the form L =V ∗X for some subset X ⊆V ,

• definite if and only if it can be represented in the form L = A∪V ∗B where A and B are finite subsets

of V ∗,

• suffix-closed (or fully initial or multiple-entry language) if and only if, for any two words x ∈ V ∗

and y ∈V ∗, the relation xy ∈ L implies the relation y ∈ L,

• ordered if and only if the language is accepted by some deterministic finite automaton

A = (V,Z,z0,F,δ)

with an input alphabet V , a finite set Z of states, a start state z0 ∈ Z, a set F ⊆ Z of accepting states

and a transition mapping δ where (Z,�) is a totally ordered set and, for any input symbol a ∈V ,

the relation z � z′ implies δ (z,a) � δ (z′,a),

• commutative if and only if it contains with each word also all permutations of this word,

• circular if and only if it contains with each word also all circular shifts of this word,

• non-counting (or star-free) if and only if there is a natural number k ≥ 1 such that, for any three

words x ∈V ∗, y ∈V ∗, and z ∈V ∗, it holds xykz ∈ L if and only if xyk+1z ∈ L,

• power-separating if and only if, there is a natural number m ≥ 1 such that for any word x ∈ V ∗,

either Jm
x ∩L = /0 or Jm

x ⊆ L where Jm
x = { xn | n ≥ m },

• union-free if and only if L can be described by a regular expression which is only built by product

and star.

128 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

We remark that monoidal, nilpotent, combinational, definite, ordered, and union-free languages are

regular, whereas non-regular languages of the other types mentioned above exist. Here, we consider

among the commutative, circular, suffix-closed, non-counting, and power-separating languages only

those which are also regular.

Some properties of the languages of the classes mentioned above can be found in [22] (monoids), [12]

(nilpotent languages), [14] (combinational and commutative languages), [19] (definite languages), [13]

and [2] (suffix-closed languages), [23] (ordered languages), [3] (circular languages), [18] (non-counting

languages), [24] (power-separating languages), [1] (union-free languages).

By FIN, MON, NIL, COMB, DEF, SUF, ORD, COMM, CIRC, NC, PS, UF, and REG, we denote the

families of all finite, monoidal, nilpotent, combinational, definite, regular suffix-closed, ordered, regular

commutative, regular circular, regular non-counting, regular power-separating, union-free, and regular,

languages, respectively.

As the set of all families under consideration, we set

F= {FIN,MON,NIL,COMB,DEF,SUF,ORD,COMM,CIRC,NC,PS,UF}

∪{ RLV
n | n ≥ 1 }∪{ RLP

n | n ≥ 1 }∪{ REGZ
n | n ≥ 1 }.

2.4 Hierarchy of subregular families of languages

We present here a hierarchy of the families of the aforementioned set F with respect to the set theoretic

inclusion relation.

REG

PS

NC

ORD

DEF

COMBNIL

FIN

SUFCOMM

CIRC

RLV
1

RLV
2

...

REGZ
2

...

UF

RLP
1

RLP
2

RLP
3

RLP
4

...

REGZ
1

MON

Figure 1: Hierarchy of subregular language families

B. Truthe 129

Theorem 2.1 The inclusion relations presented in Figure 1 hold. An arrow from an entry X to an entry Y

depicts the proper inclusion X ⊂ Y ; if two families are not connected by a directed path, then they are

incomparable.

For proofs and references to proofs of the relations, we refer to [26].

2.5 Contextual grammars

Let F be a family of languages. A contextual grammar with selection in F is a triple

G = (V,S ,A)

where

• V is an alphabet,

• S is a finite set of selection pairs (S,C) where S is a selection language over some subset U of the

alphabet V which belongs to the family F with respect to the alphabet U and where C ⊂V ∗×V ∗

is a finite set of contexts with the condition, for each context (u,v) ∈ C, at least one side is not

empty: uv 6= λ ,

• A is a finite subset of V ∗ (its elements are called axioms).

Let G = (V,S ,A) be a contextual grammar with selection. A direct internal derivation step in G is

defined as follows: a word x derives a word y (written as x =⇒ y) if and only if there are words x1, x2, x3

with x1x2x3 = x and there is a selection pair (S,C) ∈ S such that x2 ∈ S and y = x1ux2vx3 for some

pair (u,v) ∈C. Intuitively, we can only wrap a context (u,v) ∈C around a subword x2 of x if x2 belongs

to the corresponding selection language S.

By =⇒∗, we denote the reflexive and transitive closure of the relation =⇒. The language generated

by G is defined as

L = { z | x =⇒∗ z for some x ∈ A }.

By I C (F), we denote the family of all languages generated internally by contextual grammars with

selection in F . When a contextual grammar works in the internal mode, we call it an internal contextual

grammar.

From previous research, we have the two hierarchies depicted in Figure 2. An arrow from an entry X

to an entry Y depicts the proper inclusion X ⊂ Y ; a solid arrow indicates that the inclusion is proper, the

dashed arrow from I C (ORD) to I C (NC) indicates that it is not known so far whether this inclusion

is proper or whether equality holds. The label at an edge shows in which paper the relation was proved.

If two families X and Y are not connected by a directed path, then X and Y are in most cases in-

comparable. The only exceptions are the relations of the family I C (SUF) to the families I C (ORD)
and I C (NC) where it is not known whether they are incomparable or whether I C (SUF) is a subset

of the other and the relation of the family I C (REGZ
n+1) to I C (RLV

n) for n ≥ 1 where it is not known

whether they are incomparable or whether I C (REGZ
n+1) is a subset of I C (RLV

n).
We note here that in [4, 8, 9, 10, 16, 25, 5] a slightly different definition was used than in [27, 11]

and the present paper. This difference consists in the alphabet of the selection languages. In the early

papers, the selection languages belong to some subfamily F with respect to the whole alphabet V of the

contextual grammar whereas in later papers, the selection languages belong to some subfamily F with

respect to some subalphabet U ⊆ V of the contextual grammar. The language {a}∗{a}5, for instance,

is nilpotent with respect to the alphabet {a} but not with respect to the alphabet {a,b}. For almost all

130 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

I C (REG)
[10]
= I C (UF)

I C (PS)

I C (NC)

I C (ORD)

I C (DEF)

I C (COMB)I C (NIL)

I C (MON)I C (FIN)

I C (SUF) I C (COMM)

I C (CIRC)

[10] [10][10]

[10]
[10] [10]

[10]

[25]

[27]

[27]

[10]

[10]

[27]

I C (REG)

...

I C (RLV
n)

I C (RLV
n−1)

...

I C (RLV
2)

I C (RLV
1)

...

I C (RLP
2n)

I C (RLP
2n−1)

I C (RLP
2n−2)

...

I C (RLP
4)

I C (RLP
3)

I C (RLP
2)

I C (RLP
1)

...

I C (REGZ
n)

I C (REGZ
n−1)

...

I C (REGZ
2)

I C (REGZ
1)

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

[27]

Figure 2: Hierarchies of the language families by internal contextual grammars with selection languages

defined by structural properties (left) or restricted resources (right). An edge label refers to the paper

where the respective inclusion is proved.

proofs in the mentioned papers, there is no difference between using one or the other definition. The

only proof which relies on the definition is that of the relation L(G) /∈ I C (DEF) for

G = (V,{(Suf ({d}∗{b}),{(a,b)}),({a,λ},{(c,d)})},{ecadb})

from [10, Lemma 21] (also used in [25, Theorem 3.5]). However, the proof is valid also with the subal-

phabet definition if one changes the axiom ecadb to the word dcadb.

From the definition follows that the subset relation is preserved under the use of contextual grammars:

if we allow more, we do not obtain less.

Lemma 2.2 For any two language classes X and Y with X ⊆ Y , we have the inclusion

I C (X)⊆ I C (Y).

In the following section, we relate the families of the two hierarchies mentioned above.

B. Truthe 131

3 Results

When we speak about contextual grammars in this section, we mean internal contextual grammars

(whose languages are generated in the internal mode).

First, we present languages which will serve later as witness languages for proper inclusions or

incomparabilities.

Lemma 3.1 Let V = {a,b,c,d,e} be an alphabet, G = (V,{(S1,C1),(S2,C2)},{c}) be a contextual

grammar with

S1 = {b}∗{c}, C1 = {(ab,ab)},
S2 = {aa}∗, C2 = {(d,e)},

and L = L(G) be the laguage generated. Then

L ∈ (I C (RLV
1)∩I C (RLP

2)∩I C (REGZ
2))\I C (PS).

Proof. The selection languages are generated by right-linear grammars with the following rules (and

start symbol S):

S1 : S → bS, S → c,

S2 : S → aaS, S → λ .

Since these rules contain one non-terminal symbol only and two rules each, we obtain

L ∈ I C (RLV
1)∩I C (RLP

2).

Since the words of the language L contain only one letter c (the axiom has no more and the contexts

do not contain c), the language L is also generated if S1 is replaced by the language S′1 = ({b}∗{c})+

(the additional words cannot be used for selection).

The selection languages S′1 and S2 are accepted by automata with two states each whose transition

functions are given in the following diagram:

S′1: z0start z1

c
b

b,c
S2: z0start z1

a

a

Hence, L ∈ I C (REGZ
2).

Now we prove that L cannot be generated by a contextual grammar where all selection languages

are power-separating. Assume the contrary. Then there is a contextual grammar G′ = (V,S ,A) which

also generates the language L and all selection languages belong to the class PS. For each selection

language S occurring in S , there exists a natural number mS ≥ 1 such that for all words x ∈V ∗ it holds

either JmS
x ∩S = /0 or JmS

x ⊆ S with JmS
x = { xn | n ≥ mS }.

Since S is finite, there is also a natural number m ≥ 1 such that

either Jm
x ∩S = /0 or Jm

x ⊆ S with Jm
x = { xn | n ≥ m }

holds for every selection language S. Now let m be such a value.

132 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

Further, let k be the maximal length of the axioms and contexts plus m:

k = max{max{ |w| | w ∈ A },max{ |uv| | (u,v) ∈C,(S,C) ∈ S }}+m.

Consider the word w = da2keb2kc(ab)2k which belongs to the language L but not to the set A of

axioms due to its length. Therefore, it is derived from another word w′ ∈ L by insertion of a context (u,v)
from a selection pair (S,C). We now study the possibilities for u and, depending from this, also for v.

Let w′
1, w′

2, and w′
3 be the subwords of w′ which are separated by the insertion of (u,v):

w′ = w′
1w′

2w′
3 =⇒ w′

1uw′
2vw′

3 = w.

If u = d, then v = e. This case will be continued later.

If u = dan for some n with 1 ≤ n ≤ k, then v contains the letter e and has to bear also n letters b to be

inserted before the letter c but also n letters of a and b to be created after the c which is not possible.

If u = an for some number n with 1 ≤ n ≤ k and w′
1 = dap for some p with 0 ≤ p ≤ 2k− n, then v

has to bear also n letters b to be inserted before the letter c and also n letters of a and b to be created after

the c which is not possible.

It is not possible that u contains the letter e because d and e are inserted at the same time but d cannot

be present in u together with e due to the length of u.

If w′
1 starts with da2ke (if u as a subword of w starts after the letter e), then the word w′ does not

have the correct form (does not belong to the language L which is a contradiction), since the number

of letters a before c is already 2k whereas the number of occurrences of b before c or the number of

occurrences of ab after c is less (since |uv|> 0).

Thus, the only possibility is that (u,v) = (d,e) and w′
2 = a2k. We have 2k >m and, therefore, a2k ∈ Jm

a .

Hence, Jm
a ∩S 6= /0 and Jm

a ⊆ S. Therefore, the word a2k+1 (which belongs to the set Jm
a) also belongs to

the selection language S. The language L also contains the word a2k+1b2k+1c(ab)2k+1. With the same

selection pair (S,C), the word da2k+1eb2k+1c(ab)2k+1 could be derived. But this does not belong to the

language L. This contradiction shows that our assumption was wrong and that L /∈ I C (PS) holds. �

Lemma 3.2 Let L = { cnacmbcn+m | n ≥ 0,m ≥ 0}∪{cnbcna | n ≥ 0}. Then the relation

L ∈ (I C (RLV
1)∩I C (RLP

2)∩I C (REGZ
2))\ (I C (CIRC)∪I C (SUF))

holds.

Proof. Let V = {a,b,c}. The language L is generated by the contextual grammar

G = (V,{({ab,b},{(c,c)})},{ab,ba}).

Since the selection language is finite with two words, it can be generated by a right-linear grammar with

one non-terminal symbol and two rules only. Hence, L ∈ I C (RLV
1)∩I C (RLP

2).
The language L is also generated by the contextual grammar

G = (V,{(V ∗{b},{(c,c)})},{ab,ba}).

with a combinational selection language only. Every combinational language is accepted by a determin-

istic finite automaton with two states (see Theorem 2.1 and Figure 1). Hence, L ∈ I C (REGZ
2).

In [10, Lemma 18], it was shown that the language L can neither be generated by a contextual

grammar with circular filters nor by one with suffix-closed filters. Hence, L /∈ I C (CIRC)∪I C (SUF).
�

B. Truthe 133

Lemma 3.3 Let n ≥ 1 be a natural number and let

An = {a1, . . . ,an}, Bn = {b1, . . . ,bn}, Cn = {c1, . . . ,cn}, Dn = {d1, . . . ,dn},

as well as

Vn = An ∪Bn ∪Cn ∪Dn,

Pn = { (ai,c j) | 1 ≤ i ≤ n,1 ≤ j ≤ n },

Qn = { (bi,d j) | 1 ≤ i ≤ n,1 ≤ j ≤ n },

Gn = (Vn,{(B
∗
n,Pn),(C

∗
n ,Qn)},{ aia bib cic did | 1 ≤ ix ≤ n, x ∈ {a,b,c,d} }),

and Ln = L(Gn). Then the relation Ln ∈ I C (MON)\I C (RLP
n) holds.

Proof. Let n ≥ 1. The selection languages of Gn are monoidal. Thus, Ln ∈ I C (MON).
From [27, Lemma 3.30], we know that L /∈ I C (RLP

n). �

Lemma 3.4 Let V = {a,b} and Ln = { ap0 bap1 bap2 b · · ·apn bap0 bap1 bap2 b · · ·apn | pi ≥ 1, 0 ≤ i ≤ n }
for n ≥ 1. Then

Ln ∈ (I C (COMM)∩I C (ORD))\I C (RLV
n).

Proof. Let n be a natural number with n ≥ 1.

The language Ln is generated by the contextual grammar

Gn = (V,{(Sn,{(a,a)})},{(ab)2n+1a})

with the selection language Sn = ({a}∗{b}{a}∗)n+1. This selection language is commutative; hence, we

have Ln ∈ I C (COMM).
The selection language is accepted by an automaton whose transition function is shown in the fol-

lowing diagram:

z0start z1 · · · zn+1 zn+2

a

b

a

b b

a

b
a,b

This shows that the automaton is ordered (with z0 ≺ z1 ≺ ·· · ≺ zn+2, it holds δ (zi,x) � δ (z j,x) for

any two states zi and z j with zi ≺ z j and any x ∈ {a,b}). Hence, Ln ∈ I C (ORD).
In [27, Lemma 3.29], the relation Ln /∈ I C (RLV

n) was proved. �

Lemma 3.5 Let n ≥ 2 be a natural number, Vn = {a1,a2, . . . ,an} be an alphabet, and Ln be the lan-

guage Ln = {a1a2 . . .an}
+∪V n−1

n . Then the relation Ln ∈ I C (FIN)\I C (REGZ
n) holds.

Proof. Let n ≥ 2. The language Ln is generated by the contextual grammar

Gn = (Vn,{({a1a2 . . .an},{(λ ,a1a2 . . .an)})},V
n−1

n ∪{a1a2 . . .an})

with a finite selection language only. Thus, Ln ∈ I C (FIN).
In [27, Lemma 3.31], it was shown that Ln /∈ I C (REGZ

n). �

In a similar way, the following result is proved.

134 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

Lemma 3.6 Let n ≥ 2 be a natural number, Vn = {a1,a2, . . . ,an} be an alphabet, and Ln be the language

Ln =V≤n−1
n ∪

⋃

k≥1

V kn
n .

Then the relation Ln ∈ I C (COMM)\I C (REGZ
n) holds.

Proof. Let n ≥ 2. The language Ln is generated by the contextual grammar

Gn = (Vn,{(V
n

n ,{ (λ ,w) | w ∈V n
n })},V≤n−1

n ∪V n
n)

with a commutative selection language only. Thus, Ln ∈ I C (COMM).
In any contextual grammar generating the language Ln, every context has a length which is divisible

by n and can only be added to subwords of words of the language which have a length of at least n. Since

every subword of length less than n occurs in the language, the selected subwords must have a length of

at least n. This cannot be checked by a deterministic finite automaton with n states only. �

We now prove the relations between the language families of contextual grammars where the selec-

tion languages are taken from subregular families of languages which have common structural properties

and from families of regular languages defined by restricting the resources needed for generating or ac-

cepting them. We start with families which are defined by the number of production rules necessary for

generating the selection languages.

Lemma 3.7 The language families I C (RLP
1) and I C (FIN) coincide.

Proof. The inclusion I C (RLP
1) ⊆ I C (FIN) follows by Lemma 2.2 from the inclusion RLP

1 ⊆ FIN

(see Theorem 2.1 and also Figure 1).

For the converse inclusion, let m ≥ 1 and

G = (V,{ (Si,Ci) | 1 ≤ i ≤ m },A)

be a contextual grammar where all selection languages Si (1 ≤ i ≤ m) are finite. Then we split up the

selection languages into singleton sets and obtain the contextual grammar

G′ = (V,{ ({w},Ci) | 1 ≤ i ≤ m, w ∈ Si },A)

which generates the same language as G and all selection languages belong to the family RLP
1 . Hence,

also the inclusion I C (FIN)⊆ I C (RLP
1) holds and together we obtain I C (FIN) = I C (RLP

1) �

Lemma 3.8 The language families I C (RLP
n) for n ≥ 2 are incomparable to the families

I C (MON), I C (NIL), I C (COMB), I C (DEF), I C (ORD), I C (NC), I C (PS),

I C (SUF), I C (COMM), and I C (CIRC).

Proof. Due to the inclusion relations stated in Theorem 2.1, depicted in Figure 1, proofs of the following

relations are sufficient:

1. I C (RLP
2)\I C (PS) 6= /0,

2. I C (RLP
2)\I C (CIRC) 6= /0,

3. I C (MON)\I C (RLP
n) 6= /0 for every natural number n with n ≥ 2.

B. Truthe 135

The first relation was proved in Lemma 3.1, the second relation in Lemma 3.2, and the third relation in

Lemma 3.3. �

Regarding the families which are defined by the number of states necessary for accepting the selec-

tion languages, we obtain the following results.

Lemma 3.9 The language families I C (MON) and I C (REGZ
1) coincide.

Proof. This follows from the fact that REGZ
1 = MON ∪{ /0} and that the empty set has no influence as a

selection language. �

Lemma 3.10 The relation I C (COMB)⊂ I C (REGZ
2) holds.

Proof. From Theorem 2.1 (see Figure 1), we know that COMB ⊂ REGZ
2 . By Lemma 2.2, we obtain

that I C (COMB)⊆ I C (REGZ
2) holds. By Lemma 3.1, this inclusion is proper. �

Lemma 3.11 Every language family I C (REGZ
n) where n ≥ 2 is incomparable to each of the families

I C (FIN), I C (NIL), I C (DEF), I C (ORD), I C (NC), and I C (PS).

Proof. Due to the inclusion relations stated in Theorem 2.1, depicted in Figure 1, proofs of the following

relations are sufficient:

1. I C (REGZ
2)\I C (PS) 6= /0,

2. I C (FIN)\I C (REGZ
n) 6= /0 for every n ≥ 2.

The first relation was proved with Lemma 3.1, the second one with Lemma 3.5. �

Lemma 3.12 Every language family I C (REGZ
n) where n ≥ 2 is incomparable to each of the fami-

lies I C (COMM) and I C (CIRC).

Proof. Due to the inclusion relations stated in Theorem 2.1, depicted in Figure 1, proofs of the following

relations are sufficient:

1. I C (REGZ
2)\I C (CIRC) 6= /0,

2. I C (COMM)\I C (REGZ
n) 6= /0 for every n ≥ 2.

The first relation was proved with Lemma 3.2, the second one with Lemma 3.6. �

Regarding the families which are defined by the number of non-terminal symbols necessary for

generating the selection languages, we obtain the following results.

Lemma 3.13 The relation I C (DEF)⊂ I C (RLV
1) holds.

Proof. We first prove the inclusion I C (DEF)⊆ I C (RLV
1).

Let n ≥ 1 and

G = (V,{ (Si,Ci) | 1 ≤ i ≤ n },A)

be a contextual grammar where every selection language can be represented in the form Si = Ai ∪V ∗Bi

with 1 ≤ i ≤ n for finite subsets Ai and Bi of V ∗. The same language L(G) is also generated by the

contextual grammar

G′ = (V,{ (Ai,Ci) | 1 ≤ i ≤ n }∪{ (V ∗Bi,Ci) | 1 ≤ i ≤ n },A).

136 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

Every such selection language Ai and V ∗Bi for 1 ≤ i ≤ n can be generated by a right-linear grammar with

one non-terminal symbol only:

GAi
= ({S},V,{ S → w | w ∈ Ai },S)

for generating the language Ai and

GBi
= ({S},V,{ S → xS | x ∈V }∪{ S → w | w ∈ Bi },S)

for generating the language V ∗Bi. Hence, I C (DEF)⊆ I C (RLV
1).

With Lemma 3.1, it is proved that a language exists in the set I C (RLV
1)\I C (PS). This language

is also a witness language for the properness of the inclusion I C (DEF)⊂ I C (RLV
1). �

Lemma 3.14 Every language family I C (RLV
n) where n ≥ 1 is incomparable to the families

I C (ORD), I C (NC), I C (PS), I C (COMM), and I C (CIRC).

Proof. Due to the inclusion relations stated in Theorem 2.1, depicted in Figure 1, proofs of the following

relations are sufficient:

1. I C (RLV
1)\I C (PS) 6= /0,

2. I C (RLV
1)\I C (CIRC) 6= /0,

3. I C (COMM)\I C (RLV
n) 6= /0 for every n ≥ 1,

4. I C (ORD)\I C (RLV
n) 6= /0 for every n ≥ 1.

The first relation is proved in Lemma 3.1, the second in Lemma 3.2, and the other two in Lemma 3.4. �

The following theorem summarizes the results.

Theorem 3.15 The relations depicted in Figure 3 hold. An arrow from an entry X to an entry Y denotes

the proper inclusion X ⊂ Y . If two families are not connected by a directed path then they are not

necessarily incomparable.

If two families X and Y are not connected by a directed path, then X and Y are in most cases in-

comparable. The only exceptions are the relations of the family I C (SUF) to the families I C (ORD)
and I C (NC), to the families I C (RLV

n) for n ≥ 1, to the families I C (REGZ
n) for n ≥ 2 where it is not

known whether they are incomparable or whether I C (SUF) is a subset of the other and the relation of

the family I C (REGZ
n+1) to I C (RLV

n) for n ≥ 1 where it is not known whether they are incomparable

or whether I C (REGZ
n+1) is a subset of I C (RLV

n).

B. Truthe 137

I C (REG)
[10]
= I C (UF)

I C (PS)

I C (NC)

I C (ORD)

I C (DEF)

I C (RLV
1)

...

I C (COMB)

I C (REGZ
2)

...

I C (NIL)

I C (MON)
3.9
= I C (REGZ

1)

I C (RLP
1)

3.7
= I C (FIN)

I C (SUF)

I C (CIRC)

I C (COMM)
3.10

3.13

Figure 3: Hierarchy of language families by contextual grammars; an edge label refers to the correspond-

ing lemma (where the relation was not already shown in Figure 2). The incomparabilities were proved

in the Lemmas 3.8, 3.11, 3.12 and 3.14.

4 Conclusions and Further Work

In [27], two independent hierarchies have been obtained for each type of contextual grammars, one based

on selection languages defined by structural properties, the other one based on resources. In the present

paper, these hierarchies have been merged for internal contextual grammars.

Some questions remain open:

• Let n ≥ 1. Is there a language Ln ∈ I C (SUF)\I C (RLV
n)?

• Let n ≥ 2. Is there a language Ln ∈ I C (SUF)\I C (REGZ
n) for n ≥ 2?

If the first question is answered affirmatively, then these languages Ln satisfy also Ln /∈ I C (REGZ
n)

since I C (REGZ
n)⊂ I C (RLV

n) for n ≥ 1 (Theorem 2.1, see Figure 1).

If such languages are found, then it is clear that every language family I C (RLV
n) for n ≥ 1 and every

languages family I C (REGZ
n) for n ≥ 2 is incomparable to the family I C (SUF). So far, we only know

that I C (RLV
n) 6⊆ I C (SUF) for n ≥ 1 and that I C (REGZ

n) 6⊆ I C (SUF) for n ≥ 2 (both shown in

Lemma 3.1)

Recently, in [5, 11], strictly locally k-testable languages have been investigated as selection languages

for contextual grammars. Also for the language families defined by those selection languages, it should

be investigated where they are located in the presented hierarchy.

138 Merging two Hierarchies of Internal Contextual Grammars with Subregular Selection

Additionally, other subfamilies of regular languages could be taken into consideration. Recently,

in [6, 7], external contextual grammars have been investigated where the selection languages are ideals or

codes. This reseach could be extended to internal contextual grammars with ideals or codes as selection

languages.

References

[1] J. A. Brzozowski (1962): Regular Expression Techniques for Sequential Circuits. Ph.D. thesis, Princeton

University, Princeton, NJ, USA.

[2] J. A. Brzozowski, G. Jirásková & C. Zou (2014): Quotient complexity of closed languages. Theory of

Computing Systems 54, pp. 277–292, doi:10.1007/s00224-013-9515-7.

[3] Jürgen Dassow (1979): On the Circular Closure of Languages. Elektronische Informationsverarbeitung und

Kybernetik/Journal of Information Processing and Cybernetics 15(1–2), pp. 87–94.

[4] Jürgen Dassow (2005): Contextual grammars with subregular choice. Fundamenta Informaticae 64(1–4),

pp. 109–118.

[5] Jürgen Dassow (2015): Contextual languages with strictly locally testable and star free selection languages.

Analele Universităt,ii Bucures, ti 62, pp. 25–36.

[6] Jürgen Dassow (2018): Grammars with control by ideals and codes. Journal of Automata, Languages and

Combinatorics 23(1–3), pp. 143–164, doi:10.25596/jalc-2018-143.

[7] Jürgen Dassow (2021): Remarks on external contextual grammars with selection. Theoretical Computer

Science 862, pp. 119–129, doi:10.1016/j.tcs.2020.07.028.

[8] Jürgen Dassow, Florin Manea & Bianca Truthe (2011): On Contextual Grammars with Subregular Selection

Languages. In Markus Holzer, Martin Kutrib & Giovanni Pighizzini, editors: Descriptional Complexity of

Formal Systems – 13th International Workshop, DCFS 2011, Gießen/Limburg, Germany, July 25 – 27, 2011.

Proceedings, LNCS 6808, Springer-Verlag, pp. 135–146, doi:10.1007/978-3-642-22600-7_11.

[9] Jürgen Dassow, Florin Manea & Bianca Truthe (2012): On External Contextual Grammars with Subregular

Selection Languages. Theoretical Computer Science 449(1), pp. 64–73, doi:10.1016/j.tcs.2012.04.

008.

[10] Jürgen Dassow, Florin Manea & Bianca Truthe (2012): On Subregular Selection Languages in Internal

Contextual Grammars. Journal of Automata, Languages, and Combinatorics 17(2–4), pp. 145–164, doi:10.

25596/jalc-2012-145.

[11] Jürgen Dassow & Bianca Truthe (2022): On the Generative Capacity of Contextual Grammars with Strictly

Locally Testable Selection Languages. In Henning Bordihn, Géza Horváth & György Vaszil, editors: 12th

International Workshop on Non-Classical Models of Automata and Applications (NCMA 2022), Debrecen,

Hungary, August 26 – 27, 2022. Proceedings, EPTCS 367, Open Publishing Association, pp. 65–80, doi:10.

4204/EPTCS.367.5.

[12] F. Gécseg & I. Peak (1972): Algebraic Theory of Automata. Academiai Kiado, Budapest.

[13] A. Gill & L. T. Kou (1974): Multiple-entry finite automata. Journal of Computer and System Sciences 9(1),

pp. 1–19, doi:10.1016/S0022-0000(74)80034-6.

[14] Ivan M. Havel (1969): The theory of regular events II. Kybernetika 5(6), pp. 520–544.

[15] Sorin Istrail (1978): Gramatici contextuale cu selectiva regulata. Stud. Cerc. Mat. 30, pp. 287–294.

[16] Florin Manea & Bianca Truthe (2012): On Internal Contextual Grammars with Subregular Selection Lan-

guages. In Martin Kutrib, Nelma Moreira & Rogério Reis, editors: Descriptional Complexity of Formal Sys-

tems – 14th International Workshop, DCFS 2012, Braga, Portugal, July 23 – 25, 2012. Proceedings, LNCS

7386, Springer-Verlag, pp. 222–235, doi:10.1007/978-3-642-31623-4_17.

[17] Solomon Marcus (1969): Contextual grammars. Revue Roum. Math. Pures Appl. 14, pp. 1525–1534.

https://doi.org/10.1007/s00224-013-9515-7
https://doi.org/10.25596/jalc-2018-143
https://doi.org/10.1016/j.tcs.2020.07.028
https://doi.org/10.1007/978-3-642-22600-7_11
https://doi.org/10.1016/j.tcs.2012.04.008
https://doi.org/10.1016/j.tcs.2012.04.008
https://doi.org/10.25596/jalc-2012-145
https://doi.org/10.25596/jalc-2012-145
https://doi.org/10.4204/EPTCS.367.5
https://doi.org/10.4204/EPTCS.367.5
https://doi.org/10.1016/S0022-0000(74)80034-6
https://doi.org/10.1007/978-3-642-31623-4_17

B. Truthe 139

[18] Robert McNaughton & Seymour Papert (1971): Counter-free Automata. MIT Press, Cambridge, USA.

[19] M. Perles, M. M. Rabin & E. Shamir (1963): The theory of definite automata. IEEE Trans. Electronic

Computers 12, pp. 233–243, doi:10.1109/PGEC.1963.263534.

[20] Gheorghe Păun (1998): Marcus Contextual Grammars. Kluwer Publ. House, Doordrecht.

[21] Grzegorz Rozenberg & Arto Salomaa, editors (1997): Handbook of Formal Languages. Springer-Verlag,

Berlin.

[22] H. J. Shyr (1991): Free Monoids and Languages. Hon Min Book Co., Taichung, Taiwan.

[23] H. J. Shyr & G. Thierrin (1974): Ordered Automata and Associated Languages. Tankang Journal of Mathe-

matics 5(1), pp. 9–20.

[24] H. J. Shyr & G. Thierrin (1974): Power-Separating Regular Languages. Mathematical Systems Theory 8(1),

pp. 90–95, doi:10.1007/BF01761710.

[25] Bianca Truthe (2014): A Relation Between Definite and Ordered Finite Automata. In Suna Bensch, Rudolf

Freund & Friedrich Otto, editors: Sixth Workshop on Non-Classical Models of Automata and Applications

(NCMA), Kassel, Germany, July 28–29, 2014, Proceedings, books@ocg.at 304, Österreichische Computer

Gesellschaft, pp. 235–247.

[26] Bianca Truthe (2018): Hierarchy of Subregular Language Families. Technical Report, Justus-Liebig-

Universität Giessen, Institut für Informatik, IFIG Research Report 1801.

[27] Bianca Truthe (2021): Generative Capacity of Contextual Grammars with Subregular Selection Languages.

Fundamenta Informaticae 180, pp. 1–28, doi:10.3233/FI-2021-2037.

[28] Bianca Truthe (2023): Merging two Hierarchies of External Contextual Grammars with Subregular Selection.

In Henning Bordihn, Nicholas Tran & György Vaszil, editors: 25th International Conference on Descriptional

Complexity of Formal Systems, DCFS 2023, Potsdam, Germany, July 4–6, 2023, Proceedings, LNCS 13918,

Springer, pp. 169–180, doi:10.1007/978-3-031-34326-1_13.

https://doi.org/10.1109/PGEC.1963.263534
https://doi.org/10.1007/BF01761710
https://doi.org/10.3233/FI-2021-2037
https://doi.org/10.1007/978-3-031-34326-1_13

Rudolf Freund, Benedek Nagy (Eds.): 13th International Workshop on

Non-Classical Models of Automata and Applications (NCMA 2023)

EPTCS 388, 2023, pp. 140–153, doi:10.4204/EPTCS.388.13

© B. van der Merwe

Ordered Context-Free Grammars Revisited

Brink van der Merwe

Department of Computer Science
Stellenbosch University

Stellenbosch, South Africa

abvdm@cs.sun.ac.za

We continue our study of ordered context-free grammars, a grammar formalism that places an order

on the parse trees produced by the corresponding context-free grammar. In particular, we simplify

our previous definition of a derivation of a string for a given ordered context-free grammar, and

present a parsing algorithm, using shared packed parse forests, with time complexity O(n4), where

n is the length of the input string being parsed.

Keywords— Ordered context-free grammars, Unambiguous grammar formalisms, Shared packed parse forests

1 Introduction

Ordered context-free grammars (oCFGs), a grammar formalism introduced in [11], provides an alterna-

tive to parsing expression grammars (PEGs), when requiring an unambiguous grammar formalism. This

formalism has much easier to understand matching semantics compared to PEGs, but this comes at the

price of much worse parsing time complexity. Indeed, the complexity is O(n4) compared to linear, where

n is the length of the input string being parsed. It should be noted that this is not worse than the adaptive

LL(*) algorithm, used in the popular parser generator ANTLR [12]. Ordered context-free grammars are

unambiguous, since we select the least parse tree for a given input string (if possible), based on the order

induced on parse trees by the oCFG formalism.

The matching semantics of oCFGs are more intuitive than PEGs, since an oCFG matches exactly

the same string language as the corresponding context-free grammar (CFG), in contrast to PEGs. We

obtain PEGs from context-free grammars by replacing the choice operator, typically denoted by the pipe

character ‘ ∣ ’, by an ordered choice operator, i.e. the choice operator becomes non-commutative. The

semantics of the ordered choice operator is such that if the first alternative succeeds locally, i.e. if the or-

dered choice lets the current nonterminal consume some substring starting at the current position without

regard for the overall match, the second alternative is never attempted. Specifying when a rule succeeds

locally should be stated with more care – more on this later in the introduction. The oCFG formalism

also makes use of an ordered choice operator, but the emphasis is on overall instead of local success.

Despite the popularity of PEGs as unambiguous grammar formalism, there are some downsides, for ex-

ample, proving that a given PEG matches an intended string language is often complicated. As pointed

out in [9], the influence of PEGs can be illustrated by the fact that despite having been introduced only

twenty years ago, the number of PEG-based parser generators exceeds the number of parser generators

based on any other parsing method.

The unexpected behaviour of PEGs can for example be seen when considering the PEG with S→
aSa/a as the only production, describing the regular language {a2n+1 ∣ n ≥ 0} when replacing the PEG

with the corresponding CFG. Normally, PEGs use the symbol ‘←’ in productions, and not ‘→’, although

we will deviate from this convention. Next, we explain (informally) why this PEG does not match a5,

while matching, for example, a3 and a7. We also discuss this example more formally in Example 2.

http://dx.doi.org/10.4204/EPTCS.388.13

B. van der Merwe 141

Given that S → aSa ∣ a is an example of an unambiguous CFG, we note that the PEG formalism not

only makes a CFG unambiguous, but might also reduce the set of strings being matched. Let’s also

consider S→ aSa ∣ a as an oCFG. In both the PEG and oCFG case, derivations begin by applying the rule

S→ aSa twice, but the PEG then applies S→ aSa a third time, as it considers this rule as being “locally

successful”, since the right-hand side of the rule consumes the 3rd to the 5th ‘a’ (after replacing the S

in aSa with a). But this will cause the 2nd application of S→ aSa to fail. In comparison to PEGs, the

oCFG would select S→ a as the 3rd rule to apply. This ensures that applying S→ aSa is successful as

the 2nd derivation step, and in this way we obtain a successful oCFG derivation of a5. That is, PEGs

select the first locally successful rule, whereas with oCFGs, the first rule which enables overall derivation

success, is selected. As stated before, applying a rule r to rewrite a nonterminal A, is regarded as locally

successful, if by applying r, and keeping on rewriting the nonterminals produced by r, we obtain a string

of terminals which is a prefix of the remainder of the input string. But, in PEGs, the selection later of

locally successful rules in a derivation, applied to nonterminals produced by an earlier rule application

step, has precedence over the success of the earlier selected rule. Thus, a selected rule might fail in PEGs,

since local success preference is given to later applied rules.

The non-commutativity of the choice operator in PEGs can be seen when changing the above example

to S→ a ∣ aSa, and noting that in this case only the input string a is matched. In oCFGs, the operator ‘∣’
is also non-commutative when considering the order on the parse trees produced by an oCFG, but not

when only considering the strings being matched. Of course, given that S→ aSa ∣ a is an unambiguous

CFG, it makes no difference whether this example grammar is considered as a CFG or as an oCFG.

The oCFG formalism is a natural way to generalize Perl-compatible regular expression (PCRE)

matching, to context-free parsing. PCRE matching semantics is used in almost all regular expression

matching libraries. See for example [3] for a discussion on how real-world regex matching semantics

are deeply intertwined with a depth-first backtracking parsing technique. In both PCRE regex matching

and oCFGs, ambiguity is removed in perhaps the most natural generic way, i.e. when having multiple

transition or rule choices, we place and preference on which one should be used, by ordering transitions

and rules respectively.

When considering regular expressions, PEGs correspond to the atomic operator (see [4]), as illus-

trated in the following example. Consider the regular expression r ∶= a∗a, which we translate into a CFG

Gr with productions S → Aa and A→ aA ∣ ε . When using the atomic operator in r to obtain r′, with

r′ ∶= (▷a∗)a, we obtain the corresponding PEG Gr′ with productions S→ Aa and A→ aA / ε . In this

case, (▷a∗) consumes locally as many characters as possible, and thus r′ and G′r′ describe the empty

language. In both regexes and grammars, atomic operators and parsing expressions grammars provides

respectively improved efficiency in matching or parsing, but at the cost of often difficult to understand or

unexpected matching behaviour.

In [12], it is pointed out that the parser generator ANTLR, a top-down parser generator developed by

Terence Parr, uses the order in which rules are specified, as one way of resolving ambiguities. The parser

generator YACC (see [1]) also uses the order of rules to resolve reduce-reduce conflicts. This observation

provides additional motivation for why the oCFG formalism is of interest.

Strictly speaking, we should rather refer to oCFGs, as ordered parse tree context-free grammars,

given, as will be shown in the next section, the order of rules in an oCFG is used to obtain an order on

the parse trees. The terminology “ordered context-free grammars” is also used in the regulated rewriting

community for a related formalism (see for example [6, 8]). In this related formalism, a partial order is

placed on the grammar rules, and a rule is not allowed to be applied to a sentential form if a larger rule is

also applicable to the sentential form. In contrast to PEGs (or oCFGs), this regulated rewriting formalism

determines if a rule is applicable to a sentential form (and that there are no larger applicable rules), and

142 Ordered Context-Free Grammars

not if a rule is both applicable and succeeds locally (or respectively, guantees overall success).

In this paper, we simplify the notion of an oCFG derivation in Section 4, compared to [11], by not

explicitly modelling backtracking. In Section 5, we also consider the complexity of parsing oCFGs, a

question not considered before. Results from [11] required to follow the exposition in this paper, are

stated without proof. The outline of this paper is as follows. The next two sections provide definitions

and elementary results on oCFGs and on PEGs. Then, oCFG derivations are considered, after which we

discuss oCFG parsing by using shared packed parse forests. Finally, we present our conclusions and a

discussion on envisioned future work.

2 Definitions and elementary properties of oCFG

Next, we define oCFGs. In an oCFG, we order all rules with the same nonterminal on the left-hand side,

and then number each of these collections of rules, from one onward. We consider only the leftmost

derivations, and associate a list of integers with each derivation, based on rules used in the derivation,

from left to right. Derivations (and parse trees) can thus be compared and ordered, using the lexico-

graphic ordering of the list of integers associated with a derivation. We also consider a subclass of

oCFGs, where for each string w in the language of the grammar, there is a least derivation (and thus

parse tree) for w. Thus, oCFGs extend CFGs in such a way that the strings accepted, and their corre-

sponding parse trees are the same, but we also have an order on the parse trees.

In the following definition, we define trees, which will mostly be used as parse trees in this paper.

Definition 1. The set of ordered, rooted and ranked trees, over a finite ranked alphabet Γ = ∪∞i=0Γi,

denoted by TΓ, where Γi is the set of alphabet symbols of rank i, is defined inductively as follows:

• if a ∈ Γ0, then a ∈ TΓ;

• if a ∈ Γk and ti ∈ TΓ for 1 ≤ i ≤ k, then a[t1, . . . ,tk] ∈ TΓ.

The height of t ∈ TΓ, denoted ht(t), is defined inductively as follows. We let ht(t) = 0 if t = a ∈ Γ0,

otherwise, if t = a[t1, . . . ,tk], then ht(t) = 1+max(ht(t1), . . . ,ht(tk)).

Next, we define trees referred to as contexts. Using contexts, we can construct a larger tree by

substituting the special symbol ◻, by another tree.

Definition 2. Assume ◻ is a symbol of rank 0 that is not in the ranked alphabet Γ. Denote by CΓ the set

of trees over the ranked alphabet Γ∪{◻}, where each tree has precisely one leaf node labelled by ◻. A

tree in CΓ is referred to as a context.

For t ∈ CΓ and t′ ∈ CΓ∪TΓ, denote by tJt′K ∈ CΓ∪TΓ the tree obtained by replacing the instance of ◻ in

t, by t′.

Now, we are ready to define ordered context-free grammars, which at this stage, looks the same as

CFGs. The way in which we extend CFGs to obtain oCFGs, will become clear once explain how to order

parse trees.

Definition 3. An ordered context-free grammar G is a tuple (N,Σ,P,S), where:

(i) N is a finite set of nonterminals;

(ii) Σ the input alphabet;

(iii) P is the production function and for A ∈N, we have P(A) = (rA
1 , . . . ,r

A
nA
), with rA

i ∈ (N∪Σ)∗;

(iv) S ∈N is the start nonterminal.

B. van der Merwe 143

When P(A)= (rA
1 , . . . ,r

A
nA
), we also use the notation A→ rA

1 ∣⋯ ∣ r
A
nA

. The order of the rA
i , in (rA

1 , . . . ,r
A
nA
),

will play a role in the order of the parse trees, defined later. In results where order is not important, we

will mostly use the terminology CFG, instead of oCFG.

We refer to A→ rA
1 ∣⋯ ∣ r

A
nA

as a production, and to A→ rA
i , for some 1 ≤ i ≤ nA, as a rule. As is

usual in CFGs, we say that for u,v ∈ (N ∪Σ)∗, that u directly yields v, written as u⇒ v, if u = u1Au2 and

v = u1rA
i u2, for some 1 ≤ i ≤ nA. Also, we denote by⇒∗ the reflexive transitive closure of⇒, and by⇒+

the transitive closure of⇒. If S⇒∗ u, for u ∈ (N∪Σ)∗, we refer to u as a sentential form.

A ranked alphabet ΓG (which we will use in parse trees) is associated with an oCFG G as follows.

Denote by ∣v∣ the length of a string v, with the length of the empty string ε taken to be 0. We let Σ∪{ε} be

the elements of rank 0 in ΓG, since these will label the leafs of the parse trees. If P(A)= (rA
1 , . . . ,r

A
nA
), then

define Ai, for 1 ≤ i ≤ nA, to be a symbol of rank max{1, ∣rA
i ∣} in ΓG. We use the symbols with subscripts,

Ai, in parse trees to encode the production choice A→ rA
i . Since rA

i might be equal to ε , we take the rank

of Ai to be max{1, ∣rA
i ∣}, since a node in a parse tree labelled by Ai, will still have a child labelled by ε

when rA
i = ε .

For a tree t, the notation y(t) is used for the yield of t, i.e. the string of non-ε leaf symbols in t,

considered left to right. Thus, to obtain y(t), we delete ε and all symbols of rank greater than zero and

also ‘[’, ‘]’ and ‘,’ in t. In the special case where all leaf symbols are ε , we define y(t) to be ε as well.

Definition 4. For an oCFG G and string w ∈Σ∗, we define the set of parse trees of w, denoted by PG(w),
as all trees over the ranked alphabet ΓG, satisfying the following criteria:

(i) The root is labelled by some Si, 1 ≤ i ≤ nS, where S is the start nonterminal of G;

(ii) y(t) =w;

(iii) The children of a node labelled by Ai, ignoring subscripts of nonterminals, are labelled, in order,

by the symbols in rA
i . As a special case, when ∣rA

i ∣ = 0, a node labelled by Ai will have a single

child leaf labelled by ε .

The string language defined by G, denoted by L(G), is the set of strings w for which PG(w) ≠ ∅.

By LT (G) we denote the set of parse trees of G, which is the set ⋃w∈Σ∗PG(w). We modified the

usual definition of parse trees to make it possible to directly read off the productions used to obtain the

parse tree, by considering the indices of the nonterminal labels used in the parse tree. More precisely,

when doing a pre-order traversal of the non-leaf nodes of a parse tree, the integer subscripts of the

nonterminals describe uniquely (with the subscript of a nonterminal indicating which rule choice, from

a given production, was made for a given nonterminal) the productions used in a left-most derivation to

produce the respective parse tree. Since we know that derivations start with the initial nonterminal S, it is

not required to know both the nonterminals and their respective indices to deduce the productions used,

i.e. the indices are sufficient.

For t ∈LT (G), let n(t) denote the sequence of integers obtained by replacing all symbols Ai in the

representation of t, as used in Definition 1, by i, and deleting all other symbols (i.e. ‘[’, ‘]’, ‘,’ and

terminal leaves) in the representation of t.

Definition 5 (Total order on parse trees). A total order ≺G is defined on LT (G) by letting t1 ≺G t2 when

n(t1) is smaller than n(t2) lexicographically.

When having unit or empty rules, oCFGs might not have well-ordered sets of parse trees for each

given input string, and since this is relevant to ensure that oCFGs are unambiguous grammar formalisms,

we focus on the following two classes of oCFGs.

Definition 6. Let G be any oCFG.

144 Ordered Context-Free Grammars

• We define G to have least parse trees or simply least trees, if for all strings w, PG(w) is either

empty or has a least parse tree.

• We define G to be well-ordered, if for all strings w, the set of trees PG(w) is well-ordered (i.e.

every subset of PG(w) has a least parse tree).

An oCFG having least trees is sufficient to turn oCFGs into an unambiguous grammar formalism by

for each w selecting the least tree in PG(w). The well-ordered property is stronger, but it is decidable

as shown in Theorem 1, in contrast to determining if an oCFG has least trees, which is not decidable

(see [11]).

We can use the order ≺G to define a filter on the set of parse trees of the oCFG G (see [7] for more

on using filters for disambiguation). For a set A, denote by Π(A) the power set of A. Then a function

F ∶Π(LT (G))→Π(LT (G)) is a filter, if for Φ ∈Π(LT (G)), we have F(Φ) ⊆Φ. We define the filter

FG such that FG(Φ) consists of the trees t ∈Φ, such that for no tree t′ ∈Φ (with t′ /= t), we have t′ ≺G t.

Then G having least trees is equivalent to the filter FG being complete, where a filter is complete if it

selects one tree from each non-empty set PG(w).
Instead of using the positive natural numbers, i.e. a totally ordered set, to index each of the rules in a

given production, from 1 onwards, we can index the rules by a partially ordered set. These indices can

then be used in a lexicographic way, to define a partial order on parse trees. In this way, one can support

ordered and unordered choice between rules in a production. Again, we obtain a filter on the set of parse

trees, as before, but not necessarily a complete filter. More than one filter can of course be used to remove

ambiguity, for example in the LR parser YACC, one could have shift-reduce and reduce-reduce conflicts,

where shift-reduce conflicts are resolved by preferring shift over reduce, and only reduce-reduce conflicts

are resolved by using the order in which rules are specified.

Next, we provide a sufficient condition for a grammar G to be well-ordered. In particular, we provide

a necessary and sufficient condition so that all strings w will have finitely many parse trees. We in fact

give a necessary and sufficient condition for the opposite, i.e. a condition to ensure that some strings will

have infinitely many parse trees, which can then be negated. We assume all nonterminals in G are useful.

We define a nonterminal A in G to be useful if a sentential form can be derived from S containing A,

and if a string of terminal symbols can be derived when starting from A. We say a grammar G is cyclic

if for some nonterminal A in G, we have A⇒+ A, with ⇒+ being the transitive closure of ⇒. Being

cyclic is a necessary condition for some strings to have infinitely many parse trees, and conversely, if

each nonterminal in G is useful, then G being cyclic is sufficient for some strings w to have infinitely

many parse trees. We thus obtain the following result, generalizing Lemma 1 in [11]. If in an oCFG G

we have A1⇒ A2⇒ . . .⇒ An, for nonterminals A1, . . . ,An where A1 = An, we say G has a cycle of unit

rules.

Lemma 1. Let G be a CFG with all nonterminals being useful.

1. If G is not cyclic, then PG(w) is finite for all w ∈ Σ∗.

2. If G is cyclic, then some strings will have infinitely many parse trees.

3. If G neither has any ε-rules nor cycles of unit rules, then it is not cyclic.

4. If G neither has any ε-rules nor cycles of unit rules, then it is well-ordered.

Proof. Observe that the only way a given string can have parse trees of unbounded size (and thus in-

finitely many parse trees) is if G is cyclic. Also, conversely, if all nonterminals are useful, then when

we have nonterminals involved in cycles, these nonterminals must appear in some parse trees, and we

B. van der Merwe 145

can repeat these cycles as many times as we want in parse trees, without changing the strings being

parsed. From these observations we obtain (1) and (2). Statement (3) follows from the definition of a

grammar being cyclic, and (4) follows from (1), (3), and the observation that finite ordered sets are in

fact well-ordered.

The previous lemma implies that an oCFG in Chomsky normal form is well-ordered. Thus, the class

of string languages recognized by well-ordered oCFGs, or oCFGs with least parse trees, is equal to the

class of context-free languages.

Example 1. In this example, we give a well-ordered oCFG for arithmetic expressions, with parenthesis

used as usual to indicate precedence. It is also considered how an equivalent grammar could be specified

in the popular parser generator ANTLR (see [13]). We allow addition (+), subtraction (−), multiplication

(∗), division (÷) and exponentiation (ˆ), and the oCFG is constructed in a way to indicate precedence

and associativity of these operators in the parse trees. Left associativity (for +,−,∗,÷) is encoded as

S → SPS ∣ x, P → + ∣ −, and S → ST S ∣ x, T → ∗ ∣ ÷, and right associativity (for ˆ) as S → x ∣ S ˆS. To

reflect precedence in the parse trees, operators with lower precedence are specified first. Putting these

observations together, we obtain the following oCFG:

S→ SPS ∣ ST S ∣ x ∣ (S) ∣ S ˆS, P→ + ∣ −, T → ∗ ∣ ÷

ANTLR can handle (only) direct left recursion by making use of grammar rewriting, and will by

default assume that operators are left associative, unless specified otherwise. In contrast to oCFGs, the

choice between left and right associativity can not be enforced by making use of the order in which rules

are specified, and the order of the placement of a rule having only a terminal (or terminals) in the right-

hand side (for example S→ x), has no influence on the parse tree produced. Also, ANTLR assumes that

rules are specified in the reverse order as used in oCFGs. Thus, the ANTLR equivalent of this grammar

will be:

S→ <assoc=right> S ˆS ∣ (S) ∣ ST S ∣ SPS ∣ x , P→ − ∣ + , T → ÷ ∣ ∗

◇

Observation 1. The arithmetic operator oCFG in Example 1 does produce the correct (to be defined in

the motivation below) least parse trees, but no grammar with single nonterminal does. More broadly,

having various required combinations of precedence and associativity will still require significant gram-

mar rewriting to produce a correct abstract syntax tree (AST).

Motivation. Intuitively, we are seeking grammars which produce least trees which do not misrepresent

the priority and associativity of the operators. More precisely, when replacing the rule S→ (S) with

S→ y, and keeping the other rules as is, we want this new oCFG to produce parse trees reflecting the

correct priority and associativity of operators. When comparing the oCFG without the rule S→ y, with

the new oCFG having this rule, we regard the terminal y in the new oCFG as representing recursively

(note, parenthesized subexpressions might themselves contain more parenthesized subexpressions) the

parse tree of a parenthesized expression (when considering smallest parse trees). Also, in the new oCFG,

we convert the parse trees to ASTs, by replacing S[SP[+]S] with +[SS], and similarly for −,∗,÷, and

repeating this replacement on the two inner S’s in +[SS], and also replacing S[x] with x and S[y] by y.

Also, we replace the y’s inductively by the ASTs of the parenthesized subexpressions they represent. In

these ASTs we now do not allow + or − as the right child of a + or − node, and similar for ∗ and ÷. We

also do not allow ˆ as a left child of a node labelled by ˆ. Additionally, we do not want + or − nodes

below ∗, ÷ or ˆ nodes in the AST, and similarly for ∗ and ÷ nodes below ˆ nodes.

146 Ordered Context-Free Grammars

The grammar in Example 1 can be shown to be correct by induction. Observe that a least tree

will never contain the subtree pattern S1[α ,β ,S1[γ1,γ2,γ3]], for any subtrees α ,β ,γ1,γ2,γ3, as the tree

S1[S1[α ,β ,γ1],γ2,γ3] will necessarily be smaller. This establishes the left-associativity of addition and

subtraction, and correct associativity for multiplication, division and exponentiation can be shown simi-

larly. Precedence is obtained by noting that rules for lower priority operators are specified first, and this

ensures that they then appear higher up in the parse trees and ASTs.

For the second part, observe the role P and T play in the grammar: they make it possible for operators

to have the same precedence. That is, x+ x− x+ x should be parsed as ((x+ x)− x)+ x, treating + and

− as interchangeable from a syntactic structure perspective. Simply inlining the operators, as in S →
S+S ∣ S−S ∣⋯ ∣ x ∣⋯, does not work, as x+x−x+x would produce a least tree describing (x+(x−x))+x.

Reversing + and −, similarly, gives an incorrect tree for x−x+x−x. Although this is not the only grammar

rewriting to consider, we will not provide exhaustively all arguments required. ◇

Observation 2. From the last paragraph in the motivation of the previous observation, we see that one

needs to be cautious when applying some otherwise natural-seeming grammar rewriting. Specifically,

replacing X → γY δ and Y → α ∣ β , by X → γαδ ∣ γβδ , with α ,β ∈ Σ∗, might not preserve the ordering.

More precisely, it is not the case that when taking the smallest parse trees when using the original

grammar X → γY δ , that one can now replace Y [α] and Y [β], by α and β respectively, and then obtain

the smallest parse trees when using the grammar X → γαδ ∣ γβδ .

The next theorem also appears as Theorem 2 in [11], but the proof that follows is significantly more

readable and provides more insight, and also specifies the time complexity of deciding if an oCFG is

well-ordered. One can regard the argument in the proof as analysing the potential cycles that might

appear in the shared parse forests of input strings. If there are no cycles in the parse forest of an input

string, then there are only finitely many parse trees for the given string, but if the parse forest contains

a cycle that creates smaller trees when followed, there will be an infinite set of decreasing parse trees.

Shared packed parse forests are defined and used in Section 5, but the proof of the following theorem

can be followed without any knowledge about parse forests.

Theorem 1. It is decidable, in timeO(p ∣N ∣), where p is the sum of the lengths of right-hand sides of the

productions in P, whether an oCFG G = (N,Σ,P,S) is well-ordered.

Proof. Since we can determine in time O(p ∣N ∣) which nonterminals are useful, and then discard rules

involving these, we may assume that all nonterminals in G are useful. Recall, we refer to a nonterminal

in G as being cyclic if A⇒+A. Also, we define a rule A→ r to be cyclic if A⇒ r⇒∗A. Now, observe

that G is well-ordered if and only if all cyclic rules have the highest possible index (i.e. appear last) in

the production in which they occur, i.e. if A→ rA
1 ∣ . . . ∣ r

A
nA

, then there is at most one possible cyclic rule

amongst the rules A→ rA
i , and if there is one, it is the rule A→ rA

nA
. To see this, first note that if there

are no cyclic rules, then G is well-ordered, since then all strings will have only finitely many parse trees.

Also, if all cyclic rules appear last, i.e. as A→ rA
nA

, then smaller trees are obtained when removing these

cycles, and there are only finitely many parse trees, when not using cycles. Next, note that if we have

a cyclic rule A→ rA
i , with i < nA, then G is not well-ordered. This follows from a pumping argument:

observe that some parse tree containing a node labelled AnA
(at least one exists as A is useful) can in that

case be modified into a smaller (under ≺G) parse tree by instead applying the cyclic rule A→ rA
i in that

position, rather than using a rule from the production for A with a larger index. We then use the cyclic

derivation to produce a new AnA
lower down in the tree. Iterating this process gives rise to an infinite

sequence of smaller trees, violating well-orderedness.

Thus, we can decide whether G is well-ordered by:

B. van der Merwe 147

(i) Computing the nullable nonterminals; the nonterminals in the smallest set M ⊆N∗, such that A ∈M

if and only if there is a rule A→ r with r ∈M∗ (i.e. the Kleene closure of M), and as base case to

this inductive definition, we use M = ∅ and ε ∈M∗;

(ii) Computing the set of cyclic rules; search rules participating in cycles in the graph induced by

having an edge from A ∈N to B ∈N if there is a rule A→ r with r = r′Br′′ for r′,r′′ ∈M∗;

(iii) Checking that cyclic rules only occur last in their respective productions.

Suitably implemented, each of these three steps can be done in time O(p ∣N ∣), where p is the sum of the

lengths of right-hand sides in P.

We conclude this section by providing a bound on the length of derivations producing least oCFG

trees, assuming no ε-rules. First, we recall a related result for CFGs.

Theorem 2 (Thm. 1 in [15]). For a CFG G = (N,Σ,P,S) with no ε-rules, the length of a shortest CFG

derivation for w ∈L(G) is at most (2∣w∣−1)∣N ∣.

Corollary 1. Let G be an oCFG without ε-rules. Then the bound in Theorem 2 also holds for a CFG

derivation of a least tree in G (if a least tree exists for the string w).

Proof. Refer to the proof in [15], and observe that the bound is achieved by eliminating cycles. To see

that the result also applies to all oCFGs with no ε-rules, observe that if a least parse tree exists, it cannot

“contain” a cycle. That is, the least parse tree cannot be such that t = cJc′Jc′′KK, where (i) c′ /= ◻, (ii) c′

and c′′ have the same root label, and (iii) cJc′′K is also a parse tree for the same string, since then, either

cJc′′K or cJc′Jc′Jc′′KKK must be smaller. If cJc′Jc′Jc′′KKK is smaller, then we can keep on repeating the

context c′, and in this way, each time obtain a smaller tree.

Remark 1. If we allow ε-rules in the previous theorem and corollary in the grammar G, then we need to

replace the length of the derivation by the height of a parse tree obtained from a shortest derivation, and

also replace the bound (2∣w∣−1)∣N ∣ by:

max{(2∣w∣−1)∣N ∣+ ∣N ∣, ∣N ∣} =max{(2∣w∣∣N ∣, ∣N ∣} (1)

To see this, first note that we may assume that we consider parse trees obtained from leftmost deriva-

tions of a CFG, not having any cycles in the derivation. Also, it is enough to obtain a result similar to

Theorem 2, since from this theorem, we obtain the corresponding corollary. Next, note that a nontermi-

nal is not repeated in any node to leaf path in a parse tree (obtained from a shortest derivation), from a

nonterminal deriving ε . Thus, in particular, the bound given in (1) holds when w = ε . Next, let G′ be the

grammar obtained from G by applying ε-rule removal (to G) in the standard way, i.e. we replace a rule

of the form A→ r by all possible rules A→ r′, where r′ is obtained from r by deleting some (or none)

of the nonterminals in r from which ε can derived (and we also remove all ε-rules). Now, consider a

parse tree t for a string w /= ε , when using G, and remove from t all subtrees deriving ε , to obtain a tree

t′. Thus, t′ is a parse tree for w when using G′. Now use the previous theorem on G′ and w (note G and

G′ have the same number of nonterminals). We obtain the bound in (1) by noting that the length bound

on a derivation (in Theorem 2 applied to G′) is a height bound on the corresponding parse tree t′ (which

gives us the height bound (2∣w∣−1)∣N ∣ on t′), and then we add back the subtrees deriving ε to t′ to obtain

t. Thus, we obtain the height bound (2∣w∣−1)∣N ∣+ ∣N ∣ for t by adding ∣N ∣ to the height bound for t′. ◇

148 Ordered Context-Free Grammars

3 Parsing expression grammars

In this section, we formally introduce parsing expression grammars, following [5], but restricting what

we allow as parsing expressions, and also assuming that the nonterminal S is the starting expression,

instead of making use of a general parsing expression as starting expression.

Definition 7 (Parsing expressions). A parsing expression is a string of the form e1/e2/ . . ./en, with n ≥ 1,

and ei ∈ (N ∪Σ)∗, where N and Σ are finite sets of nonterminal and terminal symbols respectively.

We refer to “/” as the prioritized choice operator. The set of parsing expressions over N and Σ is

denoted by PE(N,Σ).

Definition 8 (Parsing expression grammars). A parsing expression grammar (PEG) is a tuple G =

(N,Σ,P,S), where N and Σ are finite sets of nonterminal and terminal symbols respectively, P(A) =
(eA

1 , . . . ,e
A
nA
), with eA

i ∈ (N ∪Σ)∗, is the production function, and S the starting expression.

We write A → eA
1 / . . ./e

A
nA

, if P(A) = (eA
1 , . . . ,e

A
nA
), i.e. we interpret P as being a function from N

to PE(N,Σ). Note, we do not use the typical convention for PEGs, where A ← eA
1 / . . ./e

A
nA

denotes

P(A) = (eA
1 , . . . ,e

A
nA
). As in the case of oCFGs, if we have A → eA

1 / . . ./e
A
n , we refer to A → eA

i and

A→ eA
1 / . . ./e

A
n as a rule and production respectively.

Definition 9 (Matching semantics of PEGs). For a PEG G = (N,Σ,R,S), we define a function ↝G∶

PE(G)×Σ∗ → Σ∗ ∪ { f}, where f /∈ (N ∪Σ) denotes failure (↝G will also be used as an infix opera-

tor). If (e,x)↝G y, with y ∈ Σ∗, then parsing succeeds by parsing the prefix y of x, while if (e,x)↝G f ,

then parsing fails. For a,b ∈ Σ,a /= b, with e,e1,e2 ∈ PE(G), and x,x1,x2,y ∈ Σ∗, and o ∈ Σ∗ ∪ { f}, we

define ↝G inductively as follows.

• Empty rule: (ε ,x)↝G ε ;

• Terminal success: (a,ax)↝G a;

• Terminal failure: (a,bx)↝G f ;

• Nonterminal rule: if A→ e and (e,x)↝G o, then (A,x)↝G o;

• Sequence success: if (e1,x1x2y)↝G x1 and (e2,x2y)↝G x2, then

(e1e2,x1x2y)↝G x1x2;

• Sequence failure: if (e1,x1x2)↝G f , or (e1,x1x2)↝G x1 and (e2,x2)↝G f , then (e1e2,x1x2)↝G f ;

• Alternation case 1: if (e1,xy)↝G x, then (e1/e2,xy)↝G x;

• Alternation case 2: if (e1,x)↝G f and (e2,x)↝G o, then (e1/e2,x)↝G o.

Next, we translate (S,w)↝G w′ into a deterministic derivation, using derivation steps denoted by

⇛w, similar to⇒, in the case of CFGs. All derivation steps⇛w for PEGs will also be derivation steps⇒
for the corresponding CFG (where we change prioritized choice, i.e. “/”, into non-deterministic choice,

i.e. “∣”, to go from a PEG to the corresponding CFG), but not necessarily conversely. We have that

(S,w)↝G w′ if and only if S⇛+w w′ (⇛+w denotes the transitive closure of ⇛w), and S⇛+w w′ implies

S⇒+ w′.

Definition 10 (Derivations, languages and parse trees defined by PEGs). A PEG derivation step u⇛w v

(for a PEG G), w.r.t. w ∈ Σ∗, denotes that it is possible to use a rule A→ rA
i (in G) from the production

A→ rA
1 / . . ./r

A
nA

, to replace the left-most nonterminal in the string u ∈ (N ∪Σ)∗ (which thus must be an

A), by rA
i , to produce the string v. Also, if u′ is the prefix of u in Σ∗ to the left of A, we require that

(u′rA
i ,w)↝G u′v′, for some v′ ∈ Σ∗, i.e. (u′rA

i ,w) /↝G f . Additionally (in contrast to left-most derivation

B. van der Merwe 149

steps u⇒ v in CFGs), we require that (u′rA
j ,w)↝G f , for j < i. If S⇛+w w′, with w′ ∈Σ∗, for some w, then

w′ is in the language defined by G, and the (left-most) rule applications in the steps of this derivation (in

order), is used to construct a parse tree for w.

Note that if S⇛+w w′, then w′ is a prefix of w, and S⇛+w′′ w′ for any w′′ that contains w′ as prefix and

is a prefix of w, in particular, S⇛+w′ w′.

Example 2. In this example, we consider the PEG discussed in the introduction with production S→
aSa/a, and show that a5 is not accepted.

We use Definition 10. To see that S⇛a5 aSa⇛a5 a3, we need to show that (aaSa,a5)↝G f , which is

the case since (a2S,a5)↝G a5. This follows by verifying that (S,a3)↝G a3. ◇

4 oCFG derivations

We define in this section oCFG derivations and also show the close relationship between PEG and oCFG

derivations. We obtain oCFG derivations by reformulating left-most CFG derivations to be deterministic

by selecting the first rule choice, from a given production (for a given nonterminal), in the order they

are specified in the oCFG, that will ensure a successful derivation. In our setting, derivations will be

left-most, but by definition also deterministic, in contrast to how CFG derivations are typically defined.

Also, only strings with smallest trees will have finite derivations. This can be seen by using the definition

of a derivation, and also from the definition a smallest parse tree.

Derivations will be done in one of two modes: prefix mode, where parsing a prefix of the input string

is regarded as a success, and full mode, where the complete input string must be parsed. The situation

is similar to typical PCRE-style regular expression matchers, where the matcher can either be forced to

determine if a full match is possible, or be asked to return the first prefix match.

Strictly speaking, we should use a symbol other than ‘⇒’ in oCFG derivations, to distinguish between

CFG and oCFG derivations, and we should also indicate, for which string a derivation is computed, just

as the notation ‘⇛w’ used for PEG derivations, but to keep our notation simple, we will still use ‘⇒’ in

oCFG derivations.

PEGs with left recursion lead to infinite derivations, without producing a parse tree, in contrast to

non-cyclic oCFGs. This is for example the case with the PEG having the production S→ Sa/a. But in

contrast, in non-cyclic oCFGs we have finite derivations. Various ways of extending PEGs to support

left-recursion have been proposed, for example in [16], which is used in the Pegen implementation [2],

but these approaches often lead to unexpected parsing results in corner cases, as is pointed out in the

section on related work in [10]. The time complexity of parsing also becomes quadratic in the length of

the input string being parsed.

Next, we discuss distinctions between parsing with oCFGs, in contrast to when parsing with PEGs.

For PEGs, we can memoize the value False, for pairs (A, i), with A a nonterminal and i a position in the

input string, if parsing a prefix of the remainder of the input string from i, with A, is not possible, and

recomputing this, is never necessary. Also, for PEGs, if ti,A is the parse tree when using A as root, and

starting at a position i in the input string, then if t0,S makes use of A at position i, then t0,S will have ti,A
as substree, and this subtree will be a parse tree for a prefix of the string starting at position i. Thus,

for PEGs, we can also memoize parsing related to successful parsing starting from a given position in

the input string with a given nonterminal. These memoization observations are not applicable to oCFGs,

and they are the main reason why parsing with PEGs (when not having left recursion), can be done in

linear time, in contrast to when parsing with oCFGs. Conceptually, we can regard PEGs as ignoring

the overall sentential form when making rule selections during derivation steps, and only focussing on

150 Ordered Context-Free Grammars

producing locally successful parse trees, when starting from a given position with a given nonterminal,

with preference given to later subderivations being locally successful.

Next, we note, as one would expect, that oCFG derivations produce least parse trees.

Theorem 3. The rules in a derivation of a string w with a least tree over an oCFGs G, applied in order,

in a left-most way, produce the least parse tree of w.

Proof. The result follows directly from the definition of derivations in oCFGs.

In the next section, we consider the complexity of determining an oCFG derivation of a complete

input string, by making use of the shared packed parse forest for the input string.

5 oCFG parsing with shared packed parse forests

In this section, we show how to use shared packed parse forests (SPPFs) to compute oCFG derivations.

First, we argue why considering only the case where the complete input string is parsed, is sufficient to

also handle parsing in prefix mode. To turn prefix mode into a special case of parsing the complete input

string, we note that to simulate prefix mode with full mode, we simply add a new start nonterminal S′

with a rule S′→ SA, where S is the old start nonterminal, and A a new nonterminal not used elsewhere in

the oCFG productions, and for A we add a production to ensure that A can parse any length input string.

In terms of our presentation of SPPFs, we follow [14] closely. An SPPF encodes all parse trees of a

string w, derived from a CFG G, in a graph P, with the root node labelled by (S,0, ∣w∣), the number of

nodes in P at worst cubic in ∣w∣, and the height of a path not following cycles, bounded by O(∣w∣), with

the constant determined by G.

To define the SPPF P for a string w, derived from the CFG G, we first introduce indexed binary

derivation trees. An indexed binary derivation tree (BDT) is constructed from a derivation tree by first

introducing intermediate nodes, so that the tree is binarised from the right. Thus, when a node in a

parse tree has more than two children, we keep the leftmost child as is, but concatenate the labels of

all the other children, to obtain the label of the new right child. In contrast to how BDTs (and SPPFs)

are typically presented, we binarise from the right, instead of from the left, since this corresponds more

closely to how top-down, left-to-right parsing works. As is usually the case, we add to the labels of

nodes, in the BDT, two integers, i and j, which are the left and right positions, in w, of the substring at

their leaves. Also, if (xα , i, j) is the label of a node n in a BDT, with ∣xα ∣ ≥ 2, where x ∈ (N∪Σ), then the

left child of n is labelled by (x, i,k), and the right child by (α ,k, j). Consider for example the CFG with

rules, S→ BAa ∣ bAa, A→ a, B→ b, and the input string baa. Then we have two BDTs, one in which the

root node, labelled by (S,0,3), has a left child (B,0,1), and a right child (Aa,1,3). In the other BDT,

(S,0,3) has left child (b,0,1), and right child (Aa,1,3). Nodes in the BDT labelled by (X , i, j), with

X ∈ (N ∪Σ∪ ε), will be referred to as symbol nodes, and those labelled by (α , i, j), with α ∈ (N ∪Σ)∗,
where ∣α ∣ ≥ 2, as intermediate nodes.

A binarised SPPF is obtained from the set of indexed BDTs for w, by taking all nodes from the

BDTs of w, identifying nodes with the same label, and by adding packed nodes. Non-leaf symbols

nodes and intermediate nodes have one or more packed node children. A symbol node (X , i, j), with X a

nonterminal, has a rule-packed child (X → xβ , i,k, j), with x ∈ (Σ∪N) and β ∈ (Σ∪N)∗, if:

(i) X → xβ is a rule in G;

(ii) There is a symbol node labelled by (x, i,k);

(iii) Either β /= ε and there is a symbol or intermediate node labelled (β ,k, j), or β = ε and k = j.

B. van der Merwe 151

The nodes (x, i,k), and (β ,k, j), if β /= ε , are the children of (X → xβ , i,k, j). An intermediate

node (xβ , i, j) with x ∈ (Σ∪N) and β ∈ (Σ∪N)∗, where ∣β ∣ ≥ 1, has an intermediate packed node child

labelled (xβ , i,k, j), if there are nodes labelled (x, i,k) and (β ,k, j), which are then the children of the

intermediate packed node.

In the example grammar S → BAa ∣ bAa, A → a, B→ b, with input string baa, mentioned above,

the root node (S,0,3) in the SPPF, has two rule-packed nodes, namely (S→ BAa,0,1,3) and also (S→
bAa,0,1,3). The node (S→ BAa,0,1,3) has children (B,0,1) and (Aa,1,3), and (S→ bAa,0,1,3) has

a left child (b,0,1), and share its right child, (Aa,1,3), with the node (S→ BAa,0,1,3).

The SPPF for the input string w, can be constructed in time O(∣w∣3), using for example a generalized

LL parsing algorithm. Also, the packed nodes on their own uniquely determine the symbol and interme-

diate nodes and if we only keep them, we have what is known as the binary-subtree representation (BSR)

of a SPPF.

The string w has infinitely many parse trees, precisely when the SPPF has a cycle. When no cycle is

present, each selection choice of rule-packed nodes, where a unique rule-packed node is selected from

all rule packed node children of a given non-leaf symbol node, and all selected nodes are reachable from

the root node, after removing those not selected, corresponds to a unique parse tree. Once we have made

such a selection of rule-packed nodes, we obtain a parse tree, in which the selected rule-packed nodes,

arranged in the order obtained by doing a pre-order traversal of the SPPF, provide the rules used in the

left-most derivation of the parse tree described by SPPF with selected rule-packed nodes.

If we interpret the grammar S→BAa ∣ bAa, A→ a, B→ b, as an oCFG, then the parse tree for the input

string baa is obtained by selecting the rule-packed node (S→BAa,0,1,3) from the SPPF, and discarding

(S→ bAa,0,1,3).

Example 3. Consider the CFG S→ SS ∣ b, with bbb as input. Then the root node of the SPPF, is (S,0,3),
and this node has the rule-packed nodes (S→ SS,0,1,3) and (S→ SS,0,2,3) as children, which reflect the

fact that we have two parse trees for the input string bbb. Note, in this case, when interpreting the CFG

as an oCFG, it is not immediately clear that the rule-packed node (S→ SS,0,2,3) should be selected, and

(S→ SS,0,1,3) discarded, in order to obtain the oCFG parse tree S1[S1[S2[b],S2[b]],S2[b]], for bbb,

from the parse forest.

Next, consider the SPPF for S → SS ∣ b ∣ ε , and input b. In this case, the root node (S,0,1) has

(S→ SS,0,0,1), (S→ SS,0,1,1) and (S→ b,0,1,1), as packed node children. Note that (S→ SS,0,0,1)
has the symbol node children (S,0,0) and (S,0,1), and thus in this case we have a cycle in the SPPF,

since (S,0,0) has children (S→ SS,0,0,0) and (S→ ε ,0,0,0), and (S→ SS,0,0,0) has two edges back

to (S,0,0). This reflects the fact that b has infinitely many parse trees. ◇

Theorem 4. Assume G is an oCFG. Then an oCFG derivation for a string w can be computed in time

O(∣w∣4).

Proof. First, we assume we have no cycles in the corresponding SPPF. We do a bottom up traversal of

the SPPF, labelling along the way a node with the concatenation of indices of rules used in a left-most

derivation, of the smallest parse tree below it. Thus, when encountering a symbol node with multiple

packed node children, these nodes will have different labels, describing the rules used in a derivation

of the smallest parse tree below them, and then amongst these, we select the packed node, with label

being lexicographically the least. The traversal takes cubic time, and comparing two integer labels to

find lexicographically the required SPPF node to construct the smallest parse tree (in cases where a node

has multiple rule-packed node children), takes time linear in the length of the labels, which is bounded

by the height of the SPPF. This provides a O(h∣w∣3) complexity bound, with h denoting the height of the

152 Ordered Context-Free Grammars

SPPF. The result, for the case when no cycles are present, now follows by observing that h is of order

O(∣w∣).

Now we consider the complication caused by the removed back edges. If any of these add cycles to

the selected parse tree, the argument used in the proof of Theorem 1 can be applied to determine if taking

any of these will lead to a larger parse tree in the order induced by the oCFG, or will lead to an infinite

decreasing sequence of trees, if the cycle is repeatedly taken. This will inform us if the selected tree is

minimal, or if no minimal parse tree exists for the given input string.

Example 4. In this example, we consider S→ SS ∣ b, with input bbb. The root node has packed node

children (S→ SS,0,1,3) and (S→ SS,0,2,3). The node (S→ SS,0,1,3) is labelled by 12122, and (S→
SS,0,2,3) by 11222, with 1 encoding the use of S→ SS and 2, the use of S→ b, in a left-most derivation.

Thus, with (S→ SS,0,1,3) we associate the parse tree obtained with the left-most derivation S⇒ SS⇒
bS⇒ bSS⇒ bbS⇒ bbb. Similarly, with (S→ SS,0,2,3) we associate the parse tree obtained with the

left-most derivation S⇒ SS⇒ SSS⇒ bSS⇒ bbS⇒ bbb. Given that 11222 is lexicographically less than

12122, we select the parse tree with left-most derivation S⇒ SS⇒ SSS⇒ bSS⇒ bbS⇒ bbb. ◇

6 Conclusions and Future Work

We have shown that oCFGs provide a good way to understand the relationship between PEGs and CFGs,

and it has more natural matching semantics than PEGs, but this comes at the price of worse parsing

complexity. Ordered context-free grammars is a natural way in which to extend PCRE regex matching

to an ordered context-free grammar formalism, in which it is possible to talk about the first match or

least parse tree. The natural next step is to build an oCFG parsing tool, which will make it possible to

analyse the effort involved for grammar writers to use the oCFG grammar formalism rather than some of

the other well-known grammar formalisms. This will also make it possible to determine experimentally

if oCFG parsing is fast enough for practical use on large grammars. We are also interested in adding

lookahead predicates, as used in PEGs [5], to oCFGs, and to study the properties of oCFGs with these

extensions, similarly to how Bryan Ford investigated PEGs with these extensions (see [5]). Once this is

added to oCFGs, it is no longer necessary to distinguish between the two modes of parsing, i.e. prefix and

full mode, since full mode can be obtained from prefix mode by using a predicate to specify that the part

of the input string being parsed by the start nonterminal, should not be followed by any character. Future

work also includes a thorough study of which disambiguation can be done with oCFGs and which not,

and a study of which disambiguation mechanisms are available in popular compiler generators, and their

use in sample grammars. We would also like to investigate interesting and useful subclasses of oCFGs

for which parsing can be done in much better time complexity than O(n4), where n is the length of the

input string being parsed.

Acknowledgement

I would like to thank Martin Berglund for reading various versions of this document, and suggesting

improvements.

B. van der Merwe 153

References

[1] Generating a parser using yacc. https://www.ibm.com/docs/en/zos/2.2.0?

topic=tools-generating-parser-using-yacc. Accessed: 2023-04-08.

[2] Pegen. https://github.com/we-like-parsers/pegen. Accessed: 2022-02-28.

[3] Martin Berglund & Brink van der Merwe (2017): On the semantics of regular expression parsing in the wild.

Theor. Comput. Sci. 679, pp. 69–82, doi:10.1016/j.tcs.2016.09.006.

[4] Martin Berglund, Brink van der Merwe, Bruce W. Watson & Nicolaas Weideman (2017): On the Semantics

of Atomic Subgroups in Practical Regular Expressions. In Arnaud Carayol & Cyril Nicaud, editors: Im-

plementation and Application of Automata - 22nd International Conference, CIAA 2017, Marne-la-Vallée,

France, June 27-30, 2017, Proceedings, Lecture Notes in Computer Science 10329, Springer, pp. 14–26,

doi:10.1007/978-3-319-60134-2_2.

[5] Bryan Ford (2004): Parsing expression grammars: a recognition-based syntactic foundation. In Neil D.

Jones & Xavier Leroy, editors: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, ACM, pp. 111–122, doi:10.

1145/964001.964011.

[6] Ivan Fris (1968): Grammars with Partial Ordering of the Rules. Inf. Control. 12(5/6), pp. 415–425, doi:10.

1016/S0019-9958(68)90439-7.

[7] Paul Klint & Eelco Visser (1994): Using Filters for the Disambiguation of Context-free Grammars. In:

Proceedings of the ASMICS Workshop on Parsing Theory, Tech. Rep. 126–1994, Dipartimento di Scienze

dell’Informazione, Università di Milano, Milano, Italy, pp. 1–20.

[8] Timo Lepistö (1973): On Ordered Context-Free Grammars. Inf. Control. 22(1), pp. 56–68, doi:10.1016/

S0019-9958(73)90478-6.

[9] Bruno Loff, Nelma Moreira & Rogério Reis (2020): The computational power of parsing expression gram-

mars. J. Comput. Syst. Sci. 111, pp. 1–21, doi:10.1016/j.jcss.2020.01.001.

[10] Sérgio Medeiros, Fabio Mascarenhas & Roberto Ierusalimschy (2014): Left recursion in Parsing Expression

Grammars. Sci. Comput. Program. 96, pp. 177–190, doi:10.1016/j.scico.2014.01.013.

[11] Brink van der Merwe & Martin Berglund (2022): Ordered Context-Free Grammars. In Pascal Caron & Lu-

dovic Mignot, editors: Implementation and Application of Automata - 26th International Conference, CIAA

2022, Lecture Notes in Computer Science 13266, Springer, pp. 53–66, doi:10.1007/978-3-031-07469-1_

4.

[12] Terence Parr & Kathleen Fisher (2011): LL(*): the foundation of the ANTLR parser generator. In Mary W.

Hall & David A. Padua, editors: Proceedings of the 32nd ACM SIGPLAN Conference on Programming

Language Design and Implementation, pp. 425–436, doi:10.1145/1993498.1993548.

[13] Terence Parr, Sam Harwell & Kathleen Fisher (2014): Adaptive LL(*) parsing: the power of dynamic anal-

ysis. In Andrew P. Black & Todd D. Millstein, editors: Proceedings of the ACM International Conference

on Object Oriented Programming Systems Languages & Applications, ACM, pp. 579–598, doi:10.1145/

2660193.2660202.

[14] Elizabeth Scott, Adrian Johnstone & L. Thomas van Binsbergen (2019): Derivation representation using

binary subtree sets. Sci. Comput. Program. 175, pp. 63–84, doi:10.1016/j.scico.2019.01.008.

[15] Seppo Sippu (1982): Derivational Complexity of Context-Free Grammars. Inf. Control. 53(1/2), pp. 52–65,

doi:10.1016/S0019-9958(82)91111-1.

[16] Alessandro Warth, James R. Douglass & Todd D. Millstein (2008): Packrat parsers can support left recur-

sion. In Robert Glück & Oege de Moor, editors: Proceedings of the ACM SIGPLAN Symposium on Partial

Evaluation and Semantics-based Program Manipulation, pp. 103–110, doi:10.1145/1328408.1328424.

https://www.ibm.com/docs/en/zos/2.2.0?topic=tools-generating-parser-using-yacc
https://www.ibm.com/docs/en/zos/2.2.0?topic=tools-generating-parser-using-yacc
https://github.com/we-like-parsers/pegen
https://doi.org/10.1016/j.tcs.2016.09.006
https://doi.org/10.1007/978-3-319-60134-2_2
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/964001.964011
https://doi.org/10.1016/S0019-9958(68)90439-7
https://doi.org/10.1016/S0019-9958(68)90439-7
https://doi.org/10.1016/S0019-9958(73)90478-6
https://doi.org/10.1016/S0019-9958(73)90478-6
https://doi.org/10.1016/j.jcss.2020.01.001
https://doi.org/10.1016/j.scico.2014.01.013
https://doi.org/10.1007/978-3-031-07469-1_4
https://doi.org/10.1007/978-3-031-07469-1_4
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1016/j.scico.2019.01.008
https://doi.org/10.1016/S0019-9958(82)91111-1
https://doi.org/10.1145/1328408.1328424

	Introduction
	Graph Expansion Grammar
	Lovelace
	Conclusion and Future Work
	Introduction
	Notation
	Tokenizing Semantics
	Tokenizing Online with Finite Lookahead
	Conclusions and Future Work
	Introduction
	Preliminaries
	CFGs and degree of ambiguity

	Signed grammars
	Examples of languages generated by signed grammars

	Properties of languages generated by signed grammars
	Partial commutativity
	Conclusions and a conjecture
	Introduction
	Preliminaries and Definitions
	Results
	Introduction
	Definitions and Preliminaries
	Computational Capacity
	Basic Closure Properties
	Future Work
	1 Introduction
	2 Preliminaries
	2.1 Formal Languages
	2.2 Linear Algebra
	2.3 Quantum Finite State Automata

	3 Isolated Cut Point lqfas for Words Longer than T
	4 Isolated Cut Point lqfas for Unary Regular Languages
	5 Conclusions
	Introduction
	Preliminaries
	Constituent tree automata
	Weighted RTG-based language models and the M-monoid parsing problem
	Constituency parsing as an M-monoid parsing problem
	The constituent tree algebra and the constituent tree yield algebra
	The wRTG-LM for constituency parsing
	Constituency parsing is an instance of the M-monoid parsing problem

	Applicability of the M-monoid parsing algorithm
	Future work
	Introduction
	Preliminaries
	Forgetting 1-Limited Automata vs. One-Way Automata
	Deterministic Forgetting 1-Limited Automata vs. One-Way Automata
	Forgetting 1-Limited vs. Two-Way Automata
	Conclusion
	Introduction
	Definition
	Transformation to one-way
	Lower bound on the number of states
	Optimal partition of n in F(n) and the logarithmic asymptotics of F(n)
	A more general definition
	Conclusion
	Introduction
	Preliminaries
	Languages, grammars, automata
	Resources restricted languages
	Subregular language families based on the structure
	Hierarchy of subregular families of languages
	Contextual grammars

	Results
	Conclusions and Further Work
	Introduction
	Definitions and elementary properties of oCFG
	Parsing expression grammars
	oCFG derivations
	oCFG parsing with shared packed parse forests
	Conclusions and Future Work

