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Preface

This volume contains a selection of papers presented at LFMTP 2023, the 18th International Work-

shop on Logical Frameworks and Meta-Languages: Theory and Practice. The workshop, affiliated with

the 8th International Conference on Formal Structures for Computation and Deduction (FSCD), was

held in Rome, Italy, on July 2, 2023. We are very grateful to the organization of FSCD for providing the

infrastructure and coordination with other events.

Logical frameworks and meta-languages form a common substrate for representing, implementing

and reasoning about a wide variety of deductive systems of interest in logic and computer science. Their

design, implementation and their use in reasoning tasks, ranging from the correctness of software to the

properties of formal systems, have been the focus of considerable research over the last two decades. This

workshop brings together designers, implementors and practitioners to discuss various aspects impinging

on the structure and utility of logical frameworks, including the treatment of variable binding, inductive

and co-inductive reasoning techniques and the expressiveness and lucidity of the reasoning process.

For this edition, we received 5 submissions, which were reviewed by at least three members of the

program committee. After thorough evaluation, the program committee decided to accept the 5 papers

for presentation and selected 4 for inclusion in the present EPTCS volume.

We want to express our sincere thankfulness to all the authors who submitted papers to the work-

shop. We would also like to acknowledge the exceptional efforts of the program committee, that en-

sured the high quality of the event. The program committee was formed by Roberto Blanco (MPI-SP),

Frédéric Blanqui (Inria), Ana Bove (Chalmers University of Technology), Amy Felty (University of

Ottawa), Assia Mahboubi (Inria), Narciso Martı́-Oliet (Universidad Complutense de Madrid), Gopalan

Nadathur (University of Minnesota), Clément Pit-Claudel (Amazon AWS), Andrei Popescu (University

of Sheffield), and Claudio Sacerdoti Coen (University of Bologna). We extend our appreciation to the

external reviewers, Théo Winterhalter and Samuele Maschio, for their detailed comments engaging in

fruitful discussions.

Lastly, we would like to convey to Niki Vazou our deep gratitude for her invaluable contribution as

the invited speaker at LFMTP 2023.

October 04, 2023

Alberto Ciaffaglione and Carlos Olarte

PC chairs of LFMTP 2023

http://dx.doi.org/10.4204/EPTCS.396.0
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Refinement types [5, 3] are a software verification technique that extends types of an existing pro-

gramming language with logical predicates, to verify critical program properties not expressible by the

existing type system. As an example, consider the type of the list indexing function (!!) that takes as

input a list xs and an index i and returns the ith element of xs.

Existing Type : (!!) :: [a] → Int → a

Refined Type : (!!) :: xs:[a] → i:{Int | 0 ≤ i < len xs} → a

Here, the two arguments are named and the logical predicate 0 ≤ i < len xs is used to refine the type

of the index expressing safe indexing. With this refinement type, each time list indexing is used, i.e.,

xs !! i, the refinement type checker will check that the index i is within bounds.

1 Refinement Types are Designed to be Practical

Refinement type are naturally integrated in existing programming languages. For example, in Liquid

Haskell [13], refinement types are integrated as special Haskell comments that are interpreted by the

refinement type checker and ignored by the Haskell compiler. Thus, refinement types provide a formal

verification extension to an existing programming language, preserving the runtime semantics, develop-

ment tools (e.g., editor and cloud integration support), and optimized libraries of the host language.

Verification is automated using SMT solvers [1]. For example, to show that [1,2,3] !! 2 is safe,

the refinement type checker will generate the Verification Condition (VC) 0 ≤ 2 < len [1,2,3] that

is valid only when the code satisfies the refinement type specifications (here safe-indexing). Then, the

VC is passed to an SMT solver that will prove it valid, thus the code is safe.

Finally, refinement types are carefully designed to ensure decidable verification, which is crucial for

both practicality and predictability. To establish decidability, refinement types restrict the language of

specifications to a decidable fragment of logic, and design the typing rules, that essentially generate the

VCs, so that the logical fragment is preserved. To express more complex concepts, such as quantified

properties, verification is type based. For example, [{v:Int | v ≤ 42}] expresses the type of lists of

integers where all elements are smaller than 42, but without the need to quantify over the list elements.

In short, refinement types are designed to be naturally integrated, automated, and decidable, i.e.,

practical. For that reason, they have already been adopted by various programming languages, e.g.,

Haskell [12], Ruby [6], Scala [4], and Rust [7]. Yet, in the name of practicality, most refinement type

implementations, sacrifice soundness.

http://dx.doi.org/10.4204/EPTCS.396.1
https://creativecommons.org
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2 Refinement Types

2 Are Refinement Types Sound?

A verifier is not sound when it accepts a program that violates its specification. An unsoundness error

can be generated by two different sources: a bug in the implementation of the verifier or a bug in the

design of the refinement type system.

The implementation of refinement type checkers is usually large and error prone. A refinement

type checker has to trust the compiler of the underlying language to generate an intermediate program

representation (IPR), the type checking rules (adapted to accommodate the IPR) to generate logical

verification conditions (VC) and the SMT to validate the VCs. All these three trusted components consist

of big code bases that inevitably contain bugs and can potentially lead to unsound verification. Indeed,

the implementations of F* [10], Stainless [4], and Liquid Haskell [12] respectively consist of 1.3M,

185.3K, and 423K lines of code, and none of these verifiers isolates a trusted kernel. Approximately five

unsoundness bugs per year are reported in each system.

The logic of refinement types is not well understood, leaving it unclear for the users what assumptions

are safe to be made and which lead to inconsistencies, and thus unsound verification. For example, we

recently discovered [11] that function extensionality had been encoded inconsistently in Liquid Haskell

for many years. The inconsistent encoding seemed natural and was assumed by both the developers

and users of Liquid Haskell. However under the assumption of functional extensionality Liquid Haskell

could prove false, invalidating all the user’s verification effort.

Having acknowledged the practicality and unsoundness of refinement types, we argue that the com-

munity should focus on making refinement types sound, inspired by techniques from the type theory

(e.g., Coq [2], Agda [9], and Lean [8]) that design type systems to be sound by construction.
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We develop an extension of the proof environment BELUGA with datasort refinement types and study

its impact on mechanized proofs. In particular, we introduce refinement schemas, which provide fine-

grained classification for the structures of contexts and binders. Refinement schemas are helpful in

concisely representing certain proofs that rely on relations between contexts. Our formulation of

refinements combines the type checking and sort checking phases into one by viewing typing deriva-

tions as outputs of sorting derivations. This allows us to cleanly state and prove the conservativity of

our extension.

1 Introduction

Proof mechanization provides strong trust guarantees towards the validity of theorems. Contrary to

informal proofs, expressing a theorem and its proof formally requires absolute precision. The resulting

statement can thus become riddled with technicalities, which obscures their relation to their informal

counterparts. This work combines two approaches to type systems that significantly reduce the added

complexity from formalization, namely refinement types and higher-order abstract syntax (HOAS).

Datasort refinement types [10, 9] provide ways to define subtypes (called datasorts or just sorts) by

imposing constraints on the constructors of (inductive) types. Intuitively, a sort S refines a types A if it is

defined by a subset of its constructors. The idea originated in the simply-typed setting, where refinements

enhance the expressive power of the type system. Later, Lovas and Pfenning [17, 16] extended datasort

refinements to the dependently-typed Edinburgh logical framework LF [13]. They provide an equiva-

lence between their system of refinements, LFR, and another extension of LF with proof-irrelevance. An

immediate conclusion here is that refinements do not increase the expressive power of dependently-typed

calculi. Rather, Lovas observes that refinements may significantly reduce the verbosity of mechanized

proofs, which is demonstrated through several case studies [16].

BELUGA is a two-level programming language based on contextual modal type theory (CMTT) [18].

It uses the Edinburgh logical framework LF [13] as a specification logic (data-level), with an intuitionistic

first-order reasoning logic (computation-level). The data-level is embedded in the computation-level via

a (contextual) box modality similar to the one in the modal logic S4. From a logical point of view, the

formula �A (read box A) expresses that A is true under no assumptions, i.e. in the empty context. The

contextual box modality generalizes this idea to arbitrary contexts, yielding formulas of the form [Ψ ⊢ A]
expressing that A holds in context Ψ. This allows us to represent LF objects (and types) together with a

context in which they are meaningful. To handle this representation, LF contexts are restricted using a

notion of schema that acts as classifiers of contexts, similarly to how types classify terms. In addition, LF

substitutions are first-class objects of BELUGA and they can be used to move objects from one context

to another while preserving their meaningfulness. These features allow the expression of an object

language (OL) using HOAS [19] and provide several substitution lemmas for free in our mechanizations.

We present BELUGA and its extension with refinement types in Sections 3 and 4, which discuss the

data-level and computation-level, respectively. The core of the extension consists of replacing the LF

http://dx.doi.org/10.4204/EPTCS.396.2
https://creativecommons.org
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layer of BELUGA with a variation on the LFR system of Lovas and Pfenning [17, 16]. We then lift the

refinement relations to the computation-level through straightforward congruence rules and show that

the extension is conservative, meaning that every well-sorted program of our extension is well-typed in

conventional BELUGA. However, this result only applies if we consider BELUGA as a general-purpose

language rather than a proof environment. This is because a BELUGA proof is a recursive function

that terminates on every input and refinements allow specifying more precise domains. Thus, the types

that we obtain from conservativity can extend the domain of a function, leading to undefined behaviour

on certain inputs. In this sense, the extension permits interpreting some partial recursive functions as

proofs. While termination is an important part of our work, we focus here on defining the refinements

and leave termination checking for future work. More details on this as well as more examples and a full

definition of our system will be available in an upcoming technical report [12]. A version of the present

paper featuring an appendix containing the fully detailed definitions of our judgments is available on the

the first author’s website.

2 Motivation

Felty et al. [6] observed that binders can have various structures and that particular results rely only

on particular aspects of those structures. This leads to challenges when invoking a lemma in the proof

of a theorem since the lemma may rely on simpler binding structures than the theorem. For instance,

a lemma using untyped term variables can still be useful for a theorem that uses typed term variables.

They propose a series of benchmark challenges along with solutions using multiple contexts and relations

between them. We design a new solution based on refinements for one of these benchmarks, namely the

equivalence of algorithmic and declarative equalities for the untyped λ -calculus.

The first step of the mechanization is to encode the untyped λ -calculus as an LFR datatype:

LFR tm : type =
| lam : (tm → tm) → tm
| app : tm → tm → tm;

This syntax declares a new type called tm whose objects are built from the two given constructors,

lam and app. The constructors encode function abstraction and function application, respectively. Next,

we want to encode the judgments for declarative and algorithmic equalities:

LFR deq : tm → tm → type =
| e-lam : ({x : tm} deq x x → deq (M x) (N x)) → deq (lam M) (lam N)
| e-app : deq M1 N1 → deq M2 N2 → deq (app M1 M2) (app N1 N2)
| e-refl : {M : tm} deq M M
| e-sym : deq M N → deq N M
| e-trans : deq M1 M2 → deq M2 M3 → deq M1 M3;

Here, we exploit the dependent types of LFR to express declarative equality as a binary predicate

on objects of type tm. The constructors e-refl, e-sym, and e-trans encode the axioms of an equiv-

alence relation (reflexivity, symmetry, and transitivity, respectively), while the constructors e-lam and

e-app correspond to congruence rules. Algorithmic equality is just declarative equality without the three

equivalence axioms. As such, we define it as a refinement of deq rather than as a separate atomic type:

LFR aeq ⊏ deq : tm → tm → sort =
| e-lam : ({x : tm} aeq x x → aeq (M x) (N x)) → aeq (lam M) (lam N)
| e-app : aeq M1 N1 → aeq M2 N2 → aeq (app M1 M2) (app N1 N2);

https://cs.mcgill.ca/~agauli1/


6 Contextual Refinement Types

To declare a new (atomic) sort, users must specify three things: the type which is refined, a refinement

kind, and a list of constructors together with their sort. The type must have been previously declared,

the sort’s kind must refine the type’s kind, and each of the constructors’ sort must refine their assigned

type. By using a sort instead of a type, we get to reuse the same constructors for both judgments. This

guarantees that any proof of algorithmic equality can be interpreted as a proof of declarative equality.

Thus, we get the soundness of algorithmic equality for free.

The last step in encoding the language is to define its contexts via context schemas. The goal of a

schema is to characterize the structure of contexts, which consist of tuples of assumptions rather than

being flat lists. A particular context can contain various forms of assumptions (untyped term variables,

typed term variables, type variables, etc.) depending on the features of the OL that we are mechanizing.

We call these forms of assumptions worlds (or schema elements). Intuitively, worlds are to schemas what

constructors are to atomic types: they specify how to construct a context of a given schema. Our notation

for schema declaration emphasizes this idea:

schema xdG =
| xeW : block (x : tm, e_x : deq x x);

Now, if we have a context Ψ of schema xdG, then we can extend it with an additional block variable

b with world xeW, yielding the context Ψ,b:xeW. A refinement of schema is then obtained by selecting

a subset of the worlds and refining them to sorts. Here, we want to refine the deq assumption to aeq,

which we do as follows :

schema xaG ⊏ xdG =
| xeW : block (x : tm, e_x : aeq x x);

One advantage of this approach is that the sort of a block variable b:xeW is fully hidden in the schema

of the context in which it appears. This means that a given context of schema xaG can also be seen as

having schema xdG. Moreover, this idea generalizes to arbitrary schemas and can go in both directions

when all the worlds of the type-level schema also appear in the refinement schema. In this case, given

schemas H ⊏ G and a context Ψ : H , we write Ψ⊤ to indicate that we wish to interpret Ψ as a context of

schema G.

In the conventional solution [8], a relation between contexts of the two schemas needs to be main-

tained explicitly. Here, we can simply use the refinement relation and our special Ψ⊤ context instead.

Let us now look at a few cases of the proof of completeness of algorithmic equality:

rec aeq-sym : (Ψ : xaG) [Ψ ⊢ aeq M N] → [Ψ ⊢ aeq N M] = ...;
rec ceq : (Ψ : xaG) [Ψ⊤ ⊢ deq M N] → [Ψ ⊢ aeq M N] =
fn d => case d of
| [Ψ ⊢ #b.2] => [Ψ ⊢ #b.2]
| [Ψ ⊢ e-sym D] =>

let [Ψ ⊢ D’] = ceq [Ψ⊤ ⊢ D] in
aeq-sym [Ψ ⊢ D’]

| [Ψ ⊢ e-lam (λx.λe. D)] =>
let [Ψ, b:xeW ⊢ E] = ceq [Ψ, b:xeW ⊢ D[.., b.1, b.2]] in
[Ψ ⊢ e-lam (λx.λe. E[..,<x;e>])]

| ...

where parentheses around the context variable Ψ : xaG indicate implicit quantification.

The first case is for variables, represented as the second projection on one of the block b in Ψ. The

symbol # is merely a syntactic device to identify b as a variable. This case acts in essence just like an
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identity function, except that the sort of the output does not match that of the input. When we pattern

match, we know that d has the context Ψ⊤ from the sort of ceq. Since Ψ⊤ has schema xdG, we know

the world of b and therefore that b.2 has sort deq b.1 b.1. On the other hand, when we produce the

output [Ψ ⊢ #b.2], then the sort of ceq tells us to interpret Ψ as a xaG, so we assign it the sort aeq
b.1 b.1, as desired.

Next, we have the case of symmetry, which is solved by a recursive call on the subderivation, fol-

lowed by a call to the relevant lemma aeq-sym. We know from the sort of ceq that the recursive calls

produce objects of sort [Ψ ⊢ aeq M N] with Ψ : xaG, which is precisely what the lemma expects.

Finally, the case for λ -abstraction requires extending the context with an additional block of assump-

tions. Here, it is evident that the two contexts involved are the same, except that they are interpreted in

different ways.

Our solution is simple and closely resembles an informal proof of completeness of algorithmic equal-

ity. In contrast, the conventional BELUGA solution1 requires a total of 13 additional arguments, including

7 explicit ones that must be manipulated in every case of the proof.

3 Data-level

The main objective of BELUGA is to facilitate reasoning about the properties of OLs. To achieve this,

an OL is specified using a variant of the Edinburgh logical framework LF [13], called Contextual LF, in

which LF objects and types are always represented together with a context in which they are meaningful,

that is containing all of its free variables. The variables of an OL are represented as LF variables, which

allows reusing LF’s substitution calculus to represent substitution in the OL. This kind of representation

is known as HOAS and eliminates the need to prove several substitution properties. Contextual LFR

applies the same idea to the LFR system of Lovas and Pfenning [17, 16].

We will start by reviewing Lovas and Pfenning’s LFR [17] and discuss the numerous changes that

we make to their presentation, and then we will see how refinements carry on to Contextual LFR. Un-

fortunately, the contextual aspect cannot be cleanly separated from LFR since the syntax and judgments

of LFR have to be altered during the extension. In particular, all the judgments depend on an additional

context, called the meta-context and denoted Ω at the refinement level and ∆ at the type level. These

consist of meta-variables which may occur within LFR objects. So, we maintain these aspects in our

presentation of LFR, but defer their explanation to the last part of this section.

We follow a canonical form presentation [28] for the data-level. This means that only normal terms

are allowed, which requires the use of hereditary substitutions. Simply put, hereditary substitutions are

like ordinary substitutions except that they apply any β -reduction that appears during the process. For

instance, the substitution [(λy.y)/x](x 0) produces 0 instead of (λy.y) 0.

3.1 LFR

As previously mentioned, LFR extends LF with datasort refinement types. The objects of LFR are

exactly the same as in LF and their classifiers are separated in two levels, types A and sorts S, which are

related by a refinement relation S ⊏ A. Due to their dependencies on types, the other syntactic categories

are similarly duplicated into a type-level and a sort-level related by a refinement relation.

To facilitate the extension to Contextual LFR, it is crucial that we apply this principle to contexts

instead of using a single context containing both typing and sorting assumptions like Lovas and Pfenning

1Available at https://github.com/pientka/ORBI

https://github.com/pientka/ORBI
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[17]. A contextual type (Γ.A) encodes the LF judgment that A is a well-formed type in (typing) context Γ

and a contextual sort (Ψ.S) similarly encodes the LFR judgment that S is a well-formed sort in (sorting)

context Ψ. The only sensible way to establish that (Ψ.S) ⊏ (Γ.A) is to show that Ψ ⊏ Γ and that S ⊏ A.

This new refinement relation can then be thought of as a relation between a sort-level judgment and a

type-level judgment.

3.1.1 Types and sorts

We start by presenting the types and sorts of LFR and discussing the relations between them. Both types

and sorts are allowed to depend on (normal) terms M. They are given by the following syntax:

Type level Refinement level

Atomic families P ::= a | P M Q ::= s | Q M | P

Canonical families A ::= P | Πx:A1.A2 S ::= Q | Πx:S1.S2

The refinement relation ultimately boils down to what the user specifies. An atomic type family a

is defined by its constructors and their types. An atomic sort family s ⊏ a is then defined by selecting

a subset of the constructors of a and assigning them sorts that refine their previously specified types. In

this sense, refinements offer a way to safely reuse constructors. Finally, the relation is lifted to other

types with simple congruence rules:

Q ⊏ P

Q M ⊏ P M

S1 ⊏ A1 S2 ⊏ A2

Πx:S1.S2 ⊏ Πx:A1.A2

Due to the presence of dependencies, type and sort well-formedness are non-trivial in LFR. The type

well-formedness judgment, A : type, coincides exactly with LF’s type well-formedness judgment. It

essentially just makes sure that whenever we apply an atomic family P to an argument M, then M has the

type prescribed by P’s kind. We could likewise consider a sort well-formedness judgment S : sort
that validates the sorts of dependencies, but instead we consider the refinement relation itself to be

the sort well-formedness judgment. This is also what was done by Lovas and Pfenning [17], however

the presence of intersection sorts in their system prevents the full separation of a sort well-formedness

judgment. This is because intersections are only allowed when both sorts refine the same type, so the

refinement information must be present during the well-formedness derivation.

The refinement relation for atomic families Q ⊏ P is similar to the notion of constructor subtyping

[1], according to which a subtyping relation P1 ≤ P2 occurs between two inductive types when P1 is

defined by a subset of the constructors of P2. As such, it is sensible to consider a notion of subsorting

(i.e. subtyping at the level of sorts) such that Q ≤ P whenever Q ⊏ P. In particular, a subsumption rule is

admissible for refinements of atomic families. The natural subsorting rule for function spaces would be

contra-variant in the domain, while refinement of function spaces is co-variant. As such, a subsumption

principle for refinements of function spaces is not guaranteed, although it is admissible for the weak

function spaces of LF.

In addition to the usual typing judgment M : A, we have a sorting judgment, denoted M :: S. Sorting

replicates typing similarly to how sorts replicate types syntactically. A similar phenomenon occurs for

all the other LF judgments (context formation, kinding, etc.). One of our key observations is that the

type-level judgments can be unified with their sort-level analogues due to their close resemblances. For

typing, this yields a judgment M : S ⊏ A that encompasses both the facts that M : A and M :: S. Let us
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exemplify this by considering the rules for function applications:

M1 : Πx:A1.A2 M2 : A1

M1 M2 : [M2/x]A2

M1 :: Πx:S2.S2 M2 :: S2

M1 M2 :: [M2/x]S2

M1 : Πx:S1.S2 ⊏ Πx:A1.A2 M2 : S1 ⊏ A1

M1 M2 : [M2/x]S2 ⊏ [M2/x]A2

(Typing) (Sorting) (Unified)

For the remainder of our presentation, we will focus on this form of unified judgments. In all our

judgments, everything that appears to the right of the refinement symbol is considered to be an output.

For instance, in M : S ⊏ A, the type A is an output, which amounts to recovering a typing derivation

M : A from the sorting derivation M :: S. The actual typing rules (see Figure 2) are bi-directional, so

we have two unified judgments, one for synthesis and one for checking. This means that we consider

neutral terms R and normal terms M, and that we have unified judgments for synthesis (R ⇒ S ⊏ A) and

checking (M ⇐ S ⊏ A). We will discuss this in more details when we introduce terms in 3.1.3.

The other syntactic categories of LFR are similarly duplicated at the refinement level, except for

terms which are the same at both levels since they do not contain any type information to refine. Each

category is equipped with a refinement relation that is induced by the refinement for types. In all the

judgments involving refinements, everything on the right of ⊏ can be considered as an output of the

judgment.

Our presentation differs from that of Lovas and Pfenning [17] in two other ways. First, we use an

explicit embedding of types into sorts rather than an ambiguous ⊤ sort that refines every type. This

ensures that for any well-formed sort S, we can compute a type A such that S ⊏ A. In turn, this allows

us to combine the typing and sorting judgments into a single sorting judgment (see Figure 2). We

can then perform type-checking only when it is needed for a sorting derivation, that is when we reach

a type embedded into a sort. Moreover, our embedding is at the level of atomic families rather than

canonical families. This being said, an embedding of canonical types within canonical sorts is admissible

since we can construct a Π-sort from embedded atomic type families. This is also the case for every

other syntactic category in BELUGA. Second, we have omitted intersection sorts S1 ∧ S2, which allow

specifying multiple sorts for an object at once.

We note that both subsorting and intersection sorts, although useful features, can significantly slow

down sort checking, much like their type-level equivalent would slow down type checking. On the

other hand, sorts themselves come at a very low cost while still offering several of the benefits of richer

sort systems. The results that we present in 3.1.4 can be extended to a system supporting subsorting

and intersection sorts. Adding intersections is straightforward, but subsorting brings complication when

it comes to validating coverage since when we pattern match on an object of sort Q, then we need

to consider the cases coming from the constructors of Q as usual, but also any additional constructor

coming from a subsort of Q.

3.1.2 Contexts and schemas

Next, we take a closer look at LFR contexts and schemas. Again, these are separated into a type-level

and a refinement-level that are related by a refinement relation. The syntax of LFR contexts and schemas

is as follows:

Type level Refinement level

Blocks of declarations B ::= · | Σx:A.B C ::= · | Σx:S.C
Schema elements E ::= B | Πx:A.E F ::=C | Πx:S.F

Contexts Γ ::= · | ψ | Γ,x:A | Γ,b:E · ~M Ψ ::= · | ψ | Ψ,x:S | Ψ.b:F · ~M
Context schemas G ::= · | G+E H ::= · | H +F
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Ω ⊢ Ψ ⊏ Γ – Refinement relation for contexts

⊢ Ω ⊏ Γ
Ω ⊢ ·⊏ ·

(ψ : H) ∈ Ω

Ω ⊢ ψ ⊏ ψ

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ S ⊏ A

Ω ⊢ (Ψ,x:S)⊏ (Γ,x:A)

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ F ⊏ E

Ω ⊢ (Ψ,b:F[~M])⊏ (Γ,b:E[~M])

Figure 1: Refinement relations for contexts and schemas

Blocks of declarations represent tuples of labelled assumptions, i.e. variables. The empty block · is

not valid on its own, rather it is a syntactic device that indicates the end of a block. Empty blocks are not

strictly necessary for the system to work, but facilitate the theoretical development by providing a simple

base case.

A schema element is a parameterized block of declarations. While blocks express specific in-

stances of assumptions, schema elements encode the general requirements of a particular form of as-

sumption. For instance, a typing assumption (informally denoted by x : A) is characterized by the

schema element ΠA : tp.Σx:tm.Σt:oft x A.·, while a particular instance of this assumption would be

Σx:tm.Σt:oft x nat.·. Each schema element corresponds to an inference rule for the OL’s context for-

mation judgment. A schema is defined as a sum of schema elements and similarly corresponds to the

OL’s full context formation judgment. Note that in the external syntax used in our example, every

schema element was assigned a name and referred to exclusively by that name. Here, we directly use the

element’s sort to avoid the need for extra premises performing signature lookups in our inference rules.

LFR contexts can contain two kinds of variables. Ordinary variables, denoted by x, stand for an

arbitrary LFR object of the specified type. Block variables, denoted by b, stand for tuples of assumptions

satisfying the specification of a schema element. In conventional Beluga, block variables are directly

assigned with a block of declaration instead of a schema element applied to some objects. Here, we

require that these objects be specified explicitly, so that they can be recovered when pattern matching on

a context. This simplifies the schema checking rules (see Appendix for a definition) since they no longer

rely on unification to establish that a block extension fits a schema element. We also allow a single

context variable ψ to appear on the left-most position of LFR contexts Ψ (or Γ), but we do not consider

ψ as a variable of Ψ. Instead, ψ is a placeholder for an actual context to be substituted at a later time, so

it is stored in the meta-context Ω.

The refinement relations for blocks, schema elements, and schemas are very simple (see Appendix).

For schema elements, we just check one sort at a time, starting with the parameters and then the assump-

tions in the block. Refinements of contexts are similarly checked one assumption at a time (see Figure

1). For block assumptions, we require the same parameters to be used to instantiate the schema elements

on both sides of the refinement relation. The relation on schemas is similarly simple, but we take care not

to allow duplicate schema elements in G (or in H for that matter). We do this mainly because duplicate

elements serve no purpose in practice, but also to highlight the fact that multiple elements of H can refine

the same element of G.

Contexts are validated using the schema checking judgments Ω ⊢ Ψ : H ⊏ G (at the sort-level) and

∆ ⊢ Γ : G (at the type-level). Assigning a schema H to a context Ψ requires that all the assumptions in

Ψ match one of the schema elements in H (see Appendix). This means that all the assumptions in Ψ are

of the form b:F[~M], hence there is no rule associated to single variables x:A. The empty context checks

against any well-formed schema. For context extensions, we use an auxiliary judgment Ω ⊢ ~M : F > D

that checks the terms in ~M against the parameters of F one at a time. In the end, it produces the block of

declarations D obtained by β -reducing F[~M]. Recall that A is an output of the judgment Ω; · ⊢M ⇐ S⊏A
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and that C is an output of Ω ⊢ D ⊏C, so we do not need to know them in advance in order to validate the

premises.

3.1.3 Terms and substitutions

Now that we have discussed the classifiers of contextual LFR, let us look at the objects that they classify.

We distinguish two kinds of objects, namely terms and substitutions. Terms are classified by sorts (and

types), while substitutions are classified by contexts. Only normal forms are allowed at the data-level,

and this is enforced with a canonical form presentation [28]. The syntax is as follows:

Neutral term R ::= c | x | b.k | R M n-ary tuple ~M ::= · | M; ~M

Normal term M ::= R | u[σ ] | λx.M Substitution σ ::= · | idψ | σ ,M | σ , ~M

The separation of terms into neutral and normal ensures that no β -reduction can be done by pre-

venting applications of λ -abstractions. The typing rules (see Figure 2) will also guarantee that all terms

are η-long. n-ary tuples of normal terms are crucially used in substitutions to replace block variables b.

Since b is always used in a projection b.k, the substitution [~M/b] needs to extract the kth projection of

the n-ary tuple in order to avoid expressions of the form ~M.k, which are undefined by our grammar (and

not normal). This coincides nicely with the idea of hereditary substitution and can be added with only

minor modifications to their definition. Substitutions can also contain individual terms, which are used

to replace individual variables x. Finally, idψ is the identity substitution for the context variable ψ . Note

that substitutions have the same structure as their domain, hence it is not specified explicitly.

Ω;Ψ ⊢ M ⇐ S ⊏ A and Ω;Ψ ⊢ R ⇒ S ⊏ A – Bi-directional typing

(u : Ψ′.P) ∈ Ω Ω;Ψ ⊢ σ : Ψ′ ⊏ Γ

Ω;Ψ ⊢ u[σ ]⇐ [σ ]Q ⊏ [σ ]P

(b : F[~M]) ∈ Ψ Ω ⊢ ~M : F >C Ω;Ψ ⊢ b : C ≫k
1 S Ω;Ψ ⊢ S ⊏ A

Ω;Ψ ⊢ b.k ⇒ S ⊏ A

Ω;Ψ1 ⊢ σ : Ψ2 ⊏ Γ2 – σ is a well-formed substitution from Ψ2 to Ψ1

Ω;Ψ1 ⊢ σ : Ψ2 ⊏ Γ2 Ω;Ψ2 ⊢ ~M2 : F > D Ω; · ⊢ F ⊏ E Ω;Ψ1 ⊢ ~M1 ⇐ D

Ω;Ψ1 ⊢ (σ , ~M1) : (Ψ2,b:F[~M2])⊏ (Γ2,b:E[~M2])

Figure 2: Bi-directional typing rules

Neutral terms consist of constants c, single LFR variables x, projections of LFR block variables b.k,

and function applications of neutral terms to normal terms R M. The sort synthesis rules for constants,

single variables, and function applications are standard and coincide with those of Lovas and Pfenning

[17]. Blocks of variables b are not valid LFR objects on their own, instead they are always used in

projections. To synthesize the sort of a projection b.k, we first retrieve its classifying world F[~M] from

the context, then we compute the block D that it corresponds to via the judgment Ω ⊢ ~M : F > D, and

finally we extract the kth component of D using the auxiliary judgment Ω;Ψ ⊢ b : C ≫k
i . Normal terms

are either neutral terms or λ -abstraction, and the sort-checking rules are standard.
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Well-formedness of substitutions is validated with the judgment Ω;Ψ1 ⊢ σ : Ψ2 ⊏ Γ, where Ψ2 is

the domain and Ψ1 the range of σ . The empty substitution has domain · and range any context Ψ1, so

it allows weakening a closed object to any context. Substitution extension with a single term (σ ,M) are

validated against context extensions with a single variable (Ψ2,x:S) in the usual way. The substitution

σ , ~M is used to substitute the n-ary tuple ~M for a block variable b.

3.1.4 Meta-theory

Our main result concerning LFR is that for any refinement-level derivation, there is a corresponding type-

level derivation. In particular, well-sorted terms are also well-typed, which means that our extension does

not provide any new meaningful terms, i.e. that it is conservative. The statement of the theorem relies

on type-level LFR judgments that we have not yet discussed due to their similarities with analogous

refinement-level judgments and to the fact we did not change them. Let us then first recapitulate the

important refinement-level judgments and mention their type-level analogues:

Judgment Type-level Refinement-level

Type formation ∆;Γ ⊢ A ⇐ type Ω;Ψ ⊢ S ⊏ A

Type checking ∆;Γ ⊢ M ⇐ A Ω;Ψ ⊢ M ⇐ S ⊏ A

Type synthesis ∆;Γ ⊢ R ⇒ A Ω;Ψ ⊢ R ⇒ S ⊏ A

Schema checking ∆ ⊢ Γ : G Ω ⊢ Ψ : H ⊏ G

The same separation occurs for any other judgment of the system. In particular, every refinement

relation that we have introduced corresponds to the type-level formation judgment of the associated

syntactic category, like for types. The rules defining a type-level judgment are roughly the same as

those defining its refinement-level analogue, except that the refinement-level information is replaced by

type-level information. Now, we can formulate the conservativity theorem for LFR as follows:

Theorem 3.1.5 (Conservativity for data-level)

1. If Ω;Ψ ⊢ S ⊏ A, then there are ∆ and Γ such that:

(a) ⊢ Ω ⊏ ∆, (b) Ω ⊢ Ψ ⊏ Γ, (c) ∆;Γ ⊢ A ⇐ type.

2. If Ω;Ψ ⊢ M ⇐ S ⊏ A, then there are ∆ and Γ such that:

(a) ⊢ Ω ⊏ ∆, (b) Ω ⊢ Ψ ⊏ Γ, (c) ∆;Γ ⊢ M ⇐ A.

3. If Ω ⊢ Ψ : H ⊏ G, then there are ∆ and Ψ such that:

(a) ⊢ Ω ⊏ ∆, (b) Ω ⊢ Ψ ⊏ Γ, (c) ∆ ⊢ Γ : G.

The proof is discussed in 3.2.1. For now, we simply observe that the close resemblance between

type-level and refinement-level judgments, combined with the fact that we can extract type-level deriva-

tions from refinement-level ones, suggests that we can lift the refinement relations to the level of LFR

judgments. This idea will be reinforced by the refinement relations on contextual types.

3.2 Contextual LFR

The contextual layer (also known as the meta-layer [2]) unifies the different kinds of objects and classi-

fiers of the data-level into unique constructs. This facilitates function abstraction at the computation-level

since otherwise each kind of object would need a special kind of function space. As before, our clas-

sifiers are separated into types and refinement types. Moreover, since contextual objects include LFR

contexts, we naturally obtain a refinement relation for objects as well. The syntax is as follows:
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Type level Refinement level

Contextual types A ::= Γ.P | Γ.Γ′ | G S ::= Ψ.Q | Ψ.Ψ′ | H

Contextual objects M ::= Γ̂.R | Γ̂.σ | Γ N ::= Ψ̂.R | Ψ̂.σ | Ψ

Meta-contexts ∆ ::= · | ∆,X :A Ω ::= · | Ω,X :S
Meta-substitutions ρ ::= · | ρ ,M θ ::= · | θ ,N

Meta-variables X ::= u | ψ

Contexts with hats (Γ̂,Ψ̂) are called erased and contain no type or sort information, so they consist

only of variables. Erased contexts are sufficient in this setting since the LF neutral objects and LF

substitution do not refer to any type or sort information present in the context. Note that if Ψ ⊏ Γ, then

Ψ̂ = Γ̂. This means that if N ⊏ M are not just contexts, then N = M. Accordingly, refinements of

meta-objects only provides information when contexts are used as objects.

Note that we only allow atomic LFR sorts to occur in the contextual sort Ψ.Q (and similarly at the

type-level). This is not a real limitation of the system since the sort Ψ.Πx:S1.S2 would be isomorphic to

(Ψ,x:S1).S2. Similarly, we allow only neutral terms in contextual objects Ψ̂.R, but this does not impact

the expressiveness.

A meta-context can contain two kinds of variables, each associated with one of the three possible

forms of contextual types. The meta-variable u stands for an LFR term, so it is given the contextual sort

Ψ.Q. Meta-variables must be associated with an LFR substitution σ before being used in LFR terms

as u[σ ]. In this setting, σ is delayed until a meta-substitution is applied to replace u. The other form of

meta-variables are context variables ψ , which are assigned a context schema H . Context variables are

used to quantify over contexts at the computation-level. The system can also be extended with support

for substitution variables [21, 3].

A meta-substitution is similar to an ordinary substitution, except that it substitutes contextual objects

for contextual variables. We denote the application of a meta-substitution using double square brackets.

For instance, JθKM applies the meta-substitution θ to the LFR normal term M. A full definition of this

operation was given by Cave and Pientka [3].

The refinement relation for contextual types is obtained by lifting the corresponding refinement rela-

tions (developed previously). Similarly, the refinement relation for meta-objects is obtained by lifting the

refinement relation on LFR contexts. For example, the natural refinement rule for Ψ.Q is the following:

Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ Q ⊏ P

Ω ⊢ Ψ.Q ⊏ Γ.P

In a sense, this raises the refinement relation to the level of LFR judgments. It is helpful to pursue

this idea further by formulating our rules for the meta- and computation-level as a refinement relation

between judgments. The above rule would then become:

⊢ Ω ⊏ ∆ Ω ⊢ Ψ ⊏ Γ Ω;Ψ ⊢ Q ⊏ P

(Ω ⊢ Ψ.Q)⊏ (∆ ⊢ Γ.P)

This judgment (Ω ⊢ S) ⊏ (∆ ⊢ A) can then serve as both a type well-formedness and a refinement (i.e.

sort well-formedness) judgment. We can similarly unify the sorting and typing judgments, the context

well-formedness and refinement judgments, and so on (see Appendix). In all of these judgments, the

type-level part (everything on the right of ⊏) can be taken independently for the rest, in which case it

defines the usual judgment of conventional BELUGA. On the other hand, we can also consider the type-

level part to be an output, which highlights the fact that type-level judgments do not need to be validated

prior to their sort-level analogues.
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3.2.1 Meta-theory

The new refinement relation between judgments also facilitates formulating our conservativity result

since we have all the type information available by assumption:

Theorem 3.2.2 (Conservativity for contextual layer)

1. If (Ω ⊢ S)⊏ (∆ ⊢ A), then ∆ ⊢ A.

2. If (Ω ⊢ N : S)⊏ (∆ ⊢M : A), then ∆ ⊢M : A.

3. If (Ω1 ⊢ θ : Ω2)⊏ (∆1 ⊢ ρ : ∆2), then ∆1 ⊢ ρ : ∆2.

Conservativity for the contextual layer is proven simultaneously with conservativity for LFR due to

inter-dependencies between the two. The proof is a straightforward induction on the given derivation.

An important advantage of our formulation of refinements as a relation on judgments is that it elim-

inates the need for several lemmas, in particular substitution properties. We note that to obtain the full

benefits of the approach, we must also formulate the refinements for LF in this style, as otherwise the

lemmas are still needed for conservativity of LFR.

4 Computation-level

BELUGA’s computation-level is an ML-style functional programming language with support for pattern

matching over contextual objects. It features an indexed function space, so that types are allowed to

depend only on data-level objects. Contextual objects and types are embedded in the computation-level

via a box modality.

4.1 Computation-level refinements

In our extension, the computation-level is separated into a type layer and a refinement layer, just like the

data-level. Since contextual objects can occur in computation-level expression, we maintain a refinement

relation for expressions in addition to all other syntactic categories. Our presentation is inspired by the

one of Pientka and Abel [22], but differs in two important ways. First, we do not consider recursion since

it complicates the syntax of patterns significantly. Specifically, valid recursive calls have to be specified

as part of every pattern (although they can be inferred, so users do not need to provide them explicitly).

Without recursion, patterns are just (boxed) contextual objects. Second, our sorting (and typing) rules do

not require coverage for pattern matching. The syntax of the computation-level is the following:

Type level Refinement level

Types τ ζ ::= [S] | ζ1 → ζ2 | ΠX :S.ζ
Contexts Ξ Φ ::= · | Φ,y:ζ

Expressions e f ::= [N ] | fn y:ζ ⇒ e | e1 e2 | mlam X :S ⇒ e | e N

| let [X ] = e1 in e2 | caseζ [N ] of~c
Branches b c ::= Ω; [N ] 7→ e

Meta-types, -sorts, and -objects are embedded into the computation level via a (contextual) box

modality, denote [S] (for sorts). The elimination form for the modality is given by the let expressions:

an expression e1 : [S] is unboxed as the meta-variable X , which may then be used in the expression e2.

We distinguish two kinds of function spaces, the simple function space ζ1 → ζ2 and the dependent

function space ΠX :S.ζ . So, dependencies are restricted to objects from the index domain, which pro-

vides strong reasoning power over the index domain without all the difficulties of full dependent types.
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The language also supports pattern matching on meta-objects through the use of case expressions.

While we do not allow pattern matching on arbitrary expressions, any expression that has a box sort can

be matched against by first unboxing it with a let expression and then matching on the new variable.

The sort superscript ζ in case expression corresponds to the sort invariant that must be satisfied by

all the branches in ~c. We require that invariants have the form ΠΩ1.ΠX0 : S0.ζ0. Intuitively, a branch

Ω; [N ] 7→ e satisfies the invariant ΠΩ1.ΠX0:S0.ζ0 if N has sort S0 and e has sort JN/X0Kζ0, where N ,

e, and their sorts can depend on Ω.

The judgments for the computation-level have a similar structure as those for contextual LFR. In

particular, type-level and refinement-level judgments are performed simultaneously, with the type-level

judgment seen as an output of the simultaneous judgment. Since the derivations produced on both sides

of the refinement relation are almost exactly the same, we give the rules with only the refinement part.

For instance, sorting and typing is expressed as (Ω;Φ ⊢ f : ζ ) ⊏ (∆;Ξ ⊢ e : τ), but we define only

Ω;Φ ⊢ f : ζ for conciseness. We focus here on the rules related to pattern matching. The remaining rules

are standard and can be found in the appendix. The rule for case-expressions is the following:

ζ = ΠΩ0.ΠX0:S0.ζ0 Ω ⊢ ρ : Ω0 Ω ⊢N : JρKS0 Ω;Φ ⊢ c : ζ (for all c ∈~c)

Ω;Φ ⊢ (caseζ [N ] of~c) : Jρ ,N/X0Kζ0

The important part of this rule is the last premise, which requires validating that every branch satisfies

the given invariant. This is achieved with the judgment Ω;Φ ⊢ c : ζ defined by the following rule:

Ω0 ⊢ N0 : S0 Ω,Ω0 ⊢ S
.
= S0/(ρ ,Ω

′) Ω′;JρKΦ ⊢ JρK f : JρKζ0

Ω;Φ ⊢ (Ω0; [N0] 7→ f ) : ΠΩ1.ΠX0:S0.ζ0

where the judgment Ω ⊢ S
.
= S ′/(ρ ,Ω′) denotes (meta-type) unification. The main difficulty of unifica-

tion is unifying the dependencies on LF(R) terms. Since we have not modified terms in our extension,

the unification algorithm of Pientka and Pfenning [23] still applies.

The conservativity results discussed in section 3.2.1 carry over to the computation-level via straight-

forward inductions. In particular, every sorting derivation has an analogous typing derivation.

5 Related work

5.1 Refinement types

Various forms of refinement types have been used to solve various problems. Our work is inspired by

the datasort tradition that was initiated by Freeman and Pfenning [10, 9] for MINIML, a monomorphic

fragment of STANDARD ML’s core language. Their system uses refinement type inference so that users

do not need to provide annotations, but the inferred sorts are often intersections with some undesired

components.

Davies [4], who coined the term datasort, extended this work to the full STANDARD ML language

(including modules). They ditched sort inference in favour of a bi-directional sort-checking algorithm,

so that only the desired sorts are used by the compiler. Unfortunately, even sort-checking is untenable in

the presence of intersection (at least in theory). The compiler needs to choose the correct branch of an

intersection when synthesizing sorts for neutral expressions, making sort-checking PSPACE-hard [24].

Jones and Ramsay [15] used refinement types to validate termination of functional programs in the

presence of non-exhaustive pattern matching. Their notion of an intensional refinement is obtained by

removing some of the constructors from a datatype, but the remaining constructors cannot be assigned
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new sorts. Instead, a constructor c : A selected for the sort s ⊏ a is assigned the sort S obtained by

replacing every occurrence of a in A by s. Intensional refinements are weaker than datasorts, but they

have full type and refinement inference for a polymorphic ML-style language with algebraic datatype.

Their main ideas would also be sufficient to encode our example from section 2.

Another important (and perhaps more common) approach is index refinements, first introduced by

Xi and Pfenning [29, 30] for the core language of STANDARD ML. They design a family of dependently-

typed ML-style languages parameterized by an arbitrary index domain C, called DML(C). Refinements

are obtained by allowing quantification over the index domain, which intuitively corresponds to having

a refinement relation Πx:S.A ⊏ A, where S ∈ C. In this way, most difficulties of dependent types can

be avoided, similarly to how we avoid them in BELUGA’s computation-level. Datasort refinements and

index refinements were combined by by Dunfield [5], yielding an extension of DML with intersections.

An important development of this approach came in the form of logically qualified (or liquid) types

[25], this time as an extension of OCAML. In this methodology, a refinement is expressed as {x : τ |P(x)},

where τ is a type and P is a boolean-valued function over τ . The type τ can then be seen as the refinement

{x : τ | true} and this allows combining typing and sorting into one judgment, much like we have done

for datasort refinements.

To our knowledge, there is currently no work on index refinements for dependently-typed languages.

A series of papers culminated in the lax logical framework with side conditions LLFP [14], which

contains types similar in spirit to liquid types. However, LLFP uses a notion of lock types that is

based on monads instead of refinements. This being said, side conditions in LLFP can be interpreted

as proof irrelevance, which coincides with Lovas and Pfenning’s interpretation of sorts in LFR as proof

irrelevance [17]. LLFP allows more side conditions than LFR, but also puts a heavier proof burden on

the user.

5.2 Proof environments

Although HOAS representations offer undeniable benefits, there remains few proof environments that

support it. TWELF [20] uses it in its implementation of LF, but all contexts are implicit and this prevents

representing context relations [8]. Context schemas emerged from work on TWELF [26], although their

notion is more restrictive than ours. The judgments have to be indexed by the unique schema to which

the ambient context is known to adhere and there is no way to consider two derivations with different

schemas simultaneously.

HYBRID [7] only partially achieves the goals of HOAS: contexts and substitution are inherited from

the meta-language, but substitution properties in the OL still need to be proven by hand. However, it has

the advantage of being built in well-known logics from which it naturally inherits consistency.

ABELLA [11] does provide the full power of HOAS (called λ -tree syntax in their terminology). Vari-

ables are represented in the specification logic through the use of the ∇-quantifier (pronounced nabla).

Contexts are represented as lists of ∇-quantified variables and schemas as types depending on these lists.

ADELFA [27] is inspired by ABELLA, but uses a specification language that is more closely related to

LF. It also improves ABELLA with a built-in notion of schemas.

6 Conclusion

We have developed an extension of Beluga with datasort refinement types. While datasort refinements

are mainly used to provide subtyping and intersection types to a language, refinements in the setting
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of Beluga offers the potential to express proofs more succinctly. Our extension mainly focused on the

notion of refinement schemas, which allow extracting more precise information about contexts, much

like refinements extract more precise properties (than types) about objects. In particular, refinement

schemas are useful to deal with a special kind of context relations, namely those when the assumptions

in two contexts are related by refinements.

6.1 Future work

There are a number of avenues that we plan to explore in the future. First, refinements allow validating the

correctness of functions containing non-exhaustive pattern matching thereby supporting modular proof

development. A natural next step is therefore to develop a coverage and termination checker for Beluga

with refinement types. Due to the close similarity between types and their refinements, it is reasonable to

expect that we can adapt [22]. However, challenges emerge from the fact that objects can have multiple

sorts (but only one type), especially when it comes to unification. This will in particular impact how we

check for coverage.

Second, the refinement relations that we described for schemas and schema elements are limited by

the fact that our meta-theory requires sorts to refine only one type. In particular, the relation D ⊏ C

for blocks requires that D and C have the same length. A more interesting relation would allow D to

contain more assumptions than C. This is reminiscent of the subtyping principle that adding fields to a

record type produces a subtype. Another limitation is that H ⊏ G can only be established when every

element of G is refined by some element of H . Allowing more elements to appear in G would also be

meaningful, especially given that every context in G is also in G+E for any element E . With these

two modifications, we could represent another class of context relations that Felty et al. [6] calls linear

extensions. Consequently, our next goal is to provide a more flexible form of refinements and to modify

our proof of conservativity so that it no longer relies on type uniqueness for refinements.
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We present a sound and complete focusing calculus for the core of the logic behind the proof
assistant Beluga as well as an overview of its implementation as a tactic in Beluga’s
interactive proof environment Harpoon. The focusing calculus is designed to construct
uniform proofs over contextual LF and its meta-logic in Beluga: a dependently-typed
first-order logic with recursive definitions. The implemented tactic is intended to complete
straightforward sub-cases in proofs allowing users to focus only on the interesting aspects of
their proofs, leaving tedious simple cases to Beluga’s theorem prover. We demonstrate the
effectiveness of our work by using the tactic to simplify proving weak-head normalization for
the simply-typed lambda-calculus.

1 Introduction
To establish trust in a software system, we need to begin with establishing trust in the pro-
gramming language (PL) that is used in its implementation. To model formal systems like
PLs, we first need to specify them in a specification logic, and then prove statements about the
behaviour of the specified system within another logic, called the reasoning logic. A key chal-
lenge in specifying languages is how to model variable bindings, variable renaming, α-conversion,
substitution, and reasoning under assumptions. Higher-order abstract syntax (HOAS) offers a
solution to these issues, reducing the amount of overhead infrastructure users must construct.
On the reasoning side, proofs about these language specifications for even small languages can
still involve long and tedious proofs where many sub-cases are trivial, and the only challenging
aspect pertains to one or two interesting parts. Our goal is to ease the burden on specifying
and proving properties by providing users with automated support based on proof theoretic
foundations to discharge trivial, straightforward cases automatically.

There are several HOAS-based systems that offer varying degrees of automation. Abella
[14] allows users to develop proofs interactively using a small set of tactics which offer little
automation. Hybrid [2, 18] adds HOAS support to the general proof assistants Coq [6] and
Isabelle/HOL [20] and consequently is able to harness their automation and tooling powers, at
the cost of added work to specify systems [13, 12]. Twelf offers full automation; although users
are not able to interact with its prover which does not support backtracking. Most importantly,
Twelf and Abella do not produce proof terms and therefore offer no way to verify their proofs
independently.

We investigate proof automation within the HOAS-based proof assistant, Beluga [25]. In
Beluga, users formalize their systems within the logical framework LF [15] and subsequently
prove properties about LF objects in Beluga’s reasoning logic: a dependently typed first-
order logic. Beluga takes a functional approach; modelling inductive proofs about LF objects

http://dx.doi.org/10.4204/EPTCS.396.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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as recursive dependently-typed programs, following the Curry-Howard isomorphism. To ease
proof developments, a tactic-based prover Harpoon was recently added [11]. Users may now
construct proofs interactively using a small set of high-level actions similar to those in Abella,
and, upon completion of a proof, will be presented with a proof script which can be translated
to a Beluga program that may be independently type-checked. It is still the case however that
much human interaction is required for Harpoon proof developments.

In this paper we present a focusing calculus designed to build uniform proofs over the core
of Beluga’s two-level logic, and provide an overview of its implementation as a Harpoon
tactic. The tactic is meant to solve simple lemmas and simple cases of proofs, allowing users to
concentrate on the interesting aspects of a proof. We have proven that the focusing calculus,
presented in Section 2.3, is sound and complete with respect to the cut-free sequent calculus
for Beluga, presented in Section 2.2.2. We have used our tactic on a number of interesting
case studies in PL theory, which we summarize in Section 3.2, including type preservation and
value soundness for MiniML (without fix points), weak-head normalization for the simply-typed
lambda-calculus, and the Church-Rosser theorem for the untyped lambda-calculus. We have
seen that they allow for automatic completion of many of the simpler lemmas and subcases of
these theorems. We believe automating proof search over the core of Beluga results in simpler
proof developments, making it more appealing to users looking to verify formal systems.

2 Introduction to Beluga

In this section, we present an overview of the Beluga system. We begin with an informal,
followed by a formal, description of its logic, concluding with a presentation of the focusing
calculus that we implement.

2.1 Encoding (meta-)theories

We introduce Beluga informally by demonstrating how theories and their meta-theories are
encoded within the system. Throughout this paper we will focus on the proof development of a
key lemma that is used to prove weak-head normalization for the simply-typed lambda-calculus
using logical relations. The lemma states that reducibility is closed under expansion, i.e. if term
M steps to term N and N reduces to type A, then M does as well. A detailed description of the full
mechanization may be found at [9].

We begin by encoding the theory of the simply-typed lambda-calculus within Beluga’s spec-
ification logic, the logical framework LF [15] making use of HOAS. We choose an intrinsically-
typed representation to simplify our mechanization.

LF tp : type =
| b : tp
| arr : tp → tp → tp ;

LF term : tp → type =
| app : term (arr A B) → term A → term B
| abs : tp → (term A → term B) → term (arr A B)
| c : term b ;

Next, we define the operational semantics of our lambda terms. For simplicity we do not
reduce under abstractions. We observe that object-level substitution is modelled by LF appli-
cation, as in the type of beta.
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LF step : term A → term A → type =
| beta : step (app (abs A M) N) (M N)
| stepapp : step M M’

→ step (app M N) (app M’ N) ;

LF steps : term A → term A → type =
| id : steps M M
| sstep : step M M’

→ steps M’ M’’ → steps M M’’ ;

To complete the theory’s encoding, we also define what it means for a term to halt, i.e. it
steps to a value.

LF val : term A → type =
| val/c : val c
| val/abs : val (abs A M) ;

LF halts : term A → type =
| halts/m : steps M M’ → val M’ → halts M ;

To reason about LF objects, we embed them within the computation logic using a modal
box (necessity) operator [23]. Users also have the ability to reason about “open” LF objects
in Beluga. To do this, we pair each LF object together with the LF context in which it
is meaningful [23, 24]. This concept is internalized as a contextual type dΨ ` P e [19]. This
contextual type describes a computation-level expression box (Ψ̂ ` R) where R is an LF object
of type P in the context Ψ. In other words, Ψ̂ describes the free variables in R and corresponds
to the erased typing context Ψ.

We present a trivial result about our specified theory to demonstrate how meta-theorems
are expressed in Beluga.

rec halts_step : [ ` step M M’] → [ ` halts M’] → [ ` halts M] =
fn s, h =>

let [ ` halts/m MS V] = h in let [ ` S] = s in [ ` halts/m (sstep S MS) V] ;

We leave the contextual variables M, M’, and M’’ implicitly universally quantified as Beluga
is able to reconstruct their type. We use Beluga’s simple function space to formalize our
implication statement. Recall proofs are programs in Beluga, therefore proof development
proceeds in a functional manner.

We begin by giving the theorem name and statement, prefixed with the keyword rec. The
proof starts by peeling off the implication antecedents (fn s, h =>). Working backwards, we
know we must use halts/m to construct our desired term as it is currently the only constructor
for terms of type halts, therefore we must solve its subgoals, namely that there is a value that M

steps to. We first invert h as it has only one possible constructor. This reveals that it is actually
the contextual object [ ` halts/m MS V] where MS and V are LF terms of type steps M’ N

and val N (for some implicit meta-variable N) respectively. It may appear we have every piece
of the puzzle required to solve our goal: we have a value that our term M steps too. However
once we transition to the LF level to build our LF proof term, we do not have access to our
computation-level context, in which s resides. Therefore, we must first unbox said assumption.

The free variables appearing in all the specifications above are treated as implicitly quantified.
Beluga infers their types during type reconstruction. As such, users do not supply arguments
for such parameters.

2.2 Theoretical foundation

We give a formal presentation of the core of Beluga’s two-level logic beginning with its grammar
followed by its two-level proof system described using two cut-free sequent calculi. For a full
description of the logic, readers may refer to past works [8, 23].
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2.2.1 Grammar

Beluga’s two-level logic is based on dependent contextual modal type theory (CMTT) [19].
At the core of the specification logic is the logical framework LF [15] which supports encodings
using HOAS. We give here a definition that characterizes only canonical (normal) objects as
these are the only ones that are meaningful in our setting.

We separate terms into two categories, neutral and normal. We characterize neutral terms to
be those that do not cause beta-redexes when they are applied in function application. Terms are
classified by types, which are either type constants a that may be indexed by terms M1, . . . ,Mn,
or dependent types.

Atomic Types P,Q ::= a−→M Substitutions σ ::= · | wkψ | σ,M
Types A,B ::= P |Πx:A.B Contexts Ψ,Φ ::= · |Ψ,x :A | ψ
Neutral Terms R ::= x | c |R N | u[σ] Contextual Variables X ::= u[σ] | ψ
Normal Terms M,N ::= R | λx.M

To support pattern matching on LF objects, we further extend LF with two kinds of con-
textual variables: meta-variables, written as u[σ] and context variables, written as ψ. Context
variables allow for abstraction over contexts which is required for recursion over HOAS specifica-
tions. Meta-variables allow us to describe “holes” in an LF object. They describe possibly open
objects that are paired with a postponed simultaneous substitution σ (by convention written to
the right of a term) that is applied as soon as we know what u stands for.

Simultaneous substitutions σ provide a mapping from one context of variables Φ to another
Ψ. We do not always make the domain of the substitution explicit, but one can think of the
i-th element of σ corresponding to the i-th declaration in Φ. We assume all substitutions are
hereditary substitutions [33].

Variables in a contextual LF expression may be bound by one of two contexts. There
is the LF context Ψ that holds typings for ordinary variables, and there is the meta-context
∆ (introduced below) which holds typings for contextual variables, uniformly denoted by X.
Contextual variables include meta-variables and context variables ψ.

In order to uniformly abstract over meta-objects in the computation logic, we lift contextual
LF objects to meta-types U and meta-terms C.

Meta Terms C ::= (Ψ̂ `R) |Ψ Context Schemas G ::= ∃
−−−−→
(x:Ao). A |G+∃

−−−−→
(x:Ao). A

Meta Types U ::= (Ψ ` P ) |G Meta Contexts ∆ ::= · |∆,X : U
Meta Substitutions θ ::= · | θ,C/X

The core of our meta language’s terms include contextual terms as well as LF contexts. The
meta-type (Ψ ` P ) denotes the type of a meta-variable u and stands for a contextual term. For
simplicity, we restrict context schemas G to be constructed from schema elements ∃

−−−−→
(x:Ao).A

using +, where A is an LF type.
We write the single meta-substitution as [[C/X]]. In most cases X stands for a meta-variable

u and C stands for a contextual object (Ψ̂ ` R). In this case the substitution gets pushed
through λ-expressions until we reach a meta-variable u[σ]. We then apply the meta-substitution
to its associated substitution to obtain σ′ before eagerly applying σ′ to R. The full definition of
meta-substitutions may be found at [8, 23].

On top of contextual LF we have the computational layer, which is used to describe programs
that operate on data. The computation types include atomic box-types dΨ ` P e, computation
level function abstraction, as well as abstraction over contextual objects.
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Types τ ::= dΨ ` P e | τ1→ τ2 |Π2X:U. τ
Expressions E ::= y | box (Ψ̂ `R) | let box X = E1 in E2

| fn y.E | E1 E2 | λ�X.E | E (C)
Computation-level Contexts Γ ::= · | Γ,y : τ

Ordinary functions are created using fn y.E, while we write λ�X.E for dependent functions
that abstract over meta-objects. We overload the application operation. We write E1 E2 for
applying the expression E1 of function type τ1→ τ2 to an expression E2. We also write E (C)
for applying the expression E of type Π2X:U. τ to a contextual object C.

2.2.2 Sequent calculi

We now present the sequent calculus for contextual LF, which is based on the sequent calculus
for intuitionistic contextual modal logic presented in [19]. Following the logic programming
interpretation of LF, a proof of a proposition encoded as an LF type is an LF term which inhabits
said type. We exploit the fact that if B does not depend on x in Πx:A.B, we interpret it as
an implication A→B. If x does occur in B, then we treat Πx:A.B as universal quantification,
written as Πx̂:A.B.

All sequents have access to the global signature Σ which we keep implicit. The sequent
∆;Ψ =⇒M :A states thatM is a proof of the proposition A, orM has type A, using assumptions
from the meta-context ∆ and the LF context Ψ. As a consequence, we keep in the LF context
Ψ not only proof-relevant assumptions that arise from implications (in particular → R), but
we also add parameter assumptions that come from ΠR. We distinguish between these two
assumptions by writing x:A for the former, and x̂ : A for the latter. This is emphasized in the
initΨ rule, where only proof-relevant assumptions are used to finish proofs.

In addition to the sequent ∆;Ψ =⇒M : A, we also have ∆;Ψ =⇒ σ : Φ which states that
the substitution σ witnesses a proof of the propositions in Φ using assumptions from ∆ and Ψ.
Intuitively, Φ is an LF context containing assumptions xi:Ai and x̂j :Aj . Note that we need to
construct a proof for the former, but for the latter we are able to determine the witness via
unification in practice.

The rules for the sequent calculus for contextual LF are presented in Figure 1, on the
next page. The right rules introduce variable declarations into the local context Ψ. However,
those introduced via the ΠR rule are simply parameters that are not used during proof search,
unlike those introduced via →R. To use a universally quantified assumption (i.e. a dependent
function type) as in ΠL we require that M checks against type A, written ∆;Ψ `M ⇐A, in the
appropriate contexts. In practice, we do not search for the termM but introduce meta-variables
for such universally quantified variables which are later instantiated via unification. In contrast,
using an assumption of ordinary function type, as in → L, involves searching for a proof term
of type A. Note that in the left rules we replace a neutral term by a neutral term, thus still
constructing normal proofs.

In the reflect rule we may use the contextual assumption (Φ ` P ) to deduce P in the context
Ψ if we can verify Φ. In order to verify Φ we need to find a substitution which maps all the
variables in Φ to terms that make sense in Ψ. There are several ways to construct such a
substitution, depending on the shape of Φ. If it is empty, we simply use an empty substitution
(as P is closed). If it is a context variable ψ and we simply want to use (ψ ` P ) in a weaker
context, we apply the weakening substitution. Otherwise, Φ contains two different kinds of
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∆;Ψ =⇒M :A Object M is a proof term for the proof of A in the sequent calculus

c :A ∈ Σ
∆;Ψ =⇒ c :A initΣ ∆;Ψ,x :A=⇒ x :A initΨ

∆;Ψ, x̂ :A=⇒M :B
∆;Ψ =⇒ λx.M : Πx̂:A.B ΠR

∆;Ψ,x1 : Πx̂:A. B `M ⇐A ∆;Ψ,x1 : Πx̂:A.B,x2 : [M/x̂]B =⇒N :A′

∆;Ψ,x1 : Πx̂:A.B =⇒ [x1M/x2]N :A′ ΠL

∆;Ψ,x :A=⇒M :B
∆;Ψ =⇒ λx.M :A→B

→R
∆;Ψ,x1 :A→B =⇒M :A ∆;Ψ,x1 :A→B,x2 :B =⇒N :A′

∆;Ψ,x1 :A→B =⇒ [x1M/x2]N :A′ → L

∆,u : (Φ ` P );Ψ =⇒ σ : Φ ∆,u : (Φ ` P );Ψ,x : [σ]P =⇒M :A
∆,u : (Φ ` P );Ψ =⇒ [u[σ]/x]M :A reflect

∆;Ψ =⇒ σ : Φ Object σ is a substitution that witnesses the proof of Φ in the sequent calculus

∆;Ψ =⇒ · : ·
subempty ∆;ψ,Ψ =⇒ wkψ : ψ subwk

∆;Ψ =⇒ σ : Φ ∆;Ψ =⇒N : [σ]B
∆;Ψ =⇒ (σ,N) : (Φ,x:B)

subp
∆;Ψ =⇒ σ : Φ ∆;Ψ `M ⇐ [σ]B

∆;Ψ =⇒ (σ,M) : (Φ, x̂:B) subu

Figure 1: Sequent calculus for contextual LF.

variable declarations: a declaration x:B requires proof search in order to find a term N in Ψ of
type [σ]B to replace x in P ; a declaration x̂:A stands for a universally quantified variable and
does not require proof search. In practice, we can determine it via unification. This different
treatment of assumptions reflects their different roles.

We turn our attention to proof search over computations (see Figure 2). Our inference rules
are mostly standard for a first-order logic. The 2R rule is the transition rule between contextual
LF and computation-level proofs. In 2L we unbox a boxed assumption, adding it to ∆. Using
computation assumptions as in Π2L and → L is similar to how contextual LF assumptions are
used. To use a universally quantified assumption, as in Π2L, we require that C checks against
U . Again, this term C is not explicitly constructed but found instead through unification. We
note that meta-objects may only depend on the meta-context, hence we only require that C
check against type U in ∆.

We show in [31] that cut and contextual cut are admissible in the computation logic. These
results are shown for contextual LF in [19]. Using the admissibility of cut results, we can deduce
invertibility of some of the rules in our calculi. Interestingly, the box constructor 2 has an
invertible left rule, which will have implications in the focusing calculus. We omit the proof
terms for readability here.
Lemma 1 (Invertibility in the sequent calculi).
a) (ΠR) If ∆;Ψ =⇒Πx̂:A.B then ∆;Ψ, x̂ :A=⇒B
b) (→R) If ∆;Ψ =⇒A→B then ∆;Ψ,x :A=⇒B
c) (Π2R) If ∆;Γ =⇒Π2X:U.τ then ∆,X : U ;Γ =⇒ τ
d) (→R) If ∆;Γ =⇒ τ1→ τ2 then ∆;Γ,y : τ1 =⇒ τ2
e) (2L) If ∆;Γ,y : dΨ ` P e=⇒ τ then ∆,X : (Ψ ` P );Γ,y : dΨ ` P e=⇒ τ
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∆;Γ =⇒ E : τ Object E is a proof term for the proof of τ in the sequent calculus

∆,X : U ;Γ =⇒ E : τ
∆;Γ =⇒ λ�X.E : Π2X:U. τ

Π2R
∆  C⇐ U ∆;Γ,y1 : Π2X:U. τ ′,y2 : [[C/X]]τ ′ =⇒ E : τ

∆;Γ,y1 : Π2X:U. τ ′ =⇒ [y1 (C)/y2]E : τ Π2L

∆;Γ,y1 : τ1→ τ2 =⇒ E′ : τ1 ∆;Γ,y1 : τ1→ τ2,y2 : τ2 =⇒ E : τ
∆;Γ,y1 : τ1→ τ2 =⇒ [y1 E

′/y2]E : τ → L

∆;Γ,y : τ1 =⇒ E : τ2
∆;Γ =⇒ fn y. E : τ1→ τ2

→R ∆;Γ,y : τ =⇒ y : τ init
∆;Ψ =⇒R : P

∆;Γ =⇒ box (Ψ̂ `R) : dΨ ` P e
2R

∆,X:(Ψ ` P );Γ,y:dΨ ` P e=⇒ E : τ
∆;Γ,y:dΨ ` P e=⇒ let box X = y in E : τ 2L

Figure 2: Sequent calculus for the computation logic.

2.3 Focused proof system

As a foundation for automating proof search in Beluga we develop a focused sequent calculus
over Beluga’s two-level logic. For the description of this focused proof system, we omit proof
terms when permitted to ease readability. This logic formalizes the proof search procedure
that we implement. The loop is fully automatic and therefore requires that non-determinism be
handled with ease. The sequent calculus previously presented does not suffice as the rules do not
provide any inherent direction for proof search. The rules of the following calculi guide better
proof development. The calculus builds uniform proofs [17] by applying all invertible rules first.
We then handle non-invertible rules systematically through focusing [3].

The focusing calculus for contextual LF consists of two main phases: a uniform and focus-
ing phase, and is mostly straightforward (see Figure 3). The uniform proof phase consists of
applying the invertible rules until we reach an atomic goal (P ). During this phase, parameters
and assumptions are collected and placed in the LF context. We then try to find a solution by
focusing on assumptions from the different contexts. In particular, we iterate through assump-
tions (in the meta and LF contexts), decomposing each one into the atoms it defines without
utilizing any other assumption.

In the transition∆ rule, using an assumption (Φ `Q) from ∆ to complete a proof requires a
simultaneous substitution (σ) to be constructed so that Q makes sense in the current LF context
Ψ. We find such a substitution through proof search. When focusing on assumptions from Ψ
of function type, we search for a proof of A if our assumption is of non-dependent function
type. Otherwise the assumption is of dependent function type, in which case M is found via
unification.

Proof search over the reasoning layer proceeds similarly to LF (see Figure 4). We first
perform all invertible rules, then we must make a choice on what to focus on. Unlike in LF
proof search, proof search over computations requires two separate phases of inversions since
the box connective has an invertible left rule. Further, in addition to focusing on the left, we
also focus on the right, which corresponds to proof search in LF.

We begin with a uniform right phase which ends with an atomic goal formula, dΨ `P e. From
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∆;Ψ u=⇒A There is a uniform proof of A in the focusing calculus

∆;Ψ, x̂:A u=⇒B

∆;Ψ u=⇒Πx̂:A. B
ΠR

∆;Ψ,x :A u=⇒B

∆;Ψ u=⇒A→B
→R

∆(X) = (Φ `Q) ∆;Ψ u=⇒ σ : Φ [σ]Q= P

∆;Ψ u=⇒ P
transition∆

Ψ(x) =A ∆;Ψ> x :A⇒ P

∆;Ψ u=⇒ P
transitionΨ

∆;Ψ u=⇒ σ : Φ Object σ is a substitution that witnesses a uniform proof of Φ in the focusing calculus

∆;Ψ u=⇒ · : ·
empty

∆;ψ,Ψ u=⇒ wkψ : ψ
subwk

∆;Ψ u=⇒ σ : Φ ∆;Ψ u=⇒N : [σ]B

∆;Ψ u=⇒ (σ,N) : (Φ,x:B)
subp

∆;Ψ u=⇒ σ : Φ ∆;Ψ `M ⇐ [σ]B

∆;Ψ u=⇒ (σ,M) : (Φ, x̂:B)
subu

∆;Ψ> x :A⇒ P There is a focused proof of P with focus on x in the focusing calculus

∆;Ψ> x : P ⇒ P initΨ
∆;Ψ u=⇒A ∆;Ψ> x′ :B⇒ P

∆;Ψ> x :A→B⇒ P
→ L

∆;Ψ `M ⇐A ∆;Ψ> x′ : [M/x̂]B⇒ P

∆;Ψ> x : Πx̂:A. B⇒ P
ΠL

Figure 3: Focusing calculus for contextual LF.

there we transition to the uniform left phase where we unbox all box-type assumptions in Γ,
moving them to ∆. This is done because when we shift levels to LF proof search we only bring
with us assumptions that are true across all levels (those in ∆) and computation assumptions
do not make sense on the LF level. The sequent for the uniform left phase is novel. We use the
symbol� as a way to distinguish assumptions that may be of box-type (to the right of�) from
ones that are not (to the left of �). Recall that the order of assumptions in Γ does not matter,
therefore it is acceptable that the order reverses each time we complete a uniform left phase.

Similarly to focusing in LF proof search, if we focus on a universally quantified assumption
then we find C through unification. Focusing on the right, i.e. LF proof search, can only be
applied if the goal is of box-type. Focusing on the left is standard and commences once we have
decomposed the focused formula into its atoms as in the blur rule. At this point, we add the
atomic formula to Γ and restart the process from the uniform left stage (to unbox the atomic
formula if necessary). In practice, we implement backtracking when focusing. If for example,
we cannot find a proof while focusing on the right, we backtrack and try focusing on the left.
In practice we also support recursive types, which we treat as atomic computation-level types.
These goal types may only be solved by focusing on the left.

We show in [31] that the focusing calculi in Figures 3 and 4 are sound and complete with
respect to the sequent calculi presented in Section 2.2.2. The completeness result in particular is
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∆;Γ R=⇒ τ There is a uniform right proof of τ in the focusing calculus

∆;Γ,y : τ1
R=⇒ τ2

∆;Γ R=⇒ τ1→ τ2
→R

∆,X : U ;Γ R=⇒ τ

∆;Γ R=⇒Π2X:U. τ
Π2R

∆; · � Γ L=⇒ dΨ ` P e

∆;Γ R=⇒ dΨ ` P e
left to right

∆;Γ� Γ′ L=⇒ dΨ ` P e There is a uniform left proof of dΨ ` P e in the focusing calculus

∆,X : (Φ `Q);Γ� Γ′ L=⇒ dΨ ` P e

∆;Γ� Γ′,y : dΦ `Qe L=⇒ dΨ ` P e
2L

τ 6= dΦ `Qe ∆;Γ,y : τ � Γ′ L=⇒ dΨ ` P e

∆;Γ� Γ′,y : τ L=⇒ dΨ ` P e
shift

∆;Ψ u=⇒ P

∆;Γ� · L=⇒ dΨ ` P e
level

Γ(y) = τ ∆;Γ> y : τ ⇒ dΨ ` P e

∆;Γ� · L=⇒ dΨ ` P e
focus to uniform

∆;Γ> y : τ ⇒ dΨ ` P e There is a focused proof of dΨ ` P e with focus on y in the focusing calculus

∆  C⇐ U ∆;Γ> y′ : [[C/X]]τ ⇒ dΨ ` P e
∆;Γ> y : Π2X:U. τ ⇒ dΨ ` P e Π2L

∆;Γ R=⇒ τ1 ∆;Γ> y′ : τ2⇒ dΨ ` P e

∆;Γ> y : τ1→ τ2⇒ dΨ ` P e
→ L

∆; · � Γ,y′ : dΦ `Qe L=⇒ dΨ ` P e

∆;Γ> y′ : dΦ `Qe ⇒ dΨ ` P e blur

Figure 4: Focusing calculus for the computation logic.

interesting as it requires an intermediate result stating that it does not matter in which context
box-type assumptions appear. That is, if there is a proof in our sequent calculus of dΨ ` P e
(possibly) using some assumption y : dΦ `Qe in Γ then there is also a proof of dΨ ` P e where y
is omitted but under the added assumption X : (Φ `Q) in ∆. Given a ∆ and Γ, Γ−∆,Γ denotes Γ
without any assumptions of box-type, and ∆+

∆,Γ denotes ∆ extended with the (unboxed) boxed
assumptions from Γ.
Theorem 1 (Soundness).
a) If ∆;Ψ u=⇒A then ∆;Ψ =⇒A

b) If ∆;Ψ u=⇒ σ : Φ then ∆;Ψ =⇒ σ : Φ
c) If ∆;Ψ> x :A⇒ P then ∆;Ψ,x :A=⇒ P
d) If ∆>X : U ;Ψ ⇒ P then ∆,X : U ;Ψ =⇒ P

e) If ∆;Γ R=⇒ τ then ∆;Γ =⇒ τ

f) If ∆;Γ� Γ′ L=⇒ dΨ ` P e then ∆;Γ,Γ′ =⇒ dΨ ` P e
g) If ∆;Γ> y : τ ⇒ dΨ ` P e then ∆;Γ,y : τ =⇒ dΨ ` P e
Theorem 2 (Completeness).
a) If ∆;Ψ =⇒A then ∆;Ψ u=⇒A

b) If ∆;Ψ =⇒ σ : Φ then ∆;Ψ u=⇒ σ : Φ
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c) If ∆;Ψ =⇒ P then ∆;Ψ> x :A⇒ P for some A ∈Ψ or ∆>X : U ;Ψ ⇒ P for some U ∈∆
d) If ∆;Γ =⇒ τ then ∆+

∆,Γ;Γ−∆,Γ
R=⇒ τ

e) If ∆;Γ =⇒ dΨ ` P e then ∆+
∆,Γ;Γ−∆,Γ� ·

L=⇒ dΨ ` P e
f) If ∆;Γ =⇒ dΨ ` P e then ∆+

∆,Γ;Ψ u=⇒ P or ∆+
∆,Γ;Γ−∆,Γ > y : τ ⇒ dΨ ` P e for some y : τ ∈ Γ−∆,Γ

The soundness proofs proceed by mutual structural induction on the given derivations and
are straightforward. Proving completeness however is more involved and depends on several
minor lemmas, consisting mostly of postponement results and a variation of the reflect rule for
computation-level focusing, all proven with straightforward induction. The completeness proof
proceeds again by mutual structural induction on the given derivations. In part a) the base case
(i.e. the derivation is initΨ) is simplified by showing that the initΨ rule is admissible under the
addition of the rule ∆;Ψ,x : P =⇒ P . The remaining cases are then straightforward. Part b)
is trivial. Part c) must be done by case analysis on the induction hypothesis but is otherwise
straightforward. The base case in part d) is also made simpler by showing that the initΓ rule is
admissible under the added assumption ∆;Γ,y : dΨ `P e=⇒dΨ `P e. The cases in part d) where
the derivation is either → R, → L, or Π2L must be done by case analysis on whether or not
τ1, τ2, or [[C/X]]τ ′ (respectively) are atomic box-types. This is because the result of ∆+

∆,Γ and
Γ−∆,Γ in the induction hypotheses depends on whether or not these assumptions are boxed. If
they are boxed they will appear unboxed in ∆+

∆,Γ and omitted from Γ−∆,Γ, otherwise they remain
in Γ−∆,Γ. Part e) also involves case analysis on some subgoals, depending on if the assumptions
in Γ are boxed or not. Some cases in part f) involve multiple case analyses- once on the result
of the induction hypothesis, and once on the shape of the assumptions in Γ. The entire proof is
given in [31].

3 Automation tactic

We present an overview of our automation tactic which implements the focusing calculi from
Section 2.3. We begin with a walk-through of the theorem prover followed by a summary of its
performance on various case studies from PL theory.

3.1 Example

To demonstrate the capabilities of the (meta-)theorem provers we examine how Beluga auto-
matically proves that reduction is closed under expansion, a key lemma needed to show weak-
head normalization for the simply-typed lambda-calculus. Specifically, we prove that if term M

steps to term N and N reduces to type A, then M does as well.
Building upon the theory presented in Section 2.1, we encode the notion of reducibility using

a logical relation by categorizing terms by the type they reduce to. We formalize the predicate in
Beluga’s reasoning logic, as it requires a strong, computational function space unlike the weak
function space of LF. Inductive properties about contextual objects are defined using indexed
recursive types [8]. We encode the set of reducible terms using the recursive type Reduce, which
is stratified by its index tp [16].
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stratified Reduce : {A:[ ` tp]}{M:[ ` term A]} ctype =
| I : [ ` halts M] → Reduce [ ` b ] [ ` M]
| Arr : [ ` halts M]

→ ({N:[ ` term A]} Reduce [ ` A] [ ` N] → Reduce [ ` B ] [ ` app M N])
→ Reduce [ ` arr A B ] [ ` M]

;

To begin our theorem, we load the Beluga file containing our LF and computation-level
signatures into Harpoon. Harpoon then takes as input a theorem name and statement, and
index of induction variable specified by its position in the overall goal, counted from left-to-right:
Name of theorem: bwd_closed
Statement of theorem: {A:[ ` tp]} {M: [ ` term A]} {M’: [ ` term A]} [ ` step M M’]

→ Reduce [ ` A] [ ` M’] → Reduce [ ` A] [ ` M]
Induction order (empty for none): 1

Once loaded, users may simply invoke the tactic auto1 to prove the lemma. Behind the
scenes, Beluga gives the specified induction variable to our solver which then performs induc-
tion on said variable and generates the respective induction hypotheses for each subgoal. It then
performs a round of inversions and bounded depth-first proof search on each produced subgoal.
Users have the option of choosing their own depth bound by providing an argument to auto,
otherwise it is set to 3. The proof search algorithm closely implements the focusing calculus
presented in Section 2.3. As it searches for a proof, the solver also constructs proof terms in
the form of LF and computation-level terms, and LF substitutions. If the solver can prove each
case, the constructed proof term is presented to the user. If it cannot prove all subgoals, users
will have to manually split on the specified variable (with the split tactic) and then call auto
on each applicable case. In these instances, since no induction variable is specified, the solver
will only perform inversions and bounded search. We show below the proof script that is being
generated by invoking only the auto tactic.
1 proof bwd_closed : {A : ( ` tp)} {M : ( ` term A)}{M’ : ( ` term A)}
2 [ ` step M M’] → Reduce [ ` A] [ ` M’] → Reduce [ ` A] [ ` M] =
3 / total 1 /
4 intros
5 { A : ( ` tp), M : ( ` term A), M’ : ( ` term A)
6 | x : [ ` step M M’], x1 : Reduce [ ` A] [ ` M’]
7 ; solve
8 let [ ` Y] = x in
9 case [ ` A] of

10 | [ ` b] =>
11 let (I x2 : Reduce [ ` b] [ ` M’]) = x1 in
12 let ([ ` halts/m X3 X4] : [ ` halts M’]) = x2 in
13 let [ ` val/c] = [ ` X4] in I [ ` halts/m (sstep Y X3) val/c]
14 | [ ` arr X X1] =>
15 let (Arr x2 x3 : Reduce [ ` arr X X1] [ ` M’]) = x1 in
16 let ([ ` halts/m X5 X6] : [ ` halts M’]) = x2 in
17 let [ ` val/abs ] = [ ` X6] in
18 Arr [ ` halts/m (sstep Y X5) (val/abs )]
19 (mlam N => fn y =>
20 bwd_closed [ ` X1] [ ` app M N] [ ` app M’ N] [ ` stepapp Y] (x3 [ ` N] y)) } ;

1In Harpoon, this tactic is invoked using inductive-auto-solve. See https://beluga-
lang.readthedocs.io/en/latest/harpoon/proof-automation.html#inductive-auto-solve for a description on
how to use the tactic.

https://beluga-lang.readthedocs.io/en/latest/harpoon/proof-automation.html#inductive-auto-solve
https://beluga-lang.readthedocs.io/en/latest/harpoon/proof-automation.html#inductive-auto-solve
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The Beluga program that our solvers construct is given in lines 8 - 20, which gets spliced
into the overall proof script. From the given proof script, we can extract a complete Beluga
program [11]. Previously, this lemma could be proved with no less than 10 Harpoon tactic
calls (see also [11]).

The proof begins with the automatic application of the intros tactic, which performs the
uniform right phase. The rest of the proof is constructed using Beluga’s theorem provers. It
first unboxes x (line 8), concluding the uniform left phase. Since an induction variable was speci-
fied, the algorithm immediately splits on the variable. After a split, there is a round of inversions
for each produced subgoal followed by bounded focused proof search. In the first case (A = b)
after the inversions (line 13), the computation-level solver focuses on the constructor I and solves
its subgoal by providing the appropriate boxed LF proof term ( halts/m (sstep Y X3) val/c)
which it finds again through focused proof search, but this time on the LF level. In the sec-
ond case (A = arr X X1), the solver focuses on Arr which requires solving two subgoals, one
of which is of function type. It is here where the solver focuses on the induction hypothesis to
solve a subgoal. If the solver focuses on the “wrong” assumption, it will execute backtracking
and continue focusing until it has exhausted all possible branches on the bounded search tree.

3.2 Evaluation

The proof-search procedures behind our automation tactic is the beginning of the implementa-
tion of the focusing calculi presented in Section 2.3. There are several areas of incompleteness
that may be improved in the future [31]. Nevertheless, the tactic is able to prove a number of
interesting theorems both semi- and fully-automatically. We provide a summary of these case
studies here.

Case study Automation Difficulty Interesting proof features
MiniML/fix type
preservation Full Advanced Solving substitutions,

I.H. appeal, inversions
MiniML/fix value
soundness Full Basic I.H. appeal

STLC weak-head
normalization lemmas Full Intermediate Inversions, I.H. appeal,

higher-order solving
STLC type uniqueness Partial Basic I.H. appeal, inversions
Untyped λ-calculus
reduction lemmas Full/Partial Basic I.H. appeal

Table 1: Overview of case studies.

We categorize our case studies by the amount of automation that may be successfully applied.
We say full automation is applied when only auto is used to complete a proof (as in the previous
example). Partial automation is used on induction proofs when not all the subgoals fall within
the prover’s applicable subset. In these instances, auto is used after a variable split has been
manually made, and only on a portion of the subgoals. All proofs proceed by induction along
with various features that we have outlined.

We use our tactic to prove key lemmas required to show weak-head normalization for the
simply-typed lambda-calculus. The backwards closed lemma is particularly interesting as it re-
quires higher-order function type solving. Type uniqueness for the simply-typed lambda-calculus
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can be proven semi-automatically as two of its cases involve parameter variables and context
block schemas. We prove all lemmas regarding ordinary reduction for the untyped lambda-
calculus automatically, and all but one lemma regarding parallel reduction automatically. These
lemmas are used to prove equivalence of the ordinary and parallel reductions, and ultimately
the Church-Rosser theorem for each reduction procedure. For MiniML without fixpoints, we
are able to prove type preservation and value soundness fully-automatically. Preservation in
particular showcases the solvers ability to solve for substitutions [31].

Beluga’s proving power does not yet surpass that of Twelf’s. However, Beluga is able
to reason directly using logical relations, unlike Twelf. Certain properties, like normalization
theorems, are most commonly proven using logical relations. In Twelf, users must find alter-
native proof methods [30, 1], which may be conceptually different from on-paper formulations
and require more work from the user to construct additional machinery. In Beluga, such log-
ical relations may be directly translated from on-paper formulations and their proofs become
simplified with the use of our automation tactic.

4 Related work

4.1 Proof environments based on HOAS

Twelf [22] currently provides the most automation out of all HOAS-based proof assistants de-
signed to formalize PLs. It fully automatically proves many theorems such as type-preservation
for MiniML, Church-Rosser for the simply typed lambda-calculus, and cut-admissibility for first-
order logic [29, 28]. It essentially has a simple loop that splits on an assumption based on a
heuristic, generates induction hypothesis, and tries to prove a given goal by bounded depth-first
proof search. If the last step fails, it will again split on an assumption heuristically picking one.
This has proven remarkably effective. However, the kind of properties that can be stated is
more restrictive. For example, Twelf’s meta-logic permits only theorems expressed as Π2 state-
ments and lacks support for recursive types. Therefore it cannot, for example, directly deal with
proofs that proceed via logical relations. More importantly, Twelf’s prover does not produce
proof terms and therefore provides no way to verify its proofs. Even worse, if the meta-theorem
prover fails to find a proof automatically, there is no possibility for the user to pick up the pieces
and manually proceed.

Abella is another HOAS-based proof assistant with the capabilities to mechanize meta-
theoretic proofs about PLs [14]. Semi-automation exists in Abella provided in the form of tactics
that are similar to the ones previously implemented in Harpoon. Contexts and (simultaneous)
substitutions in Abella are not treated as first-class like they are in Beluga. This means that
in order to use such constructs, users must manually define them and any properties they wish
to utilize about them (e.g. context weakening). These can further add to the complexity of
formal theorem proving. As Twelf, Abella also does not construct proof objects during proof
development. Moreover, the tactics used in constructing proofs in Abella concentrate on “small”
steps and there is presently no analogue to the proof search tactic that we describe in this
paper. However, we believe that similar semi-automation could be added to Abella to discharge
straightforward cases.
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4.2 General proof environments

The Hybrid system aims to bring full HOAS support to general proof environments like Coq and
Isabelle/HOL [2, 18]. These systems often have more users compared to specialized systems and
thus more reason to provide tooling and automation. Both systems employ the use of tacticals,
which allow users to create their own tactics specific to their mechanizations.

In Coq, users write decision procedures in a tactic language like LTac [10]. There are general
automated proof search tactics (auto, eauto, iauto and jauto) but they do not conduct any
case analysis (including inversions), inductions, or rewritings, and are intended to finish a proof
instead of complete it entirely [26]. Coq also offers many libraries to assist with building and
verifying infrastructure needed in PL mechanizations. Autosubst may be used as a library for
example to automatically generate parallel substitution operations for a custom type and prove
the related substitution lemmas [27]. The libraries Ott [32] and LNgen [4] may be used together
to generate locally nameless definitions from a specification and provide the corresponding recur-
sion schemes and infrastructure lemmas. However these tools are limited as they only automate
trivial lemmas.

For much of its automation, Isabelle elicits the help of several external solvers. Sledgehammer
[21], for example, takes a goal and heuristically chooses from Isabelle’s libraries containing
various lemmas, definitions, and axioms, a few hundred applicable ones to perform search over.
Then, translates the goal and each of these assumptions to SMT (first-order logic) and sends the
query off to an external SMT or resolution-based solver. In its own system, Isabelle performs
various general-purpose proof search methods which help discharge simple parts of a proof
allowing users to focus on the main ones [7]. They also have several strengthened endgame
tactics which are meant to finish a proof but provide no hints upon failing.

Despite the abundance of tooling in these systems, some specialized systems (Beluga and
Twelf for example) offer more automation for PL mechanizations. This is because these systems
have fixed specification logics, so automatic proof procedures can be more intricate. Hybrid on
the other hand allows for encodings of various specification logics, therefore proof procedures
are more difficult as they must be customized to work for different logics.

5 Conclusion

In closing, we have presented the theorem and meta-theorem provers behind Beluga, a spe-
cialized proof assistant with sophisticated built-in support for specifying formal systems. These
provers perform two-leveled proof search over a core subset of Beluga’s logic which allows
for the automatic completion of many simple lemmas and cases of PL theory proofs. Users of
Beluga may now bypass simple proofs and focus their energy on the interesting cases. Along
with our implementation, we provide a theoretical foundation for our solvers in the form of
a cut-free sequent calculus, which is easy to understand, and a sound and complete focusing
calculus, which closely reflects our implementation. These provide us with a way to study our
implementation and ensure its correctness.

Our next steps are to expand the solver so that its proving capabilities are equivalent to
that of the logic presented in this paper [31]. After that we plan to add support for context
block schemas, and substitution and parameter variables, which should bring its proving power
up to that of Twelf’s. Finally, it would be interesting to extend the focusing calculus (and
implementation) with automatic induction, similar to [5].
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Graph-based interactive theorem provers offer a visual representation of proofs, explicitly represent-
ing the dependencies and inferences between each of the proof steps in a graph or hypergraph format.
The number and complexity of these dependency links can determine how long it takes to verify the
validity of the entire proof. Towards this end, we present a set of parallel algorithms for the formal
verification of graph-based natural deduction (ND ) style proofs. We introduce a definition of lay-
ering that captures dependencies between the proof steps (nodes). Nodes in each layer can then be
verified in parallel as long as prior layers have been verified. To evaluate the performance of our al-
gorithms on proof graphs, we propose a framework for finding the performance bounds and patterns
using directed acyclic network topologies (DANTs). This framework allows us to create concrete
instances of DANTs for empirical evaluation of our algorithms. With this, we compare our set of
parallel algorithms against a serial implementation with two experiments: one scaling the problem
size and the other scaling the number of threads. Our findings show that parallelization results in
improved verification performance for certain DANT instances. We also show that our algorithms
scale for certain DANT instances with respect to the number of threads.

1 Introduction

A major role of an interactive theorem prover is to take an existing proof and verify that it is valid with
respect to the logical calculi used. This involves iterating over each step of a proof and verifying both that
it syntactically matches the transformation of the formula under the rule, and that it is valid with respect
to the semantics of the underlying proof system. Interactive theorem provers such as Coq [19], Lean [14],
and HyperSlate [4] verify not only that the proof written by the user is correct, but also every underlying
proof that the given proof depends on. This generally amounts to verifying large portions of the standard
library and other popular libraries such as mathlib [6]. Our work makes a step toward speeding up the
proof verification process. We focus on the verification of natural deduction proof graphs, such as those
represented in HyperSlate, though the ideas from this approach could be adapted to other interactive
theorem provers as well.

In order to speed up verification, we look toward parallel computing. One naive implementation
would be to verify all the proof steps in parallel. This assumes, however, that the step has all the semantic
information needed to show validity. This is often not the case for many logic calculi. Assumptions are
introduced and discharged in the case of natural deduction. Variables may be assigned to constants.
These issues present a constraint that in order to parallelize verification, we need to ensure that some
steps are verified before others. We achieve this by introducing a layering approach. Given a definition
of layering that induces a topological partial order, every step within a layer n only depends on steps
within the layers prior. Given these layers, we can then verify all the steps that are from the same layer
in parallel without worrying about invalidating the underlying semantics. To illustrate this approach, we
present the parallel verification of natural deduction proof graphs.

http://dx.doi.org/10.4204/EPTCS.396.4
https://creativecommons.org
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J. Oswald and B. Rozek 37

The underlying dependency nature of each of the steps induces a directed acyclic hypergraphical rep-
resentation where nodes hold ND statements and hyperedges between nodes represent inference rules.
This graphical representation not only gives us an easy way to visualize such proofs, but also provides
insight on empirically validating our parallel algorithms. Inspired by computer network topologies, we
introduce directed acyclic network topologies (DANTs) as a way to identify classes of graphical proofs.
These topologies provide a method of comparing the performance of different verification strategies on
various proof structures.

The contributions of this work are as follows: (1) A layering approach that decouples the dependen-
cies of proof steps within ND proofs. (2) Parallel verification algorithms that outperform serial verifica-
tion on non-straight topologies and scales with the number of hardware-based threads. (3) Introduction of
several classes of graphical proofs, with an eye on empirical evaluation. The relevant background which
includes ND and hypergraphical representations is discussed in §2. Within §3, we discuss the proof ver-
ification algorithm and several optimizations. Then in §4, we discuss directed acyclic network topologies
to empirically evaluate common proof structures. In that section, we also discuss our performance and
scaling results. We then conclude by talking about related work in §5.

2 Background

2.1 Natural Deduction

Natural deduction (ND ) is a logic calculus independently proposed in [10, 12] in an effort to emulate
human-level reasoning through assumptions and chains of inference. There are many different styles
of proof that fall under natural deduction, the three most common come from Gentzen [10], Jaśkowski
[12], and Fitch [9]. However, we are mainly interested in a style that interoperates with a hypergraphical
representation of natural deduction proofs.

{φ} ` φ
A

Γ ` ψ Σ ` φ

Γ∪Σ ` φ ∧ψ
∧I

Γ ` φ ∧ψ

Γ ` φ
∧El

Γ ` φ ∧ψ

Γ ` ψ
∧Er

Γ ` φ

Γ ` ψ ∨φ
∨Il

Γ ` φ

Γ ` φ ∨ψ
∨Ir

∆ ` ψ ∨φ Γ∪{ψ} ` χ Σ∪{φ} ` χ

∆∪Γ∪Σ ` χ
∨E

Γ∪{φ} ` ψ

Γ ` φ → ψ
→ I

Γ ` φ Σ ` φ → ψ

Γ∪Σ ` ψ
→ E

Γ∪{φ} ` ψ Σ ` ¬ψ

Γ∪Σ ` ¬φ
¬I

Γ∪{¬φ} ` ψ Σ ` ¬ψ

Γ∪Σ ` φ
¬E

Γ∪{φ} ` ψ Σ∪{ψ} ` φ

Γ∪Σ ` φ ↔ ψ
↔ I

Γ ` φ Σ ` φ ↔ ψ

Γ∪Σ ` ψ
↔ El

Γ ` ψ Σ ` φ ↔ ψ

Γ∪Σ ` φ
↔ Er

Figure 1: Our inference schemata for natural deduction. Within each schema, Γ,Σ,∆ are sets of for-
mulae, and φ ,ψ,χ are meta-logical variables which range over formulae. Note that our formulation of
¬I,¬E,↔ I,↔ E differs from those typically seen in other works such as [17] but are equivalent.
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In this paper, we focus on propositional natural deduction. Let p denote an atomic proposition.
The language of propositional logic may be defined inductively using Backus Naur Form (BNF) as the
following:

φ ::= p|¬φ |(φ ∧φ)|(φ ∨φ)|(φ → φ)|(φ ↔ φ)

Our inference rules for ND are summarized in Figure 1 1. This formalization is modeled after Bringsjord
[3] and fully captures the notion of discharging of assumptions. It is also particularly well suited to
hypergraphical representation, which will be discussed in §2.2. These inference rules can be broadly
split into two categories: (1) introduction rules (∧I,∨Il,∨Ir,¬I,→ I,↔ I), in which a logical connective
is introduced into the conclusion, and (2) elimination rules (∧El,∧Er,∨E,¬E,→ E,↔ El,↔ Er), in
which a connective in a rule’s premise is removed in its conclusion. The outlier here is the Assumption
rule (A) which allows us to assert {φ} ` φ , or in English, "assuming φ , φ follows".

For a natural deduction proof, a step is considered valid if the formula is well-formed and it is justified
by a rule of inference. Valid formulae with no assumptions are called tautologies. A proof is considered
valid iff all of its steps are valid. An example of a valid proof can be seen in Figure 2.

{A∨B} ` A∨B A

{¬A} ` ¬A A {¬B} ` ¬B A

{¬B,¬A} ` ¬A∧¬B
∧I

{¬B,¬A} ` ¬A
∧El {A} ` A A

{¬A,A} ` B
¬E {B} ` B A

{A∨B,¬A} ` B
∨E

Figure 2: An example of a valid proof of B from {A∨B,¬A}. All steps are valid since at each step (1)
all formulae are well formed and (2) the provided rule of inference can be legally applied at each stage
given the current assumptions and premises.

2.2 Hypergraphical Representation

Figure 3: Visualizations of 4 different types of graphs, note that in the hypergraph, edges that share the
same color are the same edge.

A natural deduction proof can be represented diagrammatically as a directed acyclic hypergraph
[20, 1]. A directed acyclic hypergraph is a generalization of a directed acyclic graph (DAG) which is a

1While on the surface this formalization may appear similar to sequent natural deduction[16], we use “`” in this formalism
to mean syntactic entailment, with Γ ` φ being read as "Assuming Γ, then φ" or "φ can be derived from Γ".
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mathematical structure (V,E) where V is a set of vertices and E : (V ×V ) is a set of pairs of vertices.
Acyclic in this context means that for any vertex v, it is not possible to find a path following the directed
edges that leads to v. Directed acyclic hypergraphs extend this by allowing a set of vertices to be con-
nected to a set of vertices by a single edge, thus a directed acyclic hypergraph is a structure (V,E) where
V is a set of vertices and E : P(V )×P(V ), where P(V ) is the power-set of the set of vertices. Figure
3 shows visualizations of the three graph formalisms described.

To represent natural deduction proofs as hypergraphs, vertices represent premises and conclusions,
and edges represent inference rules. A proof graph will be defined as a hypergraph of the form (V,E)
where V is a set of statements in the form Γ ` φ and E : P(V )×V is the set of directed hypergraphical
edges representing inference rules applied between statements in the proof.2 This formalism underlies
the representation of proofs in graphical interactive theorem provers such as [4, 15]. Figure 4 provides
examples of two natural deduction proofs that have been converted to hypergraphical form.

Interactive theorem provers often do not force the user to keep track of proof state. Therefore, it is
important to note that we are interested in verifying proof graphs where the assumptions on each node
are yet to be known. We are only given the φ on each node and must compute the Γ based on how the
assumptions update within the inference rules. If we had both Γ and φ , parallelization would be trivial,
since we can then verify all the nodes in parallel.

Proof graphs implicitly provide additional useful features for representing collections of natural de-
duction proofs, particularly those that are commonly added onto natural deduction via additional for-
malisms. First, proof graphs provide the ability to compactly represent proofs that contain reoccurring
subproofs. This is because each hyper-node may have multiple outgoing hyper-edges, representing mul-
tiple inferences it is used in. While this feature is implicitly captured by proof graphs, natural deduction
proofs require an additional formalism allowing named theorems that can be used in other proofs to pro-
vide this functionally. Another feature is that a single proof graph can have multiple conclusions or even
contain multiple proofs where each proof is a disjoint hyper-subgraph. Without proof graphs, the ability
to represent this feature would require a formalism in which a set of proofs can be be treated as a single
proof.

2.3 Multiprocessing

In this work we use a shared memory model for multiprocessing. This involves multiple threads inde-
pendently operating over the same shared memory space. More specifically, we make heavy use of single
program multiple data (SPMD) style programs. With a fixed number of threads instantiated, we attempt
to distribute work evenly across all the threads. Our work makes use of two important concepts from
multi-processing: thread-safety and reductions (see [13] for more extensive coverage). Thread-safety
within a shared memory model is the notion that parallel algorithms are safe from errors due to concur-
rent writes and reads from the same piece of memory, known as a race condition. The second concept
is the notion of a parallel reduction. A parallel reduction is an operator that takes a list of elements
and computes a single element in parallel. A small example of this would be parallel sum over the list
(1,2,3,4): if we add 1 and 2 on one thread and 3 and 4 on another thread in parallel, and then sum their
results, we can sum the entire list in 2 steps rather than the 3 steps it would take to sum the list in serial.

2Note we use P(V )×V rather than P(V )×P(V ) since for all inference rules enumerated in Figure 1 there is only one
conclusion, thus each hyper-edge representing an inference rule will only ever have one outgoing connection.
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{p} ` p A

{p} ` p∨q
∨Ir {¬(p∨q)} ` ¬(p∨q) A

{¬(p∨q)} ` ¬p
¬I

Figure 4: (Top Left) A valid natural deduction proof that {¬(p∨q)} ` ¬p (Bottom Left) The same proof
represented as a hypergraphical proof graph structure in the Lazyslate interactive theorem prover[15].
(Right) Proof graph of the proof from Figure 2 of {A∨B,¬A} ` B in the HyperSlate [4] interactive
theorem prover.

3 Approach

We mentioned in §2 that natural deduction makes use of assumptions and chains of inference in its
proofs. In the hypergraphical representation, to show that a given node is valid, we need to show both
that the syntactic transformation is valid and that the assumption constraints are met with respect to the
justification used inside that proof. Let us consider the rule disjunction elimination (more commonly
known as proof by cases) from Figure 1 and its usage in the right proof of Figure 4. For example, we
wish to show that bottom node B is valid. For the syntactic check, we need to ensure that there are
three parent nodes, one of them is a disjunct, and two of the other parent nodes match the current node.
Then for the assumption constraints, we need to make sure that for one parent node B it has A in its
assumption set, and for the other parent node B it has B in its assumption set. Note from our discussion
of the hypergraphical representation in §2.2 that the underlying nodes do not contain the assumption
information themselves, but they are computed by the application of each inference rule. This creates
the need of an additional data structure that we call assumptions during the verification process. We
obtain the justification of a given step by calling just on the node. This will return the justification that
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is stored on the incoming edge of the node.
For a baseline comparison with the parallel verification algorithms, we designed a single-threaded

implementation that shares the same algorithmic structure as the parallel ones minus the usage of shared
memory and threading. The benchmark results are further discussed in §4. Our algorithm works by
maintaining a global map of nodes to their set of assumptions. To ensure that a node does not get verified
before its parent, we make use of a layering approach which induces a topological partial ordering on
the nodes. A topological partial ordering, also referred to as topological generations, of a proof graph
G = (V,E) is a partial ordering 4 on the nodes V where for each hyperedge ({vi0, · · · ,vin},vo), all
incoming nodes {vi0, · · · ,vin} appear before the outgoing node vo, that is ∀(Vi,vo) ∈ E : ∀vi j ∈Vi : vi j 4
vo. This layering approach for generating a topological partial ordering is similar to the well known
serial topological sort algorithm [7] which generates a topological linear ordering of the nodes but lacks
parallelizability. Figure 5 provides a colored example of the nodes on each layer. More formally, we
define node n to be on a layer L(n) inductively as follows:

L(n) =

{
0 if n is an assumption
1+maxm∈P(n)(L(m)), otherwise

(1)

where P(n) maps a node to its parents.

3.1 Single-Threaded Implementation

Algorithm 1 Single-Threaded Algorithm
1: procedure VERIFY(ProofGraph p)
2: Initialize assumptions to be empty.
3: Create set of nodes on each layer using Equation 1 and store in layerMap.
4: for layerNodes in layerMap do
5: for n in layerNodes do
6: justification = just(n)
7: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
8: if not is_valid(n, justification, ruleInfo) then
9: return false

10: Update assumptions(n) using the justification and ruleInfo.
11: return true

The full single-threaded procedure is described in Algorithm 1. For every layer, the procedure per-
forms the following actions: (1) Verify that the node is valid with respect to the justification claimed
using the node’s and its parents’ syntactic information and the parents’ assumption information. (2) If
valid, update the assumptions data structure for the current node based on the parents’ assumptions and
justification.

In order to better highlight the progression of the algorithm, we will walk through an example by
looking at the verification of Figure 4 (Right). Subscripts for the propositions help to distinguish between
formulae by referencing the ID denoted inside the purple box in the figure. In the beginning of the
algorithm, the first layer only contains assumptions:

currentLayer= {(¬A)1,(¬B)2,A5,B7,(A∨B)8}
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We then go through each node and verify them. Since they are justified as assumptions, they are trivially
valid. The nodes then have their assumptions updated. The next layer only contains (¬A∧¬B)3. This
validates and the node’s assumptions are updated to {(¬A)1,(¬B)2}. The third layer only contains (¬A)4.
This validates and the assumptions are propagated forward. On the fourth layer, the node B6 is justified
by negation elimination. This validates and the node’s assumptions are set to {(¬A)1,A5}. The fifth and
final layer only contains the node B9. As the node is justified by disjunctive elimination and is valid, we
update the assumptions to {(¬A)1,(A∨B)8}. As we have gone through all the layers successfully, the
whole hypergraph is valid.

Theorem 1. For all Proof Graphs p the single-threaded VERIFY(p) is correct with respect to the validity
of the ND proof corresponding to p.

Proof. An algorithm is correct if it is sound and complete (termination is trivial). We prove completeness
and soundness follows from symmetry. A natural deduction proof is valid if all steps are valid. For a step
to be valid it needs to pass the syntactic transformation and the assumption constraints. From these, only
the assumption constraint check requires information from outside the node and its parents. The rules of
natural deduction in Figure 1 show how assumptions are computed based on the parent node’s assumption
sets. As such, parents of a node must be verified beforehand and have their assumptions computed.
Nodes that are justified via assumptions mark the base case of this procedure as their assumption set only
contains itself. Due to the definition of the layering in Equation 1 and its usage in Line 3, assumptions
are in the first layer and the parents of a node must be in the previous layer. This means that the parents
are verified and their assumptions are computed beforehand on lines 6-9. Inductively this means that all
nodes are verified and have their assumptions computed successfully. Hence, the hypergraph proof itself
is verified.

3.2 Parallel Implementation (Non-optimized Parallel)

Within a layer, each node only depends on nodes in layers prior. This means that a node on some layer n
does not depend on any other node on layer n. For our initial parallel implementation, fully described in
Algorithm 2, we take advantage of this and verify the validity of each node on the same layer in parallel.
In our implementation, we used a shared memory approach. To combat thread-safety issues we introduce
a vector for each given layer called aIds. This vector lives in shared memory. Each entry holds a set
of node ids and its length is the number of nodes in the current layer. After computing the layers, each
node gets evenly distributed to the available threads. Each individual thread would then verify the nodes
it was assigned and update the assumptions of the appropriate index within aIds. This is thread-safe
because each entry only gets written to by the thread that its corresponding node id has been assigned to.
The parallel portion of the algorithm additionally performs an AND reduction on the verification result of
each node. This means that if any result of the individual verifications is false, then the entire verification
result is false. After the parallel portion is finished, the global assumption map gets updated using
aIds.

Let us illustrate the distribution of nodes with the example from Figure 5. In the graphic, the number
at the top of each node represents its identifier. For brevity, we will use those numbers when referring
to the nodes. As the zeroth layer only contains assumptions that are trivially verifiable, we will start our
discussion from layer one. In this layer, we have the following nodes:

L(1) = {5,6,8,9,15,14,21,25,17}
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Layer Nodes

0 2,4,7,16,
23,20,24,18

1 5,6,8,9,15,
14,21,25,17

2 3,11,10, 22
3 12,19
4 1, 13
5 0

Figure 5: (Left) A proof of logical or (∨) distributivity over logical and (∧). (Right) The nodes of the left
proof grouped by layer.

For the sake of example, let us say we have three threads. Then thread 0 would be assigned {5,6,8},
thread 1 would be assigned {9,15,14}, and thread 2 would be assigned {21,25,17}. Let us focus on
thread 0. Each of the three nodes verifies and the following assignments are made to aIds based on the
justification used:

aIds(5) = {assumptions(parent(5))}
aIds(6) = {assumptions(parent(6))}
aIds(8) = {assumptions(parent(8))}

After the parallel portion, the data within aIds are copied into assumptions as a way to ensure thread-
safety. On the next layer, we have the following nodes: L(2) = {3,11,10,22}. This then gets distributed
with thread 0 getting {3,11}, thread 1 obtaining {10}, and thread 2 obtaining {22}. Focusing on the first
thread again, the nodes verify and the following assignments are made to aIds:

aIds(3) = {assumptions(5),assumptions(6)}
aIds(11) = {assumptions(8)}

Notice that each of the items in those sets contains assumptions that were computed in the previous
layer. They were originally assigned within aIds but then copied to assumptions. The results of each
individual node verification were stored in NodeValid which is then AND-reduced into the variable
LayerValid. Hence after the end of the parallel portion, the variable LayerValid would be true unless
one of the nodes in the parallel portion failed to verify.
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Algorithm 2 Multi-Threaded Algorithm
1: procedure VERIFY(ProofGraph p)
2: Initialize assumptions to be empty.
3: Create set of nodes on each layer using Equation 1 and store in layerMap.
4: for layerNodes in layerMap do
5: nl = length(layerNodes)
6: aIds = sharedVector(length=nl)
7: LayerValid = true
8: for n in layerNodes in parallel do
9: justification = just(n)

10: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
11: NodeValid = is_valid(n, justification, ruleInfo)
12: if NodeValid then
13: Update aIds(n) using justification and ruleInfo
14: AND_reduce(LayerValid, NodeValid)
15: if not LayerValid then
16: return false
17: Update assumptions(n) using aIds
18: return true

3.3 Multi-Threaded Static Load Balancing Optimization (Load Balancing)

Notice when going over Figure 5 in the last example that the distribution of nodes in the second layer
was uneven. The assignment had one thread verifying two while the others verifying only a single one.
In fact, we can speak to this more generally. Let T represent the number of threads available and li be
the number of nodes in layer i. Let us assume that the verification of one node takes two units of work
total: one to verify the syntax and one to verify the assumptions. Let m = li mod T . Then, if m 6= 0 there
are (T −m) threads that are doing one less unit of work.

It is with this consideration that we look at static load balancing, presented in Algorithm 3. For the
threads with one less unit of work, they take a node from a future layer and syntax verify them. This
approach is valid because syntax verification only requires the current node and its parents’ formulae
which are stored in the proof graph and does not require additional information from the prior layers
such as assumption sets. In order to ensure that the nodes that are syntax verified by the remaining
(T −m) threads are distinct, we make use of another reduction variable numSyntaxVerified. Each
thread would be assigned the node that’s the sum of that variable and its thread id. Do note that this is
different from dynamic load balancing as the amount of work is evenly distributed and does not take into
account during runtime some threads finishing before others.

Let us turn to our example from Figure 5 again. Recall that the distribution of work at layer two was
the following: thread 0 maps to {3,11}, thread 1 has {10}, and thread 2 has {22}. We can then squeeze
in syntax verification checks in thread 1 and thread 2. Then, the new allocation becomes: thread 0 maps
to {3,11}, thread 1 maps to {10,xs}, and thread 2 maps to {22,ys}. The subscript denotes how we are
only performing a syntax verification at that step. Recall that we can not perform full verification of
nodes in future layers because we do not know if there’s a node on the current layer that its assumptions
depends on. The question then is: how are xs and ys calculated? As noted before, this is where we
keep track of the total number of nodes that we have syntax verified already. If we have a flat vector of



J. Oswald and B. Rozek 45

Algorithm 3 Multi-Threaded Load Balance Algorithm
1: procedure VERIFY(ProofGraph p)
2: Initialize assumptions to be empty.
3: Create set of nodes on each layer using Equation 1 and store in layerMap.
4: AllNodes = Flatten(layers)
5: numSyntaxVerified = 0
6: for layerNodes in layerMap do
7: nl = length(layerNodes)
8: aIds = sharedVector(length=nl)
9: LayerValid = true

10: layerSyntaxVerified = 0
11: for n in layerNodes in parallel do
12: justification = just(n)
13: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
14: NodeValid = is_valid(n, ruleInfo)
15: if NodeValid then
16: Update aIds(n) using justification and ruleInfo
17: threadIterSyntaxVerified = 1
18: if thread verifying less nodes then
19: extraN = AllNodes[numSyntaxVerified + threadId]
20: NodeValid = NodeValid and syntaxVerify(extraN, parents(extraN))
21: threadIterSyntaxVerified = 2
22: SUM_reduce(layerSyntaxVerified, threadIterSyntaxVerified)
23: AND_reduce(LayerValid, NodeValid)
24: if not LayerValid then
25: return false
26: Update assumptions(n) using aIds
27: numSyntaxVerified = numSyntaxVerified + layerSyntaxVerified
28: return true

all nodes that are partially ordered by their layer number, then for thread i we can have it syntax verify
numSyntaxVerified+ i element of that flat vector. A sum reduction then keeps track of the total number
of syntax verifications performed on a given layer which is later used to update numSyntaxVerified.

3.4 Parallel Distribution of Syntax Checks (Syntax-First)

In the last section we discussed that syntax verification can occur beyond the current layer being con-
sidered. In fact, syntax verification can occur outside of the layering structure in general which this op-
timization considers. In this approach we first perform the syntax verification in parallel over all nodes
before iterating over the layers. This approach is outlined in Algorithm 4. This not only has the benefit
of lowering the time to find a syntactic error, but also more evenly distributes the syntax verification over
all threads.

For our example in Figure 5, the proof graph contains node ids 0 through 25. If we have three threads,
then thread 0 would be assigned nodes 0 through 8, thread 1 would be assigned nodes 9 through 16, and
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thread 2 would be assigned nodes 17 through 25. Each thread would then loop over their assigned nodes
and syntax verify them. When the three threads finish, if any of their nodes failed to syntax verify, then
the algorithm would end and the proof graph verification would fail. In this example, however, the nodes
pass the syntax verification. The rest of the algorithm closely follows Algorithm 2 where instead of
performing a full verification, we only verify that the assumption constraints hold.

Algorithm 4 Multi-Threaded Syntax Check First Algorithm
1: procedure VERIFY(ProofGraph p)
2: syntaxValid = True
3: for n in p.nodes in parallel do
4: valid = verifySyntax(n, parents(n))
5: AND_reduce(syntaxValid, valid)
6: if not syntaxValid then
7: return false
8: Initialize assumptions to be empty.
9: Create set of nodes on each layer using Equation 1 and store in layerMap.

10: for layerNodes in layerMap do
11: nl = length(layerNodes)
12: aIds = sharedVector(length=nl)
13: LayerValid = true
14: for n in layerNodes in parallel do
15: justification = just(n)
16: ruleInfo = (m, assumptions(m)) ∀ m ∈ parents(n)
17: NodeValid = verifyAssumptions(n, justification, ruleInfo)
18: if NodeValid then
19: Update aIds(n) using justification and ruleInfo
20: AND_reduce(LayerValid, NodeValid)
21: if not LayerValid then
22: return false
23: Update assumptions(n) using aids
24: return true

4 Methodology and Results

To discuss the performance of our algorithms, we provide an empirical investigation. To this end, we
look toward a comparison of the number of seconds needed to verify various proof structures using
the algorithms described before. Inspired by the topologies used in computer network design [2], we
introduce a directed variant that we call directed acyclic network topologies or DANTs. These DANTs
represent different classes of possible proofs with which we perform benchmarks over.

4.1 Directed Acyclic Network Topologies (DANTs)

We have identified three distinct classes of DANTs which we include in our benchmark of proof graphs
for analysis. The pictorial depiction is shown in Figure 6 and is generated as so: Straight Line (n):
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Figure 6: Straight, Parallel-Branch, then Tree Topologies

Parameterized by the total number of nodes n, this topology only contains one assumption at the top and
then each future inference is a disjunction introduction. This enforces a straight linear proof with no
branching. We do not expect any speedup in the parallel algorithm in this case as each layer only has one
node. Parallel Branches (b,n): This topology emulates multiple lines of independent reasoning before
combining towards the end. It starts off with b separate assumptions and then performs a disjunctive
introduction on each assumption n times before iteratively applying conjunctive introduction to each
branch until there is one remaining. We expect the number of branches will correlate with the scalability
of verification. It should be noted that this topology is isomorphic to a straight topology of length n when
b = 1 and emulates a tree like topology of height b when b > 1. Tree (h): In this topology we generate
2h assumptions and iteratively apply conjunction introduction h times until we reach a single node. This
creates a balanced binary tree. We hypothesize the greatest amount of speedup from this topology.

4.2 Empirical Analysis

We perform two classes of experiments: (1) a parallel strong scaling study in which the proof to be
verified is held constant while the number of processors increases; (2) a problem size scaling study in
which we hold the number of threads constant and look at how each method performs as the problem
gets harder.

4.2.1 Implementation Details

Our benchmarks were performed on one node of the IBM DCS supercomputer, AiMOS, at Rensselaer
Polytechnic Institute. Our code is available at https://github.com/RAIRLab/Parallel-Verifier
3. The code is implemented in C++11 and makes use of the standard C++ library data structures. For the
multiprocessing component, we use the OpenMP library [5]. OpenMP operates over software threads
which are assigned to CPUs. We ensure during our scaling study that the system is not oversubscribed,
meaning that there is just a single thread used per CPU. AiMOS provides us a single node on which ten
physical cores are available; however one is reserved for the operating system and IO, therefore nine
are used for our experiments. For our benchmarks we do not include the time it took for initialization,
file parsing, or proof parsing; we only measure the time taken to verify the proof. For this, we record
the clock-cycles before and after the execution of the verification algorithm and use their difference to
compute the total cycles. We then compute the number of seconds taken by each method through dividing
the number of total cycles by the base clock rate of 512MHz.

3For reproducibility of our results, please see the following link for the specific commit the results of this paper is based on:
https://github.com/RAIRLab/Parallel-Verifier/tree/a661abbe5bf038a3fa8645b8af532b0a60daebe5

https://github.com/RAIRLab/Parallel-Verifier
https://github.com/RAIRLab/Parallel-Verifier/tree/a661abbe5bf038a3fa8645b8af532b0a60daebe5
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4.2.2 Strong Scaling

For our strong scaling study we vary the number of threads used while holding the DANT instance
constant. For the straight topology, we consider a length n of 150. For the branch topology, we consider
b = 150 branches each with a length of n = 100. Lastly, for the tree topology, we consider h = 16
conjunction introductions for a total number of 216 vertices. Results can be seen on the left of Figure 7.
The strong scaling results show a clear benefit to our parallelized verification approach. In the case of
the straight topology the serial algorithm vastly outperforms the parallel algorithms, which is expected
as in this topology there is only one node per layer. There are clear overheads to parallelization, such as
waiting for all threads to finish, that make timing differences visible as the number of threads increases
for the straight topology. For the branch topology with 150 branches we see that our parallel methods
scale well, particularly load balancing which beats out syntax-first and non-optimized parallel methods.
We hypothesize this is due to the number of remaining nodes on each layer remaining constant which
allows for a good balance of syntax checking vs assumption updating. The parallel methods perform
quite well on the tree topology significantly beating out the serial method, with non-optimized parallel
and syntax-first methods beating out load balancing likely due to the overhead costs.

4.2.3 Problem Scaling

For our problem scaling study we hold the number of threads constant (at AiMOS’ maximum value of
nine) and vary the problem size. For the straight topology, we consider a chain of disjunctive introduc-
tions of lengths (n) 100, 150, 200, 250, 300, 350, and 400. For the branch topology, we consider a fixed
branch length of n = 100 and vary the number of branches (b) at 30, 50, 70, 90, 110, 130, and 150. Lastly
for the tree topology, we create binary trees of heights (h) 8, 10, 12, 14, 16, 18, and 20. Results can be
seen on the right side of Figure 7. We hypothesize the straight topology scaling is not linear due to over-
heads such as the formulae length increasing as the problem size increases. We see that for all problem
sizes on the straight topology, the serial implementation outperforms the parallel implementation. This
aligns with the observation in the strong scaling study that the parallel methods have overheads and the
fact that for all parallel methods, only one node is on each layer, preventing the majority of the threads
from doing any work. In the branch topology, the results show that as the number of branches increases,
the effectiveness of parallel methods increases. This is particularly shown in load balancing, due to the
reasons discussed in §4.2.2. For the tree topology, there is an exponential increase in the time taken as
the problem grows, largely due to the fact that the number of nodes to verify increases exponentially (2n)
as the problem size increases. We see that as the problem size grows, the performance of our parallel
methods over the serial method increases substantially.

5 Related Work

Past work has investigated parallel or concurrent verification of other logical calculi. For example the
developers of Isabelle [24], a proof assistant with support for first-order logic, higher-order logic, and
Zermelo-Fraenkel set theory, used concurrent programming for the efficient verification of LCF-style
proofs [18]. In their work, during the verification of a proof, if a reference to another proof is made,
and that proof has yet to be verified, then a promise is deferred. At the end of verification, all promises
are resolved and localized errors are then shown to the user [21, 22]. This work operates over entire
proofs while we focus on parallelizing steps within a proof. In [23], Wenzel introduces what he calls
granularities of concurrency within verifying a single proof. The levels include concurrent verification
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Figure 7: (Left) Strong scaling study results (Right) Problem scaling study results.
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of theories, concurrent verification of commands, and concurrent verification of subproofs. In terms of
our work, we do not consider extra background theories, commands correspond to our proof steps, and
we do not consider subproofs in our work. As discussed in §2, there is a definition of a subproof in our
natural deduction hypergraphs. However, it’s not something specified by the creator of the proof and
there can be n different subproofs for a proof with n nodes.

Färber looked at concurrent verification of commands in his work parallelizing proof checking inside
the lambda-Pi calculus modulo rewriting [8]. In this work, he breaks up a command into four tasks:
parsing, sharing, type inference, and type checking. Similarly, our work breaks up our inference rules
into two steps: syntactic checks and assumption checks. We additionally look at the parallel verification
of sets of steps or commands, as opposed to only looking at the concurrency within each command.

6 Conclusion

In this work, we presented a layering based algorithm that decouples the underlying semantic dependen-
cies of proof steps in natural deduction. Through this, we introduced a suite of new algorithms which use
layers to parallelize verification of hypergraphical natural deduction proofs. Directed acyclic network
topologies (DANTs) were introduced as a benchmark for hypergraphical proofs and we have shown
in our analysis that the parallel algorithms perform better than their serial counterpart on non-straight
DANT instances. These parallel algorithms were additionally shown to scale through both the strong
scaling and problem scaling studies. This work has applications in formal verification, specifically in
proof assistants.

Our future work falls into four categories: theoretical results, empirical results, logic extensions,
algorithmic optimizations: (1) For theoretical results, we would benefit from analysis with respect to
Amdahl’s Law [11] to calculate the overall speedup with respect to different parallelizable tasks in each
of the algorithms. (2) For further empirical results, we can test randomized proof topologies or craft
a dataset of common natural deduction proofs. (3) We wish to extend our verifier to handle different
types of logics, specifically first-order and modal logics. First-order logics are used heavily within proof
assistants, and require the ability to represent and reason over formulae at the term level, including the
need for checking if variables are free or bound in inference rules. We conjecture that despite these
extra requirements, our layer based parallel approaches would still work on first-order proof graphs. In
order to handle modal logics such as K5, we would have to adapt the algorithm to include additional
bookkeeping required for several of the inference rules. (4) We would like to explore approaches to scale
beyond a single computer. This involves exploring message-passing parallelism which is often used in
distributed computing.
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[12] Stanisław Jaśkowski (1934): On the rules of suppositions in formal logic. Studia Logica.
[13] Vipin Kumar, Ananth Y. Grama, Anshul Gupta & George Karypis (1994): Introduction to parallel computing:

design and analysis of algorithms. Benjamin-Cummings Publishing Co., Inc.
[14] Leonardo de Moura & Sebastian Ullrich (2021): The Lean 4 Theorem Prover and Programming Lan-

guage. In: International Conference on Automated Deduction, Springer, pp. 625–635, doi:10.1007/978-
3-030-79876-5_37.

[15] James Oswald & Brandon Rozek (2022): Lazyslate. Available at https://github.com/James-Oswald/
lazyslate.

[16] Francis Jeffry Pelletier & Allen Hazen (2023): Natural Deduction Systems in Logic. In Edward N. Zalta & Uri
Nodelman, editors: The Stanford Encyclopedia of Philosophy, Spring 2023 edition, Metaphysics Research
Lab, Stanford University, pp. 1–1.

[17] Dag Prawitz (1965): Natural Deduction: A Proof-Theoretical Study. Dover Publications,
doi:10.2307/2271676.

[18] Dana S Scott (1993): A type-theoretical alternative to ISWIM, CUCH, OWHY. Theoretical Computer Science
121(1-2), pp. 411–440, doi:10.1016/0304-3975(93)90095-B.

[19] The Coq Development Team (2019): The Coq Proof Assistant, doi:10.5281/zenodo.3476303.
[20] Vitaly I. Voloshin (2013): Introduction to Graph and Hypergraph Theory. Nova Kroshka Books.
[21] Makarius Wenzel (2009): Parallel Proof Checking in Isabelle/Isar.
[22] Makarius Wenzel (2013): READ-EVAL-PRINT in parallel and asynchronous proof-checking. arXiv preprint

arXiv:1307.1944, doi:10.4204/eptcs.118.4.
[23] Makarius Wenzel (2013): Shared-Memory Multiprocessing for Interactive Theorem Proving. In Sandrine

Blazy, Christine Paulin-Mohring & David Pichardie, editors: Interactive Theorem Proving, Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 418–434, doi:10.1007/978-3-642-39634-2_30.

[24] Makarius Wenzel, Lawrence C Paulson & Tobias Nipkow (2008): The isabelle framework. In: Interna-
tional Conference on Theorem Proving in Higher Order Logics, Springer, pp. 33–38, doi:10.1007/978-3-
540-71067-7_7.

https://doi.org/10.1145/3372885.3373824
https://api.semanticscholar.org/CorpusID:60621753
https://doi.org/10.1145/3497775.3503683
https://doi.org/10.2307/2020641
https://doi.org/10.1007/bf01201353
https://doi.org/10.1109/MC.2008.209
https://doi.org/10.1007/978-3-030-79876-5_37
https://doi.org/10.1007/978-3-030-79876-5_37
https://github.com/James-Oswald/lazyslate
https://github.com/James-Oswald/lazyslate
https://doi.org/10.2307/2271676
https://doi.org/10.1016/0304-3975(93)90095-B
https://doi.org/10.5281/zenodo.3476303
https://doi.org/10.4204/eptcs.118.4
https://doi.org/10.1007/978-3-642-39634-2_30
https://doi.org/10.1007/978-3-540-71067-7_7
https://doi.org/10.1007/978-3-540-71067-7_7


A. Ciaffaglione and C. Olarte (Eds.): Logical Frameworks

and Meta-Languages: Theory and Practice (LFMTP 2023)

EPTCS 396, 2023, pp. 52–66, doi:10.4204/EPTCS.396.5

© F. Castro

This work is licensed under the

Creative Commons Attribution License.

An Interpretation of E-HAω inside HAω

Félix Castro

IRIF
Université Paris Cité
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Higher Type Arithmetic (HAω ) is a first-order many-sorted theory. It is a conservative extension

of Heyting Arithmetic obtained by extending the syntax of terms to all of System T: the objects

of interest here are the functionals of “higher types”. While equality between natural numbers is

specified by the axioms of Peano, how can equality between functionals be defined? From this

question, different versions of HAω arise, such as an extensional version (E-HAω ) and an intentional

version (I-HAω). In this work, we will see how the study of partial equivalence relations leads us to

design a translation by parametricity from E-HAω to HAω .

1 Introduction

In second-order logic, it can be shown as a meta-theorem that two extensionally equal predicates satisfy

the same properties. It is not the case in higher-order logic: this is due to the potential existence of

non-extensional (higher-order) predicates. However, Gandy showed that axioms of extensionality could

be consistently added by restraining the range of quantification to extensional elements [4]. A similar

phenomenon occurs in Higher Type Arithmetic (HAω ): one cannot prove in HAω that two extensionally

equal functions satisfy the same formulas. It can be seen for instance by working in the model of Hered-

itary Recursive Operations HRO [10] where a functional can inspect the source code of its argument.

But, again, axioms of extensionality can be added without loss of consistency: Zucker showed that every

model of N-HAω (Higher Type Arithmetic with equality at all levels of sort) can be turned into a model

of E-HAω (Higher Type Arithmetic with extensional equality at all levels of sort) [12].

In this work we tackle a similar problem. Starting from HAω , we show that an extensional equality

can be consistently added at all levels of sorts. Taking inspiration from syntactical models of type the-

ory [3, 1], we choose to do it in a syntactical fashion: we design an interpretation of E-HAω in HAω that

we express as a translation between two proof systems (without reduction rules). Concretely, we will

compile a language with extensional equality at all levels of sorts to a language that merely has equality

in the sort N. It will be done using techniques of parametricity, as one goal of this paper is to emphasize

that parametricity can be used to extend equality.

After exposing a proof system λHAω that captures Higher Type Arithmetic (Section 2), we will

study families (indexed by the sorts of System T) of (internal) partial equivalence relations that could be

used to extend equality (Section 3). In particular, we will compare two potential candidates:

1. a family =ext
σ generated from equality (over N) in an extensional fashion;

2. a family =
pm
σ generated from equality (over N) in a way reminiscent of binary parametricity [9].

http://dx.doi.org/10.4204/EPTCS.396.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
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∆1,x
σ ,∆2 ⊢T xσ : σ

∆,xσ ⊢T t : τ

∆ ⊢T λxσ .t : σ → τ

∆ ⊢T t : σ → τ ∆ ⊢T u : σ

∆ ⊢T tu : τ

∆ ⊢T 0 : N

∆ ⊢T t : N

∆ ⊢T S t : N

∆ ⊢T t : σ ∆ ⊢T u : σ → N → σ ∆ ⊢T v : N

∆ ⊢T Recσ t uv : σ

Figure 1: Derivation in System T

While the former is reflexive, the latter is not. But being reflexive is not desirable in this context. In-

deed, as explained above, one needs to restrict the range of quantifications before extending equality:

specifically we will restrict quantifications on a sort σ to the domain of =
pm
σ . Our first translation will be

used to show that each closed term of System T is indeed in the domain of =pm: we translate judgments

of System T into judgments of λHAω and we follow the typical translation by parametrecity, as it will

allow us to show that typed terms satisfy the relation linked to their type [9, 11, 2]. Finally, by keeping

the idea of a translation by parametricity, we will translate a proof system λE-HAω (capturing E-HAω)

to λHAω (Section 4). Before concluding, we will compare our result and our methodology to related

work (Section 5).

2 A proof system for Higher Type Arithmetic

2.1 System T

We use a version of Gödel’s System T obtained by extending the simply typed λ -calculus (à la Church)

with a type constant N and native constructors to use it. Terms, sorts and signatures of System T are

described as follows:

Sorts σ ,τ ::= N | σ → τ

Terms t,u ::= xσ | λxσ .t | tu

| 0 | S t | Recσ t uv

Signatures ∆ ::= /0 | ∆,xσ

System T is presented in Church’s style so terms come associated with a unique sort. Nevertheless, we

use a type system (see Figure 1 page 53) to take into account in which signature (or environment) a term

is considered. We may omit sort annotations on variables.

We consider the following rules on terms

(λx.t)u ≻ t[x ::= u]
Rec t u0 ≻ t

Rec t u(Sv) ≻ u(Rec t uv)v
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from which we generate reduction and congruence t  u and t ∼= u as respectively the least reflexive,

transitive and closed by congruence relation containing ≻ and the least closed by congruence equivalence

relation containing ≻. We define a substitution θ to be a finite function from variables to terms. The

action of a substitution θ on terms, denoted t[θ ], corresponds to the simultaneous substitutions of free

variables x in the domain of θ by θ(x).
Metatheoretical results about System T can be found in the book of Girard, Lafont and Taylor [5],

for instance:

1. terms of System T are strongly normalizable;

2. closed normal terms of type N are of the form Sn 0, closed normal terms of type σ → τ are of the

form λxσ .t.

Finally, we will use the two following facts.

Fact 1. A generalized version of the weakening rule is admissible for this system:

if ∆ ⊆ ∆′ and ∆ ⊢T t : σ then ∆′ ⊢T t : σ

where ∆ ⊆ ∆′ is interpreted as the set-theoretic inclusion (while seeing signatures as sets).

Fact 2. If θ is a substitution then t ∼= u implies t[θ ] ∼= u[θ ].

2.2 Higher Type Arithmetic

Higher Type Arithmetic (HAω ) is a theory of many-sorted first order logic. It is a conservative extension

of HA obtained by extending the term language to the System T. Models of HAω are described in the

book of Troelstra [10], in particular the following will be used in the sequel:

1. the set-theoretic model M defined by

MN ≡ N

Mσ→τ ≡ M
Mσ
τ

2. the model of Hereditary Recursive Operations HRO defined by

HRON ≡ N

HROσ→τ ≡ {e ∈N | ∀n ∈ HROσ {e}(n) ↓∈ HROτ}

where {e}(n) ↓∈ E means that the computation of the function of index e terminates on the input

n and that the result of this computation is in E .

We define a proof system λHAω that captures HAω . Formulas, proof terms and contexts of λHAω are

generated by the following grammar:

Formulas Φ,Ψ ::= t = u | ⊥ | null(t)
| Φ ⇒ Ψ | Φ∧Ψ

| ∀xσ Φ | ∃xσ Φ

Proof terms M,N ::= ξ | refl t | peelt,u(M, x̂.Φ,N) | efq(M,Φ)
| λξ .M | M N

| (M,N) |M.1 | M.2
| λxσ .M | Mt

| [t,M] | let [x,ξ ] := M in N

| Ind(x̂.Φ,M,N, t)

Contexts Γ ::= /0 | Γ,ξ : Φ
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(∆;Γ) wf
(ξ : φ ∈ Γ)

∆;Γ ⊢ ξ : Φ

∆;Γ ⊢ M : ⊥
(FV(Φ)⊆ ∆)

∆;Γ ⊢ efq(M,Φ) : Φ

∆;Γ ⊢ M : Φ
(Φ ≃ Ψ)

∆;Γ ⊢ M : Ψ
∆;Γ,ξ : Φ ⊢ M : Ψ

∆;Γ ⊢ λξ .M : Φ ⇒ Ψ

∆;Γ ⊢ M : Φ ⇒ Ψ ∆;Γ ⊢ N : Φ

∆;Γ ⊢ M N : Ψ

∆;Γ ⊢ M1 : Φ1 ∆;Γ ⊢ M2 : Φ2

∆;Γ ⊢ (M1,M2) : Φ1 ∧Φ2

∆;Γ ⊢ M : Φ1 ∧Φ2
(i = 1,2)

∆;Γ ⊢ M.i : Φi

∆,xσ ;Γ ⊢ M : Φ
(xσ /∈ FV(Γ))

∆;Γ ⊢ λxσ .M : ∀xσ Φ

∆;Γ ⊢ M : ∀xσ Φ ∆ ⊢T t : σ

∆;Γ ⊢ Mt : Φ[xσ := t]

∆;Γ ⊢ M : Φ[xσ := t] ∆ ⊢T t : σ

∆;Γ ⊢ [t,M] : ∃xσ Φ

∆;Γ ⊢ M : ∃xσ Φ ∆,xσ ;Γ,ξ : Φ ⊢ N : Ψ
(xσ /∈ FV(Γ,Ψ))

∆;Γ ⊢ let [x,ξ ] := M in N : Ψ

(∆;Γ) wf ∆ ⊢T t : N

∆;Γ ⊢ refl t : t = t

∆;Γ ⊢ M : t = u ∆;Γ ⊢ N : Φ[xN := t]

∆;Γ ⊢ peelt,u(M, x̂.Φ,N) : Φ[xN := u]

∆;Γ ⊢ M : Φ[xN := 0] ∆;Γ ⊢ N : ∀xN.(Φ ⇒ Φ[xN := SxN]) ∆ ⊢T t : N

∆;Γ ⊢ Ind(x̂.Φ,M,N, t) : Φ[x := t]

Figure 2: Proof derivations in λHAω

This syntax contains three different λ -abstractions: two λ -abstractions at the level of proof terms

(λξ .M and λxσ .M) and the λ -abstraction of System T at the level of formulas (λxσ .t). The sort annota-

tion on a variable may be omitted in the sequel if it can be inferred. In the proof terms peelt,u(M, x̂.Φ,N)
and Ind(x̂.Φ,M,N, t), the variable x is bound in Φ: the binder x̂ is used to specify which variable will

be substituted. The connectives ⊤ and ∨ are not included in λHAω but can be defined as ⊤ ≡ ⊥⇒⊥
and Φ∨Ψ ≡ ∃xN (x = 0 ⇒ Φ∧ x 6= 0 ⇒ Ψ) where the relation x 6= y denotes x = y ⇒⊥.

We consider sequents of the form ∆;Γ ⊢ M : Φ where

1. ∆ is a signature of System T;

2. Γ is a context of λHAω .

The typing rules of λHAω are presented in Figure 2 at page 55. Note that equality is only defined on

the sort N. A pair of a signature and a context (∆;Γ) is well formed when the free first-order variables of

Γ are contained in ∆, i.e.

(∆;Γ) wf ≡ FV(Γ) ⊆ ∆

This system is not equipped with reduction rules for proof terms: they are used as annotations for the

derivation and they serve as a tool to formulate our work as a fully specified translation. The congruence

relation Φ ≃ Ψ between formulas used in λHAω is generated from the reduction rules of System T and

two extra rules:
null(0) ≻ ⊤

null(Sx) ≻ ⊥

Because of the conversion rule, terms of System T are treated up to the equivalence ∼=. For instance, one

can prove (λxN.x)0 = 0 in λHAω . Moreover, all the axioms of HAω [10] are derivable. In particular,

the predicate null(t) is used to prove ∀xN Sx 6= 0.
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Fact 3. λHAω captures HAω in the following manner: a closed formula Φ is derivable in λHAω if and

only if the formula obtained from Φ by replacing all occurrences of subformulas null(t) by t = 0 is a

logical consequence of HAω .

The notion of substitutions extends from System T to λHAω . Concretely, a (first-order) substitu-

tion θ is a finite function from first-order variables (x,y...) to terms of System T, while the operation

of substitution on proof terms M and formulas Φ is defined as before. The notation Γ[θ ] represents the

application of the substitution θ to all terms and formulas in the context Γ. The system λHAω satisfies

the following properties:

Fact 4. If ∆;Γ ⊢ M : Φ then FV (Φ)⊆ ∆.

Fact 5. A generalized version of the weakening rule is admissible for this system:

if ∆ ⊆ ∆′, Γ ⊆ Γ′ and ∆;Γ ⊢ M : Φ then ∆′;Γ′ ⊢ M : Φ

where the set-theoretic inclusion is used to compare signatures and contexts.

Fact 6. Let θ be a substitution of first-order variables, ∆ a signature included in its domain and ∆′ a

signature containing all free variables of its image. Then

∆;Γ ⊢ M : Φ implies ∆′;Γ[θ ] ⊢ M[θ ] : Φ[θ ]

Fact 7. If ∆;Γ,ξ : Ψ ⊢ M : Φ and ∆;Γ ⊢ N : Ψ then ∆;Γ ⊢ M[ξ := N] : Φ.

3 A preliminary study of possible extensions of equality

3.1 Two examples of Partial Equivalence Relation

Let σ be a sort of System T. A symbol of binary relation R on σ (added to the syntax of λHAω ) is a

partial equivalence relation when it is symmetric and transitive. It is the case if the formulas

SymR ≡ ∀xσ∀yσ xRy ⇒ yRx

TransR ≡ ∀xσ∀yσ∀zσ xRy ⇒ yRz ⇒ xRz

are provable in λHAω .

A partial equivalence relation is an equivalence relation on its domain

x ∈ DomR ≡ xRx

Moreover, using symmetry and transitivity, one can show that

xRy ⇒ x ∈ DomR ∧ y ∈ DomR

Therefore, a partial equivalence relation on σ is exactly an equivalence relation on a collection of indi-

viduals of sort σ (i.e. a formula with one free variable of sort σ ).

Let {=ext
σ }σ and {=pm

σ }σ be two families of binary relations indexed by the sorts of System T and

defined as follows:

xN =ext
N yN ≡ x = y xN =

pm
N yN ≡ x = y

f σ→τ =ext
σ→τ gσ→τ ≡ ∀x f x =ext

τ gx f σ→τ =
pm
σ→τ gσ→τ ≡ ∀x∀y x =

pm
σ y ⇒ f x =

pm
τ gy

Note that
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1. The relation =ext is obtained from equality by extending it to higher sorts in an extensional fashion

(two functions are in =ext if they are extensionally equal).

2. The relation =pm is obtained from equality by extending it to higher sorts in a parametric fashion

(two functions are in =pm if they send related entries to related outputs).

With an (external) induction on the sorts of System T, it can be shown that for all sorts σ :

1. =ext
σ is an equivalence relation;

2. =pm
σ is a partial equivalence relation.

We exhibit proof terms that are used on forthcoming translations:

⊢ sym
pm
σ : Sym=

pm
σ

⊢ trans
pm
σ : Trans=pm

σ

⊢ refl
pm
σ : ∀xσ∀yσ x =pm

σ y ⇒ (x =pm
σ x∧ y =pm

σ y)

They are defined by induction on the sort of System T:

sym
pm
N ≡ λxλy.λξ .peel(ξ , ẑ.(z = x), refl x)

sym
pm
σ→τ ≡ λ f λg.λξ .λxλy.λη .sym

pm
τ ( f y)(gx)(ξ yx(sym

pm
σ xyη))

trans
pm
N ≡ λxλyλ z.λξ λη .peel(η , ŵ.x = w,ξ )

trans
pm
σ→τ ≡ λ f λgλh.λξ λη .λxλy.λ χ .transτ( f x)(gy)(hy)(ξ xy χ)(η yy(transσ yxy(sym

pm
σ xy χ)χ))

refl
pm
σ ≡ λxσ λyσ λξ .(trans

pm
σ xyxξ (sympm xyξ ), trans

pm
σ yxy(sympm xyξ )ξ )

One cannot prove inside λHAω that =
pm
σ is reflexive for all sorts σ , as it can be seen by working

in HRO. Let quote ∈ HRO(N→N)→N be an index for the identity function1 and p,q ∈ HRON→N two

distinct indexes for the same total unary function. Note that

HRO � p =pm
N→N q

HRO � {quote}(p) 6=pm
N {quote}(q)

Consequently

HRO � quote 6=pm

(N→N)→N
quote

and =
pm

(N→N)→N
is not reflexive in HRO.

Because =ext
(N→N)→N

is reflexive, the previous result shows that in HRO, =ext
(N→N)→N

is not included

in =pm

(N→N)→N
. Therefore, one cannot prove in λHAω

∀x∀y x =ext
(N→N)→N y ⇒ x =

pm

(N→N)→N
y

Going one step higher in the hierarchy of sorts, one can show that

∀x∀y x =
pm

((N→N)→N)→N
y ⇒ x =ext

((N→N)→N)→N y

is not provable in λHAω . Indeed, consider a variant HROo of HRO where natural numbers denote

recursive functions that can access an oracle deciding if its entry is an index of the identity function (i.e.

1quote is a functional that takes a function as argument and returns its source code
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for instance it returns 1 if it is the case and 0 otherwise). Let n ∈ HROo
((N→N)→N)→N an index for this

oracle and m ∈ HROo
((N→N)→N)→N an index of the constant function x 7→ 0. It turns out that

HROo
� n =pm

(N→N)→N)→N
m

HROo
� n 6=ext

(N→N)→N)→N
m

because the indexes of the identity function are not in the domain of =
pm

(N→N)→N
.

Finally, in the set-theoretic model M of HAω (and in fact in any extensional model), one can show

M � ∀x∀y x =ext
σ y ⇔ x =

pm
σ y

for all σ (by induction on the sorts of System T).

Therefore, in λHAω , one cannot prove that the relations =pm and =ext are different. We wrap up all

these results in the following theorem.

Theorem 1. In λHAω one cannot prove that

1. =
pm

(N→N)→N
is reflexive;

2. =ext
(N→N)→N

⊆=
pm

(N→N)→N
;

3. =
pm

((N→N)→N)→N
⊆=ext

((N→N)→N)→N
;

4. =
pm
σ (=ext

σ and =ext
σ (=

pm
σ (for any sort σ );

where the symbols ⊆,( and the property of being reflexive are defined inside λHAω in the usual way.

3.2 A first translation: from System T into λHAω

Although one cannot prove inside λHAω that =pm is reflexive, it can be shown that all closed terms of

System T are in its domain. With this goal in mind, we design a translation from System T into λHAω :

(∆ ⊢T t : σ)pm
 ∆1,∆2;∆pm ⊢ tpm : t1 =

pm
σ t2

1. Declarations of variables in signatures are duplicated. Fixing i = 1,2:

/0i ≡ /0

(∆,xσ )i ≡ ∆i,(xi)σ

where xi are fresh distinct variables.

2. Terms of System T are duplicated. Fixing i = 1,2:

t i ≡ t[θ i
t ]

will denote the term obtained by substituting all free variables x of t by xi (i.e. θ i
t is the substitution

defined on the free variables of t that associates to a variable x the variable xi).

3. Signatures of System T are translated into contexts of λHAω :

/0pm ≡ /0

(∆,xσ )pm ≡ ∆pm,xpm : x1 =
pm
σ x2
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4. Terms of System T are translated into proof terms of λHAω :

(x)pm ≡ xpm

(λx.t)pm ≡ λx1λx2.λxpm.tpm

(t u)pm ≡ tpm u1 u2 upm

0pm ≡ refl 0

(S t)pm ≡ peel
(

tpm, x̂.(S t1 = Sx), refl (S t1)
)

(Rec t uv)pm ≡ Ind
(

x̂.(∀yN x = y ⇒ Recσ t1 u1 x =
pm
σ Recσ t2 u2 y),

λy.λξ .peel(ξ , ẑ.(t1 =
pm
σ Recσ t2 u2 z), tpm),

λx.λη .λy.λξ .peel(ξ , ẑ.(u1(Rec t1 u1 x)x =
pm
σ (Rec t2 u2 z)),

upm(Rec t1 u1 x)(Rec t2 u2 x)(η x(refl x))xx(refl x)),
v1)v2 vpm

The translation works as follows:

1. An abstraction in System T is interpreted as 3 abstractions in λHAω : 2 abstractions of first-order

variables and one of proof variable. Indeed, (λxσ .t)pm is of type ∀x1∀x2 x1 =pm
σ x2 ⇒ t1 =pm t2

(assuming λxσ .t : σ → τ).

2. Symmetrically, an application in System T is interpreted as 3 applications.

3. Because the relation =pm
N is merely the equality, 0 and S t are interpreted as equality proofs.

4. Finally, the recursor is interpreted using an induction. During the induction, the synchronization

between the two copies of the term v (of sort N) is lost. Therefore, we need an extra generalization

in the hypothesis to retrieve that these terms are equal.

Theorem 2. If ∆ ⊢T t : σ then ∆1,∆2;∆pm ⊢ tpm : t1 =
pm
σ t2. In particular, ⊢ tpm : t =

pm
σ t for all closed

terms of sort σ .

Proof. By induction on the derivations of System T.

We deduce from the previous theorem that each closed term of System T is in the domain of =pm.

The following terms are used later:

∆1,∆2;∆pm ⊢ Elimi
ẑ.t : ∀z1∀z2 z1 =pm

σ z2 ⇒ t i[zi = z1] =pm
τ t i[zi = z2]

for i = 1,2. Note that these proof terms are indexed by a term t and a variable z. These terms are

constructed using the previous translation, as follows:

Elim1
ẑ.t ≡ λ z1λ z2.λ zpm.transpm t1 t2t1[z1 := z2]tpm

(sympmt1[z1 := z2]t2tpm[z1 := z2][zpm := (reflpmz1z2zpm).2])

Elim2
ẑ.t ≡ λ z1λ z2.λ zpm.transpm t2[z2 := z1] t1t2

(sympmt1t2[z2 := z1]tpm[z2 := z1][zpm := (reflpm z1z2zpm).1])tpm)

They are well typed as soon as FV(t)⊆ ∆,z.
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4 Interpreting extensional equality: from λ E-HAω into λ HAω

4.1 A preliminary step: a translation from λHAω into λHAω

Although all closed terms of System T are in the domain of =pm, one cannot prove ∀xσ x =pm
σ x in λHAω

(for σ = (N → N)→ N for instance). Nevertheless, building on the intuition of restricting quantifications

and on the work of the previous section, we can design a translation

(∆;Γ ⊢ M : Φ)pm
 ∆1,∆2;∆pm,Γpm ⊢ Mpm : Φpm

from λHAω into itself that will serve as a basis to interpret extensional equality.

1. This translation extends the one defined formerly. In particular ∆i,∆pm, t i and tpm are already de-

fined.

2. Formulas of λHAω are translated into formulas of λHAω :

(t = u)pm ≡ t1 =
pm
N u2

⊥pm ≡ ⊥
(Φ ⇒ Ψ)pm ≡ Φpm ⇒ Ψpm

(Φ∧Ψ)pm ≡ Φpm ∧Ψpm

(∀xσ Φ)pm ≡ ∀x1∀x2 x1 =
pm
σ x2 ⇒ Φpm

(∃xσ Φ)pm ≡ ∃x1∃x2 x1 =pm
σ x2 ∧Φpm

3. Contexts of λHAω are translated into contexts of λHAω :

/0pm ≡ /0

(Γ,ξ : Φ)pm ≡ Γpm,ξ : Φpm

4. Proof terms of λHAω are translated into proof terms of λHAω :

(ξ )pm ≡ ξ
(λξ .M)pm ≡ λξ .Mpm

(M N)pm ≡ MpmNpm

(M,N)pm ≡ (Mpm,Npm)
(M.i)pm ≡ Mpm.i

(λx.M)pm ≡ λx1λx2λxpm.Mpm

(M t)pm ≡ Mpmt1t2tpm

([t,M])pm ≡ [t1, [t2,(tpm,Mpm)]]
(let [x,ξ ] := M inN)pm ≡ let [x1,η ] := Mpm in let [x2,χ ] := η inNpm[xpm = χ .1][ξ pm := χ .2]

(efq(M,Φ))pm ≡ efq(Mpm,Φpm)
(refl t)pm ≡ tpm

(

peelt,u(M, x̂.Φ,N)
)pm

≡ peel
(

M
pm
2 , x̂2.Φpm[x1 := u1],peel(Mpm

1 , x̂1.Φpm[x2 := t2],Npm)
)

(

Ind(x̂.Φ,M,N, t)
)pm

≡ Ind(x̂.∀y x = y ⇒ Φpm[x1 := x][x2 := y],
λyλξ .peel(ξ , ẑ.Φpm[x1 := 0][x2 := z],Mpm),
λxληλyξ .peel(ξ , ẑ.Φpm[x1 := Sx][x2 := z],Npmxx(refl x)(η x(refl x)),
t1)t2tpm

where in the translation of peel(M, x̂.Φ,N), M
pm
i denotes a proof of t i = ui:

M
pm
1 ≡ trans

pm
N t1 u2 u1 Mpm(sym

pm
N u1 u2upm) : t1 = u1

M
pm
2 ≡ trans

pm
N t2 t1 u2(sym

pm
N t1 t2tpm)Mpm : t2 = u2
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(∆;Γ) wf ∆ ⊢T t : σ

∆;Γ ⊢e reflσ t : t =σ t

∆;Γ ⊢e M : t =σ u ∆;Γ ⊢e N : Φ[xσ := t]

∆;Γ ⊢e peelt,uσ (M, x̂.Φ,N) : Φ[xσ := u]

∆;Γ ⊢e M : ∀xσ f x =τ gx

∆;Γ ⊢e extσ ,τ(M) : f =σ→τ g

∆;Γ ⊢e M : f =σ→τ g ∆;Γ ⊢e N : t =σ u

∆;Γ ⊢e appσ ,τ(M, t,u,N) : f t =τ gu

Figure 3: Additional typing rules for extensional equality

Here, the translation of peel is ad hoc: it is merely done by using peel on two distinct equalities. However,

it will not be the case in the last translation, where we will need an external recursion on the formulas of

the source system to interpret it.

The translation of induction follows the same principle as the translation of the recursor done in

Section 3.2: because the synchronization between the copies of t is lost, we need to generalize the

inductive hypothesis.

Theorem 3. If ∆;Γ ⊢ M : Φ then ∆1,∆2;∆pm,Γpm ⊢ Mpm : Φpm.

The proof of this theorem is by induction on the derivation of λHAω and it uses three lemmas:

Lemma 1. If t ∼= u then t i ∼= ui for i = 1,2 and t,u terms of System T.

Lemma 2. If t(xσ ) and u are terms with u of sort σ , then
(

t[x := u]
)i
≡ t i[xi := ui] for i = 1,2.

Lemma 3. If Φ(xσ ) is a formula and t is a term of sort σ , then
(

Φ[x := t]
)pm

≡ Φpm[x1 := t1][x2 := t2].

4.2 Extending equality through parametricity: a translation from λE-HAω into λHAω

Our next goal is to extend the previous translation to give an interpretation of extensional equality in-

side λHAω .

Consider an extension λE-HAω of λHAω obtained by extending equality in an extensional way to

all higher sorts, i.e. by adding

1. atomic formulas t =σ u for all sorts σ ;

2. proof terms (reflσ t), peel
t,u
σ (M, x̂.Φ,N), extσ ,τ (M) and appσ ,τ (M, t,u,N) for all sorts σ and τ ;

3. typing rules for the added proof terms presented in Figure 3 at page 61.

The symbol ⊢e will be used to denote sequents (and provability) in λE-HAω . The translation ( )pm

can be extended to a translation from λE-HAω into λHAω . Indeed, one interprets

(t =σ u)pm ≡ t1 =
pm
σ u2

It is then possible to extend the translation with

(reflσ t)pm ≡ tpm

and still preserving adequacy. The case of
(

peel
t,u
σ (M, x̂.Φ,N)

)pm
is more involved and it is treated as

follows. We first construct a family of terms Elimx̂.Φ satisfying that if FV(Φ)⊆ ∆,xpm then

∆1,∆2;∆pm ⊢ Elimx̂.Φ : ∀x1∀x2∀y1∀y2 x1 =
pm
σ y1 ⇒ x2 =

pm
σ y2 ⇒ Φpm ⇒ Φpm[x1 := y1][x2 := y2]
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This is done by induction on the syntax of formulas:

Elimx̂.t=σ u ≡ λx1λx2λy1λy2λξ 1λξ 2λξ .transpm t1[x1 := y1] t1 u2[x2 := y2]

(Elim1
x̂.t y1 x1 (sympm x1 y1 ξ 1))

(transpm t1 u2 u2[x2 := y2]ξ (Elim2
x̂.u x2 y2 ξ 2))

Elimx̂.⊥ ≡ λx1λx2λy1λy2λξ 1λξ 2λξ .ξ
Elimx̂.(Φ⇒Ψ) ≡ λx1λx2λy1λy2λξ 1λξ 2λξ .λη .Elim+

x̂.Ψ(ξ (Elim−η))

Elimx̂.(Φ∧Ψ) ≡ λx1λx2λy1λy2λξ 1λξ 2λξ .(Elim+
x̂.Φξ .1,Elim+

x̂.Ψξ .2)

Elimx̂.(∀zΦ) ≡ λx1λx2λy1λy2λξ 1λξ 2λξ .λ z1λ z2λ zpm.Elimx̂.Φ(ξ z1z2zpm)

Elimx̂.(∃zΦ) ≡ λx1λx2λy1λy2λξ 1λξ 2λξ .let [z1,η ] := ξ in let [z2,χ ] := η in [z1, [z2,(η .1,Elim+
x̂.Φη .2)]]

where
Elim+

x̂.Φ ≡ Elimx̂.Φ x1 x2 y1 y2 ξ 1 ξ 2

Elim− ≡ Elimŷ.Φ[x:=y] y
1 y2 x1 x2 (sympm x1 y1 ξ 1)(sympm x2 y2 ξ 2)

The proof that Elimx̂.Φ satisfies the given property is by induction on the syntax, where the hypothesis is

used to treat the case of equality.

We can now define
(

peel
t,u
σ (M, x̂.Φ,N)

)pm
≡ Elimx̂.Φt1t2u1u2(transpmt1u2u1Mpm(sympmu1u2upm))

(transpmt2t1u2(sympmt1t2tpm)Mpm)Npm

Finally, we set
(

extσ→τ(M)
)pm

≡ λx1,x2λxpm.Mpm x1 x2 xpm
(

appσ→τ(M, t,u,N)
)pm

≡ Mpm t1 u2 Npm

Theorem 4. If ∆;Γ ⊢e M : Φ then ∆1,∆2;∆pm,Γpm ⊢ Mpm : Φpm.

Proof. The case of
(

peelσ (M, x̂.Φ,N)
)pm

uses the property of Elimx̂.Φ and a generalization of Fact 4,

saying that if ∆;Γ ⊢e M : Φ then FV(Φ)⊆ ∆.

Corollary 1. If λHAω is consistent, then so is λE-HAω .

Proof. If λE-HAω is inconsistent, there exists a proof term M such that ⊢e M : ⊥. By the previous

translation, one gets a derivation of ⊢ Mpm : ⊥ and concludes that λHAω is inconsistent.

4.3 Characterizing the image of the translation

In the previous section, we showed that if a closed formula Φ is provable in λE-HAω then Φpm is

provable in λHAω . The goal of this section is to prove the converse: if Φpm is provable in λHAω then Φ

is provable in λE-HAω . These properties show that the system λE-HAω fully characterizes the image

of the translation we designed.

We first show that the relation =pm collapses to the equality relation in λE-HAω . For every sort σ ,

we construct a proof term

⊢e Collapsσ : ∀xσ∀yσ x =σ y ⇔ x =pm
σ y

by external induction on the sorts of System T:

CollapsN ≡ λxλy
(

λξ .ξ ,λξ .ξ )
Collapsσ→τ ≡ λ f λg(λξ λxλyλη .Collapsτ .1( f x)(gy)appσ ,τ (ξ ,x,y,Collapsσ .2xyη),

λξ .extσ ,τ(λ z.Collapsτ .2( f z)(gz)(ξ zz(Collapsσ .1zz,(refl z))))
)
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Proposition 1. For every sort σ , the binary relations =
pm
σ and =ext

σ collapse to =σ in λE-HAω .

Proof. We proved above that =
pm
σ collapses to =σ and it can be proved in a similar fashion that =ext

σ also

collapses to =σ in λE-HAω .

Using the Proposition 1, we can now show that the image of the last translation is fully characterized

by the type system λE-HAω .

We exhibit a family of proof terms Equivi
Φ for i = 1,2 satisfying, for any formula Φ and any signa-

tures ∆ containing the free variables of Φ, that

∆1,∆2;∆pm ⊢e Equiv1
Φ : Φ1 ⇒ Φpm

∆1,∆2;∆pm ⊢e Equiv2
Φ : Φpm ⇒ Φ1

Such proof terms are defined as follows:

Equiv1
t=σ u ≡ λξ .transσ t1 u1 u2(Collapsσ .1t1 u1 ξ )upm

Equiv2
t=σ u ≡ λξ .Collapsσ .2t1 u1 (transσ t1 u2 u1 ξ (sympm u1 u2 upm))

Equiv1
Φ⇒Ψ ≡ λξ λη .Equiv1

Ψ(ξ (Equiv2
Φ η))

Equiv2
Φ⇒Ψ ≡ λξ λη .Equiv2

Ψ(ξ (Equiv1
Φ η))

Equiv1
Φ∧Ψ ≡ λξ .(Equiv1

Φξ .1,Equiv1
Ψξ .2)

Equiv2
Φ∧Ψ ≡ λξ .(Equiv2

Φξ .1,Equiv2
Ψξ .2)

Equiv1
∀xσ Φ ≡ λξ λx1λx2.λxpm.Equiv1

Φ (ξ x1)

Equiv2
∀xσ Φ ≡ λξ λx1.Equiv2

Φ[x2 := x1][x
pm := (Collapsσ .1x1 x1 (reflσ x1))]

(ξ x1 x1 (Collapsσ .1x1 x1 (reflσ x1)))

Equiv1
∃xσ Φ ≡ λξ .let [x,η ] := ξ in [x, [x,(Collapsσ .1xx(reflσ x),Equiv1

Φξ )]]

Equiv2
∃xσ Φ ≡ λξ .let [x1,η ] := ξ in let [x2,χ ] := η in [x1,Equiv2

Φχ .2]

We can then conclude that a closed formula Φ is provable in λE-HAω if and only if its translation is

provable in λE-HAω .

Theorem 5. For a closed formula Φ of λE-HAω

⊢e (Equiv1
Φ,Equiv2

Φ) : Φ ⇔ Φpm

In particular, if Φpm is provable in λHAω then Φ is provable in λE-HAω .

4.4 Adding reduction rules: a conjecture

The proof systems used here lack of computational rules, such as

(λx.M) t ≻β M[x := t]
(λξ .M)N ≻β M[ξ := N]

let [x,ξ ] := [t,M] inN ≻β N[x := t][ξ := M]
(M1,M2).i ≻β M.i

Ind(x̂.Φ,M,N,0) ≻ι M

Ind(x̂.Φ,M,N,St) ≻ι N t Ind(x̂.Φ,M,N, t)
peel(refl t, x̂.Φ,N) ≻ι N
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and in λE-HAω

app(ext(M), t, t, refl t) ≻ M t

One could try to figure out if the translation ( )pm respects reductions, i.e. a property of the shape M N

implies Mpm ≃β ,ι Npm. While this is true for β -reductions, it seems that it does not hold for the reduction

of Ind(x̂.Φ,M,N,S t) if t contains free first-order variables. Indeed, the term S t will be translated as a

proof term asserting an equality and if it does not compute into refl (S t), it will block the reduction

of the subterm peel(...) inside (Ind(x̂.Φ,M,N,St))pm. In the case of a closed term t, we conjecture it

will compute as desired. Concretely, we think that the proof will use the meta properties of System T

described at the end of Section 2.1: one will use that every closed term of sort N is β -equivalent to a

term of the shape Sn 0 and that the translation of such a term computes into refl(Sn 0), assuming that the

translation from System T to λHAω respects reductions.

Conjecture 1. If M is a proof term of λE-HAω without free first-order variables and if M does not

contain peel then M N implies Mpm ≃β ,ι Npm.

However, the case of the reduction rule of peel seems more difficult to treat, as the translation of

peel relies on an external induction over the syntax but also because it uses proofs of symmetry and

transitivity of =pm that do not seem to compute as needed.

5 Related work

The idea to build a syntactic model satisfying extensionality axioms is already present in Gandy’s

work [4]. Concretely, in higher-order logic, Gandy defined a syntactic model by restricting the ele-

ments of discourse to parametric ones and proved that, in this model, extensionally equal elements

satisfy the same properties. Here, we adapt this construction to the theory HAω and, using ideas of the

Curry-Howard correspondence, we formulate it as a translation of proof systems. Our translation slightly

differs from the one of Gandy because we use techniques from parametricity. This choice comes from

the idea that parametric translation can serve to extend equality. Nevertheless, because extensionality

and parametricity relations collapse to equality in an extensional model (as shown in Proposition 1), it is

somehow a matter of design: the translation from λE-HAω into λHAω could be designed without the

use of parametricity.

Zucker already proved a result of relative consistency between E-HAω and N-HAω [12, 10]. He did

it in a semantical fashion by transforming models of N-HAω into models of E-HAω . The method he

used is similar to the method of Gandy but, in this context, it suffices to restrict the domain to parametric

elements and to check that the relation of extensionality is an equivalence relation that is congruent (thus

suited to interpret equality). In our work, rather than from N-HAω , we start with HAω : we reconstruct

the equality from scratch and show that it respects Leibniz principle. Despite this slight difference, our

work can be seen as the syntactical counterpart of the result of Zucker. One advantage is that a syntactical

translation comes with an explicit translation of proofs, that we formulate here as a translation of proof

terms.

The ideas behind the proof system λHAω are folklore. For instance, representing the axiom scheme

of induction as an inference rule can be seen in many other proof systems, as for instance in Martin-Löf

Type Theory [6]. The idea to use the predicate null(t) to derive Peano’s fourth axiom already appears

in Miquel’s work [7]. The terminology ”peel” that we use to denote the eliminator of equality is similar

to the one used in some presentations of type theory [8]; however our own motivation to use it is to

emphasize that Leibniz principle is recovered by doing an external induction on the formulas or, more

graphically, by peeling out the syntax.
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6 Conclusion

We designed a translation from λE-HAω into λHAω using techniques reminiscent of parametricity and

we proved a result of relative consistency: if λHAω is consistent, then so is λE-HAω . The following

diagram shows an intuition of the translation:

λE-HAω λHAω

t  

t1

t2

tpm

M : t = u  

t1 u1

t2 u2

tpm
M pm

upm

A first-order term t is interpreted as a proof of (parametric) equality between two copies of itself,

and an equality proof M : t = u is translated into a proof of (parametric) equality between a copy of t

and a copy of u. While the choice to translate M as an equality between t1 and u2 is ad hoc (in the sense

that it is not imposed by the translation), it is notable that equality proofs are translated into (parametric)

equality proofs without the need of higher-order structures (that do not exist in this framework).
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