
EPTCS 399

Proceedings of the

Sixth Workshop on

Models for Formal Analysis of Real

Systems

Luxembourg City, Luxembourg, 6th April 2024

Edited by: Frédéric Lang and Matthias Volk

Published: 27th March 2024

DOI: 10.4204/EPTCS.399

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iii

Invited Presentation: Signal-Based Temporal Properties for Cyber-Physical Systems:

Specification, Monitoring, and Diagnostics . 1

Domenico Bianculli

Invited Presentation: Validating Traces of Distributed Programs against High-Level Specifications 3

Stephan Merz

Invited Presentation: Debugging Embedded Systems Requirements with STIMULUS 5

Bertrand Jeannet

Modelling the Raft Distributed Consensus Protocol in mCRL2. 7

Parth Bora, Pham Duc Minh and Tim A.C. Willemse

Four Formal Models of IEEE 1394 Link Layer . 21

Hubert Garavel and Bas Luttik

Formally Modelling the Rijkswaterstaat Tunnel Control Systems in a Constrained Industrial

Environment . 101

Kevin H.J. Jilissen, Peter Dieleman and Jan Friso Groote

Testing Resource Isolation for System-on-Chip Architectures . 129

Philippe Ledent, Radu Mateescu and Wendelin Serwe

Formal Verification of Consistency for Systems with Redundant Controllers . 169

Bjarne Johansson, Bahman Pourvatan, Zahra Moezkarimi, Alessandro Papadopoulos and

Marjan Sirjani

Sliced Online Model Checking for Optimizing the Beam Scheduling Problem in Robotic Radiation

Therapy . 193

Lars Beckers, Stefan Gerlach, Ole Lübke, Alexander Schlaefer and Sibylle Schupp

F. Lang, M. Volk (Eds):

Models for Formal Analysis of Real Systems (MARS 2024)

EPTCS 399, 2024, pp. iii–iv, doi:10.4204/EPTCS.399.0

Preface

This volume contains the proceedings of MARS 2024, the sixth workshop on Models for Formal

Analysis of Real Systems, held on April 6, 2024 in Luxembourg City, Luxembourg, as part of ETAPS

2024, the European Joint Conferences on Theory and Practice of Software.

The MARS workshop series addresses the formal modelling of realistic systems. Making a formal

model of a system is a necessary prerequisite for its formal analysis and for formal verification of its

correctness.

To show the applicability of tools and techniques for verification and analysis, toy examples or tiny

case studies are typically presented in research papers. Since the theory needs to be developed first, this

approach is reasonable. However, to show that a developed approach actually scales to real systems,

large case studies are essential. The development of formal models of real systems usually requires

a perfect understanding of informal descriptions of the system —sometimes found in RFCs or other

standard documents— which are usually just written in English. Based on the type of system, an adequate

specification formalism needs to be chosen, and the informal specification needs to be translated into it.

Examples for such formalisms include process and program algebra, Petri nets, variations of automata, as

well as timed, stochastic and probabilistic extensions of these formalisms. Abstraction from unimportant

details then yields an accurate, formal model of the real system.

The process of developing a detailed and accurate model usually takes a considerable amount of

time, often months or years; without even starting a formal analysis. When publishing the results on a

formal analysis in a scientific paper, details of the model usually have to be skipped due to lack of space,

and often the lessons learnt from modelling are not discussed since they are not the main focus of the

paper.

The MARS workshops aim at discussing exactly these unmentioned lessons. Examples are:

• Which formalism is chosen, and why?

• Which abstractions have to be made and why?

• How are important characteristics of the system modelled?

• Were there any complications while modelling the system?

• Which measures were taken to guarantee the accuracy of the model?

MARS emphasises modelling over verification. In particular, we invited papers that present full

models of real systems, which may lay the basis for future comparison and analysis. The workshop thus

intends to bring together researchers from different communities that all aim at verifying real systems

and are developing formal models for such systems. An aim of the workshop is to present different

modelling approaches and discuss pros and cons for each of them.

Full specifications of the contributed models are available online at the MARS Repository (http://

mars-workshop.org/repository.html) —often including executable models— so that their quality

can be evaluated. Alternative formal descriptions are encouraged, which should foster the development

of improved specification formalisms.

The MARS 2024 workshop included talks by three invited speakers: Domenico Bianculli (University

of Luxembourg, Luxembourg) presented work on runtime verification of signal-based temporal proper-

ties for cyber-physical systems; Stephan Merz (University of Lorraine, CNRS, Inria, LORIA, Nancy,

https://dx.doi.org/10.4204/EPTCS.399.0
http://mars-workshop.org/repository.html
http://mars-workshop.org/repository.html

iv Preface

France) presented work on the validation of traces of distributed programs against high-level specifi-

cations; and Bertrand Jeannet (Dassault Systèmes, France) presented work on the STIMULUS tool,

dedicated to the early debugging and validation of functional real-time systems requirements.

The body of this volume contains six contributions. The submitted papers were carefully refereed by

at least three members of the programme committee. The topics include:

• a model of the the Raft distributed consensus protocol and its properties in the language mCRL2,

• a comparison of formal models of the IEEE 1394 link layer written in the languages muCRL,

mCRL2, and LNT,

• models of the Rijkswaterstaat tunnel control systems in mCRL2 and Dezyne,

• a comparison of an industrial (based on the PSS standard) and an academic (based on conformance

testing and LNT) approaches to ensure resource isolation in hardware,

• a study of a system of controllers with redundancy modelled using the language Timed Rebecca

and verified using the Afra model checker,

• optimization of the Beam Scheduling problem in robotic radiation therapy, by online model check-

ing with the tool Uppaal.

We would like to thank the program committee members:

• Arnd Hartmanns (University of Twente, The Netherlands)

• John Hatcliff (Kansas State University, USA)

• Frédéric Lang (INRIA Grenoble Rhône-Alpes, France, co-chair)

• Lina Marsso (University of Toronto, Canada)

• Sjouke Mauw (University of Luxembourg, Luxembourg)

• Franco Mazzanti (ISTI-CNR, Italy)

• Dave Parker (University of Oxford, UK)

• Anne Remke (WWU Münster, Germany)

• Marjan Sirjani (Mälardalen University, Sweden)

• Matthias Volk (TU Eindhoven, The Netherlands, co-chair)

We are also grateful to the following reviewers:

• Sergiu Bursuc

• Zahra Moezkarimi

We wish to express our gratitude to the authors who submitted papers, the speakers, and the invited

speakers. Thanks are also due to the EasyChair organisation for supporting the various tasks related to

the selection of the contributions and also EPTCS and arXiv for publishing and hosting the proceedings.

Frédéric Lang and Matthias Volk

F. Lang, M. Volk (Eds):

Models for Formal Analysis of Real Systems (MARS 2024)

EPTCS 399, 2024, pp. 1–1, doi:10.4204/EPTCS.399.1

Signal-Based Temporal Properties for Cyber-Physical

Systems: Specification, Monitoring, and Diagnostics

Domenico Bianculli

University of Luxembourg

domenico.bianculli@uni.lu

Run-time verification (RV) is an analysis technique that focuses on observing the execution of a

system to check its expected behavior against some specification. It is used for software verification and

validation activities, such as operationalizing test oracles and defining run-time monitors.

The three main components of an effective RV approach are: i) a specification language allowing

users to formally express the system requirements to be checked; ii) a monitoring algorithm that checks

a system execution trace against the property specifications and yields a verdict indicating whether the

input traces satisfies the property being checked; iii) a diagnostics algorithm that explains the cause of a

requirement violation, in case of a negative verdict.

In this talk, I will review these three aspects taking into account the perspective of signal-based

temporal properties for cyber-physical systems and will report on the application of the proposed formal

methods in the context of collaborative research projects with industrial partners.

http://dx.doi.org/10.4204/EPTCS.399.1

F. Lang, M. Volk (Eds):

Models for Formal Analysis of Real Systems (MARS 2024)

EPTCS 399, 2024, pp. 3–3, doi:10.4204/EPTCS.399.2

Validating Traces of Distributed Programs against

High-Level Specifications

Stephan Merz

University of Lorraine, CNRS, Inria, LORIA, Nancy, France

stephan.merz@inria.fr

This talk presents joint work with Horatiu Cirstea, Benjamin Loillier, and Markus Kuppe.

TLA+ is widely used for describing and verifying distributed algorithms at a high level of abstraction.

We present ongoing work on validating traces of distributed programs with respect to TLA+ specifica-

tions. This work is supported by a library for instrumenting processes in order to log the values of

variables of the TLA+ specification as well as informations about the execution of events. After merging

the logs of individual processes, a trace of the distributed execution is obtained, and the TLA+ model

checker is used to check if this trace corresponds to a prefix of an execution allowed by the TLA+ speci-

fication.

Our experience with the approach has shown that although it cannot establish the correctness of

an implementation, it is very effective for detecting discrepancies between executions of the distributed

program and the high-level specification. Our framework requires neither the complete state of the TLA+

specification nor all events to be represented in the trace because we rely on the model checker to resolve

potential non-determinism, and we discuss tradeoffs between precision of tracing and complexity of

model checking.

http://dx.doi.org/10.4204/EPTCS.399.2

F. Lang, M. Volk (Eds):

Models for Formal Analysis of Real Systems (MARS 2024)

EPTCS 399, 2024, pp. 5–5, doi:10.4204/EPTCS.399.3

Debugging Embedded Systems Requirements with

STIMULUS

Bertrand Jeannet

Dassault Systèmes

bertrand.jeannet@3ds.com

STIMULUS is an application dedicated to the early debugging and validation of functional real-

time systems requirements, that has been developed in the start-up Argosim and since 2019 in Dassault

Systèmes, and that addresses safety-critical embedded systems (transportation, aerospace, energy, etc.).

It provides a high-level language to express textual yet formal requirements, and a solver-driven simu-

lation engine to generate and analyze execution traces that satisfy these requirements. Visualizing what

systems can do enables system architects to discover ambiguous, incorrect, missing or conflicting re-

quirements before the design begins.

We first present the scientific foundations of STIMULUS, which is based on a constraint synchronous

programming language, in which the data-flow equations of Lustre and Lucid Synchrone languages are

generalized to data-flow constraints relating several signals.

We then demonstrate the use of STIMULUS on the specification of automatic headlights from the

automotive industry. We show how this unique simulation technique enables to discover and to fix

ambiguous and conflicting requirements, resulting in a clear and executable specification that can be

shared among engineers.

http://dx.doi.org/10.4204/EPTCS.399.3

F. Lang, M. Volk (Eds):

Models for Formal Analysis of Real Systems (MARS 2024)

EPTCS 399, 2024, pp. 7–20, doi:10.4204/EPTCS.399.4

© Parth Bora, Pham Duc Minh, Tim Willemse

This work is licensed under the

Creative Commons Attribution License.

Modelling the Raft Distributed Consensus Protocol in

mCRL2

Parth Bora Pham Duc Minh Tim A.C. Willemse

Department of Mathematics and Computer Science
Eindhoven University of Technology

Eindhoven, The Netherlands

p.bora@student.tue.nl

minh.pham@ximuis.eu

T.A.C.Willemse@tue.nl

The consensus problem is a fundamental problem in distributed systems. It involves a set of ac-

tors, or entities, that need to agree on some values or decisions. The Raft algorithm is a solution to

the consensus problem that has gained widespread popularity as an easy-to-understand and imple-

ment alternative to Lamport’s Paxos algorithm. In this paper we discuss a formalisation of the Raft

algorithm and its associated correctness properties in the mCRL2 specification language.

1 Introduction

Consensus is the process of reaching an agreement on a particular issue or decision among a group of

entities or individuals. In the context of distributed systems, reaching consensus is challenging, in par-

ticular because the entities are scattered across the network and need to use communication to reach

agreement on decisions. Naive solutions to consensus may then lead to faulty decisions, mainly due to

communication being asynchronous and potentially unreliable, or entities that may disappear and reap-

pear. Consensus is a fundamental ingredient for guaranteeing security and reliability of, e.g., blockchains

and distributed ledgers.

The Paxos algorithm [8], devised by Lamport, and its variations, is one of the most well-known

solutions to the consensus protocol. While the algorithm has been studied widely, it is considered to be

rather involved and hard to understand and implement. Consequently, there have been many attempts to

find alternative, simpler solutions to the consensus problem. The Raft algorithm [12, 11], proposed by

Ongaro and Ousterhout in 2014, is one such alternative. It is generally regarded to be simpler because

it breaks down the process of reaching consensus in smaller subproblems. Raft is used in, e.g., etcd,

a popular key-value store for coordinating distributed systems, facilitating service discovery, etc. The

Raft algorithm is based on a leader-follower model, where a leader is elected among the entities to

make decisions and propagate them to other entities. The other entities follow the leader’s decisions and

thereby reach consensus.

The Raft algorithm achieves fault tolerance using state machine replication. This is a technique for

implementing a fault-tolerant service, which uses replication of servers and which coordinates the inter-

actions between clients and server replicas. Each server hosts a state machine that generates an identical

copy of a particular state [13], thus ensuring that in the event of (a limited number of) server failures,

the system remains operational. Typically, state machine replication involves log replication. In the Raft

algorithm, the log is simply a sequence of commands with some minimal additional information, which

it keeps consistent. The logs are maintained by every server in the network and executed sequentially by

these, and their uniformity guarantees that servers processes the same commands in the same order.

http://dx.doi.org/10.4204/EPTCS.399.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

8 Modeling the Raft Distributed Consensus Protocol in mCRL2

Given the practical significance of the consensus problem and the complexity of the solutions to the

problem, found in the literature, formalising and analysing these solutions is highly relevant. The Raft

algorithm has been modelled and verified in TLA+ [9] by Ongaro 1, one of the authors proposing the Raft

algorithm. This specification contained a couple of minor mistakes which have been fixed, as pointed out

by Evrard in [4], where an LNT [5] model of Raft is discussed. An earlier version of the LNT model has

been used in the Model Checking contest [7] in 2015, where a few generic requirements were analysed.

Another model of the Raft algorithm was presented in [14]. They used the Verdi framework to formally

prove the State Machine Safety property, i.e., the property that logs that appear in each node must provide

a uniform, consistent view on the state of the servers.

In this paper, we discuss a model written in the mCRL2 language [6] and the formalisation of several

properties coined in [12, 11]. The mCRL2 language is a process algebra with data; its process language

is based on the algebra of communicating processes (ACP), whereas its data language is based on the

theory of abstract data types. The language is supported by the mCRL2 tool set [1], which allows

for generating and visualising state spaces, and which can be used to verify properties expressed in

the modal µ-calculus with data. While both mCRL2 and LNT are process algebras, their syntax is

quite different, and modelling in both languages requires quite a different style. We discuss the design

decisions underlying our model of the Raft algorithm, and present modal µ-calculus formalisations of

the properties.

Outline. We discuss our mCRL2 model of the Raft algorithm in Section 2. The mCRL2 language is

introduced and explained using snippets of our model. For a full explanation of the language, we refer

to [6]. In Section 3, we describe the properties that we formalised in the modal µ-calculus. We discuss

some of our findings in Section 4, and end with conclusions and future work in Section 5. Full details of

the model and the properties can be found in the accompanying artefact in the Mars repository2 .

2 Modelling RAFT in mCRL2

Our mCRL2 model of the Raft Algorithm focusses on the behaviour of the nodes in the network. For our

models, we draw inspiration from the TLA+ [11] and LNT [4] specifications of the protocol and, like

the LNT and TLA+ specifications, focus on leader election and log replication as these form the core of

the protocol. Features such as cluster membership changes and log compaction have not been modelled

for simplicity’s sake and in the interest of keeping the state space minimal. We additionally model a

communication infrastructure that facilitates reliable communication between nodes. Our network model

can be modified easily to also capture unreliable communication, but this is not our initial focus. The

nodes process commands that can be sent by clients; in our model, the latter is a simple process that has

no other purpose than to send commands.

All actors are modelled as dedicated (parameterised) processes in mCRL2: we have Node processes,

a Network process and a Client process. The actors run in parallel and can synchronise and exchange

data by executing communicating actions. In mCRL2, this is defined by a top-level process such as:

init allow({sendRPC, receiveRPC, clientCommand, advanceCommitIndex, timeout, sendRPCset ...},

comm ({ sendClientRequest | recvClientRequest -> clientCommand,

sendToNetwork | receiveFromServer -> sendRPC,

sendToServer | receiveFromNetwork -> receiveRPC,

sendToNetworkSet | receiveFromServerSet -> sendRPCset },

1https://github.com/ongardie/raft.tla
2http://mars-workshop.org/repository.html

https://github.com/ongardie/raft.tla
http://mars-workshop.org/repository.html

Parth Bora, Pham Duc Minh, Tim Willemse 9

Client(1) || Node(...) || Node(...) || ... || HealthyNetwork(...)

)

);

Parallelism is modelled by means of the parallel operator ‘||’; which actions communicate is de-

clared using the communication operator ‘comm’, by specifying which pairs of action labels can engage

in a communication. For instance, sendToNetwork | receiveFromServer -> sendRPC specifies that

when a parameterised action with action label sendToNetwork and a parameterised action with action

label receiveFromServer can happen simultaneously (provided their parameters match), this results in

a sendRPC action carrying the parameters of the individual actions. By disallowing actions that are meant

to communicate, synchronisation is enforced. This is achieved by means of the ‘allow’ operator, which

blocks any action other than the ones for which an action label is specified in the set of allowed action

labels. For instance, by including the sendRPC action label, every action with an sendToNetwork action

label is blocked and only actions with an sendRPC action label are allowed.

A Raft cluster may have any number of Nodes. Analysing our model using simulation (i.e., stepping

through the model interactively) or verification (e.g., computing the validity of requirements fully auto-

matically) to assess the correctness of (our model of) the algorithm, however, requires a fixed, concrete

number of servers. Since the behaviour of the Raft algorithm crucially depends on the number of Nodes

in the network, we model this number by means of a constant that all our processes can refer to. This is

done as follows:

map NumberOfServers: Nat;

eqn NumberOfServers = 3;

This declares a constant NumberOfServers and sets it to 3; this constant should be the same as the

number of Node processes running in parallel in the top-level process. Our model contains a few other

constants which can be set similarly.

In the remainder of this section, we describe the Client process and the Network process (Sec-

tion 2.1) and the Node process (Section 2.2).

2.1 The Raft Environment

Clients of the Raft algorithm can use it to store data and request commands that are to be executed on

multiple interconnected Nodes. These Nodes operate independently and may hold different copies of

the same data, with the consistency thereof being guaranteed by the Raft algorithm. For the purpose of

analysing the algorithm, we introduce a simple client model: only a single client and, since we are not

interested in the actual data or the commands issued by this client, we use unique ID’s, modelled by

natural numbers Nat, to abstract from the different messages of the client:

proc Client(clientCommandID: Nat) =

(clientCommandID <= NumberOfClientRequests) ->

sendClientRequest(clientCommandID) . Client(clientCommandID+1);

This defines a process Client that can be instantiated by passing a positive number as argument. As-

suming that the constant NumberOfClientRequests is 3, process Client(1) then executes the action

sendClientRequest(1), followed by sendClientRequest(2) and finally sendClientRequest(3), af-

ter which the process is unable to perform any further actions. This behaviour is described compactly

using the sequential composition operator ‘.’ of mCRL2, and through the use of recursion.

We assume that communication between the client and the Raft cluster is synchronous, unlike the

communication among the different nodes in a Raft cluster, which proceeds asynchronously. Raft claims

10 Modeling the Raft Distributed Consensus Protocol in mCRL2

to be correct even when network communication between nodes is unreliable, including delays, parti-

tions, and packet loss, duplication, and reordering. As mentioned earlier, communication in our model

of Raft happens via the communication of actions between the various Node processes and the Network

process. If node A wants to send a message to node B, it sends the message to the network, which then

sends it to node B. The network layer is introduced as an intermediary in message exchange between

nodes to model message reordering. While we do not analyse the Raft algorithm in the presence of mes-

sage loss or duplication, our network model can easily be modified to accommodate for these. Messages

exchanged between nodes are essentially Remote Procedure Calls (RPCs). Raft utilises two distinct

types of RPCs: vote request/response RPCs and append entries request/response RPCs.

sort RPC = struct RequestVoteRequest(currentTermRPC: Nat, endLogIndex: Nat, endLogTerm: Nat)

?isRequestVoteRequest

| RequestVoteResponse(currentTermRPC: Nat, isVoteGranted: Bool)

?isRequestVoteResponse

| ...

We model the messages exchanged between a node and a network using the data type NetworkPayload,

which is a triple consisting of the ID of the sending node, a command of type RPC and the ID of the

receiving node:

sort NetworkPayload = struct Message(senderID: Nat, rpc: RPC, receiverID: Nat);

Our network model allows a node to send a message to another nodes using a SendToNetwork action,

which can then communicate with a receiveFromServer action offered by the network. Alternatively,

a set of nodes can be addressed in one go, using a sendToNetworkSet action and which can commu-

nicate with a receiveFromServerSet action offered by the network. The network then takes care of

dispatching the messages to these nodes using a sendToServer action. This is achieved by the following

process:

proc Network(messageCollection: FSet(NetworkPayload)) =

(# messageCollection < NetworkSize) ->

sum msg: NetworkPayload . receiveFromServer(msg)

. Network(messageCollection = messageCollection + {msg})

+

(# messageCollection + NumberOfServers < NetworkSize + 1) ->

sum msgs: FSet(NetworkPayload) . receiveFromServerSet(msgs)

. Network(messageCollection = messageCollection + msgs)

+

sum msg: NetworkPayload .

(msg in messageCollection) ->

sendToServer(msg) . Network(messageCollection = messageCollection - {msg});

Informally, this process can, execute a receiveFromServer action carrying a (non-deterministically

chosen) message of type NetworkPayload, as long as the network is not yet full, indicated by the condi-

tion # messageCollection < NetworkSize. Once the action was executed, the process again behaves

as Network, but the parameter messageCollection has been updated to also contain the message msg.

Alternatively, as indicated by the binary non-deterministic choice operator ‘+’, the process may receive

a message that is to be sent to all other nodes (second summand), or send a message that is in the set of

messages messageCollection.

Note that the model depicted above models a ‘perfect’ network; however, using a minor adjustment,

it can be turned into an unreliable network. For instance, by extending the third summand to include an

option to lose the message instead of sending the message, message loss can be modelled as follows:

...

+

sum msg: NetworkPayload .

Parth Bora, Pham Duc Minh, Tim Willemse 11

(msg in messageCollection) ->

(

sendToServer(msg) . Network(messageCollection = messageCollection - {msg})

+

lose . Network(messageCollection = messageCollection - {msg})

);

Here, lose is a new action indicating a message is lost, not revealing which message this is. By including

this action in the set of actions that are in the allow set of the top-level process, the network can non-

deterministically decide to drop messages.

2.2 Node

The core logic of the Raft algorithm is described by the Node processes. This process needs to deal with

messages received from other Node processes, and, send messages (potentially received from a Client

process) to other Node processes. Logical decisions are based on the local state of the process; this state

is reflected in the parameters of the Node process:

proc Node(id: Nat, currentState: State, currentTerm: Nat, log: LogType,

commitIndex: Nat, votedFor: Int, voterLog: FSet(Nat), nextIndex: List(Nat),

matchIndex: List(Nat), replyToBeSent: replyHelper) =

currentState != Crashed ->

((IsNone(replyToBeSent)) ->

Node_process_receiveFromNetwork(id, currentState, currentTerm, log,

commitIndex, votedFor, voterLog, nextIndex,

matchIndex, replyToBeSent)

+

Node_process_sendToNetwork(id, currentState, currentTerm, log, commitIndex,

votedFor, voterLog, nextIndex, matchIndex, replyToBeSent)

+

(currentState != Leader && currentTerm < MaxTerm) ->

timeout . Node(currentState = Candidate, currentTerm = currentTerm + 1,

votedFor = id, voterLog = {id}, replyToBeSent = none)

)

+

currentState == Crashed -> ...;

As can be seen, for the sake of readability we have split part of the Node process in two subpro-

cesses, viz., the process Node_process_receiveFromNetwork and Node_process_sendToNetwork. So

long as the node has not crashed, it offers a non-deterministic choice between the behaviour described

by these two processes and (conditionally) timing out (as described by the third summand). Subpro-

cess Node_process_receiveFromNetwork handles all messages the node receives through the network,

whereas Node_process_sendToNetwork takes care of sending messages, received from the client, or

replies to previous messages, to other nodes. If the node has crashed, a recovery mechanism can be

initiated (not depicted here).

The Raft algorithm divides time into terms of arbitrary length. The current term number is repre-

sented by the currentTerm parameter of type Nat of the Node process. Each node in a Raft cluster can

be in one of three states: Leader, Follower, or Candidate; see also Fig. 1. This state is maintained by

parameter currentState in process Node. In addition to these three possible states, we have introduced

a fourth state to indicate that the node has crashed. The data type State thus is as follows:

sort State = struct Leader | Candidate | Follower | Crashed;

The way Raft (and algorithms like Raft) implements replicated state machines is by means of a replicated

log. Each node in the Raft cluster stores a log consisting of entries that contain a state machine command

and the term number that indicates when the entry was received by the Leader. In our log entries, the

12 Modeling the Raft Distributed Consensus Protocol in mCRL2

Follower Candidate Leader

Crashed

timeout

become leader

majority of votes

timeout
receive new term, or

detect current leader

receive RPC with higher term

crash
crash

crashresume

Figure 1: State transitions for a node in Raft.

state machine commands are represented by the command ID, since we are not interested in the actual

command itself. The parameter log of process Node is thus basically a list of entries that contain a

command ID and term:

sort logEntry = struct Command(term: Nat, commandID: Nat);

sort LogType = List(logEntry);

A practical complication with our formalisation is that mCRL2 lists are zero-indexed, unlike the logs

described in the original Raft paper [12, 11], which are one-indexed. While converting from one repre-

sentation to the other is straightforward, it is equally easy to make mistakes. We have circumvented this

by utilising helper functions that make the conversion less error-prone.

The Raft State Machine. All nodes start out as Followers. Depending on the state of the node, certain

actions are permitted. Only when a node is in state Leader, it can start accepting messages from a

client. A node that is Leader sends periodic heartbeats to followers to assert its presence. During an

election, nodes that are Candidates send vote request RPCs to other nodes to garner votes. Subprocess

Node_process_sendToNetwork takes care of these events. If a Follower does not receive either of these

messages over a period of time, called the election timeout and modelled by means of the timeout action,

it starts a new election by changing into a Candidate state and increments its term. Subsequently, it will

vote for itself. We remark that we here closely follow the LNT model, allowing the Candidate to vote

for itself rather than by sending a vote request RPC to itself, and by modelling the timeout by means of

non-determinism rather than by imposing hard real-time requirements. Safety requirements should not

be affected by modelling timeouts using non-determinism. However, due to this abstraction, we cannot

analyse real-time requirements, nor the real-time performance of the algorithm. Also, when phrasing

liveness requirements, the abstraction may require one to be explicit about the absence or occurrence of

these timeouts.

After a node becomes a Candidate, it sends a vote request RPC to all other servers in the cluster. In

our model, this is achieved using a sendToNetworkSet action, carrying a set of messages consisting of

the RPC and a target node as its parameter; the Network process then relays the request to all targeted

nodes. The set of messages is created using a recursive function CreateRequestVoteSet that builds the

set by iterating over all possible node IDs that have not voted for the Candidate node yet; the latter is

Parth Bora, Pham Duc Minh, Tim Willemse 13

specified in an auxiliary function CreateRequestVoteSetHelper:

map CreateRequestVoteSet: Nat # Nat # Nat # Nat # FSet(Nat) -> FSet(NetworkPayload);

var sender, termNode, lengthLog, lastTermLog: Nat;

voterLog: FSet(Nat);

eqn CreateRequestVoteSet(sender, termNode, lengthLog, lastTermLog, voterLog)

=

CreateRequestVoteSetHelper(sender, RequestVoteRequest(termNode, lengthLog, lastTermLog),

voterLog, 0);

map CreateRequestVoteSetHelper: Nat # RPC # FSet(Nat) # Nat -> FSet(NetworkPayload);

var sender, receiver: Nat;

rvr: RPC;

voterLog: FSet(Nat);

eqn (receiver==NumberOfServers) ->

CreateRequestVoteSetHelper(sender, rvr, voterLog, receiver) = {};

(receiver<NumberOfServers) ->

CreateRequestVoteSetHelper(sender, rvr, voterLog, receiver) =

CreateRequestVoteSetHelper(sender, rvr, voterLog, receiver + 1)

+ if(receiver!=sender && !(receiver in voterLog), {Message(sender, rvr, receiver)},{});

If a node receives a stale message, i.e., a message with a term smaller than currentTerm, it immedi-

ately discards it. When it receives a message with a term greater than currentTerm, the node steps down

to the Follower state and resets the votedFor parameter to -1, to indicate it has not voted for anyone in

that term, and it sends a reply. The type of message received determines the type of reply sent by the

node. This reply is then stored in the replyToBeSent parameter so that it can be sent out before the node

engages in other interactions but potentially only after the node has updated its state. This allows for

analysing the effects (in any) of nodes crashing random moments. In particular, when nodes crash, part

of their state information is saved and restored, and, hence, the order of events might matter.

When a server receives a vote request RPC from a Candidate, it votes for them if it has not yet voted

for any other node in that term previously. Additionally, to prevent a Candidate with an out-of-date log

from becoming Leader, the node compares the index and term of the last entries in the logs of the voter

and the Candidate. The Raft algorithm uses an ingeneous scheme—taking the type of RPC, the current

term of the node and the message and the log of the Candidate into account—to decide whether the vote

is granted to the Candidate or not; it then informs the Candidate of its decision. On receiving a reply

from the node, the Candidate evaluates the number of votes it has received. If it successfully acquires

votes from a majority of the nodes in the cluster, it becomes a Leader by changing to state Leader. While

waiting for votes, if the Candidate receives a valid heartbeat from a Leader, it steps down to become a

Follower. In case of a split vote, the Candidate can timeout again and start a new election.

Log Replication. When a Leader receives a request from the client, the request is appended to the log

and all other nodes are informed using append entries request RPCs. In our model, this is achieved in a

way that is similar to how Candidate nodes deal with vote request RPCs. A Leader sends only one log

entry at a time; this is in line with the TLA+ specification, although the Raft algorithm supports sending

multiple log entries at once.

In an append entries request RPC, the Leader includes the index and term of the log entry immedi-

ately preceding the new entries. If a Follower does not find a matching entry in its log with the same

index and term, then it refuses the entry and sends back a negative response. The Leader, upon receiving

a negative response, decrements the Follower’s nextIndex, which is a list where each index corresponds

to the same serverID and which stores the index of the log entry the Leader will send to that node.

The Leader, when first elected, initialises all nextIndex values to the index just after the last one in its

log. After decrementing the nextIndex, the append entries RPC is retried. Eventually nextIndex will

14 Modeling the Raft Distributed Consensus Protocol in mCRL2

reach the point where the Leader and Follower logs match. When this happens, any subsequent conflict-

ing entries in the Follower’s log are removed and entries from the Leader’s log are appended (if any).

Consequently, a positive response is sent back to the Leader and log replication is successful.

Once the leader has sucessfully replicated a log entry on majority of the servers, the entry is deemed

committed. We use the action advanceCommitIndex to model this. Moreover, we have introduced a

function MaxAgreeIndex to find the highest possible index that can be committed. Once an entry has

been committed, the Leader applies it to its state machine. The Leader keeps track of the highest index it

knows to be committed, in parameter commitIndex, and includes this in append entries RPCs (heartbeat

messages included) so other nodes can commit the entries, too. This method of counting successful repli-

cation on a majority is not used to commit entries from previous terms: only log entries from the Leader’s

current term are committed by counting replicas. Once an entry from the current term has been commit-

ted in this way, then all prior entries are committed indirectly. The function isAdvanceCommitIndexOk

is used to keep this in check.

Model Statistics. We have generated state spaces of various instances of the model as described (see

also the Mars repository for the full model). The base case is a configuration in which there are 3 nodes, 2

commands from clients, 1 term, a network capacity of 3 messages, and no crashes and recovery of nodes.

This basic configuration already leads to a rather large state space of over 200k states, which can be

generated in slightly under a minute on a 2017 Macbook Pro. We do note that there is some redundancy

in the model, since strong bisimilarity reduction manages to compress the state space with almost a factor

of 5. Table 1 shows the statistics of all configurations we explored, including a configuration that shows

the effect of using a lossy network. To give a rough indication of the time required to generate these state

spaces, we have included the time it takes for a 2017 Macbook Pro with 16GB memory to generate these

state spaces. This clearly shows the dramatic effect of nodes crashing and of increasing the number of

possible terms.

#Nodes #Commands #Terms #Network Lossy Crashing Size Time

Capacity Network

3 2 1 3 no no 2.14105
∼ 1 min.

3 1 2 3 no no 1.17106
∼ 2 min.

3 1 3 3 no no 1.32107
∼ 13 min.

3 2 1 3 no yes 1.79107
∼ 5 min.

3 2 2 3 no no 2.25107
∼ 19 min.

3 2 1 3 yes yes 5.97107
∼ 105 min.

3 1 2 3 no yes 1.48108
∼ 24 min.

3 1 3 3 no yes 2.38109
∼ 820 min.†

Table 1: Some statistics for the state space sizes for various configurations of the Raft algorithm; (†) this

experiment was conducted on a compute server so the runtime is not directly comparable to the other

runtimes reported.

3 Raft Properties

The Raft algorithm is quite involved, and it is easy to make small mistakes when formalising the al-

gorithm. A simple example of the subtleties include the aforementioned difference between the zero-

indexed lists of mCRL2 and the one-indexed arrays used in the original description of the algorithm. As

Parth Bora, Pham Duc Minh, Tim Willemse 15

part of the original description of the algorithm, the authors also list several properties that the algorithm

guarantees; such properties can be seen as partial specifications of the algorithm. We have taken some

of these properties and formalised them as modal µ-calculus formulas. These formulas have been used

throughout the model development to hunt for bugs in our formalisation, and provide an extra layer of

validation in addition to manual simulation of the model, increasing our confidence in the model.

One central complication in formalising the original properties in the modal µ-calculus is the fact that

the properties refer to the variables that span the state of each node; in our case, those are, for instance,

the parameters of the Node process. Since the mCRL2 language is action-based rather than state-based,

these parameters cannot be referred to in the modal µ-calculus formulas. We have sidestepped this issue

by extending our model with auxiliary actions that expose the relevant information. For instance, for

the purpose of verification, we have introduced self-loops labelled by actions such as exposeLeader,

exposeLogLeader and exposeLog.

In what follows, we will briefly discuss four main properties that have been formalised and their

modal µ-calculus formalisation next to it. The Append Entries property that is also mentioned in [12, 11]

is omitted since it follows immediately from the operations a Leader can carry out in our model. All

formulas happen to fall in a category of formulas that can be represented in a PDL-style language,

called regular formulae, that abstracts from the fixed points one typically expects in modal µ-calculus

formulas. We will explain the meaning of the formulas as we proceed. All main properties hold true for

all configurations of Table 1; verification of each property takes roughly 2-3 times that of generating the

state space using the symbolic technique described in [10]. We additionally verify a number of simple

liveness properties that demonstrate that the main properties we verify do not hold true vacuously. Also

these can be expressed in terms of regular formulae, save one.

Election Safety. One of the fundamental properties on which the Raft algorithm relies for its correct

functioning is the property that at most one Leader can be elected in a term. This is called the Election

Safety property in [12, 11]. Since the state of each node cannot be read directly, we use the exposeLeader

action to expose that the state of a node is Leader. Then, the correctness property can be phrased as the

inability for two distinct nodes to execute exposeLeader actions in the same term. The formula we use

to express this is as follows:

[true*] forall id1, termx: Nat . [exposeLeader(id1, termx)]

[true*] forall id2: Nat . val(id1!=id2) => [exposeLeader(id2, termx)] false

This formula should be read as follows. Invariantly (captured by the first occurrence of [true*]), ex-

ecuting any exposeLeader action, carrying some ID (here represented by id1) of a node and a term,

will lead to a state from which invariantly (captured by the second [true*] formula) it is impossible to

execute another exposeLeader action carrying an ID (represented by id2) of a different node and the

same term. The latter part is captured by the [exposeLeader(id2, termx)]false subformula.

Note that this property can hold true trivially if no Leader is ever elected. To exclude this scenario,

we have additionally phrased a liveness property that verifies that such actions can indeed take place:

<true*> exists id1, termx:Nat . <exposeLeader(id1, termx)>true

This property, which should be read as follows: following zero or more actions, it is possible that an

exposeLeader action can be executed, carrying some ID (represented by id1) and some term (repre-

sented by termx). Also this property holds true for all the configurations of Table 1. To assess whether

there is a scenario in which two different nodes can be a leader, we can check the following formula:

<true*> exists id1, termx:Nat . <exposeLeader(id1, termx)>

<true*> exists id2, termy:Nat. val(id1 != id2) && <exposeLeader(id2,termy)>true

16 Modeling the Raft Distributed Consensus Protocol in mCRL2

This formula only holds true in configurations in which there are at least two terms, as can be expected.

Taking this into account, we can verify a formula that states that there is a sequence of events in which

we see MaxTerm times a different leader announce itself. Such a formula requires us to explicitly use a

least fixed point and keep track of the number of times we have witnessed the exposeLeader action and

the ID of the leader that announced itself most recently.

mu X(id:Nat = 1, n:Nat = 0).

(val(n >= MaxTerm) || <true>X(id,n)

|| exists id2, termy:Nat. (val(id != id2) && <exposeLeader(id2,termy)>X(id2,n+1))

)

This formula holds true in all configurations.

Log Matching. The log replication mechanism ensures that each node in the Raft cluster has the same

view on the state of the cluster. In particular, if, for two nodes, their logs contain an entry with the same

index and term, then these logs are identical in all entries up to (and including) the given index. This

is called the Log Matching property in [12, 11]. Log information of nodes, which is tracked in the log

parameter of the Node process cannot be inspected using the modal µ-calculus formula without exposing

the information through actions. This is achieved by extending the model with self loops of exposeLog

actions; the property can then be formalised as follows:

[true*] forall id1, term1, commitIndex1: Nat, log1: LogType .

val(log1!=[]) => [exposeLog(id1, term1, commitIndex1, log1)]

[true*] forall id2, term2, index, commitIndex2: Nat, log2: LogType .

val(index<#log1 && index<#log2 && id1!=id2 && log2!=[] && log1.index == log2.index)

=>

([exposeLog(id2, term2, commitIndex2, log2)]

val(slice(log1, 1, index+1) == slice(log2, 1, index+1)))

Again, the [true*] should be read as ‘invariantly’. The formula can then be understood to state the

following: invariantly, for any state in which there is a node (the ID of which is id1) with a non-empty

log log1 it is the case that invariantly from that moment onwards, any other state in which there is another

node (the ID of which is id2) with a non-empty log log2 that has an entry at position index in common,

the slices of log1 and log2 coincide up to, and including position index.

Leader Completeness. Another aspect of the log replication mechanism is that log entries, committed

in a given term, will persist in the logs of the Leaders in future terms; in [12, 11] this is referred to

as the Leader Completeness property. This ensures that the logs are indeed a proper reflection of what

has happened in the past. We modify the model to include exposeLogLeader self-loops that expose

the log information of the node that is currently in state Leader. The advanceCommitIndex actions,

already present in the model, are used as signals that information has been committed in the log up to,

and including entry currentCommitIndex. Note that in our model, the advanceCommitIndex action also

exposes the log of the leader through the log1 parameter.

[true*] forall currentCommitIndex, nextCommitIndex, term1: Nat, log1: LogType .

[advanceCommitIndex(currentCommitIndex, nextCommitIndex, term1, log1)]

[true*] forall term2, index: Nat, log2: LogType .

val(term2>term1 && index>currentCommitIndex && index<=nextCommitIndex)

=>

[exposeLogLeader(term2, log2)] val((log1 . index) in log2)

This formula should be read as follows: invariantly, whenever a advanceCommitIndex action happens,

exposing the current commit index currentCommitIndex, the next commit index nextCommitIndex, the

Parth Bora, Pham Duc Minh, Tim Willemse 17

term term1 and the Leader’s log log1, then whenever we subsequently inspect the log of a Leader in a fu-

ture term term2, then those log entries in log1 that can be found at indices beyond currentCommitIndex

and nextCommitIndex are contained in the log entries of log2.

State Machine Safety. The logs that appear in each node furthermore must provide a uniform, consis-

tent view on the state of the cluster. That means that after a node has applied a log entry at a given index

to its state machine, no other node will ever apply a different log entry for the same index. This property

is referred to as the Sate Machine Safety property in [12, 11]. In order to express this property, we again

assume that the model has been extended with self-loops labelled with exposeLog actions. The property

can then be formalised as follows:

[true*] forall id1, term1, commitIndex1: Nat, log1: LogType .

val(commitIndex1 > 0)

=>

[exposeLog(id1, term1, commitIndex1, log1)]

[true*] forall id2, term2, commitIndex2: Nat, log2: LogType .

val(id1!=id2 && commitIndex2>=commitIndex1)

=>

[exposeLog(id2, term2, commitIndex2, log2)]

val(slice(log1, 1, commitIndex1) == slice(log2, 1, commitIndex1))

This formula can be understood as follows: invariantly, whatever the log of a node is, given the commit

index commitIndex1 of the node at that time, the log will overlap up-to and including this index in any

future moment in which the commit index commitIndex2 of a node is equal or larger. This ensures

consistency of the logs over time, meaning that the same entries have been applied to the state machine.

Note that the condition commitIndex1 > 0 ensures that an entry has been committed.

In order to assess whether or not the property holds true vacuously, we have phrased the following

simple liveness requirement:

<true*> exists id1, term1, commitIndex1: Nat, log1: LogType .

val(commitIndex1 > 0) && <exposeLog(id1, term1, commitIndex1, log1)>

<true*> exists id2, term2, commitIndex2: Nat, log2: LogType .

val(id1 != id2 && commitIndex2 >= commitIndex1)

&&

<exposeLog(id2, term2, commitIndex2, log2)> true

This property holds true for every model we have analysed.

4 Discussion

We briefly touch on a few observations related to modelling in mCRL2, but also related to how our model

compares to existing formalisations of the Raft algorithm.

Modelling in mCRL2. The mCRL2 language has all the features that allow one to concisely describe

the workings of complex distributed algorithms. Parallelism and message passing, both key ingredients

in the Raft algorithm, are key concepts that allow the model to stay close to reality. Furthermore, param-

eterisation of processes and actions allows for reusing parts of the specifications, avoiding copy-paste

mistakes and improving readability. Finally, the rich and expressive data language of mCRL2 is essential

when describing the more complex operations on arrays that are part of the Raft algorithm. Built-in types

such as lists, natural numbers, and sets, and the facility to specify custom data types and operations on

these turned out to be essential for keeping the specification readable and its size to a minimum.

18 Modeling the Raft Distributed Consensus Protocol in mCRL2

Modelling in the mCRL2 language does require experience, and there is not really a practical guide-

book that explains how to use the language effectively. This can lead to sub-optimal ways of modelling.

For instance, the initial model, which was created by the first two authors and who had no prior experi-

ence of using mCRL2, used a modelling style that is perfectly valid but that led to state spaces that were

orders of magnitude larger than needed. To illustrate, consider the following mCRL2 specification:

act a:Bool;

proc X(c:Bool) = sum b:Bool. a(b). ((b -> X(true) + !b -> X(false)));

init X(true);

The transition system that is generated for this specification has 3 states and 6 transitions. Based on

the specification, one would expect at most 2 states: one representing X(true) and one representing

X(false). The third state is introduced by the pre-processing of the mCRL2 toolset, which rewrites the

above specification to normal form and which may introduce extra process parameters. Now consider

the following mCRL2 specification:

act a:Bool;

proc X(c:Bool) = sum b:Bool. (b -> a(b).X(true) + !b -> a(b).X(false));

init X(true);

The state space generated for this specification has only 1 state and 2 transitions. It is strongly bisimilar

to the state space of the previous example, and therefore, for all intents and purposes, equivalent to it.

In this case, the pre-processing conducted by the mCRL2 toolset does not lead to an additional state

because the process is already in a shape it wishes to produce. Even better, during the pre-processing it

detects that parameter c of process X is irrelevant, which can easily be seen because it does not appear in

the right-hand side.

Comparison to Other Formalisations. As we have indicated earlier, in constructing the mCRL2

model for the Raft algorithm, we have drawn inspiration from both the TLA+ and the LNT specifi-

cations. However, there are cases where the TLA+ and LNT specifications make different modelling

choices, and, consequently, we have had to make a choice between the two. A case in point is the way

the TLA+ specification deals with stale RPC messages: it drops stale responses but stale requests are

replied to, to alert the sending party of the newer term. The LNT specification, on the other hand, dis-

cards stale requests as well. In our model, we chose to here follow the LNT specification. An example

where we followed the TLA+ specification is where we send the minimum between commitIndex of the

current node and the nextIndex of the receiver when sending the append entries request, rather than

LNT’s choice to send the commitIndex of the Leader. There are other places where our model devi-

ates subtly from the LNT model, for instance in dealing with crashed nodes. In particular, the LNT

model does not appear to allow for nodes to reboot, and the inclusion of rebooting nodes has had some

implications on how we dealt with sending replies to requests.

Concerning the TLA+, LNT and mCRL2 modelling languages, we remark that due to LNT having

many traits of an imperative language, unlike mCRL2 and TLA+, the LNT specification is in all likeli-

hood more appealing to the average software engineer than the TLA+ or mCRL2 specifications. Also,

the ability to specify crashing of nodes using LNT’s disrupt operator is rather elegant; in our mCRL2

model, this requires hard-coding the option to crash. While in our model, the difference turns out to be

minimal, this would not have been the case if our model had used large numbers of actions that could

be executed sequentially. For instance, specifying that a crash action can interrupt the process a.b.c

would require a specification of the form crash + a. (crash + b. (crash + c)).

Parth Bora, Pham Duc Minh, Tim Willemse 19

5 Conclusions and Future Work

In this paper, we have highlighted and discussed several parts of our mCRL2 model of the Raft algorithm

and the modal µ-calculus formulas capturing its properties. The full details of the model and the formulas

can be found in the Mars repository. While our model shares many aspects with the TLA+ and LNT

specification that have been published before, the formalisation of some of the key properties of the

algorithm using a modal logic appear to be new. Note that only the simplest configurations can be

verified in reasonable time, but it may still be interesting to verify the more complex configurations as

well, including non-perfect network behaviour. We consider this part of future work.

Furthermore, it would be interesting to verify stronger liveness requirements. We have only covered

a few very basic, weak liveness properties, asserting that it is possible to, e.g., (repeatedly) become a

leader. Stronger liveness requirements, asserting that always inevitably a leader must be elected, are

simply not true in our model because in some configurations, messages are lost or nodes crash, but also

due to us imposing limits on the maximum number of terms we consider. Phrasing the exact properties

while taking all exceptions into account is non-trivial: for some properties, a counterexample may not

simply be a run of the system but it can consist of an entire subgraph of the transition system [2, 3],

consisting of a 1 000 or more states. In such cases, understanding the root cause of the violation can be

virtually impossible. Proving liveness properties for the unrestricted model (i.e., when not limiting the

number of terms) can be even more challenging.

Furthermore, in the model, when a node receives a message, it computes the reply atomically. This

simplifies the model but does not accurately reflect real-world scenarios where the computation of a

reply would involve multiple steps and could be interrupted by other events. Refining these aspects

would increase the applicability of the model to real-life scenarios but a careful tradeoff must be made

between the level of abstraction and the granularity of the model to keep the state space from exploding.

Finally, like the TLA+ and LNT specifications, our model lacks real-time, even though the algorithm

suggests typical timing intervals. For instance, Raft chooses election timeouts arbitrarily from a fixed

interval (e.g., 150–300ms), whereas in our model a timeout can happen non-deterministically. While

mCRL2 has facilities to model real-time aspects, the current status of the tooling is not sufficiently

powerful to deal with real-time systems with state spaces of this size. A real-time extension of our model

could therefore serve as a challenging benchmark for real-time model checking tools.

Acknowledgements. We would like to thank Myrthe Spronck (TU/e) for discussions on the problem

of consensus and the solution provided by Paxos.

References

[1] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger

Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems

- Improvements in Expressivity and Usability. In Tomás Vojnar & Lijun Zhang, editors: Tools and Algorithms

for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of

the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic,

April 6-11, 2019, Proceedings, Part II, Lecture Notes in Computer Science 11428, Springer, pp. 21–39,

doi:10.1007/978-3-030-17465-1_2.

[2] Sjoerd Cranen, Bas Luttik & Tim A. C. Willemse (2013): Proof Graphs for Parameterised Boolean Equation

Systems. In Pedro R. D’Argenio & Hernán C. Melgratti, editors: CONCUR 2013 - Concurrency Theory -

24th International Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Proceedings,

https://doi.org/10.1007/978-3-030-17465-1_2

20 Modeling the Raft Distributed Consensus Protocol in mCRL2

Lecture Notes in Computer Science 8052, Springer, pp. 470–484, doi:10.1007/978-3-642-40184-8_

33.

[3] Sjoerd Cranen, Bas Luttik & Tim A. C. Willemse (2015): Evidence for Fixpoint Logic. In Stephan Kreutzer,

editor: 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-10, 2015,

Berlin, Germany, LIPIcs 41, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 78–93, doi:10.4230/

LIPICS.CSL.2015.78.

[4] Hugues Evrard (2020): Modeling the Raft Distributed Consensus Protocol in LNT. In Ansgar Fehnker &

Hubert Garavel, editors: Proceedings of the 4th Workshop on Models for Formal Analysis of Real Systems,

MARS@ETAPS 2020, Dublin, Ireland, April 26, 2020, EPTCS 316, pp. 15–39, doi:10.4204/EPTCS.

316.2.

[5] Hubert Garavel, Frédéric Lang & Wendelin Serwe (2017): From LOTOS to LNT. In Joost-Pieter Katoen,

Rom Langerak & Arend Rensink, editors: ModelEd, TestEd, TrustEd - Essays Dedicated to Ed Brinksma on

the Occasion of His 60th Birthday, Lecture Notes in Computer Science 10500, Springer, pp. 3–26, doi:10.

1007/978-3-319-68270-9_1.

[6] Jan Friso Groote & Mohammad Reza Mousavi (2014): Modeling and Analysis of Communicating Systems.

MIT Press, doi:10.5555/2628007.

[7] Fabrice Kordon, Hubert Garavel, Lom-Messan Hillah, Emmanuel Paviot-Adet, Loı̈g Jezequel, César

Rodrı́guez & Francis Hulin-Hubard (2016): MCC’2015 - The Fifth Model Checking Contest. Trans. Petri

Nets Other Model. Concurr. 11, pp. 262–273, doi:10.1007/978-3-662-53401-4_12.

[8] Leslie Lamport (1998): The Part-Time Parliament. ACM Trans. Comput. Syst. 16(2), pp. 133–169, doi:10.

1145/279227.279229.

[9] Leslie Lamport (2002): Specifying Systems, The TLA+ Language and Tools for Hardware and Software

Engineers. Addison-Wesley, doi:10.5555/579617. Available at http://research.microsoft.

com/users/lamport/tla/book.html.

[10] Maurice Laveaux, Wieger Wesselink & Tim A. C. Willemse (2022): On-The-Fly Solving for Symbolic Parity

Games. In Dana Fisman & Grigore Rosu, editors: Tools and Algorithms for the Construction and Analysis of

Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences on

Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II, Lec-

ture Notes in Computer Science 13244, Springer, pp. 137–155, doi:10.1007/978-3-030-99527-0_

8.

[11] Diego Ongaro (2014): Consensus: bridging theory and practice. Ph.D. thesis, Stanford University, USA,

doi:10.5555/AAI28121474.

[12] Diego Ongaro & John K. Ousterhout (2014): In Search of an Understandable Consensus Algorithm. In Garth

Gibson & Nickolai Zeldovich, editors: 2014 USENIX Annual Technical Conference, USENIX ATC ’14,

Philadelphia, PA, USA, June 19-20, 2014, USENIX Association, pp. 305–319, doi:10.5555/2643634.

2643666.

[13] Fred B. Schneider (1990): Implementing Fault-Tolerant Services Using the State Machine Approach: A

Tutorial. ACM Comput. Surv. 22(4), pp. 299–319, doi:10.1145/98163.98167.

[14] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst & Thomas Anderson (2016):

Planning for change in a formal verification of the raft consensus protocol. CPP 2016 - Proceedings of the 5th

ACM SIGPLAN Conference on Certified Programs and Proofs, co-located with POPL 2016, pp. 154–165,

doi:10.1145/2854065.2854081.

https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.1007/978-3-642-40184-8_33
https://doi.org/10.4230/LIPICS.CSL.2015.78
https://doi.org/10.4230/LIPICS.CSL.2015.78
https://doi.org/10.4204/EPTCS.316.2
https://doi.org/10.4204/EPTCS.316.2
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.5555/2628007
https://doi.org/10.1007/978-3-662-53401-4_12
https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/279227.279229
https://doi.org/10.5555/579617
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/978-3-030-99527-0_8
https://doi.org/10.1007/978-3-030-99527-0_8
https://doi.org/10.5555/AAI28121474
https://doi.org/10.5555/2643634.2643666
https://doi.org/10.5555/2643634.2643666
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/2854065.2854081

F. Lang, M. Volk (Eds):
Models for Formal Analysis of Real Systems (MARS 2024)
EPTCS 399, 2024, pp. 21–100, doi:10.4204/EPTCS.399.5

© H. Garavel & B. Luttik
This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike License.

Four Formal Models of IEEE 1394 Link Layer

Hubert Garavel
Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

hubert.garavel@inria.fr

Bas Luttik
Eindhoven University of Technology, The Netherlands

s.p.luttik@tue.nl

We revisit the IEEE 1394 high-performance serial bus (“FireWire”), which became a success story
in formal methods after three PhD students, by using process algebra and model checking, detected a
deadlock error in this IEEE standard. We present four formal models for the asynchronous mode of
the Link Layer of IEEE 1394: the original model in µCRL, a simplified model in mCRL2, a revised
model in LOTOS, and a novel model in LNT.

1 Introduction

IEEE 1394 (also called “FireWire”) is an interface standard that specifies a serial bus architecture for
high-speed communications. It can connect up to 63 peripherals in a tree or daisy-chain topology, and can
perform both asynchronous and isochronous transfers simultaneously. It was developed between 1986
and 1995 by a large consortium gathering Apple, Panasonic, Philips, Sony, and many others contributors.
This work resulted in an IEEE standard [43], followed by integration in many industrial products.

In the framework of the COST-247 action [22], a pan-European academic collaboration that took
place between 1994 and 1997, the asynchronous mode of the link layer protocol of IEEE 1394 was
selected as an interesting case study for formal methods. This protocol, which was close to being stan-
dardized, was thus studied by several young scientists at this time. At CWI Amsterdam, Bas Luttik
developed a formal model [26, 27] in the µCRL language [19, 15] and stated five correctness proper-
ties that the protocol should satisfy. At INRIA Grenoble, Mihaela Sighireanu translated this model to
LOTOS [20] and, using the XTL model checker [29] with the help of Radu Mateescu, discovered that
the deadlock-freeness property did not hold, i.e., that the protocol could enter a deadlock state after a
specific sequence of 50 transitions [37, 38, 39]. A detailed report about this bug, which would have been
difficult to detect using step-by-step simulation or testing, can be found in [41]. The link layer protocol
was also studied using theorem proving at the Universities of Kiel and Eindhoven by Lars Kühne, Jozef
Hooman, and Willem-Paul de Roever [23].

Although the IEEE 1934 serial bus is no longer used today (deployed in Apple products from 1999
to 2016, it has been gradually replaced by USB 2, USB 3, and Gigabit Ethernet), it is an inspiring
example for the formal methods community. From a historical perspective, it is a striking success story
where three doctoral students discovered in a few weeks an unexpected deadlock in an IEEE standard
designed and scrutinized over ten years by one hundred experts. Also, numerous research papers have
been devoted to another aspect of IEEE 1934, its leader election algorithm (“root contention protocol”),
the verification of which involves parameters, probabilities, and real time [35, 30, 33, 47, 7, 28, 48, 31,
34, 42, 4, 2, 24, 25, 32, 46, 49, 5].

http://dx.doi.org/10.4204/EPTCS.399.5
https://creativecommons.org
https://creativecommons.org/licenses/by-nc-sa/4.0/

22 Four Formal Models of IEEE 1394 Link Layer

Concerning the link layer protocol, formal methods evolved since 1997, as the µCRL and LOTOS
languages have been replaced by newer languages, respectively mCRL2 [17, 16, 18, 1] and LNT [13, 10,
12, 36, 3], a descendent of the E-LOTOS standard [21]. Therefore, twenty-five years after, we revisit this
case study to present, along with the original µCRL model, three companion models: a model written in
mCRL2 by Jan Friso Groote, a recent revision of the LOTOS model developed by M. Sighireanu, and a
novel model written in LNT.

The present article is organized as follows. Section 2 gives an overview of the IEEE 1394 architecture
and explains the behaviour of the Link layer and neighbour layers. Section 3 presents four formal models
in µCRL, mCRL2, LOTOS, and LNT, and discusses their main features from a modelling point of view
— the models themselves being fully provided in Annexes A to D. Section 4 briefly reports about the
verification (model checking and equivalence checking) done on these models. Finally, Section 5 gives
a few concluding remarks.

2 IEEE 1394 bus

In this section, we present a description of IEEE 1394 that bridges the gap between the general descrip-
tion given in the IEEE standard [43] and the four formal models provided in the present article. The
text in this section is based upon the technical report [26] in which the µCRL model first appeared —
actually, this model was developed from a draft version [44] of the IEEE standard, but we believe that
there is no significant difference between the draft and the standard in this respect.

First, we present the architecture as defined in the standard. Then, we focus our attention on the
link layer of the protocol, the behaviour of which is our primary modelling purpose. To provide a
comprehensive description of the link layer interacting with its environment, we will need to include the
external functional behaviour of the physical layer, and so that is described too.

2.1 Architecture

The IEEE 1394 standard deals both with the physical requirements and the protocol of the bus. The
main feature of the standard is that it supports two modes of transaction: an asynchronous mode and an
isochronous mode.

In asynchronous mode, one party (the sender) can send a message of arbitrary length to some other
party (the receiver). Such a message may be sent at an arbitrary moment after the sender has gained
access to the bus; the only timing restriction is that the interval during which a node may have access
to the bus is bounded. In this mode, the receiver must confirm the receipt of the message by sending an
acknowledgement.

In isochronous mode the sender is obliged to send messages at fixed rates, and messages are not
acknowledged. This service is useful for fast transmission of large amounts of data (e.g., audio/video
streams), if certainty at the side of the sender about the receipt of the data by the receiver is not important,
whereas the arrival of the data at a constant rate is.

The IEEE 1394 serial bus architecture is roughly as depicted in Figure 1. It consists of a number of
nodes (addressable entities that run their own part of the protocol) connected by a serial cable.

The protocol describing the behaviour of a node in asynchronous mode distinguishes three layers:

1. The transaction layer (the upper layer, indicated by TRANS in Figure 1) offers three types of
transactions to the application(s) running on the node: read transactions (read data from another
node), write transactions (write data to another node), and lock transactions (have some of its own

H. Garavel & B. Luttik 23

CABLE

PHY

LINK

TRANS

C
O

N
T

R
O

L
L

E
R

node 1

PHY

LINK

TRANS

C
O

N
T

R
O

L
L

E
R

node 2

PHY

LINK

TRANS

C
O

N
T

R
O

L
L

E
R

node n

Figure 1: IEEE 1394 architecture

data processed by another node after which it is transferred back). Such transactions consist of a
request and a response; the transaction layer can both handle concatenated response transactions
(response follows request immediately) and split transactions (response not necessarily follows
immediately on the request it belongs to).

2. The link layer (the middle layer, indicated by LINK in Figure 1) forms the interface between the
transaction layer and the physical components of the bus (consisting of the physical layers, which
are connected to each other by a serial cable). The link layer provides two types of services to the
transaction layer:

Data request/response: By means of a LINK data request, the transaction layer instructs the link
layer to send a packet to some particular node or to broadcast a packet to all other nodes. The
transaction layer must react on a packet addressed to it by sending an acknowledge packet by
means of a LINK data response.

Data indication/confirmation: By means of a LINK data indication, the link layer indicates the
arrival of data (either request or response data). The receipt of an acknowledge packet is
indicated to the transaction layer by means of a LINK data confirmation.

subaction 1

arb packet ack

data start data end subaction gap

subaction 2

arb request
packet ack response

packet ack

data prefix

Figure 2: Subactions

The link layer divides the stream of data that it receives from the physical layer into an alternating
sequence of subactions and subaction gaps, the latter being time intervals with a specified minimal
length during which serial cable resides in an idle state (see Figure 2). A subaction either consists
of a single packet (in case of a split transaction, see subaction 1) or of two packets (in case of a
concatenated response transaction, see subaction 2). Within each subaction, a packet is delimited

24 Four Formal Models of IEEE 1394 Link Layer

by special data start and data end signals1; the gap between two packets within a subaction must
be filled with data prefix signals in order to distinguish these gaps from the subaction gaps.
Before a packet can be sent, the link layer must first gain access by issuing an arbitration procedure.
Moreover, the link layer must transform the requests of the transaction layer into a certain packet
format, computing and attaching checksums to parts of the data to be transmitted. It also decides
whether incoming packets have been received properly by verifying the attached checksums. Every
packet that is sent by any of the nodes is received by the link layer of every node. If a link layer
determines that the packet was indeed addressed to the node it is part of, then it forwards the
contents of the packet to the transaction layer. The link layer also handles the sending and receiving
of acknowledgements.

3. The physical connection between a node and the serial line is called the physical layer (the lower
layer, indicated by PHY in Figure 1). It listens to and puts signals on the serial cable, measures
the lengths of the time intervals during which the cable resides in an idle state, and determines,
together with the other physical layers, which node has control over the cable (arbitration). It
provides the following services to the link layer:

Arbitration request/confirmation: The link layer instructs the physical layer to start an arbitra-
tion procedure by means of a PHY arbitration request. The result of this procedure (either
won or lost) is communicated to the link layer by means of a PHY arbitration confirmation.

Data request/indication: The link layer instructs the physical layer to put some signal on the
cable by means of a PHY data request. The physical layer indicates to the link layer the
detection of a signal on the cable (or information about the status of the cable) by means of a
PHY data indication.

Clock indication: To notify the link layer that it can (and should) put a signal on the cable, the
physical layer communicates a PHY clock indication.

According to [43], there is also a so-called node controller that can influence each of the three layers.
Since, in asynchronous mode, the role of this node controller is restricted to the ability to reset each of
the three layers (force them into their initial state), we will not consider the node controller in this paper.

2.2 Link layer

We proceed to describe in more detail the behaviour in asynchronous mode of the link layer (the middle
layer of the three-layered protocol), which is responsible for the construction of packets, the transmission
of these over a serial (one-bit) line to other parties, and the computation and verification of checksums.

We model the process behaviour of the link layer according to the state machine depicted in [43,
Figure 6-19, Page 170] and the accompanying informal explanation. The part of the state machine
defining the behaviour in asynchronous mode has eight states Ln (0 ≤ n ≤ 7).

The link layer processes maintain a buffer (initially empty) to store a pending request from the trans-
action layer.

In its initial state, the link layer can either receive a data request from the transaction layer or a data
indication from the PHY layer.

At a data request, a packet is constructed from the parameters that have been put into the buffer by
the transaction layer. The link layer process then starts a fair arbitration procedure to gain access to the
bus. If it wins the arbitration, then the underlying physical layer controls the cable and the link layer

1These and other “signals” of the link layer correspond to analog signals detected or emitted by the physical layer.

H. Garavel & B. Luttik 25

enters send mode (see below). However, it may also happen that the physical layer indicates the arrival
of data: the packet to be sent is then stored in the buffer and the data is received first.

At a data indication, it must be checked whether the received signal is a Start signal. If so, this
means that some other node has control over the cable and is sending a packet; the incoming packet must
be received in receive mode. Otherwise, the signal (which is not a Start signal) can be ignored.

Send mode. As soon as a node has gained control over the cable, its physical layer starts emitting clock
indications to inform the link layer that it should send a signal. The link layer must respond to every such
clock indication and send the entire packet, one signal at a time, delimited by a Start and an End signal.
The End signal also notifies the physical layer that the link layer is done sending the packet; it will cease
to send clock indications. Depending on the value of the destination field, the link layer either informs
the transaction layer that a broadcast packet was sent properly, or that it must wait for an acknowledge
packet.

The acknowledge packet must arrive within some specific amount of time: if a subaction gap
(subactgap signal) occurs before an acknowledgement with valid checksum has been received entirely
(i.e., up to and including the terminating End signal), then the link layer will act as if the acknowledge-
ment is missing (an acknowledge packet can be identified by its length; it consists of one signal). When
a Start signal has been received, then the link layer expects to receive an acknowledge signal. If the
next signal is indeed a data signal, then the link layer receives the terminating End signal, checks the
validity of the received acknowledge signal, and sends an acknowledgement received (ackrec) to the
transaction layer. If, instead, another data signal arrives, or if there is no terminating End signal, or if
the acknowledge packet is invalid, then the link layer sends acknowledgement missing (ackmiss) to the
transaction layer. Both in case of failure and in case of success, the link layer does wait for an indication
of the physical layer that a subaction gap has occurred, before it returns to its initial state. Of course, if
a subaction gap interferes in the above described behaviour, then the link layer should immediately send
an ackmiss and return to its initial state.

Receive mode. If the link layer receives a Start signal, it enters receive mode, expecting to see a
packet being put on the bus by some other link layer. Asynchronous packets consist of four signals. The
link layer must receive at least two signals before it can determine whether the packet is addressed to it.

If it only receives one signal followed by a terminating End, this is an acknowledge packet, which
should be ignored: the link layer will wait for the next subaction gap and return to the initial state.

If the second signal is indeed a destination signal, the link layer must check whether the incoming
packet is either a packet addressed to it, or a broadcast packet, or a packet for some other node. In the
first case, the link layer must notify the physical layer that it wants access to the bus as soon as the packet
has been received entirely, in anticipation of sending an acknowledgement. This is done by means of
an immediate arbitration request. Broadcast packets, however, are not acknowledged; so, in the second
case, no such request is needed. In the third case, the link layer should completely ignore the packet and
return to the initial state at the next subaction gap.

The third signal is expected to be a header signal, and the fourth signal should be a data signal. If the
packet is correctly terminated by either an End signal or a Prefix signal, then the packet is forwarded
to the transaction layer, either as a broadcast packet or as a packet that was addressed to this node. In
both cases, the data checksum is verified. Observe that, in the broadcast case, a packet with an invalid
data checksum is ignored. In the other case, the packet will have to be acknowledged, so upon winning
a PHY Arbitration confirmation, the link layer continues in send acknowledgement mode.

26 Four Formal Models of IEEE 1394 Link Layer

Any deviation of the above described procedure will cause the link layer to ignore the packet; it will
wait for a subaction gap and then returns to the initial state. Since an immediate arbitration request
may have been dispatched, a PHY Arbitration confirmation of won may still arrive. In such a case, the
link layer is granted access to the bus, but does not need to send an acknowledgement. Therefore, if the
destination signal indicated that the packet was meant for this node, the arbitration confirmation must be
received, and control over the cable must be terminated immediately by sending an End signal.

Send acknowledgement mode. While the link layer is waiting for the transaction layer to respond to a
data indication with the proper acknowledgement code, it must keep the cable busy by sending a Prefix
signal at every clock indication; this is to avoid the occurrence of a subaction gap. Depending on the
type of the received packet, the transaction layer may need to issue a so-called concatenated response
(for instance, the packet was a read request and the transaction layer immediately wants to send the
requested data to the requesting node). By means of a data response, the transaction layer communicates
the proper acknowledgement, as well as one of the values release or hold. The former means that
no concatenated response is requested and that, after sending the acknowledgement, the link layer may
release the bus and return to its initial state. The latter means that a concatenated response is requested
and that the link layer should maintain control over the bus after sending the acknowledgement packet
by responding to clock indications with Prefix signals. Upon a data request, the link layer can then go
into send mode immediately.

2.3 Physical layer

To simulate and analyse the interaction of the link layers of n nodes, we need to model the external
behaviour of underlying n physical layers connected by a cable, which, together, we shall refer to as the
bus.

The bus needs to keep track of which of the n nodes have had control over the bus during a so-called
fairness interval; to this aim, it maintains a table of n Booleans. During a fairness interval, each node
is allowed to gain control over the bus at most once, by means of a fair arbitration request. It may
also access the bus more than once as a consequence of an immediate arbitration request. As soon
as the bus has been idle for some specified amount of time and at least one link layer has got access
during the running fairness interval, an arbitration reset gap occurs to indicate that every node may,
again, be granted access through fair arbitration. The time interval that the bus must idle before such
an arbitration reset gap may occur should be longer than that of a subaction gap.

When the bus is in idle state and the link layer of some node requests arbitration, the bus enters
decision mode: it checks whether the requesting node already got access during the present fairness
interval. If not, the bus confirms the arbitration request by indicating that the node has won arbitration
and evolves into a busy state; otherwise, the bus indicates that the arbitration is lost.

When the bus is in busy state, it records which node has control over the bus, and which nodes have
requested immediate arbitration. In this state, the bus may still receive fair arbitration requests, but
they will be confirmed by reporting that the arbitration was lost. The node that must send a response to
the packet put on the bus will issue an immediate arbitration request. No confirmation is sent, however,
until the busy node releases its control. Furthermore, as long as some link layer still needs to send signals,
the appropriate clock indications must be generated and signals must be distributed.

In distribution mode, the bus delivers signals to all nodes except the one that dispatched it. To obtain
a realistic model, the potential loss or corruption of signals is taken into account through a function that
assigns an error value to the checksum field of header signals, data signals, and acknowledge signals.

H. Garavel & B. Luttik 27

Moreover, an extra dummy value will be used to describe the situation in which packets with a invalid
length are delivered. The following transmission errors are modelled:

• If the signal is a destination signal, then this signal may be invalidated. However, if this happens,
the header checksum (which comes with the next signal) is no longer valid. The bus should register
of which nodes invalid destinations have been distributed.

• Any signal, except for header signals having a corrupted checksum according to the above, may
be delivered correctly.

• If the signal to be delivered is a header signal, a data signal or an acknowledge signal, then it may
be delivered corrupted, or it may not be delivered at all.

• If the signal to be delivered is a data signal, then the packet may be extended by sending a dummy
signal immediately after the data signal.

When a signal has been distributed to every node, it is checked whether this signal was an End signal. If
so, the current busy node no longer requires access to the bus. It is then checked whether some node has
requested immediate arbitration. If not, a subactgap is distributed to all nodes and the bus returns to its
idle state. Otherwise, if other nodes have requested access, control over the bus must go to one of those
nodes. The bus then sends arbitration confirmations and a clock indication to all nodes that requested
immediate arbitration.

It may happen that more than one node has control over the bus. To resolve such a conflict situation,
the bus must wait for End signals from nodes, until only one node has access. Then, a data request is
received from this node. If it is not an End signal, the node becomes the busy one and this signal is
distributed to all other nodes. However, if the received signal is an End signal, no node has control over
the bus anymore; a subactgap signal is then distributed to all nodes, after which the bus returns to its
idle state.

2.4 Transaction and application layers

To precisely model the lower layers of IEEE 1394, it is sufficient to combine in parallel n LINK processes
and one BUS process, which describes n PHY processes and a cable. The µCRL and mCRL2 models
given in Annexes A and B follow this approach for n = 2, with a simple MAIN process gathering two
link layers and a bus.

For model-checking verification (i.e., using a model checker to exhaustively explore and analyze the
reachable state space), it is desirable to describe the upper layers as well, namely, the external behaviour
of the transaction layer and of the application running on top of it. To this aim, M. Sighireanu introduced
in her E-LOTOS model [37] two additional processes: TRANS, which represents a transaction layer, and
Application, which describes the application and which we note APPLI.

TRANS process. As mentioned in Section 2.1, the transaction layer provides read, write, and lock
transactions to the application. Transactions follow the traditional four-step connection establishment
of the OSI model: request, indication, response, and confirmation. Inside the TRANS process, outgoing
requests and incoming responses are handled by two sub-processes running in parallel and synchronized
together. Both types of transactions (concatenated and split) are dealt with. Further details can be found
in [37, Section 7].

The deadlock problem mentioned in Section 1 is caused by a missing transition in the packet trans-
mit/receive state machine of the link layer (precisely, in the Link4BRec sub-process of the µCRL and

28 Four Formal Models of IEEE 1394 Link Layer

mCRL2 models). To fix this bug, one option is to modify the behaviour of the link layer to insert the
missing transition, as shown in [41]. Another option (adopted in the LOTOS and LNT models to pre-
serve compatibility with the µCRL and mCRL2 models) is to keep the LINK process unchanged and
modify instead the TRANS process by removing the transition (synchronized with the LINK process) that
causes the deadlock; interestingly, the 2008 revision of IEEE 1394 also kept the link-layer state machine
unchanged (see [45, Figure 6-21, Page 162]). Finally, to determine the behaviour of TRANS, a parameter
v was added, which is equal either to ok (deadlock-free version) or to ko (original version).

APPLI process. M. Sighireanu designed 11 different applications, which differ by the scenario chosen
among three possibilities (see [37, Section 9.2] for details), the maximal number of nodes connected to
the bus, and the maximal number of requests sent to the link layer. Combined with both variants of the
TRANS process, this led to 22 different MAIN processes, hence 22 models to be verified.

NODE process. To factorize the vast amount of duplicated code among these 22 MAIN processes,
H. Garavel introduced a new NODE process that expresses the parallel composition of three processes: a
LINK, a TRANS, and an APPLI. Notice that, unlike the approach of [37, Section 9.2], the APPLI process
is no longer invoked from within the TRANS process.

3 Formal models

In this section, we present in more detail the four formal models of the IEEE 1394 link layer, following
the chronological order of their development.

3.1 Formal model in µCRL

The first formal model of the link layer was written in 1997 by B. Luttik and circulated among the
COST-247 community. It was reviewed by H. Garavel, J.F. Groote, and M. Sighireanu, who provided
comments that led to improvements and simplifications. It was published as an annex (nicely compacted
using mathematical symbols) in [26, 27] and, since then, has remained fairly stable. The µCRL model
given in Annex A is close to this original model, with three enhancements:

• It is “machine-readable”, meaning that it can be executed by the µCRL toolset.

• It uses the map keyword added in the 1997 version of µCRL [15] to declare non-constructors,
whereas the original model [26, 27] used the 1995 version of µCRL [19], which does not distin-
guish between constructors and non-constructors.

• It introduces tau internal actions in the Resolve and Distribute sub-processes of the BUS

process, in order to eliminate two unguarded recursive calls that existed in the original model and
that the µCRL toolset cannot handle — even if the recursion is actually bounded by the fixed
number of LINK processes.

Notice that the µCRL model is quite large (809 non-blank lines), as the Bool and Nat types with all their
basic functions must be defined in extension. This verbosity issue was solved in the three other formal
models.

H. Garavel & B. Luttik 29

3.2 Formal model in LOTOS

In 1997, M. Sighireanu wrote a LOTOS model of the IEEE 1394 link layer, based on the draft µCRL
model of B. Luttik. The development of both models at the same time led to clarifications, enhancements,
and simplifications in each of them. The LOTOS model aimed at using the existing CADP toolset [8] to
perform model-checking verification, and became an official demo example [40] of CADP in 1997. The
LOTOS code was similar in essence to the µCRL code, but with a few differences:

• As mentioned in Section 2.4, it introduced TRANS and APPLI processes to describe the upper
layers of IEEE 1394, as well as various MAIN processes specifying 22 verification scenarios.

• The LOTOS model was shorter because it imported predefined libraries containing, e.g., the
Boolean and NaturalNumber types.

• The LOTOS model uses conditional rewrite rules (e.g., C1, ...,Cn =⇒ L = R) where the µCRL
model needs to take a detour via user-defined if(C,E,E ′) functions to express conditional equal-
ities.

• The µCRL rewriter does not consider a fixed ordering of the rewrite rules: it is the modeller’s
responsibility to define a confluent term rewrite system. On the contrary, the CÆSAR.ADT com-
piler [9] for LOTOS assumes that the rewrite rules defining each (non-constructor) function are
ordered by decreasing priority; this allows more concise definitions of equality functions (e.g., the
eq comparator for type SIGNAL has 16 rules in µCRL and 2 in LOTOS) and other functions (e.g.,
is dest, is header, is data, and is ack need 10 rules each in µCRL and 2 in LOTOS).

• The LOTOS model renames all local variables i to j, because the former is a reserved LOTOS
keyword that denotes the internal action (i.e., Milner’s τ action). Later versions of CADP lifted
this restriction by making it possible to have LOTOS variables or functions named i.

This LOTOS model remained stable for many years with only, in 2005, a simplification of the handwrit-
ten C code used to iterate over data domains, which was reduced from 2134 to 156 lines by factorizing
similar code fragments present in the various scenarios.

However, in 2023, H. Garavel did a full revision of the LOTOS model, prompted by the development
of the LNT model in parallel. The volume of LOTOS code was reduced by one third (from 2091 to 1385
lines), without loss of functionality and still preserving strong bisimilarity. This was done by merging
the two versions of the TRANS process into one parameterized process, by merging the five versions of
the APPLI process into another parameterized process, and by introducing the NODE process to factorize
duplicated LOTOS code. A few other changes were made to simplify the LOTOS code and make it
closer to the µCRL code:

• Like in the µCRL model, two LOTOS processes Link and Bus have been added to serve as main
entry points.

• The definitions of the LOTOS type SIGNAL and of its related types have been aligned on the
µCRL ones by eliminating unnecessary auxiliary tuple types. Yet, to make the LOTOS model
easier to understand, the four overloaded constructors sig of type SIGNAL have been renamed to
destsig, acksig, datasig, and headersig, respectively (even if LOTOS and LNT also support
overloading of constructor functions).

• To reflect the model-checking assumptions of [37, Section 9.2], each of the three types DATA,
HEADER, and ACK is directly defined as a singleton (one-value) type, rather than defining it as a
two-value type and later providing ad hoc C code that only enumerates one of these two values.

30 Four Formal Models of IEEE 1394 Link Layer

3.3 Formal model in mCRL2

In June 2005, the µCRL model was translated to mCRL2 by J.F. Groote and distributed as a demo
example [14] in the mCRL2 toolset.

The mCRL2 spec is 60% shorter than the µCRL one (809 non-empty lines in µCRL vs 327 in
mCRL2). Most of this reduction comes from data type definitions, the size of which was roughly divided
by 6.4 in mCRL2. This is explained by two factors:

• Like LOTOS, mCRL2 benefits from built-in data types (e.g., Bool, Nat, etc.), together with their
basic functions, which need not be defined in every model.

• Like functional languages (ML, Haskell, etc.) and E-LOTOS [21], mCRL2 types can be defined by
their constructors. For instance, the SIGNAL type is defined using the struct construct of mCRL2
and the BoolTABLE type is concisely defined using the built-in List datatype. For such types,
equality functions, recognizers (i.e., functions, such as is dest, that check whether an expression
matches a given constructor), and projections (i.e., functions, such as first, second, third,
and fourth for type quadruple, that extract the various arguments of a constructor) are defined
automatically.

The mCRL2 processes differ on minor points from the µCRL ones:

• The syntax of the “if C then A else B” construct has changed: it is noted “C -> A <> B” in
mCRL2 and “A <| C |> B” in µCRL.

• In the LINK process, the µCRL definitions of the Link0 and Link7 sub-processes contain sum-
mations (i.e., nondeterministic choices) ranging over natural numbers that are not restricted in any
way. In the mCRL2 model, these summations are bounded by the number of LINK layers.

• In the mCRL2 model, each tau action introduced to guard recursion (see Section 3.1) is replaced
by an action internal, which is later abstracted from.

3.4 Formal model in LNT

Besides developing a complete LOTOS model and using it for model-checking verification, M. Sighire-
anu also wrote an E-LOTOS model of the IEEE 1394 link layer that was, rather than the LOTOS model
itself, presented in [37, 38, 39]. At this time, the E-LOTOS language was still being standardized and
not finalized yet. In essence, the E-LOTOS model bears similarities with the mCRL2 model developed
later, notwithstanding the syntactic differences between both languages.

The LNT model presented in Annex D does not derive from this E-LOTOS model, as its history
is distinct. In 2022, the LOTOS model (taken in its original version) was partly translated to LNT by
Oussama Oulkaid and Marck-Edward Kemeh, as part of an exercise for master students at the University
of Grenoble. Their model was later reworked and reshaped by H. Garavel, in order to make it complete
and strongly bisimilar to the LOTOS one. Because it had been obtained by systematic translation, this
LNT model was very much in the same style as the µCRL, mCRL2, and LOTOS ones: namely, data types
defined as term rewrite systems, and processes defined as state machines extended with local variables
that can be read and modified on transitions.

Therefore, H. Garavel entirely revised this LNT model in order to obtain a “better” model that would
exploit the characteristic features of LNT and demonstrate the full capabilities of this language. This
revision was achieved by progressive transformations, checking at each step that strong bisimilarity is
preserved. Concerning data specifications in the resulting LNT model, three main remarks can be made:

H. Garavel & B. Luttik 31

• The type definitions in LNT are similar (up to syntax) to mCRL2 ones, except that equali-
ty/inequality functions must be requested explicitly (using “with =” and “with <>” clauses)
and that functions for extracting/updating constructor arguments must also be requested (using
“with get” and “with set” clauses); this ensures that LNT models are self-contained and not
cluttered with useless implicit functions.

• As regards function definitions, the LOTOS rewrite rules ordered by decreasing priority can be
systematically translated to LNT pattern-matching case statements. However, this is not the only
style permitted by LNT, and not necessarily the most concise and readable one. One can also define
functions in a more imperative style, with the usual programming constructs (variable assignments,
if-then-else, return statements, etc.), as shown, for instance, in the various functions manipulating
values of type BoolTABLE.

• A salient difference between µCRL, LOTOS, and mCRL2, on the one hand, and LNT, on the other
hand, concerns partial functions, i.e., functions that are not defined over the entire domain of their
arguments (e.g., function get for the BoolTABLE type or functions getdest, getdcrc, getdata,
gethead, getadd, and corrupt for the SIGNAL type). In µCRL, LOTOS, and mCRL2, partial
definition is implicit, in the sense that some equations are not given, e.g., there is no equation to
define “get (n, empty)”. The LOTOS model of Annex C contains comments to warn about
partial definitions, but this is left to the good will of the specifier.
In LNT, the situation is different: any partial function triggers (based on control- and data-flow
analysis) an error, which the specifier is expected to correct, either by properly dealing with the
overlooked cases, or by explicitly inserting a “raise E” statement at each point where the function
might terminate without returning a result — E being either an event declared as an exception that
the function can raise, or the predefined event UNEXPECTED denoting an exception that cannot be
caught and triggers a run-time error.

Concerning processes, the following five transformations have been repeatedly applied until an idiomatic
LNT model was obtained:

• The guarded commands “[C]→ A [] [not(C)]→ B” present in the LOTOS model have been
translated to “if C then A else B end if ” statements of LNT. The then and else branches have been
permuted, negating the Boolean condition C, when B was much shorter than A. Also, nested if
statements have been flattened whenever possible by using the (Ada-like) elsif clause of LNT.

• When this was convenient, calls to recursive processes have been replaced by the loop statements
of LNT, possibly with a break statement to exit the loop. For instance, the Link3, Link5, and
Link7 processes of the µCRL, mCRL2, and LOTOS models have been replaced, in the LNT
model, by loop statements. Indeed, in µCRL, mCRL2, and LOTOS, (finite or infinite) iteration
must always be expressed using recursion, with two main drawbacks: (i) the mandatory use of
recursion obfuscates the flow of control by requiring the definition of auxiliary recursive processes
and “goto-like” calls to these processes; (ii) it also obfuscates the flow of data by requiring, for
such processes, as many parameters as there are live variables at the point where these processes
are called. Using iteration rather than recursion often leads to simpler, more readable models.

• In some cases, finite loops can be further simplified by turning them into while or for loops. For
instance, the sub-process Resolve2 of the µCRL, mCRL2, and LOTOS models can be rephrased
as a while loop, whereas the sub-processes Resolve, SubactionGap, and Distribute can be
described using for loops, hereby getting rid of the extra parameters that store the loop variables.

32 Four Formal Models of IEEE 1394 Link Layer

Notice that such iterative behaviour was quite clear from the textual description of these processes
in [26], but only LNT enables one to express it in natural way.

• Processes that are called only once (especially after recursion has been replaced by iteration)
should be expanded in-line at the point where they are called. Doing so, the control flow be-
comes more readable (as each process call is similar to a “goto”) and many process parameters
are eliminated. M. Sighireanu applied this idea when designing her E-LOTOS model: the two
µCRL sub-processes DecideIdle and Link1 were expanded in-line [37, footnotes 7 and 8]. In
the LNT model of Annex D, this idea was pushed beyond by also eliminating the sub-processes
Link3, Link3RA, Link3RE, Link4DH, Link4RH, Link4RD, Link4RE, Link4BRec, Link4DRec,
Link5, Link6, Link7, Resolve, and Resolve2. The sub-process Link4, although called only
once, was not expanded in-line, because it is so large that its expansion would have increased the
nesting depth too much. Also, a new Link2 sub-process was added to factorize both sub-processes
Link2req and Link2resp in a single one. As a result, the LINK process has only 6 (mutually
recursive) processes in the LNT model, instead of 19 in the other models — maintaining an exact
correspondence with the 8 states describing the asynchronous mode [43, Figure 6-19, Page 170]
was not considered a requirement for the LNT model.

• Since the in-line expansion of processes often creates variables with nested scopes, three additional
transformations may be suitable to keep the LNT model simple:

– merging different variables that have the same type and are never used simultaneously, so as
to decrease the number of variables.

– enlarging the scope of nested variables by moving their declarations upward, so has to reduce
the nesting depth of variable scopes;

– renaming nested variables declared in the scope of another variable having the same name;
for instance, after successively expanding the sub-process Link7 in Link6, Link6 in Link5,
and Link5 in Link4DRec, the d variable of Link7 arrives in the scope of the d variable of
Link4DRec; even if the innermost variable hides the outermost one in LNT (as in Algol-60),
it may be suitable to give these variables different names to avoid confusion.

These transformations sometimes conflict with each other, and their judicious application cannot
be governed by strict laws: it is rather a matter of taste and circumstances.

4 Verification

The four formal models of the IEEE 1934 link layer have been checked by their respective compilers:
the µCRL toolset, the mCRL2 toolset, and, for the LOTOS and LNT models, the CADP toolset.

The five correctness properties stated by B. Luttik [26, Section 4] have been formulated in the ACTL
temporal logic [6] by R. Mateescu and M. Sighireanu [37, Section 10]. Using the XTL [29] model
checker of CADP, these formulas have been checked on 16 out of 22 variants of the LOTOS model
(totalling 80 model-checking jobs), the domains of the types ACK, DATA, and HEADER being limited to a
single value. All the properties hold, except the first property (deadlock freeness), which is violated on
the “original” models when the application layer executes its most complex scenarios.

The LNT model has been verified in two ways, using both model checking and equivalence checking.
On the one hand, the ACTL formulas evaluate identically on the 16 variants of the LNT model. On the
other hand, the labelled transition systems generated from 20 out of 22 variants of the LNT model are
strongly bisimilar to those generated from the same variants of the LOTOS model. The labelled transition

H. Garavel & B. Luttik 33

systems of the two remaining variants are too large for being generated directly, and would certainly
benefit from compositional verification techniques [11]. In 14 cases out of 20, the labelled transition
systems generated from LOTOS and LNT have the same size, whereas in 6 cases, those generated from
LNT are slightly larger (+0.46% states, +0.43% transitions). Using version 2024-a “Eindhoven” of the
CADP toolbox, these verifications were performed in less than 8 minutes on a Dell Latitude 5580 (Intel
Core i5-7200U processor, 16 GB RAM) running Linux.

5 Conclusion

Revisiting the IEEE 1394 link layer problem, a true success story of formal methods, we presented and
discussed four models written in µCRL, mCRL2, LOTOS, and LNT — the LOTOS model (revised in
2023) and the LNT model being novel contributions. In this respect, the present paper is a tentative
“Rosetta stone” for comparing various modelling languages dedicated to communication protocols and
concurrent systems. In a nutshell, our main findings are as follows:

• It appears that the three languages µCRL, mCRL2, and LOTOS are quite close, except that data
type specifications are more concise in the latter two languages. Each of these three languages
contains two separate sub-languages: one for specifying data types (using algebraic specifications
or term rewrite rules), and another one for concurrent processes.
These sub-languages sometimes use distinct symbols to express the same concept (e.g., if-then-
else being noted differently in the data and process parts) and sometimes give the same symbol
totally different meanings, e.g., in µCRL and mCRL2, the “+” operator (which denotes addition
in the data part and nondeterministic choice in the process part), the “||” operator (which denotes
logical disjunction in the data part and parallel composition in the process part), or closing paren-
theses (which denote the end of expressions in the data part and the end of a choice, a sequential
composition, etc. in the process part).
On the contrary, LNT is a unified language, without separate sub-languages: LNT functions and
LNT processes are defined using the same notations (“;” for sequential composition, if-then-else
for conditionals, etc.), and LNT avoids, as much as possible, “overloaded” symbols.

• Although it has been argued that LOTOS supports very diverse “specification styles” [50], most
LOTOS, µCRL, and mCRL2 models consist of a set of concurrent processes, each of which being
specified using guarded commands and terminal recursion. Such a style is convenient for describ-
ing automata extended with state variables, but leads to models that are difficult to maintain when
specifications evolve frequently, and does not scale well when automata complexity increases,
resulting in large, poorly structured state machines scattered with “goto-like” transitions.
In addition to supporting guarded commands and terminal recursion, LNT provides alternative
specification styles suitable for the description of complex systems. In particular, LNT offers the
classical primitives of structured programming, properly bracketed with an Ada-like syntax, which
make large models easier to read and reduce the need for drawing state machines on paper.

To some extent, there is here a debate around the concept of minimality and how it should be interpreted.
On the one hand, LOTOS, µCRL, and mCRL2 try to be minimal in the size of the language2, the number
of syntactic constructs, and the number of semantic rules. An explicit concern for µCRL and mCRL2
has been to ensure that the semantics are as simple and elegant as possible, only including constructs in

2The µ letter (which stands for “micro”) in µCRL indeed expresses such a desire for minimality.

34 Four Formal Models of IEEE 1394 Link Layer

the language if they are needed for expressiveness; ease of modelling has been less of a concern so far.
LNT also tries to be minimal, e.g., by unifying the sub-languages for functions and processes, the former
being included in the latter, but it can be rightly argued that LNT is richer than the three other languages
and requires more complex compilers that implement involved control- and data-flow analyses.

Perhaps the proper concept of minimality is not so much about the size of a language or of its
compiler, but about the effort needed to learn the language, the time needed to write correct models, and
the difficulty of understanding such models for engineers who do not have a strong background in formal
methods. We hope that the present study will usefully contribute to this debate.

Acknowledgements

We are grateful to all those who contributed to the design and verification of the four formal models of
the IEEE 1394 link layer, namely: Jan Friso Groote, Marck-Edward Kemeh, Radu Mateescu, Laurent
Mounier, Oussama Oulkaid, Charles Pecheur, Judi Romijn, Mihaela Sighireanu, and Bruno Vivien. We
also thank the anonymous reviewers for their constructive remarks.

References

[1] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger
Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems
– Improvements in Expressivity and Usability. In Tomás Vojnar & Lijun Zhang, editors: Proceedings (Part II)
of the 25th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2019), Prague, Czech Republic Proceedings, Lecture Notes in Computer Science 11428, Springer,
pp. 21–39, doi:10.1007/978-3-030-17465-1 2.

[2] Vincenza Carchiolo, Michele Malgeri & Giuseppe Mangioni (2003): Synthesis of LOTOS Specification of
the IEEE-1394 Firewire Protocol. In: Proceedings of the 14th IEEE International Workshop on Rapid
System Prototyping (RSP’03), San Diego, California, USA, IEEE Computer Society Press, pp. 86–92,
doi:10.1109/IWRSP.2003.1207034.

[3] David Champelovier, Xavier Clerc, Hubert Garavel, Yves Guerte, Christine McKinty, Vincent
Powazny, Frédéric Lang, Wendelin Serwe & Gideon Smeding (2023): Reference Manual of the
LNT to LOTOS Translator (Version 7.1). Available at http://cadp.inria.fr/publications/

Champelovier-Clerc-Garavel-et-al-10.html. INRIA, Grenoble, France.

[4] Conrado Daws, Marta Z. Kwiatkowska & Gethin Norman (2002): Automatic Verification of the IEEE-1394
Root Contention Protocol with KRONOS and PRISM. In Rance Cleaveland & Hubert Garavel, editors:
Proceedings of the 7th International ERCIM Workshop on Formal Methods for Industrial Critical Systems
(FMICS’02), Málaga, Spain, Electronic Notes in Theoretical Computer Science 66, Elsevier, pp. 104–119,
doi:10.1016/S1571-0661(04)80406-7.

[5] Conrado Daws, Marta Z. Kwiatkowska & Gethin Norman (2004): Automatic Verification of the IEEE 1394
Root Contention Protocol with KRONOS and PRISM. International Journal on Software Tools for Technology
Transfer (STTT) 5(2–3), pp. 221–236, doi:10.1007/S10009-003-0118-5.

[6] Rocco De Nicola & Frits W. Vaandrager (1990): Action versus State based Logics for Transition Systems. In
Irène Guessarian, editor: Semantics of Systems of Concurrent Processes – Proceedings of the LITP Spring
School on Theoretical Computer Science, La Roche Posay, France, Lecture Notes in Computer Science 469,
Springer, pp. 407–419, doi:10.1007/3-540-53479-2 17.

[7] Marco Devillers, W. O. David Griffioen, Judi Romijn & Frits W. Vaandrager (2000): Verification of a Leader
Election Protocol: Formal Methods Applied to IEEE 1394. Formal Methods in System Design 16(3), pp.
307–320, doi:10.1023/A:1008764923992.

https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1109/IWRSP.2003.1207034
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
http://cadp.inria.fr/publications/Champelovier-Clerc-Garavel-et-al-10.html
https://doi.org/10.1016/S1571-0661(04)80406-7
https://doi.org/10.1007/S10009-003-0118-5
https://doi.org/10.1007/3-540-53479-2_17
https://doi.org/10.1023/A:1008764923992

H. Garavel & B. Luttik 35

[8] Jean-Claude Fernandez, Hubert Garavel, Alain Kerbrat, Radu Mateescu, Laurent Mounier & Mihaela
Sighireanu (1996): CADP (CÆSAR/ALDEBARAN Development Package): A Protocol Validation and Ver-
ification Toolbox. In Rajeev Alur & Thomas A. Henzinger, editors: Proceedings of the 8th Conference on
Computer-Aided Verification (CAV’96), New Brunswick, New Jersey, USA, Lecture Notes in Computer
Science 1102, Springer, pp. 437–440, doi:10.1007/3-540-61474-5 97.

[9] Hubert Garavel (1989): Compilation of LOTOS Abstract Data Types. In Son T. Vuong, editor: Proceedings of
the 2nd International Conference on Formal Description Techniques FORTE’89 (Vancouver B.C., Canada),
North Holland, pp. 147–162. Available at http://cadp.inria.fr/publications/Garavel-89-c.
html.

[10] Hubert Garavel (2008): Reflections on the Future of Concurrency Theory in General and Process Cal-
culi in Particular. In Catuscia Palamidessi & Frank D. Valencia, editors: Proceedings of the LIX Collo-
quium on Emerging Trends in Concurrency Theory, Ecole Polytechnique de Paris, France, November 13–15,
2006, Electronic Notes in Theoretical Computer Science 209, Elsevier Science Publishers, pp. 149–164,
doi:10.1016/J.ENTCS.2008.04.009. Also available as INRIA Research Report RR-6368.

[11] Hubert Garavel, Frédéric Lang & Laurent Mounier (2018): Compositional Verification in Action. In Falk
Howar & Jiri Barnat, editors: Proceedings of the 23rd International Conference on Formal Methods for Indus-
trial Critical Systems (FMICS’18), Maynooth, Ireland – Essays Dedicated to Susanne Graf at the Occasion
of Her 60th Birthday, Lecture Notes in Computer Science 11119, Springer, pp. 189–210, doi:10.1007/978-
3-030-00244-2 13.

[12] Hubert Garavel, Frédéric Lang & Wendelin Serwe (2017): From LOTOS to LNT. In Joost-Pieter Katoen,
Rom Langerak & Arend Rensink, editors: ModelEd, TestEd, TrustEd – Essays Dedicated to Ed Brinksma
on the Occasion of His 60th Birthday, Lecture Notes in Computer Science 10500, Springer, pp. 3–26,
doi:10.1007/978-3-319-68270-9 1.

[13] Hubert Garavel & Mihaela Sighireanu (1998): Towards a Second Generation of Formal Description Tech-
niques – Rationale for the Design of E-LOTOS. In Jan-Friso Groote, Bas Luttik & Jos van Wamel,
editors: Proceedings of the 3rd International Workshop on Formal Methods for Industrial Critical Sys-
tems (FMICS’98), Amsterdam, The Netherlands, CWI, Amsterdam, pp. 187–230. Available at http:
//cadp.inria.fr/publications/Garavel-Sighireanu-98-a.html.

[14] Jan Friso Groote: IEEE 1394 Link Layer in mCRL2. Available at https://github.com/mCRL2org/
mCRL2/tree/master/examples/industrial/1394.

[15] Jan Friso Groote (1997): The Syntax and Semantics of Timed µCRL. Technical Report SEN-R9709, CWI,
Amsterdam, The Netherlands. Available at https://ir.cwi.nl/pub/4746.

[16] Jan Friso Groote, Aad Mathijssen, Michel Reniers, Yaroslav Usenko & Muck van Weerdenburg (2007): The
Formal Specification Language mCRL2. In Ed Brinksma, David Harel, Angelika Mader, Perdita Stevens &
Roel Wieringa, editors: Methods for Modelling Software Systems (MMOSS), Dagstuhl Seminar Proceedings
06351, Schloss Dagstuhl, Germany, pp. 1–34, doi:10.4230/DagSemProc.06351.12.

[17] Jan Friso Groote, Aad Mathijssen, Muck van Weerdenburg & Yaroslav S. Usenko (2006): From µCRL to
mCRL2: Motivation and Outline. Electronic Notes in Theoretical Computer Science 162, pp. 191–196,
doi:10.1016/j.entcs.2005.12.101.

[18] Jan Friso Groote & Mohammad Reza Mousavi (2014): Modeling and Analysis of Communicating Systems.
The MIT Press, doi:10.7551/mitpress/9946.001.0001.

[19] Jan Friso Groote & Alban Ponse (1995): The Syntax and Semantics of µCRL. In A. Ponse, C. Verhoef &
S.F.M. van Vlijmen, editors: Proceedings of the 1st Workshop on the Algebra of Communicating Processes
(ACP’94), Utrecht, The Netherlands, Workshops in Computing Series, Springer, pp. 26–62, doi:10.1007/978-
1-4471-2120-6 2.

[20] ISO/IEC (1989): LOTOS – A Formal Description Technique Based on the Temporal Ordering of Observa-
tional Behaviour. International Standard 8807, International Organization for Standardization – Informa-
tion Processing Systems – Open Systems Interconnection, Geneva. Available at https://www.iso.org/
standard/16258.html.

https://doi.org/10.1007/3-540-61474-5_97
http://cadp.inria.fr/publications/Garavel-89-c.html
http://cadp.inria.fr/publications/Garavel-89-c.html
https://doi.org/10.1016/J.ENTCS.2008.04.009
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-319-68270-9_1
http://cadp.inria.fr/publications/Garavel-Sighireanu-98-a.html
http://cadp.inria.fr/publications/Garavel-Sighireanu-98-a.html
https://github.com/mCRL2org/mCRL2/tree/master/examples/industrial/1394
https://github.com/mCRL2org/mCRL2/tree/master/examples/industrial/1394
https://ir.cwi.nl/pub/4746
https://doi.org/10.4230/DagSemProc.06351.12
https://doi.org/10.1016/j.entcs.2005.12.101
https://doi.org/10.7551/mitpress/9946.001.0001
https://doi.org/10.1007/978-1-4471-2120-6_2
https://doi.org/10.1007/978-1-4471-2120-6_2
https://www.iso.org/standard/16258.html
https://www.iso.org/standard/16258.html

36 Four Formal Models of IEEE 1394 Link Layer

[21] ISO/IEC (2001): Enhancements to LOTOS (E-LOTOS). International Standard 15437:2001, International
Organization for Standardization – Information Technology, Geneva. Available at https://www.iso.org/
standard/27680.html.

[22] Mark Jorgensen & Hubert Garavel (1997): Final Report of the COST-247 Action. Available at https:
//vasy.inria.fr/COST247.

[23] Lars Kühne, Jozef Hooman & Willem-Paul de Roever (1997): Towards Mechanical Verification of Parts
of the IEEE P1394 Serial Bus. In Ignac Lovrek, editor: Proceedings of the 2nd COST 247 International
Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), pp. 73–85.

[24] Marta Z. Kwiatkowska, Gethin Norman & Jeremy Sproston (2003): Probabilistic Model Checking of Dead-
line Properties in the IEEE 1394 FireWire Root Contention Protocol. Formal Aspects of Computing 14(3),
pp. 295–318, doi:10.1007/S001650300007.

[25] Izak van Langevelde, Judi Romijn & Nicolae Goga (2003): Founding FireWire Bridges through Promela Pro-
totyping. In: Proceedings of the 17th International Parallel and Distributed Processing Symposium (IPDPS
2003), Nice, France, IEEE Computer Society, p. 239, doi:10.1109/IPDPS.2003.1213434.

[26] Bas Luttik (1997): Description and Formal Specification of the Link Layer of P1394. Report SEN-R9706,
CWI, Software Engineering (SEN), Amsterdam, The Netherlands. Available at https://ir.cwi.nl/pub/
4758.

[27] Bas Luttik (1997): Description and Formal Specification of the Link Layer of P1394. In Ignac Lovrek, editor:
Proceedings of the 2nd COST 247 International Workshop on Applied Formal Methods in System Design
(Zagreb, Croatia), pp. 43–56.

[28] Savi Maharaj & Carron Shankland (2000): A Survey of Formal Methods Applied to Leader Election in IEEE
1394. Journal of Universal Computer Science 6(11), pp. 1145–1163. Available at http://www.jucs.org/
jucs_6_11/a_survey_of_formal.

[29] Radu Mateescu & Hubert Garavel (1998): XTL: A Meta-Language and Tool for Temporal Logic Model-
Checking. In Tiziana Margaria, editor: Proceedings of the International Workshop on Software Tools for
Technology Transfer (STTT’98), Aalborg, Denmark, BRICS, pp. 33–42. Available at http://cadp.inria.
fr/publications/Mateescu-Garavel-98.html.

[30] Judi Romijn (1999): A Timed Verification of the IEEE 1394 Leader Election Protocol. In Stefania Gnesi
& Diego Latella, editors: Proceedings of the 4th International Workshop on Formal Methods for Industrial
Critical Systems (FMICS’99), Trento, Italy, pp. 3–29.

[31] Judi Romijn (2001): A Timed Verification of the IEEE 1394 Leader Election Protocol. Formal Methods in
System Design 19(2), pp. 165–194, doi:10.1023/A:1011284000753.

[32] Judi Romijn (2003): False Loop Detection in the IEEE 1394 Tree Identify Phase. Formal Aspects of Com-
puting 14(3), pp. 319–327, doi:10.1007/S001650300008.

[33] Carron Shankland & Alberto Verdejo (1999): Time, E-LOTOS, and the FireWire. In Marco Ajmone Marsan,
Juan Quemada, Tomás Robles & Manuel Silva, editors: Proceedings of the Workshop on Formal Methods
and Telecommunications (WFMT’99), Zaragoza, Spain, Prensas Universitarias de Zaragoza, pp. 103–119.
Available at http://maude.sip.ucm.es/alberto-verdejo/papers/FireWire99.html.

[34] Carron Shankland & Alberto Verdejo (2001): A Case Study in Abstraction Using E-LOTOS and the FireWire.
Computer Networks 37(3/4), pp. 481–502, doi:10.1016/S1389-1286(01)00190-6.

[35] Carron Shankland & Mark van der Zwaag (1998): The Tree Identify Protocol of IEEE 1394 in µCRL. Formal
Aspects of Computing 10(5-6), pp. 509–531, doi:10.1007/s001650050030.

[36] Mihaela Sighireanu, Alban Catry, David Champelovier, Hubert Garavel, Frédéric Lang, Guillaume Schaeffer,
Wendelin Serwe & Jan Stoecker (2023): LOTOS NT User’s Manual (Version 3.12). INRIA/CONVECS,
Grenoble, France, https://vasy.inria.fr/ftp/traian/manual.pdf, 88 pages.

[37] Mihaela Sighireanu & Radu Mateescu (1997): Validation of the Link Layer Protocol of the IEEE-1394 Serial
Bus (“FireWire”): an Experiment with E-LOTOS. Research Report RR-3172, INRIA, France. Available at
http://cadp.inria.fr/publications/Sighireanu-Mateescu-97.html.

https://www.iso.org/standard/27680.html
https://www.iso.org/standard/27680.html
https://vasy.inria.fr/COST247
https://vasy.inria.fr/COST247
https://doi.org/10.1007/S001650300007
https://doi.org/10.1109/IPDPS.2003.1213434
https://ir.cwi.nl/pub/4758
https://ir.cwi.nl/pub/4758
http://www.jucs.org/jucs_6_11/a_survey_of_formal
http://www.jucs.org/jucs_6_11/a_survey_of_formal
http://cadp.inria.fr/publications/Mateescu-Garavel-98.html
http://cadp.inria.fr/publications/Mateescu-Garavel-98.html
https://doi.org/10.1023/A:1011284000753
https://doi.org/10.1007/S001650300008
http://maude.sip.ucm.es/alberto-verdejo/papers/FireWire99.html
https://doi.org/10.1016/S1389-1286(01)00190-6
https://doi.org/10.1007/s001650050030
https://vasy.inria.fr/ftp/traian/manual.pdf
http://cadp.inria.fr/publications/Sighireanu-Mateescu-97.html

H. Garavel & B. Luttik 37

[38] Mihaela Sighireanu & Radu Mateescu (1997): Validation of the Link Layer Protocol of the IEEE-1394 Serial
Bus (“FireWire”): an Experiment with E-LOTOS. In Ignac Lovrek, editor: Proceedings of the 2nd COST
247 International Workshop on Applied Formal Methods in System Design (Zagreb, Croatia), pp. 57–72.
Full version available as INRIA Research Report RR-3172.

[39] Mihaela Sighireanu & Radu Mateescu (1998): Verification of the Link Layer Protocol of the IEEE-1394
Serial Bus (FireWire): an Experiment with E-LOTOS. Springer International Journal on Software Tools for
Technology Transfer (STTT) 2(1), pp. 68–88, doi:10.1007/S100090050018.

[40] Mihaela Sighireanu, Radu Mateescu & Hubert Garavel: CADP Demo № 23. Available at http://cadp.
inria.fr/ftp/demos/demo_23.

[41] Mihaela Sighireanu, Radu Mateescu & Hubert Garavel (1998): VASY Reports a Deadlock in the IEEE 1394
“Firewire” Standard. Available at https://vasy.inria.fr/press/firewire.html.

[42] David P. L. Simons & Mariëlle Stoelinga (2001): Mechanical Verification of the IEEE 1394a Root Contention
Protocol Using Uppaal2k. International Journal on Software Tools for Technology Transfer (STTT) 3(4), pp.
469–485, doi:10.1007/S100090100059.

[43] IEEE Computer Society (1995): IEEE Standard for a High Performance Serial Bus. IEEE Standard 1394-
1995, Institution of Electrical and Electronic Engineers, doi:10.1109/IEEESTD.1996.81049.

[44] IEEE Computer Society (1995): P1394 Standard for a High Performance Serial Bus. Technical Report,
Institution of Electrical and Electronic Engineers. Draft 8.0v2.

[45] IEEE Computer Society (2008): IEEE Standard for a High Performance Serial Bus. IEEE Standard 1394-
2008, Institution of Electrical and Electronic Engineers, doi:10.1109/IEEESTD.2008.4659233.

[46] Mariëlle Stoelinga (2003): Fun with FireWire: A Comparative Study of Formal Verification Methods Ap-
plied to the IEEE 1394 Root Contention Protocol. Formal Aspects of Computing 14(3), pp. 328–337,
doi:10.1007/S001650300009.

[47] Mariëlle Stoelinga & Frits W. Vaandrager (1999): Root Contention in IEEE 1394. In Joost-Pieter Katoen,
editor: Proceedings of the 5th International AMAST Workshop on Formal Methods for Real-Time and Prob-
abilistic Systems (ARTS’99), Bamberg, Germany, Lecture Notes in Computer Science 1601, Springer, pp.
53–74, doi:10.1007/3-540-48778-6 4.

[48] Alberto Verdejo, Isabel Pita & Narciso Martı́-Oliet (2000): The Leader Election Protocol of IEEE 1394 in
Maude. In Kokichi Futatsugi, editor: Proceedings of the 3rd International Workshop on Rewriting Logic
and its Applications (WRLA 2000), Kanzawa, Japan, Electronic Notes in Theoretical Computer Science 36,
Elsevier, pp. 383–404, doi:10.1016/S1571-0661(05)80133-1.

[49] Alberto Verdejo, Isabel Pita & Narciso Martı́-Oliet (2003): Specification and Verification of the Tree
Identify Protocol of IEEE 1394 in Rewriting Logic. Formal Aspects of Computing 14(3), pp. 228–246,
doi:10.1007/S001650300003.

[50] C. Vissers, G. Scollo, M. van Sinderen & E. Brinksma (1991): Specification Styles in Distributed Systems De-
sign and Verification. Theoretical Computer Science 89(1), pp. 179–206, doi:10.1016/0304-3975(90)90111-
T.

A Formal model in µCRL

A.1 Types and functions in µCRL

% Boolean type

sort Bool

func

https://doi.org/10.1007/S100090050018
http://cadp.inria.fr/ftp/demos/demo_23
http://cadp.inria.fr/ftp/demos/demo_23
https://vasy.inria.fr/press/firewire.html
https://doi.org/10.1007/S100090100059
https://doi.org/10.1109/IEEESTD.1996.81049
https://doi.org/10.1109/IEEESTD.2008.4659233
https://doi.org/10.1007/S001650300009
https://doi.org/10.1007/3-540-48778-6_4
https://doi.org/10.1016/S1571-0661(05)80133-1
https://doi.org/10.1007/S001650300003
https://doi.org/10.1016/0304-3975(90)90111-T
https://doi.org/10.1016/0304-3975(90)90111-T

38 Four Formal Models of IEEE 1394 Link Layer

T,F: -> Bool

map
eq: Bool#Bool -> Bool

var
b: Bool

rew
eq(T,b)=b
eq(b,T)=b
eq(b,F)=not(b)
eq(F,b)=not(b)

map
and: Bool#Bool -> Bool

var
b: Bool

rew
and(T,b)=b
and(b,T)=b
and(b,F)=F
and(F,b)=F

map
or: Bool#Bool -> Bool

var
b: Bool

rew
or(T,b)=T
or(b,T)=T
or(b,F)=b
or(F,b)=b

map
not: Bool -> Bool

if: Bool#Bool#Bool -> Bool

var
b1,b2: Bool

rew
not(F)=T
not(T)=F
if(T,b1,b2)=b1
if(F,b1,b2)=b2

% Natural number type

sort NAT

func
0,1,2: -> NAT

% 0,1,2,3,4,5,6,7,8,9: −> NAT
map succ: NAT -> NAT

map

H. Garavel & B. Luttik 39

eq: NAT#NAT -> Bool

var
n,m: NAT

rew
1=succ(0)
2=succ(1)
eq(0,0)=T
eq(succ(n),0)=F
eq(0,succ(n))=F
eq(succ(n),succ(m))=eq(n,m)

map
lt: NAT#NAT -> Bool

var
n,m: NAT

rew
lt(0,0)=F
lt(succ(n),0)=F
lt(0,succ(n))=T
lt(succ(n),succ(m))=lt(n,m)

% Data/Control/Acknowledge elemens and their CRC computation

sort CHECK

func
bottom,check: -> CHECK

map
eq: CHECK#CHECK -> Bool

rew
eq(bottom,bottom)=T
eq(check,check)=T
eq(check,bottom)=F
eq(bottom,check)=F

sort DATA

func
d1,d2: -> DATA

map
crc: DATA -> CHECK

eq: DATA#DATA -> Bool

rew
crc(d1)=check
crc(d2)=check
eq(d1,d1)=T
eq(d1,d2)=F
eq(d2,d1)=F
eq(d2,d2)=T

sort HEADER

func
h1,h2: -> HEADER

map

40 Four Formal Models of IEEE 1394 Link Layer

crc: HEADER -> CHECK

eq: HEADER # HEADER -> Bool

rew
crc(h1)=check
crc(h2)=check
eq(h1,h1)=T
eq(h1,h2)=F
eq(h2,h1)=F
eq(h2,h2)=T

sort ACK

func
a1,a2: -> ACK

map
crc: ACK -> CHECK

eq : ACK # ACK -> Bool

rew
crc(a1)=check
crc(a2)=check
eq(a1,a1)=T
eq(a1,a2)=F
eq(a2,a1)=F
eq(a2,a2)=T

sort SIGNAL

func
sig: NAT -> SIGNAL

sig: HEADER#CHECK -> SIGNAL

sig: DATA#CHECK -> SIGNAL

sig: ACK#CHECK -> SIGNAL

Start,End: -> SIGNAL

Prefix,subactgap: -> SIGNAL

dhead,Dummy: -> SIGNAL

map
is_start,is_end: SIGNAL -> Bool

is_prefix,is_sagap: SIGNAL -> Bool

is_dummy,is_dhead: SIGNAL -> Bool

eq: SIGNAL#SIGNAL -> Bool

var
n,n’ : NAT

h,h’ : HEADER

d,d’ : DATA

a,a’ : ACK

c,c’ : CHECK

s : SIGNAL

rew
is_start(Start)=T
is_start(End)=F
is_start(Prefix)=F
is_start(subactgap)=F
is_start(dhead)=F

H. Garavel & B. Luttik 41

is_start(Dummy)=F
is_start(sig(n))=F
is_start(sig(h,c))=F
is_start(sig(d,c))=F
is_start(sig(a,c))=F
eq(Start,s)=is_start(s)
eq(s,Start)=is_start(s)

is_end(End)=T
is_end(Start)=F
is_end(Prefix)=F
is_end(subactgap)=F
is_end(dhead)=F
is_end(Dummy)=F
is_end(sig(n))=F
is_end(sig(h,c))=F
is_end(sig(d,c))=F
is_end(sig(a,c))=F
eq(End,s)=is_end(s)
eq(s,End)=is_end(s)

is_prefix(Prefix)=T
is_prefix(Start)=F
is_prefix(End)=F
is_prefix(subactgap)=F
is_prefix(dhead)=F
is_prefix(Dummy)=F
is_prefix(sig(n))=F
is_prefix(sig(h,c))=F
is_prefix(sig(d,c))=F
is_prefix(sig(a,c))=F
eq(Prefix,s)=is_prefix(s)
eq(s,Prefix)=is_prefix(s)

is_sagap(subactgap)=T
is_sagap(Start)=F
is_sagap(End)=F
is_sagap(Prefix)=F
is_sagap(dhead)=F
is_sagap(Dummy)=F
is_sagap(sig(n))=F
is_sagap(sig(h,c))=F
is_sagap(sig(d,c))=F
is_sagap(sig(a,c))=F
eq(subactgap,s)=is_sagap(s)
eq(s,subactgap)=is_sagap(s)

is_dhead(subactgap)=F
is_dhead(Start)=F
is_dhead(End)=F
is_dhead(Prefix)=F
is_dhead(dhead)=T

42 Four Formal Models of IEEE 1394 Link Layer

is_dhead(Dummy)=F
is_dhead(sig(n))=F
is_dhead(sig(h,c))=F
is_dhead(sig(d,c))=F
is_dhead(sig(a,c))=F
eq(dhead,s)=is_dhead(s)
eq(s,dhead)=is_dhead(s)

is_dummy(subactgap)=F
is_dummy(Start)=F
is_dummy(End)=F
is_dummy(Prefix)=F
is_dummy(dhead)=F
is_dummy(Dummy)=T
is_dummy(sig(n))=F
is_dummy(sig(h,c))=F
is_dummy(sig(d,c))=F
is_dummy(sig(a,c))=F
eq(Dummy,s)=is_dummy(s)
eq(s,Dummy)=is_dummy(s)

eq(sig(n),sig(n’))=eq(n,n’)
eq(sig(n),sig(h,c))=F
eq(sig(n),sig(d,c))=F
eq(sig(n),sig(a,c))=F
eq(sig(h,c),sig(n’))=F
eq(sig(h,c),sig(h’,c’))=and(eq(h,h’),eq(c,c’))
eq(sig(h,c),sig(d,c’))=F
eq(sig(h,c),sig(a,c’))=F
eq(sig(d,c),sig(n))=F
eq(sig(d,c),sig(h,c’))=F
eq(sig(d,c),sig(d’,c’))=and(eq(d,d’),eq(c,c’))
eq(sig(d,c),sig(a,c’))=F
eq(sig(a,c),sig(n))=F
eq(sig(a,c),sig(h,c’))=F
eq(sig(a,c),sig(d,c’))=F
eq(sig(a,c),sig(a’,c’))=and(eq(a,a’),eq(c,c’))

map
is_dest,is_header: SIGNAL -> Bool

is_data,is_ack: SIGNAL -> Bool

var
n : NAT

h : HEADER

d : DATA

a : ACK

c : CHECK

rew
is_dest(sig(n))=T
is_dest(sig(h,c))=F
is_dest(sig(d,c))=F
is_dest(sig(a,c))=F

H. Garavel & B. Luttik 43

is_dest(Start)=F
is_dest(End)=F
is_dest(Prefix)=F
is_dest(subactgap)=F
is_dest(dhead)=F
is_dest(Dummy)=F

is_header(sig(h,c))=T
is_header(sig(n))=F
is_header(sig(d,c))=F
is_header(sig(a,c))=F
is_header(Start)=F
is_header(End)=F
is_header(Prefix)=F
is_header(subactgap)=F
is_header(dhead)=F
is_header(Dummy)=F

is_data(sig(d,c))=T
is_data(sig(n))=F
is_data(sig(h,c))=F
is_data(sig(a,c))=F
is_data(Start)=F
is_data(End)=F
is_data(Prefix)=F
is_data(subactgap)=F
is_data(dhead)=F
is_data(Dummy)=F

is_ack(sig(a,c))=T
is_ack(sig(n))=F
is_ack(sig(h,c))=F
is_ack(sig(d,c))=F
is_ack(Start)=F
is_ack(End)=F
is_ack(Prefix)=F
is_ack(subactgap)=F
is_ack(dhead)=F
is_ack(Dummy)=F

map
is_physig,is_terminator: SIGNAL -> Bool

var
s : SIGNAL

rew
is_physig(s)=or(is_start(s),or(is_end(s),or(is_prefix(s),is_sagap(s))))
is_terminator(s)=or(is_end(s),is_prefix(s))

map
is_hda: SIGNAL -> Bool

var
s : SIGNAL

44 Four Formal Models of IEEE 1394 Link Layer

rew
is_hda(s)=or(is_header(s),or(is_data(s),is_ack(s)))

map
valid_hpart, valid_ack: SIGNAL -> Bool

var
n : NAT

h : HEADER

d : DATA

a : ACK

c : CHECK

rew
valid_ack(sig(a,c))=eq(c,check)
valid_ack(sig(h,c))=F
valid_ack(sig(d,c))=F
valid_ack(sig(n))=F
valid_ack(Start)=F
valid_ack(End)=F
valid_ack(Prefix)=F
valid_ack(subactgap)=F
valid_ack(Dummy)=F
valid_ack(dhead)=F

valid_hpart(sig(h,c))=eq(c,check)
valid_hpart(sig(n))=F
valid_hpart(sig(d,c))=F
valid_hpart(sig(a,c))=F
valid_hpart(Start)=F
valid_hpart(End)=F
valid_hpart(Prefix)=F
valid_hpart(subactgap)=F
valid_hpart(Dummy)=F
valid_hpart(dhead)=F

map
getdest: SIGNAL -> NAT

getdcrc: SIGNAL -> CHECK

getdata: SIGNAL -> DATA

gethead: SIGNAL -> HEADER

getack: SIGNAL -> ACK

corrupt: SIGNAL -> SIGNAL

var
n : NAT

h : HEADER

d : DATA

a : ACK

c : CHECK

rew
getdest(sig(n)) = n

gethead(sig(h,c)) = h

getdcrc(sig(d,c)) = c

getdata(sig(d,c)) = d

H. Garavel & B. Luttik 45

getack (sig(a,c)) = a

corrupt(sig(h,c)) = sig(h,bottom)

corrupt(sig(d,c)) = sig(d,bottom)

corrupt(sig(a,c)) = sig(a,bottom)

sort SIG_TUPLE

func
quadruple: SIGNAL#SIGNAL#SIGNAL#SIGNAL -> SIG_TUPLE

void: -> SIG_TUPLE

map
first,second,third,fourth: SIG_TUPLE -> SIGNAL

is_void: SIG_TUPLE -> Bool

var
x1,x2,x3,x4: SIGNAL

rew
first(quadruple(x1,x2,x3,x4))=x1
second(quadruple(x1,x2,x3,x4))=x2
third(quadruple(x1,x2,x3,x4))=x3
fourth(quadruple(x1,x2,x3,x4))=x4

is_void(void)=T
is_void(quadruple(x1,x2,x3,x4))=F

sort PAR

func
fair,immediate: -> PAR

map
eq: PAR#PAR -> Bool

rew
eq(fair,fair)=T
eq(immediate,immediate)=T
eq(fair,immediate)=F
eq(immediate,fair)=F

sort PAC

func
won,lost: -> PAC

map
eq: PAC#PAC -> Bool

rew
eq(won,won)=T
eq(lost,lost)=T
eq(won,lost)=F
eq(lost,won)=F

sort LDC

func
ackrec: ACK -> LDC

ackmiss,broadsent: -> LDC

sort LDI

46 Four Formal Models of IEEE 1394 Link Layer

func
good,broadrec: HEADER#DATA -> LDI

dcrc_err: HEADER -> LDI

sort BOC

func
release,hold: -> BOC

map
eq: BOC#BOC -> Bool

rew
eq(release,release)=T
eq(hold,hold)=T
eq(release,hold)=F
eq(hold,release)=F

A.2 The LINK process in µCRL

act
LDreq: NAT#NAT#HEADER#DATA
LDcon: NAT#LDC
LDind: NAT#LDI
LDres: NAT#ACK#BOC

sPDreq,rPDind: NAT#SIGNAL
sPAreq: NAT#PAR
rPAcon: NAT#PAC
rPCind: NAT

proc

LINK(n:NAT,i:NAT)=
(Link0(n,i,void))

Link0(n:NAT,id:NAT,buffer:SIG_TUPLE)=
(

sum(dest:NAT,

sum(h:HEADER,

sum(d:DATA,

LDreq(id,dest,h,d).

Link0(n,id,quadruple(dhead,

sig(dest),

sig(h,crc(h)),

sig(d,crc(d))))

)

)

)

<| is_void(buffer) |>
sPAreq(id,fair).Link1(n,id,buffer)

)

+
sum(p:SIGNAL,

H. Garavel & B. Luttik 47

rPDind(id,p).

(Link4(n,id,buffer) <| is_start(p) |> Link0(n,id,buffer))

)

Link1(n:NAT,id:NAT,p:SIG_TUPLE)=
rPAcon(id,won).Link2req(n,id,p)

+
rPAcon(id,lost).Link0(n,id,p)

Link2req(n:NAT,id:NAT,p:SIG_TUPLE)=
(rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p))) .

(rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End)).

(

LDcon(id,broadsent).Link0(n,id,void)

<| eq(getdest(second(p)),n) |>
Link3(n,id,void)

)

Link3(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(p:SIGNAL,

rPDind(id,p).

(

Link3(n,id,buffer)

<| is_prefix(p) |>
(

Link3RA(n,id,buffer)

<| is_start(p) |>
(

LDcon(id,ackmiss).Link0(n,id,buffer)

<| is_sagap(p) |>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)

)

)

)

Link3RA(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(a:SIGNAL,

rPDind(id,a).

(

(

LDcon(id,ackmiss).Link0(n,id,buffer)

<| is_sagap(a) |>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)

<| is_physig(a) |>
Link3RE(n,id,buffer,a)

)

48 Four Formal Models of IEEE 1394 Link Layer

)

Link3RE(n:NAT,id:NAT,buffer:SIG_TUPLE,a:SIGNAL)=
sum(e:SIGNAL,

rPDind(id,e).

(

LDcon(id,ackrec(getack(a))).LinkWSA(n,id,buffer,n)

<| and(valid_ack(a),is_terminator(e)) |>
(

LDcon(id,ackmiss).Link0(n,id,buffer)

<| is_sagap(e) |>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)

)

)

Link4(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(dh:SIGNAL,

rPDind(id,dh).

(

(

Link0(n,id,buffer)

<| is_sagap(dh) |>
LinkWSA(n,id,buffer,n)

)

<| is_physig(dh) |>
Link4DH(n,id,buffer)

)

)

Link4DH(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(dest:SIGNAL,

rPDind(id,dest).

(

(

sPAreq(id,immediate).Link4RH(n,id,buffer,id)

<| eq(getdest(dest),id) |>
(

Link4RH(n,id,buffer,n)

<| eq(getdest(dest),n) |>
LinkWSA(n,id,buffer,n)

)

)

<| is_dest(dest) |>
(

Link0(n,id,buffer)

<| is_sagap(dest) |>
LinkWSA(n,id,buffer,n)

)

)

)

H. Garavel & B. Luttik 49

Link4RH(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT)=
sum(h:SIGNAL,

rPDind(id,h).

(

Link4RD(n,id,buffer,dest,h)

<| valid_hpart(h) |>
LinkWSA(n,id,buffer,dest)

)

)

Link4RD(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT,h:SIGNAL)=
sum(d:SIGNAL,

rPDind(id,d).

(

Link4RE(n,id,buffer,dest,h,d)

<| is_data(d) |>
LinkWSA(n,id,buffer,dest)

)

)

Link4RE(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT,h:SIGNAL,d:SIGNAL)=
sum(e:SIGNAL,

rPDind(id,e).

(

(

Link4DRec(n,id,buffer,h,d)

<| eq(dest,id) |>
Link4BRec(n,id,buffer,h,d)

)

<| is_terminator(e) |>
LinkWSA(n,id,buffer,dest)

)

)

Link4DRec(n:NAT,id:NAT,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
LDind(id,good(gethead(h),getdata(d))).rPAcon(id,won).Link5(n,id,buffer)

<| eq(getdcrc(d),check) |>
LDind(id,dcrc_err(gethead(h))).rPAcon(id,won).Link5(n,id,buffer)

Link4BRec(n:NAT,id:NAT,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
LDind(id,broadrec(gethead(h),getdata(d))).Link0(n,id,buffer)

<| eq(getdcrc(d),check) |>
Link0(n,id,buffer)

Link5(n:NAT,id:NAT,buffer:SIG_TUPLE)=
sum(a:ACK,

sum(b:BOC,

LDres(id,a,b).Link6(n,id,buffer,sig(a,crc(a)),b)

)

)

+
rPCind(id).sPDreq(id,Prefix).Link5(n,id,buffer)

50 Four Formal Models of IEEE 1394 Link Layer

Link6(n:NAT,id:NAT,buffer:SIG_TUPLE,p:SIGNAL,b:BOC)=
(rPCind(id).sPDreq(id,Start).rPCind(id).sPDreq(id,p)) .

(rPCind(id).

(

sPDreq(id,End).Link0(n,id,buffer)

<| eq(b,release) |>
sPDreq(id,Prefix).Link7(n,id,buffer)

)

)

Link7(n:NAT,id:NAT,buffer:SIG_TUPLE)=
rPCind(id).sPDreq(id,Prefix).Link7(n,id,buffer)

+
sum(dest:NAT,

sum(h:HEADER,

sum(d:DATA,

LDreq(id,dest,h,d).

Link2resp(n,id,buffer,quadruple(dhead,

sig(dest),

sig(h,crc(h)),

sig(d,crc(d))))

)

)

)

Link2resp(n:NAT,id:NAT,buffer:SIG_TUPLE,p:SIG_TUPLE)=
(rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p))).

(rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End)).

(LDcon(id,broadsent).Link0(n,id,buffer)

<| eq(getdest(second(p)),n) |>
Link3(n,id,buffer)

)

LinkWSA(n:NAT,id:NAT,buffer:SIG_TUPLE,dest:NAT)=
sum(p:SIGNAL,

rPDind(id,p).

(

Link0(n,id,buffer)

<| is_sagap(p) |>
LinkWSA(n,id,buffer,dest)

)

)

+
(

rPAcon(id,won).rPCind(id).sPDreq(id,End).Link0(n,id,buffer)

<| eq(dest,id) |>
delta

H. Garavel & B. Luttik 51

)

A.3 The BUS process in µCRL

sort BoolTABLE

func
empty: -> BoolTABLE

btable: NAT#Bool#BoolTABLE -> BoolTABLE

map
inita: NAT -> BoolTABLE

invert: NAT#BoolTABLE -> BoolTABLE

get: NAT#BoolTABLE -> Bool

if: Bool#BoolTABLE#BoolTABLE -> BoolTABLE

eq:BoolTABLE#BoolTABLE->Bool

var
n,m : NAT

b : Bool

bt1,bt2 : BoolTABLE

rew
eq(bt1, bt1)=T
inita(0)=empty
inita(succ(n))=btable(n,F,inita(n))

invert(n,empty)=empty
invert(n,btable(m,b,bt1))=
if(eq(n,m),

btable(m,not(b),bt1),

btable(m,b,invert(n,bt1))

)

get(n,btable(m,b,bt1))=if(eq(n,m),b,get(n,bt1))
get(n,empty)=F
if(T,bt1,bt2)=bt1
if(F,bt1,bt2)=bt2

map
zero,one,more: BoolTABLE -> Bool

var
n : NAT

bt : BoolTABLE

rew
zero(empty)=T
zero(btable(n,T,bt))=F
zero(btable(n,F,bt))=zero(bt)
one(empty)=F
one(btable(n,T,bt))=zero(bt)
one(btable(n,F,bt))=one(bt)
more(bt)=and(not(zero(bt)),not(one(bt)))

act

52 Four Formal Models of IEEE 1394 Link Layer

rPAreq: NAT#PAR
rPDreq,sPDind: NAT#SIGNAL
sPAcon: NAT#PAC
sPCind: NAT

arbresgap

losesignal

proc

BUS(n:NAT)=
BusIdle(n, inita(n))

BusIdle(n:NAT,t:BoolTABLE)=
sum(id:NAT,

sum(astat:PAR,

rPAreq(id,astat).DecideIdle(n,t,id,astat)))

+
arbresgap.BusIdle(n,inita(n)) <| not(zero(t)) |> delta

DecideIdle(n:NAT,t:BoolTABLE,id:NAT,astat:PAR)=
(sPAcon(id,won).BusBusy(n,invert(id,t),inita(n),inita(n),id))

<| not(get(id,t)) |>
(sPAcon(id,lost).BusIdle(n,t))

BusBusy(n:NAT,

t:BoolTABLE,

next:BoolTABLE,

destfault:BoolTABLE,

busy:NAT)=
(

(

sPCind(busy).

sum(p:SIGNAL,

rPDreq(busy,p).Distribute(n,t,next,destfault,busy,p,0)

)

)

<| lt(busy,n) |>
(

SubactionGap(n,t,0)

<| zero(next) |>
Resolve(n,t,next,0)

)

)

+
sum(j:NAT,

rPAreq(j,fair).sPAcon(j,lost).BusBusy(n,t,next,destfault,busy)

)

+
sum(j:NAT,

rPAreq(j,immediate).

(BusBusy(n,t,invert(j,next),destfault,busy)

<| not(get(j,next)) |> delta)

H. Garavel & B. Luttik 53

)

SubactionGap(n:NAT,t:BoolTABLE,i:NAT)=
BusIdle(n,t)

<| eq(i,n) |>
sPDind(i,subactgap).SubactionGap(n,t,succ(i))

Resolve(n:NAT,t:BoolTABLE,next:BoolTABLE,i:NAT)=
(

(

(sPAcon(i,won).sPCind(i).Resolve(n,t,next,succ(i)))

<| get(i,next) |>
(tau.Resolve(n,t,next,succ(i)))

)

<| lt(i,n) |>
Resolve2(n,t,next)

)

Resolve2(n:NAT,t:BoolTABLE,next:BoolTABLE)=
(

sum(j:NAT,

rPDreq(j,End).

(

Resolve2(n,t,invert(j,next))

<| get(j,next) |>
delta

)

)

<| more(next) |>
sum(j:NAT,

sum(p:SIGNAL,

rPDreq(j,p).

(

SubactionGap(n,t,0)

<| is_end(p) |>
Distribute(n,t,inita(n),inita(n),j,p,0)

)

)

)

)

Distribute(n:NAT,

t:BoolTABLE,

next:BoolTABLE,

destfault:BoolTABLE,

busy:NAT,

p:SIGNAL,

i:NAT)=
(

(

(

%% Signals can be handed over correctly

54 Four Formal Models of IEEE 1394 Link Layer

(sPDind(i,p).

Distribute(n,t,next,destfault,busy,p,succ(i))

<| or(not(is_header(p)),not(get(i,destfault))) |>
delta)

+
%% Destination signals may be corrupted
(sum(dest:NAT,

sPDind(i,sig(dest)).

Distribute(n,t,next,invert(i,destfault),busy,p,succ(i))

) <| is_dest(p) |> delta)

+
%% Headers/Data/Acks may be corrupted
(sPDind(i,corrupt(p)).

Distribute(n,t,next,destfault,busy,p,succ(i))

<| is_hda(p) |> delta)

+
%% Headers/Data/Acks may get lost
(losesignal.Distribute(n,t,next,destfault,busy,p,succ(i))

<| is_hda(p) |> delta)

+
%% Packets may be too large
(sPDind(i,p).sPDind(i,Dummy).

Distribute(n,t,next,destfault,busy,p,succ(i))

<| is_data(p) |> delta)

+
(rPAreq(i,immediate).

(Distribute(n,t,invert(i,next),destfault,busy,p,i)

<| not(get(i,next)) |> delta))

)

<| not(eq(i,busy)) |>
tau.Distribute(n,t,next,destfault,busy,p,succ(i))

)

<| lt(i,n) |>
(

BusBusy(n,t,next,destfault,n)

<| is_end(p) |>
BusBusy(n,t,next,destfault,busy)

)

)

A.4 The MAIN process in µCRL

act
PDind,PDreq: NAT#SIGNAL
PAcon: NAT#PAC
PAreq: NAT#PAR
PCind: NAT

comm
rPDind|sPDind=PDind
rPDreq|sPDreq=PDreq

H. Garavel & B. Luttik 55

rPAcon|sPAcon=PAcon
rPAreq|sPAreq=PAreq
rPCind|sPCind=PCind

proc

P1394(n:NAT)=
hide({PDind, PDreq, PAcon, PAreq, PCind, arbresgap,losesignal},

encap({rPDind, sPDind, rPDreq, sPDreq, rPAcon,

sPAcon, rPAreq, sPAreq, rPCind, sPCind},

BUS(2) || LINK(2,0) || LINK(2,1)

)

)

% note: for 3 links, use BUS(3) || LINK(3,0) || LINK(3,1) || LINK(3,2), etc.

init P1394(2)

B Formal model in mCRL2

B.1 Types and functions in mCRL2

sort CHECK = struct bottom | check;

sort DATA = struct d1 | d2;

map crc : DATA -> CHECK;

eqn crc(d1)=check;
crc(d2)=check;

sort HEADER = struct h1 | h2;

map crc : HEADER -> CHECK;

eqn crc(h1)=check;
crc(h2)=check;

sort ACK = struct a1 | a2;

map crc : ACK -> CHECK;

eqn crc(a1)=check;
crc(a2)=check;

sort SIGNAL = struct sig(getdest:Nat) ? is_dest |
sig(gethead:HEADER,gethcrc:CHECK) ? is_header |
sig(getdata:DATA,getdcrc:CHECK) ? is_data |
sig(getack:ACK,getacrc:CHECK) ? is_ack |
Start ? is_start |
End ? is_end |
Prefix ? is_prefix |
subactgap ? is_sagap |
dhead ? is_dhead |

56 Four Formal Models of IEEE 1394 Link Layer

Dummy ? is_dummy;

map is_physig,is_terminator : SIGNAL -> Bool;

getcrc : SIGNAL -> CHECK;

var s : SIGNAL;

eqn is_physig(s) = is_start(s) || is_end(s) || is_prefix(s) || is_sagap(s);

is_terminator(s)=is_end(s) || is_prefix(s);

getcrc(s)=if(is_header(s),gethcrc(s),
if(is_data(s),getdcrc(s),

if(is_ack(s),getacrc(s),

bottom)));

map is_hda : SIGNAL -> Bool;

valid_hpart, valid_ack : SIGNAL -> Bool;

var s : SIGNAL;

eqn is_hda(s)=is_header(s) || is_data(s) || is_ack(s);

valid_ack(s)=if(is_ack(s),getacrc(s)==check,false);
valid_hpart(s)=if(is_header(s),gethcrc(s)==check,false);

map corrupt : SIGNAL -> SIGNAL;

var h : HEADER;

d : DATA;

a : ACK;

c : CHECK;

eqn corrupt(sig(h,c)) = sig(h,bottom);

corrupt(sig(d,c)) = sig(d,bottom);

corrupt(sig(a,c)) = sig(a,bottom);

sort SIG_TUPLE =
struct quadruple (first:SIGNAL,

second:SIGNAL,

third:SIGNAL,

fourth:SIGNAL)

| void ? is_void;

sort PAR = struct fair | immediate;

sort PAC = struct won | lost;

sort LDC = struct ackrec(ACK)

| ackmiss

| broadsent;

sort LDI = struct good (HEADER,DATA)

| broadrec (HEADER,DATA)

| dcrc_err (HEADER);

sort BOC = struct release | hold;

B.2 The LINK process in mCRL2

H. Garavel & B. Luttik 57

act
LDreq : Nat#Nat#HEADER#DATA;
LDcon : Nat#LDC;
LDind : Nat#LDI;
LDres : Nat#ACK#BOC;

sPDreq,rPDind : Nat#SIGNAL;
sPAreq : Nat#PAR;
rPAcon : Nat#PAC;
rPCind : Nat;

proc LINK(n:Nat,i:Nat)=Link0(n,i,void);

Link0(n:Nat,id:Nat,buffer:SIG_TUPLE)=
is_void(buffer) ->

(sum dest:Nat,h:HEADER,d:DATA.

(dest<=n) -> LDreq(id,dest,h,d).

Link0(n,id,quadruple(dhead,

sig(dest),

sig(h,crc(h)),

sig(d,crc(d))))<>delta) <>
sPAreq(id,fair).Link1(n,id,buffer) +

sum p:SIGNAL.

rPDind(id,p).

(is_start(p) -> Link4(n,id,buffer) <> Link0(n,id,buffer));

Link1(n:Nat,id:Nat,p:SIG_TUPLE)=
rPAcon(id,won).Link2req(n,id,p) +
rPAcon(id,lost).Link0(n,id,p);

Link2req(n:Nat,id:Nat,p:SIG_TUPLE)=
rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p)) .

rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End).

((getdest(second(p))==n) ->
LDcon(id,broadsent).Link0(n,id,void) <>
Link3(n,id,void));

Link3(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum p:SIGNAL.

rPDind(id,p).

(is_prefix(p) -> Link3(n,id,buffer) <>
(is_start(p) -> Link3RA(n,id,buffer) <>
(is_sagap(p) -> LDcon(id,ackmiss).Link0(n,id,buffer) <>

LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

)));

Link3RA(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum a:SIGNAL.

58 Four Formal Models of IEEE 1394 Link Layer

rPDind(id,a).

(is_sagap(a) -> LDcon(id,ackmiss).Link0(n,id,buffer) <>
(is_physig(a) -> LDcon(id,ackmiss).LinkWSA(n,id,buffer,n) <>

Link3RE(n,id,buffer,a)));

Link3RE(n:Nat,id:Nat,buffer:SIG_TUPLE,a:SIGNAL)=
sum e:SIGNAL.

rPDind(id,e).

((valid_ack(a) && is_terminator(e)) ->
LDcon(id,ackrec(getack(a))).LinkWSA(n,id,buffer,n) <>

(is_sagap(e) ->
LDcon(id,ackmiss).Link0(n,id,buffer) <>
LDcon(id,ackmiss).LinkWSA(n,id,buffer,n)

));

Link4(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum dh:SIGNAL.

rPDind(id,dh).

(is_physig(dh) ->
(is_sagap(dh) ->

Link0(n,id,buffer) <>
LinkWSA(n,id,buffer,n)) <>

Link4DH(n,id,buffer));

Link4DH(n:Nat,id:Nat,buffer:SIG_TUPLE)=
sum dest:SIGNAL.rPDind(id,dest).

(is_dest(dest) ->
((getdest(dest)==id) ->

sPAreq(id,immediate).Link4RH(n,id,buffer,id) <>
((getdest(dest)==n) ->

Link4RH(n,id,buffer,n) <>
LinkWSA(n,id,buffer,n)

)

) <>
(is_sagap(dest) ->

Link0(n,id,buffer) <>
LinkWSA(n,id,buffer,n)

));

Link4RH(n:Nat,id:Nat,buffer:SIG_TUPLE,dest:Nat)=
sum h:SIGNAL.rPDind(id,h).

(valid_hpart(h) ->
Link4RD(n,id,buffer,dest,h) <>
LinkWSA(n,id,buffer,dest)

);

Link4RD(n:Nat,id:Nat,buffer:SIG_TUPLE,dest:Nat,h:SIGNAL)=
sum d:SIGNAL.

rPDind(id,d).

(is_data(d) ->
Link4RE(n,id,buffer,dest,h,d) <>
LinkWSA(n,id,buffer,dest)

H. Garavel & B. Luttik 59

);

Link4RE(n,id:Nat,buffer:SIG_TUPLE,dest:Nat,h:SIGNAL,d:SIGNAL)=
sum e:SIGNAL.

rPDind(id,e).

(is_terminator(e) ->
((dest==id) ->

Link4DRec(n,id,buffer,h,d) <>
Link4BRec(n,id,buffer,h,d)

) <>
LinkWSA(n,id,buffer,dest)

);

Link4DRec(n:Nat,id:Nat,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
(getcrc(d)==check) ->

LDind(id,good(gethead(h),getdata(d))).rPAcon(id,won).Link5(n,id,buffer)

<>
LDind(id,dcrc_err(gethead(h))).rPAcon(id,won).Link5(n,id,buffer);

Link4BRec(n:Nat,id:Nat,buffer:SIG_TUPLE,h:SIGNAL,d:SIGNAL)=
(getcrc(d)==check) ->

LDind(id,broadrec(gethead(h),getdata(d))).Link0(n,id,buffer) <>
Link0(n,id,buffer);

Link5(n,id:Nat,buffer:SIG_TUPLE)=
sum a:ACK,b:BOC.LDres(id,a,b).Link6(n,id,buffer,sig(a,crc(a)),b) +
rPCind(id).sPDreq(id,Prefix).Link5(n,id,buffer);

Link6(n:Nat,id:Nat,buffer:SIG_TUPLE,p:SIGNAL,b:BOC)=
rPCind(id).sPDreq(id,Start).rPCind(id).sPDreq(id,p).rPCind(id).

((b==release) ->
sPDreq(id,End).Link0(n,id,buffer) <>
sPDreq(id,Prefix).Link7(n,id,buffer)

);

Link7(n,id:Nat,buffer:SIG_TUPLE)=
rPCind(id).sPDreq(id,Prefix).Link7(n,id,buffer) +
sum dest:Nat,h:HEADER,d:DATA. (dest<=n) ->

LDreq(id,dest,h,d). Link2resp(n,id,buffer,

quadruple(dhead,sig(dest),sig(h,crc(h)),sig(d,crc(d))))<>delta;

Link2resp(n:Nat,id:Nat,buffer:SIG_TUPLE,p:SIG_TUPLE)=
rPCind(id).sPDreq(id,Start).

rPCind(id).sPDreq(id,first(p)).

rPCind(id).sPDreq(id,second(p)).

rPCind(id).sPDreq(id,third(p)).

rPCind(id).sPDreq(id,fourth(p)).

rPCind(id).sPDreq(id,End).

((getdest(second(p))==n) ->
LDcon(id,broadsent).Link0(n,id,buffer) <>
Link3(n,id,buffer)

);

60 Four Formal Models of IEEE 1394 Link Layer

LinkWSA(n:Nat,id:Nat,buffer:SIG_TUPLE,dest:Nat)=
sum p:SIGNAL.rPDind(id,p).

(is_sagap(p) ->
Link0(n,id,buffer) <>
LinkWSA(n,id,buffer,dest)

) +
(dest==id) -> rPAcon(id,won).rPCind(id).sPDreq(id,End).Link0(n,id,buffer)<>delta;

B.3 The BUS process in mCRL2

sort BoolTABLE = List(struct pair(Nat,getbool:Bool));

map inita : Nat -> BoolTABLE;

invert : Nat#BoolTABLE -> BoolTABLE;

get : Nat#BoolTABLE -> Bool;

var n,m : Nat;

b : Bool;

bt1,bt2 : BoolTABLE;

eqn inita(0)=[];
n>0 -> inita(n)=pair(Int2Nat(n-1),false)|>inita(Int2Nat(n-1));

invert(n,[])=[];
invert(n,pair(m,b)|>bt1)=

if(n==m,pair(m,!b)|>bt1,pair(m,b)|>invert(n,bt1));

get(n,[])=false;
get(n,pair(m,b)|>bt1)=if(n==m,b,get(n,bt1));

map zero,one,more: BoolTABLE -> Bool;

var n : Nat;

bt : BoolTABLE;

eqn zero([])=true;
zero(pair(n,true)|>bt)=false;
zero(pair(n,false)|>bt)=zero(bt);
one([])=false;
one(pair(n,true)|>bt)=zero(bt);
one(pair(n,false)|>bt)=one(bt);
more(bt)=!zero(bt) && !one(bt);

act rPAreq: Nat#PAR;
rPDreq,sPDind: Nat#SIGNAL;
sPAcon: Nat#PAC;
sPCind: Nat;

arbresgap;

losesignal;

internal;

proc BUS(n:Nat)=BusIdle(n, inita(n));

BusIdle(n:Nat,t:BoolTABLE)=
sum id:Nat,astat:PAR.(id<=n) ->

H. Garavel & B. Luttik 61

rPAreq(id,astat).DecideIdle(n,t,id,astat)<>delta +
!zero(t)->arbresgap.BusIdle(n,inita(n))<>delta;

DecideIdle(n:Nat,t:BoolTABLE,id:Nat,astat:PAR)=
(!get(id,t)) ->
sPAcon(id,won).BusBusy(n,invert(id,t),inita(n),inita(n),id) <>
sPAcon(id,lost).BusIdle(n,t);

BusBusy(n:Nat,t,next,destfault:BoolTABLE,busy:Nat)=
(busy<n) ->

(sPCind(busy).

(sum p:SIGNAL.rPDreq(busy,p).Distribute(n,t,next,destfault,busy,p,0))

) <>
(zero(next) ->

SubactionGap(n,t,0) <>
Resolve(n,t,next,0)

) +
sum j:Nat.(j<=n) ->

rPAreq(j,fair).sPAcon(j,lost).BusBusy(n,t,next,destfault,busy)<>delta +
sum j:Nat.(j<=n) -> rPAreq(j,immediate).

(!get(j,next) -> BusBusy(n,t,invert(j,next),destfault,busy)<>delta)<>delta;

SubactionGap(n:Nat,t:BoolTABLE,i:Nat)=
(i==n) ->

BusIdle(n,t) <>
sPDind(i,subactgap).SubactionGap(n,t,i+1);

Resolve(n:Nat,t,next:BoolTABLE,i:Nat)=
(i<n) ->
(get(i,next) ->

sPAcon(i,won).sPCind(i).Resolve(n,t,next,i+1) <>
internal.Resolve(n,t,next,i+1)

) <>
Resolve2(n,t,next);

Resolve2(n:Nat,t:BoolTABLE,next:BoolTABLE)=
more(next) ->

(sum j:Nat.(j<=n) -> rPDreq(j,End).(get(j,next) ->
Resolve2(n,t,invert(j,next))<>delta)<>delta) <>
(sum j:Nat,p:SIGNAL.(j<=n) ->

rPDreq(j,p).

(is_end(p) ->
SubactionGap(n,t,0) <>
Distribute(n,t,inita(n),inita(n),j,p,0)

)<>delta);

Distribute(n:Nat,t,next,destfault:BoolTABLE,busy:Nat,p:SIGNAL,i:Nat)=
(i<n) ->
((i!=busy) ->
(%% Signals can be handed over correctly
(!is_header(p) || !get(i,destfault)) ->

sPDind(i,p).Distribute(n,t,next,destfault,busy,p,i+1)<>delta +

62 Four Formal Models of IEEE 1394 Link Layer

%% Destination signals may be corrupted
sum dest:Nat.(is_dest(p) && dest<=n) ->

sPDind(i,sig(dest)).

Distribute(n,t,next,invert(i,destfault),busy,p,i+1)<>delta +
%% Headers/Data/Acks may be corrupted
is_hda(p) ->

sPDind(i,corrupt(p)).

Distribute(n,t,next,destfault,busy,p,i+1)<>delta +
%% Headers/Data/Acks may get lost
is_hda(p) ->

losesignal.Distribute(n,t,next,destfault,busy,p,i+1)<>delta +
%% Packets may be too large
is_data(p) ->

sPDind(i,p).sPDind(i,Dummy).

Distribute(n,t,next,destfault,busy,p,i+1)<>delta +
(!get(i,next)) ->

rPAreq(i,immediate).

Distribute(n,t,invert(i,next),destfault,busy,p,i)<>delta
) <>
%% i==busy
internal.Distribute(n,t,next,destfault,busy,p,i+1)

) <>
%% i>=n
(is_end(p) ->

BusBusy(n,t,next,destfault,n) <>
BusBusy(n,t,next,destfault,busy)

);

B.4 The MAIN process in mCRL2

act
cPDreq,cPDind : Nat#SIGNAL;
cPAreq : Nat#PAR;
cPAcon : Nat#PAC;
cPCind : Nat;

proc P1394(n:Nat)=
allow({LDreq,LDcon,LDind,LDres},

hide({arbresgap,losesignal,internal,cPDind,cPDreq,cPAcon,cPAreq,cPCind},
comm({rPDind|sPDind->cPDind,rPDreq|sPDreq->cPDreq,rPAcon|sPAcon->cPAcon,

rPAreq|sPAreq->cPAreq,rPCind|sPCind->cPCind},

allow({LDreq,LDcon,LDind,LDres,arbresgap,losesignal,internal,

rPDind|sPDind,rPDreq|sPDreq,rPAcon|sPAcon,
rPAreq|sPAreq,rPCind|sPCind},

BUS(2) || LINK(2,0) || LINK(2,1)))));

% note: for 3 links, use BUS(3) || LINK(3,0) || LINK(3,1) || LINK(3,2), etc.

init P1394(2);

H. Garavel & B. Luttik 63

C Formal model in LOTOS

C.1 Types and functions in LOTOS

type CHECK is Boolean

sorts
CHECK

opns
bottom (*! constructor *) : −> CHECK

check (*! constructor *) : −> CHECK

eq : CHECK, CHECK −> Bool

eqns
forall x, y : CHECK

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type DATA is CHECK

sorts
DATA

opns
d1 (*! constructor *) : −> DATA

(* for verification, this type is restricted to a single value *)
(* d2 {*! constructor *} : −> DATA *)
crc : DATA −> CHECK

eq : DATA, DATA −> Bool

eqns
forall x, y : DATA

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

ofsort CHECK

crc (x) = check;
endtype

(*−−−*)

type HEADER is CHECK

sorts
HEADER

opns
h1 (*! constructor *) : −> HEADER

(* for verification, this type is restricted to a single value *)
(* h2 {*! constructor *} : −> HEADER *)
crc : HEADER −> CHECK

eq : HEADER, HEADER −> Bool

eqns
forall x, y : HEADER

64 Four Formal Models of IEEE 1394 Link Layer

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

ofsort CHECK

crc (x) = check;
endtype

(*−−−*)

type ACK is CHECK

sorts
ACK

opns
a1 (*! constructor *) : −> ACK

(* for verification, this type is restricted to a single value *)
(* a2 {*! constructor *} : −> ACK *)
crc : ACK −> CHECK

eq : ACK, ACK −> Bool

eqns
forall x, y : ACK

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

ofsort CHECK

crc (x) = check;
endtype

(*−−−*)

type BOC is CHECK

sorts
BOC

opns
release (*! constructor *),
hold (*! constructor *),
no_op (*! constructor *) : −> BOC

eq : BOC, BOC −> Bool

eqns
forall x, y : BOC

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type PHY_AREQ is CHECK

sorts
PHY_AREQ

opns
fair (*! constructor *),
immediate (*! constructor *) : −> PHY_AREQ

H. Garavel & B. Luttik 65

eq : PHY_AREQ, PHY_AREQ −> Bool

eqns
forall x, y : PHY_AREQ

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type PHY_ACONF is CHECK

sorts
PHY_ACONF

opns
won (*! constructor *),
lost (*! constructor *) : −> PHY_ACONF

eq : PHY_ACONF, PHY_ACONF −> Bool

eqns
forall x, y : PHY_ACONF

ofsort Bool

eq (x, x) = true;
(* otherwise *) eq (x, y) = false;

endtype

(*−−−*)

type SIGNAL is ACK, CHECK, DATA, HEADER, NaturalNumber

sorts
SIGNAL

opns
destsig (*! constructor *) : Nat −> SIGNAL

headsig (*! constructor *) : HEADER, CHECK −> SIGNAL

datasig (*! constructor *) : DATA, CHECK −> SIGNAL

acksig (*! constructor *) : ACK, CHECK −> SIGNAL

dhead (*! constructor *) : −> SIGNAL

Start (*! constructor *) : −> SIGNAL

End (*! constructor *) : −> SIGNAL

Prefix (*! constructor *) : −> SIGNAL

subactgap (*! constructor *) : −> SIGNAL

Dummy (*! constructor *) : −> SIGNAL

is_dest, is_header, is_data, is_ack, is_physig : SIGNAL −> Bool

valid_hpart, valid_ack : SIGNAL −> Bool

getdest : SIGNAL −> Nat

getdcrc : SIGNAL −> CHECK

getdata : SIGNAL −> DATA

gethead : SIGNAL −> HEADER

getack : SIGNAL −> ACK

corrupt : SIGNAL −> SIGNAL

eq : SIGNAL, SIGNAL −> Bool

eqns
forall n : Nat, c : CHECK, h : HEADER, d : DATA, a : ACK, s, s1, s2 : SIGNAL

ofsort Bool

66 Four Formal Models of IEEE 1394 Link Layer

is_dest (destsig (n)) = true;
(* otherwise *) is_dest (s) = false;
is_header (headsig (h, c)) = true;
(* otherwise *) is_header (s) = false;
is_data (datasig (d, c)) = true;
(* otherwise *) is_data (s) = false;
is_ack (acksig (a, c)) = true;
(* otherwise *) is_ack (s) = false;
is_physig (Start) = true;
is_physig (End) = true;
is_physig (Prefix) = true;
is_physig (subactgap) = true;
(* otherwise *) is_physig (s) = false;
valid_ack (acksig (a, c)) = eq (c, check);
(* otherwise *) valid_ack (s) = false;
valid_hpart (headsig (h, c)) = eq (c, check);
(* otherwise *) valid_hpart (s) = false;

ofsort Nat

getdest (destsig (n)) = n;
(* otherwise getdest (s) is undefined *)

ofsort HEADER

gethead (headsig (h, c)) = h;
(* otherwise gethead (s) is undefined *)

ofsort CHECK

getdcrc (datasig (d, c)) = c;
(* otherwise getdcrc (s) is undefined *)

ofsort DATA

getdata (datasig (d, c)) = d;
(* otherwise getdata (s) is undefined *)

ofsort ACK

getack (acksig (a, c)) = a;
(* otherwise getack (s) is undefined *)

ofsort SIGNAL

corrupt (headsig (h, c)) = headsig (h, bottom);
corrupt (datasig (d, c)) = datasig (d, bottom);
corrupt (acksig (a, c)) = acksig (a, bottom);

ofsort Bool

eq (s1, s1) = true;
(* otherwise *) eq (s1, s2) = false;

endtype

(*−−−*)

type SIG_TUPLE is Boolean, SIGNAL

sorts
SIG_TUPLE

opns
quadruple (*! constructor *) : SIGNAL, SIGNAL, SIGNAL, SIGNAL −> SIG_TUPLE

void (*! constructor *) : −> SIG_TUPLE

first, second, third, fourth : SIG_TUPLE −> SIGNAL

is_void : SIG_TUPLE −> Bool

eqns

H. Garavel & B. Luttik 67

forall s1, s2, s3, s4 : SIGNAL

ofsort SIGNAL

first (quadruple (s1, s2, s3, s4)) = s1;
second (quadruple (s1, s2, s3, s4)) = s2;
third (quadruple (s1, s2, s3, s4)) = s3;
fourth (quadruple (s1, s2, s3, s4)) = s4;

ofsort Bool

is_void (void) = true;
is_void (quadruple (s1, s2, s3, s4)) = false;

endtype

(*−−−*)

type LIN_DCONF is ACK

sorts
LIN_DCONF

opns
ackrec (*! constructor *) : ACK −> LIN_DCONF

ackmiss (*! constructor *),
broadsent (*! constructor *) : −> LIN_DCONF

endtype

(*−−−*)

type LIN_DIND is Boolean, DATA, HEADER

sorts
LIN_DIND

opns
good (*! constructor *),
broadrec (*! constructor *) : HEADER, DATA −> LIN_DIND

dcrc_err (*! constructor *) : HEADER −> LIN_DIND

is_broadrec : LIN_DIND −> Bool

eqns
forall h: HEADER, d: DATA, xind: LIN_DIND

ofsort Bool

is_broadrec (broadrec (h, d)) = true;
(* otherwise *) is_broadrec (xind) = false;

endtype

(*−−−*)

type BoolTABLE is Boolean, NaturalNumber

sorts
BoolTABLE

opns
empty (*! constructor *) : −> BoolTABLE

btable (*! constructor *) : Nat, Bool, BoolTABLE −> BoolTABLE

init : Nat −> BoolTABLE

invert : Nat, BoolTABLE −> BoolTABLE

get : Nat, BoolTABLE −> Bool

zero, one, more : BoolTABLE −> Bool

eqns

68 Four Formal Models of IEEE 1394 Link Layer

forall n, n1, n2 : Nat, b : Bool, t : BoolTABLE

ofsort BoolTABLE

init (0) = empty;
init (Succ (n)) = btable (n, false, init (n));
invert (n, empty) = empty;
n1 eq n2 => invert (n1, btable (n2, b, t)) = btable (n2, not (b), t);
n1 ne n2 => invert (n1, btable (n2, b, t)) = btable (n2, b, invert (n1, t));

ofsort Bool

(* get (n, empty) is undefined *)
n1 eq n2 => get (n1, btable (n2, b, t)) = b;
n1 ne n2 => get (n1, btable (n2, b, t)) = get (n1, t);

ofsort Bool

zero (empty) = true;
zero (btable (n, true, t)) = false;
zero (btable (n, false, t)) = zero (t);
one (empty) = false;
one (btable (n, true, t)) = zero (t);
one (btable (n, false, t)) = one (t);
more (t) = not (zero (t)) and not (one (t));

endtype

(*−−−*)

type Version is
sorts

Version

opns
ko (*! constructor *),
ok (*! constructor *) : −> Version

endtype

(*−−−*)

type Scenario is Boolean, Natural

sorts
Scenario

opns
scenario_1 (*! constructor *),
scenario_2 (*! constructor *),
scenario_3_2 (*! constructor *),
scenario_3_3 (*! constructor *),
scenario_3_4 (*! constructor *) : −> Scenario

eq : Scenario, Scenario −> Bool

eqns
forall s1, s2: Scenario

ofsort Bool

s1 eq s1 = true;
(* otherwise *) s1 eq s2 = false;

endtype

H. Garavel & B. Luttik 69

C.2 The LINK process in LOTOS

process Link [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat) : noexit :=

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id, void)

endproc

(* −−− *)

process Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

[is_void (buffer)] −>
LDreq !id ?dest: Nat ?h: HEADER ?d: DATA;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d))))

[]
[not (is_void (buffer))] −>

PAreq !id !fair;
Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
PDind !id ?p: SIGNAL;
(

[eq (p, Start)] −>
Link4 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (p, Start))] −>

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PAcon !id !won;
Link2req [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
PAcon !id !lost;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

(* −−− *)

process Link2req [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

70 Four Formal Models of IEEE 1394 Link Layer

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PCind !id;
PDreq !id !Start;
PCind !id;
PDreq !id !first (buffer);
PCind !id;
PDreq !id !second (buffer);
PCind !id;
PDreq !id !third (buffer);
PCind !id;
PDreq !id !fourth (buffer);
PCind !id;
PDreq !id !End;
(

[getdest (second (buffer)) eq n] −>
LDcon !id !broadsent;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, void)

[]
[getdest (second (buffer)) ne n] −>

Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, void)

)

endproc

(* −−− *)

process Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?p: SIGNAL;
(

[eq (p, Prefix)] −>
Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[eq (p, Start)] −>

Link3RA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[eq (p, subactgap)] −>

LDcon !id !ackmiss;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (p, Prefix) or eq (p, Start) or eq (p, subactgap))] −>

LDcon !id !ackmiss;
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

endproc

(* −−− *)

H. Garavel & B. Luttik 71

process Link3RA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?a: SIGNAL;
(

[is_physig (a)] −>
(

[eq (a, subactgap)] −>
LDcon !id !ackmiss;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (a, subactgap))] −>

LDcon !id !ackmiss;
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

[]
[not (is_physig (a))] −>

Link3RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, a)

)

endproc

(* −−− *)

process Link3RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, a: SIGNAL) : noexit :=

PDind !id ?e: SIGNAL;
(

[valid_ack (a) and (eq (e, End) or eq (e, Prefix))] −>
LDcon !id !ackrec (getack (a));
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

[]
[not (valid_ack (a) and (eq (e, End) or eq (e, Prefix)))] −>

(

[eq (e, subactgap)] −>
LDcon !id !ackmiss;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (e, subactgap))] −>

LDcon !id !ackmiss;
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

)

endproc

(* −−− *)

72 Four Formal Models of IEEE 1394 Link Layer

process Link4 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?dh: SIGNAL;
(

[is_physig (dh)] −>
(

[eq (dh, subactgap)] −>
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (dh, subactgap))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

[]
[not (is_physig (dh))] −>

Link4DH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process Link4DH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PDind !id ?dest: SIGNAL;
(

[is_dest (dest)] −>
(

[getdest (dest) eq id] −>
PAreq !id !immediate;
Link4RH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, id)

[]
[getdest (dest) eq n] −>

Link4RH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

[]
[(getdest (dest) ne n) and (getdest (dest) ne id)] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

)

[]
[not (is_dest (dest))] −>

(

[eq (dest, subactgap)] −>
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (dest, subactgap))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

H. Garavel & B. Luttik 73

)

)

endproc

(* −−− *)

process Link4RH [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat) : noexit :=

PDind !id ?h: SIGNAL;
(

[valid_hpart (h)] −>
Link4RD [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest, h)

[]
[not (valid_hpart (h))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

endproc

(* −−− *)

process Link4RD [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat, h: SIGNAL) : noexit :=

PDind !id ?d: SIGNAL;
(

[is_data (d)] −>
Link4RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest, h, d)

[]
[not (is_data (d))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

endproc

(* −−− *)

process Link4RE [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat, h: SIGNAL, d: SIGNAL)

: noexit :=

PDind !id ?e: SIGNAL;
(

[eq (e, End) or eq (e, Prefix)] −>
(

[dest eq id] −>
Link4DRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, h, d)

[]
[dest ne id] −>

Link4BRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, h, d)

74 Four Formal Models of IEEE 1394 Link Layer

)

[]
[not (eq (e, End) or eq (e, Prefix))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

endproc

(* −−− *)

process Link4DRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, h: SIGNAL, d: SIGNAL) : noexit :=

[eq (getdcrc (d), check)]−>
LDind !id !good (gethead (h), getdata (d));
PAcon !id !won;
Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (getdcrc (d), check))] −>

LDind !id !dcrc_err (gethead (h));
PAcon !id !won;
Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

(* −−− *)

process Link4BRec [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, h: SIGNAL, d: SIGNAL) : noexit :=

[eq (getdcrc (d), check)] −>
LDind !id !broadrec (gethead (h), getdata (d));
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (getdcrc (d), check))] −>

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

(* −−− *)

process Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

LDres !id ?a: ACK ?b: BOC;
Link6 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, acksig (a, crc (a)), b)

[]
PCind !id;
PDreq !id !Prefix;
Link5 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

H. Garavel & B. Luttik 75

(* −−− *)

process Link6 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, p: SIGNAL, b: BOC) : noexit :=

PCind !id;
PDreq !id !Start;
PCind !id;
PDreq !id !p;
PCind !id;
(

[eq (b, release)] −>
PDreq !id !End;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (b, release))] −>

PDreq !id !Prefix;
Link7 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process Link7 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE) : noexit :=

PCind !id;
PDreq !id !Prefix;
Link7 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
LDreq !id ?dest: Nat ?h: HEADER ?d: DATA;
Link2resp [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d))))

endproc

(* −−− *)

process Link2resp [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, p: SIG_TUPLE) : noexit :=

PCind !id;
PDreq !id !Start;
PCind !id;
PDreq !id !first (p);
PCind !id;
PDreq !id !second (p);
PCind !id;
PDreq !id !third (p);

76 Four Formal Models of IEEE 1394 Link Layer

PCind !id;
PDreq !id !fourth (p);
PCind !id;
PDreq !id !End;
(

[getdest (second (p)) eq n] −>
LDcon !id !broadsent;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[getdest (second (p)) ne n] −>

Link3 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

)

endproc

(* −−− *)

process LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id: Nat, buffer: SIG_TUPLE, dest: Nat) : noexit :=

PDind !id ?p: SIGNAL;
(

[eq (p, subactgap)] −>
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

[]
[not (eq (p, subactgap))] −>

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

)

[]
[dest eq id] −>

PAcon !id !won;
PCind !id;
PDreq !id !End;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

endproc

C.3 The BUS process in LOTOS

process Bus [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat) : noexit :=

BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, init (n))

endproc

(* −−− *)

process BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE) : noexit :=

H. Garavel & B. Luttik 77

PAreq ?id: Nat ?astat: PHY_AREQ [id lt n];
DecideIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t, id,

astat)

[]
[not (zero(t))] −>

arbresgap;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, init (n))

endproc

(* −−− *)

process DecideIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, id: Nat, astat: PHY_AREQ) : noexit :=

[get (id, t) eq false] −>
PAcon !id !won;
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n,

invert (id, t), init (n), init (n), id)

[]
[get (id, t) eq true] −>

PAcon !id !lost;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

endproc

(* −−− *)

process BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, next: BoolTABLE, destfault: BoolTABLE,

busy: Nat) : noexit :=

[busy lt n] −>
PCind !busy;
PDreq !busy ?p: SIGNAL;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, 0)

[]
[not (busy lt n)] −>

(

[zero (next)] −>
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, 0)

[]
[not (zero (next))] −>

Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, 0)

)

[]
PAreq ?j: Nat !fair [j lt n];
PAcon !j !lost;
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy)

[]
PAreq ?j: Nat !immediate [not (get (j, next)) and (j lt n)];
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

78 Four Formal Models of IEEE 1394 Link Layer

(n, t, invert (j, next), destfault, busy)

endproc

(* −−− *)

process SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, j: Nat) : noexit :=

[j eq n] −>
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

[]
[j ne n] −>

PDind !j !subactgap;
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, succ (j))

endproc

(* −−− *)

process Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, next: BoolTABLE, j: Nat) : noexit :=

[j lt n] −>
(

[get (j, next) eq true] −>
PAcon !j !won;
PCind !j;
Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, succ (j))

[]
[get (j, next) eq false] −>

Resolve [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, succ (j))

)

[]
[not (j lt n)] −>

Resolve2 [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next)

endproc

(* −−− *)

process Resolve2 [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t: BoolTABLE, next: BoolTABLE) : noexit :=

[more (next)] −>
PDreq ?j: Nat !End [get (j, next) and (j lt n)];
Resolve2 [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, invert (j, next))

[]
[not (more (next))] −>

PDreq ?j: Nat ?p: SIGNAL [j lt n];
(

[eq (p, End)] −>
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

H. Garavel & B. Luttik 79

(n, t, 0)

[]
[not (eq (p, End))] −>

Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, init (n), init (n), j, p, 0)

)

endproc

(* −−− *)

process Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n: Nat, t, next, destfault: BoolTABLE, busy: Nat, p: SIGNAL,

j: Nat) : noexit :=

[j lt n] −>
(

[j ne busy] −>
(

[not (is_header (p)) or not (get (j, destfault))] −>
PDind !j !p;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
[is_dest (p)] −>

(

choice dest: Nat []
PDind !j !destsig (dest);
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, invert (j, destfault), busy, p, succ (j))

)

[]
[is_header (p) or (is_data (p) or is_ack (p))] −>

PDind !j !corrupt (p);
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
[is_header (p) or (is_data (p) or is_ack (p))] −>

losesignal;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
[is_data (p)] −>

PDind !j !p;
PDind !j !Dummy;
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

[]
PAreq !j !immediate [not (get (j, next))];

Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, invert (j, next), destfault, busy, p, j)

)

[]
[j eq busy] −>

80 Four Formal Models of IEEE 1394 Link Layer

Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p, succ (j))

)

[]
[not (j lt n)] −>

(

[eq (p, End)] −>
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, n)

[]
[not (eq (p, End))] −>

BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy)

)

endproc

C.4 The TRANS process in LOTOS

process Trans [LDreq, LDcon, LDind, LDres, TDreq] (n, id: Nat, v: Version) : noexit :=

hide TX0 in
(

TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

|[TX0]|
TransRes [LDind, LDres, TX0] (id, v)

)

endproc

(*−−−*)

process TransReq [LDreq, LDcon, TDreq, TX0] (n, id: Nat) : noexit :=

TDreq !id ?dest: Nat ?h: HEADER ?d: DATA [dest le n];
(

TX0;
exit (dest, h, d)

[]
exit (dest, h, d)

) >> accept dest: Nat, h: HEADER, d: DATA in
(

LDreq !id !dest !h !d;
(

[dest eq n] −>
LDcon !id !broadsent;
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

[]
[dest ne n] −>

(

choice a: ACK []
LDcon !id !ackrec (a);
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

)

[]

H. Garavel & B. Luttik 81

LDcon !id !ackmiss;
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

)

)

endproc

(*−−−*)

process TransRes [LDind, LDres, TX0] (id: Nat, v: Version) : noexit :=

LDind !id ?l: LIN_DIND;
(

[is_broadrec (l)] −>
(

[v = ko] −>
(* original (incorrect) specification *)
LDres !id !a1 !no_op;
TransRes [LDind, LDres, TX0] (id, v)

[]
[v = ok] −>

(* correct specification *)
TransRes [LDind, LDres, TX0] (id, v)

)

[]
[not (is_broadrec (l))] −>

(

choice a: ACK []
(

(* concatenated response = lock transaction *)
TX0;
LDres !id !a !hold;
TransRes [LDind, LDres, TX0] (id, v)

[]
(* split response *)
LDres !id !a !release;
TransRes [LDind, LDres, TX0] (id, v)

)

)

)

endproc

C.5 The APPLI process in LOTOS

process Application [TDreq] (n: Nat, id: Nat, s: Scenario) : noexit :=

[s eq scenario_1] −>
[id eq 0] −>

(

(* send a request for transaction with a *different* node *)
choice dest: Nat, h: HEADER, d: DATA []

[(dest le n) and (dest ne id)] −>
TDreq !id !dest !h !d;
stop

82 Four Formal Models of IEEE 1394 Link Layer

)

[]
[s eq scenario_2] −>

(

(* send a request for transaction with a *different* node *)
choice dest: Nat, h: HEADER, d: DATA []

[(dest le n) and (dest ne id)] −>
TDreq !id !dest !h !d;
stop

)

[]
[(s eq scenario_3_2) or (s eq scenario_3_3) or (s eq scenario_3_4)] −>

[id eq 0] −>
(

(* 2, 3 or 4 requests in sequence *)
choice h: HEADER, d: DATA []

TDreq !id !n !h !d;
TDreq !id !n !h !d;
(

[s eq scenario_3_2] −>
stop

[]
[s eq scenario_3_3] −>

TDreq !id !n !h !d;
stop

[]
[s eq scenario_3_4] −>

TDreq !id !n !h !d;
TDreq !id !n !h !d;
stop

)

)

endproc

C.6 The NODE process in LOTOS

process Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n: Nat, id: Nat, v: Version, s: Scenario) : noexit :=

hide TDreq in
(

Link [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id)

|[LDreq, LDcon, LDind, LDres]|
Trans [LDreq, LDcon, LDind, LDres, TDreq] (n, id, v)

|[TDreq]|
Application [TDreq] (n, id, s)

)

endproc

C.7 The MAIN process in LOTOS

specification P1394 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind,

H. Garavel & B. Luttik 83

arbresgap, losesignal] : noexit

library
BOOLEAN, NATURAL, DATA

endlib

behaviour

(

Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (2, 0, ko,

scenario_3_4)

|||
Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (2, 1, ko,

scenario_3_4)

)

|[PDreq, PDind, PAreq, PAcon, PCind]|
Bus [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (2)

where

library
APPLI, TRANS, LINK, BUS, NODE

endlib

endspec

For model-checking purposes, a complementary file restricts the set of natural numbers, e.g., to the
finite range {0, ...,2} in the above example.

D Formal model in LNT

D.1 Types and functions in LNT

module DATA is

type CHECK is
bottom, check

with =, <>
end type

−−−

type DATA is
d1 −− , d2, ... for verification, this type is restricted to a single value
with =, <>

end type

function crc (d: DATA): CHECK is
use d; −− this parameter was not used in the LOTOS specification
return check

end function

84 Four Formal Models of IEEE 1394 Link Layer

−−−

type HEADER is
h1 −− , h2, ... for verification, this type is restricted to a single value
with =, <>

end type

function crc (h: HEADER): CHECK is
use h; −− this parameter was not used in the LOTOS specification
return check

end function

−−−

type ACK is
a1 −− , a2, ... for verification, this type is restricted to a single value
with =, <>

end type

function crc (a: ACK): CHECK is
use a; −− this parameter was not used in the LOTOS specification
return check

end function

−−−

type BOC is
release, hold, no_op

with =
end type

type PHY_AREQ is
fair, immediate

with =
end type

type PHY_ACONF is
won, lost

with =
end type

−−−

type SIGNAL is
destsig (dest: Nat),

headsig (head: HEADER, crc: CHECK),

datasig (data: DATA, crc: CHECK),

acksig (ack: ACK, crc: CHECK),

dhead,

Start,

End,

H. Garavel & B. Luttik 85

Prefix,

subactgap,

Dummy

with =, <>, get, set
end type

function is_dest (s: SIGNAL) : Bool is
case s in

destsig (any nat) -> return true

| any -> return false

end case
end function

function is_header (s: SIGNAL) : Bool is
case s in

headsig (any HEADER, any CHECK) -> return true

| any -> return false

end case
end function

function is_data (s: SIGNAL) : Bool is
case s in

datasig (any DATA, any CHECK) -> return true

| any -> return false

end case
end function

function is_ack (s: SIGNAL) : Bool is
case s in

acksig (any ACK, any CHECK) -> return true

| any -> return false

end case
end function

function is_physig (s: SIGNAL) : Bool is
case s in

Start | End | Prefix | subactgap -> return true

| any -> return false

end case
end function

function valid_hpart (s: SIGNAL) : Bool is
return is_header (s) and then (s.crc = check)

end function

function valid_ack (s: SIGNAL) : Bool is
return is_ack (s) and then (s.crc = check)

end function

function getdest (s: SIGNAL) : Nat is
return s .[UNEXPECTED] dest

end function

86 Four Formal Models of IEEE 1394 Link Layer

function getdcrc (s: SIGNAL) : CHECK is
assert is_data (s);
return s .[UNEXPECTED] crc

end function

function getdata (s: SIGNAL) : DATA is
return s .[UNEXPECTED] data

end function

function gethead (s: SIGNAL) : HEADER is
return s .[UNEXPECTED] head

end function

function getack (s: SIGNAL) : ACK is
return s .[UNEXPECTED] ack

end function

function corrupt (s: SIGNAL) : SIGNAL is
case s in

headsig (any HEADER, any CHECK) -> return s.{crc -> bottom}

| datasig (any DATA, any CHECK) -> return s.{crc -> bottom}

| acksig (any ACK, any CHECK) -> return s.{crc -> bottom}

| any -> raise UNEXPECTED

end case
end function

−−−

type SIG_TUPLE is
quadruple (dh, dest, header, data: SIGNAL),

void

with get

end type

function is_void (s: SIG_TUPLE) : Bool is
case s in

void -> return true

| any -> return false

end case
end function

−−−

type LIN_DCONF is
ackrec (a: ACK),

ackmiss,

broadsent

end type

−−−

H. Garavel & B. Luttik 87

type LIN_DIND is
good (h: HEADER, d: DATA),

broadrec (h: HEADER, d: DATA),

dcrc_err (h: HEADER)

end type

function is_broadrec (x: LIN_DIND) : Bool is
case x in

broadrec (any HEADER, any DATA) -> return true

| any -> return false

end case
end function

−−−

type BoolTABLE is
empty,

btable (index: Nat, value: Bool, next: BoolTABLE)

with =, get

end type

function init (n: Nat) : BoolTABLE is
−− returns a table of size n initialized to false
if n = 0 then

return empty

else
return btable (n - 1, false, init (n - 1))

end if
end function

function zero (t: BoolTABLE) : Bool is
−− returns true iff no value in t is true
if t = empty then

return true

elsif t.value then
return false

else
return zero (t.next)

end if
end function

function one (t: BoolTABLE) : Bool is
−− returns true iff exactly one value in t is true
if t = empty then

return false

elsif t.value then
return zero (t.next)

else
return one (t.next)

end if
end function

88 Four Formal Models of IEEE 1394 Link Layer

function more (t: BoolTABLE) : Bool is
−− returns true iff more than one value in t is true
return not (zero (t)) and not (one (t))

end function

function get (n: Nat, t: BoolTABLE) : Bool is
−− returns the value associated with index n in t
if t = empty then

raise UNEXPECTED

elsif t.index = n then
return t.value

else
return get (n, t.next)

end if
end function

function invert (n: Nat, t: BoolTABLE) : BoolTABLE is
−− returns in which the value associated with index n is negated
if t = empty then

return empty

elsif t.index = n then
return btable (t.index, not (t.value), t.next)

else
return btable (t.index, t.value, invert (n, t.next))

end if
end function

−−−

type Version is
ko, ok

end type

type Scenario is
scenario_1, scenario_2, scenario_3_2, scenario_3_3, scenario_3_4

with =
end type

function requests (s: Scenario): Nat is
case s in

scenario_3_2 -> return 2

| scenario_3_3 -> return 3

| scenario_3_4 -> return 4

| any -> raise UNEXPECTED

end case
end function

end module

D.2 Channels in LNT

H. Garavel & B. Luttik 89

module CHANNELS (DATA) is

channel Id is
(n: Nat)

end channel

channel Sig is
(id: Nat, flag: SIGNAL)

end channel

channel Areq is
(id: Nat, flag: PHY_AREQ)

end channel

channel Acon is
(id: Nat, flag: PHY_ACONF)

end channel

channel Ack is
(id: Nat, a: ACK, b: BOC)

end channel

channel Dreq is
(id: Nat, dest: Nat, h: HEADER, d: DATA)

end channel

channel Dind is
(id: Nat, l: LIN_DIND)

end channel

channel Dcon is
(id: Nat, l: LIN_DCONF)

end channel

end module

D.3 The LINK process in LNT

module LINK (DATA, CHANNELS) is

process Link [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat) is
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id, void)

end process

−−−

process Link0 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE) is
select

if is_void (buffer) then

90 Four Formal Models of IEEE 1394 Link Layer

var dest: Nat, h: HEADER, d: DATA, b: SIG_TUPLE in
LDreq (id, ?dest, ?h, ?d);
b := quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d)));
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, b)

end var
else

PAreq (id, fair);
−− here, the LOTOS process Link1 was expanded in−line
−− (see footnote 8 in the research report [Sighireanu−Mateescu−97])
select

PAcon (id, won);
−− here, Link2 represents the LOTOS process Link2req
Link2 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, void, buffer)

[]
PAcon (id, lost);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

end select
end if

[]
var p: SIGNAL in

PDind (id, ?p);
if p = Start then

Link4 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

end if
end var

end select
end process

−−−

process Link1 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE, p: SIGNAL) is
−− process Link1 factors code repeated thrice in process Link3 below
LDcon (id, ackmiss);
if p = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

end if
end process

H. Garavel & B. Luttik 91

−−−

process Link2 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE, p: SIG_TUPLE) is
−− process Link2 unifies the two LOTOS processes Link2req and Link2resp
PCind (id);
PDreq (id, Start);
PCind (id);
PDreq (id, p.dh);
PCind (id);
PDreq (id, p.dest);
PCind (id);
PDreq (id, p.header);
PCind (id);
PDreq (id, p.data);
PCind (id);
PDreq (id, End);
if getdest (p.dest) = n then

LDcon (id, broadsent);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
−− here, the LOTOS process Link3 was expanded in−line (called only once)
var p, a, e: SIGNAL in

loop L in
PDind (id, ?p);
if p <> Prefix then

break L

end if
end loop;
if p <> Start then

Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, p)

else
−− here, the LOTOS process Link3RA was expanded (called only once)
PDind (id, ?a);
if is_physig (a) then

Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, a)

else
−− here, the LOTOS process Link3RE was expanded (called only once)
PDind (id, ?e);
if valid_ack (a) and ((e = End) or (e = Prefix)) then

LDcon (id, ackrec (getack (a)));
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer, n)

else
Link1 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, e)

end if
end if

92 Four Formal Models of IEEE 1394 Link Layer

end if
end var

end if
end process

−−−

process Link4 [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE) is
var s1, s2, s3, s4, s5: SIGNAL, dest: Nat in

PDind (id, ?s1);
if s1 = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

elsif is_physig (s1) then
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

else
−− here, the LOTOS process Link4DH was expanded in−line (called only once)
PDind (id, ?s2);
if s2 = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

elsif not (is_dest (s2)) or else
((getdest (s2) <> id) and (getdest (s2) <> n)) then

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, n)

else
dest := getdest (s2);
if dest = id then

PAreq (id, immediate)

end if;
−− here, the LOTOS process Link4RH was expanded (called only once)
PDind (id, ?s3);
if not (valid_hpart (s3)) then

−− here, the LOTOS process Link4RD was expanded (called only once)
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

else
PDind (id, ?s4);
if not (is_data (s4)) then

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer, dest)

else
−− here, the LOTOS process Link4RE was expanded (called only once)
PDind (id, ?s5);
if (s5 <> End) and (s5 <> Prefix) then

LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer, dest)

elsif dest <> id then
−− here, the LOTOS process Link4BRec was expanded (called only once)
if getdcrc (s4) = check then

H. Garavel & B. Luttik 93

LDind (id, broadrec (gethead (s3), getdata (s4)))

end if;
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer)

else
−− here, the LOTOS process Link4DRec was expanded (called only once)
if getdcrc (s4) = check then

LDind (id, good (gethead (s3), getdata (s4)))

else
LDind (id, dcrc_err (gethead (s3)))

end if;
PAcon (id, won);
−− here, the LOTOS process Link5 was expanded (called only once)
loop L in

select
PCind (id);
PDreq (id, Prefix)

[]
break L

end select
end loop;
var a: ACK, b: BOC, p: SIGNAL in

LDres (id, ?a, ?b);
p := acksig (a, crc (a));
−− here, the LOTOS process Link6 was expanded (called only once)
PCind (id);
PDreq (id, Start);
PCind (id);
PDreq (id, p);
PCind (id);
if b = release then

PDreq (id, End);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon,

PCind] (n, id, buffer)

else
PDreq (id, Prefix);
−− here, the LOTOS process Link7 was expanded (called only once)
loop L in

select
PCind (id);
PDreq (id, Prefix)

[]
break L

end select
end loop;
var dest: Nat, h: HEADER, d: DATA, t: SIG_TUPLE in

LDreq (id, ?dest, ?h, ?d);
t := quadruple (dhead,

destsig (dest),

headsig (h, crc (h)),

datasig (d, crc (d)));
−− here, Link2 represents the LOTOS process Link2resp

94 Four Formal Models of IEEE 1394 Link Layer

Link2 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq,

PAcon, PCind] (n, id, buffer, t)

end var
end if

end var
end if

end if
end if

end if
end if

end var
end process

−−−

process LinkWSA [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, buffer: SIG_TUPLE, dest: Nat) is
select

var p: SIGNAL in
PDind (id, ?p);
if p = subactgap then

Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

else
LinkWSA [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer, dest)

end if
end var

[]
only if dest = id then

PAcon (id, won);
PCind (id);
PDreq (id, End);
Link0 [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(n, id, buffer)

end if
end select

end process

end module

D.4 The BUS process in LNT

module BUS (DATA, CHANNELS) is

process Bus [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat) is
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, init (n))

end process

−−−

H. Garavel & B. Luttik 95

process BusIdle [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE) is
select

var id: Nat in
PAreq (?id, ?any PHY_AREQ) where id < n;
−− here, the LOTOS process DecideIdle was expanded in−line
−− (see footnote 7 in the research report [Sighireanu−Mateescu−97])
if get (id, t) = false then

PAcon (id, won);
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, invert (id, t), init (n), init (n), id)

else
PAcon (id, lost);
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

end if
end var

[]
only if not (zero (t)) then

arbresgap;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, init (n))

end if
end select

end process

−−−

process BusBusy [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE,

in var next: BoolTABLE, destfault: BoolTABLE, busy: Nat) is
select

var j: Nat in
PAreq (?j, fair) where j < n;
PAcon (j, lost);
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy)

end var
[]

var j: Nat in
PAreq (?j, immediate) where not (get (j, next)) and (j < n);
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, invert (j, next), destfault, busy)

end var
[]

if busy < n then
var p: SIGNAL in

PCind (busy);
PDreq (busy, ?p);
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, busy, p)

end var

96 Four Formal Models of IEEE 1394 Link Layer

elsif zero (next) then
SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

else
−− here, the LOTOS process Resolve was expanded (called only once)
var j: Nat, p: SIGNAL in

for j := 0 while j < n by j := j + 1 loop
if get (j, next) then

PAcon (j, won);
PCind (j)

end if
end loop;
−− here, the LOTOS process Resolve2 was expanded (called only once)
while more (next) loop

PDreq (?j, End) where get (j, next) and (j < n);
next := invert (j, next)

end loop;
PDreq (?j, ?p) where j < n;
if p = End then

SubactionGap [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t)

else
Distribute [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, init (n), init (n), j, p)

end if
end var

end if
end select

end process

−−−

process SubactionGap [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE) is
var j: Nat in

for j := 0 while j < n by j := j + 1 loop
PDind (j, subactgap)

end loop;
BusIdle [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (n, t)

end var
end process

−−−

process Distribute [PAreq: Areq, PDreq, PDind: Sig, PAcon: Acon, PCind: Id,

arbresgap, losesignal: none] (n: Nat, t: BoolTABLE,

in var next, destfault: BoolTABLE, busy: Nat, p: SIGNAL) is
var j, incr: Nat in

for j := 0 while j < n by j := j + incr loop
incr := 1;
if j <> busy then

select
only if not (is_header (p) and get (j, destfault)) then

H. Garavel & B. Luttik 97

PDind (j, p)

end if
[]

only if is_dest (p) then
var dest: Nat in

dest := any Nat;
PDind (j, destsig (dest));
destfault := invert (j, destfault)

end var
end if

[]
only if is_header (p) or is_data (p) or is_ack (p) then

select
PDind (j, corrupt (p))

[]
losesignal

end select
end if

[]
only if is_data (p) then

PDind (j, p);
PDind (j, Dummy)

end if
[]

PAreq (j, immediate) where not (get (j, next));
incr := 0; −− instead of 1, here
next := invert (j, next)

end select
end if

end loop;
if p = End then

j := n

else
j := busy

end if;
BusBusy [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal]

(n, t, next, destfault, j)

end var
end process

end module

D.5 The TRANS process in LNT

module TRANS (DATA, CHANNELS) is

process Trans [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, TDreq: Dreq]

(n, id: Nat, v: Version) is
hide TX0: none in

par TX0 in
TransReq [LDreq, LDcon, TDreq, TX0] (n, id)

98 Four Formal Models of IEEE 1394 Link Layer

||
TransRes [LDind, LDres, TX0] (id, v)

end par
end hide

end process

−−−

process TransReq [LDreq: Dreq, LDcon: Dcon, TDreq: Dreq, TX0: none] (n, id: Nat) is
var dest: Nat, h: HEADER, d: DATA, a: ACK in

loop
TDreq (id, ?dest, ?h, ?d) where dest <= n;
select

TX0

[]
null

end select;
i; −− this ”i” corresponds to the ”>>” operator in the LOTOS specification
LDreq (id, dest, h, d);
select

if dest = n then
LDcon (id, broadsent)

else
a := any ACK;
LDcon (id, ackrec (a))

end if
[]

LDcon (id, ackmiss)

end select
end loop

end var
end process

−−−

process TransRes [LDind: Dind, LDres: Ack, TX0: none] (id: Nat, v: Version) is
var l: LIN_DIND, a: ACK in

loop
LDind (id, ?l);
if is_broadrec (l) then

case v in
ko ->

−− original (incorrect) specification
LDres (id, a1, no_op)

| ok ->
−− correct specification
null

end case
else

a := any ACK;
select

−− concatenated response = lock transaction

H. Garavel & B. Luttik 99

TX0;
LDres (id, a, hold)

[]
−− split response
LDres (id, a, release)

end select
end if

end loop
end var

end process

end module

D.6 The APPLI process in LNT

module APPLI (DATA, CHANNELS) is

process Application [TDreq: Dreq] (n: Nat, id: Nat, s: Scenario) is
var dest: Nat, h: HEADER, d: DATA, r: Nat in

case s in
scenario_1 ->

only if id == 0 then
−− send a request for transaction with a *different* node
dest := any Nat where (dest <= n) and (dest <> id);
h := any HEADER;
d := any DATA;
TDreq (id, dest, h, d);
stop

end if
| scenario_2 ->

−− send a request for transaction with a *different* node
dest := any Nat where (dest <= n) and (dest <> id);
h := any HEADER;
d := any DATA;
TDreq (id, dest, h, d);
stop

| scenario_3_2 | scenario_3_3 | scenario_3_4 ->
only if id == 0 then

h := any HEADER;
d := any DATA;
for r := requests (s) while r > 0 by r := r - 1 loop

TDreq (id, n, h, d)

end loop;
stop

end if
end case

end var
end process

end module

100 Four Formal Models of IEEE 1394 Link Layer

D.7 The NODE process in LNT

module NODE (DATA, CHANNELS, APPLI, TRANS, LINK) is

process Node [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind: Sig,

PAreq: Areq, PAcon: Acon, PCind: Id] (n, id: Nat, v: Version, s: Scenario) is
hide TDreq: Dreq in

par
TDreq ->

Application [TDreq] (n, id, s)

||
TDreq, LDreq, LDcon, LDind, LDres ->

Trans [LDreq, LDcon, LDind, LDres, TDreq] (n, id, v)

||
LDreq, LDcon, LDind, LDres ->

Link [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind] (n, id)

end par
end hide

end process

end module

D.8 The MAIN process in LNT

module scen3_orig_2_4 (APPLI, TRANS, LINK, NODE, BUS) is

!nat sup 2

process MAIN [LDreq: Dreq, LDcon: Dcon, LDind: Dind, LDres: Ack, PDreq, PDind:

Sig, PAreq: Areq, PAcon: Acon, PCind: Id, arbresgap, losesignal: none] is
par PDreq, PDind, PAreq, PAcon, PCind in

par
Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(2, 0, ko, scenario_3_4)

||
Node [LDreq, LDcon, LDind, LDres, PDreq, PDind, PAreq, PAcon, PCind]

(2, 1, ko, scenario_3_4)

end par
||

Bus [PAreq, PDreq, PDind, PAcon, PCind, arbresgap, losesignal] (2)

end par
end process

end module

F. Lang, M. Volk (Eds):
Models for Formal Analysis of Real Systems (MARS 2024)
EPTCS 399, 2024, pp. 101–127, doi:10.4204/EPTCS.399.6

© K.H.J. Jilissen, P. Dieleman & J.F. Groote
This work is licensed under the Creative Commons
Attribution-Noncommercial License.

Formally Modelling the Rijkswaterstaat Tunnel Control
Systems in a Constrained Industrial Environment

Kevin H.J. Jilissen
Rijkswaterstaat

Utrecht, the Netherlands
Eindhoven University of Technology

Eindhoven, the Netherlands
kevin.jilissen@rws.nl

Peter Dieleman
Rijkswaterstaat

Utrecht, the Netherlands
peter.dieleman@rws.nl

Jan Friso Groote
Eindhoven University of Technology

Eindhoven, the Netherlands
j.f.groote@tue.nl

Rijkswaterstaat, the National Dutch body responsible for infrastructure, recognised the importance
of formal modelling and set up a program to model the control of road tunnels. This is done to
improve the standardisation of tunnel control and make communication with suppliers smoother. A
subset of SysML is used to formulate the models, which are substantial. In an earlier paper we have
shown that these models can be used to prove behavioural properties by manually translating the
models to mCRL2. In this paper we report on an automatic translation to mCRL2. As the results of
the translation became unwieldy, we also investigated modelling tunnel control in the specification
language Dezyne which has built-in verification capabilities and compared the results.

1 Introduction

Over the last few years, Rijkswaterstaat (RWS, the Dutch body responsible for road and water infras-
tructure in the Netherlands) has created SysML models of all system parts of the tunnel control systems
describing the functionality these systems should perform based on a functional decomposition. They
use SysML as within RWS there is a preference to use modelling tools with commercial support and
industry acceptance. These models have been created as generic blueprints for the construction of sev-
eral road tunnels. The behaviour of the systems is modelled using a functional decomposition in nested
Activity Diagrams. There is no formal semantics to which the models adhere and essential parts are
denoted in ‘structured natural language’.

Formal methods could be applied to reduce the chance of system failures and the chance that there
are design flaws in the systems. RWS has shown interest in this approach, and in [11] it is already
shown that a structured but largely manual translation of these SysML models to the formal mCRL2
[4] specification language is possible and very beneficial. The goal of this translation is to improve the
quality of the models by formal verification of both safety and liveness properties of both the overall
system as well as its individual components.

However, a manual translation to formal models is not deemed as the desirable solution by RWS
as the set of models is substantial and they are regularly revised and changed. Manual translation is
time consuming and relatively error prone. This may lead to the situation that changes in the SysML
models quickly become out of sync with the verifiable mCRL2 models leading to a reduced benefit of
verification.

For this reason, we investigate if the existing SysML specifications can automatically be translated
to mCRL2. The first major obstacle is that SysML has no formal semantics — but see for instance [15]
on how this can be remedied — and in particular the ‘structured natural language’ in the SysML models
cannot be formally interpreted and translated. Therefore, we first systematically translate this to SysML

http://dx.doi.org/10.4204/EPTCS.399.6
https://creativecommons.org
https://creativecommons.org/licenses/by-nc/4.0/

102 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

activity diagrams. Subsequently, based on the XML interchange format, we constructed a translator in
Spoofax [13], which is a language translation workbench with built-in support for variable declarations
with local scope.

The communication scheme employed in the SysML models of tunnels is that all components si-
multaneously read their input and deliver their output. In [11] it was already observed that this leads to
mCRL2 models with relatively few states but with a huge number of outgoing transitions in each state,
sometimes more than 108. The automatic translation showed that this problem was exacerbated with the
larger models making the verification of properties cumbersome.

Therefore, we also investigated modelling tunnels in the Dezyne specification language [3], which
is commercially available and has very effective built-in verification. Following guidelines in [7], we
provide both push and pull models for certain tunnel control components, and compared the behaviour
with those generated from the SysML description, which was still possible despite the very different
styles of modelling.

This paper presents the journey to develop support to improve the quality of the semi-formally spec-
ified tunnel control systems, which is a project largely running within Rijkswaterstaat. The results are in
no way as clear cut as we hoped, and this work led to some conclusions, quite different from what we
originally anticipated. We believe that these conclusions can be generalised to other behavioural specifi-
cations in graphical languages without a proper formal semantics. Besides this project, the enhancement
of safety and reliability using formal methods is also being investigated by employing Synthesis Based
Engineering (SBE) [16]. In this approach formal safety properties are used to automatically generate the
control models, which is quite different from our approach to verify liveness and safety properties on
explicitly specified control systems.

2 Existing SysML model structure

The complete tunnel installation has been generically modelled in Enterprise Architect [22] using SysML
version 1.5 [18] and documented respecting J-STD-16 [9]. The genericity is introduced by a parame-
terised description that can be instantiated for any specific tunnel configuration. Examples of such pa-
rameters include the number of traffic tubes, the number of lanes, and the number and configuration of
ventilators.

The permitted model elements and relations are specified using SysML in the meta-model of the
model. This meta-model prescribes that all functionalities defined in the Landelijke Tunnel Standaard
(translated: Dutch National Tunnel Standard) [20] must be modelled as behaviour using Activity Di-
agrams (ADs). In these ADs, the repeated token flow simulates the computation cycles of the Pro-
grammable Logic Controllers (PLCs) deployed in tunnel installations.

The behaviour of the tunnel control system is modelled as a functional decomposition of Activity
Diagrams. The root AD contains one component encapsulating all behaviour of the system, with the
environmental readings as input and the actuator control as output. Every behavioural component in
the system contains subcomponents until every technical or system task is described by exactly one
leaf subcomponent. An example of such leaf AD containing elementary tasks, or activities, regarding
controlling the overpressure of safe spaces, in Dutch ‘overdruk veilige ruimte’, is depicted in Figure
1a. The elementary tasks are subject to various further descriptions in SysML, as depicted in Figure 1b.
Important sub-descriptions are how actions, consisting of value assignments, must be carried out subject
to certain conditions when the system receives messages, see Figure 1c. These descriptions consist of a
curious mixture of Dutch and programming notation, to which we refer in this document as ‘structured

K.H.J. Jilissen, P. Dieleman & J.F. Groote 103

natural language’, which has no formal syntax and semantics. Note that the diagrams are often small and
cluttered, and require the zoom feature of pdf to be readable.

(a) The leaf AD of the overpressure sub-system.

Flowdown Eisafleiding BF ODVR

BF Overdruk
Veilige Ruimte

«extendedRequir...
BSTTI#10067 (VKF)

«extendedReq...
Eis BSTTI -

Autobediening -
BFODVR

Analyse -
BFODVR - Auto
bediening

Analyse -
BFODVR -
Bedieningswijze

Analyse -
BFODVR -
Stand /
aansturing

Analyse - ALG
- Restricties
wijzigen
Bedieningswijze

«extendedReq...
Eis BSTTI -

Disabled - BFODVR

Analyse -
BFODVR -
Disabled

Analyse - ALG -
Signaleringsmelding
Component
Disabled

Analyse -
BFODVR -
Enabling

«extende...
BSTTI#6747

Analyse - ALG
-
Transitiestatus
Bereikt 5 min

«extende...
BSTTI#10007

Analyse - BFODVR - Bereikt
5min Toevoegen aan
transitiestatus

«extendedRequirem...
Eis BSTTI -

Transitiestatus -
BFODVR

«extendedRequir...
BSTTI#10069

Analyse -
BFODVR -
Handbedieningen
blokkeren

«extendedRequirem...
Eis BSTTI -

SetHandbedieningsStand
- BFODVR

«extendedRequir...
BSTTI#10273

«extendedRequir...
BSTTI#10253 (VKF)

«extende...
Eis BSTTI -
Handhaaf

Instellingen -
BFODVR

«extende...
Eis BSTTI -

Beschikbaarheid
- BFODVR

Analyse -
BFODVR -
Invloed falen
gateway op 3B
functie
bedieningen,
besturingen en
autonome
processen

Analyse -
BFODVR -
Invloed falen
gateway op 3B
variabele
#beschikbaarheid

Analyse - ALG
- Invloed falen
gateway op 3B
variabele
#beschikbaarheid

Analyse - ALG
- Invloed falen
gateway op 3B
functie
bedieningen,
besturingen en
autonome
processen

«extendedRequirement»
SO#6651

«trace»
«GeneratedBy»

«trace»

«GeneratedBy»

«GeneratedBy»

«deriveReqt»

«GeneratedBy»

«GeneratedBy»

«deriveReqt»

«trace»

«deriveReqt»

«deriveReqt»

«GeneratedBy»

«trace»

«ResultOf»

«GeneratedBy»

«ResultOf»

«trace»

«ResultOf»

«trace»

«ResultOf»

«GeneratedBy»
«trace»

«deriveReqt»

«GeneratedBy»
«GeneratedBy»

«deriveReqt»

«trace»

«deriveReqt»

«GeneratedBy»

«GeneratedBy»

«GeneratedBy»

«ResultOf»

«ResultOf»

«GeneratedBy»

«trace»

«GeneratedBy»

«GeneratedBy»

«GeneratedBy»

(b) Additional descriptions for Figure 1a.

Enab l eOve r p r e s s u r e ()
Cond i t i on : ∗
Act i on s : #enab l ed := yes

(c) An elementary task description translated from Dutch.

D i s a b l eOv e r p r e s s u r e ()
Cond i t i on : ∗
Act i on s : #enab l ed := no

(d) Another elementary task description.

Figure 1: An example of a leaf AD taken from the SysML description of tunnel control systems.

Basic functionalities in the model are grouped together in so-called vertical slices. In total, the engi-
neers identified 35 vertical slices in the systems. These slices together contain 52 standalone sub-systems
responsible for some facility. The sub-systems are decomposed in a Base Functionality (BF) responsi-
ble for the overall management of that sub-system. They can contain zero or more Sub-Functionalities
(SF) responsible for a single, possibly instantiated, entity, such as a single ventilation group or a single
ventilator. Finally, the sub-systems can contain Drivers (SP, abbreviation of ‘Stuurprogramma’ in Dutch)
which translate the generic control commands and status information to and from the vendor-specific
implementations.

For this paper, the vertical slice and equally named sub-system for the overpressure of the safe space
is used as the system we apply our techniques on. It consists of a Base Functionality and one Sub-
Functionality which can be instantiated for (possibly redundant) overpressure ventilators. This sub-
system was chosen as it is one of the investigated systems in [11]. Additional details on translations
and models are provided in the appendices. In Appendix A a non traceable link is given to a zip file
containing all artefacts belonging to this paper.

3 Model adaptions for formal analysis

In this section we sketch how the SysML models are translated to mCRL2. We only allow a restricted
use of SysML activity diagrams, and this is enforced by the type checking in the translation. The trans-
formation is implemented using the Spoofax Language Workbench [13]. Syntax definitions for parsing
XMI are described in Spoofax using the SDF3 meta-language [21]. Static analysis rules on the parsed
Abstract Syntax Tree (AST) are formulated in Statix [1], the meta-language for the specification of static
semantics included in Spoofax 3. The analysed input AST is transformed using Stratego [12] to an AST
of the resulting mCRL2 specification and exported. Figure 2 gives an overview of this workflow.

104 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

Export ParseXMI
DocumentSysML Model

Spoofax

Static Analysis
XMI AST

Scope Graph

mCRL2 AST

References

Transformation
Annotated AST mCRL2 Model

ParsemCRL2
Specification

Pretty Print

Figure 2: An overview of the workflow.

3.1 Formalising ‘structured natural language’

The first step towards the translation is to replace the structured natural language descriptions by a no-
tation that can be formally interpreted and translated. We formalise the structured natural language
descriptions using activity diagrams annotated with simple conditions and assignments in SysML, as
this deviates the least from the framework Rijkswaterstaat is using.

To create this description, two additional decomposition layers must be added. These manually
created layers embed the structured natural language with a fixed semantics within the SysML model,
such that these can be constructed and maintained by the SysML engineers. A new bottom leaf layer
consists of ADs, in which each AD formally describes how several task descriptions such as in Figures
1c and 1d combined compute the values of the assigned variables. An example of an AD in the leaf layer
is given in Figure 3a.

In between this newly created leaf layer and the ADs of the existing SysML specification, such as
Figure 1a, a glue layer is added. For each activity in the existing AD, an AD in the glue layer is added
which formally describes how the variables in the textual descriptions are bound to input, output, and
state variables. The description in Figure 1a requires three ADs in the glue layer of which one is depicted
in Figure 3b.

(a) Example AD in the leaf layer.

a c t [a c t i v i t y] B F O v e r d r u k V e i l i g e R u i m t e [B F O v e r d r u k V e i l i g e R u i m t e]

b e d _ B F :
b e d _ B F _ O v e r d r u k _ V e i l i g e _ R u i m t e [1]

b e d t k _ B F :
b e d t k _ B F _ O v e r d r u k _ V e i l i g e _ R u i m t e [1]

b e s t _ B F :
b e s t _ C o ö r d i n a t i e _ L u c h t k w a l i t e i t _ V e i l i g e _ R u i m t e

s p _ t k :
b e s t t k _ B F _ O v e r d r u k _ V e i l i g e _ R u i m t e _ S P _ O v e r d r u k _ V e i l i g e _ R u i m t e

b e s t _ s p :
b e s t _ B F _ O v e r d r u k _ V e i l i g e _ R u i m t e _ S P _ O v e r d r u k _ V e i l i g e _ R u i m t e

f a a l s t a t u s :
M o n i t o r i n g I n t e g r i t e i t 3 B B e s t u r i n g s s y s t e e m V e i l i g e R u i m t e _ F a a l s t a t u s G a t e w a y

e n a b l e d :
e J a N e e

c o m p u t e _ e n a b l e d : c o m p u t e _ e n a b l e d

e n a b l e : E n a b l e O v e r d r u k n e w _ e n a b l e d : e J a N e e

o l d _ e n a b l e d : e J a N e e

d i s a b l e : D i s a b l e O v e r d r u k

f o r k _ u p d a t e s

A c t i v i t y I n i t i a l

j o i n _ u p d a t e s

f o r k _ w r i t e s

j o i n _ w r i t e s

A c t i v i t y F i n a l

c o m p u t e _ b e d i e n i n g s w i j z e : c o m p u t e _ b e d i e n i n g s w i j z e

s e t O p H a n d : S e t O p H a n d b e d i e n i n g

s e t O p A u t o : S e t O p A u t o b e d i e n i n g
n e w _ b e d i e n i n g s w i j z e : e B e d i e n i n g s w i j z e

o l d _ b e d i e n i n g s w i j z e : e B e d i e n i n g s w i j z e

s e t O p A u t o 2 : S e t O p A u t o b e d i e n i n g

b e d i e n i n g s w i j z e :
e B e d i e n i n g s w i j z e

b e d i e n i n g s w i j z e
W r i t e V a r i a b l e

v a l u e : e B e d i e n i n g s w i j z e

e n a b l e d
W r i t e V a r i a b l e

v a l u e : e J a N e e

c o m p u t e _ a u t o _ s t a n d : c o m p u t e _ a u t o _ s t a n d

s e t : S e t A u t o b e d i e n i n g s S t a n d

o l d _ s t a n d : e L i n k s R e c h t s U i t

n e w _ s t a n d : e L i n k s R e c h t s U i t

a u t o _ s t a n d :
e L i n k s R e c h t s U i t

c o m p u t e _ h a n d _ s t a n d : c o m p u t e _ h a n d _ s t a n d

s e t : S e t H a n d b e d i e n i n g s S t a n d

b e d i e n i n g s w i j z e : e B e d i e n i n g s w i j z e

o l d _ s t a n d : e L i n k s R e c h t s U i t

n e w _ s t a n d : e L i n k s R e c h t s U i t

h a n d _ s t a n d :
e L i n k s R e c h t s U i t

f o r k _ s t a n d

j o i n _ s t a n d

c o m p u t e _ g e v r a a g d e _ s t a n d : c o m p u t e _ g e v r a a g d e _ s t a n d

i n _ b e d i e n i n g s w i j z e : e B e d i e n i n g s w i j z e

i n _ h a n d _ s t a n d : e L i n k s R e c h t s U i t

i n _ a u t o _ s t a n d : e L i n k s R e c h t s U i t

n e w _ g e v r a a g d e _ s t a n d : e L i n k s R e c h t s U i t

a u t o _ s t a n d
W r i t e V a r i a b l e

v a l u e :
e L i n k s R e c h t s U i t

h a n d _ s t a n d
W r i t e V a r i a b l e

v a l u e :
e L i n k s R e c h t s U i t

c o m p u t e _ s e t s t a n d : c o m p u t e _ s e t s t a n d

f a a l s t a t u s _ g a t e w a y : e F a a l s t a t u s

b e s t u u r b a a r : e J a N e e

g e v r a a g d e _ s t a n d :
e L i n k s R e c h t s U i t

e n a b l e d : e J a N e e
s e t S t a n d : S e t S t a n d

s t a n d : e L i n k s R e c h t s U i t

c o m p u t e _ b e s c h i k b a a r h e i d : c o m p u t e _ b e s c h i k b a a r h e i d
i n _ f a a l s t a t u s : e F a a l s t a t u s

i n _ b e s t u u r b a a r : e J a N e e

i n _ t r a n s i t i e s t a t u s : e T r a n s i t i e s t a t u s
b e s c h i k b a a r h e i d : e B e s c h i k b a a r h e i d

i n _ s t o r i n g O v e r d r u k v e n t i l a t o r e n : e J a N e e

i n _ s t o r i n g O v e r d r u k r e g e l i n g : e J a N e e

c o m p u t e _ s t a t u s m t k l u i k e n : c o m p u t e _ s t a t u s m t k l u i k e n
i n _ o b s e r v e e r b a a r : e J a N e e

l u i k e n G e s l o t e n : e J a N e e
s t a t u s M t k L u i k e n : e O p e n D i c h t

c o m p u t e _ d i s a b l e d : c o m p u t e _ d i s a b l e d

e n a b l e d : e J a N e e d i s a b l e d : e J a N e e

c o m p u t e _ t r a n s i t i e s t a t u s : c o m p u t e _ t r a n s i t i e s t a t u s

s t a n d : e L i n k s R e c h t s U i t

g e v r a a g d e _ s t a n d : e L i n k s R e c h t s U i t

o l d _ t r a n s i t i e s t a t u s : e T r a n s i t i e s t a t u s

n e w _ t r a n s i t i e s t a t u s : e T r a n s i t i e s t a t u s

i n _ o l d _ g e v r a a g d e _ s t a n d : e L i n k s R e c h t s U i t

t r a n s i t i e s t a t u s :
e T r a n s i t i e s t a t u s

c o m p u t e _ o l d _ g e v r a a g d e _ s t a n d :
c o m p u t e _ o l d _ g e v r a a g d e _ s t a n d

i n _ b e d i e n i n g s w i j z e : e B e d i e n i n g s w i j z e

i n _ h a n d _ s t a n d : e L i n k s R e c h t s U i t

i n _ a u t o _ s t a n d : e L i n k s R e c h t s U i t

o l d _ g e v r a a g d e _ s t a n d : e L i n k s R e c h t s U i t

t r a n s i t i e s t a t u s
W r i t e V a r i a b l e

v a l u e :
e T r a n s i t i e s t a t u s

c o m p u t e _ o b s e r v e e r b a a r : c o m p u t e _ o b s e r v e e r b a a r
i n _ f a a l s t a t u s : e F a a l s t a t u s

i n _ b e s t u u r b a a r : e J a N e e

r n b S t o r i n g : e J a N e e

o b s e r v e e r b a a r : e J a N e e

r n b O p s t a r t : e J a N e e

b e d t k _ B F . o b s e r v e e r b a a r : = o b s e r v e e r b a a r

b e d t k _ B F . r e d e n N i e t B e s t u u r b a a r S t o r i n g : = s p _ t k . r e d e n N i e t B e s t u u r b a a r S t o r i n g

g e v r a a g d e _ s t a n d : = n e w _ g e v r a a g d e _ s t a n d

v a l u e : = n e w _ s t a n d

b e d t k _ B F . h a n d S t a n d : = n e w _ s t a n d

i n _ s t o r i n g O v e r d r u k v e n t i l a t o r e n : = s p _ t k . s t o r i n g O v e r d r u k v e n t i l a t o r e n

b e d t k _ B F . e n a b l e d : = n e w _ e n a b l e d

i n _ b e s t u u r b a a r : = s p _ t k . b e s t u u r b a a r

b e s t _ s p . s e t S t a n d : = s e t S t a n d

e n a b l e d : = n e w _ e n a b l e d

v a l u e : = n e w _ s t a n d

o l d _ t r a n s i t i e s t a t u s : = t r a n s i t i e s t a t u s

o l d _ s t a n d : = a u t o _ s t a n d

b e d t k _ B F . s t o r i n g O v e r d r u k v e n t i l a t o r e n : = s p _ t k . s t o r i n g O v e r d r u k v e n t i l a t o r e nb e d t k _ B F . l u i k e n G e s l o t e n : = s p _ t k . l u i k e n G e s l o t e n

i n _ f a a l s t a t u s : =
f a a l s t a t u s . f a a l s t a t u s G a t e w a y

i n _ a u t o _ s t a n d : = n e w _ s t a n d

i n _ h a n d _ s t a n d : = h a n d _ s t a n d

i n _ b e d i e n i n g s w i j z e : = b e d i e n i n g s w i j z e

s e t O p H a n d : = b e d _ B F . s e t O p H a n d b e d i e n i n g

v a l u e : = n e w _ t r a n s i t i e s t a t u s

b e d t k _ B F . s t o r i n g O v e r d r u k r e g e l i n g : = s p _ t k . s t o r i n g O v e r d r u k r e g e l i n g

b e d i e n i n g s w i j z e : = n e w _ b e d i e n i n g s w i j z e

i n _ o l d _ g e v r a a g d e _ s t a n d : = o l d _ g e v r a a g d e _ s t a n d

i n _ a u t o _ s t a n d : = a u t o _ s t a n d

i n _ t r a n s i t i e s t a t u s : = n e w _ t r a n s i t i e s t a t u s

e n a b l e d : = n e w _ e n a b l e d

d i s a b l e : = b e d _ B F . d i s a b l e O v e r d r u k

s t a n d : = s p _ t k . s t a n d

v a l u e : = n e w _ e n a b l e d

r n b S t o r i n g : = s p _ t k . r e d e n N i e t B e s t u u r b a a r S t o r i n g

b e d t k _ B F . s t a n d : = s p _ t k . s t a n d

s e t : = b e d _ B F . s e t H a n d b e d i e n i n g s S t a n d

i n _ h a n d _ s t a n d : = n e w _ s t a n d

b e d t k _ B F . r e d e n N i e t B e s t u u r b a a r P l a a t s e l i j k e B e d i e n i n g : = s p _ t k . r e d e n N i e t B e s t u u r b a a r P l a a t s e l i j k e B e d i e n i n g

b e d t k _ B F . b e s t u u r b a a r : = s p _ t k . b e s t u u r b a a rb e d t k _ B F . s t o r i n g C o m m u n i c a t i e U i t g e v a l l e n : = s p _ t k . s t o r i n g C o m m u n i c a t i e U i t g e v a l l e nb e d t k _ B F . s t o r i n g A l g e m e e n : = s p _ t k . s t o r i n g A l g e m e e n

s e t O p A u t o 2 : = b e s t _ B F . s e t O p A u t o b e d i e n i n g

b e d t k _ B F . s t o r i n g D a t a 3 B : =
G E E N _ S T O R I N G

g e v r a a g d e _ s t a n d : = n e w _ g e v r a a g d e _ s t a n d

s e t O p A u t o : = b e d _ B F . s e t O p A u t o b e d i e n i n g

b e d t k _ B F . t r a n s i t i e s t a t u s : = n e w _ t r a n s i t i e s t a t u s

i n _ f a a l s t a t u s : =
f a a l s t a t u s . f a a l s t a t u s G a t e w a y

b e d t k _ B F . a u t o S t a n d : = n e w _ s t a n d

b e d t k _ B F . s t a t u s M t k L u i k e n : = s t a t u s M t k L u i k e n

i n _ b e s t u u r b a a r : = s p _ t k . b e s t u u r b a a r

i n _ b e d i e n i n g s w i j z e : = n e w _ b e d i e n i n g s w i j z e

b e d t k _ B F . b e d i e n i n g s w i j z e : = n e w _ b e d i e n i n g s w i j z e

b e d t k _ B F . d i s a b l e d : = d i s a b l e d

e n a b l e : = b e d _ B F . e n a b l e O v e r d r u k

i n _ o b s e r v e e r b a a r : = o b s e r v e e r b a a r

o l d _ e n a b l e d : = e n a b l e d

f a a l s t a t u s _ g a t e w a y : =
f a a l s t a t u s . f a a l s t a t u s G a t e w a y

o l d _ s t a n d : = h a n d _ s t a n d

r n b O p s t a r t : = s p _ t k . r e d e n N i e t B e s t u u r b a a r O p s t a r t

b e d t k _ B F . g e v r a a g d e S t a n d : = n e w _ g e v r a a g d e _ s t a n d

s t a n d : = s p _ t k . s t a n d

s e t : = b e s t _ B F . s e t A u t o b e d i e n i n g s S t a n d

b e d t k _ B F . b e s c h i k b a a r h e i d : = b e s c h i k b a a r h e i d

i n _ s t o r i n g O v e r d r u k r e g e l i n g : = s p _ t k . s t o r i n g O v e r d r u k r e g e l i n g
b e s t u u r b a a r : = s p _ t k . b e s t u u r b a a r

v a l u e : = n e w _ b e d i e n i n g s w i j z e

l u i k e n G e s l o t e n : = s p _ t k . l u i k e n G e s l o t e n

o l d _ b e d i e n i n g s w i j z e : = b e d i e n i n g s w i j z e

(b) Example AD in the glue layer.

Figure 3: Example Activity Diagrams in the newly introduced layers.

3.2 Assignment-based language in SysML

SysML allows modellers to define their own language to be used as names and guards on flows in
diagrams. In the ADs in Figure 3a, a simple conditional assignment-based language is used which is just

K.H.J. Jilissen, P. Dieleman & J.F. Groote 105

expressive enough to capture the natural language encountered in the specifications. The design for this
language is guided by minimalism, which is trivial to transform to mCRL2.

The goal of the language is to assign values to all outgoing activity parameters and to the pins of
all actions that write a new value to a state variable. For this purpose, flow names become assignments
of the shape e1 := e2 and flow guards are boolean expressions with connectives ¬, ∨ and ∧, and basic
propositions of the shape e1 = e2 and e1 ̸= e2. Within a sensible name resolution scope of the flow, e1
and e2 must refer to named elements and values of equivalent types in the SysML model.

Defining a sensible name resolution scheme and determining what equally typed values are is the
most complex task of the transformation from XMI to mCRL2. For this we use the tool Statix, in which
type checking is reduced to a constraint solving problem. If a solution is derived for the constraints on
the root in the AST, the provided AST is well-typed. A scope graph is constructed in Statix while solving
this constraint problem [1, 17].

The scope graph framework consists of a graph, which represents the naming structure of the AST,
and a resolution calculus, which describes how to resolve references to declarations within a scope graph.
A scope graph G connects scopes s ∈ S, containing data terms d ∈ D bound by relations r ∈ R, using
directed edges labelled with labels l ∈ L. A scoped datum s r−� d associates a data term d with scope s
under relation r. Variable declarations in scope s are represented by s :−� (n,T), shortened by n : T for
name n with type T . Resolution between scopes is governed by path queries. The query can be read as
a regular expression with the edge labels as alphabet. For example P∗ matches paths with zero or more
edges labelled P, P? matches paths with zero or one P label, and ε the empty path. Edges s1

P−→ s2 are
used to denote that s2 is the parent scope of s1. Due to the structure of XMI, G is structured as a tree with
respect to label P such that from every scope s, root node sr is reachable using path P∗. Notation ∇s is
used to indicate a fresh scope not part of G.

3.3 Abstract notation for XMI

The SysML specification can be exported to XML Metadata Interchange (XMI) version 2.1 [19]. This
textual and computer-interpretable format is used as input to our transformation framework and parsed
by Spoofax to an AST.

<node xmi : t ype="uml : I n i t i a l N o d e "
xmi : i d="EAID_1"
name=" A c t i v i t y I n i t i a l "
v i s i b i l i t y ="p u b l i c ">

<outgo ing xmi : i d r e f="EAID_2"/>
</node>

(a) The XMI document snipped.

UmlAct i v i t yE l ement . U m l A c t i v i t y I n i t i a l =
[<node xmi : t ype="uml : I n i t i a l N o d e "

xmi : i d ="[XML−STRING]"
name="[LANG−ID] "
v i s i b i l i t y ="[U m l V i s i b i l i t y]">

[UmlOutgoing]
</node >]

(b) The SDF3 production rule used for parsing.

U m l A c t i v i t y I n i t i a l ("EAID_1" , " A c t i v i t y I n i t i a l " , UmlPubl ic () , UmlOutgoing ("EAID_2"))

(c) The parsed AST subtree with syntactic constructors.

Figure 4: AST construction from XMI document in Spoofax.

To represent the parsed document in the AST, Spoofax generates syntactical constructor type defini-
tions based on the SDF3 syntax specification. These syntax specifications can be specified using string
templates and non-terminal symbols. Consider the representation of an Activity Initial, a start point of

106 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

the control flow of an AD, in an XMI document. Assuming that the referenced symbols between [and
] brackets are defined, a SDF3 production rule for symbol UmlActivityElement and constructor name
UmlActivityInitial is given in Figure 4.

In the remainder of this paper, abstract versions of these syntactic constructors of the parsed XMI for-
mat are used to describe the transformation and semantical elements textually. Some SysML constructs
are mapped to the same XMI elements. All relevant SysML elements with their syntactic constructor
notation are listed in Table 1 where each element gets a unique ID i. In flows the directed edge relations
in the ADs are drawn dashed for the control flows and solid for object flows. These are used to determine
the flow type.

Abstract constructor Constructor parameter description Visualisation

EnumerationLiteral(i,n) ID i, name n

Enumeration(i,n,L) ID i, name n, set of enumeration literals L

Property(i,n, t) ID i, name n, ID reference of property type t

Block(i,n,P) ID i, name n, set of block properties P

Attribute(i,n, t,d)
ID i, name n, ID reference of attribute type t, default
value d of referenced type

ActivityParameter(i,n, t) ID i, name n, ID reference of parameter type t

ActivityInitial(i) ID i

ActivityFinal(i) ID i

Flow(i, f ,n,g,s, t)
ID i, flow type f ∈ {control,object}, name n or
empty name ε , guard g or empty guard δ , source
ID reference s, target ID reference t

Pin(i,n, t) ID i, name n, ID reference of parameter type t

WriteVariable(i,n, p) ID i, variable name n, input pin p

CallBehaviour(i,n,b,P)
ID i, name n, ID reference of behaviour b, set of
parameters P

DecisionNode(i,n) ID i, name n

Table 1: Table with abstract syntactic constructors for SysML XMI elements.

3.4 Well-typedness using constraint solving in Statix

The SysML models are structured in a tree of packages. The root of the XMI document contains the
root package. The packages help to guide humans in navigating the model. The document is well-typed
if and only if the root is well-typed, and the root, or for that matter any node, is well-typed iff all its

K.H.J. Jilissen, P. Dieleman & J.F. Groote 107

children are well-typed, although for each node extra typing constraints may be required.
These extra typing constraints are formulated in Statix using inference rules. As an example we give

the rule for an enumeration that typically belongs to an enumeration declaration as in Figure 5a.

∇se se
P−→ sr T ≡ ENUM(i,n,se) sr

:−� (i,T) ∀EnumerationLiteral(il ,nl)∈L se
:−� (nl,T)

Enumeration(i,n,L)OK

In order to understand this rule it is important to know that these rules use scope graphs, see for
instance Figure 5b. A scope graph is a directed graph of scopes with labelled links in which objects are
declared. By searching the scope graph the nearest scope can be found in which an object is declared to
determine its type and other properties. In the rule above ∇se says that a new scope se is added to the
scope graph, and se

P−→ sr says that this new scope is linked the existing scope sr.
The rule above now expresses that an enumeration is well-typed, Enumeration(i,n,L)OK, if the enu-

meration with unique identifier i is added to scope sr with type T = ENUM(i,n,se). Furthermore, all
elements nl of this enumeration, which occur in list L, are added with the same type T to the new scope
se.

(a) The SysML BDD snippet.

sr

1

i0 :
ENUM(i0,"eBedieningswijze",1)

:

i3 :
BLOCK(i3,"SetOpAutobediening",4)

:

:

i1 :
ENUM(i1,"eBepaaldheid",2) 2

3

4

:

bepaaldheid
: ENUM(i1,"eBepaaldheid",2)

:

bepaaldheid
: ENUM(i1,"eBepaaldheid",2)

:

BEPAALD
: ENUM(i1,"eBepaaldheid",2)

ONBEPAALD
: ENUM(i1,"eBepaaldheid",2)

:

:

AUTO
: ENUM(i0,"eBedieningswijze",1)

HAND
: ENUM(i0,"eBedieningswijze",1)

PLAATSELIJK
: ENUM(i0,"eBedieningswijze",1)

GEDEELTELIJK_HAND
: ENUM(i0,"eBedieningswijze",1)

GEDEELTELIJK_PLAATSELIJK
: ENUM(i0,"eBedieningswijze",1)

:

:

:

:

:

i2 :
BLOCK(i2,"SetOpAutobediening",3)

P

P P

P

L

L

(b) The corresponding scope graph of Figure 5a.

Figure 5: A snippet of enum and block definitions in a Block Definition Diagram (BDD) of the model.

More examples of well-typedness rules are given in Appendix C. Besides the links labelled with P for
name resolution, additional edges in the scope graph occur labelled with T and L to connect the scope of
the block to the scopes of the referenced semantic type BLOCK and ENUM respectively. Figure 5 shows
an example snippet of enum and block definitions, together with the constructed scope graph. Visually,
referenced scopes in semantic type constructors are connected with a dashed line. For the translation
to mCRL2, every declaration of semantical type ENUM or BLOCK in sr is directly translated to a sort
specification.

In the next sections, AD elements that represent typed values are declared as variables of the refer-
enced type. As semantic types are declared using their unique XMI ID in the root scope, they can always

108 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

be resolved by following a P∗ path from the scope to sr. Flows that connect elements in the diagram also
connect the nodes in the scope graph with labelled edges. References to block properties or enumeration
literals can be accessed using a dot notation. Judgement s ⊢ e : T denotes that in the context of scope
s, expression e has type T . Judgement s ⊢ p r d states that data term d is visible through path query p
from scope s under relation r. Trivially, s ⊢ n : T if s ⊢ ε

: n : T .
We show the typing rules to refer to a property of a block n1.n2, to equality □ ∈ {≡, ̸≡}, to negation

¬, and to binary boolean operators ∆ ∈ {∧,∨}.

s ⊢ n1 : T1 scope(T1) ⊢ ε
: n2 : T2

s ⊢ n1.n2 : T2

s ⊢ n1 : T s ⊢ n2 : T
s ⊢ n1 □ n2 : B

s ⊢ n : B
s ⊢ ¬n : B

s ⊢ n1 : B s ⊢ n2 : B
s ⊢ n1 ∆ n2 : B

3.5 Leaf Decomposition Layer

The elements in Activity Diagrams representing typed values are declared in the scope graph while
establishing the well-typedness of the AST elements. To demonstrate how variables are declared and
their linked types resolved, consider the activity parameters of the diagram in Figure 3a. Let ∇sa with
sa

P−→ sr and sr
:−� i : ACT(i,sa) be the scope and semantic type declaration of the AD with id i. For every

such parameter ActivityParameter(i,n, t), the well-typedness conclusion is established, making sure the
referenced type exists, and a declaration of the semantic type PARAM in scope sa is created.

∇sp sp
P−→ sa sp

T−→ scope(T) sp ⊢ P∗ : t : T sp
:−→ n : T sa

:−� (i,PARAM(i,n,T,sp))

ActivityParameter(i,n, t)OK

The well-typedness establishment of an object flow from s to t connects the flow scope ∇s f with

s f
E−→ scope(s). Other derivations make sure to finish the path from the target to scope s f by inserting

scope(t) E−→ s f . It is sufficient to only allow if-then-else decision nodes, as this trivial split in decisions
makes the diagrams surprisingly easy to read for modellers whilst being sufficiently expressive. Every
decision node has either one outgoing object flow with empty guard δ , or one flow with as guard special
value else flowing to the next decision node and one object flow with a guarded value assignment
e1 := e2 as name n to an output activity parameter. Value e2 must be visible by a path following the
object flows in reverse direction with E∗. To resolve enumeration literals as constants for enumerations
in scope, T+L is added to the allowed paths.

scope(t) ⊢ ε
: e1 : T scope(s) ⊢ E∗(T+L)? : e2 : T

(e1 := e2)OK

An important benefit of these very restrictive semantics is that the diagrams describe a completely
deterministic computation procedure. As a result, the diagrams can be completely expressed using data
expressions in mCRL2 without the need to encode the semantical rules of the diagram in the resulting
process specification. To ease the binding of input and output variables in mCRL2, a map declaration is
defined for every diagram as demonstrated in Figure 6b.

3.6 Glue Decomposition Layer

The ADs in the glue layer use the same definitions for the flows in the diagrams. Decision nodes are not
supported in this layer. The behaviour calls are calling the ADs defined in the previous section. In the

K.H.J. Jilissen, P. Dieleman & J.F. Groote 109

sr

:

i4 : ACT(i4, 5)

5

i5 : PARAM(i5, setOpHand,
BLOCK(i3,"SetOpAutobediening",4), 6)

:

i6 : PARAM(i6, setOpAuto,
BLOCK(i2,"SetOpAutobediening",3), 7)

i7 : PARAM(i7, setOpAuto2,
BLOCK(i2,"SetOpAutobediening",3), 8)

i8 : PARAM(i8, old_bedieningswijze,
ENUM(i0,"eBedieningswijze",1), 9)

i9 : PARAM(new_bedieningswijze,
ENUM(i0,"eBedieningswijze",1), 10)

:

:

:

:

setOpHand
: BLOCK(i3,"SetOpAutobediening",4)

setOpAuto
: BLOCK(i2,"SetOpAutobediening",3)

setOpAuto2
: BLOCK(i2,"SetOpAutobediening",3)

old_bedieningswijze
: ENUM(i0,"eBedieningswijze",1)

new_bedieningswijze
: ENUM(i0,"eBedieningswijze",1)

6

7

8

9

10

:

:

:

:

:

i10 : DEC(i,"",11) 11

i11 : DEC(i,"",12) 12

:

:

E

E

E

i12 : DEC(i,"",13) 13

E

E

1

L

L

43

T

T

T

(a) The extension of Figure 5b excluding P−→ edges.

map
compute_b e d i e n i n g sw i j z e 2 :

eB e d i e n i n g sw i j z e # SetOpAutobed ien ing
SetOpAutobed ien ing

SetOpHandbedien ing −>
eBed i e n i n g sw i j z e ;

va r
o l d_b e d i e n i n g sw i j z e 2 : eBed i e n i n g sw i j z e ,

setOpAuto : SetOpAutobed ien ing ,
setOpAuto2 : SetOpAutobed ien ing ,
setOpHand : SetOpHandbedien ing ;

eqn
compute_b e d i e n i n g sw i j z e 2 (o l d_

bed i e n i n g sw i j z e 2 , setOpAuto ,
setOpAuto2 , setOpHand) = i f ((
b epaa l dhe i d5 (setOpHand) == BEPAALD) ,
HAND, i f (((b epaa l dhe i d4 (setOpAuto)
== BEPAALD) | | (b epaa l dh e i d4 (
setOpAuto2) == BEPAALD)) , AUTO, o l d_
b e d i e n i n g sw i j z e 2)) ;

(b) The generated mCRL2 specification.

Figure 6: Generated scope graph and mCRL2 specification of Figure 3a.

translation of the AD to an mCRL2 process specification, all behaviour calls are translated as ∑o : To o =
ActivityMapping(in1, . . . , inn) where o is a fresh variable name of output type To, which is set equal to
the result of calling the mapping with the bound input parameters in1,. . . , inn. This process specification
follows the pattern that can be optimised by sum elimination in the mCRL2 toolset. The attributes
are translated to process parameters in the process equation representing the AD. All WriteVariable
elements are translated to process variable updates in the recursive process specification. Again, the very
restrictive subset of diagram elements permitted in this layer makes it trivial to express the semantics
of every diagram by a process specification in mCRL2 by defining a specification with state variables
for every attribute, using the previously defined maps and recursing in itself with updated state variables
using the WriteVariable calls. Figure 3b depicts such a glue AD and the generated mCRL2 is moved to
Appendix B due to its size.

3.7 Strengths and weaknesses

The translation sketched above has the following strengths. It is compositional and can be applied to
translate the complete SysML tunnel specification by putting all components in parallel and combining
the synchronous input and output into multi-actions in mCRL2 as explained in [11].

All model elements added to the approach are understandable with the SysML knowledge that was
already required to understand the previous model. In this way, all engineers at RWS and its contractors
are able to read and specify these kinds of diagrams. Another strong reason to choose this approach is
that with our extension to replace ‘structured natural language’ the complete tunnel specification can be
formulated as a large coherent and reasonably precise SysML specification.

Unfortunately, the SysML tooling does currently not enforce that the SysML specification is well-
typed and internally consistent. But this is remedied as the static analysis using Statix of the exported
XMI type checks the model and gives feedback on mistakes. The value of the defined semantics for the
AD layers is shown in an analysis of the generated mCRL2 specification. Even though the presented

110 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

work mainly focusses on the formal modelling and specification, all verification results of the previously
analysed properties of the manual translation [10] could be replicated on the generated specification, as
shown in Table 2. This is not an exhaustive list of all properties that must be verified on the system, but
rather a selective subset which demonstrates that several types of properties are feasible to verify. The
properties are checked for the complete sub-system instantiated with one instance of the BF, SF, and SP.
The replication also includes verifying the modification of the model introduced in [10] to fix the model
such that a bumpless transfer is guaranteed. The µ-calculus formulae with adapted naming to fit the
generated model are included in the model repository of this paper.

Requirement Description H S

Deadlock freeness
The control system can never reach a state in which no progress
is possible.

✓ ✓

Configured manual stand
The control system only sends the last configured manual-
control values to the controlled installation when the control
mechanism is manual-control.

✓ ✓

No spontaneous change
The control system can never change the value sent to the con-
trolled installation without explicitly receiving commands to do
so.

✓ ✓

Bumpless transfer
The control mechanism must be altered ‘bumpless’: there
should not be an immediate change in behaviour of the control
system without explicit requests to do so.

× ×

Table 2: Verification results of the hand-written (H) and SysML (S) mCRL2 translation.

The main weakness of this SysML based style is that every detail has to be specified graphically.
To create the diagrams for this model, a lot of manual labour is needed to draw all the relations with
components and to specify all flow names using the assignment language, as can already been seen
by the glue layer of the BF in Figure 3b. Assigning and aligning all flows and flow name labels is
sheer drudgery, and even with automated routing of flows the readability suffers greatly. With the huge
number of diagrams, it is almost impossible for an engineer to keep an overview of the whole system.
It is therefore questionable whether graphical formalisms such as SysML are fundamentally the most
efficient way to model system with the complexity of tunnel control systems.

Another important weakness of this approach is the style in ADs to let all inputs and outputs occur
simultaneously. Although, this matches neatly on multi-actions in mCRL2, it fundamentally leads to an
exponential growth in the number of outgoing transitions in each state of the mCRL2 model. This puts
fundamental constraints on the analysability of the whole tunnel control model.

4 Alternative models using Dezyne

As the SysML models are not ideal, it has been investigated whether the Dezyne specification language
[3] offers a viable alternative. Dezyne offers a syntax that looks similar to widely used programming lan-
guages in industry and has visualisations closely related to SysML, whilst fitting in the current modelling
workflow. Therefore, the adoption of the language within RWS is deemed feasible.

In Dezyne, components are defined which communicate over ports of formally specified interfaces
with observable behaviour. Components can be composed together in systems by connecting ports with
ports of other components or letting them communicate with ports of the environment. Dezyne requires

K.H.J. Jilissen, P. Dieleman & J.F. Groote 111

that a number of properties are verified before generating code, such as freedom of deadlock, absence of
illegal behaviour and interface compliancy meaning that a component exactly provides the interface that
had to be separately specified. Under the hood, Dezyne uses mCRL2 as its verification engine and can
export specifications and transition systems in formats usable in the mCRL2 tooling [2].

As a proof-of-concept, the SysML specification of the overpressure controller is manually translated
to Dezyne. In the SysML model, all inputs arrive together in one big event. In the translation, such big
events are split-up by letting each part of the input employ a single command or status event as Dezyne
is not designed nor intended to handle such massive input events.

In the SysML model the massive input contains fields to indicate whether a particular input is to
be considered to be present or absent in the input. In Dezyne this information is not necessary as input
events with data that is absent simply do not need to take place. Omitting the indicator that data is present
or absent has a hugely reducing effect on the complexity of the state space.

As illustration, consider the interface combining the two commands blocks in Figure 5a. This in-
terface is translated to Dezyne as an interface containing two in-events SetOpAutobediening and SetO-
pHandbediening without parameters.

An issue with Dezyne version 2.18, is that values in the input cannot be used within the model and can
only be passed on. This means that values in the input that have an influence on the behaviour are encoded
in the event name. Unfortunately, this applies to all enumeration values in the investigated models. The
reason for this design choice in Dezyne is that data that influences the behaviour substantially increases
the size of state spaces, and hence hampers the possibility to verify properties.

Using these interface definitions, every AD of the original SysML specification is modelled as a
component in Dezyne. We used two different styles of modelling. In the first style, components query
the information they need from other components on-demand to determine their response to events. We
call this the pull style. In the second style, components push all information that other components might
need to these components whenever it becomes available.

4.1 The pull style model

When using pull style models, the components query their required interfaces for all information they
need to handle incoming events. The main benefit of this modelling approach is that it does not require
introducing shadow variables to store the last received state information in multiple components. This
prevents a large growth in the state space [7] caused by copies of values which do not atomically change
due to the delay in propagation throughout the system. To achieve this, instead of having parameterised
in-events to communicate the value of some property, an out-event is defined to indicate that the compo-
nent interacting over the interface wants to know the value. In response to this event, the communicating
component must reply with any of the enumeration literals permitted by the interface definition. With
this approach, it is possible to generate the complete state space of each component and analyse those us-
ing the formal analysis in mCRL2. A typical trace is given in Figure 7a. Under substantial abstractions,
we could even show that this model was bisimilar to the SysML model.

The main downside of this approach is that it does not benefit of most of the verification features
offered by Dezyne itself. In the pull style, we need to model interfaces mainly in a stateless way. This
has as a consequence that the verification methods that Dezyne offers such as the compliance verification
of the implementations in components largely loose their value. Verification of the system as a whole is
also troublesome as generating the overall behaviour from the components is currently not feasible.

112 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

4.2 The push style model

To make more use of the verification capabilities and align with the reactive components principles of
Dezyne, the system has also been modelled in a push style [7]. In this style all components forward in-
formation to other components as soon as it becomes available. This approach makes it possible to define
interfaces with meaningful states and rely on the verification of the Dezyne tooling. We modelled the
overpressure system in the same style as in SysML, using ‘diamond patterns’ where subcomponents are
controlled by multiple super-components, which is a style that Dezyne does not encourage. This forces
us to use so called optional trigger events to push information to various super-components. Unfortu-
nately, this causes the interfaces to grow, which cannot be handled by the verification engine of Dezyne.
Even when the Dezyne tooling is executed on a large server with 3TB of memory, the verification of
interfaces and component compliance with these interfaces takes days or does not finish within a week.

(a) A trace of the overpressure system in the pull model. (b) Decomposition into many computation components.

Figure 7: Model visualisations of Dezyne.

We remedy this situation by decomposing the system into many more components which compute
standalone values providing and requiring much smaller interfaces. This is illustrated in Figure 7b. With
this decomposition and abstraction, Dezyne is able to verify its standard properties on all components
and interfaces.

4.3 Verification of general properties

Applying the built-in verification techniques to Dezyne models is known to have a very beneficial effect
on the quality of the models both in development time and number of faults [8]. However, we fail to
verify those properties over the whole state space that were so useful in increasing the primary quality
of the tunnel model in [11]. In the pull style it was impossible to generate the overall state space of
the system although the Dezyne toolset provides some means to do so. In push styles state spaces will
become much bigger [7]. Although we feel that the Dezyne toolset could do a better job in state space
generation, we do not expect this to be available for quite some years to come, especially because the
way Dezyne generates a full state space does not employ symbolic techniques or parallelism [6, 14].

5 Conclusions

In this paper, the promising results in [11] are being elaborated to come to an industrially viable envi-
ronment in which existing SysML models of road tunnel control systems can be analysed. In the first

K.H.J. Jilissen, P. Dieleman & J.F. Groote 113

approach, a restrictive extension to the SysML specification is introduced which precisely specifies de-
tails with respect to the behaviour of the system which were either written down in natural language
or were completely absent. While this approach allows the generation of the complete state space of
sub-systems and formal verification of both liveness and safety properties over these systems, two major
problems became obvious. The first one is that the modelling style of RWS leads to transition sys-
tems with massive fanout hampering verification when systems become large. More worrying is that
the SysML modelling style is leading to an unwieldy cluttering of graphical entities which is very time
consuming to make, and utterly hard for humans to keep track of.

As an alternative the commercial modelling language Dezyne has been investigated. This language
offers benefits because it verifies a wide range of properties of the models that have been shown to
substantially improve the quality of the specification. But these properties are primarily verified on
individual components, and as it stands it does not appear to be easily possible to systematically verify
the global properties of tunnel control systems. Although we believe that languages such as Dezyne
can and will ultimately be developed further, they are as it stand insufficient as a work horse for tunnel
control model.

This opens up the question on the next step within organisations such as Rijkswaterstaat as the pos-
sibility to verify has clearly shown itself indispensable in [11]. As it stands we believe that proceeding
with commercially available tools is not the most profitable way to go. Academically developed speci-
fication languages such as LOTOS NT [5] and mCRL2 [4] might be more suitable as they have flexible
and very expressive formalisms to express behaviour and correctness properties, and are actually sup-
ported by stable and capable toolsets that are available and reliable for decades. The interesting question
is whether these academically developed languages will be picked up as primary tools within the context
of for instance Rijkswaterstaat.

References

[1] Hendrik van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet & Eelco Visser (2018): Scopes as Types. Proc.
ACM Program. Lang. 2(OOPSLA), doi:10.1145/3276484.

[2] Rutger van Beusekom, Jan Friso Groote, Paul Hoogendijk, Robert Howe, Wieger Wesselink, Rob Wieringa
& Tim A. C. Willemse (2017): Formalising the Dezyne Modelling Language in mCRL2. In Laure Petrucci,
Cristina Seceleanu & Ana Cavalcanti, editors: Critical Systems: Formal Methods and Automated Verifica-
tion, Springer International Publishing, Cham, pp. 217–233, doi:10.1007/978-3-319-67113-0_14.

[3] Rutger van Beusekom, Bert de Jonge, Paul Hoogendijk & Jan Nieuwenhuizen (2021): Dezyne: Paving the
Way to Practical Formal Software Engineering. Electronic Proceedings in Theoretical Computer Science
338, p. 19–30, doi:10.4204/eptcs.338.4.

[4] Olav Bunte, Jan Friso Groote, Jeroen J. A. Keiren, Maurice Laveaux, Thomas Neele, Erik P. de Vink, Wieger
Wesselink, Anton Wijs & Tim A. C. Willemse (2019): The mCRL2 Toolset for Analysing Concurrent Systems.
In Tomáš Vojnar & Lijun Zhang, editors: Tools and Algorithms for the Construction and Analysis of Systems,
Springer International Publishing, Cham, pp. 21–39, doi:10.1007/978-3-030-17465-1_2.

[5] Hubert Garavel, Frédéric Lang, Radu Mateescu & Wendelin Serwe (2011): CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In Parosh Aziz Abdulla & K. Rustan M. Leino, editors:
Tools and Algorithms for the Construction and Analysis of Systems, Springer Berlin Heidelberg, Berlin,
Heidelberg, pp. 372–387, doi:10.1007/978-3-642-19835-9_33.

[6] Jan Friso Groote, Kevin H. J. Jilissen, Maurice Laveaux, P. H. M. van Spaendonck & Tim A. C. Willemse
(2022): Using the Parallel ATerm Library for Parallel Model Checking and State Space Generation, pp.
306–320. Springer Nature Switzerland, Cham, doi:10.1007/978-3-031-15629-8_16.

https://doi.org/10.1145/3276484
https://doi.org/10.1007/978-3-319-67113-0_14
https://doi.org/10.4204/eptcs.338.4
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-19835-9_33
https://doi.org/10.1007/978-3-031-15629-8_16

114 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

[7] Jan Friso Groote, Tim W.D.M. Kouters & Ammar Osaiweran (2015): Specification guidelines to avoid
the state space explosion problem. Software Testing, Verification and Reliability 25(1), pp. 4–33,
doi:10.1002/stvr.1536.

[8] Jan Friso Groote, Ammar Osaiweran & Jacco H. Wesselius (2011): Analyzing the effects of formal methods
on the development of industrial control software. In: IEEE 27th International Conference on Software
Maintenance, ICSM 2011, Williamsburg, VA, USA, September 25-30, 2011, IEEE Computer Society, pp.
467–472, doi:10.1109/ICSM.2011.6081983.

[9] Joint IEEE / EIA Working Group (1996): Standard for Information Technology–Software Life
Cycle Processes–Software Development–Acquirer-Supplier Agreement (Issued for Trial Use),
doi:10.1109/IEEESTD.1996.6569022.

[10] Kevin H.J. Jilissen (2022): A formal analysis of the tunnel control systems of the Rijk-
swaterstaat GITO. Master’s thesis, Eindhoven University of Technology (TU/e), Eind-
hoven, The Netherlands. Available at https://research.tue.nl/en/studentTheses/
a-formal-analysis-of-the-tunnel-control-systems-of-the-rijkswater.

[11] Kevin H.J. Jilissen, Peter Dieleman & Jan Friso Groote (2023): A formal analysis of Dutch Generic
Integral Tunnel Design models. In: SAC ’23: Proceedings of the 38th ACM/SIGAPP Symposium
on Applied Computing, Association for Computing Machinery, Inc, United States, pp. 1681–1684,
doi:10.1145/3555776.3577786. 38th Annual ACM Symposium on Applied Computing, SAC 2023, SAC
2023 ; Conference date: 27-03-2023 Through 31-03-2023.

[12] Karl Trygve Kalleberg & Eelco Visser (2007): Spoofax: An Extensible, Interactive Development Environment
for Program Transformation with Stratego/XT. In: SeventhWorkshop on Language Descriptions, Tools,
and Applications (LDTA’07), Portugal, pp. 47–50. Available at https://api.semanticscholar.org/
CorpusID:15184499.

[13] Lennart C.L. Kats & Eelco Visser (2010): The Spoofax Language Workbench: Rules for Declarative Specifi-
cation of Languages and IDEs. SIGPLAN Not. 45(10), p. 444–463, doi:10.1145/1932682.1869497.

[14] Maurice Laveaux, Wieger Wesselink & Tim A. C. Willemse (2022): On-The-Fly Solving for Symbolic Parity
Games. In Dana Fisman & Grigore Rosu, editors: Tools and Algorithms for the Construction and Analysis
of Systems - 28th International Conference, TACAS 2022, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part II,
Lecture Notes in Computer Science 13244, Springer, pp. 137–155, doi:10.1007/978-3-030-99527-0_8.

[15] Lucas Lima, André Didier & Márcio Cornélio (2013): A Formal Semantics for SysML Activity Diagrams.
In Juliano Iyoda & Leonardo de Moura, editors: Formal Methods: Foundations and Applications, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 179–194, doi:10.1007/978-3-642-41071-0_13.

[16] Lars Moormann (2022): Light at the end of the tunnel: Synthesis-based engineer-
ing for road tunnels. Phd Thesis 1 (Research TU/e / Graduation TU/e), Me-
chanical Engineering. Available at https://research.tue.nl/en/publications/
light-at-the-end-of-the-tunnel-synthesis-based-engineering-for-ro. Proefschrift.

[17] Pierre Neron, Andrew Tolmach, Eelco Visser & Guido Wachsmuth (2015): A Theory of Name Resolution.
In Jan Vitek, editor: Programming Languages and Systems, Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 205–231, doi:10.1007/978-3-662-46669-8_9.

[18] Object Management Group® Standards Development Organization (2015): OMG Systems Modeling Lan-
guage. Technical Report, Object Management Group, Inc. Version 1.5.

[19] Object Management Group® Standards Development Organization (2015): XML Metadata Interchange.
Technical Report, Object Management Group, Inc. Version 2.1.

[20] Rijkswaterstaat (2021): Landelijke Tunnelstandaard. Available at https://standaarden.rws.nl/link/
standaard/6080. Release 1.2 SP2 B3.

https://doi.org/10.1002/stvr.1536
https://doi.org/10.1109/ICSM.2011.6081983
https://doi.org/10.1109/IEEESTD.1996.6569022
https://research.tue.nl/en/studentTheses/a-formal-analysis-of-the-tunnel-control-systems-of-the-rijkswater
https://research.tue.nl/en/studentTheses/a-formal-analysis-of-the-tunnel-control-systems-of-the-rijkswater
https://doi.org/10.1145/3555776.3577786
https://api.semanticscholar.org/CorpusID:15184499
https://api.semanticscholar.org/CorpusID:15184499
https://doi.org/10.1145/1932682.1869497
https://doi.org/10.1007/978-3-030-99527-0_8
https://doi.org/10.1007/978-3-642-41071-0_13
https://research.tue.nl/en/publications/light-at-the-end-of-the-tunnel-synthesis-based-engineering-for-ro
https://research.tue.nl/en/publications/light-at-the-end-of-the-tunnel-synthesis-based-engineering-for-ro
https://doi.org/10.1007/978-3-662-46669-8_9
https://standaarden.rws.nl/link/standaard/6080
https://standaarden.rws.nl/link/standaard/6080

K.H.J. Jilissen, P. Dieleman & J.F. Groote 115

[21] Luís Eduardo de Souza Amorim & Eelco Visser (2020): Multi-purpose Syntax Definition with SDF3. In
Frank de Boer & Antonio Cerone, editors: Software Engineering and Formal Methods, Springer International
Publishing, Cham, pp. 1–23, doi:10.1007/978-3-030-58768-0_1.

[22] Sparx Systems: Enterprise Architect. Available at https://sparxsystems.com/products/ea/index.
html. Version 15.

https://doi.org/10.1007/978-3-030-58768-0_1
https://sparxsystems.com/products/ea/index.html
https://sparxsystems.com/products/ea/index.html

116 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

A Artefacts

The artefacts belonging to this paper are available for download at http://mars-workshop.org/
repository.html. Further instructions are given on the repository page for this paper.

http://mars-workshop.org/repository.html
http://mars-workshop.org/repository.html

K.H.J. Jilissen, P. Dieleman & J.F. Groote 117

B Generated mCRL2 of the Activity Diagram in Figure 3b

In Figure 3b, the Activity Diagram of the glue layer of the Base Functionality of the Overpressure Safe
Space sub-system is shown. This diagram is automatically translated to the mCRL2 process specification
below. In this specification, the mapping names and equations starting with compute_ are generated from
the ADs which are called by the Call Behaviour SysML diagram elements. The binding of variables is
defined by the assignment in the name of object flows in the glue AD.

proc BF_Overdruk_V e i l i g e _Ruimte (
t r a n s i t i e s t a t u s 2 : e T r a n s i t i e s t a t u s ,
hand_stand : eL i nk sRech t sU i t ,
enab l ed3 : eJaNee ,
b e d i e n i n g sw i j z e 4 : eBed i e n i n g sw i j z e ,
auto_stand : eL i n k sRe ch t sU i t

) = sum
be s t_BF2 : b e s t_Coo r d i n a t i e_L u c h t kw a l i t e i t_V e i l i g e _Ruimte ,
f a a l s t a t u s 2 : Mon i t o r i n g I n t e g r i t e i t 3BB e s t u r i n g s s y s t e emVe i l i g eR u im t e_Faa l s ta tusGateway ,
sp_tk2 : b e s t t k_BF_Overdruk_V e i l i g e _Ruimte_SP_Overdruk_V e i l i g e _Ruimte ,
bed_BF : bed_BF_Overdruk_V e i l i g e _Ruimte ,
new_stand3 : eL i nk sRech t sU i t ,
new_stand2 : eL i nk sRech t sU i t ,
s e tS tand2 : SetStand ,
new_gevraagde_stand : eL i nk sRech t sU i t ,
new_b e d i e n i n g sw i j z e 2 : eBed i e n i n g sw i j z e ,
o b s e r v e e r b a a r 4 : eJaNee ,
b e s c h i k b a a r h e i d 3 : eBe s ch i kbaa rhe i d ,
d i s a b l e d 5 : eJaNee ,
new_enab l ed : eJaNee ,
new_t r a n s i t i e s t a t u s : e T r a n s i t i e s t a t u s ,
o l d_gev raagde_stand : eL i nk sRech t sU i t ,
s t a tu sMtkLu iken2 : eOpenDicht

. (
s ta tu sMtkLu iken2 == compute_s t a t u sm t k l u i k e n (

ob s e r v e e r baa r 4 ,
l u i k e nG e s l o t e n 2 (sp_tk2))

&& o ld_gevraagde_stand == compute_o ld_gevraagde_stand (
auto_stand ,
b e d i e n i n g sw i j z e 4 ,
hand_stand)

&& new_t r a n s i t i e s t a t u s == compute_t r a n s i t i e s t a t u s (
new_gevraagde_stand ,
o l d_gev raagde_stand ,
t r a n s i t i e s t a t u s 2 ,
s tand5 (sp_tk2))

&& new_enab l ed == compute_enab l ed2 (
d i s a b l eOv e r d r u k (bed_BF) ,
enab l eOve rd ruk (bed_BF) ,
enab l ed3)

&& d i s a b l e d 5 == compute_d i s a b l e d 3 (new_enab l ed)
&& be s c h i k b a a r h e i d 3 == compute_be s c h i k b a a r h e i d 2 (

b e s t uu rbaa r 3 (sp_tk2) ,
f a a l s t a t u sGa t eway (f a a l s t a t u s 2) ,
s t o r i n gO v e r d r u k r e g e l i n g 2 (sp_tk2) ,
s t o r i n gO v e r d r u k v e n t i l a t o r e n 2 (sp_tk2) ,
new_t r a n s i t i e s t a t u s)

&& ob s e r v e e r b a a r 4 == compute_ob s e r v e e r b a a r 2 (
b e s t uu rbaa r 3 (sp_tk2) ,
f a a l s t a t u sGa t eway (f a a l s t a t u s 2) ,
r e d enN i e tBe s t uu r baa rOp s t a r t (sp_tk2) ,
r e d e nN i e tBe s t uu r b a a r S t o r i n g 3 (sp_tk2))

&& new_b e d i e n i n g sw i j z e 2 == compute_b e d i e n i n g sw i j z e 2 (
b e d i e n i n g sw i j z e 4 ,
s e tOpAutobed i en ing2 (bed_BF) ,

118 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

s e tOpAutobed i en ing (b e s t_BF2) ,
se tOpHandbed ien ing (bed_BF))

&& new_gevraagde_stand == compute_gevraagde_stand (
new_stand2 ,
new_bed i e n i n g sw i j z e 2 ,
new_stand3)

&& se tS tand2 == compute_s e t s t a n d (
be s t uu rbaa r 3 (sp_tk2) ,
new_enab led ,
f a a l s t a t u sGa t eway (f a a l s t a t u s 2) ,
new_gevraagde_stand ,
s tand5 (sp_tk2))

&& new_stand2 == compute_auto_stand (
auto_stand ,
s e tAu tobed i e n i ng sS t and (b e s t_BF2))

&& new_stand3 == compute_hand_stand (
new_bed i e n i n g sw i j z e 2 ,
hand_stand ,
s e tHandbed i en i ng sS tand (bed_BF))

&& t r u e
) −>

bedtk_BF(bedtk_BF_Overdruk_V e i l i g e _Ruimte (
new_stand2 ,
new_bed i e n i n g sw i j z e 2 ,
b e s ch i k baa r h e i d 3 ,
b e s t uu rbaa r 3 (sp_tk2) ,
d i s a b l e d5 ,
new_enab led ,
new_gevraagde_stand ,
new_stand2 ,
l u i k e nG e s l o t e n 2 (sp_tk2) ,
ob s e r v e e r baa r 4 ,
r e d e nN i e t B e s t u u r b a a r P l a a t s e l i j k eB e d i e n i n g 3 (sp_tk2) ,
r e d e nN i e tBe s t uu r b a a r S t o r i n g 3 (sp_tk2) ,
s tand5 (sp_tk2) ,
s ta tusMtkLu iken2 ,
s to r i ngA lgemeen3 (sp_tk2) ,
s t o r i n gCommun i c a t i eU i t g e v a l l e n 3 (sp_tk2) ,
GEEN_STORING ,
s t o r i n gO v e r d r u k r e g e l i n g 2 (sp_tk2) ,
s t o r i n gO v e r d r u k v e n t i l a t o r e n 2 (sp_tk2) ,
new_t r a n s i t i e s t a t u s

))
| b e s t_sp (b e s t_BF_Overdruk_V e i l i g e _Ruimte_SP_Overdruk_V e i l i g e _Ruimte (s e tS tand2))
| bed_BF(bed_BF)
| sp_tk2 (sp_tk2)
| f a a l s t a t u s 2 (f a a l s t a t u s 2)
| b e s t_BF2(be s t_BF2)

. BF_Overdruk_V e i l i g e _Ruimte (
enab l ed3 = new_enab led ,
b e d i e n i n g sw i j z e 4 = new_bed i e n i n g sw i j z e 2 ,
t r a n s i t i e s t a t u s 2 = new_t r a n s i t i e s t a t u s ,
hand_stand = new_stand3 ,
auto_stand = new_stand2

) ;

K.H.J. Jilissen, P. Dieleman & J.F. Groote 119

C Implementations in Spoofax

As introduced in the paper, the implementation in Spoofax consists of syntax definitions, static analysis
rules, and transformation rules. This appendix elaborates on noteworthy details of the implementation
and further elaborates on some concepts introduced in the paper. The complete source code is available
in Appendix A.

In the implementation, there are three (sub-)syntax definitions in Spoofax. Firstly, there is the defini-
tion of the XMI language which is parsed as an Abstract Syntax Tree (AST) from the Enterprise Architect
(EA) XMI 2.1 export. Secondly, a sub-language is defined for the syntax of the Assignment-language,
which is used in the syntax and semantics definition of some XMI properties. Lastly, there is the defini-
tion of the mCRL2 language, to which the input AST is transformed, as defined by van Antwerpen et al.
1

C.1 Syntax in SDF3

For the syntax definitions, Spoofax allows defining symbols using lexical syntax definitions that match
text with a regular expression. The symbols are summarised in Table 3.

Lexical Symbol Usage
XML-TAG Opening/closing tags in XML
XML-PROPERTY Property name on XML tags
XML-STRING General-purpose property value matching some string
XML-NUM General-purpose property value matching numbers only

Table 3: Table with lexical symbols for SysML XMI elements.

The SDF3 [21] syntax allows the definition of context-free production rules. These production rules
are string templates enclosed by [and] in which symbol names are enclosed in [and] brackets which
must be further expanded. With these definitions, parsing an XML structure could be as trivial as defining
a context-free symbols XmlProperty and XmlElement with the production rules in Figure 8.

XmlProperty . XmlProperty = [[XML−PROPERTY]="[XML−STRING] "]
XmlElement . XmlElement = [<[XML−TAG] [{ XmlProperty " "}∗]/ >]
XmlElement . XmlTree = [

<[XML−TAG] [{ XmlProperty ""}∗]>
[{ XmlElement ""}∗]

</[XML−TAG]>
]

Figure 8: Production rules to parse some XML tree.

While these rules would parse the complete XMI specification successfully, a lot of additional Statix
rules would be needed to determine what the generic XML element and its properties represent and what
elements are permitted in the subtree rooted at said element. Therefore, the Spoofax language definition
contains context-free symbols and production rule definitions for every item encountered in the exported
XMI. In these rules, the ordering of XML properties is fixed based on the order they appear in the XMI
export for simplicity. When not fixing this ordering, the gained flexibility would cost quite a number of

1Available at https://github.com/MetaBorgCube/metaborg-mcrl2/

https://github.com/MetaBorgCube/metaborg-mcrl2/

120 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

Statix rules for every XMI element to verify that the required properties are given, and that exactly one
of them is given. As the exporter in EA has a stable output format, the implementation does not need this
flexibility and resulting complexity.

Table 1 in the paper already introduced an abstraction over the actual constructors defined in the
XMI language definition. The implementation deviates from this, for the simple reason that the XMI
representation of some of the visual elements in SysML is spread out over multiple nodes in the XML
structure. Another reason for this deviation, is the ability to re-use common subtree elements in multiple
locations. As matching all these elements in a syntax definition is not hard but requires a lot of definitions,
interested readers are referred to the artefacts accompanying this paper in Appendix A.

The sub-language for the assignments and expressions is defined. The naming of variables in this
context is defined more restrictive, to simplify the translation to mCRL2. We opted for a lexical symbol
LANG-ID which matches [a− zA−Z_][a− zA−Z_0−9′]∗. Using this symbol, references to variables
are defined as:

LangVa r i ab l eRe f . LangVarRoot = [[LANG−ID]]
LangVa r i ab l eRe f . LangVarProp = [[LangVa r i ab l eRe f] . [LANG−ID]]

In this definition, we define that we can refer to variables with the LangVariableRef symbol by either
directly specifying an LANG-ID or reference some property using named with a LANG-ID of some
other LangVariableRef using the dot notation.

Assignments are syntactically defined as follows:
LangValue . LangVarRef = [[LangVa r i ab l eRe f]]
LangAss ignment . LangAss = [[LangVa r i ab l eRe f] := [LangValue]]

The LangValue symbol represents a value in the language. As of now, only references to variables defined
in the model are permitted as there are no built-in types such as booleans with pre-defined constant values.
The assignment itself can then be defined as the string template assigning a value to a variable reference.
Similar rules exist to match conditions for the guards.

C.2 Static Semantics in Statix

In Statix, the semantical correctness of the provided document is established by formulating a constraint
problem. As discussed in the paper, the packages serve no purpose for the semantics of the SysML
diagrams. Therefore, in the static analysis we recursively the tree of packages in the document and
conclude that a package is correct if and only if we can conclude that all of its children are correct.

Consider the syntactical constructor UmlPackage(i,n,v,C) as defined in Statix for packages where i
is the id, n the name, v the visibility (ignored), and C the list of children. The notation for the constraint
to denote the correctness of such package becomes:

∀c∈C cOK

UmlPackage(i,n,v,C)OK

Different well-typedness constraints must be satisfied for the package elements based on the actual
syntactical constructor type of the element in the AST. In the paper, an example for the enumeration
constructor was introduced. A similar inference rule is defined below to establish the well-typedness of
Blocks. Additional edges are added to the scope graph which allow the resolution of enumeration literals
in assignments and comparisons. Two types of labels are used to facilitate this. An edge sb

L−→ se is added
when declaring a property of semantical type ENUM. For properties of semantical type BLOCK, an edge

K.H.J. Jilissen, P. Dieleman & J.F. Groote 121

sb
T−→ sb′ is added. With the two additional inference rules below, the literals of referenced types using a

dot notation can be resolved using path query T ∗L.

sb ⊢ P∗ : tp : Tp Tp ≡ ENUM(ie,ne,se) sb
L−→ se sb

:−� (np,Tp)

Property(ip,np, tp)OK

sb ⊢ P∗ : tp : Tp Tp ≡ BLOCK(ib′ ,nb′ ,sb′) sb
T−→ sb′ sb

:−� (np,Tp)

Property(ip,np, tp)OK

There are two inference rules to establish the well-typedness of a property. In the first rule, the
premise is a declaration tp : Tp where Tp is of semantic type ENUM. In the second rule, the premise is
a declaration tp : Tp where Tp is of semantic type BLOCK. Based on this distinction, the edge with the
correct label is declared in the scope graph. Using these two inference rules, an inference rule for blocks
similar to the one for enumerations is defined.

∇sb sb
P−→ sr T ≡ BLOCK(i,n,sb) sr

:−� (i,T) ∀Property(ip,np,tp)∈P Property(ip,np, tp)OK

Block(i,n,P)OK

C.3 Transforming in Stratego

The transformation of the XMI AST to a mCRL2 AST is performed using term rewriting in Stratego.
In Stratego, typed term rewriting strategies can be formulated. Everything is represented internally by
terms, e.g. the syntactic constructors in AST nodes, AST annotations, scope graph nodes, edges, decla-
rations, and semantic types. Usually, the source AST is traversed and transformed to the target AST. As
the structure of the XMI AST is completely different than the target AST, some deviations are made. An
example of such deviation follows.

Sort definitions are not created by traversing the AST for the definitions. Instead, they are created
by querying the scope graph and translating the semantic types instead of the syntactical constructors.
Consider the strategy block-to-mcrl2 in Figure 9. This strategy transforms a term of the type of
semantic types TYPE to a term of syntactic type MCRL2-SortDecl. The latter type is a syntactical
constructor part of the mCRL2 syntax specification.

b lock−to−mcr l2 (| s tx , Hashtab le , I ndexedSe t) : : TYPE −> MCRL2−So r tDec l
b lock−to−mcr l2 (| s tx , t ab l e , s e t) :

BLOCK(i , n , s) −> So r t A l i a s (n ’ , S t r u c t ([Cons t rDec l (n ’ , [l ’] , [])]))
w i th

n ’ := <id−to−mcr l2 ; unique−var−name (| s tx , t ab l e , s e t)> n ;
l := <query−va r (| s t x)> s ;
l ’ := MCRL2−Const rDec l−Pro j s (<map(b lock−var−to−mcr l2 (| s tx , t ab l e , s e t))> l)

Figure 9: Term rewriting strategy for semantic type BLOCK.

The strategy is specified in Stratego term rewriting rules by applying other term transformation strate-
gies. A unique but consistent name n′ is generated, query-var queries the scope graph for the data dec-
larations in scope s which are also transformed to mCRL2 using the block-var-to-mcrl2 strategy. An
interesting rule is the declaration of term l. The query-var strategy, which is passed the static analysis
results in term stx, queries the scope var for the datums of relation : in scope s. Applying this strategy
to the blocks in Figure 5a, the mCRL2 sort specification in 10 is produced.

122 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

s o r t
SetOpAutobed ien ing = s t r u c t SetOpAutobed ien ing (bepaa l dh e i d4 : eBepaa ldhe i d) ;
SetOpHandbedien ing = s t r u c t SetOpHandbedien ing (bepaa l dhe i d5 : eBepaa ldhe i d) ;

Figure 10: The generated mCRL2 sort specification corresponding to blocks Figure 5.

K.H.J. Jilissen, P. Dieleman & J.F. Groote 123

D Dezyne pull-style models

In the Dezyne pull-style models, components only retain their own local state. They do not store any
information which can be retrieved from other components. In order to perform their desired behaviour,
the components must poll other components their state before being able to execute the right commands.

The interface definitions of the controlling component and the feedback loops must be merged, as
Dezyne does not permit circular port bindings. As the feedback is now only supplied on demand, both
the actions in the original controlling interface and the status updates in the feedback loop interface are
defined as in-events on the interface provided by the controllable component. The controlling component
requires this interface, and thus can query the status and executes the commands on the controllable
component.

Consider again the interface definitions containing the SetOpHandbediening command and the
SetOpAutobediening command depicted in Figure 5a. Assume that the component is also able to
query the current control mechanism (bedieningswijze in Dutch) of the controlled component. The
Dezyne representation of such interface is given in Figure 11.

impor t enums . dzn ;

i n t e r f a c e bed_BF_Overdruk_V e i l i g e _Ruimte
{

// c o n t r o l
i n vo i d setOpHandbed ien ing () ;
i n vo i d se tOpAutobed i en ing () ;

// f e edback
i n eB e d i e n i n g sw i j z e b e d i e n i n g sw i j z e () ;

b e h a v i o r {
// c o n t r o l
on setOpHandbed ien ing : ;
on se tOpAutobed i en ing : ;

// f e edback
on b e d i e n i n g sw i j z e : r e p l y (eB e d i e n i n g sw i j z e .AUTO) ;
on b e d i e n i n g sw i j z e : r e p l y (eB e d i e n i n g sw i j z e .HAND) ;

}
}

Figure 11: Example Dezyne interface snippet for the pull-style models.

According to this interface specification, the controlling component cannot directly observe any
change in state as a result of the commands. The reason for the choice of this representation is that
the component must not push its state to this component. Consider, for example, a second component
controlling the control mechanism of this component. Even if we just sent one of the control mechanism
commands, some other component might already have overwritten it. Therefore, on any further inter-
action, we must poll the control mechanism using the bedieningwijze event. An example component
snippet in this modelling style which controls the interface defined in Figure 11 is given in Figure 12.

In multiple cases in the model, polled values are needed in several stages of the computation. In all
such cases, the computation functions in Dezyne are parameterised, and the initial in-event which starts
the thread of execution in the Dezyne component is made responsible for polling all the required state
for dealing with said event. The polled values are passed as parameter to the functions to guarantee that,
within the thread of execution of handling the event, all polled values are consistent and the amount of

124 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

impor t enums . dzn ;
impor t bed_BF_Overdruk_V e i l i g e _Ruimte . dzn ;
impor t some_i n t e r f a c e . dzn ;

component c o n t r o l l e r
{

p r o v i d e s some_i n t e r f a c e some_i f ;
r e q u i r e s bed_BF_Overdruk_V e i l i g e _Ruimte bed_BF ;

b eha v i o r {
on some_i f . switchToManual () : {

eB e d i e n i n g sw i j z e c u r r e n t = bed_BF . b e d i e n i n gw i j z e () ;
i f (! c u r r e n t .HAND) {

bed_BF . setOpHandbed ien ing () ;
}

}
on some_i f . switchToAuto () : {

eB e d i e n i n g sw i j z e c u r r e n t = bed_BF . b e d i e n i n gw i j z e () ;
i f (! c u r r e n t .AUTO) {

bed_BF . se tOpAutobed i en ing () ;
}

}
}

}

Figure 12: Example Dezyne component snippet for the pull-style models.

message passing between components is minimised.
The verification performed by Dezyne of proper implementations in components is rather trivial for

such interface definitions. The interface specifications are trivially deadlock free as it is always possible
to send commands and status queries. Given that the interface behaviour specification is stateless, Dezyne
merely has to check whether the events defined in the interface are legal to receive at all times, and all
replies to said events are guaranteed to be sent with a value defined in the interface.

K.H.J. Jilissen, P. Dieleman & J.F. Groote 125

E Dezyne push-style models

In the Dezyne push-style models, components are aware of the state of the components they directly
communicate with over a port. In order to perform their desired behaviour, the components no longer
need to poll other components as they have a decently recent representation of the state of other compo-
nents. As the state is not guaranteed to be the truth due to the propagation delay between components,
components must be resilient against ‘unexpected’ commands. As most commands are variable updates,
with notifications about said updates, an idempotent implementation suffices in most cases.

Again, consider the interface description given in Figure 11, but now for push-style models. As
discussed in the paper, Dezyne does currently not permit passing enumeration data as parameter in the
events. Therefore, the events are duplicated with the data encoded in the event names. Dezyne uses the
optional event to indicate that something might or might not spontaneously happen over an interface.
The representation in the interface is given in Figure 13.

impor t enums . dzn ;

i n t e r f a c e bed_BF_Overdruk_V e i l i g e _Ruimte
{

// c o n t r o l
i n vo i d setOpHandbed ien ing () ;
i n vo i d se tOpAutobed i en ing () ;

// f e edback
out vo i d b e d i e n i n g sw i j z e_HAND() ;
out vo i d b e d i e n i n g sw i j z e_AUTO() ;

b eh a v i o r {
eB e d i e n i n g sw i j z e b e d i e n i n g sw i j z e = eBed i e n i n g sw i j z e .AUTO;

// c o n t r o l
[! b e d i e n i n g sw i j z e .HAND] on setOpHandbed ien ing : { b e d i e n i n gw i j z e = eBed i e n i n g sw i j z e .

HAND; }
[! b e d i e n i n g sw i j z e .AUTO] on se tOpAutobed i en ing : { b e d i e n i n g sw i j z e = eBed i e n i n g sw i j z e .

AUTO; }

// f eedback
on o p t i o n a l : { b e d i e n i n g sw i j z e_HAND; b e d i e n i n gw i j z e = eBed i e n i n g sw i j z e .HAND; }
on o p t i o n a l : { b e d i e n i n g sw i j z e_AUTO; b e d i e n i n g sw i j z e = eBed i e n i n g sw i j z e .AUTO; }

}
}

Figure 13: Example Dezyne interface snippet for the push-style models.

To remove the need to introduce shadow variables to keep track of the state of the interface, the
Dezyne 2.18 release is used for the verification. In the 2.18 version, Dezyne introducees a feature which
allows modellers to reference interface variables in the specification of components. Using this feature,
the component of Figure 12 can be specified in the push-style as shown in Figure 14.

In this implementation, the component accepts incoming events for remote changes of the control
mechanism without explicitly handling such change. By the definition of the interface in Figure 13, the
interface variable changes due to the occurrence of this event. In the push-style models, it is sometimes
necessary to notify other interfaces of this change, such as emitting an out-event on the some_if port.
More specifically, it is sometimes necessary to notify multiple ports of the change of some component
state variable due to the change of a required port. Dezyne forbids emitting man out-event to more

126 Formally Modelling the RWS Tunnel Control Systems in a Constrained Industrial Environment

impor t enums . dzn ;
impor t bed_BF_Overdruk_V e i l i g e _Ruimte . dzn ;
impor t some_i n t e r f a c e . dzn ;

component c o n t r o l l e r
{

p r o v i d e s some_i n t e r f a c e some_i f ;
r e q u i r e s bed_BF_Overdruk_V e i l i g e _Ruimte bed_BF ;

b eha v i o r {
on some_i f . switchToManual () : {

i f (! bed_BF .HAND) {
bed_BF . setOpHandbed ien ing () ;

}
}
on some_i f . switchToAuto () : {

i f (! bed_BF .AUTO) {
bed_BF . se tOpAutobed i en ing () ;

}
}
on bed_BF . b e d i e n i n g sw i j z e_HAND() : {}
on bed_BF . b e d i e n i n g sw i j z e_AUTO() : {}

}
}

Figure 14: Example Dezyne component snippet for the push-style models.

than one provides port when dealing with a received out-event of a requires port. These kind of Y-forks
potentially leads to behaviour which is beyond the scope of single component verification, and would
thus invalidate the guarantees of Dezyne. Similarly, Dezyne forbids V-forks caused by emitting an out-
event during the handling of an in-event on other port than the one over which the in-event was received.

To solve this problem, the defer statement of Dezyne is used. This enqueues the execution of
some block of statements until at least after the handling of the current event is finished. Consider the
bedieningswijze-HAND event handler in Figure 14. If we were to notify ports p1 and p2 of this change,
this would be modelled in the used modelling style as shown in Figure 15

on bed_BF . b e d i e n i n g sw i j z e_HAND() : {
d e f e r () { p1 . b e d i e n i n g sw i j z e_HAND() ; }
d e f e r () { p2 . b e d i e n i n g sw i j z e_HAND() ; }

}

Figure 15: Example use of deferred pushing of state.

Now, every deferred execution is interacting with a single port and meets the requirements set by
Dezyne. However, there arises a different problem with such implementation. As interfaces can now ar-
bitrarily cause the emission of deferred events in a cycle of state change commands, the internal buffers
in Dezyne can overflow and verification will fail. As a remedy to this phenomenon, additional state is
introduced in every interface to indicate that the interface is ‘idle’. An interface is considered ‘idle’ in
this context if the component implementing the interface is finished with executing the deferred state-
ments directly caused by the handler of an in-event on that interface. The overall structure of behaviour
specifications in interface definitions becomes as shown in Figure 16, together with the component im-
plementation structure in Figure 17.

While this structure forms a good basis for simulating the models using the Dezyne tooling, verifica-

K.H.J. Jilissen, P. Dieleman & J.F. Groote 127

b eha v i o r {
i d l e = t r u e ;
// o th e r v a r i a b l e s

[i d l e] {
// c o n t r o l commands
on some_command : { . . . ; i d l e = f a l s e ; }

}
[! i d l e] on i n e v i t a b l e : { done ; i d l e = t r u e ; }

// f eedback o p t i o n a l e v en t s
}

Figure 16: Example Dezyne interface snippet for the push-style models with idle state.

on bed_BF . b e d i e n i n g sw i j z e_HAND() : {
d e f e r () { p1 . b e d i e n i n g sw i j z e_HAND() ; }
d e f e r () { p2 . b e d i e n i n g sw i j z e_HAND() ; }
d e f e r () { bed_BF . done () ; }

}

Figure 17: Example Dezyne component implementation snippet for the push-style models with done
statement.

tion is still troublesome. The large combinatorial complexity of all variables in the interface definitions,
together with the way the Dezyne semantics are encoded in mCRL2, still yields no results after a week of
computations. This is deemed as infeasible in practice. The final remedy introduced in the paper, is fur-
ther decomposing the components. Similar to the SysML extension, Dezyne components are introduced
that are responsible for the computation of individual values. Then, the original Dezyne component is
replaced with a Dezyne system which binds external interfaces to the internal component interfaces.

Using this structure, the verification by the Dezyne tooling has successfully been performed with an
event queue and defer queue size of 8. Still, the tooling is not yet able to explicitly generate the state
space of the overall system or verify other than the out-of-the-box provided properties for the overall
system.

F. Lang, M. Volk (Eds):

Models for Formal Analysis of Real Systems (MARS 2024)

EPTCS 399, 2024, pp. 129–168, doi:10.4204/EPTCS.399.7

Testing Resource Isolation for System-on-Chip Architectures

Philippe Ledent Radu Mateescu Wendelin Serwe

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP*, LIG, 38000 Grenoble, France

philippe.ledent@inria.fr radu.mateescu@inria.fr wendelin.serwe@inria.fr

Ensuring resource isolation at the hardware level is a crucial step towards more security inside the

Internet of Things. Even though there is still no generally accepted technique to generate appropriate

tests, it became clear that tests should be generated at the system level. In this paper, we illustrate

the modeling aspects in test generation for resource isolation, namely modeling the behavior and

expressing the intended test scenario. We present both aspects using the industrial standard PSS and

an academic approach based on conformance testing.

1 Introduction

SoC (System-on-Chip) architectures are being designed and deployed as microcontrollers of embedded

systems. An SoC is usually highly configurable in order to perform several specific tasks in numerous

devices, including smartphones or objects in the IoT (Internet of Things). SoC security is gaining im-

portance as SoCs become ubiquitous, notably because they are being specially manufactured for heavy

usage of machine learning and artificial intelligence in the IoT. Considering the distributed nature of the

IoT, software solutions to security are insufficient, because an attacker can easily gain access to some

hardware and tamper with it. Hardware attacks consist in forcing an SoC to perform operations in order

to access functionalities or information that should normally not be available. A critical security require-

ment is resource isolation, which forbids applications (or programs) running on a same SoC to access

data not intended for them.

Ensuring this requirement at hardware level is hence becoming mandatory to strengthen security,

but is complex and still leaves two challenging problems. First, there is yet no commonly accepted

solution: [16] claims to have found a side channel attack that might be applicable to any microcontroller

and enable an attacker to access data from secure memory. Second, there is yet no commonly accepted

approach for validating a proposal for a hardware resource isolation solution: most research focuses on

attacking hardware implementations instead of formally validating proposed protocols.

When it comes to IoT devices, microcontroller manufacturers use the ARM Platform Security Ar-

chitecture1 which comes with a security specification and the possibility of certification by ARM (PSA-

Certified2). The ARM Security Models [2] is the open-source ARM architecture for IoT with secu-

rity concerns. Here, we focus on the resource isolation aspects of the ARM Security Models that are

implemented with the notions of security (TrustZone [3]) and privilege (TrustZone alone not being

enough [12]). ARM provides the possibility to carry security and privilege over the hardware through

signals of its AMBA communication protocols [1] between a source and a target component. Filtering

properly this information can then be left to the target or a dedicated component on the way in charge of

monitoring the communication.

*Institute of Engineering Univ. Grenoble Alpes
1https://newsroom.arm.com/news/psa-next-steps-toward-a-common-industry-framework-for-secure-iot
2https://www.psacertified.org/

http://dx.doi.org/10.4204/EPTCS.399.7
https://newsroom.arm.com/news/psa-next-steps-toward-a-common-industry-framework-for-secure-iot
https://www.psacertified.org/

130 Testing Resource Isolation for System-on-Chip Architectures

Before certifying an SoC by ARM, industrial manufacturers are concerned about representing and

testing resource isolation for themselves (the case study [5] showed that ARM-Certified Level 2 may

leak confidential information such as AES encryption keys). Resource isolation should ensure that data

contained in an IP (Intellectual Property, as are components usually called in the hardware community)

protected with given security and privilege levels can only be accessed by an IP with corresponding or

higher levels. This kind of requirement can be checked using classical tools and techniques for industrial

verification, such as hardware simulators using directed tests and/or execution-time assertions. Although

properly written assertions are perfect to monitor exactly the behavior of a design under test during a

simulation, it is still necessary to generate appropriate test scenarios to be executed: on its own, assertion-

based verification cannot generate such scenarios.

The terrifying complexity of modern SoCs pushes to represent and reason about SoC behavior at

higher abstraction levels, to ease the fast generation of many tests. For this purpose, PSS (the Portable-

test Stimulus Standard) [15] was published by the Accellera Consortium3 that comprises manufacturers

such as AMD, ARM, Intel, Nvidia, NXP, and STMicroelectronics, but also major CAD tool vendors,

such as Cadence, Siemens EDA, and Synopsis. PSS aims at providing an easy way to generate (many)

tests, without the prior need to explicitly model too much of the SoC’s behavior. PSS defines a (program-

ming) language to abstract the behavior of an SoC as a set of “actions”, which communicate and interact

through “flow objects”. PSS also defines a methodology to generate tests from a VI (“Verification Intent”,

a test scenario given as a partial ordering of the actions) by filling any gaps of the VI with appropriate

actions, meeting the ordering constraints expressed for the SoC. Industrial manufacturers are inclined to

use PSS, because it uses a familiar syntax (close to C++) and is well integrated in their current design

flow and tools.

Although PSS has the appearance of a model-based testing approach, the emphasis is clearly more on

the test generation, trying to minimize the time spent on the modeling. Furthermore, because there is no

formal semantics of PSS, nor a complete definition of the underlying behavior corresponding to the set

of constraints describing an SoC in PSS, the tasks of verification engineers remain difficult. The major

challenge faced by these PSS users is getting a grasp on the behavior used as basis for test generation.

Frequently, an erroneous constraint is only detected when an unexpected test is generated, limiting the

confidence in the quality and coverage of the generated tests.

In this paper, we compare the modeling-related aspects of two approaches for test-case generation,

namely the PSS approach with an approach based on conformance test generation with test purposes [10]

as supported by the CADP toolbox [7] and its modeling language LNT [8]. Both approaches involve two

separate modeling tasks: coming up with an abstract model of the SoC’s behavior and expressing the

structure of the desired test scenarios. However, the focus of both approaches is different: conformance

testing starts with a model, whereas PSS favors modeling the test scenarios. This reflects the needs of

verification engineers in the hardware design industry: at the end of the day, they have to produce tests

for the SoC, and modeling is is acceptable only if it serves this purpose. We also study the impact of the

difference in focus on the generated test suites.

We illustrate both approaches on the problem of generating tests for resource isolation, using a model

of an SoC where the details of the various bus communication protocols are abstracted (each transaction

is represented by a single rendezvous), because their differences and details are irrelevant to the test case

generation. For both approaches, we separately discuss the modeling challenges concerning the behavior

of the SoC and the structure of the test scenarios.

Formal verification is slowly being integrated in SoC design and verification workflows as shown in

3https://accellera.org

https://accellera.org

Ph. Ledent, R. Mateescu & W. Serwe 131

!Read ?Reject?Grant Read

!Write

?Grant Write

?Reject

! Protection

?Grant Protection

?Reject

?Read !Reject!Grant Read

?Write

!Grant Write

!Reject

?Protection

!Grant Protection

!Reject

Figure 1: Symbolic automata representation of source (left) and target (right) behaviors

survey [9] but not for testing resource isolation. The closest work to our approach is [4] which proposes

a high-level model of Intel 64 and ARMv8-A architectures to compare them but it neither formally

specifies the behavior nor is the model used as basis for test generation.

The rest of this paper is organized as follows. Section 2 presents and compares several models of

the resource-isolation related SoC behavior in LNT and PSS. Section 3 presents the modeling of test

scenarios as test purposes in LNT and verification intents in PSS, together with the resulting test suites

(sets of generated tests). Section 4 concludes. The complete LNT and PSS code is given in the appendices

and provided in the MARS model repository.

2 Modeling the SoC Behavior for Resource Isolation

We illustrate resource isolation on an SoC with two kinds of IPs (components): sources (e.g., a CPU) and

targets (e.g., a memory or dedicated hardware component storing sensible data). All IPs communicate

through a bus-like shared interconnect, which can handle a single transaction at a time.4 Both source and

target have a security level (secure and non-secure) and a privilege level (privileged and non-privileged).

Each target stores a data (data1 or data2). Each source can execute transactions to read or write the

data of a target, or change the security and/or privilege levels of the data stored by the target. Each

transaction consists of an access request emitted by the source, followed by a response (grant or reject)

from the target. Each request by the source to the target includes the security and privilege levels of

the source, as is the case for any AMBA [1] conform hardware protocol. The target should grant a read

or write access if and only if both the security and privilege level of the source are at least those of the

target. Concretely, a read or write request is rejected in the two (non-exclusive) situations where the

target is secure (respectively, privileged) and the source is not. Changing the security and/or privilege

level of the target is only granted to a secure and privileged source. We also allow the source to change

its configuration (data to be written and security and privilege levels), thus including the case where a

source (CPU) executes applications with different security and privilege levels.

Figure 1 shows the behaviors of a source (on the left) and a target (on the right) as two communicating

symbolic automata, focusing on the executed actions and hiding all concrete data as well as security

and privilege levels.5 Both automata synchronize their transitions with identical labels; we omitted the

transition corresponding to a change of the source configuration, because it is the only unsynchronized

4There are more complex communication protocols enabling a source to initiate further transactions with other targets, but

this requires more than one interconnect.
5Taking them into account would yield unreadable figures: for instance, the source automaton would have as many different

central (idle) states as there are different combinations of security and privilege levels (i.e., sixteen). See also the size of the

LTS of the LNT model given in Sect. 2.1.

132 Testing Resource Isolation for System-on-Chip Architectures

transition.

All requests are initiated by the source (marked with an exclamation-mark “!”) and received by the

target (marked with a question-mark “?”). The situation is the opposite for granting or rejecting a request

(initiated by the target and received by the source). Initially, both automata are in their central state, the

source is secure and privileged, and the target is non-secure and non-privileged.

The source can attempt a Read, a Write, or change the Protection level of the target; the target responds

by Granting or Rejecting the request depending of whether or not it was legal. For each transaction, the

source states its security and privilege levels and moves to the state corresponding to its request, where

it awaits a response (grant or reject) from the target, before it can issue the next request.

The target starts by awaiting a transaction request from the source. After reception it enters a state

represented by a lozenge symbol indicating that it must analyze the request to determine whether the

request will be granted or rejected. This decision constitutes the resource isolation. A request is rejected

for security reasons if and only if a non-secure source attempts to access a secure target. Likewise,

a request is rejected for privilege reasons if and only if a non-privileged source attempts to access a

privileged target. Altogether, a request is accepted if and only if it is not rejected for either reason. Only

a secure and privileged request can change the security and privilege levels of the target. Note that the

target accepts a new request only in its central state, thus the target accepts a new request only after

having generated a grant or reject of the pending request (if any).

2.1 SoC Behavior Modeling in LNT

Such an SoC can be expressed easily using LNT [8], a modern language combining a sound foundation

in concurrency theory with user-friendly syntax akin to mainstream programming languages. Two LNT

processes define the behavior of a source or target, each encoding the corresponding symbolic automaton

as an infinite loop, each iteration of which selects among the various possible actions. The overall model

of the SoC is obtained as a parallel composition of an instance of as many sources and targets as there

are in the SoC. Each communication on the interconnect is modeled as a multiway rendezvous between

all instances (reflecting the fact that all IPs can observe everything exchanged on the interconnect). The

complete LNT model (about 200 lines) is given in Appendix A.

The LNT model defines four enumerated data types: the security (security) and privilege (privilege)

levels6, the available data values (data), and the identities of the various IPs (ip). For the latter, the model

also defines a function source(id) returning true if and only if id identifies a source IP. The function

valid access (s , t , p, q) returns true if and only if a source with security level t and privilege level q

should be granted the request to read or write the data stored in a target with security level s and privilege

level p.

Figure 2 shows the LNT process TARGET modeling a target. TARGET has a variable parameter id

identifying the IP; the require-clause of line 4 enforces that this IP is indeed a target. Among the ten

local variables, three record the currently stored data (d), security (s), and privilege (p). The other local

variables serve to collect values exchanged during the rendezvous, so as to impose constraints (e.g., that

the IP emitting a request is a source or whether the request should be granted or rejected based on the

security and privilege level of source and target) or handle data (e.g., change the stored data on line 18

or the security and privilege levels on line 25). Each request is represented by a rendezvous on the

corresponding gate (Read, Write, or Protection), during which the source transmits its current security

and privilege levels, which the target stores in its local variables t and q (this is indicated by the question

6Without loss of generality, we restrict the model to two privilege levels (rather than the four considered by ARM).

Ph. Ledent, R. Mateescu & W. Serwe 133

1 process TARGET [Read , Grant Read , Re jec t Read , Write , Grant Wr i te ,
2 Re j e c t Wr i t e , P ro t e c t i on , G r a n t P r o t e c t i o n ,
3 Re j e c t P r o t e c t i o n : Bus] (i d : i p) i s
4 r equ i re not (s ou r c e (i d)) ;
5 var d , e : data , s , t , u : s e c u r i t y , p , q , r : p r i v i l e g e , o , o t h e r : i p i n
6 d := data1 ; −− default value

7 s := non s e c u r e ; p := n o n p r i v i l e g e d ; −− lowest protection level

8 loop
9 s e l e c t

10 Read (?o , id , ? t , ?q) where s ou r c e (o) ;
11 i f v a l i d a c c e s s (s , t , p , q) then
12 Grant Read (o , id , d)
13 e l s e
14 Re j e c t Read (o , i d)
15 end i f
16 [] Write (?o , id , ? t , ?q , ?e) where s ou r c e (o) ;
17 i f v a l i d a c c e s s (s , t , p , q) then
18 d := e ;
19 Gran t Wr i t e (o , i d)
20 e l s e
21 Re j e c t Wr i t e (o , i d)
22 end i f
23 [] Pro t e c t i o n (?o , id , ? t , ?q , ?u , ? r) where s ou r c e (o) ;
24 i f (t == s e c u r e) and (q == p r i v i l e g e d) then
25 s := u ; p := r ;
26 Gran t P r o t e c t i o n (o , id , s , p)
27 e l s e
28 Re j e c t P r o t e c t i o n (o , i d)
29 end i f
30 −− communication between other IPs on the shared interconnect

31 [] Read (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e)
32 where (o != i d) and s ou r c e (o t h e r)
33 [] Grant Read (? othe r , ?o , ?any data)
34 where (o != i d) and s ou r c e (o t h e r)
35 [] Re j e c t Read (? othe r , ?o)
36 where (o != i d) and s ou r c e (o t h e r)
37 [] Write (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e , ?any data)
38 where (o != i d) and s ou r c e (o t h e r)
39 [] Gran t Wr i t e (? othe r , ?o)
40 where (o != i d) and s ou r c e (o t h e r)
41 [] Re j e c t Wr i t e (? othe r , ?o)
42 where (o != i d) and s ou r c e (o t h e r)
43 [] Pro t e c t i o n (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e ,
44 ?any s e c u r i t y , ?any p r i v i l e g e)
45 where (o != i d) and s ou r c e (o t h e r)
46 [] Gran t P r o t e c t i o n (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e)
47 where (o != i d) and s ou r c e (o t h e r)
48 [] Re j e c t P r o t e c t i o n (? othe r , ?o)
49 where (o != i d) and s ou r c e (o t h e r)
50 end se l ec t
51 end loop
52 end var
53 end process Figure 2: LNT process of a target

134 Testing Resource Isolation for System-on-Chip Architectures

marks ? in lines 10, 16, 23, etc.). Depending on the validity of the request, the latter is either granted or

rejected (by a rendezvous on the corresponding gate). For a Write and Protection, the grant is preceded by

an update of the local variables of the target with the values received from the source during the request

(see lines 18 and 25).

The LTS corresponding to a parallel composition of eight sources (which can only initiate the three

transactions Read, Write and Protection) and a single target can be generated in less than a minute, and

has 182 states, 558 transitions, and 99 labels (after minimization modulo strong bisimulation).

In a second version of the LNT model, a source not engaged in a transaction can also change its

configuration (the data written by the source and the security and privilege level of the source). This

corresponds to considering sources as multitasking-enabled CPUs capable of executing several applica-

tions with different configurations, and to take care of the configuration changes induced by switching

between applications. The LTS corresponding to this extended model is too large to be generated—the

number of states is expected to be 88 times the size of the previous model. However, when removing

the identification of the source IP from all transition labels and hiding all transitions corresponding to a

configuration change, both LTSs are equivalent for branching bisimulation (the LTS minimized modulo

branching bisimulation has 52 states, 268 transitions, and 39 labels).

The identity of the source IP seems thus not important. Indeed, when removing the identification of

the source IP from all transition labels and hiding all transitions corresponding to a configuration change,

a model with a single multitasking-enabled source also is equivalent for branching bisimulation to the

model with eight sources that do not have multitasking enabled. Hence, with the possibility to change

the source configuration, it is sufficient to model a single source.

The situation is more intricate concerning the number of targets. Actually, two targets are indepen-

dent and thus equivalent to a single target with two memory cells with separate security and privilege

levels. However, resource isolation is concerned with the access to a single target, so that it is not neces-

sary to study SoCs with more than one target.

It is worth mentioning that the LTS can be analyzed with a full range of verification tools, e.g., those

provided by the CADP toolbox. Besides the equivalence checking tools already used to compare the

SoCs with different numbers of sources, it is possible to explore the LTS step by step and to verify

temporal logic properties. This is helpful to gain confidence in the correctness of the modeled behavior.

2.2 SoC Behavior Modeling in PSS

A major modeling difference between LNT and PSS is that LNT is targeted at modeling the SoC, whereas

PSS avoids modeling the overall behavior of the SoC, focusing on simply expressing constraints between

the actions of the SoC. However, the latter is less convenient when it comes to precisely understand the

modeled behavior, because it requires to assemble all these constraints together.

The understanding of the behavioral model induced by the constraints can be improved by adopting

a modeling discipline, such as encoding the two symbolic automata of Fig. 1 (as seen in the previous

section, it is sufficient to consider an SoC with a single source and a single target). For each automaton,

each transition can be encoded as a PSS action, which inputs from and outputs to a (same) state flow ob-

ject storing the data values of the automaton, using constraints to enable actions only for particular states

of the automaton and controlling the state resulting from the execution of an action. Synchronization

between the automata is then expressed using stream flow objects, mimicking the multiway rendezvous

on the gates in the LNT model.

This intuitive approach yields the PSS model presented in Appendix B, featuring two state flow ob-

jects, nine stream flow objects, and a total of 21 actions (ten actions for the transitions of the source, nine

Ph. Ledent, R. Mateescu & W. Serwe 135

actions for the transitions of the target, plus two actions to control the initial state of the two state flow

objects—this is required by the PSS semantics). This significant increase in complexity is accompanied

by the need to specify for all actions not only the fields of the state flow object that are modified, but also

those that remain unchanged. All in all, the corresponding PSS model ends up with more than 500 lines.

It is possible to translate this PSS model to LNT (using a translator currently under development),

leading to almost two thousand lines of LNT. This generic translation encodes each action and flow object

as a separate LNT process, leading to a total of 32 processes. The LTS corresponding to each of these

processes can be generated and minimized modulo divergence-preserving branching bisimulation, before

composing all 32 LTSs into the overall LTS of the PSS model.7 This generation of the corresponding

LTS took about a day (on the yeti cluster in the Grenoble site of the Grid’5000 platform), exploiting the

64 cores using a distributed state space generation tool. However, the corresponding state space (before

hiding all transitions related to the interactions between actions and flow objects) is prohibitively large:

1,700,860,640 states, 13,934,786,272 transitions, and 6,706 labels, stored in a file with a size of 88 GB.

Note that more refined compositional generation strategies (e.g., smart generation [6]) did not succeed,

as some intermediate state spaces for a subset of the processes are larger than the overall state space.

Taking into account that a rendezvous between several actions yields a unique visible transition,

we investigated a simpler modeling approach encoding a monolithic automaton, incorporating the con-

straints of both source and target. This approach requires only ten actions (three requests, three grants,

three rejects, and the configuration change), all inputting from and outputting to a single state flow ob-

ject. The corresponding PSS code is given in Appendix C. The drawback of this approach is the increase

in constraints for each action, because it is necessary to specify all fields of the state flow that remain

unchanged by the action (each field related to the target is not affected by an action related to the source

and vice-versa). Another inconvenient of this approach is that it would be very impractical to extend this

model to an SoC with more IPs, due the complexity of getting a complete and correct set of constraints.

This monolithic PSS model can also be translated into (almost one thousand lines of) LNT, from

which the corresponding LTS (2736 states, 4591 transitions, and 4592 labels) can be directly8 gener-

ated in less than a minute. After hiding all transitions related to interactions with the state flow object,

changing all transition labels to use the same gates and sets of offers as the LNT models of the previous

section, and determinization (reduction for weak trace equivalence), the LTS is branching equivalent to

those of the LNT models presented in the previous section.

Figure 3 gives the description of action target grant read . It inputs from and outputs to a state

flow object, which keeps track of the configuration of the SoC. Execution of the action is subject to the

constraints specified in its body. The first constraint (line 5) enforces that the action can be executed

only if another action has already output to the state flow object (each PSS state flow object has an

implicit field initial, which is initialized to true, changed to false upon the first output to the flow object,

and never changed again). The next two constraints express that the source automaton moves from

read (line 7 constraining the value of field sstate of the input flow object in state) back to idle (line 8

constraining field sstate of the output flow object out state). The next two constraints (lines 10–13)

express the validity of the transaction (inspecting only fields of the input flow object). The remaining

eight constraints express that all other fields of the output flow object should keep the values of the fields

of the input flow object.

This 24-line PSS description of the action (with its constraints) is more verbose than the correspond-

7The translation of stream flow objects makes use of the n-among-m synchronization currently only supported by the

EXP.OPEN [11] tool.
8Due to the absence of stream flow objects, the generated LNT model does not require a n-among-m synchronization and

can thus be handled directly by the LNT compiler.

136 Testing Resource Isolation for System-on-Chip Architectures

1 act ion t g r a n t r e a d {
2 input s y s t em s t a t e i n s t a t e ;
3 output s y s t em s t a t e o u t s t a t e ;
4

5 cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
6 / / Move from Read to Idle

7 cons t ra in t i n s t a t e . s s t a t e == read ;
8 cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
9 / / Check protection

10 cons t ra in t (i n s t a t e . s o u r c e s e c == s e c u r e) | |
11 (i n s t a t e . t a r g e t s e c == non s e c u r e) ;
12 cons t ra in t (i n s t a t e . s o u r c e p r i v == p r i v i l e g e d) | |
13 (i n s t a t e . t a r g e t p r i v == n o n p r i v i l e g e d) ;
14 / / Maintain source fields

15 cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
16 cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
17 cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
18 / / Maintain target fields

19 cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
20 cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
21 cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
22 cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
23 cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;
24 }

Figure 3: Action for granting a read request in the monolithic PSS model

ing three lines of LNT (lines 13–15 in Fig. 2). This has several reasons. First, in PSS the states of the

target have to be listed explicitly, whereas they are deduced from the control flow in LNT. Second, LNT

has no implicit field initial. Last, but not least, in LNT it is not necessary to specify the variables that

maintain their value.

3 Test Generation from Test Scenarios

The principal objective of the models of the SoC behavior presented in Section 2 is to enable the genera-

tion of tests to validate the SoC. Characterizing a set of desired tests is a modeling task of its own, based

on the idea of expressing a partial ordering of some actions that have to appear in the generated tests,

and of relying on tools exploiting the behavioral model to fill in any further actions necessary to obtain

a complete test case. This approach emphasizes the expression of a test scenario defining the high-level

structure of the tests, leaving the details to automatic tools. The notion of test scenario is called TP (test

purpose) in conformance testing theory [10] and VI (verification intent) in PSS.

There are different techniques to construct tests from a test scenario. The TESTOR tool [13] proceeds

by a forward exploration of a (particular) synchronous product between the TP and the behavioral model,

extracting on-the-fly a test or a subgraph called CTG (complete test graph) containing all possible tests

for the TP. The PSS methodology [15, Appendix F] uses a backward traversal of the VI, determining for

each action its immediately necessary previous actions, based on the constraints in the verification intent

and the behavioral model. In the following, we compare the effect of these different approaches on four

Ph. Ledent, R. Mateescu & W. Serwe 137

1 process PURPOSE 1 [
2 Re jec t Read ,
3 Re j e c t Wr i t e ,
4 Re j e c t P r o t e c t i o n ,
5 TESTOR ACCEPT : none] i s
6 s e l e c t
7 Re j e c t Read
8 [] Re j e c t Wr i t e
9 [] Re j e c t P r o t e c t i o n

10 end se l ec t ;
11 loop TESTOR ACCEPT end loop
12 end process

act ion i n t e n t 1 {
t r e j e c t r e a d Re j e c t Read ;
t r e j e c t w r i t e R e j e c t Wr i t e ;
t r e j e c t p r o t e c t i o n R e j e c t P r o t e c t i o n ;
a c t i v i t y {

s e l e c t {
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;

}
}

}

Figure 4: Test scenario 1 (“reject for any reason”) as TP in LNT (left) and VI in PSS (right)

test scenarios for resource isolation.

3.1 Test Scenario 1: Reject for any Reason

A natural first test scenario for resource isolation is to search for tests featuring the detection of an illegal

transaction, i.e., containing any of the three actions Reject Read, Reject Write, and Reject Protection .

Figure 4 shows how to express this scenario as a TP in LNT and a VI in PSS.

In LNT the TP is encapsulated in a process PURPOSE 1, the gate parameters (lines 2–5) of which

are the three actions expected in the scenario plus the special gate TESTOR ACCEPT indicating the goal

of the TP. The behavior of this TP is the sequential composition of a non-deterministic choice (select

instruction in lines 6–10, choices being separated by “ []”) among the three actions, followed by a loop

indicating the end of the TP.

In PSS the VI is a compound action, referencing the three actions via action handles (lines 2–4).

The ordering of actions is specified by the activity block (lines 5–11), containing a non-deterministic

selection among the three actions (lines 6–10, choices being separated by “;”).

For this TP, TESTOR generates a CTG (183 states, 567 transitions, and 101 labels) that contains all

paths to reach any of the three actions, including paths with granted requests before the rejected one. A

CTG can be considered a description of a tester, interacting with the SoC to drive it towards the goal

of the TP, by selecting appropriate control actions (or inputs) depending on the outputs observed so far.

In general, a CTG contains states, where the tester has to choose among different control actions to be

executed. The CTG generated for this TP contains 384 choices, all of which can be covered by a suite of

357 test cases that can be generated automatically using the approach proposed in [14].

For this VI, the PSS backward traversal starts by (non-deterministically) choosing one of the three

reject actions, and then determines which other actions must immediately precede, by checking which

action could have written values to the state flow object so as to satisfy the input constraints of the selected

action. The constraints on the sstate field imply the preceding action must be a request. For Reject Read

and Reject Write, the constraints on the security and privilege levels imply that in the request, one of

these values must be strictly lower than the one of the target. For the Reject Protection , the constraints

imply that the preceding Request Protection stems from a source that is not both secure and privileged.

For the monolithic behavioral model, this backward traversal continues until the action init system state

138 Testing Resource Isolation for System-on-Chip Architectures

1 process PURPOSE 2 [
2 Re jec t Read ,
3 Re j e c t Wr i t e ,
4 Re j e c t P r o t e c t i o n ,
5 Grant Read ,
6 Grant Wr i te ,
7 Gran t P r o t e c t i o n ,
8 TESTOR ACCEPT : none] i s
9 par

10 Grant Read
11 | | Gran t Wr i t e
12 | | Gran t P r o t e c t i o n
13 | | Re j e c t Read
14 | | Re j e c t Wr i t e
15 | | Re j e c t P r o t e c t i o n
16 end par ;
17 loop TESTOR ACCEPT end loop
18 end process

act ion i n t e n t 2 {
t g r a n t r e a d Grant Read ;
t g r a n t w r i t e Gran t Wr i t e ;
t g r a n t p r o t e c t i o n G r an t P r o t e c t i o n ;
t r e j e c t r e a d Re j e c t Read ;
t r e j e c t w r i t e R e j e c t Wr i t e ;
t r e j e c t p r o t e c t i o n R e j e c t P r o t e c t i o n ;
a c t i v i t y {

schedule{
Grant Read ;
Gran t Wr i t e ;
Gran t P r o t e c t i o n ;
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;

}
}

}

Figure 5: Test scenario 2 (“all possible responses” interleaved) as TP in LNT (left) and VI in PSS (right)

is found.9 In practice, the PSS methodology aims at generating a single test at each invocation. When

implemented using a breadth-first backward traversal (as is the case for some industrial PSS tools), this

systematically yields any of the shortest possible tests.

3.2 Test Scenario 2: Test all Possible Responses (Interleaving Semantics)

This test scenario aims at observing all responses to the three transactions, in any order using the inter-

leaving of the responses as shown in Figure 5. In LNT, the parallel composition operator par expresses

the interleaving of the different branches separated by “| |”. In PSS, the schedule operator expresses the

interleaving of the branches separated by “;”.10

For this TP, TESTOR computes a CTG with 2649 states and 12,057 transitions; its 8832 choices can

be covered with 8328 tests. The size of the CTG is due to the fact that once one of the responses has

been observed, it is still possible to observe it before all responses have been observed. Hence, the CTG

corresponds to an “unfolding” of the model six times, repeating the complete behavior of the SoC until

all responses have been observed.

Searching for short(est) tests, the PSS methodology reduces the number of changes in the secu-

rity and privilege levels of the source and the target. Therefore, in most tests the security and privi-

lege levels for Grant Read and Grant Write (respectively Reject Read and Reject Write) are the same, and

Grant Protection and Reject Protection are inserted where suitable. Notice that the syntactic order of the

responses in the VI (and TP) actually corresponds to the shortest sequence. Indeed, because the model

starts with a secure and privileged source and a non-secure and non-privileged target, all grants are pos-

sible. Increasing the security and/or privilege of the target and appropriately lowering the security and

privilege of the source are then sufficient to observe the three rejections.

9For the generic PSS behavioral model, both init source state and init target state have to be found.
10The PSS operator parallel expresses a parallel execution of different behaviors using several threads.

Ph. Ledent, R. Mateescu & W. Serwe 139

1 process PURPOSE 3 [
2 Re jec t Read ,
3 Re j e c t Wr i t e ,
4 Re j e c t P r o t e c t i o n ,
5 Grant Read ,
6 Grant Wr i te ,
7 Gran t P r o t e c t i o n ,
8 TESTOR ACCEPT : none] i s
9 Grant Read ;

10 Gran t Wr i t e ;
11 Gran t P r o t e c t i o n ;
12 Re j e c t Read ;
13 Re j e c t Wr i t e ;
14 Re j e c t P r o t e c t i o n ;
15 loop TESTOR ACCEPT end loop
16 end process

act ion i n t e n t 3 {
t g r a n t r e a d Grant Read ;
t g r a n t w r i t e Gran t Wr i t e ;
t g r a n t p r o t e c t i o n G r an t P r o t e c t i o n ;
t r e j e c t r e a d Re j e c t Read ;
t r e j e c t w r i t e R e j e c t Wr i t e ;
t r e j e c t p r o t e c t i o n R e j e c t P r o t e c t i o n ;
a c t i v i t y {

Grant Read ;
Gran t Wr i t e ;
Gran t P r o t e c t i o n ;
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;

}
}

Figure 6: Test scenario 3 (“all possible responses” in sequence) as TP in LNT (left) and VI in PSS (right)

3.3 Test Scenario 3: Test all Possible Responses (Sequential Semantics)

Most test generation strategies do not support the interleaving of actions, but require more directed

specifications enforcing a particular sequence of actions. Test scenario 3 requests once again all possible

responses but in a particular order, expressed in LNT and PSS using “;”, as illustrated on Figure 6.

Requesting such a directed scenario has consequences on the generated test suite for both LNT and

PSS. The CTG generated by TESTOR will contain for two sequential actions of the TP every possible

path of the model allowed in between. The CTG has 967 states and 3271 transitions; its 2208 choices

can be covered with 2072 tests. This CTG is smaller than the one for test scenario 2, because only a

single ordering of responses is requested.

The tests generated by PSS are once again the shortest ones and included in those generated for test

scenario 2. This shows that more directed test scenarios limit the set of generated tests.

3.4 Test Scenario 4: Access Data with Different Protection

Using the notions of security and privilege, ARM-PSA diversifies the different levels of protection possi-

ble for an IP in an SoC. However, there is the strong assumption of a trusted administrator as all requests

of a secure and privileged source are necessarily granted. Test scenario 4 expresses that whatever the

security and privilege of the target, a source with the same security and privilege can write to the target,

and any source with higher security and/or privilege (e.g., the administrator) will be able to read the

written data. This scenario requires to express that there should be no change in the security or privilege

between the write and read requests.

Test Scenario 4 focuses on how to express the refusal of some behavior. This is illustrated in Figure 7

by describing a corresponding TP in LNT, using the special gate TESTOR REFUSE (line 8) to indicate

that the preceding rendezvous on gate Grant Protection should be excluded from the generated CTG.

The null branch (line 10) of the select construct (lines 6–11) allows any other action. The where clause

on line 12 guarantees (in combination with the condition on line 11 of Figure 2) that the final read is

requested with higher security and/or privilege than the write on line 5.

140 Testing Resource Isolation for System-on-Chip Architectures

1 process PURPOSE 4 [Read , Grant Read , Write , G r a n t P r o t e c t i o n : Bus ,
2 TESTOR ACCEPT, TESTOR REFUSE : none] i s
3 var s , t : s e c u r i t y , p , q : p r i v i l e g e , d : data i n
4 Gran t P r o t e c t i o n (?any ip , ip0 , ? s , ?p)
5 Write (?any ip , ip0 , s , p , ?d) ; −− same s and p as in the previous line

6 s e l e c t
7 −− refuse any further rendezvous on gate Grant Protection

8 Gran t P r o t e c t i o n (?any ip , ip0 , ?s , ?p) ; loop TESTOR REFUSE end loop
9 [] −− accept all other rendezvous

10 nu l l
11 end se l ec t ;
12 Read (?any ip , ip0 , ? t , ?q) where (s != t) or (p != q) ;
13 Grant Read (?any ip , ip0 , d) ; −− access data with different security and privilege levels

14 loop TESTOR ACCEPT end loop
15 end var
16 end process

Figure 7: Test scenario 4 (“access data with different security/privilege”) as TP in LNT

To the best of our knowledge, PSS has no such means to explicitly request absence of actions from

the generated tests. Instead, the scenario has to be made more directed by explicitly including more

actions in the VI so as to add constraints on these actions. In particular, the VI allows to bind an input

flow object of an action a2 to the output flow object of another action a1, constraining action-inference

and forcing a1 to immediately precede a2. The resulting, lengthy VI is given in Appendix C.

4 Conclusion

In this paper, we illustrated the modeling tasks for testing hardware resource isolation using both the

approach promoted by the industrial standard PSS and an academic approach based on LNT and con-

formance testing. Both approaches require a model of behavior and an abstract test scenario, which is

refined into concrete tests based on the behavioral model.

Despite these similarities, both approaches differ in the way of generating tests, using a forward

(LNT) or backward (PSS) search. This difference not only yields different tests, but also impacts the

modeling, due to the trade-off between putting constraints in the behavior model or the test scenario. On

the one hand, LNT facilitates a complete, verifiable model of the behavior, from which extensive test

suites can be generated with few, short test scenarios. On the other hand, PSS favors focusing on the

test scenario (or verification intent), and requires longer test scenarios to obtain longer tests. While this

avoids the risk of state space explosion, it comes at the price of losing the coverage guarantees available

for conformance testing, in particular in the presence of cyclic behavior. Furthermore, the behavior is

often under-constrained in PSS, especially when adding a new action to the behavior.

The models presented in this paper were used in an industrial context. An extended version of test

scenario 3 requested in LNT a specific order of attempting each transaction for all combinations of

source and target security and privilege levels. Concretely, for each attempted transaction, the source

requests to write, to read, and then to change the target’s security and privilege. From the generated

CTG, we derived a single long test (including all transaction attempts). This test was included in the

Ph. Ledent, R. Mateescu & W. Serwe 141

nightly non-regression tests for a (confidential) SoC under development, sequentially executing the test

for each of the over hundred target IPs of the SoC. This revealed a few cases of bad wiring, unaligned

documentation, and misunderstandings between architect, design, and verification engineers.

Because the behavioral model of PSS is hard to grasp, modeling errors are frequently detected only

by the generation of unexpected tests. We are currently working on the automated translation of PSS

constructs into LNT to support the early analysis of the behavioral model, e.g., by model checking. This

also includes guidelines for devising PSS models with an efficient translation to LNT.

References

[1] ARM: AMBA Specification (Rev 2.0). Available at https://developer.arm.com/documentation/

ihi0011/a.

[2] ARM: Platform Security Model 1.1. Available at https://developer.arm.com/documentation/

den0128/latest.

[3] ARM: Security in an ARMv8 System. Available at https://developer.arm.com/documentation/

100935/0100/Security-in-ARMv8-A-systems-.

[4] Guillaume Averlant, Benoı̂t Morgan, Éric Alata, Vincent Nicomette & Mohamed Kaâniche (2017): An Ab-

straction Model and a Comparative Analysis of Intel and ARM Hardware Isolation Mechanisms. In: 2017

IEEE 22nd Pacific Rim International Symposium on Dependable Computing (PRDC), pp. 245–254, doi:10.

1109/PRDC.2017.48.

[5] Fei Chen, Duming Luo, Jianqiang Li, Victor C. M. Leung, Shiqi Li & Junfeng Fan (2023): Arm PSA-Certified

IoT Chip Security: A Case Study. Tsinghua Science and Technology 28(2), pp. 244–257, doi:10.26599/

TST.2021.9010094.

[6] Pepijn Crouzen & Frédéric Lang (2011): Smart Reduction. In Dimitra Giannakopoulou & Fer-

nando Orejas, editors: Proceedings of Fundamental Approaches to Software Engineering (FASE’11),

Saarbrücken, Germany, Lecture Notes in Computer Science 6603, Springer, pp. 111–126, doi:10.1007/

978-3-642-19811-3_9.

[7] Hubert Garavel, Frédéric Lang, Radu Mateescu & Wendelin Serwe (2013): CADP 2011: A Toolbox for the

Construction and Analysis of Distributed Processes. Springer International Journal on Software Tools for

Technology Transfer (STTT) 15(2), pp. 89–107, doi:10.1007/s10009-012-0244-z.

[8] Hubert Garavel, Frédéric Lang & Wendelin Serwe (2017): From LOTOS to LNT. In Joost-Pieter Katoen,

Rom Langerak & Arend Rensink, editors: ModelEd, TestEd, TrustEd – Essays Dedicated to Ed Brinksma on

the Occasion of His 60th Birthday, Lecture Notes in Computer Science 10500, Springer, pp. 3–26, doi:10.

1007/978-3-319-68270-9_1.

[9] Tomás Grimm, Djones Lettnin & Michael Hübner (2018): A Survey on Formal Verification Techniques for

Safety-Critical Systems-on-Chip. Electronics 7(6), doi:10.3390/electronics7060081.

[10] Claude Jard & Thierry Jéron (2005): TGV: Theory, Principles and Algorithms – A Tool for the Automatic

Synthesis of Conformance Test Cases for Non-Deterministic Reactive Systems. Springer International Journal

on Software Tools for Technology Transfer (STTT) 7(4), pp. 297–315, doi:10.1007/s10009-004-0153-x.

[11] Frédéric Lang (2005): EXP.OPEN 2.0: A Flexible Tool Integrating Partial Order, Compositional, and On-

the-fly Verification Methods. In Judi Romijn, Graeme Smith & Jaco van de Pol, editors: Proceedings of the

5th International Conference on Integrated Formal Methods (IFM’05), Eindhoven, The Netherlands, Lecture

Notes in Computer Science 3771, Springer, pp. 70–88, doi:10.1007/11589976_6. Full version available as

INRIA Research Report RR-5673.

[12] Wenhao Li, Yubin Xia & Haibo Chen (2019): Research on ARM TrustZone. GetMobile: Mobile Comp. and

Comm. 22(3), pp. 17–22, doi:10.1145/3308755.3308761.

https://developer.arm.com/documentation/ihi0011/a
https://developer.arm.com/documentation/ihi0011/a
https://developer.arm.com/documentation/den0128/latest
https://developer.arm.com/documentation/den0128/latest
https://developer.arm.com/documentation/100935/0100/Security-in-ARMv8-A-systems-
https://developer.arm.com/documentation/100935/0100/Security-in-ARMv8-A-systems-
https://doi.org/10.1109/PRDC.2017.48
https://doi.org/10.1109/PRDC.2017.48
https://doi.org/10.26599/TST.2021.9010094
https://doi.org/10.26599/TST.2021.9010094
https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/978-3-642-19811-3_9
https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.1007/978-3-319-68270-9_1
https://doi.org/10.3390/electronics7060081
https://doi.org/10.1007/s10009-004-0153-x
https://doi.org/10.1007/11589976_6
https://doi.org/10.1145/3308755.3308761

142 Testing Resource Isolation for System-on-Chip Architectures

[13] Lina Marsso, Radu Mateescu & Wendelin Serwe (2018): TESTOR: A Modular Tool for On-the-Fly Confor-

mance Test Case Generation. In Dirk Beyer & Marieke Huisman, editors: Proceedings of the 24th Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’18),

Thessaloniki, Greece, Lecture Notes in Computer Science 10806, Springer, pp. 211–228, doi:10.1007/

978-3-319-89963-3_13.

[14] Lina Marsso, Radu Mateescu & Wendelin Serwe (2020): Automated Transition Coverage in Behavioural

Conformance Testing. In: 32nd IFIP Int. Conference on Testing Software and Systems (ICTSS’20), Naples,

Italy, Springer, pp. 219–235, doi:10.1007/978-3-030-64881-7_14.

[15] Portable Stimulus Working Group (2001): Portable Test and Stimulus Standard 2.0. Accellera standards,

Accellera Systems Initiative, Elk Grove, CA, USA. Available at https://accellera.org/images/

downloads/standards/Portable_Test_Stimulus_Standard_v20.pdf.

[16] C. Rodrigues, D. Oliveira & S. Pinto (2024): BUSted!!! Microarchitectural Side-Channel Attacks on the

MCU Bus Interconnect. In: 2024 IEEE Symposium on Security and Privacy (SP), IEEE Computer Society,

Los Alamitos, CA, USA, doi:10.1109/SP54263.2024.00062.

https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/978-3-319-89963-3_13
https://doi.org/10.1007/978-3-030-64881-7_14
https://accellera.org/images/downloads/standards/Portable_Test_Stimulus_Standard_v20.pdf
https://accellera.org/images/downloads/standards/Portable_Test_Stimulus_Standard_v20.pdf
https://doi.org/10.1109/SP54263.2024.00062

Ph. Ledent, R. Mateescu & W. Serwe 143

A LNT Model

module mode l 8 1 with == , != i s

−−—————————————————————————-

type s e c u r i t y i s s e cu r e , n o n s e c u r e end type
type p r i v i l e g e i s p r i v i l e g e d , n o n p r i v i l e g e d end type

type data i s data1 , data2 end type

type i p i s ip0 , ip1 , ip2 , ip3 , ip4 , ip5 , ip6 , ip7 , i p8 end type

−−—————————————————————————-

channel Bus i s
(source , t a r g e t : i p) ,
(source , t a r g e t : ip , d : data) ,
(source , t a r g e t : ip , s : s e c u r i t y , p : p r i v i l e g e) ,
(source , t a r g e t : ip , s : s e c u r i t y , p : p r i v i l e g e , d : data) ,
(source , t a r g e t : ip , s : s e c u r i t y , p : p r i v i l e g e , t : s e c u r i t y , q : p r i v i l e g e)

end channel

−−—————————————————————————-

funct ion v a l i d a c c e s s (s , t : s e c u r i t y , p , q : p r i v i l e g e) : Bool i s
−− returns true iff a source with protection level (t,q) is

−− allowed to access a target with protection level (s,p)

return not (((s == s e c u r e) and (t == non s e c u r e)) or
((p == p r i v i l e g e d) and (q == n o n p r i v i l e g e d)))

end funct ion

−−—————————————————————————-

funct ion s ou r c e (i d : i p) : bool i s
−− returns true iff id is a source IP

case i d i n
i p 0 −> return f a l s e

| any −> return true
end case

end funct ion

−−—————————————————————————-

process SOURCE [Read , Grant Read , Re jec t Read , Write , Grant Wr i te ,
Re j e c t Wr i t e , P ro t e c t i on , G r a n t P r o t e c t i o n ,
R e j e c t P r o t e c t i o n : Bus , Change Sou rc e Con f i g : any]

(i d : ip , i n var s : s e c u r i t y , i n var p : p r i v i l e g e ,
i n var d : data , mu l t i t a s k i n g : Bool) i s

r equ i re s ou r c e (i d) ;
var o , o t h e r : i p i n

144 Testing Resource Isolation for System-on-Chip Architectures

loop
se l ec t

Read (id , ?o , s , p) where not (s ou r c e (o)) ;
s e l e c t

Grant Read (id , o , ?any data)
[] Re j e c t Read (id , o)
end se l ec t

[] Write (id , ?o , s , p , d) where not (s ou r c e (o)) ;
s e l e c t

Gran t Wr i t e (id , o)
[] Re j e c t Wr i t e (id , o)
end se l ec t

[] Pro t e c t i o n (id , ?o , s , p , ?any s e c u r i t y , ?any p r i v i l e g e)
where not (s ou r c e (o)) ;

s e l e c t
Gran t P r o t e c t i o n (id , o , ?any s e c u r i t y , ?any p r i v i l e g e)

[] Re j e c t P r o t e c t i o n (id , o)
end se l ec t

[] only i f mu l t i t a s k i n g then
Change Sou rc e Con f i g (id , id , ? s , ?p , ?d)

end i f
−− communication between other IPs on the shared interconnectkbu

[] Read (?o , ? othe r , ?any s e c u r i t y , ?any p r i v i l e g e)
where (o != i d) and not (s ou r c e (o t h e r))

[] Grant Read (?o , ? othe r , ?any data)
where (o != i d) and not (s ou r c e (o t h e r))

[] Re j e c t Read (?o , ? o t h e r)
where (o != i d) and not (s ou r c e (o t h e r))

[] Write (?o , ? othe r , ?any s e c u r i t y , ?any p r i v i l e g e , ?any data)
where (o != i d) and not (s ou r c e (o t h e r))

[] Gran t Wr i t e (?o , ? o t h e r)
where (o != i d) and not (s ou r c e (o t h e r))

[] Re j e c t Wr i t e (?o , ? o t h e r)
where (o != i d) and not (s ou r c e (o t h e r))

[] Pro t e c t i o n (?o , ? othe r , ?any s e c u r i t y , ?any p r i v i l e g e ,
?any s e c u r i t y , ?any p r i v i l e g e)
where (o != i d) and not (s ou r c e (o t h e r))

[] Gran t P r o t e c t i o n (?o , ? othe r , ?any s e c u r i t y , ?any p r i v i l e g e)
where (o != i d) and not (s ou r c e (o t h e r))

[] Re j e c t P r o t e c t i o n (?o , ? o t h e r)
where (o != i d) and not (s ou r c e (o t h e r))

end se l ec t
end loop

end var
end process

−−—————————————————————————-

process TARGET [Read , Grant Read , Re jec t Read , Write , Grant Wr i te ,
Re j e c t Wr i t e , P ro t e c t i on , G r a n t P r o t e c t i o n ,
R e j e c t P r o t e c t i o n : Bus] (i d : i p) i s

r equ i re not (s ou r c e (i d)) ;

Ph. Ledent, R. Mateescu & W. Serwe 145

var d , e : data , s , t , u : s e c u r i t y , p , q , r : p r i v i l e g e , o , o t h e r : i p i n
d := data1 ; −− default value

s := non s e c u r e ; p := n o n p r i v i l e g e d ; −− lowest protection level

loop
se l ec t

Read (?o , id , ? t , ?q) where s ou r c e (o) ;
i f v a l i d a c c e s s (s , t , p , q) then

Grant Read (o , id , d)
e l s e

Re j e c t Read (o , i d)
end i f

[] Write (?o , id , ? t , ?q , ?e) where s ou r c e (o) ;
i f v a l i d a c c e s s (s , t , p , q) then

d := e ;
Gran t Wr i t e (o , i d)

e l s e
Re j e c t Wr i t e (o , i d)

end i f
[] Pro t e c t i o n (?o , id , ? t , ?q , ?u , ? r) where s ou r c e (o) ;

i f (t == s e c u r e) and (q == p r i v i l e g e d) then
s := u ; p := r ;
Gran t P r o t e c t i o n (o , id , s , p)

e l s e
Re j e c t P r o t e c t i o n (o , i d)

end i f
−− communication between other IPs on the shared interconnect

[] Read (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e)
where (o != i d) and s ou r c e (o t h e r)

[] Grant Read (? othe r , ?o , ?any data)
where (o != i d) and s ou r c e (o t h e r)

[] Re j e c t Read (? othe r , ?o)
where (o != i d) and s ou r c e (o t h e r)

[] Write (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e , ?any data)
where (o != i d) and s ou r c e (o t h e r)

[] Gran t Wr i t e (? othe r , ?o)
where (o != i d) and s ou r c e (o t h e r)

[] Re j e c t Wr i t e (? othe r , ?o)
where (o != i d) and s ou r c e (o t h e r)

[] Pro t e c t i o n (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e ,
?any s e c u r i t y , ?any p r i v i l e g e)

where (o != i d) and s ou r c e (o t h e r)
[] Gran t P r o t e c t i o n (? othe r , ?o , ?any s e c u r i t y , ?any p r i v i l e g e)

where (o != i d) and s ou r c e (o t h e r)
[] Re j e c t P r o t e c t i o n (? othe r , ?o)

where (o != i d) and s ou r c e (o t h e r)
end se l ec t

end loop
end var

end process

−−—————————————————————————-

146 Testing Resource Isolation for System-on-Chip Architectures

process SOC [Read , Grant Read , Re jec t Read , Write , Grant Wr i te , Re j e c t Wr i t e ,
P ro t e c t i on , G r a n t P r o t e c t i o n , R e j e c t P r o t e c t i o n : Bus ,
Change Sou rc e Con f i g : any] (mu l t i t a s k i n g : Bool) i s

par Read , Grant Read , Re jec t Read , Write , Grant Wr i te , Re j e c t Wr i t e ,
P ro t e c t i on , G r a n t P r o t e c t i o n , R e j e c t P r o t e c t i o n

i n
SOURCE [. . .] (ip1 , s e cu r e , p r i v i l e g e d , data1 , mu l t i t a s k i n g)

| | SOURCE [. . .] (ip2 , s e cu r e , p r i v i l e g e d , data2 , mu l t i t a s k i n g)
| | SOURCE [. . .] (ip3 , s e cu r e , n o n p r i v i l e g e d , data1 , mu l t i t a s k i n g)
| | SOURCE [. . .] (ip4 , s e cu r e , n o n p r i v i l e g e d , data2 , mu l t i t a s k i n g)
| | SOURCE [. . .] (ip5 , non s e cu r e , p r i v i l e g e d , data1 , mu l t i t a s k i n g)
| | SOURCE [. . .] (ip6 , non s e cu r e , p r i v i l e g e d , data2 , mu l t i t a s k i n g)
| | SOURCE [. . .] (ip7 , non s e cu r e , n o n p r i v i l e g e d , data1 , mu l t i t a s k i n g)
| | SOURCE [. . .] (ip8 , non s e cu r e , n o n p r i v i l e g e d , data2 , mu l t i t a s k i n g)
| | TARGET [. . .] (i p0)
end par

end process

−−—————————————————————————-

process SOC 2 [Read , Grant Read , Re jec t Read , Write , Grant Wr i te , Re j e c t Wr i t e ,
P ro t e c t i on , G r a n t P r o t e c t i o n , R e j e c t P r o t e c t i o n : Bus ,
Change Sou rc e Con f i g : any] i s

par Read , Grant Read , Re jec t Read , Write , Grant Wr i te , Re j e c t Wr i t e ,
P ro t e c t i on , G r a n t P r o t e c t i o n , R e j e c t P r o t e c t i o n

i n
SOURCE [. . .] (ip1 , s e cu r e , p r i v i l e g e d , data1 , true)

| | TARGET [. . .] (i p0)
end par

end process

−−—————————————————————————-

process MAIN [Read , Grant Read , Re jec t Read , Write , Grant Wr i te , Re j e c t Wr i t e ,
P ro t e c t i on , G r a n t P r o t e c t i o n , R e j e c t P r o t e c t i o n : Bus ,
Change Sou rc e Con f i g : any] i s

SOC [. . .] (f a l s e)
end process

−−—————————————————————————-

process PURPOSE 1 [Re jec t Read , Re j e c t Wr i t e , R e j e c t P r o t e c t i o n ,
TESTOR ACCEPT : none] i s

−− any reject

s e l e c t
Re j e c t Read

[] Re j e c t Wr i t e
[] Re j e c t P r o t e c t i o n
end se l ec t ;
loop TESTOR ACCEPT end loop

end process

Ph. Ledent, R. Mateescu & W. Serwe 147

−−—————————————————————————-

process PURPOSE 2 [Grant Read , Grant Wr i te , G r a n t P r o t e c t i o n , Re jec t Read ,
Re j e c t Wr i t e , R e j e c t P r o t e c t i o n , TESTOR ACCEPT : none] i s

−− any transaction (all possible outcomes) in any order

par
Grant Read

| | Gran t Wr i t e
| | Gran t P r o t e c t i o n
| | Re j e c t Read
| | Re j e c t Wr i t e
| | Re j e c t P r o t e c t i o n
end par ;
loop TESTOR ACCEPT end loop

end process

−−—————————————————————————-

process PURPOSE 3 [Grant Read , Grant Wr i te , G r a n t P r o t e c t i o n , Re jec t Read ,
Re j e c t Wr i t e , R e j e c t P r o t e c t i o n , TESTOR ACCEPT : none] i s

−− any transaction (all possible outcomes) in a seqential order

Grant Read ;
Gran t Wr i t e ;
Gran t P r o t e c t i o n ;
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;
loop TESTOR ACCEPT end loop

end process

−−—————————————————————————-

process PURPOSE 4 [Read , Grant Read , Write , G r a n t P r o t e c t i o n : Bus ,
TESTOR ACCEPT, TESTOR REFUSE : none] i s

−− granted read with different security/privilege than the preceding write

var s , t : s e c u r i t y , p , q : p r i v i l e g e , d : data i n
Gran t P r o t e c t i o n (?any ip , ip0 , ? s , ?p) ;
Write (?any ip , ip0 , s , p , ?d) ;
−− forbid any change of the security/privilege of the target

s e l e c t
n u l l

[] Gran t P r o t e c t i o n (?any ip , ip0 , ?s , ?p) ;
loop TESTOR REFUSE end loop

end se l ec t ;
Read (?any ip , ip0 , ? t , ?q) where (s != t) or (p != q) ;
Grant Read (?any ip , ip0 , d) ;
loop TESTOR ACCEPT end loop

end var
end process

−−—————————————————————————-

148 Testing Resource Isolation for System-on-Chip Architectures

end module

B PSS Model

component p s s t o p {

/ / ————————————————————————-

/ / Types

/ / ————————————————————————-

enum da ta e {
data1 , data2

}

enum s e c u r i t y e {
s e cu r e , n o n s e c u r e

}

enum p r i v i l e g e e {
p r i v i l e g e d , n o n p r i v i l e g e d

}

/ / ————————————————————————-

/ / Stream Flow Objects for Communication

/ / (three streams per operation, for request, grant, and reject)

/ / ————————————————————————-

/ / streams for read

stream r e q u e s t r e a d s t r e am {
rand s e c u r i t y e s e c ; / / security of the source requesting to read

rand p r i v i l e g e e p r i v ; / / privilege of the source requesting to read

}
pool r e q u e s t r e a d s t r e am r e q u e s t r e a d s t r e am po o l ;
bind r e q u e s t r e a d s t r e am po o l ∗ ;

stream g r a n t r e a d s t r e am {
rand da ta e data ; / / read data

}
pool g r a n t r e a d s t r e am g r a n t r e a d s t r e am po o l ;
bind g r a n t r e a d s t r e am po o l ∗ ;

stream r e j e c t r e a d s t r e am {}
pool r e j e c t r e a d s t r e am r e j e c t r e a d s t r e am p o o l ;
bind r e j e c t r e a d s t r e am p o o l ∗ ;

/ / streams for write

stream r e q u e s t w r i t e s t r e am {
rand s e c u r i t y e s e c ; / / security of the source requesting to write

rand p r i v i l e g e e p r i v ; / / privilege of the source requesting to write

Ph. Ledent, R. Mateescu & W. Serwe 149

rand da ta e data ; / / data to be written

}
pool r e q u e s t w r i t e s t r e am r e q u e s t w r i t e s t r e am p o o l ;
bind r e q u e s t w r i t e s t r e am p o o l ∗ ;

stream g r a n t w r i t e s t r e am {}
pool g r a n t w r i t e s t r e am g r a n t w r i t e s t r e am po o l ;
bind g r a n t w r i t e s t r e am po o l ∗ ;

stream r e j e c t w r i t e s t r e am {}
pool r e j e c t w r i t e s t r e am r e j e c t w r i t e s t r e am p o o l ;
bind r e j e c t w r i t e s t r e am p o o l ∗ ;

/ / streams for setting the protection

stream r e q u e s t p r o t e c t i o n s t r e am {
rand s e c u r i t y e s e c ; / / security of the requesting source

rand p r i v i l e g e e p r i v ; / / privilege of the requesting source

rand s e c u r i t y e n e x t s e c ; / / new security

rand p r i v i l e g e e n e x t p r i v ; / / new privilege

}
pool r e q u e s t p r o t e c t i o n s t r e am r e q u e s t p r o t e c t i o n s t r e am p o o l ;
bind r e q u e s t p r o t e c t i o n s t r e am p o o l ∗ ;

stream g r a n t p r o t e c t i o n s t r e am {}
pool g r a n t p r o t e c t i o n s t r e am g r a n t p r o t e c t i o n s t r e am p o o l ;
bind g r a n t p r o t e c t i o n s t r e am p o o l ∗ ;

stream r e j e c t p r o t e c t i o n s t r e am {}
pool r e j e c t p r o t e c t i o n s t r e am r e j e c t p r o t e c t i o n s t r e am p o o l ;
bind r e j e c t p r o t e c t i o n s t r e am p o o l ∗ ;

/ / ————————————————————————-

/ / Finite State Machine for the Source

/ / ————————————————————————-

enum s o u r c e s t a t e e {
i d l e , read , w r i t e , change

}

state s o u r c e s t a t e {
rand s o u r c e s t a t e e s s t a t e ;
rand da ta e data ;
rand s e c u r i t y e s e c ;
rand p r i v i l e g e e p r i v ;

}
pool s o u r c e s t a t e s o u r c e s t a t e p o o l ;
bind s o u r c e s t a t e p o o l ∗ ;

/ / initialize source

act ion i n i t s o u r c e {
input s o u r c e s t a t e i n s t a t e ;

150 Testing Resource Isolation for System-on-Chip Architectures

output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == true ;
/ / fix initial values (to cut nondeterminism)

cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s e c == s e c u r e ;
cons t ra in t o u t s t a t e . p r i v == p r i v i l e g e d ;
cons t ra in t o u t s t a t e . data == data1 ;

}

/ / source read request

act ion s r e q u e s t r e a d {
input s o u r c e s t a t e i n s t a t e ;
output s o u r c e s t a t e o u t s t a t e ;
output r e q u e s t r e a d s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / idle -¿ read

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == read ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
/ / write to stream

cons t ra in t ou t s t r e am . s e c == i n s t a t e . s e c ;
cons t ra in t ou t s t r e am . p r i v == i n s t a t e . p r i v ;

}

act ion s g r a n t r e a d {
input s o u r c e s t a t e i n s t a t e ;
input g r a n t r e a d s t r e am i n s t r e am ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / read -¿ idle

cons t ra in t i n s t a t e . s s t a t e == read ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
/ / no constraint on the (thus, random) data read from the input stream

}

act ion s r e j e c t r e a d {
input s o u r c e s t a t e i n s t a t e ;
input r e j e c t r e a d s t r e am i n s t r e am ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / read -¿ idle

Ph. Ledent, R. Mateescu & W. Serwe 151

cons t ra in t i n s t a t e . s s t a t e == read ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;

}

/ / source write request

act ion s r e q u e s t w r i t e {
input s o u r c e s t a t e i n s t a t e ;
output s o u r c e s t a t e o u t s t a t e ;
output r e q u e s t w r i t e s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / idle -¿ write

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == w r i t e ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
/ / write to stream

cons t ra in t ou t s t r e am . data == i n s t a t e . data ;
cons t ra in t ou t s t r e am . s e c == i n s t a t e . s e c ;
cons t ra in t ou t s t r e am . p r i v == i n s t a t e . p r i v ;

}

act ion s g r a n t w r i t e {
input s o u r c e s t a t e i n s t a t e ;
input g r a n t w r i t e s t r e am i n s t r e am ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / write -¿ idle

cons t ra in t i n s t a t e . s s t a t e == w r i t e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;

}

act ion s r e j e c t w r i t e {
input s o u r c e s t a t e i n s t a t e ;
input r e j e c t w r i t e s t r e am i n s t r e am ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / write -¿ idle

cons t ra in t i n s t a t e . s s t a t e == w r i t e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;

152 Testing Resource Isolation for System-on-Chip Architectures

/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;

}

/ / source protection change request

act ion s r e q u e s t p r o t e c t i o n {
input s o u r c e s t a t e i n s t a t e ;
output s o u r c e s t a t e o u t s t a t e ;
output r e q u e s t p r o t e c t i o n s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / idle -¿ change

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == change ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
/ / write to stream

/ / no constraint on the new security and new privilege of the target

/ / but source still states its security and privilege

cons t ra in t ou t s t r e am . s e c == i n s t a t e . s e c ;
cons t ra in t ou t s t r e am . p r i v == i n s t a t e . p r i v ;

}

act ion s g r a n t p r o t e c t i o n {
input s o u r c e s t a t e i n s t a t e ;
input g r a n t p r o t e c t i o n s t r e am i n s t r e am ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / change -¿ idle

cons t ra in t i n s t a t e . s s t a t e == change ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;

}

act ion s r e j e c t p r o t e c t i o n {
input s o u r c e s t a t e i n s t a t e ;
input r e j e c t p r o t e c t i o n s t r e am i n s t r e am ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / change -¿ idle

cons t ra in t i n s t a t e . s s t a t e == change ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / maintain fields

Ph. Ledent, R. Mateescu & W. Serwe 153

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . data == i n s t a t e . data ;

}

/ / change application running on the source: modify security, privilege, and data

act ion c h a n g e s o u r c e c o n f i g {
input s o u r c e s t a t e i n s t a t e ;
output s o u r c e s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / stay in idle

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / no constraint: randomly change source security, privilege, and data

/ / (change application running on the source)

}

/ / ————————————————————————-

/ / Finite State Machine for the Target

/ / ————————————————————————-

enum t a r g e t s t a t e e {
i d l e , read , w r i t e , change

}

state t a r g e t s t a t e { / / Target FSM

rand t a r g e t s t a t e e s s t a t e ; / / FSM STATE

/ / Target internal data

rand da ta e data ; / / current data

rand s e c u r i t y e s e c ; / / current sec protection

rand p r i v i l e g e e p r i v ; / / current priv protection

/ / Remember last transaction

rand s e c u r i t y e t x s e c ; / / transaction sec

rand p r i v i l e g e e t x p r i v ; / / transaction priv

rand da ta e t x d a t a ; / / transaction data (write request)

rand s e c u r i t y e n e x t s e c ; / / transaction change sec request

rand p r i v i l e g e e n e x t p r i v ; / / transaction change priv request

}
pool t a r g e t s t a t e t a r g e t s t a t e p o o l ;
bind t a r g e t s t a t e p o o l ∗ ;

act ion i n i t t a r g e t {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == true ;
/ / Cut nondeterminism by assigning inital values

cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . data == data1 ;
cons t ra in t o u t s t a t e . s e c == non s e c u r e ;
cons t ra in t o u t s t a t e . p r i v == n o n p r i v i l e g e d ;

154 Testing Resource Isolation for System-on-Chip Architectures

cons t ra in t o u t s t a t e . t x s e c == non s e c u r e ;
cons t ra in t o u t s t a t e . t x p r i v == n o n p r i v i l e g e d ;
cons t ra in t o u t s t a t e . t x d a t a == data1 ;
cons t ra in t o u t s t a t e . n e x t s e c == non s e c u r e ;
cons t ra in t o u t s t a t e . n e x t p r i v == n o n p r i v i l e g e d ;

}

/ / target READ request

act ion t r e q u e s t r e a d {
input t a r g e t s t a t e i n s t a t e ;
input r e q u e s t r e a d s t r e am i n s t r e am ;
output t a r g e t s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Idle -¿ Read

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == read ;
/ / save stream data

cons t ra in t o u t s t a t e . t x s e c == i n s t r e am . s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t r e am . p r i v ;
/ / Maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;

}

act ion t g r a n t r e a d {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;
output g r a n t r e a d s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Read -¿ Idle

cons t ra in t i n s t a t e . s s t a t e == read ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t a t e . t x p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;
/ / Check protection

cons t ra in t (i n s t a t e . t x s e c == s e c u r e) | |
(i n s t a t e . s e c == non s e c u r e) ;

cons t ra in t (i n s t a t e . t x p r i v == p r i v i l e g e d) | |

Ph. Ledent, R. Mateescu & W. Serwe 155

(i n s t a t e . p r i v == n o n p r i v i l e g e d) ;
/ / Write on stream (give the data)

cons t ra in t ou t s t r e am . data == i n s t a t e . data ;
}

act ion t r e j e c t r e a d {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;
output r e j e c t r e a d s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Read -¿ Idle

cons t ra in t i n s t a t e . s s t a t e == read ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t a t e . t x p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;
/ / Check protection

cons t ra in t (i n s t a t e . s e c == s e c u r e) | | (i n s t a t e . p r i v == p r i v i l e g e d) ;
cons t ra in t (

/ / sec check

((i n s t a t e . t x s e c == non s e c u r e) &&
(i n s t a t e . s e c == s e c u r e))

| |
/ / priv check

((i n s t a t e . t x p r i v == n o n p r i v i l e g e d) &&
(i n s t a t e . p r i v == p r i v i l e g e d))

) ;
/ / Write on stream (fail verdict)

}

/ / target WRITE request

act ion t r e q u e s t w r i t e {
input t a r g e t s t a t e i n s t a t e ;
input r e q u e s t w r i t e s t r e am i n s t r e am ;
output t a r g e t s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Idle -¿ Write

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == w r i t e ;
/ / save stream data

cons t ra in t o u t s t a t e . t x s e c == i n s t r e am . s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t r e am . p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t r e am . data ;
/ / Maintain fields

156 Testing Resource Isolation for System-on-Chip Architectures

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;

}

act ion t g r a n t w r i t e {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;
output g r a n t w r i t e s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / write -¿ idle

cons t ra in t i n s t a t e . s s t a t e == w r i t e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Check protection

cons t ra in t (i n s t a t e . t x s e c == s e c u r e) | |
(i n s t a t e . s e c == non s e c u r e) ;

cons t ra in t (i n s t a t e . t x p r i v == p r i v i l e g e d) | |
(i n s t a t e . p r i v == n o n p r i v i l e g e d) ;

/ / update data

cons t ra in t o u t s t a t e . data == i n s t a t e . t x d a t a ;
/ / maintain fields

cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t a t e . t x p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;

}

act ion t r e j e c t w r i t e {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;
output r e j e c t w r i t e s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Write -¿ Idle

cons t ra in t i n s t a t e . s s t a t e == w r i t e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t a t e . t x p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;
/ / Check protection

Ph. Ledent, R. Mateescu & W. Serwe 157

cons t ra in t (i n s t a t e . s e c == s e c u r e) | | (i n s t a t e . p r i v == p r i v i l e g e d) ;
cons t ra in t (

/ / sec check

((i n s t a t e . t x s e c == non s e c u r e) &&
(i n s t a t e . s e c == s e c u r e))

| |
/ / priv check

((i n s t a t e . t x p r i v == n o n p r i v i l e g e d) &&
(i n s t a t e . p r i v == p r i v i l e g e d))

) ;
/ / Write on stream (fail verdict)

}

/ / target Protection change request

act ion t r e q u e s t p r o t e c t i o n {
input t a r g e t s t a t e i n s t a t e ;
input r e q u e s t p r o t e c t i o n s t r e am i n s t r e am ;
output t a r g e t s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / idle -¿ change

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == change ;
/ / save stream data

cons t ra in t o u t s t a t e . t x s e c == i n s t r e am . s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t r e am . p r i v ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t r e am . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t r e am . n e x t p r i v ;
/ / maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;

}

act ion t g r a n t p r o t e c t i o n {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;
output g r a n t p r o t e c t i o n s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Change protection -¿ Idle

cons t ra in t i n s t a t e . s s t a t e == change ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Update protection

cons t ra in t o u t s t a t e . s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . t x p r i v ;
/ / Maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . t x s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t a t e . t x p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;

158 Testing Resource Isolation for System-on-Chip Architectures

cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;
/ / Check protection

cons t ra in t (i n s t a t e . t x s e c == s e c u r e) ;
cons t ra in t (i n s t a t e . t x p r i v == p r i v i l e g e d) ;

}

act ion t r e j e c t p r o t e c t i o n {
input t a r g e t s t a t e i n s t a t e ;
output t a r g e t s t a t e o u t s t a t e ;
output r e j e c t p r o t e c t i o n s t r e am out s t r e am ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Change protection -¿ Idle

cons t ra in t i n s t a t e . s s t a t e == change ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Maintain fields

cons t ra in t o u t s t a t e . data == i n s t a t e . data ;
cons t ra in t o u t s t a t e . s e c == i n s t a t e . s e c ;
cons t ra in t o u t s t a t e . p r i v == i n s t a t e . p r i v ;
cons t ra in t o u t s t a t e . t x s e c == i n s t a t e . t x s e c ;
cons t ra in t o u t s t a t e . t x p r i v == i n s t a t e . t x p r i v ;
cons t ra in t o u t s t a t e . t x d a t a == i n s t a t e . t x d a t a ;
cons t ra in t o u t s t a t e . n e x t s e c == i n s t a t e . n e x t s e c ;
cons t ra in t o u t s t a t e . n e x t p r i v == i n s t a t e . n e x t p r i v ;
/ / Check protection

cons t ra in t (

}

C Monolithic PSS Model

This PSS model also includes the four verification intents mentioned in Section 3.

component p s s t o p {
/ / ————————————————————————-

/ / Types

/ / ————————————————————————-

enum da ta e {
data1 , data2

}

enum s e c u r i t y e {
s e cu r e , n o n s e c u r e

}

enum p r i v i l e g e e {
p r i v i l e g e d , n o n p r i v i l e g e d

}

/ / ————————————————————————-

Ph. Ledent, R. Mateescu & W. Serwe 159

/ / Finite State Machine for the System

/ / ————————————————————————-

enum s y s t em s t a t e e {
i d l e , read , w r i t e , change

}

state s y s t em s t a t e {
/ / State of the FSM encoding the SoC

rand s y s t em s t a t e e s s t a t e ; / / FSM STATE

/ / Information about the source IP

rand s e c u r i t y e s o u r c e s e c ; / / current source security

rand p r i v i l e g e e s o u r c e p r i v ; / / current source privilege

rand da ta e s o u r c e d a t a ; / / current source used by source for WRITE

/ / Information about the target IP

rand s e c u r i t y e t a r g e t s e c ; / / current target security

rand p r i v i l e g e e t a r g e t p r i v ; / / current target privilege

rand da ta e t a r g e t d a t a ; / / current data stored in target

/ / New security and privilege (only meaningful for transaction PROTECTION)

rand s e c u r i t y e new sec ; / / new target security

rand p r i v i l e g e e new p r i v ; / / new target privilege

}
pool s y s t em s t a t e s y s t em s t a t e p o o l ;
bind s y s t em s t a t e p o o l ∗ ;

/ / ————————————————————————-

/ / Finite State Machine Actions

/ / ————————————————————————-

/ / Force an initial state

act ion i n i t s y s t em {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

/ / Execute only in the initial state

cons t ra in t i n s t a t e . i n i t i a l == true ;
/ / Cut nondeterminism by assigning inital values

cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Source (highst security and privilege levels)

cons t ra in t o u t s t a t e . s o u r c e s e c == s e c u r e ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == p r i v i l e g e d ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == data1 ;
/ / Target (lowest security and privilege levels)

cons t ra in t o u t s t a t e . t a r g e t s e c == non s e c u r e ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == n o n p r i v i l e g e d ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == data1 ;
/ / New target protection

cons t ra in t o u t s t a t e . new sec == non s e c u r e ;
cons t ra in t o u t s t a t e . n ew p r i v == n o n p r i v i l e g e d ;

160 Testing Resource Isolation for System-on-Chip Architectures

}

/ / ————————————————————————-

/ / When in IDLE state, let the source change it’s data and protection.

/ / This represents the change of the application currently running on the source.

act ion c h a n g e s o u r c e c o n f i g {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

/ / Do not execute in the initial state

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Stay in idle

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;
/ / Randomly change source security, privilege, and data

/ / (change application running on the source)

}

/ / ————————————————————————-

/ / READ

act ion s r e q u e s t r e a d {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

/ / Do not execute in the initial state

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Idle to Read

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == read ;
/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;

}

act ion t g r a n t r e a d {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

Ph. Ledent, R. Mateescu & W. Serwe 161

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Read to Idle

cons t ra in t i n s t a t e . s s t a t e == read ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Check protection

cons t ra in t (i n s t a t e . s o u r c e s e c == s e c u r e) | |
(i n s t a t e . t a r g e t s e c == non s e c u r e) ;

cons t ra in t (i n s t a t e . s o u r c e p r i v == p r i v i l e g e d) | |
(i n s t a t e . t a r g e t p r i v == n o n p r i v i l e g e d) ;

/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;

}

act ion t r e j e c t r e a d {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Read to Idle

cons t ra in t i n s t a t e . s s t a t e == read ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;

/ / Check protection

cons t ra in t (i n s t a t e . t a r g e t s e c == s e c u r e) | |
(i n s t a t e . t a r g e t p r i v == p r i v i l e g e d) ;

cons t ra in t (/ / security check

((i n s t a t e . s o u r c e s e c == non s e c u r e) &&
(i n s t a t e . t a r g e t s e c == s e c u r e))

| | / / privilege check

((i n s t a t e . s o u r c e p r i v == n o n p r i v i l e g e d) &&
(i n s t a t e . t a r g e t p r i v == p r i v i l e g e d))) ;

/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;

}

162 Testing Resource Isolation for System-on-Chip Architectures

/ / ————————————————————————-

/ / WRITE

act ion s r e q u e s t w r i t e {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Idle -¿ Write

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == w r i t e ;
/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;

}

act ion t g r a n t w r i t e {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Write to Idle

cons t ra in t i n s t a t e . s s t a t e == w r i t e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Check protection

cons t ra in t (i n s t a t e . s o u r c e s e c == s e c u r e) | |
(i n s t a t e . t a r g e t s e c == non s e c u r e) ;

cons t ra in t (i n s t a t e . s o u r c e p r i v == p r i v i l e g e d) | |
(i n s t a t e . t a r g e t p r i v == n o n p r i v i l e g e d) ;

/ / update data

cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;

}

act ion t r e j e c t w r i t e {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

Ph. Ledent, R. Mateescu & W. Serwe 163

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Write -¿ Idle

cons t ra in t i n s t a t e . s s t a t e == w r i t e ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Check protection

cons t ra in t (i n s t a t e . t a r g e t s e c == s e c u r e) | |
(i n s t a t e . t a r g e t p r i v == p r i v i l e g e d) ;

cons t ra in t (/ / security check

((i n s t a t e . s o u r c e s e c == non s e c u r e) &&
(i n s t a t e . t a r g e t s e c == s e c u r e))

| | / / privilege check

((i n s t a t e . s o u r c e p r i v == n o n p r i v i l e g e d) &&
(i n s t a t e . t a r g e t p r i v == p r i v i l e g e d))) ;

/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
cons t ra in t o u t s t a t e . new sec == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . n ew p r i v == i n s t a t e . n ew p r i v ;

}

/ / ————————————————————————-

/ / Change PROTECTION of target

act ion s r e q u e s t p r o t e c t i o n {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Idle to Change

cons t ra in t i n s t a t e . s s t a t e == i d l e ;
cons t ra in t o u t s t a t e . s s t a t e == change ;
/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
/ / Randomly select new target security and privilege

}

act ion t g r a n t p r o t e c t i o n {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

164 Testing Resource Isolation for System-on-Chip Architectures

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Change to Idle

cons t ra in t i n s t a t e . s s t a t e == change ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Check protection

cons t ra in t (i n s t a t e . s o u r c e s e c == s e c u r e) ;
cons t ra in t (i n s t a t e . s o u r c e p r i v == p r i v i l e g e d) ;
/ / Update target protection

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . new sec ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . n ew p r i v ;
/ / Reset new target protection

cons t ra in t o u t s t a t e . new sec == non s e c u r e ;
cons t ra in t o u t s t a t e . n ew p r i v == n o n p r i v i l e g e d ;
/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;
}

act ion t r e j e c t p r o t e c t i o n {
input s y s t em s t a t e i n s t a t e ;
output s y s t em s t a t e o u t s t a t e ;

cons t ra in t i n s t a t e . i n i t i a l == fa l s e ;
/ / Move from Change to Idle

cons t ra in t i n s t a t e . s s t a t e == change ;
cons t ra in t o u t s t a t e . s s t a t e == i d l e ;
/ / Check protection

cons t ra in t (/ / security check

(i n s t a t e . s o u r c e s e c == non s e c u r e) | |
/ / privilege check

(i n s t a t e . s o u r c e p r i v == n o n p r i v i l e g e d)) ;
/ / Reset new target protection

cons t ra in t o u t s t a t e . new sec == non s e c u r e ;
cons t ra in t o u t s t a t e . n ew p r i v == n o n p r i v i l e g e d ;
/ / Maintain source fields

cons t ra in t o u t s t a t e . s o u r c e s e c == i n s t a t e . s o u r c e s e c ;
cons t ra in t o u t s t a t e . s o u r c e p r i v == i n s t a t e . s o u r c e p r i v ;
cons t ra in t o u t s t a t e . s o u r c e d a t a == i n s t a t e . s o u r c e d a t a ;
/ / Maintain target fields

cons t ra in t o u t s t a t e . t a r g e t s e c == i n s t a t e . t a r g e t s e c ;
cons t ra in t o u t s t a t e . t a r g e t p r i v == i n s t a t e . t a r g e t p r i v ;
cons t ra in t o u t s t a t e . t a r g e t d a t a == i n s t a t e . t a r g e t d a t a ;

}

/ / ————————————————————————-

/ / Verification intents

/ / ————————————————————————-

/ / Any reject

Ph. Ledent, R. Mateescu & W. Serwe 165

act ion i n t e n t 1 {
t r e j e c t r e a d Re j e c t Read ;
t r e j e c t w r i t e R e j e c t Wr i t e ;
t r e j e c t p r o t e c t i o n R e j e c t P r o t e c t i o n ;
a c t i v i t y {

s e l e c t {
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;

}
}

}

/ / All responses (interleaving semantics)

act ion i n t e n t 2 {
t g r a n t r e a d Grant Read ;
t g r a n t w r i t e Gran t Wr i t e ;
t g r a n t p r o t e c t i o n G r an t P r o t e c t i o n ;
t r e j e c t r e a d Re j e c t Read ;
t r e j e c t w r i t e R e j e c t Wr i t e ;
t r e j e c t p r o t e c t i o n R e j e c t P r o t e c t i o n ;
a c t i v i t y {

schedule{
Grant Read ;
Gran t Wr i t e ;
Gran t P r o t e c t i o n ;
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;

}
}

}

/ / All responses (sequential semantics)

act ion i n t e n t 3 {
t g r a n t r e a d Grant Read ;
t g r a n t w r i t e Gran t Wr i t e ;
t g r a n t p r o t e c t i o n G r an t P r o t e c t i o n ;
t r e j e c t r e a d Re j e c t Read ;
t r e j e c t w r i t e R e j e c t Wr i t e ;
t r e j e c t p r o t e c t i o n R e j e c t P r o t e c t i o n ;
a c t i v i t y {

Grant Read ;
Gran t Wr i t e ;
Gran t P r o t e c t i o n ;
Re j e c t Read ;
Re j e c t Wr i t e ;
Re j e c t P r o t e c t i o n ;

}
}

/ / Access data with different security and/or privilege

166 Testing Resource Isolation for System-on-Chip Architectures

/ / This test scenario executes the following steps:

/ / 1) Elevate target security/privilege

/ / 2) Write data to target with same security/privilege as the target

/ / 3) Change source security/privilege, keeping target security/privilege unchanged

/ / 4) read the target

/ / We did not find how to express unwanted behavior (e.g., how to forbid to change target security/privilege).

/ / Thus we request that there is a change of the source configuration immediately after the write transaction

/ / was granted and rely on the shortest path to avoid any further change of the target security/privilege before

/ / the read transaction.

act ion i n t e n t 4 {
c h a n g e s o u r c e c o n f i g Change Source ;
t g r a n t r e a d Grant Read ;
t g r a n t p r o t e c t i o n G r an t P r o t e c t i o n ;
t g r a n t w r i t e Gran t Wr i t e ;
a c t i v i t y {

Gran t P r o t e c t i o n ; / / get s and p

Gran t Wr i t e ; / / do an accepted write with the same s and p

Change Source ;
/ / Rely on shortest path to not do any other Grant Protection

Grant Read ; / / do an accepted read with another s or another p

}

cons t ra in t {
/ / Grant Write with the same security and privilege as Grant Protection

Gran t Wr i t e . i n s t a t e . s o u r c e s e c ==
Gran t P r o t e c t i o n . o u t s t a t e . s o u r c e s e c ;

Gran t Wr i t e . i n s t a t e . s o u r c e p r i v ==
Gran t P r o t e c t i o n . o u t s t a t e . s o u r c e p r i v ;

/ / Read granted to a source different security or privilege as the Write

((Grant Read . i n s t a t e . s e c != Gran t Wr i t e . o u t s t a t e . s e c) | |
(Grant Read . i n s t a t e . p r i v != Gran t Wr i t e . o u t s t a t e . p r i v)) ;

/ / Read with same target security and privilege as Grant Protection

/ / (no guarantee of absence of change in between)

Grant Read . i n s t a t e . t a r g e t s e c ==
Gran t P r o t e c t i o n . o u t s t a t e . t a r g e t s e c ;

Grant Read . i n s t a t e . t a r g e t p r i v ==
Gran t P r o t e c t i o n . o u t s t a t e . t a r g e t p r i v ;

/ / Read the data that was written

/ / (no guarantee of absence of change in between)

Grant Read . i n s t a t e . t a r g e t d a t a == Gran t Wr i t e . o u t s t a t e . t a r g e t d a t a ;
}

/ / Allow nothing between Grant Write and Change Source

/ / This prevents all other actions because there is only one flow object

bind Gran t Wr i t e . o u t s t a t e Change Source . i n s t a t e ;
}

}

Ph. Ledent, R. Mateescu & W. Serwe 167

D SVL Script for all Verification Steps

The following SVL script11 generates and compares the LTSs mentioned in Sections 2.1 and 2.2. It

requires the translation to LNT of the monolithic PSS model (available in the MARS model repository).

−− generation of the LTS for a SoC with 8 source IPs

”mode l 8 1 .b cg ” =
reduct ion of ” mod e l 8 1 . l n t ” ;

−− generation of the LTS for a SoC with a single source IP

”mode l 2 1 .b cg ” =
reduct ion of
−− remove all actions from absent sources (only IP1 is present)

t o t a l cut a l l but ” [ˆ !] ∗ ! IP1 .∗ ” i n
” mod e l 8 1 . l n t ” : ”SOC 2” ;

−− generation of the LTS for the PSS model

” R I mo n o l i t h i c . b c g ” =
strong reduct ion of
weak trace reduct ion of
branching reduct ion of
−− 4. suppression of supperfluous offers (to be completed)

t o t a l rename
” \(CHANGE SOURCE CONFIG\) .∗ \ (! [ˆ !] ∗ ! [ˆ !] ∗ ! [ˆ !] ∗ \) ! [ˆ !] ∗ ! [ˆ !] ∗ !

[ˆ !] ∗ ! [ˆ !] ∗ ! [ˆ !] ∗” −> ”\1 \2” ,
” \(GRANT READ\) .∗ \ (! [ˆ !] ∗ \) ! [ˆ !] ∗ ! [ˆ !] ∗” −> ”\1 \2” ,
” \(GRANT WRITE\) .∗ ” −> ”\1” ,
” \(GRANT PROTECTION\) .∗ \ (! [ˆ !] ∗ ! [ˆ !] ∗ \) ! [ˆ !] ∗ ! [ˆ !] ∗ ! [ˆ !] ∗” −> ”

\1 \2” ,
” \(REJECT [A−Z] ∗ \) .∗ ” −> ”\1” ,
”REQUEST \(READ\) ! [ˆ !] ∗ \ (! [ˆ !] ∗ ! [ˆ !] ∗ \) .∗ ” −> ”\1 \2” ,
”REQUEST \(WRITE\) ! [ˆ !] ∗ \ (! [ˆ !] ∗ ! [ˆ !] ∗ ! [ˆ !] ∗ \) .∗ ” −> ”\1 \2” ,
”REQUEST \(PROTECTION\) ! [ˆ !] ∗ \ (! [ˆ !] ∗ ! [ˆ !] ∗ \) .∗ \ (! [ˆ !] ∗ ! [ˆ !] ∗ \)

” −> ”\1 \2 \3”
i n
−− 3. suppression of the prefix SOURCE/TARGET

rename
”SOURCE \([A−Z] ∗ \) ” −> ”\1” ,
”TARGET \([A−Z] ∗ \) ” −> ”\1”

i n
−− 2. removal of the first offer (indicating the action)

t o t a l rename
” \([ˆ !] ∗ \) ! PSS TOP X [ˆ !] ∗ \(.∗ \) ” −> ”\1\2”

i n
−− 1. removal of the gate prefix ”PSS TOP X ”

rename
”PSS TOP X \(.∗ \) ” −> ”\1”

11SVL (Script Verification Language) is the language for describing verification scenarios for the CADP toolbox.

168 Testing Resource Isolation for System-on-Chip Architectures

i n
−− hiding initialisation and interaction with the state flow object

divbranching reduct ion of
hide

”.∗OUTPUT” ,
”.∗INPUT” ,
” .∗INIT SYSTEM”

i n
” . . /PSS/ R I m o n o l i t h i c . l n t ”

end hide ;

−− comparion of the three LTSs

property MODEL EQUIVALENCE
” a f t e r h i d i n g i p i d e n t i t i e s , a l l s mode ls a r e e q u i v a l e n t ”

i s
branching comparison

hide CHANGE SOURCE CONFIG i n
t o t a l rename ” \([ˆ] ∗ \) ! [ˆ !] ∗ ! [ˆ !] ∗ \(.∗ \) ” −> ”\1 \2” i n
”mode l 8 1 .b cg ”
==
hide CHANGE SOURCE CONFIG i n
t o t a l rename ” \([ˆ] ∗ \) ! [ˆ !] ∗ ! [ˆ !] ∗ \(.∗ \) ” −> ”\1 \2” i n
”mode l 2 1 .b cg ” ;

expected TRUE;

branching comparison
hide CHANGE SOURCE CONFIG i n
t o t a l rename ” \([ˆ] ∗ \) ! [ˆ !] ∗ ! [ˆ !] ∗ \(.∗ \) ” −> ”\1 \2” i n
”mode l 8 1 .b cg ”
==
hide CHANGE SOURCE CONFIG i n
” R I mo n o l i t h i c . b c g ” ;

expected TRUE;
end property

F. Lang, M. Volk (Eds):
Models for Formal Analysis of Real Systems (MARS 2024)
EPTCS 399, 2024, pp. 169–191, doi:10.4204/EPTCS.399.8

© Bjarne Johansson et al.
This work is licensed under the
Creative Commons Attribution License.

Formal Verification of Consistency for Systems with
Redundant Controllers

Bjarne Johansson
ABB AB, Västerås, Sweden

Mälardalen University, Västerås, Sweden

bjarne.johansson@se.abb.com

Bahman Pourvatan Zahra Moezkarimi Alessandro Papadopoulos Marjan Sirjani
Mälardalen University, Västerås, Sweden

firstname.lastname@mdu.se

A potential problem that may arise in the domain of distributed control systems is the existence of
more than one primary controller in redundancy plans that may lead to inconsistency. An algorithm
called NRP FD is proposed to solve this issue by prioritizing consistency over availability. In this
paper, we demonstrate how by using modeling and formal verification, we discovered an issue in
NRP FD where we may have two primary controllers at the same time. We then provide a solution
to mitigate the identified issue, thereby enhancing the robustness and reliability of such systems.

1 Introduction

Control systems are essential in the automation solution of domains such as offshore oil extraction,
refineries, and hydropower plants - sectors where downtime can lead to significant financial losses or
even life-threatening incidents. These automation solutions incorporate redundancy to mitigate the risk
of unplanned downtime due to hardware failures by duplicating critical components like controllers.
The common approach is standby redundancy, where an active primary controller manages the pro-
cess, and a passive backup is ready to take over in case of primary failure [21]. These controllers,
or Distributed Controller Nodes (DCN), interact with the physical world through Field Communica-
tion Interfaces (FCI), connecting to input/output (I/O) devices. The FCI supplies process values to the
DCN, which then executes control actions based on these inputs and sends outputs back to the FCI.

DCN 1
(P)

Redundancy link (A)

Redundancy link (B)

Redudant DCN

I/O I/O I/O

FCI
Fieldbus

DCN 2
(B)

Figure 1: A redundant DCN (con-
troller) pair synchronized with ded-
icated, redundant redundancy link.

For a backup DCN to seamlessly assume the primary role, it
must detect the primary’s failure and resume the primary role
with the former primary’s last known state. The primary cycli-
cally replicates its latest state to the backup and sends a heartbeat,
i.e., a message with predetermined intervals for failure detection.
Heartbeat absence signifies a possible primary failure. Controller
redundancy communication is conventionally carried out over a
dedicated, point-to-point connection [27, 18, 20], as illustrated in
Figure 1. Failure of the redundancy link can partition the DCN
pair, disrupting synchronization and causing their internal states
to diverge. This divergence might result in inconsistent outputs to
the FCI.

Two strategies are common when managing failures in redun-
dancy communication links: (i) disabling redundancy following

http://dx.doi.org/10.4204/EPTCS.399.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

170 Formal Verification of Consistency in Systems with Redundant Controllers

the failure of one of the links or (ii) continuing in redundant mode. These strategies reflect the alterna-
tives a distributed system has in case of partitioning: remain consistent and sacrifice availability or vice
versa—consequence of the Consistency, Availability, and Partitioning tolerance (CAP) theorem [6].

Disabling redundancy after a redundancy link failure compromises availability, as the backup won’t
activate if the primary controller fails before the link is repaired. While this method prioritizes consis-
tency, a concurrent loss of both redundancy links can still lead to a dual primary situation [20].

The alternative, operating redundantly with only one functioning redundancy link, risks causing
a dual primary situation if the remaining redundancy link fails. This is because the backup can not
distinguish missing heartbeats due to a failure of the link from a failure of the primary. Some vendors call
a dual primary scenario non-synchronized active units, signifying the consistency compromise following
from CAP [18]. Controllers unable to communicate can not synchronize, leading to an inconsistent state
in the redundant pair.

The advent of Industry 4.0 is steering industrial controllers towards a network-centric design [2, 4,
16]. As defined by the Open Process Automation Forum (OPAF), the DCNs and FCI are integrated
into a cohesive communication network. Additionally, this network backbone can support redundancy
communication and replace the redundancy link shown in Figure 1 with a network, see Figure 2.

Switch A1 Switch A2

FCI A I/O I/O
DCN 1

(P)
DCN 2

(B)FCI A I/O I/O

Switch B1 Switch B2

FCI A I/O I/O

Switch A3

Switch B3

Figure 2: Redundant controllers connected over a redundant, disjoint network backbone.

When communication between a redundant DCN pair fails, as shown in Figure 3a, traditional ap-
proaches either disable redundancy at the first failure (F1) or allow the system to operate in a non-
synchronized dual-primary mode, as shown in Figure 3b. Johansson et al. [10] introduce the Network
Reference Point Failure Detection (NRP FD) for such redundant DCN systems. NRP FD prioritizes con-
sistency while reducing the impact on availability. It uses an external Network Reference Point (NRP) as
a tiebreaker for primary role determination, aiding the backup DCN in differentiating between primary
and network failures. For a DCN to attain and retain the primary role, it must maintain communication

Switch A1 Switch A2 F1

F2

FCI A I/O I/O
DCN 1

(P)
DCN 2

(B)FCI A I/O I/O

Switch B1 Switch B2

FCI A I/O I/O

Switch A3

Switch B3

Heartbeat

Heartbeat

(a)

Switch A1 F1

F2

FCI A I/O I/O
DCN 1

(P)
DCN 2

(P)FCI A I/O I/O

Switch B1

FCI A I/O I/O

Switch A3

Switch B3

DCN 1 output values

Switch A2

DCN 2 output values

Switch B2

(b)

Figure 3: (a) F1 and F2 exemplify network failures partitioning the redundant controller pair, preventing
the heartbeat (and other communication) between DCN 1 and DCN 2. (b) Due to F1 and F2 caused
partitioning, both DCN 1 and DCN 2 become primary and drive potentially inconsistent outputs.

Bjarne Johansson et al. 171

with the NRP. The importance of addressing dual primary risks is emphasized in manuals recommend-
ing spatially separated redundancy links in current systems to avoid simultaneous damage and undefined
system states [20].

To design an algorithm that guarantees the uniqueness of the primary the following questions need
to be answered:

• How should the backup know about a failure?

• When should the backup become a primary?

As described by Johansson et al. in [10], the NRP FD uses heartbeats for primary failure detection
(heartbeat) and a separate message for NRP reachability testing and detecting network failure. This
introduces a potential vulnerability: the absence of a heartbeat is a sign of the primary failure, while NRP
reachability is verified separately. Consequently, temporary disturbances could lead to inconsistencies,
underscoring the importance of testing with temporal disturbances. Hence, one other question also have
to be answered:

• How should we take care of the transient errors in switches or DCNs?

Since nondeterministic behavior is generally undesirable in control systems, particularly in high-
integrity systems crucial for safety-critical solutions, like the ABB AC 800M High Integrity system [1],
we need assurance of the correctness of the algorithm. Therefore, this paper describes in detail the
modeling and formal verification of the NRP FD algorithm, considering the main safety property of
"NoDualPrimary". We use Timed Rebeca which is an actor-based modeling language for reactive and
distributed systems and its model checker tool Afra to model and verify NRF FD. We model different
failures including transient errors and illustrate the results. We also propose an enhanced lease-based
version of NRP FD that ensures a singular primary in the case of transient errors.

2 Network Reference Point Failure Detection (NRP FD) Algorithm

NRP FD targets failure detection in redundant controller pairs. In a standard system, two controllers,
DCN 1 and DCN 2, function as primary and backup, respectively, as illustrated in Figure 4. The primary
is unique in the system and interacts with I/O devices, while the backup, in standby mode, activates only
upon primary failure. This concept is known as standby redundancy [21]. These controllers, DCN 1
and DCN 2, require communication, typically through a network facilitated by switches [4, 16]. Redun-
dant controllers are often paired with dual independent networks for enhanced reliability, as depicted in
Figure 4.

NRP FD is a heartbeat-based failure detection algorithm where the primary controller sends regu-
lar heartbeat messages to the backup via the networks connecting the redundant DCN pair [10]. These
heartbeats, a push-based failure detection method, involve the primary sending messages to the backup
at a known interval [19]. NRP FD differs from traditional heartbeat-based failure detection due to its
NRP usage. An NRP must meet two requirements: (i) it should not share common cause failures with
the redundant DCN pair, and (ii) be accessible from only one DCN in case of network partitioning.
Each controller typically has one NRP candidate per independent network, as illustrated in Figure 4,
where network switches serve as potential NRPs. The uper network in Figure 4 includes three switches
Switch A1, Switch A2, and Switch A3, and the lower network includes Switch B1, Switch B2, and
Switch B3. The NRP candidate set for the primary is {Switch A1,Switch B1} and for the backup is
{Switch A3,Switch B3}, and Switch A1 is the NRP.

172 Formal Verification of Consistency in Systems with Redundant Controllers

NRP candidate NRP candidate

NRP
(NRP candidate)

NRP candidate

Switch A1

FCI A I/O I/O
DCN 1

(P)
DCN 2

(B)FCI A I/O I/O

Switch B1

FCI A I/O I/O

Switch A3

Switch B3

Switch A2

Switch B2

Figure 4: The redundant network backbone with the NRP and NRP candidates highlighted.

The operational procedure of NRP FD is as follows: before enabling redundancy, the primary DCN
selects an NRP from the available NRP candidates. The heartbeat message communicates the NRP
selection to the backup. The primary continuously monitors the NRP, ensuring its accessibility and
proposing a change to the backup if the NRP is unreachable. If the backup doesn’t acknowledge this
change within a set time, the primary leaves the primary role. Concurrently, the backup continuously
monitors heartbeats from the primary. If these are missing for a predetermined duration, the backup
assesses its NRP connection. Should this connection be active, the backup takes the primary role. The
following section will provide more details of the algorithm and its Timed Rebecca model.

3 Modeling and Verification of NRP FD using Timed Rebeca

We use Timed Rebeca language and its integrated model checker tool, Afra, to model and verify NRP FD.
For modeling NRP FD, we have used the description of the protocol and the diagrams provided in [10]
as well as several meetings with the industrial partners to clarify the details and choose the appropriate
level of abstraction, which we will discuss in the remainder of this section.

3.1 The actor-based language, Timed Rebeca

Rebeca (Reactive Object Language) [26, 22] is an actor-based language designed for modeling and for-
mal verification of reactive concurrent and distributed systems. Actors [8, 3] are units of concurrency. In
Rebeca models, reactive objects known as rebecs resemble actors with no shared variables, asynchronous
message passing, and unbounded message buffers. Each rebec has a single thread of execution. Commu-
nication with other rebecs is achieved by sending messages, and periodic behavior is executed by sending
messages to itself. Rebeca has no explicit receive statement, and its send statements are non-blocking.
Each rebec has variables, methods (message servers), and a dedicated message queue for received mes-
sages. How a rebec reacts to a message is specified in message servers. The rebec processes messages by
de-queuing from the top and executing the corresponding message server non-preemptively. The state of
a rebec can change during the execution of its message servers through assignment statements.

Rebeca is an imperative language with a syntax similar to Java. A Rebeca model consists of several
reactive classes and a main section. Each reactive class describes the type of a certain number of rebecs.
Rebecs (actors) are instantiated in the main block. While message queues in the semantics of Rebeca
are inherently unbounded, a user-specified upper bound for the queue size is necessary to ensure a finite
state space during model checking. Reactive classes include constructors, sharing the same name as the
class, responsible for initializing the actor’s state variables and placing initially required messages in the
actor’s message buffer.

Bjarne Johansson et al. 173

In this work, we use Timed Rebeca (the timed extension of Rebeca) [24, 12] with a global logical
time. Timed Rebeca considers synchronized local clocks for all actors throughout the model. Instead
of a message queue, Timed Rebeca uses a message bag in which messages carry their respective time
tags. The sender tags its local time to a message at the time of sending. Timed Rebeca introduces three
timing primitives: "delay," "after," and "deadline." A delay statement represents the passage of time
for an actor while executing a message server, i.e., it is used to model computation times. All other
statements are assumed to execute instantaneously. The keywords "after" and "deadline" are augmented
to a message send statement. The term "after(n)" means it takes n units of time for a message to reach
its receiver. Using the after construct, we can model network delay and periodic events. We can use a
nondeterministic assignment to n, and model nondeterministic arrival times for a message (event). The
term "deadline(n)" conveys that if the message is not retrieved within n units of time, there will be a
timeout. An abstract syntax of Timed Rebeca is provided in Appendix A. Timed Rebeca is extended
with priorities [25]. Priorities are assigned to rebecs and message handlers to control the order of their
execution and hence enhance the determinism of the system’s behavior [14]. If more than one actor or
event are enabled at the same time, then the model checker builds all the possible execution traces, using
priorities you can cut some of the branches.

3.2 Modeling NRP-FD in Timed Rebeca

We model Figure 4 using Timed Rebeca. The model is extensible meaning that the number of switches
and nodes can be increased. In the Timed Rebeca model each node and each switch is modeled as an
actor, their communication is modeled as message passing, and reactions to each message, signal, and
timed event are modeled using message servers. A Rebeca model includes reactive class definitions,
defining the behavior of the rebecs (actors) within the model. L11 illustrates some parts of the Timed
Rebeca model for NRP FD.

In the NRP-FD model, we have two different element types, Node and Switch. Each element type
is defined as a reactive class, Node (L1, line 10) and Switch (L1, line 40). Each reactive class has a
constructor. A constructor is a unique method which is called when the actor is instantiated. Initialization
of the variables is done in the constructor. We instantiate two nodes with ids 100 and 101 and six switches
(A1-A3 and B1-B3) in the main section (L1, lines 59-68). A node can be a primary or a backup, and a
switch can be a non-terminal switch (not connected to a DCN), an NRP candidate, or an NRP. Each node
has an NRP candidate (switch) for each network, i.e., switches A1 and B1 with ids 1 and 4, respectively
for DCN1 and switches A3 and B3 for DCN2 with ids 3 and 6, respectively (L1, lines 66-67). The
parameters in the instantiation statements are used to set different types and also pass other necessary
information to the constructor.

We select DCN1 with id 100 as the primary at the beginning of the algorithm (second parameter
in lines 66-67 of L1). There are two known rebecs in the reactive class Node, meaning it can send
messages to these rebecs. We have a method call in the constructor of the Node, i.e., runMe (L1, line
22). In runMe (L1, line 28) the DCN checks its state using the state variable mode and then serves
the corresponding behavior (L1, lines 30-34). Note that, the last line of runMe (L1, line 35) is a
self-call followed by an after with heartbeat_period as its parameter, modeling a periodic event, i.e.,
"runMe()a f ter(heartbeat_period);". It means that in every heartbeat_period (determined in the code
L1, line 1), runMe is executed. The heartbeat_period should be significantly larger than other timing
parameters. This is because all events must be handled during a heartbeat interval. Regarding timing

1We use L1, L2 and L3 to refer to Listing 1, Listing 2 and Listing 3, respectively.

174 Formal Verification of Consistency in Systems with Redundant Controllers

1 env int heartbeat_period = 1000;
2 env int max_missed_heartbeats = 2;
3 env int ping_timeout =500;
4 env int nrp_timeout = 500;
5 env byte NumberOfNetworks = 2;
6 env int switchA1failtime = 2500;
7 ...
8 env int networkDelay = 1;
9 env int networkDelayForNRPPing = 1;

10 reactiveclass Node (4){
11 knownrebecs {Switch out1, out2;}
12 statevars {...}
13 Node (int Myid, int Myprimary, int NRPCan1_id, int NRPCan2_id, int myFailTime) {
14 id = Myid;
15 NRPCandidates[0] =NRPCan1_id;
16 NRPCandidates[1] =NRPCan2_id;
17 NRP_network = -1;
18 primary = Myprimary;
19 mode = WAITING;
20 ...
21 if(myFailTime!=0) nodeFail() after(myFailTime);
22 runMe();
23 }
24 msgsrv new_NRP_request_timed_out(){...}
25 msgsrv ping_timed_out() {...}
26 msgsrv pingNRP_response(int mid){...}
27 msgsrv new_NRP(int mid,int prim, int mNRP_network, int mNRP_switch_id) {...}
28 msgsrv runMe(){
29 if(?(true,false)) nodeFail();
30 switch(mode){
31 case 0: //WAITING : ...
32 case 1: //PRIMARY : ...
33 case 2: //BACKUP : ...
34 case 3: //FAILED : ...
35 self.runMe() after(heartbeat_period);
36 }
37 msgsrv heartBeat(byte networkId, int senderid) {...}
38 msgsrv nodeFail(){...}
39 }
40 reactiveclass Switch(10){
41 knownrebecs {...}
42 statevars {...}
43 Switch (int myid, byte networkId, boolean endSwitch , Switch sw1, Switch sw2, int myFailTime) {
44 mynetworkId = networkId;
45 id = myid;
46 terminal=endSwitch;
47 amINRP = false;
48 failed = false;
49 switchTarget1 = sw1;
50 switchTarget2 = sw2;
51 ...
52 }
53 msgsrv switchFail(){ failed = true; amINRP=false;}
54 msgsrv pingNRP_response(int senderNode){...}
55 msgsrv pingNRP(int switchNode, int senderNode, int NRP) {...}
56 msgsrv new_NRP(int senderNode, int mNRP_network, int mNRP_switch_id) {...}
57 msgsrv heartBeat(byte networkId, int senderNode) {...}
58 }
59 main {
60 @Priority(1) Switch switchA1(DCN1):(1, 0, true , switchA2 , switchA2 , switchA1failtime);
61 @Priority(1) Switch switchA2(DCN1):(2, 0, false , switchA1 , switchA3 , switchA1failtime);
62 @Priority(1) Switch switchA3(DCN2):(3, 0, true , switchA2 , switchA2 , switchA3failtime);
63 @Priority(1) Switch switchB1(DCN1):(4, 1, true , switchB2 , switchB2 , switchB1failtime);
64 @Priority(1) Switch switchB2(DCN1):(5, 1, false , switchB1 , switchB3 , switchB1failtime);
65 @Priority(1) Switch switchB3(DCN2):(6, 1, true , switchB2 , switchB2 , switchB3failtime);
66 @Priority(2) Node DCN1(switchA1, switchB1):(100, 100, 1, 4, node1failtime);
67 @Priority(2) Node DCN2(switchA3, switchB3):(101, 100, 3, 6, node2failtime);
68 }

Listing 1: (L1) An abstracted version of the Timed Rebeca model of NRP FD (Full version in Ap-
pendix C).

Bjarne Johansson et al. 175

parameters in modeling, we carefully consider values so that the model matches the reality. We will
discuss more on timing in the following.

PRIMARY BACKUP

FAILED

WAITING
Primary role acknowledged

No pingNRP answer &
NRP change not possible

Error acknowledged manually

(Heartbeat timeout & pingNRP answer) || (Simultaneous heartbeat timeout)

Backup role acknowledged
Startup

Heartbeat received

Figure 5: Different modes of a DCN in NRP FD in the Rebeca model. WAIT ING is the initial mode. The
node transitions from WAIT ING to PRIMARY or BACKUP based on the value passed to its constructor.
From PRIMARY , it moves to FAILED if after sending a pingNRP it receives no response from NRP
within the deadline, and it cannot change the NRP either. In the BACKUP state, the node transitions
to PRIMARY if the heartbeat timeouts and pingNRP detects a responsive NRP, or when the heartbeat
timeout occurs simultaneously for both networks. In the latter case the backup node assumes that the
primary node failed, because it is unlikely that there is a failure in both networks. The node stays in
BACKUP mode as long as it is receiving heartbeats. It remains in FAILED until the situation is resolved
manually.

In NRP FD, DCNs have four modes, WAIT ING, BACKUP, PRIMARY , and FAILED, as detailed
in the diagram in Figure 5. In the Rebeca model, we set the initial mode of DCN to WAIT ING in the
constructor of Node, L1, line 19. We pass the primary id to both nodes and in the WAIT ING mode the
variable denoting the role is set accordingly, and an NRP is announced.

In the PRIMARY mode, the primary DCN tests the NRP reachability with pingNRP, i.e., sends
message pingNRP to the NRP which then is served using the message server pingNRP (L1, line 55). In
a real system, the pingNRP could be realized with an Internet Control Message Protocol (ICMP) echo
(commonly known as ping) or another suitable protocol depending on the NRP’s capabilities. If the NRP
fails to respond, the primary announce a new NRP, assuming alternatives are available (using new_NRP
message server, L1, line 56). After assuring that an NRP exists, the primary DCN sends heartbeats. If
there is no available NRP, the primary transition to the FAILED mode (ping_timed_out in L1, line 25).

In the BACKUP mode, the DCN expects heartbeats from the primary. The heartbeat period and
tolerance limits (i.e., the number of missed heartbeats before a timeout is declared) must be carefully set
to minimize false positives due to transient disturbances. Given that typical DCN redundancy involves
two disjoint network paths, a heartbeat is expected on each network path per period. Simultaneous
timeouts on all paths likely indicate a primary failure rather than failure of both networks. Thus, NRP
FD offers an optimization: transitioning directly to the PRIMARY mode upon simultaneous heartbeat
timeouts, bypassing the pingNRP exchange. However, this optimization slightly increases the risk of
dual primaries. This is a bug that model checking catches. The number of maximum missed heartbeats
is set to 2 (max_missed_heartbeat in L1, line 2). L2, shows the BACKUP part of the message server
runMe. The variables heartbeats_missed_1 and heartbeats_missed_2 are counters for heartbeats on
the two networks which will increase at each period, and is reset to zero when a heartbeat is received.

176 Formal Verification of Consistency in Systems with Redundant Controllers

The backup DCN counts consecutive heartbeats_missed for each network. If both counters exceed the
defined limit of max_missed_heartbeat (L2, line 4), the backup detects a failure and sends a pingNRP
to the NRP to verify its reachability. If the NRP is reachable, the DCN transitions from BACKUP to the
PRIMARY state (in ping_timed_out, L1, line 25).

In the FAILED mode, NRP FD awaits the acknowledgment that manually confirms the resolution of
the issues that triggered the transition to FAILED.

1 case 2: //BACKUP :
2 heartbeats_missed_1++;
3 heartbeats_missed_2++;
4 if (heartbeats_missed_1 > max_missed_heartbeats && heartbeats_missed_2 > max_missed_heartbeats){
5 if(heartbeats_missed_1==heartbeats_missed_2 && heartbeats_missed_2==max_missed_heartbeats+1){
6 mode = PRIMARY;
7 primary=id;
8 ...
9 }else{

10 heartbeats_missed_1 =
(heartbeats_missed_1>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_1;↪→

11 heartbeats_missed_2 =
(heartbeats_missed_2>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_2;↪→

12 if(NRP_network==0){
13 ping_pending = true;
14 NRP_network=-1;
15 out1.pingNRP(id, NRP_switch_id) after(5);
16 ping_timed_out() after(ping_timeout);
17 }else{ ... // the other network }
18 NRP_pending = true;
19 }
20 }
21 else if(heartbeats_missed_1 > max_missed_heartbeats || heartbeats_missed_2 >

max_missed_heartbeats){...}↪→

Listing 2: (L2) The behavior of a DCN in BACKUP mode, in the message server runMe (full version is
provided in Appendix C).

Accuracy of the model. Based on the real situation, we consider the topology and the way the DCNs
interact with each other. The rationale for tolerating up to two lost heartbeats (max_missed_heartbeats=
2) is based on the low bit error rate of gigabit Ethernet and the ability of a heartbeat message to fit within
a standard 1500-byte Ethernet frame. This suggests a low likelihood of losing heartbeat messages, espe-
cially across two disjoint networks, thus minimizing the risk of false positives due to regular disturbances.
The heartbeat_period, combined with max_missed_heartbeats, determines the reaction time - the du-
ration from the occurrence of a primary failure to the point at which the backup takes over the primary
role. The takeover time requirement varies by domain; for process control, a maximum of 500 millisec-
onds is tolerable, as suggested by Hegazy et al. [7]. System manuals indicate feasible heartbeat periods
are in the tens of milliseconds range[20, 18]. Regarding propagation and pingNRP response times, the
propagation of a full-sized Ethernet frame on Gigabit Ethernet is about 12 microseconds, negligible com-
pared to the heartbeat period. The NRP’s response time is implementation-dependent, potentially under
a millisecond. If ICMP ping is employed, a few milliseconds response times are achievable [10]. We’ve
defined the heartbeat_period as 1000 time units and set the ping_timeout and nrp_timeout to 500 time
units. We also consider networkDelay and networkDelayForNRPPing as 1 unit of time. We use the
keyword a f ter when DCNs ping the NRP node and set it to 5 units of time. These values are chosen to
be approximately close to the actual values and preserve the sequence of the messages. Therefore, they
may vary, for instance, to a greater or lesser extent. But all timing events should be handled within one

Bjarne Johansson et al. 177

period, 1000 time units in our model. We used the a f ter construct where we needed to respect the order
of execution.

4 Model checking of NRP FD using Afra

We can define our desired properties using assertions in a separate file in Afra and perform model check-
ing. A snapshot of Afra is provided in Appendix B. The main safety property, "NoDualPrimary," is
shown in L3. This property is set to recognize the dual primary state, i.e., in no state the modes of the
two DCNs are both primary. We first define a set of atomic propositions, and then the assertions based
on these propositions. Timed Rebeca has a TCTL model checking but it is not integrated in Afra. In
many cases, looking at the visualization of the state space helps us see the problems with the algorithm.

1 property {
2 define {
3 DCN1Primary = (DCN1.mode ==1);
4 DCN2Primary = (DCN2.mode ==1);
5 }
6 Assertion{ NoDualPrimary:!(DCN1Primary && DCN2Primary); }}

Listing 3: The safety property "NoDualPrimary" for NRP FD.

For model checking, we consider the regular system behaviour, and scenarios where we have failures
of DCNs and switches. We examine all the possible failure combinations of DCNs and switches at the
start of handling an event, and perform model checking to provide a comprehensive analysis. We have
modeled failures in three scenarios each of which can have different cases:
1. Failures on each event. In this scenario, we add the following commands at the beginning of each
message server for DCNs and switches, simulating the possibility of their failure. Since this scenario
models the failure where an event should be handled, we refer to it as event-based. The expression
"?(true, f alse)" represents a nondeterministic choice between true and false. When the value true is
chosen then a variable is set, this variable is checked in the beginning of the messages servers and if it is
set the message server is not executed.

//Possible failure for a DCN:
if(?(true,false)) nodeFail();
//Possible failure for a Switch:
if(?(true,false)) switchFail();

2. Failures that occur at specific times. We define a set of variables to model the failure of different
DCNs and switches at specific times. By manipulating these variables, we can model various combina-
tions of DCN and switch failures at different times across multiple model checking runs.

env int switch1failtime = 0; env int switch2failtime = 2500; env int switch3failtime = 0;
env int switch4failtime = 2500;
env int node1failtime = 0; env int node2failtime = 0;
..
//Failure of a DCN at a specific point of time. Value zero means no failure.
if(myFailTime!=0) nodeFail() after(myFailTime);
...
//Failure of a Switch at a specific point of time. Value zero means no failure.
if (myFailTime!=0) switchFail() after(myFailTime);

3. Transient failures. These failures could occur, for example, if an attacker deliberately drops the
heartbeats for more than the maximum allowed misses (max_missed_heartbeats) on both networks.

178 Formal Verification of Consistency in Systems with Redundant Controllers

Subsequently, the backup DCN, upon detecting missed heartbeats, checks the NRP. If the NRP is reach-
able, it becomes the primary, assuming that the primary has failed, resulting in a dual-primary situation.
So we model a transient failure where both heartbeats are missed. Part (not all) of the code for this
scenario is the following, which states that only if we do not have an attacker, then the heartbeats will be
sent.

if(attacker<1){
out1.heartBeat(0, id) after(networkDelay);
out2.heartBeat(1, id) after(networkDelay);

}
Table 1 illustrates the scenarios we have considered and checked. Number of states and transitions are

also reported. Note that in the cases where the the assertion is violated, model checking is stopped after
reaching a counter example. Case 1 is the case with no failure. Case 2 is the event-based failure scenario
where we investigate all combinations of failures for any DCN or switch, where they stop reacting to
the events. Cases 3 to 5 consider failures at time 2500 for DCN1, switchA1 and switchA3, respectively.
This number is intended to go through a full round of algorithm execution, with two heartbeats. We have
considered case 3 for the PRIMARY failure as DCN1 is initially set as the primary DCN. We also consider
cases 4, 6, and 7 as failures of switches A1 and B1 can cause the primary DCN to be disconnected from
the networks. Case 5 is also considered to model a situation where the backup cannot ping the NRP. Case
8 is modeling the transient error. There are three cases where the model violates the property.

Table 1: Different test scenarios, without any failures, and with different types of failures

Case Configuration for failures Result no. of states and transitions
1 Without failure ✓ 38, 49
2 Failures on each event ✗ 3539, 4677
3 DCN1 fails at time 2500 ✓ 113, 138
4 switchA1 fails at time 2500 ✓ 114, 134
5 switchA3 fails at time 2500 ✓ 146, 179
6 switchA1 fails at time 2500 and switchB1 at time 3500 ✓ 187, 223
7 switchA1 and switchB1 fails simultaneously at time 2500 ✗ 70, 88
8 Heartbeats are missing because of transient errors ✗ 35, 42

Afra generates a counter-example in cases of any violation (here for cases 2, 7 and 8 of Table 1). We
can explore the states in the counter-example and see the value of the state variables in each of them.
A snapshot of the state space showing the dual primary situation for the case 7 is depicted in Figure 8
of Appendix D. These cases may be rare situations in reality, but in formal verification we detect and
eliminate the corner cases. To overcome these issues, we provide an extension for NRP FD, which will
be described next.

4.1 Leasing NRP FD

To address failure issues, we provide an enhanced NRP FD version called Leasing NRP FD. First, we
remove the optimization, i.e., transitioning directly from BACKUP to the PRIMARY mode upon simul-
taneous heartbeat timeouts, bypassing the NRPPing exchange (L2, lines 5-9).

While NRP FD prioritizes consistency, even without optimization, there remains a non-zero prob-
ability of failure. The heartbeat and pingNRP messages are separate: the heartbeat indicates whether
the primary is alive, and the pingNRP informs the backup about its separation from the NRP or the
NRP’s failure. Since these messages are distinct and can be independently disrupted, it’s theoretically
possible, as indicated by verification, that a temporary disturbance might disrupt the heartbeats. This

Bjarne Johansson et al. 179

disruption could lead the backup to believe the primary has failed, and upon a successful pingNRP fol-
lowing the transient disturbance, it might erroneously become the PRIMARY , even while the other DCN
remains primary. To address this vulnerability, we introduce the Leasing NRP FD, where the primary
role is ’leased’ from the NRP. This leasing can be implemented in various ways. In our model, the NRP
timestamps the latest pingNRP from the primary, and then the backup checks this timestamp. Full ver-
sion of Leasing NRP FD is provided in Appendix C and also on the Rebeca GitHub page2. Even with
a low probability of dual primary occurrences in the original NRP FD, this inherent algorithmic trait
could lead to nondeterministic behavior, which is unacceptable in safety-critical solutions. Thus, there’s
a need for algorithms like Leasing NRP FD, which eliminate such violations and are more suitable for
safety-critical systems. For this new algorithm, Afra created 15891 states, and 34053 transitions, and the
assertion is satisfied.

5 Why Timed Rebeca?

In [23], Sirjani argues that when selecting a modeling language, expressiveness is a key factor, but
faithfulness to the system being modeled and usability for the modeler are equally crucial. Faithfulness
is about how similar the model and the system are. It determines if and how the structures and features
supported by the modeling language match with the requirements of the system’s domain. Faithfulness
makes reusability possible, also in cases gives us better analyzability and traceability. Usability concerns
the modeler, and how swiftly the modeler can use the language. These two aspects together are called as
friendliness in [23].

Timed Rebeca is a language for modeling asynchronous communication in distributed systems, in-
corporating a focus on time-related aspects. Regarding faithfulness, actors are units of concurrency like
the controllers and switches in our case study. Timed Rebeca is event-driven, taking messages/events
from the message/event bags and executing their corresponding message servers. Timed Rebeca is used
for modeling and verification in many domains including different network protocols, schedulability in
sensor networks and Network on Chip (NoC) [23]. Considering our problem in the domain of distributed
control systems, Timed Rebeca provides a natural mapping of structures, features, and flow of control
for our purpose such as modeling the topology of the network, behavior of the DCNs and switches based
on their roles, the way they communicate using message passing, progress of time required for handing
a message, network delay, and periodic events using primitive timing keywords. Message queues/buffer
are not explicit and the modeler does not need to manage them. Timing concept is intuitive, and you
model the behavior from the perspective of each actor.

Regarding usability, it has a structure like a programming language, hence, it is easy for programmers
to use. Debugging can be done based on the counterexamples and going through the model checking
process iteratively. Timed Rebeca is supported by an Eclipse IDE called Afra [11]. Afra provides a
model checker tool for the family of Rebeca languages. The modeler enters the model and the properties
in separate files, then model check and debug the model in Afra. Timed models result in an infinite
number of states in the state space due to the progress of time, leading to unbounded transition systems.
A shift-equivalence relation is introduced for Timed Rebeca in [12, 13] to ensure a bounded state space.
Afra utilizes this relation to generate the state space including local actor states and logical time. Desired
properties can be written as assertions in a separate file in Afra. In case of violation, a counter-example
is shown visually alongside the model which gives us the ability to traverse and check the values of
the actors’ variables. As the state space is provided in an XML file, it is also possible to have a visual

2https://github.com/rebeca-lang

180 Formal Verification of Consistency in Systems with Redundant Controllers

representation of the entire state space (see an example in Figure 8, App. D). All the above gives us a
natural and easy way to model our system, and also provide us analzability and traceability.

6 Related work

Control systems evolve from hierarchical, controller-centric structures toward a flatter, network-centric
architecture, enhancing interconnectivity and facilitating communication with cloud services and edge
devices [4, 16]. These advancements have been leveraged for fault tolerance—employing backup DCNs
in the cloud or orchestrators to recover from DCN failures [7, 9]. To our knowledge, the NRP FD
algorithm is the first effort to reduce the CAP theorem’s [6] availability tradeoff while preserving con-
sistency in DCN redundancy scenarios [10]. The tradeoff mandated by the CAP theorem is evident in
today’s redundant DCN systems. Control system user manuals concretize the tradeoff with the different
approaches described, which either strive to maintain consistency or prioritize availability upon redun-
dancy link failure [20, 18]. Fault tolerance is ensured using duplicate links, as depicted in Figure 1.
With duplicated links, consistency can be prioritized by disabling DCN redundancy if one link fails [20].
However, a dual primary situation arises if both links fail simultaneously. Vice versa, availability is pri-
oritized by not disabling redundancy upon one link failure [18]. The Leasing NRP FD version assures
consistency by maintaining a single primary in all failure scenarios.

Appointing a primary is a leader election problem, and various leader election algorithms exist, such
as the well-known Bully algorithm [5]. However, the Bully algorithm, and variants thereof, elects mul-
tiple leaders in networking partitioning situations, one leader per partition. Alternatively, consensus
protocols like Raft and Paxos require a majority [17, 15], ensuring consistency even when partitions
occur, as only the majority-containing partition progresses. However, the most common DCN redun-
dancy configurations, typically comprising a primary and a backup, do not allow a majority to form in
the event of a partition separating the DCNs [21]. The NRP FD method introduces the NRP that, in
combination with a DCN, establishes a majority [10]. The NRP could be as simple as a layer two net-
work switch responding to an ICMP Ping, providing a means to favor consistency over availability. This
paper describes the modeling and verification of the NRP FD strategy, along with a novel, lightweight
enhancement ensuring a single primary, i.e., guaranteeing that consistency is preserved due to more than
one DCN taking the primary role. The algorithm is being extended in different directions, considering
different configurations and features. Our aim is to enrich our model align with the extensions of NRP
FD, when the extensions are available.

7 Conclusion and Future Work

In this paper we describe the process of modeling and formal verification of NRP FD protocol which
is used for preserving consistency in DCN redundancy scenarios using Timed Rebeca and Afra. We
investigate different failure scenarios and identify situations where network partitioning can lead to a
dual primary. We propose an extension, Leasing NRP FD, which preserves consistency and ensures ro-
bustness against different failures. For future research, we focus on the extensibility and flexibility of
the proposed protocol including the exploration of a dynamic network topology, multiple backups and
multiple primaries. The latter could be a redundancy plan with a single backup for multiple primaries,
each with different and unique characteristics such as specific heartbeat time and network delay. Ad-
ditionally, we aim to incorporate probability considerations rather than just focusing on the possibility

Bjarne Johansson et al. 181

(of failures). As another future direction, we plan to investigate the availability trade-off. While NRP-
FD prioritizes consistency, this may result in compromising availability. Quantifying this trade-off is a
potential direction for further research.

Acknowledgment

We acknowledge the support of the Swedish Knowledge Foundation via the synergy project SACSys
(Safe and Secure Adaptive Collaborative Systems) and the Profile DPAC (Dependable Platforms for
Autonomous Systems and Control). We also acknowledge the support of the Swedish Foundation for
Strategic Research (SSF) via the Serendipity project.

References

[1] AC 800M High Integrity. https://new.abb.com/control-systems/safety-systems/
system-800xa-high-integrity/ac-800m-hi-controller. Accessed: 2024-03-07.

[2] The DCS of Tomorrow - ABB’s Process Automation System Vision
Whitepaper. https://new.abb.com/control-systems/control-systems/
envisioning-the-future-of-process-automation-systems/automation-system-whitepaper.
Accessed: 2024-03-07.

[3] Gul Agha (1986): Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press, Cam-
bridge, MA, USA, doi:10.7551/mitpress/1086.001.0001.

[4] Johan Åkerberg, Johan Furunäs Åkesson, Jorgen Gade, Maryam Vahabi, Mats Björkman, Mehrzad
Lavassani, Rahul Nandkumar Gore, Thomas Lindh & Xiaolin Jiang (2021): Future industrial networks
in process automation: Goals, challenges, and future directions. Applied Sciences 11(8), p. 3345,
doi:10.3390/app11083345.

[5] H. Garcia-Molina (1982): Elections in a Distributed Computing System. IEEE Trans. Comput. 31(1), pp.
48–59, doi:10.1109/TC.1982.1675885.

[6] Seth Gilbert & Nancy Lynch (2002): Brewer’s conjecture and the feasibility of consistent, available,
partition-tolerant web services. Acm Sigact News 33(2), pp. 51–59, doi:10.1145/564585.564601.

[7] T. Hegazy & M. Hefeeda (2015): Industrial Automation as a Cloud Service. IEEE Trans. Par. and Distr. Syst.
26(10), pp. 2750–2763, doi:10.1109/TPDS.2014.2359894.

[8] Carl Hewitt, Peter Bishop & Richard Steiger (1973): A universal modular actor formalism for artificial
intelligence. In: Proceedings of the 3rd international joint conference on Artificial intelligence, Morgan
Kaufmann Publishers Inc., pp. 235–245. Available at http://ijcai.org/Proceedings/73/Papers/
027B.pdf.

[9] Bjarne Johansson, Mats Rågberger, Thomas Nolte & Alessandro V Papadopoulos (2022): Kubernetes or-
chestration of high availability distributed control systems. In: IEEE Int. Conf. on Ind. Tech. (ICIT),
doi:10.1109/ICIT48603.2022.10002757.

[10] Bjarne Johansson, Mats Rågberger, Alessandro Papadopoulos & Thomas Nolte (2023): Consis-
tency Before Availability: Network Reference Point based Failure Detection for Controller Redun-
dancy. In: 28th International Conference on Emerging Technologies and Factory Automation, pp. 1–8,
doi:10.1109/ETFA54631.2023.10275664.

[11] Ehsan Khamespanah, Marjan Sirjani & Ramtin Khosravi (2023): Afra: An Eclipse-Based Tool with Exten-
sible Architecture for Modeling and Model Checking of Rebeca Family Models. In Hossein Hojjat & Erika
Ábrahám, editors: Fundamentals of Software Engineering, Springer Nature Switzerland, Cham, pp. 72–87,
doi:10.1007/978-3-031-42441-0_6.

https://new.abb.com/control-systems/safety-systems/system-800xa-high-integrity/ac-800m-hi-controller
https://new.abb.com/control-systems/safety-systems/system-800xa-high-integrity/ac-800m-hi-controller
https://new.abb.com/control-systems/control-systems/envisioning-the-future-of-process-automation-systems/automation-system-whitepaper
https://new.abb.com/control-systems/control-systems/envisioning-the-future-of-process-automation-systems/automation-system-whitepaper
https://doi.org/10.7551/mitpress/1086.001.0001
https://doi.org/10.3390/app11083345
https://doi.org/10.1109/TC.1982.1675885
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/TPDS.2014.2359894
http://ijcai.org/Proceedings/73/Papers/027B.pdf
http://ijcai.org/Proceedings/73/Papers/027B.pdf
https://doi.org/10.1109/ICIT48603.2022.10002757
https://doi.org/10.1109/ETFA54631.2023.10275664
https://doi.org/10.1007/978-3-031-42441-0_6

182 Formal Verification of Consistency in Systems with Redundant Controllers

[12] Ehsan Khamespanah, Marjan Sirjani, Zeynab Sabahi-Kaviani, Ramtin Khosravi & Mohammad-Javad Izadi
(2015): Timed Rebeca schedulability and deadlock freedom analysis using bounded floating time transition
system. Science of Computer Programming 98, pp. 184–204, doi:10.1016/j.scico.2014.07.005.

[13] Ehsan Khamespanah, Marjan Sirjani, Mahesh Viswanathan & Ramtin Khosravi (2015): Floating time tran-
sition system: more efficient analysis of timed actors. In: Formal Aspects of Component Software, Springer,
pp. 237–255, doi:10.1007/978-3-319-28934-2_13.

[14] Ramtin Khosravi, Ehsan Khamespanah, Fatemeh Ghassemi & Marjan Sirjani (2024): Actors Upgraded for
Variability, Adaptability, and Determinism. In: Workshop on State-of-the-Art of Active Objects, pp. 226–
260, doi:10.1007/978-3-031-51060-1_9.

[15] Leslie Lamport (2001): Paxos Made Simple. ACM SIGACT News (Distributed Computing Column) 32, 4
(Whole Number 121, December 2001), pp. 51–58. Available at https://www.microsoft.com/en-us/
research/publication/paxos-made-simple/.

[16] Björn Leander, Bjarne Johansson, Tomas Lindström, Olof Holmgren, Thomas Nolte & Alessandro V Pa-
padopoulos (2023): Dependability and Security Aspects of Network-Centric Control. In: 2023 IEEE
28th International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE, pp. 1–
8, doi:10.1109/ETFA54631.2023.10275344.

[17] Diego Ongaro & John Ousterhout (2014): In search of an understandable consensus algorithm. In: 2014
USENIX annual technical conference (USENIX ATC 14), pp. 305–319. Available at https://www.
usenix.org/conference/atc14/technical-sessions/presentation/ongaro.

[18] PACSys (2023): PACSystems™ RX3i Hot Standby CPU Redundancy.
https://emerson-mas.my.site.com/communities/en_US/Documentation/
PACSystems-Hot-Standby-CPU-Redundancy-Users-Manual. Accessed: 2024-03-07.

[19] Benjamin Satzger, Andreas Pietzowski, Wolfgang Trumler & Theo Ungerer (2007): A new Adaptive Accrual
Failure Detector for Dependable Distributed Systems. In: In ACM Symposium on Applied Computing (SAC
2007, pp. 551–555, doi:10.1145/1244002.1244129.

[20] Siemens (2024): Siemens System Manual S7-1500R/H redundant system. https://cache.industry.
siemens.com/dl/files/833/109754833/att_965668/v3/s71500rh_manual_en-US_en-US.pdf.
Accessed: 2024-03-07.

[21] Andrei Simion & Calin Bira (2023): A review of redundancy in PLC-based systems. Advanced Topics in
Optoelectronics, Microelectronics, and Nanotechnologies XI 12493, pp. 269–276, doi:10.1117/12.2644462.

[22] Marjan Sirjani (2006): Rebeca: Theory, Applications, and Tools. In Frank S. de Boer, Marcello M. Bon-
sangue, Susanne Graf & Willem P. de Roever, editors: Formal Methods for Components and Objects, 5th
International Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10, 2006, Revised Lec-
tures, Lecture Notes in Computer Science 4709, Springer, pp. 102–126, doi:10.1007/978-3-540-74792-5_5.

[23] Marjan Sirjani (2018): Power is Overrated, Go for Friendliness! Expressiveness, Faithfulness, and Usability
in Modeling: The Actor Experience. In Marten Lohstroh, Patricia Derler & Marjan Sirjani, editors: Principles
of Modeling - Essays Dedicated to Edward A. Lee on the Occasion of His 60th Birthday, Lecture Notes in
Computer Science 10760, Springer, pp. 423–448, doi:10.1007/978-3-319-95246-8_25.

[24] Marjan Sirjani & Ehsan Khamespanah (2016): On Time Actors. In Erika Ábrahám, Marcello M. Bonsangue
& Einar Broch Johnsen, editors: Theory and Practice of Formal Methods, Lecture Notes in Computer Science
9660, Springer, pp. 373–392, doi:10.1007/978-3-319-30734-3_25.

[25] Marjan Sirjani, Edward A. Lee & Ehsan Khamespanah (2020): Verification of Cyberphysical Systems. Math-
ematics 8(7), doi:10.3390/math8071068.

[26] Marjan Sirjani, Ali Movaghar & MohammadReza Mousavi (2001): Compositional Verification of an Object-
Based Model for Reactive Systems. In: AVoCS 2001. Available at https://rebeca-lang.org/assets/
papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf.

https://doi.org/10.1016/j.scico.2014.07.005
https://doi.org/10.1007/978-3-319-28934-2_13
https://doi.org/10.1007/978-3-031-51060-1_9
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://www.microsoft.com/en-us/research/publication/paxos-made-simple/
https://doi.org/10.1109/ETFA54631.2023.10275344
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://emerson-mas.my.site.com/communities/en_US/Documentation/PACSystems-Hot-Standby-CPU-Redundancy-Users-Manual
https://emerson-mas.my.site.com/communities/en_US/Documentation/PACSystems-Hot-Standby-CPU-Redundancy-Users-Manual
https://doi.org/10.1145/1244002.1244129
https://cache.industry.siemens.com/dl/files/833/109754833/att_965668/v3/s71500rh_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/833/109754833/att_965668/v3/s71500rh_manual_en-US_en-US.pdf
https://doi.org/10.1117/12.2644462
https://doi.org/10.1007/978-3-540-74792-5_5
https://doi.org/10.1007/978-3-319-95246-8_25
https://doi.org/10.1007/978-3-319-30734-3_25
https://doi.org/10.3390/math8071068
https://rebeca-lang.org/assets/papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf
https://rebeca-lang.org/assets/papers/2001/CompositionalVerificationOfAnObject-BasedModelForReactiveSystems.pdf

Bjarne Johansson et al. 183

[27] Jacek Stój (2020): Cost-effective hot-standby redundancy with synchronization using EtherCAT and real-
time ethernet protocols. IEEE Transactions on Automation Science and Engineering 18(4), pp. 2035–2047,
doi:10.1109/TASE.2020.3031128.

A Rebeca Syntax

An abstract syntax of Timed Rebeca is provided in Figure 6.

Figure 6: An abstract syntax for Timed Rebeca. The identifiers className, rebecName, methodName,
literal and type are self-explanatory. The identifier v denotes a variable. The symbol e denotes an
expression, which can be either arithmetic, boolean or a non-deterministic choice. Angular brackets ⟨...⟩
serve as meta-parenthesis, with superscript + denoting at least one repetition and superscript ∗ denoting
zero or more repetitions. Meanwhile, the use of ⟨...⟩ with repetition indicates a comma-separated list.
Square brackets [...] indicate that the enclosed text is optional [23].

https://doi.org/10.1109/TASE.2020.3031128

184 Formal Verification of Consistency in Systems with Redundant Controllers

B Afra

A snapshot of Afra is provided in Figure 7. The state space statistics are shown in the bottom middle.
The generated counterexample is shown in the top right of the panel. At the bottom right, we can see the
value of the state variables in each selected state from the counterexample.

Figure 7: A snapshot of Afra.

C Timed Rebeca model of the Leasing NRP FD

In the following the Timed Rebeca model of the Leasing NRP FD is provided.

Bjarne Johansson et al. 185

1 env int heartbeat_period = 1000;
2 env int max_missed_heartbeats = 2;
3 env int ping_timeout =100;
4 env int nrp_timeout = 100;
5 // Node Modes
6 env byte WAITING = 0;
7 env byte PRIMARY = 1;
8 env byte BACKUP = 2;
9 env byte FAILED = 3;

10 env byte NumberOfNetworks = 2;
11

12 env byte MAX_SWITCHES = 99;
13 // for testing
14 env int fails_at_time = 0; //zero for no failure
15

16 env int switchA1failtime = 0;
17 env int switchA2failtime = 0;
18 env int switchA3failtime = 0;
19 env int switchB1failtime = 0;
20 env int switchB2failtime = 0;
21 env int switchB3failtime = 0;
22

23 env int node1failtime = 0;
24 env int node2failtime = 0;
25

26 env int networkDelay = 1;
27 env int networkDelayForNRPPing = 1;
28

29 reactiveclass Node (4){
30 knownrebecs {
31 Switch out1, out2;
32 }
33 statevars {
34 byte mode;
35 int id;
36 int [2] NRPCandidates;
37 int heartbeats_missed_1;
38 int heartbeats_missed_2;
39 int NRP_network;
40 int attacker;
41 int which;
42 boolean prevWhich;
43 int NRP_switch_id;
44 boolean NRP_pending;
45 boolean become_primary_on_ping_response;
46 int primary;
47 boolean ping_pending;
48 boolean init;
49 }
50 Node (int Myid, int Myprimary, int NRPCan1_id, int NRPCan2_id, int myFailTime) {
51 id = Myid;
52 attacker = 0;
53 which=0;
54 prevWhich=true;
55 NRPCandidates[0] =NRPCan1_id;
56 NRPCandidates[1] =NRPCan2_id;
57 heartbeats_missed_1 = 0;
58 heartbeats_missed_2 = 0;
59 NRP_network = -1;
60 NRP_switch_id = -1;
61 NRP_pending = true;
62 become_primary_on_ping_response = false;
63 primary = Myprimary;
64 ping_pending = false;
65 init=true;
66

67 mode = WAITING;
68 if(myFailTime!=0) nodeFail() after(myFailTime);
69 runMe();
70 }

186 Formal Verification of Consistency in Systems with Redundant Controllers

71 msgsrv new_NRP_request_timed_out() {
72 // if(?(true,false)) nodeFail();
73 if (mode == BACKUP) {
74 if (NRP_pending) {
75 NRP_pending = false;
76 if (become_primary_on_ping_response)
77 become_primary_on_ping_response = false;
78 }
79 }
80 }
81 // logical action ping_timed_out(ping_timeout)
82 msgsrv ping_timed_out() {
83 // if(?(true,false)) nodeFail();
84 if (mode == BACKUP) {
85 if (ping_pending) ping_pending = false;
86 else{
87 if(which>1){
88 mode = PRIMARY;
89 heartbeats_missed_1 = 0;
90 heartbeats_missed_2 = 0;
91 primary=id;
92 if(NRP_network==0) out1.new_NRPBack(id, id,NRP_network, NRP_switch_id);
93 else out2.new_NRPBack(id,id, NRP_network, NRP_switch_id);
94 mode = PRIMARY;
95 heartbeats_missed_1 = 0;
96 heartbeats_missed_2 = 0;
97 primary=id;
98 NRP_pending = true;
99 }else NRP_pending = true;

100 }
101 }else if (mode == PRIMARY){
102 if (ping_pending){
103 NRP_network++;
104 if(NRP_network<NumberOfNetworks){
105 NRP_switch_id = NRPCandidates[NRP_network];
106 if(NRP_network==0) out1.new_NRP(id, id,NRP_network, NRP_switch_id);
107 else out2.new_NRP(id,id, NRP_network, NRP_switch_id);
108 } else {
109 NRP_network=NumberOfNetworks;
110 mode= WAITING;
111 }
112 NRP_pending = true;
113 } else{
114 if(attacker<1){
115 out1.heartBeat(0, id) after(networkDelay);
116 out2.heartBeat(1, id) after(networkDelay);
117 }
118 }
119 }
120 }
121 msgsrv pingNRP_response(int mid, boolean w, boolean pw){
122 // if(?(true,false)) nodeFail();
123 if (mode==WAITING);
124 else if (mode == BACKUP){
125 if(!w && !pw) which++;
126 else which=0;
127 if(which>1)
128 ping_pending = false;
129 }
130 else if (mode == PRIMARY)
131 ping_pending = false;
132 else if (mode==FAILED);
133 }
134 msgsrv new_NRP(int mid,int prim, int mNRP_network, int mNRP_switch_id) {
135 // if(?(true,false)) nodeFail();
136 if(mode!= FAILED){
137 NRP_network = mNRP_network;
138 NRP_switch_id = mNRP_switch_id;
139 }
140 }

Bjarne Johansson et al. 187

141 msgsrv new_NRPBack(int mid,int prim, int mNRP_network, int mNRP_switch_id) {
142 // if(?(true,false)) nodeFail();
143 if(mode!= FAILED){
144 NRP_network = mNRP_network;
145 NRP_switch_id = mNRP_switch_id;
146 }
147 }
148 msgsrv runMe(){
149 switch(mode){
150 case 0: //WAITING :
151 if(init){
152 if (id == primary){
153 mode = PRIMARY;
154 NRP_network++;
155 if(NRP_network<NumberOfNetworks){
156 NRP_switch_id = NRPCandidates[NRP_network];
157 if(NRP_network==0)out1.new_NRP(id,id, NRP_network, NRP_switch_id);
158 else out2.new_NRP(id,id, NRP_network, NRP_switch_id);
159 } else NRP_network=NumberOfNetworks;
160 } else mode =BACKUP;
161 init=false;
162 }
163 break;
164 case 1: //PRIMARY :
165 attacker++;
166 if(attacker>1) attacker=1;
167 if(NRP_network==0){
168 ping_pending = true;
169 out1.pingNRP(id,id, NRP_switch_id) after(5);
170 ping_timed_out() after(ping_timeout);
171 }else{
172 ping_pending = true;
173 out2.pingNRP(id,id, NRP_switch_id) after(5);
174 ping_timed_out() after(ping_timeout);
175 }
176 NRP_pending = true;
177 break;
178 case 2: //BACKUP :
179 heartbeats_missed_1++;
180 heartbeats_missed_2++;
181 if (heartbeats_missed_1 > max_missed_heartbeats && heartbeats_missed_2 >

max_missed_heartbeats){↪→
182 heartbeats_missed_1 =

(heartbeats_missed_1>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_1;↪→
183 heartbeats_missed_2 =

(heartbeats_missed_2>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_2;↪→
184 // if(heartbeats_missed_1==heartbeats_missed_2 &&

heartbeats_missed_2==max_missed_heartbeats+1){↪→
185 // mode = PRIMARY;
186 // heartbeats_missed_1 = 0; // Prevent detecting again immediately.
187 // heartbeats_missed_2 = 0;
188 // primary=id;
189 // NRP_pending = true;
190 // }else{
191 if(NRP_network==0){
192 ping_pending = true;
193 //NRP_network=-1;
194 out1.pingNRP(id,id, NRP_switch_id) after(15);
195 ping_timed_out() after(ping_timeout);
196 }else{
197 ping_pending = true;
198 //NRP_network=-1;
199 out2.pingNRP(id,id, NRP_switch_id) after(15);
200 ping_timed_out() after(ping_timeout);
201 }
202 NRP_pending = true;
203 // }
204 }else if(heartbeats_missed_1 > max_missed_heartbeats|| heartbeats_missed_2 >

max_missed_heartbeats){↪→
205 if(NRP_network==0 && heartbeats_missed_1 > max_missed_heartbeats) {

188 Formal Verification of Consistency in Systems with Redundant Controllers

209 ping_pending = true;
210 out1.pingNRP(id,id, NRP_switch_id) after(5);
211 ping_timed_out() after(ping_timeout);
212 }else if(NRP_network==1 && heartbeats_missed_2 > max_missed_heartbeats){
213 ping_pending = true;
214 out2.pingNRP(id,id, NRP_switch_id) after(5);
215 ping_timed_out() after(ping_timeout);
216 }
217 heartbeats_missed_1 =

(heartbeats_missed_1>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_1;↪→
218 heartbeats_missed_2 =

(heartbeats_missed_2>max_missed_heartbeats+2)?max_missed_heartbeats+2:heartbeats_missed_2;↪→
219 }
220 break;
221 case 3: //FAILED :
222 break;
223 }
224 self.runMe() after(heartbeat_period);
225 }
226 msgsrv heartBeat(byte networkId, int senderid) {
227 // if(?(true,false)) nodeFail();
228 if (mode==BACKUP){
229 if (networkId == 0) heartbeats_missed_1 = 0;
230 else heartbeats_missed_2 = 0;
231 }
232 }
233 msgsrv nodeFail(){
234 primary=-1;
235 mode = FAILED;
236 NRP_network=-1;
237 NRP_switch_id=-1;
238 heartbeats_missed_1 = 0;
239 heartbeats_missed_2 = 0;
240 NRP_pending = true;
241 become_primary_on_ping_response = false;
242 ping_pending = false;
243 }
244 }
245 reactiveclass Switch(10){
246 knownrebecs {
247 Node nodeTarget1;
248 }
249 statevars {
250 byte mynetworkId;
251 int id;
252 boolean which;
253 boolean prevWhich;
254 boolean failed;
255 boolean amINRP;
256 boolean primaryPinged;
257 boolean terminal;
258 Switch switchTarget1;
259 Switch switchTarget2;
260 int primary;
261 }
262 Switch (int myid, byte networkId, boolean endSwitch , Switch sw1, Switch sw2, int myFailTime) {
263 mynetworkId = networkId;
264 primary=0;
265 id = myid;
266 primaryPinged=false;
267 terminal=endSwitch;
268 amINRP = false;
269 failed = false;
270 switchTarget1 = sw1;
271 switchTarget2 = sw2;
272 which=true;
273 if (myFailTime!=0) switchFail() after(myFailTime);
274 }
275 msgsrv switchFail(){
276 failed = true;

Bjarne Johansson et al. 189

276 amINRP=false;
277 }
278 msgsrv pingNRP_response(int senderNode,boolean w,boolean pw){
279 // if(?(true,false)) switchFail();
280 if(!failed)
281 if(terminal && senderNode <= MAX_SWITCHES) nodeTarget1.pingNRP_response(id, w,pw); //Pass back
282 else if(senderNode >id) switchTarget1.pingNRP_response(id, w,pw);
283 else switchTarget2.pingNRP_response(id, w,pw);
284 }
285 msgsrv pingNRP(int switchNode, int senderNode, int NRP) {
286 // if(?(true,false)) switchFail();
287 if(!failed)
288 if(terminal && NRP==id){
289 prevWhich = which;
290 which= (senderNode==primary);
291 if(switchNode <= MAX_SWITCHES) switchTarget1.pingNRP_response(id,which, prevWhich);

//Response↪→
292 else nodeTarget1.pingNRP_response(id,which, prevWhich);
293 }else if(switchNode >id) switchTarget1.pingNRP(id,senderNode,NRP);
294 else switchTarget2.pingNRP(id,senderNode, NRP);
295 }
296 msgsrv new_NRP(int senderNode,int prim, int mNRP_network, int mNRP_switch_id) {
297 // if(?(true,false)) switchFail();
298 if(!failed){
299 if(id==mNRP_switch_id) {
300 amINRP=true;
301 primary=prim;
302 } else amINRP=false;
303 if(terminal && senderNode <= MAX_SWITCHES)nodeTarget1.new_NRP(id,prim, mNRP_network,

mNRP_switch_id);↪→
304 else if(senderNode >id) switchTarget1.new_NRP(id,prim, mNRP_network, mNRP_switch_id); //Pass

back↪→
305 else switchTarget2.new_NRP(id,prim, mNRP_network, mNRP_switch_id);
306 }
307 }
308 msgsrv new_NRPBack(int senderNode,int prim, int mNRP_network, int mNRP_switch_id) {
309 // if(?(true,false)) switchFail();
310 if(!failed){
311 if(id==mNRP_switch_id) {
312 amINRP=true;
313 primary=prim;
314 } else amINRP=false;
315 if(terminal && senderNode <= MAX_SWITCHES)nodeTarget1.new_NRPBack(id,prim, mNRP_network,

mNRP_switch_id);↪→
316 else if(senderNode >id) switchTarget1.new_NRPBack(id,prim, mNRP_network, mNRP_switch_id);

//Pass back↪→
317 else switchTarget2.new_NRPBack(id,prim, mNRP_network, mNRP_switch_id);
318 }
319 }
320 msgsrv heartBeat(byte networkId, int senderNode) {
321 // if(?(true,false)) switchFail();
322 if(!failed)
323 if(terminal && senderNode <= MAX_SWITCHES) nodeTarget1.heartBeat(networkId,id)

after(networkDelay);↪→
324 else if(senderNode > id) switchTarget1.heartBeat(networkId,id) after(networkDelay);
325 else switchTarget2.heartBeat(networkId,id) after(networkDelay);
326 }
327 }
328

329 main {
330 @Priority(1) Switch switchA1(DCN1):(1, 0, true , switchA2 , switchA2 , switchA1failtime);
331 @Priority(1) Switch switchA2(DCN1):(2 ,0, false , switchA1 , switchA3 , switchA1failtime);
332 @Priority(1) Switch switchA3(DCN2):(3, 0, true , switchA2 , switchA2 , switchA3failtime);
333 @Priority(1) Switch switchB1(DCN1):(4, 1, true , switchB2 , switchB2 , switchB1failtime);
334 @Priority(1) Switch switchB2(DCN1):(5, 1, false , switchB1 , switchB3 , switchB1failtime);
335 @Priority(1) Switch switchB3(DCN2):(6, 1, true , switchB2 , switchB2 , switchB3failtime);
336

337 @Priority(2) Node DCN1(switchA1, switchB1):(100, 100, 1, 4, node1failtime);
338 @Priority(2) Node DCN2(switchA3, switchB3):(101, 100, 3, 6, node2failtime);
339 }

190 Formal Verification of Consistency in Systems with Redundant Controllers

D State Space

The state space of Timed Rebeca model for the NRP FD (including the problematic optimization) imple-
menting case 7 of Table 1 has 70 states and 88 transitions. Case 7 is where switchA1 and switchB1 fail
simultaneously at time 2500. A portion of the visualized state space is provided in Figure 8. We define
the followings in the the property file (see L3):

DCN1Primary = (DCN1.mode ==1);
DCN2Primary = (DCN2.mode ==1);
DCN2Backup = (DCN2.mode ==2);
switchA1Failed = (switchA1.failed);
switchB1Failed = (switchB1.failed);
switchA1NRP = (DCN1.NRP_switch_id==1 && DCN2.NRP_switch_id==1);
...

The term DCN1Primary means that the mode of DCN1 is PRIMARY (similar for DCN2) and the
term switchA1Failed means that the state variable f ailed of switcheA1 is true (similar for switcheB1).
switchA1NRP means that the state variable NRP_switch_id equals 1 (the id of switchA1) for both DCNs.
In case 7 of Table 1, both switches fail at time 2500. As we are at the time 3000 in S59, switchA1Failed
and switchB1Failed are true at the states depicted. Both DCN1 and DCN2 execute a runMe in each
heartbeat period:

heartbeat_period = 1000 // line 1 of Listing 1
...
self.runMe() after(heartbeat_period) // line 35 of Listing 1
..

In each period, PRIMARY (DCN1) checks its NRP availability. In the state S63, DCN1 sends a
PINGNRP message to switchA1 in the new heartbeat period, @3000. By receiving PINGNRP, switchA1
which is failed, does nothing (line 296 of Appendix C). In the state S65, by running Ping_timed_out,
DCN1 will notice that switchA1 has failed. DCN1 tries to select a new NRP from its NRP candidate set
(here switchB1 which is not operational at the moment). Note that there is no active NRP in S66. At the
next runMe, @4000, DCN2 changes its mode to PRIMARY due to missing more than maximum heart-
beats allowed on both networks simultaneously. We can see in S70 a dual primary situation occurred.
We commented out the assertion such that the model checker continues creating the state space.

Bjarne Johansson et al. 191

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

S1_0:
DCN1Waiting
DCN2Waiting

S2_0:
DCN1Primary
DCN2Waiting

DCN1.RUNME
@0

S3_0:
DCN1Waiting
DCN2Backup

DCN2.RUNME
@0

S4_0:
DCN1Primary
DCN2Waiting

switchA1.NEW_NRP
@0

S5_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

DCN1.RUNME
@0

S6_0:
DCN1Primary
DCN2Waiting

switchA2.NEW_NRP
@0

S7_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA1.NEW_NRP
@0

S8_0:
DCN1Primary
DCN2Waiting

switchA3.NEW_NRP
@0

S9_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA2.NEW_NRP
@0

S10_0:
DCN1Primary
DCN2Waiting
switchA1NRP

DCN2.NEW_NRP
@0

S11_0:
DCN1Primary
DCN2Backup

DCN2.RUNME
@0

switchA3.NEW_NRP
@0

S12_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@0

DCN2.NEW_NRP
@0

S13_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1000
@0

S14_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@1000

S15_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

S16_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@1000

DCN1.RUNME
@1000

S17_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@1000

S18_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@1005

S19_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1005

S20_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@1006

S21_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@1006

S22_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@1500

S23_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1500

S24_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.HEARTBEAT
@1501

S25_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

S26_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB1.HEARTBEAT
@1501

switchA1.HEARTBEAT
@1501

S27_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1501

S28_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA2.HEARTBEAT
@1502

S29_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

S30_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB2.HEARTBEAT
@1502

switchA2.HEARTBEAT
@1502

S31_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1502

S32_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA3.HEARTBEAT
@1503

S33_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

S34_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchB3.HEARTBEAT
@1503

switchA3.HEARTBEAT
@1503

S35_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@1503

S36_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S37_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

S38_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.HEARTBEAT
@1504

DCN2.HEARTBEAT
@1504

S39_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=496
@1504

S40_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.RUNME
@2000

S41_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

S42_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN2.RUNME
@2000

DCN1.RUNME
@2000

S43_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=5
@2000

S44_0:
DCN1Primary
DCN2Backup
switchA1NRP

switchA1.PINGNRP
@2005

S45_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=1
@2005

S46_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PINGNRP_RESPONSE
@2006

S47_0:
DCN1Primary
DCN2Backup
switchA1NRP

time +=494
@2006

S48_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

switchA1.SWITCHFAIL
@2500

S49_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S50_0:
DCN1Primary
DCN2Backup
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

S51_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.SWITCHFAIL
@2500

S52_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

S53_0:
DCN1Primary
DCN2Backup

switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchA1.SWITCHFAIL
@2500

switchB1.SWITCHFAIL
@2500

S54_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.PING_TIMED_OUT
@2500

switchB1.SWITCHFAIL
@2500

switchA1.SWITCHFAIL
@2500

S55_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=1
@2500

S56_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.HEARTBEAT
@2501

S57_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

S58_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchB1.HEARTBEAT
@2501

switchA1.HEARTBEAT
@2501

S59_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=499
@2501

S60_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN1.RUNME
@3000

S61_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

S62_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

DCN2.RUNME
@3000

DCN1.RUNME
@3000

S63_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=5
@3000

S64_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

switchA1.PINGNRP
@3005

S65_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed
switchA1NRP

time +=495
@3005

S66_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@3500

S67_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@3500

S68_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

time +=500
@3500

S69_0:
DCN1Primary
DCN2Backup

switchA1Failed
switchB1Failed

DCN1.RUNME
@4000

S70_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

S71_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@4000

DCN1.RUNME
@4000

S72_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@4000

S73_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@4005

S74_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=495
@4005

S75_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@4500

S76_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@4500

S77_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@5000

S78_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

S79_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@5000

DCN1.RUNME
@5000

S80_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@5000

S81_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.PINGNRP
@5005

S82_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5005

S83_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.PINGNRP
@5006

S84_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@5006

S85_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.PINGNRP
@5007

S86_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=493
@5007

S87_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@5500

S88_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.NEW_NRP
@5500

S89_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.NEW_NRP
@5500

S90_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.NEW_NRP
@5500

S91_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=500
@5500

S92_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@6000

S93_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

S94_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@6000

DCN1.RUNME
@6000

S95_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@6000

S96_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.PINGNRP
@6005

S97_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

S98_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@6005

switchB1.PINGNRP
@6005

S99_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6005

S100_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@6006

S101_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@6006

S102_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.PING_TIMED_OUT
@6500

S103_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

S104_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@6500

DCN1.PING_TIMED_OUT
@6500

S105_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6500

S106_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@6501

S107_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

S108_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@6501

switchA3.HEARTBEAT
@6501

S109_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6501

S110_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@6502

S111_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

S112_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@6502

switchA2.HEARTBEAT
@6502

S113_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@6502

S114_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@6503

S115_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

S116_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@6503

switchA1.HEARTBEAT
@6503

S117_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@6503

S118_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@7000

S119_0:
DCN1Waiting
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

S120_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.RUNME
@7000

DCN1.RUNME
@7000

S121_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=5
@7000

S122_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.PINGNRP
@7005

S123_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7005

S124_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PINGNRP_RESPONSE
@7006

S125_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=494
@7006

S126_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN2.PING_TIMED_OUT
@7500

S127_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7500

S128_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA3.HEARTBEAT
@7501

S129_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

S130_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB3.HEARTBEAT
@7501

switchA3.HEARTBEAT
@7501

S131_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7501

S132_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA2.HEARTBEAT
@7502

S133_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

S134_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB2.HEARTBEAT
@7502

switchA2.HEARTBEAT
@7502

S135_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=1
@7502

S136_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchA1.HEARTBEAT
@7503

S137_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

S138_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

switchB1.HEARTBEAT
@7503

switchA1.HEARTBEAT
@7503

S139_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

time +=497
@7503

DCN2.RUNME
@8000 -> shift(+2000)

S140_0:
DCN1Primary
DCN2Primary
switchA1Failed
switchB1Failed

DCN1.RUNME
@8000

DCN2.RUNME
@8000 -> shift(+2000)

Figure 8: A part of the visualized state space for the Timed Rebeca model of the NRP FD.

F. Lang, M. Volk (Eds):
Models for Formal Analysis of Real Systems (MARS 2024)
EPTCS 399, 2024, pp. 193–209, doi:10.4204/EPTCS.399.9

© L. Beckers et al.
This work is licensed under the
Creative Commons Attribution License.

Sliced Online Model Checking for Optimizing the
Beam Scheduling Problem in Robotic Radiation Therapy

Lars Beckers1 Stefan Gerlach2 Ole Lübke1

Alexander Schlaefer2 Sibylle Schupp1

{lars.beckers, stefan.gerlach, ole.luebke, schlaefer, schupp}@tuhh.de
1Institute for Software Systems 2Institute of Medical Technology and Intelligent Systems

Hamburg University of Technology, Hamburg, Germany*

In robotic radiation therapy, high-energy photon beams from different directions are directed at a
target within the patient. Target motion can be tracked by robotic ultrasound and then compensated
by synchronous beam motion. However, moving the beams may result in beams passing through
the ultrasound transducer or the robot carrying it. While this can be avoided by pausing the beam
delivery, the treatment time would increase. Typically, the beams are delivered in an order which
minimizes the robot motion and thereby the overall treatment time. However, this order can be
changed, i.e., instead of pausing beams, other feasible beam could be delivered.

We address this problem of dynamically ordering the beams by applying a model checking
paradigm to select feasible beams. Since breathing patterns are complex and change rapidly, any
offline model would be too imprecise. Thus, model checking must be conducted online, predicting
the patient’s current breathing pattern for a short amount of time and checking which beams can be
delivered safely. Monitoring the treatment delivery online provides the option to reschedule beams
dynamically in order to avoid pausing and hence to reduce treatment time.

While human breathing patterns are complex and may change rapidly, we need a model which
can be verified quickly and use approximation by a superposition of sine curves. Further, we simplify
the 3D breathing motion into separate 1D models. We compensate the simplification by adding
noise inside the model itself. In turn, we synchronize between the multiple models representing the
different spatial directions, the treatment simulation, and corresponding verification queries.

Our preliminary results show a 16.02 % to 37.21 % mean improvement on the idle time com-
pared to a static beam schedule, depending on an additional safety margin. Note that an additional
safety margin around the ultrasound robot can decrease idle times but also compromises plan quality
by limiting the range of available beam directions. In contrast, the approach using online model
checking maintains the plan quality. Further, we compare to a naive machine learning approach that
does not achieve its goals while being harder to reason about.

1 Introduction

Radiation therapy presents a widely used option for cancer treatment. Typically, beams from a range of
different directions are used to deliver a therapeutically effective dose to the tumor while maintaining a
tolerable dose for all other tissues. The latter is particularly important for critical structures where radia-
tion damage would result in severe side effects. While different treatment systems have been proposed,
one interesting approach is robotic radiosurgery where a robotic arm carries the beam source, allowing
for a very large solid angle of possible beam directions. The optimal choice of beams results from careful
treatment planning[14], which accounts for the beams’ attenuation when passing through the patient.

*This study was partially funded by DFG SCHU 2479, and DFG SCHL 1844/6-1.

http://dx.doi.org/10.4204/EPTCS.399.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

194 Sliced Online Model Checking for Optimizing Beam Scheduling

Figure 1: Illustration of the situation we consider. Figure a) shows the the general setup with the patient
and the robot mounted ultrasound (US) transducer, as well as the target which moves along the patient’s
superior-inferior axis. Figure b) depicts a position of the target where two beams, A and B, are both fea-
sible and can be delivered. Figure c) shows another target position for which beam B would be partially
blocked and therefore infeasible. Note, that the range of motion of the target may vary and for some
intervals during the overall treatment, beam B may also be feasible throughout the full breathing cycle.

One of the particular advantages of robotic beam delivery is the ability to adjust the position and
orientation of the beam source quickly. This is desirable, as some tumors are subject to substantial
motion, especially due to respiration and in regions close to the diaphragm. Different respiratory motion
prediction and control strategies have been studied to realize real-time motion compensated treatments,
which are now routinely used with the robotic CyberKnife (Accuray, USA)[5]. However, a key aspect
of motion compensation is the detection of the tumor’s actual motion. Typically, this is achieved by
a combination of X-ray imaging and external marker tracking. However, recently the use of robotic
ultrasound has been considered, which would allow fast, continuous and non-ionizing imaging of the
tumor’s motion[8, 6, 7]. This advantage comes at the cost of integrating the ultrasound transducer and
the robot carrying it into the overall system setup. Particularly, safe beam delivery must be guaranteed at
all times, i.e., as Figure 1 shows, the treatment beams must not pass through ultrasound transducer and
robot, as this would compromise the dose estimate.

At planning time, the overall collision free delivery of all beams can be optimized, i.e., a generalized
traveling salesman problem (GTSP) is solved to determine the best sequence of beams and to obtain the
coordinated motion of both robots[15]. However, during treatment the motion trajectories of the tumor
vary, e.g., as patients may change from chest to abdominal breathing. A straightforward approach to
maintain the planned dose is to pause the treatment beam whenever the motion causes the current beam
to collide with the ultrasound transducer or robot. Given that this prolongs the overall treatment time
and that other beams may be feasible, it would be desirable to predict the feasibility of collision free
beam delivery given the current tumor motion pattern and to select beams which can be safely delivered
without interruption.

In this setting, we propose studying model checking as a means to realize safe and effective treat-
ments. Instead of using a fixed order on the beams, we consider modeling the current respiratory motion
and to verify for each beam whether it is feasible, i.e., can be delivered. While model checking veri-
fies properties—regarding safety, in particular—of modeled systems, in case of a breathing patient it is
impossible to provide a full model of all possible future behavior. Thus, if we want to verify if a beam

L. Beckers et al. 195

is feasible during a treatment session, we need to reduce the scope of this verification, both in terms of
detail represented by the model and in terms of the covered time span, down to the next few seconds.
Still, we need to regularly verify whether beams are feasible based on current motion data to make up
for inaccurancies and to cover the whole treatment session. This approach of repeated verification with
current data is called Online Model Checking.

While the basic breathing motion is similar among patients, the specifics of their situation are dif-
ferent e.g., whether their inhalation is short or deep, fast or slow, how much it varies over time, when
exactly, how grave the differences between those patterns are. Overall, a model will necessarily be inac-
curate and the online checking approach is used to limit this effect. The predicted patient’s motion—as
the foundation to strategically select beams—needs to be formally verified to ensure safety, whether it
stays within the safe region. Moreover, at any time it would be important to consider a number of beams
in order to determine some feasible beam to be delivered next, because verification of a single beam may
not be sufficient to get an optimal or even viable beam. At the same time it is possible that multiple
beams satisfy the safety requirements, requiring a decision as part of an optimization problem.

We want to satisfy above requirements within a software system that improves the overall treatment
delivery. For this software, its timeliness is important, since the online verification is necessarily limited
in its future scope and we need to offer new beams in a timely manner. Instead of terminating when the
time allotted for the session is insufficient, it will use the available time more efficiently and thus allow
for more completed treatments. Based on these requirements and existing tools, our work resulted in the
following contributions:

• An approach for a verified schedule of beams in radiation therapy. This approach is based on an
existing online model checking environment for respiratory motion. We contribute the statistical
verification of dynamically selected beam candidates in real time.

• A representation of 3-dimensional respiratory motion as product of three 1-dimensional model
slices to limit the model’s complexity. This requires synchronization of verfication queries and
results within the real time environment.

• An implementation in Rust, using the UPPAAL model checker for verification. Further, the im-
plementation of experiments including data generation for evaluation of supporting our approach
with machine learning methods.

The result is a dynamic beam scheduling which selects feasible beams and thereby reduces the treat-
ment time. Upcoming beams are selected according to our online model of patient motion data, while
the timing requirements of the approach are honored. We can keep the timing requirements by the use of
a simple, 1D model that allows us to keep verification times short. In turn, we necessarily increase the
complexity of our implementation that needs to synchronize the 3 parallel online models and its beam
verification tasks. We propose an architecture that combines three parallel, model-generating processes,
the verification processes for beams as required, and the actual client that simulates the therapy. We
reduce idle time where no beam can be delivered due to collisions by 16.02 % to 37.21 % depending on
the amount of additional safety margin around the ultrasound robot.

Furthermore, we discuss an approach to improve the beam selection by using AI models to make
predictions on the breathing patterns and beam verification times. This would allow us to make better
decisions in our selection and verification. We tried to train a multi-layer perceptron regressor on beam
verification duration, as well as a classifier on 1D breathing movement data to discern breathing pattern
irregularities into different categories. However, this was not successful to derive meaningful strategies
from: The regressor predicted verification durations on the lower end of their range and the classifier did
not learn the intended categories, where more difficult patterns are characterized by noisier or rapidly
changing movements. Here, an algorithm detecting extreme values may be better suited.

196 Sliced Online Model Checking for Optimizing Beam Scheduling

treatment robot

ultrasound robot

beam

patient

Figure 2: Two interacting robots: One robot is used
for treatment delivery and the other robot is used for
ultrasound image guidance.

ID,Time[ms],Threshold[mm]
80731,24281,5.0
76503,11222,5.0
75681,13682,7.5
74528,23749,10.0
67108,2243,10.0
79427,7133,12.5
70571,16927,15.0
77460,4354,15.0
70211,16240,15.0
68851,1488,17.5
59592,7335,17.5
74430,14448,17.5
69894,29738,20.0
77674,1609,20.0
78301,16381,22.5
81561,3116,25.0
61025,17047,27.5
71430,1758,31.0
81038,21519,31.0

Figure 3: Excerpt from a 1D beam list.

In the following section, we provide details of our beam radiation therapy case study. In section 3,
we present the necessary background to our approach. This is followed by sections 4 and 5, in which we
discuss our models and data, respectively. In section 6, we elaborate on the architecture and implemen-
tation of our contribution. The experimental results are covered in section 7. In section 8, we discuss
possible machine learning enhancements to our approach. Finally, we close with a summary in section 9.

2 Ultrasound Guided Motion Compensated Radiation Therapy

In radiation therapy, multiple beams are directed at a target region within the human body, which is
typically referred to as a planning target volume (PTV). The cumulative dose delivered by the beams is
optimized to reach a therapeutically effective level inside the PTV, while being as low as possible outside
and particularly in so-called organs at risk (OAR). During plan optimization the beams are weighted
to realize a clinically acceptable trade-of between these objectives. For our sample scenario we con-
sider robotic beam delivery with the CyberKnife and robotic ultrasound based on the lightweight and
redundant LBR iiwa med robot (KUKA, Germany) as illustrated in Figure 2.

During a treatment session, a patient inhales and exhales and may exhibit varying breathing patterns,
e.g., slower and faster breathing, deep and shallow breathing, abdominal and chest breathing, and a
number of potentially sudden changes, e.g., due to coughing. When considering motion compensation,
the movement of the PTV is off-set by an equivalent motion of the beams, i.e., the beam carrying robot
moves the beams synchronously. Hence, the beams move relative to all static objects, including the
ultrasound transducer and the robot carrying it. However, beams need to be switched off whenever
they would pass through these objects, as the effective dose would be compromised by the additional
attenuation and scattering.

While an effective treatment requires all beams to be delivered, there is typically no requirement to
observe a particular order. In fact, the order is often optimized such that the time to visit all beam starting
positions is minimized, as the motion time adds to overall treatment time. In case of ultrasound guidance
the coordinated motion of both robots can be approached as a GTSP and a time-optimal beam schedule
can be computed[15]. However, as the breathing patterns are not known a priori, it may occur that some

L. Beckers et al. 197

beams cannot be delivered without interruption. At the same time, other beams may be feasible. Any
beam that satisfies the safety requirements and does not collide with ultrasound transducer or robot is a
viable alternative beam to be delivered. Thus, we consider beam scheduling as the optimization problem
to minimize the time beams are inactive due to collisions.

Consider, for example, a patient exhibiting an increasingly deeper breathing motion during the treat-
ment session. We can compute the minimum distance between beam and ultrasound transducer and
robot at any time in the breathing cycle, which we refer to as threshold. Now, starting the session with
beams with large thresholds and unsuccessfully trying to apply beams with small thresholds later will
potentially be a worse solution than a randomized ordering. Furthermore, the robot requires a substantial
amount of time to change its configuration between beams, particularly when the next beam is far away
from the previous beam.

Therefore, our proposal is a dynamic list of beams that is checked for possible beams within the
next time slot. While it is preferable to continue along the current time-optimal list, especially finishing
a currently running beam, we can substitute waiting times where no beam is applied with other beams
that can be delivered. Afterwards, the new time-optimal list of beams can be computed and treatment
continued. Thus, safety requirements are upheld while the treatment duration can be reduced.

3 Online Model Checking

In online model checking (OMC), properties of a modeled system are verified regularly in an interval[17].
The system processes exhibit uncertainties. Thus, statistical model checking is typically used, which
assesses the probability of its queried property over multiple, simulated runs of its system until it has
established the necessary confidence. This behaviour can be customized through the configuration of the
model checker, but we do not employ this in this paper. Each verification is limited in its temporal scope
to reduce the required verification time to fit within the interval. Thus, the model is only valid for a short
amount of time before the drift from reality gets too large. Still, the temporal scope needs to be large
enough to ensure that in each verification step there is enough time for an emergency stop if verification
fails and the sequence of verification intervals overlaps to cover the progressing system entirely. OMC
has already been used in several different applications[16][11][13], including cyber-physical systems and
medical settings[3][9]. However, it had not been used for beam verification.

For proper verification, a model is regularly modified with new data. In reality, this data may be
supplied by sensors recording live events. In experimental settings, it can be either recorded data or en-
tirely synthetic. The most common modification is to update and reassign model variables that represent
the current state, e.g., the patient’s position. Thus, for a continuing online setting, we receive a line of
models synthesized from the template, each representing one time step in the verification process.

For our setting, we make use of an existing online model checking software that predicts the respira-
tory motion of a patient in its primary movement dimension[12]. It acts as a frontend to the underlying
statistical model checker, UPPAAL-SMC[2][4]: It receives data updates to provide these to the model,
implements reading in model templates and writing out the modified instances every three seconds for a
validity window of six seconds. As it has been used to demonstrate respiratory motion[1], the template
model and required data sampling and transformation have also already been implemented. Thus, adap-
tions to our problem have remained minimal. The OMC software also verifies that its modified model is
an adequate representation according to its input data. It does so by advancing time by one second within
the interval, and assessing the probability that the observed patient position is within a bounding box of
the expected position. For completeness, we provide the queries and corresponding evaluation model in
Appendix B, but regard this in the following as a black box step, as only its verdict is relevant to us.

198 Sliced Online Model Checking for Optimizing Beam Scheduling

FSTerm Summer

TermModifier CoeffModifier Timer

Figure 4: The complete 1D model: UPPAAL automata network template representing the respiratory
motion.[12] Its declarations are given in Appendix A. The continually updated variables are also shown
in Figure 5. Note the time stepping through UPPAAL’s synchronization messages.

4 Modeling

In the following section, we will provide details on the respiratory motion model and how we use the
generated motion models for our beam scheduling problem, so that our new software can assess the
deliverability of potential beams w.r.t. the motion. We approximate respiratory motion as a superposition
of sine curves in space, in each of the three dimensions. We present two modeling designs that simplify
the representation of respiratory motion and explain how oversimplification is prevented. Furthermore,
we describe the verification of the beams.

4.1 1D motion modeling
The first simplification, introduced in [1], concerns the reduction to a 1D motion representation through
modification of the motion model shown in Figure 4. The represented axis is orthogonal to the patient’s
body and is the primary movement direction, while the other two dimensions behave similarly but with
less extreme motion. The idea is that the orthogonal axis is the most important one. In each step, the
OMC software samples new positions, which would be measured by the treatment controller in reality,
as it progresses in time, and updates this base model accordingly.

The model is a simplified breathing motion representation based on the following formula:

x(t) = d · t +
4

∑
k=1

ck · cos(k · f · t)+ sk · sin(k · f · t), with t time, d linear drift, f =
2π

period
.

The position samples are Fourier-transformed to obtain the decomposed s and c terms of a sine and a
cosine wave over time at the samples’ frequency. Four terms are summed and must later be offset by
a base value, which the wave moves around. In Figure 4, we already see all necessary components to
describe this as an UPPAAL model. The Summer automaton just computes a sum s when a new step
is due. This sum is assigned to the model’s global result variable. The sum’s first four components
are computed by four instances of FSTerm, which computes the four combined sine-cosine waves of
the formula, where a and b are the transformed samples, k is the ordinal number of the term, freq the
sample’s frequency, and time is a stepped view into the clock. Those summed together with the base
position, parameterised as offset here, is enough to compute the patient’s position. The Timer automaton
is used to drive this computation in steps at a regular interval of 38 milliseconds, parameterised as dt,
and moves the base according to its expected drift.

L. Beckers et al. 199

const double period = 5088.0;
const double drift = -0.0;

double base = -3.6508;
double a[4] = { -0.608, 0.205,

0.0744, -0.0764 };
double b[4] = { 2.5745, -0.414,

-0.0149, 0.0096 };

X axis

const double period = 5088.0;
const double drift = 0.0;

double base = 1.698;
double a[4] = { 0.2631, -0.0887,

-0.0322, 0.0331 };
double b[4] = { -1.1144, 0.1792,

0.0065, -0.0041 };

Y axis

const double period = 5088.0;
const double drift = 0.0;

double base = 1.8164;
double a[4] = { 0.0757, -0.0255,

-0.0093, 0.0095 };
double b[4] = { -0.3202, 0.0516,

0.0019, -0.0012 };

Z axis
Figure 5: Declarations of the models of a single timestep of patient DB126-Fx1. As the position and
movement is different, the beam verification queries require different thresholds per dimension.

However in Figure 4, we also see two additional automata. In order to compensate that the real
motion does not adhere to a (simplified) mathematical model based on an exact formula, the model
includes an accuracy parameter that determines how much randomness is applied to the coefficients
and terms. Thus, when setting the accuracy value below 100%, a range of possible motion curves is
considered starting from the latest current data point. This is important, because not only the model itself
is simplifying, but also the validity period of at most six seconds is already quite long considering that
a patient may suddenly start coughing. The accuracy value is set at the start of a session, thus a line of
models created for a single patient will have a fixed value. The TermModifier automaton is instantiated
for all four indices into the a and b arrays. The values are modified at random, based on a rate derived
from the accuracy parameter. Instead of regular time steps, there is simply a minimum and maximum
wait time between modifications. Similarly, the CoeffModifier is instantiated twice to modify both the
base and frequency, represented as c here.

Besides the automaton network, the model declares the variables describing the actual movement.
The continually updated, declared variables of such a model are shown in Figure 5. The period value
describes the period of the regular breathing sine curve. The base value is the origin of this period.
The four cosine and sine terms are composed as arrays a and b. As mentioned, there is a (small) drift
value added to the base for every time step. Among other intermediate variables, the computed value
describing the position of the patient at each step is saved as result. Thus in Section 4.3, we query this
value within the relevant time period with respect to the requested threshold for our verification purposes.
We provide the full declarations of the model in Appendix A.

4.2 3D motion modeling
While the actual respiratory motion is three-dimensional, it often has a clear principle component, i.e.,
along the superior-inferior direction. Still, the motion may be non-linear and a refined model would
consider all three spatial motion components. The second simplifying model design is to represent
3D motion by a network of three 1D models. Because the other two dimensions can be approximated
themselves using the same mathematical formula (see 4.1), we can reuse the 1D model for each instead of
extending it to 3D variables and thusly more complex formulas. This allows us to stick with a relatively
simple model that can be verified fast enough for our purposes.

However, using one model per dimension means that we need three parallel OMC processes that
each generate new, separate models. Since for any online approach we need timestamped, 3-dimensional
position data, this kind of input dataset needs to be retrieved by sensors to be distributed among the
three processes. As a consequence, the process’ results need to be aligned to make sure all models are
instantiated, represent the same time slot and are successfully validated.

The synchronization problem extends further to the beam checks that have to be done on all models
separately with separate threshold data: In Figure 5, we show for a single timestep the variable sets of
the three models it is comprised of. Because the motion along the three axes has different positions each,
each beam has necessarily six threshold values instead of one, i.e., a set of two for each model.

200 Sliced Online Model Checking for Optimizing Beam Scheduling

It is beneficial to coordinate the accuracy parameters for the three movement directions, covering
the respective inaccuracies as with the 1D case, but also to control that the different dimensions are not
moving completely distinctly as the separate models suggest. In the future, we want to merge different
possibilities of 3D beam positions to reduce the number of verification calls.

4.3 Beam verification

The aim of the treatment is to deliver all beams, which requires that at some point during the treatment
all beams have become deliverable, i.e., are not blocked due to the motion. Thus, the core verification
question is whether the motion remains within the threshold that is given per beam. Our software uses the
results of the verification in 4.1 to determine a list of deliverable beams per time slot among a requested
list of beams. Along with the online approach, the requested beams are updated by the treatment software
each time slot and the verification and selection of beams is repeated until the treatment is complete.

The beams themselves are not formally modeled, but represented by a query on the motion model
that we check per beam. In case of 3D, that leads to three queries per beam, i.e., one per dimension.
The query is created directly from the source data: Pr[<= {scope}] ([] result <= {upper} &&
result >= {lower}), where scope is set to three seconds (see 4.1), result is the patient position in one
of the three dimensions (see 4.2), and lower and upper are derived from the beam threshold (see Figure 3
for a symmetric 1D case); [] is the usual “global” operator in CTL. The statistical model checker then
determines the probability with which, within scope, the patient’s position will invariantly be safe.

We use the verification results of the beams to gather a list of deliverable beams that is provided to
the treatment software. Representing a safety requirement, beams may not be considered as deliverable
if the threshold of any movement direction is violated according to the verification result. If the resulting
probability is higher than our cutoff, a beam may be delivered and is added to the list. We present results
in Section 7 with a cutoff of 0.5, whereas further experiments suggest a cutoff of 0.91. In the case of 3D,
the deliverability of a beam then becomes the minimum of each of the results on the three distinct models.
It is possible that a query, or in 3D at least one of three queries of a beam, is not completed within the
timeslot. In these cases, the beam is also not considered to be deliverable. However, we observe these
queries to take only milliseconds to complete. Depending on actual timings, requested lists of 250 beams
often may be completely checked and answered.

5 Data
We evaluate on a small amount of seven sets of real patient motion data (966670 data points) which was
previously published[5] and extend our dataset with synthetic data (4893007 data points) for our machine
learning approach. In this section, we report on our available datasets and the limitations of synthetic data.

The respiratory motion data consists of 3 dimensional data points that are timestamped. Furthermore,
we generated 40 synthetic motion curves approximating idealized respiratory motion with relatively
simple changes and only in 1D along the superior-inferior axis. For each of these patients we provide1

the corresponding line of models generated through the OMC process; for the real patients also in all
three dimensions. A sample of this dataset is visualized in Figure 6. All lines of models come with their
data logs, so that they can be easily visualized and analyzed. Furthermore, we provide beam lists for
both 1D and 3D cases.

Generating patient breathing data, however, is not trivial. It is important to consider that not all
situations can be well covered as synthetic data is much smoother and easier to align to for the OMC
process, and resulting curves are simpler and distinct. Real breathing changes more often, is irregular,

1https://doi.org/10.6084/m9.figshare.25061336

https://doi.org/10.6084/m9.figshare.25061336

L. Beckers et al. 201

Figure 6: Partial superior-inferior portion of the breathing curve of patient DB126-Fx1 in blue along
time on the x axis. Model variable values of period as red line, base as green line through the middle
of the blue line, with the sum formula values c0, c1, c2, c3 and s0, s1, s2, s3 dotted. Illustrated with an
expectation query of the statistical model checker for the minimal and maximal curve point by the purple
line atop the blue line and the green line along 0 on the y axis.

OMC Server Client
(2)

UPPAAL

(1) / (5)

(3) (4)

Figure 7: Architecture diagram of the software systems that we employ for our experiments. Each
temporal slice consists of: (1) Client sends beam list, (2) Server uses Online Model Checking (OMC) to
receive models predicting respiratory motion, (3) OMC uses UPPAAL for model creation and verification,
(4) Server starts UPPAAL processes to verify beams, (5) Server sends list of beam results.

and has lots of small changes. This can be seen in Figure 6, which is an excerpt of under four minutes.
There, the OMC process is constantly changing its predictions and beams differ in their verification
results. Thus, it is important to use not only synthetic data to make sure observed behavior is realistic.

Compared to breathing data, beam lists are relatively simple to generate, both for real movement
paths and also synthetically. For synthetic beam lists we can use existing beam lists as input to generate
new lists. Each beam is distinct from the next, thus we do not need to consider changing movements
along a curve. Thus, new lists just need to have the same distribution within the threshold and time
values with regards to minimal, maximal, and average values overall and within quantiles.

6 Beam Checking Application
Our system needs to synchronize between the online model checking (OMC) process that generates the
models themselves, the treatment robot, and our own verification of possible beams to apply. The general
architecture is explained in this section and visualized in Figure 7.

The client is externalized as an application that connects over network and sends a current list of
beams that are outstanding. In turn, we send a list of checked beams with their success probabilities

202 Sliced Online Model Checking for Optimizing Beam Scheduling

until the updated beam list is empty. Having the client networked is a proven way for separation of
concerns and allows the—possibly pre-existing—client to implement its own, e.g., safety equipment to
cover cases such as sudden changes by coughing that cannot fully be anticipated by software. However,
this separation induces the need to properly synchronize between these and the state of the session.

The OMC application is run directly by our software and monitored for new model files and its veri-
fication of those. It runs self-contained and does not pose requirements on the application. We currently
use pre-existing lists of breathing motions that would in reality need live data. The self-validation of the
OMC process also means that if verification is not passed for one model, it can recover on one of the
next intervals based on updated sensor data, but until it recovers there is no current model against which
to verify beams. Thus, we cannot make any recommendation within this gap and it follows that the client
would need to pause the treatment, failing on the safe side.

Whenever we receive a new model from the OMC process, we execute a new set of beam verification
queries, which check per beam the probability that it never violates its threshold within the timescope.
We align the OMC time slots with our own verification calls, allowing a three second time slot for our
own tasks and thusly verifing beams regularly, similar to the OMC process itself. However, the results
of this checking process is not a new model but a recommendation for or against those beams. If, e.g.,
a beam failed to verify within the time slot, either by the property itself or by the end of the verification
interval, it is not part of the recommended set of viable beams corresponding to this time slot.

In order to gain as much information as possible within this interval, we execute multiple verification
queries in parallel. Still, it is likely that we may not have enough time to verify all remaining beams, so
we prefer certain beams. First of all, we prioritize the currently running beam if there is one, but also all
beams that have already been started. This reduces overhead of beam changes on the treatment robot and
increases application quality, because the dosages are affected by application times and cannot precisely
be controlled by starts and stops. Second, we select well applicable beams by offering a mixture of
short and long applied beams, but also consider their thresholds. Beams with high thresholds, but shorter
running times are clearly easier to apply even if breathing is not calm, slow, or steady. Thus for future
experiments, we intend to implement a feedback loop that further prioritizes beams according to the
actual current breathing situation rather than static properties.

As introduced, our architecture can be characterized as loosely coupled as we kept three separated
systems in our architecture. Despite the synchronization issues this architecture necessitates, the sepa-
rated concerns helped with the implementation of the software. By using the pre-existing OMC process,
we only needed to introduce minimal changes, i.e., updating the code base to run within a more modern
environment, including adding Java synchronization primitives and exporting the actual model files. Sim-
ilarly, the client is separated from our application. Communication is realized over standard input/output
streams of the process in case of the OMC process or over a TCP socket in case of the client. Instead of
constraining us to a single programming language, we have specified the file formats of the transmitted
data. The OMC application transmits simple log messages and UPPAAL models in their already specified
file format, while the client sends and receives CSV tables with specified attributes.

The server application software is written in Rust. The beam verification queries are executed via
the UPPAAL command line interface with the result parsed from its standard output, compared to the
OMC software using UPPAAL’s in-process library API. The approach via external processes was taken
because it allows us to terminate verification processes according to our timeouts as required, which is
not possible via the library itself. Furthermore, the independent processes do not require synchronized
access to a singular verification server instance that the library allows to access, when evaluating multiple
different queries as with beams.

For the client, we extend our in-house treatment planning Java application. We determine beam col-

L. Beckers et al. 203

lision with the ultrasound robot by applying a projection based approach using a distance transform[8].
Here, we can also specify a static safety margin which accounts for expected target motion. Note how-
ever, that this safety margin needs to be specified before the treatment and leads to an elimination of ad-
ditional beam directions. Therefore, that treatment plan quality degrades with increasing safety margin.

We extend our approach to calculate beam thresholds by computing a projection for every beam
translation in the discretized motion trace. The treatment simulation starts by computing a beam order
which is time optimal if the target is static, i.e., it minimizes the robot motion. Afterwards, the client
cycles through the following steps: The beam list with corresponding thresholds is sent to the server
for evaluation whether delivery will be feasible. After receiving the response from the server, the first
feasible beam is selected, the robot is moved in position and delivery is started. Before the next evaluation
cycle starts, the time optimal beam order is updated with respect to the current position of the robot.
During beam delivery, it is ensured that the beam is collision free and otherwise beam delivery is halted
and the cycle is started again.

7 Experiments
In our evaluation we first show preliminary results of our approach. We evaluate on 5 patient geometries
for which the target tumor is located in the liver. Since treatment planning typically involves the selection
of a subset of beams from a large set of randomized candidate beams, we repeat each experiment 30
times with different candidate beam sets to obtain statistically meaningful results. We report significance
according to the Student’s t-test with p-values smaller than 0.01.

We use a motion trace of captured target motion on a previous CyberKnife treatment[5], where the
breathing pattern showed a large change over time. While the particular motion pattern is not representa-
tive for every patient, it represents a challenging real-world case for ultrasound guided radiation therapy.

To evaluate the impact of our online model checking approach, we simulate complete treatments. We
compare a delivery of beams where each beam is scheduled either according to the static beam list or
according to our OMC approach. When a scheduled beam cannot be delivered due to the target motion,
we pause the beam delivery until the beam is not blocked. We sum up this idle time to draw conclusions
on the quality of our approach. Additionally, we track how often beam delivery needs to be interrupted.

Additionally, we evaluate whether the pose of the ultrasound robot influences the results, and whether
an additional safety margin could be used to reduce the idle time and the occurrences of beam collisions.
Here, we apply a safety margin of 5 mm to the ultrasound robot during treatment planning and not
consider beams which are too close to the ultrasound robot. Thereby, small motion of the target would
not lead to a collision during treatment. However, this additional margin impacts the treatment plan
quality since fewer beams are available during the treatment planning process[8].

Our results in Figure 8a show that the average idle time decreases from 418.44 s to 304.96 s for
no margin and from 25.93 s to 22.35 s for a margin 5 mm. This represents a reduction in idle time of
37.21 % and 16.02 %, respectively. While the difference is significant for no margin (p < 0.004) it is not
significant when using 5 mm margin (p = 0.22). While the pose of the robot can change the resulting idle
time in some cases, e.g., from 44.66 s to 76.95 s for 5 mm margin and no OMC (p= 0.001), the difference
is otherwise not significant on the average distribution (p > 0.02). When evaluating the number of times
that a beam could not be delivered shown in Figure 8b, we do not observe a significant difference between
our OMC approach and the static beam ordering (p > 0.38).

As Figures 8 show, increasing the margin around the ultrasound robot also decreases the number
of collision events and the resulting idle time. Still, Figure 8a shows that also when introducing the
margin, the idle time is even lower with our OMC approach. Crucially, the target coverage decreases

204 Sliced Online Model Checking for Optimizing Beam Scheduling

robot pose A robot pose B

0 5 0 5

0

500

1000

1500

margin [mm]

id
le

 t
im

e
 [

s
]

without model
checking
with model
checking

(a) idle time

robot pose A robot pose B

0 5 0 5

0

100

200

margin [mm]

n
u

m
b

e
r

o
f

in
c
o

m
p

le
te

 d
e

liv
e

ri
e

s

without model
checking
with model
checking

(b) incomplete deliveries

Figure 8: Summarized idle time (a) and number of incomplete beam deliveries (b) per simulation for
the different approaches for 5 patients and motion trace DB126_Fx1. Experiments are repeated 30 times
with different beam sets to increase statistical significance.

robot pose A robot pose B

0 5 0 5

80

85

90

95

100

margin [mm]

ta
rg

e
t

c
o
v
e

ra
g

e
 [

%
]

Figure 9: Example of resulting target cover-
age for 5 patients. Experiments are repeated
30 times with different beam sets to increase
statistical significance.

Figure 10: Predictions in red, actual data in
blue. Note the difference in transparency: The
blue circles are much more varied than the red.

when introducing a margin as Figure 9 shows. The target coverage refers to the proportion of the target
which receives at least the prescribed dose and is an important clinical goal which influences the clinical
outcome. Therefore, the safety margin is degrading the treatment quality, while OMC does not negatively
influence the delivered dose as per Figure 8b. Note also that extreme outliers exist for certain patients
with substantially worse coverage when applying an increased safety margin.

8 AI Enhancements

We tried to extend the information we can gain from our data using machine learning methods. First,
we tried an experiment on beam verification time learning. Second, we tried an experiment on breathing
pattern classification. Both would allow us to change the prioritization of beams to ensure a more fitting
list of verification results or even a larger list of verification results when we exclude beams that are not
likely to succeed in verification by failing either time requirements or anticipated threshold violation.
Although both experiments failed, we briefly report in this section their respective setting and outcome.
These experiments were implemented in Python to make use of the widely known scikit-learn[10] library
that provides good default implementations of common learning algorithms.

L. Beckers et al. 205

Figure 11: Attempt at classification. Excerpt from patient DB114-Fx1 represented by the model variables
base and period in red and blue dotted lines, respectively. Classification categories range from 1 to 3.
Predicted category in yellow, truth in purple.

In the first experiment, learning verification time, we first used our synthetic data. Then, we varied
queries and, third, replaced the synthetic data by real data. In all cases we applied a beam list to a single
patient dataset, but we also tried to scale the number of beams from the typical 250 to 2500. Regarding
the queries, we tried to vary between different kinds of queries, e.g., existential and universal, but did
not notice significant differences. The predictions were consistently at the lower end of verification
time with more visible noise in the actual verification times. This can be seen visually in Figure 10.
Thus, this learning approach does not yield any opportunity for priorization. Our explanation is that
the synthetic data together with rather fast queries, that complete within a few hundred milliseconds,
is rather unlearnable noise, because there is no discernable pattern within the parameters for longer
durations. Also, simply increasing the number of queries from about 250 to about 2500 to have more
data to learn may not help when the overall time becomes larger faster than any results are improving.
Based on the experiments with real data, we could not make predictions on verification time that were
significant enough to be of any help.

In the second experiment, we manually labeled a full motion dataset with three categories repre-
senting different levels of breathing periods, from calmer to more irregular. We applied a multi-layer
perceptron classifier and varied the solver configuration with the options that scikit-learn offers. As can
be seen in Figure 11 almost all classifications are wrong, specifically when the period is spiking the
level is classified as lower. Based on the classification of a real breathing sequence, the prediction does
not yield the desired results of differentiating more irregular from calmer breathing periods. Especially
extreme movements are completely removed from the difficulty class. Thus, a better approach for clas-
sification is an algorithm specialised to detect more extreme cases in the movement data. We refrained
from integrating the results of our AI experiments in our beam scheduling application.

9 Summary

Robotic radiation therapy with robotic ultrasound guidance represents an interesting area of application
for OMC. We described and implemented an approach for beam scheduling which verifies feasibility of
beam delivery during the treatment with OMC. Furthermore, we provide data and generated models. Our
preliminary results show that, avoiding beam collision, reductions in the idle time ranging from 16.02 %
to 37.21 % are possible. Comparatively, a naive machine learning approach to predict beam delivery
feasibility does not achieve the same performance as OMC while also being harder to reason about.

206 Sliced Online Model Checking for Optimizing Beam Scheduling

A Model declarations

Global declarations

const double accuracy = 100.0;

const double period = 3469.0;
const double drift = 0.0;

double base = 2.5019;
double a[4] = { -0.1959, 0.0295, -0.0022, -0.0169 };
double b[4] = { -0.4023, 0.0294, 0.033, 0.013 };

double v[4];
double result;

double time;
broadcast chan step;

double frequency = 2 * 3.14159265358979323846 / period;

System declarations

Clock = Timer(38);

const double accrate = (100.0 - accuracy) / 15.0;

CMP = CoeffModifier(frequency, 1.0 * accrate * 0.0001, 10, 1000);
CMB = CoeffModifier(base, 1.0 * accrate * 0.25, 10, 1000);
TM1 = TermModifier(a[0], b[0], 1.0 * accrate * 0.1, 10, 1000);
TM2 = TermModifier(a[1], b[1], 1.0 * accrate * 0.1, 10, 1000);
TM3 = TermModifier(a[2], b[2], 1.0 * accrate * 0.1, 10, 1000);
TM4 = TermModifier(a[3], b[3], 1.0 * accrate * 0.1, 10, 1000);

First = FSTerm(v[0],a[0],b[0],frequency,1);
Second = FSTerm(v[1],a[1],b[1],frequency,2);
Third = FSTerm(v[2],a[2],b[2],frequency,3);
Fourth = FSTerm(v[3],a[3],b[3],frequency,4);

TermSummer = Summer(result,v,base);

system Clock, First, Second, Third, Fourth, TermSummer, CMP, CMB, TM1, TM2, TM3, TM4;

Automaton Parameters

FSTerm double &v, double &a, double &b, double &freq, int k

Summer double &s, double &v[4], double &offset

Timer int rate

TermModifier double &a, double &b, double rate, int minWait, int maxWait

CoeffModifier double &c, double rate, int minWait, int maxWait

L. Beckers et al. 207

Automaton Declarations

Timer clock dt;

TermModifier meta double m; clock t;

CoeffModifier clock t;

B Evaluation model

The evaluation model is directly used as per its introduction in Figure 7.6 of [12], and shown here
in Figure 12. It is queried by E<> ((A1.T3 || A1.T4) && (A2.T3 || A2.T4) && (A3.T3 ||
A3.T4)) to check if a high enough error tier is reached through repeated condition violation. The
probability p that is referenced is obtained by querying the motion model using the query

Pr[⋄≤to−tm+t+to − t− ≤ tp ≤ to + t+∧ x0 − x− ≤ xp ≤ xo + x+],

where tm is the model’s creation time, to > tm the later observation time with xo the observed values,
t+, t−,x+,x− range parameters defining the bounding box around the observed (to,xo) and predicted
(tp,xp).

Figure 12: The Tier template is instantiated per data series, the Timer template is instantiated once.
For each data series, p is the current validity probability and t p is the corresponding threshold. The
probability is estimated by UPPAAL-SMC that within an observed time period, observed values are
predicted by the original model[12].

208 Sliced Online Model Checking for Optimizing Beam Scheduling

References

[1] Sven-Thomas Antoni, Jonas Rinast, Xintao Ma, Sibylle Schupp & Alexander Schlaefer (2016): Online model
checking for monitoring surrogate-based respiratory motion tracking in radiation therapy. International
Journal of Computer Assisted Radiology and Surgery 11(11), pp. 2085–2096, doi:10.1007/s11548-016-1423-
2.

[2] Gerd Behrmann, Alexandre David & Kim G. Larsen (2004): A Tutorial on UPPAAL. In Marco Bernardo &
Flavio Corradini, editors: Formal Methods for the Design of Real-Time Systems: 4th International School on
Formal Methods for the Design of Computer, Communication, and Software Systems, SFM-RT 2004, LNCS
3185, Springer–Verlag, pp. 200–236, doi:10.1007/978-3-540-30080-9_7.

[3] Lei Bu, Qixin Wang, Xin Chen, Linzhang Wang, Tian Zhang, Jianhua Zhao & Xuandong Li (2011): Toward
online hybrid systems model checking of cyber-physical systems’ time-bounded short-run behavior. SIGBED
Rev. 8(2), p. 7–10, doi:10.1145/2000367.2000368.

[4] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikučionis & Danny Bøgsted Poulsen (2015):
UPPAAL SMC tutorial. International Journal on Software Tools for Technology Transfer 17(4), pp. 397–
415, doi:10.1007/s10009-014-0361-y.

[5] Floris Ernst, Robert Dürichen, Alexander Schlaefer & Achim Schweikard (2013): Evaluating and compar-
ing algorithms for respiratory motion prediction. Phys Med Biol 58, p. 3911 – 3929, doi:10.1088/0031-
9155/58/11/3911.

[6] Stefan Gerlach, Theresa Hofmann, Christoph Fürweger & Alexander Schlaefer (2022): AI-based opti-
mization for US-guided radiation therapy of the prostate. Int J Comput Ass Rad 17, p. 2023 – 2032,
doi:10.1007/s11548-022-02664-6.

[7] Stefan Gerlach, Theresa Hofmann, Christoph Fürweger & Alexander Schlaefer (2023): Towards fast adaptive
replanning by constrained reoptimization for intra-fractional non-periodic motion during robotic SBRT. Med
Phys 50, p. 4613 – 4622, doi:10.15480/882.5073.

[8] Stefan Gerlach, Ivo Kuhlemann, Philipp Jauer, Ralf Bruder, Floris Ernst, Christoph Fürweger & Alexander
Schlaefer (2017): Robotic ultrasound-guided SBRT of the prostate: feasibility with respect to plan quality.
Int J Comput Ass Rad 12, p. 149 – 159, doi:10.1007/s11548-016-1455-7.

[9] Tao Li, Feng Tan, Qixin Wang, Lei Bu, Jian-Nong Cao & Xue Liu (2014): From Offline toward
Real Time: A Hybrid Systems Model Checking and CPS Codesign Approach for Medical Device Plug-
and-Play Collaborations. IEEE Transactions on Parallel and Distributed Systems 25(3), pp. 642–652,
doi:10.1109/TPDS.2013.50.

[10] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas, Alexandre
Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot & Édouard Duchesnay (2011): Scikit-
learn: Machine Learning in Python. Journal of Machine Learning Research 12, pp. 2825–2830,
doi:10.5555/1953048.2078195.

[11] Mona Qanadilo, Sufyan Samara & Yuhong Zhao (2013): Accelerating Online Model Checking. In: 2013
Sixth Latin-American Symposium on Dependable Computing, pp. 40–47, doi:10.1109/LADC.2013.20.

[12] Jonas Rinast (2015): An online model-checking framework for timed automata, doi:10.15480/882.1253.
Available at http://tubdok.tub.tuhh.de/handle/11420/1256.

[13] Gerald Sauter, Henning Dierks, Martin Fränzle & Michael R. Hansen (2009): Lightweight hybrid model
checking facilitating online prediction of temporal properties. In: Proceedings of the 21st Nordic Workshop
on Programming Theory, 21, DTU Informatik, Danmarks Tekniske Universitet, pp. 20–22.

[14] Alexander Schlaefer & Achim Schweikard (2008): Stepwise multi-criteria optimization for robotic radio-
surgery. Med Phys 35, p. 2094 – 2103, doi:10.1118/1.2900716.

[15] Matthias Schlüter, Christoph Fürweger & Alexander Schlaefer (2019): Optimizing robot motion for robotic
ultrasound-guided radiation therapy. Phys Med Biol 64, doi:10.1088/1361-6560/ab3bfb.

https://doi.org/10.1007/s11548-016-1423-2
https://doi.org/10.1007/s11548-016-1423-2
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1145/2000367.2000368
https://doi.org/10.1007/s10009-014-0361-y
https://doi.org/10.1088/0031-9155/58/11/3911
https://doi.org/10.1088/0031-9155/58/11/3911
https://doi.org/10.1007/s11548-022-02664-6
https://doi.org/10.15480/882.5073
https://doi.org/10.1007/s11548-016-1455-7
https://doi.org/10.1109/TPDS.2013.50
https://doi.org/10.5555/1953048.2078195
https://doi.org/10.1109/LADC.2013.20
https://doi.org/10.15480/882.1253
http://tubdok.tub.tuhh.de/handle/11420/1256
https://doi.org/10.1118/1.2900716
https://doi.org/10.1088/1361-6560/ab3bfb

L. Beckers et al. 209

[16] Krishna Sudhakar, Yuhong Zhao & Franz-Josef Rammig (2016): Efficient integration of online model check-
ing into a small-footprint real-time operating system. Concurrency and Computation: Practice and Experi-
ence 28(14), pp. 3773–3797, doi:10.1002/cpe.3712.

[17] Yuhong Zhao & Franz Rammig (2012): Online Model Checking for Dependable Real-Time Systems. In:
2012 IEEE 15th International Symposium on Object/Component/Service-Oriented Real-Time Distributed
Computing, pp. 154–161, doi:10.1109/ISORC.2012.28.

https://doi.org/10.1002/cpe.3712
https://doi.org/10.1109/ISORC.2012.28

	Introduction
	Modelling RAFT in mCRL2
	The Raft Environment
	Node

	Raft Properties
	Discussion
	Conclusions and Future Work
	Introduction
	IEEE 1394 bus
	Architecture
	Link layer
	Physical layer
	Transaction and application layers

	Formal models
	Formal model in CRL
	Formal model in LOTOS
	Formal model in mCRL2
	Formal model in LNT

	Verification
	Conclusion
	Formal model in CRL
	Types and functions in CRL
	The LINK process in CRL
	The BUS process in CRL
	The MAIN process in CRL

	Formal model in mCRL2
	Types and functions in mCRL2
	The LINK process in mCRL2
	The BUS process in mCRL2
	The MAIN process in mCRL2

	Formal model in LOTOS
	Types and functions in LOTOS
	The LINK process in LOTOS
	The BUS process in LOTOS
	The TRANS process in LOTOS
	The APPLI process in LOTOS
	The NODE process in LOTOS
	The MAIN process in LOTOS

	Formal model in LNT
	Types and functions in LNT
	Channels in LNT
	The LINK process in LNT
	The BUS process in LNT
	The TRANS process in LNT
	The APPLI process in LNT
	The NODE process in LNT
	The MAIN process in LNT

	Introduction
	Existing SysML model structure
	Model adaptions for formal analysis
	Formalising `structured natural language'
	Assignment-based language in SysML
	Abstract notation for XMI
	Well-typedness using constraint solving in Statix
	Leaf Decomposition Layer
	Glue Decomposition Layer
	Strengths and weaknesses

	Alternative models using Dezyne
	The pull style model
	The push style model
	Verification of general properties

	Conclusions
	Artefacts
	Generated mCRL2 of the Activity Diagram in Figure 3b
	Implementations in Spoofax
	Syntax in SDF3
	Static Semantics in Statix
	Transforming in Stratego

	Dezyne pull-style models
	Dezyne push-style models
	Introduction
	Modeling the SoC Behavior for Resource Isolation
	SoC Behavior Modeling in LNT
	SoC Behavior Modeling in PSS

	Test Generation from Test Scenarios
	Test Scenario 1: Reject for any Reason
	Test Scenario 2: Test all Possible Responses (Interleaving Semantics)
	Test Scenario 3: Test all Possible Responses (Sequential Semantics)
	Test Scenario 4: Access Data with Different Protection

	Conclusion
	LNT Model
	PSS Model
	Monolithic PSS Model
	SVL Script for all Verification Steps
	Introduction
	Network Reference Point Failure Detection (NRP FD) Algorithm
	Modeling and Verification of NRP FD using Timed Rebeca
	The actor-based language, Timed Rebeca
	Modeling NRP-FD in Timed Rebeca

	Model checking of NRP FD using Afra
	Leasing NRP FD

	Why Timed Rebeca?
	Related work
	Conclusion and Future Work
	Rebeca Syntax
	Afra
	Timed Rebeca model of the Leasing NRP FD
	State Space
	Introduction
	Ultrasound Guided Motion Compensated Radiation Therapy
	Online Model Checking
	Modeling
	1D motion modeling
	3D motion modeling
	Beam verification

	Data
	Beam Checking Application
	Experiments
	AI Enhancements
	Summary
	Model declarations
	Evaluation model

