EPTCS 416

Proceedings of the
40th International Conference on

Logic Programming
University of Texas at Dallas, Dallas Texas, USA, October 14-17 2024

Edited by: Pedro Cabalar, Francesco Fabiano, Martin Gebser, Gopal Gupta
and Theresa Swift



Published: 13th February 2025
DOI: 10.4204/EPTCS.416
ISSN: 2075-2180

Open Publishing Association



Table of Contents

Table Of CONENLS . .. ...ttt ettt e e e e e e et i

Preface . . .o v

On LLM-generated Logic Programs and their Inference Execution Methods. ..................... 1
Paul Tarau

Visual Graph Question Answering with ASP and LLMs for Language Parsing.................... 15

Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera Ruiz and Johannes Oetsch

LLM+Reasoning+Planning for Supporting Incomplete User Queries in Presence of APIs.......... 29
Sudhir Agarwal, Anu Sreepathy, David H. Alonso and Prarit Lamba

Logical Lease Litigation: Prolog and LLMs for Rental Law Compliance in New York............. 59
Sanskar Sehgal and Yanhong A. Liu

LP-LM: No Hallucinations in Question Answering with Logic Programming..................... 69
Katherine Wu and Yanhong A. Liu

Neuro-Symbolic Contrastive Learning for Cross-domain Inference................... ... . ..... 78
Mingyue Liu, Ryo Ueda, Zhen Wan, Katsumi Inoue and Chris G. Willcocks

Architecture for Simulating Behavior Mode Changes in Norm-Aware Autonomous Agents......... 95
Sean Glaze and Daniela Inclezan

Policies, Penalties, and Autonomous Agents (Extended Abstract) ............ ..., 108
Vineel Tummala and Daniela Inclezan

Mind the Gaps: Logical English, Prolog, and Multi-agent Systems for Autonomous Vehicles ...... 111
Galileo Sartor, Adam Wyner and Giuseppe Contissa

Simulating Supply-Chain Contract Execution: A Multi-Agent Approach (Extended Abstract). ..... 125
Long Tran, Tran Cao Son, Dylan Flynn and Marcello Balduccini

Modular Stochastic Rewritable Petri Nets. ... ...ttt e e i 128
Lorenzo Capra

Semantic Argumentation using Rewriting Systems (Extended Abstract).......................... 135
Esteban Guerrero and Juan Carlos Nieves

Data2Concept2Text: An Explainable Multilingual Framework for Data Analysis Narration.. ....... 139



il

Flavio Bertini, Alessandro Dal Palii, Federica Zaglio, Francesco Fabiano and
Andrea Formisano

Counterfactual Explanations as Plans. . .......... o i 153
Vaishak Belle

Abduction of Domain Relationships from Datafor VQA ......... ... ..o ... 168
Al Mehdi Saadat Chowdhury, Paulo Shakarian and Gerardo 1. Simari

Graphical Conditions for the Existence, Unicity and Number of Regular Models.................. 175
Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman and Francois Fages

Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases ................. 188
Haya Majid Qureshi and Wolfgang Faber

Pearce’s Characterisation in an Epistemic Domain........... ... .. ... ... i i i 201
Ezgi Iraz Su

ASP-driven User-interaction with CHNGUIN . ...ttt i ieiiieeenns 215

Alexander Beiser, Susana Hahn and Torsten Schaub

A Prolog Program for Bottom-up Evaluation. ............ .. . i 229
David S. Warren

Regular Typed Unification . .. ........uuutttiii ettt ettt ettt eeeeens 236
Jodo Barbosa, Mdrio Florido and Vitor Santos Costa

Order-Sorted Intensional Logic: Expressing Subtyping Polymorphism with Typing Assertions and
Quantification OVEr CONCEPLS . . . . .. vttt ettt ettt et 253
Dorde Markovi¢ and Marc Denecker

A Coq Formalization of Unification Modulo Exclusive-Or. . ...t .. 267
Yichi Xu, Daniel J. Dougherty and Rose Bohrer

Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing ... 274
Divyagna Bavikadi, Dyuman Aditya, Devendra Parkar, Paulo Shakarian, Graham Mueller,
Chad Parvis and Gerardo 1. Simari

Towards Mass Spectrum Analysis with ASP (Extended Abstract) ..................ccviiin... 288
Nils Kiichenmeister, Alex Ivliev and Markus Krotzsch

Monitoring and Scheduling of Semiconductor Failure Analysis Labs (Extended Abstract) ......... 291
Elena Mastria, Domenico Pagliaro, Francesco Calimeri, Simona Perri, Martin Pleschberger
and Konstantin Schekotihin

Declarative Al design in Unity using Answer Set Programming (Extended Abstract).............. 295

Denise Angilica, Giovambattista lanni, Francesco Pacenza and Jessica Zangari

stableKanren: Integrating Stable Model Semantics with miniKanren (Extended Abstract).......... 298
Xiangyu Guo, James Smith and Ajay Bansal



iii

Alda: Integrating Logic Rules with Everything Else, Seamlessly (System Demonstration) . ........ 301
Yanhong A. Liu, Scott D. Stoller, Yi Tong and Bo Lin

Generating Causally Compliant Counterfactual Explanations using ASP......................... 306
Sopam Dasgupta
Bridging Logic Programming and Deep Learning for Explainability through ILASP .............. 314

Talissa Dreossi

Computational methods for Dynamic Answer Set Programming ............... ... .. ... ... .. 324
Susana Hahn

Relating Answer Set Programming and Many-sorted Logics for Formal Verification .............. 332
Zachary Hansen

Answer Set Counting and its APplICAtiONS . . ... ..ottt e e 345
Mohimenul Kabir

Logical foundations of Smart COntracts .. .............uiiuutinnttint it neenns 351

Kalonji Kalala

Commonsense Reasoning-Aided Autonomous Vehicle Systems..................cooviiin... 358
Keegan Kimbrell
A Category-Theoretic Perspective on Approximation Fixpoint Theory........................... 365

Samuele Pollaci

Hybrid Answer Set Programming: Foundations and Applications . ...................coiiion... 374
Nicolas Riihling
Autonomous Task Completion Based on Goal-directed Answer Set Programming ................ 381

Alexis R. Tudor

Early Validation of High-level Requirements on Cyber-Physical Systems ........................ 390
Ondrej Vasicek

Reliable Conversational Agents under ASP Control that Understand Natural Language............ 398
Yankai Zeng



Introduction to the Proceedings of
the 40th International Conference on Logic Programming

Pedro Cabalar Theresa Swift Francesco Fabiano
University of A Corufia, Spain Johns Hopkins Applied Physics Lab New Mexico State University

pedro.cabalar@udc.es theresasturn@gmail.com ffabiano@nmsu.edu

Martin Gebser Gopal Gupta
University of Klagenfurt University of Texas at Dallas

martin.gebser@aau.at gupta@utdallas.edu

The 40th International Conference on Logic Programming (ICLP 24), was held in Dallas, Texas on
October 14-17, 2024, and was co-located with the 17th International Conference on Logic Programming
and Non-monotonic Reasoning held on October 11-14, 2024. This volume contains Technical Commu-
nications in Section 1, papers from the affiliated Doctoral Consortium in Section 2, and in Section 3
abstracts from the ICLP 24 invited talks and tutorials

1 Technical Communications

ICLP 24 technical communications include several types of contributions: regular papers, short papers,
and extended abstracts of regular papers. Under the rubric of technical communications we also include
extended abstracts of system demos and of recently published research. The high quality of all contri-
butions has been ensured by triple-revieweing; and apart from extended abstracts of recently published
research, all contributions in this volume are original work.

Technical communications often represent research that is very new and sometimes longer versions
of extended abstracts are published in other venues. However, the impact of technical communications
can be quite high. In fact, the Alain Colmerauer 10-year Test of Time Award for ICLP 2024 was given to
a technical communication, “Clingo = ASP + Control: Preliminary Report’ﬁ, by Martin Gebser, Roland
Kaminski, Benjamin Kaufmann and Torsten Schaub, originally published as part of the Proceedings of
the Thirtieth International Conference on Logic Programming 2014.

We loosely group the technical communications in this volume as follows.

Logic Programming and Neural Models Given the phenominal capabilities of recent Large Lan-
guage Models (LLMs) such as Chat-GPT and Llama, a number of technical communications in ICLP 24
explored how logic programming can be combined with LLMs in meaningful ways, or included within
neuro-symbolic approaches.

* On LLM-generated Logic Programs and their Inference Execution Methods by Paul Tarau

* Visual Graph Question Answering with ASP and LLMs for Language Parsing by Jakob Johannes
Bauer, Thomas Eiter, Nelson Higuera Ruiz and Johannes Oetsch

I'Selected papers from ICLP 24 will be published separately in Special Issue on the 40" International Conference of Logic
Programming, Theory and Practice of Logic Programming (2025).
2(CoRR, abs/1405.3694 (2014)
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* LLM+Reasoning+Planning for Supporting Incomplete User Queries in Presence of APIs by Sud-
hir Agarwal, Anu Sreepathy, David H. Alonso and Prarit Lamba

* Logical Lease Litigation Prolog and LLMs for Rental Law Compliance in New York by Sanskar
Sehgal and Yanhong A. Liu

e LP-LM: No Hallucinations in Question Answering with Logic Programming by Katherine Wu and
Yanhong A. Liu.

* Neuro-symbolic Contrastive Learning for Cross-domain Inference by Mingyue Liu, Ryo Ueda,
Zhen Wan, Katsumi Inoue and Chris Willcocks

Autonomy and Agents Another active research topic investigates the role of logic programming in
autonomous, distributed and adaptive dynamic systems.

* Architecture for Simulating Behavior Mode Changes in Norm-Aware Autonomous Agents by Sean
Glaze and Daniela Inclezan

* Policies, Penalties, and Autonomous Agents (Extended Abstract) by Esteban Guerrero and Juan
Carlos Nieves

* Mind the Gaps: Logical English, Prolog, and Multi-agent Systems for Autonomous Vehicles by
Galileo Sartor, Adam Wyner and Giuseppe Contissa

o Simulating Supply-Chain Contract Execution: A Multi-Agent Approach (Extended Abstract) by
Long Tran, Tran Cao Son, Dylan Flynn and Marcello Balduccini

* Modular Stochastic Rewritable Petri Nets by Lorenzo Capra

Explanation and Argumentation An important advantage of logic compared to neural models is that
logical reasoning can be explained in human terms using different techniques, including causality and
argumentation. This was the topic of three papers in ICLP 24.

o Semantic Argumentation using Rewriting Systems (Extended Abstract) by Vineel Tummala and
Daniela Inclezan

* Data2Concept2lext: An Explainable Multilingual Framework for Data Analysis Narration by
Flavio Bertini, Alessandro Dal Palu, Federica Zaglio, Francesco Fabiano and Andrea Formisano

* Counterfactual Explanations as Plans by Vaishak Belleﬁ

Answer Set Programming As with other recent ICLPs, the topic of Answer Set Programming (ASP)
was well-represented. This year, the ASP topics for technical communications included the abductive
capabilities of ASP for Visual Query Answering (VQA), the regular models of an ASP program, the use
of ASP for meta-reasoning with ontologies, the relations among epistemic extensions of ASP, and using
ASP to drive interfaces to other ASP systems.

* Abduction of Domain Relationships from Data for VQA by Al Mehdi Saadat Chowdhury, Paulo
Shakarian and Gerardo 1. Simari

* Graphical Conditions for Existence, Unicity and Multiplicity of Non-Trivial Regular Rodels by
Van-Giang Trinh, Belaid Benhamou, Sylvain Soliman and Francois Fages

3This paper was actually presented in ICLP 23 but inadvertantly omitted from the Proceedings, being eventually published
now in this ICLP 24 volume.
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* Efficient OWL2QL Meta-reasoning Using ASP-based Hybrid Knowledge Bases by Haya Majid
Qureshi and Wolfgang Faber

e Pearce’s Characterisation in an Epistemic Domain (Extended Abstract) by Ezgi Iraz Su

* ASP-driven User-interaction with Clinguin by Alexander Beiser, Susana Hahn and Torsten Schaub

Prolog Types, and Unification New perspectives on types and unification algorithms played a part
in several technical communications. These papers concerned Prolog as well as other logic-oriented
systems and frameworks, including the Coq proof assistant.

* A Prolog Program for Bottom-up Evaluation by David S. Warren
* Regular Typed Unification by Joao Barbosa, Mario Florido and Vitor Santos Costa

e Order-Sorted Intensional Logic: Expressing Subtyping Polymorphism with Typing Assertions and
Quantification over Concepts by Djordje Markovi¢ and Marc Denecker

* A Coq Formalization of Unification Modulo Exclusive-Or by Yichi Xu, Daniel J. Dougherty and
Rose Bohrer

Applications Several technical communications described applications that were developed using an-
notation logic, abduction, constraint programming, and ASP.

* Geospatial Trajectory Generation via Efficient Abduction: Deployment for Independent Testing by
Divyagna Bavikadi, Dyuman Aditya, Devendra Parkar, Paulo Shakarian, Graham Mueller, Chad
Parvis and Gerardo 1. Simari

o Towards Mass Spectrum Analysis with ASP (Extended Abstract) by Nils Kiichenmeister, Alex
Ivliev and Markus Kroétzsch

* Monitoring and Scheduling of Semiconductor Failure Analysis Labs (Extended Abstract) by Elena
Mastria, Domenico Pagliaro, Francesco Calimeri, Simona Perri, Martin Pleschberger and Kon-
stantin Schekotihin

Recently Published Research and Demos

* Declarative Al design in Unity using Answer Set Programming by Denise Angilica, Giovambattista
Ianni, Francesco Pacenza and Jessica Zangari. (Extended Abstract of recently published research.)

o stableKanren: Integrating Stable Model Semantics with miniKanren by Xiangyu Guo, James
Smith and Ajay Bansal. (Extended Abstract of recently published research.)

* Alda: Integrating Logic Rules with Everything Else, Seamlessly by Yanhong A. Liu, Scott Stoller,
Yi Tong and Bo Lin. (System Demonstration.)

2 Doctoral Consortium Papers

The Doctoral Consortium of ICLP 24 was jointly organized with the 17th International Conference on
Logic Programming and Non-monotonic Reasoning (LPNMR 24). Applications were submitted by 12
PhD students from universities in the US (5), Germany (2), Belgium, Canada, Czechia, Italy and Sin-
gapore. Their research summaries received three reviews each by senior members of the ICLP 24 and
LPNMR 24 research communities, giving critical yet constructive feedback on the student contributions.
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* Generating Causally Compliant Counterfactual Explanations using ASP by Sopam Dasgupta

* Bridging Deep Learning and Logic Programming for Explainability through ILP by Talissa Dreossi
» Computational methods for Dynamic Answer Set Programming by Susana Hahn

* Relating Answer Set Programming and Many-sorted First-order Logic by Zachary Hansen

* Answer Set Counting and its Applications by Mohimenul Kabir

* Logical Foundations of Smart Contracts by Kalonji Kalala

e Commonsense Reasoning-Aided Autonomous Vehicle Systems by Keegan Kimbrell

* A Category-Theoretic Perspective on Approximation Fixpoint Theory by Samuele Pollaci

* Hybrid Answer Set Programming: Foundations and Applications by Nicolas Riihling

* Autonomous Task Completion Based on Goal-directed Answer Set Programming by Alexis Tudor
» Early Validation of High-level Requirements on Cyber-Physical Systems by Ondiej Vasicek

* Reliable Conversational Agents under ASP Control that Understand Natural Language by Yankai
Zeng

The Autumn School on Logic Programming, held in conjunction with the Doctoral Consortium,
featured four tutorials presented by the following senior researchers.

* Tran Cao Son, New Mexico State University. Las Cruces, NM.

* Y. Annie Liu, Stony Brook University. Stony Brook, NY.

e Manuel Hermenegildo, Technical University of Madrid. Madrid, Spain.

e Torsten Schaub and Susana Hahn, University of Potsdam. Potsdam, Germany.

These Autumn School presenters also shared their experiences and ideas with the PhD students during a
mentoring lunch event on October 13.

3 Abstracts of Invited Talks and Tutorials

ICLP 24 had four invited talks and two invited tutorials.

Invited Talk

Logic Programming and Logical Algorithmics
Moshe Vardi
Rice University. Houston, Tx.

Moshe Vardi presented his talk in a plenary session attended by ICLP 24 particiants together with
participants of the 17th International Conference on Logic Programming and Non-monotonic Reasoning.
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Abstract Logic programming, born around 1972, expresses a program as a set of Horn clauses. Com-
putation is then performed by applying logical reasoning to that set of clauses. The approach was eventu-
ally described as ”Algorithm=Logic+Control”. Another approach to logic and algorithms was developed
by Codd in the early 1970s. In his approach, the problem domain is expressed as a relational database,
and the problem is expressed as a first-order formula, called “query”. Computation is performed by
a meta-algorithm, the query-evaluation algorithm. In this talk, I will describe this approach, which I
call Logical Algorithmics, in detail. I will show how this approach yielded multi-variate computational-
complexity theory, which offers a more nuanced approach to complexity analysis. It also enabled the
development the model-checking algorithms, which are today used in industrial semiconductor design
tools.

Invited Tutorial

Logic rules and commonsense in uncertain times:
A simple unified semantics for reasoning with assurance and agreement

Y. Annie Liu
Stony Brook University. Stony Brook, NY.

Abstract Complex reasoning problems are most clearly and easily specified using logical rules, but
require recursive rules with aggregation such as count and sum and more for practical applications. Un-
fortunately, the meaning of such rules has been a significant challenge, with many disagreeing semantics,
baffling commonsense for rigorous logic.

This tutorial examines a simple unified semantics for reasoning with assurance and agreement, and
consists of three main parts:

1. An introduction to complex reasoning problems expressed using logic rules, with recursion, nega-
tion, quantification, and aggregation; the key idea of a simple unified semantics, supporting simple
expression of different assumptions; and how it unifies different prior semantics.

2. An overview of the precise rule language; the formal semantics, called Founded Semantics and
Constraint Semantics, or Founded+Constraint Semantics (FCS) for short here, supporting efficient
and precise inference over aggregation even with approximation; and the properties of the seman-
tics.

3. An exploration of a wide range of challenging examples, including the well-known problem of
company control and extended win-not-win games. FCS is simple and matches the desired results
in all cases.

Additionally, we discuss how to combine logic/rigorous languages and LLMs/ML for problem solv-
ing and question answering with assurance, where a simple unified semantics is critical for its generality,
power, and ease of use.

Invited Talk

Linear Algebraic Approaches to Logic Programming
Katsumi Inoue
National Institute of Informatics. Chiyoda, Japan.
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Abstract Integration of symbolic reasoning and machine learning is important for robust Al. Real-
ization of symbolic reasoning based on algebraic methods is promising to bridge between symbolic
reasoning and machine learning, since algebraic data structures have been used in machine learning.

To this end, Sakama, Inoue and Sato have defined notable relations between logic programming
and linear algebra and have proposed algorithms to compute logic programs numerically using tensors.
This work has been extended in various ways, to compute supported and stable models of normal logic
programs, to enhance the efficiency of computation using sparse methods, and to enable abduction for
abductive logic programming. A common principle in this approach is to formulate logical formulas as
vectors/matrices/tensors, and linear algebraic operations are applied on these elements for computation
of logic programming. Partial evaluation can be realized in parallel and by self-multiplication, showing
the potential for exponential speedup.

Furthermore, the idea to represent logic programs as tensors and matrices and to transform logi-
cal reasoning to numeric computation can be the basis of the differentiable methods for learning logic
programs.

Invited Talk

The Anatomy of the SICStus Finite-Domain Constraint Solver
Mats Carlsson
Research Institute of Sweden. Kista, Sweden.

Abstract Constraint programming (CP) is a powerful problem-solving paradigm with roots in combi-
natorics, linear programming, logic programming, and Al. A notable development in the 1980s was the
fusion of constraint solving with logic programming into constraint logic programming (CLP), which ex-
tended Prolog by integrating constraints into its framework. To extend a Prolog system with constraints,
a large number of algorithms and data structures must be added for tasks like domain representation,
constraint propagation, search, a whole menagerie of filtering algorithms for specific constraints, and
peaceful coexistence with the Prolog virtual machine and runtime system.

This talk focuses on the constraint programming support in SICStus Prolog: the key extensions to
Prolog that were necessary, details of the solver architecture, and a discussion of design choices. I will
try to put the work in a historical perspective and also say something about programming interfaces, use
cases, and my outlook on the future of CP.

Invited Tutotial

Encoding High-Level Constraints into SAT and MIP
Neng-Fa Zhou
CUNY Brooklyn College and Graduate Center. Brooklyn, NY.

Abstract: Picat provides four solver modules, including CP, SAT, MIP, and SMT, for modeling
and solving constraint satisfaction and optimization problems (CSPs). This tutorial introduces the inner
workings of Picat’s SAT and MIP modules. PicatSAT encodes constraints into SAT based on unary and
binary encodings of domain variables. PicatSAT adopts many optimizations from CP systems, language
compilers, and hardware design systems for encoding primitive constraints into compact and efficient
SAT encodings. PicatSAT also employs some novel algorithms for decomposing global constraints,
especially graph constraints. PicatMIP, while generally not as competitive as PicatSAT on MiniZinc and
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XCSP benchmarks, is a good supplementary solver for CSPs. PicatMIP adopts the well-known big-
M method for linearizing nonlinear constraints, and employs some optimizations for translating special
nonlinear constraints into linear ones.

Invited Talk

How Structure Shapes Logic Programming and Counting-Based Reasoning
Markus Hecher
Massachusetts Institute of Technology. Cambridge, Ma.

Abstract When can we efficiently solve combinatorially hard problems? In practice, state-of-the-art
solvers can tackle instances with millions of variables, creating a significant gap between empirical
performance and theoretical limits. A key factor in bridging this gap is understanding the structural
properties of problem instances. In this talk, we explore how to efficiently leverage these structures,
with a particular focus on the role of treewidth and the answer set programming framework. We estab-
lish tight runtime upper and lower bounds, grounded in reasonable complexity-theoretic assumptions.
Special attention is given to counting-based reasoning, a computationally intensive task where structure
plays a critical role. Through empirical results, we demonstrate how structural insights can drastically
improve the efficiency of counting in combinatorial problem-solving. This emphasizes the importance of
theoretical studies and their practical applications, showcasing how we bring theory and practice closer
together.
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On LLM-generated Logic Programs and their Inference
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Large Language Models (LLMs) trained on petabytes of data are highly compressed repositories of
a significant proportion of the knowledge accumulated and distilled so far. In this paper we study
techniques to elicit this knowledge in the form of several classes of logic programs, including propo-
sitional Horn clauses, Dual Horn clauses, relational triplets and Definite Clause Grammars. Exposing
this knowledge as logic programs enables sound reasoning methods that can verify alignment of LLM
outputs to their intended uses and extend their inference capabilities. We study new execution meth-
ods for the generated programs, including soft-unification of abducible facts against LLM-generated
content stored in a vector database as well as GPU-based acceleration of minimal model computation
that supports inference with large LLM-generated programs.

Keywords: LLM-generated logic programs; LLM-generated Definite Clause Grammars; LLM-
generated relation graphs; soft-unification with abducible facts; GPU-supported evaluation of propo-
sitional Horn clause programs; visualization of LLM-generated relations.

1 Introduction

While the multi-step dialog model initiated by ChatGPT is now available from a few dozen online or
locally run open source and closed source LLMs, it does not cover the need to efficiently extract salient
information from an LLMs “parameter-memory” that encapsulates in a heavily compressed form the
result of training the model on trillions of documents and multimodal data.

Steps in this direction have been taken, relying on ground-truth involving additional information
sources (e.g., collections of reference documents or use of web search queries). Among them, we men-
tion work on improving performance of Retrieval Augmented Generation (RAG) systems [7]] by recur-
sively embedding, clustering, and summarizing chunks of text for better hierarchical LLM-assisted sum-
marization [15]], multi-agent hybrid LLM and local computation aggregators [3]] and deductive verifiers
of chain of thoughts reasoning [9]].

A more direct approach is recursion on LLM queries, by chaining the LLM’s distilled output as input
to a next step and casting its content and interrelations in the form of logic programs, to automate and
focus this information extraction with minimal human input [[18} [20]. Like in the case of typical RAG
architectures [7, [15], this process can rely on external ground truth but it can also use new LLM client
instances as “oracles” deciding the validity of the synthesized rules or facts.

With focus on automation of this unmediated salient knowledge extraction from the LLLM’s parameter
memory and its encapsulation in the form of synthesized logic programming code, we will extend in this
paper the work initiated in [18} 20] with:

* new LLM input-output chaining mechanisms
* new types of generated logic programs
* new relational representations elicited from LLM output steps
P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.): © Paul Tarau
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2 On LLM-generated Logic Programs and their Inference Execution Methods

* scalable execution mechanisms that accommodate very large logic programs at deeper recursion
levels

* soft-unification based execution of LLM-generated logic programs as a principled encapsulation
of the RAG retrieval process

The rest of the paper is organized as follows. Section [2]overviews the DeepLLM architecture described
in [20] and its new extensions supporting the results in this paper. Section [3|overviews the generation of
Horn clause programs with the online DeepLLM app. Section ] explains the LLM-based generation of
Dual Horn clause programs and their uses to explore counterfactual consequences and theory falsifica-
tion, Section [5]introduces the use of DCG grammars as a representation of LLM-generated answer and
follow-up question pairs. Section [6] describes fixpoint and GPU-supported minimal model computation
for the generated programs. Section [/| describes relation-extraction and visualization from the minimal
models of the LLM-generated propositional programs. Section [8|introduces the soft-unification based
encapsulation of the information retrieval against facts extracted from authoritative document collections.
Section [9]discusses related work and Section[I0]concludes the paper.

2 Recursive exploration of LLM dialog threads

Generative Al, with often human-like language skills is shifting focus from typical search engines to
more conversational interactions. Yet, the challenge remains that humans must still process and verify
this information, an often tedious task.

Our answer to this, as implemented in the DeepLLM system is to automate the entire process. We
start with a simple “initiator goal” and let the LLM dive recursively in its parametric memory and de-
liver a detailed answer focused on the initiator and the trace of this chain of steps summarized as the
short term-memory maintained via its API. This automation also helps to minimize common issues like
inaccuracies, made-up information, and biases that are often associated with LL.Ms.

We refer to [20, [18]] for details of implementation of the DeepLLM system, as well as to its open-
source codd!]and its online demd?]

The DeepLLM system’s active components (subclasses of the Agent class) are Interactors, Recursors,
and Refiners:

* Interactors manage input prompts and task breakdown

* Recursors handle iterative exploration of subtasks

* Refiners enhance clarity and relevance of LLM responses

To validate its reasoning steps, the system also relies on stored knowledge resources:
* Ground truth facts: sentences collected from online sources or local documents

* Vector store: enabler of “semantic search” via embeddings of sentences

Starting from a succinct prompt (typically a nominal phrase or a short sentence describing the task)
an Interactor will call the LLM via its API, driven by a Recursor that analyzes the LLM’s responses and
activates new LLLM queries as it proceeds to refine the information received up to a given depth.

Refiners are Recursor subclasses that rely on semantic search in an embeddings store containing
ground-truth facts as well as on oracles implemented as specialized Interactors that ask the LLM for

"https://github.com/ptarau/recursors/
Zhttps://deepllm.streamlit.app
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advice on deciding the truth of, or the rating of hypotheses. Besides returning a stream of answers,
Recursors and Refiners compile their reasoning steps to a propositional Horn clause program available for
inspection by the user or subject for execution and analysis with logic programming tools (in particular,
with our model builder — a fast propositional Horn clause theorem prover).

3 Generating propositional Horn clause programs with the DeepLLM
app

Advisor streamllt-based
Client 1.5.3

(4] STARTING!

Maximum depth CLAUSES

1
® Extract relations?
@) Show trace?

Topic to explore:

computing stable models of answer set
programs

Prompter:
® scientific_concept_explorer

consequence_prediction
causal_inference
step_by_step_guidance_to_achieve_a_goal
recommender_system
supporting_arguments_for_a_thesis
cons_and_pros_for_a_thesis
explorer_of_negative_consequences

Activate LLM!

Visualize relation graph!

Figure 1: DeepLLM app

We refer to [18]] for an extensive list of LLM-generated Horn clause programs. We will just briefly
describe here the DeeLLM app (see Fig. [I) that we will use for generating our logic programs. In
the case of the interaction shown in Fig. (1} the initiator goal “computing stable models of answer set
programs” starts the “scientific concept explorer” option and generates in the right side window a Horn
clause program describing successive refinements of the initiator goal.

The DeeLLLM app is written with the Streaml itﬂ webapp generator and offers the choice between
GPT4, GPT3.5 or a local LLM, running as a server and supporting an OpenAl compatible API. It then
lets the user choose between the Recursor, Advisor and Rater agents, providing for the latter a threshold
level slider. The threshold informs the Rater oracle to accept or reject a generated rule head or fact (the
higher the threshold the stricter the accept decision). Options to set the maximum recursion depth and
activate relation extraction and visualization are also available.

3https://streamlit.io/
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The application starts once the user enters the topic to explore, chooses the prompter template and
activates the LLM. Besides the output produced in the right window, when run locally, it saves the
generated logic program and its computed minimal model as Prolog code files.

4 Generating propositional Dual Horn clause programs

A Dual Horn clause is a disjunction of literals with at most one negative literal (or exactly one if it
is a definite Dual Horn clause). A Dual Horn clause Program is a conjunction of Dual Horn clauses.
We represent a Dual Horn clause like —po V p; V...V p, in an equivalent implicational form py —
p1V...V p,, similarly to Prolog’s representation of Horn clauses. We adopt a Prolog-like syntax, with
— represented as “=>" and V represented as ““;”. Note also that “s => false” represents a negated fact
the same way as “s :- true” would represent a positively stated fact.

The objective of Dual Horn programs is to describe (constructively) why something is not true i.e., to
falsify the initiator goal by back-propagating from its negative (or more generally, undesirable, unwanted,
harmful, impossible, etc.,) consequences.

For instance, from a clause like p => q ; r ; s, assuming that p were true, we would infer that
at least one of q , r and s should be true. The contrapositive is that if q , r and s are all false, then p
should be false as well. Like in the case of SLD-resolution on Horn clauses, this triggers a goal oriented
process where successful falsification of all consequences results in falsification of the “counterfactual”
hypothesis that initiated the process.

By instructing the LLM to infer the negative consequences of the DeepLL.M initiator goal, we can
obtain a Dual Horn program.

Example 1 The Dual Horn clauses (recursion level = 0) with heads (starting with consequences of
‘tailgate when driving’) in the clause body are:

'tatlgate when driving' =>
'Increased accident risk’;
'Reduced reaction time'.

'Increased acctdent risk' =>
'Higher insurance premiums';
'Severe injury likelihood';
'Vehicle damage costs';
'Legal consequences';
'Emotional trauma impact'.

'Reduced reaction time' =>
'Increased accident risk’';
'Delayed braking response’;
'Higher colliston likelthood';
'"Compromised driving safety’.

The negative facts (unexplored recursion level = 1 goals) are:

'Higher insurance premiums' => false.
'Severe injury likelihood' => false.
'Vehicle damage costs' => false.
'Legal consequences' => false.
'Emotional trauma impact '=> false.
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'Delayed braking response' => false.
'"Higher colliston likelihood' => false.
'"Compromised driving safety' => false.

Note that “=> false” marks things that we do not want to happen, from where the same backpropagates
to the initiator ‘tailgate when driving’. Our compilation algarithnﬂ will transform this into a
definite program placed in module false that can be queried with:

?2- false:'tailgate when driving'.
true

Its successful falsification could then advise a car driving program or person to avoid the aforementioned
behavior.

A more interesting exploration (at recursion level=2) of negative consequences in the form of a Dual
Horn clause progranﬂ reveals persuasive counter-arguments to unwise political decisions.

Example 2 A few unwanted consequences at descent level 2 for ‘1loosing the FED_s independence’:

'loosing the FED_s independence' =>
'Increased political influence on monetary policy'. J level 0

'Increased political influence on monetary policy' =>
'Politicized interest rates’';
'Short-term economic manipulation’;
'Eroded investor confidence'; J level 1
'Hetghtened market wvolatility';
'Policy-driven inflation risks'.

'Eroded investor confidence' => ] level 2
'Market wvolatzlity';
"Capital flight';
'Reduced foreign investment'.

5 From Self-generated follow-up question-answer chains to DCG gram-
mars

DeepQAﬁ (see Fig. [2) is a DeepLLM-based application that explores recursively the “mind-stream” of
an LLM via a tree of self-generated follow-up questions. Interestingly, by asking the LLM to generate
a set of follow-up questions to its own answers creates (especially when the process recurses) a more
focused “stream of thoughts”, possibly as an emergent property of its “in-context learning” abilities.

After started from an initiator question on a topic of the user’s choice, the app explores its tree of
follow-up questions up to a given depth. As output, it generates a Definite Clause Grammar that can be
imported as part of a Prolog program. The DCG, in generation mode, will replicate symbolically the
equivalent of the “stream of thoughts” extracted from the LLM interaction, with possible uses of the
encapsulated knowledge in Logic Programming applications.

4https://github.com/ptarau/TypesAndProofs/blob/master/symlp/compile_clauses.pro
Sfull code at https://github.com/ptarau/output_samples/tree/main/deepllm
Shttps://github.com/ptarau/recursors/tree/main/deepQA
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DeepQA: a DeepLLM App
exploring self-generated follow- A: Managing performance overhead is a significant challenge when implementing constructive negation, as the
up questions, version 1.5.3 process of transforming and solving the additional constraints can increase computational costs. This issue is

typically addressed by optimizing the constraint solver's algorithms to enhance efficiency, such as by improving
constraint propagation techniques or by selectively applying constructive negation only when it significantly
OpenAl LLM contributes to narrowing down the solution space. Additionally, heuristic methods might be employed to

Local LLM?

® GPT4 estimate the impact of applying constructive negation beforehand, thus avoiding unnecessary computations.

GPT-3.5 Q: What are some effective heuristic methods that can be used to predict the benefits of applying constructive

Maximum depth negation in specific scenarios, thereby optimizing the use of computational resources?

A: Cost-benefit analysis based on historical data is also a valuable heuristic method. By analyzing past instances

of similar constraint satisfaction problems, solvers can identify patterns or scenarios where constructive

@ Show generated Definite Clause Grammar? negation has historically led to significant improvements in solving efficiency or solution quality. This empirical
) approach allows solvers to apply constructive negation more strategically, focusing on scenarios where it is

Question to start with: most likely to yield substantial benefits.

How constructive negation works in logic and Questions left open at depth limit, with counts:
constraint programming?

Activate LLM!

Figure 2: DeepQA with “How constructive negation works in logic and constraint programming?”

The synthesized grammar is designed to generate a finite language (by carefully detecting follow-up
questions that would induce loops). We also ensure that paths in the question-answer tree are free of
repeated answers, which get collected as well, together with questions left open as a result of reaching
the user-set depth limit.

Example 3 Definite Clause Grammar generated by initiator question ‘How constructive negation works
in logic and constraint programming?’:

/4 DCG GRAMMAR RULES:
q0-->q0_,a0_,q1.
q0-->q0_,al1_,q2.
ql-->q1_,a3_,q94.

ql2-->q12_,a38_.

For instance, the first rule rewrites the initiator qO into:
* the terminal qO_ that will produce the actual text of the question
* the terminal a0_ that will produce the actual text of the answer to q0_

* the non-terminal q1 continuing the generation process with one of the follow-up questions gener-
ated by the LLM

% QUESTION TERMINALS:

qO_—-->['Q: How constructive negation works in logic and constraint programming?'].

ql_-->['Q: Can you provide an exzample of how constructive negation might refine
the solution space in a practical constraint programming problem?'].

g2_-->['Q: How does constructive negation differ from classical negation in terms
of computational efficiency and outcome in constraint satisfaction problems?'].
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/. ANSWER TERMINALS:

a0_-->["'A: Constructive negation in logic and constraint programming is a method
used to handle negation in a way that allows for the derivation of new
constraints from negative information. Instead of simply rejecting solutions
that do mot satisfy a certain condition, constructive negation works by
deducing what must be true if a given condition s false. This is particularly
useful in constraint programming where constraints define what is possible
rather than what ts mnot. By applying constructive negation, the system can
wnfer additional constraints that must be met for the megation to hold,
effectively refining the solution space.'].

When reaching the user-specified recursion depth, the unanswered follow-up questions are collected
as “open questions” in the predicate opens/2 with the second argument indicating the number of times
(over all branches of the tree) the question has been generated. In the case of an LLM with a very large
parametric memory (e.g., GPT4, Claude 3 or Gemini) values above 1 are unlikely, while with smaller
LLMs (e.g., Vicuna) repeated follow-up questions can happen more often.

/i OPEN QUESTIONS:

opens ('What spectific computational techniques can be employed to further optimize

the solver_s performance when using constructive negation in scheduling?',1).
opens('How does the reduction in backtracking affect the overall time and
resource allocation in large-scale scheduling problems?',1).

Starting the DCG in generation mode from its qO initiator goal is achieved as follows:

/4 entry point to genmerate the language covered by the DCG grammar
go:—q0(Xs, [1),nl,member(X,Xs),write(X),nl,nl, fail.

One can also use DeepQA to quickly assess the strength of an LLM before committing to it. For instance,
when used with a much weaker than GPT4 local LLM (enabled with Vicuna 7B by default) one will see
shorter, more out of focus results, with a lot of repeated questions and answers collected by DeepQA in
corresponding bins.

The full Prolog code discussed in thus example is available onlin as well the DeepQA aplﬁ

6 Computing minimal models of LLLM-generated logic programs

6.1 Minimal model computation with a GPU-friendly Torch-based Linear Algebra Al-
gorithm

At deeper recursion levels, the generated logic programs, providing a symbolic representation of an
LLM’s parameter memory can quickly reach millions of clauses, ready to reason with.

To take advantage of the significant acceleration provided by GPUs we have implemented a torch-
based linear algebraic minimal model computation algorithnﬂ along the lines of [13].

"https://github.com/ptarau/output_samples/tree/main/deepqa
Shttps://deep-auto-quests.streamlit.app/
nttps://github.com/ptarau/recursors/blob/main/tenslogic/proptens.py
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The implementation is centered around

def tp(M, v):

nnn

one step fixpoint operator

nun

r=MQv

return (r >= 1.0).to(torch.float32)

that advances one step of the fixpoint computation with a matrix multiplication “@” and

def tp_n(M, vO0):

nnn

iterated fixpoint operator
nnn
oldv = vO
n = M.shape[0]
for i in range(n):
newv = tp(M, oldv)
if torch.allclose(newv, oldv):
return newv
oldv = newv

that proceeds until a fixpoint is detected using torch.allclose.

The program contains readers of Horn clause programs represented in as . json files. It can handle
medium size programs (a few thousand clauses), as despite the GPU acceleration, complexity is still
dominated by O(N?) matrix products.

We will show here a small test program running the minimal model computation. After defining:

top = "true"
bot = "false"

vs = (p, q, r, s) = "pqrs"

We represent the program as pair made of the head of the clause and the list of atoms in its body:

prog = [

( p, [al),

( p, [r]),

( q, [r, s1),
( r, [topl),
( bot, [ql)

]

We can then compute the model with:

>>> print(compute_model (prog))
[lpl’ lrl]

Future work using torch sparse tensorﬂ to ensure scalability for very large generated programs is
planned along the lines of [[11].

9%https://pytorch.org/docs/stable/sparse.html
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6.2 Fixpoint-based minimal model computation

It is not unusual to have loops in the propositional Horn Clause program connecting the LLM gener-
ated items by our recursors and refiners that would create problems with Prolog’s depth-first execution
model. As using a SAT-solver would be an overkill in this case, given that Horn Clause and Dual Horn
clause formula satisfiability is known to be polynomial, we have implemented a simple low-polynomial
complexity [6] propositional satisfiability checker and model buildeﬂ

The model builder works by propagating truth from facts to rules until a fix point is reached. Given
a Horn Clause h : —by,bs,...,b,, when all b; are known to be true (i.e., in the model), / is also added
to the model. If integrity constraints (Horn clauses of the form false : —by,b,,...,b,) have also been
generated by the oracle agents monitoring our refiners, in the advent that all by,b»,...,b, end up in the
model, by, by, ...,b, implying false signals a contradiction and thus unsatisfiability of the Horn formula
associated to the generated program. However as the items generated by our recursive process are not
necessarily expressing logically connected facts (e.g., they might be just semantic similarity driven asso-
ciations), turning on or off this draconian discarding of the model is left as an option for the application
developer. Also, the application developer can chose to stop as soon as a proof of the original goal
emerges, in a way similar to goal-driven ASP-solvers like [[1], irrespectively to unrelated contradictions
elsewhere in the program.

7 Generating relation triplets for knowledge graphs

Our DeepLLLM app offers an option to generate from the minimal model of the program a relation graph
(see Fig. consisting of implication links (marked with “:”) to which it adds generalization links
(marked with “is”).

Implication links are extracted directly from the logic program while generalization links, serving as
additional explanations, are generated by the LLM via an additional request.

Several other types of relation graphs can be generated depending on the planned reasoning method.

One of them is extraction of <subject, verb, object> (SVO) triplets obtained by prompting the LLM
to split a complex sentence in simpler ones and extract from each simple sentence an SVO triplet.

Another is a hybrid method, combining relations extracted by using dependency grammars [21]],
embeddings-based similarity relations, Wordnet-based and LLM-generated hypernyms and meronyms.

8 Reasoning with soft unification on noisy facts

The minimal models of LLM-generated Horn clause programs encapsulate facts and their consequences
elicited from DeepLLM’s initiator queries in the form of natural language sentences. When writing a
logic program that performs symbolic reasoning relying on a ground fact database of such sentences, an
interesting form of abductive reasoning emerges. When hitting an undefined ground sentence, intended
as a query to match database facts we can rely on vector embedding of the sentences and proximity of
the query and the facts in the vector space as a “good enough” match, provided that the semantic distance
between them is below a given threshold. We will next describe a proof of concept of this strategy that
we illustrate on a small quotation dataset consisting of a few sentence

https://github.com/ptarau/recursors/blob/main/deepllm/horn_prover.py
Zhttps://github. com/ptarau/natlog/blob/main/docs/quotes. txt
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Figure 3: Relation graph for “tailgate when driving”
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We have implemented Softloﬂ as an extension to the Natlog system [17, [19]], a Python-based
Prolog dialect with a simpler syntax and a lightweight Python interface. It works simply by overloading
Natlog’s built-in ground fact database’s unification method with a form of soft-unification [4, |2, [10],
implemented as follows:

def unify_with_fact(self, goal, trail):

= query goal to be matched

= number of knns to be returned

= minimum knn distance

= variable to be unified with the matches

H H HH
< & W Q

q, k, d, v = goal
d = float(d) / 100
_, answers = self.emb.knn_query(q, k)
for sent, dist in answers:
if dist <= d:
self.abduced_clauses[(q, sent)] = dist
yield unify(v, sent, trail)

The following Natlog script is then used to query a small set of sentences serving as Softlog’s
ground database. Note that the “~” symbol is Natlog’s convention for marking calls to a ground (soft-
)database.

knn 3.
threshold 70.

quest Quest Answer:
knn K, 7/ K is the number passed to the K Nearest Neighbors query
threshold D,
~ Quest K D Answer.

We implement soft unification queries as K closest neighbors (KNN) computations against embeddings
in our sentence,storelﬂ We use Sentence Transformers [[12] to compute embeddings and store them
locally in an efficient and scalable vector database. As usual in Natlog, the Python iterator returning
multiple KNN matches is mapped to Prolog’s backtracking with multiple answers returned as alternative
bindings to a result variable.

?- quest 'What happens if you do not know where you go' X7
ANSWER: {'X': 'If you don t know where you are going

you will end up somewhere else said Yogi Berra.'}
ANSWER: {'X': 'If you don t know where you are going

any road will get you there said Lewis Carroll.'}

When a query (Q A) binds A to an answer extracted from the vector store, a binary clause (Q :-
A) and its supporting fact (A :- true) are inserted into the dictionary of abduced clauses. If we add
them to the program that triggered the generation of the clauses, we obtain a self-contained standard
logic program that returns exactly the same answers as its Soft1log counterpart. Alternatively, the com-
puted distances can be normalized as probabilities, to annotate clauses used in a Probabilistic Logic
Programming language like Problog [5]].

Bhttps://github. com/ptarau/natlog/tree/main/softlog
4https://github. com/ptarau/sentence_store
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ABDUCED CLAUSES:

'What happens if you do not know where you go'
'If you don t know where you are going you will end up somewhere else
said Yogi Berra'. J distance=0.587434,5302581787

'What happens if you do not know where you go'
'If you don t know where you are going any road will get you there
said Lewis Carroll'. J distance=0.6724047660827637

Note that by contrast to the usual exact unification based answers, Softlog works quite well when the
query is close enough to a matching entry in the sentence store, a reasonable assumption when the facts
have been generated from multiple LLM runs and several ground truth resources.

?- quest 'What did Wilde say about temptation' X?
ANSWER: {'X': 'I can resist anything except temptation said Oscar Wilde.'}

?- quest 'What did Alice say about following advice' X7
ANSWER: {'X': 'I give myself very good advice but I very seldom follow it
said Lewis Carroll.'}

Given the nature of semantic search, surname is enough to find Oscar Wilde and as Alice associates
with the author Lewis Carroll, soft unification will fetch it from the sentence store.

9 Related Work

By contrast to “neuro-symbolic” Al [14], where the neural architecture is closely intermixed with sym-
bolic steps, in our approach the neural processing is encapsulated in the LLMs and accessed via a declar-
ative, high-level API. This reduces the semantic gap between the neural and symbolic sides as their
communication happens at a much higher, fully automated and directly explainable level.

Our recursive descent algorithm shares the goal of extracting more accurate information from the
LLM interaction with work on “Chain of Thought” prompting of LL.Ms [22| 9] and with step by step [8]]
refinement of the dialog threads. Our approach shares with tools like LangChain [3]] the idea of piping
together multiple instances of LLMs, computational units, prompt templates and custom agents, except
that we fully automate the process without the need to manually stitch together the components.

We have not found any references to the use of Dual Horn clauses in logic programming but it is
a well known result [16]) that their complexity in the propositional case is polynomial, similarly to
their of Horn clause counterparts. This fact makes them also good generation targets for LLM-extracted
knowledge processing.

We have not found anything similar to generating question-answer-follow-up question chains, al-
though it is common practice for chatbots to suggest (a choice between) follow-up question

Our torch-based model-computation algorithm follows closely the matrix-computation logic of [[13],
our contribution being its succinct and efficient GPU-friendly implementation.

Interest in several forms of soft-unification has been active [4, 2 [10]] as differentiable substitute of
symbolic unification in neuro-symbolic systems. By contrast, our focus in this paper is flexible infor-
mation retrieval of LLM-generated natural language content, for which high quality embeddings were
available either from LLM APIs or local resources like the torch-based sentence-transformers [[12].

13including the author’s own https://auto-quest.streamlit.app/
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10 Conclusion

It is now undeniable that Generative Al is a major disruptor not just of industrial fields ranging from
search engines, automation of software development and robotics to medical and legal advisory systems,
but also a disruptor of research fields, including symbolic Al as we know it and machine Learning itself.
In particular, results produced by dominant ML or NLP techniques as well as work on integration of
neural and symbolic systems have become replaceable by much simpler applications centered around
LLM queries and RAG systems. In fact, by concentrating the knowledge encapsulated in its parametric
memory into a single declarative interface, Generative Al can replace complex, labor-intensive software
functionality with a simple LLM API call or a question in one’s favorite natural language.

This motivates our effort to “join the disruption” and explore several new ways to elicit the knowledge
encapsulated in the LLMs’ parametric memory as logic programs, together with an investigation of their
optimal inference execution methods. We have not just exposed as logic programs the several kinds of
knowledge snippets extracted by recursive automation LLM dialog threads , but we have also devised
efficient inference execution mechanisms for them.

We hope that this effort has revealed some natural synergies between Generative Al systems and
logic programming tools, ready to fill gaps like the lack of rigorous reasoning abilities of the LLMs, their
lack of alignment to the user’s intents and their known deficiencies on factuality.
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Visual Question Answering (VQA) is a challenging problem that requires to process multimodal input.
Answer-Set Programming (ASP) has shown great potential in this regard to add interpretability and
explainability to modular VQA architectures. In this work, we address the problem of how to integrate
ASP with modules for vision and natural language processing to solve a new and demanding VQA
variant that is concerned with images of graphs (not graphs in symbolic form). Images containing
graph-based structures are an ubiquitous and popular form of visualisation. Here, we deal with
the particular problem of graphs inspired by transit networks, and we introduce a novel dataset
that amends an existing one by adding images of graphs that resemble metro lines. Our modular
neuro-symbolic approach combines optical graph recognition for graph parsing, a pretrained optical
character recognition neural network for parsing labels, Large Language Models (LLMs) for language
processing, and ASP for reasoning. This method serves as a first baseline and achieves an overall
average accuracy of 73% on the dataset. Our evaluation provides further evidence of the potential of
modular neuro-symbolic systems, in particular with pretrained models that do not involve any further
training and logic programming for reasoning, to solve complex VQA tasks.

1 Introduction

Visual Question Answering (VQA) [1]] is concerned with inferring the correct answer to a natural language
question in the presence of some visual input, such as an image or video, which typically involves
processing multimodal input. VQA enables applications in, e.g., medicine, assistance for blind people,
surveillance, and education [4].

Answer-Set Programming (ASP) [6] has shown great potential to add interpretability and explainability
to modular VQA architectures in this context. As a knowledge representation and reasoning formalism
with an intuitive modelling language, it can be used to describe how to infer answers from symbolic input
provided by subordinate modules in a clear and transparent way [28} 15,11} [10]. Another strength is that
uncertainties from the underlying modules can be expressed using disjunctions (or choice rules), and
we are not limited to inferring one answer, but several plausible ones in a nondeterministic manner [33]].
Furthermore, using ASP in the VQA context is beneficial for explanation finding, as we have demonstrated
in recent work [10]].

In this work, we address the problem of how to integrate ASP with modules for vision and natural
language processing to solve a new and demanding VQA variant that is concerned with images of graphs
(not graphs in symbolic form). Visual representations of structures based on graphs are a popular and
ubiquitous form of presenting information. It is almost surprising that VQA tasks where the visual input
contains a graph have, to the best of our knowledge, not been considered so far.

*This work was partially funded from the Bosch Center for Al. Code and data can be found at https://github.com/
pudumagico/NSGRAPH,

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.): © J.J. Bauer, Th. Eiter, N. Higuera & J. Oetsch
40th International Conference on Logic Programming (ICLP 2024) This work is licensed under the
EPTCS 416, 2025, pp. 15 doii10.4204/EPTCS.416.2 Creative Commons|Attribution License.
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Figure 1: A CLEGR instance: metro graph with two lines, question with functional representation, and
additional information. The task is to answer the question using the information provided.

We deal with the particular problem of graphs that resemble transit networks, and we introduce
a respective dataset. It is based on the existing CLEGR dataset [22] that comes with a generator for
synthetically producing vertex-labelled graphs that are inspired by metro networks. Additional structured
information about stations and lines, e.g., how large a station is, whether it is accessible to disabled people,
when the line was constructed, etc., is provided as background. The task is to answer natural language
questions concerning such graphs. For example, a question may ask for the shortest path between two
stations while avoiding those that have a particular property. An illustration of a graph and a question is
shown in Fig.[I]

While purely symbolic methods suffice to solve the original CLEGR dataset with ease (we present one
in this paper), we consider the more challenging problem of taking images of the graphs instead of their
symbolic representations as input; an example is given in Fig.[Ta| For the questions, we only consider
those that can be answered with information that can be found in the image. The challenges to solve this
VGQA dataset, which we call CLEGRY, are threefold: (i) we have to parse the graph to identify nodes
and edges, (ii) we have to read and understand the labels and associate them with nodes of the graph,
and (iii) we have to understand the question and reason over the information extracted from the image to
answer it accordingly.

Our solution takes the form of a modular (i.e., loosely coupled) neuro-symbolic model that combines
the use of optical graph recognition (OGR) [2] for graph parsing, a pretrained optical character recognition
(OCR) neural network [29] for parsing node labels, and, as mentioned above, ASP for reasoning. It
operates in the following manner:

1. first, we use the OGR tool to parse the graph image into an abstract representation, structuring the

information as sets of nodes and edges;
2. we use the OCR algorithm to obtain the text labels and associate them to the closest node;
then, we parse the natural language question;
4. finally, we use an encoding of the semantics of the question as a logic program which is, combined
with the graph and the question in symbolic form, used to obtain the answer to the question with
the help of an ASP solver.

This method serves as a first baseline and achieves an average accuracy of 73% on CLEGR" .

bt

We consider two methods to parse the natural language questions. The first one is to use regular
expressions which are sufficient to parse the particular questions of the dataset. The second method
uses Large Language Models (LLMs) based on the transformer architecture [31]] to obtain a more robust
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Figure 2: Examples of graphs of size small , medium , and large .

solution that also generalises well to variants of questions that are not part of the dataset. Our approach to
using LL.Ms follows related work [26] and relies on prompting an LLM to extract relevant ASP predicates
from the question. We evaluated this approach on questions based on CLEGR and new questions obtained
from a questionnaire.
The contribution of this paper is thus threefold:
(i) we demonstrate how ASP can be used as part of a modular VQA architecture able to tackle a
challenging new problem concerned with images of graphs;
(i) we introduce a new dataset to benchmark systems for VQA on images of graphs and evaluate our
approach on it to create a first baseline; and
(i) we evaluate various LLMs for question parsing to create a robust interface to the ASP encoding.
This work provides further evidence of the potential of modular neuro-symbolic systems, in particular
with pretrained models and logic programming for reasoning, for solving complex VQA tasks. That our
system does not require any training related to a particular set of examples—hence solving the dataset in a
zero-shot manner—is a practical feature that hints to what may become customary as large pre-trained
models are more than ever available for public use.

2 Visual Question Answering on Graphs

Graph Question Answering (GQA) is the task of answering a natural language question for a given
graph in symbolic form. The graph consists of nodes and edges, but further attributes may be specified in
addition. A specific GQA dataset is CLEGR [22f], which is concerned with graph structures that resemble
transit networks like metro lines. Its questions are ones that are typically asked about transit like “How
many stops are between X and Y?”. The dataset is synthetic and comes with a generator for producing
instances of varying complexity.

Graphs come in the form of a YAML file containing records about attributes of the stations and
lines. Each station has a name, a size, a type of architecture, a level of cleanliness, potentially disabled
access, potentially rail access, and a type of music played. Stations can be described as relations over
the aforementioned attributes. Edges connect stations but additionally have a colour, a line ID, and a line
name. For lines, besides name and ID we have a construction year, a colour, and optional presence of air
conditioning.

Example 1 Examples of questions from the dataset are:
* Describe {Station} station’s architectural style.
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* How many stations are between {Station} and {Station}?

» Which {Architecture} station is adjacent to {Station}?

* How many stations playing {Music} does {Line} pass through?
e Which line has the most {Architecture} stations?

For a full list of the questions, we refer the reader to the online repository of the dataset [22]]. The
answer to each question is of Boolean type, a number, a list, or a categorical answer. The questions in
the dataset can be represented by functional programs, which allows us to decompose them into smaller
and semantically less complex components. Figure [I]illustrates an example from the data set CLEGR
that includes such a functional program: it consists of primitive operations organised as a tree that is
recursively evaluated to obtain an answer.

Visual Graph Question Answering. Solving instances of the CLEGR dataset is not much of a challenge
since all information is given in symbolic form, and we present a respective method later. But what if
the graph is not available or given in symbolic form, but just as an image, as is commonly the case? We
define Visual Graph Question Answering (VGQA) as a GQA task where the input is a natural language
question on a graph depicted in an image.

The new VGQA dataset. We can in fact derive a challenging VGQA dataset from CLEGR by generating
images of the transit graphs. To this end, we used the generator of the CLEGR dataset that can also produce
images of the symbolic graphs. Each image shows stations, their names as labels in their proximity, and
lines in different colours that connect them; an example is given in Fig. [Ia] For the VGQA task, we drop
all further symbolic information and consider only the subset of questions that can be answered with
information from the graph image.

We call the resulting dataset CLEGR" : it consists of graphs that fall into three categories: small (3
lines and at most 4 stations per line), medium (4 and at most 6 stations per line), and large (5 lines and at
most 8 stations per line). We generate 100 graphs of each size accompanied by 10 questions per graph,
with a median of 10 nodes and 8 edges for small graphs, 15 nodes and 15 edges for medium graphs, and
24 nodes with 26 edges for large ones. Figure 2] shows three graphs, one of each size. Although large
metro networks will typically involve more stations than our graphs, those stations are typically arranged
linearly on the lines which does not add to the complexity of the graph structure itself but can lead to
cluttering.

3 Our Neuro-Symbolic Framework for VQA on Graphs

Our solution to the VGQA task, which we call NSGRAPH, is a modular neuro-symbolic system, whose
modules are the typical ones for VQA, viz. a visual module, a language module, and a reasoning module,
which we realise to fit the VQGA setting. Figure [3]illustrates the data flow of the inference process in
NSGRAPH.

3.1 Visual Module

The visual model is used for graph parsing, which consists of two subtasks: (i) detection of nodes and
edges, and (ii) detection of labels, i.e., station names.

We employ an optical graph recognition (OGR) system for the first subtask. In particular, we use a
publicly available OGR script [9] that implements the approach due to Auer et al. [2]]. The script takes



Jakob Johannes Bauer, Thomas Eiter, Nelson Higuera, Johannes Oetsch 19

NSGRAPH

Vision Module

_— Answer Sets
rap

———  Parsing G gsp Reasoning Module
(OGR+OCR)

Theory ans (4)

(ASP) e

Language Module

Question

Parsing —— QASP
(RegEx)

How many stations are two
steps away from Mccloack?

Figure 3: NSGRAPH system overview. The input is either an image of a graph or its symbolic description.
The answer is generated by combining neural and symbolic methods.

an image as input and outputs the pixel coordinates of each detected node plus an adjacency matrix that
contains the detected edges.

For the second subtask of detecting labels, we use an optical character recognition (OCR) system,
namely, we use a pretrained neural network called EasyOCR [19] to obtain and structure the information
contained in the graph image. The algorithm takes an image as input and produces the labels as strings
together with their coordinates in pixels. We then connect the detected labels to the closest node found by
the OGR system. Thereby, we obtain an abstract representation of the graph image as relations.

3.2 Language Module

The purpose of the language module is to parse the natural language question. It is written in Python and
uses regular expressions to capture the variables in each type of question. There are in general 35 different
question templates in CLEGR, some of which were shown in Example|l} They can be used to produce a
question instances by replacing variables with names or attributes of stations, lines, or connections.

Example 2 For illustration, the question template “How many stations are on the shortest path between
S1 and 2?7 may be instantiated by replacing S| and S, with station names that appear in the graph.
We use regular expressions to capture those variables and translate the natural language question into
a functional program, essentially a tree of operations, for that question. Continuing our example, we
translate the template described above into the program

end(3). countNodesBetween(2). shortestPath(1l).
station(0,S1). station(0,S2).

where the the first numerical argument of each predicate imposes the order of execution of the associated
operation and links the input of one operation to the output of the previous one. We can interpret this
functional program as follows: the input to the shortest-path operation is two station names S1 and S2.
Its outputs are the stations on the shortest path between S1 and S2 which are counted in the next step. The
predicate end represents the end of the computation to yield this number as the answer to the question.

All considered question types and their ASP question encodings are summarised in Table[T] Although
this approach works well for all the questions in CLEGR, its ability to generalise to new types of questions
is obviously limited; as a remedy, we discuss LLMs as an alternative to realise the language module in
Section 4l
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Table 1: ASP questions encodings for the twelve types of questions.

ASP Facts

Question

end(3). countNodesBetween(2).
shortestPath(1). station(0,{ }). station(0,{})

How many stations are between ([a-zA-Z]+) and
([a-zA-Z]+)?

end(2). withinHops(1, 2). station(0,{ })

How many other stations are two stops or closer to
([a-zA-Z]+)?

end(2). paths(1). station(0,{}). station(0,{})

How many distinct routes are there between ([a-zA-Z]+)
and ([a-zA-Z]+)?

end(2). cycle(1). station(0,{})

Is ([a-zA-Z]+) part of a cycle?

end(2). adjacent(1). station(0,{ }). station(0,{})

Are ([a-zA-Z]+) and ([a-zA-Z]+) adjacent?

end(2). adjacentTo(1).
station(0,{ }).station(0,{ })

Which station is adjacent to ([a-zA-Z]+) and ([a-ZA-Z]+)?

end(2). commonStation(1). station(0,{ }).
station(0,{ })

Are ([a-zA-Z]+) and ([a-zA-Z]+) connected by the same
station?

end(2). exist(1). station(0,{})

Is there a station called ([a-zA-Z0-9]+)?

end(2). linesOnNames(1). station(0,{})

Which lines is ([a-zA-Z]+) on?

end(2). linesOnCount(1). station(0,{ })

How many lines is ([a-zA-Z]+) on?

end(2). sameLine(1). station(0,{}). station(0,{})

Are ([a-zA-Z]+) and ([a-zA-Z]+) on the same line?

end(2). stations(1). line(0,{}) Which stations does ([a-ZA-Z]+) pass through?

3.3 Reasoning Module

The third module consists of an ASP program that implements the semantics of the operations from the
functional program of the question. Before we explain this reasoning component, we briefly review the
basics of ASP.

Answer-Set Programming. ASP [6][14] is a declarative logic-based approach to combinatorial search
and optimisation with roots in knowledge representation and reasoning. It offers a simple modelling
language and efficient solverﬂ In ASP, the search space and properties of problem solutions are described
by means of a logic program such that its models, called answer sets, encode the problem solutions.

An ASP program is a set of rules of the form a; | --- | ay :— by,..., by, not cy,..., not c,, where
all a;, bj, c are first-order literals and not is default negation. The set of atoms left of :— is the head of
the rule, while the atoms to the right form the body. Intuitively, whenever all b; are true and there is no
evidence for any ¢y, then at least some a; must be true. The semantics of an ASP programs is given by its
answer sets, which are consistent sets of variable-free (ground) literals that satisfy all rules and fulfil a
minimality condition [[15]].

A rule with an empty body and a single head atom without variables is a fact and is always true. A
rule with an empty head is a constraint and is used to exclude models that satisfy the body.

ASP provides further language constructs like choice rules, aggregates, and weak (also called soft)
constraints, whose violation should only be avoided. For a comprehensive coverage of the ASP language
and its semantics, we refer to the language standard [8]].

ISee, for example, www.potassco. org or www.dlvsystem. com.
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Question Encoding. The symbolic representations obtained from the language and visual modules are
first translated into ASP facts; we refer to them as G4sp and Qagp in Fig@ respectively. The functional
program from a question (as introduced above) is already in a fact format. The graph is translated into
binary atoms edge/2 and unary atoms station/1 as well. These facts combined with an ASP program
that encodes the semantics of all CLEGR question templates can be used to compute the answer with an
ASP solver.

Example 3 Here is an excerpt of the ASP program that represents the functional program from above:

end(3). countNodesBetween(2). shortestPath(1).
station(0,s). station(0,t).

These facts, together with ones for edges and nodes, serve as input to the ASP encoding for computing
the answer as they only appear in rule bodies:

sp(T,S1,S2) :- shortestPath(T), station(T-1,S1),
station(T-1,82), S1<S2°.

{ in_path(T,S1,52) } :- edge(S1,S2), shortestPath(T).

reach(T,S1,52) :- in_path(T,S1,S2).

reach(T,S1,383) :- reach(T,S1,S2), reach(T,S2,S3).

:- sp(T,S1,82), not reach(T,S1,S2).

cost(T,C) :- C = #count {S1,82: in_path(T,S1,S2)}, shortestPath(T).
:~ cost(T,C). [C,T]

countedNodes(T,C-1) :- countNodesBetween(T),
shortestPath(T-1), cost(T-1,C).
ans(N) :- end(T), countedNodes(T,N).

The first rule expresses that if we see shortestPath(T) in the input, then we have to compute the
shortest path between station S1 and S2. This path is produced by the next rule which non-deterministically
decides for every edge if this edge is part of the path. The following two rules jointly define the transitive
closure of this path relation, and the constraint afterwards enforces that station S1 is reachable from S2
on that path. We use a weak constraint to minimise the number of edges that are selected and thus enforce
that we indeed get a shortest path. The number of edges is calculated using an aggregate expression to
count. Finally, the penultimate rule calculates the number of stations on the shortest path, as it takes
as input the nodes that came out of the shortest path from the previous step and counts them, and the
last rule defines the answer to the question as that number. The complete encoding is part of the online
repository of this project (https: // github. com/ pudumagico/ NSGRAPH).

3.4 Evaluation of NSGRAPH on CLEGR"

NSGRAPH achieves 100% on the original GQA task, i.e., with graphs in symbolic form as input and with
the complete set of questions. Here, the symbolic input is translated directly into ASP facts without the
need to parse an image.

We summarise the results for the more challenging VGQA task on CLEGRY in Table 2| The task
becomes more difficult with increasing size of the graphs, but still an overall accuracy of 73% is achieved.
As we also consider settings where we replace the OCR, resp. the OGR module, with the ground truth

2We ran the experiments on a computer with 32GB RAM, 12th Gen Intel Core i7-12700K, and a NVIDIA GeForce RTX
3080 Ti, and we used clingo (v. 5.6.2) [[13] as ASP solver.
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Table 2: Accuracy of NSGRAPH on CLEGR" for small, medium, and large sized graphs. For OCR+GT,
we replaced the OGR input with its symbolic ground truth. Likewise, we use the ground truth for OCR
for OGR+GT, and Full GT stands for ground truth only. We also report the total time for image parsing,
resp. ASP reasoning, in seconds.

Graph Size  NSGRAPH OCR+GT OGR+GT Full GT parsing (s) reasoning (s)

Small 80.9% 90.2% 83.1% 100% 923 2
Medium 71.0% 85.2% 72.7% 100% 1359 3
Large 67.2% 83.8% 70.5% 100% 2208 5
Overall 73.0% 86.4% 75.4% 100% 4490 10

as input, we are able to pinpoint the OGR as the main reason for wrong answers. The average run time
to answer a question was 0.924 s for small graphs, 1.36s for medium graphs, and 2.21 s for large graphs.
NSGRAPH is the first baseline for this VGQA dataset and further improvements a certainly possible, e.g.,
stronger OGR systems could be used.

4 Semantic Parsing with LLMs

LLMs like GPT-4 [24] are deep neural networks based on the transformer architecture [31]] with billions
of parameters that are trained on a vast amount of data to learn to predict the next token for a given text
prompt. (A token is a sequences of textual characters like words or parts of words). Their capabilities for
natural language processing are impressive. LLMs are typically instructed via text prompts to perform
a certain task such as answering a question or translating a text, but they can also be used for semantic
parsing a text into a formal representation suitable for further processing.

In this section, we outline and evaluate an approach to use LLMs to realise the language module of
NSGRAPH in a more robust way than by using regular expressions. First, we outline the general method
of prompting LLMs to extract ASP predicates from questions. Afterwards, we evaluated this method for
different LL.Ms, including state-of-the-art API-based ones but also open-source models that are free and

can be locally installed.

4.1 Prompt Engineering

A particularly useful feature of LLMs is that the user can instruct them for a task by providing a few
examples as part of the input prompt without the need to retrain the model on task-specific data; a property
of LLMs commonly referred to as in-context learning.

Our approach uses in-context learning to instruct the LLM to extract the ASP atoms needed to
solve the reasoning task from a question. This idea is inspired by recent work on LLLMs for language
understanding [26]]. To obtain an answer to a question Q, we

(i) create a prompt P(Q) that contains the question Q along with additional instructions and examples
for ASP question encodings,
(ii) pass P(Q) as input to an LLM and extract the ASP question encoding from the answer, and
(ii1) use extracted ASP facts together with the ASP rules described in the previous section to derive the

answer.
The prompt P(Q) starts with a general pre-prompt that sets the stage for the task:
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Table 3: Comparison of LLMs used in our evaluation.

Model Parameters Open Source Price Company Token Limit
GPT-4 1.5 % 102 X USD20 p/m  OpenAl 32768
GPT-3.5 175 x 10° X free OpenAl 4096
Bard 1.6 x 102 X free Google 2048
GPT4ALL 7 % 10° v self hosted ~ Nomic Al 2048
Vicuna 13b 13 x 10° v per request  Meta 2048
Zephyr 7b 7 % 10° v free HuggingFace H4 8192

You are now a Question Parser that translates natural language
questions into ASP ground truths about different stations.
Output only the ground truths and nothing else. The stations to
be selected from are arbitrary.

Afterwards, we provide a number of examples that illustrate what is expected from the LLM. In
particular, we used at least one not more than three examplesfor each type of question in the dataset to not
exceed context limits. This amounts to 36 in-context examples in total.

Example 4 For space reasons, we show here just the beginning of an example prompt:

I now provide you with some examples on how to parse Questions:

Q: ‘‘How many stations are between Inzersdorf and Mainstation?’’
A: end(3).countNodesBetween(2) .shortestPath(1).
station(0, ¢ ‘Inzersdorf’?’) .station(0, ‘ ‘Mainstation’?’).

Q: ‘‘What is the amount of stations between Station A and
Station B?7?°

A: end(3).countNodesBetween(2) .shortestPath(1).
station(0, ‘‘Station A’’).station(0, ‘‘Station B’’).

Finally, the prompt contains the questions that should be answered:

Now provide the output for the following question:
What are the stations that lie on line 77

4.2 Evaluation

We evaluated the method from the previous section to answer to following research questions:

(R1) Is the method suitable for realising the language component of NSGRAPH?

(R2) What is the trade-off between grand scale LLMs and smaller, more cost-efficient alternatives?
(R3) How well does the method generalise to questions formulated in a different way than in CLEGR?

Overview of used LLMs. We compared different models (GPT-4, GPT3.5, Bard, GPT4All, Vicuna
13b, and Zephyr 7b; cf. Table 3)F’|on the semantic parsing task.

Shttps://openai.com/research/gpt-4; https://platform.openai.com/docs/models/gpt-3-5; |https:
//bard.google.com/; https://gpt4all.io/index.html:https://huggingface.co/lmsys/vicuna-13b-v1.3;
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta


https://openai.com/research/gpt-4
https://platform.openai.com/docs/models/gpt-3-5
https://bard.google.com/
https://bard.google.com/
https://gpt4all.io/index.html
https://huggingface.co/lmsys/vicuna-13b-v1.3
https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
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Table 4: Results of the evaluation on the CLEGR™ dataset.

Model full match  contains solution task missed no answer
GPT-4 85% 0% 15% 0%
GPT-3.5 42% 8% 50% 0%
Bard 0% T6% 24% 0%
GPT4ALL 0% 23% 77% 0%
Vicuna 13b 8% 24% 34% 34%
Zephyr 7b 0% 61% 21% 18%

GPT-4 is the latest model developed by OpenAl with 1.5 trillion parameters and a context limit of
32768 tokens. For a price of USD 20 per month, the ChatGPT Plus offer can be subscribed, allowing
users to send up to 50 requests in a three-hour time frame to a hosted version of GPT-4.

GPT3.5 is the predecessor of OpenAls GPT-4 and is available online for free. It uses 175 billion
parameters and is capable of contexts of 4096 tokens.

Bard is Google’s counterpart to OpenAl’s dominant LLMs, using slightly more parameters than GPT-4
but has a context window of only 2048 tokens. It is free to its users; however, all EU states are currently
excluded from using the service due to copyright concerns.

GPT4All is an open source model that only needs 7 billion parameters. With a context limit of 2048
tokens, it competes with Google Bard; however, there is no official hosted service to run this LLM. It was
developed using the open source weights of Alpaca, a model developed and released by Meta. GPT-4
served as a training data generator for this model, making it a cheap alternative to expensive large-scale
models.

Vicuna 13b was developed and open-sourced by Meta and comes with 13 billion parameters and
a context window of 2018 tokens. It serves as a middle ground between large-scale LLMs and small
alternatives such as GPT4All. It is not hosted on an official server, but there are external services that host
this model and even offer fine-tuning to user specific use cases.

Zephyr 7b (B) is a fine-tuned version of the Mistral 7B model. It was developed by the Hugging Face
H4 team and is published under the MIT license.

Datasets. We created two datasets for our evaluation: CLEGR™ and CLEGR-Human. The former is
a straight-forward hand-crafted extension of the questions from the original CLEGR dataset. Besides
original questions that can be parsed with regular expressions, the dataset also contains versions where
words are replaced with synonyms and the position of words is slightly changed, as well as questions
that entirely rephrase the original ones. For example, “Are stations A and B on the same line?” could be
rephrased as “Can I reach station A from station B without line change?”. The CLEGR™ dataset consists
of 74 questions in total.

CLEGR-Human is a dataset that was created using an online survey. The survey takers were presented
with a metro map and a couple of example questions. After that, they had the task of formulating further
questions such as “Ask about the distance between Station A and Station B” and answering their own
questions. This enables cross-peer validation by having other users evaluate the same question and
compare their answers. Each surveyor had to answer a total of 12 questions; 27 people from Austria,
Switzerland, and Germany aged between 18 and 33 years completed the survey, 22 of which were students.
The dataset consists of 324 questions in total.
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Table 5: Results of the evaluation on the CLEGR-Human dataset.

Model full match  contains solution task missed no answer
GPT-4 94% 0% 6% 0%
GPT-3.5 38% 7% 55% 0%
Bard 0% T8% 22% 0%
GPT4ALL 0% 16% 84% 0%
Vicuna 13b 4% 19% 46% 31%
Zephyr 7b 0% 72% 17% 11%

Results and Discussion. The results of our evaluation are summarised in Table 4 for CLEGR™ and in
Table [5| for CLEGR-Human. We classified the answers produced by the LLMs into four categories:

* full match: the response matches exactly the set of expected atoms;

* contains solution: the expected atoms can be extracted from the respone;

* task missed: the response contains some text but not the expected atoms;

* no answer: the response consists of only whitespace characters.

Note that “full match” as well as “contains solution” can be used for the ASP reasoning task, while
answers from the other categories cannot be used.

GPT-4 performed best among the considered LLMs as it produced 85% completely correct responses
on CLEGR™ and even 94% on CLEGR-Human. It also always provided an answer to the prompt. GPT-3.5
invented new predicates for half of the questions. For the remaining ones, its response matched exactly or
contained the solution. Vicuna often did not give a proper response due to context overflow and trails
behind GPT-4 and GPT-3.5 also in terms of correct answers. Google Bard never got the exact solution
due to extensive additional explanations for all predicates no matter the prompt. However, the responses
contained the solution in about three quarters of the cases. In this regard, it is only outmatched by GPT-4.
This performance is similar to that of the much smaller open-source model Zephyr 7b, which is trailing
only slightly behind. The responses of GPT4All contain the correct solution for only 23% (CLEGR™)
and 16% (CLEGR-Human) of the questions.

We answer our initial research questions therefore as follows: At least GPT-4 is suitable for realising
the language component with an acceptable trade-off between accuracy and ability to generalise (R1).
Although GPT-4 exhibits the best overall performance, especially the free and much smaller Zephyr model
shows promising results (R2). Throughout, the LLMs perform similarly on CLEGR " and CLEGR-Human,
which showcases the strength of LLMs for language processing without the need for context-specific
training (R3).

5 Related Work

Our approach builds on previous work [11], where we introduced a neuro-symbolic method for VQA in the
context of the CLEVR dataset [20] using a reasoning component based on ASP inspired by NSVQA [34].
The latter used a combination of RCNN [27] for object detection, an LSTM [16] for natural language
parsing, and Python as a symbolic executor to infer the answer. The vision and language modules in these
previous approaches were trained for the datasets. As compared to these datasets the number of questions
obtained from the questionnaires to build our dataset is small, it would be hardly possible to effectively
train an LSTM on them. It is a particular strength of our work that we resort to LLMs that do not require
any further training.



26 Visual Graph Question Answering with ASP and LLMs for Language Parsing

We also mention the neural and end-to-end trainable MAC system [17] that achieves very promising
results in VQA datasets, provided there is enough data available to train the system. A recent approach
that combines large pretrained models for images and text in combination with symbolic execution in
Python is ViperGPT [30]; complicated graph images are not handled well by pretrained vision-language
models, however.

A characteristic of NSGRAPH is that we use ASP for reasoning, an idea that was also explored
in previous work [28, |5, [11}, [10]. Outside of the context of VQA, ASP has been applied for various
neuro-symbolic tasks such as segmentation of laryngeal images [7]], and discovery of rules that explain
sequences of sensory input [12]]. Barbara et al. [3] describe a neuro-symbolic approach that involves ASP
for visual validation of electric panels where a component graph from an image is matched against its
specification. This is an example of another interesting application that involves images of graphs and our
approach could be used to contribute question-answering capabilities in such a setting.

In passing, it should be noted that there are also systems that can be used for neuro-symbolic learning,
e.g., by employing semantic loss [32], which means that they use the information produced by the
reasoning module to improve the learning tasks of the neural networks involved [33} 23]

Our approach to using LLMs to extract predicates for the downstream reasoning task is inspired by
recent work by Rajasekharan et al. [26]. They proposed the STAR framework, which consists of LLMs
and prompts for extracting logical predicates in combination with an ASP knowledge base. The authors
applied STAR to different problems requiring qualitative reasoning, mathematical reasoning, as well as
goal-directed conversation. Going one step further, Ishay et al. [18] introduced a method to translate
problems formulated in natural language into complete ASP programs. This method requires multiple
prompts, each responsible for a subtask such as identifying constant symbols, forming predicates, and
transforming the specification into rules. The idea to apply LLMs to parse natural language into a formal
language suitable for automated reasoning is also found outside the context of ASP, e.g., work by Liu et
al. [21]], who use prompting techniques to translate text into the Planning Domain Definition Language.

6 Conclusion

We addressed the relevant the problem of integrating ASP with vision and language modules to solve
anew VQA variant that is concerned with images of graphs. For this task, we introduced a respective
dataset that is based on an existing one for graph question answering on transit networks, and we presented
NSGRAPH, a modular neuro-symbolic model for VGQA that combines neural components for graph and
question parsing and symbolic reasoning with ASP for question answering. We studied LLMs for the
question parsing component to improve how well our method generalises to unseen questions. NSGRAPH
has been evaluated on the VGQA dataset and therefore constitutes a first baseline for the novel dataset.

The advantages of a modular architecture in combination with logic programming are that the solution
is transparent, interpretable, explainable, easier to debug, and components can be replaced with better
ones over time in contrast to more monolithic end-to-end trained models. Our system notably relies
on pretrained components and thus requires no additional training. With the advent of large pretrained
models for language and images such as GPT-4 [24] or CLIP [25]], such architectures, where symbolic
systems are used to control and connect neural ones, may be seen more frequently.

For future work, we plan to look into better alternatives for the visual module that is more suitable for
complicated images of graphs, which is currently the limiting factor. Another future direction is to work
with real-world metro networks for which currently no VQA datasets exist.
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Recent availability of Large Language Models (LLMs) has led to the development of numerous
LLM-based approaches aimed at providing natural language interfaces for various end-user tasks.
These end-user tasks in turn can typically be accomplished by orchestrating a given set of APIs.
In practice, natural language task requests (user queries) are often incomplete, i.e., they may not
contain all the information required by the APIs. While LLMs excel at natural language processing
(NLP) tasks, they frequently hallucinate on missing information or struggle with orchestrating the
APIs. The key idea behind our proposed approach is to leverage logical reasoning and classical
Al planning along with an LLM for accurately answering user queries including identification and
gathering of any missing information in these queries. Our approach uses an LLM and ASP (Answer
Set Programming) solver to translate a user query to a representation in Planning Domain Definition
Language (PDDL) via an intermediate representation in ASP. We introduce a special API “get_-
info_api” for gathering missing information. We model all the APIs as PDDL actions in a way that
supports dataflow between the APIs. Our approach then uses a classical Al planner to generate an
orchestration of API calls (including calls to get_info_api) to answer the user query. Our evaluation
results show that our approach significantly outperforms a pure LLM based approach by achieving
over 95% success rate in most cases on a dataset containing complete and incomplete single goal and
multi-goal queries where the multi-goal queries may or may not require dataflow among the APIs.

1 Introduction

Customers of large organizations have a variety of questions or requests (collectively known as queries
in the following) pertaining to the organization’s domain of operation. Providing relevant and accurate
responses to such user queries is critical and requires a thorough analysis of the user’s context, product
features, domain knowledge, and organization policies. The user queries may encompass a variety of
types - data lookup and aggregation queries, help requests, how-to questions, record update requests or a
combination of these types.

Recently, transformer-based large language models (LLMs) have shown wide success on many nat-
ural language understanding and translation tasks, also demonstrating some general database query-
ing [5} [16} 25]] and reasoning and planning [14} [13| [18} 30] capability on diverse tasks without having
to be retrained. However, the data and knowledge required for accurately answering customers’ queries
are partly or completely organization internal and not available to LLMs trained on publicly available
data. Even in case of organization internal LLM deployments, it is often not feasible to give LLMs direct
access to databases for various security and privacy reasons. In lieu of that, organizations develop APIs
to make these internal artifacts programmatically accessible to the organization’s applications.

Several frameworks and techniques have been proposed for answering user queries using a com-
bination of LLM and tools/APIs, e.g. LangChain [3], Gorilla [21]], ToolFormer [23]], and TravelPlan-
ner [19,27]. However, such frameworks rely on LLMs for selecting and composing tools and as a result
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either do not scale well beyond a small set of APIs/tools or have limited planning and API orchestration
capability. These weaknesses limit the use of such frameworks for practical industrial applications.

To address these limitations, some recent works have investigated the use of an external classical
planner along with an LLM. Given a description of the possible initial states of the world, a description
of the desired goals, and a description of a set of possible actions, the classical planning problem involves
synthesizing a plan that, when applied to any initial state, generates a state which contains the desired
goals (goal state) [9]. The approaches presented in [} [18] have demonstrated that utilizing an LLM
to create the task PDDL (a representation of a user query as a planning problem in Planning Domain
Definition Language) from a natural language planning task description, and then utilizing an external
classical planner to compute a plan, yields better performance than relying solely on an LLM for end-
to-end planning. However, these approaches have been shown to support only classical planning tasks,
which hinders their use for answering user queries in the presence of APIs.

Furthermore, all the above mentioned approaches assume complete user queries, i.e., queries that
contain all the required information for computing an answer to the query. In practice however, user
queries are often incomplete. In general, detecting and gathering missing information depends on the
granularity of the underlying atomic actions or APIs as well as dataflow among them at runtime. For
example, if a user wants to book a flight and provides the source and destination airports information
but the flight booking API requires the travel date as well, the user query is considered incomplete with
respect to the available APIs. The AutoConcierge framework [31]] can detect missing information for a
pre-defined goal assuming that the required information for accomplishing the goal is known a-priori.
However, there is still a need for an approach that can handle different kinds of possibly incomplete
queries.

Natural Language task
description Task PDDL Task PDDL - Plan How-to Yes
—_—> . > .
/ Generation questions?

User A A

4 . No Plan
Semantic plan l
Domain Model
in ASP
Plan Execution
Modeling PDDL Plan Execution output !
Knowledge actions using API incl. failure msg Respon_se
Engineering API specs Implementations Generation

Response to user query

Figure 1: Overview of user query answering using LLMs and Classical Planning

Figure [T] presents the high level architecture of our approach for supporting several kinds of user
queries using a given set of APIs. We translate a user query to a task PDDL (query’s representation in
PDDL) and use a classical Al planner for orchestrating APIs (plan) for the generated task PDDL. The
plan execution component executes the plan by invoking the APIs in the specified order. For how-to
questions, the plan is not executed but sent to the response generation component. Finally, the response
generation component generates the overall response to be sent to the user from the individual outputs
of the API calls. In this paper, our focus is on the Task PDDL Generation and Planner components in
particular for supporting incomplete user queries.
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Figure 2: Steps for translating a user query to task PDDL

Figure [2] illustrates our process of translating a user query to task PDDL by using a novel combi-
nation of an LLM and logical reasoning using Answer Set Programming (ASP) [2} (17, [7]. We use an
LLM to generate an intermediate representation of a user query in ASP. Our LLM prompting technique
is generic and allows a set of possible user goal specifications to be plugged in. This step is described
in Section Such intermediate representations allow us to use an ASP solver to deterministically in-
fer additional information, detect inconsistencies in user queries with respect to domain constraints, and
bridge the syntactic and semantic heterogeneities between a user query and the target task PDDL. We
refer to the union of facts in the intermediate representation and the inferred information as materialized
representation of the user query. This step is described in Section[3.2] In cases, where an intermediate
representation violates any domain constraints, the materialized representation contains corresponding
errors. In these cases, we send the errors back to user. In other cases, we obtain the task PDDL by con-
verting the materialized representation which is in the ASP syntax to PDDL syntax using deterministic
procedural code. This step is described in Section {.1]

In the next step, we use a classical planner with the task PDDL and an offline created PDDL domain
model which includes domain concepts as predicates and specification of the APIs as PDDL actions
in terms of these domain predicates (Section [2). In addition to the given set of functionality providing
APIs, we introduce a special API get_info_api for gathering missing information from the user or an
external system at runtime in order to support incomplete queries. The planner returns a plan (including
calls to get_info_api in case of incomplete queries) such that the execution of the plan computes the
answer to the user query. The plan generation step is described in Section #.2]

Since there aren’t any benchmark datasets of incomplete queries to be answered using APIs, we
generated a dataset containing single goal and multi-goal complete and incomplete natural language
queries based off a set of APIs described in Section 2] We refer to a domain concept in a user query as
a goal. Our evaluation results on this dataset show that our approach significantly outperforms a pure
LLM based approach by achieving over 95% success rate in most cases.

2 Specification of APIs as PDDL Actions

Throughout this paper, we use the following APIs which are derived from the set of publicly available
Intuit Developer API{I for experimental purposes. ® Profit and loss report API: Generates profit and loss
report for a given time period. * Expense and spend report API: Generates expense and spend report for
a given time period. ¢ Invoices and sales report API: Generates invoices and sales report for a given time
period. * Charge lookup API: Generates detailed report for a given charge amount on a given date.  Help
API: Provides answer to a given how-to question in a product. * Contact API: Connects customer to a

'https://developer.intuit.com/app/developer/homepage
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human customer agent over a given communication channel for a conversation on a given topic * Advice
API: Provides advice for a given personal finance or a small business relation question. * Create invoice
API: Creates a new invoice for given amount and invoice detail. * Update customer API: Updates a
customer profile with new first name, last name, phone, and email.

In order to be able to use a classical planner for computing an orchestration of available APIs, we
model each available API as an action in PDDL. PDDL serves as a standardized encoding of classical
planning problems [8} [11]. A PDDL representation of an action consists of the action’s pre-conditions
and effects defined using logical formulas with domain predicates, local variables (action’s parameters)
and constants. Note that unlike familiar procedural programming languages, PDDL actions’ outputs
are also declared as part of action’s parameters. The PDDL representation of a planning problem is
typically separated into two files: a domain PDDL file and a task PDDL file, both of which become
inputs to the planner. Broadly, the domain PDDL file includes declaration of object types, predicates,
and specification of actions. The task PDDL file provides a list of objects to ground the domain, and the
problem’s initial state and goal conditions defined in terms of the predicates.

Below the PDDL representation of the profit&loss API as action profit_loss_api. The action
generates a profit and loss report for given time period. The pre-condition of the action means that
variables 7inl and 7in2 have type date as well as have a value (i.e., they are not NULL). The 7out
var represents the generated report. The pre-condition also includes that the 7out must have the type
profit_loss_report but must not have a value (indicating that 7out doesn’t represent an already
previously generated report). The effects of the action mean that after execution of the action the value
of 7out is set. Furthermore, the effects mean that after the execution of the action, the generated report
7out has 7inl and 7in2 as start date and end date of the generated report 7out respectively.

(:action profit_loss_api
:parameters (7inl - var ?in2 - var Tout - var)
:precondition (and (has_type 7inl date) (has_value ?7inl)
(has_type 7in2 date) (has_value 7in2)
(has_type 7out profit_loss_report) (not (has_value 7out)))
teffect (and (start_date 7out 7inl)
(end_date 7out 7in2) (has_value 7out)))

A classical planner will find the above action for a user goal requesting a profit and loss report for
given start and end dates. However, if the start date or the end date or both are not provided, a planner
will fail to find profit_loss_api as relevant action.

We address this problem by introducing a special action get_info_api to gather information from
the user or an external system at runtime. We model get_info_api as a PDDL action as shown below.
The get_info_api action requires a variable of a type that is not set and ensures that it is set after the
execution of get_info_api.

(:action get_info_api
:parameters (7in_var - var 7in_type - var_type)
:precondition (and (has_type 7in_var ?7in_type)
(not (has_value 7in_var)))
:effect (and (has_value ?7in_var)))

This modeling of get_info_api enables a planner to include get_info_api calls in the plan for
gathering missing information. For example, for the query in Figure [3a) we aim at detecting the profit
& loss report API, and asking the user for the missing report time period. Similarly, in case of a more
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Figure 3: Plan for an incomplete and a complete query

complex user query in Figure[3b| we aim at detecting the profit & loss report API and the contact API as
well as the profit & loss report as the conversation topic with the customer agent.

For the purpose of this paper, we have modeled the domain PDDL manually. Efficient authoring of
domain PDDL is out of scope of this work. However, we would like to point that approaches such as [[10]]
may be leveraged for (semi-) automatically generating the domain PDDL for large domains. Refer to
Appendix [B.T| for the specification of all APIs in our dataset.

3 User Query to ASP Representation

As illustrated in Figure [2] in order to generate task PDDL for a user query, in the first step, we use an
LLM for translating the user query to an intermediate representation in ASP. The main reason behind
this step is that LLMs perform well on such translation tasks while they hallucinate when they are also
required to generate logically derivable information [29, [15] 4} 26]. In the second step, we use a logical
reasoner for inferring other information similar to approaches presented in [22} 28, [1].

3.1 User Query to Intermediate Representation

We construct the LLM prompt with the following steps for translating user query to an intermediate
representation in ASP.

Step 1: Define a set of supported goals. The set of goals doesn’t need to have 1:1 correspondence
with the set of APIs. But, the set of goals corresponds to expected user requests. Such a modeling
enables decoupling of user requests from APIs as the end users can not be expected to be familiar with
the APIs (cf. OpenAl function calling approach E[}

Step 2: Describe argument types. For each argument of the supported goals, define the type by giving
a few examples or the set of possible values as appropriate. Below example defines argument types for
date period and communication channel. See Appendix [A.T]|for definition of all argument types for our
dataset.

Zhttps://platform.openai.com/docs/guides/function-calling
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arg_type_date_period = {"examples": {"nov 2023": ("11/01/2023",
"11/30/2023"), "fy21": ("01/01/2021", "12/31/2021"), ...}

arg_type_comm_channel = {"possible_values": ["video", "chat", "phone"]}

Step 3: Describe domain goals. Describe each goal using a name, description and required informa-
tion for the goal. Refer to Appendix for complete list of supported domain goals.

{"name": "goal_1", "description": "request for report on profit, loss,
earnings, business insights, revenue, figures.", "required information":
[{"name": "report_period", "description": "time period of the requested
report defined by start and end dates.", "type" : arg_type_date_period}]}

Step 4: Define instructions. We instruct the LLM to extract goals and required information from the
user query.

Given goal types with their required information. Extract from the
provided user query:

1. The one or more goals of the query from the given set of goals.
Represent each extracted goal <x> of type <T> as "_goal(<x>, <T>).".

2. If the user query contains any required information for the extracted
goal, then extract that too. While doing so, if possible values

are defined for the argument, then choose one from them if applicable.

Step 5: Construct LLM prompt. LLM prompt also includes a few in-context examples that are inde-
pendent of the domain of our dataset. Refer to Appendix [A.3]for complete list of in-context examples.

<Instructions as described above>

Below a few examples of goals, text and the answer.

<As in Appendix [A.3p

Goals: """ <Domain goals as described above.> """
Text: """ <user query> """
Answer:

Below are a few example queries and their respective intermediate representations in ASP as returned
by the LLM.
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Example 1. Show me 2023 QI detailed expense Example 3. Profit and loss report.

report. _goal(x, goal_1).

_goal(x, goal_2).

_report_period(x, ("01/01/2023", Example 4. [ want to chat with a representative.
"03/31/2023")). _goal(x, goal_6).

_contact_channel(x, "chat").
Example 2. Provide me with the profit and loss
statement for the previous quarter and put me on

a phone call with a representative to discuss it.

_goal(x, goal_1).

_report_period(x, ("07/01/2024", _report_period(x, ("07/01/2024",
"09/30/2024")) . "01/31/2024")) .

Example 5. Show me expense report from July

2024 to Jan 2024.
_goal(x, goal_2).

_goal(y, goal_4).
_contact_topic(y, x).
_contact_channel(y, "phone").

The query in Example[I]is a complete query. The query in Example [2]is a complete query with two
goals and dataflow. The profit & loss report x is the topic of the conversation for the contact y. The
queries in Example 3] and Example [4] are incomplete queries as the query in Example [3] doesn’t contain
start and end dates of the report and the query in Example ] doesn’t contain the conversation topic. The
query in Example [5] contains both the start date and the end date but violates the domain constraint that
the end date must be after the start date.

3.2 Intermediate Representation to Materialized Representation

An intermediate representation captures the content of the user query using formats and predicates that
are closer to those of typical user utterances. In general, user queries cannot be expected to be formulated
using the same vocabulary and format as the arguments of the APIs. In this step, we infer additional
information as well as bridge the syntactic and semantic gaps. We accomplish this by using an ASP
solver, with the intermediate representation and domain rules as inputs. For our current implementation
we use Clingo [6] python packageE] as the ASP solver.

Below a snippet of the domain rules for our dataset (see Appendix [B.2]for all domain rules). Note
that even though the domain rules needed for our current dataset are rather simple and few in number,
our framework of first translating the query to an intermediate representation in ASP allows us to plug-in
a large number of complex rules if needed.

goal (X, profit_loss_report) :- _goal(X, goal_1).
start_date(X, Y, date) :- goal(X, profit_loss_report), _report_period(X, (Y,_)).
end_date(X, Y, date) :- goal(X, profit_loss_report), _report_period(X, (_,Y)).

goal (X, contact_us) :- _goal(X, goal_4).

contact_topic(X, Y, string) :- goal(X, contact_us), _contact_topic(X, Y).
contact_channel (X, Y, string) :- goal(X, contact_us), _contact_channel(X, Y).
error("end date must be after start date") :- start_date(X, D1, date),

end_date(X, D2, date), false == Q@lte_dates(D1, D2).

3https://pypi.org/project/clingo/
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The first rule translates the goal type to the type used in the vocabulary of the domain PDDL. The
second and third rules infer start_date and end_date from the the user provided report_period. These
rules also add the data types date, string for the values to facilitate the planning in the later step.
The last rule infers an error when the end date is before the start date. In general, this technique allows
us to generate error messages for complex constraint violations using ASP. For our example queries in
Section [3.1] the ASP solver returns below materialized representations after applying the domain rules
on the intermediate representations of the queries.

Materialized representation for Example Materialized representation for Example
goal(x, expense_spend_report). goal(x, profit_loss_report).
start_date(x, "01/01/2023", date). Materialized representation for Example [}
end_date(x, "03/31/2023", date). goal (x, contact_us).

Materialized representation for Example [2} contact_channel(x, "chat", string).
goal(x, profit_loss_report). Materialized representation for Example [5}
start_date(x, "07/01/2024", date). goal (x, expense_spend_report).

end_date (X, "09/30/2024" , date) . start_date (X, "07/01/2024" , date) .
goal(y, contact_us). end_date(x, "01/31/2024", date).
contact_topic(y, x, string). error("start date is after end date.").

contact_channel(y, "phone", string).

Note that the materialized representation of Example [5] contains an error atom because the end date is
before the start date. In such cases, we do not continue with task PDDL generation and send the error
back to the user (see also Figure [2).

4 Orchestrate APIs using Planner

4.1 Task PDDL Generation

A materialized representation contains all user provided information in the target terminology and format.
The next and the last step is to generate a plan. In order to be able to do that, we need to convert the
materialized representation to a PDDL representation (task PDDL).

Figure [4] illustrates this process using Example[I] Every goal x becomes a var and every goal type
t becomes a var_type. For each goal x of type t, (a) add (has_type x t) to the init section, (b) for each
argument a of ¢ and predicate p, a var x_a is added to the objects, (has_type x_a t) is added to init,
(p x x_a) is added to goal, and if x_a has a value v, then (has_value x_a v) is added to init. Refer to
Appendix for the complete algorithm for generating materialized representation to task PDDL. The
output of the algorithm, the task PDDL for Example [I] is shown on the right side Figure ] Refer to
Appendix for the task PDDLs of other example queries.

4.2 Plan generation

Once the task PDDL is generated, all we need to do is to call a PDDL planner with the task PDDL and
the domain PDDL. In our implementation we use the Fast Downward Plannerlﬂ [12]] with configuration
parameters alias = lama and search-time-limit = 1. In other implementations, where compatibility to
PDDL may not be important, one may also choose an appropriate ASP based planner [24]].

4https://www.fast-downward.org/HomePage
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Figure 4: Materialized representation to task PDDL for the query Profit and loss report.

Using an external classical Al planner has several benefits such as: ¢ Scalability: Al planners scale
well wrt number of APIs as long as the functionality of APIs can be defined in terms of (Inputs, Outputs,
Preconditions, Effects) with logical formulas. * Support for interaction: In case of incomplete queries
the generated plan includes calls to get_info_api API for gathering information from user * Optimality:
APIs can be assigned a cost; Planner computes an optimal plan wrt the cost function. * Graceful failure:
For out of domain queries planner won’t generate a plan rather than hallucinating.

For the example query Show me 2023 Q1 detailed expense report, the planner generates the plan:
Step 1. x_start_date = "01/01/2023";

Step 2. x_end_date = "03/31/2023";
Step 3. x = expense_spend_api(x_start_date, x_end_date);

For the example query Provide me with the profit and loss statement for the previous quarter and
then put me on a phone call with a representative to discuss it, the planner generates:
Step 1. x_start_date = "07/01/2024";

Step 2. x_end_date = "09/30/2024";

Step 3. y_contact_channel = "phone";

Step 4. x = profit_loss_api(x_start_date, x_end_date);

Step 5. y = contact_us_api(x, y_contact_channel);

Note that the the contact topic is bound to the generated profit and loss report x.

For the example query I want to chat with a representative, the planner generates:
Step 1. x_contact_topic = get_info_api("contact topic", date);
Step 2. x_contact_channel = "chat";

Step 3. x = contact_us_api(x_contact_topic, x_contact_channel);

For the example query Profit and loss report, the planner generates:

Step 1. x_start_date = get_info_api("start date", date);
Step 2. x_end_date = get_info_api("end date", date);
Step 3. x = profit_loss_api(x_start_date, x_end_date);
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S Experiments

In this section we present the evaluation results of our approach on a generated dataset containing nat-
ural language user queries related to various topics such as generation of profit & loss reports, invoice
creation, and how-to help requests.

5.1 Dataset Generation

The initial step in the dataset generation process involves using GPT-4 to generate user queries that
represent single goal tasks executable via a subset of the APIs described in Section[2] GPT-4 is prompted
with instructions and in-context examples to guide the generation process and ensure that the resulting
queries align with the requirements of the API. Refer to Appendix [D.1]for an example LLM prompt for
dataset generation.

We use the same process to create more complex multi-goal queries simulating a real-world scenario
where a user might seek to perform a series of actions in a single request. For example, “Can I see my
profit and loss statement from March to May 2023? I would like to discuss my profits further over chat.”.
GPT-4 is prompted to generate coherent sequences where the output of one goal execution would become
the input of another (multi-goal with dataflow), and complex queries which required multiple APIs to be
executed independently (multi-goal without dataflow).

Once a sufficient number of single and multi-goal queries are generated, we first manually select
queries that are representative of real user queries. Then, we manually annotate the selected queries with
the ground truth values for the APIs and entities as their arguments. Refer to Appendix for some
sample data in the dataset.

5.2 Results and Analysis

We consider a query as successfully processed iff the generated plan for answering the query contains
all the ground truth APIs with correct entities as their arguments. In particular, the get_info_api calls
correspond to missing entity values in incomplete queries. This allows us to also measure the success
rate of incomplete queries where the planner should generate get_info_api actions for missing entities
instead of the LLM hallucinating on entity values not present in the query. In our evaluation, a processed
query is either correct or wrong, and never fractionally correct.

Table |1{and Table [2| present the average success rate (with a variance of 1.0) of our system over five
runs on single goal and multi-goal queries respectively. The rows denote the different types of queries
in our dataset. Columns 2 and 7 denoted by # represent the number of complete and incomplete queries
respectively. In case of single goal queries, we report success rate for each goal type. In case of multi-
goal queries, we distinguish between queries with 2 goals and 3 goals with or without dataflow. A query
contains at least one goal and zero or more entities as arguments of the goals. The success rates reported
in Table[I]and Table[2]are at most equal to the smaller of API orchestration success rate and entity values
extraction success rate of the respective classes. See Appendix [D.4]for API orchestration success rates
and entity values extraction success rates.

We compare our method to a baseline where an LLM alone extracts the goals and entities in a query
and performs orchestration of APIs. The baseline utilizes function calling method from [20] where APIs
represented as function descriptions are used by the LLM to translate natural language query into function
calls. Refer to Appendix [D.3|for the LLM prompt used for the baseline approach. In our experiments,
we observe that our approach significantly outperforms the baseline in most cases for single goal queries.
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Table 1: Success rate % of our approach compared with a baseline of end-to-end LLLM based approach
on single goal queries

Complete Queries Incomplete Queries
# GPT-4 GPT3.5 # GPT4 GPT3.5
Base- Our Base- Our Base- Our Base- Our
line Ap- line Ap- line Ap- line Ap-
proach proach proach proach
profit & lossreport 70 22.86 98.57 8143 100 2 0 100 0 100
expense report 42 2381 100 9048 100 O - - - -
invoice sales report 33 54.55 9091 84.85 9394 12 0 100 0 91.67
charge lookup 33 81.82 100 9697 9394 5 40.00 100 0 100
how-to help 60 6833 9833 68.33 90.00 O - - - -
contact us request 10 40.00 100 70.00 100 47 0 91.49 0 85.11
financial advice 100 81.00 94.00 94.00 97.00 O - - - -
create invoice 40 57.50 100 100 100 20 0 100 0 100
update customer 3 0 100 100 100 30  6.67 100 6.67 100

For complete queries, the baseline approach often fails to detect the correct goal or extract the entities
in a query correctly. The former is mainly due to overlap in the API functionalities and thus the goals,
e.g., there are three report generating APIs. The latter is due to large variation in expressing the same
entity value. In addition, the baseline approach performs poorly on incomplete queries. In particular, the
baseline approach with GPT-4 asks unnecessary clarification questions in case of complete queries and
both GPT-4 and GPT-3.5 hallucinate on missing entity values in case of incomplete queries. We also
observe that our approach can handle multi-goal complete and incomplete queries with high success rate
while the baseline completely fails to orchestrate these queries correctly.

Overall, the increase in success rate in our approach can be attributed to the use of an LLM only for
translating a user query coupled with the use of deterministic tools such as a logical reasoner and a plan-
ner for inferring additional information and generating a plan respectively. In particular, using an LLM
to translate to an intermediate representation that is closer to the user query increases the translation ac-
curacy as well as minimizes the hallucination. Furthermore, using a logical reasoner facilitates accurate
mapping to target schema with the help of ASP rules even in complex domains where an LLM would
often generate incorrect inferences. Similarly, using an external planner computes only feasible plans.
In case of single goal complete queries, the increase in success rate is due to the use of intermediate
representation and reasoning, and the planner doesn’t add any additional value as the materialized rep-
resentation itself can be seen as an equivalent to a plan. In case of single goal or multi-goal incomplete
queries as well multi-goal complete queries with dataflow, the increase in the success rate is due to use
of intermediate representation, logical reasoning, and the planner.

Our approach requires per query one LLM call, one ASP solver call, and one planner call. The total
execution time for processing one query in case of GPT-4 is 3-5 seconds and 0.5-1 seconds in case
of GPT-3.5. In both cases over 99% of total time is consumed by the LLM call(s) in the translation
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Table 2: Success rate % of our approach compared with a baseline of end-to-end LLLM based approach
on multi-goal queries.

Complete Queries Incomplete Queries
# GPT-4 GPT-3.5 # GPT-4 GPT-3.5
Base- Our Base- Our Base- Our Base- Our
line Ap- line Ap- line Ap- line Ap-
proach proach proach proach

2 APIs w/o dataflow 15 0 100 0 100 10 0 100 0 100
2 APIs with dataflow 20 0 90 0 70 10 0 80 0 60
3 APIs with dataflow 4 0 100 0 75 16 0 75 0 62.50

step. Note that our LLM response times are measured in a setup with shared resources across all LLM
projects within our organization. We believe that the latency will be significantly lower with dedicated
LLM access.

6 Conclusion

In this paper, we studied the problem of answering incomplete user queries in presence of APIs. To the
best of our knowledge, ours is the first approach to address this problem. Our approach introduces a
novel combination of LLMs, logical reasoning, and classical Al planning to support queries that can be
complete or incomplete requiring only one API or an orchestration of multiple APIs. Furthermore, our
approach supports queries of different kinds such as information seeking queries, how-to queries, and
state changing queries. Our evaluation results show that our approach achieves high success rate (over
95% in most cases including 100% in some cases). Our approach is generic in the sense that it doesn’t
depend on a particular set of APIs but allows API specifications to be plugged in. The significant success
rate improvement as compared to a pure LLM based baseline can be attributed to the use of interpretable
intermediate representation, logical reasoning, and classical Al planning.

Our approach has a few limitations which we plan to address in our future work. Currently, we send
the metadata for all supported goals of the domain to an LLM as part of the prompt. This technique can
overshoot the LLM token limit in cases where there are a large number of possible goals in the domain.
Currently, our approach only supports queries but not user’s soft preferences. One way to address this
gap, at least for some types of user preferences, could be to translate them to a cost function which Al
planners can directly support. Lastly, the use of Al planner requires the APIs be specified with accurate
IOPE specifications in PDDL which may not be applicable for all APIs or difficult to create for APIs
with complex functionality.
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arg_type_date_period = {'examples': {'nov 2023' : ('11/01/2023',
'11/30/2023'), 'april 15 2022-june 30 2022' : ('04/15/2022',
'06/30/2022'), 'fy21': ('01/01/2021','12/31/2021'), '1 Half 2023':
('01/01/2023','06/30/2023'), '6/22 to 7/22': ('06/01/2022"',
'07/31/2022'), '1Q23' : ('01/01/2023', '03/31/2023"'),
'Mar-Apr 2022': ('03/01/2022','04/30/2022"),
"April end-June start 2023': ('04/30/2023', '06/01/2023')}}

arg_type_date = {'examples' : {'l nov 2023' : '11/01/2023"',

g-typ p
'11th November \'18': '11/11/2018', 'april 15 2022' : '04/15/2022',
'2/21/18': '02/21/2018'}}

arg_type_amount = {'examples': {'$2': '2.00', '$15.90': '15.99',
'$4,500' : '4500.00', '$65': '65.00'}}

arg_type_qb_feature = {'possible_values': ['accounts payable',
'add trips manually', 'bank statements', 'budget', 'capital', '
categorization', 'certification', 'change business name',
'connect to bank', 'deposits', 'depreciatiomn',
'import journal entries', 'inventory', 'melio', 'overtime',
'payroll', 'purchase order', 'purchase orders', 'reclassify',
'recover deleted account', 'reset account', 'record an expense',
'reconciliation', 'shortcuts', 'timesheets', 'timesheets/payroll’,
'vendors', 'write off bad debt']}

arg_type_conversation_topic = {'possible_values': [
'account', 'Accounts Payable', 'Accounts Receivable',
"Accounting Software', 'Bank Reconciliation', 'Billing',
'Bookkeeping', 'Budget', 'Budget Tracking and Forecasting',
'Cash Flow Management', 'Financial Analysis', 'Financial Planning',
'Financial Reporting', 'Fixed Assets', 'insurance',
'Inventory Management', 'Invoicing', 'issue', 'order', 'password',
'Payroll', 'product', 'Purchase Orders', 'questioms',
'Reconciliations', 'returns', 'technical', 'shipping',
'service_plan', 'tax', 'Tax Filing', 'Vendor Management']}

arg_type_conversation_channel = {'possible_values': ['speak', 'talk',
'connect', 'video', 'chat', 'phone'l}

arg_type_invoice_detail = {'possible_values':['Construction Project',
'Tutoring Services', 'Website Design', 'Car Repair',
'Catering Services', 'Event Management', 'Graphic Design',
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'Photography Service', 'Marketing Campaign',

'Business Consultation', 'Furniture Supplies', 'Cleaning Service',
'Painting Service', 'IT Consultancy', 'Accounting Services',
'Renovation Work', 'Gardening Service', 'Legal Consultation',
'Transportation Service', 'Personal Training Services',

'catering service', 'marathon coaching', 'construction project',
'baking class', 'introduction tutorial', 'lawn service',
'grooming service', 'violin lesson', 'pilates session',

'IT project', 'yoga class', 'personal training',

'marketing consultation', 'premium subscription',

'legal consultation', 'bartending service', 'reiki session',
'mobile application development', 'home renovation service',
'furnace inspection', 'dancing lessons', 'car repair service',
'freelance design work', 'piano lessons', 'cleaning service',
'plumbing service', 'hairstyling', 'landscaping service',
'catering service', 'logistics service',

'personal fitness training', 'graphic design work',

'babysitting service', 'real estate consultancy', 'SE0 services',
'web development work', 'tailoring service', 'carpentry work',
'security service', 'digital marketing service'l}

arg_type_given_name = {'examples' : ['John', 'Mary']}
arg_type_family_name = {'examples' : ['Smith', 'Fischer']}

arg_type_email = {'examples' : ['j.fischer@abc.com']}

arg_type_phone = {'examples' : ['987-654-3210']}

A.2 Domain Goals

[{'type': 'goal_1',

'description': 'request for generating a report on one of
[profit_and_loss, income, business_insights, figures,
operating_income, report, revenue, earnings].',

'required information': [{'name': 'report_period',
'description': 'time period defined by start and end dates.

consider leap year while generating feb dates.',
'type': arg_type_date_period}],

'examples': [{'Earnings Summary?': '_goal(x, goal_1, earnings).'},
{'type': 'goal_2',
'description': 'request for generating a report on one of [expense,

spend, bills, operating_expense, spend_figures, spending_insight,
spend_report, expense_report, business_insights].',
'required information': [{'name': 'report_period',
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'description': 'time period defined by start and end dates.
Consider leap year while generating feb dates.', 'type':
arg_type_date_period}],

'examples': [{'What was the total expense for the first quarter of

20237': '_goal(x, goal_2, expense_report). _report_period(x

("01/01/2023","03/31/2023")) . '}1},

{'type': 'goal_3',

'description': 'request for generating a report on one of
[earnings, pending_payments, due_accounts, invoices,
invoice_report, sales, accrued_expense, financial_forecast,
revenue, report].',

'required information': [{'name': 'report_period',
'description': 'time period defined by start and end dates.
Consider leap year while generating feb dates.', 'type':

arg_type_date_period}], 'examples': [{'Show me all the
invoices generated between March 1, 2022, and June 1, 2022':
'_goal(x, goal_3, invoices).
_report_period(x, ("03/01/2022","06/01/2022"))."'}1},

{'type': 'goal_4', 'description': 'request for one of [charge_lookup]',
'required_information': [{'name': 'date_of_charge', 'description':
'date of charge.', 'type': arg_type_datel},{'name':
'amount_of_charge', 'description': 'amount of charge.', 'type':
arg_type_amount}],

'examples': [{'Why am I being charged $30.007': '_goal(x, goal_4,
charge_lookup). _amount_of_charge(x, "30.00").'}]},

{'type': 'goal_ 5', 'description': 'request for instructions

on accomplishing a task in quickbooks.', 'required_information': [
{'name': 'help_topic', 'description': 'quickbooks product
feature relevant for the task to be accomplished', 'type':
arg_type_qb_featurel}],
'examples': [{'What is the process for approving and
fulfilling purchase orders?': '_goal(x, goal_5).
_help_topic(x, "purchase orders").'}]},

{'type': 'goal_6',

'description': 'request for a conversation with a person on the
best matching conversation topic using best matching
conversation medium.', 'required information': [{'name':
'contact_topic', 'description': 'topic of conversation.', 'type':
arg_type_conversation_topic}, {'name': 'contact_channel',
'description': 'explicitly mentioned medium of

conversation.', 'type': arg_type_conversation_channel},],
'examples': [ {'I have some questions about billing. Can I chat
with an expert about it?': '_goal(x, goal_6, expert).

_contact_topic(x, "Billing"). _contact_channel(x, "chat").'},
{'Can I speak to a representative?': '_goal(x, goal_6,
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representative). _contact_channel(x, "speak").'},
{'Can I talk to an expert? What is the best way?': '_goal(x,
goal_6, expert). _contact_channel(x, "talk").'},
{'Can I book a phone call with a call agent?':
'_goal(x, goal_6, call_agent). _contact_channel(x, "phone").'},
{'Could I please speak with someone who can answer my questions?':
'_goal(x, goal_6, representative). _contact_channel(x, "speak").
_contact_topic(x, "questions").'}]},

{'type': 'goal_ 7',
'description': 'request for an advice about one of ["business
analysis", "business comparison", "business recommendation",
"personal finance", "business expense", "profit making"].',
'required information': [],

'examples': [{'Any advice for dealing with monthly recurring

expenses?': '_goal(x, goal_7).'}, {'How does my liquidity compare
to similar businesses?': '_goal(x, goal 7).'}1},
{'type': 'goal_8',
'description': 'request for creating a new invoice for a given
amount and invoice detail.',
'required information': [{'name': 'invoice_amount', 'description':
'amount of invoice.', 'type': arg_type_amount},
{'name': 'invoice_detail', 'description': 'detail of invoice.',
'type': arg_type_invoice_detail},],
'examples' : [{'Invoice needed of $200 for grooming service':

'_goal(x, goal_8, new_invoice). _invoice_amount(x, "200.00").
_invoice_detail(x, "grooming service").'}]},

{'type': 'goal_9', 'description': 'request for updating a customer
profile', 'required information': [{'name': 'customer_given_name',
'description': 'customer given name in customer profile.', 'type':
arg_type_given_name}, {'name': 'customer_family_name',
'description': 'customer family name in customer profile.', 'type':
arg_type_family_name}, {'name': 'customer_email',

'description': 'customer email in customer profile.' ,'type':
arg_type_email}, {'name': 'customer_phone', 'description':

'customer phone in customer profile.', 'type': arg_type_phonel}],
'examples': [{'Can you add a new profile for Henry Davis?':
'_goal(x, goal_9, customer_profile). _customer_given_name

(x, "Henry"). _customer_family_name(x, "Davis").'}]
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arg_type_shape = {'name': 'shape',

ex_goal_types = [

]

arg_type_color = {'name': 'color', 'description':
'type': {'description': 'color of an object',
[‘red', 'green', 'blue', 'yellow']}}

'description':
'type': {'description': 'shape on an object',
['large', 'big', 'small', 'medium']}}

'color of an object',
'possible_values':

'shape of an object',
'possible_values':

{'type': 'fruits_goods', 'description': 'request for report about
one of [apple, orange, ball].', 'required information':
[arg_type_color, arg_type_shapel},

Goals: <AS ABOVE>
Text: show me red apples.

Answer:

% --- begin ---

_goal(x, fruits_goods, apple).
_color(x, "red").

% --- end ---

Goals: <AS ABOVE>

Answer:

% --- begin ---

_goal(x, fruits_goods, orange).
_color(x, "green").

_shape(x, "large").

% --- end ---

Goals: Goals: <AS ABOVE>
Text: big blue balls.

Answer:

% --- begin ---

_goal(x, fruits_goods, ball).
_color(x, "blue").

_shape(x, "big").

Text: which large oranges are green.
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% --- end ---
Goals: Goals: <AS ABOVE>
Text: red oranges

Answer:

% --- begin ---

_goal(x, fruits_goods, orange).
_color(x, "red").

% --- end ---

Goals: Goals: <AS ABOVE>
Text: list of small oranges that are yellow

Answer:

% --- begin ---

_goal(x, fruits_goods, orange).
_color(x, "yellow").

_shape(x, "small").

% --- end ---

B Domain Modeling

B.1 Domain PDDL

(define (domain gen-orch-planner)

(:requirements :strips)

(:types
var - object
var_type - object

)

(:predicates
(report_start_date ?r - var 7t - var)
(report_end_date ?r - var 7t - var)
(charge_date ?r - var 7t - var)
(charge_amount ?r - var 7t - var)
(help_topic ?r - var 7t - var)
(contact_us_topic ?r - var 7t - var)
(contact_us_channel ?r - var 7t - var)
(invoice_amount ?r - var 7t - var)
(invoice_detail ?r - var 7t - var)
(customer_given_name ?r - var 7t - var)
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(customer_family_name ?r - var 7t - var)
(customer_email ?r - var 7t - var)
(customer_phone ?r - var 7t - var)
(has_type ?a - var 7t - var_type)
(has_value 7a - var)

(:action get_info_api
:parameters (7in_var - var 7in_type - var_type)
:precondition (and (has_type 7in_var ?7in_type)
(not (has_value ?in_var)))
:effect (and (has_value 7in_var)))

(:action profit_loss_api
:parameters (?7inl - var 7in2 - var 7out - var)
:precondition (and (has_type 7inl date) (has_value ?7inl)
(has_type 7in2 date) (has_value ?7in2)
(has_type ?7out profit_loss_report) (mot (has_value ?out)))
:effect (and (report_start_date 7out 7inl)
(report_end_date 7out ?7in2) (has_value 7out)))

(:action expense_spend_api
:parameters (?inl - var ?in2 - var 7out - var)
:precondition (and (has_type 7inl date) (has_value ?7inl)
(has_type ?7in2 date) (has_value ?7in2)
(has_type 7out expense_spend_report) (not (has_value 7out)))
:effect (and (report_start_date 7out 7inl)
(report_end_date 7out ?in2) (has_value ?7out)))

(:action invoice_sales_api
:parameters (?7inl - var ?in2 - var 7out - var)
:precondition (and (has_type 7inl date) (has_value ?7inl)
(has_type ?7in2 date) (has_value ?7in2)
(has_type 7out invoice_sales_report) (not (has_value 7out)))
:effect (and (report_start_date Tout ?7inl)
(report_end_date 7out ?7in2) (has_value 7out)))

(:action charge_lookup_api
:parameters (?inl - var 7in2 - var Tout - var)
:precondition (and (has_type 7inl date) (has_value ?7inl)
(has_type ?in2 number) (has_value 7in2)
(has_type ?7out charge_lookup_report) (not (has_value 7out)))
:effect (and (charge_date 7out 7inl) (charge_amount ?7out ?7in2)
(has_value ?7out)))
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(:action help_api
:parameters (?7inl - var 7Tout - var)
:precondition (and (has_type 7inl string) (has_value 7inl)
(has_type 7out help) (not (has_value 7out)))
:effect (and (help_topic 7out 7inl) (has_value 7out)))

(taction contact_us_api
:parameters (?7inl - var ?in2 - var 7out - var)
:precondition (and (has_type 7inl contact_topic) (has_value 7inl)
(has_type ?7in2 contact_channel) (has_value ?7in2)
(has_type 7out contact) (not (has_value 7out)))
:effect (and (contact_us_topic 7out 7inl)
(contact_us_channel ?out ?7in2) (has_value 7out)))

(:action create_invoice_api
:parameters (?inl - var ?7in2 - var 7out - var)
:precondition (and (has_type ?7inl number) (has_value ?inl)
(has_type 7in2 string) (has_value ?in2) (has_type 7out invoice)
(not (has_value 7out)))
:effect (and (invoice_amount 7out ?inl) (invoice_detail Zout ?in2)
(has_value 7out)))

(:action update_customer_api

:parameters (?7inl - var 7Tout - var)

:precondition (and
(has_type ?7inl customer_given_name) (has_value 7inl)
(has_type 7in2 customer_family_name) (has_value 7in2)
(has_type 7in3 customer_email) (has_value ?7in3)
(has_type 7in4 customer_phone) (has_value 7in4)
(has_type ?out customer))

reffect (and (customer_given_name 7out ?7inl)
(customer_family_name 7out ?in2) (customer_email 7out 7in3)
(customer_phone ?out ?in4) (has_value 7out)))

B.2 Domain Rules

goal(X, profit_loss_report) :- _goal(X, goal 1, _).

start_date(X, Y1, date) :- goal(X, profit_loss_report),
_report_period(X, (Y1, Y2)).

end_date(X, Y2, date) :- goal(X, profit_loss_report),
_report_period(X, (Y1, Y2)).

goal(X, expense_spend_report) :- _goal(X, goal_ 2, _).
start_date(X, Y1, date) :- goal(X, expense_spend_report),
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_report_period(X, (Y1, Y2)).
end_date(X, Y2, date) :- goal(X, expense_spend_report),
_report_period(X, (Y1, Y2)).

goal(X, invoices_sales_report) :- _goal(X, goal 3, _).

start_date(X, Y1, date) :- goal(X, invoices_sales_report),
_report_period(X, (Y1, Y2)).

end_date(X, Y2, date) :- goal(X, invoices_sales_report),

_report_period(X, (Y1, Y2)).

goal(X, charge_lookup) :- _goal(X, goal_4, _).

charge_date(X, Y, date) :- goal(X, charge_lookup),
_date_of_charge(X, Y).

charge_amount (X, Y, number) :- goal(X, charge_lookup),
_amount_of_charge(X, Y).

goal (X, helpgpt) :- _goal(X, goal_5).
help_topic(X, Y, string):- _help_topic(X, Y).

goal (X, contact_us) :- _goal(X, goal_6, _).

contact_topic(X, Y, fuzzy_string) :- goal(X, contact_us),
_contact_topic(X, Y).

contact_channel (X, Y, fuzzy_string) :- goal(X, contact_us),
_contact_channel (X, Y), == "yideo".

contact_channel (X, Y, fuzzy_string) :- goal(X, contact_us),
_contact_channel(X, Y), Y == "chat".

contact_channel (X, Y, fuzzy_string) :- goal(X, contact_us),
_contact_channel (X, Y), == "phone".

goal(X, advice) :- _goal(X, goal_ 7).

goal (X, create_invoice) :- _goal(X, goal_8, new_invoice).

invoice_amount (X, Y, number) :- goal(X, create_invoice),
_invoice_amount (X, Y).

invoice_detail(X, Y, fuzzy_string) :- goal(X, create_invoice),

_invoice_detail (X, Y).

goal(X, update_customer) :- _goal(X, goal_9, customer_profile).

customer_given_name(X, Y, string) :- goal(X, update_customer),
_customer_given_name (X, Y).

customer_family_name(X, Y, string) :- goal(X, update_customer),
_customer_family_name(X, Y).

customer_email (X, Y, string) :- goal(X, update_customer),

_customer_email (X, Y).
customer_phone (X, Y, string) :- goal(X, update_customer),
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_customer_phone(X, Y).

error("end date must be after start date") :- start_date(X, D1, date),
end_date(X, D2, date), false == Q@lte_dates(D1, D2).

C Query ASP to Task PDDL

C.1 Query ASP to Task PDDL Algorithm

str_objects <
str_init < ""
str_goal +
Initialize objects <— {var_type : 0,var : 0}. Initialize all_vars < 0.
for each goal in goals do
Add goal to objects[var_type].
for each var in goals[goal] do
add goals[goal][var][type] to objects[var_type]
add var to all_vars
for each atom in the ASP model do
goal_var, goal_name < atom.arguments[0], atom.arguments|[1]
if atom.name == "goal" then
Add goal_var to objects[var]
str_init += "(has_type " + goal_var +
for each arg of goals[goal_name] do
arg_var < goal_var+"_"+arg
arg_type < goals[goal_name][arg]["type"]
pred_name < goals[goal_name][arg]["predicate"]
Add arg_var to ob jects[var]
str_init += "(has_type " + arg_var +
str_goal +="(" + pred_name + " " + goal_var +

nn

+ goal_name + ")"

+ arg_type +")"
""+arg_var+")"
else if atom.name in all_vars then

goal_var +— atom.arguments[0].name

var <— goal_var + "_" + atom.name

str_goal +="(" + atom.name + " " + goal_var + " " + var + ")"
str_objects += " ".join(objects[var]) + " - " + var
str_objects += " ".join(objects[var_type]) + " - " + var_type

C.2 Example Task PDDLs

(define (problem examplel)
(:domain query-to-plan)
(:objects
profit_loss_report - var_type
x_end_date x_start_date x - var
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)

)

(:init
(has_type x profit_loss_report)
(has_type x_start_date date)
(has_type x_end_date date)

)

(:goal (and
(report_start_date x x_start_date)
(report_end_date x x_end_date)

))

53

)

(define (problem example2)

(:domain query-to-plan)

(:objects
expense_spend_report - var_type
x_end_date x_start_date x - var

)

(:init
(has_type x profit_loss_report)
(has_type x_start_date date)
(has_value x_start_date "01/01/2023")
(has_type x_end_date date)
(has_value x_end_date "03/31/2023")

)

(:goal (and

(report_start_date x x_start_date)
(report_end_date x x_end_date)

))

(define (problem example3)

(:domain query-to-plan)
(:objects
contact_us - var_type
x_topic x_channel x - var

)

(:init
(has_type x contact_us)
(has_type x_topic string)
(has_type x_channel string)
(has_value x_channel "chat")

)

(:goal (and

(contact_us_topic x x_topic)
(contact_us_channel x x_channel)
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))
)

(define (problem example4)

(:domain query-to-plan)

(:objects
contact date contact_channel contact_topic
profit_loss_report - var_type
y x_end_date y_contact_channel x_start_date
y_contact_topic x - var

)

(:init
(has_type y contact)
(has_type y_contact_topic contact_topic)
(has_type y_contact_channel contact_channel)
(has_type x profit_loss_report)
(has_type x_start_date date)
(has_type x_end_date date)
(has_value x_start_date)
(value x_start_date "last quarter start")
(has_value x_end_date)
(value x_end_date "last quarter end")
(has_value y_contact_channel)
(value y_contact_channel "phone")

)

(:goal (and
(contact_us_topic y y_contact_topic)
(contact_us_channel y y_contact_channel)
(report_start_date x x_start_date)
(report_end_date x x_end_date)
(contact_channel y y_contact_channel)

))

D Evaluation

D.1 LLM prompt for dataset generation

Example prompt for generating user query and entities related to expense report

"Write 20 questions that use the variables below. These questions will
be used to test entity extraction.

The variables are

startperiod: the start date for the period of the expense and spend
endperiod: the end date the user wants for the expense and spend ,
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Your response should be in the format following these examples:
{""Question"": ""spending breakdown"",

""startperiod"": [],

""endperiod"": []

X

{""Question"": ""what have i spent most on 2020"",
""startperiod"": 1/1/2020,

""endperiod"": 12/31/2021

}

{""Question"": ""top monthly expenses from april 1 to may 2023"",
""startperiod"": 04/1/2023,

""endperiod"": 05/31/2023

}

{""Question"": ""top spending categories from 1/1/24 to 2/1/24"",
""startperiod"": 1/1/24,

""endperiod"": 2/1/24

X

D.2 Samples from the dataset

Query gt_API gt_entityl gt_valuel gt_entity2 gt_value2
Q1 2023 P&L profit_loss startperiod 1/1/23 endperiod 3/31/23
review?
Why was 1 charge_- dateofcharge (] amountofcharge 75
charged $75? lookup

D.3 Baseline Prompt

{"role": "system", "content": """

Only use the functions you have been provided with. Do not assume or
hallucinate function parameters. If user has not provided, ask user for
required parameters.

Don't make assumptions about what values to plug into functioms.

Ask for clarification if a user request is ambiguous.

{"role": "user", "content": query}

Here, functions are the APIs modelled as OpenAl function specifications and query refers to the user
query of interest.
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D.4 Evaluation Results

LILM+Reasoning+Planning for Incomplete Queries over APIs

Complete Queries

Incomplete Queries

# GPT-4 GPT-3.5 # GPT-4 GPT-3.5
Baseline Our  Baseline Our Baseline Our  Baseline Our
Ap- Ap- Ap- Ap-
proach proach proach proach
profit & loss report 70  22.86 98.57 97.14 100 2 0 100 100 100
expense spend fe- 4 3095 100 97.62 100 0 : . : -
port
invoice sales report 33  63.64 9091 87.88 9394 12 16.67 100 66.67 100
charge lookup 33 81.82 100 100 9697 5 40.00 100 100 100
how-to help 60 70.00 9833 6833 90.00 O - - - -
contact us request 10 40.00 100 80.00 100 47 14.89 93.62 44.68 95.74
financial advice 100 81.00 9490 94.00 97.00 O - - - -
create invoice 40 60.00 100 100 100 20 0 100 100 100
update customer 3 0 100 100 100 30 6.67 100 100 100

Table 3: API orchestration success rate % of our approach compared with a baseline of end-to-end
LLM based approach on single goal queries
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Complete Queries Incomplete Queries
# GPT4 GPT-3.5 # GPT-4 GPT-3.5
Baseline Our  Baseline Our Baseline Our  Baseline Our
Ap- Ap- Ap- Ap-
proach proach proach proach
profit & loss report 70  22.86 98.57 8143 100 2 0 100 0 100
expense spend fe- 4 381 100 9048 100 0 . . . -
port
invoice sales report 33 54.55 96.97 84.85 96.97 12 0 100 0 91.67
charge lookup 33 81.82 100 9697 9394 5 40.00 100 0 100
how-to help 60 68.33 9833 6833 95.00 O - - - -
contact us request 10 40.00 100 70.00 100 47 0 97.87 0 87.23
financial advice 100 81.00 99.00 9400 100 O - - - -
create invoice 40 57.50 100 100 100 20 0 100 0 100
update customer 3 0 100 100 100 30 6.67 100 6.67 100

Table 4: Entity extraction success rate % of our approach compared with a baseline of end-to-end
LLM based approach on single goal queries

Complete Queries

Incomplete Queries

# GPT-4 GPT-3.5 # GPT-4 GPT-3.5
Base- Our Base- Our Base- Our Base- Our
line Ap- line Ap- line Ap- line Ap-
proach proach proach proach
2 APls Wl e g0 0 100 10 0 100 0 100
dataflow
2 APls with n g 00 0 80 10 0O 80 0 80
dataflow
3 APls  with o 100 o0 75 16 0 100 0 8125

dataflow

Table 5: API orchestration success rate % of our approach compared with a baseline of end-to-end

LLM based approach on multi goal complete queries
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Complete Queries Incomplete Queries
# GPT-4 GPT-3.5 # GPT-4 GPT-3.5
Base- Our Base- Our Base- Our Base- Our
line Ap- line Ap- line Ap- line Ap-
proach proach proach proach
2 APls wlo s g 00 0 100 10 0 100 0 100
dataflow
2 APIs with o0 9900 0 70 10 0 90 0 60
dataflow
3 APls with o 90 0 7500 16 0 75 0 6250
dataflow

Table 6: Entity extraction success rate % of our approach compared with a baseline of end-to-end
LLM based approach on multi goal queries
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Abstract

Legal cases require careful logical reasoning following the laws, whereas interactions with non-
technical users must be in natural language. As an application combining logical reasoning using
Prolog and natural language processing using large language models (LLMs), this paper presents a
novel approach and system, LogicLease, to automate the analysis of landlord-tenant legal cases in
the state of New York.

LogicLease determines compliance with relevant legal requirements by analyzing case descrip-
tions and citing all relevant laws. It leverages LLMs for information extraction and Prolog for legal
reasoning. By separating information extraction from legal reasoning, LogicLease achieves greater
transparency and control over the legal logic applied to each case. We evaluate the accuracy, ef-
ficiency, and robustness of LogicLease through a series of tests, achieving 100% accuracy and an
average processing time of 2.57 seconds. LogicLease presents advantages over state-of-the-art LLM-
based legal analysis systems by providing clear, step-by-step reasoning, citing specific laws, and dis-
tinguishing itself by its ability to avoid hallucinations—a common issue in LLMs.

1 Introduction

Rental law compliance matters significantly to all rental residents. According to [2], more than 122.8
million households in the United States are renters. [S] estimates that there are over 1.1 million cases
of landlords evicting tenants every year, representing an increase of 75% since 2021. Furthermore,
60% of eviction case defendants in 2023 were women, and despite making up less than one-third of
renters, nearly half of eviction case defendants in 2023 were Black. [4] states that over seven million
Americans are evicted from their homes every year, nearly 40% (2.7 to 3.2 million) of which are children.
Additionally, in the United States, there is no guaranteed right to legal counsel in eviction proceedings.
[16] estimates that as many as 90% of tenants facing eviction go to court unrepresented, putting them at
a significant disadvantage. Consequently, up to 75% of tenants end up losing their eviction cases.

The legal domain’s emphasis on meticulous analysis and transparent thought processes makes it
an ideal candidate for utilizing logic-based systems over black-box approaches. Logic-based systems
excel in providing clear and transparent reasoning, which is highly valued in legal contexts. While large
language models (LLMs) are increasingly being considered for automating legal analysis, they are prone
to hallucinations, which can lead to incorrect legal interpretations.

This paper presents LogicLease, a novel system specifically designed to automate the analysis of
landlord-tenant legal cases in the state of New York, providing a transparent and reliable alternative to
black-box methods.

P. Cabalar, F. Fabiano, M. Gebser, G. Gupta and Th. Swift (Eds.):
40th International Conference on Logic Programming (ICLP 2024)
EPTCS 416, 2025, pp. 59-168] doi:10.4204/EPTCS.416.4
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Rental law compliance is crucial for the well-being of tenants, but navigating legal cases can be
complex and time-consuming. With millions of eviction cases each year, many tenants face eviction
without proper legal representation, resulting in a significant disadvantage.

LogicLease harnesses the strengths of Large Language Models (LLMs) for information extraction
and Prolog for legal reasoning. It is designed to assess compliance with relevant legal requirements by
analyzing case descriptions presented in natural language. LogicLease utilizes LLMs to parse the input,
extracting essential details that can influence case outcomes. Subsequently, it employs a logic-based
backend to generate clear, step-by-step reasoning and cite specific laws.

The accuracy, efficiency, and robustness of LogicLease were evaluated through a series of tests,
demonstrating 100% accuracy and an average processing time of 2.57 seconds. By separating infor-
mation extraction from legal reasoning, LogicLease ensures greater transparency and control over the
legal logic applied to each case. Furthermore, LogicLease addresses the challenges of hallucinations and
opacity common in LLMs, providing a reliable tool for landlord-tenant legal analysis in New York.

The rest of the paper is organized as follows. Section [2] describes the problem of reliable analysis
of rental law compliance. In Section [3] we present the approach used in LogicLease for automating
the analysis of landlord-tenant legal cases. Section ] provides implementation details and evaluates
the accuracy, efficiency, and robustness of LogicLease. Finally, Section [3] discusses related work and
concludes the paper.

2 The need for legal compliance analysis

Millions of Americans face challenges in their homes, and those from marginalized communities are
often disproportionately impacted by unfair housing practices. To address this gap, we developed Log-
icLease. LogicLease promises to provide free and highly accurate guidance on tenant-landlord issues.
Our system is designed for simplicity, so anyone can navigate it, regardless of technical expertise. We
prioritize accuracy to ensure users receive reliable information to confidently address their housing con-
cerns.

When developing LogicLease, we established three primary requirements:

1. Natural Language Input: Users can describe their situation in plain English (or potentially another
language). This could involve describing the issue (e.g., repairs not being made, rent increase
concerns), relevant details (lease terms, dates), and any questions they have.

2. Rigorous Analysis for High Accuracy: The system uses LLMs to understand the user’s situation
and intent. It analyzes legal regulations, relevant case law, and best practices using the Prolog
backend to provide accurate guidance. This might involve identifying the key legal issues involved,
assessing the user’s rights and responsibilities based on their location and lease agreement and
considering potential solutions or next steps.

3. Natural Language Output: The system provides clear and actionable information tailored to the
user’s situation. This output is generated using a Prolog backend, where description of relevant
laws is coded as strings associated with the rules. As the Prolog backend processes the rules and
retrieve the specific law applicable to the case, it generates and prints the corresponding description
to the output. This may include explanations of tenant rights or step-by-step guidance on how to
address issues (e.g., contacting the landlord, or filing a complaint), presented in a way that is easy
to understand, even for people with no legal background.
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3 Combining logic programming and LLMs for legal analysis

LogicLease consists of four main components:

1. Driver Script: This component serves as the central coordinator, orchestrating the interaction be-
tween the other components. It takes a case description (lease agreement) as input and invokes the
Natural Language Processing (NLP) and Prolog functionalities for analysis.

2. Natural Language Processing (NLP): LogicLease utilizes a large language model (LLM) out-of-
the-box, without any additional training, to extract attribute-value pairs from the lease agreement.
These pairs represent critical aspects of the case, such as whether the lease is signed or the duration
of the rental period.

3. Prolog Knowledge Base: This component contains a set of Prolog rules that represent legal re-
quirements for rentals, which we manually coded based on the New York Renters’ Rights Hand-
book [12]. It contains an exhaustive set of rules about lease validity, rent stabilization, eviction,
habitability, and more. LogicLease utilizes the attribute-value pairs extracted by the LLM as argu-
ments for Prolog queries and uses the Prolog engine to evaluate compliance against these rules.

4. User Interface: The user interface of LogicLease provides users with an intuitive and user-friendly
experience, enabling them to interact with the system seamlessly (Figure [Ia). Users input the
case description in natural language. Alternatively, they can also answer a series of dynamically
generated questions related to the specific legal aspects of their case. These questions are designed
to extract key attributes necessary for the legal analysis (Figure [ID). Users can provide answers
using dropdown menus or text input fields. The user interface processes the information and
invokes the legal analysis.

= Advantages Over Existing Systems: LogicLease offers advantages over state-of-the-art LLM-based legal
analysis systems by providing clear, step-by-step reasoning, citing specific laws, and mitigating
hallucinations—a common issue in LLMs.

LogicLease

LogicLease: Automating Landlord-Tenant Legal Case Analysis

LogicLease s a system designed to automate the analysis of landlord-tenant legal cases in the state of New

Legal Case Analysis

Select what your case is about?

York. Unlike existing systems, LogicLease utilizes Large Language Models (LLMs) for information extraction
and employs Profog for legal reasoning.

Key Features:

Habitability x

«  Information Extraction and Legal Reasoning: LogicLease separates information extraction from legal

What caused the breach?

reasoning, enhancing transparency and control over the legal logic applied to each case.

tenant

« Compliance Determination: The system aims to determine compliance with relevant legal

requirements by analyzing case descriptions and citing all relevant laws. How many days have passed since the communication?

«  Accuracy and Efficiency: Through rigorous testing, LogicLease demonstrated a 100% accuracy rate on
atest dataset and an average processing time of 2.572 seconds, highlighting its accuracy, efficiency,

and robustness. What breach of habitability occurred?

no_heat
+ Advantages Over Existing Systems: LogicLease offers advantages over state-of-the-art LLM-based legal =
nalysi ms by providing clear, step-by-step reasoning, citing specific laws, and mitigatin
R s e N L R S L e Was there written communication to the landlord from the tenants end?
hallucinations—a common issue in LLMs,
true

Legal Case Analysis

Select what your case is about?

Choose an option

Streamlit

(a) User Interface of LogicLease (b) Example of dynamically generated questions

Figure 1: LogicLease front-end interface

As shown in Figure 2] the design of LogicLease follows a structured process. Initially, the Driver
Script receives a case description in natural language as input. Subsequently, it calls the API to the
LLM, providing a system query that specifies the desired lease agreement aspects and the user query
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containing the actual case description. The API call sends the queries to the LLM, retrieving a response
containing extracted attribute-value pairs. The Driver Script parses this response and stores the extracted
attribute-value pairs in a dictionary. Following this, the Driver Script invokes Prolog functions passing
the dictionary containing the extracted attribute-value pairs. These functions translate the dictionary into
a Prolog query based on the pre-defined Prolog rules in the knowledge base. The Prolog engine then
evaluates the query, determining compliance with the lease agreement requirements. Finally, the results
of the compliance check are displayed by the Driver Script.

—

Non-Compliance
Noted
k Vs | | ( | ‘ )
PYSWIP
Extracted Attibute-Value Compliance
7 ?
Responseﬂeceu%—'{ ais HCaI\Pm\ogQuew s Compliant? Coimed || QUTPUT

LLM Parses
Queries

User inputin Natural
Language

i

S

APl }

Figure 2: Design diagram of LogicLease

To illustrate the workflow of LogicLease and to facilitate a deeper understanding of the system, we
provide an overview of the input processing, attribute-value pair extraction using an LLM, compliance
checking with the Prolog backend system, and the final output.

User input of case in natural language. The input for a case is taken in natural language. An example
is the following:

In a rent-stabilized apartment in Albany, New York, David, a disabled tenant, faced
eviction proceedings initiated by his landlord, Ms. Johnson, citing owner occupancy as
the cause. Despite David's disability, he has been asked to vacate. The matter has not
been presented before court, and hence does not have a court ruling yet.

This input is passed to the LLM for processing.

Attribute-value pairs extracted. The LLM parses the input text and outputs attribute-value pairs
which are the core details of the case which influence the outcome. The extracted attribute-value pairs in-
dicate that the eviction cause is owner occupancy,” there is no court ruling yet ("CourtRuling” is “’false”),
and the tenant is in a protected category (TenantCategory” is “disabled”). These attribute-value pairs
are stored in a dictionary in the following format.

EvictionCause : “owner_occupancy”,
CourtRuling : “false”,
Executioner : ’null”

)

TenantCategory : ”disabled”,
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Logic rules and queries in Prolog. As seen in Listing|l} the compliance with legal requirements in this
specific case is determined by invoking the following Prolog predicate. Notably, the arguments precisely
match the information extracted by the Large Language Model (LLM) from the case description.

eviction(EvictionCause, CourtRuling, Executioner, TenantCategory) :-
eviction_law,
(CourtRuling == true ->
(
eviction_legal (EvictionCause),
writeln(’All conditions_satisfied,_evictionyis lawful.’),

nl
)
5
(
eviction_warrant_execution(Executioner),
\+ overrides(TenantCategory, EvictionCause),
writeln(’All conditions_ satisfied,_ evictiongyisglawful.’),
nl
)

Listing 1: Prolog rule for eviction compliance checking
The arguments of the predicate are instantiated based on the extracted attribute-value pairs stored in
the dictionary. The call to the Prolog predicate is structured as follows:

Prolog.query(eviction(owner_occupancy, false, null, disabled).)

The Prolog query evaluates the compliance of the landlord’s actions with the relevant legal require-
ments.

Final output to user in natural language. The final output consists of a list of laws relevant to the
case followed by a final judgment based on these laws. This transparent mechanism provides a clear
rationale for each case. For our example, the output is:

1. Tenant with a lease is protected from eviction during the lease period if lease provisions and
local laws are not violated.

Landlords must give formal notice before seeking legal possession of the apartment.
Eviction proceedings can be initiated for non-payment or significant lease violations.
Landlords of rent-regulated apartments may need DHCR approval for court proceedings.
Tenants should not ignore legal papers to avoid eviction.

Legal eviction requires court proceeding and judgment of possession.

Landlords cannot evict tenants unlawfully or by force.

Tenant evicted unlawfully can recover triple damages.

e T A e R

Additional rules protect certain groups from eviction.
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Tenant is in protected category, eviction for owner occupancy unlawful.

The output confirms that the eviction for owner occupancy is unlawful given the tenant’s protected
category status and the absence of a court ruling.

4 Implementation and evaluation

We have developed a complete implementation of the LogicLease system, covering the full New York
State landlord-tenant legal framework. We successfully applied our system to a series of 10 test cases,
representing various scenarios encountered in landlord-tenant disputes. To evaluate the system’s perfor-
mance, we employ a multi-pronged approach, assessing its accuracy, efficiency, and robustness across
various dimensions.

4.1 Implementation

LogicLease is implemented using a combination of Python and SWI-Prolog [21}[17]]. Python is used
to facilitate interactions among different components, utilizing libraries such as PYSWIP to establish
communication between the Python script and the Prolog engine (SWIPL), while Streamlit is employed
to create a user-friendly front-end interface. Additionally, llamaapi [10] is used to manage interactions
with the Large Language Model (LLM) model LLaMA [[18]], while Python libraries like json and ast are
employed for processing the output received from LLaMA.

The Prolog backend serves as the foundation for legal reasoning, with custom clauses defining the
relevant laws and procedures. The implementation of the system followed a structured approach, ensur-
ing modularity and ease of maintenance.

Notably, LogicLease incorporated defeasible logic [[19} [20} [11]] within the Prolog component, en-
abling the system to handle situations where one legal principle takes precedence over another under
specific circumstances.

By separating information extraction (NLP) from legal reasoning (Prolog), LogicLease achieved
greater transparency and control over the legal reasoning applied to each case. This approach is par-
ticularly important for legal professionals who require a clear understanding of the system’s reasoning
process, while ensuring there are no hallucinations or snowballing effects.

The total size is approximately 500 lines of Prolog code and an additional 400 lines of Python code.

All experiments and measurements were conducted on a macOS system featuring an Apple Silicon
M2 processor, 8GB of RAM, and a 256GB SSD. The system was running macOS Monterey version
12.5, with Python 3.9.12, Prolog SWIPL 9.2.2, PYSWIP 0.2.11, llamaapi version 0.1.36, and Streamlit
version 1.24.1.

4.2 Accuracy

To evaluate LogicLease’s effectiveness, we manually compiled a dataset of lease litigation cases in New
York. This dataset includes a mix of real-world cases (condensed for efficiency) and fictional scenarios
we created. Due to limited API credits available for using the LLM, the system restricted the number of
API calls made during the processing of legal cases. This limitation necessitated significant shortening
of the text within the legal documents to fit within the allowed API usage. Despite these constraints, the
resulting dataset of 10 cases effectively demonstrates the system’s accuracy and usability in analyzing
and responding to legal scenarios.
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Encouragingly, in all ten cases tested, the LLLM functioned effectively. It accurately extracted relevant
details from each case description and successfully transferred this information to the Prolog backend
system. The Prolog system, in turn, flawlessly interpreted the queries and delivered final verdicts on
the legal issues presented. Although the dataset is currently small, the system’s 100% accuracy on this
dataset helps build trust in the system.

To evaluate the accuracy of the system’s reasoning, we conducted human-in-the-loop evaluation.
This involved manually reviewing the system’s output for each case. Legal resources such as handbooks
and online legal forums (e.g., on Reddit) were used to verify the system’s determinations. This process
helped identify potential biases in the LLM’s interpretation of the case details or errors within the Prolog
code’s reasoning logic.

4.3 Efficiency

We measured the average processing time per case, including the LLM extraction and the logic-based
compliance check. The processing times are shown in Table [l The main bottleneck is the API call to
the LLM Llama, which is not directly under our control. However, solutions such as caching frequently
accessed legal information can be explored.

While the LLM API call (to Llama) currently represents the performance bottleneck compared to
Prolog’s minimal processing time, the good news is that the average case processing time remains user-
friendly at only 2.572 seconds.

It also helps if the case description passed to Llama is as concise as possible. Not surprisingly, the
time taken for Llama to respond is directly proportional to the length of the query string passed. In fact,
the system exhibits a strong positive correlation (approx 68%) between the length of the query string and
Llama’s response time.

Test Case | Total Time | Prolog Running Time
1 2.693 0.00012
2 2.462 0.00018
3 2.412 0.00021
4 3.156 0.00120
5 3.324 0.00130
6 2.270 0.00090
7 2.155 0.00050
8 2.215 0.00042
9 2.551 0.00031
10 2.486 0.00010

Average 2.572 0.00011

Table 1: Running times, in seconds, for all test cases

4.4 Robustness

To highlight the superiority and robustness of our system compared to existing solutions, we present a
comparison with state-of-the-art Large Language Models (LLMs) such as ChatGPT [13]] and Gemini
[3]. These LLMs appear to favor the landlord in most cases, as shown by their outputs for the running
example shown in Figuresd]and[3l Neither of these LLMs reached the correct conclusion for this example
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Figure 3: Total Time Taken for Each Test Case

case. According to New York law, the situation clearly favors the tenant if they live in a rent-stabilized
apartment and belong to a protected category. For our test dataset, these LLMs did not reach the correct
conclusion in three out of ten cases. This underscores the importance of our system and highlights the
unreliability of LLMs for this application.

® ChatGPT

In the absence of a court ruling, the outcome of the eviction proceedings initiated by Ms. Johnson,

citing owner occupancy, against David, a disabled tenant in a rent-stabilized apartment in Albany,
New York, remains uncertain. While courts typically favor landlords in such cases, given the
absence of specific legal details and the potential impact of fair housing laws protecting disabled
individuals, the ruling could vary. The court may seek to balance the rights of both parties,
considering factors such as the landlord's legitimate need for owner occupancy and any

accommodations necessary for David's disability.

QO P

Figure 4: ChatGPT output

5 Related work and conclusion

Existing systems for legal analysis employ various techniques, including text classification, machine
learning, and rule-based reasoning [1, |9, |6, (7}, [8]. However, these approaches often have limitations in
handling nuanced legal reasoning.

Text classification systems such as Legal-Document-Classifier [[1]] and LexNLP [9] can categorize
legal documents based on keywords and named entities but lack the ability to perform comprehensive
legal reasoning.

Machine learning-based systems like Kira [6] and LawGeex [7] can extract key terms and identify
potential issues in contracts, and models like Lex Machina [8]] can predict legal outcomes with some



S. Sehgal & Y. A. Liu 67

Show drafts v o)

> Inthis scenario, the court would likely rule in favor of Ms. Johnson, allowing her to
evict David for owner occupancy. While New York offers some protections for
disabled tenants, owner occupancy evictions are generally upheld, even if the tenant
faces hardship finding alternative housing. This is especially true if Ms. Johnson can

demonstrate a legitimate need to occupy the unit herself.
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Figure 5: Gemini output

accuracy. However, these systems often operate as black boxes, raising concerns about transparency and
fairness. They may also be limited by data quality and biases.

Rule-based legal reasoning systems like PROLEG [14, [15] offer support for judges in civil litiga-
tion by incorporating predefined rules and handling uncertainty. However, their complexity can pose
challenges for users.

In contrast, we successfully developed a system for analyzing landlord-tenant disputes in New York
State by leveraging Large Language Models (LLMs) for information extraction and Prolog for legal
reasoning. Achieving high accuracy and efficiency, the system offers several advantages over existing
LLM-based legal analysis systems.

By separating information extraction from legal reasoning, the system achieves greater transparency
and control over the legal logic applied to each case. Additionally, the use of Prolog enables the imple-
mentation of defeasible logic [19,20], allowing the system to handle nuanced legal reasoning, such as
resolving conflicting legal principles and dealing with uncertain or incomplete information [[11]].

In conclusion, this work demonstrates the potential of combining Large Language Models (LLMs)
and logic-based reasoning to create innovative tools for legal analysis. By addressing the limitations of
existing approaches, LogicLease paves the way for more sophisticated and transparent systems in the
field of legal technology.

Future work includes expanding the system’s capabilities by employing techniques for caching fre-
quently accessed legal information. Additionally, improving the testing process and adding more test
cases will ensure better coverage and reliability of the system. Open-sourcing the code could encourage
further development and broader adoption within the legal domain.
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Large language models (LLMs) are able to generate human-like responses to user queries. However,
LLMs exhibit inherent limitations, especially because they hallucinate. This paper introduces LP-
LM, a system that grounds answers to questions in known facts contained in a knowledge base (KB),
facilitated through semantic parsing in Prolog, and always produces answers that are reliable.
LP-LM generates a most probable constituency parse tree along with a corresponding Prolog
term for an input question via Prolog definite clause grammar (DCG) parsing. The term is then
executed against a KB of natural language sentences also represented as Prolog terms for question
answering. By leveraging DCG and tabling, LP-LM runs in linear time in the size of input sentences
for sufficiently many grammar rules. Performing experiments comparing LP-LM with current well-
known LLMs in accuracy, we show that LLMs hallucinate on even simple questions, unlike LP-LM.

1 Introduction

Large language models (LLMs) hallucinate, i.e., generate information that appears plausible but is fac-
tually incorrect [9]. This unfortunately poses a challenge to question answering tasks, as users desire
reliable answers given a query, but hallucination misleads users and erodes the system reputation [2]]. To
overcome this challenge, better retrieval models that retrieve relevant information according to queries
as well as better generation models that synthesize more accurate answers from knowledge sources are
needed. This paper sheds light on how logic programming can be used to push progress on the former.
We describe LP-LM, a system that considers the structure of natural language sentences when retrieving
answers to user queries. Unlike LLMs, which are pre-trained so that for any given input the statistically
best matching output based on its training is given, LP-LM seeks to answer questions in a logical and
verifiable way via matching and substitution of facts.

We use probabilistic context-free grammar (PCFG) productions to model the structures of valid En-
glish sentences and create a knowledge base (KB) consisting of English sentences represented as Prolog
terms. The term structure models relationships between entities in sentences precisely. When the user
asks a natural language question, LP-LM generates the most probable constituency parse tree of the input
sentence, translates the parse tree into a corresponding Prolog term for knowledge representation, and
then matches the term against the KB of Prolog terms to retrieve an answer using unification. Utiliz-
ing Prolog’s definite clause grammar (DCG) and tabling in our implementation, LP-LM proves to be
extremely efficient, especially for grammars with a significant number of production rules. We have im-
plemented LP-LLM using the Prolog system XSB [12,15]], and our implementation is publicly available[]

The rest of the paper is organized as follows. Section [2| defines terms used throughout the paper.
Section [3] compares LP-LM with current LLMs by highlighting simple example problems on which
current LL.Ms fail but LP-LM succeeds. Section 4] describes how LP-LM works, giving an example of
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s --> np, vp. s(A,B) :- np(4A,C), vp(C,B).
np --> dt, nn. np(A,B) :- dt(A,C), nn(C,B).
np --> nn. np(A,B) :- nn(A,B).

vp --> vi. vp(A,B) :- vi(A,B).

dt --> [thel. dt([thelR],R).

nn --> [man]. nn([man|R],R).

vi --> [sleeps]. vi([sleeps|R],R).

?7- s([the,man,sleeps],[]). ?- s([the,man,sleeps],[]).
yes yes

Figure 1: An example Prolog DCG and a parse. The two Prolog versions are equivalent.

an execution along with the underlying details of the execution. Section [5] discusses related work and
concludes.

2 Background
We introduce probabilistic context-free grammars and key logic programming features used.

Probabilistic context-free grammar. A probabilistic context-free grammar (PCFG) is a formal gram-
mar used in natural language processing and computational linguistics [11} 4]. PCFGs associate proba-
bilities with the production rules of the grammar. These probabilities reflect the likelihood of a particular
rule being used in generating or deriving a sentence. For any non-terminal in a PCFG, the probabilities
associated with rules corresponding to that non-terminal must sum to 1.

PCFGs are essential for capturing the ambiguity of natural language, and are particularly useful in
tasks such as syntactic parsing, which uses dynamic programming algorithms to compute the most likely
parse tree of a sentence given a statistical model of the syntactic structure of the language. The Cocke-
Younger-Kasami algorithm (CYK) (Cocke 1969 [5]; Younger 1967 [17]; Kasami 1965 [10]), the Earley
algorithm [6]], and the shift-reduce algorithm [[13] are at the core of most common algorithms for natural
language parsing, both constituency-based and dependency-based.

Definite clause grammar. Definite Clause Grammars (DCGs) are a convenient way to represent gram-
matical relationships for parsing applications. They can be used to progressively build a parse tree as
grammar rules are applied. DCG provides a syntax for writing more readable grammar parsing rules,
and the DCG preprocessor is able to translate a DCG rule into pure Prolog. The arrow operator indicates
a DCG rule, which replaces the normal neck “: - used in Prolog clauses, and square brackets are used to
indicate terminal symbols of the grammar. Figure [I] gives an example. Works similar to DCGs include
stochastic DCGs [8]], relaxed unification grammars [1], and probabilistic unification grammars [[14].

Tabling. Tabling consists of maintaining a table of goals that are called during execution, along with
their answers, and then using the answers directly when the same goal is subsequently called. The idea is
to never evaluate the same call twice. It helps improve the running time drastically, including terminating
efficiently in situations where Prolog goes into an infinite loop following the same calls repeatedly.

Unification. The way in which Prolog matches two terms is called unification. For example, applying
unification of foo(a,X) and foo(Y,b): the principal functor of both terms is foo; the arguments of
foo(a,X) are a and X, the arguments of foo(Y,b) are Y and b; so a and Y must unify, instantiating Y to a,
and X and b must unify, instantiating X to b; and finally the resulting term after unification is foo(a,b).
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3 Comparison with existing LL.Ms

Before delving into the key designs of LP-LM, we first compare our system with existing LLMs to
highlight the motivation behind our work. We focus on the following well-known models: GPT-4o,
GPT-40 mini, and Gemini. In particular, we show that the context-awareness of these LLMs are actually
quite poor in question answering tasks, and that the LLMs struggle to perform tasks involving even single
facts, thus limiting their potential to complete more complex reasoning tasks.

Table[T]illustrates the comparisons. The answers shown are from the first run of the models. Note that
for the first two examples given, the inputs are entered independently, and we only show the answer that
corresponds to the last input due to space. The last two examples consider the separate inputs from the
earlier examples as one prompt, but even with this the models still hallucinate. The examples demonstrate
that current LLMs exhibit a lack of understanding and ability to reason about the relationships between
different concepts and entities, and are only able to generate text based on statistical correlations they
have learned from their training data.

4 Executing LP-LLM using Prolog unification

We outline a typical LP-LM workflow here and then give an example. LP-LM’s KB of Prolog terms is
used to provide context.

* Input: A user’s input can be either a statement (e.g., “suppose I say the black bird flies bravely.”)
which eventually leads to a question, or a question (e.g., “how does the black bird fly?”’) following
some previous statement. If there are multiple sentences in the input, they are processed one at a
time.

* Retrieval from or insertion into KB: The input is parsed using Prolog DCG rules, and a con-
stituency tree and associated Prolog term is generated from the parser. For statements, insertions
into the KB are performed: the term is inserted dynamically into the KB. For questions, retrievals
from the KB are performed: the term is matched against the KB and an answer is obtained by
unification.

* Post-processing: Optionally, the results can be translated to a natural language answer.

We show an example of an LP-LM execution, after which we describe the internal steps of the
retrieval and insertion process.

Example. Consider an example sentence that includes a determiner, adjective, noun, verb, and ad-
verb. This statement gets inserted into the specialized KB of Prolog terms via the predicate add_kb:

7- add_kb(‘the black bird flies bravely’).
After statements, one can perform queries, which can either be yes/no or wh- questions, where predicate
query_kb does the query.

7- query_kb(‘how does the black bird fly’).
Answer: bravely

7- query_kb(‘who flies bravely’).
Answer: black(bird)

7- query_kb(‘does the black bird fly bravely’).
Answer: yes

One can also remove previous statements as follows, where predicate remove_kb does the removal:
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lungs.”

“What can grow
in human lungs?”

in  human
lungs.”

tions can occur in
human lungs, typi-
cally as a result of
disease, infection, or
exposure to harmful

Prompt Input LP-LM ChatGPT Answer ChatGPT Answer Gemini Answer
from User Answer using GPT-40 using GPT-40 mini
“Furosemide “Furosemide | “Temporary  hear- | “Temporary hearing | “Several  factors
causes temporary | causes tem- | ing loss can be | loss can result from | can cause tempo-
hearing loss.” porary caused by a variety | various factors, in- | rary hearing loss:
hearing of factors.  Some | cluding: exposure | ototoxicity, noise

“What causes ||loss.” of the common | to loud noise, ear | exposure, earwax
temporary hear- causes include: | infections, earwax | buildup, Meniere’s
ing loss?” earwax  blockage, | blockage, ...” disease, ...”

ear infections, noise

exposure, ...”
“Fir trees can | “Fir trees | “Several abnormal | “In human lungs, | “Only a few things
grow in human |can grow | growths or condi- | the following can | can grow in human

grow or develop:
tumors, infections,
cysts, ...”

lungs, and they are
all extremely rare
and unusual... fun-
gal infections, bac-
teria, parasites...”

grow in human
lungs?”

lungs.”

lungs, but trees,
plants, or other
organisms generally
cannot grow there...”

substances...”
“Furosemide “Furosemide | “Temporary hearing | “Temporary hearing | “Furosemide can
causes temporary | causes tem- | loss can be caused | loss can be caused | cause temporary
hearing loss. || porary by a variety of | by various factors, | hearing loss due to
What causes | hearing factors, including: | including: medica- | a condition called
temporary hear- ||loss.” exposure to loud | tions, exposure to | ototoxicity.  This
ing loss?” noises, ear infection | loud noise, ear in- | occurs when a
medications, sudden | fections...” medication dam-
changes in air pres- ages the inner ear,
sure...” which is responsi-
ble for hearing.”
“Fir trees can || “Fir trees | “Infections, tumors, | “In reality, fir trees | “Fir trees cannot
grow in human |[can grow | or foreign objects | cannot grow in hu- | grow in human
lungs. What can ||in human | can be found in the | man lungs. How- | lungs...”

ever, certain things
can grow or develop
in human lungs, in-
cluding tumors, in-
fections, cysts, ...”

Table 1: Table comparing LP-LM with existing LLMs for example prompts
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?- remove_kb(‘the black bird flies bravely’). [

LP-LM takes into account the various verb tenses in the English language: simple, perfect, contin-
uous, and perfect continuous tenses, each with their own past, present, and future tenses. Additionally,
LP-LM supports many sentence patterns. These current patterns encompass the prominent structures
of simple declarative sentences in English, and adding more patterns to the system for generalization
purposes is straightforward. Regardless of the sentence, an English sentence will always have two parts:
a subject and a verb. When generating the Prolog term for a given sentence, the root form of the verb is
always used as the functor. More details are described in our implementation.

4.1 Insertions into KB

With non-queries, or what we call statements, insertions into the KB are done. A tokenizer is first used to
extract out each word in the statement, then a top-down evaluation method is used to generate the parse
tree and Prolog term for the sentence. The Prolog term is added to the KB. We take the basic sentence,
“Bob runs”. The DCG rules are applied in the following order:
1. The DCG rule
s(s(NP,VP),Sem,P) --> np(NP,X,P1), vp(VP,Y,_,P2), {Sem=..[Y,X]}, {P is P1%P2%0.25}.
is first matched with the sentence. Variable Sem represents the Prolog term, where Y is the functor
of the term and X is the argument, which is generated incrementally as the words in the input
sentence are matched to a DCG rule one by one.
2. The DCG rule
np (np(PN) ,X,P) --> pn(PN,X,P1), {P is P1%x0.2}.
is matched next, followed by the DCG rule
pn(pn(X),X,1.0) --> [X], {pronoun(X)}.
which checks if “Bob” is a pronoun, as the variable X represents “Bob”.

3. The DCG rule
vp(vp(VB),Verb,C,P) --> v(VB,Verb,C,P1), {P is P1*0.09}.
is matched next, followed by the DCG rule
v(v(X),Vx,C,1.0) --> [X], {verb(Vx,C,[X],[1)}.

which checks if “runs” is a verb, as the variable X represents “runs”.

4. The Prolog term runs (Bob) is obtained, with the parse tree s (np (pn(Bob) ) ,vp(v(runs))), with
probability 0.0045. This is the most probable parse tree. The term is added to the KB.

4.2 Retrievals from KB

With queries, retrievals from the KB are done. The parse tree and Prolog term for the question is gener-
ated the same way. The resulting term is then matched against the KB of terms, and unification is used
to obtain the answer to the question. Consider the question “who runs”, which should return the answer
“Bob” per the example above. The DCG rules are applied as follows:

1. The DCG rule

q(q(Qw,VB), X, P) --> qw(QW,_Qw,P1), v(VB,Verb,_,P2),
{Sem=. . [Verb,X],Sem}, {P is P1xP2%0.05}.

is applied, where qw represents the question word “who” and v represents the verb “runs”.
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2. The DCG rule
qw(qw(X),X,1.0) -->[X], {qword(X)}.
is matched next, which checks if “who” is a question word, as the variable X represents “who”.

3. The DCG rule
v(v(X),Vx,C,1.0) -->[X], {verb(Vx,C,[X],[1)}.

is matched next, which checks if “runs” is a verb, as the variable X represents “runs”.

4. The Prolog term run(X) is obtained, along with the associated parse tree of q(qw (who) ,v(runs))
with probability 0.05, the most probable tree. The term run(X), where X is a variable, will be
unified with a matching rule in the KB, which in this case is run(Bob). Thus, X = Bob.

For yes/no questions such as “does Bob run?”, the tree is q(av(does) ,np(pn(bob)) ,v(run)) and the
Prolog term generated is thus run(bob). In this case, LP-LM checks if there is an exact match of this
term in the KB and a true/false answer is returned by the Prolog engine.

4.3 A note on DCG parsing efficiency

To find the most probable parse tree in LP-LLM, all possible parses of input segments that can contribute
to the maximum probability are considered and compared, from which the parse with the maximum
probability is constructed and returned. Despite this global optimality, the parsing that underlies LP-LM
still proves to be efficient due to our use of Prolog DCGs and tabling. We have performed experiments
testing the efficiency of DCGs and have shown that DCGs still outperform state-of-the-art bottom-up
greedy parsing algorithms.

We evaluated DCG parsers on a total of 12 PCFGs: 3 left-recursive grammars, 3 right-recursive
grammars, 3 unambiguous grammars, and 3 ambiguous grammars. For each type of grammar, we in-
crease the size complexity by increasing the number of production rules with each test: the first test
consisted of a trivial grammar with 3-10 production rules, the second test consisted of a more complex
grammar with 20-50 production rules, and the third test consisted of the longest and most complex gram-
mar with 100+ production rules. Within each test, 3-5 input sentences of increasing length satisfying the
corresponding grammar were parsed, and the time of each parse recorded.

We ran experiments testing these DCG parsers in comparison with the current Viterbi parser API in
the Python Natural Language Toolkit (NLTK). The Viterbi algorithm here uses a greedy heuristic, while
our parsing algorithm performs an enumeration of all possible parses before choosing the optimal one.
Figures and [5] show the running times of sentence parses on grammars of increasing size, for
each type of grammar. The x-axis represents the test cases, i.e. each point is a test case, with each test
case representing an input sentence ranging from lengths 1 to 50. Higher numbered test cases represent
sentences with longer lengths. The y-axis is the running time of sentence parse in seconds, averaged over
10 runs. All measurements were taken on a machine with a 2GHz Quad-Core Intel Core i5 processor,
16GB RAM, running MacOS 14.3.1, with Python 3.11.4 and XSB version 5.0.

Across all types of grammars (left-recursive, right-recursive, unambiguous, ambiguous), the results
are uniform: for large grammars with 100+ production rules, i.e. test 3, our Prolog parser runs much
more efficiently. In particular, for left-recursive, right-recursive, and unambiguous grammars, our parser
is observed to run in linear time in the length of the input sentence for large grammars.

5 Related work, future work, and conclusion

The most notable line of work similar to ours is Retrieval Augmented Generation (RAG), an architectural
approach that augments LLMs with external knowledge such as databases [7]. RAG is particularly
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useful in knowledge-intensive scenarios or domain-specific applications that require continually updated
knowledge; it ensures that the response of an LLM is not based solely on static training data and rather
uses up-to-date external data sources to provide responses. RAG has been popularized recently with
its application in conversational agents. Our work has the similar motivations as RAG, but we use a
“built-in” knowledge base to store facts used for context and utilize semantic parsing implemented in
XSB Prolog to insert and retrieve information from the KB.

Our work also has similar motivations to that of KALM, a logic system for authoring facts and
questions [[16]. While KALM uses the answer set programming system DLV as the logical system
for reasoning about knowledge, our work uses DCG and tabling in XSB Prolog. But as shown in the
work of [3] using OpenRuleBench to analyze the performance and scalability of different rule engines
including XSB and DLV, XSB exhibits significantly better runtime performance than DLV on various
tasks due to tabling.

A limitation to LP-LM is the generalization of English sentences, since we represent the grammar
rules as PCFGs manually. Although new grammar rules can always be added at anytime, doing so
can be tedious, and there are sentences that intentionally violate grammatical rules or standard sentence
structures. In this case, we can simply “augment” LP-LM to use LLMs or other NLP techniques for
input pre-processing to help extract filler words and distill the core facts from sentences, for example
by fine-tuning text summarization models. Regarding the method itself, LP-LLM is limited in that the
class of queries the system can answer is limited to simple retrieval tasks that do not require any form of
reasoning. Getting LP-LLM to support reasoning capabilities such as deductive and inductive reasoning,
as well as further generalizing the system, are plans for our future work.

In conclusion, while LLMs use deep learning models and are trained on massive datasets, making
them prone to hallucinations, our work, LP-LM, shows that a KB of facts and a question implemented
using Prolog’s DCG and tabling for efficient semantics parsing of PCFG can produce reliable answers
and produce them efficiently.
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Pre-trained language models (PLMs) have made significant advances in natural language inference
(NLI) tasks, however their sensitivity to textual perturbations and dependence on large datasets
indicate an over-reliance on shallow heuristics. In contrast, inductive logic programming (ILP) excels
at inferring logical relationships across diverse, sparse and limited datasets, but its discrete nature
requires the inputs to be precisely specified, which limits their application. This paper proposes a
bridge between the two approaches: neuro-symbolic contrastive learning. This allows for smooth
and differentiable optimisation that improves logical accuracy across an otherwise discrete, noisy,
and sparse topological space of logical functions. We show that abstract logical relationships can
be effectively embedded within a neuro-symbolic paradigm, by representing data as logic programs
and sets of logic rules. The embedding space captures highly varied textual information with similar
semantic logical relations, but can also separate similar textual relations that have dissimilar logical
relations. Experimental results demonstrate that our approach significantly improves the inference
capabilities of the models in terms of generalisation and reasoning.

1 Introduction

Deep neural network models have exhibited good precision in NLI tasks ([35, l4]). However, the ability of
these models to genuinely infer the logical relationship between sentences remains a topic of debate and
controversy ([19,46l). For example, it has been shown that labels can be detected solely by examining
the hypothesis, without the need to examine the premise [[19]. Also, the model is incorrectly insensitive
to the premise and hypothesis order; it should be sensitive to such shuffling [46]. In addition, making
inferences from simplified data pairs is challenging for the models that have been fine-tuned on MNLI or
SNLI datasets [27]. The failure to learn the underlying generalisations raises doubts whether the models
are relying on shallow heuristics to guess the correct label ([30, 127,43\ 45]).

In contrast to neural network models, Inductive Logic Programming (ILP), as a method of symbolic
machine learning for reasoning tasks, can learn the relationships between input data and the target [6].
The generalised logical rules can be induced from positive and negative examples in the form of predicate
logic statements (32, [10]). The abstract data representation method makes ILP more data-efficient,
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Figure 1: Logical data is discrete and sparse (red bars) and difficult to directly model (left blue curve)
by a differentiable neural network fy. However, we map meta-rules to-and-from the smooth PLM
embedding space and utilise contrastive pairs (vertical arrows) to carve the sharp underlying logical
structure (rightmost blue function) into fg, enabling logical generalisation and logical reasoning.

generalised, and transferable for reasoning tasks. Also, logic-based programs tend to possess greater
human interpretability, particularly when the predicates employed within the program represent concepts
we are familiar with.

To combine the strength from both symbolic and connectionist sides ([44, 37]) and help neural
language models to better capture the underlying logic structure, we propose a neuro-symbolic contrastive
learning framework inspired by ILP, shown in Figure[I]

In particular, we observe that the topological space of logical functions is difficult to accurately
model with a PLM directly (Figure |1} left). Therefore we indirectly map from the natural language
to the logical meta-rules (a relatively straightforward natural language task, Figure [T} centre). The
meta-rules are assessed by the ILP to construct contrastive pairs that are used to fine-tune the PLM,
ensuring dense representation of the underlying logical relationships (Figure[I} right), and thus improving
overall PLM correctness and reasoning capability. This mapping process involves generating contrastive
pairs that distinguish between logically consistent and inconsistent textual representations, thus carving
a precise logical structure into the differentiable function of neural networks. The employment of hard
examples—where positive pairs diverge lexically yet align logically, and negative pairs converge lexically
but differ logically—facilitates a deeper engagement with the complexities of logical inference.

Additionally, we enhance the symbolic NLI datasets, which are structured in predicate logic, by
transforming them into their natural language equivalents employing the system of LoLLA, an extension of
the Grammatical Framework ([7]). This transformation leverages diverse rule templates to ensure a rich
array of linguistic representations, effectively preparing the datasets to challenge the PLMs with a variety
of textual and structural complexities. This approach to data augmentation ensures that our framework
aligns with the practical demands of neuro-symbolic integration in natural language processing(NLP).

From Kautz’s Taxonomy, there are six levels of neuro-symbolic systems [25]. Our approach can
be treated as a Level 3 NEURO;SYMBOLIC system, which is a hybrid framework whereby a neural
network focusing on one task interacts with a symbolic system specialising in a complementary task. Our
system utilises ILP for data augmentation tasks to construct hard example pairs to enhance the inference
capabilities of neural networks. The main contributions of this paper are:

* Development of a Neuro-Symbolic Contrastive Learning Framework: We introduce a frame-
work that integrates Inductive Logic Programming (ILP) with the adaptive capabilities of contrastive
learning in deep neural networks. This method enhances the logical reasoning abilities of neural
models by utilising ILP-generated logical meta-rules to guide the training process, thus improving
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both performance and logical consistency. By differentiating between logically consistent and
inconsistent textual representations through data augmentation of hard positive and negative ex-
ample pairs, this framework effectively carves more precise underlying logical structures into the
differentiable neural network function.

* Transformation and Augmentation of Symbolic NLI Datasets: Employing ILP, we develop sym-
bolic NLI datasets that incorporate logical structures. These datasets are subsequently transformed
into natural language using LoLA, an extension of the Grammatical Framework. The transformation
process utilises diverse rule templates to ensure that the datasets exhibit comprehensive linguistic
variability, which supports the practical application of these datasets in NLI tasks and demonstrates
the application of logic programming principles in real-world scenarios.

* Empirical Validation: We assess the effectiveness of our neuro-symbolic framework against
existing approaches under multiple settings. The analysis demonstrates improved performance in
logical reasoning and generalisation, highlighting how the integration of logic programming can
enhance the transferability of neural networks.

* Theoretical Insights and Framework Implications: Our research makes substantial theoretical
contributions to the fields of logic programming and machine learning by exploring the potential of
neuro-symbolic integration from the data augmentation aspect. We discuss the intuition of how this
method can enhance the generalisability of the model.

2 Background

2.1 Neuro-symbolic Frameworks for Reasoning

The integration of neural networks with symbolic reasoning has given rise to neuro-symbolic frameworks,
marking significant advancements in reasoning tasks and NLP. These frameworks aim to merge the
adaptive capabilities of data-driven machine learning with the structured rigor of symbolic approaches,
enhancing the complexity of linguistic analysis and understanding [21]].

Recent studies by [38] demonstrate the utility of Answer Set Programming (ASP) in encapsulating
knowledge from natural language texts, providing a robust method for addressing complex queries
directly from textual content. This method complements ASP-based approaches for declarative question
answering, as further explored by [31]], which integrate external NLP modules to facilitate reasoning over
natural language texts, thereby maintaining the contextual integrity of extensive texts. The integration
of Meta-Interpretive Learning (MIL) with ASP, as detailed by [24], illustrates how the incorporation of
external sources can enhance the learning process by effectively managing the expansive search spaces
encountered in MIL through efficient conflict propagation within the HEX-formalism.

The recent development of the Feed-Forward Neural-Symbolic Learner (FFNSL) underscores the
potential of hybrid neuro-symbolic systems in deriving knowledge from raw data, such as images, by
combining pre-trained neural models with logic-based machine learning systems to enhance both accuracy
and interpretability [12]. Furthermore, efforts by [13] in Neuro-Symbolic Inductive Learning from raw
data exemplify the integration of deep learning capabilities with symbolic reasoning to develop advanced
Al systems capable of complex decision-making tasks.

Prominent models such as the Neural Logic Machine (NLM) employ probabilistic tensor repre-
sentations to model logic predicates, simulating forward-chaining proof processes [14]. Similarly, the
Differentiable Inductive Logic framework treats Inductive Logic Programming as a satisfiability problem,
optimised through backpropagation [[15, [17]. Additionally, reinforcement learning has been utilised



M. Liu, R. Ueda, Z. Wan, K. Inoue & C.G. Willcocks 81

to create a neuro-symbolic framework that combines neural networks with natural logic, enhancing
both elements [[16]]. According to Kautz’s Taxonomy, these approaches are categorised as Level 4
NEURO:SYMBOLIC — NEURO systems, where symbolic rules are employed to direct neural training.

Other approaches, comparable to our own and categorised as Level 3 in Kautz’s Taxonomy, include
the application of ILP to extract generalised logic rules from Knowledge Graphs (KG), which utilise
advanced search algorithms and pruning techniques [53]]. The Neuro-Symbolic Concept Learner (NS-CL),
for example, captures visual concepts and linguistic terms to construct scene representations grounded in
symbolic programs [29]. Furthermore, DeepProbLog integrates symbolic reasoning with neural perception
to solve tasks that require both high-level and low-level cognitive processes [28]].

2.2 Preliminary of Inductive Logic Programming

As a subfield of symbolic machine learning, Inductive Logic Programming (ILP) induces a set of logical
rules (clauses) that generalises training examples. ILP learns relations rather than functions [33},[10]. ILP
mainly focuses on learning Horn clause — clause with at most one positive literal, as the following form:

h:—b1,by,...,by, (1)

which stands for the implicational form:
h<b;AbyA---Ab,. 2)
This is a Horn clause, meaning that, if all the conjuncted Body atoms by, ..., b, are true, then the Head

atom A is true. Every atom is a formula p(t,,1,, ...,1,), where #; is a term (a constant or a variable) and p is
a predicate symbol of arity n.

A clausal theory, denoted as T, is a collection of clauses. If a clause C is a consequence of the theory
T, then C is the entailment from 7', denoted as T |= C. The learning objective of ILP is obtaining an
explanation H, which is the assumed relationship induced from background knowledge B. In ILP, positive
examples K and negative examples K~ are given as input. In logical words, this is

Vke KT HUBFk (H iscomplete),
Vke K-, HUBF k (H is consistent).

A Herbrand interpretation / is a subset of the Herbrand base, and is a Herbrand model of a set 7' of

clauses C when
{For each (h:—by,by,...,b,) €T,

if36: {616,026, ...,b,0} C I, then h6 € 1.

0 = {vi/t1,...,vy/ty} is a substitution function which replaces variables {vi,...,v,} in a clause with
terms {f1,...,t,}.

2.3 Introduction of NLI Task

Natural Language Inference (NLI) is a fundamental task in computational linguistics where a system
is tasked with determining the logical relationship between a pair of sentences, known as the premise
and the hypothesisﬂ Specifically, the goal is to ascertain whether the hypothesis is true (entailment),

IPlease do not confuse this notion of hypotheses for NLP with those hypotheses in ILP. The mainstream benchmarks and
datasets in NLP community call it hypothesis [18l 145l 50]]. We thus have two kinds of hypotheses with different notations and
meanings for ILP and NLP. In this paper, we call a hypothesis H in ILP as an explanation H (Section 2.2).
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false (contradiction), or indeterminate (neutral) based on the information in the premise 3, 5]]. This task
mimics key aspects of human reasoning and is crucial for testing the ability of systems to perform logical
inference.

NLI is pivotal for advancing Al technologies that necessitate a nuanced comprehension of natural
language. It challenges computational models to interpret subtleties inherent in human communication,
such as ambiguity, contextual implications, and inferential logic [4, 50]. We aim to enhance the inter-
pretability and reliability of models through the integration of logic programming within Natural Language
Inference (NLI) research, thereby advancing the capabilities of machines to process and interact with
human language in a logically coherent manner.

2.4 Contrastive Learning for NLI

Contrastive learning is a machine learning technique that enhances the discriminative capabilities of
models by enabling them to differentiate features between similar and dissimilar data instances. Originally
prominent in computer vision, this technique has been effectively adapted for natural language processing
(NLP), where it is used to refine a model’s ability to parse and understand complex textual relationships. In
the NLP domain, models are trained using pairs of data instances—positive pairs, which are semantically
similar, and negative pairs, which are semantically dissimilar—thereby training the model to recognise
subtle textual nuances [8, 22]].

The use of Natural Language Inference (NLI) datasets, such as SNLI [5] and MultiNLI [51], has been
instrumental in providing supervised annotations for contrastive learning. Techniques like Supervised
SimCSE leverage entailment pairs as positive examples and use contradiction pairs and other unrelated
in-batch instances as negative examples to fine-tune models’ semantic understanding [18]. SBERT,
employing a siamese architecture with a shared BERT encoder, further illustrates the application of these
datasets to train on discerning semantic discrepancies [41]]. Additionally, self-supervised approaches often
utilise methods such as back translation, dropout, and token shuffling to create contrastive learning pairs,
enhancing the model’s robustness by exposing it to a diverse array of linguistic transformations [[18}152].

Hard examples, or those data pairs that are challenging for the model to correctly classify due to their
nuanced differences or similarities, are particularly crucial in the training process of contrastive learning
[26l 136]]. These examples help in refining the model’s ability to perform fine-grained distinctions and
to generalise better to unseen data. In contrastive learning, hard positive pairs may include sentences
with substantial lexical divergence yet sharing a similar meaning, whereas hard negative pairs might
consist of sentences that are lexically similar but diverge in meaning [45]]. Generating these challenging
pairs requires sophisticated data augmentation techniques that can manipulate textual and logical features
effectively.

Our proposed method emphasises the creation and utilisation of such hard examples by identifying
positive pairs that exhibit textual differences yet share logical similarities, and negative pairs that appear
similar but differ in logic. This focus is implemented through an advanced hybrid framework that combines
symbolic reasoning with neural processing, aiming to enhance the model’s deep linguistic and logical
understanding, which is essential for complex tasks like NLI.

2.5 Problem formulation

In the context of our neuro-symbolic CL framework, the traditional logical terms are adapted with specific
meanings:
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* Anchor data point (E): In our framework, an anchor data point E consists of a pair (P,L), where P
is the premise and L is the conclusion derived from P. The anchor serves as the reference point for
comparison against other examples in the dataset.

* Premise (P): A statement or proposition that provides the context from which the conclusion L is
logically inferred.

* Hypothesis (L): A logical conclusion that consistently follows from the premise. Instead of the term
‘conclusion’, in the standard CL and NLI setups [[18, 45, 150], they previously termed as ‘hypothesis’
here. L can be labelled as true (entailment), false (contradiction), or indeterminate (neutral).

 Hard Positive Examples (E™): Composed of (P L"), where P™ and L* adhere to the same
logical rule as P and L but vary in textual or domain characteristics. This setup ensures that L™ is
a valid conclusion under the same premises but presented differently. The L™ means it is a hard
positive example relative to L, not an indication of L’s truth value.

* Hard Negative Examples (E~): Constructed as (P~,L™), these examples share textual similarity
with P but lead to L™, a conclusion that logically contradicts or deviates from L under the given
premise. The L™ represents a hard negative example relative to L, challenging the model’s ability to
discern subtle logical distinctions and is not a label of L being false.

The primary objectives of our contrastive learning framework are formally defined as follows:

{minimize d(E,E*) : toenforce logical consistency,

maximize d(E,E~) : to capitalise on logical deviations,

where d denotes a distance function (metric) in the embedding space. The minimisation objective aims to
align embeddings of E and E*, which are logically consistent. Conversely, the maximisation objective
aims to differentiate between embeddings of £ and E—, which represent logical deviations, thereby
enhancing the model’s ability to discern fine-grained logical distinctions.

3 Methodology

Inspired by ILP, we construct symbolic NLI datasets by augmentation that maximises textual variability
while maintaining logical consistency. Every augmented dataset consists of two subsets represented as
predicate logic forms and natural language forms.

For the logical form, we use symbolic learning systems to enforce a consistent meta-rule for conclu-
sions across inference data, which indicates the high underlying logical similarity of reasoning process.
And for the natural language, we translated from the corresponding logic form via Grammatical Frame-
work (GF) with various rule templates to ensure diversity in textual representations, such as length and
complexity. Moreover, we propose an ILP-inspired Contrastive Learning framework to further boost the
performance of models on cross-domain inference tasks. For each anchor data point E = (P,L), where P is
the premise and L is the hypothesis (conclusion), we construct hard positive example pairs E™ = (P, L"),
which share the same logic meta-rule but originate from different textual domains. Conversely, a hard
negative example pair consists of an anchor point and a hard negative data point E~ = (P~,L~) within
the same domain, which is textually similar but logically different.

As shown in Figure given an anchor data point denoted as E = (P, L) (where P signifies the premise
and L represents the hypothesis), we generate hard positive example pairs ET = (P™,L*). The hard
positive example pairs share an identical logic meta-rule yet originate from distinct domains. Conversely,



84 Neuro-Symbolic Contrastive Learning for Cross-domain Inference

Et =(P*,Lt)

Durham can be reached from Darlington by train and
York can be reached from Durham by train.

Then York station can also be reached from Darlington
train station.

Premise

Hypothesis

Label True
E=(P,L)
. Amy has a daughter named Anna, who is the mother of
Premise 3
Tim.
Hypothesis Amy is Tim's Grandma.
Label True
E =(P,L)
Premise ?nna has a daughter named Amy, who is the mother of
im.
Hypothesis Amy is Tim's Grandma.
Label False
P(A,B): —Q(A,C),R(C,B). P(C,B): —Q(A,C),R(C,B).
P(4,B) P(C,B)
P € {Legal_city, Grandparent} P € {Grandparent}
PN TN
Q4,0) R(C,B) Q(4,0) R(C,B)
Q € {City, Parent} R € {City, Parent} | Q € {Parent} R € {Parent}

Figure 2: Illustration of an anchor data point E = (P, L) with its corresponding positive and negative pairs.
The positive pair ET = (P™, L") maintains logical consistency with the anchor, while the negative pair
E~ = (P~,L") introduces a logical contradiction despite overlapping textual content.

the formulation of a hard negative example pair involves an anchor point and a challenging negative
data point E~ = (P~,L™) within the same domain. This pair exhibits textual similarity while diverging
logically.

The first two examples shown in blue colour are varying in domains and textual representation, while
the red-coloured example has high token-level overlapping with the middle case. However, the logic rules
below these three examples indicate that the underlying logic meta-rule of the low token-level overlapping
examples are identical, while the higher textual similarity ones are logically different.

Our method seeks to learn an embedding space in which the vector representations of E and E*
are close together, due to the fact that they share the same mathematical logic reasoning process to
inference, despite the difference in their textual expression and domains. On the other hand, since £ and
E~ have similar textual expressions but divergent mathematical logical reasoning processes, their vector
representations should be separated.

We will explain the details of each part of our methodology in the following sections.

3.1 Meaning Representations and Dataset Construction

A standard Inductive Logic Programming dataset is formed of three sets of components: background
knowledge (B), positive examples (K ), and negative examples (K ). As we introduced in section 1.2,
ILP aims to induce a set of rules that with the B entails k € K™ and contradicts k € K~ [10]. The following
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is a toy example of one of the ILP datasets we used:

parent(Ann, Amy)

(
parent(Amy, Amelia)
parent(Amy, Andy)

(

parent(Linda, Garin)
K+ — grandparent(Ann, Amelia)
| grandparent(Linda, Amelia)
K- — grandparent(Amy, Amelia)
| grandparent(Amelia, Ann)

Every positive/negative examples is matched with the corresponding necessary premise from B. The
following Algorithm|I]shows the search algorithm for the premise filtering process.

Algorithm 1 Premise Search

Input: B, R (set of ¢ for every k € K+ /K™)
Parameter: Optional list of parameters
Output: filtered_premise_list

1: for predicate in B do

2 if predicate.r in R then

3 filtered_premise_list.insert(predicate)
4 if predicate.z.rest not in R then

5: R.insert(predicate.z.rest)

6 end if

7 end if

8: end for

Hence, the logic rules extracted from the toy example is given by

grandparent(Ann, Amelia) : — parent(Ann, Amy), parent(Amy, Amelia), 3)

grandparent(Amelia, Ann) :— parent(Ann, Amy), parent(Amy, Amelia). 4)

And the constructed NLI dataset is shown in Table[I] where predicates p and gp stand for parent and
grandparent respectively.

Table 1: Toy examples of the constructed NLI dataset, where ‘+’, ‘—’, and ‘N’ labels denote true
(entailment), false (contradiction), and indeterminate (neutral) respectively.

Premise Hypothesis Label

p(Ann,Amy), p(Amy,Rita) gp(Ann,Rita) +

p(Ann,Amy), p(Amy,Rita) gp(Rita,Ann) -

p(Ann,Amy), p(Amy,Rita) gp(Linda, Garin) N

We systematically augment datasets using a variety of methods tailored to maintain logical integrity
while introducing structural variability. These methods include constructing templates for replacing con-
stants in the terms #; of predicates p(t,1,...,1,), appending logically irrelevant predicates to the premises,
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Table 2: Augmented samples from the given toy examples in Table|[T]

Premise Hypothesis Label
p(Amy, Amelia), p(Ann,Amy), p(Amy, Andy) gp(Ann, Amelia) +
p(Alex,Joe), p(Joe, Charles gp(Charles, Alex) —

p(Joe,Charles), p(Alex,Joe), p(Amy, Amelia), p(Linda, Garin)  gp(Charles,Linda) N

and permuting the order of premise predicates to demonstrate the invariance of logical conjunctions under
operand permutation. For example, in a toy dataset, the predicates within a premise can be reordered
or terms #; substituted using an alternative lexicon to test the robustness of logical inference models to
syntactic variations. Table [2]lists some possible sample data after augmentation.

3.2 Metarules of Cross-domain Tasks

Different from the usual usage of metarules [34}10], we apply metarules here to construct hard positive
examples for contrastive learning. As shown in Figure 2, ET = (P*,L") and the anchor data point
E = (P,L) share the same metarule below:

P(A,B):—Q(A,C),R(C,B). 5)

First-order variables are denoted by the letters A, B, and C, whereas second-order variables are denoted by
the letters P, Q, and R. The substitution functions of the second-order variables P, Q, and R are

substitutions{ P/legalCity, Q, R /city }, (6)
substitutions{ P/grandparent, Q, R /parent}. (7)

After applying the substitution functions, the induced logical relationship between parent and grandparent
(gp)is

gp(A, B) :—parent(A, C), parent(C, B), (8)

and the transition logic rule of accessible transportation between cities is
legalCity (A, B) :— city(A,C),city(C, B). 9)

Logic rules (8) and (9) are isomorphic since they share the same metarule and there exists a bijective
substitution function 6 to make them logically equivalent.

On the other hand, as shown in Figure 2} although E~ = (P~,L™) and the anchor data point E = (P,L)
are textually similar and from the same domain of parent, E~ = (P~,L™) has a different metarule from

rule (5)

And it cannot be logically equivalent with the rule (8)) after applying substitution function (7).

3.3 Data Augmentation for Contrastive Learning

For each anchor data point E = (P, L), we construct its hard positive data point E* = (P*,L") and hard
negative data point E~ = (P~,L™). The premise P is represented as a conjunction of body predicates b,
where P = {b1,bs,...,b,}. The contrastive learning approach uses the .Z,; loss to pull the representation
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of E closer to E™ and push it away from E~, which sharpens the model’s ability to discriminate between
subtle variations in logical coherence.

Through a permutation step defined by o, we reorder b to obtain b’ = Pts(1)sts(2)- - - sto(n))- This
permutation introduces variability in the data structure, aiding the model in learning to recognise essential
logical constructs regardless of their syntactic presentation.

3.4 Hard Positive Example Pairs

In the scenario of a hard positive example pair, E and E™ are connected by a substitution function 6 =
{vi/t1,...,vn/ty}, aligning them under the condition E6 = E* 6. Notably, the variables {vy,...,v,} € Z
and the terms {71,...,1,} € %, where %, and %, signify distinct domains.

3.5 Hard Negative Example Pairs

Given a premise P = {by,b,...,b,} and an hypothesis (conclusion) L = {h} = {p(t1,t2,...,t,)}, we
choose an arbitrary b; € P such that b; = p;(t1,t2,...,t,).

One way of constructing a hard negative example is permuting b; to obtain E; = (P~,L™) with
P~ ={by,...,b},...,b,}. Another way is permuting L to get E, = (P~,L™) with L~ = {#'}.

3.6 Training Process of Contrastive Learning

Contrastive learning will be performed on triplets pairs (E;, E*,E~). The training objective (x;,x",x")
with batch size N is

oCos (il )/

ij\‘lzl (ecos(xj,x;r)/r_‘_ecos(xj,xjf)/r)

%4 =—E |log , (11)

where x; denotes the encoder representation of E; ([18]]). The .Z,; loss function employs cosine similarity
in the embedding space to evaluate the closeness of embeddings. The encoder used for generating repre-
sentations x; is typically a neural network such as a Transformer or LSTM [49] 23]]. These architectures
are chosen due to their proficiency in capturing contextual relationships in text, crucial for the nuanced
understanding required in NLI tasks.

3.7 Rule-based Translation between Logic-form and Natural Language

We use LoLA ([[7])), which is the extensive version based on Grammatical Framework (GF) ([39]) to
enable the translation between natural language and propositional logic formulas. The translation is purely
rule-based. Initially, the expression in the source language undergoes parsing, resulting in the derivation
of an abstract syntax tree (AST). Subsequently, the AST undergoes a linearisation process, yielding a
linguistic manifestation in the target language through the utilisation of language-specific concrete syntax
conventions ([[7]]). Figure [3] shows the toy example of the translation system. To make the translated
natural language more understandable, for input logical formulas, LoL.A uses logical equivalence laws to
search for the optimal expression and remove redundant information.

To enhance the comprehensibility of natural language translations derived from logical formulas, we
utilise logical equivalence laws to generate varied yet equivalent expressions. The NLI dataset, constructed
from these equivalent but textually distinct forms, ensures consistent truth labelling, which is crucial for
the construction of hard examples. We constructed various rule templates to enable the generation of more
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Input formula:
Vz(Number(z) — (Even(z) vV Odd(z)))

lParsing

PUniv
PAtom
VString PImpl ‘
‘ T APredl
“r PAtom PConj /\
‘ T ConjPred1l TUniv
AKind COr PAtom PAtom PN ‘
/\ ‘ ‘ COr BasePredl Nat
Nat  IVar APredl APredl AN
| PN PN Even Odd
VString Even IVar Odd IVar
| [ ‘ J Linearization
VStri VStri
l g ne Output text:
| | every number is even or odd
P @ ry
T T

Figure 3: A model of the translation system is presented, including an example of translating a First-Order
Logic (FOL) formula into English. Each node in the Abstract Syntax Tree (AST) is named after the
syntactic function used to construct the corresponding constituent [7]. The right side of this figure displays
the tree structure following an optimisation step applied to the initial configuration on the left side.

diverse datasets, varying in textual length and reasoning difficulty. Here are some examples shown in
Figure 2] Table [3|and Table [}

Table 3: Examples of equivalent transformations where par and gp denote parent and grandparent
respectively.

Premise Hypothesis Label
par(A,C) Apar(C,B) gp(A,B) +
—par(A,C) V —par(C,B) Vgp(A,B)  gp(A,B) +

Table 4: Examples of Logic Rules and Corresponding translated Natural Language Premises and Hypothe-
ses.

Logic Rule: legalCity(Delwino, Borovan): — City(Delwino, Ebadong), City(Ebadong, Borovan)
Premise: From Delwino, one can take a train to Ebadong. And from there, it is possible to travel to
Borovan by train.

Hypothesis: Therefore, the train network connects Delwino and Borovan.

Label: Entailment

Logic Rule: legalCity(Guinimanan, Ersama): — City(Jenau, Ersama), City(Kotla Pehluan, Ersama),
City(Jalawanan, Sangbanwol)

Premise: The city Ersama can be accessed by bike from Jenau. Sangbanwol is connected to
Jalawanan by train, and you can take a train from Ersama to Kotla Pehlwan.

Hypothesis: These will allow you to reach Guinimanan from Ersama.

Label: Neutral
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4 Experiment and Result

4.1 Dataset

We select some of the classic ILP task datasets — the ancestor dataset from GILPS (General Inductive
Logic Programming System) and the kinship dataset from Popper [[11]. Every dataset is built with three
components all in predicate logic arguments: Background Knowledge (B), Positive Examples (K™), and
Negative Examples (K ).

[City Transportation Dataset] is a self-proposed dataset with B of train connections between two
cities and K™ and K~ represent feasible transportation between cities.

[Popper: Kinship Dataset] is a minimal ILP dataset for kinships. B gives parent relationships and
K* and K~ give examples for grandparent relationships.

[GILPS: Ancestor Dataset] is an ILP dataset for relationships between a big family tree. B provides
information on gender, names, and parent relationships between every generation. And K™ and K~ are
examples of ancestor relationships between two given names.

In general, the statistics of all datasets after the augmentation methods we discussed in the previous
sections are shown in Table[3

Table 5: Dataset statistics after augmentation.

Dataset Domain Size
KINSHIP Parent 93k
CITY TRANSPORTATION Traffic connection 135k
ANCESTOR Family 150k

4.2 Result
4.2.1 Natural Language vs. Logical Form Expressions for NLI

With the inherent challenge of directly modeling the topological space of logical functions using a
Pre-trained Language Model (PLM), we steer our focus towards mapping natural language to logical
rules, a relatively straightforward task for natural language processing. Our first experiment explores
the performance of natural language compares with logical form expressions using our constructed
logic-based dataset.

We subject existing sentence embedding methods to evaluate the difference between logic form and
natural language form. The evaluation made use of the BERT-base model, fine-tuned on both natural
language and logical form datasets. Settings for this experiment included a batch size of 16 and a
maximum text length set to 512 for the encoder.

To evaluate the models, we use Spearman’s correlation complemented with accuracy metrics. Spear-
man’s correlation is a rank correlation method that does not assume a linear relationship, making it suitable
for our task. By using both Spearman’s correlation and accuracy, we can ensure comprehensive evaluation:
while accuracy provides a direct measure of correct predictions, the correlation gives an indication in
terms of the relationships between data points.
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Table 6: The comparison of models for in-domain learning, and the comparison of cross-domain and
cross-form transferability for neuro-symbolic contrastive learning (Neuro-symbolic CL).

Train Test Model Accuracy
In-domain

[KIN A CiTY]-LOGIC [KIN A CITY]-LOGIC BERT-Base 0.54
[KIN A CiTY]-LOGIC  [KIN A CITY]-LOGIC Roberta-Base 0.62
[KIN A CITY]-LOGIC  [KIN A CiTY]-LOGIC BERT-Base Neuro-symbolic CL 0.70

[KIN A CITY]-LOGIC  [KIN A CITY]-LOGIC Roberta-Base Neuro-symbolic CL 0.74
Cross-domain Transfer

[KIN A CITY]-LOGIC  ANCESTOR-LOGIC BERT-Base 0.49
[KIN A CITY]-LOGIC ~ ANCESTOR-LOGIC Roberta-Base 0.45
[KIN A CITY]-LOGIC ~ ANCESTOR-LOGIC BERT-Base Neuro-symbolic CL. 0.63
[KIN A CITY]-LOGIC  ANCESTOR-LOGIC Roberta-Base Neuro-symbolic CL 0.64
Cross-form Transfer

[KIN A CITY]-LOGIC  [KIN A CITY]-NL BERT-Base 0.51
[KIN A CITY]-LOGIC  [KIN A CITY]-NL Roberta-Base 0.53
[KIN A CIiTY]-LOGIC  [KIN A CITY]-NL BERT-Base Neuro-symbolic CL 0.58
[KIN A CITY]-LOGIC  [KIN A CITY]-NL Roberta-Base Neuro-symbolic CL 0.62

Table 7: The comparison of data representation on single and multiple domains dataset. L and NL denote
logical form and natural language.

Dataset Spearman’s correlation  Accuracy
KINSHIP-L 0.69 0.63
KINSHIP-NL 0.59 0.59
CiTY TRANS-L 0.55 0.60
CiTY TRANS-NL 0.31 0.52
[KIN A CITY]-L 0.49 0.54
[KIN A CITY]-NL 0.39 0.48

As shown in Table[/| after changing the logical form to natural language on KINSHIP dataset, the
Spearman’s correlation drops from 0.69 to 0.59. This indicates that language models can learn from logic
form better on the logic reasoning task (sparse task) we proposed. This can also be confirmed on the CITY
TRANS and [KIN A CITY] datasets.

4.2.2 Neuro-Symbolic Contrastive Learning for Cross-Domain Logic Reasoning

We follow the training paradigm of the baseline model in the previous section but use our proposed
contrastive learning loss (Equation and explore the performance of our proposed methods on in-
domain, cross-domain, and cross-form scenarios. As shown in Table[6] we find that while both BERT-base
and Roberta-base models present the poor performance of the baseline training approach on domain
transfer tasks, our proposed neuro-symbolic contrastive learning framework can serve as a powerful
way to improve the transferability. For both cross-domain transfer and cross-form transfer, our method
performs better in overcoming the accuracy drop according to the baseline training approaches, and makes
competitive performance even compared with in-domain scenarios.

5 Conclusion

This paper introduces a neuro-symbolic contrastive learning framework that integrates Inductive Logic
Programming (ILP) with neural networks to enhance logical reasoning in natural language inference tasks.
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The framework aims to minimise the distance d(E,E™) to enforce logical consistency and maximise
d(E,E™) to capitalise on logical deviations, thereby refining the model’s capacity to discern fine-grained
logical distinctions in the embedding space.

Experimental results demonstrate that our data augmentation method significantly enhances logic
inference performance in both natural language and symbolic forms. Additionally, multi-domain fine-
tuning within our framework improves the transferability of pre-trained language models across various
domains. Our empirical findings align with and extend the assumptions of [45] regarding Textual Enhanced
Contrastive Learning for solving math word problems, though our approach uniquely incorporates ILP
for rule-guided analysis and evaluate on both logic-form and NL-form, adding a novel dimension to the
methodology.

The integration of symbolic logic rules and their natural language representations with neural network
methodologies not only significantly improves model performance but also underscores the potential for
developing deeper, more interpretable architectures for complex reasoning tasks.
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