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José F. Morales (Eds.): LSFA 2023 + HCVS 2023

EPTCS 402, 2024, pp. iii–v, doi:10.4204/EPTCS.402.0

Preface

This volume contains the post-proceedings of two events: the 18th Workshop on Logical and Seman-

tic Frameworks with Applications (LSFA 2023) and the 10th Workshop on Horn Clauses for Verification

and Synthesis (HCVS 2023).

1 LSFA 2023

LSFA 2023 was held on July 1-2, 2023 in Rome, Italy, organized by the Sapienza Università di Roma

and co-located with FSCD 2023, the 8th International Conference on Formal Structures for Computation

and Deduction. The aim of the LSFA series of workshops is to bring together researchers and students

interested in theoretical and practical aspects of logical and semantic frameworks and their applications.

The covered topics include proof theory, type theory and rewriting theory, specification and deduction

languages, and formal semantics of languages and systems. For LSFA 2023, six regular papers were

accepted for presentation out of ten submissions, with three reviewers per submission. After the meeting,

revised versions of the papers were reviewed again, from which five regular papers were finally included

in this volume. In addition, the workshop program included three talks by distinguished invited speakers

Pablo Barenbaum (Universidad de Buenos Aires), Cynthia Kop (Radboud University Nijmegen), and

Brigitte Pientka (McGill University). We express our sincere gratitude to them.

We want to thank the PC members and the additional reviewers for doing a great job providing high-

quality reviews. Many thanks to the LSFA 2023 organizers, Daniele Nantes Sobrinho and David Cerna,

the FSCD 2023 General Chair Daniele Gorla, and the FSCD Workshop Chair Ivano Salvo. All their

valuable time spent was indispensable in guaranteeing the success of the workshop.

Temur Kutsia

Daniel Ventura

(LSFA 2023 PC co-chairs)

http://dx.doi.org/10.4204/EPTCS.402.0
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2 HCVS 2023

The workshop on Horn clauses for verification and synthesis (HCVS) series aims to bring together

researchers working in the two communities of constraint/ logic programming (e.g., ICLP and CP),

program verification (e.g., CAV, TACAS, and VMCAI), and automated deduction (e.g., CADE, IJCAR),

on the topics of Horn clause based analysis, verification, and synthesis.

The 10th edition took place on Sunday 23, April 2023 at the Institut Henri Poincaré in Paris, France,

as part of ETAPS (European joint conferences on theory and practice of software). The workshop

had received 7 submissions, 6 of which had been selected for presentation. Participants could opt for
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presentation-only or publication in proceedings. The program was supplemented by invited presenta-

tions.

We want to thank the PC members and additional reviewers for doing a great job providing high-

quality reviews. The ETAPS local organization was splendid. We also thank Institut Henri Poincaré for

providing the venue.

David Monniaux

Jose F. Morales

(HCVS 2023 PC co-chairs)
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This work is licensed under the

Creative Commons Attribution License.

Proof Terms for Higher-Order Rewriting

and Their Equivalence (Invited Talk)

Pablo Barenbaum

Universidad de Buenos Aires, CONICET/UNQ/ICC
Buenos Aires, Argentina

pbarenbaum@dc.uba.ar

Proof terms are syntactic expressions that represent computations in term rewriting. They were intro-

duced by Meseguer and exploited by van Oostrom and de Vrijer to study equivalence of reductions

in (left-linear) first-order term rewriting systems. In this joint work with Eduardo Bonelli, we study

the problem of extending the notion of proof term to higher-order rewriting, which generalizes the

first-order setting by allowing terms with binders and higher-order substitution. In previous works

that devise proof terms for higher-order rewriting, such as Bruggink’s, it has been noted that the chal-

lenge lies in reconciling composition of proof terms and higher-order substitution (β -equivalence).

This led Bruggink to reject “nested” composition, other than at the outermost level. We propose a

notion of higher-order proof term we dub rewrites that supports nested composition. We then define

two notions of equivalence on rewrites, namely permutation equivalence and projection equivalence,

and show that they coincide.

http://dx.doi.org/10.4204/EPTCS.402.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Creative Commons Attribution License.

Cutting a Proof into Bite-Sized Chunks

(Incrementally Proving Termination in

Higher-Order Term Rewriting) (Invited Talk)

Cynthia Kop

Radboud University
Nijmegen, the Netherlands

C.Kop@cs.ru.nl

In this talk, I will discuss a number of methods to prove termination of higher-order term rewriting

systems, with a particular focus on large systems. In first-order term rewriting, the dependency

pair framework can be used to split up a large termination problem into multiple (much) smaller

components that can be solved individually. This is important because a large problem may take

exponentially longer to solve in one go than solving each of its components.

Unfortunately, while there are higher-order versions of several of these methods, they often fail to

simplify a problem enough. Here, we will explore some of these techniques and their limitations, and

discuss what else can be done to incrementally build a termination proof for higher-order systems.

http://dx.doi.org/10.4204/EPTCS.402.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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Mechanizing Session-Types:

Enforcing Linearity without Linearity (Invited Talk)

Brigitte Pientka

School of Computer Science
McGill University
Montreal, Canada

bpientka@cs.mcgill.ca

Process calculi provide a tool for the high-level description of interactions, communications, and

synchronizations between a collection of independent processes. Session types allow us to statically

verify that processes communicate according to prescribed protocols. Hence, they rule out a wide

class of communication-related bugs before executing a given process. They also statically guaran-

tee safety properties such as session fidelity and deadlock freedom, analogous to preservation and

progress in the simply typed lambda-calculus.

Although there have been many efforts to mechanize process calculi such as the pi-calculi in

proof assistants, mechanizing these systems remains an art. Process calculi use channel or action

names to specify process interactions, and they often feature rich binding structures and semantics

such as channel mobility. Both of these features can be challenging to mechanize, for we must

track names to avoid conflicts, ensure that alpha-equivalence and renaming are well-defined, etc.

Moreover, session types employ a linear type system, where variables cannot be implicitly copied

or dropped, and therefore, many mechanizations of these systems require modeling the context and

carefully ensuring that its variables are handled linearly.

In this talk, I demonstrate a technique to localize linearity conditions as additional predicates

embedded within type judgments, which allows us to use unrestricted typing contexts instead of linear

ones. This technique is especially relevant when leveraging (weak) higher-order abstract syntax to

defer the intricate channel mobility and bindings that arise in a session typed system. In particular,

I discuss the mechanization of a session typed system based on classical linear logic in the proof

assistant Beluga, which uses the logical framework LF as its encoding language.

This is joint work with Chuta Sano and Ryan Kavanagh and is based on the [1].

References

[1] Chuta Sano, Ryan Kavanagh & Brigitte Pientka (2023): Mechanizing Session-Types using a Structural View:

Enforcing Linearity without Linearity. Proc. ACM Program. Lang. 7(OOPSLA2), pp. 374–399, doi:10.1145/

3622810.

http://dx.doi.org/10.4204/EPTCS.402.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3622810
https://doi.org/10.1145/3622810
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Stalnaker’s Epistemic Logic in Isabelle/HOL.*

Laura P. Gamboa Guzman
Iowa State University
Ames, IA 50011, USA

lpgamboa@iastate.edu

Kristin Y. Rozier
Iowa State University
Ames, IA 50011, USA

kyrozier@iastate.edu

The foundations of formal models for epistemic and doxastic logics often rely on certain logical
aspects of modal logics such as S4 and S4.2 and their semantics; however, the corresponding math-
ematical results are often stated in papers or books without including a detailed proof, or a reference
to it, that allows the reader to convince themselves about them. We reinforce the foundations of
the epistemic logic S4.2 for countably many agents by formalizing its soundness and completeness
results for the class of all weakly-directed pre-orders in the proof assistant Isabelle/HOL. This logic
corresponds to the knowledge fragment, i.e., the logic for formulas that may only include knowledge
modalities in Stalnaker’s system for knowledge and belief. Additionally, we formalize the equiva-
lence between two axiomatizations for S4, which are used depending on the type of semantics given
to the modal operators, as one is commonly used for the relational semantics, and the other one arises
naturally from the topological semantics.

1 Introduction

Epistemic logics are a family of logics that allow us to reason about knowledge among a group of
agents, as well as their knowledge about other’s knowledge[12]. Reasoning about knowledge is useful for
detecting and identifying faults during the operation of complex critical systems [7, 27], where important
safety properties are formalized using a modal language that combines temporal, in particular, LTL
(Linear Temporal Logic), and epistemic modal operators, so to verify the correctness of the system using
model checking and related formal fault-detection techniques [9, 21, 24].

When it comes to modal logics for knowledge, most of these logics correspond to normal logics
between S4 and S5 [11, 25]. In particular, we consider Stalnaker’s epistemic logic, which coincides
with the logic S4.2. It is known that this logic strictly stronger than S4, but weaker than S5 [8]. This
logic is known to be sound and complete with respect to all weakly directed S4-frames, that is, all frames
consisting of reflexive and transitive binary relations that are confluent [23], but this proof is often omitted
in textbooks where most extensions to system K (the weakest normal modal logic) are usually treated
informally.

Additionally, we encode in Isabelle/HOL the axiomatization of S4 obtained from the study of the
topological interpretation for modal languages, which was introduced prior to the relational one that is
more commonly found in the literature. This topological interpretation is done by reading the modal
necessity operator as an interior operator on a topological space, for which is known that the modal logic
S4 is complete with respect to all topological spaces [1]. The preferred axiomatization for the logic of
topological spaces differs from the one presented in [15], not only from the set of axioms, but also the
deductive rules, since it captures the axioms for an interior operator instead of a reflexive and transitive
binary relation. As a consequence, this makes the topological axiomatization not directly recognizable as
a normal modal logic, since the deduction rules seem to be weaker at first glance. Since several authors

*Supported by NSF CAREER Award CNS-1552934 and NSF:CCRI Award CNS-2016592.

http://dx.doi.org/10.4204/EPTCS.402.4
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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have been recently developing topological semantics for notions of knowledge and belief [2, 4, 3, 16],
we provide a formalization for this result, which often gets briefly mentioned and applied without being
proved in detail.

Contributions

We formalize Stalnaker’s epistemic logic, which is expressively equivalent to S4.2 [25], as well as some
intermediate results for the underlying propositional logic and the modal logics K, .2, and S4 mainly
regarding rewriting rules, properties for maximal consistent sets of formulas, and frame properties that
are induced by the chosen set of axioms in the proof assistant Isabelle/HOL [17]. Our main result is a
formalization of the soundness and completeness of Stalnaker’s epistemic logic (restricted to countably
many agents) with respect to all weakly directed(also refered to as confluent or convergent in the literature
[22, 23]) S4 frames, this is, all frames consisting of a non-empty set W and a binary relation Ri on W ,
one for each agent label i, that is reflexive, transitive, and that satisfies the property described by the
following condition

∀x∀y∀z(xRiy∧ xRiz =⇒ ∃wyRiw∧ zRiw).

The proof uses a Henkin-style completeness method, which is commonly used for these kinds of logics
[5] and was already available on Isabelle’s Archive of Formal Proofs [14].

As far as we know, all systems corresponding to some multi-agent epistemic logic already formalized
in Isabelle/HOL, which are all contained in [14] (the ground base for our formalization), were complete
with respect to a class of frames characterized by a universal formula, i.e., a property of frames given by
a first order formula of the form ∀xφ(x), where φ(x) is a quantifier-free formula with variable symbols
in x = (x1, . . . ,xn). However, the logic S4.2 is complete with respect to a class of frames that cannot
be characterized using a universal formula; instead it is characterized by a universal-existential formula.
This universal-existential characterization makes it harder to formalize its completeness result, since one
has to show the existence of an object in the universe of the canonical model satisfying a condition on a
union of consistent sets of formulas. For this, we followed an argument given by Stalnaker in [26] that
includes a set of theorems that are consequences of the axiom (.2) in K, which imply the consistency
of a set obtained by taking the union of all known facts for an agent in two different worlds that were
accessible from a third one.

Nonetheless, our formalization also includes some intermediate results that are well-known for all
normal modal logics, and that are commonly used when dealing with formal proofs in Hilbert-style
systems. Finally, we formalized the equivalence between two of the most used axiomatizations of S4,
the one presented in [15] which is commonly used when dealing with the relational semantics [5], and
the one introduced by McKinsey and Tarski for the topological semantics [1].

Related work

Our ground base is the Isabelle/HOL theory EpistemicLogic.thy [14], which contains not only the
formalization of other epistemic logics such as S4 and S5, but also formalizes the definition of an abstract
canonical model, as well as a simple and convenient way to work with any desired normal modal logic
by adding necessary the axioms to the basic system K [15]. A related paper to this formalization is [28],
which contains a broad and updated summary on formalizations of logical systems and correspondent
important results using different theorem provers. Other ways to formalize logical systems and their
completeness results on Isabelle have also been studied in [10] and [6], which include (but are not limited
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to) the use of natural deduction rules, sequent-style rules, and tableau rules for the formal systems, and
coinductive methods for soundness and completeness results.

However, given the already existent formalization of LTL in Isabelle/HOL [24], as well as the preva-
lence of Isabelle as a tool for formal verification of safety requirements for critical systems, it becomes
important to provide this formalization for this particular proof assistant. In addition to this, in [19] the
authors defined and investigated the notion of KBR-structures, which are used to represent a description
of the epistemic status of a rational agent that is not necessarily aware of their ignorance, and provided a
result that matches them with models of the epistemic logic S4.2. Modal logics between S4.2 and S5 are
of special interest for applications in epistemic logic, since they allow formalizations of several degrees
of ignorance for each one of the agents [22].

The paper is organized as follows: Section 2 introduces the necessary background on epistemic logic,
including its relational and topological semantics, and how the syntax and the relational semantics were
formalized in Isabelle/HOL in [14]. Section 3 explains our formalization of Stalnaker’s epistemic logic,
including the intermediate results necessary to prove the main results, and the limitations of these to
only countably many agents. Section 4 explains our formalization of the equivalence between the two
most common axiomatizations for S4, the one that arises from the topological semantics, and the one
commonly used when working with the relational semantics. Finally, in Section 5, we conclude with a
discussion about the results, limitations, and future work.

2 Background

2.1 Stalnaker’s Epistemic logic

We briefly present the axiomatic system developed by R. Stalnaker for both notions of knowledge and
belief, as well as the main result for the “knowledge formulas” (i.e., for those formulas that do not contain
any belief modal operators), which correspond to the multimodal system S4.2 [25]. We omit the proof
for this result, as the Isabelle theory “Epistemic logic: Completeness of Modal Logics” [14] does not
support belief formulas.

Consider the well-formed formulas obtained from the following grammar, where x ranges over the
set of propositional symbols and i ranges over the set of agent labels:

φ ,ψ ::=⊥|x |φ ∨ψ |φ ∧ψ |φ → ψ |Kiφ |Biφ .

The operators Ki and Bi mean “agent i knows” and “agent i believes,” respectively. Although Stalnaker
does not present his logic of knowledge and belief using this exact set of propositional connectives, but a
proper subset of these, we added the remaining ones given that From’s formalization includes all of them
[15].

Stalnaker’s principles (axioms) for knowledge and belief appear in Table 1, along with their interpre-
tations in natural language. Stalnaker’s logic for knowledge and belief corresponds to the formal system
obtained by adding these axioms to the axioms and rules of the multi-modal logic S4, that is, the smallest
logic containing the following axioms:

• all propositional tautologies,

• axiom K: (Ki(φ → ψ)∧Kiφ)→ Kiψ ,

• axiom T: Kiφ → φ , and

• axiom 4: Kiφ → KiKiφ ;
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and that is closed under Modus Ponens and the Necessitation rule, “from φ infer Kiφ”, where i ranges
over the set of agents.

Table 1: Axioms for knowledge and belief.
Biφ → KiBiφ Positive introspection
¬Biφ → Ki¬Biφ Negative introspection
Kiφ → Biφ Knowledge implies belief
Biφ →¬Bi¬φ Consistency of belief
Biφ → BiKiφ Strong belief

The following proposition summarizes some relevant properties of this logic.

Proposition 1. The following are some key properties of Stalnaker’s logic for knowledge and belief [25].

1. The following equivalences, one for each agent label i and formula φ , are theorems in this logic:

Biφ ←→¬Ki¬Kiφ .

2. As a consequence of the previous property, by replacing ‘Bi’ with ‘¬Ki¬Ki’ in the Consistency of
belief axiom, we get that ¬Ki¬Kiφ →Ki¬Ki¬φ (also known as axiom .2) is a theorem in this logic.
This implies that the knowledge formulas of this logic correspond exactly to the logic given by the
system S4.2, i.e., those that can be obtained from the rules and axioms of the multi-modal logic S4
in presence of the axiom .2.

The above proposition allows us to interpret this logic by giving a semantics only for the proposi-
tional variables, Boolean connectives and knowledge operators. Formally, we use structures M= (F ,π)
known as Kripke models, where the frame F = (W,(Ri)i) is a pair consisting of a non-empty set of
worlds W , a set of binary accessibility relations Ri ⊆W ×W , one for each agent i, and π : Var→ 2W is a
valuation of propositional symbols. Formula satisfiability at a given world w ∈W is defined as follows:

M,w ̸|=⊥
M,w |= x iff w ∈ π(x)
M,w |= φ ∨ψ iff M,w |= φ or M,w |= ψ

M,w |= φ ∧ψ iff M,w |= φ and M,w |= ψ

M,w |= φ → ψ iff M,w ̸|= φ or M,w |= ψ

M,w |= Kiφ iff ∀v ∈W (wRiv→M,v |= φ)
M,w |= Biφ iff M,w |= ¬Ki¬Kiφ .

One can use functions K : W → 2W instead of sets of ordered pairs R ⊆ W ×W , as there is a
correspondence between these objects by setting

wRv ⇐⇒ v ∈K (w),

for all w,v ∈W .

2.2 Epistemic Logic: Completeness of Modal Logics

The “Epistemic Logic: Completeness of Modal Logics” entry on Isabelle’s AFP [14] contains not only
a formalization for the completeness results for some epistemic logics, but also a formalization of the
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general strategy for Henkin-style proofs for completeness. This is what enabled us to formalize a proof
for the completeness result for S4.2. We show here the formalization of the Kripke models from [14],
which are structures consisting of a set of worlds of type ′w, a truth assignment for each propositional
variable on each world given by the function denoted π , and a set of accessible worlds from each possible
world for each agent ′i.
datatype ( ′i, ′w) kripke =

Kripke (W : ‹ ′w set›) (π: ‹ ′w⇒ id⇒ bool›) (K : ‹ ′i⇒ ′w⇒ ′w set›)

Consequently, given a Kripke model M = (W,(Ki)i∈I,π) with accessibility functions Ki for each
agent i, formula satisfiability is defined by setting

M,w |= Kiφ iff ∀v ∈Ki(w)(M,v |= φ).

Additionally, the dual operator for each knowledge operator Ki is denoted in this formalization as
Li and is defined as a short hand for “agent i does not know if something is false.” In other words,
Liφ := ¬Ki(¬φ), for all formulas φ . The Kripke semantics for this operator corresponds to [5, 8]

M,w |= Liφ iff ∃v ∈Ki(w)(M,v |= φ).

We show here the corresponding formalization presented in [15] for the Kripke semantics, which is
defined inductively on formulas for each world.
primrec semantics :: ‹( ′i, ′w) kripke⇒ ′w⇒ ′i fm⇒ bool›
(-, - |= - [50, 50] 50) where
‹(M, w |= ⊥) = False›
| ‹(M, w |= Pro x) = π M w x›
| ‹(M, w |= (p ∨ q)) = ((M, w |= p) ∨ (M, w |= q))›
| ‹(M, w |= (p ∧ q)) = ((M, w |= p) ∧ (M, w |= q))›
| ‹(M, w |= (p −→ q)) = ((M, w |= p) −→ (M, w |= q))›
| ‹(M, w |= K i p) = (∀v ∈ W M ∩K M i w. M, v |= p)›

From’s formalization then focuses on proving the soundness and completeness results for each of
the most commonly found normal modal logics in the literature concerning certain classes of frames
[5, 8, 15]. We now summarize the relevant ones for our formalization.

1. The basic logic, K, whose corresponding axiomatic system consists of all propositional tautologies
and the axiom K, and is closed under Modus Ponens and the Necessitation Rule, is sound and
complete with respect to the class of all frames.

2. The logic S4 is sound and complete with respect to the class of all transitive and reflexive frames.

Notice that From’s formalization does not include modal operators for belief, this restricts us to
the knowledge fragment of the language. However, Proposition 1 tells us that belief is equivalent to
knowledge, thus we do not lose any information by restricting to the knowledge fragment.

2.3 Topological semantics and its axioms

The topological semantics for modal logics was introduced before the relational semantics that presently
dominate the field [1], and the first semantics completeness proof for S4 was derives from there. Recall
the notion of this topological semantics for a language with a single modal operator □. Let L be the
language composed of all formulas given by the following grammar:

φ ,ψ ::= x |¬φ |φ ∧ψ |φ ∨ψ |φ → ψ |□φ ,
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where x ranges over the set of propositional symbols Var. Formulas in L are interpreted in a topological
model M = ⟨W,τ,v⟩, consisting of a non-empty set W , a topology τ over W , and a valuation v : Var→ 2W

in the following way:

• M,w |= x iff x ∈ v(x);

• M,w |= ¬φ iff M,x ̸|= φ ;

• M,w |= φ ∧ψ iff M,x |= φ and M,x |= ψ;

• M,w |= φ ∨ψ iff M,x |= φ or M,x |= ψ;

• M,w |= φ → ψ iff M,x ̸|= φ or M,x |= ψ;

• M,w |=□φ iff there exists U ∈ τ such that w ∈U and M,y |= φ for all y ∈U .

Although there is nothing inherently wrong with using the deductive system presented in [15] for the
logic S4, the following axiomatization is often preferable when working with the topological semantics,
as the meaning of the axioms and rules under this semantics resembles some well-known properties of
topological spaces [1].

Table 2: Topological S4 axioms and rules.
Axiom Formula Rule Formula

N □⊤
MP

φ → ψ φ

ψR □(φ ∧ψ)↔ (□φ ∧□ψ)

T □φ → ψ
M

φ → ψ

□φ →□ψ4 □φ →□□φ

Notice that at first it is not obvious weather or not the logic obtained from this axiomatization is
a normal modal logic, often defined as a logic that extends system K [5], as neither axiom K nor the
Necessitation Rule are present in the list of axioms and rules. However, we formalized a proof for the
equivalence between both axiomatizations in the context of a multi-agent epistemic logic, as in recent
years several authors have been developing topological semantics for notions of knowledge and belief
[2, 4, 3], where this result is often briefly mentioned and applied, but not proved in detail. Nonetheless,
it is also worth noticing here that the relational semantics of S4 is no more than a particular case for the
topological semantics, as one can assign a binary relation to each topological space by defining what is
known as the specialization order [1].

3 Formalization

We now consider the epistemic logic based on the axioms in Table 1 and the results in Proposition 1
for the knowledge fragment of the language. We prove the soundness and completeness of the pure
epistemic logic obtained from this system with respect to all frames consisting of weakly directed pre-
orders by combining and applying the results formalized in [15] with some auxiliary results provided in
the Utility section of our Isabelle theory. This allows us to utilize the canonical model strategy to prove
completeness of the obtained system. We do not formalize a logic for both knowledge and belief, since
we aimed to work on top of the formalization in [14], which considers modalities only for knowledge.
Formalizing the whole logic for both knowledge and belief will then require developing a new theory
almost from scratch that includes modalities for both notions.
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In order to do this, we prove first some intermediate results towards the completeness of the system
obtained by adding axiom .2 to the system K, also known as system G in the literature [8], including
some results about the underlying propositional logic. This system is known to be complete with respect
to the class of weakly directed frames, and, although we do not formalize this result completely, we do
formalize a version of the Truth lemma for this system, which is needed so that we can combine it with
the results for system S4 formalized in [15] to achieve our goal of formalizing the completeness result
for the logic S4.2 with respect to all weakly directed pre-orders.

3.1 Rewriting propositional and modal formulas

In the deductive system formalized in [14], deduction from a set of premises is defined as follows: given
a set of formulas Γ∪ {φ}, we say that “φ is derived from Γ” (denoted Γ ⊢ φ ) if there are formulas
ψ1, . . . ,ψk in Γ such that the formula ψ1→ (ψ2→ . . .(ψk→ φ)) is a theorem in the system, where k is a
non-negative integer. It is well-known that this formula is logically equivalent to (ψ1∧ . . .∧ψk)→ φ in
classical propositional logic, thus the notion can be defined by requiring the latter to be a theorem in the
system instead. Being able to translate between these two equivalent formulas in our formal deductive
system plays an important role for the proof of our main result, thus we provided a formalization of
several results of this kind in the Utility section of our Isabelle theory, which includes some results that
were not used later but that might become handy for the development of the formalizations of other
related theories in the future.

Similarly to the imply function in [14], which produces, from a list of formulas [ψ1, . . . ,ψk] and a
formula φ , the formula ψ1→ (ψ2→ . . .(ψk → φ)), we introduce the function conjunct, which takes a
list of formulas [ψ1, . . . ,ψk] and produces the formula ψ1 ∧ . . .∧ψk ∧⊤. (Notice that the input may be
an empty list, in which case the output is ⊤.) We formalized some results about logical equivalences,
and derived rules and maximal consistent sets regarding the imply and conjunct functions that are well-
known for the logic K, some of which are presented in the following lemmas. These are required to
prove in section 3.2 that the axiom .2 induces the weakly directed property on all frames that satisfy it,
following [26]. We include the proofs for those lemmas that require elaborated arguments.

Lemma 2 (Derived rules). For all formulas ψ1, . . . ,ψk,φ , it is the case that ⊢ (ψ1∧ . . .∧ψk)→ φ if and
only if ⊢ ψ1→ (ψ2→ . . .(ψk→ φ)).

Lemma 3 (Logical equivalences). The following two lemmas capture the fact that in system K, hence in
any normal modal logic, the formulas (Kiψ1∧ . . .∧Kiψk) and Ki(ψ1∧ . . .∧ψk) are equivalent, for any
finite set of formulas ψ1, . . . ,ψk and any agent i.

Lemma 4 (Closure under conjunctions for MCSs). The following lemma proves that maximal consistent
sets of formulas are closed under conjunctions, that is, if Γ is a maximal consistent set of formulas and
ψ1, . . . ,ψk are some formulas in Γ, then ψ1∧ . . .∧ψk ∈ Γ.

Lemma 5. For all formulas φ ,ψ,θ , it is the case that

⊢ ((Kiφ ∧Kiψ)→ θ)→ (Ki(φ ∧ψ)→ θ)

for any agent label i, as long as the type of i is countable.

lemma K-conj-imply-factor:
fixes A :: ‹(( ′i :: countable) fm⇒ bool)›
shows ‹A ⊢ ((((K i p) ∧ (K i q)) −→ r) −→((K i (p ∧ q)) −→ r))›
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Epistemic_Logic.thy
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mainS42

System S4.2
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Figure 1: Dependency graph showing the main results and the definitions, abbreviations, and interme-
diate results from their proofs that require the countable type condition. The dotted lines and the gray
text show the files or sections of the Isabelle theory corresponding to our formalization where these can
be found. Definitions and abbreviations appear in rounded rectangles, whereas lemmas and theorems
appear in rectangles. Those that explicitly mention the countability condition are colored in blue, and the
color orange means that this result is applied using the set of natural numbers to label the agents.

The assumption over the set of agent labels for the previous lemma is imposed by the proof that was
formalized for it, as it relies on the proof for the completeness of K in [14], which requires this condition,
as depicted in Figure 1.

Additionally, we formalize the following lemma, which plays a significant role in the proof of the
completeness result for Stalnaker’s epistemic logic that follows [26].

Lemma 6. Given any pair of formulas φ ,ψ , (Kiφ ∧ Liψ)→ Li(φ ∧ψ) is a theorem in system K, for
every agent label i.
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Proof. Notice that, for any formulas φ and ψ , ⊢ φ → (¬(φ ∧ψ)→¬ψ), hence

⊢ Kiφ → Ki(¬(φ ∧ψ)→¬ψ).

On the other hand, we have that ⊢ Ki(¬(φ ∧ψ)→¬ψ)→ ((Ki¬(φ ∧ψ))→ Ki¬ψ), thus

⊢ Kiφ → ((Ki¬(φ ∧ψ))→ Ki¬ψ).

This implies that ⊢ Kiφ → (Liψ → Li(φ ∧ψ)), which is equivalent to

⊢ (Kiφ ∧Liψ)→ Li(φ ∧ψ).

3.2 Axiom .2

We formalize axiom schema .2, which when added to the axioms and rules of system K imposes a
structure on the canonical model, namely, we obtain a weakly directed frame. For this, the inductive
command lets us define the axiom schema in such a way that i and p can be instantiated at will, as long
as the type for the agents labels is countable.

inductive Ax-2 :: ‹( ′i :: countable) fm⇒ bool› where
‹Ax-2 (¬ K i (¬ K i p) −→ K i (¬ K i (¬ p)))›

A frame F = (W,(R)i∈I) is said to be weakly directed if whenever vRiw and vRiu, there exists x ∈W
such that wRix and uRix, for each i ∈ I. Accordingly, we formalize this property for Kripke frames as
follows:

definition weakly-directed :: ‹( ′i, ′s) kripke⇒ bool› where
‹weakly-directed M ≡ ∀ i. ∀s ∈ W M. ∀ t ∈ W M. ∀r ∈ W M.
(r ∈K M i s ∧ t ∈K M i s)−→(∃ u ∈ W M. (u ∈K M i r ∧ u ∈K M i t))›

The soundness of axiom schema .2 with respect to weakly directed frames is formalized in our Is-
abelle theory, and it follows from the definitions for the semantics and the weakly directed property.
However, proving that the property holds for the canonical model when adding the axiom to a normal
modal logic is non-trivial. Unlike the frame properties imposed by the axioms considered in the Epis-
temic Logics formalized in [15], which are all universal properties, this property is universal-existential,
so to prove that the canonical model has this property means that one has to show the existence of a
possible world satisfying a property under some assumptions.

Recall that the canonical frame, F can = (W can,(Rcan
i )i∈I), consists of the set all maximal consistent

sets of formulas (with respect to K+.2) as the set of possible worlds, W can, and the accessibility relations
Rcan

i are defined as follows:
ΓRcan

i ∆ iff {φ : Kiφ ∈ Γ} ⊆ ∆,

for each agent i. Thus, showing that the canonical frame for a system including axiom .2 is weakly
directed involves verifying that if we have {φ : Kiφ ∈ Γ}⊆ ∆1 and {φ : Kiφ ∈ Γ}⊆ ∆2 for some maximal
consistent sets Γ, ∆1 and ∆2, then there exists a maximal consistent set Θ such that {φ : Kiφ ∈ ∆1}∪{φ :
Kiφ ∈ ∆2} ⊆Θ. We capture this in our formalization by the following lemma.

Lemma 7 (Weakly directed property and the axiom .2). Suppose that V,U,W are three maximal con-
sistent sets with respect to a normal modal logic containing the axiom .2. If V Rcan

i U and V Rcan
i W, then

there exists a maximal consistent set X such that URcan
i X and WRcan

i X.
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Proof. First, fix a set of formulas A and three maximal consistent sets of formulas V,U,W (with respect
to A) satisfying the lemma assumptions for some agent label i of a countable type. Assume towards
contradiction that such a set X does not exist, then

S := {φ : Kiφ ∈W}∪{φ : Kiφ ∈U}

has to be inconsistent with respect to A, hence there are formulas θ1, . . . ,θk ∈ {φ : Kiφ ∈ U} and
ψ1, . . . ,ψm ∈ {φ : Kiφ ∈W}, for some k,m ∈ N, such that

A ⊢ (α ∧β )→⊥,

where α = θ1 ∧ . . .∧θk and β = ψ1 ∧ . . .∧ψm. This implies that A ⊢ KiKi(¬(α ∧β )), since φ →⊥ is
equivalent to ¬φ for every formula φ , by applying the Necessitation rule twice. By definition, we have
that Kiθ1, . . . ,Kiθk ∈U and Kiψ1, . . . ,Kiψm ∈W , thus

Kiθ1∧ . . .∧Kiθk ∈U and Kiψ1∧ . . .∧Kiψm ∈W,

since these sets are closed under logical consequences. We then use the logical equivalences and prop-
erties for maximal consistent sets from the Utility section (see section 3.1) to obtain that Kiα ∈U and
Kiβ ∈W . This implies that the formulas LiKiα and LiKiβ are elements of V , and so is the formula KiLiα ,
since V contains every instance of axiom .2 and is closed under logical consequences. This implies that
(LiKiβ )∧ (KiLiα) ∈V , thus Li(Kiβ ∧Liα) ∈V , so there exists a maximal consistent set Z such that

V Rcan
i Z and Kiβ ∧Liα ∈ Z.

Applying the lemma K-thm we get that Li(β ∧α)∈ Z, but notice that Ki¬(α∧β )∈ Z, thus Ki¬(β ∧α)∈
Z, which is a contradiction because we have found a formula φ such that φ ,¬φ ∈ Z.

Note that we have restricted ourselves to countable types for the set of agent labels in formalization
of the previous two lemmas, as we are only allowed to extend a consistent set into a maximal one when
the language is countable, because of a dependency shown in Figure 1. Unlike in the respective result
for each normal modal logic formalized in [15], this restriction to a countable type was necessary as we
were dealing with a universal-existence property and not with a purely universal one. We then prove
a version of the Truth lemma for the minimal normal modal logic that includes axiom .2, which is the
relevant result about this system that will allow us to prove the completeness result for system S4.2 in
the next section.

Lemma 8 (Imply completeness for Axiom .2). Let Γ∪{φ} be a set of formulas. Suppose that, for all
weakly directed Kripke structures M, M,w |= Γ implies M,w |= φ , for each world w ∈M. Then there are
formulas γ1,γ2, . . . ,γm ∈ Γ such that

⊢.2 γ1→ (γ2→ . . .(γm→ φ) . . .).

We omit the proof for this lemma, since it follows the same strategy as the correspondent ones for
the systems formalized in [14].
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3.3 System S4.2

We define system S4.2 as the one obtained by adding to system K the axioms T, 4 and .2, by making use
of the abbreviation ⊕ introduced in [14] that allows combining axiom predicates:
abbreviation SystemS4-2 :: ‹( ′i :: countable) fm⇒ bool› (⊢S42 - [50] 50) where

‹⊢S42 p ≡ AxT ⊕ Ax4 ⊕ Ax-2 ⊢ p›

Recall that axioms T and 4 impose reflexivity and transitivity on the canonical frame, respectively
[5], which was formalized in [14]. This implies that the composition of these two with axiom .2 imposes
all three conditions on the canonical frame, which leads to the soundness and completeness of S4.2 with
respect to all weakly directed pre-orders. To prove the completeness result, we prove first the analog
results to Lemmas 7 and 8 but for S4.2 and Kripke models based on weakly directed preorders.
Lemma 9 (S4.2 and Weakly directed preorders). Let Γ∪{φ} be a set of formulas. Suppose that, for
all countable Kripke structures M based on weakly directed preorders, M,w |= Γ implies M,w |= φ , for
each world w ∈M. Then, there are formulas γ1, . . . ,γm ∈ Γ such that

⊢S42 γ1→ (. . .→ (γm→ φ) . . .).

lemma imply-completeness-S4-2:
assumes valid: ‹∀(M :: ( ′i :: countable, ′i fm set) kripke). ∀w ∈ W M.

w-directed-preorder M −→ (∀q ∈ G. M, w |= q) −→M, w |= p›
shows ‹∃qs. set qs ⊆ G ∧ (AxS4-2 ⊢ imply qs p)›

This implies that if a formula is valid in all countable Kripke structures based on weakly directed
preorders, then it is a theorem in S4.2.
lemma completenessS42:

assumes ‹∀(M :: ( ′i :: countable, ′i fm set) kripke). ∀w ∈ W M. w-directed-preorder M −→M, w |= p›
shows ‹⊢S42 p›

Our main result follows: the completeness of S4.2 with respect to all frames consisting of weakly
directed pre-orders.
Theorem 10 (Completeness of S4.2). A formula is valid in all countable Kripke structures based on
weakly directed preorders if and only if it is a theorem in S4.2.
theorem mainS42: ‹validS42 p←→ ⊢S42 p›

4 An alternative axiomatization for System S4

Inspired by the last section of [14], we formalize an alternative axiomatization for System S4 that is often
used when dealing with the topological semantics [1] for modal operators and we show its equivalence
to the one considered in [15]. We formalize the system corresponding to the axioms and rules in Table
2 in Isabelle, which we call topoS4, and, if a formula φ is a theorem in this system, we denote this by
⊢Top φ .
inductive System-topoS4 :: ‹ ′i fm⇒ bool› (⊢T o p - [50] 50) where

A1 ′: ‹tautology p =⇒ ⊢T o p p›
| AR: ‹⊢T o p ((K i (p ∧ q))←→ ((K i p) ∧ K i q))›
| AT ′: ‹⊢T o p (K i p −→ p)›
| A4 ′: ‹⊢T o p (K i p −→ K i (K i p))›
| AN: ‹⊢T o p K i ⊤›
| R1 ′: ‹⊢T o p p =⇒ ⊢T o p (p −→ q) =⇒ ⊢T o p q›
| RM: ‹⊢T o p (p −→ q) =⇒ ⊢T o p ((K i p) −→ K i q)›
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To show that this formulation is equivalent to the one in [15] (which is based on [5]), we provide
derivations of axiom K and the Necessitation Rule (from φ deduct □φ ). This is enough as our system
already includes axioms T and 4 in the same fashion as in [15], and is based on the same propositional
logic.

Lemma 11. For all formulas φ and ψ , ⊢top (Kiφ ∧Ki(φ → ψ))→ Kiψ and, if ⊢top φ , then ⊢top Kiφ .

Proof. For the first part, notice that ⊢top (φ ∧ (φ → ψ))→ ψ , since it is an instance of a propositional
tautology. Then, we apply RM to obtain that ⊢top Ki(φ ∧ (φ → ψ))→ Kiψ , which implies that ⊢top

(Kiφ ∧Ki(φ → ψ))→ Kiψ . For the second one, suppose that ⊢top φ and notice that ⊢top φ → (⊤→ φ),
hence ⊢top ⊤→ φ . Applying RM we get that ⊢top Ki⊤→ Kiφ , thus ⊢top Kiφ .

From this it then follows that any formula derivable in the classical S4 system (denoted ⊢S4) can be
derived in our system as well.

Lemma 12. All S4 theorems are theorems in topoS4.
lemma S4-topoS4: ‹⊢S4 p =⇒ ⊢T o p p›

The converse follows by a similar argument, we show that axioms and rules from our system are all
derivable in ⊢S4, under the condition that there are only countably many agents.

Lemma 13. All theorems in topoS4 are theorems in S4, assuming that there are only countably many
agents.
lemma topoS4-S4:

fixes p :: ‹( ′i :: countable) fm›
shows ‹⊢T o p p =⇒ ⊢S4 p›

By combining the last two results with the main result for S4 in [15], we obtain formalized sound-
ness and completeness for this alternative axiomatization of S4 over the class of S4 frames, namely, all
reflexive and transitive frames.

Theorem 14 (Soundness and Completeness of topoS4). A formula is valid in all S4 Kripke models if
and only if it is a theorem in topoS4.
theorem mainS4

′: ‹validS4 p←→ (⊢T o p p)›

5 Results, Discussion, and Future work

We have formalized the soundness and completeness for Stalnaker’s Epistemic Logic S4.2 with respect
to the class of Kripke frames consisting of weakly-directed pre-orders for countably many agents, which
has not been formalized before neither in Isabelle, nor in any other publicly available proof assistant.
Additionally, the equivalence between the topological axiomatization of S4 and the one in [14] is also
described in this document. The proofs for the main result, as well as for many of the intermediate results,
have been sketched before in multiple sources, but we were not able to find a unique source, making
this the first work of its kind. Additionally, given the recent interest in applications of the topological
semantics for epistemic modal operators [2, 4, 3], some of which coincide with Stalnaker’s epistemic
logic, this provides a reinforcement for the foundations of these works.

We emphasize on the assumption of the cardinality of the set of agent labels, as it was necessary to
impose such restriction even in some definitions in our formalization, thus creating a discrepancy with
the definitions commonly found in the literature. We present in Figure 1 a summary of the definitions
and results of our formalization and the one in [14] that rely on this condition, since the formalization
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for the general strategy applied to obtain the completeness results in [14] requires it to be able to obtain
maximal consistent sets. Although, in theory, it is possible to provide an argument for the general case
using Zorn’s lemma (this was also later noted in [15]), which is available in [13].

Further work in formalizing in Isabelle/HOL of different formal aspects of modal logics that include
S4 operators, as is the case with many temporal logics like LTL with its always operator, for which a
complete axiomatization is already known [18]; as well as concrete examples of epistemic scenarios
based on Stalnaker’s principles, like the example detailed in [20]. We hope that this work will facilitate
further work in formalizing different logical systems in Isabelle/HOL.
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This paper discusses the extension of the Prototype Verification System (PVS) sub-theory for rings,
part of the PVS algebra theory, with theorems related to the division algorithm for Euclidean rings
and Unique Factorization Domains that are general structures where an analog of the Fundamental
Theorem of Arithmetic holds. First, we formalize the general abstract notions of divisibility, prime,
and irreducible elements in commutative rings, essential to deal with unique factorization domains.
Then, we formalize the landmark theorem, establishing that every principal ideal domain is a unique
factorization domain. Finally, we specify the theory of Euclidean domains and formally verify that
the rings of integers, the Gaussian integers, and arbitrary fields are Euclidean domains. To highlight
the benefits of such a general abstract discipline of formalization, we specify a Euclidean gcd algo-
rithm for Euclidean domains and formalize its correctness. Also, we show how this correctness is
inherited under adequate parameterizations for the structures of integers and Gaussian integers.

1 Introduction

The NASA PVS algebra library ([5]) was recently enriched with a series of theorems related to the
theory of rings. The extension includes complete formalizations of the isomorphism theorems for rings,
principal, prime, and maximal ideals, and a general abstract version of the Chinese Remainder Theo-
rem (CRT), which holds for abstract rings, including non-commutative rings. The benefit of formalizing
algebraic results from this abstract theoretical perspective was made evident by showing how, from the
abstract version of CRT, the well-known numerical version of CRT for the ring of integers Z was formal-
ized [22].

In this work, we give another substantial step towards enriching the PVS abstract algebra library
by formalizing properties about factorization in commutative rings regarding both unique factorization
domains and Euclidean rings. Roughly, unique factorization domains are abstract structures for which a
general version of the Fundamental Theorem of Arithmetic holds. On the other hand, Euclidean rings
are equipped with a norm that allows defining a suitable generalization of Euclid’s division lemma and,
consequently, of notions such as the greatest common divisor (gcd). The practicality of gcd is well-
known in the ring Z. Nevertheless, mathematicians know this notion is of fundamental importance in
abstract Euclidean domains for which, in general, gcd should and may be defined in different ways.

Figure 1 highlights the subtheories subject of the extension to the PVS theory algebra discussed
in this paper. The red ones are related to Euclidean rings, and gcd algorithms for Euclidean domains,
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Figure 1: Ring theories expanding the PVS algebra library

and the orange ones are those related to unique factorization domains. The extension includes 210 new
formulas enlarging the theory algebra from 1356 (cf [22]) to 1566 formalized lemmas.

The primary motivation to formalize such structures is their potential theoretical and practical appli-
cations. Using the example of gcd, one can provide a general abstract version of the Euclidean algorithm
to determine a gcd between two elements (Euclidean gcd algorithm) in a Euclidean domain. Since the
ring of integers Z, the Gaussian integers Z[i] (which are the subset of complex numbers whose real
and imaginary parts are integer numbers) and rings of polynomials over integral domains are particu-
lar Euclidean domain structures, the Euclidean gcd algorithm can be applied over them, in a relatively
straightforward manner, to compute gcds in different manners, not only for the structures mentioned
above but for a variety of Euclidean domains.

Also, every element of a unique factorization domain can be factorized as a finite number of irre-
ducible elements, and one can prove that Euclidean domains are unique factorization domains. These
properties allow us to introduce modular arithmetic, verify generic versions of Euler’s Theorem and
Fermat’s Little Theorem for Euclidean domains, and promote factorization in Euclidean domains as a
convenient feature to develop efficient algorithms in symbolic computation [21], [12]. Thus, formalizing
the main results about unique factorization and Euclidean domains would allow the formal verification
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of more complex theories involving such structures in their scope.
The main contributions of this paper are listed below.

• We formalize the abstract notions of divisibility, prime, and irreducible elements in commutative
rings, which are essential to deal with unique factorization domains. In integral domains, prime
elements are irreducible. The converse is not true in general. Among other properties, we formalize
the theorem that establishes that irreducible elements are also prime in principal ideal domains (as
well-known, it holds in Z).

• We specify unique factorization domains and formalize the theorem that every principal ideal
domain is a unique factorization domain, which is a landmark result in abstract algebra.

• We specify the notion of Euclidean domains and formally verify that the rings Z and Z[i] and any
arbitrary field are Euclidean domains.

• We specify the general abstract notion of gcd for commutative rings, providing a general Euclidean
gcd algorithm for Euclidean domains, formalizing its correctness. Using this result, we parameter-
ize the adequate norms and gcd relations for the rings Z and Z[i]; thus, obtaining straightforwardly
the correctness of such instantiations of the abstract algorithm for these Euclidean domains. In this
manner, we illustrate the benefits of maintaining the abstract general discipline of formalization
for algebraic theories and the potential of such a discipline for application in concrete algebraic
structures.

Organization of the paper. Section 2 presents a theoretical overview of unique factorization and Eu-
clidean domains, pointing out the main concepts and results. Also, it comments on some differences
between pen-and-paper proofs presented in Hungerford’s textbook [18] and this formalization. Section
3 discusses the aspects of the formalization of the Euclidean gcd Algorithm for Euclidean Domains, as
well as its application for two particular cases. Section 4 discusses related work and work in progress.
Finally, Section 5 concludes and suggests future work. The formalizations were developed using PVS
and are available at algebra .

2 Formalization of Euclidean Domains

Notions such as prime element, division, and gcd between two elements and some landmark results,
including the Fundamental Theorem of Arithmetic, Euclid’s division lemma, and Euclidean Algorithm,
are well established and widespread for the ring of integers. Such concepts and general versions of
interesting results are extended for abstract algebraic structures ([18], [10], [13]) and are the scope of our
formalization.

This section gives a theoretical overview of the central notions and properties and discusses the PVS
features used in their formalization. An excellent description of the semantics of PVS is available as
[24]. In addition, to highlight crucial differences between pen-and-paper vs formalized proofs, some
analytical concepts and results are presented as enunciated in Chapter III of Hungerford’s textbook [18].

2.1 Prime and irreducible elements on rings

The definitions of prime and irreducible elements rely on the general concept of divisibility on a ring.
The specification of the notions of divisibility and associated elements are specified as the curried pred-
icates given in Specification 1. These predicates are abstracted for any ring structure given as their first
argument, R. In PVS, types are built from predicates; for example, ring? is used to build the type (ring?).

https://github.com/nasa/pvslib/tree/master/algebra
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Specification 1: Divisibility and associated elements in the sub-theory ring_divides_def

divides ?(R : (ring ?))(a: (R - {zero}), b: (R)): bool = EXISTS (x: (R)): a*x = b

associates ?(R: (ring ?))(a,b:(R - {zero })): bool = divides ?(R)(a,b) AND
divides ?(R)(b,a)

In Hungerford’s textbook, the definition of divisibility relies on a commutative ring. It avoids the
discrimination between an element’s left or right divisor, and since the main results demand a com-
mutative ring in the hypothesis, it is a reasonable requirement. However, commutativity is not a cru-
cial property in such a notion since it only depends on the multiplication operation in a ring. Be-
cause of that, we opted to generalize the definition and specify divisibility on non-necessarily com-
mutative rings as (divides?(R)(a,b)). Another interesting remark is related to the specification of
associates?(R)(a,b): Hungerford’s textbook omits that the type of the parameters a and b are non-
zero elements. Of course, this is obvious since it is required in the definition of divides?(R)(a,b).
However, the lack of such a hypothesis is recurrent in several statements throughout the textbook that
require it (for example, in Theorem 2.1).

In the sub-theory ring_divides, we formalized the properties related to the divisibility stated in
Theorem 2.1. Some of them involve the object “unit”. In a ring (R,+,∗,zero,one) with multiplication
identity one, an element u is called a unit if u is left- and right-invertible; that is, if there exist elements
u−1

1 ,u−1
2 ∈ R such that u∗u−1

1 = u−1
2 ∗u = one.

Theorem 2.1 (Th.3.2, Hungerford [18]). Let a,b, and u be elements of a commutative ring R with
identity.

(i) a divides b (denoted as a | b) if and only if (b)⊂ (a), where (x) denotes the principal ideal gener-
ated by x.

(ii) a and b are associates if and only if (a) = (b).

(iii) u is a unit if and only if u | r for all r ∈ R.

(iv) u is a unit if and only if (u) = R.

(v) The relation “a and b are associates” is an equivalence relation on R.

(vi) If a = br, where r ∈ R is a unit, then a and b are associates. If R is an integral domain, then the
converse is true.

Theorem 2.1 has a straightforward formalization due to the robustness of the formal framework
previously developed for rings and principal ideals [22]. The formalization of the properties (i), (ii), and
(iv) illustrates it clearly. In fact, by definition, (a) denotes the intersection of all ideals in R containing the
element a. The lemma principal_ideal_charac in theory ring_principal_ideal characterizes
(a) as the set one_gen(R)(a) in the theory ring_one_generator. The last characterization depends
on a sum, specified as R_sigma, over elements of a function in the ring R, defined over abstract types,
as given in the theory ring_basic_properties . The constructor R_sigma generalizes constructors
in the NASA PVS library (nasalib) built for specific theories as the theory of reals. Also, since R is
a commutative ring with identity, the lemma commutative_id_one_gen_charac  provides a much
simpler characterization of the set one_gen(R)(a); indeed, such characterization simplifies the analysis
of properties (i), (ii), and (iv) since (a) can be built as the set aR = {ar : r ∈ R}.

From the concepts of divisibility and unit, we specified prime and irreducible elements on a ring with
identity as the predicates given in the Specification 2.

https://github.com/nasa/pvslib/tree/master/algebra/ring_divides_def.pvs/#L26-L45
https://github.com/nasa/pvslib/tree/master/algebra/ring_divides.pvs#L23-L87
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal.pvs#L48-L50
https://github.com/nasa/pvslib/tree/master/algebra/ring_one_generator.pvs#L50-L52
https://github.com/nasa/pvslib/tree/master/algebra/ring_basic_properties.pvs#L25-L226
https://github.com/nasa/pvslib/tree/master/algebra/ring_with_id_one_generator.pvs#L55-L57
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Specification 2: Irreducible and prime elements in the subtheories ring_irreducible_element_def
 and ring_prime_element_def, respectively
R_irreducible_element ?(R : (ring_with_one ?))(x:(R)): bool = x/=zero AND

(NOT unit?(R)(x)) AND
(FORALL (a,b:(R)): x = a*b IMPLIES (unit?(R)(a) OR unit?(R)(b)))

R_prime_element ?(R : (ring_with_one ?))(x:(R)): bool = x/=zero AND (NOT unit?(R)(x)) AND
(FORALL (a,b:(R)): divides ?(R)(x, a*b) IMPLIES

divides ?(R)(x, a) OR divides ?(R)(x, b))

In the ring of integers, prime and irreducible elements are indistinguishable. However, this is not true
for all rings. For instance, 2 is prime but not irreducible in Z6. Theorem 2.2 gives some properties re-
garding prime and irreducible elements formalized in the subtheories ring_principal_ideal_domain
 and ring_prime_and_irreducible_element . It shows, among other results, that prime and
irreducible elements are equal over principal ideal domains.

Theorem 2.2 (Th.3.4, Hungerford [18]). Let p and c be nonzero elements in an integral domain R.

(i) p is prime if and only if (p) is a nonzero prime ideal;

(ii) c is irreducible if and only if (c) is maximal in the set S of all proper principal ideals of R.

(iii) Every prime element of R is irreducible.

(iv) If R is a principal ideal domain, then p is prime if and only if p is irreducible.

(v) Every associate of an irreducible [resp. prime] element of R is irreducible [resp. prime].

(vi) The only divisors of an irreducible element of R are its associates and the units of R.

Although the result is stated for integral domains, Hungerford advises that a weakened hypothesis
can be considered in some parts of the theorem. We formalize the results using the minimum number of
required conditions and detect that items (i) and (vi) of the Theorem 2.2 hold for commutative rings with
identity.

Properties (i), (ii), and (iii) form the basis for the formalization of the characterization of primes
as irreducible elements over principal ideal domains, given in property (iv) and specified as the lemma
PID_prime_el_iff_irreducible . The sufficiency of the property (iv), established in the property
(iii), is verified as the lemma prime_el_is_irreducible . It follows in a relatively straightforward
manner from the definition of prime elements and the result that the multiplicative cancelation law holds
for non-zero elements in integral domains (lemma nzd_R_cancel_left) since integral domains have
no zero divisors.

On the other hand, the necessity of (iv) is trickier since it depends on properties (i), (ii), and other
additional previous results developed for rings with identity and maximal ideals. Property (i) is specified
by the lemma prime_el_iff_prime_ideal. Its proof depends on the lemmas prime_ideal_prop1
and prime_ideal_prop2  formalized in theory ring_prime_ideal, which provide a characteriza-
tion of prime ideals over commutative rings. Lemma el_irred_iff_one_gen_maximal  specifies
property (ii), which establishes that the principal ideal generated by an irreducible element is a max-
imal element in the set S of all proper principal ideals of a ring. It is important to stress here that
in the pen-and-paper proof of property (iv) given in [18], Hungerford assumes the vital result that
maximal elements in the previously mentioned set S are maximal ideals in R. We formalized this
property without this assumption as the lemma el_max_iff_one_gen_maximal  in the sub-theory

https://github.com/nasa/pvslib/tree/master/algebra/ring_irreducible_element_def.pvs#L22-L45
https://github.com/nasa/pvslib/tree/master/algebra/ring_irreducible_element_def.pvs#L22-L45
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_element_def.pvs#L22-L38
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_and_irreducible_element.pvs#L23-L117
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L56-L57
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_and_irreducible_element.pvs#L60-L61
https://github.com/nasa/pvslib/tree/master/algebra/ring_nz_closed_aux.pvs#L43-L44
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_and_irreducible_element.pvs#L48-L50
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_ideal.pvs#L41-L50
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_ideal.pvs#L41-L50
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_and_irreducible_element.pvs#L53-L57
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L50-L54
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Specification 3: Theory ring_unique_factorization_domain_def  with the definition of unique
factorization domain
fsIr?(R)(fsI: finseq [(R)]): bool = FORALL (i: below[length(fsI )]):

R_irreducible_element ?(R)(fsI(i))

unique_factorization_domain ?(R): bool = integral_domain_w_one?(R) AND
FORALL(a: (R)): a /= zero AND NOT unit?(R)(a) IMPLIES
EXISTS(fsI:(fsIr?(R))):a = op_fseq(fsI) AND
FORALL(fsIp:fsIr(R)):a = op_fseq(fsIp) IMPLIES length(fsI) = length(fsIp) AND
EXISTS(phi:[below[length(fsI)]->below[length(fsI )]]): (bijective ?(phi)) AND
FORALL(i:below[length(fsI )]): associates ?(R)(fsIp(phi(i)),fsI(i))

ring_principal_ideal_domain. Finally, the necessity of property (iv) is concluded as follows. If p
is an irreducible element, then (p) is a maximal element, according to el_max_iff_one_gen_maximal.
Since R is a ring with identity, R2 = R by lemma ring_w_one_is_idempotent , which is formal-
ized in the sub-theory ring_with_one_basic_properties. Consequently, (p) is a prime ideal by the
lemma maximal_prime_ideal and, by property (i), p is a prime element.

2.2 Unique Factorization Domains

The well-known Fundamental Theorem of Arithmetic for integers states that any positive integer greater
than 1 can be factorized as a unique product of primes up to a permutation of such factors. Unique Fac-
torization Domains (UFDs) are integral domains with an analogous theorem. The Specification 3 shows
the definition of UFDs. It depends on a sequence of irreducible elements fsIr?(R)(fsI) on a ring R with
identity and a recursive operator op_fseq(fsI), as specified in the sub-theory op_finseq_monoid_def
, which multiplies the elements of such a sequence. The operator op_fseq(fsI) is specified over an
abstract structure (T,∗,one) equipped with a binary operation ∗ and a constant one.

From the point of view of formalization, such a general specification is very useful for two reasons:
firstly, it allows the use of the operator op_fseq(fsI) in a variety of abstract and concrete structures
(monoids, monads, groups, rings, integers, reals) by only adequately parameterizing the sub-theory
op_finseq_def; secondly, it avoids proof obligations, called in PVS Type Correctness Conditions
(TCCs), automatically generated by the system, since the operator is defined for elements of an abstract
type, which provides more automation in our formal verification. Indeed, suppose such an operator was
defined over elements of an algebraic structure, for example, a monad. To each application of that defini-
tion in a specific context, PVS will automatically generate a proof obligation to verify that op_fseq(fsI)
acts on a sequence whose elements belong to a monad. This specification design would make the theory
verification more onerous. It is advantageous to use polymorphism to formalize concepts and properties
that hold for a non-interpreted type since it allows the reuse of such results in multiple contexts.

In sub-theory ring_unique_factorization_domain , we formalized the Theorem 2.3, which
is a landmark result about UFDs.

Theorem 2.3 (Th.3.7, Hungerford [18]). Every principal ideal domain is a unique factorization domain.

The formalization of the Theorem 2.3 has two main steps. We briefly comment on them.
Step 1 - Existence of a factorization
First, previous subtheories established in the PVS theory algebra were enriched with auxiliary

results. The new lemma chain_ideal_ union_ideal , which states that the union of a chain of
ideals in a ring R is an ideal, is included in the sub-theory ring_ideal . The new lemma nonzero_

https://github.com/nasa/pvslib/tree/master/algebra/ring_unique_factorization_domain_def.pvs#L22-L43
https://github.com/nasa/pvslib/tree/master/algebra/ring_with_one_basic_properties.pvs#L63-L64
https://github.com/nasa/pvslib/tree/master/algebra/ring_maximal_ideal.pvs#L39-L41
https://github.com/nasa/pvslib/tree/master/algebra/op_finseq_monoid_def.pvs#L22-L35
https://github.com/nasa/pvslib/tree/master/algebra/op_finseq_monoid_def.pvs#L22-L35
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Specification 4: Auxiliary function to build an ascending chain of ideals
phi(n:nat , R:principal_ideal_domain , a:(non_fact_el_set(R))):
RECURSIVE (non_fact_el_set(R)) =
IF n = 0 then a
ELSE choose ({x : (non_fact_el_set(R))|

strict_subset ?(one_gen(R)(phi(n-1, R, a)),one_gen(R)(x))})
ENDIF

MEASURE n

ring_ exists_maximal_ideal_aux, which proves that every ideal in a ring R with identity, except R
itself, is contained in a maximal ideal in R, is added to the sub-theory ring_with_ one_maximal_ideal
.

The formalization of this lemma considers an ideal A ̸=R, S= {B⊂R; B is ideal in R, B ̸=R and A⊂
B} and C = {Ci | i ∈ I} an arbitrary chain of ideals in S. We prove that the ideal C =

⋃
Ci is an

upper bound of the chain C in S and, by using Zorn’s lemma (available in the NASA PVS theory
orders), we conclude that S has a maximal element, which is a maximal ideal in R. In the sub-theory
ring_principal_ideal, we add the new lemma stable_chain, which states that if R is a princi-
pal ideal ring and (a1)⊂ (a2) . . . is a chain of ideals in R, then for some positive integer n, (a j) = (an) for
all j ≥ n. The new lemma nonzero_nonunit_irreducible_divides, formalized in the sub-theory
ring_principal_ideal_domain, states that every nonzero and non-unit element in a principal ideal
domain is divided by an irreducible element.

We conclude Step 1 by verifying that the subset of R below, a principal ideal domain, is empty.

non_fact_el_set(R) =


x : x is a nonzero non-unit element

in R and cannot be finitely
factorized into irreducible elements


In fact, if a ∈ non_fact_el_set(R), we could build an ascending chain of ideals, (a)⊂ (a1)⊂ . . .,

contradicting the lemma stable_chain. The key to verifying it is to specify the recursive function
phi(n,R,a)  showed in Specification 4 (sub-theory ring_principal_ideal_domain ) and verify
that it is well defined whenever non_fact_el_ set(R) is non-empty. In PVS, recursive definitions must
be accompanied by a measure to prove termination. The measure has to decrease after each recursive
step.

Whenever a ∈ non_fact_el_set(R), the choice of the element a1, obtained by the function choose
in Specification 4, is guaranteed. In fact, the lemma nonzero_nonunit_ irreducible_divides en-
sures that a= ca1, where c is irreducible. It implies that a1 belongs to non_fact_el_set(R) and satisfies
the condition (a)⊂ (a1) by Theorem 2.1(i).

Step 2: “Uniqueness” of a factorization
By uniqueness we mean the existence of a bijective function between the elements of two factoriza-

tions mapping associated elements. First, we formalized the lemma prime_el_ divides (sub-theory
ring_prime_and_irreducible_element ) which states if a prime element p in an integral domain
divides the product a1 . . .an then there exists i, 1 ≤ i ≤ n, such that p divides ai. By 2.2(iii), p is an
irreducible element since p is a prime element. From this, if a1 . . .an = a = b1 . . .bm, where ai,1 ≤ i ≤ n,
and b j, 1 ≤ j ≤ m, are irreducible elements, then a1 divides b j, for some j. By Theorem 2.2(vi), a1 and
b j are associates. Using induction on n, we prove that n = m and establish the required bijective function.
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https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal.pvs#L24-L69
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal.pvs#L61-L66
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L59-L61
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L75-L79
https://github.com/nasa/pvslib/tree/master/algebra/ring_principal_ideal_domain.pvs#L24-L118
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_and_irreducible_element.pvs#L80-L84
https://github.com/nasa/pvslib/tree/master/algebra/ring_prime_and_irreducible_element.pvs#L23-L117


T.A. de Lima, A.B. Avelar, A.L. Galdino and M. Ayala-Rincón 25

Specification 5: Definitions of Euclidean rings and Euclidean domains
euclidean_ring?(R): bool = commutative_ring?(R) AND
EXISTS (phi: [(R - {zero}) -> nat]): FORALL(a,b: (R)):

((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES EXISTS(q,r:(R)):
(a = q*b+r AND (r = zero OR (r /= zero AND phi(r) < phi(b))))))

euclidean_domain ?(R): bool = euclidean_ring?(R) AND integral_domain_w_one?(R)

2.3 Euclidean Rings

A Euclidean ring is a commutative ring R equipped with a norm ϕ over R−{zero}, where an abstract
version of the well-known Euclid’s division lemma holds. Euclidean rings and domains are specified in
the subtheories Euclidean_ring_def and Euclidean_domain_def (Specification 5).

In sub-theory Euclidean_domain , we formalized that elements of Euclidean ring can be factor-
ized as irreducible elements by verifying Theorem 2.4.

Theorem 2.4 (Th.3.9, Hungerford [18]). A Euclidean ring R is a principal ideal ring with identity.
Consequently, every Euclidean domain is a unique factorization domain.

The verification makes use of the well-ordering principle over ϕ(I∗) = {ϕ(x) ∈ N; x ∈ I −{zero}},
where I is a nonzero ideal in R and ϕ is a norm on R−{zero}. By choosing a ∈ I such that ϕ(a) is the
minimum element of ϕ(I∗), b ∈ I satisfies b = qa+ r, for some q ∈ R and r ∈ I. From this, we infer
that r = 0, since r ̸= 0 contradicts the minimality of ϕ(a). Consequently, b = qa and I ⊂ Ra ⊂ (a) ⊂ I.
The last guarantees that every ideal in R is a principal ideal. By Theorem 2.3, we have that a Euclidean
principal ideal domain is a unique factorization domain.

We also formalized the results stating that the ring of integers (integers_is_euclidean_domain )
and any arbitrary field (field_is_euclidean_domain ) are Euclidean domains.

3 Formalization of gcd Algorithm for Euclidean Domains

The theory Euclidean_ring_def includes two additional definitions to allow abstraction of accept-
able Euclidean norms and associated functions fulfilling the properties of Euclidean rings (see Specifi-
cation 6).

The first definition is the relation Euclidean_pair? . Given a Euclidean ring R and a Euclidean
norm of non-zero elements over the naturals φ : R\{zero}→ N, the predicate Euclidean_pair?(R,φ)
holds whenever φ satisfies the constraints of a Euclidean norm over R.

The second definition is the curried relation given as Euclidean_f_phi?(R,φ)( fφ ). This relation
holds whenever Euclidean_pair?(R,φ) holds, and fφ is a function from R×R\{zero} to R×R, such
that for all pair of elements of R in its domain, fφ (a,b) gives a pair of elements, say (div,rem) satisfying
the constraints of Euclidean rings regarding the norm φ : if a ̸= zero, a = div∗b+rem, and if rem ̸= zero,
φ(rem)< φ(b). These definitions are correct since the existence of such a φ and fφ is guaranteed by the
fact that R is a Euclidean ring. Also, notice that the decrement of the norm, i.e., φ(rem) < φ(b), is the
key to building an abstract Euclidean terminating procedure.

By using the previous two relations, a general abstract recursive Euclidean gcd algorithm is specified
in the sub-theory ring_euclidean_algorithm as the curried definition Euclidean_gcd_algorithm

https://github.com/nasa/pvslib/tree/master/algebra/euclidean_ring_def.pvs#L24-L56
https://github.com/nasa/pvslib/tree/master/algebra/euclidean_domain_def.pvs#L25-L38
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Specification 6: Additional definitions in the sub-theory Euclidean_ring_def
Euclidean_pair?(R : (Euclidean_ring?), phi: [(R - {zero}) -> nat]) : bool =

FORALL(a,b: (R)): ((a*b /= zero IMPLIES phi(a) <= phi(a*b)) AND
(b /= zero IMPLIES

EXISTS(q,r:(R)): (a = q*b+r AND
(r = zero OR (r /= zero AND phi(r) < phi(b))))))

Euclidean_f_phi?(R : (Euclidean_ring?),
phi : [(R - {zero}) -> nat] | Euclidean_pair?(R,phi))

(f_phi : [(R) , (R - {zero}) -> [(R),(R)]]) : bool =
FORALL (a : (R), b :(R - {zero })):
IF a = zero THEN f_phi(a,b) = (zero , zero)
ELSE LET div = f_phi(a,b)‘1, rem = f_phi(a,b)‘2 IN

a = div * b + rem AND
(rem = zero OR (rem /= zero AND phi(rem) < phi(b)))

ENDIF

 (See Specification 7). The types of its arguments guarantee the correctness of this algorithm. Indeed,
since allowed arguments R,φ , and fφ should satisfy Euclidean_f_phi?(R,φ)( fφ ), R is a Euclidean ring
with associated Euclidean norm φ and adequate division and remainder functions given by fφ . The ter-
mination of the algorithm is a proof obligation (termination TCC) automatically generated by PVS using
the lexicographical MEASURE given in the specification. This measure decreases after each possible re-
cursive call: for Euclidean_gcd_algorithm(R,φ , fφ )(a,b), if a ̸= zero, φ(a)≥ φ(b) and rem ̸= zero,
the recursive call is Euclidean_gcd_algorithm(R,φ , fφ )(b,rem); thus, the pair (φ(b),φ(a)) is lexi-
cographically greater than (φ(rem),φ(b)), since φ(b) > φ(rem). In the other case, the recursive call
is Euclidean_gcd_algorithm(R,φ , fφ )(b,a). This happens if a ̸= zero, and φ(b) > φ(a); therefore,
(φ(b),φ(a)) is lexicographically greater than (φ(a),φ(b)).

It is worth mentioning that such termination TCCs are generated automatically by PVS, but in gen-
eral, as in this case, the mandatory proof must be formalized manually.

The proof of correctness of the recursive algorithm is given as a straightforward corollary of the
Euclid_theorem (in Specification 7) that establishes the correctness of each recursive step regarding
the abstract definition of gcd  given in Specification 8. Essentially, this theorem states that given an
adequate Euclidean norm φ and associated function fφ , the gcd of a pair (a,b) is equal to the gcd of the
pair (rem,b), where rem is computed through fφ , i.e., rem is equal to the second projection of fφ (a,b).
Notice that since Euclidean rings allow a variety of Euclidean norms and associated functions (e.g., [18],
[13]), the definition of gcd is not specified as a function but as the relation gcd?.

Finally, the proof of correctness of the abstract Euclidean algorithm is obtained by induction, using
the lexicographic MEASURE of the algorithm. The theorem Euclidean_gcd_alg_correctness  (in
Specification 7) formalizes this fact. For an input pair (a,b), in the inductive step of the proof, when
φ(b)> φ(a) and the recursive call swaps the arguments, one assumes that

gcd?(R)({b,a},Euclidean_gcd_algorithm(R,φ , fφ )(b,a)),

which means that Euclidean_gcd_algorithm(R,φ , fφ )(b,a) computes correctly the gcd of the pair
(b,a). From this assumption, one concludes that

gcd?(R)({a,b},Euclidean_gcd_algorithm(R,φ , fφ )(a,b)).

Otherwise, when the recursive call is Euclidean_gcd_algorithm(R,φ , fφ )(b,rem), which happens if
φ(a) ≥ φ(b), then rem = ( fφ (a,b))′2, the second component of fφ (a,b); by induction hypothesis one

https://github.com/nasa/pvslib/tree/master/algebra/ring_euclidean_algorithm.pvs#L36-L48
https://github.com/nasa/pvslib/tree/master/algebra/ring_euclidean_algorithm.pvs#L36-L48
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Specification 7: Sub-theory ring_euclidean_algorithm : abstract gcd Euclidean algorithm for
Euclidean rings
Euclidean_gcd_algorithm(R : (Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R,phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)))
(a: (R), b: (R - {zero })) : RECURSIVE (R - {zero}) =

IF a = zero THEN b
ELSIF phi(a) >= phi(b) THEN

LET rem = (f_phi(a,b))‘2 IN
IF rem = zero THEN b
ELSE Euclidean_gcd_algorithm(R,phi ,f_phi)(b,rem)
ENDIF

ELSE Euclidean_gcd_algorithm(R,phi ,f_phi)(b,a)
ENDIF

MEASURE lex2(phi(b), IF a = zero THEN 0 ELSE phi(a) ENDIF)

Euclid_theorem : LEMMA
FORALL(R:( Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R, phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)),
a: (R), b: (R - {zero}), g : (R - {zero })) :

gcd?(R)({x : (R) | x = a OR x = b}, g) IFF
gcd?(R)({x : (R) | x = (f_phi(a,b))‘2 OR x = b}, g)

Euclidean_gcd_alg_correctness : THEOREM
FORALL(R:( Euclidean_domain ?[T,+,*,zero ,one]),

(phi: [(R - {zero}) -> nat] | Euclidean_pair?(R, phi)),
(f_phi: [(R),(R - {zero}) -> [(R),(R)]] |

Euclidean_f_phi?(R,phi)(f_phi)),
a: (R), b: (R - {zero}) ) :

gcd?(R)({x : (R) | x = a OR x = b},
Euclidean_gcd_algorithm(R,phi ,f_phi)(a,b))

has that
gcd?(R)({b,rem},Euclidean_gcd_algorithm(R,φ , fφ )(b,rem)).

Finally, by application of Euclid_theorem, one concludes that the abstract general Euclidean algorithm
correctly computes a gcd for the pair (a,b).

Now, we show how the correctness of the abstract algorithm Euclidean_gcd_algorithm is easily
inherited, under adequate instantiations, for the structures of integers Z and Gaussian integers Z[i]. The
lines of reasoning follow those given in discussions on factorization in commutative rings and multi-
plicative norms in textbooks (e.g., Section 47 in [13], or Chapter 3, Section 3 in [18]).

The Specification 9 presents the case of the Euclidean ring Z. The Euclidean norm φZ is selected
as the absolute value while the associated function fφZ is built using the integer division and remainder,

Specification 8: gcd definition for commutative rings - sub-theory ring_gcd_def

gcd?(R)(X: {X | NOT empty ?(X) AND subset ?(X,R)}, d:(R - {zero })): bool =
(FORALL a: member(a, X) IMPLIES divides ?(R)(d,a)) AND

(FORALL (c:(R - {zero })):
(FORALL a: member(a, X) IMPLIES divides ?(R)(c,a)) IMPLIES

divides ?(R)(c,d))

https://github.com/nasa/pvslib/tree/master/algebra/ring_euclidean_algorithm.pvs#L23-L65
https://github.com/nasa/pvslib/tree/master/algebra/ring_gcd_def.pvs#L23-L45
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Specification 9: Correctness of the parameterization of the abstract Euclidean algorithm for the Euclidean
ring Z - sub-theory ring_euclidean_gcd_algorithm_Z

phi_Z(i : int | i /= 0) : posnat = abs(i)

f_phi_Z(i : int , (j : int | j /= 0)) : [int , below[abs(j)]] =
((IF j > 0 THEN ndiv(i,j) ELSE -ndiv(i,-j) ENDIF), rem(abs(j))(i))

phi_Z_and_f_phi_Z_ok : LEMMA Euclidean_f_phi?[int ,+,*,0](Z,phi_Z)(f_phi_Z)

Euclidean_gcd_alg_correctness_in_Z : COROLLARY
FORALL(i: int , (j: int | j /= 0) ) :

gcd?[int ,+,*,0](Z)({x : (Z) | x = i OR x = j},
Euclidean_gcd_algorithm[int ,+,*,0,1](Z, phi_Z,f_phi_Z)(i,j))

specified in the PVS prelude libraries as ndiv and rem: for a ∈ Z,b ∈ Z \ {0}, div(a,b) computes the
integer division of a by b, and, for b ∈ Z+ \{0}, rem(b)(a) computes the remainder of a by b.

The correctness of the Euclidean algorithm for the ring of integers is specified as the corollary
Euclidean_gcd_alg_correctness_in_Z . It states that for the Euclidean ring of integers Z, and
any i, j ∈ Z, j ̸= 0, the parameterized abstract algorithm, Euclidean_gcd_algorithm[int,+,*,0,1]
satisfies the relation gcd?[int,+,*,0]:

gcd?[int,+,∗,0](Z)({i, j},
Euclidean_gcd_algorithm[int,+,∗,0,1](Z,φZ, fφZ)(i, j))

The formalization of this corollary follows from the theorem of correctness for the abstract Euclidean
algorithm, Euclidean_gcd_alg_correctness theorem (Specification 7), which essentially requires
proving that the chosen Euclidean measure φZ, and the associated function fφZ fulfill the conditions
in the definition of Euclidean rings. The latter is formalized as lemma phi_Z_and_f_phi_Z_ok :
Euclidean_f_phi?[int,+,∗,0](Z,φZ)( fφZ).

The Specification 10 presents the formalization of the correctness of the Euclidean algorithm for
the Euclidean ring Z[i] of Gaussian integers. The Euclidean norm of a Gaussian integer x = (Re(x)+
iIm(x)) ∈ Z[i] is considered as the natural number given by φZ[i](x) = x ∗ conjugate(x) = Re(x)2 +
Im(x)2, where conjugate(x) = Re(x)− iIm(x). The construction of an adequate associated function
fφZ[i] (f_phi_Zi in Specification 10) requires additional explanations and is specified through the auxil-
iary function div_rem_appx . For a pair of integers (a,b), b ̸= 0, this function computes the pair of
integers (q,r) such that a = qb+ r, and |r| ≤ |b|/2; thus, qb is the integer closest to a. The equality
a = qb+ r is formalized as lemma div_rev_appx_correctness . Several properties about the field
of complex numbers are imported from the PVS complex theory.

Now, we explain the construction of the function fφZ[i] . For y, a Gaussian integer and x, a positive
integer, let Re(y) = q1x+ r1 and Im(y) = q2x+ r2, where (q1,r1) and (q2,r2) are computed with the
auxiliary function div_rem_appx (with respective inputs (Re(y),x) and (Im(y),x)). Let q = q1+ iq2 and
r = r1 + ir2, then y = qx+ r. Also, notice that if r ̸= 0 then φZ[i](r)≤ φZ[i](x), since r2

1 + r2
2 ≤ x2/2 ≤ x2.

For the case in which x is a nonzero Gaussian integer, φZ[i](x)> 0 holds.
Then, we can compute div_rem_appx(yconjugate(x),xconjugate(x)), obtaining q,r′ ∈Z[i] such

that yconjugate(x) = q(xconjugate(x))+ r′, and r′ = 0 or φZ[i](r′)< φZ[i](xconjugate(x)).
By selecting r = y−qx, we obtain y = qx+ r and rconjugate(x) = r′.
Finally, when r ̸= 0, since φZ[i](rconjugate(x)) < φZ[i](xconjugate(x)), by application of the

lemma phi_Zi_is_multiplicative, we conclude that φZ[i](r)< φZ[i](x).
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Specification 10: Correctness of the parameterization of the abstract Euclidean algorithm for Z[i] - sub-
theory ring_euclidean_gcd_algorithm_Zi

Zi: set[complex] = {z : complex | EXISTS (a,b:int): a = Re(z) AND b = Im(z)}

Zi_is_ring: LEMMA ring?[complex ,+,*,0](Zi)

Zi_is_integral_domain_w_one: LEMMA integral_domain_w_one?[complex ,+,*,0,1](Zi)

phi_Zi(x:(Zi) | x /= 0): nat = x * conjugate(x)

phi_Zi_is_multiplicative: LEMMA
FORALL ((x: (Zi) | x /= 0), (y: (Zi) | y /= 0)):

phi_Zi(x * y) = phi_Zi(x) * phi_Zi(y)

div_rem_appx(a: int , (b: int | b /= 0)) : [int , int] =
LET r = rem(abs(b))(a),

q = IF b > 0 THEN ndiv(a,b) ELSE -ndiv(a,-b) ENDIF IN
IF r <= abs(b)/2 THEN (q,r)
ELSE IF b > 0 THEN (q+1, r - abs(b))

ELSE (q-1, r - abs(b))
ENDIF

ENDIF

div_rev_appx_correctness : LEMMA
FORALL (a: int , (b: int | b /= 0)) :

abs(div_rem_appx(a,b)‘2) <= abs(b)/2 AND
a = b * div_rem_appx(a,b)‘1 + div_rem_appx(a,b)‘2

f_phi_Zi(y: (Zi), (x: (Zi) | x /= 0)): [(Zi),(Zi)] =
LET q = div_rem_appx(Re(y * conjugate(x)), x * conjugate(x))‘1 +

div_rem_appx(Im(y * conjugate(x)), x * conjugate(x))‘1 * i,
r = y - q * x IN (q,r)

phi_Zi_and_f_phi_Zi_ok: LEMMA
Euclidean_f_phi?[complex ,+,*,0](Zi,phi_Zi)(f_phi_Zi)

Euclidean_gcd_alg_in_Zi: COROLLARY
FORALL(x: (Zi), (y: (Zi) | y /= 0) ) :

gcd?[complex ,+,*,0](Zi)({z :(Zi) | z = x OR z = y},
Euclidean_gcd_algorithm[complex ,+,*,0,1](Zi, phi_Zi,f_phi_Zi)(x,y))

The formalization of the correctness of the Euclidean algorithm for Gaussian integers obtained by
parameterizations with Z[i], its Euclidean norm φZ[i] and associated function fφZ[i] follows as the simple
corollary Euclidean_gcd_alg_ in_Zi  in Specification 10. This is proved using the correctness of
the abstract Euclidean algorithm (Specification 7) and lemma phi_Zi_and_f_phi_Zi_ok. The latter
states that the Euclidean norm φZ[i] and its associated function fφZ[i] are adequate for the Euclidean ring
Z[i]: Euclidean_f_phi?[complex,+,∗,0](Z[i],φZ[i])( fφZ[i]).

4 Related Work and work in progress

4.1 Related work

Several formalizations focus on specific ring structures as the ring of integers. Such developments range
from simple formalization exercises, such as correctness proofs of gcd algorithms for Z, to elaborated
mechanical proofs of the Chinese Remainder theorem for Z. The latter started from Zhang and Hua’s
RRL (Rewrite Rule Laboratory) mechanization [31], followed by different approaches in Mizar, HOL
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https://github.com/nasa/pvslib/tree/master/algebra/algebra_examples/ring_euclidean_gcd_algorithm_Zi.pvs#L84-L84
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Light, hol98, Coq [29], ACL2 [27], and VeriFun [30]. Also, in the theory ints@gcd.pvs from NASA
PVS library, one finds Euclid’s algorithm restricted to integer numbers. Nevertheless, the general alge-
braic abstract approach is followed by a few developments. In particular, such an approach is followed in
the Isabelle/HOL Algebra Library (see [2], [1], and [4]); a library that provides a wide range of theorems
on mathematical structures, including results on rings, groups, factorization over ideals, rings of integers
and polynomial rings, as well as formalization of an algorithm to compute echelon forms over Euclidean
domains, and so characteristic polynomials of matrices. Also, the Lean mathlib library [9] specifies
unique factorization domains, prime and irreducible elements in commutative rings, and relations with
principal ideal domains. In addition, it specifies the notion of gcd for Euclidean domains and formal-
izes several properties as the correctness of the extended Euclidean algorithm by applying Bézout’s gcd
lemma. The library mathlib formalizes that a Euclidean domain is a principal ideal domain, and a princi-
pal ideal domain is a unique factorization domain. The former is given as formally verified construction
from a definition. From this instance, it is possible to infer that the Gaussian integers are a Euclidean
domain and thus a principal ideal. Also, the Euclidean algorithm can be adapted to structures such as
the Gaussian integers. A recent extension of mathlib specifies the ring of Witt vectors and formalizes the
isomorphism between the ring of Witt vectors over Z/pZ and the ring of p-adic integers Zp, for a prime
p [8].

In Coq, results about groups, rings, and ordered fields were formalized as part of the FTA project [15];
this work gave rise to the formalization of the Feit and Thompson’s proof of the Odd Order Theorem
[16]. Also, there are formalizations in Coq of real ordered fields [7], finite fields [26], and rings with
explicit divisibility [6]. In Nuprl and Mizar, there are proofs of the Binomial Theorem for rings in [19]
and [28], respectively, and a Mizar formalization of the First Isomorphism Theorem for rings [20]. ACL2
has a hierarchy of algebraic structures ranging from setoids to vector spaces that aims the formalization
of computer algebra systems [17].

Regarding the paper-and-pen proofs in [18] and the formalization reported in this paper, the last one
comprises about twenty pages of Hungerford’s textbook. We estimate it took ten months of human labor.
Some results in the book appear as trivial remarks only. Nevertheless, they required the formalization of
a significative sequence of auxiliary lemmas. An excellent example of the lack of details in this respect
is a remark after Definition 3.5. in [18] that we have used in tutorials to motivate mathematicians to deal
with proof assistants. It states that:

“every irreducible element in a unique factorization domain is necessarily prime by Defini-
tion 3.5. Consequently, irreducible and prime elements coincide, by Theorem 3.4.”

Indeed, the formalization of this remark required the application of additional properties related
to bijective functions, the equivalence relation “associates”, and the composition of finite sequences,
among others inherited from the abstract structure integral domain. Also, several particular cases had to
be analyzed to ensure the result when the elements involved are units or equal to zero.

Finally, we would like to stress that the project is focused on the formalization side, but aspects
related to code extraction can be explored through tools provided by PVS. For instance, PVSio is an ani-
mation tool that extends the ground evaluator of PVS with a predefined library of programming features
[23]. The evaluation is possible whenever algorithms are specified constructively. For our purposes,
this means that we can run the formalized gcd algorithm with the help of the ground evaluator for any
Euclidean domain for which the Euclidean norm φ and the associated function fφ are specified construc-
tively, which is the case of our specifications for Z and Z[i]. Based on PVSio, elaborated approaches
use this animation tool to evaluate the formal models on a set of randomly generated test cases, com-
paring the computed results against output values obtained by actual software [11]. After applying such
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approaches, performance and comparison with other implementations would be possible.

4.2 Work in progress and applications

Work in progress to be reported in the future includes formalizing the general theory of quaternions built
from any abstract structure of fields specified in PVS as commutative division rings. The specification of
quaternions is given from an abstract type T with binary operators for addition and multiplication, with
constants zero and one, respectively. The type T with addition and zero is an Abelian group, and the
multiplication is associative. The specification includes axioms for quaternion addition and multiplica-
tion (i2 = a, j2 = b, for some given parameters a and b of T ), associativity for quaternion multiplication,
distributivity of quaternion addition and multiplication, and properties for the scalar product between
elements of the field and of the quaternion. All that is provided in the theory quaternion_def . After-
ward, in the PVS theory quaternions , using these axioms, a series of general properties of quaternions
are provided, which range from the characterization of quaternion multiplication to the characterization
of quaternions as division rings. Once again, following the general approach to specifying quaternions
from abstract fields, we can obtain the specific structure of Hamilton’s quaternions as the theory quater-
nions_Hamilton , using as the parameter to build the quaternions the specific field of reals [3]. As far
as we know, there are formalizations of Hamilton’s quaternions in HOL Light and Isabelle/HOL (e.g.,
[14], [25]). In contrast, some elements of the general theory of quaternions built over any abstract field,
as in our case, were developed as part of the Lean mathlib library [9].

We do not argue that any proof assistant is a better or worse framework than any other for formal-
izing algebraic notions and properties. However, we are confident that the current formalization work
adequately explores the inductive and higher-order possibilities available in PVS and substantially con-
tributes to completing the theory of the algebraic properties of rings by providing the most general and
abstract possible presentation of such algebraic structures, as also given in some of the previous refer-
ences, mainly as done by the approaches mentioned above in Isabelle/HOL and Lean ([1], [9]).

5 Conclusions and Future Work

In contrast to other works, restricted to specific ring structures, our formalization approach focuses on
the theory of abstract rings, as done in the Lean- and Isabelle-related libraries (cf [9] and [4], respec-
tively) discussed in the related work. Advantages of such an approach include increasing the interest of
mathematicians in formalizations and having practical general presentations of computational algebraic
properties portable to specific ring structures. In particular, in [22], the Chinese Remainder Theorem
was formalized for (non-necessarily commutative) rings, obtaining, as a corollary, the CRT version for
the ring of integers. This work substantially extends the algebra PVS library by specifying Euclidean
rings and factorization domains and formalizing the correspondence between principal ideal domains and
unique factorization domains. Also, it proves the correctness of a general Euclidean gcd algorithm for
Euclidean domains. The usefulness of such an abstract verified gcd algorithm is evident by its adapta-
tion to specific Euclidean domain structures. Indeed, this versatility is illustrated by showing how simple
corollaries establish the correctness of the Euclidean algorithm (parameterized) for the rings of integers
and Gaussian integers (Z and Z[i]).

In future work, we will include the specification of modular arithmetic and verification of generic
versions of Euler’s Theorem and Fermat’s Little Theorem for Euclidean domains.

https://github.com/nasa/pvslib/tree/master/algebra/quaternions_def.pvs#L22-L93
https://github.com/nasa/pvslib/tree/master/algebra/quaternions.pvs#L22-L210
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L24-L178
https://github.com/nasa/pvslib/tree/master/algebra/quaternions_Hamilton.pvs#L24-L178
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We report on yet another formalization of the Church-Rosser property in lambda-calculi, carried out
with the proof environment BELUGA. After the well-known proofs of confluence for β -reduction in
the untyped settings, with and without Takahashi’s complete developments method, we concentrate
on η-reduction and obtain the result for β η modularly. We further extend the analysis to typed-
calculi, in particular System F. Finally, we investigate the idea of pursuing the encoding directly
in BELUGA’s meta-logic, as well as the use of BELUGA’s logic programming engine to search for
counterexamples.

1 Introduction

Stop me if you heard this before: the Church-Rosser theorem for β -reduction (CR(β )) is a good case
study for proof assistants. In fact, Church-Rosser theorems are arguably the most formalized results in
mechanized meta-theory of deductive systems.

In the beginning, the thrust was to see whether the theorem could be formalized at all: Shankar’s
proof in the Boyer-Moore theorem-prover [25] was a break-through and a tour de (brute) force. A few
years later, Nipkow [17] made the proof much more abstract and extended it to βη-reduction. The
workhorse encoding technique was de Bruijn indices and it was a bullet that one just had to bite.

In the following years, the Church-Rosser theorem became a benchmark to showcase how to mech-
anize the variable binding problem. Some partial data-points, with the understanding that these are not
exhaustive not disjoint: if interested in mirroring the informal practice of working mathematicians, see
the paper by Vestergaard and Brotherston [27] and the recent work by Copello et al. [6]. If you want to
reason about α-conversion explicitly via quotients, see Ford and Mason’s [9]. For the locally nameless

representation, see McKinna and Pollack [14] and its modern take [5]. Library support is showcased by
AUTOSUBST [23]. Nominal techniques are also well-represented, see the recent proof by Nagele and
al. [16].

We shall use higher-order abstract syntax (HOAS) following up on the seminal proof of CR(β ) by
Pfenning in 1992 [18], when Twelf was merely Elf. Once the non-trivial issue of totality-checking
was settled, that proof stood as a shining example of the benefits of HOAS, which we shall not repeat
here. Confluence results did not attract further attention in this community, until Accattoli, in his proof
pearl [2], liberated Huet’s Coq encoding of residual theory [10] from its concrete-syntaxed infrastructure.

So why bother with yet another HOAS-based encoding? Our aim was to go beyond β -reduction and
replicate Nipkow’s results in the HOAS setting. Further, to extend it to typed calculi, with a minimum
amount of change. One way to achieve that is via intrinsically-typed terms [3] and for the latter, BEL-
UGA [20] is the natural (if not only) modern system that natively supports HOAS together with dependent
types. We were also curious to see if we could achieve a significant formalization as BELUGA’s novices,
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with just a cursory understanding of its intricate meta-theory.1 This is part of a more general project of
developing a curriculum to teach the classic theory of the lambda-calculus to graduate students.

In passing, we evaluate (in the negative) Accattoli’s suggestion [2] that even in two-level systems
such as BELUGA, the specification of the semantics of the (untyped) lambda-calculus should be carried
out directly in the meta-logic. In the Appendix, we explore the concept of mechanized meta-theory

model-checking within the Beluga framework. This approach aligns with the increasing tendency to
enhance proof assistants with a form of counterexample search. QuickChick serves as one example of
this trend [12]..

In this short paper, we assume knowledge of confluence in the lambda-calculus, for which we refer
to the concise presentation in [24]. We recall some basic notions; given binary relations over a set A, and
their Kleene and reflexive closure (_)∗, (_)=, we define:

R

R

R

R

diamond for R

R∗

S∗

S∗

R∗

R and S commute

R

S

S∗

R=

R and S strongly commute

We say that R is confluent if and only it commutes with itself.
We also assume a passing familiarity with BELUGA. We simply recall that the specification of

the syntax and judgments of the system under study is done in (contextual) LF, while theorems are
realized as total functions in BELUGA’s meta-logic. LF contexts are reified into first-class objects that
can be abstracted and quantified over, being classified by context schemas. First-class substitutions map
contexts to each other realizing properties such as weakening, strengthening and subsumption. In this
development, we have taken care to state every theorem quantifying over the smallest context schema
where it makes sense [8].

2 Sketch of the Formal Development

We will only sketch some of the highlights of the encoding, referring the reader to the repository2 for
most, if not all the details.

2.1 CR(β )

Pientka [19] ported to BELUGA Pfenning’s encoding [18] in Twelf of the traditional parallel reduction
proof à la Tait/Martin-Löf. We did the same for Licata’s proof [13] via Takahashi’s complete develop-

ments [26] This porting was similarly uneventful, save of course for the improvements that the BELUGA

brings in w.r.t. Twelf. This applies in particular to the streamlined handling of context reasoning in con-
trast to Twelf’s rather fragile notion of regular worlds. A detailed comparison of the relative merits of
BELUGA vs. Twelf, among others, can be found in [7].

1With the partial exception of Kaiser’s dissertation [11], all existing BELUGA’s code originates exclusively from Pientka
and her students.

2https://github.com/martinasassella/More_CR_Proofs_Beluga

https://github.com/martinasassella/More_CR_Proofs_Beluga
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In both proofs, there are no technical lemmas about variables, renamings etc. We do have to prove
that parallel reduction is stable under substitution, but it is from first principles, meaning it does nor rely
on properties such as weakening and exchange. The direct proof of the diamond property for parallel
reduction has a complex case-analysis, just as in the informal case. Takahashi’s proof is based on a
relational rather than functional encoding of complete developments, which is fine as the proof only
needs totality, not uniqueness of developments.

For future reference, we list here the HOAS encoding of the syntax of untyped lambda terms and of
parallel reduction, featuring a crucial use of hypothetical judgments to internalize the variable cases:

LF term : type =

| lam : (term → term) → term

| app : term → term → term;

LF pred : term → term → type =

| beta : ({x:term} pred x x → pred (M1 x) (M1’ x)) → pred M2 M2’

→ pred (app (lam M1) M2) (M1’ M2’)

| lm : ({x:term} pred x x → pred (M x) (M’ x)) → pred (lam M) (lam M’)

| ap : pred M1 M1’ → pred M2 M2’ → pred (app M1 M2) (app M1’ M2’);

2.2 CR(η)

While CR(η), as well as CR(βη) can be proved via complete developments, here we follow Nipkow’s
more modular commutation approach. We separately consider η-reduction as the congruence over the η
rule Γ ⊢ λx.M x −→η M, provided x 6∈ FV(M): η-reduction (or η-expansion, if viewed from the right
to the left) is encoded in BELUGA as the type family

LF eta_red : term → term → type =

| eta : eta_red (lam \x.(app M x)) M % ... congruence rules as above, omitted

Note how the above proviso is realized within HOAS as the meta-variable M not depending on x in the
LF function \x.(app M x). There is nothing “tricky” in this encoding, as per Nipkow’s discussion (§ 4.3
of op.cit.). Only one technical lemma is required:

Lemma 2.1 (Strengthening) If Γ,x ⊢ M −→η N, and M does not depend on x, neither does N and

Γ ⊢M −→η N.

Formalizing this takes a little thought, but BELUGA’s primitives make it relatively easy to state and prove.
The main proof strategy relies on a classic result [22] that provides a sufficient condition for commu-

tation:

Lemma 2.2 (Commutation – Hindley-Rosen) Two strongly commuting reductions commute.

Since both LF and BELUGA are (roughly) first-order type theories, we cannot express operations on
abstract relations, in particular closures, nor can we prove the above lemma once and for all for any such
relation. Hence, we instantiate R and S to η-reduction:

η

η

η∗

η= =⇒ η∗

η∗

η∗

η∗

We define the relevant closures at the LF level, with families eta_red* and eta_red=, and prove that η
strongly commutes with itself as the function square. Recall that neither LF nor BELUGA have first-class
sigma types and therefore existential propositions need to be encoded separately:
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LF eta*_eta=_joinable : term → term → type =

| eta*_eta=_result : eta_red* M1 N → eta_red= M2 N → eta*_eta=_joinable M1 M2;

schema ctx = term

rec square : (γ:ctx) {M : [γ ⊢ term]}{M1 : [γ ⊢ term]}{M2 : [γ ⊢ term]}

[γ ⊢ eta_red M M1] → [γ ⊢ eta_red M M2] → [γ ⊢ eta*_eta=_joinable M1 M2] = ...

This is proven by induction on [γ ⊢ eta_red M M1] and inversion on [γ ⊢ eta_red M M2], with an appeal
to strengthening when a critical pair is created by the η and ξ rules. We then state, in the rather long-
winded way that BELUGA requires, the above instance of the Commutation lemma:

LF confl_prop : term → term → type =

| confl_result : eta_red* M1 N → eta_red* M2 N → confl_prop M1 M2;

rec commutation_lemma:(γ:ctx)({M: [γ ⊢ term]}{M1: [γ ⊢ term]}{M2: [γ ⊢ term]}

[γ ⊢ eta_red M M1] → [γ ⊢ eta_red M M2] → [γ ⊢ eta*_eta=_joinable M1 M2])

→ ({M’: [γ ⊢ term]}{M1’: [γ ⊢ term]}{M2’: [γ ⊢ term]}

[γ ⊢ eta_red* M’ M1’] → [γ ⊢ eta_red* M’ M2’] → [γ ⊢ confl_prop M1’ M2’]) = ...

The proof approximates Nipkow’s diagrammatic way via a concrete instance of the Strip lemma. In the
end, what we decisively gained in elegance and succinctness with HOAS vs de Bruijn, we somewhat lose
by the limitations of a first-order framework.

2.3 CR(βη)

We take βη-reduction as the union of β and η-reductions. Since we have already shown confluence for
each relation separately, it makes sense to exploit this other classic [22] result:

Lemma 2.3 (Commutative Union) If R and S are confluent and commute, then R∪S is confluent.

To establish the commutation assumption in the above lemma, we will again appeal to the Commu-
tation lemma 2.2, hence we start with a version of the square function above, with R := β and S := η .
The proof requires a strengthening lemma for β -reduction, as well as two beautifully clean substitution
lemmas for η and η∗. Again, this beauty is short-lived, as we have to replay the diagrammatic proof of
the Commutation lemma with the current instantiation; this is a routine rework of the η case, but tedious.

The final ingredient is the proof of lemma 2.3 for βη , which is entailed by the following steps:

1. (β ∗∪η∗)∗ = (β ∪η)∗;

2. β ∗∪η∗ satisfies the diamond property;

3. a Strip lemma for the above two relations.

2.4 Typed Calculi

We now switch gears and address confluence in typed lambda-calculi. While the main definitions still
apply, we must be mindful to reduce only well-typed terms [24]. In a dependently typed proof environ-
ment such as BELUGA, this can be very elegantly accomplished using intrinsically-typed terms [3], that
is, by ruling out pre-terms and indexing the judgments under study by well-typed terms only.

To illustrated the idea, we list the specification of well-typed terms in the polymorphic lambda-
calculus (System F) and a fragment of parallel reduction (congruence rules for type abstraction and
application together with the two beta rules):
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LF ty : type = LF tm : ty → type =

| arr : ty → ty → ty | lam : (tm A → tm B) → tm (arr A B)

| all : (ty → ty) → ty; | app : tm (arr A B) → tm A → tm B

| tlam : ({a:ty} tm (A a)) → tm (all A)

| tapp : tm (all A) → {B:ty} tm (A B);

LF pred : tm A → tm A → type =

| tlm : ({a:ty} pred (M a) (M’ a)) → pred (tlam M) (tlam M’)

| tap : pred M M’ → pred (tapp M A) (tapp M’ A)

| beta : ({x:tm A} pred x x → pred (M1 x) (M1’ x)) → pred M2 M2’

→ pred (app (lam M1) M2) (M1’ M2’)

| tbeta : ({a:ty} pred (M1 a) (M1’ a)) → pred (tapp (tlam M1) A) (M1’ A) ...

Note how the signature of pred enforces the invariant that (parallel) reduction preserves typing. Since
we now have two kinds of variables, the judgment is hypothetical both on terms and on types. On the
reasoning level, this induces a context schema that accounts for this alternation, namely

schema pctx = some [A:ty] block(x:tm A, v:pred x x) + ty

What is remarkable is that literally the same proof structure of the Church-Rosser theorem carries
over from the untyped case to the typed one. To wit, we have formalized Takahashi’s style CR(β ) for
System F and the proof is conservative in a very strong sense: not only do we use the same sequence
of lemmata, but, being BELUGA’s scripts explicit proof-terms, the derivations for the untyped calculus
directly embed into the derivations for System F: the user just needs to refine the statements of the
theorems with the indexed judgments, on occasion making some implicit arguments explicit to aid type
inference and of course adding cases for the new constructors. The proof of CR(β ) for System F consists
of around 460 loc, as opposed to 340 for the untyped case.

2.5 CR(β ) at the Meta-Level

In the two-level approach adopted by BELUGA, the syntax and the semantics of a formal system are
specified at the LF level, whereas reasoning is carried out at the computational level in form of recursive
functions. LF features hypothetical judgments and those give for free properties of contexts such as ex-
change, weakening and substitution; by “for free”, we mean that they need not to be proved on a case
by case base. Nonetheless, the communication of context information to the reasoning level requires
the definition of possibly complex context schemas and relations among them that may complicate the
statements and pollute the proofs. This may be particularly annoying in case studies such as the un-
typed lambda calculus, where contexts do not seem to play a large part, as observed by Accattoli in his
remarkable paper [2] w.r.t. the “cousin” system Abella.

Since [20], BELUGA allows one to define inductive and stratified relations at the meta-level.
Therefore, we can test Accattoli’s proposal w.r.t. the standard proof of CR(β ) for the untyped case. This
entail keeping at the LF level only the syntax and move all the other judgments at the computation level:
to wit, parallel reduction has now this (non-hypothetical) representation:

inductive predM : (γ:ctx) [γ ⊢ term] → [γ ⊢ term] → ctype =

| var : isVar [γ ⊢ M] → predM [γ ⊢ M] [γ ⊢ M]

| betaM : predM [g, x:term ⊢ M1[...,x]] [g, x:term ⊢ M1’[...,x]] → predM [γ ⊢ M2] [γ ⊢ M2’]

→ predM [γ ⊢ app (lam \x.M1[...,x]) M2] [γ ⊢ M1’[...,M2’]] % other cases omitted

inductive isVar : (γ : ctx) {M: [γ ⊢ term]} ctype =

| vp : {#q: [γ ⊢ term]} isVar [γ ⊢ #q]
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schema rctx = block(x:term, t:pred x x)

rec rpar: {g:rctx}{M: [γ ⊢ term]}[γ ⊢ pred M M] =

mlam g ⇒ mlam M ⇒ case [γ ⊢ M] of

| [γ ⊢ #p.1] ⇒ [γ ⊢ #p.2]

| [γ ⊢ lam \x.M’[...,x]] ⇒

let [g, b:block(x:term,v:pred x x) ⊢ IH[...,b.1,b.2]] =

rpar [g, b:block(x:term,v:pred x x)] [g,b ⊢ M’[...,b.1]] in

[γ ⊢ lm \x.\v.IH[...,x,v]]

| [γ ⊢ app M1 M2] ⇒

let [γ ⊢ IH1] = rpar [g] [γ ⊢ M1] in

let [γ ⊢ IH2] = rpar [g] [γ ⊢ M2] in

[γ ⊢ ap IH1 IH2];

rec rpar: {γ:ctx}{M : [γ ⊢ term]} predM [γ ⊢ M] [γ ⊢ M] =

mlam g ⇒ mlam M ⇒ case [γ ⊢ M] of

| [γ ⊢ #p] ⇒ var (vp _)

| [γ ⊢ lam \x.M’[...,x]] ⇒

let h = rpar [g,x:term] [g,x:term ⊢ M’] in

lm h

| [γ ⊢ app M1 M2] ⇒

let h1 = rpar [g] [γ ⊢ M1] in

let h2 = rpar [g] [γ ⊢ M2] in

ap h1 h2;

Figure 1: Reflexivity of pred vs predM

We have now a separate case for reducing variables, via the isVar judgment — recall that #q is a
parameter variable, ranging over elements of the context. This is forced upon us by the usual positivity
restriction on inductive types.

The more ominous consequence of this choice is that now establishing substitution properties for
a given judgment requires a proof of weakening, and in turn the latter calls for a proof of context ex-

change, which is more delicate than expected. First, we must establish a clear and appropriate definition
for determining that the ordering of a context is irrelevant : binary variable-swapping will suffice, al-
though we will need to witness the swapping with a first-class substitution. Unfortunately, showing that
reduction is stable under swapping, which basically amounts to equivariance, is a hassle: we have to “ex-
plain” to BELUGA’s meta-logic what it means to be a variable. For the gory details, please see directory
Beta/beta_comp in the repository. After that, the main proof proceeds smoothly in the usual way.

Is the switch to the meta-logic worth it in BELUGA? Not really. The elegance of Accattoli’s approach
stems from meta-level contexts in Abella being equivariant, and this preempts any issue with exchange.
On the other hand, the idea works only for contexts that track “bare” bound variables, making it suitable
just for (certain) untyped calculi. While BELUGA can easily overcome this via intrinsically typed terms, it
seems that we have to rebuild a sort of de Bruijn infrastructure specific to each case study; furthermore,
we had to struggle to prove that a substitutive judgment promoted to the meta-level is preserved by
swapping. This seems too steep of a price for the mostly cosmetic improvements shown in Figure 1,
which depicts the proof of reflexivity of parallel reduction in the two flavors.
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3 Conclusions

Beluga’s support for HOAS, paired with sophisticated context reasoning, makes the development of the
traditional proof of CR(β ) very elegant and devoid of technical lemmas foreign to the mathematics of
the problem. Since specifications can be dependently-typed, the extension of the proof from the untyped
to the typed case is conservative. It would be easy to encode other proof techniques such as establishing
confluence for the simply typed case using Newman’s lemma and existent SN proofs in BELUGA [1] or
other classical results such as η-postponement, standardization, and residuals theory as in [2].

On the flip side, BELUGA (and LF) not allowing quantification over relations prevents us from a more
succinct development via abstract rewriting system as per Nipkow’s account, see the repetitions around
the Commutation lemma. Combining natively HOAS and a full Agda-like type theory is under active
research [21]. Reader, you may expect more Church-Rosser proofs in the future.

Acknowledgments Thanks to Brigitte Pientka for her help with the development.
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A Appendix: Counterexamples Search

The theory of confluence is rife with counterexamples. It is a well-known fact that (single step) β -
reduction does not satisfy the diamond property, since redexes can be discarded or duplicated, and this
is why the notion of parallel reduction is so useful. It would be nice, both for research and educational
purposes, for a proof environment to assist us in refuting unprovable conjectures and witnessing such
counter-examples. A lightweight approach to this endeavor is property-based testing (PBT), see for
example the integration of QuickChick within Coq [12]. If we view a property as a logical formula
∀x : τ .P(x) ⊃ Q(x), providing a counter-example consists of negating the property, and searching for a
proof of ∃x : τ .P(x)∧¬Q(x). This points to a logic programming solution, where the specification is a
fixed set of assumptions and the negated property is the goal. A full proof-theoretic reconstruction of
PBT has been presented in [4] and can be adapted to BELUGA, which in the Twelf’s tradition has a logic
programming engine built-in.

To exemplify, let us search for a counter-example to diamond(β ). First, we need to state the con-
jecture that we want to test, namely the negation of M1← M → M2 entails ∃N, M1→ N ← M2. This
needs a little care, since BELUGA does not have negation — the usual solution in logic programming, i.e.
negation-as-failure, is incompatible with BELUGA’s foundations: indeed, what could be the proof term
witnessing a proof failure? One solution [15] is to state in the positive when two terms are non-joinable:
i.e., when they are different and if they reduce in one step, they do not reduce to the same term. This
requires a notion of inequality for lambda terms (simplified here from the actual code):

LF diff : term → term → type =

| dal : diff (lam _) (app _ _)

| dla : diff (app _ _) (lam _)

| da1 : diff E1 F1 → diff (app E1 E2) (app F1 F2)

| da2 : diff E2 F2 → diff (app E1 E2) (app F1 F2)

| dll : ({x:term} → diff (M x) (N x)) → diff (lam M) (lam N);

LF not_joinable : term → term → type =

| nj : diff M1 M2 → step M1 P1 → step M2 P2 → diff P1 P2 → not_joinable M1 M2;

The second ingredient is a generator for terms. For the sake of this paper we do not implement the
full architecture of [4], but simply program an exhaustive height-bounded term generator. We also show
the test harness predicate, combining generation with the to-be-tested conjecture:

LF heigth : nat → term → type =

| h1 : heigth H M → heigth H N → heigth (s H) (app M N)

| h2 : ({x:term} ({h:nat} heigth h x) → heigth H (M x)) → heigth (s H) (lam M);

LF gencex : nat → term → term → term → type =

| cx : not_joinable M1 M2 → step M M1 → step M M2 → hei I M → gencex I M M1 M2;

A query to BELUGA’s logic programming engine with a bound of 3 will generate the following (pretty-
printed) counterexample to diamond(β ), namely M=(λx. x x)(I I), for I the identity combinator. In fact,
it steps to (I I)(I I) and (λx. x x) I.

Another application is witnessing the failure of diamond(η) in a typed calculus with unit and surjec-
tive pairing. Here we exploit intrinsically-typed terms to encode typed η-reduction and obtain well-typed
term generators for free. All the details in the repository, under directory PBT.

https://doi.org/10.1007/3-540-45127-7_23
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Differential dynamic logic (dL) is a formal framework for specifying and reasoning about hybrid
systems, i.e., dynamical systems that exhibit both continuous and discrete behaviors. These kinds of
systems arise in many safety- and mission-critical applications. This paper presents a formalization
of dL in the Prototype Verification System (PVS) that includes the semantics of hybrid programs and
dL’s proof calculus. The formalization embeds dL into the PVS logic, resulting in a version of dL
whose proof calculus is not only formally verified, but is also available for the verification of hybrid
programs within PVS itself. This embedding, called Plaidypvs (Properly Assured Implementation of
dL for Hybrid Program Verification and Specification), supports standard dL style proofs, but further
leverages the capabilities of PVS to allow reasoning about entire classes of hybrid programs. The
embedding also allows the user to import the well-established definitions and mathematical theories
available in PVS.

1 Introduction

Systems that exhibit both discrete and continuous dynamics, known as hybrid systems, have emerged in
numerous safety- and mission-critical applications such as avionics systems, robotics, medical devices,
railway operations, and autonomous vehicles. To formally reason about these systems, it is often useful
to model them as hybrid programs (HPs), where the discrete variables evolve through assignments like
traditional imperative programs and the continuous variables are defined by a system of differential
equations. Hybrid programs are suitable to model complex dynamics where the continuous and discrete
dynamics are largely intertwined, but due to their complexity, efficient and effective formal reasoning
about properties of such programs can be a challenge.

Differential dynamic logic (dL) enables the specification and reasoning of HPs using a small set of
proof rules [42, 44, 50, 52]. Conceptually dL can be split into two parts: (1) a framework for the logical
specifications of HPs and their properties and (2) a proof calculus that is a collection of axioms and
deductive rules for reasoning about these logical specifications. The KeYmaera X1 theorem prover is a
software implementation of dL built up from a small, trusted core that assumes the axioms of dL [15, 26,
22] with a web-based interface for specification and reasoning of HPs [25]. KeYmaera X has been used
in the formal verification of several cyber-physical systems [18, 24, 20, 6, 5, 16, 23, 29].

This paper presents a formal embedding of dL in the Prototype Verification System (PVS). PVS
is a proof assistant that integrates a fully typed functional specification language supporting predicate
subtypes and dependent types with an interactive theorem prover based on higher order logic. PVS

*Institute at time of contribution.
1https://keymaerax.org
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allows users to write formal specifications and reason about them using a collection of built-in proof
rules and user-defined proof strategies. Strategies are built on top of proof rules in a conservative way so
that they do not introduce additional soundness concerns. Formal PVS developments are structured in
theories and a collection of theories form a library. The NASA PVS Library (NASALib)2 is a collection
of formal developments contributed by the PVS community and maintained by the Formal Methods
Team at NASA Langley Research Center. Currently, it consists of over 38,000 proven lemmas spanning
across 69 folders related to a wide range of topics in mathematics, logic, and computer science. The
work presented in this paper relies on and contributes to NASALib.

The primary contribution of this work is a formal development called Plaidypvs (Properly Assured
Implementation of Differential Dynamic Logic for Hybrid Program Verification and Specification),
which is publicly available as part of NASALib3. Plaidypvs includes the specification of dL’s HPs and
their properties through an embedding in the PVS specification language, the verification of correctness
of dL’s axioms and deductive rules, and the implementation of these rules through the strategy language
of PVS, resulting in a formally verified and interactive implementation of the proof calculus of dL within
PVS.

While reasoning about HPs using a formally verified implementation of dL is already an achieve-
ment, the integration in PVS brings additional opportunities for extending the functionality of dL beyond
what is available in a stand-alone dL system such as KeYmaera X. For example, new or existing functions
and definitions in PVS can be used inside of the dL framework. This includes trigonometric and other
transcendental functions already specified in NASAlib, as well as the corresponding properties concern-
ing their derivatives and integrals. In addition, meta-reasoning about HPs and their properties can be
performed in PVS using the dL embedding. Examples include specifying HPs with a parametric number
of variables, which can be used to reason about situations with an unknown but finite number of actors,
and reasoning about entire classes of HPs, which can be specified using the PVS type system.

The rest of this paper proceeds as follows. Section 2 details the formal development of HP spec-
ifications in Plaidypvs. Section 3 gives an overview of the formal verification approach to prove dL
statements in PVS, as well the implementation of the proof calculus of dL in the PVS prover interface.
Section 4 shows an example of utilizing the features of Plaidypvs beyond the capabilities of dL alone.
Related work is discussed in 5. Finally, conclusions and future work are discussed in 6.

2 Specification of hybrid programs

This section describes the syntax, semantics, and logical specifications of HPs developed in Plaidypvs.
Before these are introduced, a few preliminary concepts are needed.

2.1 Environment, real expressions, Boolean expressions

Hybrid programs manipulate real number values using discrete and continuous operations. At any mo-
ment, the state of a hybrid program is given by an environment of type E ≜ [V→ R] that maps program
variables in V to real number values in R, where V is an infinite, but enumerable set of variables and R
is the set of real numbers. For simplicity, variables are represented by indices, i.e., V is just the set of
natural numbers.

2https://github.com/nasa/pvslib
3https://github.com/nasa/pvslib/tree/master/dL

https://github.com/nasa/pvslib
https://github.com/nasa/pvslib/tree/master/dL
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The sets R and B of real and Boolean hybrid program expressions, respectively, are defined by a
shallow embedding meaning they are represented by their evaluations functions, i.e., R ≜ [E → R] and
B ≜ [E →B]. For instance, cnst(c)≜ λ (e : E ).c represents the constant expression that returns the value
c ∈R in any environment and val(v)≜ λ (e : E ).e(v) represents the real expression that returns the value
of variable v in the environment e. Similarly, ⊤ ≜ λ (e : E ).True and ⊥ ≜ λ (e : E ).False represent the
Boolean hybrid program constants that always return True ∈ B and False ∈ B, respectively. While real
and Boolean expressions can be arbitrary functions, Plaidypvs provides support for standard arithmetic
and Boolean operators by lifting them to the domain of R and B. Given r,r1,r2 ∈ R and n ∈ N the
following are recognized to be of type R: r1 + r2, r1 − r2, r1/r2, r1 · r2, r1 = r2, −r,

√
r, and rn. It is

important to notice that, for instance, in the real expression r1 + r2, the operator + is not the arithmetic
addition, but it is of type R×R →R. Similarly, given Boolean expressions b,b1,b2 ∈B, the following
are recognized to be of type B: b1 ∧b2, b1 ∨b2, b1 → b2, b1 ↔ b2, and ¬b.

Example 2.1 (Environments, Real and Boolean Expressions) Let x,y ∈V and c ∈R≥0, the following
Boolean expression denotes a circle of radius c centered at (0,0):

val(x)2 + val(y)2 = cnst(c)2. (1)

Furthermore, assuming the environment e ≜ (λ (v : V).0) with {x 7→ c/2,y 7→
√

3 · c/2}, the following
Boolean statement holds.

(val(x)2 + val(y)2 = cnst(c)2)(e) = True.

Henceforth, for ease of presentation, the val and cnst operators are suppressed in much of the remainder
of the paper. The Boolean expression in Formula 1, for example, will be presented instead as x2+y2 = c2.

2.2 Hybrid programs

Hybrid programs are syntactically defined as a datatype H in PVS according to the following grammar.

α ::= x := ℓ | x′ = ℓ&P | ?P | x := ∗ | α1;α2 | α1 ∪α2 | α
∗
1 .

Here, x := ℓ is a list of pairs in V×R, where the first entries are unique, intended to represent a discrete
assignment of the variables indexed by these first elements. The differential equation x′ = ℓ&P, where
x′ = ℓ is another such list in V×R and P ∈ B is a Boolean expression, is meant to symbolize the
continuous evolution of the variables in x′ according to the first order differential equation described by ℓ.
Note that use of the symbol & is distinct from Boolean conjunction and is used here purely syntactically
to represent that the solution of the differential equation satisfies P along the evolution. To reference a
variable used in a discrete assignment or differential equation, the notation v ∈ x (respectively, v ∈ x′)
will be used. The real expression associated with v in ℓ will be denoted ℓ(v). The program ?P represents
a check of the Boolean expression P. The program x := ∗ represents a discrete assignment of the variable
x to an arbitrary real number value. The program α1;α2 represents the sequential execution of the sub-
programs α1 and α2, while α1 ∪α2 symbolizes a nondeterministic choice between two subprograms.
Finally, α∗

1 represents repetition of a HP a finite but unknown (possibly zero) number of times.
Formally, the predicate s_rel defines the semantic relation of a hybrid program α with respect to
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input and output environments ei,eo ∈ E . It is inductively defined on α as follows.

s_rel(α)(ei)(eo)≜



∀k : k /∈ x → eo(k) = ei(k) if α = (x := ℓ),

∧k ∈ x → eo(k) = ℓ(k)(ei)

eo = ei∨ if α = (x′ = ℓ&P),
∃D : s_rel_diff(D,x′, ℓ,P,ei,eo)

eo = ei ∧P(ei) if α =?P,
∃r : eo(x) = r∧Q(r)(ei) if α = (x := ∗ &Q),

∃e : s_rel(α1)(ei)(e) if α = α1;α2,

∧s_rel(α2)(e)(eo)

s_rel(α1)(ei)(eo) if α = α1 ∪α2,

∨s_rel(α2)(ei)(eo)

eo = ei∨ if α = α∗
1 .

∃e : s_rel(α1)(ei)(e)
∧s_rel(α)(e)(eo)

The correspondence between the informal description of semantics and the s_rel function is standard
in all cases except the differential equation branch. For differential equations, the domain D is R≥0, or
some closed interval starting at 0, and the semantics is given by the following function.

s_rel_diff(D,x′, ℓ,P,ei,eo) ≜ ∃r : ∃! f : D(r)∧ sol?(D,x′, ℓ,ei)( f )∧
eo = e_at_t(x′, ℓ, f ,ei)(r)∧
∀t : (D(t)∧ t ≤ r)

→ P(e_at_t(x′, ℓ, f ,ei)(t)).

Unpacking this further,

e_at_t(x′, ℓ, f ,ei) ≜ λ (r : R).λ ( j : V).

{
ei( j) if j /∈ x′,
f ( j)(r) if j ∈ x′,

is a function that characterizes the environment ei, with the continuously evolving variables x′ replaced
by values from a function f : [Rk → [R→ R]]. The definition

sol?(D,x′, ℓ,ei)( f ) ≜ ∀(i ∈ x′, t ∈ D) :

( f (i))′(t) = ℓ(i)(e_at_t(x′, ℓ, f ,ei)(t))

ensures that f is the solution to the k-dimensional differential equation x′ = ℓ throughout the domain D.
Note in the definition of s_rel_diff this solution f is further assumed to be unique on the domain D.

Below is a colloquial description of the semantics of each type of HPs, where ei,eo are the input and
output environments, respectively.
x := ℓ Discrete variable assignment. This means that ei and eo agree on all the variables not

mentioned in ℓ, and for the variables in ℓ, a discrete jump has taken place.

x′ := ℓ&P Continuous variable assignment. Continuous jumps take place where the output variable
that is included in ℓ has evolved according to the first order differential equation defined in
ℓ. The solution to the differential equation satisfies P.
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Figure 1: Dubins path modeling an aircraft turning.

?P Test HP. An input/output pair is related only if they are equal and ei satisfies P.

x := ∗ Random discrete assignment. Random assignment of variable x, where the random assign-
ment is some value r and eo(n) = r.

α1; α2 Sequential HP. Runs two HPs α1 and α2 in order such that there is an environment e that
is semantically related to ei through α1, and semantically related to eo through α2.

α1∪ α2 Nondeterministic choice HP. This HP nondeterministically chooses one of α1 or α2. Here
eo is semantically related to ei through α1 or α2.

α∗ Loop HP. This is the repeat of HP α1 a finite but undisclosed number of times. The en-
vironment eo is either equal to ei or is it semantically related to another environment e
through α and e is semantically related to eo through α∗.

Example 2.2 (HP) The hybrid program

((?(x > 0);(x′ =−y,y′ = x &x ≥ 0))∪
(?(x ≤ 0);(x′ =−c,y′ = 0)))∗,

where x,y ∈ V, x ̸= y, and c ∈ R, represents the dynamic systems where x and y progress according to
the differential equation x′ = −y, y′ = x when x > 0, but when x ≤ 0 the variables progress according
to the differential equation x′ = −c, y′ = 0. Note that the test statements, introduced by the operator ?,
determine which branch of ∪ in the HP is applicable, and the domain x ≥ 0 in the first differential
equation prevents the dynamics from continuing when x = 0, forcing the other branch of the HP to take
place. The operator ∗ allows repetition so that both branches of the dynamics are carried out.

The hybrid program in Example 2.2 will be used as running example through this paper. It models a
Dubins curve representing the trajectory of an aircraft turning and then proceeding in a straight line (see
Figure 1).

2.3 Quantified statements about hybrid programs

A hybrid program can have potentially many different executions or runs. This means that given an
input environment ei, there may be infinitely many output environments eo semantically related to it (by



48 Embedding Differential Dynamic Logic in PVS

repetition, random assignment, etc.). To reason about these runs, universal and existential quantifiers
over the potentially infinite number of executions of an HP are defined. These quantifies are called
allruns, denoted [ · ], and someruns, denoted ⟨ · ⟩. For α ∈H and P ∈B, [α]P ∈B is defined as follows.

[α]P ≜ λ (ei : E ).∀eo : s_rel(α)(ei)(eo)→ P(eo),

Analogously, ⟨α⟩P ∈ B is defined as follows.

⟨α⟩P ≜ λ (ei : E ).∃eo : s_rel(α)(ei)(eo)∧P(eo).

These quantifiers state that every (some, respectively) run of the HP α starting at environment ei and
ending at environment eo satisfies P.
Example 2.3 (Allruns) Let α be the HP in Example 2.2, circ(c)≜ x2 + y2 = c2 and

path(c)≜ (x > 0 → circ(c)) ∧ (x ≤ 0 → y = c).

Then, the Boolean expression

(x = c ∧ y = 0)→ [α]path(c), (2)

states that if the value of x is c and the value of y is 0, then for all runs of the HP α , the values of x and y
stay inside path(c). In other words, x and y stay on the circle of radius c until x = 0 and then stay on the
line y = c.

3 Embedding differential dynamic logic

With the formal specification of hybrid programs established, the embedding of the sequent calculus
of dL in PVS can be discussed. First, dL-sequents will be defined, then a description of the formal
verification process encoding the axioms and rules of dL as lemmas in PVS is provided.

3.1 dL-sequents

A dL-sequent is denoted Γ ⊢ ∆, where Γ and ∆, known as the antecedent and the consequent, respectively,
are lists of Boolean expressions. In PVS, a dL-sequent is defined by

Γ ⊢ ∆ ≜ ∀e ∈ E :
∧

Γ(e) =⇒
∨

∆(e),

where =⇒ is the PVS implication. Intuitively, this means that the conjunction of the antecedent formulas
implies the disjunction of the consequent formulas.

The dL approach for proving statements about hybrid programs relies on a set of deductive rules of
the form

Γ1 ⊢ ∆1 . . . Γk ⊢ ∆k

Γ ⊢ ∆.
Rules without hypothesis, i.e., where k = 0, are called axioms. A rule of this form states that the conjunc-
tion of the sequents above the inference line implies the sequent below the inference line. When proving
statements, these rules are used in a bottom-up fashion forming an inverted (proof) tree, where the root
of the tree is the sequent to be proven, branches are related by instances of deductive rules, and leaves
are instances of axioms.

To formally verify dL each rule of dL is specified as a PVS lemma, which takes essentially the
following form.
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notR
Γ,P ⊢ ∆

Γ ⊢ ¬P,∆

notL
Γ ⊢ P,∆

Γ,¬P ⊢ ∆

andR
Γ ⊢ P,∆ Γ ⊢ Q,∆

Γ ⊢ P∧Q,∆

andL
Γ,P,Q ⊢ ∆

Γ,P∧Q ⊢ ∆

orR
Γ ⊢ P, Q, ∆

Γ ⊢ P∨Q, ∆

orL
Γ, P ⊢ ∆ Γ, Q ⊢ ∆

Γ, P∨Q ⊢ ∆

cut
Γ ⊢C, ∆ Γ,C ⊢ ∆

Γ ⊢ ∆

weakR
Γ ⊢ P,∆ P ⊢ Q

Γ ⊢ Q,∆

impliesR
Γ, P ⊢ Q, ∆

Γ ⊢ P → Q, ∆

impliesL
Γ ⊢ P, ∆ Γ, Q ⊢ ∆

Γ, P → Q ⊢ ∆

iffR
Γ,P ⊢ Q,∆ Γ,Q ⊢ P,∆

Γ ⊢ P ↔ Q, ∆

iffL
Γ,P∧Q ⊢ ∆ Γ,¬P∧¬Q ⊢ ∆

Γ,P ↔ Q ⊢ ∆

falseL
Γ,⊥ ⊢ ∆

trueR
Γ ⊢ ⊤, ∆

axiom
Γ, P ⊢ P, ∆

weakL
P,Γ ⊢ ∆ Q ⊢ P

Γ,Q ⊢ ∆

Figure 2: Propositional dL rules

Lemma <dL-rule-name> For all lists of Boolean expressions Γ,∆,

k∧
i=1

Γi ⊢ ∆i =⇒ Γ ⊢ ∆.

With such lemmas proven in PVS, a user can bring them into a proof environment and instantiate
them as needed for proving a specific sequent. To automate this process, these lemmas are further imple-
mented as (proof) strategies in PVS. These strategies parse the current sequent, identify instantiations that
apply, hide unneeded formulas, and prove type-checking conditions that may appear, among other capa-
bilities. More complex strategies are built on top of these strategies to simplify the proof process. Some
of these rules, including details about their specification, verification, and implementation as strategies
in PVS, are discussed below. A Plaidypvs “cheat sheet” is available for users with the development.4

3.2 Basic logical and structural rules of dL

The propositional rules in dL allow manipulation of the basic logical connectives (∧, ∨, ¬, →, ⇐⇒ )
and operators (⊤, ⊥) in the dL-sequent (see Figure 2). For example, the rule impliesR, defined as

Γ, P ⊢ Q, ∆

Γ ⊢ P → Q, ∆,

allows an implication in the dL-consequent, P → Q to be simplified to P in the dL-antecedent and Q in
the dL-consequent. Here, Γ ⊢ P → Q, ∆ is the dL-sequent that impliesR can be applied to and Γ, P ⊢ Q, ∆

is the simplified dL-sequent. Note that the standard logical notation being used for impliesR above is
for ease of presentation, whereas the PVS specification of such a rule, generally hidden from a user
by a strategy, is closer to that described in Section 3.1. Additionally, there are quantification rules for

4https://github.com/nasa/pvslib/tree/master/dL/cheatsheet.pdf

https://github.com/nasa/pvslib/tree/master/dL/cheatsheet.pdf
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existsR
Γ ⊢ p(e), ∆

(any e)
Γ ⊢ ∃x : p(x), ∆

forallL
Γ, p(e) ⊢ ∆

(any e)
Γ, ∀x : p(x) ⊢ ∆

forallR
Γ ⊢ p(y), ∆

(y Skolem symbol)
Γ ⊢ ∀x : p(x),∆

existsL
Γ, p(y) ⊢ ∆

(y Skolem symbol)
Γ, ∃x : p(x) ⊢ ∆

Figure 3: Quantification dL rules�

�

�

�
moveR

Γ ⊢ Q, P, ∆

Γ ⊢ P, Q, ∆

moveL
Γ, Q, P ⊢ ∆

Γ, P, Q ⊢ ∆

hideR
Γ ⊢ ∆

Γ ⊢ P, ∆

hideL
Γ ⊢ ∆

Γ, P ⊢ ∆

Figure 4: Structural dL rules

Skolemization and instantiation in the dL-sequent (see Figure 3) and there are structural rules that allow
expressions to be moved or deleted (Figure 4).

In addition to the propositional, quantification, and structural rules, Plaidypvs provides a collection
of powerful proof commands that combine the more basic dL strategies. A list these additional proof
commands is given in Figure 5.

Example 3.1 (dL-sequent example) The dL-sequent

⊢ (x = c∧ y = 0)→ [α]path(c).

expresses the validity of the expression in Formula 2 from Example 2.3. Invoking the rule dl-flatten to
the sequent above applies impliesR and andL, which separates conjunctions in the antecedent, resulting
in the following dL-sequent:

x = c, y = 0 ⊢ [α]path(c). (3)

3.3 Hybrid program rewriting rules

While the rules in Section 3.2 manipulate the logical structure of a dL-sequent, further rules act on the
hybrid program components of such a sequent. Properties given in Figure 6 allow direct rewriting of
hybrid programs. Other rules about hybrid programs in a sequent are given in Figure 7. Most of these
rules manipulate the allruns [ · ] or someruns ⟨ · ⟩ operators and the proofs were largely concerned with
reasoning about the semantic relation function s_rel defined in Section 2. In addition to each of these
rules becoming strategies, the command dl-assert uses all the hybrid program rewriting rules in Table 6
to simplify an expression.

There are a few intricacies worth mentioning in the formal verification and implementation of these
rules in PVS. In the rewriting rules assignb and assignd, an allruns or someruns of an assignment HP is
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dl-flatten Disjunctively simplifies the dL sequent by applying trueR, falseL, orR, impliesR, notR, axiom,
falseL.

dl-ground Disjunctively and conjunctively simplifies the dL sequent by applying dl-flatten and additional splitting
lemmas andR, orL, and impliesL.

dl-inst Instantiates a universal quantifier in the dL-antecedent by applying forallL or an existential quantifier
in the dL-consequent by applying existsL.

dl-skolem Skolemizes an existential quantifier in dL-antecedent by applying existsR or a universal quantifier in
the dL-consequent by applying forallR.

dl-grind Repeatedly uses dl-ground and skolem and serveral rewriting rules related to real expressions. This
strategy has the option to use the MetiTarski automatic theorem prover as an outside oracle to discharge
the proof if possible.

dl-assert Repeatedly applies hybrid program rewriting rules in Figure 6.

Figure 5: dL proof commands

equated to a substitution. Substitution is defined at the environment level as follows.

assign_sub(x := ℓ)(e)(i) ≜

{
ℓ(i)(e) if i ∈ x
e(i) if i ̸∈ x.

(4)

Substitution of a general Boolean expression is therefore defined as follows.

SUB(x := ℓ)(P) ≜ λ (e : E ).P(assign_sub(x := ℓ)(e)).

While the definition of substitution above applies to any Boolean expression P and can be reasoned about
by a user of Plaidypvs, the standard level of manipulation in dL is not often at the environment level. To
increase the level of automation, several rewriting rules for reducing expressions containing SUB have
been implemented. This led to formally verifying substitution properties for real expressions, inequalities
of real expressions, and hybrid programs, so that a substitution at the top level of an expression could be
pushed down to the level of val and cnst, where atomic substitutions are applied. The implementation
of these rules required a calculus for reducing the substitution down to atomic expressions, written in
the strategy language of PVS. This allows the assignb and assignd strategies to automatically compute a
substitution for any propositional expression composed of equalities and inequalities of polynomial real
expressions. For example, the substitution

SUB(x := y,y := 10)(x2 + y2 = 11),

is transformed automatically into y2 +102 = 11 as follows.

SUB(x := y,y := 10)(x2 + y2 = 11) =
(
SUB_re(x := y,y := 10)(x2 + y2) = SUB_re(x := y,y := 10)(11)

)
=
(
SUB_re(x := y,y := 10)(x2)+SUB_re(x := y,y := 10)(y2) = 11

)
=
(
SUB_re(x := y,y := 10)(x)2 +SUB_re(x := y,y := 10)(y)2 = 11

)
= y2 +102 = 11,

where SUB_re is substitution defined on real expressions r ∈ R as

SUB_re(x := ℓ)(r) ≜ λ (e : E ).r(assign_sub(x := ℓ)(e)).
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boxd ⟨α⟩P ↔¬ [α]¬P

assignb [x := ℓ]P = SUB(x := ℓ)(P)

assignd ⟨x := ℓ⟩P = SUB(x := ℓ)(P)

testb [?Q]P = Q → P

testd ⟨?Q⟩P = Q∧P

choiceb [α1 ∪α2]P ↔ [α1]P∧ [α2]P

choiced ⟨α1 ∪α2⟩P ↔ ⟨α1⟩P∨⟨α2⟩P

composeb [α1;α2]P ↔ [α1] [α2]P

composed ⟨α1;α2⟩P ↔ ⟨α1⟩⟨α2⟩P

iterateb [α∗]P = P∧ [α] [α∗]P

iterated ⟨α∗⟩P = P∨⟨α⟩⟨α∗⟩P

anyb [x := ∗]P(x) = ∀x : P(x)

anyd ⟨x := ∗⟩P(x) = ∃x : P(x)

Figure 6: Hybrid program rewriting rules.

The automated substitution of more general Boolean expressions (for example, a statement of the form
[α]P) is still incomplete in Plaidypvs, and an area of future work.

Another challenge in formal verification occurs in some hybrid program rules. The ghost, VRb, and
VRd rules require the concept of freshness. A fresh variable y is defined as

fresh?(P)(y) ≜ ∀e ∈ E , r ∈ R, P(e) = P(e with y 7→ r)].

In other words, the value of the Boolean expression P does not depend on the value of the variable y.
Analogous definitions exist to express that a variable is fresh relative to a real expression or a hybrid
program. Furthermore, an entire hybrid program can be checked for freshness relative to a Boolean
expression as follows.

fresh?(P)(α) ≜



∀k ∈ x fresh?(P)(k) if α = (x := ℓ),

∀k ∈ x′ fresh?(P)(k) if α = (x′ = ℓ&Q),

True if α =?Q,

fresh?(P)(x) if α = (x := ∗ &Q),

fresh?(P)(α1)∧ fresh?(P)(α2) if α = α1;α2,

fresh?(P)(α1)∧ fresh?(P)(α2) if α = α1 ∪α2,

fresh?(P)(α) if α = α∗
1 .

(5)

Note that the recursive definition of freshness above ensures the value of P does not change for any run
of the hybrid program α by checking if all the variables potentially changing in α are fresh relative to P.

The need for a fresh variable, as in the rule ghost, requires a mechanism for producing fresh variables
relative to a dL-sequent. Since variables are represented by indices, a fresh variable can be generated by
computing the smallest natural number in a dL-sequent not being used as a variable index. Plaidypvs
also provides strategies for automatically proving freshness of variables in dL-sequents.
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Mb
⊢ P → Q

Γ ⊢ [α]P → [α]Q,∆

Md
⊢ P → Q

Γ ⊢ ⟨α⟩P → ⟨α⟩Q,∆

K
Γ ⊢ [α] (P → Q),∆

Γ ⊢ [α]P → [α]Q,∆

loop
Γ ⊢ J,∆ J ⊢ [α]J J ⊢ P

Γ ⊢ [α∗]P,∆

mbR
Γ ⊢ [α]Q,∆ Q ⊢ P

Γ ⊢ [α]P,∆

mbL
Γ, [α]Q ⊢ ∆ P ⊢ Q

Γ, [α]P ⊢ ∆

ghost
Γ ⊢ [y := e]P,∆

fresh?(P)(y)
Γ ⊢ P,∆

Gb
⊢ P

Γ ⊢ [α]P,∆

Gd
⊢ ⟨α⟩⊤⊤⊤ ⊢ P

Γ ⊢ ⟨α⟩P,∆

VRb
Γ ⊢ P,∆

fresh?(P)(α)
Γ ⊢ [α]P,∆

VRd
⊢ ⟨α⟩⊤⊤⊤ Γ ⊢ P,∆

fresh?(P)(α)
Γ ⊢ ⟨α⟩P,∆

mdR
Γ ⊢ ⟨α⟩Q,∆ Q ⊢ P

Γ ⊢ ⟨α⟩P,∆

mdL
Γ,⟨α⟩Q ⊢ ∆ P ⊢ Q

Γ,⟨α⟩P ⊢ ∆

Figure 7: Hybrid program rules.

Example 3.2 (dL-sequent example continued) Expanding α in the sequent given by Formula 3, from
Example 3.1, and using loop with J = (path(c)∧ y ≥ 0) produces three subgoals,5 one of which is

path(c),y ≥ 0 ⊢
[
(?(x > 0);(x′ =−y,y′ = x,&x ≥ 0))∪
(?(x ≤ 0);(x′ =−c,y′ = 0))

]
path(c)∧ y ≥ 0.

Using dl-assert to simplify with hybrid program rewriting rules and applying propositional simplifica-
tions with the command dl-ground result in the following two dL-sequents

(x > 0,circ(c),y ≥ 0) ⊢
[
x′ =−y,y′ = x,&x ≥ 0))

]
path(c)∧ y ≥ 0,

(x ≤ 0,y = c) ⊢
[
(x′ =−c,y′ = 0)

]
path(c)∧ y ≥ 0.

(6)

3.4 Rules for differential equations

The rules for differential equations are given in Figure 8. The differential equation rules required signif-
icant mathematical underpinnings to be added to PVS for their formal verification. For the implemen-
tation of the dI rule, a calculus to automatically compute the derivative of a Boolean expression P was
necessary. To do this, an embedding of non-quantified Boolean expressions was developed as a data type
with the following grammar.

b ::= b1 ∧nqB b2 | b1 ∨nqB b2 | ¬nqBb1 | relnqB(r1,r2),

where relnqB is of type NQB_rel, which is itself an embedding of the following inequality operators.

relnqB ::= ≤nqB | ≥nqB | <nqB | >nqB | =nqB | ̸=nqB .

5The other two dL-sequents generated can be proven easily. For full details of the examples in this paper, see the PVS
implementation at https://github.com/nasa/pvslib/tree/master/dL/examples

https://github.com/nasa/pvslib/tree/master/dL/examples
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dinit
Γ,Q ⊢ [x′ = f (x)&Q]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

dW
Q ⊢ P

Γ ⊢ [x′ = f (x)&Q]P,∆

dI
Γ,Q ⊢ P,∆ Q ⊢ [x′ := f (x)] (P)′

Γ ⊢ [x′ = f (x)&Q]P,∆

dC
Γ ⊢ [x′ = f (x)&Q]C,∆ Γ ⊢ [x′ = f (x)&(Q∧C)]P,∆

Γ ⊢ [x′ = f (x)&Q]P,∆

dG
Γ ⊢ G, G ⊢ P, Γ ⊢ ∃y [x′ = f (x), y′ = a(x) · y+b(x)&Q]G,∆

fresh?(y)
Γ ⊢ [x′ = f (x)&Q]P,∆

dS
Γ ⊢ ∀t ≥ 0(∀0 ≤ s ≤ t Q(y(s)))→ [x := y(t)]P

Γ ⊢ [x′ = f (x)&Q]P

Figure 8: Differential Equation Rules. For dG, a and b are continuous on Q, and y is fresh relative to
x′ = f (x), Q, a, b, P, Γ and ∆.

With this structure, the derivative b′ of a Boolean expression b is defined as

b′ ≜


b′1 ∧b′2 if b = b1 ∧nqB b2 or b = b1 ∨nqB b2

r′1 ≤ r′2 if b = r1 ≤nqB r2 or b = r1 <nqB r2

r′1 ≥ r′2 if b = r1 ≥nqB r2 or b = r1 >nqB r2

r′1 = r′2 if b = (r1 =nqB r2) or b = (r1 ̸=nqB r2) .

In PVS, [x′ := f (x)] (P)′ is computed by replacing P with its equivalent non-quantified Boolean, and the
derivative of any real expression r occurring in P is the real expression given by:

r′ = ∑
i∈x

∂ ri · ℓ(i).

This is the derivative of the real expression r in terms of the explicit variable that all the variables in x are
a function of. To arrive at this formulation, differentiability and partial differentiability had to be defined
for real expressions as well as the multivariate chain rule.

For the Differential Ghost rule dG, adding an equation to the differential equation x′ = ℓ required
that the new differential equation x′ = ℓ,y′ = a(x) · y+b(x) had a unique solution. The Picard-Lindelöff
theorem can be used to show that if a and b are continuous on Q, then there is a unique solution to y′ =
a(x) · y+b(x). Given a solution to x′ = ℓ that is contained in Q, it follows that x′ = ℓ,y′ = a(x) · y+b(x)
has a unique solution. These properties of differential equations, including the Picard-Lindelöff theorem,
were developed in PVS specifically to prove these rules.

Example 3.3 (dL-sequent example continued) Applying dC with C = circ(c) to the first branch of the
proof in Example 3.2, eq. 6 produces two subgoals, the first of which (with expanded circ) is

(x > 0,x2 + y2 = c2,y ≥ 0) ⊢
[
x′ =−y,y′ = x&x ≥ 0))

]
(x2 + y2 =c2).
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Figure 9: The specification of Example 2.3 in Plaidypvs.

Using dI reduces to two cases:

x ≥ 0 ⊢ (2 · x ·−y+2 · y · x = 0)

(x ≥ 0,x2 + y2 = c2,y ≥ 0) ⊢ x2 + y2 = c2,
(7)

both of which can be proven with basic algebraic and logical simplifications included in command
dl-grind.

4 Using Plaidypvs

Plaidypvs provides the functionality of dL within the PVS environment. Numerous examples can be
found in the directory examples of the Plaidypvs library. Figures 9 and 10 illustrate using dL for speci-
fication and verification of hybrid systems in Plaidypvs. However, Plaidypvs is not limited to just these
applications, the embedding allows additional features to be used for formal reasoning of hybrid pro-
grams. For example, the definition of other functions from PVS libraries can be imported into a formal
development that uses Plaidypvs. Furthermore, meta-properties about hybrid programs can be specified
and proven. The example below illustrates these features.

Example 4.1 (Verified connection to Dubins paths) An aircraft moving at a constant speed c > 0 with
a turn rate of 1 can be modeled by a Dubins path:

θ
′ = 1,x′ =−csin(θ),y′ = ccos(θ).

Furthermore, it can be shown that the hybrid program β defined as

((?(x ≥ 0);(θ ′ = 1,x′ =−csin(θ),y′ = ccos(θ)&x ≥ 0))∪
(?(x < 0);(x′ =−c,y′ = 0)))∗,
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Figure 10: The proof steps that complete the proof discussed in Example 3.3.

is equivalent to the hybrid program α defined in Example 2.2, for appropriate initial values. Formally,
this is a property relating the s_rel function associated with each of these programs, namely for environ-
ments ei,eo such that ei(x) = c and ei(y) = 0

(∃t : s_rel(β )(ei with [θ := 0])(eo with [θ := t])) ⇐⇒
s_rel(α)(ei)(eo with [θ := ei(θ)]).

Note the property above involves generic hybrid programs rather than particular instances. Thus, for a
Boolean expression Q that does not change according to θ :

(x = c,y = 0 → [α]Q) ⇐⇒ (x = c,y = 0,θ = 0 → [β ]Q).

5 Related work

There is a long line of research on the formal verification of hybrid systems. The development of dL
itself ([42, 44, 50, 52]) and its use in formal verification of hybrid systems ([5, 6, 16, 18, 20, 23, 24, 29])
is well-known. Additionally, there has been significant work done in the PVS theorem prover [1, 54],
Event-B [12], and Isabelle/HOL [14, 30, 31, 32, 53, 56, 58, 59] verifying hybrid systems outside of the
dL framework.

The most similar verification effort to the current development is [4], where the authors formally
verified the soundness of dL in Coq and Isabelle. The work in [4] focuses on a full formal verification of
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soundness of dL, with the goal of a formally verified prover kernel for KeYmaera X. The result are proof
checkers in Coq and Isabelle for dL proofs. The goal of Plaidypvs is a verified operational embedding of
dL in the theorem prover PVS, allowing specification and reasoning about HPs interactively within PVS.

While the work in [4] proves soundness of most of the proof calculus of dL, the present work fo-
cuses on verifying the proof rules of dL. Particularly, the substitution axiom in dL that allows rules and
axioms to be applied to specifications of HPs in dL is proven in [4] but not directly proven for the PVS
embedding. Instead, substitution is handled by the instantiation functionalities of PVS itself, specifi-
cally when dL rules and axioms are applied as strategies to a particular dL-sequent in the interactive
prover. Additionally, there are several places where the embedding of dL in this work is more general
than the work in [4]. Differential Ghost and Differential Effect in [4] are shown for a single ordinary
differential equation rather than the more general system of ordinary differential equations. Differential
Solve is only shown for differential equations with linear solutions, whereas the corresponding rule in
Plaidypvs automatically solves differential equations with linear and quadratic solutions and is proven
for any ODE where the solution is known. Differential Invariant in [4] is restricted to propositions of
the form P = ( f (x)≥ g(x)) and P = ( f (x)> g(x)) and it is remarked that other cases can be derived in
dL from these two cases, but in Plaidypvs Differential Invariant is fully implemented for any proposition
that is the conjunction or disjunction of inequalities.

The current work formalizes a version of dL based on Parts I and II in [52], though there are many
extensions as well. For adversarial cyber-physical systems there is differential game logic in [49, 51], and
Part 5 of [52]. There are also extensions for distributed hybrid systems (quantified differential dynamic
logic, [47]), stochastic hybrid systems (stochastic differential dynamic logic, [48]), differential algebraic
programs (differential-algebraic dynamic logic, [45]), and a temporal extension of dL called differential
temporal dynamic logic [43], [46, Chapter 4].

In addition to verification of hybrid systems, the present work falls more generally into the category
of formal verification or simulation of logical systems inside theorem provers. PVS0 is an embedding of
a fragment of the specification language of PVS within PVS, used in termination analysis of recursive
functions [33]. Other efforts to model or verify theorem provers include work on the prover kernel of
Hol Light [17], the type-checker of Coq [55], the soundness of ACL2 [10]. The goal of Plaidypvs is
to add to hybrid systems reasoning to the toolbox of PVS increasing its proving capabilities. PVS has
been used in verification projects in domains such as aircraft avoidance systems [36], path planning
algorithms [7], unmanned aircraft systems [34], position reporting algorithms of aircraft [13], sensor
uncertainty mitigation [40], floating point error analysis [27, 57], genetic algorithms [41], nonlinear
control systems [3], and requirements written in linear temporal logic and FRETish [8]. In addition to
advanced real number reasoning capabilities [9, 35, 38, 28, 37, 39] provided by PVS, previous work has
connected PVS to the automated theorem prover MetiTarski [2], for automated reasoning of universally
quantified statements about real numbers, including several transcendental functions [11]. The capability
to use MetiTarski in PVS is leveraged in the dl-assert command in Plaidypvs.

6 Conclusion and future work

This work describes Plaidypvs, a logical embedding of dL in PVS. This embedding extends the formal
verification abilities of PVS by giving a framework for specifying and reasoning about HPs and allowing
features of PVS to be used naturally within the dL embedding. Novel features include support for import-
ing user-defined functions and theories such as the extensive math and computer science developments
available in NASAlib. Additionally, this embedding allows for meta reasoning about HPs and dL at the
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PVS level. An example was given that illustrates capabilities of Plaidypvs that go beyond what could be
be accomplished in a stand-alone implementation of dL alone such as KeYmaera X.

Regarding future work, one natural next step is to apply Plaidypvs to safety-critical applications of
interest to NASA. This will include formal verification of hybrid systems related to urban air mobility
and wildland fire fighting among others. Another direction is to increase the usability of Plaidypvs. To do
so, a Visual Studio Code extension is under development to display specifications and the proof calculus
in a natural and user-friendly way. To increase the automation of dL within Plaidypvs, a more complete
substitution calculus to include Boolean expressions containing statements about hybrid programs will be
implemented. Additionally, formal verification of liveness properties is intended, with implementations
of strategies to match. Furthermore, a more robust ordinary differential equation solver to enhance the
capabilities of the differential solve command would increase the usability of Plaidypvs greatly. Finally,
a detailed description of the multivariate analysis and ordinary differential equation library developed to
support this embedding will be written similar to the semi-algebraic set library ([54]), which was done
to support verification of liveness properties in upcoming work.

The semantic structure of dL in Plaidypvs is based on the input/output semantics. Future work on
defining the trace semantics of hybrid programs will extend the analysis capabilities of the embedding,
such as being able to define properties in linear temporal logic like the work in [19]. It has been noted
that quantifier elimination, is often the bottleneck for formal verification of hybrid programs, due to the
computational complexity of the general problem. Implementation of techniques to make this process
faster would help the usability of Plaidypvs. There are many directions to go for this effort, but one direc-
tion will be implementation of the active corners method for a specific class of quantifier elimination [21]
geared towards formalized reasoning of aircraft operations.
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This work concerns the proof theory of (left) skew monoidal categories and their variants (e.g. closed

monoidal, symmetric monoidal), continuing the line of work initiated in recent years by Uustalu et al.

Skew monoidal categories are a weak version of Mac Lane’s monoidal categories, where the struc-

tural laws are not required to be invertible, they are merely natural transformations with a specific

orientation. Sequent calculi which can be modelled in such categories can be identified as deductive

systems for restricted substructural fragments of intuitionistic linear logic. These calculi enjoy cut

elimination and admit a focusing strategy, sharing resemblance with Andreoli’s normalization tech-

nique for linear logic. The focusing procedure is useful for solving the coherence problem of the

considered categories with skew structure.

Here we investigate possible extensions of the sequent calculi of Uustalu et al. with additive

connectives. As a first step, we extend the sequent calculus with additive conjunction and disjunction,

corresponding to studying the proof theory of skew monoidal categories with binary products and

coproducts satisfying a left-distributivity condition. We introduce a new focused sequent calculus

of derivations in normal form, which employs tag annotations to reduce non-deterministic choices

in bottom-up proof search. The focused sequent calculus and the proof of its correctness have been

formalized in the Agda proof assistant. We also discuss extensions of the logic with additive units, a

form of skew exchange and linear implication.

1 Introduction

Substructural logics are logical systems in which the usage of one or more structural rules is disallowed

or restricted. A well-known example is the syntactic calculus of Lambek [13], in which all the structural

rules of exchange, weakening and contraction are disallowed. Variants of the Lambek calculus allow

exchange or a cyclic form of exchange, while others disallow even associativity [16]. In Girard’s linear

logic, which has been studied both in the presence and absence of an exchange rule [9, 1], selective

versions of weakening and contraction can be recovered via the use of modalities. Applications of

substructural logics are abundant in a variety of different fields, from computational investigations of

natural languages to the design of resource-sensitive programming languages.

In recent years, in collaboration with Tarmo Uustalu and Noam Zeilberger, we initiated a program

intended to study a family of semi-substructural logics, inspired by developments in category theory

by Szlachányi, Street, Bourke, Lack and many others [19, 11, 18, 12, 7, 4, 5, 6]. Kornél Szlachányi

introduced skew monoidal categories as a weakening of MacLane’s monoidal categories in which the

structural morphisms of associativity and unitality (often also called associator and unitors) are not re-

quired to be invertible, they are just natural transformation in a particular direction. As such, they can

be regarded as semi-associative and semi-unital variants of monoidal categories. Bourke and Lack also

introduced notions of braiding and symmetry for skew monoidal categories which involve three objects

instead of two [6]. Skew monoidal categories arise naturally in semantics of programming languages [2]

and semi-associativity has strong connections with combinatorial structures such as the Tamari lattice

and Stasheff associahedra [26, 15].

http://dx.doi.org/10.4204/EPTCS.402.8
https://creativecommons.org
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Semi-substructural logics correspond to the internal languages of skew monoidal categories and their

extensions, therefore sitting in between (certain fragments of) non-associative and associative intuitionis-

tic linear logic. Semi-associativity and semi-unitality can be hard-coded in the sequent calculus following

a two-step recipe. First, consider sequents of the form S | Γ ⊢ A, where the antecedent is split into an

optional formula S, called stoup, and an ordered list of formulae Γ. The succedent consists of a single

formula A. Then restrict the application of introduction rules to allow only one of the directions of asso-

ciativity and unitality, the one in the definition of skew monoidal category. For example, left-introduction

rules are allowed to act only on the formula in stoup position, not on formulae in Γ.

In our previous investigations we have explored deductive systems for (i) skew semigroup [26],

(ii) skew monoidal [23], (iii) skew (prounital) closed [21] and (iv) skew monoidal closed categories

[20, 25], corresponding to skew variants of the fragments of non-commutative intuitionistic linear logic

consisting of connectives (i) ⊗, (ii) (I,⊗), (iii) ⊸ and (iv) (I,⊗,⊸). We have also studied partial

normality conditions, when one or more among associator and unitors is allowed to have an inverse [22],

and extensions with exchange à la Bourke and Lack [24].

When studying meta-theoretic properties of these semi-structural deductive systems, we have been

mostly interested in categorical and proof-theoretic semantics. In the latter, we have particularly investi-

gated normalization strategies inspired by Andreoli’s focused sequent calculus for classical linear logic

[3] and employed the resulting normal forms to solve the coherence problem for the corresponding cat-

egories with skew structure. For these categories, the word problem is more nuanced than in the normal

non-skew case studied by MacLane [14]. Our study additionally revealed that the focused sequent calculi

of semi-substructural logics can serve as cornerstones for a compositional and modular understanding of

normalization techniques for other richer substructural logics.

In this work we begin the investigation of semi-substructural logics with additive connectives. We

start in Section 2 by considering a fragment of non-commutative linear logic consisting of skew multi-

plicative unit I and conjunction ⊗, and additive conjunction ∧ and disjunction ∨. We describe a cut-free

sequent calculus and a congruence relation ⊜ identifying derivations up-to η-equivalence and permuta-

tive conversions. In Section 3, we discuss categorical semantics in terms of skew monoidal categories

with binary products and coproducts satisfying a left-distributivity condition.

In Section 4, we introduce a sequent calculus of proofs in normal form, i.e. canonical representative

of the equivalence relation on derivations ⊜. The design of the latter calculus is again inspired by the

ideas of Andreoli and it describes a sound and complete root-first proof search strategy for the original

sequent calculus. Completeness is achieved by marking sequents with lists of tags, a mechanism intro-

duced by Uustalu et al. [20] and inspired by Scherer and Rémy’s saturation technique [17], which helps

to completely eliminate all undesired non-determinism in proof search and faithfully capture normal

forms wrt. the congruence relation on derivations in the original sequent calculus.

To showcase the modularity of our normalization strategy, in Section 5 we discuss extensions of the

logic with other connectives, such as additive units, the structural rule of exchange in the style of Bourke

and Lack and linear implication. This provides evidence that our normalization technique is potentially

scalable to other richer substructural logics arising as extensions of ours, e.g. full Lambek calculus or

intuitionistic linear logic. Moreover, we conjecture that a similar use of tags can be ported to fragments

of classical linear logic, such as MALL. The resulting notion of normal form should correspond to

maximally multi-focused proofs [8] and therefore proof nets.

The sequent calculi of Sections 2 and 4, as well as the effective normalization procedure, have been

fully formalized in the Agda proof assistant. The code is freely available at

https://github.com/cswphilo/SkewMonAdd.

https://github.com/cswphilo/SkewMonAdd
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2 Sequent Calculus

We start by describing a sequent calculus for a skew variant of non-commutative multiplicative intuition-

istic linear logic with additive conjunction and disjunction.

Formulae are inductively generated by the grammar A,B ::= X | I | A⊗B | A∧B | A∨B, where X

comes from a set At of atomic formulae. We use I,⊗,∧ and ∨ to denote multiplicative verum, mul-

tiplicative conjunction, additive conjunction and additive disjunction, respectively. The additives are

traditionally named & and ⊕ in linear logic literature.

A sequent is a triple of the form S | Γ ⊢ A. The antecedent is split in two parts: an optional formula S,

called stoup [10], and an ordered list of formulae Γ, called context. The succedent A is a single formula.

The peculiar design of sequents, involving the presence of the stoup in the antecedent, comes from our

previous work on deductive systems with skew structure in collaboration with Uustalu and Zeilberger

[23, 22, 21, 24, 20, 25]. The metavariable S always denotes a stoup, i.e., S can be a single formula or

empty, in which case we write S =−. Metavariables X ,Y,Z are always names of atomic formulae.

Derivations of a sequent S | Γ ⊢ A are inductively generated by the following rules:

A | ⊢ A
ax

A | Γ ⊢C

− | A,Γ ⊢C
pass

− | Γ ⊢C

I | Γ ⊢C
IL

− | ⊢ I
IR

A | B,Γ ⊢C

A⊗B | Γ ⊢C
⊗L

S | Γ ⊢ A − | ∆ ⊢ B

S | Γ,∆ ⊢ A⊗B
⊗R

A | Γ ⊢C

A∧B | Γ ⊢C
∧L1

B | Γ ⊢C

A∧B | Γ ⊢C
∧L2

S | Γ ⊢ A S | Γ ⊢ B

S | Γ ⊢ A∧B
∧R

A | Γ ⊢C B | Γ ⊢C

A∨B | Γ ⊢C
∨L

S | Γ ⊢ A

S | Γ ⊢ A∨B
∨R1

S | Γ ⊢ B

S | Γ ⊢ A∨B
∨R2

(1)

The inference rules are similar to the ones in non-commutative intuitionistic linear logic [1], but with

some essential differences.

1. The left logical rules IL, ⊗L, ∧Li and ∨L, when read bottom-up, can only be applied on the formula

in the stoup position. That is, it is generally not possible to remove a unit I, or decompose a tensor

A⊗B or a disjunction A∨B, when these formulae are located in the context.

2. The right tensor rule ⊗R, when read bottom-up, splits the antecedent of the conclusion but the

formula in the stoup, whenever this is present, always moves to the left premise. The stoup formula

of the conclusion is prohibited to move to the second premise even if Γ is empty.

3. The presence of the stoup implies a distinction between antecedents of the form A | Γ and − | A,Γ.

The structural rule pass (for ‘passivation’), when read bottom-up, allows the moving of the leftmost

formula in the context to the stoup position whenever the stoup is initially empty.

These restrictions allow the derivability of sequents (A⊗B)⊗C | ⊢ A⊗ (B⊗C) (semi-associativity),

I⊗A | ⊢ A and A | ⊢ A⊗ I (semi-unitality), while forbidding the derivability of their inverses, where

the formulae in the stoup and in the succedent have been swapped. This is in line with the intended

categorical semantics, see Section 3.

Notice that, similarly to the case of non-commutative intuitionistic linear logic [1], all structural

rules of exchange, contraction and weakening are absent. We give names to derivations and we write

f : S | Γ ⊢ A when f is a particular derivation of the sequent S | Γ ⊢ A.
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Theorem 2.1. The sequent calculus enjoys cut admissibility: the following two cut rules are admissible

S | Γ ⊢ A A | ∆ ⊢C

S | Γ,∆ ⊢C
scut

− | Γ ⊢ A S | ∆0,A,∆1 ⊢C

S | ∆0,Γ,∆1 ⊢C
ccut

While the left ∧-rules only act on the formula in stoup position (as all the other left logical rules),

other ∧-rules ∧LCi acting on formulae in context are admissible.

S | Γ,A,∆ ⊢C

S | Γ,A∧B,∆ ⊢C
∧LC1

S | Γ,B,∆ ⊢C

S | Γ,A∧B,∆ ⊢C
∧LC2

However, this is not the case for the other left logical rules. For example, there is no way of constructing

a general left ∨-rule ∨LC acting on a disjunction in context. This rule should be forbidden since it

would make some inadmissible sequents provable in the sequent calculus. For example, the sequent

X ∧Y |Y ∨X ⊢ (X ⊗Y )∨(Y ⊗X) is not admissible (this can be proved using the normalization procedure

of Section 4) but a proof could be found using ∨LC:

X | ⊢ X
ax

Y | ⊢Y
ax

− |Y ⊢ Y
pass

X |Y ⊢ X ⊗Y
⊗R

X ∧Y |Y ⊢ X ⊗Y
∧L1

X ∧Y |Y ⊢ (X ⊗Y )∨ (Y ⊗X)
∨R1

Y | ⊢Y
ax

X | ⊢ X
ax

− | X ⊢ X
pass

Y | X ⊢Y ⊗X
⊗R

X ∧Y | X ⊢Y ⊗X
∧L2

X ∧Y | X ⊢ (X ⊗Y )∨ (Y ⊗X)
∨R2

X ∧Y |Y ∨X ⊢ (X ⊗Y )∨ (Y ⊗X)
∨LC

We introduce a congruence relation ⊜ on the sets of cut-free derivations:

axI ⊜ IL (IR)
axA⊗B ⊜⊗L (⊗R (axA,pass axB))
axA∧B ⊜ ∧R (∧L1 axA,∧L2 axB)
axA∨B ⊜ ∨L (∨R1 axA,∨R2 axB)

⊗R (pass f ,g) ⊜ pass (⊗R ( f ,g)) ( f : A′ | Γ ⊢ A,g : − | ∆ ⊢ B)
⊗R (IL f ,g) ⊜ IL (⊗R ( f ,g)) ( f : − | Γ ⊢ A,g : − | ∆ ⊢ B)
⊗R (⊗L f ,g) ⊜⊗L (⊗R ( f ,g)) ( f : A′ | B′

,Γ ⊢ A,g : − | ∆ ⊢ B)
⊗R (∧Li f ,g) ⊜ ∧Li (⊗R ( f ,g)) ( f : A′ | Γ ⊢ A,g : − | ∆ ⊢ B)

⊗R (∨L ( f1, f2),g) ⊜ ∨L (⊗R ( f1,g),⊗R ( f2,g)) ( f1 : A′ | Γ ⊢ A, f2 : B′ | Γ ⊢ A,

g : − | ∆ ⊢ B)
pass (∧R ( f ,g)) ⊜ ∧R (pass f ,pass g) ( f : A′ | Γ ⊢ A,g : A′ | Γ ⊢ B)
IL (∧R ( f ,g)) ⊜ ∧R (IL f , IL g) ( f : − | Γ ⊢ A,g : − | Γ ⊢ B)
⊗L (∧R ( f ,g)) ⊜ ∧R (⊗L f ,⊗L g) ( f : A′ | B′

,Γ ⊢ A,g : A′ | B′
,Γ ⊢ B)

∧Li (∧R ( f ,g)) ⊜ ∧R (∧Li f ,∧Li g) ( f : A′ | Γ ⊢ A,g : A′ | Γ ⊢ B)
∨L (∧R ( f1,g1),∧R ( f2,g2)) ⊜ ∧R (∨L ( f1, f2),∨L (g1,g2)) ( f1 : A′ | Γ ⊢ A, f2 : B′ | Γ ⊢ A,

g1 : A′ | Γ ⊢ B,g2 : B′ | Γ ⊢ B)
∨Ri (pass f ) ⊜ pass (∨Ri f ) ( f : A′ | Γ ⊢ A)
∨Ri (IL f ) ⊜ IL (∨Ri f ) ( f : − | Γ ⊢ A)
∨Ri (⊗L f ) ⊜⊗L (∨Ri f ) ( f : A′ | B′

,Γ ⊢ A)
∨Ri (∧Li f ) ⊜ ∧Li (∨Ri f ) ( f : A′ | Γ ⊢ A)

∨Ri (∨L ( f ,g)) ⊜ ∨L (∨Ri f ,∨Ri g) ( f : A′ | Γ ⊢ A,g : B′ | Γ ⊢ A)

(2)

The first four equations (η-conversions) characterize the ax rule for non-atomic formulae. The remaining

equations are permutative conversions. The congruence ⊜ has been carefully chosen to serve as the

proof-theoretic counterpart of the equational theory of certain categories with skew structure, which we

introduce in the next section.
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3 Categorical Semantics

A skew monoidal category [19, 11, 12] is a category C with a unit object I, a functor ⊗ : C×C→ C and

three natural transformations λ , ρ , α typed λA : I⊗A → A, ρA : A → A⊗ I and αA,B,C : (A⊗B)⊗C →
A⊗ (B⊗C), satisfying the following equations due to Mac Lane [14]:

I⊗ I

I I

ρI λI

(A⊗ I)⊗B A⊗ (I⊗B)

A⊗B A⊗B

ρA⊗B A⊗λB

αA,I,B

(I⊗A)⊗B I⊗ (A⊗B)

A⊗B

αI,A,B

λA⊗BλA⊗B

(A⊗B)⊗ I A⊗ (B⊗ I)

A⊗B

αA,B,I

A⊗ρBρA⊗B

(A⊗ (B⊗C))⊗D A⊗ ((B⊗C)⊗D)

((A⊗B)⊗C)⊗D (A⊗B)⊗ (C⊗D) A⊗ (B⊗ (C⊗D))

αA,B⊗C,D

A⊗αB,C,D

αA,B,C⊗DαA⊗B,C,D

αA,B,C⊗D

A skew monoidal category with binary coproducts is (binary) left-distributive if the canonical morphism

typed (A⊗C)+ (B⊗C) → (A+B)⊗C has an inverse l : (A+B)⊗C → (A⊗C)+ (B⊗C). We will

be interested in skew monoidal categories with binary products and coproducts, which moreover are

left-distributive. We simply call these distributive skew monoidal categories.

A (strict) skew monoidal functor F : C → D between skew monoidal categories (C, I,⊗) and

(D, I′,⊗′) is a functor from C to D satisfying FI = I′ and F(A⊗B) = FA⊗′ FB, also preserving the

structural laws λ , ρ and α on the nose. This means that FλC
A = λD

FA, where λC and λD are left-unitors

of C and D respectively, and similar equations hold for ρ and α . A skew monoidal functor is distributive

if it also strictly preserves products, coproducts and (consequently also) left-distributivity.

The formulae, derivations and the equivalence relation ⊜ of the sequent calculus determine a syntac-

tic distributive skew monoidal category FDSkM(At) (an acronym for Free Distributive Skew Monoidal

category on the set At). Its objects are formulae. The operations I and ⊗ are the logical connectives.

The set of maps between objects A and B is the set of derivations A | ⊢ B quotiented by the equivalence

relation ⊜. The identity map on A is the equivalence class of axA, while composition is given by scut.

The structural laws λ , ρ , α are all admissible. Products and coproducts are the additive connectives ∧
and ∨. Left-distributivity follows from the logical rules of ∨ and ⊗.

Distributive skew monoidal categories form models of our sequent calculus. Moreover the sequent

calculus, as a presentation of a distributive skew monoidal category, is the initial one among these mod-

els. Equivalently, FDSkM(At) is the free such category on the set At.

Theorem 3.1. Let D be a distributive skew monoidal category. Given a function FAt :At→|D| evaluating

atomic formulae as objects of D, there exists a unique distributive skew monoidal functor

F : FDSkM(At)→ D for which FX = FAtX, for any atom X.

The construction of the functor F and the proof of uniqueness proceed similarly to the proofs of

Theorems 3.1 and 3.2 in [20].

4 A Focused Sequent Calculus with Tag Annotations

When oriented from left-to-right, the equations in (2) become a rewrite system, which is locally con-

fluent and strongly normalizing, thus confluent with unique normal forms. Here we provide an explicit
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description of the normal forms of (1) wrt. this rewrite system.

For any sequent S | Γ ⊢ A, a root-first proof search procedure can be defined as follows. First apply

right invertible rules on the sequent until the principal connective of the succedent is non-negative, then

apply left invertible rules until the stoup becomes either empty or non-positive. At this point, if we do not

insist on focusing on a particular formula (either in the stoup or succedent, since no rule acts on formulae

in context) as in Andreoli’s focusing procedure [3], we obtain a sequent calculus with a reduced proof

search space, that looks like this:

(right invertible)
S | Γ ⊢RI A S | Γ ⊢RI B

S | Γ ⊢RI A∧B
∧R

S | Γ ⊢LI P

S | Γ ⊢RI P
LI2RI

(left invertible)

− | Γ ⊢LI P

I | Γ ⊢LI P
IL

A | B,Γ ⊢LI P

A⊗B | Γ ⊢LI P
⊗L

A | Γ ⊢LI P B | Γ ⊢LI P

A∨B | Γ ⊢LI P
∨L

T | Γ ⊢F P

T | Γ ⊢LI P
F2LI

(focusing)
A | Γ ⊢LI P

− | A,Γ ⊢F P
pass

X | ⊢F X
ax

− | ⊢F I
IR

T | Γ ⊢RI A − | ∆ ⊢RI B

T | Γ,∆ ⊢F A⊗B
⊗R

T | Γ ⊢RI A

T | Γ ⊢F A∨B
∨R1

T | Γ ⊢RI B

T | Γ ⊢F A∨B
∨R2

A | Γ ⊢LI P

A∧B | Γ ⊢F P
∧L1

B | Γ ⊢LI P

A∧B | Γ ⊢F P
∧L2

(3)

In the rules above, P is a non-negative formula, i.e. its principal connective is not ∧, and T is a non-

positive stoup (also called irreducible), i.e. it is not I and its principal connective is neither ⊗ nor ∨.

This calculus is too permissive. The same sequent S | Γ ⊢RI A may have multiple derivations which

correspond to ⊜-related derivations in the original sequent calculus. This happens since certain sequents

in phase ⊢F can be alternatively proved by an application of a left non-invertible rule (pass, ∧L1 and

∧L2) or an application of a right non-invertible rule (⊗R, ∨R1 and ∨R2). As concrete examples, both

sequents − | X ,Y ⊢F X ⊗Y and X ∧Y | ⊢F X ∨Y have multiple distinct proofs in this calculus, but their

corresponding proofs in the original calculus are ⊜-related.

In phase ⊢F, only non-invertible rules can be applied, so the question is: how to arrange the order

between non-invertible rules without causing undesired non-determinism and losing completeness with

respect to the sequent calculus in (1) and its equivalence relation ⊜? Similarly to [20], our strategy is to

prioritize left non-invertible rules over right ones, unless this does not lead to a valid derivation and the

other way around is necessary. For example, consider the sequent X ∧Y | ⊢F (X ∧Y )∨Z. Proof search

fails if we apply ∧Li before ∨R1. A valid proof is obtained only when applying ∨R1 before ∧Li. Rule

sw is an abbreviation for the application of multiple consecutive phase switching rules.

X | ⊢F X
ax

X | ⊢LI X
F2LI

X ∧Y | ⊢F X
∧L1

X ∧Y | ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

X ∧Y | ⊢F Y
∧L2

X ∧Y | ⊢RI Y
sw

X ∧Y | ⊢RI X ∧Y
∧R

X ∧Y | ⊢F (X ∧Y )∨Z
∨R1

(4)

In this example it was possible to first apply ∨R1 since, after the application of ∧R, different left

∧-rules are applied in different branches of the proof tree. If we would have applied the same rule ∧L1 to
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both premises (imagine that X = Y for this to be possible), then we could have obtained a ⊜-equivalent

derivation by moving the application of ∧L1 to the bottom of the proof tree.

It is also possible that the two premises of ∧R correspond to ⊜-inequivalent derivations. For example,

consider the following proof of sequent − | I⊗X ⊢F ((I ⊗X)∧ (I⊗X))∨Y:

− | ⊢F I
IR

− | ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
F2LI

− | X ⊢F X
pass

− | X ⊢RI X
sw

− | X ⊢F I⊗X
⊗R

− | X ⊢LI I⊗X
F2LI

I | X ⊢LI I⊗X
IL

I⊗X | ⊢LI I⊗X
⊗L

− | I⊗X ⊢F I⊗X
pass

− | I⊗X ⊢RI I⊗X
sw

− | ⊢F I
IR

− | ⊢RI I
sw

X | ⊢F X
ax

X | ⊢LI X
F2LI

− | X ⊢F X
pass

− | X ⊢LI X
F2LI

I | X ⊢LI X
IL

I⊗X | ⊢LI X
⊗L

− | I⊗X ⊢F X
pass

− | I⊗X ⊢RI X
sw

− | I⊗X ⊢F I⊗X
⊗R

− | I⊗X ⊢RI I⊗X
sw

− | I⊗X ⊢RI (I⊗X)∧ (I⊗X)
∧R

− | I⊗X ⊢F ((I⊗X)∧ (I⊗X))∨Y
∨R1

In this case, the right non-invertible rule ∨R1 must be applied before the left non-invertible rule pass.

This is because pass is used in the proof of the left branch of ∧R, but it is not used in the proof of the

right branch, ⊗R is used instead. If both left and right proofs would have used pass (for example, they

could have been the same exact proof), then it would have been possible to apply pass before ∨R1.

In general, a right non-invertible rule should be applied before a left non-invertible one if, after the

possible application of some ∧R rules, either: (i) a right non-invertible rule or the ax rule is applied to

one of the premises; (ii) ∧L1 and ∧L2 are applied to different premises. Therefore, we have to make sure

that in the focused sequent calculus, after the application of a right non-invertible rule, not all premises

use the same left non-invertible rule, because in this case the latter rule could be applied first.

In order to keep track of this, we use a system of tag annotations and we introduce new phases of

proof search where sequents are annotated by list of tags. There are four tags: P,C1,C2,R. Intuitively,

they respectively correspond to rules pass,∧L1,∧L2 and all the remaining non-invertible rules in phase

⊢F. A list of tags l is called valid if it is non-empty and either (i) R ∈ l or (ii) both C1 ∈ l and C2 ∈ l.

Derivations in the focused sequent calculus with tag annotations are generated by the rules

(right invertible)
S | Γ ⊢l1?

RI A S | Γ ⊢l2?
RI B

S | Γ ⊢l1?,l2?
RI

A∧B
∧R

S | Γ ⊢t?
LI P

S | Γ ⊢t?
RI P

LI2RI

(left invertible)

− | Γ ⊢LI P

I | Γ ⊢LI P
IL

A | B,Γ ⊢LI P

A⊗B | Γ ⊢LI P
⊗L

A | Γ ⊢LI P B | Γ ⊢LI P

A∨B | Γ ⊢LI P
∨L

T | Γ ⊢t?
F P

T | Γ ⊢t?
LI P

F2LI

(focusing)
A | Γ ⊢LI P

− | A,Γ ⊢P?
F P

pass
X | ⊢R?

F X
ax

− | ⊢R?
F I

IR

T | Γ ⊢l
RI A − | ∆ ⊢RI B l valid

T | Γ,∆ ⊢R?
F A⊗B

⊗R
T | Γ ⊢l

RI A l valid

T | Γ ⊢R?
F A∨B

∨R1

T | Γ ⊢l
RI B l valid

T | Γ ⊢R?
F A∨B

∨R2

A | Γ ⊢LI P

A∧B | Γ ⊢C1?
F P

∧L1

B | Γ ⊢LI P

A∧B | Γ ⊢C2?
F P

∧L2

(5)
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We use l for lists of tags and t for single tags. The notation l? indicates that the sequent is either untagged

or assigned the list of tags l. Similarly for notation t?. We discuss the proof search procedures of untagged

and tagged sequents separately. The proof search of a sequent S | Γ ⊢RI A proceeds as follows:

(⊢RI) We apply the right invertible rule ∧R eagerly to decompose the succedent until its principal con-

nective is not ∧, then we move to the left invertible phase ⊢LI with an application of LI2RI.

(⊢LI) We apply left invertible rules until the stoup becomes irreducible, then move to the focusing phase

⊢F with an application of F2LI.

(⊢F) We apply one of the remaining rules. Since the sequents are not marked by tags at this point,

rules pass, ax , IR and ∧Li can be directly applied when stoups, contexts and succedents are of

the appropriate form. If we decide to apply a right non-invertible rule, we need to come up with

a valid list of tags l and subsequently continue proof search in tagged right invertible phase ⊢l
RI,

which is described below. Notice that only the first premise of ⊗R is tagged, the second premise

is not, i.e. its proof search continues in phase ⊢RI.

The proof search of a sequent T | Γ ⊢l
RI A proceeds as follows (notice that at this point in proof search

the stoup T is necessarily irreducible):

(⊢l
RI) We apply the ∧R rule to decompose the succedent and split the list of tags carefully until the

succedent becomes non-negative and the list of tags becomes a singleton t, then we move to phase

⊢t
LI with an application of LI2RI.

(⊢t
LI) Since the stoup is either empty or a negative formula, we immediately switch to phase ⊢F with an

application of F2LI. This motivates why sequents in rules IL, ⊗L, ∨L are not tagged.

(⊢t
F) If t =R we can apply either ax, IR or another right non-invertible rule. Again, when applying right

non-invertible rules we need to come up with a new valid list of tags. Left non-invertible rules can

be applied only when the tag is correct, i.e. pass with tag P, ∧L1 with tag C1, and ∧L2 with tag C2.

The derivation in (4) can be reconstructed in the focused calculus with tag annotations.

X | ⊢F X
ax

X | ⊢LI X
sw

X ∧Y | ⊢C1

F
X

∧L1

X ∧Y | ⊢C1

RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
sw

X ∧Y | ⊢C2

F
Y

∧L2

X ∧Y | ⊢C2

RI Y
sw

X ∧Y | ⊢C1,C2

RI X ∧Y
∧R

X ∧Y | ⊢F (X ∧Y )∨Z
∨R1

(6)

Notice that the list of tags is not predetermined when a right non-invertible rule is applied, we have to

come up with one ourselves. Practically, the list l can be computed by continuing proof search until, in

each branch, we hit the first application of a rule in phase ⊢F, each with its own (necessarily uniquely

determined) single tag t. Take l as the concatenation of the resulting ts and check whether it is valid. If

it is not, backtrack and apply a left non-invertible rule instead.

Theorem 4.1. The focused sequent calculus with tag annotations in (5) is sound and complete with

respect to the sequent calculus in (1).

Soundness is immediate because there exist functions embph : S | Γ ⊢l?
ph A → S | Γ ⊢ A, for all ph ∈

{RI,LI,F}, which erase all phase and tag annotations. Completeness follows from the fact that the
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following rules are all admissible:

− | Γ ⊢RI C

I | Γ ⊢RI C
ILRI

A | B,Γ ⊢RI C

A⊗B | Γ ⊢RI C
⊗LRI

A | Γ ⊢RI C

− | A,Γ ⊢RI C
passRI

A | ⊢RI A
axRI

− | ⊢RI I
IRRI

A | Γ ⊢RI C B | Γ ⊢RI C

A∨B | Γ ⊢RI C
∨LRI

S | Γ ⊢RI A − | ∆ ⊢RI B

S | Γ,∆ ⊢RI A⊗B
⊗RRI

A | Γ ⊢RI C

A∧B | Γ ⊢RI C
∧LRI1

B | Γ ⊢RI C

A∧B | Γ ⊢RI C
∧LRI2

S | Γ ⊢RI A

S | Γ ⊢RI A∨B
∨RRI

1

S | Γ ⊢RI B

S | Γ ⊢RI A∨B
∨RRI

2

(7)

The admissibility of the rules in (7), apart from the right non-invertible ones, is proved by structural

induction on derivations. The same strategy cannot be applied to right non-invertible rules. For example,

if the premise of ∨RRI
1 ends with an application of ∧R, we get immediately stuck:

f

S | Γ ⊢RI A′
g

S | Γ ⊢RI B′

S | Γ ⊢RI A′∧B′ ∧R

S | Γ ⊢RI (A
′∧B′)∨B

∨RRI
1

= ??

The inductive hypothesis applied to f and g would produce wrong sequents for the target conclusion.

This is fixed by proving the admissibility of more general rules. In order to state and prove this, we

need to first introduce a few lemmata. The first one shows that applying several ∧R rules in one step is

admissible.

Let conj(A) be the list of formulae obtained by decomposing additive conjunctions ∧ in the formula

A. Concretely, conj(A) = conj(A′),conj(B′) if A = A′∧B′ and conj(A) = A otherwise.

Lemma 4.2. The following rules

[T | Γ ⊢ti
F Pi]i∈[1,...,n]

T | Γ ⊢l
RI A

∧R∗
t

[T | Γ ⊢LI Pi]i∈[1,...,n]

T | Γ ⊢RI A
∧R∗

are admissible, where conj(A) = [P1, . . . ,Pn] and l = [t1, . . . , tn].

Proof. We show the case of ∧R∗
t , the other one is similar. Let f s : [T | Γ ⊢ti

F Pi]i be a list of derivations.

The proof proceeds by induction on A.

• If A 6= A′∧B′, then f s consists of a single derivation f . Define ∧R∗
t f s = F2LI (LI2RI f ).

• If A = A′ ∧ B′, then there exist lists of derivations f s1 : [T | Γ ⊢ti
F A′

i]i∈[1,...,m] and

f s2 : [T | Γ ⊢ti
F B′

i]i∈[m+1,...,n], and lists of tags l1 = t1, . . . , tm and l2 = tm+1, . . . , tn, so that f s is

the concatenation of f s1 and f s2 and l is the concatenation of l1 and l2. Apply ∧R at the bottom,

then proceed recursively:

f s

[T | Γ ⊢ti
F Pi]i∈[1,...,n]

T | Γ ⊢l A′∧B′
∧R∗

t
=

f s1

[T | Γ ⊢ti
F Pi]i∈[1,...,m]

T | Γ ⊢l1
RI A′

∧R∗
t

f s2

[T | Γ ⊢ti
F Pi]i∈[m+1,...,n]

T | Γ ⊢l2
RI B′

∧R∗
t

T | Γ ⊢l1,l2
RI A′∧B′

∧R

The second lemma corresponds to the invertibility of phase ⊢RI.
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Lemma 4.3. Given f : S | Γ ⊢RI A, there is a list of derivations f s : [S | Γ ⊢LI Pi]i∈[1,...,n] with f = ∧R∗ f s.

Proof. The proof proceeds by structural induction on f : S | Γ ⊢RI A.

• If f = LI2RI f1, then A is non-negative. Take f s as the singleton list consisting exclusively of f1.

• If f = ∧R ( f1, f2), then by inductive hypothesis we have f s1 : [S | Γ ⊢LI Pi]i∈[1,...,n] and

f s2 : [S | Γ ⊢LI P′
i ]i∈[1,...,m]. Take f s as the concatenation of f s1 and f s2.

Proposition 4.4. The following rules

f s

[S | Γ ⊢LI Pi]i∈[1,...,n]

S | Γ ⊢LI A∨B
∨RLI

1

f s

[S | Γ ⊢LI Qi]i∈[1,...,m]

S | Γ ⊢LI A∨B
∨RLI

2

f s

[S | Γ ⊢LI Pi]i∈[1,...,n] − | ∆ ⊢RI B′

S | Γ,∆ ⊢LI A⊗B′ ⊗RLI

are admissible, where conj(A) = [P1, . . . ,Pn] and conj(B) = [Q1, . . . ,Qm].

Proof. The list of derivations f s is non-empty, so we let f s = [ f1, f s′]. We proceed by induction on f1.

We only present the proof for ∨RLI
1 , the admissibility of ∨RLI

2 and ⊗RLI is proved similarly.

If f1 ends with the application of a left invertible rule, then all the derivations in f s′ necessarily end

with the same rule as well. Therefore, we permute this rule with ∨RLI
1 and apply the inductive hypothesis.

If f1 = F2LI f ′1, then all the derivations in f s′ necessarily end with F2LI as well. We generate a list of

tags l by examining the shape of each derivation in f s: we add P for each pass, C1 for each ∧L1, C2 for

each ∧L2 and R for the remaining rules. There are two possibilities:

• The resulting list l is valid. We switch to phase ⊢F and apply ∨RLI
1 followed by ∧R∗

t :

f s∗

[T | Γ ⊢F Pi]i∈[1,...,n]

[T | Γ ⊢LI Pi]i∈[1,...,n]
[F2LI]

T | Γ ⊢LI A∨B
∨RLI

1

=

f s∗′

[T | Γ ⊢ti
F Pi]i∈[1,...,n]

T | Γ ⊢l
RI A

∧R∗
t

T | Γ ⊢F A∨B
∨R1

T | Γ ⊢LI A∨B
F2LI

A rule wrapped in square brackets, like [F2LI] above, denotes the application of the rule to the

conclusion of each derivation in the list. The list of derivations f s∗ is obtained from f s by applying

[F2LI], i.e. f s = [F2LI] f s∗, while f s∗′ is a list of derivations whose conclusions are tagged version

of those in f s∗, which can be easily constructed from f s∗.

• The list l is invalid. In this case, all elements in f s end with the same left non-invertible rule,

so we permute the rule down with ∨RLI
1 and continue recursively. Here is an example where all

derivations in f s end with an application of pass, i.e. f s = [F2LI] ([pass] f s∗):

f s∗

[A′ | Γ ⊢LI Pi]i∈[1,...,n]

[− | A′
,Γ ⊢LI Pi]i∈[1,...,n]

[pass]

[− | A′
,Γ ⊢LI Pi]i∈[1,...,n]

[F2LI]

− | A′
,Γ ⊢LI A∨B

∨RLI
1

=

f s∗

[A′ | Γ ⊢LI Pi]i∈[1,...,n]

A′ | Γ ⊢LI A∨B
∨RLI

1

− | A′
,Γ ⊢F A∨B

pass

− | A′
,Γ ⊢LI A∨B

F2LI
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Finally, a right non-invertible rule in (7) is defined as follows: first invert its premises (for ⊗RRI, only

the left premise) using Lemma 4.3. Then apply the corresponding generalized rule in Proposition 4.4.

We can construct a function focus : S | Γ ⊢ A → S | Γ ⊢RI A by structural recursion on the input

derivation. Each inference rule in (1) is sent to the corresponding admissible rule in (7). For example,

focus (∨R1 f ) = ∨RRI
1 (focus f ). Furthermore, it can be shown that embRI and focus are each other

inverses, in the sense made precise by the following theorem.

Theorem 4.5. The functions embRI and focus define a bijective correspondence between the set of

derivations of S | Γ ⊢ A quotiented by the equivalence relation ⊜ and the set of derivations of S | Γ ⊢RI A:

• For all f ,g : S | Γ ⊢ A, if f ⊜ g then focus f = focus g.

• For all f : S | Γ ⊢ A, embRI (focus f )⊜ f .

• For all f : S | Γ ⊢RI A, focus (embRI f ) = f .

Proof. The first bullet is proved by structural induction on the given equality proof e : f ⊜ g. The other

bullets are proved by structural induction on f . See the associated Agda formalization for details.

5 Extensions of the Logic

We now discuss some extensions of the sequent calculus and the focusing strategy.

5.1 Additive Units

The sequent calculus in (1) can be made “fully” additive by including two units ⊤ and ⊥ (the latter

named 0 in linear logic literature), two new introduction rules and two new generating equations:

S | Γ ⊢ ⊤
⊤R

⊥ | Γ ⊢C
⊥L

f ⊜⊤R ( f : S | Γ ⊢ ⊤)
f ⊜⊥L ( f : ⊥ | Γ ⊢C)

In the focused sequent calculus we add ⊤R in phase ⊢RI and ⊥L in phase ⊢LI, so that they can be applied

as early as possible. We include a new tag T for ⊤. The validity condition for lists of tags is updated as

follows: (i) T or R ∈ l or (ii) both C1 ∈ l and C2 ∈ l.

S | Γ ⊢T?
RI ⊤

⊤R
⊥ | Γ ⊢LI P

⊥L

Categorical models of the extended sequent calculus are the distributive monoidal categories of

Section 3 with additionally a terminal and an initial object, which moreover satisfy a (nullary) left-

distributivity (or absorption) condition: the canonical morphism typed 0 → 0 ⊗C has an inverse

k : 0⊗C → 0. The latter is used in the interpretation of the rule ⊥L.

5.2 Skew Exchange

Following [24], we consider a “skew” commutative extension of the sequent calculus in (1) obtained by

adding a rule swapping adjacent formulae in context:

S | Γ,A,B,∆ ⊢C

S | Γ,B,A,∆ ⊢C
ex

https://github.com/cswphilo/SkewMonAdd/blob/main/skew-mon-conjunction-disjunction/Main.agda
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Note that exchanging the formula in the stoup, whenever the latter is non-empty, with a formula in

context is not allowed. The new rule ex comes with additional generating equations for the congruence

relation ⊜:

exB,A(exA,B f ) ⊜ f ( f : S | Γ,A,B,∆ ⊢C)

exA,B(exA,D(exB,D f )) ⊜ exB,D(exA,D(exA,B f )) ( f : S | Γ,A,B,D,∆ ⊢C)

∧Li (exA,B f ) ⊜ exA,B (∧Li f ) ( f : A′ | Γ,A,B,∆ ⊢C)

∧R (exA,B f ,exA,B g) ⊜ exA,B (∧R ( f ,g)) ( f : S | Γ,A,B,∆ ⊢ A′
,g : S | Γ,A,B,∆ ⊢ B′)

∨L (exA,B f ,exA,B g) ⊜ exA,B (∨L ( f ,g)) ( f : A′ | Γ,A,B,∆ ⊢C,g : B′ | Γ,A,B,∆ ⊢C)

∨Ri (exA,B f ) ⊜ exA,B (∨Ri f ) ( f : S | Γ,A,B ⊢ A′)

exA,B(exA′
,B′ f ) ⊜ exA′

,B′(exA,B f ) ( f : S | Γ,A,B,∆,A′
,B′

,Λ ⊢C)

The first equation states that swapping the same two formulae twice yields the same result as doing

nothing. The second equation corresponds to the Yang-Baxter equation. The remaining equations are

permutative conversions. We left out permutative conversions describing the relationship between ex and

the rules pass, IL, ⊗L and ⊗R, which can be found in [24, Fig. 2].

The resulting sequent calculus enjoys categorical semantics in distributive skew symmetric monoidal

categories, that possess a natural isomorphism sA,B,C : A⊗ (B⊗C)→ A⊗ (C⊗B) representing a form of

“skew symmetry” involving three objects instead of two [6].

The focused sequent calculus is extended with a new phase ⊢C (for ‘context‘) where the exchange

rule can be applied. Rule ⊗L has to be modified, since we need to give the possibility to move the

formula B to a different position in the context.

S | Γ
...∆,A,Λ ⊢C C

S | Γ,A
...∆,Λ ⊢C C

ex
S | Γ ⊢RI C

S |
...Γ ⊢C C

RI2C
A | B

...Γ ⊢C P

A⊗B | Γ ⊢LI P
⊗L

Root-first proof search now begins in the new phase ⊢C, where formulae in context are permuted. We

start with a sequent S | Γ
... ⊢C C and end with a sequent S |

...Γ
′ ⊢C C where Γ′ is a permutation of

Γ. In the process, the context is divided into two parts Γ
...∆, where the formulae in Γ are ready to be

moved while those in ∆ have already been placed in their final position. Once all formulae in Γ have

been moved, we switch to phase ⊢RI with an application of rule RI2C. Note that sequents in phase ⊢C

are not marked by list of tags, since after the application of right non-invertible rules there is no need to

further permute formulae in context. Moreover, no new formulae can appear in context via applications

of rule ⊗L, since the stoup is irreducible at this point.

As already mentioned, rule ⊗L has been modified. Its premise is now a sequent in phase ⊢C, which

allows a further application of ex for the relocation of the formula B to a different position in the context.

5.3 Linear implication

Finally, we consider a deductive system for a skew version of Lambek calculus with additive conjunction

and disjunction. This is obtained by extending the sequent calculus in (1) with a linear implication ⊸

and two introduction rules:

− | Γ ⊢ A B | ∆ ⊢C

A ⊸ B | Γ,∆ ⊢C
⊸L

S | Γ,A ⊢ B

S | Γ ⊢ A ⊸ B
⊸R
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The presence of ⊸ requires the extension of the congruence relation ⊜ with additional generating equa-

tions: an η-conversion and more permutative conversions.

axA⊸B ⊜⊸R (⊸L (pass axA,axB))
⊗R (⊸L ( f ,g),h) ⊜⊸L ( f ,⊗R (g,h)) ( f : − | Γ ⊢ A′

,g : B′ | ∆ ⊢ A,h : − | Λ ⊢ B)
pass (⊸R f ) ⊜⊸R (pass f ) ( f : A′ | Γ,A ⊢ B)
IL (⊸R f ) ⊜⊸R (IL f ) ( f : − | Γ,A ⊢ B)

⊗L (⊸R f ) ⊜⊸R (⊗L f ) ( f : A′ | B′
,Γ,A ⊢ B)

⊸L ( f ,⊸R g) ⊜⊸R (⊸L ( f ,g)) ( f : − | Γ ⊢ A′
,g : B′ | ∆,A ⊢ B)

∧Li (⊸R f ) ⊜⊸R (∧Li f ) ( f : A′ | Γ,A ⊢ B)
∨L (⊸R f ,⊸R g) ⊜⊸R (∨L ( f ,g)) ( f : A′ | Γ,A ⊢ B,g : B′ | Γ,A ⊢ B)
∨Ri (⊸L ( f ,g)) ⊜⊸L ( f ,∨Ri g) ( f : − | Γ ⊢ A,g : B | ∆ ⊢ A′)

The sequent calculus enjoys categorical semantics in skew monoidal categories with binary products

and coproducts, which moreover are endowed with a closed structure, i.e. a functor ⊸: Cop×C → C

forming an adjunction −⊗B⊣B⊸− for all objects B [18]. There is no need to require left-distributivity,

since this can now be proved using the adjunction and the universal property of coproducts.

Notice that, in non-commutative linear logic, there exist two distinct linear implications, also called

left and right residuals [13]. Our calculus includes a single implication ⊸. We currently do not know

whether the inclusion of the second implication to our logic is a meaningful addition nor whether it

corresponds to some particular categorical notion.

We now discuss the extension of the focused sequent calculus. This is more complicated than the

extensions considered in Sections 5.1 and 5.2. In order to understand the increased complexity, let us

include the two new rules ⊸R and ⊸L in the “naive” focused sequent calculus in (3). The right ⊸-rule

is invertible, so it belongs to phase ⊢RI, while the left rule is not, so it goes in phase ⊢F.

− | Γ ⊢RI A B | ∆ ⊢LI P

A ⊸ B | Γ,∆ ⊢F P
⊸L

S | Γ,A ⊢RI B

S | Γ ⊢RI A ⊸ B
⊸R

As we know, this calculus is too permissive, and the inclusion of the above rules increases the non-

deterministic choices in proof search even further. As a strategy for taming non-determinism, as before

we decide to prioritize left non-invertible rules over right non-invertible ones. So we need to think of all

possible situations when a right non-invertible rule must be applied before a left non-invertible one. The

presence of ⊸ creates two new possibilities: (i) ⊸L splits the context differently in different premises,

or (ii) left non-invertible rules manipulate formulae that have been moved to the context by applications

of ⊸R. To understand these situations, let us look at two examples.

As an example of situation (i), consider the sequent I⊸ I | I,Y ⊢F (I∧ I)⊗Y and the following proof:

− | ⊢F I
IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

− | ⊢F I
IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

I⊸ I | I ⊢F I
⊸L

I⊸ I | I ⊢RI I
sw

− | ⊢F I
IR

− | ⊢RI I
sw

− | ⊢F I
IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢LI I
F2LI

I | I ⊢LI I
IL

I⊸ I | I ⊢F I
⊸L

I⊸ I | I ⊢RI I
sw

I⊸ I | I ⊢RI I∧ I
∧R

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

I⊸ I | I,Y ⊢F (I∧ I)⊗Y
⊗R

(8)
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Here ⊗R must be applied first, before ⊸L. In the proofs of the two premises of ∧R, which prove the

same sequent I⊸ I | I ⊢RI I, rule ⊸L splits the context in different ways: in the left branch the unit I in

context is sent to the left premise, while in the right branch it goes to the right premise. If the application

of the rule ⊸L would have split the context in the same way, then we could have applied ⊸L before ⊗R.

For (ii), consider sequents − |Y ⊢F (X ⊸ X)⊗Y and X ⊸Y | Z ⊢F (X ⊸ Y )⊗Z with proofs:

X | ⊢F X
ax

X | ⊢LI X
F2LI

− | X ⊢F X
pass

− | X ⊢RI X
sw

− | ⊢RI X ⊸ X
⊸R

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

− | Y ⊢F (X ⊸ X)⊗Y
⊗R

X | ⊢F X
ax

X | ⊢LI X
F2LI

− | X ⊢F X
pass

− | X ⊢RI X
sw

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

X ⊸ Y | X ⊢F Y
⊸L

X ⊸ Y | X ⊢RI Y
sw

X ⊸Y | ⊢RI X ⊸ Y
⊸R

Z | ⊢F Z
ax

Z | ⊢LI Z
F2LI

− | Z ⊢F Z
pass

− | Z ⊢RI Z
sw

X ⊸ Y | Z ⊢F (X ⊸ Y )⊗Z
⊗R

(9)

In the first derivation, rule pass in the left branch of ⊗R cannot be moved to the bottom of the proof tree,

since formula X is not yet in context, it becomes available only after the application of ⊸R. Analogously,

in the second derivation, rule ⊸L in the left branch of ⊗R cannot be moved at the bottom, since the

formula X that it sends to the left premise appears in context only after the application of ⊸R.

This motivates the addition of two new tags, corresponding to the two situations previously discussed:

on top of P,C1,C2 and R, a tag could either be of the form Γ, for each context Γ, or of the form •. The

validity condition for list of tags needs to be updated. A list of tags l is now valid if it is non-empty

and either (i) R ∈ l, (ii) both C1 ∈ l and C2 ∈ l, (iii) there exist contexts Γ,Γ′ such that Γ ∈ l, Γ′ ∈ l

and Γ 6= Γ′, or (iv) • ∈ l. Following [20], on top of tag annotations for sequents, we also require tag

annotations for formulae in context. There is only one tag • for formulae. The tag on the formula A•

means that A has been previously moved to the context by an application of ⊸R in phase ⊢l
RI.

Here are the inference rules of the focused sequent calculus with linear implication:

(right invertible)
S | Γ ⊢l1?

RI
A S | Γ ⊢l2?

RI
B

S | Γ ⊢l1?,l2?
RI A∧B

∧R
S | Γ,A•? ⊢l?

RI B

S | Γ ⊢l?
RI A ⊸ B

⊸R
S | Γ ⊢t?

LI P

S | Γ ⊢t?
RI P

LI2RI

(left invertible)

− | Γ ⊢LI P

I | Γ ⊢LI P
IL

A | B,Γ ⊢LI P

A⊗B | Γ ⊢LI P
⊗L

A | Γ ⊢LI P B | Γ ⊢LI P

A∨B | Γ ⊢LI P
∨L

T | Γ ⊢t?
F P

T | Γ ⊢t?
LI P

F2LI

(focusing)
A | Γ◦ ⊢LI P if A•? = A then (t does not exist or t = P) else t = •

− | A•?
,Γ ⊢t?

F P
pass

X | ⊢R?
F X

ax
− | ⊢R?

F I
IR

A | Γ◦ ⊢LI P

A∧B | Γ ⊢C1?
F P

∧L1

B | Γ◦ ⊢LI P

A∧B | Γ ⊢C2?
F P

∧L2

T | Γ◦ ⊢l
RI A − | ∆◦ ⊢RI B l valid

T | Γ,∆ ⊢R?
F A⊗B

⊗R
T | Γ◦ ⊢l

RI A l valid

T | Γ ⊢R?
F A∨B

∨R1

T | Γ◦ ⊢l
RI B l valid

T | Γ ⊢R?
F A∨B

∨R2

− | Γ,∆◦ ⊢RI A B | Λ◦ ⊢LI P if ∆• is empty then (t does not exist or t = Γ) else t = •

A ⊸ B | Γ,∆•
,Λ ⊢t?

F P
⊸L

(10)

Again P indicates a non-negative formula, which now means that its principal connective is neither ∧ nor

⊸. The notation Γ• means that all the formulae in Γ are tagged, while Γ◦ indicates that all the tags on
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formulae in Γ have been erased. We write A•? to denote A if the formula appears in an untagged sequent

and A• if it appears in a sequent marked with a list of tags l or a single tag t.

Tags of the form t = Γ are used to record different splitting of context in applications of ⊸L, while

tag t = • marks when rule ⊸L sends tagged formulae to the left premise and when rule pass moves a

tagged formula to the stoup.

Rule ⊸R moves a formula A from the succedent to the right end of the context. If its conclusion is

marked by a list of tags l, then A is also tagged with •.

The side condition in rule ⊸L should be read as follows. The tagged context ∆• starts with the

leftmost tagged formula in the sequent. If ∆• is empty, then the sequent is either untagged (so there is no

t) or the tag t is equal to Γ. If ∆• is non-empty, then t = •. In particular, ∆• contains at least one tagged

formula, which must have appeared in context from an application of ⊸R. If ∆• is empty and t = Γ,

no new (meaning: tagged with •) formula is moved to the left premise. If t = Γ then we are performing

proof search inside the premise of a right non-invertible rule and t belongs to some valid list of tags l.

List l could be valid because of a different branch in the proof tree where ⊸L is also applied but the

context has been split differently (so its tag would be Γ′ for some Γ 6= Γ′).

Rule pass has a similar side condition to ⊸L. If A does not have a tag, then the sequent is also

untagged or the tag t is equal to P. If A has tag •, then t must also be •. In other words, if t = • then

the formula that pass moves to the stoup must also be tagged with •, i.e. must have been added to the

context by an application of ⊸R.

We can reconstruct the derivation in (8) within the focused sequent calculus with tags in (10).

− | ⊢F I
IR

− | ⊢RI I
sw

− | ⊢F I
IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢LI I
F2LI

I | I ⊢LI I
IL

I⊸ I | I ⊢
[ ]
F I

⊸L

I⊸ I | I ⊢
[ ]
RI I

sw

− | ⊢F I
IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

− | I ⊢F I
pass

− | I ⊢RI I
sw

− | ⊢F I
IR

− | ⊢LI I
F2LI

I | ⊢LI I
IL

I⊸ I | I ⊢
[I]
F I

⊸L

I⊸ I | I ⊢
[I]
RI I

sw

I⊸ I | I ⊢
[ ],[I]
RI I∧ I

∧R

Y | ⊢F Y
ax

Y | ⊢LI Y
F2LI

− | Y ⊢F Y
pass

− | Y ⊢RI Y
sw

I⊸ I | I,Y ⊢F (I∧ I)⊗Y
⊗R

I⊸ I | I,Y ⊢RI (I∧ I)⊗Y
sw

The proofs with tags of the derivations in (9) are analogous to the ones described in [20].

Proving completeness of the extended focused sequent calculus is more involved than in the absence

of implication. Concretely, the complication resides in stating and proving the analog of Proposition 4.4.

First, define an operation impconj(A) which produces a list of pairs of lists of formulae and formulae as

follows:

impconj(A) = impconj(A′), impconj(B′) when A = A′∧B′

impconj(A) = ((A′
,Γ′

1),B
′
1), . . . ,((A

′
,Γ′

n),B
′
n) when A = A′

⊸ B′ and

impconj(B′) = ([(Γ′
1,B

′
1), . . . ,(Γ

′
n,B

′
n)])

impconj(A) = ([ ],A) otherwise

For example, impconj(A ⊸ (B ⊸ (X ∧(C∨D)∧(Y ⊸ Z)))) = [([A,B],X),([A,B],C∨D),([A,B,Y ],Z)].
The statement of Proposition 4.4 for the focused sequent calculus in (10) then becomes:
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Proposition 5.1. The following rules

f s

[S | Γ,Γ′
i ⊢LI Pi]i∈[1,...,n]

S | Γ ⊢LI A∨B
∨RLI

1

f s

[S | Γ,Γ′′
i ⊢LI Qi]i∈[1,...,m]

S | Γ ⊢LI A∨B
∨RLI

2

f s

[S | Γ,Γ′
i ⊢LI Pi]i∈[1,...,n] − | ∆ ⊢RI B′

S | Γ,∆ ⊢LI A⊗B′ ⊗RLI

are admissible, where impconj(A) = [(Γ′
1,P1), . . . ,(Γ

′
n,Pn)] and impconj(B) = [(Γ′′

1 ,Q1), . . . ,(Γ
′′
m,Qm)].

6 Conclusion

The paper presents a sequent calculus for a semi-associative and semi-unital logic, extending the system

introduced in [23] with additive conjunction and disjunction. Categorical models of this calculus are

skew monoidal categories with binary products and coproducts, and the tensor product preserves co-

products on the left: (A+B)⊗C ∼= (A⊗C)+(B⊗C). Derivations in the sequent calculus are equated by

a congruence relation ⊜ and canonical representatives of each ⊜-equivalence class can be computed in a

separate sequent calculus of normal forms, that we dubbed “focused” due to its phase separation similar

to the one in Andreoli’s technique [3]. It should be remarked that, differently from Andreoli’s focusing,

and also the maximally multi-focused sequent calculus for skew monoidal closed categories by one of

the authors [25], we do not insist on keeping the focus during the synchronous phase of proof search, and

we always privilege the application of left non-invertible rules over right non-invertible ones. In order to

achieve completeness wrt. the sequent calculus, the focused system employs a system of tag annotations

providing explicit justifications for cases where right non-invertible rules must be applied before the left

non-invertible ones.

The focused sequent calculus is a concrete presentation of the free distributive skew monoidal cate-

gory on the set of atomic formulae. Therefore the normalization/focusing algorithm determines a proce-

dure for solving the coherence problem of distributive skew monoidal categories.

In the final part of the paper, we have looked at extensions of the logic with additive units, a skew

exchange rule in the style of Bourke and Lack [6], and linear implication. This section still needs to be

formalized in Agda, which will be our forthcoming step.

This paper takes one step further in a large project aiming at modularly analyzing proof systems

with categorical models given by categories with skew structure [26, 23, 22, 21, 24, 20]. We are inter-

ested in looking for applications of these systems to combinatorics and linguistics, following the initial

investigation by Zeilberger [26] and Moortgat [15].

We are interested in using the techniques introduced in this paper to design a calculus of normal

forms for the classical linear logic MALL. In the latter setting, the situation is more complicated than

the skew one, since there could be more than two formulae that can be under focus in the synchronous

phase. We expect our calculus to give an alternative presentation of the maximally multi-focused proofs

of Chaudhuri et al. [8].
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[20] Tarmo Uustalu, Niccolò Veltri & Cheng-Syuan Wan (2022): Proof Theory of Skew Non-Commutative MILL.

In Andrzej Indrzejczak & Michal Zawidzki, editors: Proceedings of 10th International Conference on Non-

classical Logics: Theory and Applications, NCL 2022, Electronic Proceedings in Theoretical Computer

Science 358, Open Publishing Association, pp. 118–135, doi:10.4204/eptcs.358.9.
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Arrays and array-like data structures (such as hash-tables) are widely used in software. Furthermore,

many semantic aspects of programming, such as byte-addressed memory, data structure fields, etc., can

be modeled as arrays. Static analyzers that aim at proving properties of programs thus often need to deal

with arrays. An array, in our context, is a map a from an index set I (not necessarily an integer range) to

a value set V , with “get” a[i] and “set” a[i← v] operations satisfying the relations:

a[i← v][i] = v

a[i← v][i′] = t[i′] when i′ 6= i

Many interesting invariants about arrays are universally quantified over indices. For instance, “the

array a contains 42 at all indices from 0 included to n excluded” is written ∀k, 0≤ k < n⇒ a[k] = 42”;

“the array a is sorted from indices from 0 included to n excluded” can be written ∀k1k2, 0 ≤ k1 ≤
k2 < n ⇒ a[k1] ≤ a[k2]. More generally, we consider invariants of the form ∀k1, . . ., kmP(k1, . . . ,km,

a[k1], . . . ,a[km],v1, . . . ,v|V |) where a is an array and the vi are other variables of the program, and P is an

arbitrary predicate. We also consider the case of multiple arrays, so as to be able to express properties

such as ∀k, 0≤ k < n⇒ a[k] = b[k].
Numerous approaches have been proposed to automatically infer such invariants. We have proposed

an approach [BGM21, BGM16, Bra22, MG16], that converts an invariant inference problem (expressed

as a solution to a system of Horn clauses), constrained by a safety property and restricted to such univer-

sally quantified invariants into an invariant inference problem on ordinary invariants (without universal

quantification), through suitable quantifier instantiation. By further processing, through Ackermanniza-

tion, these problems can even be converted, without loss of precision, to invariant inference problems

over purely scalar variables (no more arrays).

While that second step does not incur loss of precision, the first step (quantifier instantiation), is in

general sound (if the transformed invariant problem has a solution, then so has the original problem) but

incomplete: it may be the case that it converts an invariant inference problem (a system of Horn clauses)

that has a solution among universally quantified array invariants into a problem that has no solution. We

however show that under certain syntactic restrictions (mostly, that the original Horn clause problem

should be linear, which includes all problems obtained from the inductiveness conditions of control-flow

graphs), that transformation is complete.

We thus show that under these conditions, our approach for solving invariant inference problems

within universally quantified array properties is thus relatively complete to our ability to solve the re-

sulting array-free ordinary invariant inference problem, in general over non-linear Horn clauses. This is

the main limitation to our approach, since solvers for such kinds of problems tend to have unpredictable

performance.
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CHC-COMP 2023 is the sixth edition of the Competition of Solvers for Constrained Horn Clauses.

The competition was run in April 2023 and the results were presented at the 10th Workshop on Horn

Clauses for Verification and Synthesis held in Paris, France, on April 23, 2023. This edition featured

seven solvers (six competing and one hors concours) and six tracks, each of which dealing with a

class of clauses. This report describes the organization of CHC-COMP 2023 and presents its results.

1 Introduction

Constrained Horn Clauses (CHCs) are a class of first-order logic formulas where the Horn clause format

is extended with constraints, that is, formulas of an arbitrary, possibly non-Horn, background theory

(such as linear integer arithmetic, arrays, and algebraic data types).

CHCs have gained popularity as a formalism well suited for automatic program verification [20, 5,

9]). Indeed, the last decade has seen impressive progress in the development of solvers for CHCs (CHC

solvers), which can now be effectively used as back-end tools for program verification due to their ability

to solve satisfiability problems dealing with a variety of background theories. A non-exhaustive list of

solvers includes: ADTInd [40], ADTRem [11], Eldarica [25], FreqHorn [16], Golem [7], HSF [20],

PCSat [39], RAHFT [27], RInGen [29], SPACER [28], Ultimate TreeAutomizer [13], and VeriMAP [10].

CHC-COMP is an annual competition that aims to evaluate state-of-the-art CHC solvers on realistic

and publicly available benchmarks; it is open to proposals and contributions from users and developers of

CHC solvers, as well as researchers working in the field of CHC solving foundations and its applications.

CHC-COMP 20231 is the 6th edition of the CHC-COMP, affiliated with the 10th Workshop on Horn

Clauses for Verification and Synthesis (HCVS 20232) held in Paris, France, on April 23, 2023. The

deadline for submitting candidate benchmarks was March 24, 2023. The deadlines for submitting tools

for the test (optional) and the competition runs were 31 March and 7 April 2023, respectively. The

competition was run in the subsequent two weeks, and the results were announced at HCVS 2023. CHC-

COMP 2023 featured 7 solvers (6 competing solvers and one hors concours), and 6 tracks, each of which

dealing with a class of clauses consisting of linear and nonlinear CHCs with constraints over linear

integer arithmetic, arrays, non-recursive/recursive algebraic data types, and a few combinations thereof.

This report is structured as follows. Section 2 presents the competition tracks, the technical resources

used to run the competition, and the evaluation model adopted to rank the solvers. Section 3 presents the

inventory of benchmarks and how the candidate benchmarks have been processed and selected for the

competition runs. Sections 4 and 5 present the tools submitted to CHC-COMP 2023 and the results of the

competition, respectively. Section 6 presents some closing remarks from the organizers and participants

of CHC-COMP 2023. Section 7 collects the tool descriptions contributed by the participants. Finally,

Appendix A includes the tables with the detailed results about the competition runs.

*The author is member of the INdAM Research Group GNCS.
1https://chc-comp.github.io/
2https://www.sci.unich.it/hcvs23/
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2 Design and Organization

This section presents (i) the competition tracks, (ii) the technical resources used to run the solvers, (iii)

the characteristics of the test and the competition runs, and (iv) the evaluation model used to rank the

solvers in each track.

2.1 Tracks

CHC-COMP is organized in tracks, each of which deals with a class of CHCs. CHCs are classified

according to the following features: (i) the background theory of the constraints, and (ii) the number of

uninterpreted atoms (that is, atoms whose predicate symbols do not belong to the background theory)

occurring in the premises of clauses. A clause with at most one uninterpreted atom in the premise is said

to be linear, and nonlinear otherwise.

Solvers participating in the CHC-COMP 2023 could enter the competition in six tracks (one track

was introduced in this edition, that is, ADT-LIA-nonlin, while the remaining tracks were inherited from

the previous edition)5:

1. LIA-lin: Linear Integer Arithmetic - linear clauses

2. LIA-nonlin: Linear Integer Arithmetic - nonlinear clauses

3. LIA-lin-Arrays: Linear Integer Arithmetic & Arrays - linear clauses

4. LIA-nonlin-Arrays: Linear Integer Arithmetic & Arrays - nonlinear clauses

5. LIA-nonlin-Arrays-nonrecADT: Linear Integer Arithmetic & Arrays & nonrecursive Algebraic

Data Types - nonlinear clauses

6. ADT-LIA-nonlin: Algebraic Data Types & Linear Integer Arithmetic - nonlinear clauses

3https://tacas.info/toolympics2023.php
4https://www.starexec.org/
5No solver requiring the syntactic restriction on the form of the clauses included in the LRA-TS track has been submitted

in last two editions. Hence, as proposed in [15, 12], the LRA-TS and LRA-TS-par tracks have been discontinued. Similarly,

by considering recent advances in solving techniques for CHCs including algebraic data types, the syntactic restriction on the

constraints of the CHCs in the ADT-nonlin track, which requires to have all theory symbols encoded as ADTs (called “pure

ADT” problems in [15]), was no longer needed. Hence, the track has been discontinued and replaced with a more general track

combining LIA and ADTs (that is, ADT-LIA-nonlin).

https://tacas.info/toolympics2023.php
https://www.starexec.org/
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In addition to the theories occurring in the above list (Linear Integer Arithmetic, Arrays, nonrecur-

sive/recursive Algebraic Data Types, and combinations thereof), benchmarks in all tracks can also make

use of the Bool theory.

Finally, in LIA constraints we allow the syntactic appearance of the function symbols ∗, div, mod, and

abs. If these operations do appear, the benchmark is included/excluded from the set of LIA benchmarks

according to the following rules: (i) if the second argument of any div and mod operation is not a constant

term, the benchmark is excluded; (ii) if there is more than one non-constant term in any ∗ operation,

the benchmark is excluded; (iii) otherwise, the operations are considered semantically linear and the

benchmark is included.

2.2 Technical Resources

CHC-COMP 2023 was run, as well as in the previous editions, on the StarExec platform, but using

different technical resources[12]. StarExec made available to the CHC community a queue, called chc-

seq.q, consisting of 20 brand new nodes equipped with Intel(R) Xeon(R) Gold 6334 CPUs. The detailed

specification of the machine is available on the StarExec webpage6.

2.3 Test and Competition Runs

CHC solvers are evaluated by performing a test run and a competition run on the StarExec platform. A

run involves submitting jobs to StarExec, that is, collections of 〈solver-configuration, benchmark〉 pairs.

The test run is used by the participants to get acquainted with the StarExec platform and test out

their pre-submissions. Submitting a solver for test runs is optional. During this test phase, the organizers

contact the participants if they find any issues with their submission so that the participants can fix it

before their final submission. The participants are given a week in between the test and competition runs.

In the test runs, a small set of randomly selected benchmarks is used, and each job is limited to 600s

CPU time, 600s wall-clock time, and 64GB memory.

In competition runs, the final submissions of the solvers are evaluated to determine the outcome of

the competition, that is, to rank the solvers that entered the competition. In these runs each job is limited

to 1800s CPU time, 1800s wall-clock time, and 64GB memory.

Sometimes, the competition benchmarks expose soundness bugs in solvers. We catch these bugs if

two solvers disagree on the satisfiability of a benchmark. At CHC-COMP, we keep things friendly by

informing the participants about the inconsistency and giving them the benchmark to reproduce the issue.

If we have time, we even give them a chance to fix the issue and resubmit their tool. If not, we disqualify

the tool from the track.

The data gathered from the ‘job information’ CSV files produced by StarExec in the competition runs

are used to rank the solvers. All ‘job information’ CSV files of the CHC-COMP 2023 runs are available

on the StarExec space CHC/CHC-COMP/CHC-COMP-237.

2.4 Evaluation of the Competition Runs

The competing solvers were evaluated using the same approach as the 2022 edition [12].

6https://www.starexec.org/starexec/public/machine-specs.txt
7https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538944

https://www.starexec.org/starexec/public/machine-specs.txt
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538944
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The evaluation of the competition runs were done using the summarize.py script available at

https://github.com/chc-comp/scripts; the script takes as input the ‘job information’ CSV file

produced by StarExec at job completion, and produces a ranking of the solvers.

The ranking of solvers in each track is based on the score obtained by the solvers in the competition

run for a track. The score is computed on the basis of the results provided by the solver on the benchmarks

for that track. The result can be sat, unsat, or unknown (which includes solvers giving up, running out

of resources, or crashing), and the score given by the number of sat or unsat results. In the case of ex-

aequo, the ranking is determined by using the CPU time, which is the total CPU time needed by a solver

to produce the results.

The tables in Appendix A also report in column ‘#unique’ the number of sat or unsat results produced

by a solver for benchmarks for which all other solvers returned unknown. The ‘job information’ files also

include data about the space and memory consumption, which we consider less relevant and therefore

are not reported in the tables (see also the CHC-COMP 2021 and CHC-COMP 2022 reports [15, 12]).

3 Benchmarks

3.1 Format

CHC-COMP accepts benchmarks in the SMT-LIB 2.6 format [2]. All benchmarks have to conform to the

format described at https://chc-comp.github.io/format.html. This year, we updated the format

to allow the declaration of ADTs using the declare-datatypes command. We support ADTs with any

number of constructors and selectors as long as they are not parametric. Conformance is checked using

the format.py script available at https://github.com/chc-comp/scripts.

3.2 Inventory

All benchmarks used for the competition are selected from repositories under https://github.com/

chc-comp. Anyone can contribute benchmarks to this repository. This year, we got several new bench-

marks for the track ADT-LIA-nonlin. Table 1 summarizes the number of benchmarks and unique bench-

marks available in each repository. The organizers pick a subset of all available benchmarks for each

year’s competition. In the rest of this section, we explain the steps in this selection.

3.3 Processing Benchmarks

All benchmarks are processed using the format.py script, which is available at https://github.

com/chc-comp/scripts. The command line for invoking the script is

> python3.9 format.py --out-dir <out-dir> --merge_queries True <smt-file>

The script attempts to put benchmark <smt-file> into CHC-COMP format. The merge queries

option merges multiple queries into a single query as discussed in previous editions of CHC-COMP [15].

In previous competitions, this script was not used in tracks containing ADTs because it did not print

ADTs. This year, we updated the script to support printing ADTs in the SMT-LIB format using the

declare-datatypes command. When printing ADTs are grouped as follows: if a constructor of ADT

type a takes an argument of type ADT b, both a and b are grouped together. All ADTs in a group are

declared together inside the same declare-dataypes command.

After formatting, benchmarks are categorized into one of the 6 competition tracks: LIA-lin, LIA-

nonlin, LIA-lin-Arrays, LIA-nonlin-Arrays, ADT-LIA-nonlin, and LIA-nonlin-Arrays-nonrecADT. The

https://github.com/chc-comp/scripts
https://chc-comp.github.io/format.html
https://github.com/chc-comp/scripts
https://github.com/chc-comp
https://github.com/chc-comp
https://github.com/chc-comp/scripts
https://github.com/chc-comp/scripts
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scripts for categorizing benchmarks are available at https://github.com/chc-comp/chc-tools/

tree/master/format-checker. This year, we added support for ADT tracks in the categorizing

script. The script now checks for proper declaration of ADTs and proper usage of constructors, selectors,

and recognizers. However, it does not check if a given ADT is recursive or not. Therefore, for the LIA-

nonlin-Arrays-nonrecADT track, we manually verified that all ADTs are non-recursive. Benchmarks

that could not be put in CHC-COMP compliant format and benchmarks that could not be categorized

into any tracks are not used for the competition.

Repository LIA-

lin

LIA-

nonlin

LIA-

lin-

Arrays

LIA-

nonlin-

Arrays

LIA-

nonlin-

Arrays-

nonrecADT

ADT-

LIA-

nonlin

adtrem (new) 251/247

aeval 54/54

aeval-unsafe 54/54

chc-comp19 290/290

eldarica-misc 149/136 69/66

extra-small-lia 55/55

hcai 101/87 133/131 39/39 25/25

hopv 49/48 68/67

jayhorn 75/73 7325/7224

kind2 851/736

ldv-ant-med 10/10 342/342

ldv-arrays 3/2 821/546

llreve 66/66 59/57 31/31

quic3 43/43

rust-horn (new) 11/11 6/6 56/56

seahorn 3379/2812 68/66

solidity 2200/2174

sv-comp 3150/2930 1643/1169 79/73 856/780

synth/nay-horn 119/114

synth/semgus 5371/4839

tip-adt-lia (new) 320/320

tricera 405/405 4/4

tricera/adt-arrays 156/156

ultimate 8/8 23/23

vmt 906/803

total/unique 8454/7534 10353/9648 495/488 7438/6555 2356/2330 627/623

Table 1: Summary of benchmarks (total/unique).

https://github.com/chc-comp/chc-tools/tree/master/format-checker
https://github.com/chc-comp/chc-tools/tree/master/format-checker
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3.4 Rating and Selection

This section describes the procedure used to select benchmarks for the competition.

We picked all unique benchmarks in the LIA-lin-Arrays track because of the scarcity of available

benchmarks. In all other tracks, we followed a procedure similar to the past editions of the competition

aiming at selecting a representative subset of the available benchmarks. In particular, we estimated how

“easy” the benchmarks were and picked a mix of “easy” and “hard” instances. We say that a benchmark

in a track is “easy” if it is solved by both the winner and the runner-up solvers in the corresponding track

in CHC-COMP 2022, within a small time interval (30s).

Each benchmark was rated A/B/C based on how difficult the winner and the runner-up solvers found

them. A rating of “A” is given if both solvers solved the benchmark, “B” if only one solver solved it,

“C” if neither solved it, within the set timeout (30s). We ran all solvers using the same binaries and

configurations submitted for CHC-COMP 2022.

Once we labeled each benchmark from a repository r, we decided the maximum number of instances,

Nr, to take from the repository. Nr number was decided based on the total number of unique benchmarks

and our knowledge about the benchmarks in repository r.

We picked at most 0.2 ·Nr benchmarks with rating A. Then, we picked at most 0.4 ·Nr benchmarks

with rating B; namely, 0.2 ·Nr from those solved only by the winner solver and 0.2 ·Nr from those solved

only by the runner-up solver. Finally, we picked at most 0.4 ·Nr benchmarks with rating C. If we did not

find enough benchmarks with rating A, we picked the rest of the benchmarks with rating B (equally from

those solved only by the winner and the runner-up). If we did not find enough benchmarks with rating

B, we pick the remaining benchmarks from rating C.

This way, we obtained a mix of “easy” and “hard” benchmarks with a bias towards benchmarks that

were not easily solved by either of the best solvers from the previous year’s competition. The number

of instances with each rating is given in Tables 2 and 3. The number of instances picked from each

repository is given in Table 4. To pick <num> benchmarks of rating <Y>, we used the command

> cat <rating-Y-benchmark-list> | sort -R | head -n <num>

We were unable to run more than one solver for tracks containing ADTs (ADT-LIA-nonlin, LIA-

nonlin-Arrays-nonrecADT). Only 3 solvers participated in tracks containing ADTs in CHC-COMP 2022:

Spacer, Eldarica, and RInGen. RInGen does not support theories other than ADTs. The version of

Eldarica submitted to CHC-COMP 2022 does not support the updated format of CHC-COMP 2023.

Specifically, this version of Eldarica does not support the SMT-LIB syntax for recognizers8 . Therefore,

we were limited to using just one solver, Spacer, to select benchmarks for tracks containing ADTs. For

each repository r, we decided a maximum number of instances Nr, ran Spacer on all benchmarks with

the same timeout (30s), and picked 0.4 ·Nr benchmarks that Spacer solved (column B in Table 3) and

0.6 ·Nr benchmarks that Spacer did not solve (column C in Table 3).

The final set of benchmarks selected for CHC-COMP 2023 can be found in the github repository

https://github.com/chc-comp/chc-comp23-benchmarks, and on StarExec in the public space

CHC/CHC-COMP-23/CHC-COMP-23-competition-runs9.

8since then, Eldarica has been updated to support recognizers. E.g. Eldarica v2.0.9 that participated in CHC-COMP 2023.
9https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538230

https://github.com/chc-comp/chc-comp23-benchmarks
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=538230
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LIA-lin LIA-nonlin LIA-nonlin-Arrays

Repository #A #B #C #A #B #C #A #B #C
(w) (r) (w) (r) (w) (r)

aeval 12 9 4 29

aeval-unsafe 17 0 12 25

eldarica-misc 120 5 9 2 39 13 0 14

extra-small-lia 30 13 8 4

hcai 82 1 3 1 123 0 5 3 17 3 0 5

hopv 48 0 0 0 57 3 5 2

jayhorn 73 0 0 0 3712 2275 1 1236

kind2 650 70 0 16

ldv-ant-med 0 128 0 214

ldv-arrays 7 195 0 344

llreve 61 0 5 0 48 4 2 3

rust-horn 10 1 0 0 5 0 0 1

seahorn 2089 65 69 589 60 1 2 3

sv-comp 2854 1 74 1 1117 40 4 8 310 330 7 133

synth/nay-horn 70 20 4 20

synth/semgus 737 2254 4 1844

tricera/svcomp20 43 7 4 351 4 0 0 0

ultimate 0 1 0 7 0 0 0 23

vmt 711 31 7 54

total 6150 133 195 1056 5885 2427 23 1313 1071 2910 11 2563

Table 2: The number of unique benchmarks with ratings A/B/C - Tracks: LIA-lin, LIA-nonlin, and LIA-

nonlin-Arrays. B-rated benchmarks are reported in two sub-columns: (w) benchmarks solved only by the

CHC-COMP 2022 winner, and (r) benchmarks solved only by the CHC-COMP 2022 runner-up solver.

LIA-nonlin- ADT-

Arrays- LIA-nonlin

nonrecADT

Repository #B #C #B #C

adtrem 86 161

rust-horn 43 13

solidity 2109 65

tip-adt-lia 39 281

tricera/adt-arrays 65 91

total 2174 156 168 455

Table 3: The number of unique benchmarks with ratings B/C – Tracks: ADT-nonlin, and LIA-nonlin-

Arrays-nonrecADT.
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Repository LIA-lin LIA-

nonlin

LIA-

nonlin-

Arrays

LIA-

nonlin-

Arrays-

nonrecADT

ADT-

LIA-

nonlin

adtrem 125/125

aeval 30/30

aeval-unsafe 30/30

eldarica-misc 45/25 30/26

extra-small-lia 30/22

hcai 45/14 60/20 15/11

hopv 30/6 30/16

jayhorn 30/6 180/180

kind2 90/52

ldv-ant-med 60/60

ldv-arrays 90/90

llreve 30/11 45/18

rust-horn 28/18

seahorn 90/90 45/15

solidity 312/127

sv-comp 90/38 90/48 135/135

synth/nay-horn 60/48

synth/semgus 135/135

tip-adt-lia 160/160

tricera/svcomp20 60/60 3/0

tricera/adt-arrays 156/122

ultimate 6/5 15/15

vmt 90/90

total 600/422 639/428 450/446 468/249 313/303

Table 4: The number of benchmarks to select and the number of selected benchmarks from each reposi-

tory.
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4 Solvers

Seven solvers were submitted to CHC-COMP 2023: six competing solvers, and one solver hors concours

(Spacer is co-developed by Hari Govind V K who is co-organizing the CHC-COMP 2023.).

Table 5 lists the submitted solvers together with the configurations used to run them on the competi-

tion tracks. Detailed descriptions of the solvers are provided in Section 7. The binaries of the solvers are

available on the StarExec space CHC/CHC-COMP/CHC-COMP-23-competitions-runs.

Solver

LIA-

lin

LIA-

nonlin

LIA-

lin-

Arrays

LIA-

nonlin-

Arrays

LIA-

nonlin-

Arrays-

nonrecADT

ADT-

LIA-

nonlin

Eldarica def def def def def def

Golem lia-lin lia-nonlin

LoAT loat horn

Theta fix fix fix fix

Ultimate

TreeAutomizer

default default default default

Ultimate

Unihorn

default default default default

Spacer def def ARRAYS ARRAYS def def

Table 5: Solvers and configurations used in the tracks; an empty entry denotes that the solver did not enter

the competition in that track. The configuration names have been taken as is from solver submissions.

5 Results

The results of the CHC-COMP 2023 are reported in Table 6. Detailed results are provided in Appendix A.

All the data gathered from the execution of the StarExec jobs created for the competition run are available

on the StarExec space CHC/CHC-COMP/CHC-COMP-23-competitions-runs.

LIA-

lin

LIA-

nonlin

LIA-

lin-

Arrays

LIA-

nonlin-

Arrays

LIA-

nonlin-

Arrays-

nonrecADT

ADT-

LIA-

nonlin

Winner Golem Eldarica Eldarica Eldarica Eldarica Eldarica

2nd place Eldarica Golem Theta Ultimate

Unihorn

3rd place Theta Ultimate

Unihorn

Ultimate

Unihorn

Theta

Table 6: Results of CHC-COMP 2023. Spacer, which entered the competition as hors concours solver,

placed in the first position of the LIA-lin, LIA-nonlin, LIA-lin-Arrays, and LIA-nonlin-Arrays tracks.
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5.1 Observed Issues and Fixes during the Competition runs

This section describes the issues we have run across when using the tools entered in the competition and

how we worked with the teams to overcome them.

Ultimate TreeAutomizer and Ultimate Unihorn Due to issues in building a version of Z3 that is able

to run on StarExec, the final submission for the competition run of the solvers Ultimate TreeAutomizer

and Ultimate Unihorn were completed on 14 April, 2023.

Theta In the competition runs of the LIA-nonlin-Arrays track we detected one inconsistent result:

Theta (Theta-default in Table 7) reported unsat on one benchmark, while other solvers reported sat. The

inconsistency was detected on April 14, and we informed the team on the same day by sending them the

benchmark on which the issue was detected. The team submitted an updated version of Theta on April

15. Due to a configuration problem, the updated version of Theta reported unknown on all benchmarks.

We informed the team on April 16, who provided an updated version of the solver (Theta-fix in Table 7)

on the same day.

In the competition runs of the LIA-nonlin track we detected one inconsistent result: Theta-fix re-

ported sat, while other solvers reported unsat. The Theta team was informed on April 19 by sending

them the benchmark on which the issue was detected. The team submitted a fixed version (Thetafix-fix

in Table 7) on April 19 that produced no inconsistent results.

The results presented in this report were produces using the fixed version. In Table 7 we report the

results before and after the fixes.

Theta version
LIA-lin LIA-nonlin LIA-lin-Arrays LIA-nonlin-Arrays

#sat #unsat #sat #unsat #sat #unsat #sat #unsat

Theta-default 129 53 12 21 148 50 52 40

Theta-fix 121 49 9 20 135 50 45 39

Thetafix-fix 122 48 8 30 134 50 45 40

Table 7: Results produced by Theta before and after the fixes.
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6 Conclusions and Final Remarks

We would like to congratulate the winners of the CHC-COMP 2023 (in alphabetical order): Eldarica

(winner of the following tracks: LIA-nonlin, LIA-lin-Arrays, LIA-nonlin-Arrays, LIA-nonlin-Arrays-

nonrecADT, and LIA-nonlin-Arrays), and Golem (winner of the LIA-lin track).

In organizing this edition of the competition we did our best to address some open issues discussed

in the report of the CHC-COMP 2022 [12]. In particular, we have replaced the ADT-nonlin track with

a more general track dealing with the combined theory of LIA and ADTs (ADT-LIA-nonlin), and we

have extended the CHC format and the tools for processing and selecting the benchmarks to deal with

ADTs. Moreover, as mentioned in the previous reports [15, 12], we have discontinued the obsolete tracks

LRA-TS and LRA-TS-par. Finally, we have made a small change to the candidate benchmarks rating

process by increasing the timeout used to evaluate their “hardness” (see Section 3.4). Ideally, we would

have run the solvers with the same timeout as used in the competition (20 minutes). However, there are

over 7500 benchmarks to pick from and we expect several timeouts irrespective of the time limit. Hence,

for practical reasons, we set the timeout to 30 seconds for all solvers (previous editions had lower values

that were dependent on the solver used to rate the benchmarks).

Below, we report the still open issues that should be further discussed for future editions, and the

proposal for new tracks that emerged from the follow-up discussion we had after the presentation of the

competition report at HCVS.

• Validation of results (also discussed in the previous editions [15, 12]). The ability of solvers to

generate a witnesses (models or counter-examples) to support their results is a recurrent request

by our community members. Several solvers have support for generating a witness. However, the

witness is used mainly for debugging by the developers and having a common format for them is

still a work in progress. As an additional issue, it is often the case that these witnesses are not

for the original CHCs but for those obtained after many layers of pre-processing. Transforming

these “internal” witnesses into a witness for the original problem is also a work in progress. While

reaching a consensus on a common format for their encoding would require a thoughtful discussion

involving all members of the CHC community, we could begin, as already proposed in the previous

reports, by introducing in the CHC-COMP new tracks where the ability of producing a witness is

taken into consideration in the computation of the score.

• Status of benchmarks (from [12]). In order to assess the correctness of the result provided by

the solvers, each submitted benchmark should explicitly declare the expected result of the satisfi-

ability problem. We propose to use the ( set-info 〈keyword〉 〈attr-value〉 ) command with the

:status as keyword, and either sat or unsat as attr-value.

• Parallel tracks. (Thanks to Martin Blicha for having sent us this note.) We propose a parallel

version for each (or some) of the existing tracks. Instead of putting a limit on the CPU time, only

a limit on the wall-clock time would be imposed in the parallel version. Parallel tracks can be

implemented in two ways: either use the solvers’ configuration submitted for the classical tracks,

or allow a separate submission for the parallel tracks.

Finally, we would to stress once again that a bigger set of benchmarks are needed. Besides sub-

mitting their tools, all participants are invited to contribute with new benchmarks.
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7 Solver Descriptions

The tool descriptions in this section were contributed by the participants, and the copyright on the texts

remains with the individual authors.

7.1 Eldarica v2.0.9

Hossein Hojjat

University of Tehran, Iran

Philipp Rümmer

University of Regensburg, Germany and Uppsala University, Sweden

Algorithm. Eldarica [25] is a Horn solver applying classical algorithms from model checking: predi-

cate abstraction and counterexample-guided abstraction refinement (CEGAR). Eldarica can solve Horn

clauses over linear integer arithmetic, arrays, algebraic data-types, bit-vectors, and the theory of heaps.

It can process Horn clauses and programs in a variety of formats, implements sophisticated algorithms

to solve tricky systems of clauses without diverging, and offers an elegant API for programmatic use.

Architecture and Implementation. Eldarica is entirely implemented in Scala, and only depends on

Java or Scala libraries, which implies that Eldarica can be used on any platform with a JVM. For com-

puting abstractions of systems of Horn clauses and inferring new predicates, Eldarica invokes the SMT

solver Princess [34] as a library.

Configuration in CHC-COMP 2023. Eldarica is in the competition run with the option -portfolio,

which enables a simple portfolio mode. Four instances of the solver are run in parallel, with the following

options:

1. -splitClauses:0 -abstract:off,

2. -splitClauses:1 -abstract:off -stac,

3. -splitClauses:1 -abstract:off,

4. -splitClauses:1 -abstract:relEqs (the default options).

https://github.com/uuverifiers/eldarica

BSD licence

https://github.com/uuverifiers/eldarica


Emanuele De Angelis and Hari Govind V K 95

7.2 Golem

Martin Blicha

Università della Svizzera italiana, Switzerland

Konstantin Britikov

Università della Svizzera italiana, Switzerland

Algorithm. Golem is a CHC solver under active development that provides several backend engines

implementing various SMT- and interpolation-based model-checking algorithms. It supports the theory

of Linear Real or Integer Arithmetic and it is able to provide witnesses for both satisfiable and unsatisfi-

able CHC systems. Several back-end engines are implemeted in Golem:

• lawi is our re-implementation of the IMPACT algorithm [32]

• spacer is our re-implementation of the SPACER algorithm [28] and allows Golem to solve non-

linear systems.

• tpa is our new model-checking algorithm based on doubling abstractions using Craig interpolants [7,

6].

• bmc implements the standard algorithm of Bounded Model Checking [4]

• kind implements a basic variant of k-induction [35]

• imc is our implementation of McMillan’s first interpolation-based model-checking algorithm [31]

Architecture and Implementation. Golem is implemented in C++ and built on top of the interpolating

SMT solver OPENSMT [26] which is used for both satisfiability solving and interpolation. The only

dependencies are those inherited from OPENSMT: Flex, Bison and GMP libraries.

New Features in CHC-COMP 2023. Compared to the previous year, Golem has three new back-

end engines: bmc, kind and imc. However, these engines support only transition systems and did not

participate in the competition for this reason. Additionally, the preprocessing of the input system has

improved significantly, without losing the ability to produce witnesses.

Configuration in CHC-COMP 2023. For LIA-nonlin track we used only spacer engine; the other

engines cannot handle nonlinear system yet.

$ golem --engine spacer

For LIA-lin track, we used a trivial portfolio of lawi, spacer and tpa (in split-tpamode) running

independently.

$ golem --engine=spacer,lawi,split-tpa

https://github.com/usi-verification-and-security/golem

MIT LICENSE

https://github.com/usi-verification-and-security/golem
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7.3 LoAT chc-comp-2023

Florian Frohn

LuFG Informatik 2, RWTH Aachen University, Germany

Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Germany

Algorithm. The Loop Acceleration Tool (LoAT) [18] is based on Acceleration Driven Clause Learning

(ADCL) [19], a novel calculus for analyzing satisfiability of CHCs. LoAT’s implementation of ADCL

is based on a calculus for modular loop acceleration [17]. It can analyze linear Horn clauses over

integer arithmetic. While ADCL can also prove satisfiability of CHCs, LoAT is currently restricted to

proving unsatisfiability. Besides unsatisfiability of CHCs, LoAT can also prove non-termination and

lower bounds on the worst-case runtime complexity of transition systems.

Architecture and Implementation. LoAT is implemented in C++. It uses the SMT solvers Z3 [33] and

Yices [14], the recurrence solver PURRS [1], and the automata library libFAUDES [30].

New Features in CHC-COMP 2023. LoAT participates in the competition for the first time. Earlier

version of LoAT could not analyze CHCs, but only transition systems.

Configuration in CHC-COMP 2023. At the competition, LoAT is run with the following arguments:

--mode reachability for proving reachability for transition systems or unsatisfiability of CHCs, re-

spectively

--format horn for specifying that the input problem is given in the SMT-LIB-format for Horn clauses

https://loat-developers.github.io/LoAT/

GPL licence

https://loat-developers.github.io/LoAT/
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7.4 Theta v4.2.3

Márk Somorjai

Mihály Dobos-Kovács

Levente Bajczi

András Vörös

Department of Measurement and Information Systems

Budapest University of Technology and Economics, Hungary

Algorithm. THETA decides the satisfiability of Constrained Horn Clauses by transforming it to a for-

mal verification problem and employing an abstraction-based model checking technique. The input set

of CHCs are transformed into a formal program representation named Control Flow Automata (CFA) [3]

in a way that the unsatisfiability of the CHC problem is equivalent to the reachability of erroneous loca-

tions in the CFA. A bottom-up transformation is used for linear CHCs while a top-down transformation

is done to nonlinear CHCs [36]. The erroneous state reachability of the created CFA is then checked us-

ing CounterExample-Guided Abstraction Refinement (CEGAR) [8], an iterative abstraction-based model

checking algorithm.

Architecture and Implementation. THETA is a highly configurable model checking framework im-

plemented in Java [21]. It supports various formalisms for the verification programs, engineering models

and timed systems, among others. Verification is done by the main CEGAR engine, which utilizes SMT

solvers through an SMTLIB interface to calculate interpolants and check the feasibility of paths. The

CEGAR engine can be configured to use different abstraction domains and interpolation techniques. The

framework offers a number of command line tools equipped with frontends that parse the input problem

into a formalism. The bottom-up and top-down transformations from CHCs to CFA are implemented as

a frontends for the xcfa-cli tool.

Configuration in CHC-COMP 2023. THETA is run with a sequential portfolio of 3 configurations

listed below, using explicit value tracking, split predicate or cartesian predicate abstraction. Interpola-

tion was set to backwards binary interpolation or sequential interpolation, calculated by Z3 10 as the

underlying SMT solver.

1. --domain PRED SPLIT --refinement BW BIN ITP --predsplit WHOLE

2. --domain PRED CART --refinement BW BIN ITP --predsplit WHOLE

3. --domain EXPL --refinement SEQ ITP

THETA detects whether the input CHCs are linear or not and employs a bottom-up transformation

for the former and a top-down transformation for the latter. The submitted Theta version and run scripts

are available in the competition archive [37].

https://github.com/ftsrg/theta

Apache License 2.0

10https://github.com/Z3Prover/z3

https://orcid.org/0000-0001-7537-0469
https://orcid.org/0000-0002-0064-2965
https://orcid.org/0000-0002-6551-5860
https://orcid.org/0000-0001-7617-3563
https://github.com/ftsrg/theta
https://github.com/Z3Prover/z3
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7.5 Ultimate TreeAutomizer 0.2.3-dev-ac87e89

Matthias Heizmann

University of Freiburg, Germany

Daniel Dietsch

University of Freiburg, Germany

Jochen Hoenicke

University of Freiburg, Germany

Alexander Nutz

University of Freiburg, Germany

Andreas Podelski

University of Freiburg, Germany

Frank Schüssele

University of Freiburg, Germany

Algorithm. The ULTIMATE TREEAUTOMIZER solver implements an approach that is based on tree

automata [13]. In this approach potential counterexamples to satisfiability are considered as a regular set

of trees. In an iterative CEGAR loop we analyze potential counterexamples. Real counterexamples lead

to an unsat result. Spurious counterexamples are generalized to a regular set of spurious counterexamples

and subtracted from the set of potential counterexamples that have to be considered. In case we detected

that all potential counterexamples are spurious, the result is sat. The generalization above is based on

tree interpolation and regular sets of trees are represented as tree automata.

Architecture and Implementation. TREEAUTOMIZER is a toolchain in the ULTIMATE framework.

This toolchain first parses the CHC input and then runs the treeautomizer plugin which implements

the above mentioned algorithm. We obtain tree interpolants from the SMT solver SMTInterpol11 [24].

For checking satisfiability, we use the and Z3 SMT solver12. The tree automata are implemented in

ULTIMATE’s automata library13. The ULTIMATE framework is written in Java and build upon the Eclipse

Rich Client Platform (RCP). The source code is available at GitHub14.

Configuration in CHC-COMP 2023. Our StarExec archive for the competition is shipped with the

bin/starexec run default shell script calls the ULTIMATE command line interface with the TreeAu-

tomizer.xml toolchain file and the TreeAutomizerHopcroftMinimization.epf settings file. Both

files can be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://www.ultimate-pa.org/

LGPLv3 with a linking exception for Eclipse RCP

11https://ultimate.informatik.uni-freiburg.de/smtinterpol/
12https://github.com/Z3Prover/z3
13https://www.ultimate-pa.org/?ui=tool&tool=automata_library
14https://github.com/ultimate-pa/

https://www.ultimate-pa.org/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://www.ultimate-pa.org/?ui=tool&tool=automata_library
https://github.com/ultimate-pa/
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7.6 Ultimate Unihorn 0.2.3-dev-ac87e89

Matthias Heizmann

University of Freiburg, Germany

Daniel Dietsch

University of Freiburg, Germany

Jochen Hoenicke

University of Freiburg, Germany

Alexander Nutz

University of Freiburg, Germany

Andreas Podelski

University of Freiburg, Germany

Frank Schüssele

University of Freiburg, Germany

Algorithm. ULTIMATE UNIHORN reduces the satisfiability problem for a set of constraint Horn clauses

to a software verfication problem. In a first step UNIHORN applies a yet unpublished translation in

which the constraint Horn clauses are translated into a recursive program that is nondeterministic and

whose correctness is specified by an assert statement The program is correct (i.e., no execution violates

the assert statement) if and only if the set of CHCs is satisfiable. For checking whether the recursive

program satisfies its specification, Unihorn uses ULTIMATE AUTOMIZER [22] which implements an

automata-based approach to software verification [23].

Architecture and Implementation. ULTIMATE UNIHORN is a toolchain in the ULTIMATE frame-

work. This toolchain first parses the CHC input and then runs the chctoboogie plugin which does

the translation from CHCs into a recursive program. We use the Boogie language to represent that

program. Afterwards the default toolchain for verifying a recursive Boogie programs by ULTIMATE AU-

TOMIZER is applied. The ULTIMATE framework shares the libraries for handling SMT formulas with

the SMTInterpol SMT solver. While verifying a program, ULTIMATE AUTOMIZER needs SMT solvers

for checking satisfiability, for computing Craig interpolants and for computing unsatisfiable cores. The

version of UNIHORN that participated in the competition used the SMT solvers SMTInterpol15and Z316.

The ULTIMATE framework is written in Java and build upon the Eclipse Rich Client Platform (RCP).

The source code is available at GitHub17.

Configuration in CHC-COMP 2023. Our StarExec archive for the competition is shipped with the

bin/starexec run default shell script calls the ULTIMATE command line interface with the Au-

tomizerCHC.xml toolchain file and the chccomp-Unihorn Default.epf settings file. Both files can

be found in toolchain (resp. settings) folder of ULTIMATE’s repository.

https://www.ultimate-pa.org/

LGPLv3 with a linking exception for Eclipse RCP

15https://ultimate.informatik.uni-freiburg.de/smtinterpol/
16https://github.com/Z3Prover/z3
17https://github.com/ultimate-pa/

https://www.ultimate-pa.org/
https://ultimate.informatik.uni-freiburg.de/smtinterpol/
https://github.com/Z3Prover/z3
https://github.com/ultimate-pa/
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A Detailed results

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique

Spacer 265 199 66 274397 138310 43

Golem 229 148 81 368980 129633 8

Eldarica 219 160 59 385851 112832 23

Theta 170 122 48 426006 370425 0

U. Unihorn 103 72 31 449683 384389 0

U. TreeAutomizer 81 50 31 537858 517349 0

LoAT 50 0 50 287878 287841 4

Table 8: Solver performance on LIA-lin track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique

Spacer 384 235 149 90842 50781 38

Eldarica 330 185 145 218944 79522 9

Golem 310 178 132 248569 248578 3

U. Unihorn 121 72 49 470768 389915 0

Theta 38 8 30 687374 666145 0

U. TreeAutomizer 34 5 29 569895 531158 0

Table 9: Solver performance on LIA-nonlin track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique

Spacer 281 212 69 359439 187454 81

Eldarica 220 150 70 478284 166185 15

Theta 184 134 50 285884 271624 0

U. Unihorn 164 122 42 242113 206799 1

U. TreeAutomizer 131 96 35 239591 229783 0

Table 10: Solver performance on LIA-lin-Arrays track
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Solver Score #sat #unsat CPU time/s Wall-clock/s #unique

Spacer 258 148 110 290925 156914 75

Eldarica 206 122 84 454921 184851 26

U. Unihorn 96 37 59 234519 199416 0

Theta 85 45 40 588095 569760 4

U. TreeAutomizer 56 6 50 276025 250747 0

Table 11: Solver performance on LIA-nonlin-Arrays track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique

Eldarica 176 85 91 114521 42212 57

Spacer 120 59 61 195321 107046 1

Table 12: Solver performance on LIA-nonlin-Arrays-nonrecADT track

Solver Score #sat #unsat CPU time/s Wall-clock/s #unique

Eldarica 58 22 36 433561 150012 30

Spacer 30 3 27 440259 290358 2

Table 13: Solvers performance on ADT-LIA-nonlin track
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Constrained Horn Clauses (CHCs) have conventionally been used as a low-level representation in
formal verification. Most existing solvers use a diverse set of specialized techniques, including direct
state space traversal or under-approximating abstraction, necessitating purpose-built complex algo-
rithms. Other solvers successfully simplified the verification workflow by translating the problem to
inputs for other verification tasks, leveraging the strengths of existing algorithms. One such approach
transforms the CHC problem into a recursive program roughly emulating a top-down solver for the
deduction task; and verifying the reachability of a safety violation specified as a control location.
We propose an alternative bottom-up approach for linear CHCs, and evaluate the two options in the
open-source model checking framework THETA on both synthetic and industrial examples. We find
that there is a more than twofold increase in the number of solved tasks when the novel bottom-up
approach is used in the verification workflow, in contrast with the top-down technique.

1 Introduction

Constraint Horn Clauses (CHCs) are widely used in the field of formal verification both as a means for
an intermediate representation [6, 10, 14] and as a specification language [1]. Conventionally, CHCs
allow the specification of deduction problems using implication, allowing the formalization of rules that
govern how atomic facts lead to more complex (deduced) information.

A CHC problem can be solved in many different ways. SPACER [9] in Z3 [15] uses a solver based
on automatic under-approximating abstraction; ELDARICA [13] uses a direct abstract state space traver-
sal over the CHC formulae; and UNIHORN [1] uses a translation to recursive Boogie [3] code before
applying a conventional software verification workflow to achieve a result. While the former approaches
in SPACER and ELDARICA work well as demonstrated by their performance in previous years’ CHC-
COMP [1], a competition for CHC solvers, they require purpose-built solvers, thus incurring additional
effort when developing new algorithms.

In contrast, the approach utilized by UNIHORN relies on existing algorithms, taking advantage of the
tool being part of the ULTIMATE framework with proven and efficient algorithms for tackling software
verification tasks [12]. By complementing the framework with a new front-end for parsing and trans-
forming CHC formulae, the same verification workflows can be applied to the CHC-based problems as
well, enabling their efficient verification.

The transformation step used by UNIHORN creates Boogie code that roughly emulates a program
capable of deducing the existence of facts necessary to reach some end goal (e.g., a safety violation). We
refer to this approach as top-down [18] or backward.

In this paper, we introduce an alternative to the backward method, which creates a program that
emulates a bottom-up solver [18] (i.e., starting from nondeterministic facts and trying to deduce a safety
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violation using the formulae). We implement this forward transformation to another formal representa-
tion of programs, the Control Flow Automaton (CFA), alongside with a backward transformation alter-
native, in THETA [11]. Our benchmarks show that using the proposed approach increased the number
of successfully solved CHCs more than twofold on linear CHC verification tasks from the CHC-COMP
benchmark suite [1].

This paper is structured as follows. In Section 2, we introduce the necessary background concepts.
Then, in Section 3, we present our proposed forward transformation and the accompanying verification
workflow, as well as the theory behind proof- and counterexample-generation. Finally, in Section 4,
we present our experimental results comparing the effect of using the existing backward transformation
versus the novel forward transformation on the performance of the verification workflow.

2 Background

In this section, we introduce the theoretical background for the paper, including software verification,
control flow automata (CFAs), and Counterexample-Guided Abstraction Refinement (CEGAR).

2.1 Formal Software Verification

The goal of software verification is to mathematically prove certain properties of a program. One such
property is the reachability of labelled control locations. A program is unsafe if such a location can be
reached from the initial location of the program using a finite number of transitions; otherwise, it is safe.
Due to the uncertainties and complexity of dealing with high-level programming languages, the input
is first transformed into a formal representation [2]. Model checking is then often employed [8], which
explores the state space of the program, thus verifying the reachability of the error states. While generally
this problem is undecidable [17], and enumerating the state space naively is infeasible in practice [5],
there exist efficient algorithms for solving a subset of the input tasks, such as the Counterexample-Guided
Abstraction Refinement (CEGAR) technique [4].

2.1.1 Control Flow Automata

A Control Flow Automaton represents a program as a directed graph. Formally, a control flow automaton
is a tuple CFA = (V,L, l0,E), where:

• V : A set of variables, where each v ∈V can have values from its domain Dv.

• L: A set of locations, where each location can be interpreted as a possible value of the program
counter.

• l0 ∈ L: The initial location, that is active at the start of the program.

• E ⊆ L×Ops×L: A set of transitions, where a transition is a directed edge going from one location
in L to another, with a label op ∈Ops, where Ops is a set of operations that can be executed as the
program advances from one location to another. An op ∈ Ops can be one of the following:

– v = expr: An assignment of a variable, where the value of v ∈ V becomes the evaluation of
the right-hand side expr.

– havoc v: A non-deterministic assignment of a variable, after which the value of v ∈V can be
anything from its domain Dv.

– [cond]: A guard operation, where cond is an expression that evaluates to a boolean value.
The transition can only be executed if the cond in the guard evaluates to true.
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Initial precision

Abstractor RefinerARG

Safe Unsafe

Abstract counterexample

Refined precision

Expand Prune

Figure 1: The CEGAR loop Figure 2: Abstract state space

In formal software verification, it is also useful to distinguish error locations, which are locations
where the program would behave in an undesirable way, as well as final locations, which have no outgo-
ing transitions.

The representation of program execution on the CFA consists of an alternating sequence of locations
and operations, where at each location, the state of the CFA can be described as S = (lS,d1,d2, ...,dn),
where:

• l ∈ L is the current location of the program,

• d1,d2, ...,dn are the values of all variables, that is vi = di,vi ∈V,di ∈ Dvi , for every 1≤ i≤ |V |.

All possible states of the CFA make up the state space of the program. The operations in an alter-
nating sequence (representing an execution of the program) can then be interpreted as transitions in the
state-space of the program.

2.2 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) [4] is an abstraction-based model checking
algorithm.

The core of the algorithm is the CEGAR-loop (Figure 1), made up of two main parts: the abstrac-
tor and the refiner. The abstractor builds the Abstract Reachability Graph (ARG, a directed and acyclic
graph containing abstract states and interconnecting transitions) using the expand operation and covering
relation on abstract states. A parameter of abstraction is precision, which describes how much informa-
tion about a concrete state is abstracted in the abstract state. An abstract state is an overapproximation
of the possible concrete states (as seen in Figure 2), consequently, if no abstract error-state is reachable,
then no concrete error-state is reachable, meaning the program is safe.

On the other hand, if an abstract error-state is reachable, the abstractor produces an abstract coun-
terexample, starting at the initial abstract state and ending in an abstract error state. The refiner then
decides whether a concrete error state is reachable in the abstract error state. If it can be reached, then
the program is unsafe, and the path from the initial location of the CFA to a concrete error state is
presented as a counterexample.

However, if a concrete error-state is not reachable, then the reachability of the abstract error state is a
result of the overapproximation of abstraction, as demonstrated in Figure 2. Thus, the abstraction needs
to be refined so that the abstract error state does not contain the unreachable concrete error state. This
results in a refined precision, which is passed back to the abstractor after all unreachable abstract states
are removed (pruned) from the abstract state-space.
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The CEGAR loop is repeated until it either finds a concrete counterexample to the safety of the pro-
gram or proves that no abstract error-state is reachable, that is, all nodes in the ARG are either expanded
or covered. In the first case, the program is unsafe, while in the latter, it is safe.

3 Transforming Constrained Horn Clauses to Control Flow Automata

In this section, we present a novel approach of CHC to CFA transformation. The goal of this transfor-
mation is to create a CFA from a linear CHC in a way that turns the SMT problem of satisfiability in
a CHC into a software verification question of erroneous state reachability in the CFA, so that model
checking techniques can be used to decide both. More specifically, an erroneous state in a CFA should
be reachable if, and only if the CHC is unsatisfiable. In this case, a refutation of the satisfiability should
be given; otherwise a satisfying model ought to be generated. The approach is summarized in Figure 3.

Software
Verification

SMT

CHC

CFA

Model Checking

safe
+

ARG

unsafe
+

counterexample

sat
+

model

unsat
+

refutation

CHC to CFA
transformation

Proof transformation

Figure 3: Overview of the presented work.

The transformation consists of two parts: the mapping of CHCs to CFAs, and the generation of a
model/refutation from the output of model checking. These are represented in Figure 3 by the boxes
CHC to CFA transformation and Proof transformation, respectively, and are not to be confused with
forward and backward transformations described later on. As seen in the figure, proof transformation
requires the utilized model checking algorithm to provide a counterexample when the CFA is deemed
unsafe, and to produce an ARG when the CFA is safe.

The main idea behind the CHC to CFA transformation is to represent the uninterpreted functions as
locations in the CFA, map CHCs to edges guarded by the conditions in the CHC, and use local variables
to model the implications of deductions. The deducibility of a predicate with certain parameters can then
be represented by the corresponding location’s reachability during verification, with the given parameters
as the variables’ values. The source of the edges of fact CHCs can be the initial location of a CFA, since
these do not have any preconditional predicates in their bodies. The target of the edge of a query CHC can
then be an error location, which can only be reached if the conditions on an incoming edge are satisfied,
similarly to how ⊥ is deduced. If the error location can be reached from the initial location, then the
counterexample contains the path of edges to it, which can then be mapped to their CHCs to show a
sequence of CHCs that deduce ⊥ from facts. On the other hand, if the error location is unreachable,
then the explored abstract states can be used to define the uninterpreted functions to provide a satisfying
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model.
One way of approaching the problem of CHC satisfiability is to start with the facts, and try to apply

the induction and query CHCs to deduce ⊥. This is called the forward or bottom-up approach, which
is what our main contribution, the forward transformation employs. Another approach is to recursively
check what would be required to satisfy the body of the query CHC, stopping only when all requirements
are satisfied by facts. We refer to this as a backward or top-down approach, which is used by ULTIMATE

UNIHORN [1] to transform CHCs into program code.
An example CHC problem will be used throughout the chapter to demonstrate the transformations.

Example 1 Consider the following CHC problem within integer arithmetic:

A(n)← n > 0∧n < 100 (1)

B(n,x)← A(n)∧ x > 0 (2)

C(y,x)← B(n,x)∧ y = n− x∧ y > 0 (3)

A(n)←C(y,x)∧n = y+(y mod x) (4)

⊥← A(n)∧n≥ 100 (5)

The fact states that A(n) needs to evaluate to true for 0 < n < 100, while the satisfiability of the
query depends on A(n) being false for n ≥ 100 and n ≤ 0. What makes this problem non-trivial is the
cyclic deductions between the predicates A,B and C: B can be deduced from A, C can be deduced from
B, and A can be deduced from C under certain conditions. Trying a naive, manual deduction approach
becomes a bit cumbersome here, due to the possibility of an infinite deduction cycle and the high number
of combinations possible between the variables’ values.

One may notice that n can not increase in the cycle since no matter what the subtracted x is, it will
always be larger than the y mod x that is added to n in a cycle. In the following, it will be shown that the
problem is indeed satisfiable, by transforming it into a software verification problem and synthesizing a
satisfying model from its proof. The CFA resulting from the transformation can be seen on Figure 4. The
effect of each step on the CFA is explained as the steps are introduced.

Step 2/a. Step 2/b.

Step 2/c.

lInit

lErr

lA

lB

lC

[n > 0∧n < 100]
a1 = n

n = a1
[n≥ 100]

n = a1
[x > 0]

b1 = n,b2 = x

n = b1,x = b2
[y = n− x∧ y > 0]

c1 = y,c2 = x

y = c1,x = c2
[n = y+(y mod x)]

a1 = n

Figure 4: CFA of Example 1 after forward transformation.



110 Novel Transformation of Linear Constrained Horn Clauses to Software Verification

3.1 Constrained Horn Clause Transformation

The transformation first creates the locations and variables of the CFA, then maps the CHCs to edges in
different ways for fact, induction and query CHCs.

Consider the linear CHC problem with CHC set {C1,C2, . . . ,Ck} over the following uninterpreted
functions:

B1(b1
1,b

1
2, . . . ,b

1
m1
),B2(b2

1,b
2
2, . . . ,b

2
m2
), . . . ,Bn(bn

1,b
n
2, . . . ,b

n
mn
)

That is, each CHC Cl,∀l ∈{1,2, . . . ,k} takes one of the following three forms for some i, j∈{1,2, . . . ,k}:

Bi(x1,x2, . . . ,xmi)← ϕl,

Bi(x1,x2, . . . ,xmi)← B j(y1,y2, . . . ,ym j)∧ϕl,

⊥← B j(y1,y2, . . . ,ym j)∧ϕl,

where ϕl is the interpreted formula in the body of Cl . As before, CHCs in these forms are referred to as
facts, inductions and queries, respectively.

Step 1. Create CFA locations and variables
The uninterpreted functions B1(b1

1,b
1
2, . . . ,b

1
m1
), . . . , Bn(bn

1,b
n
2, . . . ,b

n
mn
) are mapped to the CFA =

(V,L, lInit ,E), where:

• V = {bi
j |∀i ∈ {1,2, . . . ,n} : ∀ j ∈ {1,2, . . . ,mi}},

• L = {lInit , lErr, l1, l2, . . . , ln},
• lInit ,
• E =∅.

Semantically, a new location is created for each uninterpreted function, along with an initial location
lInit and a distinguished error location lErr. In addition, a unique variable is created for each parameter in
every predicate. It is worth noting that the edge set is empty at this point, because edges are added in the
next step of the transformation.

The motivation behind creating a location and variables for every uninterpreted function is that this
way, a location’s reachability with certain variable values can be directly mapped to the predicate’s
evaluation with said variable values as parameters: if a location li representing Ci is reachable with some
values for variables bi

1,b
i
2, . . . ,b

i
mi

, then Ci(bi
1,b

i
2, . . . ,b

i
mi
) should evaluate to true. On the other hand, if

li can not be reached with variables bi
1,b

i
2, . . . ,b

i
mi

, then Ci(bi
1,b

i
2, . . . ,b

i
mi
) ought to evaluate to false.

Example 2 From Example 1, the first step of the forward transformation would create the CFA =
(V,L, lInit ,∅), with locations L = {lInit , lErr, lA, lB, lC} and variables V = {a1,b1,b2,c1,c2}. The created
locations can be seen in white on the CFA in Figure 4.

Step 2. Create CFA edges
In this step, each CHC is transformed into an edge in the CFA created in Step 1. Each kind of CHC

(fact, induction, query) is treated differently, as described in the following subsections. The goal of this
mapping is for the transition on the edge to only be possible, when the head of the CHC is deducible
from the body of it.

Step 2/a. Create fact edges
For each fact CHC Cl : Bi(x1,x2, . . . ,xmi)← ϕl where i ∈ {1,2, . . . ,n}, an edge is created from the

initial location lInit to li, the location representing Bi. The labels on the created edge consist of the
following, in the specified order:
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• ϕl , the interpreted formula in the CHC’s body as a guard,

• bi
1 = x1,bi

2 = x2, . . . ,bi
mi

= xmi , assignment of the passed values to the variables corresponding to
the input parameters.

Fact CHCs are named facts because they can be deduced just from the background theory ⊤, when
the interpreted formula ϕl is true. The created edge from the initial location mimics this, since the target
of an edge will be reachable from the initial location when the guard ϕ is true.

To put it more formally, the head of a fact CHC Bi(x1,x2, . . . ,xmi) is only deducible when its body,
the interpreted formula ϕl is true. Similarly, the location li is only reachable from the initial location
lInit of the CFA using the created edge, when its guard ϕl evaluates to true. Furthermore, the parameters
x1,x2, . . . ,xmi are assigned to bi

1,b
i
2, . . . ,b

i
mi

, meaning that the constraints of ϕl on the parameters are
applied to the variables related to the location, just as they are applied when deducing Bi(x1,x2, . . . ,xmi).
Thus, we can conclude that li is only reachable using the created edge with variables bi

1,b
i
2, . . . ,b

i
mi

valued
x1,x2, . . . ,xmi , when Bi(x1,x2, . . . ,xmi) is deducible using Cl .

Example 3 In Example 1, the second step of the forward transformation for fact CHCs would create the
edge e = (lInit ,op, lA) from Equation 1, where the guard of op would be n > 0∧n < 100, and the assign-
ments would consist of a1 = n, since a1 is the variable corresponding to the first (and only) parameter of
the predicate A. The created edge can be seen in the top-left gray rectangle on the CFA in Figure 4.

Step 2/b. Create induction edges
For each induction CHC Cl : Bi(x1,x2, . . . ,xmi)← B j(y1,y2, . . . ,ym j)∧ϕl where i, j ∈ {1,2, . . . ,n}, an

edge is created from l j (the location representing B j) to li (the location representing Bi). The labels on
the created edge consist of the following, in the specified order:

• y1 = b j
1,y2 = b j

2, . . . ,ym j = b j
m j , assignment of the variables corresponding to the input parameters

of B j to the passed values,

• ϕl , the interpreted formula in the CHC’s body as a guard,

• bi
1 = x1,bi

2 = x2, . . . ,bi
mi

= xmi , assignment of the passed values to the variables corresponding to
the input parameters of Bi.

In addition to the first assignments, x1,x2, . . . ,xmi and all variables in ϕl need to be uninitialized with
a havoc statement to ensure that the semantics of ∀ in the CHCs are kept. However, the havoc statements
are omitted from the examples for ease of readability. The order of instructions is also important: the
assignments from the source location’s variables need to happen before ϕl is evaluated.

Induction CHCs embody deductions from their bodies to their heads with some conditions ϕl . As-
suming that l j could have only been reached if it is deducible with some parameters, then this edge
resembles the same: one can only go to li from l j when ϕl is true.

More formally, the head of an induction CHC Bi(x1,x2, . . . ,xmi) is only deducible, when ϕl is true
and B j(y1,y2, . . . ,ym j) is deducible. Similarly, the location li can only be reached from l j once l j has
been reached and the guard ϕl evaluates to true. Furthermore, the variables b j

1,b
j
2, . . . ,b

j
m j are assigned to

y1,y2, . . . ,ym j and the parameters x1,x2, . . . ,xmi are assigned to bi
1,b

i
2, . . . ,b

i
mi

, meaning that the constraints
of ϕl are applied to the y parameters and the bi variables related to the location li, just as they are
applied when deducing Bi(x1,x2, . . . ,xmi) from B j(y1,y2, . . . ,ym j). Thus, we can conclude that li is only
reachable using the created edge with variables bi

1,b
i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi from l j with variables
b j

1,b
j
2, . . . ,b

j
m j valued y1,y2, . . . ,ym j , when Bi(x1,x2, . . . ,xmi) is deducible from B j(y1,y2, . . . ,ym j) using

Cl .
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Example 4 From Example 1, the second step of the forward transformation for induction CHCs would
create three edges from Equation 2, 3 and 4:

• e1 = (lA,op1, lB) for B(n,x)← A(n)∧x > 0, where op1 consists of the assignment n = a1, then the
guard x > 0, and the assignments b1 = n,b2 = x at last,

• e2 = (lB,op2, lC) for C(y,x)← B(n,x)∧ y = n− x∧ y > 0, where op2 consists of the assignments
n = b1,x = b2, then the guard y = n− x∧ y > 0, and the assignments c1 = y,c2 = x at last,

• e3 = (lC,op3, lA) for A(n)← C(y,x)∧ n = y+(y mod x), where op3 consists of the assignments
y = c1,x = c2, then the guard n = y+(y mod x), and the assignment a1 = n at last.

The created edges can be seen in the right-hand side gray rectangle on the CFA in Figure 4.

Step 2/c. Create query edges
For each query CHC Cl : ⊥← B j(y1,y2, . . . ,ym j)∧ϕl where j ∈ {1,2, . . . ,n} an edge is created to

the error location lErr from l j, the location representing B j. The labels on the created edge consist of the
following, in the specified order:

• y1 = b j
1,y2 = b j

2, . . . ,ym j = b j
m j , assignment of the variables corresponding to the input parameters

to the passed values,

• ϕl , the interpreted formula in the CHC’s body as a guard.

The bodies of CHC queries should not be deducible, otherwise ⊥ can be deduced and the problem
is unsatisfiable. This behaviour is captured by the created edge: if the edge’s source is reachable with
values that make the guard of the edge true, then the error location is reachable, making the program
unsafe.

In a formal way, the head of the query CHC ⊥ is only deducible when both B j(y1,y2, . . . ,ym j) is
deducible, and ϕl is true. Similarly, the error location lErr can only be reached from l j once l j has been
reached and the guard ϕl evaluates to true. Furthermore, the variables b j

1,b
j
2, . . . ,b

j
m j are assigned to

y1,y2, . . . ,ym j , meaning that the constraints of ϕl are applied to the y parameters, just as they are applied
when deducing ⊥ from B j(y1,y2, . . . ,ym j). Thus, we can conclude that lErr is only reachable using
the created edge from l j with variables b j

1,b
j
2, . . . ,b

j
m j valued y1,y2, . . . ,ym j , when ⊥ is deducible from

B j(y1,y2, . . . ,ym j) using Cl .

Example 5 In Example 1, the second step of the forward transformation for query CHCs would create
the edge e = (lA,op, lErr) from Equation 5, where op would consist of the assignment n = a1 and the
guard n≥ 100. The created edge can be seen in the bottom-left gray rectangle on the CFA in Figure 4.

To summarize, first a location li and variables bi
1,b

i
2, . . . ,b

i
mi

are created for each uninterpreted func-
tion Bi(bi

1,b
i
2, . . . ,b

i
mi
), then all CHCs are transformed into edges. Since the edges are created in a way

that li can only be reached with the corresponding variables bi
1,b

i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi if, and
only if Bi(x1,x2, . . . ,xmi) can be deduced, we can conclude that the described transformation successfully
converts the problem of satisfiability into a question of error location reachability. Thus, using a model
checker to decide the latter will yield a result for the former as well: if the CFA is unsafe, the CHC
problem is unsatisfiable; if the CFA is safe, the CHC problem is satisfiable.

It is worth to consider what the transformation results in, when there is no fact or query CHC in the
set of CHCs. In the former case, there will not be any outgoing edges from the initial location of the
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CFA. As a result, none of the locations will be reachable, meaning the predicates need not be true for
any input, which can be expressed as Bi ≡ f alse,∀i ∈ {1,2, . . . ,n}.

In the latter case, there will not be any edges going to the error location of the CFA. As a result, all
locations are reachable in the abstract state ⊤, meaning the predicates can be true for any input, which
can be expressed as Bi ≡ true,∀i ∈ {1,2, . . . ,n}.

3.2 Proof Transformation

Proof transformation is the step of converting the result of the model checking algorithm to an answer
to the CHC problem. This consists of two parts, depending on the result: the generation of a satisfying
model from the ARG built during verification, or the creation of a refutation from the counterexample
provided by the model checking algorithm.

3.2.1 Satisfying Model Generation

An SMT problem is called satisfiable, when a model (i.e., an assignment to constants) fulfilling all
constraints exists. In the case of a CHC problem this means the definition of all uninterpreted functions
B1(b1

1,b
1
2, . . . ,b

1
m1
), B2(b2

1,b
2
2, . . . ,b

2
m2
), . . . , Bn(bn

1,b
n
2, . . . ,b

n
mn
) present in the set of CHCs, that satisfy all

of the CHCs.
The transformation in Subsection 3.1 ensures that a location li in the CFA can only be reached with

the corresponding variables bi
1,b

i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi if, and only if Bi(x1,x2, . . . ,xmi) can be
deduced. If a node S j = (li,L

j
1, . . . ,L

j
k j
) is present in the ARG, it means li has been reached under the

condition L j
1 ∧ ·· · ∧ L j

k j
. Consequently, it is guaranteed that Bi can be deducted under the condition

L j
1∧·· ·∧L j

k j
. This is true for all Si = {S j |S j = (li,L

j
1, . . . ,L

j
k j
)} nodes in the ARG, therefore Bi needs to

evaluate to true under either of their conditions, which can be represented by concatenating them with ∨.
This gives the following the definition for Bi,∀i ∈ {1,2, . . . ,n}:

Bi(bi
1,b

i
2, . . . ,b

i
mi
) =

Si∨
S j=(li,L

j
1,...,L

j
k j
)

(
L j

1∧·· ·∧L j
k j

)
(6)

At the end of verification of a safe CFA, the ARG is fully expanded, i.e., all reachable abstract states
have been visited and none are in an erroneous location. Furthermore, no erroneous state can be reached
from any of the nodes in the ARG. Therefore the definitions provided by Equation 6 guarantee that there
can not be a deduction to ⊥, meaning they satisfy the CHC problem.

The type of information present in any L j needs to be taken into consideration when defining the func-
tion. If L j contains information about any other variable x then the variables bi

1,b
i
2, . . . ,b

i
mi

representing
the input parameters of Bi, then unless some information about a bi is dependent on x (e.g. bi

1 > x), L j

can be left out. If there is a dependent bi, then x needs to be defined with a universal quantifier inside the
function (∀x).

Example 6 Applying model checking with predicate abstraction to the CFA in Figure 4 may result in the
Abstract Reachability Graph (ARG) seen in Figure 5. The regular arrows represent transitions between
abstract states, while the dotted arrow denotes that the source abstract state is covered by the target
abstract state.
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lInit

⊤

lA

a1 < 100

lB

a1 < 100
b1 ≤ 100∧b2 > 0

lC

a1 < 100
b1 ≤ 100∧b2 > 0

c1 > 0∧ c1 + c2 ≤ 100

lA

a1 < 100
b1 ≤ 100∧b2 > 0

c1 > 0∧ c1 + c2 ≤ 100

Figure 5: ARG resulting from the model checking of the CFA in Figure 4.

As described in Example 2, the uninterpreted function A(n) corresponds to the location lA and the
variable a1. Therefore its definition depends on the predicates of the abstract states that are in lA, more
specifically (lA,a1 < 100) and (lA,a1 < 100∧b1 ≤ 100∧b2 > 0∧ c1 > 0∧ c1 + c2 ≤ 100). Using these
states, we can define A(n) as the disjunction of the predicates by converting ai to n: A(n)= n< 100∨(n<
100∧b1 ≤ 100∧b2 > 0∧ c1 > 0∧ c1 + c2 ≤ 100),∀b1,b2,c1,c2. Since predicates of n do not depend on
other variables, they can be left out, leading to A(n) = n < 100∨n < 100 = n < 100.

Similarly, B(n,x) can be defined using abstract states that are in lB, namely the single abstract state
(lB,a1 < 100∧b1 ≤ 100∧b2 > 0). Converting b1 and b2 back to n and x gives B(n,x) = a1 < 100∧n≤
100∧x > 0,∀a1, which can also be simplified to B(n,x) = n≤ 100∧x > 0 by omitting unused variables.

Lastly, C(y,x) is defined using the abstract state (lC,a1 < 100∧b1 ≤ 100∧b2 > 0∧c1 > 0∧c1+c2 ≤
100). Converting c1 and c2 back to y and x results in C(y,x) = a1 < 100∧ b1 ≤ 100∧ b2 > 0∧ y >
0∧y+x≤ 100,∀a1,b1,b2, which leads to the definition of C(y,x) = y > 0∧y+x≤ 100 after getting rid
of unused variables.

While it may not be trivial to see why this definition is a good model of the CHC problem, part of
the reasoning is that using the definition of A(n) = n < 100, the query CHC Equation 5 takes the form
⊥← n < 100∧n≥ 100. The body of this CHC is clearly unsatisfiable, thus, ⊥ cannot be deduced.

3.2.2 Refutation Creation

When a CHC problem is unsatisfiable, a deduction can be found from the facts to ⊥ that is always valid,
regardless of how the uninterpreted functions are defined. The refutation is then a series of applications
of the CHCs in the CHC set that start with a fact CHC and end with a satisfiable query CHC.

The counterexample provided by the model checker is an alternating sequence of concrete states of
the CFA and edges. It starts at the initial location of the CFA with some values assigned to the variables
and ends in the error location. The transformation described in Subsection 3.1 ensures that a location li
in the CFA can only be reached with the related variables bi

1,b
i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi if, and only
if Bi(x1,x2, . . . ,xmi) can be deduced. Consequently, all predicates corresponding to the locations of the
concrete states in the counterexample are deducible, with the valuations present in the concrete states as
parameters. The transformation also creates a one-to-one mapping of CHCs and edges. Thus, mapping
the edges in the counterexample back to their CHCs, with the values of variables in the concrete states
substituted as parameters, amounts to a valid refutation of the CHC problem’s satisfiability.

Example 7 Since the motivating Example 1 is satisfiable, consider a modified version of it, in which the
only fact is replaced with A(n)← n > 0∧n≤ 100. The forward generated CFA would be similar to the
one in Figure 4, with the exception of the edge going from lInit to lA having n ≤ 100 instead of n < 100
in its guard.
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The model checking algorithm would return the following counterexample, with the irrelevant vari-
able values omitted:

(lInit ,n = 100)

(lInit ,([n > 0,n≤ 100],a1 = n), lA)

(lA,n = 100,a1 = 100)

(lA,(n = a1, [n >= 100]), lErr)

(lErr,n = 100,a1 = 100)

This could be mapped to the refutation below:

A(n)← (n > 0∧n <= 100)∧n = 100

⊥← (A(n)∧n≥ 100)∧n = 100

Since all variables have values assigned to them, it is trivial to check that this is indeed unsatisfiable.

4 Evaluation

Implementation The CHC to CFA transformation steps were implemented as ANTLR frontends [16]
in the open-source model checking framework THETA [11]. The implementation is able to check the
satisfiability of a CHC problem; however the generation of refutations and proofs is not implemented
yet. Backward transformation was also implemented in a similar manner in the tool for comparison.

Goals and Design The aim of this evaluation is to show the effectiveness of the bottom-up approach
by comparing it to the top-down approach. It also aims to study the performance of the approach with
different configurations of CEGAR, e.g., different abstract domains.

The main comparison was done inbetween configurations of THETA only. Thus we were able to com-
pare the different transformation approaches while the verification process was the same. Additionally,
we also compared THETA to other state-of-the-art CHC solvers.

The implementation was evaluated on 585 linear CHCs over the background theory of linear integer
arithmetic from the LIA-Lin track of the CHC-COMP21 benchmark repository1. The benchmarks were
run on machines with 8 logical CPU cores and 16 GB of memory, with a timeout of 300 seconds.

domain interpolation pred-split
transformation

BACKWARD FORWARD
EXPL NWT_IT_WP - 77 138
EXPL NWT_WP_LV - 82 137
EXPL SEQ_ITP - 81 175

PRED_BOOL BW_BIN_ITP WHOLE 110 288
PRED_CART BW_BIN_ITP WHOLE 141 302
PRED_SPLIT SEQ_ITP ATOMS 131 310
PRED_SPLIT SEQ_ITP WHOLE 142 318
PRED_SPLIT BW_BIN_ITP ATOMS 83 291
PRED_SPLIT BW_BIN_ITP WHOLE 114 328

Table 1: Number of solved tasks by certain configurations.

1https://github.com/chc-comp/chc-comp21-benchmarks

https://github.com/chc-comp/chc-comp21-benchmarks
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THETA (FW) 328
THETA (BW) 142

ELDARICA 337
UNIHORN 380

Z3 437

Table 2: Comparison to
other tools.
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Figure 6: Number of solved tasks by tools under a certain time.

Results Table 1 shows the results of THETA with the different configuration options of THETA [11].
The results of the tool were either correct or timeout for all of the tasks.

Forward transformation proved to be far more effective than backward transformation in all config-
urations. The configurations using boolean predicate based abstraction with sub-state splitting (PRED_-
SPLIT) performed the best, with the other predicate based abstraction methods not too far behind.

The same benchmarks were also run with the top solvers of the LIA-Lin track from CHC-COMP21
[7], namely Z3, UNIHORN and ELDARICA. These solvers were run using their default configuration
and with the same constraints as THETA. Table 2 shows the number of solved tasks compared to the
best-performing configuration of THETA. Although THETA performs worse than the other solvers, its
performance is comparable to ELDARICA’s.

A quantile plot of the tools’ performances can be seen on Figure 6. THETA performs better than both
UNIHORN and ELDARICA for easier tasks, but it starts to get slower at a faster pace for tougher tasks
than the other tools.

Conclusion As shown in Table 1, the performance of THETA was greatly improved by the forward
transformation process for all of the tested configurations. This improvement gains even more signif-
icance when compared to other tools: just by changing the transformation method, THETA becomes
a relevant competitor for some of the best linear CHC solvers of CHC-COMP. Based on our findings,
we propose that tools employing software verification techniques for CHC solving implement our novel
approach, to potentially significantly increase the number of successfully solved CHC problems.
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The input language for today’s CHC solvers are commonly the standard SMT-LIB format, borrowed
from SMT solvers, and the Prolog format that stems from Constraint-Logic Programming (CLP).
This paper presents a new front-end of the Eldarica CHC solver that allows inputs in the Prolog
language. We give a formal translation of a subset of Prolog into the SMT-LIB commands. Our
initial experiments show the effectiveness of the approach and the potential benefits to both the CHC
solving and CLP communities.

1 Introduction

Over the last years, a growing number of solvers for Constrained Horn Clauses (CHC) have been devel-
oped; for instance, Spacer [8], Eldarica [5], Golem [1], and RInGEN [2]. There are two main languages
used to interface such solvers: the SMT-LIB language [3], in which Horn clauses can either be expressed
using quantified assertions, or using the rule-based notation that was introduced by Z3; and dialects
of Prolog [6] as a language in Constraint-Logic Programming (CLP). The former language is designed
primarily for machine-generated input to solvers, as it is simple to parse, strongly typed, and has un-
ambiguous semantics. The latter language is more concise and convenient for handwritten programs.
There is, unfortunately, no exact match between the theories considered in CLP and SMT-LIB, and some
Prolog language features have semantics that are not straightforward to model; for instance, the default
absence of the “occurs-check” in equations.

This paper presents an ongoing effort to add a comprehensive Prolog/CLP front-end to the CHC
solver Eldarica [5]. Eldarica has been able to process clauses in Prolog format since the beginning of
its development; however, the existing Prolog front-end of Eldarica is restricted to the parsing of clauses
over integers, and it is planned to replace it with a front-end with more extensive support for the different
Prolog features through this project. To document the applied interpretation of Prolog, we define a formal
translation of a fragment of Prolog to the SMT-LIB language. In the scope of this paper, we focus on three
key features of Prolog: functions, defining a Herbrand universe of values; lists; and integer numbers as
introduced by CLP(Z). We model the semantics of those language features using a mapping to SMT-LIB
data-types (i.e., algebraic data-types with free constructors) and SMT-LIB integers.

Example To illustrate the complementarity of CHC and CLP, we start with a simple routing example
including integer arithmetic, lists, and functions in Prolog. Figure 1 shows a CLP(Z) program to compute
the distance between cities. The program consists of 9 facts and 2 rules. A fact of the form distance(X,
Y, Z) states that the direct distance between cities X and Y is Z. The rule in line 12 implies that distance
is symmetric. The meaning of path(X, Y, Z, L) is that there exists a path of length Z from X to Y
where L represents the path as a list of points in the format waypoint(C, D). This shows that city C
lies on the path from X to Y with a distance of D from the starting point, which is X . The fact path(A,
A, 0, [waypoint(A, 0)]). states that for any city A, there is a path of length 0 to itself and the list

http://dx.doi.org/10.4204/EPTCS.402.12
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1 :- use_module(library(clpz )). % or clpfd
2
3 distance(tehran , vienna , 31).
4 distance(vienna , paris , 10).
5 distance(vienna , munich , 3).
6 distance(paris , munich , 10).
7 distance(paris , rome , 11).
8 distance(lausanne , rome , 6).
9 distance(lausanne , munich , 4).

10 distance(tehran , paris , 42).
11
12 distance(A, B, D) :- distance(B, A, D).
13
14 path(A, A, 0, [waypoint(A, 0)]).
15 path(A, C, D, [waypoint(C, D) | N]) :- path(A, B, P, N), distance(B, C, Q),
16 D #= P + Q.
17
18 ?- path(tehran , munich , D, X), D #< 40.

Figure 1: Prolog Program for distance between cities in CLP(Z)

presenting the path is the city A itself. Finally, the rule on line 15 implies that if there is path N of length
P from A to B, and the direct distance from B to C is Q and D is equal to P + Q, then we have found a path
from A to C, which is the previously found path (N) extended with the city C. The query path(tehran,
munich, D, X), D #< 40. searches for a path from munich to tehran of length less than 40. A
possible answer to this query is D = 34 and X = [waypoint(munich,34), waypoint(vienna,31),
waypoint(tehran,0)]. This means that there is a path from tehran to munich of distance 34, with
vienna being on the way with distance 31 from tehran.

Note that this Prolog program, while intuitive, is also rather inefficient, and interpreting it using a
CLP engine might lead to non-termination due the recursion on lines 12,15. The program can be rewritten
to a more operationally oriented (and harder to read) set of clauses to be terminating and efficient, in
particular preventing cyclic paths from being explored, and inlining the length bound to allow branches
without solutions to be pruned. Alternatively, tabling [4] could be used for the predicate path1.

CHC solvers are generally less efficient than Prolog engines for solving constraint satisfaction prob-
lems. However, the abstraction techniques in CHC solvers are naturally able to cope with clauses written
in declarative and otherwise inefficient style. They can easily find a path from tehran to munich of
length 40 in Figure 1. CHC solvers are also able to determine that no such path exists for lengths less
than 34, a task more challenging for at least some CLP solvers. More generally, CHC solvers are ag-
nostic of the order of clauses, and the order of literals in clauses, and process clauses focusing more on
their logical content than syntactic features. In this sense, CHC solvers can be a useful debugging tool,
and have a complementary performance profile to CLP systems. The goal of our work is to simplify the
integration of CLP and CHC methods, by providing a translation of a subset of Prolog into SMT-LIB,
the common input language of CHC solvers.

Organization of the paper: In Section 2 we overview the CLP and the SMT-LIB input languages.
Section 3 discusses translation rules for converting Prolog to SMT-LIB. Section 4 translates the introduc-
tory example to SMT-LIB. We conclude the paper and present directions of future research in Section 5.

1Which, however, led to an error in experiments with SWI-Prolog [11].
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⟨Database⟩ ::= ⟨Clause⟩∗

⟨Clause⟩ ::= ⟨Predicate⟩ ‘.’
| ⟨Predicate⟩ ‘:-’ ⟨BodyItem⟩∗ ‘.’
| ‘?-’ ⟨BodyItem⟩∗ ‘.’

⟨BodyItem⟩ ::= ⟨Predicate⟩
| ⟨Constraint⟩

⟨Predicate⟩ ::= ⟨Atom⟩
| ⟨Atom⟩ ‘(’ ⟨Term⟩∗ ‘)’

⟨Term⟩ ::= ⟨Variable⟩
| ⟨Atom⟩
| ⟨Atom⟩ ‘(’ ⟨Term⟩∗ ‘)’
| ⟨List⟩
| ⟨Integer⟩

⟨List⟩ ::= ‘[’ ⟨Term⟩∗ ‘]’
| ‘[’ ⟨Term⟩∗ ‘|’ ⟨Term⟩ ‘]’

Figure 2: A simplified grammar for describing the syntax of Prolog programs.

2 Preliminaries

2.1 Constraint Logic Programming (CLP)

Constraint Logic Programming (CLP) [10], first introduced by Jaffar and Lassez in 1987 [7], is a pro-
gramming paradigm that combines the benefits of constraint programming and logic programming. It
enables the modeling of complicated real-world problems with variables and constraints, and uses log-
ical and constraint reasoning to find a solution. CLP expresses the connections between variables as
constraints and looks for a derivation of queries from given clauses.

Prolog is the main language of CLP, where the constraints are equations over the algebra of terms.
CLP problems may in addition contain symbols with pre-defined meanings, defined by a theory. CLP(Z)
[9] refers to CLP over the theory of integer arithmetic. Figure 2 is a simplified grammar that is able to
parse Prolog programs with functions, lists, and integer arithmetic. An extended version of it is used in
our actual implementation.

As shown in Figure 2, every Prolog program consists of a set of Clauses. A clause has a head and a
body. The head can have zero or one predicates, and the body is a list of predicates and constraints. A
clause is either a Fact, a Rule, or a Query. For example, man(tom) is a fact, and friends(X, Y) :-
likes(X, Y), likes(Y, X) is a rule with friends(X, Y) as the head and likes(X, Y), likes(Y,
X) as the body. Queries always start with a ?-. For instance, ?- likes(X, tom) would search for an
assignment for X such that likes(X, tom) can be derived from the set of given clauses. Terms can be
variables, atoms, compound terms, lists, and integers.

Structured data is represented using compound terms. A compound term consists of a function and
a sequence of one or more sub-terms. A function is characterized by its name, which is an atom, and its
arity. For instance, in the fact man(father(claire)), the term father(claire) is a compound term.

In Prolog, there are different kinds of built-in equality operators (#=, =, =:=, is) with different
semantics. The =/2 predicate, which accepts two arguments, is used to ensure that its two arguments
are syntactically equal through unification. For instance, the response to the query ?- father(X) =
father(john) will be positive as the sub-terms can be unified by setting X = john. By default, Prolog
does not apply any “occurs-check”, however, which can sometimes cause non-termination. An example
of this is ?- X = father(X). The unification algorithm decides to unify X with the right-hand-side,
which is father(X). But still there is an X left in this term; interpretation can get stuck in this loop of
replacing X by father(X) and never terminate.

Lists are terms representing sequences of elements; for instance, [a, [b, c], 7] is a list of terms.
A non-empty list can be also be thought of as having two parts: head as the first element of the list, and
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tail as the remainder of the list. Both representations can be parsed using the grammar rules in Figure 2.
The body of the clauses in a Prolog program may also include constraints, in addition to predicates.

An example of a constraint in CLP(Z), Constraint Logic Programming over the domain of integers, is
X + Y #>= 3 * Z - 17. Some other operators for constraints in CLP(Z) include #=, #>, #>=, #<,
#=<, +, -, *, /, mod. Throughout the rest of this paper, whenever we refer to constraints, we refer
to constraints in CLP(Z).

2.2 SMT-LIB

SMT-LIB, or the Satisfiability Modulo Theories Library [3], is a standardized format for specifying
logical formulas modulo various background theories. It is widely used in applications like software
verification, hardware design, and automated reasoning, and is also used as a standard input format of
CHC solvers. The SMT-LIB language supports a range of theories, including arithmetic, bit-vectors, and
arrays, allowing users to express a wide variety of constraints.

An SMT-LIB script consists of a list of commands to be processed by an SMT solver. Important
SMT-LIB commands are:

• (set-logic L): Set the logic, i.e., the combination of theories that will be used. For CHC
solvers, typically L = HORN.

• (declare-fun f (T1 . . . Tn) T): Declaration of a function or predicate f with the given ar-
gument types T1 . . . Tn and result type T . Types in SMT-LIB include the types provided by back-
ground theories (e.g., Int for integers, Bool for Booleans), as well as user-defined types. When
interfacing CHC solvers, typically only predicates (i.e., Boolean-valued functions) are declared.

• (declare-datatype T (C1 . . . Cn)): Declaration of an algebraic data-type T with construc-
tors C1 . . . Cn. Data-types can be recursive, and are the main modelling technique in SMT-LIB
to represent structured data. For every constructor C, the data-type declaration will also introduce
a tester (_ is C) to identify terms constructed using C, as well as selectors for the arguments.
An extended version of the command, declare-datatypes, exists to define several mutually
recursive data-types. We will see various examples of algebraic data-types in this article.

• (assert φ): Assert a constraint φ , which can be formulated using the standard operators of first-
order logic, the functions and predicates provided by background theories, and declared symbols.
CHC solvers require that asserted constraints φ are constrained Horn clauses, which means that
they fall into one of the following classes of formulas:

Facts: (p t1 . . . tk)
Quantified facts: (forall (X1 . . . Xn) (p t1 . . . tk))
Rules: (forall (X1 . . . Xn) (=> (and ψ1 . . . ψm) (p t1 . . . tk)))
Queries: (forall (X1 . . . Xn) (=> (and ψ1 . . . ψm) false)

• (check-sat): Instruct the SMT solver to check whether the constraints asserted up to this point
are satisfiable.

Throughout the paper, only a small subset of the SMT-LIB commands are used. For a full definition
of SMT-LIB, we refer to the standard documentation [3].
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(declare -datatype U (
(claire)
(father (father_1 U))
)

)

(declare -fun man
(U)
Bool

)

(assert
(man (father claire ))

)

Figure 3: SMT-LIB equivalent of man(father(claire))

3 Translating CLP to SMT-LIB

In this section, we explain our translation from CLP problems in Prolog to SMT-LIB. We begin by a
motivating example as a warm-up. After that, we present the translation rules for Prolog facts, rules,
lists, and CLP(Z) constraints. We remark that our implementation does not explicitly translate input
problems to SMT-LIB, but instead directly constructs clauses using Eldarica’s internal data structures;
the translation to SMT-LIB is presented for documentation purposes, and reflects the semantics that is
applied.

3.1 A Motivating Example

Consider the Prolog fact man(father(claire)). This fact consists of the function father applied to
an atomic term claire. To model this term, one could consider declaring corresponding uninterpreted
functions in SMT-LIB. However, with uninterpreted functions, claire and father(claire) might be
assigned the same value, despite being syntactically different terms: the equation (= claire (father
claire)) is satisfiable in SMT-LIB. This is inconsistent with Prolog semantics, in which claire and
father(claire) are different and non-unifiable terms, and it is guaranteed that they stand for distinct
elements of the Herbrand universe. In addition, most CHC solvers do not support uninterpreted functions.

We therefore propose to treat claire and father as constructors of an algebraic data-type. To
translate the mentioned fact to SMT-LIB, the first step is to introduce a new algebraic data-type for all of
the terms occurring in a program. The data-type will be called U, standing for Universal. The constructors
of U will be all atoms and functions appearing in the clauses. Figure 3 shows the full translation of the
example. The constructor father is unary, and its definition also adds a selector father_1 to retrieve
the sub-term. We also define the predicate man, as a Boolean function with a single argument of type U.
Finally, we add the fact man(father(claire)) to the set of our clauses using the assert command.
Section 3.2 provides further details.

It has to be noted that our encoding of terms does not exactly model Prolog semantics. As explained
in Section 2, the unification algorithm of Prolog will not detect the non-unifiability of a query ?- X =
father(X) due to the missing occurs-check. In contrast, elements of SMT-LIB data-types are finite
constructor terms, which implies that the equation (= X (father X)) is not satisfiable in SMT-LIB.
However, we believe that the finite-term semantics is usually the intended semantics of a Prolog program.
It remains to be investigated in future work whether there is a way to represent Prolog semantics more
closely in SMT-LIB.

3.2 Algebraic Data Types (ADTs)

We define a single algebraic data-type U for representing the type of all terms in a program. The con-
structors of U will be all functions and atoms appearing in the clauses. As this global type U is defined
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collectFunctions(t) =


{(atom,0)}, if t = atom
{(c,n)}∪

⋃i=n
i=1 collectFunctions(ai), if t = c(a1, · · · ,an)

/0, otherwise

Figure 4: Function collectFunctions collecting functions in the terms

(declare -datatype U
(

( f1 ( f 1
1 U) ... ( f a1

1 U))
...
( fn ( f 1

n U) ... ( f an
n U))

)

Figure 5: Definition of the universal type U for functions {( f1,a1), . . . ,( fn,an)}

only once, we need to iterate through all clauses and collect the functions and atoms appearing in them.
We define a recursive function responsible for this matter in Figure 4. This function is applied to a term t,
and recursively collects the atoms and functions occurring in t, as well as their arity. For instance, the
value of collectFunctions(a(X ,b,c(d,Y,e))) is {(e,0),(d,0),(c,3),(b,0),(a,3)}.

Given that the set collected using collectFunctions is {( f1,a1), . . . ,( fn,an)}, the universal algebraic
data type U should be defined as in Figure 5.

3.3 Translation of Facts

Section 3.1 shows an example of translating a fact to SMT-LIB. We now introduce the general case of
this translation, and add rules for lists and integer arithmetic in Sections 3.5 and 3.6. We refer to triplets
of the form s ▷ s′ : Φ as translation judgements. The meaning of a judgement is that the Prolog term s
can be translated to an SMT-LIB term s′ under a set of side conditions Φ. Side conditions are mainly
needed to capture typing requirements. For instance, Prolog (CLP(Z)) raises an error when encountering

a ▷ a : /0
a is an atom

V ▷ V : /0
V is a variable

{ti ▷ t ′i : Φi}n
i=1

f(t1,...,tn) ▷ (f t ′1 ... t ′n) :
⋃n

i=1 Φi
f is a function or predicate

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s = t ▷ (= s′ t ′) : Φ1 ∪Φ2

s ▷ s′ : Φ

\+s ▷ (not s′) : Φ

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s =\= t ▷ (not (= s′ t ′)) : Φ1 ∪Φ2

Figure 6: Basic rules for translating Prolog to SMT-LIB
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(declare -fun p
(U ... U)
Bool

)

(assert
(forall ( (X1 U) ... (Xm U) )

(=> (and Φ1 ... Φn) (p t ′1 ... t ′n))
)

)

Figure 7: Translation of a fact p(t1, . . . , tn). We assume that the elements of a set Φi are implicitly
conjoined.

(declare -fun likes
(U U)
Bool

)

(declare -fun friends
(U U)
Bool

)

(assert
(forall ( (X U) (Y U) )

(=>
(and (likes X Y) (likes Y X))
(friends X Y)

)
)

)

Figure 8: Translation of a rule in SMT-LIB

the expression a + b, where a or b are not integers. Thus, when translating a + b to SMT-LIB, we will
later add side conditions that ensure the correct type of a and b. More details concerning the use of side
conditions are given in Sections 3.5 and 3.6.

Figure 6 shows the basic translation rules. Each rule derives a translation judgement, the conclusion
under the bar, from premises shown above the bar. The rules in Figure 6 are mostly self-explanatory, and
recursively translate a given term or constraint to SMT-LIB. The rules assume, for sake of presentation,
that atoms, variables, and functions are translated to SMT-LIB symbols with the same name.

The SMT-LIB translation of a Prolog fact p(t1, . . . , tn) is shown in Figure 7 in terms of expressions
t ′1, . . . , t

′
n and side conditions Φ1, . . . ,Φn, which are defined as follows:

• For all i ∈ {1, . . . ,n} it holds that ti ▷ t ′i : Φi.

• X1, . . . ,Xm are all the variables appearing in the terms t1, . . . , tn.

The fact is captured using an SMT-LIB assertion in Figure 7, listing the side conditions required by the
translation as assumptions.

3.4 Translation of Rules

Before presenting the translation of rules, we begin with a concrete example, using the Prolog rule
friends(X, Y) :- likes(X, Y), likes(Y, X). This rule will be turned into a universally quanti-

(assert
(forall ( (X1 U) ... (Xk U) )

(=> (and ψ ′
1 . . . ψ ′

m Φ0 ... Φm) ψ ′
0)

)
)

Figure 9: Translation of a rule ψ0 :- ψ1, . . . ,ψm
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(declare -datatypes () (
(U

(aList (theList L))
...

)
(L

nil
(cons (head U) (tail L))

)
)

)

Figure 10: Algebraic data-types including lists

list_concat ([],L,L).
list_concat ([X1|L1],L2 ,[X1|L3]) :- list_concat(L1 ,L2 ,L3).

Figure 11: A Prolog program concatenating lists

fied implication in SMT-LIB. Given that we have already defined our universal data-type U as explained
in Section 3.2, all we need is to declare functions in SMT-LIB for likes and friends, and create the
rule using the universal quantifier. The full translation is illustrated in Figure 8.

The general schema for expressing a rule ψ0 :- ψ1, . . . ,ψm in SMT-LIB is shown in Figure 9, assum-
ing that:

• For all i ∈ {0, . . . ,m} it holds that ψi ▷ ψ ′
i : Φi.

• X1, . . . ,Xk are all the variables appearing in the rule.

The assertion representing the rule in Figure 9 has a similar shape as the assertion for facts in Figure 7.

3.5 Translation of Lists

We now add lists to the picture. The absence of static typing in Prolog makes it a-priori impossible to
tell whether a Prolog variable will represent a list or a term constructed using some function (or possibly
both). We therefore include lists as one case in our universal data-type U, and ensure the correct typing
of terms through side-conditions in our translation rules.

(declare -fun list_concat (U U U) Bool)

(assert (forall ((X U)) (list_concat (aList nil) X X)))

(assert (forall ((X1 U) (L1 U) (L2 U) (L3 U))
(=> (and (list_concat L1 L2 L3) ((_ is aList) L1) ((_ is aList) L3))

(list_concat
(aList (cons X1 (theList L1))) L2 (aList (cons X1 (theList L3 ))))))

)

Figure 12: SMT-LIB representation of the program in Figure 11
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[] ▷ (aList nil) : /0

{ti ▷ t ′i : Φi}n
i=1

[t1,...,tn] ▷ (aList (cons t ′1 (cons t ′2 (... cons t ′n nil))...))▷
⋃n

i=1 Φi

h ▷ h′ ▷ Φ1 t ▷ t ′ ▷ Φ2

[h|t] ▷ (aList (cons h′ (theList t ′))) : Φ1 ∪Φ2 ∪{((_ is aList) t ′)}

Figure 13: Translation rules for lists

(declare -datatypes () (
(U

(anInt (theInt Int))
...

)
)

)

Figure 14: Modified declaration of the universal ADT for integer arithmetic

Lists can be viewed as an algebraic data-type (call it L) with two constructors nil and cons. The con-
structor nil has zero arguments and represents empty lists, and cons has two arguments: one referring
to the head of the list (a term of type U), and one of type L referring to the tail of the list.

To implement lists in SMT-LIB, it is therefore natural to declare a new data-type L with the nil and
cons constructors. This new data-type will have a mutual dependency on our universal data-type U, as
defined before, and therefore has to be declared along with U as shown Figure 10. Note that in Figure 10,
there may be other constructors for U coming from the collected functions in Section 3.2, denoted by
three dots. The aList constructor is introduced to wrap terms of type L as a term of the universal type U.
An example of a Prolog program involving lists is presented in Figure 11. The translation of the program
in Figure 11 to SMT-LIB is presented in Figure 12.

A set of inference rules for translating lists in Prolog to SMT-LIB is presented in Figure 13. The
first rule in Figure 13 translates the empty list. The second rule represents the translation of a list with
explicitly enumerated elements. In this case, the list can be constructed in SMT-LIB as a simple iterated
application of cons. The final rule directly matches the functional definition of a list. A list in Prolog
with h as the head, and t as the tail, can be constructed using the cons constructor in SMT-LIB. This
construction is type-correct only if t is again a list; thus, the rule adds the side condition ((_ is aList)
t ′), and unwraps the tail using the theList selector. In all the rules in Figure 13, the result is finally
wrapped using the aList constructor and turned into a U-term.

3.6 Integer Arithmetic

We finally introduce inference rules for converting constraints in the background theory of integer arith-
metic (e.g., 2*X + 7 #> Y) to their corresponding expressions in SMT-LIB. To represent integers, sim-
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s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s⋆ t ▷ (anInt (op (theInt s′) (theInt t ′))) : Φ1 ∪Φ2 ∪{(_ is anInt) s′),(_ is anInt) t ′)}

where (⋆,op) ∈ {(+,+), (-,-),(*,*),(/,div),(mod,mod)}

s ▷ s′ : Φ1 t ▷ t ′ : Φ2

s◦ t ▷ (op (theInt s′) (theInt t ′)) : Φ1 ∪Φ2 ∪{(_ is anInt) s′),(_ is anInt) t ′)}

where (◦,op) ∈ {(#=,=), (#>,>),(#>=,>=),(#<,<),(#=<,<=)}

I ▷ (anInt I) : /0
I is a decimal non-negative integer

-I ▷ (anInt (- I)) : /0
I is a decimal non-negative integer

Figure 15: Translation rules for expressions and contraints in CLP(Z)

ilarly as with lists we add a new constructor to U, so that we can wrap integers into a term of type U. We
call this new constructor anInt, and define it in Figure 14. We once again note that U is a universal type
and may include other constructors.

The translation rules for integer expressions and Boolean constraints over them are presented in
Figure 15. The first rule translates integer-valued functions by recursively translating the sub-terms,
unwrapping the result, and applying the corresponding SMT-LIB function. The result is finally wrapped
again using anInt. The second rule performs the corresponding translation for integer predicates. The
other two rules take care of the translation of integer literals.

The translation can be modified easily to model bounded integers, which are used by some Prolog
implementations. In this case, instead of Int in Figure 14, a bit-vector type like (_ BitVec 64) has to
be used, and in Figure 15 the corresponding bit-vector operations have to be applied. Bit-vector support
in CHC solvers is much less mature than support for mathematical integers, however.

As an example, consider the expression X #> 7. According to the translation rule for variables in
Figure 6, X ▷ X : /0, and according to the translation rule for integers in Figure 15, 7 ▷ (anInt 7) : /0.
Finally, according to the first rule in Figure 15 for translating expressions in integer arithmetic, the
whole expression gets translated to (anInt (+ (theInt X) (theInt (anInt 7)))), with the side
constraint that X is an integer.

4 An SMT-LIB Encoding of the Motivating Example

Combining the different Prolog features that were discussed, Figure 16 gives the SMT-LIB encoding
of the Prolog program for computing paths between cities from Section 1. All the commands used in
this encoding can be obtained using the translation rules explained throughout this article. The encoding
begins by declaring the universal data-type U. Its constructors include all the atoms and functions that
appear in the clauses, in addition to anInt and aList. After that, the data-type L is declared for lists, as
explained in Section 3.5. The SMT-LIB script continues by declaring the functions distance and path
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appearing in the Prolog program clauses. The rest of the encoding are assertions corresponding to the
Prolog rules and facts, and finally the assertion as a clause with head false.

A CHC solver like Eldarica [5] can derive the status unsat for this SMT-LIB script, which implies
that the clauses are contradictory. This can be interpreted as the negation of the last clause being derivable
from the other clauses. A CHC solver could also discover the path discussed in Section 1.

When tightening the length bound to (< (theInt D) 34), the problem becomes satisfiable, which
can again be verified using a CHC solver.

5 Conclusion

We have presented work towards a new CHC solver front-end that allows input in Prolog format, bridging
the gap between Prolog/CLP semantics and SMT-LIB. We are in the process of implementing the defined
translation from Prolog to SMT-LIB in our Horn solver Eldarica [5], with the goal of achieving good
coverage of the Prolog and CLP features.

The translation defined in this paper should be seen as a starting point, as there are several aspects
that require further work, more research, or more discussion in the communities:

• We have only shown the translation rules for some of the most important CLP(Z) operators. We
believe that many other theories and constraints can be handled in a similar fashion.

• We keep typing constraints dynamic, and this way stay close to the actual Prolog semantics. In
terms of the efficiency of CHC solvers on the translated program, of course, it could be beneficial
to perform some amount of type inference upfront. This way, one could translate integer variables
in Prolog to native SMT-LIB Int variables, etc. However, CHC solvers with support for algebraic
data-types tend to perform such type inference themselves, so that the payoff from being more
clever during the translation is unclear.

• Our translation includes all typing constraints as assumptions (Figures 7 and 9), i.e., the well-
typedness of a Prolog program is assumed but not verified. It is not entirely obvious how correct
typing should be asserted in the SMT-LIB representation, however. In the list example in Figure 11,
for instance, note that the first clause implies that the second and third argument of list_concat
can be terms of any kind, whereas the second clause relies on the third argument being a list. The
clauses therefore entail ill-typed statements like list_concat([X|[]], 42, [X|42]]). A CLP
engine performing backward chaining will, however, not run into any typing errors.

• There are several aspects of Prolog semantics that are challenging in a translation to SMT-LIB.
Those include, in particular, the missing occurs-check in equations, as well as cuts. It is unclear
whether those features can or should be translated faithfully to SMT-LIB semantics.

Finally, it will be interesting to evaluate solver performance for the different design choices in the
translation, for different CHC solvers, and to compare to the performance of state-of-the-art CLP engines.
We have not done such a comparison yet due to the preliminary state of the implementation of the front-
end. While we generally assume CLP to be significantly more efficient on classical constraint satisfaction
problems than CHC, there might also be areas in which the abstraction-based algorithms used in CHC
solvers have advantages.
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1 (declare -datatypes () (
2 (U
3 (anInt (theInt Int))
4 (aList (theList L))
5 (waypoint (waypoint_1 U) (waypoint_2 U))
6 tehran vienna paris munich rome lausanne
7 )
8 (L
9 nil

10 (cons (head U) (tail L))
11 )
12 )
13 )
14 (declare -fun distance (U U U) Bool)
15 (declare -fun path (U U U U) Bool)
16
17 (assert (distance tehran vienna (anInt 31)))
18 (assert (distance vienna paris (anInt 10)))
19 (assert (distance vienna munich (anInt 3)))
20 (assert (distance paris munich (anInt 10)))
21 (assert (distance paris rome (anInt 11)))
22 (assert (distance lausanne rome (anInt 6)))
23 (assert (distance lausanne munich (anInt 4)))
24 (assert (distance tehran paris (anInt 42)))
25 (assert
26 (forall ( (A U) (B U) (D U) )
27 (=> (distance B A D) (distance A B D))
28 )
29 )
30 (assert
31 (forall ( (A U) )
32 (path A A (anInt 0) (aList (cons (waypoint A (anInt 0)) nil)))
33 )
34 )
35 (assert
36 (forall ( (A U) (B U) (C U) (D U) (N U) (P U) (Q U) )
37 (=>
38 (and
39 (path A B P N) (distance B C Q)
40 (= D (anInt (+ (theInt P) (theInt Q))))
41 ((_ is aList) N) ((_ is anInt) P) ((_ is anInt) Q)
42 )
43 (path A C D (aList (cons (waypoint C D) (theList N))))
44 )
45 )
46 )
47 (assert
48 (forall ( (D U) (X U) )
49 (=>
50 (and (path tehran munich D X) (< (theInt D) 40) ((_ is anInt) D))
51 false
52 )
53 )
54 )
55
56 (check -sat)

Figure 16: The SMT-LIB encoding of the motivating example introduced in the introduction
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