
EPTCS 416

Proceedings of the

40th International Conference on

Logic Programming

University of Texas at Dallas, Dallas Texas, USA, October 14-17 2024

Edited by: Pedro Cabalar, Francesco Fabiano, Martin Gebser, Gopal Gupta

and Theresa Swift

Published: 13th February 2025

DOI: 10.4204/EPTCS.416

ISSN: 2075-2180

Open Publishing Association

i

Table of Contents

Table of Contents . i

Preface . iv

On LLM-generated Logic Programs and their Inference Execution Methods . 1

Paul Tarau

Visual Graph Question Answering with ASP and LLMs for Language Parsing. 15

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera Ruiz and Johannes Oetsch

LLM+Reasoning+Planning for Supporting Incomplete User Queries in Presence of APIs 29

Sudhir Agarwal, Anu Sreepathy, David H. Alonso and Prarit Lamba

Logical Lease Litigation: Prolog and LLMs for Rental Law Compliance in New York 59

Sanskar Sehgal and Yanhong A. Liu

LP-LM: No Hallucinations in Question Answering with Logic Programming . 69

Katherine Wu and Yanhong A. Liu

Neuro-Symbolic Contrastive Learning for Cross-domain Inference . 78

Mingyue Liu, Ryo Ueda, Zhen Wan, Katsumi Inoue and Chris G. Willcocks

Architecture for Simulating Behavior Mode Changes in Norm-Aware Autonomous Agents 95

Sean Glaze and Daniela Inclezan

Policies, Penalties, and Autonomous Agents (Extended Abstract) . 108

Vineel Tummala and Daniela Inclezan

Mind the Gaps: Logical English, Prolog, and Multi-agent Systems for Autonomous Vehicles 111

Galileo Sartor, Adam Wyner and Giuseppe Contissa

Simulating Supply-Chain Contract Execution: A Multi-Agent Approach (Extended Abstract) 125

Long Tran, Tran Cao Son, Dylan Flynn and Marcello Balduccini

Modular Stochastic Rewritable Petri Nets . 128

Lorenzo Capra

Semantic Argumentation using Rewriting Systems (Extended Abstract) . 135

Esteban Guerrero and Juan Carlos Nieves

Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration 139

ii

Flavio Bertini, Alessandro Dal Palù, Federica Zaglio, Francesco Fabiano and

Andrea Formisano

Counterfactual Explanations as Plans . 153

Vaishak Belle

Abduction of Domain Relationships from Data for VQA . 168

Al Mehdi Saadat Chowdhury, Paulo Shakarian and Gerardo I. Simari

Graphical Conditions for the Existence, Unicity and Number of Regular Models 175

Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman and François Fages

Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases 188

Haya Majid Qureshi and Wolfgang Faber

Pearce’s Characterisation in an Epistemic Domain . 201

Ezgi Iraz Su

ASP-driven User-interaction with Clinguin . 215

Alexander Beiser, Susana Hahn and Torsten Schaub

A Prolog Program for Bottom-up Evaluation . 229

David S. Warren

Regular Typed Unification . 236

João Barbosa, Mário Florido and Vítor Santos Costa

Order-Sorted Intensional Logic: Expressing Subtyping Polymorphism with Typing Assertions and

Quantification over Concepts . 253

Ðord̄e Marković and Marc Denecker

A Coq Formalization of Unification Modulo Exclusive-Or . 267

Yichi Xu, Daniel J. Dougherty and Rose Bohrer

Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing . . . 274

Divyagna Bavikadi, Dyuman Aditya, Devendra Parkar, Paulo Shakarian, Graham Mueller,

Chad Parvis and Gerardo I. Simari

Towards Mass Spectrum Analysis with ASP (Extended Abstract) . 288

Nils Küchenmeister, Alex Ivliev and Markus Krötzsch

Monitoring and Scheduling of Semiconductor Failure Analysis Labs (Extended Abstract) 291

Elena Mastria, Domenico Pagliaro, Francesco Calimeri, Simona Perri, Martin Pleschberger

and Konstantin Schekotihin

Declarative AI design in Unity using Answer Set Programming (Extended Abstract) 295

Denise Angilica, Giovambattista Ianni, Francesco Pacenza and Jessica Zangari

stableKanren: Integrating Stable Model Semantics with miniKanren (Extended Abstract) 298

Xiangyu Guo, James Smith and Ajay Bansal

iii

Alda: Integrating Logic Rules with Everything Else, Seamlessly (System Demonstration) 301

Yanhong A. Liu, Scott D. Stoller, Yi Tong and Bo Lin

Generating Causally Compliant Counterfactual Explanations using ASP . 306

Sopam Dasgupta

Bridging Logic Programming and Deep Learning for Explainability through ILASP 314

Talissa Dreossi

Computational methods for Dynamic Answer Set Programming . 324

Susana Hahn

Relating Answer Set Programming and Many-sorted Logics for Formal Verification 332

Zachary Hansen

Answer Set Counting and its Applications . 345

Mohimenul Kabir

Logical foundations of Smart Contracts . 351

Kalonji Kalala

Commonsense Reasoning-Aided Autonomous Vehicle Systems . 358

Keegan Kimbrell

A Category-Theoretic Perspective on Approximation Fixpoint Theory . 365

Samuele Pollaci

Hybrid Answer Set Programming: Foundations and Applications . 374

Nicolas Rühling

Autonomous Task Completion Based on Goal-directed Answer Set Programming 381

Alexis R. Tudor

Early Validation of High-level Requirements on Cyber-Physical Systems . 390

Ondřej Vašíček

Reliable Conversational Agents under ASP Control that Understand Natural Language 398

Yankai Zeng

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. iv–xii, doi:10.4204/EPTCS.416.0

© P. Cabalar, T. Swift. F. Fabiano. M. Gebser & G. Gupta

This work is licensed under the

Creative Commons Attribution License.

Introduction to the Proceedings of

the 40th International Conference on Logic Programming

Pedro Cabalar

University of A Coruña, Spain

pedro.cabalar@udc.es

Theresa Swift

Johns Hopkins Applied Physics Lab

theresasturn@gmail.com

Francesco Fabiano

New Mexico State University

ffabiano@nmsu.edu

Martin Gebser

University of Klagenfurt

martin.gebser@aau.at

Gopal Gupta

University of Texas at Dallas

gupta@utdallas.edu

The 40th International Conference on Logic Programming (ICLP 24), was held in Dallas, Texas on

October 14-17, 2024, and was co-located with the 17th International Conference on Logic Programming

and Non-monotonic Reasoning held on October 11-14, 2024. This volume contains Technical Commu-

nications in Section 1, papers from the affiliated Doctoral Consortium in Section 2, and in Section 3

abstracts from the ICLP 24 invited talks and tutorials.1

1 Technical Communications

ICLP 24 technical communications include several types of contributions: regular papers, short papers,

and extended abstracts of regular papers. Under the rubric of technical communications we also include

extended abstracts of system demos and of recently published research. The high quality of all contri-

butions has been ensured by triple-revieweing; and apart from extended abstracts of recently published

research, all contributions in this volume are original work.

Technical communications often represent research that is very new and sometimes longer versions

of extended abstracts are published in other venues. However, the impact of technical communications

can be quite high. In fact, the Alain Colmerauer 10-year Test of Time Award for ICLP 2024 was given to

a technical communication, “Clingo = ASP + Control: Preliminary Report”2, by Martin Gebser, Roland

Kaminski, Benjamin Kaufmann and Torsten Schaub, originally published as part of the Proceedings of

the Thirtieth International Conference on Logic Programming 2014.

We loosely group the technical communications in this volume as follows.

Logic Programming and Neural Models Given the phenominal capabilities of recent Large Lan-

guage Models (LLMs) such as Chat-GPT and Llama, a number of technical communications in ICLP 24

explored how logic programming can be combined with LLMs in meaningful ways, or included within

neuro-symbolic approaches.

• On LLM-generated Logic Programs and their Inference Execution Methods by Paul Tarau

• Visual Graph Question Answering with ASP and LLMs for Language Parsing by Jakob Johannes

Bauer, Thomas Eiter, Nelson Higuera Ruiz and Johannes Oetsch

1Selected papers from ICLP 24 will be published separately in Special Issue on the 4oth International Conference of Logic

Programming, Theory and Practice of Logic Programming (2025).
2(CoRR, abs/1405.3694 (2014)

http://dx.doi.org/10.4204/EPTCS.416.0
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

P. Cabalar, T. Swift. F. Fabiano. M. Gebser & G. Gupta v

• LLM+Reasoning+Planning for Supporting Incomplete User Queries in Presence of APIs by Sud-

hir Agarwal, Anu Sreepathy, David H. Alonso and Prarit Lamba

• Logical Lease Litigation Prolog and LLMs for Rental Law Compliance in New York by Sanskar

Sehgal and Yanhong A. Liu

• LP-LM: No Hallucinations in Question Answering with Logic Programming by Katherine Wu and

Yanhong A. Liu.

• Neuro-symbolic Contrastive Learning for Cross-domain Inference by Mingyue Liu, Ryo Ueda,

Zhen Wan, Katsumi Inoue and Chris Willcocks

Autonomy and Agents Another active research topic investigates the role of logic programming in

autonomous, distributed and adaptive dynamic systems.

• Architecture for Simulating Behavior Mode Changes in Norm-Aware Autonomous Agents by Sean

Glaze and Daniela Inclezan

• Policies, Penalties, and Autonomous Agents (Extended Abstract) by Esteban Guerrero and Juan

Carlos Nieves

• Mind the Gaps: Logical English, Prolog, and Multi-agent Systems for Autonomous Vehicles by

Galileo Sartor, Adam Wyner and Giuseppe Contissa

• Simulating Supply-Chain Contract Execution: A Multi-Agent Approach (Extended Abstract) by

Long Tran, Tran Cao Son, Dylan Flynn and Marcello Balduccini

• Modular Stochastic Rewritable Petri Nets by Lorenzo Capra

Explanation and Argumentation An important advantage of logic compared to neural models is that

logical reasoning can be explained in human terms using different techniques, including causality and

argumentation. This was the topic of three papers in ICLP 24.

• Semantic Argumentation using Rewriting Systems (Extended Abstract) by Vineel Tummala and

Daniela Inclezan

• Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration by

Flavio Bertini, Alessandro Dal Palù, Federica Zaglio, Francesco Fabiano and Andrea Formisano

• Counterfactual Explanations as Plans by Vaishak Belle3

Answer Set Programming As with other recent ICLPs, the topic of Answer Set Programming (ASP)

was well-represented. This year, the ASP topics for technical communications included the abductive

capabilities of ASP for Visual Query Answering (VQA), the regular models of an ASP program, the use

of ASP for meta-reasoning with ontologies, the relations among epistemic extensions of ASP, and using

ASP to drive interfaces to other ASP systems.

• Abduction of Domain Relationships from Data for VQA by Al Mehdi Saadat Chowdhury, Paulo

Shakarian and Gerardo I. Simari

• Graphical Conditions for Existence, Unicity and Multiplicity of Non-Trivial Regular Rodels by

Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman and Francois Fages

3This paper was actually presented in ICLP 23 but inadvertantly omitted from the Proceedings, being eventually published

now in this ICLP 24 volume.

vi Proceedings of the 40th International Conference on Logic Programming

• Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases by Haya Majid

Qureshi and Wolfgang Faber

• Pearce’s Characterisation in an Epistemic Domain (Extended Abstract) by Ezgi Iraz Su

• ASP-driven User-interaction with Clinguin by Alexander Beiser, Susana Hahn and Torsten Schaub

Prolog Types, and Unification New perspectives on types and unification algorithms played a part

in several technical communications. These papers concerned Prolog as well as other logic-oriented

systems and frameworks, including the Coq proof assistant.

• A Prolog Program for Bottom-up Evaluation by David S. Warren

• Regular Typed Unification by João Barbosa, Mário Florido and Vitor Santos Costa

• Order-Sorted Intensional Logic: Expressing Subtyping Polymorphism with Typing Assertions and

Quantification over Concepts by Djordje Marković and Marc Denecker

• A Coq Formalization of Unification Modulo Exclusive-Or by Yichi Xu, Daniel J. Dougherty and

Rose Bohrer

Applications Several technical communications described applications that were developed using an-

notation logic, abduction, constraint programming, and ASP.

• Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing by

Divyagna Bavikadi, Dyuman Aditya, Devendra Parkar, Paulo Shakarian, Graham Mueller, Chad

Parvis and Gerardo I. Simari

• Towards Mass Spectrum Analysis with ASP (Extended Abstract) by Nils Küchenmeister, Alex

Ivliev and Markus Krötzsch

• Monitoring and Scheduling of Semiconductor Failure Analysis Labs (Extended Abstract) by Elena

Mastria, Domenico Pagliaro, Francesco Calimeri, Simona Perri, Martin Pleschberger and Kon-

stantin Schekotihin

Recently Published Research and Demos

• Declarative AI design in Unity using Answer Set Programming by Denise Angilica, Giovambattista

Ianni, Francesco Pacenza and Jessica Zangari. (Extended Abstract of recently published research.)

• stableKanren: Integrating Stable Model Semantics with miniKanren by Xiangyu Guo, James

Smith and Ajay Bansal. (Extended Abstract of recently published research.)

• Alda: Integrating Logic Rules with Everything Else, Seamlessly by Yanhong A. Liu, Scott Stoller,

Yi Tong and Bo Lin. (System Demonstration.)

2 Doctoral Consortium Papers

The Doctoral Consortium of ICLP 24 was jointly organized with the 17th International Conference on

Logic Programming and Non-monotonic Reasoning (LPNMR 24). Applications were submitted by 12

PhD students from universities in the US (5), Germany (2), Belgium, Canada, Czechia, Italy and Sin-

gapore. Their research summaries received three reviews each by senior members of the ICLP 24 and

LPNMR 24 research communities, giving critical yet constructive feedback on the student contributions.

P. Cabalar, T. Swift. F. Fabiano. M. Gebser & G. Gupta vii

• Generating Causally Compliant Counterfactual Explanations using ASP by Sopam Dasgupta

• Bridging Deep Learning and Logic Programming for Explainability through ILP by Talissa Dreossi

• Computational methods for Dynamic Answer Set Programming by Susana Hahn

• Relating Answer Set Programming and Many-sorted First-order Logic by Zachary Hansen

• Answer Set Counting and its Applications by Mohimenul Kabir

• Logical Foundations of Smart Contracts by Kalonji Kalala

• Commonsense Reasoning-Aided Autonomous Vehicle Systems by Keegan Kimbrell

• A Category-Theoretic Perspective on Approximation Fixpoint Theory by Samuele Pollaci

• Hybrid Answer Set Programming: Foundations and Applications by Nicolas Rühling

• Autonomous Task Completion Based on Goal-directed Answer Set Programming by Alexis Tudor

• Early Validation of High-level Requirements on Cyber-Physical Systems by Ondřej Vašı́ček

• Reliable Conversational Agents under ASP Control that Understand Natural Language by Yankai

Zeng

The Autumn School on Logic Programming, held in conjunction with the Doctoral Consortium,

featured four tutorials presented by the following senior researchers.

• Tran Cao Son, New Mexico State University. Las Cruces, NM.

• Y. Annie Liu, Stony Brook University. Stony Brook, NY.

• Manuel Hermenegildo, Technical University of Madrid. Madrid, Spain.

• Torsten Schaub and Susana Hahn, University of Potsdam. Potsdam, Germany.

These Autumn School presenters also shared their experiences and ideas with the PhD students during a

mentoring lunch event on October 13.

3 Abstracts of Invited Talks and Tutorials

ICLP 24 had four invited talks and two invited tutorials.

Invited Talk

Logic Programming and Logical Algorithmics

Moshe Vardi

Rice University. Houston, Tx.

Moshe Vardi presented his talk in a plenary session attended by ICLP 24 particiants together with

participants of the 17th International Conference on Logic Programming and Non-monotonic Reasoning.

viii Proceedings of the 40th International Conference on Logic Programming

Abstract Logic programming, born around 1972, expresses a program as a set of Horn clauses. Com-

putation is then performed by applying logical reasoning to that set of clauses. The approach was eventu-

ally described as ”Algorithm=Logic+Control”. Another approach to logic and algorithms was developed

by Codd in the early 1970s. In his approach, the problem domain is expressed as a relational database,

and the problem is expressed as a first-order formula, called “query”. Computation is performed by

a meta-algorithm, the query-evaluation algorithm. In this talk, I will describe this approach, which I

call Logical Algorithmics, in detail. I will show how this approach yielded multi-variate computational-

complexity theory, which offers a more nuanced approach to complexity analysis. It also enabled the

development the model-checking algorithms, which are today used in industrial semiconductor design

tools.

Invited Tutorial

Logic rules and commonsense in uncertain times:

A simple unified semantics for reasoning with assurance and agreement

Y. Annie Liu

Stony Brook University. Stony Brook, NY.

Abstract Complex reasoning problems are most clearly and easily specified using logical rules, but

require recursive rules with aggregation such as count and sum and more for practical applications. Un-

fortunately, the meaning of such rules has been a significant challenge, with many disagreeing semantics,

baffling commonsense for rigorous logic.

This tutorial examines a simple unified semantics for reasoning with assurance and agreement, and

consists of three main parts:

1. An introduction to complex reasoning problems expressed using logic rules, with recursion, nega-

tion, quantification, and aggregation; the key idea of a simple unified semantics, supporting simple

expression of different assumptions; and how it unifies different prior semantics.

2. An overview of the precise rule language; the formal semantics, called Founded Semantics and

Constraint Semantics, or Founded+Constraint Semantics (FCS) for short here, supporting efficient

and precise inference over aggregation even with approximation; and the properties of the seman-

tics.

3. An exploration of a wide range of challenging examples, including the well-known problem of

company control and extended win-not-win games. FCS is simple and matches the desired results

in all cases.

Additionally, we discuss how to combine logic/rigorous languages and LLMs/ML for problem solv-

ing and question answering with assurance, where a simple unified semantics is critical for its generality,

power, and ease of use.

Invited Talk

Linear Algebraic Approaches to Logic Programming

Katsumi Inoue

National Institute of Informatics. Chiyoda, Japan.

P. Cabalar, T. Swift. F. Fabiano. M. Gebser & G. Gupta ix

Abstract Integration of symbolic reasoning and machine learning is important for robust AI. Real-

ization of symbolic reasoning based on algebraic methods is promising to bridge between symbolic

reasoning and machine learning, since algebraic data structures have been used in machine learning.

To this end, Sakama, Inoue and Sato have defined notable relations between logic programming

and linear algebra and have proposed algorithms to compute logic programs numerically using tensors.

This work has been extended in various ways, to compute supported and stable models of normal logic

programs, to enhance the efficiency of computation using sparse methods, and to enable abduction for

abductive logic programming. A common principle in this approach is to formulate logical formulas as

vectors/matrices/tensors, and linear algebraic operations are applied on these elements for computation

of logic programming. Partial evaluation can be realized in parallel and by self-multiplication, showing

the potential for exponential speedup.

Furthermore, the idea to represent logic programs as tensors and matrices and to transform logi-

cal reasoning to numeric computation can be the basis of the differentiable methods for learning logic

programs.

Invited Talk

The Anatomy of the SICStus Finite-Domain Constraint Solver

Mats Carlsson

Research Institute of Sweden. Kista, Sweden.

Abstract Constraint programming (CP) is a powerful problem-solving paradigm with roots in combi-

natorics, linear programming, logic programming, and AI. A notable development in the 1980s was the

fusion of constraint solving with logic programming into constraint logic programming (CLP), which ex-

tended Prolog by integrating constraints into its framework. To extend a Prolog system with constraints,

a large number of algorithms and data structures must be added for tasks like domain representation,

constraint propagation, search, a whole menagerie of filtering algorithms for specific constraints, and

peaceful coexistence with the Prolog virtual machine and runtime system.

This talk focuses on the constraint programming support in SICStus Prolog: the key extensions to

Prolog that were necessary, details of the solver architecture, and a discussion of design choices. I will

try to put the work in a historical perspective and also say something about programming interfaces, use

cases, and my outlook on the future of CP.

Invited Tutotial

Encoding High-Level Constraints into SAT and MIP

Neng-Fa Zhou

CUNY Brooklyn College and Graduate Center. Brooklyn, NY.

Abstract: Picat provides four solver modules, including CP, SAT, MIP, and SMT, for modeling

and solving constraint satisfaction and optimization problems (CSPs). This tutorial introduces the inner

workings of Picat’s SAT and MIP modules. PicatSAT encodes constraints into SAT based on unary and

binary encodings of domain variables. PicatSAT adopts many optimizations from CP systems, language

compilers, and hardware design systems for encoding primitive constraints into compact and efficient

SAT encodings. PicatSAT also employs some novel algorithms for decomposing global constraints,

especially graph constraints. PicatMIP, while generally not as competitive as PicatSAT on MiniZinc and

x Proceedings of the 40th International Conference on Logic Programming

XCSP benchmarks, is a good supplementary solver for CSPs. PicatMIP adopts the well-known big-

M method for linearizing nonlinear constraints, and employs some optimizations for translating special

nonlinear constraints into linear ones.

Invited Talk

How Structure Shapes Logic Programming and Counting-Based Reasoning

Markus Hecher

Massachusetts Institute of Technology. Cambridge, Ma.

Abstract When can we efficiently solve combinatorially hard problems? In practice, state-of-the-art

solvers can tackle instances with millions of variables, creating a significant gap between empirical

performance and theoretical limits. A key factor in bridging this gap is understanding the structural

properties of problem instances. In this talk, we explore how to efficiently leverage these structures,

with a particular focus on the role of treewidth and the answer set programming framework. We estab-

lish tight runtime upper and lower bounds, grounded in reasonable complexity-theoretic assumptions.

Special attention is given to counting-based reasoning, a computationally intensive task where structure

plays a critical role. Through empirical results, we demonstrate how structural insights can drastically

improve the efficiency of counting in combinatorial problem-solving. This emphasizes the importance of

theoretical studies and their practical applications, showcasing how we bring theory and practice closer

together.

P. Cabalar, T. Swift. F. Fabiano. M. Gebser & G. Gupta xi

Acknowledgements

We would like to begin by thanking everyone who together organized ICLP 24 and contributed to its

success. These include

• General Chair: Gopal Gupta, University of Texas at Dallas

• Honorary General Chair: Doug DeGroot, University of Texas at Dallas

• Workshop Chair: Joaquı́n Arias, Universidad Rey Juan Carlos

• Webmasters: Abhiramon Rajasekharan, University of Texas at Dallas; Keegan Kimbrell, Univer-

sity of Texas at Dallas; and Varad Abhyankar, University of Texas at Dallas.

• Local Organizing Committee: Varad Abhyankar, Sopam Dasgupta. Doug DeGroot. Serdar Er-

batur. Keegan Kimbrell. Richard Min, Parth Padalkar, Abhiramon Rajasekharan, Elmer Salazar,

Jey Veerasamy, Yankai Zeng.

The ICLP 24 program committee consisted of representatives of logic programming groups in Aus-

tralia, Austria, Canada, China, the Czech Republic, Finland, Germany, Greece, Israel, Italy, Japan,

Netherlands, Portugal, Spain, Sweden, Turkey, the United Kingdom, and the United States. The is-

sue editors feel fortunate for the close involvement of a responsive and energetic program committee.

The program committee members were as follows.

Salvador Abreu

Mario Alviano

Nicos Angelopoulos

Joaquı́n Arias

Marcello Balduccini

Mutsunori Banbara

Chitta Baral

Roman Barták

Elena Bellodi

Bart Bogaerts

Roberta Calegari

Francesco Calimeri

Manuel Carro

Angelos Charalambidis

Michael Codish

Stefania Costantini

Alessandro Dal Palù

Marina De Vos

Marc Denecker

Agostino Dovier

Thomas Eiter

Esra Erdem

Wolfgang Faber

Jorge Fandinno

Johannes K. Fichte

Fabio Fioravanti

Andrea Formisano

Gerhard Friedrich

Marco Gavanelli

Martin Gebser

Laura Giordano

Ricardo Gonçalves

Gopal Gupta

Markus Hecher

Giovambattista Ianni

Daniela Inclezan

Tomi Janhunen

Matthias Kno

Joao Leite

Michael Leuschel

Yuliya Lierler

Vladimir Lifschitz

Francesca Alessandra Lisi

Yanhong A. Liu

Marco Maratea

Viviana Mascardi

Laurent Michel

Jose F. Morales

Johannes Oetsch

Manuel Ojeda-Aciego

Simona Perri

Enrico Pontelli

Francesco Ricca

Fabrizio Riguzzi

Ricardo Rocha

Chiaki Sakama

Vitor Santos-Costa

Zeynep G. Saribatur

Torsten Schaub

Konstantin Schekotihin

Tom Schrijvers

Tran Cao Son

Mohan Sridharan

Paul Tarau

Hans Tompits

Mirek Truszczynski

German Vidal

Concepcion Vidal

Alicia Villanueva

Kewen Wang

David Warren

Felix Weitkämper

Jan Wielemaker

Stefan Woltran

Roland Yap

Jia-Huai You

Zhizheng Zhang

Yuanlin Zhang

Neng-Fa Zhou

xii Proceedings of the 40th International Conference on Logic Programming

We also thank our external reviewers:

João Barbosa

Manuel Borroto

Geoffrey Churchill

Michele Collevati

Daniele Theseider Dupre

Müge Fidan

Tobias Geibinger

Michael Gelfond

Kenji Hashimoto

Antonio Ielo

Ryan Kepler

Matthias König

Elena Mastria

Ciaran McCreesh

Samuele Pollaci

Maurizio Proietti

Abhiramon Rajasekharan

Javier Romero

Takehide Soh

Gioacchino Sterlicchio

Robbe Van den Eede

Linde Vanbesien

Huaduo Wang.

We are grateful to the University of Texas at Dallas on whose campus the conference was organized.

The following organizations within the University provided direct financial support: The Department of

Computer Science, The Erik Jonsson School of Engineering and Computer Science, The Office of the

Vice President for Research, and The Center for Applied AI and Machine Learning

Additionally, ICLP 2024 received funds for student support from the Artificial Intelligence Journal

and the National Science Foundation.

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 1–14, doi:10.4204/EPTCS.416.1

© Paul Tarau
This work is licensed under the
Creative Commons Attribution License.

On LLM-generated Logic Programs and their Inference
Execution Methods

Paul Tarau0000−0001−7192−9421

University of North Texas

paul.tarau@unt.edu

Large Language Models (LLMs) trained on petabytes of data are highly compressed repositories of
a significant proportion of the knowledge accumulated and distilled so far. In this paper we study
techniques to elicit this knowledge in the form of several classes of logic programs, including propo-
sitional Horn clauses, Dual Horn clauses, relational triplets and Definite Clause Grammars. Exposing
this knowledge as logic programs enables sound reasoning methods that can verify alignment of LLM
outputs to their intended uses and extend their inference capabilities. We study new execution meth-
ods for the generated programs, including soft-unification of abducible facts against LLM-generated
content stored in a vector database as well as GPU-based acceleration of minimal model computation
that supports inference with large LLM-generated programs.

Keywords: LLM-generated logic programs; LLM-generated Definite Clause Grammars; LLM-
generated relation graphs; soft-unification with abducible facts; GPU-supported evaluation of propo-
sitional Horn clause programs; visualization of LLM-generated relations.

1 Introduction

While the multi-step dialog model initiated by ChatGPT is now available from a few dozen online or
locally run open source and closed source LLMs, it does not cover the need to efficiently extract salient
information from an LLMs “parameter-memory” that encapsulates in a heavily compressed form the
result of training the model on trillions of documents and multimodal data.

Steps in this direction have been taken, relying on ground-truth involving additional information
sources (e.g., collections of reference documents or use of web search queries). Among them, we men-
tion work on improving performance of Retrieval Augmented Generation (RAG) systems [7] by recur-
sively embedding, clustering, and summarizing chunks of text for better hierarchical LLM-assisted sum-
marization [15], multi-agent hybrid LLM and local computation aggregators [3] and deductive verifiers
of chain of thoughts reasoning [9].

A more direct approach is recursion on LLM queries, by chaining the LLM’s distilled output as input
to a next step and casting its content and interrelations in the form of logic programs, to automate and
focus this information extraction with minimal human input [18, 20]. Like in the case of typical RAG
architectures [7, 15], this process can rely on external ground truth but it can also use new LLM client
instances as “oracles” deciding the validity of the synthesized rules or facts.

With focus on automation of this unmediated salient knowledge extraction from the LLM’s parameter
memory and its encapsulation in the form of synthesized logic programming code, we will extend in this
paper the work initiated in [18, 20] with:

• new LLM input-output chaining mechanisms

• new types of generated logic programs

• new relational representations elicited from LLM output steps

http://dx.doi.org/10.4204/EPTCS.416.1
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 On LLM-generated Logic Programs and their Inference Execution Methods

• scalable execution mechanisms that accommodate very large logic programs at deeper recursion
levels

• soft-unification based execution of LLM-generated logic programs as a principled encapsulation
of the RAG retrieval process

The rest of the paper is organized as follows. Section 2 overviews the DeepLLM architecture described
in [20] and its new extensions supporting the results in this paper. Section 3 overviews the generation of
Horn clause programs with the online DeepLLM app. Section 4 explains the LLM-based generation of
Dual Horn clause programs and their uses to explore counterfactual consequences and theory falsifica-
tion, Section 5 introduces the use of DCG grammars as a representation of LLM-generated answer and
follow-up question pairs. Section 6 describes fixpoint and GPU-supported minimal model computation
for the generated programs. Section 7 describes relation-extraction and visualization from the minimal
models of the LLM-generated propositional programs. Section 8 introduces the soft-unification based
encapsulation of the information retrieval against facts extracted from authoritative document collections.
Section 9 discusses related work and Section 10 concludes the paper.

2 Recursive exploration of LLM dialog threads

Generative AI, with often human-like language skills is shifting focus from typical search engines to
more conversational interactions. Yet, the challenge remains that humans must still process and verify
this information, an often tedious task.

Our answer to this, as implemented in the DeepLLM system is to automate the entire process. We
start with a simple “initiator goal” and let the LLM dive recursively in its parametric memory and de-
liver a detailed answer focused on the initiator and the trace of this chain of steps summarized as the
short term-memory maintained via its API. This automation also helps to minimize common issues like
inaccuracies, made-up information, and biases that are often associated with LLMs.

We refer to [20, 18] for details of implementation of the DeepLLM system, as well as to its open-
source code1 and its online demo2.

The DeepLLM system’s active components (subclasses of the Agent class) are Interactors, Recursors,
and Refiners:

• Interactors manage input prompts and task breakdown

• Recursors handle iterative exploration of subtasks

• Refiners enhance clarity and relevance of LLM responses

To validate its reasoning steps, the system also relies on stored knowledge resources:

• Ground truth facts: sentences collected from online sources or local documents

• Vector store: enabler of “semantic search” via embeddings of sentences

Starting from a succinct prompt (typically a nominal phrase or a short sentence describing the task)
an Interactor will call the LLM via its API, driven by a Recursor that analyzes the LLM’s responses and
activates new LLM queries as it proceeds to refine the information received up to a given depth.

Refiners are Recursor subclasses that rely on semantic search in an embeddings store containing
ground-truth facts as well as on oracles implemented as specialized Interactors that ask the LLM for

1https://github.com/ptarau/recursors/
2https://deepllm.streamlit.app

https://github.com/ptarau/recursors/
https://deepllm.streamlit.app

Paul Tarau 3

advice on deciding the truth of, or the rating of hypotheses. Besides returning a stream of answers,
Recursors and Refiners compile their reasoning steps to a propositional Horn clause program available for
inspection by the user or subject for execution and analysis with logic programming tools (in particular,
with our model builder – a fast propositional Horn clause theorem prover).

3 Generating propositional Horn clause programs with the DeepLLM
app

Figure 1: DeepLLM app

We refer to [18] for an extensive list of LLM-generated Horn clause programs. We will just briefly
describe here the DeeLLM app (see Fig. 1) that we will use for generating our logic programs. In
the case of the interaction shown in Fig. 1, the initiator goal “computing stable models of answer set
programs” starts the “scientific concept explorer” option and generates in the right side window a Horn
clause program describing successive refinements of the initiator goal.

The DeeLLM app is written with the Streamlit3 webapp generator and offers the choice between
GPT4, GPT3.5 or a local LLM, running as a server and supporting an OpenAI compatible API. It then
lets the user choose between the Recursor, Advisor and Rater agents, providing for the latter a threshold
level slider. The threshold informs the Rater oracle to accept or reject a generated rule head or fact (the
higher the threshold the stricter the accept decision). Options to set the maximum recursion depth and
activate relation extraction and visualization are also available.

3https://streamlit.io/

https://streamlit.io/

4 On LLM-generated Logic Programs and their Inference Execution Methods

The application starts once the user enters the topic to explore, chooses the prompter template and
activates the LLM. Besides the output produced in the right window, when run locally, it saves the
generated logic program and its computed minimal model as Prolog code files.

4 Generating propositional Dual Horn clause programs

A Dual Horn clause is a disjunction of literals with at most one negative literal (or exactly one if it
is a definite Dual Horn clause). A Dual Horn clause Program is a conjunction of Dual Horn clauses.
We represent a Dual Horn clause like ¬p0 ∨ p1 ∨ . . .∨ pn in an equivalent implicational form p0 →
p1 ∨ . . .∨ pn, similarly to Prolog’s representation of Horn clauses. We adopt a Prolog-like syntax, with
→ represented as “=>” and ∨ represented as “;”. Note also that “s => false” represents a negated fact
the same way as “s :- true” would represent a positively stated fact.

The objective of Dual Horn programs is to describe (constructively) why something is not true i.e., to
falsify the initiator goal by back-propagating from its negative (or more generally, undesirable, unwanted,
harmful, impossible, etc.,) consequences.

For instance, from a clause like p => q ; r ; s, assuming that p were true, we would infer that
at least one of q , r and s should be true. The contrapositive is that if q , r and s are all false, then p

should be false as well. Like in the case of SLD-resolution on Horn clauses, this triggers a goal oriented
process where successful falsification of all consequences results in falsification of the “counterfactual”
hypothesis that initiated the process.

By instructing the LLM to infer the negative consequences of the DeepLLM initiator goal, we can
obtain a Dual Horn program.

Example 1 The Dual Horn clauses (recursion level = 0) with heads (starting with consequences of
‘tailgate when driving’) in the clause body are:

'tailgate when driving' =>

'Increased accident risk';
'Reduced reaction time'.

'Increased accident risk' =>

'Higher insurance premiums';
'Severe injury likelihood';
'Vehicle damage costs';
'Legal consequences';
'Emotional trauma impact'.

'Reduced reaction time' =>

'Increased accident risk';
'Delayed braking response';
'Higher collision likelihood';
'Compromised driving safety'.

The negative facts (unexplored recursion level = 1 goals) are:

'Higher insurance premiums' => false.

'Severe injury likelihood' => false.

'Vehicle damage costs' => false.

'Legal consequences' => false.

'Emotional trauma impact '=> false.

Paul Tarau 5

'Delayed braking response' => false.

'Higher collision likelihood' => false.

'Compromised driving safety' => false.

Note that “=> false” marks things that we do not want to happen, from where the same backpropagates
to the initiator ‘tailgate when driving’. Our compilation algorithm4 will transform this into a
definite program placed in module false that can be queried with:

?- false:'tailgate when driving'.
true

Its successful falsification could then advise a car driving program or person to avoid the aforementioned
behavior.

A more interesting exploration (at recursion level=2) of negative consequences in the form of a Dual
Horn clause program5 reveals persuasive counter-arguments to unwise political decisions.

Example 2 A few unwanted consequences at descent level 2 for ‘loosing the FED s independence’:

'loosing the FED_s independence' =>

'Increased political influence on monetary policy'. % level 0

...

'Increased political influence on monetary policy' =>

'Politicized interest rates';
'Short-term economic manipulation';
'Eroded investor confidence'; % level 1

'Heightened market volatility';
'Policy-driven inflation risks'.

...

'Eroded investor confidence' => % level 2

'Market volatility';
'Capital flight';
'Reduced foreign investment'.

5 From Self-generated follow-up question-answer chains to DCG gram-
mars

DeepQA6 (see Fig. 2) is a DeepLLM-based application that explores recursively the “mind-stream” of
an LLM via a tree of self-generated follow-up questions. Interestingly, by asking the LLM to generate
a set of follow-up questions to its own answers creates (especially when the process recurses) a more
focused “stream of thoughts”, possibly as an emergent property of its “in-context learning” abilities.

After started from an initiator question on a topic of the user’s choice, the app explores its tree of
follow-up questions up to a given depth. As output, it generates a Definite Clause Grammar that can be
imported as part of a Prolog program. The DCG, in generation mode, will replicate symbolically the
equivalent of the “stream of thoughts” extracted from the LLM interaction, with possible uses of the
encapsulated knowledge in Logic Programming applications.

4https://github.com/ptarau/TypesAndProofs/blob/master/symlp/compile_clauses.pro
5full code at https://github.com/ptarau/output_samples/tree/main/deepllm
6https://github.com/ptarau/recursors/tree/main/deepQA

https://github.com/ptarau/TypesAndProofs/blob/master/symlp/compile_clauses.pro
https://github.com/ptarau/output_samples/tree/main/deepllm
https://github.com/ptarau/recursors/tree/main/deepQA

6 On LLM-generated Logic Programs and their Inference Execution Methods

Figure 2: DeepQA with “How constructive negation works in logic and constraint programming?”

The synthesized grammar is designed to generate a finite language (by carefully detecting follow-up
questions that would induce loops). We also ensure that paths in the question-answer tree are free of
repeated answers, which get collected as well, together with questions left open as a result of reaching
the user-set depth limit.

Example 3 Definite Clause Grammar generated by initiator question ‘How constructive negation works
in logic and constraint programming?’:

% DCG GRAMMAR RULES:

q0-->q0_,a0_,q1.

q0-->q0_,a1_,q2.

q1-->q1_,a3_,q4.

...

q12-->q12_,a38_.

For instance, the first rule rewrites the initiator q0 into:

• the terminal q0 that will produce the actual text of the question

• the terminal a0 that will produce the actual text of the answer to q0

• the non-terminal q1 continuing the generation process with one of the follow-up questions gener-
ated by the LLM

% QUESTION TERMINALS:

q0_-->['Q: How constructive negation works in logic and constraint programming?'].
q1_-->['Q: Can you provide an example of how constructive negation might refine

the solution space in a practical constraint programming problem?'].
q2_-->['Q: How does constructive negation differ from classical negation in terms

of computational efficiency and outcome in constraint satisfaction problems?'].
...

Paul Tarau 7

% ANSWER TERMINALS:

a0_-->['A: Constructive negation in logic and constraint programming is a method

used to handle negation in a way that allows for the derivation of new

constraints from negative information. Instead of simply rejecting solutions

that do not satisfy a certain condition, constructive negation works by

deducing what must be true if a given condition is false. This is particularly

useful in constraint programming where constraints define what is possible

rather than what is not. By applying constructive negation, the system can

infer additional constraints that must be met for the negation to hold,

effectively refining the solution space.'].
...

When reaching the user-specified recursion depth, the unanswered follow-up questions are collected
as “open questions” in the predicate opens/2 with the second argument indicating the number of times
(over all branches of the tree) the question has been generated. In the case of an LLM with a very large
parametric memory (e.g., GPT4, Claude 3 or Gemini) values above 1 are unlikely, while with smaller
LLMs (e.g., Vicuna) repeated follow-up questions can happen more often.

% OPEN QUESTIONS:

opens('What specific computational techniques can be employed to further optimize

the solver_s performance when using constructive negation in scheduling?',1).
opens('How does the reduction in backtracking affect the overall time and

resource allocation in large-scale scheduling problems?',1).
...

Starting the DCG in generation mode from its q0 initiator goal is achieved as follows:

% entry point to generate the language covered by the DCG grammar

go:-q0(Xs,[]),nl,member(X,Xs),write(X),nl,nl,fail.

One can also use DeepQA to quickly assess the strength of an LLM before committing to it. For instance,
when used with a much weaker than GPT4 local LLM (enabled with Vicuna 7B by default) one will see
shorter, more out of focus results, with a lot of repeated questions and answers collected by DeepQA in
corresponding bins.

The full Prolog code discussed in thus example is available online7 as well the DeepQA app8.

6 Computing minimal models of LLM-generated logic programs

6.1 Minimal model computation with a GPU-friendly Torch-based Linear Algebra Al-
gorithm

At deeper recursion levels, the generated logic programs, providing a symbolic representation of an
LLM’s parameter memory can quickly reach millions of clauses, ready to reason with.

To take advantage of the significant acceleration provided by GPUs we have implemented a torch-
based linear algebraic minimal model computation algorithm9 along the lines of [13].

7https://github.com/ptarau/output_samples/tree/main/deepqa
8https://deep-auto-quests.streamlit.app/
9https://github.com/ptarau/recursors/blob/main/tenslogic/proptens.py

https://github.com/ptarau/output_samples/tree/main/deepqa
https://deep-auto-quests.streamlit.app/
https://github.com/ptarau/recursors/blob/main/tenslogic/proptens.py

8 On LLM-generated Logic Programs and their Inference Execution Methods

The implementation is centered around

def tp(M, v):

"""

one step fixpoint operator

"""

r = M @ v

return (r >= 1.0).to(torch.float32)

that advances one step of the fixpoint computation with a matrix multiplication “@” and

def tp_n(M, v0):

"""

iterated fixpoint operator

"""

oldv = v0

n = M.shape[0]

for i in range(n):

newv = tp(M, oldv)

if torch.allclose(newv, oldv):

return newv

oldv = newv

that proceeds until a fixpoint is detected using torch.allclose.
The program contains readers of Horn clause programs represented in as .json files. It can handle

medium size programs (a few thousand clauses), as despite the GPU acceleration, complexity is still
dominated by O(N3) matrix products.

We will show here a small test program running the minimal model computation. After defining:

top = "true"

bot = "false"

vs = (p, q, r, s) = "pqrs"

We represent the program as pair made of the head of the clause and the list of atoms in its body:

prog = [

(p, [q]),

(p, [r]),

(q, [r, s]),

(r, [top]),

(bot, [q])

]

We can then compute the model with:

>>> print(compute_model(prog))

['p', 'r']

Future work using torch sparse tensors10, to ensure scalability for very large generated programs is
planned along the lines of [11].

10https://pytorch.org/docs/stable/sparse.html

https://pytorch.org/docs/stable/sparse.html

Paul Tarau 9

6.2 Fixpoint-based minimal model computation

It is not unusual to have loops in the propositional Horn Clause program connecting the LLM gener-
ated items by our recursors and refiners that would create problems with Prolog’s depth-first execution
model. As using a SAT-solver would be an overkill in this case, given that Horn Clause and Dual Horn
clause formula satisfiability is known to be polynomial, we have implemented a simple low-polynomial
complexity [6] propositional satisfiability checker and model builder11.

The model builder works by propagating truth from facts to rules until a fix point is reached. Given
a Horn Clause h : −b1,b2, ...,bn, when all bi are known to be true (i.e., in the model), h is also added
to the model. If integrity constraints (Horn clauses of the form f alse : −b1,b2, ...,bn) have also been
generated by the oracle agents monitoring our refiners, in the advent that all b1,b2, ...,bn end up in the
model, b1,b2, ...,bn implying f alse signals a contradiction and thus unsatisfiability of the Horn formula
associated to the generated program. However as the items generated by our recursive process are not
necessarily expressing logically connected facts (e.g., they might be just semantic similarity driven asso-
ciations), turning on or off this draconian discarding of the model is left as an option for the application
developer. Also, the application developer can chose to stop as soon as a proof of the original goal
emerges, in a way similar to goal-driven ASP-solvers like [1], irrespectively to unrelated contradictions
elsewhere in the program.

7 Generating relation triplets for knowledge graphs

Our DeepLLM app offers an option to generate from the minimal model of the program a relation graph
(see Fig. 3) consisting of implication links (marked with “:”) to which it adds generalization links
(marked with “is”).

Implication links are extracted directly from the logic program while generalization links, serving as
additional explanations, are generated by the LLM via an additional request.

Several other types of relation graphs can be generated depending on the planned reasoning method.
One of them is extraction of <subject, verb, object> (SVO) triplets obtained by prompting the LLM

to split a complex sentence in simpler ones and extract from each simple sentence an SVO triplet.
Another is a hybrid method, combining relations extracted by using dependency grammars [21],

embeddings-based similarity relations, Wordnet-based and LLM-generated hypernyms and meronyms.

8 Reasoning with soft unification on noisy facts

The minimal models of LLM-generated Horn clause programs encapsulate facts and their consequences
elicited from DeepLLM’s initiator queries in the form of natural language sentences. When writing a
logic program that performs symbolic reasoning relying on a ground fact database of such sentences, an
interesting form of abductive reasoning emerges. When hitting an undefined ground sentence, intended
as a query to match database facts we can rely on vector embedding of the sentences and proximity of
the query and the facts in the vector space as a “good enough” match, provided that the semantic distance
between them is below a given threshold. We will next describe a proof of concept of this strategy that
we illustrate on a small quotation dataset consisting of a few sentences12.

11https://github.com/ptarau/recursors/blob/main/deepllm/horn_prover.py
12https://github.com/ptarau/natlog/blob/main/docs/quotes.txt

https://github.com/ptarau/recursors/blob/main/deepllm/horn_prover.py
https://github.com/ptarau/natlog/blob/main/docs/quotes.txt

10 On LLM-generated Logic Programs and their Inference Execution Methods

Figure 3: Relation graph for “tailgate when driving”

Paul Tarau 11

We have implemented Softlog13 as an extension to the Natlog system [17, 19], a Python-based
Prolog dialect with a simpler syntax and a lightweight Python interface. It works simply by overloading
Natlog’s built-in ground fact database’s unification method with a form of soft-unification [4, 2, 10],
implemented as follows:

def unify_with_fact(self, goal, trail):

q = query goal to be matched

k = number of knns to be returned

d = minimum knn distance

v = variable to be unified with the matches

q, k, d, v = goal

d = float(d) / 100

_, answers = self.emb.knn_query(q, k)

for sent, dist in answers:

if dist <= d:

self.abduced_clauses[(q, sent)] = dist

yield unify(v, sent, trail)

The following Natlog script is then used to query a small set of sentences serving as Softlog’s
ground database. Note that the “~” symbol is Natlog’s convention for marking calls to a ground (soft-
)database.

knn 3.

threshold 70.

quest Quest Answer:

knn K, % K is the number passed to the K Nearest Neighbors query

threshold D,

~ Quest K D Answer.

We implement soft unification queries as K closest neighbors (KNN) computations against embeddings
in our sentence store14. We use Sentence Transformers [12] to compute embeddings and store them
locally in an efficient and scalable vector database. As usual in Natlog, the Python iterator returning
multiple KNN matches is mapped to Prolog’s backtracking with multiple answers returned as alternative
bindings to a result variable.

?- quest 'What happens if you do not know where you go' X?

ANSWER: {'X': 'If you don t know where you are going

you will end up somewhere else said Yogi Berra.'}
ANSWER: {'X': 'If you don t know where you are going

any road will get you there said Lewis Carroll.'}

When a query (Q A) binds A to an answer extracted from the vector store, a binary clause (Q :-

A) and its supporting fact (A :- true) are inserted into the dictionary of abduced clauses. If we add
them to the program that triggered the generation of the clauses, we obtain a self-contained standard
logic program that returns exactly the same answers as its Softlog counterpart. Alternatively, the com-
puted distances can be normalized as probabilities, to annotate clauses used in a Probabilistic Logic
Programming language like Problog [5].

13https://github.com/ptarau/natlog/tree/main/softlog
14https://github.com/ptarau/sentence_store

https://github.com/ptarau/natlog/tree/main/softlog
https://github.com/ptarau/sentence_store

12 On LLM-generated Logic Programs and their Inference Execution Methods

ABDUCED CLAUSES:

'What happens if you do not know where you go' :

'If you don t know where you are going you will end up somewhere else

said Yogi Berra'. % distance=0.5874345302581787

'What happens if you do not know where you go' :

'If you don t know where you are going any road will get you there

said Lewis Carroll'. % distance=0.6724047660827637

Note that by contrast to the usual exact unification based answers, Softlog works quite well when the
query is close enough to a matching entry in the sentence store, a reasonable assumption when the facts
have been generated from multiple LLM runs and several ground truth resources.

?- quest 'What did Wilde say about temptation' X?

ANSWER: {'X': 'I can resist anything except temptation said Oscar Wilde.'}

?- quest 'What did Alice say about following advice' X?

ANSWER: {'X': 'I give myself very good advice but I very seldom follow it

said Lewis Carroll.'}

Given the nature of semantic search, surname is enough to find Oscar Wilde and as Alice associates
with the author Lewis Carroll, soft unification will fetch it from the sentence store.

9 Related Work

By contrast to “neuro-symbolic” AI [14], where the neural architecture is closely intermixed with sym-
bolic steps, in our approach the neural processing is encapsulated in the LLMs and accessed via a declar-
ative, high-level API. This reduces the semantic gap between the neural and symbolic sides as their
communication happens at a much higher, fully automated and directly explainable level.

Our recursive descent algorithm shares the goal of extracting more accurate information from the
LLM interaction with work on “Chain of Thought” prompting of LLMs [22, 9] and with step by step [8]
refinement of the dialog threads. Our approach shares with tools like LangChain [3] the idea of piping
together multiple instances of LLMs, computational units, prompt templates and custom agents, except
that we fully automate the process without the need to manually stitch together the components.

We have not found any references to the use of Dual Horn clauses in logic programming but it is
a well known result [16]) that their complexity in the propositional case is polynomial, similarly to
their of Horn clause counterparts. This fact makes them also good generation targets for LLM-extracted
knowledge processing.

We have not found anything similar to generating question-answer-follow-up question chains, al-
though it is common practice for chatbots to suggest (a choice between) follow-up questions15.

Our torch-based model-computation algorithm follows closely the matrix-computation logic of [13],
our contribution being its succinct and efficient GPU-friendly implementation.

Interest in several forms of soft-unification has been active [4, 2, 10] as differentiable substitute of
symbolic unification in neuro-symbolic systems. By contrast, our focus in this paper is flexible infor-
mation retrieval of LLM-generated natural language content, for which high quality embeddings were
available either from LLM APIs or local resources like the torch-based sentence-transformers [12].

15including the author’s own https://auto-quest.streamlit.app/

https://auto-quest.streamlit.app/

Paul Tarau 13

10 Conclusion

It is now undeniable that Generative AI is a major disruptor not just of industrial fields ranging from
search engines, automation of software development and robotics to medical and legal advisory systems,
but also a disruptor of research fields, including symbolic AI as we know it and machine Learning itself.
In particular, results produced by dominant ML or NLP techniques as well as work on integration of
neural and symbolic systems have become replaceable by much simpler applications centered around
LLM queries and RAG systems. In fact, by concentrating the knowledge encapsulated in its parametric
memory into a single declarative interface, Generative AI can replace complex, labor-intensive software
functionality with a simple LLM API call or a question in one’s favorite natural language.

This motivates our effort to “join the disruption” and explore several new ways to elicit the knowledge
encapsulated in the LLMs’ parametric memory as logic programs, together with an investigation of their
optimal inference execution methods. We have not just exposed as logic programs the several kinds of
knowledge snippets extracted by recursive automation LLM dialog threads , but we have also devised
efficient inference execution mechanisms for them.

We hope that this effort has revealed some natural synergies between Generative AI systems and
logic programming tools, ready to fill gaps like the lack of rigorous reasoning abilities of the LLMs, their
lack of alignment to the user’s intents and their known deficiencies on factuality.

References

[1] Joaquin Arias, Manuel Carro, Elmer Salazar, Kyle Marple & Gopal Gupta (2018): Constraint Answer
Set Programming without Grounding. Theory and Practice of Logic Programming 18(3-4), pp. 337–354,
doi:10.1017/S1471068418000285.

[2] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini & Michael Spranger (2022): Logic Tensor
Networks. Artificial Intelligence 303, p. 103649, doi:10.1016/j.artint.2021.103649. Available at https:
//www.sciencedirect.com/science/article/pii/S0004370221002009.

[3] Harrison Chase (2022): LangChain. Available at https://github.com/hwchase17/langchain.
Https://www.langchain.com/.

[4] Nuri Cingillioglu & Alessandra Russo (2020): Learning Invariants through Soft Unification,
doi:10.48550/arXiv.1909.07328. arXiv:1909.07328.

[5] Luc De Raedt, Angelika Kimmig & Hannu Toivonen (2007): ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery. In: IJCAI, 7, pp. 2462–2467, doi:10.5555/1625275.1625673.

[6] William F. Dowling & Jean H. Gallier (1984): Linear-Time Algorithms for Testing the Satisfiability of Propo-
sitional Horn Formulae. J. Log. Program. 1(3), pp. 267–284, doi:10.1016/0743-1066(84)90014-1. Available
at 10.1016/0743-1066(84)90014-1.

[7] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel et al. (2020): Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems 33, pp. 9459–9474.

[8] Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike, John
Schulman, Ilya Sutskever & Karl Cobbe (2023): Let’s Verify Step by Step, doi:10.48550/arXiv.2305.20050.
arXiv:2305.20050.

[9] Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang, Mingu Lee, Roland Memisevic & Hao Su (2023): De-
ductive Verification of Chain-of-Thought Reasoning, doi:10.48550/arXiv:2306.03872v3. arXiv:2306.03872.

[10] Jaron Maene & Luc De Raedt (2023): Soft-Unification in Deep Probabilistic Logic.

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1016/j.artint.2021.103649
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://www.sciencedirect.com/science/article/pii/S0004370221002009
https://github.com/hwchase17/langchain
https://doi.org/10.48550/arXiv.1909.07328
https://arxiv.org/abs/1909.07328
https://doi.org/10.5555/1625275.1625673
https://doi.org/10.1016/0743-1066(84)90014-1
10.1016/0743-1066(84)90014-1
https://doi.org/10.48550/arXiv.2305.20050
https://arxiv.org/abs/2305.20050
https://doi.org/10.48550/arXiv:2306.03872v3
https://arxiv.org/abs/2306.03872

14 On LLM-generated Logic Programs and their Inference Execution Methods

[11] Tuan Quoc Nguyen, Katsumi Inoue & Chiaki Sakama (2022): Enhancing linear algebraic computa-
tion of logic programs using sparse representation. New Generation Computing 40(1), pp. 225–254,
doi:10.1007/s00354-021-00142-2.

[12] Nils Reimers & Iryna Gurevych (2019): Sentence-BERT: Sentence Embeddings using Siamese BERT-
Networks. In Kentaro Inui, Jing Jiang, Vincent Ng & Xiaojun Wan, editors: EMNLP/IJCNLP (1), As-
sociation for Computational Linguistics, pp. 3980–3990, doi:10.18653/v1/D19-1410. Available at http:
//dblp.uni-trier.de/db/conf/emnlp/emnlp2019-1.html#ReimersG19.

[13] Chiaki Sakama, Katsumi Inoue & Taisuke Sato (2017): Linear Algebraic Characterization of Logic Pro-
grams. In Gang Li, Yong Ge, Zili Zhang, Zhi Jin & Michael Blumenstein, editors: Knowledge Science,
Engineering and Management, Springer International Publishing, Cham, pp. 520–533, doi:10.1007/978-3-
319-63558-3 44.

[14] Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart & Pascal Hitzler (2021): Neuro-Symbolic Artificial
Intelligence: Current Trends, doi:10.48550/ARXIV.2105.05330. Available at https://arxiv.org/abs/
2105.05330.

[15] Parth Sarthi, Salman Abdullah, Aditi Tuli, Shubh Khanna, Anna Goldie & Christopher D. Manning (2024):
RAPTOR: Recursive Abstractive Processing for Tree-Organized Retrieval, doi:10.48550/arXiv.2401.18059.
arXiv:2401.18059.

[16] Thomas J. Schaefer (1978): The complexity of satisfiability problems. In: Proceedings of the Tenth Annual
ACM Symposium on Theory of Computing, STOC ’78, Association for Computing Machinery, New York,
NY, USA, p. 216?226, doi:10.1145/800133.804350. Available at https://doi.org/10.1145/800133.
804350.

[17] Paul Tarau (2021): Natlog: a Lightweight Logic Programming Language with a Neuro-symbolic Touch.
In Andrea Formisano, Yanhong Annie Liu, Bart Bogaerts, Alex Brik, Veronica Dahl, Carmine Do-
daro, Paul Fodor, Gian Luca Pozzato, Joost Vennekens & Neng-Fa Zhou, editors: Proceedings 37th In-
ternational Conference on Logic Programming (Technical Communications) , 20-27th September 2021,
doi:10.4204/EPTCS.345.27.

[18] Paul Tarau (2023): Full Automation of Goal-driven LLM Dialog Threads with And-Or Recursors and Refiner
Oracles:arXiv:2306.14077. doi:10.48550/arXiv.2306.14077. arXiv:2306.14077.

[19] Paul Tarau (2023): Natlog: Embedding Logic Programming into the Python Deep-Learning Ecosystem. In
Enrico Pontelli, Stefania Costantini, Carmine Dodaro, Sarah Gaggl, Roberta Calegari, Artur D’Avila Garcez,
Francesco Fabiano, Alessandra Mileo, Alessandra Russo & Francesca Toni, editors: Proceedings 39th Inter-
national Conference on Logic Programming, Imperial College London, UK, 9th July 2023 - 15th July 2023,
Electronic Proceedings in Theoretical Computer Science 385, Open Publishing Association, pp. 141–154,
doi:10.4204/EPTCS.385.15.

[20] Paul Tarau (2024): System Description: DeepLLM, Casting Dialog Threads into Logic Programs. In Jeremy
Gibbons & Dale Miller, editors: Functional and Logic Programming, Springer Nature Singapore, Singapore,
pp. 117–134, doi:10.1007/978-981-97-2300-3 7.

[21] Paul Tarau & Eduardo Blanco (2021): Interactive Text Graph Mining with a Prolog-Based Dialog Engine.
Theory Pract. Log. Program. 21(2), pp. 244–263, doi:10.1017/S1471068420000137.

[22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Ed H. Chi, Quoc Le & Denny Zhou
(2022): Chain of Thought Prompting Elicits Reasoning in Large Language Models. CoRR abs/2201.11903,
doi:10.48550/arXiv.2201.11903. arXiv:2201.11903.

https://doi.org/10.1007/s00354-021-00142-2
https://doi.org/10.18653/v1/D19-1410
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2019-1.html#ReimersG19
http://dblp.uni-trier.de/db/conf/emnlp/emnlp2019-1.html#ReimersG19
https://doi.org/10.1007/978-3-319-63558-3_44
https://doi.org/10.1007/978-3-319-63558-3_44
https://doi.org/10.48550/ARXIV.2105.05330
https://arxiv.org/abs/2105.05330
https://arxiv.org/abs/2105.05330
https://doi.org/10.48550/arXiv.2401.18059
https://arxiv.org/abs/2401.18059
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.1145/800133.804350
https://doi.org/10.4204/EPTCS.345.27
https://doi.org/10.48550/arXiv.2306.14077
https://arxiv.org/abs/2306.14077
https://doi.org/10.4204/EPTCS.385.15
https://doi.org/10.1007/978-981-97-2300-3_7
https://doi.org/10.1017/S1471068420000137
https://doi.org/10.48550/arXiv.2201.11903
https://arxiv.org/abs/2201.11903

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 15–28, doi:10.4204/EPTCS.416.2

© J.J. Bauer, Th. Eiter, N. Higuera & J. Oetsch
This work is licensed under the
Creative Commons Attribution License.

Visual Graph Question Answering with ASP and
LLMs for Language Parsing*

Jakob Johannes Bauer1, Thomas Eiter2, Nelson Higuera Ruiz2, Johannes Oetsch3

1 ETH Zürich, Rämistrasse 101, 8092 Zürich, Switzerland
2 Vienna University of Technology (TU Wien), Favoritenstrasse 9–11, Vienna, 1040, Austria

3 Jönköping University, Gjuterigatan 5, 55111 Jönköping, Sweden
bjohannes@ethz.ch, {thomas.eiter,nelson.ruiz}@tuwien.ac.at, johannes.oetsch@ju.se

Visual Question Answering (VQA) is a challenging problem that requires to process multimodal input.
Answer-Set Programming (ASP) has shown great potential in this regard to add interpretability and
explainability to modular VQA architectures. In this work, we address the problem of how to integrate
ASP with modules for vision and natural language processing to solve a new and demanding VQA
variant that is concerned with images of graphs (not graphs in symbolic form). Images containing
graph-based structures are an ubiquitous and popular form of visualisation. Here, we deal with
the particular problem of graphs inspired by transit networks, and we introduce a novel dataset
that amends an existing one by adding images of graphs that resemble metro lines. Our modular
neuro-symbolic approach combines optical graph recognition for graph parsing, a pretrained optical
character recognition neural network for parsing labels, Large Language Models (LLMs) for language
processing, and ASP for reasoning. This method serves as a first baseline and achieves an overall
average accuracy of 73% on the dataset. Our evaluation provides further evidence of the potential of
modular neuro-symbolic systems, in particular with pretrained models that do not involve any further
training and logic programming for reasoning, to solve complex VQA tasks.

1 Introduction

Visual Question Answering (VQA) [1] is concerned with inferring the correct answer to a natural language
question in the presence of some visual input, such as an image or video, which typically involves
processing multimodal input. VQA enables applications in, e.g., medicine, assistance for blind people,
surveillance, and education [4].

Answer-Set Programming (ASP) [6] has shown great potential to add interpretability and explainability
to modular VQA architectures in this context. As a knowledge representation and reasoning formalism
with an intuitive modelling language, it can be used to describe how to infer answers from symbolic input
provided by subordinate modules in a clear and transparent way [28, 5, 11, 10]. Another strength is that
uncertainties from the underlying modules can be expressed using disjunctions (or choice rules), and
we are not limited to inferring one answer, but several plausible ones in a nondeterministic manner [33].
Furthermore, using ASP in the VQA context is beneficial for explanation finding, as we have demonstrated
in recent work [10].

In this work, we address the problem of how to integrate ASP with modules for vision and natural
language processing to solve a new and demanding VQA variant that is concerned with images of graphs
(not graphs in symbolic form). Visual representations of structures based on graphs are a popular and
ubiquitous form of presenting information. It is almost surprising that VQA tasks where the visual input
contains a graph have, to the best of our knowledge, not been considered so far.

*This work was partially funded from the Bosch Center for AI. Code and data can be found at https://github.com/
pudumagico/NSGRAPH.

http://dx.doi.org/10.4204/EPTCS.416.2
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/pudumagico/NSGRAPH
https://github.com/pudumagico/NSGRAPH

16 Visual Graph Question Answering with ASP and LLMs for Language Parsing

(a)

“How many stations are between
Leauts and Nily?”

Substract()

Int(2)Count()

ShortestPath()

Station(Nily)Station(Leauts)

(b)

• nodes:
name: leautts
size: tiny
. . .

• edges:
station1: raows
station2: dwaiarf
. . .

• lines:
built: 90s
. . .

(c)

Figure 1: A CLEGR instance: metro graph with two lines, question with functional representation, and
additional information. The task is to answer the question using the information provided.

We deal with the particular problem of graphs that resemble transit networks, and we introduce
a respective dataset. It is based on the existing CLEGR dataset [22] that comes with a generator for
synthetically producing vertex-labelled graphs that are inspired by metro networks. Additional structured
information about stations and lines, e.g., how large a station is, whether it is accessible to disabled people,
when the line was constructed, etc., is provided as background. The task is to answer natural language
questions concerning such graphs. For example, a question may ask for the shortest path between two
stations while avoiding those that have a particular property. An illustration of a graph and a question is
shown in Fig. 1.

While purely symbolic methods suffice to solve the original CLEGR dataset with ease (we present one
in this paper), we consider the more challenging problem of taking images of the graphs instead of their
symbolic representations as input; an example is given in Fig. 1a. For the questions, we only consider
those that can be answered with information that can be found in the image. The challenges to solve this
VGQA dataset, which we call CLEGRV , are threefold: (i) we have to parse the graph to identify nodes
and edges, (ii) we have to read and understand the labels and associate them with nodes of the graph,
and (iii) we have to understand the question and reason over the information extracted from the image to
answer it accordingly.

Our solution takes the form of a modular (i.e., loosely coupled) neuro-symbolic model that combines
the use of optical graph recognition (OGR) [2] for graph parsing, a pretrained optical character recognition
(OCR) neural network [29] for parsing node labels, and, as mentioned above, ASP for reasoning. It
operates in the following manner:

1. first, we use the OGR tool to parse the graph image into an abstract representation, structuring the
information as sets of nodes and edges;

2. we use the OCR algorithm to obtain the text labels and associate them to the closest node;
3. then, we parse the natural language question;
4. finally, we use an encoding of the semantics of the question as a logic program which is, combined

with the graph and the question in symbolic form, used to obtain the answer to the question with
the help of an ASP solver.

This method serves as a first baseline and achieves an average accuracy of 73% on CLEGRV .
We consider two methods to parse the natural language questions. The first one is to use regular

expressions which are sufficient to parse the particular questions of the dataset. The second method
uses Large Language Models (LLMs) based on the transformer architecture [31] to obtain a more robust

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 17

(a) (b) (c)

Figure 2: Examples of graphs of size small (2a), medium (2b), and large (2c).

solution that also generalises well to variants of questions that are not part of the dataset. Our approach to
using LLMs follows related work [26] and relies on prompting an LLM to extract relevant ASP predicates
from the question. We evaluated this approach on questions based on CLEGR and new questions obtained
from a questionnaire.

The contribution of this paper is thus threefold:
(i) we demonstrate how ASP can be used as part of a modular VQA architecture able to tackle a

challenging new problem concerned with images of graphs;
(ii) we introduce a new dataset to benchmark systems for VQA on images of graphs and evaluate our

approach on it to create a first baseline; and
(iii) we evaluate various LLMs for question parsing to create a robust interface to the ASP encoding.

This work provides further evidence of the potential of modular neuro-symbolic systems, in particular
with pretrained models and logic programming for reasoning, for solving complex VQA tasks. That our
system does not require any training related to a particular set of examples—hence solving the dataset in a
zero-shot manner—is a practical feature that hints to what may become customary as large pre-trained
models are more than ever available for public use.

2 Visual Question Answering on Graphs

Graph Question Answering (GQA) is the task of answering a natural language question for a given
graph in symbolic form. The graph consists of nodes and edges, but further attributes may be specified in
addition. A specific GQA dataset is CLEGR [22], which is concerned with graph structures that resemble
transit networks like metro lines. Its questions are ones that are typically asked about transit like “How
many stops are between X and Y?”. The dataset is synthetic and comes with a generator for producing
instances of varying complexity.

Graphs come in the form of a YAML file containing records about attributes of the stations and
lines. Each station has a name, a size, a type of architecture, a level of cleanliness, potentially disabled
access, potentially rail access, and a type of music played. Stations can be described as relations over
the aforementioned attributes. Edges connect stations but additionally have a colour, a line ID, and a line
name. For lines, besides name and ID we have a construction year, a colour, and optional presence of air
conditioning.

Example 1 Examples of questions from the dataset are:
• Describe {Station} station’s architectural style.

18 Visual Graph Question Answering with ASP and LLMs for Language Parsing

• How many stations are between {Station} and {Station}?
• Which {Architecture} station is adjacent to {Station}?
• How many stations playing {Music} does {Line} pass through?
• Which line has the most {Architecture} stations?

For a full list of the questions, we refer the reader to the online repository of the dataset [22]. The
answer to each question is of Boolean type, a number, a list, or a categorical answer. The questions in
the dataset can be represented by functional programs, which allows us to decompose them into smaller
and semantically less complex components. Figure 1 illustrates an example from the data set CLEGR
that includes such a functional program: it consists of primitive operations organised as a tree that is
recursively evaluated to obtain an answer.

Visual Graph Question Answering. Solving instances of the CLEGR dataset is not much of a challenge
since all information is given in symbolic form, and we present a respective method later. But what if
the graph is not available or given in symbolic form, but just as an image, as is commonly the case? We
define Visual Graph Question Answering (VGQA) as a GQA task where the input is a natural language
question on a graph depicted in an image.

The new VGQA dataset. We can in fact derive a challenging VGQA dataset from CLEGR by generating
images of the transit graphs. To this end, we used the generator of the CLEGR dataset that can also produce
images of the symbolic graphs. Each image shows stations, their names as labels in their proximity, and
lines in different colours that connect them; an example is given in Fig. 1a. For the VGQA task, we drop
all further symbolic information and consider only the subset of questions that can be answered with
information from the graph image.

We call the resulting dataset CLEGRV : it consists of graphs that fall into three categories: small (3
lines and at most 4 stations per line), medium (4 and at most 6 stations per line), and large (5 lines and at
most 8 stations per line). We generate 100 graphs of each size accompanied by 10 questions per graph,
with a median of 10 nodes and 8 edges for small graphs, 15 nodes and 15 edges for medium graphs, and
24 nodes with 26 edges for large ones. Figure 2 shows three graphs, one of each size. Although large
metro networks will typically involve more stations than our graphs, those stations are typically arranged
linearly on the lines which does not add to the complexity of the graph structure itself but can lead to
cluttering.

3 Our Neuro-Symbolic Framework for VQA on Graphs

Our solution to the VGQA task, which we call NSGRAPH, is a modular neuro-symbolic system, whose
modules are the typical ones for VQA, viz. a visual module, a language module, and a reasoning module,
which we realise to fit the VQGA setting. Figure 3 illustrates the data flow of the inference process in
NSGRAPH.

3.1 Visual Module

The visual model is used for graph parsing, which consists of two subtasks: (i) detection of nodes and
edges, and (ii) detection of labels, i.e., station names.

We employ an optical graph recognition (OGR) system for the first subtask. In particular, we use a
publicly available OGR script [9] that implements the approach due to Auer et al. [2]. The script takes

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 19

How many stations are two
steps away from Mccloack?

Graph
Parsing

(OGR+OCR)

Question
Parsing
(RegEx)

Theory
(ASP)

NSGRAPH

Reasoning Module

Vision Module

Language Module

Answer Sets

Figure 3: NSGRAPH system overview. The input is either an image of a graph or its symbolic description.
The answer is generated by combining neural and symbolic methods.

an image as input and outputs the pixel coordinates of each detected node plus an adjacency matrix that
contains the detected edges.

For the second subtask of detecting labels, we use an optical character recognition (OCR) system,
namely, we use a pretrained neural network called EasyOCR [19] to obtain and structure the information
contained in the graph image. The algorithm takes an image as input and produces the labels as strings
together with their coordinates in pixels. We then connect the detected labels to the closest node found by
the OGR system. Thereby, we obtain an abstract representation of the graph image as relations.

3.2 Language Module

The purpose of the language module is to parse the natural language question. It is written in Python and
uses regular expressions to capture the variables in each type of question. There are in general 35 different
question templates in CLEGR, some of which were shown in Example 1. They can be used to produce a
question instances by replacing variables with names or attributes of stations, lines, or connections.

Example 2 For illustration, the question template “How many stations are on the shortest path between
S1 and S2?” may be instantiated by replacing S1 and S2 with station names that appear in the graph.
We use regular expressions to capture those variables and translate the natural language question into
a functional program, essentially a tree of operations, for that question. Continuing our example, we
translate the template described above into the program

end(3). countNodesBetween(2). shortestPath(1).
station(0,S1). station(0,S2).

where the the first numerical argument of each predicate imposes the order of execution of the associated
operation and links the input of one operation to the output of the previous one. We can interpret this
functional program as follows: the input to the shortest-path operation is two station names S1 and S2.
Its outputs are the stations on the shortest path between S1 and S2 which are counted in the next step. The
predicate end represents the end of the computation to yield this number as the answer to the question.

All considered question types and their ASP question encodings are summarised in Table 1. Although
this approach works well for all the questions in CLEGR, its ability to generalise to new types of questions
is obviously limited; as a remedy, we discuss LLMs as an alternative to realise the language module in
Section 4.

20 Visual Graph Question Answering with ASP and LLMs for Language Parsing

Table 1: ASP questions encodings for the twelve types of questions.

ASP Facts Question

end(3). countNodesBetween(2).
shortestPath(1). station(0,{}). station(0,{})

How many stations are between ([a-zA-Z]+) and
([a-zA-Z]+)?

end(2). withinHops(1, 2). station(0,{}) How many other stations are two stops or closer to
([a-zA-Z]+)?

end(2). paths(1). station(0,{}). station(0,{}) How many distinct routes are there between ([a-zA-Z]+)
and ([a-zA-Z]+)?

end(2). cycle(1). station(0,{}) Is ([a-zA-Z]+) part of a cycle?

end(2). adjacent(1). station(0,{}). station(0,{}) Are ([a-zA-Z]+) and ([a-zA-Z]+) adjacent?

end(2). adjacentTo(1).
station(0,{}).station(0,{})

Which station is adjacent to ([a-zA-Z]+) and ([a-zA-Z]+)?

end(2). commonStation(1). station(0,{}).
station(0,{})

Are ([a-zA-Z]+) and ([a-zA-Z]+) connected by the same
station?

end(2). exist(1). station(0,{}) Is there a station called ([a-zA-Z0-9]+)?

end(2). linesOnNames(1). station(0,{}) Which lines is ([a-zA-Z]+) on?

end(2). linesOnCount(1). station(0,{}) How many lines is ([a-zA-Z]+) on?
end(2). sameLine(1). station(0,{}). station(0,{}) Are ([a-zA-Z]+) and ([a-zA-Z]+) on the same line?

end(2). stations(1). line(0,{}) Which stations does ([a-zA-Z]+) pass through?

3.3 Reasoning Module

The third module consists of an ASP program that implements the semantics of the operations from the
functional program of the question. Before we explain this reasoning component, we briefly review the
basics of ASP.

Answer-Set Programming. ASP [6, 14] is a declarative logic-based approach to combinatorial search
and optimisation with roots in knowledge representation and reasoning. It offers a simple modelling
language and efficient solvers1. In ASP, the search space and properties of problem solutions are described
by means of a logic program such that its models, called answer sets, encode the problem solutions.

An ASP program is a set of rules of the form a1 | · · · | am :− b1, . . . , bn, not c1, . . . , not cn, where
all ai, b j, ck are first-order literals and not is default negation. The set of atoms left of :− is the head of
the rule, while the atoms to the right form the body. Intuitively, whenever all b j are true and there is no
evidence for any cl , then at least some ai must be true. The semantics of an ASP programs is given by its
answer sets, which are consistent sets of variable-free (ground) literals that satisfy all rules and fulfil a
minimality condition [15].

A rule with an empty body and a single head atom without variables is a fact and is always true. A
rule with an empty head is a constraint and is used to exclude models that satisfy the body.

ASP provides further language constructs like choice rules, aggregates, and weak (also called soft)
constraints, whose violation should only be avoided. For a comprehensive coverage of the ASP language
and its semantics, we refer to the language standard [8].

1See, for example, www.potassco.org or www.dlvsystem.com.

www.potassco.org
www.dlvsystem.com

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 21

Question Encoding. The symbolic representations obtained from the language and visual modules are
first translated into ASP facts; we refer to them as GASP and QASP in Fig.3, respectively. The functional
program from a question (as introduced above) is already in a fact format. The graph is translated into
binary atoms edge/2 and unary atoms station/1 as well. These facts combined with an ASP program
that encodes the semantics of all CLEGR question templates can be used to compute the answer with an
ASP solver.

Example 3 Here is an excerpt of the ASP program that represents the functional program from above:

end(3). countNodesBetween(2). shortestPath(1).
station(0,s). station(0,t).

These facts, together with ones for edges and nodes, serve as input to the ASP encoding for computing
the answer as they only appear in rule bodies:

sp(T,S1,S2) :- shortestPath(T), station(T-1,S1),
station(T-1,S2), S1<S2’.

{ in_path(T,S1,S2) } :- edge(S1,S2), shortestPath(T).
reach(T,S1,S2) :- in_path(T,S1,S2).
reach(T,S1,S3) :- reach(T,S1,S2), reach(T,S2,S3).
:- sp(T,S1,S2), not reach(T,S1,S2).

cost(T,C) :- C = #count {S1,S2: in_path(T,S1,S2)}, shortestPath(T).
:~ cost(T,C). [C,T]

countedNodes(T,C-1) :- countNodesBetween(T),
shortestPath(T-1), cost(T-1,C).

ans(N) :- end(T), countedNodes(T,N).

The first rule expresses that if we see shortestPath(T) in the input, then we have to compute the
shortest path between station S1 and S2. This path is produced by the next rule which non-deterministically
decides for every edge if this edge is part of the path. The following two rules jointly define the transitive
closure of this path relation, and the constraint afterwards enforces that station S1 is reachable from S2
on that path. We use a weak constraint to minimise the number of edges that are selected and thus enforce
that we indeed get a shortest path. The number of edges is calculated using an aggregate expression to
count. Finally, the penultimate rule calculates the number of stations on the shortest path, as it takes
as input the nodes that came out of the shortest path from the previous step and counts them, and the
last rule defines the answer to the question as that number. The complete encoding is part of the online
repository of this project (https: // github. com/ pudumagico/ NSGRAPH).

3.4 Evaluation of NSGRAPH on CLEGRV

NSGRAPH achieves 100% on the original GQA task, i.e., with graphs in symbolic form as input and with
the complete set of questions. Here, the symbolic input is translated directly into ASP facts without the
need to parse an image.

We summarise the results for the more challenging VGQA task on CLEGRV in Table 2.2 The task
becomes more difficult with increasing size of the graphs, but still an overall accuracy of 73% is achieved.
As we also consider settings where we replace the OCR, resp. the OGR module, with the ground truth

2We ran the experiments on a computer with 32GB RAM, 12th Gen Intel Core i7-12700K, and a NVIDIA GeForce RTX
3080 Ti, and we used clingo (v. 5.6.2) [13] as ASP solver.

https://github.com/pudumagico/NSGRAPH

22 Visual Graph Question Answering with ASP and LLMs for Language Parsing

Table 2: Accuracy of NSGRAPH on CLEGRV for small, medium, and large sized graphs. For OCR+GT,
we replaced the OGR input with its symbolic ground truth. Likewise, we use the ground truth for OCR
for OGR+GT, and Full GT stands for ground truth only. We also report the total time for image parsing,
resp. ASP reasoning, in seconds.

Graph Size NSGRAPH OCR+GT OGR+GT Full GT parsing (s) reasoning (s)

Small 80.9% 90.2% 83.1% 100% 923 2
Medium 71.0% 85.2% 72.7% 100% 1359 3
Large 67.2% 83.8% 70.5% 100% 2208 5

Overall 73.0% 86.4% 75.4% 100% 4490 10

as input, we are able to pinpoint the OGR as the main reason for wrong answers. The average run time
to answer a question was 0.924s for small graphs, 1.36s for medium graphs, and 2.21s for large graphs.
NSGRAPH is the first baseline for this VGQA dataset and further improvements a certainly possible, e.g.,
stronger OGR systems could be used.

4 Semantic Parsing with LLMs

LLMs like GPT-4 [24] are deep neural networks based on the transformer architecture [31] with billions
of parameters that are trained on a vast amount of data to learn to predict the next token for a given text
prompt. (A token is a sequences of textual characters like words or parts of words). Their capabilities for
natural language processing are impressive. LLMs are typically instructed via text prompts to perform
a certain task such as answering a question or translating a text, but they can also be used for semantic
parsing a text into a formal representation suitable for further processing.

In this section, we outline and evaluate an approach to use LLMs to realise the language module of
NSGRAPH in a more robust way than by using regular expressions. First, we outline the general method
of prompting LLMs to extract ASP predicates from questions. Afterwards, we evaluated this method for
different LLMs, including state-of-the-art API-based ones but also open-source models that are free and
can be locally installed.

4.1 Prompt Engineering

A particularly useful feature of LLMs is that the user can instruct them for a task by providing a few
examples as part of the input prompt without the need to retrain the model on task-specific data; a property
of LLMs commonly referred to as in-context learning.

Our approach uses in-context learning to instruct the LLM to extract the ASP atoms needed to
solve the reasoning task from a question. This idea is inspired by recent work on LLMs for language
understanding [26]. To obtain an answer to a question Q, we

(i) create a prompt P(Q) that contains the question Q along with additional instructions and examples
for ASP question encodings,

(ii) pass P(Q) as input to an LLM and extract the ASP question encoding from the answer, and
(iii) use extracted ASP facts together with the ASP rules described in the previous section to derive the

answer.
The prompt P(Q) starts with a general pre-prompt that sets the stage for the task:

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 23

Table 3: Comparison of LLMs used in our evaluation.

Model Parameters Open Source Price Company Token Limit

GPT-4 1.5×1012 × USD20 p/m OpenAI 32768
GPT-3.5 175×109 × free OpenAI 4096
Bard 1.6×1012 × free Google 2048
GPT4ALL 7×109 ✓ self hosted Nomic AI 2048
Vicuna 13b 13×109 ✓ per request Meta 2048
Zephyr 7b 7×109 ✓ free HuggingFace H4 8192

You are now a Question Parser that translates natural language
questions into ASP ground truths about different stations.
Output only the ground truths and nothing else. The stations to
be selected from are arbitrary.

Afterwards, we provide a number of examples that illustrate what is expected from the LLM. In
particular, we used at least one not more than three examplesfor each type of question in the dataset to not
exceed context limits. This amounts to 36 in-context examples in total.

Example 4 For space reasons, we show here just the beginning of an example prompt:

I now provide you with some examples on how to parse Questions:

Q: ‘‘How many stations are between Inzersdorf and Mainstation?’’
A: end(3).countNodesBetween(2).shortestPath(1).
station(0,‘‘Inzersdorf’’).station(0,‘‘Mainstation’’).

Q: ‘‘What is the amount of stations between Station A and
Station B?’’
A: end(3).countNodesBetween(2).shortestPath(1).
station(0,‘‘Station A’’).station(0,‘‘Station B’’).
...

Finally, the prompt contains the questions that should be answered:

Now provide the output for the following question:
What are the stations that lie on line 7?

4.2 Evaluation

We evaluated the method from the previous section to answer to following research questions:
(R1) Is the method suitable for realising the language component of NSGRAPH?
(R2) What is the trade-off between grand scale LLMs and smaller, more cost-efficient alternatives?
(R3) How well does the method generalise to questions formulated in a different way than in CLEGR?

Overview of used LLMs. We compared different models (GPT-4, GPT3.5, Bard, GPT4All, Vicuna
13b, and Zephyr 7b; cf. Table 3)3 on the semantic parsing task.

3https://openai.com/research/gpt-4; https://platform.openai.com/docs/models/gpt-3-5; https:
//bard.google.com/; https://gpt4all.io/index.html;https://huggingface.co/lmsys/vicuna-13b-v1.3;
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta.

https://openai.com/research/gpt-4
https://platform.openai.com/docs/models/gpt-3-5
https://bard.google.com/
https://bard.google.com/
https://gpt4all.io/index.html
https://huggingface.co/lmsys/vicuna-13b-v1.3
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta

24 Visual Graph Question Answering with ASP and LLMs for Language Parsing

Table 4: Results of the evaluation on the CLEGR+ dataset.

Model full match contains solution task missed no answer

GPT-4 85% 0% 15% 0%
GPT-3.5 42% 8% 50% 0%
Bard 0% 76% 24% 0%
GPT4ALL 0% 23% 77% 0%
Vicuna 13b 8% 24% 34% 34%
Zephyr 7b 0% 61% 21% 18%

GPT-4 is the latest model developed by OpenAI with 1.5 trillion parameters and a context limit of
32768 tokens. For a price of USD20 per month, the ChatGPT Plus offer can be subscribed, allowing
users to send up to 50 requests in a three-hour time frame to a hosted version of GPT-4.

GPT3.5 is the predecessor of OpenAIs GPT-4 and is available online for free. It uses 175 billion
parameters and is capable of contexts of 4096 tokens.

Bard is Google’s counterpart to OpenAI’s dominant LLMs, using slightly more parameters than GPT-4
but has a context window of only 2048 tokens. It is free to its users; however, all EU states are currently
excluded from using the service due to copyright concerns.

GPT4All is an open source model that only needs 7 billion parameters. With a context limit of 2048
tokens, it competes with Google Bard; however, there is no official hosted service to run this LLM. It was
developed using the open source weights of Alpaca, a model developed and released by Meta. GPT-4
served as a training data generator for this model, making it a cheap alternative to expensive large-scale
models.

Vicuna 13b was developed and open-sourced by Meta and comes with 13 billion parameters and
a context window of 2018 tokens. It serves as a middle ground between large-scale LLMs and small
alternatives such as GPT4All. It is not hosted on an official server, but there are external services that host
this model and even offer fine-tuning to user specific use cases.

Zephyr 7b (β) is a fine-tuned version of the Mistral 7B model. It was developed by the Hugging Face
H4 team and is published under the MIT license.

Datasets. We created two datasets for our evaluation: CLEGR+ and CLEGR-Human. The former is
a straight-forward hand-crafted extension of the questions from the original CLEGR dataset. Besides
original questions that can be parsed with regular expressions, the dataset also contains versions where
words are replaced with synonyms and the position of words is slightly changed, as well as questions
that entirely rephrase the original ones. For example, “Are stations A and B on the same line?” could be
rephrased as “Can I reach station A from station B without line change?”. The CLEGR+ dataset consists
of 74 questions in total.

CLEGR-Human is a dataset that was created using an online survey. The survey takers were presented
with a metro map and a couple of example questions. After that, they had the task of formulating further
questions such as “Ask about the distance between Station A and Station B” and answering their own
questions. This enables cross-peer validation by having other users evaluate the same question and
compare their answers. Each surveyor had to answer a total of 12 questions; 27 people from Austria,
Switzerland, and Germany aged between 18 and 33 years completed the survey, 22 of which were students.
The dataset consists of 324 questions in total.

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 25

Table 5: Results of the evaluation on the CLEGR-Human dataset.

Model full match contains solution task missed no answer

GPT-4 94% 0% 6% 0%
GPT-3.5 38% 7% 55% 0%
Bard 0% 78% 22% 0%
GPT4ALL 0% 16% 84% 0%
Vicuna 13b 4% 19% 46% 31%
Zephyr 7b 0% 72% 17% 11%

Results and Discussion. The results of our evaluation are summarised in Table 4 for CLEGR+ and in
Table 5 for CLEGR-Human. We classified the answers produced by the LLMs into four categories:

• full match: the response matches exactly the set of expected atoms;
• contains solution: the expected atoms can be extracted from the respone;
• task missed: the response contains some text but not the expected atoms;
• no answer: the response consists of only whitespace characters.
Note that “full match” as well as “contains solution” can be used for the ASP reasoning task, while

answers from the other categories cannot be used.
GPT-4 performed best among the considered LLMs as it produced 85% completely correct responses

on CLEGR+ and even 94% on CLEGR-Human. It also always provided an answer to the prompt. GPT-3.5
invented new predicates for half of the questions. For the remaining ones, its response matched exactly or
contained the solution. Vicuna often did not give a proper response due to context overflow and trails
behind GPT-4 and GPT-3.5 also in terms of correct answers. Google Bard never got the exact solution
due to extensive additional explanations for all predicates no matter the prompt. However, the responses
contained the solution in about three quarters of the cases. In this regard, it is only outmatched by GPT-4.
This performance is similar to that of the much smaller open-source model Zephyr 7b, which is trailing
only slightly behind. The responses of GPT4All contain the correct solution for only 23% (CLEGR+)
and 16% (CLEGR-Human) of the questions.

We answer our initial research questions therefore as follows: At least GPT-4 is suitable for realising
the language component with an acceptable trade-off between accuracy and ability to generalise (R1).
Although GPT-4 exhibits the best overall performance, especially the free and much smaller Zephyr model
shows promising results (R2). Throughout, the LLMs perform similarly on CLEGR+ and CLEGR-Human,
which showcases the strength of LLMs for language processing without the need for context-specific
training (R3).

5 Related Work

Our approach builds on previous work [11], where we introduced a neuro-symbolic method for VQA in the
context of the CLEVR dataset [20] using a reasoning component based on ASP inspired by NSVQA [34].
The latter used a combination of RCNN [27] for object detection, an LSTM [16] for natural language
parsing, and Python as a symbolic executor to infer the answer. The vision and language modules in these
previous approaches were trained for the datasets. As compared to these datasets the number of questions
obtained from the questionnaires to build our dataset is small, it would be hardly possible to effectively
train an LSTM on them. It is a particular strength of our work that we resort to LLMs that do not require
any further training.

26 Visual Graph Question Answering with ASP and LLMs for Language Parsing

We also mention the neural and end-to-end trainable MAC system [17] that achieves very promising
results in VQA datasets, provided there is enough data available to train the system. A recent approach
that combines large pretrained models for images and text in combination with symbolic execution in
Python is ViperGPT [30]; complicated graph images are not handled well by pretrained vision-language
models, however.

A characteristic of NSGRAPH is that we use ASP for reasoning, an idea that was also explored
in previous work [28, 5, 11, 10]. Outside of the context of VQA, ASP has been applied for various
neuro-symbolic tasks such as segmentation of laryngeal images [7], and discovery of rules that explain
sequences of sensory input [12]. Barbara et al. [3] describe a neuro-symbolic approach that involves ASP
for visual validation of electric panels where a component graph from an image is matched against its
specification. This is an example of another interesting application that involves images of graphs and our
approach could be used to contribute question-answering capabilities in such a setting.

In passing, it should be noted that there are also systems that can be used for neuro-symbolic learning,
e.g., by employing semantic loss [32], which means that they use the information produced by the
reasoning module to improve the learning tasks of the neural networks involved [33, 23].

Our approach to using LLMs to extract predicates for the downstream reasoning task is inspired by
recent work by Rajasekharan et al. [26]. They proposed the STAR framework, which consists of LLMs
and prompts for extracting logical predicates in combination with an ASP knowledge base. The authors
applied STAR to different problems requiring qualitative reasoning, mathematical reasoning, as well as
goal-directed conversation. Going one step further, Ishay et al. [18] introduced a method to translate
problems formulated in natural language into complete ASP programs. This method requires multiple
prompts, each responsible for a subtask such as identifying constant symbols, forming predicates, and
transforming the specification into rules. The idea to apply LLMs to parse natural language into a formal
language suitable for automated reasoning is also found outside the context of ASP, e.g., work by Liu et
al. [21], who use prompting techniques to translate text into the Planning Domain Definition Language.

6 Conclusion

We addressed the relevant the problem of integrating ASP with vision and language modules to solve
a new VQA variant that is concerned with images of graphs. For this task, we introduced a respective
dataset that is based on an existing one for graph question answering on transit networks, and we presented
NSGRAPH, a modular neuro-symbolic model for VGQA that combines neural components for graph and
question parsing and symbolic reasoning with ASP for question answering. We studied LLMs for the
question parsing component to improve how well our method generalises to unseen questions. NSGRAPH
has been evaluated on the VGQA dataset and therefore constitutes a first baseline for the novel dataset.

The advantages of a modular architecture in combination with logic programming are that the solution
is transparent, interpretable, explainable, easier to debug, and components can be replaced with better
ones over time in contrast to more monolithic end-to-end trained models. Our system notably relies
on pretrained components and thus requires no additional training. With the advent of large pretrained
models for language and images such as GPT-4 [24] or CLIP [25], such architectures, where symbolic
systems are used to control and connect neural ones, may be seen more frequently.

For future work, we plan to look into better alternatives for the visual module that is more suitable for
complicated images of graphs, which is currently the limiting factor. Another future direction is to work
with real-world metro networks for which currently no VQA datasets exist.

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 27

References

[1] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick &
Devi Parikh (2015): VQA: Visual Question Answering. In: 2015 IEEE International Conference on Computer
Vision, IEEE Computer Society, pp. 2425–2433, doi:10.1109/ICCV.2015.279.

[2] Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Andreas Gleißner & Josef Reislhuber (2013):
Optical Graph Recognition. In: Graph Drawing, Springer Berlin Heidelberg, pp. 529–540, doi:10.1007/978-3-
642-36763-2_47.

[3] Vito Barbara, Massimo Guarascio, Nicola Leone, Giuseppe Manco, Alessandro Quarta, Francesco Ricca &
Ettore Ritacco (2023): Neuro-Symbolic AI for Compliance Checking of Electrical Control Panels. Theory
Pract. Log. Program. 23(4), pp. 748–764, doi:10.1017/S1471068423000170.

[4] Silvio Barra, Carmen Bisogni, Maria De Marsico & Stefano Ricciardi (2021): Visual question answering:
Which investigated applications? Pattern Recognit. Lett. 151, pp. 325–331, doi:10.1016/j.patrec.2021.09.008.

[5] Kinjal Basu, Farhad Shakerin & Gopal Gupta (2020): AQuA: ASP-Based Visual Question Answering. In:
22nd International Symposium on Practical Aspects of Declarative Languages (PADL 2020), LNCS 12007,
Springer, pp. 57–72, doi:10.1007/978-3-030-39197-3_4.

[6] Gerhard Brewka, Thomas Eiter & Miroslaw Truszczynski (2011): Answer set programming at a glance.
Commun. ACM 54(12), pp. 92–103, doi:10.1145/2043174.2043195.

[7] Pierangela Bruno, Francesco Calimeri, Cinzia Marte & Marco Manna (2021): Combining Deep Learning and
ASP-Based Models for the Semantic Segmentation of Medical Images. In: 5th International Joint Conference
on Rules and Reasoning, LNCS 12851, Springer, pp. 95–110, doi:10.1007/978-3-030-91167-6_7.

[8] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas
Krennwallner, Nicola Leone, Marco Maratea, Francesco Ricca & Torsten Schaub (2020): ASP-Core-2 Input
Language Format. TPLP 20(2), pp. 294–309, doi:10.1017/S1471068419000450.

[9] Filip Chodziutko & Kacper Nowakowski (2020): Optical Graph Recognition (OGR) - script. Available at
https://github.com/praktyka-zawodowa-2020/optical_graph_recognition.

[10] Thomas Eiter, Tobias Geibinger, Nelson Higuera & Johannes Oetsch (2023): A Logic-based Approach
to Contrastive Explainability for Neurosymbolic Visual Question Answering. In: 32nd International Joint
Conference on Artificial Intelligence (IJCAI 2023), ijcai.org, pp. 3668–3676, doi:10.24963/IJCAI.2023/408.

[11] Thomas Eiter, Nelson Higuera, Johannes Oetsch & Michael Pritz (2022): A Neuro-Symbolic ASP Pipeline for
Visual Question Answering. TPLP 22(5), pp. 739–754, doi:10.1017/S1471068422000229.

[12] Richard Evans, José Hernández-Orallo, Johannes Welbl, Pushmeet Kohli & Marek J. Sergot (2021): Making
sense of sensory input. Artif. Intell. 293, p. 103438, doi:10.1016/j.artint.2020.103438.

[13] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub & Philipp Wanko
(2016): Theory Solving Made Easy with Clingo 5. In: ICLP 2016, OASIcs 52, Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, pp. 2:1–2:15, doi:10.4230/OASIcs.ICLP.2016.2.

[14] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2012): Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool Publishers,
doi:10.2200/S00457ED1V01Y201211AIM019.

[15] Michael Gelfond & Vladimir Lifschitz (1991): Classical Negation in Logic Programs and Disjunctive
Databases. New Gener. Comput. 9(3/4), pp. 365–386, doi:10.1007/BF03037169.

[16] Sepp Hochreiter & Jürgen Schmidhuber (1997): Long Short-Term Memory. Neural Comput. 9(8), pp.
1735–1780, doi:10.1162/neco.1997.9.8.1735.

[17] Drew A. Hudson & Christopher D. Manning (2018): Compositional Attention Networks for Machine Rea-
soning. In: 6th International Conference on Learning Representations, OpenReview.net. Available at
https://openreview.net/forum?id=S1Euwz-Rb.

https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.1007/978-3-642-36763-2_47
https://doi.org/10.1007/978-3-642-36763-2_47
https://doi.org/10.1017/S1471068423000170
https://doi.org/10.1016/j.patrec.2021.09.008
https://doi.org/10.1007/978-3-030-39197-3_4
https://doi.org/10.1145/2043174.2043195
https://doi.org/10.1007/978-3-030-91167-6_7
https://doi.org/10.1017/S1471068419000450
https://github.com/praktyka-zawodowa-2020/optical_graph_recognition
https://doi.org/10.24963/IJCAI.2023/408
https://doi.org/10.1017/S1471068422000229
https://doi.org/10.1016/j.artint.2020.103438
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
https://doi.org/10.1007/BF03037169
https://doi.org/10.1162/neco.1997.9.8.1735
https://openreview.net/forum?id=S1Euwz-Rb

28 Visual Graph Question Answering with ASP and LLMs for Language Parsing

[18] Adam Ishay, Zhun Yang & Joohyung Lee (2023): Leveraging Large Language Models to Generate Answer
Set Programs. In: Proceedings of KR 2023, pp. 374–383, doi:10.24963/kr.2023/37.

[19] Jaided AI (2022): EasyOCR. Available at https://https://github.com/JaidedAI/EasyOCR.
[20] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick & Ross B.

Girshick (2017): CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reason-
ing. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, pp.
1988–1997, doi:10.1109/CVPR.2017.215.

[21] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas & Peter Stone (2023):
LLM+P: Empowering Large Language Models with Optimal Planning Proficiency. CoRR abs/2304.11477,
doi:10.48550/arXiv.2304.11477. arXiv:2304.11477.

[22] D. Mack & A. Jefferson (2018): CLEVR graph: A dataset for graph question answering. Available at
https://github.com/Octavian-ai/clevr-graph.

[23] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester & Luc De Raedt
(2021): Neural probabilistic logic programming in DeepProbLog. Artif. Intell. 298, p. 103504,
doi:10.1016/J.ARTINT.2021.103504.

[24] OpenAI (2023): GPT-4 Technical Report, arXiv:2303.08774 [cs.CL].
[25] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish

Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger & Ilya Sutskever (2021): Learning
Transferable Visual Models From Natural Language Supervision. In: 38th International Conference on
Machine Learning, Proceedings of Machine Learning Research 139, PMLR, pp. 8748–8763.

[26] Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar & Gopal Gupta (2023): Reliable Natural Lan-
guage Understanding with Large Language Models and Answer Set Programming. CoRR abs/2302.03780,
doi:10.48550/arXiv.2302.03780. arXiv:2302.03780.

[27] Shaoqing Ren, Kaiming He, Ross B. Girshick & Jian Sun (2017): Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), pp. 1137–1149,
doi:10.1109/TPAMI.2016.2577031.

[28] Heather Riley & Mohan Sridharan (2019): Integrating Non-monotonic Logical Reasoning and Inductive
Learning With Deep Learning for Explainable Visual Question Answering. Frontiers Robotics AI 6, p. 125,
doi:10.3389/FROBT.2019.00125.

[29] Abin M Sabu & Anto Sahaya Das (2018): A Survey on various Optical Character Recognition Tech-
niques. In: 2018 Conference on Emerging Devices and Smart Systems (ICEDSS), pp. 152–155,
doi:10.1109/ICEDSS.2018.8544323.

[30] Dídac Surís, Sachit Menon & Carl Vondrick (2023): ViperGPT: Visual Inference via Python Execution for
Reasoning. CoRR abs/2303.08128, doi:10.48550/arXiv.2303.08128. arXiv:2303.08128.

[31] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser
& Illia Polosukhin (2017): Attention is All you Need. In: Advances in Neural Information Processing Systems
30: Annual Conference on Neural Information Processing Systems 2017, pp. 5998–6008.

[32] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang & Guy Van den Broeck (2018): A Semantic Loss Function
for Deep Learning with Symbolic Knowledge. In: 35th International Conference on Machine Learning,
Proceedings of Machine Learning Research 80, PMLR, pp. 5498–5507.

[33] Zhun Yang, Adam Ishay & Joohyung Lee (2020): NeurASP: Embracing Neural Networks into Answer Set
Programming. In: 29th International Joint Conference on Artificial Intelligence, IJCAI 2020, ijcai.org, pp.
1755–1762, doi:10.24963/ijcai.2020/243.

[34] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli & Josh Tenenbaum (2018): Neural-
Symbolic VQA: Disentangling Reasoning from Vision and Language Understanding. In: Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, pp.
1039–1050.

https://doi.org/10.24963/kr.2023/37
https://https://github.com/JaidedAI/EasyOCR
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.48550/arXiv.2304.11477
https://arxiv.org/abs/2304.11477
https://github.com/Octavian-ai/clevr-graph
https://doi.org/10.1016/J.ARTINT.2021.103504
https://doi.org/10.48550/arXiv.2302.03780
https://arxiv.org/abs/2302.03780
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.3389/FROBT.2019.00125
https://doi.org/10.1109/ICEDSS.2018.8544323
https://doi.org/10.48550/arXiv.2303.08128
https://arxiv.org/abs/2303.08128
https://doi.org/10.24963/ijcai.2020/243

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 29–58, doi:10.4204/EPTCS.416.3

© Agarwal, Sreepathy, Alonso & Lamba
This work is licensed under the
Creative Commons Attribution License.

LLM+Reasoning+Planning for Supporting Incomplete User
Queries in Presence of APIs

Sudhir Agarwal Anu Sreepathy
Intuit AI Research, Mountain View, CA, USA

{sudhir_agarwal, anu_sreepathy}@intuit.com

David H. Alonso Prarit Lamba
Intuit Inc., Mountain View, CA, USA

{david_haroalonso, prarit_lamba}@intuit.com

Recent availability of Large Language Models (LLMs) has led to the development of numerous
LLM-based approaches aimed at providing natural language interfaces for various end-user tasks.
These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs.
In practice, natural language task requests (user queries) are often incomplete, i.e., they may not
contain all the information required by the APIs. While LLMs excel at natural language processing
(NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the
APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical
AI planning along with an LLM for accurately answering user queries including identification and
gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer
Set Programming) solver to translate a user query to a representation in Planning Domain Definition
Language (PDDL) via an intermediate representation in ASP. We introduce a special API “get_-
info_api” for gathering missing information. We model all the APIs as PDDL actions in a way that
supports dataflow between the APIs. Our approach then uses a classical AI planner to generate an
orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation
results show that our approach significantly outperforms a pure LLM based approach by achieving
over 95% success rate in most cases on a dataset containing complete and incomplete single goal and
multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs.

1 Introduction

Customers of large organizations have a variety of questions or requests (collectively known as queries
in the following) pertaining to the organization’s domain of operation. Providing relevant and accurate
responses to such user queries is critical and requires a thorough analysis of the user’s context, product
features, domain knowledge, and organization policies. The user queries may encompass a variety of
types - data lookup and aggregation queries, help requests, how-to questions, record update requests or a
combination of these types.

Recently, transformer-based large language models (LLMs) have shown wide success on many nat-
ural language understanding and translation tasks, also demonstrating some general database query-
ing [5, 16, 25] and reasoning and planning [14, 13, 18, 30] capability on diverse tasks without having
to be retrained. However, the data and knowledge required for accurately answering customers’ queries
are partly or completely organization internal and not available to LLMs trained on publicly available
data. Even in case of organization internal LLM deployments, it is often not feasible to give LLMs direct
access to databases for various security and privacy reasons. In lieu of that, organizations develop APIs
to make these internal artifacts programmatically accessible to the organization’s applications.

Several frameworks and techniques have been proposed for answering user queries using a com-
bination of LLM and tools/APIs, e.g. LangChain [3], Gorilla [21], ToolFormer [23], and TravelPlan-
ner [19, 27]. However, such frameworks rely on LLMs for selecting and composing tools and as a result

http://dx.doi.org/10.4204/EPTCS.416.3
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

30 LLM+Reasoning+Planning for Incomplete Queries over APIs

either do not scale well beyond a small set of APIs/tools or have limited planning and API orchestration
capability. These weaknesses limit the use of such frameworks for practical industrial applications.

To address these limitations, some recent works have investigated the use of an external classical
planner along with an LLM. Given a description of the possible initial states of the world, a description
of the desired goals, and a description of a set of possible actions, the classical planning problem involves
synthesizing a plan that, when applied to any initial state, generates a state which contains the desired
goals (goal state) [9]. The approaches presented in [1, 18] have demonstrated that utilizing an LLM
to create the task PDDL (a representation of a user query as a planning problem in Planning Domain
Definition Language) from a natural language planning task description, and then utilizing an external
classical planner to compute a plan, yields better performance than relying solely on an LLM for end-
to-end planning. However, these approaches have been shown to support only classical planning tasks,
which hinders their use for answering user queries in the presence of APIs.

Furthermore, all the above mentioned approaches assume complete user queries, i.e., queries that
contain all the required information for computing an answer to the query. In practice however, user
queries are often incomplete. In general, detecting and gathering missing information depends on the
granularity of the underlying atomic actions or APIs as well as dataflow among them at runtime. For
example, if a user wants to book a flight and provides the source and destination airports information
but the flight booking API requires the travel date as well, the user query is considered incomplete with
respect to the available APIs. The AutoConcierge framework [31] can detect missing information for a
pre-defined goal assuming that the required information for accomplishing the goal is known a-priori.
However, there is still a need for an approach that can handle different kinds of possibly incomplete
queries.

Figure 1: Overview of user query answering using LLMs and Classical Planning

Figure 1 presents the high level architecture of our approach for supporting several kinds of user
queries using a given set of APIs. We translate a user query to a task PDDL (query’s representation in
PDDL) and use a classical AI planner for orchestrating APIs (plan) for the generated task PDDL. The
plan execution component executes the plan by invoking the APIs in the specified order. For how-to
questions, the plan is not executed but sent to the response generation component. Finally, the response
generation component generates the overall response to be sent to the user from the individual outputs
of the API calls. In this paper, our focus is on the Task PDDL Generation and Planner components in
particular for supporting incomplete user queries.

Agarwal, Sreepathy, Alonso & Lamba 31

Figure 2: Steps for translating a user query to task PDDL

Figure 2 illustrates our process of translating a user query to task PDDL by using a novel combi-
nation of an LLM and logical reasoning using Answer Set Programming (ASP) [2, 17, 7]. We use an
LLM to generate an intermediate representation of a user query in ASP. Our LLM prompting technique
is generic and allows a set of possible user goal specifications to be plugged in. This step is described
in Section 3.1. Such intermediate representations allow us to use an ASP solver to deterministically in-
fer additional information, detect inconsistencies in user queries with respect to domain constraints, and
bridge the syntactic and semantic heterogeneities between a user query and the target task PDDL. We
refer to the union of facts in the intermediate representation and the inferred information as materialized
representation of the user query. This step is described in Section 3.2. In cases, where an intermediate
representation violates any domain constraints, the materialized representation contains corresponding
errors. In these cases, we send the errors back to user. In other cases, we obtain the task PDDL by con-
verting the materialized representation which is in the ASP syntax to PDDL syntax using deterministic
procedural code. This step is described in Section 4.1.

In the next step, we use a classical planner with the task PDDL and an offline created PDDL domain
model which includes domain concepts as predicates and specification of the APIs as PDDL actions
in terms of these domain predicates (Section 2). In addition to the given set of functionality providing
APIs, we introduce a special API get_info_api for gathering missing information from the user or an
external system at runtime in order to support incomplete queries. The planner returns a plan (including
calls to get_info_api in case of incomplete queries) such that the execution of the plan computes the
answer to the user query. The plan generation step is described in Section 4.2.

Since there aren’t any benchmark datasets of incomplete queries to be answered using APIs, we
generated a dataset containing single goal and multi-goal complete and incomplete natural language
queries based off a set of APIs described in Section 2. We refer to a domain concept in a user query as
a goal. Our evaluation results on this dataset show that our approach significantly outperforms a pure
LLM based approach by achieving over 95% success rate in most cases.

2 Specification of APIs as PDDL Actions

Throughout this paper, we use the following APIs which are derived from the set of publicly available
Intuit Developer APIs1 for experimental purposes. • Profit and loss report API: Generates profit and loss
report for a given time period. • Expense and spend report API: Generates expense and spend report for
a given time period. • Invoices and sales report API: Generates invoices and sales report for a given time
period. • Charge lookup API: Generates detailed report for a given charge amount on a given date. • Help
API: Provides answer to a given how-to question in a product. • Contact API: Connects customer to a

1https://developer.intuit.com/app/developer/homepage

https://developer.intuit.com/app/developer/homepage

32 LLM+Reasoning+Planning for Incomplete Queries over APIs

human customer agent over a given communication channel for a conversation on a given topic • Advice
API: Provides advice for a given personal finance or a small business relation question. • Create invoice
API: Creates a new invoice for given amount and invoice detail. • Update customer API: Updates a
customer profile with new first name, last name, phone, and email.

In order to be able to use a classical planner for computing an orchestration of available APIs, we
model each available API as an action in PDDL. PDDL serves as a standardized encoding of classical
planning problems [8, 11]. A PDDL representation of an action consists of the action’s pre-conditions
and effects defined using logical formulas with domain predicates, local variables (action’s parameters)
and constants. Note that unlike familiar procedural programming languages, PDDL actions’ outputs
are also declared as part of action’s parameters. The PDDL representation of a planning problem is
typically separated into two files: a domain PDDL file and a task PDDL file, both of which become
inputs to the planner. Broadly, the domain PDDL file includes declaration of object types, predicates,
and specification of actions. The task PDDL file provides a list of objects to ground the domain, and the
problem’s initial state and goal conditions defined in terms of the predicates.

Below the PDDL representation of the profit&loss API as action profit_loss_api. The action
generates a profit and loss report for given time period. The pre-condition of the action means that
variables ?in1 and ?in2 have type date as well as have a value (i.e., they are not NULL). The ?out
var represents the generated report. The pre-condition also includes that the ?out must have the type
profit_loss_report but must not have a value (indicating that ?out doesn’t represent an already
previously generated report). The effects of the action mean that after execution of the action the value
of ?out is set. Furthermore, the effects mean that after the execution of the action, the generated report
?out has ?in1 and ?in2 as start date and end date of the generated report ?out respectively.

(:action profit_loss_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 date) (has_value ?in1)

(has_type ?in2 date) (has_value ?in2)
(has_type ?out profit_loss_report) (not (has_value ?out)))

:effect (and (start_date ?out ?in1)
(end_date ?out ?in2) (has_value ?out)))

A classical planner will find the above action for a user goal requesting a profit and loss report for
given start and end dates. However, if the start date or the end date or both are not provided, a planner
will fail to find profit_loss_api as relevant action.

We address this problem by introducing a special action get_info_api to gather information from
the user or an external system at runtime. We model get_info_api as a PDDL action as shown below.
The get_info_api action requires a variable of a type that is not set and ensures that it is set after the
execution of get_info_api.

(:action get_info_api
:parameters (?in_var - var ?in_type - var_type)
:precondition (and (has_type ?in_var ?in_type)

(not (has_value ?in_var)))
:effect (and (has_value ?in_var)))

This modeling of get_info_api enables a planner to include get_info_api calls in the plan for
gathering missing information. For example, for the query in Figure 3a we aim at detecting the profit
& loss report API, and asking the user for the missing report time period. Similarly, in case of a more

Agarwal, Sreepathy, Alonso & Lamba 33

(a) Plan for query Show me my profit and loss
report

(b) Plan for query Can I see my profit and loss statement from March to May
2023? I would like to discuss my profits further over chat

Figure 3: Plan for an incomplete and a complete query

complex user query in Figure 3b, we aim at detecting the profit & loss report API and the contact API as
well as the profit & loss report as the conversation topic with the customer agent.

For the purpose of this paper, we have modeled the domain PDDL manually. Efficient authoring of
domain PDDL is out of scope of this work. However, we would like to point that approaches such as [10]
may be leveraged for (semi-) automatically generating the domain PDDL for large domains. Refer to
Appendix B.1 for the specification of all APIs in our dataset.

3 User Query to ASP Representation

As illustrated in Figure 2, in order to generate task PDDL for a user query, in the first step, we use an
LLM for translating the user query to an intermediate representation in ASP. The main reason behind
this step is that LLMs perform well on such translation tasks while they hallucinate when they are also
required to generate logically derivable information [29, 15, 4, 26]. In the second step, we use a logical
reasoner for inferring other information similar to approaches presented in [22, 28, 1].

3.1 User Query to Intermediate Representation

We construct the LLM prompt with the following steps for translating user query to an intermediate
representation in ASP.

Step 1: Define a set of supported goals. The set of goals doesn’t need to have 1:1 correspondence
with the set of APIs. But, the set of goals corresponds to expected user requests. Such a modeling
enables decoupling of user requests from APIs as the end users can not be expected to be familiar with
the APIs (cf. OpenAI function calling approach 2).

Step 2: Describe argument types. For each argument of the supported goals, define the type by giving
a few examples or the set of possible values as appropriate. Below example defines argument types for
date period and communication channel. See Appendix A.1 for definition of all argument types for our
dataset.

2https://platform.openai.com/docs/guides/function-calling

https://platform.openai.com/docs/guides/function-calling

34 LLM+Reasoning+Planning for Incomplete Queries over APIs

arg_type_date_period = {"examples": {"nov 2023": ("11/01/2023",
"11/30/2023"), "fy21": ("01/01/2021", "12/31/2021"), ...}

arg_type_comm_channel = {"possible_values": ["video", "chat", "phone"]}

Step 3: Describe domain goals. Describe each goal using a name, description and required informa-
tion for the goal. Refer to Appendix A.2 for complete list of supported domain goals.

{"name": "goal_1", "description": "request for report on profit, loss,
earnings, business insights, revenue, figures.", "required information":
[{"name": "report_period", "description": "time period of the requested
report defined by start and end dates.", "type" : arg_type_date_period}]}

Step 4: Define instructions. We instruct the LLM to extract goals and required information from the
user query.

Given goal types with their required information. Extract from the
provided user query:
1. The one or more goals of the query from the given set of goals.
Represent each extracted goal <x> of type <T> as "_goal(<x>, <T>).".
2. If the user query contains any required information for the extracted
goal, then extract that too. While doing so, if possible values
are defined for the argument, then choose one from them if applicable.

Step 5: Construct LLM prompt. LLM prompt also includes a few in-context examples that are inde-
pendent of the domain of our dataset. Refer to Appendix A.3 for complete list of in-context examples.

<Instructions as described above>

Below a few examples of goals, text and the answer.

<As in Appendix A.3>

Goals: """ <Domain goals as described above.> """

Text: """ <user query> """

Answer:

Below are a few example queries and their respective intermediate representations in ASP as returned
by the LLM.

Agarwal, Sreepathy, Alonso & Lamba 35

Example 1. Show me 2023 Q1 detailed expense
report.
_goal(x, goal_2).
_report_period(x, ("01/01/2023",

"03/31/2023")).

Example 2. Provide me with the profit and loss
statement for the previous quarter and put me on
a phone call with a representative to discuss it.
_goal(x, goal_1).
_report_period(x, ("07/01/2024",

"09/30/2024")).
_goal(y, goal_4).
_contact_topic(y, x).
_contact_channel(y, "phone").

Example 3. Profit and loss report.
_goal(x, goal_1).

Example 4. I want to chat with a representative.
_goal(x, goal_6).
_contact_channel(x, "chat").

Example 5. Show me expense report from July
2024 to Jan 2024.
_goal(x, goal_2).
_report_period(x, ("07/01/2024",

"01/31/2024")).

The query in Example 1 is a complete query. The query in Example 2 is a complete query with two
goals and dataflow. The profit & loss report x is the topic of the conversation for the contact y. The
queries in Example 3 and Example 4 are incomplete queries as the query in Example 3 doesn’t contain
start and end dates of the report and the query in Example 4 doesn’t contain the conversation topic. The
query in Example 5 contains both the start date and the end date but violates the domain constraint that
the end date must be after the start date.

3.2 Intermediate Representation to Materialized Representation

An intermediate representation captures the content of the user query using formats and predicates that
are closer to those of typical user utterances. In general, user queries cannot be expected to be formulated
using the same vocabulary and format as the arguments of the APIs. In this step, we infer additional
information as well as bridge the syntactic and semantic gaps. We accomplish this by using an ASP
solver, with the intermediate representation and domain rules as inputs. For our current implementation
we use Clingo [6] python package3 as the ASP solver.

Below a snippet of the domain rules for our dataset (see Appendix B.2 for all domain rules). Note
that even though the domain rules needed for our current dataset are rather simple and few in number,
our framework of first translating the query to an intermediate representation in ASP allows us to plug-in
a large number of complex rules if needed.

goal(X, profit_loss_report) :- _goal(X, goal_1).
start_date(X, Y, date) :- goal(X, profit_loss_report), _report_period(X, (Y,_)).
end_date(X, Y, date) :- goal(X, profit_loss_report), _report_period(X, (_,Y)).

goal(X, contact_us) :- _goal(X, goal_4).
contact_topic(X, Y, string) :- goal(X, contact_us), _contact_topic(X, Y).
contact_channel(X, Y, string) :- goal(X, contact_us), _contact_channel(X, Y).
...
error("end date must be after start date") :- start_date(X, D1, date),

end_date(X, D2, date), false == @lte_dates(D1, D2).

3https://pypi.org/project/clingo/

https://pypi.org/project/clingo/

36 LLM+Reasoning+Planning for Incomplete Queries over APIs

The first rule translates the goal type to the type used in the vocabulary of the domain PDDL. The
second and third rules infer start_date and end_date from the the user provided report_period. These
rules also add the data types date, string for the values to facilitate the planning in the later step.
The last rule infers an error when the end date is before the start date. In general, this technique allows
us to generate error messages for complex constraint violations using ASP. For our example queries in
Section 3.1, the ASP solver returns below materialized representations after applying the domain rules
on the intermediate representations of the queries.

Materialized representation for Example 1:
goal(x, expense_spend_report).
start_date(x, "01/01/2023", date).
end_date(x, "03/31/2023", date).

Materialized representation for Example 2:
goal(x, profit_loss_report).
start_date(x, "07/01/2024", date).
end_date(x, "09/30/2024", date).
goal(y, contact_us).
contact_topic(y, x, string).
contact_channel(y, "phone", string).

Materialized representation for Example 3:
goal(x, profit_loss_report).

Materialized representation for Example 4:
goal(x, contact_us).
contact_channel(x, "chat", string).

Materialized representation for Example 5:
goal(x, expense_spend_report).
start_date(x, "07/01/2024", date).
end_date(x, "01/31/2024", date).
error("start date is after end date.").

Note that the materialized representation of Example 5 contains an error atom because the end date is
before the start date. In such cases, we do not continue with task PDDL generation and send the error
back to the user (see also Figure 2).

4 Orchestrate APIs using Planner

4.1 Task PDDL Generation

A materialized representation contains all user provided information in the target terminology and format.
The next and the last step is to generate a plan. In order to be able to do that, we need to convert the
materialized representation to a PDDL representation (task PDDL).

Figure 4 illustrates this process using Example 1. Every goal x becomes a var and every goal type
t becomes a var_type. For each goal x of type t, (a) add (has_type x t) to the init section, (b) for each
argument a of t and predicate p, a var x_a is added to the objects, (has_type x_a t) is added to init,
(p x x_a) is added to goal, and if x_a has a value v, then (has_value x_a v) is added to init. Refer to
Appendix C.1 for the complete algorithm for generating materialized representation to task PDDL. The
output of the algorithm, the task PDDL for Example 1 is shown on the right side Figure 4. Refer to
Appendix C.2 for the task PDDLs of other example queries.

4.2 Plan generation

Once the task PDDL is generated, all we need to do is to call a PDDL planner with the task PDDL and
the domain PDDL. In our implementation we use the Fast Downward Planner 4 [12] with configuration
parameters alias = lama and search-time-limit = 1. In other implementations, where compatibility to
PDDL may not be important, one may also choose an appropriate ASP based planner [24].

4https://www.fast-downward.org/HomePage

https://www.fast-downward.org/HomePage

Agarwal, Sreepathy, Alonso & Lamba 37

Figure 4: Materialized representation to task PDDL for the query Profit and loss report.

Using an external classical AI planner has several benefits such as: • Scalability: AI planners scale
well wrt number of APIs as long as the functionality of APIs can be defined in terms of (Inputs, Outputs,
Preconditions, Effects) with logical formulas. • Support for interaction: In case of incomplete queries
the generated plan includes calls to get_info_api API for gathering information from user • Optimality:
APIs can be assigned a cost; Planner computes an optimal plan wrt the cost function. • Graceful failure:
For out of domain queries planner won’t generate a plan rather than hallucinating.

For the example query Show me 2023 Q1 detailed expense report, the planner generates the plan:
Step 1. x_start_date = "01/01/2023";
Step 2. x_end_date = "03/31/2023";
Step 3. x = expense_spend_api(x_start_date, x_end_date);

For the example query Provide me with the profit and loss statement for the previous quarter and
then put me on a phone call with a representative to discuss it, the planner generates:
Step 1. x_start_date = "07/01/2024";
Step 2. x_end_date = "09/30/2024";
Step 3. y_contact_channel = "phone";
Step 4. x = profit_loss_api(x_start_date, x_end_date);
Step 5. y = contact_us_api(x, y_contact_channel);
Note that the the contact topic is bound to the generated profit and loss report x.

For the example query I want to chat with a representative, the planner generates:
Step 1. x_contact_topic = get_info_api("contact topic", date);
Step 2. x_contact_channel = "chat";
Step 3. x = contact_us_api(x_contact_topic, x_contact_channel);

For the example query Profit and loss report, the planner generates:
Step 1. x_start_date = get_info_api("start date", date);
Step 2. x_end_date = get_info_api("end date", date);
Step 3. x = profit_loss_api(x_start_date, x_end_date);

38 LLM+Reasoning+Planning for Incomplete Queries over APIs

5 Experiments

In this section we present the evaluation results of our approach on a generated dataset containing nat-
ural language user queries related to various topics such as generation of profit & loss reports, invoice
creation, and how-to help requests.

5.1 Dataset Generation

The initial step in the dataset generation process involves using GPT-4 to generate user queries that
represent single goal tasks executable via a subset of the APIs described in Section 2. GPT-4 is prompted
with instructions and in-context examples to guide the generation process and ensure that the resulting
queries align with the requirements of the API. Refer to Appendix D.1 for an example LLM prompt for
dataset generation.

We use the same process to create more complex multi-goal queries simulating a real-world scenario
where a user might seek to perform a series of actions in a single request. For example, “Can I see my
profit and loss statement from March to May 2023? I would like to discuss my profits further over chat.”.
GPT-4 is prompted to generate coherent sequences where the output of one goal execution would become
the input of another (multi-goal with dataflow), and complex queries which required multiple APIs to be
executed independently (multi-goal without dataflow).

Once a sufficient number of single and multi-goal queries are generated, we first manually select
queries that are representative of real user queries. Then, we manually annotate the selected queries with
the ground truth values for the APIs and entities as their arguments. Refer to Appendix D.2 for some
sample data in the dataset.

5.2 Results and Analysis

We consider a query as successfully processed iff the generated plan for answering the query contains
all the ground truth APIs with correct entities as their arguments. In particular, the get_info_api calls
correspond to missing entity values in incomplete queries. This allows us to also measure the success
rate of incomplete queries where the planner should generate get_info_api actions for missing entities
instead of the LLM hallucinating on entity values not present in the query. In our evaluation, a processed
query is either correct or wrong, and never fractionally correct.

Table 1 and Table 2 present the average success rate (with a variance of 1.0) of our system over five
runs on single goal and multi-goal queries respectively. The rows denote the different types of queries
in our dataset. Columns 2 and 7 denoted by # represent the number of complete and incomplete queries
respectively. In case of single goal queries, we report success rate for each goal type. In case of multi-
goal queries, we distinguish between queries with 2 goals and 3 goals with or without dataflow. A query
contains at least one goal and zero or more entities as arguments of the goals. The success rates reported
in Table 1 and Table 2 are at most equal to the smaller of API orchestration success rate and entity values
extraction success rate of the respective classes. See Appendix D.4 for API orchestration success rates
and entity values extraction success rates.

We compare our method to a baseline where an LLM alone extracts the goals and entities in a query
and performs orchestration of APIs. The baseline utilizes function calling method from [20] where APIs
represented as function descriptions are used by the LLM to translate natural language query into function
calls. Refer to Appendix D.3 for the LLM prompt used for the baseline approach. In our experiments,
we observe that our approach significantly outperforms the baseline in most cases for single goal queries.

Agarwal, Sreepathy, Alonso & Lamba 39

Table 1: Success rate % of our approach compared with a baseline of end-to-end LLM based approach
on single goal queries

Complete Queries Incomplete Queries
GPT-4 GPT3.5 # GPT4 GPT3.5

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

profit & loss report 70 22.86 98.57 81.43 100 2 0 100 0 100

expense report 42 23.81 100 90.48 100 0 - - - -

invoice sales report 33 54.55 90.91 84.85 93.94 12 0 100 0 91.67

charge lookup 33 81.82 100 96.97 93.94 5 40.00 100 0 100

how-to help 60 68.33 98.33 68.33 90.00 0 - - - -

contact us request 10 40.00 100 70.00 100 47 0 91.49 0 85.11

financial advice 100 81.00 94.00 94.00 97.00 0 - - - -

create invoice 40 57.50 100 100 100 20 0 100 0 100

update customer 3 0 100 100 100 30 6.67 100 6.67 100

For complete queries, the baseline approach often fails to detect the correct goal or extract the entities
in a query correctly. The former is mainly due to overlap in the API functionalities and thus the goals,
e.g., there are three report generating APIs. The latter is due to large variation in expressing the same
entity value. In addition, the baseline approach performs poorly on incomplete queries. In particular, the
baseline approach with GPT-4 asks unnecessary clarification questions in case of complete queries and
both GPT-4 and GPT-3.5 hallucinate on missing entity values in case of incomplete queries. We also
observe that our approach can handle multi-goal complete and incomplete queries with high success rate
while the baseline completely fails to orchestrate these queries correctly.

Overall, the increase in success rate in our approach can be attributed to the use of an LLM only for
translating a user query coupled with the use of deterministic tools such as a logical reasoner and a plan-
ner for inferring additional information and generating a plan respectively. In particular, using an LLM
to translate to an intermediate representation that is closer to the user query increases the translation ac-
curacy as well as minimizes the hallucination. Furthermore, using a logical reasoner facilitates accurate
mapping to target schema with the help of ASP rules even in complex domains where an LLM would
often generate incorrect inferences. Similarly, using an external planner computes only feasible plans.
In case of single goal complete queries, the increase in success rate is due to the use of intermediate
representation and reasoning, and the planner doesn’t add any additional value as the materialized rep-
resentation itself can be seen as an equivalent to a plan. In case of single goal or multi-goal incomplete
queries as well multi-goal complete queries with dataflow, the increase in the success rate is due to use
of intermediate representation, logical reasoning, and the planner.

Our approach requires per query one LLM call, one ASP solver call, and one planner call. The total
execution time for processing one query in case of GPT-4 is 3–5 seconds and 0.5–1 seconds in case
of GPT-3.5. In both cases over 99% of total time is consumed by the LLM call(s) in the translation

40 LLM+Reasoning+Planning for Incomplete Queries over APIs

Table 2: Success rate % of our approach compared with a baseline of end-to-end LLM based approach
on multi-goal queries.

Complete Queries Incomplete Queries
GPT-4 GPT-3.5 # GPT-4 GPT-3.5

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

2 APIs w/o dataflow 15 0 100 0 100 10 0 100 0 100

2 APIs with dataflow 20 0 90 0 70 10 0 80 0 60

3 APIs with dataflow 4 0 100 0 75 16 0 75 0 62.50

step. Note that our LLM response times are measured in a setup with shared resources across all LLM
projects within our organization. We believe that the latency will be significantly lower with dedicated
LLM access.

6 Conclusion

In this paper, we studied the problem of answering incomplete user queries in presence of APIs. To the
best of our knowledge, ours is the first approach to address this problem. Our approach introduces a
novel combination of LLMs, logical reasoning, and classical AI planning to support queries that can be
complete or incomplete requiring only one API or an orchestration of multiple APIs. Furthermore, our
approach supports queries of different kinds such as information seeking queries, how-to queries, and
state changing queries. Our evaluation results show that our approach achieves high success rate (over
95% in most cases including 100% in some cases). Our approach is generic in the sense that it doesn’t
depend on a particular set of APIs but allows API specifications to be plugged in. The significant success
rate improvement as compared to a pure LLM based baseline can be attributed to the use of interpretable
intermediate representation, logical reasoning, and classical AI planning.

Our approach has a few limitations which we plan to address in our future work. Currently, we send
the metadata for all supported goals of the domain to an LLM as part of the prompt. This technique can
overshoot the LLM token limit in cases where there are a large number of possible goals in the domain.
Currently, our approach only supports queries but not user’s soft preferences. One way to address this
gap, at least for some types of user preferences, could be to translate them to a cost function which AI
planners can directly support. Lastly, the use of AI planner requires the APIs be specified with accurate
IOPE specifications in PDDL which may not be applicable for all APIs or difficult to create for APIs
with complex functionality.

References

[1] Sudhir Agarwal & Anu Sreepathy (2024): TIC: Translate-Infer-Compile for accurate “text to plan” us-
ing LLMs and Logical Representations. In: Proceedings of the 18th International Conference on Neural-
Symbolic Learning and Reasoning, Residència d’Investigadors Barcelona, Spain, September 9-12, 2024,
LNCS/LNAI, Springer. Available at https://arxiv.org/abs/2402.06608.

https://arxiv.org/abs/2402.06608

Agarwal, Sreepathy, Alonso & Lamba 41

[2] Gerhard Brewka, Thomas Eiter & Miroslaw Truszczynski (2011): Answer set programming at a glance.
Commun. ACM 54(12), pp. 92–103. Available at https://doi.org/10.1145/2043174.2043195.

[3] Harrison Chase (2022): LangChain. Available at https://github.com/langchain-ai/langchain.
[4] Luciano Floridi & Massimo Chiriatti (2020): GPT-3: Its Nature, Scope, Limits, and Consequences. Minds

Mach. 30(4), pp. 681–694. Available at https://doi.org/10.1007/s11023-020-09548-1.
[5] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding & Jingren Zhou (2024): Text-

to-SQL Empowered by Large Language Models: A Benchmark Evaluation. Proc. VLDB Endow. 17(5),
pp. 1132–1145, doi:10.14778/3641204.3641221. Available at https://www.vldb.org/pvldb/vol17/
p1132-gao.pdf.

[6] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2019): Multi-shot ASP solving
with clingo. Theory Pract. Log. Program. 19(1), pp. 27–82. Available at https://doi.org/10.1017/
S1471068418000054.

[7] Michael Gelfond & Vladimir Lifschitz (1988): The Stable Model Semantics for Logic Programming. In:
Logic Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington,
USA, August 15-19, 1988 (2 Volumes), MIT Press, pp. 1070–1080.

[8] M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott, A. Ram, M. Veloso, D. Weld & D. Wilkins (1998):
PDDL—The Planning Domain Definition Language. Available at https://www.cs.cmu.edu/~mmv/
planning/readings/98aips-PDDL.pdf.

[9] Malik Ghallab, Dana S. Nau & Paolo Traverso (2004): Automated planning - theory and practice. Elsevier.
[10] Lin Guan, Karthik Valmeekam, Sarath Sreedharan & Subbarao Kambhampati (2023): Leveraging Pre-

trained Large Language Models to Construct and Utilize World Models for Model-based Task Planning.
In: Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.

[11] Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni & Christian Muise (2019): An Introduction to the Plan-
ning Domain Definition Language. Synthesis Lectures on Artificial Intelligence and Machine Learning,
Morgan & Claypool Publishers, doi:10.1007/978-3-031-01584-7.

[12] M. Helmert (2006): The Fast Downward Planning System. Journal of Artificial Intelligence Research 26, p.
191–246, doi:10.1613/jair.1705.

[13] Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan Tompson,
Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda Luu, Sergey Levine,
Karol Hausman & Brian Ichter (2022): Inner Monologue: Embodied Reasoning through Planning with
Language Models. arXiv:2207.05608.

[14] Brian Ichter & ... (2022): Do As I Can, Not As I Say: Grounding Language in Robotic Affordances. In:
Conference on Robot Learning, CoRL 2022, 14-18 December 2022, Auckland, New Zealand, Proceedings of
Machine Learning Research 205, PMLR, pp. 287–318. Available at https://proceedings.mlr.press/
v205/ichter23a.html.

[15] Jack Kelly, Alex Calderwood, Noah Wardrip-Fruin & Michael Mateas (2023): There and Back Again: Ex-
tracting Formal Domains for Controllable Neurosymbolic Story Authoring. In: Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment, October 08-12, 2023, Salt Lake
City, UT, USA, AAAI Press, pp. 64–74. Available at https://doi.org/10.1609/aiide.v19i1.27502.

[16] Zhishuai Li, Xiang Wang, Jingjing Zhao, Sun Yang, Guoqing Du, Xiaoru Hu, Bin Zhang, Yuxiao Ye, Ziyue
Li, Rui Zhao & Hangyu Mao (2024): PET-SQL: A Prompt-enhanced Two-stage Text-to-SQL Framework with
Cross-consistency. arXiv:2403.09732.

[17] Vladimir Lifschitz (2008): What Is Answer Set Programming? In: Proceedings of the Twenty-Third AAAI
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, AAAI Press,
pp. 1594–1597. Available at http://www.aaai.org/Library/AAAI/2008/aaai08-270.php.

[18] Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas & Peter Stone (2023):
LLM+P: Empowering Large Language Models with Optimal Planning Proficiency. arXiv:2304.11477.

https://doi.org/10.1145/2043174.2043195
https://github.com/langchain-ai/langchain
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.14778/3641204.3641221
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://www.vldb.org/pvldb/vol17/p1132-gao.pdf
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.1017/S1471068418000054
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://www.cs.cmu.edu/~mmv/planning/readings/98aips-PDDL.pdf
https://doi.org/10.1007/978-3-031-01584-7
https://doi.org/10.1613/jair.1705
https://arxiv.org/abs/2207.05608
https://proceedings.mlr.press/v205/ichter23a.html
https://proceedings.mlr.press/v205/ichter23a.html
https://doi.org/10.1609/aiide.v19i1.27502
https://arxiv.org/abs/2403.09732
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
https://arxiv.org/abs/2304.11477

42 LLM+Reasoning+Planning for Incomplete Queries over APIs

[19] Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu & Jianfeng
Gao (2023): Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models. In: Ad-
vances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing
Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023.

[20] OpenAI (2024): Function calling. Available at https://platform.openai.com/docs/guides/
function-calling.

[21] Shishir G. Patil, Tianjun Zhang, Xin Wang & Joseph E. Gonzalez (2023): Gorilla: Large Language Model
Connected with Massive APIs. arXiv:2305.15334.

[22] Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar & Gopal Gupta (2023): Reliable Natural Language
Understanding with Large Language Models and Answer Set Programming. In: Proceedings 39th Interna-
tional Conference on Logic Programming, ICLP 2023, Imperial College London, UK, 9th July 2023 - 15th
July 2023, EPTCS 385, pp. 274–287. Available at https://doi.org/10.4204/EPTCS.385.27.

[23] Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer, Nicola
Cancedda & Thomas Scialom (2023): Toolformer: Language Models Can Teach Themselves to Use Tools.
arXiv:2302.04761.

[24] Tran Cao Son, Enrico Pontelli, Marcello Balduccini & Torsten Schaub (2023): Answer Set Planning: A
Survey. Theory Pract. Log. Program. 23(1), pp. 226–298. Available at https://doi.org/10.1017/
S1471068422000072.

[25] Bing Wang, Yan Gao, Zhoujun Li & Jian-Guang Lou (2023): Know What I don’t Know: Handling Ambiguous
and Unknown Questions for Text-to-SQL. In: Findings of the Association for Computational Linguistics:
ACL 2023, Toronto, Canada, July 9-14, 2023, Association for Computational Linguistics, pp. 5701–5714.

[26] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le & Denny Zhou (2022): Chain-of-Thought Prompting Elicits Reasoning in Large Lan-
guage Models. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho &
A. Oh, editors: Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022. Available at http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

[27] Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze Lou, Yuandong Tian, Yanghua Xiao & Yu Su (2024):
TravelPlanner: A Benchmark for Real-World Planning with Language Agents. arXiv:2402.01622.

[28] Zhun Yang, Adam Ishay & Joohyung Lee (2023): Coupling Large Language Models with Logic Program-
ming for Robust and General Reasoning from Text. In: Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14, 2023, Association for Computational Linguistics, pp.
5186–5219. Available at https://doi.org/10.18653/v1/2023.findings-acl.321.

[29] Eric Zelikman, Qian Huang, Gabriel Poesia, Noah D. Goodman & Nick Haber (2023): Parsel: Algorithmic
Reasoning with Language Models by Composing Decompositions. In: Advances in Neural Information
Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023. Available at http://papers.nips.cc/paper_files/
paper/2023/hash/6445dd88ebb9a6a3afa0b126ad87fe41-Abstract-Conference.html.

[30] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Marcin Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael S. Ryoo, Vikas Sindhwani, Johnny Lee, Vincent Vanhoucke &
Pete Florence (2023): Socratic Models: Composing Zero-Shot Multimodal Reasoning with Language. In:
The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023, OpenReview.net. Available at https://openreview.net/forum?id=G2Q2Mh3avow.

[31] Yankai Zeng, Abhiramon Rajasekharan, Parth Padalkar, Kinjal Basu, Joaquín Arias & Gopal Gupta (2024):
Automated Interactive Domain-Specific Conversational Agents that Understand Human Dialogs. In: Practi-
cal Aspects of Declarative Languages - 26th International Symposium, PADL 2024, London, UK, January 15-
16, 2024, Proceedings, Lecture Notes in Computer Science 14512, Springer, pp. 204–222, doi:10.1007/978-
3-031-52038-9_13.

https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://arxiv.org/abs/2305.15334
https://doi.org/10.4204/EPTCS.385.27
https://arxiv.org/abs/2302.04761
https://doi.org/10.1017/S1471068422000072
https://doi.org/10.1017/S1471068422000072
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://arxiv.org/abs/2402.01622
https://doi.org/10.18653/v1/2023.findings-acl.321
http://papers.nips.cc/paper_files/paper/2023/hash/6445dd88ebb9a6a3afa0b126ad87fe41-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6445dd88ebb9a6a3afa0b126ad87fe41-Abstract-Conference.html
https://openreview.net/forum?id=G2Q2Mh3avow
https://doi.org/10.1007/978-3-031-52038-9_13
https://doi.org/10.1007/978-3-031-52038-9_13

Agarwal, Sreepathy, Alonso & Lamba 43

A Translation Prompt

A.1 Argument Types

arg_type_date_period = {'examples': {'nov 2023' : ('11/01/2023',
'11/30/2023'), 'april 15 2022-june 30 2022' : ('04/15/2022',
'06/30/2022'), 'fy21': ('01/01/2021','12/31/2021'), '1 Half 2023':
('01/01/2023','06/30/2023'), '6/22 to 7/22': ('06/01/2022',
'07/31/2022'), '1Q23' : ('01/01/2023', '03/31/2023'),
'Mar-Apr 2022': ('03/01/2022','04/30/2022'),
'April end-June start 2023': ('04/30/2023', '06/01/2023')}}

arg_type_date = {'examples' : {'1 nov 2023' : '11/01/2023',
'11th November \'18': '11/11/2018', 'april 15 2022' : '04/15/2022',
'2/21/18': '02/21/2018'}}

arg_type_amount = {'examples': {'$2': '2.00', '$15.90': '15.99',
'$4,500' : '4500.00', '$65': '65.00'}}

arg_type_qb_feature = {'possible_values': ['accounts payable',
'add trips manually', 'bank statements', 'budget', 'capital', '
categorization', 'certification', 'change business name',
'connect to bank', 'deposits', 'depreciation',
'import journal entries', 'inventory', 'melio', 'overtime',
'payroll', 'purchase order', 'purchase orders', 'reclassify',
'recover deleted account', 'reset account', 'record an expense',
'reconciliation', 'shortcuts', 'timesheets', 'timesheets/payroll',
'vendors', 'write off bad debt']}

arg_type_conversation_topic = {'possible_values': [
'account', 'Accounts Payable', 'Accounts Receivable',
'Accounting Software', 'Bank Reconciliation', 'Billing',
'Bookkeeping', 'Budget', 'Budget Tracking and Forecasting',
'Cash Flow Management', 'Financial Analysis', 'Financial Planning',
'Financial Reporting', 'Fixed Assets', 'insurance',
'Inventory Management', 'Invoicing', 'issue', 'order', 'password',
'Payroll', 'product', 'Purchase Orders', 'questions',
'Reconciliations', 'returns', 'technical', 'shipping',
'service_plan', 'tax', 'Tax Filing', 'Vendor Management']}

arg_type_conversation_channel = {'possible_values': ['speak', 'talk',
'connect', 'video', 'chat', 'phone']}

arg_type_invoice_detail = {'possible_values':['Construction Project',
'Tutoring Services', 'Website Design', 'Car Repair',
'Catering Services', 'Event Management', 'Graphic Design',

44 LLM+Reasoning+Planning for Incomplete Queries over APIs

'Photography Service', 'Marketing Campaign',
'Business Consultation', 'Furniture Supplies', 'Cleaning Service',
'Painting Service', 'IT Consultancy', 'Accounting Services',
'Renovation Work', 'Gardening Service', 'Legal Consultation',
'Transportation Service', 'Personal Training Services',
'catering service', 'marathon coaching', 'construction project',
'baking class', 'introduction tutorial', 'lawn service',
'grooming service', 'violin lesson', 'pilates session',
'IT project', 'yoga class', 'personal training',
'marketing consultation', 'premium subscription',
'legal consultation', 'bartending service', 'reiki session',
'mobile application development', 'home renovation service',
'furnace inspection', 'dancing lessons', 'car repair service',
'freelance design work', 'piano lessons', 'cleaning service',
'plumbing service', 'hairstyling', 'landscaping service',
'catering service', 'logistics service',
'personal fitness training', 'graphic design work',
'babysitting service', 'real estate consultancy', 'SEO services',
'web development work', 'tailoring service', 'carpentry work',
'security service', 'digital marketing service']}

arg_type_given_name = {'examples' : ['John', 'Mary']}

arg_type_family_name = {'examples' : ['Smith', 'Fischer']}

arg_type_email = {'examples' : ['j.fischer@abc.com']}

arg_type_phone = {'examples' : ['987-654-3210']}

A.2 Domain Goals

[{'type': 'goal_1',
'description': 'request for generating a report on one of
[profit_and_loss, income, business_insights, figures,
operating_income, report, revenue, earnings].',

'required information': [{'name': 'report_period',
'description': 'time period defined by start and end dates.
consider leap year while generating feb dates.',
'type': arg_type_date_period}],

'examples': [{'Earnings Summary?': '_goal(x, goal_1, earnings).'},
{'type': 'goal_2',

'description': 'request for generating a report on one of [expense,
spend, bills, operating_expense, spend_figures, spending_insight,
spend_report, expense_report, business_insights].',

'required information': [{'name': 'report_period',

Agarwal, Sreepathy, Alonso & Lamba 45

'description': 'time period defined by start and end dates.
Consider leap year while generating feb dates.', 'type':
arg_type_date_period}],

'examples': [{'What was the total expense for the first quarter of
2023?': '_goal(x, goal_2, expense_report). _report_period(x

("01/01/2023","03/31/2023")).'}]},
{'type': 'goal_3',

'description': 'request for generating a report on one of
[earnings, pending_payments, due_accounts, invoices,
invoice_report, sales, accrued_expense, financial_forecast,
revenue, report].',

'required information': [{'name': 'report_period',
'description': 'time period defined by start and end dates.
Consider leap year while generating feb dates.', 'type':
arg_type_date_period}], 'examples': [{'Show me all the
invoices generated between March 1, 2022, and June 1, 2022':
'_goal(x, goal_3, invoices).

_report_period(x, ("03/01/2022","06/01/2022")).'}]},
{'type': 'goal_4', 'description': 'request for one of [charge_lookup]',

'required_information': [{'name': 'date_of_charge', 'description':
'date of charge.', 'type': arg_type_date},{'name':
'amount_of_charge', 'description': 'amount of charge.', 'type':
arg_type_amount}],
'examples': [{'Why am I being charged $30.00?': '_goal(x, goal_4,
charge_lookup). _amount_of_charge(x, "30.00").'}]},

{'type': 'goal_5', 'description': 'request for instructions
on accomplishing a task in quickbooks.','required_information': [
{'name': 'help_topic', 'description': 'quickbooks product
feature relevant for the task to be accomplished', 'type':
arg_type_qb_feature}],
'examples': [{'What is the process for approving and
fulfilling purchase orders?': '_goal(x, goal_5).
_help_topic(x, "purchase orders").'}]},

{'type': 'goal_6',
'description': 'request for a conversation with a person on the
best matching conversation topic using best matching
conversation medium.', 'required information': [{'name':
'contact_topic', 'description': 'topic of conversation.', 'type':
arg_type_conversation_topic}, {'name': 'contact_channel',
'description': 'explicitly mentioned medium of
conversation.', 'type': arg_type_conversation_channel},],
'examples': [{'I have some questions about billing. Can I chat
with an expert about it?': '_goal(x, goal_6, expert).
_contact_topic(x, "Billing"). _contact_channel(x, "chat").'},
{'Can I speak to a representative?': '_goal(x, goal_6,

46 LLM+Reasoning+Planning for Incomplete Queries over APIs

representative). _contact_channel(x, "speak").'},
{'Can I talk to an expert? What is the best way?': '_goal(x,
goal_6, expert). _contact_channel(x, "talk").'},
{'Can I book a phone call with a call agent?':
'_goal(x, goal_6, call_agent). _contact_channel(x, "phone").'},
{'Could I please speak with someone who can answer my questions?':
'_goal(x, goal_6, representative). _contact_channel(x, "speak").
_contact_topic(x, "questions").'}]},

{'type': 'goal_7',
'description': 'request for an advice about one of ["business
analysis", "business comparison", "business recommendation",
"personal finance", "business expense", "profit making"].',
'required information': [],

'examples': [{'Any advice for dealing with monthly recurring
expenses?': '_goal(x, goal_7).'}, {'How does my liquidity compare
to similar businesses?': '_goal(x, goal_7).'}]},

{'type': 'goal_8',
'description': 'request for creating a new invoice for a given
amount and invoice detail.',
'required information': [{'name': 'invoice_amount', 'description':
'amount of invoice.', 'type': arg_type_amount},
{'name': 'invoice_detail', 'description': 'detail of invoice.',
'type': arg_type_invoice_detail},],
'examples' : [{'Invoice needed of $200 for grooming service':
'_goal(x, goal_8, new_invoice). _invoice_amount(x, "200.00").
_invoice_detail(x, "grooming service").'}]},

{'type': 'goal_9', 'description': 'request for updating a customer
profile', 'required information': [{'name': 'customer_given_name',
'description': 'customer given name in customer profile.', 'type':
arg_type_given_name}, {'name': 'customer_family_name',
'description': 'customer family name in customer profile.', 'type':
arg_type_family_name}, {'name': 'customer_email',
'description': 'customer email in customer profile.' ,'type':
arg_type_email}, {'name': 'customer_phone', 'description':
'customer phone in customer profile.', 'type': arg_type_phone}],
'examples': [{'Can you add a new profile for Henry Davis?':
'_goal(x, goal_9, customer_profile). _customer_given_name
(x, "Henry"). _customer_family_name(x, "Davis").'}]

}
]

Agarwal, Sreepathy, Alonso & Lamba 47

A.3 In-context Examples

arg_type_color = {'name': 'color', 'description': 'color of an object',
'type': {'description': 'color of an object', 'possible_values':
['red', 'green', 'blue', 'yellow']}}

arg_type_shape = {'name': 'shape', 'description': 'shape of an object',
'type': {'description': 'shape on an object', 'possible_values':
['large', 'big', 'small', 'medium']}}

ex_goal_types = [
{'type': 'fruits_goods', 'description': 'request for report about
one of [apple, orange, ball].', 'required information':
[arg_type_color, arg_type_shape]},

]

Goals: <AS ABOVE>

Text: show me red apples.

Answer:
% --- begin ---
_goal(x, fruits_goods, apple).
_color(x, "red").
% --- end ---

Goals: <AS ABOVE>

Text: which large oranges are green.

Answer:
% --- begin ---
_goal(x, fruits_goods, orange).
_color(x, "green").
_shape(x, "large").
% --- end ---

Goals: Goals: <AS ABOVE>

Text: big blue balls.

Answer:
% --- begin ---
_goal(x, fruits_goods, ball).
_color(x, "blue").
_shape(x, "big").

48 LLM+Reasoning+Planning for Incomplete Queries over APIs

% --- end ---

Goals: Goals: <AS ABOVE>

Text: red oranges

Answer:
% --- begin ---
_goal(x, fruits_goods, orange).
_color(x, "red").
% --- end ---

Goals: Goals: <AS ABOVE>

Text: list of small oranges that are yellow

Answer:
% --- begin ---
_goal(x, fruits_goods, orange).
_color(x, "yellow").
_shape(x, "small").
% --- end ---

B Domain Modeling

B.1 Domain PDDL

(define (domain gen-orch-planner)
(:requirements :strips)
(:types

var - object
var_type - object

)
(:predicates

(report_start_date ?r - var ?t - var)
(report_end_date ?r - var ?t - var)
(charge_date ?r - var ?t - var)
(charge_amount ?r - var ?t - var)
(help_topic ?r - var ?t - var)
(contact_us_topic ?r - var ?t - var)
(contact_us_channel ?r - var ?t - var)
(invoice_amount ?r - var ?t - var)
(invoice_detail ?r - var ?t - var)
(customer_given_name ?r - var ?t - var)

Agarwal, Sreepathy, Alonso & Lamba 49

(customer_family_name ?r - var ?t - var)
(customer_email ?r - var ?t - var)
(customer_phone ?r - var ?t - var)
(has_type ?a - var ?t - var_type)
(has_value ?a - var)

)

(:action get_info_api
:parameters (?in_var - var ?in_type - var_type)
:precondition (and (has_type ?in_var ?in_type)

(not (has_value ?in_var)))
:effect (and (has_value ?in_var)))

(:action profit_loss_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 date) (has_value ?in1)

(has_type ?in2 date) (has_value ?in2)
(has_type ?out profit_loss_report) (not (has_value ?out)))

:effect (and (report_start_date ?out ?in1)
(report_end_date ?out ?in2) (has_value ?out)))

(:action expense_spend_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 date) (has_value ?in1)

(has_type ?in2 date) (has_value ?in2)
(has_type ?out expense_spend_report) (not (has_value ?out)))

:effect (and (report_start_date ?out ?in1)
(report_end_date ?out ?in2) (has_value ?out)))

(:action invoice_sales_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 date) (has_value ?in1)

(has_type ?in2 date) (has_value ?in2)
(has_type ?out invoice_sales_report) (not (has_value ?out)))

:effect (and (report_start_date ?out ?in1)
(report_end_date ?out ?in2) (has_value ?out)))

(:action charge_lookup_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 date) (has_value ?in1)

(has_type ?in2 number) (has_value ?in2)
(has_type ?out charge_lookup_report) (not (has_value ?out)))

:effect (and (charge_date ?out ?in1) (charge_amount ?out ?in2)
(has_value ?out)))

50 LLM+Reasoning+Planning for Incomplete Queries over APIs

(:action help_api
:parameters (?in1 - var ?out - var)
:precondition (and (has_type ?in1 string) (has_value ?in1)

(has_type ?out help) (not (has_value ?out)))
:effect (and (help_topic ?out ?in1) (has_value ?out)))

(:action contact_us_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 contact_topic) (has_value ?in1)

(has_type ?in2 contact_channel) (has_value ?in2)
(has_type ?out contact) (not (has_value ?out)))

:effect (and (contact_us_topic ?out ?in1)
(contact_us_channel ?out ?in2) (has_value ?out)))

(:action create_invoice_api
:parameters (?in1 - var ?in2 - var ?out - var)
:precondition (and (has_type ?in1 number) (has_value ?in1)

(has_type ?in2 string) (has_value ?in2) (has_type ?out invoice)
(not (has_value ?out)))

:effect (and (invoice_amount ?out ?in1) (invoice_detail ?out ?in2)
(has_value ?out)))

(:action update_customer_api
:parameters (?in1 - var ?out - var)
:precondition (and

(has_type ?in1 customer_given_name) (has_value ?in1)
(has_type ?in2 customer_family_name) (has_value ?in2)
(has_type ?in3 customer_email) (has_value ?in3)
(has_type ?in4 customer_phone) (has_value ?in4)
(has_type ?out customer))

:effect (and (customer_given_name ?out ?in1)
(customer_family_name ?out ?in2) (customer_email ?out ?in3)
(customer_phone ?out ?in4) (has_value ?out)))

)

B.2 Domain Rules

goal(X, profit_loss_report) :- _goal(X, goal_1, _).
start_date(X, Y1, date) :- goal(X, profit_loss_report),

_report_period(X, (Y1, Y2)).
end_date(X, Y2, date) :- goal(X, profit_loss_report),

_report_period(X, (Y1, Y2)).

goal(X, expense_spend_report) :- _goal(X, goal_2, _).
start_date(X, Y1, date) :- goal(X, expense_spend_report),

Agarwal, Sreepathy, Alonso & Lamba 51

_report_period(X, (Y1, Y2)).
end_date(X, Y2, date) :- goal(X, expense_spend_report),

_report_period(X, (Y1, Y2)).

goal(X, invoices_sales_report) :- _goal(X, goal_3, _).
start_date(X, Y1, date) :- goal(X, invoices_sales_report),

_report_period(X, (Y1, Y2)).
end_date(X, Y2, date) :- goal(X, invoices_sales_report),

_report_period(X, (Y1, Y2)).

goal(X, charge_lookup) :- _goal(X, goal_4, _).
charge_date(X, Y, date) :- goal(X, charge_lookup),

_date_of_charge(X, Y).
charge_amount(X, Y, number) :- goal(X, charge_lookup),

_amount_of_charge(X, Y).

goal(X, helpgpt) :- _goal(X, goal_5).
help_topic(X, Y, string):- _help_topic(X, Y).

goal(X, contact_us) :- _goal(X, goal_6, _).
contact_topic(X, Y, fuzzy_string) :- goal(X, contact_us),

_contact_topic(X, Y).
contact_channel(X, Y, fuzzy_string) :- goal(X, contact_us),

_contact_channel(X, Y), Y == "video".
contact_channel(X, Y, fuzzy_string) :- goal(X, contact_us),

_contact_channel(X, Y), Y == "chat".
contact_channel(X, Y, fuzzy_string) :- goal(X, contact_us),

_contact_channel(X, Y), Y == "phone".

goal(X, advice) :- _goal(X, goal_7).

goal(X, create_invoice) :- _goal(X, goal_8, new_invoice).
invoice_amount(X, Y, number) :- goal(X, create_invoice),

_invoice_amount(X, Y).
invoice_detail(X, Y, fuzzy_string) :- goal(X, create_invoice),

_invoice_detail(X, Y).

goal(X, update_customer) :- _goal(X, goal_9, customer_profile).
customer_given_name(X, Y, string) :- goal(X, update_customer),

_customer_given_name(X, Y).
customer_family_name(X, Y, string) :- goal(X, update_customer),

_customer_family_name(X, Y).
customer_email(X, Y, string) :- goal(X, update_customer),

_customer_email(X, Y).
customer_phone(X, Y, string) :- goal(X, update_customer),

52 LLM+Reasoning+Planning for Incomplete Queries over APIs

_customer_phone(X, Y).

error("end date must be after start date") :- start_date(X, D1, date),
end_date(X, D2, date), false == @lte_dates(D1, D2).

...

C Query ASP to Task PDDL

C.1 Query ASP to Task PDDL Algorithm

str_objects← ""
str_init← ""
str_goal← ""
Initialize objects←{var_type : /0,var : /0}. Initialize all_vars← /0.
for each goal in goals do

Add goal to objects[var_type].
for each var in goals[goal] do

add goals[goal][var][type] to objects[var_type]
add var to all_vars

for each atom in the ASP model do
goal_var, goal_name← atom.arguments[0], atom.arguments[1]
if atom.name == "goal" then

Add goal_var to objects[var]
str_init += "(has_type " + goal_var + " " + goal_name + ")"
for each arg of goals[goal_name] do

arg_var← goal_var+"_"+arg
arg_type← goals[goal_name][arg]["type"]
pred_name← goals[goal_name][arg]["predicate"]
Add arg_var to ob jects[var]
str_init += "(has_type " + arg_var + " " + arg_type + ")"
str_goal += "(" + pred_name + " " + goal_var + " " + arg_var + ")"

else if atom.name in all_vars then
goal_var← atom.arguments[0].name
var← goal_var + "_" + atom.name
str_goal += "(" + atom.name + " " + goal_var + " " + var + ")"

str_objects += " ".join(objects[var]) + " - " + var
str_objects += " ".join(objects[var_type]) + " - " + var_type

C.2 Example Task PDDLs

(define (problem example1)
(:domain query-to-plan)
(:objects

profit_loss_report - var_type
x_end_date x_start_date x - var

Agarwal, Sreepathy, Alonso & Lamba 53

)
(:init

(has_type x profit_loss_report)
(has_type x_start_date date)
(has_type x_end_date date)

)
(:goal (and

(report_start_date x x_start_date)
(report_end_date x x_end_date)

))
)

(define (problem example2)
(:domain query-to-plan)
(:objects

expense_spend_report - var_type
x_end_date x_start_date x - var

)
(:init

(has_type x profit_loss_report)
(has_type x_start_date date)
(has_value x_start_date "01/01/2023")
(has_type x_end_date date)
(has_value x_end_date "03/31/2023")

)
(:goal (and

(report_start_date x x_start_date)
(report_end_date x x_end_date)

))
)

(define (problem example3)
(:domain query-to-plan)
(:objects

contact_us - var_type
x_topic x_channel x - var

)
(:init

(has_type x contact_us)
(has_type x_topic string)
(has_type x_channel string)
(has_value x_channel "chat")

)
(:goal (and

(contact_us_topic x x_topic)
(contact_us_channel x x_channel)

54 LLM+Reasoning+Planning for Incomplete Queries over APIs

))
)

(define (problem example4)
(:domain query-to-plan)
(:objects

contact date contact_channel contact_topic
profit_loss_report - var_type
y x_end_date y_contact_channel x_start_date
y_contact_topic x - var

)
(:init

(has_type y contact)
(has_type y_contact_topic contact_topic)
(has_type y_contact_channel contact_channel)
(has_type x profit_loss_report)
(has_type x_start_date date)
(has_type x_end_date date)
(has_value x_start_date)
(value x_start_date "last quarter start")
(has_value x_end_date)
(value x_end_date "last quarter end")
(has_value y_contact_channel)
(value y_contact_channel "phone")

)
(:goal (and

(contact_us_topic y y_contact_topic)
(contact_us_channel y y_contact_channel)
(report_start_date x x_start_date)
(report_end_date x x_end_date)
(contact_channel y y_contact_channel)

))
)

D Evaluation

D.1 LLM prompt for dataset generation

Example prompt for generating user query and entities related to expense report

"Write 20 questions that use the variables below. These questions will
be used to test entity extraction.
The variables are
startperiod: the start date for the period of the expense and spend
endperiod: the end date the user wants for the expense and spend ,

Agarwal, Sreepathy, Alonso & Lamba 55

Your response should be in the format following these examples:
{""Question"": ""spending breakdown"",
""startperiod"": [],
""endperiod"":[]
}

{""Question"": ""what have i spent most on 2020"",
""startperiod"": 1/1/2020,
""endperiod"": 12/31/2021
}

{""Question"": ""top monthly expenses from april 1 to may 2023"",
""startperiod"": 04/1/2023,
""endperiod"": 05/31/2023
}

{""Question"": ""top spending categories from 1/1/24 to 2/1/24"",
""startperiod"": 1/1/24,
""endperiod"": 2/1/24
}
"

D.2 Samples from the dataset

Query gt_API gt_entity1 gt_value1 gt_entity2 gt_value2

Q1 2023 P&L
review?

profit_loss startperiod 1/1/23 endperiod 3/31/23

Why was I
charged $75?

charge_-
lookup

dateofcharge [] amountofcharge 75

D.3 Baseline Prompt

{"role": "system", "content": """
Only use the functions you have been provided with. Do not assume or
hallucinate function parameters. If user has not provided, ask user for
required parameters.
Don't make assumptions about what values to plug into functions.
Ask for clarification if a user request is ambiguous.
"""},
{"role": "user", "content": query}

Here, functions are the APIs modelled as OpenAI function specifications and query refers to the user
query of interest.

56 LLM+Reasoning+Planning for Incomplete Queries over APIs

D.4 Evaluation Results

Complete Queries Incomplete Queries
GPT-4 GPT-3.5 # GPT-4 GPT-3.5

Baseline Our
Ap-

proach

Baseline Our
Ap-

proach

Baseline Our
Ap-

proach

Baseline Our
Ap-

proach
profit & loss report 70 22.86 98.57 97.14 100 2 0 100 100 100

expense spend re-
port

42 30.95 100 97.62 100 0 - - - -

invoice sales report 33 63.64 90.91 87.88 93.94 12 16.67 100 66.67 100

charge lookup 33 81.82 100 100 96.97 5 40.00 100 100 100

how-to help 60 70.00 98.33 68.33 90.00 0 - - - -

contact us request 10 40.00 100 80.00 100 47 14.89 93.62 44.68 95.74

financial advice 100 81.00 94.90 94.00 97.00 0 - - - -

create invoice 40 60.00 100 100 100 20 0 100 100 100

update customer 3 0 100 100 100 30 6.67 100 100 100

Table 3: API orchestration success rate % of our approach compared with a baseline of end-to-end
LLM based approach on single goal queries

Agarwal, Sreepathy, Alonso & Lamba 57

Complete Queries Incomplete Queries
GPT-4 GPT-3.5 # GPT-4 GPT-3.5

Baseline Our
Ap-

proach

Baseline Our
Ap-

proach

Baseline Our
Ap-

proach

Baseline Our
Ap-

proach

profit & loss report 70 22.86 98.57 81.43 100 2 0 100 0 100

expense spend re-
port

42 23.81 100 90.48 100 0 - - - -

invoice sales report 33 54.55 96.97 84.85 96.97 12 0 100 0 91.67

charge lookup 33 81.82 100 96.97 93.94 5 40.00 100 0 100

how-to help 60 68.33 98.33 68.33 95.00 0 - - - -

contact us request 10 40.00 100 70.00 100 47 0 97.87 0 87.23

financial advice 100 81.00 99.00 94.00 100 0 - - - -

create invoice 40 57.50 100 100 100 20 0 100 0 100

update customer 3 0 100 100 100 30 6.67 100 6.67 100

Table 4: Entity extraction success rate % of our approach compared with a baseline of end-to-end
LLM based approach on single goal queries

Complete Queries Incomplete Queries
GPT-4 GPT-3.5 # GPT-4 GPT-3.5

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

2 APIs w/o
dataflow

15 0 100 0 100 10 0 100 0 100

2 APIs with
dataflow

20 0 100 0 80 10 0 80 0 80

3 APIs with
dataflow

4 0 100 0 75 16 0 100 0 81.25

Table 5: API orchestration success rate % of our approach compared with a baseline of end-to-end
LLM based approach on multi goal complete queries

58 LLM+Reasoning+Planning for Incomplete Queries over APIs

Complete Queries Incomplete Queries
GPT-4 GPT-3.5 # GPT-4 GPT-3.5

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

Base-
line

Our
Ap-

proach

2 APIs w/o
dataflow

15 0 100 0 100 10 0 100 0 100

2 APIs with
dataflow

20 0 90.00 0 70 10 0 90 0 60

3 APIs with
dataflow

4 0 100 0 75.00 16 0 75 0 62.50

Table 6: Entity extraction success rate % of our approach compared with a baseline of end-to-end
LLM based approach on multi goal queries

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 59–68, doi:10.4204/EPTCS.416.4

Logical Lease Litigation: Prolog and LLMs for Rental Law

Compliance in New York

Sanskar Sehgal Yanhong A. Liu

Stony Brook University, Stony Brook, NY 11794, USA

{sasehgal, liu}@cs.stonybrook.edu

Abstract

Legal cases require careful logical reasoning following the laws, whereas interactions with non-

technical users must be in natural language. As an application combining logical reasoning using

Prolog and natural language processing using large language models (LLMs), this paper presents a

novel approach and system, LogicLease, to automate the analysis of landlord-tenant legal cases in

the state of New York.

LogicLease determines compliance with relevant legal requirements by analyzing case descrip-

tions and citing all relevant laws. It leverages LLMs for information extraction and Prolog for legal

reasoning. By separating information extraction from legal reasoning, LogicLease achieves greater

transparency and control over the legal logic applied to each case. We evaluate the accuracy, ef-

ficiency, and robustness of LogicLease through a series of tests, achieving 100% accuracy and an

average processing time of 2.57 seconds. LogicLease presents advantages over state-of-the-art LLM-

based legal analysis systems by providing clear, step-by-step reasoning, citing specific laws, and dis-

tinguishing itself by its ability to avoid hallucinations—a common issue in LLMs.

1 Introduction

Rental law compliance matters significantly to all rental residents. According to [2], more than 122.8

million households in the United States are renters. [5] estimates that there are over 1.1 million cases

of landlords evicting tenants every year, representing an increase of 75% since 2021. Furthermore,

60% of eviction case defendants in 2023 were women, and despite making up less than one-third of

renters, nearly half of eviction case defendants in 2023 were Black. [4] states that over seven million

Americans are evicted from their homes every year, nearly 40% (2.7 to 3.2 million) of which are children.

Additionally, in the United States, there is no guaranteed right to legal counsel in eviction proceedings.

[16] estimates that as many as 90% of tenants facing eviction go to court unrepresented, putting them at

a significant disadvantage. Consequently, up to 75% of tenants end up losing their eviction cases.

The legal domain’s emphasis on meticulous analysis and transparent thought processes makes it

an ideal candidate for utilizing logic-based systems over black-box approaches. Logic-based systems

excel in providing clear and transparent reasoning, which is highly valued in legal contexts. While large

language models (LLMs) are increasingly being considered for automating legal analysis, they are prone

to hallucinations, which can lead to incorrect legal interpretations.

This paper presents LogicLease, a novel system specifically designed to automate the analysis of

landlord-tenant legal cases in the state of New York, providing a transparent and reliable alternative to

black-box methods.

http://dx.doi.org/10.4204/EPTCS.416.4

60 Logical Lease Litigation

Rental law compliance is crucial for the well-being of tenants, but navigating legal cases can be

complex and time-consuming. With millions of eviction cases each year, many tenants face eviction

without proper legal representation, resulting in a significant disadvantage.

LogicLease harnesses the strengths of Large Language Models (LLMs) for information extraction

and Prolog for legal reasoning. It is designed to assess compliance with relevant legal requirements by

analyzing case descriptions presented in natural language. LogicLease utilizes LLMs to parse the input,

extracting essential details that can influence case outcomes. Subsequently, it employs a logic-based

backend to generate clear, step-by-step reasoning and cite specific laws.

The accuracy, efficiency, and robustness of LogicLease were evaluated through a series of tests,

demonstrating 100% accuracy and an average processing time of 2.57 seconds. By separating infor-

mation extraction from legal reasoning, LogicLease ensures greater transparency and control over the

legal logic applied to each case. Furthermore, LogicLease addresses the challenges of hallucinations and

opacity common in LLMs, providing a reliable tool for landlord-tenant legal analysis in New York.

The rest of the paper is organized as follows. Section 2 describes the problem of reliable analysis

of rental law compliance. In Section 3, we present the approach used in LogicLease for automating

the analysis of landlord-tenant legal cases. Section 4 provides implementation details and evaluates

the accuracy, efficiency, and robustness of LogicLease. Finally, Section 5 discusses related work and

concludes the paper.

2 The need for legal compliance analysis

Millions of Americans face challenges in their homes, and those from marginalized communities are

often disproportionately impacted by unfair housing practices. To address this gap, we developed Log-

icLease. LogicLease promises to provide free and highly accurate guidance on tenant-landlord issues.

Our system is designed for simplicity, so anyone can navigate it, regardless of technical expertise. We

prioritize accuracy to ensure users receive reliable information to confidently address their housing con-

cerns.

When developing LogicLease, we established three primary requirements:

1. Natural Language Input: Users can describe their situation in plain English (or potentially another

language). This could involve describing the issue (e.g., repairs not being made, rent increase

concerns), relevant details (lease terms, dates), and any questions they have.

2. Rigorous Analysis for High Accuracy: The system uses LLMs to understand the user’s situation

and intent. It analyzes legal regulations, relevant case law, and best practices using the Prolog

backend to provide accurate guidance. This might involve identifying the key legal issues involved,

assessing the user’s rights and responsibilities based on their location and lease agreement and

considering potential solutions or next steps.

3. Natural Language Output: The system provides clear and actionable information tailored to the

user’s situation. This output is generated using a Prolog backend, where description of relevant

laws is coded as strings associated with the rules. As the Prolog backend processes the rules and

retrieve the specific law applicable to the case, it generates and prints the corresponding description

to the output. This may include explanations of tenant rights or step-by-step guidance on how to

address issues (e.g., contacting the landlord, or filing a complaint), presented in a way that is easy

to understand, even for people with no legal background.

S. Sehgal & Y. A. Liu 61

3 Combining logic programming and LLMs for legal analysis

LogicLease consists of four main components:

1. Driver Script: This component serves as the central coordinator, orchestrating the interaction be-

tween the other components. It takes a case description (lease agreement) as input and invokes the

Natural Language Processing (NLP) and Prolog functionalities for analysis.

2. Natural Language Processing (NLP): LogicLease utilizes a large language model (LLM) out-of-

the-box, without any additional training, to extract attribute-value pairs from the lease agreement.

These pairs represent critical aspects of the case, such as whether the lease is signed or the duration

of the rental period.

3. Prolog Knowledge Base: This component contains a set of Prolog rules that represent legal re-

quirements for rentals, which we manually coded based on the New York Renters’ Rights Hand-

book [12]. It contains an exhaustive set of rules about lease validity, rent stabilization, eviction,

habitability, and more. LogicLease utilizes the attribute-value pairs extracted by the LLM as argu-

ments for Prolog queries and uses the Prolog engine to evaluate compliance against these rules.

4. User Interface: The user interface of LogicLease provides users with an intuitive and user-friendly

experience, enabling them to interact with the system seamlessly (Figure 1a). Users input the

case description in natural language. Alternatively, they can also answer a series of dynamically

generated questions related to the specific legal aspects of their case. These questions are designed

to extract key attributes necessary for the legal analysis (Figure 1b). Users can provide answers

using dropdown menus or text input fields. The user interface processes the information and

invokes the legal analysis.

(a) User Interface of LogicLease (b) Example of dynamically generated questions

Figure 1: LogicLease front-end interface

As shown in Figure 2, the design of LogicLease follows a structured process. Initially, the Driver

Script receives a case description in natural language as input. Subsequently, it calls the API to the

LLM, providing a system query that specifies the desired lease agreement aspects and the user query

62 Logical Lease Litigation

containing the actual case description. The API call sends the queries to the LLM, retrieving a response

containing extracted attribute-value pairs. The Driver Script parses this response and stores the extracted

attribute-value pairs in a dictionary. Following this, the Driver Script invokes Prolog functions passing

the dictionary containing the extracted attribute-value pairs. These functions translate the dictionary into

a Prolog query based on the pre-defined Prolog rules in the knowledge base. The Prolog engine then

evaluates the query, determining compliance with the lease agreement requirements. Finally, the results

of the compliance check are displayed by the Driver Script.

Figure 2: Design diagram of LogicLease

To illustrate the workflow of LogicLease and to facilitate a deeper understanding of the system, we

provide an overview of the input processing, attribute-value pair extraction using an LLM, compliance

checking with the Prolog backend system, and the final output.

User input of case in natural language. The input for a case is taken in natural language. An example

is the following:

In a rent-stabilized apartment in Albany, New York, David, a disabled tenant, faced

eviction proceedings initiated by his landlord, Ms. Johnson, citing owner occupancy as

the cause. Despite David’s disability, he has been asked to vacate. The matter has not

been presented before court, and hence does not have a court ruling yet.

This input is passed to the LLM for processing.

Attribute-value pairs extracted. The LLM parses the input text and outputs attribute-value pairs

which are the core details of the case which influence the outcome. The extracted attribute-value pairs in-

dicate that the eviction cause is ”owner occupancy,” there is no court ruling yet (”CourtRuling” is ”false”),

and the tenant is in a protected category (”TenantCategory” is ”disabled”). These attribute-value pairs

are stored in a dictionary in the following format.

EvictionCause : ”owner occupancy”,

CourtRuling : ”false”,

Executioner : ”null”,

TenantCategory : ”disabled”,

S. Sehgal & Y. A. Liu 63

Logic rules and queries in Prolog. As seen in Listing 1, the compliance with legal requirements in this

specific case is determined by invoking the following Prolog predicate. Notably, the arguments precisely

match the information extracted by the Large Language Model (LLM) from the case description.

eviction(EvictionCause , CourtRuling , Executioner , TenantCategory) :-

eviction_law ,

(CourtRuling == true ->

(

eviction_legal(EvictionCause),

writeln(’All conditions satisfied , eviction is lawful.’),

nl

)

;

(

eviction_warrant_execution(Executioner),

\+ overrides(TenantCategory , EvictionCause),

writeln(’All conditions satisfied , eviction is lawful.’),

nl

)

).

Listing 1: Prolog rule for eviction compliance checking

The arguments of the predicate are instantiated based on the extracted attribute-value pairs stored in

the dictionary. The call to the Prolog predicate is structured as follows:

Prolog.query(eviction(owner_occupancy , false , null , disabled).)

The Prolog query evaluates the compliance of the landlord’s actions with the relevant legal require-

ments.

Final output to user in natural language. The final output consists of a list of laws relevant to the

case followed by a final judgment based on these laws. This transparent mechanism provides a clear

rationale for each case. For our example, the output is:

1. Tenant with a lease is protected from eviction during the lease period if lease provisions and

local laws are not violated.

2. Landlords must give formal notice before seeking legal possession of the apartment.

3. Eviction proceedings can be initiated for non-payment or significant lease violations.

4. Landlords of rent-regulated apartments may need DHCR approval for court proceedings.

5. Tenants should not ignore legal papers to avoid eviction.

6. Legal eviction requires court proceeding and judgment of possession.

7. Landlords cannot evict tenants unlawfully or by force.

8. Tenant evicted unlawfully can recover triple damages.

9. Additional rules protect certain groups from eviction.

64 Logical Lease Litigation

Tenant is in protected category, eviction for owner occupancy unlawful.

The output confirms that the eviction for owner occupancy is unlawful given the tenant’s protected

category status and the absence of a court ruling.

4 Implementation and evaluation

We have developed a complete implementation of the LogicLease system, covering the full New York

State landlord-tenant legal framework. We successfully applied our system to a series of 10 test cases,

representing various scenarios encountered in landlord-tenant disputes. To evaluate the system’s perfor-

mance, we employ a multi-pronged approach, assessing its accuracy, efficiency, and robustness across

various dimensions.

4.1 Implementation

LogicLease is implemented using a combination of Python and SWI-Prolog [21, 17]. Python is used

to facilitate interactions among different components, utilizing libraries such as PYSWIP to establish

communication between the Python script and the Prolog engine (SWIPL), while Streamlit is employed

to create a user-friendly front-end interface. Additionally, llamaapi [10] is used to manage interactions

with the Large Language Model (LLM) model LLaMA [18], while Python libraries like json and ast are

employed for processing the output received from LLaMA.

The Prolog backend serves as the foundation for legal reasoning, with custom clauses defining the

relevant laws and procedures. The implementation of the system followed a structured approach, ensur-

ing modularity and ease of maintenance.

Notably, LogicLease incorporated defeasible logic [19, 20, 11] within the Prolog component, en-

abling the system to handle situations where one legal principle takes precedence over another under

specific circumstances.

By separating information extraction (NLP) from legal reasoning (Prolog), LogicLease achieved

greater transparency and control over the legal reasoning applied to each case. This approach is par-

ticularly important for legal professionals who require a clear understanding of the system’s reasoning

process, while ensuring there are no hallucinations or snowballing effects.

The total size is approximately 500 lines of Prolog code and an additional 400 lines of Python code.

All experiments and measurements were conducted on a macOS system featuring an Apple Silicon

M2 processor, 8GB of RAM, and a 256GB SSD. The system was running macOS Monterey version

12.5, with Python 3.9.12, Prolog SWIPL 9.2.2, PYSWIP 0.2.11, llamaapi version 0.1.36, and Streamlit

version 1.24.1.

4.2 Accuracy

To evaluate LogicLease’s effectiveness, we manually compiled a dataset of lease litigation cases in New

York. This dataset includes a mix of real-world cases (condensed for efficiency) and fictional scenarios

we created. Due to limited API credits available for using the LLM, the system restricted the number of

API calls made during the processing of legal cases. This limitation necessitated significant shortening

of the text within the legal documents to fit within the allowed API usage. Despite these constraints, the

resulting dataset of 10 cases effectively demonstrates the system’s accuracy and usability in analyzing

and responding to legal scenarios.

S. Sehgal & Y. A. Liu 65

Encouragingly, in all ten cases tested, the LLM functioned effectively. It accurately extracted relevant

details from each case description and successfully transferred this information to the Prolog backend

system. The Prolog system, in turn, flawlessly interpreted the queries and delivered final verdicts on

the legal issues presented. Although the dataset is currently small, the system’s 100% accuracy on this

dataset helps build trust in the system.

To evaluate the accuracy of the system’s reasoning, we conducted human-in-the-loop evaluation.

This involved manually reviewing the system’s output for each case. Legal resources such as handbooks

and online legal forums (e.g., on Reddit) were used to verify the system’s determinations. This process

helped identify potential biases in the LLM’s interpretation of the case details or errors within the Prolog

code’s reasoning logic.

4.3 Efficiency

We measured the average processing time per case, including the LLM extraction and the logic-based

compliance check. The processing times are shown in Table 1. The main bottleneck is the API call to

the LLM Llama, which is not directly under our control. However, solutions such as caching frequently

accessed legal information can be explored.

While the LLM API call (to Llama) currently represents the performance bottleneck compared to

Prolog’s minimal processing time, the good news is that the average case processing time remains user-

friendly at only 2.572 seconds.

It also helps if the case description passed to Llama is as concise as possible. Not surprisingly, the

time taken for Llama to respond is directly proportional to the length of the query string passed. In fact,

the system exhibits a strong positive correlation (approx 68%) between the length of the query string and

Llama’s response time.

Test Case Total Time Prolog Running Time

1 2.693 0.00012

2 2.462 0.00018

3 2.412 0.00021

4 3.156 0.00120

5 3.324 0.00130

6 2.270 0.00090

7 2.155 0.00050

8 2.215 0.00042

9 2.551 0.00031

10 2.486 0.00010

Average 2.572 0.00011

Table 1: Running times, in seconds, for all test cases

4.4 Robustness

To highlight the superiority and robustness of our system compared to existing solutions, we present a

comparison with state-of-the-art Large Language Models (LLMs) such as ChatGPT [13] and Gemini

[3]. These LLMs appear to favor the landlord in most cases, as shown by their outputs for the running

example shown in Figures 4 and 5. Neither of these LLMs reached the correct conclusion for this example

66 Logical Lease Litigation

Figure 3: Total Time Taken for Each Test Case

case. According to New York law, the situation clearly favors the tenant if they live in a rent-stabilized

apartment and belong to a protected category. For our test dataset, these LLMs did not reach the correct

conclusion in three out of ten cases. This underscores the importance of our system and highlights the

unreliability of LLMs for this application.

Figure 4: ChatGPT output

5 Related work and conclusion

Existing systems for legal analysis employ various techniques, including text classification, machine

learning, and rule-based reasoning [1, 9, 6, 7, 8]. However, these approaches often have limitations in

handling nuanced legal reasoning.

Text classification systems such as Legal-Document-Classifier [1] and LexNLP [9] can categorize

legal documents based on keywords and named entities but lack the ability to perform comprehensive

legal reasoning.

Machine learning-based systems like Kira [6] and LawGeex [7] can extract key terms and identify

potential issues in contracts, and models like Lex Machina [8] can predict legal outcomes with some

S. Sehgal & Y. A. Liu 67

Figure 5: Gemini output

accuracy. However, these systems often operate as black boxes, raising concerns about transparency and

fairness. They may also be limited by data quality and biases.

Rule-based legal reasoning systems like PROLEG [14, 15] offer support for judges in civil litiga-

tion by incorporating predefined rules and handling uncertainty. However, their complexity can pose

challenges for users.

In contrast, we successfully developed a system for analyzing landlord-tenant disputes in New York

State by leveraging Large Language Models (LLMs) for information extraction and Prolog for legal

reasoning. Achieving high accuracy and efficiency, the system offers several advantages over existing

LLM-based legal analysis systems.

By separating information extraction from legal reasoning, the system achieves greater transparency

and control over the legal logic applied to each case. Additionally, the use of Prolog enables the imple-

mentation of defeasible logic [19, 20], allowing the system to handle nuanced legal reasoning, such as

resolving conflicting legal principles and dealing with uncertain or incomplete information [11].

In conclusion, this work demonstrates the potential of combining Large Language Models (LLMs)

and logic-based reasoning to create innovative tools for legal analysis. By addressing the limitations of

existing approaches, LogicLease paves the way for more sophisticated and transparent systems in the

field of legal technology.

Future work includes expanding the system’s capabilities by employing techniques for caching fre-

quently accessed legal information. Additionally, improving the testing process and adding more test

cases will ensure better coverage and reliability of the system. Open-sourcing the code could encourage

further development and broader adoption within the legal domain.

References

[1] Andrei-Marius Avram, Vasile Pais & Dan Tufis (2021): PyEuroVoc: A Tool for Multilingual Legal Document

Classification with EuroVoc Descriptors. ArXiv preprint arXiv:2108.01139.

[2] Drew Desilver (2021): As national eviction ban expires, a look at who rents and

who owns in the US. https://www.pewresearch.org/short-reads/2021/08/02/

as-national-eviction-ban-expires-a-look-at-who-rents-and-who-owns-in-the-u-s/.

[3] Google (2024): Gemini Large Language Model. Large language model. Available at https://gemini.

google.com/app.

https://www.pewresearch.org/short-reads/2021/08/02/as-national-eviction-ban-expires-a-look-at-who-rents-and-who-owns-in-the-u-s/
https://www.pewresearch.org/short-reads/2021/08/02/as-national-eviction-ban-expires-a-look-at-who-rents-and-who-owns-in-the-u-s/
https://gemini.google.com/app
https://gemini.google.com/app

68 Logical Lease Litigation

[4] Nick Graetz, Carl Gershenson, Peter Hepburn, Sonya R Porter, Danielle H Sandler & Matthew Desmond

(2023): A comprehensive demographic profile of the US evicted population. Proceedings of the National

Academy of Sciences 120(41), doi:10.1073/pnas.2305860120.

[5] Peter Hepburn, Olivia Jin, Joe Fish, Emily Lemmerman, Anne Kat Alexander & Matthew Desmond

(2022): Preliminary analysis: Eviction filing patterns in 2021. https://evictionlab.org/

us-eviction-filing-patterns-2021/.

[6] KiraSystems (2015): Kira. https://kirasystems.com/.

[7] LawGeex (2014): LawGeex. https://www.lawgeex.com.

[8] Lemley Mark, Gregory George & Walker Joshua (2006): Lex Machina. https://lexmachina.com/.

[9] LexPredict (2024): LexNLP by LexPredict. https://github.com/LexPredict/lexpredict-lexnlp.

[10] llamaapi, Reis, Eduardo & Hu, Jesse (2023): llamaapi-python. https://github.com/llamaapi/

llamaapi-python.

[11] Jason Morris (2024): Rules as Code Demonstration in SWISH and s(CASP). https://swish.

swi-prolog.org/p/r34v2.swinb. Accessed Mar. 17, 2024.

[12] New York State Attorney General (2024): Tenants’ Rights Guide. https://ag.ny.gov/sites/default/

files/tenants_rights.pdf.

[13] OpenAI (2023): ChatGPT (Mar 14 version). Large language model. Available at https://chat.openai.

com/chat.

[14] Ken Satoh, Kento Asai, Takamune Kogawa, Masahiro Kubota, Megumi Nakamura, Yoshiaki Nishigai, Kei

Shirakawa & Chiaki Takano (2010): PROLEG: an implementation of the presupposed ultimate fact theory

of Japanese civil code by PROLOG technology. In: JSAI international symposium on artificial intelligence,

Springer, pp. 153–164, doi:10.1007/978-3-642-25655-4_14.

[15] Ken Satoh, Kento Asai, Takamune Kogawa, Masahiro Kubota, Megumi Nakamura, Yoshiaki Nishigai, Kei

Shirakawa & Chiaki Takano (2011): PROLEG: An Implementation of the Presupposed Ultimate Fact Theory

of Japanese Civil Code by PROLOG Technology. In Takashi Onada, Daisuke Bekki & Elin McCready,

editors: New Frontiers in Artificial Intelligence, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 153–

164, doi:10.1007/978-3-642-25655-4_14.

[16] Heidi Schultheis & Caitlin Rooney (2019): A right to counsel is a right to a fighting chance. https://www.

americanprogress.org/article/right-counsel-right-fighting-chance/.

[17] (2024): SWI Prolog. https://www.swi-prolog.org. Accessed Mar. 17, 2024.

[18] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,

Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar et al. (2023): LlaMa: Open and efficient foun-

dation language models, doi:10.48550/arXiv.2302.13971. ArXiv preprint arXiv:2302.13971.

[19] Hui Wan, Benjamin Grosof, Michael Kifer, Paul Fodor & Senlin Liang (2009): Logic programming

with defaults and argumentation theories. In: Logic Programming: 25th International Conference, ICLP

2009, Pasadena, CA, USA, July 14-17, 2009. Proceedings 25, Springer, pp. 432–448, doi:10.1007/

978-3-642-02846-5_35.

[20] Hui Wan, Michael Kifer & Benjamin Grosof (2015): Defeasibility in answer set programs with defaults and

argumentation rules. Semantic Web 6(1), pp. 81–98, doi:10.3233/SW-140140.

[21] Jan Wielemaker, Tom Schrijvers, Markus Triska & Torbjörn Lager (2012): SWI-Prolog. Theory and Practice

of Logic Programming 12(1-2), pp. 67–96, doi:10.1017/S1471068411000494.

https://doi.org/10.1073/pnas.2305860120
https://evictionlab.org/us-eviction-filing-patterns-2021/
https://evictionlab.org/us-eviction-filing-patterns-2021/
https://kirasystems.com/
https://www.lawgeex.com
https://lexmachina.com/
https://github.com/LexPredict/lexpredict-lexnlp
https://github.com/llamaapi/llamaapi-python
https://github.com/llamaapi/llamaapi-python
https://swish.swi-prolog.org/p/r34v2.swinb
https://swish.swi-prolog.org/p/r34v2.swinb
https://ag.ny.gov/sites/default/files/tenants_rights.pdf
https://ag.ny.gov/sites/default/files/tenants_rights.pdf
https://chat.openai.com/chat
https://chat.openai.com/chat
https://doi.org/10.1007/978-3-642-25655-4_14
https://doi.org/10.1007/978-3-642-25655-4_14
https://www.americanprogress.org/article/right-counsel-right-fighting-chance/
https://www.americanprogress.org/article/right-counsel-right-fighting-chance/
https://www.swi-prolog.org
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.1007/978-3-642-02846-5_35
https://doi.org/10.1007/978-3-642-02846-5_35
https://doi.org/10.3233/SW-140140
https://doi.org/10.1017/S1471068411000494

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 69–77, doi:10.4204/EPTCS.416.5

© Katherine Wu & Yanhong A. Liu
This work is licensed under the
Creative Commons Attribution License.

LP-LM: No Hallucinations in Question Answering with Logic
Programming

Katherine Wu*

Cornell University

kaw324@cornell.edu

Yanhong A. Liu
Stony Brook University

liu@cs.stonybrook.edu

Large language models (LLMs) are able to generate human-like responses to user queries. However,
LLMs exhibit inherent limitations, especially because they hallucinate. This paper introduces LP-
LM, a system that grounds answers to questions in known facts contained in a knowledge base (KB),
facilitated through semantic parsing in Prolog, and always produces answers that are reliable.

LP-LM generates a most probable constituency parse tree along with a corresponding Prolog
term for an input question via Prolog definite clause grammar (DCG) parsing. The term is then
executed against a KB of natural language sentences also represented as Prolog terms for question
answering. By leveraging DCG and tabling, LP-LM runs in linear time in the size of input sentences
for sufficiently many grammar rules. Performing experiments comparing LP-LM with current well-
known LLMs in accuracy, we show that LLMs hallucinate on even simple questions, unlike LP-LM.

1 Introduction
Large language models (LLMs) hallucinate, i.e., generate information that appears plausible but is fac-
tually incorrect [9]. This unfortunately poses a challenge to question answering tasks, as users desire
reliable answers given a query, but hallucination misleads users and erodes the system reputation [2]. To
overcome this challenge, better retrieval models that retrieve relevant information according to queries
as well as better generation models that synthesize more accurate answers from knowledge sources are
needed. This paper sheds light on how logic programming can be used to push progress on the former.
We describe LP-LM, a system that considers the structure of natural language sentences when retrieving
answers to user queries. Unlike LLMs, which are pre-trained so that for any given input the statistically
best matching output based on its training is given, LP-LM seeks to answer questions in a logical and
verifiable way via matching and substitution of facts.

We use probabilistic context-free grammar (PCFG) productions to model the structures of valid En-
glish sentences and create a knowledge base (KB) consisting of English sentences represented as Prolog
terms. The term structure models relationships between entities in sentences precisely. When the user
asks a natural language question, LP-LM generates the most probable constituency parse tree of the input
sentence, translates the parse tree into a corresponding Prolog term for knowledge representation, and
then matches the term against the KB of Prolog terms to retrieve an answer using unification. Utiliz-
ing Prolog’s definite clause grammar (DCG) and tabling in our implementation, LP-LM proves to be
extremely efficient, especially for grammars with a significant number of production rules. We have im-
plemented LP-LM using the Prolog system XSB [12, 15], and our implementation is publicly available.1

The rest of the paper is organized as follows. Section 2 defines terms used throughout the paper.
Section 3 compares LP-LM with current LLMs by highlighting simple example problems on which
current LLMs fail but LP-LM succeeds. Section 4 describes how LP-LM works, giving an example of

*Work done as a student at Stony Brook University
1https://github.com/katherinewu312/lp-lm

http://dx.doi.org/10.4204/EPTCS.416.5
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/katherinewu312/lp-lm

70 LP-LM

s --> np, vp.
np --> dt, nn.
np --> nn.
vp --> vi.
dt --> [the].
nn --> [man].
vi --> [sleeps].

?- s([the,man,sleeps],[]).
yes

s(A,B) :- np(A,C), vp(C,B).
np(A,B) :- dt(A,C), nn(C,B).
np(A,B) :- nn(A,B).
vp(A,B) :- vi(A,B).
dt([the|R],R).
nn([man|R],R).
vi([sleeps|R],R).

?- s([the,man,sleeps],[]).
yes

Figure 1: An example Prolog DCG and a parse. The two Prolog versions are equivalent.

an execution along with the underlying details of the execution. Section 5 discusses related work and
concludes.

2 Background

We introduce probabilistic context-free grammars and key logic programming features used.

Probabilistic context-free grammar. A probabilistic context-free grammar (PCFG) is a formal gram-
mar used in natural language processing and computational linguistics [11, 4]. PCFGs associate proba-
bilities with the production rules of the grammar. These probabilities reflect the likelihood of a particular
rule being used in generating or deriving a sentence. For any non-terminal in a PCFG, the probabilities
associated with rules corresponding to that non-terminal must sum to 1.

PCFGs are essential for capturing the ambiguity of natural language, and are particularly useful in
tasks such as syntactic parsing, which uses dynamic programming algorithms to compute the most likely
parse tree of a sentence given a statistical model of the syntactic structure of the language. The Cocke-
Younger-Kasami algorithm (CYK) (Cocke 1969 [5]; Younger 1967 [17]; Kasami 1965 [10]), the Earley
algorithm [6], and the shift-reduce algorithm [13] are at the core of most common algorithms for natural
language parsing, both constituency-based and dependency-based.

Definite clause grammar. Definite Clause Grammars (DCGs) are a convenient way to represent gram-
matical relationships for parsing applications. They can be used to progressively build a parse tree as
grammar rules are applied. DCG provides a syntax for writing more readable grammar parsing rules,
and the DCG preprocessor is able to translate a DCG rule into pure Prolog. The arrow operator indicates
a DCG rule, which replaces the normal neck “:-” used in Prolog clauses, and square brackets are used to
indicate terminal symbols of the grammar. Figure 1 gives an example. Works similar to DCGs include
stochastic DCGs [8], relaxed unification grammars [1], and probabilistic unification grammars [14].

Tabling. Tabling consists of maintaining a table of goals that are called during execution, along with
their answers, and then using the answers directly when the same goal is subsequently called. The idea is
to never evaluate the same call twice. It helps improve the running time drastically, including terminating
efficiently in situations where Prolog goes into an infinite loop following the same calls repeatedly.

Unification. The way in which Prolog matches two terms is called unification. For example, applying
unification of foo(a,X) and foo(Y,b): the principal functor of both terms is foo; the arguments of
foo(a,X) are a and X, the arguments of foo(Y,b) are Y and b; so a and Y must unify, instantiating Y to a,
and X and b must unify, instantiating X to b; and finally the resulting term after unification is foo(a,b).

Katherine Wu & Yanhong A. Liu 71

3 Comparison with existing LLMs
Before delving into the key designs of LP-LM, we first compare our system with existing LLMs to
highlight the motivation behind our work. We focus on the following well-known models: GPT-4o,
GPT-4o mini, and Gemini. In particular, we show that the context-awareness of these LLMs are actually
quite poor in question answering tasks, and that the LLMs struggle to perform tasks involving even single
facts, thus limiting their potential to complete more complex reasoning tasks.

Table 1 illustrates the comparisons. The answers shown are from the first run of the models. Note that
for the first two examples given, the inputs are entered independently, and we only show the answer that
corresponds to the last input due to space. The last two examples consider the separate inputs from the
earlier examples as one prompt, but even with this the models still hallucinate. The examples demonstrate
that current LLMs exhibit a lack of understanding and ability to reason about the relationships between
different concepts and entities, and are only able to generate text based on statistical correlations they
have learned from their training data.

4 Executing LP-LM using Prolog unification
We outline a typical LP-LM workflow here and then give an example. LP-LM’s KB of Prolog terms is
used to provide context.

• Input: A user’s input can be either a statement (e.g., “suppose I say the black bird flies bravely.”)
which eventually leads to a question, or a question (e.g., “how does the black bird fly?”) following
some previous statement. If there are multiple sentences in the input, they are processed one at a
time.

• Retrieval from or insertion into KB: The input is parsed using Prolog DCG rules, and a con-
stituency tree and associated Prolog term is generated from the parser. For statements, insertions
into the KB are performed: the term is inserted dynamically into the KB. For questions, retrievals
from the KB are performed: the term is matched against the KB and an answer is obtained by
unification.

• Post-processing: Optionally, the results can be translated to a natural language answer.

We show an example of an LP-LM execution, after which we describe the internal steps of the
retrieval and insertion process.

Example. Consider an example sentence that includes a determiner, adjective, noun, verb, and ad-
verb. This statement gets inserted into the specialized KB of Prolog terms via the predicate add_kb:

?- add_kb(‘the black bird flies bravely’).

After statements, one can perform queries, which can either be yes/no or wh- questions, where predicate
query_kb does the query.

?- query_kb(‘how does the black bird fly’).
Answer: bravely

?- query_kb(‘who flies bravely’).
Answer: black(bird)

?- query_kb(‘does the black bird fly bravely’).
Answer: yes

One can also remove previous statements as follows, where predicate remove_kb does the removal:

72 LP-LM

Prompt Input
from User

LP-LM
Answer

ChatGPT Answer
using GPT-4o

ChatGPT Answer
using GPT-4o mini

Gemini Answer

“Furosemide
causes temporary
hearing loss.”

“What causes
temporary hear-
ing loss?”

“Furosemide
causes tem-
porary
hearing
loss.”

“Temporary hear-
ing loss can be
caused by a variety
of factors. Some
of the common
causes include:
earwax blockage,
ear infections, noise
exposure, ...”

“Temporary hearing
loss can result from
various factors, in-
cluding: exposure
to loud noise, ear
infections, earwax
blockage, ...”

“Several factors
can cause tempo-
rary hearing loss:
ototoxicity, noise
exposure, earwax
buildup, Meniere’s
disease, ...”

“Fir trees can
grow in human
lungs.”

“What can grow
in human lungs?”

“Fir trees
can grow
in human
lungs.”

“Several abnormal
growths or condi-
tions can occur in
human lungs, typi-
cally as a result of
disease, infection, or
exposure to harmful
substances...”

“In human lungs,
the following can
grow or develop:
tumors, infections,
cysts, ...”

“Only a few things
can grow in human
lungs, and they are
all extremely rare
and unusual... fun-
gal infections, bac-
teria, parasites...”

“Furosemide
causes temporary
hearing loss.
What causes
temporary hear-
ing loss?”

“Furosemide
causes tem-
porary
hearing
loss.”

“Temporary hearing
loss can be caused
by a variety of
factors, including:
exposure to loud
noises, ear infection
medications, sudden
changes in air pres-
sure...”

“Temporary hearing
loss can be caused
by various factors,
including: medica-
tions, exposure to
loud noise, ear in-
fections...”

“Furosemide can
cause temporary
hearing loss due to
a condition called
ototoxicity. This
occurs when a
medication dam-
ages the inner ear,
which is responsi-
ble for hearing.”

“Fir trees can
grow in human
lungs. What can
grow in human
lungs?”

“Fir trees
can grow
in human
lungs.”

“Infections, tumors,
or foreign objects
can be found in the
lungs, but trees,
plants, or other
organisms generally
cannot grow there...”

“In reality, fir trees
cannot grow in hu-
man lungs. How-
ever, certain things
can grow or develop
in human lungs, in-
cluding tumors, in-
fections, cysts, ...”

“Fir trees cannot
grow in human
lungs...”

Table 1: Table comparing LP-LM with existing LLMs for example prompts

Katherine Wu & Yanhong A. Liu 73

?- remove_kb(‘the black bird flies bravely’). ■
LP-LM takes into account the various verb tenses in the English language: simple, perfect, contin-

uous, and perfect continuous tenses, each with their own past, present, and future tenses. Additionally,
LP-LM supports many sentence patterns. These current patterns encompass the prominent structures
of simple declarative sentences in English, and adding more patterns to the system for generalization
purposes is straightforward. Regardless of the sentence, an English sentence will always have two parts:
a subject and a verb. When generating the Prolog term for a given sentence, the root form of the verb is
always used as the functor. More details are described in our implementation.

4.1 Insertions into KB
With non-queries, or what we call statements, insertions into the KB are done. A tokenizer is first used to
extract out each word in the statement, then a top-down evaluation method is used to generate the parse
tree and Prolog term for the sentence. The Prolog term is added to the KB. We take the basic sentence,
“Bob runs”. The DCG rules are applied in the following order:

1. The DCG rule
s(s(NP,VP),Sem,P) --> np(NP,X,P1), vp(VP,Y,_,P2), {Sem=..[Y,X]}, {P is P1*P2*0.25}.

is first matched with the sentence. Variable Sem represents the Prolog term, where Y is the functor
of the term and X is the argument, which is generated incrementally as the words in the input
sentence are matched to a DCG rule one by one.

2. The DCG rule
np(np(PN),X,P) --> pn(PN,X,P1), {P is P1*0.2}.

is matched next, followed by the DCG rule
pn(pn(X),X,1.0) --> [X], {pronoun(X)}.

which checks if “Bob” is a pronoun, as the variable X represents “Bob”.

3. The DCG rule
vp(vp(VB),Verb,C,P) --> v(VB,Verb,C,P1), {P is P1*0.09}.

is matched next, followed by the DCG rule
v(v(X),Vx,C,1.0) --> [X], {verb(Vx,C,[X],[])}.

which checks if “runs” is a verb, as the variable X represents “runs”.

4. The Prolog term runs(Bob) is obtained, with the parse tree s(np(pn(Bob)),vp(v(runs))), with
probability 0.0045. This is the most probable parse tree. The term is added to the KB.

4.2 Retrievals from KB
With queries, retrievals from the KB are done. The parse tree and Prolog term for the question is gener-
ated the same way. The resulting term is then matched against the KB of terms, and unification is used
to obtain the answer to the question. Consider the question “who runs”, which should return the answer
“Bob” per the example above. The DCG rules are applied as follows:

1. The DCG rule
q(q(QW,VB), X, P) --> qw(QW,_Qw,P1), v(VB,Verb,_,P2),

{Sem=..[Verb,X],Sem}, {P is P1*P2*0.05}.

is applied, where qw represents the question word “who” and v represents the verb “runs”.

74 LP-LM

2. The DCG rule
qw(qw(X),X,1.0) -->[X], {qword(X)}.

is matched next, which checks if “who” is a question word, as the variable X represents “who”.

3. The DCG rule
v(v(X),Vx,C,1.0) -->[X], {verb(Vx,C,[X],[])}.

is matched next, which checks if “runs” is a verb, as the variable X represents “runs”.

4. The Prolog term run(X) is obtained, along with the associated parse tree of q(qw(who),v(runs))
with probability 0.05, the most probable tree. The term run(X), where X is a variable, will be
unified with a matching rule in the KB, which in this case is run(Bob). Thus, X = Bob.

For yes/no questions such as “does Bob run?”, the tree is q(av(does),np(pn(bob)),v(run)) and the
Prolog term generated is thus run(bob). In this case, LP-LM checks if there is an exact match of this
term in the KB and a true/false answer is returned by the Prolog engine.

4.3 A note on DCG parsing efficiency
To find the most probable parse tree in LP-LM, all possible parses of input segments that can contribute
to the maximum probability are considered and compared, from which the parse with the maximum
probability is constructed and returned. Despite this global optimality, the parsing that underlies LP-LM
still proves to be efficient due to our use of Prolog DCGs and tabling. We have performed experiments
testing the efficiency of DCGs and have shown that DCGs still outperform state-of-the-art bottom-up
greedy parsing algorithms.

We evaluated DCG parsers on a total of 12 PCFGs: 3 left-recursive grammars, 3 right-recursive
grammars, 3 unambiguous grammars, and 3 ambiguous grammars. For each type of grammar, we in-
crease the size complexity by increasing the number of production rules with each test: the first test
consisted of a trivial grammar with 3-10 production rules, the second test consisted of a more complex
grammar with 20-50 production rules, and the third test consisted of the longest and most complex gram-
mar with 100+ production rules. Within each test, 3-5 input sentences of increasing length satisfying the
corresponding grammar were parsed, and the time of each parse recorded.

We ran experiments testing these DCG parsers in comparison with the current Viterbi parser API in
the Python Natural Language Toolkit (NLTK). The Viterbi algorithm here uses a greedy heuristic, while
our parsing algorithm performs an enumeration of all possible parses before choosing the optimal one.
Figures 2, 3, 4, and 5 show the running times of sentence parses on grammars of increasing size, for
each type of grammar. The x-axis represents the test cases, i.e. each point is a test case, with each test
case representing an input sentence ranging from lengths 1 to 50. Higher numbered test cases represent
sentences with longer lengths. The y-axis is the running time of sentence parse in seconds, averaged over
10 runs. All measurements were taken on a machine with a 2GHz Quad-Core Intel Core i5 processor,
16GB RAM, running MacOS 14.3.1, with Python 3.11.4 and XSB version 5.0.

Across all types of grammars (left-recursive, right-recursive, unambiguous, ambiguous), the results
are uniform: for large grammars with 100+ production rules, i.e. test 3, our Prolog parser runs much
more efficiently. In particular, for left-recursive, right-recursive, and unambiguous grammars, our parser
is observed to run in linear time in the length of the input sentence for large grammars.

5 Related work, future work, and conclusion
The most notable line of work similar to ours is Retrieval Augmented Generation (RAG), an architectural
approach that augments LLMs with external knowledge such as databases [7]. RAG is particularly

Katherine Wu & Yanhong A. Liu 75

Figure 2: Plots for left-recursive grammars of increasing size

Figure 3: Running times for right-recursive grammars of increasing size

Figure 4: Running times for unambiguous grammars of increasing size

Figure 5: Running times for ambiguous grammars of increasing size

76 LP-LM

useful in knowledge-intensive scenarios or domain-specific applications that require continually updated
knowledge; it ensures that the response of an LLM is not based solely on static training data and rather
uses up-to-date external data sources to provide responses. RAG has been popularized recently with
its application in conversational agents. Our work has the similar motivations as RAG, but we use a
“built-in” knowledge base to store facts used for context and utilize semantic parsing implemented in
XSB Prolog to insert and retrieve information from the KB.

Our work also has similar motivations to that of KALM, a logic system for authoring facts and
questions [16]. While KALM uses the answer set programming system DLV as the logical system
for reasoning about knowledge, our work uses DCG and tabling in XSB Prolog. But as shown in the
work of [3] using OpenRuleBench to analyze the performance and scalability of different rule engines
including XSB and DLV, XSB exhibits significantly better runtime performance than DLV on various
tasks due to tabling.

A limitation to LP-LM is the generalization of English sentences, since we represent the grammar
rules as PCFGs manually. Although new grammar rules can always be added at anytime, doing so
can be tedious, and there are sentences that intentionally violate grammatical rules or standard sentence
structures. In this case, we can simply “augment” LP-LM to use LLMs or other NLP techniques for
input pre-processing to help extract filler words and distill the core facts from sentences, for example
by fine-tuning text summarization models. Regarding the method itself, LP-LM is limited in that the
class of queries the system can answer is limited to simple retrieval tasks that do not require any form of
reasoning. Getting LP-LM to support reasoning capabilities such as deductive and inductive reasoning,
as well as further generalizing the system, are plans for our future work.

In conclusion, while LLMs use deep learning models and are trained on massive datasets, making
them prone to hallucinations, our work, LP-LM, shows that a KB of facts and a question implemented
using Prolog’s DCG and tabling for efficient semantics parsing of PCFG can produce reliable answers
and produce them efficiently.

References
[1] Tony Abou-Assaleh, Nick Cercone & Vlado Keselj (2003): Expressing Probabilistic Context-Free Grammars

in the Relaxed Unification Formalism. Proceedings of the Conference Pacific Association for Computational
Linguistics, pp. 29–36.

[2] Hossein Bahak, Farzaneh Taheri, Zahra Zojaji & Arefeh Kazemi (2023): Evaluating ChatGPT as
a Question Answering System: A Comprehensive Analysis and Comparison with Existing Models,
doi:10.48550/arXiv.2312.07592.

[3] Stefan Brass & Heike Stephan (2017): Experiences with Some Benchmarks for Deductive Databases and
Implementations of Bottom-Up Evaluation. In: Proceedings of the 24th International Workshop on Functional
and (Constraint) Logic Programming, EPTCS 234, pp. 57–72, doi:10.4204/EPTCS.234.5.

[4] Glenn Carroll & Eugene Charniak (1992): Two experiments on learning probabilistic dependency grammars
from corpora. Brown University Department of Computer Science.

[5] John Cocke (1969): Programming languages and their compilers: Preliminary notes. New York University.
[6] Jay Earley (1970): An efficient context-free parsing algorithm. Commun. ACM 13(2), p. 94–102,

doi:10.1145/362007.362035.
[7] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng

Wang & Haofen Wang (2024): Retrieval-Augmented Generation for Large Language Models: A Survey,
doi:10.48550/arXiv.2312.10997.

[8] Christian Theil Have (2009): Stochastic definite clause grammars. Proceedings of the International Confer-
ence RANLP, pp. 139–143. Available at https://aclanthology.org/R09-1027/.

[9] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang, Andrea Madotto
& Pascale Fung (2023): Survey of Hallucination in Natural Language Generation. ACM Computing Surveys
55(12), p. 1–38, doi:10.1145/3571730.

https://doi.org/10.48550/arXiv.2312.07592
https://doi.org/10.4204/EPTCS.234.5
https://doi.org/10.1145/362007.362035
https://doi.org/10.48550/arXiv.2312.10997
https://aclanthology.org/R09-1027/
https://doi.org/10.1145/3571730

Katherine Wu & Yanhong A. Liu 77

[10] Tadao Kasami (1965): An efficient recognition and syntax-analysis algorithm for context-free languages.
Technical Report, Air Force Cambridge Research Lab, Bedford, MA.

[11] Karim Lari & Steve J. Young (1990): The estimation of stochastic context-free grammars using the inside-
outside algorithm. Computer speech & language 4(1), pp. 35–56, doi:10.1016/0885-2308(90)90022-X.

[12] Konstantinos Sagonas, Terrance Swift & David S. Warren (1994): XSB as an Efficient Deductive Database
Engine. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data,
ACM, pp. 442–453, doi:10.1145/191839.191927.

[13] Seppo Sippu & Eljas Soisalon-Soininen (1988): Parsing Theory - Volume I: Languages and Parsing. In:
EATCS Monographs on Theoretical Computer Science, doi:10.1007/978-3-642-61345-6.

[14] Tony C. Smith & John G. Cleary (1997): Probabilistic unification grammars. Australasian Natural Language
Processing Summer Workshop.

[15] Theresa Swift, David S. Warren, Konstantinos Sagonas, Juliana Freire, Prasad Rao, Baoqiu Cui, Ernie John-
son, Luis de Castro, Rui F. Marques, Diptikalyan Saha, Steve Dawson & Michael Kifer (2022): The XSB
System Version 5.0,x. http://xsb.sourceforge.net. Latest release May 12, 2022.

[16] Yuheng Wang, Paul Fodor & Michael Kifer (2023): Knowledge Authoring for Rules and Actions. In: Inter-
national Conference on Logic Programming, TPLP, doi:10.1017/S1471068423000169.

[17] Daniel H. Younger (1967): Recognition and parsing of context-free languages in time n3. Information and
Control 10(2), pp. 189–208, doi:10.1016/S0019-9958(67)80007-X.

https://doi.org/10.1016/0885-2308(90)90022-X
https://doi.org/10.1145/191839.191927
https://doi.org/10.1007/978-3-642-61345-6
http://xsb.sourceforge.net
https://doi.org/10.1017/S1471068423000169
https://doi.org/10.1016/S0019-9958(67)80007-X

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 78–94, doi:10.4204/EPTCS.416.6

© M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks
This work is licensed under the
Creative Commons Attribution License.

Neuro-Symbolic Contrastive Learning for Cross-domain
Inference

Mingyue Liu
University of Durham

United Kingdom
jflw25@durham.ac.uk

Ryo Ueda
University of Tokyo

Japan
ryoryoueda@is.s.u-tokyo.ac.jp

Zhen Wan
Kyoto University

Japan
zhenwan@nlp.ist.i.kyoto-u.ac.jp

Katsumi Inoue
National Institute of Informatics

Japan
inoue@nii.ac.jp

Chris G. Willcocks
University of Durham

United Kingdom
christopher.g.willcocks@durham.ac.uk

Pre-trained language models (PLMs) have made significant advances in natural language inference
(NLI) tasks, however their sensitivity to textual perturbations and dependence on large datasets
indicate an over-reliance on shallow heuristics. In contrast, inductive logic programming (ILP) excels
at inferring logical relationships across diverse, sparse and limited datasets, but its discrete nature
requires the inputs to be precisely specified, which limits their application. This paper proposes a
bridge between the two approaches: neuro-symbolic contrastive learning. This allows for smooth
and differentiable optimisation that improves logical accuracy across an otherwise discrete, noisy,
and sparse topological space of logical functions. We show that abstract logical relationships can
be effectively embedded within a neuro-symbolic paradigm, by representing data as logic programs
and sets of logic rules. The embedding space captures highly varied textual information with similar
semantic logical relations, but can also separate similar textual relations that have dissimilar logical
relations. Experimental results demonstrate that our approach significantly improves the inference
capabilities of the models in terms of generalisation and reasoning.

1 Introduction

Deep neural network models have exhibited good precision in NLI tasks ([35, 4]). However, the ability of
these models to genuinely infer the logical relationship between sentences remains a topic of debate and
controversy ([19, 46]). For example, it has been shown that labels can be detected solely by examining
the hypothesis, without the need to examine the premise [19]. Also, the model is incorrectly insensitive
to the premise and hypothesis order; it should be sensitive to such shuffling [46]. In addition, making
inferences from simplified data pairs is challenging for the models that have been fine-tuned on MNLI or
SNLI datasets [27]. The failure to learn the underlying generalisations raises doubts whether the models
are relying on shallow heuristics to guess the correct label ([30, 27, 43, 45]).

In contrast to neural network models, Inductive Logic Programming (ILP), as a method of symbolic
machine learning for reasoning tasks, can learn the relationships between input data and the target [6].
The generalised logical rules can be induced from positive and negative examples in the form of predicate
logic statements ([32, 10]). The abstract data representation method makes ILP more data-efficient,

http://dx.doi.org/10.4204/EPTCS.416.6
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 79

Mapping to meta-rules
is straightforward.

Neuro-symbolic contrastive learning
gives generalised logical relations.

Logical relationships are difficult
to model with smooth functions.

Figure 1: Logical data is discrete and sparse (red bars) and difficult to directly model (left blue curve)
by a differentiable neural network fθ . However, we map meta-rules to-and-from the smooth PLM
embedding space and utilise contrastive pairs (vertical arrows) to carve the sharp underlying logical
structure (rightmost blue function) into fθ , enabling logical generalisation and logical reasoning.

generalised, and transferable for reasoning tasks. Also, logic-based programs tend to possess greater
human interpretability, particularly when the predicates employed within the program represent concepts
we are familiar with.

To combine the strength from both symbolic and connectionist sides ([44, 37]) and help neural
language models to better capture the underlying logic structure, we propose a neuro-symbolic contrastive
learning framework inspired by ILP, shown in Figure 1.

In particular, we observe that the topological space of logical functions is difficult to accurately
model with a PLM directly (Figure 1: left). Therefore we indirectly map from the natural language
to the logical meta-rules (a relatively straightforward natural language task, Figure 1: centre). The
meta-rules are assessed by the ILP to construct contrastive pairs that are used to fine-tune the PLM,
ensuring dense representation of the underlying logical relationships (Figure 1: right), and thus improving
overall PLM correctness and reasoning capability. This mapping process involves generating contrastive
pairs that distinguish between logically consistent and inconsistent textual representations, thus carving
a precise logical structure into the differentiable function of neural networks. The employment of hard
examples—where positive pairs diverge lexically yet align logically, and negative pairs converge lexically
but differ logically—facilitates a deeper engagement with the complexities of logical inference.

Additionally, we enhance the symbolic NLI datasets, which are structured in predicate logic, by
transforming them into their natural language equivalents employing the system of LoLA, an extension of
the Grammatical Framework ([7]). This transformation leverages diverse rule templates to ensure a rich
array of linguistic representations, effectively preparing the datasets to challenge the PLMs with a variety
of textual and structural complexities. This approach to data augmentation ensures that our framework
aligns with the practical demands of neuro-symbolic integration in natural language processing(NLP).

From Kautz’s Taxonomy, there are six levels of neuro-symbolic systems [25]. Our approach can
be treated as a Level 3 NEURO;SYMBOLIC system, which is a hybrid framework whereby a neural
network focusing on one task interacts with a symbolic system specialising in a complementary task. Our
system utilises ILP for data augmentation tasks to construct hard example pairs to enhance the inference
capabilities of neural networks. The main contributions of this paper are:

• Development of a Neuro-Symbolic Contrastive Learning Framework: We introduce a frame-
work that integrates Inductive Logic Programming (ILP) with the adaptive capabilities of contrastive
learning in deep neural networks. This method enhances the logical reasoning abilities of neural
models by utilising ILP-generated logical meta-rules to guide the training process, thus improving

80 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

both performance and logical consistency. By differentiating between logically consistent and
inconsistent textual representations through data augmentation of hard positive and negative ex-
ample pairs, this framework effectively carves more precise underlying logical structures into the
differentiable neural network function.

• Transformation and Augmentation of Symbolic NLI Datasets: Employing ILP, we develop sym-
bolic NLI datasets that incorporate logical structures. These datasets are subsequently transformed
into natural language using LoLA, an extension of the Grammatical Framework. The transformation
process utilises diverse rule templates to ensure that the datasets exhibit comprehensive linguistic
variability, which supports the practical application of these datasets in NLI tasks and demonstrates
the application of logic programming principles in real-world scenarios.

• Empirical Validation: We assess the effectiveness of our neuro-symbolic framework against
existing approaches under multiple settings. The analysis demonstrates improved performance in
logical reasoning and generalisation, highlighting how the integration of logic programming can
enhance the transferability of neural networks.

• Theoretical Insights and Framework Implications: Our research makes substantial theoretical
contributions to the fields of logic programming and machine learning by exploring the potential of
neuro-symbolic integration from the data augmentation aspect. We discuss the intuition of how this
method can enhance the generalisability of the model.

2 Background

2.1 Neuro-symbolic Frameworks for Reasoning

The integration of neural networks with symbolic reasoning has given rise to neuro-symbolic frameworks,
marking significant advancements in reasoning tasks and NLP. These frameworks aim to merge the
adaptive capabilities of data-driven machine learning with the structured rigor of symbolic approaches,
enhancing the complexity of linguistic analysis and understanding [21].

Recent studies by [38] demonstrate the utility of Answer Set Programming (ASP) in encapsulating
knowledge from natural language texts, providing a robust method for addressing complex queries
directly from textual content. This method complements ASP-based approaches for declarative question
answering, as further explored by [31], which integrate external NLP modules to facilitate reasoning over
natural language texts, thereby maintaining the contextual integrity of extensive texts. The integration
of Meta-Interpretive Learning (MIL) with ASP, as detailed by [24], illustrates how the incorporation of
external sources can enhance the learning process by effectively managing the expansive search spaces
encountered in MIL through efficient conflict propagation within the HEX-formalism.

The recent development of the Feed-Forward Neural-Symbolic Learner (FFNSL) underscores the
potential of hybrid neuro-symbolic systems in deriving knowledge from raw data, such as images, by
combining pre-trained neural models with logic-based machine learning systems to enhance both accuracy
and interpretability [12]. Furthermore, efforts by [13] in Neuro-Symbolic Inductive Learning from raw
data exemplify the integration of deep learning capabilities with symbolic reasoning to develop advanced
AI systems capable of complex decision-making tasks.

Prominent models such as the Neural Logic Machine (NLM) employ probabilistic tensor repre-
sentations to model logic predicates, simulating forward-chaining proof processes [14]. Similarly, the
Differentiable Inductive Logic framework treats Inductive Logic Programming as a satisfiability problem,
optimised through backpropagation [15, 17]. Additionally, reinforcement learning has been utilised

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 81

to create a neuro-symbolic framework that combines neural networks with natural logic, enhancing
both elements [16]. According to Kautz’s Taxonomy, these approaches are categorised as Level 4
NEURO:SYMBOLIC → NEURO systems, where symbolic rules are employed to direct neural training.

Other approaches, comparable to our own and categorised as Level 3 in Kautz’s Taxonomy, include
the application of ILP to extract generalised logic rules from Knowledge Graphs (KG), which utilise
advanced search algorithms and pruning techniques [53]. The Neuro-Symbolic Concept Learner (NS-CL),
for example, captures visual concepts and linguistic terms to construct scene representations grounded in
symbolic programs [29]. Furthermore, DeepProbLog integrates symbolic reasoning with neural perception
to solve tasks that require both high-level and low-level cognitive processes [28].

2.2 Preliminary of Inductive Logic Programming

As a subfield of symbolic machine learning, Inductive Logic Programming (ILP) induces a set of logical
rules (clauses) that generalises training examples. ILP learns relations rather than functions [33, 10]. ILP
mainly focuses on learning Horn clause — clause with at most one positive literal, as the following form:

h :−b1,b2, . . . ,bn, (1)

which stands for the implicational form:

h← b1∧b2∧·· ·∧bn. (2)

This is a Horn clause, meaning that, if all the conjuncted Body atoms b1, . . . ,bn are true, then the Head
atom h is true. Every atom is a formula p(t1, t2, ..., tn), where ti is a term (a constant or a variable) and p is
a predicate symbol of arity n.

A clausal theory, denoted as T , is a collection of clauses. If a clause C is a consequence of the theory
T , then C is the entailment from T , denoted as T |= C. The learning objective of ILP is obtaining an
explanation H, which is the assumed relationship induced from background knowledge B. In ILP, positive
examples K+ and negative examples K− are given as input. In logical words, this is{

∀k ∈ K+,H ∪B ⊨ k (H is complete),
∀k ∈ K−,H ∪B ⊭ k (H is consistent).

A Herbrand interpretation I is a subset of the Herbrand base, and is a Herbrand model of a set T of
clauses C when {

For each (h :−b1,b2, . . . ,bn) ∈ T,
if ∃θ : {b1θ ,b2θ , . . . ,bnθ} ⊂ I, then hθ ∈ I.

θ = {v1/t1, . . . ,vn/tn} is a substitution function which replaces variables {v1, . . . ,vn} in a clause with
terms {t1, . . . , tn}.

2.3 Introduction of NLI Task

Natural Language Inference (NLI) is a fundamental task in computational linguistics where a system
is tasked with determining the logical relationship between a pair of sentences, known as the premise
and the hypothesis1. Specifically, the goal is to ascertain whether the hypothesis is true (entailment),

1Please do not confuse this notion of hypotheses for NLP with those hypotheses in ILP. The mainstream benchmarks and
datasets in NLP community call it hypothesis [18, 45, 50]. We thus have two kinds of hypotheses with different notations and
meanings for ILP and NLP. In this paper, we call a hypothesis H in ILP as an explanation H (Section 2.2).

82 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

false (contradiction), or indeterminate (neutral) based on the information in the premise [3, 5]. This task
mimics key aspects of human reasoning and is crucial for testing the ability of systems to perform logical
inference.

NLI is pivotal for advancing AI technologies that necessitate a nuanced comprehension of natural
language. It challenges computational models to interpret subtleties inherent in human communication,
such as ambiguity, contextual implications, and inferential logic [4, 50]. We aim to enhance the inter-
pretability and reliability of models through the integration of logic programming within Natural Language
Inference (NLI) research, thereby advancing the capabilities of machines to process and interact with
human language in a logically coherent manner.

2.4 Contrastive Learning for NLI

Contrastive learning is a machine learning technique that enhances the discriminative capabilities of
models by enabling them to differentiate features between similar and dissimilar data instances. Originally
prominent in computer vision, this technique has been effectively adapted for natural language processing
(NLP), where it is used to refine a model’s ability to parse and understand complex textual relationships. In
the NLP domain, models are trained using pairs of data instances—positive pairs, which are semantically
similar, and negative pairs, which are semantically dissimilar—thereby training the model to recognise
subtle textual nuances [8, 22].

The use of Natural Language Inference (NLI) datasets, such as SNLI [5] and MultiNLI [51], has been
instrumental in providing supervised annotations for contrastive learning. Techniques like Supervised
SimCSE leverage entailment pairs as positive examples and use contradiction pairs and other unrelated
in-batch instances as negative examples to fine-tune models’ semantic understanding [18]. SBERT,
employing a siamese architecture with a shared BERT encoder, further illustrates the application of these
datasets to train on discerning semantic discrepancies [41]. Additionally, self-supervised approaches often
utilise methods such as back translation, dropout, and token shuffling to create contrastive learning pairs,
enhancing the model’s robustness by exposing it to a diverse array of linguistic transformations [18, 52].

Hard examples, or those data pairs that are challenging for the model to correctly classify due to their
nuanced differences or similarities, are particularly crucial in the training process of contrastive learning
[26, 36]. These examples help in refining the model’s ability to perform fine-grained distinctions and
to generalise better to unseen data. In contrastive learning, hard positive pairs may include sentences
with substantial lexical divergence yet sharing a similar meaning, whereas hard negative pairs might
consist of sentences that are lexically similar but diverge in meaning [45]. Generating these challenging
pairs requires sophisticated data augmentation techniques that can manipulate textual and logical features
effectively.

Our proposed method emphasises the creation and utilisation of such hard examples by identifying
positive pairs that exhibit textual differences yet share logical similarities, and negative pairs that appear
similar but differ in logic. This focus is implemented through an advanced hybrid framework that combines
symbolic reasoning with neural processing, aiming to enhance the model’s deep linguistic and logical
understanding, which is essential for complex tasks like NLI.

2.5 Problem formulation

In the context of our neuro-symbolic CL framework, the traditional logical terms are adapted with specific
meanings:

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 83

• Anchor data point (E): In our framework, an anchor data point E consists of a pair (P,L), where P
is the premise and L is the conclusion derived from P. The anchor serves as the reference point for
comparison against other examples in the dataset.

• Premise (P): A statement or proposition that provides the context from which the conclusion L is
logically inferred.

• Hypothesis (L): A logical conclusion that consistently follows from the premise. Instead of the term
‘conclusion’, in the standard CL and NLI setups [18, 45, 50], they previously termed as ‘hypothesis’
here. L can be labelled as true (entailment), false (contradiction), or indeterminate (neutral).

• Hard Positive Examples (E+): Composed of (P+,L+), where P+ and L+ adhere to the same
logical rule as P and L but vary in textual or domain characteristics. This setup ensures that L+ is
a valid conclusion under the same premises but presented differently. The L+ means it is a hard
positive example relative to L, not an indication of L’s truth value.

• Hard Negative Examples (E−): Constructed as (P−,L−), these examples share textual similarity
with P but lead to L−, a conclusion that logically contradicts or deviates from L under the given
premise. The L− represents a hard negative example relative to L, challenging the model’s ability to
discern subtle logical distinctions and is not a label of L being false.

The primary objectives of our contrastive learning framework are formally defined as follows:{
minimize d(E,E+) : to enforce logical consistency,
maximize d(E,E−) : to capitalise on logical deviations,

where d denotes a distance function (metric) in the embedding space. The minimisation objective aims to
align embeddings of E and E+, which are logically consistent. Conversely, the maximisation objective
aims to differentiate between embeddings of E and E−, which represent logical deviations, thereby
enhancing the model’s ability to discern fine-grained logical distinctions.

3 Methodology

Inspired by ILP, we construct symbolic NLI datasets by augmentation that maximises textual variability
while maintaining logical consistency. Every augmented dataset consists of two subsets represented as
predicate logic forms and natural language forms.

For the logical form, we use symbolic learning systems to enforce a consistent meta-rule for conclu-
sions across inference data, which indicates the high underlying logical similarity of reasoning process.
And for the natural language, we translated from the corresponding logic form via Grammatical Frame-
work (GF) with various rule templates to ensure diversity in textual representations, such as length and
complexity. Moreover, we propose an ILP-inspired Contrastive Learning framework to further boost the
performance of models on cross-domain inference tasks. For each anchor data point E = (P,L), where P is
the premise and L is the hypothesis (conclusion), we construct hard positive example pairs E+ = (P+,L+),
which share the same logic meta-rule but originate from different textual domains. Conversely, a hard
negative example pair consists of an anchor point and a hard negative data point E− = (P−,L−) within
the same domain, which is textually similar but logically different.

As shown in Figure 2, given an anchor data point denoted as E = (P,L) (where P signifies the premise
and L represents the hypothesis), we generate hard positive example pairs E+ = (P+,L+). The hard
positive example pairs share an identical logic meta-rule yet originate from distinct domains. Conversely,

84 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

Premise

Hypothesis

Premise

Premise Anna has a daughter named Amy, who is the mother of
Tim.

Durham can be reached from Darlington by train and
York can be reached from Durham by train.
Then York station can also be reached from Darlington
train station.

Amy has a daughter named Anna, who is the mother of
Tim.

Label True

Hypothesis Amy is Tim's Grandma.
Label True

Hypothesis Amy is Tim's Grandma.
Label False

Figure 2: Illustration of an anchor data point E = (P,L) with its corresponding positive and negative pairs.
The positive pair E+ = (P+,L+) maintains logical consistency with the anchor, while the negative pair
E− = (P−,L−) introduces a logical contradiction despite overlapping textual content.

the formulation of a hard negative example pair involves an anchor point and a challenging negative
data point E− = (P−,L−) within the same domain. This pair exhibits textual similarity while diverging
logically.

The first two examples shown in blue colour are varying in domains and textual representation, while
the red-coloured example has high token-level overlapping with the middle case. However, the logic rules
below these three examples indicate that the underlying logic meta-rule of the low token-level overlapping
examples are identical, while the higher textual similarity ones are logically different.

Our method seeks to learn an embedding space in which the vector representations of E and E+

are close together, due to the fact that they share the same mathematical logic reasoning process to
inference, despite the difference in their textual expression and domains. On the other hand, since E and
E− have similar textual expressions but divergent mathematical logical reasoning processes, their vector
representations should be separated.

We will explain the details of each part of our methodology in the following sections.

3.1 Meaning Representations and Dataset Construction

A standard Inductive Logic Programming dataset is formed of three sets of components: background
knowledge (B), positive examples (K+), and negative examples (K−). As we introduced in section 1.2,
ILP aims to induce a set of rules that with the B entails k ∈ K+ and contradicts k ∈ K− [10]. The following

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 85

is a toy example of one of the ILP datasets we used:

B =

parent(Ann,Amy)
parent(Amy,Amelia)
parent(Amy,Andy)
parent(Linda,Garin)

K+ =

{
grandparent(Ann,Amelia)
grandparent(Linda,Amelia)

K− =

{
grandparent(Amy,Amelia)
grandparent(Amelia,Ann)

Every positive/negative examples is matched with the corresponding necessary premise from B. The
following Algorithm 1 shows the search algorithm for the premise filtering process.

Algorithm 1 Premise Search
Input: B, R (set of t for every k ∈ K+/K−)
Parameter: Optional list of parameters
Output: filtered_premise_list

1: for predicate in B do
2: if predicate.t in R then
3: filtered_premise_list.insert(predicate)
4: if predicate.t.rest not in R then
5: R.insert(predicate.t.rest)
6: end if
7: end if
8: end for

Hence, the logic rules extracted from the toy example is given by

grandparent(Ann,Amelia) :−parent(Ann,Amy),parent(Amy,Amelia), (3)

grandparent(Amelia,Ann) :−parent(Ann,Amy),parent(Amy,Amelia). (4)

And the constructed NLI dataset is shown in Table 1, where predicates p and gp stand for parent and
grandparent respectively.

Table 1: Toy examples of the constructed NLI dataset, where ‘+’, ‘−’, and ‘N’ labels denote true
(entailment), false (contradiction), and indeterminate (neutral) respectively.

Premise Hypothesis Label
p(Ann,Amy), p(Amy,Rita) gp(Ann,Rita) +
p(Ann,Amy), p(Amy,Rita) gp(Rita,Ann) −
p(Ann,Amy), p(Amy,Rita) gp(Linda,Garin) N

We systematically augment datasets using a variety of methods tailored to maintain logical integrity
while introducing structural variability. These methods include constructing templates for replacing con-
stants in the terms ti of predicates p(t1, t2, ..., tn), appending logically irrelevant predicates to the premises,

86 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

Table 2: Augmented samples from the given toy examples in Table 1.
Premise Hypothesis Label
p(Amy,Amelia), p(Ann,Amy), p(Amy,Andy) gp(Ann,Amelia) +
p(Alex,Joe), p(Joe,Charles) gp(Charles,Alex) −
p(Joe,Charles), p(Alex,Joe), p(Amy,Amelia), p(Linda,Garin) gp(Charles,Linda) N

and permuting the order of premise predicates to demonstrate the invariance of logical conjunctions under
operand permutation. For example, in a toy dataset, the predicates within a premise can be reordered
or terms ti substituted using an alternative lexicon to test the robustness of logical inference models to
syntactic variations. Table 2 lists some possible sample data after augmentation.

3.2 Metarules of Cross-domain Tasks

Different from the usual usage of metarules [34, 10], we apply metarules here to construct hard positive
examples for contrastive learning. As shown in Figure 2, E+ = (P+,L+) and the anchor data point
E = (P,L) share the same metarule below:

P(A,B) :−Q(A,C),R(C,B). (5)

First-order variables are denoted by the letters A, B, and C, whereas second-order variables are denoted by
the letters P, Q, and R. The substitution functions of the second-order variables P, Q, and R are

substitutions{P/legalCity,Q,R/city}, (6)

substitutions{P/grandparent,Q,R/parent}. (7)

After applying the substitution functions, the induced logical relationship between parent and grandparent
(gp) is

gp(A,B) :−parent(A,C),parent(C,B), (8)

and the transition logic rule of accessible transportation between cities is

legalCity(A,B) :−city(A,C),city(C,B). (9)

Logic rules (8) and (9) are isomorphic since they share the same metarule and there exists a bijective
substitution function θ to make them logically equivalent.

On the other hand, as shown in Figure 2, although E− = (P−,L−) and the anchor data point E = (P,L)
are textually similar and from the same domain of parent, E− = (P−,L−) has a different metarule from
rule (5)

P(C,B) :−Q(A,C),R(C,B). (10)

And it cannot be logically equivalent with the rule (8) after applying substitution function (7).

3.3 Data Augmentation for Contrastive Learning

For each anchor data point E = (P,L), we construct its hard positive data point E+ = (P+,L+) and hard
negative data point E− = (P−,L−). The premise P is represented as a conjunction of body predicates b,
where P = {b1,b2, . . . ,bn}. The contrastive learning approach uses the Lcl loss to pull the representation

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 87

of E closer to E+ and push it away from E−, which sharpens the model’s ability to discriminate between
subtle variations in logical coherence.

Through a permutation step defined by σ , we reorder b to obtain b′ = p(tσ(1), tσ(2), . . . , tσ(n)). This
permutation introduces variability in the data structure, aiding the model in learning to recognise essential
logical constructs regardless of their syntactic presentation.

3.4 Hard Positive Example Pairs

In the scenario of a hard positive example pair, E and E+ are connected by a substitution function θ =
{v1/t1, . . . ,vn/tn}, aligning them under the condition Eθ = E+θ . Notably, the variables {v1, . . . ,vn} ∈D1
and the terms {t1, . . . , tn} ∈D2, where D1 and D2 signify distinct domains.

3.5 Hard Negative Example Pairs

Given a premise P = {b1,b2, . . . ,bn} and an hypothesis (conclusion) L = {h} = {p(t1, t2, . . . , tn)}, we
choose an arbitrary bi ∈ P such that bi = pi(t1, t2, . . . , tn).

One way of constructing a hard negative example is permuting bi to obtain E−1 = (P−,L−) with
P− = {b1, . . . ,b′i, . . . ,bn}. Another way is permuting L to get E−2 = (P−,L−) with L− = {h′}.

3.6 Training Process of Contrastive Learning

Contrastive learning will be performed on triplets pairs (Ei,E+,E−). The training objective (xi,x+,x−)
with batch size N is

Lcl =−E

log
ecos(xi,x+i)/τ

∑
N
j=1

(
ecos(x j,x+j)/τ+ ecos(x j,x−j)/τ

)
 , (11)

where xi denotes the encoder representation of Ei ([18]). The Lcl loss function employs cosine similarity
in the embedding space to evaluate the closeness of embeddings. The encoder used for generating repre-
sentations xi is typically a neural network such as a Transformer or LSTM [49, 23]. These architectures
are chosen due to their proficiency in capturing contextual relationships in text, crucial for the nuanced
understanding required in NLI tasks.

3.7 Rule-based Translation between Logic-form and Natural Language

We use LoLA ([7]), which is the extensive version based on Grammatical Framework (GF) ([39]) to
enable the translation between natural language and propositional logic formulas. The translation is purely
rule-based. Initially, the expression in the source language undergoes parsing, resulting in the derivation
of an abstract syntax tree (AST). Subsequently, the AST undergoes a linearisation process, yielding a
linguistic manifestation in the target language through the utilisation of language-specific concrete syntax
conventions ([7]). Figure 3 shows the toy example of the translation system. To make the translated
natural language more understandable, for input logical formulas, LoLA uses logical equivalence laws to
search for the optimal expression and remove redundant information.

To enhance the comprehensibility of natural language translations derived from logical formulas, we
utilise logical equivalence laws to generate varied yet equivalent expressions. The NLI dataset, constructed
from these equivalent but textually distinct forms, ensures consistent truth labelling, which is crucial for
the construction of hard examples. We constructed various rule templates to enable the generation of more

88 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

Figure 3: A model of the translation system is presented, including an example of translating a First-Order
Logic (FOL) formula into English. Each node in the Abstract Syntax Tree (AST) is named after the
syntactic function used to construct the corresponding constituent [7]. The right side of this figure displays
the tree structure following an optimisation step applied to the initial configuration on the left side.

diverse datasets, varying in textual length and reasoning difficulty. Here are some examples shown in
Figure 2, Table 3 and Table 4:

Table 3: Examples of equivalent transformations where par and gp denote parent and grandparent
respectively.

Premise Hypothesis Label
par(A,C)∧par(C,B) gp(A,B) +
¬par(A,C)∨¬par(C,B)∨gp(A,B) gp(A,B) +

Table 4: Examples of Logic Rules and Corresponding translated Natural Language Premises and Hypothe-
ses.

Logic Rule: legalCity(Delwino, Borovan) :−City(Delwino, Ebadong),City(Ebadong, Borovan)
Premise: From Delwino, one can take a train to Ebadong. And from there, it is possible to travel to
Borovan by train.
Hypothesis: Therefore, the train network connects Delwino and Borovan.
Label: Entailment

Logic Rule: legalCity(Guinimanan, Ersama) :−City(Jenau, Ersama),City(Kotla Pehluan, Ersama),
City(Jalawanan, Sangbanwol)
Premise: The city Ersama can be accessed by bike from Jenau. Sangbanwol is connected to
Jalawanan by train, and you can take a train from Ersama to Kotla Pehlwan.
Hypothesis: These will allow you to reach Guinimanan from Ersama.
Label: Neutral

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 89

4 Experiment and Result

4.1 Dataset

We select some of the classic ILP task datasets — the ancestor dataset from GILPS (General Inductive
Logic Programming System) and the kinship dataset from Popper [11]. Every dataset is built with three
components all in predicate logic arguments: Background Knowledge (B), Positive Examples (K+), and
Negative Examples (K−).

[City Transportation Dataset] is a self-proposed dataset with B of train connections between two
cities and K+ and K− represent feasible transportation between cities.

[Popper: Kinship Dataset] is a minimal ILP dataset for kinships. B gives parent relationships and
K+ and K− give examples for grandparent relationships.

[GILPS: Ancestor Dataset] is an ILP dataset for relationships between a big family tree. B provides
information on gender, names, and parent relationships between every generation. And K+ and K− are
examples of ancestor relationships between two given names.

In general, the statistics of all datasets after the augmentation methods we discussed in the previous
sections are shown in Table 5.

Table 5: Dataset statistics after augmentation.
Dataset Domain Size
KINSHIP Parent 93k
CITY TRANSPORTATION Traffic connection 135k
ANCESTOR Family 150k

4.2 Result

4.2.1 Natural Language vs. Logical Form Expressions for NLI

With the inherent challenge of directly modeling the topological space of logical functions using a
Pre-trained Language Model (PLM), we steer our focus towards mapping natural language to logical
rules, a relatively straightforward task for natural language processing. Our first experiment explores
the performance of natural language compares with logical form expressions using our constructed
logic-based dataset.

We subject existing sentence embedding methods to evaluate the difference between logic form and
natural language form. The evaluation made use of the BERT-base model, fine-tuned on both natural
language and logical form datasets. Settings for this experiment included a batch size of 16 and a
maximum text length set to 512 for the encoder.

To evaluate the models, we use Spearman’s correlation complemented with accuracy metrics. Spear-
man’s correlation is a rank correlation method that does not assume a linear relationship, making it suitable
for our task. By using both Spearman’s correlation and accuracy, we can ensure comprehensive evaluation:
while accuracy provides a direct measure of correct predictions, the correlation gives an indication in
terms of the relationships between data points.

90 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

Table 6: The comparison of models for in-domain learning, and the comparison of cross-domain and
cross-form transferability for neuro-symbolic contrastive learning (Neuro-symbolic CL).

Train Test Model Accuracy
In-domain
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-LOGIC BERT-Base 0.54
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-LOGIC Roberta-Base 0.62
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-LOGIC BERT-Base Neuro-symbolic CL 0.70
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-LOGIC Roberta-Base Neuro-symbolic CL 0.74
Cross-domain Transfer
[KIN ∧ CITY]-LOGIC ANCESTOR-LOGIC BERT-Base 0.49
[KIN ∧ CITY]-LOGIC ANCESTOR-LOGIC Roberta-Base 0.45
[KIN ∧ CITY]-LOGIC ANCESTOR-LOGIC BERT-Base Neuro-symbolic CL 0.63
[KIN ∧ CITY]-LOGIC ANCESTOR-LOGIC Roberta-Base Neuro-symbolic CL 0.64
Cross-form Transfer
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-NL BERT-Base 0.51
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-NL Roberta-Base 0.53
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-NL BERT-Base Neuro-symbolic CL 0.58
[KIN ∧ CITY]-LOGIC [KIN ∧ CITY]-NL Roberta-Base Neuro-symbolic CL 0.62

Table 7: The comparison of data representation on single and multiple domains dataset. L and NL denote
logical form and natural language.

Dataset Spearman’s correlation Accuracy
KINSHIP-L 0.69 0.63
KINSHIP-NL 0.59 0.59
CITY TRANS-L 0.55 0.60
CITY TRANS-NL 0.31 0.52
[KIN ∧ CITY]-L 0.49 0.54
[KIN ∧ CITY]-NL 0.39 0.48

As shown in Table 7, after changing the logical form to natural language on KINSHIP dataset, the
Spearman’s correlation drops from 0.69 to 0.59. This indicates that language models can learn from logic
form better on the logic reasoning task (sparse task) we proposed. This can also be confirmed on the CITY

TRANS and [KIN ∧ CITY] datasets.

4.2.2 Neuro-Symbolic Contrastive Learning for Cross-Domain Logic Reasoning

We follow the training paradigm of the baseline model in the previous section but use our proposed
contrastive learning loss (Equation 11) and explore the performance of our proposed methods on in-
domain, cross-domain, and cross-form scenarios. As shown in Table 6, we find that while both BERT-base
and Roberta-base models present the poor performance of the baseline training approach on domain
transfer tasks, our proposed neuro-symbolic contrastive learning framework can serve as a powerful
way to improve the transferability. For both cross-domain transfer and cross-form transfer, our method
performs better in overcoming the accuracy drop according to the baseline training approaches, and makes
competitive performance even compared with in-domain scenarios.

5 Conclusion

This paper introduces a neuro-symbolic contrastive learning framework that integrates Inductive Logic
Programming (ILP) with neural networks to enhance logical reasoning in natural language inference tasks.

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 91

The framework aims to minimise the distance d(E,E+) to enforce logical consistency and maximise
d(E,E−) to capitalise on logical deviations, thereby refining the model’s capacity to discern fine-grained
logical distinctions in the embedding space.

Experimental results demonstrate that our data augmentation method significantly enhances logic
inference performance in both natural language and symbolic forms. Additionally, multi-domain fine-
tuning within our framework improves the transferability of pre-trained language models across various
domains. Our empirical findings align with and extend the assumptions of [45] regarding Textual Enhanced
Contrastive Learning for solving math word problems, though our approach uniquely incorporates ILP
for rule-guided analysis and evaluate on both logic-form and NL-form, adding a novel dimension to the
methodology.

The integration of symbolic logic rules and their natural language representations with neural network
methodologies not only significantly improves model performance but also underscores the potential for
developing deeper, more interpretable architectures for complex reasoning tasks.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Number JP21H04905 and JST CREST Grant Number
JPMJCR22D3.

References

[1] Rie Kubota Ando & Tong Zhang (2005): A Framework for Learning Predictive Structures from Multiple Tasks
and Unlabeled Data. Journal of Machine Learning Research 6, pp. 1817–1853, doi:10.5555/1046920.1194905.

[2] Galen Andrew & Jianfeng Gao (2007): Scalable training of L1-regularized log-linear models. In: Proceedings
of the 24th International Conference on Machine Learning, pp. 33–40, doi:10.1145/1273496.1273501.

[3] Johan Bos & Katja Markert (2005): Recognising textual entailment with logical inference. In: Proceedings
of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing, pp. 628–635, doi:10.3115/1220575.1220654.

[4] Samuel Bowman & Xiaodan Zhu (2019): Deep learning for natural language inference. In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:
Tutorials, pp. 6–8, doi:10.18653/v1/N19-5002.

[5] Samuel R. Bowman, Gabor Angeli, Christopher Potts & Christopher D. Manning (2015): A large annotated
corpus for learning natural language inference. In: Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, Association for Computational Linguistics, Lisbon, Portugal, pp. 632–642,
doi:10.18653/v1/D15-1075.

[6] Ivan Bratko & Stephen Muggleton (1995): Applications of inductive logic programming. Communications of
the ACM 38(11), pp. 65–70, doi:10.1145/219717.219771.

[7] Eduardo Calò, Elze van der Werf, Albert Gatt & Kees van Deemter (2022): Enhancing and Evaluating the
Grammatical Framework Approach to Logic-to-Text Generation. In: Proceedings of the 2nd Workshop on
Natural Language Generation, Evaluation, and Metrics (GEM), pp. 148–171, doi:10.18653/v1/2022.gem-1.13.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi & Geoffrey Hinton (2020): A simple framework for
contrastive learning of visual representations. In: International conference on machine learning, PMLR, pp.
1597–1607, doi:10.48550/arXiv.2002.05709.

[9] James W. Cooley & John W. Tukey (1965): An algorithm for the machine calculation of complex Fourier
series. Mathematics of Computation 19(90), pp. 297–301, doi:10.1090/S0025-5718-1965-0178586-1.

https://doi.org/10.5555/1046920.1194905
https://doi.org/10.1145/1273496.1273501
https://doi.org/10.3115/1220575.1220654
https://doi.org/10.18653/v1/N19-5002
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.1145/219717.219771
https://doi.org/10.18653/v1/2022.gem-1.13
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.1090/S0025-5718-1965-0178586-1

92 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

[10] Andrew Cropper & Sebastijan Dumančić (2022): Inductive Logic Programming At 30: A New Introduction. J.
Artif. Int. Res. 74, doi:10.1613/jair.1.13507.

[11] Andrew Cropper & Rolf Morel (2021): Learning programs by learning from failures. Machine Learning 110,
pp. 801–856, doi:10.1007/s10994-020-05934-z.

[12] Daniel Cunnington, Mark Law, Jorge Lobo & Alessandra Russo (2023): Ffnsl: Feed-forward neural-symbolic
learner. Machine Learning 112(2), pp. 515–569, doi:10.1007/s10994-022-06278-6.

[13] Daniel Cunnington, Mark Law, Jorge Lobo & Alessandra Russo (2023): Neuro-symbolic learning of answer
set programs from raw data. In: Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, IJCAI ’23, doi:10.24963/ijcai.2023/399.

[14] Honghua Dong, Jiayuan Mao, Tian Lin, Chong Wang, Lihong Li & Denny Zhou (2019): Neural logic
machines. arXiv preprint arXiv:1904.11694, doi:10.48550/arXiv.1904.11694.

[15] Richard Evans & Edward Grefenstette (2018): Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research 61, pp. 1–64, doi:10.1613/jair.5714.

[16] Yufei Feng, Xiaoyu Yang, Xiaodan Zhu & Michael Greenspan (2022): Neuro-symbolic Natural Logic with
Introspective Revision for Natural Language Inference. Transactions of the Association for Computational
Linguistics 10, pp. 240–256, doi:10.1162/tacl_a_00458.

[17] Yufei Feng, Zi’ou Zheng, Quan Liu, Michael Greenspan & Xiaodan Zhu (2020): Exploring End-to-End Differ-
entiable Natural Logic Modeling. In: Proceedings of the 28th International Conference on Computational Lin-
guistics, International Committee on Computational Linguistics, pp. 1172–1185, doi:10.18653/v1/2020.coling-
main.101.

[18] Tianyu Gao, Xingcheng Yao & Danqi Chen (2021): SimCSE: Simple Contrastive Learning of Sentence
Embeddings. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing,
Association for Computational Linguistics, pp. 6894–6910, doi:10.18653/v1/2021.emnlp-main.552.

[19] Suchin Gururangan, Swabha Swayamdipta, Omer Levy, Roy Schwartz, Samuel Bowman & Noah A. Smith
(2018): Annotation Artifacts in Natural Language Inference Data. In: Proceedings of the 2018 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pp. 107–112, doi:10.18653/v1/N18-2017.

[20] Dan Gusfield (1997): Algorithms on Strings, Trees and Sequences. Cambridge University Press, Cambridge,
UK, doi:10.1017/CBO9780511574931.

[21] Kyle Hamilton, Aparna Nayak, Bojan Božić & Luca Longo (2022): Is neuro-symbolic AI meeting its promises
in natural language processing? A structured review. Semantic Web, p. 1–42, doi:10.3233/sw-223228.

[22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie & Ross Girshick (2020): Momentum Contrast for Unsu-
pervised Visual Representation Learning. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 9726–9735, doi:10.1109/CVPR42600.2020.00975.

[23] Sepp Hochreiter & Jürgen Schmidhuber (1997): Long short-term memory. Neural computation 9(8), pp.
1735–1780, doi:10.1162/neco.1997.9.8.1735.

[24] Tobias Kaminski, Thomas Eiter & Katsumi Inoue (2018): Exploiting answer set programming with external
sources for meta-interpretive learning. Theory and Practice of Logic Programming 18(3-4), pp. 571–588,
doi:10.1017/S1471068418000261.

[25] Henry Kautz (2022): The third ai summer: Aaai robert s. engelmore memorial lecture. AI Magazine 43(1), pp.
105–125, doi:10.1002/aaai.12036.

[26] Phuc H. Le-Khac, Graham Healy & Alan F. Smeaton (2020): Contrastive Representation Learning: A
Framework and Review. IEEE Access 8, pp. 193907–193934, doi:10.1109/ACCESS.2020.3031549.

[27] Cheng Luo, Wei Liu, Jieyu Lin, Jiajie Zou, Ming Xiang & Nai Ding (2022): Simple but Challenging:
Natural Language Inference Models Fail on Simple Sentences. In Yoav Goldberg, Zornitsa Kozareva & Yue
Zhang, editors: Findings of the Association for Computational Linguistics: EMNLP 2022, Association for
Computational Linguistics, pp. 3449–3462, doi:10.18653/v1/2022.findings-emnlp.252.

https://doi.org/10.1613/jair.1.13507
https://doi.org/10.1007/s10994-020-05934-z
https://doi.org/10.1007/s10994-022-06278-6
https://doi.org/10.24963/ijcai.2023/399
https://doi.org/10.48550/arXiv.1904.11694
https://doi.org/10.1613/jair.5714
https://doi.org/10.1162/tacl_a_00458
https://doi.org/10.18653/v1/2020.coling-main.101
https://doi.org/10.18653/v1/2020.coling-main.101
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.3233/sw-223228
https://doi.org/10.1109/CVPR42600.2020.00975
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1017/S1471068418000261
https://doi.org/10.1002/aaai.12036
https://doi.org/10.1109/ACCESS.2020.3031549
https://doi.org/10.18653/v1/2022.findings-emnlp.252

M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 93

[28] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas Demeester & Luc De Raedt (2018):
DeepProbLog: neural probabilistic logic programming. In: Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, p. 3753–3763, doi:10.5555/3327144.3327291.

[29] Jiayuan Mao, Chuang Gan, Pushmeet Kohli, Joshua B. Tenenbaum & Jiajun Wu (2019): The Neuro-Symbolic
Concept Learner: Interpreting Scenes, Words, and Sentences From Natural Supervision. arXiv preprint
arXiv:1904.12584, doi:10.48550/arXiv.1904.12584.

[30] Tom McCoy, Ellie Pavlick & Tal Linzen (2019): Right for the Wrong Reasons: Diagnosing Syntactic
Heuristics in Natural Language Inference. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 3428–3448, doi:10.18653/v1/P19-1334.

[31] Arindam Mitra, Peter Clark, Oyvind Tafjord & Chitta Baral (2019): Declarative question answering over
knowledge bases containing natural language text with answer set programming. In: Proceedings of the
AAAI Conference on Artificial Intelligence, 01, pp. 3003–3010, doi:10.1609/aaai.v33i01.33013003.

[32] Stephen Muggleton (1991): Inductive logic programming. New generation computing 8, pp. 295–318,
doi:10.1007/BF03037089.

[33] Stephen Muggleton & Luc De Raedt (1994): Inductive logic programming: Theory and methods. The Journal
of Logic Programming 19, pp. 629–679, doi:10.1016/0743-1066(94)90035-3.

[34] Stephen Muggleton, Luc De Raedt, David Poole, Ivan Bratko, Peter Flach, Katsumi Inoue & Ashwin Srinivasan
(2012): ILP turns 20: biography and future challenges. Machine learning 86, pp. 3–23, doi:10.1007/s10994-
011-5259-2.

[35] Nikita Nangia & Samuel R. Bowman (2019): Human vs. Muppet: A Conservative Estimate of Human
Performance on the GLUE Benchmark. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 4566–4575, doi:10.18653/v1/P19-1449.

[36] Hyun Oh Song, Yu Xiang, Stefanie Jegelka & Silvio Savarese (2016): Deep metric learning via lifted structured
feature embedding. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
4004–4012, doi:10.1109/CVPR.2016.434.

[37] Ali Payani & Faramarz Fekri (2019): Inductive logic programming via differentiable deep neural logic
networks. arXiv preprint arXiv:1906.03523, doi:10.48550/arXiv.1906.03523.

[38] Dhruva Pendharkar, Kinjal Basu, Farhad Shakerin & Gopal Gupta (2022): An asp-based approach to
answering natural language questions for texts. Theory and Practice of Logic Programming 22(3), pp.
419–443, doi:10.1007/978-3-030-05998-9_4.

[39] Aarne Ranta (2004): Grammatical framework. Journal of Functional Programming 14(2), pp. 145–189,
doi:10.1017/S0956796803004738.

[40] Mohammad Sadegh Rasooli & Joel R. Tetreault (2015): Yara Parser: A Fast and Accurate Dependency Parser.
arXiv preprint arXiv:1503.06733v2, doi:10.48550/arXiv.1503.06733.

[41] Nils Reimers & Iryna Gurevych (2019): Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing, pp. 3982–3992, doi:10.18653/v1/D19-1410.

[42] Raymond Reiter (1981): On closed world data bases. In: Readings in artificial intelligence, Elsevier, pp.
119–140, doi:10.1016/B978-0-934613-03-3.50014-3.

[43] Shachar Rosenman, Alon Jacovi & Yoav Goldberg (2020): Exposing Shallow Heuristics of Relation Extraction
Models with Challenge Data. In: Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing, pp. 3702–3710, doi:10.18653/v1/2020.emnlp-main.302.

[44] Prithviraj Sen, Breno WSR de Carvalho, Ryan Riegel & Alexander Gray (2022): Neuro-symbolic inductive
logic programming with logical neural networks. In: Proceedings of the AAAI Conference on Artificial
Intelligence, 36, pp. 8212–8219, doi:10.1609/aaai.v36i8.20795.

https://doi.org/10.5555/3327144.3327291
https://doi.org/10.48550/arXiv.1904.12584
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.1609/aaai.v33i01.33013003
https://doi.org/10.1007/BF03037089
https://doi.org/10.1016/0743-1066(94)90035-3
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.1007/s10994-011-5259-2
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.1109/CVPR.2016.434
https://doi.org/10.48550/arXiv.1906.03523
https://doi.org/10.1007/978-3-030-05998-9_4
https://doi.org/10.1017/S0956796803004738
https://doi.org/10.48550/arXiv.1503.06733
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.1016/B978-0-934613-03-3.50014-3
https://doi.org/10.18653/v1/2020.emnlp-main.302
https://doi.org/10.1609/aaai.v36i8.20795

94 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

[45] Yibin Shen, Qianying Liu, Zhuoyuan Mao, Fei Cheng & Sadao Kurohashi (2022): Textual Enhanced Con-
trastive Learning for Solving Math Word Problems. In: Findings of the Association for Computational
Linguistics: EMNLP 2022, pp. 4297–4307, doi:10.18653/v1/2022.findings-emnlp.316.

[46] Koustuv Sinha, Prasanna Parthasarathi, Joelle Pineau & Adina Williams (2021): UnNatural Language
Inference. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp.
7329–7346, doi:10.18653/v1/2021.acl-long.569.

[47] Shane Storks, Qiaozi Gao & Joyce Y. Chai (2020): Recent Advances in Natural Language In-
ference: A Survey of Benchmarks, Resources, and Approaches. arXiv preprint arXiv:1904.11694,
doi:10.48550/arXiv.1904.01172.

[48] Vladimir N Vapnik & A Ya Chervonenkis (2015): On the uniform convergence of relative frequencies of
events to their probabilities. In: Measures of complexity: festschrift for alexey chervonenkis, Springer, pp.
11–30, doi:10.1007/978-3-319-21852-6_3.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser
& Illia Polosukhin (2017): Attention is all you need. Advances in neural information processing systems 30,
doi:10.48550/arXiv.2002.05709.

[50] Adina Williams, Nikita Nangia & Samuel Bowman (2018): A Broad-Coverage Challenge Corpus for Sentence
Understanding through Inference. In: Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, doi:10.18653/v1/N18-1101.

[51] Adina Williams, Nikita Nangia & Samuel Bowman (2018): A Broad-Coverage Challenge Corpus for Sentence
Understanding through Inference. In: Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pp.
1112–1122, doi:10.18653/v1/N18-1101.

[52] Yuanmeng Yan, Rumei Li, Sirui Wang, Fuzheng Zhang, Wei Wu & Weiran Xu (2021): ConSERT: A
Contrastive Framework for Self-Supervised Sentence Representation Transfer. In: Proceedings of the 59th
Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long Papers), pp. 5065–5075, doi:10.18653/v1/2021.acl-
long.393.

[53] Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke & Haipeng Ding (2021): Neural, symbolic and neural-symbolic
reasoning on knowledge graphs. AI Open 2, pp. 14–35, doi:10.1016/j.aiopen.2021.03.001.

https://doi.org/10.18653/v1/2022.findings-emnlp.316
https://doi.org/10.18653/v1/2021.acl-long.569
https://doi.org/10.48550/arXiv.1904.01172
https://doi.org/10.1007/978-3-319-21852-6_3
https://doi.org/10.48550/arXiv.2002.05709
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/N18-1101
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.18653/v1/2021.acl-long.393
https://doi.org/10.1016/j.aiopen.2021.03.001

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 95–107, doi:10.4204/EPTCS.416.7

© S. Glaze & D. Inclezan

This work is licensed under the

Creative Commons Attribution License.

Architecture for Simulating Behavior Mode Changes in

Norm-Aware Autonomous Agents

Sean Glaze

Miami University
Ohio, USA

glazesc@miamioh.edu

Daniela Inclezan

Miami University
Ohio, USA

inclezd@miamioh.edu

This paper presents an architecture for simulating the actions of a norm-aware intelligent agent whose

behavior with respect to norm compliance is set, and can later be changed, by a human controller.

Updating an agent’s behavior mode from a norm-abiding to a riskier one may be relevant when the

agent is involved in time-sensitive rescue operations, for example. We base our work on the Autho-

rization and Obligation Policy Language AOPL designed by Gelfond and Lobo for the specification

of norms. We introduce an architecture and a prototype software system that can be used to simulate

an agent’s plans under different behavior modes that can later be changed by the controller. We en-

vision such software to be useful to policy makers, as they can more readily understand how agents

may act in certain situations based on the agents’ attitudes towards norm-compliance. Policy makers

may then refine their policies if simulations show unwanted consequences.

1 Introduction

This paper introduces an architecture for simulating the actions to be taken by an intelligent agent that is

aware of norms (i.e., policies1) governing the domain in which it acts. We assume that different agents

may exhibit different behavior modes with respect to norm-compliance: some may be very cautious and

norm-abiding, while others may exhibit a riskier behavior. We consider the case in which the behavior

mode under which an agent operates is set by a human controller who can update it if needed, for instance

in cases when the agent is involved in a time-sensitive rescue operation.

This architecture is relevant to modeling physical intelligent agents that act autonomously, for in-

stance robots deployed in harsh environments (underwater, on Mars, in mines), and whose settings may

be re-adjusted by a human controller if the circumstances require it, but this is done sparingly in emer-

gency situations. The architecture is also crucial to simulating the behavior of human agents with differ-

ent norm-abiding attitudes, especially if such attitudes change over time. This can be of value to policy

makers as testing their policies on different human agent models can lead to policy improvement, if un-

wanted consequences are observed in the simulation (similarly to work by Corapi et al. [4] on creating

use cases for policy development and refinement).

In our work, we utilize the Authorization and Obligation Policy Language (AOPL) by Gelfond and

Lobo [8] for norm specification, due to its close connection to Answer Set Programming (ASP). In fact,

the semantics of AOPL and the notion of norm-compliance are defined via a translation into ASP. This

allows us to leverage existing ASP methodologies for representing dynamic domains, planning, and cre-

ating agent architectures, as well as ASP solvers like CLINGO (https://potassco.org/clingo/) or

DLV (https://www.dlvsystem.it/dlvsite/). A reason for using AOPL instead of representing

norms directly in ASP (as soft constraints for example) is that AOPL provides policy analysis capa-

bilities [10], which are important for checking that a policy imposed on an agent is actually valid and

1We use the words norms and policy interchangeably in this paper.

http://dx.doi.org/10.4204/EPTCS.416.7
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://potassco.org/clingo/
https://www.dlvsystem.it/dlvsite/

96 Architecture for Simulating Behavior Mode Changes

unambiguous; similar policy analysis would be difficult to conduct without the use of a higher-level lan-

guage for norm specification. In addition to AOPL, we build upon work on norm-aware autonomous

agents by [9] who introduced the notion of behavior modes with respect to norm-compliance.

Our main contributions are two-fold: (1) we introduce an architecture for norm-aware autonomous

agents who may exhibit different behavior modes and may experience changes between bahavior modes;

and (2) we implement a software system for the simulation of an agent’s actions under behavior modes

that may change over time.

In the remainder of the paper, we start with background information in Section 2 and provide a

motivating example in Section 3. We introduce our architecture in Section 4, then our software system

for simulation in Section 5, and examine the system’s evaluation in Section 6. We discuss related work

in Section 7 and end with conclusions in Section 8.

2 Background

In this section we introduce the norm-specification language AOPL and behavior modes for norm-aware

agents. We assume that readers are familiar with ASP and otherwise direct them to outside resources on

ASP [7, 11, 6].

2.1 Norm-Specification Language AOPL

Gelfond and Lobo [8] introduced the Authorization and Obligation Policy Language (AOPL) for spec-

ifying policies for an intelligent agent acting in a dynamic environment. A policy is a collection of

authorization and obligation statements. An authorization indicates whether an agent’s action is permit-

ted or not, and under which conditions. An obligation describes whether an agent is obligated or not

obligated to perform a specific action under certain conditions. An AOPL policy works in conjunction

with a dynamic system description of the agent’s environment written in an action language such as

ALd [5]. The signature of the dynamic system description includes predicates denoting sorts for the

elements in the domain; fluents (i.e., properties of the domain that may be changed by actions); and

actions. An ALd system description defines the domain’s transition diagram whose states are complete

and consistent sets of fluent literals and whose arcs are labeled by action atoms (shortly actions).

The signature of an AOPL policy includes the signature of the associated dynamic system and

additional predicates permitted for authorizations, obl for obligations, and prefer for specifying prefer-

ences between authorizations or obligations. A prefer atom is created from the predicate prefer; similarly

for permitted and obl atoms.

An AOPL policy P is a finite collection of statements of the form:

permitted (e) if cond (1a)

¬permitted (e) if cond (1b)

obl (h) if cond (1c)

¬obl (h) if cond (1d)

d : normally permitted(e) if cond (1e)

d : normally ¬permitted(e) if cond (1f)

d : normally obl(h) if cond (1g)

d : normally ¬obl(h) if cond (1h)

prefer(di,d j) (1i)

S. Glaze & D. Inclezan 97

where e is an elementary action; h is a happening (i.e., an elementary action or its negation2); cond is a

set of atoms of the signature, except for atoms containing the predicate prefer; d in (1e)-(1h) and di, d j in

(1i) denote defeasible rule labels. Rules (1a)-(1d) encode strict policy statements, while rules (1e)-(1h)

encode defeasible statements. Rule (1i) captures priorities between defeasible statements.

The semantics of an AOPL policy determine a mapping P(σ) from states of a transition diagram T

into a collection of permitted and obl literals. To formally describe the semantics of AOPL, a translation

of a policy P and a state σ of the transition diagram into ASP is defined as l p(P,σ) as described in the

paper by Gelfond and Lobo [8]. Properties of an AOPL policy P are defined in terms of the answer sets

of the logic program l p(P,σ) expanded with appropriate rules.

The following definitions by Gelfond and Lobo are relevant to our work (original definition numbers

in parenthesis). In what follows a denotes a (possibly) compound action (i.e., a set of simultaneously

executed elementary actions), while e refers to an elementary action. An event 〈σ ,a〉 is a pair consisting

of a state σ and an action a executed in σ .

Definition 1 (Consistency and Categoricity – Defs. 3 and 6) A policy P for T is called consistent if

for every state σ of T, the logic program l p(P,σ) has an answer set. It is called categorical if l p(P,σ)
has exactly one answer set.

Definition 2 (Policy Compliance for Authorizations and Obligations – Defs. 4, 5, and 9) • An event

〈σ ,a〉 is strongly-compliant with authorization policy P if for every e ∈ a the logic program l p(P,σ) en-

tails permitted(e).
• An event 〈σ ,a〉 is weakly-compliant with authorization policy P if for every e ∈ a the logic program

l p(P,σ) does not entail ¬permitted(e).
• An event 〈σ ,a〉 is non-compliant with authorization policy P if for every e ∈ a the logic program

l p(P,σ) entails ¬permitted(e).
• An event 〈σ ,a〉 is compliant with obligation policy P if

− For every obl(e) ∈ P(σ) we have that e ∈ a, and

− For every obl(¬e) ∈ P(σ) we have that e /∈ a.

2.2 Behavior Modes in Norm-Aware Autonomous Agents

Harders and Inclezan [9] introduced an ASP framework for plan selection for norm-aware autonomous

agents, where norms were specified in AOPL. They built upon observations by Inclezan [10] indicat-

ing that, for categorical AOPL policies, all strongly-compliant actions are also weakly-compliant w.r.t.

authorizations and that modality conflicts between authorizations and obligations may occur when the

AOPL policy simultaneously contains obligations and prohibitions to execute an action. Instead, the

notion of an underspecified event was introduced to denote an event that is not explicitly known to be

compliant nor non-compliant w.r.t. authorizations, and a modality ambiguous event as an event arising

from a modality conflict. Harders and Inclezan proposed that agents may have different attitudes towards

norm compliance that would impact the selection of the “best” plan. They called these attitudes behav-

ior modes and introduced different metrics that can be used to express them. They also presented some

predefined agent behavior modes, defined as follows: (a) Safe Behavior Mode – prioritizes events that

are explicitly known to be compliant and does not execute non-compliant actions; (b) Normal Behavior

Mode – prioritizes plan length and then actions explicitly known to be compliant, while not executing

non-compliant actions; and (c) Risky Behavior Mode – disregards policy rules, but does not go out of

its way to break rules either.

2If obl(¬e) is true, then the agent must not execute e.

98 Architecture for Simulating Behavior Mode Changes

3 Example

For illustration purposes, consider a Mining Domain consisting of a 3x3 square grid of locations with an

associated risk level (low, medium, or high) and three ores (gold, silver, and iron) with unique locations

across the grid. The mining robot can collect ores or move between adjacent locations. The mining

robot’s goal is to collect all three ores. The norm that is imposed in this domain is that the collection of

ores must happen in the sequence: gold first, then silver, and finally iron.

The mining robot has three behavior modes: Safe, Normal, and Risky, as defined in Section 2.2,

but expanded with some additional policies. The Safe agent is obligated to move only through low-risk

locations, the Normal agent is obligated to only move through low or medium-risk locations, and the

Risky agent moves freely throughout the grid with no regard for the risk level of locations. Furthermore,

as the Risky behavior mode does not have any regard for policies, an agent in this mode will collect ores

in whichever order leads to the shortest plan possible.

We will now discuss a specific scenario within the mining domain shown in Figure 1. In this illus-

tration, locations are labeled l0 to l8, with connected locations indicated by a black line. Each location

is colored green, yellow, or red to indicate a low, medium, or high-risk level, respectively. The mining

robot is depicted in its initial location and the locations of ores are indicated by their corresponding labels

in the periodic table.

Figure 1: Mining Domain: Sample Scenario

Table 1: Plan with Behavior Mode Changes

*** Begin in Safe Mode ***

0. Move from l4 to l1

1. Move from l1 to l0

2. Collect gold

*** Change to Normal Mode ***

3. Move from l0 to l3

4. Move from l3 to l6

5. Move from l6 to l7

6. Collect silver

*** Change to Risky Mode ***

7. Move from l7 to l4

8. Move from l4 to l1

9. Collect iron

Table 2 shows the plans that the agent devises depending on its behavior mode. This scenario il-

lustrates general outcomes, where cautious behavior modes result in longer plans, while the Risky be-

havior mode generates the shortest plans, with a trade-off of a detrimental effect on safety and policy-

compliance. The longer plan devised in the Safe mode is caused by the inability to move through location

l3, which is not a low-risk location. The Risky mining robot produces the shortest plan because it disre-

gards location risk and the policy of collecting ores in a specific order.

Now let’s consider behavior mode changes in this scenario. Table 1 shows the plan that is generated

by a mining robot that begins in Safe mode, is switched by the controller to Normal mode at time step 3,

and is switched again to Risky mode at time step 7. In case of emergency or changing priorities, a more

risky behavior may be desired by the controller of such a robot, even though it does result in a higher

degree of danger for the robot. We want our architecture to simulate such behavior mode modifications.

S. Glaze & D. Inclezan 99

Table 2: Plans for the Scenario in Fig. 1 for Different Behavior Modes

Safe Behavior Mode Normal Behavior Mode Risky Behavior Mode

0. Move from l4 to l1 0. Move from l4 to l1 0. Move from l4 to l7

1. Move from l1 to l0 1. Move from l1 to l0 1. Collect silver

2. Collect gold 2. Collect gold 2. Move from l7 to l4

3. Move from l0 to l1 3. Move from l0 to l3 3. Move from l4 to l1

4. Move from l1 to l2 4. Move from l3 to l6 4. Collect iron

5. Move from l2 to l5 5. Move from l6 to l7 5. Move from l1 to l0

6. Move from l5 to l8 6. Collect silver 6. Collect gold

7. Move from l8 to l7 7. Move from l7 to l6

8. Collect silver 8. Move from l6 to l3

9. Move from l7 to l8 9. Move from l3 to l0

10. Move from l8 to l5 10. Move from l0 to l1

11. Move from l5 to l2 11. Collect iron

12. Move from l2 to l1

13. Collect iron

4 Architecture

We identified three questions that needed to be answered during the development of this architecture,

outlined below together with our design decisions:

• How will an agent adjust its plan when its behavior mode is modified?

Design Decision: The agent will devise a new plan with its new behavior mode, starting at the

time step that the behavior mode modification is set to take effect.

• How will the agent’s memory mechanism work with respect to already executed actions of a plan?

In other words, how will the agent deal with prior actions that may not satisfy the definition of its

new behavior mode?

Design Decision: The agent remembers the behavior mode under which it operated at each point

in time and checks requirement satisfaction w.r.t. to the behavior mode settings in place when the

action was executed, to mimic real world situations where new laws are not applied retrospectively.

• Does the agent need to be aware that its behavior mode is liable to be modified at later points in

time?

Design Decision: The agent is not explicitly aware that its behavior mode can be modified. How-

ever, we introduce the concept of subgoals so that the agent can strive to partially complete its

overall goal if its current behavior mode prevent completing the goal as a whole.

The proposed architecture consists of two distinct components that work in conjunction: an ASP

Component and a Python Component, discussed in detail in the following subsections. Figure 4 provides

an overall view of the proposed architecture.

100 Architecture for Simulating Behavior Mode Changes

Figure 2: Illustration of Proposed Architecture

4.1 ASP Component

The ASP Component consists of five pieces: the dynamic domain encoding, scenario encoding, policy

encoding, behavior mode encoding, and learned information.

The dynamic domain encoding contains the objects, statics, fluents, actions, and axioms that define

the dynamic domain, encoded according to established ASP methodologies [6]. In the Mining Domain,

the objects are locations and ores. Statics are used to describe whether two locations are connected, as

well as the risk level of a location (has risk level(l, level)). Inertial fluents at play are the agent’s location

(at loc(l)); whether the agent possesses a certain ore or not (has ore(o)); and the locations of the ores

(ore loc(o, l)). The agent can perform two actions: move from one location to another (move(l1, l2)); and

collect an ore (collect(o)). It has an additional action wait that does not change the state of the domain.

The scenario encoding consists of a list of facts that are true at time step 0. For the Mining Domain,

this means specifying the risk level of each of the locations, the initial location of the agent, and the

location of the ores.

The policy encoding contains the ASP translations of the AOPL policies that govern the dynamic

domain. For the Mining Domain, there is only one policy that applies by default: the agent is obligated

to collect the ores in the sequence gold, silver, iron. This is encoded in two separate AOPL rules – one

that says the agent is obligated not to collect silver unless it possesses gold and another that says the

agent is obligated not to collect iron unless it possesses silver:

obl(¬collect(silver)) if ¬has ore(gold)
obl(¬collect(iron)) if ¬has ore(silver)

S. Glaze & D. Inclezan 101

The behavior mode encoding in this architecture considers tree behavior modes: Safe, Normal, and

Risky. As previously mentioned, the exact definitions of these behavior modes are meant to be tailored

to the dynamic domain’s specific needs. For example, in the Mining Domain, the Safe and Normal

agents are under additional policies. Specifically, the Safe agent is obligated not to move through high

or medium-risk locations, and the Normal agent is obligated not to move through high-risk areas. These

rules are written in AOPL, as shown below for the Safe agent, and are translated into ASP to be used in

our architecture:
obl(¬move(L1,L2)) if has risk level(L2,high)
obl(¬move(L1,L2)) if has risk level(L2,medium)

The behavior mode encoding also contains general ASP rule for planning, such as:

1 {occurs(A,I) : action(A)} 1:- step(I), I >= n1.

This rule says that at each time step I ≥ n1, the agent must perform exactly one action. The constant,

n1, is an integral part of this architecture: it represents the time step in which the new behavior mode is

to take effect. For example, if we are in a scenario where we want the agent’s initial behavior mode to

be b0 and switch to b1 at time step i, then n1 = 0 for each time step t < i, and n1 = i for each time step

t ≥ i. This ensures that only the planned actions at time steps greater than or equal to i have to obey the

definition of behavior mode b1.
In each of the behavior mode’s encodings, we additionally have several metrics that are calculated

and considered by the agent when devising its plan, as in work by [9]. What differentiates each of the
behavior modes is the priority that is given to each of the metrics in the planning process, as described in
Section 2.2. For example, in the Safe behavior mode’s encoding, we see the following ASP rule:

#maximize{ N4@4 : subgoal_count(N4);

N3@3 : percentage_strongly_compliant(N3);

N2@2 : percentage_underspecified(N2);

N1@1 : wait_count(N1)}.

This says that the metric subgoal_count should be prioritized first, percentage_strongly_comp-
liant should be prioritized second, percentage_underspecified should be prioritized third, and
wait_count should be prioritized last. The subgoal_countmetric is a count of the number of subgoals
that the agent completes during the plan. This is a novel inclusion in our proposed architecture. In the
Mining Domain, the maximum number of subgoals that the agent can complete is three, one subgoal
corresponding to the collection of each of the ores. The ASP encoding for this is:

subgoal(has_ore(gold)). subgoal(has_ore(silver)). subgoal(has_ore(iron)).

subgoal_count(N) :- #count{F : subgoal(F), holds(F, n)} = N.

The percentage_strongly_compliant and percentage_underspecified metrics come from
work by Harders and Inclezan [9]. Recall that a strongly-compliant action is one that is explicitly permit-
ted by the agent’s policies and an underspecified action is one that is neither permitted nor not permitted
by the agent’s policies. The safe agent prioritizes actions that are explicitly permitted, because it is de-
signed to act in an extremely cautious way, even if unnecessary. Finally, the wait_count metric is a
count of the number of wait actions in the agent’s plan. The higher the wait_count, the shorter the
plan. Agents under this proposed architecture only perform waiting actions after they have completed as
many subgoals as possible. This is encoded in ASP as:

:- occurs(wait, I1), occurs(A, I2), I2 > I1, I1 >= n1, A != wait.

Now that we have an understanding of what each of these metrics represent, let’s compare the prior-
itization order of the Safe agent to that of the Normal agent.

#maximize{ N4@4 : subgoal_count(N4);

N3@3 : wait_count(N3);

N2@2 : percentage_underspecified(N2);

N1@1 : percentage_strongly_compliant(N1)}.

102 Architecture for Simulating Behavior Mode Changes

The Normal agent still prioritizes first completing as many subgoals as possible, but instead of also trying
to maximize the number of strongly-compliant actions in the plan, it values a shorter plan. Additionally,
both the Safe and Normal agent behavior modes have constraints saying that no non-compliant actions
w.r.t. obligations are allowed. The Risky agent only considers two metrics in its planning process,
subgoal_count and wait_count, in that order. This allows the Risky agent to devise the shortest plan
possible while completing as many subgoals as possible, with the trade-off that it completely disregards
any policies that are imposed on it. The ASP encoding is:

#maximize{ N2@2: subgoal_count(N2); N1@1: wait_count(N1)}.

Finally, the learned information refers to the facts formed by holds and occurs literals that are true

prior to the time step when the behavior mode modification took effect.

4.2 Python Component

The Python Component of the proposed architecture is what allows us to manage the behavior mode

modification process. This component utilizes the CLINGO Python API, which allows developers to

solve ASP programs and analyze their output using Python code. For the Mining Domain, we present a

class called MiningDomainSolver, which takes as input a scenario number, an initial behavior mode,

and a list of behavior mode changes and the time steps when they are to take effect. Once this class

is instantiated, a user may call the class’s function called generate_plan_with_bmode_changes(),

which returns the plan as a string. This function follows the control flow outlined below. It is also

worth noting that this control flow is not specific to the Mining Domain, and can be applied to any other

dynamic domain under this proposed architecture:

1. n1 is computed. As mentioned previously, n1 = 0, when we are solving the ASP program cor-

responding to the initial behavior mode, and n1 is equal to the time step of each behavior mode

change after that.

2. The ASP program is created inside of a string variable by reading the contents of the text files of

the dynamic domain (i.e., the dynamic domain encoding, scenario encoding, policy encoding, and

behavior mode encoding). Learned information (stored inside of a string variable) is also added to

the ASP program.

3. A temporary text file is created and the ASP program is written to it.

4. A CLINGO control object is created using the CLINGO API, and the temporary file is loaded into

it using its provided load() function.

5. The ASP program is solved using the solve() function of the control object. This function solves

the loaded ASP program and outputs the literals in the answer set that are specified using CLINGO’s

#show directive in the ASP program.

6. If there is a behavior mode change, these literals are saved to a class variable and filtered to produce

the learned information for the next iteration.

5 Software System

Next, let us discuss the graphical user interface (GUI) that was developed as a proof of concept for a

program that allows a controller to make behavior mode modifications of an agent. The software is

available at https://github.com/scglaze/MiningRobotDomainGUI.

https://github.com/scglaze/MiningRobotDomainGUI

S. Glaze & D. Inclezan 103

Figure 3: GUI screenshot with input parameters for

the Mining Domain Scenario 4

Figure 4: Mining Domain Scenario 9

We leveraged the Tkinter Python library for GUI development. The GUI allows a user to select

one of the 10 scenarios that we have prepared from the Mining Domain, an initial behavior mode, and

up to two behavior mode changes. When the user selects a scenario, a graphic for that scenario ap-

pears to serve as a visual aid. Once the user is finished inputting their desired parameters, there is a

“Solve” button that initiates the solving process. This solving process is performed by the aforemen-

tioned MiningDomainSolver class described in the previous section, by feeding the user’s input to it

as its parameter. Before this is done, though, there are several validation checks that are performed. For

example, the user must input both a behavior mode and a time step for each behavior mode modification.

If there are any validation checks that are violated, then a dialog box appears with a description of the er-

ror. If there are no validation errors, once the solving process is finished, the generated plan is displayed

in a user-friendly manner in a text box at the bottom of the GUI, as shown in Figure 3.

104 Architecture for Simulating Behavior Mode Changes

6 Evaluation

Runtime Performance: We ran experiments on the 10 scenarios in the Mining Domain. We measured

the runtime performance for each of the three behavior modes by themselves, and for the six combina-

tions of first-order behavior mode modifications (i.e. only one modification made during the plan). We

varied the time step when the modification occurred from scenario to scenario, based on what we sub-

jectively deemed as leading to most illustrative changes in plans. Additionally, we measured the runtime

performance of second-order behavior mode modifications for two of the scenarios that are more com-

plex. We present the runtime performance of Scenario #4 from Figure 3 in Table 3 and Scenario #9 from

Figure 4 in Table 4. Time steps when behavior mode modifications are made are listed in parenthesis.

Scenario #9 involves second-order behavior mode modification. The runtime performance that we report

does not come from the CLINGO solver itself, but instead, is measured via code that was integrated into

the Python component for this experiment. This test code utilizes the time Python library. The reason

we went this route instead of measuring the reported runtime from CLINGO, is that our proposed archi-

tecture requires an additional solve() for each behavior mode modification that is made. We ran each

experiment 10 times, and report the mean in seconds (T (s)) and standard deviation (SD). All experi-

ments were performed on a machine with an Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50 GHz

processor and 16 GB RAM.

Table 3: Mining Domain Scenario 4:

Runtime Data (Python + CLINGO)

Behavior Modes T (s) SD

Safe 1.684 0.12

Normal 1.379 0.08

Risky 0.181 0.08

Safe to Normal (2) 2.641 0.11

Safe to Risky (2) 1.881 0.06

Normal to Safe (2) 2.666 0.14

Normal to Risky (2) 1.764 0.24

Risky to Safe (2) 1.452 0.17

Risky to Normal (2) 0.944 0.07

Table 4: Mining Domain Scenario 9: Runtime Data

(Python + CLINGO)

Behavior Modes T (s) SD

Safe 0.652 0.04

Normal 0.565 0.07

Risky 0.094 0.01

Safe to Normal (2) 1.059 0.08

Safe to Risky (2) 0.767 0.04

Normal to Safe (2) 0.963 0.12

Normal to Risky (2) 0.596 0.03

Risky to Safe (2) 0.516 0.03

Risky to Normal (2) 0.481 0.04

Safe to Normal (2) to Risky (4) 1.202 0.12

Safe to Normal (3) to Risky (6) 1.090 0.12

We see that the Safe behavior mode has a slightly longer runtime than that of the Normal behavior

mode, and that the Risky behavior mode has the shortest runtime overall, which is a trend observed

across all 10 scenarios. This is intuitive, as the Safe behavior mode takes the most amount of factors (i.e.,

aggregates) into consideration during plan generation, and the Risky behavior mode takes significantly

less factors into consideration. Similarly, we observe that the runtime of behavior mode modifications

(with the time step when the modification occurs specified in parenthesis) follows this same trend –

modifications involving the Risky mode add less runtime than either of the other behavior modes, and

the Safe mode adds the most to runtime. Scenario #9 additionally tests second-order behavior mode

modifications. We selected modifying the agent’s behavior mode from Safe, to Normal, to Risky because

the agent begins in a safe area of the grid, where the gold is also located. The silver is located adjacent to

the gold but in a medium-risk location that the Safe agent cannot access. Therefore, the Safe agent will

wait indefinitely, unless there is a behavior mode modification. This behavior is mirrored by the Normal

agent after it collects the silver. Hence, the plan generated by the agent with behavior mode parameters

S. Glaze & D. Inclezan 105

“Safe to Normal (2) to Risky (4)” is set up to collect the ores without the Safe or Normal agents waiting

at all, and the agent with behavior mode parameters “Safe to Normal (3) to Risky (6)” is set up for the

Safe and Normal agents to wait for exactly 1 time step before its behavior mode is modified to a more

Risky one that allows them to complete another subgoal. An interesting observation is that the agent

with behavior mode parameters “Safe to Normal (3) to Risky (6)” has a faster runtime than that with

parameters “Safe to Normal (2) to Risky (4).” We speculate that this is because the plan that is generated

by the Normal agent at time step 3 has a shorter span of time steps to plan for than when starting at time

step 2, and likewise for the Risky agent at time step 6 versus 4.

We also ran experiments on the 14 scenarios of the Room Domain by Harders and Inclezan [9]. The

results are in Table 5 and they match the observations for the Mining Domain.

Table 5: Performance Results: Room Domain (Python + CLINGO)

Safe Mode Normal Mode Risky Mode One Behavior Mode Change

Scen. # T (s) SD T (s) SD T (s) SD T (s) SD Change

1 6.876 0.38 7.468 0.21 7.196 0.20 14.621 0.34 Safe to Normal (1)

2 7.777 0.50 7.620 0.56 8.521 2.40 15.541 2.31 Risky to Safe (2)

3 7.772 0.14 9.667 2.95 7.689 0.48 14.345 0.21 Safe to Risky (3)

4 7.763 0.21 7.644 0.24 7.474 0.55 14.271 0.37 Risky to Safe (1)

5 7.316 0.15 7.190 0.06 7.085 0.09 14.096 0.23 Risky to Normal (1)

6 7.762 0.40 7.232 0.17 7.159 0.18 13.795 0.19 Safe to Normal (2)

7 7.836 0.38 7.442 0.31 7.223 0.18 13.932 0.48 Risky to Normal (2)

8 7.196 0.09 7.487 0.10 7.859 0.68 14.135 0.24 Safe to Risky (2)

9 9.103 0.12 7.727 0.18 7.665 0.20 15.821 0.39 Safe to Risky (2)

10 7.305 0.15 7.307 0.17 7.207 0.11 13.871 0.36 Normal to Safe (2)

11 8.065 0.41 7.870 0.21 7.706 0.22 14.882 0.27 Normal to Risky (1)

12 7.741 0.17 7.689 0.42 7.488 0.09 14.520 0.24 Normal to Safe (2)

13 7.762 0.30 7.712 0.21 7.739 0.35 14.720 0.13 Safe to Normal (2)

14 8.369 0.27 7.395 0.16 7.334 0.11 13.346 0.44 Normal to Safe (4)

GUI Usability Study: The final evaluation was a usability study for the GUI that we presented in

Section 5. Our participants (N = 6) were given a brief explanation of the Mining Domain, and necessary

background information on ASP planning. Then, they were asked to download and run an executable file

for the GUI seen in Figure 3, and to test all 10 scenarios with different behavior mode parameters. Finally,

they answered questions on a 5-point Likert scale. The average score and standard deviation for each

question’s responses are reported in Table 6. While scores were generally high, especially for question 6,

we do note the lower scores for questions 1, 2, 8. This indicates that the prototype GUI can be improved

by using more modern-looking widgets, facilitating the process of downloading it, and providing more

descriptive error messages that are displayed when input validation checks that are violated.

7 Related Work

Our work expands on Harders and Inclezan’s [9] notions of behavior modes w.r.t. norm-compliance.

Another work on norm-aware agents is that by by Meyer and Inclezan [12] who created the APIA ar-

chitecture for norm-aware intentional agents. APIA agents operate with activities instead of simple

106 Architecture for Simulating Behavior Mode Changes

Table 6: Usability Study Results

Survey Question Average Score SD

(scale 1-5)

1 The executable (.exe) file was easy to download and run. 3.83 1.47

2 The GUI has a nice look and feel. 3.60 0.89

3 The GUI was easy to interact with. 4.67 0.52

4 I did not encounter any odd behavior from the GUI. 4.83 0.41

5 The images depicting the different scenarios were a useful 4.50 0.55

resource for understanding the generated plan.

6 It was easy to change behavior modes. 5.00 0.00

7 I understand the plan that was generated by the program. 4.50 0.84

8 Error messages were easy to understand (Only answer 3.67 1.15

this question if you received error messages).

plans, by building upon the AIA architecture by [3]. APIA agents can reason about agent intentions, but

does not allow the agent’s controller to easily set and change behavior modes. [14] introduced an ASP

framework for reasoning and planning with norms for autonomous agents. The agent actions in their

framework have an associated duration and can incur penalties, while policies have an expiration dead-

line. On the other hand, their framework does not model different behavior modes and changes between

behavior modes, which is the focus of this paper. Other existing approaches on norm-aware agents focus

solely on compliant behavior (e.g., [13, 1]), while we were interested in studying a range of behavior

modes on a spectrum for norm-abiding to non-compliant to enable the simulation of human behavior as

well. In our work, we assume that changes between behavior modes are justified in certain situations,

such as emergency rescue operations, and this should be modeled and simulated. The question of emer-

gency situations in relation to norms was previous studied by Alves and Fernández [2], but only in the

context of access control policies. In contrast, the use AOPL for norm specification in our architecture

allows us to express not only access control policies (i.e., authorizations), but also obligations, both strict

and defeasible, and preferences between policy statements. In terms of defining behavior modes via

priorities between different metrics, our work indicates some connections to Son and Pontelli’s PP for

specifying basic preferences [15]. It is not clear though whether maximizations of percentage metrics,

which occur in our description of behavior modes, can be achieved within the PP framework.

8 Conclusions and Future Work

We presented an ASP framework that defines how the controller of norm-aware autonomous agents

can modify their behavior modes under the plan-choosing framework proposed by [9]. We introduced

a Python component that includes a wrapper class that can be used as the behavior mode-changing

mechanism and a GUI with the potential for generalization, for other domains as well.

In the future, one could generalize this proposed ASP simulation framework so that a controller can

manipulate multiple agents’ behavior modes as they work toward achieving their goal(s). Optimizing

ASP encodings and Python code is another future goal, as it would allow for larger and more complicated

dynamic domains to be simulated. Finally, one could continue to develop additional behavior modes,

outside of the three that are used in this framework. This would allow for more nuanced agent behavior

to be modeled under this framework and generally in ASP.

S. Glaze & D. Inclezan 107

References

[1] Natasha Alechina, Mehdi Dastani & Brian Logan (2012): Programming norm-aware agents. In: Proceedings

of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS

’12, International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, p. 1057–1064,

doi:10.5555/2343776.2343848.

[2] Sandra Alves & Maribel Fernandez (2017): A graph-based framework for the analysis of access control

policies. Theoretical Computer Science 685, pp. 3–22, doi:10.1016/j.tcs.2016.10.018.

[3] Justin Blount, Michael Gelfond & Marcello Balduccini (2015): A Theory of Intentions for Intelligent Agents

- (Extended Abstract). In: Proceedings of the 13th International Conference on Logic Programming and

Nonmonotonic Reasoning, LNCS 9345, Springer, pp. 134–142, doi:10.1007/978-3-319-23264-5_12.

[4] Domenico Corapi, Marina De Vos, Julian A. Padget, Alessandra Russo & Ken Satoh (2010): Norm Re-

finement and Design through Inductive Learning. In Marina De Vos, Nicoletta Fornara, Jeremy V. Pitt

& George A. Vouros, editors: Coordination, Organizations, Institutions, and Norms in Agent Systems VI -

COIN 2010 International Workshops, Lecture Notes in Computer Science 6541, Springer, pp. 77–94, doi:10.

1007/978-3-642-21268-0_5.

[5] Michael Gelfond & Daniela Inclezan (2013): Some properties of system descriptions of ALd. J. Appl. Non

Class. Logics 23(1-2), pp. 105–120, doi:10.1080/11663081.2013.798954.

[6] Michael Gelfond & Yulia Kahl (2014): Knowledge Representation, Reasoning, and the Design of Intelligent

Agents. Cambridge University Press, doi:10.1017/CBO9781139342124.

[7] Michael Gelfond & Vladimir Lifschitz (1991): Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9(3/4), pp. 365–386, doi:10.1007/BF03037169.

[8] Michael Gelfond & Jorge Lobo (2008): Authorization and Obligation Policies in Dynamic Systems. In Maria

Garcia de la Banda & Enrico Pontelli, editors: Logic Programming, Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, pp. 22–36, doi:10.1007/978-3-540-89982-2_7.

[9] Charles Harders & Daniela Inclezan (2023): Plan Selection Framework for Policy-Aware Autonomous

Agents. In Sarah Alice Gaggl, Maria Vanina Martinez & Magdalena Ortiz, editors: Logics in Artifi-

cial Intelligence - 18th European Conference, JELIA, LNCS 14281, Springer, pp. 638–646, doi:10.1007/

978-3-031-43619-2_43.

[10] Daniela Inclezan (2023): An ASP Framework for the Refinement of Authorization and Obligation Policies.

Theory and Practice of Logic Programming 23(4), p. 832–847, doi:10.1017/S147106842300011X.

[11] Victor W. Marek & Miroslaw Truszczynski (1999): Stable Models and an Alternative Logic Programming

Paradigm. In Krzysztof R. Apt, Victor W. Marek, Mirek Truszczynski & David Scott Warren, editors:

The Logic Programming Paradigm - A 25-Year Perspective, Artificial Intelligence, Springer, pp. 375–398,

doi:10.1007/978-3-642-60085-2_17.

[12] John Meyer & Daniela Inclezan (2021): APIA: An Architecture for Policy-Aware Intentional Agents. In: Pro-

ceedings of the 37th International Conference on Logic Programming (Technical Communications), EPTCS

345, pp. 84–98, doi:10.4204/EPTCS.345.23.

[13] Nir Oren, Wamberto Vasconcelos, Felipe Meneguzzi & Michael Luck (2011): Acting on Norm Constrained

Plans. In João Leite, Paolo Torroni, Thomas Ågotnes, Guido Boella & Leon van der Torre, editors: Computa-

tional Logic in Multi-Agent Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 347–363, doi:10.

1007/978-3-642-22359-4_24.

[14] Zohreh Shams, Marina De Vos, Julian A. Padget & Wamberto Weber Vasconcelos (2017): Practical reason-

ing with norms for autonomous software agents. Eng. Appl. Artif. Intell. 65, pp. 388–399, doi:10.1016/J.

ENGAPPAI.2017.07.021.

[15] Tran Cao Son & Enrico Pontelli (2006): Planning with preferences using logic programming. Theory and

Practice of Logic Programming 6(5), p. 559–607, doi:10.1017/S1471068406002717.

https://doi.org/10.5555/2343776.2343848
https://doi.org/10.1016/j.tcs.2016.10.018
https://doi.org/10.1007/978-3-319-23264-5_12
https://doi.org/10.1007/978-3-642-21268-0_5
https://doi.org/10.1007/978-3-642-21268-0_5
https://doi.org/10.1080/11663081.2013.798954
https://doi.org/10.1017/CBO9781139342124
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/978-3-540-89982-2_7
https://doi.org/10.1007/978-3-031-43619-2_43
https://doi.org/10.1007/978-3-031-43619-2_43
https://doi.org/10.1017/S147106842300011X
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.4204/EPTCS.345.23
https://doi.org/10.1007/978-3-642-22359-4_24
https://doi.org/10.1007/978-3-642-22359-4_24
https://doi.org/10.1016/J.ENGAPPAI.2017.07.021
https://doi.org/10.1016/J.ENGAPPAI.2017.07.021
https://doi.org/10.1017/S1471068406002717

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 108–110, doi:10.4204/EPTCS.416.8

© V. Tummala & D. Inclezan

This work is licensed under the

Creative Commons Attribution License.

Policies, Penalties, and Autonomous Agents

(Extended Abstract)

Vineel Tummala

Miami University
Ohio, USA

tummalvs@miamioh.edu

Daniela Inclezan

Miami University
Ohio, USA

inclezd@miamioh.edu

We introduce a framework for enabling policy-aware autonomous agents to reason about penalties

for non-compliant behavior, and act accordingly. We use the AOPL language for policy specification

and ASP for reasoning about policies and penalties. We build upon existing work by Harders and

Inclezan on simulating the behavior of policy-aware autonomous agents and run tests on two different

domains. We conclude that our framework produces higher quality plans than the previous approach.

1 Introduction

In this paper we explore autonomous agents that operate in dynamic environments governed by policies

or norms. We introduce a framework that enables these policy-aware agents to reason about potential

penalties for non-compliance and generate suitable plans for their goals. Unlike some of the previous

work that only focused on compliant agents (e.g., [7, 1]), we believe that it is important to study the

different nuances of non-compliant agent behavior for two reasons. First, autonomous agents may be

tasked to accomplish high-stakes goals (e.g., assist in rescue operations) that may only be achievable if

one or more non-compliant actions are executed as part of the plan. Second, this can be useful to policy

makers if policy-aware agents are used to model human behavior since humans do not always comply

to norms. In our proposed framework, policies are specified in the Authorization and Obligation Policy

Language (AOPL) by Gelfond and Lobo [3], and implemented in Answer Set Programming (ASP). We

expand AOPL to enable the representation of, and reasoning about, penalties that may be incurred for

non-compliance with a policy. Previous work on policy-aware autonomous agents [6, 4] defined var-

ious attitudes towards compliance with policies, called behavior modes. Non-compliant behavior was

acceptable as part of the Risky behavior mode. However, in that framework the different plans contain-

ing non-compliant actions were ranked solely based on the length of the plan. Instead, our framework

is capable of distinguishing between different non-compliant plans via penalties, so that an agent that

disobeys certain policies to achieve its goal can do so with minimum repercussions. Based on our exper-

iments, we conclude that our framework produces better quality plans. At least for some domains, our

approach is also more efficient.

2 Background: Policy-Specification Language AOPL

Gelfond and Lobo [3] designed the Authorization and Obligation Policy Language AOPL for specifying

policies for an intelligent agent acting in a dynamic environment. A policy is a collection of authorization

and obligation statements. An authorization indicates whether an agent’s action is permitted or not, and

under which conditions. An obligation describes whether an agent is obligated or not obligated to per-

form a specific action under certain conditions. An AOPL policy assumes that the agent’s environment

http://dx.doi.org/10.4204/EPTCS.416.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

V. Tummala & D. Inclezan 109

is described in an action language such as ALd [2]. An ALd system description defines the domain’s

transition diagram whose states are complete and consistent sets of fluent literals and whose arcs are

labeled by actions. The signature of an AOPL policy includes (a) the signature of the dynamic system

description (which consists of predicates for sorts, fluents, and actions) and (b) predicates permitted

for authorizations, obl for obligations, and prefer for specifying preferences between authorizations or

obligations. An AOPL policy P is a finite collection of statements of the form:

permitted (e) if cond (1a)

¬permitted (e) if cond (1b)

obl (h) if cond (1c)

¬obl (h) if cond (1d)

d : normally permitted(e) if cond (1e)

d : normally ¬permitted(e) if cond (1f)

d : normally obl(h) if cond (1g)

d : normally ¬obl(h) if cond (1h)

prefer(di,d j) (1i)

where e is an elementary action; h is a happening (i.e., an elementary action or its negation1); cond is

a set of atoms of the signature, except for atoms containing the predicate prefer; d appearing in (1e)-

(1h) denotes a defeasible rule label; and di, d j in (1i) refer to distinct defeasible rule labels from P.

Rules (1a)-(1d) encode strict policy statements, while rules (1e)-(1h) encode defeasible statements (i.e.,

statements that may have exceptions). Rule (1i) captures priorities between defeasible statements only.

3 Penalization Framework for Policy-Aware Agents

We extend the AOPL syntax by a new type of statement for penalties:

penalty(r, p) if condp

where r is the label of the prohibition or obligation rule for which the penalty is specified, p stands for

the number of penalty points imposed if the rule r is broken, and condp is a collection of static literals.

As in Inclezan’s work [5], we assume that all AOPL rules are labeled, including strict ones, which is not

the case in the original definition of the language. The “if condp” part is omitted if condp is empty. For

instance, here is a strict policy rule labeled r6(L) and its associated 3-point penalty. The rule says that

the agent is obligated to stop at a location L whenever there are pedestrians crossing at that location:

r6(L) : obl(stop(L)) if pedestrians are crossing(L)
penalty(r6(L),3)

Multiple penalty values can be associated with the same rule, based on different gravity levels. Let’s

consider the following defeasible policy rule r1(L1,L2,S,S1) saying that normally one is not permitted

to exceed the speed limit by more than 5 mph if the speed limit is under 55 mph:

r1(L1,L2,S,S1) : normally ¬permitted(drive(L1 ,L2,S))
if speed limit(S1), S > S1 +5, S1 < 55

The various levels of penalties for 1, 2, and 3 points respectively are assigned to the rule in AOPL as:

penalty(r1(L1,L2,S,S1),1) if S−S1 < 10.

penalty(r1(L1,L2,S,S1),2) if S−S1 >= 10, S−S1 < 20.

penalty(r1(L1,L2,S,S1),3) if S−S1 >= 20.

1If obl(¬e) is true, then the agent must not execute e.

110 Policies, Penalties, and Autonomous Agents (Extended Abstract)

Next, we develop ASP rules that can identify the penalties an agent incurs at each time step and

specify which policy rule has been violated. We do so by introducing a predicate add penalty(r, p, i),
which says that a penalty of p points should be added to the total for breaking policy rule r at time step

i. This predicate’s definition addresses three scenarios: (1) when a prohibited action is included in the

plan; (2) when a required action is missing from the plan; and (3) when a forbidden action is erroneously

included in the plan.

add penalty(R,P, I) ← rule(R), holds(R, I), head(R,¬permitted(E)), occurs(E, I), penalty(R,P)
add penalty(R,P, I) ← rule(R), holds(R, I), head(R,obl(E)), ¬occurs(E, I), penalty(R,P)
add penalty(R,P, I) ← rule(R), holds(R, I), head(R,obl(¬e)), occurs(e, I), penalty(R,P)

where R is a rule, I is a time step, E is an elementary agent action, and P is a penalty.

The overall penalty for a plan is captured by the predicate cumulative penalty defined using the #sum

aggregate of CLINGO, and similarly for cumulative time to complete a plan:

cumulative penalty(N) ← #sum{P,R, I : add penalty(R,P, I)} = N

An agent can either prioritize minimizing the cumulative penalty or minimizing the cumulative time

when searching for an optimal plan.

4 Findings from Experiments

Our framework enhances the specification and simulation of agent behavior compared to the previous

work by Harders and Inclezan (HI framework) [4], which lacked the concept of penalties. We tested

our framework on the Rooms Domain [4] and observed significant improvements in time efficiency.

When testing it on a newly developed Traffic Norms Domain, in which selecting an appropriate driving

speed was fundamental, our framework produced higher quality plans. The HI framework chose random

speeds, as it was penalty-agnostic. The choice of appropriate speeds resulted in longer execution times

for our framework, as it required more optimization cycles compared to the HI framework.

References

[1] Natasha Alechina, Mehdi Dastani & Brian Logan (2012): Programming norm-aware agents. In: Proceedings

of AAMAS’12 - Volume 2, Richland, SC, p. 1057–1064, doi:10.5555/2343776.2343848.

[2] Michael Gelfond & Daniela Inclezan (2013): Some properties of system descriptions of ALd. J. Appl. Non

Class. Logics 23(1-2), pp. 105–120, doi:10.1080/11663081.2013.798954.

[3] Michael Gelfond & Jorge Lobo (2008): Authorization and Obligation Policies in Dynamic Systems. In Maria

Garcia de la Banda & Enrico Pontelli, editors: Logic Programming, Lecture Notes in Computer Science,

Springer, Berlin, Heidelberg, pp. 22–36, doi:10.1007/978-3-540-89982-2_7.

[4] Charles Harders & Daniela Inclezan (2023): Plan Selection Framework for Policy-Aware Autonomous Agents.

In Sarah Alice Gaggl, Maria Vanina Martinez & Magdalena Ortiz, editors: Proceedings of JELIA’23, Lecture

Notes in Computer Science 14281, Springer, pp. 638–646, doi:10.1007/978-3-031-43619-2_43.

[5] Daniela Inclezan (2023): An ASP Framework for the Refinement of Authorization and Obligation Policies.

Theory and Practice of Logic Programming 23(4), p. 832–847, doi:10.1017/S147106842300011X.

[6] John Meyer & Daniela Inclezan (2021): APIA: An Architecture for Policy-Aware Intentional Agents. In:

Proceedings of ICLP’21 (Tech. Comm.), EPTCS 345, pp. 84–98, doi:10.4204/EPTCS.345.23.

[7] Nir Oren, Wamberto Vasconcelos, Felipe Meneguzzi & Michael Luck (2011): Acting on Norm Constrained

Plans. In João Leite, Paolo Torroni, Thomas Ågotnes, Guido Boella & Leon van der Torre, editors: Computa-

tional Logic in Multi-Agent Systems, Springer, pp. 347–363, doi:10.1007/978-3-642-22359-4_24.

https://doi.org/10.5555/2343776.2343848
https://doi.org/10.1080/11663081.2013.798954
https://doi.org/10.1007/978-3-540-89982-2_7
https://doi.org/10.1007/978-3-031-43619-2_43
https://doi.org/10.1017/S147106842300011X
https://doi.org/10.4204/EPTCS.345.23
https://doi.org/10.1007/978-3-642-22359-4_24

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 111–124, doi:10.4204/EPTCS.416.9

© Sartor, Wyner, and Contissa
This work is licensed under the
Creative Commons Attribution License.

Mind the Gaps: Logical English, Prolog, and Multi-agent
Systems for Autonomous Vehicles

Galileo Sartor
Department of Computer Science, Swansea University, United Kingdom

galileo.sartor@swansea.ac.uk

Adam Wyner
Department of Computer Science, Swansea University, United Kingdom

a.z.wyner@swansea.ac.uk

Giuseppe Contissa
Department of Legal Studies, University of Bologna, Italy

giuseppe.contissa@unibo.it

In this paper, we present a modular system for representing and reasoning with legal aspects of traffic
rules for autonomous vehicles. We focus on a subset of the United Kingdom’s Highway Code (HC)
related to junctions. As human drivers and automated vehicles (AVs) will interact on the roads,
especially in urban environments, we claim that an accessible, unitary, high-level computational
model should exist and be applicable to both users. Autonomous vehicles introduce a shift in liability
that should not bring disadvantages or increased burden on human drivers. We develop a system “in
silico” of the model. The proposed system is built of three main components: a natural language
interface, using Logical English, which encodes the rules; an internal representation of the rules in
Prolog; and an multi-agent-based simulation environment, built in NetLogo. The three components
interact: Logical English is translated into and out of Prolog (along with some support code); Prolog
and NetLogo interface via predicates. Such a modular approach enables the different components to
carry different “burdens” in the overall system; it also allows swapping of modules. Given NetLogo,
we can visualize the effect of the modeled rules as well as validate the system with a simple dynamic
running scenario. Designated agents monitor the behaviour of the vehicles for compliance and record
potential violations where they occur. The information on potential violations is then utilized by
Validators, to determine whether the violation is punishable, differentiating between exceptions and
cases.

1 Introduction

Research in autonomous vehicles is improving at a continuous pace. In a possible future, AVs and human
agents will share a common space, such as city streets, where the AVs will have to interact with other
road users in a predictible and understandable way.

Among the problems that need to be addressed specifically for this shared scenario is that of making
the behaviour of AVs conform to the traffic laws [14], in such a way as to not increase the burden on the
other users of the roads.

For this reason we propose and present the development of rules from the UK Highway Code (traffic
rules) that are modelled for both human and autonomous drivers.

The hypothesis we put forward is that with a combination of logic modelling and natural language we
can obtain a representation of norms that can be directly used by both humans and autonomous agents,
thus simplifying the inclusion of AVs on mixed roads.

http://dx.doi.org/10.4204/EPTCS.416.9
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

112 Mind the Gaps

The system we present does not make use of machine learning (e.g., image recognition) as input to
the rule base. Rather we assume that the readings of the vehicle sensors are correct and fed into the rule
base, so that the vehicle can reason on the input and determine which action to take accordingly. In future
work, we might consider an integration between a rule-base and machine learning.

The system is designed to simulate multiple agents on the road, both human and autonomous and to
detect violations in their behaviour. The violations are recorded by specific agents (monitors). The logs,
with the information coming from the offending vehicle, can be used in a second moment to perform
legal reasoning on the violation and assign penalties when necessary.

The paper presents the background, outlining the main goals and issues in 2, with particular attention
on the issue of liability in 3 and the existing projects/papers that explore the same or a similar space
outlined in 4. The modular structure of the proposed system is then presented in 5, followed by the
methodology for the design of the different component in 6, with examples of the code. The legal issues
analyzed in the paper are further explored in the context of the proposed system in 7, specifically looking
at how such a system could reason on the occurring violations, keeping in mind what the monitors logged,
and also the reasoning the vehicles made at the time of the violation. This section will also look at what it
means to violate a rule in the context of driving, what types of violations could occur, and their differing
legal outcomes. We summarise and discuss future work in Section 8.

2 Background

Autonomous vehicles are going to share the road with human drivers, and other non autonomous agents.
It is therefore crucial to ensure the behaviour of AVs is consistent with that of a good driver, i.e. a human
driver who follows the rules in a predictable manner.

This is even more important if we consider that, if well developed, these vehicles could be aware of
their decision making, and could provide understandable explanations of the reasoning behind a certain
action. As we will cover in the following sections, we consider this to be a crucial point, to reduce the
burden on human agents who interact with the vehicle, and to reason with violations and reparations.

In developing the system, we should also consider the fact that as humans we make decisions also
based on the possibility of incurring in violations and fines. There may be multiple reasons for this, and
some may be legally valid, such as in the case of rules with exceptions, as will be described later. In the
case of AVs however the general behavioural rules have to be determined at build time, given that there
is no human agent involved in taking decision while driving. This question is made more complicated
by the issue of liability.

3 Liability

While autonomous vehicles are expected to drive more consistently with respect to the law and reduce
accidents, violations of the law and accidents may still happen in certain situations. The question that
arises is who should be held responsible for such violations and accidents - the driver, manufacturer, or
the algorithm developer? Such issues are relevant for the general context of development of autonomous
vehicles and guide how a system might be modeled. We develop issues below and specifically tie the
concept of “lawful reasonable agent” to our implementation.

At the highest levels of automation, that is levels 4 and 5, according to the SAE definition [16], the
autonomous vehicle takes full control of all dynamic driving tasks. In these two levels of automation,
the user is not expected to intervene when the automated driving system is on. Therefore, user’s liability

Sartor, Wyner, and Contissa 113

is to be considered only when the ODD limits are exceeded (namely, the limits within which the driving
automation system is designed to operate), or when users request the system to disengage the automated
driving system. 1

It should be noted that vehicles under level 4 or 5 may even be designed to be exclusively operated
by technology, that is without user interfaces such as braking, accelerating, steering, etc. Therefore, such
categories of vehicles do not contemplate at all the role of the human driver. Whenever user interfaces
and controls are missing, the user will not be able to intervene in any of the dynamic driving tasks, and
therefore cannot be considered in any way responsible for driving and subject to the related liabilities
[7].

Therefore, under levels 4 and 5, the burden of liability is mostly on manufacturers and/or program-
mers. They would be liable (1) when providing a defective or non-standard compliant tool that had a role
in the causation of the accident, and (2) whenever the system fails to carry out the assigned task with a
level of performance that is (at least) comparable to that reached by a human adopting due care under the
same conditions.

This is linked to the idea that there would be a reasonable expectation that the autonomous vehicle
performs an assigned task in a way that ensures the same level of safety that would be expected from a
human performing the same task. Thus, it would seem appropriate to compare the autonomous vehicle’s
behaviour in carrying out an assigned task, with the behaviour that would be otherwise expected by the
human driver [13].

In this perspective, the concept of negligence would be central in evaluating the behaviour of the
autonomous vehicle and assessing liabilities for manufacturers and programmers.

Negligence is ‘the omission to do something which a reasonable man, guided upon those consid-
erations which ordinarily regulate human affairs, would do, or doing something which a prudent and
reasonable man would not do’ (Blythe v Birmingham Waterworks (1856) 11 Exch 781, at p 784).

The tort of negligence usually requires the following elements: the existence of an injury, harm or
damage; that the injurer owes a duty of care to the victim; that the injurer has broken this duty of care
(fault); that the damage (or injury) is a reasonably relevant consequence of the injurer’s carelessness
(causal connection)[5]. In the legal discourse, “negligence” denotes carelessness, neglect, or inattention,
which are mental stances that can be ascribed only to human minds.

A driver of the vehicle has an asymmetrical duty of care toward pedestrians or other individuals in the
vicinity. The rules of 170-183 in part characterise how to meet this duty of care; broadly speaking, the
driver should proceed defensively and cautiously, anticipating behaviours of others which might create
circumstances in which the likelihood of an accident increases.

Clearly, the concept of negligence is linked to the idea of a human fault. In contrast, liability for tech-
nological failures is usually evaluated and allocated on the grounds of product liability, which requires
evidence of the following: an injury, harm or damage; a defective technology; and a causal connection
between the damage (or injury) and the defect, namely that the former must be a reasonably relevant con-
sequence of the latter. A technology may be considered defective if there is evidence of a design defect,
a manufacturing defect, or a warning defect. Design defect, where the design is unreasonably unsafe,
is the most relevant, and is usually determined by courts taking into account one of the following tests:
the state of the art, the evidence of alternative design, or the reasonable expectations of users/consumers
with regard to the function of the technology[17]. Key for our purposes is that negligence and product

1This is consistent with the 2022 update to the Highway code, stating that While a self-driving vehicle is driving itself in a
valid situation, you are not responsible for how it drives. You may turn your attention away from the road and you may also
view content through the vehicle’s built-in infotainment apparatus, if available.

114 Mind the Gaps

liability contrast with respect to duty-of-care and defective technology.
Yet, human and AI liability converge around performance: when a technology is used in substitution

of a human, there is a reasonable expectation that the AI will perform an assigned task in a way that
ensures the same level of safety that would be expected from a human performing the same task.

We reasonably assume that technology is presumed to have at least the same level of performance
and safety as the human user. Thus, an AV ought to bear the same liability and duty of care as a human
user. We propose that one code of conduct should rule both human and autonomous driver as a matter
of fairness and equality on the road. This implies that we ought to be able to interrogate the automated
vehicle on the same grounds as the human driver. To realise this, our modeling language should provide
a unitary model, which yet allows for alternative means of realisation and data input.

4 State of the Art

In AI and Law, one of the main goals is to represent legal provisions as code [8, 1]. There are issues to
address in order to obtain a good representation faithful to the source, and the main one is the presence
of vagueness and open texture in the law [2]. [4] discusses the legal context related to open textured
concepts and defeasibility. The natural language version of the HC has similar issues, that have already
been discussed in the context of AVs with reference to natural language [10] and commonsense reasoning
[11].

There have been multiple proposed approaches to addressing the issue of autonomous vehicles and
the rules of the road.

An possible issue with the purely data-driven approaches is that there is a lack of well formed, diverse
datasets [9], that are often biased towards accidents. Furthermore, they rely heavily on the interaction
between autonomous vehicles [18], that are able to communicate, and act together as a swarm.

In this research we are attempting to address the interaction with and expectations of human agents
on shared roads, where vehicles cannot rely on inter-vehicle communication. Further research is ongoing
on how to apply data-driven predictive systems to mixed traffic (human and AVs).

We will focus on the rule-based approaches, and in particular those that enable further legal reasoning
on the occurring events and actions.

In the research considered, the rules of the road (or a subset) have been modelled in higher order
logic or temporal logic, to reason about the desired actions and concepts about the environment, in order
to determine whether a certain action is valid. The agent in question can then take the desired action, and
proceed with the movement.

One example of a similar representation is that of the RoTRA (Rules of The Road Advisor), [6], in
which the rules are encoded in Prolog, and queried with respect to the state of the world (the context and
beliefs), and the desired goal (intention).

Other projects have a more narrow focus on specific issues, such as determining the safe overtaking
distances, with a formal model developed in Linear Temporal Logic, implemented in Isabelle/HOL, [15].

The issue of encoding and reasoning with commonsense knowledge is not specific to the domain
of autonomous vehicles, and is in fact a broader issue of knowledge based systems. In the context
of driving, the analogy with human reasoning, and how modelling commonsense reasoning can help
to develop reliable autonomous vehicles, is the topic of the AUTO-DISCERN (AUTOnomous DrivIng
uSing CommonsEnse ReasoniNg) project[11].

[3] presents an automatic compliance checking framework to assess AVs behaviour with respect to
the traffic rules of Queensland, Australia. It considers issues related to open texture, exceptions, and

Sartor, Wyner, and Contissa 115

conflicts amongst rules.
In our research, we assume the driving environment has not been sterilised of human drivers, but

rather includes them. Human understanding of and behaviour in the driving environment must be taken
into consideration, which may go beyond the specification of the traffic rules (i.e., the interpretations) and
require a unitary, transparent representation for both sorts of drivers, ensuring consistency. We are also
interested in the legal reasoning that occurs on the detected potential violations, and how the information
from the vehicles can be used to reason about the specific scenario.

5 Structure

The system presented is split in different, mostly independent modules, that each deal with one of the
requirements and interact through minimal translation layers.2

The controlled natural language (CNL) module is written in Logical English [12], syntactic sugar
on Prolog, that enables to write rules and interact with the system in natural language. Using Logical
English we can represent logic rules in natural language, that can be directly queried with a Prolog
interpreter, or translated to Prolog for use by the autonomous vehicle.

The Logic rules module is written in Prolog, and is mostly derived from the Logical English represen-
tation. The autonomous vehicle can reason with a Prolog interpreter, and use the result in determining
its driving behaviour. The Prolog output can be logged or converted back in natural language, saved in
a human readable format, and can be used to check instances after the fact (scenarios and queries). This
could be used in case of accidents or violations to determine why the vehicle took certain actions.

The simulation module uses NetLogo, a multi-agent programmable modeling environment, where
vehicles with different properties are spawned, ad can move around on a predefined road grid. In addition
to the basic movement, the vehicles can query the LE/Prolog rulebase to determine whether they are
allowed to perform a certain action, or conversely, if they are prohibited.

In the following section the division of labour between the different components that was chosen for
the system will be made clear.

6 Methodology

The development of the system started with the representation of norms in Logical English [Cite Mind
the Gap]. Given the need for a simulation system, and the availability of different potential candidates,
the idea was to keep the system modular, with the possibility to swap different components. The current
simulation uses NetLogo, but there is limited overlap in the components, mainly what is needed to
convert data and I/O. The rules themselves can still be queried by LE/Prolog, and combined with other
models. The NetLogo simulation is derived from one of the examples made available in NetLogo3, and
is then expanded through the use of a bridge to Prolog4 that had previously been developed, and has
been updated for the purpose of this project. Vehicles in NetLogo are assigned different properties, and

2The full code of the system is available at https://github.com/LyzardKing/mind-the-gap/tree/ICLP2024
3https://ccl.northwestern.edu/netlogo/models/TrafficIntersection
4https://github.com/LyzardKing/NetProLogo

https://github.com/LyzardKing/mind-the-gap/tree/ICLP2024
https://ccl.northwestern.edu/netlogo/models/TrafficIntersection
https://github.com/LyzardKing/NetProLogo

116 Mind the Gaps

are spawned at one of the edges of the screen. They follow the road, and decide whether to turn at an
intersection randomly. At the moment the system is not responsible for route planning, although in the
future it might be added. There are multiple types of vehicles, each with particular properties. Some
of the properties are reflected in Prolog, while others are limited to the NetLogo environment. Most
properties and data come from sensors in the vehicle, that perceive the surrounding environment, as
well as the properties inherent to the vehicle itself. The vehicles can see their surroundings, avoid other
objects/agents, without accessing the legal norms. If we disable the Prolog section the vehicles can still
drive, and act more like a swarm (Cite). This behaviour may be very efficient on roads only used by
autonomous vehicles, where the vehicles can communicate, and organize their actions accordingly. This
is not the case on mixed roads, with both human and autonomous agents, pedestrians, bikes, emergency
vehicles, and other potentially unpredictable agents. Human drivers, while sharing the road with AVs,
will have to be able to trust and understand the actions of the surrounding vehicles, while not necessarily
knowing (or caring) if they are human or autonomous. In these circumstances, AVs will have to respect
the same rules as their human counterparts, even if the actions are less optimized.

6.1 Logic rules

In the system the rules are represented in Logical English, in a way that is as isomorphic as possible
to the original text. This makes the rules readable by humans, and could point to the possibility of
having one simple corpus on which to write the rules, with them being automatically understandable
and implemented by humans and autonomous agents. The main goal here is to avoid repeating and
maintaining multiple codebases, and to ensure the logic structure of the natural language version of
the rules. To assess the viability of such an approach the first rules modelled were those dealing with
junctions (Rules 170-183 of the Using the Road section of the HC). The first thing to note is that we are
dealing with different types of morns, that may have different consideration when modelling: rules with
a highlighted MUST, or MUST NOT, are those that are tied directly to laws (the Road Traffic Act 1988,
The Traffic Signs Regulations and General Directions 2002), and deal with cases in which the driver is
considered is guilty of an offence. We will visit these cases more in the next sections. Most other rules
deal not with explicit prohibitions/obligation, rather dictate what the behaviour of a good driver should
be. In this case the terminology of the HC is very different, using words such as should, take extra care,
look around, . . . These terms are more nuanced, and while as humans we know how to deal with them,
the same cannot be assumed of autonomous agents. For the representation to be adequate enough we may
need in certain cases to add more information, and additional rules that form part of our commonsense
reasoning. Let us consider one of the modelled rules, rule 171, which states that:

You MUST stop behind the line at a junction with a ’Stop’ sign and a solid white line across
the road. Wait for a safe gap in the traffic before you move off.

This rule could be modelled by identifying the goal of the vehicle, entering the junction, and building
the rule in Listing 1. In the Logical English code, the word can means has the permission to, as used in
the Highway Code.

In this case the rule expresses what should happen to the vehicle when approaching the junction.
At first the vehicle should stop, since it is approaching a stop sign. Once it is next to the stop sign,
the vehicle can query the system for its permission to enter the junction, and the second rule would be
evaluated. This is how the rules are currently modelled, and through further revisions they could be made
more isomorphic depending on the specific needs. The rules can be queried as is, by giving a scenario, a
sample query that an AV could make, and could consequently show the solution in natural language, with

Sartor, Wyner, and Contissa 117

1 a vehicle can enter the junction if

2 the vehicle is of type ambulance

3 and it is not the case that

4 the vehicle must give way to an other vehicle.

5
6 a vehicle can enter the junction if

7 the vehicle has green light

8 and it is not the case that

9 the vehicle must give way to an other vehicle.

Listing 1: “Example rule in Logical English”

all the steps that have been used to derive a certain conclusion (trace). We are interested however in a
more dynamic use of the rulebase, and for that we can rely on the previously mentioned agent simulation.

6.2 Agent simulation

The simulation is running currently in NetLogo, with the prolog extension to enable the agents to query
the rulebase. While currently there is only one Prolog process running, the single queries made by the
vehicles are independent and isolated, to ensure that the queries are all atomic, and simulate a realistic
scenario.

The rules in NetLogo are only those that pertain to the physical constraints, e.d. those actions the
vehicles cannot physically make (e.g., occupying the same space of another vehicle). It is thus possible
for the vehicles to drive without additional rules (in the same way as it is possible for human drivers to
ignore the rules of the road). We then introduce the “legal” constraints, the Prolog rules.

With the addition of the rules from the HC, the behaviour of the AVs becomes closer to what we
would expect from human drivers.

Environment The simulated environment is very simple, consisting of three roads with two intersec-
tions. one of the intersections has a traffic light, while the other has stop signs. The intersections are
spawned with their specific properties, and agents are generated independently starting from random
road sections.

6.2.1 Agents

In the simulation there are different agents, with different properties and goals:

Vehicles Vehicles are divided in two categories: cars, and emergency vehicles (ambulances). This is
because rules may apply differently to different vehicle types. At the moment in the simulation vehicles
are divided in two categories: autonomous and human; as well as two types: cars and ambulances.

The different types of vehicles can be expanded, and share certain rules. In particular the main
difference between the ambulances and cars is that the ambulances can violate certain rules of the HC,
like crossing with a red light, so long as that doesn’t directly cause an accident. To check this the vehicle
uses the information about its surroundings to determine whether there is another vehicle close enough.

The cars are split in human and machine driven, with the main difference for now is the introduction
of a number of delays and variations in the human behaviour. For example, a human driver may decide
to go faster than the speed limit.

118 Mind the Gaps

Figure 1: Simulated environment

1 a vehicle potentially violates entering the junction if

2 the vehicle has red light

3 and it is not the case that

4 the vehicle is stopped.

Listing 2: “Example of the modeled violations”

Pedestrians In the current simulation the pedestrian have a very basic behaviour, simply crossing when
they get to a road. The only thing pedestrians will look at is if there is a car immediately approaching.
This behaviour will be expanded upon in future development.

Monitors Monitors are the final agents that are active in the simulation. They focus on one section of
road to see if they detect any vehicles which may have violated a traffic rule. The monitors have a narrow
scope of vision and only access visible properties in the environment, e.g., cameras that recognize the
license plate, speed and position of the vehicles; they only react with respect to that information. As
such, monitors are purely reactive, rather than interactive. Moreover, they do not do any legal reasoning
per se, which is why we only say they identify whether a vehicle may have violated a traffic rule a vehicle
with its scope of coverage.

The rules that pertain to the monitors are modelled as in Listing 2. In the simulation, the monitor
has vision of the traffic light, the vehicle position, and speed. When a vehicle enters the cone of vision
of the monitor, the monitor gathers information about the traffic light and the vehicle speed; the monitor
can detect whether the vehicle is moving or not, passing the predicate “vehicle is stopped” and the traffic
light colour to Prolog rules. The Prolog rules used by the monitors then determine if a potential violation
occurred, i.e., if the vehicle is not stopped and the light is red.

As discussed later, information on potential violations is passed to a validator, which may have
additional information about the properties of a vehicle which can be taken (or not) to mitigate against
issuance of a reparation. We say that if there is a potential violation and no mitigating circumstances,
then there is a punishable violation, which leads to a reparation.

Sartor, Wyner, and Contissa 119

7 Violations and Penalties

While the HC is not in itself formally a legally binding document, it contains legal rules and references
to the law, which indicate when violations arise and what is the correlated reparation (i.e., penalty to be
paid; for our purposes, we use reparation and penalty interchangeably).

For instance: Failing to comply with traffic sign; Road Traffic Act 1988, s.36; £100; points 3. Also
see Road Traffic Offences Act 1988 https://www.legislation.gov.uk/ukpga/1988/53/part/

II. And the schedules with the penalties, for example, https://www.legislation.gov.uk/ukpga/
1988/53/schedule/2/part/I. Our simulation must act and reason with respect to the violations and
reparations.

In the simulation, vehicles can violate the HC rules in certain situations. A human driver can inde-
pendently decide if it is worth breaking a rule, depending on many factors, such as the probability of
being caught, the probability of accidents, the change in time to reach the destination, and the amount of
the potential fine. Furthermore, whether or not a penalty is applied to an instance of a violation might
depend on whether it is “excusable’ for one reason or another; that is, a violation is an exception to a
norm, but some violations can themselves be exempted from penalty. For instance, a driver might be
caught speeding, but not pay a penalty as they explain they were handling a medical emergency. This
general list of factors mostly applies to AVs as well with a caveat that there is no driver responsible (and
liable) for deciding to break a rule, nor for the possible consequences. As can be imagined, there are
many factors with respect to which a norm is violated and conditions under which a penalty is or is not
applied.

Given this, we work with a small domain to implement a vehicle’s actions executed with respect to
rules, whether the vehicle’s action violates the rule, the detection of violations, consideration of mitigat-
ing circumstances, and the consequential penalties. As there are several rules, each related to actions;
there can be correlated distinct violations, detections, mitigating circumstances, and penalties. In a sense,
then, the actual behaviour of a vehicle with respect to the rules of the road is compared to and evaluated
against the ideal behaviour as specified by the rules of the road. The ideal behaviour is what the lawful
reasonable agent of Section 3 would strive to achieve. Deviations of actual from ideal are noted and
reasoned with further in terms of whether there were mitigating circumstances or not.

7.1 Design

Figure 2 is a graphic outline of the flow of information and reasoning. We start with Vehicle Scenario
which is the state of the world within the scope of vision of the vehicle; it is the context in which the
vehicle would execute an action (Vehicle Action). The Monitor is a reactive agent which is in charge of
detecting a violation within its scope of vision which is the Monitor Scenario; they stand-in for cameras
or the police. As a reactive agent, they record a Potential Violation, which remains to be validated with
respect to the laws as indicated below. The Validator Scenario is a hypothetical state of the world, one
in which the Vehicle Scenario has been modified were the goal of the Vehicle Action to be attained. The
Validator Scenario is used by the Validator to scope consideration of the Lawful Actions, which are those
actions which are compliant with the laws in that Validator Scenario; in effect, we are given all those
actions which, were they executed in the given Validator Scenario would be lawful. The Validator is
triggered by an instance of a Potential Violation; it is used to evaluate whether the Potential Violation
is indeed illegal or whether there might be mitigating circumstances. To move to this next step (VA in
LA wrt PV), we consider whether the action that the vehicle executes (Vehicle Action) is amongst the
Lawful Actions relative to the relevant Potential Violation, that is, whether the action has been caught by

https://www.legislation.gov.uk/ukpga/1988/53/part/II
https://www.legislation.gov.uk/ukpga/1988/53/part/II
https://www.legislation.gov.uk/ukpga/1988/53/schedule/2/part/I
https://www.legislation.gov.uk/ukpga/1988/53/schedule/2/part/I

120 Mind the Gaps

Vehicle Scenario
(VS)

Monitor Scenario

Validator Scenario
(VS + goal of VA)

Vehicle

Monitor

Validator

Vehicle Action (VA)

Potential Violation (PV)

Lawful Actions (LA)

VA in LA
wrt PV

Punishable Violation

Mitigated Violation

in

in

chooses

read

evalin

triggers

No

Yes

Figure 2: Action Execution with respect to Legal Rules

a monitor for a possible legal violation. If it is, then the violation is a Mitigated Violation; if not, then it
is a Punishable Violation, which could require a penalty payment.

For example, in Figures 3 and 4, we have vehicles which enter the intersection against the red light.
This introduces a Potential Violation in that whether the vehicle is penalised depends on whether or not it
has mitigating circumstances relative to the law. An ordinary vehicle would raise a Punishable Violation
in Figure 3, from which we would infer a correlated reparation (not shown). However, an ambulance
would raise a Mitigated Violation, as in Figure 4, since as an ambulance it has a legitimate reason not to
abide by the rule; consequently, no reparation can be inferred.

Figure 3: Example of violation detected
by the monitor (the arrow)

Figure 4: Example of an “allowed” viola-
tion, i.e., a permission

Sartor, Wyner, and Contissa 121

7.2 Implementation

Here we outline the implementation for each component of the design.

Scenario and Vehicle Action Two possible Scenarios are in Listing 3 and 4, which contain the goal of
entering the junction. The vehicle would execute an action (Vehicle Action), applying the rules in Listing
1 to the Scenario, which provides rules for each of a car and an ambulance. Note that an ambulance does
not need to abide by red lights, while a normal vehicle does.

1 scenario:

2 173 is of type car.

3 173 has red light.

4 goal:

5 173 can enter the junction

.

Listing 3: “Normal vehicle Scenario”

1 scenario:

2 253 is of type ambulance.

3 253 has red light.

4 goal:

5 253 can enter the junction

.

Listing 4: “Ambulance Scenario”

Monitor The monitor can detect a violation, as discussed in relation to Listing 2, and records it.

Validator Scenario is a hypothetical state of the world, one in which the Vehicle Scenario has possibly
been modified where the goal would be realised by the Vehicle Action. In this instance, since the Potential
Violation is related to the goal that the vehicles had in the Scenario and Vehicle Action above, the
Validator Scenario is equivalent to the Vehicle Scenario. These need not be equivalent; for example, if
the vehicle were caught speeding, though its goal were entering the junction.

Validator The Validator uses the rules in Listing 5 with the Rules of the Road of Listing 1 to determine
the possible lawful actions, and compare them to the action which gives rise to the Potential Violation.

Comparing the Vehicle Actions, Legal Actions, and Potential Violations The Listing 5 uses infor-
mation about the recorded Potential Violation and whether the vehicle can execute the action (Listing 1).
Where the vehicle can cross the red light and it is an ambulance, there are mitigating circumstances, so a
violation is mitigated; where the vehicle cannot cross the red light, the violation is punishable.

1 a vehicle punishably violates an action if

2 the vehicle potentially violates the action

3 and it is not the case that

4 the vehicle can the action.

5
6 a vehicle mitigately violates an action if

7 the vehicle potentially violates the action

8 and the vehicle can the action.

Listing 5: “Comparing Ideal (Legal) Actions to Real (Violable) Actions”

122 Mind the Gaps

8 Summary and Future Work

We have presented a modular framework for modeling autonomous vehicles that respect or violate the
rules of the road and interact with other road users. The modeled vehicles are designed in a way that
makes their behaviour compatible with the behaviour of human agents, particularly with respect to vio-
lability. The model includes violation detection and evaluation in a way that can take into account some
different cases and exceptions. As a modular system, components can be replaced with others, making
it more complex, while maintaining the basic legal considerations and provisions. The overall function
as outlined in Figure 2, while the specific examples present a simplified instance.

In future work, we intend to report other aspects of the implementation and continue this research,
expanding the rule-base and the simulation to closer map real world scenarios. The legal reasoning
component will be expanded, analyzing different natural language representations of rule priorities, ex-
ceptions, and the respective logic formulations.

The goal is to keep the rules modeled in a CNL as close as possible to the original source text.
This may require tweaking parts of the existing code to ensure it is compliant with this requirement. In
particular the definition of exceptions and rule hierarchy should be easily understandable and intuitive to
human readers.

A possible line of research deals with the (partially) automated extraction of rules from the original
source, so that it can be modeled as logic by an automated system and subsequently verified by human
experts. This process would involve validating existing tools to automate the parsing of the text, and in
particular their ability to keep the necessary level of consistency between the different rules.

Integration of machine learning approaches with legal reasoning would be an important avenue to
explore, though how and where it integrates is an open question. While we would want to “hard code”
from the HC, the overall system should have some flexibility to account for a variety of circumstances,
e.g., open texture and commonsense reasoning.

The analysis of the violations, and the legal reasoning that occurs after the violations have been
detected, will be expanded, to better define the rules that apply to AVs, and how the AV could behave in
situations where a human driver would perhaps decide to violate a rule. As part of this, some integration
with planning would be essential.

Acknowledgements

The authors wish to thank Prof. Bob Kowalski, for his active leadership of the Logical English project,
and for his encouragement to explore its applications to many different domains. We also thank Prof.
Giovanni Sartor for supporting this work in the context of the H2020 ERC Project “CompuLaw” (G.A.
833647).

References

[1] Trevor Bench-Capon, Michał Araszkiewicz, Kevin Ashley, Katie Atkinson, Floris Bex, Filipe Borges,
Daniele Bourcier, Paul Bourgine, Jack G. Conrad, Enrico Francesconi, Thomas F. Gordon, Guido Gov-
ernatori, Jochen L. Leidner, David D. Lewis, Ronald P. Loui, L. Thorne McCarty, Henry Prakken, Frank
Schilder, Erich Schweighofer, Paul Thompson, Alex Tyrrell, Bart Verheij, Douglas N. Walton & Adam Z.
Wyner (2012): A history of AI and Law in 50 papers: 25 years of the international conference on AI and
Law. Artificial Intelligence and Law 20(3), pp. 215–319, doi:10.1007/s10506-012-9131-x.

https://doi.org/10.1007/s10506-012-9131-x

Sartor, Wyner, and Contissa 123

[2] Trevor Bench-Capon & Pepijn R. S. Visser (1997): Open Texture and Ontologies in Legal Information Sys-
tems. In Roland R. Wagner, editor: Eighth International Workshop on Database and Expert Systems Appli-
cations, DEXA, IEEE Computer Society, pp. 192–197, doi:10.1109/DEXA.1997.617268.

[3] Hanif Bhuiyan, Guido Governatori, Andy Bond & Andry Rakotonirainy (2024): Traffic rules compliance
checking of automated vehicle maneuvers. Artif. Intell. Law 32(1), pp. 1–56, doi:10.1007/S10506-022-
09340-9.

[4] Brian H. Bix (2012): Defeasibility and Open Texture. In Jordi Ferrer Beltrán & Giovanni Battista
Ratti, editors: The Logic of Legal Requirements: Essays on Defeasibility, Oxford University Press,
doi:10.1093/acprof:oso/9780199661640.003.0011.

[5] Gert Brüggemeier (2006): Common principles of tort law: a pre-statement of law. British Institute of Inter-
national and Comparative Law.

[6] Joe Collenette, Louise A. Dennis & Michael Fisher (2022): Advising Autonomous Cars about the Rules of
the Road. In Matt Luckcuck & Marie Farrell, editors: Proceedings Fourth International Workshop on Formal
Methods for Autonomous Systems (FMAS), 371, pp. 62–76, doi:10.4204/EPTCS.371.5.

[7] Giuseppe Contissa, Francesca Lagioia & Giovanni Sartor (2018): Liability and automation: legal issues in
autonomous cars. Network Industries Quarterly 20(2), pp. 21–26.

[8] Guido Governatori, Trevor Bench-Capon, Bart Verheij, Michal Araszkiewicz, Enrico Fran-cesconi &
Matthias Grabmair (2022): Thirty Years of Artificial Intelligence and Law: The First Decade. Artificial
Intelligence and Law 30(4), pp. 481–519, doi:10.1007/s10506-022-09329-4.

[9] Ahmad Hammoud, Azzam Mourad, Hadi Otrok & Zbigniew Dziong (2022): Data-Driven Federated Au-
tonomous Driving. In Irfan Awan, Muhammad Younas & Aneta Poniszewska-Marańda, editors: Mobile Web
and Intelligent Information Systems, Lecture Notes in Computer Science, Springer International Publishing,
Cham, pp. 79–90, doi:10.1007/978-3-031-14391-5.

[10] Patrick Irvine, Antonio A. Bruto Da Costa, Xizhe Zhang, Siddartha Khastgir & Paul Jennings (2023):
Structured Natural Language for Expressing Rules of the Road for Automated Driving Systems. In: 2023
IEEE Intelligent Vehicles Symposium (IV), pp. 1–8, doi:10.1109/IV55152.2023.10186664. Available at
https://ieeexplore.ieee.org/document/10186664.

[11] Suraj Kothawade, Vinaya Khandelwal, Kinjal Basu, Huaduo Wang & Gopal Gupta (2021): AUTO-DISCERN:
Autonomous Driving Using Common Sense Reasoning. In Joaquin Arias, Fabio Aurelio D’Asaro, Abeer
Dyoub, Gopal Gupta, Markus Hecher, Emily LeBlanc, Rafael Peñaloza, Elmer Salazar, Ari Saptawijaya,
Felix Weitkämper & Jessica Zangari, editors: International Conference on Logic Programming 2021 Work-
shops, CEUR Workshop Proceedings 2970, CEUR. Available at https://ceur-ws.org/Vol-2970/
#gdepaper7.

[12] Robert Kowalski, Jacinto Dávila & Miguel Calejo (2021): Logical English for legal applications. Confer-
ence: XAIF, Virtual Workshop on XAI in Finance.

[13] Francesco Paolo Patti et al. (2019): Autonomous vehicles’ liability: need for change? In: Digital revolution-
new challenges for law: data protection, artificial intelligence, smart products, blockchain technology and
virtual currencies, CH Beck, pp. 190–213.

[14] Henry Prakken (2017): On the problem of making autonomous vehicles conform to traffic law. Artif. Intell.
Law 25(3), pp. 341–363, doi:10.1007/s10506-017-9210-0.

[15] Albert Rizaldi, Jonas Keinholz, Monika Huber, Jochen Feldle, Fabian Immler, Matthias Althoff, Eric Hilgen-
dorf & Tobias Nipkow (2017): Formalising and Monitoring Traffic Rules for Autonomous Vehicles in Is-
abelle/HOL. In Nadia Polikarpova & Steve Schneider, editors: Integrated Formal Methods, Cham, pp. 50–66,
doi:10.1007/978-3-319-66845-1.

[16] SAE On-Road Automated Vehicle Standards Committee (2021): Taxonomy and definitions for terms related
to driving automation systems for on-road motor vehicles. SAE international.

[17] Hanna Schebesta (2017): Risk Regulation Through Liability Allocation: Transnational Product Liability and
the Role of Certification. Air and Space Law 42(2), pp. 107–136, doi:10.54648/AILA2017011.

https://doi.org/10.1109/DEXA.1997.617268
https://doi.org/10.1007/S10506-022-09340-9
https://doi.org/10.1007/S10506-022-09340-9
https://doi.org/10.1093/acprof:oso/9780199661640.003.0011
https://doi.org/10.4204/EPTCS.371.5
https://doi.org/10.1007/s10506-022-09329-4
https://doi.org/10.1007/978-3-031-14391-5
https://doi.org/10.1109/IV55152.2023.10186664
https://ieeexplore.ieee.org/document/10186664
https://ceur-ws.org/Vol-2970/#gdepaper7
https://ceur-ws.org/Vol-2970/#gdepaper7
https://doi.org/10.1007/s10506-017-9210-0
https://doi.org/10.1007/978-3-319-66845-1
https://doi.org/10.54648/AILA2017011

124 Mind the Gaps

[18] Jiawei Wang, Yang Zheng, Qing Xu & Keqiang Li (2022): Data-Driven Predictive Control for Connected
and Autonomous Vehicles in Mixed Traffic. In: 2022 American Control Conference (ACC), pp. 4739–4745,
doi:10.23919/ACC53348.2022.9867378.

https://doi.org/10.23919/ACC53348.2022.9867378

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 125–127, doi:10.4204/EPTCS.416.10

© L. Tran, T.C. Son, D. Flynn & M. Balduccini

This work is licensed under the

Creative Commons Attribution License.

Simulating Supply-Chain Contract Execution: A Multi-Agent

Approach (Extended Abstract)

Long Tran Tran Cao Son

New Mexico State University

longtran@nmsu.edu stran@nmsu.edu

Dylan Flynn Marcello Balduccini

Saint Joseph’s University

df752850@sju.edu mbalducc@sju.edu

Supply chains exhibit complex dynamics and intricate dependencies among their components, whose

understanding is crucial for addressing the challenges highlighted by recent global disruptions. This

paper presents a novel multi-agent system designed to simulate supply chains, linking reasoning

about dynamic domains and multi-agent systems to reasoning about the high-level primitives of the

NIST CPS Framework. Our approach synthesizes existing research on supply chain formalization

and integrates these insights with multi-agent techniques, employing a declarative approach to model

interactions and dependencies. The simulation framework models a set of autonomous agents within

a partially observable environment, and whose interactions are dictated by contracts. The system

dynamically reconciles agents’ actions, assessing their feasibility and consequences. Based on the

state of the domain, the simulation framework also draws conclusions about the high-level notions

of requirements and concerns of the NIST CPS Framework, which provide a uniform and domain-

agnostic vocabulary for the understanding of such complex systems as supply chains.

1 Introduction

Building on our previous work on formalizing supply chains and the underlying contracts [2], this paper

introduces a simulation of the dynamics of supply that relies on a view of the supply chain as a multi-

agent system. Central to our approach is the use of formal contracts, which define the obligations and

interactions between agents within the simulation environment. Our simulation integrates an additional

knowledge layer based on the National Institute of Standards and Technology’s Cyber-Physical Systems

(NIST CPS) Framework [1]. The CPS Framework makes it possible to link the low-level view of con-

tracts to the high-level aspects of stakeholders’ requirements and concerns about the supply chain as a

whole. By integrating a multi-agent simulation with the structured approach of the NIST CPS Frame-

work, we aim to capture the nuanced interplay of contractual obligations, agent behaviors, and their

ramifications on the supply chain, providing insights into the potential points of failure and enabling

strategies to improve resilience. The agents and the simulation environment are modeled using declar-

ative techniques through Answer Set Programming (ASP) [3]. This approach allows for a clear specifi-

cation of the logic governing agent behaviors and their contractual interactions. This paper presents not

only the theoretical underpinnings of our simulation model but also a practical use case that illustrates

its potential. Through these simulations, stakeholders can better understand the critical dependencies

within their supply chains, evaluate the robustness of contractual arrangements, and explore strategies to

enhance overall resilience.

2 A Distributed Multi-Agent Simulator

Two main components of the system are the environment simulator and the agent program. The code of

the system is available on GitHub at github.com/ltran1612/Research_CPS_SupplyChain.

http://dx.doi.org/10.4204/EPTCS.416.10
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
github.com/ltran1612/Research_CPS_SupplyChain
https://github.com/ltran1612/Research_CPS_SupplyChain

126 Simulating Supply-Chain Contract Execution

Environment Simulator. The environment simulator consists of two main parts: the controller and the

reasoning engine. The reasoning engine is a logic program that takes a state (of the environment) and

a set of actions and determines whether the actions can be executed. In this case, the reasoning engine

computes the state of the world. The environment simulator works with the global domain, denoted by

Denv, which is the union of domains of all agents. The main portion of the code of the reasoning engine

is for computing the effects of a set of actions on a state of the environment and is similar to the code for

computing a plan in [5]. The controller is responsible for all the communication between the environment

and the agents (e.g., receiving actions that agents execute, informing agents about the changes in the local

state of agents). Besides disallowing the execution of incompatible actions, the simulator can also disrupt

the execution of a supply chain by randomly disallowing the execution of some action. This forces the

agents, whose actions are not executed, to replan with the new local state.

Algorithm 1 Overall Behavior of the Agent Pro-

gram
Require: agent ID, action domain, set of contracts

registers ID with environment and wait for acknowledgement

sends the action domain to the environment and wait for acknowl-

edgement

step = 0

generate a plan p for the set of contracts

while true do

send p[step] (the step-th action of p) to environment

wait for response (locals – the local state) from the environment

if locals 6=⊥ then ⊲ all actions were executed successfully

update the current state with locals
step = step+1

else ⊲ some action cannot be executed

generate a new plan p for the agent

step = 0 ⊲ resetting

end if

end while

Agent Program. Each agent program consists

of the following components: the action domain,

the set of rules for reasoning about concerns of

the agent, the set of rules for reasoning about the

agent’s actions as well as planning, and a con-

troller. The controller is responsible for the com-

munication of the agent with the environment.

The controller’s behaviour is described by the

pseudocode given in Algorithm 1. The set of rules

for reasoning about the agent’s actions and plan-

ning is similar to the code for planning as de-

scribed in [5].

Communications. We used the publish/subscribe

architecture (MQTT protocol specifically, see [6]

for details) to facilitate the communications be-

tween agents and the environment. Each entity

sends and receives messages by topics through a

publish/subscribe broker component (middleman) [4]. Communication between an agent (with a unique

AgentID) and the environment are done using two topics: “env/AgentID” and “for/AgentID”. The former

is for the agent to send and the latter is for receiving from the environment.

3 Case Study: Supply Chain Simulation

As a case study, we leveraged a dataset developed by the Observatory of Economic Complexity (OEC,

https://oec.world/en), an organization that collects and analyzes international trade data. The

dataset contains data about international imports and exports, from which we extracted part of an au-

tomotive supply chain. The scenario involves 8 agents with 7 contracts containing a total of 21 clauses,

8 supply chain requirements, and 5 concerns. An example of a contract clause from the scenario is:

C1: A responsible_for produced(vehicle_parts, 9K) when by_week 4. Agent A is called speedy

_auto_part. The private parts of the contract map C1 to various requirements, addressing concerns of the

CPS ontology. An example is: C1: material-safe-for-production. In this scenario, each agent can

perform 4 types of actions: produce, deliver, pay, and receive. Each also keeps track of relevant fluents,

like the total amount of payments made. The corresponding domains are encoded using a template. For

example, action produce from A and related fluents are specified by rules including:

https://oec.world/en

L. Tran, T.C. Son, D. Flynn & M. Balduccini 127

produce_item(speedy_auto_parts, vehicle_parts).

action(Agent, produce, (Item, Amount)) :- produce_item(Agent, Item), number(Amount).

causes(Agent, produce, Value, produced, increase, ()):-action(Agent, produce, Value).

A sample run of the simulator with the OEC agents progresses as follows. At first, the agents register

with the environment and send their information (action domains and initial state) to the environment.

At each step i, the agents send to the environment the actions they plan to execute. The environment

computes the next state, sending back to the agents their local states, and waits for another set of actions.

For example, at step 0, A has 0 vehicle_part and plans to take the action that produces 9,000 parts.

The global state of the environment records at step 1 that A now has 9,000 vehicle_part, which is

reflected in the local state of A as well. At the end of each iteration, the system determines which clauses

are satisfied. For example, at step 0 no clauses are satisfied; at step 1, clause C1 is satisfied. In turn, the

system uses this information to infer which requirements and concerns are satisfied.

4 Conclusions

In this paper, we presented a novel multi-agent simulation framework designed to address the complexi-

ties and challenges inherent in modern supply chains. We demonstrate that standard ASP programs such

as planning or diagnosing modules can be integrated into a system for monitoring contract executions.

By integrating the NIST CPS Framework with advanced contract formalization techniques, we have de-

veloped a robust system capable of simulating diverse supply chain scenarios and assessing the impact

of various types of disruptions. Our evaluation on a realistic case study demonstrates that the framework

not only enhances the understanding of supply chain dynamics but also provides actionable insights into

improving resilience and reliability. It is understandable that a system utilizing ASP technology will

inherit all of its problems (e.g., grounding, scalability). However, the prototype works fine with the use

cases and appears acceptable to the owner of the use cases. Identifying the limit of the current system in

terms of the limit of the system (e.g., the complexity of the domains or contracts) is an interesting issue

and is our immediate future work.

Acknowledgement. Portions of this publication and research effort are made possible through the help and

support of NIST via cooperative agreement 70NANB21H167.

References

[1] Edward, Christopher Greer, David A. Wollman & Martin J. Burns (2017): Framework for cyber-physical

systems: volume 1, overview. doi:10.6028/NIST.SP.1500-201.

[2] Dylan Flynn, Chasity Nadeau, Jeannine Shantz, Marcello Balduccini, Tran Cao Son & Edward Griffor (2023):

Formalizing and Reasoning about Supply Chain Contracts between Agents. In: 25th PADL, 13880, doi:10.

1007/978-3-031-24841-2_10.

[3] Michael Gelfond & Vladimir Lifschitz (1991): Classical Negation in Logic Programs and Disjunctive

Databases. New Generation Computing 9, pp. 365–385, doi:10.1007/BF03037169.

[4] B. Reselman (2021): The pros and cons of the Pub-Sub architecture pattern. Red Hat. Available at https://

www.redhat.com/architect/pub-sub-pros-and-cons.

[5] Tran Cao Son, Enrico Pontelli, Marcello Balduccini & Torsten Schaub (2022): Answer Set Planning: A Survey.

Theory and Practice of Logic Programming, pp. 1–73, doi:10.1017/S1471068422000072.

[6] M. Yuan (2021): Getting to know MQTT. IBM. Available at https://developer.ibm.com/articles/

iot-mqtt-why-good-for-iot/.

https://doi.org/10.6028/NIST.SP.1500-201
https://doi.org/10.1007/978-3-031-24841-2_10
https://doi.org/10.1007/978-3-031-24841-2_10
https://doi.org/10.1007/BF03037169
https://www.redhat.com/architect/pub-sub-pros-and-cons
https://www.redhat.com/architect/pub-sub-pros-and-cons
https://doi.org/10.1017/S1471068422000072
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/
https://developer.ibm.com/articles/iot-mqtt-why-good-for-iot/

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 128–134, doi:10.4204/EPTCS.416.11

© Lorenzo Capra
This work is licensed under the
Creative Commons Attribution License.

Modular Stochastic Rewritable Petri Nets

Lorenzo Capra
Dipartimento di Informatica

Università degli Studi di Milano, Italy

Petri Nets (PN) are widely used for modeling concurrent and distributed systems, but face chal-
lenges in modeling adaptive systems. To address this, we have formalized ’rewritable’ PT nets
(RwPT) using Maude, a declarative language with sound rewriting logic semantics. Recently, we
introduced a modular approach that utilizes algebraic operators to construct large RwPT models.
This technique employs composite node labeling to outline symmetries in hierarchical organization,
preserved through net rewrites. Once stochastic parameters are added to the formalism, we present
an automated process to derive a lumped CTMC from the quotient graph generated by an RwPT.

1 Introduction

Traditional formalisms such as Petri Nets, Automata, and Process Algebra do not make it easy for design-
ers to define dynamic system changes. Several extensions inspired by the π-calculus and the Nets-within-
Nets paradigm have been proposed, but they often lack suitable analysis techniques. Rewritable PT nets
(RwPT) [6] is versatile formalism for analyzing adaptive distributed systems. RwPT is specified using
the declarative language Maude, which adopts Rewriting Logic to offer both operational and mathemat-
ical semantics, creating a scalable model for self-adapting PT nets. Unlike similar approaches ([2, 11]),
the RwPT formalism provides data abstraction, is concise and efficient, and avoids the limitations posed
by ’pushout’ in Graph Transformation Systems. RwPT is an extension of GTS. Considering graph iso-
morphism (GI) when identifying equivalent states within the model dynamics is crucial to scaling up the
model complexity. Recent work has shown that GI is quasi-polynomial [1]. Graph Canonization (GC)
involves finding a representative such that for any two graphs G and G′, G ≃ G′ ⇔ can(G) = can(G′).
We developed a general canonization technique [5] for use with RwPT, integrated into Maude. This
technique works well for irregular models, but it is less effective for more realistic models.

In [7], we presented a technique for constructing comprehensive RwPT models using algebraic op-
erators. The strategy is simple: leverage the modular characteristics of the models during analysis. By
employing composite node labelling, we capture symmetries and sustain the hierarchical organization
through net rewrites. A benchmark case study illustrates the effectiveness of our method. In this pa-
per, we demonstrate a procedure to derive a lumped Continuous-Time Markov Chain (CTMC) from the
quotient graph formed by an RwPT model, after introducing stochastic parameters into the framework.

The potential of Maude as functional logic programming framework was discussed in [10] and re-
cently in https://logicprogramming.org/2023/02/extensions-of-logic-programming-in-maude/. Although
we do not consider free variables in terms, our work can be seen as an example of symbolic reachability
in which we use term rewriting through pattern matching (modulo normalization) instead of narrowing
through unification. The use of narrowing to get a quotient state-transition system deserves further study.

http://dx.doi.org/10.4204/EPTCS.416.11
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://logicprogramming.org/2023/02/extensions-of-logic-programming-in-maude/

Lorenzo Capra 129

2 (Stochastic) PT nets, Maude, and demonstrative example

This section provides a concise overview of the (stochastic) PT formalism and emphasizes the key aspects
of the Maude framework. For exhaustive information, we direct readers to the reference papers.

A multiset (or bag) b on a set D is a map b : D → N, where b(d) is the multiplicity of d in b. We
denote by Bag[D] the set of multisets on D. Standard relational and arithmetic operations can be applied
to multisets on a component-by-component basis. A stochastic PT (or SPN) net [12, 8] is a 6-tuple
(P,T, I,O,H,λ), where: P, T are finite, non-empty, disjoint sets holding the net’s nodes (places and
transitions, respectively); I,O,H : T → Bag[P] represent the transitions’ input, output, and inhibitor
incidence matrices, respectively; λ : T → R+ assigns each transition a negative exponential firing rate.
A PT net marking (or state) is a multiset m ∈ Bag[P].

The PT net dynamics is defined by the firing rule: t ∈ T is enabled in m if I(t) ≤ m and ∀p ∈ P :
H(t)(p) = 0∨H(t)(p)> m(p). If t is enabled in m it may fire, leading to marking m′ = m+O(t)− I(t).
We denote this: m[t⟩m′. A PT-system is a pair (N,m0), where N is a PT net and m0 is a marking of
N. The interleaving semantics of (N,m0) is specified by the reachability graph (RG), an edge-labelled,
directed graph (V,E) whose nodes are markings. It is defined inductively: m0 ∈V ; if m ∈V and m[t⟩m′

then m′ ∈V , m t−→ m′ ∈ E. The timed semantics of a stochastic PT system is a CTMC isomorphic to the
RG: For any two mi,m j ∈V , the transition rate from mi to m j is ri, j := ∑t:mi[t⟩m j λ (t).

Maude Maude [9] is an expressive, purely declarative language characterized by a rewriting logic se-
mantics [4]. Statements consist of equations and rules. Each side of a rule or equation represents terms
of a specific kind that might include variables. Rules and equations have intuitive rewriting semantics,
where instances of the left-hand side are substituted by corresponding instances of the right-hand side.
The expressivity of Maude is realized through the use of matching modulo operator equational attributes,
sub-typing, partiality, generic types, and reflection. A functional module comprises only equations and
works as a functional program defining operations through equations, utilized as simplification rules. It
details an equational theory within membership equational logic [3]: Formally, a tuple (Σ,E ∪A), with
Σ representing the signature, which includes the declaration of all sorts, subsorts, kinds1, and operators;
E being the set of equations and membership axioms; and A as the set of operator equational attributes
(e.g., assoc). The model of (Σ,E ∪A) is the initial algebra TΣ/E∪A, which mathematically corresponds
to the quotient of the ground-term algebra TΣ. Provided that E and A satisfy nonrestrictive conditions,
the final (or canonical) values of ground terms form an algebra isomorphic to the initial algebra, that is,
the mathematical and operational semantics coincide.

A Maude system module includes rewrite rules and, possibly, equations. Rules illustrate local tran-
sitions in a concurrent system. Specifically, a system module describes a generalized rewrite theory
[4] R = (Σ,E ∪A,φ ,R), where (Σ,E ∪A) constitutes a membership equation theory; φ identifies the
frozen arguments for each operator in Σ; and R contains a set of rewrite rules. A rewrite theory models a
concurrent system: (Σ,E ∪A) establishes the algebraic structure of the states, while R and φ define the
concurrent transitions of the system. The initial model of R assigns to each kind k a labeled transition

system (TS) where the states are the elements of TΣ/E∪A,k, and transitions occur as [t]
[α]→ [t ′], with [α]

representing equivalent rewrites. The property of coherence guarantees that a strategy that reduces terms
to their canonical forms before applying the rules is sound and complete. A Maude system module is
an executable specification of distributed systems. Given finite reachability, it enables the verification of
invariant properties and the discovery of counterexamples.

1implicit equivalence classes defined by connected components of sorts (as per subsort partial order). Terms in a kind
without a specific sort are error terms.

130 Modular Stochastic Rewritable Petri Nets

⇒ ⇒

⇒ ⇒

Figure 1: One of the possible paths of the Gracefully Degrading Production System.

Running example: fault-tolerant production line As an illustrative example, we refer to the model
of a distributed production system that gracefully degrades presented in [7]. The system is composed of
N production lines (PL), each branching into K fully interchangeable robots, that handle K raw items in
parallel and assemble them into an artifact. In this study, K = 2. The items are loaded from a warehouse
in an PL, K at a time. A robot in a PL might fail, upon which the PL restructures to continue functioning,
but with reduced capacity. The reconfiguration process involves moving items from the faulted branch of
a PL to the remaining branch(es) to maintain the production cycle. Traditional PNs are unable to model
this operation. When a second fault occurs in a degraded PL, the system disconnects the PL. The leftover
items are then relocated to the warehouse. Figure 1 shows the evolution of a system starting with two
PLs. This scenario can be extended to N PLs, each operating K parallel robots, that handle K ·M items
(M being a third parameter of the model), denoted by the term NPLsys(N, K, M).

3 Modular Rewritable Stochastic PN: Symmetries and Lumpability

Rewritable stochastic PT nets (RwSPT) build upon the concept of modular rewritable PT nets [7] by
linking negative exponential rates to the firing of PT transitions and the process of net rewrites.

The definition of RwSPT includes a hierarchy of Maude modules (e.g., BAG, PT-NET, PT-SYSTEM)
described in [7]. The Maude sources can be found in https://github.com/lgcapra/rewpt/tree/main/modSPT.
RwSPT uses structured annotations to underline the symmetry of the model. It features a concise place-
based encoding to aid in state canonization and is based on the functional module BAG{X}, which in-

https://github.com/lgcapra/rewpt/tree/main/modSPT

Lorenzo Capra 131

troduces multisets as a complex data type. The commutative and associative _+_ operator provides an
intuitive way to describe a multiset as a weighted sum, for instance, 3 . a + 1 . b. The sort Pbag con-
tains multisets of places. Each place label (a term of sort Plab) is a nonempty list of pairs built of String
and a Nat. Places are uniquely identified by their labels. These pairs represent a symmetric component
within a nested hierarchy. Compositional operators annotate places incrementally from right to left: The
label suffix represents the root of a hierarchy. For example, the ’assembly’ place of line 1 in Produc-
tion Line 2 would be encoded as: p(< "a"; 0 > < "L"; 1 >). We implicitly describe net transitions
(terms Tran) through their incidence matrix (a 3-tuple of terms Pbag) and associated tags. A tag includes
a descriptive String and a Float interpreted as a firing rate. The syntax is: [I,O,H] -> << S, R >>.

Using the associative composition operator _;_ and the subsort relation Tran < Net, we can easily
construct PT nets in a modular way. For example, we can depict the subnet containing the load transition
(ld) and a robot (ln0) as the Net term in the listing below.

[2 . p(< "s" ; 0 >), 1 . p(< "w" ; 0 >) + 1 . p(< "w" ; 1 >), nilP] |−> << "ld", 0.5 >> ;
[1 . p(< "w" ; 0 >), 1 . p(< "a" ; 0 >), 1 . p(< "f" ; 0 >] |−> << "ln", 0.1 >>

A System term is the empty juxtaposition (__) of a Net and a Pbag representing the marking. The
conditional rewrite rule firing specifies the PT firing rule (notice the use of a matching equation :=).

vars N N’ : Net . vars T : Tran . var M : Pbag .
crl [firing] : N M => N firing(T, M) if T ; N’ := N /\ enabled(T, N M) .

An RwSPT is defined by a system module that contains two constant operators, used as aliases:
op net : -> Net and op m0 : -> Pbag . Two equations define their bindings. This module in-
cludes a set R of System rewrite rules incorporating firing. We adopt interleaving semantics: Rewrites
have an exponential rate (specified in the rule label but for firing), so that for the state transition system
it holds (⊆ is the subgraph relation): T S(net m0, {firing})⊆ T S(net m0, R).

Modularity, symmetries, and lumpability We have provided net-algebra and net-rewriting operators
[7] with a twofold intention: to ease the modeler’s task and to enable the construction and modification
of large-scale models with nested components by implicitly highlighting their symmetry. A compact
quotient TS is built using simple manipulation of node labels. This approach outperforms that integrated
into Maude [5] and based on traditional graph canonization.

In this context, the identification of behavioral equivalences is reduced to a graph morphism. PT
system morphism must maintain the edges and the marking: In our encoding, a morphism between PT
systems (N m) and (N’ m’) is a bijection φ : places(N) → places(N’) such that, considering the
homomorphic extension of φ on multisets, φ(N) = N’ and φ(m) = m’. Moreover, φ must retain the
textual annotations of the place labels and the transition tags. If N’ = N we speak of automorphism, in
which case φ is a permutation in the set of places. We refer to a normal form that principally involves
identifying sets of automorphic (permutable) places: Two markings m, m’ of a net N are said automorphic
if there is an automorphism φ in N that maps m into m’. We denote this m ∼= m’. The equivalence relation
∼= is a congruence, that is, it preserves the transition firings and rates.

Definition 3.1 (Symmetric Labeling). A Net term is symmetrically labeled if any two maximal sets of
places whose labels have the same suffix (possibly empty), which is preceded by pairs with the same tag,
are permutable. A System term is symmetrically labeled if its Net subterm is.

In other words, if a Net term N meets definition 3.1, then for any two maximal subsets of places matching:
P := {p(L’ < w ; i > L)}, P′ := {p(L’’ < w ; j > L)},
where: L, L’, L’’ : Plab, w: String, i, j : Nat

132 Modular Stochastic Rewritable Petri Nets

there is an automorphism φ such that φ(P) = P′, φ(P′) = P, which is extended as an identity to the rest2.
If a System term adheres to the previous definition, it can be transformed into a ’normal’ form by

merely swapping indices on the place labels (e.g., i ↔ j), while still complying with definition 3.1.
This normal form is the most minimal according to a lexicographic order within the automorphism
class (∼=) implicitly defined by 3.1. In contrast to general graph canonization, there is no need for any
pruning strategy or backtracking: A monotone procedure is used where the sequence of index swaps
does not matter (see [7]). Efficiency is achieved as the normalized form of the subterm Net is derived
through basic “name abstraction“, where at each hierarchical level the indices of structured place labels
continuously span from 0 to k ∈ N.

The strategy involves providing a concise set of operators that preserve nets’ symmetric labelling.
This set includes compositional operators and operators for manipulating nets. Rewrite rules require
these operators to manipulate System terms defined in a modular manner. Furthermore, rules must
adhere to parametricity conditions that limit the use of ground terms [7]. Under these assumptions, we
get a quotient TS from a System term that retains reachability and meets strong bisimulation.

Let t, t ′,u,u′ be (final) terms of sort System, r a System rule r : s ⇒ s′. The notation t
r(σ)⇒ t ′ means

there is a ground substitution σ of r’s variables such that σ(s) = t and σ(s′) = t ′.

Property 3.1. Let t meet Definition 3.1. If t
r(σ)⇒ t ′, then ∀u,φ , t ∼=φ u: u

r(φ(σ))⇒ u′, t ′ ∼= u′

The TS quotient generated by a normal form t̂ is obtained by applying the operator normalize to
the terms on the right side of the rewrite rules. When a System undergoes a rewrite due to the firing
rule, the process only involves the marking subterm. According to property 3.1 (firing preservation),
because the morphism φ preserves the transition rates and the rules are parameterized, it is feasible to
map the TS quotient of t̂ onto an isomorphic "lumped" CTMC: In a Markov process’s state space, an
equivalence relation is considered "strong lumpability" if the cumulative transition rates between any
two states within a class to any other class remain consistent. Despite the possibility of establishing a
more stringent condition, namely "exact lumpabability," we focus on the aggregated probability.

4 Getting the Lumped CTMC generator from RwSPT

A rewritable PT system generates a transition system (TS) isomorphic to a lumped CTMC. However,
the TS produced via the show search graph command of Maude embodies a parametric CTMC: in
line with the rewriting logic semantics, state transitions denote classes of equivalent rewrites, meaning,
PT firings that result in identical normalized markings or net rewrites that lead to isomorphic PT systems.

To obtain the CTMC generator, it is necessary to quantify instances that align with a specific state
transition. Regrettably, the Maude system lacks a mechanism to determine the matches of a rewrite rule
in the TS construction process.

Our solution consists of first (automatically) generating a Transition System with states having a
composite structure, which provides a detailed view of the equivalent rewrites that result in state tran-
sitions. Subsequently, using elementary parse to compute the cumulative rates of the lumped CTMC.
Despite a redundant state representation, this method incurs an acceptable time overhead because it only
involves normalized states.

When considering the term NPLsys(2,2,2), which aligns with the PT net at the top left of Figure
1, the resulting quotient TS comprises 295 states compared to the 779 states in the standard TS. State
transitions often correspond to multiple matches: For instance, the initial state (the term above) includes

2According to the definition of PT morphism, the prefixes L’ and L” are consistent in the textual component.

Lorenzo Capra 133

two ’load’ instances and four ’fault’ instances that lead to markings with identical normal forms. Conse-
quently, the combined rates are 2 ·0.5 and 4 ·0.001.

Experimental Evidence We showcase experimental validation of the method and a demonstration of
standard performance indicators. Table 1 displays the results of the search command to locate the final
states. We used Linux WSL on an 11th Gen. Intel Core i5 with 40GB RAM. The state spaces match
those of the lumped CTMC. The analysis of large models is feasible solely by exploiting the model’s
symmetry. Notice that the number of absorbing states in the TS quotient does not vary with N.

Figure 2 shows the system reliability (the complement of Time to System Failure distribution). As
expected, is decreases with time; additionally, the scenario that involves more replicas demonstrates
enhanced reliability. The inflexion point at around time 800 represents the system’s reconfiguration
time. The increased execution time of the job (not reported) is a result of a system failure. The overall
trend is also noticeable when we look at larger values of N. As N increases, both reliability and throughput
curves show significant improvements. However, we observe an asymptotic trend when N is greater than
6. Our interpretation is that beyond a certain point, the benefit of using a higher number of replicas is
outweighed by the higher fault rate and the increased configuration overhead.

Table 1: Ordinary vs Quotient TS of NPLsys(N,2,2) † search timed out after 10 h
Ordinary Quotient

N states(final) time (sec) states(final) time (sec)
1 60(2) 0 42(2) 0
2 779(4) 0.1 295(2) 0.1
3 6101(6) 4.8 1059(2) 0.9
4 37934(8) 69 2764(2) 3.6
5 204362(10) 818 5970(2) 10
6 1000187(12) 13930 11367(2) 27
7 - † 19775(2) 65
8 - † 32144(2) 186
9 - † 49554(2) 569
10 - † 73215(2) 2450

0

0,2

0,4

0,6

0,8

1

1,2

R
EL

IA
B

IL
IT

Y

SEC.

System Reliability

(2, 2, 2)

(1, 2, 2)

Figure 2: System Reliability.

134 Modular Stochastic Rewritable Petri Nets

5 Conclusion and Future Work

We have developed a lumped Markov process for modular and rewritable Petri nets (RwPT), a flexible
model of adaptive distributed systems. RwPTs, which we construct and manipulate using a small set of
algebraic operators, exhibit structural symmetries that result in an efficient quotient state-transition graph.
We have outlined a semi-automatic procedure for deriving the CTMC infinitesimal generator from the
RwPT quotient graph. Future efforts will focus, on the one hand, on exploring orthogonal structured
solutions and, on the other, on fully implementing the process and integrating it into graphical editors.
We aim to broaden the approach to derive a lumped Markov process from any Maude specification.

References
[1] László Babai (2016): Graph Isomorphism in Quasipolynomial Time [Extended Abstract]. In: Proceedings of

the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, Association for Computing
Machinery, New York, NY, USA, p. 684–697, doi:10.1145/2897518.2897542.

[2] Paulo E. S. Barbosa, João Paulo Barros, Franklin Ramalho, Luís Gomes, Jorge Figueiredo, Filipe Moutinho,
Anikó Costa & André Aranha (2011): SysVeritas: A Framework for Verifying IOPT Nets and Execution Se-
mantics within Embedded Systems Design. In Luis M. Camarinha-Matos, editor: Technological Innovation
for Sustainability - Second IFIP WG 5.5/SOCOLNET Doctoral Conference on Computing, Electrical and
Industrial Systems, DoCEIS 2011, Costa de Caparica, Portugal, 2011. Proceedings, IFIP Advances in Infor-
mation and Communication Technology 349, Springer, pp. 256–265, doi:10.1007/978-3-642-19170-1_28.

[3] Adel Bouhoula, Jean-Pierre Jouannaud & José Meseguer (2000): Specification and proof in membership
equational logic. Theoretical Computer Science 236(1), pp. 35–132, doi:10.1016/S0304-3975(99)00206-6.

[4] Roberto Bruni & José Meseguer (2003): Generalized Rewrite Theories. In Jos C. M. Baeten, Jan Karel
Lenstra, Joachim Parrow & Gerhard J. Woeginger, editors: Automata, Languages and Programming,
Springer-Verlag, Berlin, Heidelberg, pp. 252–266, doi:10.1007/3-540-45061-0_22.

[5] Lorenzo Capra (2022): Canonization of Reconfigurable PT Nets in Maude. In Anthony W. Lin, Georg
Zetzsche & Igor Potapov, editors: Reachability Problems, Springer International Publishing, Cham, pp. 160–
177, doi:10.1007/978-3-031-19135-0_11.

[6] Lorenzo Capra (2022): Rewriting Logic and Petri Nets: A Natural Model for Reconfigurable Distributed
Systems. In Raju Bapi, Sandeep Kulkarni, Swarup Mohalik & Sathya Peri, editors: Distributed Computing
and Intelligent Technology, Springer International Pub., pp. 140–156, doi:10.1007/978-3-030-94876-4_9.

[7] Lorenzo Capra & Michael Köhler-Bußmeier (2024): Modular rewritable Petri nets: An efficient model for
dynamic distributed systems. Theoretical Computer Science 990, p. 114397, doi:10.1016/j.tcs.2024.114397.

[8] Giovanni Chiola, Marco Ajmone Marsan, Gianfranco Balbo & Gianni Conte (1993): Generalized Stochastic
Petri Nets: A Definition at the Net Level and Its Implications. IEEE Trans. Software Eng. 19, pp. 89–107,
doi:10.1109/32.214828.

[9] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln, Narciso M. Oliet, Jos’e Meseguer & Carolyn
Talcott (2007): All About Maude - A High-Performance Logical Framework: How to Specify, Program, and
Verify Systems in Rewriting Logic. LNCS, Springer, doi:10.1007/978-3-540-71999-1.

[10] Santiago Escobar (2014): Functional Logic Programming in Maude, pp. 315–336. Springer Berlin Heidel-
berg, Berlin, Heidelberg, doi:10.1007/978-3-642-54624-2_16.

[11] Julia Padberg & Alexander Schulz (2016): Model Checking Reconfigurable Petri Nets with Maude. In Rachid
Echahed & Mark Minas, editors: Graph Transformation, Springer International Publishing, Cham, pp. 54–70,
doi:10.1007/978-3-319-40530-8_4.

[12] W. Reisig (1985): Petri Nets: An Introduction. Springer-Verlag New York, Inc., New York, NY, USA,
doi:10.1007/978-3-642-69968-9.

https://doi.org/10.1145/2897518.2897542
https://doi.org/10.1007/978-3-642-19170-1_28
https://doi.org/10.1016/S0304-3975(99)00206-6
https://doi.org/10.1007/3-540-45061-0_22
https://doi.org/10.1007/978-3-031-19135-0_11
https://doi.org/10.1007/978-3-030-94876-4_9
https://doi.org/10.1016/j.tcs.2024.114397
https://doi.org/10.1109/32.214828
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-642-54624-2_16
https://doi.org/10.1007/978-3-319-40530-8_4
https://doi.org/10.1007/978-3-642-69968-9

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 135–138, doi:10.4204/EPTCS.416.12

© E. Guerrero, J.C. Nieves
This work is licensed under the
Creative Commons Attribution License.

Semantic Argumentation using Rewriting Systems

Esteban Guerrero
Department of Computing Science, Umeå University, Sweden

esteban.guerrero@umu.se

Juan Carlos Nieves
Department of Computing Science, Umeå University, Sweden

juan.carlos.nieves@umu.se

In this article, we introduce a general framework for structured argumentation providing consistent
and well-defined justification for conclusions that can and cannot be inferred and there is certainty
about them, which we call semantic and NAF-arguments, respectively. We propose the so-called
semantic argumentation guaranteeing well-known principles for quality in structured argumentation,
with the ability to generate semantic and NAF-arguments, those where the conclusion atoms are se-
mantically interpreted as true, and those where the conclusion is assumed to be false. This framework
is defined on the set of all logic programs in terms of rewriting systems based on a confluent set of
transformation rules, the so-called Confluent Logic Programming Systems, making this approach a
general framework. We implement our framework named semantic argumentation solver available
open source.

1 Motivation

We propose a general argument construction based on the partial interpretation of programs using differ-
ent families of logic programming semantics induced by rewriting systems functions [6]. Rewriting rules
are used to replace parts of a logic program based on the concept of a normal form, which is the least
expression of a program that cannot be rewritten any further [9]. For example, having a program with
the only rule: innocent(x)← not guilty(x), current structured argumentation approaches [10] generate
the only consistent argument: ⟨{innocent(X)← not guilty(x)}︸ ︷︷ ︸

Support

, innocent(x)︸ ︷︷ ︸
Conclusion

⟩, expressing that person x

is innocent if x can not be proved guilty. However, in domain applications that need the generation of
argument-based reason explanations, providing structured and well-defined reasons why x is not guilty
(not guilty(x)) are needed. We emphasize the role of investigating such computational mechanisms that
can also build arguments justifying conclusions based on the atoms that are inferred as false, e.g., to
state that there is certainty in affirming that the guiltiness of x is false (there is no evidence), therefore
the x must be innocent, i.e., ⟨{innocent(X)← not guilty(x)}︸ ︷︷ ︸

Support

, not guilty(x)︸ ︷︷ ︸
Conclusion

⟩. These types of arguments

have been less explored in the formal argumentation theory, except for assumption-based argumentation
(ABA) [8].

2 Syntax and semantics
We use propositional logic with the following connectives ∧,←, not, and⊤ where ∧, and← are 2-place
connectives, not and⊤. The negation symbol not is regarded as the so-called negation as failure (NAF).

http://dx.doi.org/10.4204/EPTCS.416.12
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

136 Semantic argumentation

We follow standard logic programming syntax, e.g., [5], for lack of space we do not include some basic
and well-established syntax.

An interpretation of the signature LP is a function from LP to {false,true}. A partial interpretation
of LP, are the sets ⟨I1, I2⟩ where I1∪ I2 ⊆LP. We use SEM(P) = ⟨Ptrue,P f alse⟩, where Ptrue := {p| p←
⊤ ∈ P} and P f alse := {p| p ∈LP\HEAD(P)}. SEM(P) is also called model of P [6]. We use three value
semantics that are characterized by rewriting systems following a set of Basic Transformation Rules
for Rewriting Systems (see details in [6]), those rules are named: RED+, RED-, Success, Failure,
Loop, SUB, and TAUT. Then, two rewriting systems (C S) can be defined based on the previous basic
transformations: CS0 = {RED+, RED−, Success, Failure, Loop }, induces the WFS [3]. CS1 = CS0 ∪
{SUB,TAUT,LC}, induces WFS+ [6]. The normal form of a normal logic program P with respect to
a rewriting system C S is denoted by normC S (P). Every rewriting system C S induces a 3-valued
logic semantics SEMC S as SEMC S (P) := SEM(normC S (P)). To simplify the presentation, we use the
entailment |=SEMC S

applied to a logic program P is defined by SEMC S (P)= ⟨T,F⟩ in which P |=SEMT
C S

a
if and only if a ∈ T , similarly, if P |=SEMF

C S
a if and only if a ∈ F . We use the entailment |=SEMC S 0

and
|=SEMC S 1

for confluent rewriting system CS0 and CS1 respectively; and the form |=SEMC S
to indicate

that any rewriting system can be used.

3 Semantic and NAF-arguments

Let us introduce a formal definition of semantic arguments.

Definition 1 (Semantic argument) Given a normal logic program P and S ⊆ P. ArgP = ⟨S, g⟩ is a
semantic argument under SEMC S w.r.t. P, if the following conditions hold true:

1. S |=SEMT
C S

g

2. S is minimal w.r.t. the set inclusion satisfying 1.

We simplify the notation of these semantic arguments as A rg+. Condition 1 states that the interpre-
tation of conclusion g is true w.r.t. T in SEMC S (S). Condition 2 in Definition 1 guarantees the support
minimality.

Now, let us define NAF-arguments as follows:

Definition 2 (NAF-arguments) Given a normal logic program P and S ⊆ P. ArgP = ⟨S, not g⟩ is a
NAF-argument under the SEMC S w.r.t. P, if the following conditions hold true:

1. S |=SEMF
C S

g,

2. S is minimal w.r.t. the set inclusion satisfying 1.

Condition 1 in Definition 2 is the interpretation of the conclusion w.r.t. |=SEMF
C S

, with the set of all
the NAF-arguments noted as A rg−. The addition of not in the conclusion of a NAF-argument stresses
that such an atom is interpreted as false by SEMC S .

Example 1 Let us consider a program P3 for building semantic and NAF-arguments considering C S 0
and C S 1.

We build semantic and NAF-arguments as follows: 1) get related clauses of atoms (Si); 2) for every
related clause compute SEMC S 0(Si) and SEMC S 1(Si); 3) the support (every Si) is joined to the conclu-
sion1. Then, the following sets of arguments are built considering C S 0 and C S 1:

1We implemented this procedure and the sources are open, then can be found in https://people.cs.umu.se/~esteban/
argumentation/

https://people.cs.umu.se/~esteban/argumentation/
https://people.cs.umu.se/~esteban/argumentation/

E. Guerrero, J.C. Nieves 137

Semantic Attack

Case C S 0: A rgP3 = {A+
1 ,A

+
2 ,A

+
3 ,A

−
1 ,A

−
2 ,A

−
3 ,A

−
4 ,A

−
6 }.

Case C S 1: A rgP3 = {A+
1 ,A

+
2 ,A

+
3 ,A

+
5 ,A

−
1 ,A

−
2 ,A

−
3 ,A

−
4 ,A

−
6 }.

An effect of interpreting argument supports under SEMC S is that some atoms (or sets of them) are evalu-
ated in opposition to other arguments (e.g., A+

1 = ⟨S2,a⟩ and A−1 = ⟨S1, not a⟩ in Example 1), suggesting
a semantic attack relationship.

Definition 3 (Semantic attack) Let A = ⟨SA,a⟩ ∈A rg+, B = ⟨SB,not b⟩ ∈A rg− be two semantic ar-
guments where SEMC S (SA) = ⟨TA,FA⟩ and SEMC S (SB) = ⟨TB,FB⟩. We say that A attacks B if x ∈ TA and
x ∈ FB, denoted attacks(x,y).

Lemma 1 Semantic and NAF-arguments built from any normal logic program are always consistent.

Definition 4 (Semantic Argumentation Framework (SAF)) Let P be a normal program. Then, a se-
mantic argumentation framework is the tuple: SAFP = ⟨A rgP,A tt⟩

We can straightforward extend the definitions of argumentation semantics in [7] as follows:

Definition 5 Let SAFP = ⟨A rgP,A tt⟩ be a semantic argumentation framework. An admissible set of
arguments S⊆ AR is:

• stable if and only if S attacks each argument which does not belong to S.

• preferred if and only if S is a maximal (w.r.t. inclusion) admissible set of AF.

• complete if and only if each argument, which is acceptable with respect to S, belongs to S.

• grounded if and only if S is the minimal (w.r.t. inclusion) complete extension of AF2.

Example 2 Let us consider P5 = {a← not b; b← not a; c← not c,not a; d← not d,not b;}. SEMC S

will remove rules involving atoms c and d. Then, applying Definition 4, we have the framework: SAFP5 =
⟨{A−6 = ⟨{a ← not b}, not a⟩,A+

6 = ⟨{b ← not a}, b⟩, A−5 = ⟨{b ← not a}, not b⟩, A+
5 = ⟨{a ←

not b}, a⟩}, attacks(A+
5 ,A

+
6), attacks(A

+
5 ,A

−
6), attacks(A

+
6 ,A

+
5), attacks(A

+
6 ,A

−
5)⟩. When we

apply Definition 5 to SAFP5 we obtained the following extensions:
• Stable = preferred: {{A+

5 ,A
−
5 }, {A

+
6 ,A

−
6 }}

• Complete: {{A+
5 ,A

−
5 }, {A

+
6 ,A

−
6 }, {}}

• Grounded: {}

4 Conclusions
The main contributions are: 1) Semantic Argumentation Frameworks (SAF) can be used for justifying
true and false interpreted conclusions. 2) SAF is based on families of rewriting confluent systems. 3)
Satisfies all the well-known argumentation postulates [1, 4]. Future work will involve the exploration of
our framework under other Confluent Logic Programming Systems, the satisfaction of other argumenta-
tion principles, and the investigation of commonalities between ABA and semantic argumentation.

2In [2] it is shown that grounded can be characterized in terms of complete extensions.

138 Semantic argumentation

References
[1] Leila Amgoud (2014): Postulates for logic-based argumentation systems. International Journal of Approxi-

mate Reasoning 55(9), pp. 2028–2048, doi:10.1016/j.ijar.2013.10.004.
[2] Pietro Baroni, Martin Caminada & Massimiliano Giacomin (2011): An introduction to argumentation se-

mantics. The knowledge engineering review 26(4), pp. 365–410, doi:10.1017/S0269888911000166.
[3] Stefan Brass, Ulrich Zukowski & Burkhard Freitag (1997): Transformation-based bottom-up computation

of the well-founded model. In: Non-Monotonic Extensions of Logic Programming, Springer, pp. 171–201,
doi:10.1007/BFb0023807.

[4] Martin Caminada & Leila Amgoud (2007): On the evaluation of argumentation formalisms. Artificial Intel-
ligence 171(5-6), pp. 286–310, doi:10.1016/j.artint.2007.02.003.

[5] Jürgen Dix (1995): A Classification Theory of Semantics of Normal Logic Programs: I. Strong Properties.
Fundam. Inform. 22(3), pp. 227–255, doi:10.3233/FI-1995-2234.

[6] Jürgen Dix, Mauricio Osorio & Claudia Zepeda (2001): A general theory of confluent rewriting systems
for logic programming and its applications. Annals of Pure and Applied Logic 108(1-3), pp. 153–188,
doi:10.1016/S0168-0072(00)00044-0.

[7] Phan Minh Dung (1995): On the Acceptability of Arguments and its Fundamental Role in Nonmono-
tonic Reasoning, Logic Programming and n-Person Games. Artificial Intelligence 77(2), pp. 321–358,
doi:10.1016/0004-3702(94)00041-X.

[8] Phan Minh Dung, Robert A. Kowalski & Francesca Toni (2009): Assumption-Based Argumentation. In:
Argumentation in Artificial Intelligence, Springer, pp. 199–218, doi:10.1007/978-0-387-98197-0_10.

[9] Juan Carlos Nieves & Mauricio Osorio (2016): Ideal extensions as logical programming models. Journal of
Logic and Computation 26(5), pp. 1361–1393, doi:10.1093/logcom/exu014.

[10] Henry Prakken (2010): An abstract framework for argumentation with structured arguments. Argument and
Computation 1(2), pp. 93–124, doi:10.1080/19462160903564592.

https://doi.org/10.1016/j.ijar.2013.10.004
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1007/BFb0023807
https://doi.org/10.1016/j.artint.2007.02.003
https://doi.org/10.3233/FI-1995-2234
https://doi.org/10.1016/S0168-0072(00)00044-0
https://doi.org/10.1016/0004-3702(94)00041-X
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1093/logcom/exu014
https://doi.org/10.1080/19462160903564592

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 139–152, doi:10.4204/EPTCS.416.13

This work is licensed under the
Creative Commons Attribution License.

Data2Concept2Text: An Explainable Multilingual
Framework for Data Analysis Narration*

Flavio Bertini Alessandro Dal Palù Federica Zaglio
Department of Mathematical, Physical and Computer Sciences, University of Parma,

Parma, Italy
{flavio.bertini|alessandro.dalpalu|federica.zaglio}@unipr.it

Francesco Fabiano
Department of Computer Science, New Mexico State University

Las Cruces, New Mexico, USA
ffabiano@nmsu.edu

Andrea Formisano
Department of Mathematics, Computer Science and Physics, University of Udine

Udine, Italy
andrea.formisano@uniud.it

This paper presents a complete explainable system that interprets a set of data, abstracts the under-
lying features and describes them in a natural language of choice. The system relies on two crucial
stages: (i) identifying emerging properties from data and transforming them into abstract concepts,
and (ii) converting these concepts into natural language. Despite the impressive natural language
generation capabilities demonstrated by Large Language Models, their statistical nature and the in-
tricacy of their internal mechanism still force us to employ these techniques as black boxes, forgoing
trustworthiness.

Developing an explainable pipeline for data interpretation would allow facilitating its use in
safety-critical environments like processing medical information and allowing non-experts and visu-
ally impaired people to access narrated information. To this end, we believe that the fields of knowl-
edge representation and automated reasoning research could present a valid alternative. Expanding
on prior research that tackled the first stage (i), we focus on the second stage, named Concept2Text.
Being explainable, data translation is easily modeled through logic-based rules, once again empha-
sizing the role of declarative programming in achieving AI explainability.

This paper explores a Prolog/CLP-based rewriting system to interpret concepts—articulated in
terms of classes and relations, plus common knowledge—derived from a generic ontology, generat-
ing natural language text. Its main features include hierarchical tree rewritings, modular multilingual
generation, support for equivalent variants across semantic, grammar, and lexical levels, and a trans-
parent rule-based system. We outline the architecture and demonstrate its flexibility through some
examples capable of generating numerous diverse and equivalent rewritings based on the input con-
cept.

1 Introduction

The emergence of explainable Artificial Intelligence (xAI) signifies the integration of crucial aspects
within AI systems, such as transparency, ethical conduct, accountability, privacy, and fairness [2]. In

*Research partially supported by Interdepartmental Project on AI (Strategic Plan UniUD–22-25) and by INdAM–GNCS
project CUP E53C22001930001. F.Bertini, A.Dal Palù, and A.Formisano are members of GNCS-INdAM, Gruppo Nazionale
per il Calcolo Scientifico.

http://dx.doi.org/10.4204/EPTCS.416.13
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

140 Data2Concept2Text: Explainable Data Analysis Narration

several domains, the acceptance of AI systems depends on their ability to offer comprehensive insights
into their internal workings and transparency in decision-making processes. Notably, the recent European
Union AI Act aims to establish a unified legal framework to foster AI development while safeguarding
public interests, such as health, safety, fundamental rights, democracy, and the environment [7]. This
legislation mandates AI systems to be sufficiently transparent, explainable, and well-documented, ne-
cessitating them to provide supporting evidence for their outputs. These considerations are especially
important when AI systems are utilized in high-risk scenarios, such as automatically describing an elec-
trocardiogram in a medical report. While achieving these objectives remains challenging for systems
reliant on deep neural networks, it presents an opportunity for the Logic Programming community due
to the inherent explainability of its products.

A simple count on papers on xAI classified by Scopus per year was analyzed by the system presented
in this paper. The following is one automatically generated output:

From the year 2014 up to 2023 publications in explainable AI have
exponentially grown in an important way (from 0 up to 1905) [excellent
accuracy]; in detail , during the interval of time between the years 2014
and 2017 publications have been significantly steady (from 0 to 7)
[excellent accuracy].

Our research focuses on transforming raw data, such as data series, into natural language descriptions
within an explainable framework. This involves interpreting and abstracting features (Data2Concept)
and subsequently translating concepts into natural language (Concept2Text). The first step, as shown
in [4, 5], requires identifying user-defined patterns in raw data and representing them as high-level de-
scriptions or concepts. For instance, a time series showing a consistent increase in values over time can
serve as a logical fact for subsequent processing, enriched with additional contextual information. Our
previous work primarily addressed the second step, i.e., Concept2Text, demonstrating a trivial natural
language expression generator. Extensions of this work have led to domain-specific applications, such
as an explainable decision-making support system for analytics in academia [3].

In this work, instead, we focus on the design of a general Concept2Text pipeline whose key features
include:

• Explainability. Our system is grounded in Logic Programming and focuses on rewriting rules and
Constraint Satisfaction Problems providing transparency at every level.

• Modularity. The system allows for seamless expansion to accommodate various domain-specific
concepts and languages thanks to its declarative nature.

• Tree Rewriting. We represent concepts as trees that are manipulated progressing from the conceptual
to the the syntax level generating natural language.

• Variants. To facilitate the generation of diverse semantic-equivalent sentences, each rewriting permits
the creation of multiple versions that can be selected. Each stage of rewriting determines various levels
of equivalence, ranging from conceptual and structural to grammatical and lexical.

• Multi-Language Support. The modular architecture of the system enables the creation of multiple
language rule sets without affecting the overall structure. In this paper, this is demonstrated with
examples in English and Italian.

The paper is structured as follows. Section 2 provides a concise overview of the background. Sec-
tion 3 presents the design of the system, while Section 4 demonstrates some practical results. Finally,
Section 5 offers concluding remarks.

F. Bertini et al. 141

2 Background

Ontologies In information science, ontologies act as pivotal organizational frameworks, structuring
knowledge within defined domains by delineating facts, properties, and their interconnections via rep-
resentational elements such as classes, attributes, and relations among them [20]. These conceptual
constructs not only explain the intricate relationships between pertinent concepts in a domain but also
capture knowledge across multiple domains from the arts and sciences to cutting-edge technologies and
medical sciences.

Practically, ontologies use specific languages to articulate concepts and relationships, removing the
complexities of implementation. One notable exemplar in this realm is the Web Ontology Language
(OWL), which allows applications to process information and concepts in autonomy [13]. Ontologies
created a profound transformation in computational reasoning, equipping machines with the capabil-
ity to decipher word meanings and assemble them into intricate sentences, similar to natural language
processing [19].

Within the medical domain, ontologies are a fundamental part of computational reasoning, partic-
ularly in the realms of precision medicine and explainable AI [8]. Biomedical and health sciences ex-
tensively leverage ontologies to encapsulate a vast spectrum of knowledge, spanning diverse realms en-
compassing diseases [17], gene products [1], phenotypic abnormalities [10], clinical trials [18], vaccine
information [11], and human anatomy [14].

Sub-symbolic text models Recent advancements in the realm of natural language processing have
witnessed a rise in the popularity of Large Language Models (LLMs). These models, powered by
transformer-based neural network architectures, boast an impressive capacity to manipulate, summarize,
generate, and predict textual content similar to human language [22]. Leveraging vast text corpora for
training, often comprising hundreds of billions of parameters, LLMs excel in content generation within
the domain of generative AI.

However, alongside their remarkable capabilities, LLMs have some fundamental limitations. They
are prone to misinterpreting instructions, generating biased content and factually incorrect information
[21]. These drawbacks highlight a lack of control over the accuracy and consistency of the text gener-
ated, leading to concerns such as the proliferation of fake news and instances of plagiarism [9]. Such
challenges align with the characterization of LLMs as black box systems, as mentioned by the EU AI
Act, where comprehending and interpreting their internal mechanisms pose inherent difficulties.

Symbolic text models The exploration of Logic Programming techniques, particularly utilizing Pro-
log, Answer Set Programming (ASP), and Constraint Logic Programming (CLP), for extracting concepts
from raw data in alignment with xAI standards and subsequently translating them into natural language
expressions, remains relatively underexplored in the literature. For instance, [15] proposed models of
grammars and graph-based structures leveraging Prolog unification.

Conversely, there has been significant attention from the Logic Programming community towards
the problem of processing natural language text as input [16] with Definite Clause Grammars (DCGs)
playing a prominent role. DCGs, introduced in the 1980s, serve as a powerful tool for parsing both
natural and artificial languages using explicit grammar rules and Prolog [12]. Notably, DCGs offer
bidirectional capabilities, enabling not just parsing but also text generation from a controlled context-
free grammar conforming to Backus-Naur Form rules. Additionally, they facilitate the modeling of
multiple variants of the grammar tree. While examples of formalization of language structure exist in

142 Data2Concept2Text: Explainable Data Analysis Narration

[class(student),
[rel(attribute),attribute(plural)],
[rel(attributive_spec),class(course)]]

class(student)

rel(attribute) rel(attributive_spec)

attribute(plural) class(course)

Figure 1: Example of an input concept (the Prolog list and the corresponding tree).

the literature, they are not necessarily rule-based or operational [6]. However, they still provide valuable
insights into understanding and modeling language structures.

3 Model

Overall system The system is composed of two modules: Data2Concept and a Concept2Text. The first
one is able to identify concepts that are represented as trees of classes and relations among them. The
second module can be fed by the first one, but in general it can process any tree concept modelization.
The system can therefore describe either specific raw data or general concepts. We refer interested
readers to our previous work [4, 5] for further details on Data2Concept.

Concepts We now focus on the design choices of the Concept2Text module. As formalized by on-
tologies, a general concept can be modeled by a graph where nodes are classes and (hyper-)edges are
relations among them. A narration of the graph would talk about nodes (described by their names in the
selected language) and would link them according to expressed relations (e.g., verbal and propositional
relations). Since the graph translation into a sentence is not straightforward, let us point out a feasible
sequence of manipulations that allows us to reach the goal.

At the beginning, a general graph can not be directly translated into a narration, since nodes must
be sorted into a narrative order. Moreover, not every edge can be described (especially if common
knowledge is present), which requires to filter out many edges. A possible automation would require to
control the summary level and the semantic information loss. In the future we plan to investigate this
aspect. From now on, we assume to work with a simple spanning tree of the original (sub)graph.

In our experimentation, trees proved to be a consistent data structure that serves the purpose of
hosting concept information as well as the various translations towards a corresponding well-formed
natural language expression. Therefore, let us illustrate a minimal example about our tree representation,
in the case of the concept of students of a course. We define two classes student and course by using
a predicate class/1, and relate them by means of rel/1 predicate. For example, we can specify that the
class student has the attribute plural and specify that those students belong to a course. Syntactically, we
structure a Prolog nested list [Root,Child1,. . .,Childn], where children may contain further nested lists.
Figure 1 illustrates the encoding and the corresponding tree representation.

Rewriting of trees We argue that a uniform rule-based rewriting system to drive the Concept2Text
process is general and modular. During rewriting, trees undergo structural (semantic) and node (syntax)

F. Bertini et al. 143

modifications. The rewriting system must be stratified, with the idea to run a set of rewriting rules related
to a specific stage until fixpoint, before starting with the next stage. This choice helps in controlling the
semantics of changes and well suits for differentiating behaviours that are language dependent.

In a preliminary model we considered using DCGs, but we encountered two main limitations: DCG
rules are designed to model a space of trees according to a context free grammar, rather than to control the
rewriting process (when a subtree is rewritten into a new subtree). Even if adaptable for tree rewriting, the
head of DCG rules does not support a general tree shape. Secondly, we need to control how alternative
and equivalent rewriting options are selected, as opposed to allowing Prolog SLD resolution to explore
all possibilities.

Let us explore how tree rewriting is conceptualized (see also Section 3.1). When making changes to
a tree structure, we need to pinpoint specific conditions that trigger these modifications, typically based
on the presence of certain subtrees and their relationships embedded in the larger structure. We expect a
rule to encompass the lowest node that is an ancestor of all relevant subtrees, including locations that are
affected by the rule rewriting (potentially elsewhere in the tree). Each rule is responsible for constructing
a new subtree that replaces the previous content hanging from that node. While some cases involve
straightforward substitutions of one subtree with another, more complex scenarios can entail assembling
intricate structures by combining existing components, rearranging their structure, and introducing new
elements. This level of generality enables the modeling of typical semantic equivalent rewritings as well
as grammatical transformations (e.g., active vs. passive voice, word to pronoun substitution, etc.).

The Concept2Text rewriting process can be broken down into several stages, each addressing specific
objectives. The overall construction of the final tree benefits from the iterative tree rewriting performed
at each stage’s fix points. Although the fixed-point rewriting mechanism is common across all stages,
we prefer to tailor rules and introduce barriers to fix points. This approach offers several advantages,
including the ability to accommodate language-independent stages alongside those requiring language-
specific rules. We can also avoid to determine the complete BNF grammar of a natural language, since we
can handle each stage separately. The transition from a stage to the next one requires to model rewriting
rules rather than complete grammars.

We report on each stage and their purposes:

1. Equivalent Concepts: This stage rewrites classes and relations into equivalent semantic versions.
The goal is to generate more specific relations that can be devised by common knowledge and to
find alternative patterns to express the same meaning. The output remains a concept-based tree.
This stage ensures semantic-preserving variants of the concept, leading to the furthest but still
equivalent final text.

2. Concept2Structure: This stage transforms the tree of concepts and their relations into a prototype
of grammar structure. It is mainly a tree shape rewriting with the addition of internal nodes that
host future grammar information. It constructs the components of a sentence (noun and verbal
subtrees, as well as complements). Classes and relations still retain their ontology descriptions.

3. Structure2Grammar: While maintaining the overall structure, this stage translates each class and
relation into grammar lexemes and/or other simple grammatical forms.

4. Coordination: This stage ensures that subtrees are coordinated, as necessary, to match gender and
number for nouns, verbs, etc.

5. Inflection and Sorting: Responsible for producing the correct inflections for nouns and adjectives,
as well as conjugations for verbs. Also, it computes the correct word order for words within the
same phrase through the resolution of language-dependent Constraint Satisfaction Problem (CSP).

144 Data2Concept2Text: Explainable Data Analysis Narration

6. Syntax: Applies local rules to consecutive words to ensure syntactic properties are met (e.g.,
contractions, ellipsis, etc.).

3.1 Implementation

Our objective is to devise rules flexible enough to handle common language properties, such as subtree
swapping and restructuring. The sequence of transformations outlined in the preceding section has been
realized using Prolog. Here, we provide a brief overview of the main components of this implementation.

3.1.1 Tree rewriting

Trees are represented as lists of the form [RootInfo|Children], where Children is the list of child trees.
Each phase of the pipeline takes a tree as input and produces a list of trees as output (representing possible
variants according to a rule) obtained by applying a set of rewriting rules. These rule sets are unique and
tailored to the specific requirements of each phase. However, all rules are uniformly described by Prolog
clauses defining the predicate

rule(Lang ,Type ,Name ,Tree ,RewTree)

where Lang specifies the target language of the translation, which remains consistent throughout the
process (currently the possible choices are English and Italian); Type is the specific phase of the rewrit-
ing process (i.e., equiv_concept, concept2structure, structure2grammar, coordination, inflection, and
syntax); Name is a unique rule ID, distinguishing a specific rewriting among those possible in the phase
Type; Tree and RewTree are the input tree and the rewritten tree, resp. In each phase a BFS traversal of
the input tree drives rule application and is repeated until a fixpoint is reached (i.e., no more rules of
that phase are applicable). While rewriting Tree, an auxiliary tree RuleTree is also produced. RuleTree is
isomorphic in shape to RewTree and describes the applied rule(s) for each node of RewTree.

It is important to note that the information gathered in RewTree plays a vital role in ensuring the
explainability of the approach. RewTree serves as a description of the justification for each rewrite per-
formed. This is achieved by recording the Name argument found in the definition of the clause(s) of rule/5
used in the rewriting. Currently, this information comprises rule IDs, but richer knowledge can be easily
managed if needed.

In the final stage (syntax rewriting) the tree is flattened, and leaves are extracted to form a straight-
forward list of words comprising the sentence. This list of words is then rewritten, until a fixpoint is
reached, using a set of rules that only inspect pairs of consecutive words.

Here are some additional details about rule/5. Each rule generates a list of trees as alternative vari-
ants. When applying a rule, we must select one variant from this list. We have chosen a random selection
strategy that takes into account previous choices. This approach has proven particularly effective in pre-
venting repetitions of the same structure in different parts of the final sentence. We keep track of the
choice history for each rule using simple assertions. In cases where the same rule is fired multiple times,
we ensure that the last choice is avoided, if possible.

3.1.2 Language independent stages

The first stage (Equivalent Concepts), responsible for handling equivalent concepts, is language-inde-
pendent. While classes and relations must be named according to a specific language (English in the
paper), this naming convention does not affect the generation of a specific language, as names will be
converted later according to language-dependent rules.

F. Bertini et al. 145

Now, let us introduce a working example to illustrate some key features contained in the stages
described above. We model the concept of an interval that specifies the use of the class year as its unit
of measure (uom):

[class(interval),[rel(attribute),attribute(uom(class(year)))],...]

If a common knowledge ontology is accessible, we could discover that is_a(year,time) and that the
class interval can be further specified as an interval of time. Also, additional semantic knowledge about
equivalences could inform the rewriting rules that an interval of time is equivalent to the class period.

Implementing rules that trigger whenever common knowledge adds some information is straightfor-
ward. In this case, a sequence of rewritings could be:

[class(interval),[rel(attributive_spec),attribute(class(time))],...]

[class(period),...]

where attributive_spec represents the specification proposition relation attached to the class time.
Let also discuss some potential equivalences that can be drawn for an interval that deals with a range

of numbers V1 and V2, e.g.:
[class(interval),[rel(attribute),attribute(range(V1,V2))],...]

Focusing on the treatment of the class interval, we can propose various alternative versions. These
include: (i) presenting the interval as a simple measure of a range (between . . .), (ii) use the interval
class (e.g., the interval . . .), and (iii) employing a more refined version with the addition of a relative
subordinate (e.g., the interval that spans . . .). Furthermore, the actual measure itself (the range between
two numbers) can be expressed using different prepositions (from . . . to, between . . . , starting from . . . up
to . . .). The combination of rules that rewrite different parts of the concept, sometimes even depending on
one another, generates a combinatorial explosion and produces a rich set of alternative variants already
at the concept stage.

Figure 2 illustrates a simplified example demonstrating the application of the two rewriting rules
described above. It is noteworthy how the classes are matched and rewritten: from (a) to (b), the class
interval is replaced with the left subtree, introducing the concept of measure; from (b) to (c), the class
measure, denoting a range, is rewritten into a nesting of two complements (source and goal) with mea-
sures of simple numeric quantities.

Let us show a simplified snippet of the first rule:

1 rule(_Lang ,equiv_concept ,equiv_interval , [Root|C],
2 [[Root|C2], ...]]):- % list of equivalent trees
3 % firing condition
4 member ([class(interval)|C1],C),
5 member ([rel(attribute),attribute(range(V1 ,V2))],C1)
6 member_non_var ([rel(attribute),attribute(uom(class(Uom)))],C1),
7 % prepare new tree structure (depending whether isa relation is known)
8 (common_knowledge_isa(Uom ,Isa) ,!,
9 Int=[class(interval),[rel(attribute),attribute(singular)],

10 [rel(attributive_spec),[class(Isa),singular]]];
11 Int=[class(interval),[rel(attribute),attribute(singular)]]),
12 replace(C,[class(interval)|C1],[[rel(definite_time),

Int ,[class(measure)|C1]]],C2),
13 ...

where we assume defined a predicate replace/4 that takes the input list, the element to be replaced, the
replacement list (enclosed by an additional list, in case multiple elements need to be inserted), and returns
the output list.

For the second rule applied in the example, a simplified code snippet could be:

146 Data2Concept2Text: Explainable Data Analysis Narration

class(interval)

rel(attribute) rel(attribute)

attribute(range(2022,2024)) attribute(uom(class(year)))

(a) Input concept

rel(definite_time)

class(interval) class(measure)

singular rel(attributive_spec)

class(time)

singular

rel(attribute) rel(attribute)

attribute(range(2022,2024)) attribute(uom(class(year)))

(b) Rewriting of concept interval

rel(definite_time)

class(interval) rel(source_compl)

singular rel(attributive_spec)

class(time)

singular

class(measure)

rel(attribute) rel(goal_compl)

attribute(number(2022)) class(measure)

rel(attribute) rel(attribute)

attribute(number(2024)) attribute(uom(class(year)))

(c) Rewriting of concept measure with range

Figure 2: Example of rewriting with concept equivalence.

1 rule(_Lang ,equiv_class ,measure_range , [Root|C],
2 [[Root|C4], ...]):- % list of equivalent trees
3 member ([class(measure)|C1],C),
4 member ([rel(attribute),attribute(range(N1 ,N2))],C1),
5 (El=[rel(attribute),attribute(uom(class(U)))],
6 member(El,C1),!,Uom=[El]; % there is a UoM specified
7 Uom =[]),
8 replace(C,[rel(attribute),attribute(range(N1 ,N2))],[[]],C2),
9 replace(C2,El ,[[]] ,C3),

10 % replace subtree at measure class with single measures
11 replace(C3 ,[class(measure)|C1],
12 [[rel(source_compl),
13 [class(measure) ,[rel(attribute),attribute(number(N1))],
14 [rel(goal_compl) ,[class(measure),
15 [rel(attribute),attribute(number(N2))]|Uom]]|Uom]]],C4),
16 ...

The second stage (Concept2Structure) is essentially language independent. Concepts are structurally
rearranged into subtrees that model grammar phrases. For instance, a class (future subject) may have
a verb relation as one child, and an object may be associated with the verb as its child. This three
node branch at the concept level is flattened, resulting in three ordered siblings of phrases (subject, verb,
object).

It is also necessary to tag each subtree with information about their phrasal role: e.g. there are nouns,
verbs, propositions and relative phrases. The rewriting is able to classify them according to relations and
deductions on them. Internal nodes are thus enriched with explicit descriptions of their subtrees, using a
predicate info/4 that specifies the type of phrase (using standard linguistic terminology such as np, vp,
pp, rp standing for noun, verbal, propositional, relative phrases), the subtype (e.g., subject, object), and
the gender and number attributes that apply to the subtree.

The fourth stage (Coordination) is language independent as it is responsible for structural matching of

F. Bertini et al. 147

the gender and/or number variables contained in the info/4 nodes. Some matches are enforced by default
(e.g., between subject and verb), but in other cases, a previous rewriting stage may have forwarded
a request for an explicit coordination. For example, when creating a relative subordinate subtree, the
phrase must match the gender and number to the antecedent noun. However, there is no guarantee that
the noun has already been processed and the associated info/4 is already created. Only when that stage
is over, the variables for gender and number are available. The Coordination stage can then safely find
and match the correct variables, upon a request that is embedded as a service node in the subordinate
tree. Coordination is enforced via unification of variables.

3.1.3 Language dependent stages

The overall structure allows us to focus on language-dependent rules for specific stages: Structure2Gram-
mar, Inflection, and Syntax. One advantage of this model is that we can easily plug in sets of rules without
modifying the system.

The Structure2Grammar stage translates classes and relations into their corresponding grammar lex-
emes (the non-inflected roots of words) in the target language. A general application would require a
complete association of synonyms for each class. While we are exploring automated tools to streamline
this phase, for small domain-specific applications, manual crafting is a viable option. Synonyms are
modeled as a list of lexemes in the variants of rules. The tree nodes can be replaced accordingly. Each
node is encapsulated by a parent node that provides its type (e.g., noun, adjective, number, verb, prepo-
sition, etc.). This tagging allows a simple reasoning when determining the correct order of elements
within a phrase. In the future we plan to find a more accurate and automated model for the choice of
appropriate lexemes, based on context and common knowledge. A fluent sentence can greatly benefit
from this choice.

Let us now provide some details about the inflection stage. Here, inflections for nouns, adjectives,
and verbs are selected based on their gender, number and verbal tense. This is typically accomplished
by consulting a dictionary that explicitly associates lexemes with words. Auxiliary verbs are generated
according to the rules of the target language.

The inflection stage also arranges the words in the correct order within each phrase. Languages have
various rules governing the order of words in a phrase, and attempting to cover all possible cases would
be impractical due to the combinatorial explosion of possibilities. To address this challenge, we have
devised a set of rules that describe local and partial orderings among subsets of words within the phrase.
By combining these partial orders, we can derive the correct total order of words. These orderings may
depend on word types and specific words themselves.

We represent this network of sorting constraints as a Constraint Satisfaction Problem (CSP). While
solving the CSP itself is straightforward, developing accurate order constraints requires careful tuning.
Thus, the flexibility of a CSP allows to support the updates of the constraints considered.

The final stage (Syntax) addresses the enforcement of writing rules for adjacent words. Every lan-
guage possesses distinct rules governing word combinations, typically controlled through local pattern
matching at the word or character level. For instance, this stage handles scenarios where two words are
merged into contractions or a single letter is removed/added (e.g. a increase is converted to an increase
because of the presence of a vowel at the beginning of the second word). This stage considers the leaves
of the tree output by the Inflection stage. If read according to a Depth-First Search (DFS) traversal, the
list of words compose the final sentence. Internal nodes describe structural properties of sub-trees. At
this stage, punctuation marks and correct spacing are handled. Moreover, internal nodes can also be
exploited in case the sentence requires some markup. We experimented with HTML tagging, which can

148 Data2Concept2Text: Explainable Data Analysis Narration

root

rel(time_from) class(iclp)

class(conferenza)

singular rel(attribute) rel(where) rel(when)

attribute(ordinal(1)) class(marseille) class(measure)

rel(attribute)

attribute(number(1982))

rel(attribute) rel(essere)

attribute(sigla) class(event)

singular rel(attribute) rel(attribute) rel(aim)

attribute(principale) attribute(internazionale) rel(verb)

class(presentare)

rel(direct_obj)

class(ricerca)

singular generic rel(su)

class(logica_computazionale)

singularFigure 3: Input concept for a full sentence

be easily incorporated into rules.

4 Results

General concept narration We first test the potential and robustness of the Concept2Text system only.
We crafted a concept that is depicted in Figure 3. The concept describes the traditional first sentence
appearing in the call for papers of ICLP2024. It can be noted that we supported generic relations of
the kind where and when associated to the class conference. Semantic equivalences can handle variants
that involve relative subordinates, different priority in concept order and active/passive forms that greatly
influence the next stages, independently on the selected language. This showcases how complex handling
of relations can be performed and suggests how the underlying machinery can be adapted to many other
cases, by simply changing classes and relations taken from this prototype concept. In the supplementary
material we show a sequence of tree rewritings after reaching the fixed point of each stage, starting from
the input of Figure 3.

We locally checked each rewriting rule behaviour, along with the variants produced. This process is
rather convenient while visually inspecting the rewritten trees. Clearly, the complete interaction among
rules and stages grows exponentially and full checks can be performed on a single specific trace of the
program.

For the English language specialized rules set, we (non-exhaustively) collected more than 13,000
unique sentences, while for Italian we counted 3,200+ sentences. Interested readers can download and
consult the list of sentences at ahead-lab.unipr.it/files-for-iclp2024/. We manually reviewed
some samples and they all appear well-formed. One advantage of the rule-based model is that errors
could be quickly debugged and fixed while developing the system. Even if the variants for rules are
rather limited in number (at most 4 versions per rule) and certainly they will be expanded in the future,

ahead-lab.unipr.it/files-for-iclp2024/

F. Bertini et al. 149

this result shows how the combinatorics of various stages allows to enumerate a surprisingly high set of
semantics preserved sentences.

It is noteworthy how the rewriting of equivalence and grammar structures is capable of providing re-
markable differences, while preserving semantics perfectly, thanks to the strict transitivity of the applied
equivalences. The resulting text appears natural, although some additional synonyms could be included
to enrich and diversify certain words.

We also tested some free LLMs available online (i.e., ChatGPT 3.5, Gemini). We asked to generate
10 instances of a sentence that strictly preserved the semantics intended by the Prolog list as in Figure 3.
Even if in general the results were rather accurate, in some cases some attributes were skipped and/or
some verb choices were not perfectly compatible with the context. It was also difficult to force the
complete adherence with the original input via prompting. Those are a set of secondary issues, since the
tested methodology does not comply with the major requirement of explainability.

Comparing the control obtained from a well-crafted prompt to the LLM, our pipeline ensures that
the overall semantic integrity is maintained consistently from input to the final sentence throughout each
step of rewriting. In contrast, LLMs may introduce arbitrary choices or hallucinations, affecting both
semantic and syntactic levels. Additionally, we observed that it is challenging to enforce the use of all
provided attributes, as LLMs tend to interpret the intended semantics with limited control over the degree
of summarization and the relative importance of each attribute.

Data2Concept narration Our Data2Concept system (see introduction) analyzes data series and out-
puts concepts in the form of trees that contain data properties as well as confidence about accuracy and
relevance of the findings. The Concept2Text system can be attached and the full pipeline can be tested.
We report here on a simple data analysis run on the number of papers about explainable AI indexed by
Scopus each year from 2014 to 2023. The data series (y values) is [0,2,0,7,84,217,428,816,1266,1905]
and the contextual classes are about the x axis (year), the x axis list of values (numbers between 2014
and 2023), the y axis class (papers) and the overall class of the data series (publications on xAI). The
accuracy of the extracted concepts are computed on a integer value on the range 0 . . .100, and they are
mapped into a judgment scale of adjectives. Table 1 shows two sentences produced by the pipeline for
both English and Italian. We can note that the adherence to the original series is very high, as stated by
the accuracy feedback.

5 Conclusions

The paper presented an explainable methodology to rewrite a concept in well-formed natural languages.
The system adopts a multi-level rewriting procedure that can produce semantic, grammar and lexical
variants that are aware of the context. Common knowledge can be used to better adapt to specific con-
texts. The system is modular, since it allows for easy adaptation to various domain-specific applications
and output languages. Moreover, the system adheres to explainable AI standards by offering trans-
parency and verifiability. We can conclude that the Data2Concept2Text complete system is effective in
modeling general concepts and to translate them into multiple languages with the same architecture. As
applications, it can handle both raw data series and narration of general concepts from ontologies.

This work opens different lines of research to be further explored. Adapting different rules for han-
dling grammar and syntax from different languages requires some human time, since this kind of formal-
ization is often fuzzy and requires language experts. Developing a comprehensive rule set for accurately
translating classes into suitable grammar synonyms is a complex task, as the most appropriate choices

150 Data2Concept2Text: Explainable Data Analysis Narration

Table 1: Output examples. 1–2 for English and 3–4 for Italian.

1. From the year 2014 up to 2023 publications in explainable AI have exponentially grown in an important way
(from 0 up to 1905) [excellent accuracy]; in detail, during the interval of time between the years 2014 and 2017
publications have been significantly steady (from 0 to 7) [excellent accuracy].

2. There has been an important exponential growth of publications on explainable AI (from 0 up to 1905) during
the interval of time that has spanned starting from the year 2014 up to 2023 [excellent accuracy]; specifically,
between the years 2014 and 2017 publications have shown themselves to be significantly constant (from 0 up to
7) [excellent accuracy].

3. C’è stato un incremento esponenziale importante di pubblicazioni sulla IA spiegabile (da 0 a 1905) dagli anni
2014 ai 2023 [accuratezza ottima]; in dettaglio, dall’anno 2014 e durante i 3 anni successivi le pubblicazioni
sono state decisamente stabili (da 0 fino a 7) [accuratezza ottima].

4. Nell’intervallo di tempo dagli anni 2014 ai 2023 le pubblicazioni sulla IA spiegabile sono aumentate
esponenzialmente in modo importante (a partire da 0 fino a 1905) [accuratezza ottima]; in dettaglio, nel periodo
dall’anno 2014 fino al 2017 i lavori sono stati decisamente costanti (da 0 a 7) [accuratezza ottima].

heavily depend on context. We aim to devise automatic methods to retrieve such preferences and stylistic
usages.

Variants of rules can be classified according to verbosity and style. This information can help to
match preferences about properties of the final text to be produced.

We also plan to investigate the handling of general concept graphs, rather than our tree-like set
of relations on concepts. Converting this graph into a spanning tree, or alternatively, synthesizing the
information in a controlled manner, could facilitate the creation of guided concept summaries.

The entire pipeline is versatile and applicable across various domains, particularly in scenarios where
reports are generated based on data analytics. We intend to extend this methodology to automated anal-
ysis of ECGs and other medical data, financial data, and more broadly, to produce trustworthy Business
Intelligence (explainable automated reporting).

References

[1] Michael Ashburner et al. (2000): Gene ontology: tool for the unification of biology. Nature genetics 25(1),
pp. 25–29, doi:10.1038/75556.

[2] Alejandro Barredo Arrieta et al. (2020): Explainable Artificial Intelligence (XAI): Concepts, tax-
onomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, pp. 82–115,
doi:10.1016/j.inffus.2019.12.012.

[3] Flavio Bertini, Alessandro Dal Palù, Andrea Formisano, Andrea Pintus, Sara Rainieri & Luana Salvarani
(2023): Students’ Careers and AI: a decision-making support system for Academia. In: Proceedings of the
Italia Intelligenza Artificiale (Ital-IA 2023), Pisa, Italy, May 29-30, 2023, CEUR Workshop Proceedings
3486, CEUR-WS.org, pp. 272–277. Available at https://ceur-ws.org/Vol-3486/.

[4] Alessandro Dal Palù, Agostino Dovier & Andrea Formisano (2023): Towards Explainable Data-to-text Gen-
eration. In Agostino Dovier & Andrea Formisano, editors: Proceedings of the 38th Italian Conference on
Computational Logic, Udine, Italy, June 21-23, 2023, CEUR Workshop Proceedings 3428, CEUR-WS.org,
pp. 1–15. Available at https://ceur-ws.org/Vol-3428/.

https://doi.org/10.1038/75556
https://doi.org/10.1016/j.inffus.2019.12.012
https://ceur-ws.org/Vol-3486/
https://ceur-ws.org/Vol-3428/

F. Bertini et al. 151

[5] Alessandro Dal Palù, Agostino Dovier & Andrea Formisano (2023): An xAI Approach for Data-to-Text Pro-
cessing with ASP. In Enrico Pontelli et al., editors: Proc. 39th International Conference on Logic Program-
ming, ICLP 2023, Imperial College London, UK, 9th July 2023 - 15th July 2023, EPTCS 385, pp. 353–366,
doi:10.4204/EPTCS.385.38.

[6] Marcel den Dikken (2013): The Cambridge handbook of generative syntax. Cambridge Univ. Press,
doi:10.1017/CBO9780511804571.

[7] European Commission (2021): Regulation of the European Parliament and of the Council. Laying Down
Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act). https://eur-lex.europa.eu/
legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206.

[8] Melissa A Haendel, Christopher G Chute & Peter N Robinson (2018): Classification, ontology, and precision
medicine. New England Journal of Medicine 379(15), pp. 1452–1462, doi:10.1056/NEJMra1615014.

[9] Ziwei Ji et al. (2023): Survey of hallucination in natural language generation. ACM Computing Surveys
55(12), pp. 1–38, doi:10.48550/ARXIV.2405.20315.

[10] Sebastian Köhler et al. (2021): The human phenotype ontology in 2021. Nucleic acids research 49(D1), pp.
D1207–D1217, doi:10.1093/NAR/GKAA1043.

[11] Yu Lin & Yongqun He (2012): Ontology representation and analysis of vaccine formulation and administra-
tion and their effects on vaccine immune responses. J. Biomed. Semant. 3, pp. 1–15, doi:10.1186/2041-1480-
3-17.

[12] Yuji Matsumoto, Hozumi Tanaka, Hideki Hirakawa, Hideo Miyoshi & Hideki Yasukawa (1983):
BUP: a bottom-up parser embedded in Prolog. New Generation Computing 1(2), pp. 145–158,
doi:10.1007/BF03037421.

[13] Deborah L. McGuinness, Frank Van Harmelen et al. (Updated in 2009): OWL web ontology language
overview. W3C recommendation 10 February 2004. Available at www.w3.org/TR/owl-features/.

[14] Natalya F. Noy, Mark A. Musen, José L.V. Mejino Jr & Cornelius Rosse (2004): Pushing the envelope:
challenges in a frame-based representation of human anatomy. Data Knowl. Eng. 48(3), pp. 335–359,
doi:10.1016/J.DATAK.2003.06.002.

[15] Fernando C. N. Pereira (1987): Grammars and Logics of Partial Information. In Jean-Louis Lassez, editor:
Logic Programming, Proceedings of the Fourth International Conference, Melbourne, Victoria, Australia,
May 25-29, 1987, MIT Press, pp. 989–1013. ISBN:0262121255.

[16] Fernando C. N. Pereira & Stuart M. Shieber (2002): Prolog and natural-language analysis. Microtome
Publishing. ISBN:0937073180.

[17] Lynn M. Schriml et al. (2019): Human Disease Ontology 2018 update: classification, content and workflow
expansion. Nucleic acids research 47(D1), pp. D955–D962, doi:10.1093/NAR/GKY1032.

[18] Barry Smith et al. (2007): The OBO Foundry: coordinated evolution of ontologies to support biomedical
data integration. Nature biotechnology 25(11), pp. 1251–1255, doi:10.1038/nbt1346.

[19] Robyn Speer, Joshua Chin & Catherine Havasi (2017): Conceptnet 5.5: An open multilingual graph of
general knowledge. In: Proceedings of the 31st AAAI conference on artificial intelligence, pp. 4444–4451,
doi:10.1609/AAAI.V31I1.11164.

[20] Steffen Staab & Rudi Studer, editors (2009): Handbook on Ontologies. International Handbooks on Infor-
mation Systems, Springer, doi:10.1007/978-3-540-92673-3.

[21] Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang, Xin Jiang
& Qun Liu (2023): Aligning large language models with human: A survey. arXiv preprint arXiv:2307.12966,
doi:10.48550/ARXIV.2307.12966.

[22] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong et al. (2023): A survey of large language models. arXiv preprint
arXiv:2303.18223, doi:10.48550/ARXIV.2303.18223.

https://doi.org/10.4204/EPTCS.385.38
https://doi.org/10.1017/CBO9780511804571
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:52021PC0206
https://doi.org/10.1056/NEJMra1615014
https://doi.org/10.48550/ARXIV.2405.20315
https://doi.org/10.1093/NAR/GKAA1043
https://doi.org/10.1186/2041-1480-3-17
https://doi.org/10.1186/2041-1480-3-17
https://doi.org/10.1007/BF03037421
www.w3.org/TR/owl-features/
https://doi.org/10.1016/J.DATAK.2003.06.002
https://doi.org/10.1093/NAR/GKY1032
https://doi.org/10.1038/nbt1346
https://doi.org/10.1609/AAAI.V31I1.11164
https://doi.org/10.1007/978-3-540-92673-3
https://doi.org/10.48550/ARXIV.2307.12966
https://doi.org/10.48550/ARXIV.2303.18223

152 Data2Concept2Text: Explainable Data Analysis Narration

Appendix

root

rel(time_from) class(iclp)

class(conferenza)

has_context rel(attribute) rel(attribute) rel(past_participle_adj)

attribute(singular) attribute(ordinal(1)) rel(verb)

class(happens_conti) rel(in_place_prep(city)) rel(time_fixed)

rel(attribute)

attribute(participle)

class(marseille) class(measure)

rel(attribute)

attribute(number(1982))

rel(attribute) rel(verb)

attribute(abbrv) class(be_something)

rel(direct_obj)

class(event)

rel(attribute) rel(attribute) rel(attribute) rel(final)

attribute(singular) attribute(principale) attribute(internazionale) rel(verb)

class(presentare)

rel(direct_obj)

class(ricerca)

rel(attribute) rel(attribute) rel(su)

attribute(singular) attribute(generic) class(logica_computazionale)

rel(attribute)

attribute(singular)

info(s,subj,v(0),v(1))

info(pp,time_from,v(2),v(3)) info(v(24),subj,v(25),v(26)) info(vp,v,v(27),v(28)) info(v(29),obj,v(30),v(31))

rel1(time_from) info(v(4),v(5),v(6),v(7))

class1(conferenza) has_context attribute(singular) attribute(ordinal(1)) info(s,rel_clause,v(8),v(9))

coord_gn_up rel1(past_participle_adj) info(vp,v,v(10),v(11)) info(pp,in_place_prep(city),v(12),v(13)) info(pp,time_fixed,v(18),v(19))

class1(happens_conti) attribute(participle) rel1(in_place_prep(city)) info(v(14),v(15),v(16),v(17))

class1(marseille)

rel1(time_fixed) info(v(20),v(21),v(22),v(23))

attribute(number(1982))

class1(iclp) attribute(sigla) class1(be_something) class1(event) attribute(singular) attribute(principale) attribute(internazionale) info(pp,final,v(32),v(33))

rel1(final) info(vp,v,v(34),v(35)) info(v(36),obj,v(37),v(38))

class1(presentare) class1(ricerca) attribute(singular) attribute(generic) info(pp,su,v(39),v(40))

rel1(su) info(v(41),v(42),v(43),v(44))

class1(logica_computazionale) attribute(singular)

info(s,subj,v(0),v(1))

info(pp,time_from,v(2),v(3)) info(np,subj,v(23),v(24)) info(vp,v,v(25),v(26)) info(np,obj,v(27),v(28)) stop-swap_subj_obj

surround-comma prep prep info(np,v(4),v(5),v(6))

starting with g_name has_context g_number g_number_ordinal info(s,rel_clause,v(7),v(8))

conference s 1 coord_gn_up info(rp,subj,v(9),v(10)) info(vp,v,v(11),v(12)) info(pp,in_place_prep(city),v(13),v(14)) info(pp,time_fixed,v(18),v(19))

coord_gn_up g_no_direct_obj g_verb g_passive g_participle

organize

prep info(np,v(15),v(16),v(17))

in g_name

Marseille

prep info(np,v(20),v(21),v(22))

in g_number_absolute

1982

g_name no_art

ICLP

g_verb prep

emerge as

g_name g_number g_adj g_adj info(pp,final,v(29),v(30))

event s top international prep art n prep info(vp,v,v(31),v(32)) info(np,obj,v(33),v(34))

with the goal of g_verb g_time

highlight gerund

g_name g_number no_art info(pp,su,v(35),v(36))

research s prep info(np,v(37),v(38),v(39))

in g_name g_adj g_number no_art

logic computational s

info(s,subj,v(0),v(1))

info(pp,time_from,v(0),v(1)) info(np,subj,v(10),v(11)) info(vp,v,v(10),v(11)) info(np,obj,v(12),s) stop-swap_subj_obj

surround-comma prep prep info(np,v(2),v(3),s)

starting with g_name has_context g_number_ordinal info(s,rel_clause,v(3),s)

conference 1 info(rp,subj,v(3),s) info(vp,v,v(3),s) info(pp,in_place_prep(city),v(3),s) info(pp,time_fixed,v(3),s)

g_no_direct_obj g_verb g_passive g_participle

organize

prep info(np,v(4),v(5),v(6))

in g_name

Marseille

prep info(np,v(7),v(8),v(9))

in g_number_absolute

1982

g_name no_art

ICLP

g_verb prep

emerge as

g_name g_adj g_adj info(pp,final,v(12),s)

event top international prep art n prep info(vp,v,v(13),v(14)) info(np,obj,v(15),s)

with the goal of g_verb g_time

highlight gerund

g_name no_art info(pp,su,v(15),s)

research prep info(np,v(16),v(17),s)

in g_name g_adj no_art

logic computational

info(s,subj,v(0),v(1))

info(pp,time_from,v(0),v(1)) info(np,subj,m,s) info(vp,v,m,s) info(np,obj,m,s) stop-swap_subj_obj

interp prep prep info(np,v(2),f,s) interp

, starting with art_det adj n has_context info(s,rel_clause,f,s)

the first conference info(rp,subj,f,s) info(vp,v,f,s) info(pp,in_place_prep(city),f,s) info(pp,time_fixed,f,s)

g_no_direct_obj part g_passive

organized

prep info(np,v(3),f,p)

in n

Marseille

prep info(np,v(4),v(5),v(6))

in num

1982

,

n

ICLP

v part prep

has emerged as

art_det adj adj n info(pp,final,m,s)

the top international event prep art n prep info(vp,v,v(7),v(8)) info(np,obj,m,s)

with the goal of v

highlighting

n info(pp,su,m,s)

research prep info(np,v(9),m,s)

in adj n

computational logic

Figure 4: Computed stages for the call for papers concept of Figure 3. From top to bottom: Concept
Equivalence, Concept2Structure, Structure2Grammar, Coordination, Inflection

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 153–167, doi:10.4204/EPTCS.416.14

Counterfactual Explanations as Plans

Vaishak Belle
University of Edinburgh & Alan Turing Institute, UK

vaishak@ed.ac.uk

There has been considerable recent interest in explainability in AI, especially with black-box machine
learning models. As correctly observed by the planning community, when the application at hand
is not a single-shot decision or prediction, but a sequence of actions that depend on observations, a
richer notion of explanations are desirable.

In this paper, we look to provide a formal account of “counterfactual explanations," based in
terms of action sequences. We then show that this naturally leads to an account of model reconcilia-
tion, which might take the form of the user correcting the agent’s model, or suggesting actions to the
agent’s plan. For this, we will need to articulate what is true versus what is known, and we appeal
to a modal fragment of the situation calculus to formalise these intuitions. We consider various set-
tings: the agent knowing partial truths, weakened truths and having false beliefs, and show that our
definitions easily generalize to these different settings.

1 Introduction

There has been considerable recent interest in explainability in AI, especially with black-box machine
learning models, given applications in credit-risk analysis, insurance pricing and self-driving cars. Much
of this focus is on single-shot decision or prediction, but as correctly observed by the automated planning
community [14, 7, 6], in applications involving sequence of actions and observations and conditional
plans that depend on observations, a richer notion of explanations are desirable. Fox et al. [14], for
instance, argue that understanding why a certain action was chosen (and not some other), why one
sequence is more optimal than another, etc, are all desired constructs in explanations.

Despite all this attention, there is yet to emerge a theory on how exactly to frame explanations in a
general way. One candidate is the notable line of work on model reconciliation [40]. The idea is that
the agent might have incomplete or even false information about the world, and the user can advise the
agent by correcting the agent’s model, or suggesting actions to the agent’s plan. The latter move is in the
spirit of human-aware AI [19]. But such an idea is inherently epistemic, and this brings the explainable
AI literature closer to epistemic planning [2]. Many recent threads of work have tried to explicate this
connection.

In [37], for example, the idea of discrepancy and resolving such discrepancy is studied. Using the
epistemic logic fragment from [30], where so-called proper epistemic knowledge bases are chosen for
initial plan states that allow only for modal literals, discrepancy emerges when (in a dynamic logic-like
language) Σ |= [δ]Kiφ but Σ ̸|= [δ]K jφ . Given a goal φ , an action sequence δ , background knowledge
Σ for agents i and j which include dynamic axioms, it turns out that i believes that φ is true but j does
not. So the resolution is to find some course of action δ ′ that ensures that either Σ |= [δ ′](Kiφ ∧K jφ)
or that Σ |= [δ ′](Ki¬φ ∧K j¬φ). That is, they both jointly believe after δ ′ that φ is made true, or that φ

is made false. And as pointed out in [37], articulating the difference between beliefs and ground truth is
needed for clarity.

http://dx.doi.org/10.4204/EPTCS.416.14

154 Counterfactual Explanations as Plans

Likewise, the works on contrastive explanations [21] as well as the credulous/skeptical semantics for
model reconciliation from [42] are related. In the former, the “why” question is tackled by offering to
add or remove actions from the current plan. In the latter, a notion of credulous and skeptical entailment
is suggested as a way to keep updated mental states consistent in service of explanations. Credulous
entailment is when a single belief state suffices to check the validity and achievement of a plan, and
skeptical entailment when every belief state is involved. The problem of “explanation generation”, then,
between the user’s theory Σ and the agent’s theory Σ′ is triggered when Σ |= [δ]φ for some goal φ after
sequence δ but Σ′ ̸|= [δ]φ . This necessitates the updating of Σ′ to Σ′′ such that Σ′′ |= [δ]φ . Note that,
even though skeptical/credulous entailment involves belief states, the formalism itself is not epistemic.
Perhaps it does not need to be in some limited cases, but ultimately a distinction between truth in the
real-world and beliefs provides clarity on how the agent’s model needs to be adjusted when plans do not
work, either because its missing actions or entertaining incomplete/false truths.

The reader may also surmise that there is clearly some relationship between these proposals, but it is
not spelt out. In fact, no clear logical justification is given as why the definitions are reasonable in the
first place. As we mentioned, a theory on how exactly to frame explanations in such epistemic settings
is yet to emerge.

What we seek to do in this paper is to develop and formalize “counterfactual explanations” over plans
in the presence of both physical and sensing actions. Counterfactual explanations in machine learning are
widely popular [43], because they provide an intuitive account of “what if” and “what could have been”,
which helps us realize alternative worlds where a desired outcome might be achieved.1 Our account can
be seen as attempting to establish a logical relationship between contrastive explanations and knowledge
based updates for model reconciliation and/or discrepancy. In fact, this relationship is a very simple
one: it can be seen as a counterfactual! The “why,” “what if”, and other such “wh”-questions can be
interpreted as counterfactuals [31]. In the static setting, we are simply interested in an alterative world
where some properties are different. In the dynamic setting, we might also be interested in an alternative
plan that achieves a different outcome, very much in the spirit of contrastive plans. To our knowledge,
there is no general account in the literature on counterfactual explanations as plans.

This brings us to the choice of the representation language. As already discussed above, we need to
identify, in the first instance, a knowledge representation language for articulating things like what is true,
what is known, whether something is not known, and whether something is falsely believed. This will
give us an opportunity to formalize explanations in an epistemically adequate representation language.
Although proposals such as [30, 37] might be perfectly reasonable, and might even be preferred for an
automated planning account, but they do come with various syntactic stipulations that might affect the
properties of the logic (e.g., disjunctive entailments). We believe the characterization is more easily stated
and readability improved by considering a general knowledge representation language, but nothing in the
formalisation necessitates one choice of language over another. In fact, the underlying implementation
can involve any of the recent proposals from the epistemic planning literature, e.g., [30, 39], of which
we think [37] is particularly fitting. Our notion of counterfactual plans could be easily adapted from the
algorithm of that work.

Dimensions to formalisation When attempting to formalise counterfactual (CF) explanations, as we
shall show, there are multiple dimensions under which a definition can be explored. In the simplest case,
given a plan δ that achieves φ , a CF explanation might be a plan δ ′ that negates φ . An interpretation
could be as follows: if a plan ends up denying the loan to individual b, find a plan that approves the loan

1These notions will vary slightly in the dynamic version. We will focus on identifying the course of actions that can toggle
the outcome (i.e., “which plan"), and the information that is necessary to enable a property (i.e., “what should be known").

Vaishak Belle 155

for b, but ensure that it is “close” to the original plan. This roughly captures counterfactuals in ML: given
a data point x that has label y, find a data point x′ that is minimally distant from x and has label ¬y. We
can further concretize this by explicating what closeness means, and whether additional constraints can
be provided so that a diverse range of x′ are found [29].

But when viewed through the lens of an interaction between an automated agent and a human user, in
the sense of human-guided planning [19, 40], the framework becomes richer. We will consider the case
where the user assists in achieving goals. So this leads to a broader notion of counterfactuals: consider
an alternate history or additional knowledge such that the goal now becomes true. This will require us
to articulate the difference between what is true in the real world (the user’s knowledge) versus what is
believed (by the agent). Interestingly, this does not require a modelling language with multiple agents
because the user’s knowledge can serve as proxy for truth in the real world.2 We consider various settings:
the agent knowing partial truths, weakened truths and having false beliefs, and show that our definitions
easily generalize to these different settings. The discrepancy model from [37], the skeptical/credulous
entailment model from [42], among others, can be seen as variations of this more general recipe in
epistemic logic. We focus on the mathematical aspects here, but as mentioned, implementations from
works such as [37] can be adapted for generating CF explanations as plans.

This then brings us to the choice of the formal language for our exposition. We choose the situation
calculus [34], which has been well-explored for formalizing the semantics of planning problems [32, 34,
15, 27]. But because we are interested in nested beliefs, we explore a (newer) modal variant, the logic
E S [23], which provides a simpler semantics for planners [8], as well closely mirrors the semantics of
proposals such as dynamic logic. Perhaps what makes it most interesting that under some conditions
reasoning about actions and knowledge can reduce to non-modal (first-order or propositional) reasoning
[23], a feature we feel has not been considered extensively in the planning community. Our ideas do
not hinge on this language, and so any planning language that helps us reason about truth, knowledge,
actions and sensing should suffice.

2 A Logic for Knowledge and Action

We now introduce the logic E S [23].3 It is an epistemic logic, but we only need the objective frag-
ment for formalizing counterfactual explanations as plans. When we consider the more elaborate notion
of reconciliation-type explanations where both a user and an agent is necessary, we will use the full
language.

The non-modal fragment of E S consists of standard first-order logic with =. That is, connectives
{∧,∀,¬}, syntactic abbreviations {∃,≡,⊃} defined from those connectives, and a supply of variables
variables {x,y, . . . ,u,v, . . .}. Different to the standard syntax, however, is the inclusion of (countably
many) standard names (or simply, names) for both objects and actions R, which will allow a simple,
substitutional interpretation for ∀ and ∃. These can be thought of as special extra constants that satisfy

2This leads to a single-agent version formulation of, for example, the discrepancy condition from [37] in that it emerges
whenever the user/root agent/real world is one where Σ |= [δ]φ but as far as the agent is concerned: Σ ̸|= [δ]Kφ . An account
with multi-agent modal operators is possible in a straightforward way, using e.g., [36, 20] and [3] in particular, which is a
many-agent extension to the language used in this paper.

3Our choice of language may seem unusual, but it is worth noting that this language is a modal syntactic variant of the
classical epistemic situation that is better geared for reasoning about knowledge [22]. But more importantly, it can be shown
that reasoning about actions and knowledge reduces to first-order reasoning via the so-called regression and representation
theorems [23]. (For space reasons, we do not discuss such matters further here.) There are, of course, many works explicating
the links between the situation calculus and logic programming; see [34] for starters.

156 Counterfactual Explanations as Plans

the unique name assumption and an infinitary version of domain closure.
Like in the situation calculus, to model immutable properties, we assume rigid predicates and func-

tions, such as IsPlant(x) and f ather(x) respectively. To model changing properties, E S includes fluent
predicates and functions of every arity, such as Broken(x) and height(x). Note that there is no longer a
situation term as an argument in these symbols to distinguish the fluents from the rigids. For example,
E S also includes a distinguished fluent predicates Poss and SF to model the executability of actions
and capture sensing outcomes respectively, but they are now a unary predicates. Terms and formulas are
constructed as usual. The set of ground atoms P are obtained by applying all object names in R to the
predicates in the language.

There are four modal operators in E S : [a],2,K and O. For any formula α, we read [a]α,2α

and Kα as “α holds after a", “α holds after any sequence of actions" and “α is known,” respectively.
Moreover, Oα is to be read as “α is only-known.” Given a sequence δ = a1 · · ·ak, we write [δ]α to mean
[a1] · · · [ak]α. We write a ·δ ·a′ to mean [a] · [a1] · · · [ak] · [a′].

In classical situation calculus parlance, we would use [a]α to capture successor situations as prop-
erties that are true after an action in terms of the current state of affairs. Together with the 2 modality,
which allows to capture quantification over situations and histories, basic action theories can be defined.
Like in the classical approach, one is interested in the entailments of the basic action theory.

Semantics Recall that in the simplest setup of the possible-worlds semantics, worlds mapped propo-
sitions to {0,1}, capturing the (current) state of affairs. E S is based on the very same idea, but extended
to dynamical systems. So, suppose a world maps P and Z to {0,1}.4 Here, Z is the set of all finite
sequences of action names, including the empty sequence ⟨⟩. Let W be the set of all worlds, and e ⊆ W
be the epistemic state. By a model, we mean a triple (e,w,z) where z ∈ Z .

Intuitively, each world can be thought of a situation calculus tree, denoting the properties true initially
but also after every sequence of actions. W is then the set of all such trees. Given a triple (e,w,z), w
denotes the real world, and z the actions executed so far. Interestingly, e captures the accessibility relation
between worlds, but by modeling the relation as a set, we are enabling positive and negative introspection
using a simple technical device.

To account for how knowledge changes after (noise-free) sensing, one defines w′ ∼z w, which is to
be read as saying “w′ and w agree on the sensing for z”, as follows:

• if z = ⟨⟩, w′ ∼z w for every w′; and

• w′ ∼z·a w iff w′ ∼z w, and w′[SF(a),z] = w[SF(a),z].

This is saying that initially, we would consider all worlds compatible, but after actions, we would
need the world w′ to agree on sensing outcomes. The reader might notice that this is clearly a reworking
of the successor state axiom for the knowledge fluent in [35].

With this, we get a simply account for truth. We define the satisfaction of formulas wrt the triple
(e,w,z), and the semantics is defined inductively:

• e,w,z |= p iff p is an atom and w[p,z] = 1;

• e,w,z |= α ∧β iff e,w,z |= α and e,w,z |= β ;

• e,w,z |= ¬α iff e,w,z ̸|= α;

• e,w,z |= ∀xα iff e,w,z |= αx
n for all n ∈ R;

4We need to extend the mapping to additionally interpret fluent functions and rigid symbols, omitted here for simplicity.

Vaishak Belle 157

• e,w,z |= [a]α iff e,w,z ·a |= α;

• e,w,z |=2α iff e,w,z · z′ |= α for all z′ ∈ Z ;

• e,w,z |=Kα iff for all w′ ∼z w, if w′ ∈ e, e,w′,z |= α;

• e,w,z |=Oα iff for all w′ ∼z w, w′ ∈ e, iff e,w′,z |= α .

To define entailment for a logical theory, we write Σ |= α (read as “Σ entails α”) to mean for every
M = (e,w,⟨⟩), if M |=α ′ for all α ′ ∈Σ, then M |=α. We write |=α (read as “α is valid”) to mean {} |=α.

Properties Let us first begin by observing that given a model (e,w,z), we do not require w ∈ e. It is
easy to show that if we stipulated the inclusion of the real world in the epistemic state, Kα ⊃ α would
be true. That is, suppose Kα. By the definition above, w is surely compatible with itself after any z, and
so α must hold at w. Analogously, properties regarding knowledge can be proven with comparatively
simpler arguments in a modal framework, in relation to the classical epistemic situation calculus. Valid
properties include: (a) 2(K(α)∧K(α ⊃ β) ⊃K(β)); (b) 2(K(α) ⊃K(K(α))); (c) 2(¬K(α) ⊃
K(¬K(α))); (d) 2(∀x.K(α)⊃K(∀x. α)); and (e) 2(∃x.K(α)⊃K(∃x. α)).

Note that such properties hold over all possible action sequences, which explains the presence of the
2 operator on the outside. The first is about the closure of modus ponens within the epistemic modality.
The second and third are on positive and negative introspection. The last two reason about quantification
outside the epistemic modality, and what that means in terms of the agent’s knowledge. For example,
item 5 says that if there is some individual n such that the agent knows Teacher(n), it follows that the
agent believes ∃xTeacher(x) to be true. This may seem obvious, but note that the property is really
saying that the existence of an individual in some possible world implies that such an individual exists
in all accessible worlds. It is because there is a fixed domain of discourse that these properties come out
true; they are referred to a the Barcan formula.

It is worth nothing that in single-agent epistemic planning [2], it is most common to have epistemic
goals of the sort Kφ , ¬Kφ and K¬Kφ , where φ is non-modal. The idea is that we might be interested
in interleaving physical and sensing actions such that (respectively) φ becomes known, or as an observer
(e.g., user) we make note that the agent does not know φ , or that the agent knows that it does not know φ ,
in which case it might choose to do actions so that it gets to know φ . Multiple nestings of modalities are
allowed but usually not necessary in the single-agent case. When multiple agents are involved, however,
[20, 30, 3], it becomes necessary to interleave epistemic operators, often arbitrarily, in service of notions
such as common knowledge [18].

As seen above, the logic E S allows for a simple definition of the notion of only-knowing in the
presence of actions [26], which allows one to capture both the beliefs as well as the non-beliefs of the
agent. Using the modal operator O for only-knowing, it can be shown that Oα |= Kβ if α |= β but
Oα |= ¬Kβ if α ̸|= β for any non-modal {α,β} . That is, only-knowing a knowledge base also means
knowing everything entailed by that knowledge base. Conversely, it also means not believing everything
that is not entailed by the knowledge base. In that sense, K can be seen as an “at least” epistemic
operator, and O captures both at least and “at most" knowing. This can be powerful to ensure, for
example, that the agent provably does not know protected attributes.

We will now consider the axiomatization of a basic action theory in E S . But before explaining how
successor state axioms are written, one might wonder whether a successor state axiom for K is needed,
as one would for Knows in the epistemic situation calculus. It turns out because the compatibility of
the worlds already accounted for the executability of actions and sensing outcomes in accessible worlds,

158 Counterfactual Explanations as Plans

such an axiom is actually a property of the logic:

|=2[a]K(α)≡ (SF(a)∧K(SF(a)⊃ [a]α)) ∨ (¬SF(a)∧K(¬SF(a)⊃ [a]α)).

(Free variables are implicitly quantified from the outside.) What will be known after an action is
based on what is true in the real world and the incorporation of this information with the agent’s knowl-
edge.

Basic Action Theories To illustrate the language towards the axiomatization of the domain, we
consider the analogue of the basic action theory in the situation calculus [34]. It consists of:

• axioms that describe what is true in the initial states, as well as what is known initially;

• precondition axioms that describe the conditions under which actions are executable using a dis-
tinguished predicate Poss;

• successor state axioms that describe the conditions under which changes happen to fluents on
executing actions, incorporating Reiter’s monotonic solution to the frame problem; and

• sensing axioms that inform the agent about the world using a distinguished predicate SF.

Note that foundational axioms as usually considered in Reiter’s variant of the situation calculus [34]
are not needed as the tree-like nature of the situations is baked into the semantics.

We will lump the successor state, precondition and sensing axioms as Σdyn. The sentences that are
true initially will be referred to by Σ0. When we are not interested in epistemic goals, and do not concern
ourselves with sensing actions, we can restrict our attention to entailments of Σ0∧Σdyn. Note that because
Σ0 might include disjunctions (and possibly quantifiers), there might be multiple worlds where Σ0 is true.
For example, in a propositional language with only two propositions {p,q}, Σ0 = (p∧¬q) means there
is only a single world where Σ0 is true initially, but Σ0 = (p∨q) means that there are three worlds where
Σ0 is true initially. In other words, Σ0 might correspond to a single or multiple initial states in classical
planning parlance.

If we are wanting to model knowledge, the agent cannot be expected to know everything that is true,
and so let Σ′

0 be what is believed initially. It may seem natural to let Σ′
0 ⊆ Σ0, but that it not necessary. The

agent might be uncertain about what is true (e.g., Σ0 might have p but Σ′
0 has p∨q instead).5 However,

for simplicity, we will require that agents at least believe the dynamics works as would the real world.
Therefore, we consider entailments wrt the following background theory:

Σ = Σ0 ∧Σdyn ∧O(Σ′
0 ∧Σdyn). (1)

There are conveniences afforded by a basic action theory of this form. Firstly, as far as a non-
epistemic account of planning is concerned (that is, one where the knowing modality is not present in the
goal), we would be checking the entailment of non-modal goal formulas, and therefore, it is immediate
that only Σ0 ∧Σdyn from Σ is involved. Everything in the context of an epistemic operator in Σ can be
ignored. This is precisely what we will explore in the first set of results on counterfactual plans. But
when we need to refer to formulas involving epistemic modalities, we will only need to refer to the non-
objective parts of Σ. (When the agent performs sensing actions, however, they will provide values from

5If the agent believes facts that are conflicted by observations about the real world, beliefs may need to be revised [10], a
matter we ignore for now. Our theory of knowledge is based on knowledge expansion where sensing ensures that the agent
is more certain about the world [35, 34]. In the case of reconciliation-based explanations, however, we will need to entertain
a simple type of revision based on the deletion of facts from Σ′

0, as we shall shortly see. A general treatment of deleting in
first-order languages might be based on forgetting [28].

Vaishak Belle 159

Σ0.) Thus, we can simply concern ourselves with entailments of Σ henceforth.

Example Let us consider a simple blocks world example, involving picking up and dropping ob-
jects, but also quenching (rapidly cooling to very low temperatures) objects so that they become fragile,
adapted from [24, 23]. As usual, picking up is only when possible when the robot is not already holding
anything, and dropping is only possible when it is already holding the object. Also, broken objects in the
robot’s hand can be repaired. So,

2Poss(a)≡ (a = pickup(x)∧∀z.¬Holding(z))∨ (a = drop(x)∧Holding(x))∨
(a = quench(x)∧Holding(x))∨ (a = repair(x)∧Holding(x)∧Broken(x)).

Let us also permit a sensing axiom that allows one to look up if an object is made of glass:

2SF(a)≡ (a = isGlass(x)∧Glass(x))∨a ̸= isGlass(x).

To now consider successor state axioms, let us suppose holding an object is possible by picking it
up. A fragile object gets broken on dropping it, and not repairing it. Quenching makes an object fragile,
regardless of whether it was previously fragile or not. An object being a glass is a rigid property. These
are formalized as the axioms below, where the left hand side of the equivalence captures the idea that
for every sequence of actions, the effect of doing a on a predicate is given by the right hand side of
the equivalence. These capture Reiter’s monotonic solution to the frame problem using successor state
axioms, but now in E S .

2[a]Holding(x)≡ a = pickup(x)∨ (Holding(x)∧a ̸= drop(x)).

2[a]Broken(x)≡ (a = drop(x)∧Fragile(x))∨ (Broken(x)∧a ̸= repair(x)).

2[a]Fragile(x)≡ Fragile(x)∨a = quench(x).

2[a]Glass(x)≡ Glass(x).

Let us suppose the initial theory only-believed by the agent is the following, where nothing is held,
there is a non-broken object c made of glass, and as one would assume, glass objects are fragile:

Σ
′
0 ={Glass(c),¬∃xHolding(x),¬Broken(c),∀x(Glass(x)⊃ Fragile(x))}.

In the real world, let us additionally suppose there is another glass object d but also a non-fragile object
h:6 Σ0 = Σ′

0 ∪{(Glass(d)),(¬Glass(h)),(¬Fragile(h))} .
That is, whatever the agent believes happens to be true in the real world, but the agent does not know

about d being made of glass and h not being fragile. Σ0 in itself does not commit to how many objects
there are in the universe, and so it should be clear to the agent that there are (possibly infinitely) many
objects outside of c for which it is not known whether they are fragile or made of glass, for example.

Here a few examples of entailments of Σ: (a) (¬KGlass(d)∧¬K¬Glass(d)); (b) K¬KGlass(d);
(c) [isGlass(h)]KGlass(d); and (d) [isGlass(h)]KKKGlass(d).

That is, the agent’s initial beliefs imply that the agent does not know whether d is made of glass.
Moreover, by introspection, the agent knows that it does know if d is made of glass. But after sensing h
for glass, it knows that it knows that it knows (and so on arbitrarily) that d is made of glass.

6We use the set notation and the formula notation (that is, using conjunctions of formulas) for theories as per convenience.

160 Counterfactual Explanations as Plans

3 Reasoning & Planning

Given a background theory Σ, an action sequencen δ = a1 · · ·ak, and a (non-modal) goal formula φ ,
the classical problem of projection [34] is to identify if the sequence enables φ . That is, whether Σ |=
[δ]φ . We also want to ensure that the action sequence is executable (aka valid and/or legal). So let
us Exec(⟨⟩) = true, and Exec(a · δ) = Poss(a)∧ [a]Exec(δ). Then, we check: Σ |= Exec(δ)∧ [δ]φ .
In the epistemic setting [35], we are interested in checking if φ is known after executing δ , which
might include sensing actions too. That is, whether7 Σ |= [δ]Kφ . When adding action executability,
we would have: Σ |= [δ]Kφ ∧KExec(δ). So the agent also knows that the sequence is executable:
which means δ is executable in every world in the agent’s epistemic state. Note that because we do
not require the real world to be necessarily included in the epistemic state, it is not necessarily that
δ is actually executable in the real world. If we needed to additionally enforce that, we would need:
Σ |= Exec(δ)∧ [δ]Kφ ∧KExec(δ).

The task of planning, then, is to identify a sequence δ such that φ is made true (in the non-epistemic
setting) or that φ is known to be true, and that the appropriate executability condition holds.

Note that, we do not require plans to simply be a sequence of (physical) actions. For one thing, they
may involve sensing actions, based on which the agent obtains information about the world. For another,
we might be interested plans involving recursion [41], conditional statements and tests [27, 25, 15]. Such
plan structures do not change the nature of the reasoning problem, however: no matter the plan structure,
we will be evaluating if the sequence of actions executed by the agent enables some goal, that is, whether
the structure instantiates a sequence δ such that Σ |= [δ]φ and Σ |= [δ]Kφ for world-state and epistemic
planning respectively. Likewise, regression is not limited to only action sequences and can work with
conditional and recursive plans.8

Finally, it can be shown that reasoning about actions and knowledge can be reduced to non-modal
reasoning. We omit the details but refer readers to [23]. (We will included an extended report with some
examples.) With a finite domain assumption, this can be further reduced to propositional reasoning.

4 Counterfactual Explanations

We will firstly attempt to characterize counterfactual (CF) explanations as plans, at an objective level.
This could be viewed, therefore, as an instance of planning with incomplete information, but it can also
be ultimately linked to the epistemic setting, as we shall see below. Simply put, a CF explanation is an
alternative course of action that negates the goal. (Conversely, if some sequence does not enable the goal,
we search for an explanation that does.9)

7It might also be of interest to know whether φ is true [12], that is, checking that Σ |= [δ](Kφ ∨K¬φ). Here, the second
disjunct is asserting that the agents knows φ to be false.

8In the expressive programming formalism of GOLOG [25], for example, we provide the semantics for program execution
such that there is a history (an action sequence) that terminates the program in addition to satisfying the goal [15]. Likewise,
with loopy plans, we provide the semantics for plan execution such that there is a history that reaches the final state of the plan
structure in addition to goal satisfaction [27].

9In relation to machine learning [43], the idea is to produce an action sequence that changes the outcome. For example, if φ

represents an applicant getting rejected for a job application, then we find a plan to ensure that they are accepted. Conversely,
if φ states that moving an object to a different room causes it to break, we find a plan to ensure that the object is not broken
during the move. In another scenario, if φ states that high-risk individuals have their loan approved, we might be interested in
additional assumptions that ensure that such individuals are mostly denied loans unless further constraints hold.

Thus, it is not the polarity of the formula that is relevant here, and our use of the term “goal” is perhaps slightly misleading.
Essentially, our definitions below formalize the identification of conditions and sequences that toggle the outcome.

Vaishak Belle 161

Definition 1. Suppose Σ |= Exec(δ)∧ [δ]φ . A CF explanation for φ after δ is an action sequence δ ′

such that Σ |= Exec(δ ′)∧ [δ ′]¬φ and dist(δ ′,δ) is minimal.
One natural candidate for the distance metric is the cost of actions (and hence the cost of plans) [42].

Let us explore some measures below that does not necessitate associating explicit numbers with actions
for simplicity. Of course, the appropriate measure might very well depend on the application domain.
Definition 2. Given two sequences δ ,δ ′, define length-based minimality as minimizing

|(length(δ ′)− length(δ))|, which is the absolute value of the difference in lengths. Length is defined
inductively: length(⟨⟩) = 0, and length(δ ·a) = length(δ)+1.
Example 3. Suppose δ = pickup(c) · drop(c) · repair(c) and the goal is ¬Broken(c). The shortest
CF explanation for Broken(c) is δ ′ = pickup(c) · drop(c). That is: (a) Σ |= [δ]¬Broken(c); and (b)
Σ |= [δ ′]Broken(c).

Let us consider another measure based on all the properties of the world that are affected. For any
δ , define f luents(δ) as the set of all fluents mentioned in the successor state and precondition axioms of
actions in δ .
Definition 4. Given δ ,δ ′ as above, define fluent-based minimality as minimizing

|size(f luents(δ))− size(f luents(δ ′))|.
Example 5. Suppose δ = pickup(h) ·drop(h) for goal ¬Broken(h). The fluent set for δ is

{Holding(x),Broken(x)}. Because h is not fragile, we would need to quench it. Consider that the
fluent set for δ ′ = pickup(h) · quench(h) · drop(h) is {Holding(x),Fragile(x),Broken(x)}, and so it is
minimally larger: that is, there is no other δ ′ with the same fluent set as δ which achieves Broken(h). As
desired, Σ |= [δ ′]Broken(h).

As it turns out, only optimizing for the affected set is not quite right because many irrelevant ground
actions could be included.
Definition 6. Given δ ,δ ′ as above, define plan-and-effect minimality as jointly minimizing both length-
based and fluent-based minimality.
Example 7. It should be clear that only optimizing for fluent-based minimality is problematic. Consider
once more, δ = pickup(h) · drop(h) for goal ¬Broken(h). Let δ ′′ = pickup(d) · drop(d) · δ ′, where
δ ′ = pickup(h) ·quench(h) ·drop(h). The fluent set of δ ′′ does not differ from that of δ much more than
that of δ ′ does. However, δ ′′ has some irrelevant actions for achieving Broken(h). Thus, δ ′ achieves
plan-and-effect minimality.

An important additional ingredient with counterfactual explanations is diversity [29], where we might
seek multiple CF explanations but constrained according some feature. For example, we could be looking
for students whose scored low in mathematics (the constraint) while still graduating (the latter being the
goal), looking for tall students (the constraint) who still do not play basketball well (the goal), and so on.
Properties such as people being tall can be modelled as rigid predicates, but our definition does not limit
itself to rigids.
Definition 8. Given Σ,δ ,φ as above, k ∈ N, and any non-modal formula α as a diversity constraint, a
diverse CF explanation is a sequence δ ′ such that Σ |= Exec(δ ′)∧ [δ ′](α ∧¬φ) and dist(δ ′,δ)≤ k.
Example 9. Suppose δ = pickup(h)·drop(h) for goal φ =∃x¬Broken(x). Suppose we are interested in a
broken object, but with the diversity constraint of it being made of glass. In other words, α = ∃xGlass(x),
and so we are to find a sequence δ ′ such that ∃x(Glass(x)∧Broken(x)) is made true. It is easy to see
that δ ′ = pickup(c) ·drop(c) is such an explanation.

This then leads to multiple explanations that are close enough.
Definition 10. Let k be any positive integer denoting the closeness upper bound. Given Σ,δ ,φ as above,
and any non-modal formula α as a diversity constraint, diverse CF explanations is a set of sequences
{δ1, . . . ,δn} such that Σ |= Exec(δi)∧ [δi](α ∧¬φ) for every i and dist(δi,δ)≤ k.

162 Counterfactual Explanations as Plans

5 Reconciliation-based Explanations

The simplest case of an agent providing a counterfactual explanation is that we formulate plans in the
context of knowledge, and so goals can involve nested beliefs.

Definition 11. Suppose Σ |= [δ]Kφ ∧KExec(δ), where φ might mention K but no other modality. Then
a counterfactual explanation is δ ′ such that dist(δ ′,δ) is minimal and Σ |= [δ ′]K¬φ ∧KExec(δ ′).

Recall that we are not seeking [δ]¬Kφ , because this is the case of an agent being ignorant. We
instead seek δ ′ after which the agent knows that φ is false.

Note that in the above definition we were not stipulating executability in the real world, because it
suffices for the account to be purely epistemic. We can enforce this additionally, of course, but it will
come up naturally for the definitions below because the user needs to make sure she is only suggesting
legal actions.

Example 12. Following our examples above, consider δ = pickup(c) · drop(c) and clearly Σ entails
[δ]KBroken(c). The explanation δ ′ = δ · repair(c) achieves K¬Broken(c).

What we will consider below is the case where the user assists in achieving goals. So this leads to
a broader notion of counterfactuals: consider an alternate history or additional knowledge such that the
goal becomes true.

5.1 Agents Only-Knowing Partial Truths

For this case of ignorant agents, we assume Σ′
0 ⊆ Σ0.10 Suppose a plan δ fails in achieving Kφ . A CF

explanation here amounts to considering a possible world and a sequence such that the agent knows φ .
So either there are missing actions, or missing knowledge, or both.

Definition 13. (Missing actions.) Suppose Σ |= Exec(δ)∧KExec(δ) but Σ ̸|= [δ]Kφ , that is, Σ |=
[δ]¬Kφ . Suppose there is a sequence δ ′ such that dist(δ ′,δ) is minimal, Σ |= [δ ′]φ ∧Exec(δ ′), and
Σ |= [δ ′]Kφ ∧KExec(δ ′). Then a CF explanation is δ ′.

Note that we do not insist Σ |= [δ]φ , because as the definition title suggests, there might actions
missing. One might also wonder why we insist on the agent also needing to know φ after δ ′: is it not
redundant? The answer is no. Firstly, notice that even if there is δ ′ such that Σ |= [δ ′]φ , it is not necessary
that δ ′ is minimally away from δ . For example, as far as entailment of objective formulas is concerned,
the presence of sensing actions in δ ′ is irrelevant: sensing only affects the knowledge of the agent and
does not affect the real world. But the agent may very well need sensing actions to learn more about the
world. Therefore, we insist that we need to find a δ ′ that is minimally different to δ , enables φ in the real
world but also enables the knowing of φ . In other words, if both δ ′ and δ ′′ enable φ and they differ only
in that δ ′ includes sensing actions whereas δ ′′ does not, then we want δ ′ to be the explanation.

Example 14. Consider δ = pickup(c) for the goal ¬KBroken(c). The explanation is δ ′ = δ ·drop(c),
and indeed, Σ |= [δ ′]Broken(c) but also Σ |= [δ ′]KBroken(c).

Example 15. Suppose δ = pickup(d)·drop(d) for the goal ¬KBroken(d). But in fact, Σ |= [δ]Broken(d),
and so the agent does not know d is broken owing to the fact that it does not know that d is made of glass.
So consider δ ′ = pickup(d) · isGlass(d) · drop(d). This does not affect what is true in the world, but
does lead the agent to know that Glass(d). Therefore, δ ′ is the explanation since Σ |= [δ ′]Broken(d),
and Σ |= [δ ′]KBroken(d).

10As mentioned before, we do not require 2(Kα ⊃ α) to be valid, but if this was stipulated in the logic (by insisting that
the real world w ∈ e), then it should always be that Σ0 |= Σ′

0. (If not, then KΣ′
0 ⊃ Σ′

0 would be falsified in the real world.)

Vaishak Belle 163

Definition 16. (Missing knowledge.) Suppose Σ |= Exec(δ). Suppose Σ ̸|= [δ]Kφ ∧KExec(δ) but
Σ |= [δ]φ . Then suppose there is some α ∈ Σ0 −Σ′

0 such that Σ0 ∧Σdyn ∧O(Σ′
0 ∧α ∧Σdyn) |= [δ]Kφ ∧

KExec(δ). Then the smallest such α is the explanation.

Note that we do not assume in the definition that Σ |= KExec(δ), because such an α could be
necessary knowledge to reason about the executability of actions.

Example 17. Given δ = pickup(d) · drop(d), we know that [δ]¬KBroken(d). But for α = Glass(d),
and owing to the fact that every object made of glass is declared to be fragile in Σ′

0, we see that Σ0 ∧
Σdyn ∧O(Σ′

0 ∧α ∧Σdyn) entails [δ]KBroken(d). So α is the explanation.

Definition 18. (Missing knowledge and action.) Suppose Σ |= Exec(δ) but Σ ̸|= [δ]φ , or Σ ̸|= [δ]Kφ .
Suppose there is a minimally distant δ ′ and some α such that Σ0 ∧ Σdyn ∧O(Σ′

0 ∧α ∧ Σdyn) entails:
[δ ′](φ ∧Kφ)∧Exec(δ ′)∧KExec(δ ′). Then the smallest such α together with δ ′ is the explanation.

Note that, firstly, if 2(Kα ⊃ α) was true in the logic, Σ ̸|= [δ]φ also means Σ ̸|= [δ]Kφ , because
the real world w ∈ e. By assumption, if φ is not made true after δ , then the agent cannot come to know
φ after δ . Since we do not require knowledge being true, the definition has to make stipulations about
both [δ]φ and [δ]Kφ . Moreover, it is possible that Σ |= [δ]φ but Σ ̸|= [δ]Kφ because there are sensing
actions that could enable the agent to learn sufficient information for knowing φ after δ , or because there
is some information that cannot be accessed by sensing that needs to be added to Σ′

0 for the agent to infer
Kφ after δ , (or both).11

Example 19. Let us assume quenching comes with an additional condition that it only works with metals:
2Poss(quench(x)) ≡ Holding(x)∧Metal(x). Let Σ′

0 be as before, and let the initial state of the world
be given by Σ∗

0 = Σ′
0∪{¬Fragile(h),¬Glass(h),Metal(h)} . Consider δ = pickup(h) ·drop(h), and it is

easy to see that Σ∗
0∧Σdyn∧O(Σ′

0∧Σdyn) entails [δ]¬KBroken(h). Consider δ ′ = pickup(h) ·quench(h) ·
drop(h) which adds the quenching action. In itself, the sequence is not known to be executable because
the agent does not know that h is metallic. So α = Metal(h) together with δ ′ is the explanation because
Σ∗

0 ∧Σdyn ∧O(Σ′
0 ∧α ∧Σdyn) entails [δ ′](φ ∧Kφ) where φ = Broken(h), as well as the legality of the

sequence and knowledge of its legality.

5.2 Agents Only-Knowing Weakened Truths

Here we assume Σ′
0 ̸⊆ Σ0 but for every α ∈ Σ′

0, Σ0 |= α. In other words, Σ0 |= Σ′
0. That is, we might have

an atom p ∈ Σ0, but Σ′
0 instead has (p∨q). We then can define an account involving missing knowledge

and actions, and so the same definition from 18 applies.

Example 20. Let us consider Example 19 except that the initial theory of the agent is Σ′′
0 = Σ′

0 ∧
(Metal(h)∨ Metal(d)). That is, it includes all the formulas from Σ′

0 but also information that h is
metallic or (falsely) that d is metallic. However, Σ∗

0 |= (Metal(h)∨Metal(d)), and so α and δ ′ from
Example 19 counts as the explanation.

11This suggests a “criteria” for triggering the addition of knowledge. Define two sequences δ and δ ′ to be close iff δ ′ only
differs from δ in having sensing actions. Condition knowlege addition only when there is no δ ′ that is close in this sense, and
Σ |= [δ]φ ∧ [δ]¬Kφ ∧ [δ ′]Kφ along with Σ |= Exec(δ)∧Exec(δ ′)∧KExec(δ)∧KExec(δ ′). So, if there is a legal sequence
that only augments δ with sensing but enables knowing the goal, then we conclude that no new knowledge needs to be added.
If there are multiple such augmented sequences δ ′ and δ ′′, we would choose the shortest such sequence. This would avoid
applying sensing actions arbitrarily or using sensors that do not inform the agent about anything relevant for φ .

164 Counterfactual Explanations as Plans

5.3 Agents with False Beliefs

False beliefs are only satisfiable when 2(Kα ⊃ α) is not valid, as it happens to be in our case. For
simplicity, we deal with the case of missing knowledge, and this can be easily coupled with missing
actions in the manner discussed above. (Our example will deal with both.)

Definition 21. Suppose Σ′
0 ̸⊆ Σ0, and moreover Σ0 ̸|= Σ′

0. Suppose Σ ̸|= ([δ]Kφ ∧KExec(δ)) but Σ |=
Exec(δ)∧ [δ]φ . Suppose there is α ∈ Σ0 and β ∈ Σ′

0 such that Σ0∪Σdyn∪O((Σ′
0−{β})∪{α}∪Σdyn) |=

[δ]Kφ ∧KExec(δ). Then the smallest such α and β are the explanations.

Example 22. Consider Example 19 and let Σ′′
0 = Σ′

0 ∧¬Metal(h). So the agent only-knows everything
from Σ′

0 as well as a false fact about h. Let Σ∗
0,δ , and δ ′ be as in Example 19. Now note that given

α = Metal(h), β = ¬Metal(h) and δ ′, we have Σ∗
0 ∧Σdyn ∧O(Σ′

0 ∧α ∧Σdyn) entails [δ ′](φ ∧Kφ)∧
Exec(δ ′)∧KExec(δ ′), for φ = Broken(h). As it turns out Σ′

0 is obtained by removing β from Σ′′
0 by

construction, and so α,β and δ ′ constitutes as the explanation.

5.4 Possibility vs Knowledge

In many applications, we may not require that the agent knows φ , only that it considers φ possible. In the
explanation generation framework of [42], for example, there is a notion of credulous entailment where
a single belief state suffices to checking the validity and achievement of a plan. (In contrast, skeptical
entailment is when every belief state is involved.) The analogous notion in an epistemic language is to
introduce a companion modal operator B with the following semantics:

• e,w,z |=Bα iff there is some w′ ∼z w,w′ ∈ e such that e,w′,z |= α.

As long as there is at least one world where α is true, Bα is evaluated to true at (e,w,z). This is a
companion modal operator to K for possibility. We might introduce an analogue to Definition 18 in
using B instead of K as the modality in the goal. To see how this works, let us revisit Example 19.

Example 23. Consider the modified precondition axiom for quench(x), and let Σ′
0, Σ∗

0, δ and δ ′ be as
in Example 19. By only-knowing Σ′

0, the agent considers some worlds where h is metallic, and others
where it is not. Thus, we now see that we do not really need to suggest α = Metal(h) to the agent if the
weaker notion of a CF explanation is considered. Indeed, Σ∗

0 ∧Σdyn ∧O(Σ′
0 ∧Σdyn) entails [δ ′](φ ∧Bφ)

for φ = Broken(h).

In other words, we have augmented actions but we did not need to augment knowledge in the above
example. Had the agent believed false things, then we might have needed to augment both, and so can
appeal to Definition 21 but using B instead of K to allow for credulous-type reasoning.

6 Other related efforts

In addition to the works discussed in previous sections, the following efforts are related.
There is some syntactic (and perhaps intuitive) connection to explanation-based diagnosis. For ex-

ample, in [38], the idea is to encode the behavior of the system to be diagnosed as a situation calculus
action theory, encode observations as situation calculus formulae, and conjecture a sequence of actions
to explain what went wrong with the system. (However, they often need to model faulty or abnormal
components when defining the notion of a diagnosis.) In our setting, in contrast, we identify actions
and/or knowledge that determine how an outcome can be changed. Nonetheless, we believe that a fur-
ther formal study to relate such accounts would be useful, and could nicely complement empirical works
such as [9]. See also Ginsberg [17].

Vaishak Belle 165

We previously discussed the reduction of projection and reasoning about knowledge to non-modal
reasoning [23], but we did not elaborate on generating plans. For more information on synthesizing
plans, programs, and epistemic plans, see [8, 11, 33, 2] and their references.

An alternative approach to computing properties and plans is through answer set programming (ASP)
[1, 16], which also supports reasoning about knowledge [13]. In general, our formalization does not
preclude consideration of other logical languages. For example, in the simplest setting in this paper, a
counterfactual explanation is the synthesis of a course of action that negates the goal or knowledge about
the goal. In fact, [5] consider counterfactual explanations for multi-agent systems, that is also motivated
in terms of offering an alternative course of action. Although they do not explore a range of definitions
with references to knowledge as we do, exploring whether our definitions can be implemented in such
approaches is worthwhile.

Such a course for formalisation may help better relate our efforts to declarative approaches to coun-
terfactual explanations. For example, [4] explores the use of ASP for generating counterfactual expla-
nations, but in a classical machine-learning sense, determined by how much certain features affect the
overall prediction (understood as a causal link).

7 Conclusions

We developed an account of counterfactual explanations and reconciliation-based counterfactual expla-
nations in this paper. This allows for a simple and clear specification in the presence of missing actions,
partial knowledge, weakened beliefs and false beliefs. Existing accounts of discrepancy in plans, among
others, can be seen as variations of this more general specification. For the future, it would be interesting
to incorporate other notions in our formalization, such as operational aspects of plans, costs, optimality
and conciseness [14, 40, 42], towards a unified mathematical specification of explainable planning.

References

[1] C. Baral & M. Gelfond (2005): Logic programming and reasoning about actions. In: Handbook of Temporal
Reasoning in Artificial Intelligence, Elsevier, pp. 389–426, doi:10.1016/S1574-6526(05)80015-X.

[2] Chitta Baral, Thomas Bolander, Hans van Ditmarsch & Sheila McIlrath (2017): Epistemic Planning
(Dagstuhl Seminar 17231). Dagstuhl Reports 7(6), pp. 1–47, doi:10.4230/DagRep.7.6.1. Available at
http://drops.dagstuhl.de/opus/volltexte/2017/8285.

[3] V. Belle & G. Lakemeyer (2014): Multiagent Only Knowing in Dynamic Systems. Journal of Artificial
Intelligence Research 49, doi:10.1613/jair.4192.

[4] Leopoldo Bertossi (2021): Declarative approaches to counterfactual explanations for classification. Theory
and Practice of Logic Programming, pp. 1–35, doi:10.1017/s1471068421000582.

[5] Aysu Bogatarkan & Esra Erdem (2020): Explanation generation for multi-modal multi-agent path finding
with optimal resource utilization using answer set programming. Theory and Practice of Logic Programming
20(6), pp. 974–989, doi:10.1017/S1471068420000320.

[6] Rita Borgo, Michael Cashmore & Daniele Magazzeni (2018): Towards providing explanations for AI planner
decisions. arXiv preprint arXiv:1810.06338.

[7] Michael Cashmore, Anna Collins, Benjamin Krarup, Senka Krivic, Daniele Magazzeni & David Smith
(2019): Towards explainable AI planning as a service. arXiv preprint arXiv:1908.05059.

[8] Jens Classen, Patrick Eyerich, Gerhard Lakemeyer & Bernhard Nebel (2007): Towards an Integration of
Golog and Planning. In: IJCAI, pp. 1846–1851.

https://doi.org/10.1016/S1574-6526(05)80015-X
https://doi.org/10.4230/DagRep.7.6.1
http://drops.dagstuhl.de/opus/volltexte/2017/8285
https://doi.org/10.1613/jair.4192
https://doi.org/10.1017/s1471068421000582
https://doi.org/10.1017/S1471068420000320

166 Counterfactual Explanations as Plans

[9] Xinyue Dai, Mark T Keane, Laurence Shalloo, Elodie Ruelle & Ruth MJ Byrne (2022): Counterfactual
explanations for prediction and diagnosis in xai. In: Proceedings of the 2022 AAAI/ACM Conference on
AI, Ethics, and Society, pp. 215–226, doi:10.1145/3514094.3534144.

[10] James P. Delgrande & Hector J. Levesque (2012): Belief Revision with Sensing and Fallible Actions. In:
Proc. KR.

[11] H. P. van Ditmarsch, A. Herzig & T. De Lima (2011): From Situation Calculus to Dynamic Epistemic Logic.
J. Log. Comput. 21(2), pp. 179–204, doi:10.1093/logcom/exq024.

[12] Jie Fan, Yanjing Wang & Hans Van Ditmarsch (2015): Contingency and knowing whether. The Review of
Symbolic Logic 8(1), pp. 75–107, doi:10.1017/S1755020314000343.

[13] Jorge Fandinno, Wolfgang Faber & Michael Gelfond (2022): Thirty years of epistemic specifications. Theory
and Practice of Logic Programming 22(6), pp. 1043–1083, doi:10.1017/S147106842100048X.

[14] Maria Fox, Derek Long & Daniele Magazzeni (2017): Explainable planning. arXiv preprint
arXiv:1709.10256.

[15] Christian Fritz, Jorge A. Baier & Sheila A. McIlraith (2008): ConGolog, Sin Trans: Compiling ConGolog
into Basic Action Theories for Planning and Beyond. In Brewka & Lang, editors: Principles of Knowledge
Representation and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney,
Australia, pp. 600–610. Available at http://www.aaai.org/Library/KR/2008/kr08-059.php.

[16] M. Gelfond & V. Lifschitz (1993): Representing action and change by logic programs. The Journal of Logic
Programming 17(2-4), pp. 301–321, doi:10.1016/0743-1066(93)90035-F.

[17] Matthew L Ginsberg (1986): Counterfactuals. Artificial intelligence 30(1), pp. 35–79, doi:10.1016/0004-
3702(86)90067-6.

[18] Joseph Y. Halpern & Yoram Moses (1990): Knowledge and Common Knowledge in a Distributed Environ-
ment. J. ACM 37(3), pp. 549–587, doi:10.1145/79147.79161.

[19] Subbarao Kambhampati (2020): Challenges of Human-Aware AI Systems. AI Magazine 41(3),
doi:10.1609/aimag.v41i3.5257.

[20] R. F. Kelly & A. R. Pearce (2008): Complex Epistemic Modalities in the Situation Calculus.

[21] Benjamin Krarup, Michael Cashmore, Daniele Magazzeni & Tim Miller (2019): Model-based contrastive
explanations for explainable planning. ICAPS 2019 Workshop on Explainable AI Planning (XAIP).

[22] G. Lakemeyer & H. J. Levesque (2011): A semantic characterization of a useful fragment of the situation
calculus with knowledge. Artificial Intelligence 175, pp. 142–164, doi:10.1016/j.artint.2010.04.005.

[23] G. Lakemeyer & Hector J. Levesque (2004): Situations, Si! Situation terms, No! In: Proc. KR, pp. 516–526.

[24] Y. Lespérance, H. J. Levesque, F. Lin & R. B. Scherl (2000): Ability and Knowing How in the Situation
Calculus. Studia Logica 66(1), pp. 165–186, doi:10.1023/A:1026761331498.

[25] H. Levesque, R. Reiter, Y. Lespérance, F. Lin & R. Scherl (1997): GOLOG: A Logic Programming Language
for Dynamic Domains. Journal of Logic Programming 31, pp. 59–84, doi:10.1016/S0743-1066(96)00121-5.

[26] H. J. Levesque (1990): All I know: a study in autoepistemic logic. Artificial Intelligence 42(2-3), pp. 263–
309, doi:10.1016/0004-3702(90)90056-6.

[27] H. J. Levesque (1996): What Is Planning in the Presence of Sensing? In: Proc. AAAI / IAAI, pp. 1139–1146.

[28] F. Lin & R. Reiter (1994): Forget it. In: Working Notes of AAAI Fall Symposium on Relevance, pp. 154–159.

[29] Ramaravind K Mothilal, Amit Sharma & Chenhao Tan (2020): Explaining machine learning classifiers
through diverse counterfactual explanations. In: Proceedings of the 2020 conference on fairness, account-
ability, and transparency, pp. 607–617, doi:10.1145/3351095.3372850.

[30] C. Muise, V. Belle, P. Felli, S. McIlraith, T. Miller, A. Pearce & L. Sonenberg (2015): Planning Over Multi-
Agent Epistemic States: A Classical Planning Approach. In: Proc. AAAI, doi:10.1609/aaai.v29i1.9665.

[31] Judea Pearl (2009): Causality. Cambridge university press, doi:10.1017/CBO9780511803161.

https://doi.org/10.1145/3514094.3534144
https://doi.org/10.1093/logcom/exq024
https://doi.org/10.1017/S1755020314000343
https://doi.org/10.1017/S147106842100048X
http://www.aaai.org/Library/KR/2008/kr08-059.php
https://doi.org/10.1016/0743-1066(93)90035-F
https://doi.org/10.1016/0004-3702(86)90067-6
https://doi.org/10.1016/0004-3702(86)90067-6
https://doi.org/10.1145/79147.79161
https://doi.org/10.1609/aimag.v41i3.5257
https://doi.org/10.1016/j.artint.2010.04.005
https://doi.org/10.1023/A:1026761331498
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.1016/0004-3702(90)90056-6
https://doi.org/10.1145/3351095.3372850
https://doi.org/10.1609/aaai.v29i1.9665
https://doi.org/10.1017/CBO9780511803161

Vaishak Belle 167

[32] E.P.D. Pednault (1989): ADL: Exploring the middle ground between STRIPS and the situation calculus. In:
Proc. KR, pp. 324–332, doi:10.5555/112922.112954.

[33] Daniel Reifsteck, Thorsten Engesser, Robert Mattmüller & Bernhard Nebel (2019): Epistemic multi-agent
planning using monte-carlo tree search. In: Joint German/Austrian Conference on Artificial Intelligence
(Künstliche Intelligenz), Springer, pp. 277–289, doi:10.1007/978-3-030-30179-8_24.

[34] R. Reiter (2001): Knowledge in action: logical foundations for specifying and implementing dynamical
systems. MIT Press, doi:10.7551/mitpress/4074.001.0001.

[35] R. B. Scherl & H. J. Levesque (2003): Knowledge, action, and the frame problem. Artificial Intelligence
144(1-2), pp. 1–39, doi:10.1016/S0004-3702(02)00365-X.

[36] S. Shapiro, Y. Lespérance & H.J. Levesque (2002): The cognitive agents specification language and verifi-
cation environment for multiagent systems. In: Proc. AAMAS, pp. 19–26, doi:10.1145/544741.544746.

[37] Maayan Shvo, Toryn Q Klassen & Sheila A McIlraith (2022): Resolving Misconceptions about the Plans
of Agents via Theory of Mind. In: Proceedings of the International Conference on Automated Planning and
Scheduling, 32, pp. 719–729.

[38] Shirin Sohrabi, Jorge A Baier & Sheila A McIlraith (2010): Diagnosis as planning revisited. In: Twelfth
International Conference on the Principles of Knowledge Representation and Reasoning.

[39] T.C. Son & C. Baral (2001): Formalizing sensing actions–A transition function based approach. Artificial
Intelligence 125(1-2), pp. 19–91, doi:10.1016/S0004-3702(00)00080-1.

[40] Sarath Sreedharan, Tathagata Chakraborti & Subbarao Kambhampati (2018): Handling model uncertainty
and multiplicity in explanations via model reconciliation. In: Proceedings of the International Conference on
Automated Planning and Scheduling, 28, pp. 518–526.

[41] Siddharth Srivastava (2010): Foundations and Applications of Generalized Planning. Ph.D. thesis, Depart-
ment of Computer Science, University of Massachusetts Amherst, doi:10.3233/AIC-2011-0508.

[42] Stylianos Loukas Vasileiou, William Yeoh, Tran Cao Son, Ashwin Kumar, Michael Cashmore & Dianele
Magazzeni (2022): A Logic-Based Explanation Generation Framework for Classical and Hybrid Planning
Problems. Journal of Artificial Intelligence Research 73, pp. 1473–1534, doi:10.1613/jair.1.13431.

[43] Sandra Wachter, Brent Mittelstadt & Chris Russell (2017): Counterfactual explanations without opening the
black box: Automated decisions and the GDPR. Harv. JL & Tech. 31, p. 841.

https://doi.org/10.5555/112922.112954
https://doi.org/10.1007/978-3-030-30179-8_24
https://doi.org/10.7551/mitpress/4074.001.0001
https://doi.org/10.1016/S0004-3702(02)00365-X
https://doi.org/10.1145/544741.544746
https://doi.org/10.1016/S0004-3702(00)00080-1
https://doi.org/10.3233/AIC-2011-0508
https://doi.org/10.1613/jair.1.13431

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 168–174, doi:10.4204/EPTCS.416.15

© A. M. S. Chowdhury, P. Shakarian, & G. I. Simari
This work is licensed under the
Creative Commons Attribution License.

Abduction of Domain Relationships from Data for VQA

Al Mehdi Saadat Chowdhury, Paulo Shakarian
School of Computing and Augmented Intelligence

Arizona State University
Tempe, Arizona, USA

{achowd43,pshak02}@asu.edu

Gerardo I. Simari
DCIC Univ. Nac. del Sur (UNS)

ICIC (UNS-CONICET)
Bahia Blanca, Argentina
gis@cs.uns.edu.ar

In this paper, we study the problem of visual question answering (VQA) where the image and query
are represented by ASP programs that lack domain data. We provide an approach that is orthogo-
nal and complementary to existing knowledge augmentation techniques where we abduce domain
relationships of image constructs from past examples. After framing the abduction problem, we pro-
vide a baseline approach, and an implementation that significantly improves the accuracy of query
answering yet requires few examples.

1 Introduction

Visual Question Answering (VQA) is an AI task designed to reason about images. Commonly, the im-
age is transformed into a “scene graph” that enables the deployment of more formal reasoning tools.
For example, in recent work, both the scene graph and associated query were represented as an ASP
Program [2, 1]; however, notably the scene graph itself only contains information about the scene, but
lacks commonsense knowledge – in particular, knowledge about the domains of attributes identified by
the scene. Existing work to address this shortcoming relies on leveraging large commonsense knowl-
edge graphs for obtaining domain knowledge [5, 6, 7]. However, such approaches require the ability
to accurately align the language of the knowledge graph with the language of the scene graph. Fur-
ther, for some applications, this does not guarantee that the aligned knowledge graph will necessarily
improve VQA performance (e.g., if domain knowledge relevant to the queries is not possessed in the
knowledge graph). In this paper, we provide an orthogonal and complementary approach that leverages
logical representations of the scene graph and query to abduce domain relationships that can improve
query answering performance. We frame the abduction problem and provide a simple algorithm that
provides a valid solution. We also provide an implementation and show on a standard dataset that we can
improve question answering accuracy from 59.98% to 81.01%, and provide comparable results with few
historical examples.

Motivating Example. Consider the simple scene graph depicted in Figure 1 and the query “What is the
color of the fruit to the right of the juice?”. Without the shaded nodes (which indicate domain information
external to the image) there is no attribute of any constant associated with banana that is associated with
the domain color or the domain fruit. Hence, the only answer would be to assume that there is no fruit or
the color information is not given, or randomly guess large (while not a color, it is an attribute) or yellow.
In this paper, we will look to abduce these domain relationships from a limited number of examples.

2 Technical Preliminaries

We extend the framework of [2], which represents both images and queries as ASP programs (and the
programs can be directly represented as an equivalent scene graph as shown in Figure 1). Their approach

http://dx.doi.org/10.4204/EPTCS.416.15
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

A. M. S. Chowdhury, P. Shakarian, & G. I. Simari 169

57

55

juiceyellow

color drink

large banana

size fruit

attr name

as
si

gn

assignattr

nameattr

assignas
sig

n

rightle
ft

Figure 1: An image (left) and a section of its corresponding scene graph (right). In the scene graph,
square nodes represent objects, oval nodes represent attributes, and solid edges connect objects to at-
tributes. Shaded nodes represent domain knowledge, connected to attributes by dashed edges.

to VQA leverages a neurosymbolic framework and was tested on synthetic datasets (e.g., CLEVR [4])
that involve limited objects and attributes. We seek to extend their results to real-world datasets such
as GQA [3], which are more complex. We follow the logic programming construct as [2] in that we
have logical facts representing the scene graphs (ΠI), the query to be answered (ΠQ), as well as standard
“VQA helper” rules (ΠR).

We assume the existence of a first order logical language (constants C , variables V , predicates P).
Set C has several subsets: objects (Cob j), attributes (Catt), domains (Cdom), and single choice questions
(CsinChoice). Additionally, we will have a special binary predicate assign where the first argument is an
attribute and the second is a domain. Every attribute can thus be associated with one or more domains via
atom assign(a,d), meaning that attribute a has domain d. We will also define Answer Set Programming
(ASP) rules in the usual manner; a rule with no body is a fact and a set of rules is a program. Given a
program Π, the subset of facts in Π where the head is formed with assign is called the “domain relation-
ships”, and denoted ΠD. Likewise, we assume programs representing an image and a query, ΠI and ΠQ,
respectively, that do not contain domain relationships, and a common set of rules ΠR that answers the
query using ΠI and ΠQ. Also, we shall use the standard ASP semantics based on interpretations [2], and
use the notation I |= Π to denote that interpretation I satisfies program Π. Further, we say that program
Π1 |= Π2 (read “Π1 entails Π2”) meaning that all interpretations that satisfy Π1 also satisfy Π2.

In this work, we are primarily concerned with the case where there is a common ΠD for a collection
of image-query program pairs (“examples”) denoted ⟨ΠI

1,Π
Q
1 ⟩, . . . ,⟨ΠI

n,Π
Q
n ⟩. We may also know that a

given ⟨ΠI
i ,Π

Q
i ⟩ is associated with some set of ground truth ΠGT

i . Due to the lack of domain knowledge,
ΠI

i ∪Π
Q
i ∪ΠR may not entail ΠGT

i . However if an oracle provides a correct ΠD, we have that ΠI
i ∪Π

Q
i ∪

ΠR ∪ΠD |= ΠGT
i . We show an example of this case below taken from the scene graph dataset of [3]

(depicted in Figure 1), which we also use in our experiments.

Example 2.1. Consider a program Πi = ΠI
i ∪Π

Q
i ∪ΠR that consists of the following scene representa-

170 Abduction of Domain Relationships from Data for VQA

tion ΠI
i , question representation Π

Q
i for the question “What is the color of the fruit to the right of the

juice?”, and the set of rules ΠR common to all image-query program pairs:

ΠI
i =

ob(2317538,51). name(51,cup). attr(51,glass). attr(51,white).
ob(2317538,54). name(54,apple). attr(54,round). attr(54,red).
ob(2317538,55). name(55,banana). attr(55,yellow). attr(55, large). rel(55,57,right).
ob(2317538,57). name(57, juice). attr(57,yellow). rel(57,55, le f t).

Π
Q
i =

{
scene(0,2317538). select(1, juice,0). relate(2, f ruit,right,1).
query(4,color,3). exit(5).

As in [2], our question representation Π
Q
i is structured so that each query part is organized sequentially,

with the first argument of each predicate indicating order and the last argument showing dependency on
prior results. This step-by-step approach along with ΠR aids in answering questions effectively:

ΠR =

r(T,OID) :− scene(T,S),ob(S,OID).
r(T,OID) :− select(T,ON,D),r(D,OID),name(OID,ON).
r(T,T ID) :− relate(T,GC,R,D),r(D,OID),rel(T ID,OID,R),name(T ID,ON),

assign(ON,GC).
r(T,A) :− query(T,color,D),r(D,OID),attr(OID,A),assign(A,color).

result(RSLT) :− exit(T),r(T −1,RSLT).
empty(AT) :− exit(T),not r(AT,_),AT = 0..T −1.

For this question, the ground truth is the program:

ΠGT
i =

{
result(yellow).

}
However, due to the lack of atoms assign(banana, f ruit) and assign(yellow,color), we see that, Πi ⊭ ΠGT

i .
Now we assume that an oracle provides us with ΠD, as follows:

ΠD =

assign(glass,material). assign(white,color). assign(apple, f ruit).
assign(round,shape). assign(red,color). assign(banana, f ruit).
assign(yellow,color). assign(large,size). assign(juice,drink).

With the existence of this domain ΠD, now we have Πi∪ΠD |= ΠGT
i .

Fallback Rules. In this framework, where we may have an absent or partial ΠD, it is useful to have
“fallback rules” of the form: assign(att,de f ault)←

∧
att∈Catt\{de f ault}¬assign(att,DOM). This assumes

a special attribute constant “default” to which an object without an attribute falls back. The next example
augments Example 2.1 with fallback rules:
Example 2.2. We assume additional fallback rules, added to ΠR, of the form:

r(T,A) :− query(T,color,D),r(D,OID),attr(OID,A),
¬assign(A,color),assign(A,de f ault).

Returning to our running example, assuming there is no {assign(yellow,color).} ∈ΠD, adding fallback
rules, we get the following ΠD:

ΠD =

assign(glass,material). assign(white,color). assign(apple, f ruit).
assign(round,shape). assign(red,color). assign(banana, f ruit).
assign(yellow,de f ault). assign(large,size). assign(juice,drink).

A. M. S. Chowdhury, P. Shakarian, & G. I. Simari 171

Algorithm 1: FAST-DAP

Input : A set of programs EX = {⟨ΠI
1,Π

Q
1 ⟩, . . . ,⟨ΠI

n,Π
Q
n ⟩} where ΠI

i , and Π
Q
i correspond to

scene and question representation; Common Rule Set ΠR with Fallback rules;
Set of ground truths GT = {ΠGT

1 , . . . ,ΠGT
n }.

Output: A hypothesis ΠD

1 ΠD← /0
2 foreach ⟨ΠI

i ,Π
Q
i ⟩ ∈ EX do

3 if choose(w,x,y) ∈Π
Q
i then // w is the query type, x,y are possible answers

4 if w ∈ CsinChoice then
5 if result(x) ∈ΠGT

i then ΠD←ΠD∪{assign(x,w).}
6 else ΠD←ΠD∪{assign(y,w).}
7 else
8 ΠD←ΠD∪{assign(x,w). assign(y,w).}
9 if ΠI

i ∪Π
Q
i ∪ΠR ⊭ ΠGT

i then
10 Pick the fact select(i,c, j) ∈Π

Q
i such that ΠI

i ∪Π
Q
i ∪ΠR |= empty(i) and i is minimal

11 if there does not exist name(_,c) ∈ΠI
i then // c is then a general concept

12 Pick c′ ̸= c such that name(_,c′) ∈ΠI
i and ΠI

i ∪Π
Q
i ∪ΠR∪{assign(c′,c).} |= ΠGT

i
13 ΠD←ΠD∪{assign(c′,c).}
14 supportc′,c += 1
15 return {assign(c′,c). ∈ΠD with supportc′,c > threshold}

Abducing Domain Relationships. We now formalize our problem. Given examples EX = {⟨ΠI
1,Π

Q
1 ⟩,

. . . ,⟨ΠI
n,Π

Q
n ⟩}with a common rule set ΠR (which may or may not include fallback rules) and correspond-

ing ground truth GT = {ΠGT
1 , . . . ,ΠGT

n }, then ⟨EX,GT,ΠR⟩ is a domain abduction problem (DAP).
Any ΠD containing only facts formed with assign in the head is a hypothesis for a DAP. A hypothesis

ΠD is an explanation for DAP ⟨EX,GT,ΠR⟩ if and only if for all i we have ΠI
i ∪Π

Q
i ∪ΠR∪ΠD |= ΠGT

i .
However, when EX,GT are noisy (e.g., produced from a machine learning system) there may be no
explanation; in such cases, we may be able to find a hypothesis ΠD that maximizes some accuracy or
recall metric. For example, finding ΠD that maximizes 1

|GT| |{Π
GT
i ∈GT s.t. ΠI

i ∪Π
Q
i ∪ΠR∪ΠD |=ΠGT

i }|
(where | · | is set cardinality) would lead to maximized accuracy.

3 A Practical Heuristic Algorithm

In this section, we present a practical, heuristic algorithm for finding a DAP, that while is not guaranteed
to maximize the accuracy of question answering, we show to perform very well in practice. There are
several reasons as to why we adopt this more practical approach. First, in the general case, a brute-force
approach is intractable. Second, even if it is possible to exactly optimize an accuracy metric as described
in the previous section, it may still perform poorly when confronted with unseen data due to overfitting.
Third, in some cases, the query itself can reveal portions of the ground truth. To address all of these is-
sues, we introduce our practical heuristic algorithm FAST DAP (Algorithm 1). Regarding the first point,
the algorithm is highly performant, requiring only one pass over all examples in EX – this also allows for
trivial parallelization. Second, we only add facts to ΠD that support a certain number of examples, which
acts as a form of regularization; we then tune this threshold to maximize accuracy. To address the third

172 Abduction of Domain Relationships from Data for VQA

point, in lines 3–8 we utilize examples that provide domain information in the query itself (with two
answers as in choose(color,red,blue,0) and with single answer as in choose(healthy,apple,cake,0)),
while we leverage the step-by-step nature of the ASP formulation of queries (following [2], see Exam-
ple 2.1) to identify domain assignments that can satisfy the ground truth (lines 9-14).

4 Evaluation

We now report on the results of our experimental evaluation. We use the GQA dataset [3], allowing us to
build on the results of [2], which uses the CLEVR [4] synthetic data. Note that we use ground truth ASP
representations of the images and queries. We examine our practical heuristic in four different ways.
First, we examine the accuracy improvements when employing FAST-DAP. Second, we examine its data
efficiency (e.g., how many examples in EX are required to provide useful results). Third, we examine the
sensitivity of the support threshold for elements of ΠD. Finally, we examine running time. We created
our implementation in Python 3.11.7 and use the Clingo solver for the ASP engine. Experiments were
run on an Apple M2 machine with a 10-core CPU, and 32GB of RAM. All computations were carried out
using only the CPU (the system’s GPU was not used). We now present the results of each experiment.

Accuracy. We assess our approach’s accuracy against the baseline (no ΠD), evaluating improvements
with and without fallback rules (FBR and No FBR), both utilizing FAST-DAP. For the baseline (no
FAST-DAP), the ASP solver either provides an answer or returns “empty” if it cannot deduce one. On our
test set (disjoint from the examples), the baseline accuracy across all question types was 59.98% with-
out domain information. Incorporating domain information learned from the training set significantly
boosted accuracy to 80.62% without fallback rules, and 81.01% with them. To gain deeper insights, we
analyze specific question types, a subset of which is presented in Table 1. Some types, such as verifica-
tion questions, show minimal dependence on domain categorization, while others rely more heavily on
it. Additionally, certain questions require translating specific concepts into general terms (FAST-DAP,
lines 9-14), like generalizing “banana” to “fruit” or “juice” to “drink.” In Table 1, all non-choice queries
require such generalization.

Question Type Baseline FBR (Ours) No FBR (Ours)
choose_activity 69.02 95.11 94.84
choose_color 89.80 93.48 93.21
choose_older 0 97.24 97.24
choose_rel 73.88 85.48 81.72
choose_vposition 96.27 94.98 94.93
and 94.25 91.93 91.83
verify_age 86.89 97.54 97.54
verify_color 95.71 96.58 96.44
verify_location 49.28 94.5 94.5
query 36.07 72.83 72.20

Table 1: Evaluation of answering questions. The “Baseline” column shows accuracy (in percentage)
without learned domains, “FBR” shows accuracy with learned domains and fallback rules, and “No
FBR” shows accuracy with domain atoms but without using fallback rules.

Data Efficiency. In this second experiment, we aimed to find the optimal sample size for learning do-

A. M. S. Chowdhury, P. Shakarian, & G. I. Simari 173

(a) Accuracy on the test set leveraging learned do-
mains from different training subsets.

(b) Execution time of our algorithm for different
sample sizes, run in parallel with identical settings.

Figure 2: Accuracy and running time on different training subsets.

Percentile Threshold Accuracy
10 12.3 79.44
20 20.6 79.79
30 30.9 79.89
40 46.4 80.10

Percentile Threshold Accuracy
50 59.5 80.54
60 90.8 80.02
70 121.2 79.75

Table 2: Accuracy results on the validation set after removing domains with support below a threshold.

mains. We randomly divided the data as follows: 20% for training, 10% for validation, and the remaining
70% for testing. Instead of using the entire training set at once, we divided it into 11 progressively larger
subsets as follows: the first subset served as a baseline model with no samples, the second subset con-
tained 10% of the training data, the third subset included the first 10% plus an additional 10%, making
up 20% of the training data, and this pattern continued until the 11th subset, which encompassed all
the training data. Each training subset was used independently to learn the domains, and these learned
domains were then used to predict the answers in the test set. Figure 2a illustrates the results, showing
accuracy across the training data for two scenarios: the black line represents the learned domain without
fallback rules, while the red line includes fallback rules. As depicted in Figure 2a, using just 10% of
the training set (equivalent to 2% of the entire dataset) achieves a respectable accuracy of 78.93%. With
20% of the training data (4% of the entire dataset), accuracy exceeds 80%. This suggests that a small
amount of data can effectively learn domains, with only slight accuracy gains from adding more data.

Threshold Sensitivity. FAST-DAP refines the learned domain set by removing domains whose support
falls below a specified threshold. This approach helps regularize the outcome since the domains were
derived from the application of possibly noisy data and rules. The threshold is a hyper-parameter deter-
mined from the validation set. We used the 10th to 70th percentile support values as potential thresholds.
For each, we removed domains with lower support, assessed validation accuracy, and selected the thresh-
old with the highest accuracy. Domains below this final threshold were then removed. Table 2 illustrates
the accuracy achieved at different thresholds. Based on this data, we selected a threshold of 59.5, and
domains with support below this value were excluded to form the final set of domains.

Running Time. The running time of our algorithm is primarily influenced by the performance of the
ASP solver Clingo, and is directly proportional to the number of atoms it processes. Figure 2b illustrates

174 Abduction of Domain Relationships from Data for VQA

that the running time grows consistently from the base case with no training samples to the scenario
where all training samples are used. Incorporating more training samples to learn domains substantially
boosts the number of learned new domain atoms, thereby requiring Clingo to process more atoms during
deduction. This necessity is the main factor driving the increase in running time. However, note that this
increase is bounded by a constant factor related to the domain’s size.

5 Conclusion

In this paper, we introduced a practical heuristic algorithm designed to infer domain relationships from
a logical representation of data specifically for visual question answering. Our algorithm is highly ef-
ficient, requiring just a single pass over the data, and it significantly enhances accuracy compared to
using a logical representation that does not leverage domain information. Despite its strong practical
performance, an important limitation of our approach is that there are no theoretical guarantees for the
solutions it obtains. A promising direction for future research focused on addressing this limitation is to
refine our approach by incorporating meta-cognitive AI [8] techniques.

Acknowledgement

This research was funded by Army Research Office (ARO) grant W911NF-24-1-0007.

References
[1] Kinjal Basu, Farhad Shakerin & Gopal Gupta (2020): AQuA: ASP-Based Visual Question Answering. In:

PADL, Springer International Publishing, Cham, pp. 57–72, doi:10.1007/978-3-030-39197-3_4.
[2] Thomas Eiter, Nelson Higuera, Johannes Oetsch & Michael Pritz (2022): A neuro-symbolic ASP pipeline for

visual question answering. TPLP 22(5), pp. 739–754, doi:10.1017/S1471068422000229.
[3] Drew A. Hudson & Christopher D. Manning (2019): GQA: A New Dataset for Real-World Visual Reasoning

and Compositional Question Answering. In: CVPR, pp. 6693–6702, doi:10.1109/CVPR.2019.00686.
[4] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C. Lawrence Zitnick & Ross Girshick

(2017): CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning. In:
CVPR, pp. 1988–1997, doi:10.1109/CVPR.2017.215.

[5] Kenneth Marino, Mohammad Rastegari, Ali Farhadi & Roozbeh Mottaghi (2019): OK-VQA: A Vi-
sual Question Answering Benchmark Requiring External Knowledge. In: CVPR, pp. 3190–3199,
doi:10.1109/CVPR.2019.00331.

[6] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino & Roozbeh Mottaghi (2022): A-
OKVQA: A Benchmark for Visual Question Answering Using World Knowledge. In: ECCV, Springer Nature
Switzerland, Cham, pp. 146–162, doi:10.1007/978-3-031-20074-8_9.

[7] Peng Wang, Qi Wu, Chunhua Shen, Anthony Dick & Anton van den Hengel (2018): FVQA: Fact-Based Visual
Question Answering. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(10), pp. 2413–2427,
doi:10.1109/TPAMI.2017.2754246.

[8] Hua Wei, Paulo Shakarian, Christian Lebiere, Bruce Draper, Nikhil Krishnaswamy & Sergei Nirenburg (2024):
Metacognitive AI: Framework and the Case for a Neurosymbolic Approach, doi:10.48550/arXiv.2406.12147.

https://doi.org/10.1007/978-3-030-39197-3_4
https://doi.org/10.1017/S1471068422000229
https://doi.org/10.1109/CVPR.2019.00686
https://doi.org/10.1109/CVPR.2017.215
https://doi.org/10.1109/CVPR.2019.00331
https://doi.org/10.1007/978-3-031-20074-8_9
https://doi.org/10.1109/TPAMI.2017.2754246
https://doi.org/10.48550/arXiv.2406.12147

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 175–187, doi:10.4204/EPTCS.416.16

© V.G. Trinh, B. Benhamou, S. Soliman & F. Fages

This work is licensed under the

Creative Commons Attribution License.

Graphical Conditions for the Existence, Unicity and Number

of Regular Models

Van-Giang Trinh Belaid Benhamou

LIRICA team, LIS, Aix-Marseille University, Marseille, France

van-giang.trinh@inria.fr belaid.benhamou@lis-lab.fr

Sylvain Soliman François Fages

Inria Saclay, EP Lifeware, Palaiseau, France

Sylvain.Soliman@inria.fr francois.fages@inria.fr

The regular models of a normal logic program are a particular type of partial (i.e. 3-valued) models

which correspond to stable partial models with minimal undefinedness. In this paper, we explore

graphical conditions on the dependency graph of a finite ground normal logic program to analyze the

existence, unicity and number of regular models for the program. We show three main results: 1) a

necessary condition for the existence of non-trivial (i.e. non-2-valued) regular models, 2) a sufficient

condition for the unicity of regular models, and 3) two upper bounds for the number of regular

models based on positive feedback vertex sets. The first two conditions generalize the finite cases

of the two existing results obtained by You and Yuan (1994) for normal logic programs with well-

founded stratification. The third result is also new to the best of our knowledge. Key to our proofs

is a connection that we establish between finite ground normal logic programs and Boolean network

theory.

Keywords: logic programming, semantics of negation, canonical model, three-valued model,

Datalog, abstract argumentation, Boolean network, feedback vertex set, model counting

1 Introduction

Relating graphical representations of a normal logic program (or just program if not otherwise said)

and its model-theoretic semantics is an interesting research direction in theory that also has many useful

applications in practice [14, 6, 20]. Historically, the first studies of this direction focused on the ex-

istence of a unique stable model in classes of programs with special graphical properties on (positive)

dependency graphs, including positive programs [16], acyclic programs [1], and locally stratified pro-

grams [16]. In 1991, Fages gave a simple characterization of stable models as well-supported models

in [13], and then showed that for tight programs (i.e. without non-well-founded positive justifications),

the stable models of the program coincide with the Herbrand models of its Clark’s completion [14]. Being

finer-represented but more computationally expensive than dependency graphs, several other graphical

representations (e.g., cycle and extended dependency graphs, rule graphs, block graphs) were introduced

and several improved results were obtained [6, 7, 9, 20]. There are some recent studies on dependency

graphs [15, 28], but they still focus only on stable models. In contrast, very few studies were made about

regular models despite of their prominent importance in argumentation frameworks [32, 4] and program

semantics [18]. The work of [12] showed the unicity of regular and stable models in locally stratified

programs. The work of [33] showed two sufficient graphical conditions, one for the coincidence between

stable and regular models, and another one for the unicity of regular models. However, these two condi-

tions were only proven in the case of well-founded stratification programs, and the question if they are

still valid for any program is still open to date.

http://dx.doi.org/10.4204/EPTCS.416.16
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

176 Graphical Conditions for the Existence, Unicity and Number of Regular Models

The stable partial semantics is the 3-valued generalization of the (2-valued) stable model seman-

tics [23]. The regular model semantics not only inherits the advantages of the stable partial model

semantics but also imposes two notable principles in non-monotonic reasoning: minimal undefined-

ness and justifiability (which is closely related to the concept of labeling-based justification in Doyle’s

truth maintenance system [10]), making it become one of the well-known semantics in logic program-

ming [33, 18]. Furthermore, regular models in ground programs were proven to correspond to preferred

extensions in Dung’s frameworks [32] and assumption-based argumentation [4], which are two central

focuses in abstract argumentation [3].

Recently, we have proposed a new semantics for finite ground programs, called the trap space se-

mantics, which establishes formal links between the model-theoretic and dynamical semantics of a finite

ground program [31]. It is built on two newly proposed concepts: stable and supported trap spaces,

which are inspired by the concepts of trap (or its duality, siphon) in Petri net theory and trap space in

Boolean network theory [21, 19, 30, 29]. We relate the new semantics to other widely-known semantics,

in particular showing that subset-minimal stable trap spaces of a finite ground program coincide with its

regular models. Interestingly, the restriction to finite ground programs applies without loss of generality

to normal Datalog programs, i.e. normal logic programs built over an alphabet without function symbols,

since their Herbrand base and their ground instanciation are finite [5].

Motivated by the above elements, in this paper, we explore graphical conditions on the dependency

graph of a finite ground program to analyze the existence of non-trivial (i.e. not 2-valued) regular models

and the unicity and multiplicity of regular models for the program. More specifically, we show three main

results: 1) the existence of negative cycles is a necessary condition for the existence of non-trivial regular

models, 2) the absence of positive cycles is a sufficient condition for the unicity of regular models, and

3) 3|U
+| (resp. 2|U

+|) is an upper bound (resp. a finer upper bound) for the number of regular models in

generic (resp. tight) finite ground programs where U+ is a positive feedback vertex set of the dependency

graph. The first two conditions generalize the finite cases of the two existing results obtained by [33]

for well-founded stratification normal logic programs. The third result is also new to the best of our

knowledge. Key to our proofs is a connection that we establish between finite ground programs and

Boolean network theory based on the trap space semantics.

Boolean Networks (BNs) are a simple and efficient mathematical formalism that has been widely

applied to many areas from science to engineering [26]. Originated in the early work of [27], studying

relationships between the dynamics of a BN and its influence graph has a rich history of research [22, 24].

To date, this research direction is still growing with many prominent and deep results [24, 26, 25].

Hence, the established connection can bring a plenty of existing results in BNs to studying finite ground

programs as well as provide a unified framework for exploring and proving more new theoretical results

in the logic program theory.

The rest of this paper is organized as follows. In the next section, we recall preliminaries on normal

logic programs, regular models, BNs, and related concepts. Section 3 presents the connection that we

establish between finite ground programs and BNs. In Section 4, we present the main results on rela-

tionships between regular models and graphical conditions. Finally, Section 5 concludes the paper with

some perspectives for future work.

2 Preliminaries

We assume that the reader is familiar with the logic program theory and the stable model semantics [16].

Unless specifically stated, a program means a normal logic program. In addition, we consider the

V.G. Trinh, B. Benhamou, S. Soliman & F. Fages 177

Boolean domain B = {true, false} = {1,0}, and the Boolean connectives used in this paper include ∧
(conjunction), ∨ (disjunction), ¬ (negation),← (implication), and↔ (equivalence).

2.1 Normal logic programs

We consider a first-order language built over an infinite alphabet of variables, and finite alphabets of

constant, function and predicates symbol. The set of first-order terms is the least set containing variables,

constants and closed by application of function symbols. An atom is a formula of the form p(t1, . . . , tk)
where p is a predicate symbol and ti are terms. A normal logic program P is a finite set of rules of the

form

p← p1, . . . , pm,∼pm+1, . . . ,∼pk

where p and pi are atoms, k ≥ m ≥ 0, and ∼ is a symbol for negation. A fact is a rule with k = 0. We

denote by atom(P) the set of atoms appearing in P. For any rule r of the above form, h(r) = p is the head

of r, b+(r) = {p1, . . . , pm} is called the positive body of r, b−(r) = {pm+1, . . . , pk} is called the negative

body of r, and bf(r) = p1 ∧ ·· · ∧ pm∧¬pm+1∧ ·· · ∧¬pk is the body formula of r. If b−(r) = /0,∀r ∈ P,

then P is called a positive program. If b+(r) = /0,∀r ∈ P, then P is called a quasi-interpretation program.

A term, an atom or a program is ground if it contains no variable. The Herbrand base is the set of

ground atoms formed over the alphabet of the program. It is finite in absence of function symbol, which

is the case of Datalog programs [5]. The ground instantiation of a program P is the set of the ground

instances of all rules in P. In the rest of the paper, we restrict ourselves to finite ground normal logic

programs.

We shall use the fixpoint semantics of normal logic programs [11] to prove many new results in the

next sections. To be self-contained, we briefly recall the definition of the least fixpoint of a normal logic

program P as follows. Let r be the rule p←∼p1, . . . ,∼pk,q1, . . . ,q j and let ri be rules qi←∼q1
i , . . . ,∼q

li
i

where 1≤ i≤ j and li ≥ 0. Then σr({r1, . . . ,r j}) is the following rule

p←∼p1, . . . ,∼pk,∼q1
1, . . . ,∼q

l1
1 , . . . ,∼q1

j , . . . ,∼q
l j

j .

σP is the transformation on quasi-interpretation programs: σP(Q) = {σr({r1, . . . ,r j})|r ∈ P,ri ∈ Q,1 ≤
i ≤ j}. Let lfpi = σ i

P(/0) = σP(σP(. . .σP(/0))), then lfp(P) =
⋃

i≥1 lfpi is the least fixpoint of P. In the

case of finite ground programs, lfp(P) is finite and also a quasi-interpretation finite ground program [11].

2.1.1 Stable and supported partial models

A 3-valued interpretation I of a finite ground program P is a total function I : atom(P)→ {t, f,u} that

assigns one of the truth values true (t), false (f) or unknown (u), to each atom of P. If I(a) 6= u,∀a ∈
atom(P), then I is an Herbrand (2-valued) interpretation of P. Usually, a 2-valued interpretation is

written as the set of atoms that are true in this interpretation. A 3-valued interpretation I characterizes

the set of 2-valued interpretations denoted by γ(I) as γ(I) = {J|J ∈ 2atom(P),∀a ∈ atom(P), I(a) 6= u⇒
J(a) = I(a)}. For example, if I = {p = t,q = f,r = u}, then γ(I) = {{p},{p,r}}.

We consider two orders on 3-valued interpretations. The truth order ≤t is given by f <t u <t t. Then,

I1 ≤t I2 iff I1(a)≤t I2(a),∀a ∈ atom(P). The subset order ≤s is given by f <s u and t <s u. Then, I1 ≤s I2

iff I1(a) ≤s I2(a),∀a ∈ atom(P). In addition, I1 ≤s I2 iff γ(I1) ⊆ γ(I2), i.e., ≤s is identical to the subset

partial order.

178 Graphical Conditions for the Existence, Unicity and Number of Regular Models

Let f be a propositional formula on atom(P). Then the valuation of f under a 3-valued interpretation

I (denoted by I(f)) is defined recursively as follows:

I(f) =

I(a) if f = a,a ∈ atom(P)

¬I(f1) if f = ¬ f1

min≤t
(I(f1), I(f2)) if f = f1∧ f2

max≤t
(I(f1), I(f2)) if f = f1∨ f2

where ¬t = f,¬f = t,¬u = u, and min≤t
(resp. max≤t

) is the function to get the minimum (resp. maxi-

mum) value of two values w.r.t. the order ≤t . We say 3-valued interpretation I is a 3-valued model of a

finite ground program P iff for each rule r ∈ P, I(bf(r))≤t I(h(r)).

Definition 1. Let I be a 3-valued interpretation of P. We build the reduct PI as follows.

• Remove any rule a← a1, . . . ,am,∼b1, . . . ,∼bk ∈ P if I(bi) = t for some 1≤ i≤ k.

• Afterwards, remove any occurrence of ∼bi from P such that I(bi) = f.

• Then, replace any occurrence of ∼bi left by a special atom u (u 6∈ atom(P)).

PI is positive and has a unique ≤t-least 3-valued model. See [23] for the method for computing this ≤t-

least 3-valued model. Then I is a stable partial model of P iff I is equal to the ≤t-least 3-valued model of

PI . A stable partial model I is a regular model if it is ≤s-minimal. A regular model is non-trivial if it is

not 2-valued.

The Clark’s completion of a finite ground program P (denoted by cf(P)) consists of the following

sentences: for each p ∈ atom(P), let r1, . . . ,rk be all the rules of P having the same head p, then p↔
bf(r1)∨ ·· · ∨ bf(rk) is in cf(P). If there is no rule whose head is p, then the equivalence is p↔ f. Let

rhs(a) denote the right hand side of atom a in cf(P). A 3-valued interpretation I is a 3-valued model of

cf(P) iff for every a∈ atom(P), I(a) = I(rhs(a)). We define a supported partial model of P as a 3-valued

model of cf(P). Note that 2-valued stable (resp. supported) partial models are stable (resp. supported)

models.

2.1.2 Dependency and transition graphs

The Dependency Graph (DG) of a finite ground program P (denoted by dg(P)) is a signed directed graph

(V,E) on the set of signs {⊕,⊖} where V = atom(P) and (uv,⊕) ∈ E (resp. (uv,⊖) ∈ E) iff there is a

rule r ∈ P such that v = h(r) and u ∈ b+(r) (resp. u ∈ b−(r)). An arc (uv,⊕) is positive, whereas an arc

(uv,⊖) is negative. Since atom(P) is finite, the DG of P is a finite graph, thus we can apply the finite

graph theory. A cycle of dg(P) is positive (resp. negative) if it contains an even (resp. odd) number of

negative arcs. A positive (resp. negative) feedback vertex set is a set of vertices that intersect all positive

(resp. negative) cycles of dg(P). The positive DG of P (denoted by dg+(P)) is a sub-graph of dg(P) that

has the same set of vertices but contains only positive arcs. P is locally stratified if every cycle of dg(P)
contains no negative arc [16]. P is tight if dg+(P) has no cycle [14]. P is well-founded stratification

if there is a topological order on the set of Strongly Connected Components (SCCs) of dg(P) and for

every SCC B, there exists SCC A≤ B and for any SCC C, if C ≤ A then there are only positive arcs from

atoms in C to atoms in A [33]. Herein, A ≤ B iff there is a path from some atom in A to some atom

in B. In the case of finite ground programs, the above definition of well-founded stratification (which

was orginally defined for both finite and infinite ground programs) is equivalent to that a finite ground

V.G. Trinh, B. Benhamou, S. Soliman & F. Fages 179

program is well-founded stratification iff there is a topological order of its dependency graph such that

every SCC at the lowest level only contains positive arcs.

The immediate consequence operator (or the TP operator) is defined as a mapping TP : 2atom(P)→
2atom(P) such that TP(I)(a) = I(rhs(a)) where I is a 2-valued interpretation. If I is a 2-valued interpreta-

tion, then PI is exactly the reduct defined in [16] and the unique ≤t-least model of PI is 2-valued. The

Gelfond-Lifschitz operator (or the FP operator) is defined as a mapping FP : 2atom(P)→ 2atom(P) such that

FP(I) is the unique ≤t-least model of PI [16]. The stable (resp. supported) transition graph of P is a

directed graph (denoted by tgst(P) (resp. tgsp(P))) on the set of all possible 2-valued interpretations of

P such that (I,J) is an arc of tgst(P) (resp. tgsp(P)) iff J = FP(I) (resp. J = TP(I)). A trap domain of a

directed graph is a set of vertices having no out-going arcs.

2.1.3 Stable and supported trap spaces

In [31], we introduce a new semantics for finite ground programs, called the trap space semantics. This

semantics shall be used in this work as the bridge between finite ground programs and Boolean networks.

To be self-contained, we briefly recall the definition and essential properties of this semantics.

A set S of 2-valued interpretations of a finite ground program P is called a stable trap set (resp.

supported trap set) of P if {FP(I)|I ∈ S} ⊆ S (resp. {TP(I)|I ∈ S} ⊆ S). A 3-valued interpretation I of

a finite ground program P is called a stable trap space (resp. supported trap space) of P if γ(I) is a

stable (resp. supported) trap set of P. By definition, a stable (resp. supported) trap set of P is a trap

domain of tgst(P) (resp. tgsp(P)). Hence, we can deduce that a 3-valued interpretation I is a stable (resp.

supported) trap space of P if γ(I) is a trap domain of tgst(P) (resp. tgsp(P)). We also show in [31] that I

is a supported trap space of P iff I is 3-valued model of
←−
cf (P) w.r.t. to the order ≤s where

←−
cf(P) is the

← part of the Clark’s completion of P, and a stable (resp. supported) partial model of P is also a stable

(resp. supported) trap space of P.

Example 1. Consider finite ground program P1 (taken from [17]) where P1 = {p←∼q;q←∼p;r← q}.
Herein, we use ’;’ to separate program rules. Figures 1 (a), (b), and (c) show the dependency graph,

the stable transition graph, and the supported transition graph of P1, respectively. P1 is tight, but neither

locally stratified nor well-founded stratification. P1 has five stable (also supported) trap spaces: I1 =
{p = t,q = f,r = u}, I2 = {p = f,q = t,r = u}, I3 = {p = u,q = u,r = u}, I4 = {p = t,q = f,r = f}, and

I5 = {p = f,q = t,r = t}. Among them, only I3, I4, and I5 are stable (also supported) partial models of P1.

P1 has two regular models (I4 and I5). The least fixpoint of P1 is lfp(P1) = {p←∼q;q←∼p;r←∼p}.

p

q

r

⊖⊖

⊕

(a)

{p,r}

{p}

{q}

{q,r}

/0 {p,q,r} {r}

{p,q}

(b)

{p,r}

{p}

{q}

{q,r}

/0 {p,q,r} {r}

{p,q}

(c)

Figure 1: (a) dg(P1), (b) tgst(P1), and (c) tgsp(P1).

180 Graphical Conditions for the Existence, Unicity and Number of Regular Models

2.2 Boolean networks

A Boolean Network (BN) f is a finite set of Boolean functions on a finite set of Boolean variables denoted

by var f . Each variable v is associated with a Boolean function fv : B|var f |→ B. fv is called constant if it

is always either 0 or 1 regardless of its arguments. A state s of f is a mapping s : var f 7→ B that assigns

either 0 (inactive) or 1 (active) to each variable. We can write sv instead of s(v) for short.

Let x be a state of f . We use x[v← a] to denote the state y so that yv = a and yu = xu,∀u ∈ var f ,u 6= v

where a ∈ B. The Influence Graph (IG) of f (denoted by ig(f)) is a signed directed graph (V,E) on the

set of signs {⊕,⊖} where V = var f , (uv,⊕) ∈ E (i.e., u positively affects the value of fv) iff there is a

state x such that fv(x[u← 0]) < fv(x[u← 1]), and (uv,⊖) ∈ E (i.e., u negatively affects the value of fv)

iff there is a state x such that fv(x[u← 0])> fv(x[u← 1]).
At each time step t, variable v can update its state to s′(v) = fv(s), where s (resp. s′) is the state of f at

time t (resp. t +1). An update scheme of a BN refers to how variables update their states over (discrete)

time [26]. Various update schemes exist, but the primary types are synchronous, where all variables

update simultaneously, and fully asynchronous, where a single variable is non-deterministically chosen

for updating. By adhering to the update scheme, the BN transitions from one state to another, which may

or may not be the same. This transition is referred to as the state transition. Then the dynamics of the

BN is captured by a directed graph referred to as the State Transition Graph (STG). We use sstg(f) (resp.

astg(f)) to denote the synchronous (resp. asynchronous) STG of f .

A non-empty set of states is a trap set if it has no out-going arcs on the STG of f . An attractor

is a subset-minimal trap set. An attractor of size 1 (resp. at least 2) is called a fixed point (resp. cyclic

attractor). A sub-space m of a BN is a mapping m : var f 7→ B∪{⋆}. A sub-space m is equivalent to the

set of all states s such that s(v) = m(v),∀v ∈ var f ,m(v) 6= ⋆. With abuse of notation, we use m and its

equivalent set of states interchangeably. For example, m = {v1 = ⋆,v2 = 1,v3 = 1} = {011,111} (for

simplicity, we write states as a sequence of values). If a sub-space is also a trap set, it is a trap space.

Unlike trap sets and attractors, trap spaces of a BN are independent of the update scheme [19]. Then a

trap space m is minimal iff there is no other trap space m′ such that m′ ⊂ m. It is easy to derive that a

minimal trap space contains at least one attractor of the BN regardless of the update scheme.

Example 2. Consider BN f1 with fp = ¬q, fq = ¬p, fr = q. Figures 2 (a), (b), and (c) show the influence

graph, the synchronous STG, and the asynchronous STG of f1. Attractor states are highlighted with

boxes. sstg(f1) has two fixed points and one cyclic attractor, whereas astg(f1) has only two fixed points.

f1 has five trap spaces: m1 = 10⋆, m2 = 01⋆, m3 = ⋆⋆⋆, m4 = 100, and m5 = 011. Among them, m4 and

m5 are minimal.

p

q

r

⊖⊖

⊕

(a)

101

100

010

011

000 111 001

110

(b)

101

100

010

011

000 111 001

110

(c)

Figure 2: (a) ig(f1), (b) sstg(f1), and (c) astg(f1).

V.G. Trinh, B. Benhamou, S. Soliman & F. Fages 181

3 Finite ground normal logic programs and Boolean networks

We define a BN encoding for finite ground programs in Definition 2. Then, we show two relationships

between a finite ground program and its encoded BN (see Theorems 1 and 3).

Definition 2. Let P be a finite ground program. We define a BN f encoding P as follows: var f = atom(P),
fv =

∨
r∈P,v=h(r)bf(r),∀v ∈ var f . Conventionally, if there is no rule r ∈ P such that h(r) = v, then fv = 0.

By considering 1 (resp. 0) as t (resp. f), and ⋆ as u, sub-spaces (resp. states) of f are identical to 3-valued

(resp. 2-valued) interpretations of P.

Theorem 1. Let P be a finite ground program and f be its encoded BN. Then ig(f)⊆ dg(P).

Proof. By construction, ig(f) and dg(P) have the same set of vertices. Let in+f (v) (resp. in+P (v)) denote

the set of vertices u such that (uv,⊕) is an arc of ig(f) (resp. dg(P)). We define in−f (v) (resp. in−P (v))

similarly. We show that in+f (v)⊆ in+P (v) and in−f (v)⊆ in−P (v) for every v∈ atom(P) (*). Consider atom u.

The case that both u and ∼u appear in rules whose heads are v is trivial. For the case that only u appears

in rules whose heads are v, u is essential in fv by construction, and it positively affects the value of fv,

leading to u ∈ in+f (v) and u 6∈ in−f (v). This implies that (*) still holds. The case that only ∼u appears in

rules whose heads are v is similar. By (*), we can conclude that ig(f)⊆ dg(P), i.e., ig(f) is a sub-graph

of dg(P). In addition, if P is a quasi-interpretation finite ground program, then ig(f) = dg(P).

Lemma 2 (derived from Theorem 4.5 of [17]). Let P be a finite ground program and f be its encoded

BN. Then tgsp(P) = sstg(f).

Theorem 3. Let P be a finite ground program and f be its encoded BN. Then supported trap spaces of

P coincide with trap spaces of f .

Proof. By Lemma 2, tgsp(P) = sstg(f). Note that trap spaces of f are the same under both the syn-

chronous and asynchronous update schemes [19]. Hence, trap spaces of f coincide with trap spaces of

sstg(f). Since tgsp(P) = sstg(f), supported trap spaces of P coincide with trap spaces of f .

For illustration, BN f1 of Example 2 is the encoded BN of finite ground program P1 of Example 1.

tgsp(P1) is identical to sstg(f1), and the five supported trap spaces of P1 are identical to the five trap

spaces of f1. In addition, P1 is tight and ig(f1) = dg(P1).

4 Graphical analysis results

In this section, we present our new results on graphical conditions for several properties of regular models

in finite ground normal logic programs by exploiting the connection established in Section 3.

4.1 Preparations

For convenience, we first recall several existing results in both logic programs and Boolean networks that

shall be used later.

Theorem 4 ([17]). Let P be a quasi-interpretation finite ground program. Then tgst(P) = tgsp(P), i.e.,

the stable and supported transition graphs of P are the same.

Theorem 5 ([17]). Let P be a finite ground program and lfp(P) denote its least fixpoint. Then P and

lfp(P) have the same stable transition graph.

182 Graphical Conditions for the Existence, Unicity and Number of Regular Models

Theorem 6 (Theorem 6 of [28]). Let P be a finite ground program and lfp(P) denote its least fixpoint. If

P is locally stratified, then dg(lfp(P)) has no cycle.

Lemma 7. Let P be a finite ground program and lfp(P) denote its least fixpoint. If dg(P) is has no

negative cycle, then dg(lfp(P)) has no negative cycle.

Proof. It directly follows from Lemma 5.3 of [14].

Proposition 8 ([31]). Let P be a finite ground program. Let T (P) denote the set of all supported trap

spaces of P. Let C(P) denote the set of all 3-valued models of cf(P) (i.e., the Clark’s completion of P).

For every supported trap space I ∈ T (P), there is a model I′ ∈C(P) such that I′ ≤s I.

Sketch of proof. Let I j be an arbitrary supported trap space in T (P). We construct a 3-valued interpre-

tation I j+1 as follows: ∀a ∈ atom(P), I j+1(a) = I j(rhs(a)). We prove that I j+1 is also a supported trap

space of P. For every supported trap space I in T (P), we start with I j = I and repeat the above process

by increasing j by 1, and finally reach the case that I j+1 = I j because γ(I) is finite. By construction,

I j(a) = I j(rhs(a)),∀a ∈ atom(P), and I j ≤s I. Hence, by setting I′ = I j, there is a model I′ ∈C(P) such

that I′ ≤s I.

Theorem 9 ([31]). Let P be a finite ground program. Then a 3-valued interpretation I is a regular model

of P iff I is a ≤s-minimal stable trap space of P.

Sketch of proof. Let lfp(P) be the least fixpoint of P. By Proposition 8, we can deduce that ≤s-minimal

supported trap spaces of lfp(P) coincide with ≤s-minimal supported (also stable) partial models spaces

of lfp(P). P and lfp(P) have the same set of stable partial models [2]. By Theorem 5, P and lfp(P)
have the same stable transition graph, thus they have the same set of stable trap spaces. Since stable trap

spaces of lfp(P) coincide with its supported trap spaces, we can conclude the theorem.

Theorem 10 (Theorem 1 of [24]). Let f be a BN. If ig(f) has no cycle, astg(f) has a unique attractor

that is also the unique fixed point of f .

Theorem 11 (Theorem 12 of [24]). Let f be a BN. If ig(f) has no negative cycle, then astg(f) has no

cyclic attractor.

4.2 Unicity of regular and stable models

To illustrate better applications of the connection between finite ground programs and Boolean networks,

we start with providing a probably simpler proof for the finite case of a well-known result on the unicity

of regular and stable models in locally stratified programs [12].

Theorem 12 ([12]). If P is a locally stratified finite ground program, then P has a unique regular model

that is also the unique stable model of P.

New proof. Let lfp(P) denote the least fixpoint of P. Let f be the encoded BN of lfp(P). By Theorem 6,

dg(lfp(P)) has no cycle. Since ig(f) is a sub-graph of dg(lfp(P)) by Theorem 1, it also has no cycle. By

Theorem 10, astg(f) has a unique attractor that is also the unique fixed point of f . P and lfp(P) have

the same set of regular (also stable) models [2]. By Theorem 9, regular models of lfp(P) are ≤s-minimal

stable trap spaces of lfp(P). Since lfp(P) is a quasi-interpretation finite ground program, its stable trap

spaces coincide with its supported trap spaces. Supported trap spaces of lfp(P) coincide with trap spaces

of f by Theorem 3. Hence, regular models of P coincide with ≤s-minimal trap spaces of f . Since the

V.G. Trinh, B. Benhamou, S. Soliman & F. Fages 183

number of ≤s-minimal trap spaces of f are a lower bound of the number of attractors of astg(f) and f

has at least one ≤s-minimal trap space [19], f has a unique ≤s-minimal trap space that is also the unique

fixed point of f . Hence, P has a unique regular model that is also the unique stable model of P.

4.3 Existence of non-trivial regular models

Theorem 13 (Theorem 5.3(i) of [33]). Let P be a well-founded stratification normal logic program. If

dg(P) has no negative cycle, then all the regular models of P are 2-valued.

Theorem 13 provides a sufficient (resp. necessary) condition on the dependency graph for the non-

existence (resp. existence) of non-trivial regular models, but it is only limited to well-founded stratifi-

cation normal logic programs. Note that the well-founded stratification of a normal logic program is

defined based on the ground instantiation of this program [33], and the set of all possible well-founded

stratification programs in the finite case is only a small piece of the set of all possible finite ground pro-

grams [33]. To the best of our knowledge, the question if it is valid for any finite ground program is still

open to date. We answer this question in Theorem 14.

Theorem 14. Let P be a finite ground program. If dg(P) has no negative cycle, then all the regular

models of P are 2-valued.

Proof. Let lfp(P) be the least fixpoint of P. By Lemma 7, dg(lfp(P)) has no negative cycle. Let f be the

encoded BN of lfp(P). Since ig(f) is a sub-graph of dg(lfp(P)) by Theorem 1, ig(f) also has no negative

cycle. By Theorem 11, astg(f) (i.e., the asynchronous transition graph of f) has no cyclic attractor. This

implies that all attractors of astg(f) are fixed points (*). Assume that f has a ≤s-minimal trap space

(say m) that is not a fixed point. Since every ≤s-minimal trap space of f contains at least one attractor

of astg(f) [19], there is an attractor (say A) of astg(f) such that A ⊆ γ(m). By (*), A is a fixed point,

leading to A <s m. This is a contradiction because m is ≤s-minimal. Hence, all ≤s-minimal trap spaces

of f are fixed points.

By Theorem 3, trap spaces of f coincide with supported trap spaces of lfp(P). lfp(P) is a quasi-

interpretation finite ground program, thus tgst(lfp(P)) = tgsp(lfp(P)). It follows that its supported trap

spaces are also its stable trap spaces. Hence, ≤s-minimal trap spaces of f are ≤s-minimal stable trap

spaces of lfp(P). This implies that all ≤s-minimal stable trap spaces of lfp(P) are 2-valued. By Theo-

rem 9, all regular models of lfp(P) are 2-valued. P and lfp(P) have the same set of regular models [2].

Hence, all regular models of P are 2-valued.

Theorem 14 implies that the undefinedness is only needed if there is a negative cycle in the DG,

i.e., the regular model and stable model semantics are the same under the absence of negative cycles. In

addition, we can get from Theorem 14 a straightforward corollary: if the DG of a finite ground program

has no negative cycle, then it has at least one stable model. The reason is because a finite ground program

always has at least one regular model [33]. This corollary is exactly the generalization of the finite case

of Theorem 5.7 of [33] for well-founded stratification programs.

4.4 Unicity of regular models

The work of [33] shows a sufficient condition for the unicity of regular models for well-founded stratifi-

cation normal logic programs.

Theorem 15 (Theorem 5.3(ii) of [33]). Let P be a well-founded stratification program. If dg(P) has no

positive cycle, P has a unique regular model.

184 Graphical Conditions for the Existence, Unicity and Number of Regular Models

Hereafter, we would like to show that the finite case of Theorem 15 is also true for any finite ground

program. Note however that the technique of using least fixpoint applied for negative cycles seems

difficult to use for positive cycles because there is some finite ground program whose dependency graph

has no positive cycle but the dependency graph of its least fixpoint can have positive cycle (e.g., P =
{a← c;b← c;c←∼a,∼b}). We here use another approach.

Theorem 16 (Theorem 3.4 of [22]). Let f be a BN. If ig(f) has no positive cycle, then astg(f) has a

unique attractor.

Theorem 17 (Lemma 16 of [8]). Supported partial models of a tight finite ground program coincide

with its stable partial models.

Lemma 18. Let P be a finite ground program and f be its encoded BN. If P is tight, then regular models

of P coincide with ≤s-minimal trap spaces of f .

Proof. Since P is tight, stable partial models of P coincide with supported partial models of P (i.e., 3-

valued models of cf(P)) by Theorem 17. Then regular models of P coincide with ≤s-minimal supported

partial models of P. We have that trap spaces of f coincide with supported trap spaces of P by Theorem 3.

By Proposition 8, ≤s-minimal supported partial models of P coincide with ≤s-minimal supported trap

spaces of P. Hence, regular models of P coincide with ≤s-minimal trap spaces of f .

Theorem 19. Let P be a finite ground program. If dg(P) has no positive cycle, then P has a unique

regular model.

Proof. Since dg(P) has no positive cycle, dg+(P) (i.e., the positive dependency graph of P) has no cycle,

i.e., P is tight. Let f be the encoded BN of P. By Lemma 18, regular models of P coincide with

≤s-minimal trap spaces of f . Since ig(f) is a sub-graph of dg(P), it also has no positive cycle. By

Theorem 16, astg(f) has a unique attractor. Since every ≤s-minimal trap space of f contains at least one

attractor of astg(f) and f has at least one ≤s-minimal trap space [19], f has a unique ≤s-minimal trap

space. Hence, we can conclude that P has a unique regular model.

Since a stable model is also a regular model, Theorem 19 implies that if dg(P) has no positive cycle,

then P has at most one stable model. In addition, P may have no stable model because the unique regular

model may be not 2-valued. This result seems to be already known in the folklore of the logic program

theory, but to the best of our knowledge, there is no existing formal proof for it except the one that we

have directly proved recently in [28].

4.5 Upper bound for number of regular models

To the best of our knowledge, there is no existing work connecting between regular models of a finite

ground program and (positive/negative) feedback vertex sets of its dependency graph. In [28], we have

shown that 2|U
+| is an upper bound for the number of stable models where U+ is a positive feedback

vertex set of the dependency graph. Since stable models are 2-valued regular models, we can naturally

generalize this result for the case of regular models, i.e., 3|U
+| is an upper bound for the number of regular

models. The underlying intuition for the base of three is that in a regular model, the value of an atom can

be t, f, or u.

Theorem 20. Let P be a finite ground program. Let U+ be a positive feedback vertex set of dg(P). Then

the number of regular models of P is at most 3|U
+|.

V.G. Trinh, B. Benhamou, S. Soliman & F. Fages 185

Proof. By Theorem 9, regular models of P coincide with ≤s-minimal stable trap spaces of P. For any

mapping Î : U+ → {t, f,u}, we build a new finite ground program P̂ from P as follows. First, remove

from P all the rules whose heads belong to U+. Second, remove all the rules whose body formulas are

false under the values of the atoms in U+ and otherwise remove all the appearances of the atoms that are

in U+ and not assigned to u in Î. Third, for any atom a ∈U+ such that Î(a) = u, add the rule a←∼a.

We can see that the part of tgst(P) induced by Î is isomorphic to tgst(P̂). Hence, ≤s-minimal stable trap

spaces of P induced by Î one-to-one correspond to those of P̂. U+ intersects all positive cycles of dg(P).
Every atom a ∈U+ such that Î(a) 6= u is removed from dg(P). In the case that a ∈U+ and Î(a) = u,

all the arcs ending at a are removed and an negative arc (aa,⊖) is added. It follows that dg(P̂) has no

positive cycle. By Theorem 19, P̂ has a unique ≤s-minimal stable trap space. There are 3|U
+| possible

mappings Î, thus we can conclude the theorem.

Theorem 21 (Theorem 3.5 of [22]). Let f be a BN. Let U+ be a positive feedback vertex set of ig(f).
Then the number of attractors of astg(f) is at most 2|U

+|.

We observed that the bound of 3|U
+| is too rough for many example finite ground programs in the lit-

erature. Then inspired by Theorem 21 for an upper bound for the number of attractors of an asynchronous

BN, we obtain an interesting result for tight finite ground programs.

Theorem 22. Let P be a tight finite ground program. Let U+ be a positive feedback vertex set of dg(P).
Then the number of regular models of P is at most 2|U

+|.

Proof. Let f be the encoded BN of P. By Lemma 18, regular models of P coincide with ≤s-minimal

trap spaces of f . By definition, U+ intersects all positive cycles of dg(P). Since ig(f) is a sub-graph

of dg(P), every positive cycle of ig(f) is also a positive cycle of dg(P). Hence, U+ is also a positive

feedback vertex set of ig(f). By Theorem 21, the number of attractors of astg(f) is at most 2|U
+|. Since

the number of ≤s-minimal trap spaces of f is a lower bound of the number of attractors of astg(f) [19],

the number of regular models of P is at most 2|U
+|.

5 Conclusion and perspectives

In this paper, we have shown three main results relating some graphical properties of a finite ground

normal logic program to the set of its regular models, namely 1) the presence of negative cycles as a

necessary condition for the existence of non-trivial regular models, 2) the absence of positive cycles

as a sufficient condition for the unicity of regular models, and 3) two upper bounds on the number of

regular models for, respectively generic and tight, finite ground normal logic programs based on the

size of positive feedback vertex sets in their dependency graph. The first two conditions generalize

the finite cases of the two existing results obtained by [33] for well-founded stratification normal logic

programs. Our proofs use an encoding of finite ground normal logic programs by Boolean networks,

the equivalence established between regular models and minimal trap spaces, and some recent results

obtained in Boolean network theory.

We believe that the established connection can provide more results for the study of Datalog programs

and abstract argumentation, and might also be worth considering for normal logic programs without

finiteness assumption on their ground intantiation. The results presented in this paper use conditions on

either positive cycles or negative cycles. It is thus natural to think that by using both kinds of cycles

simultaneously, improved results might be obtained. Finally, we also conjecture that the upper bound for

tight finite ground normal logic programs presented here, is in fact valid for generic ones.

186 Graphical Conditions for the Existence, Unicity and Number of Regular Models

Acknowledgments

This work was supported by Institut Carnot STAR, Marseille, France.

References

[1] Krzysztof R Apt & Marc Bezem (1991): Acyclic programs. New Gener. Comput. 9, pp. 335–363, doi:10.

1007/BF03037168.

[2] Chandrabose Aravindan & Phan Minh Dung (1995): On the Correctness of Unfold/Fold Transforma-

tion of Normal and Extended Logic Programs. J. Log. Program. 24(3), pp. 201–217, doi:10.1016/

0743-1066(94)00104-E.

[3] Pietro Baroni, Martin Caminada & Massimiliano Giacomin (2011): An introduction to argumentation se-

mantics. Knowl. Eng. Rev. 26(4), pp. 365–410, doi:10.1017/S0269888911000166.

[4] Martin Caminada & Claudia Schulz (2017): On the Equivalence between Assumption-Based Argumentation

and Logic Programming. J. Artif. Intell. Res. 60, pp. 779–825, doi:10.1613/JAIR.5581.

[5] Stefano Ceri, Georg Gottlob & Letizia Tanca (1990): Logic Programming and Databases: An Overview.

Springer, doi:10.1007/978-3-642-83952-8.

[6] Stefania Costantini (2006): On the existence of stable models of non-stratified logic programs. Theory Pract.

Log. Program. 6(1-2), pp. 169–212, doi:10.1017/S1471068405002589.

[7] Stefania Costantini & Alessandro Provetti (2011): Conflict, Consistency and Truth-Dependencies in Graph

Representations of Answer Set Logic Programs. In: Second International Workshop on Graph Structures for

Knowledge Representation and Reasoning, Springer, pp. 68–90, doi:10.1007/978-3-642-29449-5_3.

[8] Emmanuelle-Anna Dietz, Steffen Hölldobler & Christoph Wernhard (2014): Modeling the suppression task

under weak completion and well-founded semantics. J. Appl. Non Class. Logics 24(1-2), pp. 61–85, doi:10.

1080/11663081.2014.911520.

[9] Yannis Dimopoulos & Alberto Torres (1996): Graph Theoretical Structures in Logic Programs and Default

Theories. Theor. Comput. Sci. 170(1-2), pp. 209–244, doi:10.1016/S0304-3975(96)80707-9.

[10] Jon Doyle (1979): A Truth Maintenance System. Artif. Intell. 12(3), pp. 231–272, doi:10.1016/

0004-3702(79)90008-0.

[11] Phan Minh Dung & Kanchana Kanchanasut (1989): A Fixpoint Approach to Declarative Semantics of Logic

Programs. In: Proc. of NACLP, MIT Press, pp. 604–625.

[12] Thomas Eiter, Nicola Leone & Domenico Saccà (1997): On the Partial Semantics for Disjunctive Deductive

Databases. Ann. Math. Artif. Intell. 19(1-2), pp. 59–96, doi:10.1023/A:1018947420290.

[13] François Fages (1991): A New Fixpoint Semantics for General Logic Programs Compared with the Well-

Founded and the Stable Model Semantics. New Gener. Comput. 9(3/4), pp. 425–444, doi:10.1007/

BF03037172.

[14] Francois Fages (1994): Consistency of Clark’s completion and existence of stable models. Methods Log.

Comput. Sci. 1(1), pp. 51–60. Available at https://lifeware.inria.fr/~fages/Papers/MLCS.pdf.

[15] Jorge Fandinno & Vladimir Lifschitz (2023): Positive Dependency Graphs Revisited. Theory Pract. Log.

Program. 23(5), pp. 1128–1137, doi:10.1017/S1471068422000333.

[16] Michael Gelfond & Vladimir Lifschitz (1988): The Stable Model Semantics for Logic Programming. In:

Proc. of ICLP, MIT Press, pp. 1070–1080.

[17] Katsumi Inoue & Chiaki Sakama (2012): Oscillating Behavior of Logic Programs. In: Correct Reason-

ing - Essays on Logic-Based AI in Honour of Vladimir Lifschitz, Springer, pp. 345–362, doi:10.1007/

978-3-642-30743-0_23.

https://doi.org/10.1007/BF03037168
https://doi.org/10.1007/BF03037168
https://doi.org/10.1016/0743-1066(94)00104-E
https://doi.org/10.1016/0743-1066(94)00104-E
https://doi.org/10.1017/S0269888911000166
https://doi.org/10.1613/JAIR.5581
https://doi.org/10.1007/978-3-642-83952-8
https://doi.org/10.1017/S1471068405002589
https://doi.org/10.1007/978-3-642-29449-5_3
https://doi.org/10.1080/11663081.2014.911520
https://doi.org/10.1080/11663081.2014.911520
https://doi.org/10.1016/S0304-3975(96)80707-9
https://doi.org/10.1016/0004-3702(79)90008-0
https://doi.org/10.1016/0004-3702(79)90008-0
https://doi.org/10.1023/A:1018947420290
https://doi.org/10.1007/BF03037172
https://doi.org/10.1007/BF03037172
https://lifeware.inria.fr/~fages/Papers/MLCS.pdf
https://doi.org/10.1017/S1471068422000333
https://doi.org/10.1007/978-3-642-30743-0_23
https://doi.org/10.1007/978-3-642-30743-0_23

V.G. Trinh, B. Benhamou, S. Soliman & F. Fages 187

[18] Tomi Janhunen, Ilkka Niemelä, Dietmar Seipel, Patrik Simons & Jia-Huai You (2006): Unfolding partial-

ity and disjunctions in stable model semantics. ACM Trans. Comput. Log. 7(1), pp. 1–37, doi:10.1145/

1119439.1119440.

[19] Hannes Klarner, Alexander Bockmayr & Heike Siebert (2015): Computing maximal and minimal trap spaces

of Boolean networks. Nat. Comput. 14(4), pp. 535–544, doi:10.1007/S11047-015-9520-7.

[20] Thomas Linke (2001): Graph Theoretical Characterization and Computation of Answer Sets. In: Proc. of

IJCAI, Morgan Kaufmann, pp. 641–648.

[21] T. Murata (1989): Petri nets: Properties, analysis and applications. Proc. IEEE 77(4), pp. 541–580, doi:10.

1109/5.24143.

[22] Loı̈c Paulevé & Adrien Richard (2011): Static Analysis of Boolean Networks Based on Interaction Graphs:

A Survey. In: Proc. of SASB, Elsevier, pp. 93–104, doi:10.1016/J.ENTCS.2012.05.017.

[23] Teodor C. Przymusinski (1990): The Well-Founded Semantics Coincides with the Three-Valued Stable Se-

mantics. Fundam. Inform. 13(4), pp. 445–463, doi:10.3233/FI-1990-13404.

[24] Adrien Richard (2019): Positive and negative cycles in Boolean networks. J. Theor. Biol. 463, pp. 67–76,

doi:10.1016/j.jtbi.2018.11.028.

[25] Adrien Richard & Elisa Tonello (2023): Attractor separation and signed cycles in asynchronous Boolean

networks. Theor. Comput. Sci. 947, p. 113706, doi:10.1016/J.TCS.2023.113706.

[26] Julian D Schwab, Silke D Kühlwein, Nensi Ikonomi, Michael Kühl & Hans A Kestler (2020): Concepts in

Boolean network modeling: What do they all mean? Comput. Struct. Biotechnol. J. 18, pp. 571–582, doi:10.

1016/j.csbj.2020.03.001.

[27] René Thomas & Richard d’Ari (1990): Biological feedback. CRC press.

[28] Van-Giang Trinh & Belaid Benhamou (2024): Static Analysis of Logic Programs via Boolean Networks.

arXiv:2407.09015.

[29] Van-Giang Trinh, Belaid Benhamou & Loı̈c Paulevé (2024): mpbn: a simple tool for efficient edition and

analysis of elementary properties of Boolean networks. CoRR abs/2403.06255, doi:10.48550/ARXIV.

2403.06255.

[30] Van-Giang Trinh, Belaid Benhamou & Sylvain Soliman (2023): Trap spaces of Boolean networks are

conflict-free siphons of their Petri net encoding. Theor. Comput. Sci. 971, p. 114073, doi:10.1016/j.

tcs.2023.114073.

[31] Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman & François Fages (2024): On the trap space semantics

of logic programs, basic properties and relevance to program analysis. Submitted paper.

[32] Yining Wu, Martin Caminada & Dov M. Gabbay (2009): Complete Extensions in Argumentation Coincide

with 3-Valued Stable Models in Logic Programming. Stud Logica 93(2-3), pp. 383–403, doi:10.1007/

S11225-009-9210-5.

[33] Jia-Huai You & Li-Yan Yuan (1994): A Three-Valued Semantics for Deductive Databases and Logic Pro-

grams. J. Comput. Syst. Sci. 49(2), pp. 334–361, doi:10.1016/S0022-0000(05)80053-4.

https://doi.org/10.1145/1119439.1119440
https://doi.org/10.1145/1119439.1119440
https://doi.org/10.1007/S11047-015-9520-7
https://doi.org/10.1109/5.24143
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/J.ENTCS.2012.05.017
https://doi.org/10.3233/FI-1990-13404
https://doi.org/10.1016/j.jtbi.2018.11.028
https://doi.org/10.1016/J.TCS.2023.113706
https://doi.org/10.1016/j.csbj.2020.03.001
https://doi.org/10.1016/j.csbj.2020.03.001
https://arxiv.org/abs/2407.09015
https://doi.org/10.48550/ARXIV.2403.06255
https://doi.org/10.48550/ARXIV.2403.06255
https://doi.org/10.1016/j.tcs.2023.114073
https://doi.org/10.1016/j.tcs.2023.114073
https://doi.org/10.1007/S11225-009-9210-5
https://doi.org/10.1007/S11225-009-9210-5
https://doi.org/10.1016/S0022-0000(05)80053-4

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 188–200, doi:10.4204/EPTCS.416.17

Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid
Knowledge Bases

Haya Majid Qureshi Wolfgang Faber
University of Klagenfurt

Austria
{haya.qureshi,wolfgang.faber}@aau.at

Metamodeling refers to scenarios in ontologies in which classes and roles can be members of classes
or occur in roles. This is a desirable modelling feature in several applications, but allowing it without
restrictions is problematic for several reasons, mainly because it causes undecidability. Therefore,
practical languages either forbid metamodeling explicitly or treat occurrences of classes as instances
to be semantically different from other occurrences, thereby not allowing metamodeling semantically.
Several extensions have been proposed to provide metamodeling to some extent. Building on earlier
work that reduces metamodeling query answering to Datalog query answering, recently reductions
to query answering over hybrid knowledge bases were proposed with the aim of using the Datalog
transformation only where necessary. Preliminary work showed that the approach works, but the
hoped-for performance improvements were not observed yet. In this work we expand on this body
of work by improving the theoretical basis of the reductions and by using alternative tools that show
competitive performance.

1 Introduction

Metamodeling helps in specifying conceptual modelling requirements with the notion of meta-classes
(for instance, classes that are instances of other classes) and meta-properties (relations between meta-
concepts). These notions can be expressed in OWL Full. However, OWL Full is so expressive for
metamodeling that it leads to undecidability [13]. OWL 2 DL and its sub-profiles guarantee decidability,
but they provide a very restricted form of metamodeling [7] and give no semantic support due to the
prevalent Direct Semantics (DS).

Consider an example adapted from [6], concerning the modeling of biological species, stating that
all golden eagles are eagles, all eagles are birds, and Harry is an instance of GoldenEagle, which further
can be inferred as an instance of Eagle and Bird. However, in the species domain one can not just express
properties of and relationships among species, but also express properties of the species themselves. For
example “GoldenEagle is listed in the IUCN Red List of endangered species” states that GoldenEagle as
a whole class is an endangered species. Note that this is also not a subclass relation, as Harry is not an
endangered species. To formally model this expression, we can declare GoldenEagle to be an instance
of new class EndangeredSpecies.

Eagle ⊑ Bird, GoldenEagle ⊑ Eagle, GoldenEagle(Harry)
EndangeredSpecies ⊑ Species, EndangeredSpecies(GoldenEagle)

Note that the two occurrences of the IRI for GoldenEagle (in a class position and in an individual po-
sition) are treated as different objects in the standard direct semantics DS1, therefore not giving semantic

1http://www.w3.org/TR/2004/REC-owl-semantics-20040210/

http://dx.doi.org/10.4204/EPTCS.416.17

H.M. Qureshi, W. Faber 189

support to punned2 entities and treating them as independent of each other by reasoners. These restric-
tions significantly limit meta-querying as well, since the underlying semantics for SPARQL queries over
OWL 2 QL is defined by the Direct Semantic Entailment Regime [5], which uses DS.

To remedy the limitation of metamodeling, Higher-Order Semantics (HOS) was introduced in [10]
for OWL 2 QL ontologies and later referred to as Meta-modeling Semantics (MS) in [11], which is the
terminology that we will adopt in this paper. The interpretation structure of HOS follows the Hilog-style
semantics of [1], which allows the elements in the domain to have polymorphic characteristics. Fur-
thermore, to remedy the limitation of metaquerying, the Meta-modeling Semantics Entailment Regime
(MSER) was proposed in [2], which does allow meta-modeling and meta-querying using SPARQL by
reduction from query-answering over OWL 2 QL to Datalog queries.

In [15] several methods were proposed that reduce query-answering over OWL 2 QL to queries
over hybrid knowledge bases instead. The idea there was to split the input ontology into two parts, one
involving metamodeling and one that does not. The former is transformed to Datalog using the method
of [2], while the latter is kept as an ontology and linked to the Datalog program. The precise bridge rules
to be created were either all possible or just those relevant to the query (using an established module
notion). Experiments using HEXLite-owl-api-plugin as a hybrid reasoner showed this to be a viable
approach, even if the observed performance was not as quick as hoped for. This appeared to be due to
internals of the hybrid reasoner and the lack of any query-oriented optimisations such as the magic set
technique. Indeed, results in [14] indicate that absence of a query-oriented method is detrimental for
performance.

In this work, we first recall the methods introduced in [15], then provide a detailed proof of cor-
rectness, and, most importantly, we use an extension of DLV2 with Python external atoms as a hybrid
reasoner. The system does support the magic set technique and our experiments show much better per-
formance using this system.

2 Preliminaries

This section gives a brief overview of the language and the formalism used in this work.

2.1 OWL 2 QL

This section recalls the syntax of the ontology language OWL 2 QL and the Metamodeling Semantics
(MS) for OWL 2 QL, as given in [12].

2.1.1 Syntax

We start by recalling some basic elements used for representing knowledge in ontologies: Concepts, a set
of individuals with common properties, Individuals, objects of a domain of discourse, and Roles, a set of
relations that link individuals. An OWL 2 ontology is a set of axioms that describes the domain of inter-
est. The elements are classified into literals and entities, where literals are values belonging to datatypes
and entities are the basic ontology elements denoted by Internationalized Resource Identifiers (IRI). The
notion of the vocabulary V of an OWL 2 QL, constituted by the tuple V = (Ve,Vc,Vp,Vd ,D,Vi,LQL). In V ,
Ve is the union of Vc,Vp,Vd ,Vi and its elements are called atomic expressions; Vc,Vp,Vd , and Vi are sets of
IRIs, denoting, respectively, classes, object properties, data properties, and individuals, LQL denotes the

2http://www.w3.org/2007/OWL/wiki/Punning

190 Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases

set of literals - characterized as OWL 2 QL datatype maps denoted as DMQL and D is the set of datatypes
in OWL 2 QL (including rdfs:Literal). Given a vocabulary V of an ontology O , we denote by Exp the
set of well formed expressions over V . For the sake of simplicity we use Description Logic (DL) syntax
for denoting expressions in OWL 2 QL. Complex expressions are built over V , for instance, if e1,e2 ∈V
then ∃e1.e2 is a complex expression. An OWL 2 QL Knowledge Base O is a pair ⟨T ,A ⟩, where T is
the TBox (inclusion axioms) and A is the ABox (assertional axioms). Sometimes we also let O denote
T ∪A for simplicity. OWL 2 QL is a finite set of logical axioms. The axioms allowed in an OWL 2 QL
ontology have one of the forms: inclusion axioms e1 ⊑ e2, disjointness axioms e1 ⊑¬ e2, axioms assert-
ing property i.e., reflexive property re f (e) and irreflexive property irre f (e) and assertional axioms i.e.,
c(a) class assertion, , p(a,b) object property assertion, and d(a,b) data property assertion. We employ
the following naming schemes (possibly adding subscripts if necessary): c,p,d,t denote a class, object
property, data property and datatype. The above axiom list is divided into TBox axioms (further divided
into positive TBox axioms and negative TBox axioms) and ABox axioms. The positive TBox axioms
consist of all the inclusion and reflexivity axioms, the negative TBox axioms consist of all the disjoint-
ness and irreflexivity axioms and ABox consist of all the assertional axioms. For simplicity, we omit
OWL 2 QL axioms that can be expressed by appropriate combinations of the axioms specified in the
above axiom list. Also, for simplicity we assume to deal with ontologies containing no data properties.

2.1.2 Meta-modeling Semantics

The Meta-modeling Semantics (MS) is based on the idea that every entity in V may simultaneously have
more than one type, so it can be a class, or an individual, or data property, or an object property or a data
type. To formalise this idea, the Meta-modeling Semantics has been defined for OWL 2 QL. In what
follows, P(S) denotes the power set of S. The meta-modeling semantics for O over V is based on the
notion of interpretation, constituted by a tuple I = ⟨∆, ·I, ·C, ·P, ·D, ·T , ·I ⟩, where

• ∆ is the union of the two non-empty disjoint sets: ∆ = ∆o∪∆v, where ∆o is the object domain, and
∆v is the value domain defined by DMQL;

• ·I : ∆o→ {True,False} is a total function for each object o ∈ ∆o, which indicates whether o is an
individual; if ·C, ·P, ·D, ·T are undefined for an o, then we require oI = True, also in other cases,
e.g., if o is in the range of ·C;

• ·C : ∆o→ P(∆o) is partial and can assign the extension of a class;

• ·P : ∆o→ P(∆o×∆o) is partial and can assign the extension of an object property;

• ·D : ∆o→ P(∆o×∆v) is partial and can assign the extension of a data property;

• ·T : ∆o→ P(∆v) is partial and can assign the extension of a datatype;

• .I is a function that maps every expression in Exp to ∆o and every literal to ∆v.

This allows for a single object o to be simultaneously interpreted as an individual via .I , a class via
.C, an object property via .P, a data property via .D, and a data type via .T . For instance, for Example 1,
·C, ·I would be defined for GoldenEagle, while ·P, ·D and ·T would be undefined for it.

The semantics of logical axiom α is defined in accordance with the notion of axiom satisfaction for
an MS interpretation I . The complete set of notions is specified in Table 3.B in [12]. Moreover, I
is said to be a model of an ontology O if it satisfies all axioms of O . Finally, an axiom α is said to be
logically implied by O , denoted as O |= α , if it is satisfied by every model of O .

H.M. Qureshi, W. Faber 191

2.2 Hybrid Knowledge Bases

Hybrid Knowledge Bases (HKBs) have been proposed for coupling logic programming (LP) and De-
scription Logic (DL) reasoning on a clear semantic basis. Our approach uses HKBs of the form K =
⟨O,P⟩, where O is an OWL 2 QL knowledge base and P is a hex program, as defined next.

Hex programs [3] extend answer set programs with external computation sources. We use hex pro-
grams with unidirectional external atoms, which import elements from the ontology of an HKB. For a
detailed discussion and the semantics of external atoms, we refer to [4]. What we describe here is a
simplification of the much more general hex formalism.

Regular atoms are of the form p(X1, . . . ,Xn) where p is a predicate symbol of arity n and X1, . . . ,Xn

are terms, that is, constants or variables. An external atom is of the form &g[X1, . . . ,Xn](Y1, . . . ,Ym) where
g is an external predicate name g (which in our case interfaces with the ontology), X1, . . . ,Xn are input
terms and Y1, . . . ,Ym are output terms.

Next, we define the notion of positive rules that may contain external atoms.

Definition 1. A hex rule r is of the form

a← b1, . . . ,bk. k ≥ 0

where a is regular atom and b1, . . . ,bk are regular or external atoms. We refer to a as the head of r,
denoted as H(r), while the conjunction b1, ...,bk is called the body of r.

We call r ordinary if it does not contain external atoms. A program P containing only ordinary rules
is called a positive program, otherwise a hex program. A hex program is a finite set of rules.

The semantics of hex programs generalizes the answer set semantics. The Herbrand base of P ,
denoted HBP , is the set of all possible ground versions of atoms and external atoms occurring in P
(obtained by replacing variables with constants). Note that constants are not just those in the standard
Herbrand universe (those occuring in P) but also those created by external atoms, which in our case
will be IRIs from O . Let the grounding of a rule r be grd(r) and the grounding of program P be
grd(P) =

⋃
r∈P grd(r). An interpretation relative to P is any subset I ⊆ HBP containing only regular

atoms. We write I |= a iff a∈ I. With every external predicate name &g∈G we associate an (n+m+1)-
ary Boolean function f&g (called oracle function) assigning each tuple (I,x1, . . . ,xn,y1 . . . ,ym) either 0
or 1, where I is an interpretation and xi,y j are constants. We say that I |= &g[x1, . . . ,xn](y1, . . . ,ym)
iff f&g(I,x1 . . . ,xn,y1, . . . ,ym) = 1. For a ground rule r, I |= B(r) iff I |= a for all a ∈ B(r) and I |= r
iff I |= H(r) whenever I |= B(r). We say that I is a model of P , denoted I |= P , iff I |= r for all
r ∈ grd(P). The FLP-reduct of P w.r.t I, denoted as f P I , is the set of all r ∈ grd(P) such that
I |= B(r). An interpretation I is an answer set of P iff I is a minimal model of f P I . By AS(P) we
denote the set of all answer sets of P . If K = ⟨O,P⟩, then we write AS(K) = AS(P) — note that O
is implicitly involved via the external atoms in P . In this paper, AS(K) will always contain exactly one
answer set, so we will abuse notation and write AS(K) to denote this unique answer set.

We will also need the notion of query answers of HKBs that contain rules defining a dedicated query
predicate q. Given a hybrid knowledge base K and a query predicate q, let ANS(q,K) denote the set
{⟨x1, . . . ,xn⟩ | q(x1, . . . ,xn) ∈ AS(K)}.

3 Query Answering Using MSER

We consider SPARQL queries, a W3C standard for querying ontologies. While SPARQL query results
can in general either be result sets or RDF graphs, we have restricted ourselves to simple SELECT

192 Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases

queries, so it is sufficient for our purposes to denote results by set of tuples. For example, consider the
following SPARQL query:

SELECT ?x ?y ?z WHERE {
?x rd f : type ?y.
?y rd fs :SubClassO f ?z

}

This query will retrieve all triples ⟨x,y,z⟩, where x is a member of class y that is a subclass of z. In
general, there will be several variables and there can be multiple matches, so the answers will be sets of
tuples of IRIs.

Now, we recall query answering under the Meta-modeling Semantics Entailment Regime (MSER)
from [2]. This technique reduces SPARQL query answering over OWL 2 QL ontologies to Datalog
query answering. The main idea of this approach is to define (i) a translation function τ mapping OWL
2 QL axioms to Datalog facts and (ii) a fixed Datalog rule base Rql that captures inferences in OWL 2
QL reasoning.

The reduction employs a number of predicates, which are used to encode the basic axioms available
in OWL 2 QL. This includes both axioms that are explicitly represented in the ontology (added to the
Datalog program as facts via τ) and axioms that logically follow. In a sense, this representation is closer
to a meta-programming representation than other Datalog embeddings that translate each axiom to a rule.

The function τ transforms an OWL 2 QL assertion α to a fact. For a given ontology O , we will
denote the set of facts obtained by applying τ to all of its axioms as τ(O); it will be composed of two
portions τ(T) and τ(A), as indicated in Table 1.3

Table 1: τ Function

τ(O) α τ(α) α τ(α)

τ(T)

c1 ⊑ c2 isacCC(c1, c2) r1 ⊑ ¬ r2 disjrRR(r1,r2)
c1 ⊑ ∃r2−.c2 isacCI(c1,r2,c2) c1 ⊑ ¬ c2 disjcCC(c1,c2)
∃r1 ⊑ ∃r2.c2 isacRR(r1,r2,c2) c1 ⊑ ¬∃r2− disjcCI(c1,r2)
∃r1− ⊑ c2 isacIC(r1,c2) ∃r1⊑ ¬ c2 disjcRC(r1,c2)
∃r1− ⊑ ∃r2.c2 isacIR(r1,r2,c2) ∃r1 ⊑ ¬∃r2 disjcRR(r1,r2)
∃r1− ⊑ ∃r2−.c2 isacII(r1,r2,c2) ∃r1 ⊑ ¬∃r2− disjcRI(r1,r2)
r1 ⊑ r2 isarRR(r1,r2) ∃r1− ⊑ ¬ c2 disjcIC(r1,c2)
r1 ⊑ r2− isarRI(r1,r2) ∃r1− ⊑ ¬∃r2 disjcIR(r1,r2)
c1 ⊑ ∃r2.c2 isacCR(c1,r2,c2) ∃r1− ⊑ ¬∃r2− disjcII(r1,r2)
∃r1⊑ c2 isacRC(r1,c2) r1 ⊑ ¬ r2− disjrRI(r1,r2)
∃r1 ⊑ ∃r2−.c2 isacRI(r1,r2,c2) irref(r) irrefl(r)
refl(r) refl(r)

τ(A)
c(x) instc(c,x) x ̸= y diff(x,y)
r(x, y) instr(r,x,y)

The fixed program Rql can be viewed as an encoding of axiom saturation in OWL 2 QL. The full
set of rules provided by authors of [2] are reported in the online repository of [14]. We will consider one
rule to illustrate the underlying ideas:

3Note that there are no variables in τ(T) and τ(A).

H.M. Qureshi, W. Faber 193

isacCR(C1,R2,C2)← isacCC(C1,C3), isacCR(C3,R2,C2).

The above rule encodes the following inference rule:

O |= C1 ⊑ C3, O |= C3 ⊑ ∃R2.C2⇒ O |= C1 ⊑ ∃R2.C2

Finally, the translation can be extended in order to transform conjunctive SPARQL queries under MS
over OWL 2 QL ontologies into a Datalog query. SPARQL queries will be translated to Datalog rules
using a transformation τq. τq uses τ to translate the triples inside the body of the SPARQL query Q and
adds a fresh Datalog predicate q in the head to account for projections. In the following we assume q to
be the query predicate created in this way.

For example, the translation of the SPARQL query given earlier will be

q(X,Y,Z)← instc(X,Y), isacCC(Y,Z).

Given an OWL 2 QL ontology O and a SPARQL query Q, let ANS(Q,O) denote the answers to Q
over O under MSER, that is, a set of tuples of IRIs. In the example above, the answers will be a set of
triples.

4 MSER Query Answering via Hybrid Knowledge Bases

We propose four variants for answering MSER queries by means of Hybrid Knowledge Bases. We first
describe the general approach and then define each of the four variants.

4.1 General Architecture

The general architecture is outlined in Figure 1. In all cases, the inputs are an OWL 2 QL ontology O
and a SPARQL query Q. We then differentiate between OntologyFunctions and QueryFunctions. The
OntologyFunctions achieves two basic tasks: first, the ontology is split into two partitions O

′
and O

′′
,

then τ(O
′′
) is produced.

The QueryFunctions work mainly on the query. First, a set N of IRIs is determined for creating
Interface Rules (IR, simple hex rules), denoted as π(N) for importing the extensions of relevant classes
and properties from O

′
. In the simplest case, N , consist of all IRIs in O

′
, but we also consider isolating

those IRIs that are relevant to the query by means of Logic-based Module Extraction (LME) as defined
in [8]. Then, τq translates Q into a Datalog query τq(Q). Finally, the created hex program components
are united (plus the fixed inference rules), yielding the rule part P = Rql ∪ π(N)∪ τ(O

′′
)∪ τq(Q),

which together with O
′
forms the HKB K = ⟨O ′

,P⟩, for which we then determine ANS(q,K), where
q is the query predicate introduced by τq(Q).

4.2 Basic Notions

Before defining the specific variations of our approach, we first define some auxiliary notions. The first
definition identifies meta-elements.

Definition 2. Given an Ontology O , IRIs in (Vc∪Vp)∩Vi are meta-elements, i.e., IRIs that occur both
as individuals and classes or object properties.

In our example, GoldenEagle is a meta-element. Meta-elements form the basis of our main notion,
clashing axioms.

194 Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases

Figure 1: The Overall Architecture of Hybrid-Framework

INPUT Ontology(O) Query(Q)

ONTOLOGY

FUNCTIONS

QUERY

FUNCTIONS

EVALUATE

TASK
ANS(q,⟨O ′,Rql ∪

π(N) ∪ τ(O
′′
) ∪ τq(Q)⟩)

Partition O:
O
′

O
′′

Translate
τ(O

′′
)

Create Interface Rules
π(N)

Translate query
τq(Q)

Definition 3. Clashing Axioms in O are axioms that contain meta-elements, denoted as CA(O). To
denote clashing and non-clashing parts in TBox (T) and ABox (A), we write A N =A \CA(O) as non-
clashing ABox, A C = CA(O)∩A as clashing ABox; and likewise T N = T \CA(O) as non-clashing
TBox and T C = CA(O)∩T as clashing TBox.

The clashing axiom notion allows for splitting O into two parts and generate O
′

without clashing
axioms.

We would also like to distinguish between standard queries and meta-queries. A meta-query is an
expression consisting of meta-predicates p and meta-variables v, where p can have other predicates
as their arguments and v can appear in predicate positions. The simplest form of meta-query is an
expression where variables appear in class or property positions also known as second-order queries.
More interesting forms of meta-queries allow one to extract complex patterns from the ontology, by
allowing variables to appear simultaneously in individual object and class or property positions. We will
refer to non-meta-queries as standard queries. Moving towards Interface Rules, we first define signatures
of queries, ontologies, and axioms.
Definition 4. A signature S(Q) of a SPARQL query Q is the set of IRIs occurring in Q. If no IRIs occur
in Q, we define S(Q) to be the signature of O . Let S(O) (or S(α)) be the set of atomic classes, atomic
roles and individuals that occur in O (or in axiom α).

As hinted earlier, we can use S(O ′
) for creating interface rules (O

′
being the ontology part in the

HKB), or use S(Q) for module extraction via LME as defined in [8] for singling out the identifiers
relevant to the query, to be imported from the ontology via interface rules. We will denote this signature
as S(LME(S(Q),O

′
)).

We next define the Interface Rules for a set of IRIs N .
Definition 5. For a set a of IRIs N , let π(N) denote the hex program containing a rule

instc(C,X) ← &g[C](X).

for each class identifier C ∈N , and a rule
instr(R,X ,Y) ← &g[R](X ,Y).

for each property identifier R ∈ N . Here &g is a shorthand for the external atom that imports the
extension of classes or properties from the ontology O

′
of our framework.4

4Note that C and R above are not variables, but IRIs.

H.M. Qureshi, W. Faber 195

4.3 Variants

Now we define the four variants for the ontology functions, and two for the query functions. Since for
one ontology function O

′
is empty, the two query functions have the same effect, and we therefore arrive

at seven different variants for creating the hybrid knowledge bases (HKB).
The difference in the ontology functions is which axioms of O = ⟨A ,T ⟩ stay in O

′
and which are

in O
′′
, the latter of which is translated to Datalog. We use a simple naming scheme, indicating these two

components:

A−T : O
′
= A , O

′′
= T .

NAT−CAT : O
′
= ⟨A N ,T ⟩, O

′′
= ⟨A C,T ⟩.

NAT−CACT : O
′
= ⟨A N ,T ⟩, O

′′
= ⟨A C,T C⟩.

E−AT : O
′
= /0, O

′′
= O = ⟨A ,T ⟩.

E−AT serves as a baseline, as it boils down to the Datalog encoding of [2].

Definition 6. Given O = ⟨A ,T ⟩, let the A−T HKB be K A−T (O) = ⟨A ,Rql ∪τ(T)⟩; the NAT−CAT
HKB be K NAT−CAT (O) = ⟨⟨A N ,T ⟩,Rql∪τ(⟨A C,T ⟩)⟩; the NAT−CACT HKB be K NAT−CACT (O) =
⟨⟨A N ,T ⟩,Rql ∪ τ(⟨A C,T C⟩)⟩; the E−AT HKB be K E−AT (O) = ⟨ /0,Rql ∪ τ(O)⟩.

Next we turn to the query functions. As hinted at earlier, we will consider two versions, which differ
in the Interface Rules they create. Both create query rules τq(Q) for the given query, but one (All) will
create interface rules for all classes and properties in the ontology part of the HKB, while the other (Mod)
will extract the portion of the ontology relevant to query using LME and create Interface Rules only for
classes and properties in this module.

For notation, we will overload the ∪ operator for HKBs, so we let ⟨O,P⟩∪⟨O ′
,P ′⟩= ⟨O∪O

′
,P∪

P ′⟩ and we also let ⟨O,P⟩ ∪P ′ = ⟨O,P ∪P ′⟩ for ontologies O and O
′

and hex programs P and
P ′.

Definition 7. Given an HKB ⟨O,P⟩ and query Q, let the All HKB be defined as KAll(⟨O,P⟩,Q) =
⟨O,P ∪ τq(Q)∪π(S(O))⟩.
Definition 8. Given an HKB ⟨O,P⟩ and query Q, let the Mod HKB be KMod(⟨O,P⟩,Q) = ⟨O,P ∪
τq(Q)∪π(S(LME(S(Q),O)))⟩.

We will combine ontology functions and query functions, and instead of K
β
(K α(O),Q) we will

write K α

β
(O,Q). We thus get eight combinations, but we will not use K E−AT

Mod , as it unnecessarily
introduces Interface Rules. Also note that K E−AT

All (O,Q) does not contain any Interface Rules, because
the ontology part of K E−AT (O) is empty.

We will next show the correctness of the transformations. We start with the simplest case.

Proposition 1. Let O be a consistent OWL 2 QL ontology and Q a conjunctive SPARQL query. Then,
ANS(Q,O) = ANS(q,K E−AT

All (O,Q)), where q is the query predicate introduced by τq(Q).

Proof. In [2] it was shown that ANS(Q,O) = Pq(τ(O)) = {⟨x1, . . . ,xn⟩ | q(x1, . . . ,xn) ∈ MM(Rql ∪
τ(O)∪ τq(Q))}.

Since MM(P) = AS(P) = AS(⟨ /0,P⟩) for any Datalog program P, it follows that ANS(Q,O) =
{⟨x1, . . . ,xn⟩ | q(x1, . . . ,xn) ∈ AS(⟨ /0,Rql ∪ τ(O)∪ τq(Q)⟩)}.

Per definition, we get K E−AT
All (O,Q) = KAll(K

E−AT (O),O,Q) = KAll(⟨ /0,Rql ∪ τ(O)⟩,O,Q) =
⟨ /0,Rql ∪ τ(O)∪ τq(Q)∪ π(S(O))⟩, therefore ANS(q,K E−AT

All (O,Q)) = {⟨x1, . . . ,xn⟩ | q(x1, . . . ,xn) ∈
AS(⟨ /0,Rql ∪ τ(O)∪ τq(Q)∪π(S(O))⟩)}.

196 Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases

We now show AS(⟨ /0,Rql∪τ(O)∪τq(Q)⟩)=AS(⟨ /0,Rql∪τ(O)∪τq(Q)∪π(S(O))⟩), which proves
the proposition. Indeed, for any interpretation I we have that I ̸|= r for each r ∈ π(S(O)), because the
ontology of the hybrid knowledge base is empty. Hence f ⟨ /0,Rql ∪τ(O)∪τq(Q)⟩I = f ⟨ /0,Rql ∪τ(O)∪
τq(Q)∪π(S(O))⟩I for any interpretation I, and the equality of answer sets follows.

Theorem 1. Let O be a consistent OWL 2 QL ontology, Q a conjunctive SPARQL query, then it holds
that ANS(Q,O) = ANS(q,K α

All(O,Q)), where α is one of A−T , NAT−CAT , or NAT−CACT and
where q is the query predicate introduced by τq(Q).

Proof. From Proposition 1 we have that ANS(Q,O) = ANS(q,K E−AT
All (O,Q)). We now show that

AS(K E−AT
All (O,Q)) = AS(K α

All(O,Q)) and ANS(q,K E−AT
All (O,Q)) = ANS(q,K α

All(O,Q)) follows.
First, K E−AT

All (O,Q) = ⟨ /0,Rql ∪ τ(O)∪ τq(Q)∪ π(S(O))⟩ (for short E), and let K α
All(O,Q)) =

⟨O ′
,Rql ∪ τ(O

′′
)∪ τq(Q)∪π(S(O))⟩ (for short A). In all cases, O

′ ⊆ O , O
′′ ⊆ O and O

′ ∪O
′′
= O .

Moreover, O |= ϕ (ϕ atomic over S(O)) if and only if O
′′ ∪{ψ |O ′ |= ψ,ψ atomic over S(O)} |= ϕ , let

us call this the ontology splitting property.
Now, for any interpretation I, f EI ̸= f AI may hold, but for any interpretation J, J |= f EI if and only

if J |= f AI . This is because for each atomic ϕ over S(O), either O
′ |= ϕ , then there is a rule in π(S(O))

with a true body in f AI (because of O
′
) and τ(ϕ) in its head. That rule is satisfied by J iff τ(ϕ) ∈ J. For

f EI , because of the results of [2] there is a rule in τ(O) with τ(ϕ) in its head and a true body; also that
rule is satisfied by J iff τ(ϕ) ∈ J. If O

′ ̸|= ϕ , then O
′′ ∪{ψ | O ′ |= ψ,ψ atomic over S(O)} |= ϕ . In that

case, the same rule with τ(ϕ) in its head is both in f AI and f EI .
Since J |= f EI if and only if J |= f AI , also the minimal models of f EI and f AI are the same, and

from this AS(K E−AT
All (O,Q)) = AS(K α

All(O,Q)) follows.

Note that the same proof also works for potential other variants that satisfy the ontology splitting
property.

Theorem 2. Let O be a consistent OWL 2 QL ontology, Q a conjunctive SPARQL query, then it holds
that ANS(Q,O) = ANS(q,K α

Mod(O,Q)), where α is one of A−T , NAT−CAT , or NAT−CACT and
where q is the query predicate introduced by τq(Q).

Proof. Note that LME(S(Q),O) is a module of O in the sense of [8]. This implies that for any atomic ax-
iom ϕ over S(Q), O |=ϕ iff LME(S(Q),O) |=ϕ . It follows that ANS(Q,O)=ANS(Q,LME(S(Q),O).
We have ANS(Q,LME(S(Q),O)=ANS(q,K α

All(LME(S(Q),O),Q)) from Theorem 1. K α
Mod(O,Q)=

⟨O ′
,Rql ∪ τ(O

′′
)∪ τq(Q)∪π(S(LME(S(Q),O)))⟩ is very similar to K α

All(LME(S(Q),O),Q)), which
expands to ⟨LME(S(Q),O)′,Rql∪τ(LME(S(Q),O)′′)∪τq(Q)∪π(S(LME(S(Q),O)))⟩. K α

Mod(O,Q)

just has the larger underlying ontology O . O
′
may contain more axioms than LME(S(Q),O)′, but since

the interface rules π(S(LME(S(Q),O))) are the same in both HKBs, they have no effect. Also τ(O
′′
)

may contain more rules than τ(LME(S(Q),O)′′), but none of them is relevant to q by definition. So
eventually we get ANS(q,K α

All(LME(S(Q),O),Q)) = ANS(q,K α
Mod(O,Q), from which the result fol-

lows.

H.M. Qureshi, W. Faber 197

5 Evaluation

In [15] we conducted experiments using HEXLite with the OWL-API plugin. While it did show drastic
improvements when using one of the hybrid approaches with respect to the baseline E−AT and with using
Mod rather then All, the absolute performance left to be desired. In particular, with the larger ontologies
considered, no answer could be obtained even after hours. This contrasts sharply with the findings in
[14], in which the best systems took only seconds to answer queries even on the larger ontologies. The
main reasons appeared to be inefficiencies in the OWL-API plugin, paired with a lack of query-oriented
computation.

In the meantime we became aware of DLV2 with Python external atoms5.
The version of DLV2 that we obtained from the developers directly supports the Turtle format of

ontologies, and one can use ontology IRIs directly as predicate names. The rules in Definition 5 can then
directly use class and role identifiers:

Definition 9. For a set a of IRIs N , let π(N) denote the DLV2 program containing a rule

instc(C,X) ← C(X).

for each class identifier C ∈N , and a rule

instr(R,X ,Y) ← R(X ,Y).

for each property identifier R ∈N .

For transforming our ontologies to Turtle format, we have used a utility called ont-converter6 that
automatically transforms the source ontology in different formats (RDF/XML, OWL/XML, N3, etc).

The experimental setting is the same as in [15]: we conducted two sets of experiments on the widely
used Lehigh University Benchmark (LUBM) dataset and on the Making Open Data Effectively USable
(MODEUS) Ontologies7. We only use the query function Mod, as it was evident in [15] that All has no
advantage over Mod.

The LUBM datasets describe a university domain with information like departments, courses, stu-
dents, and faculty. This dataset comes with 14 queries with different characteristics (low selectivity
vs high selectivity, implicit relationships vs explicit relationships, small input vs large input, etc.). We
have also considered the meta-queries mq1, mq4, mq5, and mq10 from [9] as they contain variables in-
property positions and are long conjunctive queries. We have also considered two special-case queries
sq1 and sq2 from [2] to exercise the MSER features and identify the new challenges introduced by the
additional expressivity over the ABox queries. Basically, in special-case queries, we check the impact of
DISJOINTWITH and meta-classes in a query. For this, like in [2], we have introduced a new class named
TypeOfProfessor and make FullProfessor, AssociateProfessor and AssistantProfessor instances of this
new class and also define FullProfessor, AssociateProfessor and AssistantProfessor to be disjoint from
each other. Then, in sq1 we are asking for all those y and z, where y is a professor, z is a type of professor
and y is an instance of z. In sq2, we have asked for different pairs of professors.

The MODEUS ontologies describe the Italian Public Debt domain with information like financial
liability or financial assets to any given contracts [11]. It comes with 8 queries. These queries are pure
meta-queries as they span over several levels of the knowledge base. MODEUS ontologies are meta-
modeling ontologies with meta-classes and meta-properties.

5https://dlv.demacs.unical.it/home
6https://github.com/sszuev/ont-converter
7http://www.modeus.uniroma1.it/modeus/node/6

https://dlv.demacs.unical.it/home
https://github.com/sszuev/ont-converter

198 Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases

Figure 2: LUBM(1) experiments with standard
and meta queries

Figure 3: LUBM(9) experiments with Standard
and Meta Queries

Figure 4: MODEUS(00) with Meta Queries Figure 5: MODEUS(01) with Meta Queries

We have done the experiments on a Linux batch server, running Ubuntu 20.04.3 LTS (GNU/Linux
5.4.0-88-generic x86 64) on one AMD EPYC 7601 (32-Core CPU), 2.2GHz, Turbo max. 3.2GHz. The
machine is equipped with 512GB RAM and a 4TB hard disk. Java applications used OpenJDK 11.0.11
with a maximum heap size of 25GB. During the course of the evaluation of the proposed variants we
have used the time resource limitation as the benchmark setting on our data sets to examine the behavior
of different variants. If not otherwise indicated, in both experiments, each benchmark had 3600 minutes
(excluding the K generation time). For simplicity, we have not included queries that contain data
properties in our experiments. We also have included the generation time of the hybrid knowledge base
K including the loading of ontology and query, τ translation, module extraction, generating IR and
translating queries. All material of experiments and results are available at https://doi.org/10.
5281/zenodo.13358935.

In Figure 2 and 3, it can be seen that DLV2 shows regular performance across all datasets and all
variants of HKB with a slight increase in time depending on the size of the dataset. There is one outlier,
meta-query MQ5 on LUBM(1) with NAT−CAT , which we were not expecting and might be a measure-
ment error. In any case, this a massive improvement over the performance with HEXLite, where some
of these queries required thousands of seconds to evaluate.

In Figures 4 to 7 the performance on MODEUS queries is reported. All the variants show consistent
performance; however, the behaviour of the NAT−CACT variant seems to be usually the best. These
results are very satisfactory with respect to the results observed with HEXLite, where none of these
queries were answered even after a few hours of runtime.

It should also be noted that NAT−CACT with DLV2 also outperforms non-hybrid query answering

https://doi.org/10.5281/zenodo.13358935
https://doi.org/10.5281/zenodo.13358935

H.M. Qureshi, W. Faber 199

Figure 6: MODEUS(02) with Meta Queries Figure 7: MODEUS(03) with Meta Queries

using DLV2 as reported in [14], making it the fastest known method on these ontologies and queries.

6 Discussion and Conclusion

This work shows that the methods introduced in [15] do not only have a positive relative impact when
using a hybrid reasoner, but that they can also yield the best known performance when using a suitable
tool for hybrid reasoning.

It seems clear from the result that there is a benefit of keeping some portions in the ontology rather
than transforming the entire ontology to facts. This is, however, contingent of the availability of a query-
aware method (in this case magic sets). Among the variants, NAT−CACT showed best performance,
which is also the one that hybridizes most.

In the future, we plan to investigate alternative variants for producing hybrid knowledge bases and
assessing their performance. Another line of future work will be to identify more hybrid reasoning
systems that are query aware and benchmark these.

References

[1] Weidong Chen, Michael Kifer & David S Warren (1993): HiLog: A foundation for higher-order logic pro-
gramming. Journal of Logic Programming 15(3), pp. 187–230, doi:10.1016/0743-1066(93)90039-J.

[2] Gianluca Cima, Giuseppe De Giacomo, Maurizio Lenzerini & Antonella Poggi (2017): On the SPARQL
metamodeling semantics entailment regime for OWL 2 QL ontologies. In: Proceedings of the 7th International
Conference on Web Intelligence, Mining and Semantics, pp. 1–6, doi:10.1145/3102254.3102277.

[3] Thomas Eiter, Michael Fink, Giovambattista Ianni, Thomas Krennwallner, Christoph Redl & Peter Schüller
(2016): A model building framework for answer set programming with external computations. Theory and
Practice of Logic Programming 16(4), pp. 418–464, doi:10.1017/S1471068415000113.

[4] Thomas Eiter, Giovambattista Ianni, Roman Schindlauer & Hans Tompits (2006): Effective integration of
declarative rules with external evaluations for semantic-web reasoning. In: European Semantic Web Con-
ference, Springer, pp. 273–287, doi:10.1007/11762256 22.

[5] Birte Glimm (2011): Using SPARQL with RDFS and OWL entailment. In: Reasoning Web International
Summer School, Springer, pp. 137–201, doi:10.1007/978-3-642-23032-5 3.

[6] Giancarlo Guizzardi, Joao Paulo Andrade Almeida, Nicola Guarino & Victorio Albani de Carvalho (2015):
Towards an Ontological Analysis of Powertypes. In: JOWO@IJCAI, CEUR Workshop Proceedings 1517,
CEUR-WS.org. Available at https://ceur-ws.org/Vol-1517/JOWO-15_FOfAI_paper_7.pdf.

https://doi.org/10.1016/0743-1066(93)90039-J
https://doi.org/10.1145/3102254.3102277
https://doi.org/10.1017/S1471068415000113
https://doi.org/10.1007/11762256_22
https://doi.org/10.1007/978-3-642-23032-5_3
https://ceur-ws.org/Vol-1517/JOWO-15_FOfAI_paper_7.pdf

200 Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases

[7] Pascal Hitzler, Markus Krötzsch & Sebastian Rudolph (2009): Foundations of Semantic Web Technologies.
CRC press, doi:10.1201/9781420090512. Available at http://www.semantic-web-book.org/.

[8] Ernesto Jiménez-Ruiz, Bernardo Cuenca Grau, Ulrike Sattler, Thomas Schneider & Rafael Berlanga (2008):
Safe and economic re-use of ontologies: A logic-based methodology and tool support. In: European Semantic
Web Conference, Springer, pp. 185–199, doi:10.1007/978-3-540-68234-9 16.

[9] Roman Kontchakov, Martin Rezk, Mariano Rodriguez-Muro, Guohui Xiao & Michael Zakharyaschev
(2014): Answering SPARQL Queries over Databases under OWL 2 QL Entailment Regime. In: Interna-
tional Semantic Web Conference, Springer, pp. 552–567, doi:10.1007/978-3-319-11964-9 35.

[10] Maurizio Lenzerini, Lorenzo Lepore & Antonella Poggi (2015): A higher-order semantics for OWL 2 QL
ontologies. In: Description Logics, CEUR Workshop Proceedings 1350, CEUR-WS.org. Available at https:
//ceur-ws.org/Vol-1350/paper-55.pdf.

[11] Maurizio Lenzerini, Lorenzo Lepore & Antonella Poggi (2020): Metaquerying made practical for OWL 2
QL ontologies. Information Systems 88, p. 101294, doi:10.1016/J.IS.2018.02.012.

[12] Maurizio Lenzerini, Lorenzo Lepore & Antonella Poggi (2021): Metamodeling and metaquerying in OWL 2
QL. Artificial Intelligence 292, p. 103432, doi:10.1016/J.ARTINT.2020.103432.

[13] Boris Motik (2005): On the properties of metamodeling in OWL. In: International Semantic Web Conference,
Springer, pp. 548–562, doi:10.1007/11574620 40.

[14] Haya Majid Qureshi & Wolfgang Faber (2021): An Evaluation of Meta-reasoning over OWL 2 QL. In:
RuleML+RR, Springer, pp. 218–233, doi:10.1007/978-3-030-91167-6 15.

[15] Haya Majid Qureshi & Wolfgang Faber (2023): Using Hybrid Knowledge Bases for Meta-reasoning over
OWL 2 QL. In: Practical Aspects of Declarative Languages, Springer, pp. 216–231, doi:10.1007/978-3-031-
24841-2 14.

https://doi.org/10.1201/9781420090512
http://www.semantic-web-book.org/
https://doi.org/10.1007/978-3-540-68234-9_16
https://doi.org/10.1007/978-3-319-11964-9_35
https://ceur-ws.org/Vol-1350/paper-55.pdf
https://ceur-ws.org/Vol-1350/paper-55.pdf
https://doi.org/10.1016/J.IS.2018.02.012
https://doi.org/10.1016/J.ARTINT.2020.103432
https://doi.org/10.1007/11574620_40
https://doi.org/10.1007/978-3-030-91167-6_15
https://doi.org/10.1007/978-3-031-24841-2_14
https://doi.org/10.1007/978-3-031-24841-2_14

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 201–214, doi:10.4204/EPTCS.416.18

© E.I. Su
This work is licensed under the
Creative Commons Attribution License.

Pearce’s Characterisation in an Epistemic Domain

Ezgi Iraz Su
Sinop University, Department of Computer Engineering, Sinop, Turkey

eirazsu@sinop.edu.tr

Answer-set programming (ASP) is a successful problem-solving approach in logic-based AI. In ASP,
problems are represented as declarative logic programs, and solutions are identified through their an-
swer sets. Equilibrium logic (EL) is a general-purpose nonmonotonic reasoning formalism, based on
a monotonic logic called here-and-there logic. EL was basically proposed by Pearce as a foundational
framework of ASP. Epistemic specifications (ES) are extensions of ASP-programs with subjective
literals. These new modal constructs in the ASP-language make it possible to check whether a reg-
ular literal of ASP is true in every (or some) answer-set of a program. ES-programs are interpreted
by world-views, which are essentially collections of answer-sets. (Reflexive) autoepistemic logic
is a nonmonotonic formalism, modeling self-belief (knowledge) of ideally rational agents. A rela-
tively new semantics for ES is based on a combination of EL and (reflexive) autoepistemic logic.
In this paper, we first propose an overarching framework in the epistemic ASP domain. We then
establish a correspondence between existing (reflexive) (auto)epistemic equilibrium logics and our
easily-adaptable comprehensive framework, building on Pearce’s characterisation of answer-sets as
equilibrium models. We achieve this by extending Ferraris’ work on answer sets for propositional
theories to the epistemic case and reveal the relationship between some ES-semantic proposals.

1 Introduction

Answer-set programming (ASP), introduced by Gelfond&Lifschitz [7, 8], is an approach to declarative
logic programming. Its reduct-based semantics is defined by stable models (alias, answer-sets), essen-
tially the supported classical models of a logic program. ASP has demonstrated success in solving
problems within logic-based AI: a problem is first encoded as a logic program, and then efficient ASP-
solvers are employed to compute its stable models corresponding to the solutions. However, as Gelfond
pointed out in his seminal work [4], ASP encounters challenges in accurately representing and reasoning
about incomplete information. The difficulty arises when a program involves multiple stable models,
and a proposition holds in one stable model but contradicts another. The main reason for this drawback
lies in the local performance of ASP’s negation as failure (NAF) operator, which handles incomplete in-
formation within individual stable models. To address this issue and enable collective reasoning about
incomplete information, we need additional tools in the language of ASP. Epistemic modal operators
provide one potential solution to ASP’s limitation with incomplete information. By integrating such op-
erators into the ASP-language, the new modal constructs in the extended language allow us to quantify
over a collection of stable models and check whether a proposition holds in every (some) stable model.

The initial approach to this problem is by Gelfond’s epistemic specifications [4, 5], referred to as
ES94 here: Gelfond extended ASP with epistemic constructs known as subjective literals. Indeed, with
the incorporation of epistemic modalities K and M, he could represent incomplete information within
stable-model collections. While a subjective literal K l (M l) makes it possible to check whether a literal
l is true in every (some) stable model of a collection, in particular, the epistemic negation notK accu-
rately captures collective reasoning of incomplete information. The extended language is interpreted in
terms of world-views, which are, in essence, stable-model collections. However, researchers have soon

http://dx.doi.org/10.4204/EPTCS.416.18
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

202 Pearce’s Characterisation in an Epistemic Domain

realised that ES94 allows unsupported world-views. Thus, Gelfond himself [6], along with many other
researchers, have proposed various semantic revisions for ES; each aiming to eliminate newly-appearing
unintended results. The first counter-example that undermines the soundness of ES94-semantics is the
model {{p}} resulting from the epistemic rule p← Kp. This problem with recursion through K arises due
to epistemic circular justification; yet efforts to resolve this problem do not focus on the core reasons
for the emergence of unsupported models in ES94. This situation leads to incrementally more complex
reduct definitions. Although we refrain from calling these solutions ad hoc, as they can be based on
reasonable grounds, we find it crucial to reveal the underlying reasons behind the existence of such mod-
els under ES94-semantics. Moreover, we introduce a conventional and straightforward generalisation of
ASP’s reduct definition to epistemic logic programs, which constitutes our first contribution here.

One line of world-view computing methods in the literature depends on the reduct-based fixed-point
techniques within the logic programming domain, with ES94 serving as the prototype and most subse-
quent formalisms being its follow-ups. In a parallel, purely logical context, world-views are computed
as (reflexive) (auto)epistemic extensions of equilibrium models. The initial attempt in this direction
was made by Wang&Zhang [19], whose semantics has captured the world-views of ES94. Sequentially,
stronger formalisms followed [18, 1, 17]. These epistemic equilibrium logics (EELs) share a common
approach: a twofold world-view computation process. First, they determine stable models of an ES-
program Π in terms of truth (t) by applying the t-minimality criterion of the formalism. This involves
generalising the usual t-minimality method which is used to compute stable models (equilibrium models)
to ES-programs, resulting in the epistemic equilibrium models (EEMs) of Π. The inclusion of epistemic
constructs into the ASP-language requires the minimisation of these concepts as well, which is funda-
mental in nonmonotonic epistemic logics. Thus, once t-stable models are determined, a knowledge-
minimality technique should also be applied to guarantee stability in terms of knowledge (k). As a
result, world-views are stable-models w.r.t. both truth and knowledge. One formally strong k-minimality
approach applied to ES is Schwarz’s [12] minimal model reasoning for nonmonotonic modal logics. Ca-
balar et al. [1] pioneered the introduction of this technique to ES, proposing a new semantics based on a
combination of Pearce’s equilibrium logic (EL) [11] and Schwarz’s nonmonotonic KD45 [12, 16] (equiv-
alently, Moore’s autoepistemic logic). Their formalism so represents a nonmonotonic epistemic logic of
belief where K is interpreted as the self-belief of a rational agent. It also captures ES94-semantics under a
foundedness restriction. Su [17] then suggested employing the reflexive closure of KD45-models, namely
SW5-models, in the search for k-minimal models and proposed reflexive autoepistemic EL. This formal-
ism alternatively applies Schwarz’s minimal model technique for nonmonotonic SW5 as a k-minimality
criterion, aligning it more closely with other ES-formalisms where the K operator formalises knowledge.

The existence of many ES-formalisms without a common agreement makes it difficult to understand
the current state of the art. Thus, as a natural continuation, we explore the relationship between them.
Our reference point will be classifying ES-formalisms under a twofold world-view computation method.
We then generalise Ferraris’ lemma, enabling the capture of equilibrium models of a theory as its stable
models, to the epistemic case. Using our new result, we transform EEMs to truth-stable (t-stable) models
of epistemic ASP and vice versa. This work will then help ASP programmers better understand exist-
ing EELs, being reflected in the logic programming context and also give rise to a versatile and solid
framework in epistemic ASP, an approach not studied before, which will be our main contribution here.

The rest of this paper is organised as follows: Sect. 2 provides preliminary information about ASP
and Gelfond’s primary ES94-semantics. Sect. 3 presents epistemic ASP (EASP) as a unifying framework
for several ES-semantics. Sect. 4 makes a short overview of the existing EELs in the literature, focusing
on their t-minimality methods. Sect. 5 establishes a correspondence between these EELs and EASP by
generalising Ferraris’ lemma to EASP. Sect. 6 concludes the paper with future work plan.

E.I. Su 203

2 Background: ASP and epistemic specifications (ES) in a nutshell

In this context, ASP-formulas are built from an infinite set P of atoms using the connectives, viz. reversed
implication (←), disjunction (∨), conjunction (∧), NAF (not), strong negation (∼), true (⊤) and false (⊥).
In ASP, a literal l is an atom p or a strongly-negated atom ∼p for p ∈ P. An ASP-program consists of
a finite set of rules r : head(r)← body(r) s.t. body(r) is formed by a conjunction of literals possibly
preceded by NAF, and head(r) is formed by a disjunction of literals: for 0 ≤ m ≤ n ≤ k,

l1∨ . . .∨ lm ← lm+1 ∧ . . . ∧ ln ∧ not ln+1 ∧ . . . ∧ not lk . (1)

Alternatively, we call body goal and its conjuncts subgoals. When m = 0, we suppose head(r) to be ⊥
and call the rule r constraint. When k =m, we call r fact and omit both body(r) and←. When k = n, we
call r a positive rule. A program composed of only positive rules is positive. Finally, as strong negation
can be removed from a logic program via auxiliary atoms, this paper mostly ignores ∼ for simplicity.

A valuation is a consistent (possibly empty) set T of literals, i.e., p < T or ∼p < T for any p ∈ P.
A valuation T satisfying an ASP-program Π (which means T |= Π) is a classical model of Π. Then,
stable-models of Π are its reduct-based minimal classical models. Stable-model semantics is based on
a program transformation that aims to eliminate ‘not’ from Π w.r.t. Π’s classical model T (a candidate
model), resulting in a positive program ΠT referred to as reduct of Π w.r.t. T : (reduct-taking) replace
notp with ⊤ if T |= not p (equivalently, if T ̸|= p, i.e., p < T); otherwise, with ⊥. This approach also
requires that the valuation T be a smallest (minimal) model of this reduct ΠT w.r.t. subset relation.
Eventually, the successful models of this process are called stable models (alias, answer-sets) of Π.

2.1 Gelfond’s epistemic specifications: ES94

Epistemic specifications (ES) extends ASP-programs with the epistemic modal operators K (‘known’)
and M (‘may be true’). The language LES contains four kinds of literals: objective literals (l), extended
objective literals (L), subjective literals (g), and extended subjective literals (G), viz. for p ∈ P,

lll LLL ggg GGG
p | ∼p l | not l K l |M l g | notg

Note that ASP’s regular literals are called objective literals in ES. By convention, the belief operator M

can be defined in terms of the knowledge operator K, i.e., M def
= notKnot , meaning that they are dual.

An ES-rule ‘r : l1 ∨ . . .∨ lm ← e1 ∧ . . . ∧ en’ is an extension of an ASP-rule (1) with extended
subjective literals that can appear exclusively in body(r) as subgoals. Thus, body(r) = e1∧ . . .∧ en is a
conjunction of arbitrary ES-literals. Then, an ES-program is a finite collection of ES-rules.

Truth conditions: Let T be a non-empty collection of valuations. Let I be a valuation, which is not
necessarily included in T . Then, for an objective literal l and a subjective literal g, we have:

T , I |= l if l ∈ I; T , I |= not l if l < I.

T , I |= K l if l ∈ T for every T ∈ T ; T , I |= notg if T , I ̸|= g.
T , I |=M l if l ∈ T for some T ∈ T ;

Note that the satisfaction of an objective literal l is independent of T , while the satisfaction of a
subjective literal g is independent of I. Thus, we simply write T |= g or I |= l. Then, we define the

204 Pearce’s Characterisation in an Epistemic Domain

Table 1: Kahl’s reduct definition proposed in his PhD thesis [9] with changes over [6] in bold.
literal G if T |=G if T ̸|=G literal G if T |=G if T ̸|=G
K l replace by l replace by ⊥ notK l replace by ⊤ replace by not l
M l replace by ⊤ replace by notnot l notM l replace by not l replace by ⊥

satisfaction of an ES-program Π as follows: T , I |= Π if for every rule r ∈ Π, T , I |= r, i.e., explicitly

T , I |= body(r) implies T , I |= head(r).

An S5-model is a nonempty collection of possible worlds, each with assigned truth values, where
the connection between these worlds is defined by an equivalence relation (reflexive, symmetric, and
transitive). In this context, we assume an S5-model T to be in the form of a nonempty set of valuations
s.t. any two valuations are related. When T ,T |=Π for every T ∈T , we say that T is a classical S5-model
of Π. In particular, when we designate a valuation T s.t. T ,T |= Π, we call (T ,T) a pointed S5-model
of Π. Extending this to a set T0 of designated valuations, ⟨T ,T0⟩ is said to be a multi-pointed S5-model
of Π. To facilitate reading, we symbolise a multi-pointed S5-model ⟨T ,T0⟩ by underlying its designated
valuations T ∈T0 in an explicit representation ofT . GivenT = {{a}, {b},∅}, the (multi)pointed S5-models
⟨T , {a}⟩ and ⟨T , {{a}, {b}}⟩ correspond to {{a}, {b},∅} and {{a}, {b},∅} respectively. When no valuation is
underlined or specified, by default this means that any valuation of T behaves as designated. The rest
of the paper uses the terms “point”, “valuation” and “world” interchangeably. Finally, given a syntactic
ES-construct (head, rule, program, etc.) φ, when T ,T |= φ for every T ∈ T , we simply write T |= φ.

Semantics: An ES-program Π is interpreted by means of its world-views, which are selected from
among its S5-models. Thus, given a candidate S5-model T of Π, we first compute the (epistemic)
reduct ΠT = {rT : r ∈Π} of Π w.r.t. T by replacing every subjective literal K l (M l), possibly preceded by
NAF, with ⊤ if T |= K l (M l); otherwise, with ⊥. Then, T is a world view ofΠ if T = AS(ΠT) where AS(Π)
denotes the set of all stable models of Π. The reduct definition of ES94 is so oriented to remove extended
subjective literals. The resulting program ΠT is then a nonepistemic, but not necessarily positive ASP-
program potentially containing NAF. In fact, ES94 offers a twofold reduct definition; first removing
epistemic operators w.rt. T and then eliminating NAF w.r.t. T ∈ T ∪X akin to ASP’s methodology.

2.1.1 Motivation

Example 1 The one-rule program Γ = {a← Ka} has 2 world-views, {∅} and {{a}} in ES94. Among these,
only the former is intended. The self-supported model {{a}} appears due to the fact that ES94-reduct
attacks positive (not preceded by NAF) literals. This approach causes unsupported models to provide
fake derivations for head-literals, which in return produce these models by fixed-point justifications.
Thus, Gelfond’s methodology includes flaws for programs containing cyclic dependencies like Γ, {a←
Ka∧notKb}, {a← Ka∧notb}, etc. Such circular scenarios may arise when the goal contains a positive
subjective literal and is satisfied by the candidate unsupported S5-model. Notice that transformation of a
literal into true/false w.r.t. its truth-value is secure when it is preceded by NAF with literal reading there is
no evidence, or when there exits logical derivations of literals as used by splitting property of (epistemic)
ASP. To overcome this problem, Gelfond [6] slightly modifies his reduct definition by replacing K p with
p when T |= K p and partly avoids circular justifications, but the problem of recursion via M prevails.

This modification has probably necessitated further changes in his reduct definition as shown in
Table1. The underlying reasons of Kahl’s new reduct [9] may be grounded as follows: (1) If T ̸|= notK l,

E.I. Su 205

thenT |=K l. When the reduct definition transforms K l into l, it replaces notK l with not l. (2) Remember
that M def

= notKnot . If T ̸|=M l, then T ̸|= notKnot l, i.e., T |= Knot l. A similar reasoning may force
the transformation of Knot l into not l; M l into notnot l. (3) If T |= notM l, then T |= Knot l. If Knot l
is transformed into not l, then notM l is turned into notnotnot l, equivalently [10] into not l. While this
explanation is a guess, in fact when NAF is involved, such further intricate changes may not be required.

Example 2 Another recursive program Σ = {a←Ma} yields the same world-views in ES94. Researchers
have widely varying perspectives on the intended models of Σ. While some find both models reasonable,
the others argue that Σ should have one model; yet they also differ on which model should be preferred.
We will not engage in this debate, as different approaches may prove useful depending on the specific
problem at hand. Our stance on the topic is distinct. In alignment with Su et al.’s approach [18], and
following the tradition of intuitionistic modal logics, we will adopt a positive belief operator here, namely
K̂, which is not definable in terms of K and not. As M def

= notKnot , in our opinion, M cannot be regarded
as purely positive like notnota in ASP. Remember that Su et al. handle M as a syntactic sugar, giving a
concise representation for the equivalent formulas notnot K̂, K̂notnot, and notKnot . Also recall that
in epistemic ASP, aligning with ASP, double NAF should not vanish regardless of where it occurs. On
the other hand, similarly to Γ in Ex. 1, we claim that the intended model of Σ′ = {a← K̂a} should be {∅}.

3 Epistemic Answer Set Programming (EASP)

This section introduces a direct generalisation of logic programs under stable-model semantics (aka,
ASP-programs) to epistemic logic programs under stable S5-model semantics. This new concept has
been partially explored by [15]. The shift from the general term world-view to stable S5-model in
EASP, and equilibrium S5-model in the following section is intended to emphasise the purpose of this
work. Our main motivation for this study arises from the unsupported models that emerge due to circular
justifications under ES94-semantics (see Ex. 1-2). ES94’s reduct definition deviates somewhat from the
traditional approach. We here propose a new reduct definition for ES-programs, oriented to eliminate
exclusively NAF. Thus, our reduct is a positive program, similar to the method in search for stable models.

The new approach exploits a two-step computation process, focusing on stability in terms of truth
(t) and knowledge (k). The method involves finding the minimal models in terms of truth first, and then
refining them further w.r.t. a k-minimality criterion to select stable S5-models. Such models then capture
truth and knowledge minimality concepts that is central in (nonmonotonic) epistemic ASP. In broader
terms, what we refer to as t-minimality in ES is essentially an extension of the familiar minimisation
criterion of ASP from classical models to classical S5-models. However, k-minimality is a relatively new
concern within the ASP field compared to the well-established method of t-minimality. The necessity
for such a technique has become evident with the incorporation of epistemic concepts into ASP and the
need to maximise epistemic possibilities (i.e., ignorance).

A stable S5-modelT of an epistemic logic programΠ is its S5-model s.t. each valuation T ∈T forms
Π’s pointed S5-model (T ,T) where T is minimal w.r.t. truth and T is minimal w.r.t. knowledge. For a
nonepistemic ASP-program Π, such valuations are Π’s stable-models in ASP, and the (unique) stable
S5-model T is the set of all such models. Similar to stable-models of ASP, the intuition underlying
stable S5-models is to capture the rationality of an agent associated with an epistemic logic program Π:
“an agent is not supposed to believe anything that it is not forced to believe.” The aim, in principle, is
to determine which propositions can be nonmonotonically inferred from Π by considering all its stable-
models. These inferences are then used to deduce new information about the knowledge of Π.

206 Pearce’s Characterisation in an Epistemic Domain

3.1 The Language of EASP (LEASP)

The language LEASP extends that of ASP by epistemic modalities K and K̂. Literals (λ) of LEASP are of
two types; objective (l) and subjective (g) literals, viz. lB p | ∼p and gB K l | K̂ l for p ∈ P. Then,
notλ means failing to derive λ, the query λ? is undetermined and assumed to be false; yet we do not
offer literal interpretations of the modalities for the sake of flexibility.

Replacing literals of ASP with those of EASP in (1), we obtain an EASP-rule r, viz.

λ1∨ . . .∨λm ← λm+1 ∧ . . . ∧ λn ∧ notλn+1 ∧ . . . ∧ notλk . (for 0 ≤ m ≤ n ≤ k) (2)

in which λi’s are objective or subjective literals for every i = 1, . . . ,k. When we restrict λi’s to objective
literals, the resulting program is a disjunctive logic program [8]. Hence, EASP-rules are conservative
extensions of ASP’s disjunctive rules (1). Different from ES, we allow K l and K̂ l to appear in head(r).
While the use of subjective literals in the head has not yet been fully explored, we still find it useful
to provide the same syntax structure with ASP for easier understanding of the approach. This way,
extensions to richer languages are straightforward via the main ASP track. An epistemic logic program
(ELP), also known as EASP-program, is a finite collection of EASP-rules (2).

3.2 Semantics of EASP in terms of stable S5-models

We first introduce t-minimality concept in EASP. Based on the existing ES-formalisms in the literature,
we provide two slightly different approach. For example, the program Φ = {r1,r2,r3}

r1 = a∨b. r2 = a← Kb. r3 = b← Ka. (3)

may produce t-minimal models T1 = {{a}, {b}} and T2 = {{a,b}}; yet it may also yield T1 only, depending
on how restrictive we want to be. In EASP, this subtle distinction originates from differing approaches
of t-minimality techniques, emphasising functional vs. relational perspective.

Definition 1 (weakening of a point in an S5-model in terms of truth: functional approach) Given a
nonempty collection T of valuations, let s : T → 2P be a subset function s.t. s(T) ⊆ T for every T ∈ T .
Let id refer to the identity function, and let s[T]=

{
s(T)
}

T∈T denote the image of T under s. A functional
(f) weakening of T at a point T ∈ T by means of s is identified with ⟨s[T],s(T)⟩ s.t. s , id on T and
s|T\{T } = id, by which we take a strict subset of T ∈ T and keep the elements of T \ {T } unchanged. We
say that ⟨s[T],s(T)⟩ is f -weaker than ⟨T ,T ⟩ on T ∈ T and denote it by ⟨s[T],s(T)⟩◁f ⟨T ,T ⟩.

Def. 1 has already been introduced by [15]; yet the following more cautious approach is novel.

Definition 2 (weakening of a point in an S5-model in terms of truth: relational approach) Let sr :
T ⇒ 2P be a multi-valued subset function s.t. sr(T) ⊆ 2T and sr(T) , ∅ for every T ∈ T . For ease of
understanding, we also design sr as a serial subset relation, relating each T ∈ T to at least one element
from 2T and form the collection sr =

{
(T,H) : H ∈ sr(T)

}
T∈T . Then, a relational (r) weakening of T at

a point T ∈ T by means of sr is identified with ⟨sr[T],sr(T)⟩ s.t. s , id on T and s|T\{T } = id, by which
we replace only T in T by a set of its subsets including at least one strict subset H ⊂ T . We say that
⟨sr[T],sr(T)⟩ is r -weaker than ⟨T ,T ⟩ on T ∈ T and denote it by ⟨sr[T],sr(T)⟩◁r ⟨T ,T ⟩.

We now define a nonmonotonic satisfaction relation |=∗ for S5-models, involving a t-minimality
criterion based on set inclusion over each set T ∈ T . Intuitively, this condition says that none of the
weakenings of ⟨T ,T ⟩ is an S5-model of an epistemic logic program (ELP) Π for every T ∈ T .

E.I. Su 207

Definition 3 (generalisation of the truth-minimality (t-minimality) criterion of ASP to EASP) For a
positive EASP-program Π, let T be a nonempty collection of valuations, and T ∈ T . Then, we have:

T ,T |=∗f Π iff T ,T |= Π and s[T],s(T) ̸|= Π for every s s.t. ⟨s[T],s(T)⟩◁f ⟨T ,T ⟩. (4)

Thus, T is a tf-minimal model of Π if T ,T |=∗f Π for every T ∈ T [15]. In this paper, we also define |=∗r
by replacing s with sr, and ◁f with ◁r in (4) and produce tr-minimal models of Π accordingly.

Although the above definitions seem to be technically complex and daunting, they are easily applied:

Example 3 Reconsider first the program Φ, identified by (3), and its S5-model T2 = {{a,b}}. Then
construct 2{a,b} = {{a,b}, {a}, {b},∅}. Since the f-weaker models {{a}}, {{b}}, and {∅} of T2 do not satisfy
r3, r2, and r1 respectively, Φ does not hold in them either. Thus, T2 is a tf-minimal model of Φ.

What eliminates T2 in the second approach is the relational nature of the weakening methodology
because now we have to consider all possible subsets of 2{a,b} different from ∅ andT2, i.e., all the elements
of the set 22{a,b} \ {T2,∅}. The element {{a}, {b}} from this set, namely an r-weakening of T2 at the point
{a,b} ∈ T2, satisfies Φ. Thus, T2 fails to be a tr-minimal model of Φ.

Note that when we consider T1, different from the singleton model T2, we follow the above steps for
every pointed S5-model of T1, viz. {{a}, {b}} and {{a}, {b}}. Also note that Φ is a positive program, and its
reduct trivially equals itself. Thus, our reduct is not interested in the positive literals Ka and Kb in Φ.

Fact 1 Functional minimality implies relational minimality because any function can be defined as a
relation. Thus, a tr-minimal model of an ELP Π is a tf-minimal model of Π, but not vice versa.

Example 4 Consider the EASP-program Σ = {r1,r2,r3,r4} with its rules explicitly represented below:

r1 = a∨b. r2 = c← b. r3 = d← Ka. r4 = ⊥← K̂d.

Note that Σ is a positive program. We compute that
{
{a}, {b,c}

}
is a t-minimal model of Σ:

{
{a}, {b,c}

}
|= Σ

while its only f-weakening
{
∅, {b,c}

}
refutes it. Likewise,

{
{a}, {b,c}

}
|= Σ while all its f-weakenings,

i.e.,
{
{a}, {b}

}
,
{
{a}, {c}

}
, and

{
{a},∅

}
do not satisfy it. We leave it to the reader to show that T is also

tr-minimal; yet we give a hint that while computing the r-weakenings of, for example,
{
{a}, {b,c}

}
, we

consider all possible models including
{
{a}, {b}, {c}

}
,
{
{a}, {b,c},∅, {b}

}
, etc. There are 14 of such models.

Clearly, {{b,c}} is Σ’s other t-minimal model, that is unintended and to be eliminated under k-minimality
conditions. Note that like Ka, the other positive literal K̂d is not involved in the reduct-taking process.

Remark 1 The need for relational minimality arises from the fact that under singleton S5-models like
{{p}}, the literals K p, K̂ p, and p are of no difference since quantification is trivially performed over
just one valuation {p}. For instance, notice that when we replace K l by l in Φ (3), the resulting ASP-
program has the stable model {a,b}. Using relational weakening, we increase epistemic possibilities
(points) while reducing truth. Quantifying over these points then reveals the nontrivial functionality of
subjective literals. In a sense, the relational t-minimality approach simultaneously embeds in itself a kind
of k-minimality strategy by increasing ignorance with epistemic possibilities. The difference between
two minimality methods strikingly appears for Φ under the S5-model {{a,b}} (see Ex. 3). Adding the
constraint rc =⊥← notKa intoΦ, the new programΦ′ =Φ∪{rc} has a world-view {{a,b}} under several
ES-formalisms. Some researchers find this result unsupported; yet the existing k-minimality techniques
is unable to eliminate this model. Thus, a more restrictive t-minimality tool has been designed to remove
models like {{a,b}} while computing t-minimal models. We do not discuss this issue here, as our aim is
just to establish a correspondence between existing ES-formalisms; to put it better, to demonstrate the
reader how current epistemic equilibrium logics are manifested in the logic programming domain.

208 Pearce’s Characterisation in an Epistemic Domain

We will now see how to compute stable w.r.t. truth (t-stable) models of an arbitrary EASP program
potentially including NAF. Satisfaction of the subjective literal K̂ l is the same as M l in ES. What makes
the difference is primarily how the reduct definition handles them.

Definition 4 (generalisation of the conventional reduct definition of ASP to EASP) For an arbitrary
EASP-program Π, let T be a nonempty collection of valuations, and let T ∈ T . Then, the reduct Π⟨T ,T ⟩

of Π w.r.t. the pointed S5-model ⟨T ,T ⟩ is defined by replacing every occurrence of NAF-negated (i.e.,
preceded by NAF) literals notλ in Π with the truth-constants

⊥ if T ,T |= λ (for λ = l if T |= l; for λ = K l (K̂ l) if T |= K l (K̂ l));

⊤ if T ,T ̸|= λ (for λ = l if T ̸|= l; for λ = K l (K̂ l) if T ̸|= K l (K̂ l)).

Thus, T is a t-minimal model of Π if T ,T |=∗ Π⟨T ,T ⟩ for every T ∈ T [15].

While Def. 4 provides a general definition, its specialisation to tf and tr is straightforward. When
these methods do not result in a distinction, we refer to them by the general name “truth” (t).

Example 5 Consider the EASP-program Γ = {r1,r2,r3,r4} where its rules are explicitly shown below:

r1 = a∨b. r2 = c← K̂a∧notb. r3 = d← notKa∧b. r4 = ⊥← not K̂c.

We claim that
{
{a,c},

{
b,d
}}

is a t-minimal model of Γ. We first compute the following reducts:

a∨b.
c← K̂a∧not⊥.
d← not⊥∧b.
⊥← not⊤.

Γ
{{a,c},{b,d}} and

a∨b.
c← K̂a∧not⊤.
d← not⊥∧b.
⊥← not⊤.

Γ
{{a,c},{b,d}}

The above reducts are respectively equivalent to {r1 , c← K̂a , d← b} and {r1 , d← b}: when ⊥ (not⊤)
appears as a subgoal, the goal fails to hold. This means that the effect of the entire rule r is negligible,
and r can be safely omitted. When ⊤ (not⊥) appears as a subgoal, ⊤ can be dropped from the subgoals
of body(r) as it trivially holds. While

{
{a,c}, {b,d}

}
|= Γ{{a,c},{b,d}}, all its f-weakenings, viz.

{
{a}, {b,d}

}
,{

{c}, {b,d}
}

and
{
∅, {b,d}

}
, refute it. While

{
{a,c}, {b,d}

}
|= Γ{{a,c},{b,d}}, all its f-weakenings, viz.

{
{a,c}, {b}

}
,{

{a,c}, {d}
}

and
{
{a,c},∅

}
, refute it. Finally, notice that the S5-model {{a,c}} is the other (unintended)

tf-minimal model of Γ, and both t-minimality tools produce the identical results for Γ.

In a parallel, purely logical context, world-views are alternatively computed as epistemic extensions
of equilibrium models. A first step towards epistemic equilibrium logic belongs to Wang&Zhang [19].
As their approach has generalised ES94 and also due to page restrictions, we do not include it below.

4 Epistemic Extensions of Equilibrium Logic

Equilibrium logic (EL) is a nonmonotonic formalism, basically proposed by Pearce [11] as a logical and
mathematical framework of ASP. EL is based on here-and-there logic (HT), a three-valued monotonic
logic which is intermediate between classical logic and intuitionistic logic. An HT-model is an ordered
pair (H,T) of valuations H,T ⊆ P satisfying H ⊆ T . The semantics of EL, via equilibrium models, is
obtained through a t-minimality criterion over HT-models: T is an equilibrium model of φ iff T,T |=HT φ

(i.e., T |= φ) and (t-minimality condition) H,T ̸|=HT φ for any H strictly included in T (H ⊂ T). In
summary, Pearce has generalised ASP by characterising its stable-models as equilibrium models in EL.

E.I. Su 209

4.1 Su et al.’s approach (ES20a): autoepistemic equilibrium logic (AEEL)

Inspired by EL’s success as a foundational framework for ASP, Su et al. introduced [13, 2, 18] an
epistemic extension of EL as an alternative semantics for ES. We here name their approach ES20a and
recall how ES20a produces its t-minimal models, namely epistemic equilibrium models (EEMs). For our
purposes, we do not include their k-minimality method, selecting ES20a-world-views among its EEMs.

4.1.1 Epistemic here-and-there logic (EHT) and its equilibrium S5-models w.r.t. truth

EHT extends HT with nondual epistemic modalities K and K̂, both of which are primitive and structurally
identical to the modalities in EASP. Depending on knowledge-minimality conditions, these modalities
may characterise different epistemic concepts, so we do not assign them a literal reading for generality.
The language of EHT (LEHT) is given by the grammar below, where the formulas outside HT are in bold.

φB p | ⊥ | φ∧φ | φ∨φ | φ→ φ | Kφ | K̂φ. (for p ∈ P)

As usual, the derived formulas ¬φ, ⊤, and φ↔ ψ respectively abbreviate φ→ ⊥, ⊥ → ⊥, and (φ→
ψ)∧ (ψ→ φ). A theory is a finite set of formulas. An EASP-program Π is translated to the corresponding
EHT-theory Π∗ via a map (.)∗: given Σ = {r1,r2} s.t. r1 = p∨∼q← K̂r∧nots and r2 = q← notK p,

Σ∗ =
(

(K̂r∧¬s)→ (p∨ q̃)
)
∧
(
¬K p→ q

)
∧ ¬
(

q∧ q̃
)
.

The literal ∼q is treated as a new atom q̃ ∈ P, and this entails the formula ¬
(
q∧ q̃) to be inserted into Σ∗

for consistency purposes. Since it can be easily removed from a logic program with the addition of a
constraint ⊥← q∧ q̃ as above, the rest of the paper disregards strong negation ∼ for simplicity.

As already mentioned in Ex. 2, the K̂ operator is syntactically different from M ∈LES. This is justified
by the fact that M is derived as notKnot in ES and so translated into EHT as ¬K¬ where ¬ refers to
EHT-negation. Because ¬K¬φ, ¬¬K̂φ, and K̂¬¬φ are all equivalent in EHT, the M operator is expected
to coincide with notnotK̂ and K̂notnot in a possible extension of EASP-programs to propositional
theories, which will be shortly discussed in the next section. Notice that the difference between M p and
K̂ p in EASP resembles that of notnotp and p in ASP. As a result, in an extended language, we expect
Mp not to have a world-view, whereas {∅, {p}} is one easily-understandable world-view for K̂p.

An EHT-model ⟨T ,s⟩ is a refinement of a classical S5-model T in which valuations T ∈ T are
replaced by HT-models (s(T),T) w.r.t. a subset function s : T → 2P, assigning to each T ∈ T one of its
subsets, i.e., s(T) ⊆ T . Thus, the explicit representation of ⟨T ,s⟩ is given by

{(
s(T),T

)}
T∈T . Satisfaction

of a formula φ ∈ LEHT is defined recursively w.r.t. to the following truth conditions:

⟨T ,s⟩,T |=EHT p if p ∈ s(T);
⟨T ,s⟩,T |=EHT φ→ ψ if

(
⟨T ,s⟩,T ̸|=EHT φ or ⟨T ,s⟩,T |=EHT ψ

)
and(

⟨T , id⟩,T ̸|=EHT φ or ⟨T , id⟩,T |=EHT ψ
)
;

⟨T ,s⟩,T |=EHT Kφ if ⟨T ,s⟩,T ′ |=EHT φ for every T ′ ∈ T ;
⟨T ,s⟩,T |=EHT K̂φ if ⟨T ,s⟩,T ′ |=EHT φ for some T ′ ∈ T ;

where id denotes the identity function. The truth conditions of ⊥, ∧ and ∨ are standard. The EHT-model
⟨T , id⟩ = {(T,T)}T∈T is called total and identical to the classical S5-model T . Then, T is an equilibrium
S5-model w.r.t. truth, or originally an epistemic equilibrium model (EEM) of φ ∈ LEHT if T is a classical
S5-model of φ, and the following t-minimality condition (referred to as tf-minimality), viz.

for every possible subset function s on T with s , id, there is T ∈ T s.t. ⟨T ,s⟩,T ̸|=EHT φ (5)

210 Pearce’s Characterisation in an Epistemic Domain

holds. ES20a further applies a knowledge-minimality (k-minimality) criterion ([18], p. 12), simultane-
ously functioning two different conditions, upon EEMs to determine its world-views, originally referred
to as autoepistemic equilibrium models (AEEMs). The inspiration comes from autoepistemic logic and the
logic of all-that-I-know, and the selection process is carried out by mutual comparison of EEMs accord-
ing to set inclusion and a formula-indexed preorder. Note that applying the same criterion upon EASP’s
tf-minimal models to select world-views, we can search for a relationship between two formalisms.

4.2 Cabalar et al.’s approach (ES20b): founded autoepistemic equilibrium logic (FAEEL)

Cabalar et al. [1] define EHT on a K̂-free fragment of LEHT. The authors acknowledge that the relation of
a second operator (M vs. K̂) to K is under debate, and so they leave its study for future work. Even though
not in terms of meaning, the inclusion of K̂ into ES20b is methodologically straightforward. Therefore,
we here follow the same language LEHT for ES20b as well in terms of harmony. Moreover, ES20b partially
contains K̂ when considered in its original language since ¬K̂ and K̂¬ are EHT-equivalent respectively to
K¬ and ¬K. As a derived formula, M is also included by default in all existing EELs in the form of ¬K¬.
Unlike in ES20a where K represents knowledge, in this context, Kφ reads φ is one of the agent’s beliefs.

In ES20b, an EHT-model ⟨T ,sr⟩ is defined w.r.t. a serial subset relation (multi-valued subset function)
sr, relating each T ∈ T to at least one element from 2T , i.e., to some subsets of T . Thus, a serial subset
relation sr and an S5-model T give rise to the EHT-model sr = {(H,T) : TsrH}T∈T . To illustrate the
functional vs. relational nature of the formalisms ES20a and ES20b, take the S5-model T = {T } where T =
{p,q}. Depending on the subset function s on T , we can only form the EHT-models

{
(∅,T)

}
,
{
({p},T)

}
,{

({q},T)
}
, and

{
(T,T)

}
in ES20a as we are restricted to choose a unique subset H = s(T) and so build a

unique HT-model (H,T) for each T ∈ T . However, in EHT20, we can obtain the additional EHT-models{
({p},T), ({q},T)

}
,
{
(∅,T), ({p},T), ({q},T)

}
,
{
(∅,T), (T,T)

}
,
{
(∅,T), ({p},T), (T,T)

}
, etc.

since as many subset as desired can be chosen for each T ∈ T , keeping in mind that sr is serial.
While the truth conditions are the same, to avoid possible confusion, we recall that ⟨T ,s⟩,T |=EHT φ

means {(H,T) : H = s(T)}T∈T , (H,T) |=EHT φ in ES20a, but here sr(T) may refer to more than one subset as
sr is multi-valued. Thus, we prefer an explicit notation {(H,T) : TsrH}T∈T , (H,T) |=EHT φ to be precise.

An epistemic equilibrium model (EEM) of φ ∈ LEHT is then defined as its classical S5-model T satis-
fying a tr-minimality condition: for every multi-valued subset function sr on T s.t. sr , id,

there is an HT-model (H,T) s.t. TsrH and {(H,T) : TsrH}T∈T , (H,T) ̸|=EHT φ. (6)

Once EEMs are produced, the next step is to apply Schwarz’s [12] minimal model reasoning1 for non-
monotonic KD45 to select world-views of ES20b from among EEMs. The operator K obtains its meaning
from this approach because in autoepistemic logic, the epistemic operator K characterises the self-belief
of a rational agent. To weaken a tr-minimal S5-model (EEM) w.r.t belief, ES20b needs to generalise EEMs
to KD45-model structures because minimality w.r.t. belief (b) is tested in nonmonotonic KD45 by exam-
ining whether an S5-model has a preferred model extension in KD45. To check stability w.r.t. belief in
ES20b, we add a new valuation I into a (candidate) EEM T s.t. I < T and design the resulting KD45 model
T ′ = T ⊎ {I} in a way that I is not accessible by any point in T ′ while any point in T can be accessed
by every point in T ′. Thus every point in T ′, including I, uses the same belief that is determined by T .
Formally, T ′ is preferred over T , and T ′ is a tr-minimal KD45-model of φ if the following conditions

(i) T ⊎{I} , I |=KD45 φ and (ii) T ⊎{(s(I), I)} , (s(I), I) ̸|=EHT φ (7)

1Schwarz has proved that autoepistemic logic under stable expansions and KD45 under minimal models coincide.

E.I. Su 211

respectively hold. When (7) holds for a candidate EEM T , this means that T is not stable (or at equilib-
rium) w.r.t. belief and fails to be an AEEM of φ in ES20b. Notice that the condition (7).(ii) does not require
that the points of T be weakened w.r.t. truth: as T is an EEM of φ, by definition, any weakeaning of T
results in the formula φ being refuted at some point of T . Also note that due to the KD45-model struc-
ture, we weaken I w.r.t. truth in ES20b simply by using the subset function s in (7) as sr and s provide
identical models. We do not reformulate above the details of the method in its original notation as our
aim here is to give a brief overview to the reader. However, for our purposes, it is worth mentioning that
this b-minimality approach can be easily adapted to tr-minimal models of EASP as formalised below.

Definition 5 (stable S5-models of EASP w.r.t. truth and belief) Let T be a nonempty collection of
valuations, and let Π be an EASP-program. Then, T is a stable S5-model of Π w.r.t. truth and belief if
for every T ∈ T , we have T ,T |=∗r Π

⟨T ,T ⟩ and for every I ∈ 2P \T ,

T ⊎{I} , I ̸|=KD45 Π
⟨T ,I⟩ or T ⊎{(s(I), I)} , (s(I), I) |=KD45 Π

⟨T ,I⟩ for some subset map s s.t. s(I) ⊂ I. (8)

The condition (8) states that T has no tr-minimal preferred model in KD45. This definition will then
allow us to search for a correspondence between the resulting formalism and ES20b.

4.3 Su’s approach (ES21): reflexive autoepistemic equilibrium logic (RAEEL)

Su [17] then suggests applying the k-minimality criterion of nonmonotonic SW5 [14] over EEMs of ES20a

or ES20b to select AEEMs and proposes ES21. Remember that the modal logic SW5 is just a reflexive2

closure of KD45 where K represents knowledge. Our underlying intuition is simply because the formulas
K p and K̂ p have respectively the unique AEEMs {{p}} and {∅, {p}} in ES21, regardless of the t-minimality
technique chosen, tr vs. tf. While K̂ p has the same AEEM, K p has no AEEM in ES20b. In an extended
language, ES94 cannot provide any world views for these formulas, and a slightly modified version ES11

[6] cannot produce a reasonable model {{p}} for K p∨ q. These results reinforce the counter-arguments
provided in Ex. 1-2 towards their reduct definitions, attacking positive subjective literals. If an atom p
can be derived in all stable models of an ASP-program, then the query p? is answered as true. Does it
provide an enough justification for the derivation of K p? While p has a unique world view {{p}}, why
does a stronger expression K p lack a world-view? Such questions go on... Although it is unclear what
researchers intend to capture with K, the above-mentioned EELs, especially ES20a and ES21 with their
well-studied minimality tools, are strong formalisms, and in our opinion, they both can serve with their
different functionalities (especially towards constraints) for the encoding of different problems.

All existing EELs in the literature employ a twofold world-view computation process. The method
is first to compute t-minimal models of a program, upon which a k-minimality criterion is applied. In
ES94, there is no such clear-cut distinction between truth and knowledge minimality conditions; instead,
they are given intertwined with each other. The follow-up ES-formalisms are mostly focused on reduct
without modifications in the minimality. This makes it difficult to understand the relationships between
ES-formalisms proposed in the logic programming domain and the purely logical domain of EL. How-
ever, there are some work in the literature, revealing similarities between existing ES-formalisms. For
instance, Wang&Zhang [19]) have embedded ES94 into an EEL they designed; Cabalar et al. [1] have
proved that AEEMs of ES20b and founded world-views of ES94 coincide under a foundedness property
they proposed. We tackle this research topic in reverse direction by following Ferraris’ work, which cap-
tures equilibrium models as stable models. To achieve this, we propose a versatile and comprehensive
framework called EASP that can evolve into various EELs, incorporating their k-minimality conditions.

2Schwarz [12] has proved that reflexive autoepistemic logic and nonmonotonic SW5 coincide under their specific semantics.

212 Pearce’s Characterisation in an Epistemic Domain

Moreover, compared to related work, it is evident how EASP accommodates existing EELs through the
traditional nature of EASP. The next section clarifies how we accomplish this in a unifying framework.

5 Correspondence between EASP and EEL

This section first generalises Ferraris’ lemma, presented in ([3], p. 3), to S5, KD45 and SW5-models.

Lemma 1 Given I = {1, . . . ,n}, let T = {Ti}i∈I = {Ti : i ∈ I} be an S5-model, and let s : T → 2P be a
subset function s.t. s(Ti) = Hi ⊆ Ti for every i ∈ I. For an EASP-program Π,

{H1, . . . ,Hn} , H j |=S5 Π
⟨T ,T j⟩ iff {(Hi,Ti) : i ∈ I} , (H j,T j) |=EHT Π

∗, for every j ∈ I.

The lemma is proven by structural induction. As Hi = H j is possible for some i, j ∈ I, we consider {Hi}i∈I

as a multiset and employ the traditional reduct introduced in Def. 4. Under this general result, we can
clearly see how EELs appear in the logic programming domain and vice versa.

We begin with EEMs of ES20a: for an EASP-program Π, let T = {Ti}i∈I = {T1, . . . ,Tn} be an EEM of Π∗.
By definition of EEM in ES20a (5), we have (1) T ,Ti |=S5 Π

∗ for every i ∈ I and (2) for every non-identity
subset function s on T s.t. s(Ti) = Hi for each i, there is k ∈ I s.t. ⟨T ,s⟩,Tk ̸|=EHT Π

∗. The model ⟨T ,s⟩
gives rise to the EHT-model {(Hi,Ti)}ni=1 = {(H1,T1), . . . , (Hn,Tn)}, and so, {(Hi,Ti)}ni=1, (Hk,Tk) ̸|=EHT Π

∗.
First let s= id in Lemma 1, then Hi = Ti for each i. Recall that ⟨T , id⟩ refers to the classical S5-model T .
The condition (1) so implies {T1 . . .Tn},T j |=S5 Π

⟨T ,T j⟩, for every j ∈ I. Again by Lemma 1, the condition
(2) refers to a more relaxed tf-minimality criterion not discussed in Sect. 3, saying that “for every subset
function s with s , id, there is k ∈ I s.t. {s(T1), . . . ,s(Tn)},s(Tk) ̸|=S5 Π

⟨T ,Tk⟩”. To sum up, we have:

T ,T |=S5 Π
⟨T ,T ⟩ for every T ∈ T and (9)

for every subset function s , id, there is T ′ ∈ T s.t. {s(T)}T∈T ,s(T ′) ̸|=S5 Π
⟨T ,T ′⟩.

Since EHT-models of ES20b are formed in a relational structure, first we should refine Lemma 1.

Lemma 2 Let Π be an EASP-program. Let T be an S5-model, and let sr be a multi-valued subset
function on T s.t. sr = {(H,T) : TsrH}T∈T . For every T ∈ T , let H be s.t. TsrH. Then, we have:

{H : TsrH}T∈T , H |=S5 Π
⟨T ,T ⟩ iff {(H,T) : TsrH}T∈T , (H,T) |=EHT Π

∗.

Pursuing a similar proof, we can also capture EEMs of ES20b in EASP. While the line (9) remains the
same, we again obtain a more-relaxed tr-minimality condition compared to one proposed in Sect. 3:

for every multi-valued subset function sr s.t. , id,

{H : TsrH}T∈T , H′ ̸|=S5 Π
⟨T ,T ′⟩ for some T ′ ∈ T and for some H′ s.t. T ′srH′. (10)

The extensions of Lemma 1-2 to KD45 and SW5-model structures and reflecting generalised EEMs
in such weaker model structures to EASP are straightforward. We now perform the same task in the
opposite direction and embed Def. 4 into EEL domain. Using Lemma 1, T = {Ti}i∈I is a tf-minimal
S5-model of Π iff T ,Ti |=S5 Π

∗ for every i ∈ I and for every j ∈ I, we have

for every subset map s s.t. s|T\{T j} = id and s(T j) ⊂ T j, {(s(Ti),Ti)}i, (s(T j),T j) ̸|=EHT Π
∗. (11)

We leave it to the reader to generalise this result to tr-minimal S5-models of EASP by Lemma 2.

E.I. Su 213

Through the same approach, we try to analyse ES94-semantics: let T = {T1, . . . ,Tn} be a world-view
of an ES-program Π. By definition, T is the maximal set w.r.t. subset relation ⊆ satisfying (1) T |= ΠT

and (2) (T \{T })∪{H},H ̸|=ΠT for every H ⊂ T , for every T ∈ T . Notice that ΠT =Π⟨T ,Ti⟩ for every i ∈ I
as ES94-reduct eliminates only extended subjective literals. This definition, except maximality condition,
coincides with tf-minimal S5-model definition of EASP, and so with (11) by Lemma 1. However, {{p}}
is a world-view of p← Kp, but not a tf-minimal S5-model of Π. For some reasons, we cannot apply
Ferraris’ generalised lemma (i.e., Lemma 1) to ES94-semantics.

6 Conclusion

In this paper, we first discuss the problems that arise under Gelfond’s original ES94-semantics, aiming to
shed light on the underlying reasons for these issues. We also briefly overview the follow-up semantics,
that were primarily proposed to address the limitations of ES94. Next, we introduce a flexible and robust
framework for epistemic logic programs called EASP, which already accommodates Su’s traditional
tf-minimal S5-models, as studied in [15], and their novel variations known as tr-minimal S5-models.

We recognise that all existing epistemic equilibrium logics (EELs) in the literature share a two-step
world-view computation process. This motivates us to explore their similarities and beyond within the
EASP context. To this end, we generalise Ferraris’ lemma (see [3], p. 3), which establishes a correlation
between stable models and equilibrium models, to the epistemic case. We then examine how these EELs
are reflected within the EASP framework. This approach also allows us to investigate whether different
tf (tr) minimality methods, such as those presented in [15] and [18], produce the same results when
considered at least within the current EASP language fragment. It is worth noting that the technique in
[15] is slightly easier than that in [18], which raises an immediate research question for future studies.
Furthermore, Ferraris’ generalised lemmas lead to the strong equivalence characterisations of EASP-
programs through the logical equivalences of their translations in EHT, akin to Lifschitz et al.’s finding
[10] in regular ASP. Finally, future work will also involve a more detailed investigation of how Gelfond’s
ES94-semantics can be reflected into the EEL domain, following a similar approach as discussed in this
paper. This study will help us better identify the problems of ES94, as well as its possible similarities
with other ES-semantic approaches originally proposed in the EEL domain.

References
[1] Pedro Cabalar, Jorge Fandinno & Luis Fariñas del Cero (2020): Autoepistemic answer set programming.

Artif. Intell. 289, p. 103382. Available at https://doi.org/10.1016/j.artint.2020.103382.

[2] Luis Fariñas del Cerro, Andreas Herzig & Ezgi Iraz Su (2015): Epistemic Equilibrium Logic. In Qiang
Yang & Michael J. Wooldridge, editors: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, AAAI Press, pp. 2964–2970.
Available at http://ijcai.org/Abstract/15/419.

[3] Paolo Ferraris (2005): Answer Sets for Propositional Theories. In Chitta Baral, Gianluigi Greco, Nicola
Leone & Giorgio Terracina, editors: Logic Programming and Nonmonotonic Reasoning, 8th International
Conference, LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings, Lecture Notes in Computer
Science 3662, Springer, pp. 119–131. Available at https://doi.org/10.1007/11546207_10.

[4] Michael Gelfond (1991): Strong Introspection. In Thomas L. Dean & Kathleen R. McKeown, editors: Pro-
ceedings of the 9th National Conference on Artificial Intelligence, Anaheim, CA, USA, July 14-19, 1991,
Volume 1, AAAI Press / The MIT Press, pp. 386–391. Available at http://www.aaai.org/Library/
AAAI/1991/aaai91-060.php.

https://doi.org/10.1016/j.artint.2020.103382
http://ijcai.org/Abstract/15/419
https://doi.org/10.1007/11546207_10
http://www.aaai.org/Library/AAAI/1991/aaai91-060.php
http://www.aaai.org/Library/AAAI/1991/aaai91-060.php

214 Pearce’s Characterisation in an Epistemic Domain

[5] Michael Gelfond (1994): Logic Programming and Reasoning with Incomplete Information. Ann. Math. Artif.
Intell. 12(1-2), pp. 89–116. Available at https://doi.org/10.1007/BF01530762.

[6] Michael Gelfond (2011): New Semantics for Epistemic Specifications. In James P. Delgrande & Wolf-
gang Faber, editors: Logic Programming and Nonmonotonic Reasoning - 11th International Conference,
LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings, Lecture Notes in Computer Science
6645, Springer, pp. 260–265. Available at https://doi.org/10.1007/978-3-642-20895-9.

[7] Michael Gelfond & Vladimir Lifschitz (1988): The Stable Model Semantics for Logic Programming. In
Robert A. Kowalski & Kenneth A. Bowen, editors: Logic Programming, Proceedings of the 5th International
Conference and Symposium, Seattle, Washington, USA, August 15-19, 1988 (2 Volumes), MIT Press, pp.
1070–1080.

[8] Michael Gelfond & Vladimir Lifschitz (1991): Classical Negation in Logic Programs and Disjunctive
Databases. New Gener. Comput. 9(3/4), pp. 365–386. Available at https://doi.org/10.1007/
BF03037169.

[9] Patrick Thor Kahl (2014): Refining the semantics for epistemic logic programs. Ph.D. thesis, Texas Tech
University, Department of Computer Science, Lubblock, TX, USA.

[10] Vladimir Lifschitz, David Pearce & Agustín Valverde (2001): Strongly equivalent logic programs. ACM
Trans. Comput. Log. 2(4), pp. 526–541. Available at https://doi.org/10.1145/383779.383783.

[11] David Pearce (2006): Equilibrium logic. Ann. Math. Artif. Intell. 47(1-2), pp. 3–41, doi:10.1007/s10472-
006-9028-z.

[12] Grigori Schwarz (1992): Minimal Model Semantics for Nonmonotonic Modal Logics. In: Proceedings of the
Seventh Annual Symposium on Logic in Computer Science (LICS) ’92, Santa Cruz, California, USA, June
22-25, 1992, pp. 34–43, doi:10.1109/LICS.1992.185517.

[13] Ezgi Iraz Su (2015): Extensions of equilibrium logic by modal concepts. (Extensions de la logique d’équilibre
par des concepts modaux). Ph.D. thesis, Institut de Recherche en Informatique de Toulouse, France. Available
at https://tel.archives-ouvertes.fr/tel-01636791.

[14] Ezgi Iraz Su (2017): A Monotonic View on Reflexive Autoepistemic Reasoning. In Marcello Balduccini &
Tomi Janhunen, editors: Logic Programming and Nonmonotonic Reasoning - 14th International Conference,
LPNMR 2017, Espoo, Finland, July 3-6, 2017, Proceedings, Lecture Notes in Computer Science 10377,
Springer, pp. 85–100. Available at https://doi.org/10.1007/978-3-319-61660-5_10.

[15] Ezgi Iraz Su (2019): Epistemic Answer Set Programming. In Francesco Calimeri, Nicola Leone & Marco
Manna, editors: Logics in Artificial Intelligence - 16th European Conference, JELIA 2019, Rende, Italy,
May 7-11, 2019, Proceedings, Lecture Notes in Computer Science 11468, Springer, pp. 608–626. Available
at https://doi.org/10.1007/978-3-030-19570-0_40.

[16] Ezgi Iraz Su (2020): A Unifying Approach for Nonmonotonic S4F, (Reflexive) Autoepistemic Logic, and
Answer Set Programming. Fundam. Informaticae 176(3-4), pp. 205–234. Available at https://doi.org/
10.3233/FI-2020-1972.

[17] Ezgi Iraz Su (2021): Refining the Semantics of Epistemic Specifications. In Andrea Formisano, Yanhong An-
nie Liu, Bart Bogaerts, Alex Brik, Verónica Dahl, Carmine Dodaro, Paul Fodor, Gian Luca Pozzato, Joost
Vennekens & Neng-Fa Zhou, editors: Proceedings 37th International Conference on Logic Programming,
ICLP Technical Communications 2021, Porto (virtual event), 20-27th September 2021, EPTCS 345, pp.
113–126. Available at https://doi.org/10.4204/EPTCS.345.25.

[18] Ezgi Iraz Su, Luis Fariñas del Cerro & Andreas Herzig (2020): Autoepistemic equilibrium logic and epistemic
specifications. Artif. Intell. 282, p. 103249. Available at https://doi.org/10.1016/j.artint.2020.
103249.

[19] Kewen Wang & Yan Zhang (2005): Nested Epistemic Logic Programs. In Chitta Baral, Gianluigi Greco,
Nicola Leone & Giorgio Terracina, editors: Logic Programming and Nonmonotonic Reasoning, 8th Inter-
national Conference, LPNMR 2005, Diamante, Italy, September 5-8, 2005, Proceedings, Lecture Notes in
Computer Science 3662, Springer, pp. 279–290. Available at https://doi.org/10.1007/11546207_22.

https://doi.org/10.1007/BF01530762
https://doi.org/10.1007/978-3-642-20895-9
https://doi.org/10.1007/BF03037169
https://doi.org/10.1007/BF03037169
https://doi.org/10.1145/383779.383783
https://doi.org/10.1007/s10472-006-9028-z
https://doi.org/10.1007/s10472-006-9028-z
https://doi.org/10.1109/LICS.1992.185517
https://tel.archives-ouvertes.fr/tel-01636791
https://doi.org/10.1007/978-3-319-61660-5_10
https://doi.org/10.1007/978-3-030-19570-0_40
https://doi.org/10.3233/FI-2020-1972
https://doi.org/10.3233/FI-2020-1972
https://doi.org/10.4204/EPTCS.345.25
https://doi.org/10.1016/j.artint.2020.103249
https://doi.org/10.1016/j.artint.2020.103249
https://doi.org/10.1007/11546207_22

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 215–228, doi:10.4204/EPTCS.416.19

© A. Beiser, S. Hahn & T. Schaub
This work is licensed under the
Creative Commons Attribution License.

ASP-driven User-interaction with Clinguin

Alexander Beiser Susana Hahn Torsten Schaub

University of Potsdam, Germany Potassco Solutions, Germany

alexander.beiser@tuwien.ac.at hahnmartinlu@uni-potsdam.de torsten@uni-potsdam.de

We present clinguin, a system for ASP-driven user interface design. Clinguin streamlines the develop-
ment of user interfaces for ASP developers by letting them build interactive prototypes directly in
ASP, eliminating the need for separate frontend languages. To this end, clinguin uses a few dedicated
predicates to define user interfaces and the treatment of user-triggered events. This simple design
greatly facilitates the specification of user interactions with an ASP system, in our case clingo.

1 Introduction

The growing popularity of Answer Set Programming (ASP; [13]) in both academia and industry necessi-
tates the development of user-friendly graphical interfaces to cater to end users. This is especially critical
for interactive applications where users engage in iterative feedback loops with ASP systems. Examples
include timetabling or product configuration tools. This leads to challenges in frontend development and
requires skills in areas beyond ASP development. In addition, custom solutions have a limited reach, as
they cannot be easily adapted.

Clinguin addresses this challenge and streamlines User Interface (UI) development for ASP developers
by letting them build interactive prototypes directly in ASP, eliminating the need for separate frontend
languages. To this end, clinguin uses a few dedicated predicates to define UIs and the treatment of
user-triggered events. This simple design greatly facilitates the specification of user interactions with an
ASP system, in our case clingo [12]. Our approach shares similarities with the ASP-driven visualization
system clingraph [10]. In fact, clinguin can be regarded as the interactive counterpart of clingraph, whose
single-shot approach lacks any interaction capabilities.

In what follows, we rely on a basic acquaintance with ASP, the ASP system clingo [7], and some
rudimentary Python knowledge. We explain specialized concepts as they are introduced throughout the
text.

2 Architecture and Workflow of clinguin

Clinguin uses a client-server architecture, where communication occurs via the HTTP protocol (RESTful1).
JSON is used for message content between client and server. The server leverages clingo (5.7) and
calculates the information needed to build the UI; this is used by the client to render the corresponding UI
and update it based on the user’s interaction. The update is either handled directly at the client-side or
sent back to the server for further processing, triggering a new interaction loop.

Figure 1 illustrates the architecture and workflow of clinguin. It focuses on the key technical
components: server, client, and user interface (UI). Furthermore, it shows how the UI is generated and
how user interactions are handled within the system.

1https://en.wikipedia.org/wiki/REST

http://dx.doi.org/10.4204/EPTCS.416.19
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/REST

216 ASP-driven User-interaction with Clinguin

USER

LOAD

UI

CLIENT

GET
server

POST
server

Update
context

context
{k:v}

Update
attribute

Render UI

SERVER

o
p
e
ra

ti
o
n
s

Execute
operation

domain-control

assumptions
externals
atoms

domain files

Update UI state

domain-state
union any/1

intersection all/1

(stable) model

clinguin *

ui-control

ui files

ui-state
elem/3

attr/3

when/4

JSON
JSON
UI

JSON
UI

event

call

context

up
da
te

solve

solve

POST

GET

200

Figure 1: Architecture and Workflow of clinguin

In what follows, we illustrate clinguin’s approach with a detailed, step-by-step walkthrough using
a simple running example about assigning people to seats where a cat person and a dog person cannot
share the same table. The corresponding problem instance and encoding are given in Listings 1 and 2,
respectively. We refer to them as the domain files among the input files; they are highlighted in pink in
Figure 1.

1 person("Susana",cat). person("Alexander",cat). person("Torsten",dog).
2 seat ((1,1 ..2)). seat ((2,1 ..3)).

Listing 1: A simple problem instance (ins.lp)

1 {assign(P,S):seat(S)}:- person(P,_).

3 :- person(P,_), #count{S:assign(P, S)}!=1, cons(exacly_one, _).
4 :- assign(P,S), assign(P’,S), P’>P, cons(only_one, _).
5 :- assign(P,(T,_)), assign(P’,(T,_)), person(P,cat), person(P’,dog),
6 cons(different_type, _).

8 cons(exacly_one, "All people need exactly one seat").
9 cons(only_one, "Two people can not be seated on the same seat").

10 cons(different_type, "All people on a table must prefer the same pet").

Listing 2: A simple problem encoding (enc.lp)

The choice in Line 1 of Listing 2 generates possible assignments of a person p to a seat s. Each seat
s is defined by a pair (t,c) of a numbered table t and chair c. Lines 3 to 6 constrain the assignment,
ensuring that a person is assigned to exactly one seat where everyone at the table shares the same pet
preference. Each of these integrity constraints is conditioned with an instance of cons/2 defined as
facts in Lines 8 to 10. The first argument of cons/2 identifies the constraint violation, while the second
argument provides the corresponding user-friendly explanation. Although the introduction of these atoms
may appear unnecessary at this point, they will be used to identify constraint violations in Section 3.

The server is started with the domain and UI files as command-line arguments:

clinguin server --domain -files ins.lp enc.lp --ui-files ui-tables.lp

Using the domain files, the server creates the clingo object domain-control (in purple in Figure 1), which
employs multi-shot solving by default. The other input files, called ui-files and given in pink in Figure 1,

A. Beiser, S. Hahn & T. Schaub 217

are used to generate a single stable model composed of atoms defining the layout, style, and functionality
of the interface, collectively forming the ui-state. To this end, another clingo object, ui-control in purple
in Figure 1, is restarted on each update.

Upon launching the client with ‘clinguin client’, it requests the UI state (or ui-state) from the
server (see the GET arrow in Figure 1). Once received, the client utilizes a front-end language to render
the corresponding user interface. We use Angular2 as front-end language with Bootstrap3 as a toolkit for
customization. Subsequent user interactions with the UI (usually) generate new requests to the server,
providing details about the selected operations. These operations are predefined by the server and allow
users to interact with the domain-control in different ways. Examples include adding a user selection as
an assumption to the solver, setting the value of an external atom, or obtaining the next solution4. Once
the server completes the selected operations, it constructs a hierarchical JSON structure of the updated
ui-state and returns it to the client for rendering.

The ui-state is defined by predicates elem/3, attr/3 and when/4, for specifying the UI’s layout,
style and functionality, respectively (see green box with header ui-state in Figure 1). The corresponding
atoms are mapped into Python classes using clorm5, a Python library that provides an object-relational
mapping interface to clingo. An atom elem(X,T,X’) defines an element X of type T inside element X’.
Such UI elements are the visual representations of objects or features in an interface, such as a button,
text field, dropdown menu, and more4. The attributes of an element, such as position and style, are
specified by attr(X,K,V), where X is an element, and K and V denote the attribute’s name (key) and
value, respectively.

The reactive behavior of the UI is defined by atoms of form when(X,E,A,P), which can be interpreted
as expressing: “When event E is triggered on element X, it is followed by an action A with arguments P”.
An event refers to an action initiated by the user, such as clicking, double-clicking, or entering text. An
action is a system response triggered by the UI event. This action must be one of the following:

• a call to the server (POST operation), where P represents one or multiple server operations,

• a local attribute update, where P is a triple (X’,K,V) leading to an update of attribute K on element
X’ by V,

• a local update to a context defined as a dictionary, where P is the key-value pair to update and
keep as local memory.

The atoms constituting the ui-state are generated from the encodings provided as ui-files along
with facts describing the domain-state (see green box with the identical header in Figure 1). The
latter state provides valuable insights into the current state of the domain-control object, including the
intersection and union of the stable models generated by the domain-control, a single stable model for
focused exploration, and internal information encapsulated in atoms whose predicates typically start with
clinguin. Collectively, these facts represent relevant information for generating the UI.

Let us illustrate this with our example. Listing 3 shows the ui-file generating the UI snapshots in
Figure 2. Line 1 creates a window element labeled w and places it inside the overarching root element.
Line 2 adds an attribute to window w stating that its children elements form a row. Similarly, Line 4 creates
a container tables and places it inside window w. This container groups all elements representing tables.
Accordingly, Line 6 defines a container for each table table(T) with number T. The table numbers are

2https://angular.io
3https://getbootstrap.com
4For the full list of supported elements and operations, we refer the reader to the system’s documentation at https:

//clinguin.readthedocs.io/en/latest.
5https://github.com/potassco/clorm

https://angular.io
https://getbootstrap.com
https://clinguin.readthedocs.io/en/latest
https://clinguin.readthedocs.io/en/latest
https://github.com/potassco/clorm

218 ASP-driven User-interaction with Clinguin

1 elem(w, window, root).
2 attr(w, flex_direction, row).

4 elem(tables, container, w).

6 elem(table(T), container, tables):- seat((T,_)).
7 attr(table(T), order, T):- seat((T,_)).
8 attr(table(T), width, 200): - seat((T,_)).
9 attr(table(T), class, ("bg -primary";"bg -opacity -25";"rounded";

10 "d-flex";"flex -column";"align -items -start";
11 "p-2";"m-2"
12)):- seat((T,_)).

14 elem(table_label(T), label, table(T)):- seat((T,_)).
15 attr(table_label(T), order, 1):- seat((T,_)).
16 attr(table_label(T), label, @concat("Table",T)):- seat((T,_)).

18 elem(seat_dd((T,C)), dropdown_menu, table(T)):- seat((T,C)).
19 attr(seat_dd((T,C)), order, C+1):- seat((T,C)).
20 attr(seat_dd(S), class, ("btn -sm";"btn -primary";"m-2")):- seat(S).
21 attr(seat_dd(S), selected, P):- _all(assign(P,S)).

23 elem(seat_ddi(S,P), dropdown_menu_item, seat_dd(S)):-_any(assign(P,S)).
24 attr(seat_ddi(S,P), label, P):- _any(assign(P,S)).
25 when(seat_ddi(S,P), click, call, add_assumption(assign(P,S), true)):-
26 _any(assign(P,S)).

Listing 3: An encoding for table handling (ui-tables.lp)

drawn from the instance using atoms with predicate seat/1 (as seen in Listing 1). Line 7 uses attribute
order to order tables based on their number. Similarly, Line 8 sets the width of these elements.

In HTML, the class attribute specifies one or more class names for an element. These class names
correspond to styles defined in a style sheet, which determines the visual properties of the element.
Bootstrap provides a predefined set of classes that help ensure consistent styling across a user interface.
As common in UI design, these classes draw from a custom color palette. For clinguin, we crafted this
color palette with primary (blue) and secondary (purple) colors as well as special colors representing
information, warnings and errors. Lines 9 to 12 set eight of such Bootstrap class names for each table
element. This is done via clingo’s pooling operation ‘;’ to expand rules. In detail, the class names in
Line 9 address the background color, opacity and rounded corners. Line 10 deals with the orientation of
all elements in the container. And Line 11 addresses padding and margin.

Lines 14 to 16 create a label element with the table number as title in the first position of the table
container. To facilitate this, clinguin provides several external Python functions, such as @concat for
label assembly Line 16.

So far, we only used ASP to generate a set of facts capturing static aspects of a user interface. Next,
we want to leverage ASP to present users with a well-defined set of choices for selection. To this end,
we differentiate between necessary and possible selections in view of what is already chosen by the
user. These selections can be captured via the intersection and union of the stable models of the domain
files, while also incorporating the user’s selections. A necessary selection belongs to all stable models,
and a possible one to at least one. In technical terms, this is achieved by manipulating and reasoning
with the ASP system clingo encapsulated within the domain-control object. Recall that the latter is

A. Beiser, S. Hahn & T. Schaub 219

initialized with the domain files. User selections can alternatively be incorporated into the domain-control
object in terms of assumptions, externals, or regular atoms (cf. [12]). To further include atoms belonging
to the intersection and union of the stable models, we reify them via predicates _all/1 and _any/1,
respectively, and add the resulting atoms to the current domain-state. This is accomplished by two
consecutive invocations to the current domain-control object, once setting clingo option –enum-mode to
cautious and then to brave. Although predicates _all/1 and _any/1 resemble epistemic operators,
their usage is restricted to passing information from the domain to the UI side.

Now, let us explore how clinguin manages this in our running example. Lines 18 to 21 define a
dropdown_menu for each seat and add it to the corresponding table container. The heading text of each
menu is defined with attribute selected. We use this attribute to indicate necessary selections in Line 21.
Only if a person P is assigned the same seat S in all stable models, expressed by _all(assign(P,S)),
its name is shown as the respective menu text. Similarly, Lines 23 to 25 define all possible seat selections
by dropdown_menu_item[s] in terms of _any(assign(P,S)).

Line 25 dictates the actions occurring when a user click[s] on an item within the dropdown menu.
If so, a call action is initiated and transmitted to the server. In our case, we model user selections as
assumptions. Accordingly, server operation add_assumption is invoked with arguments assign(p,s)
and true, reflecting the user’s selection of person p at seat s. This operation results in the addition of
atom assign(p,s) to the domain-control object as a true assumption.6

Semantically, this amounts to adding the integrity constraint ‘:- not assign(p,s).’ and thus
forcing the domain encoding to infer assign(p,s). All this is reflected by the upper path from the UI to
domain-control in Figure 1.

Figure 2: User interaction via mouse actions using ui-file ui-tables.lp.

The second screenshot in Figure 2 shows that initially all persons are possible selections for the first
seat at Table 1. Once Alexander’s seat is chosen, clinguin adds the corresponding assumption to the
domain-control object. This automatically leads to Susana’s assignment to the second seat, since all
resulting stable models agree on this. Moreover, all three seats at Table 2 have now only the single option
Torsten left, since none of the remaining stable models seats Alexander or Susana at this table.

For further illustration, we now extend the functionality of our example by solution browsing. That
is, we add Listing 4 to Listing 3 and continue the user interaction from Figure 2 in Figure 3. To begin
with, Lines 1 to 3 create a menu_bar along with a title and an icon.7 Lines 5 to 8 add a button to the
menu_bar to iterate through solutions. When the button is clicked, the server operation next_solution
is called. This operation computes a new stable model for exploration and adds it to the domain-state.

While the previous part of the UI encoding fixes static aspects of the user interface, we now turn
to the dynamic part. Our design of solution browsing revolves around displaying the choices from the

6As discussed below, assumptions are recorded via predicate _clinguin_assume/2 in the domain-state.
7For handling icons, we use the icon library Font Awesome https://fontawesome.com.

https://fontawesome.com

220 ASP-driven User-interaction with Clinguin

1 elem(menu_bar, menu_bar, w).
2 attr(menu_bar, title, "Table placement").
3 attr(menu_bar, icon, "fa -utensils").

5 elem(menu_bar_next, button, menu_bar).
6 attr(menu_bar_next, label, "Next").
7 attr(menu_bar_next, icon, "fa -forward -step").
8 when(menu_bar_next, click, call, next_solution).

10 attr(seat_dd(S), selected, P):- assign(P,S), _clinguin_browsing.
11 attr(seat_dd(S), class, "text -success"):- _clinguin_browsing,
12 assign(P,S), not _all(assign(P,S)).
13 attr(seat_dd(S), class, "opacity -75"):- _all(assign(P,S)),
14 not _clinguin_assume(assign(P,S), true).

Listing 4: An encoding for menu handling (ui-menu.lp)

current stable model stored in the domain-state. This approach allows us to differentiate between three
types of selections: user selections, derived necessary selections, on which all stable models agree,
and choices from the stable model under exploration. To control this behavior, we rely upon the atom
_clinguin_browsing, whose presence in the domain-state indicates whether clinguin is in browsing
mode. Recall that we show necessary selections in the UI by setting the selected attribute of the
dropdown menu (in Line 21 of Listing 3). The same attribute is used in Line 10 to visualize choices of the
stable model at hand, when in browsing mode. To visually distinguish the different choices, we reduce the
opacity of derived necessary choices and display non-necessary choices from the stable model at hand in
green text; user selections remain unchanged. This is done in Lines 11 to 14. The first rule displays a seat
assignment in green text, viz. "text-success", if it belongs to the explored but not all stable models.
The second rule reduces the opacity of seat selections, which belong to all stable models without being
enforced by a user selection. Since we represent user choices as assumptions, we can easily determine if a
seat selection originated from the user by verifying whether it was explicitly assumed or not. The fact that
clinguin records all current assumptions in the domain-state via predicate _clinguin_assume/2 in their
reified form explains the condition in Line 14.

Figure 3 shows the effects of user interactions after performing the actions from Figure 2. Unlike

Figure 3: User interaction via mouse actions using UI files ui-tables.lp and ui-menu.lp.

above, the opacity of the dropdown for the second seat of Table 1 is now reduced, indicating that this
information is derived and not selected. The user then clicks the Next button three times to iterate through
all possible solutions. These solutions show the three alternative seat assignments for Torsten in green.

Let us take our example a step further and explore how clinguin incorporates user input using modals,
that is, UI elements that appear on top of the UI and temporarily deactivate the underlying content.

A. Beiser, S. Hahn & T. Schaub 221

1 elem(people, container, w).

3 elem(person(P), button, people):- person(P,_).
4 attr(person(P), label, P):- person(P,_).
5 attr(person(P), class, ("disabled";"m-2";"btn -sm")):- person(P,_).
6 attr(person(P), class, ("btn -outline -secondary")):- person(P,cat).
7 attr(person(P), class, ("btn -outline -warning")):- person(P,dog).
8 attr(person(P), icon, @concat("fa -",O)):- person(P,O).

10 elem(add_person, button, people).
11 attr(add_person, label, "Add person").
12 attr(add_person, icon, "fa -user -plus").
13 attr(add_person, class, ("btn -info";"m-2")).
14 when(add_person, click, update, (add_modal, visibility, shown)).

16 elem(add_modal, modal, w).
17 attr(add_modal, title, "Add person").
18 elem(modal_content, container, add_modal).
19 attr(modal_content, class, ("d-flex";"flex -column")).

21 elem(name_tf, textfield, modal_content).
22 attr(name_tf, placeholder, "Enter the name").
23 attr(name_tf, order, 1).
24 attr(name_tf, width, 250).
25 when(name_tf, input, context, (name, _value)).

27 elem(btns_container, container, modal_content).
28 attr(btns_container, class, ("d-flex";"flex -row";"justify -content -end")).
29 attr(btns_container, order, 2).

31 pet(cat;dog).
32 elem(add_btn(O), button, btns_container):- pet(O).
33 attr(add_btn(O), label, "Add"):- pet(O).
34 attr(add_btn(cat), class, ("m-1";"btn -secondary";"ml -auto")):- pet(O).
35 attr(add_btn(dog), class, ("m-1";"btn -warning";"ml -auto")):- pet(O).
36 attr(add_btn(O), icon, @concat("fa -",O)):- pet(O).
37 when(add_btn(O), click, context, (pet, O)):- pet(O).
38 when(add_btn(O), click, call,
39 add_atom(person(_context_value(name,str), _context_value(pet)))):- pet(O).

Listing 5: An encoding for instance generation (ui-people.lp)

More precisely, we extend our UI encoding with Listing 5 to enable users to interactively add people to
the problem instance, as showcased in Figure 4.

To begin with, we create in Line 1 a container to group all people in the instance. In Lines 3 to 8 each
person is represented as a disabled button, whose color depends on the preferred pet. We use buttons
rather than labels to leverage on the icon functionality for representing pets.

Lines 10 to 13 define the button for adding new persons to the instance. Once this button is clicked,
Line 14 prescribes an update operation that pops up the modal element by setting its visibility
attribute to shown (see the second snapshot in Figure 5). As shown in Figure 1, this action is performed
locally in the client without calling the server.

The actual modal element and its main container are defined in Lines 16 to 19. The first element in the
modal is a textfield for user input; it is defined in Lines 21 to 25. Whenever a user types an input in the
textfield, Line 25 triggers the action context, which saves it in the dictionary of the same name in the

222 ASP-driven User-interaction with Clinguin

client (see Figure 1). The two parameters indicate that the key name is assigned the value of the input held
by placeholder _value. Essentially, the user’s input is assigned to a specific key within the dictionary.
The actual context dictionary is stored locally on the client. Any further user input in the textfield updates
the value associated with the same key in the context dictionary, effectively replacing the previous input.
The entire context dictionary is sent to the server along with every call action triggered by the user. Once
the server sends a response, the context dictionary is cleared on the client-side, potentially to prepare for
new interactions.

Lines 27 to 29 create a container for two additional buttons. They are defined in Lines 31 to 38, one
for adding cat persons and another for adding dog persons. Most interesting is the reactivity of the buttons
specified in Lines 37 and 38. First of all, we note that a single event can trigger several actions. Among
them, local actions are executed before call actions.8 The action in Line 37 is a local one and adds
the selected pet to the context dictionary, as described above for the name entry. Unlike this, Lines 38
and 39 initiate a server call adding atoms representing new persons, using predicate person/2. The
arguments for the atom are drawn from the context dictionary. This is accomplished via the lookup
function _context_value(K) which yields the dictionary value for the key K. This replacement is done
in the client and thus makes sure that the values are present before calling the server. To provide further
validation tools, this lookup function allows for two optional arguments indicating the expected type T
and a default value D, _context_value(K,T,D). Possible values for types are str, int and const for
strings, integers and terms, respectively. By including a default value the presence of a value becomes
optional.

Figure 4: User interaction via mouse actions using ui-tables.lp, ui-menu.lp, ui-people.lp.

Figure 5 shows how a new person can be added by a few clicks. A click on the button ‘Add person’
changes the visibility of the modal so that it appears in the window. The user then types the person’s
name, viz. Ana, and clicks on the left button to add Ana as a dog person. The last screenshot shows Ana
as part of the people. This is internally reflected by the addition of atom person("Ana",dog) to the
domain-control object.

While the above focuses on instance generation, it’s worth mentioning that clinguin also allows users
to download interactively entered problem instances.

3 Extensibility

Clinguin offers an open modular design that is easily extensible. This allows us to implement extensions
without changing the overall workflow. On the server side, this is done by modifying the backend
component, which provides a layer between the bare ASP solver and the user. To achieve this extensibility,

8When multiple call actions are triggered by the same event, an order on the corresponding operations can be imposed by
including them in a tuple as the last argument of a single when atom, reflecting the desired order of execution.

A. Beiser, S. Hahn & T. Schaub 223

we abstract the responsibilities of backends into different key sections of clinguin’s workflow that can be
customized: the set of callable operations, the way the control object is handled (solving, grounding, model
handling, etc.), the atoms included in the domain-state, the way the UI is updated, and the options passed
when starting the server. Currently, clinguin offers a default backend using clingo, which implements
all main functionalities for single- and multi-shot solving [8] via clingo’s API. Additionally, it includes
specialized backends for clingo[DL], a clingo extension with difference constraints [11], clingraph, a
clingo extension with visualization capabilities [10], and last but not least an explanation backend, which
we detail below. On the client side, the frontend component can be exchanged to accommodate different
GUIs. Currently, clinguin offers the web-based frontend Angular, used in the paper at hand, and tkinter, the
standard Python interface to the Tcl/Tk GUI toolkit. Alternative GUI frameworks are easily incorporated,
mainly because the client-server communication of clinguin is standardized by a JSON representation.

3.1 Case study: A backend adding explanations

This section focuses on extending clinguin’s backend to provide users with improved feedback when
their choices lead to an unsatisfiable scenario. The first part involves pinpointing specific conflicts within
the user’s selections that impede finding a solution. The second one builds upon this by focusing on
presenting error messages tailored to the specific reasons for unsatisfiability.

1 elem(seat_ddi(S,P), dropdown_menu_item, seat_dd(S)):-
2 not _any(assign(P,S)), person(P,_), seat(S).
3 attr(seat_ddi(S,P), label, P):-
4 not _any(assign(P,S)), person(P,_), seat(S).
5 when(seat_ddi(S,P), click, call, add_assumption(assign(P,S), true)):-
6 not _any(assign(P,S)), person(P,_), seat(S).
7 attr(seat_ddi(S,P), class, "text -danger"):-
8 not _any(assign(P,S)), person(P,_), seat(S).
9 attr(seat_dd(S), class, ("text -danger")):- _clinguin_mus(assign(P,S)).

Listing 6: UI to handle basic explanations (ui-explain.lp)

We start by revealing all options, including those not leading to any solution. This is done in Listing 6
by exclusively using features explained above. The encoding adds all infeasible options in Lines 1 to 6
and informs the user that they belong to no solution in Line 7 (ignoring Line 9 for now). The addition of
dropdown-menu-item[s] relies on the input from the standard backend. Infeasible choices are indicated
by red text. Note the use of negative literals with predicate _any to identify selections belonging to no
stable model. The effect of this approach is illustrated in the second snapshot of Figure 5.

Figure 5: Example user interaction with the explanation extension.

Our first approach hinges on identifying user choices that prevent a solution. Here is where the
explanation backend comes into play. Remember that we model user selections as assumptions. Modern

224 ASP-driven User-interaction with Clinguin

ASP solvers like clasp [3] or wasp [2] can pinpoint unsatisfiable sets of assumptions when solving an
ASP program. We exploit this capability in clinguin’s explanation backend by including instances of the
special predicate _clinguin_mus/1 in the domain-state. The arguments of all such instances represent a
minimal9 set of assumptions that, when combined, lead to an unsatisfiable scenario.

Clinguin’s _clinguin_mus/1 predicate helps us pinpoint infeasible user choices. We leverage this
predicate in Line 9 to highlight in red the dropdown_menu[s] of the assignments causing the issue
(extending Lines 18 to 21 in Listing 3). Additionally, to only show the selection in menus associated with
user choices, we modify Line 21 in Listing 3, and replace predicate _all with _clinguin_assume in the
body of the rule:

21 attr(seat_dd(S), selected, P):- _clinguin_assume(assign(P,S),true).

This guarantees that the text in the dropdown menus reflects the user’s selection, even if it leads to an
unsatisfiable result. When an assumption causes an unsatisfiable scenario, the facts in the domain-state
coming from the domain-control (including the stable model, _any, and _all) are retrieved from the
last successful computation. Meanwhile, those indicating the state of unsatisfiability and selections
(given by _clinguin_mus/1 and _clinguin_assume/2) are effectively updated. Therefore, in this
extension handling unsatisfiable scenarios, using predicate _clinguin_assume instead of _all ensures
the selection is accurately displayed.

An interaction using this UI feature is shown in Figure 5, ending in Option 1. As before, we start by
selecting Alexander for the first seat at Table 1. However, unlike Figure 2–4, the second seat remains
unassigned due to the code modification in Listing 3. Clicking on this reveals both Torsten and Alexander
highlighted in red. This signifies that neither option leads to a valid solution. Now, imagine a curious
user selects Torsten despite the red color, aiming to understand why this choice is infeasible. As a result,
the dropdown menus of the specific assumptions causing the unsatisfiability are highlighted in red. In
this simple example, it might only indicate a conflict with Alexander’s previous assignment. However, in
more complex scenarios, only a subset of assumptions would typically be highlighted, pinpointing the
exact source of the infeasibility.

The interaction leading to Option 1 in Figure 5 is obtained by the following command:

clinguin client -server --domain -files ins.lp enc.lp \
--ui-files ui -tables.lp ui-menu.lp ui -people.lp ui -explain.lp \
--backend ExplanationBackend

This command adds ui-explain.lp and the changed ui-tables.lp file to the UI files and moreover
an additional parameter to indicate the use backend ExplanationBackend.

Our second part of the extension aims at providing user-friendly explanations in natural language
when their choices lead to dead ends. For instance, in our running example, Alexander and Torsten cannot
be placed at the same table because they have conflicting pet preferences. Ideally, the UI should display
an error message that clearly explains this specific reason whenever both are assigned to the same table.
The key to generating these explanations lies in their connection to the domain files. Since explanations
are specific to the problem being modeled, we leverage the concept of integrity constraints defined in
those files. By tying unsatisfiability to the violation of these constraints, we can precraft corresponding
explanations that pinpoint the exact reason behind the dead end.

To this end, we use the binary predicate cons/2 in Listing 2 to identify and trigger constraints. In
essence, each integrity constraint is paired with a cons/2 instance that acts as a translator, converting
the technical constraint violation into an understandable explanation for the user. In order to have these

9The set is minimal in the sense that removing any of its assumptions leads to a satisfiable result.

A. Beiser, S. Hahn & T. Schaub 225

atoms as part of our minimal set of assumptions, these backend extension performs a transformation of the
domain files. This transformation will (internally) replace facts matching the predicate signature cons/2
by a choice, providing the option to activate or deactivate the corresponding constraint when searching for
unsatisfiable assumptions. Then, we treat each instance of cons/2 as a true assumption, which keeps all
original integrity constraints intact.

Now that we understand how cons/2 instances link constraints to explanations, let us explore how
these explanations are triggered within the system. Whenever a specific cons/2 instance ends up in an
unsatisfiable set of atoms, it indicates that the constraint must be active to trigger the inconsistency, which
can be interpreted as a violation of the corresponding constraint. This violation triggers the explanation
associated with that cons/2 instance in the UI by opening a message box displaying the explanation.
This is defined in Listing 7 for cons/2 instances belonging to the current set of assumptions held in the
server’s domain-state.

1 elem(message_unsat(N), message, w):-_clinguin_mus(cons(N,M)).
2 attr(message_unsat(N), title, "Explanation"):-_clinguin_mus(cons(N,M)).
3 attr(message_unsat(N), message, M):-_clinguin_mus(cons(N,M)).
4 attr(message_unsat(N), type, error):-_clinguin_mus(cons(N,M)).

Listing 7: UI to handle complex explanations (ui-explain-msg.lp)

Finally, we can engage the interaction leading to Option 2 in Figure 5 as follows:

clinguin client -server --domain -files ins.lp enc.lp \
--ui-files ui -tables.lp ui-menu.lp ui-people.lp \

ui -explain.lp ui-explain -msg.lp \
--backend ExplanationBackend --assumption -signature cons ,2

We add ui-explain-msg.lp to the previous set of UI files, and indicate the spacial treatment of facts
matching a predicate signature by using the command line option --assumption-signature in a generic
way.

We now address the implementation details of this clinguin backend. The ExplanationBackend
extends the available standard backend for clingo, viz ClingoBackend. In detail, it alters the setup
to keep track of the internal representation of the assumptions, registers a new command line option
assumption-signature, and adds (minimally) unsatisfiable sets of assumptions to the domain-state.

Listing 8 presents the complete Python implementation of the ExplanationBackend class. The
classmethod in Lines 4 to 10 adds the --assumption-signature argument to the command line.
Its value is then processed in the method _init_command_line to extract the predicate signatures,
as shown in Lines 12 to 18. Of special interest is Line 18, which creates an object of the class
AssumptionTransformer, defined by the Python library clingexplaid 10. This library provides the
necessary functionalities to transform the domain files and minimize the set of unsatisfiable assumptions.
The transformer is then used in the _load_file method (Lines 24 to 26) to change how files are loaded
into the domain-state in the standard backend. Specifically, it transforms the facts in these files into
choices based on the given predicate signatures. This object is also used after grounding (Lines 28 to 32)
to retrieve the list of assumptions from the predicate signature and store them. In Lines 21 to 22, these
assumptions are included in the property _assumption_list, which is used as a parameter when solving.
Finally, the domain constructor in Lines 39 to 44 returns a program that gets added to the domain-state
by the method _init_ds_constructors in Lines 34 to 36. Line 40 adds a #defined statement for
the predicate _clinguin_mus/1 to avoid warnings. The code in Lines 41 to 43 is executed only when
the output of the domain-control is unsatisfiable. In this case, it retrieves a minimal set of unsatisfiable

10https://github.com/potassco/clingo-explaid

https://github.com/potassco/clingo-explaid

226 ASP-driven User-interaction with Clinguin

assumptions using an object of the class CoreComputer from the same library, which is added to the
domain-state (Line 43). The decorator @cached_property ensures efficient computation by reusing
results unless the cache is invalidated.

4 Related work

The creation of problem-specific interfaces has been a long standing challenge for declarative methods.
A Prolog-based method using XML was investigated in [15]. [14] focus on automatic user interface
generation with model-based UIs. This is extended with contextual information and ASP in [16]. In the
context of non-interactive ASP visualizations, recent advancements have led to clingraph [10]. The need
for interactivity in ASP was addressed in previous studies [9], and later incorporated into clingo’s API
with multi-shot capabilities [12], enabling continuous solving of logic programs that undergo frequent
changes. Tools have also emerged to facilitate ASP program development, such as ASP Chef [1] for task
pipelining, and various Integrated Development Environments [6, 4]. These tools align with advancements
in related areas like argumentation [5]. In contrast to existing work, clinguin focuses on creating modern
domain-specific interactive user interfaces in ASP.

5 Conclusion

We have presented clinguin, an easy yet expressive tool for creating user interfaces within ASP. This
application relies on ASP features, like union and intersection of stable models, assumptions, and
minimally unsatisfiable sets. A central idea is to reify these concepts and to keep them along with a stable
model in focus as a set of atoms, which is then used by a UI encoding to generate a user interface and
react to user events. Meanwhile, clinguin has become invaluable in our industrial applications since it
greatly extends the rapid prototyping nature of ASP. Clinguin (version 2.0) is freely available as open-
source software at https://github.com/potassco/clinguin; its documentation is obtained at https:
//clinguin.readthedocs.io. The distribution contains several substantial use-cases, illustrating the
full power of clinguin.

References

[1] M. Alviano, D. Cirimele & L. Rodriguez Reiners (2023): Introducing ASP recipes and ASP Chef. In J. Arias,
S. Batsakis, W. Faber, G. Gupta, F. Pacenza, E. Papadakis, L. Robaldo, K. Rückschloß, E. Salazar, Z. Saribatur,
I. Tachmazidis, F. Weitkämper & A. Wyner, editors: Proceedings of the International Conference on Logic
Programming Workshops (ICLP’23), CEUR Workshop Proceedings 3437, CEUR-WS.org. Available at
https://ceur-ws.org/Vol-3437.

[2] M. Alviano, C. Dodaro, S. Fiorentino, A. Previti & F. Ricca (2023): ASP and subset minimality: Enumeration,
cautious reasoning and MUSes. Artificial Intelligence 320, p. 103931, doi:10.1016/J.ARTINT.2023.103931.

[3] B. Andres, B. Kaufmann, O. Matheis & T. Schaub (2012): Unsatisfiability-based optimization in clasp.
In A. Dovier & V. Santos Costa, editors: Technical Communications of the Twenty-eighth International
Conference on Logic Programming (ICLP’12), 17, Leibniz International Proceedings in Informatics (LIPIcs),
pp. 212–221, doi:10.4230/LIPIcs.ICLP.2012.211.

[4] P. Busoniu, J. Oetsch, J. Pührer, P. Skocovsky & H. Tompits (2013): SeaLion: An eclipse-based IDE for
answer-set programming with advanced debugging support Theory and Practice of Logic Programming 13,
4-5, pp. 657–673. doi:10.1017/S1471068413000410.

https://github.com/potassco/clinguin
https://clinguin.readthedocs.io
https://clinguin.readthedocs.io
https://ceur-ws.org/Vol-3437
https://doi.org/10.1016/J.ARTINT.2023.103931
https://doi.org/10.4230/LIPIcs.ICLP.2012.211
https://doi.org/10.1017/S1471068413000410

A. Beiser, S. Hahn & T. Schaub 227

[5] R. Dachselt, S. A. Gaggl, M. Krötzsch, J Méndez, D. Rusovac & M. Yang (2022): Nexas: A visual tool for
navigating and exploring argumentation solution spaces. In F. Toni, S. Polberg, R. Booth, M. Caminada &
H. Kido, editors: Proceedings of the Conference of Computational Models of Argument (COMMA’22), 353,
IOS Press, pp. 116–127, doi:10.3233/FAIA220146. Available at https://www.iospress.com/catalog/
books/computational-models-of-argument-7.

[6] O. Febbraro, K. Reale & F. Ricca (2011): ASPIDE: Integrated Development Environment for Answer Set
Programming. In J. Delgrande & W. Faber, editors: Proceedings of the Eleventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), Lecture Notes in Artificial Intelligence
6645, Springer-Verlag, pp. 317–330, doi:10.1007/978-3-642-20895-9_37.

[7] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero, T. Schaub & S. Thiele (2015):
Potassco User Guide, 2 edition. University of Potsdam. Available at http://potassco.org.

[8] M. Gebser, R. Kaminski, B. Kaufmann & T. Schaub (2019): Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19(1), pp. 27–82, doi:10.1017/S1471068418000054.

[9] M. Gebser, P. Obermeier & T. Schaub (2015): Interactive Answer Set Programming: Preliminary Report. In
S. Ellmauthaler & C. Schulz, editors: Proceedings of the International Workshop on User-Oriented Logic
Programming (IULP’15), doi:10.48550/arXiv.1511.01261. Available at http://iulp2015.uni-leipzig.
de/.

[10] S. Hahn, O. Sabuncu, T. Schaub & T. Stolzmann (2022): clingraph: ASP-based Visualization. In G. Got-
tlob, D. Inclezan & M. Maratea, editors: Proceedings of the Sixteenth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’22), Lecture Notes in Artificial Intelligence 13416,
Springer-Verlag, pp. 401–414, doi:10.1007/978-3-031-15707-3_31.

[11] T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn & P. Wanko (2017): Clingo goes Linear
Constraints over Reals and Integers. Theory and Practice of Logic Programming 17(5-6), pp. 872–888,
doi:10.1017/S1471068417000242.

[12] R. Kaminski, J. Romero, T. Schaub & P. Wanko (2023): How to Build Your Own ASP-based System?! Theory
and Practice of Logic Programming 23(1), pp. 299–361, doi:10.1017/S1471068421000508.

[13] V. Lifschitz (2019): Answer Set Programming. Springer-Verlag, doi:10.1007/978-3-030-24658-7.
[14] E. Schlungbaum & T. Elwert (1996): Automatic User Interface Generation from Declarative Models. In

J. Vanderdonckt, editor: Computer-Aided Design of User Interfaces I, Proceedings of the Second Interna-
tional Workshop on Computer-Aided Design of User Interfaces, Presses Universitaires de Namur, pp. 3–18,
doi:10.13140/2.1.3102.3369.

[15] C. Schneiker & D. Seipel (2012): Declarative Web Programming with PROLOG and XUL. In: Proceedings of
the Twenty-sixth Workshop on Logic Programming (WLP’12).

[16] J. Zakraoui & W. Zagler (2011): A logical approach to web user interface adaptation. In A. Holzinger &
K. Simonic, editors: Information Quality in e-Health: 7th Conference of the Workgroup Human-Computer In-
teraction and Usability Engineering of the Austrian Computer Society, Springer, pp. 645–656, doi:10.1007/978-
3-642-25364-5_46.

https://doi.org/10.3233/FAIA220146
https://www.iospress.com/catalog/books/computational-models-of-argument-7
https://www.iospress.com/catalog/books/computational-models-of-argument-7
https://doi.org/10.1007/978-3-642-20895-9_37
http://potassco.org
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.48550/arXiv.1511.01261
http://iulp2015.uni-leipzig.de/
http://iulp2015.uni-leipzig.de/
https://doi.org/10.1007/978-3-031-15707-3_31
https://doi.org/10.1017/S1471068417000242
https://doi.org/10.1017/S1471068421000508
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.13140/2.1.3102.3369
https://doi.org/10.1007/978-3-642-25364-5_46
https://doi.org/10.1007/978-3-642-25364-5_46

228 ASP-driven User-interaction with Clinguin

1 class ExplanationBackend(ClingoBackend):

3 @classmethod
4 def register_options(cls, parser):
5 ClingoBackend.register_options(parser)

7 parser.add_argument(
8 "--assumption -signature",
9 help="Signatures that will be considered as true assumptions",

10 nargs="+")

12 def _init_command_line(self):
13 super ()._init_command_line()
14 self._assumption_sig = []
15 for a in self._args.assumption_signature or []:
16 name, arity = a.split(",")
17 self._assumption_sig.append ((name, int(arity)))
18 self._assumption_transformer = AssumptionTransformer(self._assumption_sig)

20 @property
21 def _assumption_list(self):
22 return self._assumptions.union(self._assumptions_from_signature)

24 def _load_file(self, f):
25 transformed_program = self._assumption_transformer.parse_files ([f])
26 self._ctl.add("base", [], transformed_program)

28 def _ground(self, program="base", arguments=None):
29 super ()._ground(program, arguments)
30 transformer_assumptions = self._assumption_transformer.get_assumption_symbols(
31 self._ctl, self._ctl_arguments_list)
32 self._assumptions_from_signature = [(a, True) for a in transformer_assumptions]

34 def _init_ds_constructors(self):
35 super ()._init_ds_constructors ()
36 self._add_domain_state_constructor("_ds_mus")

38 @cached_property
39 def _ds_mus(self):
40 prg = "#defined _clinguin_mus/1. "
41 if self._unsat_core is not None:
42 mus_core = CoreComputer(self._ctl, self._assumption_list). shrink ()
43 prg += " ".join([f"_clinguin_mus({str(s)})." for s, _ in mus_core])
44 return prg + "\n"

Listing 8: Python implementation of ExplanationBackend

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 229–235, doi:10.4204/EPTCS.416.20

© D.S. Warren

This work is licensed under the

Creative Commons Attribution License.

A Prolog Program for Bottom-up Evaluation

David S. Warren

Department of Computer Science
Stony Brook University
Stony Book, New York

warren@cs.stonybrook.edu

This short paper describes a simple and intuitive Prolog program, a metainterpreter, that computes the

bottom up meaning of a simple positive Horn clause definition. It involves a simple transformation of

the object program rules into metarules, which are then used by a metainterpreter to compute bottom

up the model of the original program. The resulting algorithm is a form of semi-naive bottom-up

evaluation. We discuss various reasons why this Prolog program is particularly interesting.

In particular, this is perhaps the only Prolog program for which I find the use of Prolog’s

assert/1 to be intrinsic, easily understood, and the best, most perspicuous, way to program an

algorithm. This short paper might be best characterized as a Prolog programming pearl.

1 Introduction

A positive Prolog program is an inductive definition of a set of relations over terms. There are two well-

known basic ways to compute elements of relations that are defined in this way [2], [5]: top-down [4]

and bottom-up [1].

Top-down evaluation starts with a query to a defined relation that asks for members of the defined

relation that are instances of the query. It is query driven, since at each step a set of subqueries is posed

that drive the search for an answer. Bottom-up evaluation starts with the facts, the data, and uses existing

facts to iteratively infer new facts to ultimately compute all members of the defined relations.

Prolog uses SLD resolution, a top-down, query-driven evaluation strategy using highly optimized

compilation techniques. Datalog systems use a bottom-up, data-driven evaluation strategy with engines

optimized for that execution. Some problems are more efficiently solved top down and some bottom

up. Thus there are some problems for which a Prolog programmer would like to use the Prolog built-in

top-down strategy to perform bottom-up evaluation.

Several Prolog systems now support a hybrid evaluation strategy called tabled evaluation (e.g.,

[8],[7],[9],[3]), which allows those Prolog systems to use aspects of bottom-up evaluation within the

Prolog top-down framework. Tabling normally can provide all the bottom-up processing needed by a

Prolog programmer. But some Prolog systems do not have tabling, and tabling is not precisely bottom-

up evaluation in any case.

Another use for bottom-up processing in Prolog is for teaching and debugging purposes. Students

can learn more about what their Prolog definitions mean by exploring how they would evaluate bottom

up. And experienced programmers may be able to find why Prolog does not compute an expected result

by exploring the bottom-up computation.

For all these reasons a good, simple, customizable implementation of bottom-up evaluation within

a Prolog environment is desirable. Prolog is well-known for the elegance of the metainterpreters that

it supports, and a bottom-up evaluator requires a metainterpreter. But Prolog metainterpreters normally

inherit a top-down strategy from the Prolog evaluator. A metainterpreter that interprets object programs

bottom up is not so obvious.

http://dx.doi.org/10.4204/EPTCS.416.20
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

230 Prolog for Bottom-up

This short paper describes a metainterpreter written in (standard ISO) Prolog that evaluates pure,

positive Prolog programs bottom up.

2 The Algorithm

The first step of the algorithm is to transform the object program into a new set of rules, rules that define

a new binary predicate we call implies/2. The implies rules are generated from the object program

as follows:

For each object rule:

H :- B1,B2, ...,Bn.

generate n implies/2 rules, one for each Bi. Specifically, for each Bi generate

implies(Bi,H) :- B1,B2, ...,Bi−1,Bi+1, ...Bn.

And for each object fact of the form H. generate an implies/2 fact of the form implies(true,H).
The metainterpreter uses these generated implies/2 rules to evaluate the original object program

bottom up. The main metainterpreter predicate bu(Schedule,SchedEnd) takes a difference list that

contains all the facts that have been derived but have not yet been used, along with the rules and other

known facts, to derive new facts.

The Prolog code for the metainterpreter bu/2 is:

bu([],[]). % finished

bu([Fact|Sched],SchedEnd) :-

nonvar(Fact), % another derived fact to process

findall(Hd,implies(Fact,Hd),Inferred), % get newly inferred facts

assert_and_sched_inferred(Inferred,SchedEnd,NewSchedEnd),

bu(Sched,NewSchedEnd).

The first clause terminates when there are no more derived facts whose inferences are to be propagated.

The second clause is the workhorse: it takes the next fact from the schedule, calls implies/2 on that

fact and collects together the heads of all object rules now satisfied using that fact, i.e. facts that can now

be inferred. It then uses assert and sched inferred to process all those facts: for each that is not

already in the database, it adds it to the database and adds it to the end of the schedule. And iterates.

The supporting predicates are:

assert_and_sched_inferred([],Sched,Sched).

assert_and_sched_inferred([Fact|Inferred],Sched,SchedEnd) :-

(subsuming_fact(Fact)

-> assert_and_sched_inferred(Inferred,Sched,SchedEnd)

; assert(Fact),

Sched = [Fact|SchedTail],

assert_and_sched_inferred(Inferred,SchedTail,SchedEnd)

).

subsuming_fact(Hd) :-

term_variables(Hd,Variables),

call(Hd),

is_most_general_term(Variables). % all still variables and distinct

D.S. Warren 231

The initial call to generate the least fixpoint is:

?- bu([true|End],End).

Consider the meaning of a generated rule for implies/2 in bu/2. Atom implies(A,H) is true if

there is a rule in the object program that has head H and a body literal A and all the other body literals

of the rule are true in the database. I.e., A implies H if the remaining body literals are true. This is

clearly a consequence of the original object program rule. These rules are applied starting with the

empty database, finding facts implied by the database facts and these rules, updating the database with

the newly inferred facts, and iterating until no new facts can be inferred.

3 Transitive Closure Example

Consider the Prolog rules for transitive closure of a simple graph:

tc(X,Y) :- edge(X,Y).

tc(X,Y) :- edge(X,Z), tc(Z,Y).

edge(a,b).

edge(b,c).

edge(c,b).

We note that since the graph in edge/2 is a cyclic graph, Prolog will go into an infinite loop when asked

the query :- tc(A,B). But bottom-up evaluation will terminate as we shall see.

The implies/2 rules generated from these object rules and facts are:

implies(edge(X,Y),tc(X,Y)).

implies(edge(X,Z),tc(X,Y)) :- tc(Z,Y))

implies(tc(Z,Y),tc(X,Y)) :- edge(X,Z))

implies(true,edge(a,b)).

implies(true,edge(b,c)).

implies(true,edge(c,b)).

Each iteration of the main loop takes a fact from the schedule and produces a list of newly derived facts.

that trace is:

true adds [edge(a,b),edge(b,c),edge(c,b)]

edge(a,b) adds [tc(a,b)]

edge(b,c) adds [tc(b,c)]

edge(c,b) adds [tc(c,b),tc(c,c)]

tc(a,b) adds []

tc(b,c) adds [tc(a,c)]

tc(c,b) adds [tc(b,b)]

tc(c,c), tc(a,c), and tc(b,b) each adds []

finished

This evaluator also handles unsafe programs, i.e., those with variables in answers. For example:

append([],L,L).

append([X|L1],L2,[X|L3]) :- append(L1,L2,L3).

232 Prolog for Bottom-up

which generates the implies/2 facts:

implies(true,append([],A,A).

implies(append(A,B,C),append([D|A],B,[D|C]).

and its trace:

true adds [append([],A,A)]

append([],A,A) adds [append([B],C,[B|C])]

append([B],C,[B|C]) adds [append([D,E],F,[D,E|F])]

append([D,E],F,[D,E|F]) adds [append([G,H,I],J,[G,H,I|J])]

and it continues...

Clearly if a Prolog program has infinitely many answers, its bottom-up evaluation will not terminate.

But it can be useful to see the first several answers, as we’ve done here for append/3. We can modify

our bottom-up evaluator to return nondeterministically each fact and the new facts it generates. This

allows the user to see the facts as they are iteratively generated and either stop the generation or to ask

for another. The following modification of bu/2 is such a program:

bu([Fact|Sched],SchedEnd,Fact1,NewFacts) :-

nonvar(Fact), % done if a variable.

findall(Hd,implies(Fact,Hd),Inferred),

assert_and_sched_new(Inferred,SchedEnd,NewSchedEnd),

(NewSchedEnd = [], SchedEnd \== [], % something added

Fact1 = Fact, New = SchedEnd % return this generator and generated set

;

bu(Sched,NewSchedEnd,Fact1,NewFacts) % on to more, if asked

).

4 Why this Prolog Program Is Interesting

Why might this problem of bottom-up evaluation make for an interesting Prolog program?

1. It solves a basic problem in logic. This implementation in Prolog may provide evidence for a

sometimes made claim that the Prolog programming language is a good assembler language, or

implementation language, for logic-based problems.

2. It is a fundamental problem in the theory of logic programming.

3. It is a metainterpretation problem, for which Prolog is known for elegantly solving.

Prolog programs using assert/1, as this one does, do not have a declarative meaning and in general

can be notoriously difficult to understand. This Prolog program is fairly easy to understand even though

it uses assert/1 in a fundamental way and does not therefore have a traditional declarative meaning.

Nevertheless, it is perspicuous for several reasons:

1. The program is essentially deterministic. The persistence of asserted clauses over backtracking is

one feature of assert/1 that can make programs using it obscure. This program has essentially

no backtracking.

2. The primary structure of this program is a single deterministic loop, clearly indicated by its tail

recursive call. Each time around the loop adds a new set of facts to the database.

D.S. Warren 233

3. The nondeterminism, which is very convenient, is encapsulated by the findall/3) metacall. It

simply collects the set of facts to be added to the database on the current iteration, which are

nondeterministically generated by the call to the implies/2 predicate.

4. The use of assert/1 allows us to use Prolog’s rule evaluation mechanism to determine what new

atoms can be inferred on an iteration. The call to Prolog predicate implies/1, implicit in the

findall/3, performs a metainterpretation step, at the object level.

5. The logical meaning of the implies clauses is clear and compelling.

These observations lead me to believe that this is an interesting Prolog program, even though it

inherits no declarative meaning from Prolog’s logical semantics. Its meaning comes from a combination

of Prolog’s procedural meaning (for the deterministic loop that updates the database) and its declarative

meaning (for the call to implies/2 and its accumulation with findall/3).

5 Complexity

On its face, this program seems efficient. It doesn’t recompute in each step everything that was computed

in the previous step as naive bottom-up evaluations does. I.e., it performs what is known as a semi-naive

computation. Every call to implies/2, the workhorse of the computation, will use the standard first-

argument indexing of all Prolog evaluators (but it may not be optimally indexed). And those calls use

Prolog’s built-in evaluation mechanism and so can avoid a level of metainterpretation. All this bodes

well for good performance.

However, we can see a possible source of redundant computation. Consider an object program clause

that has a large number of body atoms: H :- B1,B2, ...,Bn for large n. There will be n implies/2 clauses

generated from it. Assume that the rule does indeed fire at some iteration. That will be after every Bi has

been asserted into the database at some iteration. Say they are added in their left-to-right order, i.e., B1

is added first, then B2 at a later iteration, then B3 at a sill later iteration, etc., until finally Bn is added and

the implies/2 rule for Bn causes the head to be added to the database. Notice that the first body atom

B1 will have been called n− 1 times, once at each level that some Bi was added. And B2 will be called

n−2 times, once for each level after the first has been added. And so on. So there is O(n2) computation

when only O(n) is theoretically needed. (One could imagine removing a body literal when it becomes

true. How to do this efficiently with the data structures used here is not so obvious.) Indeed the n is only

the maximum number of literals in the body of any clause, which for normal programs is not very big.

But it is still an unnecessary redundancy and for some programs may be very costly.

This happens only for programs with clauses with many body literals. If all program clauses have at

most two body literals, then this redundancy does not occur. And any program can be transformed into

one in which all rules have two or fewer body literals by a folding process that introduces intermediary

predicates. E.g., H :- B1,B2,B3 can be replaced by two rules H :- H ′
,B3 and H ′ :- B1,B2 where H ′ is new.

This process reduces the number of literala of a rule by one, and can be iterated until we have at most

two body literals for any rule. This program transformation was introduced in early Datalog systems,

which are bottom up, for exactly this reason.

We noted that the implies/2 predicate is by default indexed on its first argument, which is bound

for every call. However, if the index is on only the main functor symbol, then the effective indexing

is only on the predicate name of the newly added fact. Some Prolog’s support deeper indexing, which

would be helpful here.

234 Prolog for Bottom-up

6 Generating the implies/2 Rules

In this section we provide definitions for a couple of supporting functions: the generation of implies/2

clauses from Prolog clauses, and the conversion of clauses with more than two body literals into a set of

clauses with at most two by the introduction of intermediary predicates and folding.

The first predicate takes a list of Horn clauses and asserts the corresponding set of implies/2

clauses. Other variations of this functionality might be more appropriate for integration into a larger

system. For example, using a “term expansion” macro functionality of some Prologs might be effective.

assert_imply_rules([]).

assert_imply_rules([(Head:-Body)|Rules]) :-

(do_all

delete_one(Atom,Body,NBody),

assert((implies(Atom,Head) :- NBody))

),

assert_imply_rules(Rules).

delete_one(G1,G1,true) :- \+ G1 = (_,_).

delete_one(G1,(G1,G2),G2).

delete_one(G2,(G1,G2),G1) :- \+ G2 = (_,_).

delete_one(SG,(G1,G2),(G1,G3)) :-

G2 = (_,_),

delete_one(SG,G2,G3).

The predicate delete one/3 is like Prolog’s select/3 (sometimes called delete/3) for lists but works

on comma-structures. The messy tests are because of their “default-y” representation [6] and to avoid an

extraneous true goal at the end a clause.

The second functionality is the generation of folded clauses to provide better complexity for our

bottom-up metainterpreter. For most applications envisioned this optimization may be unnecessary and

in fact may complicate the understanding intended to be enhanced by exploring bottom-up evaluation.

We also note that the choice of lierals to fold out and to keep and their order may affect the efficiency of

the resulting rules. We give this simple definition here just for completeness.

The predicate expand rules takes a list of clauses and returns an equivalent list of clauses each

with two or fewer body literals:

expand_rules([],[]).

expand_rules([Rule|Rules],[NRule|ExpRules]) :-

(gen_folded(Rule,NRule,TRule)

-> expand_rules([TRule|Rules],ExpRules)

; NRule = Rule,

expand_rules(Rules,ExpRules)

).

gen_folded((Head :- Lit1,TBody),(Head:-Lit1,THead),(THead:-TBody)) :-

TBody = (_,_),

gensym(’_$Tmp’,Pred),

Outer = (Lit1,Head),

D.S. Warren 235

excess_vars(Outer,TBody,[],Vs1),

excess_vars(TBody,Outer,Vs1,Vs2),

excess_vars((Outer,TBody),Vs1-Vs2,[],Vs),

THead =.. [Pred|Vs].

7 Conclusion

We have presented a metainterpreter written in Prolog to evaluate Horn clause programs bottom up. We

find this program interesting for its simplicity and clarity. To understand it, one must understand part as a

procedural computation and part as a declarative specification and integrate those understandings. To my

mind it is unusual in that Prolog’s assert/1 operation is intrinsic and adds to the program’s elegance.

References

[1] François Bancilhon (1985): Naive Evaluation of Recursively Defined Relations. In Michael L. Brodie &

John Mylopoulos, editors: On Knowledge Base Management Systems: Integrating Artificial Intelligence and

Database Technologies, Book resulting from the Islamorada Workshop 1985 (Islamorada, FL, USA), Topics

in Information Systems, Springer, pp. 165–178, doi:10.1007/978-1-4612-4980-1.

[2] Maarten H. van Emden & Robert A. Kowalski (1976): The Semantics of Predicate Logic as a Programming

Language. J. ACM 23(4), pp. 733–742, doi:10.1145/321978.321991.

[3] Manuel Hermenegildo, Jose Morales, Manuel Carro, Pedro Lopez & Nik Swoboda (2024): Ciao Documenta-

tion. Available at https://ciao-lang.org/documentation.html.

[4] Robert A. Kowalski (1974): Predicate Logic as Programming Language. In Jack L. Rosenfeld, editor: In-

formation Processing, Proceedings of the 6th IFIP Congress 1974, Stockholm, Sweden, August 5-10, 1974,

North-Holland, pp. 569–574.

[5] John W. Lloyd (1984): Foundations of Logic Programming, 1st Edition. Springer, doi:10.1007/

978-3-642-96826-6.

[6] Richard A. O’Keefe (1990): The Craft of Prolog. MIT Press, Cambridge, MA, USA.

[7] Vitor Santos-Costa, Luis Damas, Rogerio Reis & Ruben Azevedo (2000): YAP User Manual. Available at

https://www.dcc.fc.up.pt/~michel/yap.pdf.

[8] Theresa Swift, David S. Warren et al. (2024): XSB User Manual. Available at https://xsb.sourceforge.

net/manual1/manual1.pdf.

[9] Jan Wielemaker (2024): SWI User Manual. Available at https://www.swi-prolog.org/pldoc/doc_

for?object=manual.

https://doi.org/10.1007/978-1-4612-4980-1
https://doi.org/10.1145/321978.321991
https://ciao-lang.org/documentation.html
https://doi.org/10.1007/978-3-642-96826-6
https://doi.org/10.1007/978-3-642-96826-6
https://www.dcc.fc.up.pt/~michel/yap.pdf
https://xsb.sourceforge.net/manual1/manual1.pdf
https://xsb.sourceforge.net/manual1/manual1.pdf
https://www.swi-prolog.org/pldoc/doc_for?object=manual
https://www.swi-prolog.org/pldoc/doc_for?object=manual

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 236–252, doi:10.4204/EPTCS.416.21

Regular Typed Unification

João Barbosa Mário Florido

Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre s/n, 4169–007 Porto, Portugal

LIACC - Laboratório de Inteligência Artificial e Ciência de Computadores

Vı́tor Santos Costa

Departamento de Ciência de Computadores, Faculdade de Ciências, Universidade do Porto
Rua do Campo Alegre s/n, 4169–007 Porto, Portugal

INESCTEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência

Here we define a new unification algorithm for terms interpreted in semantic domains denoted by a

subclass of regular types here called deterministic regular types. This reflects our intention not to

handle the semantic universe as a homogeneous collection of values, but instead, to partition it in

a way that is similar to data types in programming languages. We first define the new unification

algorithm which is based on constraint generation and constraint solving, and then prove its main

properties: termination, soundness, and completeness with respect to the semantics. Finally, we

discuss how to apply this algorithm to a dynamically typed version of Prolog.

1 Introduction

In mathematical logic, a term denotes a mathematical object, and a theory of equality on the set of all

terms formally defines which terms are considered equal. In logic programming terms are a syntactic

representations of structured data such that in the typical case of first order languages, only syntactically

identical terms are considered equal. Functions are thus uninterpreted or, computationally, functions

build data terms, rather than operating on them.

When the domain of discourse contains elements of different kinds, it is useful to split the set of all

terms (Universe) accordingly. To this end, a type (sometimes also called sort) is assigned to variables

and constant symbols, and a declaration of the domain type and range type to each function symbol. A

typed term f (t1, ..., tn) may then be composed from the subterms t1, ..., tn only if the i-th subterm’s type

matches the declared i-th domain type of f . Such a term is called well-typed and terms which are not

well-typed are called ill-typed.

Previous approaches for types in logic programming use regular types as the type language. Some

examples of that work are the works by Zobel [26, 7], Mishra [17], Yardeni [25], Fruhwirth et al. [9],

Codish [4], Schrijvers et al. [21], Bruynooghe [20], Gallagher [10], Hermenegildo et al. [12], and

Barbosa et al. [2], among others.

Data type definitions in programming languages impose constraints to the type language to allow

decidable type checking. Namely, data types are recursive definitions where constructors are unique.

Here we use such a subset of regular types that we shall call deterministic regular types, where each type

constructor (here called type function symbol) is unique.

Type checking is most often done at compile-time, in order to ensure that program execution will not

generate type errors at run-time. If typing is not possible, type errors may occur as the values of one or

more arguments may not be in the expected domain. This work stems from the observation that logic

programming systems will indeed output type errors in arguments of primitive predicates, but that there

http://dx.doi.org/10.4204/EPTCS.416.21

J. Barbosa, M. Florido & V. Santos Costa 237

is no way to check if unification of terms from different domains occurs. As a result, a program may

generate several (unreported) errors and still succeed. The user may receive an unexpected answer, while

having no insight on the existence of actual execution errors, thus making it difficult to detect and resolve

program bugs. With this motivation in mind, we design a typed unification algorithm for typed first order

theories, where types are described by deterministic regular types. This new unification algorithm may

return three different results: a most general unifier, failure or wrong. This last value wrong is inspired

by a similar notion used by Robin Milner to denote run-time type errors in functional programs [16] and,

in our framework, it corresponds to the unification of terms that can never belong to the same semantic

domains. A function now, may map integers to integers, integers to lists, floats to lists of integers, and,

thus, the Herbrand universe is now divided into many different domains.

Example 1: Let cons/2 be the list constructor (in Prolog it would be denoted by ./2) with type ∀α .α ×
list(α) → list(α), where list(α) = [] + [α | list(α)] (+ denotes type union). If we have terms t1 =
cons(1,X) and t2 = cons(Y,2). These terms unify using first order (untyped) unification, but do not have

a correct type, since the second argument of the list constructor must be a list. This is captured by the

typed unification algorithm since it outputs wrong.

Contributions Our main contributions are: an extension to the semantics defined in [3], where

equality takes into account the domains of the two terms in the left and the right hand side of an equation,

being wrong when terms belong to disjoint domains; a type system for terms and the equality predicate

which we prove to be sound with respect to the semantic typing relation; and a new unification algorithm,

which given an equation between two terms returns a most general unifier for them and a principal type,

if there is a solution, false if there is no solution but terms can belong to the same semantic domain and

wrong otherwise. This three stage framework (first a notion of semantic typing, then a type system for

terms and equations sound with respect to semantic typing and, finally, a unification algorithm sound and

complete with respect to the type system) enables us to smoothly prove soundness and completeness of

our unification algorithm, and it is inspired by the type theory in [16].

2 Term Syntax and Semantics

Here we define the language of terms, following [1, 14]. Given an infinite set of variables VAR and an

infinite set of function symbols FUNC, a term is:

1. a variable (X, Y, Xi, . . .);

2. a function symbol of arity 0 (k, a, b, 1, . . .), which we call a constant;

3. a function symbol of arity n ≥ 1 (f, g, h, . . .) applied to an n-tuple of terms.

We call terms that contain no variables ground terms, and terms that start with a function symbol

with arity n ≥ 1 complex terms.

Following the standard Herbrand interpretation of logic programs [1, 14], we assume that every

ground term represents a tree and that all these trees are part of the universe of interpretation of the logic

program.

We assume a particular partition of the universe into several domains. This interpretation groups sets

of trees in the universe into domains, and includes some other domains that are not consisting of trees.

We divide the universe U into domains as follows:

U = Int∪Flt∪Str∪Atm∪List1 ∪ . . .∪Listn ∪A1 ∪ . . .∪Am ∪Bool∪F∪Wrong,

238 Regular Typed Unification

where Int is the set of trees that represent integers (examples include 1 and -10, but also trees such as 1

+ 4 and 2 * 5 - 1), Flt is the set of trees that represent floating-point numbers, Str is the set of trees

representing strings, Atm is the set of trees consisting of a single node, the root, that are not included in

any other domain, Listi are sets of trees that represent lists, where each domain contains the trees that

represent lists of elements of some other domain (i.e., we have a domain for lists of integers, lists of

strings, lists of lists of integers, . . .), Ai are the domains of trees whose root is a function symbol and

the nodes of each tree are in the same domain as the corresponding nodes of every other tree (examples:

f (Int), g(Int,Float), h(g(Atom),h(Int)), . . .), Bool is the set with true and false, F is the set of functions,

and Wrong is the set with the single value, wrong. We call base domains the domains Int, Flt, Str, and

Atm.

One important note here is the value [], corresponding to the empty list. We assume that this value

belongs to every list domain, and that it is the only value that belongs to more than one domain in this

partition.

We are using the domains for lists as an example of an interesting division of the universe that will

later on correspond to inductively defined types. We could easily extend this partition by adding domains

for other data types such as binary trees. We believe that any further domains for structured data can be

extended easily following the approach we have for lists.

The semantics of a term is a tree in some domain, or wrong. The semantics depends on an interpre-

tation I for the function symbols in the language, and a state Σ which associates variables to semantic

values. We assume that the value returned by I is, for constants, a tree with just a root, and for function

symbols of arity n ≥ 1 a function in F that outputs a tree. Without loss of generality we assume that the

only function symbol which does not have an Herbrand interpretation is the list constructor, thus for all

function symbols f except the list constructor cons, the corresponding function in I is a function f that

has signature f : ∀α1, . . . ,αn.α1×·· ·×αn → f (α1, . . . ,αn), such that if any of the arguments the function

is applied to is wrong then it outputs wrong, otherwise it outputs the tree with root f and children the

trees it got as input. For the list constructor cons the function associated in I is cons with signature cons

: ∀α .α × list(α)→ list(α) defined as:

cons(v1,v2) =

{

cons(v1,v2) if v1 ∈ D∧ v2 ∈ List(D)

wrong otherwise

The predefined interpretation I is the one where every constant has the expected value, for instance

the term 1 has as value the integer 1. One additional useful definition is the function dom that returns a

set of domain of a value, a singleton set for all values but [].
We define the semantics of a term, represented by [[]]I,Σ, in the following way:

• [[X]]I,Σ = Σ(X)

• [[k]]I,Σ = I(k)

• [[f (t1, . . . , tn)]]I,Σ = I(f)([[t1]]I,Σ, . . . , [[tn]]I,Σ)

Note that, if a complex term contains the list constructor, the semantics of that term can be wrong.

This is where the division into domains comes into play, since if we were considering an undivided

Herbrand universe, then trivially all values are in the same domain so the application of a function could

never generate an error. Informally, our approach supports the division of the universe implicit on the

abstract data types definitions in the Prolog ISO standard (4.2) [8].

We assume only one predicate, equality, hereby represented by =. The semantics of equality is re-

adjusted to take into account the value wrong. Equality is defined for terms in the same domain. So let

J. Barbosa, M. Florido & V. Santos Costa 239

function eq with signature eq : ∀α .α ×α → Bool be defined as follows:

eq(v1,v2) =

true if v1 = v2 ∧dom(v1)∩dom(v2) 6= /0∧dom(v1) 6= {W rong}

f alse if v1 6= v2 ∧dom(v1)∩dom(v2) 6= /0∧dom(v1) 6= {W rong}

wrong otherwise

The semantics for the equality predicate is then as follows:

[[t1 = t2]]I,Σ = eq([[t1]]I,Σ, [[t2]]I,Σ)

3 Types

Types are syntactic descriptions of semantic domains. The alphabet for the language of types includes

an infinite set of type variables TVar, a finite set of base types TBase, an infinite set of type function

symbols TFunc, an infinite set of type symbols TSym, parenthesis, and the comma. There is a one-to-

one correspondence between TFunc and FUNC, which we assume is predefined. Then, we have the

following grammar for types:

all type ::= cons type | f unc type

cons type ::= type | type term | bool

f unc type ::= type1 ×·· ·× typen → type | type1 × . . .× typen → bool

type ::= tvar | tbase | tsymbol(type1, . . . , typen)
type term ::= tconstant | t f unction(cons type1, . . . ,cons typen)
type de f ::= tsymbol(tvar1, . . . , tvarn)−→ type term1 + . . .+ type termm

where tvar ∈ TVar, tbase ∈ TBase, tconstant and t f unction ∈ TFunc, and tsymbol ∈ TSym. We call

a type term that starts with a t f unction a complex type term. We call ground to any type that does not

contain a type variable.

Each type symbol is defined by a type definition. A well-formed type definition has all type variables

that occur as parameters on the left-hand side of the definition be distinct and occurring somewhere on

the right-hand side, and all type variables that occur on the right-hand side be a parameter on the left-hand

side. The sum τ1 + . . .+ τn is a union type, describing values that have one of the type terms τ1, . . . ,τn,

called the summands. The ‘+’ is an idempotent, commutative, and associative operation.

A set of type definitions D is called deterministic if it is well-formed and any type function symbol

occurs at most once in D. In [7], the authors introduce the concept of deterministic type definition. Our

definition is stricter than this previous one by disallowing base types and variables as summands in type

definitions and disallowing more than one occurrence of any function symbol in the whole set of type

definitions.

Deterministic type definitions include tuple-distributive types [26, 17] and correspond to the widely

used algebraic data types in programming languages. From now on we assume that type definitions are

deterministic.

A type scheme σ is an expression of the form ∀α1, . . . ,αn.τ , where τ is a type or a f unc type and

α1, . . . ,αn are type variables which will be called the generic variables of σ . If τ has no variables, then it

is itself a type scheme. Note that types form a subclass of type schemes. We will abbreviate type schemes

to ∀~α.τ , where ~α denotes a sequence of several type variables αi. Type schemes represent parametric

polymorphic types [6].

240 Regular Typed Unification

4 Semantics

Each instance of a type is associated with a domain. A base type is associated with a base domain, and

each instance of a type of the form tsymbol(type1, . . . , typen) is associated with a domain. We include

a type symbol list that is associated with the domains for lists. We assume that the definition for the

type symbol list is: list(α) −→ []+ cons(α , list(α)). We could include further type symbols that were

defined by inductive definitions, besides lists, and the rest of this paper could be easily extended to

include different inductively defined types, but we keep list as the only one for the sake of simplicity.

A valuation ψ maps each type variable to a ground type. Given a valuation ψ , we define the seman-

tics of a type and the type bool as follows:

T[[α]]ψ = T[[ψ(α)]]ψ
T[[int]]ψ = Int

T[[bool]]ψ = Bool

T[[f loat]]ψ = Flt

T[[string]]ψ = Str

T[[atom]]ψ = Atm

T[[list(α)]]ψ = T[[list(ψ(α))]]ψ
T[[list(int)]]ψ = Listi, where Listi is the domain for lists of integer. Similarly for any other ground in-

stance of list(α) and the corresponding domain List j.

The semantics of a type term is:

T[[k]]ψ = {k}
T[[f (τ1, . . . ,τn)]]ψ = { f (v1, . . . ,vn) | vi ∈ T[[τi]]ψ}

The semantics of a union type is:

T[[τ1 + . . .+ τn]]ψ = T[[τ1]]ψ ∪ . . .∪T[[τn]]ψ

The semantics of a f unc type is:

T[[τ1 × . . .× τn → τ]]ψ = { f | f ∈ F∧ (v1 ∈ T[[τ1]]ψ ∧ . . .∧ vn ∈ T[[τn]]ψ =⇒ f (v1, . . . ,vn) ∈ T[[τ]]ψ)}

The semantics of a type scheme is:

T[[∀~α.τ]]ψ =
⋂

∀~σ T[[τ [~α 7→ ~σ]]]ψ , where ~σ is a sequence of types of the same size as ~α .

Note that the semantics of a (ground) type term may be a domain, as in the case of f (int, f loat), or

the subset of a domain, as in the case of cons(int, []), or even a subset of several domains, as in the case

of []. This includes the domain Wrong, as in the case of cons(int, int). All instances of complex type

terms whose t f unction is not the list constructor are associated with a domain for trees.

Also note that we assume a function, given by I, for the interpretation of function symbols, thus

functions have type signatures: the type of a function symbol f of arity n is interpreted as a function

which builds a tree of root f , with the type scheme ∀α1, . . . ,αn.α1 × ·· · ×αn → f (α1, . . . ,αn). The

semantics for this type scheme is the intersection of the semantics for all instances of the functional type,

which is a subset of F consisting of all functions that have such type. So it consists of all the functions

that can have any tuple of n elements as input and output a tree whose root is f and the children nodes

are the input elements.

J. Barbosa, M. Florido & V. Santos Costa 241

4.1 Semantic Typing

We now define what it means for a term to semantically have a type, denoted by t : τ . If the term and the

type are both ground, given an interpretation I, we just check whether the semantics of the term belongs

to the domain corresponding to the semantics of the type. So, for ground terms and types:

t : τ =⇒ ∀Σ.∀ψ .[[t]]I,Σ ∈ T[[τ]]ψ

However, both terms and types can be non-ground in general and, without extra information, we

cannot know what is the correct type for a variable. To deal with variables we introduce the concept of

a context Γ, defined as a set of typings of the form X : τ for variables. Given a context we define the

semantic typing relation, denoted by |=, as:

Γ |=I t : τ =⇒ ∀Σ.∀ψ .(∀(X : τ ′) ∈ Γ.[[X]]I,Σ ∈ T[[τ ′]]ψ =⇒ [[t]]I,Σ ∈ T[[τ]]ψ)

We call the generic context to the context that contains Xi : αi, for all variables, i.e., all term variables

are typed by a type variable, and each type variable is associated with a particular variable. Note that

throughout the paper we will use the symbol |= overloaded for other semantics relations.

Example 2: Let Γ= {X : α ,Y : list(α)} and the type signature for cons in I be {cons :∀α .α× list(α)→
list(α)}.

Γ |=I cons(X,Y) : list(α)

Suppose we have a state Σ and a valuation ψ such that [[X]]I,Σ ∈ T[[α]]ψ and [[Y]]I,Σ ∈ T[[list(α)]]ψ , then

[[cons(X,Y)]]I,Σ ∈ T[[list(α)]]ψ . Since [[X]]I,Σ = Σ(X) ∈ T[[ψ(α)]]ψ and [[Y]]I,Σ = Σ(Y) ∈ T[[list(α)]]ψ =
T[[list(ψ(α))]]ψ , by the semantics of cons, we have cons(Σ(X),Σ(Y)), which is not wrong from the

domains of the respective values, and because the output is in the correct domain.

However, note that for Γ′= {X : α ,Y : β}, the same would not be true, since for Σ = [X 7→ 1,Y 7→ 2] and

ψ = [α 7→ int,β 7→ int], the left-hand side of the implication is true, but cons(1,2) /∈ T[[list(int)]]ψ .

5 Syntactic Typing

Syntactic typing is defined by a type system. A context Γ and a set of type assumptions for constants and

function symbols ∆ are needed to derive a type assignment and one writes Γ,∆ ⊢ t : τ (pronounce this as Γ

and ∆ yield t in τ). Assumptions in ∆ are of the form k : ∀~α.τ , for constants, and f : ∀~α .τ1×·· ·×τn → τ ,

for function symbols, where the generic variables ~α of these type schemes are exactly the type variables

that occur in τ and τ1 ×·· ·× τn → τ , respectively. A statement t : τ is derivable from contexts Γ and ∆,

notation Γ,∆ ⊢ t : τ , if it can be produced by the rules in Figure 1. If we have a derivation in the type

system, then we say that t has type τ in contexts Γ and ∆.

We must guarantee that ∆ is in agreement with I. For this, we have the following relation: I |= ∆, is

defined as ∀(k : τ) ∈ ∆.dom(I(k)) = {τ}∧∀(f : τ1 × . . .× τn → τ).I(f) : τ1 × . . .× τn → τ .

Example 3: Let Γ = {X : int, Y : list(int)}, ∆ = {1 : int, nil : ∀γ .list(γ), cons : ∀β .β × list(β) →
list(β)}, and Λ = (cons : ∀β .β × list(β) → list(β)) ∈ ∆ (we use this Λ just to improve presentation).

Then the following type derivation holds using the type rules:

242 Regular Typed Unification

VAR
(X : τ) ∈ Γ

Γ,∆ ⊢ X : τ
CST

(k : ∀~α.τ) ∈ ∆

Γ,∆ ⊢ k : τ [~α 7→ ~σ]

CPL

(f : ∀~α.τ1 ×·· ·× τn → τ) ∈ ∆

Γ,∆ ⊢ t1 : τ1[~α 7→ ~σ] . . . Γ,∆ ⊢ tn : τn[~α 7→ ~σ]

Γ,∆ ⊢ f (t1, . . . , tn) : τ [~α 7→ ~σ]
EQU

Γ,∆ ⊢ t1 : τ Γ,∆ ⊢ t2 : τ

Γ,∆ ⊢ t1 = t2 : bool

Figure 1: Type System

(X : int) ∈ Γ

Γ,∆ ⊢ X : int

([] : ∀γ .list(γ)) ∈ ∆

Γ,∆ ⊢ [] : list(int)(2) Λ

Γ,∆ ⊢ cons(X , []) : list(int)(1)

(1 : int) ∈ ∆

Γ,∆ ⊢ 1 : int

(Y : list(int)) ∈ Γ

Γ,∆ ⊢ Y : list(int) Λ

Γ,∆ ⊢ cons(1,Y) : list(int)(2)

Γ,∆ ⊢ cons(X , []) = cons(1,Y) : bool

Note that in (1) we used list(β)[β 7→ int] and in (2) we used list(γ)[γ 7→ int]. Also note that if X : α

instead of X : int was in Γ, we could not have a derivation.

We now prove that the rules for syntactic typing are sound, that is, if the set ∆ is in agreement with I,

then any type derivation is semantically correct.

Theorem 1 - Soundness of Syntactic Typing: If Γ,∆ ⊢ t : τ and I |= ∆, then Γ |=I t : τ .

Proof: We will prove this by induction on the derivation.

• If the term t is a variable X , then the derivation consists of a single application of axiom VAR.

Clearly, it is also true that Γ ⊢I X : τ , where (X : τ) ∈ Γ, since any Σ that gives values to X and

ψ that gives values to τ , such that [[X]]I,Σ ∈ T[[τ]]ψ will do so in the context and in the term itself

simultaneously, so Γ ⊢I X : τ .

• If the term t is a constant k, then the derivation consists of a single application of axiom CST .

Since I |= ∆, dom(I(k)) = {∀~α .τ}, where (k : ∀~α .τ)∈ ∆, then k ∈ T[[∀~α.τ]]ψ , for any ψ . But since

T[[∀~α.τ]]ψ =
⋂

∀~σ T[[τ [~α 7→ ~σ]]]ψ , then k ∈ T[[τ [~α 7→ ~σ]]]ψ . So for any Σ, the right-hand side of the

implication is always true, so Γ ⊢I k : τ [~α 7→ ~σ].

• If the term t is a complex term f (t1, . . . , tn), then we can assume, by induction hypothesis, that

Γ⊢I ti : τi[~α 7→~σ], for all i= 1, . . . ,n. Since I |= ∆, I(f) : ∀~α.τ1×·· ·×τn → τ , then f ∈ T[[∀~α .τ1×
. . .× τn → τ]]ψ , for all ψ , so f ∈ T[[(τ1 × . . .× τn → τ)[~α 7→ ~σ]]]ψ . Therefore, we know that, if

vi ∈ T[[τi[~α 7→ ~σ]]]ψ then f (v1, . . . ,vn) ∈ T[[τ [~α 7→ ~σ]]]ψ . For any Σ and ψ such that ∀(X : τ ′) ∈
Γ.[[X]]I,Σ ∈ T[[τ ′]]ψ , by the induction hypothesis [[ti]]I,Σ ∈ T[[τi[~α 7→ ~σ]]]ψ . Therefore, for the same

Σ and ψ , we know that [[f (t1, . . . , tn)]]I,Σ ∈ T[[τ [~α 7→ ~σ]]]ψ , so Γ ⊢I f (t1, . . . , tn) : τ [~α 7→ ~σ].

• If we have an equality of two terms t1 = t2, we can assume, by induction hypothesis, that Γ ⊢I t1 : τ

and Γ ⊢I t2 : τ . Therefore we know that for any Σ and ψ such that ∀(X : τ ′) ∈ Γ.[[X]]I,Σ ∈ T[[τ ′]]ψ ,

J. Barbosa, M. Florido & V. Santos Costa 243

we have [[t1]]I,Σ ∈ T[[τ]]ψ and [[t2]]I,Σ ∈ T[[τ]]ψ . So for these Σ and ψ , we have [[t1 = t2]]Σ ∈ [[bool]]ψ .

Therefore, Γ ⊢I t1 = t2 : bool.

�

Given a term t is there a typing representing all possible typings of t? In order to answer this question

we introduce the notion of principal typing, [13], as appropriate to our system.

Definition 1: A principal typing is a pair (Γ,τ), such that Γ,∆ ⊢ t : τ and for every other pair (Γ′,τ ′)
such that Γ′,∆ ⊢ t : τ ′, there is a type substitution µ such that µ(Γ) = Γ′ and µ(τ) = τ ′.

Note that even though, initially, it might seem possible that the context in a principal typing will

always be a generic context, for some cases that is not the case.

Example 4: Let t =cons(X,Y). A principal typing for t is ({X : α ,Y : list(α)}, list(α)). Note that any

renaming of type variable α defines another principal typing, because principal typings are unique up to

renaming of type variables. Also note that the type for Y cannot be a type variable, thus, in this example,

the context is not generic.

6 Constraints

To check implicit types during unification, we must deduce types that are not present in equality equa-

tions. To represent this problem in a broader context, we introduce the notion of type constraint which

we add to the usual term unification problem.

We define equality constraints between terms t1 = t2, and equality constraints between types τ1
.
= τ2.

We are here using the same symbol for equality constraints and the equality predicate. We argue that the

uses are clear from the context.

We say that a set of equality constraints is in normal form if all constraints are of the form Xi = ti,

for some term ti, and there is no other occurrence of any Xi anywhere else in the set. A set of equality

constraints in normal form can be interpreted as a substitution, where every constraint of the form Xi = ti
is interpreted as [Xi 7→ ti].

A set of type equality constraints is in normal form if all constraints are of the form αi
.
= τi, for

some type τi, and there is no other occurrence of any αi anywhere else in the set. A set of type equality

constraints in normal form can be interpreted as a type substitution, where every constraint of the form

αi
.
= τi is interpreted as [αi 7→ τi].

Definition 2: A substitution θ (or type substitution µ) is called a unifier for terms t1 and t2 (or types τ1

and τ2), iff θ(t1) = θ(t2) (or µ(τ1) = µ(τ2)). Terms t1 and t2 (or types τ1 and τ2) are unifiable iff there

exists a unifier for them.

Our constraints are supposed to represent equality, either of terms or types. However, in the seman-

tics, we need states and valuations to interpret non-ground terms and types, respectively. Therefore, we

need a way to interpret constraints semantically, so we define the following.

Definition 3: Let c be a constraint, Σ a state, and ψ a valuation. We say that Σ and ψ model c, and

represent it by Σ,ψ |= c if:

244 Regular Typed Unification

• c is an equality constraint of the form t1 = t2, then [[t1]]I,Σ = [[t2]]I,Σ;

• c is a type equality constraint of the form τ1
.
= τ2, then T[[τ1]]ψ = T[[τ2]]ψ ;

We can easily extend this definition for sets of constraints.

Definition 4: Let C be a set of equality constraints and S be a set of type equality constraints. We say

that a state Σ and a valuation ψ model the pair (C,T), and represent it by Σ,ψ |=C,T iff Σ and ψ model

all constraints in both sets.

We now provide an auxiliary definition that relates substitutions and states and use this definition to

extend our notion of constraint modelling.

Definition 5: We say that a state Σ follows a substitution θ and represent it by Σ ∼ θ iff for any term t,

[[t]]I,Σ = v and [[θ(t)]]I,Σ = v. Similarly, a valuation ψ follows a substitution for types µ (ψ ∼ µ) iff for

any type τ , T[[τ]]ψ = T[[µ(τ)]]ψ .

Definition 6: Let C be a set of equality constraints and S be a set of type equality constraints. We say

that a substitution θ and a type substitution µ model the pair (C,T), and represent it by θ ,µ |=C,T , iff

for every state Σ and valuation ψ we have that Σ ∼ θ ∧ψ ∼ µ =⇒ Σ,ψ |=C,T .

7 Typed Unification Algorithm

The typed unification algorithm performs unification for terms and types. The intuition is that if the types

do not unify, then there is a type error. We will prove this condition in the next section. We follow the

approach of [24]: generate constraints for typeability and solve them.

7.1 Constraint Generation

GVAR
(X : α) ∈ Γ

Γ,∆ ⊢ X : α | /0 | /0
GCST

(k : ∀~α.τ) ∈ ∆

Γ,∆ ⊢ k : τ [~α 7→ ~β] | /0 | /0

GCPL
(f : ∀~α .τ1 ×·· ·× τn → τ) ∈ ∆ Γ,∆ ⊢ t1 : τ1′ | /0 | T1 . . . Γ,∆ ⊢ tn : τn′ | /0 | Tn

Γ,∆ ⊢ f (t1, . . . , tn) : τ [~α 7→ ~β] | /0 | T1 ∪ ·· ·∪Tn ∪{τ ′1
.
= τ1[~α 7→ ~β], . . . ,τ ′n

.
= τn[~α 7→ ~β]}

GEQU
Γ,∆ ⊢ t1 : τ1 | C1 | T1 Γ,∆ ⊢ t2 : τ2 | C2 | T2

Γ,∆ ⊢ t1 = t2 : bool | {t1 = t2} | T1 ∪T2∪{τ1
.
= τ2}

Figure 2: Constraint Typing Judgment

Guided by the definition of our type system we now define a constraint typing judgment, which

indicates what constraints must hold for a particular type term-and-context pair to be typeable.

J. Barbosa, M. Florido & V. Santos Costa 245

Let Γ be a generic context, and ∆ a set of type assumptions for constants and function symbols. We

use the following rules to generate constraints for the unification of two terms t1 and t2. The generated

constraints will be the pair (C,T) in Γ,∆ ⊢ t1 = t2 : bool | C | T . In the rules in Figure 2, ~β represents a

sequence of fresh type variables of the same size as ~α in the corresponding case.

Example 5: Let Γ be a generic context (we will denote the type variable associated with each variable X

by αX), ∆ = {1 : int, [] : ∀α .list(α), cons : ∀β .β × list(β)→ list(β)}, C = {cons(X , []) = cons(1,Y)},

and Λ = (cons : ∀β .β × list(β)→ list(β)) ∈ ∆. The following constraint type judgements hold:

(X : αX) ∈ Γ

Γ,∆ ⊢ X : αX | /0 | /0

([] : ∀α .list(α)) ∈ ∆

Γ,∆ ⊢ [] : list(γ) | /0 | /0 Λ

Γ,∆ ⊢ cons(X , []) : list(ν) | /0 | {αX = ν , list(γ) = list(ν)}(= T1)

(1 : int) ∈ ∆

Γ,∆ ⊢ 1 : int | /0 | /0

(Y : αY) ∈ Γ

Γ,∆ ⊢Y : αY | /0 | /0 Λ

Γ,∆ ⊢ cons(1,Y) : list(η) | /0 | {int = η , αY = list(η)}(= T2)

Γ,∆ ⊢ cons(X , []) : list(η) | /0 | T1 Γ,∆ ⊢ cons(1,Y) : list(ν) | /0 | T2

Γ,∆ ⊢ cons(X , []) = cons(1,Y) : bool | C | T1 ∪T2 ∪{list(ν) = list(η)}

We will now prove that constraint generation is sound, i.e., if we generate constraints any model for

them applied to Γ and type τ is derivable in the type system.

Theorem 2 - Soundness of the Constraint Generation: If Γ,∆ ⊢ t : τ |C | T and µ |= T , then µ(Γ),∆ ⊢
t : µ(τ) is derivable in the type system.

Proof: We will prove this theorem by induction on the derivation.

• If t is a variable X , then we have Γ,∆ ⊢ X : α | /0 | /0. Any type substitution µ is such that

µ |= /0. And, for any µ , since µ(α) will be the same in Γ and in the consequent of the rule,

µ(Γ),∆ ⊢ X : µ(α) is derivable in the type system by a single application of rule VAR.

• If t is a constant k, then we have Γ,∆ ⊢ k : τ [~α 7→ ~β] | /0 | /0, where (k : ∀~α.τ) ∈ ∆. Any type

substitution µ is such that µ |= /0. Then, for any such µ we can have the derivation in the syntactic

system using a single application of rule CST, using µ(τ [~α 7→ ~β]) = τ [~α 7→ ~µ(β)].

• If t is a complex term f (t1, . . . , tn), then we have Γ,∆ ⊢ f (t1, . . . , tn) : τ [~α 7→ ~β] | /0 | T1 ∪ . . .∪

Tn ∪{τ ′1
.
= τ1[~α 7→ ~β], . . . ,τ ′n

.
= τn[~α 7→ ~β]}, given Γ,∆ ⊢ ti : τi′ | /0 | Ti, for i = 1, . . . ,n. We also

know that µ |= T1 ∪ ·· · ∪ Tn ∪{τ ′1
.
= τ1[~α 7→ ~β], . . . ,τ ′n

.
= τn[~α 7→ ~β]}, and any such µ is such

that µ |= Ti and µ |= τ ′i
.
= τi[~α 7→ ~β], for each i = 1, . . . ,n. By the induction hypothesis, we have

µ(Γ),∆ ⊢ ti : µ(τ ′i). But we know that µ(τ ′i) = µ(τi[~α 7→ ~β]), since µ |= τ ′i
.
= τi[~α 7→ ~β], for all

i = 1, . . . ,n. So we also have µ(Γ),∆ ti : µ(τi[~α 7→ ~β]). Therefore, by a single application of the

CPL rule, we get µ(Γ),∆ f (t1, . . . , tn) : µ(τ [~α 7→ ~β]).

246 Regular Typed Unification

• If t is an equality t1 = t2, then we have Γ,∆ ⊢ t1 = t2 : bool | {t1 = t2} | T1 ∪T2 ∪{τ1
.
= τ2}, given

Γ,∆ ⊢ t1 : τ1′ | /0 | T1 and Γ,∆ ⊢ t2 : τ2′ | /0 | T2. We also know that µ |= T1 ∪T2 ∪{τ1
.
= τ2}, and

any such µ is such that µ |= T1, µ |= T2, and µ |= τ1
.
= τ2. By the induction hypothesis, we have

µ(Γ),∆ ⊢ t1 : µ(τ1) and µ(Γ),∆ ⊢ t2 : µ(τ2), but since µ |= τ1
.
= τ2, we know that µ(τ1)≡ µ(τ2).

So by a single application of rule EQU, we get µ(Γ),∆ ⊢ t1 = t2 : µ(bool), and µ(bool) = bool.

�

7.2 Constraint Solving

In this section we present a procedure that generalizes Robinson unification [18] to account for type

constraints and produces solutions, where possible. Since each rule simplifies the constraints, together

they induce a straightforward decision procedure for type and term constraints.

Suppose we want to unify two terms t1 and t2. Let us have Γ,∆ ⊢ t1 = t2 : bool | C | T derived in the

constraint generation step. Then we apply the following rewriting rules to the tuple (C,T), until none

applies. We apply the rules in order, meaning we only apply rule n if no rule i with i < n applies.

1. (C,{ f (τ1, . . . ,τn)
.
= f (τ ′1, . . . ,τ ′n)}∪Rest)→ (C,{τ1

.
= τ ′1, . . . ,τn

.
= τ ′n}∪Rest)

2. (C,{τ
.
= τ}∪Rest)→ (C,Rest)

3. (C,{ f (τ1, . . . ,τn)
.
= g(τ ′1, . . . ,τ ′m)}∪Rest)→ wrong, if f 6= g or n 6= m

4. (C,{τ
.
= α}∪Rest)→ (C,{α

.
= τ}∪Rest), if τ is not a type variable

5. (C,{α
.
= τ}∪Rest)→ (C,{α

.
= τ}∪Rest[α 7→ τ]), if α does not occur in τ

6. (C,{α
.
= τ}∪Rest)→ wrong, if α occurs in τ

7. ({ f (t1, . . . , tn) = f (s1, . . . ,sn)}∪Rest,T)→ ({t1 = s1, . . . , tn = sn}∪Rest,T)

8. ({t = t}∪Rest,T)→ (Rest,T)

9. ({ f (t1, . . . , tn) = g(s1, . . . ,sm)}∪Rest,T)→ f alse, if f 6= g or n 6= m

10. ({t = X}∪Rest,T)→ ({X = t}∪Rest,T), if t is not a variable

11. ({X = t}∪Rest,T)→ ({X = t}∪Rest[X 7→ t],T), if X does not occur in t

12. ({X = t}∪Rest,T)→ f alse, if X occurs in t.

We will use the symbol →∗ to denote the reflexive and transitive closure of →.

Example 6: Let C = {cons(X , []) = cons(1,Y)} and T = {αX = ν , list(γ) = list(ν), int = η , αY =
list(η), list(ν) = list(η)}. Step-by-step the algorithm rewrite the pair (C,T) as follows:

(C,T)→ (C,{αX = ν , γ = ν , int = η , αY = list(η), list(ν) = list(η)})→
(C,{αX = ν , γ = ν , int = η , αY = list(η),ν = η})→
(C,{αX = ν , γ = ν ,η = int, αY = list(η),ν = η})→
(C,{αX = ν , γ = ν ,η = int, αY = list(int),ν = int})→
(C,{αX = ν , γ = int,η = int, αY = list(int),ν = int}(= T ′))→
({X = 1, [] = Y},T ′)→ ({X = 1,Y = []},T ′)

Note that, in the final pair, no more rules apply and we can interpret this pair as a pair of substitutions

for terms and for types, respectively.

J. Barbosa, M. Florido & V. Santos Costa 247

7.3 Properties of the Regular Typed Unification Algorithm

In this section we show the main properties of regular typed unification. Firstly, it always terminates.

Secondly, it is correct, meaning that the result is the same as we would have gotten in the equality theory

defined for = semantically. One big obstacle for this second property is that terms may not be ground

when we want to unify them, and semantically we always need a state to evaluate variables. We will

be conservative and assume that if there is a possible state for which the terms have values in the same

semantic domain, then there is no type error (yet). Similarly, if there is a state for which the terms have

the same semantic value, then the result is not false (yet).

Theorem 3 - Termination: Let (C,T) be the sets of constraints generated for terms t1 and t2. The

algorithm always terminates, returning a pair of unifiers, false, or wrong.

Proof: We divide the algorithm in two parts. The first consists of the rules 1 to 6, and the second of the

rules 7 to 12. Each of these parts are the Martelli-Montanari algorithm [15] for its corresponding kind of

constraints, type equality and equality, respectively. Therefore they terminate.

For a formal proof for the termination of the Martelli-Montanari algorithm, we defer the reader to

[15].

Moreover, if the Martelli-Montanari terminates, the output is either a most general unifier, or the

algorithm fails. In the first part, failure is represented by wrong, and in the second part, it is represented

by false. So our algorithm either terminates and outputs wrong, false, or both parts succeed and the

algorithm outputs a pair of most general unifiers. �

We now know that the algorithm terminates, and what the outputs might be. We will additionally

prove that the result is semantically valid. We start by proving a few auxiliary lemmas.

The following lemmas are used to prove soundness.

Lemma 1 - Rewriting Consistency: Let (C,T)→ (C′,T ′) be a step in the typed unification algorithm,

such that the output is not f alse nor wrong. Then, if for all equality constraints (t1 = t2) ∈ C′ the

substitution θ is a unifier of t1 and t2, then θ is also a unifier of each equality constraint in C. Same

applies to T ′ and T , with a type substitution µ .

Proof: We will prove this by case analysis.

1. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint in C also

unifies each equality constraint in C′. Now suppose that µ is a type substitution such that µ(τi) =
µ(τi′), for i = 1, . . . ,n, then, also µ(f (τ1, . . . ,τn)) = µ(f (τ ′1, . . . ,τ ′n)). All other type equality

constraints in T are also in T ′, so any unifier of T ′ is a unifier of T .

2. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint in C also

unifies each equality constraint in C′. All type equality constraints in T ′ are also in T , so all unifiers

of T ′ are unifiers of that subset of T . Moreover, T has one more type equality constraint τ
.
= τ , but

any substitution, in particular any unifier of T ′ is also a unifier of τ with itself.

3. This case does not apply, since the output is wrong.

248 Regular Typed Unification

4. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint in C also

unifies each equality constraint in C′. Any unifier of T ′ is also a unifier of T , since swapping the

terms on a type equality constraints does not change the fact that a substitution is a unifier.

5. C′ and C are equal so, trivially, any substitution θ that unifies each equality constraint in C also

unifies each equality constraint in C′. Suppose µ is a unifier of T ′, then µ(α) = µ(τ). Therefore,

since T ′ = T [α 7→ τ] for all constraints except α
.
= τ , then µ(T ′) = µ(T [α 7→ τ]) = (µ ◦ [α 7→

τ])(T) but since µ(α) = µ(τ), then (µ ◦ [α 7→ τ])(T) = µ(T). So µ is also a unifier of T .

6. This case does not apply, since the output is wrong.

The proof for the rest of the cases is similar to the proof for the cases 1 to 6, except we replace type

equality constraints with equality constraints, type substitution with substitution, and wrong with f alse.

�

Lemma 2 - Self-satisfiability: Suppose C is a set of equality constraints in normal form. Then, C can

be interpreted as a substitution θ , and θ is a unifier of all constraints in C. Same can be said for a set of

type equality constraints in normal form T .

Proof: If C is in normal form, then C = {X1 = t1, . . . ,Xn = tn}, where Xi is a variable and none of Xi

occurs in any ti. So, when we interpret C as a substitution θ , we will have θ = [X1 7→ t1, . . . ,Xn 7→ tn].
When we apply θ to each constraint in C, we will get θ(C) = {θ(X1) = θ(t1), . . . ,θ(Xn) = θ(tn)},

but since none of the variables Xi occur in any ti, then θ(ti) = ti. Moreover, θ(Xi) = ti. So we get

θ(C) = {t1 = t1, . . . tn = tn}. Therefore, θ is a unifier of all constraints in C. The proof for type equal-

ity constraints is similar to this one, replacing substitutions with type substitutions and terms with type

terms. �

We are now ready to prove the following theorem that proves that the algorithm outputs a semanti-

cally correct value.

Theorem 4 - Soundness of the Typed Unification Algorithm: Let t1 and t2 be the input to the typed

unification algorithm, and Γ ⊢ t1 = t2 | C | T . Suppose (C,T)→∗ R.

1. If R = (θ ,µ), a pair of substitutions for terms and types respectively, then θ ,µ |=C,T .

2. If R = f alse, then there is no substitution θ such that θ |=C, but there is a type substitution µ such

that µ |= T .

3. If R = wrong, then there is no type substitution µ such that µ |= T .

Proof: The proof for (1) follows from Lemmas 1 and 2. We get that θ and µ are unifiers of C and T ,

respectively.

The proof for (2) follows from the fact that the Martelli-Montanari algorithm is complete, i.e., if

there was a unifier for the equality constraint set C, then it would have been obtained. Therefore there

is no unifier for C, so there is no θ such that θ |= C. However, since we got to the second part of the

algorithm, then we were able to find a unifier for the type equality constraints. This means that there is

at least one unifier for T , so there is a µ such that µ |= T .

J. Barbosa, M. Florido & V. Santos Costa 249

The proof for (3) follows form the fact that the Martelli-Montanari algorithm is complete, i.e., if there

was a unifier for the type equality constraint set T , then it would have been obtained. Therefore there is

no unifier for T , so there is no µ such that µ |= T . �

We also prove that the unification algorithm outputs principal typings when it succeeds.

Theorem 5 - Completeness of the Typed Unification Algorithm: Let t be term, or a unification of

two terms, Γ be a generic context, and ∆ be type assumptions for constants and function symbols. If

Γ,∆ ⊢ t : τ | C | T and (C,T)→∗ (θ ,µ). Then (µ(Γ),µ(τ)) is a principal typing of t.

Proof: We will prove by structural induction on t.

• If t is a variable X , then (X : α) ∈ Γ. We know that Γ,∆ ⊢ X : α | /0 | /0 by a single application of

GVAR. (/0, /0)→ ([], []), where [] are each the identity substitution for variables and type variables,

respectively. Therefore [](α) =α , and any type τ derived in the type system such that (X : τ)∈ Γ′,
then τ is an instance of α .

• If t is a constant k, then (k : ∀~α.τ) ∈ ∆. We know that Γ,∆ ⊢ k : τ [~α 7→ ~σ], for any ~σ . We get by a

single application of rule GCST that Γ,∆ ⊢ k : τ [~α 7→ ~β] | /0 | /0. (/0, /0)→ ([], []), where [] are each

the identity substitution for variables and type variables, respectively. Therefore [](τ [~α 7→ ~β]) =

τ [~α 7→ ~β], and we known that any ~σ is an instance of ~β .

• If t is a complex term f (t1, . . . , tn), then (f : ∀~α .τ1 × ·· · × τn → τ ′) ∈ ∆. By the induction hy-

pothesis, we know that if (/0,Ti) →
∗ ([],µi), then (µi(Γ),µi(τ ′i)) is a principal typing of ti. Now

suppose (/0,T1 ∪ ·· · ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . ,τ ′n

.
= τn[~α 7→ ~β]}) →∗ ([],µ). We know that

µ(τ ′i) = µ(τi[~α 7→ ~β]) for all i = 1, . . . ,n. So we can derive µ(Γ),∆ ⊢ ti : µ(τi[~α 7→ ~β]), and

by a single application of rule CPL, we get µ(Γ),∆ ⊢ f (t1, . . . , tn) : µ(τ [~α 7→ ~β]). Now we need

to prove that this typing (µ(Γ),µ(τ [~α 7→ ~β])) is the principal typing. Suppose we had another

typing that was not an instance of this one (µ ′(Γ),µ ′(τ [~α 7→ ~β])). Since µ is an MGU of

T1 ∪ ·· · ∪ Tn ∪ {τ ′1
.
= τ1[~α 7→ ~β], . . . ,τ ′n

.
= τn[~α 7→ ~β]}, then either for some i µ ′ 2 Ti, or for

some i µ ′ 2 τ ′i
.
= τi[~α 7→ ~β]. If the former is true, then (µ ′(Γ),µ(′(τ ′i))) is not an instance of

the principal typing for ti and therefore cannot be derived in the type system. If the latter is true,

then µ ′(τi[~α 7→ ~β]) 6= µ ′(τ ′i) and we cannot use the rule CPL in the type system. Therefore,

(µ(Γ),µ(τ [~α 7→ ~β])) is the principal typing for f (t1, . . . , tn).

• Suppose t is an equality t1 = t2. By the induction hypothesis, we know that if (/0,Ti)→
∗ ([],µi),

then (µi(Γ),µi(τi)) is a principal typing of ti. Now suppose ({t1 = t2},T1 ∪ T2 ∪ {τ1
.
= τ2) →

∗

(θ ,µ). We know that µ(τi) is an instance of µi(τi), so we can derive µ(Γ),∆ ⊢ ti : µ(τi) in the type

system. By a single application of rule EQU, we get µ(Γ),∆ ⊢ t1 = t2 : bool. So (µ(Γ),µ(bool))
is a typing. Suppose it was not the principal typing. Suppose we had another typing that was

not an instance of this one (µ ′(Γ),µ ′(bool)). For all µ , µ(bool) = bool. Since µ is an MGU of

T1 ∪T2 ∪{τ1
.
= τ2}, so if µ ′ is not an instance, then either for some i µ ′ 2 Ti or µ ′ 2 τ1

.
= τ2. If the

former is true, then (µ ′(Γ),µ ′(τ1)) is not an instance of its principal typing, so it cannot be derived

in the type system. If the latter is true, the types for t1 and t2 are different and we cannot apply rule

EQU, so we could not have this derivation in the type system. Therefore, (µ(Γ),µ(bool)) is the

principal typing for t1 = t2.

�

250 Regular Typed Unification

8 Final Remarks

Our regular typed unification algorithm provides some foundation for the use of regular types to dy-

namically catch erroneous Prolog behaviors. Indeed, one of the original motivations for this work was

to understand how to extend the YAP Prolog system [5] with an effective dynamic typing. In [3] we

proposed a typed SLD-resolution (TSLD) which used our previous notion of typed unification. Our

goal now is to effectively extend SLD resolution with unification of terms typed by deterministic regular

types. A TSLD-tree branch may result in true, false, or wrong, depending on the same results for the

unifications in the branch. In [3], each TSLD-tree branch where a unification outputs false, needed to

continue execution on the same branch in order to check if there was a type error in some other atom in

the query. This leads to a drastic increase in the runtime of programs.

Example 7: Consider the following (unrealistic) but possible program:

p(0).

and query: ?- p(1),...,p(900),p(a). In Prolog SLD-resolution the query fails after one SLD-step.

In the TSLD-resolution defined in [3], since the first 900 queries return f alse, one needs to reach step

901 in order to obtain the value wrong.

We argue that when adding regular typed unification to Prolog we must have a compromise between

completeness and efficiency. If the evaluation of a query is f alse we stop execution, and the same

happens for wrong. However, if the result is f alse and there are other atoms in the query, we cannot

assure that the value for that branch is indeed f alse, only that it is not true. Thus, in our extension to

Prolog we output no(?) in these cases. On the other hand, we output no(false) if there are no other atoms

in the query, and no(wrong) if the branch ends on wrong. Note that in many programs, for some queries,

we are always able to detect the type error.

Example 8: Consider the predicate that calculates the length of a list:

length([], 0).

length([_|T],N) :- length(T,N1), N is N + 1.

One typical bug is to swap the arguments of a predicate. Now note that, in this case, if we have the

erroneous query ?- length(3,[a,b,c]), both branches of the TSLD-tree output wrong since there is

a type error in the first argument (and also in the second).

9 Related Work

This paper generalizes a typed unification algorithm previously defined by the authors in [3] that was used

in the dynamic typing of logic programs. In [3], functions symbols f of arity n had co-domains which

were always sets of terms of the form f (t1, . . . , tn), where the arguments ti belong to the corresponding

domain of f . Here we extend this notion enabling the use of semantic domains and co-domains described

by deterministic regular types allowing a non-Herbrand interpretation of function symbols.

The most obvious related work is many-sorted unification [23], though many-sorted unification as-

sumes an infinite hierarchy of sorts and we do not assume a hierarchy of types. In particular there is

a relation with many-sorted unification with a forest-structured sort hierarchy [23], but even compared

J. Barbosa, M. Florido & V. Santos Costa 251

with this strong restricted unification problem, our work gives easier and nicer results, mostly due to the

use of an expressive universe partition based on regular types but with no underlying hierarchy on the

domains.

Here we study unification of terms interpreted in domains described by regular types, and we allow a

form of parametric polymorphism in the description of term variables. Parametric polymorphic descrip-

tions of sorted domains goes back to Smolka generalized order-sorted logic [22]. In his system, subsort

declarations are propagated to complex type expressions, thus the main focus is on subtyping which is

not the scope of our work.

Dart and Zobel [7] provided an algorithm for regular type unification, generating a type unifier. Due

to problems related to tuple distributivity, not all types had a most general type unifier. In consequence,

unification returned a weak type unifier. However, the question whether unification returned a minimal

weak type unifier was unknown and left as an open question.

In [11], there is a typed unification algorithm used in a typed operational semantics for logic pro-

gramming. The main difference to our work is that in [11] failing unification due to ill-typedness is not

detected with a different value and it is not different from a well-typed failed unification.

A data type reconstruction algorithm was previously defined in [19] based on equations and inequa-

tions constraints. This was also applied to logic programs (terms and predicates). Here we focus on term

unification, thus equality is the only predicate, and this rather simplifies our type system.

Acknowledgements This work was partially financially supported by UIDB/00027/2020 of the Ar-

tificial Intelligence and Computer Science Laboratory, LIACC, funded by national funds through the

FCT/MCTES (PIDDAC).

References

[1] Krzysztof R. Apt (1996): From Logic Programming to Prolog. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA.

[2] João Barbosa, Mário Florido & Vı́tor Santos Costa (2021): Data Type Inference for Logic Pro-

gramming. In: Logic-Based Program Synthesis and Transformation, LNCS, Springer, pp. 16–37,

doi:10.1007/978-3-030-98869-2 2.

[3] João Barbosa, Mário Florido & Vı́tor Santos Costa (2022): Typed SLD-Resolution: Dynamic Typing

for Logic Programming. In: Logic-Based Program Synthesis and Transformation, LNCS, Springer,

doi:10.1007/978-3-031-16767-6 7.

[4] Michael Codish & Vitaly Lagoon (2000): Type dependencies for logic programs using ACI-unification.

Theor. Comput. Sci. 238(1-2), pp. 131–159, doi:10.1016/S0304-3975(98)00122-4.

[5] Vı́tor Santos Costa, Ricardo Rocha & Luı́s Damas (2012): The YAP Prolog System. Theory and Practice of

Logic Programming 12(1-2), pp. 5–34, doi:10.1017/S1471068411000512.

[6] Luı́s Damas & Robin Milner (1982): Principal Type-Schemes for Functional Programs. In: Conference

Record of the Ninth Annual ACM Symposium on Principles of Programming Languages, pp. 207–212,

doi:10.1145/582153.582176.

[7] Philip W. Dart & Justin Zobel (1992): A Regular Type Language for Logic Programs. In Frank Pfenning,

editor: Types in Logic Programming, The MIT Press, pp. 157–187.

[8] Pierre Deransart, AbdelAli Ed-Dbali & Laurent Cervoni (1996): Prolog - the standard: reference manual.

Springer, doi:10.1007/978-3-642-61411-8.

https://doi.org/10.1007/978-3-030-98869-2_2
https://doi.org/10.1007/978-3-031-16767-6_7
https://doi.org/10.1016/S0304-3975(98)00122-4
https://doi.org/10.1017/S1471068411000512
https://doi.org/10.1145/582153.582176
https://doi.org/10.1007/978-3-642-61411-8

252 Regular Typed Unification

[9] Thom W. Frühwirth, Ehud Y. Shapiro, Moshe Y. Vardi & Eyal Yardeni (1991): Logic Programs as Types

for Logic Programs. In: Proc. of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91),

Netherlands,1991, pp. 300–309, doi:10.1109/LICS.1991.151654.

[10] John P Gallagher & Kim S Henriksen (2004): Abstract Domains Based on Regular Types. In: International

Conference on Logic Programming, Springer, pp. 27–42, doi:10.1007/978-3-540-27775-0 3.

[11] Michael Hanus (1991): Horn clause programs with polymorphic types: semantics and resolution.

Theoretical Computer Science 89(1), pp. 63–106, doi:10.1016/0304-3975(90)90107-S. Available at

https://www.sciencedirect.com/science/article/pii/030439759090107S.

[12] Manuel V. Hermenegildo, José F. Morales, Pedro López-Garcı́a & Manuel Carro (2023): Types, Modes and

so Much More - The Prolog Way. In: Prolog: The Next 50 Years, LNCS 13900, Springer, pp. 23–37,

doi:10.1007/978-3-031-35254-6 2.

[13] Trevor Jim (1996): What Are Principal Typings and What Are They Good For? In: POPL’96: The 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ACM Press, pp. 42–53,

doi:10.1145/237721.237728.

[14] J. W. Lloyd (1984): Foundations of Logic Programming. Springer-Verlag, Berlin, Heidelberg,

doi:10.1007/978-3-642-96826-6.

[15] Alberto Martelli & Ugo Montanari (1982): An Efficient Unification Algorithm. ACM Trans. Program. Lang.

Syst. 4(2), p. 258–282, doi:10.1145/357162.357169.

[16] Robin Milner (1978): A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci. 17(3), pp.

348–375, doi:10.1016/0022-0000(78)90014-4.

[17] Prateek Mishra (1984): Towards a Theory of Types in Prolog. In: Proceedings of the 1984 International

Symposium on Logic Programming, IEEE-CS, pp. 289–298.

[18] J. A. Robinson (1965): A Machine-Oriented Logic Based on the Resolution Principle. Journal of the ACM

12(1), pp. 23–41, doi:10.1145/321250.321253.

[19] Tom Schrijvers & Maurice Bruynooghe (2006): Polymorphic algebraic data type reconstruction. In: Pro-

ceedings of the 8th International ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-

gramming, PPDP, doi:10.1145/1140335.1140347.

[20] Tom Schrijvers, Maurice Bruynooghe & John P. Gallagher (2008): From Monomorphic to Polymorphic

Well-Typings and Beyond. In: Logic-Based Program Synthesis and Transformation, 18th International Sym-

posium, LOPSTR, LNCS 5438, Springer, doi:10.1007/978-3-642-00515-2 11.

[21] Tom Schrijvers, Vı́tor Santos Costa, Jan Wielemaker & Bart Demoen (2008): Towards Typed Pro-

log. In: Logic Programming, 24th International Conference, ICLP, LNCS 5366, Springer, pp. 693–697,

doi:10.1007/978-3-540-89982-2 59.

[22] Gert Smolka (1988): Logic Programming with Polymorphically Order-Sorted Types. In: Algebraic and Logic

Programming, International Workshop, LNCS 343, Springer, pp. 53–70, doi:10.1515/9783112620267-007.

[23] Christoph Walther (1988): Many-Sorted Unification. J. ACM 35(1), p. 1–17, doi:10.1145/42267.45071.

[24] M. Wand (1987): A simple algorithm and proof for type inference. Fundamenta Infomaticae 10, pp. 115–122,

doi:10.3233/FI-1987-10202.

[25] Eyal Yardeni & Ehud Shapiro (1991): A type system for logic programs. The Journal

of Logic Programming 10(2), pp. 125–153, doi:10.1016/0743-1066(91)80002-U. Available at

https://www.sciencedirect.com/science/article/pii/074310669180002U.

[26] Justin Zobel (1987): Derivation of Polymorphic Types for Prolog Programs. In: Logic Programming, Pro-

ceedings of the Fourth International Conference, ICLP.

https://doi.org/10.1109/LICS.1991.151654
https://doi.org/10.1007/978-3-540-27775-0_3
https://doi.org/10.1016/0304-3975(90)90107-S
https://www.sciencedirect.com/science/article/pii/030439759090107S
https://doi.org/10.1007/978-3-031-35254-6_2
https://doi.org/10.1145/237721.237728
https://doi.org/10.1007/978-3-642-96826-6
https://doi.org/10.1145/357162.357169
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/1140335.1140347
https://doi.org/10.1007/978-3-642-00515-2_11
https://doi.org/10.1007/978-3-540-89982-2_59
https://doi.org/10.1515/9783112620267-007
https://doi.org/10.1145/42267.45071
https://doi.org/10.3233/FI-1987-10202
https://doi.org/10.1016/0743-1066(91)80002-U
https://www.sciencedirect.com/science/article/pii/074310669180002U

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 253–266, doi:10.4204/EPTCS.416.22

© Ð. Marković & M. Denecker
This work is licensed under the
Creative Commons Attribution License.

Order-Sorted Intensional Logic: Expressing Subtyping
Polymorphism with Typing Assertions and Quantification

over Concepts*

Ðord̄e Marković Marc Denecker
KU Leuven, Department of computer science, Leuven, Belgium

dorde.markovic@kuleuven.be marc.denecker@kuleuven.be

Subtyping, also known as subtype polymorphism, is a concept extensively studied in programming
language theory, delineating the substitutability relation among datatypes. This property ensures that
programs designed for supertype objects remain compatible with their subtypes.

In this paper, we explore the capability of order-sorted logic for utilizing these ideas in the context
of Knowledge Representation. We recognize two fundamental limitations: First, the inability of this
logic to address the concept rather than the value of non-logical symbols, and second, the lack of
language constructs for constraining the type of terms. Consequently, we propose guarded order-
sorted intensional logic, where guards are language constructs for annotating typing information and
intensional logic provides support for quantification over concepts.

1 Introduction

The logic-based approach to knowledge representation (KR) dates back to the early ages of artificial
intelligence. From the inception of this approach, limitations of untyped logic were identified. These
issues led to the use of many-sorted logic [10], and order-sorted logic (OSL) [1]. In many-sorted logic,
the domain of discourse (or universe) is partitioned into different sorts/types, all disjoint. The latter
assumption is lifted in order-sorted logic, and sorts/types can be organized in a hierarchy by inclusion.

When extending first-order logic with ordered sorts, the concept of subtyping polymorphism emerges
[8, Chapter 15]. A prime example of this concept is the modeling of characteristic behaviors among
different animals. Dogs bark, cats meow, etc., while nearly all animals produce species-specific sounds.
In this scenario, animal serves as the overarching type, with specific animal types acting as subtypes. In
many programming languages, one can invoke a method such as produce sound for an animal, which
dynamically dispatches behavior based on the specific species of the animal. Logic is characterized by
model semantics, and hence, it lacks the notion of method invocation found in programming languages.
Nonetheless, logical statements can draw inspiration from this concept. For instance, consider the state-
ment: “There is an animal in my yard that is either barking or meowing”. Considering that barking and
meowing are predicates defined respectively on types dog and cat which are subtypes of the type animal,
expressing such statements in OSL may easily lead to untyped formulae, as we shall see later.

In this paper, we explore the principles underlying subtyping polymorphism and highlight challenges
in its representation within order-sorted first-order logic. Additionally, we identify the two key principles
essential for naturally expressing such concepts in any logic employing order-sorts. The first principle
relates to the inherent incapacity of standard OSL to condition the subtyping relation of a term. For

*This work was partially supported by the Flemish Government under the “Onderzoeksprogramma Artificiële Intelligentie
(AI) Vlaanderen”.

http://dx.doi.org/10.4204/EPTCS.416.22
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

254 Order-Sorted Intensional Logic

instance, given a variable x ranging over type animal, it is impossible1 to express “if x is of type dog then
x is barking”. Furthermore, we show that making such typing assertions implicit (annotated) is essential
for subtyping. Whereby, annotating aims to implicitly constrain the type of a variable to the type of the
argument it occurs at, given that the type of the variable is a supertype of the argument. For example, a
language can be extended such that the statement “⟨⟨x is barking⟩⟩” stands for “if x is of type dog then
x is barking”. This is possible because predicate barking caries the typing information that an argument
of type dog is expected. The second principle tackles the constraint of first-order logic to solely address
the values (extensions) of non-logical symbols rather than the concepts (intensions) interpreting them
and the constraint to quantify over these concepts. Principles of intensional logic ([4]) become crucial
in overcoming these limitations. We demonstrate that by combining order-sorted logic with principles
of intensional logic and introducing the innovative principle of implicit type conditions, we establish a
novel language suitable for expressing subtyping polymorphism.

The remainder of the paper is structured as follows: (2) Order-sorted logic preliminaries; (3) Anal-
ysis of subtyping polymorphism from the logic perspective; (4) Introduction of guarded and (5) in-
tensional OSL; (6) Presentation of results: Guarded order-sorted intensional logic; (7) Discussion on
well-typedness in order-sorted intensional logic; (8) Semantics of the language; (9) Discussion of related
work; (10) Conclusion.

2 Preliminaries – Order-sorted Logic

This section formally defines order-sorted logic. We start with the notion of a vocabulary.

Definition 1. An OSL vocabulary Σ of non-logical symbols is a quadruple (TΣ, SΣ, <:Σ, tsΣ) where:

• TΣ is a set of type symbols T. Type symbols U (universe), B (boolean), and N (natural numbers)
are always member of TΣ.

• SΣ is a set of function and predicate symbols.

• <:Σ is a subtyping relation on TΣ. Type S is a direct subtype of T if S<:Σ T. For each type T (except
U) without direct supertype declaration T <:Σ S, we implicitly assume T <:Σ U. Accordingly,
B<:Σ U and N<:Σ U.

• tsΣ is a type signature associating to every symbol in SΣ a word of the following format (T1×·· ·×
Tn) → T (i.e., type term). If T = B, the symbol is a predicate symbol, otherwise it is a function
symbol. The sets of predicate and function symbols are denoted with Sp

Σ
, respectively S f

Σ
.

Type T1 is called a subtype of T2 if there is a path from T1 to T2 in the relation <:Σ.

Proposition 1. Given vocabulary Σ, every type T in TΣ (except U) is subtype of U.

Proof. Follows directly from Definition 1.

A symbol with type term ()→ T is an object (or a constant function) symbol. A symbol with type
term ()→ B is a propositional symbol.

1Here we strictly talk about the incapability to constrain the subtype of a variable, and not about possible alternative mod-
elings that would circumvent this issue by changing the ontology.

Ð. Marković & M. Denecker 255

Example 1. The following vocabulary declares: types Animal (Animal), Cat (Cat), and Dog (Dog),
where cat and dog are subtypes of animal; function age mapping animals to natural numbers; constant
tom of type cat; and two predicates bark and meow denoting sets of dogs and cats respectively.

type Animal type Cat <: Animal type Dog <: Animal

age : Animal → N tom : ()→ Cat bark : Dog → B meow : Cat → B

The following defines OSL terms, formulae, expressions, and sentences.

Definition 2. Given an infinite set X of variable symbols and OSL vocabulary Σ, an OSL term (τ) and
formula (φ) over X and Σ are defined inductively (using BNF):

• A term is a variable or a function term:

⟨τ⟩ ::= ⟨x⟩ | ⟨ f ⟩(⟨τ⟩,..., ⟨τ⟩) where x ∈ X , f ∈ S f
Σ

• A formula is true or false, an atomic formula, a negation, a disjunction, or an existential quantifi-
cation:
⟨φ⟩ ::= true | false | ⟨p⟩(⟨τ⟩,...,⟨τ⟩) | ¬⟨φ⟩ | ⟨φ⟩ ∨⟨φ⟩ | ∃⟨x⟩ [⟨T⟩] : ⟨φ⟩

where x ∈ X , p ∈ Sp
Σ
,T ∈ TΣ

• An OSL expression (α) is either an OSL term or an OSL formula. A formula with no free variables
(all variables in the formula are quantified) is a sentence.

Other familiar connectives, ∧, ⇒, ∀, and ⇔ can be defined in the standard way as shortcuts in terms
of the basic ones. Furthermore, we assume the language is equipped with the standard set of predicates
and functions, i.e., = for each type and standard arithmetic operations (+, −, ×, . . .) on natural numbers.

Example 2. An example of a term: age(tom); formula: age(x) = 15; and sentence: ∃a[Animal] :
age(a) = 15.

Sentence bark(tom) is well-formed according to Definition 2. However, the typing information
shows that it is senseless as cats cannot bark. For that reason, it is customary to define a syntactic
subclass of Definition 2 that avoids such category clashes. These are the well-typed formulae.

Definition 3. Given an infinite set X of variable symbols and an OSL vocabulary Σ, a typing context ω

is a set of typing annotations of the format s : t where s is a symbol from X ∪SΣ and t is a type term over
TΣ. A typing relation ω ⊢ α : T, meaning that expression α is of type T in the context ω , is defined by
the following inductive definition:

ω ⊢ true : B
(T-tr)

ω ⊢ false : B
(T-fa)

ω ⊢ φ : B ω ⊢ ϕ : B
ω ⊢ (φ ∨ϕ) : B

(T-or)

ω ⊢ φ : B
ω ⊢ ¬φ : B

(T-neg)
ω ∪{x : T} ⊢ φ : B
ω ⊢ (∃x[T] : φ) : B

(T-ex)
ω ⊢ t : S S<:Σ T

ω ⊢ t : T
(T-sub)

x : T ∈ ω

ω ⊢ x : T
(T-var)

s : T1 ×·· ·×Tn → T ∈ ω ω ⊢ t1 : T1 . . . ω ⊢ tn : Tn

ω ⊢ s(t1, . . . , tn) : T
(T-app)

An OSL expression α over OSL vocabulary Σ with free variables x1, . . . ,xn is well-typed iff there are types
T1, . . . ,Tn,T ∈ TΣ such that ω = {s : t | (s ∈ SΣ and tsΣ(s) = t) or (s is xi and t is Ti for i ∈ 1 . . .n)} and
ω ⊢ α : T. An OSL sentence ψ is well-typed iff ω ⊢ ψ : B where ω = {s : t | s ∈ SΣ and tsΣ(s) = t} (as ψ

has no free variables).

256 Order-Sorted Intensional Logic

The rules in this definition (a.k.a. typing judgments) define the type of an expression in a context
(below the line) given that certain conditions (above the line) are satisfied. The specific rules are exis-
tential quantification (T-EX) which introduces new typing annotation to the context2, and subtyping rule
(T-SUB) which expresses that the term of type S can be seen as of type T if it holds that T is a supertype
of S. For an OSL sentence to be well-typed, the context initially has to correspond to the type signature
of the function and predicate symbols from the vocabulary (tsΣ). Given the vocabulary from Example
1, the formula bark(tom) is ill-typed (i.e., not well-typed) because predicate bark expects argument of
type Dog and tom is of type Cat. In general and informally, a formula is well-typed if the type of each
expression occurring as an argument to a function/predicate symbol is a subtype or of the same type as
the type of that argument.

3 Analysis of subtyping polymorphism

As previously noted, the statement bark(tom) is considered unacceptable (ill-typed) due to the category
clash it contains. Specifically, barking does not apply to cats. One might argue that such statement
could be accepted if always interpreted as false, thereby justifying its meaning as “Tom is a dog and
bark(tom)”. Since Tom is not a dog, the statement is false. But what then is the meaning of ¬bark(tom)?
If it is interpreted as “Tom is a dog and ¬bark(tom)”, then this formula is false, violating the law of
excluded middle. An alternative interpretation is “¬(Tom is a dog and bark(tom))”, in which case the
formula is true, which seems to be a more reasonable choice in this case. However, notice that this
statement is equivalent to “If Tom is a dog then ¬bark(tom)”.

This brings us to an alternative interpretation of ill-typed formulae. One could argue that the initial
formula bark(tom) should be interpreted as “If Tom is a dog then bark(tom)”. Consequently, it is jus-
tified to assert that statement bark(tom) carries ambiguity, and hence can be considered as potentially
dangerous, and therefore should be rejected (corresponding to a well-typed criterion). However, we ar-
gue that extending OSL language to support explicitly disambiguated forms of these ill-typed formulae
is beneficial. We demonstrate this in the remainder of the section.

Consider the definition of the predicate makingSound :Animal →B representing the set of all animals
producing their specific sound. In the running example cats and dogs. This can be formalized in OSL as:

∀a[Animal] : makingSound(a)⇔

(
(∃c[Cat] : a Animal−Cat

== c∧meow(c))∨
(∃d[Dog] : a Animal−Dog

== d ∧bark(d))

)
(1)

Note that equalities Animal−Cat
== and Animal−Dog

== are necessary since they operate on different types. Returning
to the main point, in this example, it would be beneficial to constrain the type of variable a which ranges
over type Animal in the following way.

∀a[Animal] : makingSound(a)⇔
(
(Cat(a)∧meow(a))∨ (Dog(a)∧bark(a))

)
(2)

Similarly, the statement “all animals produce their specific sound” could be expressed as:

∀a[Animal] :
(
(Cat(a)⇒ meow(a))∧ (Dog(a)⇒ bark(a))

)
(3)

However, these do not constitute OSL formulae as types are used as predicates and variable a of type
Animal remains an argument of predicates meow and bark. Notice that there is room for improvement

2Alternatively, one could say that this rule projects away typing information, depending on whether the rule is interpreted
top-down or bottom-up.

Ð. Marković & M. Denecker 257

in the statements above. Specifically, capability to talk about “sounds specific” for an animal would
enhance the expressivity of the language.

Accordingly, the first goal of this paper is to extend order-sorted logic by introducing new language
constructs (guards) as motivated in this section. The next step is to make these guards implicit, so it
is possible to express Cat(a) ⇒ meow(a) as ⟨⟨meow(a)⟩⟩. Finally, to be able to talk about “sounds
specific” for an animal the language needs to be extended with the intensional logic. These are presented
in Section 4 and 5.

4 Guarded order-sorted logic

The extension of OSL with the concept of guarding terms by typing assertions is characterized in the
following definition.

Definition 4. Definition 1 of an OSL vocabulary Σ is extended with the following rule: if T is a type
symbols in TΣ, then T ∈ SΣ and tsΣ(T) = U→ B.

Definition 3 of an OSL typing relation, is extended with the two new rules, namely conjunction
guarding (G-c) and implication guarding (G-i):

ω
n
⊢

i=1
ti : U ω

n
∪

i=1
{ti : Ti} ⊢ φ : B

ω ⊢ (T1(t1)∧·· ·∧Tn(tn)∧φ) : B
(G-c)

ω
n
⊢

i=1
ti : U ω

n
∪

i=1
{ti : Ti} ⊢ φ : B

ω ⊢ (T1(t1)∧·· ·∧Tn(tn)⇒ φ) : B
(G-i)

Example 3. In the guarded OSL, statement “There is an animal (that is a cat) meowing!” can be
expressed as: ∃a[Animal] : Cat(a)∧meow(a). Towards making the judgment that this formula is well-
typed (i.e., of type B), let the context ω correspond to the typing signature of vocabulary from Example 1:

ω = {Cat : U→ B; Dog : U→ B; age : U→ N; . . . meow : Cat → B}

For compact representation of derivation we use the following abbreviations:

ω
′ = ω ∪{a : Animal} ω

′′ = ω
′∪{a : Cat}

The following derivation provides the judgment that this formula is well-typed:

T-sub

✓1

ω
′ ⊢ a : Animal

✓2

Animal <:Σ U
ω

′ ⊢ a : U

✓3

meow : Cat → B ∈ ω
′′

✓4

a : Cat ∈ ω
′′

ω
′′ ⊢ meow(a) : B

T-app

ω
′ ⊢ Cat(a)∧meow(a) : B

G-c

ω ⊢ ∃a[Animal] : Cat(a)∧meow(a) : B
T-ex

The justification for each of the final premises (✓) is:

✓1 a : Animal ∈ ω ′ since ω ′ = ω ∪{a : Animal}.

✓2 Since Animal has no supertype in Σ, it follows that Animal <:Σ U (Definition 1).

✓3 meow : Cat → B ∈ ω ′′ since it is in ω and ω ′′ = ω ∪{a : Animal}∪{a : Cat}.

✓4 a : Cat ∈ ω ′′ since ω ′′ = ω ′∪{a : Cat} (due to Definition 4, rule (G-C)).

258 Order-Sorted Intensional Logic

Further, it is possible to make these typing annotations implicit by introducing new language con-
structs.

Definition 5. Let ψ be an OSL formula, ω a typing context, and {t1, . . . , tn} terms in ψ (over OSL
vocabulary Σ) such that: (1) ω ⊢ ti : Ti; (2) ti occurs in ψ as an argument of predicate/function that
expects argument of type Si; (3) Si <:Σ Ti; then:

[[ψ]] stands for S1(t1)∧·· ·∧Sn(tn)∧ψ

⟨⟨ψ⟩⟩ stands for S1(t1)∧·· ·∧Sn(tn)⇒ ψ

Example 4. Employing implicit guarding, Example 3 becomes: ∃a[Animal] : [[meow(a)]].

5 Order-sorted intensional logic

The main concern of intensional logic is the difference between a concept (or intension) and, its value
(or extension) in a state of affairs. A prototypical example is the “morning star” and “evening star”,
which represent distinct concepts (respectively, the star in the east before sunrise, and the star in the
west after sunset), while denoting the same object in the actual state of affairs (the planet Venus). In
the computational intensional logic of [2], intensions of predicates are first class objects that can be
quantified over and stored in other predicates. For example, given a predicate humanDisease containing
a set of intensions of unary predicates over humans (e.g., flu,measels, . . .) and type C representing all
concepts, one can define healtyHuman as:

∀h[Human] : (healthyHuman(h)⇔¬∃c[C] : humanDisease(c)∧$(c)(h))

Here $(c) is the value of the intensional object c. A similar approach can be applied to improve the
formula (2) from Section 3; here sound is a unary predicate over animal sound intensions (in the running
example meow and bark):

∀a[Animal] : makingSound(a)⇔∃c[C] : sound(c)∧$(c)(a) (4)

However, this formula has a typing issue since sound concepts (variable c) can not be applied to an
arbitrary animal (variable a), which is done by $(c)(a). This issue will be addressed after we formally
introduce ordered-sorted intensional logic. First, a new built-in type C representing the set of concepts of
the vocabulary is added to the OSL vocabulary. This type represents the collection of all symbols (types,
functions, and predicates) within the vocabulary. The concept associated with a symbol s is denoted
by s̃ and can be accessed with the reference operator ‘(s). The dual dereference operator $(s̃) is a unary
higher-order function that, given a concept s̃, returns the function or predicate associated with the symbol
s. Therefore, $(s̃) is always followed by another bracket containing a tuple of terms that are applied to the
resulting function or predicate. Accordingly, these terms should match the type and arity of the symbol.
Formally:

Definition 6. The order-sorted intensional logic is defined by the following extensions:

1. An OSL vocabulary Σ contains the build-in type C (concepts).

2. Type C denotes the set of all concepts in the vocabulary {s̃ | s ∈ SΣ ∪TΣ}.

3. Given an OSL vocabulary Σ, for s ∈ SΣ ∪TΣ, ‘(s) is a term of type C.

4. If term c is of type C then $(c)(t̄) is an OSL expression, where t̄ is a tuple of terms.

Ð. Marković & M. Denecker 259

Example 5. In the running example, type C denotes the set {B̃, Ñ, Ãnimal, C̃at, D̃og, ãge, t̃om, b̃ark,
m̃eow}. Type Sound (sounds) of animals can be declared as:

type Sound <: C := {‘(meow), ‘(bark)}

Notation T := {. . .} declares extension of type T. Term ‘(meow) denotes the concept m̃eow. An example
of a formula is: meow($(‘tom)()), which is the same as: meow(tom).

Consider the statement bark($(‘tom)()). It is a well-formed formula according to the Definition 6.
It expresses that the extension of the intension of tom is barking, which is a complex way to say that
tom is barking, i.e., bark(tom). The utility of this sort of expression will become apparent only in a
few paragraphs. However, here is important to notice that this statement is not well-typed, as tom is
of type Cat and bark is a predicate expecting an argument of type Dog. Furthermore, the Definition
3 (well-typed formulae), does not account for intensional logic. The criteria for well-formedness and
well-typedness of a formula becomes challenging in intensional logic. This is because these properties
become dependent on the extensions of types and other symbols (for more details see Section 7). For this
paper, it suffices to reinstate these criteria by verifying the grounded version of a formula. Grounding a
variable in a formula involves substituting it with individuals from the domain of its type. Additionally,
intensional terms of the form ‘(s) are grounded to s̃ and intensional application $(s̃)(t̄) to s(t̄) (here s is
a symbol form a vocabulary). We demonstrate this idea on the following example.
Example 6. Consider the following formalization (using the type Sound) of the statement from for-
mula (4): “An animal is making sound iff there is a sound it is producing”.

∀a[Animal] : makingSound(a)⇔∃s[Sound] : $(s)(a)

Grounding quantification over Sound results in:

∀a[Animal] : makingSound(a)⇔ $(m̃eow)(a)∨$(b̃ark)(a).

Eliminating intensional terms results in:

∀a[Animal] : makingSound(a)⇔ meow(a)∨bark(a).

The grounded formula is not well-typed as variable a of type Animal occurs as an argument of type Cat
and Dog. Therefore we conclude that the initial formula is ill-typed.

Restoring the well-typedness of this formula necessitates guarding of the expression $(s)(a). Guard-
ing this expression is challenging due to its intensional nature (i.e., variable s ranges over sounds). Con-
sequently, the expression $(s)(a) has to be guarded depending on the value of s. This can be done by
establishing a relation between animal kinds and their specific sounds. One common approach is in-
troducing an auxiliary intensional type of animal kinds and intensional function mapping these kinds to
their sounds. Type Kind (consisting of concepts C̃at and D̃og) and function soundOfKind are declared
as:

type Kind <: C := {‘(Cat), ‘(Dog)} soundOfKind : Kind → Sound

The following axioms define the mapping (the extension) of the function soundOfKind:

soundOfKind(‘(Cat)) = ‘(meow) soundOfKind(‘(Dog)) = ‘(bark)

Finally, the formula is guarded as:

∀a[Animal] : makingSound(a)⇔∃k[Kind] : $(k)(a)∧$(soundOfKind(k))(a). (5)

The grounded version of this formula corresponds to the formula (2), which is well-typed.

260 Order-Sorted Intensional Logic

6 Guarded order-sorted intensional logic

Formula (5) enhances the original statement (2) by employing intensional constructs for guarding it.
However, achieving this required the introduction of a helper function relating kinds to their sounds,
despite this information being present in the type of predicates meow and bark. We address this issue by
integrating guards (Section 4) and intensional logic (Section 5). First, we demonstrate it on the running
example.

Example 7. Recall the formula (2):

∀a[Animal] : makingSound(a)⇔ (Cat(a)∧meow(a))∨ (Dog(a)∧bark(a)).

Employing implicit guarding, the same can be expressed as:

∀a[Animal] : makingSound(a)⇔ [[meow(a)]]∨ [[bark(a)]].

Introducing quantification over Sound (sounds) results in:

∀a[Animal] : makingSound(a)⇔∃s[Sound] : [[$(s)(a)]].

In this example, we began with the explicitly guarded formula and condensed it into a compact ver-
sion using implicit guarding and quantification over concepts. Consequently, the resulting statement
is well-typed. Notably, variable a is implicitly constrained to the appropriate type based on the predi-
cate to which it is applied. This reflects the main goal of the paper, which is incorporating subtyping
polymorphism in order-sorted logic.

Example 8. The same methodology applies to formula (3):

∀a[Animal] :
(
(Cat(a)⇒ meow(a))∧ (Dog(a)⇒ bark(a))

)
Using implicit guarding on this formula we obtain: ∀a[Animal] : ⟨⟨meow(a)⟩⟩∧ ⟨⟨bark(a)⟩⟩, and with
quantifying over Sound: ∀a[Animal] : ∀s[Sound] : ⟨⟨$(s)(a)⟩⟩.

Previous examples demonstrate principles for expressing properties of objects depending on their
type using guarded order-sorted intensional logic. The following proposition generalizes the modeling
principles discussed so far.

Proposition 2. Given OSL vocabulary Σ:

• Let p1, . . . pm be n-ary predicate symbols in Σ

• Let these symbols have type signature in Σ as:

tsΣ(p1) = T11 ×·· ·×T1n → B . . . tsΣ(pm) = Tm1 ×·· ·×Tmn → B

• Let S1, . . . ,Sn be types in Σ such that:

T11 <: S1 . . . Tm1 <: S1 . . . T1n <: Sn . . . Tmn <: Sn

• Let P be a type in Σ such: P<: C := {‘(p1), . . . , ‘(pm)}.

• Let p be a term of type P, and ti term of type Si.

Ð. Marković & M. Denecker 261

Then the following two expressions are well-typed:

[[$(p)(t1, . . . , tn)]] ⟨⟨$(p)(t1, . . . , tn)⟩⟩

Proof. Term p denotes some p̃k from P (recall that term ‘(pk) stands for value p̃k). The symbol pk is
associated with a type term Tk1 × ·· ·×Tkn → B. Accordingly, [[$(p)(t1, . . . , tn)]] stands for: Tk1(t1)∧
·· · ∧Tkn(tn)∧ pk(t1, . . . , tn). Each of the terms ti is of type Si and hence also of type U (follows from
Proposition 1 and Definition 3 rule (T-SUB)), so each atom Tki(ti) is well-typed (Definition 4). Finally,
according to Definition 4 rule (G-C), atom pk(t1, . . . , tn) is well-typed as the type of each ti is Tki. The
proof for ⟨⟨$(p)(t1, . . . , tn)⟩⟩ is similar.

Patterns characterized in this proposition are essential for expressing logical statements containing
subtyping polymorphism as demonstrated in previous examples.

An important observation is that the presented approach enables the compact formalization of state-
ments involving subtyping. For instance, formula (1) defining the predicate makingSound in native OSL,
yields a formula whose length scales linearly with the number of animal kinds; i.e., the addition of an-
other animal kind (e.g., mouse) would result in the formula growing in size. However, the logic presented
in this paper is capable of expressing the same statements with formulae of constant length by utilizing
the concepts introduced in Proposition 2, as demonstrated in the examples above. Formally:

Proposition 3. Given the same environment as in Proposition 2, the following formulae cannot be ex-
pressed in an OSL formula with a length independent of the size of P:

∃s[P] : [[$(s)(t1, . . . , tn)]] ∀s[P] : ⟨⟨$(s)(t1, . . . , tn)⟩⟩

Proof. Rewriting these formulae into OSL requires the mentioning of all symbols in P.

7 Well-typedness in order-sorted intensional logic

We argued in Section 5 that the well-typedness of formulae with intensional language constructs is not
trivial. In this section, we elaborate on these issues and propose the foundations for the typing system
suitable for the new language.

Recall the methodology employed in formula (5) to guard the formula in Example 6. We introduced
a function soundOfKind to establish the connection between animal kinds and their specific sounds. It is
important to note that the well-typedness of formula (5) depends on the correct mapping of animal kinds
to sounds by this function. For example, if the function incorrectly maps C̃at to b̃ark, the formula (5)
would be ill-typed. This underscores the dependence of well-typedness on the extensions (values) of
types and functions. However, the typing system from Definition 3 cannot account for such dependen-
cies, as the type of function soundOfKind does not provide sufficient information.

The first step towards a richer type system is the introduction of typing annotations that would clarify
the typing of a concept. This idea is presented in [2, Section 4]. For example, when quantifying over
concepts, one has to provide information about the type of these concepts.

∀s ∈ C[Animal → B] : ψ

In this statement variable s ranges over concepts from the vocabulary which are of type Animal → B.
In Example 1 these are Cat, Dog, bark, meow. Similar information can be provided in the declaration
of subtypes of concepts. For example, declaring a new type “kind of animals” (earlier introduced for

262 Order-Sorted Intensional Logic

fixing Example 6) requires annotating that each element of this type is a predicate over the “animal”
type. Hence, the type “kind of animals” is a subtype of predicate concepts that are of type Animal → B.

type Kind <: C[Animal → B] := {‘(Cat), ‘(Dog)}

However, this approach fails to fully support guarded OSL. For example, no type can substitute (?) in
the following declaration of type Sound from Example 5. This is because meow and bark are predicates
over different types, Dog and Cat respectively.

type Sound <: C[(?)→ B] := {‘(meow), ‘(bark)}

Furthermore, essential for the well-typedness of formula (5) is the fact that objects of type Kind are type
predicates, and hence can serve for guarding. To make this distinction, two new types can be added: CT

to represent type concepts and CS for function/predicate concepts. We propose the following syntax for
declaring Kind and Sound:

type Kind <: CT [Animal] := {‘(Cat), ‘(Dog)}
type Sound[t : Kind]<: CS[t → B] := {‘(meow), ‘(bark)}

Here, CT [Animal] stands for type concepts that are subtypes of type Animal. Notation Sound[t :Kind]<:
CS[t → B] expresses that type Sound is subtype of predicate concepts of type t → B where t is of type
Kind (making Sound dependent on the value of t). Notice that this notation requires type checking for
the declarations because types now have variables. In this example, it is necessary to show that variable
t is of type CT .

Finally, the function soundOfKind can be declared in the following way:

soundOfKind : k → Sound[k] | k : Kind

Here, notation Sound[k] expresses the projection of type Sound to only these predicates that are over
type k. This is essential for forming the connection between the types of domain and the range of the
function. Informally, this declaration aims to express that function soundOfKind maps kinds Kind to the
sounds of that kind Sound[k]. In particular, based on the type information, sounds of kind Sound[k] can
be any predicate with the typing signature k → B. Using this information, it is possible to conclude that
formula (5) is well-typed. In particular, given that variable a is of type Animal and k of type Kind the
following reasoning can be employed to make a judgment ($(k)(a)∧$(soundOfKind(k))(a)) : B (which
is the challenging part of formula (5)):

• $(k)(a) is well-typed as k is some type symbol that is subtype of Animal and a is of type Animal,
and per Definition 4 types can appear as predicates.

• Since k is a type-symbol, $(k)(a) can be used for guarding the other part of the conjunction (similar
to the (G-C) rule from Definition 4).

• $(soundOfKind(k))(a) is well-typed because: (i) soundOfKind(k) is of type k → B (ii) Variable a
is of type k thanks to the guard $(k)(a) (iii) $(soundOfKind(k))(a) is of type B as variable a (of
type k) is applied to some predicate of type k → B.

To a certain extent, the typing system illustrated in this section resembles the idea of dependent types
[8, Chapter 6, Section 30.5]. In type theory, a type is considered dependent if its definition relies on a
value. For example, a function that adds a new number to a list takes a number and a list of length n
as arguments and returns a list of length n+1. Similarly, the function soundOfKind takes the intension
of a type (a subtype of Animal) as an argument and returns the intension of a unary predicate over that
type. Due to its extensiveness, formalizing such a typing system for order-sorted intensional logic and
investigating its relation to dependent types remains within the scope of future work.

Ð. Marković & M. Denecker 263

8 Semantics of the language

The formal model semantics of the logic presented in this paper rely on a combination of order-sorted
logic [1, Section 4.2] and intensional logic [2, Section 3.2]. Note that in all our examples, extensions of
types and functions ranging over concepts are fixed (i.e., Sound contains exactly bark and meow). This
allows for grounding intensional language constructs and semantically reducing the logic to standard
OSL. However, this section outlines the semantics of the order-sorted intensional logic. First, we define
the notion of structure, a value assignment to vocabulary symbols.

Definition 7. A structure A over an OSL vocabulary Σ interprets all symbols s in Σ (denoted as sA) such
that:

1. The value of each type symbol T in TΣ is a non-empty set TA.

• Type B (boolean) is always assigned the set of truth values BA = {true, false}
• Type N (natural numbers) is always assigned the set NA = {0,1,2, . . .}
• Type C (concepts) is assigned the set CA = {s̃ | s ∈ SΣ ∪ TΣ}. Here s̃ is the atomic object

formally representing the concept behind the symbol s.

2. If type symbol T is a direct subtype (<:Σ) of T1, then TA ⊆ TA
1 .

3. Each symbol s in SΣ with type signature tsΣ(s) = (T1 × ·· · ×Tn) → T, is assigned a set sA ⊆
TA

1 ×·· ·×TA
n ×TA such that:

• for each tuple (d1, . . . ,dn)∈TA
1 ×·· ·×TA

n there is an element e∈TA such that (d1, . . . ,dn,e1)∈
sA.

• for all tuples (d1, . . . ,dn,e1),(d1, . . . ,dn,e2) ∈ sA, it holds that e1 = e2.
• If s is a type predicate T, then sA = {(d, true) | d ∈ T}∪{(d, false) | d ∈ U\T}.

If s is a function symbol and (d1, . . . ,dn,e) ∈ sA, we write that sA(d1, . . . ,dn) = e.

A common assumption is that each domain object has an identifier, a symbol that makes it possible
to directly refer to that value from the theory. With the notion of a structure formalized, we proceed with
defining the value of an expression in a structure.

Definition 8. Given vocabulary Σ, let α be an OSL expression (over Σ), and A a structure interpreting
all symbols in Σ. Further, let, for each free variable x occurring in α as an argument of type T, structure
A assign value xA ∈ TA (with A[x : d] we denote that structure A is extended with assignment of value d
to variable x). The value of α in A, denoted as [[α]]A, is defined by induction on the structure of α:

[[x]]A = xA [[true]]A = true [[false]]A = false

[[f (τ1, . . . ,τn)]]
A = fA([[τ1]]

A, . . . , [[τn]]
A) [[p(τ1, . . . ,τn)]]

A = pA([[τ1]]
A, . . . , [[τn]]

A)

[[¬φ]]A =

{
true, if [[φ]]A = false;
false, if [[φ]]A = true;

[[φ1 ∨φ2]]
A =

{
true, if [[φ1]]

A = true or [[φ2]]
A = true;

false, if [[φ1]]
A = [[φ2]]

A = false;

[[∃x[T] : φ]]A =

{
true, if for some d ∈ TA, [[φ]]A[x:d] = true;
false, if for all d ∈ TA, [[φ]]A[x:d] = false;

[[‘(s)]]A = s̃, for s ∈ SΣ ∪TΣ

264 Order-Sorted Intensional Logic

[[$(τ)(τ1, . . . ,τn)]]
A = sA([[τ1]]

A, . . . , [[τn]]
A), for s ∈ SΣ ∪TΣ such that [[τ]]A = s̃

An OSL sentence ψ over vocabulary Σ is satisfied in a structure A (over Σ), denote as A |= ψ , if and
only if [[ψ]]A = true.

As discussed in Section 5, not every order-sorted intensional expression is meaningful (as illustrated
by the example: bark(tom)). Consequently, attempting to define the value of such expressions is not
meaningful. These expressions can be excluded by enhancing the typing system as explained in Sec-
tion 7.

9 Related work and discussion

Frame Logic (F-logic), introduced in [5], is a knowledge representation language that combines concep-
tual modeling with object-oriented and frame-based languages. In this language, it is possible to use
types as predicates which is sufficient for expressing formulae like (2) and (3). Logic programming in-
corporating polymorphically order-sorted types is investigated in [9]. The Flora-2 [6] system combines
F-logic and HiLog [3], resulting in an even more expressive language. The key differences between
these languages and guarded OSL are: (i) F-logic is mainly utilizing subtyping from the perspective of
object-oriented paradigm while the focus of this paper is on a more general notion of types. (ii) Results
of these papers are related to parametric polymorphism [8, Chapter 23] rather than subtyping polymor-
phism. Parametric (Ad hoc) polymorphism includes generic types, polymorphic predicate and function
symbols and quantification over types. An example is mother and father functions, mapping animals of
a certain kind to another animal of that same kind. Using parametric polymorphism the typing signa-
ture of this function can be expressed as (mother : ∀k <:Σ Animal . k → k). Even though this notation
strongly resembles the idea presented in Section 7 they are different. Here, variable k ranges over types,
while in the other example, this does not have to be the case. However, the dependent type approach
with intensional logic can sometimes simulate parametric polymorphism. In this particular example:
(mother : k → k | k : CT [Animal]). (iii) These languages lack intensional aspects. While HiLog allows
for higher-order language constructs, it does not include concepts. This means that using functions such
as soundOfKind to “compose” formulae is not possible. In other words, one can see the intensional logic
presented in this paper as a mechanism for expressing templates of formulae. This is because objects
from the vocabulary are first-class citizens. This is not the case with the higher-order logic. (iv) Implicit
type guarding is not supported in these languages. In particular, to the best of our knowledge, no other
languages use such language constructs (except for our previous work [7] where guards ensure the safe
application of partial functions). However, this paper demonstrates the importance of implicit guarding
and power coming from combining it with intensional logic.

The points (iii) and (iv) suggest that these languages may encounter similar problems to those con-
cerning OSL discussed in Section 3 and intensional logic from Section 5.

On the other side, the scope of this paper is limited to subtyping polymorphism. Future research
should explore how the approach presented in this paper relates to parametric (Ad hoc) polymorphism.
In particular, it is worth investigating whether the two typing systems have the same expressive power.
Another research question that opens here is what if we perceive typed logic as a logic of partial pred-
icates, what is then the relation between guarding presented in this paper and guarding that ensures
arguments of a function are in its domain of definedness (our previous work [7]).

Similar to the approach demonstrated in formula (5), it is possible to define higher-order functions
in HiLog to map propositions to propositions, thereby achieving similar outcomes. However, this ap-
proach carries the same issues as the one with intensional logic. Namely, it requires introduction of new

Ð. Marković & M. Denecker 265

functions and predicates representing the typing relation between different concepts which is redundant
as this information is present in the typing signature of these concepts. This issue was discussed in Sec-
tion 6. Similar issues apply to many imperative programming languages, such as Python, where dynamic
function invocation can yield similar results but with the price of introducing redundant type information.
Dynamic function invocation allows one to store names of functions in variables and then invoke these
functions by using the variable.

In conclusion, many declarative (logic-based) and imperative languages can achieve similar results
as presented in this paper. However, mainly due to the lack of implicit guarding and intensional aspects
of the language, these languages do not support the subtyping discussed in this paper as a native language
construct. To the best of our knowledge, there are no such knowledge representation languages.

10 Conclusion

In this paper, we addressed the challenge of subtyping polymorphism within order-sorted logic. Through
our investigation, we identified two essential requirements: intensional logic and implicit guarding with
typing assertions. Consequently, we introduced guarded order-sorted intensional logic and demonstrated
its effectiveness for this task.

The main contributions of this paper are: (i) implicit guarding, language constructs introduced in
Definition 5 allowing conditioning of types for terms based on their application; (ii) combining implicit
guarding and intensional logic (i.e., quantification over concepts) for expressing subtyping polymor-
phism, as elaborated in Propositions 2 and 3. Additionally, this paper opens two new research topics:
the well-typedness conditions of guarded order-sorted intensional logic and its relation to dependent
types (see Section 7), and second, the relation of order-sorted logic as presented in this work and logic
of partial functions (see Section 9).

Acknowledgments

Special thanks to Maurice Bruynooghe for his thorough reviews of this paper. Thanks to Robbe Van
den Eede and Linde Vanbesien for valuable discussions. Thanks to Tobias Reinhard and Justus Fasse for
their insightful reviews of the early versions of this paper.

References

[1] Christoph Beierle, Ulrich Hedtstück, Udo Pletat, Peter H. Schmitt & Jörg H. Siekmann (1992): An Order-
Sorted Logic for Knowledge Representation Systems. Artif. Intell. 55(2), pp. 149–191, doi:10.1016/0004-
3702(92)90055-3.

[2] Pierre Carbonnelle, Matthias van der Hallen & Marc Denecker (2023): Quantification and aggrega-
tion over concepts of the ontology. In Enrico Pontelli, Stefania Costantini, Carmine Dodaro, Sarah Al-
ice Gaggl, Roberta Calegari, Artur S. d’Avila Garcez, Francesco Fabiano, Alessandra Mileo, Alessan-
dra Russo & Francesca Toni, editors: Proceedings 39th International Conference on Logic Programming,
ICLP 2023, Imperial College London, UK, 9th July 2023 - 15th July 2023, EPTCS 385, pp. 213–226,
doi:10.4204/EPTCS.385.22.

[3] Weidong Chen, Michael Kifer & David Scott Warren (1993): HILOG: A Foundation for Higher-Order Logic
Programming. J. Log. Program. 15(3), pp. 187–230, doi:10.1016/0743-1066(93)90039-J.

https://doi.org/10.1016/0004-3702(92)90055-3
https://doi.org/10.1016/0004-3702(92)90055-3
https://doi.org/10.4204/EPTCS.385.22
https://doi.org/10.1016/0743-1066(93)90039-J

266 Order-Sorted Intensional Logic

[4] Melvin Fitting (2004): First-order intensional logic. Ann. Pure Appl. Log. 127(1-3), pp. 171–193,
doi:10.1016/J.APAL.2003.11.014.

[5] Michael Kifer & Georg Lausen (1989): F-Logic: A Higher-Order language for Reasoning about Objects,
Inheritance, and Scheme. In James Clifford, Bruce G. Lindsay & David Maier, editors: Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data, Portland, Oregon, USA, May 31 -
June 2, 1989, ACM Press, pp. 134–146, doi:10.1145/67544.66939.

[6] Michael Kifer, Georg Lausen & James Wu (1995): Logical Foundations of Object-Oriented and Frame-Based
Languages. J. ACM 42(4), pp. 741–843, doi:10.1145/210332.210335.

[7] Djordje Markovic, Maurice Bruynooghe & Marc Denecker (2023): Towards Systematic Treatment of Partial
Functions in Knowledge Representation. In Sarah Alice Gaggl, Maria Vanina Martinez & Magdalena Or-
tiz, editors: Logics in Artificial Intelligence - 18th European Conference, JELIA 2023, Dresden, Germany,
September 20-22, 2023, Proceedings, Lecture Notes in Computer Science 14281, Springer, pp. 756–770,
doi:10.1007/978-3-031-43619-2_51.

[8] Benjamin C Pierce (2002): Types and programming languages. MIT press.
[9] Gert Smolka (1988): Logic Programming with Polymorphically Order-Sorted Types. In Jan Grabowski,

Pierre Lescanne & Wolfgang Wechler, editors: Algebraic and Logic Programming, International Workshop,
Gaussig, GDR, November 14-18, 1988, Proceedings, Lecture Notes in Computer Science 343, Springer, pp.
53–70, doi:10.1007/3-540-50667-5_58.

[10] Hao Wang (1952): Logic of Many-Sorted Theories. J. Symb. Log. 17(2), pp. 105–116, doi:10.2307/2266241.

https://doi.org/10.1016/J.APAL.2003.11.014
https://doi.org/10.1145/67544.66939
https://doi.org/10.1145/210332.210335
https://doi.org/10.1007/978-3-031-43619-2_51
https://doi.org/10.1007/3-540-50667-5_58
https://doi.org/10.2307/2266241

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 267–273, doi:10.4204/EPTCS.416.23

© Y. Xu, D. Dougherty, and R. Bohrer

This work is licensed under the

Creative Commons Attribution License.

A Coq Formalization of Unification Modulo Exclusive-Or

Yichi Xu

Worcester Polytechnic Institute
Massachusetts, USA

yxu10@wpi.edu

Daniel J. Dougherty

Worcester Polytechnic Institute
Massachusetts, USA

dd@wpi.edu

Rose Bohrer

Worcester Polytechnic Institute
Massachusetts, USA

rbohrer@wpi.edu

Equational Unification is a critical problem in many areas such as automated theorem proving and

security protocol analysis. In this paper, we focus on XOR-Unification, that is, unification modulo

the theory of exclusive-or. This theory contains an operator with the properties Associativity, Com-

mutativity, Nilpotency, and the presence of an identity. In the proof assistant Coq, we implement

an algorithm that solves XOR unification problems, whose design was inspired by Liu and Lynch,

and prove it sound, complete, and terminating. Using Coq’s code extraction capability we obtain an

implementation in the programming language OCaml.

1 Introduction

Unification is a fundamental concept used across various domains such as logic programming, type

systems, and constraint solving. In logic programming, it enables pattern matching and logical inference,

crucial for problem-solving in languages like Prolog [7]. Within type systems, such as those in Haskell

and Scala [20], unification supports type inference, allowing compilers to ensure type safety and catch

type errors at compile-time rather than runtime. Additionally, in constraint solving, it helps manage and

resolve variable constraints, essential for applications in scheduling and planning. This work, however,

is motivated by applications of unification to security protocol analysis. A common way to analyze

protocols is to perform syntactic unification with the protocol rules to explore some space of reachable

states. If an “attack” state is reachable from the initial state then an attack exists and the protocol is

flawed.

However, the limitation of using syntactic unification to analyze protocols is that it only captures

the case when terms, representing messages, can be made exactly the same, which in many protocols

is not enough. For example, the Vernam cipher and cipher-block chaining mode for block ciphers rely

on exclusive-or (XOR) [16]. There exists protocols which seem secured if XOR is left uninterpreted,

but whose flaws are revealed when XOR is an interpreted operator. For example, the original version

of Bull’s recursive authentication protocol was formally proved correct in the Dolev-Yao model, but this

XOR-based protocol was vulnerable to an attack that exploited the self-cancellation property [24]. XOR

Unification is important because it enables a more accurate analysis of XOR-based protocols. Because

unification is a key ingredient of logic programming and because logic programming has established

applications to security analysis [30], we believe research about XOR Unification may help enable logic

programming-based analyses of XOR-based protocols in the long term.

In this paper, we adopt a modified version of the algorithm developed by Liu and Lynch [12], then

implement it and prove it correct in Coq. This work is important because it increases our confidence

in Liu and Lynch’s work. The primary reason for not adopting the full algorithm was time constraints.

Consequently, we decided to exclude uninterpreted functions and homomorphic function from our im-

plementation. This decision was based on the understanding that both uninterpreted and homomorphic

functions can be treated as standard terms under specific constraints. For uninterpreted functions, we can

http://dx.doi.org/10.4204/EPTCS.416.23
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

268 A Coq Formalization of Unification Modulo Exclusive-Or

compare their function symbols and conduct syntactic unification within the functions. For homomorphic

functions, we can reduce them to their normal form before proceeding with syntactic comparison.

2 Related Work

Syntactic unification is unification modulo the empty equational theory. There are many algorithms for

syntactic unification, but there are only a few which have been verified and formalized. The earliest

formalization is the algorithm from Manna and Waldinger [13], which was proved by Paulson [22]

using LCF (Logic for Computable Functions). This formalization is used as a basis for later research

by Sternagel and Thiemann [25] in Isabelle. Urban, Pitts, and Gabbay [28] also formalized first-order

unification in Isabelle. A relatively recent formalization for syntactic unification is from Avelar, Galdino,

deMoura, and Ayala-Rincon [1] using PVS (Prototype Verification System).

E-unification is unification modulo an equational theory. Dougherty [8] has verified two algorithms

for Boolean unification. Ayala-Rincón et. al. [2] have verified an AC(Associativity and Commutativity)-

Unification algorithm using PVS. For XOR unification, there are only a few algorithms and no formaliza-

tion. Tuengethal, Kusters and Turuani [27] mentioned a relatively easy and intuitive way to design such

an algorithm by combining theories such that their overall output satisfies the XOR properties. Guo,

Narendran, and Wolfram [10] mentioned using Gaussian elimination over a Boolean ring to compute

unifiers for XOR unification. Liu and Lynch [12] give several terminating inference rules to solve XOR

unification. However, the above papers only give algorithms but not a formalization. Therefore in this

paper, we decided to do a formalization over their work in Coq so we can be more confidence in the

algorithm.

3 Background

The XOR operator is common operator seen in many protocols; a famous example is the Vernam

Cipher[17, Definition.1.39]:

ci = mi ⊕ ki,1 ≤ i ≤ t. (1)

where t is the length of the message in digits, i ranges over the digits of the message, ci is the digit’s

ciphertext, mi the message, and ki the key. That is, the Vernam cipher XOR’s a message with a key of

the same length. Such a cipher is decrypted by applying the XOR operation a second time with the same

key.

We formally state the axioms for XOR, where the signature is Σ = {⊕,0}:

• Associativity: x⊕ (y⊕ z) = (x⊕ y)⊕ z

• Commutativity: x⊕ y = y⊕ x

• Unity: x⊕0 = x

• Nilpotency: x⊕ x = 0

Then, we present the modified rewrite system that is used to compute the unifiers. This rewrite

system amounts to an algorithm for XOR Unification, i.e., the algorithm is to apply the first applicable

rule, terminating when none applies. In this paper, we use two sets Γ‖Λ to keep track of the computation

progress: Γ denotes the unification problem consisting of a set of equations {S ≈?
E 0}, where S is any

term, ≈?
E is the symbol for deciding two terms on both side are the same or not under equational theory

E, and 0 is the unit term. Because of the Nilpotency Axiom, we can move the term from the right-hand

Y. Xu, D. Dougherty, and R. Bohrer 269

side to the left-hand side without losing equivalency; i.e. t1 ≈
?
E t2 → t1 ⊕ t2 ≈

?
E t2 ⊕ t2 and t2 ⊕ t2 ≈E 0.

And Λ denotes a set of equations in solved form. Initially, the unification problems are stored in Γ, while

Λ remains empty. If a system is in normal form regarding these inference rules, then Λ is in solved form

if the original problem is solvable.

We introduce the two inference rules used in this algorithm:

Trivial: seeks a problem that is already solved and deletes it

Γ∪{0 ≈?
E 0}‖Λ

Γ‖Λ
(2)

Variable Substitution: seeks a solved form and applies this substitution to the whole system

Γ∪{x⊕S ≈?
E 0}‖Λ

σΓ‖σΛ∪{x ≈?
E S}

(3)

where σ = x 7→ S and x 6∈ S, i.e. the occurs check passes.

In the Coq development, we need to prove this set of inference rules correct. Correct here means it

will return an idempotent mgu (most general unifier) of the original problem if it is solvable, and this

rewrite system will terminate for all input, see the formal theorem stated in Figure 4.

4 Coq Implementation

This section illustrates the definition of different data structures, the algorithm, and the theorems in

Coq. Please note that we only provide the statement of the theorems in this section, as the full proofs

have 11,000 lines of code. For the complete development, please refer to our Coq code [29]. For an

introduction to Coq notation, see background material [26].

4.1 Basic Data structure

Given that this work only concerns constants, variables, and the XOR operator (⊕), abstract syntax of

formulas can be described in the following way in Coq.

1 Definition var := string.

2 Inductive term: Type :=

3 | C : nat -> term #Constant

4 | V : var -> term #Variable

5 | Oplus : term -> term -> term .

6 Definition T0 :term := C 0. # Short for Constant 0, unit in unity axiom

7 Notation "x +’ y" := (Oplus x y) (at level 50, left associativity).

Figure 1: Term Definition

The constructor C takes a natural number, which is a built in data structure from Coq, as its input and

outputs a constant term, while the constructor V takes a string as input and outputs a variable term. The

operator ⊕ takes two terms as inputs and outputs a nested ⊕ term. Note that constant T0 is the unit of

XOR.

After introducing the fundamental term representations in Coq, it is necessary to define the equiva-

lence relation modulo XOR (shown in Figure 2). In addition to the four axioms of associativity, com-

mutativity, unity, and nilpotency, this relation must also satisfy the properties of reflexivity, symmetry,

and transitivity, as it is an equivalence relation. Since this is a congruence relation, we also must define

a compatibility axiom oplus compat.

270 A Coq Formalization of Unification Modulo Exclusive-Or

1 Reserved Notation "x == y" (at level 70).

2 Inductive eqv : term -> term -> Prop :=

3 | eqvA : forall x y z, (x +’ y) +’ z == x +’ (y +’ z)

4 | eqvC : forall x y, x +’ y == y +’ x

5 | eqvU : forall x, T0 +’ x == x

6 | eqvN : forall x, x +’ x == T0

7 | eqv_ref: forall x, x == x

8 | eqv_sym: forall x y, x == y -> y == x

9 | eqv_trans : forall x y z, x == y -> y == z -> x == z

10 | Oplus_compat : forall x x’ , x == x’ -> forall y y’ ,

11 y == y’ -> x +’ y == x’ +’ y’

12 where "x == y" := (eqv x y).

Figure 2: Equivalence Definition

4.2 XOR-Rewrite System

Processing proofs with nested terms is not a simple job, consider the following two terms:
z⊕a⊕ (b⊕ c)⊕a⊕ (b⊕ c)⊕ z (4)

d ⊕ (a⊕ e)⊕ ((b⊕ (d⊕ e))⊕ c)⊕a⊕ (b⊕ c) (5)

Both terms can ultimately be reduced to zero; however, accomplishing this reduction is challenging with

nested forms, and the complexity is further increased when utilizing the Coq notation described earlier.

Consequently, an alternative approach was adopted. We reduce each term into a list-shaped normal

form. More specifically, we designed two functions: ftlt() and fltt(), to transform a term into a list

and back. We use the name lTerm to describe this representation, and a predicate ≈≈ for equivalency

between lTerm. Then, we need to prove that these two predicates capture the same equivalence for these

two data representations. We state our lemmas below:

Lemma 1. ∀(t1, t2 : term), t1 ≈XOR t2 ↔ ftlt(t1)≈≈ ftlt(t2)

Lemma 2. ∀(tl1, tl2 : lTerm), tl1 ≈≈ tl2 ↔ fltt(tl1)≈XOR fltt(tl2)

Then we designed a rewrite system fR() such that equivalent lTerms are syntactically equal after

rewriting. In other words, the following theorem must hold true:

Theorem 1. ∀(tl1, tl2 : lTerm), tl1 ≈≈ tl2 ↔ fR(tl1) = fR(tl2)

Once we have the lemmas and theorem in place, we can use the syntactic checker, which checks

that both sides are identical, to compute the results for XOR equivalence. Note that the other benefit

of this approach to prove the correctness of unification is that this can be easily modified to include

homomorphic functions and uninterpreted functions in the future. The reason why we developed this

representation is because it allowed us to normalize terms and minimize their syntactic complexity which

makes the proofs easier.

4.3 XOR-Unification Algorithm and Correctness

To set up the final algorithm, we first need to convert the raw input problems to reduced problems (lTerm

form), and then perform a fixed number of steps on the reduced problem. If the left-hand side of the

problem set is empty after these steps, then the problem is solvable, and the function returns the right-

hand side, which is the solved form of the original problem, and then transforms it into a substitution. If

the left-hand side is not empty, it means the problem is not solvable and the function returns None.

Here are properties we proved in Coq for correctness: If the algorithm returns None then original

unification problem is not solvable. If the algorithm returns some substitution, then this substitution

Y. Xu, D. Dougherty, and R. Bohrer 271

1 Theorem XORUnification_solves :forall(ps:problems)(sb:sub),

2 XORUnification ps = Some sb -> solves_problems sb ps.

3

4 Theorem XORUnification_mgu :forall(ps:problems)(sb:sub),

5 XORUnification ps = Some sb -> mgu_xor sb ps.

6

7 Theorem XORUnification_idpt :forall(ps:problems)(sb:sub),

8 XORUnification ps = Some sb -> idempotent sb.

Figure 3: Solution found imply solution, solves, most general and idempotent

solves the original unification problem. Specifically, the substitution is the most-general unifier (mgu) of

the problem and is idempotent.

We also proved that if the problem does not have a solution, then the algorithm will return None.

1 Definition problems_unifiable (ps:problems):Prop :=

2 exists sb:sub , solves_problems sb ps.

3

4 Theorem unifiable_return_sub :forall(ps:problems),

5 problems_unifiable ps -> (exists sb:sub , XORUnification ps = Some sb).

6

7 Theorem not_unifiable_return_None:forall(ps:problems),

8 ~(problems_unifiable ps) -> XORUnification ps = None .

Figure 4: Not solvable implies no solution found

To sum up, in this development, we proved that: If the original unification problem is solvable, then

the algorithm will return a substitution that is a most general unifier and is idempotent. If the original

unification problem is not solvable then the algorithm will return None.

The Project took 1 person-year. This includes time spent learning Coq and iterating on intermediate

proof attempts. This process included learning the basics of term rewriting, deciding project scope,

implementation, and revision. After 1 person-year of work, the Coq implementation has roughly 11,000

lines of code. Since most of the proofs are not automated, the complete proof can be checked in Coq in

less than 1 second.

In the end, the difficulty of proving soundness and completeness was similar because they rely on the

same supporting lemmas. The reason why we chose the approach of reducing terms to lTerms is because

we tried to prove things with nested terms at beginning, but comparing equivalency between two terms

is a major challenge as illustrated in Figures 4 and 5. This project involved constantly substituting in

new terms and comparing two terms to see whether they are solved or whether the equation is balanced.

The lack of an efficient decision procedure for equivalence becomes a substantial problem during some

specific proofs involving substitution, motivating our approach. This helped with processing complicated

proofs relating to nested terms, because substitution takes place in lTerm and comparing two terms

consists of checking whether their reduced forms are syntactically the same. This syntactic check is

easier on lists. Moreover, we believe lots of other equational theories can adopt similar approaches for

reasoning about equivalence.

Some problems we took a long time to prove are surprisingly not related to the inference rules or

their correctness. Most are about reducing terms to lTerms. One key challenge was building a library

for showing intuitive properties about the syntax tree, such as proving that different constructors yield

disequal terms. For example, C 1 is not equivalent to V ”x”, and C 1 is not equivalent to C 2.

272 A Coq Formalization of Unification Modulo Exclusive-Or

5 Conclusion and Future Work

We highlight two areas for future work. First, in the short term, we propose to extend our Coq for-

malization with uninterpreted and homomorphic functions. Second, in the long term, we propose that

our formalization of XOR Unification can be used as the basis of a formalized implementation of logic

programmnig with XOR, useful as a tool for security protocol analysis.

Supporting uninterpreted and homomorphic functions would require extensions to our data struc-

tures, rules, and proofs. The data structure changes would be only a few lines of code, and the rules

would not be much longer. However, the proofs would be complicated significantly, as they would need

to keep track of sets of uninterpreted and homomorphic functions throughout. Moreover, the addition

of uninterpreted function symbols causes the unification algorithm to become non-deterministic. The

addition of non-determinism increases the conceptual difficulty of the proofs.

In the long term, automated analysis of security exploits using logic programming with XOR is an

exciting potential application of this work. Searching for security exploits in general is an established

application of logic programming [30]. This suggests logic programming-based approaches may also

be worth exploring when analyzing security protocols specifically. In order to express many security

protocols [17] as logic programs, one must support an XOR operator and thus XOR unification.

Security tools are worthy of the strongest possible correctness guarantees, an observation which

highlights the potential impact of our work. Our work provides the first formalization of XOR unification

with a machine-checked proof from which guaranteed-correct code can be extracted. In so doing, we

provide a strong foundation for any high-stakes analysis using logic programming with XOR.

References

[1] Andréia Borges Avelar, André Luiz Galdino, Flávio Leonardo Cavalcanti de Moura & Mauricio Ayala-

Rincón (2014): First-order unification in the PVS proof assistant. Logic Journal of the IGPL 22(5), pp.

758–789, doi:10.1093/jigpal/jzu012.

[2] Mauricio Ayala-Rincón, Maribel Fernández, Gabriel Ferreira Silva & Daniele Nantes Sobrinho (2022): A

Certified Algorithm for AC-Unification. In Amy P. Felty, editor: 7th International Conference on Formal

Structures for Computation and Deduction, FSCD 2022, August 2-5, 2022, Haifa, Israel, LIPIcs 228, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, pp. 8:1–8:21, doi:10.4230/LIPICS.FSCD.2022.8.

[3] Franz Baader (1991): Unification in a Theory of Primitive Recursive Functions with Applications to Semi-

groups and Groups. Information and Computation 95(1), pp. 1–36.

[4] Franz Baader & Tobias Nipkow (1998): Term Rewriting and All That. Cambridge University Press, doi:10.

1017/CBO9781139172752.

[5] Yves Bertot & Pierre Castéran (2013): Interactive theorem proving and program development: Coq’Art: the

calculus of inductive constructions. Springer Science & Business Media.

[6] Jacques Fleuriot Carlin MacKenzie, James Vaughan: Archive of formal proofs. Available at https://www.

isa-afp.org/. Accessed: 2023-01-11.

[7] William F. Clocksin & Christopher S. Mellish (2003): Programming in Prolog: Using the ISO Standard.

Springer Science & Business Media, doi:10.1007/978-3-642-55481-0.

[8] Daniel J Dougherty (2019): A Coq Formalization of Boolean Unification.

[9] H. Geuvers (2009): Proof assistants: History, ideas and future. Sadhana 34(1), p. 3–25, doi:10.1007/

s12046-009-0001-5.

https://doi.org/10.1093/jigpal/jzu012
https://doi.org/10.4230/LIPICS.FSCD.2022.8
https://doi.org/10.1017/CBO9781139172752
https://doi.org/10.1017/CBO9781139172752
https://www.isa-afp.org/
https://www.isa-afp.org/
https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.1007/s12046-009-0001-5
https://doi.org/10.1007/s12046-009-0001-5

Y. Xu, D. Dougherty, and R. Bohrer 273

[10] Qing Guo, Paliath Narendran & David A Wolfram (1996): Unification and matching modulo nilpo-

tence. In: International Conference on Automated Deduction, Springer, pp. 261–274, doi:10.1007/

3-540-61511-3_90.

[11] Mauro Jaskelioff & Stephan Merz (2005): Proving the Correctness of Disk Paxos. https://isa-afp.org/

entries/DiskPaxos.html, Formal proof development.

[12] Zhiqiang Liu & Christopher Lynch (2011): Efficient general unification for XOR with homomor-

phism. In: International Conference on Automated Deduction, Springer, pp. 407–421, doi:10.1007/

978-3-642-22438-6_31.

[13] Zohar Manna & Richard Waldinger (1983): Deductive synthesis of the unification algorithm. In: Computer

Program Synthesis Methodologies, Springer, pp. 251–307, doi:10.1007/978-94-009-7019-9_8.

[14] Alberto Martelli & Ugo Montanari (1982): An Efficient Unification Algorithm. ACM Transactions on Pro-

gramming Languages and Systems 4(2), pp. 258–282, doi:10.1145/357162.357169.

[15] Matthew Maurer (2018): Holmes: Binary analysis integration through datalog. Ph.D. thesis, Carnegie

Mellon University.

[16] Alfred J Menezes, Paul C Van Oorschot & Scott A Vanstone (2018): Handbook of applied cryptography.

CRC press, doi:10.1201/9781439821916.

[17] Alfred J. Menezes, Scott A. Vanstone & Paul C. Van Oorschot (1996): Handbook of Applied Cryptography,

1st edition. CRC Press, Inc., USA.

[18] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn & Jakob von Raumer (2015): The Lean

theorem prover (system description). In: International Conference on Automated Deduction, Springer, pp.

378–388, doi:10.1007/978-3-319-21401-6_26.

[19] Tobias Nipkow, Lawrence C Paulson & Markus Wenzel (2002): Isabelle/HOL: a proof assistant for higher-

order logic. 2283, Springer Science & Business Media, doi:10.1007/3-540-45949-9_6.

[20] Martin Odersky, Lex Spoon & Bill Venners (2016): Programming in Scala, 3 edition. Artima Press.

[21] Sam Owre, John M Rushby & Natarajan Shankar (1992): PVS: A prototype verification system. In: Interna-

tional Conference on Automated Deduction, Springer, pp. 748–752, doi:10.1007/3-540-55602-8_217.

[22] Lawrence C Paulson (1985): Verifying the unification algorithm in LCF. Science of computer programming

5, pp. 143–169, doi:10.1016/0167-6423(85)90009-7.

[23] John Alan Robinson (1965): A Machine-Oriented Logic Based on the Resolution Principle. Journal of the

ACM 12(1), pp. 23–41, doi:10.1145/321250.321253.

[24] P. Y. A. Ryan & S. A. Schneider (1998): An Attack on a Recursive Authentication Protocol. A Cautionary

Tale. Inf. Process. Lett. 65(1), p. 7–10, doi:10.1016/S0020-0190(97)00180-4.

[25] Christian Sternagel & René Thiemann (2018): First-Order Terms. https://isa-afp.org/entries/

First_Order_Terms.html, Formal proof development.

[26] Coq Development Team: The Coq Proof Assistant. Available at https://coq.inria.fr/. Accessed:

2024-06-29.

[27] Max Tuengerthal, Ralf Küsters & Mathieu Turuani (2006): Implementing a unification algorithm for protocol

analysis with XOR. arXiv preprint cs/0610014, doi:10.48550/arXiv.cs/0610014.

[28] Christian Urban, Andrew M Pitts & Murdoch J Gabbay (2004): Nominal unification. Theoretical Computer

Science 323(1-3), pp. 473–497, doi:10.1016/j.tcs.2004.06.016.

[29] Rose Bohrer Yichi Xu, Daniel J Dougherty: The Coq Proof Implementation. Available at https://github.

com/YiCXxxx/Coq-XORUnification. Accessed: 2024-06-29.

[30] Philipp Zech, Michael Felderer & Ruth Breu (2019): Knowledge-based security testing of web applications

by logic programming. International Journal on Software Tools for Technology Transfer 21, pp. 221–246,

doi:10.1007/s10009-017-0472-3.

https://doi.org/10.1007/3-540-61511-3_90
https://doi.org/10.1007/3-540-61511-3_90
https://isa-afp.org/entries/DiskPaxos.html
https://isa-afp.org/entries/DiskPaxos.html
https://doi.org/10.1007/978-3-642-22438-6_31
https://doi.org/10.1007/978-3-642-22438-6_31
https://doi.org/10.1007/978-94-009-7019-9_8
https://doi.org/10.1145/357162.357169
https://doi.org/10.1201/9781439821916
https://doi.org/10.1007/978-3-319-21401-6_26
https://doi.org/10.1007/3-540-45949-9_6
https://doi.org/10.1007/3-540-55602-8_217
https://doi.org/10.1016/0167-6423(85)90009-7
https://doi.org/10.1145/321250.321253
https://doi.org/10.1016/S0020-0190(97)00180-4
https://isa-afp.org/entries/First_Order_Terms.html
https://isa-afp.org/entries/First_Order_Terms.html
https://coq.inria.fr/
https://doi.org/10.48550/arXiv.cs/0610014
https://doi.org/10.1016/j.tcs.2004.06.016
https://github.com/YiCXxxx/Coq-XORUnification
https://github.com/YiCXxxx/Coq-XORUnification
https://doi.org/10.1007/s10009-017-0472-3

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 274–287, doi:10.4204/EPTCS.416.24

Geospatial Trajectory Generation via Efficient Abduction:
Deployment for Independent Testing

Divyagna Bavikadi Dyuman Aditya Devendra Parkar Paulo Shakarian
Arizona State University

Arizona, USA
dbavikad@asu.edu daditya1@asu.edu dparkar1@asu.edu pshak02@asu.edu

Graham Mueller
Leidos

Virginia, USA
William.G.Mueller@leidos.com

Chad Parvis
EpochGeo

Washington,D.C, USA
cp@epochgeo.com

Gerardo I. Simari
Universidad Nacional del Sur (UNS)

Bahía Blanca, Argentina
CONICET

Bahía Blanca, Argentina
gisimari@gmail.com

The ability to generate artificial human movement patterns while meeting location and time con-
straints is an important problem in the security community, particularly as it enables the study of the
analog problem of detecting such patterns while maintaining privacy. We frame this problem as an
instance of abduction guided by a novel parsimony function represented as an aggregate truth value
over an annotated logic program. This approach has the added benefit of affording explainability
to an analyst user. By showing that any subset of such a program can provide a lower bound on
this parsimony requirement, we are able to abduce movement trajectories efficiently through an in-
formed (i.e., A*) search. We describe how our implementation was enhanced with the application
of multiple techniques in order to be scaled and integrated with a cloud-based software stack that
included bottom-up rule learning, geolocated knowledge graph retrieval/management, and interfaces
with government systems for independently conducted government-run tests for which we provide
results. We also report on our own experiments showing that we not only provide exact results but
also scale to very large scenarios and provide realistic agent trajectories that can go undetected by
machine learning anomaly detectors.

1 Introduction

The ability to generate artificial human movement patterns while meeting location and time constraints
is an important problem in the security community, particularly as it enables the study of the analog
problem of detecting such patterns without the need for data from actual humans. This work is part of
a larger effort to establish models of normal human movement at a fine-grain level1 and operationalize
those models and techniques in a system deployed to a government environment for evaluation. This
contrasts with current techniques used to model populations that operate at a more coarse-grain level
(country, county-level than building-level) as seen in previous work in specific areas such as population
migration [4] or disease spread [7].

In this work, we focus on the generation of human movement patterns based on historical data. We
frame this problem as an instance of abduction [23] in a geographic setting [29] guided by a novel par-
simony function represented as an aggregate truth value over an annotated logic program [16]. This
approach has the added benefit of affording explainability to an analyst user. By showing that any subset

1The IARPA HAYSTAC program, https://www.iarpa.gov/research-programs/haystac

http://dx.doi.org/10.4204/EPTCS.416.24
https://www.iarpa.gov/research-programs/haystac

D. Bavikadi et al. 275

of such a program can provide a lower bound on this parsimony requirement, we are able to abduce
movement trajectories efficiently through an informed (i.e., A*) search. This fundamental result enables
the practical implementation and deployment of software that is independently evaluated by a govern-
ment test and evaluation (T&E) team. Specifically, in this paper, we make the following contributions.

1. We leverage the modularity of a logic program to guide informed search. Specifically, we provide
a general result where we prove that a parsimony function consisting of an aggregate truth value
of a logic program is bounded by such an aggregate of a subset of the program. In the case of our
application, when rules correspond to one hop in an underlying graphical structure (in our case,
a road network) we can provide an efficient graph-based heuristic based on above general result.
We also provide empirical findings illustrating that the lower bound of the parsimony function for
a subset logic program as well as show that an A* implementation provides improvements not
available without a heuristic.

2. We build on the above strategy to provide scale through ad-hoc creation of the heuristic function
that proceeds with the search. We provide empirical results demonstrating the scalability of the
approach.

3. We show that our approach generates movement trajectories that are robust to machine learning
(ML) models designed specifically to detect anomalous movements. We show the results of an
internal test against such an ML model where we compare the output of the model with that of
the training data and find in the vast majority of cases trajectories produced by our approach have
anomaly ratings at or below the training data. We also illustrate how our approach allows for
explainability of the anomalous portions of a trajectory by leveraging the deduction results of the
logic program.

4. We describe how our approach can be integrated with rule mining, graph databases, and Amazon
Web Services (AWS) cloud infrastructure in a system deployed for government testing. Further,
we provide results of the government test where our approach was evaluated in four different
environments against nine different machine learning models, all designed to find our trajectories.
In the majority of cases, the ML models find our trajectories with a probability of detection (PD)
of less than 0.40, which is the standard established by the government.

The remainder of the paper is organized as follows. In Section 2 we describe the application domain, and
Section 3 provides a review of requisite logical preliminaries previously introduced in [16, 27, 3]. This is
followed by Section 4, where we describe framing abduction for this domain by bounding the parsimony
function to warrant informed search. The deployment is shown in Section 5. We report experimental
results in Section 6 and discuss the findings of our internal evaluations where we show (in practice)
tractable yet exact computation of parsimonious explanations, that movement trajectories provided are
not susceptible to detection by machine learning-based anomaly detectors, and further scalability to
larger graphs. In Section 7 we describe an independent evaluation with the probability of detection,
Section 8 presents related work, and we conclude in Section 9 by outlining future research.

2 Motivating Application

In the aftermath of an unexpected event, such as a natural disaster, war, or large-scale industrial accident,
human movement patterns can change significantly. As a result, IARPA (Intelligence Advanced Research
Projects Activity) has identified problems relating to the characterization and generation of normal hu-
man movement patterns as a key problem of study in the HAYSTAC program2. In this problem, a given

2https://www.iarpa.gov/newsroom/article/finding-a-needle-with-haystac

276 Geospatial Trajectory Generation

Figure 1: Left: The graph represents the city of Knoxville with landmarks, and the line plot denotes part
of an agent’s sub-trajectory. Right: Generated trajectory.

geospatial area is modeled as a graph where locations (we shall use Dloc to denote the domain of all
possible locations) represent the vertices. A set of agents, e.g., 007,008, .. ∈ Dagent , traverses through
the network by using various modes of transportation, such as personal_vehicle ∈Dmovtype. Throughout
the paper, we will use annotated logic [16] to specify various aspects of the environment by assigning
predicates and then use temporal extensions [3]; temporal rules to specify the normalcy or abnormalcy
of an agent’s movement throughout the geospatial area. The rules will be learned from historical data,
hence the abduction problem will consist of producing an agent trajectory (an explanation) between a
start and end locations at certain times (observations) such that the abnormalcy of the trajectory is min-
imized (parsimony requirement). An example of a movement trajectory (before interpolation, discussed
in Section 7) produced by our approach is shown in Figure 1(right) for the same agent whose training
trajectory is shown in Figure 1(left). However, despite the specific application and ensuing deployment,
we describe, our key insight is more general – if the parsimony function is specified as an aggregate over
truth values resulting from the deductive process of a logic program, we can leverage the logic program
to correctly improve efficiency (discussed in Section 4). This insight is what enables us to ultimately
solve the problem at scale.

3 Technical Preliminaries

Syntax of Annotated Logic with Temporal Extensions. We use annotated logic syntax [16] with a
lower-lattice based semantics [27] and temporal syntactic and semantic extensions [3]. We assume a set
of constant, variable, and predicate symbols (resp., C , V ,P) where the set of constants is divided into
domains (i.e., Di ⊂ C). Atoms are formed with terms (constants or variables) and predicates. Literals
include atoms and their negation, with G being the set of all (ground) literals formed with no variables.
Atoms and literals can be annotated with elements (intervals in [0,1]) of a lower semi-lattice structure
L (not necessarily complete) with ordering ⊑. Here, to generalize fuzzy logic in the spirit of [22], we
define the bottom element ⊥ as [0,1] and a set of top elements {[x,y] | x = y}. If a is an atom and µ is
an annotation that denotes truth probability, then a : µ is an annotated atom. We can create annotated
negations (of atoms) in the same way, and together with annotated atoms this gives us the set of annotated
literals. We also find it useful to extend the logic to make statements about time, and we do this in two
different ways. First, following the convention of [28] we have temporally annotated facts (TAFs). Given
time point t and annotated literal f , ft is a TAF that is true at t. The second extension is similar to that of

D. Bavikadi et al. 277

Allen’s temporal logic [5] in which we have modal operators AFTER(f , f ′) and BEFORE(f , f ′), where
f , f ′ are annotated literals, and the intuition is that f occurs after (resp., before) f ′. Annotated literals
and constructs formed with AFTER and BEFORE are called annotated formulas. Note that TAFs are
considered separately from these formulas when we describe the semantics.

Example 3.1 (Language and Syntax) We define specific domains as follows: C consists of disjoint sets
Dagent ,Dloc,Dmovtype. Dagent are constants associated with agents in the environment whose behavior we
wish to model as mentioned in Section 2. We will have various predicates such as the binary predicate
conn that takes elements of Dloc as arguments representing the connection of two locations. The truth
values associated with ground atoms created with this predicate specify a road network (as depicted in
Figure 1). We will also have a binary predicate, at specifying that an agent is at a certain location,
e.g., for agent agent and location loc ∈ Dloc, at(agent, loc) is a ground atom. We also have various
unary predicates such as prim-Banks, occ-Education, occ-Residential, ... (where prim encodes
the primary use of the location like the building is primarily used as a Bank, and occ implies the oc-
cupancy type of the building like for Residential purpose) that take elements of Dloc as an argument.
Finally, predicates of the form anomalyType(agent) are concluded from rules and are considered true
with confidence indicated by its annotation if the agent is conducting abnormal behavior.

Semantics and Satisfaction. Following previously introduced temporal extensions to annotated logic
(i.e., [3, 25]), we assume a finite series of time points that we wish to reason about in an associated
semantic structure of an interpretation I that, given timepoints T = t1, ..., tmax, is any mapping G ×T →
L . The set I of all interpretations can be partially ordered via the ordering: I1 ⪯ I2 iff for all ground
literals g ∈ G and time t, I1(g, t) ⊑ I2(g, t). I forms a complete lattice under the ⪯ ordering. From
this, we define a satisfaction relationship “|=” for temporally annotated facts in the usual manner (i.e.,
[16, 27, 3]).

Rules and Programs. We adopt the temporally extended GAP rules from [3]. If f0 is an annotated atom
and, f1, . . . , fm are annotated formulas , then

r ≡ f0←−
∆t

f1 ∧ . . .∧ fm ∆t ≥ 0

is called a GAP rule. When a conjunction of annotated formulas in the body is satisfied at time t, the
annotation of the atom f0 in the head gets updated after a delay, ∆t. A GAP rule is called a fact when the
body is empty, and ground when it has no occurrences of variables from V . Table 1 shows examples of
rules capturing anomalies that are learned based on observing an agent’s routine for two weeks.

We define a program, Π, as a set of rules and TAFs. An interpretation I satisfies Π if for all e∈Π, I |=
e. We also leverage a fixpoint operator presented in [27, 3] designed for use on lower-lattice annotated
logic (which provides analogous results shown earlier for the operator introduced in [16]). The key here
is that the operator provides a minimal model, hence exact answers to entailment under the assumption
of consistency. As we learn logical rules from data, we can control consistency, so this is a reasonable
assumption. We also use a fixpoint operator as per [16, 27, 3] to perform deductive inference. As per the
previous work, fixpoint operator Γ is a map from interpretations to interpretations and is applied multiple
times until convergence, denoted by Γ∗.

Abductive Inference. In this paper, we formalize an abduction problem as: given observations, repre-
sented as a set of TAFs denoted O, a set of hypotheses, which is also a set of TAFs denoted H, program
Π, and parsimony function value that maps interpretations to positive reals, the goal is to identify an

278 Geospatial Trajectory Generation

Table 1: Rules with intuition for modeling the behavior of humans in a geospatial location

Rule Natural Language

abnormal(A) : [0.9,1]←∆t=0 education(A) : [1,1]∧utility(A) : [1,1]∧
AFTER(utility(A),education(A)) : [1,1]

If the agent A goes to a utility
area like barns and sheds af-
ter visiting an education lo-
cation (annotated by [1,1])
like a school, then it shows
high abnormal activity by up-
dating its lower bound to 0.9

abnormal(A) : [1,1]←∆t=0 industrial(A) : [1,1]∧assembly(A) : [1,1]∧
AFTER(assembly(A), industrial(A)) : [1,1]

It is anomalous that an agent
who works in a highly haz-
ardous industrial location
will directly go to a highly
populated location like the-
aters (assembly)

explanation E, a subset of H such that Π∪E ∪O is consistent (in other words, Π∪E is consistent and
entails O). Note that as both E and O are TAFs, we are not guaranteed consistency. Parsimony is mea-
sured by value(Γ∗

Π∪E∪O(I⊥)) (where I⊥ assigns all atoms at all time points to the annotation [0,1], total
uncertainty). An explanation with the lowest value for value(Γ∗

Π∪E∪O(I⊥)) is an optimal explanation.

Example 3.2 Building on the notion from example 3.1: in our use case, a set of observations O is a set
of TAFs (essentially sets constraints on the agent’s location at certain times), where each TAF indicates
that an agent a is at loc ∈Dloc at time t. H is the set of all possible locations Dloc of the agent. A set of
learned temporally extended GAP rules Π indicate the normalcy of an agent in a graph G. Here, G is a
series of TAFs that is formed with nodes from Dloc. If at(a, loc) : µt is a ground atom, then we impose
graphical constraints like ¬at(a, loc′) : µt+1, where conn(loc, loc′) : µt is not true in G and loc ̸= loc′.
As seen in Table 1 we use the lower bound of the annotation in the rule’s head to represent the confidence
of the body being historically abnormal. When the agent’s movements relate to the body, its annotations
are updated to [1,1] for time t. Explanation E is a movement sequence (which is a set of TAFs) from
loci

start to loci
end that fires most rules in Π.

Framing the Abduction Problem as a Search Problem. While the general case of such an abduction
problem is intractable, we have two key insights that apply to our domain problem. The first is a structural
concern: if we are reasoning about an agent moving in a geospatial setting using a ground vehicle, we
know that the agent cannot possibly teleport, so it is restricted to traveling along the graph at a certain
speed. Similar restrictions have been applied to other problems such as social media diffusion [3], power
grid failure modeling [18], and knowledge graph completion [21]. This allows for TAFs from set H to
be selected in a sequential manner while at the same time limiting the TAFs to those consistent with the
graphical structure, and the application of search routines such as depth-first search (which we implement
in our experiments). However, we note that this does not reduce the branching factor enough to afford
tractability. In the next section, we present results that allow for a provable lower bound on value in the
general case, which we employ in our use case to obtain tractability and further scalability.

D. Bavikadi et al. 279

4 Efficient and Scalable Geospatial Abduction for Trajectory Generation

The complexity of logic-based abduction [9, 17] can be reduced by using a logic-based parsimony func-
tion instead of a standard logic-based function that is intractable due to the number of explanations.
We introduce a parsimony function based on the aggregate truth values assigned using a logic program
learned from data. The value obtains the lower bound of aggregate over the annotations on an atom b
at time t for the minimal model I of Π∪E ∪O. Using a lower bound on such an aggregate, we obtain
an admissible heuristic allowing us to use informed search (i.e., A*). By extension, this addresses both
intractability and scalability issues.

Bounding the Parsimony Function to enable Informed Search. We now provide new results that allow
us to create a lower bound on the parsimony function value by taking a subset of the logic program. These
rigorous results imply that we obtain an admissible and consistent heuristic function for A* – hence, the
resulting usage of the lower bound of value in A* can provide an exact solution. Note that these are
general results, not specific to the use case we are studying. However, clearly, their applicability depends
on the subset of Π being non-trivial (e.g., the use of /0 would be unhelpful). Further, the idea is that the
subset of the logic program also offers a computational advantage. By showing for a given ground atom
b, time t, and Π′ ⊆ Π and I, Γ∗

Π′(I)(b, t) ⊑ Γ∗
Π
(I)(b, t), we state the following, which in turn gives us a

lower bound on value:

Theorem 4.1 For ground atom b, timepoint t, Π′ ⊆Π, and I′ ⪯ I, we have Γ∗
Π′(I

′)(b, t)⊑ Γ∗
Π
(I)(b, t).

Informed Search Strategy. For our use case, a logic program Π is learned where the head of the rules
is anomalyType(agent) from Example 3.1. The body of the rule is determined by two major symbolic
landmarks in G that are n ∈ Z+ hops away. Consider a single movement as moving and staying in a
location (in our case, that is one hop away) from the current location during time t. For single hops, a
subset of the logic program ΠSH ⊆Π is learned. In the general case, Theorem 4.1 shows that for a subset
of the logic program Π′ ⊆ Π, we get a lower bound on value. For a given set of movements I in G, we
employ the value for a ΠSH as the heuristic function in an informed search strategy. We note that the
increase in value resulting from single hop rules is inherently modular, meaning that for any node in the
frontier set, such quantity is invariant. This allows us to precompute this increase for all nodes and store
it in a graph-based data structure Gw. Considering the number of iterations of Γ as well as grounding
for single movements versus a sequence of multiple movements, Γ∗

ΠSH (I) is easier to compute, towards
obtaining the heuristic value.

Scalable Heuristic Computation. Computation of value can be expensive on a whole logic program Π

as it involves computing Γ∗
Π
(I) given a set of movements I as multiple anomalies can be inferred from

multiple sequences of movements. The process of grounding can be expensive computationally, but we
can gain efficiency by considering ΠSH ⊆ Π, where anomalous behavior rises from single movements.
Using Theorem 4.1 we can efficiently prune abnormal candidate movements with informed search. We
precompute the heuristic function by weighting the graph G with the lower bound on value for all possi-
ble single movements and obtain Gw. For further scalability, we compute value in a need-based fashion
called ad-hoc weighting instead of precomputing it for all possible single movements in G. During
heuristic computation we obtain the lower bound of value only when a certain movement is needed. For
ad-hoc weighting, we compute value considering the agent’s frontier up to a depth of 1 at each step.

280 Geospatial Trajectory Generation

Figure 2: Visual representation of deployment.

5 Software Stack

Our logic program-guided abduction strategy is part of a software stack that was deployed in a cloud
environment on Amazon Web Services (AWS) as per mandate by the government customer. Figure 2
depicts the overall system architecture (DAG structure).

Overall Workflow. The pipeline interfaces with the government system to access the raw geospatial
data with related knowledge for 4 geolocations as well as training agent trajectories (as seen in Figure 1
(left)) and required objectives for each agent (framed as a set of observations O). The required objectives
include typical human activities of single (visiting a friend, restaurant, etc) and recurring (going to work,
etc.) movement types. Initially, we host the raw geospatial data in a Neo4j server and form a consolidated
knowledge graph G (symbolic landmarks extracted from G are seen by the symbols in Figure 1 (left)).
This is stored in an S3 bucket also containing the training data (consisting of both trajectories and objec-
tives for each agent). For each agent, we extract spatial and temporal constraints from the training data.
Based on a single trajectory of an agent, we learn a set of anomalous rules Πrules (as seen in Table 1).
Both G and Πrules are used to compute the heuristic values by creating a weighted graph Gw. We also use
constraints to perform an informed search algorithm to generate a normal trajectory (as seen in Figure 1
(right)).

Data Ingest. Our initial ingest and staging containerized processes are held in the DAG as nodes. Our
ingest mechanism first parses the objective files for the agent to determine the locations of corresponding
training trajectories. Secondly, based on the geolocation, we retrieve the appropriate knowledge graph
and link it to each agent. Finally, we process the data associated with each agent (objectives, training
data, graph) to a predefined staging area in the S3 bucket.

Instantiation. This step analyzes the staging folders and creates the necessary string commands specific
to each agent. We launch pods for all agents with a movement-generation Docker image to process
its particular objectives. As the container runs, generated movement instruction files are pushed to the
appropriate output directory.

D. Bavikadi et al. 281

Rule Learning. To generate normal movement, we learn rules from the agent’s historical data capturing
realistic behavior. Sequences of movements deviating from this behavior are considered anomalous.
Inferring from longer sequences can make the algorithm computationally expensive, but when we only
compute a subset of rules involving shorter sequences, we can efficiently prune candidate movements
that are highly abnormal using search algorithms. There are different kinds of rule types, which we
call single-hop and multi-hop rules (ΠSH ,ΠMH). Here, ΠSH leverages single movement frequency (for
instance Table 1) while ΠMH leverages a set of multiple movements (in a similar format of Table 1). The
logic program Π includes both types of rules. From Theorem 4.1, we can get value(Γ∗

ΠSH∪E∪O(I)(b, t))⊑
value(Γ∗

Π∪E∪O(I)(b, t)) as ΠSH ⊆Π; this is demonstrated in Figure 3.

Search. We use PyReason [3] to compute the fixpoint operator Γ used for both the actual calculation of
value and the creation of the heuristic function. We use the aggregate function as an intersection over
all annotations of the rules fired by Γ∗. This is computed in an ad-hoc fashion for possible movements,
and we weight the graph based on those movements to form Gw. Given the set of constraints O, we form
sub-abduction problems to perform an A* search, and generate normal trajectories satisfying all required
objectives.

6 Internal Evaluation

Experimental Setup. The government provided us with simulated data we used for the internal devel-
opment of our approach. We leverage three main kinds of data. Firstly, curated data for four geospatial
locations: Knoxville, Singapore, Los Angeles, and San Francisco is collected from multiple source
datasets, namely USAStructures [2], Planetsense [30] (which provides geospatial information), Open
street map road network (which gives transportation information), Urbanpop [31] (containing population
data), and other data collected as part of the program. Secondly, we have simulated trajectory data of
40,000 human agents across all 4 locations, which mimic realistic human activity. Four different teams
each provide a different simulation environment for generating realistic training data. Note that this data
comprises only location data and does not include information on actual people. Thirdly, we have a
set of objectives for each agent that specifies spatio-temporal constraints. From the curated data, we use
three types of input data: geospatial (building types, occupancy, etc), population (census data, population
survey data, etc), and transportation (road network, statistics on traffic flow, etc) to build a consolidated
knowledge graph G. Each node in G is either an intersection point from the road network or has attributes
that convey its landmark category resembling building occupancy such as Commercial (stores, parking),
Unclassified (does not require much security, non-residential), Non-Profit (general offices, Emergency
Operation Centers), Residential (apartments, hotels), Assembly (convention centers, stadium), Education
(libraries, schools), Utility (barns, water treatment), Industrial (hazardous factories- chemical factories,
metal processing factories, construction), Agriculture (agricultural use land), Government (military, fire
station). Each trajectory is a sequentially ordered tuple of length 2 weeks, consisting of latitude, longi-
tude, and timestamp indicating the agent’s location at each time point (cf. Figure 1 for an example of
the trajectory on the graph). Moreover, every set of objectives describes spatial and temporal constraints
on the trajectory to be generated. We generated 38 trajectories that satisfy all constraints for which the
objectives were provided.

We conducted all experiments on a high-memory CPU machine with 128 cores, and 2000GB mem-
ory, using PyReason software [3] for inference. Rules (similar to Table 1) were learned using a bottom-up
technique comparable to related work [26] where you restrict the body of the rule to contain historically
possible single movements.

282 Geospatial Trajectory Generation

Figure 3: Left: Value with subset logic program, logic program Π′,Π for the Knoxville location. Right:
Runtime Comparison with Depth-First Search and A* Search.

Empirical Validation of Theoretical Claims. We present the results of two experiments as seen in
Figure 3 to validate our claims concerning the use of the heuristic function and its employment as part
of an informed search strategy. Figure 3 (left) shows that the heuristic value computed by the subset of
the logic program is lower than the actual value in all our experiments since the data points lie below
the dashed line – this aligns with Theorem 4.1. On the right panel, we see that the heuristic effectively
addresses the tractability issues of the search, where the search conducted with the depth-first search
algorithm without the heuristic could not be completed in under 48 hours even on small graphs with 50
nodes. Our approach using a heuristic maintains a lower running time as shown in Figure 3 (right).

Trajectory Robustness. A key aspect we wish to achieve with the generation of realistic movement
trajectories is their robustness to anomaly detection. In this experiment, we run an ensemble of machine
learning methods to perform anomaly detection over the generated and training trajectories to get their
anomaly scores. The anomaly score of the ensemble is then compared with the average of that score over
the historical trajectories of the agent, resulting in the relative anomaly ratio. In Figure 4 (left), we can
see a box plot of anomaly scores of generated trajectories relative to the training data. In 90% of the data,
a ratio lower than 1 is observed, indicating that mostly, anomalous movements identified in generated
trajectories are no more frequent than those occurring in the training trajectories. For the cases where the
anomaly detector found more anomalies than in the training data, the proportions are 46%,31%,14%,
and 11%, which is likely to be lower than a practically employed high-precision threshold.

Scalability. We implemented both ad-hoc and non ad-hoc weighting for all 4 locations – see results in
Figure 4 (right). Ad-hoc technique gave a maximum speedup of 245.42 and a minimum of 0.32 when
compared to the non ad-hoc technique. Over all, ad-hoc weighting is beneficial due to reduced runtimes.
Several outliers (not depicted in the plot) for 3 AOIs were observed with speedups of 128.05,245.04,
and 140.46. Furthermore, when the graph size (the number of edges) increased by a factor of 4.69,
the speedup was boosted by a factor of 72.05. The median speedups as the graph gets denser are
0.44,1.30,2.86, and 17.98. These improvements show that the ad-hoc technique will scale well as the
graph size grows significantly or gets denser when compared to non ad-hoc technique. In many cases,
the non ad-hoc technique did not complete after running for more than 10 days, suggesting a speedup
of over 1,000x for those cases. Though such results are favorable to our approach, we did not consider
these samples in the determination of the numbers in this section.

Explainability. Movemments in a trajectory are generated using a fixpoint-based algorithm [16] on Π.

D. Bavikadi et al. 283

Figure 4: Left: Relative Anomaly Ratio. Anomalies in generated movements when compared with
anomalies found in the training data by an ensemble ML anomaly detection algorithm. Right: Runtime
speedup due to ad-hoc weighting.

Figure 5: Visual depiction of rules from Table 1. Left: The top rule. Right: Both rules.

Movements tagged anomalous by a detected in such a trajectory can be backtracked to specific rules. Due
to the modularity inherent to the approach, these rules assist analysts in assessing particular anomalous
behaviors. An analyst can explore the anomalies detected on the generated trajectory by tracing back
to the rules that caused such movements; for example, cf. Figure 5. Note that trajectory generation on
historical data with our approach does not let an external entity infer an agent’s identity. Even though
the program is learned from the data, trajectory points in the agent’s generated trajectory needn’t be the
same as historical data, which also contributes to privacy protection.

7 Deployment for Independent Evaluation

Independent Evaluation Setup. The generated trajectories are evaluated against nine different anomaly
detection algorithms, each created by a government contractor. Further, these evaluations take place in
the 4 locations examined in Section 6 but with newly simulated historical data for a duration of 2 months
not previously available to our team. The results were collected and assessed by the government test and
evaluation team using government-created cloud infrastructure to receive our outputs. The evaluation
teams included an external T&E team, four simulation teams that run simulation engines to provide
training data replicating real-world dynamics innate in human movement, and other teams that designed
bespoke anomaly detection algorithms to evaluate the generated trajectories. Additionally, with the same

284 Geospatial Trajectory Generation

Figure 6: Prob. of detection (PD) from independent trials against ML-based anomaly detectors. Left: PD
based on agents discovered. Right: PD based on points discovered.

simulators more movements are synthesized (which we are blind to) to be inserted with the 113 generated
trajectories on the newly simulated historical data.

During this trial, we were evaluated on the probability of detection, defined as per the government’s
guidance [1]: PD = Correctly Detected Anomalies/All Anomalies. In Figure 6 we show the PD of
generated movement trajectories against the various machine learning anomaly detectors developed in
the program and for each of the four simulation environments. We note that several anomaly detectors
were developed by teams that created simulation environments, which appeared to have an advantage
We present results for F1-optimized anomaly detectors in Figure 6. It shows results curated by the
government T&E team where anomalies are defined as anomalous agents being identified as well as
when defined as points in the agent’s trajectory. Note that our approach was designed to identify major
intersections or landmarks that the agent would traverse. An interpolation procedure - not part of the
overall route planning was used to fill in waypoints between such major intersections. This is likely why
many anomaly detectors were able to identify anomalous points (Figure 6 right) but generally failed to
find the agents from the overall trajectory (Figure 6 left). Improvement to the interpolation procedure is
an area of future work. In the majority of cases, we met the government standard of having a PD below
0.40.

8 Related Work

Relation to Abduction Literature. Traditionally, in an abductive inference problem, an explanation is
determined based on a model, which imposes some form of constraints, and a set of observations that
though observed are phenomena that would be inferred from the model and explanation. The hardness of
logic-based abduction (e.g., when the model is some form of logic program) is well established [9, 17],
and a key source of this complexity is that the number of explanations is intractable in the general case.
As a result, parsimony requirements are used to specify criteria over which explanation is preferable [23]
– for example, previous work on geospatial abduction (but not abducing trajectories) minimized cardi-
nality as a parsimony requirement [29]. In another example, recent applications of abduction to machine
learning, such parsimony requirements are expressed in terms of training loss [12, 8]. Our work dif-
fers from all of the aforementioned papers in that we introduce a parsimony requirement based on the
aggregate truth values assigned by a logic program that can be learned from data.

D. Bavikadi et al. 285

Relation to Literature on Geospatial Trajectory Generation. The abundance of trajectory data per-
mits the analysis of mobility patterns and trajectories such as Markov-based paradigms have been applied
for momentary goals (location prediction) [10, 19] and coarse-grain human movement analysis [32, 7, 4]
- both different problems than this paper. Recent studies used recurrent neural networks (RNN) [15],
generative adversarial networks (GAN) [11, 33], graph neural networks (GNN) [20], and transformer-
based approaches [32] on real datasets to generate trajectories. Though these approaches tend to capture
spatial-temporal correlations, they lack explainability. Recurrent-based approaches generate trajectories
with short duration and spatial coverage. Adversarial approaches need more training data to get real-
istic outcomes while GNN-based models are time-consuming. A reinforcement-learning approach for
sequence modeling [14, 6] can be extended for human trajectory generation but has challenges for large
graphs. They heavily rely on the structure of the reward function. Interpretability has been induced using
the latent space to see the distribution of uncertainty of semantic concepts [13]. Our approach can gener-
ate long-range trajectories spanning over a city with a length of two months, in a data-efficient manner 3

and scales to denser graphs. The modularity of our approach allows for detailed explanations.

9 Conclusion

In this paper, we described a system that generates realistic but synthetic human movement trajectories
using abduction guided by a logic program. This system was recently deployed for independent gov-
ernment testing. We note that in our current iteration, there were several limitations. For example, we
did not employ ad-hoc graph weighting (essentially a sequential operation) and parallelization together –
finding how to achieve the right balance between the two techniques can result in further scalability. We
also look to extend our logical language to provide additional insights into anomalies; for example, time
of day is not currently considered, so an anomaly detector explicitly considering that aspect will readily
find our trajectories. Further, we also look to leverage the ability of our underlying logic to accept arbi-
trary functional symbols to assign truth, allowing to leverage neurosymbolic techniques [24] to directly
integrate ML anomaly detectors.

Ethics Statement. This work is part of the IARPA HAYSTAC program, which is designed to create
simulated environments with generated human movement patterns not associated with actual persons
and enable further study of human movement trajectories without relying on actual human data.

Acknowledgement This research is supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via the Department of Interior/Interior Business Center (DOI/IBC) contract number
140D0423C0032. The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclu-
sions contained herein are those of the authors and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or implied, of IARPA, DOI/IBC, or the U.S. Gov-
ernment. Also, this work was funded by ONR grant N00014-23-1-2580.

References

[1] IARPA HAYSTAC. https://www.iarpa.gov/newsroom/article/haystac-baa-release. Accessed:
05-08-2024.

3We had a single 2-week training sample per agent. For comparison, the ML approach of [11], uses on average 60 examples
per agent that were 3 years in duration.

https://www.iarpa.gov/newsroom/article/haystac-baa-release

286 Geospatial Trajectory Generation

[2] Oak Ridge National Laboratory (ORNL); Federal Emergency Management Agency
(FEMA) Geospatial Response Office. https://www.arcgis.com/home/item.html?id=
0ec8512ad21e4bb987d7e848d14e7e24https://www.arcgis.com/home/item.html?id=
0ec8512ad21e4bb987d7e848d14e7e24. Accessed: 05-08-2024.

[3] Dyuman Aditya, Kaustuv Mukherji, Srikar Balasubramanian, Abhiraj Chaudhary & Paulo Shakarian (2023):
PyReason: Software for Open World Temporal Logic, doi:10.48550/arXiv.2302.13482. arXiv:2302.13482.

[4] C. Alis, E. F. Legara & C. Monterola (2021): Generalized radiation model for human migration. Sci Rep 11,
p. 22707, doi:10.1038/s41598-021-02109-1.

[5] James F. Allen (1984): Towards a general theory of action and time. Artificial Intelligence 23(2), pp. 123–
154, doi:10.1016/0004-3702(84)90008-0.

[6] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Ar-
avind Srinivas & Igor Mordatch (2021): Decision Transformer: Reinforcement Learning via Sequence Mod-
eling, doi:10.48550/arXiv.2106.01345. arXiv:2106.01345.

[7] Yuzhou Chen, Yulia R. Gel, Madhav V. Marathe & H. Vincent Poor (2024): A simplicial epidemic model
for COVID-19 spread analysis. Proceedings of the National Academy of Sciences 121(1), p. e2313171120,
doi:10.1073/pnas.2313171120. arXiv:https://www.pnas.org/doi/pdf/10.1073/pnas.2313171120.

[8] Wang-Zhou Dai, Qiuling Xu, Yang Yu & Zhi-Hua Zhou (2019): Bridging machine learn-
ing and logical reasoning by abductive learning. Advances in Neural Information Processing
Systems 32. Available at https://proceedings.neurips.cc/paper_files/paper/2019/file/
9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf.

[9] Thomas Eiter & Georg Gottlob (1995): The complexity of logic-based abduction. Journal of the ACM 42(1),
pp. 3–42, doi:10.1145/200836.200838.

[10] Sébastien Gambs, Marc-Olivier Killijian & Miguel Núñez del Prado Cortez (2012): Next place prediction
using mobility Markov chains. In: Proceedings of the First Workshop on Measurement, Privacy, and Mobility,
MPM ’12, Association for Computing Machinery, New York, NY, USA, doi:10.1145/2181196.2181199.

[11] Lingyun Han (2024): Enhanced Generation of Human Mobility Trajectory with Multiscale Model. In Biao
Luo, Long Cheng, Zheng-Guang Wu, Hongyi Li & Chaojie Li, editors: Neural Information Processing,
Springer Nature Singapore, Singapore, pp. 309–323, doi:10.1007/978-981-99-8178-6_24.

[12] Yu-Xuan Huang, Wang-Zhou Dai, Yuan Jiang & Zhi-Hua Zhou (2023): Enabling Knowledge Refinement
upon New Concepts in Abductive Learning. Proceedings of the AAAI Conference on Artificial Intelligence
37(7), pp. 7928–7935, doi:10.1609/aaai.v37i7.25959.

[13] Masha Itkina & Mykel Kochenderfer (2023): Interpretable self-aware neural networks for robust trajectory
prediction. In: Conference on Robot Learning, PMLR, pp. 606–617, doi:10.48550/arXiv.2211.08701.

[14] Michael Janner, Qiyang Li & Sergey Levine (2021): Offline Reinforcement Learning as One Big Sequence
Modeling Problem. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang & J. Wortman Vaughan,
editors: Advances in Neural Information Processing Systems, 34, Curran Associates, Inc., pp. 1273–
1286, doi:10.48550/arXiv.2106.02039. Available at https://proceedings.neurips.cc/paper_files/
paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf.

[15] Mahrokh Khakzar, Andry Rakotonirainy, Andy Bond & Sepehr G. Dehkordi (2020): A Dual Learning Model
for Vehicle Trajectory Prediction. IEEE Access 8, pp. 21897–21908, doi:10.1109/ACCESS.2020.2968618.

[16] Michael Kifer & V.S. Subrahmanian (1992): Theory of Generalized Annotated Logic Programming and its
Applications. J. Log. Program. 12(3&4), pp. 335–367, doi:10.1016/0743-1066(92)90007-P.

[17] Paolo Liberatore & Marco Schaerf (2015): On the complexity of second-best abductive explanations. Inter-
national Journal of Approximate Reasoning 63, pp. 22–31, doi:10.1016/j.ijar.2015.05.009.

[18] X.-Q Liu, D.-Z Wang, C.-L Zhang & Y. Ning (2016): Method of power grid fault diagnosis based on
model prediction and abductive reasoning network 37, pp. 472–476 and 480. doi:10.3969/j.issn.1005-
3026.2016.04.004.

https://www.arcgis.com/home/item.html?id=0ec8512ad21e4bb987d7e848d14e7e24https://www.arcgis.com/home/item.html?id=0ec8512ad21e4bb987d7e848d14e7e24
https://www.arcgis.com/home/item.html?id=0ec8512ad21e4bb987d7e848d14e7e24https://www.arcgis.com/home/item.html?id=0ec8512ad21e4bb987d7e848d14e7e24
https://www.arcgis.com/home/item.html?id=0ec8512ad21e4bb987d7e848d14e7e24https://www.arcgis.com/home/item.html?id=0ec8512ad21e4bb987d7e848d14e7e24
https://doi.org/10.48550/arXiv.2302.13482
https://arxiv.org/abs/2302.13482
https://doi.org/10.1038/s41598-021-02109-1
https://doi.org/10.1016/0004-3702(84)90008-0
https://doi.org/10.48550/arXiv.2106.01345
https://arxiv.org/abs/2106.01345
https://doi.org/10.1073/pnas.2313171120
https://arxiv.org/abs/https://www.pnas.org/doi/pdf/10.1073/pnas.2313171120
https://proceedings.neurips.cc/paper_files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/9c19a2aa1d84e04b0bd4bc888792bd1e-Paper.pdf
https://doi.org/10.1145/200836.200838
https://doi.org/10.1145/2181196.2181199
https://doi.org/10.1007/978-981-99-8178-6_24
https://doi.org/10.1609/aaai.v37i7.25959
https://doi.org/10.48550/arXiv.2211.08701
https://doi.org/10.48550/arXiv.2106.02039
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/099fe6b0b444c23836c4a5d07346082b-Paper.pdf
https://doi.org/10.1109/ACCESS.2020.2968618
https://doi.org/10.1016/0743-1066(92)90007-P
https://doi.org/10.1016/j.ijar.2015.05.009
https://doi.org/10.3969/j.issn.1005-3026.2016.04.004
https://doi.org/10.3969/j.issn.1005-3026.2016.04.004

D. Bavikadi et al. 287

[19] X. Lu, E. Wetter, N. Bharti et al. (2013): Approaching the Limit of Predictability in Human Mobility. Sci
Rep 3 2923, doi:10.1038/srep02923.

[20] Kai Lv & Liang Yuan (2023): SKGACN: Social Knowledge-Guided Graph Attention Convolutional Network
for Human Trajectory Prediction. IEEE Transactions on Instrumentation and Measurement 72, pp. 1–11,
doi:10.1109/TIM.2023.3283544.

[21] Christian Meilicke, Melisachew Wudage Chekol, Daniel Ruffinelli & Heiner Stuckenschmidt (2019): Any-
time Bottom-Up Rule Learning for Knowledge Graph Completion. In: Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, International Joint Conferences on Arti-
ficial Intelligence Organization, pp. 3137–3143, doi:10.24963/ijcai.2019/435.

[22] Nils J. Nilsson (1986): Probabilistic logic. Artificial Intelligence 28(1), pp. 71–87, doi:10.1016/0004-
3702(86)90031-7. Available at https://www.sciencedirect.com/science/article/pii/
0004370286900317.

[23] Yun Peng & James A. Reggia (1990): Abductive inference models for diagnostic problem-solving. Springer-
Verlag New York, Inc., doi:10.1007/978-1-4419-8682-5.

[24] P. Shakarian, C. Baral, G.I. Simari & L. Pokala (2023): Neuro Symbolic Reasoning and Learning. Springer-
Briefs in Computer Science, Springer Nature Switzerland, doi:10.1007/978-3-031-39179-8. Available at
https://books.google.com/books?id=hVEF0AEACAAJ.

[25] Paulo Shakarian, Austin Parker, Gerardo Simari & Venkatramana Subrahmanian (2011): Annotated proba-
bilistic temporal logic. ACM Transactions on Computational Logic 12(2), doi:10.1145/1877714.1877720.

[26] Paulo Shakarian, Austin Parker, Gerardo Simari & Venkatramana V. S. Subrahmanian (2011): Annotated
probabilistic temporal logic. ACM Trans. Comput. Logic 12(2), doi:10.1145/1877714.1877720.

[27] Paulo Shakarian & Gerardo I. Simari (2022): Extensions to Generalized Annotated Logic and an
Equivalent Neural Architecture. In: Proceedings - 2022 4th International Conference on Trans-
disciplinary AI, TransAI 2022, Institute of Electrical and Electronics Engineers Inc., pp. 63–70,
doi:10.1109/TransAI54797.2022.00017.

[28] Paulo Shakarian, Gerardo I. Simari & V. S. Subrahmanian (2012): Annotated Probabilistic Temporal Logic:
Approximate Fixpoint Implementation. ACM Trans. Comput. Logic 13(2), doi:10.1145/2159531.2159535.

[29] Paulo Shakarian, V. S. Subrahmanian & Maria Luisa Sapino (2011): GAPs: Geospatial Abduction Problems.
ACM Trans. Intell. Syst. Technol. 3(1), doi:10.1145/2036264.2036271.

[30] Gautam Malviya Thakur, Budhu Bhaduri, Jesse Piburn, Kelly Sims, Robert Stewart & Marie Urban (2015):
PlanetSense: A Real-time Streaming and Spatio-temporal Analytics Platform for Gathering Geo-spatial In-
telligence from Open Source Data (1). doi:10.1145/2820783.2820882.

[31] Joseph Tuccillo, Robert Stewart, Amy Rose, Nathan Trombley, Jessica Moehl, Nicholas Nagle & Budhendra
Bhaduri (2023): UrbanPop: A spatial microsimulation framework for exploring demographic influences on
human dynamics. Applied Geography 151, p. 102844, doi:10.1016/j.apgeog.2022.102844.

[32] Yu Wang, Tongya Zheng, Yuxuan Liang, Shunyu Liu & Mingli Song (2024): COLA: Cross-city Mobility
Transformer for Human Trajectory Simulation. In: Proceedings of the ACM on Web Conference 2024,
WWW ’24 41, ACM, p. 3509–3520, doi:10.1145/3589334.3645469.

[33] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong & Wancai Zhang (2021): In-
former: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting. Proceedings of the AAAI
Conference on Artificial Intelligence 35(12), pp. 11106–11115, doi:10.1609/aaai.v35i12.17325. Available at
https://ojs.aaai.org/index.php/AAAI/article/view/17325.

https://doi.org/10.1038/srep02923
https://doi.org/10.1109/TIM.2023.3283544
https://doi.org/10.24963/ijcai.2019/435
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1016/0004-3702(86)90031-7
https://www.sciencedirect.com/science/article/pii/0004370286900317
https://www.sciencedirect.com/science/article/pii/0004370286900317
https://doi.org/10.1007/978-1-4419-8682-5
https://doi.org/10.1007/978-3-031-39179-8
https://books.google.com/books?id=hVEF0AEACAAJ
https://doi.org/10.1145/1877714.1877720
https://doi.org/10.1145/1877714.1877720
https://doi.org/10.1109/TransAI54797.2022.00017
https://doi.org/10.1145/2159531.2159535
https://doi.org/10.1145/2036264.2036271
https://doi.org/10.1145/2820783.2820882
https://doi.org/10.1016/j.apgeog.2022.102844
https://doi.org/10.1145/3589334.3645469
https://doi.org/10.1609/aaai.v35i12.17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 288–290, doi:10.4204/EPTCS.416.25

© N. Küchenmeister, A. Ivliev & M. Krötzsch
This work is licensed under the
Creative Commons Attribution License.

Towards Mass Spectrum Analysis with ASP
(Extended Abstract)

Nils Küchenmeister
TU Dresden

Dresden, Germany
nils.kuechenmeister@tu-dresden.de

Alex Ivliev
TU Dresden

Dresden, Germany
alex.ivliev@tu-dresden.de

Markus Krötzsch
TU Dresden

Dresden, Germany
markus.kroetzsch@tu-dresden.de

We present a new use of Answer Set Programming (ASP) to discover the molecular structure of
chemical samples based on mass spectrometry data. To constrain the exponential search space for
this combinatorial problem, we develop canonical representations of molecular structures and an
ASP implementation that uses these definitions. This implementation forms the core of our new
tool, GENMOL, designed to enumerate potential molecular structures given a specified composition
of fragments.

1 Introduction

Mass spectrometry is a powerful technique to determine the chemical composition of a substance. How-
ever, the mass spectrum of a substance does not reveal its exact molecular structure, but merely the
possible ratios of elements in the compound and its fragments. To identify a sample, researcher may use
commercial databases (for common compounds), or software tools that can discover molecular structures
from the partial information available. The latter leads to a combinatorial search problem that is a natural
fit for answer set programming (ASP). Molecules can be modeled as undirected graphs, representing the
different elements and atomic bonds as node and edge labels, respectively. ASP is well-suited to encode
chemical domain knowledge (e.g., possible number of bonds for carbon) and extra information about the
sample (e.g., that it has an OH group), so that each answer set encodes a valid molecular graph.

Unfortunately, this does not work: a direct ASP encoding yields exponentially many answer sets
for each molecular graph due to the large number of symmetries (automorphisms) in such graphs. For
example, C6H12O admits 211 distinct molecule structures but leads to 111,870 answer sets. Removing
redundant solutions and limiting the search to unique representations are common techniques used in the
ASP community where they have motivated research on symmetry breaking. Related approaches work
by adding additional rules to ASP [1, 4, 9], by rewriting the ground program before solving [5, 3, 2],
or by introducing dedicated solvers [7]. However, our experiments with some of these approaches still
produced 10–10,000 times more answer sets than molecules even in simple cases.

In this extended abstract, we summarize our new approach that prevents symmetries in graph rep-
resentations already during grounding [8]. This technique forms the basis of our ASP-driven proto-
type implementation for enumerating molecular structures using partial chemical information. Our ASP
source code, evaluation helpers, and data sets are available online at https://github.com/knowsys/
eval-2024-asp-molecules. The sources of our prototype application are at https://gitlab.com/
nkuechen/genmol/.

http://dx.doi.org/10.4204/EPTCS.416.25
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://github.com/knowsys/eval-2024-asp-molecules
https://github.com/knowsys/eval-2024-asp-molecules
https://gitlab.com/nkuechen/genmol/
https://gitlab.com/nkuechen/genmol/

N. Küchenmeister, A. Ivliev & M. Krötzsch 289

Figure 1: User interface of GENMOL

2 Analysis of Mass Spectra with Genmol

Many mass spectrometers break up samples into smaller fragments and measure their relative abundance.
The resulting mass spectrum forms a characteristic pattern, enabling inferences about the underlying
sample. High-resolution spectra may contain information such as “the molecule has six carbon atoms”
or “there is an OH group”, but cannot reveal the samples’s full molecular structure. In chemical analysis,
we are looking for molecular structures that are consistent with the measured mass spectrum. To address
this task, we have developed GENMOL, a prototype application for enumerating molecular structures
for a given composition of fragments. It is available as a command-line tool and as a progressive web
application (PWA), shown in Fig. 1. GENMOL is implemented in Rust, with the web front-end using the
Yew framework on top of a JSON-API, whereas the search for molecular structures is implemented in
Answer Set Programming (ASP) and solved using clingo [6]. An online demo of Genmol is available
for review at https://tools.iccl.inf.tu-dresden.de/genmol/.

The screenshot shows the use of GENMOL with a sum formula C6H5ON and two fragments as input.
Specifying detected fragments and restricting bond types helps to reduce the search space. Alternatively,
users can provide a molecular mass or a complete mass spectrum, which will then be associated with
possible chemical formulas using, e.g., information about the abundance of isotopes. The core task of
GENMOL then is to find molecules that match the given input constraints. Molecules in this context
are viewed as undirected graphs of atoms, linked by covalent bonds that result from sharing electrons.1

Many chemical elements admit a fixed number of bonds, the so-called valence, according to the number
of electrons available for binding (e.g., carbon has a valence of 4). Bonds may involve several electrons,
leading to single, double, triple bonds, etc. The graph structure of molecules, the assignment of elements,
and the possible types of bonds can lead to a large number of possible molecules for a single chemical
formula, and this combinatorial search task is a natural match for ASP.

1This graph does not always determine the spacial configuration of molecules, which cannot be determined by mass spec-
trometry alone, yet it suffices for many applications.

https://tools.iccl.inf.tu-dresden.de/genmol/

290 Towards Mass Spectrum Analysis with ASP

3 Canonical Representation of Molecules

Our experiments show that the existing approaches to symmetry breaking outlined in the introduction
do not achieve adequate performance for real-world use cases [8]. Our dedicated encoding therefore
relies on a canonical representation of molecules, which restricts the overall search space. It is based
on SMILES, a widely used serialization format for molecular graphs. SMILES start from an (arbitrary)
spanning tree of the molecular graph, serialized in a depth-first order, with subtrees enclosed in paren-
theses. Edges not covered by the spanning tree are indicated by pairs of numeric cycle markers.

The ASP implementation can then be summarized as follows: (1) guess the spanning tree, defined
by the element of each node, the parent-relation between nodes, and the bond type of the parent edge of
each node, (2) guess the cycle markers to complete the molecule, (3) eliminate non-canonical solutions.

Canonical Molecular Trees We first consider the acyclic case. We compare tree nodes by considering
the (1) maximum depth and number of vertices of its subtree, (2) number of children, and (3) bond type
of its parent edge. This ordering extends to trees by comparing their roots and recursively descending on
ties. The minimal tree according to this ordering results in a unique representation.

Canonical Molecular Graphs We reduce the general case to the acyclic case by introducing edges to
fresh nodes for each cycle marker. Since we cannot compare every such representation in practice, we
implement a heuristic, which disallows shortening cycle edges. Intuitively, such cycles occur if another
assignment of cycle markers would lead to a deeper tree. The ASP implementation detects shortening
cycle edges by a pattern-matching approach.

References
[1] Michael Codish, Alice Miller, Patrick Prosser & Peter J. Stuckey (2019): Constraints for symmetry breaking

in graph representation. Constraints 24(1), pp. 1–24, doi:10.1007/s10601-018-9294-5.

[2] Jo Devriendt & Bart Bogaerts (2016): BreakID: Static Symmetry Breaking for ASP (System Description).
CoRR abs/1608.08447. Available at http://arxiv.org/abs/1608.08447.

[3] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe & Marc Denecker (2016): Improved Static Symmetry
Breaking for SAT. In: Proc. 19th Int. Conf. Theory and Applications of Satisfiability Testing (SAT’16), LNCS
9710, Springer, pp. 104–122, doi:10.1007/978-3-319-40970-2_8.

[4] Jo Devriendt, Bart Bogaerts, Maurice Bruynooghe & Marc Denecker (2016): On local domain symmetry for
model expansion. Theory Pract. Log. Program. 16(5-6), pp. 636–652, doi:10.1017/S1471068416000508.

[5] Christian Drescher, Oana Tifrea & Toby Walsh (2011): Symmetry-breaking answer set solving. AI Communi-
cations 24(2), pp. 177–194, doi:10.3233/AIC-2011-0495.

[6] Martin Gebser, Benjamin Kaufmann, André Neumann & Torsten Schaub (2007): Conflict-Driven Answer Set
Solving. In: Proc. 20th Int. Joint Conf. on AI (IJCAI’07), p. 386, doi:10.1016/j.artint.2012.04.001.

[7] Tarek Khaled & Belaid Benhamou (2018): Symmetry breaking in a new stable model search method. In:
LPAR-22 Workshop and Short Paper Proceedings, Kalpa Publications in Computing 9, EasyChair, pp. 58–74,
doi:10.29007/1l5r.

[8] Nils Küchenmeister, Alex Ivliev & Markus Krötzsch (2024): Towards Mass Spectrum Analysis with ASP. In:
Proc. Int. Conf. on Logic Programming and Nonmonotonic Reasoning (LPNMR’24), Springer. To appear.

[9] Alice Tarzariol, Martin Gebser, Konstantin Schekotihin & Mark Law (2023): Learning to Break Symmetries
for Efficient Optimization in Answer Set Programming. In: Proc. 35th AAAI Conf. on Artificial Intelligence
(AAAI’23), AAAI Press, pp. 6541–6549, doi:10.1609/aaai.v37i5.25804.

https://doi.org/10.1007/s10601-018-9294-5
http://arxiv.org/abs/1608.08447
https://doi.org/10.1007/978-3-319-40970-2_8
https://doi.org/10.1017/S1471068416000508
https://doi.org/10.3233/AIC-2011-0495
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.29007/1l5r
https://doi.org/10.1609/aaai.v37i5.25804

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 291–294, doi:10.4204/EPTCS.416.26

© E. Mastria, D. Pagliaro, et al.
This work is licensed under the
Creative Commons Attribution License.

Monitoring and Scheduling of Semiconductor Failure
Analysis Labs

Elena Mastria
University of Calabria, Italy

elena.mastria@unical.it

Domenico Pagliaro
KAI GmbH, Austria

University of Klagenfurt, Austria

domenico.pagliaro@k-ai.at

Francesco Calimeri
University of Calabria, Italy

DLVSystem Srl, Italy

francesco.calimeri@unical.it

Simona Perri
University of Calabria, Italy

simona.perri@unical.it

Martin Pleschberger
KAI GmbH

martin.pleschberger@k-ai.at

Konstantin Schekotihin
University of Klagenfurt, Austria

konstantin.schekotihin@aau.at

Identifying and locating non-conformities, such as physical failures causing electrical malfunction-
ing of a device, in modern semiconductor devices is a challenging task. Typically, highly qualified
employees in a failure analysis (FA) lab use sophisticated and expensive tools like scanning electron
microscopes to identify and locate such non-conformities. Given the increasing complexity of inves-
tigated devices and very limited resources, labs may struggle to deliver analysis results in time. This
paper suggests an approach to optimize the usage of FA lab resources by adaptive scheduling and
monitoring. In particular, we combine constraints programming for the computation of a schedule
with stream reasoning to monitor the lab’s conditions and maintain the schedule depending on the
situation. Evaluation results indicate that our system can significantly improve the tardiness of a
real-world FA lab, and all its computational tasks can be finished in an average time of 3.6 seconds,
with a maximum of 15.2 seconds, which is acceptable for the lab’s workflows.

1 Background and Proposal

Failure Analysis (FA) of semiconductor devices is an important activity aiming at the identification of
non-conformities during various stages of the device’s lifecycle. For instance, an FA lab might provide
qualifications for new designs, execute tests for quality management tasks, or identify failures in mal-
functioning devices returned by customers. Daily, FA labs process a large number of jobs and, given their
complexity, often face issues with delivering all analysis results on time. To minimize the likelihood of
violating deadlines, a lab must optimally utilize all available resources, such as equipment and person-
nel. At the moment, First-In-First-Out (FIFO) in combination with job prioritization is the most widely
used strategy for assigning FA resources. Although FIFO can easily be implemented in a lab, its long-
term performance is unsatisfactory, since it handles poorly situations when jobs have different priorities
or some of the resources have limited availability. To solve this issue, researchers suggested various
methods for modeling and solving the scheduling problem for different types of labs, such as medical or
industrial ones. In the literature, researchers addressed different aspects of laboratory scheduling reflect-
ing the complex and dynamic nature of the environment. The papers present scheduling models usually
derived from two classic problems: job-shop scheduling (JSS), e.g., [7, 5], or resource-constrained
project scheduling (RCPS), e.g., [4, 3]. In addition to modeling aspects, designers of these approaches
investigated efficient solving methods able to compute high-quality schedules within a given time bud-
get, thus, avoiding delays while interacting with lab employees over graphical interfaces. For instance,
[4] suggest engineers precisely plan their daily tasks and provide updates to the schedule in case of any

http://dx.doi.org/10.4204/EPTCS.416.26
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

292 Monitoring and Scheduling of Semiconductor Failure Analysis Labs

Historical/Current
data

Events

Database

Lab Sensors

Lab Software

External systems

Instance
Pre-processing

Schedule

SchedulerReschedule

Stream
reasoner

Figure 1: General architecture of the system.

unforeseen events. High-performance scheduling algorithms of the system ensure the responsiveness of
a scheduling system during this interaction.

The main drawback of existing solutions is that they focus solely on the scheduling aspect of the
problem and require users to monitor the lab’s dynamic environment characterized by a large number of
stochastic events, such as equipment breakdowns, personnel emergencies, or unexpected task delays. All
these events must be timely and correctly communicated to the scheduling system to ensure its correct
operation. However, manual maintenance of the work schedule by lab engineers is time-consuming and
might be a source of erroneous data causing incorrect scheduling results. To overcome these issues, we
propose a novel approach that aims to avoid the aforementioned issues by automatic monitoring, repair,
and (re)scheduling of lab tasks. Our approach relies on two components: a stream reasoner based on
DP-sr [2] and a scheduler using the constraints programming approach of [5].

DP-sr supports an input language that properly extends Answer Set Programming (ASP) with ad-hoc
means for dealing with Stream Reasoning (SR) scenarios, yet maintaining the highly declarative nature
and ease of use that are signature features of ASP. Along with typical ASP features (e.g., aggregates,
disjunction, strong/weak constraints, unstratified negation), specific constructs can appear in DP-sr pro-
grams that are supposed to be evaluated over a stream of events. The scheduler is implemented using
IBM ILOG Cplex Optimization Studio.1 This constraints programming framework is widely used in the
scheduling of production processes in the semiconductor industry. The framework provides a versatile
knowledge representation language with specific constraints designed for efficient encoding of schedul-
ing problems and a powerful solver able to efficiently find optimal solutions for a given instance.

Intuitively, in our solution the stream reasoner monitors the lab’s events to ensure that the current
situation corresponds to the existing schedule. Whenever violations are detected the reasoner tries to
automatically repair the schedule or, otherwise, notifies the scheduler about the violation. Given the
current situation in a lab, the scheduler computes an assignment of tasks to engineers and machines
optimizing the selected measure, such as tardiness or makespan. The former is often preferred since it
corresponds to the popular key performance indicator of an FA lab. We evaluated the system on simulated
re-scheduling scenarios derived from logs of real-world FA labs. Obtained results show that our method
averages 6.8 seconds for each reasoning cycle, ranging from 1 to 15 seconds, including monitoring (0.8-
3.3 seconds) and scheduling stages (2.1-13.4 seconds). This is significantly faster than the standard tasks
in FA Lab, which usually take over 20 minutes on average. [8].

2 Problem and Data

Scheduling refers to the process of assigning and managing the execution of tasks, given a set of re-
sources. Following [5], we model the problem as a variant of the JSS problem with the following ex-

1https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer

E. Mastria, D. Pagliaro, et al. 293

tensions: multi-resource - more than one resource type, e.g., engineers or machines [6], and flexible -
there are multiple instances of every resource. [1]. The resulting JSS variant is an NP-hard optimiza-
tion problem, where the aim is to find an optimal allocation of resources to tasks and time points, such
that: (i) each resource instance is assigned to only one task at a time; (ii) every task gets all required
resources; (iii) execution of tasks is non-preemptive; (iv) no tasks of a job are executed in parallel; and
(v) tasks must be scheduled w.r.t. their order. Two of the possible objective functions that can be im-
plemented when evaluating the effectiveness of a scheduling system are tardiness that sums up all job
delays, given their deadlines, and makespan that measures the total time required to complete the jobs.
In this work, we encode the scheduling problem using constraints programming and employ tardiness
as the optimization criterion since FA labs often use the fulfillment of deadlines as a key performance
indicator. Nevertheless, we also report the makespan in the evaluation results.

Our main data source consists of an anonymized slice of the main data source of an FA database
comprising 1646 jobs over 3 years, from January 2020 to December 2022.2 The dataset provides all the
information needed by the scheduler to compute the optimal task assignments and make recommenda-
tions in a simulated environment.

3 General Architecture

In the following, we provide an overview of the system; the general architecture is depicted in Figure 1.
At first, the initial dataset is pre-processed, and fed to the scheduler for the computation of a new sched-
ule. Along with the schedule, the system produces plots of the scheduled tasks and information about the
overall tardiness. The monitoring component is set up as soon as the scheduled execution starts. More in
detail, the stream reasoner DP-sr is fed with the DP-sr program, corresponding to the monitoring task to
perform over the FA events, along with the background knowledge, representing the available resources,
task-resources compatibility, and job deadlines. From now on, DP-sr will be waiting for schedule infor-
mation and/or timestamped events coming from the database, and an interaction loop starts between the
scheduler and the monitor managed by the Python application. At the first iteration, DP-sr is provided
with the schedule previously computed along with possible events occurring at the beginning; subse-
quently, iterations are executed at a predefined frequency. At each iteration, all events that occurred after
the previous iteration are fed to DP-sr, that might also be fed a new schedule, if a reschedule was needed.
Each time DP-sr receives the data, it performs its computation across all timestamps featured by the
events of the current iteration, providing an answer for all included timestamps. The DP-sr answer is
analyzed and classified into one the following categories. Propose of new resource(s) in case of conflicts.
When there is no need of a full reschedule, DP-sr suggests a resource replacement based on the conflicts
that could happen if one or more tasks are delayed. The proposal of a new machine and/or a new worker
is considered before changing the whole schedule. The new resources are inserted into the current sched-
ule and an acknowledgment is sent back to DP-sr, such that the scheduled events are updated. Plots are
as well generated highlighting the changes in the schedule. Irreparable conflicts. When conflicts are not
solvable, DP-sr identifies it and notifies the need of a complete reschedule. Therefore, a reschedule takes
place and a new schedule is computed and sent back to DP-sr, so to update the knowledge base. The
system evaluates the new schedule defining a new tardiness and new plots are generated. No conflicts
found. In this case, there are no errors or conflicts and the system keeps running with no exceptions.

2https://zenodo.org/records/10069426

294 Monitoring and Scheduling of Semiconductor Failure Analysis Labs

References
[1] P. Brucker & R. Schlie (1990): Job-shop scheduling with multi-purpose machines. Computing 45(4), pp.

369–375, doi:10.1007/BF02238804. Available at http://link.springer.com/10.1007/BF02238804.
[2] Francesco Calimeri, Elena Mastria & Simona Perri (2024): DP-SR: a purely Declarative Programming frame-

work for Stream Reasoning. Available at https://sites.google.com/unical.it/dp-sr.
[3] Mariana M. Cunha, Joaquim L. Viegas, Miguel S.E. Martins, Tiago Coito, Andrea Costigliola, João

Figueiredo, João M.C. Sousa & Susana M. Vieira (2019): Dual Resource Constrained Scheduling for Quality
Control Laboratories. IFAC-PapersOnLine 52(13), pp. 1421–1426, doi:10.1016/j.ifacol.2019.11.398. Avail-
able at https://www.sciencedirect.com/science/article/pii/S2405896319313795. 9th IFAC
Conference on Manufacturing Modelling, Management and Control MIM 2019.

[4] Philipp Danzinger, Tobias Geibinger, David Janneau, Florian Mischek, Nysret Musliu & Christian Poschalko
(2023): A System for Automated Industrial Test Laboratory Scheduling. ACM Trans. Intell. Syst. Technol.
14(1), doi:10.1145/3546871.

[5] Giulia Francescutto, Konstantin Schekotihin & Mohammed M. S. El-Kholany (2021): Solving a Multi-
resource Partial-Ordering Flexible Variant of the Job-Shop Scheduling Problem with Hybrid ASP. In Wolfgang
Faber, Gerhard Friedrich, Martin Gebser & Michael Morak, editors: Logics in Artificial Intelligence - 17th
European Conference, JELIA 2021, Virtual Event, May 17-20, 2021, Proceedings, Lecture Notes in Computer
Science 12678, Springer, pp. 313–328, doi:10.1007/978-3-030-75775-5_21.

[6] V. B. Gargeya & R. H. Deane (1996): Scheduling research in multiple resource constrained job
shops: a review and critique. International Journal of Production Research 34(8), pp. 2077–2097,
doi:10.1080/00207549608905015.

[7] Takeshi D. Itoh, Takaaki Horinouchi, Hiroki Uchida, Koichi Takahashi & Haruka Ozaki (2021): Optimal
Scheduling for Laboratory Automation of Life Science Experiments with Time Constraints. SLAS Technol-
ogy 26(6), pp. 650–659, doi:10.1177/24726303211021790. Available at https://www.sciencedirect.
com/science/article/pii/S2472630322011359. Special Collection: Assay Guidance Manual for Drug
Discovery: Technologies that Matter.

[8] Domenico Pagliaro, Martin Pleschberger, Olivia Pfeiler, Thomas Freislich & Konstantin Schekotihin (2023):
Working Time Prediction and Workflow Mining at Failure Analysis. In: ISTFA, Phoenix, Arizona, USA,
pp. 121–130, doi:10.31399/asm.cp.istfa2023p0121. Available at https://dl.asminternational.org/
istfa/proceedings/ISTFA2023/84741/121/28574.

https://doi.org/10.1007/BF02238804
http://link.springer.com/10.1007/BF02238804
https://sites.google.com/unical.it/dp-sr
https://doi.org/10.1016/j.ifacol.2019.11.398
https://www.sciencedirect.com/science/article/pii/S2405896319313795
https://doi.org/10.1145/3546871
https://doi.org/10.1007/978-3-030-75775-5_21
https://doi.org/10.1080/00207549608905015
https://doi.org/10.1177/24726303211021790
https://www.sciencedirect.com/science/article/pii/S2472630322011359
https://www.sciencedirect.com/science/article/pii/S2472630322011359
https://doi.org/10.31399/asm.cp.istfa2023p0121
https://dl.asminternational.org/istfa/proceedings/ISTFA2023/84741/121/28574
https://dl.asminternational.org/istfa/proceedings/ISTFA2023/84741/121/28574

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 295–297, doi:10.4204/EPTCS.416.27

© Angilica et al.
This work is licensed under the
Creative Commons Attribution License.

Declarative AI design in Unity
using Answer Set Programming (Extended Abstract)*

Denise Angilica† Giovambattista Ianni† Francesco Pacenza† Jessica Zangari†

Declarative methods such as Answer Set Programming show potential in cutting down development
costs in commercial videogames and real-time applications in general. Many shortcomings, how-
ever, prevent their adoption, such as performance and integration gaps. In this work we illustrate
ThinkEngine, a framework in which a tight integration of declarative methods within the typical
game development workflow is made possible in the context of the Unity game engine.

Introduction. The AI research field shares a past and a present of reciprocal exchange with the game
design industry, both whether we are talking of inductive/machine learning-based techniques or knowl-
edge-based, deductive techniques. In this context, machine learning is useful in several respects but
still presents some limitations like the fact that it is not easily “tunable” and configurable at will, and
has non-negligible design-time costs. In order to overcome those limits, one can consider the introduc-
tion of declarative knowledge representation techniques, which offer better explainability potential and,
especially, are elaboration tolerant in the sense of McCarthy [4]. However, known performance and
integration shortcomings limited so far the usage of these techniques in videogames. Among declarative
approaches, Answer Set Programming (ASP) has been experimentally used in videogames to various ex-
tents, such as for declaratively generating level maps [6] and for the definition of artificial players [2] for
the Angry Birds AI competition. ASP makes no exception with respect to the shortcomings that restrict
the utility of declarative approaches. Two obstacles are of concern: performance in real-time contexts
and integration, i.e., ease of wiring with other standard parts of the game logic.

ThinkEngine is an asset working for the popular Unity game engine, aiming at narrowing the above
gaps. Our tool enables the possibility of introducing ASP-based reasoning modules within Unity-made
games. The key contributions of ThinkEngine are the following:
-It integrates declarative AI modules in game engines. This requires to overcome several obstacles, as one
has to coordinate the interaction of AI modules in the so called iterative “game loop”. It must be noted
that the game loop, the typical execution paradigm of a videogame run-time, is an exemplary real-life
usage of the sense-think-act cycle commonly deployed in agents and robotic systems [5]. ThinkEngine
introduces a hybrid/deliberative scheme, transparently using auxiliaries threads in order to offload time
consuming reasoning tasks.
-AI modules can be either reactive or deliberative. Multiple competing plans can be generated outside
of the main game loop; plans can be selected according to programmable priorities, and can be aborted,
replaced or restarted on a per action basis.
-An incremental or a general solver of choice can be used for evaluating logic programs. Given it is
expected that reasoning tasks are iteratively repeated in videogames, it is possible to use [3], or a general
ASP solver.

*This work was partially supported by the PNRR MUR project PE0000013-FAIR, Spoke 9 - Green-aware AI – WP9.1 and
by the LAIA laboratory (part of the SILA laboratory network at University of Calabria).

†University of Calabria, name.surname@unical.it

http://dx.doi.org/10.4204/EPTCS.416.27
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

296 Declarative AI design in Unity using ASP

MappingUnity

Knowledge

Sensors

Decision
Appliers

ASP Solver

Brains

THINK

SE
NS
E

ACT

Figure 1: General run-time architecture of the ThinkEngine framework

-It is introduced a proper information passing layer to and from the game loop and the offloaded reason-
ing jobs: this includes also data type mapping facilities and an adaptive computational load control for
those parts of our ThinkEngine working in the main loop. The language of AI modules is not necessar-
ily restricted to ASP, as we provide data type mapping facilities useful to incorporate other declarative
languages (e.g., PDDL). Data mapping do not require manual work: no explicit annotation and coding
is required.
-We used ThinkEngine for developing deliberative strategies in a number of videogames available in an
online showcase. The performance of ThinkEngine has been assessed on run-time frame rate and on
reaction times of artificial players, with reassuring results.

Overview of ThinkEngine. At design-time, Unity allows to work on Game Objects (GOs), whereas
the game logic can be defined by attaching scripted code to specific game events. In this context, one can
use our ThinkEngine by adding, wiring and programming brains containing declarative specifications
written in ASP.

Concerning run-time, ThinkEngine interacts in the game scene at hand according to the architecture
shown in Figure 1. During the game, Unity iteratively updates the game scene in the canonical game
loop: ThinkEngine makes use of some code parts working in the Unity main loop, but it also uses addi-
tional threads for offloading decision tasks. Intuitively, one or more programmable brains (i.e. modules
embedding ASP logic programs) are in charge of decision-making tasks and run in separate ThinkEngine
threads. Brains are connected to the game scene using sensors, actuators and plans. Sensors allow read
access to desired parts of the current game state, whereas actuators and plans allow to make changes to
the game scene itself.

Reactive brains operate immediately on actuators, while planning brains make possible to declar-
atively program more complex, deliberative-like plans. A plan P is a list of actions [a1 . . . ,an] to be
executed in the given sequence. One or more planning brains, each of which capable of generating a
plan, can be associated to a given GO. Plans are associated to a priority value and, once generated, they

Angilica et al. 297

are submitted for execution to a scheduler. A designer can decide how and when to abort a plan and how
and when to trigger re-planning. Re-planning can produce new plans which replace older plan versions,
so to cope with game state changes.

Planning brains are grouped by GO. Each group has its own planning scheduler. A planning sched-
uler PS has a current plan R and manages a queue of available plans Q = [P1, . . . ,Pm], where subscripts
denote priority (lower subscript values denote higher priority). PS periodically checks if R has to be
interrupted and, possibly, substituted with a different plan in Q.

Performance. We tested ThinkEngine in several classic games like Space Invaders, Pacman and Frog-
ger, in which we added an automated player whose artificial intelligence is managed via both planning
brains and reactive brains. Concerning performance, we considered the following measures: i) the frame
rate, the most common metric in the videogame field, representing the number of screen updates per
second that can be achieved given the computational burden of the game implementation at hand; ii) the
required number of frames to achieve a complete sensors update cycle; this depends on the number of
sensors in the scene; iii) the required time to compute a new plan; this affects the delay between the
event triggering the generation of a plan and the execution of the first action of the plan. Frame rate
was not affected by the introduction of the ThinkEngine. Concerning the sensor update cycle, the higher
the number of sensors in the scene the more frames the update cycle coroutine is spread on, resulting in
some reasonable delay of the starting of the reasoning task. As for the required time to compute a new
plan, it is clear that plan size should be kept under a certain limit. In many scenarios, the usage of an
incremental solver drastically reduces evaluation times.

Final remarks. To the best of our knowledge, our contribution is the first attempt at introducing
declarative methods in the general setting of commercial game engines. As a distinctive feature, the
ThinkEngine proposes a hybrid architecture in which procedural and declarative parts coexists, and where
integration and computational offload issues are explicitly addressed. In future work we aim to improve
the integration level of ThinkEngine since using declarative paradigms like ASP can be not so natural
for game developers. Concerning the real-time performance problem, improvement has been gained by
adding an incremental ASP solver, while the sensor update cycle has been optimized drastically lower-
ing the number of frames required to perform the update [1] . Our ThinkEngine is publicly available
alongside a games showcase.1.

References
[1] D. Angilica, G.M.D. Giorgio & G. Ianni (2023): On the impact of sensors update in declarative AI for

videogames. In: ASPOCP 2023, CEUR Workshop Proceedings 3437, CEUR-WS.org.
[2] F. Calimeri et al. (2016): Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge

Bases. IEEE TCIAIG 8(2), pp. 128–139, doi:10.1109/TCIAIG.2015.2509600.
[3] G. Ianni et al. (2020): Incremental maintenance of overgrounded logic programs with tailored simplifications.

Theory Pract. Log. Program., doi:10.1017/S147106842000040X.
[4] J. McCarthy (1999): Elaboration Tolerance. Keynote speech at CommonSense 1998. Available at http:

//www-formal.stanford.edu/jmc/elaboration.html.
[5] R.R. Murphy (2000): Introduction to AI Robotics, chapter 7, pp. 257–292. MIT Press. Chapter 7: The Hybrid

Deliberative/Reactive paradigm.
[6] A.M. Smith & M. Mateas (2011): Answer Set Programming for Procedural Content Generation: A Design

Space Approach. IEEE TCIAIG 3(3), pp. 187–200, doi:10.1109/TCIAIG.2011.2158545.

1https://github.com/DeMaCS-UNICAL/ThinkEngine and https://github.com/DeMaCS-UNICAL/ThinkEngine-Showcase

https://doi.org/10.1109/TCIAIG.2015.2509600
https://doi.org/10.1017/S147106842000040X
http://www-formal.stanford.edu/jmc/elaboration.html
http://www-formal.stanford.edu/jmc/elaboration.html
https://doi.org/10.1109/TCIAIG.2011.2158545
https://github.com/DeMaCS-UNICAL/ThinkEngine
https://github.com/DeMaCS-UNICAL/ThinkEngine-Showcase

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 298–300, doi:10.4204/EPTCS.416.28

© Xiangyu Guo, James Smith, and Ajay Bansal

This work is licensed under the

Creative Commons Attribution License.

stableKanren: Integrating Stable Model Semantics with

miniKanren (Extended Abstract)

Xiangyu Guo James Smith Ajay Bansal

School of Computing and Augmented Intelligence
Arizona State University, Tempe, Arizona

Xiangyu.Guo@asu.edu jsmit106@asu.edu Ajay.Bansal@asu.edu

miniKanren implements the essence of Prolog and allows easy access and modifications of underly-

ing resolution and unification. The resolution stream constructed by miniKanren is static. We realize

that a dynamic resolution stream is needed to support non-monotonic reasoning. So, we extend the

traditional resolution and unification to achieve our goal. We present stableKanren, a miniKanren

extension with normal logic program support under stable model semantics. stableKanren adds mul-

tiple innovative macros to compile a normal logic program into a program with its complement form,

obtain the domain of a variable under different contexts, and generate a new stream during resolution.

1 Overview

miniKanren is a family of languages specially designed for relational programming. The core miniKan-

ren implementation is purely functional and is designed to be easily modified and extended [1]. Unlike

Prolog, miniKanren uses a complete interleaving search strategy on a stream to simulate backtracking.

Unlike Mercury [9], miniKanren uses full unification, which is required to implement goals that take only

fresh logic variables as their arguments. Unlike Curry [6], miniKanren did not use residuation to suspend

execution on non-ground terms. The core implementation was hosted on a functional language, Scheme

[2] and introduces only a few operators to users: == for unification, fresh for existential quantification,

conde for disjunction, and a run interface.

To the best of our knowledge, only a few attempts have been made to add negation to miniKanren.

The constructive negation used by Moiseenko [8] works for stratified programs only. Also, the semantics

of negation is more like a filter, where the solver executes the positive goal inside the negation. It gets

a differential set between the substitutions before and after the negated goal and eventually subtracts the

differential set from the original set. However, none of the functional language-based implementations

supported negation in a non-stratified normal program. By integrating the stable model semantics into

miniKanren, we believe we have given it a more proper or widely accepted negation semantics.

Unlike a bottom-up solver that grounds all variables and propagates the constraint among values,

a top-down solver, such as Prolog and miniKanren, uses resolution and unification to obtain a minimal

model of the program. The advantage of top-down solving is that it produces answers without issues with

blow-ups. Gupta et al. introduce coinductive logic (co-LP) and co-SLD resolution to handle the infinite

terms in logic programs with co-SLD produces the greatest fixed point of a program [5]. Later, Min et al.

evolved co-SLD to co-SLDNF to achieve normal program solving [7]. However, we believe that sticking

with the least fixed point of SLD resolution is closer to stable model semantics, and the transition is

simpler. Therefore, unlike co-SLD and co-SLDNF, our algorithms still produce the least fixed points as

the original SLD resolution and focus on adding stable model semantics under finite Herbrand models.

miniKanren takes advantage of the traits (macros and continuations) of Scheme in its implementa-

tion. They use macros to transform the input program into a continuations-based search stream that works

http://dx.doi.org/10.4204/EPTCS.416.28
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Xiangyu Guo, James Smith, and Ajay Bansal 299

perfectly for monotonic reasoning. The static stream does not change once it is compiled (transformed).

However, for non-monotonic reasoning, as in normal logic programs, the information we obtain during

the run-time will change the outcome of a previous search, such as reverting a result, adjusting a conflict,

or generating different results. Therefore, a dynamic search stream is needed. Our extension, stableKan-

ren [4], generates or modifies the stream (code) on the fly based on the new information received during

the resolution. Hence, we advance macros and continuations further into stable model solving. We use

macros and continuations to form a static search stream and to modify a stream to weave the run-time

information into the streams dynamically.

From the stable model semantics definition, we have the following relationship between the stable

model of Π and the minimal model of the reduct Π
M.

Definition 1.1 (stable model property) Let Π be a propositional program and M be an interpretation.

M is a stable model of Π if M is a minimal model of the reduct Π
M.

Stable model semantics consider a minimal model of the corresponding reduct program to be one of the

program’s stable models. We want our algorithms to simultaneously produce the minimal model and its

corresponding reduct program. The underlying resolution process guarantees the production of a minimal

model as long as the input program can be handled. The reduct created from the interpretation removes

the recursive rules and the negation completely so that the program can be handled using traditional

Prolog to produce the minimal model ([3], Remark 2). Then, the interpretation must be verified to show

that it is the minimal model of the reduct program.

Initially, the resolution had only one role: selecting a goal. Unification has two roles: the first is to

assign a truth value to a goal, and the second is to assign a value to a variable. A goal is proven to be true

iff all of its variables are successfully unified, and a goal is grounded iff all of its variables are unified

with a value. Both resolution and unification require changes to support the recursive rules and negation

introduced by the normal program. We grant more roles to resolution and unification. For resolution, it

has four more roles: distributing negation to the unification level, producing truth value for the recursive

rules, getting the domain of a variable, and continuing execution after getting a partial result. Unification

has to produce the truth value for negated unification.

To prove a rule (statement) with a head H to be true, the resolution tries to prove each sub-goal

individually in the rule’s body. To prove H to be true, we know H is failing somewhere in the rule’s

body among one of the sub-goals. Therefore, we need to distribute negation to the unification level. For

example, consider the logic statement;

H(X ,Y)←∃X ,Y (B1(X ,Y)∧B2(X)∧B3(Y))

We assume that under negation ¬H(X ,Y), the variables X and Y are safe, always with a value x and y.

For this reason, we safely drop the ∃ quantifier and focus on the rule’s body transformation with assigned

values. We obtain the propositional form of the rule as follows;

¬Hx,y ?
← trans f orm(Bx,y

1 ∧Bx
2∧B

y
3)

Each sub-goal in a rule’s body could fail, and when a sub-goal fails, the prior sub-goals must have

succeeded. To capture this property, its transformation should be a disjunction of the negation to each

sub-goal in conjunction with all sub-goals before the current one. Furthermore, we noticed that each

sub-goal works as a checker, and the values are checked by the unification independently inside the sub-

goal could fail. Therefore, the transformation applies to the sub-goal and each variable to distribute the

negation to the unification level.

¬H←¬Bx
1∨ (B

x
1∧¬B

y
1)∨ (B

x
1∧B

y
1∧¬Bx

2)∨ (B
x
1∧B

y
1∧Bx

2∧¬B
y
3))

300 stableKanren: Integrating Stable Model Semantics with miniKanren

stableKanren supports normal logic programs and solves the n-queens problem faster than s(ASP) in

a top-down fashion. We did performance testing on a 2012 MacBook Pro with 2.6GHz Intel Quad-Cores

i7, 8GB memory, and macOS 10.15.7. We set an hour timeout unless the number of queens is less than

or equal to 8. Table 1 shows the testing result time in seconds. The prefix “1” means finding one answer,

and “all” means finding all answers.

Table 1: Time on finding one or all nqueens solutions in stableKanren and s(ASP).

nqueens #solutions 1-s(ASP) 1-stableKanren all-s(ASP) all-stableKanren

1 1 0.15 0 0.17 0

2 0 1.65 0 1.66 0

3 0 9.38 0 9.57 0

4 2 24.20 0 58.81 0

5 10 23.69 0.01 397.31 0.01

6 4 421.88 0.03 2470.24 0.08

7 40 148.27 0.04 13852.54 0.43

8 92 4649.88 0.36 131429.13 4.08

References

[1] Daniel P. Friedman, William E. Byrd & Oleg Kiselyov (2005): The Reasoned Schemer. The MIT Press, MIT

Press, doi:10.7551/mitpress/5801.001.0001.

[2] Daniel P. Friedman & Matthias Felleisen (1996): The Little Schemer (4th Ed.). MIT Press, Cambridge, MA,

USA, doi:10.1016/0898-1221(96)87329-9.

[3] Michael Gelfond & Vladimir Lifschitz (1988): The stable model semantics for logic programming. In:

ICLP/SLP, 88, Cambridge, MA, pp. 1070–1080.

[4] Xiangyu Guo, James Smith & Ajay Bansal (2023): StableKanren: Integrating Stable Model Semantics with

MiniKanren. In: Proceedings of the 25th International Symposium on Principles and Practice of Declara-

tive Programming, PPDP ’23, Association for Computing Machinery, New York, NY, USA, doi:10.1145/

3610612.3610617.

[5] Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon & Ajay Mallya (2007): Coinductive Logic Programming

and Its Applications. In: Proceedings of the 23rd International Conference on Logic Programming, ICLP’07,

Springer-Verlag, Berlin, Heidelberg, pp. 27–44, doi:10.1007/978-3-540-74610-2_4.

[6] Michael Hanus, Herbert Kuchen & Juan Jose Moreno-Navarro (1995): Curry: A truly functional logic lan-

guage. In: Proc. ILPS, 95, pp. 95–107.

[7] Richard Min & Gopal Gupta (2010): Coinductive Logic Programming with Negation. In Danny De Schreye,

editor: Logic-Based Program Synthesis and Transformation, Springer Berlin Heidelberg, pp. 97–112, doi:10.

1007/978-3-642-12592-8_8.

[8] Evgenii Moiseenko (2019): Constructive negation for miniKanren. In: ICFP 2019, The miniKanren and

Relational Programming Workshop.

[9] Zoltan Somogyi, Fergus Henderson & Thomas Conway (1996): The execution algorithm of mercury, an effi-

cient purely declarative logic programming language. The Journal of Logic Programming 29(1), pp. 17–64,

doi:10.1016/S0743-1066(96)00068-4. High-Performance Implementations of Logic Programming Sys-

tems.

https://doi.org/10.7551/mitpress/5801.001.0001
https://doi.org/10.1016/0898-1221(96)87329-9
https://doi.org/10.1145/3610612.3610617
https://doi.org/10.1145/3610612.3610617
https://doi.org/10.1007/978-3-540-74610-2_4
https://doi.org/10.1007/978-3-642-12592-8_8
https://doi.org/10.1007/978-3-642-12592-8_8
https://doi.org/10.1016/S0743-1066(96)00068-4

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 301–305, doi:10.4204/EPTCS.416.29

© Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin

This work is licensed under the

Creative Commons Attribution License.

Alda: Integrating Logic Rules with Everything Else, Seamlessly

(System Demonstration)*

Yanhong A. Liu Scott D. Stoller Yi Tong Bo Lin

Computer Science Department, Stony Brook University, Stony Brook, NY

{liu,stoller,yittong}@cs.stonybrook.edu

Sets and rules have been used for easier programming since the late 1960s. While sets are central to

database programming with SQL and are also supported as built-ins in high-level languages like Python,

logic rules have been supported as libraries or in rule-based languages with limited extensions for other

features. However, rules are central to deductive database and knowledge base programming, and better

support is needed.

This system demonstration highlights the design of a powerful language, Alda [16, 14], that supports

logic rules together with sets, functions, updates, and objects, all as seamlessly integrated built-ins,

including concurrent and distributed processes. The key idea is to allow sets of rules to be defined in

any scope, support predicates in rules as set-valued variables that can be used and updated directly, and

support queries using rules as either explicit or implicit automatic calls to an inference function.

Alda has a formal semantics [15] and is implemented by building on an object-oriented language

(DistAlgo [13, 3] extending Python [18]) and an efficient logic rule system (XSB [19, 20]). It has been

used successfully on benchmarks and problems from a wide variety of application domains—including

those in OpenRuleBench [6], role-based access control (RBAC) [1, 4], and program analysis—with

generally good performance [17]. Our implementation and benchmarks are publicly available [23].

This system demonstration shows how Alda is used for OpenRuleBench benchmarks, ANSI standard

for role-based access control, and program analysis for large Python programs, including with persistence

support for large datasets, all programmed seamlessly without boiler-plate code. For comparisons with

related work on rule languages and benchmarking, see [16, 14, 17].

An example

Figure 1 shows an example program in Alda. It is for a small portion of the ANSI standard for role-based

access control (RBAC) [1, 4]. It shows the uses (with line numbers in parentheses) of

• classes (1-8, 9-21) with inheritance (9, 11), and object creation (22) with setup (2-3, 10-12);

• sets, including relations (3, 12);

• methods, including procedures (5-6, 13-14) and functions (7-8, 18-19, 20-21), and calls (23, 24);

• updates, including initialization (3, 12) and membership changes (6, 14); and

• queries, including set queries (8, 19 after union “+”, 21) and queries using rules (19 before “+”);

where the rules are defined in a rule set (15-17), explained in the next part.

Note that queries using set comprehensions (e.g., on lines 8, 19, 21) can also be expressed by using

rules and inference, even though comprehensions are more widely used. However, only some queries

*This work was supported in part by NSF under grants CCF-1954837, CCF-1414078, and IIS-1447549 and ONR under

grants N00014-21-1-2719, N00014-20-1-2751, and N00014-15-1-2208.

http://dx.doi.org/10.4204/EPTCS.416.29
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

302 Alda: Integrating Logic Rules with Everything Else, Seamlessly (System Demonstration)

1 class CoreRBAC : # class for Core RBAC component /object

2 def setup(): # method to set up the object , with no arguments

3 self .USERS , self .ROLES , self .UR := {},{},{}

4 # set users , roles , user -role pairs to empty sets

5 def AddRole(role): # method to add a role

6 ROLES.add(role) # add the role to ROLES

7 def AssignedUsers (role): # method to return assigned users of a role

8 return {u: u in USERS | (u,role) in UR} # return set of users having the role
...

9 class HierRBAC extends CoreRBAC : # Hierarchical RBAC extending Core RBAC

10 def setup():

11 super(). setup() # call setup of CoreRBAC , to set sets as in there

12 self .RH := {} # set ascendant -descendant role pairs to empty set

13 def AddInheritance (a,d): # to add inherit . of an ascendant by a descendant

14 RH.add((a,d)) # add pair (a,d) to RH

15 rules trans_rs : # rule set defining transitive closure

16 path (x,y) if edge (x,y) # path holds for (x,y) if edge holds for (x,y)

17 path (x,y) if edge (x,z), path (z,y) # ... if edge holds for (x,z) and for (z,y)

18 def transRH (): # to return transitive RH and reflexive role pairs

19 return infer(path , edge =RH , rules=trans_rs) + {(r,r): r in ROLES}

20 def AuthorizedUsers (role): # to return users having a role transitively

21 return {u: u in USERS , r in ROLES | (u,r) in UR and (r,role) in transRH ()}
...

22 h = new(HierRBAC , []) # create HierRBAC object h, with no args to setup

23 h.AddRole (’chair’) # call AddRole of h with role ’chair’
...

24 h. AuthorizedUsers (’chair’) # call AuthorizedUsers of h with role ‘chair’
...

Figure 1: An example program in Alda, for Role-Based Access Control (RBAC). In rules trans rs, the

first rule says there is a path from x to y if there is an edge from x to y, and the second rule says there is a

path from x to y if there is an edge from x to z and there is an edge from z to y. The call to infer queries

and returns the set of pairs for which path holds given that edge holds for exactly the pairs in set RH, by

doing inference using rules in trans rs.

using rules and inference can be expressed by using comprehensions; queries using recursive rules (e.g.,

on lines 16-17) cannot be expressed using comprehensions.

Rules with sets, functions, updates, and objects

In Alda, rules are defined in rule sets, each with a name and optional declarations for the predicates in

the rules.

ruleset ::= rules name (declarations): rule+

rule ::= p(arg1, ..., arga) if p1(arg11, ..., arg1a1
), ..., pk(argk1, ..., argkak

)

In the rule form, p, p1, ..., pk denote predicates, p(arg1, ..., arga) denotes that p holds for its tuple of

arguments, and if denotes that its left-side conclusion holds if its right-side conditions all hold. In a rule

set, predicates not in any conclusion are called base predicates; the other predicates are called derived

predicates.

The key ideas of seamless integration of rules with sets, functions, updates, and objects are:

Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin 303

1. a predicate is a set-valued variable that holds the set of tuples for which the predicate is true;

2. queries using rules are calls to an inference function, infer, that computes desired values of derived

predicates using given values of base predicates;

3. values of base predicates can be updated directly as for other variables, whereas values of derived

predicates can only be updated by infer; and

4. predicates and rule sets can be object attributes as well as global and local names, just as variables

and functions can.

Declarative semantics of rules are ensured by automatically maintaining values of derived predicates

when values of base predicates are updated, by appropriate implicit calls to infer.

For example, in Figure 1, one could use an object field transRH in place of calls to transRH() in

AuthorizedUsers(role), use the following rule set instead of trans rs, and remove transRH().

rules transRH_rs : # no need to call infer explicitly

transRH (x,y) if RH(x,y)

transRH (x,y) if RH(x,z), transRH (z,y)

transRH (x,x) if ROLES(x)

Field transRH is automatically maintained at updates to RH and ROLES by implicit calls to infer.

Higher-order, patterns, distributed programming, and more

Higher-order. Note that predicates in rules as set-valued variables, e.g., edge, and calling infer to take

or return values of set variables, e.g., RH in edge=RH, avoids the need of high-order predicates or other

sophisticated features, e.g., [2], to reuse rules for different predicates in logic languages.

Patterns. Alda also supports tuple patterns for set elements in set queries (as in DistAlgo [13]) and in

queries using rules, e.g., (1,=x,y) in p matches any triple in set p whose first element is 1 and whose

second element equals the value of x, and binds y to the third element if such a triple exists.

Distributed programming. Of course, by building on DistAlgo, Alda also supports distributed pro-

gramming with distributed processes, message passing, and high-level queries of message histories, e.g.,

for distributed RBAC [7, 9], also called trust management [5], in decentralized systems.

Declarations for predicates in rules. Declarations in rules could specify predicate types and scopes,

but are designed more importantly for specifying assumptions about predicates being certain, complete,

closed, or not [10, 11, 12]. This is to give respective desired semantics for rules with unrestricted nega-

tion, quantification, and aggregation.

Python syntax. Note that the examples discussed use an ideal syntax, while the Alda implementation

supports the Python syntax. For example, x := {} is written as x = set() in Python syntax.

Implementation. The Alda implementation compiles rule sets in rules and queries using infer to XSB

rules and queries, and compiles the rest to Python, which calls XSB to do the inference. The current

implementation supports primarily Datalog rules, but also handles unrestricted negation by using XSB’s

computation of the well-founded semantics [24]. More general forms of rules and queries can be com-

piled to rules and queries in XSB or other rule systems using the same approach. In general, any efficient

inference algorithm and implementation method can be used to compute the semantics of rules and infer.

304 Alda: Integrating Logic Rules with Everything Else, Seamlessly (System Demonstration)

Future work. Future work includes (1) support for easy use of different desired semantics, especially

with modular use of rules, similar to knowledge units in DA-logic [11]; and (2) efficient implementation

with complexity guarantees [8, 21, 22] for computing different desired semantics.

References

[1] ANSI INCITS (2004): Role-Based Access Control. ANSI INCITS 359-2004, American National Standards

Institute, International Committee for Information Technology Standards.

[2] Weidong Chen, Michael Kifer & David S. Warren (1993): HiLog: A Foundation for Higher-Order Logic

Programming. Journal of Logic Programming 15(3), pp. 187–230, doi:10.1016/0743-1066(93)90039-J.

[3] (2024): DistAlgo. http://distalgo.cs.stonybrook.edu. Accessed July 8, 2024.

[4] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn & Ramaswamy Chandramouli (2001):

Proposed NIST Standard for Role-Based Access Control. ACM Transactions on Information and Systems

Security 4(3), pp. 224–274, doi:10.1145/501978.501980.

[5] Ninghui Li, John C. Mitchell & William H. Winsborough (2002): Design of a Role-Based Trust-Management

Framework. In: Proceedings of the 2002 IEEE Symposium on Security and Privacy, pp. 114–130, doi:10.

1109/SECPRI.2002.1004366.

[6] Senlin Liang, Paul Fodor, Hui Wan & Michael Kifer (2009): OpenRuleBench: An Analysis of the Perfor-

mance of Rule Engines. In: Proceedings of the 18th International Conference on World Wide Web, ACM

Press, pp. 601–610, doi:10.1145/1526709.1526790.

[7] Yanhong A. Liu (2018): Role-Based Access Control as a Programming Challenge. In: LPOP: Challenges

and Advances in Logic and Practice of Programming, https://arxiv.org/abs/2008.07901, pp. 14–17,

doi:10.48550/arXiv.2008.07901.

[8] Yanhong A. Liu & Scott D. Stoller (2009): From Datalog Rules to Efficient Programs with Time and Space

Guarantees. ACM Transactions on Programming Languages and Systems 31(6), pp. 1–38, doi:10.1145/

1552309.1552311.

[9] Yanhong A. Liu & Scott D. Stoller (2018): Easier Rules and Constraints for Programming. In: LPOP:

Challenges and Advances in Logic and Practice of Programming, https://arxiv.org/abs/2008.07901,

pp. 52–60, doi:10.48550/arXiv.2008.07901.

[10] Yanhong A. Liu & Scott D. Stoller (2020): Founded Semantics and Constraint Semantics of Logic Rules.

Journal of Logic and Computation 30(8), pp. 1609–1638, doi:10.1093/logcom/exaa056. Also http://

arxiv.org/abs/1606.06269.

[11] Yanhong A. Liu & Scott D. Stoller (2021): Knowledge of Uncertain Worlds: Programming with Logical

Constraints. Journal of Logic and Computation 31(1), pp. 193–212, doi:10.1093/logcom/exaa077. Also

https://arxiv.org/abs/1910.10346.

[12] Yanhong A. Liu & Scott D. Stoller (2022): Recursive Rules with Aggregation: A Simple Unified Semantics.

Journal of Logic and Computation 32(8), pp. 1659–1693, doi:10.1093/logcom/exac072. Also http://

arxiv.org/abs/2007.13053.

[13] Yanhong A. Liu, Scott D. Stoller & Bo Lin (2017): From Clarity to Efficiency for Distributed Algorithms.

ACM Transactions on Programming Languages and Systems 39(3), pp. 12:1–12:41, doi:10.1145/2994595.

[14] Yanhong A. Liu, Scott D. Stoller, Yi Tong & Bo Lin (2023): Integrating logic rules with every-

thing else, seamlessly. Theory and Practice of Logic Programming 23(4), pp. 678–695, doi:10.1017/

S1471068423000108.

[15] Yanhong A. Liu, Scott D. Stoller, Yi Tong & Bo Lin (2023): Integrating logic rules with everything

else, seamlessly. Computing Research Repository arXiv:2305.19202 [cs.PL], doi:10.48550/arXiv.2305.

19202.

https://doi.org/10.1016/0743-1066(93)90039-J
http://distalgo.cs.stonybrook.edu
https://doi.org/10.1145/501978.501980
https://doi.org/10.1109/SECPRI.2002.1004366
https://doi.org/10.1109/SECPRI.2002.1004366
https://doi.org/10.1145/1526709.1526790
https://arxiv.org/abs/2008.07901
https://doi.org/10.48550/arXiv.2008.07901
https://doi.org/10.1145/1552309.1552311
https://doi.org/10.1145/1552309.1552311
https://arxiv.org/abs/2008.07901
https://doi.org/10.48550/arXiv.2008.07901
https://doi.org/10.1093/logcom/exaa056
http://arxiv.org/abs/1606.06269
http://arxiv.org/abs/1606.06269
https://doi.org/10.1093/logcom/exaa077
https://arxiv.org/abs/1910.10346
https://doi.org/10.1093/logcom/exac072
http://arxiv.org/abs/2007.13053
http://arxiv.org/abs/2007.13053
https://doi.org/10.1145/2994595
https://doi.org/10.1017/S1471068423000108
https://doi.org/10.1017/S1471068423000108
https://doi.org/10.48550/arXiv.2305.19202
https://doi.org/10.48550/arXiv.2305.19202

Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin 305

[16] Yanhong A. Liu, Scott D. Stoller, Yi Tong, Bo Lin & K. Tuncay Tekle (2022): Programming with Rules and

Everything Else, Seamlessly. Computing Research Repository arXiv:2205.15204 [cs.PL], doi:10.48550/

arXiv.2205.15204.

[17] Yanhong A. Liu, Scott D. Stoller, Yi Tong & K. Tuncay Tekle (2023): Benchmarking for Integrating Logic

Rules with Everything Else. In: Proceedings of the 39th International Conference on Logic Programming

(Technical Communications), Open Publishing Association, pp. 12–26, doi:10.4204/EPTCS.385.3.

[18] Python Software Foundation (2024): Python. http://python.org/.

[19] Terrance Swift & David S Warren (2012): XSB: Extending Prolog with tabled logic programming. Theory

and Practice of Logic Programming 12(1-2), pp. 157–187, doi:10.1017/S1471068411000500.

[20] Theresa Swift, David S. Warren, Konstantinos Sagonas, Juliana Freire, Prasad Rao, Baoqiu Cui, Ernie John-

son, Luis de Castro, Rui F. Marques, Diptikalyan Saha, Steve Dawson & Michael Kifer (2022): The XSB

System Version 5.0,x. http://xsb.sourceforge.net. Latest release May 12, 2022.

[21] K. Tuncay Tekle & Yanhong A. Liu (2010): Precise Complexity Analysis for Efficient Datalog Queries. In:

Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative

Programming, pp. 35–44, doi:10.1145/1836089.1836094.

[22] K. Tuncay Tekle & Yanhong A. Liu (2011): More Efficient Datalog Queries: Subsumptive Tabling Beats

Magic Sets. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data,

pp. 661–672, doi:10.1145/1989323.1989393.

[23] Yi Tong, Bo Lin, Yanhong A. Liu & Scott D. Stoller (2018 (Latest update May, 2024)): Alda. http://

github.com/DistAlgo/alda.

[24] Allen Van Gelder, Kenneth Ross & John S. Schlipf (1991): The Well-Founded Semantics for General Logic

Programs. Journal of the ACM 38(3), pp. 620–650, doi:10.1145/116825.116838.

https://doi.org/10.48550/arXiv.2205.15204
https://doi.org/10.48550/arXiv.2205.15204
https://doi.org/10.4204/EPTCS.385.3
http://python.org/
https://doi.org/10.1017/S1471068411000500
http://xsb.sourceforge.net
https://doi.org/10.1145/1836089.1836094
https://doi.org/10.1145/1989323.1989393
http://github.com/DistAlgo/alda
http://github.com/DistAlgo/alda
https://doi.org/10.1145/116825.116838

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 306–313, doi:10.4204/EPTCS.416.30

© Sopam Dasgupta

This work is licensed under the

Creative Commons Attribution License.

Generating Causally Compliant Counterfactual Explanations

using ASP*

Sopam Dasgupta
Department of Computer Science
The University of Texas at Dallas

Texas, USA

sopam.dasgupta@utdallas.edu

This research is focused on generating achievable counterfactual explanations. Given a negative

outcome computed by a machine learning model or a decision system, the novel CoGS approach

generates (i) a counterfactual solution that represents a positive outcome and (ii) a path that will take

us from the negative outcome to the positive one, where each node in the path represents a change

in an attribute (feature) value. CoGS computes paths that respect the causal constraints among fea-

tures. Thus, the counterfactuals computed by CoGS are realistic. CoGS utilizes rule-based machine

learning algorithms to model causal dependencies between features. The paper discusses the current

status of the research and the preliminary results obtained.

1 Introduction

Predictive models used in automated decision-making processes (job-candidate filtering, loan approvals)

often function as black boxes, making it difficult to understand their internal reasoning for decision-

making. The decisions can have significant consequences, leading individuals to seek satisfactory ex-

planations, especially for an unfavourable (negative) decision. Explaining these decisions presents a

significant challenge. Additionally, users want to understand the changes necessary to flip a negative

decision into a positive one.

Following Wachter et al.’s [15] approach in this research, counterfactuals are employed to explain

a machine learning model’s reasoning behind a prediction. Counterfactuals help answer the question:

“What changes should be made to input attributes or features to flip a negative outcome to a positive one?”

Counterfactuals also serve as a good explanation for a prediction. Wachter et al. [15] use statistical tech-

niques by examining the proximity of points in the N-dimensional feature space to find counterfactuals.

This paper presents the Counterfactual Generation with s(CASP) (CoGS) framework, which generates

counterfactual explanations from rule-based machine learning (RBML) algorithms such as FOLD-SE

[16]. CoGS makes two advances compared to Wachter et al.’s work: (i) It computes counterfactuals

using RBML algorithms and ASP [8] rather than statistical techniques, and (ii) It considers causal depen-

dencies among features when computing these counterfactuals. Another novelty of the CoGS framework

is that it further leverages the FOLD-SE algorithm [16] to automatically discover potential dependencies

between features that a user subsequently approves.

CoGS models various scenarios (or worlds): the current initial state i represents a negative outcome,

and the goal state g represents a positive outcome. A state is represented as a set of feature-value

pairs. CoGS finds a path from the initial state i to the goal state g by performing interventions (or

transitions), where each intervention corresponds to changing a feature value while considering causal

*Authors supported by US NSF Grants IIS 1910131, US DoD, and industry grants.

http://dx.doi.org/10.4204/EPTCS.416.30
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Sopam Dasgupta 307

dependencies among features. These interventions ensure realistic and achievable changes that will

take us from state i to g. CoGS relies on common-sense reasoning, implemented through answer set

programming (ASP) [8], explicitly using the goal-directed s(CASP) ASP system [1]. The problem of

finding these interventions can be viewed as a planning problem [8], except that, unlike the planning

problem, the moves (interventions) that take us from one state to another are not mutually independent.

2 Background

Counterfactual Reasoning: Counterfactual reasoning is critical for explaining decisions in machine

learning, offering insights on achieving desired outcomes by imagining plausible alternate scenarios.

Wachter et al. [15] advocated using counterfactual explanations to explain individual decisions, suggest-

ing what changes could flip a negative outcome to a positive one. However, this approach often ignored

causal dependencies, leading to unrealistic suggestions. For a binary classifier given by f : X → {0,1},

we define a set of counterfactual explanations x̂ for a factual input x ∈ X as CF f (x) = {x̂ ∈ X | f (x) 6=
f (x̂)}. This set includes all inputs x̂ leading to different predictions than the original input x under f .

Causality Considerations: Causality relates to cause-effect relationship among predicates. P is the

cause of Q, if (P ⇒Q) ∧ (¬P⇒¬Q) [13]. We say that Q is causally dependent on P. Causality is crucial

for generating realistic counterfactuals. For example, increasing the credit score to be ‘high’ while still

being under increasing debt obligations is unrealistic due to their causal link. Realistic counterfactuals

must model these dependencies to ensure achievable changes.

ASP, s(CASP) Answer Set Programming (ASP) is a paradigm for knowledge representation and rea-

soning [6, 2, 8]. ASP encodes feature knowledge, decision-making rules and causal rules, enabling the

automatic generation of counterfactual explanations using this symbolic knowledge. s(CASP) is a goal-

directed ASP system that executes answer set programs in a top-down manner without grounding [1].

s(CASP) adopts program completion, turning “if” rules (P ⇒ Q) into “if and only if” rules ((P ⇒ Q) ∧
(¬P ⇒¬Q)) which models causality.

FOLD-SE: FOLD-SE [16], is an efficient rule-based machine learning (RBML) algorithm for classifi-

cation tasks. It generates explainable models and learns causal rules from data. It maintains scalability

and accuracy, making it a reliable component for the CoGS framework, which leverages these rules for

generating counterfactuals.

The Planning Problem: Planning involves finding a sequence of transitions from an initial state to a

goal state while adhering to constraints. In ASP, this problem is encoded in a logic program with rules

defining transitions and constraints restricting the allowed transitions [8]. Solutions are represented as

a series of transitions through intermediate states. Each state is represented as a set of facts or logical

predicates. Solving the planning problem involves searching for a path of transitions that meets the goal

conditions within the constraints. CoGS can be thought of as a framework to find a plan—a series of

interventions that change feature values—that will take us from the initial state to the final goal state.

However, unlike the planning domain, the interventions (moves) are not independent of each other due

to causal dependencies among features.

3 Research Goal

This research aims to develop a framework that can encode feature knowledge, decision-making rules,

and causal rules, enabling the automatic generation of counterfactual explanations using symbolic knowl-

308 Causality Compliant Counterfactuals

Figure 1: Top: Example 1 shows how John goes from being rejected for a loan to having his loan

approved. Here the bank only considers the bank balance for loan approval. John does a direct action to

increase his bank balance to $60000. Bottom: Example 2 shows how John goes from being rejected for

a loan to having his loan approved. Here the bank considers both bank balance as well as credit score

for loan approval. While the bank balance is directly altered by John, altering the credit score requires

John to directly alter his debt obligations first. After clearing his debt, the causal effect of having $0 debt

increases John’s credit score to 620 point. This is the causal action

edge represented by an ASP program. The objective then is to use the ASP program to solve a version

of the Planning Problem where the desired goal state g is our counterfactual state for solving the task at

hand. This research focuses on generating counterfactuals for models that use decision rules (rule-based

models). These rules are provided as explanations to justify decisions made by a governing authority, for

example, a bank rejecting a loan due to a low bank balance or a low credit score. However, this can also

be translated to statistical models by generating a rule-based approximation of these models.

Currently, most counterfactual-based approaches generate explanations without accurately account-

ing for the causal dependencies among features. These methods assume that the suggested changes will

directly lead to a desired outcome, such as turning a negative decision into a positive one. As a result,

these approaches are effective/practical only under two conditions: (1) when the features are indepen-

dent or (2) when causal dependencies between features are irrelevant because only causally independent

features are modified. For instance, consider Example 1 in Figure 1: John’s loan application was rejected

due to a bank balance of ≤ $60000. The counterfactual solution suggests increasing his bank balance

to $60000. This recommendation is straightforward and achievable, as the bank balance can be directly

altered without affecting other features.

However, since most of these counterfactual-based approaches do not (accurately) model the causal

dependencies between the features, changing certain features results in unintended changes to other

features. Take Example 2 in Figure 1: John’s loan application was rejected due to his poor (≤ 599 points)

credit score. The counterfactual solution tells him to increase his credit score. However, the credit

score is causally linked to the current debt obligations and cannot be directly increased. Thus, the

counterfactual solution may ultimately prevent the expected positive outcome from being achieved or

even result in the generated counterfactual requiring a higher cost than initially assumed.

The proposed solution, CoGS, would model the causal dependencies and provide a procedure/path

informing in a step-by-step manner on what changes to make to achieve a counterfactual solution realis-

tically. Example 2 assumes John has his loan application rejected due to his poor credit score. The CoGS

Sopam Dasgupta 309

Features Initial State Action Goal State Time
(ms)

Checking account status ≥ 200 N/A ≥ 200

3236

Credit history no credits taken/all credits
paid back duly

N/A no credits taken/all credits
paid back duly

Property real estate Direct car or other
Duration months 7 N/A 7
Credit amount 500 N/A 500
Job unemployed N/A unemployed
Present Employment
Since

unemployed/unskilled-non-
resident

N/A unemployed/unskilled-non-
resident

Table 1: Transitions to goal states for the German dataset: The value of Property changes from real

estate to car or other.

Features Initial State Action Intermediate Action Goal State Time (ms)

Marital Status never married N/A never married Causal married civ spouse

1126

Capital Gain $6000 N/A N/A N/A > 6849 and ≤ 99999
Education num 7 N/A N/A N/A 7
Relationship unmarried Direct husband N/A husband
Sex male N/A N/A N/A male
Age 28 N/A N/A N/A 28

Table 2: Transitions to goal states for the Adult dataset: The value of Relationship changes from unmar-

ried to husband. This has a causal effect of altering Marital Status to married civ spouse.

solution tells him to clear his debt obligations. This increases John’s credit score, ultimately approving

the loan. We approach this through the lens of the planning problem that provides us with a step-by-step

path of the changes to make until we reach the goal state (counterfactual).

To summarize, the research goal is twofold: 1) Given the Decision Rules D that give a negative

outcome, we capture the causal dependencies C amongst the features using user-defined rules or rules

learnt using RBML algorithms, and 2) Solve the planning problem where the goal state g is defined as a

state that is consistent with the causal rules C and inconsistent with the decision rules D.

4 Preliminary Results

We applied the CoGS methodology to rules generated by the FOLD-SE algorithm (code on GitHub

[7]). Our experiments use the German dataset [9], the Adult dataset [3], and the Car Evaluation dataset

[5]. These are popular datasets in the UCI Machine Learning repository [12]. The German dataset

contains demographic data with labels for credit risk (‘good’ or ‘bad’), with records with the label

‘good’ vastly outnumbering those labelled ‘bad’. The Adult dataset includes demographic information

with labels indicating income (‘=< $50k/year’ or ‘> $50k/year’). The Car Evaluation dataset provides

information on the acceptability of a used car being purchased. We relabelled the Car Evaluation dataset

to ‘acceptable’ and ‘unacceptable’ to generate the counterfactuals.

For the (imbalanced) German dataset, the learned FOLD-SE rules determine a ‘good’ credit rating,

with the undesired outcome being a ‘good’ rating since the aim is to identify criteria making someone

a credit risk (‘bad’ rating). Additionally, causal rules are also learnt using FOLD-SE and verified (for

example, if the feature ‘Job’ has the value ‘unemployed’, then the feature ‘Present employment since’

310 Causality Compliant Counterfactuals

Features Initial State Action Goal State Time (ms)

persons 4 N/A 4

1221
maint low Direct medium
buying medium N/A medium
safety medium N/A medium

Table 3: Transitions to goal states for the Car Evaluation dataset: The value of maint goes from low to

medium.

Dataset # of Features Used # of Counterfactuals

Adult 6 112
Cars 4 78
German 7 240

Table 4: Table showing a Number of Counterfactuals produce by the is counterfactual function given all

possible states.

should have the value ‘unemployed/unskilled-non-resident’). We learn the rules to verify these assump-

tions on cause-effect dependencies.

Path to the Counterfactual: By using these rules that identify individuals with a ‘good’ rating, we

found a path to the counterfactuals, thereby depicting steps to fall from a ‘good’ to a ‘bad’ rating in

Table 1. Similarly, we learn the causal rules and the rules for the undesired outcome for the Adult dataset

(undesired outcome: ‘=< $50k/year’) as shown in Table 2. For the Car Evaluation dataset (undesired

outcome: ‘unacceptable’) shown in Table 3, we only learn the rules for the undesired outcome as there

are no causal dependencies (FOLD-SE did not generate any either). Tables 1, 2 and 3 show a path to

each dataset’s counterfactual goal state for a specific instance. Note that the execution time for finding

the counterfactuals is also reported. While we have only shown specific paths in Tables 1, 2 and 3, our

CoGS methodology can generate all possible paths from an original instance to a counterfactual.

Number of Counterfactual Sets: Note that each path may represent a set of counterfactuals. This is

because numerical features may range over an interval. Thus, CoGS generates 240 sets of counterfactuals

for the German dataset, 112 for the Adult dataset, and 78 for the Car Evaluation dataset (Table 4).

5 Related Work

Various methods for generating counterfactual explanations in machine learning have been proposed.

Wachter et al. [15] aimed to provide transparency in automated decision-making by suggesting changes

individuals could make to achieve desired outcomes. However, they ignored causal dependencies, re-

sulting in unrealistic suggestions. Utsun et al. [14] introduced algorithmic recourse, offering actionable

paths to desired outcomes but assuming feature independence, which is often unrealistic. CoGS rectifies

this by incorporating causal dependencies. Karimi et al. [10] focused on feature immutability and diverse

counterfactuals, ensuring features like gender or age are not altered and maintained model-agnosticism.

However, this method also assumes feature independence, limiting realism. White et al. [17] showed

how counterfactuals can enhance model performance and explanation accuracy. Karimi et al. [11] further

emphasized incorporating causal rules in counterfactual generation for realistic and achievable interven-

tions. However, their method did not use the ‘if and only’ property, which is vital in incorporating the

effects of causal dependence. CoGS rectified this by utilizing Answer Set Programming (ASP), which

does not require grounding as it leverages s(CASP) to generate counterfactual explanations, providing a

Sopam Dasgupta 311

clear path from undesired to desired outcomes.

Bertossi [4] utilizes Answer Set Programming (ASP) to generate causal explanations by identifying

minimal cardinality sets using counterfactuals. These minimal cardinality sets are used to compute scores

to identify causal explanations. Unlike their work, CoGS focuses on defining the causal dependencies

amongst features and incorporating them into the framework. As a result of this CoGS returns a series of

steps to take to go from an original instance to a counterfactual instance which accounts for the causal

impact of making interventions when going from one state to another.

The main contribution of this paper is the Counterfactual Generation with s(CASP) (CoGS) frame-

work for automatically generating counterfactuals while taking causal dependencies into account to flip

a negative outcome to a positive one. CoGS has the ability to find minimal paths by iteratively adjust-

ing the path length. This ensures that explanations are both minimal and causally consistent. CoGS is

flexible, generating counterfactuals irrespective of the underlying rule-based machine learning (RBML)

algorithm. The causal dependencies can be learned from data using any RBML algorithm, such as FOLD-

SE. The goal-directed s(CASP) ASP system plays a crucial role, as it allows us to compute a possible

world in which a query Q fails by finding the world in which the query not Q succeeds. CoGS advances

the state of the art by combining counterfactual reasoning, causal modelling, and ASP-based planning,

offering a robust framework for realistic and actionable counterfactual explanations. Our experimental

results show that counterfactuals can be computed for complex models in a reasonable amount of time.

6 Limitations and Planned Work

One of the limitations of of CoGS is its high computational time, which may lead to scalability issues.

We are currently looking for ways to address this problem by replacing the multiple feature-independent

values of a given feature with a single placeholder value. The plans for expanding on the work of CoGS

include:

• Improving the execution time taken to generate counterfactual solutions as well as paths from the

current outcome to the counterfactual instance.

• Expanding CoGS to generate counterfactuals for statistical machine learning methods: By running

an RBML algorithm on the predictions of the statistical model, a rule-based model approximation

is generated. This approximation can then be used as the decision rules D corresponding to the

statistical model that is required by the CoGS method.

• Improve the performance of machine learning systems: When machine learning models are trained

on imbalanced datasets, the learned model often optimizes its performance on accurately predict-

ing the majority class compared to the minority class. The plan is to generate counterfactual

instances of the majority class, which will help us generate instances that belong to the minor-

ity class. The expectation is that the machine learning model trained on the modified training data

will perform better with respect to both the majority and minority classes versus the original model

trained on the original dataset (imbalanced).

7 Conclusion

To conclude, this research is focused on automatically generating counterfactual solutions. This is ac-

complished by modelling causality and providing a path depicting the series of steps to be taken to

312 Causality Compliant Counterfactuals

achieve the counterfactual solution. This research proposes to do that by modelling the causal relation-

ships that exist between features and the decision rules that led to the undesired negative outcome. Using

these rules, a counterfactual solution is obtained. Finally, a version of the planning problem whose goal

state g is the counterfactual solution, and the initial state i is the original negative outcome is solved.

The generated plan corresponds to the path representing feature changes that take us from i to g. These

rules, as well as the modified planning problem, are modelled in s(CASP), a goal-directed answer set

programming system.

References

[1] Joaquı́n Arias, Manuel Carro, Elmer Salazar, Kyle Marple & Gopal Gupta (2018): Constraint Answer

Set Programming without Grounding. Theory Pract. Log. Program. 18(3-4), pp. 337–354, doi:10.1017/

S1471068418000285.

[2] Chitta Baral (2003): Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge

University Press, doi:10.1017/CBO9780511543357.

[3] Barry Becker & Ronny Kohavi (1996): Adult. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5XW20.

[4] Leopoldo E. Bertossi (2020): An ASP-Based Approach to Counterfactual Explanations for Classifica-

tion. In Vı́ctor Gutiérrez-Basulto, Tomás Kliegr, Ahmet Soylu, Martin Giese & Dumitru Roman, editors:

Rules and Reasoning - 4th International Joint Conference, RuleML+RR 2020, Oslo, Norway, June 29 -
July 1, 2020, Proceedings, Lecture Notes in Computer Science 12173, Springer, pp. 70–81, doi:10.1007/

978-3-030-57977-7_5.

[5] Marko Bohanec (1997): Car Evaluation. UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5JP48.

[6] Gerhard Brewka, Thomas Eiter & Miroslaw Truszczynski (2011): Answer set programming at a glance.

Commun. ACM 54(12), pp. 92–103, doi:10.1145/2043174.2043195.

[7] Sopam Dasgupta (2024): Supplement: CoGS: Causality Constrained Counterfactual Explanations using

Goal-directed ASP. Available at https://github.com/sopam/Supplementary.

[8] M. Gelfond & Y. Kahl (2014): Knowledge representation, reasoning, and the design of intelligent agents:

Answer Set Programming approach. Cambridge Univ. Press, doi:10.1017/CBO9781139342124.

[9] Hans Hofmann (1994): Statlog (German Credit Data). UCI Machine Learning Repository. DOI:

https://doi.org/10.24432/C5NC77.

[10] Amir-Hossein Karimi, Gilles Barthe, Borja Balle & Isabel Valera (2020): Model-Agnostic Counterfactual

Explanations for Consequential Decisions. In Silvia Chiappa & Roberto Calandra, editors: The 23rd In-

ternational Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26-28 August 2020, Online

[Palermo, Sicily, Italy], Proceedings of Machine Learning Research 108, PMLR, pp. 895–905. Available at

http://proceedings.mlr.press/v108/karimi20a.html.

[11] Amir-Hossein Karimi, Bernhard Schölkopf & Isabel Valera (2021): Algorithmic Recourse: from Counterfac-

tual Explanations to Interventions. In: Proc. ACM FAccT, pp. 353–362, doi:10.1145/3442188.3445899.

[12] Kolby Nottingham Markelle Kelly, Rachel Longjohn: UCI Machine Learning repository. Available at

https://archive.ics.uci.edu/.

[13] Judea Pearl (2009): Causal inference in statistics: An overview. Statistics Surveys 3(none), pp. 96 – 146,

doi:10.1214/09-SS057.

[14] Berk Ustun, Alexander Spangher & Yang Liu (2019): Actionable Recourse in Linear Classification. In

danah boyd & Jamie H. Morgenstern, editors: Proceedings of the Conference on Fairness, Accountability,
and Transparency, FAT* 2019, Atlanta, GA, USA, January 29-31, 2019, ACM, pp. 10–19, doi:10.1145/

3287560.3287566.

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/S1471068418000285
https://doi.org/10.1017/CBO9780511543357
https://doi.org/10.1007/978-3-030-57977-7_5
https://doi.org/10.1007/978-3-030-57977-7_5
https://doi.org/10.1145/2043174.2043195
https://github.com/sopam/Supplementary
https://doi.org/10.1017/CBO9781139342124
http://proceedings.mlr.press/v108/karimi20a.html
https://doi.org/10.1145/3442188.3445899
https://archive.ics.uci.edu/
https://doi.org/10.1214/09-SS057
https://doi.org/10.1145/3287560.3287566
https://doi.org/10.1145/3287560.3287566

Sopam Dasgupta 313

[15] Sandra Wachter, Brent D. Mittelstadt & Chris Russell (2017): Counterfactual Explanations without Opening

the Black Box: Automated Decisions and the GDPR. CoRR abs/1711.00399. arXiv:1711.00399.

[16] Huaduo Wang & Gopal Gupta (2024): FOLD-SE: An Efficient Rule-Based Machine Learning Algorithm with

Scalable Explainability. In Martin Gebser & Ilya Sergey, editors: Practical Aspects of Declarative Languages
- 26th International Symposium, PADL 2024, London, UK, January 15-16, 2024, Proceedings, Lecture Notes

in Computer Science 14512, Springer, pp. 37–53, doi:10.1007/978-3-031-52038-9_3.

[17] Adam White & Artur S. d’Avila Garcez (2020): Measurable Counterfactual Local Explanations for Any

Classifier. In Giuseppe De Giacomo, Alejandro Catalá, Bistra Dilkina, Michela Milano, Senén Barro, Alberto

Bugarı́n & Jérôme Lang, editors: ECAI 2020 - 24th European Conference on Artificial Intelligence, 29
August-8 September 2020, Santiago de Compostela, Spain, August 29 - September 8, 2020 - Including

10th Conference on Prestigious Applications of Artificial Intelligence (PAIS 2020), Frontiers in Artificial

Intelligence and Applications 325, IOS Press, pp. 2529–2535, doi:10.3233/FAIA200387.

https://arxiv.org/abs/1711.00399
https://doi.org/10.1007/978-3-031-52038-9_3
https://doi.org/10.3233/FAIA200387

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 314–323, doi:10.4204/EPTCS.416.31

© T. Dreossi
This work is licensed under the
Creative Commons Attribution License.

Bridging Deep Learning and Logic Programming for
Explainability through ILP

Talissa Dreossi
University of Udine

Udine, Italy
talissa.dreossi@uniud.it

My research explores integrating deep learning and logic programming to set the basis for a new
generation of AI systems. By combining neural networks with Inductive Logic Programming (ILP),
the goal is to construct systems that make accurate predictions and generate comprehensible rules
to validate these predictions. Deep learning models process and analyze complex data, while ILP
techniques derive logical rules to prove the network’s conclusions. Explainable AI methods, like
eXplainable Answer Set Programming (XASP), elucidate the reasoning behind these rules and de-
cisions. The focus is on applying ILP frameworks, specifically ILASP and FastLAS, to enhance
explainability in various domains. My test cases span weather prediction, the legal field, and image
recognition. In weather forecasting, the system will predict events and provides explanations using
FastLAS, with plans to integrate recurrent neural networks in the future. In the legal domain, the
research focuses on interpreting vague decisions and assisting legal professionals by encoding Italian
legal articles and learning reasoning patterns from Court of Cassation decisions using ILASP. For
biological laboratories, we will collaborate with a research group to automate spermatozoa morphol-
ogy classification for Bull Breeding Soundness Evaluation using YOLO networks and ILP to explain
classification outcomes. This hybrid approach aims to bridge the gap between the high performance
of deep learning models and the transparency of symbolic reasoning, advancing AI by providing
interpretable and trustworthy applications.

1 Introduction

The integration of deep learning and logic programming could be a promising approach to creating
more interpretable and robust artificial intelligence systems. My research aims to explore and develop a
hybrid framework that leverages the strengths of both paradigms. By combining neural networks with
ILP [37, 7], the goal is to construct systems capable of not only making accurate predictions but also
generating comprehensible rules that validate these predictions. The proposed framework begins with
the application of deep learning models, such as neural networks, to process and analyze complex data.
Once the neural network produces an output, ILP techniques will be employed to derive logical rules that
substantiate the network’s conclusions. We also try to apply ILP directly to the data even if often they are
too complex or too wide and this limits the capabilities of ILP systems to learn accurate rules. To further
enhance the interpretability and reliability of the system, explainable AI methods in logic programming
[21], such as eXplainable Answer Set Programming (XASP) [2], are utilized to elucidate the reasoning
behind the derived rules and the decision-making process. I am testing this idea on different fields:
weather forecasting, legal judgements and image recognition.

In weather forecasting, accurate predictions are vital for mitigating severe weather impacts, protect-
ing lives, and supporting agriculture, transportation, and disaster management. While traditional methods
of weather prediction have greatly benefited from neural networks and deep learning techniques, which
offer impressive accuracy, these methods often operate as black boxes, making their predictions hard to

http://dx.doi.org/10.4204/EPTCS.416.31
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

T. Dreossi 315

understand. This lack of explainability can undermine user trust, impede validation by domain experts,
and hinder model refinement. To address these challenges, the research I am pursuing aims to develop
a reliable system capable of predicting weather events while also providing explanations. The idea, that
was accepted in LPNMR [18], is to use FastLAS [30] which is able to generate an optimal subset of
possible solutions. FastLAS can quickly identify the best-fitting hypotheses, so that we are then able to
translate the learned rules in a human readable way, as a meteorologist would do.

Similarly, in the legal domain, AI can address complex issues such as the interpretation of vague
legal decisions. In facts, legal argumentation often involves vagueness which originates from semantic
indeterminacy even when information is available. This branch of my research, which had a recent
publication [12], focuses on that while also trying to construct a tool able to assist judges and lawyers
in giving an explanation of the final judgement. In particular, I am using some articles of Italian law to
test the outcome. In fact, for instance, according to Italian law, street theft ("furto con strappo") can be
classified as either an aggravated form of theft or as robbery ("rapina"), depending on factors such as
the presence of violence. To tackle this ambiguity problem, we employ Answer Set Programming (ASP)
and ILASP [33]. The relevant articles of the Italian legal code are encoded as a set of ASP rules, while
decisions from the Court of Cassation are used to make ILASP learn judges’ reasoning patterns.

Finally, AI can be employed to speed up human activities in biological laboratory. Indeed, morpho-
logical characteristics of bull spermatozoa are typically assessed visually using bright field microscopy
following eosin-nigrosine staining, for the Bull Breeding Soundness Evaluation (BBSE). However, this
process is time-consuming and demands experienced personnel to achieve reliable results. Given the
increasing adoption of genomic selection schemes for young bulls, whose semen is destined for the
artificial insemination industry, there is a growing need for a more standardized technique to analyze
semen quality. This need is particularly pressing for evaluating spermatozoa abnormalities that impact
semen freezing suitability and fertilizing capacity, which are critical due to the widespread use of frozen-
thawed semen. Therefore, I am currently developing an AI system for the automated classification of
microscope-acquired images of spermatozoa (the study is at the beginning but we are going to present a
poster at the European Federation of Animal Science (EEAP) in September). We will employ neural net-
works, specifically YOLO networks, which can learn and extract relevant features from complex visual
data to perform object detection on spermatozoa. This approach will enable us to classify spermatozoa
morphology, identifying normal spermatozoa as well as primary and secondary abnormalities. After this
initial phase, the plan is to integrate ILP to learn how to identify different morphological characteristics,
thereby providing explanations for why specific spermatozoa are classified as abnormal or not.

The contribution is organized as follows: in Section 2 we briefly introduce the concepts of ILP,
focusing on ILASP and FastLAS, and of neural networks, deeply on CNNs, RNN and YOLO networks;
an overview of the existing literature is reported in Section 3; Section 4 shows the goal of my research
and is followed by Section 5 with an view on the current status and results accomplished of the research.

2 Background

In this section I am going to explain the main concept that concern my research interests.

2.1 Answer Set Programming

Answer Set Programming (ASP) is a declarative programming paradigm born for non-monotonic rea-
soning and, thanks to the efficiency of ASP solvers, widely used for modeling and solving difficult
combinatorial problems. An ASP program is composed by:

316 Bridging Logic Programming and Deep Learning for Explainability through ILASP

• atoms, generally writings of the form p(a1, . . . ,an), where p is a predicate symbol and ai are
constant or variable symbols with i ∈ [1,n]. Intuitively, such an atom states that the elements
represented by a1, . . . ,an enjoy the property denoted by p;

• rules r of the form H← A1, . . . ,An,notB1, . . . ,notBm, where H, Ai, and B j are atoms of the form
p(t1, . . . , tn) where p is a predicate symbol, ti are constant or variable symbols, and n≥ 0.

A literal is either an atom A or its default negation notA, i.e., a naf-literal. Rules with empty body
are called facts, while rules without a head (corresponding to the case H = false) are called constraints
or denials. If a rule r has not variable symbols, it is said to be ground. A set of ground atoms S is a stable
model of a program P if it is the unique minimum model of the reduct PS of P. The reduct PS is obtained
from P by removing all rules whose body is not satisfied by the atoms in S, and removing all naf-literals
from the remaining rules [22]. An ASP solver can determine whether a program P has any stable models
and, if so, compute the set AS(P) of all such models. A key property of stable models is that if an atom
A belongs to a stable model S, there must be at least one rule r in the ground version of P whose body is
satisfied by S and whose head is A. This rule r provides an explanation for the truth of A, meaning that
we not only know A is true, but also the reason for its truth even if multiple alternative explanations exist.

The ASP language supports various syntactic extensions. One notable extension introduces con-
trolled forms of non-determinism in programs, such as choice rules and cardinality constraints. Addi-
tionally, built-in atoms of the form E1 op E2 (where E1 and E2 are expressions with numerical con-
stants, variables, and arithmetic operators, while op ∈ {<,≤,=, ̸=,>,≥}) can be used in rule bodies to
model arithmetic comparisons between numerical expressions. During the grounding phase, the vari-
ables in these expressions are replaced by constants, and the expressions are evaluated and replaced by
true/false.

2.2 Inductive Logic Programming

Inductive Logic Programming (ILP) [37] is a subfield of machine learning that focuses on learning logical
rules from examples and background knowledge. The objective is to discover a hypothesis (a set of
logical rules) that explains the given examples within the context of the provided background knowledge
(a set of rules). Various ILP frameworks have been proposed in the literature [32]. My research is focused
on Learning from Answer Sets (LAS), a state-of-the-art ILP framework designed for learning from noisy
examples [32].

LAS [33] is a paradigm for learning answer set programs. It is known that in ASP there can be zero
or many answer sets of a program. For this reason we can talk about brave entailment (|=b) and cautious
entailment (|=a): an atom a is bravely entailed by a program P if and only if at least one answer set P
contains a, while it is cautiously entailed if every answer set contains it. A learning problem in LAS is
called a LAS task. Specifically, a LAS task is a tuple T = ⟨B,SM,E⟩, where B is an ASP program known
as the background knowledge, SM is a set of rules that form the hypothesis space, and E is the set of
examples. To avoid the explicit introduction of a (huge) hypothesis space, it is defined through a mode
bias, which consists of a pair of sets of mode declarations ⟨Mh,Mb⟩. Here, Mh (head mode declarations)
specify which predicates can appear in the head of a rule, and Mb (body mode declarations) specify
which predicates can appear in the body of a rule. A mode declaration is a literal whose arguments are
either var(t) or const(t), where t is a type. Informally, a literal is compatible with a mode declaration
m if it can be constructed by replacing every instance of var(t) in m with a variable of type t and every
const(t) in m with a constant of type t.

Examples in LAS are based on the notion of a partial interpretation. A partial interpretation epi is a
pair of sets of ground atoms ⟨einc,eexc⟩, where einc and eexc are referred to as the inclusions and exclusions

T. Dreossi 317

sets respectively. An interpretation I is said to extend a partial interpretation epi if and only if einc ⊆ I and
eexc∩I = /0. Unlike conventional ILP, the LAS framework allows for context-dependent examples. In real
world setting, data are noisy. Noise can be captured by allowing examples to be weighted with a notion
of penalty. A weighted context-dependent partial interpretation (WCDPI) e is a tuple ⟨eid ,epen,ecd pi⟩,
where eid is an identifier for e, epen is a positive integer, called a penalty, ecd pi is a context-dependent
partial interpretation. A task is called noisy LAS task when examples are WCDPIs. Formally, a Noisy
LAS task is a tuple T noise = ⟨B,M,E⟩ where B is an ASP program, SM is the search space, and E is a
finite set of WCDPIs. A hypothesis H ⊆ SM is an inductive solution of T noise iff ∀e ∈ E, B∪H accepts
e. We denote with T noise the set of all Noisy LAS tasks. If a hypothesis does not accept an example, it
pays the penalty, which contributes to the overall cost of the hypothesis. A scoring function S assigns
a positive real number as score to any ASP program and noisy task T noise. The goal of a noisy LAS
tasks is to find an optimal hypothesis that minimizes the cost over a given hypothesis space and WCDPI
examples. Precisely, a hypothesis H is considered the best answer to a noisy LAS task T noise according
to S if H solves T noise and no other solution H ′ has a better score than H.

FastLAS [30] is a noisy LAS system. It supports user-defined scoring functions, allowing domain-
specific optimisation criteria to be used to bias the search; for example, scoring functions can be used to
bias towards the cheapest, least risky, safest or most secure set of rules. Furthermore, continuous data
types (such as real numbers) are common in machine learning, but many ILP approaches are unable to
deal with such data types (without discretisation). FastLAS supports numeric data types, together with
binary comparisons over these types.

On the other hand, ILASP is also a framework designed to learn answer set programs from examples
and background knowledge. One of its key features is the ability to handle both noise-free and noisy data,
making it robust in real-world applications. It infer new rules forcing positive examples to be extended
by at least one answer set, while negative examples have not to be extended by any answer set. ILASP
uses a Conflict-Driven ILP (CDILP) process [29] and, unlike FastLAS, it is also able to learn recursive
hypotheses, enabling the modeling of complex relationships within the data.

2.3 Artificial Neural Networks

Regarding Artificial Neural Networks (ANNs), there are numerous articles and books in the literature
from which to retrieve information. Therefore, we will cite just the work of Lecun et al. [34] and the
survey of Dong et al. [11]. ANN is a computational model inspired by biological neural networks.
It is composed by interconnected neurons, functioning as processing units, and connections with ad-
justable weights. Through training algorithms, these weights are tuned based on input data, ending in
a discriminating function capable of classifying various inputs. The network’s structure, as its biologi-
cal counterpart, evolves during training and recall phases to optimize classification performance. Every
network is constructed by layers of neurons. While the basic concept of ANNs involves interconnected
layers of neurons that process and learn from data, various specialized architectures have been developed
to address specific types of tasks and data structures more effectively. In this section, we will give a brief
description of Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), and finally You
Only Look Once Network (YOLO).

CNN Convolutional Neural Networks (CNNs) are primarily designed for processing structured grid
data, such as images. They are particularly effective for image recognition, classification, and segmen-
tation tasks. The convolutional layer is the core building block of a CNN. It applies a set of filters (or
kernels) to the input image, which slide across the width and height of the input. This operation produces
a feature map that highlights the presence of certain features in the input, such as edges, textures, or pat-

318 Bridging Logic Programming and Deep Learning for Explainability through ILASP

terns. During this process, the filter performs element-wise multiplication with the pixel values within
the patch.

Recurrent Neural Network Recurrent Neural Networks (RNNs) are particularly well-suited for se-
quence modeling tasks. Unlike traditional feedforward neural networks, which process inputs indepen-
dently, RNNs have an internal memory that allows them to capture temporal dependencies in sequential
data. Their basic architecture consists of three main components: input (at each time step t, the RNN
layer receives an input vector x(t), representing the input at that time step); hidden State (the RNN layer
maintains a hidden state vector h(t) that encapsulates the network’s memory of past inputs up to time step
t); recurrent connection (at each time step, the RNN computes the hidden state h(t) based on the current
input x(t) and the previous hidden state h(t−1)); output (the RNN layer may produce an output y(t) at each
time step).

YOLO You Only Look Once (YOLO) is a state-of-the-art, real-time object detection algorithm in-
troduced in 2015 by Redmon et al. [40]. Unlike traditional object detection methods that use a sliding
window approach or region proposal networks, YOLO treats object detection as a single regression prob-
lem, directly predicting class probabilities and bounding box coordinates from the entire image in one
evaluation. Mathematically, YOLO divides an input image into an S× S grid. Each grid cell is respon-
sible for predicting B bounding boxes and their corresponding confidence scores. Each bounding box
prediction consists of five components: (x,y,w,h,con f idence). x,y,w and h correspond to the coordi-
nates and dimensions of the box, while confidence score [25] indicates how likely the box contains an
object and how accurate the box is.

3 Related Works

In this section, it is explored the state-of-art and the related works in each field relevant to my research.
Concerning weather prediction, traditional methods such as numerical weather prediction models

[26], supplemented by statistical and machine learning models [39, 36, 42, 43, 35], achieve high accu-
racy. However, understanding models like neural networks remains challenging. Explainable AI (XAI)
techniques are being developed to address this issue. For instance, Labe et al. [28] used XAI with
ANNs to explain rising summer temperatures in the USA. The idea of my research is, instead, to use
ILP since it is able to give explainable results. I am specifically interested in ILASP, which have been
already exploited in many study [31] and FastLAS [3, 8]. FastLAS, effective in prioritizing specific rules
over general ones [20], has also been integrated with neural networks [9]. Within methods providing
explainability, Alviano et al. [2] and Cabalar et al. [4] contributed with some methods such as XASP.

In the legal field, Allen [1] pioneered legal document interpretation using symbolic logic. Then,
Kowalski and Sergot [27] classified legal rules, applying logic programming to model British laws. Gol-
shani [23] emphasized argument construction in automated legal reasoning while a more recent work by
Sartor et al. [41] utilized Logical English and top-down ASP solvers for legal encoding.

In image recognition, the YOLO network [40] excels in real-time object detection, such as applied
in autonomous driving [24]. Of particular interest are instead, the study by Chen et al. [6] and the work
by Yang et al. [44] where YOLO is applyed for cell and cancer detection.

Summing up, the usage of ILP in weather prediction provides significant advantages over other
methods. Specifically, ILP allows learning concepts that can be interpretable and adaptable to changing
conditions. Moreover, unlike related works in the legal and image recognition domains, which primarily
focus on statistical and deep learning approaches, our application of ILP introduces a level of trans-

T. Dreossi 319

parency and interpretability that these other techniques lack. For example, in the legal domain, ILP can
model complex rules and account for vagueness, while in image recognition, it complements neural net-
works by providing explainable reasons behind classification results, a feature rarely seen in standard
approaches.

4 Research goals

The main goal of my research is to integrate deep learning with logic programming to create explainable
AI systems. This involves leveraging logic programming, particularly Inductive Logic Programming
(ILP), to model complex systems and achieve results that exhibit both high accuracy and explainability.
When ILP is not able to reach high levels of accuracy, I want to employ deep learning system for the
prediction tasks, due to its superior performance, followed by the application of logic programming to
develop systems that can explain their decisions.

In weather prediction, we are employing a hybrid learning approach, where sub-symbolic models
(such as RNNs) will handle pattern recognition and time-series forecasting, while ILP will apply sym-
bolic reasoning to provide post-hoc explanations for the RNN predictions. This approach falls under
the ’Post-hoc Explainability’ category of the taxonomy [5]. The objective is to develop a system that
can analyze meteorological data and generate logic rules that explain them and then use them to explain
the outcome of the RNN model (which has an higher accuracy). In the future, we do not exclude the
possibility to integrate a third system that will use Natural Language Processing to generate text-based
explanations of weather forecasts, similar to those provided by professional meteorologists.

In the legal field, I am employing ILASP to model and reason about complex legal rules and cases.
This project aims to develop systems that offer transparent and understandable logic behind automated
decisions, thus enhancing trust and transparency in legal AI applications. The final model should assist
legal professionals by basing its outcomes on numerous criminal records and providing explanations for
the reasoning behind the final judgement. In this field, deep learning techniques would likely be used
not to predict outcomes (since laws can be easily translated into logic rules) but to automatically encode
articles of the legal code, given the vast amount of data.

For image recognition of bull’s spermatozoa, my current focus is on using the YOLO (You Only
Look Once) network for object detection. Future work will involve integrating ILP to improve the ex-
plainability of these systems, ensuring that the AI not only identifies objects accurately but also provides
understandable reasons for its classifications.

5 Current status of research

My ongoing research and current work in each area of interest will be outlined in this section, along with
citations of our publications that have shown promising results.

In the domain of weather prediction, we have successfully developed a neural network capable of
predicting the number of lightning strikes in the Friuli Venezia Giulia (IT) region with good accuracy.
Initially, we used CNNs for this task and have now begun exploring recurrent neural networks to further
enhance predictive performance. Our first results [18] indicate that the neural network performs well,
though it requires some modifications to improve its robustness. Additionally, we have created a model
using FastLAS that allows us to explain the predicted rainfall levels for the upcoming hours. Data was
collected for two sets of three months each. Key atmospheric variables recorded include rain, tempera-
ture, humidity, wind speed, and pressure. The training process uses a 10-fold cross-validation approach,

320 Bridging Logic Programming and Deep Learning for Explainability through ILASP

with each fold containing four days of training data and the remaining days used for validation. The
hypothesis space is designed to include rules referencing past conditions to predict future states. This
approach encourages the use of predicates indicating changes over time, while limiting the complexity
of rules to maintain efficiency. In facts, we prioritizes rules that incorporate past information, using a
scoring function to penalize predicates that do not reference multiple timestamps. The results of the
experiments using FastLAS have been compared to other models such as SVM, RandomForest, and De-
cision Tree: although the accuracy of this system is not yet optimal, our initial findings indicate that
FastLAS can be effectively used for this purpose since it can often reach the same accuracy as the other
systems. The application of xASP is shown in Fig. 1.

Figure 1: Full explanation of the answer set and zoomed-in view of a predicate explanation by xASP

In the legal field, we have made significant progress by modeling four articles of the Italian Consti-
tution and more or less a hundred precedent cases. This progress ensures that our system can adapt and
improve its reasoning capabilities letting ILASP learn from historical legal cases. While the application
of ILASP has not been wide so far, it provides a solid basis for further exploration for explainability [10].
Additionally, we are addressing the inherent challenge of vagueness. This involves developing methods
to handle ambiguous and context-dependent terms within legal texts, ensuring that our models can reason
accurately despite these complexities. To address this issue we construct a model that enables the user
to get all the different combination a vague concept can led to, exploiting choices rules. The evaluation
of this model showed that it was successfully able to capture the legal distinctions and provide accurate
classifications of cases. The results were validated against a set of real-world legal cases, demonstrating
the model’s ability to interpret complex legal scenarios and make decisions aligned with legal reasoning.
Moreover, some incoherence and discrepancies in previous cases were discovered thanks to the system.
The ASP model’s output included detailed explanations for each classification, highlighting the rules and
criteria applied. We presented our preliminary results in [16, 19, 12].

Figure 2: YOLO result on bull’s
spermatozoa image

In both weather and legal domain, we are integrating explain-
ability systems, specifically the one developed by Alviano et al.
[2], to ensure that our models provide transparent and understand-
able outputs. Indeed xASP is able to generate directed acyclic
graphs which are particularly useful for representing dependen-
cies and causal relationships within a logic program. This could
be used in the future as a base to generate text that explain the
outcomes.

The image recognition in our research is still at the beginning
stages, but you can see an example of detection our system is
currently able to perform in Fig.2. We have developed a basic

T. Dreossi 321

neural network (using YOLO) that, despite its simplicity, is yielding good results (the accuracy of the
current model reached 68%). Our next step is to make these systems more reliable by integrating ILASP,
as we already explored how it works [17]. This integration aims to enhance the explainability and
robustness of our image recognition systems.

6 Conclusions

This research project investigates the integration of deep learning and logic programming to develop AI
systems that combine accuracy with explainability. By leveraging the strengths of neural networks for
predictive tasks and ILP tools like FastLAS and ILASP for logical reasoning, the study aims to create
interpretable models across various domains.

In weather prediction, the hybrid approach of combining FastLAS with recurrent neural networks
aims to deliver accurate forecasts and clear, human-readable explanations, thus enhancing trust in the
predictions. In the legal domain, ILASP is employed to model and reason about complex legal rules,
providing transparent logic behind decisions and aiding legal professionals by offering understandable
explanations for judgments. Finally, for image recognition, integrating YOLO networks with ILP im-
proves AI interpretability, ensuring accurate object detection with clear reasoning.

Additionally, we are working towards making FastLAS compatible with GPU acceleration [38, 15,
14, 13] to enhance computational efficiency and scalability in AI applications. The pursuing of the
research will hopefully bring advance in the field of AI and explainable AI.
Acknowledgments. This research is partially supported by Interdepartment Project on AI (Strategic Plan UniUD–2022-
25), by NextGenerationEU-PNRR project MaPSART-“Future Artificial Intelligence Research”, and by INdAM-GNCS 2024
project LCXAI: Logica Computazionale per eXplainable Artificial Intelligence.

References
[1] Layman E. Allen (1957): Symbolic Logic: a Razor-Edged Tool For Drafting and Interpreting Legal Docu-

ments. The Yale Law Journal 66(6), pp. 933–879, doi:10.2307/794073.
[2] Mario Alviano, Ly Ly T. Trieu, Tran Cao Son & Marcello Balduccini (2023): Advancements in xASP, an

XAI System for Answer Set Programming. In: Proceedings of the 38th Italian Conference on Computational
Logic, Udine, Italy, June 21-23, 2023, CEUR Workshop Proceedings 3428, CEUR-WS.org. Available at
https://ceur-ws.org/Vol-3428/paper2.pdf.

[3] Kexin Gu Baugh, Nuri Cingillioglu & Alessandra Russo (2023): Neuro-symbolic Rule Learning in Real-
world Classification Tasks. In: Proc. of AAAI-MAKE 2023, CEUR Workshop Proceedings 3433, CEUR-
WS.org, doi:10.48550/arXiv.2303.16674.

[4] Pedro Cabalar, Jorge Fandinno & Michael Fink (2014): Causal graph justifications of logic programs. Theory
and Practice of Logic Programming 14(4-5), pp. 603–618, doi:10.48550/arXiv.1409.7281.

[5] Roberta Calegari, Giovanni Ciatto & Andrea Omicini (2020): On the integration of symbolic and sub-
symbolic techniques for XAI: A survey. Intelligenza Artificiale 14(1), pp. 7–32, doi:10.3233/IA-190036.

[6] Xi Chen, Haoyue Zheng, Haodong Tang & Fan Li (2024): Multi-scale perceptual YOLO for automatic
detection of clue cells and trichomonas in fluorescence microscopic images. Computers in Biology and
Medicine 175, p. 108500, doi:10.1016/j.compbiomed.2024.108500.

[7] Andrew Cropper & Sebastijan Dumančić (2022): Inductive logic programming at 30: a new introduction.
Journal of Artificial Intelligence Research 74, pp. 765–850, doi:10.48550/arXiv.2008.07912.

[8] Daniel Cunnington, Flaviu Cipcigan, Rodrigo Neumann Barros Ferreira & Jonathan Booth (2023): Symbolic
Learning for Material Discovery. arXiv preprint arXiv:2312.11487, doi:10.48550/arXiv.2312.11487.

[9] Daniel Cunnington, Mark Law, Jorge Lobo & Alessandra Russo (2023): FFNSL: Feed-forward neural-
symbolic learner. Machine Learning 112(2), pp. 515–569, doi:10.48550/arXiv.2106.13103.

https://doi.org/10.2307/794073
https://ceur-ws.org/Vol-3428/paper2.pdf
https://doi.org/10.48550/arXiv.2303.16674
https://doi.org/10.48550/arXiv.1409.7281
https://doi.org/10.3233/IA-190036
https://doi.org/10.1016/j.compbiomed.2024.108500
https://doi.org/10.48550/arXiv.2008.07912
https://doi.org/10.48550/arXiv.2312.11487
https://doi.org/10.48550/arXiv.2106.13103

322 Bridging Logic Programming and Deep Learning for Explainability through ILASP

[10] Fabio A D’Asaro, Matteo Spezialetti, Luca Raggioli & Silvia Rossi (2020): Towards an inductive
logic programming approach for explaining black-box preference learning systems. In: Proceedings of
the International Conference on Principles of Knowledge Representation and Reasoning, pp. 855–859,
doi:10.24963/kr.2020/88.

[11] Shi Dong, Ping Wang & Khushnood Abbas (2021): A survey on deep learning and its applications. Computer
Science Review 40, p. 100379, doi:10.1016/j.cosrev.2021.100379.

[12] Agostino Dovier, Talissa Dreossi & Andrea Formisano (2024): XAI-LAW Towards a Logic Programming Tool
for Taking and Explaining Legal Decisions. In: Proceedings of the 39th Italian Conference on Computational
Logic, Rome, Italy, June 26-28, 2024, CEUR Workshop Proceedings 3733, CEUR-WS.org. Available at
https://ceur-ws.org/Vol-3733/short3.pdf.

[13] Agostino Dovier, Andrea Formisano, Gopal Gupta, Manuel V. Hermenegildo, Enrico Pontelli & Ricardo
Rocha (2022): Parallel Logic Programming: A Sequel. Theory Pract. Log. Program. 22(6), pp. 905–973,
doi:10.1017/S1471068422000059.

[14] Agostino Dovier, Andrea Formisano & Enrico Pontelli (2018): Parallel Answer Set Programming. In: Hand-
book of Parallel Constraint Reasoning, Springer, pp. 237–282, doi:10.1007/978-3-319-63516-3_7.

[15] Agostino Dovier, Andrea Formisano, Enrico Pontelli & Flavio Vella (2016): A GPU Implementation of the
ASP Computation. In: Practical Aspects of Declarative Languages - 18th International Symposium, PADL
2016, St. Petersburg, FL, USA, January 18-19, 2016. Proceedings, Lecture Notes in Computer Science 9585,
Springer, pp. 30–47, doi:10.1007/978-3-319-28228-2_3.

[16] Manuele Dozzi, Talissa Dreossi, Federico Costantini, Agostino Dovier & Andrea Formisano (2023): Semi-
automatic knowledge representation and reasoning on vagueness crime concepts. Workshop at Jurix 2023.

[17] Talissa Dreossi (2023): Exploring ILASP Through Logic Puzzles Modelling. In: CEUR Workshop Proceed-
ings, 3428, CEUR-WS. Available at https://ceur-ws.org/Vol-3428/paper14.pdf.

[18] Talissa Dreossi, Agostino Dovier, Andrea Formisano, Mark Law, Agostino Manzato, Alessandra Russo &
Matthew Tait (2024): Towards Explainable Weather Forecasting Through FastLAS. In: Logic Programming
and Nonmonotonic Reasoning - 17th International Conference, LPNMR 2024, Dallas, Texas, USA, October
11-14, 2024, Proceedings, Springer.

[19] Talissa Dreossi, Manuele Dozzi, Luca Baron, Agostino Dovier, Andrea Formisano & Federico Costantini
(2024): Semi-automatic knowledge representation and reasoning on vague crime concepts. In: Book of Ab-
stracts, ESCIM 2024, Krakow, p. 31. Available at http://escim2024.uca.es/wp-content/uploads/
Book_of_abstracts_ESCIM_2024.pdf#page=45.

[20] Arthur Drozdov, Mark Law, Jorge Lobo, Alessandra Russo & Mercion Wilathgamuwage Don (2021): On-
line Symbolic Learning of Policies for Explainable Security. In: 2021 Third IEEE International Con-
ference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), pp. 269–278,
doi:10.1109/TPSISA52974.2021.00030.

[21] Jorge Fandinno & Claudia Schulz (2019): Answering the “why” in answer set programming – A
survey of explanation approaches. Theory and Practice of Logic Programming 19(2), p. 114–203,
doi:10.1017/S1471068418000534.

[22] Michael Gelfond & Vladimir Lifschitz (1988): The stable model semantics for logic programming. In:
ICLP/SLP, 88, Cambridge, MA, pp. 1070–1080, doi:10.2307/2275201.

[23] Forouzan Golshani (1991): Automated construction of legal arguments. Int. J. Intell. Syst. 6(6), pp. 673–685,
doi:10.1002/INT.4550060605.

[24] Lei Huang & Wenzhun Huang (2022): RD-YOLO: An effective and efficient object detector for roadside
perception system. Sensors 22(21), p. 8097, doi:10.3390/s22218097.

[25] Peiyuan Jiang, Daji Ergu, Fangyao Liu, Ying Cai & Bo Ma (2022): A Review of Yolo algorithm developments.
Procedia computer science 199, pp. 1066–1073, doi:10.1016/j.procs.2022.01.135.

[26] Eugenia Kalnay (2002): Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University
Press, doi:10.1017/CBO9780511802270.

https://doi.org/10.24963/kr.2020/88
https://doi.org/10.1016/j.cosrev.2021.100379
https://ceur-ws.org/Vol-3733/short3.pdf
https://doi.org/10.1017/S1471068422000059
https://doi.org/10.1007/978-3-319-63516-3_7
https://doi.org/10.1007/978-3-319-28228-2_3
https://ceur-ws.org/Vol-3428/paper14.pdf
http://escim2024.uca.es/wp-content/uploads/Book_of_abstracts_ESCIM_2024.pdf#page=45
http://escim2024.uca.es/wp-content/uploads/Book_of_abstracts_ESCIM_2024.pdf#page=45
https://doi.org/10.1109/TPSISA52974.2021.00030
https://doi.org/10.1017/S1471068418000534
https://doi.org/10.2307/2275201
https://doi.org/10.1002/INT.4550060605
https://doi.org/10.3390/s22218097
https://doi.org/10.1016/j.procs.2022.01.135
https://doi.org/10.1017/CBO9780511802270

T. Dreossi 323

[27] Robert A. Kowalski & Marek J. Sergot (1985): Computer Representation of the Law. In: Proceedings of
the 9th IJCAI. Los Angeles, CA, USA, August 1985, Morgan Kaufmann, pp. 1269–1270. Available at
http://ijcai.org/Proceedings/85-2/Papers/114.pdf.

[28] Zachary M Labe, Nathaniel Johnson & Thomas L Delworth (2023): Changes in United States summer tem-
peratures revealed by explainable neural networks. Authorea Preprints.

[29] Mark Law (2023): Conflict-driven inductive logic programming. Theory and Practice of Logic Programming
23(2), pp. 387–414, doi:10.48550/arXiv.2101.00058.

[30] Mark Law, Alessandra Russo, Elisa Bertino, Krysia Broda & Jorge Lobo (2020): Fastlas: Scalable inductive
logic programming incorporating domain-specific optimisation criteria. In: Proc. of the AAAI conference
on artificial intelligence, 34, pp. 2877–2885, doi:10.1609/aaai.v34i03.5678.

[31] Mark Law, Alessandra Russo & Krysia Broda (2014): Inductive learning of answer set programs. In: Logics
in Artificial Intelligence, JELIA 2014, Springer, pp. 311–325, doi:10.1007/978-3-319-11558-0_22.

[32] Mark Law, Alessandra Russo & Krysia Broda (2018): Inductive learning of answer set programs from noisy
examples. arXiv preprint arXiv:1808.08441, doi:10.48550/arXiv.1808.08441.

[33] Mark Law, Alessandra Russo & Krysia Broda (2020): The ILASP system for inductive learning of answer set
programs. arXiv preprint arXiv:2005.00904, doi:10.48550/arXiv.2005.00904.

[34] Yann LeCun, Yoshua Bengio & Geoffrey Hinton (2015): Deep learning. nature 521(7553), pp. 436–444,
doi:10.1038/nature14539.

[35] Lizao Li, Robert Carver, Ignacio Lopez-Gomez, Fei Sha & John Anderson (2024): Generative emulation of
weather forecast ensembles with diffusion models. Science Advances 10(13), doi:10.1126/sciadv.adk4489.

[36] Amy McGovern (2017): Using artificial intelligence to improve real-time decision-making for high-impact
weather. Bulletin of the American Meteorological Society 98(10), pp. 2073–2090, doi:10.1175/BAMS-D-
16-0123.1.

[37] Stephen H. Muggleton (1991): Inductive Logic Programming. New Gener. Comput. 8(4), pp. 295–318,
doi:10.1007/BF03037089.

[38] Alessandro Dal Palù, Agostino Dovier, Andrea Formisano & Enrico Pontelli (2015): CUD@SAT: SAT solv-
ing on GPUs. J. Exp. Theor. Artif. Intell. 27(3), pp. 293–316, doi:10.1080/0952813X.2014.954274.

[39] Stephan Rasp, Michael S Pritchard & Pierre Gentine (2018): Deep learning to represent subgrid pro-
cesses in climate models. Proceedings of the national academy of sciences 115(39), pp. 9684–9689,
doi:10.1073/pnas.1810286115.

[40] Joseph Redmon, Santosh Divvala, Ross Girshick & Ali Farhadi (2016): You only look once: Unified, real-
time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 779–788, doi:10.1109/CVPR.2016.91.

[41] Galileo Sartor, Jacinto A. Dávila, Marco Billi, Giuseppe Contissa, Giuseppe Pisano & Robert A. Kowalski
(2022): Integration of Logical English and s(CASP). In: Proceedings of the ICLP 2022 Workshops co-
located with the 38th International Conference on Logic Programming (ICLP) 2022, Haifa, Israel, July 31st
- August 1st, 2022, CEUR Workshop Proceedings 3193, CEUR-WS.org. Available at https://ceur-ws.
org/Vol-3193/paper5GDE.pdf.

[42] Jonathan A Weyn, Dale R Durran & Rich Caruana (2019): Can machines learn to predict weather? Using
deep learning to predict gridded 500-hPa geopotential height from historical weather data. J. of Advances
in Modeling Earth Systems 11(8), pp. 2680–2693, doi:10.1029/2019MS001705.

[43] Jonathan A Weyn, Dale R Durran & Rich Caruana (2020): Improving data-driven global weather prediction
using deep convolutional neural networks on a cubed sphere. J. of Advances in Modeling Earth Systems
12(9), doi:10.1029/2020MS002109.

[44] Yunfeng Yang & Jiaqi Wang (2024): Research on breast cancer pathological image classification method
based on wavelet transform and YOLOv8. Journal of X-Ray Science and Technology, pp. 1–11,
doi:10.3233/XST-230296.

http://ijcai.org/Proceedings/85-2/Papers/114.pdf
https://doi.org/10.48550/arXiv.2101.00058
https://doi.org/10.1609/aaai.v34i03.5678
https://doi.org/10.1007/978-3-319-11558-0_22
https://doi.org/10.48550/arXiv.1808.08441
https://doi.org/10.48550/arXiv.2005.00904
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/sciadv.adk4489
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.1175/BAMS-D-16-0123.1
https://doi.org/10.1007/BF03037089
https://doi.org/10.1080/0952813X.2014.954274
https://doi.org/10.1073/pnas.1810286115
https://doi.org/10.1109/CVPR.2016.91
https://ceur-ws.org/Vol-3193/paper5GDE.pdf
https://ceur-ws.org/Vol-3193/paper5GDE.pdf
https://doi.org/10.1029/2019MS001705
https://doi.org/10.1029/2020MS002109
https://doi.org/10.3233/XST-230296

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 324–331, doi:10.4204/EPTCS.416.32

© S. Hahn
This work is licensed under the
Creative Commons Attribution License.

Computational methods for
Dynamic Answer Set Programming

Susana Hahn

University of Potsdam, Germany

hahnmartinlu@uni-potsdam.de

1 Introduction

In our daily lives, we commonly encounter problems that require reasoning with time. For instance,
planning our day, determining our route to work, or scheduling our tasks. We refer to these problems
as ’dynamic’ because they involve movement and change over time, which sometimes includes metric
information to express deadlines and durations. For example, getting to the office within the next
hour while ensuring that you have had breakfast beforehand. In industrial settings, the complexity of
these problems increases significantly. We see this complexity in scenarios such as train scheduling,
production sequencing, and many other operations. Therefore, modeling these large-scale problems
requires addressing both dynamic aspects and complex combinatorial optimizations, which is a significant
challenge.

Semantic formalisms for expressing dynamic knowledge have been around for many years. Dynamic
logics provide the means to describe ordered events, making them powerful tools for domains that need to
capture actions and changes. These formalisms are typically approached from a theoretical perspective,
and the systems built around them tend to be single-purpose, lacking the flexibility to fully model complex
problems. This creates a need for systems that offer comprehensive modeling capabilities for dynamic
domains, efficient solving techniques, and tools for industrial integration. Answer Set Programming (ASP)
is a prime candidate for solving knowledge-intensive search and optimization problems. This declarative
approach offers a rich modeling language and effective solvers. However, ASP is primarily suited for
static knowledge and lacks built-in solutions for managing dynamic knowledge.

The overall goal of this research project is to extend ASP into a general-purpose technology for
dynamic domains. The first step is to develop the logical foundations for enhancing ASP’s base logic with
concepts from dynamic, temporal, and metric logic. Significant progress in this area has already been
made by previous efforts of our research group, providing a solid foundation for further development.
We need to identify fragments of these languages that offer the necessary modeling power for our target
dynamic problems while maintaining properties that allow for formalization and translation using various
approaches. These approaches include using different structures, such as automata and other transition
systems, and compiling durations into other formalisms, such as linear constraints. Implementing these
approaches will leverage existing technology in the ASP system clingo and its surrounding tools. This
project will employ advanced programming techniques in ASP to create effective systems for modeling
complex dynamic problems. Additionally, we aim to add interactive capabilities to these systems to
benefit both modelers and end users. We anticipate that incorporating these features into ASP will enhance
users’ ability to model dynamic problems and perform various reasoning tasks.

http://dx.doi.org/10.4204/EPTCS.416.32
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

S. Hahn 325

2 Background

Dynamic logics

One of the most commonly used temporal logics [21] is Linear-time Temporal Logic (LTL) [35]. LTL
provides modal operators to express temporal properties such as ◦ (next), □ (always), and ♢ (eventually).
LTL can also be defined in terms of Dynamic Logic (DL) [27], which allows for writing regular expressions
over (infinite) traces and mixing declarative with procedural specifications. These types of specifications
are also targeted by action languages such as GOLOG [40], which is based on situation calculus. Another
interesting approach is Metric Temporal Logic (MTL) [38], which allows measuring time differences
between events. This measurement is done by assigning a time value to states. Metric Logic can be used
in different applications such as scheduling [41], routing [37], and more [31]. Originally, these temporal
formalisms were investigated for infinite traces. However, in the past decade, the case of finite traces · f
has gained interest, as it aligns with a large range of AI applications and constitutes a computationally
more feasible variant. The introduction of LTLf and Linear Dynamic Logic over finite traces (LDLf) [19]
served as a stepping stone to define the syntax and classical semantics under this restriction.

There are several tasks addressed by these formalisms and other action theories. The most commonly
known are satisfiability checking, model checking, and synthesis [47, 48, 20, 49]. Furthermore, other
more elaborate tasks closer to real-world scenarios include reactive control [8], diagnostics [33], planning
[4, 25, 5], and verification.

Many of these tasks are solved by translating complex constructs into simpler ones, for instance, by
reducing MTL into LTL [31]. Another very common strategy for addressing these problems is mapping
them into automata. This automata-theoretic approach involves constructing an automaton that accepts
exactly the models of a dynamic formula. This relationship has been extensively researched in areas
such as satisfiability checking, model checking, planning [4, 25, 5], and synthesis [47, 48, 20, 49]. Non-
deterministic finite automata (NFA) [30] and Deterministic Finite Automata (DFA) have been used for
finite traces, though they are of exponential size relative to the input formula. To tackle this issue, [19]
proposed a translation from LTLf and LDLf to a more elaborate but succinct automaton: Alternating
Automaton on Finite Words (AFA) [18, 48, 19]. These automata, an adaptation of Alternating Büchi
Automata to finite traces, extend NFAs with universal transitions. This translation, however, led to circular
definitions for some dynamic formulas and did not include past operators. These issues were addressed
in [45], where the authors introduced Automata Linear Dynamic Logic over finite traces (ALDL f) and
presented a translation into even more sophisticated automata: Two-Way Alternating Finite Automata
(2AFA) [39, 36]. In addition to alternation, this type of automaton allows multiple head movements:
stationary, left, and right. More evolved translations from metric logic into automata have also been
developed, such as translating MTL into Timed Automata [42].

Answer Set Programming

Answer Set Programming (ASP) [10] is a well-established approach to declarative problem-solving where
problems are encoded as logic programs. The combination of its rich modeling language and highly
effective solving engines makes ASP a very attractive choice. ASP semantics can be formalized using
equilibrium models [44] of the logic of here-and-there (HT) [29]. This logic has also been extended to
here-and-there with constraints (HTc) [17], which introduces difference constraints, a simplified form of
linear constraints, into HT.

The ASP system clingo [24] is known for its high-performing engines. The system provides various

326 Computational methods for Dynamic ASP

tools for extending the language and customizing the solving process. clingo’s theory language capabilities
allow for defining custom syntactic expressions. Additionally, clingo offers two methods for capturing
new functionalities [34]: meta-programming, which uses a reification feature enabling the expression
of new functionalities using ASP, and a sophisticated Python API for manipulating and customizing the
system’s internal workflow. This customization includes techniques such as multi-shot solving, which
allows precise control of the solving process by modularizing the problem. These features have led to
the creation of several hybrid ASP systems. In particular, clingcon [7] and clingo[DL] [32] extend the
language of clingo with linear constraints using the semantics for HTc.

Temporal Logic Programming

In the 1980s, Temporal Logic Programming (TLP) emerged [22, 23, 1, 43]. TLP was revised after the
appearance of ASP, resulting in what we know as Temporal ASP. The idea is to extend the equilibrium
models of HT, to deal with dynamic scenarios. Research began with infinite traces, giving rise to (Linear)
Temporal Here-and-There (THT) [3] and (Linear) Dynamic Logic of Here-and-There (DHT) [9], along
with their non-monotonic counterparts for temporal stable models, namely Temporal Equilibrium Logic
(TEL) [3] and Dynamic Equilibrium Logic (DEL) [14]. The strategy behind these temporal formalisms is
to capture time as sequences of HT-interpretations, resulting in an expressive non-monotonic modal logic.
This approach allowed the definition of Temporal Logic Programs found in [2].

The temporal operators and semantics of the finite version TELf were introduced into the ASP system
clingo enriching its modeling power and yielding the first temporal ASP solver telingo [16]. This system
uses the clingo capabilities for theory extensions as well as multi-shot solving in an incremental manner.
Subsequent work incorporated dynamic operators from DELf [14, 13] by unfolding their definitions into
TELf relying on the introduction of auxiliary atoms (in a Tseitin-style [46]). This technique, however,
is dependent on a fixed trace length, and the type of translation makes the final logic program hard to
interpret. In [15], TEL was further extended with metric temporal operators constrained by intervals over
natural numbers, resulting in Metric Equilibrium Logic (MEL).

3 Contributions and future work

Automata techniques

To this moment, I have pursued different translations of dynamic and temporal logic with finite traces into
automata, and implemented them using ASP. In the current status of the project, I have not yet explored
the non-monotonic side of temporal reasoning with automata. Even though the semantics I have used so
far for the temporal formalisms have been monotonic, I was able to incorporate them in ASP by restricting
the dynamic formulas to integrity constraints where their behavior is classical. With this in mind, at the
moment, one can only use these formulas to filter plans via a translation into automata, which is one of
our primary goals.

The first approach, found in [11], proposes an adaptation of the translation of LDLf to AFA from
[19], which is incorporated into ASP using meta programming in clingo. This implementation is solely
based on ASP, relying on the theory extension to define the language for LDLf formulas, and the reified
output of clingo. This reification corresponds to a linearized representation of the dynamic formula as
facts based on the grammar defined for the theory. Then, using an ASP encoding, these facts are translated
into a declarative representation of the corresponding alternating automaton. In the full version of this
work [12], we explore other existing tools for computing an automaton from a dynamic formula. In order

S. Hahn 327

to employ them, we developed two different translations from LDLf to Monadic Second Order Logic
(MSO). For the implementation, we parsed the formula with clingo’s API and called the state-of-the-art
system MONA [28] to obtain a DFA, which is then transformed into facts. By having a unified declarative
representation to capture the different automata (AFA and DFA), we were able to craft a single encoding
for checking the acceptance of the automata.

Following (soon to be published) work presents a novel translation from LDLf into 2AFA. Leveraging
the transitions without head movement provided by these automata, we were able to remove the recursive
nature of our old translation, thus eliminating the circular issue carried from [19]. Furthermore, the
left head movement allows us to readily refer to time points in the past. These new target automata,
nonetheless, represented a formalization challenge since there is a lack of literature available in contrast to
simpler automata. This translation was implemented as part of the adlingo1 system. Just like the previous
work, the implementation was done using meta programming and theory extensions. Additionally, it
integrates the use of clingraph [26] to visualize the automata and its runs using an ASP encoding.

Linear constraints to encode durations

My latest work has focused on constructing the foundations of Metric Logic Programs (MLP). With
these programs, we plan to abstract the basic modalities and forms needed to model metric problems
in ASP. The semantics of these programs are those of MEL, where, by restricting the syntax, we aim
to simplify the computation. The first approach for this work has been submitted to ICLP24. As in the
automata approach, we are restricting the research to the finite setting for a given (fixed) horizon. This
work defines the basic syntax for a MLP in which all rules are universal, meaning that they must hold in
every step. This contrasts with the approach used for temporal logic programs in [2], where the rules were
separated into initial, dynamic, and final, which facilitates the implementation using incremental solving.
For our approach, the removal of this division simplifies the use of meta-programming techniques to
define the translation, as well as the overall semantics. The use of meta-programming allows us to define
the translations in ASP, making the implementation transparent and modular. A big advantage of this
approach is the clear mapping between the translation and the implementation in ASP. As a consequence,
it simplifies the proves of correctness and completeness of the translation.

In this first exploration, we restricted the rules of metric logic programs to only use the metric next
modality. For instance, with the rule ◦[20..40)school← drive, we express that “If I start driving, I must
be at the school in the next step, which should happen in 20 to 40 minutes”. We suspect that the core of
our target dynamic problems can be modeled with this restricted fragment. In a nutshell, the first part of
this translation represents the state changes and follows the same semantics as in TELf . The second part
accounts for the timed aspect of metric logic. For this part, we explore two approaches: one where the
translation is done to HT, and a second one where the target logic is HTc. As a result, we were able to see
what we expected: a succinct and performant translation of time into linear constraints. We also observed
that our restricted language did allow us to model the transitions and time restrictions, but was not enough
to represent the goal conditions of the problems. These conditions usually require more complex metric
operators to talk about states that are further away in time, for instance, “At some point in the next 2 hours,
I will be back home”.

1https://github.com/potassco/adlingo

https://github.com/potassco/adlingo

328 Computational methods for Dynamic ASP

3.1 Future work

The quest to conceptualize metric logic programming is far from over. In view of the results from the
last project, we have started to craft a translation that handles more metric operators. The translation is
planned to follow a Tseitin-style translation like the one in [2]. We want to further investigate HTc for
encoding time, and examine the integration of non-monotonic reasoning and optimization in the timed
aspect of MLP. Additionally, we plan to investigate how far ASP can address reactive-dynamic tasks
where the user and environment play a role by interacting with the system.

References

[1] M. Abadi & Z. Manna (1989): Temporal Logic Programming. Journal of Symbolic Computation 8, pp.
277–295, doi:10.1016/S0747-7171(89)80070-7.

[2] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez, T. Schaub, A. Schuhmann & C. Vidal (2023): Linear-
Time Temporal Answer Set Programming. Theory and Practice of Logic Programming 23(1), pp. 2–56,
doi:10.1017/S1471068421000557.

[3] F. Aguado, P. Cabalar, M. Diéguez, G. Pérez & C. Vidal (2013): Temporal equilibrium logic: a survey. Journal
of Applied Non-Classical Logics 23(1-2), pp. 2–24, doi:10.1080/11663081.2013.798985.

[4] J. Baier, C. Fritz, M. Bienvenu & S. McIlraith (2008): Beyond Classical Planning: Procedural Control
Knowledge and Preferences in State-of-the-Art Planners. In D. Fox & C. Gomes, editors: Proceedings of
the Twenty-third National Conference on Artificial Intelligence (AAAI’08), AAAI Press, pp. 1509–1512.
Available at https://auld.aaai.org/Library/AAAI/2008/aaai08-251.php.

[5] J. Baier & S. McIlraith (2006): Planning with First-Order Temporally Extended Goals using Heuristic
Search. In Y. Gil & R. Mooney, editors: Proceedings of the Twenty-first National Conference on Artificial
Intelligence (AAAI’06), AAAI Press, pp. 788–795. Available at https://www.aaai.org/Library/AAAI/
2006/aaai06-125.php.

[6] M. Balduccini, Y. Lierler & S. Woltran, editors (2019): Proceedings of the Fifteenth International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’19). Lecture Notes in Artificial Intelligence
11481, Springer-Verlag, doi:10.1007/978-3-030-20528-7.

[7] M. Banbara, B. Kaufmann, M. Ostrowski & T. Schaub (2017): Clingcon: The Next Generation. Theory and
Practice of Logic Programming 17(4), pp. 408–461, doi:10.1017/S1471068417000138.

[8] C. Baral, S. Tran Cao & L. Tuan (2002): A transition function based characterization of actions with delayed
and continuous effects. In: KR, Citeseer, pp. 291–302. Available at https://citeseerx.ist.psu.edu/
document?repid=rep1&type=pdf&doi=d4ae7ddfcdc012e519b473d03dd3c7caffaa09e1.

[9] A. Bosser, P. Cabalar, M. Diéguez & T. Schaub (2018): Introducing Temporal Stable Models for Linear
Dynamic Logic. In M. Thielscher, F. Toni & F. Wolter, editors: Proceedings of the Sixteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’18), AAAI Press, pp. 12–21.
Available at https://aaai.org/ocs/index.php/KR/KR18/paper/view/18047.

[10] G. Brewka, T. Eiter & M. Truszczyński (2011): Answer set programming at a glance. Communications of the
ACM 54(12), pp. 92–103, doi:10.1145/2043174.2043195.

[11] P. Cabalar, M. Diéguez, S. Hahn & T. Schaub (2021): Automata for Dynamic Answer Set Solving: Preliminary
Report. In: Proceedings of the Fourteenth Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’21). Available at https://ceur-ws.org/Vol-2970/aspocpinvited1.pdf.

[12] P. Cabalar, M. Dieguez, S. Hahn & T. Schaub (2021): Automata for dynamic answer set solving: Preliminary
report. CoRR abs/2109.01782, doi:10.48550/arXiv.2109.01782 .

[13] P. Cabalar, M. Diéguez, F. Laferriere & T. Schaub (2020): Implementing Dynamic Answer Set Programming
over finite traces. In G. De Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarı́n & J. Lang,

http://dx.doi.org/10.1016/S0747-7171(89)80070-7
http://dx.doi.org/10.1017/S1471068421000557
http://dx.doi.org/10.1080/11663081.2013.798985
https://auld.aaai.org/Library/AAAI/2008/aaai08-251.php
https://www.aaai.org/Library/AAAI/2006/aaai06-125.php
https://www.aaai.org/Library/AAAI/2006/aaai06-125.php
http://dx.doi.org/10.1007/978-3-030-20528-7
http://dx.doi.org/10.1017/S1471068417000138
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d4ae7ddfcdc012e519b473d03dd3c7caffaa09e1
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d4ae7ddfcdc012e519b473d03dd3c7caffaa09e1
https://aaai.org/ocs/index.php/KR/KR18/paper/view/18047
http://dx.doi.org/10.1145/2043174.2043195
https://ceur-ws.org/Vol-2970/aspocpinvited1.pdf
http://dx.doi.org/10.48550/arXiv.2109.01782

S. Hahn 329

editors: Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI’20), IOS
Press, pp. 656–663, doi:10.3233/FAIA200151.

[14] P. Cabalar, M. Diéguez & T. Schaub (2019): Towards Dynamic Answer Set Programming over finite traces. In
Balduccini et al. [6], pp. 148–162, doi:10.1007/978-3-030-20528-7 12.

[15] P. Cabalar, M. Diéguez, T. Schaub & A. Schuhmann (2022): Metric Temporal Answer Set Programming over
Timed Traces. In G. Gottlob, D. Inclezan & M. Maratea, editors: Proceedings of the Sixteenth International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’22), Lecture Notes in Artificial
Intelligence 13416, Springer-Verlag, pp. 117–130, doi:10.1007/978-3-031-15707-3 10.

[16] P. Cabalar, R. Kaminski, P. Morkisch & T. Schaub (2019): telingo = ASP + Time. In Balduccini et al. [6], pp.
256–269, doi:10.1007/978-3-030-20528-7 19.

[17] P. Cabalar, R. Kaminski, M. Ostrowski & T. Schaub (2016): An ASP Semantics for Default Reasoning with
Constraints. In R. Kambhampati, editor: Proceedings of the Twenty-fifth International Joint Conference on
Artificial Intelligence (IJCAI’16), IJCAI/AAAI Press, pp. 1015–1021, doi:10.5555/3060621.3060762.

[18] A. Chandra, D. Kozen & L. Stockmeyer (1981): Alternation. Journal of the ACM 28(1), pp. 114–133,
doi:10.1145/322234.322243.

[19] G. De Giacomo & M. Vardi (2013): Linear Temporal Logic and Linear Dynamic Logic on Finite Traces. In
F. Rossi, editor: Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence
(IJCAI’13), IJCAI/AAAI Press, pp. 854–860. Available at https://www.ijcai.org/Abstract/13/132.

[20] G. De Giacomo & M. Vardi (2015): Synthesis for LTL and LDL on Finite Traces. In Q. Yang & M. Wooldridge,
editors: Proceedings of the Twenty-fourth International Joint Conference on Artificial Intelligence (IJCAI’15),
AAAI Press, pp. 1558–1564. Available at https://ijcai.org/Abstract/15/223.

[21] S. Demri, V. Goranko & M. Lange (2016): Temporal Logics in Computer Science: Finite-
State Systems. Cambridge Tracts in Theoretical Computer Science, Cambridge University Press,
doi:10.1017/CBO9781139236119.

[22] M. Fujita, S. Kono, H. Tanaka & T. Moto-Oka (1986): Tokio: Logic Programming Language Based on
Temporal Logic and its Compilation to Prolog. In E. Shapiro, editor: Proceedings of the Third International
Conference on Logic Programming (ICLP’86), Lecture Notes in Computer Science 225, Springer, pp. 695–709,
doi:10.1007/3-540-16492-8 119.

[23] D. Gabbay (1987): Modal and Temporal Logic Programming. In A. Galton, editor: Temporal Logics and their
Applications, chapter 6, Academic Press, pp. 197–237.

[24] M. Gebser, R. Kaminski, B. Kaufmann & T. Schaub (2019): Multi-shot ASP solving with clingo. Theory and
Practice of Logic Programming 19(1), pp. 27–82, doi:10.1017/S1471068418000054.

[25] G. De Giacomo & S. Rubin (2018): Automata-Theoretic Foundations of FOND Planning for LTLf and LDLf
Goals. In J. Lang, editor: Proceedings of the Twenty-seventh International Joint Conference on Artificial
Intelligence (IJCAI’18), ijcai.org, pp. 4729–4735, doi:10.24963/ijcai.2018/657.

[26] S. Hahn, O. Sabuncu, T. Schaub & T. Stolzmann (2024): Clingraph: A System for ASP-based Visualization.
Theory and Practice of Logic Programming, doi:10.1017/S147106842400005X.

[27] D. Harel, J. Tiuryn & D. Kozen (2000): Dynamic Logic. MIT Press, doi:10.1145/568438.568456.

[28] J. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, R. Paige, T. Rauhe & A. Sandholm (1995): Mona:
Monadic Second-Order Logic in Practice. In E. Brinksma, R. Cleaveland, K. Larsen, T. Margaria & B. Steffen,
editors: Proceedings of the First International Workshop on Tools and Algorithms for Construction and
Analysis of Systems (TACAS’95), Lecture Notes in Computer Science 1019, Springer-Verlag, pp. 89–110,
doi:10.1007/3-540-60630-0 5.

[29] A. Heyting (1930): Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen
Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu Berlin, pp. 42–56.

[30] J. Hopcroft & J Ullman (1979): Introduction to Automata Theory, Languages, and Computation. Addison-
Wesley.

http://dx.doi.org/10.3233/FAIA200151
http://dx.doi.org/10.1007/978-3-030-20528-7_12
http://dx.doi.org/10.1007/978-3-031-15707-3_10
http://dx.doi.org/10.1007/978-3-030-20528-7_19
http://dx.doi.org/10.5555/3060621.3060762
http://dx.doi.org/10.1145/322234.322243
https://www.ijcai.org/Abstract/13/132
https://ijcai.org/Abstract/15/223
http://dx.doi.org/10.1017/CBO9781139236119
http://dx.doi.org/10.1007/3-540-16492-8_119
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.24963/ijcai.2018/657
http://dx.doi.org/10.1017/S147106842400005X
http://dx.doi.org/10.1145/568438.568456
http://dx.doi.org/10.1007/3-540-60630-0_5

330 Computational methods for Dynamic ASP

[31] U. Hustadt, A. Ozaki & C. Dixon (2020): Theorem Proving for Pointwise Metric Temporal Logic Over the
Naturals via Translations. Journal of Automated Reasoning 64(8), pp. 1553–1610, doi:10.1007/s10817-020-
09541-4.

[32] T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn & P. Wanko (2017): Clingo goes Linear
Constraints over Reals and Integers. Theory and Practice of Logic Programming 17(5-6), pp. 872–888,
doi:10.1017/S1471068417000242.

[33] S. Jiang & R. Kumar (2004): Failure diagnosis of discrete-event systems with linear-time temporal logic
specifications. IEEE Transactions on Automatic Control 49(6), pp. 934–945, doi:10.1109/TAC.2004.829616.

[34] R. Kaminski, T. Schaub & P. Wanko (2017): A Tutorial on Hybrid Answer Set Solving with clingo. In
G. Ianni, D. Lembo, L. Bertossi, W. Faber, B. Glimm, G. Gottlob & S. Staab, editors: Proceedings of the
Thirteenth International Summer School of the Reasoning Web, Lecture Notes in Computer Science 10370,
Springer-Verlag, pp. 167–203, doi:10.1007/978-3-319-61033-7 6.

[35] J. Kamp (1968): Tense Logic and the Theory of Linear Order. Ph.D. thesis, University of California at Los
Angeles.

[36] C. Kapoutsis & M. Zakzok (2021): Alternation in two-way finite automata. Theoretical Computer Science
870, pp. 75–102, doi:10.1016/j.tcs.2020.12.011.

[37] S. Karaman & E. Frazzoli (2008): Vehicle routing problem with metric temporal logic specifications. In: 2008
47th IEEE conference on decision and control, IEEE, pp. 3953–3958, doi:10.1109/CDC.2008.4739366.

[38] R. Koymans (1990): Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4),
pp. 255–299, doi:10.1007/BF01995674.

[39] R. Ladner, R. Lipton & L Stockmeyer (1984): Alternating pushdown and stack automata. SIAM Journal on
Computing 13(1), pp. 135–155, doi:10.1137/0213010.

[40] H. Levesque, R. Reiter, Y. Lespérance, F. Lin & R. Scherl (1997): GOLOG: A Logic Programming Language
for Dynamic Domains. Journal of Logic Programming 31(1-3), pp. 59–83, doi:10.1016/S0743-1066(96)00121-
5.

[41] R. Luo, R. Valenzano, Y. Li, C. Beck & S. McIlraith (2016): Using Metric Temporal Logic to Specify
Scheduling Problems. In C. Baral, J. Delgrande & F. Wolter, editors: Proceedings of the Fifteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’16), AAAI Press, pp. 581–584.
Available at https://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12909.

[42] D. Ničković & N. Piterman (2010): From MTL to Deterministic Timed Automata. In K. Chatterjee &
T. Henzinger, editors: Proceedings of the Eighth International Conference on Formal Modeling and Analysis
of Timed Systems (FORMATS’10), Lecture Notes in Computer Science, Springer-Verlag, pp. 152–167,
doi:10.1007/978-3-642-15297-9 13.

[43] M. Orgun & W. Wadge (1992): Theory and Practice of Temporal Logic Programming. In L. Fariñas del Cerro
& M. Penttonen, editors: Intensional Logics for Programming, chapter 2, Oxford University Press, pp. 21–50,
doi:10.1093/oso/9780198537755.003.0002.

[44] D. Pearce (2006): Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2), pp. 3–41,
doi:10.1007/s10472-006-9028-z.

[45] K. Smith & M. Vardi (2021): Automata Linear Dynamic Logic on Finite Traces. arXiv preprint
arXiv:2108.12003.

[46] G. Tseitin (1968): On the complexity of derivation in the propositional calculus. Zapiski nauchnykh seminarov
LOMI 8, pp. 234–259.

[47] M. Vardi (1995): An Automata-Theoretic Approach to Linear Temporal Logic. In F. Moller & G. Birtwistle,
editors: Logics for Concurrency: Structure versus Automata, Lecture Notes in Computer Science 1043,
Springer-Verlag, pp. 238–266, doi:10.1007/3-540-60915-6 6.

[48] M. Vardi (1997): Alternating Automata: Unifying Truth and Validity Checking for Temporal Logics. In
W. McCune, editor: Proceedings of the Fourteenth International Conference on Automated Deduction

http://dx.doi.org/10.1007/s10817-020-09541-4
http://dx.doi.org/10.1007/s10817-020-09541-4
http://dx.doi.org/10.1017/S1471068417000242
http://dx.doi.org/10.1109/TAC.2004.829616
http://dx.doi.org/10.1007/978-3-319-61033-7_6
http://dx.doi.org/10.1016/j.tcs.2020.12.011
http://dx.doi.org/10.1109/CDC.2008.4739366
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1137/0213010
http://dx.doi.org/10.1016/S0743-1066(96)00121-5
http://dx.doi.org/10.1016/S0743-1066(96)00121-5
https://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12909
http://dx.doi.org/10.1007/978-3-642-15297-9_13
http://dx.doi.org/10.1093/oso/9780198537755.003.0002
http://dx.doi.org/10.1007/s10472-006-9028-z
http://dx.doi.org/10.1007/3-540-60915-6_6

S. Hahn 331

(CADE’97), Lecture Notes in Computer Science 1249, Springer-Verlag, pp. 191–206, doi:10.1007/3-540-
63104-6 19.

[49] S. Zhu, G. Pu & M. Vardi (2019): First-Order vs. Second-Order Encodings for LTLf-to-Automata Translation.
In T. Gopal & J. Watada, editors: Proceedings of the Fifteenth Annual Conference on Theory and Applications
of Models of Computation (TAMC’19), Lecture Notes in Computer Science 11436, Springer-Verlag, pp.
684–705, doi:10.1007/978-3-030-14812-6 43.

http://dx.doi.org/10.1007/3-540-63104-6_19
http://dx.doi.org/10.1007/3-540-63104-6_19
http://dx.doi.org/10.1007/978-3-030-14812-6_43

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 332–344, doi:10.4204/EPTCS.416.33

© Hansen
This work is licensed under the
Creative Commons Attribution License.

Relating Answer Set Programming and
Many-sorted Logics for Formal Verification

Zachary Hansen
University of Nebraska Omaha

Omaha, Nebraska
929 S. 70th Plz #25, Omaha NE, 68106

zachhansen@unomaha.edu

1 Introduction

Answer Set Programming (ASP) is an important logic programming paradigm within the field of Knowl-
edge Representation and Reasoning. As a concise, human-readable, declarative language, ASP is an
excellent tool for developing trustworthy (especially, artificially intelligent) software systems. However,
formally verifying ASP programs offers some unique challenges, such as

1. a lack of modularity (the meanings of rules are difficult to define in isolation from the enclosing
program),

2. the ground-and-solve semantics (the meanings of rules are dependent on the input data with which
the program is grounded), and

3. limitations of existing tools.
My research agenda has been focused on addressing these three issues with the intention of making ASP
verification an accessible, routine task that is regularly performed alongside program development. In
this vein, I have investigated alternative semantics for ASP based on translations into the logic of here-
and-there and many-sorted first-order logic. These semantics promote a modular understanding of logic
programs, bypass grounding, and enable us to use automated theorem provers to automatically verify
properties of programs.

2 Background

The stable model semantics of logic programs can be expressed in a variety of ways, each of which offers
unique insights and utility [38]. For instance, logic programs can sometimes be viewed as “shorthand”
for propositional, first-order, default, or autoepistemic theories. These translational approaches (which
typically involve a syntactic transformation from ASP rules into a “formula representation” that uses the
syntax of first-order logic) offer some advantages over their fixpoint relatives. In particular, semantics
that let us bypass the issue of grounding are very convenient for program verification purposes. They
allow us to disregard the specifics of the input data with which a program is paired when assessing the
independent meaning of the program.

Clark’s Completion and its subsequent extensions [11, 39] provide a useful translational semantics for
a broad class of programs satisfying the tightness condition1. Under these semantics, the logic program

p :- q. p :- r.
1A tight program has a predicate dependency graph without positive cycles [20, 14].

http://dx.doi.org/10.4204/EPTCS.416.33
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Hansen 333

is understood as the first-order theory
p ↔ q∨ r

which reflects the minimality of circumscription and the closely related principle of rational belief (we
believe p only if we have to, that is, if and only if q or r holds) found in the autoepistemic intuitions
behind answer set programming [27]. However, completion semantics are only applicable to programs
of a limited form – first-order logic cannot, for example, correctly capture the transitive closure of a
binary relation without non-standard assumptions like the Closed World Assumption. This restriction
can potentially be circumvented or at least relaxed through innovation in the areas of local tightness [21],
loop formulas [37], tightening [48], and ordered completion [3].

More recently, a surprisingly deep connection between the logic of here-and-there [32] and ASP has
yielded interesting results. The logic of here-and-there extends intuitionistic logic with the axiom schema

F ∨ (F → G)∨¬G

of which the most commonly employed consequence is the weak law of excluded middle:

¬F ∨¬¬F. (1)

Here-and-there has a number of useful characteristics that make it applicable to the study of ASP [44].
First, it acts as a well-behaved monotonic basis for equilibrium logic, which provides a non-monotonic
inference relation that captures and generalizes the semantics of a broad class of ASP programs to full
propositional logic (recall that while ASP rules have a very limited syntactic form, propositional formulas
can be very complex). Furthermore, intuitionistic logic cannot be strengthened more than here-and-there
and still be strictly contained in classical logic, making it the strongest, well-behaved classical logic
available. Finally, the extension to ASP programs with variables is naturally covered by quantified
formulas interpreted under the semantics of here-and-there.

One of the most fruitful consequences of this connection is the study of strong equivalence [40]. The
condition of strong equivalence states that two programs, Π1 and Π2, are strongly equivalent if Π1 ∪Π

and Π2 ∪Π have the same answer sets for any program Π. This condition is useful because it tells us
that our two programs are truly interchangeable: no matter which program they form a subcomponent of,
they can be swapped out without affecting the enclosing program’s answer sets. It has been shown that
the strong equivalence of two programs can be established by deriving the formula representation of each
program from the formula representation of the other within the logic of here-and-there; for propositional
programs this can be done in exponential time [40]. However, more complex ASP languages require
more sophisticated translations into formula representations, as well as extended deductive systems. For
the remainder of this paper, we will focus on a theoretical ASP language known as MINI-GRINGO.

The answer set solver CLINGO implements the language ABSTRACT GRINGO [24], whose semantics
are defined by a translation (τ) into the infinitary propositional logic developed by Truszczyński [46].
MINI-GRINGO is an expressive fragment of ABSTRACT GRINGO which supports negation, arithmetic,
intervals, and basic choice rules [21]. The semantics of the language can be captured by a syntactic
transformation (τ∗) into first-order formula representations, which are interpreted under the HTA (here-
and-there with arithmetic) deductive system [19]. An equivalent (and arguably simpler) characterization
of these semantics are defined by the SM operator [23]. This operator transforms a program’s (Π) formula
representation (τ∗Π) into a second-order sentence (SMp[τ

∗(Π)]) in which predicate quantification is used
to minimize belief in the list p of intensional predicates (similar to circumscription). When p contains all
the predicates occurring in the logic program, then the models of SMp[τ

∗(Π)] correspond to the answer

334 Relating ASP and Many-sorted Logics

sets of Π. Bartholomew and Lee extend the concept of the SM operator to intensional functions [5].
This is once again rooted in the logic of here-and-there, where interpretations can be viewed as pairs
(of “worlds”) ⟨H,T ⟩. Predicate minimization through the SM operator is achieved by mandating that
pH ⊆ pT for every p ∈ p, similarly, for each intensional function f we require that f H ̸= f T .

The study of the MINI-GRINGO language is motivated in large part by a desire to use automated rea-
soning tools for proving the correctness of ASP programs. ANTHEM is a software system that converts
MINI-GRINGO programs into first-order formulas of two sorts (a supersort which consists of all program
terms, and a subsort corresponding to integers) via the τ∗ translation [20]. It then uses the first-order the-
orem prover VAMPIRE [35] to check the equivalence of the completion of the program (COMP[τ∗(Π)])
to a set of first-order formulas acting as a specification (S), under a set of assumptions characterizing the
intended program inputs (A). That is, it attempts to establish the universal validity of

A → (COMP[τ∗(Π)]↔ S)

which, if it succeeds, is proof that the program Π implements the specification. This procedure applies
to io-programs, that is, ASP programs paired with placeholders as well as input and output predicate
symbols. Any predicate symbols that are neither input nor output symbols are private symbols – these
auxiliary symbols are not essential for understanding the program’s “external” behavior as characterized
by the output symbols. For example, if we take prime/1 to be an output symbol, the programs

composite(I ∗ J) :- I = 2..n, J = 2..n.

prime(I) :- I = 2..n, not composite(I).

and

comp(X) :- X = I ∗ J, I = 2..n, J = 2..n.

prime(I) :- I = 2..n, not comp(I).

clearly have the same external behavior (the extent of the prime/1 predicate) under the assumption that
the placeholder n is an integer, despite minor differences in how the auxiliary predicates are defined. This
procedure is only possible for programs satisfying the restrictions of tightness and absence of private
recursion.2

3 Goals

My interest in the relationship of ASP to many-sorted first-order logic (and, more broadly, the logic of
here-and-there) is motivated by its application to software verification. My long-term research agenda
is to help develop an accessible, tool-assisted methodology for formally verifying the correctness of
ASP programs. Clearly, such an agenda would extend beyond the duration of a single dissertation.
For this reason, I’ve organized the remainder of this research summary into sections showcasing which
pieces of this plan have already been addressed (Current Status and Preliminary Results), which pieces
I plan to investigate during the remainder of my doctoral program (Ongoing Directions and Expected
Achievements), and which pieces I hope to build on top of my eventual dissertation (Conclusions and
Future Directions).

2A program is tight if its predicate dependency graph has no cycles consisting of positive edges such as (p, p). A program
has private recursion if the subgraph induced by private symbols has no cycles.

Hansen 335

4 Current Status and Preliminary Results

Since joining the University of Nebraska Omaha (UNO) in Fall 2020, I have been engaged in several
research projects under the umbrella topic of formal verification of ASP programs. Within this topic,
I have been fortunate to collaborate with researchers at UNO, University of Texas at Austin, and the
University of Potsdam. My frequent collaborators include Dr. Yuliya Lierler (my advisor), Dr. Jorge
Fandinno, Dr. Vladimir Lifschitz, Dr. Torsten Schaub, and Tobias Stolzmann (another PhD student
writing his dissertation on topics related to ANTHEM). Where appropriate, I will distinguish between
collaborative work and work I’ve done independently.

4.1 Results Presented at Previous Doctoral Consortiums

Conditional literal semantics Conditional literals are a useful feature supported by CLINGO. The
following rule (from a Graph Coloring encoding) succinctly expresses that a vertex cannot have no
colors assigned to it.

:- not asg(V, C) : col(C); vtx(V). (2)

In the spirit of Fandinno et al. (2020), Dr. Lierler and I developed a translation from a simple ASP
language that is (mostly) a subset of MINI-GRINGO extended with conditional literals to unsorted first-
order logic [31]. This provided formal support for the intuition that conditional literals in this language
represent nested implications within rule bodies. For example, the previous rule can be understood as
the first-order sentence

∀V
(
(∀C(col(C)→¬asg(V,C))∧ vtx(V))→⊥

)
. (3)

We demonstrated that these semantics capture the behavior of CLINGO, and used them to prove the
correctness of a k-coloring program.

Aggregate semantics Dr. Lierler, Dr. Fandinno, and I proposed a characterization of aggregate seman-
tics that bypasses the need for grounding [16]. Instead, we apply a many-sorted generalization of the SM
operator to a set of many-sorted first-order formulas (κΠ) representing a logic program (Π). Aggregates
are defined as functions on sets of tuples, whose members are restricted to those tuples satisfying the list
of conditions present in the associated aggregate. We designed a set of second-order (first-order in the
presence of finite aggregates) axioms to define the behavior of sets and aggregate function symbols. For
a class of standard interpretations satisfying assumptions such as a standard interpretation of addition,
models of SM[κΠ] satisfying these aggregate axioms are in one-to-one correspondence with the stable
models of Π. When Π is tight, the second-order characterization (SM[κΠ]) can be replaced by comple-
tion (COMP[κΠ]). Thus, for tight programs with finite aggregates, our proposed semantics define, via
first-order logic, the behavior of CLINGO aggregates.

Modular proofs of correctness with aggregate constraints A key challenge in verifying logic pro-
grams is proving the correctness of groups of rules in isolation from the rest of the program. A “divide-
and-conquer” methodology is very natural for verification, but applying it to logic programs requires a
careful methodology, such as the one proposed by Cabalar, Fandinno, and Lierler (2020). They divide
their example Hamiltonian Cycle program into various independent modules, whose behavior is cap-
tured via the SM operator [6]. We extend their example to the Traveling Salesman problem with the

336 Relating ASP and Many-sorted Logics

addition of an aggregate constraint (4) on the cumulative weight of the selected cycle, and use our many-
sorted semantics for aggregates to verify the behavior of this constraint independently of the Hamiltonian
Cycle program [15]. Additionally, we prove the correctness of a Graph Coloring encoding containing
choice rules with cardinality bounds. This project showcases how the modular proof methodology can
be extended with our proposed aggregate semantics to argue the correctness of a broad class of logic
programs.

:- #sum{ K,X,Y : in(X,Y), cost(K,X,Y) } > J, maxCost(J). (4)

4.2 New Results

Extending MINI-GRINGO with conditional literals The ABSTRACT GRINGO fragment Dr. Lierler
and I investigated in 2022 was unsorted, forbade double negations, and lacked support for arithmetic
operations and intervals. These are important features supported by the MINI-GRINGO language on which
ANTHEM is based. We are working on extending the full MINI-GRINGO language presented in Fandinno,
Lifschitz, and Temple (2024) with conditional literals. The translation of conditional literals is largely
the same, but proving the correctness of the translation for this extended language is considerably more
complicated. However, doing so allows us to check the strong equivalence of MINI-GRINGO programs
with conditional literals. Furthermore, this work is useful because it acts as a roadmap for the more
challenging task of extending MINI-GRINGO and ANTHEM with aggregates using our many-sorted first-
order characterization.

This research has also yielded some interesting insights into the way conditional literals can be used
to eliminate auxiliary predicates. Doing so makes modular programming, and constructing arguments of
correctness about modular programs, considerably easier. For example, consider a traditional encoding
of the Graph Coloring problem without conditional literals:

{asg(V, C)} :- vtx(V), col(C). (5)

:- asg(V, C1), asg(V, C2), C1 != C2. (6)

colored(V) :- asg(V, C). (7)

:- vtx(V), not colored(V). (8)

:- asg(V1, C), asg(V2, C), edge(V1, V2). (9)

We can eliminate the auxiliary predicate colored/1 by replacing rules (7- 8) with the conditional literal
constraint (2). This example hints at a more general property. Note that the rule (7) expresses that a
property (colored) holds for a vertex (V) if and only if there exists an element (C) such that V is mapped
to C by the asg/2 predicate. This is an indirect way of expressing an existential quantification – in
conjunction with rule (8), it expresses that every vertex must be mapped to a color. This condition can
be more concisely represented via conditional literal (3), which is classically equivalent to

∀V
(
vtx(V)→∃C(col(C)∧asg(V,C))

)
.

Axiomatizing new aggregates The many-sorted first-order logic characterization of aggregates Dr.
Lierler, Dr. Fandinno, and I developed captured the behavior of CLINGO’s count and sum aggre-
gates [16]. Furthermore, for programs adhering to the ASP-Core-2 standard [7], this characterization
also captures the ASP-Core-2 semantics. I have since extended this characterization with min, max,

Hansen 337

and sum+ aggregates. This required developing first and second-order axiomatizations for the new ag-
gregates and proving that they correctly captured the behavior of CLINGO. These results, alongside
significant extensions such as a detailed section integrating our results with Clark’s Completion, were
recently published in the Journal of Artificial Intelligence Research [17].

Recursive aggregates The aggregate axiomatization projects described thus far have included a re-
striction on positive recursion through aggregates. While such recursion is a comparatively rare scenario
in practice, it is very important to the study of strong equivalence. Since two programs Π1 and Π2 must
have the same answer sets when combined with any program Π to be strongly equivalent, any discussion
of strongly equivalent logic programs must accommodate the case when Π introduces recursion through
the aggregates of Π1 or Π2. To address this, Dr. Fandinno and I extended our aggregate semantics with
intensional function symbols [30]. We treated aggregates as functions on sets of tuples – these so-called
“set symbols,” which map ground terms to sets of tuples of ground terms, were treated intensionally. We
found that our proposed semantics coincides with the semantics of CLINGO, but naturally diverged from
the semantics of DLV in the presence of recursive aggregates. I presented these results at ASPOCP 2023.

Program to program verification The original version of ANTHEM required a specification written
in first-order logic. However, it has since become clear that many ASP programmers would rather write
their specifications in the form of a simple, easy-to-read ASP program. To support this, I developed the
AP2P3 system on top of the original ANTHEM. The theoretical results supporting this procedure were
published in TPLP [18]. AP2P allows users to automatically confirm the (external) equivalence of two
ASP programs. This is primarily useful in the refactoring process, wherein a simple program may be
successively replaced by more complex programs in the interest of improving performance. Our system
checks that the essential behavior of the program has not been changed during refactoring.

Anthem 2 The long-term viability of the prototypical ANTHEM system was threatened by technical
debt such as a lack of documentation, heavy dependence on deprecated Rust nightly features, and a di-
vergence of the system’s behavior from the supporting theory. I have been working in collaboration with
Dr. Lifschitz and Tobias Stolzmann on a complete overhaul and re-implementation of this prototype that
corrects and extends it in several ways. First, I have restructured and generalized the verification process
to enable a symmetric treatment of program-to-program and program-to-specification verification. This
positions ANTHEM as a tool to support refactoring ASP code in addition to its original functionality.
Second, Tobias Stolzmann and I have corrected the internal representation of many-sorted first-order
theories and the partial axiomatizations of standard interpretations. This eases (in particular) the han-
dling of placeholders in io-programs. Third, I have designed and implemented a suite of transformations
equivalent in the logic of here-and-there to simplify the formulas being passed to the backend theorem
prover. Preliminary experiments show substantial improvements in runtime for certain programs. Fourth,
Dr. Lifschitz and I have designed and implemented an improved control language for writing proof out-
lines, which offers users a considerably more fine-grained control over the formulation of verification
tasks. This moves ANTHEM away from a one-shot system towards an interactive proof assistant, which
is crucial for verifying non-trivial problems. Finally, I wrote a reference manual to resolve the issue of
missing documentation4.

3https://ap2p.unomaha.edu/
4The new system and user manual can be found here: https://github.com/potassco/anthem

https://ap2p.unomaha.edu/
https://github.com/potassco/anthem

338 Relating ASP and Many-sorted Logics

5 Ongoing Directions and Expected Achievements

Recursive aggregates Dr. Fandinno and I are currently developing recursive aggregate semantics for
DLV analogous to those we created for CLINGO. We have designed a new translation to a many-sorted
first-order language for DLV programs, that treats default negation in a different manner. This work
suggests that the difference between the treatment of recursive aggregates in CLINGO versus DLV stems
from an underlying difference in their treatment of default negation. These new semantics allow us to
define strong equivalence not just between a pair of CLINGO programs or a pair of DLV programs, but
between a CLINGO program and a DLV program. These are exciting results that provide new insights into
the differences between these two major solvers.

Extending ANTHEM with conditional literals More theoretical work needs to be done before I can
implement a translation for conditional literals within ANTHEM. First and foremost, the current results
need to be extended to io-programs. Additionally, while checking strong equivalence does not require
tightness, checking external equivalence does. It is not yet clear to me how the notion of a predicate
dependency graph changes in the presence of conditional literals, although first-order dependency graphs
are a promising direction to explore [36].

Sets and many-sorted logic in ANTHEM This is the last major task I hope to accomplish as part of
my dissertation. The question of integrating our aggregate semantics into MINI-GRINGO and ANTHEM is
dependent upon our ability to (partially) axiomatize our notion of standard interpretations. This special
class of interpretations makes some assumptions about the behavior of the set sort (for instance, that set
membership behaves in a standard way). There is reason to believe this is possible – VAMPIRE natively
supports a partial axiomatization of integer arithmetic [35] which we extend to a partial axiomatization
of two-sorted standard interpretations by including certain custom axioms in every verification task. The
Thousands of Problems for Theorem Provers (TPTP) project has numerous partial axiomatizations of
theories compatible with VAMPIRE, including some focusing on set theory [45]. We may be able to
use these as a starting point, though the specifics (Figure 1) of our many-sorted domain may be hard to
express. In particular, we need to capture the restrictions that

1. the numeral universe |I|sint is a subsort of the program term universe |I|sprg ,

2. the tuple universe |I|stuple consists of tuples of program terms, and

3. the set universe |I|sset is the power set of the tuple universe.

There is also the question of how theory extensions (such as set theory) impacts the runtime of VAMPIRE

and, consequently, the usability of ANTHEM. Our experiments with ANTHEM and AP2P have already
shown that certain programs containing integer arithmetic can be deceptively difficult to verify automat-
ically. For example, ANTHEM struggles to verify the external equivalence of

p(X ∗X) :- X = 0..n.

and
p(X ∗X) :- X =−n..n.

under the assumption that n is an integer greater than 0.

Hansen 339

Figure 1: Universes corresponding to the sorts used in standard interpretations [16].

6 Related Work

The Introduction identifies three core challenges to ASP verification: modularity, grounding, and tool
support. Within each of these topics, there are a number of studies relevant to the research agenda
proposed here.

6.1 Modularity

The notion of external equivalence presented earlier is closely related to modular equivalence for DLP
and ELP-functions [33], which are in turn related to LP-functions [26, Section 2]. In these studies, the
idea of program modules as composable functions mapping input atoms to output atoms (using hidden
auxiliary atoms) has been explored in the context of disjunctive, propositional programs. The module
theorem [33] provides a compositional semantics for this class of programs.5 Our work on external
behavior of io-programs and modular arguments of correctness uses similar results established for a
different class of programs, specifically, programs with variables and arithmetic.

Templates are a construct roughly analogous to program modules, where global (public) predicates
are renamed so as to interface with an enclosing program, and local (auxiliary/hidden/private) predicates
are renamed with a procedure that (very nearly) guarantees the new identifiers are universally unique [1].
The use of templates promotes code reusability and eases the development of industrial-scale applica-
tions [8]. This approach has the additional benefit of being able to test that simple invariants of templates
hold in the context of an enclosing program. As an alternative to the re-writing strategy described above,
templates can also be defined as higher-order definitions of predicates [12]. This is more in line with the
second-order characterization of external behavior given by the SM operator.

6.2 Grounding

Within the domain of translational semantics for ASP, a major distinction is between grounding-free ap-
proaches, and semantics applied to grounded or propositional programs. A grounding-free translational
approach is the basis of this proposal – it benefits from being more general, but suffers some restrictions

5Under certain reconfigurations of program modules, the module theorem can apply even when some input, output, or
hidden atoms are forgotten [28].

340 Relating ASP and Many-sorted Logics

that have been overcome for propositional translations. For example, the limitation of completion se-
mantics to tight programs can be circumvented in the propositional case by adding loop formulas (LF) to
the program’s (Π) completion (COMP(Π)∪LF) [41, Theorem 1].6 An extension of this theorem to the
first-order case exists, but relies on a grounding procedure, namely, an instantiation of COMP(Π)∪LF
w.r.t. a finite domain to obtain a propositional theory [10]. Lee and Meng (2011) provide a full gener-
alization of loop formulas to arbitrary first-order formulas – this could be a promising extension to the
completion procedure implemented by ANTHEM [36].

6.3 Tool Support

Tools supporting formal verification of ASP programs can be roughly divided into the categories of test-
ing based and proof based systems. These are complementary approaches, since testing generally cannot
provide the same level of assurance but is fast and universally applicable. HARVEY is an ASP-based sys-
tem for random testing of ASP programs [29]. ASPIDE is an integrated development environment (IDE)
supporting unit testing [2, 22]. Similarly to ANTHEM, this supports modular verification by specifying
conditions on outputs for program “units” and automatically testing that these conditions are satisfied
for certain inputs. However, ANTHEM enables users to specify (possibly infinite) classes of inputs rather
than a finite set of test cases.

Examples of proof based systems are SELP [9], TABEQL [47], LPEQ [34], and CCT [42]. SELP

is closely related to this proposal, since it uses automated reasoning tools to check whether two logic
programs are strongly equivalent. One notable consequence of SELP’s SAT checking methodology is its
ability to find a counterexample, which would be an interesting addition to ANTHEM. SELP differs from
ANTHEM in its use of SAT solving instead of theorem proving; a more important difference is that SELP

supports disjunctive propositional programs whereas ANTHEM supports normal programs with variables
and arithmetic. TABEQL does not translate ASP programs into logical theories, but rather computes
equilibrium models of arbitrary propositional theories using tableau calculi for here-and-there. The ASP-
to-ASP translation tool LPEQ and its variant DLPEQ produce logic programs whose answer sets (if any)
represent counterexamples to the weak or strong equivalence of a pair of programs.7 Similarly to SELP,
these systems accept disjunctive, variable-free logic programs. A more flexible system is CCT, which
tests relativised strong equivalence with projection and uniform equivalence.8 CCT is very similar in
spirit to ANTHEM, SELP, and LPEQ given that it relies on a translation to quantified Boolean formulas
evaluated by backend solvers. This system is based on a general notion of program correspondence [13],
and requires two sets of atoms (a context and a projection set) which behave similarly to ANTHEM’s input
and output predicates. Again, ANTHEM is more general: rather than dealing with concrete sets of atoms,
ANTHEM operates on classes of inputs defined by first-order assumptions.

7 Conclusions and Future Directions

ASP modules I proposed this idea at the ICLP and LPNMR 2022 doctoral consortiums, and it received
encouraging feedback from attendees. Building off of the modular verification methodology discussed
earlier, I would like to develop a repository of verified ASP sub-programs (“modules”) that provide

6The ASSAT tool based on these results uses SAT solvers to compute stable models of propositional logic programs [41].
7Two programs are weakly equivalent if they have the same answer sets; this is a special case of external equivalence.
8Uniform equivalence is a special case of strong equivalence where it is assumed that the context is a set of facts rather than

an arbitrary set of rules.

Hansen 341

efficient, correct implementations of commonly encountered sub-problems. Each module would be ac-
companied by a proof of correctness, whose guarantees can be used within an argument of the enclosing
program’s correctness. This could reduce the effort needed for programming, and some of the labor
required to formally prove the correctness of the program. For example, defining the transitive closure
of a binary relation is a common task in ASP programming. Integrating a generic module such as

transitive(X ,Y) :- edge(X ,Y).

transitive(X ,Z) :- transitive(X ,Y),edge(Y,Z).

is preferable to re-inventing the wheel with a custom, unverified implementation. In this scenario, the
programmer would only have to define the interfaces to and from the module, analogous to the input and
output interfaces proposed for disjunctive logic programs [33]. Each program in the repository should
have a natural language specification of intended behavior, a proof of correctness, and a description of
how to interface with the module. Thus, the idea is similar to that of ASP templates [1], with an emphasis
on reusability of the corresponding proofs of correctness. ASP practitioners could submit a (program,
specification) pair as a verification challenge, or submit fully verified modules ready for reuse. Besides
the transitive closure module, other common, generalizable sub-problems include functional relations
(predicates defining a mapping from one set to another) and definitions of grid adjacency (typically used
in 2D planning problems like ASPRILO [25]). While I’m still very interested in this task, I’ve come
to realize that such a project is beyond the scope of my dissertation. I now see it as a top priority for
post-graduate research.

Discussion The task of verifying ASP programs is complex, but relating them to equivalent theories in
the logic of here-and-there and many-sorted first-order logic is a promising approach. Much of my work
has focused on investigating this relationship in the presence of advanced language constructs, such as
aggregates and conditional literals. These are features on which modern ASP solutions rely heavily - yet
they are not even the most sophisticated features offered by modern solvers. Verification techniques for
constraint answer set programs, or for programs with optimization statements and theory propagators,
are possible future directions of research with great potential.

Another topic of interest is the extension of ANTHEM with alternative backend solvers. Other ASP
verification tools support finding counterexamples to program correspondence, which is an interesting
and useful ability. An SMT solver like CVC5 [4] might enable ANTHEM to check countersatisfiability
and/or generate counterexamples. Furthermore, intuitionistic theorem provers like nanoCOP-i [43] are
a natural avenue to explore given ASP’s close relationship with the logic of here-and-there. Secondary
transformations like completion could be avoided completely if an intuitionistic theorem prover – possi-
bly strengthened with axiom schemata such as (1) – shows itself capable of reasoning effectively within
HTA.

Finally, there is the topic of making the verification task accessible enough that ASP practitioners
will employ it in the real world. Automation is a great way to promote this – but much more work
is required to make complex problems verifiable with reasonable resources. Reusing components of
programs and their corresponding proofs of correctness is another way to ease the burden on practitioners.
To encourage formal verification in practice, ANTHEM could be integrated as a plugin to an IDE like
ASPIDE in addition to behaving as a stand-alone tool. I plan to continue working on such tool-assisted
verification strategies in the future.

342 Relating ASP and Many-sorted Logics

References

[1] Mario Alviano, Giovambattista Ianni, Francesco Pacenza & Jessica Zangari (2023): Rethinking Answer Set
Programming Templates. In Martin Gebser & Ilya Sergey, editors: Practical Aspects of Declarative Lan-
guages, Springer Nature Switzerland, Cham, p. 82–99, doi:10.1007/978-3-031-52038-9 6.

[2] Giovanni Amendola, Tobias Berei & Francesco Ricca (2021): Testing in ASP: Revisited Language and Pro-
gramming Environment. In Wolfgang Faber, Gerhard Friedrich, Martin Gebser & Michael Morak, editors:
Logics in Artificial Intelligence, Springer International Publishing, Cham, p. 362–376, doi:10.1007/978-3-
030-75775-5 24.

[3] Vernon Asuncion, Yin Chen, Yan Zhang & Yi Zhou (2015): Ordered completion for logic programs with
aggregates. Artificial Intelligence 224, p. 72–102, doi:10.1016/j.artint.2015.03.007.

[4] Haniel Barbosa, Clark Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman
Mohamed, Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew
Reynolds, Ying Sheng, Cesare Tinelli & Yoni Zohar (2022): cvc5: A Versatile and Industrial-Strength SMT
Solver. In: Tools and Algorithms for the Construction and Analysis of Systems: 28th International Confer-
ence, TACAS 2022, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2022, Munich, Germany, April 2–7, 2022, Proceedings, Part I, Springer-Verlag, Berlin, Heidelberg,
p. 415–442, doi:10.1007/978-3-030-99524-9 24.

[5] Michael Bartholomew & Joohyung Lee (2019): First-order stable model semantics with intensional func-
tions. Artificial Intelligence 273, p. 56–93, doi:10.1016/j.artint.2019.01.001.

[6] Pedro Cabalar, Jorge Fandinno & Yuliya Lierler (2020): Modular Answer Set Programming as a Formal
Specification Language. Theory and Practice of Logic Programming, doi:10.1007/978-1-4471-0043-0.

[7] Francesco Calimeri, Wolfgang Faber, Martin Gebser, Giovambattista Ianni, Roland Kaminski, Thomas
Krennwallner, Nicola Leone, Marco Maratea, Francesco Ricca & Torsten Schaub (2020): ASP-
Core-2 Input Language Format. Theory and Practice of Logic Programming 20(2), p. 294–309,
doi:10.1017/S1471068419000450.

[8] Francesco Calimeri & Giovambattista Ianni (2006): Template programs for Disjunctive Logic Programming:
An operational semantics. AI Commun. 19(3), p. 193–206.

[9] Yin Chen, Fangzhen Lin & Lei Li (2005): SELP – A System for Studying Strong Equivalence Between Logic
Programs. In Chitta Baral, Gianluigi Greco, Nicola Leone & Giorgio Terracina, editors: Logic Programming
and Nonmonotonic Reasoning, Springer, Berlin, Heidelberg, p. 442–446, doi:10.1007/11546207 43.

[10] Yin Chen, Fangzhen Lin, Yisong Wang & Mingyi Zhang (2006): First-order loop formulas for normal logic
programs. In: Proceedings of the Tenth International Conference on Principles of Knowledge Representation
and Reasoning, KR’06, AAAI Press, Lake District, UK, p. 298–307.

[11] Keith L. Clark (1978): Negation as Failure, pp. 293–322. Springer US, Boston, MA, doi:10.1007/978-1-
4684-3384-5 11.

[12] Ingmar Dasseville, Matthias van der Hallen, Gerda Janssens & Marc Denecker (2015): Semantics of tem-
plates in a compositional framework for building logics. Theory and Practice of Logic Programming 15, pp.
681 – 695, doi:10.1017/S1471068415000319.

[13] Thomas Eiter, Hans Tompits & Stefan Woltran (2005): On solution correspondences in answer-set program-
ming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, p. 97–102. Event-place: Edinburgh, Scotland.

[14] François Fages (1994): Consistency of Clark’s completion and the existence of stable models. Journal of
Methods of Logic in Computer Science 1, pp. 51–60.

[15] Jorge Fandinno, Zachary Hansen & Yuliya Lierler (2022): Arguing Correctness of ASP Programs with Ag-
gregates. In Georg Gottlob, Daniela Inclezan & Marco Maratea, editors: Logic Programming and Nonmono-
tonic Reasoning, Lecture Notes in Computer Science, Springer International Publishing, Cham, p. 190–202,
doi:10.1007/978-3-031-15707-3 15.

https://doi.org/10.1007/978-3-031-52038-9_6
https://doi.org/10.1007/978-3-030-75775-5_24
https://doi.org/10.1007/978-3-030-75775-5_24
https://doi.org/10.1016/j.artint.2015.03.007
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1016/j.artint.2019.01.001
https://doi.org/10.1007/978-1-4471-0043-0
https://doi.org/10.1017/S1471068419000450
https://doi.org/10.1007/11546207_43
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1017/S1471068415000319
https://doi.org/10.1007/978-3-031-15707-3_15

Hansen 343

[16] Jorge Fandinno, Zachary Hansen & Yuliya Lierler (2022): Axiomatization of Aggregates in Answer Set
Programming. Proceedings of the AAAI Conference on Artificial Intelligence 36(55), p. 5634–5641,
doi:10.1609/aaai.v36i5.20504.

[17] Jorge Fandinno, Zachary Hansen & Yuliya Lierler (2024): Axiomatization of Non-Recursive Aggregates
in First-Order Answer Set Programming. Journal of Artificial Intelligence Research 80, p. 977–1031,
doi:10.1613/jair.1.15786.

[18] Jorge Fandinno, Zachary Hansen, Yuliya Lierler, Vladimir Lifschitz & Nathan Temple (2023): External
Behavior of a Logic Program and Verification of Refactoring. Theory and Practice of Logic Programming
23(4), p. 933–947, doi:10.1017/S1471068423000200.

[19] Jorge Fandinno & Vladimir Lifschitz (2023): Omega-Completeness of the Logic of Here-and-There and
Strong Equivalence of Logic Programs. Proceedings of the International Conference on Principles of Knowl-
edge Representation and Reasoning 19(1), p. 240–251, doi:10.24963/kr.2023/24.

[20] Jorge Fandinno, Vladimir Lifschitz, Patrick Lühne & Torsten Schaub (2020): Verifying Tight Logic Pro-
grams with anthem and vampire. Theory and Practice of Logic Programming 5(20), pp. 735–750,
doi:10.1017/S1471068403001765.

[21] Jorge Fandinno, Vladimir Lifschitz & Nathan Temple (2024): Locally Tight Programs. Theory and Practice
of Logic Programming, p. 1–31, doi:10.1017/S147106842300039X.

[22] Onofrio Febbraro, Nicola Leone, Kristian Reale & Francesco Ricca (2013): Unit Testing in ASPIDE. In
Hans Tompits, Salvador Abreu, Johannes Oetsch, Jörg Pührer, Dietmar Seipel, Masanobu Umeda & Armin
Wolf, editors: Applications of Declarative Programming and Knowledge Management, Springer, Berlin,
Heidelberg, p. 345–364, doi:10.1007/978-3-642-41524-1 21.

[23] Paolo Ferraris, Joohyung Lee & Vladimir Lifschitz (2011): Stable models and circumscription. Artificial
Intelligence 175(1), pp. 236–263, doi:10.1016/j.artint.2010.04.011.

[24] Martin Gebser, Amelia Harrison, Roland Kaminski, Vladimir Lifschitz & Torsten Schaub (2015): Abstract
gringo. Theory and Practice of Logic Programming 15(4–5), p. 449–463, doi:10.1017/S1471068415000150.

[25] Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten Schaub, Orkunt Sabuncu, Van Nguyen & Tran Cao
Son (2018): Experimenting with robotic intra-logistics domains. Theory and Practice of Logic Programming
18(3–4), p. 502–519, doi:10.1017/S1471068418000200.

[26] Michael Gelfond (2002): Representing Knowledge in A-Prolog. Lecture Notes in Computer Science 2408,
pp. 413–451, doi:10.1007/3-540-45632-5 16.

[27] Michael Gelfond & Yulia Kahl (2014): Knowledge Representation, Reasoning, and the Design
of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press,
doi:10.1017/CBO9781139342124.

[28] Ricardo Gonçalves, Tomi Janhunen, Matthias Knorr, João Leite & Stefan Woltran (2019): Forgetting in
Modular Answer Set Programming. Proceedings of the AAAI Conference on Artificial Intelligence 33(01),
p. 2843–2850, doi:10.1609/aaai.v33i01.33012843.

[29] Alexander Greßler, Johannes Oetsch & Hans Tompits (2017): Harvey: A System for Random Testing in
ASP. In Marcello Balduccini & Tomi Janhunen, editors: Logic Programming and Nonmonotonic Reasoning,
Springer International Publishing, Cham, p. 229–235, doi:10.1007/978-3-319-61660-5 21.

[30] Zach Hansen & Jorge Fandinno (2023): Recursive Aggregates as Intensional Functions. In: Proceedings of
Answer Set Programming and Other Computing Paradigms (ASPOCP 2023), pp. 1–22.

[31] Zachary Hansen & Yuliya Lierler (2022): Semantics for Conditional Literals via the SM Operator. In Georg
Gottlob, Daniela Inclezan & Marco Maratea, editors: Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Computer Science, Springer International Publishing, Cham, p. 259–272, doi:10.1007/978-
3-031-15707-3 20.

[32] Arend Heyting (1930): Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussis-
chen Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu Berlin, pp. 42–56.

https://doi.org/10.1609/aaai.v36i5.20504
https://doi.org/10.1613/jair.1.15786
https://doi.org/10.1017/S1471068423000200
https://doi.org/10.24963/kr.2023/24
https://doi.org/10.1017/S1471068403001765
https://doi.org/10.1017/S147106842300039X
https://doi.org/10.1007/978-3-642-41524-1_21
https://doi.org/10.1016/j.artint.2010.04.011
https://doi.org/10.1017/S1471068415000150
https://doi.org/10.1017/S1471068418000200
https://doi.org/10.1007/3-540-45632-5_16
https://doi.org/10.1017/CBO9781139342124
https://doi.org/10.1609/aaai.v33i01.33012843
https://doi.org/10.1007/978-3-319-61660-5_21
https://doi.org/10.1007/978-3-031-15707-3_20
https://doi.org/10.1007/978-3-031-15707-3_20

344 Relating ASP and Many-sorted Logics

[33] T. Janhunen, E. Oikarinen, H. Tompits & S. Woltran (2009): Modularity Aspects of Disjunctive Stable Mod-
els. Journal of Artificial Intelligence Research 35, p. 813–857, doi:10.1613/jair.2810.

[34] Tomi Janhunen & Emilia Oikarinen (2004): LPEQ and DLPEQ — Translators for Automated Equivalence
Testing of Logic Programs. In Vladimir Lifschitz & Ilkka Niemelä, editors: Logic Programming and Non-
monotonic Reasoning, Springer, Berlin, Heidelberg, p. 336–340, doi:10.1007/978-3-540-24609-1 30.

[35] Laura Kovács & Andrei Voronkov (2013): First-Order Theorem Proving and Vampire. In Natasha Sharygina
& Helmut Veith, editors: Computer Aided Verification - 25th International Conference, CAV 2013, Saint
Petersburg, Russia, July 13-19, 2013. Proceedings, Lecture Notes in Computer Science 8044, Springer, pp.
1–35, doi:10.1007/978-3-642-39799-8 1.

[36] J. Lee & Y. Meng (2011): First-Order Stable Model Semantics and First-Order Loop Formulas. Journal of
Artificial Intelligence Research 42, p. 125–180, doi:10.1613/jair.3337.

[37] Joohyung Lee & Vladimir Lifschitz (2003): Loop Formulas for Disjunctive Logic Programs. In Catuscia
Palamidessi, editor: Logic Programming, Springer, Berlin, Heidelberg, p. 451–465, doi:10.1007/978-3-540-
24599-5 31.

[38] Vladimir Lifschitz (2010): Thirteen Definitions of a Stable Model, p. 488–503. Springer, Berlin, Heidelberg,
doi:10.1007/978-3-642-15025-8 24.

[39] Vladimir Lifschitz, Patrick Lühne & Torsten Schaub (2020): Towards Verifying Logic Programs in the Input
Language of clingo. In Andreas Blass, Patrick Cégielski, Nachum Dershowitz, Manfred Droste & Bernd
Finkbeiner, editors: Fields of Logic and Computation III, Springer International Publishing, Cham, pp. 190–
209, doi:10.1007/978-1-4684-3384-5 11.

[40] Vladimir Lifschitz, David Pearce & Agustı́n Valverde (2001): Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), p. 526–541, doi:10.1145/383779.383783.

[41] Fangzhen Lin & Yuting Zhao (2004): ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157(1), p. 115–137, doi:10.1016/j.artint.2004.04.004.

[42] Johannes Oetsch, Martina Seidl, Hans Tompits & Stefan Woltran (2009): Testing Relativised Uniform Equiv-
alence under Answer-Set Projection in the System ccT. In Dietmar Seipel, Michael Hanus & Armin Wolf,
editors: Applications of Declarative Programming and Knowledge Management, Springer, Berlin, Heidel-
berg, p. 241–246, doi:10.1007/978-3-642-00675-3 16.

[43] Jens Otten (2016): nanoCoP: A Non-clausal Connection Prover. In Nicola Olivetti & Ashish Tiwari, editors:
Automated Reasoning, Springer International Publishing, Cham, p. 302–312, doi:10.1007/978-3-319-40229-
1 21.

[44] David Pearce (2006): Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1), p. 3–41,
doi:10.1007/s10472-006-9028-z.

[45] Geoff Sutcliffe (2017): The TPTP Problem Library and Associated Infrastructure. From CNF to TH0, TPTP
v6.4.0. Journal of Automated Reasoning 59(4), pp. 483–502, doi:10.1007/s10817-017-9407-7.

[46] Miroslaw Truszczynski (2012): Connecting First-Order ASP and the Logic FO(ID) through Reducts. Lecture
Notes in Computer Science 7265, Springer Berlin Heidelberg, doi:10.1007/978-3-642-30743-0 37. Available
at http://link.springer.com/10.1007/978-3-642-30743-0_37.

[47] Agustı́n Valverde (2004): tabeql: A Tableau Based Suite for Equilibrium Logic. In Jóse Júlio Alferes & João
Leite, editors: Logics in Artificial Intelligence, Springer, Berlin, Heidelberg, p. 734–737, doi:10.1007/978-
3-540-30227-8 69.

[48] Mark Wallace (1993): Tight, consistent, and computable completions for unrestricted logic programs. The
Journal of Logic Programming 15(3), p. 243–273, doi:10.1016/0743-1066(93)90041-E.

https://doi.org/10.1613/jair.2810
https://doi.org/10.1007/978-3-540-24609-1_30
https://doi.org/10.1007/978-3-642-39799-8_1
https://doi.org/10.1613/jair.3337
https://doi.org/10.1007/978-3-540-24599-5_31
https://doi.org/10.1007/978-3-540-24599-5_31
https://doi.org/10.1007/978-3-642-15025-8_24
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1145/383779.383783
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1007/978-3-642-00675-3_16
https://doi.org/10.1007/978-3-319-40229-1_21
https://doi.org/10.1007/978-3-319-40229-1_21
https://doi.org/10.1007/s10472-006-9028-z
https://doi.org/10.1007/s10817-017-9407-7
https://doi.org/10.1007/978-3-642-30743-0_37
http://link.springer.com/10.1007/978-3-642-30743-0_37
https://doi.org/10.1007/978-3-540-30227-8_69
https://doi.org/10.1007/978-3-540-30227-8_69
https://doi.org/10.1016/0743-1066(93)90041-E

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 345–350, doi:10.4204/EPTCS.416.34

© Kabir
This work is licensed under the
Creative Commons Attribution License.

Answer Set Counting and its Applications

Mohimenul Kabir
National University of Singapore

School of Computing
Singapore

We have focused on Answer Set Programming (ASP), more specifically, answer set counting, ex-
ploring both exact and approximate methodologies. We developed an exact ASP counter, sharpASP,
which utilizes a compact encoding for propositional formulas, significantly enhancing efficiency
compared to existing methods that often struggle with inefficient encodings. Our evaluations indicate
that sharpASP outperforms current ASP counters on several benchmarks. In addition, we proposed
an approximate ASP counter, named ApproxASP, a hashing-based counter integrating Gauss-Jordan
elimination within the ASP solver, clingo. As a practical application, we employed ApproxASP for
network reliability estimation, demonstrating superior performance over both traditional reliability
estimators and #SAT-based methods.

1 Introduction

Answer Set Programming (ASP) [22] has emerged as a promising paradigm in knowledge representation
and automated reasoning owing to its ability to model hard combinatorial problems from diverse domains
in a natural way [3]. Building on advances in propositional SAT solving, the past two decades have wit-
nessed the emergence of well-engineered systems for solving the answer set satisfiability problem, i.e.,
finding models or answer sets for a given answer set program. In recent years, there has been growing
interest in problems beyond satisfiability, such as model counting, in the context of ASP. In this work,
we focus on the model counting problem in the context of ASP, known as answer set counting prob-
lem. There has been growing interest in answer set counting, motivated by applications in probabilistic
reasoning and network reliability [19, 1, 12]

2 Background and Problem Statement

An answer set program P consists of a set of rules, each rule is structured as follows:

Rule r: a1∨ . . .ak← b1, . . . ,bm,not c1, . . . ,not cn (1)

where, a1, . . . ,ak,b1, . . . ,bm,c1, . . . ,cn are propositional variables or atoms, and k,m,n are non-negative
integers. The notations Rules(P) and atoms(P) denote the rules and atoms within the program P. In
rule r, the operator “not” denotes default negation [5]. For each rule r (eq. (1)), we adopt the following
notations: the atom set {a1, . . . ,ak} constitutes the head of r, denoted by Head(r), the set {b1, . . . ,bm}
is referred to as the positive body atoms of r, denoted by Body(r)+, and the set {c1, . . . ,cn} is referred
to as the negative body atoms of r, denoted by Body(r)−. A rule r is called a constraint when Head(r)
contains no atom. A program P is called a disjunctive logic program if there is a rule r ∈ Rules(P) such
that |Head(r)|≥ 2 [2].

In ASP, an interpretation M over atoms(P) specifies which atoms are assigned true; that is, an atom
a is true under M if and only if a ∈ M (or false when a ̸∈ M resp.). An interpretation M satisfies a

http://dx.doi.org/10.4204/EPTCS.416.34
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

346 Answer Set Counting and its Applications

rule r, denoted by M |= r, if and only if (Head(r)∪Body(r)−)∩M ̸= /0 or Body(r)+ \M ̸= /0. An
interpretation M is a model of P, denoted by M |= P, when ∀r∈Rules(P)M |= r. The Gelfond-Lifschitz (GL)
reduct of a program P, with respect to an interpretation M, is defined as PM = {Head(r)←Body(r)+|r ∈
Rules(P),Body(r)−∩M = /0} [11]. An interpretation M is an answer set of P if M |= P and no M′⊂M
exists such that M′ |= PM. We denote the answer sets of program P using the notation AS(P).

Exact Answer Set Counting [17] Given an ASP program P, the exact answer set counting seeks to
count the number of answer sets of P; more formally, the problem seeks to find |AS(P)|.

Approximate Answer Set Counting [18] Given an ASP program P, tolerance parameter ε , and con-
fidence parameter δ , the approximate answer set counting seeks to estimate the number of answer sets
of P with a probabilistic guarantee; more formally, the approximate answer set counters returns a count
c such that Pr[|AS(P)|/1+ ε ≤ c≤ (1+ε)×|AS(P)|]≥ 1−δ . Our approximate answer set counter invokes
a polynomial number of calls to an ASP solver.

Clark’s completion [5] or program completion is a technique to translate a normal program P into
a propositional formula Comp(P) that is related but not semantically equivalent. Specifically, for each
atom a in atoms(P), we perform the following steps:

1. Let r1, . . . ,rk ∈ Rules(P) such that Head(r1) = . . .= Head(rk) = a, then we add the propositional
formula (a↔ (Body(r1)∨ . . .∨Body(rk))) to Comp(P).

2. Otherwise, we add the literal ¬a to Comp(P).

Finally, Comp(P) is derived by logically conjoining all the previously added constraints. Literature
indicates that while every answer set of P satisfies Comp(P), the converse is not true [21].

3 Related Works

The decision version of normal logic programs is NP-complete; therefore, the ASP counting for normal
logic programs is #P-complete [24] via a polynomial reduction [16]. Given the #P-completeness, a
prominent line of work focused on ASP counting relies on translations from the ASP program to a
CNF formula [21, 14, 15, 16]. Such translations often result in a large number of CNF clauses and
thereby limit practical scalability for non-tight ASP programs. Eiter et al. [6] introduced TP-unfolding to
break cycles and produce a tight program. They proposed an ASP counter called aspmc, that performs
a treewidth-aware Clark completion from a cycle-free program to a CNF formula. Jakl, Pichler, and
Woltran [13] extended the tree decomposition based approach for #SAT due to Samer and Szeider [23]
to ASP and proposed a fixed-parameter tractable (FPT) algorithm for ASP counting. Fichte et al. [9, 8]
revisited the FPT algorithm due to Jakl et al. [13] and developed an exact model counter, called DynASP,
that performs well on instances with low treewidth. Aziz et al. [1] extended a propositional model
counter to an answer set counter by integrating unfounded set detection. ASP solvers [10] can count
answer set via enumeration, which is suitable for a sufficiently small number of answer sets. Kabir
et al. [18] focused on lifting hashing-based techniques to ASP counting, resulting in an approximate
counter, called ApproxASP, with (ε,δ)-guarantees. Kabir et al. [17] introduced an ASP counter that
utilizes a sophisticated Boolean formula, termed the copy formula, which features a compact encoding.

Kabir 347

4 Current Progress and Future Goals

We have already engineered two ASP counters: SharpASP [17] and ApproxASP [18]. SharpASP1 is an
exact answer set counter and ApproxASP2 is an approximate answer set counter.

The principal contribution of SharpASP is to design a scalable answer set counter, without a substan-
tial increase in the size of the transformed propositional formula, particularly when addressing circular
dependencies. The key idea behind a substantial reduction in the size of the transformed formula is an al-
ternative yet correlated perspective of defining answer sets. This alternative definition formulates the an-
swer set counting problem on a pair of Boolean formulas (F,G), where the formula F over-approximates
the search space of answer sets, while the formula G exploits justifications to identify answer sets cor-
rectly. We set F = Comp(P) since every answer set satisfies Clark completion. Note that Comp(P)
overapproximates answers sets of P. We propose another formula, named copy formula, denoted as
Copy(P), which comprises a set of (implicitly conjoined) implications defined as follows:

1. (type 1) for every v ∈ LA(P), the implication v′→ v is in Copy(P).

2. (type 2) for every rule x← a1, . . .ak,b1, . . .bm,∼ c1, . . .∼ cn in P, where x ∈ LA(P), {a1, . . .ak} ⊆
LA(P) and {b1, . . .bm}∩LA(P) = /0, the implication a1

′∧ . . .ak
′∧ b1∧ . . .bm∧¬c1∧ . . .¬cn→ x′

is in Copy(P).

3. No other implication is in Copy(P).
For each satisfying assignment M |= Comp(P), we have the following observations:
• if M ∈ AS(P), then Copy(P)|M = /0

• if M ̸∈ AS(P), then Copy(P)|M ̸= /0
where Copy(P)|M denotes the unit propagation of M on Comp(P). We integrate these observations into
propositional model counters to engineer an answer set counter.

Within ApproxASP, we present a scalable approach to approximate the number of answer sets. In-
spired by approximate model counter ApproxMC [4], our approach is based on systematically adding
parity (XOR) constraints to ASP programs to divide the search space uniformly and independently. We
prove that adding random XOR constraints partitions the answer sets of an ASP program. When a
randomly chosen partition is quite small, we can approximate the number of answer sets by simple mul-
tiplication. The XOR semantic in answer set programs was initiated by Everardo et al. [7]. In practice,
we use a Gaussian elimination-based approach by lifting ideas from SAT to ASP and integrating them
into a state-of-the-art ASP solver.

Our objective is to develop more efficient answer set counters by integrating specialized ASP count-
ing techniques and advanced preprocessing methods. Furthermore, we are dedicated to enhancing the
capabilities of SharpASP, currently limited to handling normal programs, to also support disjunctive
answer set programs. In addition, we are eager to explore broader applications of ASP counting to
demonstrate its versatility and potential in solving complex problems. We are also eager to extend the
counting technique in other theories [20].

5 Some Results

We implemented prototypes of both SharpASP, on top of the existing propositional model counter
SharpSAT-TD (denoted as SharpASP (STD) and ApproxASP, on top of ASP solver Clingo. Finally, we

1https://github.com/meelgroup/SharpASP
2https://github.com/meelgroup/ApproxASP2

https://github.com/meelgroup/SharpASP
https://github.com/meelgroup/ApproxASP2

348 Answer Set Counting and its Applications

clingo ASProb aspmc+STDlp2sat+STD
SharpASP
(STD)

#Solved 869 188 840 776 1023

PAR2 4285 8722 4572 5084 3373

Table 1: The performance comparison of SharpASP vis-a-vis other ASP counters in terms of the number
of solved instances and PAR2 scores.

Clingo DynASP Ganak ApproxMC ApproxASP

N
or

m
al #Instances 1500

#Solved 738 47 973 1325 1323

PAR-2 5172 9705 3606 1200 1218

D
is

ju
nc

.

#Instances 200

#Solved 177 0 0 0 185

PAR2 1372 10000 10000 10000 795

Table 2: The runtime performance comparison of Clingo, DynASP, Ganak, ApproxMC, and ApproxASP
on all considered instances.

empirically evaluate their performance against existing counting benchmarks used in answer set counting
literature [9, 6, 1].

SharpASP Our extensive empirical analysis of 1470 benchmarks demonstrates significant perfor-
mance gain over current state-of-the-art exact answer set counters. The result demonstrated is presented
in Table 1 and the rightmost column presents the result of SharpASP. Specifically, by using SharpASP,
we were able to solve 1023 benchmarks with a PAR2 score of 3373, whereas using prior state-of-the-
art, we could only solve 869 benchmarks with a PAR2 score of 4285. A detailed experimental analysis
revealed that the strength of SharpASP is that it spends less time in binary constraint propagation while
making more decisions compared to off-the-shelf propositional model counters.

ApproxASP Table 2 presents the result of ApproxASP with state-of-the-art answer set counters. Ap-
proxASP performs well in disjunctive logic programs. ApproxASP solved 185 instances among 200
instances, while the best ASP solver clingo solved a total of 177 instances. In addition, on normal logic
programs, ApproxASP performs on par with state-of-the-art approximate model counter ApproxMC.

6 Open issues and expected achievements

Model counting, an intractable problem, is classified as #P for normal programs and #co-NP [9] for
disjunctive logic programs, presenting significant challenges in developing scalable answer set counters.
Our observations indicate that while our engineered counters effectively scale for certain problem types,
they underperform for others. The diverse applications of model counting in real-world scenarios further

Kabir 349

complicate the creation of application-specific ASP counters. Moreover, we have identified instances
where existing systems outperform our SharpASP counter. Integrating strengths from these existing
counters into SharpASP to enhance its scalability remains a formidable challenge.

References

[1] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise & Peter James Stuckey (2015): Stable model counting
and its application in probabilistic logic programming. In: AAAI, doi:10.5555/2888116.2888198.

[2] Rachel Ben-Eliyahu & Rina Dechter (1994): Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial intelligence 12, pp. 53–87, doi:10.1007/BF01530761.

[3] Alex Brik & Jeffrey Remmel (2015): Diagnosing automatic whitelisting for dynamic remarketing ads using
hybrid ASP. In: LPNMR, Springer, pp. 173–185, doi:10.1007/978-3-319-23264-5_16.

[4] Supratik Chakraborty, Kuldeep S Meel & Moshe Y Vardi (2013): A scalable approximate model counter. In:
CP, Springer, pp. 200–216, doi:10.1007/978-3-642-40627-0_18.

[5] Keith L Clark (1978): Negation as failure. In: Logic and data bases, Springer, pp. 293–322, doi:10.1007/978-
1-4684-3384-5_11.

[6] Thomas Eiter, Markus Hecher & Rafael Kiesel (2024): aspmc: New frontiers of algebraic answer set count-
ing. Artificial Intelligence 330, p. 104109, doi:10.1016/j.artint.2024.104109.

[7] Flavio Everardo, Tomi Janhunen, Roland Kaminski & Torsten Schaub (2019): The return of xorro. In:
LPNMR, Springer, pp. 284–297, doi:10.1007/978-3-030-20528-7_21.

[8] Johannes K Fichte & Markus Hecher (2019): Treewidth and counting projected answer sets. In: LPNMR,
Springer, pp. 105–119, doi:10.1007/978-3-030-20528-7_9.

[9] Johannes Klaus Fichte, Markus Hecher, Michael Morak & Stefan Woltran (2017): Answer Set Solving with
Bounded Treewidth Revisited. In: LPNMR, pp. 132–145, doi:10.1007/978-3-319-61660-5_13.

[10] Martin Gebser, Benjamin Kaufmann & Torsten Schaub (2012): Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, pp. 52–89, doi:10.1016/j.artint.2012.04.001.

[11] Michael Gelfond & Vladimir Lifschitz (1988): The stable model semantics for logic programming. In:
ICLP/SLP, 88, pp. 1070–1080.

[12] Susana Hahn, Tomi Janhunen, Roland Kaminski, Javier Romero, Nicolas Rühling & Torsten Schaub (2022):
Plingo: a system for probabilistic reasoning in Clingo based on LP MLN. In: RULEML+RR, Springer, pp.
54–62, doi:10.48550/arXiv.2206.11515.

[13] Michael Jakl, Reinhard Pichler & Stefan Woltran (2009): Answer-Set Programming with Bounded Treewidth.
In: IJCAI, 9, pp. 816–822, doi:10.5555/1661445.1661575.

[14] Tomi Janhunen (2004): Representing normal programs with clauses. In: ECAI, 16, p. 358,
doi:10.5555/3000001.3000077.

[15] Tomi Janhunen (2006): Some (in) translatability results for normal logic programs and propositional theo-
ries. Journal of Applied Non-Classical Logics 16(1-2), pp. 35–86, doi:10.3166/jancl.16.35-86.

[16] Tomi Janhunen & Ilkka Niemelä (2011): Compact Translations of Non-disjunctive Answer Set Programs to
Propositional Clauses, pp. 111–130. doi:10.1007/978-3-642-20832-4_8.

[17] Mohimenul Kabir, Supratik Chakraborty & Kuldeep S Meel (2024): Exact ASP Counting with Compact
Encodings. In: AAAI, 38, pp. 10571–10580, doi:10.48550/arXiv.2312.11936.

[18] Mohimenul Kabir, Flavio O Everardo, Ankit K Shukla, Markus Hecher, Johannes Klaus Fichte & Kuldeep S
Meel (2022): ApproxASP–a scalable approximate answer set counter. In: AAAI, 36, pp. 5755–5764,
doi:10.1609/aaai.v36i5.20518.

[19] Mohimenul Kabir & Kuldeep S Meel (2023): A Fast and Accurate ASP Counting Based Network Reliability
Estimator. In: LPAR, 94, pp. 270–287, doi:10.29007/kc6q.

https://doi.org/10.5555/2888116.2888198
https://doi.org/10.1007/BF01530761
https://doi.org/10.1007/978-3-319-23264-5_16
https://doi.org/10.1007/978-3-642-40627-0_18
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1007/978-1-4684-3384-5_11
https://doi.org/10.1016/j.artint.2024.104109
https://doi.org/10.1007/978-3-030-20528-7_21
https://doi.org/10.1007/978-3-030-20528-7_9
https://doi.org/10.1007/978-3-319-61660-5_13
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.48550/arXiv.2206.11515
https://doi.org/10.5555/1661445.1661575
https://doi.org/10.5555/3000001.3000077
https://doi.org/10.3166/jancl.16.35-86
https://doi.org/10.1007/978-3-642-20832-4_8
https://doi.org/10.48550/arXiv.2312.11936
https://doi.org/10.1609/aaai.v36i5.20518
https://doi.org/10.29007/kc6q

350 Answer Set Counting and its Applications

[20] Mohimenul Kabir & Kuldeep S Meel (2024): On Lower Bounding Minimal Model Count. ICLP (to appear),
doi:10.48550/arXiv.2407.09744.

[21] Fangzhen Lin & Yuting Zhao (2004): ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence 157(1), pp. 115 – 137, doi:10.5555/777092.777113. Available at http://www.
sciencedirect.com/science/article/pii/S0004370204000578.

[22] Victor W Marek & Miroslaw Truszczyński (1999): Stable models and an alternative logic programming
paradigm. The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398, doi:10.1007/978-3-642-
60085-2_17.

[23] Marko Samer & Stefan Szeider (2010): Algorithms for propositional model counting. Journal of Discrete
Algorithms 8(1), pp. 50–64, doi:10.1007/978-3-540-75560-9_35.

[24] Leslie G Valiant (1979): The complexity of enumeration and reliability problems. SIAM Journal on Comput-
ing 8(3), pp. 410–421, doi:10.1137/0208032.

https://doi.org/10.48550/arXiv.2407.09744
https://doi.org/10.5555/777092.777113
http://www.sciencedirect.com/science/article/pii/S0004370204000578
http://www.sciencedirect.com/science/article/pii/S0004370204000578
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1007/978-3-540-75560-9_35
https://doi.org/10.1137/0208032

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 351–357, doi:10.4204/EPTCS.416.35

© Kalonji Kalala
This work is licensed under the
Creative Commons Attribution License.

Logical Foundations of Smart Contracts

Kalonji Kalala
School of Electrical Engineering and Computer Science

University of Ottawa
Ottawa, Canada

hkalo081@uottawa.ca

Nowadays, sophisticated domains are emerging which require appropriate formalisms to be speci-
fied accurately in order to reason about them. One such domain is constituted of smart contracts
that have emerged in cyber physical systems as a way of enforcing formal agreements between com-
ponents of these systems. Smart contracts self-execute to run and share business processes through
Blockchain, in decentralized systems, with many different participants. Legal contracts are in many
cases complex documents, with a number of exceptions, and many subcontracts. The implementa-
tion of smart contracts based on legal contracts is a long and laborious task, that needs to include all
actions, procedures, and the effects of actions related to the execution of the contract. An ongoing
open problem in this area is to formally account for smart contracts using a uniform and somewhat
universal formalism. This thesis proposes logical foundations to smart contracts using the Situation
Calculus, a logic for reasoning about actions. Situation Calculus is one of the prominent logic-based
artificial intelligence approaches that provides enough logical mechanism to specify and implement
dynamic and complex systems such as contracts. Situation Calculus is suitable to show how worlds
dynamically change. Smart contracts are going to be implement with Golog (written en Prolog), a
Situation Calculus-based programming language for modeling complex and dynamic behaviors.

1 Introduction

This work is motivated by the increasing amount of investigations around Blockchains [16] and cyber
physical systems [18] that are coupled with the necessity of smart contracts. Cyber physical systems
are smart devices that are connected together with the purpose of collecting data, processing them, and
providing intelligent decisions. A Blockchain is represented as a public ledger that requires a software
to be shared by peers and run a business. That shared software representing a legal contract among
parties is called smart contract. The implementation of a legal smart contract needs to take in account
all the complexity of a contract and its numerous subcontracts. There are many existing approaches
used to implement smart contracts. Those approaches present a number of limitations in handling all the
complexity of smart contracts and their large number of subcontracts. To solve those limitations, the need
of an approach to represent legal smart contracts in a way that allows to verify their correctness becomes
evident. Logic-based approaches are emerging to provide mechanisms for reasoning about actions and
their effects.

This thesis is using the Situation Calculus, a logic for specifying dynamical systems in artificial
intelligence, to specify smart contracts and reason about them. Many logic-based formalisms have been
investigated previously to represent smart contracts, such as the Deontic Logic [1], Event Calculus [12],
Defeasible Logic [7] and other logic-based approaches in [31]. The idea of specifying smart contracts in
the Situation Calculus is mentioned for the first time in [4]. Daskalopoulou’s main idea is that monitoring
and enforcing smart contracts can be supported in a particular application domain by giving a suitable
(and in formal view) representation for agreements between parties that accounts for deviations of the

http://dx.doi.org/10.4204/EPTCS.416.35
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

352 Logical Foundations of Smart Contracts

parties’ behavior from their obligations and corrections of such deviations. Hence a form of Deontic
Logic combined with a dynamic, temporal logic is advocated for modeling smart contracts. She uses
Event Calculus to this end, while mentioning that the Situation Calculus could as well have been used
for this purpose. Our thesis embarks on a program of incorporating obligation-producing actions into
Situation Calculus to capture and specify smart contracts.

Smart Contracts

A smart contract (e-contract) is a piece of software that monitors the correct execution of the legal con-
tracts [2][30][22][3]. A smart contract is a automation of the execution of an agreement. An application’s
rules and regulations can be digitally facilitated, verified, validated, and enforced using a smart contract,
which is an executable code on a blockchain network. Without the involvement of other parties, smart
contracts enable legitimate transactions. These transactions can be monitored and maintained irreversible
[23]. For blockchain applications[22][6], a smart contract fulfils the need for application-specific verifi-
cation and validation. A blockchain is a new form of infrastructure that has the potential to profoundly
alter the way that individuals transact, communicate, organize, and identify themselves [34][9][32][17].
A blockchain system is composed of a network of computational nodes that share a single data structure
(the blockchain) and reach agreement on its current state [5][33].

Smart Contract Formalization

Formal languages are mostly involved in the specification of e-contracts. Both syntax and semantics of
formal languages are beneficial in the process of either verificating or validating of e-contrats [11][8].
Furthermore, le formal languages are equipped to handle business vocabularies and rule semantics. To
enable users to comprehend high-level logic and accurately express e-contract semantics, effective ap-
proaches to solve logic-specification consistency must be developed. Many investigations have been
carried out to study the use of different formal languages in the modeling of electronic contracts, formal
languages such as Event, Default, Situation and Deontic calculus.

2 Problem Statement

An ongoing open problem in this area of smart contracts is to formally account for them using a uniform
and somewhat universal formalism. In other words, the challenge is to give a formal semantics for smart
contracts. This thesis proposes logical foundations to smart contracts using the Situation Calculus. Since
smart contracts deal with obligations of contracting agents, the problem statement amounts to formalizing
the notion of obligation in the Situation Calculus, and subsequently using this formalization to specify
smart contracts, execute those specifications and use these specifications to prove properties of the smart
contracts.

3 Situation Calculus

The situation calculus [14, 25] is a many-sorted and mostly first order language with equality specifically
designed for representing dynamically changing world. We consider a version of the situation calculus
with four sorts for actions, situations, time points, and objects other that the first three sorts. Actions
are first order terms consisting of an action function symbol and its arguments, one of which being the

Kalonji Kalala 353

action occurrence time. Situations are first order terms denoting finite sequences of actions. They are
represented using a binary function symbol do: do(α,s) denotes the sequence resulting from adding the
action α to an existing sequence s. The constant S0 (initial situation) denotes the empty sequence [].
Time points are the sequence of real numbers. Finally, objects represent domain specific individuals
other than actions, situations, and time points. The language has an alphabet with variables and a finite
number of constants for each sort, a finite number of function symbols called action functions, a finite
number of function symbols called situation independent functions, a finite number of function symbols
called functional fluents, a finite number of predicate symbols called situation independent predicates,
and a finite number of predicate symbols called predicate fluents. Predicate fluents represent properties
whose truth values vary from situation to situation as a consequence of executions of actions. A predicate
fluent is denoted by a predicate symbol whose last argument is a situation term. Functional fluents denote
values that vary from situation to situation as a consequence of executions of actions. The language also
includes special predicates Poss, and ⊏; Poss(a,s) means that the action a is possible in the situation s,
and s ⊏ s′ states that the situation s′ is reachable from s by performing some sequence of actions. In con-
tract modelling terms, s ⊏ s′ means that s is a proper subtrace of the contract execution s′. The predicate
⊏ will be useful in formulating properties of contracts.

The Situation Calculus allows a high level of flexibility in representing dynamic environments, thus
making possible flexible and nuanced modeling of real-world scenarios. The formalism of Situation Cal-
culus offers an effective way to describe changes and reason about the consequences of actions inside a
system. This makes it possible to express change and action in an efficient manner. In our case, a smart
contract represents the complex dynamic domain representing the Situation Calculus.

A dynamic domain (e.g., legal contracts) is axiomatized in the Situation Calculus with axioms which
describe how and under what conditions the domain is changing or not changing as a result of performing
actions. Such axioms are called basic action theory in [24]. They include the following classes of
sentences: domain independent foundational axioms for situations; action precondition axioms, one for
each action term, stating the conditions of change; successor state axioms, one for each fluent, stating
how change occurs; specific axioms for time, stating the occurrence times of actions and start times
of situations; unique names axioms for action terms; and axioms describing the initial situation of the
domain. In addition to the primitive actions mentioned above, complex actions mimicking Algol-like
programming language constructs have been introduced to capture the full expressiveness of application
domains. These complex actions are going to be implement with GOLOG [15][10], a Situation Calculus-
based programming language for complex and dynamic behaviors. Golog interpreter is written in Prolog.

4 Solution

Since smart contracts deal with obligations of contracting agents, our approach consists in formalizing
the notion of obligation in the Situation Calculus. In doing so, we extend a well-known solution by Scherl
and Levesque [27] to the classical frame problem for knowledge to obligations. We then use the Situation
Calculus with obligations to specify smart contracts as follows. First, we construct logical theories called
basic contractual theories to formalize legal contracts. Basic contractual theories provide the formal
semantics of the corresponding legal contracts. Second, we represent legal contracts as processes in
the Situation Calculus; such processes lead to situations where desirable properties hold that logically
follow from the basic contractual theory representing those legal contracts. We provide an implementable

354 Logical Foundations of Smart Contracts

specification, thus allowing one to automatically check many properties of the specification using an
interpreter. We use the interpreter to develop a framework for obligation-based programming which we
apply to verify properties of the specified smart contracts.

5 Methodology

In this thesis, we based our research on a methodology proposed in Reiter’s version of the Situation
Calculus [24, 25] by representing smart contract transaction as Situation Calculus actions whose effects
are captured as truth values of Situation Calculus fluents. This approach relies on modelling a smart
contract as a mostly first-order theory called basic action theory [24], augmented with sentences that
account for the embedding of the logic of obligations, the so-called deontic logic, into the Situation
Calculus. The resulting theory is the basic contractual theory mentioned in Section 4. In addition to
four foundational axioms for situations [26, 21] that structure the space of situations, basic contractual
theories contain a set of successor state axioms which extend Reiter’s solution to the frame problem to
the embedding of deontic logic into the situation calculus. With the basic contractual theories in hand,
we represent smart contracts in Situation Calculus as logic-based programs built using complex actions
that macro-expand to a sequence of simple actions. These programs are executed using an interpreter
that uses the basic contractual theories as background theories for the purpose of proving properties of
the formalized smart contracts.

6 Expected Contributions and Goals

The overall goal of the research that underpins the thesis has been stated in Section 2, namely providing
logical foundations that constitute a formal semantics for smart contracts; and, to this end, we choose the
Situation Calculus as our logic. The expected specific contributions and goals include the following:

• Exploring existing logic-based approaches for formalizing smart contracts and comparing them.

• Extending the solution by Scherl and Levesque to the classical frame problem for knowledge to
obligations in the Situation Calculus.

• Representing complex actions for specifying smart contracts as such actions.

• Specifying and proving properties of smart contracts in the language of the Situation Calculus
augmented with obligations.

• Extending the GOLOG interpreter [13], a situation calculus-based programming language for
defining complex actions in terms of a set of primitive actions axiomatized in the situation cal-
culus.

• Using GOLOG to develop a framework for obligation-based programming.

• Providing a Prolog implementation of the framework.

7 Current Status of the Research

With reference to sections below steps (2)–(4) and parts of Step (5) have been completed:

Kalonji Kalala 355

1. Background and Related Work. Here, we introduce the various definitions of smart contract
concepts, the ontology and related formalizations of legal contracts. We introduce the differ-
ent logical formalisms used in modeling smart contracts, such as Event Calculus, Default Logic,
Modal Logic, Deontic Logic and Temporal Logic. Also, we present some important related works
on logic-based smart contracts. Finally, we compare the presented logical formalisms based on a
number of features.

2. Formal Preliminaries. In this chapter, we present the situation calculation as enriched by Reiter
in [24]. We present the language of the Situation Calculus, its syntax, and its foundational axioms.
We then present the main components of the situation calculus machinery, including the basic
actions theories and the regression mechanism used for reasoning about actions. Furthermore,
we present Scherl and Levesque’s extension of the Situation Calculus to account for knowledge
and knowledge-producing actions that explicitly create agent knowledge. Scherl and Levesque’s
solution to the frame problem for knowledge-producing actions is presented, as this solution forms
the departure point of our own solution for accounting for obligations. Finally we summarize the
main theoretical and practical results of the Situation Calculus.

3. Formalization of Obligations. This chapter extends the solution by Scherl and Levesque to the
frame problem for knowledge-producing actions to obligation-producing actions. An obligation-
producing action is one which enacts obligations on the part of whoever agent performs it. Both
works have their roots in the seminal work of Raymond Reiter who proposed the so-called suc-
cessor state axioms as a solution to the frame problem for actions that are neither knowledge, nor
obligation producing. The specification in this chapter yields intuitive properties that one would
expect from obligations. Obligation-producing actions do only affect a newly introduced fluent
for capturing the notion of obligation in the Situation Calculus, and no other fluents, except those
fluents that are made obligatory by obligation-producing actions. In addition, persistence appears
as a consequence of this new setting: if something is obligatory to an agent in a given situation, it
remains obligatory everywhere as it should be, unless something contrary to the obligation occurs.
We show that Reiter’s regression operator for reasoning about actions back to the initial situation
is a reasoning mechanism for this setting as well.

4. Formalization of Smart Contracts. We use the Symboleo [28] ontology to specify smart con-
tracts. Symboleo is defined as a formal specification language for legal contracts[20]. Based on
Event Calculus, it contains axioms to specify its semantics and its syntax is formalized by a gram-
mar [29]. Symboleo generates smart contracts from natural language contract. In order to make an
actual legal contract larger, Symboleo includes a contract ontology containing components such
as : obligations, powers and state models to apply to the concepts of contracts [19]. We will use
the Symboleo ontology and language to formulate smart contract Symboleo programs which will
be systematically translated to Situation Calculus specifications in an effort to have implementable
specifications.

5. Obligation-Based Programming Framework. This could be addressed by extending of GOLOG
to an Obligation-Based Programming Framework and writing the Prolog Implementation of the
Programming Framework.

References
[1] S. Azzopardi, G.J. Pace & F. Schapachnik (2018): On observing contracts: Deontic contracts meet smart

contracts. Frontiers in Artificial Intelligence and Applications 313(December), pp. 21–30, doi:10.3233/978-

https://doi.org/10.3233/978-1-61499-935-5-21

356 Logical Foundations of Smart Contracts

1-61499-935-5-21.

[2] C.D. Clack (2021): Languages for Smart and Computable Contracts. CoRR abs/2104.03764.
arXiv:2104.03764.

[3] A. Daskalopulu (2019): Logic-Based Tools for the Analysis and Representation of Legal Contracts Logic-
Based Tools for the Analysis and Representation of Legal Contracts Aspassia-Kaliopi Daskalopulu Submitted
in fulfilment of the requirements for the award of the degree of Docto (October 2009).

[4] A. Daskalopulu & M.J. Sergot (1997): The Representation of Legal Contracts. AI Soc. 11(1), pp. 6–17,
doi:10.1007/BF02812435.

[5] A. Dorri, S.S. Kanhere, R. Jurdak & P. Gauravaram (2017): Blockchain for IoT security and privacy: The case
study of a smart home. In: 2017 IEEE international conference on pervasive computing and communications
workshops (PerCom workshops), IEEE, pp. 618–623, doi:10.1109/PERCOMW.2017.7917634.

[6] C. Elsden, A. Manohar, J. Briggs, M. Harding, C. Speed & J. Vines (2018): Making sense of blockchain
applications: A typology for HCI. In: Proceedings of the 2018 chi conference on human factors in computing
systems, pp. 1–14, doi:10.1145/3173574.3174032.

[7] G.K. Giannikis & A. Daskalopulu (2006): Defeasible Reasoning with e-Contracts. In: Proceedings of the
2006 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, Hong Kong, China, 18-22
December 2006, IEEE Computer Society, pp. 690–694, doi:10.1109/IAT.2006.51.

[8] G. Governatori, F. Idelberger, Z. Milosevic, R. Riveret, G. Sartor & X. Xu (2018): On legal contracts,
imperative and declarative smart contracts, and blockchain systems. Artif. Intell. Law 26(4), pp. 377–409,
doi:10.1007/s10506-018-9223-3.

[9] H. Han, R.K. Shiwakoti, R. Jarvis, C. Mordi & D. Botchie (2023): Accounting and auditing with blockchain
technology and artificial Intelligence: A literature review. International Journal of Accounting Information
Systems 48, p. 100598, doi:10.1016/j.accinf.2022.100598.

[10] T. Hofmann, T. Niemueller, J. Claßen & G. Lakemeyer (2016): Continual planning in Golog. In: Proceedings
of the AAAI Conference on Artificial Intelligence, 30.

[11] P.R. Krishna & K. Karlapalem (2008): Electronic Contracts. IEEE Internet Comput. 12(4), pp. 60–68,
doi:10.1109/MIC.2008.77.

[12] J.T. de Kruijff & H. Weigand (2019): Introducing CommitRuleML for Smart Contracts. In P. Johannesson,
B. Andersson & H. Weigand, editors: Short Paper Proceedings of the 13th International Workshop on Value
Modeling and Business Ontologies, VMBO, 2019, Stockholm, Sweden, March 4-5, 2019, CEUR Workshop
Proceedings 2383, CEUR-WS.org. Available at http://ceur-ws.org/Vol-2383/paper14.pdf.

[13] H.J. Levesque, R. Reiter, Y. Lespérance, F. Lin & R.B. Scherl (1997): GOLOG: A Logic Programming
Language for Dynamic Domains. J. Log. Program. 31(1-3), pp. 59–83, doi:10.1016/S0743-1066(96)00121-
5.

[14] J. McCarthy (1963): Situations, actions, and causal laws. Technical Report, STANFORD UNIV CA DEPT
OF COMPUTER SCIENCE.

[15] S. McIlraith & T.C. Son (2001): Adapting Golog for programming the semantic web. In: Fifth International
Symposium on Logical Formalizations of Commonsense Reasoning, pp. 195–202.

[16] A.A. Monrat, O. Schelén & K. Andersson (2019): A Survey of Blockchain From the Per-
spectives of Applications, Challenges, and Opportunities. IEEE Access 7, pp. 117134–117151,
doi:10.1109/ACCESS.2019.2936094.

[17] D. Mourtzis, J. Angelopoulos & N. Panopoulos (2023): Blockchain integration in the era of industrial meta-
verse. Applied Sciences 13(3), p. 1353, doi:10.3390/app13031353.

[18] A. Panarello, N. Tapas, G. Merlino, F. Longo & A. Puliafito (2018): Blockchain and IoT Integration: A
Systematic Survey. Sensors 18(8), p. 2575, doi:10.3390/s18082575.

[19] A. Parvizimosaed (2020): Towards the Specification and Verification of Legal Contracts. 28th IEEE Interna-
tional Requirements Engineering Conference (RE’20). IEEE CS.

https://doi.org/10.3233/978-1-61499-935-5-21
https://doi.org/10.3233/978-1-61499-935-5-21
https://arxiv.org/abs/2104.03764
https://doi.org/10.1007/BF02812435
https://doi.org/10.1109/PERCOMW.2017.7917634
https://doi.org/10.1145/3173574.3174032
https://doi.org/10.1109/IAT.2006.51
https://doi.org/10.1007/s10506-018-9223-3
https://doi.org/10.1016/j.accinf.2022.100598
https://doi.org/10.1109/MIC.2008.77
http://ceur-ws.org/Vol-2383/paper14.pdf
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.1109/ACCESS.2019.2936094
https://doi.org/10.3390/app13031353
https://doi.org/10.3390/s18082575

Kalonji Kalala 357

[20] A. Parvizimosaed, S. Sharifi, D. Amyot, L. Logrippo & J. Mylopoulos (2020): Subcontracting, Assign-
ment, and Substitution for Legal Contracts in Symboleo. In G. Dobbie, U. Frank, G. Kappel, S.W. Lid-
dle & H.C. Mayr, editors: Conceptual Modeling - 39th International Conference, ER 2020, Vienna, Aus-
tria, November 3-6, 2020, Proceedings, Lecture Notes in Computer Science 12400, Springer, pp. 271–285,
doi:10.1007/978-3-030-62522-1_20.

[21] F. Pirri & R. Reiter (1999): Some contributions to the metatheory of the situation calculus. Journal of the
ACM (JACM) 46(3), pp. 325–361, doi:10.1145/316542.316545.

[22] M.A. Rahman, M.M. Rashid, M.S. Hossain, E. Hassanain, M.F. Alhamid & M. Guizani (2019): Blockchain
and IoT-Based Cognitive Edge Framework for Sharing Economy Services in a Smart City. IEEE Access 7,
pp. 18611–18621, doi:10.1109/ACCESS.2019.2896065.

[23] B. Ramamurthy (2020): Blockchain in action. Manning Publications.
[24] R. Reiter (2001): Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical

Systems. The MIT Press, MIT Press, doi:10.7551/mitpress/4074.001.0001.
[25] R. Reiter (1991): The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a

Completeness Result for Goal Regression. In V. Lifschitz, editor: Artificial and Mathematical Theory of
Computation, Papers in Honor of John McCarthy on the occasion of his sixty-fourth birthday, Academic
Press / Elsevier, pp. 359–380, doi:10.1016/b978-0-12-450010-5.50026-8.

[26] R. Reiter (1993): Proving properties of states in the situation calculus. Artificial Intelligence 64(2), pp.
337–351, doi:10.1016/0004-3702(93)90109-O.

[27] R.B. Scherl & H.J. Levesque (2003): Knowledge, action, and the frame problem. Artificial Intelligence
144(1-2), pp. 1–39, doi:10.1016/S0004-3702(02)00365-X.

[28] S. Sharifi, A. Parvizimosaed, D. Amyot, L. Logrippo & J. Mylopoulos (2020): Symboleo: towards a specifi-
cation language for legal contracts. In: 2020 IEEE 28th International Requirements Engineering Conference
(RE), IEEE, pp. 364–369, doi:10.1109/RE48521.2020.00049.

[29] S.S. Sharifi (2020): Smart Contracts : from Formal Specification to Blockchain Code.
[30] H. Surden (2012): Computable contracts. UCDL Rev. 46, p. 629.
[31] P. Tolmach, Y. Li, S. Lin, Y. Liu & Z. Li (2020): A Survey of Smart Contract Formal Specification and

Verification. CoRR abs/2008.02712. arXiv:2008.02712.
[32] J. Xu, C. Wang & X. Jia (2023): A survey of blockchain consensus protocols. ACM Computing Surveys

55(13s), pp. 1–35, doi:10.1145/3477138.
[33] X. Yue, H. Wang, D. Jin, M. Li & W. Jiang (2016): Healthcare data gateways: found healthcare intelligence

on blockchain with novel privacy risk control. Journal of medical systems 40, pp. 1–8, doi:10.1007/s10916-
016-0574-6.

[34] Z. Zheng, S. Xie, H.-N. Dai, X. Chen & H. Wang (2018): Blockchain challenges and opportunities: A survey.
International journal of web and grid services 14(4), pp. 352–375, doi:10.1504/IJWGS.2018.095647.

https://doi.org/10.1007/978-3-030-62522-1_20
https://doi.org/10.1145/316542.316545
https://doi.org/10.1109/ACCESS.2019.2896065
https://doi.org/10.7551/mitpress/4074.001.0001
https://doi.org/10.1016/b978-0-12-450010-5.50026-8
https://doi.org/10.1016/0004-3702(93)90109-O
https://doi.org/10.1016/S0004-3702(02)00365-X
https://doi.org/10.1109/RE48521.2020.00049
https://arxiv.org/abs/2008.02712
https://doi.org/10.1145/3477138
https://doi.org/10.1007/s10916-016-0574-6
https://doi.org/10.1007/s10916-016-0574-6
https://doi.org/10.1504/IJWGS.2018.095647

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 358–364, doi:10.4204/EPTCS.416.36

© K. Kimbrell

This work is licensed under the

Creative Commons Attribution License.

Commonsense Reasoning-Aided Autonomous Vehicle Systems

Keegan Kimbrell

The University of Texas at Dallas
Richardson, USA

keegan.kimbrell@utdallas.com

Autonomous Vehicle (AV) systems have been developed with a strong reliance on machine learning

techniques. While machine learning approaches, such as deep learning, are extremely effective at

tasks that involve observation and classification, they struggle when it comes to performing higher

level reasoning about situations on the road. This research involves incorporating commonsense

reasoning models that use image data to improve AV systems. This will allow AV systems to perform

more accurate reasoning while also making them more adjustable, explainable, and ethical. This

paper will discuss the findings so far and motivate its direction going forward.

1 Introduction

For both academic and industry research, AV technology has seen incredible advances since the intro-

duction of computer vision-focused systems in the 1980’s [3]. Here, this paper will provide some formal

definitions for autonomous vehicles that it will use throughout this writing. SAE International defines

autonomous vehicles into six different levels based on the level of automation, with level 0 being no au-

tomation and level 5 being full driving automation [6]. Despite AV research being a well-explored field,

there are still no level 5, or fully autonomous, vehicles. This is largely due to imperfections in computer

vision systems and the complexity of more complicated driving tasks that require a human driver to be

present. For a safety-critical system, such as AV systems, minor mistakes cannot be afforded. To this end,

it is important that the AV system can make safe and rational decisions based on accurate interpretations

about its surroundings.

There are several technologies that are used in the perception side of AV systems, such as Light

Detection and Ranging (LiDAR) systems and camera-based systems. These systems are coupled with

deep learning techniques such as Convolutional Neural Networks (CNNs), which are used to classify

sensor data [14]. However, like all machine learning systems, it is always possible for misclassifications

to occur due to noise, scenarios outside of the training data, degradation of sensing equipment, and other

external factors. Because of this, AV systems should move towards using a hybrid AI system, or AI that

combines deep learning with logical reasoning, to help mitigate the failures and shortcomings of solely

deep learning-based approaches.

There are two types of systematic thinking proposed by Kahneman in 2011 [11]. The first is ”System

1”, which is fast, instinctive, and emotional thinking. The second is ”System 2”, which is slow, delibera-

tive, and logical. For a human driver, we use both systems when we are in a driving scenario. Identifying

objects around us and minor driving actions are done quickly using System 1 thinking. However, when

we encounter an unfamiliar or dangerous scenario, we use System 2 thinking to determine a safe way

to navigate the situation. In an optimal hybrid AV system, fast System 1 tasks such as perception and

classification should be handled by deep learning, and slow System 2 tasks should be handled by com-

monsense reasoning. The reasoning system can also be used to perform a more deliberative analysis of

http://dx.doi.org/10.4204/EPTCS.416.36
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

K. Kimbrell 359

the sensor data. This is similar to a human driver who realizes that they misinterpreted an object on the

road and looks closer to figure out what it is.

Commonsense reasoning is a method for modeling the human way of thinking about the world around

us using default rules and exceptions [9]. In the context of driving scenarios, we can understand this as

our default understanding of traffic laws and scenarios. For example, if we drive up to a crosswalk,

by default, we know that we have to stop when there are pedestrians waiting to cross. However, there

may be an exceptional scenario that breaks this rule, such as if we discover that the pedestrians do not

actually intend to cross. In this case, a human driver will still stop and slowly think about the situation

and confirm that the pedestrians do not want to cross before making the potentially unsafe decision of

driving forward. This research is focused on modeling commonsense reasoning and combining it with

current AV techniques to create safer and more reasonable autonomous vehicles.

This experiment proposes a framework for improving AV systems by attaching commonsense layers

that use image data to provide feedback to the deep learning layers for various tasks. With this approach,

we can write commonsense reasoning models that can perform optimizations, safety checks, and expla-

nations for autonomous vehicles. By keeping the commonsense reasoning model in a separate layer,

we can even use this approach to improve existing AV systems. Furthermore, this approach is not en-

cumbered by a mandatory and expensive training process. The commonsense reasoning model can be

modeled and updated with rules generated from domain experts, allowing us to easily stay up-to-date

on new laws, ethical standards, and regulations. Currently, the commonsense model employs collective

behaviors, or the actions of nearby vehicles, to determine the state of the road around us.

2 Related Work

There have been many other works that incorporate symbolic reasoning into deep learning, computer

vision, and autonomous vehicle models. Suchan et al. explore commonsense reasoning-based ap-

proaches such as an integrated neurosymbolic online abduction vision and semantics-based approach

for autonomous driving [17, 16]. These techniques are primarily focused on integrating with the percep-

tion model using answer set programming (ASP), a nonmonotonic reasoning system using stable models

[9, 13]. While their framework is similar, this approach is more decoupled from the vision models,

allowing us to show improvements on existing AV models.

Neurosymbolic AI, AIs that integrate symbolic and neural network-based approaches [10]s, have

been applied towards autonomous driving as well. For safety-critical systems, such as autonomous

driving, neurosymbolic techniques can improve compliance with guidelines and safety constraints [15].

Anderson et al. propose a neurosymbolic framework that incorporates symbolic policies with a deep

reinforcement learning model [1]. They assert that this approach can improve the safety of reinforce-

ment learning approaches in safety-critical domains, including autonomous vehicles. These systems

are related to this research in the sense that both are using symbolic methods to improve existing deep

learning-based systems. However, this research is different in that it is using commonsense reasoning

as the proposed symbolic model and that, while it is being used to improve on a deep learning model, it

is a different layer that is generated separately. While autonomous vehicles and computer vision tech-

nologies are primarily deep learning-based, this approach could be used to improve upon reinforcement

learning-based, other non-neural machine learning-based, or even search-based vehicles.

A framework created earlier, AUTO-DISCERN [12], proposes a goal-directed commonsense rea-

soning ASP system that makes driving decisions based on the observations of the environment. This

research is an extension of this approach by creating a commonsense reasoning model that makes safe

360 Commonsense Reasoning-Aided Autonomous Vehicle Systems

decisions and reasons over a road scenario. This experiment pushes it farther by incorporating the model

with an AV system and using the commonsense model to improve aspects of autonomous driving.

3 Research Goals

The major goal of creating an AV system of higher level autonomy using commonsense reasoning can

be broken down into various tasks relating to where in the AV system we inject the reasoning:

• Perception and Classification: Use commonsense reasoning and knowledge to model the sensor

data and optimize the classifications. We can also inject commonsense reasoning into the training

process itself to create a more connected and explainable model.

• Safe Decision Making: We can model rules for the AV system so that it will always make intelli-

gent and safe decisions that still move it towards its desired goal. This is important for making an

ethical system that complies with traffic laws.

• Complicated Tasks: Complicated tasks may be outside of the training data for an AV system,

such as navigating a road after the results of a hurricane. We can create reasoning models that can

handle multiple unknown scenarios safely. Furthermore, it is easier to model these niche scenarios

using reasoning since there is often a strong bias against such scenarios in the existing training

data for AV systems, and they are difficult to capture using just deep learning.

Each of these tasks separately will improve the effectiveness of future AV systems, and if success is

found in each task, then they can be combined to create an autonomous vehicle with a higher level of

autonomy than existing systems.

4 Preliminary Results

The current focus of these recent experiments has been using commonsense reasoning and knowledge to

optimize the classifications of the computer vision model through consistency checking (first and second

tasks). The system uses a Prolog [5] commonsense reasoning model to check if the classifications being

made by the computer vision model are consistent with each other, particularly if the behavior of nearby

vehicles is consistent with the current road scenario. For example, if a traffic light at an intersection

is red, then vehicles in that lane should be stopped. We define the group actions of nearby vehicles

as collective behaviors. If the rules about the collective behaviors are not consistent with the observed

objects, then the system adjusts the classifications of objects around the AV system to fix the scenario.

This system emulates the human process of reasoning about a road situation by observing surrounding

vehicles. In this approach, we test over misclassified traffic light colors and unobserved road obstacles.

To accomplish this, the system takes objects from the computer vision model’s output and converts

them into facts. For example, the following facts represent the information about nearby vehicles and

intersections:

property(vehicle, Frame, Object_id,

Action, VelocityX, VelocityY, Rotation,

Coordinate1X, Coordinate1Y,

Coordinate2X, Coordinate2Y).

property(intersection, Frame, Object_id,

Coordinate1X, Coordinate1Y,

K. Kimbrell 361

CARLA Traffic Lights
Metrics

Accuracy Precision Recall F-Score

Town 1 100 NPCs Logic .9632 .9663 .9942 .98

Town 1 100 NPCs Baseline .479 .6579 .145 .237

Town 1 100 NPCs Combined .9547 .9297 .9942 .9609

Town 1 200 NPCs Logic 1 1 1 1

Town 1 200 NPCs Baseline .7634 .5 .4091 .45

Town 1 200 NPCs Combined .8387 .64 .7272 .6809

Table 1: Results of commonsense reasoning, baseline deep learning, and combined hybrid models for

traffic lights. The logic model is only evaluated over frames in which there are collective behaviors, and

the baseline and combined models are evaluated over all frames.

Coordinate2X, Coordinate2Y).

vehicles(Frame, Vehicles).

These facts are treated as knowledge about our current scenario. The system also contains another

Prolog program that performs commonsense reasoning over road scenarios. These rules define how

nearby vehicles, or collective behaviors, should act around traffic lights and obstacles.

false_negative_light(Frame):-

property(intersection, Frame, _, _, _, _, _),

collective_{up/down/left/right}(Frame).

This rule is a basic example of how the system would detect misclassifications about the presence of

red traffic lights. The rule will evaluate to true, meaning that the AV system fails to detect a red traffic

light (negative) when there actually is one (positive), when the AV system detects a collective behavior

moving across an intersection in front of it. This is similar to how a human driver can figure out a traffic

light is red even if it appears to be green based on the behavior of nearby vehicles. In addition to rules

concerning traffic lights, the commonsense reasoning program also contains rules about how vehicles

behave when near obstacles.

The following are some of the results from the experiments performed so far, which show the results

of this system when identifying the color of an incoming traffic light and road obstacles using the col-

lective behaviors of nearby vehicles. Both experiments were performed over recorded datasets from the

Car Learning to Act simulator (CARLA) [7].

Table 1 shows the accuracy of the logic model and baseline computer vision model when it comes

to identifying the color of traffic lights at intersections. The dataset is generated from two different

recordings, about a couple minutes long each. Each recording was done using the same CARLA map

(Town 1) with two different vehicle population densities (100 and 200). The image data contained

inclement weather conditions that were outside of the training data. Due to this, the baseline model

struggles to maintain high accuracy when identifying the color of the traffic light.

The accuracy of the commonsense reasoning model is evaluated over eligible frames in the data,

meaning images within the data that fulfill the default rules in our model. For these eligible frames,

362 Commonsense Reasoning-Aided Autonomous Vehicle Systems

CARLA Obstacles
Metrics

Accuracy Precision Recall F-Score

Town 3.0 Logic 1 1 1 1

Town 3.0 Baseline .4943 1 .4943 .6615

Town 3.0 Combined 1 1 1 1

Town 3.1 Logic 1 1 1 1

Town 3.1 Baseline .93 1 .93 .9636

Town 3.1 Combined 1 1 1 1

Table 2: Results of the commonsense reasoning model for obstructions for the logic, baseline, and hybrid

combined models.

the commonsense reasoning model maintains high accuracy. When the reasoning model is combined

with the baseline model and evaluated over the whole dataset, we can see a significant increase in all

metrics over the baseline model. The increase in performance varies, as it depends strongly on how

many frames are eligible for the commonsense reasoning to perform a correction. This is why there is a

greater increase in accuracy for the first dataset as opposed to the second. Despite this, the experiment

so far has demonstrated that this approach is an effective optimizer for this scenario.

The results from Table 2 show a similar result for a different scenario. In this dataset, scenarios are

much shorter (around 30 seconds) and are used to evaluate predictions about incoming obstacles that

are blocking a lane of traffic. This is a task that deep learning models can struggle with since they rely

entirely on image or sensor data. If a large vehicle is completely obstructing the view of the obstacle,

the deep learning system will struggle heavily to identify it. This, however, is not an issue for the

commonsense reasoning system. The results show that as long as there are vehicles nearby for us to

observe, we can always determine an obstacle blocking a lane. The accuracy of the deep learning model

depends heavily on how well it can see the obstruction, which is what leads to the results seen in the

table.

5 Conclusion and Future Work

While a lot of progress has been made in research for AV technology, we are still far away from achieving

a fully autonomous vehicle. This is because of an overreliance on deep learning techniques. Proposed

here is a pipeline towards a fully autonomous vehicle by incorporating commonsense reasoning into

various aspects of the AV system. The results so far demonstrate the effectiveness of this approach.

This work will be extended by exploring new techniques to improve the applicability and efficiency of

this approach. This approach can be improved with evaluations from real-world datasets, such as KITTI

or NuScenes [8, 4], the use of more powerful logic technologies, such as answer set programming, and

the exploration of efficient ways to construct and invoke commonsense reasoning models. It will also

benefit from the consideration of new ways to combine commonsense reasoning into AV systems, such

as employing more neurosymbolic-based methods like injecting commonsense into the training of the

deep learning model.

Going forward, the techniques shown for autonomous vehicles can be applied to other domains.

K. Kimbrell 363

These approaches focus on using commonsense reasoning models that use the images from the au-

tonomous vehicle to improve the system. This can be viewed as a form of visual question answering

(VQA [2]) and can be applied to other domains. Future work will be about the knowledge extraction and

reasoning from images used in this experiment and demonstrate its effectiveness in various applications,

including autonomous vehicles.

References

[1] Greg Anderson, Abhinav Verma, Isil Dillig & Swarat Chaudhuri (2020): Neurosymbolic reinforcement learn-

ing with formally verified exploration. Advances in neural information processing systems 33, pp. 6172–

6183, doi:10.48550/arXiv.2009.12612.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C Lawrence Zitnick &

Devi Parikh (2015): Vqa: Visual question answering. In: Proceedings of the IEEE international conference

on computer vision, pp. 2425–2433, doi:10.1109/ICCV.2015.279.

[3] Keshav Bimbraw (2015): Autonomous cars: Past, present and future a review of the developments in the

last century, the present scenario and the expected future of autonomous vehicle technology. In: 2015 12th

international conference on informatics in control, automation and robotics (ICINCO), 1, IEEE, pp. 191–198,

doi:10.5220/0005540501910198.

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan,

Yu Pan, Giancarlo Baldan & Oscar Beijbom (2020): nuscenes: A multimodal dataset for autonomous driving.

In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11621–11631,

doi:10.1109/CVPR42600.2020.01164.

[5] William F Clocksin & Christopher S Mellish (2003): Programming in PROLOG. Springer Science & Busi-

ness Media, doi:10.1007/978-3-642-55481-0.

[6] On-Road Automated Driving (ORAD) Committee (2021): Taxonomy and definitions for terms related to

driving automation systems for on-road motor vehicles. SAE international.

[7] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez & Vladlen Koltun (2017): CARLA: An

open urban driving simulator. In: Conference on robot learning, PMLR, pp. 1–16, doi:10.48550/arXiv.

1711.03938.

[8] Andreas Geiger, Philip Lenz, Christoph Stiller & Raquel Urtasun (2013): Vision meets robotics: The

kitti dataset. The International Journal of Robotics Research 32(11), pp. 1231–1237, doi:10.1177/

0278364913491297.

[9] Michael Gelfond & Yulia Kahl (2014): Knowledge representation, reasoning, and the design of in-

telligent agents: The answer-set programming approach. Cambridge University Press, doi:10.1017/

CBO9781139342124.

[10] Pascal Hitzler, Aaron Eberhart, Monireh Ebrahimi, Md Kamruzzaman Sarker & Lu Zhou (2022): Neuro-

symbolic approaches in artificial intelligence. National Science Review 9(6), p. nwac035, doi:10.1093/

nsr/nwac035.

[11] Daniel Kahneman (2011): Thinking, fast and slow. macmillan.

[12] Suraj Kothawade, Vinaya Khandelwal, Kinjal Basu, Huaduo Wang & Gopal Gupta (2021): AUTO-DISCERN:

autonomous driving using common sense reasoning. arXiv preprint arXiv:2110.13606, doi:10.48550/

arXiv.2110.13606.

[13] Vladimir Lifschitz (2019): Answer set programming. 3, Springer Heidelberg, doi:10.1007/

978-3-030-24658-7.

[14] Benjamin Quito (2023): Compare and Contrast LiDAR and Non-LiDAR Technology in an Autonomous Vehi-

cle: Developing a Safety Framework. Authorea Preprints, doi:10.36227/techrxiv.23528403.v1.

https://doi.org/10.48550/arXiv.2009.12612
https://doi.org/10.1109/ICCV.2015.279
https://doi.org/10.5220/0005540501910198
https://doi.org/10.1109/CVPR42600.2020.01164
https://doi.org/10.1007/978-3-642-55481-0
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.48550/arXiv.1711.03938
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1177/0278364913491297
https://doi.org/10.1017/CBO9781139342124
https://doi.org/10.1017/CBO9781139342124
https://doi.org/10.1093/nsr/nwac035
https://doi.org/10.1093/nsr/nwac035
https://doi.org/10.48550/arXiv.2110.13606
https://doi.org/10.48550/arXiv.2110.13606
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.36227/techrxiv.23528403.v1

364 Commonsense Reasoning-Aided Autonomous Vehicle Systems

[15] Amit Sheth, Kaushik Roy & Manas Gaur (2023): Neurosymbolic artificial intelligence (why, what, and how).

IEEE Intelligent Systems 38(3), pp. 56–62, doi:10.1109/MIS.2023.3268724.

[16] Jakob Suchan, Mehul Bhatt & Srikrishna Varadarajan (2020): Driven by commonsense. In: ECAI 2020, IOS

Press, pp. 2939–2940. doi:10.3233/FAIA200463.

[17] Jakob Suchan, Mehul Bhatt & Srikrishna Varadarajan (2021): Commonsense visual sensemaking for au-

tonomous driving–On generalised neurosymbolic online abduction integrating vision and semantics. Artifi-

cial Intelligence 299, p. 103522, doi:10.1016/j.artint.2021.103522.

https://doi.org/10.1109/MIS.2023.3268724
https://doi.org/10.3233/FAIA200463
https://doi.org/10.1016/j.artint.2021.103522

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 365–373, doi:10.4204/EPTCS.416.37

© S. Pollaci

This work is licensed under the

Creative Commons Attribution License.

A Category-Theoretic Perspective on Approximation Fixpoint

Theory*

Samuele Pollaci

Vrije Universiteit Brussel
Brussels, Belgium

Katholieke Universiteit Leuven
Leuven, Belgium

Samuele.Pollaci@vub.be

Approximation Fixpoint Theory (AFT) was founded in the early 2000s by Denecker, Marek, and

Truszczyński as an abstract algebraic framework to study the semantics of non-monotonic logics.

Since its early successes, the potential of AFT as a unifying semantic framework has become widely

recognised, and the interest in AFT has gradually increased, with applications now ranging from

foundations of database theory to abstract argumentation. The non-monotonic constructive processes

that occur in many more areas of computer science, together with their associated semantic struc-

tures, can be successfully studied using AFT, which greatly simplifies their characterizations. The

goal of my research is to take a step towards the lifting of AFT into a more general framework for

constructive knowledge.

1 Introduction and Related Work

Approximation Fixpoint Theory (AFT) was founded in the 2000s by Denecker, Marek, and Truszczyński

[14] as an extension of Tarski’s fixpoint theory to study the semantics of non-monotonic logics, like

default logic (DL), autoepistemic logic (AEL) and logic programming (LP). In recent years, interest

in AFT has gradually increased, with applications now ranging from foundations of database theory to

abstract argumentation. Motivated by the success of AFT in this wide range of applications, this project

aims at laying the foundation for an extention of AFT from a useful tool in the area non-monotonic logics

into a general algebraic theory of constructive knowledge.

In the 1980s and 90s, the area of non-monotonic reasoning (NMR) saw fierce debates about formal

semantics. In the subareas of DL, AEL and LP, researchers sought to formalize common-sense intuitions

about knowledge of introspective agents. The main contribution of AFT was to demonstrate that, by

moving to an algebraic setting, the common principles behind the concepts in these languages can be

isolated and studied in a general way. This breakthrough allowed results that were achieved in the

context of one of these languages to be easily transferred to another [27, 32].

The core ideas of AFT are relatively simple: we are interested in fixpoints of an operator O on a

given lattice 〈L,≤〉. For monotonic operators, Tarski’s theory guarantees the existence of a least fixpoint,

which is of interest in many applications. For non-monotonic operators, the existence of fixpoints is not

guaranteed; and even if fixpoints exist, it is not clear which would be “good” fixpoints. AFT generalizes

Tarki’s theory for monotonic operators by making use of a so-called approximating operator; this is

an operator A : L2 → L2, that operates on L2, and that is monotonic with respect to the precision order

≤p (defined by (x,y) ≤p (u,v) if x ≤ u and v ≤ y)). The intuition is that elements of L2 approximate

*This PhD project is supported by Fonds Wetenschappelijk Onderzoek – Vlaanderen (project G0B2221N), with supervisors

Bart Bogaerts and Marc Denecker.

http://dx.doi.org/10.4204/EPTCS.416.37
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

366 A Category-Theoretic Perspective on Approximation Fixpoint Theory

elements of L: (x,y) ∈ L2 approximates z if x ≤ z ≤ y, i.e. when x ≤ y, the tuple (x,y) can be thought

of as an interval in L. Given such an approximator, AFT defines several types of fixpoints (supported

fixpoints, a Kripke-Kleene fixpoint, stable fixpoints, a well-founded fixpoint) of interest. In several fields

of non-monotonic reasoning, it is relatively straightforward to define an approximating operator and it

turns out that the different types of fixpoints then correspond to existing semantics. In this way, AFT

clarifies on the one hand how different semantics in a single domain relate, and on the other hand what

the relation is between different (non-monotonic) logics.

Since its early successes, the potential of AFT as a unifying semantic framework has become widely

recognised. It has been applied to a multi-agent extension of AEL [29], to Dung’s abstract argumen-

tation frameworks (AFs), and abstract dialectical frameworks (ADFs) [25]. It has also been applied to

extensions of LP with aggregates [16], with HEX-atoms [1], with higher-order functions [11], and with

description logics [22]. It served as the foundation of the causal logic FO(C) [8] and was used to charac-

terize active integrity constraints [4]. In all these domains, the power of AFT allows a variety of complex

semantic structures to be characterized by surprisingly simple approximating operators. In comparison to

a direct definition of the semantic structures, the AFT approach therefore greatly reduces the risk of error,

while significantly simplifying the mathematical study of these structures. Interest in these application

areas has also driven the theoretical development of AFT in new directions [22, 11, 5, 7, 17].

The recent broad interest in AFT and the resulting research output provide a unique opportunity to

put AFT on the map as a general algebraic theory of constructive knowledge. Throughout computer sci-

ence, Tarski’s fixpoint theory is used because it allows a potentially complex object (the least fixpoint of

a monotone operator) to be constructed as the limit of a simple iteration process. In many applications,

however, this simple monotone construction process does not suffice. In such cases, it is sometimes

possible to devise other, derived operators that do not operate on the basic semantic space but on a more

complex space. The core of AFT lies in the study of the general principles that underlie such approx-

imations. Such non-monotone construction processes occur in many more areas of computer science,

including formal verification, functional programming, and database theory. The goal of this project is

to develop a single unified framework to study them, thereby bringing two important benefits. First, a

general theory provides confidence in the correct characterization of the processes and resulting seman-

tics. Non-monotone construction processes can be highly complex and developing a new formalization

of such a process from scratch is a difficult, time-consuming and error-prone task. This advantage of

AFT has already been convincingly demonstrated for logic programs with aggregates, where direct def-

initions of the desired semantic structures are highly complex, while the use of AFT requires nothing

more than the definition of a (three-valued) truth evaluation function for the aggregates. Second, once

the constructive process has been correctly characterized, AFT offers a powerful set of algebraic tools to

analyze the process and its limit. For instance, a general toolset for the study of modularity properties

was developed, generalizing several known concepts from AEL, DL and LP [28, 30, 31, 32]. As a sec-

ond example, Truszczyński [28] developed tools for the study of strong equivalence, which immediately

transfer to other fields, where such notions are now studied independently [23]. AFT greatly simplifies

the characterization and subsequent study of constructive processes and their associated semantic struc-

tures. By lifting AFT into a more general framework for constructive knowledge, we bring these benefits

to a wide range of application areas in computer science.

S. Pollaci 367

2 Scientific Research Goals

My PhD research activity fits into the framework of the AFTACK project (project G0B2221N) supported

by Fonds Wetenschappelijk Onderzoek – Vlaanderen. The global goal of this project is to take the next

big leap forward for AFT by lifting the results obtained for various specific application domains into a

general framework for constructive knowledge. To achieve this, three major types of advancements are

needed.

A. General approximation spaces: A construction process consists of a series of approximative ob-

jects. In AFT, these are elements (x,y) of the bilattice L2, which correspond to intervals [x,y] =
{z ∈ L | x ≤ z ≤ y} in the original lattice. In various scenarios, intervals are not refined enough and

a more general approximation space is needed.

B. General processes: AFT was built for processes typically found in non monotonic reasoning.

When moving beyond this scope, the basic concepts behind constructive processes remain the

same, but certain key differences nevertheless arise. For instance, while processes in AFT typically

construct relations over a given set, domain theory [24] considers processes that simultaneously

construct the relations and the set over which they are defined.

C. Analysis of processes: The success of AFT is for a large part due to the rich algebraic toolkit

it offers to analyze the defined processes and semantics. In parallel with extending the range of

spaces and processes, this toolkit needs to be extended as well.

These three goals are materialized in five concrete research objectives. In my research, I am going to

focus primarily on three of them:

1. Approximation Spaces (A). Develop a generalization of AFT where the approximations can be

complex mathematical structures, instead of simple intervals of lattice elements. In several ap-

plications, the limitation to intervals was recognized as a key limiting factor [11, 22, 6, 3]. The

generalisation should be general enough to cover these domains.

2. Recursively defined domains and higher-order functions (A,B). Develop extensions of AFT and

domain theory suitable to define recursive higher-order functions and predicates. Preliminary

experiments have shown that AFT is unsuitable for recursive definitions of higher-order func-

tions [12]. For monotonic recursively defined functions, a solution is provided in domain theory.

The objective is to extend domain theory [24] with the fixpoint notions of AFT to handle non-

monotonically defined recursive functions and predicates.

3. Explanations for AFT (C). In many domains, it is not only important to reach the right conclusions,

but also to explain why they are correct. For instance, in causality, this is the question of actual

causation [20]. In the context of constructive knowledge, this question can be posed as “Why does

a property hold in the constructed object?”. Achieving explainability is especially important in

the light of the EU General Data Protection Regulation, article 22 of which requires that all AI

with an impact on human lives needs to be accountable. Therefore, we want to obtain a principled

approach towards explanations in AFT, which will immediately be applicable to all logics captured

by AFT.

The impact of this project is spread over many different domains. In fact, within each new application

domain, valuable lessons can be learnt from AFT, as has been witnessed before, for instance in the

context of default logic, weighted argumentation, and active integrity constraints. The largest short-term

impact is probably found in Objective 2 (Recursively defined domains and higher-order functions). If

368 A Category-Theoretic Perspective on Approximation Fixpoint Theory

successful, this project will on the one hand be a bridge between functional programming and non-

monotonic reasoning, and on the other hand, will provide the semantic foundations for a new class

of function definitions by lifting the restriction that function definitions need to be monotonic in the

definedness order. Finally, explainability is an important topic in many of the application domains of

AFT right now. By studying this once, algebraically, we lay the foundations for work on explanations in

each of these research areas.

3 Research Methodology

In the following, I break down the three objective presented above into smaller work packages (WP).

This subdivision follows the one proposed for the AFTACK project. In particular, WP2 will be the main

core of my research activity. At the same time, I will collaborate with other members of the research

group on (parts of) the other work packages. More details are provided in Section 4.

3.1 WP1 Approximation Spaces

To develop a notion of an approximation space of a given lattice 〈L,≤〉, we need a mathematical structure

equipped with a truth order ≤ and a precision order ≤p, on which we define a generalization of an

approximating operator. It is important that the space is equipped with enough structure to allow the

construction of key concepts of AFT, such as the stable operator, whose fixpoints determine the partial

stable model semantics and the well-founded semantics [14]. We first tackle this problem for two specific

structures. We expect the lessons learned there to prove valuable when finally developing approximation

spaces in WP1.3.

WP1.1. We first consider the use of the powerset of L as an approximations space. Based on a preliminary

analysis, we conjecture that it is impossible to define a suitable truth order on the set of all subsets

S of L. Therefore, we focus on sets “without holes”, formally, sets S such that whenever x,z ∈ S

and x < y < z, also y∈ S. The most important challenge is defining a stable operator in this context,

and then studying the resulting semantics.

WP1.2. Weighted Abstract Dialectical Frameworks (wADFs) [10] were originally defined in the context

of an arbitrary set with a precision order (a complete partial order) but no truth order. In this work

package, we research (i) how to add a truth order to wADFs, and (ii) which restrictions on the

respective orders we need in order to generalize stable and well-founded semantics to wADFs.

WP1.3. Now, we are concerned with formally defining the notion of an approximation space. This should

be a mathematical structure 〈L,≤,≤p〉 of approximations of a lattice 〈L,≤ such that (i) there is

a ≤-preserving injection from L into L; (ii) we can generalize the definition of an approximating

operator A:L2 → L2 on the bilattice L2 to approximating operators A:L → L on the approximation

space L; (iii) we can generalize the key concepts of AFT (such as the stable operator) to L; and (iv)

the generalizations cover at least the approximations from WP1.1, and WP1.2, and possibly other

extensions of AFT [11, 22].

WP1.4. We investigate what it means for an operator on an approximation space to be stratified or modu-

lar. We also investigate which types of fixpoints of the generalized AFT behave well under such

stratification [30].

S. Pollaci 369

3.2 WP2 Recursively defined domains and higher-order functions

Defining semantics for definitions of higher-order objects is challenging for typed languages and even

more so for untyped ones. Semantics for typed and untyped monotone higher-order function definitions

are developed in denotational semantics for lambda calculus and functional programming languages

[26]; one approach is domain theory [24]. Domain theory was the first approach to provide semantics for

the untyped lambda calculus and allows for more complex semantic spaces than AFT, with rich classes

of approximate objects, suitable for inductive and coinductive constructions of higher-order objects and

infinite data structures. It simultaneously constructs approximations of these complex objects and of

the functions operating on them, resulting in a space of self-applicable functions including a fixpoint

operator through which recursive definitions are given meaning. In another sense, domain theory is more

limited than AFT: it only considers continuous (hence, monotone) operators and definitions. Here, we

combine the strengths of both approaches.

WP2.1. We study approximation spaces in a category-theoretic setting. In particular, we investigate which

classes of approximation spaces form a Cartesian-closed category. One reason we are interested

in this is that a Cartesian-closed category provides a foundation for applying AFT to higher-order

definitions, as it provides a systematic construction of approximation domains for higher-order

concepts from those of base concepts. We undertake this investigation for different notions of

approximations.

WP2.2. Here, we exploit the framework of WP2.1 to develop languages and semantics of non-monotone

definitions of higher-order sets and functions. The framework supports this (i) by providing con-

struction of approximation domains for higher-order concepts; (ii) by imposing abstract conditions

on language constructs that ensure that they are well-behaved (being morphisms in the category);

(iii) by being generic in the underlying order, allowing to combine different orders (e.g., simultane-

ous definition of sets and functions).The range of notions of approximation space in the framework

should offer an enriched spectrum with different trade-offs between precision, mathematical com-

plexity, and computational complexity.

WP2.3. In AFT, the approximator is strictly higher in the set-theoretical hierarchy than the objects on

which it operates. A powerful property of domain theory is that this is not the case: the objects it

constructs can be applied as functions on all constructed objects, including itself. This property is

key to defining semantics of untyped lambda calculus. Dana Scott’s construction of such a domain

is one of the great achievements in the theory of programming languages, but depends on the ≤d-

continuity (and hence, monotonicity) of operators of definitions, a condition we seek to relinquish.

In this final work package, we examine whether it is possible to partially lift the limitation of ≤d-

monotonicity of domain theory and, at the same time, lift AFT’s limitation that prevents its use for

self-application.

3.3 WP3 Explanations for AFT

To bring explainability to AFT, we start from the theory of justifications [13]. Like AFT, this is a unifying

theory that can characterize semantics of various formalisms. However, it is more specific, in the sense

that it does not consider operators on an arbitrary lattice, but is focused on the special case of a powerset

lattice. This allows justification theory to build detailed explanations of why each element of a set X ∈ L

belongs to X . Nevertheless, there are strong correspondences between AFT and justification theory,

including similar notions of duality. The exact relationship remains largely unexplored.

370 A Category-Theoretic Perspective on Approximation Fixpoint Theory

WP3.1. Instead of starting from an operator, justification theory starts from a “justification frame”, from

which an operator can be derived. These frames can be nested, resulting in “nested justification

systems”. In this work package, we research the relationship between the concepts of non-nested

justification theory and those of AFT. In particular, we verify the conjecture that for all main

“branch evaluations” (a concept from justification theory), the semantics induced by justification

theory coincides with the equally named fixpoint(s) in AFT. In other words, this WP provides an

embedding of non-nested justification theory into AFT. While this result is valuable in itself, the

more interesting question is how to generalize AFT using notions from justification theory, which

is what we do next.

WP3.2. In WP3.1, we consider only the operators on powerset lattices induced by justification theory.

In this work package, we research (i) how to generalize the notion of justification to work for

an approximator over an arbitrary complete lattice, or more general, approximation space, (ii)

how to automatically obtain justifications from operators (or rather, from approximators), and (iii)

how these obtained justifications translate back to justification theory. While the main focus of

this work package is on extending approximation fixpoint theory, and bringing justifications to its

various fields of application, the results achieved here also have a significant impact on the theory

of justifications itself. Indeed, one consequence of these results would be that we now also obtain

justifications for so-called ultimate semantics [15].

WP3.3. As mentioned, justification theory allows justification frames to be nested. This results in an ele-

gant way of capturing the semantics of, for instance, nested least and greatest fixpoint definitions.

Now, we research how to achieve the same in AFT. In other words, we develop a suitable notion of

nested approximations, where a single “step” of a high-level approximation may include an entire

fixpoint construction of a lower-level approximation. In addition, it should be possible to choose,

for each of the different levels independently which are the fixpoints of interest.

WP3.4. In the context of justification theory, we recently defined notions of duality, one of which is induced

by inverting the truth order. In general, we expect that such notions also show up in AFT and that

many properties have interesting dual variants, for instance so-called symmetric approximators

would be self-dual. In this work package we perform a complete study of duality in AFT in

general: we identify dual properties and study which new results we obtain by exploiting them.

The research goals of the AFTACK project in which my research activity fits are both fundamental

and ambitious. It is therefore probable that we will not be able to meet every single one of them. However,

this need not be a problem, since each of the individual steps towards the desired goals is in itself

innovative and will lead to publications in high-impact conferences and journals. Moreover, the WPs are

structured in such a way that there is little interdependence between them. The most central WP is that

on approximation spaces (WP1). The research line on explanations (WP3) has a minor dependency on

WP1, in the sense that it needs to be studied in the general context of approximation spaces in order to

have maximum impact. However, even in the unlikely worst case that the WP on approximation spaces

should fail completely, studying the topics in the context of the bilattice of standard AFT still provides

novel and interesting results. The research line on recursive functions has the strongest dependency on

approximation spaces, in the sense that we expect that the bilattice will not suffice for tackling this topic.

Nevertheless, even if we cannot construct approximation spaces that are general enough to meet all of

our stated goals for that WP, we can still develop a less ambitious extension of the bilattice that will be

enough to allow the work on recursive functions to move forward.

S. Pollaci 371

4 Current Status and Future Plan

So far, I have been mainly working on WP2 for AFT for higher-order definitions, specifically WP2.1.

and WP2.2.. In particular, a paper on the stable semantics for higher-order logic programming has been

accepted for ICLP2024, and another paper on the generalization of approximation spaces for higher-

order objects using the tools of Category Theory is under review for LPNMR2024. The latter paper is

also contributing to WP1.1 and WP1.3 as it proposes a novel, general notion of possible approximation

spaces. Continuing this line of work, I am currently studying the relation between our new research out-

puts and previous approaches, like [11], both from a theoretic perspective and from a more computational

one, regarding the complexity in finding the models of a logic program. As next step, I plan to work to-

wards the completion of both WP1 and WP2, in particular by tackling WP1.2. on wADFs, WP1.4., and

WP2.3.. The study of AFT for wADFs may lead the way for the application of AFT to bound-founded

ASP [2], assumption-based argumentation [9], weighted argumentation [19], probabilistic argumentation

[18], and social argumentation [21].

References

[1] Christian Antic, Thomas Eiter & Michael Fink (2013): Hex Semantics via Approximation Fixpoint Theory. In:

Logic Programming and Nonmonotonic Reasoning, 12th International Conference, LPNMR 2013, Corunna,

Spain, September 15-19, 2013. Proceedings, pp. 102–115, doi:10.1007/978-3-642-40564-8_11.

[2] Rehan Abdul Aziz, Geoffrey Chu & Peter J. Stuckey (2013): Stable model semantics for founded bounds.

Theory Pract. Log. Program. 13(4-5), pp. 517–532, doi:10.1017/S147106841300032X.

[3] Bart Bogaerts (2019): Weighted Abstract Dialectical Frameworks through the Lens of Approximation Fix-

point Theory. In: The Thirty-Third AAAI Conference on Artificial Intelligence, AAAI 2019, The Thirty-First

Innovative Applications of Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on

Educational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA, January 27 - February

1, 2019, pp. 2686–2693, doi:10.1609/aaai.v33i01.33012686.

[4] Bart Bogaerts & Luı́s Cruz-Filipe (2018): Fixpoint semantics for active integrity constraints. Artif. Intell.

255, pp. 43–70, doi:10.1016/j.artint.2017.11.003.

[5] Bart Bogaerts, Joost Vennekens & Marc Denecker (2015): Grounded fixpoints and their applications in

knowledge representation. Artif. Intell. 224, pp. 51–71, doi:10.1016/j.artint.2015.03.006.

[6] Bart Bogaerts, Joost Vennekens & Marc Denecker (2016): On Well-Founded Set-Inductions and Locally

Monotone Operators. ACM Trans. Comput. Log. 17(4), p. 27, doi:10.1145/2963096.

[7] Bart Bogaerts, Joost Vennekens & Marc Denecker (2018): Safe inductions and their applications in knowl-

edge representation. Artif. Intell. 259, pp. 167–185, doi:10.1016/j.artint.2018.03.008.

[8] Bart Bogaerts, Joost Vennekens, Marc Denecker & Jan Van den Bussche (2014): FO(C): A Knowledge

Representation Language of Causality. Theory Pract. Log. Program. 14(4–5-Online-Supplement), pp. 60–

69, doi:10.48550/arXiv.1405.1833.

[9] Andrei Bondarenko, Phan Minh Dung, Robert A. Kowalski & Francesca Toni (1997): An Abstract,

Argumentation-Theoretic Approach to Default Reasoning. Artif. Intell. 93, pp. 63–101, doi:10.1016/

S0004-3702(97)00015-5.

[10] Gerhard Brewka, Hannes Strass, Johannes Peter Wallner & Stefan Woltran (2018): Weighted Abstract Di-

alectical Frameworks. In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence,

(AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sympo-

sium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February

2-7, 2018, pp. 1779–1786, doi:10.1609/aaai.v32i1.11545.

https://doi.org/10.1007/978-3-642-40564-8_11
https://doi.org/10.1017/S147106841300032X
https://doi.org/10.1609/aaai.v33i01.33012686
https://doi.org/10.1016/j.artint.2017.11.003
https://doi.org/10.1016/j.artint.2015.03.006
https://doi.org/10.1145/2963096
https://doi.org/10.1016/j.artint.2018.03.008
https://doi.org/10.48550/arXiv.1405.1833
https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1016/S0004-3702(97)00015-5
https://doi.org/10.1609/aaai.v32i1.11545

372 A Category-Theoretic Perspective on Approximation Fixpoint Theory

[11] Angelos Charalambidis, Panos Rondogiannis & Ioanna Symeonidou (2018): Approximation Fixpoint Theory

and the Well-Founded Semantics of Higher-Order Logic Programs. Theory Pract. Log. Program. 18(3-4), pp.

421–437, doi:10.1017/S1471068418000108.

[12] Ingmar Dasseville, Matthias van der Hallen, Bart Bogaerts, Gerda Janssens & Marc Denecker (2016): A

Compositional Typed Higher-Order Logic with Definitions. In: Technical Communications of the 32nd

International Conference on Logic Programming, ICLP 2016 TCs, October 16-21, 2016, New York City,

USA, pp. 14:1–14:13, doi:10.4230/OASIcs.ICLP.2016.14.

[13] Marc Denecker, Gerhard Brewka & Hannes Strass (2015): A Formal Theory of Justifications. In: Logic

Programming and Nonmonotonic Reasoning - 13th International Conference, LPNMR 2015, Lexington, KY,

USA, September 27-30, 2015. Proceedings, pp. 250–264, doi:10.1007/978-3-319-23264-5_22.

[14] Marc Denecker, Victor Marek & Mirosław Truszczyński (2000): Approximations, Stable Operators, Well-

Founded Fixpoints and Applications in Nonmonotonic Reasoning. In Jack Minker, editor: Logic-Based

Artificial Intelligence, The Springer International Series in Engineering and Computer Science 597, Springer

US, pp. 127–144, doi:10.1007/978-1-4615-1567-8_6.

[15] Marc Denecker, Victor W. Marek & Miroslaw Truszczynski (2004): Ultimate approximation and its appli-

cation in nonmonotonic knowledge representation systems. Inf. Comput. 192(1), pp. 84–121, doi:10.1016/

j.ic.2004.02.004.

[16] Marc Denecker, Nikolay Pelov & Maurice Bruynooghe (2001): Ultimate Well-Founded and Stable Se-

mantics for Logic Programs with Aggregates. In: Logic Programming, 17th International Conference,

ICLP 2001, Paphos, Cyprus, November 26 - December 1, 2001, Proceedings, pp. 212–226, doi:10.1007/

3-540-45635-X_22.

[17] Marc Denecker & Joost Vennekens (2007): Well-Founded Semantics and the Algebraic Theory of Non-

monotone Inductive Definitions. In: Logic Programming and Nonmonotonic Reasoning, 9th International

Conference, LPNMR 2007, Tempe, AZ, USA, May 15-17, 2007, Proceedings, pp. 84–96, doi:10.1007/

978-3-540-72200-7_9.

[18] Phan Minh Dung & Phan Minh Thang (2010): Towards (Probabilistic) Argumentation for Jury-based Dispute

Resolution. In: Computational Models of Argument: Proceedings of COMMA 2010, Desenzano del Garda,

Italy, September 8-10, 2010, pp. 171–182, doi:10.3233/978-1-60750-619-5-171.

[19] Paul E. Dunne, Anthony Hunter, Peter McBurney, Simon Parsons & Michael J. Wooldridge (2011): Weighted

argument systems: Basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), pp. 457–486,

doi:10.1016/j.artint.2010.09.005.

[20] Joseph Y. Halpern (2016): Appropriate Causal Models and the stability of Causation. Rev. Symb. Log. 9(1),

pp. 76–102, doi:10.1017/S1755020315000246.

[21] João Leite & João G. Martins (2011): Social Abstract Argumentation. In: IJCAI 2011, Proceedings of the

22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,

pp. 2287–2292. Available at http://ijcai.org/Proceedings/11/Papers/381.pdf.

[22] Fangfang Liu, Yi Bi, Md. Solimul Chowdhury, Jia-Huai You & Zhiyong Feng (2016): Flexible Approxima-

tors for Approximating Fixpoint Theory. In: Advances in Artificial Intelligence - 29th Canadian Conference

on Artificial Intelligence, Canadian AI 2016, Victoria, BC, Canada, May 31 - June 3, 2016. Proceedings, pp.

224–236, doi:10.1007/978-3-319-34111-8_28.

[23] Emilia Oikarinen & Stefan Woltran (2011): Characterizing strong equivalence for argumentation frame-

works. Artif. Intell. 175(14-15), pp. 1985–2009, doi:10.1016/j.artint.2011.06.003.

[24] Dana Scott (1972): Continuous lattices. In E. Lawvere, editor: Toposes, Algebraic Geometry and Logic,

Lecture Notes in Mathematics 274, Springer Verlag, pp. 97–136, doi:10.1007/BFb0073967.

[25] Hannes Strass (2013): Approximating operators and semantics for abstract dialectical frameworks. Artif.

Intell. 205, pp. 39–70, doi:10.1016/J.ARTINT.2013.09.004.

[26] Robert D. Tennent (1991): Semantics of programming languages. Prentice Hall International Series in Com-

puter Science, Prentice Hall.

https://doi.org/10.1017/S1471068418000108
https://doi.org/10.4230/OASIcs.ICLP.2016.14
https://doi.org/10.1007/978-3-319-23264-5_22
https://doi.org/10.1007/978-1-4615-1567-8_6
https://doi.org/10.1016/j.ic.2004.02.004
https://doi.org/10.1016/j.ic.2004.02.004
https://doi.org/10.1007/3-540-45635-X_22
https://doi.org/10.1007/3-540-45635-X_22
https://doi.org/10.1007/978-3-540-72200-7_9
https://doi.org/10.1007/978-3-540-72200-7_9
https://doi.org/10.3233/978-1-60750-619-5-171
https://doi.org/10.1016/j.artint.2010.09.005
https://doi.org/10.1017/S1755020315000246
http://ijcai.org/Proceedings/11/Papers/381.pdf
https://doi.org/10.1007/978-3-319-34111-8_28
https://doi.org/10.1016/j.artint.2011.06.003
https://doi.org/10.1007/BFb0073967
https://doi.org/10.1016/J.ARTINT.2013.09.004

S. Pollaci 373

[27] Miroslaw Truszczynski (2006): Strong and uniform equivalence of nonmonotonic theories - an algebraic

approach. Ann. Math. Artif. Intell. 48(3-4), pp. 245–265, doi:10.1007/S10472-007-9049-2.

[28] Miroslaw Truszczynski (2006): Strong and uniform equivalence of nonmonotonic theories - an algebraic

approach. Ann. Math. Artif. Intell. 48(3-4), pp. 245–265, doi:10.1007/s10472-007-9049-2.

[29] Pieter Van Hertum, Marcos Cramer, Bart Bogaerts & Marc Denecker (2016): Distributed Autoepistemic

Logic and its Application to Access Control. In: Proceedings of the Twenty-Fifth International Joint Confer-

ence on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, pp. 1286–1292. Available

at http://www.ijcai.org/Abstract/16/186.

[30] Joost Vennekens, David Gilis & Marc Denecker (2006): Splitting an operator: Algebraic modularity results

for logics with fixpoint semantics. ACM Trans. Comput. Log. 7(4), pp. 765–797, doi:10.1145/1183278.

1183284.

[31] Joost Vennekens, Johan Wittocx, Maarten Mariën & Marc Denecker (2007): Predicate Introduction for

Logics with a Fixpoint Semantics. Part I: Logic Programming. Fundam. Informaticae 79(1-2), pp. 187–208,

doi:10.3233/FUN-2007-791-209.

[32] Joost Vennekens, Johan Wittocx, Maarten Mariën & Marc Denecker (2007): Predicate Introduction for

Logics with Fixpoint Semantics. Part II: Autoepistemic Logic. Fundam. Informaticae 79(1-2), pp. 209–227,

doi:10.3233/FUN-2007-791-209.

https://doi.org/10.1007/S10472-007-9049-2
https://doi.org/10.1007/s10472-007-9049-2
http://www.ijcai.org/Abstract/16/186
https://doi.org/10.1145/1183278.1183284
https://doi.org/10.1145/1183278.1183284
https://doi.org/10.3233/FUN-2007-791-209
https://doi.org/10.3233/FUN-2007-791-209

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 374–380, doi:10.4204/EPTCS.416.38

© N. Rühling

This work is licensed under the

Creative Commons Attribution License.

Hybrid Answer Set Programming: Foundations and

Applications

Nicolas Rühling

University of Potsdam, Germany
Institute of Computer Science

An der Bahn 2, 14476 Potsdam

nruehling@uni-potsdam.de

1 Introduction

Answer Set Programming (ASP; [32]) is being increasingly applied to solve problems from the real-

world. However, in many cases these problems have a heterogenous nature which requires features

beyond the current capacities of solvers like clingo [19]. Consider for example the field of configuration

[17]; one of the early successful applications of ASP [20, 23]. A configuration problem usually consists

of (at least) a partonomy where parts are parameterized by attributes whose values in turn are restricted

by constraints. While in simple cases these attributes are discrete, many industrial applications require

attributes that range over large numeric domains (eg. precisions in the milimeter range might be needed).

Further, calculations over these attributes can be of linear nature (eg. calculating the total weight by

summing up the weight of all parts) as well as non-linear (eg. area or volume of an object, inclination

of a conveyor belt, etc). Standards ASP solvers like clingo quickly reach their limits when dealing with

numeric ranges and calculations as they need to explicitly ground all possible values. Apart from this,

representing constraints in ASP that go beyond simple arithmetic expressions or aggregations generally

requires considerable effort.

Over the last years, hybrid solvers such as clingcon [3]1 and clingo[DL] [27]2 which make use of

dedicated inference methods for certain kinds of constraints over finite integer domains have already

been successfully applied to many problems such as train scheduling [2] and warehouse delivery [38].

However, what is still missing, is a solid, semantic underpinning of these systems.

This issue has first been addressed by introducing the Logic of Here-and-There with constraints

(HTc; [12]) as an extension of the Logic of Here-and-There (HT; [25]) and its non-monotone extension

Equilibrium Logic [36]. Nowadays, HT serves as a logical foundation for ASP and has facilitated a

broader understanding of this paradigm. The idea is that HTc (and other extensions; see Section 2) play

an analogous role for hybrid ASP.

There remain many open questions about these logics regarding their fundamental characteristics

as well as their practical use in solvers, ie. how they can guide the implementation. Having a formal

understanding of these hybrid logics is also needed to better understand the inherent structure of the

(real-world) problems they are applied to, eg. configuration, and to improve their representations in ASP.

1https://potassco.org/clingcon
2https://github.com/potassco/clingo-dl

http://dx.doi.org/10.4204/EPTCS.416.38
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://potassco.org/clingcon
https://github.com/potassco/clingo-dl

N. Rühling 375

2 Background

2.1 Hybrid Solvers

Nowadays, ASP solver clingo supports so-called theory atoms which allow for foreign inference methods

[27, 30] following the approach of SAT modulo theories (SMT; [5]). This has greatly facilitated the

development of ASP-based special-purpose systems which make use of dedicated inference methods for

certain subclasses of constraints such as difference logic and linear programming. The general idea is

that some external theory serves as an oracle by certifying some of a program’s stable models and has

been characterized for clingo in [11]. We proceed by giving a quick introduction of some of the hybrid

solvers that are part of the POTASSCO suite 3.

The system clingcon is a solver for Constraint Answer Set Programming (CASP) and extends the

input language of clingo with linear equations, represented as theory atoms of the form

&sum{k1 ∗ x1; . . . ;kn ∗ xn} ≺ k0 (1)

where xi is an integer variable and ki ∈ Z an integer constant for 0 ≤ i ≤ n; and ≺ is a comparison symbol

such as <=, =, ! =, <, >, >=. In clingo, theory predicates are preceded by ‘&’.

System clingo[DL] has a more restricted syntax which allows for difference constraints over integers.

This is a subset of the syntax in (1) where theory atoms have the fixed form &sum{1∗ x;(−1)∗ y}<= k

but are rewritten instead as:

&diff{x− y} <= k (2)

with x and y integer variables and k ∈ Z.

A third system is clingo[LP] 4 which extends clingo to solve linear constraints as dealt with in Linear

Programming (LP). The syntax is identical to (1) but the domain now ranges over the real numbers.

Notably, [11] contains a formal characterization of all three just mentioned systems.

Lastly, a recent addition is system fclingo 5 which makes use of clingcon to solve ASP modulo

conditional linear constraints with founded variables. While in clingcon all integer variables need to

have a value assigned, fclingo adds a notion of undefinedness and foundedness as known from ASP,

ie. there needs to be a justification in the logic program if a variable receives a value in an answer set.

Further, the conditional aspect of the linear constraints can be seen as a generalization of the concept

of aggregates commonly used in ASP. The syntax of fclingo accomodates so-called assignments which

guarantee that a variable only gets assigned a value if all other variables in its definition are itself defined,

ie. justified at some other part in the logic program. For instance, the expression

&in{y..y}=: x

only assigns the value of y to x if y has been defined by some other rule. Omitting the assignment would

permit y and x to take arbitrary values if not defined elsewhere, thereby circumventing the principle of

foundedness.

Further systems not developed by POTASSCO include ASP solver dlvhex [39] which supports a sim-

ilar concept of theory atoms as clingo. Other CASP systems include dingo [28], mingo [34] and ezsmt

[31]. Different from the aforementioned systems, all three rely on translations to non-ASP solvers.

3https://potassco.org/
4https://github.com/potassco/clingoLP
5https://github.com/potassco/fclingo

https://potassco.org/
https://github.com/potassco/clingoLP
https://github.com/potassco/fclingo

376 Hybrid ASP: Foundations and Applications

2.2 The Logic of Here-and-There and Hybrid Extensions

The logics HT and Equilibrium Logic nowawadays serve as a logical foundation for (plain) ASP, having

brought upon fundamental results such as the notion of strong equivalence [33]. The idea of HT is that

of two worlds h and t, generally called here and there. 6 More precisely, an HT-interpretation is a pair

〈H,T 〉 of sets of atoms such that H ⊆ T . This gives rise to a three-valued logic where atoms can either

be true, false or undefined. A formula ϕ is satisfied or holds in a model 〈H,T 〉 in symbols 〈H,T〉 |= ϕ , if

it is true in the model, ie. satisfied at the h-world. A model 〈H,T〉 of a theory Γ is called an equilibrium

model if (i) it is total, ie. H = T , and (ii) for any H ′ such that H ′ ⊂ T , 〈H,T 〉 6|= Γ. The term equilibrium

model was coined in [35] and there is complete agreement between equilibrium models and the stable

models of logic programs as defined in [21].

In an attempt to provide a solid, logical foundation for hybrid systems such as the ones introduced in

Section 2.1, a number of extensions of HT for incorporating constraints have been introduced.

The Logic of Here-and-There with constraints (HTc; [12]) allows for capturing constraint theories in

the non-monotonic setting and has subsequently been extended with aggregate functions over constraint

values and variables [9, 10]. In [10] specifications for aggregate functions in terms of HTc are given

based on two different semantic principles. While the semantics given in [18] ensures that aggregate

terms are always defined, [22] prohibits so-called vicious cycles. We also refer to the former as Ferraris

and to the latter as Gelfond-Zhang (GZ) aggregate semantics.

The Logic of Here-and-there with lower bound founded variables (HTLB; [8]) generalizes the con-

cept of foundedness to integer variables. The idea is that variables get assigned the smallest integer value

that can be justified. This can be seen as a generalization of plain HT if one regards Boolean truth values

as ordered by letting true be greater than false.

Both of these extensions can be seen as black-box approaches in the sense that the constraints are

incorporated as special entities whose syntax and satisfaction relations are generally left open. Thus,

the intricacies of the hybrid part are mostly unknown from the logic program perspective. Another

HT extension with a white-box approach of constraints is ASP(A C) [13] which generalizes logical

connectives as a particular case of more general operations on weighted formulas over semirings. In

this setting, operators like logical conjunction ∧ become just one more possible operation that can be

combined with others, such as addition or multiplication (depending on the underlying semiring). This

results in a very expressive and powerful formalism but at the price of a more complex semantics and the

requirement of a semiring structure.

Further white-box approaches are based on the incorporation of intensional or non-Herbrand func-

tions in ASP. For instance, [6] added partial intensional functions to a quantified First-Order version of

HT [37] and later extended this to sets and aggregates [7].

2.3 Configuration

A wide range of approaches exist for representing and solving configuration problems across various

paradigms [29, 26]. In recent years, ASP has emerged as a promising alternative, as evidenced by sev-

eral applications [20, 16, 23, 24]. Moreover, [15] developed an object-oriented approach to configuration

by directly defining concepts in ASP. In the context of interactive configuration, [14] conducted a com-

parative evaluation of various systems, including the ASP solver clingo as well as SAT and CP systems,

for their suitability in this context, finding clingo to be as capable as any other system.

6This is based on Kripke semantics for intuitionistic logic, see [41]

N. Rühling 377

3 Research

My research focuses on the foundations of hybrid ASP with the goal of both understanding better its

fundamental properties and exploiting this knowledge to guide and improve solver implementations.

Further, as this research is motivated by problems in real-world applications, another goal is to better

understand the essence of these problems and how they can be solved using hybrid ASP. More precisely,

the objective is to find mathematical or logical formalizations of these problems which subsequently

serve as basis for succint but general ASP representations. These two goals are reciprocally beneficial

as a deeper insight into real-world problems will make clearer the necessary research directions on the

foundational level. In the context of applications, my current focus lies on problems in the realm of

(industrial product) configuration.

3.1 Contributions and Future Work

Regarding the theoretical aspects of my research I am currently working on the theoretical foundations

of solver fclingo with the goal of improving the current implementation. Here, one of the open issues

is that current results in HTc only allow for the use of GZ aggregate semantics (see Sec. 2.2) in fclingo.

However, we would like to be able to use Ferraris aggregate semantics which guarantee definedness as

known from clingo. Our current approach here consists of finding a suitable translation between the two

semantics.

Another open issue is the formalization of solver clingo[DL] by means of logic HTLB. The concept

of assigning a minimal, founded value to integer variables of HTLB seems like a natural match with the

difference constraints in clingo[DL] which are defined as inequalities, thus, generally have multiple valid

solutions but only one or a few minimal ones.

On the practical side of my research, preliminary results have been found in application of (plain

and hybrid) ASP to configuration problems. In [40] we developed a principled approach to configuration

that included a mathematical formalization of configuration problems with an ASP-based solution. We

defined a configuration problem in terms of an abstract model and a concrete instantiation. While the

model serves as a blueprint for all possible configurations, the instantation represents a solution. This

work was accompanied by a corresponding fact format and two ASP encoding, one for clingo and one

for fclingo, which were subsequently made public 7.

A similar but slightly different work has been done in [4] where we developed the COOMSUITE
8, a

workbench for experimentation with industrial-scale product configuration problems. The COOMSUITE

is built around product configuration language COOM[1] 9 and provides a COOM grammar for parsing, a

specialized ASP translator for conversion into facts, two encodings (one for clingo and one for fclingo)

as well as various benchmark sets. The intention is to ease the development of powerful methods able to

perform in industrial settings.

Future work here includes the further study of suitable representations for hybrid solver fclingo. The

current fclingo encodings do not necessarily use all features the solver has to offer, eg. undefinedness of

numeric variables, but rather leaves this to non-hybrid ASP. The reason for this is that these encodings

have been constructed with a plain ASP encoding as base, only modifying the necessary parts. An

approach we want to pursue here is to find a logical formalization of configuration problems in terms

of HTc and use this as basic for new encodings which make more natural use of fclingo’s features. We

7https://github.com/potassco/configuration-encoding
8https://github.com/potassco/coom-suite
9COOM is a domain-specific language developed by denkbares GmbH and used in numerous industrial applications

https://github.com/potassco/configuration-encoding
https://github.com/potassco/coom-suite

378 Hybrid ASP: Foundations and Applications

expect that this will not only improve the knowledge representation but also the performance of the

solver.

References

[1] Coom Language. https://www.coom-lang.org/.

[2] D. Abels, J. Jordi, M. Ostrowski, T. Schaub, A. Toletti & P. Wanko (2021): Train scheduling with hybrid ASP.

Theory and Practice of Logic Programming 21(3), pp. 317–347, doi:10.1017/S1471068420000046.

[3] M. Banbara, B. Kaufmann, M. Ostrowski & T. Schaub (2017): Clingcon: The Next Generation. Theory and

Practice of Logic Programming 17(4), pp. 408–461, doi:10.1017/S1471068417000138.

[4] J. Baumeister, K. Herud, M. Ostrowski, J. Reutelshoefer, N. Rühling, T. Schaub & P. Wanko (2024): Towards

Industrial-scale Product Configuration. In C. Dodaro & V. Martinez, editors: Proceedings of the Seventeenth

International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’24), Lecture Notes

in Artificial Intelligence, Springer-Verlag. To appear.

[5] A. Biere, M. Heule, H. van Maaren & T. Walsh, editors (2009): Handbook of Satisfiability. Frontiers in

Artificial Intelligence and Applications 185, IOS Press, doi:10.3233/FAIA336.

[6] P. Cabalar (2011): Functional answer set programming. Theory and Practice of Logic Programming 11(2-3),

pp. 203–233, doi:10.1017/S1471068410000517.

[7] P. Cabalar, J. Fandinno, L. Fariñas del Cerro & D. Pearce (2018): Functional ASP with Intensional Sets:

Application to Gelfond-Zhang Aggregates. Theory and Practice of Logic Programming 18(3-4), pp. 390–405,

doi:10.1017/S1471068418000169.

[8] P. Cabalar, J. Fandinno, T. Schaub & S. Schellhorn (2019): Lower Bound Founded Logic of Here-and-There.

In F. Calimeri, N. Leone & M. Manna, editors: Proceedings of the Sixteenth European Conference on Logics

in Artificial Intelligence (JELIA’19), Lecture Notes in Computer Science 11468, Springer-Verlag, pp. 509–

525, doi:10.1007/978-3-030-19570-0 34.

[9] P. Cabalar, J. Fandinno, T. Schaub & P. Wanko (2020): An ASP Semantics for Constraints Involving Condi-

tional Aggregates. In G. De Giacomo, A. Catalá, B. Dilkina, M. Milano, S. Barro, A. Bugarı́n & J. Lang,

editors: Proceedings of the Twenty-fourth European Conference on Artificial Intelligence (ECAI’20), IOS

Press, pp. 664–671, doi:10.3233/FAIA200152.

[10] P. Cabalar, J. Fandinno, T. Schaub & P. Wanko (2020): A Uniform Treatment of Aggregates and Constraints

in Hybrid ASP. In D. Calvanese, E. Erdem & M. Thielscher, editors: Proceedings of the Seventeenth Inter-

national Conference on Principles of Knowledge Representation and Reasoning (KR’21), AAAI Press, pp.

193–202, doi:10.24963/KR.2020/20.

[11] P. Cabalar, J. Fandinno, T. Schaub & P. Wanko (2023): On the Semantics of Hybrid

ASP Systems Based on Clingo. Algorithms 16(4), doi:10.3390/a16040185. Available at

https://www.mdpi.com/1999-4893/16/4/185.

[12] P. Cabalar, R. Kaminski, M. Ostrowski & T. Schaub (2016): An ASP Semantics for Default Reasoning with

Constraints. In R. Kambhampati, editor: Proceedings of the Twenty-fifth International Joint Conference on

Artificial Intelligence (IJCAI’16), IJCAI/AAAI Press, pp. 1015–1021, doi:10.5555/3060621.3060762.

[13] T. Eiter & R. Kiesel (2020): ASP(AC): Answer Set Programming with Algebraic Constraints. Theory and

Practice of Logic Programming 20(6), pp. 895–910, doi:10.1017/S1471068420000393.

[14] A. Falkner, A. Haselböck, G. Krames, G. Schenner, H. Schreiner & R. Taupe (2020): Solver Re-

quirements for Interactive Configuration. Journal of Universal Computer Science 26(3), pp. 343–373,

doi:10.3897/jucs.2020.019.

[15] A. Falkner, A. Ryabokon, G. Schenner & K. Shchekotykhin (2015): OOASP: Connecting Object-Oriented

and Logic Programming. In F. Calimeri, G. Ianni & M. Truszczyński, editors: Proceedings of the Thirteenth

https://www.coom-lang.org/
http://dx.doi.org/10.1017/S1471068420000046
http://dx.doi.org/10.1017/S1471068417000138
http://dx.doi.org/10.3233/FAIA336
http://dx.doi.org/10.1017/S1471068410000517
http://dx.doi.org/10.1017/S1471068418000169
http://dx.doi.org/10.1007/978-3-030-19570-0_34
http://dx.doi.org/10.3233/FAIA200152
http://dx.doi.org/10.24963/KR.2020/20
http://dx.doi.org/10.3390/a16040185
https://www.mdpi.com/1999-4893/16/4/185
http://dx.doi.org/10.5555/3060621.3060762
http://dx.doi.org/10.1017/S1471068420000393
http://dx.doi.org/10.3897/jucs.2020.019

N. Rühling 379

International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’15), Lecture Notes

in Artificial Intelligence 9345, Springer-Verlag, pp. 332–345, doi:10.1007/978-3-319-23264-5 28.

[16] A. Felfernig, A. Falkner, M. Atas, S. Erdeniz, C. Uran & P. Azzoni (2017): ASP-based Knowledge Repre-

sentations for IoT Configuration Scenarios. In L. Zhang & A. Haag, editors: Proceedings of the Nineteenth

International Configuration Workshop (CONF’17), pp. 62–67.

[17] A. Felfernig, L. Hotz, C. Bagley & J. Tiihonen, editors (2014): Knowledge-Based Configuration: From

Research to Business Cases. Elsevier/Morgan Kaufmann, doi:10.1016/C2011-0-69705-4.

[18] P. Ferraris (2011): Logic Programs with propositional connectives and aggregates. ACM Transactions on

Computational Logic 12(4), pp. 25:1–25:40, doi:10.1145/1970398.1970401.

[19] M. Gebser, R. Kaminski, B. Kaufmann & T. Schaub (2019): Multi-shot ASP solving with clingo. Theory and

Practice of Logic Programming 19(1), pp. 27–82, doi:10.1017/S1471068418000054.

[20] M. Gebser, R. Kaminski & T. Schaub (2011): aspcud: A Linux Package Configuration Tool Based on An-

swer Set Programming. In C. Drescher, I. Lynce & R. Treinen, editors: Proceedings of the Second Interna-

tional Workshop on Logics for Component Configuration (LoCoCo’11), Electronic Proceedings in Theoreti-

cal Computer Science (EPTCS) 65, pp. 12–25, doi:10.4204/eptcs.65.2.

[21] M. Gelfond & V. Lifschitz (1988): The Stable Model Semantics for Logic Programming. In R. Kowalski &

K. Bowen, editors: Proceedings of the Fifth International Conference and Symposium of Logic Programming

(ICLP’88), MIT Press, pp. 1070–1080, doi:10.1201/b10397-6.

[22] M. Gelfond & Y. Zhang (2014): Vicious Circle Principle and Logic Programs with Aggregates. Theory and

Practice of Logic Programming 14(4-5), pp. 587–601, doi:10.1017/S1471068414000222.

[23] E. Gençay, P. Schüller & E. Erdem (2019): Applications of non-monotonic reasoning to automotive prod-

uct configuration using answer set programming. Journal of Intelligent Manufacturing 30, pp. 1407–1422,

doi:10.1007/s10845-017-1333-3.

[24] K. Herud, J. Baumeister, O. Sabuncu & T. Schaub (2022): Conflict Handling in Product Configuration using

Answer Set Programming. In: Proceedings of the Fifteenth Workshop on Answer Set Programming and

Other Computing Paradigms (ASPOCP’22), CEUR Workshop Proceedings 3193, CEUR-WS.org. Available

at https://ceur-ws.org/Vol-3193/paper2ASPOCP.pdf.

[25] A. Heyting (1930): Die formalen Regeln der intuitionistischen Logik. In: Sitzungsberichte der Preussischen

Akademie der Wissenschaften, Deutsche Akademie der Wissenschaften zu Berlin, pp. 42–56.

[26] L. Hotz, A. Felfernig, M. Stumptner, A. Ryabokon, C. Bagley & K. Wolter (2014): Configura-

tion Knowledge Representation and Reasoning. In Felfernig et al. [17], chapter 6, pp. 41–72,

doi:10.1016/b978-0-12-415817-7.00006-2.

[27] T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn & P. Wanko (2017): Clingo goes Linear

Constraints over Reals and Integers. Theory and Practice of Logic Programming 17(5-6), pp. 872–888,

doi:10.1017/S1471068417000242.

[28] T. Janhunen, I. Niemelä & M. Sevalnev (2009): Computing Stable Models via Reductions to Difference

Logic. In E. Erdem, F. Lin & T. Schaub, editors: Proceedings of the Tenth International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR’09), Lecture Notes in Artificial Intelligence

5753, Springer-Verlag, pp. 142–154, doi:10.1007/978-3-642-04238-6 14.

[29] U. Junker (2006): Configuration. In F. Rossi, P. van Beek & T. Walsh, editors: Handbook of Constraint

Programming, chapter 24, Elsevier Science, pp. 837–873, doi:10.1016/s1574-6526(06)80028-3.

[30] R. Kaminski, J. Romero, T. Schaub & P. Wanko (2023): How to Build Your Own ASP-based System?! Theory

and Practice of Logic Programming 23(1), pp. 299–361, doi:10.1017/S1471068421000508.

[31] Y. Lierler & B. Susman (2016): SMT-Based Constraint Answer Set Solver EZSMT (System Description). In

M. Carro & A. King, editors: Technical Communications of the Thirty-second International Conference on

Logic Programming (ICLP’16), Open Access Series in Informatics (OASIcs) 52, Schloss Dagstuhl–Leibniz-

Zentrum fuer Informatik, pp. 1:1–1:15, doi:10.4230/OASICS.ICLP.2016.1.

http://dx.doi.org/10.1007/978-3-319-23264-5_28
http://dx.doi.org/10.1016/C2011-0-69705-4
http://dx.doi.org/10.1145/1970398.1970401
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.4204/eptcs.65.2
http://dx.doi.org/10.1201/b10397-6
http://dx.doi.org/10.1017/S1471068414000222
http://dx.doi.org/10.1007/s10845-017-1333-3
https://ceur-ws.org/Vol-3193/paper2ASPOCP.pdf
http://dx.doi.org/10.1016/b978-0-12-415817-7.00006-2
http://dx.doi.org/10.1017/S1471068417000242
http://dx.doi.org/10.1007/978-3-642-04238-6_14
http://dx.doi.org/10.1016/s1574-6526(06)80028-3
http://dx.doi.org/10.1017/S1471068421000508
http://dx.doi.org/10.4230/OASICS.ICLP.2016.1

380 Hybrid ASP: Foundations and Applications

[32] V. Lifschitz (2019): Answer Set Programming. Springer-Verlag, doi:10.1007/978-3-030-24658-7.

[33] V. Lifschitz, D. Pearce & A. Valverde (2001): Strongly equivalent logic programs. ACM Transactions on

Computational Logic 2(4), pp. 526–541, doi:10.1145/383779.383783.

[34] G. Liu, T. Janhunen & I. Niemelä (2012): Answer Set Programming via Mixed Integer Programming. In

G. Brewka, T. Eiter & S. McIlraith, editors: Proceedings of the Thirteenth International Conference on

Principles of Knowledge Representation and Reasoning (KR’12), AAAI Press, pp. 32–42.

[35] D. Pearce (1997): A New Logical Characterisation of Stable Models and Answer Sets. In J. Dix, L. Pereira

& T. Przymusinski, editors: Proceedings of the Sixth International Workshop on Non-Monotonic Extensions

of Logic Programming (NMELP’96), Lecture Notes in Computer Science 1216, Springer-Verlag, pp. 57–70,

doi:10.1007/BFb0023801.

[36] D. Pearce (2006): Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47(1-2), pp. 3–41,

doi:10.1007/s10472-006-9028-z.

[37] D. Pearce & A. Valverde (2004): Towards a First Order Equilibrium Logic for Nonmonotonic Reason-

ing. In J. Alferes & J. Leite, editors: Proceedings of the Ninth European Conference on Logics in Ar-

tificial Intelligence (JELIA’04), Lecture Notes in Computer Science 3229, Springer-Verlag, pp. 147–160,

doi:10.1007/978-3-540-30227-8 15.

[38] D. Rajaratnam, T. Schaub, P. Wanko, K. Chen, S. Liu & T. Son (2023): Solving an Industrial-Scale Ware-

house Delivery Problem with Answer Set Programming Modulo Difference Constraints. Algorithms 16(4),

doi:10.3390/a16040216. Available at https://www.mdpi.com/1999-4893/16/4/216.

[39] C. Redl (2016): The dlvhex system for knowledge representation: recent advances (system description).

Theory and Practice of Logic Programming 16(5-6), pp. 866–883, doi:10.1017/S1471068416000211.

[40] N. Rühling, T. Schaub & T. Stolzmann (2023): Towards a formalization of configuration problems for ASP-

based reasoning: Preliminary report. In J. Horcas, J. Galindo, R. Comploi-Taupe & L. Fuentes, editors:

Proceedings of the Twenty-fifth International Configuration Workshop (CONF’23), 3509, CEUR Workshop

Proceedings, pp. 85–94. Available at https://ceur-ws.org/Vol-3509/paper12.pdf.

[41] D. van Dalen (2001): Intuitionistic Logic. In D. Gabbay & F. Guenthner, editors: Handbook of Philosophical

Logic, 3, Springer-Verlag, pp. 225–339, doi:10.1007/978-94-009-5203-4 4.

http://dx.doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1145/383779.383783
http://dx.doi.org/10.1007/BFb0023801
http://dx.doi.org/10.1007/s10472-006-9028-z
http://dx.doi.org/10.1007/978-3-540-30227-8_15
http://dx.doi.org/10.3390/a16040216
https://www.mdpi.com/1999-4893/16/4/216
http://dx.doi.org/10.1017/S1471068416000211
https://ceur-ws.org/Vol-3509/paper12.pdf
http://dx.doi.org/10.1007/978-94-009-5203-4_4

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 381–389, doi:10.4204/EPTCS.416.39

© A.R. Tudor

Autonomous Task Completion Based on
Goal-directed Answer Set Programming

Alexis R. Tudor
University of Texas at Dallas

Texas, USA
alexisrenee1@gmail.com

Task planning for autonomous agents has typically been done using deep learning models and simulation-
based reinforcement learning. This research proposes combining inductive learning techniques with
goal-directed answer set programming to increase the explainability and reliability of systems for
task breakdown and completion. Preliminary research has led to the creation of a Python harness that
utilizes s(CASP) to solve task problems in a computationally efficient way. Although this research is
in the early stages, we are exploring solutions to complex problems in simulated task completion.

1 Introduction

Task planning for autonomous agents has been an area of interest in recent years as robotics and deep
learning have made major advances. Most approaches to task planning involve the use of deep learning
models. The most popular approach is deep reinforcement learning, though recent work has used large-
language models (LLMs) as well. Deep learning models generally achieve good results, however, they
are uninterpretable and often produce flawed answers with no explanation. Much work has been done to
improve the explainability of deep learning models, however, they remain untrustworthy.

A better solution is to use logic programming. Logic programming is a programming paradigm based
primarily on the calculation of Horn clauses through the process of entailment. The most common logic
programming language is Prolog, though most logic programming languages consist of a Prolog-like
collection of facts and rules. One advantage of logic programs is that they are inherently interpretable
and their errors can be logically understood and solved. The research proposed in this paper involves
using answer set programming to complete tasks in a simulated environment. This will hopefully result
in autonomous task planning that is both robust and trustworthy.

2 Background and Relevant Literature

As autonomous agents become more ubiquitous, the focus has turned to their ability to complete complex
tasks in the real world, converting high-level instructions (like "fold laundry") to executable plans ("walk
to clothes", "grab clothes", etc.). Autonomous task completion can mean anything from unmanned
vehicles navigating from one point to another to robotic kitchen assistants designed to make certain
foods. For the most part, modern autonomous systems use deep learning models to accomplish this [11].
This commonly takes the form of deep reinforcement learning and more recently LLMs. Deep learning
has achieved excellent results on complex problems. However, most deep learning systems are black
boxes that lack explainability and interpretability. This is especially dangerous given how dependent
deep learning algorithms are on the (often flawed) data they are trained on. This makes it difficult to trust
that their answers are correct and unbiased, as explored in DARPA’s explainable AI retrospective [6].

http://dx.doi.org/10.4204/EPTCS.416.39

382 s(CASP) for Task Completion

This is important in critical systems, such as hospital diagnoses or military applications, where it has to
be quickly apparent whether a model is correct or not. LLMs are vulnerable to "hallucination", where
they provide incorrect responses that are statistically likely [9]. Additionally, they can be "jailbroken"
to respond outside of the bounds they were designed for [2]. In the specific arena of autonomous task
completion, LLMs struggle with making task breakdowns that are both correct and executable [10]. Deep
learning as a whole is well explained in other high-quality survey papers [3]. This paper will focus more
on the importance of explainability, which is often neglected in deep learning models.

Inductive Logic Programming (ILP) is a form of machine learning that codifies its learning in the
form of first-order logic. Ever since the term was defined in 1991 [12] as the "intersection of Logic
Programming and Machine Learning", ILP has served to solve machine learning problems. ILP can get
results rivaling deep learning models while being inherently interpretable and explainable [19]. Recent
advances in ILP, such as the FOLD family of algorithms, demonstrate that complex data can be repre-
sented in small logic programs using default rules. A more detailed description of default rules and the
FOLD family of incremental learning algorithms can be found in the paper by Gupta et al. [7]. The
research mentioned above uses a type of logic programming called Answer Set Programming (ASP).
Unlike Prolog-based logic programming, which generates a true or false answer for a queried predicate,
ASP is used to generate all entailable rules from a knowledge base. This collection is called an answer
set. This can be used to generate "multiple worlds" where different answer sets are true.

Traditional ASP, like in Clingo [4], executes an answer set program through the use of a SAT solver
and grounding. Grounding involves the generation of the program with all variables substituted with
constants in the program. A disadvantage of this approach is that grounding is not always guaranteed
to be feasible, which can leave some programs with no ASP solution. The s(CASP) system [1] solves
this problem by performing a top-down goal-oriented search which eliminates the need for grounding.
This advantage makes s(CASP) well-suited to the representation of complex world states and provides
an advantage over other ASP systems [5].

One of the biggest weaknesses of the ILP approach to solving problems is the need for background
information and ’program templates’. Program templates are a layout of how the generated information
should look in the context of the logic program. A domain expert must provide this program template and
explicitly logic program-based background knowledge for most ILP. Thus, for trivial examples, it would
be just as easy to include the final found rules in the knowledge base at the start. Additionally, while
ILP programs perform very well on data that can be represented in a logic program, logic programs
have a difficult time representing complex data. These weaknesses can be overcome through the use
of traditional machine learning algorithms to supplement a logic program. This approach increases
explainability while utilizing the benefits of deep learning and other machine learning models, such as
in the paper by Rajasekharan et al. that uses an s(CASP) knowledge base to constrain an LLM into
providing more reliable results [14]. Other examples exist of using some form of knowledge base to
improve deep learning algorithms [17] [8], but the use of logic programming to augment other algorithms
merits further exploration.

3 Methodology

The research outlined in this paper seeks to explore the use of an s(CASP) knowledge base for au-
tonomous task completion in a simulated virtual environment. To test our system, we use the Vir-
tualHome simulator (shown in Figure 1) as a playground for our s(CASP) agent to perform tasks in.
VirtualHome allows for multiple agents to operate in a variety of simulated apartments, and provides a

A.R. Tudor 383

Figure 1: An image showcasing the VirtualHome simulator and an example of its associated task instruc-
tions [13].

large database of high-level task breakdowns into step-by-step instructions. This simulation proved to
be especially useful for our research because it has a "mid-level" control scheme. This means that we
can give the agent commands like "grab remote" rather than dealing with the details of actual movement
("move left foot 3 inches forward", "rotate right arm 45 degrees at the elbow joint", etc) that would be
more appropriate for a detailed robotic controller.

The primary goal of this research is to achieve reasonably accurate task completion using goal-
directed answer set programming. The end system would have a high level of explainability for decision-
making, where the results are trustworthy and could be diagnosed if in error. We wish to further prove
that even the very high-quality deep learning systems in use today could be augmented through the use of
logic programming. Using logic in this way moves toward general artificial intelligence. Using s(CASP)
to simulate how humans can perform common-sense logical interactions with the world brings us closer
to reasoning AI.

An additional goal of this research is to make s(CASP) easier to use with simulators. A notable
weakness of s(CASP) is that it does not have a Python API, which makes it difficult to run in line with
other forms of machine learning. The software engineering goal of this research is to create a "harness"
for using s(CASP) in Python for interactions with simulators, as shown in Figure 2.

3.1 Status

Although this research is still in an early stage, there have already been promising results in producing
executable actions for small-scale real-world tasks. Using the Python harness mentioned above, the
simulated VirtualHome environment can be instantiated and transformed into an s(CASP) representation
of the world state:

1 % With Time
2 current_time(1).
3 type(livingroom100, livingroom).
4 type(remotecontrol1, remotecontrol).
5 off(remotecontrol1, 1).
6 inside([inside(remotecontrol1, livingroom100),

384 s(CASP) for Task Completion

Figure 2: A diagram showing the high-level functionality of the Python harness for s(CASP). The Python
harness can perform actions in the VirtualHome environment, and then convert the state of the environ-
ment to s(CASP) facts. These facts can then be used to inform the next action of the agent.

7 inside(character0, livingroom100)], 1).
8 % Without time
9 type(livingroom100, livingroom).

10 type(remotecontrol1, remotecontrol).
11 off(remotecontrol1).
12 inside([inside(remotecontrol1, livingroom100),
13 inside(character0, livingroom100)]).

The above example represents a world state containing a single turned-off remote control sitting in a
living room at time 1. The Python harness keeps track of a discretized world time where each action
taken by the agent represents a step forward in time, however the addition of time greatly increases the
complexity of the world state s(CASP) program. Using time naively in this manner results in intractable
programs which loop over infinite time, and so when representing the world state we use the latter exam-
ple where timestamps are not provided in the state facts. Even without the use of time, this representation
of the world state easily grows to encompass a large amount of facts. The complexity of generating an
answer set that accounts for all of these facts and possible worlds quickly becomes a computational ob-
stacle. For testing purposes, the Python harness has a small-scale simulation environment built in. Still,
the goal remains to execute plans in realistic environments.

To represent and complete tasks we treat task completion as a planning problem. We represent
each task as a final state (i.e. if the task was to grab a remote control, the final state would include
holds(remotecontrol)) and then formulate actions to reach that final state. The added complexity to this
comes from the incorporation of the simulated world state when starting from an initial state. We use the
following s(CASP) rules for the task planning problem:

1 % Planning

A.R. Tudor 385

2 % Get the initial state of items close to the character
3 initial_state(List) :- close_to_character(List).
4

5 % Find a set of actions to reach the final state
6 transform(FinalState, Plan) :-
7 initial_state(State1),
8 transform(State1, FinalState, [State1], Plan).
9 transform(State1, FinalState,_,[]) :- subset(FinalState, State1).

10 transform(State1, State2, Visited, [Action|Actions]) :-
11 choose_action(Action, State1, State2),
12 update(Action, State1, State),
13 not member(State, Visited),
14 transform(State, State2, [State|Visited], Actions).
15

16 % We choose an action to take
17 choose_action(Action, State1, State2) :-
18 suggest(Action, State2), legal_action(Action, State1).
19 choose_action(Action, State1, _) :-
20 legal_action(Action, State1).
21 suggest(walk(X), State) :- member(close(X), State).
22

23 % Check if an action is legal given the state
24 legal_action(walk(X), State) :-
25 type(X, Y), Y \= character, not member(close(X), State).
26

27 % Update state
28 update(walk(X), State, [close(X) | State1]) :-
29 update_walking(X, State, State, [], State1).
30

31 % Tasks
32 complete_task(walk_to_remote, P) :-
33 type(Remote, remotecontrol), transform([close(Remote)], P).

These rules are a small representative subset of the rules used to generate actions to complete a
task. In this very simple example, the task is to walk towards a remote control, which can be easily
accomplished by the program. Using this knowledge base we can also achieve some inference. Given
a final state where the agent is holding something, using the s(CASP) knowledge base constraints the
agent can intuit that it first needs to walk to the item before attempting to pick it up.

A serious problem with this inference, however, is that in sufficiently large environments it becomes
too long to calculate (at least over twelve hours without concluding). For example, in the small-scale
testing simulation that contains only six items, a plan for "grab the remote" can result in the agent
walking to every other object in the room before walking to the remote to grab it. In addition to that
solution being inefficient, it takes impossibly long in a real environment with nearly 500 objects. This
problem can be solved by adding the rule suggest(walk(X),State) :-member(holds(X),State),
not member(close(X),State)., however the same then must be done for any other state requiring
closeness as a prerequisite. This decreases the value of logical inference and increases the rules required

386 s(CASP) for Task Completion

Figure 3: An example dependency graph for a family tree program where niece is the queried rule.

for simple task planning. The limitation remains computation time.

3.2 Preliminary Results

We have made significant strides in reducing the impact of computation time on the program. To reduce
computation time, we implemented a dynamic dependency graph that is used to remove facts and rules
that are not relevant to the query. For example, given the following knowledge base:

1 parent(tony, abe).
2 parent(tony, jill).
3 parent(abe, sarah).
4

5 male(tony).
6 male(abe).
7 female(jill).
8 female(sarah).
9

10 parent(Parent, Child) :- sibling(X, Child), parent(Parent, X).
11 grandparent(Grandparent, Child) :-
12 parent(Grandparent, Parent), parent(Parent, Child).
13 sibling(X,Y) :- parent(Parent, X), parent(Parent, Y), X\=Y.
14 auntuncle(AU,N) :- sibling(AU, Parent), parent(Parent, N).
15 niece(Niece, AU) :- auntuncle(AU, Niece), female(Niece).

A.R. Tudor 387

Table 1: Table of computational time in seconds for three tasks completed by the s(CASP) agent both
optimized and unoptimized.

Task
Unoptimized

Time to Complete
(s)

Dependency Graph
Optimized Time to

Complete (s)
Grab Remote

Control
13925.14 0.55

Grab Remote
Control and Shirt

608.28 0.71

Grab Cell Phone
and Sit on Couch

1771.21 0.64

Generating a dependency graph for ?- niece(X,Y). produces the graph in Figure 3. Using the
dependency graph the Python harness can simplify the above knowledge base, removing the male/1
and grandparent/2 predicates entirely. In a program of this size, the computational savings of such
optimization is negligible. However, preliminary research has shown a significant time saving in the
real-world environment. Table 1 demonstrates the time savings of using the dependency graph to prune
the knowledge base for the specific task being accomplished on three semi-simple tasks that take one to
four actions to fulfill. The computational time can be reduced from nearly thirty minutes to a fraction of
a second using this approach, allowing for continued research into more complex tasks.

3.3 Open Issues and Expected Achievements

Right now, the biggest issues facing this research concern the representation of the s(CASP) knowledge
base. There are several outstanding questions.

Representing a Complex Real-World State Representing a simulation of any reasonable size leads
to an exponential increase in the number of facts available in the world state. In addition to these facts,
there also needs to be a set of rules adequate to perform tasks in the environment. This produces answer
sets that are intractable to generate. The use of a dependency graph to pare down the knowledge base
allows us to perform more complicated tasks, however there can be more optimization.

Another solution that will be explored is to keep groups of state facts and rules in different programs.
The creation of modules that correspond to various tasks or locations would allow for faster calculation
of relevant queries. This follows the human logic that one likely does not need their cooking knowledge
if, for example, they need to walk their dog.

The Passage of Time As mentioned above, the use of time in the knowledge base provides com-
plications related to the ostensibly infinitely divisible nature of time (as posited by the famous Greek
philosopher Zeno). This is a known problem with representing continuous time in logic programming
and would require the inclusion of event calculus [18].

Large-scale Learning As deep learning and its applications for real-world task completion are already
well explored, the value of this research lies in seeing how complex problems that the s(CASP) task
planner can solve can get. To that end, explanation-based learning is a promising paradigm that would

388 s(CASP) for Task Completion

allow for generalized knowledge from a small number of examples [16] and works well with answer set
programming.

Likely, s(CASP) by itself cannot encode all of the complexities of a real environment and remain
tractable. Once that point is reached, there would still be benefits in combining s(CASP) with more
traditional machine learning (and newer deep learning, such as LLMs) to improve performance in the
former and explainability of the latter. We hope to leverage databases of task instructions and break-
downs, such as those provided by VirtualHome or ALFRED [15], to improve the performance of the
s(CASP) agent at scale.

We expect to be able to answer these questions in a unified way to facilitate task completion in com-
plex environments using s(CASP). Although solutions to these problems may always become intractable
at certain levels of fidelity, there is valuable knowledge to be gained along the way.

4 Conclusion

In conclusion, this line of research could open up a broad number of solutions for challenging ILP
problems. Simply creating a Python framework for the use of s(CASP) with simulated environments
is an advancement for s(CASP), as it is currently lacking a Python API. Using the intersection of ILP
and traditional machine learning is promising for improving the explainability and reliability of task-
completing autonomous agents.

References

[1] Joaqin Arias, Manuel Carro, Elmer Salazar, Kyle Marple & Gopal Gupta (2018): Constraint Answer
Set Programming without Grounding. Theory and Practice of Logic Programming 18(3-4), p. 337–354,
doi:10.1017/S1471068418000285.

[2] Patrick Chao, Alexander Robey, Edgar Dobriban, Hamed Hassani, George J. Pappas & Eric Wong (2023):
Jailbreaking Black Box Large Language Models in Twenty Queries. arXiv:2310.08419.

[3] Shi Dong, Ping Wang & Khushnood Abbas (2021): A survey on deep learning and its applications.
Computer Science Review 40, p. 100379, doi:10.1016/j.cosrev.2021.100379. Available at https://www.
sciencedirect.com/science/article/pii/S1574013721000198.

[4] M. Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2014): Clingo = ASP + Control:
Preliminary Report. ArXiv abs/1405.3694, doi:10.48550/arXiv.1405.3694. Available at http://arxiv.
org/abs/1405.3694.

[5] Michael Gelfond & Yulia Kahl (2014): Knowledge representation, reasoning, and the design
of Intelligent Agents: The answer-set programming approach. Cambridge University Press,
doi:10.1017/CBO9781139342124.

[6] David Gunning, Eric Vorm, Jennifer Yunyan Wang & Matt Turek (2021): DARPA’s explain-
able AI (XAI) program: A retrospective. Applied AI Letters 2(4), p. e61, doi:10.1002/ail2.61.
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/ail2.61.

[7] Gopal Gupta, Huaduo Wang, Kinjal Basu, Farhad Shakerin, Elmer Salazar, Sarat Chandra Varanasi, Parth
Padalkar & Sopam Dasgupta (2023): Logic-based explainable and incremental machine learning. Prolog:
The Next 50 Years, p. 346–358, doi:10.1007/978-3-031-35254-6_28.

[8] Zhongkai Hao, Songming Liu, Yichi Zhang, Chengyang Ying, Yao Feng, Hang Su & Jun Zhu (2023):
Physics-Informed Machine Learning: A Survey on Problems, Methods and Applications. arXiv:2211.08064.

https://doi.org/10.1017/S1471068418000285
https://arxiv.org/abs/2310.08419
https://doi.org/10.1016/j.cosrev.2021.100379
https://www.sciencedirect.com/science/article/pii/S1574013721000198
https://www.sciencedirect.com/science/article/pii/S1574013721000198
https://doi.org/10.48550/arXiv.1405.3694
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
https://doi.org/10.1017/CBO9781139342124
https://doi.org/10.1002/ail2.61
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/ail2.61
https://doi.org/10.1007/978-3-031-35254-6_28
https://arxiv.org/abs/2211.08064

A.R. Tudor 389

[9] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin & Ting Liu (2023): A Survey on Hallucination in Large Language
Models: Principles, Taxonomy, Challenges, and Open Questions. arXiv:2311.05232.

[10] Wenlong Huang, Pieter Abbeel, Deepak Pathak & Igor Mordatch (2022): Language Models as Zero-
Shot Planners: Extracting Actionable Knowledge for Embodied Agents. In Kamalika Chaudhuri, Ste-
fanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu & Sivan Sabato, editors: Proceedings of the 39th
International Conference on Machine Learning, Proceedings of Machine Learning Research 162, PMLR,
pp. 9118–9147, doi:10.48550/arXiv.2201.07207. Available at https://proceedings.mlr.press/v162/
huang22a.html.

[11] Eduardo F Morales, Rafael Murrieta-Cid, Israel Becerra & Marco A Esquivel-Basaldua (2021): A survey on
deep learning and deep reinforcement learning in robotics with a tutorial on deep reinforcement learning.
Intelligent Service Robotics 14(5), pp. 773–805, doi:10.1007/s11370-021-00398-z.

[12] Stephen Muggleton (1991): Inductive logic programming. New Generation Computing 8(4), p. 295–318,
doi:10.1007/bf03037089.

[13] Xavier Puig, Kevin Ra, Marko Boben, Jiaman Li, Tingwu Wang, Sanja Fidler & Antonio Torralba (2018):
VirtualHome: Simulating Household Activities via Programs. arXiv:1806.07011.

[14] Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar & Gopal Gupta (2023): Reliable Natural Language
Understanding with Large Language Models and Answer Set Programming. Electronic Proceedings in The-
oretical Computer Science 385, pp. 274–287, doi:10.4204/EPTCS.385.27.

[15] Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke
Zettlemoyer & Dieter Fox (2019): ALFRED: A Benchmark for Interpreting Grounded Instructions for Ev-
eryday Tasks. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
10737–10746, doi:10.1109/cvpr42600.2020.01075. Available at https://api.semanticscholar.org/
CorpusID:208617407.

[16] Julia Strout, Ye Zhang & Raymond Mooney (2019): Do Human Rationales Improve Machine Explanations?
In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks
for NLP, Association for Computational Linguistics, Florence, Italy, pp. 56–62, doi:10.18653/v1/W19-4807.
Available at https://aclanthology.org/W19-4807.

[17] Ikechukwu Uchendu, Ted Xiao, Yao Lu, Banghua Zhu, Mengyuan Yan, Joséphine Simon, Matthew Bennice,
Chuyuan Fu, Cong Ma, Jiantao Jiao, Sergey Levine & Karol Hausman (2023): Jump-Start Reinforcement
Learning. arXiv:2204.02372.

[18] Sarat Chandra Varanasi, Joaquín Arias, Elmer Salazar, Fang Li, Kinjal Basu & Gopal Gupta (2022): Mod-
eling and Verification of Real-Time Systems with the Event Calculus and s(CASP). In: Practical Aspects of
Declarative Languages: 24th International Symposium, PADL 2022, Philadelphia, PA, USA, January 17–18,
2022, Proceedings, Springer-Verlag, Berlin, Heidelberg, p. 181–190, doi:10.1007/978-3-030-94479-7_12.

[19] Zheng Zhang, Liangliang Xu, Levent Yilmaz & Bo Liu (2023): A Critical Review of Inductive Logic Pro-
gramming Techniques for Explainable AI. arXiv:2112.15319.

https://arxiv.org/abs/2311.05232
https://doi.org/10.48550/arXiv.2201.07207
https://proceedings.mlr.press/v162/huang22a.html
https://proceedings.mlr.press/v162/huang22a.html
https://doi.org/10.1007/s11370-021-00398-z
https://doi.org/10.1007/bf03037089
https://arxiv.org/abs/1806.07011
https://doi.org/10.4204/EPTCS.385.27
https://doi.org/10.1109/cvpr42600.2020.01075
https://api.semanticscholar.org/CorpusID:208617407
https://api.semanticscholar.org/CorpusID:208617407
https://doi.org/10.18653/v1/W19-4807
https://aclanthology.org/W19-4807
https://arxiv.org/abs/2204.02372
https://doi.org/10.1007/978-3-030-94479-7_12
https://arxiv.org/abs/2112.15319

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 390–397, doi:10.4204/EPTCS.416.40

© Ondřej Vašı́ček

This work is licensed under the

Creative Commons Attribution License.

Early Validation of High-level Requirements

on Cyber-Physical Systems

Ondřej Vašı́ček

Faculty of Information Technology
Brno University of Technology

Brno, Czechia

ivasicek@fit.vut.cz

The overarching, broad topic of my research are advancements in the area of safety-critical, cyber-

physical systems (CPS) development with emphasis on validation and verification. The particular

focus of my research is the early validation of high-level requirements on CPS. My current approach

for tackling this problem is transforming the requirements into Event Calculus and subsequently

reasoning about them using ASP solvers such as the grounding-free s(CASP). Below, I discuss my

research, its current state, and the open issues that are still left to tackle. The first results of my work

will be presented in a paper that was accepted for ICLP’24, which is my first paper in this area.

1 Introduction and Motivation

Early validation of specifications describing requirements placed on cyber-physical systems (CPSs) un-

der development is essential to avoid costly errors in later stages of the development, especially when

the systems undergo certification. According to the study [20] conducted within the AVSI SAVI project

around 70 % of errors in large systems are introduced during the specification of system requirements,

yet over 50 % of those errors are only discovered during the integration testing phase much later in the

development process. Unfortunately, the cost to fix an error in the integration testing phase is around

16-times higher than in the initial requirements specification phase.

To our best knowledge there are currently no ready-to-use solutions for automated, early validation

of truly high-level requirements. Requirements specifications are still most often in textual form which

traditionally suffers from ambiguity and is not easily machine understandable. The most common way of

validating such requirements is expert review, which can lead to errors being overlooked due to the human

factor, due to the size and complexity of requirements specifications, and due to implicit assumptions

not being included explicitly in the specification. There is a need for better ways to express clear and

unambiguous requirements, to relate them to system model elements, and to be able to automatically

transform both the requirements and the models into suitable formalisms which could then be used by

methods for validation and verification.

A crucial need, when trying to transform a requirements specification into a suitable formalism, is

that of a small semantic gap between the requirements and the formalism used to model them for the

purposes of validation. A larger semantic gap makes it more difficult to transform the requirements into

a model, and, most importantly, any validation on such a model drifts away from validating the require-

ments themselves and closer to validating that particular model—influenced by design and implemen-

tation decisions. As described in [17], Event Calculus (EC) is a formalism suitable for commonsense

reasoning. The semantic gap between a requirements specification and its EC encoding is near-zero

because its semantics follows how a human would think of the requirements. Using Answer Set Pro-

gramming (ASP) [16] and the s(CASP) [1] system for goal-directed reasoning in EC, the work [18] has

http://dx.doi.org/10.4204/EPTCS.416.40
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Ondřej Vašı́ček 391

demonstrated the versatility of EC for modelling and reasoning about CPSs while providing explainable

results. My latest research [19] builds on [18] in order to further enhance its capabilities and potential

applications.

2 Background

The Event Calculus (EC) [17] EC is a formalism for reasoning about events and change, of which

there are several axiomatizations. There are three basic concepts in EC: events, fluents, and time points:

(i) an event is an action or incident that may occur in the world, e.g., the dropping of a glass by a person

is an event, (ii) a fluent is a time-varying property of the world, such as the altitude of a glass, (iii) a time

point is an instant of time. Events may happen at a time point; fluents have a truth value at any time point,

and these truth values are subject to change upon an occurrence of an event. In addition, fluents may have

quantities associated with them as parameters, which change discretely via events or continuously over

time via trajectories. We chose EC as a formalism suitable for representing requirements specifications

due the the low semantic gap between EC and the requirements.

The s(CASP) System [1] s(CASP) extends the expressiveness of ASP [16] systems, based on the stable

model semantics [9], by including predicates, constraints among non-ground variables, uninterpreted

functions, and, most importantly, a top-down, query-driven execution strategy. These features make it

possible to return answers with non-ground variables (possibly including constraints among them) and

to compute partial models by returning only the fragment of a stable model that is necessary to support

the answer to a given query. Answers to all queries can also include the full proof tree, making them

fully explainable. Like other ASP implementations and unlike Prolog, s(CASP) handles non-stratified

negation and returns the corresponding (partial) stable models. Further, s(CASP) implements abductive

reasoning via even loops, where it automatically searches for suitable values of the predicates in the

corresponding even loop in order to satisfy the main query. We chose s(CASP) as the solver for reasoning

about EC models especially due to its grounding-free nature, which allows us to reason in continuous

time and about continuous change of fluents.

3 Related Work

As already mentioned, we found EC suitable for reasoning about requirements specifications due to its

low semantic gap against them. In comparison, the semantics of automata-based approaches, which are

often used in the literature to model CPSs, such as timed automata [15] or hybrid automata [7], require

one to “design” explicit states and transitions, and may lead to decomposition of the system into sub-

systems each with their own automaton. Current industrial model-based engineering approaches, such as

those based, e.g., on Matlab Simulink models and tools like HILITE [3], are only suitable for validation

of low-level requirements. This is due to the low-level nature of the models they use, especially when

automated generation of code from the models is required. Much research has been done on using

temporal logics (e.g., LTL, CTL, CTL* [5]) and real time temporal logics (e.g., MTL [14]) to represent

system properties. However, we have not considered temporal logics as a target for transforming high-

level system specifications since the semantics of the temporal logics that we are aware of are further

away from natural language which makes the transformation more difficult to perform and to understand

in comparison with EC.

392 Early Validation of High-level Requirements on Cyber-Physical Systems

Apart from the EC-based approach introduced in [18], which my work builds upon, there are other

ones which aim to target automated validation of high-level requirements put on CPSs. The work [6]

is based on ontologies and uses theorem proving, which traditionally requires significant manual work.

The work [2] is based on transforming CPS specifications from templated-English into process algebras

extended with real-time aspects, however, no continuous variables (apart from time) are dealt with and

no experimental results are presented, which makes it difficult to judge the scalability of this approach.

Finally, there are other ASP solvers than the s(CASP) system that I am currently using, such as the

grounding-based CLINGO [8]. However, in my experiments so far, CLINGO has, unfortunately, proven to

be unsuitable for reasoning about fluents with large or continuous value domains due to the explosion in

the grounding and a need to discretize the time. This causes the solver to quickly run out of memory even

on models with very limited continuous value domains, while the discretized time steps introduce issues

when trying to step on exact values during periods of continuous change. An advantage of CLINGO is that

it does not suffer from non-termination issues, which make things much more complicated in s(CASP),

therefore, I plan to further investigate the possibility of using it in my research once advancements are

made in reducing the grounding explosion.

4 Research Goals and Current State

The overarching objective of my research is to improve the development process of safety-critical sys-

tems with a focus on validation and verification. The main concrete goal is to propose analyses for

high-level requirements in order to detect more errors as early as possible in the development process.

This goal consists of three sub-goals. In my research thus far, I have already partially completed the first

two sub-goals and I am recently focusing on the third one.

1. A suitable formalism needs to be selected which will be able to adequately represent requirements

specifications for the purpose of performing analyses on the requirements. In my research, I have

selected Event Calculus as a suitable formalism based on already published results [18, 11] and

on my own experiments. Experimenting with the practical capabilities of EC is an ongoing effort

entailed with sub-goal 3.

2. Then, a way of transforming the requirements specifications into the selected formalism needs to

be defined. For EC, limited manual transformations have already been shown in [18, 11]. In my

research, I have since used further manual transformations for the time being. Once I sufficiently

explore and advance the modelling and reasoning capabilities of EC, my focus will shift towards

proposing a general and at least semi-automated way to transform requirements into EC.

3. Further research should focus on efficient analysis methods for validating the formalized require-

ments specifications. The aim is to make the reasoning more scalable, to make it capable of

supporting more constructs from the requirements specifications, and to use it for new kinds of

analyses. Since my selected formalism is currently EC, my recent research is focusing on the ca-

pabilities of abductive commonsense reasoning using ASP solvers [1, 8], which have already been

shown to be promising by other researchers in the past [18, 11].

The next section discusses the first published result of my research. The work uses EC (from sub-goal 1)

and a manual transformation (from sub-goal 2) in order to explore and improve the reasoning capabilities

of ASP solvers, especially s(CASP), for the purposes of requirements validation (towards sub-goal 3).

Ondřej Vašı́ček 393

5 Current Results

In my research so far, I have studied EC and experimented with CLINGO and s(CASP). In my latest work,

I chose to use s(CASP) because it does not suffer from the grounding explosion. In order to both assess

and demonstrate the practical capabilities (and current limitations) of the EC+s(CASP) approach and to

guide my work on improving its capabilities, I have applied it on the specification of a real safety-critical

system. I will be presenting the results of this endeavour in a paper which was accepted at ICLP’24 [19]

as my first paper in this area of research. The paper is briefly summarized below.

We develop a model of the core operation of the PCA pump [12]—a real safety-critical device that

automatically delivers pain relief drugs into the blood stream of a patient. The model operates in a way

similar to an early prototype of the system and, thus, can be used to reason about its behaviour. How-

ever, due to the nature of EC, the behaviour of the model is very close to the behaviour described by the

requirements themselves. The requirements specification and all the source codes of its s(CASP) repre-

sentation can be found at https://github.com/ovasicek/pca-pump-ec-artifacts/. The below

is a brief, illustrative overview of s(CASP) code for the delivery of a patient bolus (one of the features

of the pump), which is an extra dose of drug delivered upon the patient’s request. We define events

that start and end the delivery of the bolus which is represented by a state fluent (lines 1-4). The total

amount of drug delivered to the patient and how the amount increases during the bolus is represented

by a continuous fluent and a trajectory (lines 6-10). And finally, the bolus stops automatically once the

right amount of drug (so called VTBI) is delivered which is represented by an event triggered based on

the drug delivered during the ongoing bolus (lines 12-15). A new continuous fluent and trajectory are

used to represent the volume of drug delivered by a bolus counting from zero instead of computing the

difference of total drug delivered at the start and at the end of a bolus (lines 17-20).

1 fluent(patient_bolus_delivery_enabled).

2 event(patient_bolus_delivery_started). event(patient_bolus_delivery_stopped).

3 initiates(patient_bolus_delivery_started, patient_bolus_delivery_enabled, T).

4 terminates(patient_bolus_delivery_stopped, patient_bolus_delivery_enabled, T).

5

6 fluent(total_drug_delivered(X)).

7 trajectory(patient_bolus_delivery_enabled, T1, total_drug_delivered(Total), T2) :-

8 basal_and_patient_bolus_flow_rate(FlowRate),

9 holdsAt(total_drug_delivered(StartTotal), T1),

10 Total #= StartTotal + ((T2 - T1) * FlowRate).

11

12 event(patient_bolus_completed).

13 happens(patient_bolus_completed, T2) :- initiallyP(vtbi(VTBI)),

14 holdsAt(patient_bolus_drug_delivered(VTBI), T2).

15 happens(patient_bolus_delivery_stopped, T) :- happens(patient_bolus_completed, T).

16

17 fluent(patient_bolus_drug_delivered(X)).

18 trajectory(patient_bolus_delivery_enabled,T1, patient_bolus_drug_delivered(X),T2):-

19 patient_bolus_only_flow_rate(FlowRate),

20 X #= (T2 - T1) * FlowRate.

The first validation method that we propose is a way to check the consistency between the behaviour

defined by the requirements specification and the use cases (UC) and exception cases (ExC) based on

which the requirements were created (or, in general, checking consistency of the behaviour against any

https://github.com/ovasicek/pca-pump-ec-artifacts/

394 Early Validation of High-level Requirements on Cyber-Physical Systems

scenarios defined at a different level of the specification). This is done by transforming the UC/ExC into

an EC narrative and forming a query based on the UC/ExC and its post-conditions. If running the query

on the narrative using s(CASP) fails, then we have found an inconsistency. Using this technique we were

able to identify a number of such inconsistencies in the PCA pump specification.

The second validation method that we propose is a way to check whether the requirements specifi-

cation satisfies general properties, such as that the system should not allow an overdose of the patient

or that the system should respond to an event within a given time limit. This is done by representing

a general property as an s(CASP) query and checking that query on suitable narratives. In this way, we

were able to detect that the patient can be overdosed by the PCA pump in certain specific narratives,

which is a safety property violation caused by a missing requirement. We were further able to leverage

the abductive reasoning capabilities of s(CASP) in order to generalize the narrative on which the prop-

erty is being checked. In our case of checking the possibility of an overdose, we were able to abduce the

parameters of an overdose (what volume of drug is allowed over what time period) and, subsequently,

detect the possibility of an overdose in a “sunny day” narrative (in which the overdose does not directly

occur otherwise).

We further present a number of challenges encountered during the translation of the requirements to

EC encoded in s(CASP) and during the subsequent evaluation, based on deductive as well as abductive

reasoning, which was often too costly or non-terminating. We have applied and, in multiple cases, also

newly developed various techniques that helped us resolve many of these challenges. These include

extensions of the axiomatization of the EC and special ways of translating certain parts of the specifica-

tions in order to avoid non-termination. Further, we present an original approach to abductive reasoning

in s(CASP) with incrementally refined abduced values in order to assure consistency of the abduced

values whenever abduction on the same value is used multiple times in the reasoning tree. Next, we

proposed a mechanism for caching predicate evaluations (failure-tabling and tabling of ground sub-goal

success) that was added into s(CASP) as a prototype leading to a significant increase in performance. We

also describe a way of separating the reasoning about the trigger and the effect of certain complexity-

inducing triggered events into multiple reasoning runs where each run produces new facts to be used in

the subsequent ones, which reduces their performance impact.

Our work demonstrated that EC can be used to model the requirements specification of a non-trivial,

real-life cyber-physical system in s(CASP) and the reasoning involved can lead to discovering issues in

the requirements while producing valuable evidence towards their validation. Indeed, the work resulted

in the discovery of a number of issues in the PCA pump specification, which we have discussed and

confirmed with the authors of the specification.

6 Open Issues

There are still many open issues to be tackled in future work. A range of them consists of implementation

tasks needed to improve the s(CASP) system, such as properly integrating and efficiently implementing

our abductive reasoning semantics directly within s(CASP) and further improvements to our prototype

caching. Such issues are less interesting from the research perspective due to their engineering nature.

s(CASP) Non-termination The main issue that is currently limiting s(CASP) and our use of its rea-

soning capabilities is non-termination, which is often related to Zeno behaviours caused by reasoning

in continuous time. A common non-termination case is the “toggle” scenario where a system toggles

Ondřej Vašı́ček 395

between two fluents affected by respective toggle events. In such cases, the s(CASP) reasoner without

guidance, currently fails to resolve the time intervals when each of the fluents may or may not hold

even with a single toggle event. Another source of non-termination is abduction of timepoints of event

occurrences, because s(CASP) will attempt to abduce an infinite number of events due to reasoning in

continuous time. In certain cases, we are able to avoid non-termination by manually modifying the way

s(CASP) handles negated predicates, however, we lack a general solution to the problem. We believe

that this issue could be solved in some cases via loop detection techniques. Another direction of re-

search, which could diminish this issue, is the creation of a meta-reasoner in s(CASP) specialized to EC,

which would be more efficient and better at avoiding non-termination by leveraging the knowledge of

the semantics of EC axioms and predicates. s(CASP) is currently in no way specialized for EC.

Performance scaling Another issue is performance scaling of s(CASP) reasoning. Even with our

prototype cache, which greatly reduces reasoning runtime, we still observe a steep exponential increase

in solving complexity when introducing more events into a narrative (specifically input events). We

believe that the scaling can be greatly improved via a more efficient approach to reasoning. One source

of inefficiency is the the need to prove the entire history of the timeline from time zero up to the current

time whenever we reason about any aspects of EC at a given timepoint. We believe that many predicates

are being re-proven multiple times (instead of just once) throughout the process of answering a query

due to the need to re-prove the entire history in order to prove anything. This was partially addressed

by our prototype cache, however, the scaling currently still remains exponential. A promising approach,

which has already been used in our ICLP paper in a very limited form, is incremental solving where

we execute restricted reasoning multiple times and transfer facts between runs. My latest experiments

with a generalization of this incremental approach, which only reasons about smaller intervals of the

narrative timeline at a time, have shown a potential to significantly improve the performance scaling on

fixed narratives (i.e., narratives with at most one solution).

When considering CLINGO as a solver, we observe a very steep (most likely exponential) increase

in both solving time and memory consumption when increasing the value domain of variables (such as

the time scale, drug volume, etc.) due to an explosion in grounding size. My efforts are currently mainly

focused on s(CASP) and I have a deeper understanding of its capabilities due to my collaboration with

J. Arias and G. Gopal, who are the authors of s(CASP). In comparison, I only have limited experience

with and knowledge of CLINGO. I would be very interested in any ways to reduce the grounding explo-

sion when reasoning about systems which use continuous time and variables. A possible solution might

prove to be theory reasoning extensions of CLINGO [4], such as CLINGO[LP] [13].

Generality and Automation Further open issues are related to making our approach more general

and practically usable. These belong more into the Software Engineering Engineering research domain,

rather than in the domain of Logic Programming. Currently, our transformation of requirements to

EC is entirely manual, although we try to keep it as general as possible. In order for our approach to be

practically usable in the industry, we need to propose at least a semi-automated transformation for general

requirements of a wide enough class of systems. The main obstacle in the way of automation is the format

of requirements specifications as they are largely written in unconstrained natural language. Natural

language is inherently ambiguous and hard to reliably process by machines. We believe that introducing

a more structured language, such as MIDAS by [10], for facilitating formulation of requirements should

provide enough structure and context to the requirements in order to enable a more general and at least

semi-automated transformation of the requirements into EC. Another option to tackle this issue might

396 Early Validation of High-level Requirements on Cyber-Physical Systems

be the use of LLMs due to their recent success in processing natural language, however, the issue of

hallucinations and lack of explainability makes their use difficult in the domain of safety-critical systems

which have to go through certification.

References

[1] Joaquı́n Arias, Manuel Carro, Elmer Salazar, Kyle Marple & Gopal Gupta (2018): Constraint Answer Set

Programming without Grounding. TPLP 18, doi:10.1017/S1471068418000285.

[2] Mathilde Arnaud, Boutheina Bannour, Arnault Lapitre & Guillaume Giraud (2021): Investigating Process

Algebra Models to Represent Structured Requirements for Time-sensitive CPS. In: Proc. of SEKE’21, Pitts-

burgh (virtual conference), United States, doi:10.18293/SEKE2021-147.

[3] Devesh Bhatt, Gabor Madl, David Oglesby & Kirk Schloegel (2010): Towards Scalable Verification of Com-

mercial Avionics Software. In: Proc. of AIAA Infotech@Aerospace, doi:10.2514/6.2010-3452.

[4] Pedro Cabalar, Jorge Fandinno, Torsten Schaub & Philipp Wanko (2023): On the Semantics of Hybrid ASP

Systems Based on Clingo. Algorithms 16(4), p. 185, doi:10.3390/A16040185.

[5] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith & Roderick Bloem, editors (2018): Handbook of

Model Checking. Springer, doi:10.1007/978-3-319-10575-8.

[6] Andrew Crapo, Abha Moitra, Craig McMillan & Daniel Russell (2017): Requirements Capture and Analysis

in ASSERT(TM). In: Proc. of RE’17, IEEE, doi:10.1109/RE.2017.54.

[7] Goran Frehse (2015): An Introduction to Hybrid Automata, Numerical Simulation and Reachability Analysis.

Springer, doi:10.1007/978-3-658-09994-7_3.

[8] Martin Gebser, Roland Kaminski, Benjamin Kaufmann & Torsten Schaub (2019): Multi-shot ASP solving

with clingo. TPLP 19(1), pp. 27–82, doi:10.1017/S1471068418000054.

[9] Michael Gelfond & Vladimir Lifschitz (1988): The Stable Model Semantics for Logic Programming. In:

Proc. of ICLP’88, doi:10.2307/2275201.

[10] Brendan Hall, Jan Fiedor & Yogananda Jeppu (2020): Model Integrated Decomposition and Assisted Spec-

ification (MIDAS). INCOSE International Symposium 30(1), doi:10.1002/j.2334-5837.2020.00757.

x.

[11] Brendan Hall, Sarat Chandra Varanasi, Jan Fiedor, Joaquı́n Arias, Kinjal Basu, Fang Li, Devesh Bhatt, Kevin

Driscoll, Elmer Salazar & Gopal Gupta (2021): Knowledge-Assisted Reasoning of Model-Augmented System

Requirements with Event Calculus and Goal-Directed Answer Set Programming. In: HCVS 2021, EPTCS

344, doi:10.48550/arXiv.2109.04634.

[12] John Hatcliff, Brian Larson, Todd Carpenter, Paul Jones, Yi Zhang & Joseph Jorgens (2019): The Open PCA

Pump Project: An Exemplar Open Source Medical Device as a Community Resource. SIGBED Rev. 16(2),

doi:10.1145/3357495.3357496.

[13] Tomi Janhunen, Roland Kaminski, Max Ostrowski, Sebastian Schellhorn, Philipp Wanko & Torsten Schaub

(2017): Clingo goes linear constraints over reals and integers. Theory and Practice of Logic Programming

17(5-6), pp. 872–888, doi:10.1017/S1471068417000242.

[14] Savas Konur (2013): A survey on temporal logics for specifying and verifying real-time systems. Frontiers of

Computer Science 7(3), pp. 370–403, doi:10.1007/S11704-013-2195-2.

[15] Kim G. Larsen, Florian Lorber & Brian Nielsen (2018): 20 Years of UPPAAL Enabled Indus-

trial Model-Based Validation and Beyond. In: ISoLA’18, LNCS 11247, Springer, doi:10.1007/

978-3-030-03427-6_18.

[16] Vladimir Lifschitz (2019): Answer Set Programming. Springer, doi:10.1007/978-3-030-24658-7.

[17] Erik T. Mueller (2014): Commonsense Reasoning: An Event Calculus Based Approach. Morgan Kaufmann,

doi:10.1016/B978-0-12-801416-5.00002-4.

https://doi.org/10.1017/S1471068418000285
https://doi.org/10.18293/SEKE2021-147
https://doi.org/10.2514/6.2010-3452
https://doi.org/10.3390/A16040185
https://doi.org/10.1007/978-3-319-10575-8
https://doi.org/10.1109/RE.2017.54
https://doi.org/10.1007/978-3-658-09994-7_3
https://doi.org/10.1017/S1471068418000054
https://doi.org/10.2307/2275201
https://doi.org/10.1002/j.2334-5837.2020.00757.x
https://doi.org/10.1002/j.2334-5837.2020.00757.x
https://doi.org/10.48550/arXiv.2109.04634
https://doi.org/10.1145/3357495.3357496
https://doi.org/10.1017/S1471068417000242
https://doi.org/10.1007/S11704-013-2195-2
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-03427-6_18
https://doi.org/10.1007/978-3-030-24658-7
https://doi.org/10.1016/B978-0-12-801416-5.00002-4

Ondřej Vašı́ček 397

[18] Sarat Chandra Varanasi, Joaquı́n Arias, Elmer Salazar, Fang Li, Kinjal Basu & Gopal Gupta (2022): Model-

ing and Verification of Real-Time Systems with the Event Calculus and s(CASP). In: In Proc. of PADL’22,

LNCS 13165, Springer, doi:10.1007/978-3-030-94479-7_12.

[19] Ondřej Vašı́cek, Joaquı́n Arias, Jan Fiedor, Gopal Gupta, Brendan Hall, Bohuslav Křena, Brian Larson,

Sarat Chandra Varanasi & Tomáš Vojnar (2024): Early Validation of High-level System Requirements with

EC and ASP. In: Proc. of ICLP’24, doi:10.48550/arXiv.2408.09909.

[20] Don Ward (2012): AVSI: Moving SAVI to the Launch Pad. NDIA 2012.

https://doi.org/10.1007/978-3-030-94479-7_12
https://doi.org/10.48550/arXiv.2408.09909

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):

40th International Conference on Logic Programming (ICLP 2024)

EPTCS 416, 2025, pp. 398–406, doi:10.4204/EPTCS.416.41

© Y. Zeng

This work is licensed under the

Creative Commons Attribution License.

Reliable Conversational Agents under ASP Control

that Understand Natural Language

Yankai Zeng

The University of Texas at Dallas
Richardson, USA

yankai.zeng@utdallas.edu

Efforts have been made to make machines converse like humans in the past few decades. The recent

techniques of Large Language Models (LLMs) make it possible to have human-like conversations

with machines, but LLM’s flaws of lacking understanding and reliability are well documented. We

believe that the best way to eliminate this problem is to use LLMs only as parsers to translate text to

knowledge and vice versa and carry out the conversation by reasoning over this knowledge using the

answer set programming. I have been developing a framework based on LLMs and ASP to realize

reliable chatbots that “understand” human conversation. This framework has been used to develop

task-specific chatbots as well as socialbots. My future research is focused on making these chatbots

scalable and trainable.

1 Introduction

Conversational agents are designed to understand dialogs and generate meaningful responses to com-

municate with humans. After the popularity of ChatGPT, with its surprising performance and powerful

conversational ability, commercial Large Language Models (LLMs) for general NLP tasks such as GPT-

4 [1], etc., sprung up and brought the generative AI as a solution to the public view. These LLMs work

quite well in content generation tasks, but their deficiency in fact-and-knowledge-oriented tasks is well-

established by now [13]. These models themselves cannot tell whether the text they generate is based on

facts or made-up stories, and they cannot always follow the given data and rules strictly and sometimes

even modify the data at will, also called hallucination. The reasoning that these LLMs appear to perform

is also at a very shallow level. These are serious flaws that make the LLMs unsuitable for fact-based con-

versations such as providing correct information to a user. In contrast, humans understand the meaning

of sentences and then use their reasoning capabilities to check for consistency and take further action.

Thus, to make the machine-generated response reliable and consistent, our socialbot needs to follow a

similar approach.

Following the above insights, I researched developing elaborate conversational agents that can un-

derstand human dialog and respond properly according to human expectations. The agent should be able

to engage in multiple rounds of conversations of a certain purpose and understand the context of what

the user is saying like a human. We use the STAR framework [16], which uses LLM to interact with

the user, translates between natural language and knowledge represented in predicates, and uses an ASP

system for reasoning. Figure 1 demonstrates our approach to achieving understanding. After the user’s

input is parsed into predicates by the LLM, the ASP reasoner uses reasoning to check the consistency and

missing information. Questions asked by the user are also answered. Subsequently, the instructions for

the next step from the reasoner are passed on to another LLM, and the generated sentence is provided to

the user as a reply. We believe that the use of LLM should be controlled to avoid its misuse in fact-based

http://dx.doi.org/10.4204/EPTCS.416.41
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

Y. Zeng 399

Figure 1: The process of human thinking and how we model it with AI tools.

domains and that the best way to utilize LLM is to use it only as an interface for parsing and presenting

knowledge.

2 Related Work

Conversational agents (chatbots) have been an active area of research for a long time. Rule-based or

finite-state-based systems, like Eliza [20], Chat-80 [18], and PARRY [8], encode the mapping of user

commands to ontology using rules and state transitions to solve the Dialogue State Tracing (DST) task.

The Conversational Knowledge Template (CKT) [3] enables the system to control the dialog flow and

change topics.

Until recently, transformer-based Large Language Models, pre-trained on an enormous quantity of

well-annotated data, have been applied to general NLP tasks. With the advent of Large Language Models,

the paradigm changed from pre-training and fine-tuning [5] to teaching a language model any arbitrary

task using just a few demonstrations, called in-context learning, a method of prompt engineering. [4]

introduced an LLM called GPT-3 containing approximately 175 billion parameters that have been trained

on a massive corpus of filtered online text, on which the well-known ChatGPT is based.

GPT-3 and its successor GPT-4 [1] can perform competitively on several tasks such as question-

answering, semantic parsing, and machine translation. However, such LLMs lack the ability of mathe-

matical reasoning and find it hard to overcome the hallucination brought from the training data [9, 19, 13].

Retrieval Augmented Generation (RAG) [11] is proposed and widely used to mitigate the deficiencies

mentioned above by retrieving the relevant materials using similarity matching of content embedded as

vectors by a transformer-based model. Recent efforts [10, 15] are trying to leverage RAG for building

400 Reliable Conversational Agents

chatbots, but none of them engages an explicit reasoning system.

Finally, this research is an extension of our previous work developing NLU systems based on com-

monsense reasoning [3, 12, 22]. Our group has been dedicated to building socialbots, specifically ad-

dressing Amazon’s Alexa Socialbot Challenge [2] for years. GPT-4 with in-context learning as a se-

mantic parser leads to a significant advantage over our previous socialbots and helped this framework

succeed.

3 Research Goals

The main goal of this research is to build a general template for chatbots that can be applied to most

tasks, where the LLM bridges the gap between the human input and formatted predicates, while the ASP

system reasons the predicates to the result. It includes a set of sub-goals to achieve one after another.

• To build a domain-specific chatbot for task-oriented dialogues. Since these conversations are task-

oriented, they can be achieved by setting steps and states.

• To build a social chatbot for aimless dialogues. Different from the task-oriented dialogues, since

they are aimless, the control is only to guide the topic and action of the chatbot.

• To build a training chatbot for adding new functions to the current chatbot. The training bot defines

the structure of the chatting tasks and how to control the chatbot.

All three kinds of chatbots require an ontology that defines the scope of the predicates and their

values. A couple of examples are also required for the LLM parser to show the correct predicate usage.

Besides, states and actions should also be clearly defined in ASP coding. The action of checking com-

pleteness, consistency, and giving results are accomplished by an ASP code unit called Conversational

Knowledge Template (CKT) [3], and the aimless shifting between two related topics, especially for the

social bot, is achieved by Relevant Consistent Concept (RCC) [12]. Finally, examples of turning the

output predicates into natural language sentences should also be provided.

4 Preliminary Results

To guarantee the capability of LLMs to translate between natural language sentences and predicates, I

first experimented with GPT-3.5 on the E2E dataset [14], a dataset containing (i) restaurant information

in a form similar to predicates and (ii) corresponding natural language descriptions. I adapted the first

500 examples in the E2E dataset to the GPT-3.5 model with 11-shot prompting and obtained an accuracy

of 89.33%, indicating that the GPT-3.5 with a few examples in the prompt is fully capable of converting

from natural language to predicates.

I constructed a restaurant recommendation bot named AutoConcierge [22] that represents task-

oriented chatbots that work on a specific domain. AutoConcierge checks if the user provides the key

information of the cuisine type, the price range, and the customer rating of the restaurant they want to

search. If they do not provide all of them, AutoConcierge will ask for the missing information. Of course,

the user is allowed to add their own requirements (as long as they are pre-defined as the predicates), and

AutoConcierge will try its best to find a restaurant that satisfies all the requirements. It also helps pro-

vide detailed information about the (probably recommended) restaurant, such as its contact number and

address. I listed the scope of predicates to be extracted as the prompts of GPT-4 to ask it to parse the

natural language to predicates. Then, an update system maintains the state of current predicates, and the

Y. Zeng 401

CKT decides whether to recommend or ask for the missing information. Below is an example dialogue

of AutoConcierge.

Bot: Hi there, how can I assist you?

User: Can you recommend me a restaurant?

1 require(’name’,[’query’]),

2 require(’establishment’,[’restaurant’])

Bot: Is there a particular type of food you would like to eat?

User: I can try any food except curry.

1 require(’name’,[’query’]),

2 require(’establishment’,[’restaurant’]),

3 not_require(’food type’,[’Indian’,’Thai’])

Bot: Are you looking for a certain price range of restaurants?

User: Less than fifteen dollars.

1 require(’name’,[’query’]),

2 require(’establishment’,[’restaurant’]),

3 not_require(’food type’,[’Indian’,’Thai’]),

4 require(’price range’,[’cheap’])

Bot: Are you looking for a place with a particular customer rating?

User: No, I’m not looking for a specific rating score.

1 require(’name’,[’query’]),

2 require(’establishment’,[’restaurant’]),

3 not_require(’food type’,[’Indian’,’Thai’]),

4 require(’price range’,[’cheap’]),

5 require(’customer rating’,[’low’,’average’,’high’])

Bot: Southern Recipes Grill has an average customer rating and serves budget-friendly

American cuisine.

User: Sounds nice. Can you give me its address?

1 require(’name’,[’query’]),

2 require(’establishment’,[’restaurant’]),

3 not_require(’food type’, [’Indian’,’Thai’]),

4 require(’price range’,[’cheap’]),

5 require(’customer rating’,[’low’,’average’,’high’]),

6 require(’address’,[’query’])

Bot: Located at 621 W Plano Pkwy #229, Plano, TX 75075, Southern Recipes Grill offers

delicious food at an affordable price. Customers have given it an average

rating.

User: Thank you for your help.

Bot: It’s my pleasure to help. No need to thank me.

As for the social chatbot, I built AutoCompanion which chats with users on movie and book fields.

AutoCompanion jumps from the currently discussed topic to its relevant topic by selecting one RCC.

Within one specific topic, AutoCompanion sets some aspects to discuss with the users, which are driven

by CKTs. I also added a random function to the AutoCompanion so that it can switch to a relevant topic

without iterating all aspects of one topic. Since it is hard to collect all the detailed plots of thousands

of books and movies, I let GPT-4 generate the corresponding content that is usually reliable. The up-

date system of AutoCompanion is similar to AutoConcierge where the discussed topics and aspects are

discussed. An example dialogue of AutoCompanion is presented below.

402 Reliable Conversational Agents

Bot: Hello! It’s delightful coming across another cinema enthusiast. Seen any

noteworthy films lately? Or maybe you’ve been immersed in a captivating read?

My enthusiasm seems to oscillate between both constantly!

User: Me too! I just saw Inception. It is a great idea to take action on one’s dream!

Dreams in the dreams! What a fabulous idea!
Themes:
1 talk(movie, Inception, plot episode). content(plot episode, actions in dreams).

attitude(positive).

Next:
1 talk(movie,Inception,plot episode). attitude(positive).

Bot: Absolutely! The concept of a dream within a dream in Inception is simply

astonishing. Who could forget that sensational zero-gravity hotel scene? The

representation of physics and action was remarkable, wasn’t it?

User: Yeah! And those people are kicked to wake up from their level of dreams one

after another. very impressive and surprising, right?
Themes:
1 talk(movie, Inception, plot episode). content(plot episode, waking up one after another).

attitude(positive).

Next:
1 talk(movie,The Wolf of Wall Street,plot episode). attitude(positive).

Bot: Totally! Your mention of ’Inception’ brings to mind ’The Wolf of Wall Street’,

another DiCaprio masterpiece. The scene in which Jordan Belfort galvanizes his

firm and denounces stepping down is incredibly grand! Quite the adrenaline

surge, right?

User: Sorry I haven’t seen this movie before. But I did see another of his work,

Catch Me If You Can. I think DiCaprio’s acting there quite matches the

character’s traits, right? It’s really a good story. I like that.
Themes:
1 talk(person, Leonardo DiCaprio, filmography). content(filmography, Catch Me If You Can).

attitude(positive).

2 talk(movie, Catch Me If You Can, actor performance). content(actor performance, acting of

DiCaprio matches the traits). attitude(positive).

3 talk(movie, Catch Me If You Can, plot episode). attitude(positive).

Next:
1 talk(movie,Catch Me If You Can,plot episode). attitude(positive).

Bot: Couldn’t agree more, buddy - the scene with Frank as a Pan Am pilot?

Unbelievably good. It’s astounding to think of a kid being able to pull off a

scam that big. What scene did you enjoy the most?

User: Right, that’s amazing! But almost everybody trusts his make-up identity without

a second thought. It’s kind of ridiculous, but if things like this happened

around us, it would be terrible, right?
Themes:
1 talk(movie, Catch Me If You Can, characterization). content(characterization, everybody trusts

Frank’s make-up identity). attitude(negative).

2 talk(movie, Catch Me If You Can, social impact). content(social impact, terrible if happened

in real life). attitude(positive).

Next:
1 talk(movie,Catch Me If You Can,social impact). attitude(positive).

Y. Zeng 403

Bot: Absolutely, buddy! Imagine having tricksters like Frank amidst us - entertaining

in films but not in reality! The movie, Catch Me If You Can, prompts us not to

be rebels but to demand transparency, wouldn’t you agree? There’s a certain

allure to the con artist lifestyle, don’t you find it intriguing?

User: So according to you, this is a very educational movie, right? Anyway I really

like its story, it’s fun and exciting.
Themes:
1 talk(movie, Catch Me If You Can, value expressed). content(value expressed, educational).

attitude(positive).

2 talk(movie, Catch Me If You Can, plot episode). content(plot episode, fun and exciting).

attitude(positive).

Next:
1 talk(movie,Don’t Look Up,plot episode). attitude(positive).

Bot: I totally understand, it’s an entertaining narrative full of excitement, with

underlying themes of trust and integrity. Your mention of Catch Me If You Can

brings to mind another film featuring Leonardo DiCaprio, namely Don’t Look Up.

Well, personal opinion aside, the sequence with the meteorite approaching Earth

was particularly gripping. Would you like to share your thoughts on it?

User: Ah I don’t quite like that movie. It thinks it satirizes a lot of things, but

there is nothing fresh or original. It is neither spicy nor funny, and its

reflection on the political situation at that time is a bit deliberate.
Themes:
1 talk(movie, Don’t Look Up, plot episode). content(plot episode, ’nothing fresh or original,

neither spicy nor funny, the reflection of the political situation is deliberate’).

attitude(negative).

Next:
1 talk(person,Jennifer Lawrence,filmography). attitude(negative).

Bot: Absolutely, my friend. It seemed excessively satirical to the point of

unreality, draining the plot of its potency. When you bring up ’Don’t Look Up’,

I can’t help but think of Jennifer Lawrence - she was part of its cast. In my

opinion, the movie ’House at the End of the Street’ didn’t quite showcase her

acting abilities. A talent like hers seemed underutilized, don’t you agree?

User: I think it’s the role that limits her, although in fact her character is

actually one of the few bright spots in this movie.

Themes:

1 talk(person, Jennifer Lawrence, acting skill). content(acting skill, limited by role in House

at the End of the Street). attitude(negative).

2 talk(movie, House at the End of the Street, actor performance). content(actor performance,

Jennifer Lawrence is one of the few bright spots). attitude(positive).

Next:

1 talk(movie,House at the End of the Street,actor performance). attitude(positive).

Bot: Absolutely, I concur with your point. Jennifer Lawrence’s skills exceeded her

role. Her performance was indeed the bright spot in the film. The fear and

struggle she represented was so real. Do you have any insights regarding the

performance of other actors?

404 Reliable Conversational Agents

User: The male lead is quite handsome, and the ending is really powerful, adding a lot

of color to the movie.

Themes:

1 talk(movie, House at the End of the Street, actor performance). content(actor performance,

male lead is handsome). attitude(positive).

2 talk(movie, House at the End of the Street, plot episode). content(plot episode, powerful

ending). attitude(positive).

Next:

1 talk(movie,House at the End of the Street,plot episode). attitude(positive).

Bot: Indeed, the finale, oh my, totally transformed the game! It added an exciting

edge to the film! Positively, the unexpected revelation where the ’sister’

unfolds as the captive girl is flabbergasting. I was completely caught off

guard. Did this astonish you to the same degree as it did me?

User: Yeah! But simply astonished. Nothing else. I’m happy to talk with you, but I

need to go now. See you next time!

Themes:

1 talk(movie, House at the End of the Street, emotion impact). content(emotion impact, just

astunished). attitude(negative).

2 quit.

Next:

1 quit.

Bot: Sure thing! I had a great time talking about movies and books with you. I hope

we can carry on with our conversation next time. Have a great day!

5 Future Work

The current chatbots are specially designed for hotel concierge and social chatting. In the future, I will

make the chatbot general enough to fit most tasks with a scalable framework. This can be achieved by

formatting the CKT component and updating modules. I will also closely follow the latest research in

the LLM field and optimize the current chatbot structure to speed up reply generation.

The plan also includes a trainer chatbot that enables the current chatbot to learn new skills. To

teach a chatbot with a new function, instructions on the knowledge to focus on and steps to complete

tasks are required. The knowledge constitutes the ontology of the required predicates, and the steps are

decomposed into several CKTs recursively.

6 Conclusion

This research is aimed at building chatbots that think and reason like humans. This goal can be decom-

posed into different domain-specific task-oriented chatbots and socialbots. To model human thinking,

I employed an LLM (GPT-4) as an interface, translating between natural language input and structured

predicates, and let the ASP system reason behind it. I built an AutoConcierge for the task-oriented chat-

bot and an AutoCompanion for the socialbot to show the feasibility of this approach. My future work

includes several improvements to the current chatbot and a higher-level chatbot that can learn a new

function by interacting with the user (coach).

Y. Zeng 405

References

[1] Josh Achiam, Steven Adler et al. (2023): GPT-4 technical report. arXiv preprint arXiv:2303.08774, doi:10.

48550/arXiv.2303.08774.

[2] Amazon (2021): Amazon Alexa Socialbot Challenge 4.0. Available at https://utdallas.edu/~gupta/

alexa.html.

[3] Kinjal Basu, Huaduo Wang, Nancy Dominguez, Xiangci Li, Fang Li, Sarat Chandra Varanasi & Gopal

Gupta (2021): CASPR: a commonsense reasoning-based conversational Socialbot. arXiv preprint

arXiv:2110.05387, doi:10.48550/arXiv.2110.05387.

[4] Tom B. Brown, Benjamin Mann et al. (2020): Language models are few-shot learners. arXiv preprint

arXiv:2005.14165, doi:10.48550/arXiv.2005.14165. Available at https://proceedings.neurips.

cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[5] Silvia Casola, Ivano Lauriola & Alberto Lavelli (2022): Pre-trained transformers: an empirical comparison,

doi:10.1016/j.mlwa.2022.100334.

[6] Zhuo Chen, Kyle Marple, Elmer Salazar, Gopal Gupta & Lakshman Tamil (2016): A Physician Advisory Sys-

tem for Chronic Heart Failure management based on knowledge patterns. arXiv preprint arXiv:1610.08115,

doi:10.48550/arXiv.1610.08115.

[7] Sachin Pathiyan Cherumanal, Lin Tian, Futoon M. Abushaqra, Angel Felipe Magnossao de Paula, Kaixin Ji,

Danula Hettiachchi, Johanne R. Trippas, Halil Ali, Falk Scholer & Damiano Spina (2024): Walert: Putting

Conversational Search Knowledge into Action by Building and Evaluating a Large Language Model-Powered

Chatbot. arXiv preprint arXiv:2401.07216, doi:10.48550/arXiv.2401.07216.

[8] Kenneth Mark Colby, Sylvia Weber & Franklin Dennis Hilf (1971): Artificial paranoia. Artificial Intelligence

2(1), pp. 1–25, doi:10.1016/0004-3702(71)90002-6.

[9] Luciano Floridi & Massimo Chiriatti (2020): GPT-3: Its Nature, Scope, Limits, and Consequences. Minds

and Machines 30, pp. 681–694, doi:10.1007/s11023-020-09548-1.

[10] Mandar Kulkarni, Praveen Tangarajan, Kyung Kim & Anusua Trivedi (2024): Reinforcement learning for op-

timizing RAG for domain chatbots. arXiv preprint arXiv:2401.06800, doi:10.48550/arXiv.2401.06800.

[11] Patrick Lewis, Ethan Perez et al. (2020): Retrieval-augmented generation for knowledge-intensive NLP tasks.

Advances in Neural Information Processing Systems 33, pp. 9459–9474. arXiv preprint arXiv:2005.11401,

doi:10.48550/arXiv.2005.11401. Available at https://proceedings.neurips.cc/paper/2020/

hash/6b493230205f780e1bc26945df7481e5-Abstract.html.

[12] Fang Li, Huaduo Wang, Kinjal Basu, Elmer Salazar & Gopal Gupta (2021): DiscASP: A Graph-based ASP

System for Finding Relevant Consistent Concepts with Applications to Conversational Socialbots. In: Proc.

37th ICLP (Tech. Comm), EPTCS 345, pp. 205–218, doi:10.4204/EPTCS.345.35.

[13] Marianna Nezhurina, Lucia Cipolina-Kun, Mehdi Cherti & Jenia Jitsev (2024): Alice in Wonderland: Simple

Tasks Showing Complete Reasoning Breakdown in State-Of-the-Art Large Language Models. arXiv preprint

arXiv:2406.02061, doi:10.48550/arXiv.2406.02061.

[14] Jekaterina Novikova, Ondřej Dušek & Verena Rieser (2017): The E2E dataset: New challenges for end-to-

end generation, doi:10.18653/V1/W17-5525.

[15] Mujahid Ali Quidwai & Alessandro Lagana (2024): A RAG Chatbot for Precision Medicine of Multiple

Myeloma. medRxiv preprint, doi:10.1101/2024.03.14.24304293.

[16] Abhiramon Rajasekharan, Yankai Zeng, Parth Padalkar & Gopal Gupta (2023): Reliable Natural Lan-

guage Understanding with Large Language Models and Answer Set Programming. arXiv preprint

arXiv:2302.03780, doi:10.48550/arXiv.2302.03780.

[17] Anuja Tayal & Aman Tyagi (2024): Dynamic Contexts for Generating Suggestion Questions in RAG Based

Conversational Systems. arXiv preprint arXiv:2403.11413, doi:10.48550/arXiv.2403.11413.

https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://utdallas.edu/~gupta/alexa.html
https://utdallas.edu/~gupta/alexa.html
https://doi.org/10.48550/arXiv.2110.05387
https://doi.org/10.48550/arXiv.2005.14165
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1016/j.mlwa.2022.100334
https://doi.org/10.48550/arXiv.1610.08115
https://doi.org/10.48550/arXiv.2401.07216
https://doi.org/10.1016/0004-3702(71)90002-6
https://doi.org/10.1007/s11023-020-09548-1
https://doi.org/10.48550/arXiv.2401.06800
https://doi.org/10.48550/arXiv.2005.11401
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/6b493230205f780e1bc26945df7481e5-Abstract.html
https://doi.org/10.4204/EPTCS.345.35
https://doi.org/10.48550/arXiv.2406.02061
https://doi.org/10.18653/V1/W17-5525
https://doi.org/10.1101/2024.03.14.24304293
https://doi.org/10.48550/arXiv.2302.03780
https://doi.org/10.48550/arXiv.2403.11413

406 Reliable Conversational Agents

[18] David H.D. Warren & Fernando C.N. Pereira (1982): An efficient easily adaptable system for interpreting

natural language queries. American journal of computational linguistics 8(3-4), pp. 110–122. Available at

https://aclanthology.org/J82-3002.

[19] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le &

Denny Zhou (2022): Chain of Thought Prompting Elicits Reasoning in Large Language Models. Advances

in Neural Information Processing Systems 35, pp. 24824–24837. arXiv preprint arXiv:2201.11903, doi:10.

48550/arXiv.2201.11903. Available at https://proceedings.neurips.cc/paper_files/paper/

2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html.

[20] Joseph Weizenbaum (1966): ELIZA—a computer program for the study of natural language communication

between man and machine. CACM 9(1), pp. 36–45, doi:10.1145/365153.365168.

[21] Zesheng Xu, Joaquı́n Arias, Elmer Salazar, Zhuo Chen, Sarat Chandra Varanasi, Kinjal Basu & Gopal Gupta

(2023): Jury-Trial Story Construction and Analysis Using Goal-Directed Answer Set Programming. In: Proc.

25th PADL, LNCS 13880, Springer, pp. 261–278, doi:10.1007/978-3-031-24841-2_17.

[22] Yankai Zeng, Abhiramon Rajasekharan, Parth Padalkar, Kinjal Basu, Joaquı́n Arias & Gopal Gupta (2024):

Automated interactive domain-specific conversational agents that understand human dialogs. In: Proc. 26th

PADL, LNCS 14512, Springer, pp. 204–222, doi:10.1007/978-3-031-52038-9_13.

https://aclanthology.org/J82-3002
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2201.11903
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/365153.365168
https://doi.org/10.1007/978-3-031-24841-2_17
https://doi.org/10.1007/978-3-031-52038-9_13

	Technical Communications
	Doctoral Consortium Papers
	Abstracts of Invited Talks and Tutorials
	Introduction
	Recursive exploration of LLM dialog threads
	Generating propositional Horn clause programs with the DeepLLM app
	Generating propositional Dual Horn clause programs
	From Self-generated follow-up question-answer chains to DCG grammars
	Computing minimal models of LLM-generated logic programs
	Minimal model computation with a GPU-friendly Torch-based Linear Algebra Algorithm
	Fixpoint-based minimal model computation

	Generating relation triplets for knowledge graphs
	Reasoning with soft unification on noisy facts
	Related Work
	Conclusion
	Introduction
	Visual Question Answering on Graphs
	Our Neuro-Symbolic Framework for VQA on Graphs
	Visual Module
	Language Module
	Reasoning Module
	Evaluation of NSGRAPH on CLEGRV

	Semantic Parsing with LLMs
	Prompt Engineering
	Evaluation

	Related Work
	Conclusion
	Introduction
	Specification of APIs as PDDL Actions
	User Query to ASP Representation
	User Query to Intermediate Representation
	Intermediate Representation to Materialized Representation

	Orchestrate APIs using Planner
	Task PDDL Generation
	Plan generation

	Experiments
	Dataset Generation
	Results and Analysis

	Conclusion
	Translation Prompt
	Argument Types
	Domain Goals
	In-context Examples

	Domain Modeling
	Domain PDDL
	Domain Rules

	Query ASP to Task PDDL
	Query ASP to Task PDDL Algorithm
	Example Task PDDLs

	Evaluation
	LLM prompt for dataset generation
	Samples from the dataset
	Baseline Prompt
	Evaluation Results

	Introduction
	The need for legal compliance analysis
	Combining logic programming and LLMs for legal analysis
	Implementation and evaluation
	Implementation
	Accuracy
	Efficiency
	Robustness

	Related work and conclusion
	Introduction
	Background
	Comparison with existing LLMs
	Executing LP-LM using Prolog unification
	Insertions into KB
	Retrievals from KB
	A note on DCG parsing efficiency

	Related work, future work, and conclusion
	Introduction
	Background
	Neuro-symbolic Frameworks for Reasoning
	Preliminary of Inductive Logic Programming
	Introduction of NLI Task
	Contrastive Learning for NLI
	Problem formulation

	Methodology
	Meaning Representations and Dataset Construction
	Metarules of Cross-domain Tasks
	Data Augmentation for Contrastive Learning
	Hard Positive Example Pairs
	Hard Negative Example Pairs
	Training Process of Contrastive Learning
	Rule-based Translation between Logic-form and Natural Language

	Experiment and Result
	Dataset
	Result
	Natural Language vs. Logical Form Expressions for NLI
	Neuro-Symbolic Contrastive Learning for Cross-Domain Logic Reasoning

	Conclusion
	Introduction
	Background
	Norm-Specification Language AOPL
	Behavior Modes in Norm-Aware Autonomous Agents

	Example
	Architecture
	ASP Component
	Python Component

	Software System
	Evaluation
	Related Work
	Conclusions and Future Work
	Introduction
	Background: Policy-Specification Language AOPL
	Penalization Framework for Policy-Aware Agents
	Findings from Experiments
	Introduction
	Background
	Liability
	State of the Art
	Structure
	Methodology
	Logic rules
	Agent simulation
	Agents

	Violations and Penalties
	Design
	Implementation

	Summary and Future Work
	Introduction
	A Distributed Multi-Agent Simulator
	Case Study: Supply Chain Simulation
	Conclusions
	Introduction
	(Stochastic) PT nets, Maude, and demonstrative example
	Modular Rewritable Stochastic PN: Symmetries and Lumpability
	Getting the Lumped CTMC generator from RwSPT
	Conclusion and Future Work
	Motivation
	Syntax and semantics
	Semantic and NAF-arguments
	Conclusions
	Introduction
	Background
	Model
	Implementation
	Tree rewriting
	Language independent stages
	Language dependent stages

	Results
	Conclusions
	Introduction
	A Logic for Knowledge and Action
	Reasoning & Planning
	Counterfactual Explanations
	Reconciliation-based Explanations
	Agents Only-Knowing Partial Truths
	Agents Only-Knowing Weakened Truths
	Agents with False Beliefs
	Possibility vs Knowledge

	Other related efforts
	Conclusions
	Introduction
	Technical Preliminaries
	A Practical Heuristic Algorithm
	Evaluation
	Conclusion
	Introduction
	Preliminaries
	Normal logic programs
	Stable and supported partial models
	Dependency and transition graphs
	Stable and supported trap spaces

	Boolean networks

	Finite ground normal logic programs and Boolean networks
	Graphical analysis results
	Preparations
	Unicity of regular and stable models
	Existence of non-trivial regular models
	Unicity of regular models
	Upper bound for number of regular models

	Conclusion and perspectives
	Introduction
	Preliminaries
	OWL 2 QL
	Syntax
	Meta-modeling Semantics

	Hybrid Knowledge Bases

	Query Answering Using MSER
	MSER Query Answering via Hybrid Knowledge Bases
	General Architecture
	Basic Notions
	Variants

	Evaluation
	Discussion and Conclusion
	Introduction
	Background: ASP and epistemic specifications (ES) in a nutshell
	Gelfond's epistemic specifications: ESdoksandort
	Motivation

	Epistemic Answer Set Programming (EASP)
	The Language of EASP (L EASP)
	Semantics of EASP in terms of stable sfive-models

	Epistemic Extensions of Equilibrium Logic
	Su et al.'s approach (ESyirmia): autoepistemic equilibrium logic (AEEL)
	Epistemic here-and-there logic (EHT) and its equilibrium sfive-models w.r.t. truth

	Cabalar et al.'s approach (ESyirmib): founded autoepistemic equilibrium logic (FAEEL)
	Su's approach (ESyirmibir): reflexive autoepistemic equilibrium logic (RAEEL)

	Correspondence between EASP and EEL
	Conclusion
	1 Introduction
	2 Architecture and Workflow of clinguin
	3 Extensibility
	3.1 Case study: A backend adding explanations

	4 Related work
	5 Conclusion
	Introduction
	The Algorithm
	Transitive Closure Example
	Why this Prolog Program Is Interesting
	Complexity
	Generating the implies/2 Rules
	Conclusion
	Introduction
	Term Syntax and Semantics
	Types
	Semantics
	Semantic Typing

	Syntactic Typing
	Constraints
	Typed Unification Algorithm
	Constraint Generation
	Constraint Solving
	Properties of the Regular Typed Unification Algorithm

	Final Remarks
	Related Work
	Introduction
	Preliminaries – Order-sorted Logic
	Analysis of subtyping polymorphism
	Guarded order-sorted logic
	Order-sorted intensional logic
	Guarded order-sorted intensional logic
	Well-typedness in order-sorted intensional logic
	Semantics of the language
	Related work and discussion
	Conclusion
	Introduction
	Related Work
	Background
	Coq Implementation
	Basic Data structure
	XOR-Rewrite System
	XOR-Unification Algorithm and Correctness

	Conclusion and Future Work
	Introduction
	Motivating Application
	Technical Preliminaries
	Efficient and Scalable Geospatial Abduction for Trajectory Generation
	Software Stack
	Internal Evaluation
	Deployment for Independent Evaluation
	Related Work
	Conclusion
	Introduction
	Analysis of Mass Spectra with Genmol
	Canonical Representation of Molecules
	Background and Proposal
	Problem and Data
	General Architecture
	Overview
	Introduction
	Background
	Research Goal
	Preliminary Results
	Related Work
	Limitations and Planned Work
	Conclusion
	Introduction
	Background
	Answer Set Programming
	Inductive Logic Programming
	Artificial Neural Networks

	Related Works
	Research goals
	Current status of research
	Conclusions
	Introduction
	Background
	Contributions and future work
	Future work

	Introduction
	Background
	Goals
	Current Status and Preliminary Results
	Results Presented at Previous Doctoral Consortiums
	New Results

	Ongoing Directions and Expected Achievements
	Related Work
	Modularity
	Grounding
	Tool Support

	Conclusions and Future Directions
	Introduction
	Background and Problem Statement
	Related Works
	Current Progress and Future Goals
	Some Results
	Open issues and expected achievements
	Introduction
	Problem Statement
	Situation Calculus
	Solution
	Methodology
	Expected Contributions and Goals
	Current Status of the Research
	Introduction
	Related Work
	Research Goals
	Preliminary Results
	Conclusion and Future Work
	Introduction and Related Work
	Scientific Research Goals
	Research Methodology
	WP1 Approximation Spaces
	WP2 Recursively defined domains and higher-order functions
	WP3 Explanations for AFT

	Current Status and Future Plan
	1 Introduction
	2 Background
	2.1 Hybrid Solvers
	2.2 The Logic of Here-and-There and Hybrid Extensions
	2.3 Configuration

	3 Research
	3.1 Contributions and Future Work

	Introduction
	Background and Relevant Literature
	Methodology
	Status
	Preliminary Results
	Open Issues and Expected Achievements

	Conclusion
	Introduction and Motivation
	Background
	Related Work
	Research Goals and Current State
	Current Results
	Open Issues
	Introduction
	Related Work
	Research Goals
	Preliminary Results
	Future Work
	Conclusion

