
EPTCS 421

Proceedings of the

19th International Workshop on

Logical and Semantic Frameworks, with

Applications

Goiânia, Brazil, 18th-20th September 2024

Edited by: Cynthia Kop and Helida Salles Santos

Published: 6th June 2025

DOI: 10.4204/EPTCS.421

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . ii

Cynthia Kop and Helida Salles Santos

Properties of UTxO Ledgers and Programs Implemented on Them . 1

Polina Vinogradova and Alexey Sorokin

Query Answering in Lattice-based Description Logic . 21

Krishna Manoorkar and Ruoding Wang

Fuzzy Lattice-based Description Logic . 44

Yiwen Ding and Krishna Manoorkar

Regional, Lattice and Logical Representations of Neural Networks . 64

Sandro Preto and Marcelo Finger

Nominal Equational Rewriting and Narrowing . 80

Mauricio Ayala-Rincón, Maribel Fernández, Daniele Nantes-Sobrinho and

Daniella Santaguida

Towards an Analysis of Proofs in Arithmetic . 98

Alexander Leitsch, Anela Lolić and Stella Mahler

An Execution Model for RICE . 112

Steven Libby

Paraconsistent Relations as a Variant of Kleene Algebras . 130

Juliana Cunha, Alexandre Madeira and Luís S. Barbosa

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on

Logical and Semantic Frameworks with Applications (LSFA’24)

EPTCS 421, 2025, pp. ii–iii, doi:10.4204/EPTCS.421.0

Preface

This volume contains the post-proceedings of the 19th Workshop on Logical and Semantic Frame-

works with Applications (LSFA 2024), which was held in Goiânia, the capital of Goiás state in Brazil,

from September 18 to September 20, 2024.

The aim of the LSFA series of workshops is bringing together theoreticians and practitioners to

promote new techniques and results, from the theoretical side, and feedback on the implementation and

use of such techniques and results, from the practical side. LSFA includes areas such as proof and type

theory, equational deduction and rewriting systems, automated reasoning and concurrency theory.

The 19th International Workshop on Logical and Semantic Frameworks, with Applications continues

the successful workshops held in Natal (2006), Ouro Preto (2007), Salvador (2008), Brasilia (2009), Na-

tal (2010), Belo Horizonte (2011), Rio de Janeiro and Niterói (2012), São Paulo (2013), Brası́lia (2014),

Natal (2015), Porto (2016), Brası́lia (2017), Fortaleza (2018), Natal (2019), Bahia (2020), Buenos Aires

(virtual) (2021), Belo Horizonte (2022), and Rome (2023).

For LSFA 2024, nine regular papers were accepted for presentation out of ten submissions, with

three or four reviewers per submission. After the meeting, revised versions of the papers were reviewed

again, from which eight regular papers were finally included in this volume. In addition, the workshop

program included two talks by distinguished invited speakers Heloisa Camargo (Universidade Federal de

São Carlos) and Maribel Fernandez (King’s College London), and two tutorial sessions by distinguished

invited lecturers Marcelo Finger (IME - USP) and Anderson Paiva Cruz (Instituto Metrópole Digital

UFRN). We express our sincere gratitude to them.

We want to thank the PC members and the additional reviewers for doing a great job providing high-

quality reviews. Many thanks also go to the LSFA 2024 organizers, Daniel Ventura, Bruno Silvestre,

Thaynara Arielly de Lima and Wagner Sanz. All their valuable time was indispensable in guaranteeing

the success of the workshop.

Cynthia Kop (LSFA 2024 PC chair)

Helida Santos Salles (LSFA 2024 PC co-chair)

http://dx.doi.org/10.4204/EPTCS.421.0

Cynthia Kop & Helida Salles Santos iii

Program Committee

Vander Alves Universidade de Brası́lia, Brazil

Luı́s Soares Barbosa Universidade do Minho, Portugal

Benjamin Bedregal Universidade Federal do Rio Grande do Norte, Brazil

Juliana Bowles University of St Andrews, UK

Siddharth Bhaskar James Madison University, USA

Frédéric Blanqui INRIA, France

Humberto Bustince Universidad Pública de Navarra, Spain

Jörg Endrullis Vrije Universiteit Amsterdam, The Netherlands

Mário Florido Universidade do Porto, Portugal

André Galdino Universidade Federal de Catalão, Brazil

Alex Kavvos University of Bristol, UK

Dohan Kim University of Innsbruck, Austria

Cynthia Kop (chair) Radboud University Nijmegen, The Netherlands

Thaynara Arielly de Lima Universidade Federal de Goiás, Brazil

Mariano Moscato AMA / NASA LaRC, USA

Flávio de Moura Universidade de Brası́lia, Brazil

Cláudia Nalon Universidade de Brası́lia, Brazil

Jorge Pérez University of Groningen, The Netherlands

Renata Reiser Universidade Federal de Pelotas, Brazil

Kristin Yvonne Rozier Iowa State University

Thomas Rubiano INRIA, France

Helida Santos (co-chair) Universidade Federal do Rio Grande, Brazil

Regivan Santiago Universidade Federal do Rio Grande do Norte, Brazil

José Solsona Universidad ORT, Uruguay

Nora Szasz Universidad ORT, Uruguay

Álvaro Tasistro Universidad ORT, Uruguay

René Thiemann University of Innsbruck, Austria

Deivid Vale Radboud University Nijmegen, The Netherlands

Niccolò Veltri Tallinn University of Technology, Estonia

Daniel Ventura Universidade Federal de Goiás, Brazil

Niels van der Weide Radboud University Nijmegen, The Netherlands

Organizing Committee

Daniel Ventura (local organizer) INF, Universidade Federal de Goiás, Brazil

Thaynara Arielly de Lima IME, Universidade Federal de Goiás, Brazil

Wagner Sanz FAFIL, Universidade Federal de Goiás, Brazil

Bruno Silvestre INF, Universidade Federal de Goiás, Brazil

External Reviewers

Fernando Bereta Dos Reis, João Barbosa, Jose Solsona, Manfred Schmidt-Schauß, Paulo Guilherme

Santos

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on

Logical and Semantic Frameworks with Applications (LSFA’24)

EPTCS 421, 2025, pp. 1–20, doi:10.4204/EPTCS.421.1

© P. Vinogradova, A. Sorokin

This work is licensed under the

Creative Commons Attribution License.

Properties of UTxO Ledgers and Programs Implemented on

Them

Polina Vinogradova

Input Output Global

polina.vinogradova@iohk.io

Alexey Sorokin

Input Output Global

alex.sorokin@iohk.io

Trace-based properties are the gold standard for program behaviour analysis. One of the domains of

application of this type of analysis is cryptocurrency ledgers, both for the purpose of analyzing the

behaviour of the ledger itself, and any user-defined programs called by it, known as smart contracts.

The (extended) UTxO ledger model is a kind of ledger model where all smart contract code is state-

less, and additional work must be done to model stateful programs. We formalize the application of

trace-based analysis to UTxO ledgers and contracts, expressing it in the languages of topology, as

well as graph and category theory. To describe valid traces of UTxO ledger executions, and their

relation to the behaviour of stateful programs implemented on the ledger, we define a category of

simple graphs, infinite paths in which form an ultra-metric space. Maps in this category are arbitrary

partial sieve-define homomorphisms of simple graphs. Programs implemented on the ledger corre-

spond to non-expanding maps out of the graph of valid UTxO execution traces. We reason about

safety properties in this framework, and prove properties of valid UTxO ledger traces.

Keywords: blockchain, ledger, smart contract, formal verification, specification, transition sys-

tem, UTxO, properties, safety

1 Introduction

Cryptocurrency ledgers are distributed ledgers keeping records of digital currency. When a user submits

a transaction to the network, each local record state is updated by applying the changes specified in

the transaction. Cryptocurrency ledger behavior is often described by as a deterministic state transition

systems [15, 7, 23, 31, 28]. The main functionality supported by blockchain ledgers programs is a

single atomic operation: the application of a transaction to the given state, and all state updates can

be decomposed into applications of single transactions. This makes small-step semantics well-suited

to specify ledger behavior, as exemplified in both scientific research and in industrial implementations

[30, 19].

The two most common ledger models are account-based (such as Ethereum [7]), and UTxO-based.

A minimal account-based ledger records the state of a collection of accounts, and applying transactions

to the ledger updates the account states, and transfers funds between accounts. In this work, we focus

on the UTxO ledger model, and its formalization in terms of small-step semantic [30]. A UTxO ledger,

which stands for Unspent Transaction Outputs, records entries (i.e. transaction outputs) in a UTxO set.

This model was first introduced in the BitCoin system [23], and currently in use by the Cardano [19] and

Ergo [12]. A UTxO entry contains some funds, together with a specification of what kinds of transactions

are allowed to ”spend” this record, e.g. only ones signed by a particular key. Applying a transaction to a

UTxO set only adds of removes entries, never modifying them. This makes performing formal analysis

on this model more tractable in many cases. In particular, the outcome of a transaction application is not

affected by the order of transaction application, as we demonstrate in this work.

http://dx.doi.org/10.4204/EPTCS.421.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Properties of UTxO Ledgers and Programs Implemented on Them

An extended UTxO (EUTxO) ledger is a UTxO-style ledger that supports the use of smart contracts.

EUTxO smart contracts are pieces of user-defined code that specify permissions for certain transaction

actions. In this work, we omit most of the details of this mechanism as it is not necessary for our

construction. However, we do make use of a stateful contract computation model called a structured

contract framework (SCF) [30] that relies on the possibility of composing sophisticated permissions.

This framework specifies the condition that any valid transaction applied to the ledger state will result

in an update for the program state encoded in that ledger state that is in accordance with the program

specification. This condition is used as the definition of a a program being implemented on the ledger,

including both consolidated and distributed programs. This approach only formalizes a single ”correct”

step of a program, both in its ledger implementation and specification.

Trace-based properties [1] are predicates on infinite sequences of program states used to reason about

the correctness of stateful programs. Unlike the structured contract formalism, this approach allows for

reasoning about multiple program steps at a time, as it studies program executions of infinite length.

As is, in order to demonstrate the correctness of the (single step) program state update, the SC approach

requires making certain assumptions, which are related to the behavior of the UTxO ledger program itself.

These assumptions can only be expressed in terms of subsets of ledger traces generated in a specific way,

i.e. a specific trace-based property. Moreover, the basic definitions of the SCF formalism have not been

used to to reason about traces or express any sophisticated guarantees of correct behavior.

We make the observation that correctly-implemented programs, then, can be shown to behave cor-

rectly only when their behavior is considered on ledger traces that are themselves generated from a valid

start state, and according to the ledger program specification. In this work, we take a principled approach

to formalizing this idea, while filling these gaps in analysis of the ledger program and the implemen-

tations of other programs on it. In particular, we use ideas from trace-based behavior analysis, graph

theory, category theory, and topology, to do the following analysis:

(i) we define what it means for a ledger or contract trace to have the property of being valid, defined

in terms of small-steps specifications and initial states;

(ii) we define a category of simple graphs with fixed initial vertices, paths in which represent valid

execution traces, and the maps are partial sieve-defined homomorphisms between them;

(iii) we demonstrate that infinite paths in the graphs of this category form an ultrametric space [20].

As a corollary, we obtain that any structured contract induces a non-expanding (and therefore

continuous) map from ledger traces to structured contract traces;

(v) we prove a number of classic UTxO ledger safety properties within our framework , including

transaction commutativity for valid permutations, and replay protection.

The value in defining the category in (ii) is that it formalizes the relation of being ”correctly imple-

mented on” between a stateful program and the ledger program which executes it in a way that aligns

with existing trace-based behavior analysis techniques. Formalizing the relation between properties of

these programs allows us to derive useful results about ledger behavior based on the properties of imple-

mented programs, and vice versa. In particular, a direct consequence of the nature of our construction is

that a program property of the form ”a specific bad thing never happens” (i.e., a safety property) is satis-

fied by all valid execution traces generated from a correct implementation of that program on the ledger.

Finally, we note that the results in (v) are proved, instead of being treated as an assumption as is done

in some existing work on implementing programs on a UTxO ledger in order to prove the correctness of

its implementation [29]. Since these trace properties cannot be expressed as predicates on an a specific

state, this required the additional machinery we introduce here to formalize.

P. Vinogradova, A. Sorokin 3

2 Small-step specifications and the ledger model

We present an overview of the types and semantics employed in our specifications, on which we later

base our analysis.

2.1 Small-step specifications

Small-step semantics are specified in terms of of atomic steps from which all other (composite) steps can

be built. We establish the following notation for our upcoming specifications:

Definition 2.1.1. A small-step transition system TRANS is given by a subset TRANS ⊆ Env×State×

Input×State, also denoted e ⊢ s
i

−−−→
TRANS

s′

Each component in a quadruple (e, s, i, s′) has the following role: (i) e ∈ Env is an environment; (ii)

s ∈ State is a state to which an input i ∈ Input is applied, or a starting state; (iii) s′ ∈ State is a state

representing, for the given environment, a result of the input application to the starting state, or the end

state. It is possible that a given state has no valid transitions out of it, or that a given input is not included

in valid transition 4-tuple.

Given a transition (e, s, i, s′) ∈ TRANS, the pair (e, i) of an environment and an input make up a

transition label of TRANS. The difference between the input and the environment is in the source of the

data. This convention comes from the specification of the Cardano ledger transition system [10]. The

user issues the input, e.g., a transaction. The environment is sourced from the transaction-containing

blocks (which we do not model here). For example, the consensus and block production mechanisms

keep track of the current time, which is specified by the environment in our model.

2.2 Ledger transition system

A ledger is a stateful program that implements one operation: the application of a transaction to the

current ledger state. In the Extended UTxO (EUTxO) ledger model, the state is made up of a set of

unspent transaction outputs, called the UTxO set. A single UTxO entry (unspent output) consists of a

unique identifier together with an output. The output contain data, assets, and code (i.e., a smart contract,

which specifies what transactions have are permitted to remove this output from the UTxO set). UTxO

entries are immutable, can can only be either added or removed from the UTxO set. We give an overview

of the EUTxO state and transaction structure below, leaving abstract any types and definitions that are

not relevant for the examples we present later. A complete specification is available in [30]. Nonstandard

notation we use here is specified in Figure 1.

⋆ : {⋆} denotes the one-element set, and its one inhabitant

Q : Set (A) Q is a set of elements of type A

Key 7→ Value ([(Key, Value)] finite map

Figure 1: Non-standard map operators

UTxO set. A UTxO set constitutes the state of a ledger model. It is given by a finite map (finite asso-

ciative array) (ByteString,N) 7→ Output The key in the UTxO finite map is called an output reference.

4 Properties of UTxO Ledgers and Programs Implemented on Them

Slot number. To represent blockchain time, a natural number is used, which we call a slot number (or

just slot), with Slot= N. A pair of slot numbers represents an interval which includes the first (starting)

slot of the pair, but excludes the second (end) slot.

Transaction. Updates that a user wants to make to the UTxO set are specified in a Tx and Input data

structures

Tx= (inputs : Set (Input), Input= (outputRef : (ByteString,N),

outs : List[Output], output : Output,

validityInterval : (Slot,Slot),

additionalData : AdditionalData)

A transaction tx consists of (i) a set inputs(tx) of inputs (pointers to entries in the UTxO set), (ii)

outputs outs(tx) (which will be added as values to the UTxO set, accompanied by appropriate unique

identifier pointers), (iii) a pair of slots validityInterval(tx) representing the interval of time during which

this transaction can be processed. We include the field additionalData in order to suggest how to extend

this model to represent the full EUTxO ledger model [30]. Also, Tx is equipped with a hash function

h : Tx→ ByteString. that is used, for a given transaction tx, to generate the unique identifier (hash tx, ix).
This identifier, called an output reference, is used when adding output oix ∈ outs tx with index ix (in the

list of outputs of tx) to the UTxO set.

The following gives the type of the ledger transition system LEDGER⊆ Slot×UTxO×Tx×UTxO

We require any member (q,u, t,u′) of LEDGER to satisfy the following constraints: (i) a transaction t

has at least one input; (ii) a slot q is within the validity interval of transaction t; (iii) all transaction inputs

exist in the UTxO set u. We define a function which checks these constraints, checkTx : Slot×UTxO×
Tx → Bool by the following rule

checkTx (q,u, t) := (inputs t 6= ∅)∧ (q ∈ validityInterval(t))

∧(∀i ∈ inputs t, (outputRef i) 7→ (output i) ∈ u)∧ (additionalChecks (q,u, t))

Again, the field additionalChecks is included in order to ensure the model can be extended to full EUTxO.

The function checkTx specifies, for a given triple (q, u, t), the conditions that must be satisfied in order

for there to exist a u′ with (q,u, t,u′) ∈ LEDGER. When it exists, u′ ∈ UTxO is computed as follows:

(i) UTxO entries in u that correspond to the inputs of the transaction t must be removed; (ii) entries

constructed from the outputs of the transaction t must be added to u. We call the functions getORefs

and mkOuts respectively (defined in Figure 2). The following rule ApplyTx defines the membership of

(q,u, t,u′) in the LEDGER relation:

ApplyTx

u′ := (u\getORefs(t))∪mkOuts(t)

checkTx (q,u, t)

q ⊢ u
t

−−−−→
LEDGER

u′
(1)

2.3 Structured contracts

To motivate the category we define later, we specify of what it means for a stateful contract to be imple-

mented on the UTxO ledger. User-defined code in the EUTxO model is not stateful, and can only take the

P. Vinogradova, A. Sorokin 5

toMap : Ix→ [Output]→ (Ix 7→ Output)

toMap ix {}= []

toMap ix [u; outs] = { ix 7→ u }∪{ (toMap (ix+1) outs) }

mkOuts : Tx→ UTxO

mkOuts tx = { (tx, ix) 7→ o | (ix 7→ o) ∈ toMap 0 (outs tx) }

getORefs : Tx→ Set (OutputRef)

getORefs tx = { outputRef i | i ∈ inputs tx }

Figure 2: Auxiliary UTxO functions

form of boolean predicates on transaction data. To reason about stateful contracts, we use the structured

contract model [30]. Let STRUC be a program expressed in terms of the small-steps semantics. The state

of this contract is represented (encoded) on the ledger in some specific way. This encoding is specified in

terms of a (partial) projection function that computes the contract state for a given ledger state (or fails).

Similarly, for a given transaction, the input to STRUC can be computed. The structured contract specifi-

cation STRUC is said to be implemented correctly whenever, for a given ledger state and transaction, the

structured contract state (encoded within that ledger state) is updated by the input (encoded withing the

transaction) in accordance with the STRUC specification.

The specification STRUC, together with the projection functions and a proof the the correctness of

the implementation, constitutes a structured contract. Note here that we do not show the exact details of

running user-defined code predicates on transaction data. In a full model, we would fill in these details

by specifying the required additionalData and additionalChecks. Depending on the choice of projection

functions, this model can be used to represent both distributed and consolidated contracts [30]. We

formalize,

Definition 2.3.1. Suppose STRUC is small-step transition system STRUC⊆{∗}×State× Input×State

and let we have a partial function π : UTxO⇀ State and a (total) function 1 κ : Tx→ Input such that

(u ∈ Defπ) ∧
(

q ⊢ u
t

−−−−→
LEDGER

u′
)

(u′ ∈ Defπ) ∧
(

∗ ⊢ πu
κt

−−−→
STRUC

πu′
) (2)

The triple (STRUC,π,κ) is called a structured contract for LEDGER.

Following existing EUTxO design, no block-level data is exposed to a smart contract, such as a

current slot number, so a singleton {∗} is the type of a structured contract specification environment.

An example of a very basic program that can be defined as a structured contract would be an NFT, or a

non-fungible (i.e. unique) token [30]. The state of an NFT contract is the total quantity of this type of

token in the UTxO set, and the constraint in the update rule of that state is that the updated (end state)

quantity may not exceed 1.

1A total function f from X to Y means everywhere-defined function on X , while a partial function f from X to Y means a

total function from a subset Def(f)⊆ X to Y.

6 Properties of UTxO Ledgers and Programs Implemented on Them

As is, structured contracts give only the guarantee that each program step will be correct, both in the

specification and in the ledger implementation. In the rest of this work, define the space of valid program

executions constructed from its small-step specification in a way that aligns with existing definitions

and terminology in the field. This allows for expressing (and proving adherence to) a wider range of

properties, and formalizing the relationship between valid executions of ledger programs and executions

of their implementations.

3 Traces

In [1], the collection of traces (or executions) of a program with states of type S is a collection of infinite

lists of states. Taking S = UTxO, we get a set of all UTxO traces, and taking S = State, we get the set

of all contract state traces. In both cases we are dealing with arbitrary lists of states. However, we are

interested in reasoning about traces that are generated according to their specification. Therefore, we

need to define appropriate subsets of infinite lists, which we refer to as valid traces:

Definition 3.0.1 (Valid ledger and structured contract traces).

(i) Fix subsets UTxO0 ⊆ UTxO,Slot0 ⊆ Slot called valid initial UTxO states and valid initial slots,

respectively. A set of valid LEDGER traces is

Trc(LEDGER) := {(u0,u1, . . .) ∈ List∞[UTxO] | ∀ j ≥ 0, ∃ (q j,u j, t j,u j+1) ∈ LEDGER :

(q0,u0) ∈ Slot0 ×UTxO0, q0 ≤ q1 ≤ . . . }

Note that it is not enough to require that each 4-tuple is in LEDGER, the slots must appear in the

increasing order.

(ii) Let (STRUC, π, κ) be a structured contract for LEDGER. We say that State0 ⊆ State is a set of

valid initial STRUC states if all valid initial UTxO states are mapped to State0 via the partially

defined map π, i.e. UTxO0 ⊆ Defπ and π(UTxO0)⊆ State0. A set of valid STRUC traces is

Trc(STRUC) := { (s0,s1, . . .)∈ List∞[State] | ∀ j ≥ 0, (∗, s j, i j, s j+1) ∈ STRUC, s0 ∈ State0 }

Since the environment type for structured contracts is {∗}, there is no restriction on it. For both

Trc(LEDGER) and Trc(STRUC) we refer to lists of quadruples corresponding to valid traces in LEDGER

and STRUC, respectively, as lifts of that traces.

4 Graphs and sieve-defined homomorphisms

The specification LEDGER can be used to generate sequences of the form (q,u, t0,u0), (q,u0, t1,u1), ...,
such that for each triple (q,ui, ti),checkTx (q,ui, t) = True. This process gives rise to a simple graph2 Λ,

whose vertices are triples (q,u, t) satisfying checkTx, and edges connecting any two (q,u, t) and (q′,u′, t ′)
whenever (q,u, t,u′) ∈ LEDGER. Similarly, a structured contract specification STRUC defines another

simple graph Γ on triples (∗,s, i). We formalize the relation between simple graphs in general, and in

particular, between graphs related via implementation, such as LEDGER and STRUC.

Note that in this section and onwards, we use standard terms and definitions of category theory, as

described in existing works [21, 4, 5].

2By a simple graph we mean a directed graph in which for any two vertices x and y there is at most one edge e : x → y.
Single loops at vertices are also allowed.

P. Vinogradova, A. Sorokin 7

4.1 Simple graphs and sieve-defined homomorphisms

In general, a homomorphism of directed graphs is a pair of maps: one for vertices and one for edges,

such that the map of edges respects their domains and codomains. In the case of a simple graphs, a map

for vertices completely defines the homomorphism.

Let G be the graph generated from LEDGER, and G′ be the graph generated from G′. The partially de-

fined function π : UTxO⇀ State and total function κ :Tx→ Input define a partial map ϕ from the set of

vertices of G to the set of vertices of G′, such that the domain of definition of ϕ , denoted Defϕ , is upward

closed. That is, for an edge (q,u, t) → (q′,u′, t ′) in G, and (q,u, t) ∈ Defϕ , then (q′,u′, t ′) ∈ Defϕ . This

follows immediately from the definition of structured contract. Moreover, ϕ defines a homomorphism of

simple graphs from Defϕ to G′: ((q,u, t) −→ (q′,u′, t ′)) 7→ ((∗,πu,κt) −→ (∗,πu′,κt ′)) .
This can be made precise as the following definition,

Definition 4.1.1. Let G = (V,E) be a graph. A subset S ⊆V is called a sieve, whenever any edge starting

in S necessary ends in S. That is, if e : v1 → v2 ∈ E and v1 ∈ S, then v2 ∈ S. Equivalently, every path in

G that starts in S also ends in S.

The following are trivial examples of sieves:

Example 4.1.2. For any graph G = (V,E) the set of all vertices V and any sink in G are sieves. Also,

any intersection of sieves is a sieve.

We can now define the class of graph homomorphisms that define the implementation relation be-

tween two specifications in graph-theoretic terms:

Definition 4.1.3. Let G = (V,E) and G′ = (V ′,E ′) be simple graphs. A partial map ϕ : V ⇀ V ′, whose

domain of definition Defϕ is a sieve in G, is called a partially sieve-defined homomorphism, if ϕ extends

to a homomorphism of graphs from the full subgraph of G on Defϕ to the graph G′. Such map will be

denoted ϕ : G ⇀ G′ and Defϕ will also denote the corresponding full subgraph in G.

All everywhere-defined homomorphisms of simple graphs are also partial sieve-defined homomor-

phism of simple graphs. In particular, the identity homomorphism is a trivial example of this. The

following lemma is needed to define the composition of sieve-defined homomorphisms:

Lemma 4.1.4 (Sieve of a sieve is a sieve). Let G = (V,E) be a graph and S a sieve in G. Suppose S′ is a

sieve in a full subgraph S of G defined by S. Then S′ is a sieve in G.

Proof. Let e : v → v′ be an edge in G such that v ∈ S′. Since S′ ⊆ S, then v ∈ S. Hence, v′ belongs to S,

as S is a sieve in G. Moreover, the edge e is in the full subgraph S of G on S. By the assumption, S′ is a

sieve in S, so v′ belongs to S′.

Recall the composition of partially defined functions between sets. Suppose f : X ⇀Y and g : Y ⇀ Z

are partially defined functions. We define their composition to be the partially defined function g ◦ f :

X ⇀ Z, Def(g◦ f) = Def f ∩ f−1(Defg) and (g◦ f)x = g(f (x)) if x ∈ Def(g◦ f).
Since any partial sieve-defined homomorphism of simple graphs is completely defined by a map on

its vertices, we define the composition of partial sieve-defined homomorphisms in a similar way to sets.

Lemma 4.1.5. Partial sieve-defined homomorphisms of simple graphs are closed under composition.
Proof. Given f : G ⇀ G′ and g : G′ ⇀ G′′ it is enough to prove that Def(g ◦ f) = Def f ∩ f−1(Defg)
is a sieve in Def f . Suppose e : v → v′ is an edge in Def f such that v ∈ Def(g ◦ f). The edge f (e) :

f (v)→ f (v′) then belongs to G′, where f (v) ∈ Defg. Since Defg is a sieve, f (v′) also belongs to Defg.
Therefore, v′ ∈ Def f ∩ f−1(Defg). We then get that Def(g ◦ f) is a sieve in Def f . Since a sieve of a

sieve is a sieve, g◦ f : G ⇀ G′′ is a partial sieve-defined homomorphism of simple graphs.

The above information motivates us to introduce a category Graph♯ of all simple graphs and partial

sieve-defined homomorphisms.

8 Properties of UTxO Ledgers and Programs Implemented on Them

4.2 Graphs with distinguished initial vertices

The definition of the set of valid traces for LEDGER and STRUC motivates us to add a subset of initial

vertices V̊ ⊆V to each simple graph G = (V,E). If f : G ⇀ G′ is a partial sieve-defined homomorphism

of simple graphs, then we require V̊ ⊆ Def f , f (V̊)⊆ V̊ ′, i.e., each partial sieve-defined homomorphism

should be defined over initial vertices and preserve them. We generalize this situation and define an

appropriate category.

Definition 4.2.1. Let Graph♯
∗ be a category whose objects are pairs (G;V̊), where G = (V,E) is a simple

graph. Let V̊ ⊆ V be a set of initial vertices, so that the morphisms of Graph♯
∗ from (G;V̊) to (G′;V̊ ′),

denoted ((G;V̊),(G′,V̊ ′))∂ , are (partial) maps f ∈ Graph♯(G,G′) such that V̊ ⊆ Def f , f (V̊)⊆ V̊ ′. The

composition and identities are inherited from ones in Graph♯. The set of everywhere-defined maps f :

G → G′ such that f (V̊)⊆ V̊ ′ we denote by ((G;V̊),(G′;V̊ ′)).

If a set of initial vertices is clear from the context, we can abbreviate (G;V̊) to just G, still considering

it as an object of Graph♯
∗. Obviously, there is an inclusion ((G;V̊),(G′,V̊ ′))⊆ ((G;V̊),(G′,V̊ ′))∂ .

Let us consider the following covariant representable functor, which we use in an upcoming example

(where the above inclusion becomes an equality),

(N,) :

Graph♯
∗ Set

G (N,G)

(f : G ⇀ G′) (f ◦ : (N,G)→ (N,G′))

We will use the following example to represent and study paths in Graph♯
∗ as executions (or traces)

programs:

Example 4.2.2. The natural ordering on the set of natural numbers N induces a simple graph 0 → 1 →
. . . , which will be also denoted by N. By default, the set of initial vertices for N is set to be {0}, i.e.,

(N;{0}) ∈ Graph♯
∗. Moreover, given any f : (N;{0})⇀ (G;V̊), we get that 0∈ Def f and Def f is a sieve

in G. Since there exists a unique path in N from 0 to any n > 0, any n ∈ N also belongs to N. Therefore,

Def f = N, i.e., any partial sieve-defined homomorphism from (N;{0}) to (G;V̊) is everywhere defined:

((N;{0}),(G;V̊)) = ((N;{0}),(G;V̊))∂ or, skipping the sets of initial vertices, (N,G) = (N,G)∂ . Any

f : N→ G models an infinite path v0 → v1 → . . . in the simple graph G, where vi = f (i) and v0 ∈ V̊ . Of

course, (N,G) =∅, if G is acyclic and finite.

Remark 4.2.3. When G = (V,E) is a complete graph (including single loops at vertices), we identity

(N,G) with a set ⟪V⟫ := {~v = (v0,v1, . . .) | vi ∈V} of infinite lists of elements of V. These arbitrary

infinite lists of elements of V are exactly the execution traces of program with states in V [1].

4.3 Graphs of LEDGER, STRUC, and their traces

Recall that applying the functor (N,) to a simple graph G returns the set of infinite paths in G. We use

Example 4.2.2 to define the abstract notion of a trace of a map, which corresponds to the set of valid

traces (considered as infinite paths in a state transition graph) that can be generated using this functor.

Definition 4.3.1. Let f : (G;V̊)⇀ (G′;V̊ ′) be a morphism in Graph♯
∗. An image Im f∗ of a postcomposi-

tion function f∗ = f ◦ : (N,G)→ (N,G′) is called a trace of f . We’ll denote the trace of f by Trc(f).

P. Vinogradova, A. Sorokin 9

Unfolding the above definition, we get that the trace of f : (G;V̊)⇀ (G′;V̊ ′) consists of infinite paths

v′0 → v′1 → v′2 → . . . in G′, where v′0 ∈ V̊ ′, which has lifts in G, i.e., an infinite path v0 → v1 → v2 → . . . in

G, where v0 ∈ V̊ , with f (v0) = v′0, f (v1) = v′1, f (v2) = v′2, . . . etc.

The definition of a valid LEDGER trace can be restated in terms of infinite paths in graphs. Let Λ =
(V,E) be a graph whose set of vertices V consists of triples (q,u, t) satisfying the condition checkTx, and

that there is an edge (q,u, t)→ (q′,u′, t ′) if and only if (q,u, t,u′)∈ LEDGER and q ≤ q′. The constructed

graph Λ is simple, as u′ is uniquely defined. Moreover, we specify the set of initial vertices to be

V̊ := {(q,u, t) ∈ Slot0 ×UTxO0 ×Tx | checkTx(q,u, t)}
Similarly, we define a simple graph Λ′ = (V ′,E ′), where V ′ is a set of all u ∈ UTxO such that there

are q ∈ Slot and t ∈ Tx with checkTx(q,u, t) = True and there is an edge u → u′ if and only if there

are q ∈ Slot and t ∈ Tx with (q,u, t,u′) ∈ LEDGER. Simply speaking, Λ′ is a “projection” of Λ on its

UTxO-component. For the set of initial vertices in Λ′ we take V̊ ′ :=V ′∩UTxO0. The projection map ϕ :

V →V ′ given by ϕ(q,u, t) = u induces a morphism ϕ : (Λ;V̊)⇀ (Λ′;V̊ ′) in Graph♯
∗. Now, we apply the

functor (N,) to the morphism ϕ : Λ ⇀ Λ′ we obtain a postcomposition function ϕ∗ = ϕ ◦ : (N,Λ)→
(N,Λ′). Simply speaking, ϕ∗ takes an infinite path (q0,u0, t0) → (q1,u1, t1) → (q2,u2, t2) → . . . in Λ,
where (q0,u0, t0) ∈ V̊ , to an infinite path u0 → u1 → u2 → . . . in Λ′.

Taking ϕ = LEDGER, and recalling the definition of the set of valid LEDGER traces we obtain that

Trc(LEDGER) = Imϕ∗

Let (STRUC,π,κ) be a structured contract implemented on LEDGER. Then, a similar construction

exists for STRUC. Let Γ = (W,F) be a graph whose vertices are pairs (s, i) ∈ State× Input such that

there exists s′ ∈ State with (∗,s, i,s′) ∈ STRUC and there exists an edge (s, i) → (s′, i′) if and only if

(∗,s, i,s′) ∈ STRUC. In the simple graph Γ we specify the set of initial vertices

W̊ :=
{

(s, i) ∈ State0 × Input | ∃ s′ ∈ State : (∗,s, i,s′) ∈ STRUC
}

.

STRUC induces another graph Γ′ = (W ′,F ′) in the same way that Λ is induced for LEDGER. Here,

W ′ is a set of all s ∈ State such that there are i ∈ Input and s′ ∈ State with (∗,s, i,s′) ∈ STRUC and there

is an edge s → s′ if and only if there are i, i′ ∈ Input with (s, i),(s′, i′) ∈W ′ and (∗,s, i,s′) ∈ STRUC. The

set of initial vertices of Γ is W̊ ′ := W ′ ∩ State0. Similarly to ϕ : (Λ;V̊) ⇀ (Λ′;V̊ ′), the projection map

ψ : W →W ′ induces a morphism ψ : (Γ;W̊)⇀ (Γ′;W̊ ′) in Graph♯
∗. Again, applying the functor (N,) :

Graph♯
∗ → Set to ψ : Γ ⇀ Γ′, we obtain a postcomposition function ψ∗ = ψ ◦ : (N,Γ) → (N,Γ′),

which takes an infinite path (s0, i0)→ (s1, i1)→ (s2, i2)→ . . . in Γ, where (s0, i0)∈ W̊ , to an infinite path

s0 → s1 → s2 → . . . in Γ′. Taking ψ = STRUC, and recalling the definition of the set of valid STRUC

traces we obtain Trc(STRUC) = Imψ∗.
Maps π : UTxO⇀ State and κ : Tx → Input induce well-defined morphisms σ(q,u, t) = (πu,κt)

and σ ′(u) = πu in Graph♯
∗ such that the following diagram commutes:

(Λ;V̊) (Γ;W̊)

(Λ′;V̊ ′) (Γ′;W̊ ′)

σ

σ ′

ϕ ψ

This shows that when π and κ specify a correct implementation of the STRUC program on the ledger,

a (valid) state trace~v ∈ Trc(LEDGER), corresponding to a specific lift (i.e., a path in graph that contains

both state and input information), maps to a (valid) trace of ~w ∈ Trc(STRUC). Moreover, ~w necessarily

corresponds to the lift that is obtained by applying the function induced by π and κ to the lift of~v. In other

words,~v and ~w are ”generated” by corresponding (via κ) sequences of inputs. This conclusion is the key

consequence of fulfilling the proof obligation 2.3.1 required as part of instantiating (STRUC,π,κ).

10 Properties of UTxO Ledgers and Programs Implemented on Them

Our goal is now to prove that the above square induces a well-defined continuous postcomposition

function π : Trc(LEDGER)→ Trc(STRUC), thereby ensuring that correct program implementations are

also well-behaved with respect to certain kinds of properties. To achieve this goal we will study a specific

kind of metric.

4.4 Ultrametric spaces and traces

Sets of morphisms (N,G) in Graph♯
∗ also carry an additional structure: they are metric spaces. A metric

d on the set (N,G) is d(~a,~b) := inf
{

2−k | k ≥ 0,ai 6= bi

}

. The function d also satisfies a strengthened

version of the triangle inequality: d(~a,~b)≤ max{d(~a,~c),d(~c,~b)}.

This metric has been previously defined for arbitrary execution traces of arbitrary programs[1]. In

this work, we apply this definition to the space of only valid execution traces. Spaces admitting the type

of metric given above are said to be ultrametric [20]. Ultrametric spaces have the following properties,

which we will later make use of:

Proposition 4.4.1. Let (X ,d) be an ultrametric space. Then, (i) any triangle in X is isosceles, i.e., for any

x,y,z ∈ X , two of the numbers d(x,y),d(y,z),d(x,z) are equal and greater than the third one; (ii) every

point inside an open ball is its center; (iii) if two open balls intersect, then one is contained in another;

(iv) every open ball of a positive radius is a closed set.

From the above proposition following properties of the ultrametric space can be derived ((N,G),d):
(i) d takes values in a countable set {0,1, 1

2
, 1

4
, . . .}; (ii) the whole space coincides with a closed unit

ball, i.e., (N,G) = B(~v,1) for any ~v ∈ (N,G); (iii) for any ~u ∈ (N,G) and r > 0, B(~u,r) = B(~u,2−r) =
B(~u,2−(r+1)), where r = ⌊− log2 r⌋, i.e., there are only a countable number of balls with a center ~u; (iv)

for any ~u ∈ (N,G) and r > 0, B(~u,r) := {~v ∈ (N,G) |~v[n] =~u[n]} , where ~u[n] is a head of the path of ~u
of length n in G, i.e., a ball of radius r with a center ~u consists of infinite paths in G, that share an r- head

with~u. From now we will treat (N,G) as an ultrametric space with the described above ultrametric d.

The following proposition states that morphisms in Graph♯
∗ induce functions between sets of infinite

paths that are, in fact, continuous maps of ultrametric spaces. To prove this, we will use the fact that the

induced map f∗ simply applies f to each individual state in the infinite path.

Proposition 4.4.2. If f : G ⇀ G′ is a morphism in Graph♯
∗, then f∗ : (N,G)→ (N,G′) is a continuous

map.

Proof. For arbitrary ~u in (N,G), and n ≥ 0, take any ~v ∈ B(f∗~u,2
−n). Then ~v has form f u0 → . . . →

f un → vn+1 → For any ~w ∈B(~u,2−n), its image under f∗ is f u0 → . . .→ f un → f wn+1 → Hence,

f~w ∈ B(f∗~u,2
−n). and f∗ is continuous.

In order to study ultrametric structure in Graph♯
∗, we define the following category:

Definition 4.4.3. A non-expanding map between ultrametric spaces (X ,dX) and (Y,dY) is a continuous

map f : X → Y such that dY (f (x1), f (x2)) ≤ dX (x1,x2) for any x1,x2 ∈ X . A category of ultrametric

spaces and non-expanding maps we denote UMet.

We now use the UMet category to express that all maps between sets of infinite paths in objects of

our category Graph♯
∗ (i.e., simple graphs) are continuous and non-expanding:

Proposition 4.4.4. A functor (N,) : Graph♯
∗ → Set factors through the category UMet.

P. Vinogradova, A. Sorokin 11

Proof. The only thing to check is that f∗ : (N,G) → (N,G′) is non-expanding, for any f : G ⇀ G′.
Take any ~u,~v ∈ (N,G). Suppose that d(~u,~v) = 2−n. Hence, there are vertices w0, . . . ,wn of G such that

~u = (w0 → . . .→ wn → un+1 → . . .) and ~v = (w0 → . . .→ wn → vn+1 → . . .) . Applying f∗ to ~u and ~v,
we obtain that f∗~u and f∗~v share a common head of length at least n, i.e., d(f∗~u, f∗~v)≤ 2−n = d(~u,~v) and

f∗ is non-expanding.

The above proposition allows us to consider (N,) : Graph♯
∗ → Set as a functor (N,) : Graph♯

∗ →
UMet instead. We introduce some additional concepts for reasoning about program behaviour, including

executions, properties, and safety, which we can interpret within the framework we defined here. Infinite

lists of elements of set S are called executions [1]. They represent sequences of states of some process,

for whom S serve as a set of all possible states. The subset P ⊆ ⟪S⟫ is identified with its characteristic

function χP : ⟪S⟫→ Bool, and the latter is called a property.

A property P is said to be a safety property, if P does not hold for an execution ~s, then at some state

si some “bad thing” must happen. Such a “bad thing” must be irremediable because a safety property

states that the “bad thing” never happens during execution. In other words, we characterize P ⊆ ⟪S⟫ via

a statement about its complement:

~s /∈ P ⇔ (∃ n ≥ 0)(∀~t ∈ ⟪S⟫){(s0, . . . ,sn, t0, t1, . . .) /∈ P}

Using the ultrametric d for ⟪S⟫ , ~s /∈ P is equivalent to (∃ n ≥ 0){B(~s,2n)∩P =∅}. In other words, the

complement of P contains every point with some its neighborhood. So the safety property P uniquely

defines a closed subset in (⟪S⟫ ,d) and vice versa.

Another important class of properties of execution traces is liveness [1], which, like safety, can also

be defined in topological terms. An arbitrary property of traces can be defined in terms of a liveness and

safety property. The structured contract formalism, as well as blockchains in general, however, are more

amenable to being studied from the point of view of guaranteeing safety. Investigating liveness in this

setting is equally important, but poses more of a challenge. We, therefore, leave it for future work.

Recall also that we defined the trace Trc(f) of f : (G;V̊)⇀ (G′;V̊ ′) as the image of f∗, i.e., a subset of

(N,G′). Recall also that the representable functor (N,) factors through UMet, inducing an ultrametric

in (N,G′), so that traces of morphisms in Graph♯
∗ are themselves ultrametric spaces. That is, we endow

the subset Im(f∗)⊆ (N,G′) with the ultrametric structure induced via metric from (N,G′).

We obtain that a map in Graph♯
∗ bewteen two graphs induces a morphism between sets of infinite

paths in the those graphs in a way that preserves the ultrametric structure as it is non-expanding:

Lemma 4.4.5. A commutative square

(G;V̊) (H;W̊)

(G′;V̊ ′) (H ′;W̊ ′)

p

q

f g

in Graph♯
∗ induces a non-expanding postcomposition function q : Trc(f)→ Trc(g).

Proof. Applying the functor (N,) : Graph♯
∗ → UMet to a given square, we obtain a commutative dia-

gram of non-expanding maps

12 Properties of UTxO Ledgers and Programs Implemented on Them

(N,G) (N,H)

Trc(f) Trc(g)

(N,G′) (N,H ′)

p∗

f∗

g∗
q

q∗

For any~s ∈ Trc f = Im f∗ there is~v ∈ (N,G) such that f∗(~v) =~s. Since q∗ f∗ = g∗p∗, then q(~s) = q∗(~s) =
q∗(f∗(~v)) = g∗(p∗(~v)) ∈ Img∗. Hence, we checked that q is well-defined, i.e., its codomain is Trc(g).
Since the inclusion of a subspace Im(f∗) in (N,G′) is a non-expanding map, so is q as composition of

the inclusion and q∗.

Applying the above result to structured contracts, we get:

Corollary 4.4.6 (Trace-mapping lemma). A structured contract (STRUC,π,κ) for LEDGER induces

a non-expanding map

π : Trc(LEDGER)→ Trc(STRUC)

between ultrametric spaces.

The trace-mapping lemma expresses a practical result of this work: a safety property (i.e., a closed

subset of valid traces) of Trc(STRUC) necessarily has a corresponding safety property in Trc(LEDGER),
i.e., a closed subset of in the domain of the non-expanding map induced by (STRUC,π,κ). In particular,

Trc(STRUC), which is also a closed subset of itself, has a closed preimage in Trc(LEDGER). This

preimage is a safety property of Trc(LEDGER). This safety property can be expressed in the ”a specific

bad thing cannot be fixed if it happens” language as: if a trace~v ∈ Trc(LEDGER) is not in the preimage

of Trc(STRUC), there is necessarily some i, such that v0 → . . . → vi is a prefix of ~v, and no trace of

the form v0 → . . . → vi → ui+1 → . . . maps to a trace in Trc(STRUC).
Preimages of traces also carry important information about them. For this reason, we define the

concept of a full lift of a trace:

Definition 4.4.7. Each element~s of Trc(f) = Im(f∗) has full lift~v ∈ (N,G) via f∗(~v) =~s.

In other words, for every trace ~s of f , which is an infinite path, there is an infinite path ~v that is

mapped to it. The latter yields that each head~s[n] of~s has a lift~v[n] via f∗(~v[n]) =~s[n]. In the following

proposition, we express when the converse holds,

Proposition 4.4.8. Let f : G ⇀ G′ be a morphism in Graph♯
∗. Then Trc(f) =

⋂

n≥0Trcn(f), where

Trc(f) is the closure of Trc(f) in (N,G′) and Trcn(f) := {~s : N→ G′ | ∃~v : N→ G : f∗(~v[n]) =~s[n]} is

a closed set of infinite paths in G′ that has n-truncated lifts in (N,G). Hence, Trc(f) is closed if and only

if the following holds: any infinite path in G′ has a full lift in G if and only if an infinite path in G′ has

an n-truncated lift in G for all n ≥ 0.

Proof. Let ~s be a limit point of Trcn(f). Then ∃~t ∈ B(~s,2−n)∩Trcn(f) 6= ∅. Hence,~t = (s0 → . . . →
sn → tn+1 → tn+2 → . . .) is an infinite path in G′ and there is ~v ∈ (N,G) such that f∗(~v[n]) =~t[n] i.e.,

ti = si = f (vi) for 0 ≤ i ≤ n. Therefore, f∗(~v[n]) =~s[n] so~s ∈ Trcn(f) and Trcn(f) is closed. Obviously,

Trc(f) ⊆ Trcn(f) for every n ≥ 0, so Trc(f) is a subset of
⋂

n≥0Trcn(f), which is a closed set. Hence,

Trc(f)⊆
⋂

n≥0Trcn(f) as the closure is the smallest closed set containing Trc(f).
Conversely, if ~s ∈ Trcn(f) for all n ≥ 0, then (∀ n ≥ 0)(∃ ~v ∈ (N,G)){ f∗(~v[n]) =~s[n]}. The latter

means that d(f∗(~v),~s) < 2−n for each n ≥ 0. But f∗(~v) ∈ Im(f∗), so B(~s,2−n)∩Trc(f) 6= ∅ for each

n ≥ 0. Therefore,~s is a limit point of Trc(f) and
⋂

n≥0Trcn(f)⊆ Trc(f) which was desired.

P. Vinogradova, A. Sorokin 13

5 Properties of LEDGER system

Since we do not give implementation details or concrete examples of structured contracts, presenting

examples of their properties is left for future work. In this section, we focus on properties of the LEDGER

system itself, for which we first introduce additional notation and terminology.

The set UTxO is assumed to be “well-founded”: for any u∈UTxO0 and any key-value pair ((b,n),o)∈
u, there is a transaction t ∈ T such that b = h(t), inputs(t) =∅ i.e. hash part of any key in a valid initial

UTxO state u ∈ UTxO0 comes from a transaction with empty list of inputs. In the rest of the paper we’ll

assume that UTxO is well-founded.

An updated state u′ = (u\getORefs(t))⊔mkOuts(t) is constructed from a triple (q,u, t) satisfying

checkTx via the functions getORefs and mkOuts. The condition checkTx guarantees that all triples

(b,n,o) extracted from inputs(t) belong to u. After subtracting getORefs(t) from u, the function mkOuts

joins new pairs {(h(t),n,o) | (n,o) ∈ outs(t)} to the result from the previous step. For a lift (q0,u0, t0)→
(q1,u1, t1)→ . . . of a valid LEDGER trace u0 → u1 → . . .uk → . . . we introduce the following notations:

ri := getORefs(ti), ci :=mkOuts(ti). Therefore, the sequence of valid LEDGER states uk+1 = (uk \rk)∪
ck, for k ≥ 0, where u0 ∈ UTxO0.

5.1 Replay and trivial update protection

An important property of UTxO ledgers is that an attacker is not able to disrupt the operation of the

ledger program by re-applying an existing transaction. A related property is that it is not possible to

apply a transaction that does not change the ledger state. We can formalize these as safety properties of

ledger traces in the following way:

Theorem 5.1.1 ((Replay and trivial update protection). Given an infinite path (q0,u0, t0)→ (q1,u1, t1)→
. . . in a graph corresponding to LEDGER, for any indexes i < j

(a) ti 6= t j (replay protection);

(b) ui 6= u j (trivial update protection).

Both (a) and (b) are safety properties of Trc(LEDGER).

Proof. (a) Suppose i < j is the minimal pair such that ti = t j. Then ri ⊆ ui = (ui−1 \ ri−1)∪ ci−1 ⊆
ui−1 ∪ ci−1 ⊆ u0 ∪ c0 ∪ c1 ∪ . . .∪ ci−1. A similar chain of inclusions yields r j ⊆ u j ⊆ (ui \ ri)∪ ci ∪
. . .∪ c j−1. Since ri = r j, the set r j has no common elements with ui \ ri, so r j ⊆ ci ∪ . . .∪ c j−1 and

ri ∩ r j ⊆ (u0 ∪ c0 ∪ . . .∪ ci−1)∩ (ci ∪ . . .∪ c j−1) .
Claim 1. For any l ≥ 0 : u0∩cl =∅. Suppose (b,n,o) ∈ u0∩cl, for some l ≥ 0. Then b is a hash of a

transaction t̊ with an empty input, by the well-foundedness of UTxO. On the other hand, b is a hash of a

transaction tl with a non-empty input, since (ql,ul , tl) satisfies checkTx. Hence, t̊ = tl, by the injectivity

of h, which is a contradiction, as their inputs differ. So, u0 ∩ cl =∅.

Claim 2. For any 0 ≤ l ≤ i− 1 and i ≤ m ≤ j− 1 : cl ∩ cm = ∅. Hash components of all elements

in cl and cm are h(tl) and h(tm), respectively. If these sets share an element, hash of this element is

h(tl) = h(tm). From the injectivity of h follows that tl = tm. The latter equality contradicts the assumption

about the minimality of the pair (i, j). Therefore, cl ∩ cm =∅.
Claims 1 and 2 imply ri ∩ r j =∅, which means that ri = r j =∅. Hence, inputs(ti) = inputs(t j) =∅,

that contradicts the fact that (qi,ui, ti) and (q j,u j, t j) satisfy checkTx.

(b) Suppose there is a pair i < j such that ui = u j. An equality of sets u j = (u j−1 \ r j−1)∪ c j−1 imply

that c j−1 ⊆ ui ⊆ ui−1 ∪ ci−1 ⊆ ui−2 ∪ ci−2 ∪ ci−1 ⊆ . . .u0 ∪ c0 ∪ . . .∪ ci−1 By Claim 1 u0 ∩ c j−1 =∅.

14 Properties of UTxO Ledgers and Programs Implemented on Them

If c j ∩ cl 6= ∅, where 0 ≤ l ≤ i−1, then t j = tl, which is impossible by part (a). Hence, (u0 ∪ c0 ∪ . . .∪
ci−1)∩ c j−1 =∅ and ui 6= u j.

Claim 3. Because the full space (which is always closed) satisfies this property, this property repre-

sents a closed set, and is therefore a safety property.

An important corollary of the above theorem is that sets we add to or delete from a given ledger state

(UTxO set) are pairwise disjoint. This will be used in an upcoming result.

Corollary 5.1.2. If h : Tx→ ByteString is injective, then: (i) sets u0, c0, c1, . . . are pairwise disjoint;

(ii) sets r0,r1, . . . are pairwise disjoint. Moreover, uk+1 = (uk \ rk)⊔ ck for any k ≤ 0.

We note here that the above properties would also be safety properties when considered as properties

of arbitrary (not necessarily valid) traces. This can be justified as follows: any trace containing a prefix

such that for i 6= j, transactions ti = t j will never satisfy the replay protection property, regardless of its

suffix. The ”bad thing” cannot be fixed. Similarly, a trace containing a trivial update at states ui = u j

cannot be ”fixed” by any suffix.

5.2 UTxO transaction commutativity

The UTxO set in the LEDGER transition system enjoys the transaction commutativity property mean-

ing that the order of applying transactions to a valid initial state is irrelevant and always returns the

same result. Still we should keep in mind that every single transaction application must be validated by

checkTx. While this property has to do with finite sequences of states and transactions, we can express

it a property of (infinite) execution traces.

Theorem 5.2.1 (UTxO transaction commutativity). Let u0 is a well-founded UTxO state. Suppose we

have two traces with (possibly) distinct length-n+1 prefixes, and an arbitrary suffix,

(q0,u0, t0) (q1,u1, t1) . . . (qn,un, tn) s1 s2 . . .

(q′0,u
′
0, t

′
0) (q′1,u

′
1, t

′
1) . . . (q′n,u

′
n, t

′
n) s′1 s′2 . . .

in the simple graph corresponding to LEDGER, where u0 = u′0 ∈ UTxO0 and (t ′0, . . . , t
′
n) is a permutation

of (t0, . . . , tn). If h is injective, then un = u′n.

Before we prove the above result, we motivate the proof and illustrate this property with an example:

Example 5.2.2. Let (t0, t1, t2, t3, t4, t5, t6, t7) and (t3, t1, t6, t2, t5, t7, t0, t4) be valid sequences of transactions

that are applied to a valid initial state u0 ∈ UTxO0. Then

u1 = (u0 \ r0)⊔ c0 ⊆ u0 ⊔ c0 u′1 = (u0 \ r3)⊔ c3 ⊆ u0 ⊔ c3

u2 = (u1 \ r1)⊔ c1 ⊆ u0 ⊔ c01 u2 = (u′1 \ r1)⊔ c1 ⊆ u0 ⊔ c13

u3 = (u2 \ r2)⊔ c2 ⊆ u0 ⊔ c012 u′3 = (u′2 \ r6)⊔ c6 ⊆ u0 ⊔ c136

u4 = (u3 \ r3)⊔ c3 ⊆ u0 ⊔ c0123 u′4 = (u′3 \ r2)⊔ c2 ⊆ u0 ⊔ c1236

u5 = (u4 \ r4)⊔ c4 ⊆ u0 ⊔ c01234 u′5 = (u′4 \ r5)⊔ c5 ⊆ u0 ⊔ c12356

u6 = (u5 \ r5)⊔ c5 ⊆ u0 ⊔ c012345 u′6 = (u′5 \ r7)⊔ c7 ⊆ u0 ⊔ c123567

u7 = (u6 \ r6)⊔ c6 ⊆ u0 ⊔ c0123456 u′7 = (u′6 \ r0)⊔ c0 ⊆ u0 ⊔ c0123567

u8 = (u7 \ r7)⊔ c7 ⊆ u0 ⊔ c01234567 u′8 = (u′7 \ r4)⊔ c4 ⊆ u0 ⊔ c01234567

where ci1i2...ik = ∪k
j=1ci j

. Since cA ∩ cB = cA∩B for any subsets A,B of {0, . . . ,7},

P. Vinogradova, A. Sorokin 15

r0 ⊆ u0 ∩ (u0 ⊔ c123567) = u0

r1 ⊆ (u0 ⊔ c0)∩ (u0 ⊔ c3) = u0

r2 ⊆ (u0 ⊔ c01)∩ (u0 ⊔ c136) = u0 ⊔ c1

r3 ⊆ (u0 ⊔ c012)∩u0 = u0

r4 ⊆ (u0 ⊔ c0123)∩ (u0 ⊔ c0123567) = u0 ⊔ c0123

r5 ⊆ (u0 ⊔ c01234)∩ (u0 ⊔ c1236) = u0 ⊔ c123

r6 ⊆ (u0 ⊔ c012345)∩ (u0 ⊔ c13) = u0 ⊔ c13

r6 ⊆ (u0 ⊔ c012345)∩ (u0 ⊔ c13) = u0 ⊔ c13

r7 ⊆ (u0 ⊔ c0123456)∩ (u0 ⊔ c12356) = u0 ⊔ c12356

The above inclusions yield:

(0) subsets r0,r1,r3 are subtracted from u0 in any order, then c0,c1,c3 are attached;
(1) subsets r2,r6 are subtracted from the result of (0) in any order, then c2,c6 are attached;
(2) subsets r4,r5 are subtracted from the result of (1) in any order, then c4,c5 are attached;
(3) subset r7 is subtracted from the result of (2), then c7 is attached.

Hence, the set {0, . . . ,7} is equipped with a partial order structure: i < j if the subtraction of ri can

potentially depend on attaching of c j. In the case of our example, the Hasse diagram of a poset is

0 3 1

2 6

4 5

7

Vertices at the top of the diagram (sinks) are level 0 vertices. A level of a vertex i is a length of a maximal

path from i to vertices of level 0. Hence, we obtain a level partition of the set of vertices: (0) level 0

vertices: 0,1,3; (1) level 1 vertices: 2,6; (2) level 2 vertices: 4,5; (3) level 3 vertex: 7.

From our construction follows that transactions labeled by vertices of the same level commute, and

a pair (ti, t j) can be swapped to (t j, ti), if the level of i is less than the level of j.
Fixing the ordering between the initial set of transactions, we obtain a canonical presentation of the

set of transactions (0,1,3 | 2,6 | 4,5 | 7) and the canonical path, where w0 = u0:

(w0, t0)→ (w1, t1)→ (w2, t3)→ (w3, t2)→ (w4, t6)→ (w5, t4)→ (w6, t5)→ (w7, t7)

Finally, we present a way how to transform one valid transaction sequence into another. Indeces of

numbers represent their levels, adjacent red numbers are swapped in the next row.

(00 10 21 30 42 52 61 73) (30 10 61 21 52 73 00 42)
(00 10 30 21 42 61 52 73) (10 30 61 21 52 00 73 42)
(00 10 30 21 61 42 52 73) (10 30 21 61 52 00 42 73)

(10 30 21 61 00 52 42 73)
(10 30 21 00 61 52 42 73)
(10 30 00 21 61 42 52 73)
(10 00 30 21 61 42 52 73)
(00 10 30 21 61 42 52 73)

The more valid permutations of the set of transactions we have, more precisely we’ll define the

canonical form. We can distill the approach taken in the example into a proof:

16 Properties of UTxO Ledgers and Programs Implemented on Them

Proof. Let

(q0,u0, t0) (q1,u1, t1) . . . (qn,un, tn) s1 s2 . . .

(q′0,u
′
0, t

′
0) (q′1,u

′
1, t

′
1) . . . (q′n,u

′
n, t

′
n) s′1 s′2 . . .

be two traces in the simple graph corresponding to LEDGER, where u0 = u′0 ∈ UTxO0 and (t ′0, . . . , t
′
n) is

a permutation of (t0, . . . , tn). Let us define sets ri = getORefs(ti) and ci =mkOuts(ti) for 0 ≤ i ≤ n. Also,

let u∪ = u0 ∪0≤i≤n ci be the result of adding all outputs from all transactions t0, ..., tn to u0, which is also

the same as adding all outputs from all transactions t ′0, ..., t
′
n to u0. The final states un and u′n, as well as

all intermediate states, are contained in u∪, since the only other operation involved in updating the state

is removing UTxO entries.

Set r = ∪0≤i≤nri consists of UTxO entries that t0, ..., tn (or t ′0, ..., t
′
n) remove from u∪. This r is such

that r ⊆ u∪, which is guaranteed by checkTx. To show that both un = u∪ \ r = u′n, we proceed by

contradiction. Suppose a /∈ un, but a ∈ u′n. By above, a ∈ u∪. Now, a must have been removed by

some ti from u∪ (and therefore, also some t ′j). Since a is in u′n, it must have been re-added by another

tk. From the replay protection property, we get a contradiction: tk must have the same encoding as a

previous transaction that added a, which contradicts Corollary 5.1.2. By similar logic, we can show that

any a ∈ un must also be in u′n.

The following algorithm produces a canonical form of a transaction list:

Algorithm 5.2.3 (Canonical form of transaction sequence). Input data. A finite path {(qi,ui, ti)}
n
i=0 in

a graph corresponding to LEDGER, where u0 ∈ UTxO0.
Output data. A set of all possible finite paths {(q′i,u

′
i, t

′
i)}

n
j=0, where u′0 = u0 and (t ′0, . . . , t

′
n) is a

permutation of (t0, . . . , tn).
Step 1. For every i determine the set Ki :=

{

j | ri ∩ c j 6=∅
}

.
Step 2. Define a poset structure on {0, . . . ,n} : i < j if and only if j ∈ Ki.
Step 3. Say that an index i has level 0, if Ki = ∅. If Ki 6= ∅, say that a level of i is a maximum of

path lengths from i to indexes of level 0 in Hasse diagram of the poset on {0, . . . ,n}.
Step 4. Make a total order on the set {0, . . . ,n} : i < j if and only if the level of i is less that the level

of j, or i < j in the natural ordering, if i and j have the same level. Call a sequence representing this total

order (ti0 , . . . , tin) the canonical presentation of (t1, . . . , tn).
Step 5. An elementary swap of (t j0 , . . . , t jk , . . . , t jl , . . . , t jn) is a sequence (t j0 , . . . , t jl , . . . , t jk , . . . , t jn) if

l < k in a total order. Return as an output a set of all sequences (t j0 , . . . , t jn) that can be obtained from the

canonical presentation by a finite number of elementary swaps.

Note that the decision procedure has the input of a single transaction list, while the transaction com-

mutativity theorem is formulated in terms of two lists that are permutations of each other. It is more

natural to express this theorem in a way that is symmetric with respect to the two permutations of trans-

action lists. To state it as a property, we can rephrase it as a property of a single trace: the property holds

for a given trace with the required structure whenever, given any other trace with the required prefix and

suffix, the final state of the prefix must be the same for both traces.

Like in the case of replay protection as well as trivial update protection, this is a safety property by

virtue of being true for the entire space. This is also a safety property when considered as a property

of all possible UTxO state traces (not just the valid ones). Suppose s is a trace of UTxO states that has

a n-length prefix that is not generated by applying a valid lists of transactions, and an arbitrary suffix.

If another trace s′ exists such that s and s′ violate the transaction commutativity property, changing the

suffix starting at n+1 position in the trace of s will never ”fix” s. So, when the transaction commutativity

property breaks in a finite prefix, it cannot be remedied, as required by the definition of a safety property.

P. Vinogradova, A. Sorokin 17

6 Conclusion

6.1 Related Work

In this work, we use tools from different areas of mathematics to study program (i.e., smart contract)

executions on the ledger. The approach to representing ledger semantics is used in existing work in

UTxO ledger and contract formalization [9] [19] [30]. Transition systems are commonly represented

by graphs, with edges corresponding to possible state transitions [22]. However, the graph generated

directly by the small-steps semantics of ledgers (or other programs) does not contain edges for multi-

step transitions, and it also does not exclude ”bad” starting states. For this reason, we instead consider

possible paths in the resulting graphs, and limit our attention to only paths with certain ”good” starting

states. Possible paths in our valid transition graphs align with the notion of execution traces [1], however,

they are generated according to the small-steps specifications, and are therefore not arbitrary.

The definition of ledger implementation relation, which we build on this work, is a reversal of the

the classic simulation relation [22]. We introduce this terminology in this way because it is descriptive

of the unique architecture of programs running on the UTxO ledger, which is different from the tradi-

tional communicating automata-style distributed programs. This is because stateful UTxO programs are

implemented using multiple permission-like pieces of code that control what aggregates (or pieces) of

the ledger state that transactions are permitted to control. It also does not make sense to model such

programs via a notion that is used in studying transition systems — subsystems [27]. This is because a

subsystem relates the evolution of a subset of states to the evolution of the entire system, which is not

what we study here.

Rather than subsystems, we use sieve-defined homomorphisms as the formalism that relates the

evolution of the implemented program state to the that of the ledger state. In category theory, a sieve is a

is a generalization of the notion of ideals, which guarantees that arrows starting in a given set of objects

also end in that same set [14]. Now, categories are closed under arrow composition, and our graphs are

not closed under edge composition. We, however, apply the defining property of categorical sieves to

graph homomorphisms.

Algebraic descriptions of UTxO transaction processing appear in existing work [13]. However, no

models of implementations of programs on the ledger are described within this model. The ledger struc-

ture itself has been modelled categorically, using monoidal functors to represent the structure of UTxO

set updates. It may be possible to combine this model and ours in future work.

Certain safety properties have been defined, and are consistently being checked in production ledger

systems as part of property testing frameworks. This involves generating arbitrary transactions, and

applying them to generated states to verify that the property is not violated 3. In the future, we also plan

to incorporate the results in this work into more realistic models.

6.2 Discussion

Programs for UTxO-style ledgers, which are composed entirely out of predicates on state updates, differs

significantly from common programming paradigms. For this reason, a specialized model is required to

describe it in a principled way. The structured contract framework provides a rigorous and principled

way to establish a relation between the contents of pieces of user-defined code, including a small-steps

specification, an implementation, and a proof that a single valid ledger step corresponds to a valid pro-

gram step. However, the capacity for reasoning within this framework is very limited without additional

3https://github.com/IntersectMBO/cardano-ledger

https://github.com/IntersectMBO/cardano-ledger

18 Properties of UTxO Ledgers and Programs Implemented on Them

structure. In this work, we define the required structure.

Our contribution includes a rigorous definition of a valid program trace for a given small-step se-

mantics and set of valid initial states. Next, we construct a category that we use to model the relation

between the behavior of the ledger and a program implemented on it. This category has simple graphs as

objects, and partial sieve-defined homomorphisms as morphisms. We define maps between valid traces,

which are paths in the graph, in terms of maps in Graph♯
∗. We then show how such maps are induced

by a structured contract. We apply an existing metric defined on arbitrary execution traces (i.e., paths in

a complete directed state graph) to paths in our graph, which correspond to valid traces only. We show

that the metric we applied is, in fact, an ultrametric. This allows us to demonstrate that the maps in

our category are non-expanding and continuous, and therefore, for any safety property of a program, its

ledger implementation has an associated safety property.

We go on to prove certain important safety properties of the ledger, including commutativity, replay

protection, and trivial update protection. These properties all rely on the ability to reason about the prefix

of a given trace, which was previously not supported in the structured contract framework. Assuming

certain consequences of these properties is often required in practice for proving correctness of program

implementations on the ledger [29].

We formalized the notion of safety in the UTxO ledger programming context, leaving liveness for

future work. We intend to use our model to study relationships between structured contracts on a single

ledger, as well as the possibility of composing them. We are also interested in investigating unique quirks

of smart contracts in the EUTxO model, such as the double satisfaction problem [29], and formalize

what it means for a transaction’s changes to the ledger to be predictable (building on the transaction

commutativity property). Another interesting direction of research would be to apply similar methods

and techniques we have defined here to other blockchains that have formal models, such as Algorand [3]

or Bitcoin [26].

References

[1] Bowen Alpern & Fred B. Schneider (1985): Defining liveness. Information Processing Letters 21(4), pp.

181–185, doi:10.1016/0020-0190(85)90056-0.

[2] Christel Baier & Joost-Pieter Katoen (2008): Principles of model checking. MIT Press.

[3] Massimo Bartoletti, Andrea Bracciali, Cristian Lepore, Alceste Scalas & Roberto Zunino (2021): A formal

model of Algorand smart contracts, doi:10.48550/arXiv.2009.12140. arXiv:2009.12140.

[4] Francis Borceux (1994): Handbook of categorical algebra: volume 1, Basic category theory. 1, Cambridge

University Press, doi:10.1017/CBO9780511525865.

[5] Francis Borceux (1994): Handbook of Categorical Algebra: Volume 3, Sheaf Theory. 3, Cambridge univer-

sity press, doi:10.1017/CBO9780511525865.

[6] Carolyn Brown & Doug Gurr (1993): Temporal logic and categories of Petri nets. In Andrzej Lingas,

Rolf Karlsson & Svante Carlsson, editors: 20th International Colloquium on Automata, Languages, and

Programming (ICALP 93), Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 570–581, doi:10.1007/

3-540-56939-1_103.

[7] Vitalik Buterin (2014): Ethereum: A Next-Generation Smart Contract and Decentralized Application Plat-

form. https://ethereum.org/en/whitepaper/.

[8] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Jann Müller,

Michael Peyton Jones, Polina Vinogradova & Philip Wadler (2020): Native Custom Tokens in the Extended

UTXO Model. In Tiziana Margaria & Bernhard Steffen, editors: Leveraging Applications of Formal Meth-

ods, Verification and Validation: Applications - 9th International Symposium on Leveraging Applications

https://doi.org/10.1016/0020-0190(85)90056-0
https://doi.org/10.48550/arXiv.2009.12140
https://arxiv.org/abs/2009.12140
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1017/CBO9780511525865
https://doi.org/10.1007/3-540-56939-1_103
https://doi.org/10.1007/3-540-56939-1_103
https://ethereum.org/en/whitepaper/

P. Vinogradova, A. Sorokin 19

of Formal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part III, Springer, pp.

89–111, doi:10.1007/978-3-030-61467-6_7.

[9] Manuel M. T. Chakravarty, James Chapman, Kenneth MacKenzie, Orestis Melkonian, Michael Peyton Jones

& Philip Wadler (2020): The Extended UTXO Model. In Matthew Bernhard, Andrea Bracciali, L. Jean

Camp, Shin’ichiro Matsuo, Alana Maurushat, Peter B. Rønne & Massimiliano Sala, editors: Financial

Cryptography and Data Security, Springer International Publishing, Cham, pp. 525–539, doi:10.1007/

978-3-030-54455-3_37.

[10] Jared Corduan, Matthias Güdemann & Polina Vinogradova (2019): A Formal Specification of the Cardano

Ledger. https://github.com/input-output-hk/cardano-ledger/releases/latest/download/

shelley-ledger.pdf.

[11] Volker Diekert & Yves Métivier (1997): Partial Commutation and Traces, pp. 457–533. 3, Springer Berlin

Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-642-59126-6_8.

[12] Ergo Team (2019): Ergo: A Resilient Platform For Contractual Money. https://ergoplatform.org/

docs/whitepaper.pdf.

[13] Murdoch J. Gabbay (2021): Algebras of UTxO blockchains. Mathematical Structures in Computer Science

31(9), p. 1034–1089, doi:10.1017/S0960129521000438.

[14] Jean Giraud (1962-1964): Analysis situs. Séminaire Bourbaki 8, pp. 189–199. Available at http://eudml.

org/doc/109657.

[15] LM Goodman (2014): Tezos—a self-amending crypto-ledger White paper. https://tezos.com/

whitepaper.pdf.

[16] Heine Halberstam & Hans Egon Richert (2013): Sieve methods. Courier Corporation.

[17] Ulrich Hensel & David Spooner (1996): A view on implementing processes: Categories of circuits. In Magne

Haveraaen, Olaf Owe & Ole-Johan Dahl, editors: Recent Trends in Data Type Specification, Springer Berlin

Heidelberg, Berlin, Heidelberg, pp. 237–254, doi:10.1007/3-540-61629-2_46.

[18] Andre Knispel, Orestis Melkonian, James Chapman, Alasdair Hill, Joosep Jääger, William DeMeo & Ulf

Norell (2024): Formal Specification of the Cardano Blockchain Ledger, Mechanized in Agda. In Bruno

Bernardo & Diego Marmsoler, editors: 5th International Workshop on Formal Methods for Blockchains

(FMBC 2024), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 2:1–2:18, doi:10.

4230/OASIcs.FMBC.2024.2.

[19] Andre Knispel & Polina Vinogradova (2021): A Formal Specification of the Cardano Ledger integrating Plu-

tus Core. https://github.com/input-output-hk/cardano-ledger/releases/latest/download/

alonzo-ledger.pdf.

[20] Marc Krasner (1944): Nombres semi-réels et espaces ultramétriques. Comptes-Rendus de l’Académie des

Sciences 2, p. 219.

[21] Saunders Mac Lane (2013): Categories for the working mathematician. 5, Springer Science & Business

Media, doi:10.1007/978-1-4757-4721-8.

[22] Robin Milner (1980): A calculus of communicating systems. Springer, doi:10.1007/3-540-10235-3.

[23] S. Nakamoto (2008): Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.org/en/

bitcoin-paper.

[24] Chad Nester (2020): A Foundation for Ledger Structures. In Emmanuelle Anceaume, Christophe Bisière,

Matthieu Bouvard, Quentin Bramas & Catherine Casamatta, editors: 2nd International Conference on

Blockchain Economics, Security and Protocols, Tokenomics 2020, October 26-27, 2020, Toulouse, France,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–7:13, doi:10.4230/OASICS.TOKENOMICS.

2020.7.

[25] Dusko Pavlovic & Douglas R. Smith (2003): Software Development by Refinement, pp. 267–286. Springer

Berlin Heidelberg, Berlin, Heidelberg, doi:10.1007/978-3-540-40007-3_17.

https://doi.org/10.1007/978-3-030-61467-6_7
https://doi.org/10.1007/978-3-030-54455-3_37
https://doi.org/10.1007/978-3-030-54455-3_37
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://doi.org/10.1007/978-3-642-59126-6_8
https://ergoplatform.org/docs/whitepaper.pdf
https://ergoplatform.org/docs/whitepaper.pdf
https://doi.org/10.1017/S0960129521000438
http://eudml.org/doc/109657
http://eudml.org/doc/109657
https://tezos.com/whitepaper.pdf
https://tezos.com/whitepaper.pdf
https://doi.org/10.1007/3-540-61629-2_46
https://doi.org/10.4230/OASIcs.FMBC.2024.2
https://doi.org/10.4230/OASIcs.FMBC.2024.2
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/alonzo-ledger.pdf
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/3-540-10235-3
https://bitcoin.org/en/bitcoin-paper
https://bitcoin.org/en/bitcoin-paper
https://doi.org/10.4230/OASICS.TOKENOMICS.2020.7
https://doi.org/10.4230/OASICS.TOKENOMICS.2020.7
https://doi.org/10.1007/978-3-540-40007-3_17

20 Properties of UTxO Ledgers and Programs Implemented on Them

[26] Kristijan Rupić, Lovro Rožić & Ante Derek (2020): Mechanized Formal Model of Bitcoin’s Blockchain

Validation Procedures. In Bruno Bernardo & Diego Marmsoler, editors: 2nd Workshop on Formal Methods

for Blockchains (FMBC 2020), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp.

7:1–7:14, doi:10.4230/OASIcs.FMBC.2020.7.

[27] J. J.M.M. Rutten (1995): A calculus of transition systems (towards universal coalgebra). https://ir.cwi.

nl/pub/5060.

[28] The ZILLIQA Team (2017): The ZILLIQA Technical Whitepaper. https://docs.zilliqa.com/

whitepaper.pdf.

[29] Polina Vinogradova & Orestis Melkonian (2025): Message-Passing in the Extended UTxO Ledger. In Jurlind

Budurushi, Oksana Kulyk, Sarah Allen, Theo Diamandis, Ariah Klages-Mundt, Andrea Bracciali, Geoffrey

Goodell & Shin’ichiro Matsuo, editors: Financial Cryptography and Data Security. FC 2024 International

Workshops, Springer Nature Switzerland, Cham, pp. 150–169, doi:10.1007/978-3-031-69231-4_11.

[30] Polina Vinogradova, Orestis Melkonian, Philip Wadler, Manuel Chakravarty, Jacco Krijnen, Michael Peyton

Jones, James Chapman & Tudor Ferariu (2024): Structured Contracts in the EUTxO Ledger Model. In Bruno

Bernardo & Diego Marmsoler, editors: 5th International Workshop on Formal Methods for Blockchains

(FMBC 2024), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, pp. 10:1–10:19,

doi:10.4230/OASIcs.FMBC.2024.10.

[31] Jan Xie (2018): Nervos CKB: A Common Knowledge Base for Crypto-Economy. https://github.com/

nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md.

https://doi.org/10.4230/OASIcs.FMBC.2020.7
https://ir.cwi.nl/pub/5060
https://ir.cwi.nl/pub/5060
https://docs.zilliqa.com/whitepaper.pdf
https://docs.zilliqa.com/whitepaper.pdf
https://doi.org/10.1007/978-3-031-69231-4_11
https://doi.org/10.4230/OASIcs.FMBC.2024.10
https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md
https://github.com/nervosnetwork/rfcs/blob/master/rfcs/0002-ckb/0002-ckb.md

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on
Logical and Semantic Frameworks with Applications (LSFA’24)
EPTCS 421, 2025, pp. 21–43, doi:10.4204/EPTCS.421.2

© K. B. Manoorkar & R. Wang
This work is licensed under the
Creative Commons Attribution License.

Query Answering in Lattice-based Description Logic

Krishna Manoorkar
School of Business and Economics

Vrije Universiteit Amsterdam*

Amsterdam, the Netherlands
k.b.manoorkar@vu.nl

Ruoding Wang
School of Business and Economics

Vrije Universiteit Amsterdam†

Amsterdam, the Netherlands
Department of Philosophy

Xiamen University
Xiamen, China
r.wang2@vu.nl

Recently, the description logic LE-A L C was introduced for reasoning in the semantic environment
of the enriched formal contexts, and a tableaux algorithm was developed for checking the consistency
of ABoxes in this logic [6, 7]. In this paper, we study the ontology-mediated query answering in LE-
A L C . In particular, we show that several different types of queries can be answered efficiently
for LE-A L C knowledge bases with acyclic TBoxes using our tableaux algorithm directly or by
extending it with some additional rules.

1 Introduction

Description logic (DL) [1] is a class of logical formalisms, rooted in classical first-order logic, widely
used in Knowledge Representation and Reasoning to articulate and infer relationships among pertinent
concepts within a specified application domain. It is widely utilized across various fields such as the
semantic web [20, 3], ontologies [21], and software engineering [4]. Description logic offers solutions
to diverse reasoning tasks arising from a knowledge base. Among the notable reasoning services offered
by description logic is ontology-mediated query answering, which involves answering queries based on
a given knowledge base [1, chpater 7].

In [7]1, a two-sorted lattice-based description logic LE-A L C 2 was introduced based on non-
distributive modal logic, with semantics grounded in an enriched formal context [12, 11]. LE-A L C
provides a natural description logic to reason about formal concepts (or categories) arising from formal
contexts in Formal Concept Analysis (FCA) [15, 16]. The logic LE-A L C has the same relationship
with non-distributive modal logic and its semantics based on formal contexts as the relationship between
A L C and the classical normal modal logic with its Kripke frame semantics. Namely, LE-A L C facili-
tates the description of enriched formal contexts, i.e., formal contexts endowed with additional relations,
which give rise to concept lattices extended with normal modal operators. Similarly to the classical
modal operators, the ‘non-distributive’ modal operators can be given different interpretations, such as
the epistemic operator [11] and the approximation operator [10].

In this paper, we adapt and modify the LE-A L C tableaux algorithm provided in [7] to answer
several different types of queries based on LE-A L C knowledge bases with acyclic TBoxes. We show

*Krishna Manoorkar is supported by the NWO grant KIVI.2019.001 awarded to Alessandra Palmigiano.
†Ruoding Wang is supported by the China Scholarship Council No.202206310072.
1We noticed a mistake in the proof of termination and I-compatibility in an earlier version of this paper [6] in which concepts

⊤ and ⊥ were included as concept names. In the updated version [7] we prove that the result holds in the restriction which does
not contain ⊤ and ⊥ in the language of concept names. In this paper, we work with the restricted language as in [7].

2Even though concept names in LE-A L C do not contain negation, we still refer to this description logic as LE-A L C
rather than LE-A L E , as negation on ABox terms is included in the description logic language.

http://dx.doi.org/10.4204/EPTCS.421.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

22 Query Answering in Lattice-based Description Logic

that for any consistent LE-A L C ABox A , the model constructed from the tableaux completion of
A is a universal or canonical model for answering different queries like relationship queries asking if
an object and a feature are related, membership queries asking if an object or a feature belongs to a
concept, and subsumption queries asking if a concept is included in some other concept. This allows
us to answer multiple such queries in polynomial time in |A |. We show that it also acts as a universal
model w.r.t. negative relational queries, however this is not true for negative membership or subsumption
queries.

Finally, we consider separation queries which ask if two objects or features can be distinguished
from each other by means of some role (relation). We convert these queries into an equivalent problem
of checking the consistency of the given ABox w.r.t. some extension of LE-A L C and providing a
tableaux algorithm for such extension. This method allows to answer separation queries of different
types in polynomial time in |A |.

Structure of the paper. In Section 2, we briefly review non-distributive modal logic and polarity-
based semantics, lattice-based description logic LE-A L C , and the tableaux algorithm for checking its
ABox consistency. In Section 3, we demonstrate that the model obtained from the Tableaux Algorithm
(Section 2) is a universal model for various queries, and we define different types of queries and corre-
sponding algorithms. Section 4 provides a specific LE-A L C knowledge base and illustrates how the
algorithms answer the queries discussed earlier. Finally, Section 5 summarizes the paper and outlines
future directions.

2 Preliminaries

In this section, we collect preliminaries on non-distributive modal logic and its polarity-based semantics,
i.e. semantics based on formal contexts, and the lattice-based description logic LE-A L C with the
tableaux algorithm developed for it in [7].

2.1 Basic non-distributive modal logic and its polarity-based semantics

In this section, we briefly introduce the basic non-distributive modal logic and polarity-based semantics
for it. It is a member of a family of lattice-based logics, sometimes referred to as LE-logics (cf. [13]),
which have been studied in the context of a research program on the logical foundations of categorization
theory [12, 11, 10, 14]. Let Prop be a (countable) set of atomic propositions. The language L is defined
as follows:

ϕ :=⊥ | ⊤ | p | ϕ ∧ϕ | ϕ ∨ϕ |2ϕ |3ϕ ,
where p ∈ Prop. The basic, or minimal normal L -logic is a set L of sequents ϕ ⊢ ψ , with ϕ,ψ ∈ L ,
containing the following axioms:

p ⊢ p ⊥ ⊢ p p ⊢ p∨q p∧q ⊢ p ⊤ ⊢2⊤ 2p∧2q ⊢2(p∧q)
p ⊢ ⊤ q ⊢ p∨q p∧q ⊢ q 3⊥ ⊢ ⊥ 3(p∨q) ⊢3p∨3q

and closed under the following inference rules:

ϕ ⊢ χ χ ⊢ ψ

ϕ ⊢ ψ

ϕ ⊢ ψ

ϕ (χ/p) ⊢ ψ (χ/p)
χ ⊢ ϕ χ ⊢ ψ

χ ⊢ ϕ ∧ψ

ϕ ⊢ χ ψ ⊢ χ

ϕ ∨ψ ⊢ χ

ϕ ⊢ ψ

2ϕ ⊢2ψ

ϕ ⊢ ψ

3ϕ ⊢3ψ

In the following part, we define the polarity-based semantics for this logic.
Relational semantics. The following preliminaries are taken from [10, 14]. For any binary relation

T ⊆U ×V , and any U ′ ⊆U and V ′ ⊆V , we let

K. B. Manoorkar & R. Wang 23

T (1)[U ′] := {v | ∀u(u ∈U ′ ⇒ uT v)} T (0)[V ′] := {u | ∀v(v ∈V ′ ⇒ uT v)}.
For any u ∈U (resp. v ∈V) we will write T (1)[u] (resp. T (0)[v]) in place of T (1)[{u}] (resp. T (0)[{v}]).

A polarity or formal context (cf. [16]) is a tuple P= (A,X , I), where A and X are sets, and I ⊆ A×X
is a binary relation. A and X can be understood as the collections of objects and features, and for any
a ∈ A and x ∈ X , aIx exactly when the object a has the feature x. For any polarity P= (A,X , I), the pair
of maps

(·)↑ : P(A)→ P(X) and (·)↓ : P(X)→ P(A),
defined by B↑ := I(1)[B] and Y ↓ := I(0)[Y] where B ⊆ A and Y ⊆ X , forms a Galois connection, and hence
induces the closure operators(·)↑↓ and (·)↓↑ on P(A) and on P(X), respectively. Again, we will write
a↑ and a↑↓ (resp. x↓ and x↓↑) in place of {a}↑ and {a}↑↓ (resp. {x}↓ and {x}↓↑).

A formal concept of a polarity P= (A,X , I) is a tuple c = ([[c]],([c])) such that [[c]]⊆ A and ([c])⊆ X ,
and [[c]] = ([c])↓ and ([c]) = [[c]]↑, i.e. the sets [[c]] and ([c]) are Galois-stable. The set of formal concepts
of polarity P, with the order defined by

c1 ≤ c2 iff [[c1]]⊆ [[c2]] iff ([c2])⊆ ([c1]),
forms a complete lattice P+, namely the concept lattice of P.

An enriched formal context is a tuple F = (P,R2,R3), where R2 ⊆ A× X and R3 ⊆ X × A are
I-compatible relations, that is, for all a ∈ A and x ∈ X , the sets R(0)

2 [x], R(1)
2 [a], R(0)

3 [a], R(1)
3 [x] are Galois-

stable in P. Given the operations [R2] and ⟨R3⟩ on P+ corresponding to R2 and R3, respectively, we
have for any c ∈ P+,

[R2]c = (R(0)
2 [([c])], I(1)[R(0)

2 [([c])]]) and ⟨R3⟩c = (I(0)[R(0)
3 [[[c]]]],R(0)

3 [[[c]]]).
We refer to the algebra F+ = (P+, [R2],⟨R3⟩) as the complex algebra of F. A valuation on such an F
is a map V : Prop → P+. For each p ∈ Prop, we let [[p]] := [[V (p)]] (resp. ([p]) := ([V (p)])) denote the
extension (resp. intension) of the interpretation of p under V .

A model is a tuple M = (F,V), where F = (P,R2,R3) is an enriched formal context and V is a
valuation of F. For every ϕ ∈L , we let [[ϕ]]M := [[V (ϕ)]] (resp. ([ϕ])M := ([V (ϕ)])) denote the extension
(resp. intension) of the interpretation of ϕ under the homomorphic extension of V . The ‘satisfaction’
and ‘co-satisfaction’ relations ⊩ and ≻ can be recursively defined as follows:
M,a ⊩ p iff a ∈ [[p]]M M,x ≻ p iff x ∈ ([p])M
M,a ⊩⊤ always M,x ≻⊤ iff aIx for all a ∈ A
M,x ≻⊥ always M,a ⊩⊥ iff aIx for all x ∈ X
M,a ⊩ ϕ ∧ψ iff M,a ⊩ ϕ and M,a ⊩ ψ M,x ≻ ϕ ∧ψ iff (∀a ∈ A) (M,a ⊩ ϕ ∧ψ ⇒ aIx)
M,x ≻ ϕ ∨ψ iff M,x ≻ ϕ and M,x ≻ ψ M,a ⊩ ϕ ∨ψ iff (∀x ∈ X) (M,x ≻ ϕ ∨ψ ⇒ aIx).

As to the interpretation of modal operators:
M,a ⊩2ϕ iff (∀x ∈ X)(M,x ≻ ϕ ⇒ aR2x) M,x ≻2ϕ iff (∀a ∈ A)(M,a ⊩2ϕ ⇒ aIx)
M,x ≻3ϕ iff (∀a ∈ A)(M,a ⊩ ϕ ⇒ xR3a) M,a ⊩3ϕ iff (∀x ∈ X)(M,x ≻3ϕ ⇒ aIx).

The definition above ensures that, for any L -formula ϕ ,
M,a ⊩ ϕ iff a ∈ [[ϕ]]M, and M,x ≻ ϕ iff x ∈ ([ϕ])M.

M |= ϕ ⊢ ψ iff [[ϕ]]M ⊆ [[ψ]]M iff ([ψ])M ⊆ ([ϕ])M.
The interpretation of the propositional connectives ∨ and ∧ in the framework described above re-

produces the standard notion of join and meet of formal concepts used in FCA. The interpretation of
operators 2 and 3 is motivated by algebraic properties and duality theory for modal operators on lattices
(see [14, Section 3] for an expanded discussion). In [10, Proposition 3.7], it is shown that the seman-
tics of LE-logics is compatible with Kripke semantics for classical modal logic, and thus, LE-logics are
indeed generalizations of classical modal logic. This interpretation is further justified in [10, Section
4] by noticing that, under the interpretations of the relation I as aIx iff “object a has feature x” and

24 Query Answering in Lattice-based Description Logic

R = R2 = R−1
3 as aRx iff “there is evidence that object a has feature x”, then, for any concept c, the ex-

tents of concepts 2c and 3c can be interpreted as “the set of objects which certainly belong to c” (upper
approximation), and “the set of objects which possibly belong to c” (lower approximation) respectively.
Thus, the interpretations of 2 and 3 have similar meaning in the LE-logic as in the classical modal logic.

2.2 Description logic LE-A L C

In this section, we recall the lattice-based description logic LE-A L C introduced in [7] as a counterpart
of non-distributive modal logic. It serves as a natural framework in the realm of description logics for
reasoning about the (enriched) formal contexts and the concepts defined by them.

The language of LE-A L C contains two types of individuals, usually interpreted as objects and
features. Let OBJ and FEAT be disjoint sets of individual names for objects and features. The set
R of the role names for LE-A L C is the union of three types of relations: (1) a unique relation I ⊆
OBJ×FEAT; (2) a set of relations R2 of the form R2 ⊆ OBJ×FEAT; (3) a set of relations R3 of the
form R3 ⊆ FEAT×OBJ. The relation I is intended to be interpreted as the incidence relation of formal
contexts and encodes information on which objects have which features, and the relations in R2 and
R3 encode additional relationships between objects and features (see [10] for an extended discussion).
In this paper, we work with an LE-A L C language in which the sets of role names R2 and R3 are
singletons. All the results in this paper can be generalized to language with multiple role names in each
of these sets straightforwardly.

For any set D of atomic concept names, the language of LE-A L C concepts is:
C := D | C1 ∧C2 | C1 ∨C2 | ⟨R3⟩C | [R2]C

where D∈D . This language matches the LE-logic language and has an analogous intended interpretation
of the complex algebras of the enriched formal contexts (cf. Section 2.1). As usual in FCA, ∨ and ∧ are
to be interpreted as the smallest common superconcept and the greatest common subconcept. We do not
use the symbols ∀r and ∃r in the context of LE-A L C because using the same notation verbatim would
be ambiguous or misleading, as the semantic clauses of modal operators in LE-logic use the universal
quantifiers.

TBox assertions in LE-A L C are of the shape C1 ≡ C2, where C1 and C2 are concepts defined as
above. As is standard in DL (see [1] for more details), general concept inclusions of the form C1 ⊑ C2
can be rewritten as C1 ≡C2 ∧C3, where C3 is a new concept name. ABox assertions are of the form:

aR2x, xR3a, aIx, a : C, x :: C, ¬α,

where α is any of the first five ABox terms. We refer to the first three types of terms as relational terms.
We denote an arbitrary ABox (resp. TBox) with A (resp. T). The interpretations of the terms a : C
and x :: C are: “object a is a member of concept C”, and “feature x is in the description of concept C”,
respectively. Note that we explicitly add negative terms to ABoxes, as the concept names in LE-A L C
do not contain negations.

An interpretation for LE-A L C is a tuple M = (F, ·M), where F = (P,R2,R3) is an enriched
formal context, and ·M maps:
1. individual names a ∈ OBJ (resp. x ∈ FEAT) to some aM ∈ A (resp. xM ∈ X);
2. role names I, R2 and R3 to relations IM ⊆ A×X , RM

2 ⊆ A×X and RM
3 ⊆ X ×A in F;

3. any atomic concept D to DM ∈ F+, and other concepts as follows:
(C1 ∧C2)

M =CM
1 ∧CM

2 (C1 ∨C2)
M =CM

1 ∨CM
2 ([R2]C)M = [RM

2]CM (⟨R3⟩C)M = ⟨RM
3 ⟩CM

where all the connectives are interpreted as defined in LE-logic (cf. Section 2.1). The satisfiability
relation for an interpretation M is defined as follows:
1. M |=C1 ≡C2 iff [[CM

1]] = [[CM
2]] iff ([CM

2]) = ([CM
1]).

K. B. Manoorkar & R. Wang 25

2. M |= a : C iff aM ∈ [[CM]] and M |= x :: C iff xM ∈ ([CM]).
3. M |= aIx (resp. aR2x, xR3a) iff aM IM xM (resp. aM RM

2 xM , xM RM
3 aM).

4. M |= ¬α , where α is any ABox term, iff M ̸|= α .
The satisfaction definition can be extended to concept inclusion as follows. For any concepts C1, and

C2, and an interpretation M , M |=C1 ⊑C2 iff CM
1 ≤CM

2 .
An interpretation M is a model for an LE-A L C knowledge base (A ,T), where A is an ABox and

T is a TBox, if M |=A and M |=T . An LE-A L C knowledge base (A ,T) is said to be inconsistent
if there is no model for it. We say an ABox A is consistent if knowledge base (A ,T) has a model and
T is empty. In this paper, we use LE-A L C knowledge bases to mean LE-A L C knowledge bases
with acyclic Tboxes unless otherwise stated.

2.3 Tableaux algorithm for checking LE-A L C ABox consistency

In this section, we introduce the tableaux algorithm for checking the consistency of LE-A L C ABoxes.
An LE-A L C ABox A contains a clash iff it contains both β and ¬β for some relational term β . The
expansion rules below are designed so that the expansion of A will contain a clash iff A is inconsistent.
The set sub(C) of sub-formulas of any LE-A L C concept name C is defined as usual. A concept name
C′ occurs in the ABox A (denoted as C′ ∈A) if C′ ∈ sub(C) for some C such that one of the terms a : C,
x :: C, ¬(a : C), or ¬(x :: C) is in A . A constant b (resp. y) occurs in A (b ∈A , or y ∈A), iff some term
containing b (resp. y) occurs in it.

The tableaux algorithm below provides a method to construct a model (F, ·M) for every consistent
A , where F = (P,R2,R3) is such that, for any C ∈ A , some aC ∈ A and xC ∈ X exist such that, for
any a ∈ A (resp. any x ∈ X), a ∈ [[CM]] (resp. x ∈ ([CM])) iff aIxC (resp. aCIx). We call aC and xC the
classifying object and the classifying feature of C, respectively. To make the notation easily readable, we
write a2C, x2C (resp. a3C, x3C) instead of a[R2]C, x[R2]C (resp. a⟨R3⟩C, x⟨R3⟩C). The commas in each rule
are meta-linguistic conjunctions, hence every tableau is non-branching.

Algorithm 1 tableaux algorithm for checking LE-A L C ABox consistency
Input: An LE-A L C ABox A . Output: whether A is inconsistent.

1: if there is a clash in A then return “inconsistent”.
2: pick any applicable expansion rule R, apply R to A and proceed recursively.
3: if there is no clash after post-processing return “consistent".

Creation rule Basic rule
For any C ∈ A

create
aC : C, xC :: C

b : C, y :: C
I

bIy
Rules for the logical connectives I-compatibility rules

b : C1 ∧C2 ∧Ab : C1, b : C2

y :: C1 ∨C2∨X y :: C1, y :: C2

bI2y
2y

bR2y
bI■y

■y
yR3b

b : [R2]C, y :: C
2

bR2y
y :: ⟨R3⟩C, b : C

3
yR3b

3bIy
3b

yR3b
♦bIy

♦b
bR2y

inverse rules for connectives
b : C1, b : C2, C1 ∧C2 ∈ A

∧−1
A b : C1 ∧C2

y :: C1, y :: C2, C1 ∨C2 ∈ A
∨−1

Xy :: C1 ∨C2

26 Query Answering in Lattice-based Description Logic

Adjunction rules
bR2y

R2
♦bIy, bI2y

yR3b
R3

3bIy, bI■y
Basic rules for negative assertions Appending rules

¬(b : C)
¬b ¬(bIxC)

¬(x :: C)
¬x

¬(aCIx)
bIxCxC
b : C

aCIy
aC

y :: C
Note that in the creation rule, the aC and xC are new (i.e. different from any names already appearing in
the tableaux) special object and feature names unique for each C. In the adjunction rules, the individuals
♦b, 2y, 3b, and ■y are new and unique individual names3 for relations R2 and R3, and individuals b
and y, except for 3aC = a3C and 2xC = x2C. Side conditions that the conjunction and disjunction occur
in A for rules ∧−1

A and ∨−1
X ensure that we do not add new meets or joins to the concept names.

The following theorem follows from the results in [7]:
For any consistent LE-A L C ABox A , the tableaux completion A of A is a set of assertions

which are obtained by applying the tableaux algorithm 1 to A . From A , we can construct a model
M = (F, ·M), where F= (A,X , I,R2,R3) is described as follows: A and X are taken to be the sets of all
individual names of object and feature that occur in A , respectively, and all individuals are interpreted
by their names. For any role name R, its interpretation RM is defined as follows: for any individual
names l, m, lRM m iff lRm ∈ A . Finally, for the atomic concept D, its interpretation is set to the concept
(x↓D,a

↑
D). The following result was proved in [7].

Theorem 1. For any LE-A L C ABox A ,

• the tableaux algorithm applied to A terminates in polynomial time in |A |;

• A contains a clash iff A is inconsistent;

• if A is inconsistent, then the model M as constructed above is a model for A of the size polyno-
mial in |A |. Moreover, for any individual names b, y, and concept C occurring in A , b ∈ [[C]] iff
bIxC ∈ A , and y ∈ ([C]) iff acIy ∈ A .

Remark 1. The algorithm can be easily extended to acyclic TBoxes (exponential-time), using the unrav-
eling technique (see [2] for details).

2.4 Ontology-mediated query answering

A key task in description logic ontologies (knowledge bases) is to support various reasoning tasks, one
of which is to answer queries based on ontologies [1, chapter 7]. Let K = (A ,T) be a consistent
knowledge base given in a specific description logic DL. Given a query q(p) (with a possibly empty
tuple of free variables p) in (appropriate) first-order language and a model M of K , we say that a
sequence of individuals a in A is an answer for query q(p) w.r.t. model M of knowledge base K
if M |= q(a). An answer a in A is said to be a certain answer for the query q(p) with respect to a
knowledge base K if it is an answer for q(p) w.r.t. all the models of K . An important notion used in
ontology-mediated query answering is that of a universal or canonical model. For a query q(p) on a
knowledge base K , we say that a model M of K is a universal or canonical model for K if for any
a appearing in K , K |= q(a) iff M |= q(a). In case p is empty, the answer or the certain answer for

3The new individual names ♦b, 3b, 2y, and ■y appearing in tableaux expansion are purely syntactic entities. Intuitively,
they correspond to the classifying objects (resp. features) of the concepts ♦b, 3b (resp. 2y, resp. ■y), where b = (b↑↓,b↑)
(resp. y = (y↓,y↓↑)) is the concept generated by b (resp. y), and the operation ♦ (resp.■) is the left (resp. right) adjoint of
operation 2 (resp. 3).

K. B. Manoorkar & R. Wang 27

such query is true or false depending on whether M |= q or not. Thus, we can provide certain answer
for query q over K by only looking over the universal or canonical model M . Universal models for
different description logics have been extensively studied [9, 17, 19, 8]. In this paper, we would focus
on answering some specific types of queries over knowledge bases in non-distributive description logic
LE-A L C . To this end, we show that for any LE-A L C ABox A , the model constructed from it by
applying the LE-A L C tableaux algorithm 1 acts as the universal model for A w.r.t. several different
types of queries. As the tableaux algorithm is polynomial in time and produces a polynomial size model
in |A |, this provides a polynomial-time algorithm to answer these types of queries.

3 Query answering over LE-A L C ABoxes

In this section, we discuss different types of queries pertaining to LE-A L C ABoxes and develop al-
gorithms to answer them. We start by showing that for any consistent LE-A L C ABox A , the model
obtained using Algorithm 1 behaves like universal model w.r.t. several types of queries.

3.1 Universal model for LE-A L C ABox

For any individual name appearing in the tableaux expansion A of an LE-A L C ABox A , we define
its concept companion as follows :

1. For any constant b (resp. y) appearing in A , con(b) (resp. con(y)) is a concept such that for any
interpretation M , con(b)M = b (resp. con(y)M = y), where b (resp. y) denotes the concept generated
by bM (resp. yM), i.e. b = ((bM)↑↓,(bM)↑) (resp. y = ((yM)↓,(yM)↓↑)).

2. For any constant 3b (resp. ♦b, resp. ■y, resp. 2y) appearing in A , con(3b) = 3con(b) (resp.
con(♦b) = ♦con(b), resp. con(■y) =■con(y), resp. con(2y) =2con(y)), where the operation ♦ (resp.
■) is the left (resp. right) adjoint of 2 (resp. 3).
Lemma 1. For any consistent LE-A L C ABox A , individual names b, y appearing in its completion
A , and concept C appearing in A :

1. A |= con(b)⊑ con(y) iff bIy ∈ A , 2. A |= con(b)⊑2con(y) iff bR2y ∈ A ,
3. A |=3con(b)⊑ con(y) iff yR3b ∈ A , 4. A |= con(b)⊑C iff bIxC ∈ A ,
5. A |=C ⊑ con(y) iff aCIy ∈ A , 6. A |= con(b)⊑C iff b : C ∈ A ,
7. A |=C ⊑ con(y) iff y :: C ∈ A , 8. A |=C1 ⊑C2 iff aC1IxC2 ∈ A .

Proof. The proofs from left to right for items 1-5 follow immediately from Theorem 1. We prove the
right to left implications by simultaneous (over all the items) induction on the number of expansion rules
applied. The base case is when the term in the right appears in A . In this case, it is immediate from the
definition that we get the required condition on the left.

Creation rule. By this rule, aC : C and xC :: C are added by any C ∈ A , which imply C ⊑C.
Basic rule. By this rule, bIy is added from b : C and y :: C. By induction applied to items 6 and 7, we

get con(b)⊑C and C ⊑ con(y), which imply that con(b)⊑ con(y). It is easy to check item 4 and item 5
also hold. For item 8, aC1IxC2 is added from aC1 : C and xC2 :: C. By induction applied to items 6 and 7,
we have C1 ⊑C and C ⊑C2, which imply that C1 ⊑C2.

Rules ∧A, ∨X , ∧−1
A , ∨−1

X . We give the proofs for rules ∧A and ∧−1
A . The proofs for ∨X and ∨−1

X are
analogous. By rule ∧A, b : C1 and b : C2 are added from b : C1 ∧C2. By induction applied to item 6,
con(b)⊑C1 ∧C2, and thus con(b)⊑C1 and con(b)⊑C2. By rule ∧−1

A , b : C1 ∧C2 is added from b : C1,
b : C2, and C1 ∧C2 ∈ A . By induction applied to item 6, we have con(b) ⊑C1 and con(b) ⊑C2. Since
C1 ∧C2 exists in A , we get con(b)⊑C1 ∧C2.

28 Query Answering in Lattice-based Description Logic

I-compatibility rules. We give the proofs for rules 2y and ■y. The proofs for 3b and ♦b are anal-
ogous. By rule 2y, bR2y is added from bI2y, by induction applied to item 1, we get con(b)⊑ con(2y)
and by definition we have con(b) ⊑ 2con(y). By rule ■y, yR3b is added from bI■y. By induction
applied to item 1, we have con(b) ⊑ con(■y), and by definition con(b) ⊑ ■con(y). By adjunction, we
have 3con(b)⊑ con(y).

Rules 2 and 3. We give the proof for rule 2, and the proof for 3 is analogous. By rule 2,
bR2y is added from b : [R2]C and y :: C. By induction applied to item 6, we have con(b) ⊑ 2C. By
induction on item 7, we get C ⊑ con(y). As 2 is a monotone operator, we have 2C ⊑ 2con(y). Thus,
con(b)⊑2con(y).

Adjunction rules. We give the proof for rule R2 and the proof for R3 is analogous. By rule R2,
bI2y (resp. ♦bIy) is added from bR2y. By induction applied to item 2, we have con(b) ⊑ 2con(y)
(resp. ♦con(b)⊑ con(y) by adjunction), and thus con(b)⊑ con(2y) (resp. con(♦b)⊑ con(y)).

Appending rules. By rule xC, the term b : C is added from bIxC. By induction applied to item 4,
we have con(b) ⊑C. By rule aC, y :: C is added from aCIy and by induction applied to item 5, we have
C ⊑ con(y).

Lemma 1 implies that for any consistent ABox A , the model generated from A using Algorithm 1
acts as a universal model for several types of queries. We describe some such queries below.

Relationship queries. These queries are either Boolean queries asking if two individuals are related
by relation I, R2 or R3, e.g. q = bIy, or queries asking for names of all individuals appearing in A that
are related to some element by relation I, R2 or R3, e.g. q(p) = bR2p.

Membership queries. These queries are either Boolean queries asking if some object or feature
belongs to a given concept, e.g. q = y :: C, or queries asking for names of all individuals appearing in A
that are in the extension or intension of a concept C, e.g. q(p) = p : C.

Subsumption queries. These queries are Boolean queries asking if a concept C1 is included in C2,
i.e. q =C1 ⊑C2.4

As Algorithm 1 is polynomial-time and gives a model which is of polynomial-size in |A |, we have
the following corollary.

Corollary 1. For any LE-A L C ABox A , a query q of the above forms consisting of concepts and
individual names appearing in A , can be answered in polynomial time in |A | using Algorithm 1.

Remark 2. Relationship, membership, and subsumption queries can also be answered in polynomial
time by converting them into a problem of consistency checking (see [1] for more details). However,
it involves performing tableaux expansion for each query, while our result implies that we can answer
multiple Boolean and naming queries with a single run of tableaux algorithm.

If a subsumption or membership query has concept C not appearing in A , we can answer such query
by adding C to A through creation rule i.e. adding terms aC : C, and xC :: C to A . If we have multiple
queries consisting of concepts not appearing in A , we can add all of these concepts simultaneously and
answer all queries with a single run of the tableaux algorithm.

Disjunctive relationship and membership queries. A disjunctive relationship (resp. membership)
query is formed by taking the disjunction of a finite number of relationship (resp. membership) queries,

4Note that no non-trivial subsumptions are implied by knowledge bases with acyclic TBoxes. However, we include such
queries as the algorithm can be used to answer queries regarding trivial (those implied by logic) subsumption efficiently.
Moreover, we believe that the algorithm extend ideas used to answer these queries may be used in future generalizations to
knowledge bases with cyclic TBoxes.

K. B. Manoorkar & R. Wang 29

e.g. q = bIy∨ bIz, and q(p) = p : C1 ∨ p : C2
5. The following lemma implies that we can answer such

queries in LE-A L C by answering each disjunct separately.

Lemma 2. Let t1 and t2 be any LE-A L C ABox terms not containing negation. Then, for any consistent
LE-A L C ABox A , A |= t1 ∨ t2 iff A |= t1 or A |= t2.

Proof. A |= t1 ∨ t2 iff A ∪{¬t1,¬t2} is inconsistent. By tableaux algorithm for LE-A L C , we have
A ∪{¬t1,¬t2}= A ∪B, where the only terms in B are ¬t1, ¬t2, and the terms obtained by applying the
negative rule ¬b or ¬x to these terms. Therefore, as A ∪{¬t1,¬t2} is inconsistent, A ∪B must contain
a clash. But as A is consistent, A does not contain any clash. Therefore, some term in A clashes with
¬t1 or ¬t2 or the term obtained by applying negative rule ¬b or ¬x to these terms. This implies that
A ∪{¬t1} or A ∪{¬t1} must be inconsistent. Therefore, we have A |= t1 or A |= t2.

3.2 Negative queries

Negative queries are obtained by applying negation to relationship, membership and subsumption queries
discussed above. These queries ask if the given ABox implies that some object is not related to some
feature or some object (resp. feature) does not belong to some concept, or that one concept is not included
in another concept. We start with negative relationship queries.

Lemma 3. For any consistent LE-A L C ABox A and for any individual names b and y,
1. A |= ¬(bIy) iff ¬(bIy) ∈ A ,
2. A |= ¬(bR2y) iff ¬(bR2y) ∈ A ,
3. A |= ¬(yR3b) iff ¬(yR3b) ∈ A .

Proof. We only prove items 1 and 2. The proof for item 3 is similar. For item 1, the right to left
implication is trivial. For the left to right implication, suppose A |= ¬(bIy). Then, A ∪{bIy} must
be inconsistent. As b and y appear in A , no tableaux expansion rule has the term bIy in its premise.
Therefore, the tableaux completion of A ∪{bIy} is A ∪{bIy}. As A is consistent, A does not contain
clash. Therefore, since A ∪{bIy} must contain a clash, we have ¬(bIy) ∈ A . However, note that no
tableaux expansion rule can add such term for individual names b, y appearing in the original ABox A .
Therefore, ¬(bIy) ∈ A .

For item 2, the right to left implication is also trivial. For the left to right implication, suppose
A |= ¬(bR2y). Then, A ∪{bR2y} must be inconsistent. As b and y appear in A , the only tableaux
expansion rule having term bR2y in its premise is adjunction rule R2 which adds terms ♦bIy and bI2y.
Again, the only rules that have any of these terms in premise are I-compatibility rules that add bR2y to
the tableaux expansion. Therefore, the tableaux completion of A ∪{bR2y} is A ∪{bR2y,♦bIy,bI2y}.
As A is consistent, A does not contain a clash. Therefore, as A ∪{bR2y,♦bIy,bI2y} must contain a
clash, one of the terms ¬(bR2y), ¬(♦bIy) or ¬(bI2y) must be in A . However, no expansion rule can
add the terms of any of these forms. Furthermore, the terms of the form ¬(♦bIy) or ¬(bI2y) cannot
appear in the original ABox A . Therefore, ¬(bR2y) must be in A .

As a result, we can answer negative relationship queries over a consistent LE-A L C ABox A in
linear time by searching through A .

We cannot apply a similar strategy to membership queries of the form ¬(b : C) or ¬(y :: C), as
such terms can be implied by A without being present in A . For example, consider ABox A = {b :
C1,¬(b : C1 ∧C2)} which implies ¬(b : C2), but this term does not appear in A . This means that the

5The symbol ∨ in this paragraph refers to join in the first-order (meta) language, and not join of concepts in LE-A L C .

30 Query Answering in Lattice-based Description Logic

model obtained by tableaux algorithm is not a universal model for these types of queries. Hence, to
answer queries of the form ¬(b : C) or ¬(y :: C), we must proceed by the usual route of adding the
terms b : C or y :: C to A and checking the consistency of the resulting ABox. We can also consider
negative subsumption queries, i.e. queries asking whether the given ABox A implies one concept C1
is not included in another concept C2, denoted as ¬(C1 ⊑ C2). Answering this query is the same as
answering if the knowledge base obtained by adding the TBox axiom C1 ⊑C2 to ABox A is consistent.
We can answer these queries for any TBox term C1 ⊑C2, such that no sub-formula of C1 appears in C2,
by using unraveling on C1 ⊑C2, and then applying Algorithm 1.

In this and previous sections, we have discussed answering Boolean queries of all the forms which
an LE-A L C ABox term can take. Hence, we can combine these methodologies to answer ontology
equivalence queries asking if two ABoxes are equivalent, i.e. A1 ≡ A2, by checking if every term in A2
is implied by A1 and vice versa.

3.3 Separation and differentiation queries

An important set of queries is queries asking if the given knowledge base implies (ensures) that two
individuals can be differentiated from each other by a certain property. In this section, we consider some
queries of this type in LE-A L C .

Separation queries are queries of the form S(b,d) = ∃p(bI p∧¬(dI p)) or S(y,z) = ∃p(pIy∧¬(pIz))
for two object (resp. feature) names b, d (resp. y, z) appearing in a given ABox. These queries can be
understood as asking whether two given objects or features can be separated for sure using relation I
based on the given knowledge base. Note that for any LE-A L C ABox A ,

1. A ̸|= ∃p(bI p∧¬(dI p)) iff A ∪{∀p(bI p ⇒ dI p)} is consistent, and
2. A ̸|= ∃p(pIy∧¬(pIz)) iff A ∪{∀p(pIy ⇒ pIz)} is consistent.
Therefore, a separation query S(b,d) (resp. S(y,z)) can be answered by checking if A is consistent

in the extension of LE-A L C with the axiom ∀p(bI p ⇒ dI p) (resp. ∀p(pIy ⇒ pIz)). To this end, we
consider the expansion of the LE-A L C tableaux algorithm with the rules

bIxSA(b,d)
dIx

aIy
SX(y,z)

aIz
.

Theorem 2. The tableaux algorithm obtained by adding the rule SA(b,d) (resp. SX(y,z)) to the LE-
A L C tableaux expansion rules provides a polynomial-time sound and complete decision procedure for
checking the consistency of A ∪∀p(bI p ⇒ dI p)(resp. A ∪∀p(pIy ⇒ pIz)).

Now, we will prove the termination, soundness and completeness of tableaux algorithms for checking
consistency of A ∪{∀p(bI p ⇒ dI p)} and A ∪{∀p(pIy ⇒ pIz)} defined in Section 3.3. We only give
the proof for A ∪∀p(bI p ⇒ dI p), the proof for A ∪∀p(pIy ⇒ pIz) would be similar.

In this paper, we will only explain the changes that must be made to the termination, soundness, and
completeness proofs of the LE-A L C tableaux algorithm provided in [7]. We refer to [7] for details of
these proofs.

Termination. To prove termination, we prove that the following lemma proved for LE-A L C
tableaux algorithm in [7] also holds for its extension with rule SA(b,d).

Lemma 4. [7, Lemma 1] For any individual names b, and y, and concept C added during tableau
expansion of A ,

2D(C)≤2D(A)+1 and 3D(C)≤3D(A)+1, (1)

−3D(A)−1 ≤3D(b) and 2D(b)≤2D(A)+1, (2)

K. B. Manoorkar & R. Wang 31

−2D(A)−1 ≤2D(y) and 3D(y)≤3D(A)+1 (3)

Proof. The proof proceeds by showing that the following stronger claim holds. For any tableaux expan-
sion A , obtained from A after any finite number of expansion steps:

1. For any term bIy ∈ A , 2D(b)−2D(y)≤2D(A)+1, and 3D(y)−3D(b)≤3D(A)+1.
2. For any term bR2y ∈ A , 2D(b)+1−2D(y)≤2D(A)+1, and 3D(y)−3D(b)≤3D(A)+1.
3. For any term yR3b ∈ A , 2D(b)−2D(y)≤2D(A)+1, and 3D(y)+1−3D(b)≤3D(A)+1.
4. For any term b : C ∈ A , 2D(b)+2D(C)≤2D(A)+1, and −3D(b)−3D(C)≤ 0.
5. For any term y :: C ∈ A , −2D(y)−2D(C)≤ 0, and 3D(y)+3D(C)≤3D(A)+1.
The proof proceeds by induction of number of rules applied. The proofs for initial case (i.e. for

all the terms in original ABox A) and all the LE-A L C tableaux expansion rule are provided in [7,
Lemma 1]. Therefore, to complete the proof we need to show that the rule SA(b,d) also preserves
these properties. Suppose a term dIy is added from a term bIy using rule SA(b,d). In this case, by
induction, we have 2D(b)−2D(y)≤ 2D(A)+1, and 3D(y)−3D(b)≤3D(A)+1. As b and d are
object names appearing in A , we have 2D(b) = 2D(d) = 3D(b) = 3D(d) = 0. Therefore, we have
2D(d)−2D(y)≤2D(A)+1, and 3D(y)−3D(d)≤3D(A)+1. Hence proved.

This lemma bounds the number of new contestant and concept names that can appear in tableaux
expansion. Therefore, it implies that the number of terms that can appear in tableaux expansion are
bounded by poly(size(A)). As tableaux has no branching rules, this implies termination. (See [7] for
more details).

Soundness. The soundness follows immediately from the soundness for LE-A L C tableaux algorithm
[7, Section 4.2], and the fact that the rule SA(b,d) ensures that the model obtained from completion
satisfies the axiom ∀p(bI p ⇒ dI p).

Completeness. To prove completeness, we show that the following lemma proved for LE-A L C [7,
Lemma 5] also holds for its extension with the axiom ∀p(bI p ⇒ dI p).

Lemma 5. For any ABox A , any model M = (F, ·M) of A can be extended to a model M′ = (F′, ·M ′
)

such that F′ = (A′,X ′, I′,{R′
2}2∈G ,{R′

3}3∈F), A ⊆ A′ and X ⊆ X ′, and moreover for every 2 ∈ G and
3 ∈ F :

1. There exists aC ∈ A′ and xC ∈ X ′ such that:

CM ′
= (I′(0)[xM ′

C], I′(1)[aM ′
C]), aM ′

C ∈ [[CM ′
]], xM ′

C ∈ ([CM ′
]), (4)

2. For every individual b in A there exist 3b and ♦b in A′ such that:

I′(1)[♦b] = R′(1)
2 [bM ′

] and I′(1)[3b] = R′(0)
3 [bM ′

], (5)

3. For every individual y in X there exist 2y and ■y in X ′ such that:

I′(0)[■y] = R′(1)
3 [yM ′

] and I′(0)[2y] = R′(0)
2 [yM ′

]. (6)

4. For any C, [[CM]] = [[CM ′
]]∩A and ([CM]) = ([CM ′

])∩X.

32 Query Answering in Lattice-based Description Logic

In [7, Section 4.3], this lemma was proved by constructing such model M′. Here, we show that if the
model M additionally satisfies axiom ∀p(bI p ⇒ dI p), then so does the model M′. This follows from the
fact that the model M′ is constructed in such a way that (see [7, Section 4.3] for more details) for any
b,d ∈ A, a term bIM ′

xC is added for some newly added element xC ∈ X ′ \X iff we have bIM y for all
y ∈CM . Then, as M |= ∀p(bI p ⇒ dI p), we also get dIy for all y ∈CM which implies dIM ′

xC.
The above lemma ensures that if A ∪ {∀p(bI p ⇒ dI p)} has a model, then it has a model with

classification of objects and features. The completeness proof then proceeds by showing that if A is
consistent, then the model for A with the above properties satisfies all the terms in the completion of A .
We refer to [7, Section 4.3] for details.

Hence, we can use this expanded tableaux algorithm to answer separation queries over a given ABox
A in polynomial time. This also allows us to answer differentiation queries Di f (b,d) = S(b,d)∧S(d,b)
(resp. Di f (y,z) = S(y,z)∧S(z,y)) which ask if A implies that b and d (resp. y and z) can be differentiated
from each other by the relation I in polynomial time. We can similarly define and answer the separation
and differentiation queries for the relations R2 and R3. Furthermore, we can answer identity queries
asking if A implies that two individuals are not identical by checking if they can be differentiated by
some relation.

The strategy used to answer separation queries can also be used to answer many other interesting
types of queries. For example, we can consider separation queries which ask about separation between
different relations. Consider the queries SA(R2,R3,b) = ∃p(bR2p∧¬(pR3b)), and SX(R3,R2,y) =
∃p(yR3p∧¬(pR2y)). These queries ask if the given ABox implies that the relations R2 and R3 are the
local inverses of each other in some object b or feature y appearing in the given ABox.

Note that for any LE-A L C ABox A ,
1. A ̸|= ∃p(bR2p∧¬(pR3b)) iff A ∪{∀p(bR2p ⇒ pR3b)} is consistent, and
2. A ̸|= ∃p(yR3p∧¬(pR2y)) iff A ∪{∀p(yR3p ⇒ pR2y)} is consistent.
Therefore, a separation query SA(R2,R3,b) (resp. SX(R3,R2,y)) can be answered by checking if

A is consistent in the extension of LE-A L C with the axiom ∀p(bR2p ⇒ pR3b) (resp. ∀p(yR3p ⇒
pR2y)). To this end, we consider the expansion of the LE-A L C tableaux algorithm with the following
rules

bR2y
SA(R2,R3,b) yR3b

yR3b
SX(R3,R2,y)bR2y

.

Theorem 3. The tableaux algorithm obtained by adding rule SA(R2,R3,b) (resp. SX(R2,R3,y)) to LE-
A L C tableaux expansion rules provides a polynomial-time sound and complete decision procedure for
checking consistency of A ∪{∀p(bR2p ⇒ pR3b)}(resp. A ∪{∀p(yR3p ⇒ pR2y)}).

Proof. See Appendix A.

We can similarly answer the queries of the forms SA(R2, I,b)=∃p(bR2p∧¬(bI p)), and SX(R3, I,y)=
∃p(yR3p∧¬(pIy)) using tableaux algorithm expanded with the rules

bR2y
bIy

and yR3b
bIy

.

However, this does not apply to all separation queries on relations. For example, consider queries
of the form SA(I,R2,b) = ∃p(bI p∧¬(bR2p)), and SX(I,R3,y) = ∃p(pIy∧¬(yR3p)). This is because
the expansion of LE-A L C tableaux algorithm with the rules

bIy
bR2y

and bIy
yR3b

may not be terminating. We leave this as part of future work.

K. B. Manoorkar & R. Wang 33

4 Examples

In this section, we give a toy example of an LE-A L C knowledge base and some queries of different
types to demonstrate working of various algorithms for answering these queries discussed in the paper.

Suppose, we want to create a knowledge base to represent categorization of some movies on a stream-
ing website which can be used to answer some queries based on them. We list the concept names and
individual names for objects and features appearing in the knowledge base in the following tables:

concept name symbol concept name symbol concept name symbol
Italian movies IM German movies GM French movies FM

European movies EUM Recent movies RM Recent drama movies RDM
Drama movies DM Famous drama movies FDM

object symbol object symbol
All the President’s Men m1 Spirited Away m2

Oppenheimer m3 Cinema Paradiso m4

feature symbol feature symbol feature symbol
German language f1 French language f2 Based on real story f3

Serious plot f4 Released after 2015 f5 Released after 2020 f6

Suppose the following knowledge base K1 presents the information obtained by the website regard-
ing the movies, their features and their categorization into above categories from some initial source
which possibly has incomplete information.

A1 = {m4 : IM,¬(m4Ix /0),x /0 :: FM∧ IM,

x /0 :: GM∧ IM, f1 :: GM, f2 :: FM,

f4 :: DM,m3 : RDM,m3I f6,m1I f3,

¬(m1I f2),¬(m2 : EUM)},

T1 = {EUM ≡ GM∨FM,

RDM ≡ RM∧DM,

IM ⊑ EUM}.

Since TBox T1 is acyclic, we can convert the knowledge base K1 into an equivalent knowledge base
with only ABox using unraveling, which would be suitable for our algorithms.

For any movie m and feature y, we have mIy (resp. ¬(mIy)) iff according to the initial source database,
movie m has (resp. does not have) feature y. The feature x /0 intuitively represents a contradiction. The
terms x /0 :: FM ∧ IM and x /0 :: GM ∧ IM states that there is no movie that is both a French movie and
Italian movie or both a German and Italian movie. The term m4 : IM specifies that Cinema Paradiso is
an Italian movie. The term f3 :: AM states that Action movies have action sequences. Other terms in
A1 can be explained similarly. The term EUM ≡ GM∨FM states that the category of European movies
is the smallest category on the website which contains both German movies and French movies. The
term IM ⊑ EUM can be equivalently written as IM ≡ EUM ∧C for some new category C, meaning all
Italian movies are European movies. Other terms in T1 can be explained similarly. Note that the terms
¬(m4Ix /0), x /0 :: FM ∧ IM, and x /0 :: GM ∧ IM together imply that m4 is not in (FM ∧ IM)∨ (GM ∧ IM).
However, m4 is in IM = EUM∧ IM = (GM∨FM)∧ IM. Therefore, this knowledge base is inconsistent
in distributive logic but it is consistent in our setting of LE-A L C .

Additionally, the website also tries to get an understanding of subjective (epistemic) view of different
user groups on the website regarding movies, their features, and categorization. To this end, website asks
some users from different groups the following two questions:
(a) Given a list of movies:

(a1) Please choose movies which have feature y from the list;
(a2) please choose movies which do not have feature y from the list.

34 Query Answering in Lattice-based Description Logic

(b) Given a list of features:
(b1) please choose features that describe movie m from the list;
(b2) please choose features which do not describe movie m from the list.
Note that there can be movies (resp. features) in the list of options which are not chosen as answer to

either (a1) or (a2) (resp. (b1) or (b2)).
We model information obtained from above questions as follows: If some user from group i chooses

movie m (resp. movie m, resp. feature y, resp. feature y) as an answer to question (a1) (resp. (a2),
resp. (b1), resp. (b2)), then we add mR2iy (resp. ¬(mR2iy), resp. yR3im, resp. ¬(yR3im)) to the knowl-
edge base. Note that, in general, none of the terms yR3im, and mR2iy implies other. This is because
question (a) and question (b) may be asked to different users from group i.

Then, for any category C, [R2i]C denotes the category defined by objects which are reported to have
all the features in ([C]) (description of C) by some user in group i. Thus, [R2i]C can be seen as the
category of movies which are considered to be in C according to the user group i. This means that for
any movie m in [R2i]C and any feature y of C, some user in the group i will name m as a movie having
feature y as an answer to (a1).

Similarly, ⟨R3i⟩C denotes the category defined by features which all objects in [[C]] (objects in C) are
reported to have by some user in group i. Thus, ⟨R3i⟩C can be seen as the category of movies defined
by features which are considered to be in the description of C according to the user group i. This means
that for any feature y of ⟨R3i⟩C and any movie m in C, some user in the group i will name y as a feature
of the movie m as an answer to (b1).

Moreover, the website can also ask users the following questions:
(c) Please choose movies which belong to the category C from a given list of movies.
(d) Please choose features that describe the category C from a given list of features.
If m (resp. y) is chosen as an answer of (c) (resp. (d)) by some user in group i, then we add term

m : [R2i]C (resp. y :: ⟨R3i⟩C) to the knowledge base. Here, we assume that for any feature y in description
of C, if some user chooses m as a movie in category C, then there is some user from the same group who
will also choose m as a movie with feature y in answer to (a1). This assumption ensures that the [R2i]C
is interpreted in accordance with LE-A L C semantics from relation R2i.

Similarly, for any movie m in C, we assume that if some user chooses y as a feature in category C,
then there is some user from the same group will also choose y as a feature with movie m in answer to
(b1). This assumption ensures that the ⟨R3i⟩C is interpreted in accordance with LE-A L C semantics
from relation R3i

6.
The following table presents knowledge base K2 representing different user groups’ views regarding

the movies obtained from the answers to the above questions. For simplictiy, we assume that we have
only two different user groups. From here on, we will use 2i (resp. 3i) to denote [R2i] (resp. ⟨R3i⟩) for
i = 1,2.

A2 = {m3R21 f3,m3R22 f3,¬(m1R21 f6),

f3R31m3, f3R32m3,m3 : 22RDM,

f5 :: 31RM,¬(m1R22 f5)},

T2 = {FDM ≡21DM∧22DM}.

6These assumptions can be justified if we assume we have a large number of users in each group so that at least some users
in the group will have the information regarding all the movies and their features under consideration.

K. B. Manoorkar & R. Wang 35

Let K = K1 ∪K2 be the knowledge base obtained by combining knowledge from the source
database and from users. Given the knowledge base K , we can answer the following queries.

Positive queries. By Lemma 1, these queries can be answered using the universal model constructed
using the Tableaux Algorithm 1 from the ABox obtained by unraveling K . We depict this model in
Appendix B.

(1) q(p) = m3I p asking to name all the features implied by K that the movie Oppenheimer has.
Using the universal model, we can give the answer q(a) = { f4, f6}.

(2) q = m4 : FDM asking if K implies that Cinema Paradiso is a Famous drama movie. We can give
answer ‘No’ since in the universal model, I(m4,xFDM) = 0.

(3) q = 22RDM ⊑ 22DM asking if K implies that all the movies considered to be recent drama
movies by users in group 2 are also considered to be drama movies by them. We can give answer ‘Yes’
since in the universal model, a22RDMIx22DM.

(4) q = m3 : 2231RM asking if K implies whether for any feature which is considered to be in the
description of Recent movies according to some user in group 1, there is some user in group 2 who con-
siders (reports) Oppenheimer to have this feature. We can give answer ‘No’ since in the universal model
of the knowledge base K ′ = K ∪{a2231RM : 2231RM,x2231RM :: 2231RM, I(m3,x2231RM) = 0. In
Appendix B, we provide the universal model for K which is obtained from complete tableaux expan-
sion of K . It is easy to check from the shape of the tableaux expansion rules that no tableaux expansion
rule can add term m3Ix2231RM during the expansion of knowledge base K ′. Hence, I(m3,x2231RM) = 0
holds in the universal model of K ′.

Negative queries. (1) q = ¬(m1 : 2231RM) asking if K implies that the movie All the President’s
Men is not a movie in category 2231RM (interpretation of this category is mentioned in previous exam-
ple). We can give the answer ‘Yes’ since, if we add the term m1 : 2231RM to K , this term along with
the term f5 :: 31RM appearing in K , we would get m1R22 f5 by rule 2. Thus, the resulting knowledge
base is not consistent, which means that K implies ¬(m1 : 2231RM).

(2) q = ¬(m3R21 f4) asking if K implies that some user in group 1 considers Oppenheimer to be
a movie which does not have a serious plot. We can give the answer ‘No’ since the ABox obtained by
unraveling K does not contain the term ¬(m3R21 f4) and by Lemma 3 it is not implied by K .

Separation queries. (1) q = Di f (m2,m4) asking if K implies that there is a feature that one of the
movies Spirited Away and Cinema Paradiso has but the other does not. We can give the answer ‘Yes’.
If we add the rules SA(m2,m4) and SA(m4,m2) to the LE-A L C tableaux expansion rules and run the
resulting tableaux algorithm on ABox obtained by unraveling K , we will get the clash as showed below.

rules premises added terms
create xGM∨FM :: GM∨FM
∧A m4 : (GM∨FM)∧C m4 : GM∨FM, m4 : C
I m4 : GM∨FM, xGM∨FM :: GM∨FM m4IxGM∨FM

SA(m4,m2) m4IxGM∨FM m2IxGM∨FM

¬x ¬(m2 : GM∨FM) ¬(m2IxGM∨FM)

(2) q = SA(R21, I,m4) asking if K implies that there is a feature that some user in group 1 considers
Cinema Paradiso has but according to the initial source database it does not. We can give the answer ‘No’,
since if we add the rule SA(R21, I,m4) to the LE-A L C tableaux expansion rules and run the resulting
tableaux algorithm on ABox obtained by unraveling K , we will get no clash, i.e. K is consistent in the
extension of LE-A L C with the axioms ∀y(m4R21y ⇒ m4Iy).

36 Query Answering in Lattice-based Description Logic

5 Conclusion and future work

In this paper, we have shown that the tableaux algorithm for LE-A L C , or its extension with appropri-
ate rules, can be used to answer several types of queries over LE-A L C ABoxes in polynomial time.
Additionally, can generalize these algorithms to exponential time algorithms for LE-A L C knowledge
bases with acyclic TBoxes by unraveling.

Dealing with cyclic TBoxes and RBox axioms. In this paper, we introduced a tableaux algorithm
only for knowledge bases with acyclic TBoxes. In the future, we intend to generalize the algorithm
to deal with cyclic TBoxes as well. Another interesting avenue of research is to develop tableaux and
query answering algorithms for extensions of LE-A L C with RBox axioms. RBox axioms are used
in description logics to describe the relationship between different relations in knowledge bases and the
properties of these relations such as reflexivity, symmetry, and transitivity. It would be interesting to see
if it is possible to obtain necessary and/or sufficient conditions on the shape of RBox axioms for which
a tableaux algorithm can be obtained. This has an interesting relationship with the problem in LE-logic
of providing computationally efficient proof systems for various extensions of LE-logic in a modular
manner [18, 5].

Universal models for other types of queries In this work, we showed that the model constructed
from tableaux Algorithm 1 acts as universal model for several types of positive queries. In the future,
it would be interesting to study if we can develop tableaux algorithms in such way that the resulting
models can act as universal models for negative queries and other types of queries. This would allow the
algorithm to answer multiple such queries efficiently.

Answering more types of queries In Section 3.3, we mentioned that certain separation queries cannot
be answered by our method due to potential non-termination of tableaux arising from the naive extension
LE-A L C tableaux expansion rules corresponding to these queries. However, it may be possible to
achieve termination in some of these case by incorporating appropriate loop check conditions into these
expansion rules. In the future, we intend to study such extensions.

Generalizing to more expressive description logics. The LE-A L C is the non-distributive coun-
terpart of A L C . A natural direction for further research is to explore the non-distributive counterparts
of extensions of A L C such as A L C I and A L C I N and fuzzy generalizations of such descrip-
tion logics. This would allow us to express more constructions like concepts generated by an object or
a feature, which can not be expressed in LE-A L C . This would provide us language to answer many
more types of interesting queries regarding enriched formal contexts.

References

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi & P.F. Patel-Schneider (2003): The Descrip-
tion Logic Handbook: Theory, Implementation and Applications. Cambridge University Press,
doi:10.1017/CBO9780511711787.

[2] F. Baader, I. Horrocks, C. Lutz & U. Sattler (2017): An Introduction to Description Logic. Cambridge
University Press, doi:10.1017/9781139025355.

[3] Franz Baader, Ian Horrocks & Ulrike Sattler (2005): Description logics as ontology languages for the
semantic web. In: Mechanizing Mathematical Reasoning: Essays in Honor of Jörg H. Siekmann on the
Occasion of His 60th Birthday, Springer, pp. 228–248, doi:10.1007/978-3-540-32254-2_14.

[4] Daniela Berardi, Diego Calvanese & Giuseppe De Giacomo (2005): Reasoning on UML class diagrams.
Artificial intelligence 168(1-2), pp. 70–118, doi:10.1016/j.artint.2005.05.003.

https://doi.org/10.1017/CBO9780511711787
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-540-32254-2_14
https://doi.org/10.1016/j.artint.2005.05.003

K. B. Manoorkar & R. Wang 37

[5] Ineke van der Berg, Andrea De Domenico, Giuseppe Greco, Krishna B. Manoorkar, Alessandra Palmigiano &
Mattia Panettiere (2023): Labelled Calculi for the Logics of Rough Concepts. Logic and Its Applications,
pp. 172–188, doi:10.1007/978-3-031-26689-8_13.

[6] Ineke van der Berg, Andrea De Domenico, Giuseppe Greco, Krishna B Manoorkar, Alessandra Palmigiano
& Mattia Panettiere (2023): Non-distributive description logic. In: International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods, Springer Nature Switzerland Cham, pp. 49–69,
doi:10.1007/978-3-031-43513-3_4.

[7] Ineke van der Berg, Andrea De Domenico, Giuseppe Greco, Krishna B. Manoorkar, Alessandra Palmigiano
& Mattia Panettiere (2024): Non-distributive description logic. arXiv:2307.09561.

[8] Meghyn Bienvenu & Magdalena Ortiz (2015): Ontology-mediated query answering with data-tractable
description logics. Reasoning Web. Web Logic Rules: 11th International Summer School 2015, Berlin,
Germany, July 31-August 4, 2015, Tutorial Lectures. 11, pp. 218–307, doi:10.1007/978-3-319-21768-0_9.

[9] Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini & Riccardo Rosati (2007):
Tractable reasoning and efficient query answering in description logics: The DL-Lite family. Journal
of Automated reasoning 39, pp. 385–429, doi:10.1007/s10817-007-9078-x.

[10] Willem Conradie, Sabine Frittella, Krishna Manoorkar, Sajad Nazari, Alessandra Palmigiano, Apostolos
Tzimoulis & Nachoem M Wijnberg (2021): Rough concepts. Information Sciences 561, pp. 371–413,
doi:10.1016/j.ins.2020.05.074.

[11] Willem Conradie, Sabine Frittella, A Palmigiano, M Piazzai, A Tzimoulis & Nachoem M Wijnberg (2017):
Toward an epistemic-logical theory of categorization. Electronic Proceedings in Theoretical Computer
Science, EPTCS 251, doi:10.48550/arXiv.1707.08743.

[12] Willem Conradie, Sabine Frittella, Alessandra Palmigiano, Michele Piazzai, Apostolos Tzimoulis & Na-
choem M Wijnberg (2016): Categories: how I learned to stop worrying and love two sorts. In:
International Workshop on Logic, Language, Information, and Computation, Springer, pp. 145–164,
doi:10.48550/arXiv.1604.00777.

[13] Willem Conradie & Alessandra Palmigiano (2019): Algorithmic correspondence and canonicity for non-
distributive logics. Annals of Pure and Applied Logic 170(9), pp. 923–974, doi:10.1016/j.apal.2019.04.003.

[14] Willem Conradie, Alessandra Palmigiano, Claudette Robinson & Nachoem Wijnberg (2020): Non-
distributive logics: from semantics to meaning. In A. Rezus, editor: Contemporary Logic and Computing,
Landscapes in Logic 1, College Publications, pp. 38–86, doi:10.48550/arXiv.2002.04257.

[15] Bernhard Ganter & Rudolf Wille (1997): Applied lattice theory: Formal concept analysis. In: General Lat-
tice Theory, G. Grätzer editor, Birkhäuser, Citeseer. Available at https://www.academia.edu/1045558/
Applied_lattice_theory_Formal_concept_analysis.

[16] Bernhard Ganter & Rudolf Wille (2012): Formal concept analysis: mathematical foundations. Springer
Science & Business Media, doi:10.1007/978-3-642-59830-2.

[17] Birte Glimm, Carsten Lutz, Ian Horrocks & Ulrike Sattler (2008): Conjunctive query answer-
ing for the description logic SHIQ. Journal of artificial intelligence research 31, pp. 157–204,
doi:10.1016/j.jcss.2011.02.012.

[18] Giuseppe Greco, Minghui Ma, Alessandra Palmigiano, Apostolos Tzimoulis & Zhiguang Zhao (2016): Uni-
fied correspondence as a proof-theoretic tool. Journal of Logic and Computation 28(7), p. 1367–1442,
doi:10.1093/logcom/exw022.

[19] Roman Kontchakov & Michael Zakharyaschev (2014): An Introduction to Description Logics and Query
Rewriting, pp. 195–244. Springer International Publishing, Cham, doi:10.1007/978-3-319-10587-1_5.

[20] Deborah L. McGuinness, Richard Fikes, James A. Hendler & Lynn Andrea Stein (2002):
DAML+OIL: An Ontology Language for the Semantic Web. IEEE Intell. Syst. 17(5), pp. 72–80,
doi:10.1109/MIS.2002.1039835.

[21] Steffen Staab & Rudi Studer (2010): Handbook on ontologies. Springer Science & Business Media,
doi:10.1007/978-3-540-92673-3.

https://doi.org/10.1007/978-3-031-26689-8_13
https://doi.org/10.1007/978-3-031-43513-3_4
https://arxiv.org/abs/2307.09561
https://doi.org/10.1007/978-3-319-21768-0_9
https://doi.org/10.1007/s10817-007-9078-x
https://doi.org/10.1016/j.ins.2020.05.074
https://doi.org/10.48550/arXiv.1707.08743
https://doi.org/10.48550/arXiv.1604.00777
https://doi.org/10.1016/j.apal.2019.04.003
https://doi.org/10.48550/arXiv.2002.04257
https://www.academia.edu/1045558/Applied_lattice_theory_Formal_concept_analysis
https://www.academia.edu/1045558/Applied_lattice_theory_Formal_concept_analysis
https://doi.org/10.1007/978-3-642-59830-2
https://doi.org/10.1016/j.jcss.2011.02.012
https://doi.org/10.1093/logcom/exw022
https://doi.org/10.1007/978-3-319-10587-1_5
https://doi.org/10.1109/MIS.2002.1039835
https://doi.org/10.1007/978-3-540-92673-3

38 Query Answering in Lattice-based Description Logic

A Proof of Theorem 3

We only give the proof for SA(R2,R3,b). The proof for SX(R3,R2,y) is similar. The proof for sound-
ness and completeness is analogous to the proof for soundness and completeness of Theorem 2 given in
Section 3.3. To prove termination, we would need the following lemma.

Definition 1. We define 3-leading concepts as the smallest set of concepts satisfying the following con-
ditions.

1. For any atomic concept C, the concept 3C is 3-leading.

2. If C is 3-leading, then 3C is 3-leading.

3. If C is 3-leading, then C∨C1 is 3-leading for any C1.

4. If C1 and C2 are 3-leading, then C1 ∧C2 is 3-leading.

We define 2-leading concepts as the smallest set of concepts satisfying the following conditions.

1. For any atomic concept C, the concept 2C is 2-leading.

2. If C is 2-leading, then 2C is 2-leading.

3. If C is 2-leading, then C∧C1 is 2-leading for any C1.

4. If C1 and C2 are 2-leading, then C1 ∨C2 is 2-leading.

Note that a concept C1 ∧C2 (resp. C1 ∨C2) is 3-leading (resp. 2-leading) iff both C1 and C2 are
3-leading (resp. 2-leading).

Lemma 6. For any LE-A L C ABox A and any individual names b, y, the following holds:

1. If a term of the form 3bIxC or 3b : C or xCR3b or bI■xC appears in A , then C must be 3-leading.

2. If a term of the form aCI2y or 2y :: C or aCR2y or ♦aCIy appears in A , then C must be 2-leading.

3. If we have a term of the form xC :: C′ or aC′IxC or aC′ : C in A , and C is 2-leading, then C′ is also
2-leading.

4. If we have a term of the form aC : C′ or aCIxC′ or xC′ :: C in A , and C is 3-leading, then C′ is also
3-leading.

5. No term of the form 3bI2y can belong to A .

6. No term of the form 3bR2y can belong to A .

7. No constant of the form ♦3b or ■2y appears in A for any b or y.

Proof. The proof follows by a simultaneous induction on the number of applications of the expansion
rules. The proof for base case is obvious as A does not contain individual name of the form 3b or 2y.
We give the proof for all inductive cases now.

Creation rule: Only terms added by this rule are of the form aC : C or xC :: C for some C ∈ A . For
terms of both of these types, all the items in lemma hold trivially.

Basic rule: In this case, we add term bIy from terms b : C and y :: C. We only need to consider the
following cases: (1) b is of the form 3d, and y is of the form xC′ for some C′. By induction item 1, C
is 3-leading. Hence, by induction item 4, C′ is also 3-leading. Therefore, the new term 3dIxC′ also
satisfies item 1. (2) b is of the form aC′ for some C′, and y is of the form 2z. By induction item 2, C
is 2-leading. Hence, by induction item 3, C′ is also 2-leading. Therefore, the new term aC′I2z also
satisfies item 2. (3) b is of the form aC1 , and y is of the form xC2 . In this case, if C1 (resp. C2) is 3-leading

K. B. Manoorkar & R. Wang 39

(resp. 2-leading), then by induction item 4 (resp. item 3) C would be be 3-leading (resp. 2-leading).
By again applying the same items, we would get C2 (resp. C1) is 3-leading (resp. 2-leading). Therefore,
the added term aC1IxC2 satisfies items 3 and 4. Item 5 is satisfied, since if any of these terms is of the
form 3bI2y, then both 3b : C, and 2y :: C appear in A . By induction items 1 and 2 C must be both
2-leading and 3-leading. However, no such concept exists. Item 7 is satisfied as this rule does not add
new individual names.

Rules ∧A and ∨X : We only give the proof for ∧A, the proof for ∨X is dual. In this case, we add terms
b : C1, and b : C2 from term b : C1∧C2. We need to consider the following cases: (1) b is of form 3d. By
induction item 1, C1 ∧C2 is 3-leading. Therefore, both C1 and C2 must be 3-leading. Hence, the newly
added terms b : C1 and b : C2 also satisfy item 1. (2) b is of the form aC. We have to show items 3 and 4
hold. If C is 3-leading, then by induction item 4, C1 ∧C2 is 3-leading, which implies that both C1 and
C2 are 3-leading. Hence, the added terms b : C1 and b : C2 satisfy item 4. To show item 3 holds for the
new terms, w.l.o.g. suppose C1 is 2-leading. Then, by def. C1 ∧C2 is 2-leading as well. Therefore, by
induction item 3, C is 2-leading. We can similarly show C is 2-leading, when C2 is 2-leading. Item 7 is
satisfied as this rule does not add new individual names.

Rules 2 and 3: We only give the proof for 2, the proof for 3 is dual. In this case, we add term of
the form bR2y from terms b : [R2]C and y :: C. By induction item 6, b can not be of the form 3d. If b
is of the form aC′ for some C′, then by induction item 3, C′ is 2-leading. Hence, the added term aC′R2y
satisfies item 2. It also satisfies item 6 because C′ being 2-leading can not have 3 as the outermost
connective. Item 7 is satisfied as this rule does not add new individual names.

Rules 2y, ■y, 3b, and ♦b: We only give the proof for 2y, the proofs for other rules are similar. In
this case, we add term of the form bR2y from term bI2y. By induction item 6, b can not be of the form
3d. If b is of the form aC for some C, then by induction item 2, C must be 2-leading. Therefore, the
added term aCR2y satisfies item 2. It also satisfies item 6, since C being 2-leading, can not have 3 as
the outermost connective. Item 7 is satisfied as this rule does not add new individual names.

Rules ∧−1
A and ∨−1

X : We only give the proof for ∧−1
A , the proof for ∨−1

X is dual. In this case, we
add term of the form b : C1 ∧C2 from terms of the form b : C1 and b : C2. We need to consider the
following cases: (1) b is of the form 3d, then by induction item 1, C1 and C2 are 3-leading. Then, by
def. C1 ∧C2 is also 3-leading. Therefore, the new term b : C1 ∧C2 satisfies item 1. (2) b is of the form
aC. We have to show items 3 and 4 hold. If C is 3-leading, then by induction item 4, both C1 and C2 are
3-leading, which implies that C1∧C2 is 3-leading. Hence, new term b : C1∧C2 satisfies item 4. To show
item 3 holds for the new term, suppose C1 ∧C2 is 2-leading. Then, C1 is 2-leading or C2 is 2-leading.
Therefore, by induction item 3, C is 2-leading. It also satisfies item 6, since C being 2-leading, can not
have 3 as the outermost connective. Item 7 is satisfied as this rule does not add new individual names.

Rules R2 and R3: We only the give proof for R2, the proof for R3 is dual. In this case, we add
terms bI2y, and ♦bIy from bR2y. By induction item 5, b can not be of the form 3d. If b is of the form
aC for some C, then by induction item 2, C must be 2-leading. Therefore, the added terms aCI2y and
♦aCIy satisfy item 2. As b can not be of the form 3d, the possibly new constant ♦b is not of the form
♦3d for any d. Hence, item 3 is satisfied.

Rules aC and xC: We only give the proof for aC, the proof for xC is dual. In this case, we add term of
the form b : C from term bIxC. We need to consider the following cases: (1) b is of the form 3d, then by
induction item 1, C must be 3-leading. Therefore, the added term b : C also satisfies item 1. (2) If b is of
the form aC′ for some C′. We have to show items 3 and 4 hold. If C′ is 3-leading, then by induction item
4, C is 3-leading. Hence, added term aC′ : C satisfies item 4. To show item 3 holds for the new term,
w.l.o.g. suppose C is 2-leading. Then, by induction item 3, C′ is 2-leading.

40 Query Answering in Lattice-based Description Logic

As a corollary, we get the following result.

Corollary 2. For any LE-A L C ABox A , and any terms dR2z, and yR3b, if dR2z ∈A ∪{yR3b}, then
dR2z ∈ A .

Proof. For any term of the form yR3b, the only rule that has it in premise is the adjunction rule R3 which
adds terms 3bIy, and bI■y. The term bI■y cannot lead to the addition of any other term. If the term
3bIy leads to the addition of a term of the form dR2y, then it means that we must have 3b : 2C ∈ A ,
for some C or 3bI2z ∈ A for some z. However, none of these is possible by the lemma 6.

This lemma immediately implies the following modified version of Lemma 4.

Lemma 7. For any individual names b, and y, and concept C added during tableau expansion of A ,

2D(C)≤2D(A)+1 and 3D(C)≤3D(A)+1, (7)

−3D(A)−2 ≤3D(b) and 2D(b)≤2D(A)+1, (8)

−2D(A)−1 ≤2D(y) and 3D(y)≤3D(A)+2 (9)

Proof. The proof proceeds by showing that the following stronger claim holds. For any tableaux expan-
sion A , obtained from A after any finite number of expansion steps:

1. For any term bIy ∈ A , 2D(b)−2D(y)≤2D(A)+1, and 3D(y)−3D(b)≤3D(A)+2.
2. For any term bR2y ∈ A , 2D(b)+1−2D(y)≤2D(A)+1, and 3D(y)−3D(b)≤3D(A)+1.
3. For any term yR3b ∈ A , 2D(b)−2D(y)≤2D(A)+1, and 3D(y)+1−3D(b)≤3D(A)+2.
4. For any term b : C ∈ A , 2D(b)+2D(C)≤2D(A)+1, and −3D(b)−3D(C)≤ 1.
5. For any term y :: C ∈ A , −2D(y)−2D(C)≤ 0, and 3D(y)+3D(C)≤3D(A)+1.
The proof relies on the idea that the new rule SA(R2,R3,b) introduces a new term of the form yR3b

from a term bR2y. However, by Corollary 2 the term bR2y must belong to the LE-A L C completion
of A . Hence, it satisfies Condition 2 by Lemma 4. The proof for all other conditions follows by a
straightforward generalization of the proof of [7, Lemma 1].

B Models for example knowledge base

The knowledge base in Section 4 is given by K = K1 ∪K2, where the initial source database K1 =
(A1,T1) is given by

A1 = {m4 : IM,¬(m4Ix /0),x /0 :: FM∧ IM,

x /0 :: GM∧ IM, f1 :: GM, f2 :: FM,

f4 :: DM,m3 : RDM,m3I f6,m1I f3,

¬(m1I f2),¬(m2 : EUM)},

T1 = {EUM ≡ GM∨FM,

RDM ≡ RM∧DM,

IM ⊑ EUM},

while the database from users of two different groups K2 = (A2,T2) is given by

K. B. Manoorkar & R. Wang 41

A2 = {m3R21 f3,m3R22 f3,¬(m1R21 f6),

f3R31m3, f3R32m3,m3 : 22RDM,

f5 :: 31RM,¬(m1R22 f5)},

T2 = {FDM ≡21DM∧22DM}.

By unraveling TBoxes we get the following terms:

1. EUM ≡ GM∨FM

2. RDM ≡ RM∧DM

3. IM ≡ (GM∨FM)∧C for some C not appearing in K

4. FDM ≡21DM∧22DM

Note that the terms FM∧ IM and GM∧ IM in A1 are denoted as follows.

1. FM∧ IM ≡ FM∧ ((GM∨FM)∧C)≡ FM∧C

2. GM∧ IM ≡ GM∧ ((GM∨FM)∧C)≡ GM∧C

We denote the objects and features in the model of the form aC, and xC as below:
a1 aGM x1 xGM

a2 aFM x2 xFM

a3 aGM∨FM x3 xGM∨FM

a4 aRM x4 xRM

a5 aDM x5 xDM

a6 aRM∧DM x6 xRM∧DM

a7 aC x7 xC

a8 a(GM∨FM)∧C x8 x(GM∨FM)∧C
a9 aFM∧C x9 xFM∧C

a10 aGM∧C x10 xGM∧C

a11 a21DM x11 x21DM

a12 a22DM x12 x22DM

a13 a21DM∧22DM x13 x21DM∧22DM

a14 a22(RM∧DM) x14 x22(RM∧DM)

a15 a31RM x15 x31RM

a16 a⊤ x16 x⊥
x17 x /0

We give the following table depicting all the objects and features appearing in the model and whether
or not they are related by I.

The relations R2i, and R3i are given as follows. We have R21 = {(a11,x5),(a13,x5),(m3, f3))}, and
R22 = {(a12,x5),(a13,x5),(a14,x4),(a14,x5),(a14,x6),(a14, f4),(m3,x4),(m3,x5),(m3,x6),(m3, f3),(m3, f4)}.
R31 = {(f5,a4),(f5,a6),(f3,m3),(f5,m3),(x15,a6),(x15,a4),(x15,m3)} and R32 = {(f3,m3)}. The model
contains atomic concepts GM, FM, RM, DM, and C. For any of these concepts D, its interpretation is
given by the tuple (x↓D,a

↑
D).

42 Query Answering in Lattice-based Description Logic

Table 1: Objects (A) and features (X) of the model and Relation I between them
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 ■1x15 22x4

a1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
a5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
a6 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0
a7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
a9 0 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
a10 1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
a11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
a12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
a13 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
a14 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1
a15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
a16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

♦1a11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2a12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
♦1a13 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2a13 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2a14 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
31a6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
m1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
m3 0 0 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 1

♦1m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2m3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
31m3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
32m3 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

m4 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

K. B. Manoorkar & R. Wang 43

f1 f2 f3 f4 f5 f6 ■1 f3 ■2 f3 21 f3 22 f3 ■1 f5 22 f4 x17
a1 1 0 0 0 0 0 0 0 0 0 0 0 0
a2 0 1 0 0 0 0 0 0 0 0 0 0 0
a3 0 0 0 0 0 0 0 0 0 0 0 0 0
a4 0 0 0 0 0 0 0 0 0 0 1 0 0
a5 0 0 0 1 0 0 0 0 0 0 0 0 0
a6 0 0 0 1 0 0 0 0 0 0 1 0 0
a7 0 0 0 0 0 0 0 0 0 0 0 0 0
a8 0 0 0 0 0 0 0 0 0 0 0 0 0
a9 0 0 0 0 0 0 0 0 0 0 0 0 1
a10 0 0 0 0 0 0 0 0 0 0 0 0 1
a11 0 0 0 0 0 0 0 0 0 0 0 0 0
a12 0 0 0 0 0 0 0 0 0 0 0 0 0
a13 0 0 0 0 0 0 0 0 0 0 0 0 0
a14 0 0 0 0 0 0 0 0 0 0 0 1 0
a15 0 0 0 0 1 0 0 0 0 0 0 0 0
a16 0 0 0 0 0 0 0 0 0 0 0 0 0

♦1a11 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2a12 0 0 0 0 0 0 0 0 0 0 0 0 0
♦1a13 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2a13 0 0 0 0 0 0 0 0 0 0 0 0 0
♦2a14 0 0 0 1 0 0 0 0 0 0 0 0 0
31a6 0 0 0 0 1 0 0 0 0 0 0 0 0
m1 0 0 1 0 0 0 0 0 0 0 0 0 0
m2 0 0 0 0 0 0 0 0 0 0 0 0 0
m3 0 0 0 1 0 1 1 1 1 1 1 1 0

♦1m3 0 0 1 0 0 0 0 0 0 0 0 0 0
♦2m3 0 0 1 1 0 0 0 0 0 0 0 0 0
31m3 0 0 1 0 1 0 0 0 0 0 0 0 0
32m3 0 0 1 0 0 0 0 0 0 0 0 0 0

m4 0 0 0 0 0 0 0 0 0 0 0 0 0

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on

Logical and Semantic Frameworks with Applications (LSFA’24)

EPTCS 421, 2025, pp. 44–63, doi:10.4204/EPTCS.421.3

© Y. Ding, K. Manoorkar

This work is licensed under the

Creative Commons Attribution License.

Fuzzy Lattice-based Description Logic

Yiwen Ding Krishna Manoorkar

School of Business and Economics
Vrije Universiteit Amsterdam*

Amsterdam, Netherlands

dyiwen666@gmail.com krishna.manoorkar@gmail.com

Recently, description logic LE-A L C was introduced for reasoning in the semantic environment of

enriched formal contexts, and a polynomial-time tableaux algorithm was developed to check the con-

sistency of knowledge bases with acyclic TBoxes [8]. In this work, we introduce a fuzzy generaliza-

tion of LE-A L C called LE-FA L C which provides description logic counterpart of many-valued

normal non-distributive logic a.k.a. many-valued LE-logic. This description logic can be used to rep-

resent and reason about knowledge in formal framework of fuzzy formal contexts and fuzzy formal

concepts as introduced in [5]. We provide a tableaux algorithm that provides a complete and sound

polynomial-time decision procedure to check the consistency of LE-FA L C ABoxes. As a result,

we also obtain an exponential-time decision procedure for checking the consistency of LE-FA L C

with acyclic TBoxes by unraveling.

1 Introduction

Description Logic (DL) [2] is a class of logical formalisms, typically based on the classical first-order

logic, widely used in Knowledge Representation and Reasoning to describe and reason about relevant

concepts and their relationships in a given application domain.

Normal non-distributive modal logic a.k.a. LE-logic has been studied as a logic of categorization

endowed with modal operators based on the fact that non-distributive modal logic is sound and complete

w.r.t. its semantics based on enriched formal contexts (i.e. , relational structures based on formal contexts

from Formal Concept Analysis (FCA)) [10, 11]. An enriched formal context dually corresponds to the

concept lattice of its underlying formal context expanded with normal modal operators defined by those

enriching relations. Similarly to the classical modal logic, these normal modal operators have many

different intuitive interpretations, such as epistemic interpretation [11], approximation interpretation [9],

etc.

In [8], the two-sorted non-distributive description logic LE-A L C 1 was developed, based on LE-

logics and their semantics based on enriched formal contexts. LE-A L C provides a natural means

of reasoning about the formal concepts (or categories) arising from formal contexts in FCA [14, 15]

enriched with modal operators. LE-A L C has the same relationship with non-distributive modal logic

and its semantics based on formal contexts, as A L C with the classical normal modal logic and its

Kripke frames semantics. Namely, LE-A L C facilitates the description of enriched formal contexts,

and formal concepts generated by them. As enriched formal contexts dually correspond to complete

lattices equipped with normal modal operators, LE-A L C is also a natural framework for representing

*This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the

Marie Skłodowska-Curie grant agreement No 101007627. The research of Krishna Manoorkar is supported by the NWO grant

KIVI.2019.001. Yiwen Ding is supported by the China Scholarship Council.
1Even though concept names in LE-A L C do not contain negation, we still refer to this description logic as LE-A L C

rather than LE-A L E , as negation on ABox terms is included in the description logic language.

http://dx.doi.org/10.4204/EPTCS.421.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Y. Ding, K. Manoorkar 45

and reasoning about general (possibly non-distributive) complete lattices equipped with normal modal

operators.

For many real-life applications, the concepts under consideration are imprecise or fuzzy. For exam-

ple, if we want to categorize movies, the concepts involved such as “action movies”, “dramas”, etc. are

imprecise. To model such scenarios, different fuzzy generalizations of FCA have been studied exten-

sively [5, 19, 20]. In [12] the many-valued LE-logic was described as the logic of vague categorization.

The semantics of this logic is given by many-valued formal contexts enriched with relations defining

modal operators. The propositional part of this logic corresponds to the logic of fuzzy concepts defined

in [5]. The modal operators can be given different interpretations, such as epistemic interpretation or

approximation interpretation as in the crisp case [12]. In this work, we generalize the description logic

LE-A L C to the fuzzy description logic LE-FA L C . This logic has the same relationship with the

many-valued LE-logic as LE-A L C with (crisp) LE-logic. LE-FA L C facilitates the description of

many-valued enriched formal contexts, which give rise to fuzzy concept lattices extended with normal

modal operators. Hence, LE-FA L C is also a natural framework to represent and reason about general

fuzzy FCA expanded with modal operators.

In [8], a polynomial-time tableaux algorithm for checking the consistency of LE-A L C ABoxes

was developed. The polynomial-time upper bound is based on the following two features of LE-A L C :

(1) In the semantics of LE-A L C disjunction is interpreted in terms of the intersection of intensions.

Therefore, ∨ does not produce branching for the same reason that ∧ does not in the classical setting.

(2) Unlike the classical logic, the ✸ operator in LE-A L C is interpreted using a universal quantifier

(instead of an existential quantifier), which allows us to bound the number of new constants appearing in

the tableaux expansion.

In this work, we generalize the tableaux expansion rules for LE-A L C to the fuzzy setting to define

tableaux expansion rules for LE-FA L C . We show that the resulting tableaux algorithm provides a

sound and complete polynomial-time decision procedure for checking the consistency of LE-FA L C

knowledge bases with acyclic TBoxes. Since many description logic reasoning tasks can be equivalently

represented as a problem of checking the consistency of knowledge bases (cf. [2]), this tableaux algo-

rithm provides us with an efficient methodology to perform these tasks for LE-FA L C in polynomial

time.

Structure of the paper. In Section 2, we present the required preliminaries used in this paper. In

Section 3, we introduce the description logic LE-FA L C . In Section 5, we introduce the Tableaux

algorithm for checking the consistency of LE-FA L C ABoxes, which can also be easily extended

to LE-FA L C acyclic TBoxes. In Section 6, we show the soundness of this tableaux algorithm. In

Section 7, we show the completeness of this tableaux algorithm. In Section 4, we give some examples

of LE-FA L C ABoxes and use our tableaux algorithm to check their consistency.

2 Preliminaries

In this section, we gather some useful facts about the many-valued LE-logic and its many-valued polarity-

based semantics [12], and description logic LE-A L C [8]. We assume that the readers are familiar with

the basic concepts from description logic, which we refer to [3]. For more details on LE-logic and its

polarity-based semantics, we refer to [11], [9], and [13].

46 Fuzzy Lattice-based Description Logic

2.1 Many-valued polarity-based semantics

Let Prop be a countable set of propositional variables. The language of many-valued LE-logic L is

defined as follows:

ϕ ::= p | ⊥ | ⊤ | ϕ ∧ϕ | ϕ ∨ϕ | ✷ϕ |✸ϕ ,

where p ∈ Prop, and ✷ ∈ G and ✸ ∈ F for finite sets G and F of unary ✷-type (resp. ✸-type) modal

operators.

In this paper, we let H = (H,∨,∧,→,1,0) be a complete and completely distributive Heyting alge-

bra.2For any α ,β in H, let α ↔ β := α → β ∧β → α . For any non-empty set W , an H-subset of W is a

map u : W → H. We let HW denote the set of all H-subsets. Clearly, HW induces a complete and com-

pletely distributive Heyting algebra by defining the operations pointwise. For every α ∈ H and w ∈ W ,

{α/w} : W → H is the map defined by w′ 7→ α if w′ = w and w′ 7→ 0 if w′ 6= w. Let u,v : W → H be

any H-subsets, we define u ⊆ v if u(w)≤ v(w) for each w ∈W , which defines a partial order on HW . An

H-relation is a map R : U ×W → H, where U and W are non-empty sets. Any H-relation R : U ×W → H

induces maps R(0)[−] : HW → HU and R(1)[−] : HU → HW which are defined as follows: for every

f : U → H, and u : W → H, R(1)[f] : W → H such that x 7→
∧

a∈U(f (a)→ R(a,x)), and R(0)[u] : U → H

such that a 7→
∧

x∈W (u(x)→ R(a,x)).

Definition 1. An H-valued formal context is a tuple P= (A,X , I) such that A and X are non-empty sets,

and I : A×X → H is an H-relation. Any H-valued formal context induces maps (·)↑ : HA → HX and

(·)↓ : HX → HA given by (·)↑ = I(1)[·] and (·)↓ = I(0)[·].

Given an H-valued formal context (A,X , I), it is easy to see that for any f ∈ HA and u ∈ HX , there is

f ⊆ u↓ iff u ⊆ f ↑, which means the pair of maps (·)↑ and (·)↓ form a Galois connection between (HA,⊆)
and (HX ,⊆). A fuzzy formal concept of P is a pair of maps (f ,u) ∈ HA ×HX such that f ↑ = u and

u↓ = f . It follows immediately that if a pair of maps (f ,u) ∈ HA ×HX is a fuzzy formal concept, then

there is f ↑↓ = f and u↓↑ = u, which means that f and u are Galois-stable. In this paper, we may use pair

([[c]],([c])) to denote a fuzzy concept c from a given fuzzy formal context where [[c]] ∈ HA and ([c]) ∈ HX ,

except Section 2.2 and Section 2.3. [[c]] (resp. ([c])) is the extension (resp. intension) of the fuzzy concept.

The set of all fuzzy formal concepts of P can be partially ordered as follows:

(f ,u) ≤ (g,v) iff f ⊆ g iff v ⊆ u.

Ordered in this way, the set of fuzzy formal concepts of P forms a complete lattice, which we refer

to as the concept lattice of P and denote by P+, such that for set K of fuzzy formal concepts of P,∧
K := (

∧
c∈K[[c]],(

∧
c∈K[[c]])

↑) and
∨

K := (
∧

c∈K([c])))
↓,
∧

c∈K([c])).

Definition 2. An H-valued enriched formal context is a tuple F= (P,R✷,R✸) such that P= (A,X , I) is

an H-valued formal context, and R✷ = {R✷ : A×X →H |✷∈G } and R✸ = {R✸ : X ×A→H |✸∈F}
are sets of I-compatible H-relations, that is, for any ✷ ∈ G and ✸ ∈ F , a ∈ A and x ∈ X, α ∈ H, the

H-subsets R
(0)
✷ [{α/x}], R

(1)
✷ [{α/a}], R

(0)
✸ [{α/a}] and R

(1)
✸ [{α/x}] are Galois-stable.

Every H-valued formal context can be seen as a many-value formal context, where elements in A

are ”objects” and elements in X are ”features”. For any a ∈ A, x ∈ X and α ∈ H, I(a,x) = α is read

as ”object a has feature x to degree α”. The I-compatibility conditions can be understood in such way:

the sets of all objects (resp. features) relating to a feature (resp. object) by modal relations R✷ and R✸

form concepts. These modal relations have different interpretations like epistemic interpretation [11] or

approximation interpretation [9].

2We chose Heyting algebra here in order to maintain the simplicity and readability of the article. In fact, the results of

this paper can be generalized to any complete frame-distributive and dually frame-distributive, commutative, and associative

residuated lattice.(cf. [12])

Y. Ding, K. Manoorkar 47

Definition 3. Let F = (P,R✷,R✸) be any H-valued enriched formal context. F+ =
(P+,{[R✷]}✷∈G ,{〈R✸〉}✸∈F) is the complex algebra of F, where P+ is the concept lattice of P, and

for any ✷ ∈ G and ✸ ∈ F , [R✷],〈R✸〉 : P+ →P+ are maps such that for every c = ([[c]],([c])) ∈P+,

[R✷](c) := (R
(0)
✷ [([c])],(R

(0)
✷ [([c])])↑) and 〈R✸〉(c) := ((R

(0)
✸ [[[c]]])↓,R

(0)
✸ [[[c]]]).

An example of H-valued enriched formal context and its complex algebra is provided below.

Example 1. Consider the Heyting algebra H which is a three-valued chain ({0,1/2,1},≤). Note that,

on this algebra, the operation → is given by a → b = 1 if a ≤ b, and a → b = b otherwise. Let (A,X , I)
be the fuzzy formal context where A = {a1,a2}, X = {x1,x2,x3}, with incidence relation I : A×X → H

enriched with I-compatible fuzzy relations R✷ : A×X → H and R✸ : X ×A → H given in the following

tables:

I a1 a2

x1 1 1/2

x2 0 1

x3 1 1/2

R✷ a1 a2

x1 1 1

x2 0 1

x3 1 1

R✸ x1 x2 x3

a1 1 0 1

a2 1 1 1

It is easy to check that the only Galois-stable fuzzy subsets of A (extents of the concepts generated)

are the following:

a1 a2

f1 1 1

f2 1 1/2

f3 0 1

f4 0 1/2

Therefore, the fuzzy sets gi = f
↑
i (intents of the concepts generated) are given as follows:

x1 x2 x3

g1 1/2 0 1/2

g2 1 0 1

g3 1/2 1 1/2

g4 1 1 1

The concept lattice of (A,X , I) is represented by the Hasse diagram 1. The operations [R✷] and 〈R✸〉 on

the lattice are given as follows:

(f1,g1) (f2,g2) (f3,g3) (f4,g4)

[R✷] (f1,g1) (f1,g1) (f3,g3) (f3,g3)

〈R✸〉 (f2,g2) (f2,g2) (f4,g4) (f4,g4)

Definition 4. An H-model is a tuple M = (F,V) such that F is an H-valued enriched formal context,

and V : Prop → F+ is called an assignment on F. For any p ∈ Prop, let V (p) := ([[p]],([p])), where

[[p]] : A → H and ([p]) : X → H such that [[p]]↑ = ([p]) and ([p])↓ = [[p]]. V can be homomorphically

extended to a unique valuation V : L → F+.

Definition 5. Given any H-model M= (F,V) and α ∈ H, let 1HA

: A → H be the constant map such that

a 7→ 1 for any a ∈ A, and 1HX

: X → H be the constant map such that x 7→ 1 for any x ∈ X. There are two

modal satisfaction relations α and ≻α defined inductively as follows:

48 Fuzzy Lattice-based Description Logic

(f1,g1)

(f2,g2) (f3,g3)

(f4,g4)

Figure 1: The concept lattice of (A,X , I)

M,a α p iff α ≤ [[p]](a);

M,a α ⊤ iff α ≤ (1HA

)(a) i.e. always;

M,a α ⊥ iff α ≤ (1HX

)↓(a) =
∧

x∈X (1
HX

(x)→ I(a,x)) =
∧

x∈X I(a,x);
M,a α ϕ ∧ψ iff M,a α ϕ and M,a α ψ;

M,a α ϕ ∨ψ iff α ≤ (([ϕ])∧ ([ψ]))↓(a) =
∧

x∈X (([ϕ])(x)∧ ([ψ])(x)→ I(a,x));

M,a α
✷ϕ iff α ≤ (R

(0)
✷ [([ϕ])])(a) =

∧
x∈X (([ϕ])(x)→ R✷(a,x));

M,a α
✸ϕ iff α ≤ ((R

(0)
✸ [[[ϕ]]])↓)(a) =

∧
x∈X((R

(0)
✸ [[[ϕ]]])(x)→ I(a,x))

M,x ≻α p iff α ≤ ([p])(x);

M,x ≻α ⊥ iff α ≤ (1HX

)(x) i.e. always;

M,x ≻α ⊤ iff α ≤ (1HA

)↑(x) =
∧

a∈A(1
HA

(a)→ I(a,x)) =
∧

a∈A I(a,x);
M,x ≻α ϕ ∨ψ iff M,x ≻α ϕ and M,x ≻α ψ;

M,x ≻α ϕ ∧ψ iff α ≤ ([[ϕ]]∧ [[ψ]])↑(x) =
∧

a∈A([[ϕ]](a)∧ [[ψ]](a)→ I(a,x));

M,x ≻α
✸ϕ iff α ≤ (R

(0)
✸ [[[ϕ]]])(x) =

∧
a∈A([[ϕ]](a)→ R✸(x,a)), for any ✸ ∈ F ;

M,x ≻α
✷ϕ iff α ≤ ((R

(0)
✷ [([ϕ])])↑)(x) =

∧
a∈A((R

(0)
✷ [([ϕ])])(a)→ I(a,x)), for any ✷ ∈ G .

From the above definition, it is easy to check that for every ϕ ∈ L , there is M,a α ϕ iff α ≤
[[ϕ]](a), and M,x ≻α ϕ iff α ≤ ([ϕ])(x). Therefore, given any H-model M, a,x in M, α ∈ H and ϕ ∈L ,

M,a α ϕ and M,x ≻α ϕ can be read as ”object a is a member of category ϕ to degree α” and ”feature x

describes category ϕ to degree α”, respectively. Here, the interpretation of the propositional connectives

∨ and ∧ in the framework described above reproduces the standard notion of join and the meet of fuzzy

formal concepts used in fuzzy FCA. The interpretations of the modal operators ✷ and ✸ are motivated

by algebraic properties and duality theory for modal operators on lattices.

The definitions of α-membership and α-description given above stand in the same relationship to

their crisp counterparts in [10, 11] as Fitting’s definition of the α-satisfaction of modal formulas on

many-valued Kripke frame stands to the definition of satisfaction of modal formulas on (crisp) Kripke

frames. More precisely, Fitting derives many-valued semantics for modal logic by reading the standard

first-order satisfaction clauses for modal formulas as formulas of many-valued predicate logic interpreted

on many-valued first-order structures in the standard way (see e.g. [17, Chapter 5]). We proceed similarly.

For example, consider the defining clause for the satisfaction of a box-formula on a (crisp) enriched

formal context rewritten in first-order syntax as

M,a ✷ϕ iff ∀x(x ∈ ([ϕ])→ aR✷x). (1)

Y. Ding, K. Manoorkar 49

Reading the clause above as a statement of (two-sorted) H-valued predicate logic, the universal quantifier

is interpreted as a conjunction indexed by the set X (itself interpreted as a meet in H), the membership

statement x ∈ ([ϕ]) is now H-valued and more naturally written as ([ϕ])(x), and the same holds for the

atomic formula aR✷x, which we write as R✷(a,x). The implication → is interpreted as the implication

→H of H. Furthermore, is now interpreted as an H-valued relation between H and L and therefore

rather than asking if it holds between an object a and a formula, we ask whether it gives a value of at

least α ∈ H when applied to an object and formula. Thus, (1) is transformed into

M,a α
✷ϕ iff α ≤

∧

x∈X

(([ϕ])(a)→A R✷(a,x)). (2)

Different interpretations of modal operators in LE-logic transfers naturally to the many-valued interpreta-

tion. Instead of attributing features to objects absolutely, in this setting, agents can make such attributions

in a graded way, and accordingly, their perceived categories consist of stable pairs of H-valued sets of

object and features.

2.2 Non-distributive description logic LE-A L C

The language of LE-A L C is intended to be interpreted on the complex algebras of enriched formal

contexts. The set of the individual names for LE-A L C is the union of two disjoint sets OBJ and

FEAT, which are interpreted as the objects and features of the enriched formal contexts, respectively.

The set R of the role names for LE-A L C is the union of three types of relations: (1) A unique relation

I ⊆ OBJ×FEAT; (2) a set of relations R✷ of the form R✷ ⊆ OBJ×FEAT; (3) a set of relations R✸ of

the form R✸ ⊆ FEAT×OBJ. While I is intended to be interpreted as the incidence relation of enriched

formal contexts and encodes information on which objects have which features, the relations in R✷ and

R✸ encode additional relationships between objects and features (cf. [9] for an extended discussion).

For any set C of primitive concepts, the LE-A L C concepts are defined as follows:

C := D | C1 ∧C2 | C1 ∨C2 | 〈R✸〉C | [R✷]C

where D ∈ C , R✷ ∈ R✷ and R✸ ∈ R✸. Concepts such as C1 ∨C2 (resp. C1 ∧C2) are interpreted as the

smallest common superconcept (resp. the greatest common subconcept) as in FCA. Because there is no

canonical and natural way to interpret negations in non-distributive (lattice-based) settings, we do not

include ¬C as a concept. Concepts 〈R✸〉C and [R✷]C are interpreted by using the corresponding normal

operations (i.e. ✸ and ✷, respectively) on the complex algebras of enriched formal contexts. We do not

include the concept names ⊤ and ⊥ in the language, as the naive tableaux rules corresponding to these

concepts can lead to non-terminating tableaux algorithms. In the future, we intend to extend the results

in this paper to the description logic with concept names ⊤ and ⊥ in the language. We do not use the

symbols ∀r and ∃r in the context of LE-A L C , because the semantic clauses of the modal operators in

LE-logic use universal quantifiers, and hence using the same notation verbatim would be ambiguous or

misleading.

The TBox axioms in LE-A L C are of the shape C1 ⊑ C2, where C1 and C2 are concepts3. We use

C1 ≡C2 as a shorthand for C1 ⊑C2 and C2 ⊑C1. The ABox terms in LE-A L C are of the form:

aR✷x, xR✸a, aIx, a : C, x :: C

The ABox assertions in LE-A L C are of the form t, ¬t, where t is any ABox term. We refer to the terms

of first three types and their negations as relational terms. We denote an arbitrary LE-A L C ABox

3As is standard in DL (cf. [2] for more details), general concept inclusion of the form C1 ⊑C2 can be rewritten as concept

definition C1 ≡C2 ∧C3, where C3 is a new concept name.

50 Fuzzy Lattice-based Description Logic

(resp. TBox) with A (resp T). The interpretations of the ABox assertions a : C and x :: C are ”object

a is a member of concept C” and ”feature x is in the description of concept C”, respectively. Note that

we add the negative terms to ABoxes explicitly, as the LE-A L C concepts do not contain negation. An

interpretation for the language of LE-A L C is a tuple M = (F, ·M), where F= (A,X , IM ,{RM
✷ | R✷ ∈

R✷},{RM
✸ | R✸ ∈ R✸}) is an enriched formal context and ·M maps:

1. each individual name a ∈ OBJ (resp. x ∈ FEAT), to some aM ∈ A (resp. xM ∈ X) in F;

2. role names I, R✷ ∈ R✷ and R✸ ∈ R✸ to relations IM , RM
✷

and RM
✸

in F, notice that RM
✷

and RM
✸

in F

are all IM -compatible;

3. each primitive concept D to some DM ∈ F+, and other concepts as follows:

(C1 ∧C2)
M =CM

1 ∧CM
2 (C1 ∨C2)

M =CM
1 ∨CM

2 ([R✷]C)
M = [RM

✷
]CM (〈R✸〉C)

M = 〈RM
✸
〉CM

where all the operators are defined as on the complex algebra F+. The satisfiability relation for an

interpretation M = (F, ·M) is defined as follows:

1. M �C1 ≡C2 iff [[CM
1]] = [[CM

2]] iff ([CM
2]) = ([CM

1]).

2. M � a : C iff aM ∈ [[CM]], and M � x :: C iff xM ∈ ([CM]).

3. M � aIx (resp. aR✷x, xR✸a) iff aM IM xM (resp. aM RM
✷ xM , xM RM

✸ aM).

4. M � ¬α , where α is any ABox term, iff M 6� α .

An LE-A L C ABox (resp. TBox) is a finite set of ABox assertions (resp. TBox axioms) in LE-A L C .

A knowledge base in LE-A L C is a tuple (A ,T), where A is an LE-A L C ABox, and T is an LE-

A L C TBox. An interpretation M is a model for a knowledge base (A ,T) if M � A and M � T .

A knowledege base (A ,T) is consistent if there is a model for it. An ABox A (resp. TBox T) is

consistent if there exists a model for knowledege base (A , /0) (resp. (/0,T)).

2.3 Tableaux algorithm for checking LE-A L C ABox consistency

In this section, we recall the tableaux algorithm for checking LE-A L C ABox consistency, which is

introduced in [7, 8]. We noticed a mistake in the proof of termination and I-compatibility in an earlier

version of this paper [7] in which concepts ⊤ and ⊥ were included as concept names in the language. In

the updated version [8], we prove that the result is valid in the restricted language that does not contain

⊤ and ⊥ in the language. In this paper, we work with the restricted language as in [8].

An LE-A L C ABox A contains a clash if it contains both ABox assertions β and ¬β . The expan-

sion rules are designed so that the expansion of A will contain a clash iff A is inconsistent. The set

sub(C) of the sub-formulas of any LE-A L C concept C is defined as usual. A concept C′ occurs in A ,

write as C′ ∈ A , if C′ ∈ sub(C) for some C such that one of the ABox assertions a : C, x :: C, ¬a : C, or

¬x :: C is in A . An individial name b (resp. y) occurs in A , write as b ∈ A (resp. y ∈ A), if there is an

ABox assertion in A which contains b (resp. y).

The Algorithm 1 (constructively) provides a model M = (F, ·M) for every consistent ABox A ,

where F= (A,X , I,R✷,R✸). This model has the following property:

For any C ∈ A , there exist aC ∈ A and xC ∈ X such that, for any a ∈ A (resp. x ∈ X), a ∈ [[CM]]
(resp. x ∈ ([C])M) iff aIxC (resp. aCIx).

We call aC and xC the classifying object and the classifying feature of C, respectively. To make our

notation more readable, we will write a✷C, x✷C (resp. a✸C, x✸C) instead of a[R✷]C, x[R✷]C (resp. a〈R✸〉C,

x〈R✸〉C).

Creation rule Basic rule

For any C ∈ A
create

aC : C, xC :: C

b : C, y :: C
I

bIy

Y. Ding, K. Manoorkar 51

Algorithm 1 tableaux algorithm for checking LE-A L C ABox consistency

Input: An LE-A L C ABox A . Output: whether A is inconsistent.

1: if there is a clash in A then return “inconsistent”.

2: pick any applicable expansion rule R, apply R to A and proceed recursively.

3: if no expansion rule is applicable return ”consistent”.

Rules for the logical connectives I-compatibility rules

b : C1 ∧C2 ∧A
b : C1, b : C2

y :: C1 ∨C2∨X
y :: C1, y :: C2

bI✷y
✷y

bR✷y

bI�y
�y

yR✸b

b : [R✷]C, y :: C
✷

bR✷y

y :: 〈R✸〉C, b : C
✸

yR✸b

✸bIy
✸b

yR✸b

�bIy
�b

bR✷y

invese rule for connectives
b : C1, b : C2, C1 ∧C2 ∈ A

∧−1
A b : C1 ∧C2

y :: C1, y :: C2, C1 ∨C2 ∈ A
∨−1

Xy :: C1 ∨C2

Adjunction rules

bR✷y
R✷

�bIy, bI✷y

yR✸b
R✸

✸bIy, bI�y

Basic rules for negative assertions Appending rules

¬(b : C)
¬b

¬(bIxC)

¬(x :: C)
¬x

¬(aCIx)

bIxCxC
b : C

aCIy
aC

y :: C

In the adjunction rules the individuals �b, ✸b, ✷y, and �y are new and unique for each relation R✷ and

R✸, except for ✸aC = a✸C and ✷xC = x✷C
4.

The following theorem follows from the results in [8]:

Theorem 1. Algorithm 1 provides a sound and complete polynomial-time decision procedure for check-

ing consistency of LE-A L C ABoxes.

Remark 1. The Algorithm 1 can be extended to an exponential-time algorithm for checking consistency

of knowledge bases with acyclic TBoxes via the unraveling technique (cf. [2] for details).

3 Description logic LE-FA L C

In this section, we introduce the fuzzy non-distributive description logic LE-FA L C based on many-

valued LE-logic, which can be seen as a fuzzy generalization of description logic LE-A L C .

The individual names, role names, primitive concepts, concepts and ABox terms in the language of

LE-FA L C are the same as those in the language of LE-A L C (recall Section 2.2), except that they

are intended to be interpreted on the complex algebras of H-valued enriched formal contexts as described

in Section 2.1. The ABox assertions in LE-FA L C are of the form:

α ≤ t, α 6≤ t,

where α ∈ H, and t is an ABox term. For any of the ABox terms t, α ≤ t (resp. α 6≤ t) is interpreted as

t is true at least to the extent α (resp. it is not the case that t is true at least to the extent α). The TBox

axioms in LE-FA L C are of the form:

C1 ≡C2,

4The new individual names �b, ✸b, ✷y, and �y appearing in tableaux expansion are purely syntactic entities. Intuitively,

they correspond to the classifying objects (resp. features) of the concepts �b, ✸b (resp. ✷y, resp. �y), where b = (b↑↓,b↑)
(resp. y = (y↓,y↓↑)) is the concept generated by b (resp. y), and the operation � (resp.�) is the left (resp. right) adjoint of

operation ✷ (resp. ✸).

52 Fuzzy Lattice-based Description Logic

where C1 and C2 are LE-FA L C concepts.

An interpretation for LE-FA L C knowledge base is a tuple M = (F, ·M), where F =
(A,X , IM ,{RM

✷ | R✷ ∈ R✷},{RM
✸ | R✸ ∈ R✸}) is an H-valued enriched formal context, and ·M maps:

1. any individual name a ∈ OBJ (resp. x ∈ FEAT) to some aM ∈ A (resp. xM ∈ X);

2. role names I, R✷ ∈ R✷ and R✸ ∈ R✸ to H-relations IM , RM
✷ and RM

✸ in F, notice that RM
✷ and RM

✸

in F are all IM -compatible;

3. any primitive concept D to DM ∈ F+, and the other concepts as follows:

(C1 ∧C2)
M =CM

1 ∧CM
2 (C1 ∨C2)

M =CM
1 ∨CM

2 ([R✷]C)
M = [RM

✷
]CM (〈R✸〉C)

M = 〈RM
✸
〉CM ,

where all the connectives are interpreted like in the many-valued LE-logic. For any interpretation M =
(F, ·M), we define an H-valuation vM for ABox terms as follows:

1. vM (a : C) = [[C]](a) and vM (x :: C) = ([C])(x).
2. vM (I(a,x)) = IM (aM ,xM), vM (R✷(a,x)) = RM

✷
(aM ,xM), and vM (R✸(x,a)) = RM

✸
(xM ,aM).

Let M be an interpretation, the satisfiability relation for M is defined as follows:

1. M �C1 ≡C2 iff CM
1 =CM

2 .

2. For any ABox term t, M � α ≤ t iff α ≤ vM (t) and M � α 6≤ t iff M 6� α ≤ t.

A knowledge base in LE-FA L C is a tuple (A ,T), where A is an LE-A L C ABox, and T is an LE-

A L C TBox. An interpretation M is a model for a knowledge base (A ,T) if M �A and M � T . A

knowledge base (A ,T) is consistent if there is a model for it. An ABox A (resp. TBox T) is consistent

if there exists a model for knowledge base (A , /0) (resp. (/0,T)).

4 Examples of LE-FA L C knowledge bases

We now give two toy examples of knowledge bases regarding categorization of scientific papers into dif-

ferent categories based on keywords appearing in them along with epistemic understanding of resulting

categories according to an agent in the language LE-FA L C .

The following table lists concepts appearing in the knowledge base.

concept name symbol concept name symbol

Chemistry papers C1 Physics papers C2

Biology papers C3 Natural science papers C4

Biochemistry papers C5 Multi-disciplinary physics papers C6

This knowledge base is based on the following set of features:

feature symbol feature symbol

keywords from chemistry y1 keywords from physics y2

keywords from biology y3 keywords from biochemistry y4

Let H be the Heyting algebra defined by a totally ordered set {0,1/2,1}. As H is linear, we use t < α

to denote the ABox assertion α 6≤ t for any ABox term t and α ∈ H. For any paper P and a feature y,

I(P,y) = 0 (resp. I(P,y) = 1/2, resp. I(P,y) = 1) if it contains very few or no (resp. some, resp. many)

keywords from the field corresponding to feature y. For example, I(P,y1) = 1/2 if paper P contains some

(but not many) keywords from chemistry. Let R✷ be a relation corresponding to an epistemic agent i de-

fined as follows: For any paper P, and a feature y, R✷(P,y) = 0 (resp. R✷(P,y) = 1/2, resp. R✷(P,y) = 1)

if it contains very few or no (resp. some, resp. many) keywords from the field corresponding to feature y

according to agent i. The I-compatibility of relation R✷ is justified as explained in Section 2.1. For any

two categories C1 and C2, the categories C1 ∨C2 and C1 ∧C2 denote their least common super-category,

and greatest common sub-category, respectively. The category [R✷]C1, denotes the formal concept gen-

erated by the (fuzzy) set of objects that agent i believes to have all features to the extent specified by

Y. Ding, K. Manoorkar 53

intension of C1 i.e. [R✷]C1 can be seen as a concept whose extension is perception of extension of C1

(given the intension of C1) according to agent i.

Let K = (A ,T) be a knowledge base such that T = {C4 ≡C1∨C3,C2 ≡C4∧C7,C6 ≡ (C1∧C2)∨
(C2 ∧C3)}, and A = {1 ≤ P1 : C2,P1 : C6 < 1/2,1 ≤ y1 :: [R✷]C1,1 ≤ y3 :: [R✷]C3,P2R✷y3 < 1,1/2 ≤
P2 : C1,1/2 ≤ y1 :: C1}, where C7 is a new fresh concept name. TBox axiom C4 ≡C1 ∨C3 means that the

category of natural science papers is the smallest category (in the categorization system defined by given

knowledge base) of papers containing both chemistry and biology papers. TBox axiom C2 ≡ C4 ∧C7

states that the physics papers are natural science papers. TBox axiom C6 ≡ (C1 ∧C2)∨ (C2 ∧C3) states

that multi-disciplinary physics papers is the smallest category containing categories of papers which are

considered both physics and chemistry papers and physics and biology papers.

ABox assertion 1≤P1 :C2 (resp. 1/2 ≤P2 :C1) states that paper P1 (resp. P2) is a physics (resp. chem-

istry) paper to the extent 1 (resp. 1/2). ABox assertion P1 : C1 < 1/2 (resp. P1 : C6 < 1/2) state that paper

P1 is a chemistry (resp. multi-disciplinary physics) paper to extent 0. ABox assertion 1 ≤ y1 :: [R✷]C1,

(resp. 1 ≤ y3 :: [R✷]C3) states that any paper which is Chemistry (resp. biology) paper according to agent

i must have many keywords from chemistry (resp. biology). The ABox assertion P2R✷y3 < 1 states that

paper P2 does not have many physics keywords according to agent i. ABox assertion 1/2 ≤ y1 :: C1

states that having at least some keywords from Chemistry is in intension (defining features) of category

of Chemistry papers. Note that the assertions C2 ≡C4 ∧C7, C6 ≡ (C1 ∧C2)∨ (C2 ∧C3), 1 ≤ P1 : C2, and

P1 : C6 < 1/2 together imply that any model of K must be non-distributive.

For another example, consider the knowledge base K ′ = (A ′,T ′) such that T ′ = {C5 ≡ C1 ∧
C3} and A ′ = {1/2 ≤ P3 : [R✷]C1,1 ≤ P3 : [R✷]C3,P3R✷y4 < 1/2,1/2 ≤ y4 :: C5}. We can provide

interpretations for different axioms of K ′ similar to the interpretations of axioms in K discussed above.

5 Tableaux algorithm for checking consistency of ABoxes

In this section, we introduce the Algorithm 2 which is modified from the Algorithm 1 to check the

consistency of LE-FA L C ABoxes. We say that LE-FA L C ABox A contains a clash if there exist

α1 ≤ t and α2 6≤ t in A with α2 ≤ α1 for some ABox term t. The set sub(C) of the sub-formulas of any

LE-FA L C concept C is defined as usual. A concept C′ occurs in A , write as C′ ∈ A , if C′ ∈ sub(C)
for some C such that there is an ABox assertion in A which contains C. A constant b (resp. y) occurs in

A , in symbols, b ∈ A (resp. y ∈ A), if there is an ABox assertion in A which contains b (resp. y).

For any concept C ∈ A , the added constants aC and xC act as classifying object and classifying

feature of concept C, in the sense that if A is consistent, then the tableaux algorithm will construct a

model which satisfies [[C]](b) = max{α | α ≤ I(b,xC) ∈ A }, and ([C])(y) = max{α | α ≤ I(aC,y) ∈ A }
for any object b, and feature y in the model. The set of tableaux expansion rules for LE-FA L C is listed

below. The commas in each rule are meta-linguistic conjunctions, hence every tableau is non-branching.

Creation rule Basic rule

For any C ∈ A
create

1 ≤ aC : C, 1 ≤ xC :: C

α1 ≤ b : C, α2 ≤ y :: C
I

α1 ∧α2 ≤ I(b,y)

Rules for the logical connectives

α ≤ b : C1 ∧C2 ∧A
α ≤ b : C1, α ≤ b : C2

α ≤ y :: C1 ∨C2∨X
α ≤ y :: C1, α ≤ y :: C2

α1 ≤ b : [R✷]C, α2 ≤ y :: C
✷

α1 ∧α2 ≤ R✷(b,y)

α1 ≤ y :: 〈R✸〉C, α2 ≤ b : C
✸

α1 ∧α2 ≤ R✸(y,b)

54 Fuzzy Lattice-based Description Logic

I-compatibility rules

α ≤ I(b,✷y)
✷y

α ≤ R✷(b,y)

α ≤ I(b,�y)
�y

α ≤ R✸(y,b)

α ≤ I(✸b,y)
✸b

α ≤ R✸(y,b)

α ≤ I(�b,y)
�b

cR✷(b,y)
inverse rule for connectives

α1 ≤ b : C1, α2 ≤ b : C2; where C1 ∧C2 ∈ A
∧−1

A α1 ∧α2 ≤ b : C1 ∧C2

α1 ≤ y :: C1, α2 ≤ y :: C2; where C1 ∨C2 ∈ A
∨−1

Xα1 ∧α2 ≤ y :: C1 ∨C2

Adjunction rules

α ≤ R✷(b,y)
R✷

α ≤ I(�b,y), α ≤ I(b,✷y)

α ≤ R✸(y,b)
R✸

α ≤ I(✸b,y), α ≤ I(b,�y)
Basic rules for negative assertions Appending rules

α 6≤ (b : C)
−aC

α 6≤ I(b,xC)

α 6≤ (y :: C)
−xC

α 6≤ I(aC ,y)

α ≤ I(b,xC)xC
α ≤ b : C

α ≤ I(aC,y) aC
α ≤ y :: C

Many-valued algebra rules
α1 ≤ t, α2 ≤ t

MV∨
α1 ∨α2 ≤ t

In the adjunction rules the individual names �b, ✸b, ✷y, and �y must be new and unique for each

relation R✷ and R✸, except for ✸aC = a✸C and ✷xC = x✷C
5. Side conditions for rules ∧−1

A , and ∨−1
X

ensure we do not add new joins or meets to concept names.

Algorithm 2 tableaux algorithm for checking LE-FA L C ABox consistency

Input: An LE-FA L C ABox A . Output: whether A is inconsistent.

1: if there is a clash in A then return “inconsistent”.

2: pick any applicable expansion rule R, apply R to A and proceed recursively.

3: if no expansion rule is applicable return “consistent”.

From the shape of the expansion rules, it is clear that the new terms are added by LE-FA L C

expansion rules in a manner identical to LE-A L C expansion rules except for the rule MV∨. The rule

MV∨ at most adds one term for two terms already present in the tableau. Hence, this rule can only

increase the size of tableau linearly. Moreover, application of any of the tableaux rules only involves

application of a fixed (finite) number of H operations. Hence, the polynomial time termination result for

LE-FA L C tableaux algorithm follows from the termination result for LE-A L C tableaux algorithm

(See [8, Section 4.1], for more details).

Theorem 2 (Termination). For any ABox A , the tableaux algorithm 2 terminates in a finite number of

steps which is polynomial in size(A).

Similarly to LE-A L C (see Remark 1), Algorithm 2 can be extended to acyclic TBoxes

(exponential-time) via unraveling. In the following sections, we prove the completeness and soundness

for the Algorithm 2.

6 Soundness of the tableaux algorithm

For any consistent ABox A , we let its completion A be its maximal expansion (which exists due to

termination). If there is no clash in A , we construct a tuple M = (F, ·M) as follows:

5The new individual names �b, ✸b, ✷y, and �y appearing in tableaux expansion are purely syntactic entities. Intuitively,

they correspond to the classifying objects (resp. features) of the concepts �b, ✸b (resp. ✷y, resp. �y), where b = (b↑↓,b↑)
(resp. y = (y↓,y↓↑)) is the concept generated by b (resp. y), and the operation � (resp.�) is the left (resp. right) adjoint of

operation ✷ (resp. ✸).

Y. Ding, K. Manoorkar 55

1. A and X are the sets of individual names of objects and features occurring in A , respectively.

2. For any a ∈ A, x ∈ X , and any role names R✷ ∈ R✷, R✸ ∈ R✸ we have the values of the maps

I(a,x), R✷(a,x), R✸(a,x) are the maximum αi such that ABox assertions αi ≤ I(a,x), αi ≤ R✷(a,x),
αi ≤ R✸(a,x) explicitly occur in A .

3. Let F= (A,X , I,R✷,R✸) be the tuple obtained in this manner.

4. We add a new element x⊥ (resp. a⊤) to X (resp. A) such that it is related to any element of A (resp. X)

to extent 0 w.r.t. all the relations.

5. The map ·M is defined as follows: For any individual name a (resp. x), we let aM := a (resp. xM := x).

For any primitive concept D ∈ A , we define DM = ({1/xD}
↓,{1/aD}

↑).
Next, we show that M is a model for the ABox A . To this end, we need to show that F is an H-

valued enriched formal context, i.e. that R✷ and R✸ are I-compatible, and DM is a fuzzy formal concept

in the complex algebra F+ for every atomic concept D. The latter is shown in the next lemma, and the

former in the subsequent one.

Lemma 1. {1/xD}
↓↑ = {1/aD}

↑ and {1/aD}
↑↓ = {1/xD}

↓ for any primitive concept D ∈ A .

Proof. We only prove the first equation here, and the second equation can be proved similarly. It sucffices

to prove that for any y ∈ X , {1/xD}
↓↑(y) = {1/aD}

↑(y). Note that for any y ∈ X , and b ∈ A,

{1/xD}
↓↑(y) = ∧b∈A(I(b,xD)→ I(b,y)), (3)

{1/aD}
↓↑(b) = ∧y∈X(I(aD,y)→ I(b,y)). (4)

By the creation rules, we always have 1 ≤ aD : D and 1 ≤ xD :: D in A . Then by rule I, we have that 1 ≤
I(aD,xD) in A . Then by construction and properties of H, for any y ∈ X , I(aD,xD)→ I(aD,y) = I(aD,y).
Therefore, by Equation (3), we have {1/xD}

↓↑(y)≤ I(aD,y) = {1/aD}
↑(y).

For the reverse direction, suppose α1 ≤ {1/aD}(y) = I(aD,y). We need to show that α1 ≤
{1/xD}

↓↑(y) for every y occurring in A . By Equation (3), it is enough to show that for every b ∈ A,

α1 ≤ I(b,xD) → I(b,y). By adjunction, this is equivalent to showing α1 ∧ I(b,xD) ≤ I(b,y) for every

b ∈ A. If term bIxD does not occur in A , by construction, we have I(b,xD) = 0 which trivially im-

plies the required condition. Suppose I(b,xD) = α2 6= 0, then by construction α2 ≤ I(b,xD) ∈ A . As

α1 ≤ I(aD,y), by construction α3 ≤ I(aD,y) ∈ A for some α1 ≤ α3. Therefore, by rule I, we have

α2 ∧α3 ≤ I(b,y) ∈ A . Then by construction, we have α1 ∧α2 ≤ α2 ∧α3 ≤ I(b,y). Hence proved.

Lemma 2. The relations R✷ ∈ R✷ and R✸ ∈ R✸ in F= (P,R✷,R✸) are I-compatible.

Proof. We prove that R
(0)
✷ [{α/y}] is Galois-stable for every y occurring in A , and any α ∈ H. The

proofs for other conditions are similar. We consider two cases: whether ✷y ∈ A or not.

When ✷y ∈A , for any β ∈ H and b ∈ A, if β ≤ I(b,✷y) (resp. β ≤ R✷(b,y)) occurs in A , then β ≤
R✷(b,y) (resp. β ≤ I(b,✷y)) occurs in A by ✷y (resp. R✷) rule. Therefore, by construction I(b,✷y) =

R✷(b,y) for any b ∈ A, which implies R
(0)
✷ [{α/y}](b) = I(0)[{α/✷y}](b) for any b ∈ A and α ∈ H.

Therefore, for any α ∈ H, R
(0)
✷ [{α/y}] = I(0)[{α/✷y}], and hence R

(0)
✷ [{α/y}] is Galois-stable. When

✷y does not occur in A , no term of form R✷(b,y) occurs in A . In such case, we have for any α ,

R
(0)
✷ [{α/y}] = I(0)[{1/x⊥}] = /0 is Galois-stable.

From the above lemmas, it immediately follows that the tuple M = (F, ·M) defined at the beginning

of the present section is an interpretation for LE-FA L C . The following lemma states that the inter-

pretation of any concept C in M is completely determined by the ABox terms of the form α ≤ I(b,xC)
and α ≤ I(aC,y) occurring in A .

56 Fuzzy Lattice-based Description Logic

Lemma 3. Let M = (F, ·M) be the interpretation defined by the construction above. Then for any

concept C and individuals b, y that occur in A , we have [[C]](b) = max{α | α ≤ I(b,xC) ∈ A }, and

([C])(y) = max{α | α ≤ I(aC,y) ∈ A }.

Proof. See Appendix A.1.

Theorem 3 (Soundness). Let A be an LE-FA L C ABox and A be its completion which does not

contain any clash, then the interpretation M = (F, ·M) defined above is a model for A .

Proof. We show that M is a model for A , so it is a model for A . The proof is by cases.

1. By construction, M satisfies all the ABox assertions of the form α ≤ t in A , where t is an ABox term

of the form I(a,x), R✷(a,x) or R✸(a,x).
2. Let α 6≤ t be an ABox assertion in A , where t is a relational term. By construction, M 6� α 6≤ t iff

α ′ ≤ t ∈ A for some α ≤ α ′. However, if such ABox assertion α ′ ≤ t occurs in A , it clashes with the

ABox assertion α 6≤ t. Therefore, as A contains no clash, we have M � α 6≤ t.

3. For the ABox assertion of the form α ≤ b : C (resp. α ≤ y :: C) occurring in A , by expansion rules

the ABox assertion of the form α ≤ I(b,xC) (resp. α ≤ I(aC,y)) occurs in A . By Lemma 3, in the

interpretation M , α ≤ [[C]](b) (resp. α ≤ ([C])(y)), which means that M � α ≤ b : C (resp. M � α ≤
y :: C).

4. For ABox assertions of the form α 6≤ b : C (resp. α 6≤ y :: C) occurring in A , by Lemma 3, M 6� α 6≤
b : C (resp. M 6� α 6≤ y :: C) iff some term of the form α ′ ≤ b : C (resp. α ′ ≤ y :: C) occurs in A for some

α ≤ α ′, which implies A contains a clash. Therefore, M � α 6≤ b : C (resp. M � α 6≤ y :: C) because

A contains no clash.

The following corollary is an immediate consequence of the termination and soundness of the

tableaux algorithm.

Corollary 1 (Finite Model Property). For any consistent LE-FA L C ABox A , there exists a model of

A of size polynomial in size(A).

Proof. The interpretation M defined above is the required model. The polynomial bound on the size of

M follows from the proof of Theorem 2.

7 Completeness of the tableaux algorithm

In this section, we prove the completeness of the tableaux algorithm given in Section 5. The following

lemma is key to this end, since it shows that every model for an LE-FA L C ABox can be extended to

a model with classifying objects and features.

Lemma 4. For any ABox A , any model M = (F, ·M) of A can be extended to a model M ′ = (F′, ·M
′
)

of A such that F′ = (A′,X ′, I′,{R′
✷}✷∈G ,{R′

✸}✸∈F), A ⊆ A′ and X ⊆ X ′, and moreover for every ✷ ∈ G

and ✸ ∈ F :

1. For any concept C, there exists aC ∈ A′ and xC ∈ X ′ such that:

CM ′
= (I′(0)[{1/xC}], I

′(1)[{1/aC}]), [[CM ′
]](aC) = 1, ([CM ′

])(xC) = 1, (5)

2. For every individual b ∈ A, and α ∈ H, there exist ✸b,�b ∈ A′ such that:

I′(1)[{α/�b}] = R
′(1)
✷ [{α/bM ′

}] and I′(1)[{α/✸b}] = R
′(0)
✸ [{α/bM ′

}], (6)

Y. Ding, K. Manoorkar 57

3. For every individual y ∈ X, and α ∈ H, there exist ✷y,�y ∈ X ′ such that:

I′(0)[{α/�y}] = R
′(1)
✸ [{α/yM ′

}] and I′(0)[{α/✷y}] = R
′(0)
✷ [{α/yM ′

}]. (7)

4. For any concept C, and any a ∈ A, x ∈ X,

[[CM]](a) = [[CM ′
]](a) and ([CM])(x) = ([CM ′

])(x). (8)

Proof. Fix ✷ ∈ G and ✸ ∈ F . Let M ′ = (F′, ·M
′
), where F′ = (A′,X ′, I′,{R′

✷}✷∈G ,{R′
✸}✸∈F), be

defined as follows: For every concept C, we add new elements aC and xC to A and X (respectively) to

obtain the sets A′ and X ′. For any J ∈ {I,R✷}, a ∈ A′ and x ∈ X ′, the value of J′(a,x) is defined as

follows:

1. If a ∈ A, x ∈ X , then J′(a,x) = J(a,x);
2. If x ∈ X , and a = aC for some concept C, then J′(a,x) =

∧
b∈A([[C

M]](b)→ J(b,x));
3. If a ∈ A, and x = xC for some concept C, then J(a,x) =

∧
y∈X (([C

M])(y)→ J(a,y));

4. If a = aC1
and x = xC2

for some concepts C1, C2, then J′(a,x) =
∧

b∈A

∧
y∈X (([[C

M
1]](b)∧ ([CM])(y))→

J(b,y)).
For any a ∈ A′ and x ∈ X ′, the value of R′

✸
(a,x) is defined as follows:

1. If a ∈ A, x ∈ X , then R′
✸(x,a) = R✸(x,a);

2. If x ∈ X , and a = aC for some concept C, then R✸(x,a) =
∧

b∈A([[C
M]](b)→ R✸(x,b));

3. If a ∈ A, and x = xC for some concept C, then R✸(x,a) =
∧

y∈X(([C
M])(y)→ R✸(y,a));

4. If a= aC1
and x= xC2

for some concepts C1, C2, then R✸(x,a) =
∧

b∈A

∧
y∈X(([[C

M
1]](b)∧([CM])(y))→

R✸(y,b)).
For any b ∈ A, y ∈ X , let �b = a�(cl(b)), ✸b = a✸(cl(b)), �y = x�(cl(y)), and ✷y = x✷(cl(y)), where

cl(b) (resp. cl(y)) is the smallest fuzzy formal concept generated by {1/b} (resp. {1/y}), and the op-

erations � and � are the adjoints of the operations ✷, and ✸, respectively. For any concept C, let

CM ′
= (I′(0)[{1/xC}], I

′(1)[{1/aC}]).
It is straightforward to check that M ′ is a model for A and satisfies all the properties required in

Lemma 4. This concludes the proof.

Theorem 4 (Completeness). Let A be a consistent ABox and A ′ be obtained via the application of any

expansion rule applied to A , then A ′ is also consistent.

Proof. If A is consistent, by Lemma 4, there exists a model M ′ of A which satisfies (5), (6) and (7).

The theorem follows from the fact that any ABox assertion added by any expansion rule is satisfied by

M ′, where we interpret aC, xC, �b, ✸b, ✷y, �y as in Lemma 4.

As a demonstration of the functioning of the tableaux algorithm, we use tableaux Algorithm 2 (using

unraveling to deal with TBox axioms) to show that the knowledge base K discussed in Section 4 is

consistent and construct a model for it (cf. Appendix B), while the knowledge base K ′ discussed in

Section 4 is inconsistent (cf. Appendix C for the proof).

8 Conclusions and future directions

In this paper, we define a fuzzy lattice-based non-distributive description logic LE-FA L C as a de-

scription logic to describe and reason about fuzzy formal concepts arising from fuzzy (enriched) formal

contexts, and define a polynomial-time tableaux algorithm to check the consistency of LE-FA L C

58 Fuzzy Lattice-based Description Logic

ABoxes. Additionally, this algorithm can be extended to an exponential-time algorithm for checking

consistency of knowledge bases with acyclic TBoxes. This work can be extended in several interesting

directions, including, but not limited to, the following.

Dealing with cyclic TBoxes and RBox axioms. In this paper, we introduced a tableaux algorithm

only for knowledge bases with acyclic TBoxes. In the future, we intend to generalize the algorithm to deal

with cyclic TBoxes as well. Another interesting avenue of research is to develop tableaux algorithms for

extensions of LE-FA L C with RBox axioms. RBox axioms are used in description logics to describe

the relationship between different relations in knowledge bases and the properties of these relations such

as reflexivity, symmetry, and transitivity. It would be interesting to see if it is possible to obtain necessary

and/or sufficient conditions on the shape of RBox axioms for which a tableaux algorithm can be obtained.

This has an interesting relationship with the problem in LE-logic of providing computationally efficient

proof systems for various extensions of LE-logic in a modular manner [16, 6].

Generalizing to more expressive description logics. The DL LE-A L C is the non-distributive

counterpart of A L C . A natural direction for further research is to explore the non-distributive coun-

terparts of extensions of A L C such as A L C I and A L C I N and fuzzy generalizations of such

description logics. This would allow us to express more constructions like (fuzzy) concepts generated by

an object or a feature, which can not be expressed in (LE-FA L C) LE-A L C .

Description logic and Formal Concept Analysis. The relationship between FCA and DL has been

studied and used in several applications [1, 4, 18]. The framework of LE-FA L C formally brings Fuzzy

FCA and DL together, both because its concepts are naturally interpreted as formal concepts in H-valued

FCA, and because its language is designed to represent knowledge and reasoning in enriched formal

contexts. Thus, these results can help integrate FCA and DL further in both theory and applications.

References

[1] Jamal Atif, Celine Hudelot & Isabelle Bloch (2014): Explanatory Reasoning for Image Understanding Using

Formal Concept Analysis and Description Logics. IEEE Transactions on Systems, Man, and Cybernetics:

Systems 44(5), pp. 552–570, doi:10.1109/TSMC.2013.2280440.

[2] Franz Baader (2003): The description logic handbook: Theory, implementation and applications. Cambridge

university press.

[3] Franz Baader, Ian Horrocks, Carsten Lutz & Uli Sattler (2017): Introduction to description logic. Cambridge

University Press, doi:10.1017/9781139025355.

[4] Franz Baader & Baris Sertkaya (2004): Applying Formal Concept Analysis to Description Logics. Concept

Lattices, pp. 261–286, doi:10.1007/978-3-540-24651-0_24.

[5] Radim Bêlohlávek (1999): Fuzzy Galois Connections. Mathematical Logic Quarterly 45(4), pp. 497–504,

doi:10.1002/malq.19990450408.

[6] Ineke van der Berg, Andrea De Domenico, Giuseppe Greco, Krishna B. Manoorkar, Alessandra Palmigiano

& Mattia Panettiere (2023): Labelled Calculi for the Logics of Rough Concepts. Logic and Its Applications,

pp. 172–188, doi:10.1007/978-3-031-26689-8_13.

[7] Ineke van der Berg, Andrea De Domenico, Giuseppe Greco, Krishna B Manoorkar, Alessandra Palmigiano

& Mattia Panettiere (2023): Non-distributive description logic. In: International Conference on Automated

Reasoning with Analytic Tableaux and Related Methods, Springer Nature Switzerland Cham, pp. 49–69,

doi:10.1007/978-3-031-43513-3_4.

[8] Ineke van der Berg, Andrea De Domenico, Giuseppe Greco, Krishna B. Manoorkar, Alessandra Palmigiano

& Mattia Panettiere (2024): Non-distributive description logic. arXiv:2307.09561.

https://doi.org/10.1109/TSMC.2013.2280440
https://doi.org/10.1017/9781139025355
https://doi.org/10.1007/978-3-540-24651-0_24
https://doi.org/10.1002/malq.19990450408
https://doi.org/10.1007/978-3-031-26689-8_13
https://doi.org/10.1007/978-3-031-43513-3_4
https://arxiv.org/abs/2307.09561

Y. Ding, K. Manoorkar 59

[9] Willem Conradie, Sabine Frittella, Krishna Manoorkar, Sajad Nazari, Alessandra Palmigiano, Apostolos Tz-

imoulis & Nachoem M Wijnberg (2021): Rough concepts. Information Sciences 561, pp. 371–413, doi:10.

1016/j.ins.2020.05.074.

[10] Willem Conradie, Sabine Frittella, Alessandra Palmigiano, Michele Piazzai, Apostolos Tzimoulis & Na-

choem M Wijnberg (2016): Categories: how I learned to stop worrying and love two sorts. In: Logic,

Language, Information, and Computation: 23rd International Workshop, WoLLIC 2016, Puebla, Mexico,

August 16-19th, 2016. Proceedings 23, Springer, pp. 145–164, doi:10.1007/978-3-662-52921-8_10.

[11] Willem Conradie, Sabine Frittella, Alessandra Palmigiano, Michele Piazzai, Apostolos Tzimoulis &

Nachoem M Wijnberg (2017): Toward an epistemic-logical theory of categorization. arXiv preprint

arXiv:1707.08743.

[12] Willem Conradie, Alessandra Palmigiano, Claudette Robinson, Apostolos Tzimoulis & Nachoem M Wijn-

berg (2019): The logic of vague categories. arXiv preprint arXiv:1908.04816.

[13] Willem Conradie, Alessandra Palmigiano, Claudette Robinson & Nachoem Wijnberg (2020): Non-

distributive logics: from semantics to meaning. arXiv preprint arXiv:2002.04257.

[14] Bernhard Ganter & Rudolf Wille (1997): Applied lattice theory: Formal concept analysis. In: In General

Lattice Theory, G. Grätzer editor, Birkhäuser, Citeseer.

[15] Bernhard Ganter & Rudolf Wille (2012): Formal concept analysis: mathematical foundations. Springer

Science & Business Media.

[16] Giuseppe Greco, Minghui Ma, Alessandra Palmigiano, Apostolos Tzimoulis & Zhiguang Zhao (2016): Uni-

fied correspondence as a proof-theoretic tool. Journal of Logic and Computation 28(7), p. 1367–1442.

[17] Petr Hájek (1998): Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht, Boston and

London, doi:10.1007/978-94-011-5300-3.

[18] Yuncheng Jiang (2019): Semantifying formal concept analysis using description logics. Knowledge-Based

Systems 186, doi:10.1016/j.knosys.2019.104967.

[19] Sergei O. Kuznetsov Jonas Poelmans, Dmitry I. Ignatov & Guido Dedene (2014): Fuzzy and rough formal

concept analysis: a survey. International Journal of General Systems 43(2), pp. 105–134, doi:10.1080/

03081079.2013.862377.

[20] Jonas Poelmans, Sergei O Kuznetsov, Dmitry I Ignatov & Guido Dedene (2013): Formal concept analysis

in knowledge processing: A survey on models and techniques. Expert systems with applications 40(16), pp.

6601–6623, doi:10.1016/j.eswa.2013.05.007.

A Proofs

In this appendix, we gather proofs of some results stated throughout the paper.

A.1 Proof of lemma 3

Proof. Note that by rule MV∨, the maximums in the statement of the lemma exist and are unique when

the algorithm terminates. The proof is by induction on the complexity of concept C. The base case (when

C is a primitive concept) is immediate by construction of the model. For the induction step, we have four

cases.

1. Suppose C =C1 ∧C2.

1.1. For the first claim, it is required to prove that

max{α | α ≤ I(b,xC1∧C2
) ∈ A }= [[C1 ∧C2]](b).

https://doi.org/10.1016/j.ins.2020.05.074
https://doi.org/10.1016/j.ins.2020.05.074
https://doi.org/10.1007/978-3-662-52921-8_10
https://doi.org/10.1007/978-94-011-5300-3
https://doi.org/10.1016/j.knosys.2019.104967
https://doi.org/10.1080/03081079.2013.862377
https://doi.org/10.1080/03081079.2013.862377
https://doi.org/10.1016/j.eswa.2013.05.007

60 Fuzzy Lattice-based Description Logic

For direction (≤), suppose α0 ≤ bIxC1∧C2
∈ A for some α0. Then by using appending and ∧A rules,

we have α0 ≤ I(b,xC1
) ∈ A and α0 ≤ I(b,xC2

) ∈ A . Therefore, α0 ≤ max{α | α ≤ I(b,xC1
)} ∈ A },

and α0 ≤ max{α | α ≤ I(b,xC2
)} ∈ A }. Hence, by introduction hypothesis, we have α0 ≤ [[C1]](b) and

α0 ≤ [[C2]](b), which implies α0 ≤ [[C1]](b)∧ [[C2]](b) = [[C1 ∧C2]](b). Therefore, we have max{α | α ≤
I(b,xC1∧C2

) ∈ A } ≤ [[C1 ∧C2]](b).

For direction (≥), suppose α0 ≤ [[C1 ∧C2]](b) = [[C1]](b) ∧ [[C2]](b). Therefore, we have α0 ≤
[[C1]](b), and α0 ≤ [[C2]](b). Hence, by induction hypothesis, there are α1,α2 ∈ H, such that α0 ≤ α1,

α0 ≤ α2, α1 ≤ I(b,xC1
), and α2 ≤ I(b,xC2

) ∈ A . As C1 ∧C2 occurs in A , by appending and ∧−1
A rules,

we get α1 ∧α2 ≤ b : C1 ∧C2 ∈ A . By creation and the basic rules, this implies α1 ∧α2 ≤ bIxC1∧C2
∈ A .

Therefore, we have α0 ≤ max{α | α ≤ I(b,xC1∧C2
) ∈ A }. Hence, by completeness of H, we have

[[C1 ∧C2]](b)≤ max{α | α ≤ I(b,xC1∧C2
) ∈ A }.

1.2. For the second claim, it is required to prove that

([C1 ∧C2])(y) = max{β | β ≤ I(aC1∧C2
,y) ∈ A }.

For direction (≤), notice that ([C1 ∧C2])(y) = ∧b∈A([[C1 ∧C2]](b)→ I(b,y)). By the proof of the first

claim above and the construction of the model, we have ([C1 ∧C2])(y) =∧b∈A(max{α |α ≤ I(b,xC1∧C2
)∈

A } → max{β | β ≤ I(b,y) ∈ A }). Suppose α0 ≤ ([C1 ∧C2])(y). Therefore, we have α0 ≤ max{α |
α ≤ I(b,xC1∧C2

) ∈ A } → max{β | β ≤ I(b,y) ∈ A } for every b ∈ A. By the creation rule, we have

1 ≤ I(aC1∧C2
,xC1∧C2

) ∈ A , which means that max{α | α ≤ I(b,xC1∧C2
) ∈ A } = 1. Therefore, we get

α0 ≤ max{β | β ≤ I(aC1∧C2
,y) ∈ A }. Hence, by completeness of H, we have ([C1 ∧C2])(y) ≤ max{β |

β ≤ I(aC1∧C2
,y) ∈ A }.

For direction (≥), suppose α0 ≤ I(aC1∧C2
,y). By construction of the model, there exists α1 ∈ H, such

that α0 ≤ α1 and α1 ≤ I(aC1∧C2
,y) ∈ A . Suppose α2 ≤ I(b,xC1∧C2

) ∈ A for some b ∈ A, and α2 ∈ H,

by appending and basic rules, we get α1 ∧α2 ≤ I(b,y) ∈ A . Hence, we have α1 ∧α2 ≤ max{α | α ≤
I(b,y) ∈ A } for any α2 ≤ I(b,xC1∧C2

) ∈ A . Therefore, by properties of H, we have α0 ≤ α1 ≤ α2 →
α1 ∧α2 ≤ max{α | α ≤ I(b,xC1∧C2

) ∈ A } → max{β | β ≤ I(b,y) ∈ A }. Hence, by completeness of

H, we have I(aC1∧C2
,y) ≤ max{α | α ≤ I(b,xC1∧C2

) ∈ A } → max{β | β ≤ I(b,y) ∈ A } for any b ∈ A.

Therefore, we have max{β | β ≤ I(aC1∧C2
,y)} ≤ ∧b∈A([[C1 ∧C2]](b)→ I(b,y)) = ([C1 ∧C2])(y).

2. The proof for C =C1 ∨C2 is similar to the previous one.

3. Suppose C = [R✷]C1.

3.1. For the first claim, it is required to prove that

[[[R✷]C1]](b) = max{β | β ≤ I(b,x✷C1
) ∈ A }.

For direction (≤), notice that [[[R✷]C1]](b) =
∧

y∈X (([C1])(y) → R✷(b,y)). By induction and con-

struction of the model, this is equivalent to [[[R✷]C1]](b) =
∧

y∈X (max{α | α ≤ I(aC1
,y)}→ max{β | β ≤

R✷(b,y) ∈ A }). Suppose α0 ≤ [[[R✷]C1]](b). By creation and basic rules, we have 1 ≤ I(aC1
,xC1

) ∈ A .

By induction hypothesis claim above, we get α0 ≤ max{β | β ≤ R✷(b,xC1
) ∈ A }. By rule R✷, this

implies α0 ≤ max{β | β ≤ I(b,✷xC1
) = I(b,x✷C1

) ∈ A }. Therefore, [[[R✷]C1]](b) ≤ max{β | β ≤
I(b,x✷C1

) ∈ A }.

For direction (≥), suppose α0 ≤ I(b,x✷C1
). By construction of the model, we have α1 ≤ I(b,x✷C1

) ∈
A for some α0 ≤ α1 ∈ H. Suppose α2 ≤ I(aC1

,y) ∈ A for some y. Then by appending and ✷ rules,

we get α1 ∧α2 ≤ R✷(b,y). By properties of H, we have α0 ≤ α1 ≤ α2 → α1 ∧α2. Hence we get α0 ≤
max{α | α ≤ I(aC1

,y)} → max{β | β ≤ R✷(b,y) ∈ A } for any y. Therefore, max{β | β ≤ I(b,x✷C1
) ∈

A } ≤ [[[R✷]C1]](b).

Y. Ding, K. Manoorkar 61

3.2. For the second claim, it is required to prove that

([[R✷C1]])(y) = max{β | β ≤ I(a✷C1
,y) ∈ A }.

For direction (≤), notice that ([[R✷]C1])(y) = ∧b∈A([[[R✷]C1]](b)→ I(b,y)). By the proof of the first

claim and construction of the model, we have ([[R✷C1]])(y) = ∧b∈A(max{α | α ≤ I(b,x✷C1
)}→ max{β |

β ≤ I(b,y)}). Suppose α0 ≤ ([[R✷]C1])(y). Then for every b, α0 ≤ max{α | α ≤ I(b,x✷C1
)} → max{β |

β ≤ I(b,y)}. By applying this to 1 ≤ I(a✷C1
,x✷C1

) ∈ A added by creation rule, we get α0 ≤ max{β |
β ≤ I(a✷C1

,y)}. Therefore, ([[R✷C1]])(y) ≤ max{β | β ≤ I(a✷C1
,y) ∈ A }.

For direction (≥), suppose α0 ≤ I(a✷C1
,y). By construction of the model, there exists α1 ∈ H such

that α0 ≤ α1 and α1 ≤ I(a✷C1
,y) ∈ A . Suppose α2 ≤ I(b,x✷C1

) ∈ A for some b ∈ A, α2 ∈ H. Then,

by appending and basic rule, we get α1 ∧α2 ≤ I(b,y) ∈ A . Therefore, for for any α2 ≤ I(b,x✷C1
) ∈ A ,

we have α1 ∧α2 ≤ max{α | α ≤ I(b,y)} ∈ A . Hence, we have α0 ≤ α1 ≤ α2 → α1 ∧α2 ≤ max{α |
α ≤ I(b,x✷C1

) ∈ A } → max{β | β ≤ I(b,y) ∈ A }. Therefore, by the completeness of H, we have

I(a✷C1
,y) ≤ max{α | α ≤ I(b,x✷C1

) ∈ A } → max{β | β ≤ I(b,y) ∈ A }. Therefore, we have max{β |
β ≤ I(a✷C1

,y) ∈ A } ≤ ([[R✷C1]])(y).
4. The proof for C = 〈R✸〉C1 is similar to the previous one.

This concludes the proof.

B Model for the first example knowledge base

In this section, we describe model for the first knowledge base defined in Section 4 obtained using

unraveling and Tableaux Algorithm 2.

Let K = (A ,T) be a knowledge base such that T = {C4 ≡C1∨C3,C2 ≡C4∧C7,C6 ≡ (C1∧C2)∨
(C2 ∧C3)}, and A = {1 ≤ P1 : C2,P1 : C6 < 1/2,1 ≤ y1 :: [R✷]C1,1 ≤ y3 :: [R✷]C3,P2R✷y3 < 1,1/2 ≤
P2 : C1,1/2 ≤ y1 :: C1}. By unraveling TBox we get the following concept definitions.

1. C4 ≡C1 ∨C3

2. C2 ≡ (C1 ∨C3)∧C7

3. C6 ≡ (C1 ∧ ((C1 ∨C3)∧C7))∨ (((C1 ∨C3)∧C7)∧C3)≡ (C1 ∧C7)∨ (C7 ∧C3).

By substituting these definitions in ABox and running Algorithm 2, we get a model for K using con-

struction described in Section 6. Table 1 lists symbols we use for different constants of the form aC or

xC which appear in the model.

Table 2 lists all the object and feature constant names appearing in the model and value of I relation

for every object-feature pair.

The relation R✷ is defined by R✷(a9,x1) = R✷(a9,x3) = R✷(a10,x2) = R✷(a10,x3) = 0, R✷(a9,y1) =
R✷(P1,y3) = 1/2, and R✷(b,y) = 0 for any other b, y. The relation R✸ is defined by R✸(y,b) = 0 for any

b, y. The model contains atomic concepts C1, C3, and C7. For any of these concepts C, its interpretation

is given by the tuple (a↑C,x
↓
C). It is easy to verify that the relations R✷, and R✸ are I-compatible (In

particular, it can be checked that Lemma 2 holds and the model defined above satisfies the knowledge

base K .

C Proof of inconsistency of the second example knowledge base

In this section, we show that the second example of knowledge base given in Section 4, i.e. knowledge

base K with TBox axiom C5 ≡ C1 ∧C3, and with set of ABox axioms {1/2 ≤ P3 : [R✷]C1,1 ≤ P3 :

[R✷]C3,P3R✷y4 < 1/2,1/2 ≤ y4 :: C5} is inconsistent using tableaux algorithm.

62 Fuzzy Lattice-based Description Logic

a1 aC1
x1 xC1

a2 aC3
x2 xC3

a3 aC1∨C3
x3 xC1∨C3

a4 a(C1∨C3)∧C7
x4 x(C1∨C3)∧C7

a5 aC7
x5 xC7

a6 aC1∧C7
x6 xC1∧C7

a7 aC3∧C7
x7 xC3∧C7

a8 a(C1∧C7)∨(C3∧C7) x8 x(C1∧C7)∨(C3∧C7)

a9 a✷C1
x9 x✷C1

=✷xC1

a10 a✷C3
x10 x✷C3

=✷xC3

a11 a⊤ x11 x⊥

Table 1: symbols for constants of the form aC or xC appearing in the model

By unraveling, we replace any occurrence of C5 in ABox with C1 ∧C3. The following table shows

terms added to the tableaux expansion of the resulting ABox.

Rule Premises Added terms

create 1 ≤ xC1
:: C1, 1 ≤ xC2

:: C2

✷ 1/2 ≤ P3 : [R✷]C1, 1 ≤ xC1
:: C1 1/2 ≤ P3R✷xC1

✷ 1 ≤ P3 : [R✷]C3, 1 ≤ xC3
:: C3 1 ≤ P3R✷xC3

R✷ 1/2 ≤ P3R✷xC1
, 1 ≤ P3R✷xC3

1/2 ≤ �P3IxC1
, 1 ≤ �P3IxC3

xC 1/2 ≤ �P3IxC1
, 1 ≤ �P3IxC3

1/2 ≤ �P3 : C3, 1 ≤ �P3 : C1

∧A 1/2 ≤ �P3 : C3, 1 ≤ �P3 : C1 1/2 ≤ �P3 : C3 ∧C1

create xC1∧C3
:: C1 ∧C3

I xC1∧C3
:: C1 ∧C3, 1/2 ≤ �P3 : C3 ∧C1 1/2 ≤ �P3IxC1∧C3

�b 1/2 ≤ �P3IxC1∧C3
1/2 ≤ P3I✷xC1∧C3

= 1/2 ≤ P3Ix✷(C1∧C3)

xC 1/2 ≤ P3Ix✷(C1∧C3) 1/2 ≤ P3 : [R✷](C1 ∧C3)

unravel 1/2 ≤ y4 :: C5 1/2 ≤ y4 :: C1 ∧C3

✷ 1/2 ≤ P3 : [R✷](C1 ∧C3), 1/2 ≤ y4 :: C1 ∧C3 1/2 ≤ P3R✷y4

The term 1/2 ≤ P3R✷y4 clashes with the term P3R✷y4 < 1/2 in A . Hence proved.

Y. Ding, K. Manoorkar 63

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 y1 y3 ✷y1 ✷y3 ✷x3

a1 1 0 1 0 0 0 0 0 0 0 0 1/2 0 0 0 0

a2 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

a3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

a4 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

a5 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

a6 1 0 1 1 1 1 0 1 0 0 0 1/2 0 0 0 0

a7 0 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0

a8 0 0 1 1 1 0 0 1 0 0 0 0 0 0 0 0

a9 0 0 0 0 0 0 0 0 1 0 0 1 1/2 0 0 1

a10 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1

�a9 1 0 1 0 0 0 0 0 0 0 0 1/2 0 0 0 0

�a10 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

a11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0

P2 1/2 0 1/2 1 1 0 0 0 0 0 0 1/2 0 0 1/2 0

�P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Objects (A) and features (X) of model and Relation I between them

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on
Logical and Semantic Frameworks with Applications (LSFA’24)
EPTCS 421, 2025, pp. 64–79, doi:10.4204/EPTCS.421.4

© S. Preto & M. Finger
This work is licensed under the
Creative Commons Attribution License.

Regional, Lattice and Logical Representations
of Neural Networks

Sandro Preto
Center for Mathematics, Computing and Cognition

Federal University of ABC, Brazil
Institute of Mathematics and Statistics

University of São Paulo, Brazil
sandro.preto@ufabc.edu.br

Marcelo Finger
Institute of Mathematics and Statistics

University of São Paulo, Brazil
mfinger@ime.usp.br

A possible path to the interpretability of neural networks is to (approximately) represent them in
the regional format of piecewise linear functions, where regions of inputs are associated to linear
functions computing the network outputs. We present an algorithm for the translation of feedforward
neural networks with ReLU activation functions in hidden layers and truncated identity activation
functions in the output layer. We also empirically investigate the complexity of regional representa-
tions outputted by our method for neural networks with varying sizes. Lattice and logical represen-
tations of neural networks are straightforward from regional representations as long as they satisfy
a specific property. So we empirically investigate to what extent the translations by our algorithm
satisfy such property.

1 Introduction

Neural networks are computational models that aim to generalize patterns found in datasets from which
they are determined by means of a learning algorithm [8]. Despite the undeniable advancement in the
state of the art of intelligent systems promoted by neural networks, their lack of interpretability is subject
to criticism. Neural networks suffer from the black box problem due to the lack of justification for their
results and the impossibility to directly inspect their learned information [3, 5].

As several architectures of neural networks realize piecewise linear functions or may be approxi-
mated by them, a path towards interpretability is through regional format representations of such neural
networks and functions by explicit sets of pairs ⟨p,Ω⟩ of a linear piece p and a region Ω such that,
for a vector of input values x ∈ Ω, the output is given by p(x). An algorithm for establishing regional
representations from feedforward neural networks with rectified linear units as activation functions is
proposed in [15].

The main goal of this work is to introduce an algorithm for computing regional format representa-
tions of ReLU–TId neural networks, which are feedforward neural networks with rectified linear units
as activation functions in hidden layers and truncated identity as activation functions in the output layer.
Such algorithm outputs representations in the pre-closed regional format, where regions are polyhedra.
Rather than just adapting the iterative method in [15], we present a novel recursive approach that allows
a correctness proof by a straightforward induction argument.

An important feature of neural networks is that they are compact representations of functions. Then,
although regional representations might provide interpretability of neural networks, they also might be
exponential in the size of their traditional representation as graphs. In Section 4, we empirically measure
the complexity of regional representations determined by our method for randomly generated ReLU–TId
neural networks with varying numbers of neurons and layers and varying layer sizes.

http://dx.doi.org/10.4204/EPTCS.421.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Preto & M. Finger 65

Lattice representation is another possibility for representing neural networks and is achieved by com-
bining maximum and minimum operations over linear pieces. Such representations further enable the
codification of ReLU–TId neural networks in logical systems as Łukasiewicz infinitely-valued logic (Ł∞)
and its extensions [4, 7, 11, 12], leading to yet another path to interpretability. Lattice and logical rep-
resentations find applications in the formal verification of neural networks in attempts to circumvent
the black box problem and allow their use in critical tasks; for instance, in aircraft collision avoidance
alerts and autonomous vehicles. There are methods for formal verification using the lattice representa-
tion of neural networks [1] and methods that codify properties of neural networks in the language of Ł∞

departing from their logical representation [13, 14].
Lattice and logical representations may be built in polynomial time from ReLU–TId neural networks

given in the pre-closed regional format as long as such encodings satisfy the so-called lattice property
(Section 2) [12]. In this case, the regional representations are said to be in the closed regional format.
This work also aims at empirically experimenting how far from satisfying lattice property are randomly
generated neural networks.

The rest of this work is organized as follows. Section 2 introduces neural networks and their graph,
regional, lattice and logical representations. Section 3 presents an algorithm for translating ReLU–TId
neural networks into the pre-closed regional format. Section 4 presents the results of experiments where
we measure the complexity of representations in pre-closed regional format and their degree of satisfia-
bility of lattice property.

2 Preliminaries: Some Neural Networks and Their Representations

Traditionally, a feedforward neural network N is given (and represented) by a graph whose nodes are
partitioned into an ordered family of ordered sets LN = {L0, . . . ,LΛ}, where each Li is a layer. All
nodes in layer Li, for i ∈ {0, . . . ,Λ− 1}, are linked by an edge to all nodes in layer Li+1 establishing a
computational circuit such that all output values of nodes in Li are input values to each node in Li+1.
There is a linear function f i

j : R|Li−1| → R associated to each node ni
j in layer Li, for j ∈ {1, . . . , |Li|} and

i ∈ {1, . . . ,Λ}. For a tuple of input values x = ⟨x1, . . . ,x|Li−1|⟩ ∈ R|Li−1| to node ni
j, it has as output the

value ni
j(x) = ρi ◦ f i

j(x), where ρi : R → R is an activation function. Thus, for x = ⟨x1, . . . ,x|Li−1|⟩ as
input to layer Li, it has as outputs the values in the tuple

Li(x) = ⟨ρi ◦ f i
1(x), . . . ,ρi ◦ f i

|Li|(x)⟩.

Input values to N in a tuple x = ⟨x1, . . . ,x|L0|⟩ ∈R|L0| are neatly associated to the nodes n0
1, . . . ,n

0
|L0| ∈ L0,

called input nodes; thus, from such inputs, N produces the output values in the |LΛ|-tuple

N(x) = ⟨N(x)1, . . . ,N(x)|LΛ|⟩= LΛ ◦ · · · ◦L1(x).

Nodes in LΛ are called output nodes. We say that each output node nΛ
j in a neural network N computes a

function for which the value N(x) j is given in function of the input values x ∈ R|L0|.
We might restrict the input values of a neural network to some set R ⊆ R. In this work, we focus

on ReLU–TId neural networks: they accept input values from [0,1] and have as activation functions the
rectified linear unit ρi = ReLU : R→ R, given by ReLU(x) = max(0,x), for i ∈ {1, . . . ,Λ−1}, and the
truncated identity function ρΛ = TId : R → R, given by TId(x) = max(0,min(1,x)). Such activation

66 Regional, Lattice and Logical Representations of Neural Networks

x1

L0

f 1
1

L1

f 2
1

L2

x2 f 1
2

Figure 1: Graph of the ReLU–TId neural network E

functions may be given by piecewise linear definitions as follows:

ReLU(x) =
{

0, x < 0
x, x ≥ 0

TId(x) =

0, x < 0
x, 0 ≤ x ≤ 1
1, x > 1

(1)

Example 1 Let E be a ReLU–TId neural network with LE = {L0,L1,L2}, where L0 = {n0
1,n

0
2}, L1 =

{n1
1,n

1
2} and L2 = {n2

1}. The graph of E depicted in Figure 1 highlights the input values x1 and x2 in layer
L0 and the functions f 1

1 , f 1
2 , f 2

1 : R2 → R in layers L1 and L2, which are given by:

• f 1
1 (x1,x2) =

4
3 x1 − x2;

• f 1
2 (x1,x2) = x1 − x2 +

1
2 ;

• f 2
1 (x1,x2) = x1 + x2 +

1
2 .

For a tuple of inputs e = ⟨1
8 ,

1
2⟩ to E, we have L1(e) = ⟨ReLU(−1

3),ReLU(1
8)⟩= ⟨0, 1

8⟩ and, thus, E(e) =
L2(L1(e)) = TId(5

8) =
5
8 . 2

Before introducing another type of neural network, let us define a rational McNaughton function
f : [0,1]n → [0,1], which is a function that satisfies the following conditions:

• f is continuous with respect to the usual topology of [0,1] as an interval of the real number line;

• There are linear polynomials p1, . . . , pm over [0,1]n with rational coefficients such that, for each
point x ∈ [0,1]n, there is an index i ∈ {1, . . . ,m} with f (x) = pi(x). Polynomials p1, . . . , pm are the
linear pieces of f .

A neural network whose ν = |LΛ| output nodes exactly compute rational McNaughton functions in func-
tion of its input nodes is called a ν-rational McNaughton neural network (ν-RMcN3); a 1-RMcN3 is also
called rational McNaughton neural network (RMcN3).

A possibility to represent rational McNaughton functions (consequently, ν-rational McNaughton
neural networks) is through the regional formats discussed in the following. Let Ω◦ denote the topolog-
ical interior of Ω ⊆ [0,1]n and say that, given functions f ,g : [0,1]n → [0,1], f is above g over the set
Ω if f (x) ≥ g(x), for all x ∈ Ω. A given rational McNaughton function f : [0,1]n → [0,1] is said to be
encoded in the closed regional format if it is given by m (not necessarily distinct) linear pieces

pi(x) = γi0 + γi1x1 + · · ·+ γinxn, (2)

S. Preto & M. Finger 67

where x = ⟨x1, . . . ,xn⟩ ∈ [0,1]n, γi j ∈ Q and i ∈ {1, . . . ,m}, such that each pi is identical to f over a
polyhedron Ωi ⊆ [0,1]n, called region. These regions are determined by the finite intersection of half-
spaces given by linear inequalities1 as

Ωi =
{

x ∈ [0,1]n
∣∣∣ ω j0 +ω j1x1 + · · ·+ω jnxn ≥ 0, j ∈ {1, . . . ,λΩi}

}
(3)

and such setting of linear pieces and regions satisfy the following properties:

•
⋃m

i=1 Ωi = [0,1]n;

• Ω◦
i′ ∩Ω◦

i′′ =∅, for i′ ̸= i′′; and

• The lattice property: for i ̸= j, there is k such that linear piece pi is above linear piece pk over
region Ωi and linear piece pk is above linear piece p j over region Ω j.

Such an encoding is called closed because regions Ωi are closed sets in the topological sense. As regions
are given by such polyhedra described by (3), there is a polynomial procedure to establish whether a
linear piece p is above q over region Ω: find the minimum value m of p− q over Ω, which is a linear
program and may be solved in polynomial time [2]; then, if m ≥ 0, p is above q over Ω, otherwise, it is
not.

The lattice property yields the possibility to represent rational McNaughton functions and ν-RMcN3s
by lattice representations—i.e., based on operations of maximum and minimum over functions—as fol-
lows. First, let fΩ j : [0,1]n → [0,1] be the function given by

fΩ j(x) = min
{

pk(x)
∣∣∣ pk is above p j over Ω j

}
.

Note that fΩ j(x) ≤ f (x), for all x ∈ [0,1]n, which is obvious for x ∈ Ω j and follows from the lattice
property for x ∈ Ωi where i ̸= j. In this way, we have that

f (x) = max
{

fΩ j(x)
∣∣∣ j ∈ {1, . . . ,m}

}
.

In [13], we find an example of the one-variable rational McNaughton function f : [0,1]→ [0,1], whose
graph is depicted in Figure 2. Function f has a lattice representation given by

f (x) = max
{

fΩ1(x), fΩ2(x), fΩ3(x), fΩ4(x)
}
,

where fΩ1(x) = min{p1(x), p3(x)}, fΩ2(x) = fΩ3(x) = min{p2(x), p3(x)} and fΩ4(x) =
min{p2(x), p4(x)}. Note that the lattice encoding just introduced may be employed in represent-
ing piecewise linear functions in general, not only rational McNaughton functions.

When a rational McNaughton function is given in an encoding that almost completely agrees with
the closed regional format, with the sole exception that there is no guarantee that such encoding satisfies
the lattice property (although it may still satisfy), we say that it is in the pre-closed regional format.

Unfortunately, lack of lattice property might entail the failure of lattice representation as in the fol-
lowing example taken from [12]. The rational McNaughton function fE with graph in Figure 3a may
have an encoding based on regions in Figure 3b; a linear piece pi is associated to each region Ωi. The
dotted line in Figure 3b is the projection over [0,1]2 of where p3 intercepts p5; note that such line passes

1We occasionally abuse notation by using the same symbol to refer both to a set of inequalities and to the polyhedron it
determines.

68 Regional, Lattice and Logical Representations of Neural Networks

p1

p2
p3

p4

f (x)

Ω1 Ω2 Ω3 Ω4 x

Figure 2: One-variable piecewise linear function

0

1
0

1

x1

x2

(a) Graph

x1

x2

Ω4

Ω3

Ω2

Ω1

Ω5

(b) Region configuration

Figure 3: Function encoded in the pre-closed regional format

through the interior of both Ω3 and Ω5. There is no linear piece pk such that p3 is above pk over Ω3
and pk is above p5 over Ω5. So an encoding for fE based on regions Ω1–Ω5 may be at most encoded in
pre-closed regional format.

Now, there is x0 ∈ Ω◦
3 such that p5(x0) > p3(x0). Therefore, fΩ5(x0) = p5(x0) > p3(x0) =

min{p1(x0), p3(x0)}= fΩ3(x0), yielding that max{ fΩ j(x0)}> fΩ3(x0), which eliminates the possibility
of lattice representation. Such an issue may be circumvented by splitting region Ω5, according to the
dotted line in Figure 3b, in regions Ω′

5 = Ω5 ∩{p5 − p3 ≥ 0} and Ω′′
5 = Ω5 ∩{p5 − p3 ≤ 0}. In general,

repeatedly splitting a region according to projections of linear pieces intersections eventually achieves
closed regional format [12, Theorem 7].

We may also represent rational McNaughton functions and ν-RMcN3s in logical systems. For that,
let us introduce the Łukasiewicz infinitely-valued logic (Ł∞). The basic language L of Ł∞ comprehends
formulas freely generated from a countable set of propositional variables P, a disjunction operator ⊕ and
a negation operator ¬. A valuation is a function v : L → [0,1], such that, for ϕ,ψ ∈ L :

v(ϕ ⊕ψ) = min(1,v(ϕ)+ v(ψ)); (4)

v(¬ϕ) = 1− v(ϕ). (5)

S. Preto & M. Finger 69

From disjunction and negation we derive the following operators:

Conjunction: ϕ ⊙ψ =def ¬(¬ϕ ⊕¬ψ) v(ϕ ⊙ψ) = max(0,v(ϕ)+ v(ψ)−1)

Implication: ϕ → ψ =def ¬ϕ ⊕ψ v(ϕ → ψ) = min(1,1− v(ϕ)+ v(ψ))

Maximum: ϕ ∨ψ =def ¬(¬ϕ ⊕ψ)⊕ψ v(ϕ ∨ψ) = max(v(ϕ),v(ψ))

Minimum: ϕ ∧ψ =def ¬(¬ϕ ∨¬ψ) v(ϕ ∧ψ) = min(v(ϕ),v(ψ))

Bi-implication: ϕ ↔ ψ =def (ϕ → ψ)∧ (ψ → ϕ) v(ϕ ↔ ψ) = 1−|v(ϕ)− v(ψ)|

Note that, as lattice operations are expressed in Ł∞ by the minimum and maximum operators, piecewise
linear functions might have a lattice representation in Ł∞ as far as their linear pieces are representable
in this system. Indeed, the formulas of Ł∞ represent all the McNaughton functions, which are rational
McNaughton functions constrained to allow only integer coefficients in their linear pieces [9, 10].

Unfortunately, Ł∞ cannot express rational McNaughton functions. For that, one possible path is
to extend the language of Ł∞, which is done, for instance, by [7]. Another possibility is to implicitly
represent such functions in plain Ł∞ using the technique of representation modulo satisfiability, which
we introduce in the following [6, 11, 12].

Let us denote the Ł∞-semantics, that is the set of all valuations, by Val. Let us also denote by ValΦ
the set of valuations v ∈ Val that satisfy a set of formulas Φ; we call such a restricted set of valuations
a semantics modulo satisfiability. Given a rational McNaughton function f : [0,1]n → [0,1], a formula
ϕ f and a set of formulas Φ f , we say that ϕ f represents f modulo Φ f -satisfiable or that the pair ⟨ϕ f ,Φ f ⟩
represents f (in the system Ł∞-MODSAT) if, for distinguished propositional variables X1, . . . ,Xn ∈ P:

• For all ⟨x1, . . . ,xn⟩ ∈ [0,1]n, there exists some valuation v ∈ ValΦ f , such that v(Xi) = xi, for i =
1, . . . ,n;

• For all valuations v,v′ ∈ ValΦ f such that v(Xi) = v′(Xi), for i = 1, . . . ,n, we have v(ϕ f) = v′(ϕ f);
and

• f (v(X1), . . . ,v(Xn)) = v(ϕ f), for all v ∈ ValΦ f .

As an example, any constant function that takes value 1
b , with b ∈N∗, may be represented by the pair

⟨ϕ,Φ⟩=
〈

Z 1
b
,
{

Z 1
b
↔¬(b−1)Z 1

b

} 〉
, (6)

where formula ϕ is only the propositional variable Z1/b and set Φ is a singleton comprehending formula
Z1/b ↔ ¬(b− 1)Z1/b, which we denote by ϕ1/b. In fact, for any valuation v ∈ Valϕ1/b

̸= ∅, we have that
v(Z1/b) =

1
b . Also, functions that take constant value a

b , with a ∈ N, may be represented by the pair
⟨aϕ,Φ⟩.

Any rational McNaughton function may be represented in Ł∞-MODSAT. Moreover, there is a poly-
nomial algorithm for the translation from a rational McNaughton function in closed regional format to
its representation in such system [11, 12].

3 Neural Networks into Pre-Closed Regional Format

Given a ReLU–TId neural network N for which LN = {L0, . . . ,LΛ}, we provide an algorithm to translate
it into a tuple ΞN = ⟨Ξ1, . . . ,Ξ|LΛ|⟩, where each Ξk, k ∈ {1, . . . , |LΛ|}, is the codification for a rational
McNaughton function in pre-closed regional format, which we will show to be the function computed

70 Regional, Lattice and Logical Representations of Neural Networks

x2

x1

f 1
1 (x) = 0

f 1
2 (x) = 0

e

(a) f 1
1 (x)≤ 0, f 1

2 (x)≥ 0

x2

x1

f 2
1 (0, f 1

2 (x)) = 1

f 2
1 (0, f 1

2 (x)) = 0

(b) f 2
1 (0, f 1

2 (x))≥ 0, f 2
1 (0, f 1

2 (x))≤ 1

Figure 4: Determining a region for neural network E

by N through the path to its k-th output node. Each Ξk is a set of pairs ⟨p,Ω⟩, where p is a linear piece
and Ω is its associated region.

Let us begin by analyzing the computation that takes place in each node of N. Given a tuple of
input values v ∈ R|Li−1| to node ni

j of N, where i ∈ {1, . . . ,Λ− 1} and so ρi = ReLU, the computation
proceeds in two steps: first, the linear function f i

j(x) is evaluated for x= v; second, the activation function
ReLU(x) is evaluated for x = f i

j(v). In the second step, one from the two possible values highlighted
in the piecewise definition of ReLU in (1) is chosen as the output of ni

j. Such choice depends on the
position of point v ∈ R|Li−1| in relation to the hyperplane given by equation f i

j(x) = 0, since it may be
a point lying either in the half-space given by f i

j(x) ≤ 0 or in the half-space given by f i
j(x) ≥ 0. For

instance, for e = ⟨1
8 ,

1
2⟩ as input to the node n1

1 of E in Example 1, the fact that f 1
1 (e)≤ 0 indicates that e

lies in one of the half-spaces determined by f 1
1 (x) = 0 where, according to ρ1 = ReLU, n1

1 outputs 0. On
the other hand, if e is given as input to the node n1

2, as f 1
2 (e) ≥ 0, e lies in the half-space determined by

f 1
2 (x) = 0 where, according to ρ1 = ReLU, n1

2 outputs f 1
2 (e) =

1
8 . Figure 4a depicts the position of e in

relation to these hyperplanes.
Similarly, in case i = Λ, we have that ρi = TId and, then, one from three possible values is chosen

for TId(f i
j(v)) depending on the position of v ∈ R|LΛ−1| in relation to the hyperplanes f Λ

j (x) = 0 and
f Λ

j (x) = 1. It may be a point lying either in the half-space given by f Λ
j (x)≤ 0, or in the half-space given

by f Λ
j (x)≥ 1 or in the intersection of half-spaces f Λ

j (x)≥ 0 and f Λ
j (x)≤ 1. Again, for e= ⟨1

8 ,
1
2⟩ as input

to the neural network E in Example 1, we have e1 = L1(e) = ⟨0, 1
8⟩. Since f 2

1 (e1)≥ 0 and f 2
1 (e1)≤ 1, e1

lies in a position relative to f 2
1 (x) = 0 and f 2

1 (x) = 1 where, according to ρ2 =TId, n2
1 outputs f 2

1 (e1) =
5
8 .

Now, still considering Example 1, let x ∈ [0,1]|L0| be any point that, as e = ⟨1
8 ,

1
2⟩, satisfies both

inequalities

f 1
1 (x)≤ 0 and f 1

2 (x)≥ 0. (7)

Then, to x1 = L1(x) satisfy inequalities f 2
1 (x1)≥ 0 and f 2

1 (x1)≤ 1 is equivalent to x satisfy inequalities

f 2
1 (0, f 1

2 (x))≥ 0 and f 2
1 (0, f 1

2 (x))≤ 1. (8)

As the former inequalities (7), the latter inequalities (8) are also linear over tuples from [0,1]|L0| of input
values to the neural network E. Moreover, for x ∈ [0,1]|L0| satisfying inequalities (7) and (8), we have

S. Preto & M. Finger 71

that E(x) = f 2
1 (0, f 1

2 (x)). In this way, we have just devised a region and its associated linear piece for
the rational McNaughton function computed by neural network E.

Generalizing the observations above, the idea behind the base algorithm for building Ξk, for k ∈
{1, . . . , |LΛ|}, is to compute each pair ⟨p,Ω⟩ ∈ Ξk beginning by: associating a symbol between ≤ and ≥
to each node ni

j, for i < Λ, alluding to one of the two possible positions of an input to ni
j in relation to

the hyperplane f i
j(x) = 0—i.e., lying in the half-space f i

j(x) ≤ 0 or in the half-space f i
j(x) ≥ 0—; and

associating a symbol among ≤, ≥ and ≶ to the node nΛ
k alluding to one of the three possible positions

of an input to nΛ
k in relation to the hyperplanes f Λ

k (x) = 0 and f Λ
k (x) = 1—i.e., lying in the half-space

f Λ
k (x)≤ 0, or in the half-space f Λ

k (x)≥ 1 or in the intersection of the half-spaces f Λ
k (x)≥ 0 and f Λ

k (x)≤
1. These associations of symbols to all the nodes in layers L1, . . . ,LΛ determine a configuration of
symbols. Then, the algorithm proceeds by defining Ω ⊆ [0,1]|L0| as an intersection of half-spaces based
on such configuration of symbols and establishing a linear expression for p such that N(x)k = p(x), for
x ∈ Ω.
Example 2 For the neural network E in Example 1, in a configuration of symbols where we associate
≤ to n1

1 and ≥ to n1
2, the consequent region Ω should comprehend the inequalities 4

3 x1 − x2 ≤ 0 and
x1−x2+

1
2 ≥ 0 (shaded area in Figure 4a). For an input x∈ [0,1]2 that satisfies these inequalities, we have

the outputs n1
1(x) = 0 and n1

2(x) = f 1
2 (x) which, composed with f Λ

1 , gives us the expression x1−x2+1. In
this way, in case we complete the configuration of symbols by associating ≤ to nΛ

1 , Ω should comprehend
the inequality x1 − x2 + 1 ≤ 0 and p should be given by p(x1,x2) = 0. In case we associate ≥ to nΛ

1 , Ω

should comprehend the inequality x1 − x2 + 1 ≥ 1 and p should be given by p(x1,x2) = 1. In the last
case, if we associate ≶ to nΛ

1 , Ω should comprehend both inequalities x1−x2+1 ≤ 1 and x1−x2+1 ≥ 0
(shaded area in Figure 4b) and p should be given by p(x1,x2) = x1 −x2 +1. Note that the last case is the
only one where region Ω would be non-empty. 2

In order to build the entire representative tuple ΞN = ⟨Ξ1, . . . ,Ξ|LΛ|⟩, the algorithm needs to com-
pute all the pairs ⟨p,Ω⟩, each one associated to a different configuration of symbols, for all possible
configurations of symbols. Thus, the entire computation of ΞN ends up with 2|L1|×·· ·×2|LΛ−1|×3|LΛ|
pairs ⟨p,Ω⟩. Later, we introduce methods meant to be combined with the base algorithm that might
circumvent such high complexity.

For establishing the base translation algorithm, we first fix some notation. Let κn
0 and κn

1 be the
constant linear functions with domain [0,1]n and ranges equal to {0} and {1}, respectively; and let
χn : {≤,≥}→{κn

0 ,κ
n
1} be the functions given by χn(≤) = κn

0 and χn(≥) = κn
1 . Also, let πm

n : [0,1]m →R
be the projection functions given by πm

n (x1, . . . ,xm) = xn, for m ∈N and 1 ≤ n ≤ m. The base translation
algorithm is split into Algorithms 1 and 2.

Algorithm 1 treats the tuple ΞN = ⟨Ξ1, . . . ,Ξ|LΛ|⟩ as a variable to be updated as it runs; thus, it first
sets each of the Ξ1, . . . ,Ξ|LΛ| to the empty set as their initial values (lines 1 and 2). Then, it defines Ω[0,1]
as a set of inequalities common to all regions (line 3) and π as a tuple of projection functions (line 4),
which will be suitable for compositions with functions f 1

j related to the first layer L1. It proceeds by
calling the recursive routine NN2PWL-R(ΞN ∥ L1,Ω,π) (line 5), where ΞN is an argument passed by
reference, which means that whenever NN2PWL-R modifies the value of ΞN , it will also be modified in
the scope of the calling function. Finally, Algorithm 1 returns ΞN with its final value (line 6).

Algorithm 2 describes the recursive routine NN2PWL-R that has as inputs a tuple ΞN = ⟨Ξ1, . . . ,Ξ|LΛ|⟩
to be updated, a ReLU–TId neural network N with a distinguished layer Li ∈ LN , a set of inequalities Ω

and a tuple of functions f = ⟨ f1, . . . , f|Li−1|⟩. If Li ̸= LΛ, for all possible association of symbols ≤ and ≥ to
the nodes ni

1, . . . ,n
i
|Li| summarized in the tuple of symbols ▷◁= ⟨▷◁1, . . . ,▷◁|Li|⟩, NN2PWL-R(ΞN ∥ Li,Ω, f)

proceeds by:

72 Regional, Lattice and Logical Representations of Neural Networks

• Computing Ωi
▷◁ as Ω extended by the half-spaces f i

j ◦ f (x) ▷◁ j 0, for j ∈ {1, . . . , |Li|}, where f =
⟨ f1, . . . , f|Li−1|⟩ is a tuple of linear functions such that f (x) = ⟨ f1(x), . . . , f|Li−1|(x)⟩ = Li−1 ◦ · · · ◦
L1(x), for x ∈ Ω (line 3);

• Computing the tuple of linear functions f i
▷◁ that is identical to the output of Li ◦ · · · ◦L1 for inputs

x ∈ Ωi
▷◁, with assistance of functions χ|L0| (line 4);

• And calling itself again by NN2PWL-R(ΞN ∥ Li+1,Ω
i
▷◁, f i

▷◁) (line 5).

If Li = LΛ, for each of the output nodes nΛ
1 , . . . ,n

Λ

|LΛ|, NN2PWL-R(ΞN ∥ Li,Ω, f) proceeds by:

• Computing Ω≤, Ω≥ and Ω≶ as Ω extended, respectively, by the half-space f Λ
k ◦ f (x) ≤ 0, the

half-space f Λ
k ◦ f (x)≥ 1 and the pair of half-spaces f Λ

k ◦ f (x)≥ 0 and f Λ
k ◦ f (x)≤ 1, where f is a

tuple of linear functions such that f (x) = LΛ−1 ◦ · · · ◦L1(x), for x ∈ Ω (lines 9, 11 and 13);

• And rewriting Ξk by adding the pairs ⟨κ |L0|
0 ,Ω≤⟩, ⟨ f Λ

k ◦ f ,Ω≶⟩ and ⟨κ |L0|
1 ,Ω≥⟩ to it (lines 10, 12

and 14).

Let Ω be any region appearing in the output of the base algorithm; it is built in Λ+1 steps in a way
that, in each step, new inequalities are added to a polyhedron (identified with a set of inequalities) until
it becomes Ω. The first step adds the inequalities that determine [0,1]|L0| (Algorithm 1, line 3). The
next Λ− 1 steps, where the produced polyhedra are named Ωi

▷◁ (Algorithm 2, line 3), are associated to
layers L1, . . . ,LΛ−1 of N. The final step, where the produced region Ω is named either as Ω≤, Ω≥ or Ω≶

(Algorithm 2, line 9, 11 or 13), is associated to layer LΛ.

Algorithm 1 NN2PWL: puts neural networks in the closed regional format
Input: A ReLU–TId neural network N for which LN = {L0, . . . ,LΛ}.
Output: A set ΞN representing rational McNaughton functions computed by the output nodes of N.

1: Ξ1 :=∅, . . . , Ξ|LΛ| :=∅;
2: ΞN := ⟨Ξ1, . . . ,Ξ|LΛ|⟩;
3: Ω[0,1] := {x1 ≥ 0,x1 ≤ 1, . . . ,x|L0| ≥ 0,x|L0| ≤ 1};

4: π := ⟨π |L0|
1 , . . . ,π

|L0|
|L0| ⟩;

5: NN2PWL-R(ΞN ∥ L1,Ω[0,1],π);
6: return ΞN ;

Lemma 1 Let a ReLU–TId neural network N, for which LN = {L0, . . . ,LΛ}, be given as input to
Algorithm 1. Then, Algorithm 1 terminates and outputs a tuple ΞN = ⟨Ξ1, . . . ,Ξ|LΛ|⟩ where, for
k ∈ {1, . . . , |LΛ|}, we have:

•
⋃

Ω, for ⟨p,Ω⟩∈Ξk
Ω = [0,1]|L0|;

• Ω′◦∩Ω′′◦ =∅, for distinct ⟨p′,Ω′⟩,⟨p′′,Ω′′⟩ ∈ Ξk. 2

PROOF Algorithm 1 always terminates since all of its loops, which are originated from Algorithm 2
calls, range over some finite set and all recursive calls in Algorithm 2 increments the index of the input
layer Li, which will eventually reach the last layer LΛ and break the recursion by falsifying the condi-
tional statement in line 1 of Algorithm 2. Let Ξk be an entry in ΞN ; all inequalities added to regions
in Ξk determine half-spaces in [0,1]|L0|. Indeed, this is the case in the first step of the construction of
regions (Algorithm 1, line 3). This is also the case for the remaining half-spaces, whose corresponding
inequalities are recursively added in lines 3, 9, 11 and 13 of Algorithm 2 and depend on its input tuple
of linear functions f , which, in turn, are inductively defined over [0,1]|L0|: first by π (Algorithm 1, line

S. Preto & M. Finger 73

Algorithm 2 NN2PWL-R: recursive routine called by NN2PWL

Input: A tuple ΞN = ⟨Ξ1, . . . ,Ξ|LΛ|⟩, a ReLU-TId neural network N, for which LN = {L0, . . . ,LΛ}, with
a distinguished layer Li ̸= L0, a set of inequalities Ω and a tuple of linear functions f = ⟨ f1, . . . , f|Li−1|⟩.

1: if Li ̸= LΛ then
2: for ▷◁∈ {≤,≥}|Li| do
3: Ωi

▷◁ := Ω∪{ f i
j ◦ f (x) ▷◁ j 0 | j = 1, . . . , |Li|};

4: f i
▷◁ := ⟨χ|L0|(▷◁1) · (f i

1 ◦ f), . . . ,χ|L0|(▷◁|Li|) · (f i
|Li| ◦ f)⟩;

5: NN2PWL-R(ΞN ∥ Li+1,Ω
i
▷◁, f i

▷◁);
6: end for
7: else
8: for k = 1, . . . , |LΛ| do
9: Ω≤ := Ω∪{ f Λ

k ◦ f (x)≤ 0};
10: Ξk := Ξk ∪{⟨κ |L0|

0 ,Ω≤⟩};
11: Ω≶ := Ω∪{ f Λ

k ◦ f (x)≥ 0, f Λ
k ◦ f (x)≤ 1};

12: Ξk := Ξk ∪{⟨ f Λ
k ◦ f ,Ω≶⟩};

13: Ω≥ := Ω∪{ f Λ
k ◦ f (x)≥ 1};

14: Ξk := Ξk ∪{⟨κ |L0|
1 ,Ω≥⟩};

15: end for
16: end if

4) in the first call of NN2PWL-R (Algorithm 1, line 5); then, by f i
▷◁, for i ∈ {2, . . . ,Λ} (Algorithm 2, line

4) in the following Λ− 1 calls of NN2PWL-R (Algorithm 2, line 5). Let x ∈ [0,1]|L0|; note that among
the possibilities for inequalities to be added in each step of the construction of regions, there is certainly
one that is satisfied by x. Thus, with the suitable configuration of symbols, there is a region Ω of Ξk
built such that x ∈ Ω. Now, in the construction of two regions Ω′ and Ω′′ of Ξk, with Ω′ ̸= Ω′′, there is
some step where the added inequalities differ for Ω′ and Ω′′ for the first time. Such differing inequalities
guarantee that Ω′◦∩Ω′′◦ =∅, whether they appear in an intermediate step or the final one. ■

Lemma 2 Let a ReLU–TId neural network N, for which LN = {L0, . . . ,LΛ}, be given as input to Al-
gorithm 1 and let Ξk be an entry in the outputted tuple ΞN for which ⟨p,Ω⟩ ∈ Ξk. If x ∈ Ω, then
N(x)k = p(x). 2

PROOF Let x ∈ Ω. Note that Ω = Ω[0,1]∩Ω1
▷◁∩ ·· ·∩ΩΛ−1

▷◁ ∩Ω▷◁ and Ω[0,1] ⊇ Ω1
▷◁ ⊇ ·· · ⊇ ΩΛ−1

▷◁ ⊇ Ω▷◁,
where Ωi

▷◁ is such that ▷◁∈ {≤,≥}|Li| and Ω▷◁ ∈ {Ω≤,Ω≶,Ω≥}. Then, as x ∈ Ω[0,1], x ∈ [0,1]|L0|. Also,
as x ∈ Ωi

▷◁, for i ∈ {1, . . . ,Λ− 1}, the tuples of functions f i
▷◁ defined in line 4 of Algorithm 2, given as

arguments in the recursive call of NN2PWL-R, are such that f i
▷◁(x) = Li ◦ · · · ◦L1(x). Indeed, as x ∈ Ω1

▷◁,
x satisfies the inequalities

f 1
1 (x) = f 1

1 ◦π(x) ▷◁1 0, . . . , f 1
|L1|(x) = f 1

|L1| ◦π(x) ▷◁|L1| 0.

Then, we have that

f 1
▷◁(x) = ⟨χ(▷◁1) · f 1

1 ◦π(x), . . . ,χ(▷◁|L1|) · f 1
|L1| ◦π(x)⟩= ⟨ReLU(f 1

1 (x)), . . . ,ReLU(f 1
|L1|(x))⟩= L1(x).

Now, let us assume that f i
▷◁(x) = Li ◦ · · · ◦L1(x), for x ∈ Ω. As, in particular, x ∈ Ωi+1

▷◁ , x satisfies the
inequalities

f i+1
1 ◦ f i

▷◁(x) = f i+1
1 ◦Li ◦ · · · ◦L1(x) ▷◁1 0, . . . , f i+1

|Li+1| ◦ f i
▷◁(x) = f i+1

|Li+1| ◦Li ◦ · · · ◦L1(x) ▷◁|Li+1| 0,

74 Regional, Lattice and Logical Representations of Neural Networks

it follows that

f i+1
▷◁ (x) = ⟨χ(▷◁1) · f i+1

1 ◦Li ◦ · · · ◦L1(x), . . . , χ(▷◁|L1|) · f i+1
|L1| ◦Li ◦ · · · ◦L1(x)⟩

= ⟨ReLU(f i+1
1 ◦Li ◦ · · · ◦L1(x)), . . . , ReLU(f i+1

|L1| ◦Li ◦ · · · ◦L1(x))⟩

= Li+1 ◦ · · · ◦L1(x).

Finally, in case Ω▷◁ = Ω≶ (Algorithm 2, line 11), as, in particular, x ∈ Ω≶, we have that

0 ≤ f Λ
k ◦LΛ−1 ◦ · · · ◦L1(x)≤ 1.

Therefore,
N(x)k = TId(f Λ

k ◦LΛ−1 ◦ · · · ◦L1(x)) = f Λ
k ◦LΛ−1 ◦ · · · ◦L1(x) = p(x).

The other cases where Ω is either Ω≤ or Ω≥ are similar. ■

Theorem 1 (Correctness) Let a ReLU–TId neural network N, for which LN = {L0, . . . ,LΛ}, be given
as input to Algorithm 1 and let ΞN = ⟨Ξ1, . . . ,Ξn⟩ be its output. Then, each entry Ξk in ΞN codifies a
rational McNaughton function in the pre-closed regional format which is exactly the function computed
by N through the path to its k-th output node. 2

PROOF By construction and Lemma 1, regions in Ξk comply to the properties of pre-closed regional
format. Lemma 2 establishes that evaluation via Ξk is the same as via the k-th output node. Since
the function computed via the k-th output node is a composition of continuous functions—both linear
functions associated to nodes of N and activation functions—, it is a continuous function. Therefore,
entries in the tuple ΞN codify continuous functions which are rational McNaughton functions. ■

Corollary 1 ReLU–TId neural networks are ν-rational McNaughton neural networks, where ν = |LΛ|.2

3.1 Decreasing the execution time of the base algorithm

The base algorithm just introduced has the downside to be exponential in the number of nodes of a
given neural network. For a neural network N with LN = {L0, . . . ,LΛ}, we have seen that it computes
3|LΛ|× 2|L1|+···+|LΛ−1| regions. However, many of such regions may be the empty set, which makes the
outputs of the base algorithm examples of degenerate codification in pre-closed regional format.
Example 3 In a configuration of symbols where we associate ≥ to n1

1 and ≤ to n1
2 in the neural network

E in Example 1, the corresponding inequalities 4
3 x1 − x−2 ≥ 0 and x1 − x2 +

1
2 ≤ 0 together, related to

the first layer L1, determine the empty set. 2

In the step-by-step construction of a region Ω =∅ by the base algorithm, there is some step from the
second when equations are added to the current polyhedron turning it into the empty set. In view of that,
the first addition proposed for decreasing the execution time of the base algorithm consists in:

• Conditioning the call of NN2PWL-R in line 5 of Algorithm 2 by placing it within the scope of an
if-statement that verifies whether Ωi

▷◁ ̸=∅;

• Conditioning the addition of new pairs ⟨p,Ω▷◁⟩, for all ▷◁ ∈ {≤,≶,≥}, to tuple ΞN in lines 10, 12
and 14 of Algorithm 2 by placing these commands within the scope of if-statements that verify
whether Ω≤ ̸=∅, Ω≶ ̸=∅ and Ω≥ ̸=∅.

Verifying whether Ω▷◁ ̸=∅ might significantly decrease the running time of the translation algorithm
in practice. Indeed, each true statement Ω▷◁ ̸= ∅ occurring in the the i-th step of the construction of
regions, for i ∈ {1, . . . ,Λ−1}, avoids a call of NN2PWL-R that, in the pure base algorithm, would yield

S. Preto & M. Finger 75

the computation of 3|LΛ|×2|Li+1|+···+|LΛ−1| pairs ⟨p,Ω⟩. On the other hand, verifying whether Ω≤ ̸= ∅,
Ω≶ ̸=∅ or Ω≥ ̸=∅ in the last step of the construction of regions only prevents the algorithm to add pairs
with empty regions to the regional format codification, which, nevertheless, makes the final representative
tuple ΞN smaller.

A possible way to verify whether a polyhedron Ω given as in (3) is nonempty is by applying the
known polynomial techniques used to verify whether a linear optimization program constrained by Ω is
feasible [2].

For another method for easing the execution time of the base algorithm, observe that, for a layer Li,
for i ∈ {1, . . . ,Λ− 1}, each of the hyperplanes f i

j(x) = 0 related to nodes ni
j of Li, for j ∈ {1, . . . , |Li|},

divides the euclidean space R|L0| in two half-spaces determined by the inequalities f i
j(x)≥ 0 and f i

j(x)≤
0. Each of these inequalities is added to half of the 2|Li| polyhedra generated in the first for-loop of
Algorithm 2 (lines 2 to 6); these are the polyhedra generated in the i-th step of the construction of regions.
Now, note that if the hyperplane f i

j(x) = 0 does not intercept the interior of the unit cube [0,1]|L0|, half of
the new generated polyhedra are certainly empty. For instance, the hyperplane x1 + x2 −2 = 0 does not
intercept [0,1]|L0|. Thus, although the half-space given by x1 + x2 − 2 ≤ 0 contains the entire unit cube
[0,1]|L0|, the half-space given by x1 + x2 −2 ≥ 0 does not intersect it; so, if x1 + x2 −2 ≥ 0 is added to a
polyhedron in some step of the construction of regions by the base algorithm, the regions generated from
such polyhedron will be the empty set.

Thus, for the step related to layer Li, for i ∈ {1, . . . ,Λ}, in the construction of regions, the proposed
method consists in building a set I ⊆ {≤,≥}|Li| to be iterated instead of the set {≤,≥}|Li| in the for-loop
beginning in line 2 of Algorithm 2, so avoiding the generation of empty polyhedra. For that, we compute
I = I1 ×·· ·× I|Li| where, for j ∈ {1, . . . , |Li|},

I j =

{≥,≤}, if f i

j(x) = 0 intercepts the interior of [0,1]|L0|

{≤}, if f i
j(x)≤ 0 contains the entire [0,1]|L0|

{≥}, if f i
j(x)≥ 0 contains the entire [0,1]|L0|

Determining which is the case for each I j may be done by solving both of the following maximization
and minimization linear programs, which are known to be solvable in polynomial time [2]:

max/min f i
j(x)

subject to [0,1]|L0|

Let M and m respectively be the maximum and the minimum optimum values of the linear programs
above. Then: if M ≥ 0 and m ≤ 0 or if M ≤ 0 and m ≥ 0, f i

j(x) = 0 intercepts [0,1]|L0|; if M ≥ 0 and
m ≥ 0, f i

j(x) ≥ 0 contains [0,1]|L0|; and if M ≤ 0 and m ≤ 0, f i
j(x) ≤ 0 contains [0,1]|L0|. The overall

execution time of the translation algorithm, even with an additional routine for building I, might be
significantly smaller than the time for the original base algorithm. In fact, let J ⊆ {1, . . . , |Li|} be the set
of indexes such that I j ̸= {≤,≥} if, and only if, j ∈ J; then, the for-loop beginning in line 2 of Algorithm
2 has 2|Li|−|J| iterations instead of 2|Li|.

Combining both of the methods described in this section with the base translation algorithm makes
it compute exactly the same pairs ⟨p,Ω⟩ that it would compute without such methods with the exception
of the ones for which Ω =∅. Therefore, we are able to establish the following result.
Theorem 2 Replacing the routine NN2PWL-R for a version of it that includes the methods proposed in
this section maintains the correctness of Algorithm 1 established in Theorem 1. 2

76 Regional, Lattice and Logical Representations of Neural Networks

Figure 5: Experiments increasing the number of layers

4 Experiments and Results

We perform experiments for measuring the complexity of pre-closed regional format encodings of ran-
domly generated ReLU–TId neural networks by counting the number of nonempty regions in them. All
weights of the neural networks have the form i+ d, where both i and d are uniformly generated from
{−1,0,1} and [0,1), respectively.

For each encoding in pre-closed regional format, we also evaluate its degree of satisfiability of the
lattice property by counting the number of pairs of regions ⟨Ωi,Ω j⟩ for which there is no linear piece
pk such that pi is above pk over Ωi and pk is above p j over Ω j, that is the number of pairs ⟨Ωi,Ω j⟩ that
falsifies lattice property. If the counting is 0, such an encoding completely satisfies lattice property; the
higher the count the further from satisfying lattice property the encoding is.

Implementations of NN2PWL, including the methods for decreasing its execution time, and a neural
network generator were developed for the experiments; the source code is publicly available.2

In the first batch of experiments, for a fixed value h, ReLU–TId neural networks with h input neurons,
h neurons in each hidden layer and one output neuron are generated. Such random generation is done
in such a way that the neural networks are partitioned in L classes, each containing n neural networks
with l hidden layers, for l ∈ {1, . . . ,L}. We ran such experiment for two parameter setups: h = 4, L = 6,
n = 50 and h = 5, L = 10, n = 25. Figure 5 depicts the average number of regions extracted from the
neural networks in each class of l hidden layers.

In order to analyze whether the results of the previous experiments depend on the distribution of

2http://github.com/spreto/reluka

http://github.com/spreto/reluka

S. Preto & M. Finger 77

Figure 6: Experiments increasing the number of neurons per layer

neurons per layer, in the second batch of experiments, ReLU–TId neural networks with a fixed number
l of hidden layers and one output neuron are generated. Now, the randomly generated neural networks
are partitioned in M classes, each containing n neural networks with m input neurons and m neurons in
each of their hidden layers, for m ∈ {1, . . . ,M}. We ran such experiment for two parameter setups: l = 4,
M = 6, n = 50 and l = 5, M = 10, n = 25. Figure 6 depicts the average number of regions extracted from
the neural networks in each class of m neurons in the input layer and per hidden layer.

Note that the first experiment in both batches of experiments are related: for l = m, neural networks
in a class with l layers (first experiment, first batch) have the same number of neurons than the neural
networks in a class with m nodes per layer (first experiment, second batch). The same relation may be
seen between the second experiments of each batch.

In all experiments, we may see that the average number of regions increases as long as the number
of neurons increases. However, while such variation in the number of regions is smooth for varying the
number of layers, a sharp variation may be perceived for varying the number of neurons per layer. A
neural network with 5 hidden layers and 10 neurons in each of them (50 neurons in all hidden layers)
achieved the maximum number of 1852 regions among all neural networks generated. For comparison,
among the neural networks with 50 neurons distributed in 10 hidden layers (5 neurons per hidden layer),
the maximum number of regions achieved is 228. And among all the neural networks with more than 5
hidden layers, but only 5 neurons in each of them, the maximum number of regions achieved is 446 (in
a neural network with 7 hidden layers).

Regarding lattice property, among all 1100 ReLU–TId neural networks that were generated in all
experiments, only one failed to satisfy it. Such neural network has 5 neurons in each of its 5 hidden
layers (25 neurons in all hidden layers) and its pre-closed regional format encoding has 91 regions and

78 Regional, Lattice and Logical Representations of Neural Networks

fails to fulfill lattice property for 36 pairs of regions ⟨Ωi,Ω j⟩.

5 Conclusions

We have proposed an algorithm for translating ReLU–TId neural networks into the pre-closed regional
format, which is a more interpretable representation than the traditional graph one. We also proposed
methods for decreasing the computation time of the base algorithm and proved that ReLU–TId neural
networks are ν-rational McNaughton neural networks.

Empirically, we measured the complexity of pre-closed regional format encodings of randomly gen-
erated ReLU–TId neural networks by counting the number of nonempty regions in such encodings. We
could verify a bigger increase in the number of regions in the encodings with wider, but fewer, layers
than in the encodings with more, but thinner, layers. The fast increase of curves in Figure 6, related to the
variation in the size of a fixed number of layers, points to the high complexity of regional representation.
Therefore, the reported results foresee scaling issues in the regional representation of real-world neural
networks, which often are larger than those generated in our investigation.

We have also investigated the degree of satisfiability of the lattice property by the neural networks
generated in our experiments. The results empirically indicate that the outputs of NN2PWL lacking lattice
property are a very rare event. Only one of the neural networks generated do not fulfill such a property.

For the future, approximate and less complex regional representations might be pursued. A possible
path is to establish the reasonability of allowing encodings not satisfying lattice property as approxi-
mations of neural networks. From an exact perspective, one might investigate efficient procedures for
turning a rational McNaughton function encoding in pre-closed regional format into closed regional for-
mat.

Funding

This work was carried out at the Center for Artificial Intelligence (C4AI-USP), with support by the São
Paulo Research Foundation (FAPESP) [grant #2019/07665-4] and by the IBM Corporation. This study
was financed in part by the São Paulo Research Foundation (FAPESP) [grants #2021/03117-2 to S.P.,
#2015/21880-4 and #2014/12236-1 to M.F.]; and the National Council for Scientific and Technological
Development (CNPq) [grant PQ 303609/2018-4 to M.F.].

References
[1] Brendon G. Anderson, Samuel Pfrommer & Somayeh Sojoudi (2023): Tight Certified Robustness via Min-

Max Representations of ReLU Neural Networks. In: 2023 62nd IEEE Conference on Decision and Control
(CDC), pp. 6348–6355, doi:10.1109/CDC49753.2023.10383700.

[2] Dimitris Bertsimas & John N. Tsitsiklis (1997): Introduction to linear optimization. Athena scientific series
in optimization and neural computation, Athena Scientific.

[3] Davide Castelvecchi (2016): Can we open the black box of AI? Nature 538(7623), pp. 20–23,
doi:10.1038/538020a.

[4] Roberto L.O. Cignoli, Itala M.L. D’Ottaviano & Daniele Mundici (2000): Algebraic Foundations of Many-
Valued Reasoning. Trends in Logic, Springer Netherlands, doi:10.1007/978-94-015-9480-6.

[5] Marcelo Finger (2020): Logic in Times of Big Data. In J. Acacio de Barros & Décio Krause, editors: A True
Polymath: A Tribute to Francisco Antonio Doria, College Publications, pp. 184–198.

https://doi.org/10.1109/CDC49753.2023.10383700
https://doi.org/10.1038/538020a
https://doi.org/10.1007/978-94-015-9480-6

S. Preto & M. Finger 79

[6] Marcelo Finger & Sandro Preto (2020): Probably Partially True: Satisfiability for Łukasiewicz Infinitely-
Valued Probabilistic Logic and Related Topics. Journal of Automated Reasoning 64(7), pp. 1269–1286,
doi:10.1007/s10817-020-09558-9.

[7] Brunella Gerla (2001): Rational Łukasiewicz Logic and DMV-algebras. Neural Network World 11(6), pp.
579–594, doi:10.48550/arXiv.1211.5485

[8] Ian Goodfellow, Yoshua Bengio & Aaron Courville (2016): Deep Learning. MIT Press.
[9] R. McNaughton (1951): A Theorem About Infinite-Valued Sentential Logic. Journal of Symbolic Logic 16,

pp. 1–13, doi:10.2307/2268660.
[10] Daniele Mundici (1994): A constructive proof of McNaughton’s theorem in infinite-valued logic. The Journal

of Symbolic Logic 59(2), pp. 596–602, doi:10.2307/2275410.
[11] Sandro Preto & Marcelo Finger (2020): An Efficient Algorithm for Representing Piecewise Lin-

ear Functions into Logic. Electronic Notes in Theoretical Computer Science 351, pp. 167–186,
doi:10.1016/j.entcs.2020.08.009. Proceedings of LSFA 2020, the 15th International Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2020).

[12] Sandro Preto & Marcelo Finger (2022): Efficient representation of piecewise linear functions into
Łukasiewicz logic modulo satisfiability. Mathematical Structures in Computer Science 32(9), pp. 1119–1144,
doi:10.1017/S096012952200010X.

[13] Sandro Preto & Marcelo Finger (2023): Effective Reasoning over Neural Networks Using Łukasiewicz Logic.
In Pascal Hitzler, Md Kamruzzaman Sarker & Aaron Eberhart, editors: Compendium of Neurosymbolic
Artificial Intelligence, chapter 28, Frontiers in Artificial Intelligence and Applications 369, IOS Press, pp.
609–630, doi:10.3233/FAIA230160.

[14] Sandro Preto & Marcelo Finger (2023): Proving properties of binary classification neural networks via
Łukasiewicz logic. Logic Journal of the IGPL 31(5), pp. 805–821, doi:10.1093/jigpal/jzac050.

[15] Haakon Robinson, Adil Rasheed & Omer San (2019): Dissecting deep neural networks. arXiv preprint
arXiv:1910.03879, doi:10.48550/arXiv.1910.03879

https://doi.org/10.1007/s10817-020-09558-9
https://doi.org/10.48550/arXiv.1211.5485
https://doi.org/10.2307/2268660
https://doi.org/10.2307/2275410
https://doi.org/10.1016/j.entcs.2020.08.009
https://doi.org/10.1017/S096012952200010X
https://doi.org/10.3233/FAIA230160
https://doi.org/10.1093/jigpal/jzac050
https://doi.org/10.48550/arXiv.1910.03879

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on
Logical and Semantic Frameworks with Applications (LSFA’24)
EPTCS 421, 2025, pp. 80–97, doi:10.4204/EPTCS.421.5

© M. Ayala-Rincón, M. Fernández,
D. Nantes-Sobrinho & D. Santaguida
This work is licensed under the
Creative Commons Attribution License.

Nominal Equational Rewriting and Narrowing

Mauricio Ayala-Rincón
University of Brasília, Brazil

Maribel Fernández
King’s College London, UK

Daniele Nantes-Sobrinho
University of Brasília, Brazil

Imperial College London, UK

Daniella Santaguida*

University of Brasília, Brazil

Narrowing is a well-known technique that adds to term rewriting mechanisms the required power to
search for solutions to equational problems. Rewriting and narrowing are well-studied in first-order
term languages, but several problems remain to be investigated when dealing with languages with
binders using nominal techniques. Applications in programming languages and theorem proving re-
quire reasoning modulo α-equivalence considering structural congruences generated by equational
axioms, such as commutativity. This paper presents the first definitions of nominal rewriting and
narrowing modulo an equational theory. We establish a property called nominal E-coherence and
demonstrate its role in identifying normal forms of nominal terms. Additionally, we prove the nomi-
nal E-Lifting theorem, which ensures the correspondence between sequences of nominal equational
rewriting steps and narrowing, crucial for developing a correct algorithm for nominal equational uni-
fication via nominal equational narrowing. We illustrate our results using the equational theory for
commutativity.

1 Introduction

The nominal framework [15] has emerged as a promising approach for dealing with languages involving
binders such as lambda calculus and first-order logic. In this framework, equality coincides with the
α-equivalence relation, denoted as ≈α , and freshness constraints are integrated within the nominal rea-
soning rather than being relegated to the meta-language. For example, the expression a#M (“a is fresh
for M”) indicates that if a name a occurs in a term M, it must be abstracted by some binder, such as the
λ in the lambda calculus, or ∃,∀-quantification in first-order logic, i.e., a cannot occur free in M.

To enable reasoning within this framework, nominal unification [11, 22] was developed and for-
malised in proof assistants such as Isabelle [22], PVS [8] and Coq [4]. Nominal unification involves
finding a substitution σ that solves the problem s ?≈? t, meaning sσ ≈α tσ , where s and t are nominal
terms. It is well-known that unification is fundamental for automated reasoning, serving as the founda-
tion for resolution-based proof assistants, type inference, and numerous other applications. While these
applications are anticipated to extend to nominal unification, substantial work is required to verify this.

To pursue applications of the nominal framework, extensions of nominal unification with equational
theories have been investigated. Initial efforts included integrating the theories of Associativity (≈α,A),
Commutativity (≈α,C) and Associativity-Commutativity (≈α,AC) to α-equality [4]. Various algorithms
for nominal unification modulo commutativity (C-unification) and formalisations of their correctness
in proof assistants PVS and Coq have been developed [1, 2, 7, 5]. These development efforts reveal
significant differences between first-order and nominal languages, such as the theory of C-unification,
which has nullary unification type if α-equivalence is considered [1], contrasting with the finitary type
of first-order C-unification [10].

*Author funded by Capes.

http://dx.doi.org/10.4204/EPTCS.421.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 81

Further investigations into nominal unification include exploring a letrec constructor and extensions
involving atom variables [21]. Another example is the development of an algorithm for nominal C-

matching [3], a special case of nominal C-unification (dealing with problems s ?
C
≈? t where the substi-

tution σ only applies in one side: sσ ≈α,C t). Recently, a naive nominal extension of the Stickel-Fages
first-order AC-unification algorithm introduced cyclicity in solutions produced by translations of unifi-
cation problems to Diophantine systems as reported in [9], and this differs from the original (first-order)
approach which has a terminating algorithm.

These developments underline the complexity of extending equational unification algorithms to the
nominal framework, and new methods need to be proposed to obtain the desired extensions. An al-
ternative approach to solving nominal unification problems modulo equational theories (i.e., nominal
E-unification problems), developed in [6], involves the use of nominal narrowing1. This technique can
be used when the equational theory E is presented by a convergent nominal rewriting system [14, 12].
Different extensions are needed for rewriting modulo E when such a presentation is impossible. How-
ever, nominal techniques modulo an equational theory E, and in particular, nominal E-rewriting, remain
unexplored.

This work represents the first step towards developing nominal E-techniques, when using a con-
vergent nominal rewrite system equivalent to the theory E is not possible. In first-order term lan-
guages [18, 23, 13], the standard technique is to split a set of identities T into a term rewriting system
R and an equational part E, so that T = R∪E, considering the rewriting relation generated by R on the
equivalence classes of terms generated by E. We propose extending this technique to nominal languages
by adapting the notions of nominal rewriting [14, 20, 19] and nominal narrowing [6] to work modulo E,
incorporating the relation ≈α,E. These extensions result in the first definitions of nominal R/E-rewriting
(Definition 3.1) and R,E-rewriting (Definition 3.2) as well as E-narrowing (Definition 3.8).

Nominal R/E-rewriting applies rules from R in the equivalence class modulo ≈α,E of a nominal term
t, while R,E-rewriting uses nominal E-matching to determine if a rule in R applies to a nominal term, say
t. This nominal term t may have variables, thus the definition of the relations R/E and R,E also feature
freshness conditions. We prove that it is possible to identify the normal form of a nominal term, say t,
with respect to the relation R/E (denoted t ↓R/E) to the normal form of the same term, but with respect
to the relation R,E (that is, t ↓R,E), when the relation R,E has a property called nominal E-coherence,
whose extension from a corresponding property in first-order term language [17] is established here.

Proving the correspondence between sequences of nominal R,E-rewriting steps and E-narrowing
steps (Nominal E-Lifting Theorem 4.6) is essential to develop an algorithm for nominal T-unification
via nominal E-narrowing. Since the decidability of nominal T-unification relies on the decidability
of nominal E-unification and E-matching, and so far, the only equational theory for which a nominal
unification algorithm exists is commutativity C, a corollary of our developments is that the nominal C-
Lifting Theorem holds. Finally, due to the volume of extensions that were necessary to establish nominal
E-narrowing and rewriting, the final goal of using E-narrowing as a sound and complete procedure for
solving nominal T-unification, remains ongoing work.

Summarising, our main contributions are:

1. We extend the definitions and concepts regarding rewriting modulo E to the nominal framework.
For instance, we have nominal versions of the relations →R,E and →R/E for rewriting, and⇝R,E

for nominal E-narrowing.

1Roughly, nominal narrowing is a generalisation of nominal rewriting by using nominal unification instead of nominal
matching in its definition.

82 Nominal Commutative Rewriting and Narrowing

2. We prove technical auxiliary results relating →R,E and →R/E. These required the establishment of
the nominal E-coherence property for R,E.

3. We prove the nominal E-Lifting Theorem (cf. Theorem 4.6) that establishes a correspondence
between sequences of nominal E-narrowing⇝R,E and nominal R,E-rewriting →R,E.

4. Since C is the only equational theory for which a nominal unification algorithm exists, we illustrate
our results using nominal R,C-rewriting and narrowing.

Organisation. In §2 we present the background necessary to read the paper. Novel material starts in §3,
where we extend the notions of rewriting and narrowing modulo an equational theory E to the nominal
framework and provide some examples. In §4 we present the classical Lifting Theorem, extended to the
nominal framework, taking into account an equational E for which a nominal E-unification algorithm
exists. §5 concludes the paper.

2 Preliminaries

While we assume the reader’s familiarity with nominal techniques, we briefly recap some basic defini-
tions. For more details, we refer to [14]. In this (and the following) section(s), we will use ≡ for syntactic
equality, = for definitions and ≈α for α-equality.

Syntax. Fix countable infinite pairwise disjoint sets of atoms A = {a,b,c, . . .} and variables X =
{X ,Y,Z, . . .}. Atoms follow the atom convention: atoms a,b,c, . . . over A represent different names. Let
Σ be a finite set of term-formers disjoint from A and X such that for each f ∈ Σ, a unique non-negative
integer n (arity of f) is assigned. A permutation π is a bijection on A with finite domain, i.e., the set
dom(π) = {a ∈ A | π(a) ̸= a} is finite. The identity permutation is denoted id. The composition of
permutations π and π ′ is denoted π ◦π ′ and π−1 denotes the inverse of the permutation π .

Nominal terms are defined inductively by the grammar:

s, t,u ::= a | π ·X | [a]t | f (t1, . . . , tn),

where a is an atom, π ·X is a (moderated/suspended) variable, [a]t is the abstraction of a in the term
t, and f (t1, . . . , tn) is a function application with f ∈ Σ and f : n. We abbreviate id ·X as X . A term is
ground if it does not contain (moderated) variables. A position C is defined as a pair (s,_) of a term
and a distinguished variable _ ∈ X that occurs exactly once in s. We write C[s′] for C[_ 7→ s′] and if
s ≡ C[s′], we say that s′ is a subterm of s with position C. The root position will be denoted by C= [_].

Remark 2.1 (Positions). Our definition of ‘position’ is equivalent to the standard notion of a point in the
abstract syntax tree of a term, as defined, for example, in [10]. It is more convenient for us to identify
this with the corresponding ‘initial segment’ of a nominal term, in which the ‘hole’ is a variable in X ;
thus positions of a term can be expressed within our language.

A permutation action of π on a term t is defined by induction on the term structure as expected:

π ·a= π(a) π ·(π ′ ·X)= (π ◦π
′) ·X π · [a]t = [π ·a](π ·t) π · f (t1, . . . , tn)= f (π ·t1, . . . ,π ·tn).

The difference set of two permutations ds(π,π ′) := {n | π ·n ̸= π ′ ·n}. So ds(π,π ′)#X represents the
set of constraints {n#X | n ∈ ds(π,π ′)}. For example, if π = (a b)(c d) and π ′ = (c b), then ds(π,π ′) =

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 83

(# atom)
∆ ⊢ a#b ∆ ⊢ a#t1 · · · ∆ ⊢ a#tn (# app)

∆ ⊢ a# f (t1, · · · , tn)

(# a[a])
∆ ⊢ a#[a]t

∆ ⊢ a#t (# a[b])
∆ ⊢ a#[b]t

(π−1 ·a#X) ∈ ∆
(# var)

∆ ⊢ a#π ·X
(≈α atom)

∆ ⊢ a ≈α a ∆ ⊢ s1 ≈α t1 · · · ∆ ⊢ sn ≈α tn (≈α app)
∆ ⊢ f (s1, · · · ,sn) ≈α f (t1, · · · , tn)

∆ ⊢ s ≈α t
(≈α [aa])

∆ ⊢ [a]s ≈α [a]t
∆ ⊢ s ≈α (a b) · t ∆ ⊢ a#t

(≈α [ab])
∆ ⊢ [a]s ≈α [b]t

ds(π,π ′)#X ∈ ∆
(≈α var)

∆ ⊢ π ·X ≈α π ′ ·X

Figure 1: Rules for # and ≈α

{a,b,c,d} since π and π ′ act differently in each atom: note that π(a) = b and π ′(a) = a. In addition,
ds(π,π ′)#X = {a#X ,b#X ,c#X ,d#X}.

A substitution θ is a mapping from a finite set of variables to terms. The substitution action tθ is
defined as follows:

aθ = a (π ·X)θ = π · (Xθ) ([a]t)θ = [a](tθ) f (t1, . . . , tn)θ = f (t1θ , . . . , tnθ).

The domain of a substitution θ is written as dom(θ), and the image is denoted as Im(θ). Therefore, if
X ̸∈ dom(θ) then Xθ = X . Also, if we restrict the domain to a certain set V ⊆ X of variables, we obtain
the substitution θ |V , the restriction of θ to V . The identity substitution is denoted Id. The composition
of two substitutions θ1 and θ2 will be denoted by simple juxtaposition as θ1θ2 and it applies to a term as
tθ1θ2 = (tθ1)θ2.

Nominal Constraints, Judgements and Rewriting. There are two kinds of constraints: s ≈α t is an
(alpha-)equality constraint and a#t is a freshness constraint which means that a cannot occur unabstracted
in t. Primitive constraints have the form a#X and ∇,∆ denote finite sets of primitive constraints. We will
use the abbreviation a,b,c#X to denote the set of freshness constraints {a#X ,b#X ,c#X}. Judgements
have the form ∆ ⊢ s ≈α t and ∆ ⊢ a#t and are derived using the rules in Figure 1.

Given a finite set of freshness constraints ∆ and a substitution θ , ∆θ consists of the set of constraints
{a#Xθ | a#X ∈∆} and ⟨∆θ⟩n f consists of the set of freshness constraints obtained after applying the rules
from Figure 1 in ∆θ , in a bottom-up manner. ⟨∆θ⟩n f is consistent when it does not contain constraints
of the form a#a. A problem Pr is a set of constraints, and we write ∆ ⊢ Pr when for all P ∈ Pr there is a
derivation proof using the rules in Figure 1, taking elements of the context ∆ as assumptions.

Example 2.1. Let Σλ = {lam,app} denote the signature whose function symbols have arities lam : 1
and app : 2. Let Pr = lam[a]app(a,X)≈α lam[b]app(b,(a c) ·X) be a problem and ∆ = {a,b,c#X} be a
context. We verify the derivability of ∆ ⊢ lam[a]app(a,X)≈α lam[b]app(b,(a c) ·X):

84 Nominal Commutative Rewriting and Narrowing

(≈α atom)
∆ ⊢ a ≈α a

a,b,c#X ∈ ∆
(≈α var)

∆ ⊢ X ≈α (a b)(a c) ·X
(≈α app)

∆ ⊢ app(a,X)≈α app(a,(a b)(a c) ·X)

(# atom)
∆ ⊢ a#b

c#X ∈ ∆ (# var)
∆ ⊢ a#(a c) ·X

(# app)
∆ ⊢ a#app(b,(a c) ·X)

(≈α [ab])
∆ ⊢ [a]app(a,X)≈α [b]app(b,(a c) ·X)

(≈α app)
∆ ⊢ lam[a]app(a,X)≈α lam[b]app(b,(a c) ·X)

A term in context ∆ ⊢ t expresses that the term t has the freshness constraints imposed by ∆. For
example, a#X ⊢ f (X ,h(b)) expresses that a cannot occur fresh in instances of X . Nominal rewriting
rules can be defined under freshness constraints, i.e., ∇ ⊢ l → r denotes a nominal rewriting rule. We
denote by R, a finite set of nominal rewriting rules.

The nominal rewriting relation →R is defined as in [14]:

s ≡ C[s′] ∆ ⊢
(
∇θ , s′ ≈α π · (lθ), C[π · (rθ)]≈α t

)
∆ ⊢ s →R t

for a substitution θ , a subterm s′ of s, a position C and a nominal rule ∇ ⊢ l → r ∈ R. We will omit the
subscript R and write only ∆ ⊢ s → t when there is no ambiguity.

Equality modulo an equational theory E. A nominal identity is a pair in context ∇ ⊢ (l,r) of nominal
terms l and r under a (possibly empty) freshness context ∇. We denote such identity as ∇ ⊢ l ≈ r. A set
E of identities induces an equational theory, which we will also denote as E.

The nominal algebra equality modulo E, denoted ∆ ⊢ s ≈α,E t, is the least transitive reflexive sym-
metric relation such that for any (∇ ⊢ l ≈ r) ∈ E, position C, permutation π , substitution θ , and fresh
context Γ (so if a#X ∈ Γ then a is not mentioned in ∆,s, t):

∆,Γ ⊢
(
∇θ , s ≈α C[π · (lθ)], C[π · (rθ)]≈α t

)
(AxE)

∆ ⊢ s ≈α,E t

Remark 2.2. We can also define ≈α,E by extending the rules of Figure 1 with the dedicated rules for the
identities defining E. For example, the identity expressing the commutativity of a function symbol fC is
C= {⊢ fC(X ,Y)≈ fC(Y,X)}. In this case, we need to add the following rule:

∆ ⊢ s0 ≈α,C ti ∆ ⊢ s1 ≈α,C t1−i i = 0,1 fC ∈ Σ
C

∆ ⊢ fC(s0,s1) ≈α,C fC(t0, t1)
(≈α,C C)

where ΣC denotes a signature of commutative function symbols. Rule (≈α app) only applies when the
function symbol f is not commutative. In addition, we need to modify the rules in Figure 1 to use ≈α,C

instead of ≈α .
Note that if we define an equational theory E using the rule (AxE), the equational theory is a congru-

ence relation, and ⊢ is compatible with substitutions by definition. However, this rule generates a lot of
redundant derivations. To avoid this, we will use specific rules for each E, as for the commutative rule in
Remark 2.2. This choice comes with a cost, now we need to prove the compatibility of ⊢ by substitution.

Definition 2.3 (E-Compatibility of ⊢ by substitutions). An equational theory E is compatible with ⊢ by
substitutions iff the following hold, whenever ⟨∆θ⟩n f is consistent.

1. If ∆ ⊢ a#t then ⟨∆θ⟩n f ⊢ a#(tθ).

2. If ∆ ⊢ s ≈α,E t then ⟨∆θ⟩n f ⊢ (sθ)≈α,E (tθ).

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 85

3. If ∆ ⊢ Pr then ⟨∆θ⟩n f ⊢ Prθ .

The next proposition guarantees the compatibility of judgements by substitutions when the theory C
for commutativity is considered. This proposition is technical and will be used in the correspondence of
one-step narrowing to one-step rewriting in Lemma 4.2.

Proposition 2.4. The equational theory C is compatible with substitutions.

Proof. By induction on the derivation of ∆ ⊢ a#t or ∆ ⊢ s ≈α,C t, using the rules of Fig. 1 extended for
≈α,C-equality.

Nominal C-unification algorithm. We consider the rule-based algorithm for nominal C-unification,
introduced in [2] and defined by the rules presented in Figure 2. The rules act on triples P = (∆,θ ,Pr),
where ∆ is a freshness context, θ is a substitution and Pr is a C-problem, i.e., a set of freshness and
≈α,C-equality constraints. We will denote the triples by P,Q,S , · · · .

Definition 2.5. (C-solution) A C-solution for a triple P = (∆,δ ,Pr) is a pair (∆′,θ) where the following
conditions are satisfied:

1. ∆′ ⊢ ∆θ ;

2. ∆′ ⊢ a#tθ , if a#t ∈ Pr;

3. ∆′ ⊢ sθ ≈α,C tθ , if s ≈α,C t ∈ Pr;

4. there is a substitution θ ′ such that ∆′ ⊢ δθ ′ ≈α,C θ .

If there is no (∆′,θ), then we say that the problem P is unsolvable. Also UC(P) denotes the set of all
C-solutions of the triple P .

Let (∆1,θ1) and (∆2,θ2) be solutions in UC(P). We say that (∆1,θ1) is more general than (∆2,θ2),
and denote it as (∆1,θ1)≤C (∆2,θ2), if there exists a substitution θ ′ such that ∆2 ⊢ Xθ1θ ′ ≈α,C Xθ2, for
all X ∈ X and ∆2 ⊢ ∆1θ ′. We write ≤V

C for the restriction of ≤C to a set V of variables.

Definition 2.6. (Nominal C-unification problem) A nominal C-unification problem (in context) is a pair

(∇ ⊢ l) ?
C
≈? (∆ ⊢ s). The pair (∆′,θ) is an C-solution, or C-unifier, of (∇ ⊢ l) ?

C
≈? (∆ ⊢ s) iff (∆′,θ) is

a C-solution of the triple P = ({∇,∆},Id,{l ≈α,C s}), that is, conditions (1)-(4) of Definition 2.5 are

satisfied. UC(∇ ⊢ l,∆ ⊢ s) denotes the set of all C-solutions of (∇ ⊢ l) ?
C
≈? (∆ ⊢ s). If ∇ and ∆ are empty

we write simply UC(l,s). A subset V ∈ UC(P) is said to be a complete set of C-solutions of P if for
all (∆1,θ1) ∈ UC(P), there exists (∆2,θ2) ∈ V such that (∆2,θ2)≤C (∆1,θ1).

The following example illustrates the use of the nominal C-unification algorithm to solve a nominal
C-unification problem.

Example 2.2. Let Σ = {h : 1, fC : 2,⊕ : 2} be a signature, where fC and ⊕ are commutative symbols,
i.e., and C = { ⊢ f C(X ,Y) ≈ fC(Y,X), ⊢ X ⊕Y ≈ Y ⊕X} be the axioms defining the theory. Con-

sider the C-unification problem (/0 ⊢ h(Y)) ?
C
≈? (/0 ⊢ h(fC([b][a]X ,X))) which has the associated triple

(/0,Id,{h(Y) ?
C
≈? h(fC([b][a]X ,X))}). By applying the rules from Figure 2 we get the following:

(/0,Id,{h(Y) ?
C
≈? h(f C([b][a]X ,X))}) =⇒(≈α,C app) (/0,Id,{Y ?

C
≈? f C([b][a]X ,X)})

=⇒(≈α,C inst) (/0,θ0 = [Y 7→ f C([b][a]X ,X)],{ f C([b][a]X ,X) ?
C≈? f C([b][a]X ,X)})

=⇒(≈α,C refl) (/0,θ0 = [Y 7→ f C([b][a]X ,X)], /0)

86 Nominal Commutative Rewriting and Narrowing

(# ab) (∆,θ ,Pr⊎{a#b}) =⇒ (∆,θ ,Pr)
(# app) (∆,θ ,Pr⊎{a# f (t1, · · · , tn)}) =⇒ (∆,θ ,Pr∪{a#t1, · · · ,a#tn})
(# a[a]) (∆,θ ,Pr⊎{a#[a]t}) =⇒ (∆,θ ,Pr)
(# a[b]) (∆,θ ,Pr⊎{a#[b]t}) =⇒ (∆,θ ,Pr∪{a#t})
(# var) (∆,θ ,Pr⊎{a#π ·X}) =⇒ ({(π−1 ·a)#X}∪∆,θ ,Pr)

(≈α,C refl) (∆,θ ,Pr⊎{s ≈α,C s}) =⇒ (∆,θ ,Pr)
(≈α,C app) (∆,θ ,Pr⊎{ f (s)n ≈α,C f (t)n}) =⇒ (∆,θ ,Pr∪

⋃
{si ≈α,C ti})

(≈α,C C) (∆,θ ,Pr⊎{ f Cs ≈α,C f Ct}) =⇒ (∆,θ ,Pr∪{s ≈α,C v}),where s = (s0,s1)

and t = (t0, t1), v = (ti, t(1−i), i = 0,1
(≈α,C [aa]) (∆,θ ,Pr⊎{[a]s ≈α,C [a]t}) =⇒ (∆,θ ,Pr∪{s ≈α,C t})
(≈α,C [ab]) (∆,θ ,Pr⊎{[a]s ≈α,C [b]t}) =⇒ (∆,θ ,Pr∪{s ≈α,C (a b) · t,a#t})
(≈α,C inst) (∆,θ ,Pr⊎{π ·X ≈α,C t}) =⇒ (∆,θ ′,Pr[X 7→ π−1 · t]∪

⋃
Y∈dom(θ ′),

a#Y∈∆

{a#Y θ ′}),

let θ ′ := θ [X 7→ π−1 · t],
if X ̸∈Var(t)

(≈α,C inv) (∆,θ ,Pr⊎{π ·X ≈α,C π ′ ·X}) =⇒ (∆,θ ,Pr∪{(π ′)−1 ◦π ·X ≈α,C X})
if π ′ ̸= Id

Figure 2: Simplification rules for # and ≈α,C. ⊎ denotes disjoint union

Thus, we get the C-solution (/0,θ0).

Now consider the C-unification problem (/0 ⊢ fC([a][b]Z,Z)) ?
C
≈? (/0 ⊢ fC([b][a]X ,X)), which has the

associated triple (/0,Id,{ fC([a][b]Z,Z)) ?
C
≈? fC([b][a]X ,X)}). Using the Nominal C-unification algo-

rithm we get the following:

(/0,Id,{ f C([a][b]Z,Z)) ?
C≈? f C([b][a]X ,X)}) =⇒(≈α,C C)

=⇒(≈α,C C) (/0,Id,{[a][b]Z ?
C
≈? [b][a]X ,Z ?

C
≈? X})

=⇒(≈α,C inst) (/0,θ1 = [Z 7→ X],{[a][b]X ?
C≈? [b][a]X ,X ?

C≈? X})

=⇒(≈α,C refl) (/0,θ1,{[a][b]X ?
C
≈? [b][a]X})

=⇒(≈α,C [ab]) (/0,θ1,{[b]X ?
C≈? (a b) · [a]X ,a#[a]X})

=⇒(# a[a]) (/0,θ1,{[b]X ?
C≈? [b](a b) ·X})

=⇒(≈α,C [bb]) (/0,θ1,{X ?
C≈? (a b) ·X}) (Fixed-point problem)

Observe that the first step uses the rule (≈α,C C), which yields two branches, but here, we are interested
in analysing only one branch.

The fixed-point problem has infinite solutions, for example:

• ({a#X ,b#X},ρ1): instances ρ1 of X that do not contain free occurrences of a or b. E.g. for
ρ1 = [X 7→ g(e)], we have Xρ1 = g(e)≈α,C g(e) = (a b) · (Xρ1).

• (/0,ρ2 = [X 7→ a⊕b]): since Xρ2 = a⊕b ≈α,C b⊕a = (a b) ·Xρ2

• (/0,ρ3 = [X 7→ (a⊕b)⊕(a⊕b)]): since Xρ3 =(a⊕b)⊕(a⊕b)≈α,C (b⊕a)⊕(b⊕a)= (a b) ·Xρ3.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 87

3 Nominal E-rewriting and E-narrowing.

In this section, we introduce our novel definitions of equational nominal rewriting systems (ENRS) and
nominal equational narrowing, sometimes abbreviated to nominal E-rewriting systems and nominal E-
narrowing.

3.1 Nominal E-rewriting

An equational nominal rewrite system (ENRS) is a set of (nominal) identities T that can be split into a
set R of nominal rewrite rules and a set E of identities. Sometimes, we will denote this decomposition as
R∪E.

Definition 3.1 (Nominal R/E-rewriting). Let T = R∪E be an ENRS. The relation →R/E is induced by
the composition ≈α,E ◦ →R ◦ ≈α,E. A nominal term-in-context ∆ ⊢ s reduces with →R/E, when a term
in its E-equivalence class reduces via →R as below:

∆ ⊢ (s →R/E t) iff there exist s′, t ′ such that ∆ ⊢ (s ≈α,E s′ →R t ′ ≈α,E t).

If ∆ ⊢ s →∗
R/E t and ∆ ⊢ s →∗

R/E u, then we say that R is E-confluent when there exist terms t ′,u′ such
that ∆ ⊢ t →∗

R/E t ′, ∆ ⊢ u →∗
R/E u′ and ∆ ⊢ t ′ ≈α,E u′. Also, R is said to be E-terminating if there is no

infinite →R/E sequence. R is called E-convergent if it is E-confluent and E-terminating.

The following example illustrates an ENRS for the set of identities that define the prenex normal
form of a first-order formula. We consider the commutativity of the connectives ∧ and ∨.

Example 3.1 (Prenex normal form rules). Consider the signature for the first-order logic Σ = {∀,∃,¬,∧,
∨}, let C = { ⊢ P∨Q ≈ Q∨P, ⊢ P∧Q ≈ Q∧P} be the commutative theory. The prenex normal form
rules can be specified by the following set R of nominal rewrite rules:

a#P ⊢ P∧∀[a]Q →∀[a](P∧Q)
a#P ⊢ P∨∀[a]Q →∀[a](P∨Q)
a#P ⊢ P∧∃[a]Q →∃[a](P∧Q)
a#P ⊢ P∨∃[a]Q →∃[a](P∨Q)

⊢ ¬(∃[a]Q)→∀[a]¬Q
⊢ ¬(∀[a]Q)→∃[a]¬Q

Note that in Definition 3.1, the relation →R/E deals with α,E-congruence classes and they are always
infinite due to the availability of names for α-renaming. Although the pure ≈α relation is decidable,
when ≈α is put together with an equational theory E which contains infinite congruence classes, the
relation →R/E may not be decidable (as in standard first-order rewriting modulo E). We will define
the nominal relation →R,E that deals with nominal E-matching instead of inspecting the whole α,E-
congruence class of a term.

Definition 3.2 (Nominal R,E-rewriting). The one-step E-rewrite relation ∆⊢ s→R,E t is the least relation
such that for any R = (∇ ⊢ l → r) ∈ R, position C, term s′, permutation π , and substitution θ ,

s ≡ C[s′] ∆ ⊢
(
∇θ , s′ ≈α,E π · (lθ), C[π · (rθ)]≈α t

)
∆ ⊢ s →R,E t

The E-rewrite relation ∆ ⊢ s→∗
R,E t is the least relation that includes →R,E and is closed by reflexivity

and transitivity of →R,E, i.e., it satisfies:

88 Nominal Commutative Rewriting and Narrowing

1. for all ∆,s,s′ we have ∆ ⊢ s →∗
R,E s′ if ∆ ⊢ s ≈α s′;

2. for all ∆,s, t,u we have that ∆ ⊢ s →∗
R,E t and ∆ ⊢ t →∗

R,E u implies ∆ ⊢ s →∗
R,E u.

If ∆ ⊢ s →∗
R,E t and ∆ ⊢ s →∗

R,E u, then we say that R,E is E-confluent when there exist terms t ′,u′

such that ∆ ⊢ t →∗
R,E t ′, ∆ ⊢ u →∗

R,E u′ and ∆ ⊢ t ′ ≈α,E u′.

A term t is said to be in R,E-normal form (R/E-normal form) whenever one cannot apply another
step of →R,E (→R/E).

Example 3.2 (Cont. Example 3.1). This example illustrates the one-step C-rewrite:

a#P′ ⊢ S′∨ (∃[a]Q′∨P′)→R,C S′∨ (∃[a](P′∨Q′))

with the rule a#P ⊢ P∨∃[a]Q →∃[a](P∨Q). In fact,

• ∆ = {a#P′} and ∇ = {a#P};

• s = S′∨ (∃[a]Q′∨P′)≡ C[∃[a]Q′∨P′]≡ C[s′];
If we fix π = id and θ = [P 7→ P′,Q 7→ Q′] we have:

• ∆ = a#P′ ⊢ a#P′ = (a#P)[P 7→ P′,Q 7→ Q′] = ∇θ ;

• s′ = ∃[a]Q′∨P′ ≈α,C (P∨∃[a]Q)[P 7→ P′,Q 7→ Q′] = lθ = π · (lθ);
• C[π · (rθ)] = C[rθ] = C[(∃[a](P ∨ Q))[P 7→ P′,Q 7→ Q′]] = C[∃[a](P′ ∨ Q′)] = S′ ∨ (∃[a](P′ ∨

Q′))≈α t

Thus, a#P′ ⊢ S′∨ (∃[a]Q′∨P′)→R,C S′∨ (∃[a](P′∨Q′)).
Since ∨ is a commutative symbol, we could reduce the initial term to three other possible terms

because we have two occurrences of the disjunction. Thus, we can “permute” the subterms inside the
rewriting modulo C.

Remark 3.3. Following the approach by Jouannaud et al. [18], E-confluence is a consequence of relating
→R/E and →R,E, which relies on a property called E-coherence which will be extended here, to the
nominal framework.

Definition 3.4 (Nominal E-Coherence). The relation ∆ ⊢ _ →R,E _ is called E-coherent iff for all t1, t2, t3
such that ∆ ⊢ t1 ≈α,E t2 and ∆ ⊢ t1 →R,E t3, there exist t4, t5, t6 such that ∆ ⊢ t3 →∗

R,E t4, t2 →R,E t5 →∗
R,E t6

and ∆ ⊢ t4 ≈α,E t6, for some ∆.

The diagram above illustrates nominal E-coherence: the dashed lines represent existentially quanti-
fied reductions.

Definition 3.5. An equational theory E is called a first-order equational theory iff E is defined via a set
of first-order axioms, i.e., identities of the form /0 ⊢ l = r, where l,r are first-order terms. First-order
terms do not contain atoms, abstractions and suspended permutations on variables.

Theorem 3.6. Let E be a first-order theory, R be a nominal rewrite system that is E-terminating and R,E
be E-confluent. Then the R,E- and R/E-normal forms of any term t are E-equal iff →R,E is E-coherent.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 89

In first-order rewriting, it is known that R,E-reducibility is decidable if E-matching is decidable.
Following Jouannaud et al. [18], the existence of a finite and complete E-unification algorithm is a suffi-
cient condition for that decidability. However, solving nominal E-unification problems has the additional
complication of dealing with α-equality, which significantly impacts obtaining finite and complete sets
of nominal E-unifiers.

Remark 3.7. Nominal C-unification is not finitary when one uses freshness constraints and substitutions
for representing solutions [2], but the type of problems that generate an infinite set of C-unifiers are fixed-

point equations π ·X?
C≈?X . For example, the nominal C-unification problem (a b) ·X?

C≈?X has solutions
[X 7→ a⊕ b], [X 7→ (a⊕ b)⊕ (a⊕ b)], . . . (Example 2.2). However, these problems do not appear in
nominal C-matching, which is finitary [3]. Thus, the relation →R,C is decidable.

3.2 Nominal E-narrowing

Now we define the nominal narrowing relation modulo E, extending previous works [6].

Definition 3.8 (Nominal E-narrowing). The one-step E-narrowing relation (∆ ⊢ s)⇝R,E (∆′ ⊢ t) is the
least relation such that for any (∇ ⊢ l → r) ∈ R, position C, term s′, permutation π , and substitution θ ,

s ≡ C[s′] ∆′ ⊢
(
∇θ , ∆θ , s′θ ≈α,E π · (lθ), (C[π · r])θ ≈α t

)
.

(∆ ⊢ s)⇝θ

R,E (∆′ ⊢ t)

where (∆′,θ) ∈ UE(∇ ⊢ l,∆ ⊢ s′). We will write only (∆ ⊢ s)⇝R,E (∆′ ⊢ t), omitting the θ , when it is
clear in the context.

The nominal E-narrowing relation (∆ ⊢ s)⇝∗
R,E (∆′ ⊢ t) is the least relation that includes⇝R,E and

is closed by reflexivity and transitivity of⇝R,E, i.e., it satisfies:

1. for all ∆,s,s′ we have (∆ ⊢ s)⇝∗
R,E (∆ ⊢ s′) if ∆ ⊢ s ≈α s′;

2. for all ∆,∆′,∆′′,s, t and u: if (∆ ⊢ s)⇝∗
R,E (∆′ ⊢ t) and (∆′ ⊢ t)⇝∗

R,E (∆′′ ⊢ u) then (∆ ⊢ s)⇝∗
R,E

(∆′′ ⊢ u).

The permutation π and substitution θ in the definition above are found by solving the nominal E-

unification problem (∇ ⊢ l) ?
E
≈? (∆ ⊢ s′).

Remark 3.9. Note that decidability of ⇝R,E relies on the existence of an algorithm for nominal E-
unification. In this work, we will focus on the theory C, for which a nominal unification algorithm
exists.

Since nominal C-narrowing uses nominal C-unification, which is not finitary when we use pairs
(∆′,θ) of freshness contexts and substitutions to represent solutions, following Remark 3.7, we conclude
that our nominal C-narrowing trees are infinitely branching. The following example illustrates these
infinite branches.

Example 3.3 (Cont. Example 2.2). Consider the signature Σ = {h : 1, fC : 2,⊕ : 2}, where fC and ⊕
are commutative symbols. Let R = { ⊢ h(Y) → Y, ⊢ fC([a][b] · Z,Z) → fC(h(Z),h(Z))} be a set of
rewrite2 rules. Let ⊢ h(fC([b][a]X ,X)) be a nominal term that we want to apply nominal C-narrowing
to. Observe that we can apply one step of narrowing, and then we obtain a branch that yields infinite
branches due to the fixed-point equation (see Figure 3).

2⊢ l → r denotes /0 ⊢ l → r.

90 Nominal Commutative Rewriting and Narrowing

Figure 3: Infinitely branching tree

The first narrowing step is /0⊢ h(fC([b][a]X ,X))⇝R,C /0⊢ fC([b][a]X ,X), using the rule ⊢ h(Y)→Y .
The substitution θ0 = [Y 7→ fC([b][a]X ,X)] was computed in Example 2.2 when solving the C-unification

problem (/0 ⊢ h(Y)) ?
C
≈? (/0 ⊢ h(fC([b][a]X ,X))).

The other infinite narrowing steps are generated due to the fixed-point equation found in the pro-

cess of solving the C-unification problem (/0 ⊢ fC([a][b]Z,Z)) ?
C
≈? (/0 ⊢ fC([b][a]X ,X)), computed in

Example 2.2. Composing the fixed-point solutions with (/0,θ1) that we had, we get the substitutions
θ1 = [Z 7→ X], θ2 = [Z 7→ X][X 7→ a⊕b] and θ3 = [Z 7→ X][X 7→ (a⊕b)⊕(a⊕b)] of our narrowing steps
in Figure 3.

The following proposition shows that each nominal narrowing step corresponds to a nominal rewrit-
ing step, using the same substitution θ .

Proposition 3.10. Let E be an equational theory for which a complete E-unification algorithm exists.
(∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1) implies ∆1 ⊢ (s0θ)→R,E s1.

Proof. Indeed, suppose we have (∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1). The narrowing step guarantees that for a
substitution θ , some permutation π , and a rule ∇ ⊢ l → r ∈ R, the following holds:

• s0 ≡ C[s′0] and ∆1 ⊢
(
∇θ , ∆0θ , s′0θ ≈α,E π · (lθ), (C[π · r])θ ≈α s1

)
.

From the items above, it is easy to verify the following:

• s0θ ≡ Cθ [s′0θ]; and ∆1 ⊢ (∇θ ′,s′0θ ≈α,E π · (lθ ′),Cθ [π · (rθ ′)]≈α s1),

and by the definition of rewrite modulo E, it implies that ∆1 ⊢ s0θ →R,E s1. We need to fix the substitution
θ used in the narrowing step as θ ′, and the result follows.

4 Nominal Lifting Theorem modulo E

In this section, we assume R∪E an ENRS such that R= {∇i ⊢ li → ri} is E-convergent NRS, E is com-
patible with ⊢ and substitutions and that there exists a complete E-unification algorithm. We want to
extend Proposition 3.10 and establish correspondence between finite sequences of nominal E-narrowing
steps and sequences of nominal E-rewriting steps. This result corresponds to the classical Lifting Theo-
rem ([16, 18, 6]) which will be extended to the nominal relations⇝R,E and →R,E. The Lifting Theorem
relates narrowing steps to rewriting steps. It is fundamental to guarantee that one can use the narrowing
relation to solve T-unification problems when T is a convergent equational theory. The extension to the
R∪E-Lifting Theorem would allow us to solve nominal unification problems modulo R∪E.

We start by defining a normalised substitution with respect to the relation →R,E:

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 91

Figure 4: Illustration of Example 4.1

Definition 4.1 (Normalised substitution w.r.t →R,E). A substitution θ is normalised in ∆ with relation
to →R,E if ∆ ⊢ Xθ is a R,E-normal form for every X . A substitution θ satisfies the freshness context ∆

iff there exists a freshness context ∇ such that ∇ ⊢ a#Xθ for each a#X ∈ ∆. In this case, we say that θ

satisfies ∆ with ∇. The minimal such ∇ is ⟨∆θ⟩n f .

The following example illustrates the technique used in the proof of Lemma 4.2.

Example 4.1. Consider the rules R3 : a#P ⊢ P∧∃[a]Q →∃[a](P∧Q) and R6 : /0 ⊢ ¬(∀[a]Q)→∃[a]¬Q.
Let (∆0 ⊢ s0)⇝

θ0
R6

(∆1 ⊢ s1)⇝
θ1
R3

(∆2 ⊢ s2) be a narrowing derivation, illustrated in Figure 4 such
that:

• ∆0 ≡ /0 and s0 ≡ P1 ∧¬(∀[b]Q1)

• ∆1 ≡ {a#Q1} and s1 ≡ P1 ∧∃[a](¬(a b) ·Q1)

• ∆2 ≡ {a#Q1,a#P1} and s2 ≡ ∃[a](P1 ∧¬(a b) ·Q1)

Let ρ be a substitution that satisfies ∆2 with ∆. Then, there exists a rewriting derivation

∆ ⊢ s0ρ0 →R,C s1ρ1 →R,C s2ρ

where ∆ ⊢ ∆0ρ0, ∆ ⊢ ∆1ρ1 and ρ0 = θ0θ1ρ , ρ1 = θ1ρ .
Supposing that ρ = [Q1 7→ ∀[a]R,P1 7→ R], and ∆ = {a#R}, we have

• ∆ ⊢ ∆2ρ = {a#Q1,a#P1}ρ = {a#∀[a]R,a#R}= {a#R}
• θ0 = [Q 7→ (a b) ·Q1] and θ1 = [P′ 7→ P1,Q′ 7→ ¬((a b) ·Q1)]

• ρ1 = θ1ρ = [P′ 7→ R,Q′ 7→ ¬((a b) · ∀[a]R),Q1 7→ ∀[a]R,P1 7→ R]

• ρ0 = θ0ρ1 = [Q 7→ (a b) · ∀[a]R,P′ 7→ R,Q′ 7→ ¬((a b) · ∀[a]R),Q1 7→ ∀[a]R,P1 7→ R]

• ∆ ⊢ ∆1ρ1 = (a#Q1)ρ1 = a#∀[a]R = /0 and ∆ ⊢ ∆0ρ0 = /0

The next result shows that the rewriting step generated by the narrowing step is preserved by appli-
cation of substitution if the theory E is compatible (Definition 2.3), that is, ⊢ is closed by substitutions.

Lemma 4.2. (⇝R,E to →R,E) Let E be compatible with ⊢ by substitutions and (∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1).
Then, for any substitution ρ that satisfies ∆1 with ∆, the following holds

∆ ⊢ (s0θ)ρ →R,E s1ρ

In particular, ∆ will be ⟨∆1ρ⟩n f .

Proof. From Proposition 3.10: (∆0 ⊢ s0)⇝θ

R,E (∆1 ⊢ s1) implies ∆1 ⊢ (s0θ)→R,E s1. By E-compatiblity
of derivability with substitutions ∆1 ⊢ s0θ →R,E s1 gives:

• (s0θ)ρ ≡ (Cθ [s′0θ])ρ = Cθρ[(s′0θ)ρ]

92 Nominal Commutative Rewriting and Narrowing

• ∆1 ⊢ ∇θ implies ⟨∆1ρ⟩n f ⊢ ∇θρ

• ∆1 ⊢ s′0θ ≈α,E π · (lθ) implies ⟨∆1ρ⟩n f ⊢ s′0θρ ≈α,E (π · (lθ))ρ = π · (lθρ)

• ∆1 ⊢ Cθ [π · (rθ)]≈α s1 implies ⟨∆1ρ⟩n f ⊢ Cθρ[π · (rθρ)] = (Cθ [π · (rθ)])ρ ≈α s1ρ

which implies that ⟨∆1ρ⟩n f ⊢ (s0θ)ρ →R,E s1ρ . Note that we need ρ satisfying ∆1 with ∆ to guarantee
that when we instantiate ∆1 we do not have any inconsistency with the freshness constraints in ∆1.

The following result (correctness) states that a finite sequence of rewriting steps exists for each finite
sequence of narrowing steps.
Lemma 4.3. (⇝∗

R,E to →∗
R,E) Let E be compatible with ⊢ by substitutions and (∆0 ⊢ s0)⇝∗

R,E (∆n ⊢ sn)
be a nominal E-narrowing derivation. Let ρ be a substitution satisfying ∆n with ∆.

(∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢ s1)⇝

θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn)

Then, there exists a nominal E-rewriting derivation

∆ ⊢ s0ρ0 →R,E . . .→R,E siρi →R,E . . .→R,E sn−1ρn−1 →R,E snρ

such that ∆ ⊢ ∆iρi and ρi = θi . . .θn−1ρ , for all 0 ≤ i < n. In other words, ∆ ⊢ (s0θ)ρ →∗
R,E snρ where

θ = θ0θ1 . . .θn−1.

Proof. By induction on the length n ≥ 1 of the narrowing derivation (∆0 ⊢ s0)⇝n
R,E (∆n ⊢ sn), using the

one-step result proved in Lemma 4.2. (We start the induction for n = 1 because the case for n = 0 holds
trivially and gives no additional insight.)

• Base Case: For n = 1, we have (∆0 ⊢ s0)⇝R,E (∆1 ⊢ s1) and by Lemma 4.2, for any ρ satisfying
∆1 with ∆ we have ∆ ⊢ (s0θ0)ρ →R,E s1ρ . Since ∆ ⊢ ∆1ρ , and by the narrowing step ∆1 ⊢ ∆0θ0,
we get ∆ ⊢ ∆0θ0ρ . Taking ρ0 = θ0ρ , we have the result ∆ ⊢ s0ρ0 →R,E s1ρ such that ∆ ⊢ ∆0ρ0.

• Induction Step: Assume that the result holds for n > 1. Then (∆0 ⊢ s0)⇝n
R,E (∆n ⊢ sn) implies

that there exists a rewriting derivation ∆ ⊢ s0ρ0 →n
R,E snρ , for some ρ satisfying ∆n with ∆ and

Figure 5 illustrates this setting.
We want to show that the result follows for n+1. Consider the narrowing step

(∆n ⊢ sn)⇝
θn
R,E (∆n+1 ⊢ sn+1).

By Lemma 4.2, for any substitution, let’s name it σ , that satisfies ∆n+1 with ∆ (H1) we have

∆ ⊢ (snθn)σ →R,E sn+1σ (1)

Take ρ = θnσ . Note that ρ satisfies ∆n with ∆:
(H1) ∆ ⊢ ∆n+1σ .
(H2) By Definition 3.8: ∆n+1 ⊢ ∆nθn.
(H3) From (H2) and E-compatibility Definition 2.3(1) generalised to E: ⟨∆n+1σ⟩n f ⊢ ∆nρ .
Thus, from (H1) and (H3) it follows that ∆ ⊢ ∆nρ . By the induction hypothesis, we have

∆ ⊢ s0θ0 . . .θn−1ρ →n
R,E snρ

with ∆ ⊢ ∆iρi and ρi = θi . . .θn−1ρ , for every i = 1, . . . ,n. Hence,

∆ ⊢ s0θ0 . . .θn−1θnσ →n
R,E snθnσ

(1)→R,E sn+1σ ,

and the result follows.

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 93

Figure 5: Corresponding Narrowing to Rewriting Derivations

The proof of the converse (completeness) is more challenging. Nevertheless, for one-step rewriting
to one-step narrowing, the result holds with no further problems:

Lemma 4.4. (→R,E to ⇝R,E) Let ∆0 ⊢ s0 be a nominal term in context and V0 a finite set of variables
containing V = V (∆0,s0). Let ρ0 be a R,E-normalised substitution, with dom(ρ0) ⊆ V , that satisfies ∆0
with ∆ and

∆ ⊢ s0ρ0 = t0 →R,E t1.

Then, there exists a nominal R,E-narrowing step

(∆0 ⊢ s0)⇝
θ

R,E (∆1 ⊢ s1),

for a substitution θ , a finite set of variables V1 ⊇ V (s0), and a R,E-normalised substitution ρ1 with ∆

such that

(i) ∆ ⊢ s1ρ1 ≈α,E t1 (ii) dom(ρ1)⊆V1 (iii) ∆ ⊢ ρ0|V ≈α,E θρ1|V

Proof. Suppose that the one-step rewriting is done in a position C0 of t0, with substitution σ and rule
R0 = ∇0 ⊢ l0 → r0 ∈ R:

(*)
t0 ≡ C0[t ′0] ∆ ⊢ ∇0σ , t ′0 ≈α,E π · (l0σ), C0[π · (r0σ)]≈α t1

∆ ⊢ t0 →[C0,R0],E t1

The following hold:

(H1) The variables of R0 are renamed with respect to t0 = s0ρ0 and ∆ (to avoid conflicts). Thus, V (R0)∩
V (∆, t0) = /0 and dom(σ)∩V0 = /0.

(H2) By hypothesis, ∆ ⊢ ∆0ρ0

(H3) Since ρ0 is normalised in ∆ and ∆ ⊢ s0ρ0 →R,E t1, there must exist a non-variable position C′
0 and

a subterm s′0 of s0 such that s0 ≡ C′
0[s

′
0] and ∆ ⊢ s′0ρ0 ≈α,E t ′0 ≈α,E π · (l0σ).

Define (H4) θ = ρ0σ . Then, we have the following:

(H5) ∆ ⊢ ∆0θ : from (H2) it follows that ∆ ⊢ ∆0ρ0 and σ does not affect ∆0 since dom(σ) =V (R0).

(H6) Note that s′0θ = s′0ρ0σ = s′0ρ0 from (H1). Therefore, ∆ ⊢ s′0θ ≈α,E π · (l0θ) and ∆ ⊢ ∇0θ , and

(∆,θ) is a solution for the nominal E-unification problem (∆0 ⊢ s′0) ?
E
≈? (∇0 ⊢ π · l0). That is,

(∆,θ) ∈ UE(∆0 ⊢ s′0,∇0 ⊢ π · l0).

94 Nominal Commutative Rewriting and Narrowing

Define s1 as s1 =C′
0[π · r0]θ and ∆1 = ∆. Conditions (H4) to (H6) imply the existence of the follow-

ing nominal E-narrowing step:
(∆0 ⊢ s0)⇝

θ

R,E (∆1 ⊢ s1).

Also ∆ ⊢ s1 = C′
0[π · r0]θ = (C′

0[π · r0])ρ0σ ≈α (C′
0ρ0)[π · r0]ρ0

(∗)
≈α t1. Take ρ1 = Id as the identity

substitution, and items (i) and (ii) follow with dom(ρ1) = /0 and V1 =V (s0). Finally, it is trivial to check
(iii): ∆ ⊢ Xρ0 ≈α,E Xθρ1 ≡ Xρ0σId, for all X ∈V , and the result follows.

Lemma 4.5. (→∗
R,E to ⇝∗

R,E) Let R∪E be an ENRS such that R is E-terminating, R,E is E-confluent
and →R,E is E-coherent. Let V0 be a finite set of variables containing V = V (∆0,s0). Then, for any
R,E-derivation

∆ ⊢ t0 = s0ρ0 →R,E t1 →R,E . . .→R,E tn = t0↓

to any of its R,E-normal forms, say t0↓, where dom(ρ0) ⊆ V (s0) ⊆ V0 and ρ0 is a R,E-normalised sub-
stitution that satisfies ∆0 with ∆, there exist a R,E-narrowing derivation

(∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢ s1)⇝

θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn)

(1) ∆ ⊢ ∆iρi; (2) ∆ ⊢ siρi ≈α,E ti; (3) ∆ ⊢ ρ0|V ≈α,E θρn|V .

where ρi = θi . . .θn−1ρ and θ = θ0θ1 . . .θn−1.

Proof. By induction on the number of steps n applied in the derivation ∆ ⊢ t0 = s0ρ0 →∗
R,E t0↓.

• Base Case: For n = 1 the result follows directly from Lemma 4.4.

• Induction Step: Let n > 1 and assume that the result holds for sequences of n−1 rewriting steps.
Then,

∆ ⊢ t0 = s0ρ0 →R,E t1
n−1︷ ︸︸ ︷→R,E . . .→R,E tn = t0↓

Now using Lemma 4.4 on the rewrite step ∆ ⊢ t0 →R,E t1. Then, we get that (∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢

s1), where ρ0 is a R,E-normalised substitution that satisfies ∆0 with ∆, and

(H1) ∆ ⊢ s1ρ1 = t ′1 ≈α,E t1; and
(H2) ∆ ⊢ ρ0|V ≈α,E θρ1|V .

Now consider the sequence to any of the normal forms of t1:

∆ ⊢ t1
n−1︷ ︸︸ ︷→R,E . . .→R,E tn = t1↓R,E

By the induction hypothesis, there exists a narrowing sequence

(∆1 ⊢ s1)⇝
θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn)

with θ = θ1 . . .θn−1, a normalised substitution ρn such that

(H3) ∆ ⊢ ∆iρi;
(H4) ∆ ⊢ siρi = t ′i ≈α,E ti, for every i;
(H5) ∆ ⊢ ρ0|V ≈α,E θρn|V .

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 95

Note that from (H4), ∆ ⊢ snρn = t ′n ≈α,E tn. Since R is E-convergent and →R,E is E-coherent, it
follows from Theorem 3.6, that all the normal forms of t0 are ≈α,E-equivalent. That is, ∆ ⊢ t ′n ≈α,E

t1 ↓R,E≈α,E t0 ↓R,E= tn. Therefore, there exists a nominal E-narrowing sequence

(∆0 ⊢ s0)⇝
θ0
R,E (∆1 ⊢ s1)⇝

θ1
R,E . . .⇝θn−1

R,E (∆n ⊢ sn).

As a consequence of Lemmas 4.3 and 4.5 we obtain:
Theorem 4.6 (E-Lifting Theorem). Let R∪E be an ENRS such that E is compatible with ⊢ by substitu-
tions, R is E-terminating, R,E is E-confluent and →R,E is E-coherent. To each finite sequence of nominal
E-rewriting steps corresponds a finite sequence of nominal E-narrowing steps, and vice versa.

Since there exists an algorithm for nominal C-unification and C is compatible with substitutions
(Proposition 2.4), we have the following result.
Corollary 4.7. The C-Nominal Lifting theorem holds.

5 Conclusion and Future Work

In this work, we proposed definitions for nominal R,E-rewriting and R,E-narrowing and proved some
properties relating them, obtaining the proof of the E-Lifting Theorem, in the case R is an E-convergent
NRS, →R,E is E-coherent and a complete algorithm for nominal E-unification exists. As C is the only
equational theory for which a complete algorithm for nominal unification exists, we illustrate our results
using this theory. Also, since the nominal C-unification problem (when using freshness constraints) only
is finitary, our nominal C-narrowing tree is infinitely branching. In future work, we plan to investigate
alternative approaches to nominal C-unification for which the representation of solutions is finite, such
as the approach using fixed-point constraints.

References
[1] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández & Daniele Nantes-Sobrinho

(2017): Nominal C-Unification. In Fabio Fioravanti & John P. Gallagher, editors: Logic-Based Program
Synthesis and Transformation - 27th International Symposium, LOPSTR 2017, Namur, Belgium, October
10-12, 2017, Revised Selected Papers, Lecture Notes in Computer Science 10855, Springer, pp. 235–251,
doi:10.1007/978-3-319-94460-9_14.

[2] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández & Daniele Nantes-Sobrinho
(2017): On Solving Nominal Fixpoint Equations. In Clare Dixon & Marcelo Finger, editors: Frontiers of
Combining Systems - 11th International Symposium, FroCoS 2017, Brasília, Brazil, September 27-29, 2017,
Proceedings, Lecture Notes in Computer Science 10483, Springer, pp. 209–226, doi:10.1007/978-3-319-
66167-4_12.

[3] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández & Daniele Nantes-Sobrinho
(2018): A Formalisation of Nominal C-Matching through Unification with Protected Variables. In Beniamino
Accattoli & Carlos Olarte, editors: Proceedings of the 13th Workshop on Logical and Semantic Frameworks
with Applications, LSFA 2018, Fortaleza, Brazil, September 26-28, 2018, Electronic Notes in Theoretical
Computer Science 344, Elsevier, pp. 47–65, doi:10.1016/j.entcs.2019.07.004.

[4] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Daniele Nantes-Sobrinho &
Ana Cristina Rocha Oliveira (2019): A formalisation of nominal α-equivalence with A, C, and AC function
symbols. Theor. Comput. Sci. 781, pp. 3–23, doi:10.1016/j.tcs.2019.02.020.

https://doi.org/10.1007/978-3-319-94460-9_14
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1007/978-3-319-66167-4_12
https://doi.org/10.1016/j.entcs.2019.07.004
https://doi.org/10.1016/j.tcs.2019.02.020

96 Nominal Commutative Rewriting and Narrowing

[5] Mauricio Ayala-Rincón, Washington de Carvalho Segundo, Maribel Fernández, Gabriel Ferreira Silva &
Daniele Nantes-Sobrinho (2021): Formalising nominal C-unification generalised with protected variables.
Math. Struct. Comput. Sci. 31(3), pp. 286–311, doi:10.1017/S0960129521000050.

[6] Mauricio Ayala-Rincón, Maribel Fernández & Daniele Nantes-Sobrinho (2016): Nominal Narrowing. In
Delia Kesner & Brigitte Pientka, editors: 1st International Conference on Formal Structures for Computation
and Deduction, FSCD 2016, June 22-26, 2016, Porto, Portugal, LIPIcs 52, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, pp. 11:1–11:17, doi:10.4230/LIPIcs.FSCD.2016.11.

[7] Mauricio Ayala-Rincón, Maribel Fernández & Daniele Nantes-Sobrinho (2018): Fixed-Point Constraints
for Nominal Equational Unification. In Hélène Kirchner, editor: 3rd International Conference on Formal
Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018, Oxford, UK, LIPIcs 108, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, pp. 7:1–7:16, doi:10.4230/LIPIcs.FSCD.2018.7.

[8] Mauricio Ayala-Rincón, Maribel Fernández & Ana Cristina Rocha Oliveira (2015): Completeness in PVS
of a Nominal Unification Algorithm. In Mario R. F. Benevides & René Thiemann, editors: Proceedings of
the Tenth Workshop on Logical and Semantic Frameworks, with Applications, LSFA 2015, Natal, Brazil,
August 31 - September 1, 2015, Electronic Notes in Theoretical Computer Science 323, Elsevier, pp. 57–74,
doi:10.1016/j.entcs.2016.06.005.

[9] Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva, Temur Kutsia & Daniele Nantes-
Sobrinho (2023): Nominal AC-Matching. In Catherine Dubois & Manfred Kerber, editors: Intelligent Com-
puter Mathematics - 16th International Conference, CICM 2023, Cambridge, UK, September 5-8, 2023,
Proceedings, Lecture Notes in Computer Science 14101, Springer, pp. 53–68, doi:10.1007/978-3-031-42753-
4_4.

[10] Franz Baader & Tobias Nipkow (1998): Term rewriting and all that. Cambridge University Press,
doi:10.1017/CBO9781139172752.

[11] Christophe Calvès & Maribel Fernández (2010): Matching and alpha-equivalence check for nominal terms.
J. Comput. Syst. Sci. 76(5), pp. 283–301, doi:10.1016/j.jcss.2009.10.003.

[12] Jesús Domínguez & Maribel Fernández (2019): Nominal Syntax with Atom Substitutions: Matching, Unifica-
tion, Rewriting. In Leszek Antoni Gasieniec, Jesper Jansson & Christos Levcopoulos, editors: Fundamentals
of Computation Theory - 22nd International Symposium, FCT 2019, Copenhagen, Denmark, August 12-14,
2019, Proceedings, Lecture Notes in Computer Science 11651, Springer, pp. 64–79, doi:10.1007/978-3-030-
25027-0_5.

[13] Santiago Escobar, José Meseguer & Ralf Sasse (2008): Variant Narrowing and Equational Unification. In
Grigore Rosu, editor: Proceedings of the Seventh International Workshop on Rewriting Logic and its Ap-
plications, WRLA 2008, Budapest, Hungary, March 29-30, 2008, Electronic Notes in Theoretical Computer
Science 238, Elsevier, pp. 103–119, doi:10.1016/j.entcs.2009.05.015.

[14] Maribel Fernández & Murdoch Gabbay (2007): Nominal rewriting. Inf. Comput. 205(6), pp. 917–965,
doi:10.1016/j.ic.2006.12.002.

[15] Murdoch Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract Syntax with Variable Binding.
Formal Aspects Comput. 13(3-5), pp. 341–363, doi:10.1007/s001650200016.

[16] Jean-Marie Hullot (1980): Canonical Forms and Unification. In Wolfgang Bibel & Robert A. Kowalski,
editors: 5th Conference on Automated Deduction, Les Arcs, France, July 8-11, 1980, Proceedings, Lecture
Notes in Computer Science 87, Springer, pp. 318–334, doi:10.1007/3-540-10009-1_25.

[17] Jean-Pierre Jouannaud (1983): Confluent and Coherent Equational Term Rewriting Systems: Application to
Proofs in Abstract Data Types. In Giorgio Ausiello & Marco Protasi, editors: CAAP’83, Trees in Algebra and
Programming, 8th Colloquium, L’Aquila, Italy, March 9-11, 1983, Proceedings, Lecture Notes in Computer
Science 159, Springer, pp. 269–283, doi:10.1007/3-540-12727-5_16.

[18] Jean-Pierre Jouannaud, Claude Kirchner & Hélène Kirchner (1983): Incremental Construction of Unification
Algorithms in Equational Theories. In Josep Díaz, editor: Automata, Languages and Programming, 10th

https://doi.org/10.1017/S0960129521000050
https://doi.org/10.4230/LIPIcs.FSCD.2016.11
https://doi.org/10.4230/LIPIcs.FSCD.2018.7
https://doi.org/10.1016/j.entcs.2016.06.005
https://doi.org/10.1007/978-3-031-42753-4_4
https://doi.org/10.1007/978-3-031-42753-4_4
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1016/j.jcss.2009.10.003
https://doi.org/10.1007/978-3-030-25027-0_5
https://doi.org/10.1007/978-3-030-25027-0_5
https://doi.org/10.1016/j.entcs.2009.05.015
https://doi.org/10.1016/j.ic.2006.12.002
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/3-540-10009-1_25
https://doi.org/10.1007/3-540-12727-5_16

M. Ayala-Rincón, M. Fernández, D. Nantes-Sobrinho & D. Santaguida 97

Colloquium, Barcelona, Spain, July 18-22, 1983, Proceedings, Lecture Notes in Computer Science 154,
Springer, pp. 361–373, doi:10.1007/BFb0036921.

[19] Kentaro Kikuchi (2022): Ground Confluence and Strong Commutation Modulo Alpha-Equivalence in Nom-
inal Rewriting. In Helmut Seidl, Zhiming Liu & Corina S. Pasareanu, editors: Theoretical Aspects of Com-
puting - ICTAC 2022 - 19th International Colloquium, Tbilisi, Georgia, September 27-29, 2022, Proceedings,
Lecture Notes in Computer Science 13572, Springer, pp. 255–271, doi:10.1007/978-3-031-17715-6_17.

[20] Kentaro Kikuchi & Takahito Aoto (2020): Confluence and Commutation for Nominal Rewriting Systems with
Atom-Variables. In Maribel Fernández, editor: Logic-Based Program Synthesis and Transformation - 30th
International Symposium, LOPSTR 2020, Bologna, Italy, September 7-9, 2020, Proceedings, Lecture Notes
in Computer Science 12561, Springer, pp. 56–73, doi:10.1007/978-3-030-68446-4_3.

[21] Manfred Schmidt-Schauß, Temur Kutsia, Jordi Levy, Mateu Villaret & Yunus D. K. Kutz (2022): Nominal
Unification and Matching of Higher Order Expressions with Recursive Let. Fundam. Informaticae 185(3),
pp. 247–283, doi:10.3233/FI-222110.

[22] Christian Urban, Andrew M. Pitts & Murdoch Gabbay (2004): Nominal unification. Theor. Comput. Sci.
323(1-3), pp. 473–497, doi:10.1016/j.tcs.2004.06.016.

[23] Emanuele Viola (2001): E-unifiability via Narrowing. In Antonio Restivo, Simona Ronchi Della Rocca
& Luca Roversi, editors: Theoretical Computer Science, 7th Italian Conference, ICTCS 2001, Torino,
Italy, October 4-6, 2001, Proceedings, Lecture Notes in Computer Science 2202, Springer, pp. 426–438,
doi:10.1007/3-540-45446-2_27.

https://doi.org/10.1007/BFb0036921
https://doi.org/10.1007/978-3-031-17715-6_17
https://doi.org/10.1007/978-3-030-68446-4_3
https://doi.org/10.3233/FI-222110
https://doi.org/10.1016/j.tcs.2004.06.016
https://doi.org/10.1007/3-540-45446-2_27

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on

Logical and Semantic Frameworks with Applications (LSFA’24)

EPTCS 421, 2025, pp. 98–111, doi:10.4204/EPTCS.421.6

Towards an Analysis of Proofs in Arithmetic

Alexander Leitsch

Institute of Logic and Computation,
TU Wien, Vienna, Austria

leitsch@logic.at

Anela Lolić *

Kurt Gödel Society

Institute of Logic and Computation,
TU Wien, Vienna, Austria

anela@logic.at

Stella Mahler †

Institute of Logic and Computation,
TU Wien, Vienna, Austria

stella@logic.at

Inductive proofs can be represented as proof schemata, i.e. as parameterized sequences of proofs

defined in a primitive recursive way. Applications of proof schemata can be found in the area of

automated proof analysis where the schemata admit (schematic) cut-elimination and the construction

of Herbrand systems. This work focuses on the expressivity of proof schemata. We show that proof

schemata can simulate primitive recursive arithmetic. The translation of proofs in arithmetic to proof

schemata can be considered as a crucial step in the analysis of inductive proofs.

1 Introduction

Mathematical induction is one of the most important principles in real mathematics, thus any substantial

and relevant approach to analyze mathematical proofs has to take into account induction. But in systems

with induction rules, essential proof theoretic concepts and transformation become problematic. In par-

ticular Gentzen’s method of cut-elimination fails for general induction proofs and Herbrand’s theorem

cannot be realized [12]. The reason is that in the cut-elimination method à la Gentzen cuts cannot be

shifted over induction rules. We will illustrate this problem on a concrete example below.

Example 1. Let P(x) denote h(x) = 0 for a primitive recursive function defined in primitive recursive

arithmetic PRA, and g(x,y) be any primitive recursive function in PRA. Moreover, let f be a unary

function and

E = { f (x,0) = x, f (x,s(y)) = s(f (x,y))}

(defining addition). Now we consider the sequent

S : ∀x(P(x)→ P(s(x))) ⊢ ∀n∀x((P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n)))).

S is not valid in pure first-order logic and does not have a Herbrand sequent w.r.t. to the theory E and

hence cannot be proven without induction. Therefore, there is no proof of S in pure first-order logic. We

need the following inductive lemma

∀x(P(x)→ P(s(x))) ⊢ ∀n∀x(P(x)→ P(f (x,n))).

A proof ϕ of this lemma is

(ϕ1)

⊢ ∀xP(x)→ P(f (x,0)))

(ϕ ′)

∀x(P(x)→ P(s(x))),∀x(P(x)→ P(f (x,0))) ⊢ ∀n∀x(P(x)→ P(f (x,n)))
cut

∀x(P(x)→ P(s(x))) ⊢ ∀n∀x(P(x)→ P(f (x,n)))

*Partially supported by FWF project I-5848-N and recipient of an APART-MINT Fellowship of the Austrian Academy of

Sciences at the Institute of Logic and Computation of the TU Wien.
†Partially supported by FWF project I-5848-N.

http://dx.doi.org/10.4204/EPTCS.421.6

Leitsch, Lolić, Mahler 99

where ϕ ′ is

(ϕ2)

∀x(P(x)→ P(f (x,0))) ⊢ ∀x(P(x)→ P(f (x,0)))

(ϕ3)

∀x(P(x)→ P(s(x))),∀x(P(x)→ P(f (x,k))) ⊢ ∀x(P(x)→ P(f (x,s(k))))
ind

∀x(P(x)→ P(f (x,0))),∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x, l)))
∀r

∀x(P(x)→ P(f (x,0))),∀x(P(x)→ P(s(x))) ⊢ ∀n∀x(P(x)→ P(f (x,n)))

and ϕ1, ϕ2, and ϕ3 are proofs without induction rules. Now we define π as

(ϕ)

∀x(P(x)→ P(s(x))) ⊢ ∀n∀x(P(x)→ P(f (x,n)))

(π1)

Sπ
cut

∀x(P(x)→ P(s(x))) ⊢ ∀n∀x((P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n))))

π1 is a proof without induction of the form

(π ′1)

P(u)→ P(f (u, i)) ⊢ (P(f (u, i))→ P(g(u, i)))→ (P(u)→ P(g(u, i)))
∀∗l∀n∀x(P(x)→ P(f (x,n))) ⊢ (P(f (u, i))→ P(g(u, i)))→ (P(u)→ P(g(u, i)))
∀∗r∀n∀x(P(x)→ P(f (x,n))) ⊢ ∀n∀x((P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n))))

Using Gentzen’s method of cut-elimination, we locate the place in the proof where ∀n is introduced.

In π1 ∀n∀x(P(x)→ P(f (x,n))) is obtained from ∀x(P(x)→ P(f (x, i))) by ∀l. In ϕ we may delete the

∀r inference yielding the cut-formula and replace l by i. But in the attempt to eliminate the formula

∀x(P(x)→ P(f (x, i))) in ϕ we get stuck, as we cannot cross the ind rule. Note that also ind cannot be

eliminated as i is a variable. This problem is not due to the specific form of ϕ nor of ind. In fact, there

exists no proof of S in LK with only atomic cuts, even if ind is used. Induction on the formula

∀n∀x((P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n))))

fails. To prove the end-sequent an inductive lemma is needed, i.e. something which implies ∀n∀x(P(x)→
P(f (x,n))) and cannot be eliminated.

There are methods for performing cut-elimination in presence of induction [2, 11], however, the

resulting proofs do not have the subformula property and Herbrand’s theorem cannot be realized. If

induction is represented via schemata of proofs (see e.g. [4, 9]) schematic cut-elimination methods can

be defined which allow the extraction of so-called Herbrand schemata, i.e. a generalization of Herbrand’s

theorem to schematic proofs. The underlying cut-elimination method is schematic Ceres [4, 9, 10], and

in [1] the method was successfully applied to Fürstenberg’s proof of the infinitude of primes, which

is a complicated proof using topological concepts (see [5]). Fürstenberg’s proof was formalized as a

first-order schema, i.e. a sequence of proofs indexed by the number of primes assumed to exist, and

schematic Ceres was applied to the entire sequence. The analysis was performed in a semi-automated

way, and major parts of the analysis had to be performed by hand. Nevertheless, the analysis showed

that from Fürstenberg’s proof Euclid’s elementary proof could be obtained. Though a fully automated

analysis of this proof is not yet within reach, this example reveals the need for the development of a

formal language for analyzing proofs with induction.

An open question has been the relation of proof schemata to systems of arithmetic. In particular

it was not known whether the classes of proofs specifiable in primitive recursive arithmetic and via

proof schemata coincide. In [8] it was shown that quantifier-free proofs in primitive recursive arithmetic

(quantifier-free PRA-proofs) can be simulated by the proof schema formalism. In this paper we gener-

alize and extend the results from [8] by considering also cases where quantifiers occur in PRA-proofs.

We demonstrate that the proof in Example 1 cannot only be formalized as a proof schema, but also its

schematic Herbrand sequent can be computed.

100 Towards an Analysis of Proofs in Arithmetic

Axiom
A ⊢ A

Γ ⊢ ∆,F Σ,F ⊢Π
cut

Γ,Σ ⊢ ∆,Π

Γ ⊢ ∆ wl
F,Γ ⊢ ∆

Γ ⊢ ∆ wr
Γ ⊢ ∆,F

F,F,Γ ⊢ ∆
cl

F,Γ ⊢ ∆

Γ ⊢ ∆,F,F
cr

Γ ⊢ ∆,F

Γ,F,G ⊢ ∆
∧l

Γ,F ∧G ⊢ ∆

Γ ⊢ ∆,F Σ ⊢Π,G
∧r

Γ,Σ ⊢ ∆,Π,F ∧G

Γ,F ⊢ ∆ Σ,G ⊢Π
∨l

Γ,Σ,F ∨G ⊢ ∆,Π

Γ ⊢ ∆,F,G
∨r

Γ ⊢ ∆,F ∨G

Γ ⊢ ∆,F
¬l

Γ,¬F ⊢ ∆

Γ,F ⊢ ∆
¬r

Γ ⊢ ∆,¬F

Γ ⊢ ∆,F Σ,G ⊢Π →l
Γ,Σ,F → G ⊢ ∆,Π

Γ,F ⊢ ∆,G
→r

Γ ⊢ ∆,F → G

Γ,F[t/x] ⊢ ∆
∀l

Γ,∀xF[x] ⊢ ∆

Γ ⊢ F [y/x],∆
∀rΓ ⊢ ∀F,∆

Γ,F[y/x] ⊢ ∆
∃lΓ,∃F ⊢ ∆

Γ ⊢ F[t/x],∆
∃rΓ ⊢ ∃F,∆

Figure 1: The rules for LK. In the rule Axiom, A is quantifier free. In the rules ∀r and ∃l the variable y,

the eigenvariable, cannot occur free in the lower sequent. In the rules ∀l and ∃r t is an arbitrary term.

Note that we use a restricted form of LK as we do not allow the application of ∀r and ∃l on induction

variables.

2 Schematic Language and PRA

In [10] and [3] schematic first-order languages were defined as a basis for inductive proof analysis. These

languages are based on primitive recursive definitions of function symbols, predicate symbols and proofs.

In this paper we focus on the language of primitive recursive arithmetic PRA as defined in [6] where we

have only the equality as predicate symbol but infinitely many function symbols. The theory contains

quantifier-free axioms and an induction rule with quantifier-free induction formulas.

We define the respective calculus as Gentzen’s LK (see Figure 1), extended by an equational theory,

and incorporating the following induction rule:

Γ ⊢ ∆,F(0) Γ,F(y) ⊢ ∆,F(y+1)
ind

Γ ⊢ ∆,F(n)

where y and n are variables of sort ω (the type of the natural numbers). y does not occur in Γ,∆,F(0)
and F is quantifier-free. Note that in [6], the induction variable is an arbitrary term. Our restriction to

a variable of sort ω is equivalent, as it is easy to see that any arbitrary term can be simulated in the

conclusion. The calculus resulting from the combination of the rules from Figure 1, an equational theory

E and ind is denoted by PRA.

The language is schematic in the sense that, in addition to successor s and constant 0̄, it contains a

countably infinite set of function symbols F (of arbitrary arity) together with primitive recursive defini-

tions of functions based on these symbols. So if g,h are in F , h is n – ary and g is n+ 2 – ary we can

Leitsch, Lolić, Mahler 101

choose an n+1 – ary symbol f and add a set of two equations

E (f) = { f (~x, 0̄) = h(~x), f (~x,s(y)) = g(~x,y, f (~x,y))}.

The function symbols in F have to be partially ordered such that in any definition E (f) as defined above

h < f and g < f . With E we denote the union of the sets E (f) for f ∈F . The minimal elements in F

must fulfill the condition that h(~x) and g(~x,y,z) can be identified with terms over the signature {s, 0̄}. As

an example we may consider the definition of + and ∗ via two binary function symbols f and g:

E (f) = { f (x, 0̄) = x, f (x,s(y)) = s(f (x,y))},

E (g) = {g(x, 0̄) = 0̄, g(x,s(y)) = f (x,g(x,y))}.

Here f < g and f is minimal. The characteristic feature of PRA is the fact that every ground term in

this language evaluates to a numeral; numerals are elements of the form sn(0̄) for n ∈ IN, the set of all

numerals is denoted by Num. We introduce the concept of parameter to classify a subset of the first-order

variables V which are supposed to be evaluated. Thereby we fix the domain of interpretation for PRA to

the standard model of arithmetic with domain IN and 0 for 0̄ and successor for s. Parameters will play

the role of induction eigenvariables in proofs. The set of parameters is denoted by P . As an example,

a schematic version of Example 1 would consider k as a parameter and the other variables as ”ordinary”

first-order variables. For proof schemata to be defined in Section 3 the parameters will be crucial in

defining the semantics of schemata.

Definition 1 (parameter assignment). A parameter assignment σ is a mapping P → Num with the fol-

lowing extensions to terms and formulas:

• σ(x) = x for x ∈V \P ,

• σ(0̄) = 0̄, σ(s(t)) = s(σ(t)),

• For an n – ary f ∈F we have σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn)),

• σ(¬A) = ¬σ(A),

• σ(A◦B) = σ(A)◦σ(B) for ◦ ∈ {∧,∨,→},

• σ(Qx.A) = Qx.σ(A) if x ∈V \P and Q ∈ {∀,∃}.

The set of all parameter assignments is denoted by S .

As already mentioned every term containing parameters can be evaluated under parameter assign-

ments; terms containing only parameters and no variables in V \P evaluate to numerals, others are

merely partially evaluated.

Definition 2 (evaluation). Let f be an (n+1) – ary function symbol in F with n ∈P and

E (f) = { f (~x, 0̄) = h(~x), f (~x,s(n)) = g(~x,y, f (~x,n))} and

t1, . . . , tl be terms,~t = (t1, . . . , tl) and k ∈ Num. Then,

• f (~t, 0̄)↓= h(~t)↓,

• f (~t,s(k̄))↓= g(~t, k̄, f (~t, k̄)↓))↓,

• r↓= r if r is a term not containing a symbol in F .

102 Towards an Analysis of Proofs in Arithmetic

The evaluation operator has to be applied recursively to all subterms of a term containing symbols in

F . Assume that σ is a parameter assignment and t is a term with σ(t)↓= k̄ and r ∈F then σ(r(~s, t))↓=
r(σ(~s))↓, k̄)↓.

The evaluation under σ can be extended to formulas homomorphically in an obvious way.

Example 2. Let x,n ∈V , x ∈V \P and n ∈P; assume that σ(n) = 1̄. Let f ∈F and

E (f) = { f (x, 0̄) = x, f (x,s(n)) = s(f (x,n))}.

Then σ(f (x,s(n)))↓= f (σ(x)↓,σ(s(n))↓) = f (x, 2̄)↓ by σ(x) = x and

• σ(s(n))↓= σ(s(n)) = s(σ(n)) = s(1̄) = 2̄.

Furthermore

f (x, 2̄)↓= s(f (x, 1̄))↓= s(s(f (x, 0̄)))↓= s(s(x))

and so σ(f (x,s(n))↓= s(s(x)). We see that by distinguishing parameters and variables we obtain just a

partial evaluation, i.e. terms need not evaluate to numerals but just to other terms containing variables.

Let A = ∀x. f (x,n) = f (n,x) and σ(n) as above. Then

σ(A)↓= ∀x.s(x) = f (1̄,x).

We also see that {σ(A) | σ ∈S } defines the infinite set of formulas {∀x.sn(x) = f (n̄,x) | n ∈ IN}. So we

can consider the formula A as a formula schema describing an infinite sequence of formulas

3 Proof Schema

The general idea of a proof schema is to represent a proof containing induction by a finite description

of an infinite sequence of proofs without induction inferences: Assume a proof ϕ of the end-sequent

⊢ ∀xA(x) that uses an induction inference. Instead of considering the proof ϕ , we instead consider the

infinite sequence of proofs ϕ0, ϕ1, ϕ2, . . . of end-sequents ⊢ A(0̄), ⊢ A(1̄), ⊢ A(2̄) . . . The task is to

find a finite description of this infinite sequence of proofs, the proof schema. A proof schema always

represents a parameterized sequence, and an evaluation under a parameter assignment n̄ results in the

proof ϕn of ⊢ A(n̄). The underlying problem, that initially lead to the development of proof schemata, is

to be able to analyze inductive proofs and extract their Herbrand sequents. Indeed, each of the proofs ϕ0,

ϕ1, ϕ2, . . . is a simple LK-proof without induction inferences, and thus enjoys cut-elimination resulting

in an analytic proof. The concept of proof schema was initially introduced in [4, 9] to address schemata

involving a single parameter. Later, it was expanded to accommodate an arbitrary number of induction

parameters [10].

Formally, proof schemata are constructed using proofs in an extension of LK by an equational theory.

First, let us define the concept of schematic sequents (the definitions below are from [10]).

Definition 3 (schematic sequents). A schematic sequent is a sequent of the form F1, . . . ,Fα ⊢ G1, . . . ,Gβ

where the Fi and G j for 1≤ i≤ α and 1≤ j≤ β are formula schemata. Let S : F1, . . . ,Fα ⊢G1, . . . ,Gβ be

a schematic sequent and σ a parameter assignment. Then the evaluation of S under σ is σ(S)↓ : σ(F1)↓
, . . . ,σ(Fα)↓⊢ σ(G1)↓, . . . ,σ(Gβ)↓.

Definition 4. Let E be an equational theory. We extend the calculus LK by the E inference rule
S(t)

S(t ′)
E

where the term or input term schema t in the schematic sequent S is replaced by a term or input term

schema t ′ where t = t ′ is an instance of an equation in E .

Leitsch, Lolić, Mahler 103

The definitions below will use the schematic standard axiom set As.

Definition 5 (schematic standard axiom set). Let As be the smallest set of schematic sequents that is

closed under substitution containing all sequents of the form A⊢A for arbitrary atomic formula schemata

A. Then As is called the schematic standard axiom set.

Schematic derivations can be understood as parameterized sequences of LK-derivations where new

kinds of axioms in the form of labeled sequents are included. These labeled sequents serve the purpose

to establish recursive call structures in the proof. For constructing schematic derivations we introduce a

countably infinite set ∆ of proof symbols which are used to label the individual proofs of a proof schema.

A proof schema uses only a finite set of proof symbols ∆∗ ⊂ ∆. We assign an arity A(δ) to every δ ∈ ∆∗,

A(δ) is the arity of the input parameters for the proof labeled by δ . Also, we need a concept of proof

labels which serve the purpose to relate some leafs of the proof tree to recursive calls.

Definition 6 (proof label). Let δ ∈ ∆ and ϑ be a parameter substitution. Then the pair (δ ,ϑ) is called

a proof label.

Definition 7 (labeled sequents and derivations). Let S be a schematic sequent and (δ ,ϑ) a proof label,

then (δ ,ϑ) : S is a labeled sequent. A labeled derivation is a derivation π where all leaves are labeled.

In the definition below we will define a proof schema over a base-case proof (for parameter 0) and

a step-case proof (for parameter m+ 1), where initial sequents are either axioms, or end-sequents from

previously defined base- or step-case proofs. In general, the step-case proof for some proof symbol δ
uses as initial sequent its own end-sequent, but under a parameter assignment m. Evaluating a schematic

derivation means that initial sequents, which are no axioms, have to be replaced by their derivations.

Definition 8 (parameter replacement). Let ~m,~n be tuples of parameters. A parameter replacement on~n
with respect to ~m is a replacement substituting every parameter p in~n by a term tp, where the parameters

of tp ∈ T ω are in ~m.

Definition 9 (schematic deduction and proof schema). Let D be the tuple (δ0,∆
∗,Π). D is called a

schematic deduction from a finite set of schematic sequents S if the following conditions are fulfilled:

• ∆∗ is a finite subset of ∆.

• δ0 ∈ ∆∗, and δ0 > δ ′ for all δ ′ ∈ ∆∗ such that δ ′ 6= δ0. δ0 is called the main symbol.

• To every δ ∈∆∗ we assign a parameter tuple~nδ of pairwise different parameters (called the passive

parameters), and a parameter mδ (called the active parameter).

• Π is a set of pairs {(Π(δ ,~nδ ,mδ),S(δ ,~nδ ,mδ)}, where S(δ ,~nδ ,mδ) is a schematic sequent, and

Π(δ ,~nδ ,mδ) = {(δ ,~nδ ,mδ)→ ρ(δ ,~nδ ,mδ)},

where ρ(δ ,~nδ ,0) = ρ0(δ ,~nδ), and ρ(δ ,~nδ ,s(mδ)) = ρ1(δ ,~nδ ,mδ), and there exists a (possibly

empty) finite set of schematic sequents C (δ) such that

1. ρ0(δ ,~nδ) is a deduction of S(δ ,~nδ ,0) from S ∪C (δ),

2. ρ1(δ ,~nδ ,mδ) is a deduction of S(δ ,~nδ ,mδ + 1) from {(δ ,Ψ) : S(δ ,~nδ ,mδ)} ∪S ∪C (δ),
where (δ ,Ψ) is a label, and Ψ the empty parameter replacement,

3. for all S′ ∈ C (δ), S′ = (δ ′,Ψ) : S(δ ′,~nδ ′ ,mδ ′)Ψ where (δ ′,Ψ) is a label, δ ′ ∈ ∆∗ with δ > δ ′

and Ψ is a parameter replacement on (~nδ ′ , mδ ′) w.r.t. (~nδ ,mδ) such that the conditions 1.
and 2. hold for δ ′ .

If S = As we call D a proof schema of S(δ0,~nδ0
,mδ0

).

104 Towards an Analysis of Proofs in Arithmetic

In the example below we will formalize the PRA-proof from Example 1 as a proof schema.

Example 3. In this example we will construct a proof schema of the end-sequent

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n)))

where

f (x,0) = x, f (x,s(n)) = s(f (x,n)).

Note that this end-sequent is equivalent over the standard model to this in Example 1 for which no

Herbrand sequent could be obtained. The only difference is that the ∀n in the end-sequent of Example 1

disappears in the proof schema formalism, as n will be the schema’s inductive parameter and we do not

allow strong quantification of inductive parameters. Note further that in this example we consider only

one parameter, but in general, we allow arbitrarily many. To start, let us first define a proof schema

D1 = {(δ ,ρ(δ ,0),ρ(δ ,n+1))},

with end-sequent

S(δ) : ∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,n))).

We define ρ(δ ,0) as follows:

P(f (a,0)) ⊢ P(f (a,0))
E

P(a) ⊢ P(f (a,0))
→r

⊢ P(a)→ P(f (a,0))
∀r

⊢ ∀x(P(x)→ P(f (x,0)))
wl

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,0)))

ρ(δ ,n+1) is defined as follows:

(δ , /0) : S(δ) (1)
cut,cl

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,n+1)))

where (1) is

P(a) ⊢ P(a)

P(f (a,n)) ⊢ P(f (a,n))

P(f (a,n+1)) ⊢ P(f (a,n+1))
E

P(s(f (a,n))) ⊢ P(f (a,n+1))
→l

P(f (a,n)),P(f (a,n))→ P(s(f (a,n))) ⊢ P(f (a,n+1))
∀l

P(f (a,n)),∀x(P(x)→ P(s(x))) ⊢ P(f (a,n+1))
→l

P(a),P(a)→ P(f (a,n)),∀x(P(x)→ P(s(x))) ⊢ P(f (a,n+1))
→r

P(a)→ P(f (a,n)),∀x(P(x)→ P(s(x))) ⊢ P(a)→ P(f (a,n+1))
∀l

∀x(P(x)→ P(f (x,n))),∀x(P(x)→ P(s(x))) ⊢ P(a)→ P(f (a,n+1))
∀r

∀x(P(x)→ P(f (x,n))),∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,n+1)))

Now we construct the proof schema

D = {(δ ′,ρ(δ ′,n),ρ(δ ′,n+1))}∪D1,

with the end-sequent

S(δ ′) : ∀x(P(x)→ P(s(x))) ⊢ ∀x(P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n))),

and δ ′ > δ . There is no internal recursion in δ ′ needed, hence we only define ρ(δ ′,n) as follows:

Leitsch, Lolić, Mahler 105

(δ , /0) : S(δ) (2)
cut

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n)))

where (2) is

P(c) ⊢ P(c)

P(f (c,n)) ⊢ P(f (c,n)) P(g(c,n)) ⊢ P(g(c,n))
→l

P(f (c,n))→ P(g(c,n)),P(f (c,n)) ⊢ P(g(c,n))
→l

P(c),P(f (c,n))→ P(g(c,n)),P(c)→ P(f (c,n)) ⊢ P(g(c,n))
→r

P(f (c,n))→ P(g(c,n)),P(c)→ P(f (c,n)) ⊢ P(c)→ P(g(c,n))
→r

P(c)→ P(f (c,n)) ⊢ (P(f (c,n))→ P(g(c,n)))→ (P(c)→ P(g(c,n)))
∀l

∀x(P(x)→ P(f (x,n))) ⊢ (P(f (c,n))→ P(g(c,n)))→ (P(c)→ P(g(c,n)))
∀r

∀x(P(x)→ P(f (x,n))) ⊢ ∀x(P(f (x,n))→ P(g(x,n)))→ (P(x)→ P(g(x,n)))

Proof schemata define infinite sequences of proofs, and can be evaluated under parameter assign-

ments.

Definition 10 (evaluation of proof schema). Let D = (δ0,∆
∗,Π) be a proof schema, and σ a parameter

assignment. In defining the evaluation of the proof schema, Dσ↓, we proceed by double induction on the

ordering of proof symbols and the assignments σ .

• Let δi be a minimal element in ∆∗.

1. σ(mδi
) = 0.

Then, by definition of a proof schema, ρ0(δi,~nδi
) is a proof with LK-inferences and infer-

ences for defined symbols that contain schematic sequents. Let S1, . . .Sn be all the schematic

sequents in ρ0(δi,~nδi
). Then the evaluation of ρ0(δi,~nδi

) under σ is denoted by ρ0(δi,~nδi
)↓

and obtained by replacing all S1, . . . ,Sn in ρ0(δi,~nδi
) by σ(S1)↓, . . . ,σ(Sn)↓ and omitting the

inferences for defined symbols.

2. σ(mδi
) = α > 0.

Evaluate all schematic sequents except the leaves (δi, /0) : S(δi,~nδi
,mδi

) under σ . Let σ [mδi
/α−

1] be defined as σ [mδi
/α−1](p)=σ(p) for all p 6=mδi

and σ [mδi
/α−1](mδi

)=α−1. Then

we replace the labeled sequent (δi, /0) : S(δi,~nδi
,mδi

) by the proofs ρ0(δi,~nδi
)σ [mδi

/α − 1]↓
if α−1 = 0 and by ρ1(δi,~nδi

,mδi
)σ [mδi

/α−1]↓ if α−1 > 0. The result is an LK-proof.

• δi ∈ ∆∗ is not minimal.

1. σ(mδi
) = 0.

Evaluate all schematic sequents except the labeled sequents of the form (δ ′,Ψ) :

S(δ ′,~nδ ′ ,mδ ′)Ψ for δi > δ ′ and the corresponding parameter replacement Ψ under σ . Then

replace the labeled sequent (δ ′,Ψ) : S(δ ′,~nδ ′ ,mδ ′)Ψ by the proof ρ0(δ
′,~nδ ′)Ψσ↓ if σ(mδ ′)=

0 and by the proof ρ1(δ
′,~nδ ′ ,mδ ′)Ψσ↓ otherwise.

2. σ(mδi
) = α > 0.

As above, except for the labeled sequents (δi, /0) : S(δi,~nδi
,mδi

) which are replaced by the

proof ρ0(δi,~nδi
)σ [mδi

/α−1] if α−1 = 0 and by the proof ρ1(δi,~nδi
,mδi

)σ [mδi
/α −1] oth-

erwise.

Dσ↓ is defined as ρ0(δ0,~nδ0
)σ↓ for the <-maximal symbol δ0 if σ(mδ0

) = 0, and by ρ1(δ0,~nδ0
,mδ0

)σ↓
if σ(mδ0

)> 0.

We will illustrate the evaluation of a proof schema for a concrete parameter in the example below.

106 Towards an Analysis of Proofs in Arithmetic

Example 4. Let D be the proof schema as defined in Example 3, and σ(n) = 0. Then Dσ↓ is obtained

by considering the derivation ρ(δ ′,0), where the proof call to (δ , /0) : S(δ){n← 0} is replaced by the

derivation ρ(δ ,0), hence we obtain

P(f (a,0)) ⊢ P(f (a,0))
E

P(a) ⊢ P(f (a,0))
→r

⊢ P(a)→ P(f (a,0))
∀r

⊢ ∀x(P(x)→ P(f (x,0)))
wl

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,0))) (1)
cut

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(f (x,0))→ P(g(x,0)))→ (P(x)→ P(g(x,0)))

where (1) is

P(c) ⊢ P(c)

P(f (c,0)) ⊢ P(f (c,0)) P(g(c,0)) ⊢ P(g(c,0))
→l

P(f (c,0))→ P(g(c,0)),P(f (c,0)) ⊢ P(g(c,0))
→l

P(c),P(f (c,0))→ P(g(c,0)),P(c)→ P(f (c,0)) ⊢ P(g(c,0))
→r

P(f (c,0))→ P(g(c,0)),P(c)→ P(f (c,0)) ⊢ P(c)→ P(g(c,0))
→r

P(c)→ P(f (c,0)) ⊢ (P(f (c,0))→ P(g(c,0)))→ (P(c)→ P(g(c,0)))
∀l

∀x(P(x)→ P(f (x,0))) ⊢ (P(f (c,0))→ P(g(c,0)))→ (P(c)→ P(g(c,0)))
∀r

∀x(P(x)→ P(f (x,0))) ⊢ ∀x(P(f (x,0))→ P(g(x,0)))→ (P(x)→ P(g(x,0)))

Now let us consider σ(n) = 1. Then Dσ↓ is obtained by considering ρ(∆′,1) and replacing the proof

link to (δ , /0) : S(δ) by the derivation ρ(δ ,1). Note that in ρ(δ ,1) (which in our formalism is denoted

by ρ(δ ,0+1)) we have to replace the self-referencing proof link (δ , /0) : S(δ) by the derivation ρ(δ ,0).
Therefore, we obtain

P(f (a,0)) ⊢ P(f (a,0))
E

P(a) ⊢ P(f (a,0))
→r

⊢ P(a)→ P(f (a,0))
∀r

⊢ ∀x(P(x)→ P(f (x,0)))
wl

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,0))) (1)
cut,cl

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,1))) (2)
cut

∀x(P(x)→ P(s(x))) ⊢ ∀x(P(f (x,1))→ P(g(x,1)))→ (P(x)→ P(g(x,1)))

where (1) is

P(a) ⊢ P(a)

P(f (a,0)) ⊢ P(f (a,0))

P(f (a,1)) ⊢ P(f (a,1))
E

P(s(f (a,0))) ⊢ P(f (a,1))
→l

P(f (a,0)),P(f (a,0))→ P(s(f (a,0))) ⊢ P(f (a,1))
∀l

P(f (a,0)),∀x(P(x)→ P(s(x))) ⊢ P(f (a,1))
→l

P(a),P(a)→ P(f (a,0)),∀x(P(x)→ P(s(x))) ⊢ P(f (a,1))
→r

P(a)→ P(f (a,0)),∀x(P(x)→ P(s(x))) ⊢ P(a)→ P(f (a,1))
∀l

∀x(P(x)→ P(f (x,0))),∀x(P(x)→ P(s(x))) ⊢ P(a)→ P(f (a,1))
∀r

∀x(P(x)→ P(f (x,0))),∀x(P(x)→ P(s(x))) ⊢ ∀x(P(x)→ P(f (x,1)))

and (2) is

Leitsch, Lolić, Mahler 107

P(c) ⊢ P(c)

P(f (c,1)) ⊢ P(f (c,1)) P(g(c,1)) ⊢ P(g(c,1))
→l

P(f (c,1))→ P(g(c,1)),P(f (c,1)) ⊢ P(g(c,1))
→l

P(c),P(f (c,1))→ P(g(c,1)),P(c)→ P(f (c,1)) ⊢ P(g(c,1))
→r

P(f (c,1))→ P(g(c,1)),P(c)→ P(f (c,1)) ⊢ P(c)→ P(g(c,1))
→r

P(c)→ P(f (c,1)) ⊢ (P(f (c,1))→ P(g(c,1)))→ (P(c)→ P(g(c,1)))
∀l

∀x(P(x)→ P(f (x,1))) ⊢ (P(f (c,1))→ P(g(c,1)))→ (P(c)→ P(g(c,1)))
∀r

∀x(P(x)→ P(f (x,1))) ⊢ ∀x(P(f (x,1))→ P(g(x,1)))→ (P(x)→ P(g(x,1)))

In [10] the Skolemized version of the proof schema in Example 3 was analyzed and a so-called

Herbrand schema was obtained. A Herbrand schema can be understood as a parameterized sequence of

Herbrand instances for the quantified formulas occurring in the end-sequent. The reason for Skolemiza-

tion lies in the schematic cut-elimination method. In this work we will not focus on this cut-elimination

method or the proof analysis of schematic proofs, but only explain the general idea.

We start with a proof schema of a Skolemized end-sequent. This sequent has to be Skolemized as the

proof transformation steps in the method would not be sound if eigenvariables were present. The proof

schema is then split in two parts: In the first part we start with the formulas in the initial sequents that

are ancestors of formulas in the end-sequent, and apply only the rules that operate on these formulas. By

construction the thus obtained proof schema is cut-free, we call it the projection schema. In the second

part, only the formulas in initial sequents that are ancestors of cut-formulas and the rules operating on

these cut-ancestors are considered. By construction, as we only have formulas that are ancestors of cuts

and are therefore cut out, we end up with the empty-sequent. Therefore, the initial sequents we started

with are unsatisfiable and can be represented as an unsatisfiable schematic formula, which is called

the characteristic formula schema. The characteristic formula schema can be refuted with a schematic

refutation calculus defined in [3]. In [7] this calculus was improved and it was shown that the Herband

instances of the refutation schema can be extracted in the form of Herbrand schemata. It was shown

in [10] that the Herbrand schema from the refutation of the characteristic formula can be combined with

the Herbrand schema from the projection schema to obtain the Herbrand schema of the original proof

schema.

For the Skolemized version of Example 3, we obtain (after some simplifications) for the formula

∀x(P(x)→ P(s(x))) the schematic Herbrand instances

{x← f (c,n)},

where c just denotes a Skolem constant introduced when Skolemizing the end-sequent. Therefore, for

some numeral α the instances are

c,s(c),s(s(c)), . . . ,sα−1(c).

4 Simulation of Primitive Recursive Arithmetic Through Proof Schemata

In this section, we will analyze the expressivity of proof schemata by showing that proof schemata sim-

ulate a restricted version of primitive recursive arithmetic, as defined in [6]. In [9], it was demonstrated

that proof schemata are equivalent to a specific fragment of arithmetic known as k-simple induction.

This variant restricts the introduction of new eigenvariables through induction. Recently, we extended

the simulation to capture proof schemata that allow an arbitrary number of parameters [8]. In the latter

work, we used a definition of primitive recursive arithmetic, as defined in [12], which does not admit

108 Towards an Analysis of Proofs in Arithmetic

quantifier introduction. In this paper, we allow quantifier introduction with the restriction that we do

not allow strong quantification of induction variables. However, we will later demonstrate that proof

schemata can indeed capture certain proofs involving strongly quantified induction variables.

We will now show the translation from proof schemata to PRA and back. To do this, we note that

every sequent S : Γ ⊢ ∆ corresponds to an equivalent formula F (S) :=
∨
¬Γ∪∆.

Lemma 1. Let D be a proof schema with end-sequent S. Then there exists a PRA proof of S.

Proof. Let D = {(δi,ρ(δi,~ni,0),ρ(δi,~ni,mi+1)) | i∈{1, ...,α}} with S(δi) = Si and if i< j then δi > δ j.

Hence, S(δ1) = S.

We construct inductively PRA proofs of F (Sγ), starting with γ = α . Assume we constructed PRA

proofs ξγ+1, ...,ξα of F (Sγ+1), ...,F (Sα) respectively. Our aim is to construct a PRA proof of F (Sγ).

In ρ(δγ ,~nγ ,0) replace any proof call of the form (δ j,Ψ) : S(δ j)Ψ by ξ jΨ to obtain proof ξ B
γ . Appli-

cations of ¬∗r will then yield a proof of ⊢F (Sγ){mγ ← 0}.

In ρ(δγ ,~nγ ,mγ+1) consider any branches that lead into a self-referencing proof call of the form

(δγ , /0) : S(δγ). Note that any introduction of a quantifier in these branches is cut and will not be part

of the end-sequent of this derivation. Otherwise, the proof call conditions are violated. Further note that

ρ(δγ ,~nγ ,mγ+1) is an LK derivation and therefore admits cut-elimination. Using this, we eliminate the

introduction of all strong quantifiers in these branches and replace any self-referencing proof call of the

form (δγ , /0) : S(δγ) by axiom F (S(δγ)) ⊢F (S(δγ)).

For all other branches, replace any proof call of the form (δ j,Ψ) : S(δ j)Ψ with j 6= γ by ξ jΨ to obtain

proof ξ S
γ . Applications of ¬r and cr will then yield a proof of F (Sγ){mγ ← y} ⊢F (Sγ){mγ ← y+1}.

The desired proof ξγ is then constructed as follows:

ξ B
γ

¬∗r⊢F (Sγ){mγ ← 0}

ξ S
γ

¬∗r ,c
∗
r

F (Sγ){mγ ← y} ⊢F (Sγ){mγ ← y+1}
ind

⊢F (Sγ)

Note that in case of a proof call which includes an instantiation, we use cut instead of ind. Finally, we

use cuts to derive Sγ from the proof of F (Sγ).

For proof tuples without internal recursion, it suffices to replace any non-self-referencing proof call

with its respective PRA derivation; an application of ind is not necessary.

The introduction of quantifiers does not affect our translation of PRA proofs into proof schemata, as

demonstrated in a previous paper. Therefore, we will simply present the proof from [8] here:

Lemma 2. Let π be a PRA proof of S. Then there exists a proof schema with end-sequent S.

Proof. Let π contain α induction inferences

Γβ ⊢ ∆β ,Fβ (0) Γβ ,Fβ (y) ⊢ ∆β ,Fβ (y+1)
ind

Γβ ⊢ ∆β ,Fβ (nβ)

where a ≤ β ≤ α . W.l.o.g. assume that if γ < β then the induction inference with conclusion Γβ ⊢
∆β ,Fβ (nβ) is above the induction inference with conclusion Γγ ⊢ ∆γ ,Fγ(nγ). We define ~n = {ni | i ∈
{1...α}}∪ V (π) as the set of all induction variables, where ni denotes the induction variable of the i-th

Leitsch, Lolić, Mahler 109

induction inference, together with the set of free variables and constants V in π . Let T be the transfor-

mation taking an PRA proof to a proof schema by replacing the induction inferences with conclusion

Γγ ⊢ ∆γ ,Fγ(nγ) by a proof call (δγ ,{m← nγ}) : S(δγ){m← nγ} with S(δγ) = Γγ ⊢ ∆γ ,Fγ(m).
We will inductively construct a proof schema D = {(δi,ρ(δi,~n,0),ρ(δi,~n,m+1)) | i∈ {1...α}} with

end-sequent S(δi) =Γi ⊢∆i,Fi(m+1) for each tuple and δi > δi+1. Assume we already constructed proof

schema Dβ+1 = {(δi,ρ(δi,~n,0),ρ(δi,~n,m+1)) | i ∈ {(β +1)...α}}.
Consider the induction inference with conclusion Γβ ⊢ ∆β ,Fβ (nβ). Let ϕ1 be the derivation above

the left premise and ϕ2 be the derivation above the right premise. We construct a proof schema Dβ =
{(δβ ,ρ(δβ ,~n,0),ρ(δβ ,~n,m+1))}∪Dβ+1 with ρ(δβ ,~n,0) = T (ϕ1) and ρ(δβ ,~n,m+1) =

(δβ , /0) : S(δβ)

Γβ ⊢ ∆β ,Fβ (m)

T (ϕ2)

Γβ ,Fβ (m) ⊢ ∆β ,Fβ (m+1)
cut,c∗l ,c

∗
r

Γβ ⊢ ∆β ,Fβ (m+1)

Summarising, (δβ ,ρ(δβ ,~n,0),ρ(δβ ,~n,m+1)) is a proof schema tuple with end-sequent Γβ ⊢ ∆β ,Fβ (n),
as desired.

Finally, the part of π located beneath the last induction inference is translated into proof schema

D ′ = {(δ ′,ρ(δ ′,~n,m),ρ(δ ′,~n,m+ 1))} ∪D with S(δ ′) = S and δ ′ > δi for i ∈ {1...α}. Let ϕ be the

derivation above S. As there is no internal recursion in δ ′ needed, we only define ρ(δ ′,~n,m) =
T (ϕ)

S
.

As proof schemata are intended to be evaluated for a specific parameter assignment, the above trans-

lation does not generally apply to the strong quantification of induction variables. Consider the following

PRA derivation, and for simplicity, let ϕ1 and ϕ2 be induction-free:

(ϕ1)

Γ ⊢ ∆,F(0)

(ϕ2)

Γ,F(y) ⊢ ∆,F(y+1)
ind

Γ ⊢ ∆,F(n)
∀ : r

Γ ⊢ ∆,∀zF(z)

A translation, as described in Lemma 2, would initially yield a proof schema D = (δ ,ρ(δ ,~n,0),ρ(δ ,~n,
m+ 1)) with end-sequent S(δ) = Γ ⊢ ∆,F(m) for the induction. In the subsequent step, a strong quan-

tification of parameter m is not feasible, as evaluating D would violate the eigenvariable condition in

∀r.

However, there are instances where proof schemata can simulate strongly quantified induction vari-

ables in PRA proofs. If a quantified induction variable is subsequently cut in a proof, we can omit the

application of the quantifier rule and shift the cut upwards in a Gentzen-style manner. To achieve this,

we locate all applications of a weak quantifier rule that lead to the cut formula in the right branch of the

proof and instantiate the parameter of the proof schemata representing the induction with the respective

terms found in this way. This process is illustrated in the following example.

Example 5. In this example we translate a PRA derivation with a strongly quantified induction variable

into a proof schema.

Consider the following PRA derivation π with ϕ1, ϕ2, ψ1 and ψ2 induction free for simplicity. Note

that the induction variable n of the left induction rule is strongly quantified and subsequently cut. Let π
be:

110 Towards an Analysis of Proofs in Arithmetic

(ϕ1)

Γ ⊢ ∆,F(0)

(ϕ2)

Γ,F(y) ⊢ ∆,F(y+1)
ind

Γ ⊢ ∆,F(n)
∀r

Γ ⊢ ∆,∀zF(z)

(ψ1)

Σ,F(t1) ⊢ Π,G(0)
∀l

Σ,∀zF(z) ⊢Π,G(0)

(ψ2)

Σ,F(t2),G(x) ⊢Π,G(x+1)
∀l

Σ,∀zF(z),G(x) ⊢ Π,G(x+1)
ind

Σ,∀zF(z) ⊢ Π,G(m)
cut

Γ,Σ ⊢ ∆,Π,G(m)

In the right branch of π , there are two applications of ∀l . Note the respective terms t1 and t2, as we will

later use them to instantiate the proof schema representing the induction in the left branch.

We construct a proof schema D = {(δ1,ρ(δi,~n,0),ρ(δi,~n,mi+1)) | i ∈ {0,1,2}}. For the left induc-

tion in π , we define ρ(δ2,~n,0) = ϕ1 and ρ(δ2,~n,m2 +1) as

(δ2, /0) : S(δ2)

Γ ⊢ ∆,F(m2)

(ϕ2)

Γ,F(m2) ⊢ ∆,F(m2 +1)
cut,cl ,cr

Γ ⊢ ∆,F(m2 +1)

For the right induction in π , we omit the applications of ∀l and use wl instead. We define ρ(δ1,~n,0) as

(ψ1)

Σ,F(t1) ⊢Π,G(0)
wl

Σ,F(t1),F(t2) ⊢Π,G(0)

and ρ(δ1,~n,m1 +1) as

(δ1, /0) : S(δ1)

Σ,F(t1),F(t2) ⊢Π,G(m1)

(ψ2)

Σ,F(t2),G(m1) ⊢Π,G(m1 +1)
wl

Σ,F(t1),F(t2),G(m1) ⊢Π,G(m1 +1)
cut, cl , cr

Σ,F(t1),F(t2) ⊢Π,G(m1 +1)

Lastly we define δ0. As previously mentioned, we instantiate the proof schema δ2 with the terms t1 and
t2. This allows us to perform a cut on an instantiated formula rather than a quantified one, and we can
omit the application of ∀r. Since there is no internal recursion in δ0, we only define ρ(δ0,~n,m0) as

(δ2,{m2← t1}) : S(δ2){m2← t1}

Γ ⊢ ∆,F(t1)

(δ2,{m2← t2}) : S(δ2){m2← t2}

Γ ⊢ ∆,F(t2)
∧r

Γ ⊢ ∆,F(t1)∧F(t2)

(δ1, /0) : S(δ1)

Σ,F(t1),F(t2) ⊢Π,G(m1)
∧ : l

Σ,F(t1)∧F(t2) ⊢Π,G(m1)
cut

Γ,Σ ⊢ ∆,Π,G(m1)

5 Conclusion

It was shown in [10] that when a proof with induction is formulated as proof schema, a recursive struc-

ture that represents the proof’s Herbrand sequent can be extracted. It however remained an open question

to relate proof schemata to systems of arithmetic, i.e. to identify the class of proofs that can be repre-

sented as proof schemata and analyzed with the methods in [10]. A first investigation in this direction

was presented in [8], where it was shown that proofs in quantifier-free primitive recursive arithmetic

(quantifier-free PRA) can be represented as proof schemata, and that quantifier-free proof schemata can

be translated back into quantifier-free PRA. In this work we generalize and extend this result by inves-

tigating also the cases for quantifiers in proofs. We demonstrate the translation in both directions, with

the condition that the inductive parameter is not quantified.

Leitsch, Lolić, Mahler 111

Together with a completeness result for the proof analysis method in [10] (a result not obtained so

far), the result in this paper will yield a realization of Herbrand’s theorem for an expressive fragment of

formal number theory.

References

[1] Matthias Baaz, Stefan Hetzl, Alexander Leitsch, Clemens Richter & Hendrik Spohr (2008): CERES: An

analysis of Fürstenberg’s proof of the infinity of primes. Theoretical Computer Science 403(2-3), pp. 160–

175, doi:10.1016/j.tcs.2008.02.043.

[2] James Brotherston & Alex Simpson (2011): Sequent calculi for induction and infinite descent. Journal of

Logic and Computation 21(6), pp. 1177–1216, doi:10.1093/logcom/exq052.

[3] David M. Cerna, Alexander Leitsch & Anela Lolic (2021): Schematic Refutations of Formula Schemata.

Journal of Automated Reasoning 65(5), pp. 599–645, doi:10.1007/s10817-020-09583-8.

[4] Cvetan Dunchev, Alexander Leitsch, Mikheil Rukhaia & Daniel Weller (2013): Cut-elimination and proof

schemata. In: International Tbilisi Symposium on Logic, Language, and Computation, Springer, pp. 117–

136, doi:10.1007/978-3-662-46906-4_8.

[5] Hillel Fürstenberg (1955): On the Infinitude of the Primes. American Mathematical Monthly 62(5), p. 353,

doi:10.2307/2307043.

[6] Jean Yves Girard (Napoli,1987): Proof Theory and Logical Complexity. 1, Biblopolis.

[7] Alexander Leitsch & Anela Lolic (2024): Herbrand’s Theorem in Inductive Proofs. In: Proceedings of

25th Conference on Logic for Programming, Artificial Intelligence and Reasoning, LPAR, EPiC Series in

Computing 100, EasyChair, pp. 295–310, doi:10.29007/dwdf.

[8] Alexander Leitsch, Anela Lolic & Stella Mahler (2024): On Proof Schemata and Primitive Recursive Arith-

metic. In: LPAR 2024 Complementary Volume, Kalpa Publications in Computing 18, EasyChair, pp. 117–

130, doi:10.29007/4g2q.

[9] Alexander Leitsch, Nicolas Peltier & Daniel Weller (2017): CERES for first-order schemata. Journal of

Logic and Computation 27(7), pp. 1897–1954, doi:10.1093/logcom/exx003.

[10] Anela Lolic (2020): Automated Proof Analysis by CERES. Ph.D. thesis, Technical University of Vienna,

doi:10.34726/hss.2020.47184.

[11] Raymond McDowell & Dale Miller (2000): Cut-elimination for a logic with definitions and induction. The-

oretical Computer Science 232(1-2), pp. 91–119, doi:10.1016/S0304-3975(99)00171-1.

[12] Gaisi Takeuti (1987): Proof Theory. North Holland, second edition.

https://doi.org/10.1016/j.tcs.2008.02.043
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.1007/s10817-020-09583-8
https://doi.org/10.1007/978-3-662-46906-4_8
https://doi.org/10.2307/2307043
https://doi.org/10.29007/dwdf
https://doi.org/10.29007/4g2q
https://doi.org/10.1093/logcom/exx003
https://doi.org/10.34726/hss.2020.47184
https://doi.org/10.1016/S0304-3975(99)00171-1

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on

Logical and Semantic Frameworks with Applications (LSFA’24)

EPTCS 421, 2025, pp. 112–129, doi:10.4204/EPTCS.421.7

© S. Libby

This work is licensed under the

Creative Commons Attribution License.

An Execution Model for RICE

Steven Libby

University of Portland, Portland OR 97203, USA

libbys@up.edu

In this paper, we build on the previous work of the RICE [23] compiler by giving its execution model.

We show the restrictions to the FlatCurry language that were made to produce executable code, and

present the execution model using operational semantics similar to Launchbury [21]. Finally, we

show that the execution model conforms with the standard operational semantics for Curry [2].

1 Introduction

Recently there has been a renewed interest in the efficient execution of functional logic programs [7, 9,

10, 23]. This has proven to be a rich area of new ideas. We look in particular at the RICE Curry compiler,

which has shown to produce efficient code [23]. This paper provides an execution model for RICE.

Previous work on this compiler showed the execution of programs using a translation to C code.

While this gets the point across, it is difficult to reason about the correctness of the implementation.

Instead we take an approach similar to Braßel [11]. We begin by showing the execution model for the

RICE compiler, and show how it is consistent with the standard operational semantics for Curry [2]. The

primary contribution of this paper is the execution model.

Our execution model differs form previous works in a few respects. First we differ from Albert et

al. [2] by encoding the search strategy into the semantics itself. While Albert et al [1] parameterize their

semantics on the search strategy, the implementation is left abstract. Braßel [11] gives a fully realized

execution model for the Kics2 compiler, which implements non-determinism with pull tabbing [11]. Our

work is specifically about the RICE compiler, which implements non-determinism using backtracking

[23]. This is done primarily because Kics2’s performance degrades on functions that are not right-linear

[23]. Our aim is to give a clear understanding of the execution of programs compiled with RICE.

The rest of the paper is organized as follows. First, we discuss previous work in the execution of

Curry programs and why we chose a different approach. Second, we examine the syntax of an inter-

mediate representation of Curry, and restrict it to a form that provides more efficient execution. Third,

we provide the semantics for our restricted code. Fourth, we show a correspondence with the original

semantics. Finally, we discuss future work and conclude.

2 Background

Curry is a functional logic language; it has a syntax similar to Haskell, but extends the language in

several ways. The two important differences for this work are the addition of non-determinism and free

variables.

We can construct a non-deterministic expression using the choice operator (?). For example, in the

following code, pickOne non-deterministically picks an element in a list, while member constrains the

choice to determine membership in that list. If the element x is not in l, then the member function simply

fails and does not returen a value, so there is no need for an otherwise case like in Haskell.

http://dx.doi.org/10.4204/EPTCS.421.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Libby 113

pickOne (x : xs) = x ? pickOne xs

member x l

| x == pickOne l = True

We can also create free (or logic) variables using the syntax while x free. For example, we can

create a similar member function by constraining a list with free variables to match our input list.

member x l

| l == f i r s t ++[x]++ l a s t = True

where f i r s t , l a s t f r e e

Non-determinism can be implemented by picking a search strategy [12, 24], and free variables can

be constrained through narrowing [5, 16].

Curry originally grew out of the field of term rewriting and narrowing. Antoy [3] showed that term

rewrite systems belonging to the class of Inductively Sequential systems could be given an optimal

rewriting strategy, which was later extended by Antoy et al. [5] to an optimal narrowing strategy. Later

Antoy [4] showed how this class of rewriting systems could be extended to include overlapping rules,

and these Limited Overlapping Inductively Sequential (LOIS) systems could be computed with a com-

bination of narrowing and a search strategy. This narrowing plus search proved to be a solid basis for the

Curry language and implementations [14].

While narrowing proves to be a strong theoretical foundation for Curry, there are implementation

issues that need to be addressed. In particular, Curry is a lazy language that contains higher order

functions. While there are theories of higher order rewriting [26], Curry implementations often tend

to use defunctionalization to deal with higher order rewriting [12, 16], thus turning it back into a first

order rewriting system. While this addresses the theoretical issues of higher order functions nicely, it

is not efficient [9, 25]. It should be noted that the implementations of KiCS2 and MCC do not rely on

defunctionalization [12, 24].

Lazy evaluation can also pose an issue with using term rewriting as a basis for Curry. Terms have

a tree-like structure, and do not support sharing. If a variable is duplicated in a rewrite rule, the entire

subterm is duplicated. On the other hand, lazy programs do not ever duplicate expressions. In lazy

functional languages, this is important for efficiency reasons. However in functional logic languages,

this changes the semantics. Therefore sharing must be preserved at all costs [17]. For this reason, Curry

is often presented as a graph rewriting system [13].

Hanus et al. [2] described an intermediate language called FlatCurry in order to give a semantics for

Curry. They then described a natural semantics for FlatCurry in the style of Launchbury [21]. However

they did not specify how choice should be handled, instead leaving it up to the implementation. This

initial Curry semantics was extended to be completely deterministic [1] by parameterising with a search

strategy. Braßel [11] uses this semantics as a starting point. He then introduces several transformations to

the FlatCurry program to put it in a form that can be readily translated to Haskell. Our work is similar to

Braßel’s work. We recall the syntax for FlatCurry, describe the changes we made, and give the semantics

for our new version of FlatCurry. Our work differs from previous approaches because we encode the

search strategy into the evaluation itself. This makes for a more complicated semantics, but it allows us

to examine the efficiency of Curry programs as a whole. This can lead to new optimizations like fast

backtracking [22, 23].

114 An Execution Model for RICE

f ⇒ f x = e function definition

e ⇒ x Variable

| e1 ? e2 Choice

| ⊥ Failed

| f e Function Application

| C e Constructor Application

| let x = e in e Variable Declaration

| let x free in e Free Variable

| case e of p → e Case Expression

p ⇒ C x Constructor Pattern

| l Literal Pattern

Figure 1: The syntax of FlatCurry We use the convention of x for variables, f for function names, and C

for constructor names.

3 FlatCurry

We begin with a discussion of the abstract syntax of FlatCurry [2]. The language itself is similar to Core

Haskell with a few important alterations to support the features of functional logic programming. The

syntax is given in Figure 1. The semantics for FlatCurry are recalled in Figure 2. In this semantics, free

variables are represented as a variable that is mapped to itself in the heap Γ[x 7→ x].

The most apparent difference is the addition of the choice operator ?, the free variable declaration let

x free in e, and the ⊥ constant. The choice operator and free declaration correspond to their counterparts

in the Curry language. The ⊥ constant represents a failed computation. As we will see, ⊥ is propagated

up through the computation until it is disregarded, or it reaches the root, at which point we say the

computation fails.

Another peculiarity of this syntax is that there is no general form for application. In fact, that are

not any lambda expressions in the language. However, this last part is only an apparent difference as the

compiler has already completed lambda lifting [18] by the time it produces FlatCurry code.

The absence of a general application form is slightly more complicated. We can apply a function

to arguments, but in this syntax there is no mechanism to apply a function to another function. This

restriction would make it impossible to support higher order functions.

We solve this problem with a general apply function. In the expression (apply e1 e2) will evaluate

e1 to a function or partial application and apply it to e2. In the theory, this is handled with defunctional-

ization [16], so it is left out of the natural semantics of Curry [2]. However, we will handle apply with

the standard eval-apply method [25].

We also make a few changes from previous presentations of the syntax [2, 16]. We include failure

as the value ⊥. This allows us to encode failing computations explicitly in our execution model, and to

show how failure propagates throughout a computation. We also have a separate construct for declaring

free variables because the standard implementation of FlatCurry also has a separate construct.

Finally, literals, primitive operations, and residuation are all outside the scope of this paper, although

not outside the scope of the compiler. This is done both for brevity and because their implementations

are not novel.

S. Libby 115

(Nat-VarCons) Γ[x 7→ t] : x ⇓C Γ[x 7→ t] : t where t is a head normal form

(Nat-VarExp)
Γ[x 7→ e] : e ⇓C ∆ : v

Γ[x 7→ e] : x ⇓C Γ[x 7→ v] : v
where e is not a head normal form

(Nat-Val) Γ : v ⇓C Γ : v Where v is a head normal form

(Nat-Fun)
Γ : ρ(e) ⇓C ∆ : v

Γ : f y ⇓C ∆ : v
where f x = e ∈ P is a defined function and ρ(xn) = yn

(Nat-Let)
Γ[yk 7→ ρ(ek)] : e ⇓C ∆ : v

Γ : let xk = ek in e ⇓C ∆ : v
where ρ(xn) = yn

(Nat-Or)
Γ : ei ⇓C ∆ : v

Γ : e1 ? e2 ⇓C ∆ : v
where i ∈ {1,2}

(Nat-Select)
Γ : e ⇓C ∆ : Ci(z) ∆ : ei[y 7→ z] ⇓C Θ : v

Γ : case e of Ci(y)→ ei ⇓C Θ : v

(Nat-Guess)
Γ : e ⇓C ∆ : x ∆[x 7→Ci(y)][y 7→ y] : ei ⇓C Θ : v

Γ : case e of Ci(y)→ ei ⇓C Θ : v

Figure 2: Natural semantics for Curry [2]

Following the conventions, Γ[x 7→ v] can be used to lookup or update variable x in heap Γ with value v.

116 An Execution Model for RICE

Curry

and F a l s e _ = F a l s e

and True F a l s e = F a l s e

and True True = True

FlatCurry

and x y = case x of

F a l s e −> F a l s e

True −> case y of

F a l s e −> F a l s e

True −> True

restricted FlatCurry

and x y = case x of

F a l s e −> F a l s e

True −> and1 y

and1 y = case y of

F a l s e −> F a l s e

True −> True

Figure 3: A Curry function, a FlatCurry function, and a restricted FlatCurry function.

4 Restricted FlatCurry

We now turn our attention to transforming FlatCurry programs so that they are more amenable to an

implementation. Our restricted language is very similar to Braßel’s flat uniform programs [11], and is

similar, although not identical to, A-Normal form [15]. The primary restrictions of Restricted FlatCurry

are that functions and constructors are only applied to trivial arguments; let expressions cannot be nested;

and each function definition can contain at most one case expression. We split the syntax into three

sections: blocks, statements, and expressions. A block consists of a single case where each of the

branches contains statements. A statement consists of zero or more let expressions, followed by an

expression. Finally, an expression can be either a variable, literal, choice, failure, function application,

constructor application, or free. We only allow a single case for each function, and all declarations must

occur as early as possible. Furthermore, all applications, including function, constructor, and choice,

must be applied to variables. The difference between the body, statements, and expressions is only for

the purposes of giving structure to Curry functions. An example of a FlatCurry program, and a restricted

FlatCurry program can be seen in Figure 3. Throughout the rest of the paper, we will refer to everything

as an expression. This structure closely corresponds to the structure of ICurry [6].

We changed the representation of free variables in this syntax to correspond with their role in the

RICE runtime. A free variable is a normal form that case expressions can narrow. It would be perfectly

sensible to replace the free variable with a generator at this point [16], but RICE implements narrowing.

S. Libby 117

f ⇒ f x = b Function Definition

b ⇒ case x of p → s Case Expression

| s statement

s ⇒ let x = e in s Variable Declaration

| e Return Expression

e ⇒ x Variable

| l Literal

| ⊥ Failed

| x ? x Choice

| free Free variable

| f x Function Application

| C x Constructor Application

| apply x x Application

p ⇒ C x Constructor Pattern

| l Literal Pattern

Figure 4: Syntax of restricted FlatCurry

5 Heap Representation

Now that we have a syntax for Curry, we can discuss the execution model. A Curry program consists of

a set of functions as well as a single expression to evaluate. The expression is represented as a directed

rooted graph that we will continually reduce. The graph plays the same role as the heap in traditional

implementations of functional languages [8, 20]. We refer to it as a graph to stay closer in line with the

theory of Curry.

The graph nodes are given in Figure 5. We use the notation f(x) to represent a function application

to distinguish it from the FlatCurry syntax. Specifically, this represents the node f, with a single child

x. If G is a graph with node n, then G[n] refers to the subgraph rooted by node n, and G[n 7→ g] means

replace node n in G with the graph g. We also use the convention that if a node n is referred to more than

once, then it is shared. For example, if G[n] = True, then xor(n,n) refers to the following graph.

xor

True

We discuss the different nodes below. The graph contains seven different types of nodes: ⊥, free , ?,

function, constructor, forwarding, and partial application nodes..

The ⊥ and free nodes are the most direct nodes. The ⊥ node represents a failing computation, and

only serves to propagate the failure to the root of the expression. The free node represents a free variable.

The ? node represents a choice. We treat choices in a similar way to constructors. We do not

immediately choose a branch, but instead defer it until the value is demanded by a case expression.

However, this is only an apparent difference. Any expression that is reduced to a choice will immediately

demand the value of that choice. This simplifies the execution model, and there does not seem to be a

measurable performance loss for delaying the evaluation of choice.

Function and constructor applications are always fully applied. For partial applications, we have the

PART node. This node contains three things: a function or constructor to apply, a number k represent-

118 An Execution Model for RICE

ing the number of arguments the function is missing, and finally the arguments that have already been

partially applied. In the implementation, the function is represented by a closure.

Finally, *(g) represents a forwarding, or indirection, node. The notation is supposed to resemble a

pointer. Forwarding nodes are necessary for a function that returns one of its parameters. Consider the

following example.

i d x = x

main = l e t x = True ? F a l s e

in xor (i d x) (i d x)

The graph representing our expression is:

xor

id id

?

True False

If we take an approach similar to Peyton Jones [19] and copy the constructor after evaluation, we end

up with the following graph.

xor

True id

?

True False

This will certainly cause problems as we try to backtrack, because we need to replace both copies

of True. Instead, we solve this problem with the forwarding node *(g). If a Curry function evaluates to

a parameter of the function, then we construct a forwarding node to maintain the structure of the graph,

S. Libby 119

g ⇒ ⊥ Failed

| free Free variable

| ?(g,g) Choice

| f(g) Function Application

| C(g) Constructor Application

| *(g) Forwarding Node

| PART(f,k,g) Partial Application Node

Figure 5: Heap objects represented as a graph.

and prevent any unintended copying. Our example from before evaluates to the following.

xor

* *

?

True False

6 The Execution Model

To run a Curry program, we evaluate the expression main to normal form (or a value). We can accomplish

this by successively evaluating main to a head normal form, which is a form rooted by a constructor or

literal. We then successively evaluate the children of main to normal form. If main evaluates to a value,

then we display it to the user; if it evaluates to ⊥, we discard the value. In either case, we backtrack and

try again. The backtracking scheme is well understood and used in both Pakcs and MCC [14, 24, 16].

In order to implement backtracking, we need to keep track of a backtracking stack. We represent the

backtracking stack as a list of frames enclosed in angle brackets.

S = 〈〉
S = 〈g[?],g|S〉

A stack is empty, or it contains two nodes from the heap. The left node is the current value in the

heap, and the right node contains a value to replace it with when backtracking. We use the notation g? to

denote that node g came from a choice, and therefore backtracking should stop at this node.

We introduce four relations in Figure 6 for evaluation to normal form, head normal form, backtrack-

ing a single step, and backtracking to a choice. The normal form relation evaluates an expression to a

value as described above. The graph G and stack S may be changed over the course of evaluation. The

evaluation to head normal form is similar, but only evaluates e to an expression rooted by a constructor.

Finally, we have two backtracking relations. The first only undoes a single rewrite from the stack. The

second one pops rewrites off that stack until we reach a rewrite that came from a choice. The rules for

evaluating to normal form and backtracking are given in Figure 7. We use the standard ⇓n notation to

refer to the n-fold composition of the ⇓ relation. Most rules are standard, but the rule for choice may be

120 An Execution Model for RICE

G,S : e ⇓N G,S : v evaluation to Normal Form

G,S : e ⇓ G,S : v evaluation to Head Normal Form

G,S ⇓B G,S Backtracking

G,S ⇓B? G,S Backtracking to a choice

Figure 6: evaluation relations

expression e with graph G and stack S evaluates to value v with a possibly modified G and S.

(BT) G,〈x,y|S〉 ⇓B G[x 7→ y],S

(BT-Choice) G,〈x,y | l?,r | S〉 ⇓B? G[x 7→ y][l 7→ r],〈r,?(l,r)|S〉

(Norm-Bot)
G,S : e ⇓ G1,S1 : ⊥

G,S : e ⇓N G1,S1 : ⊥

(Norm-Lit)
G,S : e ⇓ G1,S1 : l

G,S : e ⇓N G1,S1 : l

(Norm-Free)
G,S : e ⇓ G1,S1 : free

G,S : e ⇓N G1,S1 : free

(Norm-Con)
G,S : e ⇓ G0,S0 : C(e) Gi,Si : ei ⇓N Gi+1,Si+1 : vi

G,S : e ⇓N Gn,Sn : C(v)

(Norm-Choice)
G,S : e ⇓ G1,S1 :?(x,y) G1[r 7→ *(x)],〈r?,*(y)|S1〉 : x ⇓N G2,S2 : v

G,S : e ⇓N G2,S2 : *(v)

Figure 7: backtracking and normalization algorithm.

in (Norm-Choice) r is the root of the expression e

surprising. If an expression is evaluated to a choice, then we choose the left hand side, and evaluate that

to normal form. We push the right hand side on the stack so we can backtrack to it later.

While backtracking and evaluation to normal form are typical, evaluation to head normal form re-

quires more explanation. We split the rules up into three parts: basic rules in Figure 8, rules for a case

in Figure 9, and rules for apply in Figure 10.

The basic rules correspond closely to the original FlatCurry semantics with the addition of the stack.

The rules are given in Figure 8. The rules for (Bot), (Lit), (Free), and (Con) are already in head normal

form, so the evaluation is complete. We also treat ? and * as head normal forms. This is still consistent

with the previous semantics because they will both be evaluated by case expressions. The rule for (Let)

simply adds each defined variable to the graph. Because all functions are only applied to variables, we

treat expression variables the same as graph nodes. The case for (Fun) is very similar to the previous

semantics. We replace the function call with the expression graph from the function’s definition and

continue evaluation.

Finally, the (Var) case is trivial. This seems surprising because the (Nat-VarExp) case was more

complicated in the previous semantics. However, the only way an expression could evaluate to a variable

that was not the scrutinee of a case expression is if a function returned one of its parameters. In that case,

S. Libby 121

(Bot) G,S : ⊥ ⇓ G,S : ⊥

(Lit) G,S : l ⇓ G,S : l

(Free) G,S : free ⇓ G,S : free

(Con) G,S : C e ⇓ G,S : C(e)

(Choice) G,S : e1 ? e2 ⇓ G,S : ?(e1,e2)

(Fun)
f x = e G,S : e[x 7→ y] ⇓ G1,S1 : v

G,S : f y ⇓ G1,S1 : v

(Let)
G[x 7→ e],S : e1 ⇓ G1,S1 : v

G,S : let x = e in e1 ⇓ G1,S1 : v

(Var) G,S : x ⇓ G,S : *(x)

Figure 8: Evaluation of expressions without case

We assume all variables from function definitions are fresh.

we need to create a forwarding node for the reasons described above.

More substantial changes start to appear in the case rules. These rules correspond to the while/switch

loop in the generated C code for the RICE compiler [23, Chapter 4]. Cases are only applied to variables,

so case expressions inspect the variable and evaluate it if necessary. There is one case for each type of

heap object we might scrutinize, except for partial applications. Typing rules prevent partial applications

from appearing as the scrutinee of a case.

The (Case-Bot) rule is the simplest rule; it only propagates the ⊥ up. The (Case-Fwd) rule unwraps

its argument and tries again. The (Case-Fun) rule evaluates a function, and updates the variable when

it returns. This rule pushes x with its old value f (y) onto the stack, because that rewrite might need to

be undone for backtracking. (Case-Choice) will always choose the left-hand side, and push the right-

hand side as a non-deterministic rewrite 〈x?,*(z)|S〉 onto the backtracking stack. We then update x to

be a forwarding node to the left-hand side y. (Case-Lit) and (Case-Con) can select a branch for the

case. (Case-Con) has to replace the parameters of the constructor with the arguments. Finally, (Case-

LitFree) and (Case-ConFree) handle narrowing steps. The free variable is instantiated to the pattern of

the first branch. If the branch is a constructor, then the children are filled with free variables. We use

the notation e[yi 7→ freei] to denote replacing each free variable yi in expression e with the corresponding

logic variable that was created in C(free). The rest of the patterns are all pushed onto the backtracking

stack as rewrites for the free variable.

The final rules are the rules for the apply function. We handle apply with the eval-apply method [25].

In fact, the logic features have no bearing on partial application. If we are applying a choice node, then

we select the leftmost node and try again. If we are applying a free variable, then we fail.

The remaining possibilities of partial application are split into three cases. If the partial application is

under applied, then we simply add the new arguments to the application and move on. If the application

is correctly applied, then we evaluate the function with the arguments. Finally, if the application is over

122 An Execution Model for RICE

(Case-Bot) G[x 7→ ⊥],S : case x of p → e ⇓ G,S : ⊥

(Case-Fwd)
G,S : case y of p → e ⇓ G1,S1 : v

G[x 7→ *(y)],S : case x of p → e ⇓ G1,S1 : v

(Case-Fun)

G,S : f y ⇓ G1,S1 : vx

G1[x 7→ vx],〈x, f (y)|S1〉 : case vx of p → e ⇓ G2,S2 : v

G[x 7→ f (y)],S : case x of p → e ⇓ G2,S2 : v

(Case-Choice)
G[x 7→ *(y)],〈x?,*(z)|S〉 : case y of p → e ⇓ G1,S1 : v

G[x 7→?(y,z)],S : case x of p → e ⇓ G1,S1 : v

(Case-Lit)
G,S : ei ⇓ G1,S1 : v

G[x 7→ li],S : case x of l → e ⇓ G1,S1 : v

(Case-LitFree)
G[x 7→ l1],SL : e1 ⇓ G1,S1 : v

G[x 7→ free],S : case x of l → e ⇓ G1,S1 : v

(Case-Con)
G,S : ei[y 7→ z] ⇓ G1,S1 : v

G[x 7→Ci(z)],S : case x of C y → e ⇓ G1,S1 : v

(Case-ConFree)
G[x 7→C1(free)],SC : e1[yi 7→ freei] ⇓ G1,S1 : v

G[x 7→ free],S : case x of C y → e ⇓ G1,S1 : v

Figure 9: rules for Case expressions.

In Case-LitFree SL = 〈x, l2| . . . |x, ln|x, free|S1〉
In Case-ConFree SC = 〈x,C2(free)| . . . |x,Cn(free)|x, free|S1〉

S. Libby 123

(Apply-Free) G[x 7→ free],S : apply x e ⇓ G,S : ⊥

(Apply-Choice)
G[x 7→ *(y)],〈x?,*(z)|S〉 : apply y e ⇓ G1,S1 : v

G[x 7→?(y,z)],S : apply x e ⇓ G1,S1 : v

(Apply-Under)
|e|= n < k

Gx,S : apply x e ⇓ G,S : PART(f ,k−n,ye)

(Apply-Full)
G,S : f y ek ⇓ G1,S1 : v

Gx,S : apply x ek ⇓ G1,S1 : v

(Apply-Over)
G,S : f y ek ⇓ G1,S1 : v1 G1,S1 : apply v1 ek+1 ⇓ G2,S2 : v2

Gx,S : apply x ekek+1 ⇓ G2,S2 : v2

Figure 10: apply rules.

In all 3 rules Gx = G[x 7→ PART(f ,k,y)]
In (apply-over) ek = e1 . . .ek

In (apply-over) ek+1 = ek+1 . . .en

applied, then it must evaluate to a PART; we take the first few arguments, evaluate to the PART, and supply

the final arguments.

7 Correspondence to Generated Code

The purpose of this semantics is to model the execution of programs compiled with RICE. In order to

justify that the semantics really does correspond with the compiled code, we give a small example of

compiled RICE code for the not function defined below

n o t x = case x of

True −> F a l s e

F a l s e −> True

In the RICE compiler Curry expressions are compiled C code. The graph nodes from the semantics

are represented as Node objects, which correspond to closures in a traditional functional language. Its

definition is given in Figure 11. Each Node has 3 fields. The missing field is used for partial application,

the symbol field contains information about the Node such as it’s name and arity and tag describing what

node it is, as well as a pointer to code to reduce the node to head normal form. Finally, each node has an

array of 4 children. If a node has arity greater than 4, the final slot is a pointer to an array containing the

rest of the children.

The code for reducing the expression not e for some expression e is given in Figure 12. We continue

to loop until we reduce to a head normal form. The branches in the case corresponding to the different

Case rules in Figure 9. The rules for FAIL, True, and False just set the symbol, and remove the child and

return. The forward tag sets the scrutinee to be its first child and retries. The choice tag makes sets the

scrutinee to be one of its children and pushes in on the stack. The details are elided here. Finally, The

function rule reduces the scrutinee and pushes it on the backtracking stack which we call bt_stack .

124 An Execution Model for RICE

t y p e d e f s t r u c t Node {

c o n s t unsigned char t a g ;

i n t m i s s i n g ;

Symbol * symbol ;

f i e l d c h i l d r e n [4] ;

} Node ;

Figure 11: Definition for a Node object

void n o t _ h n f (f i e l d r o o t) {

Node* s c r u t i n e e = r o o t −> c h i l d r e n [0] ;

wh i le (t r u e) {

swi tch (s c r u t i n e e −> t a g) {

case FAIL_TAG :

r o o t −> s c r u t i n e e = FAIL_symbol ;

r o o t −> c h i l d r e n [0] = NULL;

re tu rn ;

case FORWARD_TAG:

s c r u t i n e e = s c r u t i n e e −> c h i l d r e n [0] ;

break ;

case CHOICE_TAG:

choose (s c r u t i n e e) ;

break ;

case FUNCTION_TAG:

s c r u t i n e e −>symbol −> hnf (s r u t i n e e) ;

push (b t _ s t a c k , s c r u t i n e e , f a l s e) ;

break ;

case True_TAG :

r o o t −>symbol = False_Symbol ;

r o o t −> c h i l d r e n [0] = NULL;

re tu rn ;

case False_TAG :

r o o t −>symbol = True_Symbol ;

r o o t −> c h i l d r e n [0] = NULL;

re tu rn ;

}

}

}

Figure 12: Code for reducing a not node to head normal form.

S. Libby 125

8 Correctness

With the semantics now established, we need to show that they actually implement Curry. We do this via

comparison to the original semantics [2]. However, the original semantics were non-deterministic, and

we cannot hope to match them. Because we are not using a fair evaluation strategy, there will be answers

that we may not produce in a finite amount of time.

Nevertheless, we can still show that we agree with the original semantics in restricted cases. Specif-

ically, we show that for terminating programs, we produce the same answers as the original semantics,

which is not surprising. If we remove the stack from our semantics, then we match the original fairly

closely.

We start by proving that the backtracking operation does backtrack as we claim. Specifically, we

show that if we have a graph G and expression e that we evaluate to the new graph G′ and v, then there

is some number of backtracking steps that will restore the original graph.

Theorem 1. For any expression graph G, stack S, and expression e if G,S : e ⇓N G′,S′ : v, then there

exists some n where G′,S′ ⇓n
B G∪Gu,S where Gu is a set of unreachable bindings created after e was

evaluated.

Proof. The proof is by structural induction on the derivation of e. The only rules that alter G are (Let),

(Case-Choice), (Case-Fun). (Case-LitFree), (Case-ConFree), (Norm-Choice), and (Apply-Choice). All

other cases are trivial because they do not modify the stack or the graph. The (Let) rule can only add new

bindings to the graph, so these new bindings may go in Gu.

(Case-Fun): If G[x 7→ f (y)], then there are two evaluations that take place: G,S : f (y) ⇓ G1,S1 : vx

and G[x 7→ vx],〈x, f (y)|S1〉 : case vx of p → e ⇓ G2,S2 : v. By our inductive hypotheses G2,S2 ⇓n
B

G1[x 7→ vx]∪Gu2,〈x, f (y)|S1〉, so G2,S2 ⇓
n+1
B G1[x 7→ f (y)]∪Gu2,S1. Again, by our induction hypothesis

G1,S1 ⇓
m
B G∪Gu1,S. Therefore, G2,S2 ⇓

m+n+1
B G∪ (Gu1 ∪Gu2),S.

The cases for (Case-Choice), (Case-LitFree), (Case-ConFree), (Norm-Choice), and (Apply-Choice)

are all similar, but there is one slight alteration. We use (Case-Choice) as an example. If G[x 7→?(y,z)],
then there is only one derivation. G[x 7→ *(y)],〈x?,*(z)|S〉 : case y of p → e ⇓ G1,S1 : v By the induction

hypothesis G1,S1 ⇓
n
B G[x 7→ *(y)]∪Gn,〈x?,*(z)|S〉. Our next backtracking step will replace y with z and

add something new to the stack. G1,S1 ⇓
n+1
B G[x 7→ *(z)]∪Gn,〈x,?(y,z)|S〉. This is fine because the next

backtracking step will restore the stack. G1,S1 ⇓
n+2
B G∪Gn,S. This completes the proof.

Next, we show that for any graph G, stack S, and expression e, if we evaluate using our semantics,

then we produce the same value as the natural semantics [2] assuming all choices choose the left hand

side. We use ⇓C as the evaluation relation from the natural semantics. We recall the rules for the natural

semantics in Figure 2. Because there is only a relation for head normal forms, and not normal forms, we

restrict ourselves to evaluations that terminate in a constructor or literal.

Theorem 2. If G,S : e ⇓ G′,S′ : v, Where v is a constructor or a literal, then there is a heap Γ that

corresponds to G, and a heap Γ′ corresponding to G′ such that Γ : e ⇓C Γ′ : v′ where v′ is the same as v

with the forward nodes contracted.

Proof. We prove this by constructing a transformation on derivations in our semantics to a derivation in

the natural semantics. Because the natural semantics is not formulated for higher order expressions, we

will assume all expressions are first order and all applications are fully applied.

We create a mapping ⇔ which maps evaluation rules from our semantics to the natural semantics.

The full mapping can be found in Figure 13. By our assumption, (Bot) or (Case-Bot) can never appear in

126 An Execution Model for RICE

the evaluation. If they did, then the ⊥ would propagate to the root of the expression. The cases for (Lit),

(Con), (Free), (Fun), and (Let) are straightforward. We elide the stack in all of these mappings because

it is not relevant to the proof.

The only two non-case rules that do not directly correspond are (Choice) and (Var). By our as-

sumption that v is a constructor or a literal, we know that these rules must appear in the context of a case

expression. Because the scrutinee of all case statements is a variable, all of our case rules will correspond

to multiple rules in the natural semantics. Specifically, every scrutinee that is not in head normal form

will have a (Case-Fun) rule to evaluate it. We can assume that there may be (Case-Fwd) rules before any

of the case rules are applied. This does not affect the result because the forwarding nodes will disappear

after contraction. We show the case for a function application that evaluates to a literal, but the case for

a function evaluating to a constructor is identical.

In the case of (Choice), the correspondence is not immediately clear. The evaluation seems very

different because we treat choice as a head normal form and the natural semantics does not. However,

because all choices must be evaluated in a case, the next step in the evaluation is to select a branch for

the choice.

Finally, we will consider the narrowing step. This is similar to choice in that free variables are normal

forms, but it is an easier correspondence because free variables are normal forms in the natural semantics

as well. In the natural semantics, if an expression e evaluates to a variable x, then it must be the case

that Γ[x 7→ x] and x is a free variable. We show the case for case expressions with literal branches, but

the constructor case is identical. Because this covers every rule, ⇔ is a correspondence between our

semantics and the natural semantics.

These two theorems justify the correctness of our execution model. If we have a terminating expres-

sion e, and e evaluates to a value v in the natural semantics, then it will eventually evaluate to v in our

semantics.

9 Related Work and Conclusion

This work was built on the work of Hanus et al. [2], and Braßel [11]. Our execution model follows the

execution model of Pakcs [14], with improvements for performance. There are a number of different se-

mantics for Curry including CRWL [28], and rewriting [16]. We elected to go with the natural semantics

because it closely resembles the implementation of the RICE compiler. Other execution models have

been described for MCC [24] and KiCS2 [12]. We cannot directly use the work on KiCS2 because it

uses pull-tabbing rather than backtracking. The execution model in MCC was different enough that we

did not feel it was useful to build on it.

Another alternative would be the semantics given for the Verse Calculus [9]. While we think it would

be an interesting idea to compile Curry to VC and see how the performance compares, we still have many

questions about implementation details.

In future work, we would like to show the correctness of some of the optimizations to the execution

model found in the RICE compiler [23]. These include fast backtracking [22] and case shortcutting [23].

We would also like to show a correspondence with the denotational semantics given by Mehner et al. [27]

to use the free theorems to justify some tricky compiler transformations.

We have presented the execution model for RICE. We extended the natural semantics by making it

deterministic and adding a stack. We justified our execution model by showing that expressions evaluate

to the same values as the natural semantics. We believe that this execution model is simple enough to be

understandable, but detailed enough to be useful.

S. Libby 127

(Lit) G : l ⇓ G : l

⇔
(Nat-Val) Γ : l ⇓ Γ : l

(Con) G : C e ⇓ G : C(e)
⇔
(Nat-Val) Γ : C e ⇓ Γ : C e

(Fun)
f x = e G : e[x 7→ y] ⇓ G1 : v

G : f y ⇓ G1 : v
⇔

(Nat-Fun)
Γ : ρ(e) ⇓ ∆ : v

Γ : f y ⇓ ∆ : v
where f x ∈ P and ρ(yn) = xn

(Let)
G[x 7→ e] : e1 ⇓ G1 : v

G : let x = e in e1 ⇓ G1 : v
⇔

(Nat-Let)
Γ[yk 7→ ρ(ek)] : e ⇓ ∆ : v

Γ : let xk = ek in e ⇓ ∆ : v
where ρ(xk) = yk

(Case-Fun-Lit) G : f y ⇓ G1 : li

G1 : ei ⇓ G2 : v

G1[x 7→ li] : case vx of l → e ⇓ G2 : v

G[x 7→ f (y)] : case x of l → e ⇓ G2 : v

⇔

(Nat-Select)

Γ : ρ(e) ⇓ ∆ : li

Γ : f y ⇓ ∆ : li ∆ : ei ⇓ Φ : v

Γ[x 7→ f y] : case x of li → ei ⇓ Φ : v

where f x ∈ P and ρ(yn) = xn

(Case-Choice)

G : f y ⇓ G1 :?(y,z)

G1 : e ⇓ G2 : pi G2 : ei ⇓ G3 : v

G1[y 7→ e] : case y of p → e ⇓ G3 : v

G1[x 7→ *(y)] : case x of p → e ⇓ G3 : v

G1[x 7→?(y,z)] : case x of p → e ⇓ G3 : v

G1[x 7→ f (y)] : case x of l → e ⇓ G3 : v

⇔

(Nat-Or)

Γ : y ⇓ ∆ : pi

Γ : y or z ⇓ ∆ : pi

...

Γ : ρ(e) ⇓ ∆ : pi

Γ : f y ⇓ ∆ : pi ∆ : ei ⇓ Φ : v

Γ[x 7→ f y] : case x of li → ei ⇓ Φ : v

(Case-LitFree)
G[x 7→ l1] : e1 ⇓ G1 : v

G[x 7→ free] : case x of l → e ⇓ G1 : v
⇔

(Nat-Guess)
Γ : e ⇓ ∆ : x ∆[x 7→ l1] : e1 ⇓ Θ : v

Γ[x 7→ e] : case x of l → e ⇓ Θ : v

Figure 13: The mapping ⇔

128 An Execution Model for RICE

References

[1] E. Albert, M. Hanus, F. Huch, J. Oliver & G. Vidal (2002): A Determinis-

tic Operational Semantics for Functional Logic Programs, p. 207. Available at

https://www.programmazionelogica.it/wp-content/uploads/2002/09/agp02_207.pdf.

[2] E. Albert, M. Hanus, F. Huch, J. Oliver & G. Vidal (2005): Operational semantics for declarative multi-

paradigm languages. Journal of Symbolic Computation 40(1), pp. 795–829, doi:10.1016/j.jsc.2004.01.001.

[3] S. Antoy (1992): Definitional Trees. In H. Kirchner & G. Levi, editors: Algebraic and Logic Program-

ming, Third International Conference, Volterra, Italy, September 2-4, 1992, Proceedings, Lecture Notes in

Computer Science 632, Springer, pp. 143–157, doi:10.1007/BFB0013825.

[4] S. Antoy (1997): Optimal Non-deterministic Functional Logic Computations. In M. Hanus, J. Heering

& K. Meinke, editors: Algebraic and Logic Programming, 6th International Joint Conference, ALP ’97 -

HOA ’97, Southampton, UK, September 3-5, 1997, Proceedings, Lecture Notes in Computer Science 1298,

Springer, pp. 16–30, doi:10.1007/BFB0027000.

[5] S. Antoy, R. Echahed & M. Hanus (2000): A needed narrowing strategy. J. ACM 47(4), pp. 776–822,

doi:10.1145/347476.347484.

[6] S. Antoy, M. Hanus, A. Jost & S. Libby (2019): ICurry 12057, pp. 286–307.

doi:10.1007/978-3-030-46714-2_18.

[7] S. Antoy & A. Jost (2016): A New Functional-Logic Compiler for Curry: Sprite 10184, pp. 97–113.

doi:10.1007/978-3-319-63139-4_6.

[8] A. W. Appel (2006): Compiling with Continuations (corr. version). Cambridge University Press.

[9] L. Augustsson, J. Breitner, K. Claessen, R. Jhala, S. Peyton Jones, O. Shivers, G. L. Steele Jr. & T. Sweeney

(2023): The Verse Calculus: A Core Calculus for Deterministic Functional Logic Programming. Proceedings

of the ACM on Programming Languages 7(ICFP), pp. 417–447, doi:10.1145/3607845.

[10] J. Böhm, M. Hanus & F. Teegen (2021): From Non-determinism to Goroutines: A Fair Implementation of

Curry in Go. In N.ò Veltri, N. Benton & S. Ghilezan, editors: PPDP 2021: 23rd International Symposium

on Principles and Practice of Declarative Programming, Tallinn, Estonia, September 6-8, 2021, ACM, pp.

16:1–16:15, doi:10.1145/3479394.3479411.

[11] B. Braßel (2010): Implementing Functional Logic Programs by Translation into

Purely Functional Programs. Ph.D. thesis, University of Kiel. Available at

http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00007056.

[12] B. Braßel, M. Hanus, B. Peemöller & F. Reck (2011): KiCS2: A New Compiler from Curry to Haskell.

In: H. Kuchen, editor: Functional and Constraint Logic Programming, 20th International Workshop, WFLP

2011, Odense, Denmark, July 19, 2011, Proceedings, Lecture Notes in Computer Science 6816, Springer,

pp. 1–18, doi:10.1007/978-3-642-22531-4_1.

[13] R. Echahed & J. C. Janodet (1997): On constructor-based graph rewriting systems. Technical Report 985-I,

IMAG. Available at ftp://ftp.imag.fr/pub/labo-LEIBNIZ/OLD-archives/PMP/c-graph-rewriting.ps.gz.

[14] M. Hanus (ed.) (March 04, 2017): PAKCS 1.14.3: The Portland Aachen Kiel Curry System. Available at

http://www.informatik.uni-kiel.de/~pakcs.

[15] C. Flanagan, A. Sabry, B. F. Duba & M. Felleisen (1993): The Essence of Compiling with Continuations.

In R. Cartwright, editor: Proceedings of the ACM SIGPLAN’93 Conference on Programming Language

Design and Implementation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993, ACM, pp. 237–

247, doi:10.1145/155090.155113.

[16] M. Hanus (2013): Functional Logic Programming: From Theory to Curry, pp. 123–168. Lecture Notes in

Computer Science 7797, Springer, doi:10.1007/978-3-642-37651-1_6.

[17] H. Hußmann (1988): Nondeterministic Algebraic Specifications and Nonconfluent Term Rewriting. In

J. Grabowski, P. Lescanne & W. Wechler, editors: Algebraic and Logic Programming, International Work-

https://www.programmazionelogica.it/wp-content/uploads/2002/09/agp02_207.pdf
https://doi.org/10.1016/j.jsc.2004.01.001
https://doi.org/10.1007/BFB0013825
https://doi.org/10.1007/BFB0027000
https://doi.org/10.1145/347476.347484
https://doi.org/10.1007/978-3-030-46714-2_18
https://doi.org/10.1007/978-3-319-63139-4_6
https://doi.org/10.1145/3607845
https://doi.org/10.1145/3479394.3479411
http://eldiss.uni-kiel.de/macau/receive/dissertation_diss_00007056
https://doi.org/10.1007/978-3-642-22531-4_1
http://www.informatik.uni-kiel.de/~pakcs
https://doi.org/10.1145/155090.155113
https://doi.org/10.1007/978-3-642-37651-1_6

S. Libby 129

shop, Gaussig, GDR, November 14-18, 1988, Proceedings, Lecture Notes in Computer Science 343,

Springer, pp. 31–40, doi:10.1007/3-540-50667-5_56.

[18] T. Johnsson (1985): Lambda Lifting: Treansforming Programs to Recursive Equations. In J. Jouan-

naud, editor: Functional Programming Languages and Computer Architecture, FPCA 1985, Nancy, France,

September 16-19, 1985, Proceedings, Lecture Notes in Computer Science 201, Springer, pp. 190–203,

doi:10.1007/3-540-15975-4_37.

[19] S. L. Peyton Jones (1987): The Implementation of Functional Programming Languages. Prentice-Hall, Inc.,

Upper Saddle River, NJ, USA.

[20] S. L. Peyton Jones & J. Salkild (1989): The Spineless Tagless G-Machine. In J. E. Stoy, editor: Proceedings of

the fourth international conference on Functional programming languages and computer architecture, FPCA

1989, London, UK, September 11-13, 1989, ACM, pp. 184–201, doi:10.1145/99370.99385.

[21] J. Launchbury (1993): A Natural Semantics for Lazy Evaluation. In: Proceedings of the 20th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’93, Association for Com-

puting Machinery, New York, NY, USA, p. 144–154, doi:10.1145/158511.158618.

[22] S. Libby (2023): RICE: An Optimizing Curry Compiler. In M. Hanus & D. Inclezan, editors: Prac-

tical Aspects of Declarative Languages - 25th International Symposium, PADL 2023, Boston, MA,

USA, January 16-17, 2023, Proceedings, Lecture Notes in Computer Science 13880, Springer, pp. 3–19,

doi:10.1007/978-3-031-24841-2_1.

[23] S. Libby (June 21, 2022): Making Curry with Rice: An Optimizing Curry Compiler. Ph.D. thesis, Portland

State University, doi:10.15760/etd.7964. Avalible at https://github.com/slibby05/rice.

[24] W. Lux & H. Kuchen (1999): An Efficient Abstract Machine for Curry. In K. Beiersdörfer, G. En-

gels & W. Schäfer, editors: Informatik ’99 - Informatik überwindet Grenzen, 29. Jahrestagung der

Gesellschaft für Informatik, Paderborn, 5.-9. Oktober 1999, Informatik Aktuell, Springer, pp. 390–399,

doi:10.1007/978-3-662-01069-3_58.

[25] S. Marlow & S. L. Peyton Jones (2004): Making a fast curry: push/enter vs. eval/apply for higher-order

languages. In C. Okasaki & K. Fisher, editors: Proceedings of the Ninth ACM SIGPLAN International

Conference on Functional Programming, ICFP 2004, Snow Bird, UT, USA, September 19-21, 2004, ACM,

pp. 4–15, doi:10.1145/1016850.1016856.

[26] R. Mayr & T. Nipkow (1998): Higher-Order Rewrite Systems and Their Confluence. Theoretical Computer

Science 192(1), pp. 3–29, doi:10.1016/S0304-3975(97)00143-6.

[27] S. Mehner, D. Seidel, L. Straßburger & J. Voigtländer (2014): Parametricity and Proving Free Theorems for

Functional-Logic Languages. In O. Chitil, A. King & O. Danvy, editors: Proceedings of the 16th International

Symposium on Principles and Practice of Declarative Programming, Kent, Canterbury, United Kingdom,

September 8-10, 2014, ACM, pp. 19–30, doi:10.1145/2643135.2643147.

[28] J. C. González Moreno, M. T. Hortalá-González, F. J. López-Fraguas & M. Rodríguez-Artalejo (1996): A

Rewriting Logic for Declarative Programming. In H. R. Nielson, editor: Programming Languages and Sys-

tems - ESOP’96, 6th European Symposium on Programming, Linköping, Sweden, April 22-24, 1996, Pro-

ceedings, Lecture Notes in Computer Science 1058, Springer, pp. 156–172, doi:10.1007/3-540-61055-3_35.

https://doi.org/10.1007/3-540-50667-5_56
https://doi.org/10.1007/3-540-15975-4_37
https://doi.org/10.1145/99370.99385
https://doi.org/10.1145/158511.158618
https://doi.org/10.1007/978-3-031-24841-2_1
https://doi.org/10.15760/etd.7964
https://doi.org/10.1007/978-3-662-01069-3_58
https://doi.org/10.1145/1016850.1016856
https://doi.org/10.1016/S0304-3975(97)00143-6
https://doi.org/10.1145/2643135.2643147
https://doi.org/10.1007/3-540-61055-3_35

Cynthia Kop and Helida Salles Santos (Eds); 19th Workshop on

Logical and Semantic Frameworks with Applications (LSFA’24)

EPTCS 421, 2025, pp. 130–147, doi:10.4204/EPTCS.421.8

© J. Cunha, A. Madeira & L. S. Barbosa

This work is licensed under the

Creative Commons Attribution License.

Paraconsistent Relations as a Variant of Kleene Algebras *

Juliana Cunha

CIDMA, Dep. Mathematics, Aveiro University
Aveiro, Portugal

INESC TEC & Dep. Informatics, Minho University
Braga, Portugal

juliana.cunha@ua.pt

Alexandre Madeira

CIDMA, Dep. Mathematics, Aveiro University
Aveiro, Portugal

madeira@ua.pt

Luı́s S. Barbosa

INESC TEC & Dep. Informatics, Minho University
Braga, Portugal

lsb@di.uminho.pt

Kleene algebras (KA) and Kleene algebras with tests (KAT) provide an algebraic framework to capture

the behavior of conventional programming constructs. This paper explores a broader understanding

of these structures, in order to enable the expression of programs and tests yielding vague or incon-

sistent outcomes. Within this context, we introduce the concept of a paraconsistent Kleene Algebra

with tests (PKAT), capable of capturing vague and contradictory computations. Finally, to establish

the semantics of such a structure, we introduce two algebras, SetP(T) and RelP(K,T), parametric

on a class of twisted structures K and T . We believe this sort of structures, for their huge flexibility,

have an interesting application potential.

1 Introduction

In his seminal work [26], Stephen Kleene described finite deterministic automata along with a specifi-

cation language: regular expressions. Kleene’s paper left open the question of whether a finite, sound,

and complete axiomatization of the equivalence of regular expressions existed, which would provide an

algebraic framework for describing regular languages. This question has been explored by many re-

searchers. In 1964, Redko [37] proved that no finite set of equational axioms could fully characterize

the algebra of regular expressions, and in 1966, Salomaa [38] provided two complete axiomatizations of

this algebra. Conway’s comprehensive 1971 work [13] presented a detailed overview of results related

to regular expressions and their axiomatizations. In [28] Kozen showed that Salomaa’s axiomatization is

non-algebraic,i.e., unsound under substitution of alphabet symbols by arbitrary regular expressions. He

then presented an algebraic axiomatization: Kleene algebras (KA). Later in [29], Kozen also introduced

a variant of KA called Kleene Algebras with Tests (KAT). The addition of tests to KA was prompted by the

need to express conventional constructs such as conditionals and while loops. As a result, KAT is specif-

ically designed for equational reasoning about these constructs. For any proposition α it is possible to

form a test α? that acts as a guard: it succeeds with no side effects in states satisfying α , and fails or

aborts otherwise1.

*This work was financed by PRR - Plano de Recuperação e Resiliência under the Next Generation EU from the European

Union within Project Agenda ILLIANCE C644919832-00000035 - Project n 46, as well as by National Funds through FCT

- Fundação para a Ciência e a Tecnologia, I.P. (Portuguese Foundation for Science and Technology) within the project IBEX,

with reference PTDC/CCI-COM/4280/2021 (DOI 10.54499/PTDC/CCI-COM/4280/2021)
1Notice that throughout this paper, distinct symbols will be used for programs and propositions. Therefore, we often omit

the ? symbol and simply write α to denote a test.

http://dx.doi.org/10.4204/EPTCS.421.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

J. Cunha, A. Madeira & L. S. Barbosa 131

While historically prominent in automata theory and formal languages [32], KA and their variants

have found applications across various domains, including relational algebra [39], program semantics

and logics [33], compiler optimization [30], and algorithm design and analysis [27]. For a more compre-

hensive read of its applications, the reader is referred to [4].

KAT are suitable to reason about imperative programs since these programs can be thought of as

sequences of discrete steps, each related to an atomic transition in a standard automaton. Traditionally,

these programs operate within a bivalent truth space, where assertions have Boolean outcomes. While

this framework has proven to suit a huge range of computer science applications, its inherent simplicity

and rigidity may fall short in capturing some intricacies present in real-world scenarios.

Actually, it is not uncommon in software engineering to face scenarios in which vague, or weakly

consistent, or even contradictory information is present. Often such characteristics cannot be abstracted

away or swept under the carpet. A typical example the authors are currently facing, and which forms

one of our motivations for this work, concerns repositories of medical images in a particular domain,

which are labeled by several medical judgments from different expert teams, which often are in partial

contradiction. Another example arises in the analysis of implementations of quantum circuits in current

NISQ (Noisy Intermediate-Scale Quantum) technology [34], where conflicting decoherence levels in the

quantum memory have to be taken into account.

Therefore, the introduction of algebraic structures to model computations becomes necessary when

the behavior of these computations does not conform to a simple bivalent outcome. Instead, it may

involve weighted outcomes from a richer domain, potentially lacking consistency. In this context, vague-

ness captures the lack of information, while paraconsistency, a well-established designation in logic,

expresses the excess of information arising from contradictory judgments.

From a technical point of view, paraconsistency refers to a property inherent to a consequence re-

lation. A logic is said to be “paraconsistent” if and only if its logical consequence relation, whether

semantic or proof-theoretic, does not lead to explosion [35]. In logic, the term “explosion” refers to the

principle of ex falso quodlibet, meaning “from contradiction, anything follows”. This principle is the

basis for the law of non-contradiction in classical logic. It asserts that from contradictory premises, any

proposition can be derived, thus leading to triviality (where anything can be proved true). Consequently,

paraconsistent logics set themselves apart from classical ones by their capacity to handle inconsistent

information without “exploding” into absurdity. Initially developed in Latin America during the 1950s

and 1960s, notably through the influential contributions of F. Asenjo and Newton da Costa, paraconsis-

tent logic quickly garnered attention within the logic and computer science communities. Its original

focus on mathematical applications has since expanded, as evidenced by recent literature emphasizing

the engineering potential of paraconsistency [3]. Relevant applications are documented in several fields,

including deontic logic [14], data network monitoring [21], robotics [1], quantum mechanics [12] and

quantum information theory [2],

Since their introduction numerous formalizations of paraconsistent logic have emerged [15, 22]. This

paper takes a specific standpoint: the notion of paraconsistent transition systems (PLTS) introduced in

[17] and later used to reason about decoherence in quantum circuits as documented in [5]. Informally, in

these systems, each transition is assigned a pair of weights: a positive weight representing the evidence

supporting the transition’s occurrence, and a negative weight representing the evidence against it.

This paper aims at developing an algebraic counterpart to our research on PLTS, already documented

in a number of references [5, 16, 17, 19, 20]. As in previous works, we adopt a similar approach to that

in [8], focusing on a particular class of residuated lattices over a set A of possible truth values. In this

setting, both the positive and negative weights are taken from the set A.

Furthermore, to establish the groundwork for the sequel, we work with the concept of a twisted-

132 Paraconsistent Relations as a Variant of Kleene Algebras

structure, originally proposed by Kalman [25]. This structure arises from the direct product of a lattice

L with its order-dual L∂ and serves as a key tool for jointly computing positive and negative weights in

PLTS, represented by pairs in L×L∂ . Additionally, the twisted-structure naturally carries a De Morgan

involution, which we denote by � and interpret as a form of “negation”.

The main contribution of this paper lies in the proposal of an extension of KAT to a paraconsistent

framework able to reason about uncertain or inconsistent computations. This allows computations to

yield outcomes graded by two weights: one indicating evidence for execution and the other evidence for

failure. Note that a similar motivation can be found in [23] where a graded variant of KAT is introduced.

That work, however, only captures forms of uncertainty as usual in fuzzy logic. Finally, we present two

examples of PKAT, paraconsistent sets and relations, which are parametric on arbitrary twisted structures

resulting from the direct product of the relevant lattices. These examples serve to illustrate how PKAT

handles computations with a paraconsistent reasoning.

Paper structure. Subsection 1.1 recalls the definition of KA and KAT. Section 2 revisits the definition

of PLTS parametric on a class of residuated lattices [17] and establishes some new properties that will

prove useful in the sequel. Section 3 introduces a variant of KAT for a paraconsistent context (PKAT)

where programs and tests accommodate inconsistencies and vagueness. Additionally, in Section 3 we

present the details of two new algebraic structures that form a PKAT: paraconsistent sets SetP(T) and

paraconsistent relations RelP(K,T), which are parametric over fixed twisted structures K and T , respec-

tively. Finally, Section 4 concludes and points out a number of topics for future research.

1.1 Preliminaries

Definition 1. [29] A Kleene algebra (KA) is an algebraic structure (K,+, ·,⋆ ,0,1) satisfying the ax-

ioms (1)-(13) below. The order of precedence of the operators is ⋆ > · > +. Thus, p+q · r⋆ should be

parsed as p+(q · (r⋆)).

p+(q+ r) = (p+q)+ r (1)

p+q = q+ p (2)

p+0 = p (3)

p+ p = p (4)

p · (q · r) = (p ·q) · r (5)

1 · p = p ·1 = p (6)

p · (q+ r) = p ·q+ p · r (7)

(p+q) · r = p · r+q · r (8)

0 · p = p ·0 = 0 (9)

1+ p · p⋆ = p⋆ (10)

1+ p⋆ · p = p⋆ (11)

p · r ≤ r −→ p⋆ · r ≤ r (12)

r · p ≤ r −→ r · p⋆ ≤ r (13)

where ≤ refers to the natural partial order on K, that is, p ≤ q if and only if p+q = q.

Axioms (1)-(9) establish (K,+, ·,⋆ ,0,1) as an idempotent semiring, while axioms (10)-(13) say that
⋆ is like the reflexive transitive closure on binary relations [24].

Definition 2. [24] A Kleene algebra with tests (KAT) is a two-sorted algebra

(K,B,+, ·,⋆ ,− ,0,1)

such that (K,+, ·, ⋆,0,1) is a Kleene algebra, (B,+, ·, −,0,1) is a Boolean algebra and B ⊆ K.

The unary operator − is defined only on B which elements are called tests. We reserve the letters

p, q, r, s for arbitrary elements of K and α , β , γ for tests. In summary, a KAT satisfies axioms (1)-(13)

and the following for any tests:

J. Cunha, A. Madeira & L. S. Barbosa 133

α +(β · γ) = (α +β) · (α + γ) (14)

(α ·β)+ γ = (α + γ) · (β + γ) (15)

α ·β = β ·α (16)

α ·α = α (17)

α = α (18)

α +1 = 1 (19)

α ·α = 0 (20)

α +α = 1 (21)

Axioms (1)-(13) pertain to the fact that (K,+, ·,⋆ ,0,1) is a KA. While axioms (14)-(21) pertain to the fact

that (B,+, ·,− ,0,1) is a Boolean algebra [24].

Example 1. Semantically, programs are represented as binary relations over a set of states X and a test

α is interpreted as a subset of the identity relation, comprising all pairs (x,x) such that α holds at state

x. Hence,the family of binary relations on a set X is a KAT with operations defined as follows.

0 := /0

1 := {(u,u) |u ∈ X}

α = 1\α

R+R′ := R∪R′

R ·R′ := {(u,w) |∃v(u,v) ∈ R∧ (v,w) ∈ R′}

R⋆ :=
⋃

n≥0

Rn = reflexive transitive closure of R

where R0 := {(u,u) |u ∈ X} and Rn+1 = R ·Rn.

This extension of KA with a Boolean algebra results in an algebraic model to capture program behav-

ior and assertions. Hence, conditionals and while loops found in programming can be defined in terms

of the regular operators.

if α then p else q
def
= α · p+α ·q

while α do p
def
= (α · p)⋆ · α

2 Paraconsistent transition systems

The notion of paraconsistent transition systems, abbreviated to PLTS, was introduced in [17]. These

systems’ transitions involve two weights: a positive and a negative that characterize each transition in

opposite ways. The positive weight represents the evidence of its presence, while the negative weight

represents the evidence of its absence. Furthermore, following the line of research outlined in [8], a

residuated lattice over a set A of possible truth values is adopted. This allows the transitions of PLTS

to be represented by pairs of weights (tt, ff) ∈ A×A. Thus, all the relevant constructions of PLTS are

parametric in a class of residuated lattices and admit different instances according to the truth values

domain A that better suits each concrete problem.

To exemplify, suppose that weights for both transitions come from a residuated lattice over the real

interval [0,1].

134 Paraconsistent Relations as a Variant of Kleene Algebras

T
ra

n
si

ti
o
n

is
p
re

se
n
t

Transition is absent

0 1

0

1

Figure 1: The vagueness-inconsistency square

These pairs of weights express different behaviors:

• inconsistency, when the positive and negative weights are contradictory,i.e., they sum to a value

greater than 1, this corresponds to the upper triangle in Figure 1, filled in grey.

• vagueness, when the sum is less than 1, corresponding to the lower, periwinkle triangle in Figure 1.

• consistency, when the sum is exactly 1, that is the evidence degrees that enforce and prevent a

transition from occurring are complementary, corresponding to the red line in Figure 1.

We will consider a class of residuated lattices AAA = 〈A,⊓,⊔,1,0,→〉 over a set A, bounded by a

maximal element 1 and a minimal element 0 and where the lattice meet (⊓) and the monoidal composition

(⊙) coincide. Such lattices are commonly referred to as Heyting algebras in the literature, and also known

as pseudo-Boolean algebras [36]. The adjunction property is stated as a⊓b≤ c if and only if b≤ a → c.

Finally, we will require that the Heyting algebras in the sequel be complete, i.e., every subset of A has

both a greatest lower bound and a least upper bound.

Example 2. The following lattices are complete Heyting algebras:

• the Boolean algebra 222 = 〈{0,1},∧,∨,1,0,→〉

• the Łukasiewicz three-valued algebra 333 = 〈{⊤,u,⊥},∧3,∨3,⊤,⊥,→3〉, where

∧3 ⊥ u ⊤

⊥ ⊥ ⊥ ⊥
u ⊥ u u

⊤ ⊥ u ⊤

∨3 ⊥ u ⊤

⊥ ⊥ u ⊤
u u u ⊤
⊤ ⊤ ⊤ ⊤

→3 ⊥ u ⊤

⊥ ⊤ ⊤ ⊤
u u ⊤ ⊤
⊤ ⊥ u ⊤

The truth value u stands for “unknown” and assumes different notations in the literature, such as
1/2 or #, which are interpreted as “possibility” or “indeterminacy” [35].

• GGG = 〈[0,1],min,max,0,1,→〉, with a → b = 1, if a ≤ b and a → b = b otherwise.

The following lemma combines [18, Lemma 1] and delineates several essential properties of com-

plete residuated lattices, which we will resort to prove some results in this paper. For detailed proofs of

Properties (22)-(24) and Properties (25)-(26), readers are referred to [18] and [8], respectively.

Lemma 1. Let AAA be an complete Heyting algebra over a non empty set A. The following properties hold,

for any a, a′, b, b′ ∈ A

a⊓ (b⊔b′) = (a⊓b)⊔ (a⊓b′) (22)

J. Cunha, A. Madeira & L. S. Barbosa 135

a⊔ (b⊓b′) = (a⊔b)⊓ (a⊔b′) (23)

a ≤ a′ and b ≤ b′ implies a⊓b ≤ a′⊓b′ (24)

a⊓

(
⊔

i∈I

bi

)

=
⊔

i∈I

(a⊓bi) (25)

(
⊔

i∈I

ai

)

⊓b =
⊔

i∈I

(ai ⊓b) (26)

where I is a (possibly infinite) index set.

Before providing a formal definition of PLTS, it is important to define the notion of a twisted struc-

ture. Initially introduced in Kracht’s seminal work [31], a twisted structure results from the construction

of the direct product of a residuated lattice LLL and its order-dual LLL∂ . This resulting lattice naturally pos-

sesses an involution2 given by

�(a,a′) = (a′,a)

for all (a, a′) ∈ LLL×LLL∂ . Since its introduction, numerous authors have explored extensions of this struc-

ture by imposing additional properties on the residuated lattice [9, 10, 11]. Twisted structures play a

fundamental role in the context of PLTS, as documented in prior work [16, 17, 19, 20], by enabling the

computation of pairs of truth weights.

Definition 3. Let AAA= 〈A,⊓,⊔,1,0,→〉 be a complete Heyting algebra. Its corresponding AAA-twisted

structure is denoted by A= 〈A×A,_,^,�,(0,1),(1,0)〉 and defined for any pair in A×A as:

�(a,b) = (b,a)

(a,a′)^ (b,b′) = (a⊓b,a′⊔b′)

(a,a′)_ (b,b′) = (a⊔b,a′⊓b′)

The order in AAA is lifted to A as (a,a′)4 (b,b′) iff a ≤ b and a′ ≥ b′.

As before, parentheses will be frequently omitted, reserving their use for enhancing the readability

and clarity of certain expressions.

In the sequel, we will frequently refer to the next Lemma, which presents key properties of the

operators defined above. Although most of these properties are evident, since the product of two com-

plete, universally distributive lattices is itself a complete, universally distributive lattice, we explicitly

state them for ease of reference in later sections. Lemma 2 essentially states that the twisted-structure

in Definition 3 has the structure of a De Morgan algebra —i.e., a bounded distributive lattice in which

� is involutive and satisfies De Morgan’s laws (c.f. [25]). Additionally, it also states that the lattice

〈A,×A,^,_〉 is a quantale, that is, a complete lattice equipped with an associative operation ^ that

satisfies distributive properties. This aligns with the inspiration for twisted structures drawn from Chu’s

work in category theory and its application to quantales [40].

Lemma 2. Let A be a twisted structure, as defined in Definition 3. The following properties hold for any

(a,a′), (b,b′), (c,c′) ∈ A×A.
�� (a,a′) = (a,a′) (27)

(a,a′)_ (1,0) = (1,0) (28)

(a,a′)_ (0,1) = (a,a′) (29)

2Informally speaking, the operator � will denote a involutive negation in this paper and in essence it interchanges the

positive and negative weight within a pair. See Example 3 for a concrete example.

136 Paraconsistent Relations as a Variant of Kleene Algebras

(a,a′)_ (a,a′) = (a,a′) (30)

(a,a′)^ (a,a′) = (a,a′) (31)

(a,a′)_ (b,b′) = (b,b′)_ (a,a′) (32)

(a,a′)^ (b,b′) = (b,b′)^ (a,a′) (33)

�((a,a′)_ (b,b′)) = �(a,a′)^ �(b,b′) (34)

�((a,a′)^ (b,b′)) = �(a,a′)_ �(b,b′) (35)

(a,a′)^ (1,0) = (1,0)^ (a,a′) = (a,a′) (36)

(a,a′)^ (0,1) = (0,1)^ (a,a′) = (0,1) (37)

(a,a′)_

(

(b,b′)_ (c,c′)

)

=

(

(a,a′)_ (b,b′)

)

_ (c,c′) (38)

(a,a′)^

(

(b,b′)^ (c,c′)

)

=

(

(a,a′)^ (b,b′)

)

^ (c,c′) (39)

(a,a′)^

(

(b,b′)_ (c,c′)

)

=

(

(a,a′)^ (b,b′)

)

_

(

(a,a′)^ (c,c′)

)

(40)

(a,a′)_

(

(b,b′)^ (c,c′)

)

=

(

(a,a′)_ (b,b′)

)

^

(

(a,a′)_ (c,c′)

)

(41)

Proof.

• Property (27) follows immediately since � is involutive.

• Property (28) and Property (29) are a consequence of 0 and 1 being the the least and greatest

element of set A, respectively. Hence,

(a,a′)_ (1,0) = (a⊔1,a′⊓0) = (1,0)

(a,a′)_ (0,1) = (a⊔0,a′⊓1) = (a,a′)

• Property (30) is a consequence of operators ⊓ and ⊔ being idempotent, (a,a′)_ (a,a′) = (a⊔
a,a′⊓a′) = (a,a′). Property (31) follows similarly.

• Property (32) is a consequence of operators ⊓ and ⊔ being commutative. Consequently, it follows

(a,a′)_ (b,b′) = (a⊔b,a′ ⊓b′) = (b⊔a,b′ ⊓a′) = (b,b′)_ (a,a′). The proof for Property (33)

follows similarly.

• The proof of Property (34) follows directly by the definition of the operators, �((a,a′)_ (b,b′)) =
(a′ ⊓ b′,a ⊔ b) = (a′,a) ^ (b′,b) = �(a,a′)^ �(b,b′). Similarly, it is possible to prove Prop-

erty (35).

• Property (36) since 0 and 1 are the least and greatest element of A, respectively, it follows (1,0)^

(a,a′) = (1⊓ a,0 ⊔ a′) = (a,a′) and by (33) it follows (a,a′)^ (1,0) = (a,a′). The proof of

Property (37) follows similarly.

• To prove Property (38) note that,

(a,a′)_ ((b,b′)_ (c,c′)) = (a,a′)_ (b⊔ c,b′⊓ c′) = (a⊔ (b⊔ c),a′⊓ (b′⊓ c′))

((a,a′)_ (b,b′))_ (c,c′) = (a⊔b,a′⊓b′)_ (c,c′) = ((a⊔b)⊔ c,(a′⊓b′)⊓ c′)

Since ⊔ and ⊓ are associative it follows that a⊔(b⊔c) = (a⊔b)⊔c and a′⊓(b′⊓c′)= (a′⊓b′)⊓c′.

Therefore, operator _ is also associative. Similarly, it is possible to prove Property (39),i.e., ^ is

associative.

J. Cunha, A. Madeira & L. S. Barbosa 137

• Property (40) is a consequence of Property (22) and (23).

(a,a′)^

(

(b,b′)_ (c,c′)

)

=(a,a′)^ (b⊔ c,b′⊓ c′)

=(a⊓ (b⊔ c),a′⊔ (b′⊓ c′))

=((a⊓b)⊔ (a⊓ c),(a′⊔b′)⊓ (a′⊔ c′))

=(a⊓b,a′⊔b′)_ (a⊓ c,a′⊔ c′)

=

(

(a,a′)^ (b,b′)

)

_

(

(a,a′)^ (c,c′)

)

Finally, we present the definition of paraconsistent transition systems parametric in a class of resid-

uated lattices over a set A of truth values.

Definition 4. A paraconsistent transition system, abbreviated to PLTS, is a tuple M = (W,R,V) such

that:

• W is a non empty set of states,

• R : W ×W → A×A is a paraconsistent accessibility relation. For any pair of states (w1,w2) ∈
W ×W relation R assigns a pair (tt, ff) ∈ A×A where tt represents the evidence of the transition

from w1 to w2 occurring and ff represents the evidence of being prevented from occurring.

• V : W ×Prop → A×A is a valuation function, that assigns to a proposition symbol p at a given

state w a pair (tt, ff) ∈ A×A such that tt is the evidence of p holding at w and ff the evidence of

not holding

Example 3. Consider the residuated lattice 333 and the set of proposition symbols {p}. The following

model M = ({w1,w2},R,V) is a PLTS where

w1 w2

(⊤,⊥)

(⊤,u)

V : W ×{p} → {⊤,u,⊥}×{⊤,u,⊥}

(w1, p) 7→ (⊤,⊥)

(w2, p) 7→ (u,⊥)

We consider, following Łukasiewicz , that the truth value u is an intermediate value between ⊤ and ⊥
[35]. Hence, a natural “ordering” of the three values is ⊥ ≤ u ≤ ⊤. In this example, each weight takes

values in the set {⊥,u,⊤}, making it possible to represent the resulting lattice of doing the direct product

of the three-valued lattice and its order-dual.

(⊤,⊥)

(u,⊥) (⊤,u)

(⊥,⊥) (u,u) (⊤,⊤)

(⊥,u) (u,⊤)

(⊥,⊤)

138 Paraconsistent Relations as a Variant of Kleene Algebras

All pairs marked in red represent consistent information. The pairs on the left, shown in blue, represent

vague information, while those on the right, highlighted in magenta, represent inconsistent information.

Let us observe the intuition behind some of the operators in the twisted structure defined in Defini-

tion 3. For example, V (w2, p) = (u,⊥) indicates that at state w2, there is uncertain evidence (u) that p

holds and minimal evidence (⊥) that p does not hold. Similarly, one could say that at state w2, there is

minimal evidence that the negation of p holds and uncertain evidence that it does not hold. This reflects

the intuition behind the operator �, which acts as an involutive negation by switching the positive and

negative weights.

Considering the valuations of p at states w1 and w2, it is possible to compute the evidence of p

holding or not at both states. The certainty that p holds in both states is equal to the certainty that it

holds in each state (⊤⊓ u). Similarly, the certainty that p does not hold in both states is equal to the

certainty that it does not hold in either state (⊥⊔⊥). This captures the intuition behind the operator ^.

The interested reader is referred to [20] for a more detailed exploration of the paraconsistent logic

underlying PLTS.

3 Paraconsistent Kleene Algebra with tests

The approach presented in this work aims to reason about program executions in a paraconsistent manner,

where executions and tests may involve vagueness as well as inconsistencies. Consequently, rather than

yielding a bivalent outcome as in traditional KAT, the outcome is graded by a pair of weights, one weight

indicates the evidence for execution and the other the evidence for failure. Such framework entails the

need to weaken the Boolean subalgebra of KAT which leads to the following variant:

Definition 5. A paraconsistent Kleene algebra with tests (PKAT) is a tuple

(K,T,+, ·, ⋆, −,0,1)

such that (K,+, ·, ⋆,0,1) is a Kleene algebra, (T,+, ·, −,0,1) satisfies axioms (14)-(19) and B ⊆ T .

Relation ≤ is induced by +, that is, p ≤ q iff p+q = q.

A key aspect of the KAT axiomatization lies in axioms (20) and (21), which informally express the

principles of non-contradiction and excluded middle, respectively. These two principles play a signifi-

cant role in the philosophy of paraconsistency, which rejects the principle of non-contradiction, and in

intuitionism, which does not assume the principle of the excluded middle. The notion of PKAT takes in

consideration these philosophies and consequently forms a weakened version of KAT by only rejecting

axioms (20) and (21). Hence,

Theorem 1. Any KAT is a PKAT.

Proof. By definition, any KAT satisfies axioms (1)-(19). Thus, trivially any KAT is a PKAT.

The weakening discussed in this paper generalizes Boolean algebras, in that Boolean algebras are

precisely those algebras that satisfy both the principle of non-contradiction (20) and the principle of the

excluded middle (21). This generalization is similar to that presented by Heyting algebras [7], where

any Boolean algebra is a Heyting algebra that satisfies the principle of the excluded middle. In fact,

the weakening presented in this paper is a stronger generalization than Heyting algebras, as any algebra

failing to satisfy both principles inherently does not satisfy the principle of the excluded middle. A

potential implication of this observation is that the discussed weakening of the Boolean algebra could

J. Cunha, A. Madeira & L. S. Barbosa 139

potentially serve as algebraic models for propositional paraconsistent logic, much like how Heyting

algebras model propositional intuitionistic logic [6] and Boolean algebras model propositional classical

logic.

In the remaining of this section we introduce two examples of algebras where program executions

and tests may encompass inconsistencies and vagueness. Consequently, these algebras can be formalized

as PKAT. To achieve this, we refer back to Definition 3, which establishes that for any complete Heyting

algebra KKK over a non-empty set K of possible truth values, its corresponding twisted structure K allows

for the computation of pairs of truth values K ×K.

Remark. Given sets T and W , we denote by (T ×T)W the set of functions W → (T ×T).

Definition 6. Let W be a set and TTT be a complete Heyting algebra over a non empty set of truth values

T . The algebra of paraconsistent sets over the twisted-structure T is

SetP(T) = 〈(T ×T)W ,(T ×T)W ,+, ·, ⋆, −,⊘,ϒ 〉

For any paraconsistent sets over W, ϕ ,ψ ∈ (T ×T)W and w ∈W, operators are defined pointwise by

⊘(w) = (0,1)

ϒ (w) = (1,0)

ϕ(w) = �ϕ(w)

(ϕ +ψ)(w) = ϕ(w)_ ψ(w)

(ϕ ·ψ)(w) = ϕ(w)^ ψ(w)

(ϕ⋆)(w) = _
n≥0

ϕn(w)

with ϕ0(w) =ϒ (w) and ϕn+1(w) = (ϕ ·ϕn)(w). The values of paraconsistent sets ϕ(w) and ψ(w) are

elements of T ×T , and constants ⊘ and ϒ are the least and the greatest elements of T ×T , respectively.

The partial order in paraconsistent sets ϕ and ψ in (T ×T)W is given by

ϕ ⊆ ψ if and only if ∀w ∈W, ϕ(w)4 ψ(w)

Example 4. Consider the set W = {w1,w2} and the three-valued residuated lattice 333 = {⊤,u,⊥}. Let

ϕ , ψ ∈ SetP(3) be two paraconsistent sets defined as

ϕ : W → 333×333

w1 7→ (⊤,u)

w2 7→ (u,u)

ψ : W → 333×333

w1 7→ (⊤,⊥)

w2 7→ (⊤,u)

It is possible to define with operator − two other paraconsistent sets denoted by ϕ , ψ ∈ SetP(3) defined

as,
ϕ : W → 333×333

w1 7→ (u,⊤)

w2 7→ (u,u)

ψ : W → 333×333

w1 7→ (⊥,⊤)

w2 7→ (u,⊤)

Note that ϕ ⊆ ψ , while ψ ⊆ ϕ .

Theorem 2. For any complete Heyting algebra TTT over a non empty set T of possible truth values,

SetP(T) forms a PKAT.

Proof. For a fixed complete Heyting algebra TTT , by Definition 3, we define its twisted structure T . We

will prove that SetP(T) defined as in Definition 6 forms a PKAT, that is, we show that axioms (1)-(19)

are satisfied.

Axiom (1) by Property (38), ϕ(w)_ (ψ(w)_ φ(w)) = (ϕ(w)_ ψ(w))_ φ(w). Using the definition of

140 Paraconsistent Relations as a Variant of Kleene Algebras

+, it follows that (ϕ +(ψ +φ))(w) = ((ϕ +ψ)+φ)(w).
Axiom (2) by Property (32) and the definition of +, (ϕ +ψ)(w) = (ψ +ϕ)(w).
Axiom (3) from Property (29) it follows that, (ϕ +⊘)(w) = ϕ(w)_⊘(w) = ϕ(w)_ (0,1) = ϕ(w).
Axiom (4) is immediate by Property (30), (ϕ +ϕ)(w) = ϕ(w)
Axiom (5) is a consequence of Property (39), ϕ(w)^ (ψ(w)^ φ(w)) = (ϕ(w)^ ψ(w))^ φ(w). Using

the definition of ·, (ϕ · (ψ ·φ))(w) = ((ϕ ·ψ) ·φ)(w).
Axiom (6) from Property (36) it follows that (ϒ ·ϕ)(w) = (ϕ ·ϒ)(w) = ϕ(w).
Axiom (7) using Property (40) and the definition of + and · it follows that, (ϕ ·(ψ +φ))(w) = ((ϕ ·ψ)+
(ϕ ·φ))(w). Axiom (8) follows by Property (33).

Axiom (9) by Property (37) it follows that (⊘·ϕ)(w) = (ϕ ·⊘)(w) = ⊘(w).
Axiom (10) can be derived as follows,

(ϒ +(ϕ ·ϕ⋆))(w) =ϒ (w)_

(

ϕ(w)^ _
n≥0

ϕn

)

=ϕ0(w)_

(

ϕ(w)^ (ϕ0(w)_ ϕ(w)_ ϕ2(w) . . .)

)

{using (40) and defn. of ⋆}

=ϕ0(w)_ (ϕ(w)_ ϕ2(w)_ . . .)

=ϕ⋆(w)

Similarly, it is possible to show Axiom (11).

Axiom (12) Let us start by assuming that (ϕ ·ψ)(w) 4 ψ(w). Then,

(ϕ⋆ ·ψ)(w) =

(

ϕ0(w)_ ϕ(w)_ ϕ2(w)_ . . .

)

^ ψ(w)

{using (33), (40) and (36)}

=ψ(w)_ (ϕ(w)^ ψ(w))_ (ϕ2(w)^ ψ(w))_ . . .

=ψ(w)_ (ϕ ·ψ)(w)_ (ϕ2 ·ψ)(w)_ . . . (42)

For any integer n ≥ 0, (ϕn ·ψ)(w) = ϕ · . . . ·ϕ
︸ ︷︷ ︸

n

·ψ(w). Using the hypothesis n times, it follows that

(ϕn ·ψ)(w) 4 ψ(w). Hence, by (42) and given that (ψ ·ψ)(w) 4 ψ(w) it follows that

ψ(w)_ (ϕ ·ψ)(w)_ (ϕ2 ·ψ)(w)_ . . . 4 ψ(w)

Similarly, it is possible to show Axiom (13). Axiom (14) (ϕ + (ψ · φ))(w) = ((ϕ +ψ) · (ϕ + φ))(w)
follows by Property (41) and the definition of · and +. Similarly, Axiom (15) follows from Property (30)

and (41). Axiom (16) results from Property (33), (ϕ ·ψ)(w) = (ψ ·ϕ)(w). Finally, it is possible to show

Axiom (17), that is, (ϕ ·ϕ)(w) = ϕ(w); Axiom (18), that is, ϕ(w) = ϕ(w) and Axiom (19), that is,

(ϕ +ϒ)(w) = ϒ (w) follow directly from Property (31), (27) and (28), respectively.

The aim of the following definition is to explore paraconsistent programs similar to the well-known

binary programs presented in Example 1. These paraconsistent programs involve computations that

may exhibit vagueness or inconsistency. Thus potentially lending themselves to representation as PLTS

with transitions and valuations weighted by pairs of weights, tailored to fit the specific problem domain.

Paraconsistent relations are defined over a pair of states W ×W , where a test α can be interpreted at any

J. Cunha, A. Madeira & L. S. Barbosa 141

state w ∈ W . Specifically, if a test α is evaluated by a pair (tt, ff) at state w , then tt the evidence of the

test holding and ff measures the evidence of the test not holding at state w. Let’s proceed to define the

algebra of paraconsistent relations.

Definition 7. Let W be a set, KKK and TTT be complete Heyting algebras over a non empty set of truth values

K and T , respectively. The algebra of paraconsistent relations over K and T is defined as

RelP(K,T) = 〈(K ×K)W×W ,(T ×T)W×W ,+, ·, ⋆, −,⊘,Λ〉

where (K ×K)W×W is the set of all paraconsistent relations over W ×W , i.e. functions (W ×W) →
(K ×K). The elements of (T × T)W×W are paraconsistent tests t such that t(u,v) = (0,1) whenever

u 6= v. The operators of paraconsistent relations are defined pointwise by

⊘ (u,v) = (0,1)

Λ(u,v) =

{

(1,0) if u = v

(0,1) otherwise

t(u,v) = �t(u,v)

(R+R′)(u,v) = R(u,v)_ R′(u,v)

(R ·R′)(u,v) = _
w∈W

(R(u,w)^ R′(w,v))

R⋆(u,v) = _
n≥0

Rn(u,v)

with Rn+1(u,v) = (R ·Rn)(u,v) and R0(u,v) = Λ(u,v). The value of paraconsistent relations, R(u,v)
and R′(u,v) are elements of K ×K, the value of t(u,v) is an element of T ×T , and constants ⊘, Λ are

the least and the greatest elements of T ×T. The partial order ⊆ for paraconsistent relations is given by

R ⊆ R′ if and only if ∀u, v ∈W, R(u,v) 4 R′(u,v)

Theorem 3. Let KKK and TTT be complete Heyting algebras over a non empty set K and T of possible truth

values such that T ⊆ K, RelP(K,T) forms a PKAT.

Proof. Let KKK and TTT be complete Heyting algebras over set K and T , respectively, such that T ⊆ K. It

is possible to define the corresponding twisted structures K and T as described in Definition 3. We will

prove that RelP(K,T) forms a PKAT, that is, axioms (1)-(19) are satisfied. The satisfaction of axioms (1)-

(4) and (18) is similar to Theorem 2. Let us show the remaining.

Axiom (5) derives as follows

(R · (R′ ·R′′))(w,v) =_
u∈W

(

R(w,u)^ _
t∈W

(

R′(u, t)^ R′′(t,v)

))

=_
u∈W

_
t∈W

(

R(w,u)^ R′(u, t)^ R′′(t,v)

)

=_
t∈W

(

_
u∈W

(

R(w,u)^ R′(u, t)

)

^ R′′(t,v)

)

=_
u∈W

(

(R ·R′)(w, t)^ R′′(t,v)

)

=((R ·R′) ·R′′)(w,v)

Axiom (6) by definition of ·, (Λ ·R)(w,v) = _
u∈W

(

Λ(w,u)^ R(u,v)

)

.

For all u 6= w, Λ(w,u) = (0,1) and by (37) it follows, Λ(w,u) ^ R(u,v) = (0,1). Futhermore, by

142 Paraconsistent Relations as a Variant of Kleene Algebras

Property (28) it follows that (Λ ·R)(w,v) = Λ(w,w)^ R(w,v) = (1,0)^ R(w,v) = R(w,v).
Axiom (7) proceeds as

(R · (R′+R′′))(w,v) =_
u∈W

(R(w,u)^ (R′(u,v)_ R′′(u,v)))

{using Property (40)}

=_
u∈W

((

R(w,u)^ R′(u,v)

)

_

(

R(w,u)^ R′′(u,v)

))

=_
u∈W

(

R(w,u)^ R′(u,v)

)

_ _
u∈W

(

R(w,u)^ R′′(u,v)

)

=(R ·R′)(w,v)+ (R ·R′′)(w,v)

Axiom (8) follows similarly by Property (33).

Axiom (9) by Property (37) it follows that,

(⊘ · R)(w,v) = _
u∈W

(

⊘ (w,u)^ R(u,v)

)

= _
u∈W

(

(0,1)^ R(u,v)

)

= (0,1) =⊘(w,v)

Consequently, since ^ is commutative, it follows (R · ⊘)(w,v) = ⊘(w,v).
Similar to Axiom (11), Axiom (10) derives from,

(Λ +(R ·R∗))(w,v) =Λ(w,v)_

(

_
u∈W

R(w,u)^

(

_
n≥0

Rn(u,v)

))

{using Property (40)}

=Λ(w,v)_

(

_
n≥0

(

_
u∈W

R(w,u)^ Rn(u,v)

))

=R0(w,v)_

(

_
n≥0

(R ·Rn)(w,v)

)

=R0(w,v)_

(

_
n>0

Rn(w,v)

)

=R∗(w,v)

Axiom (12) Let us assume that (R ·R′)(w,v) 4 R′(w,v). Then,

(R∗ ·R′)(w,v) =_
u∈W

(

_
n≥0

Rn(w,u)^ R′(u,v)

)

=_
n≥0

(

_
u∈W

(Rn(w,u)^ R′(u,v))

)

=_
n≥0

(Rn ·R′)(w,v)

=R′(w,v)_ (R ·R′)(w,v)_ (R2 ·R′)(w,v)_ . . .

{Hypothesis}

4R′(w,v)

J. Cunha, A. Madeira & L. S. Barbosa 143

Similarly, it is possible to show Axiom (13).

Axiom (14) derives as,

(t +(t ′ · t ′′))(u,v) =t(u,v)_

(

_
w∈W

(t ′(u,w)^ t ′′(w,v))

)

{(step ⋆)}

=t(u,v)_

(

t ′(u,v)^ t ′′(u,v)

)

{using Property (41)}

=

(

t(u,v)_ t ′(u,v)

)

^

(

t(u,v)_ t ′′(u,v)

)

=(t + t ′)(u,v)^ (t + t ′′)(u,v)

(step ⋆) for any w ∈ W , (t ′(u,w)^ t ′′(w,v)) 6= (0,1), iff (t ′(u,w) 6= (0,1) and t ′′(w,v) 6= (0,1)). Thus,

(t ′(u,w)^ t ′′(w,v)) 6= (0,1) only when w = u and w = v.

Also note that,

((t + t ′) · (t + t ′′))(u,v) = _
w∈W

((

t(u,w)_ t ′(u,w)

)

^

(

t(w,v)_ t ′′(w,v)

))

{(step ⋆⋆)}

=

(

t(u,v)_ t ′(u,v)

)

^

(

t(u,v)_ t ′′(u,v)

)

=(t + t ′)(u,v)^ (t + t ′′)(u,v)

(step ⋆⋆) for any w ∈W ,
(

t(u,w)_ t ′(u,w)

)

^

(

t(w,v)_ t ′′(w,v)

)

6= (0,1)

if and only if (t(u,w)_ t ′(u,w) 6= (0,1) and t(w,v)_ t ′′(w,v) 6= (0,1)) Hence, t(u,w), t ′(u,w), t(w,v)
and t ′′(w,v) must all be different from (0,1) which implies u = w = v.

Therefore, we show that (t +(t ′ · t ′′))(u,v) = ((t + t ′) · (t + t ′′))(u,v). By Property (30) it is possible to

show Axiom (15).

Axiom (16) by definition,

(t · t ′)(u,v) = _
w∈W

(

t(u,w)^ t ′(w,v)

)

(t ′ · t)(u,v) = _
w∈W

(

t ′(u,w)^ t(w,v)

)

Whenever w 6= u or w 6= v, by definition of test and by (37), it follows that t(u,w)^ t ′(w,v) = t ′(u,w)^

t(w,v) = (0,1). Hence, t(u,w)^ t ′(w,v) 6= (0,1) and t ′(u,w)^ t(w,v) 6= (0,1) only when w = u and

w = v. Thus,

(t · t ′)(u,v),= t(u,v)^ t ′(u,v) = t ′(u,v)^ t(u,v) = (t ′ · t)(u,v)

Axiom (17) by definition of ·, (t · t)(u,v) = _
w∈W

(

t(u,w)^ t(w,v)

)

.

Since t(u,w)^ t(w,v) = (0,1) whenever u 6= w or w 6= v. Hence, by (29) and (31) (t · t)(u,v) = t(u,v)^

144 Paraconsistent Relations as a Variant of Kleene Algebras

t(u,v) = t(u,v).
Axiom (19) By definition of +, (t +Λ)(u,v) = t(u,v)+Λ(u,v). If u = v then, Λ(u,v) = (1,0) and by

Property (28) (t +Λ)(u,v) = (1,0) = Λ(u,v). Otherwise, t(u,v) = (0,1) and by Property (29), (t +
Λ)(u,v) = Λ(u,v). Hence, (t +Λ)(u,v) = Λ(u,v).

4 Conclusion and future work

This paper contributes to an ongoing research agenda focused on paraconsistent transition systems

(PLTS) and their logics. PLTS were initially introduced in [17], followed by the introduction of a logic to

express their properties in [16] and the respective application to the analysis of quantum circuits was fur-

ther discussed in [5]. Subsequently, the algebra of constructors and abstractors for PLTS was discussed

in [19], which served as the foundation for a structured specification theory outlined in [20].

Here our focus is on developing an algebraic counterpart to this line of work. Hence, we take the

initial steps towards introducing a variant of KAT to reason about vague and inconsistent computations and

assertions. A similar roadmap for reasoning about fuzzy computations can be found in [23]. As in [23],

given that such assertions often take the form of tests, our approach lies in the modification of KAT that

deals with properties of tests. The approach taken in this paper rejects the principle of non-contradiction

and the principle of the excluded middle; consequently, some classical properties of Boolean algebra are

lost. The resulting PKAT can interpret computations entailing contradictions or vagueness.

A possible application of this work is in quantum circuits where a phenomenon known as decoher-

ence can occur. Such phenomenon is characterized by the loss of information from the circuit due to

unwanted interaction with the environment. When the coherence time of a qubit is exceeded, there is an

increasing probability that the circuit does not behave according to its design. Typically, qubit coherence

is not specified exactly but is given as time intervals in the literature, corresponding to worst-case and

best-case scenarios. In [17], it is proposed to use the two accessibility relations in PLTS to model these

scenarios simultaneously. The minimum coherence time tmin determines the negative weight, interpreted

as the likelihood that the system evolves to a decoherent state, and the maximum coherence time tmax de-

termines the positive weight, interpreted as the likelihood that the system remains coherent. With further

considerations, it becomes feasible to translate quantum circuits into PLTS, as elaborated in [5, 17].

The parametric approach adopted in this work is based on prior work documented in [8], which has

been applied to formalize paraconsistent transition systems and their corresponding logics in [16, 19].

Given two residuated lattices KKK and TTT over a set of possible truth values K and T such that T ⊆ K, it is

possible to define a twisted structure to operate on pairs K×K. This structure allows for the introduction

of two algebras in this paper: SetP(T) and RelP(K,T) parametric to the twisted structures. The main

results demonstrate that both algebras SetP(T) and RelP(K,T) form a PKAT, Theorem 2 and 3.

Since KAT provides a framework for reasoning about imperative programs in a (quasi) equational

way, we aim to explore an encoding of propositional Hoare logic into PKAT. However, for such task it

may be necessary to refine PKAT with additional properties and both the meaning of Hoare triples and

the inference rules need adjustment. Similarly to [23], we propose encoding a Hoare triple {b}p{c} in

PKAT as b · p 4 b · p · c, conveying that program correctness can only improve with execution.

The study of the languages underlying paraconsistent transition structures is a line of work to be

explored soon. In analogy to what is done in classic automata theory, we will consider a notion of “para-

consistent automata”, by enriching the PLTS structure with a set of accepting states, in order to generate

and characterize the algebra of the recognized expressions, say the paraconsistent regular languages. At

this level, we expect to establish a Kleene-like Theorem and to frame such languages algebras as a PKAT.

J. Cunha, A. Madeira & L. S. Barbosa 145

Additionally, it is necessary to conduct a more thorough investigation into the potential applications

and limitations that may arise from the flexibility of the adopted approach.

References

[1] Jair Minoro Abe, Cláudio Rodrigo Torres, Germano Lambert-Torres, João Inácio da Silva Filho &

Helga Gonzaga Martins (2007): Paraconsistent Autonomous Mobile Robot Emmy III. In Germano Lambert-

Torres, Jair Minoro Abe, João Inácio da Silva Filho & Helga Gonzaga Martins, editors: Advances in Techno-

logical Applications of Logical and Intelligent Systems, Selected Papers from the Sixth Congress on Logic

Applied to Technology, LAPTEC 2007, Unisanta, Santa Cecilia University, Santos, Brazil, November 21-

23, 2007, Frontiers in Artificial Intelligence and Applications 186, IOS Press, pp. 236–258, doi:10.3233/

978-1-58603-936-3-236.

[2] Juan Carlos Agudelo & Walter Alexandre Carnielli (2010): Paraconsistent Machines and their Relation to

Quantum Computing. J. Log. Comput. 20(2), pp. 573–595. Available at https://doi.org/10.48550/

arXiv.0802.0150.

[3] Seiki Akama, editor (2016): Towards Paraconsistent Engineering. Intelligent Systems Reference Library

110, Springer, doi:10.1007/978-3-319-40418-9.

[4] Roland C. Backhouse, Dexter Kozen & Bernhard Möller (2002): Applications of Kleene Algebra (Dagstuhl

Seminar 01081). Dagstuhl Seminar Report 298, Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

Dagstuhl, Germany, doi:10.4230/DagSemRep.298.

[5] Luı́s Soares Barbosa & Alexandre Madeira (2023): Capturing Qubit Decoherence through Paraconsistent

Transition Systems. In Shigeru Chiba, Youyou Cong & Elisa Gonzalez Boix, editors: Companion Proceedings

of the 7th International Conference on the Art, Science, and Engineering of Programming, Programming

2023, Tokyo, Japan, March 13-17, 2023, ACM, pp. 109–110, doi:10.1145/3594671.3594689.

[6] Nick Bezhanishvili & Dick de Jongh (2005): Intuitionistic Logic. ESSLLI course notes. Available at

https://www.math.uni-hamburg.de/en/personen/khomskii/intuitionistic/PP-2006-25.

text.pdf.

[7] Francis Borceux (1994): Locales, p. 1–86. Encyclopedia of Mathematics and its Appli-

cations, Cambridge University Press. Available at https://www.cambridge.org/core/books/

handbook-of-categorical-algebra/A0B8285BBA900AFE85EED8C971E0DE14.

[8] Félix Bou, Francesc Esteva, Lluı́s Godo & Ricardo Oscar Rodrı́guez (2009): On the Minimum Many-Valued

Modal Logic over a Finite Residuated Lattice. Journal of Logic and Computation 21(5), pp. 739–790, doi:10.

1093/logcom/exp062.

[9] Manuela Busaniche & Roberto Cignoli (2014): The subvariety of commutative residuated lattices represented

by twist-products. algebra universalis 71, doi:10.1007/s00012-014-0265-4.

[10] Manuela Busaniche, Nikolaos Galatos & Miguel Andrés Marcos (2022): Twist Structures and Nelson Conu-

clei. Stud Logica 110(4), pp. 949–987, doi:10.1007/S11225-022-09988-Z.

[11] Jose Castiglioni, M. Menni & Marta Sagastume (2008): On Some Categories of Involutive Centered Residu-

ated Lattices. Studia Logica 90, pp. 93–124, doi:10.1007/s11225-008-9145-2.

[12] Maria Luisa Dalla Chiara & Roberto Giuntini (2000): Paraconsistent ideas in quantum logic. Synth. 125(1-

2), pp. 55–68. Available at https://doi.org/10.1023/A:1005296018904.

[13] J.H. Conway (1971): Regular Algebra and Finite Machines. Chapman and Hall mathematics series, Chapman

and Hall. Available at https://books.google.pt/books?id=xBXvAAAAMAAJ.

[14] Newton C. A. Costa & Walter A. Carnielli (1986): On Paraconsistent Deontic Logic. Philosophia 16(3-4),

pp. 293–305, doi:10.1007/bf02379748.

[15] Newton C. A. Da Costa & E. H. Alves (1977): A Semantical Analysis of the Calculi C N. Notre Dame Journal

of Formal Logic 18(4), pp. 621–630, doi:10.1305/ndjfl/1093888132.

https://doi.org/10.3233/978-1-58603-936-3-236
https://doi.org/10.3233/978-1-58603-936-3-236
https://doi.org/10.48550/arXiv.0802.0150
https://doi.org/10.48550/arXiv.0802.0150
https://doi.org/10.1007/978-3-319-40418-9
https://doi.org/10.4230/DagSemRep.298
https://doi.org/10.1145/3594671.3594689
https://www.math.uni-hamburg.de/en/personen/khomskii/intuitionistic/PP-2006-25.text.pdf
https://www.math.uni-hamburg.de/en/personen/khomskii/intuitionistic/PP-2006-25.text.pdf
https://www.cambridge.org/core/books/handbook-of-categorical-algebra/A0B8285BBA900AFE85EED8C971E0DE14
https://www.cambridge.org/core/books/handbook-of-categorical-algebra/A0B8285BBA900AFE85EED8C971E0DE14
https://doi.org/10.1093/logcom/exp062
https://doi.org/10.1093/logcom/exp062
https://doi.org/10.1007/s00012-014-0265-4
https://doi.org/10.1007/S11225-022-09988-Z
https://doi.org/10.1007/s11225-008-9145-2
https://doi.org/10.1023/A:1005296018904
https://books.google.pt/books?id=xBXvAAAAMAAJ
https://doi.org/10.1007/bf02379748
https://doi.org/10.1305/ndjfl/1093888132

146 Paraconsistent Relations as a Variant of Kleene Algebras

[16] Ana Cruz, Alexandre Madeira & Luı́s Soares Barbosa (2022): A Logic for Paraconsistent Transition Systems.

In Andrzej Indrzejczak & Michal Zawidzki, editors: 10th International Conference on Non-Classical Logics.

Theory and Applications, EPTCS 358, pp. 270–284. Available at https://doi.org/10.4204/EPTCS.

358.20.

[17] Ana Cruz, Alexandre Madeira & Luı́s Soares Barbosa (2022): Paraconsistent Transition Systems. In Daniele

Nantes-Sobrinho & Pascal Fontaine, editors: Proceedings 17th International Workshop on Logical and Se-

mantic Frameworks with Applications, LSFA 2022, Belo Horizonte, Brazil (hybrid), 23-24 September 2022,

EPTCS 376, pp. 3–15. Available at https://doi.org/10.4204/EPTCS.376.3.

[18] Juliana Cunha, Alexandre Madeira & Luis S. Barbosa (Available here): Paraconsistent transition structures:

compositional principles and a modal logic. (submitted to a journal).

[19] Juliana Cunha, Alexandre Madeira & Luı́s Soares Barbosa (2023): Stepwise Development of Paraconsistent

Processes. In Cristina David & Meng Sun, editors: Theoretical Aspects of Software Engineering - 17th

International Symposium, TASE 2023, Bristol, UK, July 4-6, 2023, Proceedings, Lecture Notes in Computer

Science 13931, Springer, pp. 327–343. Available at https://doi.org/10.1007/978-3-031-35257-7_

20.

[20] Juliana Cunha, Alexandre Madeira & Luı́s Soares Barbosa (2023): Structured Specification of Paraconsis-

tent Transition Systems. In Hossein Hojjat & Erika Ábrahám, editors: Fundamentals of Software Engineering

- 10th International Conference, FSEN 2023, Tehran, Iran, May 4-5, 2023, Revised Selected Papers, Lec-

ture Notes in Computer Science 14155, Springer, pp. 1–17. Available at https://doi.org/10.1007/

978-3-031-42441-0_1.

[21] Hyghor Miranda Côrtes, Paulo Eduardo Santos & João Inácio da Silva Filho (2022): Monitoring electrical

systems data-network equipment by means of Fuzzy and Paraconsistent Annotated Logic. Expert Systems

with Applications 187, p. 115865. Available at https://doi.org/10.1016/j.eswa.2021.115865.

[22] Michael Dunn & Greg Restall (2002): Relevance Logic. In D. Gabbay & F. Guenthner, editors: Handbook of

Philosophical Logic, Kluwer Academic Publishers, pp. 1–128. Available at https://doi.org/10.1007/

978-94-017-0452-6.

[23] Leandro Gomes, Alexandre Madeira & Luı́s Soares Barbosa (2019): Generalising KAT to Verify Weighted

Computations. Sci. Ann. Comput. Sci. 29(2), pp. 141–184, doi:10.7561/SACS.2019.2.141.

[24] David Harel, Jerzy Tiuryn & Dexter Kozen (2000): Dynamic Logic. MIT Press, Cambridge, MA, USA,

doi:10.7551/mitpress/2516.001.0001.

[25] John A. Kalman (1958): Lattices with involution. Transactions of the American Mathematical Society 87, pp.

485–491, doi:10.1090/S0002-9947-1958-0095135-X. Available at https://api.semanticscholar.

org/CorpusID:53394259.

[26] S. C. Kleene (1956): Representation of Events in Nerve Nets and Finite Automata, pp. 3–42. Princeton

University Press, Princeton. Available at https://doi.org/10.1515/9781400882618-002.

[27] D. Kozen (1992): The Design and Analysis of Algorithms. Monographs in Computer Science, Springer New

York, NY. Available at https://doi.org/10.1007/978-1-4612-4400-4.

[28] D. Kozen (1994): A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. In-

formation and Computation 110(2), pp. 366–390, doi:10.1006/inco.1994.1037. Available at https://

www.sciencedirect.com/science/article/pii/S0890540184710376.

[29] Dexter Kozen (1997): Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19(3), pp. 427–443,

doi:10.1145/256167.256195.

[30] Dexter Kozen & Maria-Cristina Patron (2000): Certification of Compiler Optimizations Using Kleene Alge-

bra with Tests. In John Lloyd, Veronica Dahl, Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia

Palamidessi, Luı́s Moniz Pereira, Yehoshua Sagiv & Peter J. Stuckey, editors: Computational Logic — CL

2000, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 568–582. Available at https://doi.org/10.

1007/3-540-44957-4_38.

https://doi.org/10.4204/EPTCS.358.20
https://doi.org/10.4204/EPTCS.358.20
https://doi.org/10.4204/EPTCS.376.3
https://sweet.ua.pt/madeira/main_files/PTSCJournal24.pdf
https://doi.org/10.1007/978-3-031-35257-7_20
https://doi.org/10.1007/978-3-031-35257-7_20
https://doi.org/10.1007/978-3-031-42441-0_1
https://doi.org/10.1007/978-3-031-42441-0_1
https://doi.org/10.1016/j.eswa.2021.115865
https://doi.org/10.1007/978-94-017-0452-6
https://doi.org/10.1007/978-94-017-0452-6
https://doi.org/10.7561/SACS.2019.2.141
https://doi.org/10.7551/mitpress/2516.001.0001
https://doi.org/10.1090/S0002-9947-1958-0095135-X
https://api.semanticscholar.org/CorpusID:53394259
https://api.semanticscholar.org/CorpusID:53394259
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1007/978-1-4612-4400-4
https://doi.org/10.1006/inco.1994.1037
https://www.sciencedirect.com/science/article/pii/S0890540184710376
https://www.sciencedirect.com/science/article/pii/S0890540184710376
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/3-540-44957-4_38
https://doi.org/10.1007/3-540-44957-4_38

J. Cunha, A. Madeira & L. S. Barbosa 147

[31] Marcus Kracht (1998): On Extensions of Intermediate Logics by Strong Negation. Journal of Philosophical

Logic 27(1), pp. 49–73, doi:10.1023/A:1004222213212.

[32] W. Kuich & A. Salomaa (1986): Semirings, Automata, Languages. EATCS monographs on theoretical

computer science, Springer-Verlag. Available at https://doi.org/10.1007/978-3-642-69959-7.

[33] Vaughan Pratt (1990): Dynamic algebras as a well-behaved fragment of relation algebras. In Clifford H.

Bergman, Roger D. Maddux & Don L. Pigozzi, editors: Algebraic Logic and Universal Algebra in Com-

puter Science, Springer New York, New York, NY, pp. 77–110. Available at https://doi.org/10.1007/

BFb0043079.

[34] John Preskill (2018): Quantum Computing in the NISQ era and beyond. Quantum 2, p. 79, doi:10.22331/

q-2018-08-06-79.

[35] Graham Priest (2007): Paraconsistency and dialetheism. In Dov M. Gabbay & John Woods, editors: The

Many Valued and Nonmonotonic Turn in Logic, Handbook of the History of Logic 8, Elsevier, pp. 129–204.

Available at https://doi.org/10.1016/S1874-5857(07)80006-9.

[36] H. Rasiowa & R. Sikorski (1970): The Mathematics of Metamathematics. Monografie matematyczne, PWN-

Polish Scientific Publishers. Available at https://books.google.pt/books?id=vtRGtQEACAAJ.

[37] Valentin N Redko (1964): On defining relations for the algebra of regular events. Ukrainskii Matematicheskii

Zhurnal 16(1).

[38] Arto Salomaa (1966): Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM 13(1), pp.

158–169, doi:10.1145/321312.321326.

[39] Alfred Tarski (1941): On the Calculus of Relations. The Journal of Symbolic Logic 6(3), pp. 73–89, doi:10.

2307/2268577. Available at http://www.jstor.org/stable/2268577.

[40] Constantine Tsinakis & Annika M. Wille (2006): Minimal Varieties of Involutive Residuated Lattices. Studia

Logica 83(1), pp. 407–423, doi:10.1007/s11225-006-8311-7.

https://doi.org/10.1023/A:1004222213212
https://doi.org/10.1007/978-3-642-69959-7
https://doi.org/10.1007/BFb0043079
https://doi.org/10.1007/BFb0043079
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.1016/S1874-5857(07)80006-9
https://books.google.pt/books?id=vtRGtQEACAAJ
https://doi.org/10.1145/321312.321326
https://doi.org/10.2307/2268577
https://doi.org/10.2307/2268577
http://www.jstor.org/stable/2268577
https://doi.org/10.1007/s11225-006-8311-7

	1 Introduction
	2 Small-step specifications and the ledger model
	2.1 Small-step specifications
	2.2 Ledger transition system
	2.3 Structured contracts

	3 Traces
	4 Graphs and sieve-defined homomorphisms
	4.1 Simple graphs and sieve-defined homomorphisms
	4.2 Graphs with distinguished initial vertices
	4.3 Graphs of LEDGER, STRUC, and their traces
	4.4 Ultrametric spaces and traces

	5 Properties of LEDGER system
	5.1 Replay and trivial update protection
	5.2 UTxO transaction commutativity

	6 Conclusion
	6.1 Related Work
	6.2 Discussion

	Introduction
	Preliminaries
	Basic non-distributive modal logic and its polarity-based semantics
	Description logic LE-ALC
	Tableaux algorithm for checking LE-ALC ABox consistency
	Ontology-mediated query answering

	Query answering over LE-ALC ABoxes
	Universal model for LE-ALC ABox
	Negative queries
	Separation and differentiation queries

	Examples
	Conclusion and future work
	Proof of Theorem 3
	Models for example knowledge base
	Introduction
	Preliminaries
	Many-valued polarity-based semantics
	Non-distributive description logic LE-ALC
	Tableaux algorithm for checking LE-ALC ABox consistency

	Description logic LE-FALC
	Examples of LE-FALC knowledge bases
	Tableaux algorithm for checking consistency of ABoxes
	Soundness of the tableaux algorithm
	Completeness of the tableaux algorithm
	Conclusions and future directions
	Proofs
	Proof of lemma 3

	Model for the first example knowledge base
	Proof of inconsistency of the second example knowledge base
	1 Introduction
	2 Preliminaries: Some Neural Networks and Their Representations
	3 Neural Networks into Pre-Closed Regional Format
	3.1 Decreasing the execution time of the base algorithm

	4 Experiments and Results
	5 Conclusions
	Introduction
	Preliminaries
	Nominal E-rewriting and E-narrowing.
	Nominal E-rewriting
	Nominal E-narrowing

	Nominal Lifting Theorem modulo E
	Conclusion and Future Work
	Introduction
	Schematic Language and PRA
	Proof Schema
	Simulation of Primitive Recursive Arithmetic Through Proof Schemata
	Conclusion
	Introduction
	Background
	FlatCurry
	Restricted FlatCurry
	Heap Representation
	The Execution Model
	Correspondence to Generated Code
	Correctness
	Related Work and Conclusion
	Introduction
	Preliminaries

	Paraconsistent transition systems
	Paraconsistent Kleene Algebra with tests
	Conclusion and future work

